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Abstra
t

The 
on
iseness 
onje
ture is a longstanding notion in 
omputer s
ien
e that

programming languages with more built-in operators, that is more expressive

languages with larger semanti
s, produ
e smaller programs on average. Chaitin

de�nes the related 
on
ept of an elegant program su
h that there is no smaller

program in some language whi
h, when run, produ
es the same output.

This thesis investigates the 
on
iseness 
onje
ture in an empiri
al manner.

In�uen
ed by the 
on
ept of elegant programs, we investigate several models of


omputation, and implement a set of fun
tions in ea
h programming model. The

programming models are Turing Ma
hines, λ-Cal
ulus, SKI, RASP, RASP2, and
RASP3. The information 
ontent of the programs and models are measured as


hara
ters. They are 
ompared to investigate hypotheses relating to how the

mean program size 
hanges as the size of the semanti
s 
hange, and how the

relationship of mean program sizes between two models 
ompares to that between

the sizes of their semanti
s.

We show that the amount of information present in models of the same

paradigm, or model family, is a good indi
ation of relative expressivity and aver-

age program size. Models that 
ontain more information in their semanti
s have

smaller average programs for the set of tested fun
tions. In 
ontrast, the rela-

tive expressiveness of models from di�ering paradigms, is not indi
ated by their

relative information 
ontents.

RASP and Turing Ma
hines have been implemented as Field Programmable

Gate Array (FPGA) 
ir
uits to investigate hardware analogues of the hypotheses

above. Namely that the amount of information in the semanti
s for a model

dire
tly in�uen
es the size of the 
orresponding 
ir
uit, and that the relationship

of mean 
ir
uit sizes between models is 
omparable to the relationship of mean

program sizes.

We show that the number of 
omponents in the 
ir
uits that realise the se-

manti
s and programs of the models 
orrelates with the information required to

implement the semanti
s and program of a model. However, the number of 
om-

ponents to implement a program in a 
ir
uit for one model does not relate to the

number of 
omponents implementing the same program in another model. This

is in 
ontrast to the more abstra
t implementations of the programs.

Information is a 
omputational resour
e and therefore follows the rules of

Blum's axioms. These axioms and the speedup theorem are used to obtain an

alternate proof of the unde
idability of elegan
e.

This work is a step towards unifying the formal notion of expressiveness with

the notion of algorithmi
 information theory and exposes a number of interesting

resear
h dire
tions. A start has been made on integrating the results of the thesis

with the formal framework for the expressiveness of programming languages.
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Chapter 1

Introdu
tion

What is the result of adding together the numbers 5 and 8?

Nearly all tasks are not fully spe
i�ed. When a task is given to a person or a

ma
hine, it is presented based on knowledge of the abilities of the assignee. If the

assignee is versed in all pertinent aspe
ts of a task, then they require no other

information. If not, then they may need more spe
i�
 instru
tions in order to


arry out the task.

Examine the problem above. If one 
an read English, 
an 
ount above 10,

and knows how to perform addition, then one 
an obtain the 
orre
t answer: 13.

If there is a gap in one's knowledge, one might have to learn how to read English,

how to 
ount above 10, or how to add two numbers together.

Not knowing English is an en
oding problem. One does not have the ability to

parse an English senten
e into one's own internal representation

1

, but one might

be able to parse the same problem in a di�erent en
oding: 5+8. If one is literate

in Russian, a Cyrilli
 representation might be preferable to the English version:

�×òî òàêîåðåçóëüòàò ñëîæåíèÿ ÷èñëà 5 è 8?�

2

Not knowing how to add, or how the numerals behave above the number 10

requires some instru
tion in mathemati
s � the person doing the addition has to

be told how to add. Assuming that the assignee 
an 
ount up to 10 on their

�ngers, they 
an be instru
ted in how addition works by having them represent,

say two on the left hand and three on the right. For ea
h �nger they lower

1

However knowledge is represented in the mind.

2

Courtesy of Google Translate.
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on the left, a �nger raises on the right. This is an algorithm for addition, and

with enough examples 
an be generalised for any numbers as long as the assignee

knows how to 
ount up to them.

The point is: for any task to be 
ompleted, the assignee must have knowledge

of how to perform the task and subtasks, and knowledge of the behaviour and

e�e
ts of their a
tions upon the environment whi
h 
ontains the task. From the

high level spe
i�
ation, down to the lowest level me
hani
al attributes of the

assignee, ea
h aspe
t of the above knowledges must be spe
i�ed. The 
ompletion

of a task is a 
ulmination of 
ombining the various pie
es of knowledge to a
hieve

the e�e
t of a task.

When we dis
uss ourselves, or something to whi
h we have as
ribed anthro-

pomorphi
 traits, we say that these knowledges are either �learned� or �impli
-

it/inherent�. Knowing how to tap something with a pen three times uses learned

knowledge of how to hold a pen, how to 
ount to three, what 
onstitutes a `tap'

and so on. It also uses �impli
it� knowledge of sending nerve impulses to 
ontra
t

mus
les to manipulate the pen.

Constru
ting ontologies and taxonomies for knowledges and a
tions for living


reatures is an extraordinary undertaking owing to their 
omplexity, but su
h


lassi�
ations for formal systems 
ould be possible. Programming languages,

whi
h en
apsulate the traits of some formal mathemati
al model, have a spe
-

i�ed en
oding (syntax), and a set of pre-de�ned fun
tions whi
h represent the

knowledge of the language. The language initially �knows� how to perform these

fun
tions be
ause the designer has de
ided that it should. The de�nitions of these

fun
tions, and algorithms to perform them, are de�ned in the semanti
s of the

language as impli
it information.

If a program is written in the language for a 
omputational model A, and it

is not in the 
orre
t en
oding, or using fun
tions not de�ned in the semanti
s,

then A 
annot 
ompute this parti
ular program. One would have to reformulate

the program to use only the en
oding and the fun
tions de�ned in the semanti
s.

If the programmer insists on a di�erent en
oding or the use of of some unde�ned

fun
tion; then either the semanti
s of A has to be 
hanged, or a program written

in A to de�ne the missing fun
tions/translate the en
odings. The 
omputational
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model A requires more information.

There are many models like A. While a lot of them 
an 
al
ulate the same

set of fun
tions, they all have a mixture of di�erent en
odings and pre-de�ned

fun
tions. The full mathemati
al des
ription of these en
odings and fun
tions


onstitute the semanti
s of the model. Some models may have very large seman-

ti
s with lots of pre-de�ned fun
tions, and some may have very small semanti
s

with few fun
tions. If the size of the semanti
s of a 
omputational model is taken

into a

ount when the program is measured, then we 
an ask whi
h 
omputational

models require the least information to fully spe
ify and 
ompute a fun
tion.

1.1 Motivation

This thesis is an investigation into how the distribution of information in a 
om-

putational model a�e
ts the sizes of programs written in that model. If the

semanti
s of 
omputational models are spe
i�ed in a 
onsistent manner (Se
tion

3.4), and programs are written for ea
h model in their respe
tive en
odings, then

measurements of the size of semanti
s and programs 
an be taken. These mea-

surements 
an be 
ompared with the sizes of semanti
s and programs in other

models to look for a relationship between semanti
s size and program size.

There is a high level intuition in Computer S
ien
e that languages whi
h are

more expressive (Se
tion 2.5) have more pre-de�ned fun
tions and thus larger

semanti
s. Languages with larger semanti
s therefore produ
e smaller programs

than languages with smaller semanti
s.

If this intuition holds true, then what is the nature of the relationship be-

tween the size of semanti
s and the size of programs? Can the relationship be

generalised, or is it spe
i�
 to ea
h model? Additionally, questions 
an be asked

about how the internal and external representations a�e
t semanti
 and program

sizes. This thesis is a preliminary investigation into these questions.

1.2 Investigation Overview

This investigation is 
ondu
ted as an empiri
al study to 
ompare multiple models

of 
omputation of varying paradigms. There are four models: the Turing Ma
hine
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(TM, Se
tion 2.3.1.1), the SKI 
ombinator 
al
ulus (Se
tion 2.3.2.2), the Ran-

dom A

ess Stored Program ma
hine (RASP, Se
tion 2.3.1.2), and the λ-
al
ulus

(Se
tion 2.3.2.1).

Ea
h of these models varies in how expressive they are (Se
tion 2.5), so the

me
hanisms behind ea
h one need to be formalised. This is done by writing down

the semanti
s of ea
h model using a 
ommon formalism. In this 
ase, Stru
tured

Operational Semanti
s (SOS, Se
tion 2.4.1) is used. In doing this, a baseline is

established from whi
h measurements of the information 
ontent of models and

programs 
an be performed.

A set of fun
tions is implemented sampling from both the primitive and the

partial re
ursive fun
tions (Se
tion 4.1). This set 
overs problems as simple as

addition up to more 
ompli
ated fun
tions like sorting a list and the universal

ma
hines. The results are presented and an analysis is performed.

There are short
omings with the idea of measuring information at the semanti


level. Even though the semanti
s are all spe
i�ed in SOS, the question of how the

fun
tions whi
h are pre-de�ned in SOS 
an be de�ned in another baseline 
an be

asked. This further begs the question of how the fun
tions of that baseline 
ould

be de�ned (Se
tion 5.1). In an attempt to address this, the RASP and Turing

models are redu
ed to the hardware level using Field Programmable Gate Arrays

(FPGA, Se
tion 5) whi
h are 
on�gurable 
hips that 
an simulate the models at

the logi
 gate level.

1.3 Hypotheses

As an empiri
al investigation, hypotheses are �rst formulated as a guide. These

hypotheses are preliminary at this time, and shall be revised in the 
ontext of

the literature review (Se
tion 3.1).

Some notion of the size of a program or semanti
s is required. Information

and algorithmi
 theory de�ne the size of a pie
e of information as the number

of 
hara
ters required to write it down (Se
tion 2.2). This is a useful de�nition

whi
h we adopt.

The information to 
ompute a fun
tion in a model is split into the information
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ontent of the semanti
s, and the information 
ontent of the program 
omputes

the fun
tion. These information values 
ombined 
onstitute the Total Information

of the fun
tion.

De�nition 1 (Semanti
 Information). Semanti
 information (SI) for a model is

the size of the semanti
s of that model in 
hara
ters.

De�nition 2 (Program Information). Program Information (PI) is the size of a

program in 
hara
ters.

De�nition 3 (Total Information). Total Information (TI) is SI + PI.

It is expe
ted that a model with more SI produ
es programs with less PI

for the same fun
tions in 
omparison to models with less SI. The intuition is

that larger semanti
s are a 
onsequen
e of de�ning more operators or 
onstru
ts

for a language or model. Sensibly de�ned operators ease the burden on the

programmer, thus allowing them to write programs using less 
hara
ters and

therefore less PI.

Hypothesis 1P (Semanti
 Information). For two Turing Complete models (Se
-

tion 2.1.2), if model A has more semanti
 information than model B, the average

size of programs written for model A will be lower than the average for model B.

For example, it is believed that a high level fun
tional language is less of

a 
hore to program in than assembler. The high level of abstra
tion a�orded

by the fun
tional language allows the author of some program to fo
us their

e�orts on programming to the spe
i�
ation, rather than the minutiae of using the

model. Conversely, writing the same program in assembler often requires that

the programmer know what the layout of the registers are and their 
ontents at

any one time. Not only does the programmer have to solve the problem, but they

have to manage resour
es intelligently, or risk bugs whi
h break the program but

do not dire
tly relate to how the programmer has solved the problem.

Extensionality is when a program is evaluated on its external e�e
ts rather

than its internal stru
ture. Two programs are the same in an extensional sense

if they produ
e the same output for the the same inputs. The opposite of this is

intensionality, whi
h evaluates programs on how they 
ompute something.
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When applied to the same task, the extensionality of the fun
tional program

+ semanti
s is equivalent to that of the assembler program + semanti
s. The

semanti
s of the fun
tional language are more 
ompli
ated than those of the

assembler, so its expe
ted that the fun
tional program will be appre
iably smaller

than the assembly program.

As the 
omplexity of programs (Se
tion 3.1.2) in
reases, so does their min-

imum size. If the SI hypothesis (1P) is 
orre
t, then this size in
rease will be

more marked in languages with small semanti
s as opposed to languages with

larger semanti
s. It is hypothesised that smaller models and simpler programs

will 
ontain less TI than simple programs in 
omplex models. However as the

size and 
omplexity of the set of programs grows, the average TI of the 
omplex

models will be lower than that of the simple models.

Hypothesis 2P (Total Information). As the size and 
omplexity of a program

in
reases, the average total information of an implementation in a model with

large semanti
s de
reases relative to the total information of an implementation

in a model with small semanti
s.

Analogous hypotheses for FPGAs 
an be stated:

Hypothesis 3P (Semanti
 Cir
uit Size). A Model A with a larger set of seman-

ti
s than model B will produ
e a larger 
ir
uit when 
onverted into a hardware

representation.

Hypothesis 4P (Total Cir
uit Sizes). The average total 
ir
uit size (semanti
s

+ programs) of a more expressive model will be lower than that of a less expressive

model.

These hypotheses will be expanded in Se
tion 3.1 whi
h evaluates and re�nes

the hypotheses in the 
ontext of the literature survey.

1.4 Contributions

This work makes the following 
ontributions:
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Empiri
al Comparison of Program Sizes in Computational Models For

ea
h model of 
omputation 
onsidered in this thesis, semanti
s are de�ned in

a 
ommon representation (Se
tion 3.4) using Stru
tured Operational Semanti
s

(SOS). This representation is measured in the a

epted information theoreti


metri
 of 
hara
ters (Se
tion 2.2.1) and produ
es a representative set of fun
tions

whi
h are as elegant (Se
tion 2.2.2) and stylisti
ally 
onsistent as possible. The

programs are measured and these measurements are analysed (Chapter 6). The

analysis shows:

• In the same model paradigm, models with large semanti
s tend to produ
e

smaller programs than models with small semanti
s (Se
tions 6.2.2 and

6.2.3) [19℄.

• When 
omparing models from di�ering paradigms, semanti
 size is not a

reliable indi
ator of relative program size (Se
tion 6.2.8).

• The information levels of the simpler models (e.g. SKI 
al
ulus and Turing

ma
hines) exhibit di�ering trends in the TI required to 
ompute the set

of 
hosen fun
tions, 
ompared to more 
omplex models (the RASPs and

λ-
al
ulus). For the set of fun
tions in this thesis, the simpler models have

a signi�
ant in
rease in required information when the universal ma
hines

for the RASP and TM are in
luded (Se
tion 6.4).

• The en
oding of the input to a fun
tion 
an drasti
ally a�e
t the size of

the program to 
al
ulate the fun
tion (Se
tion 6.6). Proposals are made to

in
orporate the information of en
oding fun
tions and input growths to the

broader �eld of Algorithmi
 Information Theory.

FPGA Realisation of RASP and Turing Ma
hines Comparisons founded

on a 
hara
ter-based information theoreti
 en
oding 
arry some problems as there

is no a

ount of the semanti
s of the SOS formalism in whi
h the model semanti
s

are de�ned (Se
tion 5.1). Su
h impli
itly de�ned operators in SOS may be used

in the semanti
s of one model, but not in another. Furthermore, there may

be 
onsisten
y of the models within the 
on�nes of these information theoreti



omparisons, but no guarantee that this 
onsisten
y holds in another mode of


omparison.
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The mathemati
al models of the semanti
s 
an be physi
ally grounded by

translating the SOS of the models into a spe
i�
ation language for ele
troni



ir
uits su
h as VHDL. This spe
i�
ation is synthesised into a 
ir
uit s
hemati


suitable for implementation on a Field Programmable Gate Array (Chapter 5).

These implementations provide a 
on
rete 
omparison of the number of ele
troni



omponents required to implement the semanti
s and programs of the models.

The analysis shows:

• FPGA realisations are 
orrelated with the TIs of the models. The TI 
an

be used as an indi
ator of the number of 
omponents required to implement

the semanti
s and program (Se
tion 6.3) [19℄.

• FPGA realisations are a poor indi
ator of relative expressiveness. One


annot determine the expressiveness of the TM vs the RASP using the

number of 
omponents of an FPGA implementation (Se
tion 6.3.3).

Alternative proof of the unde
idability of Elegan
e Chaitin's proof of the

unde
idability of elegan
e is based on the operation of programs. An alternative

proof is obtained via proving that the information to 
al
ulate a fun
tion in some

model is a Blum 
omplexity measure (Se
tion 3.1.1). For a Blum 
omplexity

measure, there exists a fun
tion where the information for a program and input


an always be redu
ed for almost all inputs (Speed-up Theorem, [5℄).

Universal RASPs In the 
ourse of this investigation, a number of programs

drawing from the sets of primitive and partial re
ursive fun
tion have been writ-

ten. One of these programs is the universal RASP ma
hine, a program whi
h

takes the de�nition of a RASP and runs it a

ording to the semanti
 rules of

the RASP model (Se
tion 4.4.2). A RASP ma
hine, Turing ma
hine, λ-
al
ulus

expression, and SKI 
ombinator expression have all been written whi
h perform

this fun
tion. A suitably en
oded RASP given as input to these programs will

return the RASP in a halting state (if one exists) whi
h is identi
al the halting

state of the same ma
hine exe
uted a

ording to the RASP semanti
s.

RASP Busy Beavers The Busy Beaver problem is that of �nding a Turing

Ma
hine of a given size that runs for the longest number of steps, and/or prints the

20



Chapter 1. Introdu
tion

most symbols before halting [73℄. A variant of this problem had been developed

for the �nite RASP ma
hine and an upper bound on the highest number of

instru
tions exe
uted, and the highest number of outputs, has been dis
overed

for 23 by brute for
ing all possible ma
hines (Se
tion A.3.1). Subsequent 
lasses

have also been investigated and lower bounds established through the use of

seeded and non-seeded parallel geneti
 algorithms (Se
tion A.3.2) [18℄.

1.5 Stru
ture

This stru
ture of this thesis is as follows: Chapter 2 is a survey of the literature,


overing the history of 
omputability, information theory, elegan
e, expressiveness

and the models whi
h are used.

Chapters 3, 4, 5, and 6 ta
kle the 
rux of the 
entral question. Chapter 3 lays

out the semanti
s of the models in Stru
tural Operational Semanti
s, dis
usses the

metri
s and 
riteria whi
h are used to gauge the written programs, and 
overs

the method used in the investigation. Chapter 4 presents the programs from

whi
h 
omparisons are drawn and details their algorithms. Chapter 5 sets out

the rationale and implementation of physi
ally grounding the TM and RASP

ma
hines using FPGAs.

Chapter 6 provides a detailed analysis of the measured programs, semanti
s

and 
ir
uits. By 
ombining, 
ontrasting and evaluating them in multiple 
on-

texts, insight is gained into the shape of the information lands
ape and how the

information 
ontents of models relate to ea
h other.

Chapter 7 re�e
ts on the investigation as a whole and 
on
ludes it. The


hapter dis
usses parti
ular topi
s of interest whi
h may provide further insight

into the results des
ribed herein. It proposes extensions to this work and explores

ideas of information for 
omputation.

1.6 Publi
ations

The publi
ations whi
h have resulted from this work are:

• �Brute For
e is not Ignoran
e�, Joseph Davidson and Greg Mi
haelson, The
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Informal Pro
eedings of Computability in Europe 2013, Milan, Italy.

• �Elegan
e, Meanings and Ma
hines�, Joseph Davidson and Greg Mi
haelson,

Computability, 2015 (a

epted subje
t to revision).
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Chapter 2

Literature Review

This 
hapter outlines the literature behind this thesis in order to prepare us to

understand the results that are to 
ome. Figure 2.1 shows relationships between

relevant topi
s in 
omputer s
ien
e. Ea
h arrow shows the in�uen
e of one topi


on another. This does not show all the relationships be
ause in reality, the


omputability bubble in�uen
es almost all the other topi
s and should have a lot

more arrows. Computability is where we start.

2.1 Computability

In the broadest sense, a fun
tion is 
omputable if it 
an be translated into some

kind of formal representation whi
h is then exe
uted on a model of 
omputation.

There are 
aveats to this, su
h as the model needs to predi
tably stop (halt) on
e

the 
omputation is �nished. In 
omputer s
ien
e, 
omputability is the dis
ipline

of determining if a fun
tion is 
omputable [86℄.

2.1.1 Hilbert and Gödel

In 1900 the German mathemati
ian David Hilbert had a dream. He a
tually had

23 dreams, ea
h of whi
h was a single problem that he believed was a important

question for mathemati
s to address in the 
oming 
entury [37℄. At the time of

writing, 11 are fully resolved, 7 are partially (or 
ontroversially) resolved, 4 are

unresolved and one (the 4th)is thought to be stated too vaguely for any work to

take pla
e [31℄.
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Figure 2.1: Overview of topi
s related to this thesis.

Of these problems, we fo
us on the se
ond one. Hilbert wanted to formalise all

of mathemati
s su
h that if someone were to write a mathemati
al statement in

this formal system; �it shall be possible to establish the 
orre
tness of the solution

by means of a �nite number of steps based upon a �nite number of hypotheses

whi
h are implied in the statement of the problem and whi
h must always be

exa
tly formulated.� [37℄

To put it in a more modern verna
ular, Hilbert wanted a 
omputer program

whi
h 
ould take any set of axioms (a statement taken to be �self evident�) and

formulae provided by the user, and return a proof of the formulae starting from

those axioms. This me
hanisation of mathemati
s would allow us to formulate

any unresolved question (su
h as the twin primes 
onje
ture [107℄), a set of basi


axioms (su
h as the Peano or ZFC axioms [101℄) and eventually get an answer.

To do this however, needs a formal system whi
h is is 
omplete (able to express all

possible mathemati
al formulae) and 
onsistent (there are no two true formulae

that 
ontradi
t ea
h other).

In 1931, Kurt Gödel proved that this was an impossible dream. The In-


ompleteness Theorems assert that even a simple formal system 
ould express a

formula whi
h was the negation of itself [28℄. He did this by 
onstru
ting the
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mathemati
al equivalent of the English senten
e �This statement is false� using

a s
heme known as Gödel numbering or Gödelisation [64℄.

Gödel numbering is a method of mapping some �nite alphabet to the natural

numbers. As an example, say there are 3 symbols in an alphabet {(, ), x} and

the senten
es (x), ()x, and x() need to be numbered. A mapping of natural

numbers to the individual letters is �rst de�ned, say {( 7→ 1, ) 7→ 2, x 7→ 3}. Then

the numberings are 
onstru
ted with 
are taken to preserve the stru
ture of the

formulae. The natural numbers from this alphabet 
an be 
on
atenated together

(x) = 132, but an alphabet of more than 9 symbols would present a problem. If

y = 11, is 12113 = ()yx or = ()((x?

The fundamental theorem of arithmeti
 is an observation by Eu
lid that every

natural (non-negative) number has a unique prime fa
torisation [24℄. Take the

number 523345 for instan
e:

523345 = 3× 17× 47× 131

Sin
e we know that all prime numbers have only themselves and 1 as divisors, it

is 
lear to see that we 
annot substitute any other numbers for the fa
tors above

so it must be unique.

Prime fa
torisations are used to resolve the issue above. A number is 
on-

stru
ted by using the prime numbers as position indi
ators for the formula with

the exponents of the prime numbers indi
ating whi
h 
hara
ter is in that position.

For example:

(x) = 21 × 33 × 52 = 1350

()x = 21 × 32 × 53 = 2250

x() = 23 × 31 × 52 = 600

If y = 11, the two senten
es ()yx and ()((x are as follows:

()yx = 21 × 32 × 511 × 73 = 301, 464, 843, 750

()((x = 21 × 32 × 51 × 71 × 113 = 838, 530

These are all unique, and so Gödel provided a mathemati
ally straightforward

method of mapping senten
es to the natural numbers. Gödel uses this method
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to not only map mathemati
al formulae of his 
hosen system, but also all meta-

mathemati
al formulae. Doing this, he 
ould substitute meta-mathemati
al as-

sertions into his regular formulae whi
h allowed him to 
onstru
t a self-referential

formula whi
h stated its own negation.

The te
hni
al details of this are 
omplex [64℄, but the impli
ations are broad

and deep a
ross all �elds of the mathemati
al s
ien
es. Gödel essentially dis
ov-

ered the existen
e of problems that 
annot be solved. To try to solve these will

obtain a paradox. These problems are known as un
omputable, or unde
idable.

Gödel's numbering te
hnique has appli
ations outside of his proof. An enu-

meration of programs is a size ordering using the alphabet of the programming

language. Be
ause any data drawn from a �nite alphabet 
an be enumerated,

there exists a Gödel numbering fun
tion whi
h 
an enumerate all programs writ-

ten in some language. The proofs and proof outlines in Se
tions 2.2.2, 7.3.1, and

A.2 rely on this.

2.1.2 Chur
h and Turing

In 1936, The Ameri
an logi
ian Alonzo Chur
h and British mathemati
ian Alan

Turing were both 
on
erned with the notion of what an algorithm is and how

to formalise it. Chur
h devised an abstra
t substitution system known as the

λ-
al
ulus [11℄ (Se
tion 2.3.2.1) while Turing 
reated a set of hypotheti
al ma-


hines [95℄ (Se
tion 2.3.1.1).

Despite looking and operating in 
ompletely di�erent manners, it 
an be

shown that these two models of 
omputation are equivalent. This means that

every fun
tion that we 
an write in the λ 
al
ulus has a 
orresponding fun
tion

in Turing ma
hines. The most straightforward proof of this lies in the power of

universal ma
hines.

At its most basi
 level, a universal ma
hine UX is a ma
hine that will run

any program whi
h is written in some model X . For instan
e, Turing's seminal

paper introdu
es the UTM, a Turing ma
hine that takes as inputs on its tape,

a des
ription of another TM M and some input tape for M , say T . The UTM

then exe
utes the ma
hine M against the tape T . In essen
e, Turing wrote an

interpreter for Turing Ma
hines in the language of Turing Ma
hines.

26



Chapter 2. Literature Review

Universal ma
hines 
an be made to prove that the λ-
al
ulus is equivalent to

the TM model. Sin
e we know that a universal ma
hine for TMs 
an be written

and that equivalent models 
an represent the same fun
tions, let us assume we


an write a UTM U in the λ-
al
ulus. This is a λ term that takes a ma
hine and

tape en
oded as λ terms and exe
utes the ma
hine on the tape.

Consider a hypotheti
al program P that 
an be written in the TM but not

in the λ-
al
ulus. The existen
e of a UTM λ term means that any TM 
an be

en
oded as a λ expression and then exe
uted a

ording the the rules of TMs. So

if U 
an be written, then a TM program inexpressible in the λ-
al
ulus su
h as

P 
annot exist.

Implementing a UTM in the λ-
al
ulus is fairly straightforward [96℄ (Se
tion

4.4.1.3), so we know that the λ-
al
ulus 
an express all fun
tions that a TM 
an.

To show that the TM 
an express all the fun
tions of the λ-
al
ulus, the 
onverse

needs to be 
onstru
ted. Writing a TM to evaluate any arbitrary λ expression

is also a
hievable [96℄ so we 
an state with 
on�den
e that the λ 
al
ulus and

Turing Ma
hine 
omputational models are equivalent.

This equivalen
e forms the basis of Chur
h's (later the Chur
h-Turing) the-

sis. This states that any fun
tion that 
an be 
omputed is λ-de�nable, and by

extension 
an be 
omputed by the λ-
al
ulus and Turing Ma
hines [97℄. Many

other models of 
omputation have been shown to be CT 
onformant su
h as Tag

systems [72℄, Markov algorithms [57℄, RAM ma
hines [63℄, and RASP Ma
hines

(Se
tion 2.3.1.2).

The formalisation of this notion of 
omputability ended a 
hapter of a sear
h

that started with Hilbert. It allows for an immediate and intuitive notion that

if a problem is 
omputable by a Turing ma
hine, then it is 
omputable in other

models of 
omputation equivalent in power to a Turing ma
hine. If model A

is equivalent in power to a Turing ma
hine, then one 
an use Gödelisation to

translate a TM en
oding into an en
oding suitable for A. A model equivalent in

power to Turing ma
hines is said to be universal.
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2.1.2.1 Universal Ma
hines

A universal Turing ma
hine is a Turing ma
hine that 
an simulate any universal

system. The ma
hines presented here follow a narrower de�nition in that they

simulate the Turing ma
hine model of 
omputation. Ea
h ma
hine uses an in-

ternal TM representation that 
ould be 
onsidered to be natural in that there

is a 
lear mapping between the tuples of the ma
hine to be simulated and the

data/expression whi
h is meant to represent the ma
hine.

A ma
hine is said to be universal if it simulates any universal system. Uni-

versal Turing ma
hines 
an also be strong, semi-weak, or weakly universal. The

tape of a a weakly universal ma
hine has an in�nitely repeated word (a string

of symbols) extending to the left of the input ma
hine (semi-weak), or a word

extending to the left and another word extending o� to the right (weak). In these

ma
hines, the tape is not a passive and initially informationless medium whi
h

is merely read from or written to, but is an a
tive part of the information of the

system. Strong universal ma
hines do not have these repeated patterns, and the

unbounded tape is always initially blank.

The universality of a ma
hine does not make any guarantees about whi
h

universal system is simulated. One of the smallest strong universal ma
hines

is from Rogohzin. It is a four state, six symbol UTM of 22 tuples and it is

not 
urrently known if there is a smaller ma
hine [77℄. Universal though it is,

Rogohzins ma
hine does not dire
tly simulate TMs. It simulates another universal

model of 
omputation known as 2-tag systems. In a

ordan
e with the Chur
h-

Turing Thesis, any arbitrary TM 
an be transformed a 2-tag system, but the

pro
ess to do so is quite involved [66℄.

The universal ma
hines measured in this thesis (Se
tion 4.4) are so-
alled

�dire
t simulation� ma
hines. These ma
hines simulate the universal ma
hine

UX of the model X by running a suitably en
oded program for X using the

semanti
 rules (Se
tions 2.4 and 3.3.1) of X . The ma
hine UX 
an be written in

any 
omputational model as long as that model is as 
omputationally powerful

as the model X .
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2.2 Information and Algorithmi
 Theories

Shannon �rst investigated the �eld of information theory in 1948 [83℄. His work

not only 
on
erned the engineering required to transmit a message, but also the


ontext of the message between the transmitter and re
eiver. This dual approa
h

allowed him to also investigate en
oding s
hemes for the English language as well

as engineering aspe
ts su
h as bandwidth and signal to noise ratios.

When transmitting information between two parties there are a number of

assumptions made about the message. In the most general sense, we assume that

both the sender and re
eiver have the same semanti
s with whi
h to interpret the

message. A natural example is the assumption of a 
ommon language between

the sender and re
eiver.

This `expe
ted 
ontext' has impli
ations for en
oding and 
ompressing infor-

mation. As an example, we 
an examine the following s
enario: Suppose that

every day at the same time you get an email. That email 
an 
ontain one of

two di�erent messages: �There has been an earthquake in the last 24 hours.�

or �There has not been an earthquake in the last 24 hours.�. While ea
h mes-

sage is several words long, they 
ontain surprisingly little information. Sin
e the

message only states whether there has been an earthquake, with no 
on
ern to

lo
ation/magnitude/damage et
, we 
ould repla
e the entire senten
e with a �0�

for no earthquake and �1� for an earthquake, with no information being lost.

The English language 
an be e�
iently en
oded by assigning a 
ode to repre-

sent ea
h letter. The length of the 
ode is dependent on how frequently the letter

will appear in a pie
e of text. In the English language, the letter �E� is the most


ommon, then �T�, �A�, and so forth

1

down to �Q� and �Z� whi
h are the least


ommon [53℄.

A standard method of applying these variable length 
odes is Hu�man en
od-

ing [41℄ whi
h 
onstru
ts a binary tree sorted by the letter frequen
ies. So for

any given English text (with notable ex
eptions su
h as lipograms or 
onstrained

writings [104℄), we 
an transmit the text in the most e�
ient way assuming that

the frequen
ies used to 
onstru
t the en
oding are 
orre
t.

1

The pre
ise order 
an vary a

ording to the texts studied, for instan
e, A and T are so very


lose to ea
h other frequen
y-wise that some studies swap their position.
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A natural 
onsequen
e of the study of information theory is the idea of 
om-

pression. If the author of the message 
an re
ognise the essential information

whi
h the message 
onveys, then they 
an write a brief message with only that

information. Hu�man en
oding 
an 
ompress text on a 
omputer further by as-

signing a variable length 
ode to every n bits (traditionally 8) whi
h represent a

single 
hara
ter.

2.2.1 Kolmogorov-Chaitin Complexity

Kolmogorov-Chaitin Complexity [47, 10℄ is the measure of randomness in a string.

For a string s, the fun
tion KCL(s) returns the size of the most minimal, also

known as �elegant�, program in language L whi
h will output s when run. The

idea is that if s has some stru
ture, then there will exist a 
omputer program whi
h

is smaller than the length of s. If s is truly random, then KCL(s) ≥ size(s) sin
e

the only way to express s will be to write it out. For example the string s:

s = xyzxyzxyzxyzxyzxyzxyzxyzxyzxyz

has a regular stru
ture whi
h 
onsists of the repeated morpheme �xyz� 10

times. Writing a senten
e like �xyz 10 times� is shorter than writing the string

out in full. The information of the string is 
ompressed into fewer 
hara
ters

without any loss of information so KCL(s) = 12. In 
ontrast the string:

s′ = ss783hsh23sh24156ejflau356hqndgph03jaxfwhg0aqfhrfsry

has no dis
ernible stru
ture. So to 
onvey all of the information in the string,

it needs to be written out in full. KCL(s
′) ≥ 52. If there is no stru
ture to a

string, and all that the resultant program 
an do is just print the string as above,

then it is in
ompressible. The above fun
tion 
an be generalised. KCL(s|x) is the

fun
tion whi
h returns the size of the most minimal program in L whi
h returns

the string s when run with the input x.

The invarian
e theorem for Kolmogorov-Chaitin 
omplexity states that for a

string s, the language we use LU and an ideal language LI (in whi
h KC(s) is
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the most minimal for any L), there exists an overhead c su
h that:

∀s : KCLI(s) ≤ KCLU(s) + c

This is to say that to translate from one language to another requires a 
onstant

size program whi
h performs the task. So the Kolmogorov-Chaitin 
omplexity

for any arbitrary string in some language is some 
onstant c 
hara
ters from the

ideal size.

2.2.2 Elegan
e

Chaitin de�nes an elegant program p for the output/string s in language L as

the shortest program written in L whi
h outputs s. In other words, there is no

smaller program (fewer 
hara
ters) whi
h 
an be written in L whi
h outputs s:

KCL(s) = size(p)

We 
annot in general de
ide if a program p is elegant [10℄:

Theorem 1 (Unde
idability of Elegan
e (Chaitin)). In general, it 
annot be

determined that a program p is an elegant program for the output s over a 
ertain

threshold of size.

Proof. Assume there exists an `elegant tester' program ET whi
h takes a program

P as input and returns true if P is an elegant program and false otherwise.

Consider the program B whi
h takes a number n and enumerates (via some

Gödel numbering method) all possible programs Pn whi
h are longer than n.

For ea
h program in Pn, B runs ET against it until ET returns true. On
e an

elegant program K has been found, B runs K.

If size(n) is the size of n en
oded as an input of B, 
onsider the 
ase of B

with n > size(B) + size(n) + 1 so that any Pn generated is greater in size than

B with n. There are an in�nite number of elegant programs, so ET will state

that one (K) is elegant. However B runs K and therefore returns the result of

K. The 
ombined sizes of B and n are lower than the size of K, so the fun
tion

ET 
annot do what it is assumed it 
an do.
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The elegan
e of programs 
an only be proven up to a 
ertain size (size(B) +

size(n)), so elegan
e is unde
idable in general. This formulation of elegan
e only

refers to programs returning a singular output s, a so-
alled �
onstant� fun
tion.

However, for any given language L there may exist some programs whi
h are of

a size below that of B and perform some general fun
tion su
h as addition. In

other words, there may exist an elegant formulation p su
h that for an input x

and output y in a fun
tion F :

KCL(y|x) = size(p) + size(x) + size(y)

for all x and y in F . Se
tion 3.1 proves that su
h a fun
tion 
annot exist, and

Se
tion 6.6 gives a 
on
rete example of programs whi
h exhibit the 
ontradi
tion

obtained.

Despite these 
hallenges, the 
on
ept of elegant programs has been drawn on

as inspiration for 
omparisons. Elegan
e itself 
annot be dire
tly 
ompared a
ross

languages be
ause the semanti
s of languages are not in
luded in the de�nition.

The semanti
s of a language a�e
t how easily arbitrary algorithms 
an be realised

(expressiveness, Se
tion 2.5), so we 
an question how the elegan
e of a set of

fun
tions realised in language A 
ompares to the elegan
e of the fun
tion in

language B with a di�erent level of expressivity.

2.2.3 Other Measures of Complexity

Software S
ien
e, more 
olloquially known as Halsteads Complexity measures,

is a �eld whi
h attempts to 
hara
terise aspe
ts of algorithms and programs in

order to assess the di�
ulty of implementation, approximate length of a program,

and even the time to implement su
h programs [34℄.

Halsteads model and others (like Cy
lomati
 Complexity [61℄) are built on a

series of mathemati
al formulae. These formulae use 
ounting metri
s of the pro-

gram like number of unique variables, number of unique operands, total variable

o

urren
es, and total operand o

urren
es. The formulae then purport that the


omplexity of the program 
an be 
al
ulated with respe
t to how easy it is to

implement and understand in an arbitrary language.
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If su
h a system of formulae were to exist, it would be very useful. However,

su
h 
omplexity metri
s tend to fall short of their 
laims when subje
ted to

theoreti
al and empiri
al s
rutiny [85, 84℄. It is hard to a

ept that nebulous


on
epts su
h as the 
omplexity of a program, and how easy it is to understand

and write 
an be as
ribed to these metri
s. So mu
h depends on a programmer's

style and skill.

Software metri
s are an attra
tive idea, but their present immaturity and

la
k of rigour does not make them a suitable 
hara
terisation of the information


ontained in a program over a more simple metri
 su
h as the number of 
hara
ters

or bytes.

2.3 Models of Computation

A model of 
omputation is an abstra
t formal system 
onsisting of a set of op-

erators, a grammar for forming statements and a semanti
s whi
h evaluates the

operators of the model in a 
onsistent manner. Models have an asso
iated lan-

guage that is the result of 
ombining the operators with the grammar. We shall

use the terms �language� and �model� synonymously.

For a model to be 
onsidered Turing Complete, it must be 
apable of repre-

senting a UTM as des
ribed in 2.1.2. All of the models in this se
tion are Turing

Complete, and their respe
tive UTMs are des
ribed in Se
tion 4.4.

2.3.1 Imperative/Pro
edural Languages

Imperative models of 
omputation have a stru
ture mu
h like a re
ipe. A program

is a list of instru
tions whi
h are exe
uted in a sequential fashion.

Figure 2.2 shows a small imperative program whi
h uses the pro
edure add()

three times. The �ow of 
ontrol starts at the top of themain() pro
edure. Vari-

able x is assigned with a 
all to add(4,3), in whi
h the �ow of 
ontrol `jumps'

into the add() pro
edure, and then `jumps' ba
k on
e the addition has been per-

formed. Variable y is then assigned with another 
all to add(2,7). With x = 7

and y = 9, the �nal 
all to add() �nishes the program returning the value 16.

Imperative languages are typi
ally easy to follow, but writing a program 
an
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i n t main ( ){

i n t x = add ( 4 , 3 ) ;

i n t y = add ( 2 , 7 ) ;

r e turn add (x , y ) ;

}

i n t add ( i n t x , i n t y ){

return x + y ;

}

Figure 2.2: A 
ode snippet of a pro
edural program.

require that the programmer intera
t signi�
antly with the underlying ma
hine,

espe
ially in an older language like C or C++. Tasks like allo
ating and ini-

tialising memory may not be handled by the semanti
s of simpler imperative

languages. This puts more stress on details whi
h are not dire
tly related to the

problem.

Programming languages are either pure or impure. Fun
tional languages are

distinguished from imperative languages by exhibiting purity in the entirety of

the language, or in a signi�
ant part. One of the important aspe
ts of purity is

referential transparen
y. A fun
tion, or sub-program is referentially transparent

if the fun
tion 
an be repla
ed with its return value without a�e
ting the rest of

the program.

In other words, the fun
tion does not 
hange any global state of the abstra
t

ma
hine running the program. In Figure 2.2, the add() fun
tion is referentially

transparent. The 
alls in main() of add(4,3) and add(2,7) 
an be repla
ed

with 7 and 9 respe
tively without a�e
ting the rest of the program.

Consider a global variable t, whi
h is a variable that 
an be a

essed and used

by any part of a program. If the add() fun
tion is Figure 2.2 were to 
hange t

when 
alled, then the fun
tion would lose referential transparen
y, be
ause the


hanging of t is a side e�e
t. The add() fun
tion does not just return a value, it


hanges the global state of the program.

Modern fun
tional languages often requires that the programmer spe
i�es

only whi
h stru
tures are used and how they are used to solve the problem. The

semanti
s of the fun
tional language di
tate how this more abstra
t solution is

to be implemented on the inherently stateful underlying ma
hine without mu
h,
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if any, intervention from the programmer.

2.3.1.1 Turing Ma
hines

The Turing ma
hine (TM) is a model of 
omputation introdu
ed by Alan Tur-

ing [95℄. Turing ma
hines 
ome in many variations, but the most 
ommon 
on-

sists of a state ma
hine with a read/write head positioned over a tape made up

of 
ells. Ea
h 
ell 
an hold a single symbol and 
an be overwritten as many times

as needed. The tape is unbounded in both dire
tion, so additional 
ells may be

added as required.

The ma
hine has a read/write head that 
an read a symbol from and write a

symbol to a single 
ell of the tape. It 
an also move the tape one square to the

left or one square to the right.

At any given moment, a TM 
an be in one of a number of states. A parti
ular

state and symbol pair informs the ma
hine what to do next a

ording to the

symbol table. The symbol table is a fun
tion:

ST : STATE× SYMBOL 7→ STATE × SYMBOL×DIRECTION

whi
h takes the 
urrent state of the ma
hine: stateold and the symbol 
urrently

under the head: symbolold. It returns a new state to transist to: statenew, symbol

to write: symbolnew, and dire
tion in whi
h to shift the tape: dir.

〈stateold, symbolold〉 7→ 〈statenew, symbolnew, dir〉

It is possible that the fun
tion ST does not return a result for the 
urrent

state and symbol pair. In this 
ase, we have not de�ned what the ma
hine should

do next, so it just halts. As a 
onvention in this thesis, Turing ma
hines will

start in state 1, the read/write head is initially positioned over the left hand side

of our tape input (if not expli
itly de�ned to be elsewhere), and a transition to

state 0 halts the ma
hine. The ma
hine will also halt if it en
ounters an unde-

�ned state/symbol pair. There is no distin
tion between halting by `legitimately'

transisting to zero, or en
ountering an unde�ned state/symbol pair.
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Consider a simple ma
hine to invert a sequen
e. This sequen
e is de�ned as

a string of either `1' or `0' ended with two instan
es of `1' in a row. For instan
e

�1010100010011� is a sequen
e. A ma
hine to invert this sequen
e will start at

the left hand side of the sequen
e and pro
eed by overwriting any 1s with 0s and

0s with 1s. It will halt when the ma
hine reads the se
ond `1' in a row. The

symbol table for this ma
hine is:

〈1, 0〉 7→ 〈1, 1, R〉

〈1, 1〉 7→ 〈2, 0, R〉

〈2, 0〉 7→ 〈1, 1, R〉

〈2, 1〉 7→ 〈0, 0, R〉

This symbol table 
onsists of four transitions, two for ea
h state. Every time a

`0' is read, the ma
hine transists to state 1. If the ma
hine is in state 1 and it

reads a `1', it will transist to state 2. Reading another `1' while in state 2 will

halt the ma
hine by transiting to state 0.

2.3.1.2 The Random A

ess Stored Program Ma
hine

The Random A

ess Stored Program (RASP) ma
hine [23, 16, 36℄ is a register

ma
hine with a Von Neumann memory ar
hite
ture [32℄. A register ma
hine 
an

intuitively be thought of as a 
omputer pro
essor with a set of registers to hold

both the program and data.

A Random A

ess Ma
hine (RAM) is a register ma
hine with two sets of

registers, one set 
ontains the program, and another set 
ontains the data. The

program 
an read and write to the data registers, but 
annot write to the program

registers [78℄. This establishes a boundary between program and data whi
h

emulates a �traditional� idea of programming su
h that this memory model is

supported by most mainstream languages by default.

In general, the RASP model makes no distin
tion between program and data

whi
h are 
ombined into a single register spa
e. It is therefore 
on
eivable that

instru
tions 
an be 
onsidered as data and vi
e versa.

The RASP ma
hine was 
on
eived by Elgot and Robinson [23℄ as an attempt

to introdu
e the notion of an extensible model whi
h 
an be dis
ussed from a
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semanti
 viewpoint. They de�ne a RASP as an ordered sextuple:

P = 〈A,B, b0, Ko, h
1, h2〉

The �rst four items are des
ribed below:

• A and B are possibly in�nite, overlapping, or 
oin
iding sets of addresses

and words respe
tively.

• b0 ∈ B is the empty word.

• Ko ⊆ K is the set of 
ontent fun
tions su
h that k(a) = b, where k ∈ Ko,

a ∈ A, and b ∈ B

For ea
h k ∈ K, every a ∈ A su
h that k(a) 6= b0 is part of a set known as

the support of k. Finally every k with a �nite support is a member of the set Kf .

Ko is a subset of K and is �nitely supported if Ko = Kf .

Let Σ = K × A and Σo = Ko × A be sets of ma
hine states. The fun
tion

h1 : Σo × B 7→ Ko exe
utes a word in B to obtain a new 
ontent fun
tion. The

fun
tion h2 : Σo×B 7→ A exe
utes a word in B to obtain the next address. These

mappings 
an be 
ombined into h : Σo×B 7→ Σo su
h that given a ma
hine state

and word to exe
ute, the ma
hine derives both the next 
ontent fun
tion (via h1
)

and next address(h2
) whi
h is the new state:

• h1 : Σo ×B 7→ Ko exe
utes a word to obtain a new 
ontent fun
tion.

• h2 : Σo ×B 7→ A exe
utes a word to obtain a new address.

Elgot and Robinson's �rst order and set theoreti
 treatment of the RASP

des
ribes the implementation of general re
ursive fun
tions and introdu
es the

idea of language extensions termed de�nitional extensions. It is 
lear that they

intended to use the RASP model as a basis for the implementation of semanti
s of

programming languages and studying how the addition of new de�nitions would

a�e
t the languages. This initial treatment of semanti
s in�uen
ed the develop-

ment of PL/I [55℄ and (by means of the Vienna De�nition Language) SOS [71℄.

However, using the RASP ma
hine to spe
ify these semanti
s never really gained

tra
tion.

The RASP has been used to study 
omputational 
omplexity. Cook, Re
khow

and Hartmanis [16, 36℄ have investigated the time 
omplexity of self modifying

37



Chapter 2. Literature Review

programs relative to �xed ones. Hartmanis dis
overed that RASPs have the

potential to be faster than a RAM or Turing ma
hine due to this self modi�
ation.

Hartmanis de�nes a RASP as a pair 〈M, I〉 of a ma
hine M and set of in-

stru
tions I. M 
ontains two spe
ial registers; an instru
tion 
ounter (IC), and

the a

umulator (AC). These two registers are at the beginning of the memory,

and the rest of the memory 
onsists of an unbounded sequen
e of registers. Ea
h

register 
an hold an arbitrarily sized but �nite binary sequen
e.

Register # Content

. . . . . .

R5 1

R6 5

. . . . . .

Figure 2.3: Indire
tion, a

essing the address stored in R6: <<6>>=<5>= 1

The 
ontents of a register Rn is denoted <n>, similarly <IC> and <AC>

refer to the 
ontents of the instru
tion 
ounter and a

umulator. Indire
tion is

indi
ated with <<n>> whi
h is explained in Figure 2.3.

There are 7 instru
tions in the instru
tion set I, some of whi
h 
an take

di�erent types of parameters. For example the ADD instru
tion 
an add a natural

number to the a

umulator, but it 
ould also add the 
ontents of another register

to <AC>, or even the 
ontents of the address held in some other register. Ea
h

register in this model holds a single instru
tion + data and after an instru
tion

(ex
ept HALT) is exe
uted, <IC> is in
remented for the next register. The

instru
tions I of Hartmanis are explained in Table 2.1.

The instru
tion set is at �rst quite appealing, but the minutiae of implementa-

tion would prove to be quite �ni
ky. Consider for example the 
ase of instru
tions

taking one of several types of input, we see that we would either have to devise

an en
oding s
heme that indi
ates if the parameter to fun
tions are dire
t or

indire
t, or we would have to split the instru
tions out into spe
ial 
ases (i.e

ADD, ADDi, ADDd for the 
ases of n, <n>, and <<n>>). Furthermore, sin
e a

register holds both the instru
tion and data, there is no 
lear way to 
hange one

or the other so that the ma
hine 
an self modify. If there exists some Gödelesque

en
oding for ea
h 〈instruction, data〉 pair, we would have to load the 
ontents of

that register and 
arefully edit it to 
hange either the instru
tion, or the data.
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Name Meaning

TRA n,
TRA <n>

Transfer 
ontrol to register n or <n>
respe
tively. i.e.<IC>= n or <IC>=
<n>.

TRZ n,
TRZ <n>

If <AC>= 0, transfer 
ontrol to regis-

ter n or <n> respe
tively.

STO n,
STO <n>

Store <AC> in register n or register

<n> respe
tively.

CLA n,
CLA <n>,
CLA <<n>>

The values n, <n> or <<n>> respe
-

tively are stored in AC. The 
ontents

of Rn and <Rn> are not altered.

ADD n,
ADD <n>,
ADD <<n>>

<AC > is repla
ed by <AC > + n,
<AC> + <n>, or <AC> + <<n>>
respe
tively.

SUB n,
SUB <n>,
SUB <<n>>

<AC > is repla
ed by <AC > − n,
<AC> − <n>, or <AC> − <<n>>
respe
tively.

HALT The ma
hine stops and no further in-

stru
tions are exe
uted.

Table 2.1: Instru
tions of Hartmanis

These issues lead us to believe that Hartmanis was de�ning his RASP as more

of a RAM ma
hine, where the data is simply appended to the end of the program

and where the program does not a
tually modify itself, but does modify the

same pie
e of memory whi
h holds the program and data. This implementation

is formally 
ongruent to the spe
i�
ation of Elgot and Robinson, but is not as

interesting as a RASP whi
h 
an modify its own program.

In 
ontrast to the above, the model used in this thesis is predominately �nite

through the restri
tion of sets A and B. RASP sizes are spe
i�ed in terms of

�n-bits� and an n-bit RASP has 2n registers, ea
h of whi
h 
an hold a single

natural number up to 2n−1
. The registers themselves are numbered in the range

0 to 2n−1
.

Registers, 0, 1 and 2 have spe
i�
 fun
tions whi
h are used to keep tra
k of

the state of the ma
hine. Register 0 is the Program Counter (PC, analogous to

the IC) whi
h points to the 
urrent register being exe
uted. Register 1 is the

Instru
tion Register (IR) where the 
ontents of the address in the PC is 
opied

for de
oding and exe
ution, Register 2 is the A

umulator (ACC, analogous to

the AC) upon whi
h all of the arithmeti
 instru
tions operate. When a RASP
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Natural Command E�e
t

0 HALT Halt the ma
hine.

1 INC M[ACC℄ ← M[ACC℄+1

2 DEC M[ACC℄←M[ACC℄-1

3 LOAD x M[ACC℄← x
4 STO x M[x℄←M[ACC℄

5 JGZ x IF M[ACC℄ > 0 THEN M[PC℄ ← x
6 OUT Output the 
urrent value of the a

umulator.

7 CPY x M[ACC℄ ← M[x℄

Figure 2.4: The e�e
ts of ea
h instru
tion on a RASP ma
hine M

ma
hine is parsed by the semanti
s (Se
tion 3.4.2), the PC, IR, and ACC are

initialised to 3,0,0 whi
h 
an be thought of setting the IR and ACC to 0, while

the PC points to the �rst instru
tion of the program.

There are 8 instru
tions in the RASP ma
hine with ea
h instru
tion mapped

to a natural number. Figure 2.4 shows the e�e
ts of ea
h instru
tion on a RASP

ma
hine M, where M[y℄ is the value stored in address y of the ma
hine. This

instru
tion set borrows from Cook and Re
khow's de�nition in [16℄, but has

some notable di�eren
es:

• No negative numbers.

• Finite number of registers and the size of a number whi
h 
an be stored.

• INC and DEC rather than ADD/SUB.

• No READ for external input.

• Expli
it CPY instru
tion for indire
tion.

In the event of an over- or under�ow due to the exe
ution of INC and DEC

statements or the in
rementing of the PC, the ma
hine will 
arry on as normal.

An over�ow will set the the a�e
ted register ba
k to 0 and an under�ow will set

it to 2n − 1. If the ma
hine attempts to de
ode and exe
ute a natural number

that is not in the range 0-7, the ma
hine will halt.

The RASP ma
hines of this thesis operate a

ording to the fet
h exe
ute


y
le shown in Algorithm 1. If a ma
hine were to exe
ute the LOAD instru
tion

it would �rst 
opy the instru
tion from the memory address pointed to by the

PC into the IR. De
oding the LOAD would prompt an in
rement of the PC

and a further fet
h of the parameter into the IR. On
e this has been done, the

LOAD 
ommand will be fully exe
uted by setting the ACC to the value whi
h
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while not halted do

M[IR℄ ← M[M[PC℄℄;

if M[IR℄ > 7 then

Halt;

end

if instru
tion requires a parameter then

M[PC℄ ← M[PC℄+1;

M[IR℄ ← M[M[PC℄℄;

end

Exe
ute instru
tion;

if last exe
uted instru
tion was not a su

essful jump then

M[PC℄ ← M[PC℄+1;

end

end

Algorithm 1: RASP Fet
h-Exe
ute 
y
le.

Instr Data I Label

3 :PC

0 :IR

0 :ACC

STO 'here :here

INC

JGZ 'here

Figure 2.5: An example of a RASP that will self modify in order to halt.

is 
urrently held by the IR. The ma
hine in
rements the PC again and 
ontinues

on to the next instru
tion.

The most prominent feature of the RASP is the ability to self modify and


hange the running program. Figure 2.5 shows an example of a ma
hine whi
h

does this. RASP ma
hines are displayed using this form to make them readable.

A RASP ma
hine whi
h is to be exe
uted by the semanti
s is expressed as a

linear array of natural numbers. For example the above ma
hine (ignoring the

initial values for the PC, IR, and ACC) is: 4,3,1,6,3. Ea
h number represents an

instru
tion, pie
e of data, or both. And while 
ompa
t, this form is di�
ult for

a reader to parse. This thesis will primarily deal with the more readable form as

shown in Figure 2.5.

Labels 
ome in two forms: instru
tion labels and data labels. These labels are

pre�xed with a `:' and a `;' respe
tively and are used as pseudo-variables/
omments

and refer to the memory address of the instru
tion or data to whi
h it is atta
hed.

Labels 
an be referred to by a pre�xed ' whi
h should be read as �the memory
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address of the labelled information in the ma
hine�. The ma
hine in Figure 2.5

uses a label �:here� to refer to the address holding the STO instru
tion. This

address is 3, so when �STO 'here� is exe
uted, the ma
hine really exe
utes �STO

3�.

The �rst a
tion of the ma
hine in Figure 2.5 is to store the 
ontents of the

ACC at address 2 (0) in register 3, overwriting the STO 
ommand. Then the

ma
hine in
rements the ACC, 
hanging it to 1, and jumps ba
k to register 3 due

to the ACC being greater than 0. At register 3, the instru
tion 0 is de
oded and

exe
uted and the ma
hine halts.

While the 〈instru
tion,data〉 pairs and labels are used as representations in this

thesis to aid of understanding, the RASPs are measured in the 
omma delimited

form: 3, 0, 0 . . . as des
ribed in Se
tion 3.3.1.

Re
alling the 
anoni
al de�nition of Elgot and Robinson above, we now map

the RASP of this thesis on to that de�nition. The sets A and B of an n-bit

RASP ma
hine are: A = B = {0, . . . , 2n − 1} and the empty word b0 is the

HALT instru
tion, or 0.

Be
ause of the stri
t 
o-in
iden
e A and B, the set of 
ontent fun
tions K,

for these RASPs is slightly di�erent from the original de�nition. The 
on
epts of


ontent fun
tions, states, and the state transition fun
tions h1
and h2

are mixed

up in this de�nition. For the RASPs of this thesis, the state of the memory

provides all the information required to obtain the next state. Thus a state is

not a 
ombination of K × A, but is just the 
ontent fun
tion k ∈ K. If K

represents every possible mapping of A 7→ B, the set Ko is the set of states that

the ma
hine running a parti
ular program 
an be in. We 
an see that the Σ term

is not required to des
ribe the state, as it will be σ = 〈k, k(0)〉 for every k.

This has a kno
k-on e�e
t for h. Given a RASP state, a fet
h determines the

next instru
tion to be exe
uted. In doing so, the state of the ma
hine is set to an

intermediate state (as the IR 
hanges). Exe
ution then 
hanges the state again

as it applies the instru
tion in the IR to the ma
hine.

We 
an 
oer
e the fet
h exe
ute 
y
le in terms of h and σ, but 
an rewrite all
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of the fun
tions in terms of k:

h(σ, b) = 〈h1(σ, b), h2(σ, b)〉

= 〈h1(〈k, k(0)〉, k(k(0))), h2(〈k, k(0)〉, k(k(0)))〉

A better alternative for the fun
tions h1
and h2

is a single fun
tion f : K 7→ K

whi
h takes a state k, and evaluates using the fet
h-exe
ute to produ
e k′
. The

updated expression for an n-bit variant of our RASP (taking HALT as 0) is

therefore:

P = 〈A : {0 . . . 2n − 1}, 0, Ko, f〉

The spe
i�
s of the fun
tion f are des
ribed by the semanti
s of the RASP

ma
hine whi
h are explored in detail in Se
tion 3.4.2.

2.3.1.3 Variations of the RASP

While the RASP is perfe
tly usable as a model of 
omputation, addition and sub-

tra
tion are laborious pro
esses. If there are multiple 
ase of addition/subtra
tion

in a large program, en
apsulating add/sub in a pseudo-fun
tion and 
alling this

fun
tion when required 
an save time and spa
e.

The 
alling is performed by 
opying the data and the return address into

the relevant memory, jumping to the �rst instru
tion in this fun
tion and then

retrieving the �nal value on
e the fun
tion returns.

Figure 2.6 shows an example of a reusable addition fun
tion. The �rst blo
k

of instru
tions store the numbers 6 and 5 in the se
ond blo
k, store where the

fun
tion should jump ba
k to and jump to the start of the addition fun
tion. The

addition fun
tion itself adds the two parameters together and jumps ba
k to the

indi
ated lo
ation on
e Param1 is zero.

This approa
h works reasonably well for moderately sized programs, but for

very large programs with many su
h 
alls it would be preferable to also implement

an exe
ution sta
k whi
h 
an generalise the fun
tion 
all.

We 
an iterate on the basi
 RASP in two di�erent ways by repla
ing INC and

DEC with ADD x and SUB x. Table 2.2 states the e�e
ts of the new instru
tions.

RASP2 will use ADD x and SUB x, where x is a value, su
h that ADD 3 will add

the value of 3 to the a

umulator. RASP3 will also use ADD x and SUB x, but
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Instr Data I Label D Label

LOAD 6

STO 'Param1

LOAD 5

STO 'Param2

LOAD 'retAddress

STO 'returnAddr

JGZ 'AddStart

CPY 'Param2 :retAddress

HALT

LOAD 0 :AddStart ;Param1

JGZ 'add

LOAD 1

JGZ 0 ;returnAddr

DEC :add

STO 'Param1

LOAD 0 ;Param2

INC

STO 'Param2

LOAD 1

JGZ 'AddStart

Figure 2.6: An example of a RASP pseudo fun
tion and 
alling 
ode

Integer Command RASP2 RASP3

1 ADD x M[ACC℄←M[ACC℄+x M[ACC℄←M[ACC℄+M[x℄
2 SUB x M[ACC℄←M[ACC℄-x M[ACC℄←M[ACC℄-M[x℄

Table 2.2: The ADD and SUB instru
tions for a RASP2/3 ma
hine M
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f a 
 t o r i a l 0 = 1

f a 
 t o r i a l n = n ∗ f a 
 t o r i a l (n−1)

Figure 2.7: A Haskell program for 
omputing fa
torials.

the x is a memory address where the value is held. ADD 3 is akin to ADD M[3℄

whi
h adds the 
ontents of the memory at address 3 to the a

umulator. In doing

this, we eliminate the requirement for a generalised fun
tion for addition in the

RASP programs. This means that a RASP2 or 3 program will be signi�
antly

shorter than a RASP program whi
h performs additions.

2.3.2 Fun
tional Language

Informally, fun
tional languages put the onus on spe
ifying a problem rather that

the minutiae of solving it [100℄. Programs written in a fun
tional language tend

to resemble mathemati
al formulae rather than the `re
ipe' of instru
tions of an

imperative language.

For instan
e, the mathemati
al de�nition of the fa
torial fun
tion is:

fact(n) =







n = 0 : 1

n > 0 : n× fact(n− 1)

This is a re
ursive fun
tion. fa
t(n) will 
all itself until n = 0 and then the

resulting produ
t will 
ombine n× n− 1× n− 2× . . .× 1 to return the answer.

Figure 2.7 shows the de�nition of the fa
torial fun
tion in Haskell, a fun
tional

programming language [40℄. There are many di�erent ways to express this fun
-

tion in Haskell, in
luding using an if/then/else stru
ture � similar to what you

might �nd in an imperative language, or using a fold fun
tion over a list of 1 to n,

but this method (pattern mat
hing) 
aptures the simpli
ity of the mathemati
al

de�nition.

Fun
tional languages are often more abstra
t than imperative ones. Modern

fun
tional language implementations pro
ess a number of aspe
ts of a users pro-

gram like allo
ating memories, performing pattern mat
hing, and determining the

�ow of 
ontrol. The automated handling of these tasks eases the burden on the

programmer and redu
es areas in whi
h bugs 
an o

ur [42℄. Requiring the pro-
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grammer to only mathemati
ally spe
ify the problem 
an lead to more (Chaitin)

elegant programs 
ompared to imperative languages, whi
h require mu
h more

intera
tion with the ma
hine. This abstra
tion 
omes at a 
ost however. The

automation of intera
tion with the underlying ma
hine are 
ontained in the se-

manti
s of the language making them larger than their imperative 
ounterparts.

2.3.2.1 λ-Cal
ulus

The λ-
al
ulus was devised by Chur
h [12, 11℄ and is a model of 
omputability

that relies on substitution and abstra
tion. The abstra
t syntax for this language

is:

E := λv.E|(E E)|v

v ∈ {a . . . z}+

The 
al
ulus is made up of λ terms generated from this grammar whi
h are

evaluated via some evaluation strategy. Evaluation is performed by substituting

expressions and values in for variables, also known as β-redu
tion, ea
h of whi
h

is a 
omputation step. As an example, 
onsider a very simple λ term:

(λx.xxy)P

This term 
onsists of a λ term (λx.xxy) and an atom P (whi
h 
ould potentially

be another λ term). We say that the variable x in the term is bound by the λ, and

that the variable y is free. A step of β redu
tion will repla
e all o

urren
es of x

in the term with the atom P , but leave the y as it is. There are two o

urren
es

of x in the body of the expression, so we remove the λx. and repla
e ea
h (newly

freed) x with P . This is a single step of β redu
tion and results in the term PPy.

Consider:

(λx.λy.y)PQ

This λ term has two bound variables: x and y, and two atoms: P and Q.

The �rst step of β redu
tion repla
es all o

urren
es of x with P . There are no

o

urren
es of x, so P is e�e
tively �deleted� from the expression giving:
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(λy.y)Q

We then exe
ute the next redu
tion to obtain Q. When performing β re-

du
tion, we substitute for the very leftmost bound variable �rst. If there is

no expression with whi
h to substitute for the leftmost bound variable, then the

sub-expressions are evaluated. This is known as normal order/leftmost outermost

evaluation and an expression whi
h 
annot be further evaluated is in normal form.

There do exist other evaluation strategies like appli
ative order/leftmost in-

nermost, where a term su
h as (λx.(λa.a)(λb.b)x)(λy.y) redu
es (λa.a)(λb.b) �rst,

and redu
tion to weak head normal form, where evaluation stops when the left-

most abstra
tion does not have an available redu
tion ((λx.(λa.a)(λb.b)x) in weak

head normal form). However full normal order redu
tion is the only redu
tion

strategy 
onsidered in this thesis.

The term (λx.x) is known as the identity fun
tion whi
h takes a single argu-

ment and returns it. (λx.λy.x) and (λx.λy.y) are known as the true and false

fun
tions. They both take two arguments and true returns the �rst argument

while false returns the se
ond:

TRUE A B ≡ (λx.λy.x)A B

⇒β (λy.A)B

⇒β A

FALSE A B ≡ (λx.λy.y)A B

⇒β (λy.y)B

⇒β B

They 
an also be though of as the sele
t �rst and sele
t se
ond fun
tions.

Appli
ation is left-asso
iative, so the redu
tion of a λ term (ABC) pro
eeds

with A applied to B, then the result applied to C. The fully bra
keted notation

is ((AB)C), but we omit the extra ones for brevity. Bra
kets inside an expression

denote the appli
ation order if not left-asso
iative as des
ribed above.

The natural numbers in the λ-
al
ulus 
an be represented by the �Chur
h

numerals� [11℄, whi
h are higher order fun
tions (HOFs). HOFs take another

fun
tion as an argument or return some fun
tion as an output. While every
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lambda term with an abstra
tion is a HOF, the Chur
h numerals are a parti
ularly

good example of the higher order property.

Chur
h numerals are fun
tions whi
h take two λ terms. A number n applies

the �rst argument n times to the se
ond one.

ZERO ≡ λf.λx.x

ONE ≡ λf.λx.fx

TWO ≡ λf.λx.f(fx)

THREE ≡ λf.λx.f(f(fx))

n ≡ λf.λx.fnx

Chur
h numerals 
an be 
ombined using other λ terms to produ
e the arith-

meti
 fun
tions. The su

essor fun
tion s() adds one to a number n:

s(n) = n+ 1

The implementation of s() in the λ-
al
ulus adds an extra `f' to the left of a

numeral n to obtain n+ 1:

SUCC ZERO ≡ (λn.λf.λx.f(nfx))(λf.λx.x)

⇒β (λf.λx.f((λf.λx.x)fx)

⇒β (λf.λx.f((λx.x)x)

⇒β (λf.λx.fx)

≡ ONE

Using SUCC, numerals 
an be de�ned in terms of other numerals:

TWO ≡ (SUCC ONE) ≡ (SUCC ZERO)

n ≡ SUCC

n
ZERO

The opposite of the su

essor s() is the prede
essor p():

p(n) =







0 : n = 0

x : n = (s(x))
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The prede
essor fun
tion de
rements a natural number n if n > 0 otherwise it will

return 0: (λn.λf.λx.n(λg.λh.h(gf))(λu.x)(λi.i)). Given a numeral, the fun
tion

repla
es the variable n and then applies the sub-expressions (λg.λh.h(gf)) and

(λu.x) to the numeral.

If the numeral is zero, the �rst of the terms is deleted leaving (λf.λx.(λt.t)(λu.x)(λu.u)).

This is redu
ed, bearing in mind that ABC is ((AB)C), to (λf.λu.u).

A non-zero numeral N produ
es N 
opies of the �rst term and pro
eeds to

apply the se
ond term to the �rst, and removes the third term. The (g f) stru
-

ture keeps the (λu.x) 
lose to the rear of the expression. Observe the appli
ation

of PRED to TWO:

PRED TWO ≡ (λn.λf.λx.n(λg.λh.h(gf))(λu.x)(λi.i))(λf.λx.f(fx))

⇒β (λf.λx.(λf.λx.f(fx))(λg.λh.h(gf))(λu.x)(λi.i))

⇒β (λf.λx.(λx.(λg.λh.h(gf))((λg.λh.h(gf))x))(λu.x)(λi.i))

⇒β (λf.λx.(λg.λh.h(gf))((λg.λh.h(gf))(λu.x))(λi.i))

⇒β (λf.λx.(λh.h(((λg.λh.h(gf))(λu.x))f))(λi.i))

⇒β (λf.λx.((λi.i)(((λg.λh.h(gf))(λu.x))f)))

⇒β (λf.λx.(λg.λh.h(gf))(λu.x)f)

⇒β (λf.λx.(λh.h((λu.x)f))f)

⇒β (λf.λx.(f((λu.x)f)))

⇒β (λf.λx.(f(x)))

≡ ONE

Note that lines 6-9 have the sub-expression ((λu.x)f) 
lose to the end of the

term. The �nal redu
tion applies the f to (λu.x) to eliminate it and therefore

de
rement the numeral.

PRED is more 
omplex than the su

essor fun
tion be
ause it 
ontains redun-

dant 
lauses whi
h do not a�e
t the ZERO term, but subtra
t an `f' from any

numeral whi
h is not zero. The subtra
tive fun
tions whi
h make use of PRED

are therefore larger than the additive fun
tions whi
h use SUCC.

The addition fun
tion nominally adds two numbers x and y together by re-


ursively de
rementing x to zero while in
rementing y:
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add(x, y) =







y : x = 0

add(p(x), s(y)) : x 6= 0

Addition in the λ-
al
ulus with Chur
h numerals does not follow this re
ursive

de�nition however, as the higher order nature of the Chur
h numerals 
an add n

and m by applying SUCC m times to n:

ADD TWO ONE ≡ (λm.λn.m SUCC n)TWO ONE

⇒∗
β TWO SUCC ONE

⇒∗
β SUCC(SUCC(ONE))

⇒∗
β THREE

We 
an test for ZERO:

iszero(x) =







1 : x = 0

0 : x 6= 0

ISZERO ONE ≡ (λn.n(λx.(λa.λb.b))(λa.λb.a)) ONE

⇒β (λf.λx.fx)(λx.(λa.λb.b))(λa.λb.a)

⇒∗
β (λx.(λx.(λa.λb.b))x)(λa.λb.a)

⇒β (λx.(λa.λb.b))(λa.λb.a)

⇒β (λa.λb.b)

ISZERO ZERO ≡ (λn.n(λx.(λa.λb.b))(λa.λb.a)) ZERO

⇒β (λf.λx.x)(λx.(λa.λb.b))(λa.λb.a)

⇒∗
β (λx.x)(λa.λb.a)

⇒β (λa.λb.a)

The resulting fun
tion from ISZERO is either TRUE ≡ (λx.λy.x) or FALSE ≡

(λx.λy.y). Both fun
tions take two arguments and TRUE returns the �rst, while

FALSE returns the se
ond.

The HOF properties of Chur
h numerals 
an be leveraged to 
reate su

in
t

`additive' fun
tions (addition, multipli
ation, exponentiation). Conversely, sub-

tra
tive fun
tions (subtra
tion, division, square root) are large in 
omparison to
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their additive 
ounterparts be
ause the prede
essor fun
tion (PRED) applied to

ZERO is still ZERO and PRED has to take this into a

ount.

Lists are 
onstru
ted pairwise. They are nested lambda expressions for pairs

with the innermost pair in
luding an end marker. This end marker will allow an

expression to test for it so that we know when we rea
h the end of the list.

PAIR ≡ λx.λy.λz.zxy

NIL ≡ λx.λa.λb.a

HEAD ≡ (λp.p(λa.λb.a))

TAIL ≡ (λp.p(λa.λb.b))

NULL ≡ (λp.p(λq.λr.(λa.λb.b)))

Here, NIL is the end marker and NULL is a test for that marker whi
h returns

TRUE if it is applied to NIL and FALSE if it is applied to PAIR. Additionally,

HEAD returns the �rst element of the list and TAIL returns everything ex
ept

for the �rst element. A three element list 
an be 
onstru
ted with the expression

(PAIR A (PAIR B (PAIR C NIL))).

Other logi
al 
onne
tives 
an be 
onstru
ted to make use of the TRUE and

FALSE expressions:

AND ≡ λp.λq.pqp

OR ≡ λp.λq.ppq

NOT ≡ λp.λa.λb.pba

The �xed point 
ombinator Y ≡ (λf.(λx.f(xx))(λx.f(xx))), is a λ term with

an unusual property. Given an argument term k, (Y k) will redu
e to k(Y k) in

some number of redu
tion steps. If left un
he
ked, the redu
tions will 
ontinue

forever: (Yk) = k(k(. . . (Y k) . . .)). Essentially, what Y does is 
opy the fun
tion

k to the front of the expression and apply k to (Y k).

(Y k) ⇒β (λf.(λx.f(xx))(λx.f(xx)))k

⇒β (λx.k(xx))(λx.k(xx))

⇒β k((λx.k(xx))(λx.k(xx)))

⇒β . . .

The use of Y is the general method of implementing re
ursive fun
tions. The
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opying behaviour of Y allows k to a

ept a 
opy of itself as a parameter. If k

is a re
ursive fun
tion, then a `
all' to k will begin with a 
opy of k being made

whi
h is to be passed into the fun
tion itself. Consider the DIV fun
tion from

Se
tion 4.2.5:

Y(λg.λq.λa.λb.LTa b(PAIR q a)(g(SUCC q)(SUB a b)b))ZERO

The initial redu
tion is the appli
ation of the �xed point 
ombinator to the ex-

pression, produ
ing DIV(Y DIV)ZERO. The abstra
tion g moves the (Y DIV)

into the leading DIV whi
h 
ompletes the re
ursive 
all.

Two λ expressions are equivalent if they have the same e�e
t. This is a

property known as extensionality where we 
are only about how the term in-

tera
ts with other terms, rather than how the inside of the term is evaluated

(intentionality). Working out if two arbitrary terms are equivalent is generally

un
omputable [12℄. But we have tools, known as α and η (and β redu
tion if the

terms are not in a normal form) 
onversion, whi
h we 
an use to 
onvert similar

terms to test for equivalen
e.

