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Abstract.

The antiproliferative effects of the tumour suppressor p53 stem from its ability to 

induce either cell cycle arrest or apoptosis and aie regulated by the p300/CBP 

transcriptional co-activator proteins. In order to elucidate the mechanisms of p300 

dependent transcriptional activation of the p53 response, the role of a newly 

identified protein co-factor, termed JMY, that physically associates with p300 was 

examined. JMY effectively assists p300 in p53-dependent fran^activation of 

apoptotic promoting genes. Removal of the proline rich domain in the C-terminus of 

JMY produces a protein that switches the functional outcome of the p53 response 

from apoptosis to cell cycle arrest. Results presented here suggest that JMY 

collaborates with p300 to stimulate p53 apoptosis while the JMYAP isofoiTn 

collaborates with p300 to induce p53 fran.yactivation of and cell cycle

arrest. Thus, the proline rich region of JMY modulates p53’s role as a cell cycle arrest 

or apoptotic inducing protein.

Furtheimore, JMY may functionally impact on the p53 pathway through its ability to 

associate with and influence the activities of human JMY co-activates and

assists p300 in E2F-1 mediated expression of pl4^^ In addition JMY is present in the 

pl4*^^ complex and a functional consequence of the interaction is the displacing of 

the nucleolar population of pl4*^^ into the nucleoplasm.

A tumour derived mutant of pRb, pRbA22, that has lost E2F regulatory activity 

collaborates with JMY in the co-activation of p53-dependent Bax expression, 

suggesting that cells can by-pass the loss of growth control through pRb by



stimulating apoptosis. JMY therefore acts as a potential regulator of the p53 response 

and may represent a novel target for the development of therapeutically useful 

modulators of p53 activity. Defining the mechanism through which JMY and pRb 

collaborate in apoptosis may prove useful in the understanding of the cells response 

to tumourigenesis.
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1. Introduction.

Cells have acquired the ability to divide and replicate in order to allow the 

propagation of the species and to counter the loss of cells by damage. The replication 

of cellular material and DNA, which leads to cell division, takes place through a 

process known as the cell cycle. Understanding the cell cycle is essential in the 

comprehension of human diseases that originate from its breakdown and is vital in 

the search and design of anti-tumour therapies.

The cell cycle is regulated through the activity of transcription factors and their 

associated repressors and activators. The co-ordination of the signals from these 

components determines whether a cell proliferates, differentiates, enters quiescence 

or dies (La Thangue, 1994).

The integration of growth regulating signals occurs at the Gi to S phase boundary 

after which point a cell is committed to divide. The transition from Gi into S phase is 

controlled by a number of critical regulatory proteins that control gene expression, 

such as the transcription factors p53 and E2F (La Thangue, 1994; Levine, 1997). In 

addition these critical factors are themselves regulated by cellular proteins such as the 

tumour suppressor pRb and the transcriptional co-activator p300/CBP (Torchia et aL, 

1998; Weinberg, 1995; Shikama et a l, 1997). The cellular importance of p53, pRb, 

and p300/CBP is emphasised by the observations that viral proteins that maintain 

proliferation directly interfere with their functions.
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Under conditions where the integrity of the genome has been compromised the cells 

cycle is an’ested. The failure of cells with unstable genomes to arrest is a defining 

point in the formation of cancer cells. Cellular mechanisms have evolved that repair 

damaged genomes but under conditions where the damage response is unable to 

initiate a recovery a second more potent mechanism that prevents the proliferation of 

cells has arisen, namely apoptosis. Apoptosis plays an indispensable role during 

development to eliminate unwanted potentially dangerous cells and consequently the 

mechanisms that control the apoptotic response are highly conserved (Burns and El- 

Deiry, 2000).

Additional, new, members involved in the regulation of the cell cycle and apoptotic 

pathways are continually being identified and with every discovery a more detailed 

understanding of the cell cycle emerges. Discussed here in more detail are the known 

functions of the cell cycle regulators, p53, p300/CBP, ARE and pRb,
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1-1. p53, the cellular gatekeeper for 

growth and apoptosis.

1-1.1. Introduction.

A key regulator of cellular growth and neoplasia is the tumour suppressor p53. The 

gross over-expression of p53 witnessed in a variety of tumours regardless of the 

transforming agent and cell type underlies the vital importance of p53 in genome 

stability (Rotter et aL, 1981; Rotter, 1983).

p53 is a multi-functional protein that executes a vaiiety of cellular outcomes in order 

to maintain a healthy cell. Numerous studies have elucidated a role for p53 in growth 

arrest, apoptosis and differentiation and defined p53 as a DNA damage-inducible 

protein that participates in genomic repair (Cross et ah, 1995; Wells, 1996).

The inactivation of wild-type p53 promotes genomic instabilities and is a key event in 

the formation of cancer cells. The high frequency of p53 mutations observed in 

human tumours clearly helps define p53 as the “guardian of the genome” (Levine, 

1997).

1-1.2. Characteristics of p53.

The p53 gene is highly mutated in human cancer, with approximately 50% of 

tumours displaying a loss of p53 function as a result of germline mutations (Hollstein 

et aL, 1991; Greenblatt et aL, 1994). Many tumour types show deletion of one p53 

gene allele and mis-sense mutation in the other (Hollstein et aL, 1994). The high 

frequency of mutations in p53 alleles lead to the discovery that p53 is a heritable
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germ line mutated gene. Individuals suffering from Li-Fraumeni syndrome that aie 

predisposed to cancer carry a germ line mutation in p53 (Donehower and Bradley, 

1993). In addition individuals with independently arising neoplasms often display 

germ line mutations in the p53 locus.

Species and mutational comparisons identified that the vast majority of mis-sense 

mutations in p53 are clustered at hot spot regions in the highly conserved core 

domain. The hot spot regions are comprised primarily of amino acids that 

incapacitate p53 sequence specific DNA binding and underpin p53’s ability to 

suppress tumourigenesis. The hot spot amino acids Arg248 and Arg273 directly 

contact DNA while Argl75, Arg245, Gly249, Arg273 and Arg282 are responsible for 

stabilising the structure of the DNA binding interface (Levine, 1997) (Figure 1.1a).

p53 is more susceptible to mis-sense mutations than nonsense mutations which 

suggests that p53 mutants that retain selective functions are advantageous to tumour 

cells. Consistent with the advantage of p53 mutations in tumour cells is the 

observation that mutant p53 introduced into p53 negative cells aids tumourigenesis 

(Dittmer et aL, 1993). In addition to the gain of function observed by mutant p53 the 

proteins is also able to disrupt cellular growth control by affecting the activity of the 

wild-type protein. In agreement, oligomerization domain mutations in p53 that 

dominate wild-type p53 function are negative in cell cycle control as a result of their 

inability to form tetramers (Unger et aL, 1993).

p53, in keeping with the observation that many oncogenes and tumour suppressor 

genes are arranged into families, is itself one member of a family. p53 has two known
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family members, namely p63 and p73 (Kaghad et a l, 1997; Yang et al., 1991). 

Interestingly p63 and p73 show more similarity to each other than to p53. Common to 

all three family members is the high number, large size and organisation of their non

coding introns (Soussi and May, 1996; Marin and Kaelin, 2000).

The p53 family of proteins is enlarged by the ability of all the family members to 

undergo splicing events that produce functionally distinct proteins. In mouse, two p53 

splice forms are expressed, called normal splice (NS) and alternative splice (AS), 

while both p63 and p73 are multiply spliced (Wu et a l, 1995; Arai et a l, 1986). p63 

can be spliced into a, p, and y forms while p73 has five known fonns namely 

a, P, y, Ô, and e (De Laurenzi et a l, 1998; De Laurenzi et a l,  1999; Zaika et a l, 

1999; Marin and Kaelin, 2000). Additionally a cryptic promoter located in exon three 

is utilised to produce three N-terminal deleted transcripts of p63 (Yang et a l, 1997).

The cloning and sequencing of p53 from a variety of species in combination with 

functional interaction data has enabled a detailed structural analysis of p53. Human 

p53 is encoded by 393 amino acids and has four structurally conserved functional 

domains in addition to a number of other interesting features. The N-terminal 42 

amino acids of p53 constitute its transcriptional activation domain, presumably as a 

result of its ability to contact directly members of the basal transcription machinery 

(Fields and Jang, 1990). The N-terminus is predominantly acidic in nature, however, 

two hydrophobic residues in this region mediate p53’s ability to interact with the 

transcription machinery components TAFn70 and TAFn31 (Lu and Levine, 1995; 

Thut et a l, 1995). The transactivation domain of p53 is also the site targeted by the 

negative regulators ElB-55kDa and MDM2 (Lin et a l, 1994) (Figure 1.1b).
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Active p53 exists as tetramers (dimer of dimers) and the domain that mediates 

oligomerization resides in the C-terminus (Shaulian et al., 1992; Iwabuchi et a l, 

1993; Wang et a l, 1994a) (Figure 1.1b). Interestingly, as a result of allosteric 

interactions between the core domain and the oligomermization domain through a 

flexible linker, p53 can also form multiples of tetramers (Stenger et a l, 1994).

p53 binds to specific DNA sequences through its central core domain (Zauberman et 

a l, 1993) (Figure 1.1b). A tetrahedrally co-ordinating Zn̂ "̂  atom in the core domain 

confers the self-folding and sequence specific binding properties of p53 (Pavletich et 

a l, 1993; Wang et a l, 1993). Analysis of multiple genomic p53 target sites has 

defined the consensus site 5 ' -PuPuPuC(^/T)(^/A)GPyPyPy-3 ' for tetrameric p53 

binding (Strurzbecher and Deppert, 1994).

The highly basic, extreme, C-terminus of p53 negatively regulates the specific 

binding of p53 to its consensus site and can also non-specific ally bind DNA and 

RNA (Hupp et a l, 1992; Pavletich et a l, 1993; Wang et a l, 1993) (Figure 1.1b). The 

ability of the C-terminal domain of p53 to recognise nucleotide mismatches, 

insertions and deletions to either sterically or allosterically alter the sequence specific 

binding capacity of p53 is undoubtedly an important feature of p53 (Levine, 1997). 

C-terminal domain associated catalysis of DNA and RNA re-association underlies the 

involvement of p53 in the mismatch repair process.

p53’s functional diversity has been attributed to its ability to interact with a large 

number of different cellular proteins (Figure 1.1c). p53 interacts with the single
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stranded binding protein RP-A and the interaction is believed to inhibit RP-A binding 

and stimulation of single stranded DNA condensation (Dutta et al., 1993). The 

interaction of the RNA polymerase subunit TFnH with p53 results in the loss of its 

helicase activity and a modulation of its function in nucleotide excision repair (Wang 

et al., 1995b). The Wilms’ tumour suppressor gene product W Tl also interacts with 

p53. W Tl abrogates p53-mediated transcription to suppress apoptosis (Maheswaian 

et al., 1995). In addition to the factors discussed above, p53 binds to and utilises a 

lai’ge number of transcriptional co-activator proteins, one such member being 

p300/CBP (Avantaggiati et al., 1997; Gu et a l, 1997; Lill et a l,  1997b).

In the N-terminus of p53 there are five copies of the SH3 (Src homology domain 3) 

binding motif P-X-X-P. A potential role of the polyproline domains is in the 

regulation and binding of p53 to SH3 signal transduction domain containing proteins. 

Consistent with the proposed role of p53 as a SH3 domain binding protein and signal 

transduction cascade target is the ability of the SH3 domain containing c-Abl protein 

to stimulate and activate a p53-dependent cell cycle arrest (Goga et a l, 1995). 

Interestingly, mutations in the P-X-X-P motifs have been detected in patients 

suffering Li-Fraumeni syndrome and correlates with the reduced ability of p53 in 

these suffers to induce apoptosis and cell cycle anest (Sun et a l, 1996; Walker and 

Levine, 1996).

In addition to the sequence and structural features discussed above p53 also has a 

number of other interesting features, including potential sites that can be modified by 

phosphorylation and acétylation (Privies, 1998; Soutogloou et a l, 2000). The high
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level of evolutionary conservation of p53 together with its structural characteristics 

underlies p53’s vital cellular importance.

1-1.3. p53 mediated transcription.

In most cells p53 is a latent, short-lived protein with a rapid turnover rate. 

Consequently, in order for p53 to perform a specific function it must receive signals 

that alter its half-life. Several types of cellular stresses such as y-inadiation, UV 

irradiation, nucleotide depletion and chemical damage all activate p53 function either 

by post-translationally stabilising p53 or increasing its profile of expression. 

Consistent with the activation of p53 in response to DNA damage is the observation 

that transgenic mice defective in nucleotide excision repair display an elevated level 

of p53 (MeWhir gr aZ., 1993).

Given that divergent forms of DNA damage result in an identical cellular outcome it 

is possible that the cellular mechanisms that sense DNA damage cross-talk and 

converge on p53. Supportive of such a role for p53 is the observation that cells 

defective in the ATM gene product, that senses DNA damage, display a delayed p53 

accumulation response following their treatment with ionising radiation (Kastan et 

a l, 1992).

The p53 response is also activated as a result of hypoxia. An interesting possibility is 

that tumour cells, as they reach a critical size, begin to undergo a p53 response that 

holds the tumour in a non-metastatic state (Graeber et a l, 1996). The anti-angiogenic 

factor thrombospondin-1 is induced by p53 suggesting the existence of a feedback 

mechanism of p53 activation in tumours. Thrombospondin reduces the blood supply
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to tissues, which concurrently activates the p53 hypoxia response which in turn will 

feedback and activate thrombospondin expression (Sun et ah, 1999).

The ability of p53 to specifically bind DNA elements in the reporters of many cell 

cycle genes clearly demonstrates that p53 is a bona fide transcription factor. The 

gadd45 gene, that encodes a protein which modulates PCNA function and is involved 

in nucleotide excision repair, is induced by p53 in response to DNA damage (Kastan 

et ah, 1991; Smith et ah, 1994). Induction of GADD45 by p53 stimulates a growth 

aiTest phenotype to presumably allow damage repair.

Interestingly, p53 was also shown to induce the expression of the MDM2 proto

oncogene that, in turn, can repress p53 transcription by promoting its degradation 

(Momand et ah, 1992). The mdm2 gene contains two distinct potential p53 

responsive promoters, PI is responsible for basal MDM2 expression and P2 is 

involved in the activated p53 response (Barak et ah, 1994). MDM2 gene expression 

is elevated following the radiation induced DNA damage stabilisation of p53 (Barak 

and Oren, 1992; Barak et ah, 1994) (Figure 1.2b).

The exposure of cells to a vaiiety of DNA damaging agents led to the identification 

of as a p53 responsive gene (El-Deiry et ah, 1993). The ability of

p2 iWafi/cipi inhibit cyclin-dependent kinases and thereby influence pRb 

phosphorylation is the mechanism by which p53 stimulates Gi arrest (Gu et ah,

1993). The treatment of human fibroblasts with radiation confirmed that 

expression and inhibition of the cell cycle was p53-dependent (Dulic et ah, 1994) 

(Figure 1.2c).
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The regulation of cellular apoptosis by the proto-oncogene Bcl-2, that prevents 

apoptosis, and its homologous protein Bax, that accelerates apoptosis, were studied in 

relation to p53 transcriptional activation (Oltvia et a l, 1993). The Bcl-2 family of 

proteins can be divided into pro-survival members such as Bcl-2, B c1-X l, Bcl-w and 

CDE9 and pro-apoptotic members such as Bax, Baf and Bid (Burns and El-Deiry, 

1999). The Bcl-2 family members form heterodimers, and it is the relative ratio of the 

survival versus apoptotic factors that determines whether the cell lives or dies. The 

anti-apoptotic members of the Bcl-2 family inhibit cyctochrome c release from the 

mitochondria which prevents Apaf-1 activation of initiator capase 9. The over

expression of p53 in a murine leukaemia cell line resulted in an increase in Bax 

expression and further analysis demonstrated that the actual gene promoter contains 

four potential consensus p53 sites. Physiologically p53 appears to specifically 

activate Bax in the context of p53-dependent apoptosis (Miyashita et a l, 1994a; 

Miyashita and Reed, 1995) (Figure 1.2a).

The insulin-like growth factor binding protein 3 (IGF-BP3) that inhibits mitogenic 

signalling by the insulin like growth factor (IGF-1) is effectively induced by p53 

(Buckbinder et a l, 1995). The induction of IGF-BP3 occurs in response to DNA 

damage and lowers the receptiveness of cells to mitogenic signals (Levine, 1997). 

Given that IGF-BP3 protects cells from c-Myc induced p53-dependent apoptosis it 

has been proposed to act as a survival factor that sensitises cells to apoptotic signals.

The cyclin G gene is also transcriptionally activated by p53 although the functional 

significance of this over-expression is unknown (Zauberman et a l, 1995).
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Interestingly in transient transfection assays the pRb promoter is dose-dependently 

p53 responsive, with high levels of p53 being repressive, and low levels activating 

(Shiio et aL, 1992; Osifchin et ah, 1994).

The N-termihal p53 polyproline domain is essential for efficient growth suppression 

and transcription of the PIG3 (p53 induced gene 3) promoter but is dispensable for 

the transcriptional activation of mdm2 and box (Walker and Levine,

1996). Conflicting evidence exists as to the ability of the polyproline region to affect 

p53’s DNA binding affinity. The polyproline domain of p53 is believed to mediate 

p53’s role in non-specific transcriptional repression, production of reactive oxygen 

species (ROS), and apoptosis but not its role in growth airest (Sakamuro et a l, 1997; 

Venot et a l, 1998).

An interesting feature of p53 is its ability to repress both cellular and viral promoters 

that do not contain a consensus p53 site (Ginsberg et a l, 1991; Subler et al., 1992; 

Jackson et al., 1993). p53’s non-specific repressive activity relies on both its N- and 

C- termini and is TATA box promoter dependent (Subler et al., 1992; Mack et a l, 

1993; Sang et al., 1994). p53’s ability to repress transcription may be an indirect 

consequence of activation domain binding factor competition. Consistent with such a 

model is p53’s ability to repress the human hspVO promoter as a consequence of its 

ability to bind and sequester the transcription factor CBF (CCAAT binding factor) 

(Agoff et a l, 1993). p53’s ability to act as a transcriptional repressor is also 

highlighted by its ability to repress a large number of genes following p53 induction 

(Polyak et a l, 1997). One such gene encodes the microtubule-associated protein 

MAP4 (Murphy et a l, 1996).
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1-1.4. p53 induced cell cycle arrest.

The constitutive over-expression of wild-type p53 abrogates oncogene-mediated 

transformation and inhibits the growth of various tumour cell types (Eliyahu et al., 

1989; Finlay et al., 1989; Baker et al., 1990; Diller et al., 1990). p53 inhibits cell 

cycle progression by holding cells in Gi which allows time for the assessment of the 

DNA integrity of the cell before a commitment to divide, that helps maintain the 

genetic stability of the cell (Levine, 1997). Consequently the level of p53 is directly 

induced upon the treatment of cells with DNA damaging agents (Kastan et al., 1991).

The ability of p53 to cause Gi an'est is mediated by its ability to reduce the activity of 

the cyclin-dependent kinases that promote gene expression. p53 induction of the 

cyclin dependent kinase inhibitor in response to DNA damage in human

fibroblasts is the major event that mediates Gi aiTest. (Dulic et al., 1994). 

universal inhibition of the cyclin dependent kinases is mediated by its interaction with 

the cyclin fold and inhibition of CAK (CDK activating kinase) phosphorylation. 

Inactivation of cyclin/cdk’s results in the hypophosphorylation of pRb which in turn 

represses the key cell cycle regulatory transcription factor E2F (Figure 1.2c). 

Interestingly however p53 transcriptionally inactive mutants are still able to induce a 

Gi arrest and deficient mice develop normally (Deng et a l, 1995).

Additionally, mouse embryonic fibroblasts (MEF’s) that are rb'’' can still undergo a 

radiation stimulated p53 mediated Gi an'est supporting a role of p53 not only in pRb 

regulation but also in the regulation of the other pocket protein family members 

namely, pl07 and pl30 (Slebos et al., 1994). The ability of p53 to mediate a Gi arrest 

is, however, pivotal to the stability and regulation of the genome.
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When mitotic spindle inhibitors, such as nocodazole, are added to cells in the 

presence of p53 cells arrest in G2 /M (Vikhanskaya et al., 1994; Cross et al., 1995). 

The ability of p53 to G2/M anest cells is believed to be a consequence of p53’s role 

as a centrosome number and spindle checkpoint controlling protein (Fukasawa et a l,

1996). In support of p53’s role as a spindle formation regulator is the observation that 

p53'^' cells and embryos from p53 knockout mice display a high degree of 

aneuploidy, tetraploidy and octaploidy (Harvey et a l, 1993; Cross et a l, 1995). 

Indeed, p53 directly associates with centrosomes (Brown et a l, 1994).

In addition to its role in cell cycle arrest p53 has been linked to a Gasl associated Go 

arrest. Gasl is a membrane protein that is expressed during G q  and functions in 

maintenance of the G q  phenotype. p53’s role in signalling, in a transcriptionally 

independent manner, may be the mechanism that p53 utilises to mediate a Gasl 

associated G q  aiTest (Del-Sal et a l, 1995; Ruaro et a l, 1997).

The flattened senescence like phenotype observed in some p53-induced cells 

indicates that the p53 response is cell type specific. The levels of p53 and 

increase as cells age and senesce, and interestingly p53'^' cells escape a senescence 

check point and go on to form aneuploid immortalised cells (Bond et a l, 1995). The 

transient Gi arrest or permanent senescence like arrest associated with p53 activation 

outlines two of the mechanisms that the cell has evolved to prevents its proliferation 

with an unstable genome (Gottlieb and Oren, 1996).
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In addition to repression of the cell cycle machinery, another way that p53 may 

prevent cell cycle progression is through the inhibition of DNA replication. p53 

interacts with the replication associated protein, RP-A, and stimulates gadd45 

transcription. GADD45 can bind and inhibit PCNA’s (proliferating cell nuclear 

antigen) role in replication. The p53 transcriptional target gene can also

inhibit SV40 DNA replication potentially as a consequence of its ability to bind 

PCNA and block its role as a DNA processcivity factor in replication (Flores-Rozas 

et a i, 1994; Waga et a l, 1994). The importance of in DNA damage-

inducible Gi arrest has been confiimed by the deficiency of p2V'' MEF’s to undergo 

a Gi aiTest in response to DNA damage (Deng et al., 1995). These observations 

clearly show that the molecular mechanism of p53 mediated cell cycle anest may be 

either direct through the action of inhibitors such as or indirect through

proteins such as PCNA.

1-1.5. Induction of apoptosis bv p53.

The introduction of p53 into cells can also induce a programmed cell death or 

apoptotic phenotype (Yonish-Rouach et al., 1991). p53’s role in apoptosis was 

confirmed by the finding that p53'^' mouse thymocytes and intestinal stem cells, 

unlike wild-type cells, are unable to undergo radiation induced apoptosis (Clai'ke et 

al., 1993; Lowe et al., 1993; Menitt et al., 1994). p53’s role as a cell death inducer is 

however stimuli specific as p53'^~ thymocytes undergo a normal apoptotic response 

following their treatment with glucocorticiods or T cell receptor stimulants (Clarke et 

a l, 1993; Lowe et a l, 1993).
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Consistent with the role of p53 in apoptosis, the introduction of p53 into quiescent 

cells produces an apoptotic response (Lowe and Ruley, 1993; Howes et ah, 1994). 

Adenoviral E l A and the Papilloma virus E7 proteins both induce p53-dependent 

apoptotic pathways (Vaux et al., 1994). Both E lA  and E7 stabilise p53 but 

conversely in the normal viral life cycle the anti-proliferative viral ElB and E6 

proteins are expressed simultaneously with E lA  and E7. The co-expression of ElB 

and E6 results in the prevention of apoptosis while simultaneously promoting 

proliferation (Reo et al., 1992).

The cellular oncogenes E2F-1 and c-Myc are two other proteins that trigger p53- 

dependent apoptosis (Hermeking and Eick, 1994; Wagner et al., 1994; Wu and 

Levine, 1994). The over-expression of c-Myc in p53''' fibroblasts induces cell cycle 

progression while over-expression in a p53 positive background stimulates apoptosis 

(Hermeking and Eick, 1994). Similarly the over-expression of E2F-1 can induce a 

p53 apoptotic response (Qin et a l, 1994).

Given that p53-dependent apoptosis can occur in the presence of the RNA and 

protein synthesis inhibitors, actinomycin D and cycloheximide, it is possible that 

apoptosis is independent of p53 mediated transcription (Gaelics et al., 1994). In 

addition, p53 mutants, devoid of a transcriptional activation domain when introduced 

into cells, although more slowly than wild-type, still induce apoptosis (Haupt et al., 

1995).

Interestingly, pRb overcomes the anti-apoptotic function of MDM2 but does not 

prevent MDM2 from inhibiting p53-mediated transcription (Hsieh et al., 1999).
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Given that pRb forms a tiimeric complex with p53 and MDM2 it is therefore 

plausible to assume that p53 transcriptional activation is dispensable for apoptosis 

(Hsieh et a l, 1999). The ability of p53 and pRb to cross-talk in the regulation of 

apoptosis points to a cellular mechanism by which apoptosis is tightly regulated by 

the two tumour suppressors, p53 and pRb.

However certain cell systems appear to require an intact p53 transcriptional activation 

capacity in order to induce apoptosis (Sabbatini et al., 1995b). Consistent with the 

rran^activation domain of p53 being necessary for the effective induction of 

apoptosis is the ability of p53 to transcriptionally activate bax expression (Miyashita 

and Reed, 1995). Bax protein expression accelerates apoptosis by overcoming the 

anti-apoptotic effects of Bcl-2. Interestingly and consistent with p53’s role as a 

transcriptional repressor, p53 overexpressing cells display a lower level of the anti- 

apoptotic factor Bcl-2 (Miyashita et al., 1994a; Miyashita et al., 1994b).

Interestingly although bax is a p53 responsive gene that stimulates apoptosis a 

number of studies demonstrated that bax expression was dispensable for p53 

mediated apoptosis (Knudson et al., 1995). Another protein potentially involved in 

p53 mediated apoptosis is the tumour necrosis factor receptor superfamily member 

Fas/APOl. The binding of the Fas/APOl receptor ligand FasL stimulates F ADD 

binding (Fas-associated death domain) and the autocatalysis and activation of caspase 

8, which results in apoptosis. Even through Fas/APOl is transcriptionally and non- 

transcriptionally stimulated by p53 it is not essential for p53-dependent apoptosis 

(Fuchs et al., 1997; Bennett et al., 1998).
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Consequently additional genes that participate in the DNA damage induced p53 

apoptotic response have been identified. The gene encoding, the cathepsin-D aspartyl 

protease that contributes to cytokine mediated apoptosis, KILLER/DR5 a pro- 

apoptotic inducing member of the tumour necrosis related factor receptor family 

(TRAIL), PA26 a novel member of the G ADD family, Wipl a type 2C phosphatase, 

A28-RGS14 a GTPase activating protein, PAG608 a nuclear zinc finger protein and a 

human homologue of the Drosophila sina gene have all been implicated in the p53 

apoptotic pathway (Nemani et aL, 1996; Buckbinder et a l, 1997; Fiscella et a l, 

1997; Israeli et a l, 1997; Wu et a l, 1997; Wu et a l, 1998; Velasco-Miguel et a l, 

1999).

The pro-apoptotic caspase cascade activating TRAIL receptors (TNF-related 

apoptosis inducing ligand) KILLER/DR4 and /DR5 function is counteracted by the 

anti-apoptotic or decoy receptors TRED (truncated intracellular domain) and 

TRUNDD (truncated death domain). Interestingly p53 also induces the expression of 

TRID and TRUND which provides a mechanism by which p53 modulates its own 

apoptotic response (Bums and El-Deiry, 1999).

Recently the serial analysis of gene expression identified a number of p53 induced 

genes (PIG’s) involved in the oxidative stress response of p53 (Polyak et a l, 1996). 

The PIG3 gene identified by Polyak et a l  (1996) encodes an apoptosis inducing 

protein based on its homology with a plant apoptotic promoting protein NADPH 

quinone oxidoreductase.
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The ability of p53 to induce apoptosis is clearly cell type specific and depending on 

the stimuli received can be transcriptionally dependent or independent. Furthermore it 

appears that p53 not only acts as an activator but also potentially as a repressor in the 

induction of apoptosis.

1-1.6. Differentiation and development.

The ability of p53 to induce cell cycle arrest and apoptosis is well documented but 

additionally p53 may also be involved in differentiation and development. A number 

of differentiation associated markers are expressed following a rise in the level of p53 

in hematopoietic cells (Feinstein et ah, 1992; Aloni-Grinstein et ah, 1995). 

Furthermore the level of p53 mRNA is increased alongside the level of differentiation 

markers (Aloni-Grinstein et al., 1993). p53 has been linked with the differentiation of 

a number of cellular tissue, namely hematopoitic cells, skeletal muscle cells, 

epithelial cells, central nervous system cells and thyroid neoplasms. Interestingly the 

level of p53 in different cell types seems to bestow p53’s role in differentiation, with 

a decrease in p53 responsible for differentiation in some linagaes while an increase is 

responsible in others.

p53’s role in development is further emphasised by the observation that a fraction of 

female p53'^~ mice embryos, that predominantly develop normally, display neural 

tube closure defects (Donehower et al., 1992; Sah et al., 1995), Consistent with a role 

for p53 in neural development is the finding that the central nervous system 

regulatory gene, PAX5, is a regulator of p53 gene expression (Stuart et a l, 1995). In 

particular the regulation of p53 and its family members as a result of alternative
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splicing especially in the C-tenninal non-specific DNA binding domain has been 

associated with differentiation control.

1-1.7. Cell cycle arrest or apoptosis.

The regulatory event that governs the decision to undergo apoptosis or cell cycle 

aiTest in response to p53 expression is unknown. However the apoptotic and cell 

cycle aiTest functions of p53 appear to be mutually exclusive functions as p53 

mutations that retain apoptotic function but have lost growth arrest capabilities ai’e 

found in tumours. Several factors have been proposed to play a role in shifting the 

balance between growth arrest and apoptosis including; cell type, the presence of 

survival factors and the presence of oncogenes (Gottlieb and Oren, 1996; Bums and 

El-Deiry, 1999).

Following the induction of a p53 mediated Gi anest the cell is held in a position that 

allows time for potentially damaging genetic events to be repaired. If components in 

the mechanistic pathway of p53 mediated Gi arrest are deregulated or abrogated the 

cell will then undergo apoptosis. Thus p53-dependent apoptosis may be the favoured 

outcome when Gi amest is not possible or can not be maintained long enough. 

Consistent with the loss of Gi anest being a controlling mechanism in p53 mediated 

apoptosis is the observation that DA-1 inadiated cells undergo replicative DNA 

synthesis and cell cycle re-entry prior to apoptosis (Gottlieb and Oren, 1996).

The extent and severity of the cellular shock appears to be the major controlling event 

in growth anest versus apoptosis. If the cell can not repair its genetic lesions then 

apoptosis ensues to prevent tumourigenesis.
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1-1.8. Modulation of p53 function.

The high-risk Papilloma virus E6 protein inhibits p53 sequence specific transcription 

by promoting p53 degradation through the ubiquitin proteasome pathway (Wemess et 

a l, 1990; Lechner et al., 1992; Gu et al., 1994; Mansur et al., 1995; Thomas et al.,

1995). The adenovirus ElB  proteins, 55kDa and 19kDa, both effectively promote 

transformation in co-operation with E lA  by inhibiting p53 mediated apoptosis (Rao 

et al., 1992; Lowe and Ruley, 1993). The 55kDa ElB  protein acts as a non-specific 

transcriptional repressor that binds to and prevents p53 transcription (Yew et al.,

1994). Adenoviral ElB 19kDa component is believed to prevent apoptosis by 

mimicking Bcl-2 function (Sabbatini et a l, 1995a).

p53 was first identified through its ability to bind the Simian virus 40 large T antigen 

(Lane and Crawford, 1979; Linzer and Levine, 1979). SV40 large T binds to the 

central DNA binding core domain of p53 to prevent DNA binding and transcriptional 

activation (Farmer et al., 1992). As a result of SV40 binding to p53 the stability of 

p53 is increased which may contribute to the abrogation of p53’s apoptotic function.

In addition to the viral proteins discussed above a number of other viral proteins 

interact with p53. The hepatitis B virus X protein, human cytomegla vims IE84 

protein and the Epstein-Barr vims (EBV) protein BZLFl all bind p53 and inhibit its 

rmn^activation capacity (Speir et al., 1994; Wang et a l, 1994b; Zhang et a l, 1994). 

Clearly the interaction and abrogation of p53 function imposed by viral proteins is an 

important event in the viral life cycle and the maintenance of viral infection.
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The MDM2 protein that was originally identified by virtue of its amplification in a 

transformed mouse cell line also interacts with p53. (Fakharzadeh et al., 1991; 

Momand et al., 1992). MDM2 inhibits p53-mediated transcription by binding to the 

transaoiivaiion domain of p53 and promoting its ubiquitin dependent degradation 

(Oliner et al., 1993; Haupt et al., 1997; Kubbutat et al., 1997). Ubiquitin is a 76 

amino acid protein that when attached to substrate proteins at free lysine residues 

marks them for 26S proteasome degradation (Momand et al., 2000). p53 proteolysis 

mediated by MDM2 corresponds to a transfer of a ubiquitin molecule from the C~ 

terminus of MDM2 to p53. Consequently the C-terminus of MDM2 is essential in the 

mediation of p53 degradation and mutants of p53 that are unable to bind MDM2 are 

constitutively more stable (Haupt et al., 1997; Honda et al., 1997; Kubbutat et a l,

1997).

MDM2’s ability to stimulate p53 degradation stems not only from its inherent E3 

ubiquitin ligase activity but also from its ability to shuttle p53 to the cytoplasm (Roth 

et a l, 1998; Tao and Levine, 1999a). MDM2 contains both a nuclear import (NLS) 

and export signal (NES) and so is constantly shuttled between the nucleus and 

cytoplasm (Roth et a l, 1998). It is this shuttling capability of MDM2 that allows the 

effective transport of p53 to the cytoplasm and its subsequent degradation. 

Interestingly p53 itself contains a nuclear export signal that is masked after 

tetramization and activation (Stommel et a l, 1999). In addition MDM2 interacts with 

p300 and p53 simultaneously to mediate p53 degradation (Grossman et a l, 1998). 

Presumably MDM2 utilises all its inherent activities in the regulation of p53.
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Interestingly MDM2 and p53 function in an auto-regulatory feedback loop. p53 

stimulates MDM2 expression which in turn degrades and down-regulates p53, which 

then subsequently leads to a reduction in the level of MDM2. The in vivo importance 

of the MDM2/p53 regulatory loop is emphasised by the rescue of the mice embryonic 

lethality phenotype of mdm2'^' when crossed with p53'^' mice (Jones et a l, 1995; 

Montes de Oca Luna et al., 1995).

MDM2’s ability to interact with p53 is undoubtedly an important regulatory step in 

p53 control. The p53/MDM2 interaction is directly regulated by the covalent 

phosphorylation and acétylation of p53 and indirectly through the actions of proteins 

such as p 14/19^^^ (Chin et al., 1998; Prives, 1998). Interestingly, MDM2, in 

response to ionising radiation, is phosphorylated in an ATM dependent manner by 

DNA-PK (Momand et al., 2000). This implies that ionising radiation which triggers 

an ATM/DNA-PK phosphorylation cascade results in the modification of both 

MDM2 and p53, that in turn regulates MDM2’s association with p53 (Momand et al., 

2000).

The oncogenic properties of MDM2 stem not only from its ability to prevent a p53 

mediated response but also from its ability to activate the E2F directed transcription 

of S-phase promoting genes (Martin et al., 1995; Xiao et ah, 1995). Given that many 

tumours with MDM2 mutations retain wild-type p53 it is feasible to assume that 

inactivation of p53 or MDM2 is a mutually exclusive event in tumour formation.

The MDM2 family member, MDMX, although structurally almost identical to 

MDM2 can not substitute for MDM2 in early embryonic development (Shvarts et al..
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1996). MDMX can from stable heterdimers with MDM2 through its ring finger 

domain and is also able to associate with p53 (Tanimura et a l, 1999). The functional 

significance of MDMX function on p53 action are two fold, firstly p53 can be nuclear 

retained but transcriptionally inactivated when complexed with MDMX and secondly 

p53 can be stabilised and transcriptionally activated as a result of MDMX 

dimérisation with MDM2 (Jackson and Berberich, 2000). The regulation of p53’s 

level and localisation by MDMX and MDM2 indicates a mechanism for the 

regulation of p53 function in cells.

1-1.9. Modification of p53.

Two distinct serine/threonine rich domains in the N- and C-termini of p53 are 

extensively post-translationally modified by phophorylation (Figure 1.1b). The 

kinases responsible for p53 phosphorylation are the DNA dependent protein kinase A 

(DNA-PK), ATM/ATR, casein kinase I and II (CKI, CKII), protein kinase C (PKC), 

mitogen activated protein (MAP), Chkl/Cdsl and the UV induced kinases JNKl and 

raf-1. (Milne et a l, 1992; Milne et a l, 1994; Takenaka et a l,  1995; Woo et a l, 1998; 

Chebab et a l, 2000; Shiel et a l, 2000). Interestingly p53 is also a substrate for the 

cyclin dependent kinases, cyclin B/cdc2, and cyclin A/cdk2, both of which stimulate 

the sequence specific binding property of p53 (Ko and Prives, 1996). Casin kinase II 

phosphorylation of p53 also results in an increase in sequence specific binding of p53 

to DNA (Hupp and Lane, 1994).

