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SUMMARY

The object of this study is to obtain the response spectira
of the Duffing system excited by a Gaussian broad band
" random process, through the use of numerical simulations
and to identify behavioural patterns of these spectra, The
task was greatly simplified by the use of dimensional
ahalysis. In Chapter 4 this method is applied to the
Duffing system.

The products of this non—dimensionalisation of the system
under Gaussian broad band random excitation are the non
dimensional quantities k Se(w)/S,, BS.(w)/(k/m),
8S,//mk®, Bok, ¢/2/km (the first three were symbolized by
the capital Greek letters A,B,T'and { for ¢/2 km ) where S,
is the excitation spectrum intensity, S,(w) the displacement
response spectrum and ok the response displacement variance,
0f these guantities only two are sufficient to describe the
system completely under the aforementioned excitation namely
I'and ¢, Simple examination of the above quantities
revealed the possibility of direct relation of the quantities -
I'/¢{ and Bok. A parabolic relation was proved using the
equivalent linearization technique and was verified by the
findings of the simulation technique and the probabilistic
information derived through the solution of the appropriate
Fokker — Planck equation, Further it was found that the
response spectra of the Duffing system under brcad band
exciftation could be described with reasonable accuracy as
functions of one variable, the ratio r/c.

Finally the applicability of the above findings and of the
equivalent linearization technique for the Duffing system
under band limited and high pass filtered random processes
was investigated,

It is worth noting that the findings of this study apply
equally to 'large' and 'small' nonlinearities and it 1is
hoped that it will provide a better understanding of these
terms as applied in different approaches to this problem,



CEAPTER 1 INTRODUCTICN

1.1 General

A linear formulation or mathematical model of a structure

is in general the least precise model and is normally
regarded as a first approximation to the solution., However
it can always be refined by the introduction of nonlinearity
so that its range of application { in terms of large defleo—
tions for instance ) is extended and that the precision of
its predictions even within the less extended range 1is
increased, Further, the nonlinear model may introduce the
means of explaining or predicting phenomena which were out
side the limits of the linear theory. Thus the guestion of
whether a linear model is satisfactory depends on the sort
of information and the precision that is being sought. As
modern structures become more lightweight,linear modeling
becomes less satisfactory because of membrane stresses and
large deflections. As a conseqguence an increasing interest
is being focused on nonlinear vibration problems.

The field of nonlinear vibration is in general much twmore
extensive and complicated than that of linear vibraticns.
While many broad classes within the nonlinear vibration

field have been described and in some cases investigated

in detail, much still remains to be discovered.

In particular the problem of nonlinearity in the random
vibration of structures has attracted much attention in
recent years., Such problems can be recognised for example

in the statistical description cf measurements of tae

motion of ships in a confused sea or aircraft flying through
turbulent air) in the severe vibration of aircraft or
missile structure due to the random fluctuation of pressure
fields generated by Jjet or rocket propulsiocon) in the severe
vibration even fallure of buildings and other structures
excited by strong earthquakes.



1.2 Questions of Random Excitation

The theory of linear systems subjected to random excitation
is well developed, and, though there still remain many
unanswered gquestions, one can answer most of the questions
of practical interest [1~7 ] . 1In the case of nonlinear
systems, however, where the standard techniques of linear
analysis cannot be applied, there is a lack of knowledge
which is partially filled through mainly approximate methods,
which have been developed to extend linear analysis +to
certain systems containing small nonlinearities, The method
actually employed normally depends upon the desired informa-
tion since none can provide a complete description of the
system, However when response statistics of a probabilistic
nature are required, the method of the Fokker — Planck
equation seems to be the most promising one, (This is not
an approximate method and its application depends on a
special type of excitation).

There are a great number of response characteristics which
are of interest in the study of nonlinear systems with
random inputs, such as amplitude distributions, wave shapes,
power spectre and average resonance frequencies, 'mean clump
sizes' etc. Most of these quantities vary with the type of
excitation, (shape of excitation acceleration, velocity or
displacement spectrum) and depend whether it is the response
acceleration, velocity or displacement that is being studied.
It is readily seen that even in the study of one particular
nonlinear system the amount of data necessary to adequately
describe the various response statistics is considerable.