Consider the two terms A = (λp.(λa.λq.a)p) and B = (λa.λb.a). These two

terms 
ould possibly be equivalent, but we have to use both α and η 
onversion

to make sure. A term (λx.Mx)T , where there are no free o

urren
es of x in

M , will always redu
e to MT for all M and all T . The abstra
tion over x is

super�uous as it neither dupli
ates, nor moves T in any way. The abstra
tion

over p in λ expression A 
an therefore be removed su
h that A = (λa.λq.a).

We may naïvely believe that two terms abstra
ting over di�erent names 
an-

not be equivalent. This is where renaming or α 
onversion is 
alled for. Renaming

the variables in a term is the pro
ess of 
hanging the name of the bound vari-

able and the name of every variable whi
h is bound by that λ. The expression

(λx.x((λx.xx)x)x) binds the variable x in two di�erent expressions. The inner

expression binds x twi
e, and the outer binds x three times.

This expression is also hard to read. So we 
an rename either (or both)

abstra
tions to something di�erent. (λy.y((λx.xx)y)y) is a little bit easier to

read, 
lears up any possible ambiguities and maintains the intentionality of the

term.

52



Chapter 2. Literature Review

Ix ≡ x
Kxy ≡ x
Sxyz ≡ xz(yz)

(a) E�e
ts of 
ombinators

I ≡ λx.x
K ≡ λx.λy.x
S ≡ λx.λy.λz.xz(yz)

(b) Combinator λ terms

Figure 2.8: Combinator e�e
ts and 
orresponding λ terms

Applying this pro
edure to terms A and B, we rename the bound q in A to

mat
h the b in B. Thereby showing that A = B = (λa.λb.a).

2.3.2.2 SKI Combinator Cal
ulus

Combinatorial logi
 is a simple fun
tional model of 
omputation developed by

S
hön�nkel in 1924 [79℄ and independently re-dis
overed by Curry in 1927 [82℄.

The SKI 
ombinator 
al
ulus 
onsists of three titular 
ombinators: S, K and

I. The I 
ombinator is the identity 
ombinator. For any x, whi
h 
ould be

another 
ombinator or bra
keted expression, Ix is x. The K 
ombinator takes

two arguments, x and y, and returns x whi
h is just like the TRUE fun
tion from

above. The S 
ombinator takes three arguments and reorders them: Sxyz =

xz(yz). Figure 2.8 lists the three prin
ipal 
ombinators of the 
al
ulus and the

λ-
al
ulus expressions whi
h 
orrespond to them.

The SKI 
ombinators have simple λ-
al
ulus 
ounterparts as shown above.

Interestingly, these three 
ombinators are Turing Complete. This 
an be shown

via a pro
ess known as bra
ket abstra
tion[98, 17, 94℄ whi
h �eliminates� bound

variables by repla
ing the abstra
tion me
hanisms with 
ombinators to 
opy and

position parameters.

In this thesis, the SKI expressions for the tested set of fun
tions (Chapter

4) are obtained via bra
ket abstra
tion of λ-
al
ulus terms. There are multiple

methods of bra
ket abstra
tion available [98℄ and a re
ent version by Tromp [94℄

is an e�ort to redu
e the size of the resultant 
ombination as mu
h as possible.

Bra
ket abstra
tion is a pro
ess whi
h 
onverts λ-
al
ulus terms into SKI

terms. It was �rst 
oined by Curry with his abstra
tion rules [17℄. These rules
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work well for expressions with a single variable to be abstra
ted, but the resultant

SKI expression grows in size quadrati
ally with the number of variables in the

term.

Turner noti
ed this and 
reated his own algorithm [98℄ whi
h uses new 
om-

binators to parse out parti
ular patterns of nested expressions to redu
e the size

of the resulting term. However this method uses 
ombinators other than the

standard S, K, and I.

Tromp has devised a bra
ket abstra
tion algorithm whi
h produ
es su

in
t


ombinations without the use of 
ombinators other than S, K and I [94℄. Tromp's

rules are applied in de
reasing order as follows:

1.)λx.(SKM) ≡ SK [for all M ℄

2.)λx.M ≡ KM [x /∈M ]

3.)λx.x ≡ I

4.)λx.(Mx) ≡ M [x /∈M ]

5.)λx.(xMx) ≡ λx.(SSKxM)

6.)λx.(M(NL)) ≡ λx.(S(λx.M)NL)[M,N are 
ombinators]

7.)λx.((MN)L) ≡ λx.(SM(λx.L)N)[M,L are 
ombinators]

8.)λx.((ML)(NL)) ≡ λx(SMNL)[M,N are 
ombinators]

9.)λx.(MN) ≡ S(λx.M)(λx.N)

Rules 2, 3, 4, and 9 are borrowed from Curry's original algorithm. Mu
h like

Turner's new 
ombinators, the extra rules fo
us on un-nesting abstra
ted expres-

sions (rules 6, 7, and 8). Rule 1 takes advantage of the fa
t that SKMT =⇒ T

so we are saving time and spa
e by getting rid of M . Rule 5 avoids the introdu
-

tion of a term of the form II. This bra
ket abstra
tion algorithm is the one we

use to produ
e SKI 
ombinations from λ terms.

With this abstra
tion method in mind, we 
an de�ne numerals and fun
tions

like those of the λ 
al
ulus:
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ZERO ≡ KI

ONE ≡ I

TWO ≡ S(S(KS)K)I

THREE ≡ S(S(KS)K)(S(S(KS)K)I)

OR ≡ SII

NOT ≡ S(SI(K(KI)))(KK)

TRUE ≡ K

FALSE ≡ KI

AND ≡ SSK

These 
ombinations 
an be tested for the desired behaviour. For example, a

Chur
h numeral n takes two fun
tions, f and x, as parameters and returns the

result of f applied to x n times:

(TWO f x) ≡ S(S(KS)K)Ifx

⇒S S(KS)Kf(If)x

⇒S KSf(Kf)(If)x

⇒K S(Kf)(If)x

⇒S Kfx(Ifx)

⇒K f(Ifx)

⇒I f(fx)

Tromp has 
on�rmed that the most elegant Y 
ombinator (via brute for
e

sear
h [94℄) for SKI 
orresponds to the λ-
al
ulus expression (λx.λy.yx)(λy.λx.y(xyx))

and is SSK(S(K(SS(S(SSK))))K) via an exhaustive sear
h. When obtaining

a SKI expression from a λ term, this 
ombinator will �rst be substituted for any

o

urren
e of Y before bra
ket abstra
tion takes pla
e.

2.4 Semanti
s

A program written for a 
omputational model M is a string of 
hara
ters gen-

erated from set of grammati
al rules [63℄. The semanti
s of M are a set of

rules whi
h des
ribe the operations of M . When semanti
s are applied to a pro-

gram and input (typi
ally thought of as �running the program with input i�),

the semanti
 rules of M are exe
uted against the data i in a

ordan
e with the

program [26℄.

Semanti
s 
an be spe
i�ed in any formal system whi
h is powerful enough to
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T (h) = sy
δ(st, sy) = 〈st′, sy′, d〉

d = L
T ′(h) = sy′

h′ = h− 1

E(st, T, h) =⇒ E(st′, T ′, h′)

Figure 2.9: Semanti
s for the TM on a left shift.

express the operations of the language. Elgot and Robinson used �rst order logi


and set theory to initially spe
ify the RASP [23℄, a methodology whi
h helped

inspire the Vienna De�nition Language and Stru
tured Operational Semanti
s

(SOS) [71℄.

There are many di�erent semanti
 formalisms. Ea
h formalism tends to fo
us

on a parti
ular aspe
t of models:

• SOS are 
on
erned about how an operation is performed.

• Denotational Semanti
s explore the e�e
t of an operation [80℄.

• Axiomati
 Semanti
s are often used to prove properties of the model [38℄.

Given the various spe
ialities of these semanti
 systems, it is often required to

implement a model in multiple semanti
 formalisms in order to fully reason about

the models properties.

2.4.1 Stru
tured Operational Semanti
s

Stru
tured operational semanti
s de�ne an abstra
t ma
hine that 
an exe
ute a

program written for the model. SOS is a mathemati
al programming language

in whi
h we de�ne a universal ma
hine for the model [70℄. The semanti
 rules for

the models are often (and will be in this thesis) represented as:

Premises

Con
lusions

where the 
on
lusions are satis�ed if and only if all of the premises are. The

spe
i�
ation of models in this thesis have a set of state variables de�ned where

some or all of the variables 
hange a

ording to the semanti
 rules de�ned.
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Figure 2.9 shows a semanti
 rule for the Turing Ma
hine (TM). The variables

for a TM are; the 
urrent state of the TM (st), the 
urrent tape (T ), and the

position of the read/write head on the tape (h). These are all arguments to the

E (evaluation) fun
tion shown in the 
on
lusion of the rule. If E is exe
uted,

then the state of the ma
hine, tape and head position will all be a�e
ted.

There are �ve premises for this rule. These premises are a mixture of pre
on-

ditions (statements whi
h must hold before the 
hanges in the 
on
lusion) and

post
onditions (statements whi
h must hold after the 
hanges).

The �rst three lines are pre
onditions: On the tape T at position h there is

the symbol sy. In the symbol table δ there is an entry for the 
urrent state st

and read symbol sy. The dire
tion d in the mat
hed entry is a left shift L.

The next two lines are post
onditions: The new tape T ′
has the symbol sy′

at position h, and the new head h′
is the prede
essor of the previous head. If a

TM makes a state transition whi
h in
ludes a left shift, then all of these pre- and

post
onditions will be met and E will have been exe
uted.

Say there are two rules; rule A has three premises and rule B has four. If the

model mat
hes all of the 
onditions of rules A and B, whi
h rule is followed? In

a situation su
h as this, we exe
ute the rule whi
h has the most premises. The

full semanti
s for ea
h model are presented in Se
tion 3.4.

2.4.1.1 Parsing

Stru
tured Operational Semanti
s typi
ally does not deal with the parsing of

programs [70℄. The assumption being that only well formed statements whi
h 
an

be determined from the abstra
t syntax provided in the semanti
s are exe
uted

and that any whole or part expression is synta
ti
ally valid in the 
ontext of the

rule.

This is a perfe
tly reasonable approa
h to take. Usually the parsing of the

program takes a se
ondary role to the exe
ution of the rules in that program.

Assuming that the language 
an be parsed (after all, why would you write me-


hani
al semanti
s for a language that 
annot be parsed) allows one to fo
us on

the rules rather than spe
ifying a parser.

However an even handling of all possible models requires that expressions and
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programs are �rst parsed before exe
ution. Consider the array-like des
ription

of the RASP ma
hine and the string like des
ription of the λ-
al
ulus. The

RASP has an intuitive mapping of one number to one register that is easy to

manipulate. In 
ontrast redu
ing a λ expression in the string form is hard be
ause

we would have to iteratively shift parts of the expression around to make room

for substitution and so forth.

It is mu
h easier to parse a λ term into a tree stru
ture and perform graph

redu
tion (Se
tion 3.4.3) on it whi
h simpli�es the pro
ess of redu
tion to moving

nodes in a tree rather than shu�ing 
hara
ters. This transformation of the ex-

ternal representation to the internal representation needs to be spe
i�ed though

and that spe
i�
ation is part of the semanti
s.

The parsers are spe
i�ed along with the semanti
s of the models in Se
tion

3.4. The RASP and TM parsers are relatively su

in
t in 
omparison to the SKI

and λ-
al
ulus parsers, as they fa
ilitate a less extreme transformation between

representations.

2.5 Expressiveness

Asserting that one languages is �more expressive� than another is a problemati


proposition. Intuitively, we believe that a language A, whi
h satis�es the Chur
h-

Turing thesis, is more expressive than language B whi
h does not. This makes

sense, be
ause we 
an then de�ne a program p whi
h 
an be written in A, but

not B. In other words p 
an be expressed in A, but 
annot be expressed in B.

As neat as this de�nition is, it is too narrow to be very useful. As we saw

earlier, Turing ma
hines 
an 
ompute any fun
tion that 
an be 
omputed. The C

programming language [45℄ is one of the most widely used languages in the world.

One of its primary appli
ations is in the development of operating systems [4℄

and 
an be 
onsidered the lingua fran
a of imperative languages. C programs

use keywords, variables and stru
tured logi
 blo
ks in order to make the program

understandable for those versed in the syntax.

We would like to draw a distin
tion between the languages of C and TMs, and

our intuition is to say that C is more expressive given the wider range of operators
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i n t i ;

f o r ( i =0; i <10; i++){

X;

}

i n t i = 0 ;

whi l e ( i <10){

X;

i++;

}

Figure 2.10: A while loop and for loop operating in the same manner

and more �exible management of data. However if we 
onstrain ourselves to


omparing expressiveness solely on the basis of the 
omputational power of the

language, then both languages have the same expressive power. Both TMs and

C are Turing Complete so this mode of 
omparison is not as helpful. We need to

expand the de�nition to a

ommodate the distin
tions above.

2.5.1 Formalisations

Elgot and Robinson [23℄ spared a paragraph to muse over the 
omparison of pro-

gramming languages by implementing them with RASP ma
hines whi
h would

result in a fully de�ned set of semanti
s to use as a baseline for language 
om-

parison. Landin �rst 
onsidered the question of what we 
ould 
ompare in a

language [52℄. He began to 
lassify some programming 
onstru
ts as essential

and some as �synta
ti
 sugar�.

Figure 2.10 
onsiders the for loop versus the while loop. Either of these

looping 
onstru
ts 
an be dis
arded without any e�e
t on the 
omputational

power of the language. A similar example for higher order fun
tional languages is

the let 
onstru
t whi
h is a binding of a value to some variable in some expression

and is equivalent to a fun
tion 
all.

In logi
, Kleene identi�ed the notion of eliminable 
onstru
ts [46℄. Coupled

with the informal idea of a `
ore' language [90, 75℄, Troelstra [93℄ de�ned the idea

of a 
onservative extension S ′
of a formal system S as a superset of the logi
al

expressions of S drawn from a ri
her set of operators. This extension allows S ′

to express more formulae and theorems than S, but if we were to restri
t the

expressions of S ′
to use only operators of S, then we would have exa
tly the

formulae and expressions of S.

An extension may add 
omputational power su
h that an extension S ′

om-
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putes stri
tly more fun
tions than the original language S. It may also be termed

a de�nitional extension if there exists a mapping φ : S ′ 7→ S whi
h maps all

expressions from the language of S ′
to that of S. A de�nitional extension does

not in
rease the power of the formal system, sin
e every expression in S ′
using

the new operators 
an be expressed by S with its base set of operators.

2.5.2 Formalising Expressiveness

Felleisen has put substantial e�ort into expanding the above into a formal frame-

work [25℄. He starts by equating formal systems to programming languages and

de�ning re
ipro
al de�nitions for 
onservative extensions and restri
tions of pro-

gramming languages. The following formulation is taken from [25℄.

De�nition 4 (Programming Language). A programming language L 
onsists of:

• a set of L-phrases, whi
h is a set of terms freely generated from a grammar.

The 
omponents of a phrase are from set of fun
tion symbols F1, F2, . . . with

arities a1, a2, . . .;

• a set of L-programs whi
h is a non-empty re
ursive subset of L-phrases;

• a semanti
s evalL whi
h is a predi
ate on the set of L-programs. If evalL(P )

holds for some program P , then P terminates.

De�nition 5 (Conservative Extension/Restri
tion). A language L′
is a 
onser-

vative extension of L if:

• the fun
tions of L are a proper subset of those of L′
, with the di�eren
e

being {F1, F2, . . .};

• the sets of L-phrases and L-programs are proper subsets of their L′

oun-

terparts where there are no phrases or programs that 
ontain the extra L′

fun
tions {F1, F2, . . .};

• evalL is a proper subset of evalL′
and for all L-programs P , evalL(P ) holds

if and only if evalL′(P ) holds.

The 
onverse is a 
onservative restri
tion.

Complementing the work of Kleene, for any extension to a Turing Complete

language L, the extra fun
tions introdu
ed in L′

an be expressed by the basi


fun
tions of L. These are known as eliminable 
onstru
ts.
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De�nition 6 (Eliminable Constru
ts). Let L′
be a 
onservative extension to L

where the fun
tions of are de�ned as L′ = L ∪ {F1, . . . , Fn}. The extra operators

F1, . . . , Fn are eliminable if there exists a mapping φ from L′
-phrases to L-phrases

su
h that:

• φ(p) is an L-program for all L′
-programs p;

• φ(F (a1, . . . , an)) = F (φ(a1), . . . , φ(an)) for all operators F of L (φ is ho-

momorphi
 in L);

• evalL′(p) holds if and only if evalL(φ(p)) holds for all L
′
-programs p.

It 
an also be said that L 
an express the fa
ilities of L′
. Finding whi
h


onstru
ts are eliminable is a
hieved by showing operational equivalen
e between

L-phrases. Felleisen de�nes a program 
ontext as an L-phrase or program whi
h

has a `slot' in whi
h we insert the L-phrase to be tested. Two L-phrases, x and

y 
an be shown to be equivalent if and only if for every program 
ontext C,

evalL(C(x)) = evalL(C(y)).

These program 
ontexts 
an be thought of as individual tests, or as satisfying

assignments in a proof. If two programs give identi
al results for ea
h 
ontext (or

satisfy a proof), then we 
an be sure that the two programs 
ompute the same

fun
tion.

The above de�nitions 
apture the intuitive notion of expressivity. However

Felleisen wishes to impose a stri
ter de�nition where the mapping φ preserves

program stru
ture.

De�nition 7 (Ma
ro Eliminability). As in de�nition 6 above, L′
is a 
onservative

extension to L. The extra fun
tions of L′
, {F1, . . . , Fn} are ma
ro eliminable if

they are eliminable and the mapping φ ful�l the extra 
onstraint:

• for ea
h a-ary fun
tion F ∈ {F1, . . . , Fn}, there exists an a-ary synta
ti


abstra
tion A over L su
h that φ(F (e1, . . . , ea)) = A(φ(e1), . . . , φ(ea))

Ma
ro expressibility de�nes the intuition that we would have by introdu
ing

an ADD fun
tion to the RASP. The RASP 
an express addition using JGZ, INC

and DEC amongst others, so φ would swap out 
ases of the addition fun
tion

with the appropriate L-phrase to satisfy the synta
ti
 abstra
tion A. Ma
ro
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expressibility has theorems for 
ontexts and operational equivalen
es as above.

Se
tion 7.3.1 dis
usses how the work of this thesis 
an be viewed in the 
ontext

of this framework.

2.5.3 The Con
iseness Conje
ture

Felleisen 
on
ludes by asking if a language L is Turing Complete, what is the

advantage of programming in an extended language L′
? The advantage of the

extra 
onstru
ts of L′
is to save programmer e�ort. As the size of an L-program

in
reases, a pattern of L-phrases emerge where we frequently use these phrases

to emulate the fun
tionality of a more expressive language.

For example, addition in the RASP is a relatively large, if un
ompli
ated

pro
edure. A program that uses a lot of addition would have a single instan
e

of the pro
edure, and would 
all it when ne
essary. Calling a pro
edure in the

RASP is a pro
ess of �xing values and return lo
ations in the pro
edure body, then

jumping to the beginning. This has a distin
t stru
ture of the kind that Felleisen

dis
usses. A more expressive language with an addition fun
tion removes the

need for these stru
tures.

Felleisen arti
ulates the Con
iseness Conje
ture where sensible use of the

additional fun
tions in more expressive languages results in fewer �programming

patterns� than the equivalent programs in less expressive languages. This informal


onje
ture is a link between the ideas of elegan
e and expressiveness.

2.6 Con
lusion

After reviewing the literature, it is 
on
luded that Felleisens Con
iseness Con-

je
ture (Se
tion 2.5.3) is a useful statement of the question whi
h is investigated

by the work herein. We dis
uss di�erent metri
s of information su
h as Software

S
ien
e (Se
tion 2.2.3) and Kolmogorov-Chaitin 
omplexity (Se
tions 2.2.1 and

2.2.2). Due to reservations over the theories underlying Software S
ien
e, the


hara
ters/bytes metri
 of Shannon et al. will be adopted.

Felleisen has studied matters relating to the expressiveness of programming

languages (Se
tion 2.5.2), and has sket
hed a formal framework. A language is
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at least as expressive as another if the former 
an express all the fa
ulties of the

latter, within the parameters of Felleisens expressivity framework.

Expressivity in Felleisens framework is tied to the notion of 
onservative ex-

tensions. Su
h extensions will 
ontain more information in the semanti
 of the

extended language than in the base language. This tentatively suggests that there

is a 
onne
tion between the expressivity of semanti
s, and their size. In an ideal


ase, we 
an imagine that this is true, there may exist a 
ounterexample however.

The hypotheses in Se
tion 1.3 make very general statements as to the rela-

tionship between the programs and semanti
s. In light of the literature here, it

would be bene�
ial to revise these to take into a

ount some notion of elegan
e

and expressivity. This shall be done in Se
tion 3.1.
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Preliminaries

This 
hapter revisits the hypotheses to re�ne them a

ording to the literature

surveyed and lays out the measures and methodologies for the primary investiga-

tion. It in
ludes a dis
ussion of the metri
s we adopt, semanti
 representations

of the TM, RASPs, SKI 
ombinators, and the λ-
al
ulus. Also presented are the

formats of the semanti
s and programs whi
h we measure in order to determine

their levels of information.

3.1 Hypotheses Revisited

We revisit the hypotheses originally stated in Se
tion 1.3 in the light of the 
ontext

provided by the literature. Chaitin's formulation of elegan
e is 
on
erned with

�nding the shortest program to produ
e output o. For every possible output o

and language l, the elegant program de�nition 
overs only programs whi
h when

run with no input, output o.

Chaitin's elegan
e is of little use for the `pra
ti
al' programs whi
h we wish

to measure. Our programs 
ompute some fun
tion given an input. The output is

thus based on that input. However it is not unreasonable to expe
t that Chaitin's

de�nition 
an be extended to in
lude su
h pra
ti
al programs.

3.1.1 Blums Axioms

Blums axioms [6℄ de�ne measures of 
omputational 
omplexity. An abstra
t

measure of the performan
e of a model of 
omputation (e.g. number of steps,
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memory used) is a 
omplexity measure if it satis�es his axioms:

De�nition 8 (Blums axioms for measures of performan
e). For any model of


omputation M , there exists a Gödel numbering φ whi
h enumerates all ma
hines

of M su
h that for any i ∈ N, φi(x) is a ma
hine running with the input x.

Let Φ denote an ordered subset of the ma
hines of model M . Φ is a sequen
e

of performan
e measure fun
tions for φ if and only if:

• φi(x) is de�ned ↔ Φi(x) is de�ned

• There exists a fun
tion R su
h that:

R(i, x, y) =







1 if Φi(x) = y

0 if not

So φ is a sequen
e of all possible fun
tions, while Φ is the sequen
e of halting

fun
tions. An input x has a unique Φ be
ause the halting behaviour of some

fun
tions 
hange depending on input.

Two 
anoni
al examples of Blum 
omplexity measures are spa
e and time.

Using time as a measure, Φi(x) runs the (halting) fun
tion φi(x) and returns the

number of steps that it took (for a sensible de�nition of �step�). The fun
tion

R(i, x, y) takes the number of the fun
tion to exe
ute i, an input x, and a guess

at step 
ount y. It returns 1 if the guess was 
orre
t and 0 otherwise.

Blum goes on to de�ne the speed-up theorem [5℄ whi
h states: There exists a

fun
tion f with the property that for every index i for f , there exists an index j

for f su
h that:

Φi(n) > Φj(n)
Φj(n)

Whi
h is to say that in any ordering of partial re
ursive fun
tions there exists

a fun
tion where the Blum 
omplexity measure (a measure of 
omplexity that

ful�ls Blums axioms) for that fun
tion 
an be improved to an exponential degree.

It seems natural that we 
an extend the de�nition of Chaitin's elegan
e to

in
lude programs whi
h 
al
ulate a spe
i�
 fun
tion. For any fun
tion f and

language l, a program p is elegant if p is written in l, there is no smaller program
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written in l whi
h performs the fun
tion of p, and:

∀(x 7→ y) ∈ f : p(x) 7→ y

This is en
ouraging as it implies that for very simple fun
tions, there may


on
eivably exist programs with a size below the unde
idability threshold whi
h

we 
an be assured are elegant. However, if we were to in
lude programs whi
h

take input, then the input size also has to be 
onsidered when determining if a

program is elegant or not. A measurement of a program taking a

ount the size

of the programs input makes it a Blum 
omplexity measure.

Chaitin's proof (Se
tion 2.2.2) determines that elegan
e is unde
idable for

fun
tions over a 
ertain size. The proof below asserts the existen
e of fun
tions

where no elegant 
hara
terisation 
an be found for in�nitely many inputs.

There is a subtle di�eren
e in the nature of the programs dis
ussed in ea
h

proof. Chaitin's original proof 
on
erns his formulation of elegant programs.

These programs are very 
onstrained in that they return a spe
i�
 output when

run.

The programs referred to in this new proof are more general in that their out-

put is 
onditional on their input. While Chaitin's elegant programs are 
onstant

fun
tions, these possibly elegant programs are not ne
essarily 
onstant. Extend-

ing elegan
e to in
lude these fun
tions requires a new proof of the un
omputability

of elegan
e for them.

Theorem 2 (Unde
idability of Elegan
e). De
iding the elegan
e of program to


ompute a non-
onstant fun
tion f is un
omputable.

Proof. This new proof pro
eeds by showing that Φ is a Blum 
omplexity measure.

Given the ordering φ where fun
tion φi(n) is a fun
tion to 
ompute f with input

n, Φi(n) = k is a fun
tion whi
h determines the size of the program i and its input

n. The fun
tion Φi(n) is de�ned if and only if φi(n) is de�ned as you 
annot work

out the information required to 
ompute a non-halting fun
tion, whi
h satis�es

the �rst 
ondition of the axiom.

The se
ond 
ondition is satis�ed by the existen
e of R su
h that R(i, x, y) = 1

if Φi(x) = y and 0 if not. It returns 1 if f(x) 
an be 
al
ulated in exa
tly y
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hara
ters.

Sin
e information is a Blum 
omplexity measure, the speed-up theorem ap-

plies. This means that in the ordering φ there exists a fun
tion f whi
h, for any

program φi, there exists a program φj where the information required to 
ompute

f(n) follows:

Φi(n) > Φj(n)
Φj(n)

for almost all n. This implies that there is no singular elegant program for


omputing the fun
tion f , 
on
luding the proof.

The problem here is down to input en
oding. As a 
on
rete example, say

there exist two TMs whi
h perform addition, where M1 uses a unary en
oding

for its input, andM2 uses binary. TMM1 is exa
tly the unary addition ma
hine in

Se
tion 4.2.1, and one 
an imagine that M2 is slightly larger by (say) c 
hara
ters:

size(M1) + c = size(M2)

Considering only the size of the program, as in the 
ase of Chaitin's elegan
e, we


ould say that M1 is more elegant than M2. However, when size of inputs are


onsidered, the information 
omplexity of M1 with an input i will be lower than

the information 
omplexity of M2 with i

size(M1) + i < size(M2) + log2(i) : i < log2(i) + c

size(M1) + i = size(M2) + log2(i) : i = log2(i) + c

size(M1) + i > size(M2) + log2(i) : i > log2(i) + c

In the in�nite limit, the growth rate of the input en
oding is what asymptoti
ally

determines the elegan
e of a given fun
tion in some language. Unfortunately,

it seems that the amount of information required to 
al
ulate a fun
tion f is a


onsequen
e of how elegantly one 
an en
ode the inputs of f . Se
tion 6.6 gives

another 
on
rete example of this en
oding phenomenon with the universal TMs.
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3.1.2 The Semanti
 Information and Total Information Hy-

potheses

Expli
itly invoking elegan
e as a ne
essary attribute of the programs whi
h the

hypotheses range over is folly. The unde
idability results mean that there 
an be

no formal assuran
e of the elegan
e of the programs measured.

A similar 
ase is present with input sizes. For ea
h model and program the

realisation with the slowest input growth rate is the most elegant for in�nitely

many inputs. This redu
es the problem of elegan
e to one of �nding a method

whi
h produ
es the most elegant en
oding of the inputs.

These problems pull fo
us away from the 
entral question: How does the

amount of information in the semanti
s a�e
t the amount of information required

to de�ne a program? In the interest of fair 
omparisons, it is important to de�ne

notions of how small we 
an reasonably expe
t programs to be, and the e�ort

expended on the en
odings of program inputs.

Consider the breadth of possible en
odings for some pie
e of data d. Depend-

ing on how large the alphabet for language l is, there is a sliding s
ale of the

density of the possible en
oding el(d):

De�nition 9 (Natural, Sparse, Dense En
odings). An input en
oding e(d) is

natural if there is an approximately 1:1 ratio between the tokens of the unen
oded

input and tokens of the en
oded input. Where n > 1, a sparser en
oding has

a 1:n ratio between the unen
oded and en
oded inputs (many en
oded tokens to

represent one unen
oded token). A denser en
oding has an n:1 ratio the unen
oded

and en
oded inputs (one en
oded token to many unen
oded tokens).

The exa
t nature of a token depends on the language of the input of the

models. For instan
e, a token for the TM would be a single symbol. Tokens in

the RASP are single numbers of k 
hara
ters. A token for the SKI would be

a single 
ombinator, and tokens for the λ-
al
ulus may be single terms su
h as

individual numerals, or stru
tural terms like PAIR, NIL, et
.

Natural en
odings are approximately a 1:1 ratio of en
oded to unen
oded

input be
ause the alphabets in question may not permit an exa
t 1:1 relationship.

There is a sliding s
ale of how natural the en
odings are and those with ratios
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losest to the 1:1 relationship are the �most natural�.

Every model has an en
oding method whi
h 
an be deemed natural relative

to its own input language, but it may not be 
onsidered natural relative to the

language of another model. These en
odings imply rates of input size growth

and are examined more thoroughly in Se
tion 6.5. The set of programs whi
h are

used to evaluate the hypotheses operate over natural input en
odings.

Informally, programs are written to be as �elegant as possible� while admitting

natural en
odings of data as inputs. To di�erentiate these from elegant programs,

we 
all them su

in
t.

The Semanti
 Information (SI) hypothesis states that a model with more

semanti
 information will produ
e more elegant (now su

in
t) programs than

a model with less semanti
 information. Considering the extreme 
ases of a 3rd

generation language (Java, Haskell) versus assembler, we 
an imagine that this

holds. But a more nuan
ed example whi
h does not 
onform 
an be 
onstru
ted

as follows.

Consider a 
onservative extension to the RASP; RASPX. RASPX has an

extra instru
tion, LOOP. The LOOP instru
tion de
rements the PC so that a

RASPX ma
hine en
ountering LOOP immediately enters an in�nite loop. As a


onservative extension, RASPX has a larger set of semanti
s, but no program


an exe
ute the LOOP fun
tion and terminate. This is a dire
t 
ounterexample

to our hypothesis, so we need to make it more spe
i�
.

A program p utilises some semanti
 information i if p invokes some operator

de�ned in the semanti
s whi
h depends dire
tly or indire
tly on i:

Hypothesis 1 (Semanti
 Information). For two Turing Complete models; if

model A has more semanti
 information (larger semanti
s) than model B, the

average size of su

in
t programs (where at least one program utilises the extra

semanti
 information) written for model A will be lower than the average for

model B.

We should 
onsider the `s
ope' of this hypothesis. The sele
tion of models in

this investigation 
aptures the following:

• Extensions to a model
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• Comparisons a
ross models in the same paradigm

• Comparisons a
ross paradigms

Hypothesis 1 is very strong be
ause it makes a general statement 
on
erning

information over the entire spa
e (all three s
opes) of models and programs.

While the models of 
omputation presented in Chapter 2 are all di�erent, some

of them share features with ea
h other beyond their Turing 
ompleteness. This

allows us to split this strong hypothesis into sub-hypotheses su
h that the strong

hypothesis is satis�ed i� the three sub-hypotheses all hold.

The RASPs all share a signi�
ant portion of their semanti
s. The semanti


rules whi
h guide their evaluation in the form of the fet
h-exe
ute 
y
le are iden-

ti
al, with portions of the instru
tion set distinguishing the models from ea
h

other. These models are said to be in the same family. While ea
h model has

unique instru
tions whi
h e�e
t di�erent 
hanges on the state and 
ontents of the

memory, the rules whi
h govern the stru
ture remain 
onstant (e.g. the fet
h-

exe
ute 
y
le, bounded size and 
ontents, arbitrarily rewritable and exe
utable

memory lo
ations).

Models whi
h share some aspe
ts with ea
h other, but not as far as dire
tly

sharing evaluation methods, 
an be 
lassi�ed in the same paradigm. In this thesis

there is the imperative paradigm, o

upied by the RASPs and TM, and the fun
-

tional paradigm whi
h 
ontains SKI and λ-
al
ulus. The RASP and TM have

a global state and their underlying stru
ture is a linear array of numbers/sym-

bols. The λ-
al
ulus and SKI both use graph redu
tion for evaluation (Se
tion

3.4.3) and have no state. Figure 3.1 shows the models grouped into families and

paradigms.

We propose three weaker hypotheses whi
h range over the s
opes of family,

paradigm and a
ross paradigms. This approa
h will allow us to apply the SI

hypothesis and dis
over where the hypothesis holds, even if the strong hypothesis

does not hold in general. �A programs� are de�ned as su

in
t programs written

for model A.

Hypothesis 1a (Semanti
 Information within family). For two Turing Complete

models A and B in the same family. If A has more semanti
 information than

B, the average size of A programs will be lower than the average for B programs.
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Figure 3.1: Paradigmal relationships

Hypothesis 1b (Semanti
 Information within paradigm). For two Turing Com-

plete models A and B in the same paradigm. If A has more semanti
 information

than B, the average size of A programs will be lower than the average for B pro-

grams.

Hypothesis 1
 (Semanti
 Information a
ross paradigms). For two Turing Com-

plete models A and B in di�erent paradigms. If A has more semanti
 information

than B, the average size of A programs will be lower than the average for B pro-

grams.

The sizes of the semanti
s are stated in Se
tion 3.5. Knowledge of these

sizes and of the above sub-hypotheses, we 
an predi
t what would happen if the

hypotheses are 
orre
t:

Predi
tion 1.1 (Program Sizes: RASP). The semanti
 sizes of the three RASP

models (measured in 
hara
ters, Se
tion 3.3.1) follow the relation RASP <

RASP2 < RASP3. It is predi
ted that the average su

in
t program sizes follow

the relation RASP3 < RASP2 < RASP .

Predi
tion 1.2 (RASP vs TM). The RASP semanti
s are larger than those of

the TM. It is predi
ted that su

in
t RASP programs are smaller than su

in
t

TM programs on average.

Predi
tion 1.3 (λ-
al
ulus vs SKI). The λ-
al
ulus semanti
s are larger than

the SKI semanti
s. It is predi
ted that su

in
t λ-
al
ulus programs are smaller

than su

in
t SKI programs on average.
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Predi
tion 1.4 (A
ross Paradigms). If model A of paradigm X has larger se-

manti
s than model B of paradigm Y , it is predi
ted that su

in
t program in

model A are smaller than su

in
t program in model B on average.

Predi
tion 1.1 relates to Hypothesis 1a. Predi
tions 1.2 and 1.3 support Hy-

pothesis 1b, and predi
tion 1.4 supports 1
.

The Total Information (TI) hypothesis 
onje
tures that as 
omplexity of pro-

grams that we measure in
reases, the average TI of more 
omplex models will

eventually de
rease to below that of simpler models. We again reformulate the

hypothesis to in
lude the ne
essary stipulation of su

in
t programs.

The statement of �Complex models� re
alls Se
tion 2.6 where it is tentatively

established that there is a 
onne
tion between the expressivity of a model and

the size of its semanti
s. If this 
onne
tion is well founded, we will observe

that the more expressive models whi
h produ
e smaller programs will have larger

semanti
s.

The 
omplexity of a fun
tion 
an be de�ned in many ways. Intuitively division

is a more 
omplex fun
tion than addition and a universal ma
hine is more 
omplex

than division. A
tually 
lassifying these fun
tions hierar
hi
ally is a surprisingly

thorny proposition. One approa
h is time and spa
e 
omplexity where the 
om-

plexity fun
tion is determined by the number of steps or tape 
ells required for


omputation relative to the size of the input.

This 
hara
terisation feels unsatisfa
tory (espe
ially in the 
ontext of Blum's

speed-up theorem). One alternative is to rely on the arithmeti
al hierar
hy [46,

76℄, whi
h 
lassi�es fun
tions on their halting and output behaviour. While the

arithmeti
al hierar
hy separates addition and division from universal ma
hines,

there is too little nuan
e to di�erentiate between the addition and division fun
-

tions.

Another alternative is to provide a de�nition in terms of elegant programs.

A fun
tion a is more 
omplex than fun
tion b in some language l if the elegant

program to 
al
ulate a is smaller than the elegant program to 
al
ulate b. This

makes sense be
ause we believe that fun
tion deemed �more 
omplex� would have

a higher minimum requirement of information. This intuition is not obje
tive

though, as some models may be inherently suited towards some 
al
ulations rather

72



Chapter 3. Preliminaries

than others. Any elegant 
omparison of the 
omplexity of a fun
tion is made

relative to the language l.

The notion of the �
omplexity� of a fun
tion is based on intuition, 
omputabil-

ity, and 
omputational 
omplexity. There is no de�nitive ranking of fun
tions

a

ording to their 
omplexity, so we have to rely on this notion to guide us.

When this thesis dis
usses the 
omplexity of a fun
tion, it refers to the size of

the su

in
t program to represent the fun
tion.

Hypothesis 2 (Total Information). For two Turing Complete models X and Y ,

where X has more semanti
 information than Y ; As the size and 
omplexity of a

program in
reases, the average total information (TI) of a su

in
t implementa-

tion in X will de
rease relative to the total information of a su

in
t implemen-

tation in Y .

To illustrate this hypothesis, 
onsider the RASP family. For simple fun
tions

(say arithmeti
), we predi
t that the TI for the RASP ma
hine be lower than the

TI of the RASP2 or RASP3. This is be
ause the redu
tion in program size for

the RASP2/3 does not outweigh the extra information in the semanti
s of the

RASP2 and RASP3. However as the tested fun
tions in
rease in 
omplexity (say

the universal ma
hines), we expe
t to see the TI averages for the RASP2 and

RASP3 drop relative to the TI averages for the RASP. With a su�
iently large

and diverse set of fun
tions 
ontaining programs whi
h utilise the extra semanti


information of the RASP2 and RASP3, we should see the TI follow the relation

RASP3<RASP2<RASP.

This reformulation of the total information hypothesis is also strong, not un-

like the semanti
 information hypothesis above. We 
an again split this into

three sub-hypotheses with predi
tions for ea
h analogous to the stru
ture of the

SI hypothesis above:

Hypothesis 2a (Total Information within family). For two Turing Complete

models A and B, where A and B are in the same family and A has larger se-

manti
s; as a program grows in size and 
omplexity, the average TI to realise

the program su

in
tly in A will de
rease relative to the average TI to realise the

program su

in
tly in B.
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Hypothesis 2b (Total Information within paradigm). For two Turing Complete

models A and B, where A is in the same paradigm as B and has larger semanti
s;

as a program grows in size and 
omplexity, the average TI to realise the program

su

in
tly in A will de
rease relative to the average TI to realise the program

su

in
tly in B.

Hypothesis 2
 (Total Information a
ross paradigms). For two Turing Complete

models A and B, where A is in a di�erent paradigm from B and has larger

semanti
s; as a program grows in size and 
omplexity, the average TI to realise

the program su

in
tly in A will redu
e relative to the average TI to realise the

program su

in
tly in B.

Again using the information from Se
tion 3.5, we make a variety of predi
tions

of what will happen if the sub-hypotheses above hold:

Predi
tion 2.1 (Total Information: RASPs). As the size and 
omplexity of a set

of programs in
reases, it is predi
ted that the average TI of su

in
t implementa-

tions of the programs in the RASP3 will redu
e relative to the TI of the RASP2

whi
h in turn will redu
e relative to the TI of the RASP.

Predi
tion 2.2 (Total Information: RASP vs TM). As the size and 
omplexity

of a set of programs in
reases, it is predi
ted that the average TI of su

in
t

implementations of the programs in the RASP will redu
e relative to the TI of

su

in
t implementations in the TM.

Predi
tion 2.3 (Total Information: λ-
al
ulus vs SKI). As the size and 
omplex-

ity of a set of programs in
reases, it is predi
ted that the average TI of su

in
t

implementations of the programs in the λ-
al
ulus will redu
e relative to the av-

erage TI of su

in
t implementations in the SKI 
al
ulus.

Predi
tion 2.4 (Total Information: A
ross paradigms). If model A of paradigm

X has larger semanti
s than model B of paradigm Y ; as the size and 
omplexity

of a set of programs in
reases, it is predi
ted that the average TI of su

in
t im-

plementations of the programs in model A will redu
e relative to than the average

TI of su

in
t implementations in model B.
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3.1.3 The Semanti
 Cir
uit and Total Cir
uit Hypotheses

In this thesis, we also translate the semanti
s for the RASP and Turing ma
hines

into the VHSIC Hardware Des
ription Language (VHDL). This is then 
ompiled

down to a series of ele
troni
 
omponents of a Field Programmable Gate Array

(FPGA), and the number of 
omponents required to implement the various ma-


hines are 
ounted. A 
ir
uit A is said to be larger than 
ir
uit B if the 
ombined

total of Look-up tables, sli
e registers, and �ip-�ops (Chapter 5) in A is higher

than the total for B. We hypothesise that the more semanti
 information in a

model, the larger the 
ir
uit to exe
ute the semanti
s:

Hypothesis 3 (Semanti
 Cir
uit sizes). Consider two models A and B. If model

A has larger semanti
s than model B, the FPGA 
ir
uit whi
h implements the

semanti
s of A will be larger than the FPGA 
ir
uit for B.

Hypothesis 3a (Semanti
 Cir
uit sizes within family). For two models A and

B in the same family. If A has larger semanti
s than B, then the 
ir
uit whi
h

implements the semanti
s of A will be larger than the 
ir
uit to realise B.

Hypothesis 3b (Semanti
 Cir
uit sizes within paradigm). For two models A

and B in the same paradigm. If A has larger semanti
s than B, then the 
ir
uit

whi
h implements the semanti
s of A will be larger than the 
ir
uit to realise B.

Predi
tion 3.1 (RASP semanti
s order). The three RASP models have semanti


sizes measured a

ording to the relation RASP < RASP2 < RASP3 (Se
tion

3.5). It is predi
ted that the 
ir
uit sizes follow this relation.

Predi
tion 3.2 (RASP vs TM). The RASP has larger semanti
s than the TM,

therefore the 
ir
uit for the TM semanti
s is predi
ted to be smaller than the


ir
uit for the RASP semanti
s.

Predi
tions 3.1 and 3.2 support sub-hypotheses 3a and 3b respe
tively. Sim-

ilar to the TI hypothesis, we have a Total Cir
uit (TC) size hypothesis whi
h

attempts to predi
t sizes of the total implementation (
omponents for program

+ 
omponents for semanti
s) of the RASP and TM. The programs whi
h are

mapped to FPGA 
ir
uits will be the same programs as those whi
h are used to

evaluate Hypotheses 1 and 2 above.
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Hypothesis 4 (Total Cir
uit sizes). For two models A and B, where the 
ir
uit

implementation of the semanti
s of A is larger than the 
ir
uit for the semanti
s

of B; as a fun
tion grows in 
omplexity, the average total implementation size of

a su

in
t realisation of the fun
tion in model A will redu
e relative to the average

for model B.

Hypothesis 4a (Total Cir
uit sizes within family). For two models A and B in

the same family; if the semanti
s of A are larger than the semanti
s of B, then

as a program grows in size and 
omplexity, the average total implementation size

of the program in model A will redu
e relative to the average for model B.

Hypothesis 4b (Total Cir
uit sizes within paradigm). For two models A and B

in the same paradigm; if the semanti
s of A are larger than the semanti
s of B,

then as a program grows in size and 
omplexity, the average total implementation

size of the program in model A will redu
e relative to the average in model B.

Predi
tion 4.1 (RASP total 
ir
uit size). As the size and 
omplexity of a pro-

gram in
reases, it is predi
ted that that the average total implementation size for

the RASP3 will redu
e relative to the total implementation size for the RASP2

whi
h, in turn, will also redu
e relative to that of the RASP.

Predi
tion 4.2 (RASP vs TM). As the size and 
omplexity of a program in-


reases, it is predi
ted that the average total implementation size of the RASP

will redu
e relative to the average total implementation size of the TM.

3.1.4 Hypotheses Summary

The hypotheses and 
orresponding predi
tions are be summarised below:

1. Strong SI hypothesis

1a. SI within family hypothesis

1.1. Program Sizes (RASP) predi
tion

1b. SI within paradigm hypothesis

1.2. SI RASP vs TM predi
tion

1.3. λ-
al
ulus vs SKI predi
tion
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1
. SI a
ross paradigms hypothesis

1.4. A
ross paradigms predi
tion

2. Strong TI hypothesis

2a. TI within family hypothesis

2.1. TI for RASPs

2b. TI within paradigm hypothesis

2.2. TI RASP vs TM

2.3. TI λ-
al
ulus vs SKI

2
. TI a
ross paradigms hypothesis

2.4. TI a
ross paradigms predi
tion

3. Strong SC hypothesis

3a. SC within family hypothesis

3.1. SC for RASPs

3b. SC within paradigm hypothesis

3.2. SC RASP vs TM

4. Strong TC hypothesis

4a. TC within family hypothesis

4.1. TC for RASPs

4b. TC within paradigm hypothesis

4.2. TC RASP vs TM

3.2 Comparison Metri
s

There are two prime 
andidates for information 
omparison metri
s; bytes and


hara
ters. Both have their advantages and disadvantages.

The 
hara
ters whi
h most programming languages use to express 
ommands

(the basi
 exe
ution 
hara
ter set) are represented as 7 bit ASCII [44, 43℄. Sin
e

the basi
 exe
ution 
hara
ter set is all that is needed to write programs, the

handling of 
hara
ters outwith the set are typi
ally a fun
tion of the 
ompiler

and assorted programming tools.
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Our models also draw ex
lusively from 7 bit ASCII, save the λ-
al
ulus whi
h

requires `λ's. The semanti
s additionally use logi
al predi
ates ∀, ∃ as well as the


onne
tives; ∧, ∨ and =⇒ .

The predi
ates and 
onne
tives represent more 
omplex ideas than a numeral

or single letter so it seems appropriate to assign more bytes (under the UTF-8

s
heme [92℄ it is two bytes ea
h) su
h 
hara
ters. In this way we a
knowledge

that ∀ 
ontains more information than a numeral.

Chara
ter sets are de�ned not on the information required to represent an idea,

but rather the frequen
y with whi
h a 
hara
ter is used in 
omputer appli
ations.

The addition and subtra
tion operators are also more 
omplex ideas than a single

numeral, but are represented in ASCII as one byte. Do we add a byte to all

o

urren
es of + and − to make our 
omparison fair?

If we do this we start 
reating our own 
hara
ter set. So the only way our

measurements would be demonstrable is if we measured them on a 
omputer

implementing our 
hara
ter set. Even if we did a

ept that we should use a single

byte for add and subtra
t, and 2 bytes for other fun
tions, the measurements we

make are still wholly dependent on the standards implemented by the ma
hine

on whi
h we measure. Our measurements 
ould 
on
eivably 
hange from one

ma
hine to the next.

The use of 
hara
ters as a metri
 is established by Solomono� [87, 88℄, Kol-

mogorov [47℄ and Chaitin [9℄. Chara
ter metri
s are independent of the referen
e

ma
hine and are solely dependent on the input format of the model whi
h is spe
-

i�ed by the semanti
s. This is more suited to our needs so it will be the adopted

metri
 for the rest of this investigation.

3.3 Formats

Irrespe
tive of the metri
 
hoi
e, the aim is to write programs and semanti
s in

a way to e
onomise on the amount of information whi
h is supplied. The �rst

and foremost method to minimise this information is in the 
hoi
e of algorithm

used to 
ompute the fun
tions, favouring brevity over any time or (utilised) spa
e


on
erns. But how the programs and semanti
s are themselves presented should
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also be 
onsidered.

3.3.1 Semanti
s

As the formalism from whi
h everything is measured, a SOS 
an be en
oded

in whi
hever way is 
onvenient and it is assumed that an `SOS ma
hine' 
an

interpret this en
oding and translate it to the 
orre
t 
orresponding SOS rules

for exe
ution. To do this, 
ommon fun
tionality is split out and in-lined into

the appropriate rules. Reverse Polish Notation is also employed to shorten the

expressions by removing the bra
kets whi
h denote fun
tion appli
ation.

�ukasiewi
s [56℄ developed Polish (`pre�x') notation for sentential logi
 and

we adopt the reversed notation here to remove the bra
kets on fun
tion 
alls.

Reverse Polish notation (RPN or `post�x' notation) is a mathemati
al represen-

tation whi
h typographi
ally arranges fun
tions after their parameters [35℄. As

an example, the expression (3 − 4)× 5 (remembering the order of operations) is

3 4 − 5×.

This expression is exe
uted using a sta
k. First, the values three and then

four are pushed onto the sta
k. When the subtra
tion operator is read, the top

two elements of the sta
k are popped (sin
e subtra
tion is a binary operator)

the operation is applied and the result is pushed ba
k on top of the sta
k. The

intermediate expression is −1 5×, and with the -1 already on the sta
k, the 5

is pushed, then both are popped to be multiplied together and the result (-5) is

pushed ba
k on top of the sta
k.

The advantage of Polish notation is that it obviates the need for bra
keted

expressions. Spe
i�
 examples of its usage are given in Se
tion 3.4.

3.3.2 Turing Ma
hines

A Turing ma
hine is a 
olle
tion of quintuples 〈stold, syold, stnew, synew, dir〉 whi
h

denote: the 
urrent state, the 
urrent symbol on the tape, the new state, the

new symbol, and the dire
tion in whi
h to move the head. Figure 3.2 shows the

Turing ma
hine for addition. The symbol table for this TM 
onsists of 5 lines

of 9 
hara
ters ea
h (45). The tape (101) is two unary numbers separated by a

single symbol `0', whi
h we de�ne in the symbol table as a blank.
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1,1,1,1,R

1,0,2,1,R

2,1,2,1,R

2,0,3,0,L

3,1,0,0,R

101

Figure 3.2: The `raw' Turing ma
hine for addition with an input of 1+1

Our 
onvention is that a TM will start over the leftmost symbol on the tape

unless there is a 
aret (^) in whi
h 
ase the head will be over the symbol to the

right of it. For example, the tape 1^011 will start the ma
hine with the head

over the `0'.

3.3.3 RASP ma
hines

An n-bit RASP ma
hine is a 2n − 3 size array of naturals. This is represented

and 
ounted as a 
omma separated list of numbers. For instan
e the program

LOAD 1;LOAD 2;HALT would be represented as the sequen
e 3, 1, 3, 2, 0.

A 
aveat for the RASP ma
hine is that the displayed array is exa
tly 2n − 3

in length. For all programs that are less than 2n − 3 instru
tions long, the extra

room is `padded out' with HALT instru
tions.

3.3.4 λ-
al
ulus

A term in the λ 
al
ulus is stru
tured as follows; λs are not grouped, so an

expression with multiple λs would be of the form λx.λy.e. The expression is

parsed in a left asso
iative manner, so bra
kets are used for disambiguation. An

expression (((λx.x)y)z) is written (λx.x)yz without any loss of meaning.

We measure λ terms by their expressions as above. For instan
e, the number

of 
hara
ters in the term ONE (λf.λx.f x) is 9, in
luding the spa
e to separate

the f and x variables.

We 
an 
ompress 
omplex λ fun
tions by pushing repeated terms into ab-

stra
tions. To illustrate we begin with a term ready to be applied, say to linearly

sear
h a list (Se
tion 4.3.2):

SEARCH ≡ Y (λa.λb.λc.NULL c ONE (EQ(HEAD c)b)FALSE(SUCC(a b(TAIL c))))
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HEAD and TAIL are the expressions (λp.p TRUE) and (λp.p FALSE) respe
-

tively, so they are substituted into the main term:

Y (λa.λb.λc.NULL c ONE (EQ((λp.p TRUE)c)b)FALSE

(SUCC(a b((λp.p FALSE)c))))

EQ tests for the equality of two numbers, returning TRUE if equal and FALSE

otherwise, and this 
an again be substituted into the main term. NULL is also

repla
ed with its 
orresponding expression:

Y (λa.λb.λc.(λp.p(λx.λy.FALSE))c ONE (((λm.λn.n PRED m(λx.FALSE) . . .

TRUE(m PRED n(λx.FALSE)TRUE)(n PRED m(λx.FALSE) . . .

TRUE)))((λp.p TRUE)c)b)FALSE(SUCC(a b((λp.p FALSE)c))))

With these names fully substituted with their 
orresponding terms, there are

three o

urren
es of PRED, six o

urren
es of FALSE, and four o

urren
es of

TRUE. Sin
e abstra
tion in the λ 
al
ulus enables argument dupli
ation and

pla
ement wherever it is desired in the body of an expression, repeated o

ur-

ren
es 
an be abstra
ted out. First, PRED is abstra
ted by binding a new variable

k and applying that binding to PRED:

(λk.Y (λa.λb.λc.(λp.p(λx.λy.FALSE))c ONE (((λm.λn.n k m(λx.FALSE) . . .

TRUE(m k n(λx.FALSE)TRUE)(n k m(λx.FALSE) . . .

TRUE)))((λp.p TRUE)c)b)FALSE(SUCC(a b((λp.p FALSE)c)))))PRED

Then the same is done for TRUE (t) and FALSE (g):

(λg.λt.λk.Y (λa.λb.λc.(λp.p(λx.λy.g))c ONE

(((λm.λn.n k m(λx.g)t(m k n(λx.g)t)(nkm(λx.g)t)))((λp.p t)c)b)

g(SUCC(a b((λp.p g)c)))))FALSE TRUE PRED

Abstra
ting out some term from an expression entails adding three 
hara
ters

to the start of the expression and one 
hara
ter per o

urren
e in the body. In

ex
hange, we 
an remove all but one of the o

urren
es of the term whi
h is

moved to the end of the expression.
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This method of redu
ing the size of expressions requires that we make some

pre-redu
tions when applying this expression in order to obtain. This involves

more 
omputation overhead in the 
lassi
 time/spa
e trade-o�, but we do not


are about run times. The measured λ programs have all had this 
ompression

method applied to them where possible.

3.3.5 SKI 
ombinators

A term in the SKI 
ombinator 
al
ulus is expressed as a string of S,K,I 
hara
ters

as well as the left and right parentheses. Unlike the λ-
al
ulus, SKI terms do

not require spa
es. For example, the term for two is S(S(KS)K)I whi
h is 10


hara
ters long.

Mu
h like how the λ 
al
ulus has α and η 
onversion to transform super�
ially

di�erent terms into a 
ommon simple term, we 
an stru
turally de
ompose SKI


al
ulus expressions into equivalent and shorter terms.

For the Chur
h numerals, we 
an alternatively represent any non prime num-

ber as the produ
t of f fa
tors. This tri
k multipli
atively 
ombines the fa
tori-

sation into a `full' numeral when something is applied to it. The generalised form

is thus:

4 = S(K TWO)TWO

8 = S(K(S(K TWO) TWO)) TWO

16 = S(K(S(K(S(K TWO) TWO)) TWO)) TWO

n = S(Kf−1)fa
torf

Comparing the fa
torised form of 4 to the (SUCC

n
ZERO) form saves 4 
hara
-

ters:

SUCC(SUCC(SUCC(SUCC ZERO)))

S(S(KS)K)(S(S(KS)K)(S(S(KS)K)I))

S(K TWO)TWO

S(K(S(S(KS)K)I))(S(S(KS)K)I)

The appli
ation of fun
tions to the fa
torised numeral redu
es (with more steps)

to the 
orre
t and expe
ted form, for example:
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S(K TWO)TWOfx ≡ . . .

⇒S K(S(S(KS)K)I)f(S(S(KS)K)If)x

⇒K S(S(KS)K)I(S(S(KS)K)If)x

⇒S . . .

⇒ Kf(I(S(S(KS)K)If)x)(If(I(S(S(KS)K)If)x))

⇒K f(If(I(S(S(KS)K)If)x))

⇒I . . .

⇒ f(f(Kfx(Ifx)))

⇒K f(f(f(Ifx)))

⇒I f(f(f(fx)))

When representing a number as a produ
t of its fa
tors, we wish to use more

fa
tors of smaller numbers rather than less fa
tors of larger numbers. The reason

for this is that to add another fa
tor the overhead is: S(K . . .) of 4 
hara
ters

whereas the distan
e between n > 1 and SUCC n is 11 
hara
ters. If we 
an-

not dire
tly fa
tor a number, su
h as with a prime, then we fa
tor a non-prime

neighbour and apply SUCC to it.

Unlike the λ-
al
ulus, abstra
tion in SKI is information intensive as ea
h level

of nesting in a SKI expression requires 
ombinators to `push' a passed expression

down to where it should be. The strategy of maximal abstra
tion outlined above

for the λ 
al
ulus is detrimental to the size of the resulting SKI expression. We

therefore 
onvert λ expressions to SKI via bra
ket abstra
tion without performing

the extra abstra
tion detailed in Se
tion 3.3.4, preferring instead to normalise as

mu
h of the expression as possible before 
onversion.

3.4 Semanti
s

Our models of 
omputation transform their inputs into outputs by following the

rules of their semanti
s. If a program is a des
ription of what is to be done, the

semanti
s are how it is done. The semanti
s of a model 
ombine the aspe
ts of a

model �understanding� the input program (parsing) and performing the fun
tions
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of the model (evaluation).

The semanti
s for ea
h model manipulate dis
rete stru
tures for ea
h term.

This is the internal representation of the input. The program formats above are

presented in an external representation whi
h may not ne
essarily dire
tly re�e
t

the internal representation.

The external representations of the SKI and λ-
al
ulus do not dire
tly trans-

late into the internal representation, so we require semanti
s whi
h perform lexi
al

parsing via pattern mat
hing. To provide an even-handed analysis, we also de�ne

parsers for the RASP and TM whi
h have very similar internal and external repre-

sentations. The full semanti
s for ea
h model in the RPN notation are presented

in Appendix D.

3.4.1 Turing Ma
hines

There are multiple ways to formally de�ne Turing ma
hines:

〈Q, δ,Σ,Γ, q0, qa, qr〉 (3.1)

〈Q, δ,Γ, γ, q0, qh〉 (3.2)

〈Q, δ,Σ,Γ, q0〉 (3.3)

where Q is the set of states, Σ whi
h is the input alphabet, Γ is the tape alphabet

(whi
h symbols 
an be read from or written to the tape), δ is the transition

fun
tion Q× Γ 7→ Q× Γ× {L,R}, q0 ∈ Q is the initial state, qa ∈ Q and qr ∈ Q

are a

epting and reje
ting states respe
tively, qh is the halt state, and γ is the

blank symbol.

De�nitions 3.1, 3.2, and 3.3 are from [86, 78, 32℄ respe
tively. Further 
he
ks

of sour
es [74, 3, 39, 50, 15, 49℄ show that the TM is broadly de�ned as the above

with minor varian
es. Ea
h de�nition varies in the details, but all are equivalent

in power.

We 
an 
ombine parts of these de�nitions with our 
onventions to produ
e

a de�nition for the TM whi
h is di�erent from those above, but is still Turing


omplete. Our 
onventions are 1.) Ea
h TM starts in state 1, and 2.) A TM

halts if it transists to state 0 OR there is not a transition in δ for the 
urrent
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st : Q
sy : Γ
h : Z

d : {L,R}
T : Z 7→ Γ

δ : Q× Γ 7→ Q× Γ× d
Pδ : (Γ ∪Q ∪ d ∪ {, })+ 7→ δ

PT , PNT : (Γ+ ∪ {^})× Z 7→ T

Figure 3.3: Type de�nitions for the variables and fun
tions of the TM

state/symbol pair.

To de�ne our own ma
hines, we need a set of states and a set of transition

fun
tions: Q and δ. We also need a tape alphabet Γ, but we would like to permit

the use of the blank symbol on the input tape so we ex
lude Σ, opting instead to

expli
itly state the blank symbol itself as γ. Our starting state is always going

to be 1, so individual ma
hine de�nitions do not need to spe
ify it. Similarly, we


an de�ne the halt state as a state with no exiting transitions. We wind up with

a de�nition of a TM 
onforming to our 
onvention as:

〈Q, δ,Γ, γ〉

We now pro
eed to translate this de�nition into Stru
tured Operational Se-

manti
s.

Every TM has a tape T , the symbol table δ, the 
urrent state st and a

head position h. T is a unary fun
tion whi
h takes an integer and returns the

symbol at that position on the tape. The symbol T (0) is de�ned as either the

leftmost symbol of the input, or immediately to the right of the 
aret (^) in a

TM de�nition. Our initial tape fun
tion is T0.

The symbol table δ : Q × Γ 7→ Q × Γ × {L,R} is a fun
tion whi
h takes a

state and symbol pair and returns a triple of state, symbol and shift dire
tion.

The type de�nitions for the TM are in Figure 3.3.

Before we exe
ute the TM, we �rst have to populate δ and T0. The `raw' TM

is an expression e ∈ (Γ ∪Q∪ d∪ {, })+ where + is �One or more� analogous to ∗

whi
h is the Kleene Closure [39℄. The symbol table parsing rules supplied by the
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e =⇒ st, sy, st′, sy′, d e′

Pδ(e) =⇒ {〈st, sy〉 7→ 〈st′, sy′, d〉} ∪ Pδ(e′)

(a) Parsing a rule into δ

Pδ(e) =⇒ {}

(b) Default rule

Figure 3.4: Parsing a raw symbol table e into the internal representation δ

f =⇒ f1^gf2
g ∈ Γ

PT (f, 0) = PNT (f1,−1) ∪ {0 7→ g} ∪ PT (f2, 1)

(a) Finding ^, if it exists

f =⇒ gf1
g ∈ Γ

PT (f, n) = {n 7→ g} ∪ PT (f1, n + 1)

(b) Parsing symbols after the ^

PT (f, n) = {}

(
) No symbol to parse after

f =⇒ f1g
g ∈ Γ

PNT (f, n) = {n 7→ g} ∪ PNT (f1, n− 1)

(d) Parsing symbols before the ^

PNT (f, n) = {}

(e) No symbol to parse before

Figure 3.5: Parsing a raw tape into the internal representation T

fun
tion Pδ are shown in Figure 3.4.

Similarly the `raw' tape is an expression f ∈ Γ+∪{^}. The fun
tion PT parses

f into the initial tape T0 and is shown in Figure 3.5. The fun
tions δ and T are


onstru
ted re
ursively by the union of ea
h mapping of input to output. The

initial state of a TM ready to be exe
uted is therefore:

st0 = 1

h0 = 0

T0 = PT (f)

δ = Pδ(e)

The 
urrent state, head position and tape all 
hange during the evaluation

of the ma
hine while none of the TM exe
ution rules 
hange δ. The fun
tion

E : Q× (Z 7→ Γ)× Z 7→ (Z 7→ Γ) exe
utes a TM:
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T (h) = sy
δ(st, sy) = 〈st′, sy′, d〉

d = L
T ′(h) = sy′

h′ = h− 1

E(st, T, h) =⇒ E(st′, T ′, h′)

(a) Left shift

T (h) = sy
δ(st, sy) = 〈st′, sy′, d〉

d = R
T ′(h) = sy′

h′ = h + 1

E(st, T, h) =⇒ E(st′, T ′, h′)

(b) Right shift

T (h) = sy
δ(st, sy) 6= 〈st′, sy′, d〉

E(st, T, h) =⇒ T

(
) Halting

Figure 3.6: The rules for exe
uting the TM; left shift, right shift, and halt

Tend = E(st0, T0, h0)

The Turing ma
hine 
onsists of three rules; a rule for shifting left, one for

shifting right, and one for no de�ned state and symbol pair. Figure 3.6 shows

the rules for running a TM. The ma
hine halts when there is not a de�ned state

and symbol pair in δ. As des
ribed earlier, this is a transition to state 0, but this


onvention is not enfor
ed by the semanti
s, any state without a transition for

the 
urrent symbol will do.

To minimise the size of these semanti
 rules, we 
an in-line the T fun
tions

into the δ fun
tion. Doing this eliminates the need for the sy variable whi
h saves

us more 
hara
ters. We 
an also in-line the d = R/L lines too, but have to keep

the d variable for the third rule unless we do R/L variations for that too. The

shift right rule is now:

δ(st, T (h)) = 〈st′, T ′(h), R〉

E(st, T, h) =⇒ E(st′, T ′, h+ 1)

More methods to redu
e the size are to remove the `primed' variables and

rede�ne st to just s. If we de�ne i = h + 1, t : Q and U : Z 7→ Γ we 
an redu
e

all identi�ers to single 
hara
ters:

δ(s, T (h)) = 〈t, U(h), R〉

E(s, T, i) =⇒ E(t, U, h+ 1)
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Using RPN, we 
an remove the bra
kets for fun
tion 
alls transforming the

line δ(s, T (h)) = 〈t, U(h), R〉 into the less readable shTδ〈thUR〉 = whi
h saves

us 6 
hara
ters The TM semanti
s transformed in this way total 335 
hara
ters

in size.

3.4.2 RASP Ma
hines

The de�nition of a RASP as presented by Elgot and Robinson (Se
tion 2.3.1.2)

provides a framework for the abstra
t operation of the ma
hine, but is very

general. There are a few examples of instru
tions that 
ould be de�ned (su
h

as the ma
hines of Cook [16℄ and Hartmanis [36℄), but the details of a ma
hine

are generally left up to the designer.

Due to the extensible nature of the RASP family presented herein, the seman-

ti
s have been split into model semanti
s for the semanti
s of parsing an the F-E


y
le, and language semanti
s whi
h des
ribe the operation of the instru
tions.

This distin
tion is made be
ause the RASP2 and RASP3 (Se
tions 3.4.2.1 and

3.4.2.2) iterations on the RASP where the instru
tions whi
h are exe
uted have


hanged, but the underlying fet
h-exe
ute 
y
le remains 
onstant.

A RASP ma
hine is a pair 〈S,X〉 of a ma
hine S ∈ Ko and an output ve
tor

X . The registers of S are numbered from 0, and registers 0, 1, and 2 are the PC,

IR and ACC respe
tively. The ve
tor X is written to by the OUT 
ommand and

is initially empty. For an n-bit ma
hine, there is a set G = {0 . . . 2n − 1} of the

possible integers representable by the ma
hine. There is also a set I ⊂ G whi
h

represents the non-halting instru
tions of the ma
hine.

The RASP ma
hines for the primary investigation in this thesis will have

a �xed instru
tion set mapping of {0 7→ HALT, 1 7→ INC, 2 7→ DEC, 3 7→

LOAD, 4 7→ STO, 5 7→ OUT, 6 7→ JGZ, 7 7→ CPY }. The mapping is enfor
ed

by the semanti
s, but 
hanges to the mappings a�e
t the total number of steps

a ma
hine 
an make before halting. Appendix A investigates how the properties

of RASPs 
hange when the instru
tion set mapping 
hanges.

The type de�nitions for the RASP are shown in Figure 3.7. To aid the un-

derstanding of the semanti
s, we also de�ne mappings for the addresses PC, IR,

and ACC to the natural numbers and do the same for the instru
tions.
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S : N 7→ N INC = 1
X : N DEC = 2
G : {0 . . . 2n − 1} LOAD = 3
I ⊆ G STO = 4
# : S 7→ N JGZ = 5
A : S ×X 7→ (S ×X) OUT = 6
P : (G ∪ {, })+ × N 7→ S CPY = 7
E : S ×X 7→ S ×X HALT = 0
PC_INC(S) = mod(S(PC) + 1,#S) PC = 0
S0 = {0 7→ 3, 1 7→ 0, 2 7→ 0} IR = 1
X0 = {} ACC = 2

Figure 3.7: De�nitions required for the RASP.

e =⇒ g, e1
g ∈ G

P (e, n) =⇒ {n 7→ e} ∪ P (e1, n + 1)

(a) Parsing a natural number out of e

P (e, n) =⇒ {}

(b) Default rule.

Figure 3.8: Parsing the external representation e

The initial ma
hine and output ve
tor are S0 and X0. S0 is primed with the

initial values of the PC IR and ACC (3,0,0), and the external representation of

the RASP to be exe
uted is e ∈ (G∪{, })+ whi
h is a 2n−3 sequen
e of integers.

The fun
tion P parses the ma
hine into our internal representation (Figure 3.8).

This readies the RASP for evaluation by the fun
tion E:

〈Sfinal, Xfinal〉 = E(S0 ∪ P (e, 3), X0)

Figure 3.9 shows the two rules of the RASP model semanti
s. If the instru
tion

under the program 
ounter is in I, then that 
orresponding instru
tion is applied

to the ma
hine S. If it isn't, the number is 
opied to the IR and the ma
hine

stops. If a numeral is indeed a RASP operation, the fun
tion A applies what is

in the IR of S ′
to S ′

and X .

The language semanti
s for the RASP are 10 rules for the 7 non halting
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S(S(PC)) ∈ I
S ′(PC) = PC_INC(S)
S ′(IR) = S(S(PC))
〈S ′′, X ′〉 = A(S ′, X)

E(S,X) =⇒ E(S ′′, X ′)

S(S(PC)) /∈ I
S ′(IR) = S(S(PC))

E(S,X) =⇒ 〈S ′, X〉

Figure 3.9: The rules for the F-E 
y
le of the RASP

S(IR) = INC
S ′(ACC) = mod(S(ACC) + 1,#S)

A(S,X) =⇒ 〈S ′, X〉

(a) The INC instru
tion

S(IR) = DEC
S ′(ACC) = mod(S(ACC)− 1,#S)

A(S,X) =⇒ 〈S ′, X〉

(b) The DEC instru
tion

Figure 3.10: The semanti
s for INC and DEC

instru
tions. Figure 3.10 shows the semanti
s for the INC and DEC instru
tions.

Figure 3.11 displays the rules for the LOAD, OUT and CPY instru
tions. These

instru
tions have a single semanti
 rule, and those that require a parameter load

it into the IR and 
all the PC_INC fun
tion again to move the PC to the next

instru
tion.

Figures 3.12 and 3.13 show the semanti
 rules for the STO and JGZ instru
-

tions. STO requires three rules to handle spe
ial 
ases. One 
ase is that of the

PC where storing the 
ontents of the ACC to the PC 
onstitutes a jump with

a post-STO in
rement. The se
ond 
ase deals with storing the ACC in the IR,

whi
h means that the IR equal to the ACC, rather than the destination address.

The third 
ase is the general 
ase for addresses > 1. The two rules for JGZ de�ne

the 
ases for jumping and not jumping.

The semanti
s for INC are redu
ed to a su

in
t form through �rst substitut-

ing ba
k the integers for PC, INC, IR et
. We de�ne additional terms for S and

X to prevent the need for primed variants and repla
e the modulo fun
tion with

the 
ommonly used in�x symbol %. The intermediate semanti
s are:

S(0) = 1

K(2) = (S(2) + 1)%#S

A(S,X) =⇒ 〈S ′, X〉

Using RPN again, we 
an 
onvert the lines into a more 
on
ise form. The
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S(IR) = LOAD
S ′(IR) = S ′(ACC) = S(S(PC))

S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(a) The LOAD instru
tion

S(IR) = OUT
X ′ = X ∪ {S(ACC)}

A(S,X) =⇒ 〈S,X ′〉

(b) The OUT instru
tion

S(IR) = CPY
S ′(IR) = S(S(PC))
S ′(ACC) = S(S ′(IR))
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(
) The CPY instru
tion.

Figure 3.11: The semanti
s for LOAD, OUT, and CPY

S(IR) = STO
S ′(IR) = S(S(PC)) = 0

S ′(PC) = S(ACC)
S ′′(IR) = 0

S ′′(PC) = PC_INC(S ′)

A(S,X) =⇒ 〈S ′′, X〉

(a) Storing the PC

S(IR) = STO
S(S(PC)) = 1

S ′(IR) = S(ACC)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(b) Storing in the IR

S(IR) = STO
S ′(IR) = S(S(PC))

S ′(IR) > 1
S ′(S ′(IR)) = S(ACC)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(
) Storing elsewhere

Figure 3.12: The semanti
s for storing in the PC, IR, and elsewhere

S(IR) = JGZ
S ′(IR) = S(S(PC))

S(ACC) = 0
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(a) JGZ when S(ACC) = 0

S(IR) = JGZ
S(ACC) > 0

S ′(IR) = S ′(PC) = S(S(PC))

A(S,X) =⇒ 〈S ′, X〉

(b) JGZ when S(ACC) > 0

Figure 3.13: The JGZ instru
tion
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S(IR) = ADD
S ′(IR) = S(S(PC))

S ′(ACC) = mod(S(ACC) + S ′(IR),#S)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(a) The ADD instru
tion

S(IR) = SUB
S ′(IR) = S(S(PC))

S ′(ACC) = mod(S(ACC)− S ′(IR),#S)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(b) The SUB instru
tion

Figure 3.14: The ADD and SUB instru
tions for the RASP2.

line K(2) = (S(2) + 1)%#S be
omes 2K2S1 + S#% =. The semanti
s in this


on
ise form total 228 
hara
ters for the model semanti
s and 328 
hara
ters for

the language semanti
s. The full RPN expressions of the semanti
s are stated in

Appendix D.

3.4.2.1 RASP2

The RASP2 uses the same model semanti
s and largely the same language se-

manti
s as the basi
 RASP. The di�eren
e lies the removal of the INC and DEC

rules and repla
ing them with ADD and SUB. Figure 3.14 shows the ADD and

SUB instru
tions.

These semanti
 rules are redu
ed a

ording to the pro
edure laid out above

and the RASP2 semanti
s are measured as 228 
hara
ters for the model semanti
s

� the same as for the RASP � and 357 
hara
ters for the language semanti
s.

3.4.2.2 RASP3

As with the RASP2, the RASP3 semanti
s have their own ADD and SUB in-

stru
tions presented in Figure 3.15. The RASP3 semanti
s have sizes of 228 and

359.
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S(IR) = ADD
S ′(IR) = S(S(PC))

S ′(ACC) = mod(S(ACC) + S(S ′(IR)),#S)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(a) The ADD instru
tion

S(IR) = SUB
S ′(IR) = S(S(PC))

S ′(ACC) = mod(S(ACC)− S(S ′(IR)),#S)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(b) The SUB instru
tion

Figure 3.15: The ADD and SUB instru
tions for the RASP3.