Intriguingly, ATM kinase is induced following DNA damage and this induction runs 

alongside p53 activation and N-terminal phosphorylation (Banin et a l, 1998; Canman 

et a l, 1998). Additionally, atm^' cells show delayed phosphorylation and activation
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of p53 following y-irradiation but not UV inadiation suggesting that ATM is 

important for signalling to p53 in a DNA damage specific manner (Siliciano et al.,

1997). However, the prolonged exposure of atm^' cells to y-irradiation does 

eventually lead to the N-terminal phosphorylation of p53 suggesting that other stress 

activated kinases can substitute for ATM.

Potentially, a mechanistic function of p53’s N-terminal phosphorylation is the loss of 

its negative regulation by MDM2. Shieh et al. (1997) demonstrated that DNA 

damage-induced N-terminal phosphorylation weakens the association of MDM2 with 

p53 and consequently stimulates transcriptional activation. Additionally DNA 

damage and stalled replication activates the Chkl and Cdsl kinases which 

functionally phosphorylate the N-teiTninus of p53 to dissociate MDM2 (Chehab et 

at., 2000; Shiel et al., 2000). The actions of Chkl and Cdsl on p53 result in p53 

stabilisation and Gi arrest.

C-terminal phosphorylation of p53 actives the DNA binding capacity of p53 and is 

associated with a loss in C-terminal auto-repression. The C-terminus of p53 

negatively regulates the sequence specific binding activity of p53 by interacting with 

the central core domain (Hupp et al., 1995). In addition the C-terminus has a non

specific damaged induced DNA binding capacity that can allosterically stimulate the 

sequence specific binding of p53 to DNA (Bayle et al., 1995; Jayaraman and Prives,

1995). The C-terminus of p53 is believed to maintain p53 in a latent form but upon 

either single stranded DNA binding or phosphorylation its ability to inhibit DNA 

binding is lost, which results in sequence specific p53 transcription. Interestingly the
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C-terminus of p53 is phosphorylated in response to UV but not ionising irradiation 

(Kapoor and Lozano, 1998; Lu et a l, 1998).

Conversely, phosphatases that act on p53 have been proposed as regulators of its 

function. The C-terminal protein kinases C phosphorylation site on p53 is actually 

dephosphorylated following the treatment of cells with ionising irradiation 

(Waterman et al., 1998). Dephosphorylation of this region induces a conformational 

change that correlates with an increase in the sequence specific binding of p53 

(Prives, 1998). Indeed, the dephosphorylation of the C-terminus of p53, following an 

ATM response to ionising radiation, creates a consensus site for 14-3-3 proteins 

(Waterman et a l, 1998).

A second potent mechanism of p53 modification is acétylation. C-terminal 

acétylation of p53, by p300, induces a transcriptionally active DNA bound form of 

p53 (Gu and Roeder, 1997; Sakaguchi et a l, 1998). Presumably the post-translational 

acétylation of lysine residues in the C-terminus of p53 counteracts there highly 

positively charge and removes their negative affect on p53’s sequence specific DNA 

binding activity.

The ability of p53 to function in the DNA repair mechanism of cells is consistent 

with the nuclear localisation of p53. It is conceivable that latent cytoplasmic p53 is 

activated and transported or translocated to the nucleus where it then regulates the 

cell cycle. The ability of viral and cellular oncogenes to influence p53 localisation 

and function also occurs through the regulation of p i4/19^^^ (deStanchina et a l, 

1998; Palmero et a l, 1998). p i4/19^^^ is induced by viral oncoprotein and cellular
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oncogenes, that deregulate the cell cycle, and functions to induce p53 by interfering 

with the MDM2/p53 pathway (Chin et a l, 1998; Sharpless and DePinho, 1998). p53 

regulation by the p 14/19^^ is a highly co-ordinated process that goes even further to 

underlie the cellular importance of p53.

1-1.10. Conclusions.

The role of p53 as the “guardian of the genome” is associated with its ability to 

enforce either cell cycle checkpoint an'est or in cases where the cell is unable to 

recover apoptosis (Levine, 1997) (Figure 1.3). Given the high level of germline 

mutations in cancer cells that either directly or indirectly target p53’s role its 

importance in the maintenance and development of the healthy cell is seemingly 

unquestionable.

Even through p53 has been widely studied many of the environmental and cellular 

mechanisms that activate it remain unknown. Furthermore, the roles of 

phosphorylation, and acétylation are only now becoming understood. Recently, 

proteins which help mediate p53’s function are becoming known and it is with the 

understanding of these proteins that p53’s cellular activity will be unravelled.

Clearly the ability to fully understand p53’s activation pathway will prove of 

insurmountable benefit in the design of drugs for the treatment of cancer.
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Figure 1.1. Structural and functional interactions of p53.

a). Diagram representing the amino acid mis-sense mutational frequency of human 

p53. Indicated are the core domain hot spot mutations Argl75, Arg248 and Arg273.

b). A diagrammatic representation of human p53. Indicated are the N-terminal 

transactivation domain (Blue), the central DNA binding core domain (yellow), the 

C-terminal non-specific DNA/RNA binding domain (grey), the nuclear localisation 

signal (Green) and the oligomerisation domain (Purple). The red boxes I, II, III, IV 

and V represent the evolutionarily conserved regions. The binding regions for the 

indicated cellular and viral proteins are shown together with the phosphorylation 

sites for DNA-PK, CKI, CKII, CDK’s and PKC (Gottlieb and Oren, 1996; Levine, 

1997; Prives et a l, 1998).

c). Proteins that have a functional relationship with p53. Some of the viral and 

cellular proteins that interact with p53 and their functional outcomes are listed.
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Figure 1.2. Model of p53 transcription activation.

The activation of p53 by cellulai' stimuli or external DNA damaging events 

promotes the activation and tetramerisation of p53. The active p53 tetramer can 

either activate the expression of apoptotic promoting proteins such as Bax (a), 

stimulate the expression of that promotes cell cycle Gi arrest (c), or self

regulate its own level through the expression of MDM2 (b). The exact mechanism 

that controls the outcome of p53’s activation whether it is apoptosis or cell cycle 

anest is unknown.

The over-expression of Bax changes the composition of the Bcl-2 family 

heterodimers that in turn alters the cells pro- to anti-apoptotic signal ratio. The high 

level of Bax stimulates apoptosis (Bums and El-Deiry, 1999; Miyashita et ah, 

1994a; Miyashita and Reed, 1995).

p2 lWafi/C'pi binds and inhibits the activity of the cyclin/cdk enzyme complexes. The 

inactive cyclin/cdk complexes no longer promote the phosphorylation and release 

of pRb’s repression of E2F. Consequently the expression directed through E2F, of 

the S-phase promoting genes is suppressed and cell cycle arrest occurs at the Gi 

phase (El-Deiry et al., 1993; Gu et al., 1993).

The up regulation of MDM2, directed by p53 acting on the P2 responsive promoter, 

leads to a down regulation in the level of p53 which in turn leads to a reduction in 

the level of MDM2. MDM2 and p53 levels are therefore auto-regulatory (Barak 

and Oren, 1992; Barak et al., 1994).
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Figure 1.3. p53-dependent pathways of apoptosis and cell cycle arrest.

Summary of the molecular mechanisms that p53 uses to induce either apoptosis or 

cell cycle aiTCst. p53 is activated following the cellular response to a variety of 

stresses and it is this activation of p53 that viral proteins such as E lA  target and 

prevent. Many of the cellular events and proteins that p53 influences are indicated 

(blue) and their downstream mechanisms of action outlined.

p53’s induction of Gi anest is primarily associated with induction of 

expression that in turn impacts on the pocket protein regulatory pathway as 

indicated. In addition p53 can induce cell cycle arrest in both G2/M and Go via its as 

yet poorly understood roles in centrosome formation and Gasl expression 

respectively

The induction of apoptosis following the stimulation of p53 occurs in response to a 

variety of genetic stresses and involves the actions of a number of p53 responsive 

genes. The level and extent of gene activation required for p53 mediated induction 

of apoptosis is poorly understood, however it is clear that p53 induced apoptosis 

takes place through the sequential and cumulative effects of the genes which it 

activates.
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1-2. The p300/CBP family of 

transcriptional co-activators.

1-2.1. Introduction,

p300 and CBP belong to a family of versatile transcriptional co-activators that 

function as regulators of a number of cellular processes; including proliferation, 

differentiation and apoptosis (Giordano and Avantaggiati, 1999). p300 and CBP were 

originally identified by their ability to interact with the adenovirus E lA  and the 

transcription factor CREB proteins respectively (Whyte et al., 1989; Chrivia et al., 

1993; Eckner et a l, 1994).

It is believed that co-activators, such as p300 and CBP, facilitate transcription by 

promoting the interactions between sequence specific activators and the RNA 

polymerase II transcription machinery (Roeder, 1996). The ability of p300/CBP to 

physically interact with an assorted number of activators and the basal transcription 

machinery components, together with topological factors such as RNA helicase A 

clearly supports its role as a transcriptional co-activator (Imhof et a l, 1997; Nakajima 

et a l, 1997; Sang et a l, 1997; Kim et a l, 1998; Felzien et a l, 1999).

The over-expression of p300 or CBP in cellular systems results in the transcriptional 

activation of both viral and cellular enhances and promoters which utilise a wide 

body of transcription factors (Lundbiad et a l, 1995; Janknecht and Hunter, 1996; 

Shikama et a l, 1997; Giordano and Avantaggiati, 1999). CBP, for instance, acts as a 

transcriptional co-activator of cAMP responsive elements as a consequence of its
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ability to directly bind the transcription factor CREB. CREB is induced, by protein 

kinase A stimulated KID domain phosphorylation, to bind the cAMP response 

element (CRE) from where it recruits CBP to activate the transcription of target genes 

(Chrivia et a l, 1993).

In addition to the multi-faceted interaction capacity of p300/CBP the protein also 

possesses an intrinsic enzymatic histone acetyltransferase activity (HAT). The HAT 

activity of p300/CBP equally contributes to its ability to act as a transcriptional co

activator (Bannister and Kouzarides, 1996; Ogryzko et al., 1996a).

The cellular significance of p300/CBP is highlighted by the observation that 

p300/CBP may function as a tumour suppressor. Mutations in p300/CBP have been 

detected in a range of tumour types and genetic disorders, such as epithelial 

malignancies and Rubinstein-Taybi syndrome (Giles et al., 1998; Gayther et al., 

2000).

1-2.2. P300/CBF.

The transcriptional co-activators p300 and CBP share a high degree of homology and 

genetic evidence suggests that the two proteins perform both overlapping and unique 

functions (Arany et al., 1995) (Figure 1.4a). p300 and cbp are both highly conserved 

genes in multi-cellular organisms with orthologs in organisms as diverse as human, 

Drosophila and Caenorhabditis elegans (Akimaru et al., 1997). In particular the 

functional domains in p300 and CBP show a very high degree of sequence homology 

with each other (Figure 1.4a). The Bromodomain, the cysteine/histidine rich domains 

(CHI, CH2 and CH3) and the KIX domain are all regions of high homology.
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Interestingly the p300/CBP family of co-activators is known to contain at least two 

other members, namely p270 and p400. The functions of p270 and p400 have not yet 

been reported but p270 is a known component of the mammalian Swi/Snf complex 

(Dallas et a l, 1998; Giles et a l, 1998).

The functional domains in p300/CBP thus far identified have a number of interesting 

features. The central Bromodomain, which is highly conserved in all known 

mammalian HAT proteins, in alliance with the CH2 and CH3 domains encompasses 

the acetyltransferase activity of p300/CBP (Bannister and Kouzarides, 1996; Ogryzko 

et a l, 1996a) (Figure 1.4a). The KIX, CHI and CH3 domains in p300/CBP mediate 

its protein interactions and are the regions targeted by viral proteins (Shikama et a l,

1997). It is the modular organization of p300/CBP that imparts its ability to act as a 

transcriptional co-activator as it allows the formation of muti-meric transcription 

mediating complexes. To this end both the N- and C-termini of p300/CBP are known 

to possess transaciiwation properties (Figure 1.4a).

The overlap in function seen between p300 and CBP is highlighted by the embryonic 

phenotype of p300'^', cbp''' and p300^''\cbp'^'' knock out mice. They all show similar 

neural tube closure, growth, and embryonic lethality defects (Yao et a l, 1998). The 

close overlap seen between the phenotypes of cbp^'' mice and RTS patients whom 

lack one cbp allele also suggests that p300 and CBP carry out dose-dependent 

functions. Consistent with these observations is the fact that a population of p300^'' 

\cbp^‘' mice suffer embryonic lethality as a consequence of the reduced level of 

p300/CBP (Tanaka et a l, 1997). Given that the level of p300/CBP in cells is limited
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and that its absence is an inducer of lethality in embryonic mice, it is believed that the 

physical distribution and redistribution of p300/CBP by controlling signals is what 

permits its varied and wide ranging cellular influences (Torchia et a l, 1998; Yao et 

a l, 1998).

The ability of p300 and CBP to perform unique non-overlapping cellular functions 

has been demonstrated using ribozyme technology that specifically inactivates one 

member of the family. The ribozyme study demonstrated that p300 but not CBP was 

responsible for retinoic acid induced F9 embryonic carcinoma cell differentiation 

(Kawasaki et a l, 1998). In addition the ability of ionising radiation to induce 

apoptosis is impaired in p30O^'' cells but remains unaffected in CBP deficient cells 

(Yuan et a l, 1999). Consistent with these observations is the ability of p30O^'' mice 

but not cbp^'' mice to retain a normal hematopoeitic differentiation phenotype and the 

fact that CREB function is unaffected in p300''' mice that show impaired retinoic acid 

induced transcription (Kung et al., 1999).

Together these observations suggest that transcriptional co-activators, such as p300 

and CBP, perform synergistic functions in the regulation of cellular gene 

transcription. Interestingly and consistent with their family status it is also recognized 

that both p300 and CBP do however perform unique tasks that can not be 

compensated by the other family members.

1-2.3. Transcription and d300/CBP.

The formation of a molecular bridge by p300/CBP is highlighted by its ability to 

interact with a wide variety of transcription factors and basal transcription machinery
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components, namely TBP, TFnB, TFnE, and TFnF (Imhof et a l, 1997; Sang et al., 

1997; Felzien et al., 1999) (Figure 1.4b). p300/CBP’s ability to allow the cross-talk 

of transcription factors with the RNA polymerase II holoenzyme is undoubtedly a 

cellular mechanism by which it regulates transcription (Roeder, 1996).

p300/CBP’s role in transcription is in part connected with its ability to act as a rate- 

limiting factor. The rate-limiting level of p300/CBP is highlighted by hormone 

dependent transcriptional activation that utilises p300/CBP to indirectly inhibit 

mitogen activated transcription factors such as AP-1. p300/CBP is also utilised by 

p53 in the repression of TRE regulated promoters (Kamei et al., 1996; Avantaggiati 

et al., 1997; Shikama et al., 1997). Interestingly p300/CBP association with the 

mitogen regulated S6 kinase pp90*̂ ®̂  has been linked with the repression of CREB 

dependent transcription during Ras signaling (Nakajima et a l, 1996). The 

physiological induction of differentiation and block of proliferation by hormone 

treatment intriguingly points to competition for p300/CBP as the determining factor 

in differentiation versus proliferation. Furthermore the transcription factor E2F-1 

blocks p53 transaciivaûon in a p300/CBP dependent manner (Lee et ah, 1998).

p300/CBP’s role as co-activator that responds to a wide range of signal transduction 

pathways to specifically promote a cellular outcome is well documented. It would 

appear that a major regulatory event involved in p300/CBP mode of action is 

promoter specific targeting and it is this promoter specific targeting that viral 

oncoproteins, such as E lA  and SV40 large T, employ in order to induce proliferation 

and not differentiation.
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The ability of p300/CBP to form a large nuclear co-activator protein complex is also 

associated with its ability to act as a transcriptional co-activator (Korzus et al., 1998; 

Westin et al., 1998; Xu et al., 1999). Signal transduction pathways that induce a 

number of different cellular outcomes potentially regulate p300/CBP’s ability to 

recruit and be recruited to specific promoters (Carey 1998; Kim et al., 1998; Korzus 

et al., 1998; Xu et al., 1999). The ability of p300/CBP to recruit factors such as 

p50/p65, NFkB, P/CAF and HMGI (high mobility group proteins) to the human 

interferon enhancer (INFp) provides credence to the role of p300/CBP as a complex 

protein recruiter (Kim et al., 1998; Munshi et al., 1998).

The recruitment of p300/CBP into a transcriptional enhancer element complex is 

further complicated by its intrinsic HAT activity. p300/CBP is also found complexed 

with the cellular HAT’s, P/CAF (p300/CBP associated factor), SRC-1 (steroid 

receptor co-activator 1) and PCIP (p300 cellular interacting protein) (Yang et al., 

1996; Chen et ah, 1997; Spencer et al., 1997). It is attractive to speculate that the 

different HAT’s present in the DNA bound co-activator complex confer target 

specificity and mediate the cellular outcome. In support of co-activator HAT specific 

roles the INFp enhancer is known to require p300/CBP mediated acétylation of 

HMG-1 for transcriptional termination (Munshi et al., 1998). It is therefore plausible 

to associate HAT activities with functional specificity and to assume that co

ordination of the antagonistic or synergistic effects of acétylation are a mechanism by 

which transcription is regulated.

DNA is highly wound and compressed into nucleosomes that consist of octomers of 

histone H2A, H2B, H3 and H4. The acétylation of histones, on lysine tails.
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neutralizes the attractive charges in the nucleosome and is associated with a hyper

relaxed chromosome structure and active transcription (Brownell and Allis, 1996; 

Grunstein, 1997; Hassig and Schrieber, 1997; Wade et al., 1997) (Figure 1.5). The 

co-activation of transcription has been linked to p300/CBP’s HAT activity, that 

preferentially acetylates histone H3 and H4, although the acétylation of H2A and 

H2B still occurs in vitro (Bannister and Kouzarides, 1996; Ogryzko et al., 1996a). 

Interestingly the HAT activity of p300/CBP shows promoter specificity, with the 

adenovirus major late (AdML) and E4; but not ElB or SV40 promoters, requiring the 

HAT activity of p300/CBP for co-activation (Martinez-Balbas et at., 1998). The 

ability of p300/CBP to acetylate nuclosomes and histones in vivo still remain unclear.

Both p300/CBP and its associated factor P/CAF utilise their HAT activity in the 

acétylation of non-histone targets such as p53, E2F, c-Myb, MyoD, GATA-1, EKLF 

and HNF-4 (Gu and Roeder, 1997; Boyes et al., 1998; Sakaguchi et al., 1998; Zhang 

and Bieker, 1998; Liu et al., 1999; Sartorelli et al., 1999; Martinez-Baibas et al., 

2000; Marzio et al., 2000; Soutogloou et al., 2000; Tomita et al., 2000). The 

acétylation of p53 and E2F-1 neutralizes positive charges on the e-amino group of 

lysine residues. This promotes a charge induced conformational change that leads to 

an increase in sequence specific DNA binding and potentially transcriptional 

activation (Gu and Roeder, 1997; Gu et al., 1997; Liu et al., 1999; Martinez-B albas et 

a l, 2000). Further to these observations, Lambert et al. (1998) demonstrated that 

ionising radiation induces the phosphorylation of p53, that in turn increases its 

affinity and consequently acétylation by p300/CBP.
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Another functional significance of p300/CBP HAT activity is in the acétylation of the 

H3V-Tat protein. HIV-Tat protein acétylation induces transcription of the HIV-1 LTR 

by enhancing its binding to the Tat associated kinase CDK9/P-TEFb (Keiman et aL, 

1999). Interestingly one report of p300/CBP protein acétylation suggests a role for 

HAT activity in transcriptional down-regulation. The acétylation of the dTCF (T-cell 

factor) transcription factor by p300/CBP inhibits its association with the beta 

catenin/Armadillo co-activator and therefore transcription activation of the 

WntAVingless genes (Waltzer and Bienz, 1998).

Interestingly p300/CBP undergoes auto-acetylation and is able to acetylate the basal 

transcription machinery components TFnEp and TFnF (Imhof et aL, 1997). The 

functional significance of p300/CBP HAT activity in these situations however is 

unclear'.

Clearly the ability of p300/CBP to acetylate core histones and members of the 

transcriptional apparatus, as well as transcription factors is closely associated with its 

role as a transcriptional co-activator. Further studies that elucidate the pattern of 

protein acétylation in gene regulation will aid in the true identification of the 

importance of post-translation acétylation in gene transcription.

1-2.4. Differentiation, proliferation and apoptosis bv p300/CBP.

The adenovirus E lA  protein is a multi-functional pleiotropic protein that mediates its 

biological effects through its ability to modulate the activity, either directly or 

indirectly, of target genes. The ability of E lA  to block differentiation, in a wide 

variety of lineage’s such as myogenesis, neurogenesis and karatinocyte differentiation
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correlates with its ability to inactivate enhancer activity in a p300/CBP dependent 

manner (Stein et aL, 1990; Puri et aL, 1997a; Puri et aL, 1997b). Consistently, E lA ’s 

increase of YYl transcriptional activity involves the loss of p300/CBP mediated 

transcriptional repression (Lee et aL, 1995). E lA ’s ability, through its N-teiminus 

and CHI region, to bind p300/CBP and promote S-phase entry and cell cycle 

progression clearly supports p300/CBP’s role as a mediator of the cell cycle (Whyte 

et aL, 1989; Stein et aL, 1990; Yaciuk and Moran, 1991; Arany et aL, 1995).

The requirement of p300 and CBP for both cellular proliferation and differentiation is 

highlighted by the inability of mutant ElA, that is unable to bind p300, to induce 

transformation and the embryonic lethality of p300~'' knock out mice due to defective 

cardiac myocyte differentiation (Wang et aL, 1995a; Yao et aL, 1998). In addition 

knock out mice studies have also defined a role for p300/CBP in the differentiation of 

haematopoietic tissues (Eckner et aL, 1996b).

Both p300/CBP and the associated protein, P/CAF, were shown by their ability to 

induce MyoD dependent transcription, to promote cell cycle withdrawal in muscle 

and B cells. The regulation of the myogenic factors such as myogenin and MEF2 

(Mycoyte enhancer factor 2) in differentiation is also controlled by p300/CBP (Yuan 

et aL, 1996; Puri et aL, 1997a; Puri et aL, 1997b; Sartorelli et aL, 1999). Interestingly 

the HAT domain of p300 is not essential for MyoD dependent transcription although 

P/CAF’s HAT activity is (Sartorelli et aL, 1999).

Consistent with the role of p300/CBP in differentiation is the observation that 

inactivation of Caenorhabditis elegans cbp-1 gene, that is homologous to p300/CBP,
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leads to severe neuronal cell differentiation defects (Shi and Mello, 1998). The 

differentiation defects seen in cbp-1 knockouts can be overcome by the use of 

deacetylase inhibitors, which directly links HAT activity and suppression of 

deacetylases with p300/CBP differentiation regulation (Shi and Mello, 1998). The 

ability of p300/CBP to participate in cellular differentiation strongly supports its 

ability to act as a tumour suppressor.

A role for p300/CBP in cellular proliferation was initially suspected given that p300''' 

embryos and p300''' MEF’s proliferate slower than wild-type and are significantly 

smaller with a phenotype reminiscent of senescent cells (Yao et al., 1998). More 

detailed studies demonstrated that p300/CBP directly mediates E2F-1 transcriptional 

activation (Trouche et a l, 1996). In addition the ability of E lA  to bind p300 under 

conditions that promote DNA synthesis illustrates an interesting model whereby ElA  

prevents p300 induced cellular differentiation while simultaneously using p300 to 

stimulate cellular proliferation (Stein et a l, 1990). Given that p300/CBP also 

associates with a number of cellulai* HAT proteins, namely P/CAF, SRC-1 and PCIP 

it is plausible to assume that transcription factors and viral oncoproteins utilise a 

multiple HAT containing complex in order to stimulate transcription (Yang et a l, 

1996; Chen et a l, 1997; Brown et a l, 2000).

The analysis of p300 and CBP deficient cells indicated that the ionising radiation 

induced cellular shock response is impaired in p300 knock out cells but not CBP 

deficient cells (Yuan et ah, 1999). The inability of retinoic acid induced apoptosis to 

occur in p300/CBP deficient cells together with the ability of E lA  to sequester 

p300/CBP and block p53-dependent apoptosis provides an interesting link of
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p300/CBP with apoptosis (Kawasaki et aL, 1998). T-cell antigen receptor (TCR) 

induced thymocyte apoptosis triggered by calcium dependent signaling and 

MEF2/NFAT (nuclear factor of activated T cells) mediated transcription also utilises 

p300 (Youn et aL, 2000). Interestingly studies on the cell cycle effects of p300 and 

p53 showed that p300/CBP induced a p53 mediated Gi arrest together with E2F-1 

dependent apoptosis (Lee et aL, 1998). Together these results suggest a role for p300 

in p53 and E2F-1 dependent mechanisms of cell cycle arrest and apoptosis, possibly 

as a cellular shock responder.

p300/CBP is also involved in the cellular mechanisms that control DNA damage 

repair as the expression of the human proliferating cell nuclear antigen (PCNA) 

requires p300/CBP. PCNA in response to serum and mitogenic growth factors is 

required for 5 polymerase activity and DNA replication and repair (Lee and 

Mathews, 1997). Furthermore p300/CBP as a consequence of its interaction with p53 

can induces the expression of the p53 responsive genes, mdm2, Wafl/Cipl and bax 

(Avantaggiati et aL, 1997; Gu et aL, 1997; Lill et aL, 1997a). Thomas and White 

(1998) demonstrated that p53 mediated transcription of mdm2 is dependent on 

p300/CBP and proposed a model in which p300 regulation of MDM2 levels, through 

p53, determines whether the physiological response of p53 is growth anest or 

apoptosis.

As MDM2 is known to regulate p53’s stability it was interesting to recognize that 

p300 can mediate the formation of a p53/MDM2/p300 ternary complex in which p53 

is targeted for degradation (Grossman et aL, 1998). The inability of MDM2 mutants, 

that retain p53 binding but have lost p300 binding capabilities, to degrade p53 clearly
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points to p300 as a mediator of p53/MDM2 dependent degradation (Grossman et al., 

1998). Taken together it appears that p300/CBP plays a dual role, in one hand as a 

p53 transcriptional co-activator and in the other as a regulator of p53 stability.

Clearly p300/CBP and their family members appear to be key regulators of cell 

development, differentiation and proliferation. It would seem plausible to assume the 

exact cellulai’ consequence of a p300/CBP response, whether it is proliferation, 

apoptosis or differentiation, will be a tightly controlled process depending on both the 

level of p300/CBP and also the stimuli that p300/CBP is exposed to.

1-2.5. Functional regulation of p300/CBP.

p300/CBP are phosphorylated in a cell cycle regulated fashion, with 

hypei*phosphoryled forms being observed during mitosis (Yaciuk and Moran, 1991). 

The treatment with retinoic acid or the introduction of E lA  into F9 cells, both of 

which induce differentiation, also induces p300 phosphorylation (Kitabayashi et al., 

1995). Interestingly although E lA  stimulates p300 hyperphosphorylation, probably 

through cyclin/CDK recruitment, the SV40 large T antigen that binds to the same 

region of p300 as E lA  is associated with and induces p300 hypophosphorylation 

(Banerjee et al., 1994; Eckner et al., 1996a). The cyclin dependent kinases cdk2 and 

cdc2 are known to phosphorylate p300 in vivo (Banerjee et a l, 1994). The 

bromodomain and associated HAT activity of p300/CBP is potentially a target of 

phosphorylation, as the similar bromodomain in GCN5 is known to undergo 

repression as a result of DNA-PK phosphorylation (Bariev et al., 1998).
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Perkins et al. (1997) determined that p300 was negatively regulated by cyclin E/cdk2 

and that expression, induced by p300, inhibited this regulation pathway.

The inhibition of cyclinE/cdk2 by results in p300 increasing NFkB

mediated transcriptional activation. The ability of to act in a positive

feedback loop on p300/CBP cyclin E/cdk2 action proposes the existence of a 

potential Gi/S phase checkpoint involving p300/CBP (Missero et al., 1995; Perkins et 

al., 1997).

A role for p300/CBP in signal transduction was demonstrated when CBP was defined 

as a target for the MAPK (mitogen activated protein kinases) and PKA (protein 

kinase A) phosphorylation cascades (Janknecht and Hunter, 1996). Both MAPK and 

PKA were shown to upregulate CBP transcriptional co-activation potential. 

Undoubtedly p300 and CBP are both targets for a large and varied number of signal 

transduction pathways.

The ability of p300/CBP to acetylate histone tails in a cell cycle regulated fashion, 

with a peak in HAT activity at the Gi/S transition, points to a functionally important 

mechanism of p300/CBP (Ait-Si-Ali et al., 1998). Indeed p300/CBP’s HAT activity 

is potentially regulated and stimulated upon phosphorylation by the cyclinE/cdk2 

complex. Interestingly ElA  is believed to affect p300/CBP acétylation function in a 

dose-dependent manner, with low levels enhancing and high level suppressing the 

acétylation activity of p300/CBP (Ait-Si-Ali et al., 1998; Chakravarti et a l, 1999; 

Hamamori et al., 1999).
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1-2.6. d300/CBP in human diseases.

A number of clinical observations have defined a role for p300/CBP as a tumour 

suppressor given that mutations in p300/CBP are closely linked to tumour formation 

and progression. The congenital autosomal dominant Rubinstein-Taybi syndrome that 

is characterised by mental retardation, skeletal abnormalities and an increased 

incidence of neoplasia is associated with a inactivating germline mutation of one cbp 

allele (Petrij et ah, 1995). The predisposition of RTS patients to cancer, given that 

only one cbp allele is deleted, point to a gene-dosage role for CBP in normal 

development and suggests that p300 can not rescue CBP insufficiency. Furthermore, 

cbp'^'' mice aie phenotypic ally similar to RTS patients as they show an abnormal 

skeletal development pattern with the developmental consequences being dependent 

on the genetic background (Tanaka et ah, 1997). The role of p300/CBP is further 

underscored by the link with RTS of two other congenital malformation syndromes, 

namely Greig cephalosyndactyly syndrome and Saethre-Chotzen syndrome. Both 

these congenital malformations, although not directly as a result of genetic p300/CBP 

alterations, are associated with p300/CBP development pathway disturbances (Giles 

et ah, 1998).

Interestingly the p300 gene is subjected to bi-allelic inactivating somatic mutations in 

a number of gastric and colon cancers (Muraoka et ah, 1996). In 80% of examined 

glioblastomas a loss of heterozygosity (LOH) markers at the p300 gene locus on 

chromosome 22ql3 have been observed. Similarly a loss of heterozygosity around 

the cbp gene locus is associated with hepatocellular carcinomas (Sakai et ah, 1992). 

The observation that cbp'^'' mice are prone to haematologic malignancies as a result of 

defects in haematopoietic differentiation suggests that CBP is a tumour suppressor.
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In a study of human cancer cell lines by Gayther et aL (2000) a number of p300 

truncation mutations were observed in epithelial cancers, together with p300 somatic 

in-frame insertions in primary breast cancer and mis-sence alterations in colorectal 

cancers. Taken together these observations clearly demonstrate that p300/CBP 

behaves as classic tumour suppressor protein and is consistent with the ability of viral 

proteins such as E lA  and SV40 large T to target and antagonize p300/CBP function.

The p300/CBP gene locus, in addition to germline mutations is subject to somatic 

translocations that are associated with various types of malignancies. The acute 

myeloid leukaemia associated translocation t(8;16)(pll;pl3) results in a disruption of 

the cbp and moz genes and in at least one case a MOZ-CBP fusion protein (Bonow et 

aL, 1996; Giles et aL, 1998). MOZ is a protein of unknown function although based 

on its homology with the mammalian Tip60 protein (human immunodeficiency virus 

tat-interacting protein) and the yeast silencing protein SAS2 (something about 

silencing) is has been assigned as a putative acetyltransferase with potentially a gene 

silencing role (Reifsnyder et aL, 1996). The 5’-MOZ-CBP-3’ fusion protein retains 

the HAT domain from both proteins but is no longer able to act as a nuclear receptor 

co-activator, this alters CBP mediated transcriptional control and is at least in part 

responsible for transformation.

Another translocation event associated with CBP that arises, as a consequence of 

anti-cancer chemotherapeutic treatments, such as the topoisomerase II inhibitors 

etoposides, is known to occur in chronic myeloid leukaemia and myelodysplastic 

syndrome. The translocation results in the fusion of CBP to the mixed lineage
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leukaemia (m/Z) gene product. MLL is believed to function as a chromatin modulator 

and Swi/Snf complex component based on its SET domain homology and likeness to 

the Drosophila trithorax group genes (Sobulo et aL, 1997; Taki et aL, 1997). A p300- 

MLL in frame fusion protein has also been identified in therapy related acute myeloid 

leukaemia (Ida et aL, 1997).

The ability of CBP-MOZ, p300-MLL and CBP-MLL to contribute to hematological 

malignancy through their gain of function and presumably inactivation of un- 

reanange CBP or p300 provides a mechanism whereby an uncontrolled and 

deregulated cell cycle results. Given that MLL and MOZ as well as p300/CBP are 

associated with chromatin remodeling it is plausible to assume that the translocation 

events produce an altered acétylation pattern that presumably contributes to their 

oncogenic activity (Giles et aL, 1998).

Additional to chromosomal aben'ations p300/CBP are also involved with the products 

of some leukaemogenic chromosomal translocation events. p300/CBP is known to 

function as a transcriptional co-activator in the induction of differentiation by the 

leukaemia-associated transcription factors AML-1 and TAL-1 (Kitabayashi et aL, 

1998; Huang et aL, 1999).

The underlying genetic instability of sequences within the p300/cbp alleles together 

with the susceptibility of the genes to translocations, inversions and deletion as well 

as the ability of the proteins to interact with the p53 tumour suppressor and E2F 

oncogene clearly supports the importance of p300/CBP in human malignancies.
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1-2.7. Conclusions.

The cellular, transcriptional co-activator, role of p300/CBP is clearly not as simple as 

first believed given that both proteins display contradictory transcriptional properties. 

The paradoxical functions of p300/CBP on proliferation and differentiation 

highlight’s the potential for cross-talk between the separate cellular systems.

However, the absolute requirement for p300/CBP in the actions of many transcription 

factors underlies their importance in the control of cell growth and differentiation. 

Given the function of p300 and CBP as interconnecting proteins that regulate 

transcription by integrating signaling pathways their importance in cellular control is 

indisputable. Elucidating p300/CBP’s role in the regulation of a cells fate will not 

only benefit our understanding of the cell cycle but will help in the design of new cell 

cycle related therapies.
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Figure 1.4. Schematic representation of p300 and CBP.

a). The alignment of human CBP and p300. The CHI, CH2 and CH3 regions are 

indicated (Red) together with other areas of high homology. Percentages refer to 

amino acid identity between the two proteins. The region encompassing the 

acetyltransferase activity of p300 and CBP is indicated (Yellow) together with the N- 

and C-terminal rra/i^activation domains (Green) (Giles et aL, 1998). The N-terminal 

nuclear hormone receptor binding domain is indicated (Blue) together with the 

central Bromodomain (Grey).

b). Functional interaction domains in p300/CBP. Indicated are the binding domains 

for the previously identified factors that interact with p300/CBP. The N-terminal 

nuclear hoiTnone receptor-binding region is indicated (Blue) together with the 

cysteine/histidine rich regions, CHI, CH2, and CH3 (Red). Also indicated are the 

central Bromodomain (Grey) and the N-terminal CREB binding KIX domain 

(Janknecht and Hunter, 1996; Shikama et aL, 1997).
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Figure 1.5. Co-activator function.

a). A diagrammatic representation of transcriptional repression. As a result of 

particulai' cellulai’ stimuli or a lack of stimuli a co-repressor complex is targeted to 

genetic promoter elements where it actively represses transcription. Co-repressor 

complexes, which contain histone deacetylases (HDAC’s), promote the condensation 

of DNA and histones into nucleosomes. The nucleosome contains a highly 

condensed inaccessible DNA topology and as a result the level of transcription in 

such a situation is basal.

b). Transcription factors (TF’s) actively recruit the co-activator complex that 

contains p300/CBP, to the gene locus. The co-activator complex acetylates the 

histone tails (Red) that results in a loss of charge and a breakdown of the nucleosome 

topology. The altered chromatin integrity now allows the entry of RNA polymerase 

n  transcription machinery components such as TBP and TFyB, which results in the 

active induced transcription of target genes. The ability of the co-activator complex 

to acetylate the basal transcription component may in addition help activated 

transcription. Interestingly the TAFn250 component of the transcription machinery 

has intrinsic HAT activity so the activation of gene transcription may proceed 

exponentially once begun (Mizzen et ah, 1996).
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1-3. The INK4a/ARF locus and its two 

gene products.

1-3.1. Introduction.