*The expression 'mean clump size' was originally introduced
by R.H.Lyon and describes the average number of cycles which
exceed a predetermined level in one 'clump', i.e., where one
cycle immediately succeeds the previous one,
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1. 3 Various Approaches to the Response Problem

1.3.1 The Fokker-Planck Approach
Typically in seeking the probability density function of a

llarkovian diffusion process representing a system response,
the associated Fokker-Planck equation is considered [8—16]
This equation i1s a partial differential equation governing
the evolution of the probability density function of the
response., The broadest reported class of single—degree of
freedom nonlinear systems for which the stationary or steady
state solution of the associated Fokker-Planck equation can
be determined requires that the coefficient of viscous
damping is a function of the total energy of the structure.
This restricts the use of the method to systems  with
stiffness nonlinearity only, Another restriction concerns
the type of excitation. If the exciting forces do not
exnibit white spectra, the solution is not harkovian hence
the Fokker-Planck equation is not applicable. Purther,
although it is usually possible to sclve the Fokker—Planck
equation to obtain the stationary joint probability density
function for the system response, the solution of the
associated non-homogeniocus equation to obtain the joint
transition probability density function is in general
extremely scarce, Without this transition probability law
it is generally impossible to obtain the correlation function
and spectral density (Section 2,1), Caughey and Dienes [ll]
however, have managed to solve a rather trivial first order
problem in coﬁplete detail and obtain the syectral density.
The techniques used in the sclution of that problem do not
apprear to lend themselves to the soluticn of other nonlinear
rroblems, Wolaver [12] was able to obtain an analytical
closed form expression for the autccorrelation functicn

for the nonlinear system,

X + 2cx + sgn (x) = F(t) where F{t)is white noise {1,1)

1,3.2 DNumerical Simulation

The increassing availability of digital computers has presented
the numerical simulation techniques as an attractive
alternative method for estimating within a2lmost any desired
confidence level, the exact response statistics of randomly
excited nonlinear structural systems, and allows one tc drop
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common artificial simplifying assumations and to consider
excitations that are more realistic than ideal white noise,
The theoretical foundation of numerical simulation — based
studies is associated with the fact that the differential
equation governing the motion of the system under random
excitation can be considered as an infinite collection of
deterministic differential equations., The backbone of such
a digital method is a subroutine (Chapter 3) which provides
a set of pseudorandom numbers belonging to a population
with a specified probability density funection, Proper
processing of the set of pseudorandom numbers can yield
samples of random excitations of a desired spectral density.
Upon generating a single realization of the random excitation
the structural response is computed by any of the commonly
available subroutines for numerical integrationof differ-
ential equations, Then, another sample of the excitation
is generated and the computed values of the structural
response are used to update its statistics. Obviously this
approach is applicable for the estimation of both stationary
and non—stationary statistics of the response of structural
systems, Unfortunately the number of sample records which
are necessary for the estimation of the response statistics,
within commonly acceptable engineering limits, is in most

cases very large, This fact makes the cost of the simulation
quite significant., However, the necessity of a large number

of records can be reduced if interest is confined to
stationary response statistics.

1.3.3 Approximate lethods
The scarcity or non availability of exact solutions, and in
many cases the significant cost of numerical simulation
have necessitated the developement of methods of approximate
analysis, They can be classified into two large categories,
[21] . One category includes methods which can be applied
to the Fokker-Planck equation, In this class belong all the
methods which yield approximate analytical or numerical
solutions of partial differential equations. The other
category comprises methods which are directly applicable to
the differential equations which governs the motion of the
randomly excited system. This latter class consists mainly
of approximate methods ( perturbation, heuristic, etc. )
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which have been developed to extend linear analysis to
certain systems containing small nonlinearities, Most of
these techniques of approximate analysis are best suited
for single—degree of freedom systems under stationary
random excitation and 'weak' nonlinearities, [ 22 — 24 ]

The noticable exception in this class of approximate
techniques is the method of equivalent linearization,