3.4.3 λ-
al
ulus

Unlike the varian
e in the RASP and TM de�nitions, the λ-
al
ulus tends to

have a 
onstant de�nition in the literature [12, 46, 25℄. At its 
ore, the redu
tion

and 
onversion rules β, α, η do not 
hange. Rather, the variation arises from the

redu
tion strategy (i.e. normal or appli
ative order). A λ term E is 
onstru
ted

from the grammar:

E := λv.E|(E E)|v

v ∈ {a . . . z}+

As explained in Se
tion 2.3.2.1, the three main rules of the λ-
al
ulus are

β redu
tion, α 
onversion and η 
onversion. `Exe
ution' of a term is via the

substitution me
hanism β redu
tion, while α and η 
onversion are used to tidy,

�nd equalities between terms, and resolve ambiguities.

Traditional semanti
s of the λ-
al
ulus assume that a reader/interpreter of

the semanti
s 
an substitute expressions in situ, expanding or 
ontra
ting the

original expression as desired. But this property of expanding or 
ontra
ting

expressions is quite abstra
t and 
an be problemati
 to implement from a me-


hani
al perspe
tive. As the RASP and TM semanti
s above are represented at a

resolution where we manipulate individual symbols/numbers/dis
rete stru
tures,
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it behoves us to represent the λ-
al
ulus in a manner where we also manipulate

su
h stru
tures.

We 
an represent a term as a TM tape, one 
hara
ter per 
ell of the tape

as normal. When a substitution is made, we erase the symbol whi
h is to be

repla
ed and repeatedly shu�e the rest of the term to the right in order to make

a spa
e large enough. We then 
opy the term in, repeat the pro
ess for any more

variables, then erase the term from the right, the abstra
tion at the far left and


lose up the bra
kets.

This is a poorly disguised TM. Furthermore, this `string evaluation' method

is tedious to spe
ify, and we suspe
t that it would take many semanti
 rules to

explain the pro
ess, not in
luding the parsing and renaming rules.

We observe that the bra
keted nature of λ expressions allows us to represent

them as trees. If we do this, evaluation be
omes a 
ase of shu�ing sub-trees

around until the expression is in normal form, if a normal form exists. This

method of representation and evaluation is 
alled Graph Redu
tion [102, 68℄.

Figure 3.16 shows how we 
ould parse the expression (λa.λb.b a)(λx.x). Pars-

ing begins by re
ognising the appli
ation of (λa.λb.b a) to (λx.x) This forms an

�APP� node whi
h signi�es an appli
ation. The right side has an abstra
tion

(�ABS�) over x and the single variable. The left side parses two abstra
tions,

then parses the appli
ation of a to b. While it is not expli
itly shown here, the

appli
ation rule mat
hes the expression from the right hand side. So if we had a

third expression (say X), the �rst mat
h would be rule (e) with e1(X) and would

form an APP node with X on the right and the stru
ture of 3.16 on the left.

So how do we parse an expression into this tree? The external representation

is assumed to be a λ expression with unique variable names. Bra
kets are in
luded

only for disambiguation and expressions are left asso
iative. The tree nodes are

de�ned as T :

T = {z, TL, TR}

z = ABS|APP |v

v ∈ {a . . . z}+ \ {∅}

An ABS node denotes an abstra
tion, APP an appli
ation, and v a variable.

The variables v are drawn from a di
tionary formed by the Kleene 
losure over
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Figure 3.16: The parsing of a λ expression. Leaf nodes are formed by appli
ation

of rule 3.17b.

the alphabet, ex
luding the empty string. Figure 3.17 shows the �ve rules to


onstru
t a tree from a λ expression, Troot = parse(e).

The parsing pattern mat
hes from the right, rather than from the left. This

is be
ause a LHS parsed expression will derive a right asso
iative tree.

The resulting tree stru
ture with the root Troot enables the re
ursive evaluation

of any given λ term. In the traditional semanti
s, a substitution is represented by

the notationM [x/F ]. Colloquially, we say that all free o

urren
es of the variable

x in the expression M are repla
ed by the expression F . If F is a variable itself,

we must ensure that the name is not bound in M prior to substitution. If F is

bound, then we �rst rename it before we substitute it in.

We de�ne a fun
tion E to evaluate from Troot. The fun
tion dete
ts where a

redu
tion 
an be made, 
he
ks if there are any name 
on�i
ts with the variables,

renames if ne
essary, and substitutes the sub-expression on the right into the

sub-expression on the left.

Figure 3.18 shows the rules for β redu
ing an expression. The dot syntax (.)

denotes an indire
tion whi
h referen
es a an element of a tree node. For example

T.TL.z is a referen
e to the value of z in the left 
hild of the node T .

Evaluation pro
eeds from the root. If a node T is an APP node and the

node dire
tly to its left, TL is an ABS node then all o

urren
es of nodes named

with the variable T.TL.TL.z in the bran
h T.TL.TR are repla
ed with T.TR (Figure
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e =⇒ λv.e1
parse(e) =⇒ {ABS, parse(v)parse(e1)}

(a) Parsing an abstra
tion

e =⇒ v

parse(e) =⇒ {v, ∅, ∅}

(b) Parsing a variable

e =⇒ e1v

parse(e) =⇒ {APP, parse(e1), parse(v)}

(
) Applying an expression to a variable

e =⇒ (e1)

parse(e) =⇒ parse(e1)

(d) Stripping parentheses

e =⇒ e1(e2)

parse(e) =⇒ {APP, parse(e1), parse(e2)}

(e) Applying an expression to another

Figure 3.17: Rules for parsing a λ expression into a tree

T.z = APP
T.TL.z = ABS

T.TR.z /∈ Bv(T.TL.TR)

E(T ) =⇒ S(T.TL.TR, T.TR, T.TL.TL.z);E(Troot)

(a) Applying a substitution where the name of the RHS is not bound on the LHS

T.z = APP
T.TL.z = ABS

BT = Bv(T.TL.TR)
T.TR.z ∈ BT

z′ /∈ BT

E(T ) =⇒ S(Rn(T.TL.TR, z′, T.TR.z), T.TR, T.TL.TL.z);E(Troot)

(b) Applying a substitution where the name of the RHS is bound on the LHS

E(T ) =⇒ {T.z, E(T.TL), E(T.TR)}

(
) Moving down the tree

T = ∅

E(T ) =⇒ ∅

(d) Terminating evaluation at the leaves

Figure 3.18: Determining where a substitution should be made
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T.z = ABS

Bv(T ) =⇒ {T.TL.z} ∪Bv(T.TR)

(a) Adding a bound variable to the set

T.z = APP

Bv(T ) =⇒ Bv(T.TL) ∪ Bv(T.TR)

(b) Re
ursing down the tree

Bv(T ) =⇒ ∅

(
) Default rule terminating the fun
tion

Figure 3.19: The fun
tion to determine the bound variables of a sub-expression

3.22a).

The fun
tion S(a, b, c) is the substitution fun
tion. Given a bran
h of the

tree to substitute into a, an expression to substitute b, and the variable whi
h we

want to be substituted c, we traverse the tree 
he
king to see if the leaf nodes

have the same value for z as c. If they are, we repla
e that leaf node with a 
opy

of the expression b (Figure 3.22b). If the variable c is rebound at some point in

the tree (i.e. is to the left of an ABS node) then the substitution is terminated.

On
e a substitution has �nished, the new tree is re-evaluated from the root until

no more substitutions 
an be made.

If b is itself a variable, we have to 
he
k that the name of b is not bound

in the sub-expression. Consider the expression (λx.(λf.λx.f(fx))x). We redu
e

this expression by substituting the rightmost x for the bound variable f in the

inner expression. If we do this without any renaming the expression will be
ome

(λx.(λx.x(xx))). The two substituted xs are now bound by the inner abstra
tion.

This is 
alled variable 
apture.

To avoid this, we obtain a list of the bound variables of the sub-expression

into whi
h we are substituting (Figure 3.19). If b is not in this list, we substitute

as normal (Figure 3.18a). If it is, we rename the variables in the sub-expression

to something other than b (Figures 3.18b and 3.20) before substitution.

This method of evaluation aims for full evaluation via normal order redu
tion.

The term (λa.λb.ba)(λx.x) will redu
e to the normal form (λb.b(λx.x)) where the

evaluation will halt.

It has been a 
ons
ious 
hoi
e to redu
e a term to full normal form rather

than weak head normal form (WHNF). Where normal form is an expression with
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T.z = k

Rn(T, v′, k) =⇒ {v′, ∅, ∅}

(a) Rule for renaming a variable

T = ∅

Rn(T, v′, k) =⇒ ∅

(b) Rule for terminating at the leaves

Rn(T, v′, k) =⇒ {T.z, Rn(T.L, v′, k), Rn(T.R, v′, k)}

(
) Default rule for moving down the tree

Figure 3.20: The renaming rules

S(T, TP , j) =⇒ {T.z, S(TL, TP , j), S(TL, TP , j)}

(a) Moving down the tree

T.z = j

S(T, TP , j) =⇒ TP

(b) Repla
ing the node T with TP

T = ∅

S(T, TP , j) =⇒ ∅

(
) Terminating substitution at the leaves

T.z = ABS
T.TL.z = j

S(T, TP , j) =⇒ T

(d) Terminating a substitution when en
ountering a re-binding of the variable j

Figure 3.21: The substitution rules to repla
e bound variables with another ex-

pression.

(a) Before substitution. Applying rule 3.18a (b) After substitution

Figure 3.22: Appli
ation and substitution
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no more redu
tions, an expression in WHNF is one with no redu
tion for the

leftmost abstra
tion. There may be redexes in sub-expressions, but the WHNF

strategy redu
es only the leftmost outermost redex.

Adopting a WHNF strategy 
an redu
e the number of semanti
 rules in the

semanti
s. If we take it as a 
onvention that all bound and free variables have

unique names, we 
an redu
e a term to WHNF [68℄ without the need for renam-

ing. Consider the expression (λt.tt)(λf.λx.fx) with all initially unique variables.

A single redu
tion step will produ
e (λf.λx.fx)(λf.λx.fx) and another will pro-

du
e the WHNF (λx.(λf.λx.fx)x). At this point a variable name has been du-

pli
ated, but the term is still unambiguous as to whi
h variables are bound by

ea
h abstra
tion.

If we want a full normal form, we 
an 
ontinue to redu
e the expression by

substituting the rightmost x bound by the leftmost abstra
tion into the sub-

expression for f produ
ing (λx.(λx.xx)). This is variable 
apture, and shows

that enfor
ing unique variable names in the initial term is not su�
ient enough

to prevent su
h variable 
apture. At the time of substitution, the ma
hine has to


he
k if there are unique

These semanti
s whi
h stri
tly redu
e to normal form do not 
onfer extra


omputational power over WHNF, but the extra rules relax the 
onvention of

variable uniqueness. This in turn means that we are not 
onstri
ted to ≤ 26

unique single symbol bindings before needing to add more symbols to the variable

names.

The λ-
al
ulus semanti
s are markedly di�erent from the semanti
s of the

RASPs and TM. The semanti
s fo
us on evaluation in the form of graph redu
-

tion and es
hew semanti
 rules for a parti
ular expressions. The λ expressions

dis
ussed thus far: ONE, PAIR, SUCC, et
. have no spe
ial rules as far as the se-

manti
s are 
on
erned. These semanti
s have no �language semanti
s� 
omponent

as the the RASPs do. The λ-
al
ulus semanti
s are 515 
hara
ters in size.

3.4.4 SKI 
ombinator 
al
ulus

The SKI formalism revolves around the three 
ombinators S, K, and I. We 
an

represent any 
omputable term in this formalism [17, 79℄. Expressions are stru
-
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e =⇒ (e1)

P (e) =⇒ P (e1)

(a) Stripping bra
kets

e =⇒ e1(e2)

P (e) =⇒ {A, (P (e1), P (e2)}

(b) Appli
ation of an expression to another

e =⇒ e1z

P (e) =⇒ {A, P (e1), P (z)}

(
) Appli
ation to a variable/
ombinator

e =⇒ z

P (e) =⇒ {z, ∅, ∅}

(d) Parsing a variable or 
ombinator

Figure 3.23: The parsing rules for SKI

tured similarly to the λ-
al
ulus, and 
an be therefore be parsed into a tree and

evaluated using graph redu
tion [99℄. The evaluation of a SKI term is again via

normal order.

A SKI term E is generated from the grammar:

E := (EE)|z

z := S|K|I

where E is a non terminal symbol, and S, K, I are terminal symbols.

Like a λ-
al
ulus expression, we parse E into a tree stru
ture T similar to our

λ-
al
ulus tree stru
ture above:

T = {z, TL, TR}

z = S|K|I|A

The parsing pro
eeds similarly to the λ-
al
ulus minus the rules for parsing

an abstra
tion. Figure 3.23 shows these rules.

The parsing of the SKI expression S(KI)I(KII) is shown in Figure 3.24. As

with the λ semanti
s, appli
ation is mat
hed from the right hand side of the

expression. Ea
h leaf node in a SKI tree is a 
ombinator or variable.

Evaluation of SKI terms requires that we look ahead for 
ombinators and

expressions be
ause a 
ombinator will not evaluate if it does not have enough

arguments (e.g SII ≡ SII). Figure 3.25 shows the redu
tion rules for S, K and

I.

To evaluate the identity fun
tion from a node T , we 
he
k to see that the left

bran
h is an I (Figure 3.26). The redu
tion returns the right bran
h of T . As

with the λ semanti
s, we re-evaluate from the root of the tree Troot after ea
h
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Figure 3.24: The tree of a parsed SKI expression

substitution.

The evaluation of K requires that the leftmost bran
h terminates with a K.

The K 
ombinator ignores its se
ond argument and returns the �rst (Figure 3.27).

The S 
ombinator requires 3 arguments. The leftmost bran
h three levels

down should be an S and it should have 3 expressions to the right of ea
h appli-


ation node on ea
h level. The result of this redu
tion is a tree whi
h applies e1

to e3 (j), e2 to e3 (g), and j to g.

As a form of hybrid between the singular fo
us on graph redu
tion (λ-
al
ulus)

and semanti
 rules for parti
ular instru
tions (RASPs). The SKI semanti
s eval-

uate expressions in a graph redu
tion manner, but the parti
ular redu
tion is

informed by the 
ombinator read. The semanti
s for the SKI are the smallest at

291 
hara
ters.

3.5 Semanti
 Sizes

Measuring the semanti
s of our models yields Table 3.1. The Turing ma
hine

is the simplest imperative model, and an abstra
t ma
hine to interpret and run

a TM is 
onsequently small. The RASP Figures are split into model+language

semanti
s so that the di�eren
e in their instru
tion sets 
an be qui
kly seen.

RASP RASP2 RASP3 TM SKI λ-
al
ulus

228+328 228+357 228+359 335 291 515

Table 3.1: The semanti
 sizes for the models
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T.v = A

R(T ) =⇒ {A,R(TL), R(TR)}

(a) Moving down the tree

T.z = A
T.TL.z = I

R(T ) =⇒ T.TR;R(Troot)

(b) The I rule

T.z = A
T.TL.TL.z = K

R(T ) =⇒ T.TL.TR;R(Troot)

(
) The K rule

T = ∅

R(T ) =⇒ T

(d) The terminating rule

T.z = A
T.TL.TL.TL.v = S
T.TL.TL.TR = e1
T.TL.TR = e2
T.TR = e3

R(T ) =⇒ {A, {A, e1, e3}, {A, e2, e3}};R(Troot)

(e) The S rule

Figure 3.25: SKI redu
tion rules

Figure 3.26: I redu
tion

Figure 3.27: K redu
tion

Figure 3.28: S redu
tion
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Interestingly, the semanti
s for the λ-
al
ulus are more 
omparable in size to

the RASP rather than the traditional 
omparison to the Turing ma
hine. In the

next 
hapter we shall see what e�e
t this has on program size and Chapter 6

will dis
uss how the 
omparative sizes of these semanti
s relate to the sizes of

programs.
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Arithmeti
, List and Universal

Programs

This 
hapter 
overs the implementation and measurement of programs whi
h have

been sele
ted to ben
hmark the models. The 
on
epts of primitive and partial

re
ursion are introdu
ed, the fun
tions listed, and realisations of these fun
tions

explained in ea
h model.

To strive for an equitable 
omparison, the programs featured to 
ompute

these fun
tion are both su

in
t and operate over natural en
odings of the fun
-

tion input. There are programs whi
h 
ompute a fun
tion using less program

information, but use sparser input en
odings. Se
tion 6.6 gives an example of

su
h a ma
hine, and Se
tion 6.5 details the growth rates of natural inputs for

ea
h program and model.

For the sake of brevity, not all all fun
tions are explained in depth for ea
h

individual model � the RASPs and λ-
al
ulus/SKI are often grouped as they use

the same algorithm. The full programs for ea
h model and fun
tion are presented

in Appendix B.

4.1 Primitive and Partial Re
ursion

The de�nition of the primitive re
ursive (PR) fun
tions starts with the natural

number 0, the su

essor fun
tion, the proje
tion fun
tion and indu
tion [63℄.

The su

essor fun
tion adds 1 to a natural number n, thus obtaining the next
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number in the sequen
e:

s(n) = n+ 1

From that we 
an derive the prede
essor fun
tion, whi
h given n + 1 returns

n:

p(n) =







0 : z(n) = 1

x : n = (s(x))

The prede
essor fun
tion requires a test for zero z:

z(n) =







1 : n = 0

0 : n > 0

The 
omposition and proje
tion fun
tions pa
k and unpa
k tuples of variables.

The base form of the PR fun
tions has a restri
tion on the number of variables

whi
h a fun
tion 
an operate over. While a fun
tion 
an operate over any number

of 
onstants, PR indu
tion 
an only be performed on a single variable. So if T is

a PR fun
tion then the de�nition of T (1, f) is permissible, but T (x, f) (where x

and f are two natural numbers 
hanged by T ) is not.

However it seems appropriate that if variable x of T is the result of another

PR fun
tion L, then the indu
tive de�nition of x is `handled' by the de�nition

of L. Intuitively, the 
omposition of PR fun
tions should also result in a PR

fun
tion. Kleene [46℄ treats this matter in a formal manner, explaining the role

of 
omposition and proje
tion. In the fun
tion de�nitions whi
h follow, we shall

be using standard mathemati
al notation rather than `stri
t PR' formulations

whi
h make use of 
omposition and proje
tion.

All primitive re
ursive fun
tions are total. That is they are de�ned on all

inputs in their domain. There exists total fun
tions whi
h are not primitive

re
ursive however [7℄.

The partial re
ursive fun
tions are de�ned with the in
lusion of the µ operator.

Also known as theminimisation, or unbounded sear
h operator, µ is used to sear
h

for the smallest natural number whi
h satis�es some fun
tion. Where the PR

fun
tions re
urses downwards towards zero, µ re
urses upwards and may never

return a result. Say there was a TM R, and we want to �nd out the number

of steps R will make before halting: n = µ(R). The minimisation operator µ is
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paired with a UTM and runs R a step at a time until R rea
hes some de�ned

halting state. However R 
ould loop forever in whi
h 
ase µ will never return a

value [63, 20, 46℄.

The fun
tions whi
h form the 
omparison set are a mixture of primitive and

partial re
ursive fun
tion. The set of primitive re
ursive fun
tions in
lude arith-

meti
 operations: addition, subtra
tion, equality, multipli
ation, division, and

exponentiation. And operations on lists: list membership, linear sear
h, reversal

via 
onstru
ting a new list, reversal via swapping elements in pla
e, and bubble

sorting. The partial re
ursive fun
tions are the universal Turing and universal

RASP ma
hines.

This fun
tion set aims to represent a reasonable spread of operations su
h

that a wide range of arbitrary programs makes use of one or more of these fun
-

tions. Many of the implementations are drawn from the literature, espe
ially

implementations of the arithmeti
 fun
tions and UTM in the TM and λ-
al
ulus.

The list reversal and sear
h fun
tions in the λ-
al
ulus have also been drawn from

the literature. The other fun
tions have been hand 
onstru
ted and 
ontinuously

re�ned by the author.

The arithmeti
 fun
tions are hierar
hi
al in nature where the fun
tions on level

n make use of the fun
tions on level n − 1. These arithmeti
 fun
tions operate

over pairs of data, while the list fun
tions operate over a �nite list of 
ontiguous

data and demonstrate several 
ommon fun
tions like sear
h and sort. The two

reversal fun
tions highlight how di�eren
es in the intensionality of two programs

to 
ompute the same fun
tion a�e
ts the program information. Where possible,

the de�nitions and programs presented here are drawn from the literature.

4.2 The Arithmeti
 Fun
tions

The arithmeti
 fun
tions are a hierar
hy de�ned over the natural numbers. The

base fun
tions are the su

essor and prede
essor fun
tions whi
h are de�ned

above. Ea
h subsequent level in the hierar
hy is de�ned by multiple appli
ation

of the fun
tions in the levels below. Addition is iterated su

essor, multipli
ation

is iterated addition, and so on. These fun
tions are all primitive re
ursive and
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01(R) 2(R)
1->0 0->1

1

Figure 4.1: The state diagram for the addition TM

are therefore guaranteed to halt.

Ea
h fun
tion here is detailed and the programs/expressions in all of the

models are des
ribed. Many of the RASPs and SKI 
al
ulus programs behave

similarly to other RASPs or λ-
al
ulus expressions and so may not be detailed

to avoid needless repetition.

4.2.1 Addition

The de�nition of the fun
tion add is:

add(x, y) =







y : x = 0

add(p(x), s(y)) : x 6= 0

4.2.1.1 Turing Ma
hine

Figure 4.1 shows a state diagram of the ma
hine. The TM starts in state 1,

and follows the edges of the transitions. If a transition is labelled with a single

symbol, the TM will write that symbol ba
k. Transitions of the form x→ y will

overwrite x with y. The dire
tion that the ma
hine will shift is annotated as `L'

or `R' on the states.

The initial tape for the addition Turing ma
hine 
ontains the numbers x and

y ins
ribed in unary with a single spa
e between them. The head of the ma
hine

begins over the far left symbol of x. It repla
es this symbol with a blank and

shifts right until it rea
hes the spa
e between x and y. On
e this spa
e has been

found, the TM �lls it in and halts.
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Instr Data I Label D Label

LOAD 3 :addStart ;x

JGZ 'adding

HALT

DEC :adding

STO 'x

LOAD 4 ;y

INC

STO 'y

LOAD 1

JGZ 'addStart

Figure 4.2: The RASP program for addition.

Instr Data

LOAD x
ADD y

Figure 4.3: RASP2 adding x and y.

Instr Data I Label

LOAD x
ADD 'label

y :label

Figure 4.4: RASP3 adding x and y.

4.2.1.2 RASP

The RASP performs addition by looping over x, de
rementing it and in
rementing

y until x is zero before halting. Figure 4.2 adds the numbers 3 and 4 together to

produ
e 7.

4.2.1.3 RASP2/3

The RASP2 and RASP3 semanti
s have pre-de�ned ADD and SUB instru
tions

so all that they have to do is invoke these instru
tions. Tables 4.3 and 4.4 show

very 
on
ise programs to add two numbers together.

4.2.1.4 λ-
al
ulus

Addition in the λ-
al
ulus exploits the higher order fun
tionality of the Chur
h

numerals. Where SUCC ≡ (λn.λf.λx.f(nfx)), addition is λx.λy.x SUCC y. Fig-

ure 4.5 shows the redu
tion with the numbers 3 and 1.

4.2.1.5 SKI

The SKI expression for addition is very similar to the λ expression be
ause the SKI

expression is derived from λ expression via bra
ket abstra
tion (Se
tion 2.3.2.2).
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ADD THREE ONE ⇒∗
β THREE SUCC ONE

≡ λf.λx.f(f(fx)) SUCC ONE

⇒∗
β SUCC(SUCC(SUCC ONE))

⇒β λf.λx.f(SUCC(SUCC ONE)fx)
⇒β λf.λx.f((λj.λh.j(SUCC ONE jh))fx)
⇒∗

β λf.λx.f(f(SUCC ONE fx))
⇒β λf.λx.f(f((λj.λh.j(ONE jh))fx))
⇒∗

β λf.λx.f(f(f(λa.λb.ab)fx))
⇒β λf.λx.f(f(f(fx)))
≡ FOUR

Figure 4.5: Addition of the Chur
h numerals 3 and 1.

The su

essor fun
tion is de�ned as S(S(KS)K) and prepends the expression to

any natural number to 
reate the su

essor. The full expression for addition is

SI(K(S(S(KS)K))) whi
h operates exa
tly as the above λ expression.

4.2.2 Subtra
tion

The �proper� form of subtra
tion returns x − y if x >= y; otherwise it returns

zero:

sub(x, y) =



















x : y = 0

0 : x = 0

sub(p(x), p(y)) : y 6= 0 ∧ x 6= 0

4.2.2.1 TM

The initial tape of the TM is arranged with x followed by y in unary, separated by

a single blank symbol. The TM traverses to the far right side of y and repla
es

the rightmost `1' with a blank. It then moves to the far left and repla
es the

leftmost `1' from x.

If the ma
hine en
ounters two 
onse
utive blanks when moving right, it halts

immediately sin
e y has been depleted. If it en
ounters 
onse
utive blanks when

moving left, x has been depleted, so it shifts right again and erases the rest of y

before halting.

109



Chapter 4. Arithmeti
, List and Universal Programs

Instr Data I Label D Label

LOAD y :subStart ;y

JGZ 'subbing

HALT

SUB 1 :subbing

STO 'y

LOAD x ;x

JGZ 'subbing2

HALT

SUB 1 :subbing2

STO 'x

LOAD 1

JGZ 'subStart

Figure 4.6: RASP2 properly subtra
ting x and y

4.2.2.2 RASP

Subtra
ting y from x in the RASP involves repeatedly de
rementing both values

until one of them rea
hes zero. The program to do this is almost exa
tly the same

as the subtra
tion program in Figure 4.6, with the ex
eption that the �SUB 1�

instru
tions are repla
ed with �DEC�.

4.2.2.3 RASP 2/3

The SUB fun
tions for the RASP2 and 3 do not 
onform to the rules of proper

subtra
tion be
ause they pay no heed to the under�ow of registers. This means

that SUBbing y from x dire
tly will not return 0 in the event of y > x, whi
h

makes the SUB instru
tion unsuitable for the task of proper subtra
tion.

The basis of subtra
tion is to de
rement x and y in turn until one of them

rea
hes zero. Figure 4.6 shows the RASP2 program to do this. It is not hard to

de�ne an analogous ma
hine in the RASP3. The la
k of a DEC instru
tion for the

RASP2 and 3 means that the de
rementing of x and y requires two instru
tions

rather than just one.

Before the de
rement y, it is tested for zero. If y is zero the program halts,

otherwise it is de
remented and x is tested for zero. If x is greater than zero,

the ma
hine de
rements it and loops to de
rement y again. The result of the

subtra
tion is held in the register for x.
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0

1(R)

2(R)
1->0

7(R)
0

1

3(R)
0

1

4(L)
0

5(L)
1->0

9(L)

0
1

6(L)

0

0

1

0

8(R)

1->0
0->1

1->0

0

10(L)

1->0

0->1

1->0

Figure 4.7: The TM to 
al
ulate equality of x and y.

4.2.2.4 λ-
al
ulus and SKI

The PRED fun
tion for the SKI and λ-
al
ulus has the same de�nition as the

prede
essor fun
tion p(). So any appli
ation of ZERO to PRED will result in

ZERO as a matter of 
ourse. This means that any y 
an be subtra
ted from

a smaller x using PRED and the result will be zero. The SUB expression is

therefore:

SUB ≡ (λa.λb.b PRED a)

whi
h is evaluated mu
h like the expression for addition above.

4.2.3 Equality

Equality on the naturals re
ursively de
rements x and y until one or both rea
h

zero. A return value of 1 (true) is returned if they are both zero, and 0 (false) is

returned if they are not both zero at the same time:

eq(x, y) =



















1 : x = 0 ∧ y = 0

0 : (x = 0 ∧ y 6= 0) ∨ (x 6= 0 ∧ y = 0)

eq(p(x), p(y)) : otherwise

4.2.3.1 TM

The Turing Ma
hine to 
ompute equality begins with the numbers x and y in-

s
ribed on a tape in unary with a single blank spa
e between them and the head
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Instr Data I Label D Label

LOAD 6 ;num1

SUB 6 ;num2

JGZ 'out

HALT

LOAD 1 :out

(a) The RASP2 program for 6 =? 6

Instr Data I Label D Label

LOAD 6 ;num1

SUB 'num2

JGZ 'out

HALT

LOAD 1 :out

HALT

5 :num2

(b) The RASP3 program for 6 =? 5

Figure 4.8: RASP2/3 programs for equality

over the far left of x. The ma
hine (Figure 4.7) begins by removing the far

left digits of x and the far right digits of y one at a time to preserve the spa
e

in-between x and y.

If the ma
hine removes a digit from x and �nds there are no more digits in

y, it moves ba
k over x eliminating the remaining digits before halting. If the

ma
hine �nds that there are no more digits in x, it moves a
ross to y. If there are

digits in y, it removes them and halts with a blank tape. If there are no digits in

x and y, it 
hanges a 0 to a 1 and halts.

4.2.3.2 RASP Ma
hines

In the above equation, two numbers are equal if they are both zero after the

same number of prede
essor operations. The RASP repeatedly de
rements x and

y until x is zero. At that point y is 
he
ked for zero. If it is, the two numbers

are equal, 1 is loaded into the ACC and the ma
hine halts. If not, zero is loaded

and the ma
hine halts.

The RASP2 and 3 just subtra
t y from x. If the answer is 0, the ma
hines

halt with a 1 in the ACC. If not, they halt with zero (Figure 4.8).

4.2.3.3 λ-
al
ulus and SKI

Rather than outputting the numerals 1 and 0, the λ-
al
ulus and SKI use the

terms TRUE and FALSE (Se
tion 2.3.2.1) respe
tively. The LEQ expression tests

if one number is less than or equal to another. The EQ expression is a 
onjun
tion

of LEQ x y and LEQ y x. It tests if m is less than or equal to n and then if n is

less than or equal to m. If both expressions are true, then m = n:
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LEQ ≡ λm.λn.n PRED m(λx.FALSE)TRUE

EQ ≡ (λm.λn.AND(LEQ m n)(LEQ n m))

4.2.4 Multipli
ation

Multipli
ation is iterated addition:

mul(x, y) =







0 : x = 0 ∨ y = 0

add(x,mul(x, p(y)) : x 6= 0 ∧ y 6= 0

4.2.4.1 TM

Multipli
ation in the TM uses a tape of x and y written in unary with a single

spa
e between them like the other programs seen thus far. It �rst removes the

leftmost digit of x and makes a 
opy of y on the right hand side of the tape,

leaving a gap of a single blank between y and its 
opy.

On
e a 
opy has been made, the TM removes another digit from x and 
opies

y again, pla
ing it next to the previous 
opy. This 
ontinues until all of x is

depleted, at whi
h point the ma
hine moves right to erase y before halting with

x× y on the tape.

4.2.4.2 RASP Ma
hines

Multipli
ation of two numbers in the RASP is repeated addition. The multiplier

(y) is initially tested for zero. If it is zero, the ma
hine halts. The ma
hine tests

the multipli
and (x) for zero and then de
rements it, storing the new multipli
and.

A 
opy is made of the multiplier and the 
opy is added to a �runningTotal�

register whi
h is initialised as zero. The program loops and and 
ontinues until

the value for x is 0. The result of the program is held in the �runningTotal�

register and holds the value of (x× y)%2n (Figure 4.9) where n is the number of

RASP bits. The RASP2 and RASP3 use the same looping me
hanism, but use

their respe
tive ADD fun
tions to in
rease �runningTotal�.
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Instr Data I Label D Label

CPY 'multiplier

JGZ 'return

HALT

LOAD 5 :return ;multipli
and

JGZ 'mul_start

HALT

DEC :mul_start

STO 'multipli
and

LOAD 5 ;multiplier

STO 'tmp

LOAD 0 :loop ;tmp

JGZ 'add

LOAD 1

JGZ 'return

DEC :add

STO 'tmp

LOAD 0 ;runningTotal

INC

STO 'runningTotal

LOAD 1

JGZ 'loop

Figure 4.9: The RASP program to multiply 5 and 5

4.2.4.3 λ-
al
ulus

Unlike the RASP and TM, multipli
ation in the λ-
al
ulus is not iterated addi-

tion whi
h is a deviation from the de�nition above. Rather than iteration, the

expression (λm.λn.λf.m(n f)) 
ombines two Chur
h numerals m and n by 
re-

ating m 
opies of (n f). In these expressions, n is applied to the free variable f

and the resulting expressions are applied to ea
h other.

The intermediate step of applying the f ensures that the subsequent appli
a-

tions of the numerals to ea
h other would be substituted for the se
ond argument

114



Chapter 4. Arithmeti
, List and Universal Programs

MULT TWO TWO ≡ (λm.λn.λf.m(n f)) TWO TWO

⇒β (λn.λf.TWO(n f))TWO

⇒β λf.TWO(TWO f)

⇒∗
β λf.λx.(λa.λb.a(a b)f)((λa.λb.a(a b)f)x)

⇒β λf.λx.(λb.f(f b)((λa.λb.a(a b)f)x))

⇒β λf.λx.f(f((λa.λb.a(a b)f)x))

⇒β λf.λx.f(f(λb.f(f b)x))

⇒β λf.λx.f(f(f(f x)))

≡ FOUR

4.2.4.4 SKI

The SKI term for multipli
ation is striking in its simpli
ity and is the shortest

term of all the fun
tions: S(KS)K. Multipli
ation works by 
reating a new

number through applying a multiplier to a multipli
and so that we get x 
opies

of y. The term prevents the appli
ation of x to y by means of the leading S and

K whi
h hold the term in normal form until something 
an be applied to the new

number.

MULT TWO THREE ≡ S(KS)K(S(S(KS)K)I)(S(S(KS)K)(S(S(KS)K)I))

⇒S KS(S(S(KS)K)I)(K(S(S(KS)K)I))(S(S(KS)K)

(S(S(KS)K)I))

⇒K S(K(S(S(KS)K)I))(S(S(KS)K)(S(S(KS)K)I))

⇒S S(K TWO)THREE

This expression for six is shorter than the expression for six obtained by

repeatedly �nding the su

essor of zero. This behaviour inspired the fa
torisation

method des
ribed in Se
tion 3.3.5.
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Figure 4.10: The TM to divide x by y

4.2.5 Division

Integer division returns a pair of a quotient and a remainder. The divisor is

repeatedly subtra
ted until x < y. The number of times this is a

omplished is


ounted, and the remainder is whatever is left of x after this repeated subtra
tion

of y:

div(x, y) = 〈quot(x, y), rem(x, y)〉

quot(x, y) =



















0 : x < y

0 : y = 0

s(quot(sub(x, y), y)) : otherwise

rem(x, y) =



















0 : y = 0

sub(y, x) : x < y

rem(sub(x, y), y) : otherwise

4.2.5.1 TM

TM division starts with y followed by x on the tape separated by a blank (note

the swapping of the two numbers). The ma
hine �rst tries to mark y symbols of

x. If it 
an do this (i.e y ≤ x) then it moves to the left of y and prints a `1'. It

then repeats the pro
ess until there are no more symbols left in x to mark.

If y divides x perfe
tly, then both x and y are eliminated from the list to leave

the quotient. If it does not, then the ma
hine eliminates x and the remaining

unmarked y symbols to leave the quotient and remainder on the tape separated

by a `0' (Figure 4.10).
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Instr Data I Label D Label

LOAD y :start ;y

JGZ 'divStart

HALT

STO 'tmp :divStart

LOAD x ;x

STO 'remainder

LOAD 0 :loop ;tmp

JGZ 'sub

LOAD 1

JGZ 'return

DEC :sub

STO 'tmp

CPY 'x

JGZ 'nl

HALT

DEC :nl

STO 'x

LOAD 1

JGZ 'loop

LOAD 0 :return ;quotient

INC

STO 'quotient

JGZ 'start

0 :remainder

Figure 4.11: RASP2 dividing x by y.

4.2.5.2 RASP Ma
hines

Figure 4.11 shows the RASP ma
hine to perform integer division. The RASP �rst


he
ks that y isn't zero. It then 
opies the value x to the remainder register and

attempts to subtra
t y from x. If it su

eeds, the quotient value is in
remented

and the program jumps ba
k to the start. If it 
annot fully subtra
t y from x,

the program halts immediately and the quotient and remainder 
an be found in

the memory at the labelled lo
ations.

The RASP2 and 3 operate almost exa
tly as the RASP does. Sin
e the SUB

instru
tion does not 
onform to the rules of proper subtra
tion, the ma
hine 
an

not know if x < y through dire
tly subtra
ting. Therefore the ma
hines have to

use �SUB 1� and 
annot take advantage of their potential.
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4.2.5.3 λ-
al
ulus and SKI

Division in the λ-
al
ulus and SKI is the �rst re
ursive fun
tion in the set of

arithmeti
 fun
tions de�ned by means of the Y 
ombinator:

Y(λg.λq.λa.λb.LTa b(PAIR q a)(g(SUCC q)(SUB a b)b))ZERO

The initial ZERO is the quotient of the division. If a (x) is less than b (y) this

quotient is returned paired with x.Ea
h re
ursive 
all tests if x < y. If not, the

fun
tion is 
alled again with an in
remented quotient and x− y as the new value

for x.

4.2.6 Exponentiation

Exponentiation is repeated appli
ation of the multipli
ation fun
tion:

exp(x, y) =







1 : y = 0

mult(x, exp(x, p(y))) : y 6= 0

4.2.6.1 TM

The TM is initialised with a tape of y, x, and f whi
h is a single 1. Ea
h term is

separated by a single spa
e. The TM 
he
ks o� one of the digits of y and pro
eeds

to multiply x by f to 
reate a new number to the right of f .

On
e the multipli
ation has been 
ompleted, the 
urrent f is erased and the

result of the multipli
ation; x× f assumes the role of f . The ma
hine 
ontinues

by erasing another digit of y and repeating the pro
ess with x and the new f .

This pro
eeds until there are no more digits in y at whi
h time the ma
hine halts.

The output tape 
ontains x and f (whi
h is the results of xy
) with one or more

blank symbols between them.

4.2.6.2 RASP Ma
hines

RASP exponentiation is a loop added to the multipli
ation program. The expo-

nent is initially 
he
ked for zero. If it is, the ma
hine halts and the return value

defaults to 1. Otherwise, the power is de
remented and the 
urrent total (f) is
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multiplied by x.

On
e this is done, the program jumps to the start of the program, tests and

de
rements the power, 
ontinuing until the power is 0. For the RASP2 and 3,

exponentiation is multipli
ation inside another loop and is written as expe
ted.

4.2.6.3 λ-
al
ulus and SKI

The λ-
al
ulus and SKI again leverage the higher order fun
tionality of the

Chur
h numerals. Exponentiation applies one Chur
h numeral to another. In

the 
ase of xy
, x is applied to y:

EXP x y ≡ (λa.λb.ba)TWO THREE

⇒∗
β THREE TWO

⇒β λx.TWO(TWO(TWO x))

⇒β λx.λf.TWO(TWO x(TWO(TWO x)f)

⇒β λx.λf.(λa.TWO x(TWO xa))((λa.TWO x(TWO xa))x)

⇒β λx.λf.TWO x(TWO x((λa.TWO x(TWO xa))x))

⇒β λx.λf.(λa.x(xa))((λa.x(xa))((λa.(λb.x(xb))((λb.x(xb))x))x))

⇒β λx.λf.x(x((λa.x(xa))((λa.(λb.x(xb))((λb.x(xb))x))x)))

⇒β λx.λf.x(x(x(x((λa.(λb.x(xb))((λb.x(xb))x))x))))

⇒β λx.λf.x(x(x(x((λa.x(xa))((λa.x(xa))x)))))

⇒β λx.λf.x(x(x(x(x(x((λa.x(xa))x))))))

⇒β λx.λf.x(x(x(x(x(x(x(xf)))))))

The EXP fun
tion 
ould be de�ned as the identity and 
omputed as (λx.x)yx.

However a fun
tion 
onstru
ted in this manner only requires a single argument

and if two were supplied, both were Chur
h numerals, and happened to be sup-

plied in the 
orre
t order, only then will the �
orre
t answer� be 
al
ulated. This

behaviour is more an a

idental side e�e
t of the identity fun
tion and evaluation

method given the 
orre
t 
onditions than any kind of 
al
ulated 
onstru
tion.
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The SKI expression is very similar. Given two numerals A and B:

EXP A B ≡ S(K(SI))KAB

⇒S K(SI)A(KA)B

⇒K SI(KA)B

⇒S IB(KAB)

⇒I B(KAB)

⇒K BA

4.3 Fun
tions on a List

As opposed to the arithmeti
 fun
tions above whi
h operate on two dis
rete pie
es

of data, the list fun
tions operate on a list stru
ture. For our purposes, a list is

a stru
ture of zero or more elements whi
h are 
onne
ted in a linear fashion.

Lists are often delimited to separate elements (like in the TM) and may have end

markers (SKI and λ-
al
ulus; NIL).

Common re
ursive de�nitions making use of lists use four base fun
tions. The

`head' fun
tion returns the �rst member of a list, the `tail' fun
tion returns the list

without the �rst element, and `[℄' is the empty list. Like the arithmeti
 fun
tions,

the list fun
tions are primitive re
ursive.

4.3.1 List Membership

The list membership fun
tion returns true if an element is in the list and false

otherwise. It 
an be de�ned thus:

mem(x, list) =



















true : eq(x, head(list))

false : mem(x, [])

mem(x, tail(list)) : otherwise

4.3.1.1 TM

The list on the tape for the membership TM is a sequen
e of binary numbers

separated `*' symbols and bookended by the end list symbol `E'. The target to

be sear
hed for is prepended by a `T', and the symbol to the left of it is 0 if the
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Figure 4.12: The TM to de
ide membership of a list.

target number has not been found and 1 if it has. An initial tape is of the form:

0T 〈x〉 ∗ 〈data1〉 ∗ 〈data2〉 ∗ . . . E

Figure 4.12 shows the state ma
hine for the membership TM. The TM sear
hes

for the target, x by marking o� a 
hara
ter in the target, shifting to the 
urrent

data range being 
he
ked and attempting to mark o� the same 
hara
ter in the

same position. If it 
an, the ma
hine 
ontinues to try and mark o� all the


hara
ters in the target. If the 
urrent data doesn't mat
h the target, the ma
hine

marks o� all the data in the range, resets the target and tries again.

The `found value' is at the far left of the tape, after the `T'. The ma
hine

halts with 0 = false and 1 = true. If the ma
hine does not �nd the target in the

list before rea
hing the end of the list it halts. If the ma
hine mat
hes all of the

symbols in the target with the symbols in one of the the data blo
ks, it moves

ba
k to the start and overwrites the `found value' with a 1 before halting.
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4.3.1.2 RASP Ma
hines

A RASP list is de�ned at the end of the program memory and is a 
ontiguous

array of elements with one element per address. Labels are de�ned on the start

and end addresses of the list so that the ma
hine knows the size and bounds.

The RASP programs to determine membership start with the �rst element of

the list, 
omparing it to the target. If the element is equal to the target, it loads

a 1 into the ACC and halts. If not, the address to be 
ompared is in
remented

and tested against the end of the list.

If the 
urrent address is still a part of the list, the ma
hine loops and tests

the element in the address against the target. If the address is past the end of

the list, a 0 is loaded into the a

umulator and the ma
hine halts.

The RASP2 and 3 use their subtra
tion instru
tions to work out if the target

is equal to the 
urrent element whereas the RASP has an equality fun
tion de�ned

in the memory whi
h it uses repeatedly.

4.3.1.3 λ-
al
ulus and SKI

Lists in the λ-
al
ulus and SKI are expressions made of of nested pairs terminated

with the NIL expression:

(PAIR A(PAIR B(PAIR . . . (PAIR Z NIL) . . .)))

This fun
tion sear
hes through a list of numbers for a spe
i�
 one:

MEM ≡ Y(λa.λb.λc.NULL b FALSE(EQ(HEAD b)c TRUE(a(TAIL b)c)))

This fun
tion initially tests the list to see if it is NIL. If it is, the end of the list

has been rea
hed and the target has not been found. FALSE is returned. If it is

not NIL, the head of the list (b) is tested to see if it is equal to the target (c). If

it is, then TRUE. If not, the fun
tion re
urses to test the rest of the list.
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4.3.2 Linear Sear
h

The linear sear
h of a list for an element x returns either the position of an

element or the size of the list + 1:

search(x, list) =



















0 : x = head(list)

1 : list = []

s(search(x, tail(list))) : x 6= head(list) ∧ list 6= []

4.3.2.1 TM

The TM tape of a sear
hable list is a set of 〈address, data〉 pairs. Ea
h pair is

stru
tured as: #address ∗ data# where the `#' separates the pairs and `∗' is an

internal delimiter. The tape of this ma
hine is stru
tured as:

E〈ReturnAddress〉T 〈target〉#〈addr1〉 ∗ 〈data1〉# . . . E

Initially, the �ReturnAddress� portion of the tape is empty, and the �target�

portion 
ontains the data whi
h the list is to be sear
hed for.

To lo
ate the target, the TM sear
hes the list as in the membership TM. If the


urrent in datax is the target, the ma
hine 
opies the address of that lo
ation to

the �ReturnAddress� between the `E' and `T' symbols before halting. If the TM

rea
hes the far right of the list without �nding the target, it returns to the return

address and repla
es the symbols with asterisks (∗) to signify that the target is

not a member of the list.

4.3.2.2 RASP Ma
hines

The linear sear
h RASP ma
hines operate as the membership RASPs ex
ept that

they halt with the address of the found element in the a

umulator. If the list

does not 
ontain the target, the RASP in
rements the �nal address of the list

and halts with it in the a

umulator.
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Y (S(K(S(K(S(S(KS)(S(K(S(K(S(K(SS(K(K(KI)))))(S(S(NULL) . . .
(K ONE)))))(S(S(K EQUAL))(HEAD))))ZERO)))) . . .
(S(K(S(K(SUCC)))))))(S(K(S(K(SS(K(TAIL))))K))))

Figure 4.13: The SKI term with only the abstra
tion 
ombinators shown.

4.3.2.3 λ-
al
ulus and SKI

The abstra
t λ-
al
ulus/SKI term to sear
h a list is:

SEARCH T L ≡ (NULL L ONE (EQ (HEAD L) T) ZERO

(SUCC SEARCH T (TAIL L)))

In the SKI, the re
ursive SEARCH 
all is a�orded by the use of the Y 
ombinator

whi
h is SSK(S(K(SS(S(SSK))))K). For the 
opy of SEARCH, and those of

L and T, a series of S and K 
ombinators draw the L and T arguments into the

body of the fun
tion.

Figure 4.13 shows the term with all of the 
ombinators to move terms into

the expression. This overhead is typi
al of SKI terms that have been obtained

through bra
ket abstra
tion; a term 
an blow-up in size through the number and

o

urren
es of abstra
ted values.

The expression �rst tests if it is the last element of the list � whi
h is NIL.

If it is, the expression returns ONE. If the 
urrent element is the target, the

expression returns ZERO. If the 
urrent element in not NIL and is not the same

as the target, the expression returns the su

essor of a re
ursive 
all to itself. The

expression su

essively in
rements until it �nds the target or end of the list to

either return the position of the target, or the size of the list+1.

4.3.3 Reversing a List

Fun
tionally reversing a list involves building a new list from the old one. Ea
h

re
ursive 
all adds a new outer element until the end of the input list is rea
hed.

rev(l) = revh(l, []) =







revh(tail(l), pair(head(l), x)) : revh(l, x)

x : revh([], x)
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4.3.3.1 TM

The list stru
ture for this TM 
onsists of binary words separated by the symbol

`∗', bookended at the left with the `E' symbol, and the right with `#'. The

ma
hine starts at the far right side of the tape with the head positioned over the

`#' symbol.

It operates by moving left until it rea
hes an asterisk. The number to the

right of the asterisk is 
opied to the left hand side of the `#'. On
e the number

has been 
opied, it is delimited with a `$' symbol and the pro
ess repeats. When

the TM en
ounters the `E' at the far left of the list, it 
opies the number to the

far right of the new list and halts. The TM halts with the initial list to left of

the `#', and the reversed list to the right (Figure 4.14).

4.3.3.2 RASP Ma
hines

A RASP ma
hine to reverse a list is initialised with the program at the beginning

of the memory, and the list to be reversed at the end. The ma
hine will �nish

with a new list appended to the end of the memory. In light of this, it is bene�
ial

to make sure that the ma
hine is initialised with enough free memory to hold a

new list without overwriting previous data.

Figure 4.15 shows the RASP ma
hine. The lo
ation to start writing the new

list is �rst obtained by loading the address of the end of the list and in
rementing

twi
e as to 
reate a gap between the new and old list. The program pro
eeds by


opying the value at the end of the old list to the �rst value in the new list.

After ea
h 
opy the old list pointer is 
ompared to the start of the list to see

if they are equal. If they are, the ma
hine halts. If not, the new list pointer is

in
remented, the old list pointer is de
remented and another 
opy is made.

4.3.3.3 λ-
al
ulus and SKI

Reversal of a list in the SKI and λ-
al
ulus re
urses through an input list and

builds an output list from those elements:

REV ≡ Y(λg.λa.λl.NULL l a(g(PAIR(HEAD l)a)(TAIL l)))NIL
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Figure 4.14: TM to reverse a list
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Instr Data I Label D Label

LOAD 'listEnd

STO '
pyPointer

INC

INC

STO 'writePointer

LOAD 0 :main ;writePointer

STO 'writeSTO

LOAD 0 ;
pyPointer

STO '
pyLOC

CPY 0 ;
pyLOC

STO 0 ;writeSTO

CPY 'writePointer

INC

STO 'writePointer

CPY '
pyPointer

STO 'tmp1

LOAD 'listStart

STO 'tmp2

LOAD 0 :loop ;tmp1

DEC

STO 'tmp1

LOAD 0 ;tmp2

DEC

STO 'tmp2

JGZ 'loop

CPY 'tmp1

JGZ 'de
WritePointer

HALT

CPY '
pyPointer :de
WritePointer

DEC

STO '
pyPointer

JGZ 'main

0 :listStart

10 :listEnd

Figure 4.15: The RASP ma
hine to reverse a list by 
reating a new list.
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If the input list in not NIL, the expression makes a re
ursive 
all with the

tail of the input list and a pair of the head of the input list with the 
urrent


onstru
tion of the output list. The NIL term at the end of the expression is

the initial output list whi
h gets paired up with the elements of the input list.

On
e the expression �nds the NIL term at the end of the input list, it returns the


urrently 
onstru
ted output list.

4.3.4 Statefully Reversing a List

Statefully reversing a list mutates the input list by swapping the elements, rather

than re
ursively traversing the input list to 
reate a new one as above. We

maintain two pointers to the list, x and y, initialised to the �rst and last elements.

At ea
h step, if x < y then the elements are swapped, and x is in
remented while

y is de
remented.

stateRev(list) = stateRevh(list, 0, p(length(list)))

stateRevh(list, x, y) =







stateRevh(swap(tail(list), xy), s(x), p(y)) : x < y

list : x ≥ y

length(l) =







0 : length([])

s(length(tail(l)) : otherwise

nth(x, l) =







head(l) : nth(0, l)

nth(p(x), l) : otherwise

swap(x, y, l) = substitute(x, nth(i, l); substitute(i, nth(x, l), l))

substitute(x, i, l) =







pair(i, tail(l)) : x = 0

pair(head(l), substitute(p(x), i, tail(l))) : otherwise

4.3.4.1 TM

The TM tape to reverse a list statefully is an `E' bounded, `∗' delimited list of

binary numbers:

E ∗ 〈data1〉 ∗ 〈data2 ∗ data3 ∗ . . . E

The ma
hine operates by 
opying the �rst element to empty spa
e at the far

right of the tape. The head then moves to the right hand side and �nds the �rst

number whi
h has not been moved. It 
opies this number into the previously
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va
ated spa
e and then moves the �rst number into the newly va
ated spa
e.

If there are an odd number of elements in the list, upon en
ountering the �nal

element it 
opies the 
ontents to the far right. It will then dete
t that there is

no mat
hing element to repla
e the �rst element with, and so it 
opies the value

ba
k to its original pla
e before halting.

4.3.4.2 RASP Ma
hines

The RASP ma
hine to statefully reverse a list maintains two pointers. One is

initialised to the �rst element of the list, and the other is initialised to the last

element. The program pro
eeds by swit
hing the two elements, in
rementing the

�rst pointer, and de
rementing the se
ond one.

After this, the ma
hine 
ompares the two pointers. If the front pointer is

a memory address lower than the rear, it loops again to swap the next pair of

elements. If the value of the front pointer is greater than or equal to the rear,

then the two pointers are either pointing at the same element, or have 
rossed.

In either of these 
ases, the ma
hine halts.

4.3.4.3 λ-
al
ulus and SKI

The stateful reverse is a 
ompli
ated operation whi
h the λ-
al
ulus and SKI are

not at all suited to:

λx.(Y (λa.λb.λc.λd.LT b c(a(SUCC b)(PRED c)(SWAP b c d))d))

ZERO(PRED (LENGTH x))x

where LENGTH obtains the length of a list and SWAP swit
hes the positions of

two elements in a list. The expression operates on the list by maintaining pointers

to the beginning and end of the list to swap the elements in a pairwise fashion.

It �rst obtains the length of the list, tests to see if the front pointer is lower

than the rear one, and swaps the values if this is the 
ase. It re
urses on the list

and in
rements the front pointer, while de
rementing the rear one.

This pro
eeds until the front pointer is greater than or equal to the rear

pointer, signifying that they are either pointing to the same element (the list has

an odd number of elements) or that they have 
rossed ea
h other (the list has
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5(R)
1->Z
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*
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1
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*

3(R)
E

B
A

4(L)
0->A

Z

A
B
0
1
*
E

0
1
A
B
*

6(R)

E

0->B

A
B

A
B
0
1
*

8(L)

E A
B
*

9(R)

1

0

14(R)

Z

10(L)

*

E

11(L)
0->Z

13(L)

1->Z

*

A
B
0
1
*

12(R)

Z->A

Z

A
B
0
1
*

Z->B

A
B
0
1
*

Z
A
B
*
E

15(L)0

16(L)

A->0

17(L)

B->0

18(L)

E

Z->A

E
A
B
*

Z->B
E
A
B
*

E
A
B
*

19(L)

0

1

0
1
*

20(R)
A

B

*

Figure 4.16: Stateful reversal TM
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an even number of elements). The fun
tion halts with the list and its reversed

elements.

The 
omplexity of the stateful reverse is mostly in the SWAP and SUBST

fun
tions:

SWAP ≡ λa.λb.λc.SUBST a(NTH bc)(SUBST b(NTH bc)c)

SUBST ≡ Y (λa.λb.λc.λd.ISZERO b(PAIR c(TAIL d))

(PAIR(HEADd)(a(PRED b)c(TAIL d))))

SUBST re
urses through the list until it �nds the lo
ation it requires, it then

substitutes the 
urrent list member with the new list member. SWAP applies

SUBST twi
e to the list to swap both members of the list.

4.3.5 Bubble Sort

The bubble sort algorithm 
ommen
es by 
omparing the value at the start of the

list v with its neighbour on the right n. If the value is greater than its neighbour,

the two values are swapped. It 
ontinues by 
omparing v to its new neighbour

n1, swapping as appropriate until it rea
hes the end of the list, or a neighbour is

greater than v.

On
e a value has been `bubbled' to its appropriate position, the algorithm

goes ba
k to the start of the list and bubbles up another value. If the algorithm


ompares ea
h value to its neighbours without making a swap, the list is sorted

and the program terminates.

sort(list) = sorth(list, false, 0, 1)

sorth(l, f, x, y) =











































sorth(swap(l, x, y), T, s(x), s(y)) : y ≤ p(len(l))

∧nth(x, l) > nth(y, l)

sorth(l, f, s(x), s(y)) : y ≤ p(len(l))

sorth(l, F, 0, 1) : y > p(len(l)) ∧ f = T

l : y > p(len(l)) ∧ f = F
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4.3.5.1 TM

The tape of the TM to perform the bubble sort is again a `∗' delimited list of

binary numbers. The tape is bookended on the left and right using `#' symbols.

The ma
hine �rst marks the left hand delimiter of the element whi
h is being

bubbled. It then 
ompares the 
urrent numeral to the one on its right. If the


urrent numeral is greater than its neighbour the ma
hine swaps the numerals in

the style of the stateful reverse. The marker is moved one element to the right

and the 
y
le repeats.

If an element is not greater than its neighbour, it is in position and the ma
hine

skips over the element to sort its neighbour to the right. If an element being


onsidered is at the far right of the list, the ma
hine traverses to the far left of

the list to restart the pro
ess. A single symbol past the left hand marker of the

tape indi
ates whether a swap has been made in ea
h left-to-right transversal. If

the ma
hine 
ompletes a full left to right traversal without a swap being made,

the list is sorted and the ma
hine halts.

4.3.5.2 RASP Ma
hines

Instr Data I Label D Label

LOAD 'listStart :start

STO 'pointer1

ADD 1

STO 'pointer2

LOAD 0

STO '�ag

LOAD 0 :
mpPointers ;pointer1

STO 'p1ref

CPY 0 ;p1ref

STO '
mp1

LOAD 0 ;pointer2

STO 'p2ref

CPY 0 ;p2ref
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Instr Data I Label D Label

STO '
mp2

LOAD 'in
Pointers

STO '
mpOther

STO 'equal1

LOAD 'swap

STO '
mp1Greater

LOAD 0 :
mpStart ;
mp2

SUB 1

STO '
mp2

JGZ '
mp1de


CPY '
mp1

SUB 1

JGZ 0 ;
mp1Greater

LOAD 1

JGZ 0 ;equal1

LOAD 0 :
mp1de
 ;
mp1

SUB 1

STO '
mp1

JGZ '
mpStart

LOAD 1

JGZ 0 ;
mpOther

CPY 'pointer1 :in
Pointers

ADD 1

STO 'pointer1

CPY 'pointer2

STO 'p2sub

LOAD 'listend

SUB 0 ;p2sub

JGZ 'returnToIn


LOAD 0 ;�ag

JGZ 'start
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Instr Data I Label D Label

HALT

CPY 'pointer2 :returnToIn


ADD 1

STO 'pointer2

JGZ '
mpPointers

CPY 'pointer2 :swap

STO 'p2SwpRef

STO 'p2WriteRef

CPY 0 ;p2SwpRef

STO 'swp

CPY 'pointer1

STO 'p1SwpRef

STO 'p1WriteRef

CPY 0 ;p1SwpRef

STO 0 ;p2WriteRef

LOAD 0 ;swp

STO 0 ;p1WriteRef

LOAD 1

STO '�ag

JGZ 'in
Pointers

7 :listStart

3 :listend

Table 4.1: The RASP2 bubble sort

The RASP ma
hines maintain two pointers: v and n = v + 1. The pointer

v is initialised to the start of the list, and n is the next element.The ma
hine


ompares the value in register v with the value in n. If M [v] is greater than

M [n], the ma
hine swaps the values and swit
hes a �ag to indi
ate that a swap

has been made.

Both pointers are in
remented, and the swaps 
ontinue until n is pointing to

the last element in the list. At this point the ma
hine 
he
ks to see if a swap has
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been made in this transversal. If a swap has not been made, the ma
hine halts

with a sorted list.

If a swap has o

urred, the ma
hine resets v, n and the �ag to their initial

values and loops until it 
an traverse the list without making a swap. Table 4.1

shows the RASP2 implementation.

4.3.5.3 λ-
al
ulus and SKI

The bubble sort expression in the λ-
al
ulus and SKI is:

Y (λa.λb.λc.λd.λe.LEQ d(PRED(LEN e))(LT(NTH d e)(NTH c e)(a TRUE

(SUCC c)(SUCC d)((λa.λb.λc.SUBST a(NTH b c)(SUBST b(NTH a c)c))c d e))

(a b(SUCC c)(SUCC d)e))(b(a FALSE ZERO ONE e)e))FALSE ZERO ONE

The �ve parameters to this expression are: the expression itself for re
ursive


alls (a), the swap �ag (b), the pointer v (c), the pointer n = v + 1 (d), and the

list to be sorted (e). If n is less than the prede
essor of the length of the list

(re
alling that these lists are terminated with a NIL element), the elements at

positions v and n are 
ompared. If a swap is required, the elements are swapped

and a re
ursive 
all is made with in
remented pointers and the swap variable as

TRUE.

If n points at the end of the list and there has been a swap (b ≡ TRUE), a

re
ursive 
all is made with the pointers reset and the swap variable as FALSE:

(b(a FALSE ZERO ONE e)e). Otherwise, the 
urrent (sorted) list is returned.

Elements are swapped via the SUBST expression explained previously.

4.4 Universal Ma
hines

This thesis 
onsiders only the �dire
t simulation� ma
hines. These are ma
hines

that a
tually simulate ma
hines in some suitable en
oding. For example, there

are numerous 
hoi
es for whi
h UTM to use. Neary [65℄ has demonstrated dire
t

simulation ma
hines of: (3,11) whi
h is 3 states and 11 tuples with 32 tuples,

(6,6) with 32 tuples, (5,7) with 33 tuples, (7,5) with 33 tuples, and (8,4) with

30 tuples. The obvious 
hoi
e for a 
on
ise UTM is the (8,4) ma
hine, but the
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en
oding of the input is very 
onvoluted (Se
tion 6.6), thus the intentionality

of Neary's ma
hine does not mat
h well with the intentionality of the UTM

realisations in the RASPs, λ-
al
ulus and SKI. So another ma
hine is 
onsidered

whi
h is both a dire
t simulation UTM, and has a more natural input en
oding.

4.4.1 Universal Turing Ma
hines

4.4.1.1 TM

The UTM adopted is the dire
t simulation TM from Minsky [63℄. The ini-

tial tape of the UTM is arranged as [w][st1][sy][M ] whi
h is a right unbounded

tape, with the 
urrent state, the 
urrent symbol under the head, and the sym-

bol table following respe
tively. The symbol table is arranged in quintuples of

stx, syx, sty, syy, D.The states are binary numbers, symbols are either 1 or 0, and

the dire
tion D is either 0 or 1 to indi
ate a left or right shift.

The symbol table is terminated with the symbol Y , and the tape is of the

form:

. . . 00000M000Y 〈st1〉〈sy under M〉X〈st1, sy1, stp, syp, D〉X . . .X . . . Y 0

The symbol M on the tape is the simulated head of the ma
hine. The spa
e

between the �rst Y and the �rst X from the left 
ontains the 
urrent state and

symbol pair whi
h is used to sear
h the symbol table for the 
orre
t tuple. The

algorithm of the ma
hine operates by sear
hing the start of ea
h tuple in the

symbol table for the state and symbol 
ombination held between the �rst `Y' and

`X' from the left. This is a sear
h to �nd the tuple whi
h 
orresponds to the


urrent state and 
urrent symbol. If a tuple mat
hing these is not found, then

the ma
hine halts.

On
e a mat
hing tuple has been found, the new state is 
opied into the spa
e

between `Y' and `X', the simulated tape head is repla
ed by the new symbol, the

head is moved left or right, and the new 
urrent symbol is printed next to the

new 
urrent state. Figure 4.17 shows the TM.
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Figure 4.17: Minsky's UTM
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4.4.1.2 RASPs

The TM simulator in RASP simulates an arbitrary (m,n) Turing ma
hine, subje
t

to the limitations of the size of the RASP memory. The ma
hine is organised

with the program at the start of the memory, followed by the symbol table of

the ma
hine, and �nally a right-in�nite tape stru
ture at the end. The ma
hine

maintains variables su
h as the 
urrent head position and 
urrent state. The

initial head position is de�ned as the far left of the tape and the initial state is 1.

The symbol table format for the RASP is of the form:

. . . , 〈So〉, 〈Syo〉, 〈Sn〉, 〈Syn〉, 〈D〉, 〈Si〉, . . . , 0 . . .

whi
h is the state and symbol read, followed by the new state, new symbol and

dire
tion. The �nal tuple in the table is followed by a single zero. The tape of

the TM then extends from the end of the symbol table to the end of the memory.

The ma
hine maintains a label to the start of the tape, and a variable of where

the read/write head is.

Evaluation of a TM symbol table and tape, 
opies the 
urrent state and symbol

under the head to a sear
hing routine. This routine traverses the symbol table

linearly until either both the symbol and state are found, of the end of the table

is rea
hed.

If the end of the table is rea
hed, the ma
hine halts, otherwise it repla
es

the 
urrent state with the new state, writes the new symbol to the tape over the

old symbol, and either in
reases the head position variable for a right shift, or

de
reases it for a left shift.

Sear
hing for the 
orre
t tuple in the symbol table involves using an equality

fun
tion to test that the 
urrent state and 
urrent symbol are equal to the tuple

state and symbol. If they are, variables for the new state, new symbol, dire
tion,

and sear
h su

ess are written to and the sear
h jumps ba
k to the main loop.

If the state or symbol do not mat
h the 
urrent tuple, the ma
hine either adds

5 or 4 respe
tively to �nd the next tuple in the table. If the ma
hine tries to


ompare the 
urrent state to zero then it has rea
hed the end of the symbol table

and halts.
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The ma
hine exe
utes the simulated TM until its 
urrent state and symbol

pair is not in the symbol table, or it transits to state 0.

4.4.1.3 λ-
al
ulus and SKI

The TM tape is a list of numbers, ea
h number represents a symbol. The symbol

table is a list of 5-tuples in the form stx, syx, sty, syy, D. This is a list of 5 element

lists:

TAPE ≡ (PAIR ONE(PAIR ONE(PAIR ZERO(PAIR ONE(. . .NIL)))))

SYTABLE ≡ PAIR(PAIR ONE(PAIR ZERO(PAIR ONE(PAIR ONE

(PAIR ONE NIL)))))(. . .NIL)(PAIR(PAIR . . .NIL)))

The term to evaluate a TM symbol table and tape requires four parameter;

the 
urrent state, the 
urrent head position, the symbol table and the tape:

Y(λa.λs.λh.λta.λtp.NULL(TABLES s(NTH h tp)ta)tp

(a(HEAD(TABLES s(NTH h tp)ta))(ISZERO(HEAD(TAIL(TAIL

(TABLES s(NTH h tp)ta))))(PRED h)(SUCC h))ta(SUBST h(HEAD

(TAIL(TABLES s(NTH h tp)ta)))tp)))

A sear
h is performed on the symbol table for the 
urrent state and 
urrent

symbol (extra
ted from the element at the head position of the tape) pair. Failure

to �nd this pair results in the return of the tape as evaluation ends.

On
e the tuple to mat
h the 
urrent state and symbol have been found, a

re
ursive 
all is made where the 
urrent state is repla
ed, the tape at element h

is repla
ed with the new symbol, and the head position is either de
remented if

the �fth element of the tuple is ZERO, and in
remented otherwise. The fun
tion

to sear
h through the table is:

TABLES ≡ Y(λa.λst.λsy.λtab.NOT(NULL tab)(AND

(EQ st(HEAD(HEAD tab)))(EQ sy(HEAD(TAIL(HEAD tab))))

(TAIL(TAIL(HEAD tab)))(a st sy(tailtab)))NIL)

This expression sear
hes the table by testing the passed in state and symbol

against the �rst two elements of the 
urrent tuple. If these mat
h, a triple of the
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Figure 4.18: A 3 bit RASP arranged on a TM tape.

next state, symbol and dire
tion is returned. No mat
h prompts a re
ursive 
all

with the tail of the table. If the fun
tion does not �nd a mat
hing tuple in the

table, it returns NIL whi
h prompts the expression to halt.

4.4.2 Universal RASP Ma
hines

The Universal RASP (URASP) 
an simulate an arbitrary RASP ma
hine. As

with the UTM, all of the universal RASPs are dire
t simulation ma
hines.

4.4.2.1 URASP in TM

Consider a 3 bit RASP ma
hine. The ma
hine is initially expressed on a TM tape

as depi
ted in �gure 4.18. The memory of the ma
hine is bounded by the PC

marker (#P) at the far left and the end marker (E#) at the far right. There are

also four letters whi
h mark the three usual registers (P,I, and X) in the ma
hine

and the one se
ondary IR (S).

With the ex
eption of the P and S registers, the memory of the ma
hine is

laid in (address, data) pairs: #〈address〉 ∗ 〈data〉#. For the IR and ACC, there

are the 
hara
ters `I' and `X' whi
h a
t as markers to redu
e the required number

of states in the ma
hine. Both address and data are expressed as little endian

binary numbers.

Algorithm 2 shows the how the TM operates the fet
h-exe
ute 
y
le. The

ma
hine starts with the head positioned on the se
ond # from the left (bold in

the above diagram). From there, it attempts to pattern mat
h the value in the

PC (011) with the addresses in the ma
hine. If it su

eeds, the 
orresponding

data value is 
opied into the �rst and se
ond `I' and `S' instru
tion registers. If

the pattern mat
hing fails, then the PC must be pointing at itself and therefore

the `P blo
k' is 
opied to the `S' and `I' blo
ks.

On
e the 
opy has been made, the RHS bit of `S' is tested. There are four

instru
tions whi
h take a parameter and four that do not.
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while not halted do

Find address in P;

if address not found then

Copy P to S;

end

else

Copy data in P's address to S;

end

Copy data in S to I;

if Least signi�
ant bit of S is 1 then

In
rement P;

Find address in P;

if address not found then

Copy P to I;

end

else

Copy data in P's address to I;

end

end

De
ode and Exe
ute S;

end

Algorithm 2: The Fet
h Exe
ute 
y
le of the RASP in TM

• 000: OUT

• 010: HALT

• 100: INC

• 110: DEC

• 001: LOAD

• 011: STO

• 101: JGZ

• 111: CPY

If the least signi�
ant bit is a 0, the rest of the instru
tion is de
oded and

exe
uted. If the �rst bit is a 1, the PC is in
remented and another sear
h happens.

On
e this is done, the data is 
opied to the `I blo
k' only. The instru
tion is

de
oded from the value in `S' and exe
uted. These instru
tions a�e
t the memory

layout of the ma
hine to the degrees des
ribed in Se
tion 2.3.1.2.

There are several repeated fun
tions in the operation of the fet
h exe
ute 
y
le.

Finding addresses, 
opying data from one register to another, and housekeeping

operations like resetting the tape 
an be performed more than on
e per 
y
le. To

fa
ilitate reuse of su
h fun
tions, ea
h time the TM performs a task in Algorithm

2 it enters a swit
hing state whi
h prints or reads a symbol immediately to the

left of `#P'. The symbol informs the ma
hine whi
h task it is to 
omplete next

in the fet
h-exe
ute 
y
le.

All of the RASP instru
tions, ex
ept for OUT make 
hanges whi
h a�e
t only
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Instr Data I Label

DEC :In
rementInstru
tion

JGZ 'De
rementInstru
tion

CPY 'ACC_P

INC

STO 'x

. . . . . . . . .

DEC :De
rementInstru
tion

JGZ 'LoadInstru
tion

CPY 'ACC_P

JGZ 'd


. . . . . . . . .

Figure 4.19: De
oder of the universal RASP

the ma
hine. The TM exe
utes an o

urren
e of OUT by 
opying the 
ontents

of the `X' blo
k (ACC) to the far right hand side of the tape, past the `E#',

separating o

urren
es with a `*'.

4.4.2.2 RASPs

The universal RASP ma
hine simulates the exe
ution of another RASP via per-

forming the fet
h-exe
ute 
y
le. The URASP keeps tra
k of the lo
ations of the

simulated PC, IR, and ACC as well as the size of the the ma
hine and an `o�set'

whi
h is the memory address of the PC of the simulated ma
hine.

Exe
ution of the fet
h exe
ute 
y
le involves adding the o�set to the 
ontents

of the PC and using that to 
opy the 
ontents of the addressed register to the

IR. The IR is de
oded by repeatedly de
rementing the number 
ontained in the

simulated IR until it equals zero. After ea
h de
rement a test is made for zero

and if the number is zero, the 
orresponding instru
tion is exe
uted (Figure 4.19).

Otherwise the ma
hine de
rements and retests. If the IR instru
tion is zero, or

the instru
tion in the simulated IR is not in the range 0�7, then the ma
hine

halts.

On
e the 
orre
t instru
tion has been found, the ma
hine uses the o�set to

ena
t the e�e
ts of the instru
tion against the memory of the simulated ma
hine

as des
ribed in Se
tion 2.3.1.2. If the exe
uted instru
tion is not a HALT, the

simulator in
rements the PC of the simulated ma
hine and jumps ba
k to fet
h

and exe
ute the next instru
tion.
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The total size of the ma
hine is known to the simulator. When any in
rements

or de
rements take pla
e, the simulator 
he
ks that the 
hange in the register will

not over- or under�ow. If it will, the register is set to either zero or the maximum

permissible value.

4.4.2.3 λ-
al
ulus and SKI

RASP ma
hines are represented in the λ-
al
ulus and SKI as a pair of; a list of

2n elements to represent the ma
hine, and an initially empty list to represent the

output ve
tor. The element at position x of the ma
hine list holds the 
ontents

of register x.

The expression to evaluate the RASP ma
hine is of the form:

Y(λa.λm.λo.〈INC〉(〈DEC〉(〈LOAD〉(〈STO〉(. . . (〈HALT〉) . . .)))))

The sub-expressions 
ompare the numeral in the fet
hed ma
hine to ONE to

SEVEN and exe
ute the relevant instru
tion a

ording to the numeral in memory.

The sub-expressions for the INC, DEC, and LOAD instru
tion are as follows:

INC ≡ EQ(NTH ONE(FET m))ONE(a(INCA ZERO(INCA TWO(FET m)))o)

DEC ≡ EQ(NTH ONE(FET m))TWO(a(INCA ZERO(DEC(FET m)))o)

LOAD ≡ EQ(NTH ONE(FET m))THREE(a(INCA ZERO(LOAD(FET m)))o)

These are all stru
turally similar. The FET expression 
opies the value in the

register pointed to by the 
ontents of register zero into register one. It is this value

whi
h is de
oded via 
omparison with a suitable numeral. If the numerals are not

equal, the simulator 
ompares it with the next numeral in the list, up to seven.