Growth control in mammalian cells is facilitated by the retinoblastoma (pRb) protein 

regulating exit from the Gi phase and the p53 protein that triggers growth arrest and 

apoptotic events in response to cellular stress. Consequently the loss of cell cycle 

control by the inactivation of the pRb and p53 pathways appears to be a vital step in 

the rite of passage for all cancer cells. The lNK4a/ARF locus and its gene products 

stand at the nexus of both these cell cycle growth controlling pathways (Chin et ah, 

1998).

The INK4a/ARF locus encodes p i a n  inhibitor of cyclin D-dependent kinases 

and p 14/19'^^^ which blocks MDM2 inhibition of p53 activity. It is therefore not 

suiprising that the INK4a/ARF locus is one of the most frequently mutated genes in 

cancer irrespective of the tumour type (Sharpless and DePinho, 1998).

1-3.2. T\ve^INK4a/ARF locus.

The INK4a/ARF locus, which stretches over ~20Kb, is located at position p21 on the 

short arm of chromosome 9 in humans, and the cognate loci on chromosome 4 in 

mouse and 5 in rat (Sharpless and DePinho, 1998; Stott et ah, 1998). The 9p21 

chromosomal hot spot region is frequently subject to deletions and point mutations in 

a broad spectrum of cancer types ranging from familial melanomas to non-small lung 

carcinomas (Caldas et ah, 1994; Kamb, 1995). ink4a/arf^' locus knock out mice
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exhibit a cancer prone phenotype and fibroblasts from these mice have an enhanced 

potential for spontaneous immortalization and are efficiently transformed by 

activated Ras (Serrano et a l, 1996). Together these observations point clearly to the 

INK4a/ARF locus as a bona fide tumour suppressor (Chin et a l, 1998; Kamijo et a l, 

1999b).

Two transcripts, which are driven by distinct promoters that encode two functionally 

separate potential tumour suppressor proteins, are expressed from the INK4a/ARF 

locus, the p l 6 ^̂ "̂̂ “ CDK inhibitor and the p i4/19^^^ protein (Quelle et a l, 1995). 

Within the INK4a/ARF locus there are four exons, E l (3, E2 and E3 encode 

pl4/pl9'^^^ and E l a , E2 and E3 encode p i Splicing of exon 1(3 to exon 2

allows translation to continue in the - 1  reading frame relative to p l 6 ^̂ "̂ % giving rise 

to a 132 amino acid protein termed pl4**^ in humans or a 169 amino acid pl9*^^ 

protein in mouse (Figure 1.6). The mouse pl9*^^ and human pl4*^^ proteins 

although functionally almost identical show only a 50% identity over the region of 

overlap (Stott et a l, 1998).

The ability of the pl4/19"^^^ and p l 6 ^̂ "̂̂ “ proteins to be encoded by distinct reading 

frames within a common coding sequence, such that the two products share no amino 

acid identity, although common in viruses and bacteria is an exceedingly rare event in 

eukaryotes where an evolutionarily advantage as yet remains unclear (Quelle et a l, 

1995). The observation that the INK4a/ARF locus is the genetic target for specific 

mutational events which affect only one member of the gene locus gives credence to 

the finding that each protein monitors a separate essential cellular function (Quelle et 

a l, 1995; Kamijo et a l, 1997; Gardie et a l, 1998).
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1-3.3. lNK4a/ARF Expression.

Neither nor are expressed during mouse embryonic development, but

upon culture mouse fibroblasts begin to express both p i a n d  p i9^^^. The 

distinct spacial expression pattern of p l 6 ^̂ "̂  ̂ and p i4/19^^^ observed during both 

mouse and human development and ageing suggests that the transcriptional 

regulation of the two products differ (Quelle et ah, 1995; Zindy et ah, 1997). In fact 

differential controlled expression of p l 6 ^̂ "̂̂  ̂and p i4/19^^^ is born out by the ability 

of cells to control promoter specific transcription of E l a  and E ip  independently of 

each other.

The high levels of CpG islands present within both the p l 6 ^̂ "̂  ̂ and p i4/19^^^ 

promoters are a characteristic of many cellular house keeping genes (Robertson and 

Jones, 1998). It is these CpG islands, as a consequence of hyper-methylation, that are 

often associated with tumour-derived promoter silencing. However the presence of 

Spl sites, within the INK4a and ARF  promoters, may maintain the expression of both 

proteins under physiological cellular conditions by a mechanism that retains the 

promoters in an unmethylated form (Robertson and Jones, 1998).

In p53'^' cell lines or in cells in which p53 has been functionally compromised by the 

over expression of MDM2 the level of p l4 ^ ^  is significantly elevated (Quelle et ah, 

1995). Studies performed on p53 over expression in a number of cell lines showed 

that p53 itself is able to down regulate transcription from both the pl4*^^ and 

pĵ îNK4 a pj-omoters (Robertson and Jones, 1998; Stott et al., 1998). Consistent with 

these observations is the up regulation of p i4^^^expression by the viral proteins HPV
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E 6  and SV40 large T, both of which deregulate p53 (Hara et a l, 1996; Stott et a l, 

1998). These observations propose the existence of an auto regulatory feedback loop, 

reminiscent for that of p53 and MDM2, in which p53 levels are controlled by p l4 ^ ^ , 

whose expression is in turn controlled by p53. As yet the modulation of mouse 

PI9 ARF yy levels remains to be documented.

Interestingly the TATA less p 14/19^^^, but not the p l 6 ^^"^“ promoter, in a region 

upstream of exon ip , contains several potential consensus E2F sites. The p i4"^^ 

promoter contains at least four potential negative strand E2F binding sites, two of 

which are high affinity while two are poor matches (Roberston and Jones, 1998). 

pigARP only two high affinity E2F sites, one negative and one positive strand

coded (Inoue et a l, 1999).

Initial studies demonstrated the potential of E2F to induce pl4/19*^^ expression 

(Bates et a l, 1998; Roberston and Jones, 1998; Inoue et a l, 1999). Over expression 

of E2F-1 activates the transcription of pl4"^^^mRNA in a transcriptionally-dependent 

but non cell cycle regulated manner (Bates et a l, 1998; Inoue et a l, 1999). 

Specificity studies carried out on the E2F family members indicated that E2F-1 and 

E2F-2, but not E2F-3 to E2F-5, were able to increase pl9*^^ mRNA levels 

(DeGregori et a l, 1997). The induction of p 14/19^^^ mRNA expression by E2F is 

paralleled by a marked increase in the level of pl4^^^ protein, although to date there 

is no indication whether this corresponds to a change in stability of p l4 /19^^  or an 

increase in translation (Bates et a l, 1998). It is interesting to note that pRb has been 

shown to repress p i 6 ^^"^“ expression under certain cellular circumstances (Moran, 

1993).

70



The influence of E2F on the p i4/19^^^ pathway provides a mechanism whereby 

proliferative oncogenic stimuli are detected in such a way that cell cycle arrest or 

apoptosis is induced through p53. E2F deregulation via the activation of oncogenes, 

such as Ras or c-Myc, results in the activation of p53 and the enhanced expression of 

p 14/19^^^. Such a model, linking E2F to p53 activation, is strongly supported by the 

ability of pl4**^ mutant tumours to tolerate the retention of wild-type p53 (Bates et 

al., 1998). Given that the regulation of p 14/19^^^ and p i e x p r e s s i o n  occurs 

through both p53 and pRb, via E2F, it is feasible to assume that both pathways cross 

talk, with p53 being the dominant component for pl4yi9*^^ and pRb the dominant 

partner for p l 6 ^ "̂^“ (Robertson and Jones, 1998) (Figure 1.6).

The polycomb group of proteins, comprises a set of proteins that maintain the stable 

expression of specific target genes, such as homeo-box cluster genes, during 

development (Gould, 1997). The Bmi-1 oncognene is a member of the polycomb 

group which acts as a specific transcriptional repressor (Van Lohuizen et al., 1991; 

Van der Lugt et al., 1994). In addition to the severe neurological defects seen in W /- 

r ' '  mice, MEF’s from these animals exhibit an impaired S phase entry and premature 

senescence phenotype (Jacobs et al., 1999a). The impaired S phase and early 

senescence observed in MEF’s from these animals con*esponds to a highly elevated 

level of both the INK4a/ARF locus products. Over expression of Bmi-1 down 

regulates the expression of both p i 6 ^ "̂̂  ̂and p i9^^^ in bmi-F^' mice which results in 

fibroblast immortalisation. The full rescue of the proliferation defects and early 

senescence onset together with the loss of the neurological defects in bmi-F’'',ink4d‘' 

mice clearly point to Bmi-1 as an important regulator of INK4a/ARF expression in 

development and cell cycle regulation (Jacobs et al., 1999a). Bmi-1 clearly functions
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by suppressing both the p l 6 ^̂ "̂̂ VpRb and pl9^^^/MDM2/p53 pathways, thereby 

allowing progression through the cell cycle.

Insertional mutagenesis in transgenic mice with c-Myc identified Bmi-1 as a 

collaborator in the onset of B-cell lymphomas (Haupt et al., 1991; Alkema et al.,

1997). Given that myc'’' mice are embryonic lethal, and that c-Myc over expression 

induces apoptosis and tumourigenesis, the importance of c-Myc in proliferation and 

differentiation during embryogenesis is unquestionable (Davis et al., 1993; 

Prendergast, 1999). Myc induced apoptosis is both p53 and pl9*^^ transcription 

dependent (Zindy et al., 1998) and is prevented by Bmi-1 over expression (Jacobs et 

al., 1999b). The synergistic and dose-dependent increase in proliferation and decrease 

in apoptosis observed between Bmi-1 and c-Myc indicates that their co-operation in 

oncogenic transformation is mediated by the ability of Bmi-1 to prevent Myc 

activation of pl9^^^ (Jacobs et al., 1999b).

The pl9*^^ promoter has been shown to contain a single responsive consensus site 

for the transcription factor and potential tumour suppressor DMPl. Enforced 

expression of DMPl in mouse fibroblasts induces cell cycle arrest (Inoue and Shen\

1998). It is via the induced expression of pl9^^^ that DMPl exerts its p53-dependent 

anti-proliferative effects (Inoue et al., 1999). Studies performed on dmpV’' animals 

suggests that p i9^^^ function is in fact compromised but not eliminated, in the 

absence of DMPl, raising the possibility that DMPl contributes but is not essential 

for pl9*^^ regulation (Inoue et al., 2000).
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DMPTs ability to bind DNA and drive transcription is lost in the presence of over 

expressed D-type eye lins, in the absence of CDK’s. It is therefore possible to assume 

that D-type cyclins can act negatively on the cell cycle through repression of p i9^^^ 

expression, as well as positively through the release of E2F-pRb repression.

The tumour suppressor BRCAl is able to trigger transcription by both p53-dependent 

and independent pathways. Interestingly neither pl4 '̂ '̂^‘ cells nor p l 9 '̂F/- ]y[EF’s are 

able to induce p53 stabilisation in response to BRCA-1 over-expression 

(Somasundaram et al., 1999). BRCAl s ability therefore to stabilise p53 is p i4/19*^^ 

dependent. It has also been noted that the level of pl4**^ mRNA is substantially 

increased following BRCAl introduction into cells, although the mechanism of such 

induction remains unclear (Somasundaram et al., 1999). Given that BRCAl 

transcription is itself activated by E2F it is attractive to imagine other potential 

synergistic pathways that act on pl4/19^^^ expression (Wang et a l, 2000).

Other potential regulators of p l4 /19^^  expression and their potential consequences 

include co-activators such as p300, that regulates MDM2 and co-activates E2F. In 

addition to the regulators of ARF expression previously discussed undoubtedly the 

Ap-1 and YYl sites present in the pl4**^ promoter have a significant but as yet 

unknown role (Roberston and Jones, 1998).

1-3.4.

Mutational analysis revealed that p l 6 ^ "̂̂  ̂is commonly mutated or deleted in human 

cancer, in particular in pancreatic adenocarcinoma and melanomas, with some 

mutations mapping specifically to exon l a  (Hussussian et a l, 1994; Sharpless and
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DePinho, 1998). Interestingly mutations in cdk4, which abrogate function,

are also found in melanomas further strengthening the observation that the p l 6 ^̂ "̂̂ -̂ 

cdk interaction plays a role in tumour susceptibility (Zuo et al., 1996).

p^ îNK4 a first identified by its ability to block cell passage from Gi into S phase, 

as a consequence of the inhibition of cyclin D-dependent cdk4/6 kinase activity 

(Serrano et al., 1993). The inhibition of cdk4/6 leads to the hypophosphorylation of 

pRb that in turn represses E2F and blocks G% progression and exit (Figure 1.6). 

Crystallographic studies of p i 6 ^ "̂̂  ̂bound to cdk6  demonstrated that binding distorts 

the cyclin binding site and prevents ATP binding (Russo et al., 1998). The lack of 

pRb and plb^^ '̂ '̂  ̂mutations in the same tumour together with the observation that Rb' 

'' cells generally display very high levels of p l 6 ^̂ "̂  ̂indicates the lack of a selective 

advantage in deregulation of two genes in the same pathway.

1-3.5. d 14/ 19^”^.

Structurally pl4/19^^^ is a highly basic protein that shares no homology with known 

proteins in the databases and lacks any decisive functional protein motifs (Quelle et 

al., 1995). p l4 /19^^  can induce cell cycle arrest in a p53-dependent cdk-independent 

manner as cells-lacking p53 aie refractory to pl4/19'^^^ arrest (Pomerantz et a/.,1998; 

Zhang et a l, 1998; Kurokawa et a l, 1999).

Given the ability of pl4^^^ to suppress MDM2/Ras induced transformation it was 

suspected that pl4^^^ induced cell cycle arrest by preventing MDM2 mediated p53 

ubiquitin degradation. Studies have demonstrated that pl4**^ activates p53 by 

binding and sequestering MDM2 into nuclear bodies where it is unable to target p53
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for nuclear export and degradation (Zhang and Xiong, 1999) (Figure 1.6). Expression 

of p 14/19^^^ exon Ip alone (amino acids 1-64) is sufficient to stabilise p53, stimulate 

p53-dependent transcription of and mdm2, and induce cell cycle arrest

(Kamijo et ah, 1998; Stott et ah, 1998; Zhang et ah, 1998). Indeed p 14/19^^^, via at 

least two independent exon ip  encoded sequences, interacts directly with the central 

acidic domain of MDM2 at a site overlapped by the p300 binding domain but distant 

from the p53 site (Momand et ah, 1992; Zhang et ah, 1998; Zhang and Yiong, 1999; 

Weber et ah, 1999; Lohrum et ah, 2000a; Midgley et ah, 2000;). Given that p300 

complexed with MDM2 may mediate ubiquitination of p53 and its subsequent 

degradation (Grossman et ah, 1998). It is plausible to assume that p 14/19^^^ may 

compete with p300 for MDM2 in a manner that reduces degradation dependent down 

regulation of p53, simultaneously releasing p300 to act as a p53 transcriptional co

activator.

Although p 14/19^^^ is functionally devoid of any previously characterised domain, 

regions within the protein have been shown to confer its characteristic nucleolar 

localisation. Nucleolar localisation of pl4/19^^^ under basal conditions is poorly 

understood, although nucleolar structures are known sites of rDNA localisation, 

rRNA synthesis and ribosomal assembly (Scheer and Weisenburger, 1994; Fomproix 

et ah, 1998).

Nucleolar localisation of pl4/19'^^^ is imposed by specific sequence motifs present 

within both exon ip  and exon 2 of the protein (Weber et ah, 1999; Zhang and Xiong,

1999). Within the nucleolar localisation coding region from exon 2 of p l4 /19^^ a 

number of mutational events have been noted, ranging from microdeletions to single
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nucleotide insertions, which would presumably affect both localisation and 

consequently function of p 14/19^^^ (Soufir et aL, 1998; Holland et a l, 1999). Recent 

observations have identified basic amino acid stretches present in both the N- and C- 

terminal of p l4 /19^^  as being important for nucleolar localisation. Such basic amino 

acid stretches are also found in RNA binding proteins as well as the human 

immunodeficiency viral proteins Rev and Tat, where they mediate an impoitin p 

interaction (Henderson and Percipalle, 1997; Rizos et a l, 2000). The identification of 

these regulatory domains suggests that p 14/19^^^ may be a multi-functional protein 

participating in several aspects of the controlled growth of cells.

Mutational analysis revealed that the formation of p53-MDM2-pl4^^^ nuclear 

bodies, within which p53 is stabilised, requires to some degree the presence of the 

nucleolar localisation signal encoded by exon 2 (Zhang and Xiong, 1999). The 

presence of nuclear bodies and their function as yet remains unclear, although it is 

interesting to speculate that they are sites of DNA synthesis or are regions involved in 

structure-related events. The importance of nucleolar localisation on p 14/19^*^ 

function is further highlighted by the presence of a second potential nucleolar 

localisation signal (NuLS) within the exon ip  encoded N-terminus which although 

less efficiently is still able to drive p53 stabilisation (Lohrum et aL, 2000a; Midgley 

et aL, 2000). Murine p l9 ^ ^  differs from human pl4*^^ in that pl9^^^ appears not to 

form nuclear bodies with p53 and MDM2 but to actually sequester and retain MDM2 

but not p53 into the nucleolus of cells (Weber et aL, 1999).

In addition to the nuclear structures formed by the interaction of p i4/19^^^ with 

MDM2 it appears that MDM2 itself can be sequestered, or located into the nucleolus.
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As a result of its interaction with a cryptic nucleolar localisation signal within

the C-terminus of MDM2 is revealed that is effective in promoting MDM2 nucleolar 

localisation (Weber et ah, 1999; Lohrum et ah, 2000a; Lohrum et ah, 2000b).

The ability of MDM2 to regulate the cellular level of p53 is a direct consequence of 

its ability to undergo nucleo-cytoplasmic shuttling (Roth et ah, 1998). It is the 

targeting of p53 to the cytoplasmic proteasome by MDM2 that is blocked by 

p i4/19^^^, which tethers MDM2 into nuclear structures (Tao and Levine, 1999b). As 

MDM2 nuclear export is dependent upon its interaction with exportin-1 (CRM-1) and 

Ran-GTP it is feasible to assume that p 14/19^^^ effects these interactions either 

directly by holding MDM2 or indirectly through an as yet undefined secondary 

modification mechanism (Freedman and Levine, 1998).

pl4*^^ was originally believed not to participate in the p53 DNA damage response 

(Zhang et ah, 1998). However studies performed by Khan et ah (2000) demonstrated 

that pl9^^^^ responds, in a p53-dependent manner, to microtubule disruption and 

ionising radiation, whereas ribonucleotide depletion and actinomycin induced RNA 

synthesis inhibition were completely independent of p i9^^ . Clearly these specific 

roles for p 14/19^^^ in the DNA damage response require clarification.

The direct interaction of the p i9^^^ exon ip  encoded N-terminal domain (amino 

acids 1-62) with p53 was demonstrated, and although the interaction can occur in a 

DNA context it does not increase the affinity of p53 for its consensus site (Kamijo et 

ah, 1998). Mutant forms of p53, that exhibit a prolonged half life and have a reduced

77



affinity for MDM2, and the stress activated kinase JNK show an increased affinity for 

p i4/19^^^ (Buschmann et a l, 2000).

The forced induction of pl9^^^ in mouse fibroblasts causes a p53-dependent Gi and 

G2 /M atTest in the cell cycle (Kurokawa et ah, 1999). Fibroblasts that express high 

levels of pl9*^^ prior to Gi arrest show high mobility forms of pl9*^^ that may 

conespond to either p i9^^^ degradation inteimediates or post-translational 

intermediates (Kurokawa et ah, 1999). Cells expressing high levels of pl9*^^ retain 

high molecular weight forms of p53 (Pomerantz et aL, 1998) that possibly coiTespond 

to polyubiquitinated forms. Given this observation it is foreseeable that pl9^^^ might 

not inhibit MDM2 mediated ubiquitination but instead might prevent the degradation 

of ubiquitinated p53.

piqARF reduces the level of pRb phosphorylation and forces pRb into a 

hypophosphorylated form. The induction of pRb hypophosphorylation corresponds 

with the ability of p i9 ^ ^  to down-regulate cdk activity, p i9 ^ ^  down-regulates the 

activity of cdk 2 and 4 by reducing the level of cyclin A, B 1 and E. Interestingly the 

level of the mid Gi cyclin, D l, is increased by p i9"̂ ^̂  as well as the p53 induced gene 

p2 iVRa///op7 \yhich functionally inhibits cyclin D/cdk complex kinase activity. The 

increased expression of cyclin D and p21^^^^^ '̂̂  ̂ as a consequence of pl9^^^ alters 

the cellular composition of the cyclin/cdk complexes in such a way that usually 

undetected cyclin cdk complexes become prominent (Labaer et ah, 1997; Kurokawa 

et aL, 1999). The p27^^^ cyclin dependent kinase inhibitor is down regulated by 

piqARF together with the cdc2  kinase, which is absolutely required for G2/M

78



progression. The repression of cdc2 expression may provide a mechanism by with 

which pl9^^^ induces G2/M cell cycle arrest (Kurokawa et ah, 1999).

mdm2 gene expression, as a consequence of p53 stabilisation, is upregulated by 

p i4/19^^^, but interestingly the stability of MDM2 in complex with p i9^^^ is 

reduced (Zhang et a l, 1998; Kurokawa et a l, 1999; Zhang and Xiong, 1999). The 

exact mechanism by which MDM2 stability in complex with p i9"̂ ^̂  is reduced is 

unknown, although it is potentially by the cytoplasmic proteasome pathway in an 

analogous way to p53 stability regulation by MDM2.

pj^yg important function in the p53 mediated pathways involved in Gi 

arrest, but several lines of evidence point to mechanisms by which p i9^^^ can induce 

cell cycle arrest via a p53 independent mechanism (Kurokawa et a l, 1999; Caiuero et 

a l, 2 0 0 0 ).

1-3.6. Oncogenes and pl4/19^^.

Given that p 14/19^^^ shows little or no response to DNA damaging conditions it is 

interesting to note the response to oncogenic stimuli. The oncogenes Ras, Myc and 

E l A are all able to induce a p i 4/19^^ response (de Stanchina et a l, 1998; Palmero 

et a l, 1998). Interestingly Ras can also elicit and make use of the tumour

suppressor in order to aiTest cells (Serrano et a l, 1997). The enforced expression of 

pl4^^^ induces cell cycle arrest however in the presence of E l A or Myc cells 

undergo apoptosis (deStanchina et a l, 1998; Zindy et a l, 1998). E lA  requires both 

the capacity to bind pRb and p300 in order to induce cellular apoptosis, so it is 

possible that pl4/19^*^^ activation is a consequence of these activities (de Stanchina
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et al., 1998). The action of oncogenes in the targeting of p i4/19^^^ is further 

emphasised by the observation that p 14/19“'̂ '̂ ' cells are resistant to E2F-1 induced 

apoptosis (Zindy et al., 1998).

The ability of the Abel son virus (Ab-MLV) oncoprotein to induce pre-B cell 

transformations is a direct consequence of loss of p53 function. The normal cellular 

defence mechanism against v-Abl appears to be governed by p i9^^^, given that Ab- 

MLV induces c-Myc and Ras expression that in turn induce p l9 ^^(Z o u  et al., 1997; 

Radfar gr a/., 1998).

The actions of oncogenes on and p i9^^^ together with the lack of a clear

involvement in the DNA damage response of the two proteins implies that the 

lNK4a/ARF locus may be a specific cellular controlling mechanism against the 

actions of oncogenic stimuli.

1-3.7. Roles of and pl4/19^^ in senescence.

Senescence is the loss of the ability to proliferate after the completion of a finite 

number of cellular divisions and is characterised by a growth arrest, apoptotic 

resistance and an altered spectrum of differentiation phenotypes (Campisi, 1996; 

Campisi, 1997). A loss of, or shortening of, telomeres from eukaryotic chromosome 

ends results in an inability to induce DNA replication and a senescence phenotype 

(Campisi, 1996; Campisi, 1997; Bodnar et al., 1998). The senescence phenotype has 

also been shown to be induced under conditions of DNA damage, the introduction of 

deacetylase inhibitors and by oncogenic forms of Ras and Raf (Ogryzko et al,, 1996b; 

Sen’ano et al., 1997; Chen et al., 1998). As senescence entails an irreversible growth
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arrest it has been suggested as a fail-safe program that curtails tumouri genesis and 

age related pathologies. The growth an-est associated with senescence is closely 

associated with the down regulation of many cell cycle associated genes, such as c- 

fos, Cdc2, cyclin A and E2F1, and the up regulation of growth inhibitors like 

and p2 lW»«'api (Alcorta et a i, 1996; Hara et a l,  1996; Stein et a l,  1999).

Viral oncoproteins immortalise cells, by inactivating the telomere length checkpoint 

control system which prevents the initiation of senescence, as a consequence of their 

ability to target the cellular proteins, p53 and pRb (Chen et a l, 1998). Consistent 

with the role of pRb and p53 as mediators of senescence is the observation that both 

p2 iWafi/cipi p2̂ iNK4a able to induce premature senescence phenotypes when 

expressed in human fibroblasts (McConnell et aL, 1998). A role for p i i n  

senescence is further enforced in that primary cultured cells express increasing 

amounts of as they approach senescence and inactivation of

prevents Ras induced senescence (Hara et a l, 1996; Haber, 1997).

Introduction of transcriptionally active E2F-1 into human fibroblasts is able to induce 

a senescence like phenotype in a p53 and pl4^^^ dependent manner. Given that E2F 

induces p l4 ^ ^  expression and the introduction of p i4^^^ into fibroblasts produces a 

senescence phenotype it is likely that E2F’s ability to induce a senescence phenotype 

is at least in part due to its ability to upregulate p i4^^^ (Kamijo et a l, 1999a; Dimri 

et a l, 2000). The senescence phenotype is therefore to a degree controlled by p i4^^^, 

although not maintained by induced expression from E2F, as E2F levels are low in 

senescence cells, possibly as a consequence of the low level of Bmi-1 expression seen 

in senescence cells (Jacobs et a l, 1999a).
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Camero et al. (2000) performed an elegant study using anti-sense knock out vectors 

in which they examined the role of both pl9^^^ and in senescence and cell

cycle arrest. Interestingly pl9^^^ could, in a p53 independent fashion, negatively 

regulate the cell cycle. The p53 independent mechanism of cell cycle arrest by p i9^^^ 

was lost upon pRb inactivation, and required MDM2. It was demonstrated that 

piqARF jnore effective at inducing senescence than p i a s  p i9^^^ deficient 

cells can proliferate with high levels of p i b u t  cells without p i c a n  not 

proliferate with high levels of p i9^^^. It is interesting to speculate that p i 9̂ *̂" and 

pĵ giNK4a developed as a mechanism by which senescence is activated by

targeting both p53 and pRb not only potentially directly but also through MDM2 

(Yap et at., 1999; Carnero et at,, 2000; Lloyd, 2000).

1-3.8. Conclusions.

The lNK4a/ARF locus and its two gene products, pl6^^"^^ and p 14/19^^^, both play a 

key role in regulating the cell cycle check point controlling proteins, p53 and pRb. 

pl îNK4a j.̂ j.gĝ g pRb pathway to induce a cell cycle arrest and p i4/19^^^ the 

MDM2/p53 pathway (Figure 1.6). The transcription of two unrelated genes from the 

same genetic locus such that both function to mediate the same cellular consequences 

has undoubtedly come about through a genetic selection event. The reason for such 

conservation in genetic information in mammalian cells is unknown but will prove an 

exciting avenue for future research.
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Figure 1.6. The INK4a/ARF locus and its two gene products.

Diagram of the exon organisation of the INK4a/ARF locus. Alternative splicing of 

E ip  to E2 gives rise to p 14/19^^^ and transcription driven from E l a  forms the GDI 

pl îNK4a pl4/19'^^^ neutralises MDM2 to stabilise p53 that in turn results in

p53 mediated cell cycle arrest as a result of induction of genes such as p21^^^^ ‘̂̂ ^̂  ̂

pl6^^K4a inhibits the phosphorylation of pRb by directly inhibiting cyclin/CDK 

activity that in turn results in the repression of E2F and cell cycle arrest (Chin et al., 

1998).
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1-4. The Retinoblastoma tumour 

suppressor protein (pRb).

1-4.1. Introduction.

The retinoblastoma tumour suppressor gene {rb} is frequently mutated in a broad 

spectrum of human tumours, including retinoblastoma, osteosarcoma, and prostate, 

breast and lung carcinomas (Weinberg, 1995; Sherr, 1996). In addition, a number of 

genes, such as and cyclin D l that regulate pRb function are also frequently

associated with tumour progression (Caldas et al., 1994; Kamb et ah, 1995; Hall and 

Peters, 1996). The high frequency of mutations in the pathway that controls pRb 

activity underscores the importance of this tumour suppressor pathway in 

tumouri genesis. More precisely loss of pocket protein function, either through 

mutagenesis, viral infection or phosphorylation results in the de-regulation of the E2F 

transcription factor family and is a major step in the loss of cell cycle control and 

tumour formation (Dyson, 1998).

pRb’s cellular importance is highlighted by the plethora of interactions, with 

transcription factors, kinases, phosphatases, structural proteins and deacetylases 

which it uses to suppress cell cycle progression. Clearly the role of pRb in 

suppressing growth, facilitating differentiation and inhibiting apoptosis defines pRb 

as a master regulator of the cell (Sellers and Kaelin, 1996; Dyson, 1998).
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1-4.2. Rb family.

The retinoblastoma gene (Rb) located on chromosome 13 encodes a llOkDa nuclear 

phosphoprotein that behaves as a classical tumour suppressor protein (Lee et ah, 

1987; Riley et a l, 1994). pRb is frequently inactivated in a variety of tumour types 

and sporadic or familial inherited inactivating mutations in both copies of the rb gene 

are associated with retinoblastoma (Friend et a l, 1986). Single allelic mutations in 

the rb gene predisposes suffers not only to retinoblastoma but also tumours such as 

osteosarcomas and fibrosarcomas (Horowitz et a l, 1990; Riley et a l,  1994).

pRb is a member of a family of proteins termed “the pocket proteins” that includes 

pl07 and pl30 (Ewan et a l, 1991; Hannon et a l, 1993; Weinberg, 1995; Whyte, 

1995). The pocket protein family members are highly homologous proteins and their 

genes are highly conserved in multi-cellular organisms. The family share a region of 

very high homology termed the pocket region and it is this region that is targeted by 

the negative cell cycle viral regulators, SV40 large T, E l A and E7 (La Thangue, 

1994; Chow and Dean, 1996).

The pocket region of pRb, pl07 and pl30 mediates many of the cellular binding 

properties of the proteins and is essential for their growth suppression properties. An 

LXCXE binding region imparts the ability of many cellular proteins that contain 

LXCXE motifs such as, hi stone deacetyl ases (HDAC’s) and cyclin D to interact with 

the pocket proteins (Kaelin, 1999). Viral oncoproteins such as ElA , E7 and SV40 

large T also contain LXCXE motifs in their protein sequence and similarly it is this 

region that mediates their interactions with pocket proteins (Dyson and Harlow, 1992; 

Moran, 1993). The pocket region that encompasses the LXCXE motif is also
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responsible for the interaction of pRb with the transcription factor E2F. In addition 

pRb utilises its C-terminal pocket region to mediate interactions with the cellular 

proteins MDM2 and c-Abl. The binding of c-Abl to pRb prevents ATP binding and 

abrogates pRb’s growth an'est function as a consequence of a loss in c-Abl’s kinase 

activity (Welch and Wang, 1993; Welch and Wang, 1995). Conversely pRb binding 

to MDM2 inhibits its anti-apoptotic function (Martin et al., 1995; Xiao et a l, 1995; 

Hsieh et al., 1999) (Figure 1.7a).

To date only the pRb member of the pocket protein family has been observed to be 

mutated in tumour cells. The generation of knockout mice has indicated that pRb, 

pl07 and pl30 perform both distinct and overlapping functions in the regulation of 

cellular proliferation (Hurford et al., 1997). rb knockout mice are embryonic lethal 

while plOT^' or p i 30' '̂ mice are normal and survive to term (Clarke et al., 1992; 

Jacks et al., 1992; Lee et al., 1992). rb'''' mice suffer from the defective differentiation 

of many tissues and an increased level of apoptosis and embryonic fibroblasts from 

these animals display inappropriate S-phase entry (Herrera et al., 1996). Specifically, 

it appears that p i07 and p i30 in a rb' '̂ background are unable to compensate for the 

loss of pRb with respect to the differentiation and proliferation of certain tissue types. 

The unique tumour suppressor status of pRb is also highlighted by pl0T^’;pl30^^' and 

pl07'^^'',pl30'^' mice that develop normally and show no increase in the level of 

tumour formation.

The non-lethal phenotype of pl07 and pl30 knockouts is potentially due to functional 

redundancy between the two family members and in agreement pl0T^'\pl30'^' mice 

die in utero due to cartilage and bone malformation (Cobrinik et al., 1996).
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Interestingly the overlap in function of the pocket protein family is highlighted by the 

observation that rb^ '̂ mice, that do not develop retinoblastoma, when crossed with 

plOT^' mice, to generate rb^^'\plOT^' mice, begin to suffer from retinal dysplasia (Lee 

et a l, 1996). In addition rb'^'\plOT^' mice die at an earlier stage in utero than rb' '̂ 

mice (Lee et al., 1996).

Given these observations it is interesting to speculate that pl07 and p i30 are essential 

cellular genes and that mutations in their regulatory mechanisms are intolerable even 

in tumour cells. Potentially the physiological role of pl07 and pl30 in tumourigenesis 

is confined to mutational events that inactive their functions as regulators of gene 

expression while maintaining other necessary functions they perform. In agreement 

such mutations are found in the pocket protein regulatory protein, pl6^^ "̂^  ̂ (Caldes et 

al., 1994; Kamb et a l, 1995; Koh et a l, 1995; Hall and Peters, 1996).

1-4.3. Cell cycle regulation by pRb.

pRb acts as a potent negative regulator of cellular proliferation through its ability to 

regulate the activity of a variety of nuclear proteins and transcription factors such as 

E2F (Weinberg, 1995). E2F is a heterodimeric transcription factor that consists of an 

E2F and DP component which regulates the transcription of a number of target genes 

involved in DNA replication, chromosomal replication and cell cycle control. Distinct 

cellular mechanisms control the timing of E2F target gene activation potentially by 

ordering the family composition of the E2F/DP DNA binding complexes (Bandara et 

a l, 1993; La Thangue, 1994; de La Luna et a l, 1996; Allen et a l, 1997). E2F target 

genes involved in DNA replication include DNA polymerase a, thymidine kinase 

(TK), dihydrofolate reductase (DHFR) and cdc6, and those involved in cell cycle
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regulation include cyclin A, cyclin E, cyclin D l, pl07, cdc2, E2F-1, E2F-4, E2F-5 

and p 14/19"^^  ̂(La Thangue, 1994; Adams and Kaelin, 1995; Kaelin, 1999).

The E2F family consists of six members all of which display different affinities for 

the pocket protein family members. Each member of the E2F family, except E2F-6, 

contains a domain for DNA binding, heterodimerisation and ^ransactivation (Dyson, 

1998; Helin, 1998). E2F’s role as an S-phase promoting gene inducer is dependent on 

its DNA binding and /ra^z^activation domains. The rraw^activation domain in the E2F 

proteins is the region that mediates their binding to the regulatory pocket proteins. 

E2F-1, -2 and -3 have a high affinity for pRb in contrast, E2F-4 and E2F-5 

preferentially bind to pl07 and pl30. The interaction of pocket proteins with the E2F 

or DP partners alone is week however the interaction with the heterodimer is highly 

stable (Bandara et al., 1993; Helin et al., 1993). pl07/pl30 E2F complexes are more 

evident in differentiated or quiescent cells while pRb/E2F complexes are most 

evident during cyclin cells, particularly at the Gi/S phase transition.

In addition to their role in the up-regulation of transcription E2F’s also play a role in 

transcriptional repression. Promoter analysis demonstrated that during Go and early 

Gi E2F’s are found on promoters in complex with pocket proteins, and that this 

complex is repressive (Tommasi and Pfeifer, 1995; Zwicker et al., 1996; Yasuhiko et 

al., 2000). Also the mutational analysis of a number of E2F responsive promoters, 

such as those encoding B-Myb, E2F-1, E2F-2 and cyclin E, demonstrated that E2F’s 

absence actually leads to an increase in transcription (Dalton, 1992; Lam and Watson, 

1993; Geng et al., 1996; Helin, 1998). It therefore appears that the primary function



of E2F on certain promoters is to negatively regulate transcription, potentially by 

acting as a pocket protein recruiter.

As well as pRb’s role in E2F mediated transcription it can also negatively regulate the 

Ets-family transcription factor members, Elf-1 and PU.l and additionally through a 

RCE region (retinoblastoma control element) in the c-fos promoter can repress TK 

expression (Kim et al., 1991; Pietenpol et al., 1991; Hagemeier et al., 1993; Wang et 

a l, 1993).

An interesting feature of pRb is its ability to interact with the transcription apparatus 

associated factor TFuD via the TAFn250 component (Shao et a l, 1995; Shao et a l, 

1997). pRb interacts with TAFn250 through multiple domains and the interaction 

inhibits TAFn250 kinase activity but not its cell cycle regulatory HAT activity 

(Siegert and Robbins, 1999; Dunphy et a l, 2000). The ability of pRb to inhibit 

TAFii250 enzymatic kinase activity points to an additional mechanism by which pRb 

can regulate the cell cycle by directly modulating the functions of the basal 

transcription machinery.