[17 = 21] The concept of this method is to replace the
nonlinear structural system by an optimal (in some sense)
linear substitute which lends itself to methods of analytical
solution., The method was first introduced for deterministic
systems by Krylov and Bogoliubov. [ 17 ] The extension of
this technigue to problems of random excitation was made
independently and more or less simultaneously by Booton
and Caughey in 1953, [18,19] Since then much attention
has been concentrated on further development of the method.
The method is ocutlined in its basic form in section 2,2
where it is applied to the Duffing system, Most of the
efforts to improve on the technique attempt +to disguise
the rather embarassing fact that the response of the
equivalent linear system to a Gaussian excitation cannot
be other +than Gaussian. However, it must describe or
approximate to a degree the non Gaussian response of the
original nonlinear system, Nevertheless, it should be
clearly understood that the method is an approximate one
and indeed a very powerfull one as such. Its power 1is
derived from its wide and relatively inexpensive, compared
to numerical simulation, application to almost any kind
of nonlinear system under either stationary or nonstationary,
broad band or narrow band random excitations, It is also
true that it can provide some exact answers under special
circumstances even for large nonlinearities (Chapter 5).
On the other hand many probtlems to which it is applied do
not lend themselves to any other reliable method of analysis.
Hence, indiscriminate use of the method is inadvisable,
especially for design purposes. Instead, it is recommended
that a representative set of response statistics obtained
through this method be verified by simulations, prior to
an extensive use of the method, Alternatively these answers
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should be used at best as indications of what might happen
in the real system, It must also be noted that several
stochastic linearization schemes which have proved quite
reliable in predicting statistical movements of nenlinear
structural responses, have been found not as reliable 1in
predicting other useful response statistics, such as, the
autocorrelation and the spectral density functions, and the
average rate of a certain 1level crossing of a stationary
regponse, This should not be surprising since the equivalent
linear system can be optimised only in a limited sense,
using a single criterion for optimisation (eg. optimising
the mean square error of the response of the eqivalent
linear system with respect to the response of the nonlinear
system), There is no reason therefore to expect the
equivalent linear system to provide correct answers for
properties of the response that bear no direct relation to
the optimising criterion. In particular, as far as
information on the frequency content of the response 1is
congidered, it is unreasonable to expect the equivalent
linear system to provide anything more than an indication
of shift in the resonant frequency of the system.

FPinally, in the class of approximate techniques for nonlinear
systems under random excitation some attention has Dbeen
focused on H,R., Kraichman's 'Method of Stochastic Models',

[25] which has been applied with success to the problem
of isotropic turbulence (in that he was able to get a
golution for the energy spectrum), Basically his approach
is as follows, The coupled nonlinear equations of motion
are written for the degrees of freedom of the system. For
a turbulence field, these are the spatial Fourier amplitudesy
for a nonlinear oscillator, they are the spectral amplitudes,
The nonlinear interaction terms are replaced by statistical
interactions of the mode with an infinite set of other modes,
The statistics of the interaction terms are evaluated Dby
making certain assumptions regarding sources of coherence
in the interacting modes [ 25 — 28],

One finds that the 'zeroeth order approximation' is just
the method of equivalent linearization. lMoreover, Kraichman's
method describes how to go beyond equivalent linearization,
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It is not a small step, but the procedures are defined,
For the nonlinear oscillator, this method could produce
results for the spectrum changes due to neonlinearity
beyond the mere shift in resonant frequency that one
gets from equivalent linearization,

J.B., Morton and S. Corrsin [27] have used the above
method to predict the response spectrum of the Duffing
oscillator under white noise excitation, and small non
linearity. Their work was critically  reviewed by
A, B, Budgor and co-workers [18] who concluded that for
the particular case at least, better results were obtain—
able through the equivalent linearization method, when the
effective frequency of the equivalent linear system was
determined by the exact variance of the nonlinear response
as calculated by the exact probability density ( derived
through the Fokker — Plank equation). Their results were
compaired with analogue computer experiments,

It should be stressed that the nonlinearities involved
were very small and in a range where, the true nonlinear
gpectra are very similar to the linear (or equivalent
linear) ones, Further the computational effort involved
even for a 'first order approximation' is very large and
probably not worthwhile for the small gain in accuracy
obtained over the conventional equivalent linearization
method, However, the method should be investigated
further before its performance on stochastic structural
nonlinear problems is finally judged.