A numeral larger than that is not a non-halting instru
tion, so the simulator will

halt by returning a pair of the 
urrent ma
hine and the OUT ve
tor.

On
e it has been determined whi
h instru
tion to exe
ute, a re
ursive 
all (via

the Y 
ombinator and the variable a) is made with the ma
hine whi
h has had

a fet
h, the instru
tion, and a PC in
rement applied to it. The INCA fun
tion

in
rements the value of the spe
i�ed address modulo the ma
hine size. The

spe
i�
 fun
tions for fet
hing, in
rementing and exe
uting RASP instru
tions
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are:

FET ≡ λm.SUBST ONE(NTH(NTH ZERO m)m)m

INCA ≡ λa.λm.(EQ(PRED(LENGTH m))(NTH a m))

(SUBST a ZERO m)(SUBST a(SUCC(NTH a m))m)

DEC ≡ λa.λm.(EQ(NTH a m)ZERO)(SUBST a

(PRED(LENGTH m))m)(SUBST a(PRED(NTH a m))m)

LOAD ≡ λm.SUBST TWO(NTH ONE(FET(INCA

ZERO m)))(FET(INCA ZERO m))

STO ≡ λm.SUBST(NTH ONE(FET(INCA ZERO m)))

(NTH TWO m)(FET(INCA ZERO m))

CPY ≡ λm.SUBST TWO(NTH(NTH ONE(FET(INCA

ZERO m)))(FET(INCA ZERO m)))(FET(INCA ZERO m))

OUT ≡ λm.λo.(PAIR(NTH TWO m)o)

JGZ ≡ λm.(EQ(NTH TWO(FET(INCA ZERO m))))ZERO)

(FET(INCA ZERO m))(DEC ZERO(SUBST ZERO

(NTH ONE(FET(INCA ZERO m)))(FET(INCA ZERO m))))

The INCA fun
tion in
rements the value of the spe
i�ed address modulo the

ma
hine size. Passing the expression ZERO as a parameter in
rements the PC

of the ma
hine, and passing TWO in
rements the ACC.

4.5 Results

Table 4.2 presents the number of 
hara
ters required to implement the above

fun
tions in ea
h model. On �rst glan
e, the RASP2 and RASP3 appear to re-

quire less 
hara
ters than the RASP, whi
h requires less than the TM on average.

Figure 4.20 plots the information amounts.

The 
hara
ter 
ounts for the imperative models follow a somewhat smooth


urve (the equality fun
tion notwithstanding) as the per
eived 
omplexity of mea-

sured fun
tions in
reases. In 
ontrast, the λ-
al
ulus and SKI 
hara
ter 
ounts

exhibit no su
h 
urve. Additive fun
tions, where the input numerals are 
om-

bined together, are mu
h smaller in 
omparison to the subtra
tive fun
tions:
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Figure 4.20: Program information to implement the fun
tions

subtra
tion, equality, and division.

This is due to the higher order fun
tionality of the Chur
h numerals. As

fun
tions, the numerals (or parts thereof) 
an be applied to ea
h other dire
tly

to 
reate larger numbers, whi
h is exhibited by the multipli
ation and expo-

nentiation fun
tions. Subtra
tive fun
tions operate by re
ursively de
rementing

numerals, mu
h like the RASPs. However, de
rementing a numeral in the λ-


al
ulus and SKI is a mu
h more program information 
ostly operation than in

the RASPs whi
h have de�ned semanti
s and this 
auses a s
hism between the

measurements of the additive fun
tions and those of the subtra
tive ones.

4.6 Con
lusion

This 
hapter has presented the te
hni
al details of the programs whi
h are mea-

sured in ea
h of the models. The fun
tions whi
h the programs are written for 
an

be separated into three 
lasses: Arithmeti
 (Se
tion 4.2), List (Se
tion 4.3), and

Universal (Se
tion 4.4). The arithmeti
 and list fun
tions are primitive re
ursive

and the universal fun
tions are partial re
ursive (Se
tion 4.1).
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RASP RASP2 RASP3 TM SKI λ-Cal
ulus
Addition 58 9 25 29 16 27

Subtra
tion 59 59 61 149 113 46

Equality 57 26 27 179 208 117

Multipli
ation 126 59 60 223 8 15

Division 131 131 134 281 565 229

Exponentiation 132 129 131 450 11 9

List Membership 271 129 131 379 362 208

Linear Sear
h 281 132 135 779 385 236

List Reversal 140 135 137 499 190 134

Stateful List Rev 273 273 277 1049 1397 460

Bubble Sort 557 549 297 1611 1903 550

Universal TM 613 571 574 1270 2593 584

Universal RASP 1239 1209 1231 14414 9554 1084

Semanti
s Size 556 585 587 335 291 515

Table 4.2: Number of 
hara
ters to implement ea
h program

Most of these explanations of the programs in this 
hapter have been fairly

abstra
t to fa
ilitate understanding. The measurements in Table 4.2 are taken

of the programs in the format des
ribed in Se
tion 3.3. The full 
olle
tion of

programs in the formats measured above are presented in Appendix B. Chapter

6 analyses the measurements to 
on�rm or 
ontradi
t the hypotheses stated in

Chapter 3.

One aspe
t of the programs in this investigation whi
h has not been hitherto

dis
ussed is that of fun
tional equivalen
e. With the ex
eption of the λ-
al
ulus

and SKI, assuming that the bra
ket abstra
tion algorithm is 
orre
t, we 
annot

be 
urrently assured that the di�erent realisations of ea
h fun
tion are all exten-

sionally equivalent. This equivalen
e is important for any formal assertion of the

nature of the relationships.

Su
h formal statements are not provided in this thesis, and there is no as-

sertion that these programs are equivalent. Deriving su
h equivalen
es are high

on the list of further work and essential to any e�ort whi
h seeks to generalise

these results. Se
tion 7.3.2 
onsiders how equivalen
es 
an be drawn between the

programs here via indu
tion over en
oding fun
tions.
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Cir
uit Information

In this 
hapter, we detail the design and implementation of the RASP and TM on

a Field Programmable Gate Array (FPGA). Where the SOS is a �mathemati
al

baseline�, the FPGA implementations a
t as a physi
al baseline and we 
an equate

the required information by measuring the 
ir
uit sizes.

5.1 In�nite Regress

Using operational semanti
s as a baseline from whi
h to measure the information

in our models is an approximation.

When we think of the total information in a system, we 
onsider some ax-

iomati
 ideal from from whi
h we build the theorems used to 
onstru
t models of


omputation. We 
an view operational semanti
s as a baseline axiomati
 system.

Taking su
h a baseline makes the assumption that all of the axioms (the

natural numbers, sets, universal and existential quanti�ers) are required by every

model to some degree. This assumption e�e
tively sets the information 
ontent

of ea
h model to a +m, where a is the information of the axioms and m is the

information of the model de�nition. However, not all of our models use the same

axioms.

We impli
itly use the natural numbers, set membership, set indire
tion and

logi
al 
onne
tives among others. Some of these are used by all of the models,

su
h as set membership, but some are not. The TM and RASP models impli
itly

use the natural numbers, but the SKI and λ 
al
uli do not require them. Similarly,
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the TM and RASP do not use indire
tion of subsets, whereas SKI and λ 
al
ulus

make heavy use of it to graph redu
e expressions.

In this thesis, we largely a

ept that these ina

ura
ies are inherent in our

implementation (mu
h in the same way that we a

ept that we 
annot obtain

elegant programs). But we 
an explore how to mitigate or even eliminate these

ina

ura
ies.

First, we 
ould keep SOS as a baseline and use it to formalise itself. SOS 
an

be thought of as a highly abstra
t Turing 
omplete programming language, so we


ould use it to write a universal ma
hine for SOS.

On the surfa
e, this is an attra
tive proposition. It de�nes those SOS stru
-

tures and operations (as mentioned above) whi
h we use impli
itly. And we 
an

attribute some value for their information 
ontent. This value 
an be added to

the information �gures for the models depending on how the models use the

operations.

Implementing our SOS baseline in SOS still requires implied information

though. It is impossible to use a model of 
omputation A to implement an-

other model B without using some impli
it information from A. Adding another

model C to implement A merely 
hanges the origin of the implied and unde�ned

information. Rather than it 
oming from A, it now stems from C.

Using other models to implement C leads to a spiralling in�nite regress of

implementation where we keep on reimplementing our baseline formalism in the

hope that we redu
e the amount of implied information. In reality, we are just

pushing the origin of the implied information ba
k to the `�rst' formalism in the


hain.

Gödel built his meta mathemati
al 
onstru
ts from pure mathemati
s [28, 64℄.

Elgot and Robinson initially spe
i�ed the RASP using �rst order logi
 [23℄. We


ould follow in these examples by building own formalism, 
onstru
ted from the

basi
 axioms of set theory and logi
, to des
ribe our models.

Starting from these axioms, we 
ould systemati
ally de�ne the underlying


on
epts for ea
h model su
h as natural numbers and therefore determine the

information 
ontent of 
on
ept. A formalism 
onstru
ted as su
h gives us �ner


ontrol over what information is implied in the de�nitions of our models. This
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then gives us a more a

urate a

ount of the total information. Implementing

this is high on the list of future work, and is explored further in Se
tion 7.3.5.

This rest of this 
hapter deals with implementation through redu
ing the

models to a physi
al baseline. We des
ribe the semanti
s of our models in the

language of FPGA 
omponents and 
onne
tions. These 
omponents are subse-

quently de�ned by transistors, 
lo
ks and small se
tions of RAM.

5.2 Ba
kground

VHSIC Hardware Des
ription Language (VHDL) is a strongly typed hardware

des
ription language developed in the 1980s in 
ollaboration with the US De-

partment of Defen
e as a method of do
umenting the behaviour of Appli
ation

Spe
i�
 Integrated Cir
uits (ASICs). The language was spe
i�ed, implemented,

and standardised in the period of 1986 to 1988 [1℄. As with most languages, it has

been expanded and re-standardised over the years, resulting in 5 other versions

of the language up to 2008 with VHDL 4.0 [2℄.

Though originally designed to des
ribe ASICs, VHDL, along with other hard-

ware des
ription languages like Verilog HDL [14℄, has been adopted as one of

the primary tools for spe
ifying the behaviour of FPGAs. Indeed, any language

whi
h 
an a

urately en
apsulate the operations of a given pie
e of 
ir
uitry 
an

be used for either purpose.

Programmable logi
 is a small se
tion of the semi
ondu
tor market and ad-

dresses the need for integrated 
ir
uits (ICs) that 
an be reprogrammed as a

requirement or for appli
ation where a small number of ICs are needed. Pro-

grammable logi
 is faster than software running on a general purpose ma
hine,

but is also mu
h 
heaper than designing and fabri
ating ASICs whi
h often require


lean rooms and so forth for produ
tion. An FPGA board treads the line between

speed and a�ordability, providing a programmable fabri
 and often external IO,

sometimes with a supplementary general purpose CPU to provide a hardware/-

software inter
onne
t. Su
h devi
es are known as System on a Chip [106℄.
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5.2.1 Ar
hite
ture and Components

An FPGA is essentially a `
on�gurable 
hip'. Rather than 
onverting an HDL

spe
i�
ation into something akin to assembly 
ode � as how a regular PC pro-


essor would operate � the spe
i�
ation is �synthesised� into a Register Transfer

Logi
 (RTL, [33℄) diagram. This diagram expresses the high level HDL logi
 as

an ele
troni
s diagram, with 
omponents like gates, �ip-�ops, multiplexers and

so forth.

An FPGA is split into blo
ks and sli
es (depending on the terminology of the

manufa
turer). These blo
ks/sli
es have transistors arranged in dis
rete stru
-

tures (su
h as the above gates, �ip-�ops et
). At 
on�guration time, the 
on-

�guration tool for the board �maps� the RTL gates to a 
omponent or set of


omponents in a sli
e or blo
k, and a
tivates routes between them so that signals


an be transferred between these mapped 
omponents.

This results in a 
hip that physi
ally performs the task spe
i�ed by the HDL

and RTL, though it may not ne
essarily have any resemblan
e to the s
hemati
, as

the 
omponents in the FPGA may need to be 
onstru
ted as the lowest 
ommon

denominator in order to provide the most usability. For instan
e a RAM `blo
k'

may be 
onstru
ted by many �ip-�ops a
ross multiple blo
ks/sli
es rather than

having all of the �ip-�ops physi
ally 
lose together.

5.2.1.1 Zedboard

In this thesis, we use the Zedboard

1

, an FPGA board aimed at hobbyists and

edu
ation. It features the Xilinx Zynq-7000 SoC whi
h sports a Xilinx series 7

programmable logi
 fabri
 along with an ARM 
ortex-A9 pro
essor [106℄.

The series 7 PL fabri
 [105℄ 
onsists of Con�gurable Logi
 Blo
ks (CLBs).

Ea
h CLB is split into two sli
es, where ea
h sli
e 
ontains 4 look up tables

(LUTs), 8 �ip �ops (FF), 3 multiplexers (MUX), and a 4 bit 
arry 
hain whi
h


an be 
ombined with other 
hains to implement arithmeti
.

Ea
h LUT in a sli
e 
an a

ept up to six bits to implement arbitrary fun
tions.

The LUTs in a sli
e 
an be 
ombined using MUXs to produ
e fun
tions up to 7

and 8 bits wide. LUTs 
an also be 
hained with LUTs in other sli
es to implement

1

http://www.zedboard.org
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Figure 5.1: A diagrammati
 view of two mapped sli
es (red and blue boxes). The

Cyan 
onne
tions are those whi
h will be used by the FPGA when it exe
utes.

Grey are not mapped and green 
onne
tions are 
omponent I/O.

fun
tions with more than 8 bits.

For storage, ea
h sli
e has 8 elements (
olle
tively known as �sli
e registers�),

The registers 
an be paired with an LUT to 
reate up to 4 �ip �ops, with ea
h

�ip �op able to be either edge or level sensitive. These �ip �ops 
an be 
hained

with those in other sli
es to 
reate larger volatile memories.

A spe
ialised sli
e type: SLICEM, 
ontains 
omponents for distributed mem-

ories and shift registers. The distributed memory elements 
an be 
ombined with

LUTs to form a 256 bit RAM element, whi
h 
an naturally be 
ombined with

other sli
es. The majority of sli
es on the FPGA are SLICEL, whi
h do not have

these types of memory elements.

The FPGA also 
ontains a number of 36K blo
k RAMs. The RAMs 
an be

de
omposed into 2×18K, 4×9K, 9×4K and so on down to 72×512B. The Zynq-

7020 
ontains 106,400 sli
e registers, 53,200 LUTs, and 140 36K blo
k RAMs for

a total of 13,300 sli
es and 6650 CLBs.

5.3 Implementations

Broadly, the TM and RASP in VDHL are both 
omposed of 3 
omponents:

• Control � The state ma
hine and tape read/write/shift me
hani
s for the

TM, and fet
h-de
ode-exe
ute me
hani
s for the RASP.
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Figure 5.2: The top level RTL s
hemati
 of the RASP ma
hine.

• Memory � The tape for the TM, and the RAM for the RASP.

• Ma
hine � Links both the memory and 
ontrol modules together.

Figures 5.2 and 5.3 are top level RTL diagrams of the RASP and Turing

ma
hines. The 
omponents are 
lo
ked by an os
illator present on the board

whi
h 
oordinates the memory and 
ontrol 
omponents. The 
ontrol performs

some a
tion when the 
lo
k ti
ks up to 1 (also known as rising edge) and the

memory does something when the 
lo
k ti
ks to 0 (falling edge).

The memories for the ma
hines operate in the same manner. They are binary

arrays of a �xed size whi
h are written to and read from depending on the �ag

and a

ess values in the 
ontrol state. Figure 5.4 shows the RTL s
hemati
,

here utilising a blo
k RAM, for the memory 
omponent. The TM �avour of the


omponent is very mu
h the same.

Ea
h blo
k in both ma
hines also 
ontain output signals. The memory 
om-

ponent has a read/write signal whi
h goes high if the memory is being written

to and low if it is read from. The 
ontrol 
omponent both has an output signal

(for the OUT 
ommand) and a halted signal whi
h goes high on
e the ma
hine

is deemed to have halted. In pra
ti
e, these signals are wired up to LEDs on the

Zedboard.
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Figure 5.3: The top level RTL s
hemati
 of the Turing ma
hine.

Figure 5.4: The RTL s
hemati
 of the RASP memory.
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i f r i s ing_edge ( 
 l k ) then


ase f et
hCounter i s −−S ta r t ou ter f e t 
 h

. . .

when "010" => −−Write S(S(PC)) to S(IR)

addres s <= "001" ;

datain <= dataout ;

wFlag <= ' 1 ' ;


 u r r e n t I n s t r <= dataout ;

fet
hCounter := fet
hCounter +1;

when "011" =>


ase 
 u r r e n t I n s t r i s

when "000" => −− HALT 
ode


ase exe
uteCounter i s

. . .

end 
ase

when "001" => −− INC 
ode


ase exe
uteCounter i s

. . .

end 
ase

. . .

end 
ase

when "101" =>

. . . −− In
rement PC

f et
hCounter := "000" ; −− r e s e t to "000"

end 
ase

end i f

Figure 5.5: The VHDL skeleton for the RASP 
ontrol

5.3.1 RASP

It is in the 
ontrol 
omponent where we see a distin
tion between models. The


ontrol is written as a �nite state ma
hine. In the RASP, there is a fet
h 
ounter

and an exe
ute 
ounter. Re
alling the FE 
y
le, the fet
h 
ounter steps the

ma
hine through the reads and writes whi
h move the 
urrent instru
tion in the

pointed to memory into the IR. After the exe
ute 
ounter de
odes and exe
utes

the instru
tion, the fet
h 
ounter in
rements the PC and resets itself to 0, so that

the pro
ess 
an start over in the next 
lo
k 
y
le.

On
e an instru
tion has been fet
hed into the IR, the exe
ute 
ounter takes

over and steps the ma
hine though the a
tions required to su

essfully exe
ute

the 
urrent instru
tion. On
e the instru
tion has been exe
uted, the exe
ute


ounter in
rements the instru
tion 
ounter and resets itself.
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Figure 5.5 shows the trun
ated 
ode of the state ma
hine of the RASP and

Figure 5.6 depi
ts the gates of the RASP 
ontrol in their entirety.

5.3.2 TM

In 
ontrast with the RASP, the Turing ma
hine uses a single 
ounter to read the

tape, sear
h the symbol table, and write the new symbol to the tape. As with

the RASP simulation of the TM, the symbol table sear
h is more information

intensive than the TM SOS would suggest. Figure 5.7 shows the 
ontrolling state

ma
hine for the TM. There exists VHDL primitives for looping over �nite data

stru
tures whi
h are used in the sear
h fun
tion.

Figure 5.8 shows the RTL diagram for the addition TM. The area surrounded

by the dark blue square is mainly state information whi
h informs the 
ontrol

what should be done. Additionally the 
ontroller for the blo
k outputs are 
on-

tained here. The 
yan lines are the output of the �ip �op whi
h holds the 
ounter.

The symbol table for the TM is pa
ked into the 
ontrol 
omponent as ROM.

This is re�e
ted in the RTL by the pattern and 
onne
tions of AND gates, XOR

gates and MUXes (yellow box in Figure 5.8). These pathways are a
tivated when

the 
ontrol needs to read from the symbol table.

Sin
e AND and XOR gates do not a
tually exist on the FPGA, there is a

dis
onne
t between the logi
al (RTL) mapping and the physi
al (te
hnologi
al)

mapping performed by the VHDL 
ompiler. Sin
e we desire that the minimal

amount of area is used, the FPGA mapping algorithm endeavours to redu
e the

number of utilised LUTs as mu
h as possible. It therefore pa
ks the symbol table

into another RAM blo
k 
on�gured for read only behaviour.

The rest of the logi
 in the te
hnology s
hemati
 is implemented by LUT+FF

pairings. Figure 5.9 shows a small se
tion of the te
hnology s
hemati
 for the

addition TM. Both RAM18 blo
ks for the tape and symbol table are present and

we 
an see a handful of the LUT and FFs utilised in the implementation.

155



C
h
a
p
t
e
r
5
.
C
i
r


u
i
t
I
n
f
o
r
m
a
t
i
o
n

Figure 5.6: The RTL s
hemati
 of the RASP 
ontrol. The memory s
hemati
 is in the top left for s
ale.
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uit Information

i f r i s ing_edge ( 
 l k ) then


ase 
ounter i s

when "000" =>

. . . −− Ret r i e ve Symbol

when "001" =>

. . . −− I f the s t a t e i s 0 , s top

when "010" =>

for i in symbolTable 'RANGE loop

i f symbolTable ( i ) . stateR = 
ur r en tS ta t e and

symbolTable ( i ) . symbolR = symbolOut then

. . . −− Loop over symbol t a b l e

. . . −− f o r s t a t e / symbol pa i r

end i f ;

end loop ;


ounter <= 
ounter +1;

when "011" =>

i f found = '1 ' then

. . . −− Write new symbol to tape

else

. . . −− Set s t a t e to 0

end i f ;

when "100" =>

wFlag <= ' 0 ' ;

i f ( symbolTable ( var ) . d i r = '1 ' ) then

hPos <= hPos + 1 ; −− Right

else

hPos <= hPos − 1 ; −− Le f t

end i f ;


ounter <= "000" ;

when others =>

end 
ase ;

Figure 5.7: The VHDL skeleton for the TM 
ontrol.
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Figure 5.8: The RTL s
hemati
 of the TM 
ontrol. The dark blue square 
ontains the typi
ally 
onstant stru
tures of the TM. The 
yan


onne
tions are the output of the 
ounter �ip �op.
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uit Information

Sli
e Reg LUTs FFs RAMB18

Addition 28 66 28 3

Subtra
tion 28 66 28 3

Equality 28 66 28 3

Multipli
ation 32 74 32 3

Division 32 74 32 3

Exponentiation 32 74 32 3

List Membership 37 81 37 2

Linear Sear
h 37 81 37 2

Reverse List 32 74 32 3

Stateful Rev List 37 81 37 2

Bubble Sort 41 90 41 2

Universal TM 41 89 41 2

Universal RASP 46 92 45 2

Table 5.1: Components for RASP implementations

5.4 Results

Ea
h program for the RASPs and TM were translated into VHDL (Appendix C),


ompiled and mapped to the Zedboard. The 
ompiler option spe
i�ed a minimal

area strategy, with maximal logi
 optimisation and 
ompression. This strategy

attempts to minimise the amount of LUTs required to implement the logi
 of the

ma
hines, sometimes preferring to pa
k logi
 into blo
k RAMs.

This 
ompilation was made from a `program only' perspe
tive, therefore the

tape for the TM was minimal in size (1 
ell). Compli
ated inputs for the RASP

(lists) were also trun
ated and the number of bits sele
ted so that the entirety of

the program �ts in memory, ex
luding any inputs. The VHDL programs des
ribed

in this 
hapter whi
h produ
e the data here are shown in full in Appendix C.

Tables 5.1, 5.2, 5.3, and 5.4 show the raw �gures and geometri
 means of the

mapping results. We analyse this data with respe
t to the SOS and program


ounts in Chapter 6, but we brie�y 
omment on the data here.

We �rst noti
e that the �gures for the RASP ma
hines are `stepped'. Whi
h

is to say that if two separate programs require the same number of bits, then the

re
orded FPGA utilisation �gures are exa
tly the same.

The RAMB18 numbers for the RASP ma
hines are initially puzzling. Our

intuition is that we would only require the one blo
k of RAM, to hold our program,

but for some ma
hines three blo
ks are utilised and some other have two. One of
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Sli
e Reg LUTs FFs RAMB18

Addition 21 51 21 3

Subtra
tion 28 70 28 3

Equality 24 60 24 3

Multipli
ation 28 70 28 3

Division 32 79 32 3

Exponentiation 32 79 32 3

List Membership 32 79 32 3

Linear Sear
h 32 79 32 3

Reverse List 32 79 32 3

Stateful Rev List 37 86 37 2

Bubble Sort 41 96 41 2

Universal TM 41 96 41 2

Universal RASP 45 108 45 2

Table 5.2: Components for RASP2 implementation

Sli
e Reg LUTs FFs RAMB18

Addition 25 70 25 3

Subtra
tion 29 78 29 3

Equality 25 70 25 3

Multipli
ation 29 78 29 3

Division 33 91 33 3

Exponentiation 33 91 33 3

List Membership 33 91 33 3

Linear Sear
h 33 91 33 3

Reverse List 33 91 33 3

Stateful Rev List 38 102 38 2

Bubble Sort 38 102 38 2

Universal TM 42 112 42 2

Universal RASP 46 123 46 2

Table 5.3: Components for RASP3 implementations
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Sli
e Reg LUTs FFs RAMB18 Tuples

Addition 14 13 14 1 3

Subtra
tion 15 13 15 1 15

Equality 16 16 16 1 18

Multipli
ation 19 20 19 1 22

Division 19 22 19 1 27

Exponentiation 20 30 20 1 41

List Membership 22 44 22 1 38

Linear Sear
h 22 49 22 1 73

Reverse List 23 32 23 1 50

Stateful Rev List 23 80 23 1 94

Bubble Sort 24 150 24 1 140

Universal TM 23 195 23 1 113

Universal RASP 19 1019 18 1 1111

Table 5.4: Components for TM implementations

the extra blo
k RAMs is to hold state information for the 
ontrol, but what of

the third one?

On inspe
tion of the te
hnologi
al s
hemati
s, ma
hines with a third RAM

wire the output of this RAM dire
tly to the 
ontrolOut signal whi
h is triggered

by the OUT 
ommand. It is not known why this happens, but hypothesise that

it is an artefa
t resulting from the heavy optimisation options. The TM also has

at least one 
ase where the optimiser provides a undesirable result whi
h 
an be

improved by relaxing the options.

Be
ause the symbol table for the TM is part of the 
ontrol, utilisation results

for the TM programs vary from one to the next. With the ex
eption of the list

membership program, the utilisation �gures tend to follow the number of tuples

involved in the program. This is not a smooth trend though, as the gap of ten

tuples between the Addition and Subtra
tion yields less of a di�eren
e than the

gap between the equality and multipli
ation programs whi
h is only four tuples.

Further experimentation has revealed that the optimiser attempts to 
ombine

tuples and even trims away ones that are deemed `
onstant'. The optimiser was

given a symbol table of two states, both of whi
h did the exa
t same thing. The

optimiser threw a warning and said that the se
ond state would be trimmed.

It stands to reason then that the optimiser algorithm tries to 
ombine as many

signals as possible into 
ommon LUTs and FF pairs to redu
e spa
e. However

the optimiser 
an lo
k itself into a non-optimal route and 
an 
ause problems
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as in the 
ase of the Universal RASP. A stri
t area optimisation strategy vastly

exaggerates the required number of LUTs (> 2000) required by the universal

RASP, whereas a more balan
ed one yields 1025. Sin
e we are unfortunately not

privy to the optimisation algorithms inner workings, we 
annot entirely be sure

what it does to in�ate the LUT requirement.

Without the work of 
onstru
ting individual gates themselves, we are reliant

on the optimiser to deliver us a near-optimal 
ir
uit. However the above examples

highlight that the results may not be perfe
t, and so we should take these FPGA

numbers as estimates mu
h like the �gures from the previous 
hapter.

That said, a hardware realisation at this level is a time e�e
tive solution to

the in�nite regress problem, and it provides another set of results with whi
h to


ompare against our hand 
onstru
ted semanti
s and programs as a sanity 
he
k.
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Analysis

This 
hapter 
ollates the data from the previous three 
hapters and provides an

analysis. It analyses and then 
ompares the models. There is data whi
h either

supports or 
ontradi
ts the hypotheses and analysis of this eviden
e is performed

relative to the hypotheses. The revised hypotheses postulated at the beginning

of Chapter 3 are resolved starting in Se
tion 6.2.8.

Se
tion 6.1 overviews the trends in the program and semanti
 size measure-

ments from Table 4.2 in Chapter 4. It reviews the data in dis
rete sets of the

arithmeti
, list, and universal fun
tions.

Se
tion 6.2 pairs the models (i.e. RASP and TM or RASP and SKI) and

examines how the relative information 
ontents of the semanti
s and programs

for those models 
onform to the hypotheses.

Se
tion 6.2.8 uses the 
omparisons made in Se
tion 6.2 to resolve the Semanti


Information (SI), and Total Information (TI) hypotheses (Se
tion 3.1.2).

The FPGA measurements from Tables 5.1�5.4 in Chapter 5 are analysed in

Se
tion 6.3. These analyses are used to evaluate the vera
ity of the Semanti


Cir
uit (SC) and Total Cir
uit (TC) hypotheses (Se
tion 3.1.3).

Se
tion 6.4 in the se
ond half of this 
hapter makes further observations on

the data whi
h do not in�uen
e the out
ome of the hypothesis evaluation. Se
tion

6.5 
ompares the input en
odings for the programs in ea
h model. It also gives

a 
on
rete example of how the size of a program 
an 
hange in relation to the

density of the en
oding system as introdu
ed in Se
tions 3.1.1 and 3.1.2.
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A =
1

n

n
∑

i=1

ai

(a) Cal
ulating the arithmeti
 mean A

G =

(

n
∏

i=1

gi

)
1
n

(b) Cal
ulating the Geometri
 mean G

Figure 6.1: The formulae for 
al
ulating the arithmeti
 and geometri
 means

6.1 Overall Trends

This se
tion provides general 
omments on how the information 
ontents of the

programs relate to one another. The programs are grouped into sets and their

Program Information (PI), and Total Information (TI = PI + Semanti
s size)

amounts are 
ompared a
ross models. The sets in
lude the arithmeti
 (AR)

fun
tions, the List (L) fun
tions, arithmeti
 and list (AR+L), and the arithmeti
,

list, and universal fun
tions (All).

We 
ompute the arithmeti
 and geometri
 means for the PI and TI of ea
h

grouping by using the standard formulae in Figure 6.1. The di�eren
e between

two arithmeti
 means is an indi
ator of the absolute di�eren
e of 
hara
ters be-

tween the sets of data. The di�eren
e in geometri
 means is more of an indi
ator

of the ratios between datasets implemented in di�erent models.

We use both means as eviden
e to resolve the hypotheses and often the means

are in agreement; if the arithmeti
 mean for one model is lower than the arithmeti


mean for another, then the geometri
 mean should also be lower. Interestingly

this is not always the 
ase. As eviden
ed by the AR means in Table 6.1 whi
h

show that the arithmeti
 means for the SKI and λ-
al
ulus are larger than those

of the RASP2 and RASP3, but their geometri
 means are lower. As dis
ussed in

Se
tion 6.2.8, these geometri
 ratios appear to indi
ate if a model has an aptitude

for representing the spe
i�
 set in a more more su

in
t manner.

6.1.1 Arithmeti


Table 6.1 shows all of the program, semanti
s, and mean sizes for the arith-

meti
 fun
tions. The imperative models (the RASPs and TM) steadily grow in

the amount of information required to express the addition fun
tion up to the

exponentiation fun
tion. This growth is expe
ted as the fun
tions in
rease in
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RASP RASP2 RASP3 TM SKI λ-Cal
ulus
Addition 58 9 25 29 16 27

Subtra
tion 59 59 61 149 113 46

Equality 57 26 27 179 208 117

Multipli
ation 126 59 60 223 8 15

Division 131 131 134 281 565 229

Exponentiation 132 129 131 450 11 9

Semanti
s Size 556 585 587 335 291 515

AR PI Mean 93.83 68.83 73 218.50 153.83 73.83

AR TI Mean 649.83 653.83 660 553.50 444.83 588.83

AR PI Geo Mean 86.71 48.95 59.27 167.15 51.52 40.62

AR TI Geo Mean 648.84 652.18 658.53 538.68 410.48 584.09

Table 6.1: The program and semanti
 sizes of the arithmeti
 fun
tions for ea
h

model.


omplexity and involve more nested loops.

On the other hand the fun
tional models (SKI and λ-
al
ulus) have large sub-

tra
tive fun
tions (subtra
tion, division, and equality), but 
omparatively small


ombinative fun
tions (addition, multipli
ation, exponentiation). The reason for

this is to do with how the λ-
al
ulus and SKI represent numerals. The higher

order fun
tionality of the Chur
h numerals enables very su

in
t 
ombinative

fun
tions. For example, the exponentiation fun
tion dire
tly applies one numeral

to another.

RASP numerals are de�ned as naturals and the INC and DEC instru
tions

are de�ned to operate over these in the semanti
s. The SKI and λ-
al
ulus so

not have su
h de�ned stru
tures and operators in their semanti
s, whi
h results

in the numerals and operations su
h as de
rementation needing to be de�ned in

ea
h expression whi
h wants to use them.

Se
tion 2.3.2.1 des
ribes why the λ-
al
ulus PRED fun
tion is larger than

SUCC. In requiring a �program level� de�nition for PRED, expressions whi
h use

it are in�ated in size 
ompared to expressions whi
h do not. If numerals and

SUCC/PRED were de�ned in the semanti
s of the λ-
al
ulus and SKI, it would

be expe
ted that the (PI) of the fun
tions would normalise to look something

more like the RASP �gures.

The means show that the PI for the expressive models (RASPs and the λ-


al
ulus) is lower than for the less expressive models. However TI of the less

166



Chapter 6. Analysis

RASP RASP2 RASP3 TM SKI λ-Cal
ulus
List Membership 271 129 131 379 362 208

Linear Sear
h 281 132 135 779 385 236

Reverse List 140 135 137 499 190 134

Stateful Rev List 273 273 277 1049 1397 460

Bubble Sort 557 549 297 1611 1903 550

Semanti
s Size 556 585 587 335 291 515

L PI Mean 304.4 243.6 195.4 863.4 847.4 317.6

L TI Mean 860.4 828.6 782.4 1198.4 1138.4 832.6

L PI Geo Mean 276.67 202.98 181.93 757.23 588.18 278.13

L TI Geo Mean 850.31 814.57 778.72 1123.07 953.07 817.85

Table 6.2: Program and semanti
 sizes of the list fun
tions for ea
h model

expressive models is overall lower than that of the more expressive ones. For

these arithmeti
 fun
tions, it appears that the extra information in the semanti
s

of the RASPs and λ-
al
ulus outweighs the average information saving for their

programs. The implementations of the division and exponentiation fun
tions in

the TM require more TI than their RASP and λ-
al
ulus 
ontemporaries. This

is also true for the SKI division TI.

6.1.2 List

Table 6.2 shows the sizes and means of the programs and semanti
s for the list

fun
tions. The data for this fun
tion set is more homogeneous a
ross the models

in 
omparison to the arithmeti
 fun
tion sizes. Here the di�eren
e in size from

one fun
tion to the next is roughly 
orrelative a
ross all models.

Se
tions 4.3.3 and 4.3.4 imply that reversal of a list by building a new list

is a simpler fun
tion than reversal by swapping elements in pla
e. The PIs here

support that impli
ation as there is a jump in the required amount of information

for all of the models.

The means for these fun
tions show that the more expressive models have now

have a lower PI and TI amounts than the less expressive models. The RASP3 has

the lowest PI and TI of all of the models and has the largest semanti
s. The TM

has the highest PI and TI despite having larger semanti
s than the SKI 
al
ulus.
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RASP RASP2 RASP3 TM SKI λ-Cal
ulus
Universal TM 613 571 574 1270 2593 584

Universal RASP 1239 1209 1231 14414 9554 1084

Semanti
s Size 556 585 587 335 291 515

Table 6.3: Program sizes of the universal fun
tions for ea
h model

1 Strong Semanti
 Information hypothesis

1a. SI within family. For: 6.2.1

1b. SI within paradigm. For: 6.2.2, 6.2.3

1
. SI a
ross paradigms. For: 6.2.4, 6.2.7 Against: 6.2.5, 6.2.6

2. Strong Total Information hypothesis

2a. TI within family. For: 6.2.1

2b. TI within paradigm. For: 6.2.2, 6.2.3

2
. TI a
ross paradigms. For: 6.2.4, 6.2.7 Against: 6.2.5, 6.2.6

Figure 6.2: Hypotheses and eviden
e for ea
h

6.1.3 Universal

Table 6.3 shows the sizes of the universal RASP and Turing ma
hines for ea
h

model and their semanti
s. The data shows that models with larger semanti
s (>

500) require roughly double the amount of information to represent the URASP


ompared with representing the UTM. In 
ontrast, less expressive models require

signi�
antly more information. This is eviden
e that there is a fundamental

di�eren
e between the expressive models and less expressive models in how they

manage the memory stru
tures of the TM and RASP. This topi
 is 
overed in

further detail in Se
tion 6.4.

6.2 Grouped Analysis

This se
tion groups the models so that relations between them 
an be observed

and eviden
e 
an be gathered to 
on�rm or refute the SI and TI hypotheses.

Figure 6.2 list 
on�rming and 
ontradi
ting eviden
e up front. The SI and TI

hypotheses are de�ned in Se
tion 3.1.2 and are re
apped here.

Hypothesis 1: The Semanti
 Information (SI) hypothesis states that: �For

two Turing Complete models; if model A has more semanti
 information (larger

semanti
s) than model B, the average size of su

in
t programs (where at least
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1 Strong Semanti
 Information hypothesis

1a. SI within family hypothesis

1.1. Program Sizes (RASP) predi
tion.

1b. SI within paradigm hypothesis

1.2. SI RASP vs TM predi
tion

1.3. λ-
al
ulus vs SKI predi
tion

1
. SI a
ross paradigms hypothesis.

1.4. A
ross paradigms predi
tion

2. Strong Total Information hypothesis

2a. TI within family hypothesis

2.1. TI for RASPs

2b. TI within paradigm hypothesis

2.2. TI RASP vs TM

2.3. TI λ-
al
ulus vs SKI

2
. TI a
ross paradigms hypothesis

2.4. TI a
ross paradigms predi
tion

Figure 6.3: Breakdown of the Strong SI and TI hypotheses

one program utilises the extra semanti
 information) written for model A will be

lower than the average for model B.� (Se
tion 3.1.2). This `strong' hypothesis is

broken down into three sub-hypotheses whi
h state the above relation for models

for the same family (1a), models in the same paradigm (1b), and models in

di�erent paradigms(1
).

Hypothesis 2: The Total Information (TI) hypothesis states that: �For two

Turing Complete models X and Y , where X has more semanti
 information

than Y ; As the size and 
omplexity of a program in
reases, the average total

information (TI) of a su

in
t implementation in X will de
rease relative to the

total information of a su

in
t implementation in Y .� (Se
tion 3.1.2). Again,

there are set of sub-hypotheses to 
over the paradigmal possibilities (2a, 2b, and

2
). Figure 6.3 presents the hierar
hy of hypotheses and the predi
ted nature of

the relationships. Se
tion 3.1.2 gives the exa
t wordings of the sub-hypotheses

and predi
tions.

Tables 6.4, 6.5, and 6.6 show: all of the size measurements for the programs

and semanti
s of all the models, the arithmeti
 means of the groupings, and the

geometri
 means of the groupings. These tables shall all be referred to throughout
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RASP RASP2 RASP3 TM SKI λ-Cal
ulus
Addition 58 9 25 29 16 27

Subtra
tion 59 59 61 149 113 46

Equality 57 26 27 179 208 117

Multipli
ation 126 59 60 223 8 15

Division 131 131 134 281 565 229

Exponentiation 132 129 131 450 11 9

List Membership 271 129 131 379 362 208

Linear Sear
h 281 132 135 779 385 236

Reverse List 140 135 137 499 190 134

Stateful Rev List 273 273 277 1049 1397 460

Bubble Sort 557 549 297 1611 1903 550

Universal TM 613 571 574 1270 2593 584

Universal RASP 1239 1209 1231 14414 9554 1084

Semanti
s Size 556 585 587 335 291 515

Table 6.4: The 
ombined program and semanti
 sizes for ea
h model

RASP RASP2 RASP3 TM SKI λ-Cal
ulus
AR PI 93.83 68.83 73 218.50 153.83 73.83

AR TI 649.83 653.83 660 553.50 444.83 588.83

L PI 304.4 243.6 195.4 863.4 847.4 317.6

L TI 860.4 828.6 782.4 1198.4 1138.4 832.6

AR + L PI 189.55 148.27 128.64 511.64 468.91 184.64

AR + L TI 745.55 733.27 715.64 846.64 759.91 699.64

All PI 302.85 262.38 247.69 1639.38 1331.15 284.54

All TI 858.85 847.38 834.69 1974.38 1622.15 799.54

Table 6.5: The arithmeti
 means of the program groupings

the analysis.

6.2.1 RASP Ma
hines

The RASP ma
hines are a family of models. They have a 
ommon 
ore of model

semanti
s whi
h share a number of fun
tions. They ea
h di�er in how they modify

the value in their a

umulator: RASP uses INC and DEC, RASP2 has a dire
t

ADD x and SUB x, and RASP3 has an indire
t ADD x and SUB x.

The RASP ma
hines are relevant in the resolution of SI/TI within family

sub-hypotheses. The vanilla RASP ma
hine has the smallest semanti
s, followed

by the RASP2, and then the RASP3 (Table 6.4). By the SI and TI within

family hypotheses, it is therefore expe
ted that the instru
tion 
ounts (Table

6.7), 
hara
ter 
ounts (Table 6.4), and means (Tables 6.5�6.6) follow the trend
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RASP RASP2 RASP3 TM SKI λ-Cal
ulus
AR PI 86.71 48.95 59.27 167.15 51.52 40.62

AR TI 648.84 652.18 658.53 538.68 410.48 584.09

L PI 276.67 202.98 181.93 757.23 588.18 278.13

L TI 850.31 814.57 778.72 1123.07 953.07 817.85

AR+L PI 146.93 93.44 98.68 332.16 155.84 97.39

AR+L TI 733.70 721.54 710.74 752.26 601.98 680.66

All PI 193.22 130.78 137.21 492.16 265.52 134.54

All TI 814.65 802.48 793.38 1002.53 841.93 754.17

Table 6.6: The geometri
 means of the program groupings

Program RASP RASP2 RASP3

Addition 17 4 6

Subtra
tion 18 22 22

Equality 19 9 11

Multipli
ation 32 24 24

Division 42 45 45

Exponentiation 51 43 40

List Membership 71 34 31

Linear Sear
h 87 36 35

New List Rev 57 45 43

In Pla
e Rev 73 78 77

Bubble Sort 131 127 123

Universal TM 200 148 137

Universal RASP 313 292 283

Arithmeti
 Mean 85.46 69.76 67.56

Geometri
 Mean 57.99 40.79 41.47

Table 6.7: Registers used by the various RASP programs

where the RASP3 
ounts grow slower than the RASP2, whi
h in turn grow slower

than the RASP 
ounts.

RASP ma
hine sizes grow a

ording to the value 2n, where n is the number

of bits that the ma
hine 
an hold in ea
h register. The size of the ma
hine's

memory and maximum natural number whi
h 
an be represented is therefore

2n for an n-bit ma
hine. A program �ts into the memory if there is at least

one register available to �t ea
h instru
tion/datum in the program starting from

register 3. Unused registers are padded with the HALT instru
tion (0) and 
an be,

in prin
iple, utilised by the program for storage, but the program at initialisation

does not dire
tly write to or read from the registers.

Table 6.7 shows the number of utilised registers for ea
h program in ea
h

RASP ma
hine. For the arithmeti
 fun
tions, the RASP2 uses fewer registers on
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average than the RASP3 and RASP. However for the list fun
tions, the RASP3

requires fewer registers on average than the RASP2. This trend 
ontinues for

the universal fun
tions. On average, the RASP3 requires fewer registers than the

RASP2, whi
h requires fewer registers than the RASP. This data �ts Predi
tion

1.1 (Figure 6.3) where the model with the most SI requires the least number of

registers/instru
tions.

Referen
ing the RASP 
olumns of Table 6.5. The arithmeti
 means of the

program groupings show the RASP2 with the overall lowest PI for the arithmeti


fun
tions, the RASP with the overall lowest TI of the arithmeti
 fun
tions, and

the RASP3 with the overall lowest PIs and TI for every other group. The RASP3

rankings for L, AR+L, and All is 
losely followed by RASP2, and then followed

by the RASP.

The geometri
 means (RASP 
olumns, Table 6.6) show the PI of the RASP2

as the lowest for all sets ex
luding the L set. The RASP3 PI is the overall lowest

for the L set and the TI is the overall lowest for every set ex
ept the AR TI set.

The RASP has the lowest AR TI for the arithmeti
 and geometri
 means.

The arithmeti
 and geometri
 mean data �ts Predi
tions 1.1 and 2.1. These

state that the RASP3 will eventually have the lowest average PI and TI respe
-

tively. The TI of the RASP is the lowest of the three models for the arithmeti


fun
tion grouping, but as the set of tested fun
tions grows, the RASP3 be
omes

the model with the lowest TI.

With the ex
eption of the PI geometri
 means for ea
h 
ategory (PI rows,

Table 6.6), whi
h show the RASP2 using less PI than the RASP3, these expe
-

tations have been met and the data is in favour of 
on�rming sub-hypotheses 1a

and 2a (Figure 6.3).

With the ex
eption of the above geometri
 PI measure, Predi
tion 1.1 has

been ful�lled by the �All PI� row of Table 6.5 showing RASP3 with the lowest

PI of the RASPs. The utilised register average of Table 6.7 also substantiates

this. The 
ontrary geometri
 mean �gures show the RASP2 as having the least

utilised registers in Table 6.7, and lowest PI in Table 6.6. This 
arries less weight

in our minds as the geometri
 mean is weighted very heavily towards the shorter

arithmeti
 fun
tions. The RASP3 requires fewer 
hara
ters to implement the
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fun
tions of Table 6.4 than the RASP2, (3249 vs 3439).

Predi
tion 2.1 has also been ful�lled by as the average TI of the RASP3 is

the lowest of all of the RASPs, and the TI of the RASP is the greatest. This

relationship holds for both the arithmeti
 and geometri
 means.

This analysis 
on
ludes that the data is 
onsistent with predi
tions 1.1 and

2.1, and therefore we 
on�rm sub-hypotheses 1a and 2a; SI/TI within family.

6.2.2 RASP vs TM

Comparisons of the RASP and TM models seeks eviden
e for the SI/TI within

paradigm sub-hypotheses (hypotheses 1b and 2b) fully stated in Se
tion 3.1.2.

To paraphrase; the SI within paradigm hypothesis predi
ts that there is an in-

verse size relationship between semanti
s size and program size for models of the

same paradigm. The TI within paradigm hypothesis states that as a program or

programs grows in size and 
omplexity, the average TI (SI+PI) of an expressive

model implementing these programs redu
es relative to the average TI of a less

expressive model in the same paradigm.

This se
tion 
ompares the RASPs and TM to gather eviden
e for the imper-

ative paradigm. Se
tion 6.2.3 also gathers eviden
e for these hypotheses, but in

the fun
tional paradigm using the SKI and λ-
al
ulus.

The Turing ma
hine semanti
s are smaller than the semanti
s of the RASP

ma
hines. We therefore expe
t to see (Predi
tions 1.2, 2.2) that the TM produ
es

larger program on average than the RASP. We also expe
t that for some of the

simpler programs, the TI of the TM is lower than that of the RASPs, but as the

set of programs grows the TI of the RASPs drops to below that of the TM.

The program sizes (RASP and TM 
olumns, Table 6.4 show that the average

program size for the TM is larger than those for the RASP. The only ex
eption

to this is the addition program. The means in Tables 6.5 and 6.6 substantiate

this with the PI rows. The average PI of the TM in every 
ategory is higher than

that of the RASPs. This data supports the SI within paradigm sub-hypothesis

(1b).

Turning attention to the TI within paradigm sub-hypothesis, we 
onsider the

TI means of Tables 6.5 and 6.6. The TI means for the TM implementing the AR
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fun
tions is lower than the TI means of the RASPs. However as more fun
tions

are introdu
ed: L, AR+L, and All; the TIs of the RASPs end up lower than

the TIs of the TMs. This is substantiating eviden
e for the TI within paradigm

sub-hypothesis as it satis�es Predi
tion 2.2.

This analysis is 
onsistent with our Predi
tions 1.2 and 2.2, whi
h support

the SI/TI within paradigm sub-hypotheses. The SI/TI within paradigm sub-

hypotheses appear to be 
on�rmed with respe
t to the RASP and TM.

6.2.3 SKI vs λ-
al
ulus

Like the RASP vs TM 
omparison above in Se
tion 6.2.2, this analysis aims to �nd

eviden
e supporting, or 
ontradi
ting, the SI/TI within family sub-hypotheses

(Se
tion 3.1.2, hypotheses 1b and 2b. If these hypotheses are 
orre
t, the rela-

tionship between the SKI and λ-
al
ulus information sizes will broadly mirror the

observed relationship between the TM and RASP.

The SKI semanti
s are smaller than those of the λ-
al
ulus so it is expe
ted

that the average size of SKI programs is larger than that of the λ-
al
ulus (by the

SI within paradigm hypothesis). It is also expe
ted that for some of the simpler

programs, the TI of the SKI is lower than that of the λ-
al
ulus, but as the set

of programs grows the TI of the λ-
al
ulus drops to below that of the SKI.

Like the resolution of the SI hypothesis with the RASP and TMs, the mean

program sizes from Tables 6.5 and 6.6 (SKI and λ-
al
ulus 
olumns) show the

PI means of the λ-
al
ulus to be lower than that of the SKI. The measurements

from Table 6.4 substantiate this, with the multipli
ation fun
tion as the only

ex
eption. The SI within paradigm sub-hypothesis (1b) is therefore supported by

this data.

Eviden
e for the TI within paradigm sub-hypothesis 
an be found in the mean

Tables 6.5 and 6.6. For the arithmeti
 means (Table 6.5), the TI �gures for the

AR set shows that the SKI is lower than that of the λ-
al
ulus, but as other sets

get introdu
ed, the TI of the λ-
al
ulus returns to below that of the SKI.

This is almost a mirroring of the results of the RASP and TM 
omparisons.

However, the geometri
 TI means of Table 6.6 show the mean SKI TI diverging

from the λ-
al
ulus at a slower rate. The RASP and TM diverged after the AR
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set, but the SKI and λ-
al
ulus diverge after the AR+L set of fun
tions.

The SKI and λ-
al
ulus program sizes are highly 
orrelated, espe
ially 
on-

sidering that the SKI programs are derived from the λ-
al
ulus via bra
ket ab-

stra
tion (Se
tion 2.3.2.2). Therefore it makes sense that it takes more programs

to show a separation in program size for the SKI/λ-
al
ulus than for the RASP

and TM whi
h are not derived from one another.

The arithmeti
 and geometri
 means therefore support the TI within paradigm

sub-hypothesis (hypothesis 2b, Se
tion 3.1.2). Along with the analysis of the

program size means, both the SI and TI sub-hypotheses are supported by the

data of the SKI and λ-
al
ulus. Both the eviden
e for this analysis, and the

RASP/TM analysis (Se
tion 6.2.2) are brie�y reiterated in Se
tion 6.2.8 where

the SI/TI within paradigm hypotheses are resolved.

6.2.4 RASP vs SKI

The RASP vs SKI analysis produ
es eviden
e for the SI/TI a
ross paradigms

sub-hypothesis (hypotheses 1
 and 2
). The SI sub-hypothesis states that there

is an inverse relationship between the size of the semanti
s and the average size of

programs whi
h holds when two models from di�erent paradigms are 
ompared

(Se
tion 3.1.2).

Table 6.4 (RASP and SKI 
olumns) shows that the SKI 
al
ulus has a smaller

set of semanti
s than any of the RASP ma
hines. It also shows that the SKI

programs for the 
ombinative AR fun
tions (addition, multipli
ation, exponenti-

ation) are smaller than any of the RASP programs. The higher-order fun
tionality

of the Chur
h numerals allows the SKI (and λ-
al
ulus) to produ
e very 
on
ise


ombinative AR fun
tions.

As a result of this, the geometri
 �AR PI� mean (Table 6.6) favours the SKI

over the RASPs. The �L PI� geometri
 mean for the SKI is mu
h larger than

that of the RASP, and this extra information pushes the means in favour of

the RASP ma
hines. The �AR+L PI� geometri
 means for the RASP is lower

than the 
orresponding mean for the SKI. The gap widens when the universal

ma
hines are introdu
ed to the test set. The arithmeti
 means (Table 6.6) are

not as in�uen
e by the small 
ombinative fun
tions as the geometri
 mean, so
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they show the RASPs have less PI than the SKI in all program sets.

This eviden
e 
onforms to the SI within paradigm hypothesis, and is in line

with predi
tion 1.4 (Se
tion 3.1.2) be
ause the larger RASP semanti
s result in

smaller programs on average 
ompared to the SKI.

The TI a
ross paradigms sub-hypothesis (2
) states that as a program or

programs grows in size and 
omplexity, the average TI (SI+PI) of an expressive

model implementing these programs redu
es relative to the average TI of a less

expressive model in a di�erent paradigm (Se
tion 3.1.2).

The arithmeti
 TI means in Table 6.5 show that the SKI has a lower TI than

the RASPs for the AR fun
tions. As more fun
tions are introdu
ed however,

the TI of the RASPs drops to below the TI of the SKI. It takes longer for the

geometri
 means to diverge (RASP and SKI 
olumns, Table 6.6). The �AR TI�

and �AR+L TI� means show that the SKI requires less TI on average than the

RASPs. In
luding the universal ma
hines also

The data from this analysis supports the SI/TI a
ross paradigms hypotheses.

For these hypotheses to be 
on�rmed though, analysis has to be made of the

RASP vs λ-
al
ulus (Se
tion 6.2.5), TM vs SKI (Se
tion 6.2.6), and TM vs λ-


al
ulus (Se
tion 6.2.7).

6.2.5 RASP vs λ-
al
ulus

The RASP vs λ-
al
ulus analysis produ
es eviden
e for the SI/TI a
ross paradigms

sub-hypothesis (hypotheses 1
 and 2
). The SI sub-hypothesis states that there

is an inverse relationship between the size of the semanti
s and the average size of

programs whi
h holds when two models from di�erent paradigms are 
ompared

(Se
tion 3.1.2).

The RASP ma
hines all have larger semanti
s than the λ-
al
ulus (Table 6.4)

so if the SI hypothesis were to hold, it is expe
ted that the programs in the RASPs

are smaller on average 
ompared to those in the λ-
al
ulus. As with the SKI,

the λ-
al
ulus has small 
ombinative arithmeti
 fun
tions, and large subtra
tive

fun
tions.

The RASP and λ-
al
ulus 
olumns of Table 6.5 show that the λ-
al
ulus uses

less PI for the AR fun
tions, than the RASP and RASP3 but more than the
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RASP λ-
al
ulus Di�eren
e

AR PI 93.83 73.83 20

AR+L PI 189.55 184.64 4.9

All PI 302.85 284.54 18.30

Table 6.8: Di�eren
e between RASP PI arithmeti
 means and the λ-
al
ulus
means

RASP2. For the �AR + L PI� fun
tion set, the RASP2 and RASP3 sets use less

PI than the λ-
al
ulus. Adding the universal fun
tions ranks the RASPs and

λ-
al
ulus in terms of required PI as: RASP3 < RASP2 < λ-
al
ulus < RASP.

This analysis 
ontradi
ts the SI a
ross paradigms hypothesis, whi
h is inter-

esting 
onsidering that the eviden
e for the previous hypotheses is 
on�rmatory.

The vanilla RASP has more semanti
 information than the λ-
al
ulus, so by Pre-

di
tion 1.4 (Se
tion 3.1.2) we expe
t to see that the λ-
al
ulus requires more PI

than the RASP. This is not the 
ase. And from Table 6.8 we 
an see that the

gap between the PIs shrinks from AR to AR+L, but widens when the universal

fun
tions are in
luded. The relationship between the PIs of the RASP and λ-


al
ulus are too 
omplex to be simply 
hara
terised by the SI within paradigms

hypothesis.

The TI a
ross paradigms sub-hypothesis (2
) states that as a program or

programs grows in size and 
omplexity, the average TI (SI+PI) of an expressive

model implementing these programs redu
es relative to the average TI of a less

expressive model in a di�erent paradigm (Se
tion 3.1.2).

Be
ause the λ-
al
ulus has smaller semanti
s, Predi
tion 2.4 (Se
tion 3.1.2)

sets out the expe
tation of the RASPs requiring less TI to represent all of the

fun
tions. From Tables 6.5 and 6.6, this is not the 
ase at all. The TI measure-

ments of the λ-
al
ulus implementations are 
onsistently lower than any of the

RASP measurements.

We 
on
lude that the SI and TI a
ross paradigms hypotheses (1
 and 2
) with

respe
t to the RASPs and λ-
al
ulus 
annot be 
on�rmed. The data here does

not 
onform to the predi
tion that the λ-
al
ulus will have a higher mean PI and

TI than the RASPs. Indeed, the di�eren
e between the PI and TI of the models

�u
tuates as more sets of programs are 
ompared, with no 
lear relationship

whi
h 
an be explained to �t the hypothesis. This is dis
ussed more in Se
tion
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6.2.8.

6.2.6 TM vs SKI

The TM vs SKI analysis produ
es eviden
e for the SI/TI a
ross paradigms sub-

hypothesis (hypotheses 1
 and 2
). The SI sub-hypothesis states that there is

an inverse relationship between the size of the semanti
s and the average size of

programs whi
h holds when two models from di�erent paradigms are 
ompared

(Se
tion 3.1.2).

The TM has more semanti
 information than the SKI, (Table 6.4) so it is

expe
ted that the TM will require less PI on average than the SKI to 
ompute

the fun
tions.

Tables 6.5 and 6.6 show that the mean PI measurements for the SKI are

ex
lusively lower than the PI measurements of the TM. These measurements lend

no eviden
e to the SI a
ross paradigms hypotheses. Indeed, this data 
ontradi
ts

the hypothesis, mu
h like the data from the RASP and λ-
al
ulus 
omparison in

Se
tion 6.2.5.

The TI a
ross paradigms sub-hypothesis (2
) states that as a program or

programs grows in size and 
omplexity, the average TI (SI+PI) of an expressive

model implementing these programs redu
es relative to the average TI of a less

expressive model in a di�erent paradigm (Se
tion 3.1.2).

Again, Tables 6.5 and 6.6 demonstrate that the TI of the SKI is lower than the

TI of the TM for both arithmeti
 and geometri
 means in all program sets. The

analysis here of the SKI measurements against the TM measurements 
ontradi
t

the SI/TI a
ross paradigms hypotheses (1
 and 2
). This is very similar to the

examination of the λ-
al
ulus and RASP in Se
tion 6.2.5

6.2.7 TM vs λ-
al
ulus

The �nal 
omparison whi
h we draw in this part of the analysis is between the

TM and λ-
al
ulus. This analysis serves to �nd eviden
e for the SI/TI a
ross

paradigms hypothesis (hypotheses 1
 and 2
).

The TM semanti
s are smaller than the λ-
al
ulus semanti
s (Table 6.4), so

it is expe
ted, by the SI a
ross paradigms hypothesis, that the average size of
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programs in the λ-
al
ulus is lower than the average size of programs in the TM.

The means in Tables 6.5 and 6.6 show that the PIs of the λ-
al
ulus fun
tions

are lower than the PIs of the TMs in all fun
tion sets. This behaviour �ts with

predi
tion 1.4, mu
h like the RASP and TM 
omparison in Se
tion 6.2.2.

The TI a
ross paradigms sub-hypothesis (2
) states that as a program or

programs grows in size and 
omplexity, the average TI (SI+PI) of an expressive

model implementing these programs redu
es relative to the average TI of a less

expressive model in a di�erent paradigm (Se
tion 3.1.2).

The λ-
al
ulus has larger semanti
s of than the TM, so the TI arithmeti
 and

geometri
 means (Tables 6.5 and 6.6) of the AR fun
tion set show that the TM

requires less TI than the λ-
al
ulus. As the fun
tion sets expand, the TI required

for the λ-
al
ulus redu
es relative to the TI required for the TM.

Predi
tion 2.4 is also satis�ed by this behaviour. The λ-
al
ulus and TM


omparison produ
es eviden
e with supports both of the SI/TI a
ross paradigms

hypotheses.

6.2.8 The SI and TI Hypotheses

Figure 6.2 lists the eviden
e gathered for ea
h sub-hypothesis and the se
tion

where that eviden
e is found. The semanti
 information (SI) hypothesis predi
ts

(Predi
tions 1.1 - 1.4) that if two models have di�ering semanti
 sizes, the model

with more semanti
 information will require less information to implement su
-


in
t programs on average 
ompared to the model with less semanti
 information.

At least one of the programs should utilise the extra operators a�orded by the

larger semanti
s in order to see the bene�t (Se
tion 3.1.2).

This PI data ful�ls Predi
tions 1.1, and 1.2 and 1.3, therefore Sub-hypotheses

1a (family) and 1b (within paradigm) are 
on�rmed. The RASP data shows that

over the whole set of 
ompared fun
tions, the RASP3 uses less information on

average than the RASP2 and RASP. The RASP3 has the largest semanti
s, while

the RASP has the smallest (Se
tion 6.2.1).

The within paradigm hypothesis is supported by the 
omparison of the size

of λ-
al
ulus expressions versus the size of SKI expressions (Se
tion 6.2.3). In

the imperative paradigm, the average TM PI versus the average RASP PI shows
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that the TM programs are typi
ally larger than the RASP ones (Se
tion 6.2.2).

The third sub-hypothesis, hypothesis 1
 requires that four 
omparisons are

made: RASP and SKI, RASP and λ-
al
ulus, TM and SKI, and TM and λ-


al
ulus. Unlike the other two sub-hypotheses, the 
omparison a
ross paradigms

reveals eviden
e 
ontrary to the hypothesis and does not satisfy the predi
tion

entirely.

Over this test set, an imperative model 
ompared with a fun
tional one with

approximately the same amount of Semanti
 Information will show that the fun
-

tional model has a lower average PI than the imperative model.

The RASP and λ-
al
ulus 
omparisons show that the λ-
al
ulus requires less

PI than the RASPs, despite the fa
t that the RASPs have more SI (Se
tion

6.2.5). Similarly, the TM has more SI than the SKI, but the SKI still has smaller

programs on average (Se
tion 6.2.6).

The Strong Semanti
 Information hypothesis is not 
on�rmed. The within

family and within paradigm hypotheses have eviden
e enough to 
on�rm them.

The a
ross paradigms hypothesis has eviden
e for it, but more importantly, has

strong eviden
e against it.

The Total Information (TI) hypothesis predi
ts (Predi
tions 2.1 - 2.4) that as

the size and 
omplexity of a program, or programs, in
reases; the TI (SI + PI)

of su

in
t implementations of the programs in a model whi
h is more expressive

will redu
e relative to the TI of the implementations in a model whi
h is less

expressive (Se
tion 3.1.2).

Mu
h like the SI hypothesis, the TI hypothesis has support from the within

family, and within paradigm hypotheses (2a and 2b). The RASP semanti
 sizes

are ordered as RASP<RASP2<RASP3. When the entirety of the program set

is 
onsidered, the TI sizes of the RASPs are RASP3<RASP2<RASP whi
h �ts

the predi
tion and 
on�rms the within family hypothesis (Se
tion 6.2.1).

The within paradigm hypothesis is supported by the eviden
e of the TM vs

RASP and λ-
al
ulus vs SKI 
omparisons. While the smaller models had a lower

TI for the AR set of fun
tions, as the set was augmented with the list, and then

universal, fun
tions, the TI shifted in favour of the larger models. Se
tion 6.2.2


ompared the RASP with the TM while Se
tion 6.2.3 
ompared the λ-
al
ulus
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and SKI.

Generalising TI to a
ross paradigms appears to fall into the same trouble as

the SI 
orresponding hypothesis. Comparing two models of di�ering paradigms

with roughly the same amount of SI will favour the fun
tional model as the


omparisons of the RASP and λ-
al
ulus (Se
tion 6.2.5), and SKI vs TM (Se
tion

6.2.6) suggest.

Like the SI hypothesis, sub-hypotheses 2a and 2b are 
on�rmed, while sub-

hypothesis 2
 is not. The strong TI hypothesis in this 
ase 
annot be 
on�rmed.

It is suspe
ted that the simple metri
 of raw 
hara
ter distan
e between the

semanti
s of models from di�ering paradigms is too naïve to 
apture the subtleties

of their evaluation method. The evaluation method produ
es less of an impa
t on

the information values for those models in the same model family or paradigm,


ompared to a
ross paradigm 
omparisons where the evaluation method is mu
h

more relevant.

Returning to the geometri
 means, 
omparing the RASP2/3 means against the

λ-
al
ulus means in Tables 6.5 and 6.6, it 
an be seen that while the arithmeti


PI means of the λ-
al
ulus are always greater than those of the RASPs, the

geometri
 means do not ne
essarily follow. This appears to stem from the PI

required to represent the AR fun
tions.

The λ-
al
ulus uses mu
h smaller expressions for the additive arithmeti
 fun
-

tions in 
omparison to the RASPs due to the Chur
h numerals and their 
ombina-

tori
 attributes. This results in a lower geometri
 mean for the AR fun
tions, even

though the arithmeti
 mean is higher (be
ause of the relatively large subtra
tive

AR fun
tions). It would then be interesting to 
onsider the geometri
-arithmeti


mean relationship as an indi
ation of a models aptitude at representing a set

of fun
tions. In this 
ase, the λ-
al
ulus has an advantage in representing AR

fun
tions.

This indi
ation is less 
lear however as the sets are 
ombined. The AR+L

and all sets also have lower geometri
 means despite the L set and universal sets

alone having no notable deviation in this geometri
-arithmeti
 relationship.
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3. Semanti
 Cir
uit hypothesis

3a. SC within family hypothesis

3.1. SC for RASPs.

3b. SC within paradigm hypothesis

3.2. SC RASP vs TM

4. Total Cir
uit hypothesis

4a. TC within family hypothesis

4.1. TC for RASPs.

4b. TC within paradigm hypothesis

4.2. TC RASP vs TM

Figure 6.4: Breakdown of the FPGA hypotheses

6.3 FPGA Analysis

This se
tion provides an analysis of the FPGA measurements with respe
t to

evaluating the Semanti
 Cir
uit (SC) size and Total Cir
uit (TC) size hypothe-

ses. This se
tion provides an overview of the measurements. Se
tion 6.3.1 
overs


omparisons of the RASP ma
hines to �nd eviden
e for the SC and TC hypothe-

ses. Se
tion 6.3.2 
ompares the RASP implementation to the TM implementation

for more eviden
e. Se
tion 6.3.3 uses the eviden
e of the aforementioned se
tions

to evaluate the hypotheses.

Figure 6.4 breaks down the SC and TC hypotheses. Like the SI and TI hy-

potheses, there are sub-hypotheses de�ned. Be
ause only the RASPs and TMs are

de�ned in the FPGA, there are no �a
ross paradigms� hypotheses. The Semanti


Cir
uit hypothesis states that there is a dire
t relationship between the SI and

the size of the 
ir
uit to represent the semanti
s. Simply put, SI is proportional

to SC.

The Total Cir
uit hypothesis is analogous to the TI hypothesis. It states that

for two models A and B, where A has a larger semanti
 
ir
uit than B. As the set

of tested programs grows in size and 
omplexity, the average total implementation

size (number of FPGA 
omponents required to implement the semanti
s and

program) for A will de
rease relative to the average total implementation size for

B.

In Chapter 5, the RASP and TM models were realised in VHDL and synthe-
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Figure 6.5: RASP and TM Total Information 
ontents

sised down to registers, �ip-�ops (FFs) and look up tables (LUTs). Synthesis of

VHDL to FPGA 
omponents not only 
onverts programs to ele
troni
 
ompo-

nents, but also the semanti
s of the model. In essen
e, an instan
e of the ma
hine

is 
onstru
ted and loaded with the program and data ready to be exe
uted.

If the number of required FPGA 
omponents 
an be used to predi
t the TI of

programs in models, then it is expe
ted that the 
omponent 
ounts 
orrelate with

the TI �gures of the programs/models. Figure 6.5 plots the TIs for the RASPs

and TM from the �gures presented previously in this 
hapter.

The Sli
e Registers (Table 6.9, Figure 6.6) are individual memory lo
ations

used by the models. Both the RASP and TM use registers (whi
h are 
on�gured

to be �ip-�ops) to store state information of the model. Various 
ounters within

the model keep tra
k of whi
h instru
tions are to be exe
uted in ea
h 
lo
k 
y
le,

and these 
ounters are stored in sli
e registers.

Furthermore, the RASPs store their programs in sli
e registers, the number

of whi
h depend on the memory size of the parti
ular ma
hine. The RASP plots

in Figure 6.6 exhibits similarities in shape with the TI RASP plots of Figure

6.5. These similarities 
an be interpreted as; the number of sli
e registers used
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RASP RASP2 RASP3 TM

Addition 28 21 25 14

Subtra
tion 28 28 29 15

Equality 28 24 25 16

Multipli
ation 32 28 29 19

Division 32 32 33 19

Exponentiation 32 32 33 20

List Membership 37 32 33 22

Linear Sear
h 37 32 33 22

Reverse List 32 32 33 23

Stateful Rev List 37 37 38 23

Bubble Sort 41 41 38 24

Universal TM 41 41 42 23

Universal RASP 46 45 46 19

Table 6.9: Sli
e registers for programs and models on FPGAs
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Figure 6.6: Sli
e registers for RASPs and TM
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RASP RASP2 RASP3 TM

Addition 66 51 70 13

Subtra
tion 66 70 78 13

Equality 66 60 70 16

Multipli
ation 74 70 78 20

Division 74 79 91 22

Exponentiation 74 79 91 30

List Membership 81 79 91 44

Linear Sear
h 81 79 91 49

Reverse List 74 79 91 32

Stateful Rev List 81 86 102 80

Bubble Sort 90 96 102 150

Universal TM 89 96 112 195

Universal RASP 92 108 123 1019

Table 6.10: LUTs for programs and models on FPGAs

RASP RASP2 RASP3 TM

Sli
e Registers 0.795 0.754 0.808 0.00

LUTs 0.706 0.742 0.807 0.980

Flip-Flops 0.776 0.754 0.808 -0.076

Table 6.11: The Pearson 
orrelation 
oe�
ient of the TI vs the 
omponents

to implement a RASP program on an FPGA is an indi
ator of the amount of TI

required to implement the program against the semanti
s. There is no similarities

whi
h 
an be observed between the TI of the TM and the number of sli
e registers

used.

The number of LUTs required to implement the RASP and TM programs in

the FPGA is presented in Table 6.10 and plotted in Figure 6.7. These �gures


orrelate with the TI levels of the TM. This suggests to that, like the sli
e registers

for RASPs, the number of LUTs is an indi
ator of the TI of a program written

for a TM.

Table 6.11 shows the Pearson 
orrelation 
oe�
ient between the TI �gures

and the various 
omponent 
ounts. As we have noted above, the number of sli
e

registers do not 
orrelate at all with the TI 
ounts of the TMs. However, the


orrelation 
oe�
ient of the number of LUTs in the TM implementation is 0.984

whi
h is a very high 
orrelation and suggests a 
ausal link.

There is also a 
orrelation between the TI of the RASP and the number of

sli
e registers. This 
orrelation de
reases slightly for the RASP2, and in
reases
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again for the RASP3.

LUTs strongly 
orrelate with the TI of TMs, but are not a perfe
t indi
ator.

The TM to �nd the membership of a list is 38 tuples in size and 379 
hara
ters

long. The list reversal TM is 50 tuples in size and 499 
hara
ters long. The bubble

sort is 140 tuples/1611 
hara
ters and the universal ma
hine is 113 tuples/1270


hara
ters. The number of LUTs to implement the membership TM is 44, as

opposed to 32 for the reversal TM. Similarly, it takes 150 LUTs to implement the

bubble sort and 195 for the UTM. The number of 
omponents for ea
h pairing

is at odds with the number of tuples and 
hara
ters required. If there were a

dire
t 
orrelation between the number of LUTs and number of tuples, then these

relations would be swit
hed.

The unknown variable in the FPGA 
ompilation pro
ess is the optimisation

stage. The optimiser is set up for a mu
h 
ompression as possible, and it is


on
eivable that the tuples for the bubble sort and reversal 
an be 
ombined into

a smaller overall pa
kage. New work fo
used on this question would bring insight

as to why.

Despite the in
onsisten
ies regarding the membership, reversal, bubble sort,
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RASP RASP2 RASP3 TM

Addition 28 21 25 14

Subtra
tion 28 28 29 15

Equality 28 24 25 16

Multipli
ation 32 28 29 19

Division 32 32 33 19

Exponentiation 32 32 33 20

List Membership 37 32 33 22

Linear Sear
h 37 32 33 22

Reverse List 32 32 33 23

Stateful Rev List 37 37 38 23

Bubble Sort 41 41 38 24

Universal TM 41 41 42 23

Universal RASP 46 45 46 18

Table 6.12: FFs for programs and models on FPGAs

and the UTM; the high 
orrelation between the TI and LUT 
ount strongly

indi
ates that the TI of a TM implementation a�e
ts the 
orresponding LUT


ount of that implementation in a FPGA.

The number of LUTs in an implementation does not appear to dire
tly link

the RASP ma
hines to their TI, but is useful when the RASPs are 
ompared

against ea
h other later in this se
tion.

The sli
e registers on the FPGA are versatile. They 
an be 
on�gured as

and/or logi
s, lat
hes, lat
h-thrus, or D-type �ip-�ops [105, 13℄. With the ex
ep-

tion of the universal RASP in the TM, sli
e registers in these implementations

have been ex
lusively used to implement �ip-�ops. The table and plot for the

�ip-�ops are very similar to the table and plot for the sli
e registers, so what

has been said about the sli
e registers applies here. The FF 
ounts are not an

indi
ator of the TI of TM implementations, and have a 
orrelation 
oe�
ient on

par with the sli
e registers for the RASPs.

For this data set, the sli
e registers (Table 6.9) and �ip-�op 
ounts (Table

6.12) are almost identi
al. But if there was more variety in the 
on�gurations

for the sli
e registers, then the number of �ip-�ops 
ould be a better indi
ator of

RASP program information as it 
orresponds to the size of the RASP memory

and state memories. The absolute sli
e register 
ount would be a better indi
ator

of TI as it 
overs not only the program size and state memories, but also the

an
illary logi
s and lat
hes that a sli
e register 
an be used for.
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To properly evaluate the Semanti
 Cir
uit (SC) hypothesis, the 
omponents

to implement the programs and data are required to be separated from the 
ontrol

units of the RASP and TM implementations. The RASP FPGA implementations

have highly 
oupled 
ontrol units and memory; ea
h semanti
 rule holds numerous

pre- and post-
onditions on the state of the memory. Sin
e the state ma
hine for

the RASPs also performs swit
hes on the data in memory, the memory has to

be able to hold at least eight values for the eight instru
tions of the ma
hine.