The ability of viral proteins such as SV40 large T antigen and adenoviral E l A to 

transform cells is to some extent dependent on their ability to overcome the growth 

suppressive activities of pRb (Hu et a l, 1990; Bandara and La Thangue, 1991; 

Chellappan et a l, 1991; Zamanian and La Thangue, 1992). The binding of pRb by 

viral proteins results in the appearance of free E2F and an increase in E2F 

transcriptional activity (Hu et a l, 1990; Vous den, 1995). Interestingly E lA  can also
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stimulate the binding of pRb to the transcriptional co-activator p300, but as yet the 

functional significance of the pRb/p300 interaction is unknown (Wang et al., 1995a).

1-4.4. pRb regulation of E2F.

pRb in a hypophosphorylated form binds to E2F in a DNA bound context to regulate 

E2F transcriptional activity primarily during the Go and Gi stages of the cell cycle. 

The binding of pRb to E2F inactivates E2F ?ra«.sactivation, which prevents gene 

expression and cell cycle progression. Cyclin/cdk complexes release pRb repression 

of E2F, liberate free E2F and promote cell cycle progression (Figure 1.7b). Notably, 

pRb residues that are required for its binding to E2F and consequent inhibition of 

fraTT^activation are frequently found mutated in human tumours (La Thangue, 1994).

E2F’s transcriptional activity is potentially regulated in a number of ways by pRb 

(Dyson, 1998). The most direct way that pRb regulates E2F transcription is through 

its ability to bind and block the function of the transcriptional activation domain of 

E2F (Weintraub et ah, 1995). The pRb in the pRb/E2F complex also inhibits the 

recruitment of the transcriptional initiation complex by E2F (Ross et al., 1999). In 

addition pRb can recruit enzymes that inhibit E2F’s transcriptional activation. pRb 

binds to the hi stone deacetyl ase family of enzymes (HD AC’s) which catalyses the 

deacetylation of histones and condensation of the nucleosome that leads to 

transcriptional repression (Brehm et al., 1998; Luo et a l,  1998; Magnaghi-Jaulin et 

a/.,1998; Brehm and Kouzarides, 1999).

The ability of pRb to bind the chromosome remodelling complex Swi/Snf is another 

potential mechanism by which it represses E2F mediated transcription (Zhang et al..

90



2000). Interestingly the pRb/HDAC complex is also bound by the Swi/Snf complex, 

which presents an interesting model in which it is the component of the pRb complex 

and not simply pRb that mediates its repressive activity of target genes. In agreement 

the pRb/Swi/Snf complex can repress cyclin A and cdc2 gene expression but not 

cyclin E or E2F-1 expression (Zhang et aL, 2000). Furthermore pRb has a potential 

role in the recruitment of a eo-repressor complex through its ability to bind RbAp48 

and RbAp46. RbAp48 and RbAp46 are components of the SIN3 co-repressor 

complex (Hassig et al., 1997; Hassig and Schrieber, 1997)

The pocket proteins are also able to regulate the level of E2F mediated transcription 

by indirectly effecting the level of E2F protein (Dyson, 1998). Un-phosphorylated 

pRb protects E2F from ubiquitin mediated SCF like proteolysis and thereby 

maintains a steady state level of E2F (Hateboer et al., 1996; Dyson, 1998; Marti et 

al., 1999).

Interestingly, pRb also regulates the apoptotic function of E2F. Specifically E2F-1, 

and not the other E2F family members, when overexpressed in a pSS'''' or p53'^ '̂  ̂

background can induce apoptosis (Qin et a l, 1994; Hsieh et a l, 1997; Phillips et al., 

1997). The mechanism of E2F-1 induced apoptosis at least in part occurs through the 

death receptor pathway and involves the inactivation of anti-apoptotic signals such as 

NF-kB (Phillips et al., 1999). More specifically, E2F-1 stimulates p i4/19^^^ 

expression that in turn releases MDM2’s suppression of p53 apoptotic function 

(Sharpless and DePinho, 1998).
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The cellular properties of E2F are dependent on its localisation, given that its nuclear 

localisation is vital for transcriptional activation. The localisation of E2F into the 

nucleus is in pait controlled by its DP partner molecule and is cell cycle regulated (de 

La Luna et al., 1996; Magae et al., 1996; Linderman et al., 1997). Conceivably the 

expression of the DP component may be vital in transcriptional control.

1-4.5. Transcriptional activation and pRb.

Under certain cellular circumstances pRb has actually been shown to augment the 

transcriptional activation of certain transcription factors (Sellers and Kaelin, 1996). 

pRb’s role as an activator has been linked with ATF2’s transcriptional activation of 

the TGF-P2 and pRb promoters (Kim et al., 1992). NF-IL6 in co-operation with pRb 

shows an increase in DNA binding affinity and transcription directed from the 11-6 

promoter (Chen et ah, 1996b). The pocket region of pRb has also been shown to 

mediate an interaction with c-Jun, and this interaction stimulates c-Jun transcriptional 

activity (Need et al., 1998). Interestingly the complexes between pRb and c-Jun are 

only visible in terminally differentiated cells and those re-entering the cell cycle after 

serum starvation (Need et al., 1998).

pRb also binds to the potential transcriptional co-activators and nucleosome 

remodelers BRM and BRGl to activate promoters containing glucocorticoid 

responsive elements (Dunaief et a l, 1994; Singh et a l, 1995). The exact role of pRb 

in these interactions is not fully understood but potentially it may involve the 

stabilisation of the protein DNA binding interface (Sellers and Kaelin, 1996)
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The ability of pRb to positively regulate transcription depends, in most cell systems, 

on the integrity of the pRb pocket. Given that the pocket region of pRb is frequently 

mutated in human tumours it is conceivable that pRb’s up-regulation of transcription 

is also required for its suppression of tumourigenesis (Sellers and Kaelin, 1996).

1-4.6. pRb phosphorylation.

The cell cycle repressive activity of pRb is directly regulated by its phosphorylation 

status (Mittnacht, 1998). In the active repressive state, such as in Go, pRb is Un- or 

hypophosphorylated and during cell cycle progression pRb is successively 

phosphorylated to become inactive. The phosphorylation of pRb is a highly 

orchestrated process and corresponds with an increase in the expression of cyclins 

and a up-regulation of cyclin dependent kinase (cdk’s) activity (Hatakeyama et a l, 

1994; Lundberg and Weinberg, 1998). Dephosphorylation of pRb is carried out by 

phosphatases such as PP-1 and occurs in mitosis (Mittnacht, 1998) (Figure 1.7b).

pRb is phosphorylated on a number of potential S/T-P motifs throughout its sequence 

(Figure 1.7a). Interestingly, the in vivo phosphorylation of pRb by individual 

cyclin/cdk complexes helps confer the specific functions of pRb. Cell cycle 

progression and loss of pRb’s repressive function involves the sequential activation 

of cyclin D/cdk4, cyclin D/cdk6, cyclin E/cdk2 and cyclin A/cdk2 complex during 

late Gi and S phases (Hatakeyama et al., 1994; Sherr and Roberts, 1995; Pines, 1995; 

Whyte, 1995; Lundberg and Weinberg, 1998) (Figure 1.7b). The phosphorylation of 

pRb during Gi in response to mitogenic signals involves the activation of cyclin 

D/cdk4 and cyclinD/cdk6. The peak in cyclin E observed at the Gi/S phase transition
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corresponds to a hyperphosphorylated and non-repressive inactive pRb molecule 

(Sherr and Roberts, 1995) (Figure 1.7b).

pRb’s phosphorylation controls the repressive activity of pRb by disrupting its 

tertiary structure and therefore its ability to interact with its partner molecules such as 

HDAC’s and E2F (Knusden and Wang, 1996; Vivette et al., 1999). In particular the 

C-terminus of pRb is believed to interfere with the interaction capacity of the pocket 

region of pRb through a lysine rich patch (Harbour et a l, 1999). Several studies have 

demonstrated the existence of pRb/E2F complexes in both the S-phase and Gg/M 

phase of the cell cycle although the functional significance of such complexes is 

unknown (Schwarz etaL, 1993)

The phosphorylation of pRb is negatively regulated by the cyclin dependent kinase 

inhibitors, p27“ P> (Harper et a l ,  1993; Serrano et

a l, 1993; Xiong et a l, 1993; Sherr and Roberts, 1995; Weinberg, 1995). The 

expression of the cyclin dependent kinases inhibitors correlates with the repressive 

function of pRb and is associated with their ability to directly influence pRb 

phosphorylation status. The high frequency of mutation in the INK4a and lNK4b gene 

products helps highlight pRb’s role in the suppression of tumourigenesis (Sharpless 

and Depinho, 1998).

The cell cycle promoting molecules c-Myc and Ras also impart their functions on the 

pRb pathway. Over-expression of Ras and c-Myc promotes the accumulation of 

active cyclin/cdk complexes that coincides with a loss of p27^^* function 

(Alevizopoulos et a l, 1997; Leone et a l, 1997). It therefore appears that the
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inactivation of pRb function by growth promoting signals is an important 

intermediary step in cell cycle progression.

1-4.7. pRb as an anti-apoptotic protein.

E2F-l’s introduction into rb' '̂ cells induces inappropriate S-phase entry and apoptosis 

via both p53-dependent and independent mechanisms (Qin et al., 1994; Almansan et 

al., 1995; Hsieh et al., 1997; Phillips et al., 1997). The induction of apoptosis by 

E2F-1 is overcome by the co-expression of pRb or MDM2 and is dependent on pRb 

ability to bind E2F-1 (Hsieh et al., 1997; Wang, 1997; Loughran and La Thangue, 

2000). The ability of E2F-1 to induce apoptosis is transcriptionally independent as 

mutant forms of E2F-1 that are devoid of the transcriptional activation domain retain 

the ability to drive apoptosis (Hsieh et al., 1997). However the DNA binding function 

of E2F-1 is an absolute requirement for apoptosis (Phillips et al., 1997). The 

regulation of E2F-1 apoptotic function by pRb is confirmed by the high levels of 

apoptosis observed in rb' '̂ mice tissues and by the resistance of e2f'\rb'^' cells to 

apoptotic inducing signals (Yamasaki et al., 1996; Yamasaki et al., 1998). In addition 

E l A, which functionally inactivates pRb also induces apoptosis.

Conversely pRb has also been shown to promote p53’s apoptotic function by the 

inhibition of MDM2 function (Hsieh et al., 1999). Given that the C-terminus of pRb, 

which binds MDM2, is cleaved by an Interleukin Ip-converting enzyme like protease 

(ICE-like) in response to TNF induced apoptosis, the role of pRb in apoptosis is 

potentially regulated by its interaction with MDM2 (Reinder et ah, 1996). In support, 

the cleavage of the C-terminus of pRb is blocked by Ced-3/ICE inhibitors that
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prevent apoptosis (Bing and Don, 1996). It is interesting to speculate that MDM2 

regulates apoptosis through its ability, at least in part, to modulate pRb function.

1-4.8. Terminal differentiation and pRb.

A role for pRb in terminal differentiation was initially suspected given that rb' '̂ mice 

display defects in erythriod, neuronal and lens development (Mulligan and Jacks, 

1998; Lipinski and Jacks, 1999). Interestingly the loss of pRb does not affect the 

induction of differentiation but rather its completion and termination, indicating that 

pRb is important in late development. The transcriptional activation of some 

myogenic genes by MyoD also requires the presence of pRb and in addition pRb can 

cooperate with C/EBP to promote adipocyte differentiation (Chen et a l, 1996a; 

Sellers and Kaelin, 1996). Given that mutations in pRb that reduce its ability to bind 

E2F still retain an ability to augment transcription of MyoD dependent genes it is 

presumed that pRb role as a tumour suppressor stems also, in part, from its role in 

differentiation (Gu et al., 1993; Sellers et al., 1998)

1-4.9. Conclusions.

The pRb tumour suppressor is clearly a vital mediator of cell cycle control, that 

responds to both positive and negative signals to regulate proliferation, differentiation 

and apoptosis. pRb modulates the function of a number of transcription factors by 

nature of its ability to assemble an active repressor complex. In addition the ability of 

pRb to bind to chromatin modulators is potentially an important mechanism that 

helps initiate gene transcription.
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The importance of pRb in gene transcription is underlined by its ability to regulate 

Pol I, Pol II and Pol III mediated transcription (La Thangue, 1994; Dyson, 1998; 

Sellers and Kealin, 1996). Indeed the regulation of the components of the pRb 

pathway are the source of numerous studies into the design of anti-proliferative 

drugs.
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Figure 1.7. Structure and function of pRb.

a). Structure of the retinoblastoma protein (pRb). The 16 potential S/T-P 

phosphorylation sites are indicated together with the large pocket domain that 

contains the LXCXE binding motif (green and red regions). The C-terminal pocket 

region is also highlighted (blue). The minimal binding region required for E2F, 

MDM2 and c-Abl aie indicated.

b). Model of pRb regulation. pRb is unphosphorylated in Go and Gi and forms stable 

complexes with the E2F/DP heterodimers. The activities of pRb are controlled at 

least in part by its ability to recruit histone deacetylases and chromatin remodelling 

complexes. In late Gi pRb is hypeiphosphorylated by cyclin/cdk complexes, 

hypeiphosphorylated pRb is unable to associate with E2F/DP and so is unable to 

repress transcription. Transcription driven by E2F helps drive the cell cycle and in 

the M phase pRb is dephosphorylated by PPL
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1-5. Objectives.

The role of co-activators and their associated molecules in the regulation of 

transcription is poorly understood. It is becoming evident that the co-activator 

complex is not simply a collection of proteins that carry out one definite function but 

that the exact composition of the complex determines its function. Specifically, subtle 

changes in the composition of the co-activator complex are likely to be responsible 

for dictating its promoter specific activities and are a vitally important mechanism of 

cellular growth control.

It is clear that the p300 transcriptional co-activator plays an important role in cell 

cycle control. In addition it appears likely that p300/CBP allows cross-talk between 

different controlling pathways in order to bring about a given physiological outcome. 

An important cellular target of p300’s molecular action is the p53 tumour suppressor 

protein.

A definitive question in cell cycle research relates to the physiological role of p300 in 

the regulation of the p53 response and the mechanism that controls the switch 

between the cell cycle arrest and apoptotic functions of p53. In this respect the role of 

a novel protein, JMY that co-operates with p300 in the p53 apoptotic response was 

investigated. Of particular interest was the C-terminal proline rich region of JMY that 

is alternatively spliced to generate a JMY variant that selectively activates the cell 

cycle aiTest function of p53.
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The cell cycle affect of p53 is regulated by the actions of the p 14/19"^^  ̂ tumour 

suppressor proteins. pl4/19^*^^ controls the function of the oncogene MDM2 in order 

to release p53 and promote a cellular effect. As JMY is involved in the p53 response 

another objective of this study was to determine if JMY influenced the p i4/19^^^ 

pathway.

Finally, an additional objective of this research was to dissect the repressive and 

transcriptional activating functions of pRb. Loss of pRb function is believed to be an 

important step in the formation of tumours and significantly pRb tumour mutants 

posses the ability to co-operate with JMY in the tran^activation of p53. This suggests 

a novel mechanism of protection against tumourigenesis that cells have developed in 

circumstances when the crucial pRb growth regulatory pathway has been disabled.

Understanding the nature and function of the JMY/p300 co-activator complex 

response will ultimately help dissect the role of p300 in the p53 response and 

consequently is likely to yield important answers in the understanding of 

tumourigenesis.
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2. Materials and Methods.

2.1. Plasmids.

The following plasmids have been previously described; pCMV-HA-JMY (Shikama 

et a l, 1998), pCMV-Pgal (Zamanian and La Thangue, 1992), pCMV-pl4^^^ (Scott et 

a l, 1998), pCMV-MDM2 (Loughran and La Thangue, 2000), Exon Ip-luc (Bates et 

al., 1998), pBax-luc (Haupt et al., 1995; Friedlander et al., 1996), pWWP-luc (EL 

Deiry et al., 1993), pGADD45-luc (Chen et al., 1995), pMDM2-luc (Haupt et a l, 

1995), pG5Elb-luc (Lee et al., 1998) pCMV-p300 (Eckner et al., 1996a), pCMV- 

(Shikama et a l,  1999), (Shikama et a l,  1999), pCMV-

JMY^-^°" (Shikama et a l, 1999), pCMV-JMY'*®“'“  (Shikama et a l, 1999), pCMV- 

CD20 (Lee et al., 1998), pCMV-p53 (Lee et al., 1998), pCMV-pRb (Zamanian and 

La Thangue, 1992), pCMV-E2Fl (Kaelin et a l, 1992), pCMV-JMY* ''”  (Shikama et 

a l, 1999), pCMV-RbA22 (Zamanian and La Thangue, 1992), pCMV-Gal4-E2F-l“ “̂  

‘‘̂ ’ (Leee<al„ 1998).

The following plasmids were gratefully received as gifts; pGEXKG-pld''*^'' from 

Sarah Mason, pPIG3-luc and pCMV-p53AP from Dr Dobblestein, pCMV-HDAC-I 

from Dr Schreiber, pTG^-luc from Chang-Woo Lee, pCMV-JMY^^^ from Laurent 

DeLavaine, pCMV-RB^^^’̂ ^̂  from Ho-Man Chan and JMYAC from Noriko Shikama. 

The N-teiTninal JMY specific antibody and polypeptide were a generous gift from 

Noriko Shikama. Dr N. Shikama isolated and provided the sequencing information 

described for the splice variant clones, JV4 FS'̂  ̂and JV^FS^^^.
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To construct pCMV-HA-JMYAP the PCR products generated by 3’ RT-PCR were 

cloned into the pCR 2.1 vector (In vitro gen). The clone corresponding to the JMYAP 

variant was digested with Kpnl (site within JMY) and Xbal (site from within pCR 

2.1). The fragment was ligated in frame to a pCMV-2X HA-JMY^"^^^ coding vector 

previously cut with Kpnl and Xbal.

2.2. Transfection.

For transfections all cells were maintained in Dulbecco’s modified eagle medium 

(DMEM) supplemented with 10% foetal calf serum (FCS) and the antibiotics 

streptomycin (lOmg/ml) and penicillin (lOOU/ml). Cell cultures were maintained in a 

water saturated 5% CO2 atmosphere at 37°C.

Cells were plated out 24 hours prior to transfection at 5x10^ for reporter assays, 1x10*̂  

for flow cytometry and immuno-precipitation or 2x10^ for immuno-staining. Plating 

densities were optimized at 70% surface coverage in all cases. Three hours prior to 

transfection, the media was removed and replaced with fresh growth medium. In all 

cases calcium phosphate-DNA precipitation was used. The indicated concentrations 

of plasmid DNA were mixed with a 2M CaCL solution to give a final salt 

concentration of 200mM in a volume appropriate to the plating density. The Solution 

was drop wise added, with agitation, to an equal volume of 2XHBS (50mM HEPES 

pH 7.1, 280mM NaCl and 1.5mM Na2 HP0 4 ) and the mixture incubated at room 

temperature for 30 minutes before addition to cells. The total volume of precipitate 

added was maintained at a constant ratio of 1ml total volume precipitate per 1x10^ 

cells.
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Whenever required pcDNA-3, or pSG-5 backbone vector was used to maintain a 

constant concentration of DNA. All transfections included CMV-Pgal as an internal 

control for transfection efficiency.

12-17 hours post transfection cells were washed three times with 37°C PBS to 

remove excess precipitate and fresh media added. Cells were harvested 30-40 hours 

post transfection.

In cases where trichostatin A was used it was added to cells in fresh growth media at 

a final concentration of 150nM 10 hours before harvesting. Non-treated cells were 

incubated with an equal volume of the solvent used to dissolve the trichostatin A 

(100% ethanol),

2.3. Luciferase and B-galactosidase assays.

For luciferase assays, cells were washed three times with PBS prior to lysis in 500pl 

reporter lysis buffer (25mM Tris-H3 P 0 4  pH 7.8, 2mM 1,2 diaminocyclohexane tetra 

acetic acid, 2mM DTT, 10% glycerol and 1% Triton X-100). The lysed extract was 

centrifuged at 13000rpm for 15 minutes to remove cell debris before luciferase 

activity was measured. Luciferase activity was measured by the addition of 300jil of 

luciferase assay reagent (Promega) to lOOjiil cell extract in a luminometer (Berthold 

Lumant).

Internal control P~galactosidase activity was determined by mixing lOOjiil of cell 

extract with an equal volume of 2X P-galactosidase buffer (200mM sodium 

phosphate buffer pH 7.3, 2mM MgCL, lOOnriM p-mercaptoethanol and 1.33mg/ml O-
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nitrophenyl-P-D-galactopyranoside), The reaction mixtures were incubated at 3TC  

until faintly yellow in colour at which point enzyme activity was quantified by 

measuring the optical density of the mixture at 420nm.

In cases where fold activation and fold repression were calculated the following 

formulas were used:-

 ̂Fold activation (rel. reporter) = Activity of reporter. + Activator.

Activity of reporter.

 ̂Fold repression by p i4"̂ ^̂  = Activity of reporter + Activator.

Activity of reporter + activity of activator + p i4^^^

2.4. Immunofluorescence.

Cells transfected, on 35nun glass coverslips, were washed three times in PBS prior to 

fixation in a solution of 4% paraformaldehyde at room temperature for 15 minutes. 

Cells were then washed in PBS and permeabilised in a PBS solution containing 0.2% 

Triton X-100 for 10 minutes at room temperature. Fixed cells were then blocked in a 

10% FCS PBS solution for 10 minutes at room temperature. Primary antibodies in a 

5% FCS PBS solution were then incubated with the cells for 30 minutes at room 

temperature. After washing three times in a PBS 10% FCS solution the secondary 

antibody diluted in a PBS 5% FCS solution was added for 30 minutes at room 

temperature. Anti-mouse, anti-goat, or anti-rabbit IgG conjugated to fluorescein 

isothiocyanate (FITC) or tetramethyl rhodamine isothiocyanate (TRITC) was used for 

detection (Southern Biotechnology Associates Inc). Finally, coverslips were washed 

three times in PBS and once in PBS containing DAPI (4,6-Diamidino-2-
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phenylindole) before mounting on slides with Citifluor (Citifluor Ltd). 

Immunofluorescence was viewed under a fluorescent microscope (Olympus).

In cases where cells were doubly transfected either anti-mouse, anti-goat or anti

rabbit conjugated to either fluorescein isothiocyanate or rhodamine isothiocyanate 

were used accordingly. Where cellular compartmentalisation was quantified the 

percentage of cells in each cellular localisation was defined relative to the whole 

population examined. Whole cell staining was defined as cells expressing equal 

quantities of protein in the cytoplasm and nucleus. Nucleolar staining was defined as 

dense bodies within the nucleus that correspond to region of highly condensed DNA.

2.5. Flow cytometry.

Flow cytometry analysis was carried out on cells transfected with the indicated 

amounts of plasmid DNA. In all cases cells were transfected with S jL tg  of CD20 

expression vector and captured by monitoring the expression of the cell surface 

protein, CD20. After transfection cells were harvested by treatment with cell 

dissociation solution (Sigma) for 15 minutes at 37°C. Cell were washed in DMEM by 

centrifugation at 2000ipm for 3 minutes and re-suspended in 200|l i 1 of DMEM 

containing 20|l i 1 of a mouse anti-CD20, leu 16, antibody (Becton Dickinson) coupled 

to fluorescein isothiocyanate (FITC). The cell suspension was incubated on ice for 30 

minutes followed by washing in ice cold PBS. Cell pellets were then fixed by the 

dropwise addition of a 50% ethanol/PBS solution and left overnight at 4°C.

Cells were then washed in PBS and re-suspended in 500jil of PBS containing 

propidium iodide (20p,g/ml) and RNase (125U/ml). Flow cytometry was performed
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on a Becton Dickinson fluorescence activated cell sorter. All cell populations were 

analyzed at a rate of 100-200 cells/second to prevent mis-read. To determine the cell 

cycle profiles of transfected populations the intensity of propidium iodine staining 

was analyzed in cell populations that were positive for FITC staining. Using 

CellQuest software, the cell cycle profiles of 10000 transfected cells was ascertained. 

The data presented show a representative example from multiple assays.

2.6. Immuno-precipitation.

Transfected cells were washed twice in PBS and harvested by scraping in TNN buffer 

on ice (50mM Tris-HCl pH 7.4, 120mM NaCl, 5mM EDTA, 0.5% NP-40, 50mM 

NaF, ImM DTT, ImM PMSF, 0.2 mM sodium orthovanedate, leupeptin (0.5 jig/ml), 

bestatin (40|ig/ml), protease inhibitor (0.5p.g/ml), trypsin inhibitor (1.0|xg/ml) and 

aprotinin (0.5jiig/ml)). The cell extract was centrifuged for 10 minutes at lOOOOrpm 

and pre-cleared by incubating with protein-G agarose for 30 minutes at 4°C with 

agitation. The supernatant was harvested and incubated at 4^C with agitation for 1 

hour after the addition of 4p,l of primary antibody. The reaction was continued for a 

further 30 minutes at 4°C following the addition of 50|Li1 of protein-A agarose (50w/v 

slurry). The agarose beads were collected by centrifugation for 30 seconds at 

5000ipm and were subsequently washed three times in TNN reaction buffer. Bound 

proteins were released into 2X SDS loading buffer (250mM Tris-HCl pH 6.8, 20% 

glycerol (v/v), 4% SDS (w/v), 0.1% bromophenol blue (w/v), 200mM DTT, and 5% 

P-mercaptoethanol). The sample was denatured and separated by SDS-PAGE and the 

protein of interest detected by Western blot using a specific antibody.
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2.7. Apoptosis assays.

Transfected S AOS-2 cells were washed and grown in DMEM supplemented with 

0.2% FCS, streptomycin lOmg/ml and penicillin lOOU/ml for 17 hours before 

analysis. Transfected populations of cells were washed and fixed in a 4% 

paraformaldehyde solution for 15 minutes at room temperature, rinsed thoroughly 

and permeabilised in a PBS solution containing 0.1 % Trition X-100 and 0.1% 

sodium citrate for 5 minutes. Cells were then incubated with primary antibody for 30 

minutes in order to assay transfected cells. Cells were then incubated in a Câ "*" 

reaction buffer containing fluorescein-dUTP, dNTP and terminal deoxynucleotidyl 

transferase at 37”C for one hour. In addition a secondary antibody was included that 

was tetramethyl rhodamine isothiocyanate (TRITC) labeled in order to allow the 

visualization of transfected cells. Following incubation cells were washed three times 

in PBS and once in PBS containing DAPI (2jig/ml) mounted and viewed under a 

fluorescent microscope (Olympus),

Apoptotic cells were counted in transfected staining cells in order to ensure a 

conelation between transfection and apoptosis. Transfected cells were visualized 

under a red filter and apoptotic cells under a green filter. At least 1000 transfected 

cells were counted in order to obtain representative data. Background apoptosis was 

determined by TUNEL assay alone in the whole population. Percentage stimulation 

was calculated relative to the level of apoptosis in p53 transfected cells.

2.8. Gluthione S-tranferase recombinant proteins.

BL21(DE3)pLysS (Promega) bacterial cultures transformed with the plasmid of 

interest were grown to a mid-logarithmic stage in LB-broth (Sigma). Protein
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expression was induced by the addition of IPTG (isopropyl-p-D- 

thiogalactopyranoside) at a final concentration of 0.5mM for 4 hours at 37°C. During 

protein induction the protease inhibitor PMSF was added to the cultures every 30 

minutes at a final concentration of 0.5mM. Bacterial pellets re-suspended in 10ml’s 

of PBS containing 1% Triton X-100, 0.5 mM PMSF and 50mM DTT were sonicated 

on ice for two 30 second bursts. Bacterial debris was pelletted by centrifugation and 

re-centrifugation at 12000 rpm for 30 minutes at 4”C. 250)41 of a 50% v/v suspension 

of gluthathione-agarose beads were added to the supernatant and the mixture 

incubated, with rotation, at 4°C for one hour. The suspension was washed twice with 

PBS containing 0.5% Np-40 and once with PBS by centrifugation at 4000rpm for 5 

minutes at 4“C. Beads were stored at 4°C in PBS-azide and protein expression 

monitored by coomassie staining after SDS-PAGE.

2.9. In Vitro protein expression.

In vitro protein transcription and translation was carried out using a TNT T7 coupled 

Reticulocyte lysate system (Promega). Luciferase and MDM2 were expressed as 

recommended by the manufacturer. All the JMY constructs were expressed to an 

optimized reaction condition. Briefly; 30)41 of rabbit reticulocyte lysate, 3)41 reaction 

buffer, 3)41 T7 RNA polymerase and 2)41 of RNase inhibitor were added to l)4 g of 

purified plasmid DNA. Expression was initiated by the addition of 6)41 amino acids 

minus methionine mixture and 4 )4 l of ^̂ S labeled amino acid mixture (Amersham). 

The reaction volume was maintained at 50)41 by the addition of water and allowed to 

proceed at 30°C for 3 hours. Protein expression was examined by loading the 

indicated amounts of crude inputs onto a SDS-PAGE gel and the level of ^̂ S signal 

examined by autoradiography.
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2.10. Western blot analysis.

Protein expression levels were measured by immobilization of crude extract onto 

nitrocellulose membrane (Inverclyde Biochemicals) followed by detection with 

specific antibodies. Specific goat, mouse or rabbit primary antibodies were used for 

detection of the protein of interest and the signal amplified either by the addition of a 

specific horseradish peroxidase conjugated secondary antibody (1;7500) or a calf 

alkaline phosphatase conjugated secondary antibody (1;5000). Detection was 

achieved using substrate tablets for alkaline phosphatase (Sigma Fast™ 5-Bromo-4- 

chloro-3-indoyl phosphate/nitro blue tétrazolium) or enhanced chemiluminescent 

(ECL) for horseradish peroxidase (Pierce).

2.11. In vitro binding assays.

In vitro binding reactions were caiiied out by using approximately lOpg of GST or 

GST fusion protein bound to glutathione agarose beads (Amersham Inc). Beads were 

added to equal quantities of in vitro translated product. The reaction was carried out 

in a constant 200|4l volume of reaction buffer (lOOmM Tris-HCl pH 8.0, 150mM 

NaCl2 , 0.5% Np-40, ImM PMSF, ImM DTT and a recommended dilution of 

protease inhibitor cocktail). After incubation at 4°C for 3 hours the beads were 

collected and washed four times in reaction buffer and once in PBS. Proteins were 

released in SDS-sample buffer, electrophoresed and the assay monitored by 

autoradiography. In all cases equal loading was confirmed by coomassie staining of 

GST and GST fusion proteins.
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2.12. RNA isolation.

Whole cell F9 mRNA was isolated from asynchronously growing cell cultures. Cell 

cultures were lysed in RNA extraction buffer (lOOmM NaCl, 1.5mM MgCL, lOmM 

Tris-HCl pH 8 .6 , 0.5% Np-40, ImM DTT, 1000 U RNasin, 2% SDS, 25mM EDTA). 

Proteinase K was then added at a final concentration of 2 0 0 |4 g/ml and the reaction 

left at 37°C for 1 hour. Cellular RNA was then extracted using phenol:chloroform. 

DNA digestion was completed by DNAase I (final concentration 2jag/ml) treatment 

of the RNA at 37°C for 1 hour. RNA was then extracted by phenoF.chloroform 

treatment and the RNA was ethanol precipitated and stored at -80°C in TE.

2.13. RT-PCR.

RT-PCR was carried out on whole cell RNA isolated from F9 cells or on RNA kindly 

provided by Dr Shikama. Whole cell RNA was isolated as described and subjected to 

3’ RT-PCR using a specific oligonucleotide directed against a non-coding RNA 

sequence of the C-terminal JMY message.

F9 cellular mRNA (500ng) was incubated at 90°C for 4 minutes with 50pmol of 

specific oligonucleotide (O2 ) primer directed against the 3’ non-coding sequence of 

JMY as determined by Dr Shikama. The primer sequence was 

CTCTGCCAACCCAGTGTTCTTCC-3’̂ ^^^  ̂ The reaction was cooled on ice and 

AMV reverse transcriptase (Avian myeloblastosis virus) added (5U) together with 

DTT to a final concentration of lOmM, RNase inhibitor (5U), 0.5mM final 

concentration of dNTP mixture, and IX reaction buffer (50mM Tris-HCl pH 8.3, 

50mM KCl, lOmM MgCL, 0.5mM Spermidine, lOmM DTT) to give a final volume 

of 50)41. cDNA synthesis was allowed to proceed at 45^C for 1 hour. The cDNA was
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then ethanol precipitated and stored in TE (lOmM Tris-HCl pH 8.0, ImM EDTA) at 

-80°C.

2.14. cDNA amplification (PCR).

Primer pairs of 3’ JMY specific sequence were used to amplify the cDNA signal. The 

wild-type JMY sequence is encoded by bases 1-+2949 and the oligonucleotide 

sequences and positions in base pairs from the first ATG in the wild-type JMY 

coding sequence are indicated. The primer pairs used were;

PCR T m = 6 8 °C

01 ’ - AGAGC AG AGG AC ACTGG ATAGAC-3 ’

0 2 ’ -CTCTGCC A ACCC AGTGTTCTTCC-3 ’

The PCR reactions were carried out using °/c rich Taq DNA polymerase (5U) 

(Clontech). PCR was performed by the addition of 1:10^  ̂of the cDNA form the RT- 

PCR reaction to a solution containing a 0.2mM dNTP mixture, IX reaction buffer, 

lOOpmol of each 5’ and 3’ specific primer pair, 5U rich taq DNA polymerase to 

give a final working volume of 20|uil. Standard PCR reaction cycles was performed 

using the stated annealing temperatures of the oligonucleotide pairs.

Nested primers from sequences within the predicted PCR products were then used to 

further amplify DNA species isolated from the 3’ of JMY. The nested primer pair 

used were;

PCR Tm = 6 8 "C

Oi ^̂ ^̂ y’-AGAGCAGAGGACACTGGATAGAC-3’̂ ^̂ ^̂

0 3 +3112,̂ , _ taG T  A ACCTCCCGTTTGTGCTTCC-3 ’
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PCR was carried out as for the initial amplification only 10% of the first PCR 

reaction was used as template. PCR reactions were carried out as standard and the 

oligonucleotide annealing temperature are indicated. PCR reactions (5% v/v) were 

cloned into the A/T topo cloning vector system (Novagen).

2.15. Hybridisation screening.

In order to detect JMY specific clones from 3’ RT-PCR the A/T cloning reaction was 

probed using a ^^P-a-GTP radio labeled oligonucleotide probe. The probe sequence 

was (O4 ) "^^^^y’-GAACAACTTGAATCC-3’+̂ ^̂  ̂ Ligation reactions were 

transformed into XLl blue E. coli and colonies transfened to nitocellulose filters 

(Hybound), lysed and DNA fixed by UV crosslinking. Filters were then examined by 

hybridisation.

Hybridisation was carried out overnight at 40°C in Denhardts solution (0.02% Ficoll, 

0.02% polyvinylpyrrolidone, 0.02% bovine serum albumin) containing 6 XSSC 

(900mM NaCl, 90mM sodium citrate pH 7.2) and 0.4% SDS. Non specific binding 

was removed by washing filters in a 6 XSSC, 0.2% SDS solution three times for 30 

minutes at 45°C. Filters were examined by autoradiography.
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3. Isoforms of JMY.

3.1. Introduction.

Eukaryotic transcription directed by RNA polymerase I, II, and III produces RNA 

that is composed of both coding and non-coding sequences. The protein coding 

sequences of genes, called exons, are spatially jumbled by non-coding intron 

sequences that range in size depending on the gene. The processing of the intron and 

exon sequences is known as splicing, and leads to the construction of transcripts 

which encode physiologically expressed proteins.

The product of gene transcription, the precursor mRNA molecule, is composed of 

both intron and exon sequences. Precursor mRNA is structurally bound by a large 

protein complex, the spliceosome, which contains of a variety of small ribonucleo- 

proteins, called snRNPs (small nuclear ribonucleoproteins). snRNP protein 

complexes are associated with a number of stable RNA molecules designated U1 to 

U12. snRNP’s specifically function in the recognition of specific donor and acceptor 

sites in the precursor mRNA molecule from where they promote the formation of the 

spliceosome. snRNP’s induce RNA strand breaks in the precursor mRNA and 

promote exon joining. Specifically the spliceosome uses ATP energy to carry out the 

accurate removal of introns (Anraku, 1997; Hartel et ah, 1997).

The splicing of mRNA is an intricate process dependent on many molecular events 

and if these events are not carried out with precision then functional coding mRNA is 

not produced. Consequently numerous studies have demonstrated that genetic 

mutations at exon and intron boundaries leads to the production of mutant non
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functional proteins that in turn disrupt the normal pattern of cell physiology (Philips 

and Cooper, 2000).

A major evolutionary reason for the existence of splicing is the diversity of protein 

expression it allows. Alternative splicing allows the production of functionally 

distinct members of the same protein from the same gene to generate genetic 

flexibility in the cell. Interestingly, many of the key cell cycle regulatory proteins 

appear to undergo extensive splicing which increases their diversity of function.