1.4 Problems Considered in Present Work

This thesis explores the use that can be made of numerical
simulation in describing the response of a single—degree
of freedom nonlinear system, under random excitation. It
also demonstrates how the task can be greatly simplified
by a systematic approach to choosing ranges of parameters
only possidble as a result of dimensional analysis,

The system, whcse spectral response behaviour under random
excitation is to be investigated, is the Duffing system,
It belongs to a class of nonlinear spring systems of the
form

mx + 2¢x + g(x) = P(t) (1-2)
here g(x) is a nonlinear function of displacement and F(t)
the excitation force, '
When F(%) is white noise equation (1-2) is usually referred
to as Kramer's after H.A.Xramer who first considered them
in 1940,
In particular when g(x) = k(x+8x3) (1-3)
the equation is known as Duffing's equation, i1rrespective
of whether P(t) is deterministic or random.
It should be noted that someiimes gystems with

g(x) = 8x’® (1=d)
or g(x) = k{ (1+7)x — Yx, | (1=5)

= 4+ — . -
with Y = O when |x] < %o and x;, = — X, when x<— x,

are also referred to as Duffing's equation [33]
Henceforth Duffing's system implies the one degree of
freedom system governed by

m¥ + cx + k(x+8x7) = F(%) (1-6)
where the symbols have their usual meaning and the non
linearity constant, 3, has dimensions r? .

The system with g(x) of the type of equation (1-5) will be
referred %o as trilirear or piece—wise linear and will be
the subject of a short discussion in the closing chapter
of this thesis.



The Duffing equation arises when describing a single mode
of vibration of a clamped—clamped beam with axial restraint,
of flat panels fastened at their edges, shells etec, How-
ever, more important is the role that the Duffing equation
plays in the study of nonlinear systems, since it is one of
the simplest systems which can be treated in sufficient
detail to investigate the usefulness of alternative methods,

The main body of this research will be concerned with the
spectral response of the Duffing system to broad band
Gausslan force excitation, Band limited and high pass
filtered Gaussian excitations are also considered in Chapter
6 but the purpose of this chapter is to provide a Dbetter
understanding of the response of the system to the broad
band excitation, It will alsco indicate possible <trouble
spots of future research in this direction,

The selection of a broad band Gaussian random process as
excitation is a natural start to describing the system.

In many random vibration problems which occur in practice
where the response of a given gystem to a single random
excitation is required, 1t is reasonable to assume that
the excitation is Gaussian, If the system can be considered
to be linear then the response to Gaussian excitation will
itself be Gaussian, characterised by definition of its
first and second order moments (mean value and gpectral
density).

Although this cannot be the case with a nonlinear system,
the assumption of Gaussianity at least simplifies the
description of the input,. It is encouraging however to
know through statistical information provided for the
system in question, by the solution of the appropriate
Fokker—Planck equation, that the velocity amplitude
distribution under white noise excitation itself is Gaussian,
Broad band exclitation is usually an approximation to
white noise and is seldomly encountered in reality with
its box like spectrum. Knowledge of the response of a
linear system to a sufficiently broad band excitation
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provides complete description of the system, Although
no such description is possible here,the work is expected
to provide a means of predicting the response of the non
linear system just to %broad band excitation, Such
excitation may be the response of ancther overdamped
linear system which acts as excitation to the nonlinear
system (providing there is no coupling) or maybe part of
a nmore complicated spectrum such as is the case of sea
spectra (Figure 1). .

s}

L ! i
/78 W, w

Pigure 1
In the latter it is arguable whether the large energy

concentration in the low frequency range will effect the
response when the natural frequencies lie in a range w,
to w,,

By describing the response spectra of the Duffing system
to Gaussian random broad band excitation the description
of the response is by no means complete since the output
is non — Gaussian, It is however a useful and logical
first step.