Furthermore, any value in the memory 
ould be an address, so the memory must

be addressable by eight distin
t values.

This inherent dependen
y between data and memory size restri
ts us to a

lower bound on memory size for RASPs at eight. Any lower and the ma
hine

either 
annot address memory lo
ations, or the synthesis tool optimises out parts

of the RASP state ma
hine that 
annot be run be
ause the required instru
tion


annot be held in memory.

The 
ompromise is a �at 
omparison of the three RASP ma
hines with mem-

ories of size eight. The FPGA FPGA utilisation report provided by the 
ompiler

shows the number of 
omponents to implement the 
ontrol module of the models.
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Sli
e Registers LUTs FFs

RASP 21 48 21

RASP2 21 50 21

RASP3 22 63 22

TM 10 7 10

Table 6.13: Components to implement semanti
s

Table 6.13 displays the number of 
omponents required to implement the

minimal state ma
hines (and memories) of the models. The RASPs were all

measured with an empty memory of size 8, and the TM had a single tape 
ell

and a single tuple in the symbol table.

6.3.1 RASPs on FPGAs

The Semanti
 Cir
uit hypothesis (SC, hypothesis 3) states: �Consider two models

A and B. If model A has larger semanti
s than model B, the FPGA 
ir
uit whi
h

realises the semanti
s of A will be larger than the FPGA 
ir
uit for B.� (Se
tion

3.1.3). In essen
e, as the semanti
s get more expressive, more LUTs, �ip-�ops,

and sli
e registers are required to represent the semanti
s in hardware.

The semanti
s of the vanilla RASP are smaller than the semanti
s of the

RASP2, whi
h in turn are smaller than those of the RASP3. The data in Tables

6.9 � 6.12 is 
onsistent with predi
tion 3.2, and supports sub-hypotheses with

respe
t to the SC within family (3a), and SC within paradigm (3b).

The sli
e registers/�ip-�op 
ounts (Tables 6.9 and 6.12) show that the RASP

and RASP2 are equal in size, with the RASP3 only requiring one extra sli
e

register.

The LUT 
ounts in Table 6.10 show that the RASP2 semanti
s are larger

than the RASP semanti
s while the RASP3 semanti
s are larger than the other

two. This falls into line with what would be expe
ted given the relationship of

the SOS sizes. Be
ause the LUTs primarily implement random logi
 and sli
e

registers are typi
ally purposed for state variables/memories, there is more of an

in
lination to weigh the LUT 
ount over the register 
ount with respe
t to the

rules of the semanti
s. Predi
tion 3.2 is therefore satis�ed, and sub-hypothesis

SC within family (3a) is 
on�rmed.

The Total Cir
uit Size hypothesis (TC, hypothesis 4) states: �For two models
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RASP RASP2 RASP3

Sli
e R LUTs Sli
e R LUTs Sli
e R LUTs

Arith Mean Arithmeti
 30 70 27.5 68.17 29 79.67

Geo Mean Arithmeti
 29.93 69.89 27.2 67.38 28.81 79.2

Arith Mean List 36.80 81.40 34.8 83.80 35 95.4

Geo Mean List 36.69 81.24 34.62 83.55 34.92 95.25

Arith Mean Arithmeti
 + List 33.09 75.18 30.82 75.27 31.73 86.82

Geo Mean Arithmeti
 + List 32.83 74.84 30.35 74.30 31.44 86.13

Arith Mean All 34.69 77.54 32.69 79.38 33.62 91.54

Geo Mean All 34.28 77.06 32.01 77.99 33.11 90.33

Table 6.14: Arithmeti
 and geometri
 means of RASPs on FPGA

A and B, where the 
ir
uit implementation of the semanti
s of A is larger than

the 
ir
uit for the semanti
s of B. As a fun
tion grows in 
omplexity, the average

total implementation size of a su

in
t realisation of the fun
tion in model A will

redu
e relative to the average for model B.� (Se
tion 3.1.3). The RASP spe
i�


hypothesis is the TC within family hypothesis 4a and predi
tion 4.1 sets out what

we expe
t to observe.

Table 6.14 shows the arithmeti
 and geometri
 means of the RASP programs.

Unlike the TI Tables 6.5 and 6.6, there is no trend in number of LUTs or sli
e regis-

ters whi
h shows the RASP3 requiring less 
omponents on average than the RASP

or RASP2. Where 
onsidering all fun
tions, the TI of the RASPs 
onformed to

the relation: RASP3<RASP2<RASP, the TC of the FPGA realisations for all

fun
tions is: RASP<RASP2<RASP3 for the LUTs, and RASP2<RASP3<RASP

for the sli
e registers. This eviden
e 
ontravenes the TC within family sub-

hypothesis. The redu
tion in average sli
e registers provides an indi
ation of

smaller programs for the RASP2 and RASP3 relative to the RASP, but the LUT

relationship remains 
onsistent.

The plots of sli
e registers and LUTs shed some light on why this is the 
ase.

The sli
e registers for the programs in Figure 6.6 show the RASP3 and RASP2

following roughly the same plot. The ex
eptions are the addition fun
tion, where

RASP2 uses less memory than the RASP3, and the bubble sort, where RASP3

uses less. The RASP2/3 plots are below the RASP plot when the RASP2/3 use

less memory than the RASP, otherwise they use slightly more.

The LUTs for the ma
hines (Figure 6.7) also show the RASP2 and 3 following
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the same plot, again where the RASP3 has an overhead on top of the RASP2.

The bubble sort, where the RASP3 has a smaller program than the other RASPs,

is slightly redu
ed but not to the extent where the hypothesis would be 
onsidered


on�rmed.

The RASP data here is strong eviden
e for the 
on�rmation of the SC hy-

pothesis (Hypothesis 3) via the within family sub-hypothesis. The analysis also

�nds eviden
e whi
h 
ontradi
ts the TC hypothesis. The RASP3 having a larger

semanti
 
ir
uit does not imply that the total number of 
omponents required for

programs will be lower than the 
omponents required for the RASP2 and RASP

implementations. This eviden
e 
ontravenes both the within family and within

paradigm hypotheses (4a and 4b).

6.3.2 RASP vs TM

Contrasting the data of the TM against that of the RASPs. If the SC hypothesis

were to hold, we would expe
t that 
an �nd eviden
e whi
h is predi
ted by 3.2,

whi
h states that sin
e the TM semanti
s are smaller than the RASP semanti
s,

the TM semanti
 
ir
uit will be smaller also. Table 6.13 shows that the TM

uses less sli
e registers, LUTs, and FFs to represent the semanti
s. This satis�es

predi
tion 3.2 and supports the SC within paradigm sub-hypothesis.

The implementations and 
hara
ter-wise measurements of the various pro-

grams in TM with respe
t to the RASP measurements (Table 6.4) show that,

ex
epting addition, the TM programs are larger than any of the RASPS. If the

TC hypothesis holds, then it is expe
ted that the mean number of 
omponents

to implement the

The abstra
t implementations the models in SOS and their asso
iated pro-

grams show the TI of the TM growing rapidly relative to the RASP ma
hines.

With the ex
eption of the addition fun
tion, the TI of the TM is greater than

that of the RASPs.

In 
ontrast, the number of 
omponents to implement the TMs on the FPGA is

mu
h lower than than of the RASPs. With the ex
eption of the number of LUTs

required to implement the bubble sort, UTM, and URASP, the TM values are

always lower than the RASP 
omponent numbers. The TC within paradigm sub-
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3. Strong Semanti
 Cir
uit hypothesis

3a. SC within family hypothesis For: 6.3.1

3b. SC within paradigm hypothesis For: 6.3.2

4. Strong Total Cir
uit hypothesis

4a. TC within family hypothesis Against: 6.3.1

4b. TC within paradigm hypothesis Against: 6.3.2

Figure 6.9: FPGA hypotheses and eviden
e for ea
h

hypothesis 4b, like the TC within family sub-hypothesis 4a, 
annot be 
on�rmed

by this data.

6.3.3 The SC and TC Hypotheses

Figure 6.9 lists the eviden
e gathered for ea
h sub-hypothesis and the se
tion

where that eviden
e is found. The Semanti
 Cir
uit (SC) Hypothesis is 
on
erned

with the FPGA realisations of the semanti
s and programs of the RASP and

TMs. The hypothesis states that if model A has more semanti
 information (as

measured by the size of the SOS implementation) than model B, then the FPGA


ir
uit whi
h implements the semanti
s of model A will be larger than the 
ir
uit

to implement the semanti
s of model B.

This hypothesis is veri�able using the semanti
s sizes taken from Table 6.13.

For the RASP and Turing ma
hines, the SOS sizes of the semanti
s follow the

relation: TM<RASP<RASP2<RASP3 (Table 6.4), and this relation is mirrored

in the semanti
 
ir
uit sizes. The LUTs largely implement the state ma
hines

of the 
ontrol units, while sli
e registers are dedi
ated to state information and

the memories of the ma
hines. From examining the table, the number of sli
e

registers and LUTs show that the TM has the smallest 
ir
uit size (Se
tion 6.3.2),

followed by the RASP, RASP2, and then RASP3 with the largest (Se
tion 6.3.1).

These observations satisfy the within family (3a) and within paradigm (3b)

sub-hypotheses in order to 
on�rm the SC hypothesis.

The TC hypothesis is analogous to the TI hypothesis. The Total Cir
uit

hypothesis predi
ts that as the size and 
omplexity of a program, or programs,

in
reases the total 
ir
uit size of a su

in
t implementation of the program(s) in

an expressive model will redu
e relative to the implementations in a less expressive
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model.

This hypothesis is not 
on�rmed at all. Within the RASP family (Se
tion

6.3.1), there is no indi
ation of the average number of LUTs or sli
e registers re-

du
ing relative to the RASP2. The RASP relation sits at RASP<RASP2<RASP3

for average number of LUTs, and RASP2<RASP<RASP3 for sli
e registers (Ta-

ble 6.14).

Comparing the TM TC size to the RASP TC size (Se
tion 6.3.2) shows that

the total 
ir
uit sizes for the RASP tend to be mu
h lower than the total 
ir
uit

sizes for the RASPs. Only the bubble sort and universal RASP programs in the

TM require more LUTs than the 
orresponding RASP programs. As a result, the

TC hypothesis 
annot be 
on�rmed.

It should be 
onsidered why the TC hypothesis 
annot be 
on�rmed for two

models in the same paradigm as the TI hypothesis. The abstra
t realisations

of the semanti
s of the models are isolated relative to the programs whi
h are

measured. On
e the author of a semanti
s is satis�ed that the semanti
s are


orre
t, they are bundled with programs of all sizes to measure and obtain the

TI.

It is 
learly pra
ti
al to do so. A semanti
s has no regard for size bounds.

If size were to be regarded, a di�erent semanti
s would be required for ea
h

program unless the programs happened to be the same size as some other. Rather,

stru
tures in the semanti
s are de�ned via types � whi
h are sets whi
h 
an be

bounded or unbounded in size. For instan
e, the memory of a RASP is de�ned

as a size 2n list of numbers, with ea
h number between 0 and 2n−1. The type of

the memory stru
ture is N whi
h denotes the natural numbers. The exponent n

is also a natural number, so the RASP model permits memories of size 20 up to

an arbitrarily large value of n without the need to 
hange the semanti
s be
ause

set theory permits in�nite sets.

The real world is unfortunately not as �exible. The semanti
s for the FPGAs

are de�ned with �xed sizes for the RASP memory, TM symbol table, or TM tape

so that the 
ompiler 
an allo
ate the appropriate level of resour
es to represent

these memories or stru
tures. Furthermore, the rules have a less `fun
tional' im-

plementation in the FPGA semanti
s and therefore require the use of temporary
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RASP RASP2 RASP3 TM

Sli
e R LUTs Sli
e R LUTs Sli
e R LUTs Sli
e R LUTs

Addition 7 18 0 1 3 7 4 6

Subtra
tion 7 18 7 20 7 15 5 6

Equality 7 18 3 10 3 7 6 9

Multipli
ation 11 26 7 20 7 15 9 13

Division 11 26 11 29 11 28 9 15

Exponentiation 11 26 11 29 11 28 10 23

List Membership 16 33 11 29 11 28 12 37

Linear Sear
h 16 33 11 29 11 28 12 42

Reverse List 11 26 11 29 11 28 13 25

Stateful Rev List 16 33 16 36 16 39 13 73

Bubble Sort 20 42 20 46 16 39 14 143

Universal TM 20 41 20 46 20 49 13 188

Universal RASP 25 44 24 58 24 60 9 1012

Table 6.15: Components for programs only on FPGAs

variables whi
h also have to grow in size to 
orre
tly store intermediate values of

the exe
ution.

This 
reates an overhead in the FPGA realisations where the size of the seman-

ti
s in
reases proportionally to the size of the program being exe
uted. Assuming

that the semanti
s sizes in the FPGA realisations are �xed a

ording to Table

6.13, the number of semanti
 
omponents 
an be subtra
ted from the TC 
ompo-

nent values to obtain the program information analogue for the FPGAs in Table

6.15.

The overhead of the semanti
 growth is rolled into the FPGA program infor-

mations. The list fun
tions in this table show that the program information for

the TM is often higher than that of the RASPs with respe
t to the number of

LUTs, and very 
lose to the RASPs when 
onsidering the sli
e registers. From

this perspe
tive, if the 
omplexity of the fun
tions were to smoothly grow, the

eventual average TC of the TMs would be
ome lower than that of the RASPs.

The RASP3 has a smaller implementation of the bubble sort than the other

models and this is re�e
ted in the LUT and sli
e register 
ounts. This shows that

the redu
tion in the number of required 
omponents for the RASP3 implemen-

tation 
an 
on
eivably outweigh the extra 
omponents required for the semanti


overhead. It is hypothesised that given more 
omplex fun
tions, if the RASP3

implementations were to keep redu
ing in size relative to the other RASPs as in-
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di
ated in Se
tion 6.2.1, then the TC size with respe
t to the RASP2 and RASP

implementations will drop as eviden
ed by the TI �gures.

In 
on
lusion, this analysis �nds that the number of a spe
i�
 
omponent

(LUTS for TM and sli
e registers for RASPs) is an indi
ator of the TI relative

to the TI of other programs implemented in that model. Conversely, using said


omponent 
ounts to analyse TI measurements a
ross models does not work.

A reason for this is the growing overhead of the semanti
s implemented on the

hardware. In the abstra
t semanti
s an in�nite set 
an be designated for all

programs to use, but in these 
on
rete realisations, the sets must be bounded

and have to grow a

ording to the size of the program implemented.

6.4 Further Observations

This se
tion dis
usses the dramati
 in
rease in required information for the SKI

and TM when representing the Universal fun
tions opposed to the RASP and λ-


al
ulus. It also 
onsiders how the use of parsing semanti
s a�e
ts the information

measurements made.

6.4.1 Model Attributes

Figures 6.10 to 6.13 show plots of the geometri
 and arithmeti
 means of the PI's

and TI's. The geometri
 plots show the normalising e�e
t of the geometri
 mean

pro
ess and bun
hes the models together.

The arithmeti
 mean plots are more interesting. The RASP ma
hines are

bun
hed together mu
h like in the geometri
 mean graph, whi
h is not surprising

due to their operational similarity. But the λ-
al
ulus is also grouped with the

RASP ma
hines. Furthermore, the SKI and TM plots are separated from the

RASP and λ grouping, and are 
orrelated together.

The SKI expressions are derived from the λ-
al
ulus expressions via bra
ket

abstra
tion (Se
tion 2.3.2.2). The TM programs are not derived from, nor have

any dire
t translation to the 
orresponding RASP program. Despite this, the

RASP and TM �gures show the same separation as from the SKI and λ-
al
ulus.

The TM and SKI numbers 
orrelate very strongly with Pearson's r between 0.985
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Figure 6.10: The PI geometri
 means from Table 6.6
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RASPs+λ TM+SKI Fa
tor

AR 55.74 177.56 3.19

L 150.08 602.45 4.01

AR+L 143.42 537.08 3.74

U 327.20 6157.32 18.82

ALL 319.17 3233.37 10.13

Table 6.16: Standard deviations of the sample of RASPs+λ-
al
ulus vs the

TM+SKI.

and 0.99 for the above plotted datasets.

The separately 
orrelated data points in Figures 6.12 and 6.13 are thought to

be due to attributes of the models whi
h do not a�e
t the 
omputational power

of the models.

It is to be expe
ted that the less expressive models will have some overhead

in the representation of the program set. After all, the intuition of expressivity

laid out in the introdu
tion is supported by the data gathered. Table 6.16 shows

the standard deviation of the sample for the two groups of data points. The

deviations for the TM+SKI data points is about 3 times that of the RASP+λ

points for the arithmeti
 fun
tions 4 times for the list fun
tions and 18 times for

the universal fun
tions.

Combining the program 
ategories produ
es a fa
tor of 3.74 for AR+L, and

10.13 for the entire set. This suggests that there is a di�eren
e between the data

points for the universal fun
tions whi
h is above the norm shown by 
omparisons

of the AR and L fun
tion sets.

The RASPs and λ-
al
ulus both have some form of random a

ess whi
h

merely speeds up memory a

ess times. The RASPs have random a

ess memory

and the λ-
al
ulus has variables whi
h 
an be substituted using β redu
tion.

TM and SKI do not. The TM has to sequentially shift the tape and the SKI

has to repeatedly evaluate 
ombinators at the far left hand side to move applied

expressions into ea
h other whi
h the λ-
al
ulus a
hieves though abstra
tion and

substitution alone.

Adding more semanti
 operators for TMs or SKI whi
h enable random a

ess,

su
h as a TM sear
h whi
h returns the �rst o

urren
e of a parti
ular symbol to

the right or left of the head position, is hypothesised to adjust the mean values
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RASP RASP2 RASP3 TM SKI λ-Cal

Parsing Semanti
s 71 71 71 203 101 162

Evaluation Semanti
s 484 513 515 146 190 381

Ratio Parsing:Eval 0.15 0.14 0.14 1.39 0.53 0.43

Table 6.17: The ratio of parsing semanti
s to evaluation semanti
s for ea
h model.

su
h that they 
onverge to those of the RASPs and λ-
al
ulus. Se
tion 7.3.4

presents a hypothesis to guide investigation into this observed separate 
orrela-

tions of PI/TI and dis
usses the possibility of other separations pre
ipitated by

other model attributes.

6.4.2 Interpretation vs Evaluation Semanti
s

The 
omparisons whi
h have been explained thus far have been made relative

to the entirety of the semanti
s for ea
h model. A program has been written in

some external representation, 
onverted into the internal representation using the

parsing semanti
s, and evaluated with the evaluation semanti
s.

The parsing semanti
s do not add any 
omputational power to the models.

A di�erent perspe
tive 
ould be gain through 
omparing only the size of the

evaluation semanti
s of the models with the size of programs. Table 6.17 
ompares

the size of the parsing semanti
s with the evaluation semanti
s. Note that the

sum of the parsing and evaluation semanti
s is often greater than the presented

sizes in Table 6.4 and in the rest of this thesis. This is be
ause both the parsing

and evaluation parts may share a fun
tion or de�nition whi
h has to be de�ned

for both when the semanti
s are split.

The external and internal representations of the RASP ma
hines are very sim-

ilar, so there is little overhead in parsing programs. The parser pattern mat
hes

natural numbers from the left hand side adding them to the mapping whi
h makes

up the initial memory of the program.

The SKI and λ-
al
ulus have a more 
ompli
ated parsing pro
edure whi
h 
on-

verts the linear external representation into the tree-like internal representation.

The 
onversion pro
edure for both models is similar. The expression is pattern

mat
hed from the right hand side and the tree is re
ursively 
onstru
ted from the

root. In SKI, internal tree nodes denote appli
ations with 
ombinators as leaves.
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RASP RASP2 RASP3 TM SKI λ-Cal
ulus
AR PI 86.71 48.95 59.27 167.15 51.52 40.62

AR TI 576.72 579.98 586.35 341.12 301.19 448.82

L PI 276.67 202.98 181.93 757.23 588.18 278.13

L TI 777.44 741.38 706.54 919.60 832.81 681.07

AR+L PI 146.93 93.44 98.68 332.16 155.84 97.39

AR+L TI 660.57 648.46 638.21 535.40 478.20 542.50

All PI 193.22 130.78 137.21 492.16 265.52 134.54

All TI 739.42 727.23 718.52 743.90 690.48 612.10

Table 6.18: Geometri
 means of the program sets using evaluation semanti
s

RASP RASP2 RASP3 TM SKI λ-Cal
ulus
AR PI 93.83 68.83 73 218.5 153.50 73.83

AR TI 577.83 581.83 588 364.5 343.50 454.83

L PI 304.4 243.6 195.4 863.4 847.4 317.6

L TI 788.4 756.6 710.4 1009.4 1037.4 698.6

AR+L PI 189.55 148.27 128.64 511.64 468.91 184.64

AR+L TI 672.82 661.27 643.64 657.64 658.91 565.64

All PI 302.85 262.38 247.69 1639.38 1331.15 284.54

All TI 786.85 775.38 762.69 1785.38 1521.15 665.54

Table 6.19: Arithmeti
 means of the program sets using evaluation semanti
s

The λ-
al
ulus parses both appli
ations and abstra
tions as internal nodes and

uses variables for the leaves. As mentioned in Chapter 3, this transformation is to

fa
ilitate graph redu
tion where nodes are swapped when sub-expressions move

around the term.

The TM parsing semanti
s presented here are larger than the evaluation se-

manti
s. In 
ontrast to the RASPs and fun
tional models, a TM de�nition is in

two parts; a symbol table and a tape. Both of these have to be parsed and they

are both done in a di�erent manner. The symbol table is pattern mat
hed for the

dis
rete elements of the tuples whi
h are 
ombined into a mapping to 
reate the

symbol table. If the tape 
ontains a 
aret (^) the symbol to the left is mapped

to zero in the tape fun
tion and the rest of the fun
tion is �lled in re
ursively

left and right, whi
h are mappings to negative and positive integers respe
tively.

This ne
essitates the 
reating of multiple rules with spe
i�
 fun
tionalities whi
h

are di�
ult to generalise. If the ability for the TM to start at an arbitrary point

on the tape were to be removed, three of the parsing rules 
ould be removed.

Tables 6.18 and 6.19 show the means of the the program sets when parsers
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Figure 6.14: Plot of PI geometri
 means from Table 6.18.

are dis
ounted. Removing the parsing semanti
s from 
onsideration results in

less homogeneity in the means between the models. Figures 6.14 to 6.17 show

the plots of these means.

Comparing these plots to the arithmeti
 and geometri
 mean plots of the full

semanti
s, there is not a dramati
 di�eren
e. The arithmeti
 plot shows the TM

and SKI 
loser together and the λ-
al
ulus TI means trending downwards, further

from the means of the RASPs. The apparent separation between SKI/TM and

RASPs/λ-
al
ulus is still observable whi
h is en
ouraging in that it is not simply

an artefa
t of the in
lusion of parsers.

The geometri
 plot notably shows the smoothing of the TM 
urve and the

eventual lowering of the geometri
 mean of all TM programs to below those of

of the RASPs. The λ-
al
ulus and SKI have the most and se
ond most minimal

information 
ontents of all of the models under the geometri
 mean. This data

further reinfor
es our assertion that hypothesis 2
 is in
orre
t as the semanti
s

of the fun
tional models are now mu
h smaller than the RASP and still maintain

an overall lower TI.
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Figure 6.15: Plot of TI geometri
 means from Table 6.18.
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Figure 6.16: Plot of PI arithmeti
 means from Table 6.19.

202



Chapter 6. Analysis

 0

 500

 1000

 1500

 2000

AR TI L TI AR+L TI ALL TI

C
ha

ra
ct

er
s 

P
er

 P
ro

gr
am

Category

Arithmetic mean of TIs for each model. Using evaluation semantics only

RASP
RASP2
RASP3

TM
SKI

Lambda

Figure 6.17: Plot of TI arithmeti
 means from Table 6.19.

6.5 Inputs

The measurements made and hypotheses evaluated thus far have 
onsidered only

the size of the semanti
s and programs. Se
tion 3.4 has made the 
ase for the

`parsing semanti
s' to be in
luded in the overall semanti
 sizes 
omparisons. In

essen
e, the programs for these models are all 
ommonly expressed in a linear

fashion, while the stru
ture of λ-
al
ulus and SKI expressions whi
h are a
tually

evaluated may be very di�erent. These expressions are linear, but their linearity

belies their tree stru
ture whi
h is dire
tly manipulated to evaluate the expres-

sions via graph redu
tion (Se
tion 3.4.3). Therefore there has to be some semanti


rules to 
onvert the linear external representation into the tree-like internal rep-

resentation.

In a similar way, expressions and programs written for a model parse inputs

from the external, into internal representations and evaluate them. Information

for 
omputation is hierar
hi
al and regressive. Programs are bespoke semanti
s

and models to 
ompute spe
i�
 fun
tions. The most general of these fun
tions

are universal whi
h have their own language/en
oding for their inputs.
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It is these program spe
i�
 languages whi
h are fo
used on now. The programs

presented in Chapter 4 assumed natural en
odings for the inputs and these en
od-

ings are measured dire
tly in 
hara
ters and asymptoti
 notation, Big O [86, 32℄,

will be supplied for these.

6.5.1 RASPs

The �oored logarithm to base x of n: ⌊logx(n) + 1⌋ is a measure of the number

of 
hara
ters required to represent the base 10 number n in the base x numeral

system. While the PI of the RASPs in
ludes registers to hold the inputs for

the program, the registers measured only hold single digits and are the minimal

number of registers required to 
onstitute an input (only two element lists for

example).

The RASPs represent all of their inputs in base 10. Inputs are either dis
rete

digits x and y, or a list of k elements with t as the largest number in the list.

Furthermore, the PI of the RASPs grow as any of these variable grow in size.

Re
all that a 2n length RASP 
an only hold a numeral from 0 to 2n − 1.

Assuming that all inputs for a 2n RASP are numerals between 0 and 2n − 1,

the arithmeti
 fun
tions have two inputs x and y. The number of 
hara
ters for

these inputs is determined by the log rule:

⌊log10(x)⌋ + ⌊log10(y)⌋+ 2 = ⌊log10(xy)⌋+ 2

In big-O this is shortened to O(log10(xy)) be
ause the input size is dependent

on both of the mutually independent variables x and y.

Lists in the RASP are a 
ontiguous array of k registers. At least one register

holds the numeral t, where t is the largest numeral in l. The list size is therefore

bounded via the fun
tion:

k × (⌊log10(t)⌋+ 1) ∈ O(k log10(t))

The list membership and linear sear
h fun
tions also require a target value as

input whi
h 
ould possibly be as large as t, whi
h adds another ⌊log10(t)⌋ + 1


hara
ters.
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The UTM is arranged as an en
oded symbol table followed by a tape of

symbols. The UTM in RASP 
an simulate a TM with s states and t symbols.

A tape of k symbols requires k × (⌊log10(t)⌋+ 1) ∈ O(klog10(t)) 
hara
ters. The

symbol table is a list of 〈So〉〈Syo〉〈Sn〉〈Syn〉〈D〉 quintuples terminated with a 0

value (Se
tion 4.4.1).

s× t(⌊log10(s)⌋+ ⌊log10(s)⌋+ ⌊log10(t)⌋ + ⌊log10(t)⌋+ 4 + 1) + 1

= s× t(⌊log10(s
2t2)⌋+ 5) + 1

∈ O(s× t log10(s
2t2))

Pairing the symbol table with the tape expression gives:

O(k log10(t)) +O(s× t) ∈ O(k log10(t) + s× t× log10(s
2t2))

Whi
h is the �nal growth rate upper bound of TM expressions in the RASP

UTM.

A RASP to be simulated by the universal ma
hine is a list and grows a

ording

to the number of bits n for that ma
hine. Again, there is a value t whi
h is the

largest �gure in the simulated ma
hine. The spe
i�
 equation is similar to the

list growth equation above, however k is repla
ed by the growth expression of 2n:

2n × (⌊log10(2
n − 1)⌋+ 1) ∈ O(2n log10(2n − 1))

6.5.2 TM

The arithmeti
 fun
tions of the UTM take unary inputs on their tape. Thereby,

the number x requires x symbols to represent. For two variables, the growth rate

is bounded by the sizes of both: O(x+ y).

Lists are a delimited array of binary numbers whi
h 
ome in two variants;

#〈addr∗data〉 . . . and 〈data1〉∗〈data2〉 . . . These lists hold binary numbers where

t is the largest number in the list, and k is the number of elements. Both lists
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Figure 6.18: A 3 bit RASP arranged on a TM tape.

are terminated with a single symbol.

#〈addr ∗ data〉 . . . = k(log2(k) + log2(t) + 4) + 1 ∈ O(k log2(k × t))

∗〈data1〉 . . . = k(log2(t) + 2) + 1 ∈ O(k log2(t))

The linear sear
h requires address/data pairs so the input size growth is

bounded by O(k log2(k × t)). The other list fun
tions require data only lists,

so their input size growth is bounded by O(k log2(t))

The UTM is 
overed in detail in Se
tion 6.6. The universal RASP is repre-

sented on the tape as a list of 2n − 1 〈addr〉 ∗ 〈data〉 pairs. The data for the

PC has no address, and there is an additional IR whi
h is used in the 
ase of an

instru
tion requiring a parameter (Figure 6.18).

For a size 2n ma
hine, ea
h register is represented by two n-bit numbers. Ea
h

pair of numbers is pre�xed and separated by a single symbol (#,*), two symbols

end the memory and four of the n-bit numbers use a spe
ial symbol to indi
ate

that they are registers used in the F-E 
y
le. Thus the number of 
hara
ters to

represent an n-bit RASP is:

2n(2(log2(2
n) + 1) + 2) + 6 = 2n(2(n+ 1) + 2) + 6

= 2n(2n+ 4) + 6

∈ O(2n)

6.5.3 λ-Cal
ulus

The magnitude of a Chur
h numeral in the λ-
al
ulus is the number of times

the �rst argument is applied to the se
ond. Aside from the numeral for zero, the

number of 
hara
ters to represent the Chur
h numeral (n) is: 3n+8. The numeral

for 0 is 9 
hara
ters in size. For proper appli
ation, the numerals are externally

bra
keted. The numeral 3 is (λf.λx.f(f(fx))). Arithmeti
 fun
tions all have two

numerals x and y as inputs, so the number of 
hara
ters is (3x+ 8) + (3y + 8) ∈

O(x+ y).
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Lists in the λ 
al
ulus are lists of Chur
h numerals. Ea
h element of the list is

a Chur
h numeral paired with another list, or with the NIL expression. The NIL

expression is 12 
hara
ters long and PAIR is 16, not 
ounting the two external

bra
kets whi
h en
lose the expression (PAIR p q). If k is the list length of the

list and t is the size of the largest numeral, then the expression for the size of a

list is bound by the expression:

18n+ kt+ 12 ∈ O(k × t)

The membership and linear sear
h expressions also require a single numeral, whi
h


ould possibly be of size t, to sear
h for; O(t).

The UTM in the λ-
al
ulus is a list of quintuples (5 element lists without a

NIL terminator) for the symbol table, and a list of Chur
h numerals for the tape.

A quintuple 
onsists of two numerals for states, two numerals for symbols and

a numeral for dire
tion. The largest state is s, largest symbol is t, and largest

dire
tion is ONE (11 
hara
ters). With s states and t symbols, the number of

quintuples in the table is s× t, and the size equation for the symbol table is:

s t(2(3s+ 3t+ 16) + 11 + 5(16 + 2)) + 12 = s t(2(3s+ 3t+ 16) + 11 + 5× 18) + 12

= s× t× (2s+ 2t+ 101) + 12

∈ O(s2 × t + s× t2)

The tape is a list, so it 
onforms to the size equation for lists O(k × t), where k

is the length of the tape, and t is as above. The upper bound of the entire input

to the UTM in λ-
al
ulus is O(t(s2 + t+ k)).

The universal RASP takes two inputs: a list of numerals of size 2n, and an

output ve
tor whi
h is to be populated by o

urren
es of the OUT instru
tion;

whi
h defaults to NIL. The numerals in the list 
an be have a maximum size

of 2n − 1, so the numeral size is bounded by 3(2n − 1) + 8. Ea
h RASP has a

memory of 2n, so there are 2n o

urren
es of PAIR and a numeral, whi
h one

NIL to terminate the list. A RASP ma
hine is bounded in terms of bits with the
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equation:

2n(18 + 3(2n − 1) + 8) + 2× 12 + 2

= 2n(24 + 3(2n − 1)) + 26

∈ O(2n)

6.5.4 SKI

As has been the 
onvention throughout the thesis, the SKI expression have been

derived from the λ expression via bra
ket abstra
tion. It is therefore expe
ted

that the asymptoti
 growth of SKI inputs mirrors that of the λ-
al
ulus. The

spe
i�
 size equations will be di�erent however.

The number of 
hara
ters required to represent a numeral f > 2 in SKI 
an

be 
al
ulated as: 11f − 1. The numeral for 0 is KI, 1 is I, and 2 is S(S(KS)K)I.

Arithmeti
 operations over numerals x and y are thus 11(x+ y)− 2 ∈ O(x+ y)

Lists are 
onstru
ted pairwise and terminated with the SKI NIL expression.

PAIR is 37 
hara
ters long, not 
ounting the en
losing bra
kets. NIL is two


hara
ters in length. If k is the number of elements in a list, and t is the largest

numeral, then an input for the list fun
tion is:

k(11t− 1 + 39) + 2 ∈ O(k × t)

As with the other models, the SKI requires a further numeral as input for the list

membership and linear sear
h fun
tions.

The UTM is a list of quintuples and a list of numerals for the symbol table and

tape respe
tively. As with the λ-
al
ulus, symbol table entries are tuples with �ve

elements and no NIL terminator. There are two numerals for state (possibly state

s), two numerals for symbols (possibly t), and a numeral for dire
tion (either 0

or 1). Using s states, and t symbols the symbol table of a TM in SKI is sized as:

st(4× 39 + 2(11s− 1) + 2(11t− 1)) + 12

= st(152 + 22(s+ t)) + 12

∈ O(ts2 + s× t2)

The tape of the UTM is a list of k elements and up to t symbols: O(k × t). The

input size of the UTM is therefore bounded by O(t(s2 + t+ k)).
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RASPs TM SKI λ-Cal
ulus
Arithmeti
 O(log10(xy)) O(x+ y) O(x+ y)

List Membership

O(k log10(t))

O(k log2(t))

O(kt)
Linear Sear
h O(k log2(kt))
List Reversal O(k log2(t))

Stateful List Rev O(k log2(t))
Bubble Sort O(k log2(t))
Universal TM O(k log10(t) + stlog10(s

2t2)) O(s(log2(s))
2 + k) O(t(s2 + st+ k))

Universal RASP O(2n) O(2n) O(2n)

Table 6.20: Big O notation of input size growth rates

The RASP ma
hine en
oded for the SKI is a list to represent the memory of

the ma
hine, and an initially empty ve
tor for outputs. An n-bit ma
hine has 2n

registers and ea
h 
an hold a maximum number of 2n − 1:

2n(39 + (11(2n − 1)− 1)) + 4 ∈ O(2n)

6.5.5 Comparison

Table 6.20 shows the big-O notations of the input growth rate. The variables x

and y are numbers, k is the length of a list, t is the largest element of a list or

number of symbols in a TM, s is the number of states in a TM, and n is the

number of bits in a RASP ma
hine.

These rates indi
ate the how the size of en
oded input information 
hanges

depending on the size of unen
oded inputs. It is useful to expose the advantages

inherent to the en
oding system of a model.

For example, the RASP uses the set of natural numbers in its semanti
s to

evaluate ma
hines be
ause all of the RASP operations are de�ned over the set

of natural numbers. This in turn makes makes the natural numbers (and the

su

essor/prede
essor operations) impli
it information within the semanti
s of

the RASP (nowhere are the naturals de�ned in the semanti
s).

Be
ause the RASP operators are de�ned over the natural numbers, there is an

inje
tive mapping from the external representation to the internal representation.

And be
ause arrays of natural numbers are versatile enough to represent many

di�erent inputs, the en
odings are 
onsequently relatively su

in
t.

By virtue of the base 10 representation of natural numbers, the RASP has
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overall the slowest growing inputs for the fun
tions. The TM uses unary en
od-

ing for the arithmeti
 fun
tions, and binary en
odings for the other fun
tions.

Without another numeri
al base to use, the representations of the input Chur
h

numerals is linear throughout the entire set of fun
tions.

En
odings for the URASP input grows at the same rate for all models, but that

is not true for the UTM. The RASP and fun
tional inputs grow in a

ordan
e

to the number of states, symbols and the tape length. The TM however, is


on
erned only with the number of states and the length of the tape. While the

RASP and fun
tional UTM in
arnations 
an simulate any arbitrary (s,t) TM,

Minsky's UTM 
an only simulate (s,2) TMs.

This does not a�e
t the 
omputational power of the Minsky's UTM language

relative to the languages of the RASP and fun
tion model UTMs, but may make

it less expressive in that the TM to be simulated will have a more 
onstri
ted

input language.

As dis
ussed earlier, the TI a
ross paradigms sub-hypothesis (where TI = SI

+ PI) is 
ontradi
ted by the fa
t that the λ-
al
ulus and SKI have lower TIs

to 
al
ulate the fun
tions on average than the RASP and TM do respe
tively.

Viewing the growth rates, it is possible that the de�nition of TI does not go far

enough, in that it does not take the input size of fun
tions into a

ount. The

input growth size indi
ates that after a su�
iently large input, the RASPs will

have the lowest TI + input size for all models. This is little more than 
onje
ture

at this point but an interesting topi
 for future investigation.

The growth rates are for natural en
odings, whi
h are straightforward map-

pings from unen
oded to en
oded data. There exist programs whi
h are stri
tly

more (Chaitin) elegant than the programs measured, but have more 
omplex

en
odings whi
h grow faster. An example of this is the UTM by Neary.

6.6 The UTM

The 
ontrast between two di�erent universal ma
hines is an informative example

of how the en
oding and information 
ontent of the input to a program in�uen
es

the size of the program. Most notably for the TM, the elegan
e of the programs
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Figure 6.19: The tape of the UTM simulating a ma
hine M . (From [65℄, pp 26)


an be in�uen
ed by the en
oding s
heme of their input. The intuition is that

natural en
odings of inputs require more program information to de
ode, whereas

well 
onstru
ted, larger, and more 
omplex en
oding s
hemes o�oad 
omplexity

from the program to the input.

Re
alling the proof of the unde
idability of elegant fun
tions in Se
tion 3.1,

we are reminded that there exists at least one fun
tion where the amount of

information required to spe
ify the program+input 
an be improved for in�nitely

many inputs. The UTM may or may not be an example of su
h a fun
tion, but

this example shows the extent that input en
odings 
an have on program size.

6.6.1 Neary's UTM

Neary is the 
reator of the smallest 
urrently known dire
t simulation UTM. His

8 state, 4 symbol ma
hine is strongly universal, 
onsists of 30 tuples, and 
an

simulate 2 symbol Turing Ma
hines. Traditional dire
t simulation UTMs en
ode

a symbol table, and tape of a ma
hine M . The simulator maintains pointers to

whi
h state the ma
hine is 
urrently in, and whi
h position the head is at on the

tape. This intuitive 
onstru
tion requires the head of the simulator to traverse

the whole tape regularly.

Neary's ma
hine stores the entire 
urrent state on the simulated tape, thereby

using the state as a positional marker for the head. From an initial 
on�guration

with the symbol table represented as a 
olle
tion of en
oded transition rules

(ETRs), and the state/symbol pair on the simulated tape (Figure 6.19), the

ma
hine operates in four 
y
les.

The �rst 
y
le s
ans the state and symbol pair on the tape. For ea
h b in

the pair, the ma
hine ti
ks o� a 
orresponding λ on the left. It does this until
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Figure 6.20: The UTM �nding the relevant ETR (From [65℄, pp 26)

it rea
hes the word ba. In the example in Figure 6.20, the �rst three b symbols

from the en
oded state have stri
ken o� the �rst three λ's from the right.

The se
ond 
y
le, 
opies the relevant ETR over the 
urrent state and symbol

pair on the tape. In this example, the ETRs are 5 symbols long and made up

of a and b symbols. This 
y
le overwrites the ETR on the simulated tape with

the sele
ted ETR in the symbol table and initiates 
y
le three, whi
h restores the

tape of the UTM, un
he
king the λ's and the symbols of the ETR that have been


opied.

The behaviour of 
y
le four is dependent on whether the UTM has pro
essed

a left or right move. A right move exe
utes a spe
ial ETR whi
h in
rementally

shifts the ETR to the right. The symbols 0 and 1 on the tape are represented as

the pairs aa and ba. A right shift would move the ETR from ETR ba to b ETR a,

to ba ETR.

Left shift ETRs are longer than the ETRs of the right shift. Sin
e the 
opying

of the new ETR is performed from the right hand size of the old state and symbol

pair, the new left-shift ETR therefore protrudes over the spa
e of the old ETR

by two symbols to the left. This in e�e
t shifts the tape relative to the ETR head

and pushes the new head position to the right of the ETR where 
y
le 1 begins

again.

Neary's ma
hine has no spe
i�ed halting state; rather it halts through the

simulated ma
hine trying to run o� the left hand side of the tape. The te
h-

niques used in this UTM are simple in isolation. It exhibits simple sear
hing for

and 
opying of ETRs. The en
oding of the symbol table as ETRs, belies the


omplexity of the simulation.

Neary has also produ
ed a slightly larger (3,11) ma
hine whi
h operates, save
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1,0,2,1,R

1,1,1,0,R

2,0,2,0,L

2,1,3,1,L

3,0,3,0,L

3,1,3,1,L

Figure 6.21: A (3,2) TM as the ben
hmark for testing input sizes

for very minor te
hni
al details, in the same manner as the (8,4) ma
hine. These

two ma
hines have similar, but di�erent en
oding s
hemes. The (3,11) ma
hine

de�nes 31 tuples as opposed to the 30 of the (8,4) ma
hine, so if the intuition

of more tuples implying 
on
ise en
odings is 
orre
t then it is expe
ted that the

expression for the TM in the (3,11) ma
hine will be more 
on
ise than the (8,4)

ma
hine. Also in this 
omparison is the UTM from Minsky. This (23,8) ma
hine

uses many more tuples than Neary's ma
hines, but has a mu
h more natural

expression of the tape and symbol table of the simulated TM.

6.6.2 En
odings

Consider the TM in Figure 6.21. This (3,2) ma
hine will halt on Neary's UTM by

running o� the left hand side of the tape and is what shall be used for 
omparison

of three UTMs.

The tape of Neary's UTM is initially arranged as a triple 〈M〉〈q1〉〈w〉 of the

en
oding of the ma
hine as En
oded Transition Rules (ETRs), an en
oding of

the initial state, and a right unbounded tape respe
tively. A tuple tst,sy is a

a quintuple t = 〈stx, syx, syy, D, sty〉, where stx is the original state, syx the

original symbol, D is either R or L, and syy/sty are the new symbol and state

respe
tively

1

. Here |Q| is the number of states and f is the symbol table itself.

The en
oding of M is as follows:

〈M〉 = λε(t|Q|,1)λε(t|Q|,0)λε(t|Q|,0)λε(t|Q|,1)λε
′(f, t|Q|,0)

. . .

λε(t1,1)λε(t1,0)λε(t1,0)λε(t1,1)λε
′(f, t1,0)λe

1

Note that this form for tuples is from Neary and is used to make the re
on
iliation of his

work easier. This notation will not be used in any other se
tion.
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The fun
tions ε and ε′ en
ode the spe
i�
 tuples and depend on the parti
ular

UTM that the tuple is being en
oded for. For the (3,11) UTM, the fun
tions are:

ε3,11(t) =































ea(t)hb(t)
If D = R, syy = 0

hea(t)hb(t)
If D = R, syy = 1

ea(t)−1hb(t)eee If D = L, syy = 0

ea(t)−1hb(t)ehe If D = L, syy = 1

ε′3,11(f, t) =



















ea(t
R,x)−3hb(tR,x)+2

If ∃tR,x, stx 6= st1

(Nothing) If 6 ∃tR,x, stx 6= st1

e5|Q|−3h4
If stx = st1

where tR,x
is any transition rule that shifts right and transits to the 
urrent state

from state x. The fun
tions a(t) and b(t) are de�ned by the equations:

a(t) = 5|Q|+ 2− b(t)

b(t) = 2 +

y
∑

j=1

g(t, j, y)

where y is the state transitioned to by the tuple. Finally, the fun
tion g(t, j) is

de�ned:

g(t, j) =



















5 If j < y

3 If D = L, j = y

0 If D = R, j = y

Fun
tions a(), b(), and g() are 
ommon to both of Neary's ma
hines. Only

the ε and ε′ fun
tions are di�erent. The relevant fun
tions for the (8,4) ma
hine

are as follows:

ε8,4(t) =































bba(ab)a(t)b
2(b(t))

aa If D = R, syy = 0

aabbb(ab)a(t)−1b2(b(t))aa If D = R, syy = 1

a(ab)a(t)−1b2(b(t))(ab)3aa If D = L, syy = 0

a(ab)a(t)−1b2(b(t))abbbabaa If D = L, syy = 1
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ETR T Rule tR,x b(t) a(t) ε or ε′ Size

ε′(f, t1,0 q1, 0, 1, R, q2 q1, 1, 0, R, q1 2+0=2 15 e12h4
16

ε(t1,0 q1, 0, 1, R, q2 2+5+0=7 10 he10h7
18

ε(t1,1 q1, 1, 0, R, q1 2+0=2 15 e15h2
17

ε′(f, t2,0 q2, 0, 0, L, q2 q1, 0, 1, R, q2 2+5+0=7 10 e7h9
16

ε(t2,0 q2, 0, 0, L, q2 2+5+3=10 7 e6h10eee 19

ε(t2,1 q2, 1, 1, L, q3 2+5+5+3=15 2 eh15ehe 19

ε′(f, t3,0 q3, 0, 0, L, q3 (None) null null (nothing) 0

ε(t3,0 q3, 0, 0, L, q3 2+5+5+3=15 2 eh15eee 19

ε(t3,1 q3, 1, 1, L, q3 2+5+5+3=15 2 eh15ehe 19

Table 6.21: Converting the ben
hmark to the format for Neary's (3,11) UTM

(from [65℄ pp 30)

ETR T Rule tR,x b(t) a(t) ε or ε′ Size

ε′(f, t1,0 q1, 0, 1, R, q2 q1, 1, 0, R, q1 2+0=2 15 bba(ab)12b8aa 37

ε(t1,0 q1, 0, 1, R, q2 2+5+0=7 10 aabbb(ab)9b14aa 39

ε(t1,1 q1, 1, 0, R, q1 2+0=2 15 bba(ab)15b4aa 39

ε′(f, t2,0 q2, 0, 0, L, q2 q1, 0, 1, R, q2 2+5+0=7 10 bba(ab)7b18aa 37

ε(t2,0 q2, 0, 0, L, q2 2+5+3=10 7 a(ab)6b10(ab)3aa 41

ε(t2,1 q2, 1, 1, L, q3 2+5+5+3=15 2 a(ab)1b30abbbabaa 41

ε′(f, t3,0 q3, 0, 0, L, q3 (None) null null a 1

ε(t3,0 q3, 0, 0, L, q3 2+5+5+3=15 2 a(ab)1b30(ab)3aa 41

ε(t3,1 q3, 1, 1, L, q3 2+5+5+3=15 2 a(ab)1b30abbbabaa 41

Table 6.22: Converting the ben
hmark to the format for Neary's (8,4) UTM

ε′8,4(f, t) =



















bba(ab)a(t
R,x)−3b2(b(t

R,x)+2)aa If ∃tR,x, stx 6= st1

a If 6 ∃tR,x, stx 6= st1

bba(ab)5|Q|−3b8aa If stx = st1

These sets of equations en
ode the symbol table of the ma
hine. Tables 6.21

and 6.22 present the working and results of en
oding the test TM from Figure

6.21. The sixth 
olumn of the tables shows what will be on the tapes of the

UTMs. The supers
ribed numerals next to potentially bra
keted symbols indi
ate

a repetition of those symbols. Ea
h letter 
orresponds to a single symbol and the

size of ea
h 
onversion is given in 
hara
ters.

In 
ontrast to the Neary TMs, the initial tape of the Minsky UTM (Se
tion

4.4.1) is arranged as [w][st1][sy][M ]. The symbol table is arranged in quintuples

of stx, syx, sty, syy, D. The states are binary numbers, symbols are either 1 or 0,

and the dire
tion D is either 0 or 1 to indi
ate a left or right shift.
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T Rule Expression Size

q1, 0, 1, R, q2 0101011 7

q1, 1, 0, R, q1 0110101 7

q2, 0, 0, L, q2 1001000 7

q2, 1, 1, L, q3 1011110 7

q3, 0, 0, L, q3 1101100 7

q3, 1, 1, L, q3 1111110 7

Table 6.23: Converting the ben
hmark to the format for Minsky's (23,7) UTM

Ma
hine Tuple size State En
 Other Overhead UTM size Prog + UTM

N(8,4) 559 17 17 299 892

N(3,11) 254 17 17 319 607

M(23,8) 40 4 9 1270 1323

Table 6.24: Information 
ost of setting up the test TM on the three UTMs

A tuple en
oded for Minsky's simulation uses binary numbers for both states,

and single symbols for the old symbol, new symbol and dire
tion. The 
urrent

state and symbol is stored elsewhere, ne
essitating another binary number and

single symbol. There are a number of delimiters to in
lude too.

Table 6.23 shows the tuples 
onverted to their respe
tive tape expressions.

The 
onversion pro
ess of the Minsky UTM produ
es a tuple form whi
h is mu
h

more in keeping with the original quintuples. Neary's 
onversion pro
ess leaves

almost no easily dis
ernible aspe
ts of the original tuples. Without the tables and

equations, it would be very di�
ult to derive the original tuples from this form.

The initial head position and state for Neary's UTMs (〈q1〉) is an expression

of length (5|Q|)+2. For both UTMs this is a5|Q|b2. Ea
h symbol on the simulated

tape is a pair of symbols on the UTM tape where 0 = aa and 1 = ba. Ea
h ETR

is separated by the λ symbol and terminated by the sequen
e λe.

The overhead of symbols for Minsky's ma
hine 
onsists of the head position

symbol M , the 
urrent state and symbol area between the �rst Y and �rst X

from the left, the X symbol separating tuples, and the �nal Y 0 at the far right

whi
h signi�es the end of the symbol table. The simulated tape has a one to one


orresponden
e with the UTM tape.

All of the UTMs simulate arbitrary (n,2) TMs. The measurements made

measure the test TM implemented on the UTMs running with a blank tape.

Neary's UTMs require that all tuples en
oded via ε are represented twi
e in the
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States Minsky (23,8) Neary (8,4)

2 37 318

3 53 626

4 86 1034

5 106 1542

6 126 2150

Table 6.25: Number of 
hara
ters per symbol table

symbol table, and that the ε′ tuples terminate ea
h state. Table 6.24 tallies up

the program information of a UTM set up to exe
ute the test TM on a blank

tape. The tuple sizes are measured as the total of expressions returned from ε(′)

or the Minsky en
oding to populate the symbol table. `Other Overhead' symbols

are delimiters and su
h.

There are 30 tuples in the (8,4) ma
hine, 32 in the (3,11), and 113 in the

(23,8) UTM. The data from the table shows that there is almost 1.5 times the

tape information required to represent the test ma
hine on the (8,4) UTM as

opposed to the (3,11) UTM, whi
h is two tuples larger. The (23,8) ma
hine is

mu
h larger than the other two ma
hines, but the representation of the test TM

is very 
on
ise in 
omparison. For this example the TI (measured in this 
ase as

the size of the TM tuples and the en
oding of the ben
hmark ma
hines) of the

Minsky ma
hine is still larger than the TIs of the smaller ma
hines.

6.6.3 Input Growth

If s is the number of states in the ma
hine, the 
hara
ters required to implement

the symbol table for a Minsky-simulated ma
hine is:

2s(2(⌊log2(s)⌋ + 1) + 4) + (⌊log2(s)⌋+ 1) + 3

The Minsky en
oding is agnosti
 to the operations of the tuples. The Neary

en
oding however 
hanges depending on the shifts and state transitions whi
h

take pla
e. The en
oding fun
tion ε′ 
hanges the sizes of the en
oding depending

on whether there is a right moving transition into the 
urrent state. If state x

does not have a right moving transition entering it, then ε′ for the (8,4) (like state

3 in Table 6.22) ma
hine is a single 
hara
ter, rather than something larger.
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The number of 
hara
ters required to implement the ben
hmark ma
hines in

the Neary (8,4) and Minsky (23,8) UTMs are shown in Table 6.25. The growth

of Nearys en
oding here �ts the re
urren
e relation: an+1 = an + 100(n+ 1) + 8.

Solving this relation gives an equation that indi
ates that the growth in en
oding

size is quadrati
 in the number of states:

an = 50n2 + 58n+ 2

The en
oding for Minsky's ma
hine grows slightly more than quasilineraly

(n log2(n)), but far less than quadrati
ally (n
2
). A 
ompromise is rea
hed with the

fun
tion n (log2(n))
2
whi
h grows faster than the formula for Minsky's en
oding.

Neary's UTMs tape has two symbols per simulated symbol (2k), and Minsky's

UTM uses only one (k).

Thus, the big O notations for the Minsky and Neary en
oding fun
tions are

O(s(log2(s)
2) + k) and O(n2 + k) respe
tively. This data shows that although

Neary's UTM is mu
h smaller than the UTM of Minsky, the en
oding fun
tion

grows at a mu
h higher rate. Solving the formulae for the symbol table sizes and

adding in the TI of of Minsky's ma
hine at 1271 and Neary's at 300 
hara
ters

shows that the breakpoint between en
odings o

urs at 5 states. At simulating a

5 state TM, it is more information e�
ient to use the UTM of Minsky.

6.7 Con
lusions

This 
hapter has analysed the data from Chapters 4 and 5, to evaluate the hy-

potheses. Figure 6.22 summarises the hypotheses and sub-hypotheses, lists se
-

tions with analyses whi
h are for and against the hypotheses and states (C) if

the hypothesis is 
on�rmed, and (NC) if not.

What has been found is that the Strong Semanti
 Information and Strong

Total Information hypotheses (Se
tion 3.1.2) 
annot be fully 
on�rmed. While

the number of 
hara
ters as an information metri
 is predi
tive for the RASP

family and between models of the same paradigm, the metri
 appears to fail to

a

ount for the di�eren
es between models of di�erent paradigms.

The SI and TI hypotheses are 
onsistent within the 
on�nes of model paradigms
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1 Strong Semanti
 Information hypothesis (NC)

1a. SI within family. For: 6.2.1 (C)

1b. SI within paradigm. For: 6.2.2, 6.2.3 (C)

1
. SI a
ross paradigms. For: 6.2.4, 6.2.7 Against: 6.2.5, 6.2.6 (NC)

2. Strong Total Information hypothesis (NC)

2a. TI within family. For: 6.2.1

2b. TI within paradigm. For: 6.2.2, 6.2.3 (C)

2
. TI a
ross paradigms. For: 6.2.4, 6.2.7 Against: 6.2.5, 6.2.6 (NC)

3. Strong Semanti
 Cir
uit hypothesis (C)

3a. SC within family hypothesis For: 6.3.1 (C)

3b. SC within paradigm hypothesis For: 6.3.2 (C)

4. Strong Total Cir
uit hypothesis (NC)

4a. TC within family hypothesis Against: 6.3.1 (NC)

4b. TC within paradigm hypothesis Against: 6.3.2 (NC)

Figure 6.22: Hypotheses with eviden
e and 
on�rmation status

(Se
tions 6.2.1 � 6.2.3). What separates the paradigms is their internal represen-

tation and method of evaluation. The RASP and TM are primarily based on

arrays. The λ-
al
ulus and SKI models have a graph based internal model and

evaluation system. It is 
onje
tured here that this di�eren
e between the models

a�e
ts the data whi
h is 
ontrary to the SI and TI hypotheses. What is implied by

the 
urrent results is that the fun
tional models are more `information e�
ient'

on average in 
omparison to the imperative models.

There appears to be a large separation in the in the TI amounts required

for the RAPS/λ-
al
ulus opposed to the TI required for the TM/SKI (Se
tion

6.4.1). While the RASPs and λ-
al
ulus have the 
on
ept of random a

ess/vari-

ables for the manipulation of data and stru
tures, the TM and SKI a

ess data

in a sequential fashion. The TI required to implement the universal TM and uni-

versal RASP programs in the TM and SKI are highly 
orrelated; the information

amounts are mu
h larger than the information amounts required for the RASP

and λ-
al
ulus implementations.

The FPGA implementations, in de�an
e of the abstra
t TI implementations,

show that while there is a relationship between the number of times a parti
ular


omponent is used and the abstra
t TI of a program in a model, that relationship

disappears when attempting to 
ompare the TIs of di�erent models (Se
tion
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6.3.3). In other words, if program A uses more LUTs on an FPGA than program

B for the TM, we 
an be reasonably 
on�dent that A has a higher TI than B.

However if A in the RASP uses more LUTs than B in the TM, we still 
annot

dedu
e the relative TIs between programs A and B. Cross model 
omparisons

do not work.

Part of the reason for this is there is an overhead in the semanti
s in
urred

proportionally to the size of the programs. While the abstra
t semanti
s 
an

easily de�ne a number as a member of the natural numbers, the FPGA reali-

sations require a 
on
rete range. As the number grows, so must the number of


omponents required to represent that number at the hardware level.

Despite the TI being a poor indi
ator of relative 
ir
uit sizes, there exists

strong 
orrelations between 
omponent 
ounts and the information 
ontents of

programs. Table 6.11 shows that there is a very strong 
orrelation between LUTs

and the TI levels for TMs. The 
orrelation for RASPs is not as strong, but shows

a 
orrelation of both LUTs and sli
e registers with the TIs.

Potential elegan
e has been sa
ri�
ed by the author in favour of natural ex-

pressions of program inputs (Se
tion 3.1.1). Analysing the information growth

rates of the models (Se
tion 6.5) indi
ates that the growth rate of the TIs of

RASP programs of this thesis, paired with the inputs is lower in the limit than

the other models (Table 6.20). The TM follows the RASP due to its binary en-


oding. The fun
tional models with linear en
odings are the largest. This holds

only for the spe
i�
 models and programs in this thesis, but is worthy of further

investigation.

A 
omparison between the ma
hines of Neary and Minsky shows just how

dramati
 an e�e
t input en
oding s
hemes 
an have on the elegan
e of program

sizes (Se
tion 6.6). The input size for Neary's ma
hines grows quadrati
ally in

relation to the number of states, while the input size for the Minsky UTM grows

in an almost quasilinear fashion. Simulating a TM with 5 states requires less

information for the Minsky TM than for Neary's (8,4) TM (Se
tion 6.6.3, Table

6.24).
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Dis
ussion and Con
lusion

This 
hapter 
on
ludes the thesis. Se
tion 7.1 re
aps the aims, methodology,

results, and 
ontributions of the work. Se
tion 7.2 is a dis
ussion ranging from

the role of type systems in programming languages to re
reational programming.

Ea
h of these topi
s tou
hes on an aspe
t of this investigation and are dis
ussed

in an informal manner. Finally, Se
tion 7.3 
overs possible further work arising

from this investigation.

7.1 This Work

7.1.1 Aims

This work has been an empiri
al exploration of the intuition underlying the ex-

pressivity of models of 
omputation and languages. The intuition is that more

information in the semanti
s of model implies that the model is more expressive

than a model with 
omparatively less information. That extra information in

turn pre
ipitates smaller programs in general.

More formally, the work has been an investigation into the relationship be-

tween the information 
ontent of the semanti
s of a model of 
omputation, and

the information 
ontent of programs written for that model. This is also known

as the �Con
iseness Conje
ture� (Se
tion 2.5).

The investigation was dire
ted at resolving four hypotheses (Se
tion 3.1): the

Semanti
 Information (SI) hypothesis, the Total Information (TI) hypothesis, the

Semanti
 Cir
uit (SC) hypothesis, and the Total Cir
uit (TC) hypothesis.
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Consider two programs a and b whi
h 
ompute the same fun
tion and are

programmed in 
omputational models A and B respe
tively. The SI hypothesis

states that if model A has larger semanti
s than B, then program a will be

smaller in size than b on average. In essen
e, this asserts that there is an inverse

relationship between semanti
 size and mean program size.

The TI hypothesis not only 
onsiders the size of the program, but also of

the semanti
s. Consider programs a1 and b1 whi
h 
al
ulate a mathemati
ally

trivial fun
tion su
h as addition, and programs a2 and b2 whi
h 
al
ulate a more


omplex fun
tion su
h as a universal ma
hine. If model A has signi�
antly larger

semanti
s than model B, then the Total Information (size of program + size

of semanti
s) to 
al
ulate addition in model A may be higher than the Total

Information to 
al
ulate addition in B: sem(A) + a1 > sem(B) + b1.

Considering the 
ase of the more 
ompli
ated fun
tion. The TI hypothesis

states that with B having mu
h smaller semanti
s than A, the program b2 will

be mu
h larger in size than a2. This di�eren
e in size of programs is larger than

the di�eren
e in size of semanti
s and therefore sem(A) + a2 < sem(B) + b2.

The SC and TC hypotheses (Se
tion 3.1.3) are in referen
e to Field Pro-

grammable Gate Arrays (Chapter 5). The SC hypothesis states that there is a

dire
t relationship between the size of a models abstra
t semanti
s, and the size

of a 
ir
uit whi
h realises those semanti
s.

The TC hypothesis is an analogue of the TI hypothesis above. Models whi
h

larger semanti
 
ir
uits will produ
e an overall smaller 
ir
uit implementing a


omplex fun
tion than a model with a simpler semanti
 
ir
uit.

7.1.2 Method

To resolve these hypotheses, 6 models of 
omputation are 
hosen. Models of


omputation 
an be separated into distin
t groups based on their 
hara
teristi
s.

Two of these groups: imperative and fun
tional (Se
tion 2.3) are represented here.

The imperative models in
lude the Turing Ma
hine (Se
tion 2.3.1.1) and a family

of three Random A

ess Stored Program (RASP, Se
tion 2.3.1.2) ma
hines. The

fun
tional models in
lude the λ-
al
ulus (Se
tion 2.3.2.1) and the SKI 
ombinator


al
ulus (Se
tion 2.3.2.2).
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These models have their methods of exe
ution and internal data represen-

tations formalised in Stru
tured Operational Semanti
s (SOS, Se
tion 3.4) and

thirteen programs are written for ea
h model (Chapter 4). The programs en-


ompass fun
tions in the set of arithmeti
, those from list pro
essing, and the

universal ma
hines.

The sizes of the semanti
s and programs were measured by the number of


hara
ters it takes to write them (Se
tion 3.2) as is traditional in information

theory. As su
h, the programs were written to be as �elegant� (Se
tion 2.2.2) as

possible while utilising what 
ould be 
alled a �natural� input/output en
oding

(Se
tion 3.1.2). As the most elegant program to 
al
ulate a fun
tion may not use

a natural en
oding, the programs and semanti
s measured are termed �su

in
t�

(Se
tion 3.1.2).

As we are interested in the total amount of information required to spe
ify

the program to 
ompute fun
tions, there are issues inherent in the approa
h of

spe
ifying the semanti
s of models in an unspe
i�ed formalism. Attempts to

spe
ify that formalism perpetuate su
h issues (Se
tion 5.1). Thus the RASP and

TM models are implemented in hardware using Field Programmable Gate Arrays

(FPGAs, Chapter 5). The semanti
s and programs written for these models

are 
ompiled down to ele
troni
 
omponents and the number of 
omponents are


ounted.

7.1.3 Results

The SI and TI hypotheses make general statements about how the information

required to spe
ify problems 
ompares against models with di�erent sizes of se-

manti
s. Given the varian
e of 
omputational models tested in this investigation,

the hypotheses were split into three sub-hypotheses ea
h. These sub-hypotheses

are: SI/TI within family (
omparing the three RASP models), SI/TI within

paradigm (
omparing the TM with the RASPs, and the λ-
al
ulus with SKI),

and SI/TI a
ross paradigms (
omparing the TM with the λ-
al
ulus/SKI and

the RASPs with the λ-
al
ulus/SKI). In doing this, an exhaustive 
omparison is

made of the programs sizes of one model with the program sizes of another.

Chapter 6 provides the primary analysis of the measurements made to resolve
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the four hypotheses (Se
tion 6.7 and Figure 6.22):

• The SI/TI within family hypotheses are 
on�rmed with respe
t to the data.

• The SI/TI within paradigm hypotheses are 
on�rmed with respe
t to the

data.

• The SI/TI a
ross paradigms hypotheses are reje
ted with respe
t to the

data.

• The Strong SI and TI hypotheses are not 
on�rmed by the data.

• The SC hypothesis is 
on�rmed by the data.

• The TI hypothesis is reje
ted by the data.

In general, there is eviden
e for Felleisen's Con
iseness Conje
ture. However

the Total Information measure (semanti
s size + program size) used to gather

this eviden
e 
annot extend the 
onje
ture to 
omparing models of 
omputation

a
ross paradigms.

While TI seems suitable for 
omparing di�erent models with the same eval-

uation methodology (i.e. imperative or graph redu
tion evaluation), it appears

to be insu�
ient for heterogeneous 
omparisons of models. There appears to be

subtle di�eren
es between the semanti
s whi
h are not adequately 
onveyed by a

simple 
hara
ter 
ount (Se
tion 6.2.8).

One of these subtleties 
ould be in the impli
it de�nition of operators in the

semanti
s. Se
tion 7.3.5 dis
usses this in detail, but it is seemingly an issue as to

what is measured in the semanti
s and what is implied. For instan
e, the RASPs

use the natural numbers without any de�nition of them, whereas the λ-
al
ulus

and SKI use no su
h numeri
al 
onstru
ts.

Another lies in the de�nition of program inputs. A fun
tion is 
omputable if

there exists a program to solve any instan
e of that fun
tion. The program takes

the instan
e as input, 
hurns, and returns the solution. For any one fun
tion, if

it is 
omputable then there are an in�nite number of programs to 
ompute the

fun
tion. This spe
trum of programs may vary from 
lever to naïve, e�
ient to

wasteful, small to large, and many other opposing adje
tives.

The FPGA hypotheses assert that there is indeed a relationship between the

size of the semanti
s represented in SOS, and the size of a 
ir
uit whi
h represents

the semanti
s. This 
on�rms the SC hypothesis (Se
tion 6.3.3). The TC hypoth-
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esis 
annot be 
on�rmed however. Given that the TC is an FPGA analogue to

the TI hypothesis, we would expe
t that the Total Cir
uit size of some program

in models A and B would provide some insight into the relative expressiveness

of the two models. It turns out that this 
annot happen. Part of the reason for

this is there is an overhead in the semanti
s in
urred proportionally to the size

of the programs. While the abstra
t semanti
s 
an easily de�ne a number as a

member of the natural numbers, the FPGA realisations require a 
on
rete range.

As the number grows, so must the number of 
omponents required to represent

that number at the hardware level.

While the relative number of 
omponents in FPGA implementations of models

is a poor indi
ator of the TI relationships between those models; there exists a


orrelation between the number of a spe
i�
 
omponent (the pre
ise 
omponent

is depended on the model), and the TI of the program implemented. In other

words, given two FPGA programs a and a1 written for the same model, if a1 uses

more of some 
omponent than a, then there is a reasonable 
ertainty that the the

abstra
t program a1 will also be larger than the abstra
t program a.

The logi
 optimiser of the FPGA 
ompilation software is an unknown variable

in these 
omparisons. At 
ompile time, the settings were tuned for maximum


ompression and it is 
urrently unknown quite how the 
ompiler optimises and

pa
ks the logi
 into registers and LUTs. Investigation into this 
ould provide

insight into why there is a 
orrelation between 
omponent 
ounts and TIs, but

why the same 
omponent 
ounts give no indi
ation between the relative TIs of

models.

7.1.3.1 Other Results

Aside from resolving the hypotheses for the 
hosen fun
tions in the 
hosen models,

the analysis has un
overed other results:

• There is eviden
e of a large jump in the required TI arising from sequential

vs random a

ess memories (Se
tion 6.4.1).

• There is a relationship between the size of inputs and the TI of a program

in a model (Se
tion 6.5.5).

Through 
ontrasting the UTM of Minsky with the UTMs of Neary (Se
tion
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6.6), it has been shown that two programs whi
h 
ompute the same fun
tion


an vary dramati
ally in size by virtue of their input en
oding. Programs with

dense en
oding systems of many symbols have relatively 
on
ise realisations of

the input data, whereas programs with sparse en
odings have larger inputs.

The 
urrent eviden
e shows that programs whi
h dense input en
odings are

larger than programs with sparser en
oding systems. It was shown that for up

to TMs of size (5,2), Neary's (8,4) UTM has a lower TI + input en
oding size

than the Minsky UTM. However, for inputs of greater size, the Minsky ma
hine

requires less information for the TI + input. This suggests that over all inputs,

programs with denser input en
odings require less overall information.

Input en
odings are not something whi
h is addressed by the Con
iseness

Conje
ture, or Chaitin's elegan
e. Indeed, if one were to also 
ount the size of

inputs as part of the total information, it would be found that there are fun
tions

whi
h 
annot have an optimal implementation for almost all inputs. These �nd-

ings are 
onsistent with Blum's speedup theorem whi
h addresses this spe
i�
ally

(Se
tion 3.1.1).

And, if one were to ignore input sizes and used Chaitin's elegant �nder pro
ess

to obtain a supposedly elegant program, it is only guaranteed that the found

program is elegant relative to a spe
i�
 input en
oding.

The TI of the TM and SKI is mu
h larger than the TIs of the RASP ma
hines

and λ-
al
ulus (Se
tion 6.4.1). The reason for this is suspe
ted to be random

a

ess memories. The RASP 
an modify data in arbitrary registers via dire
t

addressing. The λ-
al
ulus abstra
tion me
hanism reads and reorders inputs to

the expression, pre
isely pla
ing them via substitution without unduly in�uen
ing

the stru
ture of the rest of the expression not involved in the substitution.

In 
ontrast, the sequential a

ess of the TM tape requires that it uses at least

one transition to shift left or right to a

ess and modify data. Likewise, the SKI

emulates the abstra
tion me
hanism of the λ-
al
ulus by using the S 
ombinator

to `draw' inputs into terms, and the K 
ombinator to eliminate unrequired du-

pli
ate terms. These attributes of the SKI and TM bloat their expressions and

programs with `memory a

ess' terms whi
h are not present in the RASP and

λ-
al
ulus 
ounterparts.
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7.2 Related Aspe
ts

The e�ort of the investigation was dire
ted towards being as broad and 
onsistent

as possible in the 
olle
tion of data to resolve the hypotheses. The 
olle
tion re-

sulted in 6 models of 
omputation and 13 programs. Furthermore, there were the

FPGA implementations of the RASPs and TMs. This is a lot of data, but leaves

the depth of the investigation, in parti
ular the formalisation of the relationships,

other minimal systems, alternative semanti
 representations, and other language

features somewhat la
king.

Despite not being expli
itly addressed in earlier 
hapters, there are arguments

to be made whi
h pla
e these features of models and programming languages in

the 
ontext of the SI, PI, and TI metri
s explored.

7.2.1 Conservative Extensions

Felleisen's expressiveness as des
ribed in Chapter 2 is based on the 
on
ept of


onservative extensions and restri
tions. The idea is that a Turing Complete

formal system A is more expressive than a Turing Complete system B if it 
an

be shown that A is a 
onservative extension of B.

The RASP2 and 3 are not true 
onservative extensions of the original RASP.

Rather, the respe
tive ADD and SUB instru
tions have been added to the se-

manti
s, and the INC and DEC instru
tions removed. From Se
tion 2.5:

De�nition 2 (Conservative Extension/Restri
tion). A language L′
is a 
onser-

vative extension of L if:

• the fun
tions of L are a proper subset of those of L′
, with the di�eren
e

being {F1, F2, . . .};

• the sets of L-phrases and L-programs are proper subsets of their L′

oun-

terparts where there are no phrase or programs that 
ontain the extra L′

fun
tions {F1, F2, . . .};

• evalL is a proper subset of evalL′
and for all L-programs P , evalL(P ) holds

if and only if evalL′(P ) holds.

The 
onverse is a 
onservative restri
tion.
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The RASP2 and RASP3 do not �t this des
ription. However by the data

gathered, they are more expressive in that they require less information on average

than the RASP to express programs. The author believes that for models with

a similar evaluation method, the amount of semanti
 information is an indi
ator

of relative expressiveness. Se
tion 7.3 outlines work that 
an be done in this area

to 
on�rm or deny su
h a notion.

With the framework 
onstru
ted in previous 
hapters, it is not hard to man-

ufa
ture a RASP language that is a true 
onservative extension. The RASP2-1

and RASP3-1 are 
onservative extensions of both the vanilla RASP and their

respe
tive RASPx ma
hines. In essen
e, these ma
hines have INC and DEC in-

stru
tions as well as ADD and SUB, and 
an use INC pla
e of �ADD 1� whi
h is

sometimes ne
essary for RASP2/3 programs.

Predi
tions 
an be made as to the information levels of the two extensions.

The semanti
 information of the extensions will be greater than that of the RASP2

and RASP3 owing to the INC and DEC instru
tions. It is also hypothesised that

the program informations of the extensions will be the same, or less than the PI

of the RASP and RASP3. The TI of the extensions will be initially greater than

that of the RASP2 and RASP3; and, re
alling the small amount of TI separating

the RASP2 and RASP3, is unlikely that the extensions will have a lower TI than

that of the smaller RASPs.

The RASP2-1 and RASP3-1 models have 10 instru
tions: the basi
 8 from the

vanilla RASP, and the ADD and SUB instru
tions from the RASP2 and RASP3

models respe
tively. This adds an extra 54 
hara
ters to the language semanti
s.

The ADD and SUB instru
tions are mapped to the numbers 3 and 4, with the

other instru
tions following on afterwards as in the de�nition of the RASP in

Chapter 2.