3.2. Isolation and characteristics of JMY.

Using a yeast two-hybrid approach with pLexA-pSOÔ *̂ '̂ ^®"̂  as bait a new p300 

binding protein, JMY was isolated (Junction-mediating and regulatory protein) 

(Shikama et aL, 1999). JMY is a llOkDa proteins that lacks any significant similarity 

to other known proteins. The protein sequence possesses a number of interesting 

features, including a central region that resembles a motif in the adenovirus E l A 

protein, a C-terminal domain rich in proline residues and an N-terminal region that 

contains a number of potential S/T-P phosphorylation sites (Figure 3.1a and 3.1b).

JMY is a particularly interesting protein given that its gene, jmy, is located on 

chromosome 5 in band 5q 13.2. Interestingly, the long arm of chromosome 5 is often 

disrupted in a wide range of malignancies, in particular, leukaemia (Shikama et a l, 

1999). Potentially, the disruption of jmy may be a prerequisite or modifier of tumour 

formation, and consequently its function may be vital in the maintenance of an 

archetypal cell. However to date no specific deletion in the mRNA of JMY has been 

detected in tumour cells (Shikama, personal communication).
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Two transcripts, a 9.5kb and less abundant 6 kb species, encode the JMY message. 

Both transcripts are expressed in a wide variety of mouse tissues apart from testis 

where a smaller 4kb transcript exists (Shikama et a l, 1999).

3.3. 3' splicing of .TMY.

As JMY is potentially a target of inactivation in malignancies it was of interest to 

determine if the transcripts encoding JMY are subject to alternative splicing. The 

analysis of the C-terminus of JMY lead to the observation that JMY was extensively 

alternatively spliced in the 3’ region. Indeed endogenous protein expression analysis 

carried out in SAOS-2 cells confirmed the presence of multiple forms of JMY protein 

(Shikama, personal communication).

Using RNA derived from F9 embryonal carcinoma cells, a number of 3’ splicing 

variant transcripts of JMY were isolated and examined. An RT-PCR approach was 

used to amplify mRNA from a region of JMY encompassing the C-terminus. Reverse 

transcription was used to synthesis cDNA, from a primer directed from a previously 

identified 3’ untranslated region of the jmy gene. Nested PCR, using oligonucleotides 

directed against the C-terminal sequence of JMY, was then performed to allow 

detection of JMY specific C-terminal encoded sequences (Figure 3.2a). After 

multiple rounds of PCR specific JMY cDNA’s were isolated, by A/T cloning, and 

their base sequence analysed and compared to wild-type JMY coding sequence 

(Figure 3.2b). Given this strategy, no variant could be isolated before the aspartic acid 

(D) residue at position 650 (Figure 3.1b).
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Sequence comparisons, of the 3’ isolated sequences with the wild-type JMY 

sequence, demonstrated not only that JMY was potentially extensively spliced but 

also that the splicing sites, donor and acceptor, were diverse (Figure 3.3a). Of the 

potential 3’ splice variants examined, three resulted from frame shifts in the reading 

frame of wild-type sequence. Interestingly no wild-type JMY sequence was detected 

in the amplified mRNA splice sequences, although its expression in F9 cells can not 

be excluded.

Notably, the detection of multiple forms of JMY 3’RNA species from F9 cells 

although suggestive of splicing in the JMY message dose not confirm such a 

conclusion. Potentially the relevance of such RNA species to the endogenous RNA 

population is merely suggestive and as such is a consideration when interpreting the 

following results. Herein the isolated RNA species and their potential protein 

products are refereed to as either splicing variants or isoforms although their 

endogenous presence requires conformation by RNA protection assays.

3.4. Splice junction of JMY

Sequence analysis of a population of JMY 3’ mRNA variants allowed the recognition 

of a number of potential splice junctions. The JMYAP isoform lacks 18 residues 

located in the C-terminal region, from residue 795 to 813, which in the wild-type 

protein contains a high proportion of proline residues (83%) (Figure 3.3b). JMYAP is 

derived as a consequence of splicing bases encoding amino acid 794P to 814P and 

remarkably possesses an almost perfect deletion of the proline rich domain (Figure 

3.3ai and 3.3ci). The in frame splicing of the JMY message also results in the 

generation of two other isoforms that are devoid of the proline rich domain, JV2 Â ^̂ '
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and The variant is generated by splicing the bases encoding

amino acid 765A (Alanine) to bases for 841G (Glycine) and the isofoim

by splicing bases encoding amino acid 739T (Threonine) to those encoding 828T 

(Threonine) (Figure 3.3aii, cii and 3.3av, cv).

In addition to the in frame splicing events detected, three other splicing variants were 

isolated that were generated as a consequence of a change in the reading frame of the 

wild-type JMY message. A splice in the JMY message from the bases encoding 

amino acid 759T (Threonine) to the bases of amino acid 98IW (Tryptophan) 

generated a C-terminally deleted JMY variant, JV4 FS'*'̂ . In comparison to the wild- 

type JMY message the reading frame of JV4 pS'^  ̂ is altered by +2 bases at the amino 

acid encoding 98IW (Tryptophan). This results in an isofoim that is deleted in the C- 

terminus of JMY but contains additional sequence encoded for by the 3’ un-translated 

region (Figure 3.3a iv and 3.3c iv).

The JV'sFS'*’̂  ̂valiant was generated by splicing the bases encoding amino acid 765A 

(Alanine) to those encoding 852A (Alanine). The splicing event results in a +1 

change in the 3’ reading frame relative to wild-type JMY that generates an internal 

stop codon (Figure 3.3avi and 3.3cvi). The JVgFS^^^ splicing isoform is terminated in 

the same reading frame as JVsFS'*'^  ̂ but the splice sites are different. JV^FS^^^ is 

generated by splicing the bases encoding amino acid 739T (Threonine) to those 

encoding 844R (Arginine) and is read in the +1 reading frame relative to wild-type 

JMY (Figure 3.3aiii, 3.3ciii).
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3.5. Conclusions.

The complexity of 3’ JMY mRNA splicing is undoubtedly an important mechanism 

that regulates the function of JMY. Indeed given the selective removal of the 3’ 

proline rich region of JMY it is conceivable that the region is a major controlling 

domain in JMY function. The complexity of JMY is also further highlighted by the 

isolation of other JMY related family members, although their function is as yet 

unknown (Shikama, personal conomunication). Clearly the family status and 

extensive splicing of JMY point to its role as a highly regulated cellular molecule.
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Figure 3.1. Characteristics of JMY.

a). The sequence of the 983 amino acid protein JMY. The S/T-P motifs in the N- 

terminus (blue) are underlined, and the p300 binding domains from amino acids 1- 

119 and 469-558 are highlighted (yellow). The adenovirus E l A CR2 like motif, 

EVQFEILKCBE is indicated (red). The proline rich region is highlighted in green 

and the first potentially detectable 3’ splice amino acid, 650D (Aspartic acid), is 

shown (pink).

b). Domain structure of JMY. The N- and C-terminal p300 binding domains are 

depicted (yellow), together with the N-terminal S/T-P rich region (blue), the E l A 

like motif (red) and the C-terminal proline rich domain (green). The 3’ region studied 

for alternative splicing is indicated.
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Figure 3.2. Isolation of 3* splicing variants of .TMY.

a). Diagrammatic representation of JMY. Indicated are the N-terminal and central 

p300 binding domains (yellow), the N-terminal S/T-P rich region (blue) and the C- 

Terminal proline rich domain (green). The oligonucleotide used for cDNA synthesis 

is indicated (O2 ) together with the nested oligonucleotides used for the amplification 

of cDNA (Oi, O2  and O3 ). Also indicated is the position of the oligonucleotide used 

for colony screening (O4 ).

b). The products from the PCR reactions generated in 3.2a were loaded on an agarose 

gel and DNA levels examined by ethidium Bromide staining. PCR reactions were 

ligated into the Invitrogen A/T cloning vector, pCR 2.1, and the presence of positive 

JMY clones confirmed by probe hybridisation with ^^p-a-labelled olionucleotide 4.
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Figure 3.3. JMY 3’ splice variants.

a). Diagrammatic representation of JMY. Highlighted are the 3 ’ splice variants 

isolated from F9 embryonic carcinoma cells, i) The JMYAP variant that encompasses 

a splice event that deletes a proline rich region in the C-terminus of JMY (84%). 

Variant ii), iii), iv), v) and vi) are a representation of other 3’ splicing events that 

give rise to 3’ spliced JMY construct.

b). The variants shown in 3.3a all commonly lack the proline rich region from amino 

acids 794 to 812 of wild-type JMY. The sequence of the region is indicated.

c). Amino acid comparisons of the 3’ splicing variants depicted in 3.3a. The wild- 

type JMY sequence form amino acids 721G (Glycine) to 983N (Asparagine) is 

indicated. The splicing events are indicated -:

i) JMYAP. 794p''''''"’̂ p

ii)

iii) JV3 FS+'*. 765^ 852^
I

AAG-ACT

iv) JV4PS+ .̂ 7 5 9 ^  981^
4

TGG-GAG

v) 7 3 9 rjr""""""l^

vi) JVeFS^^®. 739p S44j^

I
CTC-AGC
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4. JMY, a new co-activator of the p53 

response.

4.1. Introduction.

The p300/CBP transcriptional co-activator family regulates the cell cycle by co

ordinating the actions of transcription factors. The key cell regulatory transcription 

factor p53 is one such target of p300/CBP function (Avantaggiata et al., 1997; Gu et 

a l, 1997; Lill et al., 1997a). p300/CBP facilitates the transcription of p53 mediated 

gene expression to augment the p53 response.

The inactivation of the p53 pathway is a prerequisite for the formation of tumour cells 

and the maintenance of viral infections. p53’s ability to stall genomic replication 

allows the repair of genetic lesions that maintains a healthy cell (Levine, 1997). In 

circumstances where the genetic shock is too severe for recovery, p53 can induce cell 

death (Gottlieb and Oren, 1996). The controlling mechanisms that discriminate 

between p53’s role in cell cycle an'est and apoptosis are currently not well 

understood.

The ability of p300/CBP to co-operate with the p53 response provides a mechanistic 

control point for the p53 pathway. In addition to p300/CBP itself a number of 

molecules exist in complex with p300/CBP but their function in the regulation of p53 

is unknown. Given that JMY is a p300/CBP associated molecule that has an unknown 

function it is of clear interest to elucidate the role, if any, of JMY in the p300/CBP- 

p53 molecular pathway.
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4.2. JMY binds p300 in vivo.

Previous studies have suggested that p300/CBP forms a multi-meric complex in vivo 

and that the composition of the complex is ultimately responsible for its function 

(Eckner et al., 1996b; Roeder, 1996; Chen et al., 1997; Grossman et al., 1998; 

Korzus et al., 1998; Xu et al., 1999). Consistent with the isolation of JMY as a p300 

binding protein it was demonstrated that JMY contained at least two independent 

p300-binding domains (Shikama et al., 1999) (Figure 4.1a). In addition p300 itself 

interacts with JMY through two separate binding domains (Shikama et al., 1999) 

(Figure 4.1b). Shikama et al. (1999) also demonstrated that JMY and p300 directly 

interact in vitro. The ability of JMY, the natural splice JMYAP and a C-terminal 

truncation mutant, JMYAC, to bind p300 in vivo was therefore of interest and was 

assayed by immuno-precipitation.

Anti-HA immuno-precipitates from SAOS-2 cells overexpressing HA-JMY, HA- 

JMYAP or HA-JMYAC all contained a p300 specific component (Figure 4.1c). HA- 

JMY and HA-JMYAP immuno-precipitates contained an equivalent level of p300 

while HA-JMYAC showed a reduction in the level of in vivo complexed p300. The 

ability of endogenous p300 to be immuno-precipitated with JMY clearly 

demonstrates that the two proteins exist in an in vivo complex and that physiological 

3’ splicing of JMY in relation to the proline rich domain does not effect this 

interaction. Given that deletion of the C-terminus of JMY reduces the level of in vivo 

bound p300, even through the region is outside the previously identified binding 

domains, it is conceivable that JMY’s interaction with p300 is in part mediated by its 

C-terminus (Shikama et al., 1999).
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4.3. JMY co-activates p53 transcription.

Given that p300 and CBP are physiological co-activators of p53 and that this co

activation leads to the enhancement of p53’s cellular function it was of interest to 

determine JMY’s ability to influence p53 transcriptional activation function 

(Avantaggiati et al., 1997; Gu et al., 1997; Lill et al., 1997a; Lee et al., 1998). As 

previously shown p53 efficiently activates expression from the box, mdm2, wafl and 

gaddAS promoters (Figure 4.2) (Lee et al., 1998). The box, mdm2, gadd45 and WWP 

reporters consist of promoter regions, that contain p53 DNA binding consensus sites, 

fused upstream of a luciferase reporter gene (El-Deiry et al., 1993; Chen et a l, 1995; 

Haupt et al., 1995).

The box promoter, consistent with its role in p53 mediated apoptosis, is activated 

upon the introduction of exogenous p53 expression plasmid into SAOS-2 cells and 

this transcription is in turn co-activated by the co-expression of HA-JMY (Miyashita 

et al., 1994a; Miyashita and Reed, 1995). JMY induces a two-fold stimulation of p53 

mediated box promoter driven transcription (Figure 4.2a and 4.3a). Intriguingly the 

natural splice, JMYAP, was unable to co-activate p53 driven transcription of the bax 

gene even through it retains p300 binding properties (Figure 4.2a). The JMYAC 

mutant was unable to significantly co-stimulate p53 mediated transeription of the bax 

promoter (Figure 4.3a). As JMY is unable to bind p53 directly it was assumed that 

endogenous p300 was acting as a bridging molecule in JMY’s co-activation of 

transcription (Shikama, personal communication). The reporter activity in the 

absence of p53 was unaffected by JMY, JMYAP or JMYAC indicating that JMY’s 

ability to act as a co-activator was specific for p53 in the context of bax.
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Consistent with the C-terminus of JMY being important for p53 transcriptional co

activation and p300 binding was the observation that a C-terminal JMY deletion 

mutant, JMYA" °̂ ‘̂̂ ®̂, possessed dominant negative activity (Shikama et a l, 1999). 

The JMYA"̂ ^̂ '̂ ^̂  mutant retains the N-terminal p300 binding domain and S/T-P rich 

cluster but has lost the central p300 binding domain and C-terminal region. The level 

of transcriptional activity by p53 was significantly compromised by the co-expression 

of JMYA'^^ '̂^^ ,̂ presumably as a result of its ability to interfere with the endogenous 

JMY/p300 and p53/p300 interactions (Figure 4.3a). Implying that endogenous JMY 

is required for p53 mediated transcription.

An N-terminal JMY deleted mutant that binds p300 in vitro, JMYA '̂^^^, still retained 

the ability to transcriptionally co-activation p53, although at a level significantly 

reduced relative to wild-type (Figure 4.3a). Implying that the C-terminus of JMY, at 

least in part, confers its ability to act as a transcriptional co-activator (Shikama et a l, 

1999). Together these results suggest that JMY’s ability to effectively co-activate p53 

mediated transcription requires not only its p300 binding capacity but also its C- 

terminal region. Furthermore, it appears that the integrity of the C-terminus of JMY 

may influence co-activation as a result of its role in p300 binding.

JMY’s ability to stimulate p53 mediated transcription in the context of Gi arrest was 

examined using the cell cycle arrest associated promoters taken from the gadd45 and 

wafl genes. The co-expression of JMY with p53 only minimally stimulated 

expression from the WWP and gadd45 promoters above the level of p53 alone 

(Figure 4.2c and 4.2d). The lack of substantial co-activation can be attributed to the
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responsiveness of the reporter constructs to the addition of p53 alone. Interestingly, 

although subtle, JMYAP was repeatedly more active than JMY in the co-activation of 

p53’s /mMj-activation of the WWP promoter (Figure 4.2c). JMYAP co-activation of 

p53-dependent transcription, driven from the gadd45 promoter, was equivalent to 

wild-type JMY which was repeatedly similar to p53 alone (Figure 4.2d).

In order to examine further the enhanced activity of JMYAP in WWP co-activation 

the artificial TGig-luc reporter, that consists of thirteen p53 consensus sites taken 

from the promoter fused upstream of a luciferase reporter gene, was

studied (Lee et al., 1998). p53 mediated transcription from the TGig-luc promoter 

was co-stimulated efficiently by JMYAP but JMY did not alter the level of p53 

mediated transcription (Figure 4.3b). Given these findings it is possible that the 

proline rich domain of JMY, that is selectively spliced, functions as a promoter 

specific p53 co-activator domain.

The p53 regulated promoter taken from the mdml gene was also marginally co

activated by the expression of JMY and JMYAP in the presence of p53 (Figure 4.2b). 

It is of interest to note that transcription from the TGn, mdm2, WWP and gadd45 

promoters was p53-dependent as JMY and JMYAP did not alter the activity of the 

reporters constructs in the absence of p53 (data not shown and Figure 4.3b).

Together these results suggest that JMY is a physiological p53 co-activator, 

presumably as a consequence of its association with and recruitment by p300. The 

inability of JMYAP to co-activate p53 mediated transcription driven from the bax 

promoter implies that 3’ splicing of JMY produces functionally distinct variants. The
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loss of the proline rich domain confers promoter specificity on JMY as only the bax 

and WWP promoters were affected. Indeed the entire C-terminus of JMY appears to 

influence JMY’s ability to act as a transcription co-activator as some p53 promoters 

show a high level of co-activation by JMYAC while others are compromised (Figure 

4.4a and 4 .12d), further strengthening the hypothesis that the C-terminus of JMY 

confers p53’s transcriptional promoter specific properties.

Given that JMY’s ability to co-activate p53 transcription presumably stems from its 

capacity to bind p300 it was of interest to determine if JMY and p300 would co

operate in the activation of p53 mediated transcription. The Z)a%-luciferase promoter 

construct was activated by the addition of p53 and as previously shown p53 mediated 

transcription was co-activated by the addition of exogenous p300 (Lee et ah, 1998; 

Shikama et al., 1999). JMY effectively co-activated p53-dependent transcription from 

the /?(%%-luciferase reporter and transcription was further enhanced by the addition of 

p300 (Figure 4.4a). JMY and p300 therefore effectively co-operated in the co

activation of p53’s transcription. JMYAP was unable to co-activate the bax reporter 

and consequently did not significantly co-operate with p300 in p53 mediated 

transcription (Figure 4.4a). Interestingly, p300’s ability to stimulate p53 mediated 

transcription was unaffected in the presence of JMYAP which suggests that JMYAP 

does not dominate p300’s function as a co-activator for p53 in the context of 

apoptosis (Figure 4.4a).

As p53 mediated transcription is activated following its post-translational 

modification and stabilisation it was of significance to determine if JMY affected p53 

stability. The addition of HA-JMY, HA-JMYAP and HA-JMYAC into SAOS-2 cells
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along with p53 did not effect the expression level of p53 or p53’s stability (Figure 

4.4b). The lack of p53 stabilisation points to JMY acting as a co-activator and not 

post-translational modifier of p53.

In transient reporter assays JMY acts as a co-activator that helps stimulate p300/p53 

mediated transcription. Significantly the 3’ splicing of JMY appears to play a role in 

the promoter specificity of p53 mediated transcription and presumably p53’s role in 

cell cycle arrest and apoptosis. It is clear that the p300/CBP in vivo complex 

components, of which JMY is one, enhance the transcriptional co-activator and hence 

cellular consequences of p300/CBP action.

4.4. JMY co-activates endogenous gene expression.

Given that p53 stimulates the transcription of artificial promoters in vivo and that 

JMY acts as a co-activator of p53 transcription it was of interest to deteimine if JMY 

would stimulate the transeription of endogenous genes.

SAOS-2 cells, which lack p53, when transfected with p53 begin to express both the 

upper and lower forms of MDM2 (Figure 4.5a). Consistent with JMY’s role as a co

activator, the co-expression of JMY and p53 stimulated the level, although only 

slightly, of MDM2 expression compared to that seen with p53 alone (Figure 4.5aiii). 

The co-activator stimulation of MDM2 protein expression mirrored the reporter gene 

activation studies. Similarly, the JMYAP 3’ splice variant behaved as wild-type JMY 

in the co-activation of MDM2 expression (Figure 4.5aiii). The activation of MDM2 

expression was p53-dependent as the over-expression of JMY or JMYAP in the 

absence of exogenous p53 did not stimulate MDM2 expression. Surprisingly the
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stimulation of MDM2 expression by JMY/p53 did not lead to a reduction in the level 

of p53 (Figure 4.5aii). The stability of p53 in the presence of high levels of MDM2 

may be explained by the sensitivity and transient nature of the experiment or may a 

consequence of JMY influencing MDM2’s function.

Given that JMY showed a preference over JMYAP in the co-activation of p53 

transcription from of the bax promoter it was of significance to determine the level of 

endogenous Bax expression. Cells transfected with p53 expressed an elevated level of 

Bax protein and JMY co-stimulated this transcription (Figure 4.5b). Interestingly and 

consistent with the inability of JMYAP to activate p53 mediated transcription of the 

bax promoter construct, no increase in p53’s induction of Bax protein was detected 

after the co-transfection of SAOS-2 cell with p53 and JMYAP (Figure 4.5b). Bax 

protein induced expression by JMY is p53-dependent, as the over-expression of JMY 

or JMYAP did not induce the co-activation of Bax expression in the absence of p53 

(Figure 4.5b).

Strikingly, and in agreement with the reporter gene assays, the transfection and over

expression of JMYAP in U20S cells, which express endogenous p53, increased the 

level of expressed (Figure 4.5c). Both JMY and JMYAC however were

unable to increase protein levels (Figure 4.5c). These results confirm that

3’ splicing of JMY bestows promoter specific properties on JMY. In addition it 

appears that JMY’s role as a co-activator of p53-mediated transcription is gene 

specific as some genes display a higher degree of co-activation than others (Figure 

4.2 and 4.5).
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4.5. p53 translocates JMY to the nucleus.

The ability of p53 to act as a transcription factor is associated with its nuclear 

localisation. Nuclear localisation of p53 is dependent on its inherent nuclear 

localisation signal (NTS) as well as its interaction with MDM2 (Kubbutat et a l, 

1997; Haupt et al., 1997; Roth et al., 1998). Given that JMY appears to participate in 

the p53 transcriptional response it was of significance to determine if JMY cellular 

localisation conesponded to its ability to act as a p53 transcriptional co-activator.

Initially in order to address JMY sub-cellar localisation a polycolonal antibody raised 

against the N-terminus of JMY was used in the detection of the endogenous JMY 

population. In non-transfected SAOS-2 cells fluorescent staining established that in 

the majority of cells JMY was localised throughout the cell (Figure 4.6ai and 4.6aii). 

Interestingly a small population of cells displayed exclusively nuclear or cytoplasmic 

staining for JMY.

As the localisation of the 3’ splicing variant, JMYAP, could not be observed or 

discriminated directly using the N-terminal antibody, cells were transfected with HA 

tagged JMY variants prior to immuno-florescence. SAOS-2 cells were transfected 

with expression plasmids for HA-JMY, HA-JMYAP or HA-JMYAC. HA-JMY 

cellular localisation mirrored that observed with the JMY polyclonal antibody as the 

largest population of cells stained simultaneously both nuclear and cytoplasmic 

(Figure 4.6bi and 4.6bii). Again a population of cells displayed exclusively 

cytoplasmic or nuclear staining. Under the same cellular conditions HA-JMY-AP and 

HA-JMYAC displayed a similar staining pattern as wild-type JMY with the majority 

of cells staining whole cell (Figure 4.6ci, 4.6cii, 4.6di and 4.6dii), In embryonic
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fibroblast taken from p53'^' and p53'^';mdm2'^' mice an identical staining pattern as for 

SAOS-2 cells was observed for HA-JMY, HA-JMYAP and HA-JMYAC (data not 

shown).

The cellular localisation of JMY in SAOS-2 cells implied that JMY’s localisation 

was regulated. Interestingly, a large population of endogenous JMY must be in the 

transcriptionally dormant cellular compartment, the eytoplasm. Given that JMY 

activates p53 mediated transcription and that nuclear localisation is required for 

transcriptional co-activation it was of interest to determine if p53 affected JMY‘s 

cellular localisation. To this end SAOS-2 cells were co-transfected with p53 and 

either HA-JMY, HA-JMYAP or HA-JMYAC. The over-expression of p53 in SAOS-2 

cells resulted in its almost exclusively, nuclear localisation (Figure 4.7). Presumably 

cells overexpressing p53 that displayed weak cytoplasmic staining were undergoing 

p53 degradation as a consequence of MDM2’s over-expression.

The over-expression of HA-JMY and p53 lead to the observation that JMY 

localisation was altered in the presence of p53. The previously observed cytoplasmic 

population of JMY was replaced by a predominantly nuclear population (Figure 

4.7a). In an identical manner the subcellular localisation of JMYAP and JMYAC was 

also altered, becoming nuclear in the presence of p53 (Figure 4.7b and 4.7e). Given 

that p53 does not alter the expression level of JMY it is conceivable that p53 traffics 

or stimulates the trafficking of JMY from the cytoplasm to the nucleus. The ability of 

p53 to stimulate the translocation of JMY from the cytoplasm to the nucleus 

presumably contributes to JMY’s ability to stimulate p53 mediated transcription. 

Given that SAOS-2 cells contain endogenous p300 it is arguable that the translocation
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of JMY is through a p300 mediated mechanism. Interestingly p300’s intrinsic HAT 

activity appears to regulate nuclear import and export although in the context of JMY 

this mechanism of action has not been explored to date (Bannister et a l, 2000).

Although the shift in JMY’s cellular localisation in the presence of p53 was 

reproducible, in a set of assays the extent of change in JMY’s localisation in the 

presence of p53 was not uniform. It therefore appears that a feasible conclusion is 

that the JMY/p53 co-staining pattern is a cell cycle regulated event, although further 

studies are required to confirm such a hypothesis.

A N-terminal nuclear localisation signal (NLS) tagged JMY protein that is 

constitutively nuclear is less efficient than wild-type JMY in the co-activation of p53 

mediated transcription (Figure 4.3a). This suggests that it is not JMY’s nuclear 

localisation that is important for its function as a co-activator but the signals that 

trigger its localisation. In addition, p53 is not the only trigger for JMY’s nuclear 

localisation as a population of endogenous and overexpressed JMY is exclusively 

nuclear in the absence of p53 (Figure 4.6 and 5.7).

4.6. JMY is present in a DNA damage induced p53 complex.

The induction of p53 stabilisation by DNA damage stimulates cell cycle arrest and 

promotes apoptosis (Levine, 1997) (Figure 4.8a). DNA damage affects cells by 

increasing the transcription of target genes that control the cell cycle and apoptotic 

pathways (Figure 4.8a). As JMY participates in the activation of p53 mediated 

transcription it was of interest to determine if JMY was found complexed with p53 in 

vivo under conditions of p53 activation.
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Previously both JMY and p300 were shown not to be DNA damage-inducible genes 

(Shikama et al., 1999). p53 is stabilised and activated by the treatment of cells with 

the DNA damaging agent actinomycin D. In order to study the composition of the 

JMY complex under damaging conditions U20S cells treated with actinomycin D 

were examined for JMY binding polypeptides. As expected p53 was effectively 

induced following the DNA damage of U20S cells (Figure 4.8b). Given that JMY 

stimulates p53 mediated transcription it was of interest to determine if p53 was 

present in the JMY complex following DNA damage. To this end both untreated and 

treated U20S cells were immuno-precipitated with an anti-JMY N-terminal, 

polycolonal antibody and the level of p53 determined by western blot. As expected 

from the immuno-staining data, the JMY complex in asynchronous U20S cells 

contains p53 (Figure 4.8b). Interestingly, and in agreement with previously published 

data, DNA damaged U20S cells contain a significantly higher level of p53 in the 

JMY immuno-complex (Shikama et al., 1999) (Figure 4.8b). Furthermore the 

importance of the JMY/p53 in vivo complex is emphasised by the observation that 

quantitatively the JMY complex appears to contain the majority of the endogenous 

p53.

Given that JMY stimulates p53 mediated transcription it is conceivable the high level 

of p53 in the JMY complex under DNA damaging conditions corresponds to a p53 

mediated cell cycle cheekpoint arrest or apoptotic event that is associated with 

transcriptional up-regulation. As the level of JMY is unaffected following DNA 

damage it is possible that the increase in the level of p53 found in the JMY complex
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coiTesponds to an activated complex. Clearly JMY is a component of the DNA 

damage response of p53.

4.7. .TMY s role in p53 mediated cell cycle arrest.

The ability of p53 to induce a Gi arrest phenotype as a result of 

expression is well documented and understood (El-Diery et al., 1993; Gu et a l, 

1993). As JMY co-localises with p53, is present in the DNA damage induced p53 

complex and is able to co-stimulate the transcription of it was of interest

to determine the effect if any of JMY on p53’s role as a checkpoint protein.

To this end, SAOS-2 cells were transiently transfected with HA-JMY, HA-JMYAP or 

HA-JMYAC either alone or in combination with p53. Transfected populations were 

selected using CD20 staining and DNA content and cell cycle stage were assayed 

using propidium iodide (Figure 4,9).

As expected, p53’s introduction into SAOS-2 cells caused an increase in the Gi 

population of cells (Figure 4.9b and 4.10a). Under the conditions of the transient 

assay no detectable Gi/M arrest was observed in p53 overexpressing cells. The over

expression of JMY alone did not affect the cell cycle suggesting that JMY plays a 

dormant role in the unstressed cell (Figure 4.9c and 4.10b). However in the presence 

of p53, JMY stimulated an increase in the population of Gi arrested cells by almost 2 

fold relative to p53 alone (Figure 4.9d and 4.10b). The increase in Gi arrest 

presumable correlates with an increase in p53 mediated transcription.
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Given that JMY did not alter the level of the endogenous protein but

JMYAP did, it was of merit to determine if 3’ splicing could affect p53’s ability to 

arrest cells. JMYAP like wild-type JMY did not affect the cell cycle but in 

combination with p53, JMYAP produced a striking increase in the Gi population of 

cells relative to p53 alone (Figure 4.9e, 4.9f and 4.10c). JMYAP stimulated a four

fold increase in the p53 mediated Gi arrest population.

The over-expression of JMYAC alone resulted in an increase in the Gi population of 

cells (Figure 4.9g and 4.10d). In combination with p53, JMYAC increased the Gi 

population of cells but the p53 and JMYAC cell cycle arrest phenotype was additive 

and so non-synergistic effects can not be ruled out (Figure 4.9h and 4.10d). 

Conceivably JMYAC may be adversely effecting the normal cellular processes that 

mediates a p53 response and indirectly effecting the cell cycle profile.

Together these results suggest that JMY functions in mediating a p53 Gi arrest, but 

more significantly point to 3’ splicing of JMY as an important regulatory mechanism 

of p53 function. JMYAP clearly has an enhanced ability over JMY in the stimulation 

of p53 mediated cell cycle arrest.

4.8. JMY regulates p53-dependent apoptosis.

In addition to its role in cell cycle arrest, p53 functions as an apoptotic promoting 

gene product (Gottlieb and Oren, 1996; Levine, 1997). As JMY is present in an 

activated p53 DNA damage induced complex it is conceivable that JMY may be 

involved in p53’s ability to stimulate apoptosis. In addition JMY stimulates
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transcription of the apoptotic promoting gene product Bax in a p53-dependent 

manner.

In order to study JMY’s ability to regulate the p53 apoptotic responses cells were 

assayed for the characteristic, apoptotic, DNA fragmentation phenotype. Fluorescent 

labelled nucleotide incorporation into DNA was visualised directly by immuno

fluorescence using the TUNEL assay. As expected the transient transfection of p53 

into SAOS-2 cells in conditions conducive to apoptosis, namely low serum, 

stimulated an apoptotie response (Figure 4.11). Populations of cells overexpressing 

p53 showed a 30% increase in the level of apoptosis relative to those not expressing 

p53. The over-expression of HA-JMY and HA-JMYAP slightly induced apoptosis in 

the absence of p53 by 5,8% and 3.7% respectively (Figure 4.11). More interestingly, 

the simultaneous over-expression of HA-JMY and p53 dramatically increased the 

population of apoptotic cells in comparison to p53 alone (Figure 4.11). The over

expression of JMY and p53 induced a 41% stimulation in the level of apoptosis 

compared to p53 alone. However the level of apoptosis in JMYAP and p53 

overexpressing cells remained at levels equivalent to p53 alone (Figure 4.11). The 

over-expression of JMYAC produced an apoptotic phenotype identical to that of 

JMYAP in the presence of p53 (Simms, personal communication).

The ability of JMY to stimulate p53 dependent apoptosis clearly demonstrates that 

JMY can enhance p53 induced cell death. Interestingly, the inability of JMYAP to 

stimulate p53 mediated apoptosis but its ability to enhance cell cycle arrest supports 

an attractive hypothesis. The possibility that 3’ splicing of JMY generates 

functionally distinct species of JMY that confer specificity on the p53 response

136



supports an attractive mechanism for controlling the switch between cell cycle arrest 

and apoptosis,

4.9. Transcription and proline rich domains.

Although Bax is a well characterised gene involved in the p53 apoptotic response a 

number of studies have demonstrated that Bax expression is dispensable for p53 

mediated apoptosis (Knudson et a l, 1995). The ability of p53 to stimulate the 

expression of the PIG3 gene may correlate with the induction of p53 mediated 

apoptosis (Polyak et ah, 1996). A vitally important domain in p53 that mediates PIG3 

expression is the N-terminal proline rich region. The poly proline domain of p53 is 

essential for PIG3 expression but dispensable for MDM2, and Bax

expression (Walker and Levine, 1996; Venot et ah, 1998). In order to confirm that 

JMY is participating in p53’s induction of cell death by co-activating the transcription 

of genes involved in apoptosis the transcription of PIG3 was examined.

In transient transfection assays p53 effectively activated the P/GJ-luciferase reporter 

construct in a dose-dependent fashion (Venot et ah, 1998) (Figure 4.12a). As 

previously shown the deletion of the polyproline domain of p53 resulted in the loss of 

transcriptional activation (Figure 4.12a). Furthermore, as expected, the co-expression 

of JMY with p53 co-stimulated p53 directed expression from the PIG3 promoter and 

the transcriptional co-activation was dependent on the p53 polyproline domain 

(Figure 4.12b). JMYAP’s ability to stimulate the transcription of the PIG3 promoter, 

as for bax, was severely compromised relative to JMY (Figure 4.12c). JMYAC ability 

to stimulate p53 mediated transcription was also compromised relative to wild-type 

JMY (Figure 4.12d). Interestingly the C-terminal deletion of JMY still retained a
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degree of transcriptional co-activation, indicating that the C-terminus of JMY is not 

absolutely essential for co-activation but a contributor. The inability of p53AP to 

transaciiyait the P1G3 promoter was unaffected by JMY, JMYAP or JMYAC (Figure 

4.12).

Taken together these results support the observation that JMY plays a role in p53 

mediated apoptosis by promoting gene expression. Furthermore they support the 

observation that 3’ splicing of JMY deteimines the switch between the cell cycle 

arrest and apoptotic functions of p53.

Previously the polyproline domain of p53 was shown to be dispensable for the 

transcription of MDM2 and In agreement with these observation p53AP

transactivated the WWP promoter at levels equivalent to wild-type p53 (Figure 

4.13a). Both JMY and JMYAP co-activated p53AP rran^activation of the pWWP 

reporter at level equivalent to those for co-activation of wild-type p53 (Figure 4.13a). 

Significantly and consistent with earlier results JMYAP was reproducibly more active 

than JMY in the co-activation of either p53 or p53AP transactivation of pWWP- 

luciferase. Indeed JMYAP's co-operation with p53AP was repeatedly greater that that 

seen with wild-type p53, further strengthening the role of proline rich domains in cell 

cycle arrest. The mdm2 promoter construct showed no transcriptional activation by 

p53AP however the addition of JMY or JMYAP resulted in a co-activation of 

expression that was independent of the presence of the proline rich domain (Figure 

4.13b). The co-activation of p53AP mdm2 promoter driven expression by JMY and 

JMYAP was equivalent to that seen with wild-type p53 (Figure 4.13b).
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Mechanistically, the polyproline domain of p53 may be a regulated region that 

controls the function of p53 whether it be apoptosis or cell cycle aiTest. Clearly the 

proline rich domain in JMY performs a similar function. Given that JMYAP and 

p53AP aie able to co-operate in the induction of WWP expression it is conceivable 

that proline rich domains in transcriptional regulatory proteins may mediate cell cycle 

arrest. The separation of cell cycle arrest and apoptotic phenotypes by proline rich 

domains may be the determining event in cell death or cell survival. The proline rich 

domains in p53 and JMY clearly perfoim similar synergistic functions in inducing 

cell death.

4.10. Conclusions.

The p53 protein utilises p300/CBP’s co-activation properties in order to 

transcriptionally activate gene expression (Avantaggiati et ah, 1997; Lill et ah, 

1997a; Gu et ah, 1997; Lee et ah, 1998). The results presented here suggest that JMY 

as a consequence of its association with p300 plays an important role in dictating p53 

mediated transcription. Given that co-activators complexes are known to play an 

important role in regulating eukaryotic transcription it is of significance to note that 

JMY appears to specifically enhance p53 ability to induce apoptosis. JMY 

specifically can upregulate p53’s transactivation of apoptotic promoting gene 

products such as Bax and PIG3.

Isoforms of JMY appear to distinguish between the cell cycle arrest and apoptotic 

properties of p53. The 3’ splicing events in JMY that specifically remove the highly 

proline rich domain compromise JMY’s ability to induce p53 mediated apoptosis. 