As mentioned earlier +the Duffing system has been
investigated extensively with varying degrees of success
depending on the method of analysis. A certain amount
of information is obtained through the solution of the
appropriate Fokker — Plank equation. However only the
stationary joint probability density of response dis—
placement and velocity under white noise excitation is
available, [T8—14]

Wollaver [ 12J has proved that the method of equivalent
linearization technique can under certain conditions
provide the exact variance of response displacement and
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veloclity for the system under white nocise excitation.
This is a2 dubious advantage since one of the conditions
assumes previous knowledge of the exact joint probability
density function of response velocity and displacement,

Simulation methods (analog or digital) have not been
used in general in their own right to describe the system,
A number of experiments have been performed by researchers
in the field who used simulations in order to confirm
various theoretical predictions derived through their
particular version of some approximate method., Since most
approximate methods are applicable to systems with 'weak'
nonlinearities the numerical results simply confirmed,with
varying degree of success, the findings of particular
approximate technique. J.B,Morton and S.Corrsin [27]‘
for example have as mentioned earlier used Krainchman's
'Method of Stochastic Models', to predict the response
spectrum of the Duffing system to white noise excitation.
The spectra obtained using this method were compared with

spectra obtained by analogue computer experiments and
were in good agreement, However, the nonlinearity involved

was 'wesgk',

At this point an example to show the ambiguity behind the
term 'weak' may not be out of place, For the Duffing
system a measure of nonlinearity 1is the term B<x$ .
When the expression for the displacement variance of the
system under white noise excitation, is obtained through
the equivalent linearization technique,equation [ 1-7},

and compared with a similar expression obtained through

the perturbation technique, equation {1-8), it is seen

that the results agree if Bof is assumed much smaller than
unity., [ 19,22 ]

Cx™ = {(1+12 go2)* — 1} =68 (1-7)
if BoZ << 1
therefore <(x® =~ of = 3807 (1-8)

Where o in equation (1-7) is the variance of the
equivalent linear system which in the form presented
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provides an underestimated value for {(x?* the mean square
response displacement of the nonlinear system, Strictly
speaking o2 in equation (1-8) has yet another meaning
being the variance of the nonlinear system with 8 = O,
However, when Bcf<< 1 the two variances are practically
the same, This still does not define 'weak' nonlinearity
even if the criterion Bof << 1 is translated to B{ x*)«1l
since no definite value is given. Purther it is obvious
that this condition can be achieved by a number of
combinations of input intensity (affecting x?) and
nonlinearity parameter (). It is seen here that that the
interpretation of results given by various methods present
a certain difficulty, which is created on one hand from the
lack of adequate knowledge, and on the other hand by the
increase in the number of independent parameters in the non
linear system as compared to the linear.

Numerical simulation methods on the other hand need
not present the same problem. IZach response record may be

thought of as the outcome of a single (digital) experiment
on a particular system with known parameters, A collection
of these records will provide the characteristics of this
unique combination of system parameters. Understandably
the number of possible combinations can be overwhelming
depending on the independent variables governing the system.
As is the case with most experiments where a complete
quantitative theory is lacking, the application of
dimensional analysis [29—31] can simplify the problem
significantly., By making use of the guidance provided by
this analysis one can derive substantially complete
information from a set of experiments, and with the greatest
economy of effort, since in all cases the  dimensional
analysis substantially reduces the number of the functionaly
related quantities below the number of the relevant physical
quantities, Provided that the indicial equations are
linearly independent, this reduction in the number  of
independent variables is equal to the number of the relevant
fundamental units (three in the case of mechanical systems),
Consequently a great reduction in the number of experiments
(simulations) may be expected for the adequate exploration
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of the phenomenon, Although it is usually difficult to
establish exact mathematical relations between the non
dimensional quantities, empirical relations are almost
the inevitable outcome of such experiments., Aside from
thelr practical value these relations can prove invaluable
'clues' to a future mathematical analysis of the problem,
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1.6 Arrangement of Chapters
The structure of the rest of this thesis is as follows.

In Chapter 2 the first order probabilistic information on
the response of the system is obtained through the solution
of the appropriate Fokker-Planck equation. This is preceded
by a general outline of the appropriate theory, The general
theory of the equivalent linearization technique follows- in
section 2 of this chapter along with its application to the
Duffing system and a general discussion of the method,

In Chapter 3 the numerical simulation technique used is
described in detail with reference to Appendices and tests
to prove its accuracy.

Chapter 4 presents the non dimensional form of the Duffing
system under both deterministic (sinusoidal) and random
excitations and is followed by a discussion clarifying the
apparent similarity of the two systems.