Tables 7.1 and 7.2 show the 
hara
ters of the implementations, and the number

of instru
tions required. As expe
ted the extensions fa
ilitate smaller programs

than the ordinary RASP2 and RASP3, but the di�eren
e is rather negligible.

The extension is really only useful for repla
ing instru
tions su
h as �ADD/SUB

1� with the relevant INC or DEC, so it saves one instru
tion.

Where the di�eren
e is not negligible is in the RASP2 vs the RASP2-1 �gures
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RASP2 RASP3 RASP2-1 RASP3-1

Addition 9 25 9 25

Subtra
tion 59 61 59 59

Equality 26 27 26 27

Multipli
ation 59 60 59 59

Division 131 134 131 131

Exponentiation 129 131 129 129

List Membership 129 131 129 130

Linear Sear
h 132 135 132 134

Reverse List 135 137 135 134

Stateful Rev List 273 277 273 273

Bubble Sort 549 297 292 290

Universal TM 571 574 572 571

Universal RASP 1209 1231 1208 1205

Semanti
s Size 585 587 639 641

Table 7.1: Program and semanti
 sizes

RASP2 RASP3 RASP2-1 RASP3-1

Addition 4 6 4 6

Subtra
tion 22 22 20 20

Equality 9 11 9 11

Multipli
ation 24 24 23 23

Division 45 45 42 42

Exponentiation 43 40 41 38

List Membership 34 31 33 30

Linear Sear
h 36 35 35 33

New List Rev 45 43 43 39

In Pla
e Rev 78 77 73 72

Bubble Sort 127 123 121 117

Universal TM 148 137 143 131

Universal RASP 292 283 280 270

Arithmeti
 Mean 69.76 67.56 66.69 64

Geometri
 Mean 40.79 41.47 39.11 39.43

Table 7.2: Registers used by the various RASP2/3 and their extensions
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RASP2 RASP3 RASP2-1 RASP3-1

Arith Mean All PI 262.38 247.69 242.62 243.62

Arith Mean All TI 847.38 834.69 881.62 884.62

Geo Mean All PI 130.78 137.21 124.59 135.21

Geo Mean All TI 802.48 793.38 842.69 846.30

Table 7.3: Means of the information levels of the implementations

for the bubble sort. The extension and relevant repla
ement of ADDs with INCs

dropped the number of instru
tions below the lower 2n−3 threshold whi
h di
tates

RASP size, allowing for a smaller overall memory size. Table 7.2 shows that the

RASP2-1 requires only 121 instru
tions, rather than 123 instru
tions like the

RASP2.

The arithmeti
 and geometri
 means for all of the fun
tions are in Table 7.3.

As expe
ted, the overall TIs of the extensions are larger than the non-extended

RASPs. The savings on PI over the set of fun
tions is lower than added SI. But

as the set of tested fun
tions in
reases in size, TIs of the RASP2-1 and 3-1 will

in
rease slower than that of the RASP2 and 3.

The TI of the RASP2-1 is lower than the TI of the RASP3-1. This is be
ause

of the aforementioned drop in the size of the RASP2 ma
hine for 
omputing

the bubble sort. This data 
ontravenes hypothesis 2a: TI within model family.

However Table 7.2 does show that the RASP3-1 requires less instru
tions than

the RASP2-1 for the list and universal fun
tions and that the low number of


hara
ters for the RASP2 implementing the addition fun
tion is largely the 
ause

of the imbalan
e. It is not unreasonable to proje
t that this imbalan
e is 
orre
ted

as the set of tested fun
tions grows.

The RASP2-1 and RASP3-1 are true 
onservative extensions of the RASP

and RASP2 or RASP3. Felleisen's 
on
iseness 
onje
ture holds in this 
ase as

programs implemented in the extended models are on average smaller than those

in the unextended models. This is also further eviden
e to the 
laim that SI =

expressiveness for models with similar evaluation methods.

While they are a greater distan
e apart than the RASPs, the λ-
al
ulus and

SKI operate amongst similar prin
iples. Indeed, re
alling the mapping from SKI


ombinators to λ terms from Chapter 2 (Figure 7.1), the SKI 
an be mapped

dire
tly into the λ-
al
ulus syntax.
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I ≡ (λx.x)
K ≡ (λx.λy.x)
S ≡ (λx.λy.λz.xz(yz))

Figure 7.1: Combinator λ terms

SKI λ-Cal
ulus SKλ
Addition 16 27 16

Subtra
tion 113 46 46

Equality 208 117 177

Multipli
ation 8 15 8

Division 565 229 229

Exponentiation 11 9 9

List Membership 362 208 208

Linear Sear
h 385 236 236

List Reversal 190 134 134

Stateful List Rev 1397 460 460

Bubble Sort 1903 550 550

Universal TM 2593 584 584

Universal RASP 9554 1084 1084

Semanti
s Size 291 515 600

Table 7.4: SKλ programs in 
omparison

The SKI language 
an be de�ned as a trun
ated version of the λ-
al
ulus

without arbitrary variables and abstra
tions. The only permissible abstra
tions

are those within the S, K, and I 
ombinators. As a result, the 
ommon language

universe for the SKI and λ-
al
ulus is very similar to the λ-
al
ulus semanti
s.

SKλ is a 
onservative extension of both the SKI and λ-
al
ulus. Retaining

all of the abstra
tion, variable, and redu
tion rules of the λ-
al
ulus, SKλ is

augmented with named expressions, S, K, and I. At parsing time, these named

expressions get transformed into their 
orresponding λ terms and parsed into the

redu
tion tree.

Considering how we make use of named terms to explain λ expressions all

throughout this thesis, espe
ially in Chapter 4, we 
an immediately see how

advantageous su
h a me
hanism would be. Considering only the abbreviations S,

K, and I, we 
an sele
t the smaller of the SKI or λ-
al
ulus as the SKλ program.

Doing this yields Table 7.4.

There are likely other optimisations whi
h 
an result in smaller expressions,
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e =⇒ I(e1)

parse(e) =⇒ {APP, parse(λx.x)parse(e1)}

(a) Parsing an I

e =⇒ K(e1)

parse(e) =⇒ {APP, parse(λx.λy.x)parse(e1)}

(b) Parsing a K

e =⇒ S(e1)

parse(e) =⇒ {APP, parse(λx.λy.λz.x z(y z))parse(e1)}

(
) Parsing an S

Figure 7.2: Extra parsing rules for SKλ

but this simple sele
tion of the most 
on
ise expression of the two models demon-

strates how the SKλ has lower averages than either the SKI or λ-
al
ulus.

The semanti
s of SKλ primarily follow those of the λ-
al
ulus, previously

presented in Se
tion 3.4.3. These semanti
s are augmented by a series of rules

whi
h substitute the 
orre
t expressions in for the 
ombinators. Three new rules

are required whi
h are shown in Figure 7.2. In addition, the 
ombinators have to

be added to the syntax of the terms. The sizes of the new rules are added to the

λ-
al
ulus semanti
s to derive the semanti
s size at the bottom of Table 7.4.

As a 
onservative extension of the SKI and λ 
al
uli, the SKλ language has

larger semanti
s than either. It also produ
es smaller programs than either on

average. Again, Felleisen's 
on
iseness 
onje
ture reinfor
ed by this data.

7.2.2 Compilation

The fo
us of this thesis presents the models as interpreted languages. Essentially,

the program universal SOS ma
hine �runs� the SOS evaluation fun
tion (E() in

the 
ase of the RASPs) step by step. These interpreted semanti
s are a 
onstant

size for all of the models. A RASP program whi
h immediately halts has the

same SI as the universal RASP ma
hine, despite not using 7/8 of the instru
tion

set.

More 
ommon in the programming language spa
e is a 
ompiler. A 
ompiler
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ombines a program in language A with the semanti
s of A to produ
e a self


ontained pa
kage written in the language of the exe
uting ma
hine X , whi
h is

also known as the target ar
hite
ture.

De�ning a 
ompiler for the RASP ma
hines would perform a semanti
 fold

where only the rules whi
h 
orrespond to instru
tions in the program would be

pa
kaged. Using the immediately halting program above, the model semanti
s of

the RASP and rule for the HALT instru
tion would be all that was required to

exe
ute the program 
orre
tly. Dis
arding rules that the program will not exe
ute

results in a lower TI level than indi
ated in previous 
hapters.

In this way, 
ompilers 
an redu
e the TI of programs for models. Their e�-


a
y of TI redu
tion is based on the size of the original semanti
s. A semanti
s


ontaining many rules/instru
tions and a small program utilising only a hand-

ful of those rules has a large redu
tion in TI size. A model with 
omparatively

small or �fully utilised� (where every rule is used in the exe
ution of a program)

semanti
s su
h as the TM or λ-
al
ulus, would not a
hieve su
h a redu
tion in

size.

The RASPs of this thesis are not an ideal testbed for a 
ompiler. If a 
ompiler

in
ludes only the rules where it is immediately evident that they will be exe
uted,

the resulting semanti
s will only 
ontain the rules for the initial instru
tions. If an

instru
tion is exe
uted via self-modi�
ation whi
h is not in
luded in the bundle

of semanti
s then the ma
hine will halt, even if it is a valid instru
tion in the

original semanti
s.

Future work addressing the 
ompilation of programs to be run on the hy-

potheti
al target ar
hite
ture X should use models whi
h produ
e �stati
� (non-

rewriting) programs. A 
onvenient model to use would be the RAM model, whi
h

is not unlike the RASP and exe
utes stati
 programs.

7.2.3 Types

A type system is a restri
tion on the set of otherwise admissible programs. These

programs are synta
ti
ally 
orre
t, and all assignments and fun
tion 
alls use

either the 
orre
t types, or the in
orre
t types are properly 
asted into the 
orre
t

type beforehand.
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At a low level, programs and data are represented using very simple stru
tures.

Most, if not all, ma
hines store and pro
ess information as binary numbers. Say

that there was no type systems, and that ea
h binary number referred uniquely

to a pie
e of information. If A to Z were the binary numbers 00001-11010, then

whi
h binary numbers represent the numerals 1 to 26?

A type system provides 
ontext for how a parti
ular pie
e of data should be

evaluated. While the data is represented homogeneously at the lowest level, it

should not be allowed that the letter �A� (ASCII value 01000001) 
an be added

to the number 65 (also 01000001).

Say that one de
ided to es
hew the traditional de�nitions of NIL and NULL

(Se
tion 2.3.2.1) for marking the end of and testing for the end of lists respe
-

tively. A more 
on
ise expression for NIL is just FALSE = λx.λy.y, whi
h saves

three 
hara
ters per o

urren
e. A test for the new end of the list is NULL =

λp.p(λx.NOT). Reuse of this 
ommon Boolean fun
tion for a very spe
i�
 pur-

pose breaks when a list of booleans is traversed. The test for NIL is a test for

FALSE, whi
h may possibly be in multiple positions in the list.

What is more disheartening is that the expression for FALSE is also the ex-

pression for ZERO. So not even lists of numbers are safe from this poor 
hoi
e of

representation. A typi
al type system is a pair of the term and a number whi
h

indi
ates the type of the term. Upon appli
ation of a fun
tion to arguments, the

types of the arguments are 
ompared to the expe
ted types and if 
orre
t, the

fun
tion is 
omputed with the input and if not, the running program terminates.

The implementation of a type system in this manner is ex
essive for the set

of fun
tions examined here, but as the set grows and fun
tions get more 
ompli-


ated, a type system is a relatively 
on
ise method to extend the appli
ability of

expressions to multiple domains.

7.2.4 Semanti
 S
hemes

The semanti
s of the models in this investigation were formalised as Stru
tured

Operational Semanti
s (SOS). The SOS notation is �exible enough to spe
ify

the semanti
s of the models in a reasonably 
on
ise and uniform fashion. The

ability to spe
ify the �ne details of model operation resulted in a set of small step
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operational semanti
s.

The SOS is also a model of 
omputation. The elegan
e/su

in
tness of the

model semanti
s is an indi
ation of just how expressive the SOS model is. Sin
e

SOS is a model of 
omputation, the semanti
s 
an be thought of as universal

ma
hines. There is little assuran
e that the information 
ontent of the semanti
s

a

urately re�e
ts the expressivity of the models represented. While the infor-

mation 
ontent measures broadly align with the intuition of model expressivity,


orroborating measurements should be obtained by implementing universal ma-


hines of all models the model in every other model. Currently only the TM and

vanilla RASP are implemented.

It is worth remembering that the assertions of model expressivity, relation-

ships and the supporting measurements made by this thesis apply only to the

models and notations explored here. There are numerous alternate notations and


onservative extensions to models whi
h may 
hange the relationships.

DeBruijn indi
es are ostensibly a di�erent notation for the λ-
al
ulus [21℄.

Rather than variable names, λ abstra
tions are numbered starting from the in-

nermost terms to the outermost. Bound variables are numerals whi
h o

ur in

the body of the expression. A numeral n is bound by the nth λ from the innermost

level. A variable n is bound if it is in the s
ope of at least n λ's.

As an example, 
onsider the term:

(λx.λy.z (x(λp.p x y)))(λv.v k) ≡ (λλ4(3(λ132)))(λ12)

In the term, z and k are unbound in their parent expressions. Sin
e there are

three nested λ's in the expression, z is represented as `4' as to be out of s
ope.

Likewise, there is a single λ in the expression on the right whi
h binds the v, so

the k is represented as `2'.
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Redu
tion to normal form follows already established 
onventions:

(λx.λy.z (x(λp.p x y)))(λv.v k) ≡ (λλ4(3(λ132)))(λ12)

⇒β (λy.z((λv.v k)(λp.p(λv.v k)y))) ≡ (λ4((λ15)(λ1(λ15)2)))

⇒β (λy.z((λp.p(λv.v k)y)k)) ≡ (λ4((λ1(λ15)2)5))

⇒β (λy.z(k(λv.v k)y)) ≡ (λ3(4(λ14)2))

⇒β (λy.z(k(yk))) ≡ (λ2(3(13)))

Given this behaviour, DeBruijn indi
es are a model for the λ-
al
ulus, however

the evaluation semanti
s are di�erent. In the above redu
tion the variable z

does not move, but it is renamed twi
e as the redu
tion pro
eeds. Similarly the

variable k is renamed to be one above z. When a substitution is made under

DeBruijn indi
es, there is a global renaming e�ort for the entire term to rename

all variables a

ording to the number of nested λs there are. This is as opposed

to the familiar λ-
al
ulus where renaming is done at a lo
al level.

Expressions using DeBruijn indi
es are typi
ally shorter than expressions us-

ing the syntax of the λ-
al
ulus de�ned in this thesis. However the semanti
s of

a DeBruijn model requires this global renaming and a notion of how to 
ount in

order to name variables. Expressions using DeBruijn indi
es therefore have to be

evaluated on their own terms with their own semanti
 s
heme. The semanti
s

of DeBruijn's λ-
al
ulus have not been made expli
it and measured, but it is

theorised that this global renaming behaviour requires larger semanti
s than the

λ-
al
ulus system exhibited throughout this investigation.

7.2.5 Related Minimalism

Elegan
e, or minimalism, in the size of programs is often a desirable property, in

so far as a
hieving elegan
e does not adversely a�e
t other measures of how good

a program is; su
h as time/spa
e e�
ien
y or readability. This se
tion brie�y

dis
usses systems whi
h embra
e minimalism to the fullest and the 
ommunity

of programmers whi
h do the same.
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7.2.5.1 Another minimal system

A Turing tarpit is a model of 
omputation whi
h 
an do everything, but is very

hard to use. The term was 
oined by Perlis in [67℄:

54. Beware of the Turing tar-pit in whi
h everything is possible but nothing of

interest is easy.

The SKI and TM are small models of 
omputation, both with reasonably

tarpitty qualities. Without judi
ious use of white spa
e, it is near impossible to

determine the fun
tion of a suitably large SKI term. And without a sket
h of a

state ma
hine/sample tape to 
hange it is di�
ult to determine the fun
tion of

a TM.

Iota is a single 
ombinator universal system [89℄. The 
ombinator is i where:

i ≡ (λx.xSK)

where S and K are from the SKI 
ombinator 
al
ulus. The system also uses an

appli
ation operator; `*' su
h that ∗FF = (FF ) where F is an expression. The

SKI 
ombinators 
an be de�ned in Iota to demonstrate Turing 
ompleteness:

∗i ∗ i ∗ i ∗ ii = (F (F (F (FF )))) = S

∗i ∗ i ∗ ii = (F (F (FF ))) = K

∗ii = (FF ) = I

Iota is a synta
ti
ally in�exible extension to the SK 
ombinator 
al
ulus (with-

out the I). Though the syntax is small, the semanti
s are relatively large. The

de�nition of i above implies the use of λ abstra
tions. Be
ause in
luding the

semanti
s of the λ-
al
ulus for a single o

urren
e of a λ abstra
tion is extremely

wasteful, it is more prudent to de�ne a new 
ombinator ix = xSK. This sidesteps

the requirement of λ abstra
tions in the semanti
 de�nition of the model.

What 
annot be sidestepped is the requirement that the semanti
s of Iota use

the internal representation and evaluation semanti
s of the S and K 
ombinators.

In addition, two new evaluation rules are required for the evaluation of ∗ii =

SK(SK) and ∗ix = xSK. The rule for I 
an be dis
arded from the original SKI

semanti
s, along with the original parsing rules.
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e =⇒ ∗e1e2
P (e) =⇒ {A, (P (e1), P (e2)}

(a) Appli
ation of an expression to another

e =⇒ i

P (e) =⇒ {i, ∅, ∅}

(b) Parsing an instru
tion

Figure 7.3: Parsing rules for Iota

T.z = A
T.L.z = T.R.z = i

R(T ) =⇒ {A, {A, {A, S,K}, {A, S,K}}};R(Troot)

Figure 7.4: Applying i to itself

The parsing semanti
s for Iota are therefore are shown in Figure 7.3. Figure

7.4 shows the extra rule required to evaluate the Iota instru
tion. The size of the

Iota semanti
s in the format des
ribed in Chapter 3 is 272 
hara
ters, whi
h is

slightly smaller than the semanti
s of the SKI at 291 
hara
ters.

Expressions in Iota are also very large. At present, most Iota expressions are

derived from SKI, so large SKI 
ombinations derived from λ-
al
ulus expressions

are made even larger through 
onversion of individual S, K and I 
ombinators to

their Iota 
ounterparts.

A restri
ted syntax ma
hine for the imperative paradigm also exists. The

Ultimate Redu
ed Instru
tion Set Computer (URISC) model is Turing Complete

using only a single instru
tion [59℄. The exa
t nature of this instru
tion 
an

vary, but one of the more studied models Subleq [60℄ uses an instru
tion whi
h

subtra
ts the 
ontents of register A from the 
ontents of register B, stores the

result in B, then jumps if the result is less than or equal to zero.

7.2.5.2 Gol�ng

Code Golf is a re
reational programming a
tivity where a problem is presented

and solutions are taken in either a spe
i�
 language or a multitude of languages.

The solutions are not only evaluated on their extensionality, but also their size.

Golfers attempt to minimise their s
ore by solving the problems with the fewest

keystrokes possible.

Naturally there has been the development of domain spe
i�
 languages for
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ode golf. A notable example is Golfs
ript, a sta
k language implemented in

Ruby where 
ommon operations are mapped to single 
hara
ters and overloaded

su
h that fun
tion performed by an operator is dependent on the arguments

supplied.

A Golfs
ript program (say 1. + 2 + 3 ∗ 2+;) is a list of literals. Individual

numerals or 
hara
ters are pushed onto the sta
k, operators like + and * pop the

top two elements of the sta
k, add or multiply them, and then push the result

onto the top. The (.) fun
tion dupli
ates the top element of a sta
k and pushes

it; the (;) operator pops the top element. The program 1.+2+3∗2+; is traversed

from left to right. The 1 is pushed then dupli
ated, 1 and 1 are added to make

2, another 2 is pushed then 2 and 2 are added for 4, a 3 is pushed, 3 and 4 are

multiplied to 12, 2 is pushed, 2 and 12 are added to make fourteen, �nally the

fourteen is popped from the sta
k.

There are operators for lists whi
h 
an be 
on
atenated with + ([1 2 1 3℄[4

5℄+ 7→ [1 2 1 3 4 5℄), blo
ks of 
ode ({. . .}) and if, while, do, fold statements.

Golfs
ript is Turing 
omplete.

Golfs
ript 
an produ
e very 
on
ise programs, but the underlying semanti
s

are quite large. While the internal representation as a ve
tor of input symbols

and a sta
k for pro
essing is reasonably simple, in parti
ular the overloading of

operators ne
essitates a type system so that expressions are evaluated 
orre
tly.

Golfs
ript would produ
e the smallest program for most, if not all, of the fun
tions

studied in this thesis, but the semanti
s would be larger.

7.3 Further Investigations

There is a 
onsiderable amount of further work arising from this investigation,

from formalising what has been observed, to exploring the extent that input

en
oding a�e
ts the TI, to more a

urate measurements by de�ning the impli
itly

used operators of the semanti
s all the way down to the axioms.
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7.3.1 Formalism

The thesis results 
ould be generalised and formalised as follows. Felleisen's

de�nitions of expressiveness and language extensions are a good starting point.

His notion of a 
ommon language universe is a 
onservative extension of two

languages whi
h he wishes to 
ompare. This 
ommon language universe is used

to de�ne relative expressiveness.

Consider the languages L, L0, and L1 where L is a 
onservative extension

of both L0 and L1. The language L0 is said to be less expressive than L1 with

respe
t to L if L0 
an (ma
ro-)express a subset of the operators of L where L1 
an

(ma
ro-)express the operations whi
h L0 
an express as well as other operators

of L.

There are some 
aveats to the �is expressible� statement. Felleisen de�nes ex-

pressibility in terms of a homomorphi
 (program stru
ture retaining) translation

φ. A language L is said to have the ability to express an operator F (e1, . . . , ea) if

there exists φ su
h that F (e1, . . . , ea) ≡ φ(F (e1, . . . , ea)) where ≡ is operational

equivalen
e.

While it is feasible for any Turing 
omplete system to express the operations

of any other, Felleisen imposes this restri
tion of a homomorphi
 mapping. That

is, that the translation of a program using some operator does not require a global

reorganisation of the rest of the program. Removing the original operator F and

inserting the translation φ(F ) should involve little disruption to the rest of the

program.

Now 
onsider the RASP2-1 with respe
t to the RASP and RASP2. RASP2-1

is L and the other two are L0 and L1 respe
tively. For the RASP2, the INC and

DEC instru
tions of the RASP2-1 are eliminable as they are trivially equivalent to

the instru
tion �ADD 1� and �SUB 1�. Likewise, the ADD and SUB instru
tions

of the RASP2-1 are eliminable with respe
t to the RASP as there exist RASP

programs whi
h are equivalent in fun
tion to the ADD and SUB instru
tions.

This symmetry in operational equivalen
e and ma
ro-expressibility opens up

an interesting edge 
ase in Felleisen's framework. A

ording to the framework,

RASP2 and RASP have the same expressive power; despite the later 
on
iseness


onje
ture positing that more expressive languages produ
e smaller programs
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Figure 7.5: Conservative extensions of RASP ma
hines by semanti
s size

relative to less expressive languages.

A notion of relative expressiveness 
ould be de�ned to extend the notion of

Felleisen's expressiveness paired with the size of the translation given by the

mapping θ:

De�nition 3 (Relative Expressiveness). Let L be a language and L0, L1 be 
on-

servative restri
tions of L, where the set {F1, . . . , Fn} is the set of operators not

in L0, and the set {A1, . . . , Ak} is the set of operators not in L1. If n = k (both

L0 and L1 do not de�ne the same number of operators in L), then L0 is more

expressive than L1 if:

• The operators {F1, . . . , Fn} and {A1, . . . , Ak} are (ma
ro-)eliminable with

respe
t to L0 and L1.

• The size of mapping φ0 from {F1, . . . , Fn} to L0-phrases is smaller than the

size of mapping φ1 from {A1, . . . , Ak} to L1-phrases.

This resolves the issue of apparent expressive equality of languages whi
h have

the same number of unde�ned operators in the 
ommon language universe. It

may not be the 
orre
t approa
h however if RASP2 vs RASP3 is 
onsidered.

Suppose the RASP4 
ombines the addition and subtra
tion fun
tions of both

RASPs for the fun
tions ADDd/SUBd (dire
t) and ADDi/SUBi (indire
t) in the

way suggested in Se
tion 3.4.2 when the RASP instru
tions of Hartmanis were

dis
ussed. The sets of eliminable fun
tions: RASP4 \ RASP2 = {ADDi,SUBi}
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CPY 'yval

STO 'yreg

LOAD x

ADD 0 ;yreg

y :yval

(a) RASP2 ADDi

CPY 'yval

STO 'yreg

LOAD

SUB 0 ;yreg

y :yval

(b) RASP2 SUBi

LOAD y

STO 'tmp

LOAD x

ADD 'tmp

0 :tmp

(
) RASP3 ADDd

LOAD y

STO 'tmp

LOAD x

SUB 'tmp

0 :tmp

(d) RASP3 SUBd

Figure 7.6: Implementations of dire
t and indire
t ADD/SUB

and RASP4 \ RASP3 = {ADDd,SUBd} are the same size, so it falls to the

mappings θR2 and θR3 to tiebreak.

Figure 7.6 shows realisations of indire
t and dire
t versions of ADD/SUB in

the RASP2 and RASP3 respe
tively. The realisations are the same size. Ea
h

one requires nine registers. This thesis has maintained that the RASP3 is more

expressive than the RASP2 by virtue of its larger semanti
s and 
on
iser programs

on average. If the de�nition for relative expressiveness holds, then the RASP2

and RASP3 are of the same expressive power.

Integrating the general trends of these 
omparisons into Felleisens frame-

work would have to take these tiebreaker aspe
ts into a

ount, as well as why

information-based 
ross-paradigm 
omparisons do not behave in the same manner

as inter-paradigm 
omparisons.

7.3.2 Program Equivalen
es

Se
tion 4.6 dis
usses the importan
e of establishing equivalen
e between two re-

alisations of the same fun
tion before formal assertions are made. The work

of this thesis has not shown that the implemented programs herein hold under

extensional equivalen
e.

Though equivalen
e of programs in general is unde
idable, equivalen
e of pro-

grams whi
h 
ompute the primitive re
ursive fun
tions, barring erroneous o

ur-

ren
es of the µ operator (Se
tion 4.1) should be 
omputable.
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There are multiple ways whi
h extensional equivalen
e 
an be estimated, if

not proven [29, 51, 69℄. One approa
h involves indu
tion over en
oding fun
tions.

Consider a general problem statement: �5+8�, or �Sear
h 5 in [1,2,4,5,3,6,7,10℄�.

For ea
h (program, model) pair there exists a pair of fun
tions: an en
oding fun
-

tion and a de
oding fun
tion. The en
oding fun
tion encx,y(s) en
odes the general

statement s ∈ Sy into a form suitable for evaluation with respe
t to program y in

model x. Similarly, the decx,y(q) de
odes the result of an exe
ution q a

ording

to the program y written in model x.

Suppose Y is the set of all fun
tions, X is the set of all models, and Sy is

the set of all valid statements whi
h are inputs to fun
tion y. Two programs in

models x and z whi
h 
ompute a given fun
tion y are extensionally equivalent if:

∀s ∈ Sy : decx,y(semx(progx,y(encx,y(s)))) = decz,y(semz(progz,y(encz,y(s))))

where semx are the semanti
s whi
h exe
ute a program written in x, and progx,y

is a program written in x whi
h 
omputes the fun
tion y.

The abstra
tion a�orded by the existen
e of enc and dec pla
es the inner

workings of the semanti
s and program into a bla
k box, fa
ilitating the use of

indu
tion to show equivalen
e.

7.3.3 Input Sizes

Se
tions 3.1.1 and 6.5 have dis
ussed the e�e
t of input en
oding on program

size. A renewed investigation would aim to fully explore the extent of how input

en
oding e�e
ts the TI of a model and fun
tion.

The density of en
odings has an in�uen
e on the size of the programs. For

example, returning to the UTMs of Se
tion 6.5, a relatively natural en
oding

of the external tuple of the TM (〈sto, syo, stn, syn, D〉) uses single symbols to

represent the read and written symbols of ea
h tuple and a single symbol for the

dire
tion. The nominally base 10 numerals denoting the states are en
oded in

binary, and tuples are delimited with a single symbol. The ma
hine to utilise this

en
oding has a large number of state and symbols with many potential tuples:

(23,8) with 184.
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Redu
ing the size of the alphabet of the en
oding results in a mu
h smaller

ma
hine of (8,4) with only 32 potential tuples, however the en
oding of the input

is sparser and mu
h more 
omplex, in
reasing in size by nearly 14 times. The

(3,11) of 33 potential tuples results in a denser en
oding of just under half of the

en
oding for the (8,4) ma
hine.

7.3.3.1 No Free Lun
h and Invariants

It is suspe
ted that a variant of the �No Free Lun
h� (NFL, [103℄) theorem applies

to the relationship of information between semanti
s programs and their inputs.

Both folklore and Felleisen hypothesise that small semanti
s beget large programs

and vi
e versa. The existen
e of Neary's UTMs show that there 
an be 
on
ise

programs with 
on
ise semanti
s relative to other models. However inputs for

su
h programs are large. Similarly, a model with a very 
on
ise program and also


on
ise input should have a large set of semanti
s.

The NFL theorem states that any two sear
h algorithms are equivalent when

their performan
e is averaged over all possible problems. If an algorithm is par-

ti
ularly good at sear
hing over some arrangement of data, then it will be equally

bad at sear
hing some other arrangement:

Conje
ture 1 (NFL for Information). Let P be an elegant program su
h that

there exists no smaller program to 
al
ulate the fun
tion of P , whi
h uses the

same en
oding fun
tion e for the input.

Any redu
tion in the size of P would ne
essarily require an in
rease in the size

of the semanti
s for the model of P (i.e. more instru
tions), or a new en
oding

fun
tion g su
h that:

∀x : e(x) < g(x)

Consider an elegant semanti
s and an elegant program. A redu
tion in the

semanti
s via elimination of some rule whi
h is used by the program will in
rease

the size of the program. To further redu
e an elegant program will pre
ipitate

an in
rease in the semanti
s and maybe the input en
oding. An elegant pro-

gram 
annot de
rease in size without the introdu
tion of new operators via the

semanti
s.
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The formulation of the NFL hypothesis suggests that for every fun
tion there

exists some minimal amount of information whi
h is distributed over the seman-

ti
s, program, and input en
oding for some model.

Conje
ture 2 (Information Invarian
e). For all model and 
omputable fun
tion

pairs, there exists an information invariant i and overhead c. The value i + c is

distributed over the semanti
s, program, and en
oding fun
tion. The program and

en
oding fun
tion are optimal when c is minimised, and that any further redu
tion

of information in the semanti
s, program, or en
oding fun
tion will 
orrespond

to a rise in information in the other two.

7.3.4 Model Attributes

The radi
al di�eren
e in internal representation (array vs graph) and in evalua-

tion method (sequential vs graph redu
tion) is believed to 
ause the dis
onne
t

between the TIs of the imperative and fun
tional paradigms. It may be that some

operators of the SOS formalism whi
h are used in one paradigm but not the other


ontribute a large amount of 
omputational power. Se
tion 7.3.5 dis
usses how

this 
ould be a

ounted for.

Irrespe
tive of the paradigm, there is a dramati
 di�eren
e in the TI between

the models with large semanti
s and the models with small semanti
s. This o

urs

most notably in the representations of the universal RASP and universal TM. The

TI for the SKI and TM representations in
rease drasti
ally when implementing

these programs opposed to the RASP and λ-
al
ulus implementations.

This is hypothesised to be pre
ipitated by the di�eren
e in memory models

between the less expressive models and the more expressive ones. The less ex-

pressive models use sequential a

ess/redu
tion while the more expressive models

have random a

ess and arbitrary substitution:

Conje
ture 3 (Model Attributes). The di�eren
e observed between the informa-

tion 
ontents of the TM/SKI and RASPs/λ-
al
ulus is 
aused by the existen
e

(or la
k thereof) of random a

ess memory stru
tures in the models.

There may exist more of these �jumps� in required TI. A non-deterministi


model of 
omputation is a model whi
h leverages probability in order to 
ompute.
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Su
h a model has a valid program if there exists at least one valid 
omputation

path whi
h returns the 
orre
t output. Non-deterministi
 varieties of all models

of 
omputation exist. There are non-deterministi
 TMs, redu
tion strategies,

RAM and RASP ma
hines [86, 32℄.

Be
ause the ma
hine 
an make a 
hoi
e as to whi
h 
omputation path to

exe
ute, de
isions whi
h would ordinarily be highly spe
i�ed need not be. This

leads to a saving in the number of instru
tions, and thus information, needed to

spe
ify the de
ision paths of the ma
hine.

Conje
ture 4 (More Model Attributes). There exist other model attributes whi
h

pre
ipitate a large di�eren
e in the required TI for programs similar to what has

been observed in this thesis. It is 
onje
tured that models with su
h attributes

would not require as mu
h TI as the models without.

7.3.5 Symbol Grounding

Those s
hooled in logi
 and mathemati
s are familiar with the meaning of symbols

like `+', `∀', `×', and `∃'. They have been taught the fun
tionality of what these

symbols represent and know how and when to apply these fun
tions to situations,

and when not to.

Searle's famous gedankenexperiment, The Chinese Room [81℄, was written as

an indi
tment against the proponents of Strong AI

1

. Searle asserted that the

manipulation of symbols by some �xed set of instru
tions 
ould be mistaken as


ons
iousness when it is merely the following of instru
tions. The arguments for

and against this position here will not be dis
ussed here, but Searle's paper raises

the question: at what point in a 
omputational system are meanings as
ribed to

the symbols whi
h make up the language of the system? This is known as the

symbol grounding problem [27, 91℄.

Chapter 5 dis
usses the problem of in�nite regress. Attempting to ground the

fun
tions of Stru
tured Operational Semanti
s in some other expressive formalism

begs the question of how that formalism is grounded. In this thesis a solution

to the problem was formulated by grounding the models in FPGAs, but there is

1

A philosophi
al position whi
h states that there exists a 
omputer program whi
h embodies

the attributes of 
ons
iousness/
ognition.
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another possible solution.

The semanti
s of the models in SOS presented herein are approximations.

The fun
tions of SOS have been taken as a baseline, but some models may use

di�erent aspe
ts of SOS than others. The RASP and TM use numerals (natural

numbers for the RASP and integers for the TM) and the SKI and λ-
al
ulus use

set indire
tion to reason about sub-trees.

The SKI and λ-
al
ulus models do not require numerals for their operation;

similarly RASP and TM do not require set indire
tion. However, a �at baseline

like SOS would a

ount for both. A semanti
 system 
ould be devised where the

operations of the semanti
 system are derived from the base axioms of a formalism

su
h as First Order Logi
, Zermelo-Frankel set theory, or Russell's type theory.

Not all of these systems are self 
ontained however. The existential and uni-

versal quanti�ers are a part of First Order Logi
, but required for set theory.

Furthermore, some operators 
annot be de�ned in a lower system. The existen-

tial and universal quanti�ers are axiomati
 in their system. Su
h 
on
epts will

be elementary de�nitions and axioms. If FOL and ZFC were to be used, a few of

these elementary de�nitions would in
lude:

• Sets

• Variables

• Set Membership

• Existential/Universal Quanti�ers (pi
k one)

• Zero

These de�nitions form the baseline, as 
on
epts so basi
 su
h that there is no

mathemati
al expression to de�ne them. The 
onstrained notation for mathemat-

i
s is inadequate to de�ne su
h 
on
epts so natural language must be employed.

A logi
 
onstru
ted as su
h allows the information 
ontent of ea
h logi
al 
on-

stru
tion built upon these axioms to be tra
ked. A semanti
 system as expressive

as SOS, based on this axiomati
 foundation would have an information value for

its operators. Thereby any semanti
s whi
h use an operator pays the information

�pri
e�.

Formulating the semanti
s in this system would give a mu
h higher resolution

view of the information 
ontent of the semanti
s. It may then be possible to
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perform experiments where a root semanti
s is modi�ed multiple ways and the

e�e
t of su
h 
hanges are measured a
ross the set of test programs. This would

also fa
ilitate study of hybridised languages, for example whi
h 
ontain both im-

perative and fun
tional subsets, and 
an judge if a `best of both worlds' language

provides bene�ts to mean program size.

7.3.6 Other Work

Imperative/Fun
tional Comparisons It is 
lear with the resolution of the

SI/TI a
ross paradigms hypotheses that the relative expressivity of models a
ross

paradigms 
annot be determined by TI alone. It is suspe
ted that this is due to

the vast di�eren
e in evaluation methodologies. This is not 
on�rmed, so further

work into investigating the information link a
ross paradigms may 
on�rm it.

Alternate Semanti
s Se
tion 7.2.4 argues the notion that the measurements

are relative only to the very spe
i�
 representations and evaluation methodology

as de�ned in the semanti
s. What is not known is if the hypotheses hold true

for other models and semanti
 s
hemes. Further work here would be in the

implementation of the models des
ribed here for other semanti
 systems and

evaluating the hypotheses for these.

Real Appli
ations While the FPGA realisations of the models do not provide

useful data on the relative TI of models, it does provide an indi
ation of the TI of

programs in a singular model. This information 
ould be generalised to the 
ross


ompilation of language subsets (su
h as C) to FPGAs. Measuring the TI of a C

implementation may give an approximation of the size of the resulting 
ir
uit.
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Appendix A

The Busy Beaver Problem

The `Busy Beaver game' was �rst formulated by Radó [73℄ in order to show
ase

an example of a simple unde
idable problem. The game is a 
ompetition amongst

Turing ma
hine programmers to �nd the Turing ma
hine of a 
ertain number of

states whi
h, when started on a blank tape, writes the most symbols to the tape

before halting.

More formally, Radó de�ned the game using n state, 2 symbol ma
hines and

there was a di�erent 
ategory for ea
h n. A 
urrent `
hampion' ma
hine is a pair

(M, s) where M is the ma
hine and s is number of steps before halting. Che
king
the 
hampion then be
ame a trivial task of running M for s steps and 
ounting

the number of 1's on the tape to ensure 
orre
tness.

Brady generalised the game to in
lude k symbols [62℄ whi
h introdu
ed a new

set of 
lasses for ma
hines to fall into. A busy beaver 
hampion (M, s) �ts into
the 
lass Σ(n, k) when M has n states and k symbols.

There is a 
hampionship for the number of steps a ma
hine will make as well as

for the number of non-blank symbols on the tape, be
ause a 
hampion of symbols

will not ne
essarily be a 
hampion stepper and vi
e versa. The 
lass analogous

to Σ(n, k), S(n, k) is the 
lass for 
hampion steppers.

A.1 Turing Ma
hine Busy Beavers

Soon after the de�nition of the busy beaver game. Lin and Radó [54℄ performed

an exhaustive sear
h of the 
lasses (2,2) and (3,2). The size of the ma
hine spa
e

is as follows:

((n+ 1)× 2k)nk

where n and k are as de�ned above. This results in around 17 million ma
hines for

the (3,2) 
lass, but normalisation te
hniques �lter out ma
hines that, immediately

halt or do not print a 1 as their �rst a
tion. This �ltering redu
es the number of

possible 
hampions to 82,944, whi
h were tested for halting behaviour.

Trivial non-halting ma
hines were �ltered out and the non-trivial ones were

exe
uted by hand to determine their operation. As the authors note, there were

no ma
hines so 
ompli
ated as to make it impossible to assert halting behaviours

by hand. They 
on
luded that S(2, 2) = 6, Σ(2, 2) = 4, S(3, 2) = 21, and
Σ(3, 2) = 6.

At this time, 4 
lasses of busy beaver ma
hines have had 
on�rmed S and Σ
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Date Dis
overer(s) Bounds

1963 Radó, Lin S(2, 2) = 6, Σ(2, 2) = 4
S(3, 2) = 21, Σ(3, 2) = 6

1964 Brady S(4, 2) = 107, Σ(4, 2) = 13
February 1990 Marxen, Buntro
k S(5, 2) ≥ 47, 176, 870, Σ(5, 2) ≥ 4098
February 2005 T. and S. Ligo
ki S(2, 4) ≥ 40, 737, Σ(2, 4) ≥ 3, 932, 964

November 2007 T. and S. Ligo
ki

S(3, 3) ≥ 119, 112, 334, 170, 342, 540,
Σ(3, 3) ≥ 374, 676, 383
S(2, 5) > 1.9× 10704 ,Σ(2, 5) > 1.7× 10352

De
ember 2007 T. and S. Ligo
ki S(3, 4) > 5.2× 1013036,Σ(3, 4) > 3.7× 106518

January 2008 T. and S. Ligo
ki S(4, 3) > 1× 1014072,Σ(4, 3) > 1.3× 107936

S(2, 6) > 2.4× 109866,Σ(2, 6) > 1.9× 104933

June 2010 Kropitz S(6, 2) > 7.4×1036534,Σ(6, 2) > 3.4×1018267

Table A.1: Currently known lower bounds of the explored 
lasses (2012 [62℄).

s
ores with ma
hines to mat
h: BB(1,2), BB(2,2) BB(3,2) and BB(4,2). Marxen

and Buntro
k [58℄ have established lower bounds for the 
lass (5,2) at S(5, 2) ≥
47, 176, 870 and Σ(5, 2) ≥ 4098.

The father and son team of Terry and Shawn Ligo
ki have made progress in

exploring the spa
e of ma
hines with more than 2 symbols by using simulated

annealing te
hniques to obtain high s
oring ma
hines [62℄. They 
urrently hold

the re
ord for many of these 
lasses.

Table A.1, by way of Mi
hel [62℄ shows the 
urrent re
ords for a few of the


lasses as of June 2012.

A.2 RASP Busy Beavers

A busy beaver variant for the RASP ma
hine 
an be de�ned though the exe
ution

of the `OUT' instru
tion. For a 
lass of n-bit ma
hines Σ(n) is the 
ompetition

for the number of times the `OUT' 
ommand is exe
uted, while S(n) is the


ompetition for the number of fet
h-exe
ute 
y
les performed.

The mapping of instru
tions to naturals in all RASP de�nitions (in
luding the

one presented earlier in Se
tion 2.3.1.2) are arbitrary. There is no real reason for

INC to be mapped to 1 and CPY to be mapped to 7. This isn't su
h a problem

in the literature 
on
erned with runtimes [16, 36℄ but in the investigation of

ma
hines with maximal output, we want to be thorough in 
onsidering all of the

possibilities.

To fa
ilitate this, we extend the RASP model as to admit an arbitrary map-

ping of naturals to instru
tions. We 
onstrain the range to 2n so that a ma
hine


annot map an instru
tion to a natural that the ma
hine 
annot represent. Sim-

ilarly, the mapping is inje
tive. An entrant into the 
ompetition BBR(n) is thus
a pair R(p, i) of the program p (of size 2n) and the instru
tion set mapping i.

Unlike the BB problem for TMs, the RASP version is 
omputable be
ause the

halting problem for �nite RASPs is 
omputable.

Theorem 3 (Halting problem de
idability). The Halting problem for the �nite

RASP is de
idable.
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Proof. Consider a �nite n-bit RASP ma
hine M . We de�ne the state of M to be

the entire memory at a parti
ular time, and ea
h fet
h-de
ode-exe
ute 
y
le as a

transition from one state to another. Sin
e there is only a �nite range of values

for a �nite number of memory lo
ations, we 
an 
al
ulate the maximum number

of possible states for any given ma
hine numStates(n) = nn
.

Be
ause ea
h fet
h-de
ode-exe
ute 
y
le performs a transition between states

S → S ′
we 
an run the ma
hine for at most numStates(n) 
y
les, storing ea
h

visited state as it is en
ountered and 
he
king the store for the new state after

every state transition. If we en
ounter the same state twi
e, a loop has o

urred

and 
an 
on
lude that for some state X whi
h is entered during exe
ution of the

ma
hine, there exists a transitive 
losure over a relation R su
h that XR+X.

From whi
h we 
an 
on
lude that M will never halt.

A.3 Finding the Champions

Assuming the RASP has eight instru
tions, the number of unique instru
tion set

mapping for an n bit ma
hine is:

PI(n) =
∏

n−8<i≤n

i

Ea
h potential program is a sequen
e of 2n natural numbers. Of these, the PC,

IR and ACC are initialised at {3 0 0}. Ea
h program is a base n number of length

2n − 3 so that that the formula to 
al
ulate the number of possible initial RASP
ma
hines is PR(n) = (2n)2

n−3
.

A.3.1 Brute For
e Methods

For 3 bit RASP ma
hines, PR(3) × PI(3) = 1, 321, 205, 760. This is a feasible

number to sear
h through in a parallel brute for
e manner.

The parallel ar
hite
ture was designed as a pseudo-task farm. Ea
h node has

an unique identifying integer (id) and knows how many nodes are working on the

problem. The node with an id of zero was designated the master node.

Upon initialisation of the sear
h, the nodes use their ids to work out whi
h

blo
k of instru
tion set mappings they should explore. They pro
eed to run ea
h

of their assigned mappings against every n-bit RASP ma
hine, re
ording the

highest shifter and highest `OUT' exe
utor. On
e a node has sear
hed though all

of the mappings and has its 
hampion ma
hines, it returns them to the master

node whi
h �nds the overall 
hampions and outputs them. Non-halting behaviour

is dete
ted by storing ea
h state in a binary tree. If a state is already in the tree

when visited, the ma
hine is for
ibly halted and dis
arded.

This entire pro
edure takes around 6 minutes on 32 
ores of a 256 
ore Beowulf


luster 
onsisting of 8 
ore Intel Xeon CPUs 
lo
ked at 2.13GHz. Figures A.1a and

A.1b show the top s
oring ma
hines for Σ(3) = 47 and S(3) = 112 respe
tively.
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Instr I Label

3 :PC

0 :IR

0 :ACC

INC :start

INC

OUT

OUT

INC

(a) The best 3-bit OUT ma
hine

Instr I Label

3 :PC

0 :IR

0 :ACC

INC :start

OUT

DEC

INC

JGZ

(b) The best 3-bit steps ma
hine

The instru
tion sets for these ma
hines are:

A.1a {0 7→ OUT, 1 7→ LOAD, 2 7→ DEC, 3 7→ INC, 4 7→ CPY, 5 7→ STO,
6 7→ HALT, 7 7→ JGZ}

A.1b {0 7→ DEC, 1 7→ LOAD, 2 7→ STO, 3 7→ JGZ, 4 7→ OUT, 5 7→ HALT,
6 7→ INC, 7 7→ CPY }

The ma
hine spa
e PR(4) = 4, 503, 599, 627, 370, 496 is an infeasible number

of ma
hines to sear
h through in any reasonable time. So more advan
ed methods

must be employed.

A.3.2 Geneti
 Algorithms

A geneti
 algorithm is a problem solving strategy whi
h models natural sele
-

tion [30℄. It begins with an initial pool of (often randomly generated) solutions to

some problem. Ea
h potential solution is evaluated for �tness to determine how

e�e
tive they are at solving the problem.

A subset of solutions are sele
ted and bred together by means of 
rossover

and mutation. Those not sele
ted for reprodu
tion are killed o� and breeding

re�lls the pool of 
andidates. The �tness of a solution improves the 
han
e of it

being sele
ted for reprodu
tion, but doesn't guarantee it.

A.3.2.1 Sele
tion and Breeding

A solution for the RASP busy beaver is a pair of the program and the instru
tion

set mapping. These are represented in memory as two arrays of length 2n−3 and
8 respe
tively. We refer to these two arrays as 
hromosomes and the individual

elements of the arrays as genes.

The �tness s
ores of a 
andidate is 
al
ulated as the number of steps/number

of `OUT's (dependent on whether our sear
h is for S(n) or Σ(n)) if the ma
hine

halts, otherwise it is 1.

Sele
tion is handled through roulette wheel sele
tion [30℄. Imagine a roulette

wheel sized su
h that it a

ommodates all 
andidates and ea
h 
andidate has a

`sli
e' of the wheel proportional to its �tness (Figure A.2).

When sele
ting a 
andidate, we 
on
eptually boun
e a ball over the surfa
e

of the wheel. The distan
e that the ball 
an boun
e is 
al
ulated as a random

proportion of sums of all the �tnesses. As it moves round the wheel and passes
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C1

C1

C1

C2C3

C3

C4

C4

Figure A.2: A depi
tion of the roulette wheel we use to sele
t 
andidates. C1

is the 
andidate with the highest �tness, so it gets the highest proportion of the

wheel. C2 has the lowest �tness. C3 and C4 are equal in �tness.

Bits Results Comments

3 S(3) = 112,Σ(3) = 47 Exa
t values found through

brute for
e sear
hing.

4 S(4) ≥ 3413,Σ(4) ≥ 1483 Geneti
, Pool: 100000,

Generations: 1000, Islands:

32

Table A.2: Current re
ords for numbers of shifts and outputs.

over 
andidates, it uses up its allowable distan
e. On
e all of the distan
e has been

used, it stops. The 
andidate that it stops on is then removed from the wheel,

the wheel is resized, and the pro
ess starts again until the breeding population

target has been met.

Crossing 
hromosomes involves pi
king two of the solutions and 
hoosing a

random point on one of them. The new 
hromosome is 
reated by taking the

genes of the �rst parent up to the random point, then taking the genes of the

se
ond parent past that point. Mutation of the program pi
ks a random gene in

a 
hromosome and 
hanges it to some other gene. Mutation of the instru
tion

set swaps two genes to maintain an inje
tive mapping.

Repopulating the pool pi
ks two parents at random and sele
ts a parent to be

`dominant'. There is a 1/3 
han
e that the programs get 
rossed, a 1/3 
han
e

that the instru
tion sets get 
rossed (while still adhering to the inje
tive rules for

the instru
tion sets) and a 1/3 
han
e that both get 
rossed. If a 
hromosome

isn't to be 
rossed, the 
hromosome from the dominant parent is 
opied. There

is a small (5%) 
han
e that the program or instru
tion set will be mutated.

A.3.2.2 Current Results

Table A.2 shows the 
urrent results of the investigation while Table A.3 demon-

strates the re
ord holding instru
tion sets and programs.

The optimal strategy to evolve good ma
hines seems to stem from repeatedly

seeding the 
urrent 
hampion ma
hine into the algorithm. What this does is seed

the initial pools with the 
urrent 
hampion ma
hine in the hope that it will be
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Re
ord Held Instru
tion Set Program

S(3) = 112 {5,6,0,1,2,4,3,7} {6,4,0,6,3}

Σ(3) = 47 {6,3,2,1,5,0,7,4} {3,3,0,0,3}

S(4) ≥ 3413 {14,3,13,0,6,9,4,15} {9,3,6,3,4,12,9,13,6,9,3,4,7}

Σ(4) ≥ 1483 {2,6,7,5,1,3,4,0} {3,3,6,3,3,4,4,5,1,7,1,11,4}

Table A.3: Instru
tion sets and programs of re
ord holding ma
hines. Instru
tion

mapping is {HALT,INC,DEC,LOAD,STO,OUT,JGZ,CPY}.

improved upon. This is a manual version of the migration strategy laid out above

and the author has seen su

ess with hand 
onstru
ting a seed and letting the

algorithm evolve it into a better version.

A.4 Re�e
tion

The investigation outlined was not as enlightening as one would hope. This

se
tion re�e
ts on how we stru
tured our algorithm and hardware and what we

should do di�erently for a fresh investigation.

A.4.1 Lands
ape and Fitness

As with all informed sear
h methods, there is the danger of lo
al maxima. Ran-

domly generating and evolving solutions 
an a
hieve good results, but with a

sear
h spa
e as large as n > 3 we 
annot hope to obtain a statisti
ally bene�-


ial initial `spread' of 
andidates a
ross the solution lands
ape. Furthermore, the

lands
ape itself is ex
eptionally jagged. The �tness fun
tion is not nearly sophis-

ti
ated enough to e�e
tively navigate the spa
e. For example, 
hanging any one

of the re
ord ma
hines instru
tions to a HALT (say {6, 4, 0, 6, 3} ↔ {6, 4, 0, 5, 3}
where 5 7→ HALT ) will ruin the �tness s
ore of the ma
hine.

We 
ould apply �lters to our ma
hine generator so that it a

epts a HALT or

unmapped natural number in the body of the ma
hine only if it 
omes immedi-

ately after a LOAD, STO, JGZ, or CPY. This way, we would produ
e ma
hines

that don't instantly halt and that would need to 
ompute, or spe
i�
ally jump

to some halting numeral before it will stop.

Another approa
h we 
ould try 
omes from the �eld of 
omputer se
urity.

Self modi�
ation is a typi
al obfus
ation te
hnique to disguise mali
ious 
ode

and attempts to 
ombat it had resulted in the development of semanti
 models

whi
h de
ompose a self modifying binary into phases. These phases are stati
ally

analysed for mali
ious behaviour as normal [22℄.

We 
ould possibly adopt this approa
h for larger spa
es (n > 6). However we
would have to experiment to ensure that this de
omposition and analyses is faster

than, or provides 
onsiderably more information than, just running the ma
hine.

Otherwise we will in
ur a greater time overhead per ma
hine in a spa
e where

speed of exe
ution is arguably more important.

Advan
ed stati
 analyses as des
ribed above 
oupled with (non)halting de-

te
tion 
ould dire
t a geneti
 algorithm to target a spe
i�
 neighbourhood of a


andidate. If an n-bit 
andidate doesn't quite halt, but is otherwise a 
hampion
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ma
hine, the problem 
ould perhaps be narrowed down to k registers whi
h need

modi�
ation. A narrow number of registers 
an 
on
eivably be brute for
ed for

larger n's than what we've investigated so far. This very spe
i�
 modi�
ation

method strays into the remit of Geneti
 Programming [48℄.

A.4.2 Ar
hite
ture and Seeding

The geneti
 algorithm was parallelised as the brute for
e algorithm. Ea
h pro
ess


ontains its own pool, the best solutions are evolved from the pool. On
e the

pro
ess has evolved a solution for n generations, it is sent ba
k to the master

pro
ess whi
h judges the best overall solution.

This `isolated island' approa
h tends to exhibit spe
iation (lo
al maxima)

a
ross pro
esses. A better approa
h may be to migrate the top solutions from

the pools every few generations [8℄. This re-seeds the pool with the 
urrent best

solution to the problem, in
reasing the 
han
es of evolving the 
urrent solution

into an even better one.
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Full Programs

This appendix presents the measured programs for ea
h of the models investigated

in this thesis. The programs here are what is measured to obtain the 
hara
ter


ounts exempli�ed in Table 4.2 et al. and are analysed in Chapter 6.

B.1 RASP

The RASP programs are presented in two ways: the �programming language

form� as seen all throughout this thesis, and the �array form� whi
h is what is

a
tually measured.

B.1.1 Addition

Instr Data I Label D Label

LOAD 3 :addStart ;x

JGZ 'adding

HALT

DEC :adding

STO 'x

LOAD 4 ;y

INC

STO 'y

LOAD 1

JGZ 'addStart

3,5,6,8,0,2,4,4,3,8,1,4,12,3,1,6,3,0,0,0,0,0,0,0,0,0,0,0,0
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B.1.2 Subtra
tion

Instr Data I Label D Label

LOAD 4 :sub_start ;sub_2

JGZ 'subbing

HALT

DEC :subbing

STO 'sub_2

LOAD 7 ;sub_1

JGZ 'subbing2

HALT

DEC :subbing2

STO 'sub_1

JGZ 'sub_start

3,4,6,8,0,2,4,4,3,7,6,16,0,2,4,12,3,1,6,3,0,0,0,0,0,0,0,0,0

B.1.3 Equality

Instr Data I Label D Label

LOAD 6 :de
1 ;
mp1

DEC

STO '
mp1

LOAD 5 ;
mp2

DEC

STO '
mp2

JGZ 'de
1

CPY '
mp1

JGZ 0

LOAD 1

HALT

3,6,2,4,4,3,5,2,4,9,6,3,7,4,6,0,3,1,0,0,0,0,0,0,0,0,0,0,0
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B.1.4 Multipli
ation

Instr Data I Label D Label

CPY 'multiplier

JGZ 'return

HALT

LOAD 5 :return ;multipli
and

JGZ 'mul_start

HALT

DEC :mul_start

STO 'multipli
and

LOAD 5 ;multiplier

STO 'tmp

LOAD 0 :loop ;tmp

JGZ 'add

LOAD 1

JGZ 'return

DEC :add

STO 'tmp

LOAD 0 ;runningTotal

INC

STO 'runningTotal

LOAD 1

JGZ 'loop

7,17,6,8,0,3,5,6,13,0,2,4,9,3,5,4,21,3,0,6,28,3,1,6,8,2,4,21,

3,0,1,4,32,3,1,6,20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0
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B.1.5 Division

Instr Data I Label D Label

LOAD 3 :start ;divisor

JGZ 'div_start

HALT

STO 'tmp :div_start

LOAD 7 ;num

STO 'remainder

LOAD 0 :loop ;tmp

JGZ 'sub

LOAD 1

JGZ 'return

DEC :sub

STO 'tmp

CPY 'num

JGZ 'nl

HALT

DEC :nl

STO 'num

LOAD 1

JGZ 'loop

LOAD 0 :return ;quotient

INC

STO 'quotient

JGZ 'start

0 :remainder

3,3,6,8,0,4,15,3,7,4,44,3,0,6,22,3,1,6,37,2,4,15,7,11,6,30,0,

2,4,11,3,1,6,14,3,0,1,4,38,6,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0
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B.1.6 Exponentiation

Instr Data I Label D Label

LOAD 1 :start ;power

JGZ '
ontinue

HALT

DEC :
ontinue

STO 'power

LOAD 1 ;runningTotal

STO 'multipli
and

LOAD 0

STO 'runningTotal

LOAD 0 :return ;multipli
and

JGZ 'mulStart

LOAD 1

JGZ 'start

DEC :mulStart

STO 'multipli
and

LOAD 1 ;multiplier

STO 'tmp

LOAD 0 :loop ;tmp

JGZ 'add

LOAD 1

JGZ 'return

DEC :add

STO 'tmp

CPY 'runningTotal

INC

STO 'runningTotal

LOAD 1

JGZ 'loop

3,1,6,8,0,2,4,4,3,1,4,20,3,0,4,12,3,0,6,27,3,1,6,3,2,4,20,3,

1,4,35,3,0,6,42,3,1,6,19,2,4,35,7,12,1,4,12,3,1,6,34,0,0,0,

0,0,0,0,0,0,0

269



Appendix B. Full Programs

B.1.7 List Membership

Instr Data I Label D Label

LOAD 'listStart :start

STO 'pointer :
mp_pointer_target

STO 'indir_pointer

CPY 0 ;indir_pointer

STO '
mp_1

LOAD 0 ;target

STO '
mp_2

LOAD 'end_test

STO '
mp_return_1

LOAD 'equal

STO '
mp_return_2

LOAD 0 :
mp_start ;
mp_1

DEC

STO '
mp_1

LOAD 0 ;
mp_2

DEC

STO '
mp_2

JGZ '
mp_start

CPY '
mp_1

JGZ 0 ;
mp_return_1

LOAD 1

JGZ 0 ;
mp_return_2

LOAD 0 :end_test ;pointer

STO '
mp_1

LOAD 'listend

STO '
mp_2

LOAD 'in
_pointer

STO '
mp_return_1

LOAD 'list_ended

STO '
mp_return_2

JGZ '
mp_start

LOAD 1 :equal

HALT

CPY 'pointer :in
_pointer

INC

JGZ '
mp_pointer_target

LOAD 0 :list_ended

HALT

:listStart

:listend

3,73,4,46,4,10,7,0,4,26,3,0,4,31,3,45,4,40,3,63,4,44,3,0,2,4,

26,3,0,2,4,31,6,25,7,26,6,0,3,1,6,0,3,0,4,26,3,72,4,31,3,66,4,

40,3,71,4,44,6,25,3,1,0,7,46,1,6,5,3,0,0,0,0,0,0,0,0,0,0,0,0,
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.1.8 Linear Sear
h

Instr Data I Label D Label

LOAD 'listStart :start

STO 'pointer :
mp_pointer_target

STO 'indir_pointer

CPY 0 ;indir_pointer

STO '
mp_1

LOAD 0 ;target

STO '
mp_2

LOAD 'end_test

STO '
mp_return_1

LOAD 'equal

STO '
mp_return_2

LOAD 0 :
mp_start ;
mp_1

DEC

STO '
mp_1

LOAD 0 ;
mp_2

DEC

STO '
mp_2

JGZ '
mp_start

CPY '
mp_1

JGZ 0 ;
mp_return_1

LOAD 1

JGZ 0 ;
mp_return_2

LOAD 0 :end_test ;pointer

STO '
mp_1

LOAD 'listend

STO '
mp_2

LOAD 'in
_pointer

STO '
mp_return_1

LOAD 'list_ended

STO '
mp_return_2

JGZ '
mp_start

CPY 'pointer :equal

STO '
mp_1

LOAD 'listStart

STO '
mp_2

LOAD '�nish

STO '
mp_return_1

STO '
mp_return_2

JGZ '
mp_start

CPY '
mp_1 :�nish

HALT

CPY 'pointer :in
_pointer
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Instr Data I Label D Label

INC

JGZ '
mp_pointer_target

LOAD 'listend :list_ended

HALT

:listStart

:listend

3,89,4,46,4,10,7,0,4,26,3,0,4,31,3,45,4,40,3,63,4,44,3,0,2,4,

26,3,0,2,4,31,6,25,7,26,6,0,3,1,6,0,3,0,4,26,3,88,4,31,3,82,

4,40,3,87,4,44,6,25,7,46,4,26,3,89,4,31,3,79,4,40,4,44,6,25,

7,26,0,7,46,1,6,5,3,88,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.1.9 List Reversal

Instr Data I Label D Label

LOAD 'listEnd

STO '
pyPointer

INC

INC

STO 'writePointer

LOAD 0 :main ;writePointer

STO 'writeSTO

LOAD 0 ;
pyPointer

STO '
pyLOC

CPY 0 ;
pyLOC

STO 0 ;writeSTO

CPY 'writePointer

INC

STO 'writePointer

CPY '
pyPointer

STO 'tmp1

LOAD 'listStart

STO 'tmp2

LOAD 0 :loop ;tmp1

DEC

STO 'tmp1

LOAD 0 ;tmp2

DEC

STO 'tmp2

JGZ 'loop

CPY 'tmp1

JGZ 'de
WritePointer

HALT

CPY '
pyPointer :de
WritePointer

DEC

STO '
pyPointer
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Instr Data I Label D Label

JGZ 'main

:listStart

:listEnd

3,59,4,16,1,1,4,12,3,0,4,22,3,0,4,20,7,0,4,0,7,12,1,4,

12,7,16,4,37,3,58,4,42,3,0,2,4,37,3,0,2,4,42,6,36,7,37

,6,53,0,7,16,2,4,16,6,11,0,0,0,0

B.1.10 Stateful List Reversal

Instr Data I Label D Label

LOAD 'listStart

STO 'pointer1

LOAD 'listEnd

STO 'pointer2

LOAD 0 :main ;pointer1

STO '
mp1

LOAD 0 ;pointer2

STO '
mp2

LOAD 0 :loop ;
mp1

DEC

STO '
mp1

JGZ '
ompare2

LOAD 0 ;
mp2

DEC

JGZ 'swap

HALT

CPY '
mp2 :
ompare2

DEC

STO '
mp2

JGZ 'loop

HALT

CPY 'pointer1 :swap

STO 'swpref1

STO 'writeref1

CPY 0 ;swpref1

STO 'swp

CPY 'pointer2

STO 'swpref2

STO 'writeref2

CPY 0 ;swpref2

STO 0 ;writeref1

LOAD 0 ;swp

STO 0 ;writeref2

CPY 'pointer1

INC

STO 'pointer1
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Instr Data I Label D Label

CPY 'pointer2

DEC

STO 'pointer2

JGZ 'main

:listStart

:listEnd

3,74,4,12,3,75,4,16,3,0,4,20,3,0,4,27,3,0,2,4,20,6,32,3,

0,2,6,40,0,7,27,2,4,27,6,19,0,7,12,4,47,4,59,7,0,4,61,7,

16,4,57,4,63,7,0,4,0,3,0,4,0,7,12,1,4,12,7,16,2,4,16,6,

11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.1.11 Bubble Sort

Instr Data I Label D Label

LOAD 'listStart :start

STO 'pointer1

INC

STO 'pointer2

LOAD 0

STO '�ag

LOAD 0 :
mp_pointers ;pointer1

STO 'p1ref

CPY 0 ;p1ref

STO '
mp1

LOAD 0 ;pointer2

STO 'p2ref

CPY 0 ;p2ref

STO '
mp2

LOAD 'in
_pointers

STO '
mpOther

STO 'equal1

LOAD 'swap

STO '
mp1Greater

LOAD 0 :
mp_start ;
mp2

DEC

STO '
mp2

JGZ '
mp1de


CPY '
mp1

DEC

JGZ 0 ;
mp1Greater

LOAD 1

JGZ 0 ;equal1

LOAD 0 :
mp1de
 ;
mp1

DEC

STO '
mp1
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Instr Data I Label D Label

JGZ '
mp_start

LOAD 1

JGZ 0 ;
mpOther

CPY 'pointer1 :in
_pointers

INC

STO 'pointer1

CPY 'pointer2

STO '
mp2

LOAD 'listend

STO '
mp1

LOAD 'return_to_in


STO '
mp1Greater

LOAD 'foundEnd

STO 'equal1

STO '
mpOther

JGZ '
mp_start

CPY 'pointer2 :return_to_in


INC

STO 'pointer2

JGZ '
mp_pointers

LOAD 0 :foundEnd ;�ag

JGZ 'start

HALT

CPY 'pointer2 :swap

STO 'p2SwpRef

STO 'p2WriteRef

CPY 0 ;p2SwpRef

STO 'swp

CPY 'pointer1

STO 'p1SwpRef

STO 'p1WriteRef

CPY 0 ;p1SwpRef

STO 0 ;p2WriteRef

LOAD 0 ;swp

STO 0 ;p1WriteRef

LOAD 1

STO '�ag

JGZ 'in
_pointers

:listStart

:listend

3,130,4,15,1,4,23,3,0,4,100,3,0,4,19,7,0,4,57,3,0,4,27,7,0,

4,41,3,67,4,66,4,55,3,104,4,51,3,0,2,4,41,6,56,7,57,2,6,0,

3,1,6,0,3,0,2,4,57,6,40,3,1,6,0,7,15,1,4,15,7,23,4,41,3,132,

4,57,3,92,4,51,3,99,4,55,4,66,6,40,7,23,1,4,23,6,14,3,0,6,3,

0,7,23,4,111,4,123,7,0,4,125,7,15,4,121,4,127,7,0,4,0,3,0,4,

0,3,1,4,100,6,67,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0

B.1.12 Universal TM

Instr Data I Label D Label

CPY 'CURR_ST :PStart

STO 'SE_ST

CPY 'CHP

STO 'SYMBOL_READ

CPY 5 ;SYMBOL_READ

STO 'SE_SY

LOAD 'MSear
hRET

STO 'SeRetLo


JGZ 'SEStart

LOAD 0 :MSear
hRET ;SeResLo


JGZ 'Vsear
h

HALT

INC :Vsear
h

INC

STO 'NST_Read

INC

STO 'NSY_Read

INC

STO 'NDIR_READ

CPY 0 ;NST_Read

STO 'CURR_ST

CPY 'CHP

STO 'HP

CPY 0 ;NSY_Read

STO 0 ;HP

CPY 0 ;NDIR_READ

DEC

JGZ 'DIR_RIGHT

CPY 'CHP

DEC

STO 'CHP

JGZ 'CONTINUE

CPY 'CHP :DIR_RIGHT

INC

STO 'CHP

CPY 'CURR_ST :CONTINUE

JGZ 'PStart

HALT

LOAD 'SYT_START :SEStart

STO '
urrentLo
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Instr Data I Label D Label

LOAD 0 :sear
h_loop ;
urrentLo


STO 'l


CPY 3 ;l


JGZ 'Valid_Tuple

LOAD 1

JGZ 'Not_Found

LOAD 0 :Valid_Tuple ;SE_ST

STO 'CMP1

CPY '
urrentLo


STO 'tab
omp1

CPY 5 ;tab
omp1

STO 'CMP2

LOAD '
mp1_return

STO 'CMP_RET_LOC

JGZ 'CMP_START

CPY 'CMP_RET :
mp1_return

JGZ 'nTupleSt

CPY '
urrentLo


INC

STO '
urrentLo


STO 'tab
omp2

CPY 5 ;tab
omp2

STO 'CMP1

LOAD 0 ;SE_SY

STO 'CMP2

LOAD '
mp2_return

STO 'CMP_RET_LOC

JGZ 'CMP_START

CPY 'CMP_RET :
mp2_return

JGZ 'nTupleSy

CPY '
urrentLo


DEC

STO 'SeResLo


LOAD 1

JGZ 'sear
hExit

CPY '
urrentLo
 :nTupleSt

INC

STO '
urrentLo


CPY '
urrentLo
 :nTupleSy

INC

INC

INC

INC

STO '
urrentLo


JGZ 'sear
h_loop

LOAD 0 :Not_Found

STO 'SeResLo
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Instr Data I Label D Label

LOAD 1 :sear
hExit

JGZ 5 ;SeRetLo


LOAD 0 :CMP_START ;CMP1

DEC

STO 'CMP1

LOAD 0 ;CMP2

DEC

STO 'CMP2

JGZ 'CMP_START

CPY 'CMP1

JGZ 'NotEqual

STO 'CMP_RET :Equal

LOAD 1

JGZ 'CMP_EXIT

LOAD 1 :NotEqual

STO 'CMP_RET

JGZ 0 :CMP_EXIT ;CMP_RET_LOC

0 :CMP_RET

'TAPE_START :CHP

1 :CURR_ST

:SYT_START

:TAPE_START

7,202,4,87,7,201,4,12,7,5,4,120,3,21,4,171,6,70,3,0,6,26,0,1,

1,4,37,1,4,45,1,4,49,7,0,4,202,7,201,4,47,7,0,4,0,7,0,2,6,60,

7,201,2,4,201,6,65,7,201,1,4,201,7,202,6,3,0,3,194,4,75,3,0,4,

79,7,3,6,86,3,1,6,164,3,0,4,173,7,75,4,95,7,5,4,178,3,104,4,

199,6,172,7,200,6,142,7,75,1,4,75,4,116,7,5,4,173,3,0,4,178,3,

129,4,199,6,172,7,200,6,142,7,75,2,4,22,3,1,6,168,7,75,1,4,75,

4,150,7,2,6,142,7,75,1,4,75,4,161,7,0,6,74,3,0,4,22,3,1,6,5,3,

0,2,4,173,3,0,2,4,178,6,172,7,173,6,194,4,200,3,1,6,198,3,1,4,

200,6,0,0,196,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.1.13 Universal RASP

Instr Data I Label D Label

LOAD 'PC_P

INC

INC

INC

STO 'OFF_PC

CPY 'OFF_PC :SIM_START

STO 'INSLOC

CPY 4 ;INSLOC

STO 'IR_P

STO 'De
oder_Ins
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Instr Data I Label D Label

JGZ 'de
1

HALT :none

DEC :de
1

JGZ 'de
2

CPY 'ACC_P

INC

STO 'x

STO 'ACC_P

CPY 'MAX_INT

STO 'y

LOAD 'ACC_P

STO 'sto_lo
ation

LOAD 'done

STO 'return_lo
ation

JGZ 'TEST_LOOP

DEC :de
2

JGZ 'de
3

CPY 'ACC_P

JGZ 'd


CPY 'MAX_INT

STO 'ACC_P

JGZ 'de
ST

DEC :d


STO 'ACC_P :de
ST

LOAD 1

JGZ 'done

DEC :de
3

JGZ 'de
4

LOAD 'LOAD_RETURN

STO 'FETCH_RETURN

JGZ 'FETCH

CPY 'IR_P :LOAD_RETURN

STO 'ACC_P

LOAD 1

JGZ 'done

DEC :de
4

JGZ 'de
5

LOAD 'STO_RETURN

STO 'FETCH_RETURN

JGZ 'FETCH

CPY 'IR_P :STO_RETURN

STO 'OINT

LOAD 'STO_O_RETURN

STO 'OFFSET_RETURN

JGZ 'OFFSET

CPY 'OINT :STO_O_RETURN

STO 'slo
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Instr Data I Label D Label

CPY 'ACC_P

STO 0 ;slo


LOAD 1

JGZ 'done

DEC :de
5

JGZ 'de
6

OUT

JGZ 'done

DEC :de
6

JGZ 'de
7

LOAD 'JGZ_RETURN

STO 'FETCH_RETURN

JGZ 'FETCH

CPY 'ACC_P :JGZ_RETURN

JGZ 'JGZ_JUMP

LOAD 1

JGZ 'done

CPY 'IR_P :JGZ_JUMP

STO 'PC_P

STO 'OINT

LOAD 'JGZ_O_RETURN

STO 'OFFSET_RETURN

JGZ 'OFFSET

CPY 'OINT :JGZ_O_RETURN

STO 'OFF_PC

JGZ 'SIM_START

DEC :de
7

JGZ 'none

LOAD 'CPY_RET

STO 'FETCH_RETURN

JGZ 'FETCH

CPY 'IR_P :CPY_RET

STO 'OINT

LOAD 'CPY_O_RET

STO 'OFFSET_RETURN

JGZ 'OFFSET

CPY 'OINT :CPY_O_RET

STO '
pylo


CPY 0 ;
pylo


STO 'ACC_P

LOAD 1

JGZ 'done

LOAD 'SIM_START :done

STO 'INC_FR

CPY 'PC_P :INC_PC

INC

STO 'PC_P
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Instr Data I Label D Label

STO 'x

CPY 'MAX_INT

STO 'y

LOAD 'PC_P

STO 'sto_lo
ation

LOAD 'T_INC_RET

STO 'return_lo
ation

LOAD 1

JGZ 'TEST_LOOP

CPY 'PC_P :T_INC_RET

JGZ 'INC_OFFSET

LOAD 'PC_P

STO 'OFF_PC

LOAD 1

JGZ 'INC_EXIT

CPY 'OFF_PC :INC_OFFSET

INC

STO 'OFF_PC

LOAD 1 :INC_EXIT

JGZ 0 ;INC_FR

LOAD 'PC_P :OFFSET

STO 'f

LOAD 0 :OFFSET_LOOP ;OINT

INC

STO 'OINT

LOAD 0 ;f

DEC

STO 'f

JGZ 'OFFSET_LOOP

LOAD 1

JGZ 0 ;OFFSET_RETURN

LOAD 'fet
h_r :FETCH

STO 'INC_FR

JGZ 'INC_PC

CPY 'OFF_PC :fet
h_r

STO 'FETCH_VAR

CPY 0 ;FETCH_VAR

STO 'IR_P

LOAD 1

JGZ 0 ;FETCH_RETURN

LOAD 0 ;x :TEST_LOOP

DEC

STO 'x

LOAD 0 ;y

DEC

STO 'y

JGZ 'xtest
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Instr Data I Label D Label