However JMYAP in combination with p53 is able to increase the cell cycle arrest
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phenotype induced by p53 mediated transcription. Potentially, therefore, the 

expression of a particular array of JMY isoforms could alter the characteristics of the 

p53 response via their ability to modulate gene specific transcription (Figure 4.14).

The study presented here also implies that JMY and its isoforms are themselves 

regulated proteins. Indeed p53 itself is able to stimulate the translocation of JMY and 

its isoforms into the nucleus of cells.
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Figure 4.1. JMY interacts with p300.

a). Functional Domains of JMY.

Diagrammatic representation of JMY, JMYAP and a C-terminal truncation mutant 

JMYAC. The previously mapped p300 binding domains are indicated (in yellow) at 

positions JMY '̂^^  ̂ and JMY"̂ *̂ '̂̂ ^̂  (Shikama et a l, 1999). The N-terminus contains a 

cluster of potential phosphorylation sites for S/T-P directed kinases (blue) and the 

central region contains a motif that resembles conserved region 2 (CR2) in the 

adenovirus E lA  protein (red) (EVQFEILXCEE). The C-terminal proline rich region 

from amino acids 776-785 is highlighted (green).

b). Domains in p300.

Diagrammatic representation of p300 illustrating the cysteine/histidine rich domains 

(red), CHI, CH2, and CH3 together with the central Bromodomain (grey). The 

previously described binding regions for JMY from amino acids 611 to 1257 and 

1572 to 2283 are indicated (Shikama et a l, 1999). The amino acid residue numbers 

indicate region boundaries.

c). JMY, JMYAP and JMYAC interact with p300 in vivo.

SAOS-2 cells were transiently transfected with either a vector encoding HA-JMY 

(5pg), HA-JMYAP (5|ig) or HA-JMYAC (5p,g). Cell extracts were subjected to 

immuno-precipitation with mouse anti-HA antibody and the immuno-precipitates 

were blotted with a N-teiminal anti-p300 specific antibody. A specific 300kDa 

polypeptide coiTesponding to p300 was detected in the immuno-precipitates of all the 

JMY transfected cells. No p300 binding was detected in empty vector (pcDNA3HA) 

transfected cells (lane 1).
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Figure 4.2. JMY co-activates p53 transcription.

a). JMY drives box expression.

SAOS-2 cells were transfected with 500ng of the p53 responsive promoter consisting 

of the box gene promoter fused upstream of a luciferase reporter gene. Transcription 

factor dependent gene expression was achieved by the addition of 50ng of p53 

expression plasmid. Co-activation of the p53 response was achieved by the addition 

of 5jig of HA-JMY. The effect of JMY 3’ splicing on p53 co-activation was 

examined by the addition of 5pg of HA-JMYAP. The values shown represent the 

average of three readings and depict the relative level of luciferase to P-galactosidase 

internal control expression.

b). mdm2 expression.

SAOS-2 cells transfected with HA-JMY (5pg) and HA-JMYAP (5pg) together with 

50ng of p53 were assayed for their ability to drive expression of a luciferase reporter 

gene fused to the p53 responsive mdm2 gene promoter (Ipg). Relative activity is 

depicted by luciferase activity normalised relative to the level of a p-galactosidase 

internal control.

c). promoter diiven expression

The p53 responsive reporter gene construct, pWWP-luciferase (Ip-g) was introduced 

into SAOS-2 cells together with the expression vectors for p53 (50ng) and JMY 

(5pg) or JMYAP (5|iig). The expression of luciferase is depicted relative to that of a 

P-galastosidase internal control.

d). Regulation of the p53 target gene, gadd45.

pGADD45-luciferase (lp,g) reporter gene construct, that contains a p53 responsive 

element, was introduced into SAOS-2 cells together with the expression vectors for 

p53 (50ng) and JMY (5|ig) or JMYAP (5pg). The expression of luciferase reporter 

gene is depicted relative to that of a P-galastosidase internal control.
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Figure 4.3. Analysis of JMY s co-activation properties*

a). Mutant analysis of JMY’s ability to co-activate box expression.

SAOS-2 cells were transfected with 500ng of the reporter vector, pBax-luciferase, 

together with 50ng of p53 expression vector. The co-activation of the p53 response 

was examined by the co-transfection of 5|xg of expression vectors encoding JMY, 

JMY*^^, JMYAC, JMYA"̂ ^̂ '̂ ^̂  or JMYA '̂^^ ,̂ The values shown represent the relative 

level of luciferase to internal control (3-galactosidase expression,

b). Expression of the aitificial TG^-luciferase reporter.

The aitificial TGis-luciferase reporter (ijig) was introduced into SAOS-2 cells 

together with an expression vector for p53 (lOOng), In addition 5pg of either JMY or 

JMYAP expression vector were included. The expression of a luciferase reporter 

gene is depicted relative to that of a P-galastosidase internal control.
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Figure 4.4. JMY co-operates with p300 in p53 mediated transcription.

a). Co-operation between p300 and JMY.

SAOS-2 cells transfected with 500ng of the p53 Bax-luc responsive reporter 

construct were assayed for the ability of JMY to co-operate with p300 in p53 

mediated transcription. SAOS-2 cells were transfected with an activating amount of 

p53 (50ng) together with 5pg of either HA-JMY or HA-JMYAP in the presence or 

absence of 5jig of p300 expression plasmid. The values shown represent the average 

of three readings and aie the relative level of luciferase expression to that of a P- 

galactosidase internal control.

b). p53 stability.

SAOS-2 cells were transfected with 50ng of p53 alone or in the presence of HA- 

JMY (5|.ig), HA-JMYAP (5ju.g), or HA-JMYAC (5|ig). Whole cell extracts were 

immunoblotted with anti-HA antibodies to detect the expression of the different JMY 

constructs (upper panel). The effect of JMY expression on p53’s protein stability was 

determined by immunoblotting cell extracts with a anti-p53 antibody (lower panel).
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Figure 4.5. Endogenous gene expression.

a). MDM2 expression.

To assess the induction of endogenous MDM2 protein, expression vectors for wild- 

type p53 (500ng) together with HA-JMY (5pg) or HA-JMYAP (5pg) were 

transfected into SAOS-2 cells. Cell extracts from transfected cells were prepared and 

immunoblotted for exogenous HA (i) and p53 (ii) using anti-mouse HA and anti

mouse p53 antibodies respectfully. The level of MDM2 (iii) induced gene expression 

was determined by immunoblotting with an anti-MDM2 antibody. The treatment of 

each transfected extract is indicated together with the presence of the JMY, MDM2 

and p53 specific polypeptides.

b). JMY stimulates Bax expression.

Endogenous Bax protein expression was analysed using an anti-Bax specific 

antibody on cell extracts prepared from SAOS-2 cells transfected with p53 (5|ig) 

either alone or in the presence of HA-JMY (25pg) or HA-JMYAP (25pg). Cell 

extract prepared from cells transfected with empty vector (pcDNA-3) is indicated 

and cell extract prepared from cells overexpressing HA-JMY and HA-JMYAP in the 

absence of p53 is also shown.

c). JMYAP upregulates protein expression.

The p53'^ '̂  ̂ cell line, U20S, was transfected with either 20pg of HA-JMY, HA- 

JMY AP or JMYAC. Cell extracts were examined for the level of endogenous 

p2 |Wafi/cipi level by immunoblotting with an anti-p21^^^^^^^^  ̂ antibody. Equal

protein loading was achieved by Bradford measurement and the position of the 

p2 iWafi/cipi specific polypeptide is indicated. Cell extract transfected with empty 

vector (pcDNA-3) is indicated.
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Figure 4.6. Cellular localisation of .TMY.

a). Endogenous JMY cellular localisation.

Asynchronous SAOS-2 cells were fixed and the cellular localisation of endogenously 

expressed JMY determined by immunofluorescence with an anti-JMY antibody. A 

rabbit polycolonal JMY antibody raised against the peptide sequence Try-Ala-Arg- 

Ser-Leu-Lys-Gly-Asp-Pro-Pro-Arg-Gly-Pro-Ala-Gly-Arg-Gly corresponding to an 

N-terminal region of JMY was used. Specific immuno-reactivity was visualised with 

rhodamine conjugated anti-rabbit immnuogloblin (i) and DAPI stain was included to 

aid nuclear identification (ii).

b). HA-JMY cellulai* localisation.

SAOS-2 cells were transfected with 5pg of a HA-JMY expression vector. Following 

fixation JMY’s expression was determined by immuno-reactivity with an anti-mouse 

HA antibody and visualised by immuno-reactivity with an rhodamine conjugated 

anti-mouse immunogloblin (i). Nuclear stain DAPI was included to determine nuclei 

position (ii).

c). 3’ splicing of JMY does not effect cellular localisation.

HA-JMYAP (5pg) expression plasmid was transfected into SAOS-2 cells and the 

cellular localisation visualised using an anti-mouse HA antibody in combination with 

a rhodamine conjugated anti-mouse immunogloblin (i). DAPI stain was included to 

aid nuclear identification (ii)

d). Cellular localisation of a C-terminal tmncation mutant of JMY.

SAOS-2 cells were transiently transfected with HA-JMYAC (5pg) expression vector, 

fixed and assayed by immuno-reactivity with an anti-HA mouse antibody. Immuno- 

reactivity was visualised with rhodamine conjugated anti-mouse immunigloblin (i). 

DAPI nuclear stain was included (ii)
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Figure 4.7. p53 mediates JMY’s cellular localisation.

a). p53’s affects JMY’s cellulai- localisation.

The intracellular distribution of exogenous HA-JMY and p53 in SAOS-2 cells was 

assessed by direct immunoflorescence. 5pg of both p53 and HA-JMY were 

transfected into SAOS-2 cells and their expression visualised by staining with anti

rabbit HA for JMY and anti-mouse p53. Anti-HA was visualised with a rhodamine 

conjugated anti-rabbit immunogloblin (ii) and p53 with a fluorescein conjugated 

anti-mouse immunogloblin (ii). Nuclear stain DAPI was included to aid nuclear 

identification (iii).

b). p53 effects JMYAP intracellular localisation.

SAOS-2 cells transfected with 5pg of HA-JMYAP and 5pg of p53 were visualised 

for expression with anti-HA (i) and anti-p53 (ii) as in figure 4.7a. DAPI was included 

as a nuclear stain (iii).

c). p53 effects JMYAC intracellulai' localisation.

SAOS-2 cells transfected with 5pg of HA-JMYAC and 5pg of p53 were visualised 

for expression with anti-HA (i) and anti-p53 (ii) as in figure 4.7a. DAPI was included 

as a nuclear stain (iii).
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Figure 4.8. JMY functionally interacts with p53.

a). p53 DNA damage response.

Schematic diagram showing the response of p53 to DNA damage. Latent p53 is 

activated in response to DNA damage, the active p53 then induces the expression of 

genes which control Gi arrest and apoptosis. The result of p53’s response to DNA 

damage is either a Gi aiTest or apoptotic phenotype.

b). JMY’s involvement in the p53 DNA damage response.

U20S cells were treated with or without the DNA damaging agent actinomycin D 

(5nM). After 24hours whole cell extracts were prepared and subjected to immuno

précipitation. The induction of p53 gene expression was confirmed by blotting 15% 

of the cell extract for p53 with mouse anti-p53 antibody. The remaining extract was 

immuno-precipitated with the rabbit JMY specific N-terminal polycolonal antibody 

and subjected to immunoblotting with anti-p53 antibody. The presence of a p53 

specific polypeptide in JMY immuno-precipitates and input extracts is indicated. 

Actinomycin D treated samples are labelled.

148



*) DNA
DAMAGE

p53 ■ p53 G, A rrest 
o r Apoptosis

b)

Act D.

I I
Act D.

I I

.p53

J L
IPaJM Y
IBapS3

Input



Figure 4.9. Co-operation between JMY and p53 in cell cycle arrest.

a)-h). Cell cycle profiles of JMY over-expressing cells.

Asynchronous cultures of SAOS-2 cells were transfected with the 5jag of the cell 

surface expression marker CD20 and the indicated plasmids in the doses, p53 (3p,g), 

JMY (5jig), JMYAP (5pg), or JMYAC (5|xg). Total DNA content was equivalent to 

20pg and was made up with pcDNA-3 empty vector. Transfected cells grown in 10% 

PCS were identified by staining with the anti-CD20 fluorescein conjugated 

immunogloblin and their DNA content observed using the DNA inter-chelater 

propidium iodide. Cell cycle profiles were assigned using CellQuest software.
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Figure 4.10. JMY 3' splicing induces an enhanced Gi arrest phenotype.

a). p53 induces a Gi cell cycle arrest.

The cell cycle profile for p53 from figure 4.9b was quantified using CellQuest 

software. The percentage change in cell number for Gi, S, and G%M were calculated 

relative to mock transfected cells.

b). JMY co-operates with p53.

Profiles for JMY (Figure 4.9c) and JMY in combination with p53 (Figure 4.9d) were 

calculated as percentage change from mock (Figure 4.9a).

c). JMYAP enhances a p53 Gi an est.

Profiles for JMYAP (Figure 4.9e) and JMYAP in combination with p53 (Figure 4.9f) 

were calculated as percentage change from moek (Figure 4.9a).

d). JMYAC cell cycle phenotype

Profiles for JMYAC (Figure 4.9g) and JMYAC in combination with p53 (Figure 

4.9h) were calculated as percentage change from mock (Figure 4.9a).
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Figure 4.11. JMY participates in p53 mediated apoptosis.

a). p53 and JMY increase the apoptotic cell population.

Expression vectors for p53 (5 p g )  either alone or together with HA-JMY (5 p g )  or 

HA-JMYAP (5|Lig) were introduced into SAOS-2 cells by transient transfection. Cells 

were fixed and analysed for p53 over-expression using a p53 anti-mouse antibody 

and visualised using anti-mouse rhodamine conjugated immunoglobulin. In cells 

overexpressing HA-JMY or HA-JMYAP anti-mouse HA antibody in combination 

with an anti-mouse rhodamine conjugated immunogloblin were used to visualise 

transfected cells. Immuno-staining was performed in parallel with TUNEL (TdT 

mediated dUTP nick end labelling) in order to detect apoptotic cells. Background 

levels of apoptosis were determined using empty vector transfected cells.

Cells were visualised directly and the level of apoptosis in transfected cells 

quantified relative to empty vector transfected cells. The level of apoptosis for each 

treatment is indicated as a percentage change relative to mock. Percentage 

stimulation for JMY and JMYAP in combination with p53 is calculated relative to 

p53 alone. The data represents the average of at least two independent observations.
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Figure 4.12. .TMY co-activates p53-dependent expression of PIG3.

a). p53’s proline rich domain is required for PIG3 ^raw^activation.

The 0.7kb P1G3 gene promoter (300ng) cloned upstream of a luciferase reporter 

construct was introduced into SAOS-2 cells together with p53 and p53AP in the 

quantities (+ lOOng) and (++ 300ng) respectively. p53AP corresponds to a mutant 

p53 construct deleted in amino acids 62 to 91 that contains five PXXP motifs. 

Relative activity was calculated as luciferase expression relative to the expression of 

a P-galactosidase internal control. The expression of p53 and p53AP was confirmed 

by western blotting with an anti-p53 antibody (DO-1).

b). JMY co-activates PIG3 expression by p53 but not p53AP.

SAOS-2 cells were transfected with the PIG3-\\xc reporter (300ng) together with 

either p53 or p53AP as in 4.12a. In addition the expression vector for HA-JMY was 

included (5p,g). The expression of luciferase is calculated relative to an internal p- 

galastosidase control. JMY expression was confirmed by blotting transfected cell 

extracts with an anti-HA antibody. The specific llOkDa JMY specific polypeptide is 

indicated. Activity is plotted in scale with figure 4.12a, c, and d.

c). JMYAP is impaired in fran.yactivation of P1G3 promoter driven expression. 

SAOS-2 cells were transfected as in figure 4.12b except HA-JMYAP (5|Lig) was 

included instead of HA-JMY. The values are the relative level of luciferase to P- 

galactosidase internal control expression. The expression level of HA-JMYAP was 

confiiTned by blotting with an anti-mouse HA antibody and the corresponding 

JMYAP specific polypeptide is indicated. Activity is plotted in scale with figure 

4.12a, b, and d.

d). JMYAC activates PJG3 expression.

SAOS-2 cells were transfected as in figure 4.12b except HA-JMYAC (5|Xg) was 

included instead of HA-JMY. The values shown are the relative level of luciferase to 

p-galactosidase internal control expression. The expression level of HA-JMYAC was 

confirmed by western blot with an anti-mouse HA antibody. Activity is plotted in 

scale with figure 4.12a, b, and c.
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Figure 4.13. .TMY co-activates p53 and p53AP ̂ rqwyactivation.

a). p53 proline rich domain is dispensable for WWP fran^'activation.

SAOS-2 cells were transfected with lp,g of the pWWP-luciferase reporter together 

with 300ng of p53 or p53AP. In addition HA-JMY (5pg) and HA-JMYAP (5jig) 

were included. Relative activity was calculated as luciferase expression relative to 

the expression of a P-galactosidase internal control.

b). JMY co-activates mdm2 promoter driven expression driven by p53 and p53AP. 

SAOS-2 cells were transfected with HA-JMY (5jig) and HA-JMYAP (5|ig) in 

addition to 300ng of p53 or p53AP and were assayed for their ability to drive 

expression of a luciferase reporter gene fused to the p53 responsive mdm2 gene 

promoter (Ijig). Relative activity is depicted by luciferase expression normalised 

relative to the level of a p-galactosidase internal control.
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Figure 4.14. Summary diagram of .TMY function.

p53’s cellular activation has two cellular consequences, cell cycle arrest and 

apoptosis. Here I propose that JMY and the isoform, JMYAP, acting through p300 

ai’e able to co-ordinate the p53 response, with JMY being specific for an apoptotic 

response and JMYAP specific for cell cycle arrest. A potential role for the cellular 

JMY population is also in the regulation of the MDM2 pathway.
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A R F5. JMY, a new regulator of the pl4  

response.

5.1. Introduction.

The p300/CBP family of proteins function as pleiotrophic co-activators to facilitate 

activation by a wide variety of transcription factors that function as regulators of 

differentiation, signal transduction and cell cycle control (Eckner et ah, 1994; 

Shikama et al., 1997). The key cell cycle regulators, E2F and p53, are both 

physiological targets of p300/CBP action and it is by the modulation of p300/CBP 

transcriptional regulation activities that viral proteins such as E lA  and SV40 large T 

exert some of their cellular outcomes (Arany et al., 1995; Avantaggiati et al., 1996; 

Lill et a l, 1997a).

The functional inactivation, by cancerous cells, of the pRb and p53 tumour suppressor 

pathways is a major event in the disruption of normal cellular growth control and 

immortalisation. The INK4a/ARF locus is a central player in the regulation of these 

growth controlling pathways, by virtue of its ability to generate two functionally 

distant products, namely p i t h a t  functions upstream of pRb and pl4/19^^^ that 

regulates p53 stability. As the INK4a/ARF locus and its individual products are both 

frequently the target of mutational events that precede tumourigenesis their 

mechanisms of action are potentially of therapeutic interest.

Given that a major regulator of the p i4/19^^^ response is E2F and that E2F is a 

known target for p300/CBP, it is of interest to define a role for the p300/CBP
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associated factors in pl4/19^^^ function and regulation. As JMY is such a p300 

associated co-activator molecule that participates in the p53 response to cellular stress 

it is of significance to elucidate the role, if any, that JMY plays in the p 14/19^^^ 

pathway.

5.2. E2F stimulates transcription of the p l4^ ^  promoter.

Previous studies have demonstrated that the p 14/19^^^ reporter is highly sensitive to 

E2F-1 over-expression (Bates et al., 1998; Roberston and Jones, 1998; Inoue et ah, 

1999). Consistent with these observations, the over-expression of E2F-1 effectively 

activated a pl4*^^ promoter reporter construct in a dose-dependent, p53 negative 

SAOS-2 background (Figure 5.1b). The pl4^^^ luciferase reporter construct consists 

of the exon Ip promoter region, from -805 to +59 which contains four potential anti

sense strand E2F consensus sites, fused to a luciferase reporter gene (Figure 5.1a) 

(Bates et ah, 1998; Robertson and Jones, 1998).

Given that a physiological co-activator for E2F-1 is p300/CBP it was of importance to 

determine the effectiveness of p300 in stimulating E2F-1 mediated transcription from 

the pl4**^ promoter. SAOS-2 cells transfected with the p i4^^^ luciferase reporter 

and an activating level of E2F-1 were effectively co-activated by the addition of 

exogenous p300 expression vector (Figure 5.1c). The p300 specific two-fold 

activation of E2F-1 mediated transcription from the p l4 ^ ^  reporter supports the 

previous observations that a physiological mediator of E2F-1 transcription is p300 

and furthermore suggests that pl4*^^ expression is triggered by an E2F-l/p300 

mechanism (Trouche et al., 1996) (compare Figure 5.1b and 5.1c).
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5.3. JMY transcriptionally enhances p l4^ ^  expression.

The ability of JMY to co-stimulate E2F-1 transcription from the pl4^^^ luciferase 

promoter was tested by co-transfection of HA-JMY with E2F-1 in the presence and 

absence of exogenous p300. JMY effectively co-activated, by up to eight fold, E2F-1 

dependent transcription from the p i4^^^ luciferase reporter in SAOS-2 cells, with the 

activity being further enhanced by the addition of exogenous p300 (Figure 5.1b and 

5.1c). The ability of p300 to co-stimulate the activation of E2F-1 in the context of 

JMY is consistent with its function as a bridging transcriptional co-activator. In 

addition JMY’s role as a transcriptional co-activator is also consistent with these 

results.

Given the ability of JMY to undergo 3’ splicing, and that the splicing variants 

commonly are devoid of the C-temainal proline rich region, it was of interest to note 

that the co-stimulation of E2F-1 mediated pl4*^^ transcription by JMYAP, although 

reduced relative to JMY, was still significant (Figure 5.1b). The ability of p300 to 

further enhance JMYAP stimulation was only slightly compromised compared to 

JMY (Figure 5.1c). Notably, the transcription from the pl4*^^ promoter was E2F-1 

dependent as p300, JMY and JMYAP did not alter the activity of the reporter in the 

absence of E2F-1 (data not shown and Figure 5.2a).

Together these results support the role of E2F-1 as a transcription factor that drives 

the expression of pl4^^^. Two potential physiological regulators of p l4 ^ ^  expression 

have also been identified by nature of their ability to efficiently co-activate E2F-1 

transcription, namely p300 and JMY.
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5.4. pl4^^ transcription auto-regulation.

Given that E2F-1 activates expression and that this expression is effectively

co-activated by the addition of JMY and p300 it was of interest to dissect the 

transcriptional regulation of the p i4^^^ promoter further. Previous observations have 

shown that E2F-1 is essential for Gi cell cycle progression, and that E2F’s ability to 

act as a transcriptional co-activator is efficiently blocked by hypophosphorylated pRb. 

E2F-1 over-expression studies demonstrated that E2F-1 can induce apoptosis in co

operation with p53, although studies performed on p53'‘' and mice embryos have 

more recently demonstrated that E2F-1 can induce a p53 independent mechanism of 

apoptosis (Hass-Kogan et ah, 1995; Macleod et ah, 1996). Given that a potential 

mechanism of p53 activation by E2F may be via pl4^^^ and that this activation may 

be the trigger that predisposes cells to apoptosis it is of interest to determine the effect 

of pl4**^ on activated transcription. The observation that pl4*^^ can induce pRb 

hypophosphorylation indicates a potential autoregulatory mechanism whereby p i4 ^ ^  

may regulate its own expression (Labaer et ah, 1997; Kurokawa et a l, 1999).

PI4 ARF over expression in SAOS-2 and U20S cells did not alter the basal 

transcription of the exon ip-luc reporter nor of the internal control derived from g- 

galactosidase (data not shown. Figures 5.2a and 5.2b). However transcription of the 

exon ip  reporter by E2F-1 in SAOS-2 cells was effectively repressed by pl4^^^ in a 

pRb and p53 independent manner (Figure 5.2a). The level of expression driven from 

the E2F site within the exon ip  promoter was reduced by 2.5 fold in the presence of 

p i4"̂ ^̂  (Figure 5.2c). Similarly the co-activated expression of exon Ip by JMY was 

reduced by 2.7 fold in the presence of pl4^^^ (Figure 5.2a and 5.2c).
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In order to determine the specificity of the transcriptional repression ability of pl4^^^ 

the transcriptional activity of p53 was studied. In order to study p53 transcription the 

promoter taken from the box gene that encodes a protein that facilitates apoptosis and 

responds to p53 was used (Miyashita and Reed, 1995; Friedlander et ah, 1996). The 

box promoter was effectively induced in the presence of exogenous p53 in SAOS-2 

cells (Figure 5.2b). As expected p53-dependent transcription of the box promoter was 

increased by the co-expression of JMY. The addition of p i4^^^ into the activated box 

promoter driven transcription although repressive was not as great as that seen for 

E2F-1, with transcription of both the p53 and p53/JMY mediated transcription being 

reduced by only 1.3 and 1.4 fold respectively (Figure 5.2c). Interestingly unlike 

previous studies p i4^^^ was unable to stabilise p53 under these cellular condition, 

presumably as a consequence of the transient nature of the assay (Figure 5.2d).

The ability of pl4^^^ to repress transcription in a transcription factor dependent 

fashion clearly indicates a new mechanism of pl4^^^ regulation. Significantly, the 

preference of p i4"̂ ^̂  for E2F-1 was demonstrated by the increased repression seen 

over p53. Potentially the ability of p i4^^^ to auto-regulate its own expression 

provides a possible insight into a novel function of pl4^^^ .

5.5. interacts with JMY.

The ability of p i4 ^ ^  to interact directly with MDM2 has previously been shown to 

be a deteimining factor in pl4^^^ ability to influence the p53 pathway (Zhang et a l, 

1998; Weber et a l, 1999; Zhang and Xiong, 1999). To examine the possibility that 

p i4^^^ transcription and function is regulated by JMY it was of interest to determine 

the ability of the two proteins to interact. Thus using a pull-down approach in a cell
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free system the ability of in vitro translated JMY, the natural splice JMYAP and a C- 

terminal truncation mutant, JMYAC, to interact with a bacterially purified GST- 

protein was examined (Figure 5.3a, 5.3b and 5.3c).

JMY and JMYAP bound weekly to bacterially expressed and purified GST-pl4^^^ 

whereas JMYAC, a mutant devoid of the C-terminal 215 amino acids of JMY, bound 

with a similar efficiency as MDM2 (Figure 3c, upper panel). The specificity of JMY 

and JMYAP binding to GST-pl4^^^ was confirmed by the inability of a non-specific 

luciferase control protein to bind. In all cases GST alone failed to bind to any of the in 

vitro translated products (Figure 5.3c, lower panel). Confirming that, although 

weekly, JMY and its natural splice JMYAP were capable of interacting with pl4^*^^ in 

vitro. Given that a C-terminal deletion, JMYAC, showed an enhanced affinity for 

GST-pl4^^^ it is possible that the C-terminus of JMY plays an inhibitory role in the 

pl4^^^ interaction.

In order to further map the interaction region of JMY with pl4^^^ a panel of JMY 

deletion mutants were used (Figure 5.4a). Initial mapping results indicated that the C- 

terminal region of JMY played an inhibitory role in the interaction of p l4 ^ ^  with 

JMY. A construct encompassing the C-terminus, JMY^^ '̂^^ ,̂ that is devoid of a p300 

binding domain failed to bind pl4^^^ (Figure 5.4aii and 5.4b). However a mutant of 

JMY^^ '̂^^  ̂ which retained the central p300 binding capacity was capable of 

interacting with pl4^^^ (Figure 5.4ai and 5.4b). As p300 is a potential bridging 

mediator in the interaction seen between pl4^^^ and JMY it was of relevance to 

determine the ability of the two previously identified p300 binding domains in JMY 

to influence pl4"^^^ binding. An N-teiminal construct of JMŶ '̂ "̂  ̂that is devoid of the
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central p300 binding domain, but contains the N-terminal binding domain, still 

retained the ability to bind p l4 ^ ^  (Figure 5.4aiii and 5.4b). Given the link between 

MDM2 and p300 it was then of curiosity to determine whether the interaction of 

was solely confined to the regions in JMY responsible for p300 binding. 

Using a mutant devoid of p300 binding namely, JMŶ ^®'"̂ ^̂  it was determined that 

p l 4 ^Rp , although weakly, was still capable of binding to JMY in the absence of p300 

(Figure 5.4a iv and 5.4b).

Taken together these results point to at least two pl4^^^ interaction domains in JMY, 

one encompassed from amino acids 118 to 403 and a second from amino acids 502 to 

683 that overlap’s the central p300 binding domain in JMY. These results also 

confirm that the pl4^^^ interaction with JMY is at least in part outside the p300 

binding function of JMY (Figure 5.4a).

5,6, p14^^ and JMY are present in a complex in vivo.

The ability of JMY to interact with pl4^^^ in vitro strongly suggests that such a 

physical complex may occur in mammalian cells. It was therefore of relevance to 

determine whether JMY and pl4^^^ were present in the same complex in vivo. Given 

that pl4^^^ physiologically targets MDM2 it is also of interest to determine if JMY 

influences the ability of MDM2 to associate with pl4^*^ .̂

Previously pl4^^^ was shown to physically associate with p53 in the absence of 

MDM2 so in order to rule out a p53/p300 dependent mechanism of interaction p53'^' 

;Rb'̂ ~ SAOS-2 cells were used (Kamijo et al., 1998). HA-JMY and HA-JMYAP 

together with p l4 ^ ^  were transiently transfected into SAOS-2 cells, p i4^^^, HA-
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JMY and HA-JMYAP were all overexpressed in SAOS-2 cells (Figure 5.5a, upper 

and lower panels). The immuno-precipitation of cell extracts with anti-HA followed 

by immunoblotting with anti-pl4^^^ revealed that a specific 14 kDa polypeptide 

corresponding to pl4^*^^ was present in the JMY in vivo complex (Figure 5.5b). 

Strangely, given its ability to interact in vitro, JMYAP failed to immuno-precipitate 

PI4 ARF ^pjgm-g 5 _5 p) However the significance of the in vivo interaction assay in 

relation to JMYAP is undermined, potentially due to its sensitivity, given that JMYAP 

behaved as wild-type in all the other assays performed.

In order to determine the functional significance of the pl4^^^/JMY interaction on the 

previously described pl4^^^/MDM2 interaction, SAOS-2 cells transfected with 

MDM2 and either HA-JMY or HA-JMYAP were assayed for MDM2 binding 

to p i4^^^. In cells overexpressing either JMY or JMYAP no detectable pl4^^^ 

polypeptide was present in the MDM2 immuno-precipitates, whereas cells, not 

overexpressing JMY, efficiently immuno-precipitated p l4 ^ ^  with an MDM2 

antibody (Figure 5.5c and 5.5d). Given that JMY and JMYAP over-expression did 

not affect the stability of either MDM2 or pl4^^^ a loss in interaction due to stability 

can be ruled out (Figure 5c and 5d). Interestingly cells overexpressing MDM2 and 

p l 4 ^ ^  showed a higher moleculai* weight polypeptide corresponding to pl4^^^ in 

MDM2 immuno-precipitates (Figure 5.5d).

Taken together these results suggest a physiological interaction occurs between JMY 

and pl4^^^, and that the splicing of the 3’ of JMY may affects this interaction. The 

inability of p l4 ^ ^  to bind to MDM2 under conditions of JMY, or JMYAP over

expression raises the possibility that JMY influences the cellular interactions of
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It is also evident that the MDM2 in complex with p i4^^^ affects pl4^*^  ̂

mobility and presumably either stability or post translation modification.

5.7. JMY regulates p l4^ ^  nuclear localisation.

The ability of p l4 ^ ^  to act as a regulator of p53 is closely associated with its 

characteristic nucleolar localisation pattern (Tao and Levine, 1999b; Zhang and 

Xiong, 1999). Tumour mutations mapping to the nucleolar localisation signal in exon 

2 of p i4^^^ are known to prevent the p i4^^^ mediated stabilisation of p53 (Soufir et 

al., 1998; Holland et al., 1999). Potentially, p i4^^^ ability to regulate the cell cycle 

may invoke its capability to be localised in the nucleolus and given that JMY 

influences pl4^^^‘s capacity to interact with MDM2 it was of interest to determine 

the influence of JMY on p i4 ^ ^  cellular localisation.

To address the role of JMY on the intracellular localisation of p l4 ^ ^  heamagglutin 

(HA) tagged JMY, JMYAP and JMYAC were expressed together with pl4^^^ by 

transient transfection in SAOS-2 cells. JMY, JMYAP and JMYAC in the absence of 

p53, as previously shown, are predominantly localised throughout the cell with both 

the cytoplasm and nucleus showing an equal intensity of staining (Figure 5.7 b, d, and 

f). In cells overexpressing pl4^^^ the characteristic nucleolar localisation pattern 

previously observed was visible, with a small population expressing nuclear p i4^^^ 

(Figure 5.6a and Figure5.7a). Under the conditions of the assay endogenous pl4^^^, 

which is expressed in SAOS-2 cells, could be occasionally visualised. Given that 

SAOS-2 lack p53 and pRb it can be assumed that a major regulatory pathway 

involved in pl4^*^^ expression has been lost in these cells (Stott et a l, 1998). In order
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to focus on the effects of exogenous JMY and p l4 ^ ^  the protein sub-cellular 

localisation of only the transfected population of cells was examined.

The over-expression of JMY in SAOS-2 cells produced a characteristic whole cell- 

staining pattern, with 6 6  % of cells showing both nuclear and cytoplasmic staining 

(Figure 5.7b). In JMY and pl4^^^ overexpressing cells the subcellular localisation of 

JMY remained unaffected, however pl4^^^ localisation shifted (Figure 5.6b). Only 

40% of JM Y /pl4^^ overexpressing cells displayed the characteristic nucleolar 

PI4 ARF localisation, with 40% now displaying a nuclear pattern for pl4^^^. 

Interestingly in these cells a population of pl4^^^ was also relocalised to the 

cytoplasm (7%) and a group of cells showed the characteristic whole cell localisation 

(13%) predominately visualised with JMY alone (Figure 5.6b and Figure5.7c).

Even though an in vivo interaction between JMYAP and pl4^^^ was undetected a 

similar relocalisation pattern of pl4^^^ staining was observed with JMYAP over

expression (Figure 5.6c). Although the retention of p l4 ^ ^  in the nucleolar speckles 

(52%) was greater in the presence of JMYAP, a shift in 48% of cells was observed. 

Over-expression of JMYAP shifted 32% of p i4^^^ nuclear and 6 % cytoplasmic 

(Figure 5.6c and Figure 7e). Similarly to JMY no detectable shift in JMYAP 

subcellular localisation was observed in the presence of p i4^^^ (Figure 5.6c).

JMYAC was more effective in the translocation of the p i4^^^ nucleolar signal (Figure 

5.6d). As JMYAC was more effective at binding pl4^^^ in vitro it is interesting that 

over 6 8 % of cells observed a shift in pl4^^^ signal upon JMYAC introduction into 

cells. JMYAC shifted the p i4"^^ signal with 41% of cells staining nuclear, 5%
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cytoplasmic and 22% whole cell (Figure 5.6d and Figures 5.7g). Again in the 

presence of p i4^^^ the cellular localisation of JMYAC remained unchanged (Figure 

5.6d).

Given that the ability of p i4^^^ to act as a cell cycle regulator is closely linked to its 

ability to translocate into nucleolar speckles it is interesting to observe that JMY, 

JMYAP and JMYAC significantly disrupted pl4^^^ nucleolar staining (Figure 5.6 and 

Figure 5.7). Translocation of pl4^^^ by JMY resulted in an increase in p l4 ^ ^  

stability, transcription or translation as cells in which p i4^^^ localisation had been 

altered showed a definite increase in the level of the pl4^^^ signal (Figure 5.1 and 

5.6). Together these observations provide a clue as to a potential physiological role of 

JMY in p i4^^^ function.

5.8. p l4^ ^  in cell cycle regulation.

The ability of pl4^^^ to induce a p53-dependent cell cycle Gi an'est is well 

documented. As previously shown JMY is known to participate in the cellular 

response to DNA damage by inducing p53-dependent transcription and apoptosis. 

The ability of JMY to disrupt pl4^^^ nucleolar localisation suggests that JMY may 

function as a regulator of pl4^^^. Given these observations a fundamental question is 

the effect of JMY on p i4^^^ mediated cell cycle arrest.

To this end, SAOS-2 cells were transiently transfected with a combination of pl4^^^, 

JMY and p53. The cell cycle stages of transfected SAOS-2 cells were monitored by 

FACS analysis in cells showing positive expression of a transfected cell surface CD20 

marker. Propidium Iodide was used to monitor the cellular DNA content.
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As previously shown the introduction of p53 into SAOS-2 cells caused a Gi arrest 

(Figure 5.8a). Introduction of JMY produced a slight increase in the number of cells 

in Gi (Figure 5.8c). In agreement with others the introduction of p i4 ^ ^  into SAOS-2 

cells, in a p53 negative background, had little or no effect on the population of Gi 

cells (Stott et ah, 1998) (Figure 5.8b). As previously shown JMY and p53 co-operated 

in p53 mediated Gi arrest (Figure 5.8d). p l4 ^ ^  and p53 co-operated in the induction 

of Gi arrest presumably as a result of increased p53 stabilisation (Figure 5.8f). p i4^^^ 

did not alter the effect of JMY on the level of Gi aiTested cells as the same level of 

cells were observed in the presence of JM Y /pl4^^as with JMY alone (Figure 5.8e). 