Chapter 5 contains the results of the numerical simulation
which are compared where possible with the exact results
obtained through the sclution of the appropriate Fokker —
Planck equation, The results are presented in convenient
non dimensional form and a graphical representation of the
response spectra useful for engineering application is
suggested,

In Chapter 6 the response of the system to Gaussian band
limited and high-—pass filtered processes is briefly examined,
The purpose of this work is to support the results of chapter
5 and suggests difficulties that may be encountered by
further research in this direction.

Chapter 7 contains a discussion of various conclusions and
also deals briefly with the piece—wise “trilinear system,.

-14-



CHAPTER 2
ANALYTICAL PREDICTION OF RESPONSE CHARACTERISTICS

FOR THE DUFFING SYSTEM UNDER RANDOM EXCITATICN

The alternatives to numerical simulation for the treatment
of nonlinear systems under random excitation have already
been reviewed in a general sense in the Introduction,

In this chapter two methods are used to obtain response
characteristics of the Duffing system, namely the analytical
method involving the solution of the Fokker— Planck equation
and the equivalent linearization technique, In particular,
in section 2.2, it is the convensional form of the equivalent
linearization technique, that is used to obtain the variance
of the response displacement of the system, This method is
contrasted with a refined version in the discussion to this
chapter.

2.1 Response to White Noise Excitation, The Fokker —
Planck Equation

This solution is restricted to ideal stationary white noise
excitation and in the first instance is capable of providing
only probabilistic information regarding the response of the
Duffing system.

In general it can be shown [ 10 — 14] +that the behaviour of
discrete dynamic systems subjected to white noise excitation
are examples of continuous multidimentional Markoff processes.
Such processes are completely characterised by their
transitional -~ conditional probability law, which is obtained
as fundamental solution to the Fokker — Planck equation
appropriate to the dynamic system. Purther it can be shown
that exact stationary solutions may be constructed for a class
of nonlinear problems in which the nonlinearity is a function

only of displacements, and that if stationary solutions exist
they are unigue,

Consider the differential equation

X+ 2fw, X + wy (1+8x*)x =F(t) (2—1)
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If the subensemble of response, taking the values x = x,
and X = X, at t = O, are considered, the joint distribution
of x and X at time t is described by the transitional—joint—

conditional density
P, = P(x,x,t/x, ,%x,,0) (2=2)

This conditional density function diffuses in time from a
Dirac delta function at (x,,%x.) and t = O towards the steady
state, or stationary joint distribution density B (x,x). The
conditional density Pr is goverened by the Fokker — Plank
equation

a§7 . Bfﬁr d e 2 », oF, -alﬁ.,.
T 35 3% (25w\ xPr ) +wy (X+8x ) ST+ ensS, %8 (2-3)

Where S, is the uniform spectral density of the ideal white
noise acceleration excitation, Here a single sided spectrum
is used with units of mean square excitation per unit of
circular frequency. Note that equation (2-3) is linear in
ﬁralthough it does have variable coefficients.The stationary
joint density P,(x,x) is the limit approached by Pr as t-=co
and is thus determined by the stationary equation

B, 3 - . sy 3B 32,
0 ==x 5% T 3% (20waxPs )+ we(x+Bx ) STt 2“s°a.k1 (o—d)
and the normalisation requirement
+Co
Sz (x iraxax = 1 (2-5)

= Q0

It can be shown that the unigque solution to equation (2—4)is

P.(x,x) = C exp { - né?“(%2+ G(Xﬂ} (2=6)

X
Where G(x) =~/.wi(n+ﬁn’)dn is the potential energy function
for the spring force, The integration constant C remains to
be fixed by the normalisation requirement of equation (2-5),
It can be seen that P, (x,x) has the form

P, (x,x) = P, (x).Pi(x) (2=7)

This implies that the response velocity and displacement of
the Duffing equation under white noise excitation are
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statistically independent, Indeed the probability dis—
tribution function of the response velocity is Gaussian and
identical to what it would be if the system were linear
(i.e. 8 = 0)

Pi(x) = C exp {— %%ka?» (2—-8)
therefore +00
o = | 2P (x)dx = TZZ% (2=9)
—m e

In general, displacement will not have a normal distribution
except when the stiffness is linear, Clearly here the
displacement has the form

P, (x)

C exp { %gs—(:)“ G(x)}

c exp«{— £§2[2£'+ Bxﬂ} (2=10)

T

R.H.Lyon [14] has produced exact expressions for the
moments of the Duffing system using parabolic c¢ylinder
functions., The expression however is particularly easy to
integrate numerically due to the decaying effect of <.