LOAD 1

JGZ 'xtest2

CPY 'x :xtest

JGZ 'TEST_LOOP

LOAD 1

JGZ 'RETURN

CPY 'x :xtest2

JGZ 'INVALID

LOAD 1

JGZ 'RETURN

LOAD 0 :INVALID

STO 5 ;sto_lo
ation

LOAD 1 :RETURN

JGZ 0 ;return_lo
ation

0 :De
oder_Ins

0 :OFF_PC

4 :MAX_INT

:PC_P

:IR_P

:ACC_P

3,306,1,1,1,4,314,7,314,4,15,7,4,4,308,4,313,6,23,0,2,6,47,7,

310,1,4,274,4,310,7,315,4,279,3,310,4,308,3,187,4,312,6,273,2,

6,67,7,310,6,60,7,315,4,310,6,61,2,4,310,3,1,6,187,2,6,84,3,76,

4,272,6,255,7,308,4,310,3,1,6,187,2,6,115,3,93,4,272,6,255,7,

308,4,240,3,103,4,254,6,235,7,240,4,110,7,310,4,0,3,1,6,187,2,

6,121,5,6,187,2,6,156,3,130,4,272,6,255,7,310,6,138,3,1,6,187,

7,308,4,306,4,240,3,150,4,254,6,235,7,240,4,314,6,10,2,6,22,3,

165,4,272,6,255,7,308,4,240,3,175,4,254,6,235,7,240,4,180,7,0,

4,310,3,1,6,187,3,10,4,234,7,306,1,4,306,4,274,7,315,4,279,3,

306,4,308,3,214,4,312,3,1,6,273,7,306,6,226,3,306,4,314,3,1,6,

231,7,314,1,4,314,3,1,6,0,3,306,4,245,3,0,1,4,240,3,0,2,4,245,

6,239,3,1,6,0,3,261,4,234,6,191,7,314,4,266,7,0,4,308,3,1,6,0,

3,0,2,4,274,3,0,2,4,279,6,289,3,1,6,297,7,274,6,273,3,1,6,309,

7,274,6,305,3,1,6,309,3,0,4,5,3,1,6,0,0,0,4,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.2 RASP2

The RASP2 programs are presented in two ways: the �programming language

form� as seen all throughout this thesis, and the �array form� whi
h is what is

a
tually measured.
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B.2.1 Addition

Instr Data

LOAD x
ADD y

3,5,1,8,0

B.2.2 Subtra
tion

Instr Data I Label D Label

LOAD y :subStart ;y

JGZ 'subbing

HALT

SUB 1 :subbing

STO 'y

LOAD x ;x

JGZ 'subbing2

HALT

SUB 1 :subbing2

STO 'x

LOAD 1

JGZ 'subStart

3,4,6,8,0,2,1,4,4,3,7,6,17,0,2,1,4,13,3,1,6,3,0,0,0,0,0,0,0

B.2.3 Equality

Instr Data I Label D Label

LOAD 6 ;num1

SUB 6 ;num2

JGZ 'out

HALT

LOAD 1 :out

3,6,2,6,6,10,0,3,1,0,0,0,0
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B.2.4 Multipli
ation

Instr Data I Label D Label

LOAD 5 ;multiplier

JGZ 'return

HALT

LOAD 5 :return ;multipli
and

JGZ 'start

HALT

SUB 1 :start

STO 'multipli
and

CPY 'multiplier

ADD 0 ;runningTotal

STO 'runningTotal

LOAD 1

JGZ 'return

3,5,6,8,0,3,5,6,13,0,2,1,4,9,7,4,1,0,4,20,3,1,6,8,0,0,0,0,0

B.2.5 Division

Instr Data I Label D Label

LOAD y :start ;y

JGZ 'divStart

HALT

STO 'tmp :divStart

LOAD x ;x

STO 'remainder

LOAD 0 :loop ;tmp

JGZ 'sub

LOAD 1

JGZ 'return

DEC :sub

STO 'tmp

CPY 'x

JGZ 'nl

HALT

DEC :nl

STO 'x

LOAD 1

JGZ 'loop

LOAD 0 :return ;quotient

INC

STO 'quotient

JGZ 'start

0 :remainder
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3,0,6,8,0,4,15,3,7,4,47,3,0,6,22,3,1,6,39,2,1,4,15,7,11,6,

31,0,2,1,4,11,3,1,6,14,3,0,1,1,4,40,6,3,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0

B.2.6 Exponentiation

Instr Data I Label D Label

LOAD 1 :start ;power

JGZ '
ontinue

HALT

SUB 1 :
ontinue

STO 'power

LOAD 1 ;runningTotal

STO 'multipli
and

LOAD 0

STO 'runningTotal

LOAD 0 :return ;multipli
and

JGZ 'mulStart

LOAD 1

JGZ 'start

SUB 1 :mulStart

STO 'multipli
and

LOAD 1 ;multiplier

STO 'addition

CPY 'runningTotal

ADD 0 ;addition

STO 'runningTotal

LOAD 1

JGZ 'return

3,1,6,8,0,2,1,4,4,3,1,4,21,3,0,4,13,3,0,6,28,3,1,6,3,2,1,

4,21,3,1,4,39,7,13,1,0,4,13,3,1,6,20,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0
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B.2.7 List Membership

Instr Data I Label D Label

LOAD 'listStart :start

STO 'pointer :
mp_pointer_target

STO 'indir_pointer

CPY 0 ;indir_pointer

STO '
mp_1

LOAD 4 ;target

SUB 0 ;
mp_1

JGZ 'end_test

LOAD 1

HALT

LOAD 0 :end_test ;pointer

SUB 'listend

JGZ 'in
_pointer

LOAD 0

HALT

CPY 'pointer :in
_pointer

ADD 1

JGZ '
mp_pointer_target

:listStart

:listend

3,35,4,23,4,10,7,0,4,16,3,4,2,0,6,22,3,1,0,3,0,2,36,6,31,

3,0,0,7,23,1,1,6,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0
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B.2.8 Linear Sear
h

Instr Data I Label D Label

LOAD 'listStart :start

STO 'pointer :
mp_pointer_target

STO 'indir_pointer

CPY 0 ;indir_pointer

STO '
mp_1

LOAD 4 ;target

SUB 0 ;
mp_1

JGZ 'end_test

CPY 'pointer

SUB 'listStart

HALT

LOAD 0 :end_test ;pointer

SUB 'listend

JGZ 'in
_pointer

LOAD 'listend

HALT

CPY 'pointer :in
_pointer

ADD 1

JGZ '
mp_pointer_target

:listStart

:listend

3,37,4,25,4,10,7,0,4,16,3,4,2,0,6,24,7,25,2,37,0,3,0,2,

38,6,33,3,38,0,7,25,1,1,6,5,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0
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B.2.9 List Reversal

Instr Data I Label D Label

LOAD 'listEnd

STO '
pyPointer

ADD 2

STO 'writePointer

LOAD 0 :main ;writePointer

STO 'writeSTO

LOAD 0 ;
pyPointer

STO '
pyLOC

CPY 0 ;
pyLOC

STO 0 ;writeSTO

CPY 'writePointer

ADD 1

STO 'writePointer

LOAD 'listStart

STO 'lsSub

CPY '
pyPointer

SUB 0 ;lsSub

JGZ 'de
WritePointer

HALT

CPY '
pyPointer :de
WritePointer

SUB 1

STO '
pyPointer

JGZ 'main

:listStart

:listEnd

3,47,4,16,1,2,4,12,3,0,4,22,3,0,4,20,7,0,4,0,7,12,1,1,4,

12,3,46,4,36,7,16,2,0,6,40,0,7,16,2,1,4,16,6,11,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0

B.2.10 Stateful List Reversal

Instr Data I Label D Label

LOAD 'listStart

STO 'pointer1

LOAD 'listEnd

STO 'pointer2

LOAD 0 :main ;pointer1

STO '
mp1

LOAD 0 ;pointer2

STO '
mp2

LOAD 0 :loop ;
mp1

SUB 1

STO '
mp1
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Instr Data I Label D Label

JGZ '
ompare2

LOAD 0 ;
mp2

SUB 1

JGZ 'swap

HALT

CPY '
mp2 :
ompare2

SUB 1

STO '
mp2

JGZ 'loop

HALT

CPY 'pointer1 :swap

STO 'swpref1

STO 'writeref1

CPY 0 ;swpref1

STO 'swp

CPY 'pointer2

STO 'swpref2

STO 'writeref2

CPY 0 ;swpref2

STO 0 ;writeref1

LOAD 0 ;swp

STO 0 ;writeref2

CPY 'pointer1

ADD 1

STO 'pointer1

CPY 'pointer2

SUB 1

STO 'pointer2

JGZ 'main

:listStart

:listEnd

3,79,4,12,3,80,4,16,3,0,4,20,3,0,4,28,3,0,2,1,4,20,6,34,3,

0,2,1,6,43,0,7,28,2,1,4,28,6,19,0,7,12,4,50,4,62,7,0,4,64,

7,16,4,60,4,66,7,0,4,0,3,0,4,0,7,12,1,1,4,12,7,16,2,1,4,16,

6,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.2.11 Bubble Sort

Instr Data I Label D Label

LOAD 'listStart :start

STO 'pointer1

ADD 1

STO 'pointer2

LOAD 0

STO '�ag
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Instr Data I Label D Label

LOAD 0 :
mpPointers ;pointer1

STO 'p1ref

CPY 0 ;p1ref

STO '
mp1

LOAD 0 ;pointer2

STO 'p2ref

CPY 0 ;p2ref

STO '
mp2

LOAD 'in
Pointers

STO '
mpOther

STO 'equal1

LOAD 'swap

STO '
mp1Greater

LOAD 0 :
mpStart ;
mp2

SUB 1

STO '
mp2

JGZ '
mp1de


CPY '
mp1

SUB 1

JGZ 0 ;
mp1Greater

LOAD 1

JGZ 0 ;equal1

LOAD 0 :
mp1de
 ;
mp1

SUB 1

STO '
mp1

JGZ '
mpStart

LOAD 1

JGZ 0 ;
mpOther

CPY 'pointer1 :in
Pointers

ADD 1

STO 'pointer1

CPY 'pointer2

STO 'p2sub

LOAD 'listend

SUB 0 ;p2sub

JGZ 'returnToIn


LOAD 0 ;�ag

JGZ 'start

HALT

CPY 'pointer2 :returnToIn


ADD 1

STO 'pointer2

JGZ '
mpPointers

CPY 'pointer2 :swap

STO 'p2SwpRef

STO 'p2WriteRef

CPY 0 ;p2SwpRef
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Instr Data I Label D Label

STO 'swp

CPY 'pointer1

STO 'p1SwpRef

STO 'p1WriteRef

CPY 0 ;p1SwpRef

STO 0 ;p2WriteRef

LOAD 0 ;swp

STO 0 ;p1WriteRef

LOAD 1

STO '�ag

JGZ 'in
Pointers

:listStart

:listend

3,128,4,16,1,1,4,24,3,0,4,88,3,0,4,20,7,0,4,60,3,0,4,28,

7,0,4,42,3,71,4,70,4,58,3,100,4,54,3,0,2,1,4,42,6,59,7,

60,2,1,6,0,3,1,6,0,3,0,2,1,4,60,6,41,3,1,6,0,7,16,1,1,4,

16,7,24,4,84,3,129,2,0,6,92,3,0,6,3,0,7,24,1,1,4,24,6,15,

7,24,4,107,4,119,7,0,4,121,7,16,4,117,4,123,7,0,4,0,3,0,

4,0,3,1,4,88,6,71,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.2.12 Universal TM

Instr Data I Label D Label

CPY 'C_STATE :PStart

STO 'SE_ST

CPY 'CHP

STO 'SY_R

CPY 5 ;SY_R

STO 'SE_SY

LOAD 'M_SE_RET

STO 'SE_R_LOC

JGZ 'SE_ST

LOAD 0 :M_SE_RET ;SRL

JGZ 'V_SE

HALT

ADD 2 :V_SE

STO 'N_STR

CPY 4 ;N_STR

STO 'C_STATE

CPY 'SRL

ADD 3

STO 'N_SYR
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Instr Data I Label D Label

CPY 'CHP

STO 'HP

CPY 5 ;N_SYR

STO 4 ;HP

CPY 'SRL

ADD 4

STO 'N_DIRR

CPY 1 ;N_DIRR

SUB 1

JGZ 'DIR_RIGHT

CPY 'CHP

SUB 1

STO 'CHP

JGZ 'CONTINUE

CPY 'CHP :DIR_RIGHT

ADD 1

STO 'CHP

CPY 'C_STATE :CONTINUE

JGZ 'PStart

HALT

LOAD 'SY_TABLE :SE_ST

STO '
urrentLo


LOAD 0 :sear
h_loop ;SE_ST

STO 'CMPState

LOAD 0 ;
urrentLo


STO 'tab
omp1

CPY 5 ;tab
omp1

SUB 0 ;CMPState

JGZ 'nTupState

CPY '
urrentLo


ADD 1

STO '
urrentLo


STO 'tab
omp2

CPY 5 ;tab
omp2

STO 'CMPSymbol

LOAD 0 ;SE_SY

SUB 0 ;CMPSymbol

JGZ 'nTupSym

LOAD 1

JGZ 'found

CPY '
urrentLo
 :nTupState

ADD 1

STO '
urrentLo


CPY '
urrentLo
 :nTupSym

ADD 4

JGZ 'nextTuple

CPY '
urrentLo
 :found
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Instr Data I Label D Label

SUB 1

STO 'SRL

JGZ 'sear
hExit

STO '
urrentLo
 :nextTuple

JGZ 'sear
h_loop

STO 'SRL :Not_Found

LOAD 1 :sear
hExit

JGZ 0 ;SE_R_LOC

'TAPE_START :CHP

1 :C_STATE

:SY_TABLE

:TAPE_START

7,150,4,84,7,149,4,12,7,5,4,110,3,21,4,148,6,79,3,0,6,

26,0,1,2,4,31,7,4,4,150,7,22,1,3,4,45,7,149,4,47,7,5,4,

4,7,22,1,4,4,55,7,1,2,1,6,68,7,149,2,1,4,149,6,74,7,149,

1,1,4,149,7,150,6,3,0,3,147,4,88,3,0,4,94,3,0,4,92,7,5,

2,0,6,119,7,88,1,1,4,88,4,106,7,5,4,112,3,0,2,0,6,125,3

,1,6,131,7,88,1,1,4,88,7,88,1,4,6,139,7,88,2,1,4,22,6,

145,4,88,6,83,4,22,3,1,6,5,146,1,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0

B.2.13 Universal RASP

Instr Data I Label D Label

LOAD 'PC_P

ADD 3

STO 'OFF_PC

CPY 'OFF_PC :SIM_ST

STO 'INSLOC

CPY 4 ;INSLOC

STO 'IR_P

STO 'De
oder_Ins

JGZ 'de
1

HALT :none

SUB 1 :de
1

JGZ 'de
2

CPY 'ACC_P

ADD 1

STO 'x

STO 'ACC_P

CPY 'MAX_INT

STO 'y

LOAD 'ACC_P
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Instr Data I Label D Label

STO 'sto_lo
ation

LOAD 'done

STO 'return_lo
ation

JGZ 'TEST_LOOP

SUB 1 :de
2

JGZ 'de
3

CPY 'ACC_P

JGZ 'd


CPY 'MAX_INT

STO 'ACC_P

JGZ 'de
ST

SUB 1 :d


STO 'ACC_P :de
ST

LOAD 1

JGZ 'done

SUB 1 :de
3

JGZ 'de
4

LOAD 'L_RET

STO 'FE_RET

JGZ 'FETCH

CPY 'IR_P :L_RET

STO 'ACC_P

LOAD 1

JGZ 'done

SUB 1 :de
4

JGZ 'de
5

LOAD 'S_RET

STO 'FE_RET

JGZ 'FETCH

CPY 'IR_P :S_RET

STO 'stoadd

LOAD 'PC_P

ADD 0 ;stoadd

STO 'slo


CPY 'ACC_P

STO 0 ;slo


LOAD 1

JGZ 'done

SUB 1 :de
5

JGZ 'de
6

OUT

JGZ 'done

SUB 1 :de
6

JGZ 'de
7

LOAD 'J_RET

STO 'FE_RET

JGZ 'FETCH
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Instr Data I Label D Label

CPY 'ACC_P :J_RET

JGZ 'JGZ_JUMP

LOAD 1

JGZ 'done

CPY 'IR_P :JGZ_JUMP

STO 'PC_P

STO 'jgzadd

LOAD 'PC_P

ADD 0 ;jgzadd

STO 'OFF_PC

JGZ 'SIM_ST

SUB 1 :de
7

JGZ 'none

LOAD 'C_RET

STO 'FE_RET

JGZ 'FETCH

CPY 'IR_P :C_RET

STO '
pyadd

LOAD 'PC_P

ADD 0 ;
pyadd

STO '
pylo


CPY 0 ;
pylo


STO 'ACC_P

LOAD 1

JGZ 'done

LOAD 'SIM_ST :done

STO 'I_FRET

CPY 'PC_P :INCREMENT_PC

ADD 1

STO 'PC_P

STO 'x

CPY 'MAX_INT

STO 'y

LOAD 'PC_P

STO 'sto_lo
ation

LOAD 'TI_RET

STO 'return_lo
ation

LOAD 1

JGZ 'TEST_LOOP

CPY 'PC_P :TI_RET

JGZ 'I_OFF

LOAD 'PC_P

STO 'OFF_PC

LOAD 1

JGZ 'INC_EXIT

CPY 'OFF_PC :I_OFF

ADD 1
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Instr Data I Label D Label

STO 'OFF_PC

LOAD 1 :INC_EXIT

JGZ 0 ;I_FRET

LOAD 'fet
h_r :FETCH

STO 'I_FRET

JGZ 'INCREMENT_PC

CPY 'OFF_PC :fet
h_r

STO 'FETCH_VAR

CPY 0 ;FETCH_VAR

STO 'IR_P

LOAD 1

JGZ 0 ;FE_RET

LOAD 0 :TEST_LOOP ;x

SUB 1

STO 'x

LOAD 0 ;y

SUB 1

STO 'y

JGZ 'xtest

LOAD 1

JGZ 'xtest2

CPY 'x :xtest

JGZ 'TEST_LOOP

LOAD 1

JGZ 'RETURN

CPY 'x :xtest2

JGZ 'INVALID

LOAD 1

JGZ 'RETURN

LOAD 0 :INVALID

STO 5 ;sto_lo
ation

LOAD 1 :RETURN

JGZ 0 ;return_lo
ation

0 :De
oder_Ins

0 :OFF_PC

15 :MAX_INT

:PC_P

:IR_P

:ACC_P

3,286,1,3,4,293,7,293,4,14,7,4,4,286,4,292,6,22,0,2,1,6,48,7,

286,1,1,4,251,4,286,7,294,4,257,3,286,4,287,3,183,4,291,6,250,

2,1,6,70,7,286,6,62,7,294,4,286,6,64,2,1,4,286,3,1,6,183,2,1,

6,88,3,80,4,249,6,232,7,286,4,286,3,1,6,183,2,1,6,116,3,98,4,

249,6,232,7,286,4,105,3,286,1,0,4,111,7,286,4,0,3,1,6,183,2,1,

6,123,5,6,183,2,1,6,155,3,133,4,249,6,232,7,286,6,141,3,1,6,

183,7,286,4,286,4,150,3,286,1,0,4,293,6,9,2,1,6,21,3,165,4,249,
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6,232,7,286,4,172,3,286,1,0,4,176,7,0,4,286,3,1,6,183,3,9,4,231,

7,286,1,1,4,286,4,251,7,294,4,257,3,286,4,287,3,211,4,291,3,1,6,

250,7,286,6,223,3,286,4,293,3,1,6,228,7,293,1,4,293,3,1,6,0,3,238,

4,231,6,187,7,293,4,243,7,0,4,286,3,1,6,0,3,0,2,1,4,251,3,0,2,1,4,

257,6,268,3,1,6,276,7,251,6,250,3,1,6,288,7,251,6,284,3,1,6,288,3,

0,4,5,3,1,6,0,0,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.3 RASP3

The RASP3 programs are presented in two ways: the �programming language

form� as seen all throughout this thesis, and the �array form� whi
h is what is

a
tually measured.

B.3.1 Addition

Instr Data I Label

LOAD x
ADD 'label

y :label

3,5,1,8,0,8,0,0,0,0,0,0,0

B.3.2 Subtra
tion

Instr Data I Label D Label

LOAD 4 :sub_start ;sub_2

JGZ 'subbing

HALT

SUB 'subTarget :subbing

STO 'sub_2

LOAD 7 ;sub_1

JGZ 'subbing2

HALT

SUB 'subTarget :subbing2

STO 'sub_1

LOAD 1 ;subTarget

JGZ 'sub_start

3,4,6,8,0,2,22,4,4,3,7,6,17,0,2,22,4,13,3,1,6,3,0,0,0,0,0,0,0
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B.3.3 Equality

Instr Data I Label D Label

LOAD 6 ;num1

SUB 'num2

JGZ 'out

HALT

LOAD 1 :out

HALT

5 :num2

3,6,2,13,6,10,0,3,1,0,6,0,0

B.3.4 Multipli
ation

Instr Data I Label D Label

LOAD 5 ;multiplier

JGZ 'return

HALT

LOAD 5 :return ;multipli
and

JGZ 'start

HALT

SUB 'one :start

STO 'multipli
and

LOAD 0 ;runningTotal

ADD 'multiplier

STO 'runningTotal

LOAD 1 ;one

JGZ 'return

3,5,6,8,0,3,5,6,13,0,2,24,4,9,3,0,1,4,4,18,3,1,6,8,0,0,0,0,0
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B.3.5 Division

Instr Data I Label D Label

LOAD 0 :start ;divisor

JGZ 'div_start

HALT

STO 'tmp :div_start

LOAD 7 ;num

STO 'remainder

LOAD 0 :loop ;tmp

JGZ 'sub

LOAD 1

JGZ 'return

SUB 'one :sub

STO 'tmp

CPY 'num

JGZ 'nl

HALT

SUB 'one :nl

STO 'num

LOAD 1 ;one

JGZ 'loop

LOAD 0 :return ;quotient

ADD 'one

STO 'quotient

JGZ 'start

0 :remainder

7,9,6,8,0,3,3,4,17,3,7,4,49,3,0,6,24,3,1,6,41,2,38,4,17,7,13,

6,33,0,2,38,4,13,3,1,6,16,3,0,1,38,4,42,6,8,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0
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B.3.6 Exponentiation

Instr Data I Label D Label

LOAD 1 :start ;power

JGZ '
ontinue

HALT

SUB 'one :
ontinue

STO 'power

LOAD 1 ;runningTotal

STO 'multipli
and

LOAD 0

STO 'runningTotal

LOAD 0 :return ;multipli
and

JGZ 'mulStart

LOAD 1

JGZ 'start

SUB 'one :mulStart

STO 'multipli
and

CPY 'runningTotal

ADD 'multiplier

STO 'runningTotal

LOAD 1 ;one

JGZ 'return

1 :multiplier

3,1,6,8,0,2,39,4,4,3,1,4,21,3,0,4,13,3,0,6,28,3,1,6,3,2,39,4

,21,7,13,1,42,4,13,3,1,6,20,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0
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B.3.7 List Membership

Instr Data I Label D Label

LOAD 'ls :start

STO 'pointer :
mp_pointer_target

STO '
mp_1

LOAD 2 ;target

SUB 'pointer ;
mp_1

JGZ 'end_test

LOAD 1 ;one

HALT

LOAD 0 :end_test ;pointer

SUB 'listend ;in
_sub

JGZ 'in
_pointer

LOAD 0

HALT

CPY 'pointer :in
_pointer

ADD 'one

JGZ '
mp_pointer_target

'le :listend

:ls

:le

3,29,4,19,4,12,3,2,2,19,6,18,3,1,0,3,0,2,33,6,27,3,0,0,7,19,

1,16,6,5,31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0
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B.3.8 Linear Sear
h

Instr Data I Label D Label

CPY 'listStart :start

STO 'pointer :
mp_pointer_target

STO '
mp_1

LOAD 2 ;target

SUB 'pointer ;
mp_1

JGZ 'end_test

CPY 'pointer

SUB 'listStart

HALT

LOAD 0 :end_test ;pointer

SUB 'listend ;in
_sub

JGZ 'in
_pointer

LOAD 'listend

HALT

CPY 'pointer :in
_pointer

ADD 'one

JGZ '
mp_pointer_target

1 :one

'ls :listStart

'le :listend

:ls

:le

7,36,4,21,4,12,3,2,2,21,6,20,7,21,2,36,0,3,0,2,37,6,29,3,37,0,

7,21,1,35,6,5,1,33,34,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0
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B.3.9 List Reversal

Instr Data I Label D Label

LOAD 'listEnd

STO '
pyPointer

ADD 'two :one

STO 'writePointer

LOAD 0 :main ;writePointer

STO 'writeSTO

LOAD 0 ;
pyPointer

STO '
pyLOC

CPY 0 ;
pyLOC

STO 0 ;writeSTO

CPY 'writePointer

ADD 'one

STO 'writePointer

LOAD 'listStart

SUB '
pyPointer :two

JGZ 'de
WritePointer

HALT

CPY '
pyPointer :de
WritePointer

SUB 'one

STO '
pyPointer

JGZ 'main :listStart ;listEnd

3,43,4,16,1,45,4,12,3,0,4,22,3,0,4,20,7,0,4,0,7,12,1,44,4,12,3,

42,2,16,6,36,0,7,16,2,44,4,16,6,11,1,2,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0

B.3.10 Stateful List Reversal

Instr Data I Label D Label

LOAD 'listStart

STO 'pointer1

LOAD 'listEnd

STO 'pointer2

LOAD 'listEnd

SUB 'ls

ADD 'one

STO 'listsize

LOAD 0 :main ;pointer1

SUB 'pointer2

JGZ '
ontinue

HALT

LOAD 0 :
ontinue ;listsize

SUB 'swaps

JGZ 'swap
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Instr Data I Label D Label

HALT

CPY 'pointer1 :swap

STO 'swpref1

STO 'writeref1

CPY 0 ;swpref1

STO 'swp

LOAD 0 ;pointer2

STO 'swpref2

STO 'writeref2

CPY 0 ;swpref2

STO 0 ;writeref1

LOAD 0 ;swp

STO 0 ;writeref2

CPY 'pointer1

ADD 'one :one

STO 'pointer1

CPY 'pointer2

SUB 'one :two

STO 'pointer2

LOAD 0 ;swaps

ADD 'two

STO 'swaps

JGZ 'main

'listStart :ls

:listStart

:listEnd

3,75,4,20,3,76,4,44,3,76,2,79,1,77,4,27,3,0,2,44,6,26,0,3,0,2,70,

6,33,0,7,20,4,40,4,52,7,0,4,54,3,0,4,50,4,56,7,0,4,0,3,0,4,0,7,20,

1,77,4,20,7,44,2,77,4,44,3,0,1,78,4,70,6,19,1,2,75,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0

B.3.11 Bubble Sort

Instr Data I Label D Label

LOAD 'listStart :start

STO 'pointer1

ADD 'one

STO 'pointer2

LOAD 0

STO '�ag

LOAD 0 :
mp_pointers ;pointer1

STO 'p1ref

CPY 0 ;p1ref

STO '
mp1

LOAD 0 ;pointer2
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Instr Data I Label D Label

STO 'p2ref

CPY 0 ;p2ref

STO '
mp2

LOAD 'in
_pointers

STO '
mpOther

STO 'equal1

LOAD 'swap

STO '
mp1Greater

LOAD 0 :
mp_start ;
mp2

SUB 'one

STO '
mp2

JGZ '
mp1de


CPY '
mp1

SUB 'one

JGZ 0 ;
mp1Greater

LOAD 1 ;one

JGZ 0 ;equal1

LOAD 0 :
mp1de
 ;
mp1

SUB 'one

STO '
mp1

JGZ '
mp_start

LOAD 1

JGZ 0 ;
mpOther

CPY 'pointer1 :in
_pointers

ADD 'one

STO 'pointer1

LOAD 'listend

SUB 'pointer2

JGZ 'return_to_in


LOAD 0 ;�ag

JGZ 'start

HALT

CPY 'pointer2 :return_to_in


ADD 'one

STO 'pointer2

JGZ '
mp_pointers

CPY 'pointer2 :swap

STO 'p2SwpRef

STO 'p2WriteRef

CPY 0 ;p2SwpRef

STO 'swp

CPY 'pointer1

STO 'p1SwpRef

STO 'p1WriteRef

CPY 0 ;p1SwpRef

STO 0 ;p2WriteRef

LOAD 0 ;swp
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Instr Data I Label D Label

STO 0 ;p1WriteRef

LOAD 1

STO '�ag

JGZ 'in
_pointers

:listStart

:listend

3,124,4,16,1,56,4,24,3,0,4,84,3,0,4,20,7,0,4,60,3,0,4,28,7,0,4,

42,3,71,4,70,4,58,3,96,4,54,3,0,2,56,4,42,6,59,7,60,2,56,6,0,3,

1,6,0,3,0,2,56,4,60,6,41,3,1,6,0,7,16,1,56,4,16,3,125,2,24,6,88,

3,0,6,3,0,7,24,1,56,4,24,6,15,7,24,4,103,4,115,7,0,4,117,7,16,4,

113,4,119,7,0,4,0,3,0,4,0,3,1,4,84,6,71,0,0

B.3.12 Universal TM

Instr Data I Label D Label

CPY 'CS :P_START

STO 'SS :four

CPY 'CHP

STO 'SY_READ

CPY 5 ;SY_READ

STO 'S_SY

LOAD 'MSR :three

STO 'STL

JGZ 'SE_ST :six

LOAD 0 :MSR ;SRL

JGZ 'VS

HALT

ADD 'two :VS

STO 'N_ST_R

CPY 4 ;N_ST_R

STO 'CS

CPY 'SRL

ADD 'three :one

STO 'NEW_SY_READ

CPY 'CHP

STO 'HP

CPY 5 ;NEW_SY_READ

STO 4 ;HP

CPY 'SRL

ADD 'four

STO 'N_D_R

CPY 1 ;N_D_R

SUB 'one :two

JGZ 'DIR_RIGHT

CPY 'CHP

SUB 'one
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Instr Data I Label D Label

STO 'CHP

JGZ 'CONTINUE

CPY 'CHP :DIR_RIGHT

ADD 'one

STO 'CHP

CPY 'CS :CONTINUE

JGZ 'P_START

HALT

LOAD 'SYTABST :SE_ST

STO '
urrentLo


LOAD 0 :sear
h_loop ;SS

SUB 0 ;
urrentLo


JGZ 'nTupSt

CPY '
urrentLo


ADD 'one

STO '
urrentLo


STO 'CMPSymbol

LOAD 0 ;S_SY

SUB 0 ;CMPSymbol

JGZ 'nTupSy

LOAD 1

JGZ 'found

CPY '
urrentLo
 :nTupSt

ADD 'one

STO '
urrentLo


CPY '
urrentLo
 :nTupSy

ADD 'four

JGZ 'nextTuple

CPY '
urrentLo
 :found

SUB 'one

STO 'SRL

JGZ 'sear
hExit

STO '
urrentLo
 :nextTuple

JGZ 'sear
h_loop

STO 'SRL :Not_Found

LOAD 1 :sear
hExit

JGZ 5 ;STL

'T_ST :CHP

1 :CS

:SYTABST

:T_ST

7,138,4,84,7,137,4,12,7,5,4,98,3,21,4,136,6,79,3,0,6,26,0,1,56,

4,31,7,4,4,138,7,22,1,15,4,45,7,137,4,47,7,5,4,4,7,22,1,5,4,55,

7,1,2,26,6,68,7,137,2,26,4,137,6,74,7,137,1,26,4,137,7,138,6,3,

0,3,138,4,86,3,0,2,0,6,107,7,86,1,26,4,86,4,100,3,0,2,0,6,113,3,

1,6,119,7,86,1,26,4,86,7,86,1,5,6,127,7,86,2,26,4,22,6,133,4,86,
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6,83,4,22,3,1,6,5,138,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.3.13 Universal RASP

Instr Data I Label D Label

LOAD 'PC_P :three

ADD 'three

STO 'OFF_PC

CPY 'OFF_PC :SIM_ST

STO 'INSLOC

CPY 4 ;INSLOC

STO 'IR_P

STO 'De
oder_Ins

JGZ 'de
1

HALT :none

SUB 'one :de
1

JGZ 'de
2

CPY 'ACC_P

ADD 'one

STO 'x

STO 'ACC_P

CPY 'MAX_INT

STO 'y

LOAD 'ACC_P

STO 'sto_lo
ation

LOAD 'done

STO 'return_lo
ation

JGZ 'TEST_LOOP

SUB 'one :de
2

JGZ 'de
3

CPY 'ACC_P

JGZ 'd


CPY 'MAX_INT

STO 'ACC_P

JGZ 'de
ST

SUB 'one :d


STO 'ACC_P :de
ST

LOAD 1

JGZ 'done

SUB 'one :de
3

JGZ 'de
4

LOAD 'L_RET

STO 'F_RET

JGZ 'FETCH

CPY 'IR_P :L_RET
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Instr Data I Label D Label

STO 'ACC_P

LOAD 1

JGZ 'done

SUB 'one :de
4

JGZ 'de
5

LOAD 'S_RET

STO 'F_RET

JGZ 'FETCH

LOAD 'PC_P :S_RET

ADD 'IR_P

STO 'slo


CPY 'ACC_P

STO 0 ;slo


LOAD 1

JGZ 'done

SUB 'one :de
5

JGZ 'de
6

OUT

JGZ 'done

SUB 'one :de
6

JGZ 'de
7

LOAD 'J_RET

STO 'F_RET

JGZ 'FETCH

CPY 'ACC_P :J_RET

JGZ 'JGZ_JUMP

LOAD 1

JGZ 'done

CPY 'IR_P :JGZ_JUMP

STO 'PC_P

LOAD 'PC_P

ADD 'IR_P

STO 'OFF_PC

JGZ 'SIM_ST

SUB 'one :de
7

JGZ 'none

LOAD 'C_RET

STO 'F_RET

JGZ 'FETCH

LOAD 'PC_P :C_RET

CPY 'IR_P

STO '
pylo


CPY 0 ;
pylo


STO 'ACC_P

LOAD 1

JGZ 'done

LOAD 'SIM_ST :done
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Instr Data I Label D Label

STO 'I_FRET

CPY 'PC_P :INCREMENT_PC

ADD 'one

STO 'PC_P

STO 'x

CPY 'MAX_INT

STO 'y

LOAD 'PC_P

STO 'sto_lo
ation

LOAD 'TI_RET

STO 'return_lo
ation

LOAD 1

JGZ 'TEST_LOOP

CPY 'PC_P :TI_RET

JGZ 'INC_OFFSET

LOAD 'PC_P

STO 'OFF_PC

LOAD 1

JGZ 'INC_EXIT

CPY 'OFF_PC :INC_OFFSET

ADD 'one

STO 'OFF_PC

LOAD 1 :INC_EXIT

JGZ 0 ;I_FRET

LOAD 'fet
h_r :FETCH

STO 'I_FRET

JGZ 'INCREMENT_PC

CPY 'OFF_PC :fet
h_r

STO 'FETCH_VAR

CPY 0 ;FETCH_VAR

STO 'IR_P

LOAD 1

JGZ 0 ;F_RET

LOAD 0 :TEST_LOOP ;x

SUB 'one

STO 'x

LOAD 0 ;y

SUB 'one

STO 'y

JGZ 'xtest

LOAD 1

JGZ 'xtest2

CPY 'x :xtest

JGZ 'TEST_LOOP

LOAD 1

JGZ 'RETURN

CPY 'x :xtest2
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Instr Data I Label D Label

JGZ 'INVALID

LOAD 1

JGZ 'RETURN

LOAD 0 :INVALID

STO 5 ;sto_lo
ation

LOAD 1 :RETURN ;one

JGZ 0 ;return_lo
ation

0 :De
oder_Ins

0 :OFF_PC

4 :MAX_INT

:PC_P

:IR_P

:ACC_P

3,281,1,3,4,284,7,284,4,14,7,4,4,281,4,283,6,22,0,2,280,6,48,

7,281,1,280,4,242,4,281,7,285,4,248,3,281,4,278,3,173,4,282,

6,241,2,280,6,70,7,281,6,62,7,285,4,281,6,64,2,280,4,281,3,1,

6,173,2,280,6,88,3,80,4,240,6,223,7,281,4,281,3,1,6,173,2,280,

6,112,3,98,4,240,6,223,3,281,1,281,4,107,7,281,4,0,3,1,6,173,2,

280,6,119,5,6,173,2,280,6,149,3,129,4,240,6,223,7,281,6,137,3,

1,6,173,7,281,4,281,3,281,1,281,4,284,6,9,2,280,6,21,3,159,4,

240,6,223,3,281,7,281,4,166,7,0,4,281,3,1,6,173,3,9,4,222,7,281,

1,280,4,281,4,242,7,285,4,248,3,281,4,278,3,201,4,282,3,1,6,241,

7,281,6,213,3,281,4,284,3,1,6,219,7,284,1,280,4,284,3,1,6,0,3,

229,4,222,6,177,7,284,4,234,7,0,4,281,3,1,6,0,3,0,2,280,4,242,

3,0,2,280,4,248,6,259,3,1,6,267,7,242,6,241,3,1,6,279,7,242,6,

275,3,1,6,279,3,0,4,5,3,1,6,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
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B.4 TM

B.4.1 Addition/Subtra
tion/Equality

1,1,2,0,R

2,1,2,1,R

2,0,0,1,L

(a) Addition

1,1,1,1,R

1,0,2,0,R

2,1,2,1,R

2,0,3,0,L

3,1,4,0,L

3,0,0,0,R

4,1,4,1,L

4,0,5,0,L

5,1,5,1,L

5,0,6,0,R

6,1,1,0,R

6,0,7,0,R

7,0,8,0,R

7,1,7,0,R

8,0,0,0,R

(b) Subtra
tion

1,0,7,0,R

2,1,2,1,R

2,0,3,0,R

3,1,3,1,R

3,0,4,0,L

4,1,5,0,L

4,0,9,0,L

5,1,5,1,L

5,0,6,0,L

6,1,6,1,L

6,0,1,0,R

7,0,0,0,R

7,1,8,0,R

8,1,8,0,R

8,0,0,1,R

9,0,0,0,L

9,1,10,0,L

10,1,10,0,L

10,0,0,1,L

(
) Equality
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B.4.2 Multipli
ation/Division

1,0,10,0,R

1,1,2,0,R

2,1,2,1,R

2,0,3,0,R

3,#,3,#,R

3,1,4,#,R

3,0,8,0,L

4,1,4,1,R

4,0,5,0,R

5,1,5,1,R

5,0,6,1,L

6,1,6,1,L

6,0,7,0,L

7,#,7,#,L

7,1,7,1,L

7,0,3,0,R

8,#,8,1,L

8,0,9,0,L

9,1,9,1,L

9,0,1,0,R

10,1,10,0,R

10,0,0,0,R

(a) Multipli
ation

1,1,2,#,R

1,#,1,#,R

1,0,6,0,L

2,1,2,1,R

2,0,3,0,R

3,#,3,#,R

3,1,4,#,L

3,0,9,0,L

4,#,4,#,L

4,0,5,0,L

5,#,5,#,L

5,1,5,1,L

5,0,1,0,R

6,#,6,1,L

6,0,7,0,L

7,1,7,1,L

7,0,8,1,R

8,1,8,1,R

8,0,1,0,R

9,#,9,0,L

9,0,10,0,L

10,#,12,0,L

10,1,11,0,L

11,1,11,0,L

11,#,12,0,L

12,#,12,1,L

12,0,0,0,L

(b) Division
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B.4.3 Exponentiation

1,0,0,0,R

1,1,2,0,R

2,1,2,1,R

2,0,3,0,R

3,#,3,#,R

3,0,14,0,R

3,1,4,#,R

4,1,4,1,R

4,0,5,0,R

5,0,5,0,R

5,1,6,#,R

6,1,6,1,R

6,0,7,0,R

7,1,7,1,R

7,0,8,1,L

8,1,8,1,L

8,0,9,0,L

9,#,9,#,L

9,1,9,1,L

9,0,10,0,R

10,1,6,#,R

10,#,10,#,R

10,0,11,0,L

11,#,11,1,L

11,0,12,0,L

12,0,12,0,L

12,#,13,#,L

12,1,13,1,L

13,1,13,1,L

13,#,13,#,L

13,0,3,0,R

14,0,14,0,R

14,1,15,0,R

15,1,15,0,R

15,0,16,0,L

16,0,16,0,L

16,#,17,1,L

17,#,17,1,L

17,0,18,0,L

18,1,18,1,L

18,0,1,0,R

B.4.4 List Membership

1,1,1,B,R

1,0,1,A,R

1,*,2,*,L

2,1,2,B,L

2,0,2,A,L

2,*,2,*,L

2,A,2,A,L

2,B,2,B,L

2,T,3,T,R

3,0,3,0,R

3,1,3,1,R

3,B,4,1,R

3,A,7,0,R

3,*,8,*,L

4,A,4,A,R

4,B,4,B,R

4,*,4,*,R

4,1,5,B,L

4,0,6,A,R

5,A,5,A,L

5,B,5,B,L

5,1,5,1,L

5,0,5,0,L

5,*,5,*,L

5,T,3,T,R

6,0,6,0,R

6,1,6,1,R

6,*,2,*,L

6,E,0,E,R

7,A,7,A,R

7,B,7,B,R

7,*,7,*,R

7,0,5,A,L

7,1,6,B,R

8,0,8,0,L

8,1,8,1,L

8,T,9,T,L

9,0,0,1,L
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B.4.5 Linear Sear
h

1,1,1,B,R

1,0,1,A,R

1,#,2,#,L

2,A,2,A,L

2,B,2,B,L

2,0,2,A,L

2,1,2,B,L

2,#,2,#,L

2,*,2,*,L

2,T,3,T,R

3,1,3,1,R

3,0,3,0,R

3,B,4,1,R

3,A,9,0,R

3,#,10,#,L

4,A,4,A,R

4,B,4,B,R

4,#,4,#,R

4,*,4,*,R

4,1,5,B,L

4,0,6,A,R

5,A,5,A,L

5,B,5,B,L

5,1,5,1,L

5,0,5,0,L

5,#,5,#,L

5,*,5,*,L

5,T,3,T,R

6,0,6,0,R

6,1,6,1,R

6,*,6,*,R

6,#,2,#,L

6,E,7,E,L

7,0,7,0,L

7,1,7,1,L

7,A,7,A,L

7,B,7,B,L

7,*,7,*,L

7,#,7,#,L

7,T,8,T,L

8,0,8,*,L

8,E,0,E,R

9,A,9,A,R

9,B,9,B,R

9,#,9,#,R

9,*,9,*,R

9,1,6,B,R

9,0,5,A,L

10,0,10,A,L

10,1,10,B,L

10,T,10,T,L

10,E,11,E,R

11,A,12,0,R

11,T,0,T,R

12,A,12,A,R

12,B,12,B,R

12,*,12,*,R

12,#,12,#,R

12,T,12,T,R

12,0,13,A,L

12,1,14,B,L

13,A,13,A,L

13,B,13,B,L

13,*,13,*,L

13,#,13,#,L

13,T,13,T,L

13,0,11,0,R

14,A,14,A,L

14,B,14,B,L

14,*,14,*,L

14,#,14,#,L

14,T,14,T,L

14,0,11,1,R

315



Appendix B. Full Programs

B.4.6 List Reversal

1,#,1,#,L

1,A,1,A,L

1,B,1,B,L

1,$,1,$,L

1,0,9,0,L

1,1,9,1,L

1,*,2,*,R

1,E,0,0,R

2,A,2,A,R

2,B,2,B,R

2,1,7,B,R

2,0,5,A,R

2,#,3,#,R

2,$,3,$,R

3,A,3,A,R

3,B,3,B,R

3,#,3,#,R

3,$,3,$,R

3,0,4,$,L

4,A,4,A,L

4,B,4,B,L

4,#,4,#,L

4,$,4,$,L

4,*,1,$,L

5,A,5,A,R

5,B,5,B,R

5,0,5,0,R

5,1,5,1,R

5,$,5,$,R

5,#,6,#,R

6,A,6,A,R

6,B,6,B,R

6,$,6,$,R

6,0,1,A,L

7,A,7,A,R

7,B,7,B,R

7,0,7,0,R

7,1,7,1,R

7,$,7,$,R

7,#,8,#,R

8,A,8,A,R

8,B,8,B,R

8,$,8,$,R

8,0,1,B,L

9,1,9,1,L

9,0,9,0,L

9,A,9,A,L

9,B,9,B,L

9,*,2,*,R

9,E,2,E,R
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B.4.7 Stateful List Reversal

1,0,2,Z,R

1,1,5,Z,R

1,*,7,*,R

2,0,2,0,R

2,1,2,1,R

2,A,2,A,R

2,B,2,B,R

2,*,2,*,R

2,E,3,E,R

3,A,3,A,R

3,B,3,B,R

3,0,4,A,L

4,A,4,A,L

4,B,4,B,L

4,0,4,0,L

4,1,4,1,L

4,*,4,*,L

4,E,4,E,L

4,Z,1,Z,R

5,0,5,0,R

5,1,5,1,R

5,A,5,A,R

5,B,5,B,R

5,*,5,*,R

5,E,6,E,R

6,A,6,A,R

6,B,6,B,R

6,0,4,B,L

7,A,7,A,R

7,B,7,B,R

7,0,7,0,R

7,1,7,1,R

7,*,7,*,R

7,E,8,E,L

8,A,8,A,L

8,B,8,B,L

8,*,8,*,L

8,1,9,1,R

8,0,9,0,R

8,Z,14,Z,R

9,*,10,*,L

9,E,10,E,L

10,0,11,Z,L

10,1,13,Z,L

10,*,14,*,R

11,A,11,A,L

11,B,11,B,L

11,0,11,0,L

11,1,11,1,L

11,*,11,*,L

11,Z,12,A,R

12,A,12,A,R

12,B,12,B,R

12,0,12,0,R

12,1,12,1,R

12,*,12,*,R

12,Z,10,Z,L

13,A,13,A,L

13,B,13,B,L

13,0,13,0,L

13,1,13,1,L

13,*,13,*,L

13,Z,12,B,R

14,Z,14,Z,R

14,A,14,A,R

14,B,14,B,R

14,*,14,*,R

14,E,14,E,R

14,0,15,0,L

15,A,16,0,L

15,B,17,0,L

15,E,18,E,L

16,E,16,E,L

16,A,16,A,L

16,B,16,B,L

16,*,16,*,L

16,Z,14,A,R

17,E,17,E,L

17,A,17,A,L

17,B,17,B,L

17,*,17,*,L

17,Z,14,B,R

18,A,18,A,L

18,B,18,B,L

18,*,18,*,L

18,0,19,0,L

18,1,19,1,L

18,E,0,E,R

19,0,19,0,L

19,1,19,1,L

19,*,19,*,L

19,A,20,A,R

19,B,20,B,R

20,*,1,*,R
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B.4.8 Bubble Sort

1,*,2,$,R

1,1,1,1,R

1,0,1,0,R

2,0,2,0,R

2,1,2,1,R

2,*,3,$,L

2,#,13,#,L

3,0,3,0,L

3,1,3,1,L

3,A,3,A,L

3,B,3,B,L

3,$,4,$,R

4,1,5,B,R

4,0,8,A,R

4,A,4,A,R

4,B,4,B,R

4,$,12,$,R

5,0,5,0,R

5,1,5,1,R

5,$,6,$,R

6,1,7,B,L

6,0,15,0,L

6,A,6,A,R

6,B,6,B,R

7,A,7,A,L

7,B,7,B,L

7,$,3,$,L

8,0,8,0,R

8,1,8,1,R

8,$,9,$,R

9,1,10,1,L

9,0,7,A,L

9,A,9,A,R

9,B,9,B,R

10,A,10,0,L

10,B,10,1,L

10,$,11,*,L

11,A,11,0,L

11,0,11,0,L

11,B,11,1,L

11,1,11,1,L

11,$,1,*,R

12,A,12,A,R

12,B,12,B,R

12,*,10,*,L

13,0,13,0,L

13,1,13,1,L

13,*,13,*,L

13,$,13,*,L

13,#,14,#,L

14,0,0,0,R

14,1,14,0,R

14,#,1,#,R

15,A,15,0,L

15,B,15,1,L

15,$,16,$,R

16,Z,16,Z,R

16,0,17,Z,R

16,1,20,Z,R

16,*,22,*,L

16,#,22,#,L

17,0,17,0,R

17,1,17,1,R

17,*,17,*,R

17,#,18,#,R

18,A,18,A,R

18,B,18,B,R

18,0,19,A,L

19,Z,19,Z,L

19,0,19,0,L

19,1,19,1,L

19,A,19,A,L

19,B,19,B,L

19,*,19,*,L

19,#,19,#,L

19,$,16,$,R

20,0,20,0,R

20,1,20,1,R

20,*,20,*,R

20,#,21,#,R

21,A,21,A,R

21,B,21,B,R

21,0,19,B,L

22,Z,22,Z,L

22,$,23,*,L

23,A,23,0,L

23,B,23,1,L

23,0,23,0,L

23,1,23,1,L

23,*,23,*,L

23,Z,23,Z,L

23,$,24,$,R

24,Z,24,Z,R

24,0,25,Z,R

24,1,26,Z,R

24,*,27,*,R

25,0,25,0,R

25,1,25,1,R

25,*,25,*,R

25,Z,23,0,L

26,0,26,0,R

26,1,26,1,R

26,*,26,*,R

26,Z,23,1,L

27,0,27,0,R

27,1,27,1,R

27,*,27,*,R

27,#,28,#,R

28,A,28,A,R

28,B,28,B,R

28,0,29,0,L

29,A,30,0,L

29,B,31,0,L

29,#,32,#,L

30,A,30,A,L

30,B,30,B,L

30,0,30,0,L

30,1,30,1,L

30,*,30,*,L

30,#,30,#,L

30,Z,27,0,R

31,A,31,A,L

31,B,31,B,L

31,0,31,0,L

31,1,31,1,L

31,*,31,*,L

31,#,31,#,L

31,Z,27,1,R

32,0,32,0,L

32,1,32,1,L

32,*,32,*,L

32,$,32,$,L

32,#,33,#,L

33,0,34,1,R

33,1,34,1,R

34,#,34,#,R

34,0,34,0,R

34,1,34,1,R

34,*,34,*,R

34,$,1,*,R
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B.4.9 Universal TM

1,0,1,A,L

1,1,1,B,L

1,Y,5,Y,R

1,X,1,X,L

1,B,1,B,L

1,A,1,A,L

2,Y,0,Y,R

2,X,1,X,L

2,1,2,1,R

2,0,2,0,R

3,1,2,B,R

3,0,4,A,L

3,B,3,B,R

3,A,3,A,R

3,X,3,X,R

4,Y,5,Y,R

4,X,4,X,L

4,A,4,A,L

4,B,4,B,L

4,1,4,1,L

4,0,4,0,L

5,A,3,0,R

5,B,6,1,R

5,X,23,X,R

5,0,5,0,R

5,1,5,1,R

6,1,4,B,L

6,0,2,A,R

6,A,6,A,R

6,B,6,B,R

6,X,6,X,R

7,S,1,A,L

7,0,7,0,R

7,1,7,1,R

7,Y,7,Y,R

8,S,1,B,L

8,0,8,0,R

8,1,8,1,R

8,Y,8,Y,R

9,0,7,M,R

9,1,8,M,R

10,0,7,M,R

10,1,8,M,R

11,B,9,0,R

11,A,10,0,L

11,0,11,0,L

11,1,11,1,L

11,Y,11,Y,L

12,B,9,1,R

12,A,10,1,L

12,0,12,0,L

12,1,12,1,L

12,Y,12,Y,L

13,0,11,S,L

13,1,12,S,L

13,B,13,1,L

13,A,13,0,L

13,X,13,X,L

13,Y,13,Y,L

14,0,13,0,L

14,1,13,1,L

14,A,14,A,R

14,B,14,B,R

14,X,14,X,R

14,Y,14,Y,R

15,B,15,1,R

15,A,15,0,R

15,X,14,X,R

15,0,15,0,R

15,1,15,1,R

15,Y,15,Y,R

16,M,15,A,R

16,A,16,A,L

16,B,16,B,L

16,Y,16,Y,L

16,0,16,0,L

16,1,16,1,L

17,M,15,B,R

17,A,17,A,L

17,B,17,B,L

17,Y,17,Y,L

17,0,17,0,L

17,1,17,1,L

18,X,17,X,L

18,0,19,B,R

18,1,19,B,R

18,A,18,A,R

18,B,18,B,R

19,X,23,X,R

19,1,19,1,R

19,0,19,0,R

20,0,19,A,R

20,1,19,A,R

20,X,16,X,L

20,A,20,A,R

20,B,20,B,R

21,Y,20,Y,R

21,B,21,B,L

21,A,21,A,L

21,X,21,X,L

21,1,21,1,L

21,0,21,0,L

22,Y,18,Y,R

22,A,22,A,L

22,B,22,B,L

22,X,22,X,L

22,1,22,1,L

22,0,22,0,L

23,1,22,B,L

23,0,21,A,L

23,A,23,A,R

23,B,23,B,R

23,X,23,X,R
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B.4.10 Universal RASP

1,0,1,A,R

1,1,1,B,R

1,#,53,#,L

1,S,1,S,R

53,A,53,A,L

53,B,53,B,L

53,1,53,1,L

53,0.253,0,L

53,S,53,S,L

53,#,53,#,L

53,P,2,P,R

2,1,2,1,R

2,0,2,0,R

2,#,3,#,L

3,0,3,A,L

3,1,3,B,L

3,A,3,A,L

3,B,3,B,L

3,P,4,P,R

3,*,3,*,L

3,#,3,#,L

3,S,3,S,L

3,I,3,I,L

3,X,3,X,L

4,0,4,0,R

4,1,4,1,R

4,A,5,0,R

4,B,12,1,R

4,#,15,#,R

5,A,5,A,R

5,B,5,B,R

5,#,6,#,R

6,S,6,S,R

6,A,6,A,R

6,B,6,B,R

6,1,6,1,R

6,0,6,0,R

6,#,7,#,R

7,I,7,I,R

7,#,7,#,R

7,*,7,*,R

7,A,7,A,R

7,B,7,B,R

7,X,7,X,R

7,0,9,A,L

7,1,8,B,R

8,I,8,I,R

8,X,8,X,R

8,*,8,*,R

8,1,8,1,R

8,0,8,0,R

8,E,13,E,L

8,#,3,#,L

9,S,9,S,L

9,I,9,I,L

9,X,9,X,L

9,*,9,*,L

9,#,9,#,L

9,1,9,1,L

9,0,9,0,L

9,A,9,A,L

9,B,9,B,L

9,P,4,P,R

10,I,10,I,R

10,#,10,#,R

10,*,10,*,R

10,A,10,A,R

10,B,10,B,R

10,X,10,X,R

10,1,9,B,L

10,0,8,A,R

11,S,11,S,R

11,A,11,A,R

11,B,11,B,R

11,1,11,1,R

11,0,11,0,R

11,#,10,#,R

12,A,12,A,R

12,B,12,B,R

12,#,11,#,R

13,1,13,1,L

13,0,13,0,L

13,A,13,A,L

13,B,13,B,L

13,S,13,S,L

13,I,13,I,L

13,X,13,X,L

13,I,13,I,L

13,#,13,#,L

13,*,13,*,L

13,P,14,P,L

14,#,14,#,L

14,0,23,P,L

15,S,15,S,R

15,B,16,1,R

15,A,16,0,R

15,#,21,#,R

16,#,16,#,R

16,*,16,*,R

16,A,16,A,R

16,B,16,B,R

16,I,16,I,R

16,X,16,X,R

16,0,17,A,L

16,1,19,B,L

17,#,17,#,L

17,*,17,*,L

17,A,17,A,L

17,B,17,B,L

17,X,17,X,L

17,I,17,I,L

17,0,17,0,L

17,1,17,1,L

17,S,18,S,R

18,A,18,A,R

18,B,18,B,R

18,#,21,#,R

18,1,15,A,R

18,0,15,A,R

19,#,19,#,L

19,*,19,*,L

19,A,19,A,L

19,B,19,B,L

19,X,19,X,L

19,I,19,I,L

19,0,19,0,L

19,1,19,1,L

19,S,20,S,R

20,A,20,A,R

20,B,20,B,R

20,#,21,#,R

20,0,15,B,R

20,1,15,B,R

21,0,21,0,L

21,1,21,1,L

21,A,21,A,L
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21,B,21,B,L

21,*,21,*,L

21,#,21,#,L

21,X,21,X,L

21,I,21,I,L

21,S,21,S,L

21,P,22,P,L

22,#,22,#,L

22,0,23,B,L

23,E,24,E,R

24,P,24,P,R

24,#,24,#,R

24,*,24,*,R

24,0,24,0,R

24,1,24,1,R

24,A,24,A,R

24,B,24,B,R

24,S,24,S,R

24,I,24,I,R

24,X,24,X,R

24,E,25,E,L

25,P,26,P,L

25,#,25,#,L

25,*,25,*,L

25,0,25,0,L

25,1,25,1,L

25,A,25,0,L

25,B,25,1,L

25,S,25,S,L

25,I,25,I,L

25,X,25,X,L

26,P,26,P,L

26,#,26,#,L

26,*,26,*,L

26,0,26,0,L

26,1,26,1,L

26,A,26,A,L

26,B,26,B,L

26,S,26,S,L

26,I,26,I,L

26,X,26,X,L

26,E,27,E,R

27,1,54,0,R

27,A,46,0,R

27,B,28,0,R

27,P,38,0,R

27,S,86,0,R

27,#,208,0,R

28,P,28,P,R

28,0,28,0,R

28,1,28,1,R

28,#,28,#,R

28,*,28,*,R

28,A,28,A,R

28,B,28,B,R

28,S,29,S,R

29,A,29,A,R

29,B,29,B,R

29,0,30,A,R

29,1,33,B,R

29,#,36,#,R

30,0,30,0,R

30,1,30,1,R

30,A,30,A,R

30,B,30,B,R

30,*,30,*,R

30,#,30,#,R

30,I,31,I,R

31,0,32,A,L

31,1,32,A,L

31,A,31,A,R

31,B,31,B,R

32,0,32,0,L

32,1,32,1,L

32,A,32,A,L

32,B,32,B,L

32,*,32,*,L

32,#,32,#,L

32,I,32,I,L

32,S,29,S,R

33,0,33,0,R

33,1,33,1,R

33,A,33,A,R

33,B,33,B,R

33,*,33,*,R

33,#,33,#,R

33,I,34,I,R

34,0,35,B,L

34,1,35,B,L

34,A,34,A,R

34,B,34,B,R

35,0,35,0,L

35,1,35,1,L

35,A,35,A,L

35,B,35,B,L

35,*,35,*,L

35,#,35,#,L

35,I,35,I,L

35,S,29,S,R

36,0,36,0,L

36,1,36,1,L

36,A,36,A,L

36,B,36,B,L

36,#,36,#,L

36,S,36,S,L

36,P,37,P,L

37,#,37,#,L

37,0,23,A,L

38,P,39,P,R

38,#,38,#,R

39,#,45,#,L

39,A,39,A,R

39,B,39,B,R

39,0,40,A,R

39,1,43,B,R

40,1,40,1,R

40,0,40,0,R

40,#,40,#,R

40,S,41,S,R

41,A,41,A,R

41,B,41,B,R

41,0,42,A,L

41,1,42,A,L

42,0,42,0,L

42,1,42,1,L

42,B,42,B,L

42,A,42,A,L

42,S,42,S,L

42,#,42,#,L

42,P,39,P,R

43,1,43,1,R

43,0,43,0,R

43,#,43,#,R

43,S,44,S,R

44,A,44,A,R

44,B,44,B,R
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44,0,42,B,L

44,1,42,B,L

45,#,45,#,L

45,A,45,A,L

45,B,45,B,L

45,P,45,P,L

45,0,23,B,L

46,#,46,#,R

46,P,46,P,R

46,0,46,0,R

46,1,46,1,R

46,P,46,P,R

46,S,47,S,R

47,1,47,1,R

47,0,47,0,R

47,#,48,#,L

48,1,51,1,L

48,0,49,0,L

49,0,49,0,L

49,1,49,1,L

49,S,49,S,L

49,#,49,#,L

49,P,50,P,L

50,#,50,#,L

50,0,23,S,L

51,0.251,0,L

51,1,51,1,L

51,S,51,S,L

51,#,51,#,L

51,P,52,P,L

52,#,52,#,L

52,0,23,1,L

54,#,54,#,R

54,P,55,P,R

55,1,55,1,R

55,0.255,0,R

55,#,56,#,L

56,1,56,1,L

56,P,57,P,R

56,0.257,1,R

57,1,57,0,R

57,#,58,#,R

58,0.258,A,L

58,1,58,B,L

58,#,71,#,L

58,S,59,S,R

59,1,59,1,R

59,0.259,0,R

59,#,60,#,L

60,0,60,A,L

60,1,60,B,L

60,A,60,A,L

60,B,60,B,L

60,P,61,P,R

60,*,60,*,L

60,#,60,#,L

60,S,60,S,L

60,I,60,I,L

60,X,60,X,L

61,#,72,#,R

61,0,61,0,R

61,1,61,1,R

61,A,62,0,R

61,B,69,1,R

62,A,62,A,R

62,B,62,B,R

62,#,63,#,R

63,S,63,S,R

63,A,63,A,R

63,B,63,B,R

63,1,63,1,R

63,0,63,0,R

63,#,64,#,R

64,I,64,I,R

64,#,64,#,R

64,*,64,*,R

64,A,64,A,R

64,B,64,B,R

64,X,64,X,R

64,0,66,A,L

64,1,65,B,R

65,I,65,I,R

65,X,65,X,R

65,*,65,*,R

65,1,65,1,R

65,0,65,0,R

65,E,70,E,L

65,#,60,#,L

66,S,66,S,L

66,I,66,I,L

66,X,66,X,L

66,*,66,*,L

66,#,66,#,L

66,1,66,1,L

66,0,66,0,L

66,A,66,A,L

66,B,66,B,L

66,P,61,P,R

67,I,67,I,R

67,#,67,#,R

67,*,67,*,R

67,A,67,A,R

67,B,67,B,R

67,X,67,X,R

67,1,66,B,L

67,0,65,A,R

68,S,68,S,R

68,A,68,A,R

68,B,68,B,R

68,1,68,1,R

68,0,68,0,R

68,#,67,#,R

69,B,69,B,R

69,#,68,#,R

70,1,70,1,L

70,0,70,0,L

70,A,70,A,L

70,B,70,B,L

70,I,70,I,L

70,X,70,X,L

70,I,70,I,L

70,#,70,#,L

70,*,70,*,L

70,S,82,S,R

71,A,71,A,L

71,B,71,B,L

71,1,71,1,L

71,0,71,0,L

71,S,71,S,L

71,#,71,#,L

71,P,59,P,R

72,S,72,S,R

72,B,72,B,R

72,A,72,A,R

72,#,72,#,R

72,*,72,*,R
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72,I,73,I,R

73,0,73,0,R

73,1,73,1,R

73,A,73,A,R

73,B,73,B,R

73,#,74,#,R

74,0,80,0,L

74,1,80,1,L

74,A,75,A,L

74,B,75,B,L

75,A,75,A,L

75,B,75,B,L

75,I,76,I,R

75,0,75,0,L

75,1,75,1,L

75,#,75,#,L

76,1,76,1,R

76,0,76,0,R

76,A,77,0,R

76,B,77,0,R

76,#,80,#,L

77,A,77,A,R

77,B,77,B,R

77,X,77,X,R

77,#,77,#,R

77,*,77,*,R

77,0,78,A,L

77,1,79,B,L

78,A,78,A,L

78,B,78,B,L

78,#,78,#,L

78,*,78,*,L

78,X,78,X,L

78,0,75,0,L

78,1,75,0,L

79,A,79,A,L

79,B,79,B,L

79,#,79,#,L

79,*,79,*,L

79,X,79,X,L

79,0,75,1,L

79,1,75,1,L

80,A,80,A,L

80,B,80,B,L

80,1,80,1,L

80,0,80,0,L

80,#,80,#,L

80,*,80,*,L

80,S,80,S,L

80,X,80,X,L

80,I,80,I,L

80,P,81,P,L

81,#,81,#,L

81,0,23,S,L

82,A,82,A,R

82,B,82,B,R

82,#,82,#,R

82,*,82,*,R

82,I,83,I,R

83,A,83,0,R

83,B,83,0,R

83,#,84,#,L

84,A,84,A,L

84,B,84,B,L

84,1,84,1,L

84,0,84,0,L

84,*,84,*,L

84,#,84,#,L

84,S,84,S,L

84,I,84,I,L

84,P,85,P,L

85,#,85,#,L

85,0,23,S,L

86,#,86,#,R

86,P,86,P,R

86,0,86,0,R

86,1,86,1,R

86,S,87,S,R

87,1,87,1,R

87,0,87,0,R

87,#,88,#,L

88,1,89,1,L

88,0,90,0,L

89,1,91,1,L

89,0,94,0,L

90,1,93,1,L

90,0,92,0,L

91,1,96,1,L

91,0,95,0,L

92,1,101,1,L

92,0,102,0,L

93,1,99,1,L

93,0,100,0,L

94,1,97,1,L

94,0,98,0,L

95,0,95,0,L

95,S,174,S,R

95,1,100,1,L

96,0,96,0,L

96,1,100,1,L

96,S,143,S,R

97,0,97,0,L

97,1,100,1,L

97,S,131,S,R

98,0,98,0,L

98,1,100,1,L

98,S,123,S,R

99,0,99,0,L

99,1,100,1,L

99,S,108,S,R

100,0,100,0,L

100,1,100,1,L

100,S,0,S,R

101,0,101,0,L

101,1,100,1,L

101,S,103,S,R

102,S,113,S,R

102,0,102,0,L

102,1,100,1,L

103,1,103,1,R

103,0,103,0,R

103,#,103,#,R

103,*,103,*,R

103,I,103,I,R

103,X,104,X,R

104,0,104,0,R

104,1,104,1,R

104,#,105,#,L

105,1,105,1,L

105,X,106,X,R

105,0,106,1,R

106,1,106,0,R

106,#,107,#,L

107,1,107,1,L

107,0,107,0,L

107,X,107,X,L
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107,#,107,#,L

107,*,107,*,L

107,I,107,I,L

107,S,107,S,L

107,P,203,P,R

108,1,108,1,R

108,0,108,0,R

108,#,108,#,R

108,*,108,*,R

108,I,108,I,R

108,X,109,X,R

109,1,109,1,R

109,0,109,0,R

109,#,110,#,L

110,0,110,0,L

110,X,111,X,R

110,1,111,0,R

111,0,111,1,R

111,#,112,#,L

112,1,112,1,L

112,0,112,0,L

112,#,112,#,L

112,*,112,*,L

112,X,112,X,L

112,I,112,I,L

112,S,112,S,L

112,P,203,P,R

113,1,113,1,R

113,0,113,0,R

113,*,113,*,R

113,#,113,#,R

113,I,113,I,R

113,X,114,X,R

114,A,114,A,R

114,B,114,B,R

114,0,115,A,R

114,1,118,B,R

114,#,120,#,R

115,1,115,1,R

115,0,115,0,R

115,#,115,#,R

115,*,115,*,R

115,E,116,E,R

116,A,116,A,R

116,B,116,B,R

116,*,116,*,R

116,0,117,A,L

117,A,117,A,L

117,B,117,B,L

117,0,117,0,L

117,1,117,1,L

117,#,117,#,L

117,*,117,*,L

117,E,117,E,L

117,X,114,X,R

118,1,118,1,R

118,0,118,0,R

118,#,118,#,R

118,*,118,*,R

118,E,119,E,R

119,A,119,A,R

119,B,119,B,R

119,*,119,*,R

119,0,117,B,L

120,1,120,1,R

120,0,120,0,R

120,#,120,#,R

120,*,120,*,R

120,E,121,E,R

121,A,121,A,R

121,B,121,B,R

121,*,121,*,R

121,0,122,*,L

122,A,122,A,L

122,B,122,B,L

122,0,122,0,L

122,1,122,1,L

122,X,122,X,L

122,I,122,I,L

122,S,122,S,L

122,#,122,#,L

122,*,122,*,L

122,E,122,E,L

122,P,203,P,R

123,1,123,1,R

123,0,123,0,R

123,#,123,#,R

123,*,123,*,R

123,I,124,I,R

124,A,124,A,R

124,B,124,B,R

124,1,125,B,R

124,0,129,A,R

124,#,130,#,R

125,1,125,1,R

125,0,125,0,R

125,#,125,#,R

125,*,125,*,R

125,X,126,X,R

126,A,126,A,R

126,B,126,B,R

126,0,127,B,L

126,1,127,B,L

127,0,127,0,L

127,1,127,1,L

127,A,127,A,L

127,B,127,B,L

127,#,127,#,L

127,*,127,*,L

127,X,127,X,L

127,I,124,I,R

128,A,128,A,R

128,B,128,B,R

128,0,127,A,L

128,1,127,A,L

129,0,129,0,R

129,1,129,1,R

129,#,129,#,R

129,*,129,*,R

129,X,128,X,R

130,0,130,0,L

130,1,130,1,L

130,A,130,A,L

130,B,130,B,L

130,#,130,#,L

130,*,130,*,L

130,I,130,I,L

130,S,130,S,L

130,P,203,P,R

131,1,131,1,R

131,0,131,0,R

131,I,131,I,R

131,#,131,#,R

131,*,131,*,R

131,X,132,X,R

132,0,132,0,R
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132,1,133,1,L

132,#,142,#,R

133,#,133,#,L

133,*,133,*,L

133,1,133,1,L

133,0,133,0,L

133,X,133,X,L

133,I,134,I,R

134,A,134,A,R

134,B,134,B,R

134,1,136,B,L

134,0,135,A,L

134,#,140,#,L

135,0,135,0,L

135,1,135,1,L

135,I,135,I,L

135,S,135,S,L

135,*,135,*,L

135,#,135,#,L

135,A,135,A,L

135,B,135,B,L

135,P,137,P,R

136,0,136,0,L

136,1,136,1,L

136,I,136,I,L

136,S,136,S,L

136,*,136,*,L

136,#,136,#,L

136,A,136,A,L

136,B,136,B,L

136,P,138,P,R

137,A,137,A,R

137,B,137,B,R

137,0,139,A,R

137,1,139,A,R

138,A,138,A,R

138,B,138,B,R

138,1,139,B,R

138,0,139,B,R

139,0,139,0,R

139,1,139,1,R

139,S,139,S,R

139,#,139,#,R

139,*,139,*,R

139,I,134,I,R

140,A,140,A,L

140,B,140,B,L

140,0,140,0,L

140,1,140,1,L

140,#,140,#,L

140,*,140,*,L

140,S,140,S,L

140,I,140,I,L

140,P,141,P,L

141,#,141,#,L

141,0,23,#,L

142,0,142,0,L

142,1,142,1,L

142,I,142,I,L

142,X,142,X,L

142,*,142,*,L

142,#,142,#,L

142,S,142,#,L

142,P,203,P,R

143,0,143,0,R

143,1,143,1,R

143,*,143,*,R

143,#,143,#,R

143,I,144,I,R

144,0,144,0,R

144,#,158,#,L

144,1,145,1,R

145,1,145,1,R

145,0,145,0,R

145,#,146,#,L

146,0,146,A,L

146,1,146,B,L

146,A,146,A,L

146,B,146,B,L

146,*,146,*,L

146,#,146,#,L

146,X,146,X,L

146,I,147,I,R

147,1,147,1,R

147,0,147,0,R

147,A,148,0,R

147,B,150,1,R

147,#,152,#,R

148,A,148,A,R

148,B,148,B,R

148,#,148,#,R

148,*,148,*,R

148,X,148,X,R

148,0,149,A,L

148,1,151,B,R

149,0,149,0,L

149,1,149,1,L

149,A,149,A,L

149,B,149,B,L

149,#,149,#,L

149,*,149,*,L

149,X,149,X,L

149,I,147,I,R

150,A,150,A,R

150,B,150,B,R

150,#,150,#,R

150,*,150,*,R

150,X,150,X,R

150,1,149,B,L

150,0,151,A,R

151,0,151,0,R

151,1,151,1,R

151,*,151,*,R

151,X,151,X,R

151,E,165,E,L

151,#,146,#,L

152,A,152,A,R

152,B,152,B,R

152,*,152,*,R

152,X,153,X,R

153,A,154,0,R

153,B,154,0,R

153,#,164,#,L

154,A,154,A,R

154,B,154,B,R

154,*,154,*,R

154,#,154,#,R

154,1,155,B,L

154,0,156,A,L

155,A,155,A,L

155,B,155,B,L

155,#,155,#,L

155,*,155,*,L

155,0,153,B,R

156,A,156,A,L

156,B,156,B,L
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156,#,156,#,L

156,*,156,*,L

156,0,153,A,R

158,0,158,0,L

158,1,158,1,L

158,A,158,A,L

158,B,158,B,L

158,*,158,*,L

158,#,158,#,L

158,I,158,I,L

158,S,158,S,L

158,X,158,X,L

158,P,159,P,R

159,A,159,A,R

159,B,159,B,R

159,#,164,#,L

159,0,160,A,R

159,1,162,B,R

160,0,160,0,R

160,1,160,1,R

160,S,160,S,R

160,#,160,#,R

160,*,160,*,R

160,I,160,I,R

160,X,161,X,R

161,A,161,A,R

161,B,161,B,R

161,1,158,A,L

161,0,158,A,L

162,0,162,0,R

162,1,162,1,R

162,S,162,S,R

162,#,162,#,R

162,*,162,*,R

162,I,162,I,R

162,X,163,X,R

163,A,163,A,R

163,B,163,B,R

163,0,158,B,L

163,1,158,B,L

164,A,164,0,L

164,B,164,1,L

164,0,164,0,L

164,1,164,1,L

164,X,164,X,L

164,I,164,I,L

164,S,164,S,L

164,*,164,*,L

164,#,164,#,L

164,P,203,P,R

165,1,165,1,L

165,0,165,0,L

165,A,165,A,L

165,B,165,B,L

165,X,165,X,L

165,*,165,*,L

165,#,165,#,L

165,I,166,I,R

166,A,166,0,R

166,B,166,1,R

166,1,166,1,R

166,0,166,0,R

166,#,167,#,L

167,0,167,0,L

167,1,167,1,L

167,I,168,I,R

168,A,168,A,R

168,B,168,B,R

168,#,164,#,L

168,0,169,A,R

168,1,172,B,R

169,0,169,0,R

169,1,169,1,R

169,A,169,A,R

169,B,169,B,R

169,#,169,#,R

169,*,169,*,R

169,X,170,X,R

170,A,171,0,L

170,B,171,0,L

170,0,170,0,R

170,1,170,1,R

171,X,171,X,L

171,A,171,A,L

171,0,171,0,L

171,1,171,1,L

171,B,171,B,L

171,#,171,#,L

171,*,171,*,L

171,I,168,I,R

172,0,172,0,R

172,1,172,1,R

172,A,172,A,R

172,B,172,B,R

172,#,172,#,R

172,*,172,*,R

172,X,173,X,R

173,0,173,0,R

173,1,173,1,R

173,A,171,1,L

173,B,171,1,L

174,1,174,1,R

174,0,174,0,R

174,#,174,#,R

174,*,174,*,R

174,I,175,I,R

175,0,175,0,R

175,#,196,#,R

175,1,176,1,R

176,0,176,0,R

176,1,176,1,R

176,#,177,#,L

177,0,177,A,L

177,1,177,B,L

177,A,177,A,L

177,B,177,B,L

177,#,177,#,L

177,*,177,*,L

177,X,177,X,L

177,I,178,I,R

178,1,178,1,R

178,0,178,0,R

178,A,179,0,R

178,B,182,1,R

178,#,183,#,R

179,A,179,A,R

179,B,179,B,R

179,#,179,#,R

179,*,179,*,R

179,X,179,X,R

179,0,181,A,L

179,1,180,1,R

180,1,180,1,R

180,0,180,0,R

180,*,180,*,R

180,X,180,X,R
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180,#,177,#,L

180,E,189,E,L

181,A,181,A,L

181,B,181,B,L

181,X,181,X,L

181,0,181,0,L

181,1,181,1,L

181,#,181,#,L

181,*,181,*,L

181,I,178,I,R

182,A,182,A,R

182,B,182,B,R

182,#,182,#,R

182,*,182,*,R

182,X,182,X,R

182,0,180,A,R

182,1,181,B,L

183,A,183,A,R

183,B,183,B,R

183,*,183,*,R

183,X,184,X,R

184,1,202,1,L

184,0,202,0,L

184,A,185,0,R

184,B,188,1,R

185,A,185,A,R

185,B,185,B,R

185,#,185,#,R

185,*,185,*,R

185,1,186,A,L

185,0,186,A,L

186,A,186,A,L

186,B,186,B,L

186,#,186,#,L

186,*,186,*,L

186,0,186,0,L

186,1,186,1,L

186,X,187,X,R

187,0,187,0,R

187,1,187,1,R

187,A,185,0,R

187,B,188,1,R

187,#,202,#,L

188,A,188,A,R

188,B,188,B,R

188,#,188,#,R

188,*,188,*,R

188,1,186,B,L

188,0,186,B,L

189,1,189,1,L

189,0,189,0,L

189,A,189,0,L

189,B,189,1,L

189,*,189,*,L

189,#,189,#,L

189,X,189,X,L

189,I,190,I,R

190,0,190,0,R

190,1,190,1,R

190,#,190,#,R

190,*,190,*,R

190,X,191,X,R

191,0,192,A,L

191,1,194,B,L

191,A,191,A,R

191,B,191,B,R

191,#,202,#,L

192,1,192,1,L

192,0,192,0,L

192,A,192,A,L

192,B,192,B,L

192,*,192,*,L

192,#,192,#,L

192,X,192,X,L

192,I,193,I,R

193,0,190,A,R

193,1,190,A,R

193,A,193,A,R

193,B,193,B,R

194,1,194,1,L

194,0,194,0,L

194,A,194,A,L

194,B,194,B,L

194,*,194,*,L

194,#,194,#,L

194,X,194,X,L

194,I,195,I,R

195,0,190,B,R

195,1,190,B,R

195,A,195,A,R

195,B,195,B,R

196,0,196,0,R

196,1,196,1,R

196,#,196,#,R

196,*,196,*,R

196,X,197,X,R

196,S,196,S,R

196,I,196,I,R

197,A,197,A,R

197,B,197,B,R

197,0,198,A,L

197,1,200,B,L

197,#,202,#,L

198,1,198,1,L

198,0,198,0,L

198,A,198,A,L

198,B,198,B,L

198,#,198,#,L

198,*,198,*,L

198,I,198,I,L

198,S,198,S,L

198,X,198,X,L

198,P,199,P,R

199,A,199,A,R

199,B,199,B,R

199,0,196,A,R

199,1,196,A,R

200,1,200,1,L

200,0,200,0,L

200,A,200,A,L

200,B,200,B,L

200,#,200,#,L

200,*,200,*,L

200,I,200,I,L

200,S,200,S,L

200,X,200,X,L

200,P,201,P,R

201,A,201,A,R

201,B,201,B,R

201,0,196,B,R

201,1,196,B,R

202,0,202,0,L

202,1,202,1,L

202,A,202,0,L

202,B,202,1,L

202,I,202,I,L
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202,S,202,S,L

202,X,202,X,L

202,#,202,#,L

202,*,202,*,L

202,P,203,P,R

203,1,203,1,R

203,0,203,0,R

203,#,204,#,L

204,1,204,1,L

204,P,205,P,R

204,0,205,1,R

205,1,205,0,R

205,#,206,#,L

206,1,206,1,L

206,0,206,0,L

206,P,207,P,L

207,#,207,#,L

207,0,23,#,L

208,#,208,#,R

208,P,209,P,R

209,0,209,0,R

209,1,209,1,R

209,#,1,#,R

B.5 λ-Cal
ulus

B.5.1 Addition

λn.λm.λn.(λp.λf.λx.f(p f x))m

B.5.2 Subtra
tion

λm.λn.n(λn.λf.λx.n(λg.λh.h(g f))(λu.x)(λu.u))m

B.5.3 Equality

(λz.(λq.(λa.λm.λn.n a m(λx.q)z(m a n(λx.q)z)(n a m(λx.q)z))
(λn.λf.λx.n(λg.λh.h(g f))(λu.x)(λu.u)))(λx.λy.y))(λx.λy.x)