The re-introduction of p53 into the JM Y /pl4^^ expressing cells restored the 

dominant p53/JMY Gi arrest phenotype (Figure 5.8g).

Notably, cells overexpressing p53, pl4^^^ and JMY simultaneously, displayed a 

higher proportion of cells in S-phase than those expressing p53 and pl4^^^, pl4^^^ 

and JMY or p53 and JMY (Figure 5.8). The level of S-phase seen in p53, pl4"^^^ and 

JMY overexpressing cells was equivalent to that observed in p53 overexpressing cells 

(Figure 5.8a). However the in my hands the measurement of S-phase by flow 

cytometry proved inconsistent and variable and so although notable, no clear 

eonclusions can be drawn from the levels of S-phase at present (Figure 4.10 and 

Figure 5.8).

Together these results confirm earlier findings that JMY’s cell cycle regulatory effect 

is dominant over pl4^^^. Interestingly JMY and pl4^^^ were unable to co-operate in
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the p53 induction of Gi arrest implying that the JMY’s and pl4^^^ mechanisms of 

inducing a p53 response are similar.

5.9. Conclusions.

stands at the nexus of the MDM2/p53 regulatory pathway. The ability of 

p%4 R̂R to bind and sequester MDM2 into nuclear bodies is believed to be a major 

cellular controlling event in the release of p53 regulation (Zhang and Xiong, 1999), 

Evidence presented here supports that of others in that E2F transcriptionally regulates 

p i4^^^ expression (Bates et aL, 1998; Roberston and Jones, 1998). In addition p i4^^^ 

itself appeal's to down-regulate E2F mediated transcription and hence it’s own 

transcription.

The results presented here implicate JMY in the transcriptional up-regulation of E2F 

responsive genes and specifically p i4^^^, potentially through its ability to bind p300. 

Functionally JMY can physically interact with pl4"^^ and is present in the p i4"̂ ^̂  in 

vivo complex. Over-expression studies have demonstrated that JMY can affect pl4^^^ 

function as a consequence of its ability to sequester pl4"^^ from nuclear bodies in to 

the nucleus. A potential consequence of JMY’s actions on pl4^^^ function is the 

abolishment of pl4"^^ ability to bind MDM2. In addition MDM2 specifically binds to 

as yet unknown forms of p i4^^^ (Figure 5.9).
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Figure 5.1. Activation of the ExonlB reporter.

a). Organisation of the human pl4^^^exon ip  luciferase reporter promoter eonstruct. 

Putative transcription factor binding sites for Spl (•) and the four potential anti-sense 

strand E2F(—) sites within the exon p l4 ^ ^  ip  promoter region from +59 to -805 

are indicated. The E2F sites at -265 and +27 are good matches to the binding 

consensus site for E 2 F (-TTTCCCGCC^/t^/t-) whereas the sites at -249 and -69 are 

poor matehes. The indieated initiation codon for luciferase expression is located at 

+59 and the previously mapped transcriptional start site within the p l4 ^ ^  reporter is 

defined as position +1 (Mao et al., 1995). The previously described E2F-1 responsive 

site at -275 to -261 is highlighted (Bates et a l, 1998). The promoter has an observed 

CpG content of 0.85 over a 2400bp region downstream from the Initiator element 

(+1) (Robertson and Jones, 1998).

b). JMY Iran^activation of the p 14^^ promoter.

SAOS-2 cells were transfected with lug of exon Ip luciferase reporter vector 

together with lOOng of the E2F-1 transcription factor expression vector. Co

activation of expression was achieved with the addition of increasing amounts of 

JMY and JMYAP expression vectors in the quantities lp,g (+), 3pg (++) and 5p,g 

(+++) respectively. Relative activity is depicted by luciferase normalised relative to 

the level of a P-galactosidase internal control.

c). Co-activation of p l4 ^ ^  transcription by p300.

SAOS-2 cells were transfected with exon ip  luciferase (lug) together with the 

activator E2F-1 (lOOng) and increasing quantities of JMY or JMYAP vectors as 

described in figure 5.1b. In addition 5|xg of the expression vector for p300 was 

included. The values shown are the average of duplicate readings and represent the 

relative level of luciferase to a p-galactosidase internal control. The relative 

expression seen in figure 5.1b is plotted in scale with figure 5.1c.
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Figure 5.2. Self regulation of pl4"'^expression.

a), p i4^^^transcriptional regulation.

Exon ip  luciferase reporter (Ijiig), E2F-1 (lOOng), and JMY (2|ag) expression vectors 

were introduced separately and in combination as indicated into SAOS-2 cells by 

transient transfection. The regulatory effect of p i4 ^ ^  was studied by the 

introduction of a pl4^^^ expression vector at 5pg into each treatment. Relative 

activity represents the level of transcription of luciferase to a p-galactosidase internal 

control.

b). Specificity of p i4 ^ ^  transcription regulation.

The p53 responsive reporter construct, pBax-luciferase (500ng) was introduced into 

SAOS-2 cells together with expression vectors for p53 (50ng) and JMY (2]Lig). 

Relative transcriptional activity of the reporter was measured in the presence and 

absence of 5p,g of p l4 ^ ^  expression vector. The expression of luciferase was 

normalised to an internal p-galactosidase control gene.

c). Quantification of pl4"^^^ transcriptional effect.

Activity levels from figure 5.2a and figure 5.2b were quantified relative to basal 

reporter activity and calculated as a fold induction or repression. Fold activity 

represents the increase in expression relative to the unstimulated reporter, where 

reporter alone equals one. Fold repressions by p l4 ^ ^  were calculated relative to the 

addition of the relevant component to the reporter.

d). pI4^^^ effect on p53 stability.

SAOS-2 cells were transfected with the expression vectors for p53 (50ng) and 

PI4 ARF as indicated. Cell extracts were immunoblotted with an anti-p53

antibody and a specific 53kDa polypeptide was detected as indicated.

169



a)
100

Relative 
activity 50 

(luc/^gai)

J = l Em

b)
100

+ _ +
_ + +

-  _  - - + + + +

Exon l^ lu c

E2F-1
JM YplJARF

Relative 
activity 50 

Ouc/p-gal)

+
+

+ ; p53 
; JM Y

+

+
-  + ++ + + ; plJARF

Bax-luc

Exon ip-luc Bax-luc

c)
•Fold Activity ^Fold repression 
(rel. reporte r) By p l J * ^

E2F-1
JM Y
E2F-1 / JM Y
pl4ARF
E2F-1 / plJARi- 
JM Y/pl4A «F 
E2F-1 / JM Y / p l J '^ '

•Fold Activity ^Fold repression 
(rel. reporter) By plJ^RF

16.6 _ p53 22.4 -
0 - JM Y 0 -

22.1 - p 5 3 /JM Y 47.9 -
0 - pl4ARF 0 -

5.9 2.5 p53/pl4ARi' 13.3 1.3
0.1 1.1 JM Y/pl4Ai^r 0 0.5
9.4 2.7 p 5 3 /JM Y /p l4A aF 19.2 1.4

(I) +  + ; p53
- + ; pl4'^ap

^ — IB ap53



Figure 5.3. JMY interacts with 014"^^.

a). GST-pl4^^^purification.

10% SDS PAGE coomassie stained gel of bacterially expressed and purified GST 

(500ng) and G ST-pl4^^ (500ng). As indicated, pull-down assays were performed 

with 500ng of GST or GST-pl4^^^.

b). Translation products.

JMY, JMYAP, JMYAC, luciferase, and MDM2 were all expressed and ^̂ S 

methionine labelled in vitro from a promoter containing a T7 polymerase site 

(Promega). A 10 % SDS PAGE gel shows 20% of the input level of each protein 

used for binding assays to GST and GST-pl4^^^.

c). pl4^^^ specifically binds JMY.

Either GST-pl4^^^, upper panel or GST protein alone, lower panel were incubated 

with in vitro translated JMY, JMYAP, JMYAC, MDM2, or luciferase from figure 

5.3b. The bound products were separated and loaded on a 10% SDS PAGE gel. After 

separation the binding was assayed by autoradiography. The presence of JMY 

specific in vitro products is represented by (•). The binding of MDM2, which acts as 

a known pl4^^^ partner is indicated
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Figure 5.4. Region of .TMY required for the interaction with p l4^^ .

a). Diagrammatic summary of functional domains in JMY.

Diagrammatic representation of JMY, JMYAP and the truncation mutants used for in 

vitro domain mapping. The proline rich region in the C-terminus is highlighted 

(green) together with the location of potential N-terminal S/T-P motif (blue). The 

E l A CR2 like central motif is indicated (red) as well as the two, N-terminal^'^^^ and 

central"*^̂ '^^ ,̂ p300 binding domains (yellow). Indicated is the p300 binding capacity 

of each of the constructs determined previously (Shikama et aL, 1999) together with 

a representation of the pl4**^ binding data. The two identified p l4 ^ ^  binding 

regions in JMY are highlighted, at and

b). Specific domains in JMY mediates its p i4 ^ ^  interaction.

JMY constructs coiTesponding to i, ii, iii and iv from figure 5.4a were in vitro 

translated using the Promega T7 TNT coupled system. 20 % of each construct was 

loaded as a control (IN). GST-pl4^^^ (500ng) was used to determine the binding 

efficiency of each of the JMY truncation mutants and GST alone (500ng) was used 

to control for non-specific binding. JMY^^ '̂^^  ̂ and JMŶ '̂ "̂  ̂ bound to GST-pl4"^^ 

with similar efficiencies, at a level corresponding to 2 0 % of input, while JMŶ ^̂ '"̂ ®̂  

showed a low affinity for GST-pl4^^^ at a level of approximately 5% input.
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Figure 5.5. JMY physically associates with p 14^^ in mammalian cells.

a). Over-expression of JMY and

SAOS-2 cells were transiently transfected with vectors encoding pl4"^^ (5pg) and 

either HA-JMY (Spg) or HA-JMYAP (5|iig). Immunoblot analysis was performed 

with mouse anti-HA(ll) and mouse anti-pl4^^^. The position of the llOkDa HA- 

JMY and 105kDa HA-JMYAP polypeptides is indicated together with the 14kDa 

specific polypeptide. The level of endogenous p l4 ^ ^  was too low for 

detection.

b). pl4**^ interacts with JMY in vivo

Protein extracts were immuno-precipitated with mouse anti-HA antibody. Following 

separation the immuno-precipitates were analysed for p l4 ^ ^  binding using a mouse 

anti-p 14^^^ specific antibody. A specific 14kDa p l4 '^^  polypeptide is indicated in 

the immuno-precipitate from JMY overexpressing cells. No p l4 ^ ^  was detected in 

the immuno-precipitates from non-transfected or JMYAP overexpressing cells.

c). JMY prevents the pl4^^/M DM 2 interaction in vivo.

SAOS-2 cells were transfected with 5|Hg of pl4^^^ and 5p,g MDM2 together with 

either 5|Ltg of JMY or JMYAP. The levels of MDM2 and pl4*^^ expression were 

monitored using mouse anti-MDM2 and mouse anti-pl4^^^ antibodies. The immuno

précipitation of pl4**^ with a mouse anti-MDM2 antibody was performed and the 

level of pl4*^^ detected by immunoblotting with an anti-pi4^^^ antibody.

d). MDM2 binds a distinct form of pl4"^^^.

SAOS-2 cells transfected with 5ug of pl4^^^ and 5pg of MDM2 were immuno- 

precipitated with either 1: anti-pl4^^ or 2: anti-MDM2 antibodies. The immuno- 

precipitates were resolved on a 10% SDS gel and subjected to immunoblotting with 

an anti-pl4^^^ antibody. A higher mobility form of p l4 ^ ^  was resolved in MDM2 

immuno-precipitates and is indicated by **. The level of MDM2 and pl4^^^ over

expression was detected using anti-MDM2 and anti-pl4^^ specific antibodies
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Figure 5.6. JMY mediates d14 ' cellular localisation.

a). The cellular localisation of p l4 ^ ^  in SAOS-2 cells.

SAOS-2 cells were transiently transfected with 5pg of pl4"^^ expression vector, 

fixed and assayed by inununo-reactivity with an anti-p l4^^ antibody. Immuno- 

reactivity was visualised with a fluorescein conjugated anti-mouse immunogloblin 

(i). DAPI staining was included in order to confirm the position of nuclei (ii).

b). JMY effects p l4 ^ ^  intracellulai* localisation.

The intracellular distribution of exogenous HA-JMY and p i4 ^ ^  in SAOS-2 cells 

was assessed by direct immunoflorescence. 5pg of both p i4 ^ ^  and HA-JMY were 

transfected into SAOS-2 cells and their expression visualised by staining with anti

rabbit HA for JMY and anti-mouse pl4^^^. Anti-HA was visualised with a 

rhodamine conjugated anti-rabbit immunogloblin (ii) and pl4"^^^ with a fluorescein 

conjugated anti-mouse immunogloblin (ii). Nuclear stain DAPI was included to 

confirm the position of nuclei (iii).

c). Effect of JMYAP on p 14^^ intracellular localisation.

SAOS-2 cells transfected with 5pg of HA-JMYAP and 5|ig of p l4 ^ ^  were 

visualised for expression with anti-HA (i) and anti-p l4^^ (ii) as in figure 5.6b. 

DAPI was included as a nuclear stain (iii).

d). Effect of JMYAC on pl4"^^ intracellular localisation.

The distribution of p i4^^^ was monitored as above with the exception that 5p,g of 

JMYAC (i) expression vector was transfected into SAOS-2 cells with p l4 ^ ^  (ii). 

Again DAPI was included for nuclear visualisation (iii).
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Figure 5.8. Effect of d14^^ and .TMY on cell cycle arrest.

a)-g). Cell cycle effects of JMY, p53 and p i4"^^.

Flow cytometry was performed on asynchronous cultures of SAOS-2 cells 

transfected with the CD20 expression vector (5pg) together with p53 (3jig), JMY 

(5|ig), pl4^^^ (5 jig) or mixtures therein. Total DNA content was equivalent to 23jig 

and excess was made up with pcDNA-3. Transfected cells grown in 10% FCS were 

identified by staining with the anti-CD20 fluorescein conjugated immnuogloblin. 

The treatment of each cell cycle profile is indicated. Cell cycle events were 

quantified using CellQuest softwaie. The percentage change in cell number for Gi, S 

and G2/M were calculated as percentage change against mock transfected cells.
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Figure 5.9. Summary diagram of .TMY’s regulation of p l4^^.

JMY impacts on p l4 ^ ^  in a number of ways. JMY induces the transcription of 

p l 4 ^RP yia its association with p300 and their action on E2F-1 transactivation. JMY 

promotes the movement of p l4 ^ ^  from the nucleolus to the nucleus and prevents 

p l 4 ^^^ physiological association with the oncogene MDM2. In addition pl4"^^^ 

downregulates the transcription driven by E2F-1 acting on the exon ip  promoter 

suggesting an auto-regulatory feedback loop for p i4 ^ ^  expression.
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6. Transcriptional repression and 

activation by pRb.

6.1. Introduction.

The pRb tumour suppressor protein acts as a “master regulator” of cellulai' growth as 

a consequence of its ability to regulate the activities of transcription factors (Sellers 

and Kaelin, 1996). The key cell cycle controlling transcription factor family, E2F, is a 

physiological target of pRb’s repressive function and it is the destruction of this 

regulatory pathway that viral oncoproteins use to exhibit their growth promoting 

activities (Vousden, 1995; Dyson, 1998).

The pRb pathway is frequently inactivated by mutations in tumour cells that have 

become immortal. Specifically the pRb protein is susceptible to mutational events 

that destroy its tumour suppressor function primarily due to a loss in its ability to 

regulate gene transcription by E2F.

Recently a number of studies have highlighted that functional cross-talk occurs 

between pRb and the tumour suppressor p53. It is becoming apparent that growth 

regulators, such as p53 and pRb, are not individually responsible for the phenotypes 

that they induce but rather it is the concerted effect of multiple cellular proteins that 

determines a cells fate. In particular it appears that the oncogene MDM2 and 

transcriptional co-activator family p300/CBP are key to pRb’s role in the regulation 

of the cell cycle.
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Given the conductor like role of pRb in cellular control it is of clear significance to 

elucidate the mechanisms of transcriptional repression that it employs. In addition 

pRb’s ability to cross-talk with the transcriptional apparatus is undoubtedly an 

important mechanism by which pRb function is controlled.

6.2. pRb's repression and chromatin modulation.

A well characterised target of pRb repressive activity is the S-phase promoting 

transcription factor E2F (La Thangue, 1994; Dyson, 1998). The over-expression of a 

Gal4-E2F-1^^^"'^^  ̂ fusion protein, that physiologically binds to pRb, effectively 

activates transcription from a promoter gene construct containing Gal4 DNA binding 

consensus sequences (Figure 6.1 and 6.2). The Gal4-E2F-1^^ '̂"^^  ̂ fusion protein 

consists of a Gal4 DNA binding domain fused to the fransactivation domain region of 

E2F-1 from amino acid 380 to 437 (Lee et aL, 1998). As expected pRb when 

overexpressed with Gal4-E2F-1^^‘̂ ''̂ ^̂  was able to dose-dependently repress Gal4- 

E2F-1^^^’'̂ ^̂  ?ran.sactivation (Figure 6.1b).

Given that transcriptional repression correlates with DNA condensation and 

nucleosome formation it was of interest to determine the effect of nucleosome 

modifications on gene transcription. Acétylation is one such nucleosome modification 

that is believed to act by relaxing the histone/DNA interaction to facilitate the access 

of the transcriptional apparatus and rraw^activation (Brownell and Allis, 1996). The 

opposite of acétylation is the removal of acetly groups from hi stone tails and is 

teimed deacetylation. Deacetylation is effectively inhibited by the naturally occurring 

Streptomyces compound trichostatin A (Figure 6.1a).
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The treatment of cells with trichostatin A increases the level of basal gene 

transcription presumably as a result of a gross relaxation in chromatin structure 

(Figure 6.1 and 6.2). Interestingly the ability of pRb to repress E2F mediated 

transcription was completely abolished in the presence of trichostatin A (Figure 6.1c). 

Significantly it appears that pRb repression of E2F-1 transcriptional activation is at 

least in part mediated by a gross chromatin structural change that is potentially 

signalled through deacetylation.

Given that transcriptional upregulation by co-activators is associated with a relaxed 

chromatin structure and that the co-activator p300 contains an intrinsic HAT activity 

it was of interest to examine p300’s role in pRb’s repression of E2F mediated 

transcription. As expected and in agreement with previously published work, p300 

effectively activated Gal4-E2F-1^^^ "̂ ^̂ mediated transcription in a transient reporter 

assay (Trouche et ah, 1996; Lee et aL, 1998) (Figure 6 .Id). The ability of pRb to 

repress co-activated Gal4-E2F-1^^^"'^^  ̂ transcription was un-compromised in the 

presence of p300, suggesting that pRb’s function in E2F-1 transcriptional repression 

is dominant over that of p300 co-activation (Figure 6 . Id). The treatment of cells with 

trichostatin A did not affect the level of co-activated transcription seen with p300 and 

Gal4-E2F-1^® '̂"^^  ̂ but completely abolished pRb’s repressive function (Figure 6 . le). 

Interestingly the level of Gal4-E2F-1^^°"'^^  ̂ fran^activation was unaffected in the 

presence of trichostatin A suggesting that activated transcription employs maximal 

chromatin relaxation in terms of inhibition of deacetylation. In addition p300’s ability 

to co-activate transcription was unaffected by the induction of hyperacetylation, by 

trichostatin A treatment, implying that co-activation in the context of p300 acting on 

the artificial promoter is outside its HAT function or that the level of acétylation is
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maximal upon p300 treatment of cells. An explanation for the inability of 

hyperacetylation to stimulate activated and co-activated transcription is that artificial 

promoters are not correctly condensed into nucleosomes.

These results suggest that pRb’s ability to repress E2F-1 mediated transcription is in 

part dependent on the chromatin structural changes. More specifically pRb’s 

repressive effect overrides the activating effects of the p300 co-activator implying 

that the loss of repression is absolutely vital in transcriptional co-activation.

6.3. HDAC-1 enhances pRb^s repressive function.

The active repression of gene transcription is carried out by a number of co-repressor 

complexes. Co-repressor complexes such as SIN3 and NCo-R act as muti-subunit 

platforms that are specifically targeted to gene promoters where they silence 

transcription. A component of the co-repressor complexes are the histone deacetylase 

family of enzymes (HDAC’s). Histone deacetylases are families of proteins that help 

repress transcription by promoting the association of histones and DNA into 

nucleosomes. Enzymatically HDAC’s as a result of their intrinsic histone 

deacetylation activity are able to remove the acetyl groups from histone lysine tails to 

promote nucleosome assembly and chromatin condensation. The deacetylation 

activity of HDAC’s links their cellular role to one as global transcriptional repressors. 

Some HDAC’s also contain a putative LXCXE motif that suggests a pRb interface 

(Kaelin, 1999).

The co-repressor complex, SIN3, interestingly also contains the pRb binding proteins 

pRbAp46 and pRbAp48. Given that the stimulation of hyperacetylation, by
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trichostatin A treatment, resulted in a loss in pRb repressive function it was 

conceivable that pRb’s ability to recruit and use histone deacetyl ase enzymes was 

responsible at least in part for their ability to repress transcription. To this end, the 

transcriptional activity of Gal4-E2F-1^^°''^^^ in combination with pRb was studied by 

the co-expression of HDAC-1. Interestingly in SAOS-2 cells, that lack pRb, HDAC-1 

had no effect on the level of E2F-1 mediated transcription or basal transcription 

(Figure 6.2). However the co-expression of pRb and HDAC-1 reduced the level of 

Gal4-E2F-1^^ '̂"^^  ̂mediated transcription to a level below that seen with pRb (Figure 

6.1b and 6.2a), It is evident that pRb’s ability to repress transcription is therefore 

specifically enhanced by HDAC-1 co-expression.

Given HDAC-l’s ability to heighten pRb’s ability to repress E2F mediated 

transcription it was of interest to determine if this affect was due to HDAC-1 intrinsic 

histone deacetylase activity. The deacetylase inhibitor trichostatin A completely 

abolished pRb mediated repression of E2F in the presence of HDAC-1 (Figure 6.2b). 

It therefore appears that HDAC-1’s ability to reduce the level of E2F mediated 

transcription in the context of pRb corresponds to its function as a deacetylase. 

Interestingly HDAC-1’s enhanced repression of pRb/E2F-l was never complete; 

suggesting that pRb’s physiological repressive function is not only through its 

recruitment of HDAC-1 but also relies on its previously described functions (La 

Thangue, 1994; Weintraub e ta l,  1995; Dyson et aL, 1998; Ross etaL, 1999).

p300’s ability to activate E2F-1 mediated transcription was unaffected in the presence 

of HDAC-1 and absence of pRb (Figure 6.2c), pRb’s repression of E2F-1 

transaciivsLtion in the presence of p300 and HDAC-1 was equivalent to that seen in
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the absence of exogenous HDAC-1 (Figure 6 . Id and 6.2c). The treatment of HD AC- 

1, p300 and pRb overexpressing cells with trichostatin A resulted in a level of 

transcription by Gal4-E2F-1^^®''^^  ̂ equivalent to that seen by the treatment of cells 

with p300 (Figure 6 . le  and 6 .2d).

Together, these results show that pRb repressive function is enhanced by HDAC-1. In 

particular, other groups have demonstrated that pRb binds directly to HDAC’s in 

order to transiently repress transcription (Brehm et aL, 1998; Luo et aL, 1998; 

Magnaghi-Jaulin et aL, 1998; Brehm and Kouzarides, 1999). In addition it appears 

that p300’s function in the co-activation of E2F-1 transcription is directly affected by 

pRb, as pRb’s effect dominates p300 function. pRb’s effect on p300 is however 

dependent on deacetylation and presumably occurs via HDAC. p300 directly 

promotes ^mna'activation while HDAC-1 appears to promote ?ran.srepression. 

Competition between these two factors helps determine pRb’s ability to repress E2F- 

1  mediated transcription.

6.4. pRb co-operates in transcriptional activation.

pRb’s role as a transcriptional repressor is well characterised, however its ability to 

activate transcription is poorly understood (Sellers and Kaelin, 1996). The ability of 

pRb, in certain circumstances, to upregulate transcription has been associated with 

the integrity of the pocket region and so may also play a role in pRb’s suppression of 

tumourigenesis. An interesting feature of JMY is its ability to bind directly to pRb 

(Shikama, personal communication). It was therefore of interest to study the role of 

pRb in the JMY/p300/p53 response.
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JMY in combination with p53 showed its characteristic up-regulation of the p53 

responsive promoter bax (Figure 6.3a). Interestingly, pRb co-operated with p53 in the 

induction of pBax promoter driven expression implying that pRb possesses the 

properties of a transcriptional activator for p53 in the context of Bax expression 

(Figure 6.3a). The induction of p53 driven expression by pRb was further enhanced 

by the addition of exogenous JMY suggesting that pRb co-operates in JMY’s 

function as a p53 co-activator (Figure 6.3a). The level of co-activation was over three 

fold of that seen either with JMY/p53 or with p53/pRb implying a degree of co

operation between the three proteins. Furthermore, the pRb tumour derived mutant 

devoid of exon 22, RbA22, retained the able to drive p53 mediated transcription and 

equally co-operated with JMY (Figure 6.3a). Given that pRbA22 has lost its ability to 

act as a Gi/S phase repressor it is interesting to speculate that the activation of the 

Bax promoter by pRb is a mutational event that occurs in tumour cells that prevents 

the proliferation of cells with deregulated growth control.

As Bax is not the only p53 responsive promoter it was of significance to study the 

pRb effect on another p53 responsive promoter. The promoter is

effectively co-activated by p53 expression however JMY does not significantly co- 

activate p53 mediated transactivaMon in the context of (Figure 6.3b). pRb

alone or in combination with JMY was unable to rraw^activate p53 expression of the 

promoter (Figure 6.3b). The pRbA22 mutant is also unable to co-operate 

in p53 mediated transacûvaûon of the promoter (Figure 6.3b). The ability

of pRb to co-operate with both p53 and JMY in the co-activation of the p53 response 

is therefore specific to the Bax promoter.
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The co-activation of the p53 response was further analysed using mutants in both pRb 

and JMY. As the pRbA22 mutant is devoid of a region of the pocket it was of interest 

to examine the affect if any of the N-terminus of pRb. To this end a pRb mutant, 

pRb^^ '̂^^  ̂ that is deleted in the N-terminal 378 amino acids was used and scored in 

the reporter assay. The pRb ' mutant was significantly reduced compared to wild- 

type pRb and pRBA22 in the activation of p53 mediated transcription and similarity 

the co-operation between JMY and pRb^^ '̂^^  ̂in activation was also reduced relative 

to wild-type pRb and pRbA22 (Figure 6.3a and 6.4a). Together these results imply 

that the N-terminus of pRb is essential for maximal co-operation in the upregulated 

p53 transac\.\\a\xon of Bax.

Furthermore, a JMY dominant negative mutant that represses p53 mediated 

transcription was examined for its ability to co-operate with pRb in p53 mediated 

transcription. As previously shown the JMY*'"̂ ^̂  mutant effectively represses p53 

mediated transcription (Shikama et ah, 1999) (Figure 6.4b). Significantly the 

repressive effect of JMŶ ""̂ ^̂  was dominant over pRb activating effect as the co

transfection of pRb and JMŶ '"̂ ^̂  reduced the level of pRb/p53 mediated transcription 

(Figure 6.4b). Given that JMŶ '"̂ ^̂  potentially interferes with the endogenous 

p300/p53 interaction it is conceivable that pRb’s activating potential is signalled 

through p300. Significantly the repressive activity of JMŶ '"̂ ^̂  was further enhanced 

by the co-tranfection of the pRb̂ ^̂ "̂ ^̂  mutant to levels representing basal reporter 

activity (Figure 6,4b). Together these results suggest that both pRb and JMY can co

operate in p53 mediated fra«.sactivation and that a potential intermediary molecule in 

this pathway is p300.
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6.5. pRb influences .TMY s cellular localisation.

The ability of p53 to influence JMY’s cellular localisation is potentially an intregal 

point in JMY’s ability to co-activate p53 mediated transcription. As pRb co-operates 

with JMY in p53 mediated rraw^activation it was of interest to determine if JMY 

nucleai* localisation was affected by pRb.

The over-expression of p53 and JMY resulted in their characteristic co-nuclear 

staining pattern (Figure 6.5a). pRb over-expression in SAOS-2 cells did not alter the 

characteristic whole cell staining pattern of JMY and pRb was as expected 

exclusively nuclear (Figure 6.5b). Interestingly the over-expression of p53, pRb and 

JMY did not affect p53 nuclear localisation but JMY’s nuclear staining pattern in the 

presence of p53 was disrupted and a cytoplasmic staining population of JMY was 

clearly visible in cells overexpressing pRb (Figure 6.5c).

These results suggest that pRb interrupts p53’s ability to influence the cellular 

localisation, at least in part, of JMY. Given that pRb and JMY co-operated in p53’s 

transaciivaXion it was expected that a nuclear complex between all three proteins 

would be visible. However the disruption of JMY’s nuclear pattern by pRb suggests 

that the enhanced rraw^activation of p53 is mediated through a cytoplasmic 

intermediary path. An intriguing possibility is that pRb removes JMY to the 

cytoplasm where it receives the necessary signals that stimulate its function as a co

activator, a hypothesis supported by the reduced ability of JMY^^® to activate p53 

mediated transcription (Figure 4.3a). Although supportive many other possibilities 

can not be ruled out.
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6.6. Conclusions.

The ability of pRb to repress transcription is clearly associated with its role and 

ability to bind E2F-1. Interestingly it appears that pRb in addition to its ability to 

directly repress E2F-1 rratt^sactivation is also able to utilise chromatin modulators 

such as HDAC-1 to bring about its repressive function. Given that co-activators such 

as p300 aie believed to functionally upregulate the activity of transcription factors it 

is of significance to note that the repressive function of pRb is dominant over that of 

the co-activators. In addition p300’s HAT activity was maximal in the activation of 

E2F-1 and was unaffected by the induction of hyperacetylation.

In addition to its role in transcriptional repression pRb possesses a transcriptional 

activating potential. Specifically pRb co-operated in JMY’s ability to co-activate p53 

fraii^activation of the bax promoter and interestingly this activity was independent of 

a region of the pocket in pRb. Given that a naturally found mutant form of pRb 

behaved as wild-type in the co-operation of the p53 response it is interesting to 

speculate that tumour cells that have lost pRb function as a gene repressor retain its 

ability to functionally activate transcription and so is important in its role as a tumour 

suppressor.

In particular the co-operation in transacûvaûon of the p53 response between JMY 

and pRb alters the cellular localisation of JMY. The JMY/p53 nuclear population is 

disrupted and in particular JMY is shifted to the nucleus. The exact functional 

significance of JMY localisation is however unknown.
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Figure 6.1. pRb mediated repression.

a). Trichostatin A.

The structure of the deacetylase inhibitor trichostatin A is shown.

b). pRb represses E2F-1.

SAOS-2 cells were transiently tansfected with the pG5-Elb luciferase vector (Ipig) 

together with lOOng of Gal4-E2F-1^^® '̂ ^̂ . Repression was achieved by the over

expression of the pCMV-Rb expression vector in the quantities Ipg (+) and 2pg 

(++). The values shown represent the average of two readings of luciferase 

expression relative to the expression of an internal P-galastosidase control vector.

c). pRb uses deacetylases to repress E2F-1 rra/î^yactivation.

SAOS-2 cells were transfected as in figure 6.1b. Trichostatin A was added to 

transfected cells at a final concentration of 150nM 10 hours prior to harvesting. 

Reading represents the expression level of luciferase relative to that of an internal p- 

galactosidase control gene.

d). p300 and pRb repression.

SAOS-2 cells transfected with pG5-Elb luciferase (Ipg), lOOng Gal4-E2F-1^^®''^^  ̂

and pRb at Ipg (+) and 2pg (++), In addition the expression vector for pCMV-p300 

(5pg) was included. The relative level of luciferase and internal p-galastosidase 

expression was measured and plotted as relative activity.

e). Trichostatin A treatment.

SAOS-2 cells were transfected as in figure 6 . Id. Trichostatin A was added to 

transfected cells at a final concentration of 150nM 10 hours prior to harvesting. 

Reading represents the expression level of luciferase relative to that of an internal p- 

galactosidase control gene.
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Figure 6.2. HDAC-1 enhances pRb mediated transcriptional repression.

a). pRb repression of E2F-1 is enhanced by HDAC-1.

SAOS-2 cells were transiently tansfected with the pG5-Elb luciferase vector (Ijig) 

together with lOOng of Gal4-E2F-1^^^*'^^ .̂ Repression was achieved by the over

expression of pCMV-Rb expression vector in the quantities Ipg (+) and 2pg (++) 

respectfully. In addition 2|iig of the expression vector for HDAC-1 was included. The 

values shown represent the average of two readings of luciferase expression relative 

to the expression of an internal P-galastosidase control vector.

b). pRb/HDAC-1 repressive activity is overcome by trichostatin A.

SAOS-2 cells were transfected as in figure 6.2a except trichostatin A was added to 

transfected cells at a final concentration of 150nM 10 hours prior to harvesting. 

Reading represents the expression level of luciferase relative to that of an internal P- 

galactosidase control gene.

c). p300 and pRb/HDAC-1 repression.

SAOS-2 cells were transiently tansfected with pG5-Elb luciferase vector (Ifxg) 

together with lOOng of Gal4-E2F-1^^^"'^^ .̂ Repression was achieved by the over

expression of pCMV-Rb expression vector in the quantities I jL ig  (+) and 2pg (++) 

respectfully. In addition 2p,g of the expression vector for HDAC-1 and 5|Lig of 

pCMV-p300 encoding vectors were included. The values shown represent the 

average of two readings of luciferase expression relative to the expression of an 

internal p-galastosidase control vector.

d). Trichostatin A treatment.

SAOS-2 cells were transfected as in figure 6.2c except trichostatin A was added to 

transfected cells at a final concentration of 150nM 10 hours prior to harvesting. 

Reading represents the expression level of luciferase relative to that of an internal p- 

galactosidase control gene.
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Figure 6.3. Co-operation between p53 and pRb in .TMY co-activation.

a). p53 and pRb co-operate in transcription.

SAOS-2 cells were transfected with 500ng of the p53 responsive promoter pBax- 

luciferase together with 50ng of p53 and 5p,g of pRb or RbA22 expression vectors. In 

addition 5pg of JMY expression vector was added to the indicated treatments. 

Relative expression is depicted noimalised relative to the level of (3-galastosidase 

internal control.

b). p53, pRb and JMY do not co-operate in co-activation.

SAOS-2 cells were transfected with the WWP-luciferase (Ipg) reporter vector 

construct together with a p53 vector (50ng). In addition either CMV-pRb (5pg) or 

pCMV-pRbA22 (5pg) were added. The expression vector for JMY (5p,g) was added 

to the indicated treatments. Relative expression is depicted normalised relative to the 

level of p-galastosidase internal control.
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Figure 6.4. Mutational analysis of the p53, pRb and JMY co-activation affect.

a). Requirement for pRb N-terminus in ïran^activation by p53.

The pBax luciferase (500ng) reporter vector together with a p53 (50ng) expression 

vector were transfected into SAOS-2 cells. In addition the expression vector for 

pRb^^ '̂^^  ̂ (5p.g) was added either alone or in combination with a JMY (5pg) 

expression vector. Relative expression is depicted normalised relative to the level of 

p-galastosidase internal control.

b). Behaviour of a dominant negative JMY in transcriptional activation

The pBax luciferase (500ng) reporter vector together with a p53 (50ng) expression 

vector were transfected into SAOS-2 cells. In addition the expression vector for 

pRb^^ '̂^^  ̂ (5|ig) was added either alone or in combination with a JMŶ ""̂ ®̂  (5pg) 

expression vector. Relative expression is depicted normalised relative to the level of 

P-galastosidase internal control.
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Figure 6.5. Cellular localisation effects of pRb and p53 on JMY.

a). p53’s affects JMY’s cellular localisation.

The intracellular distribution of exogenous JMY and p53 were examined by direct 

immunoflorescence. 5pg of HA-JMY and p53 expression vectors were transiently 

transfected into SAOS-2 cells and their localisation visualised by staining with an 

anti-mouse HA antibody for JMY and an anti-rabbit antibody for p53. Anti-HA 

binding was detected using a rhodamine conjugated anti-mouse immunogloblin (i) 

and p53 using an anti-rabbit fluorescein conjugated antibody (ii). DAPI was included 

to stain nuclei (iii).

b). pRb’s and JMY localisation.

The intracellulai* distribution of exogenous JMY and pRb were examined by direct 

immunoflorescence. 5pg of HA-JMY and pRb expression vectors were transiently 

transfected into SAOS-2 cells and their localisation visualised by staining with an 

anti-rabbit HA antibody for JMY and an anti-mouse antibody for pRb. Anti-HA 

binding was detected using a fluorescein conjugated anti-rabbit immunogloblin (i) 

and pRb using an anti-mouse rhodamine conjugated antibody (ii). DAPI was 

included to stain nuclei (iii).

c). JMY, p53 and pRb.