B.5.4 Multipli
ation

λm.λn.λf.m(n f)

B.5.5 Division

(λu.(λz.(λt.(λg.(λx.g(x x))(λx.g(x x)))(λg.λq.λa.λb.(λn.n(λx.u)z)
b u((λa.λb.λk.λj.a t b(λx.u)z j k)a b((λx.λy.λf.f x y)q a)
(g((λn.λf.λx.f(n f x))q)((λm.λn.n t m)a b)b)))u)
(λn.λf.λx.n(λg.λh.h(g f))(λu.x)(λu.u)))(λx.λy.x))(λx.λy.y)
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B.5.6 Exponentiation

λe.λb.b e

B.5.7 List Membership

(λz.(λt.(λw.((λg.(λx.g(x x))(λx.g(x x)))(λa.λb.λc.(λp.p(λx.λy.z))b z
((λm.λn.n w m(λx.z)t(m w n(λx.z)t)(n w m(λx.z)t))((λp.p t)b)
c t(a((λp.p z)b)c)))))(λn.λf.λx.n(λg.λh.h(g f))(λu.x)
(λu.u)))(λx.λy.x))(λx.λy.y)

B.5.8 Linear Sear
h

(λv.(λz.(λt.(λg.(λx.g(x x))(λx.g(x x)))(λa.λb.λc.(λp.p(λx.λy.z))c(λf.λx.f x)
((λm.λn.n t m(λx.z)v(m t n(λx.z)v)(n t m(λx.z)v))((λp.p v)c)b)z
((λn.λf.λx.f(n f x))(a b((λp.p z)c)))))(λn.λf.λx.n(λg.λh.h(g f))
(λu.x)(λu.u)))(λx.λy.y))(λx.λy.x)

B.5.9 List Reversal

(λj.(λz.(λg.(λx.g(x x))(λx.g(x x)))(λg.λa.λl.(λp.p(λx.λy.j))l
a(g((λx.λy.λf.f x y)((λp.p z)l)a)((λp.p j)l)))(λx.z))(λx.λy.x))(λx.λy.y)

B.5.10 Stateful List Reversal

(λj.(λm.(λk.(λq.(λs.(λv.(λi.(λr.(λz.(λa.(z(λa.λb.λc.λd.(λa.λb.λd.λc.a i b
(λx.j)m c d)b c(a(s b)(i c)((z(λa.λb.λc.λd.r b(v((λa.λb.a q b m)c d)
((z(λa.λb.λc.λd.r b(v c(q d))(v(k d)(a(i b)c(q d)))))(i c)(k d)(q d)))
(v(k d)(a(i b)(i c)(q d)))))b c d))d))j(i((z(λa.λb.λc.(λp.p(λx.λy.j))c
b(a(s b)(q c)))j)a))a))(λg.(λx.g(x x))(λx.g(x x))))(λn.n(λx.j)m))
(λn.λf.λx.n(λg.λh.h(g f))(λu.x)(λu.u)))(λx.λy.λf.f x y))
(λn.λf.λx.f(n f x)))(λp.p j))(λp.p m))(λx.λy.x))(λx.λy.y)

B.5.11 Bubble Sort

(λj.(λo.(λu.(λh.(λt.(λi.(λs.(λg.(λf.(λv.(λz.(z(λa.λb.λc.λd.λe.
(λm.λn.n f m(λx.o)j)d(f((z(λa.λb.λc.(λp.p(λx.λy.o))c b(a(g b)(t c)))o)e))
((λa.λb.λc.λd.a f b(λx.o)j d c)(s d e)(s c e)(a j(g c)(g d)
((z(λa.λb.λc.λd.v b(i(s c d)((z(λa.λb.λc.λd.v b(i c(t d))(i(h d)(a(f b)c(t d)))))
(f c)(h d)(t d)))(i(h d)(a(f b)(f c)(t d)))))c d e))(a b(g c)(g d)e))
(b(a o o u e)e)))o o u)(λg.(λx.g(x x))(λx.g(x x))))(λn.n(λx.o)j))
(λn.λf.λx.n(λg.λh.h(g f))(λu.x)(λu.u)))(λn.λf.λx.f(n f x)))(λa.λb.a t b j))
(λx.λy.λf.f x y))(λp.p o))(λp.p j))(λf.λx.f x))(λx.λy.y))(λx.λy.x)
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B.5.12 Universal TM

(λz.(λu.(λl.(λk.(λj.(λi.(λg.(λf.(λe.(λd.(λc.(λb.z(λa.λs.λh.λt.λp.d(c s(e h p)t)
p(a(g(c s(e h p)t))(b(g(i(i(c s(e h p)t))))(j h)((λn.λf.λx.f(n f x))h))
t((z(λa.λb.λc.λd.(λn.n(λx.l)u)b(k c(i d))(k(g d)(a(j b)c(i d)))))h
(g(i(c s(e h p)t)))p))))(λn.n(λx.l)u))((z(λa.λs.λy.λt.((λp.p l u)(d t))
(((λp.λq.p q p)(f s(g(g t)))(f y(g(i(g t)))))(i(i(g t)))(a s y(i t)))
(k l(k l(k l(λx.u))))))))(λp.p(λx.λy.l)))(λa.λb.a i b u))(λm.λn.n j m
(λx.l)u(m j n(λx.l)u)(n j m(λx.l)u)))(λp.p u))(λp.p l))(λn.λf.λx.n
(λg.λh.h(g f))(λu.x)(λu.u)))(λx.λy.λf.f x y))(λx.λy.y))(λx.λy.x))
(λg.(λx.g(x x))(λx.g(x x)))

B.5.13 Universal RASP

(λs.(λr.(λq.(λp.(λn.(λl.(λk.(λj.(λi.(λh.(λg.(λf.(λe.(λd.(λc.(λb.s
(λa.λm.λo.f(g n(d m))n(a(c r(c p(d m)))o)(f(g n(d m))p(a(c r(b p(d m)))o)
(f(g n(d m))(λf.λx.f(f(f x)))(a(c r((λm.e p(g n(d(c r m)))(d(c r m)))
(d m)))o)(f(g n(d m))(λf.λx.f(f(f(f x))))(a(c r((λm.e(g n(d(c r m)))(g p m)
(d(c r m)))(d m)))o)(f(g n(d m))(λf.λx.f(f(f(f(f x)))))(a(c r(d m))
((λm.λo.(i(g p m)o))m o))(f(g n(d m))(λf.λx.f(f(f(f(f(f x))))))(a(c r
((λm.(f(g p(d(c r m)))r)(d(c r m))(b r(e r(g n(d(c r m)))(d(c r m)))))
(d m)))o)(f(g n (d m))(λf.λx.f(f(f(f(f(f(f x)))))))(a(c r((λm.e p(g(g n
(d(c r m)))(d(c r m)))(d(c r m)))(d m)))o)(i(d m)o)))))))))(λd.λm.(f(g d m)r)
(e d(k(h m))m)(e d(k(g d m))m)))(λd.λm.(f(k(h m))(g d m))(e d r m)
(e d(l(g d m))m)))(λm.e n(g(g r m)m)m)))(s(λa.λb.λc.λd.(λn.n(λx.r)q)
b(i c(j d))(i((λp.p q)d)(a(k b)c(j d))))) (λm.λn.n k m(λx.r)q(m k n
(λx.r)q)(n k m(λx.r)q)))(λa.λb.a j b q))(s(λa.λb.λc.(λp.p(λx.λy.r))c
b(a(l b)(j c)))r))(λx.λy.λf.f x y))(λp.p r))(λn.λf.λx.n(λg.λh.h(g f))
(λu.x)(λu.u)))(λn.λf.λx.f(n f x))) (λf.λx.f x))(λf.λx.f(f x)))(λx.λy.x))
(λx.λy.y))(λg.(λx.g(x x))(λx.g(x x)))

B.6 SKI

B.6.1 Addition

SI(K(S(S(KS)K)))

B.6.2 Subtra
tion

S(K(S(SI(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K))))))K

B.6.3 Equality

S(S(S(KS)(S(K(S(KS)(S(K(SSK)))))))(S(K(S(K(SS(KK)))K))S))
(K(S(K(S(K(S(SI(K(K(KI))))(KK)))))(S(K(S(SI(K(S(K(S(K(S
(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S
(K(S(K(S(K(SI))K))))(SI)))K))))K))))))K)))
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B.6.4 Multipli
ation

S(KS)KII

B.6.5 Division

S(K(S(K(S(SSK(S(K(SS(S(SSK))))K))(K(KI))))(S(K(S(K(S(K(S(S
(S(SI(K(K(KI))))(KK))(K(KI))))))))))))(S(S(K(S(K(S(K(S
(KS)K))S))(S(K(S(KS)(S(KS)))))))(S(K(S(K(S(K(S(K(S(K
(SS(K(S(K(S(KK)))(S(K(S(K(S(K(S(K(SS(KK)))K))S))
(SI)))K)))))K))S))(S(KS))))(S(K(S(K(S(SI(K(KI)))
(KK))))))))(S(K(S(K(S(K(SS(KK)))K))S))(S(K(S(K(S
(SI(K(K(KI))))(KK)))))))))(S(K(S(K(S(K(S(K(S(K(S
(K(SS(KI)))))))))(S(S(K(S(KS)(S(K(S(K(S(K(S
(KS)K))S))K)))))(S(K(SS(K(S(S(KS)K)))))K)))))K))K))
(S(K(S(SI(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K))))))K)

B.6.6 Exponentiation

S(K(SI))KII

B.6.7 List Membership

SSK(S(K(SS(S(SSK))))K)(S(K(S(K(S(K(S(S(SI(K(K(K(KI)))))
(K(KI)))))))(S(S(KS)(S(K(S(K(SS(K(KK))))(S(S(K(S(S(S(KS)
(S(K(S(KS)(S(K(SSK)))))))(S(K(S(K(SS(KK)))K))S))
(K(S(K(S(K(S(SI(K(K(KI))))(KK)))))(S(K(S(SI(K(S(K(S(K(S
(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K
(S(K(S(K(SI))K))))(SI)))K))))K))))))K)))))(SI(KK))))))K)))))
(S(K(S(K(SS(K(SI(K(KI))))))K))))

B.6.8 Linear Sear
h

SSK(S(K(SS(S(SSK))))K)(S(K(S(K(S(S(KS)(S(K(S(K(S(K(SS(K
(K(KI)))))(S(S(SI(K(K(K(KI)))))(KI)))))(S(S(K(S(S(S(KS)
(S(K(S(KS)(S(K(SSK)))))))(S(K(S(K(SS(KK)))K))S))
(K(S(K(S(K(S(SI(K(K(KI))))(KK)))))(S(K(S(SI(K(S(K(S(K(S
(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K
(S(K(S(K(SI))K))))(SI)))K))))K))))))K)))))(SI(KK))))))K))))
(S(K(S(K(S(S(KS)K))))))))(S(K(S(K(SS(K(SI(K(KI))))))K))))

B.6.9 List Reversal

SSK(S(K(SS(S(SSK))))K)(S(K(S(K(S(S(K(S(KS)
(S(SI(K(K(K(KI))))))))K)))(S(K(SS(K(SI(K(KI)))))))))
(S(K(S(K(S(K(SS(K(S(K(S(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))
(SI)))K))(SI(KK)))))K))))K))S))K))(KK)
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B.6.10 Stateful List Reversal

S(S(K(SS(KI)))(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(SS(K(KI))))))
(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))
(SI)))K))))K)))(SSK(S(K(SS(S(SSK))))K)(S(K(S(K(S(S(K(S(KS)
(S(SI(K(K(K(KI))))))))K)))(S(K(S(K(SS(K(SI(K(KI))))))K)))))
(S(K(SS(K(S(S(KS)K)))))K))(KI))))))K))(S(K(S(K(S(K(S(K(S
(SSK(S(K(SS(S(SSK))))K))(K(KI))))(S(K(S(K(S(K(S(K(SS(KI)))))))
(S(S(K(S(KS)(S(K(S(KS)K)))))(S(K(S(K(S(K(S(SI(K(KI)))(KK)))))
(S(S(K(S(K(S(SI(K(K(KI))))(KK)))))(S(K(S(SI(K(S(K(S(K(S(K(SS
(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K
(SI))K))))(SI)))K))))K))))))K)))))K))))))))(S(S(K(S(K(S(KS)
(S(K(S(KS)(S(K(S(KS)K))))))))(S(K(S(K(SS(K(S(K(S(K(S(K(SS
(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S
(K(SI))K))))(SI)))K))))K)))))K)))))(S(K(SS(K(S(S(KS)K)))))K)))))K))
(S(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(K(S(K(S(K(S(K(SS(K(S(K
(S(K(SI(KK)))))(SI(K(SI(K(KI)))))))))K))S))K))))(S(K(S(K(S(K
(SS(KI)))))))(S(K(S(K(S(K(SS(K(S(KK)(S(K(S(K(SI(KK)))))
(SI(K(SI(K(KI))))))))))K))S))(S(K(S(KS)K)))))))))(K(SSK(S
(K(SS(S(SSK))))K)(S(K(S(K(S(S(K(S(KS)(S(KS))))(S(K(S(K(S(K(S
(K(SS(K(S(K(S(K(SS(K(SI(K(KI))))))K))(S(K(S(K(S(K(S(K(SS
(KK)))K))S))(SI)))K)))))K))S))K))(S(SI(K(K(KI))))(KK))))))
(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K))
(SI(KK)))))))(S(K(S(K(SS(K(SI(K(KI))))))K))))))))
(S(K(SS(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K)))))K))))
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B.6.11 Bubble Sort

S(S(K(SS(K(K(SSK(S(K(SS(S(SSK))))K)(S(K(S(K(S(S(K(S(KS)
(S(KS))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SS(K(SI(K(KI))))))K))
(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K)))))K))S))K))
(S(SI(K(K(KI))))(KK))))))(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K
(S(K(SS(KK)))K))S))(SI)))K))(SI(KK)))))))(S(K(S(K(SS
(K(SI(K(KI))))))K))))))))(S(K(SS(K(S(K(S(K(S(K(SS(K(KI))))))
(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))
(SI)))K))))K)))))K)))))))(S(K(SS(K(KI))))(S(K(S(K(S(K(S(K(SS
(K(K(KI)))))(S(K(S(SSK(S(K(SS(S(SSK))))K))(K(KI)))))))
(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(S(KK)K))))(S(K(SS(KI))))))
(S(S(KS)K))))K))(S(S(SI(K(KI)))(K(KI)))(KI))))))(S(K(S(KS)
(S(K(S(KS)(S(K(S(K(S(KS)(S(KS))))(S(S(KS)(S(K(S(K(SS(K(S(K
(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K
(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K)))(SSK(S(K(SS(S(SSK))))K)
(S(K(S(K(S(S(K(S(KS)(S(SI(K(K(K(KI))))))))K)))(S(K(S(K(SS(K
(SI(K(KI))))))K)))))(S(K(SS(K(S(S(KS)K)))))K))(KI))))))K))
(S(K(S(K(S(SI(K(K(KI))))(KK)))))(S(K(S(SI(K(S(K(S(K(S(K(SS
(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K
(SI))K))))(SI)))K))))K))))))K)))))))))))))))))))(S(K(S(K(SS
(K(S(K(S(K(S(K(S(K(SS(K(S(S(KS)K)))))K))))))(S(K(S(K(SS(K(S
(S(KS)K)))))K)))))))(S(K(S(K(S(K(S(KS)K))S))(S(K(S(KS)
(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)K))S))K))S))
(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(KS)K))S))(S(K(S(KS)(S(K
(S(K(S(K(S(K(S(SI(K(KI)))(KK)))))(S(S(K(S(K(S(SI(K(K(KI))))
(KK)))))(S(K(S(SI(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS
(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))
K))))))K)))))K)))))))(S(KK))))(S(K(S(K(S(K(S(S(K(S(K(S(KS)
(S(K(S(KS)(S(K(S(KS)K))))))))(S(K(S(K(SS(K(S(S(KS)K)))))
K)))))(S(K(S(K(SS(K(S(S(KS)K)))))K))(SI(KK))))))K))))
(S(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))
(S(S(KS)(S(K(S(K(S(K(S(KS)K))S))K)))))))K))K)(S(K(S(K(S
(K(S(K(S(K(S(K(SS(KI)))))))))(S(S(K(S(K(S(KS)K))S))(S(K
(S(KS)K)))))))K))(S(KK)))))))))(K(S(K(S(K(SI(KK)))))
(SI(K(SI(K(KI)))))))
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B.6.12 Universal TM

S(K(SSK(S(K(SS(S(SSK))))K)))(S(S(K(S(K(S(K(S(KS)K))S))
(S(K(S(K(S(KS)(S(K(S(K(S(KS)(S(KS))))(S(K(S(K(SS(KI)))
(S(K(SI(K(K(K(KI)))))))))))))))(S(K(S(K(S(K(SS(KK)))K))S))))))))
(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SI(KK)))))(SI(K(SI(K
(KI)))))))))K))S))K))))(S(S(K(S(KS)(S(K(S(KS)(S(K(S(K(S(KS)
(S(K(S(KS)(S(KS)))))))(S(K(S(K(SS(KK)))(S(KS)))))))))))))
(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)
(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)K))S))
K))S))K))S))K))))K))(S(K(S(K(S(K(S(K(S(K(SI(KK)))))))))
(S(K(S(K(S(K(SS(KK)))K))S))))))))(S(K(S(K(S(K(S(K(SS(K(S(K
(S(K(SI(KK)))))(SI(K(SI(K(KI)))))))))K))S))K))))(S(K(S(K(S(KK)
(S(K(S(K(SS(K(S(K(S(KK)K))(S(S(KS)K))))))(S(K(S(KS)
(S(KS))))))))))(S(K(S(K(S(K(SS(K(S(K(S(KK)K))(S(K(S(K(S(K
(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K
(S(K(SI))K))))(SI)))K))))K))))))(S(K(S(KS)(S(K(S(KS)
(S(K(S(K(S(K(S(K(S(SI(K(K(KI))))(KK)))(SI(KK))))(SI(K(KI)))))
(SI(K(KI))))))))))))))(S(K(S(K(S(K(SS(KK)))K))S))))))))
(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SI(KK)))))(SI(K(SI(K
(KI)))))))))K))S))K))))))(S(K(S(KK)(S(K(S(K(S(K(S(K(S(K(S
(K(SS(KI)))))))(S(S(K(S(K(S(K(S(KS)K))S))K))(SSK(S(K(SS
(S(SSK))))K)(S(K(S(K(S(S(K(S(KS)(S(KS))))(S(K(S(K(S(K(S(K
(SS(K(S(K(S(K(SS(K(SI(K(KI))))))K))(S(K(S(K(S(K(S(K(SS
(KK)))K))S))(SI)))K)))))K))S))K))(S(SI(K(K(KI))))(KK))))))
(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K))
(SI(KK)))))))(S(K(S(K(SS(K(SI(K(KI))))))K))))))))(S(K(SS(K
(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K
(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K)))))K)))))))(S(K(S
(K(S(K(S(K(SI(KK)))(SI(K(KI))))))))))))(S(K(S(K(S(K(SS
(KK)))K))S))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SI(KK)))))
(SI(K(SI(K(KI)))))))))K))S))K))))))(SSK(S(K(SS(S(SSK))))K)
(S(K(S(K(S(K(S(K(S(K(SS(K(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))
(SI)))K(KI)(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K(KI)(S(K
(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K(KI)(KK))))))))(S(S(K(S
(SI(K(KI)))(KK)))(SI(K(K(K(KI)))))))))))))(S(S(K(S(K(S(KS)
(S(KS))))(S(K(SS(K(S(K(S(K(SI(K(KI))))(SI(K(KI)))))
(SI(KK)))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SS(K(S(K(S(K
(SI(KK)))(SI(K(KI)))))(SI(KK))))))K))(S(S(S(KS)(S(K(S(KS)
(S(K(SSK)))))))(S(K(S(K(SS(KK)))K))S))(K(S(K(S(K(S(SI(K(K(KI))))
(KK)))))(S(K(S(SI(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS
(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))
(SI)))K))))K))))))K))))))))K))S))(S(K(SSK)))))(S(K(S(K(SS(K
(S(K(SI(KK)))(SI(KK))))))K))(S(S(S(KS)(S(K(S(KS)(S(K(SSK)))))))
(S(K(S(K(SS(KK)))K))S))(K(S(K(S(K(S(SI(K(K(KI))))(KK)))))
(S(K(S(SI(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K))))))K))))))))))
(S(K(S(K(S(K(SS(K(SI(K(KI))))))K)))))))
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B.6.13 Universal RASP

S(S(K(S(K(SS(K(S(KK)(S(K(SS(KI)))(S(K(S(K(SS(K(S(S(K(S
(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))))(S(K(S(K(SI(KK)))))
(SI(K(SI(K(KI)))))(KI)))I))))K))(SI(KI))))))))(S(KS))))
(S(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(SSK(S(K(SS
(S(SSK))))K))))))))))))(S(S(K(S(K(S(K(S(KS)K))S))(S(K(S(KS)
(S(K(S(KS)(S(K(S(K(S(K(S(KS)K))S))(S(KS)))))))))))))
(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(S(S(KS)K)))K))))
(S(S(K(S(KS)K))(SI(K(KI)))))))(S(S(K(S(KS)K))(SI(K(S(S
(KS)K)I)))))))K))))(S(K(S(K(S(K(S(K(S(K(S(KS)K))S))K))S))
(S(K(S(KS)K))))))))(S(K(SS(K(KI)))))))(S(K(S(K(S(K(SS
(K(S(K(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))I))))))K))S))K)))
(S(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S
(K(S(KS)(S(KS)))))))))))))))))))(S(S(K(S(K(S(K(S(K(S
(KS)K))S))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)K))S))K))S))K))S))
(S(K(S(KS)K))))))))(S(K(SS(K(K(S(S(KS)K)I))))))))(S(K(S
(K(S(K(SS(K(S(K(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))
I))))))K))S))K))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S
(S(K(S(K(S(KS)K))S))K)))K))))(S(S(K(S(K(S(K(S(KS)K))S))K))
(SI(K(KI)))))))K))))))(S(K(S(K(S(K(S(K(SS(KK)))K))S))
(S(K(S(KS)K))))))))(S(K(SS(K(K(S(S(KS)K)I))))))))(S(K(S
(K(SS(K(S(K(S(K(SS(KK)))(S(KS))))(S(K(S(K(SS(K(S(K(S(K
(S(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K)))))(S
(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))))))K))))K))S)))))
(S(K(S(KS)(S(KS)))))))(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S
(K(SS(KK)))(S(KS))))(S(K(S(K(SS(K(S(K(S(KK)(S(K(S(K(S
(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S
(K(S(K(S(K(SI))K))))(SI)))K))))K))))(SSK(S(K(SS(S(SSK))))K)
(S(K(S(K(S(S(K(S(KS)(S(SI(K(K(K(KI))))))))K)))(S(K(S(K
(SS(K(SI(K(KI))))))K)))))(S(K(SS(K(S(S(KS)K)))))K))
(KI))))))K))S)))))K))S))(S(KS))))(S(K(SS(K(K(KI))))))))
(S(K(S(K(S(K(SS(K(S(K(S(S(K(S(K(SI(KK)))))(SI(K(SI(K
(KI))))))))K))))K))S))K))))))(S(S(K(S(KS)(S(K(S(KS)
(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)
(S(KS)))))))))))))))))))(S(K(S(K(S(K(S(K(S(K(SS(K(S(K
(S(K(S(K(S(K(S(K(S(S(K(S(K(S(KS)K))S))K)))K))))(S(S(K
(S(K(S(K(S(KS)K))S))K))(SI(K(KI)))))))))(S(K(S(K(S(K(SS
(K(S(KK)K))))(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)K)))))))))))
(S(K(S(K(SS(K(S(K(S(K(S(S(K(SSK(S(K(SS(S(SSK))))K)(S(K
(S(K(S(S(K(S(KS)(S(KS))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(K
(SS(K(SI(K(KI))))))K))(S(K(S(K(S(K(S(K(SS(KK)))K))S))
(SI)))K)))))K))S))K))(S(SI(K(K(KI))))(KK))))))(S(K(S(K
(S(K(S(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K))
(SI(KK)))))))(S(K(S(K(SS(K(SI(K(KI))))))K))))))))(S(K
(SS(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K)))))K))I))
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(S(S(K(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))))(S(K(S(K(SI
(KK)))))(SI(K(SI(K(KI)))))(KI)))I))I))))(SI(K(KI)))))))
(S(KS)))))))(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S
(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))I))))))(S(K(S(K(S(K
(SS(K(SI(K(KI))))))K))S))K)))))K))S))K))S))K))(SI(K(S(S
(KS)K)I)))))))))K))S))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S
(KS)K))S))K))S))K))S))(S(K(S(KS)K))))))))(S(K(SS(K(K
(S(S(KS)K)(S(S(KS)K)I)))))))))(S(K(S(K(S(K(SS(K(S(K(S
(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))I))))))K))S))K)))(S
(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K
(S(KS)(S(KS)))))))))))))))))))(S(K(S(K(S(K(S(K(S(K(S(K
(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(S(S(K
(S(K(S(KS)K))S))K)))K))))(S(S(K(S(K(S(K(S(KS)K))S))K))
(SI(K(KI)))))))))(S(K(S(K(SS(K(S(KK)K))))(S(K(S(KS)(S(K
(S(KS)(S(K(S(KS)K)))))))))))(S(K(S(K(SS(K(S(K(S(K(S(K(SS
(K(SI(K(KI))))))K))S))K))))(S(K(S(K(S(KS)(S(KS))))(S(K
(SS(K(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))(S(S
(KS)K)I)))))))))))(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K
(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))I))))))(S(K(S(K(S(K
(SS(K(SI(K(KI))))))K))S))K)))))K))S))K))S))K)))))))K))S))
K))S))K))S))K))S))K))S))(S(K(S(KS)K)))))(S(K(SS(K(K(S(K(S
(S(KS)K)I))(S(S(KS)K)I))))))(S(K(SS(K(S(K(S(K(S(K(SI(KK)))))
(SI(K(SI(K(KI)))))I))(S(S(K(SSK(S(K(SS(S(SSK))))K)(S(K(S
(K(S(S(K(S(KS)(S(KS))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SS(K
(SI(K(KI))))))K))(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))
K)))))K))S))K))(S(SI(K(K(KI))))(KK))))))(S(K(S(K(S(K(S
(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K))(SI(KK)))))))
(S(K(S(K(SS(K(SI(K(KI))))))K))))))))(S(K(SS(K(S(K(S(K(S(K
(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S
(K(S(K(SI))K))))(SI)))K))))K)))))K))I))(S(S(K(S(K(S(K(SI(KK)))))
(SI(K(SI(K(KI)))))))(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))
(KI)))I))I)))))K))))(S(S(K(S(K(S(K(S(K(S(KS)K))S))(S(K(S(K
(S(K(S(K(S(K(S(K(S(K(S(KS)K))S))K))S))K))S))(S(K(S(KS)K))))))))
(S(K(SS(K(K(S(S(KS)K)(S(K(S(S(KS)K)I))(S(S(KS)K)I))))))))))
(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))
I))))))K))S))K))(S(K(S(K(S(S(K(S(K(S(KS)(S(K(S(K(S(K(S
(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))(S(K(S(K(S(K
(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K))
(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))(S(S(KS)K)I))))))K))S))
(S(K(S(KS)K))))))))(S(S(KS)K))))K)))))(S(S(K(S(KS)K))
(SI(K(KI)))))))K)))))(S(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)
(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))))))))
(S(S(K(S(K(S(K(S(K(S(KS)K))S))(S(K(S(K(S(K(S(K(S(K(S(K(S
(K(S(KS)K))S))K))S))K))S))(S(K(S(KS)K))))))))(S(K(SS(K(K
(S(K(S(S(KS)K)(S(S(KS)K)I)))(S(S(KS)K)I)))))))))(S(K(S(K
(S(K(SS(K(S(K(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))I))))))
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K))S))K))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(S(K(S(K(S(KS)K))
S))K)))K))))(S(S(K(S(K(S(K(S(KS)K))S))K))(SI(K(KI)))))))))))
(S(K(S(K(SS(K(S(KK)K))))(S(K(S(KS)(S(K(S(KS)(S(K(S
(KS)K))))))))))))))(S(S(K(S(K(S(K(S(KS)K))S))(S(K(S(KS)
(S(KS)))))))(S(K(S(K(SS(K(S(K(S(K(S(K(SS(K(SI(K(KI))))))
K))S))K))))(S(K(S(K(S(KS)(S(KS))))(S(K(SS(K(K(KI)))))))))))
(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(SI(KK)))))
(SI(K(SI(K(KI)))))(S(S(KS)K)I)))))))(S(K(S(K(S(K(SS(K(SI
(K(KI))))))K))S))K)))))K))S))K))S))K)))(S(K(S(K(S(K(SS(K
(S(K(S(K(SS(K(S(K(S(K(S(K(SS(K(SI(K(KI))))))K))S))K))))
(S(K(S(KS)(S(KS)))))))(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K
(S(K(S(K(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))I))))))
(S(K(S(K(S(K(SS(K(SI(K(KI))))))K))S))K)))))K))S))K))S))K))
(SI(K(KI))))))))(S(K(S(K(S(K(S(K(S(KS)K))S))K))S)))))(S(K
(SS(K(K(KI))))))))(S(K(S(K(SS(K(S(K(S(K(SS(KK)))(S(KS))))
(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S
(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))
(SI)))K))))K)))))(S(S(K(S(K(SI(KK)))))(SI(K(SI(K
(KI)))))))))K))))K))S)))))(S(K(S(KS)(S(KS)))))))(S(K(S(K
(S(K(S(K(S(K(SS(K(S(K(S(K(SS(KK)))(S(KS))))(S(K(S(K(SS(K
(S(K(S(KK)(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K))))(SSK(S(K
(SS(S(SSK))))K)(S(K(S(K(S(S(K(S(KS)(S(SI(K(K(K(KI))))))))K)))
(S(K(S(K(SS(K(SI(K(KI))))))K)))))(S(K(SS(K(S(S(KS)K)))))K))
(KI))))))K))S)))))K))S))(S(KS))))(S(K(SS(K(K(KI))))))))(S(K
(S(K(S(K(SS(K(S(K(S(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI))))))))
K))))K))S))K))))))))(S(K(S(K(S(K(SS(K(S(K(S(K(S(KK)K))K))
(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K)))))))(S(K(S(KS)
(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))))))))))(S(K(S
(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(S(S(K(S(K(S(KS)K))
S))K)))K))))(S(S(K(S(K(S(K(S(KS)K))S))K))(SI(K(KI)))))))))
(S(K(S(K(S(K(SS(K(S(KK)K))))(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)
K)))))))))))(S(K(S(K(SS(K(S(K(S(K(S(S(K(SSK(S(K(SS(S
(SSK))))K)(S(K(S(K(S(S(K(S(KS)(S(KS))))(S(K(S(K(S(K(S(K(SS
(K(S(K(S(K(SS(K(SI(K(KI))))))K))(S(K(S(K(S(K(S(K(SS(KK)))
K))S))(SI)))K)))))K))S))K))(S(SI(K(K(KI))))(KK))))))(S(K
(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K))
(SI(KK)))))))(S(K(S(K(SS(K(SI(K(KI))))))K))))))))(S(K(SS
(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K
(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K)))))K))I))
(S(S(K(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))))(S(K(S(K(SI
(KK)))))(SI(K(SI(K(KI)))))(KI)))I))I))))(SI(K(KI)))))))(S
(KS)))))))(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SS(K(S(K(S(K
(S(S(K(SSK(S(K(SS(S(SSK))))K)(S(K(S(K(S(S(K(S(KS)(S(KS))))
(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SS(K(SI(K(KI))))))K))(S(K(S(K
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(S(K(S(K(SS(KK)))K))S))(SI)))K)))))K))S))K))(S(SI(K(K(KI))))
(KK))))))(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))
(SI)))K))(SI(KK)))))))(S(K(S(K(SS(K(SI(K(KI))))))K))))))))
(S(K(SS(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K)))))K))I))
(S(S(K(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))))(S(K(S(K(SI
(KK)))))(SI(K(SI(K(KI)))))(KI)))I))I))))(SI(K(KI)))))))
(S(K(S(KS)(S(K(S(K(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))))
(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))I)))))))))(S(K(S(K(S
(K(SS(K(SI(K(KI))))))K))S))K)))))K))S))K))S))K))(SI(K(S(S
(KS)K)I)))))))))K))S))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)
K))S))K))S))K))S))(S(K(S(KS)K))))))))(S(K(SS(K(K(S(S(KS)K)
(S(K(S(S(KS)K)(S(S(KS)K)I)))(S(S(KS)K)I))))))))))(S(K(S(K
(S(K(SS(K(S(K(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))I))))))
K))S))K)))))))))))(S(K(S(K(S(KK)K))))(S(K(S(K(SS(K(S(K(S
(K(SS(KI)))))(S(K(SS(K(S(K(S(K(S(S(KS)K)))))(S(K(S(K(SI
(KK)))))(SI(K(SI(K(KI))))))))))(S(K(S(KS)K))))))))(S(K(S
(KS)(S(KS)))))))(S(K(S(K(S(K(S(K(SS(K(SS(K(K(KI)))))))
K))S))(S(KS))))(S(K(S(K(S(K(SS(K(S(K(S(K(SI(KK)))))(SI
(K(SI(K(KI)))))))))K))S))(S(K(SS(K(S(K(S(K(S(K(S(K(SS
(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S
(K(S(K(SI))K))))(SI)))K))))K)))(SSK(S(K(SS(S(SSK))))K)
(S(K(S(K(S(S(K(S(KS)(S(SI(K(K(K(KI))))))))K)))(S(K(S(K
(SS(K(SI(K(KI))))))K)))))(S(K(SS(K(S(S(KS)K)))))K))
(KI))))))K)))))))(K(SSK(S(K(SS(S(SSK))))K)(S(K(S(K(S(S(K
(S(KS)(S(KS))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SS(K(SI(K
(KI))))))K))(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K)))))
K))S))K))(S(SI(K(K(KI))))(KK))))))(S(K(S(K(S(K(S(S(K(S
(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K))(SI(KK)))))))(S(K
(S(K(SS(K(SI(K(KI))))))K))))))))(S(K(SS(K(S(K(S(K(S(K(SS
(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S
(K(SI))K))))(SI)))K))))K)))))K))))(S(S(S(KS)(S(K(S(KS)(S(K
(SSK)))))))(S(K(S(K(SS(KK)))K))S))(K(S(K(S(K(S(SI(K(K(KI))))
(KK)))))(S(K(S(SI(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS
(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))
(SI)))K))))K))))))K))))
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Appendix C

VHDL Code

This appendix presents the VHDL whi
h spe
i�es the 
oordination, 
ontrol and

memory modules for the TM and RASP ma
hines. For the sake of brevity, the

general form of the programs for ea
h ma
hine are also presented, rather than

every program represented in full VHDL.

C.1 RASP

The RASPs all share the same 
oordination module. This is the VHDL module

whi
h ties the 
ontrol and memory modules together. It de�nes and routes the

buses and signals between the two modules.

The VHDL 
ode has set of variables whi
h are adjusted for ea
h parti
ular

instan
e of a RASP, these variables are related to the number of bits per register

for a ma
hine. For the sake of brevity, the 
oordination module and memory will

be displayed on
e with these variables uninstantiated.

C.1.1 All RASP Coordination

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

entity RASPMa
hine i s

Port ( ha l ted : out STD_LOGIC;

memrw : out s td_log i 
 ;


 l k : in s td_log i 
 ;


ontro lOut : out s td_log i 
 ) ;

end RASPMa
hine ;
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ar
hite
ture Behav iora l of RASPMa
hine i s

Component RASPControl i s

Port ( 
 l k : in s td_log i 
 ;

ha l ted : out s td_log i 
 ;

addres s : out STD_LOGIC_ve
tor ( x downto 0 ) ;

datain : out s td_log i
_ve
tor ( x downto 0 ) ;

dataout : in s td_log i
_ve
tor ( x downto 0 ) ;

wFlag : out s td_log i 
 ;


ontro lOut : out s td_log i 
 ) ;

end 
omponent ;

Component RASPmemory

Port ( addres s : IN s td_log i
_ve
tor ( x downto 0 ) ;

datain : IN s td_log i
_ve
tor ( x downto 0 ) ;

dataout : OUT s td_log i
_ve
tor ( x downto 0 ) ;

wFlag : IN s td_log i 
 ;


 l k : IN s td_log i 
 ;

memrw : out s td_log i 
 ) ;

END Component ;

signal addres s : s td_log i
_ve
tor ( x downto 0 ) ;

signal datain : s td_log i
_ve
tor ( x downto 0 ) ;

signal dataout : s td_log i
_ve
tor ( x downto 0 ) ;

signal wFlag : s td_log i 
 ;

begin


 on t r o l : RASPControl port map ( 
 lk , halted , address , datain ,

dataout , wFlag , 
ontro lOut ) ;

memory : RASPmemory port map ( address , datain , dataout ,

wFlag , 
 lk , memrw) ;

end Behav iora l ;
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C.1.2 All RASP Memory

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE .NUMERIC_STD.ALL;

use std . t e x t i o . a l l ;

entity RASPMemory i s

Port ( addres s : in STD_LOGIC_VECTOR (x downto 0 ) ;

datain : in STD_LOGIC_VECTOR (x downto 0 ) ;

dataout : out STD_LOGIC_VECTOR (x downto 0 ) ;

wFlag : in STD_LOGIC;


 lk : in STD_LOGIC;

memrw : out s td_log i 
 ) ;

end RASPMemory ;

ar
hite
ture Behav iora l of RASPMemory i s

type mem i s array (0 to n) of s td_log i
_ve
tor ( x downto 0 ) ;

signal m : mem := ( ". . . " , . . . ) ;

begin

pro
ess ( 
 l k )

begin

i f f a l l i ng_edge ( 
 l k ) then

i f wFlag = '1 ' then

m( to_integer ( unsigned ( addres s ) ) ) <= datain ;

memrw <= ' 0 ' ;

else

dataout <= m( to_integer ( unsigned ( addres s ) ) ) ;

memrw <= ' 1 ' ;

end i f ;

end i f ;

end pro
ess ;

end Behav iora l ;
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C.1.3 RASP Control

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE .NUMERIC_STD.ALL;

entity RASPControl i s

Port ( 
 l k : in s td_log i 
 ;

ha l ted : out s td_log i 
 ;

addres s : out STD_LOGIC_ve
tor ( x downto 0 ) ;

datain : out s td_log i
_ve
tor ( x downto 0 ) ;

dataout : in s td_log i
_ve
tor ( x downto 0 ) ;

wFlag : out s td_log i 
 ;


ontro lOut : out s td_log i 
 ) ;

end RASPControl ;

ar
hite
ture Behav iora l of RASPControl i s

signal in
Flag : s td_log i 
 := ' 1 ' ;

signal 
 u r r e n t I n s t r : s td_log i
_ve
tor ( x downto 0) := "" ;

signal temp : s td_log i
_ve
tor (x downto 0) := "" ;

begin

p : pro
ess ( 
 l k )

variable 
ounterOuter : unsigned (2 downto 0) := "000" ;

variable 
ounter Inner : unsigned (2 downto 0) := "000" ;

variable add i t i on : unsigned (x downto 0) := "" ;

begin

i f r i s ing_edge ( 
 l k ) then


ontro lOut <= ' 0 ' ;


ase 
ounterOuter i s

when "000" =>

wFlag <= ' 0 ' ;

in
Flag <= ' 1 ' ;

addres s <= "" ;


ounterOuter := 
ounterOuter +1;

when "001" =>

addres s <= dataout ;


ounterOuter := 
ounterOuter +1;
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when "010" =>

addres s <= "" ;

datain <= dataout ;

wFlag <= '1 ' ;


 u r r e n t I n s t r <= dataout ;


ounterOuter := 
ounterOuter +1;

when "011" =>

wFlag <= ' 0 ' ;


ase 
 u r r e n t I n s t r i s

when "000" => −− HALT

ha l ted <= ' 1 ' ;

in
Flag <= ' 0 ' ;

when "001" => −− INC


ase 
ounter Inner i s

when "000" =>

addres s <= "010" ;


ounter Inner := 
ounter Inner +1;

when "001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i
_ve
tor ( add i t i on ) ;

wFlag <= ' 1 ' ;


ounter Inner := 
ounter Inner +1;

when "010" =>

wFlag <= ' 0 ' ;


ounter Inner := "000" ;


ounterOuter := 
ounterOuter +1;

ha l ted <= ' 0 ' ;

when others => null ;

end 
ase ;

when "010" => −− DEC


ase 
ounter Inner i s

when "000" =>

addres s <= "010" ;


ounter Inner := 
ounter Inner +1;

when "001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on − 1 ;

datain <= std_log i
_ve
tor ( add i t i on ) ;

wFlag <= ' 1 ' ;


ounter Inner := 
ounter Inner +1;

when "010" =>

wFlag <= ' 0 ' ;

ha l ted <= ' 0 ' ;


ounter Inner := "000" ;


ounterOuter := 
ounterOuter +1;

when others => null ;

end 
ase ;
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when "011" => −− LOAD


ase 
ounter Inner i s

when "000" =>

addres s <= "000" ;


ounter Inner := 
ounter Inner +1;

when "001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i
_ve
tor ( add i t i on ) ;

wFlag <= ' 1 ' ;


ounter Inner := 
ounter Inner +1;

when "010" =>

wFlag <= ' 0 ' ;

addres s <= "000" ;


ounter Inner := 
ounter Inner +1;

when "011" =>

addres s <= dataout ;


ounter Inner := 
ounter Inner +1;

when "100" =>

addres s <= "001" ;

datain <= dataout ;

wFlag <= '1 ' ;


ounter Inner := 
ounter Inner +1;

when "101" =>

addres s <= "010" ;

wFlag <= '1 ' ;


ounter Inner := 
ounter Inner +1;

when "110" =>

wFlag <= ' 0 ' ;


ounter Inner := "000" ;


ounterOuter := 
ounterOuter +1;

ha l ted <= ' 0 ' ;

when others => null ;

end 
ase ;
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when "100" => −− STO


ase 
ounter Inner i s

when "000" =>

addres s <= "000" ;


ounter Inner := 
ounter Inner +1;

when "001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i
_ve
tor ( add i t i on ) ;

wFlag <= ' 1 ' ;


ounter Inner := 
ounter Inner +1;

when "010" =>

addres s <= "000" ;

wFlag <= ' 0 ' ;


ounter Inner := 
ounter Inner +1;

when "011" =>

addres s <= dataout ;


ounter Inner := 
ounter Inner +1;

when "100" =>

addres s <= "001" ;

datain <= dataout ;

wFlag <= '1 ' ;


ounter Inner := 
ounter Inner +1;

when "101" =>

temp <= dataout ;

wFlag <= ' 0 ' ;


ounter Inner := 
ounter Inner +1;

when "110" =>

addres s <= "010" ;


ounter Inner := 
ounter Inner +1;

when "111" =>

datain <= dataout ;

addres s <= temp ;

wFlag <= ' 1 ' ;


ounter Inner := "000" ;


ounterOuter := 
ounterOuter +1;

ha l ted <= ' 0 ' ;

when others => null ;

end 
ase ;
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when "101" => −− OUT

ha l ted <= ' 0 ' ;


ontro lOut <= ' 1 ' ;


ounterOuter := 
ounterOuter +1;

when "110" => −− JGZ


ase 
ounter Inner i s

when "000" =>

addres s <= "000" ;


ounter Inner := 
ounter Inner +1;

when "001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i
_ve
tor ( add i t i on ) ;

wFlag <= ' 1 ' ;


ounter Inner := 
ounter Inner +1;

when "010" =>

addres s <= "000" ;

wFlag <= ' 0 ' ;


ounter Inner := 
ounter Inner +1;

when "011" =>

addres s <= dataout ;


ounter Inner := 
ounter Inner +1;

when "100" =>

addres s <= "001" ;

datain <= dataout ;

wFlag <= '1 ' ;


ounter Inner := 
ounter Inner +1;

when "101" =>

temp <= dataout ;

wFlag <= ' 0 ' ;


ounter Inner := 
ounter Inner +1;

when "110" =>

addres s <= "010" ;


ounter Inner := 
ounter Inner +1;

when "111" =>

i f ( dataout = "000" ) then

null ;

else

addres s <= "000" ;

datain <= temp ;

wFlag <= ' 1 ' ;

in
Flag <= ' 0 ' ;

end i f ;


ounter Inner := "000" ;


ounterOuter := 
ounterOuter + 1 ;

ha l ted <= ' 0 ' ;

when others => null ;

end 
ase ;
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when "111" => −− CPY


ase 
ounter Inner i s

when "000" =>

addres s <= "000" ;


ounter Inner := 
ounter Inner +1;

when "001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i
_ve
tor ( add i t i on ) ;

wFlag <= ' 1 ' ;


ounter Inner := 
ounter Inner +1;

when "010" =>

addres s <= "000" ;

wFlag <= ' 0 ' ;


ounter Inner := 
ounter Inner +1;

when "011" =>

addres s <= dataout ;


ounter Inner := 
ounter Inner +1;

when "100" =>

addres s <= "001" ;

datain <= dataout ;

wFlag <= '1 ' ;


ounter Inner := 
ounter Inner +1;

when "101" =>

addres s <= dataout ;

wFlag <= ' 0 ' ;


ounter Inner := 
ounter Inner +1;

when "110" =>

addres s <= "010" ;

datain <= dataout ;

wFlag <= ' 1 ' ;


ounter Inner := "000" ;


ounterOuter := 
ounterOuter + 1 ;

ha l ted <= ' 0 ' ;

when others =>

halted <= ' 1 ' ;

in
Flag <= ' 0 ' ;

end 
ase ;

when others => null ;

end 
ase ;
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when "100" =>

wFlag <= ' 0 ' ;

i f in
Flag = '1 ' then

addres s <= "000" ;

end i f ;


ounterOuter := 
ounterOuter +1;

when "101" =>

i f in
Flag = '1 ' then

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i
_ve
tor ( add i t i on ) ;

wFlag <= ' 1 ' ;

end i f ;


ounterOuter := "000" ;

when others => null ;

end 
ase ;

end i f ;

end pro
ess ;

end Behav iora l ;
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C.1.4 RASP2 Control

The 
ontrol module for the RASP2 is identi
al to that for the RASP save that

the INC and DEC instru
tions of the RAPS are repla
ed by the following ADD

and SUB instru
tions.

when "001" => −− ADD


ase 
ounter Inner i s

when "000" =>

addres s <= "000" ;


ounter Inner := 
ounter Inner +1;

when "001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i
_ve
tor ( add i t i on ) ;

wFlag <= ' 1 ' ;


ounter Inner := 
ounter Inner +1;

when "010" =>

addres s <= "000" ;

wFlag <= ' 0 ' ;


ounter Inner := 
ounter Inner +1;

when "011" =>

addres s <= dataout ;


ounter Inner := 
ounter Inner +1;

when "100" =>

addres s <= "001" ;

datain <= dataout ;

temp <= dataout ;

wFlag <= '1 ' ;


ounter Inner := 
ounter Inner +1;

temp <= dataout ;

when "101" =>

addres s <= "010" ;


ounter Inner := 
ounter Inner +1;

when "110" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + unsigned ( temp ) ;

datain <= std_log i
_ve
tor ( add i t i on ) ;

wFlag <= ' 1 ' ;


ounter Inner := 
ounter Inner +1;

when "111" =>

wFlag <= ' 0 ' ;


ounter Inner := "000" ;


ounterOuter := 
ounterOuter +1;

ha l ted <= ' 0 ' ;

when others => null ;

end 
ase ;

349



Appendix C. VHDL Code

when "010" => −− SUB


ase 
ounter Inner i s

when "000" =>

addres s <= "000" ;


ounter Inner := 
ounter Inner +1;

when "001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i
_ve
tor ( add i t i on ) ;

wFlag <= ' 1 ' ;


ounter Inner := 
ounter Inner +1;

when "010" =>

addres s <= "000" ;

wFlag <= ' 0 ' ;


ounter Inner := 
ounter Inner +1;

when "011" =>

addres s <= dataout ;


ounter Inner := 
ounter Inner +1;

when "100" =>

addres s <= "001" ;

datain <= dataout ;

temp <= dataout ;

wFlag <= '1 ' ;


ounter Inner := 
ounter Inner +1;

temp <= dataout ;

when "101" =>

addres s <= "010" ;


ounter Inner := 
ounter Inner +1;

when "110" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on − unsigned ( temp ) ;

datain <= std_log i
_ve
tor ( add i t i on ) ;

wFlag <= ' 1 ' ;


ounter Inner := 
ounter Inner +1;

when "111" =>

wFlag <= ' 0 ' ;


ounter Inner := "000" ;


ounterOuter := 
ounterOuter +1;

ha l ted <= ' 0 ' ;

when others => null ;

end 
ase ;

C.1.5 RASP3 Control

The 
ontrol module for the RASP2 is identi
al to that for the RASP save that

the INC and DEC instru
tions of the RAPS are repla
ed by the following ADD
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and SUB instru
tions.

when "001" => −− ADD


ase 
ounter Inner i s

when "0000" =>

addres s <= "000" ;


ounter Inner := 
ounter Inner +1;

when "0001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i
_ve
tor ( add i t i on ) ;

wFlag <= ' 1 ' ;


ounter Inner := 
ounter Inner +1;

when "0010" =>

wFlag <= ' 0 ' ;

addres s <= "000" ;


ounter Inner := 
ounter Inner +1;

when "0011" =>

addres s <= dataout ;


ounter Inner := 
ounter Inner +1;

when "0100" =>

addres s <= "001" ;

datain <= dataout ;

wFlag <= '1 ' ;


ounter Inner := 
ounter Inner +1;

when "0101" =>

wFlag <= ' 0 ' ;

addres s <= dataout ;


ounter Inner := 
ounter Inner +1;

when "0110" =>

temp <= dataout ;

addres s <= "010" ;


ounter Inner := 
ounter Inner +1;

when "0111" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + unsigned ( temp ) ;

datain <= std_log i
_ve
tor ( add i t i on ) ;

wFlag <= ' 1 ' ;


ounter Inner := 
ounter Inner +1;

when "1000" =>

wFlag <= ' 0 ' ;


ounter Inner := "0000" ;


ounterOuter := 
ounterOuter +1;

ha l ted <= ' 0 ' ;

when others => null ;

end 
ase ;
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when "010" => −− SUB


ase 
ounter Inner i s

when "0000" =>

addres s <= "000" ;


ounter Inner := 
ounter Inner +1;

when "0001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i
_ve
tor ( add i t i on ) ;

wFlag <= ' 1 ' ;


ounter Inner := 
ounter Inner +1;

when "0010" =>

wFlag <= ' 0 ' ;

addres s <= "000" ;


ounter Inner := 
ounter Inner +1;

when "0011" =>

addres s <= dataout ;


ounter Inner := 
ounter Inner +1;

when "0100" =>

addres s <= "001" ;

datain <= dataout ;

wFlag <= '1 ' ;


ounter Inner := 
ounter Inner +1;

when "0101" =>

wFlag <= ' 0 ' ;

addres s <= dataout ;


ounter Inner := 
ounter Inner +1;

when "0110" =>

temp <= dataout ;

addres s <= "010" ;


ounter Inner := 
ounter Inner +1;

when "0111" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on − unsigned ( temp ) ;

datain <= std_log i
_ve
tor ( add i t i on ) ;

wFlag <= ' 1 ' ;


ounter Inner := 
ounter Inner +1;

when "1000" =>

wFlag <= ' 0 ' ;


ounter Inner := "0000" ;


ounterOuter := 
ounterOuter +1;

ha l ted <= ' 0 ' ;

when others => null ;

end 
ase ;
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C.1.6 RASP Programs

The initial state of a program in the RASP is represented in the memory module.

The line:

signal m : mem := ( ". . . " , . . . ) ;

is �lled with the entire 
ontents of the RASP memory, in
luding the initial states

of the PC, IR, and ACC. Ea
h numeral is an n-bit binary number, where n is the

number of bits in the ma
hine.

The programs are 
onverted from the �array form� in Appendix B into bi-

nary and arranged after the register states. As an example, 
onsider the RASP2

addition program from Appendix B.2.1:

3,5,1,8,0

This program 
onverted to the VHDL form is:

signal m : mem := ( "011" , "000" , "000" , "011" , "101" , "001" ,

"000" , "000" ) ;

C.2 TM

As with the RASPs, the TM has the same 
oordination and memory modules for

ea
h TM. The variable (x) in this 
ase refers to the number of symbols whi
h are

de�ned for use of on the tape of the ma
hine.
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C.2.1 TM Coordination

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE .NUMERIC_STD.ALL;

entity TuringMa
hine i s

Port ( 
 l k : in STD_LOGIC;

a

 : out STD_LOGIC;

ha l ted : out s td_log i 
 ) ;

end TuringMa
hine ;

ar
hite
ture Behav iora l of TuringMa
hine i s


omponent TMControl i s

port (


 l k : in STD_LOGIC;

symbolOut : in i n t e g e r range 0 to x ;

headPos : out unsigned (0 to 0 ) ;

wFlag : out STD_LOGIC;

symbolIn : out i n t e g e r range 0 to x ;

ha l ted : out s td_log i 
 ) ;

end 
omponent ;


omponent TMTape i s

Port (

headPos : in unsigned (0 to 0 ) ;

symbolIn : in i n t e g e r range 0 to x ;

symbolOut : out i n t e g e r range 0 to x ;

wFlag : in s td_log i 
 ;

a

 : out s td_log i 
 ;


 l k : in s td_log i 
 ) ;

end 
omponent ;

signal symbolIn : i n t e g e r range 0 to x := 0 ;

signal symbolOut : i n t e g e r range 0 to x := 0 ;

signal wFlag : s td_log i 
 := ' 0 ' ;

signal headPos : unsigned (0 to 0 ) ;

begin


 on t r o l : TMControl port map ( 
 lk , symbolOut , headPos ,

wFlag , symbolIn , ha l ted ) ;

tape : TMTape port map ( headPos , symbolIn , symbolOut ,

wFlag , a

 , 
 l k ) ;

end Behav iora l ;
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C.2.2 TM Memory

The TM memory is a tape whi
h 
ontains a single symbol. The tape 
an a

ept

up to x symbols whi
h are represented as integers.

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE .NUMERIC_STD.ALL;

entity TMTape i s

Port ( headPos : in unsigned (0 to 0 ) ;

symbolIn : in i n t e g e r range 0 to x ;

symbolOut : out i n t e g e r range 0 to x ;

wFlag : in s td_log i 
 ;

a

 : out s td_log i 
 ;


 l k : in s td_log i 
 ) ;

end TMTape ;

ar
hite
ture Behav iora l of TMTape i s

type mem i s array (0 to 1) of i n t e g e r range 0 to x ;

signal tape : mem := ( 0 , 1 ) ;

begin

pro
ess ( 
 l k )

begin

i f f a l l i ng_edge ( 
 l k ) then

i f wFlag = '1 ' then

tape ( to_integer ( headPos ) ) <= symbolIn ;

a

 <= ' 1 ' ;

else

symbolOut <= tape ( to_integer ( headPos ) ) ;

a

 <= ' 0 ' ;

end i f ;

end i f ;

end pro
ess ;

end Behav iora l ;

C.2.3 TM Control

The TM 
ontrol houses the semanti
s of the TM and the symbol table. The

variable x is again the number of symbols required for the ma
hine to fun
tion,

and the new variable n is number of bits required to represent the maximum

number of states of the ma
hine. The variable t di
tates the number of tuples in
the symbol table.

The symbol table st is what holds the spe
i�
 symbol table of ea
h TM. In

this example, the symbol table is left un�lled.
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l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE .NUMERIC_STD.ALL;

entity TMControl i s

Port ( 
 l k : in STD_LOGIC;

symbolIn : out i n t e g e r range 0 to x ;

headPos : out unsigned (0 to 0 ) ;

wFlag : out STD_LOGIC;

symbolOut : in i n t e g e r range 0 to x ;

ha l ted : out s td_log i 
 ) ;

end TMControl ;

ar
hite
ture Behav iora l of TMControl i s

type tup l e i s re
ord

stateR : unsigned (n downto 0 ) ;

symbolR : i n t e g e r range 0 to x ;

stateW : unsigned (n downto 0 ) ;

symbolW : i n t e g e r range 0 to x ;

d i r : s td_log i 
 ;

end re
ord ;

signal 
u r r en tS ta t e : unsigned (n downto 0) := "01" ;

signal 
ounter : unsigned (2 downto 0) := "000" ;

signal hPos : unsigned (0 to 0) := "1" ;

type s t i s array (0 to t ) of tup l e ;


onstant symbolTable : s t :=(. . . , . . . ) ;
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begin

pro
ess ( 
 l k )

variable found : s td_log i 
 := ' 0 ' ;

variable var : i n t e g e r range 0 to t := 0 ;

begin

i f r i s ing_edge ( 
 l k ) then


ase 
ounter i s

when "000" =>

found := ' 0 ' ;

headPos <= hPos ;


ounter <= 
ounter + 1 ;

when "001" =>

i f 
u r r en tS ta t e = "00" then

ha l ted <= ' 1 ' ;

else

ha l ted <= ' 0 ' ;


ounter <= 
ounter + 1 ;

end i f ;

when "010" =>

for i in symbolTable 'RANGE loop

i f symbolTable ( i ) . stateR = 
ur r en tS ta t e

and symbolTable ( i ) . symbolR = symbolOut then

found := ' 1 ' ;

var := i ;

exit ;

end i f ;

end loop ;


ounter <= 
ounter +1;

when "011" =>

i f found = '1 ' then

headPos <= hPos ;

wFlag <= ' 1 ' ;

symbolIn <= symbolTable ( var ) . symbolW ;


ur r en tS ta t e <= symbolTable ( var ) . stateW ;


ounter <= 
ounter +1;

else


ounter <= "001" ;


u r r en tS ta t e <= "00" ;

end i f ;
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when "100" =>

wFlag <= ' 0 ' ;

i f ( symbolTable ( var ) . d i r = '1 ' ) then

hPos <= hPos + 1 ;

else

hPos <= hPos − 1 ;

end i f ;


ounter <= "000" ;

when others =>

end 
ase ;

end i f ;

end pro
ess ;

end Behav iora l ;

C.2.4 TM Programs

Programs in the TM are spe
i�ed in the 
ontrol module as ROM. The line:


onstant symbolTable : s t :=(. . . , . . . ) ;

in the 
ontrol module spe
i�es the symbol table in the �tuple� re
ord whi
h is

de�ned just above this line.

The format of the symbol table itself follows the previous 
onventions of the

thesis laid out in Se
tions 2.3.1.1 and 3.4.1. There is a straightforward en
oding

of the TM tuples into the VHDL form. Consider the addition TM in Appendix

B.4.1:

1,1,2,0,R

2,1,2,1,R

2,0,0,1,L

This TM is 
onverted to the following VHDL form:


onstant symbolTable : s t := (

( "01" ,1 , "10" , 0 , ' 1 ' ) ,

( "10" ,0 , "00" , 1 , ' 0 ' ) ,

( "10" ,1 , "10" , 1 , ' 1 ' ) ) ;

Ea
h symbol is an integer from 0 to x. The states are 
onverted into binary

notation with n bits, where n is the number of bits required to represent the

largest state of the TM. Appendix B shows the full tuples for the TM whi
h are


onverted using the above method and mapped to an FPGA 
ir
uit to produ
e

the measurements of this thesis.
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Appendix D

Full Semanti
s

This appendix lists the Reverse Polish Notation [56℄ expressions of the semanti
s

of the 
omputational models whi
h are featured in this thesis (Se
tion 3.3). These

expressions are measured and their sizes shows in Table 4.2 et al. and are analysed

in Chapter 6.

The notation used here is obtuse. When reading this Appendix, it is re
om-

mended that the reader 
on
urrently follow the appropriate sub-se
tion in Se
tion

3.4. Ea
h RPN rule shown here 
orresponds to a semanti
 rule expressed in in�x

notation in Se
tion 3.4.

D.1 RASPs

D.1.1 RASP Model

S ,Y,T, J :NN 7→
X,F,L :N

G: { 0 . . 2 n^1−}
IG⊂
#:SN 7→
A:SX×SX× 7→
P:G{, } ∪+ N×S 7→
E:SX×SX× 7→
SZ : 0 S1+S#%
J{03 7→, 10 7→, 20 7→}=
F∅=
e , k :G{, }∪+

〈S ,X〉Je2P∪FE=

eg , k =⇒
gG∈
enP{ne 7→}kn1+P∪=

enP∅ =⇒

0SSI∈
0YSZ=

1Y0SS=

〈T,L〉YXA=
SXETLE =⇒

0SSI /∈
1Y0SS=

SXE〈Y,X〉 =⇒

359



Appendix D. Full Semanti
s

D.1.2 RASP Language

1S1=

2Y2S1+S#%=
SXA〈Y,X〉 =⇒

1S2=

Y2S1−S#%=
SXA〈Y,X〉 =⇒

1S3=

1Y2Y0SS==

0YSZ=

SXA〈Y,X〉 =⇒

1S4=

1Y0SS=

1Y1>

0SSY2S=

0YSZ=

SXA〈Y,X〉 =⇒

1S4=

1Y0SS0==

0Y2S=

1T0=

0TYZ=

SXA〈T,X〉 =⇒

1S4=

0SS1=

1Y2S=

0YSZ=

SXA〈Y,X〉 =⇒

1S5=

1Y=0SS

2S0=

0YSZ=

SXA〈Y,X〉 =⇒

1S5=

1Y0Y0SS==

2S0>

SXA〈Y,X〉 =⇒

1S6=

FX{2S}∪=
SXA〈Y,F〉 =⇒

1S7=

1Y0SS=

2Y1YS=

0YSZ=

SXA〈Y,X〉 =⇒
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D.1.3 RASP2 Language

1S1=

1Y0SS=

2Y2S1Y+S#%=
0YSP=

SXA〈Y,X〉 =⇒

1S2=

1Y0SS=

2Y2S1Y−S#%=
0YSP=

SXA〈Y,X〉 =⇒

1S3=

1Y2Y0SS==

0YSZ=

SXA〈Y,X〉 =⇒

1S4=

1Y0SS=

1Y1>

0SSY2S=

0YSZ=

SXA〈Y,X〉 =⇒

1S4=

1Y0SS0==

0Y2S=

1T0=

0TYZ=

SXA〈T,X〉 =⇒

1S4=

0SS1=

1Y2S=

0YSZ=

SXA〈Y,X〉 =⇒

1S5=

1Y=0SS

2S0=

0YSZ=

SXA〈Y,X〉 =⇒

1S5=

1Y0Y0SS==

2S0>

SXA〈Y,X〉 =⇒

1S6=

FX{2S}∪=
SXA〈Y,F〉 =⇒

1S7=

1Y0SS=

2Y1YS=

0YSZ=

SXA〈Y,X〉 =⇒
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D.1.4 RASP3 Language

S1=

1Y0SS=

2Y2S1YS+S#%=
0YSP=

SXA〈Y,X〉 =⇒

1S2=

1Y0SS=

2Y2S1YS−S#%=
0YSP=

SXA〈Y,X〉 =⇒

1S3=

1Y2Y0SS==

0YSZ=

SXA〈Y,X〉 =⇒

1S4=

1Y0SS=

1Y1>

0SSY2S=

0YSZ=

SXA〈Y,X〉 =⇒

1S4=

1Y0SS0==

0Y2S=

1T0=

0TYZ=

SXA〈T,X〉 =⇒

1S4=

0SS1=

1Y2S=

0YSZ=

SXA〈Y,X〉 =⇒

1S5=

1Y=0SS

2S0=

0YSZ=

SXA〈Y,X〉 =⇒

1S5=

1Y0Y0SS==

2S0>

SXA〈Y,X〉 =⇒

1S6=

FX{2S}∪=
SXA〈Y,F〉 =⇒

1S7=

1Y0SS=

2Y1YS=

0YSZ=

SXA〈Y,X〉 =⇒
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D.2 TM

s , r :Q

y :Γ
h :Z

d : {L ,R}

T, J ,X:ZΓ 7→
δ :QΓ×QΓ×d× 7→
P: eδ 7→
U, I : Zf×T7→
e , a :ΓQ∪d∪{ ,}∪+

f , k ,m:Γ+
{^}∪

E:Q(ZΓ 7→)×Z× (ZΓ 7→) 7→
δeP=
J1fU0E=

es , y , r , v , d a =⇒
eP{〈s , y\ rang l e 〈r , v , d\ rang l e 7→}aP∪ =⇒

eP∅ =⇒

fk^gm=⇒
gΓ ∈
f0Uk−1I {0g 7→}∪m1U∪=

fgm =⇒
gΓ ∈
fnU{ng 7→}mn1+U∪ =⇒

fnU∅ =⇒

f n I ∅ =⇒

fmg =⇒
gΓ ∈
f n I {ng 7→}mn1−U∪=

shTδ〈r , hX,L〉=
sThEfXh1−E =⇒

shTδ〈r , hX,R〉=
sThErXh1+E =⇒

shTδ〈r , hX, d〉 6=
sThET =⇒
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D.3 λ-Cal
ulus

F,T, J ,R,G,L={z , L ,R}

e , f , g∈({λ ,{ a . . z }+ , ( , ) , . , ,}V∪)+

v ,mV∈
V:{ a . . z}

+

z=B|A| v

P: eT 7→
E:TT7→
B:TV7→
Z :TV×V×T7→
S :TT×v×T7→
JeP=

FJE=

e =⇒ λv . f
eP{B, vP , fP} =⇒

e =⇒ f v

eP{A, fP , vP} =⇒

e =⇒ f ( g )

eP{A, fP , gP} =⇒

e =⇒ v

eP{v , ∅ ,∅} =⇒

e =⇒ ( f )

ePfP =⇒

T. zA=

T.L . zB=

T.R. zT .LB/∈
TET.L .RT.RT.L .L . zS =⇒ ; JE

T. zA=

T.L . zB=

HT.L .RB=

T.R. zH∈
mH/∈
TET.L .RmT.R. zZT .RT.L .L . zS =⇒ ; JE

TE{T. z ,T.LE,T.RE} =⇒

T∅=
TE∅ =⇒

TGjS{T. z ,T. LGjS ,T. LGjS} =⇒

T. z j=

TGjSG=⇒

T∅=
TGjS∅ =⇒

T. zB=

T.L . z j=

TGjST =⇒

T. zB=

TB{T.L . z}T.RB∪ =⇒

T. zA=

TB=⇒ T.LBT.RB∪

TB∅ =⇒

T. zv=

TmkZ{m, ∅ ,∅} =⇒

T∅=
TmkZ∅ =⇒
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e , f , g : ( Z{ ( , ) }∪{A}/)+

E:TT7→
P: eT 7→
F,T,L ,R, J : { z , L ,R}

z∈Z
Z: {S ,K, I ,A}

JeP=

FJR=

e =⇒ ( f )

ePfP =⇒

e =⇒ f ( g )

eP{A, fP , gP} =⇒

e =⇒ f z

eP{A, fP , zP} =⇒

e =⇒ z

eP{z , ∅ ,∅} =⇒

T. zA=

TE{A,LE,RE} =⇒

T. zA=

T.L . z I=

TE =⇒ T.R; JE

T. zA=

T.L .L . zK=

TE =⇒ T.L .R; JE

T. zA=

T.L .L .L . zS=

hT .R=

TE =⇒ {A, {A,T.L .L .R, h} ,{A,T.L .R, h }} ;JE

T∅=
TET=⇒
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