The intracellular distribution of exogenous JMY and p53 were examined by direct 

immunofluorescence in cells that were also overexpressing exogenous pRb (5p,g). 

5pg of HA-JMY and p53 expression vectors were transiently transfected into SAOS- 

2  cells and their localisation visualised by staining with an anti-mouse HA antibody 

for JMY and an anti-rabbit antibody for p53. Anti-HA binding was detected using a 

rhodamine conjugated anti-mouse immunogloblin (i) and p53 using a fluorescein 

anti-rabbit conjugated antibody (ii). DAPI was included to stain nuclei (iii).
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7. Discussion.

7.1. Transcriptional co-activation bv p300.

The biological activity of the p300/CBP family is at least in part dependent on their 

ability to augment the function of a variety of transcription factors such as, c-Jun, 

MyoD, CREB and E2F-1/DP-1 (Chrivia et a l, 1993; Arias et al., 1994; Eckner et al., 

1996b; Perkins et al., 1997; Shikama et al., 1997; Lee et al., 1998; Torchia et al., 

1998). Indeed E lA ’s ability to perturb the cell cycle by blocking differentiation and 

transcriptional control has been associated with its ability to directly interfere with 

p300/CBP’s function as a co-activator of p53 (Avantaggiati et al., 1997; Gu et al., 

1997; Li 11 et al., 1997a; Lee et al., 1998; Shikama et al., 1997).

Specifically, here I demonstrated, in a fashion similar to others, that p300 acts as a 

transcriptional co-activator for both p53 and E2F-1 (Trouche et a l, 1996; 

Avantaggiati et al., 1997; Lee et al., 1998) (Figure 7.1). The phosphorylation of p53 

in response to cellular stress is arguably a mechanism that controls its stability and 

activity (Siliciano et al., 1997). p300 functionally acetylates p53 and increases the 

sequence specific binding activity of p53 (Gu and Reeder, 1997; Sakaguchi et al., 

1998). In addition transa.ctiv3.tion domain phosphorylation of p53 stimulates its 

binding to p300 and consequently an increase in the level of p53 acétylation (Lambert 

et al., 1998). Recent evidence has also demonstrated that the acétylation of E2F-1 by 

p300 directly influences E2F-1 DNA binding activity and stability (Martfnez-Balbas 

et al., 2000). An intriguing possibility is that the p300 co-activator complex co

ordinates and regulates the p53 and E2F-1 cellular responses.
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7.2. JMY enhances p53-dependent transcription.

Evidence from mammalian cells has implicated the p300 co-activator complex as 

having a significant role in mediating transcription. p300’s co-activator function is 

known to be regulated by its association with a number of proteins such as PCIP, 

P/CAF, and SRC-1 (Yang et aL, 1996; Chen et al., 1997; Spencer et ah, 1997). Given 

that JMY physically associates with p300 and that p300 functionally co-activates p53 

it was considered that JMY would modulate the activity of the p300/p53 response.

Analysis of a series of p53 responsive promoters demonstrated that JMY significantly 

co-operated with p300 in the co-activation of p53 (Shikama et ah, 1999). 

Significantly, JMY exhibited the properties of a gene specific co-activator as the box 

and PIG3 promoters were efficiently co-activated upon JMY over-expression. In 

contrast the mdm2 and wafl p53 responsive promoters were largely unaffected by 

increased levels of JMY. It appears that JMY may show promoter specific effects in 

vivo as the co-activation of the endogenous mdm2, box and wafl genes mirrored that 

seen with artificially reporters. Thus this study suggests that JMY performs a 

physiological role in co-activating the p53 response and importantly demonstrates 

that JMY’s co-activation is more pronounced on a selective sub-group of p53 target 

genes (Figure 7.1).

The differential regulation of the p53 response by JMY is identical to results that 

demonstrate that p300 itself regulates the specificity of the p53 response for certain 

p53 responsive promoters (Lee et a l,  1998). Indeed the viral E l A oncogene has been 

shown to specifically target p300’s co-activation of MDM2 expression (Thomas and 

White, 1998). It therefore appears that JMY behaves in a similar manner to its
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partner, p300, in order to differentially regulate the p53 response. In fact it is 

conceivable that JMY’s mechanism of action may account for the differential 

regulation of p53 inducible genes by p300.

7.3. JMY arguments p53-dependent apoptosis.

p53’s ability to induce apoptosis correlates with both transcriptional dependent and 

independent mechanisms (Caelles et al., 1994; Haupt et al., 1995). The over

expression of Bax effectively induces apoptosis and the inactivation of p300/CBP 

can, in certain situations, prevent p53-dependent apoptosis (Oltavi et at., 1993; 

Miyashita and Reed, 1995; Lill et al., 1997a). p53’s induction of the PIG subset of 

genes also correlates with the induction of apoptosis (Polyak et a l, 1996). In 

particular it appears that the induction of apoptosis following the ïran^activation of 

specific target genes by p53 is cell type specific, which may correlate with the 

presence of specific amounts of additional effector molecules, such as JMY.

Fibroblasts derived from p300'^' embryos display a profile of transcriptional defects 

including a defective proliferation phenotype, implying that p300 is essential for cell 

proliferation and development (Yao et a l, 1998). It therefore appears that JMY’s 

ability to transcriptionally activate p53 gene expression may be dependent on its 

association with p300.

JMY efficiently co-activated box and PIG3 expression, and significantly co-operated 

with p53 in the induction of apoptosis. The induction of p53-dependent apoptosis by 

JMY is independent of p300’s over-expression and interestingly p300 over 

expression itself is insufficient to induce p53 apoptosis (Lee et a l,  1998; Shikama et

194



al., 1999). Rather it appears that JMY acts together with p300 to promote p53- 

dependent apoptosis and implies that JMY is the physiological effector in the 

induction of apoptosis. Furthermore, since JMY could argument apoptosis without 

the addition of p300 it suggests that JMY rather than p300 is the limiting partner in 

p53’s induction of apoptosis. These results directly imply that effector molecules 

such as JMY regulate the p53 response through their association with p300 (Figure

7.1).

In agreement with JMY being important in p53’s induction of apoptosis it was 

demonstrated that the JMY in vivo complex contains a very high level of p53. It is 

interesting to speculate that through its promoter specific co-activator effects JMY 

acts downstream of p53’s activation in the induction of apoptosis. Clearly p300 and 

JMY co-operate in the promoter specific activation of p53 responsive genes but their 

ability to bias gene expression is not yet fully understood.

p53’s cellular level helps determining p53’s role in cell cycle arrest and apoptosis 

(Macleod et ah, 1996; Polyak et al., 1996). However JMY’s ability to up-regulate 

p53-dependent apoptosis is independent of p53 post-translational stabilisation as 

JMY itself does not post-translationally activate p53. It therefore appears that a 

controlling factor in p53’s role in apoptosis and cell cycle arrest is the presence and 

activity of JMY, and factors that mimic JMY’s function.

7.4. The importance of 3’ isoforms of JMY.

As many of the vitally important cell cycle regulators, such as the p53 family, are 

extensively spliced it was of significance to observe that the JMY mRNA was
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alternatively spliced. Specifically the 3’ region of the JMY mRNA showed diverse 

splicing and, in particular, the proline rich domain was a common region lost as a 

result of splicing. Given JMY’s ability to co-activate p53’s apoptotic response it was 

of considerable interest to observe that the splice isoform, JMYAP, displayed 

properties that were functionally distinguishable from wild-type JMY. JMYAP was 

unable to co-activate the box promoter but, significantly, showed a preference over 

JMY in the co-activation of the wafl promoter. In agreement, the JMYAP splice 

variant showed a dramatic increase in the endogenous induction of 

protein levels in a p53-dependent manner.

p53’s induction of cell cycle arrest is closely associated with the induction of 

p2 ]̂ wafi/cipi block of E2F transcription (El-Diery et al., 1993). It was therefore 

notable that JMYAP was able to significantly co-operate with p53 in the induction of 

a Gi cell cycle arrest. Conversely, JMYAP did not affect the level of p53-dependent 

apoptosis. Given that p300 is required for p21^^^^^ '̂̂  ̂expression but is insufficient to 

induce p53-dependent apoptosis (Lee et al., 1998) it has been proposed that apoptosis 

occurs when the level of p300 is not rate limiting. Here I propose that a second 

controlling event in the mediation of a p53-dependent Gi arrest is the presence of 

specific JMY isofoims (Figure 7.1).

7.5. JMY controls the p53 response.

Transcriptionally inactive p53 can induce apoptosis (Caelles et al., 1994; Haupt et al., 

1995). Here I demonstrated that the co-activation of p53 by JMY correlates well with 

transactivation and apoptosis. It is believed that the controlling switch between p53 

function in apoptosis and cell cycle anest relates to the cellular level of p53 (Gottlieb
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and Oren, 1996; Bums and El-Deiry, 1999), here I clarify such an issue by 

demonstrating that a second controlling switch is the p300/JMY co-activator 

complex. Specifically p53 bound to p300/JMY will co-activate apoptotic genes, 

whilst p53 bound to p300/JMYAP can induce the expression of cell cycle arrest 

associated genes (Figure 7.1). Even through JMY acts downstream of p53 to co- 

activate gene expression, it is conceivable that the signals that simulate cell cycle 

an'est and apoptosis also impact directly on JMY, controlling the relative intensities 

and activities of the JMY population.

Results presented in this study are consistent with p53’s role in apoptosis and cell 

cycle arrest and underline the dependence of p300 in these processes. In addition it is 

evident that p300/CBP co-activator complex components, such as JMY, are key 

molecular switches that control the p53 response. The p53 family member, p73, is 

known to possess promoter specific transacMvaixon properties and to directly interact 

with p300 in order to carry out its cellular functions (Lee et al., 1999). Whether JMY 

is part of this complex is an interesting but as yet unanswered question.

Interestingly, the association of p300 with MDM2 has been linked with the regulation 

of MDM2 cellular function. Indeed, MDM2 forms a ternary complex with p53 and 

p300 and it appears that the inclusion of p300 is essential for MDM2’s ability to 

mediate degradation of p53 (Grossman et a l, 1998). Thomas and White (1998) 

proposed that p300’s co-activation and regulation of p53 mediated transcription of 

the mdm2 gene is in fact an important determinant in the physiological response of 

p53 (Thomas and White, 1998). Hypothetically, JMY may be a mediator in this
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pathway; in such a way that competition for p300 by JMY and MDM2 may augment 

and define the p53 response.

7.6. Translocation of TMY.

The nuclear localisation of transcription factors and co-activator molecules is 

essential for their effective rraw^activation. Since transcriptional co-activators exeit 

their effects on gene transcription in the nucleus, the control of their intra-cellular 

localisation must be an important regulatory mechanism. JMY is predominantly a 

whole cell protein but in the presence of p53 the JMY signal is predominantly nuclear 

(Figure 7.1). However, the nuclear localisation of JMY appears not to be important 

for its function as a co-activator, as a constitutive nuclear JMY^^^ protein is less 

active than wild-type JMY in transcriptional co-activation. It therefore appears that it 

is signals that trigger JMY’s translocation into the nucleus from the cytoplasm, or 

those which effect nuclear import or export, that are vital in regulating its role as a 

co-activator. Indeed it is interesting to speculate that the cellular signals that govern 

cell cycle arrest and apoptosis are individually responsible for the translocation of 

specific JMY isoforms from the cytoplasm to the nucleus. Whether JMY’s 

localisation is signalled through the mitogenic or oncogenic pathways is unknown.

7.7. Proline rich domains and transcription.

The p53 tumour suppressor has been implicated in the regulation of multiple cellular 

anti-proliferative pathways including those that lead to transient cell cycle arrest as 

well as those that lead to permanent cell death. p53’s accumulation leads to Gi arrest, 

however the co-expression of cells with E2F-1 or c-Myc forces Gi arrested cells to 

undergo apoptosis (Martinez et a l, 1991; Wu and Levine, 1994). Therefore p53
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mediated events in a cell are able to detect and respond appropriately to signals 

generated from a variety of nuclear signal transduction pathways to mediate the 

appropriate cellular outcome.

Several studies have demonstrated that there are discrete classes of p53 responsive 

genes that determine the functional outcome of p53 activation (Friedlander et al., 

1996; Ludwig et al., 1996). It appears that the proline rich domain, located between 

the transactivation and DNA binding domain in p53, helps discriminate the 

rra/î.yactivation function of p53 (Walker and Levine, 1996; Venot et a l, 1998; Zhu et 

a l,  1999). The importance of the proline rich domain of p53 is highlighted by the 

inability of Li-Fraumeni syndrome suffers, that display mutational events within the 

proline domain, to undergo a normal p53 response (Sun et a l, 1996).

Strikingly, several studies have demonstrated that the proline rich domain of p53 

imparts promoter specific functions in an identical manner to those observed for 

JMY. Here I have confirmed that the proline rich domain of p53 is essential for the 

transcriptional activation of PIG3 but is dispensable for MDM2 and p21^^̂ ^̂ '̂̂  ̂

expression. Taken together the results presented in this thesis suggest a hypothesis in 

which proline rich domains in transcriptional activating proteins play a vital role in 

promoter specificity and co-ordination of the cellular response.

Studies relating to the proline rich domain of p53 have suggest a number of potential 

roles for such a domain, all of which have a relevance in the understanding of JMY’s 

function. The proline rich domain in p53 mediates an activity that is critical for its 

tumour suppressor function in vivo and demonstrates that transcriptional activation by
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p53 can be uncoupled from its apoptotic growth suppression function (Walker and 

Levine, 1996; Venot et ah, 1998; Zhu et a l, 1999). Given that a p53AP mutant 

responds to DNA damage it is conceivable that in the case of p53 that this domain is 

responsible for signalling a subset of p53’s downstream anti-proliferative signals that 

ultimately promote apoptosis (Walker and Levine, 1996). Furthermore, Zhu et a l  

(1999) conclude that the proline rich domain of p53 as a consequence of its ability to 

regulate p53’s activation of PIG3, p85, MDM2, and P IG ll, is required for activating 

genes that participate directly in the signalling pathways which control apoptosis. In 

fact p85 is involved in the apoptotic response to oxidative stress and PIG3 produces 

reactive oxygen species that degrade the mitochondria and subsequently stimulate 

apoptosis (Polyak et a l, 1997; Yin et a l, 1998). Similarly, the proline rich domain in 

JMY is also responsible for the co-activation of p53 responsive genes that are 

specifically involved in apoptosis.

The promoter specificity of the proline rich domain of p53 has been linked with the 

binding of p53 to low affinity DNA binding sites (Walker and Levine, 1996). Venot 

et a l  (1998) demonstrated that the production of reactive oxygen species is 

dependent on the proline rich domain in p53 and that the binding of p53 to low 

affinity DNA binding sites is mediated by the proline rich domain. It is therefore 

conceivable that the proline rich domain of p53 functions structurally to regulate the 

activity of p53. In an identical manner the C-terminus of p53 is known to regulate the 

sequence specific binding of p53 (Hupp et a l, 1992). However, in the case of JMY 

the binding of JMY to its known partner, p300, is unaffected by the deletion of the 

proline rich domain. Given that prolines are hydrophobic residues that induce bends 

in protein structures it is conceivably that the proline rich domain in JMY may
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influence the tertiary structure of JMY and the association of other p300/JMY co

activator complex components.

Walker and Levine (1996) proposed that the proline rich domain in p53 mediates the 

ability of p53 to interact with SH3 domain containing proteins and that this allows the 

integration of signals that specifically induce transcriptional activation of a subset of 

genes. In fact the proline rich domain of p53 that contains five repeats of the P-X-X-P 

motif theoretically forms a left handed polyproline type II helix that creates a binding 

site for SH3 domains (Yu et al., 1994). In agreement, the murine polyproline rich 

domain in p53 is a known docking site for the transmission of G asl’s dependent anti

proliferative signals and mutations within the proline rich domain abolish p53 

mediated transaciivaiion independent growth arrest induced by Gas 1 (Ruaro et al.,

1997). Additionally, the SH3 domain containing c-Abl protein stimulates a p53- 

dependent cell cycle arrest (Goga et al., 1995). Interestingly, antibodies directed 

against epitopes close to the proline rich domain in p53 have been shown to modulate 

the DNA binding activity of p53 which lends support to the idea that this domain is a 

docking site for activating factors that structurally influence p53’s activity 

(Wolkowicz et ah, 1995; Friedlander et al., 1996).

In some cell types several reports have demonstrated that cytokines are influential in 

the life/death decision by p53 (Gottlieb and Oren, 1996; Ko and Prives, 1996). It is 

therefore speculative to associate proline rich domains with docking to SH3  

containing proteins and the separation of the life and death signals by p53 and JMY. 

The identification of such hypothetical SH3 bearing proteins that impact on p53 and
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JMY, via their proline rich domains, will greatly help decipher and separate the 

signals that control cellular life and death.

The repressive function of p53 may accelerate the induction and progression of 

apoptosis. In agreement the WTl and ElB proteins that prevent p53 mediated 

apoptosis have been shown to inhibit p53’s ability to repress transcription 

(Maheswaran et al., 1995; Sabbatini et al., 1995a; Mui-phy et al., 1996). The absence 

of the proline rich domain in p53 also severely compromises p53’s ability to repress 

transcription (Venot et at., 1998), which strengthens the idea that repression is 

important for p53’s apoptotic function. In the case of JMY, however, mutants devoid 

of the proline rich domain do not affect p53’s ability to stimulate transcription or 

induce apoptosis. It therefore appears that the proline rich domain in JMY 

discriminates its co-activator function and plays no role in the direct down-regulation 

of transcription.

An intriguing possibility is that proline rich domains are regulated by post- 

translational phosphorylation. p53’s regulation by phosphorylation is well 

documented and is known to influence the differential binding of p53 to various 

consensus sites (Wang and Prives, 1995; Lohrum and Scheidtmann, 1996). The 

possibility that the proline rich domains in JMY and p53 are regulated by 

phosphorylation is an intriguing if unconfirmed possibility.

Zhu et al. (1999) highlighted that p53’s activation of transient reporter genes differs 

from that of endogenous genes, given that transiently transfected promoters are not 

correctly packaged in to chromatin. Zhu et al. (1999) also imply that the proline
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promoter specific functions of p53 are reminiscent to those of MyoD, that acts as a 

chromatin modulator and shows differential activation of transfected promoters in 

transient reporter assays. Consequently they propose that the proline rich domain of 

p53 may be necessary for chromatin remodelling events that counteracts the 

chromatin mediated repression of some p53 cellular target genes. However in the 

case of co-activation by JMY, endogenous gene regulation was identical to that 

observed in transient reporter assays implying that although not excludable that 

chromatin modulation is not the primary function of JMY’s proline rich domain.

7.8. JMY co-activates expression of the p 14^^ gene.

The expression of the p l4 ^ ^  tumour suppressor protein is initiated from a specific 

exon (Ip) within the INK4a locus (Sharpless and DePinho, 1998). E2F-1 over

expression effectively induces expression from the exon ip  promoter (Bates et a l, 

1998; Roberston and Jones, 1998; Inoue et a l, 1999) and I demonstrated that this 

rran^activation is effectively co-activated by p300. Results presented here also 

demonstrated that the transcriptional co-activator JMY (Shikama et a l, 1999), 

potentially as a consequence of its association with p300 up-regulates E2F-1 

mediated expression of the p i4^^^ promoter (Figure 7.1). It therefore appears that 

JMY behaves in an identical synergistic manner as p300 in that it is able to co- 

activate both p53 and E2F-1 mediated transcription. Consequently, the results 

presented in this thesis are consistent with the p300 co-activator complex being a 

vital component in the communication between the E2F and p53 growth controlling 

pathways.
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p l 4 ^Rp’s ability to elicit a p53 response is manifested by an increase in expression of 

a number of p53 responsive genes as a result in the loss of MDM2 function (Kamijo 

et at., 1998; Pomerantz et aL, 1998; Stott et al., 1998; Zhang et al., 1998). JMY’s 

ability to up-regulate p i4^^^ expression will hypothetically induce p53’s cellular 

function and therefore potentially supports a role for JMY acting not only as a p53 

co-activator but also as an up-stream activator. The E2F-1 and p53 proteins are key 

cell cycle regulators and the balance between their activities is likely to be critical in 

cell survival. JMY clearly impacts on both pathways and is a potential molecule that 

mediates the cross-talk between the two growth controlling pathways.

E2F-1 and p53 are known to functionally co-operate in the induction of apoptosis 

(Qin et al., 1994; Wu and Levine, 1994; Kowalik et al., 1995; Lee et al., 1998). 

Indeed E2F-1 can induce apoptosis in the absence of p53 although this apoptotic 

function is to some extent transcriptionaly independent and may reflect an alleviation 

of transcriptional repression by E2F-1 (DeGregori et a l, 1997; Hsieh et a l, 1997; 

Phillips et a l, 1997; Lee et a l, 1998). Furthermore, p l 4 ^  is a potentially an 

essential intermediate in E2F-1 induced apoptosis as arf^' cells are resistant to E2F-1 

induced apoptosis (Zindy et a l, 1998). However, p300 has been shown to enhance 

E2F-1 mediated apoptosis and E2F-1 is a known transactivatQ the Drosphila cell 

death regulator reaper (Asano et a l, 1996). In addition E lA  requires the capacity to 

bind both pRb and p300 in order to induce apoptosis and so it is possible that 

p 14/19^^^ activation is essential in apoptosis (de Stanchina et a l,  1998). Here I 

demonstrated that a potential mediator of co-operation between E2F-l’s up- 

regulation of p53 mediated apoptosis is JMY, through its ability to up-regulate 

p i 4^^^ expression.
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Interestingly the cellular level of p300 is believed to be rate limiting (Yao et ah,

1998), and results presented here potentially associate the rate limiting effects of 

p300 with a reduced level of p300’s recruitment of JMY to promoters and 

consequently a reduction in transcription. Whether JMY is involved in the co

activation of other E2F-1 tai'get genes that are associated with apoptosis and cell 

cycle anest events is at present unknown

The regulation of pl4"^^^ expression is poorly understood but here I demonstrated 

that pl4^^^ itself is able to regulate its own expression in a manner reminiscent to 

that of p53’s regulation of pl4^^^ (Robertson and Jones, 1998; Stott et al., 1998). The 

over-expression of p i4^^^ reduces E2F-l’s rmn.sactivation of the pl4^^^ promoter 

and the auto-regulatory loop is seemingly specific for the exon ip  reporter as the p53 

responsive promoter, box, expression was largely unaffected by pl4^^^ over

expression. Given the ability to pl4^^^ to impact on the cells fate it is not surprising 

that the level of p i4"̂ ^̂  is tightly regulated and that p i4^^^ itself regulates its own 

expression. Data presented here demonstrated that pl4^^^ itself regulates its own 

expression in a mechanism reminiscent for that of p53/MDM2, in which p i4^^^ 

expression is repressed by over-expression of p i4 ^ ^  (Figure 7.1).

The repressive effect of pl4"^^ does not require pRb as the affect was observed in 

SAOS-2 cells that contain no functional pRb. It is therefore conceivable that the 

repression of the p l4 ^ ^  promoter by pl4^^^ occurs through a component of the E2F- 

1 co-activator complex and such a potential component is JMY. The ability of pl4^^^ 

to negatively regulate the proliferation of murine embryonic fibroblasts
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independently of p53 also agrees with the data presented in this thesis (Camero et ah, 

2000).

E2F-1 is responsible for the transition between Gi and S and although pl4^^^ 

represses E2F-1 transcription of the exon Ip promoter no change in the Gi population 

of cell was visible in cells overexpresssing pl4^^^. It therefore appears that pl4^^^’s 

inhibitory effect is specific for E2F-1 in the context of the p i4^^^ promoter. In 

agreement Stott et al. (1998) presented identical findings, in that p l4 ^ ^ ’s over

expression in SAOS-2 cells does not alter the population of cells in the different 

stages of the cell cycle.

7.9. Functional interaction between JMY and pl4^^.

A potential target for pl4^^^’s inhibitory function is JMY as the two proteins 

physically associate in vitro and in vivo. pl4^*^^‘s primary function in cells appears to 

be the sequestration of MDM2 from the p53 regulatory pathway (Stott et al., 1998) 

and JMY’s function is in the up-regulation of p53 ?ra«.yactivation (Shikama et a l,

1999). Both JMY and p i4"̂ ^̂  are therefore regulators of potentially the same 

functional outcome. However JMY appears to prevent the association of MDM2 with 

m vivo.

Given that JMY physically impacts on the M D M 2/pl4^^ interaction it was 

interesting to observe that JMY actually relocalised pl4^^^ from the nucleolus to the 

nucleus. The nucleolar' localisation of p i9 ^ ^  conesponds to its ability to bind 

MDM2 and release p53 while pl4"^^^ actually sequesters MDM2 into nuclear bodies 

(Tao and Levine, 1999b; Weber et a l, 1999; Zhang and Xiong, 1999). It is therefore
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conceivable that JMY interferes with the MDM2/pl4'^^^ interaction by directly de- 

localising pl4^^^ to the nucleus. In agreement with others it therefore appears that 

pl4^^^‘s cellular localisation determines its function and it appears that JMY directly 

affects such a function via its ability to sequester pl4^*^ into the nucleus and prevent 

the formation of nuclear bodies. An interesting possibility is that JMY actually 

enhances the p l4 ^ ^  effect by localising it to the nucleus from where it can directly 

associate with MDM2 upon the appropriate signals, and thereby release p53. 

Conceivably the movement of pl4^^^ out of the nucleolus is a prerequisite for its 

formation of nuclear bodies, and a candidate protein that posses such a function is 

JMY.

The nuclear localisation of p53 is essential for its function as a transcription factor 

(Gannon and Lane, 1991; Shaulsky et a l, 1991; Kamijo et al., 1998; Roth et al., 

1998). In cells that express high levels of pl9^^^ high molecular weight forms of p53 

are detected that likely conespond to poly-ubiquitinated forms (Pomerantz et al., 

1998). So it has been suggested that p i9^^^ may not inhibit the ubiquitation of p53 by 

MDM2 but rather may prevent the degradation of ubiquitated p53 (Kamijo et al.,

1998).

Here I demonstrated that the over-expression of pl4^^^ and MDM2 in SAOS-2 cells 

results in the binding of a high molecular weight form of pl4^^^ to MDM2. The 

functional significance of such a species of p i4^^^ is unknown however given that 

MDM2 modifies p53 by ubiquation it is interesting to speculate that MDM2 may also 

be regulating pl4^^^ cellular levels in an identical manner. Similarly, Kurokawa et al. 

(1999) observed similar high mobility forms of p i9^^^ in fibroblasts prior to Gi arrest
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and they postulate that such species conespond to either degradation intermediates or 

post-translational intermediates. The post-translation modification of p l4 ^ ^  by other 

mechanisms can not be ruled out and a known regulatory mechanism of the 

p53/MDM2 interaction is phosphorylation. Whether the specific species of pl4^^^ in 

the MDM2 complex corresponds to a similar regulated interaction remains to be 

elucidated. It is also interesting to note that MDM2’s stability when complexed with 

pl^ARF reduced (Zhang et al., 1998; Kurokawa et al., 1999; Zhang and Xiong,

1999).

Interestingly, p53’s regulation of the level of pl4^^^ (Roberston and Jones, 1998; 

Stott et al., 1998) is also evident as p53 deficient cells display an elevated level of 

PI4 ARF (Quelle et al., 1995; Kamijo et al., 1997). The repressive effect of p53 is not 

however specific for the ARF locus as p53 represses a variety of other cellular 

promoters such as c-fos, c-Jun, PCNA and interleukin-6 . Whilst the p l4 ^ ^  promoter 

is regulated by p53 and JMY it is interesting to speculate that JMY’s functional 

association with p i4^^^ may impact on these mechanisms of regulation. The auto- 

regulatory feedback loop observed for pl4"^^^ is potentially the mechanism that 

regulates the steady state level of pl4^^^ and the reason why pl4^^^ is a short-lived 

cellular protein. Whether JMY’s association with pl4^^^ is responsible for the down- 

regulation of p i4^^^ expression is unknown although it is possible that such an 

association is one mechanism by which p i4"̂ ^̂  achieves its auto-regulation.

The up-regulation of p21̂ ^̂ ^̂ *̂ '̂  ̂ can induce a premature senescence phenotype in 

human fibroblasts (McConnell et al., 1998) and E2F-1 is also able to induce a 

sensecence like phenotype in a p53 and p i4^^^ dependent manner (Kamijo et al..
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1999a; Dimri et al., 2000). Clearly JMYAP co-operates with p300 in the induction of 

p2 ĵ wafi/cipi pl4/19^^^’s release of p5 3 ’s activity will presumably also induce 

p 2 1 ^afi/cipi expression. These observations suggest that JMY may be involved in the 

fail-safe program that curtails tumourigenesis and age related pathologies, although 

no experimental evidence exists to date.

7.10. pRb transcriptional repression.

pRb’s functional repression of E2F-1 mediated transcription has been directly 

associated with its ability to bind and prevent the function of the fraws'activation 

domain of E2F-1 (Weintraub et ah, 1995). Here I demonstrated results in that the pRb 

repressive function is also dependent on its ability to utilise the histone deacetylase 

family of enzymes in the transient repression of E2F-1 transactivation (Brehm et al., 

1998; Luo et al., 1998; Magnaghi-Jaulin et al., 1998; Brehm and Kouzarides, 1999). 

In fact I demonstrated that HD AC-1 over-expression directly enhances pRb’s 

repressive function (Figure 7.1).

Since p300/CBP co-activates E2F-1 transcription it is possible that pRb overrides this 

transcription by blocking the interaction of p300/CBP with E2F-1 (Trouche et al., 

1996; Luo et al., 1998). Previous studies have demonstrated that pRb and p300 

compete for binding to the transaciivaiion domain of E2F-1 (Helin et al., 1993; Lee 

et al., 1998). However the ability of HDAC-1 to facilitate pRb repression is not 

explained by the overriding of p300 co-activation potential. It therefore appears that 

pRb ability to bind HDAC-1 allows the negation of the histone acetylase activity of 

p300/CBP associated with E2F and results in an active transcriptional repression 

complex.
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Several studies have demonstrated that pRb can associate with E2F-1 and HDAC-1 

simultaneously but the role of other associated proteins such as pRbAp46 and 

pRbAp48 can not be excluded in these assays. Luo et al. (1998) demonstrated that 

pRb efficient repression of E2F transcription is dependent on its association with 

HDAC but it also is evident that the repressive function of pRb is also as a result of 

its direct interaction with E2F. Interestingly, pRb’s ability to bind and recruit histone 

deacetylases is independent of pRb’s role in cell cycle arrest although further studies 

are required to clarify this point (Chan et a l, personal communication). Given that 

pRb associates with the chromatin modulators, BRGl, TAFn250 and Caf-1 via 

RbAp48 its ability to influence transcription by the modulation of chromatin structure 

is almost unquestionable (Hassig et a l, 1997; Hassig and Schrieber, 1997). 

Consistently I demonstrated that the block of chromatin condensation leads to an up- 

regulation of transcription and a loss in pRb’s repressive function presumably as a 

result in the loss of its function, or those of its associated partners, in the modulation 

of chromatin.

7.11. Cross talk between p53 and pRb through JMY.

Numerous studies have demonstrated that pRb has the properties of a transcriptional 

activator and that this function is pocket dependent (Kim et a l,  1992; Dunaief et a l, 

1994; Singh et a l, 1995; Chen et a l, 1996b; Need et a l, 1998). The activator 

potential of pRb although poorly understood is believed to be vital for its tumour 

suppressor function (Sellers and Kaelin, 1996). In agreement pRb’s ability to 

augment MyoD dependent gene expression has been associated with its role in

210



tumour suppression and ability to induce differentiation (Gu et al., 1993; Sellers et 

a l, 1998).

Here 1 demonstrated that pRb activates p53-dependent transcription of the box 

promoter and furthermore that pRb co-operated with JMY in this co-activation 

(Figure 7.1). The activating potential of pRb is specific for Bax in the context of p53 

fransactivation and relies, at least in part, on the N-terminus of pRb. Given that the 

N-terminus of pRb has few prescribed functions it appears that in the case of tax  

activation to stabilise the co-activator complex as loss of this region drastically 

reduces pRb activating potential. Whether this reduction in the effectiveness of pRb 

corresponds to a structurally related event or loss of a functional domain is unknown. 

Interestingly, E lA  stimulates the binding of pRb to p300 (Wang et a l, 1995a) but as 

yet the influence of such an interaction on JMY’s function is unknown.

Whereas the pocket region of pRb is vital in its ability to function as a transcriptional 

repressor it is apparent that the pocket region encoded by exon 2 2  is dispensable for 

its function as a p53 activator (Weinberg, 1995). The tumour derived mutant pRbA22 

behaved like wild-type pRb in the activation and co-operation of p53 fran^activation. 

Results presented here imply that the ability of pRb to augment JMY activity is 

exerted independently of pRb dependent growth arrest, which is known to require the 

integrity of the pocket (Weinberg, 1995).

Given that JMY’s cellular localisation appears to be vitally important for its function 

as a co-activator it is intriguing to note that pRb actually displaces a population of 

JMY to the cytoplasm in the presence of p53. Given that JMY is potentially a
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regulated protein it is interesting to assume that the induction of cytoplasmic JMY by 

pRb corresponds to an activation of JMY in a cytoplasmic dependent fashion in 

response to pRb’s anti-proliferative signals. Whether the cytoplasmic population of 

JMY coiTesponds to a dormant, dead or active complex remains unclear.

Interestingly, rb' '̂ cells undergo E2F-1 mediated apoptosis and pRb is a direct target 

for TNF induced apoptosis as a functional consequence of inhibition of MDM2 

function (Qin et aL, 1994; Reinder et a l,  1996; Hsieh et al., 1997; Phillips et a l, 

1997; Hsieh et al., 1999). E2F-1 induced apoptosis is overcome by pRb expression in 

an E2F-1 dependent manner (Hsieh et al., 1997). A physiological rationale for the 

actions of pRb on JMY function may be relevant as a process that allows the 

induction of apoptosis upon the inactivation of pRb’s pocket caused, for example, by 

mutational events or the action of viral oncoproteins during tumourigenesis. Cells 

mutated in pRb that are defective in cell cycle arrest would presumably undergo E2F- 

1 apoptosis and additionally would be able to increase p53’s transcriptional activation 

of Bax which would functionally lead to the elimination of potentially neoplastic 

cells.

pRb is also known to promote p53 apoptosis function as a consequence of inhibition 

of MDM2’s function (Hsieh et al., 1999). Hypothetically therefore JMY may be a 

mediator of the apoptotic functions of pRb as a consequence of MDM2’s loss of 

function.
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7.12. Overall conclusions.

Results presented in this thesis provide information that relates to the mechanistic and 

physiological role of the p300 complex in the regulation of the p53 response. In 

particular the data presented here demonstrate that JMY physically and functionally 

co-operates with p300 and moreover implies that splicing of JMY is a vitally 

important event in the discrimination of p53’s role in cell cycle arrest and apoptosis. 

In particular I have demonstrated that the proline rich domain in JMY is a region that 

can functionally control JMY’s cellulai* function.

This study has also identified JMY as a potential regulator of the p i4"̂ ^̂  tumour 

suppressor pathway. Moreover that analysis of pRb’s role as a transcriptional 

activator has suggested a potentially novel role for pRb in the suppression of 

tumourigenesis, and have also implicated JMY in such a pathway (Figure 7.1).

In order to fully understand the individual roles of the JMY isofoims in gene 

expression and cell cycle control, it will be necessary to document the cellular factors 

that associate with specific isoforms under specific growth conditions. Here I have 

suggested a number of potential mechanisms whereby JMY is able to elicit a specific 

p53 response however to date the actual mechanistic pathway is unknown (Figure

7.1). The understanding and separation of the roles of the individual JMY isoforms 

may well prove productive in the design of anti-tumour reagents and the fight against 

cancer.
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Figure 7.1. Summary of .TMY’s cellular role.

JMY lies at the nexus of the p53 and E2F growth control pathways, by nature of its 

ability to bind p300. The JMY cellular population acts positively via p300 to 

promote either p53 mediated cell cycle arrest or apoptosis. p53 itself plays a 

regulatory role in mediating the actions of the JMY population.

The overexpression of the tumour suppressor p l4 ^ ^ , that stimulates p53’s cellular 

activity by releasing MDM2’s control, is also governed by JMY. JMY stimulates 

p l4 ^ ^  expression, that also regulates, in an auto-regulatory loop, its own expression. 

Surprisingly JMY appears to deteimine the specificity for the pl4^^/M DM 2 

interaction.

In this study, it was also demonstrated that the histone deacetylase family of 

enzymes, HD AC’s, help mediate pRb’s repressive function. pRb, in the context of 

tumour derived mutations is able to stimulate p53 fraw^activation, and intriguingly 

co-operate with JMY in the stimulation of p53 mediated BAX protein expression. 

These findings imply a mechanism whereby tumour cells, that have lost pRb’s 

growth control, have acquired a death mediated pathway, and that JMY is an 

important mediator in this pathway.

Clearly JMY’s ability to influence two of the major growth controlling pathways is 

an indicator as to its cellulai* importance.
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