Since the joint density is available it is an easy matter

to compute various response statistics such as mean square
response, expected number of crossings of the level x = a

etc,

Apart from the above probability functions there is great
interest in the various correlation functions as a means of
calculating the spectra. In order to see the problems
involved in their determination consider for example the
autocorrelation function of response displacement

+00
Rxx(t) = J(Z];[%°X P(x,,%,,09%,x,t)dxdxdx,.dx, (2—11)
- 0
for t=20

where P(x,,x.,0%%,%x,t) is the transitional density
function. Using the relation
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P(X,,%,,0%%,%x,t) = P,(x.,x.) P-(x,x,t/%.,x.,0) (2=12)

Equation (2-11) may be rewritten in the form

+ €O
Rxx(t) =ffff x,x P, (x.,x.) P.(x,%,t/%x,,%.,0)dxdxdx,dx,
-®

(2=13)
The function

+00
vix,x,t) =‘/:/%°P,(xo,io) Pr(x,x,%/%, ,%x,,0)dx, dx, (2=14)
-

is a weighted average of P~ and is therefore a solution to
the Fokker —Planck equation with appropriate boundary
conditions 1i.e,

a\’ al\) a- . 4 > dv _ @_Y_
a_t = 27550&1”- -é-}E (2§w~‘X'\))+w~\(X+BX ) S-}-c- Xax (2—]—5)

which must be solved for v(x,x,t) with finite boundary
conditions.

v(x,x,0) = x Ps (x,x) (2=16)

The autocorrelation is then obtainable through

Rxx(t) = ffx vix,x,t)dxdx (2=-17)

It is thus necessary to know Ps (x,Xx) apriori as a boundary
condition, Because of this any analytical approach for
finding the autocorrelaticn function is restricted to

Kramer's class (see introduotion,[lZ]). Unfortunately all
attempts to solve the above F.P, equation for the general
class of Kramer's egquations or indeed the Duffing system

have been unsuccessful, The tools for solving partial
differential equations are very meagre compared %o those
for ordinary differential equations, Even numerical

solutions are bveset with difficulty because of the boundary
conditions. Purther the path leading to spectral densities
through this method is probably too indirect to be suitable
for a numerical procedure, It is worth noting however that
this method has successfully applied to certain mathemat—
ically 'convenient' nonlinearities [12].
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2.2 Equivalent Linearization Technique

The method of equivalent linearization has proved, over the
period of the last three decades, a useful approximate method
for probabilistic analysis of nonlinear structural dynamic
problems, as discussed in section 1,3, The technique of
equivalent linearization was first introduced by Krylov and
Bogoliubov [17] in conmmection with deterministic nonlinear
problems., It was first applied to the problem of random
oscillations by Booton [ 18] and Caughey [19] and 1later
was used on several occasions by Crandall [20] and  many
others [21] ,

The underlying idea of this approach is that, given a non—
linear differential equation, an 'equivalent' linear equation
is constructed so that the behaviour of the linear system
approximates that of the nonlinear system in some sense, Once
the equivalent linear equation is established, the properties
of the solution process can be eagily analysed by means of
the linear theory and the results should be approximations

to the solution properties of the original nonlinear equation.
It is important to note that this technique is best suited
for problems with 'small' nonlinearities, but under certain
conditions may produce remarkable accuracy for 'large' non
linearities, On the other hand, a mumber of difficulties
develope in the procegs of derivation and they can be over
come satisfactorily only for a certain class of nonlinear
problems,

FPor a single—degree of freedom system such as
x + g(x,x) = F(t) (2-=18)
it is assumed that an approximate solution can be obtained
from the linearised equation
X, + beX, + wex, = P(t) (2-19)

where the parameters b. and w. are to be selected so that
the linear equation above produces a solution which 'best'
approximates(usually in least squares sense)that of the
original nonlinear equation. Adding the terms (X + bex +

w, X) to both sides of equation (2-18) and rearranging
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X + beX + wex = F(t) + N(t) (2—20)
where

N(t) = bex + wex — g(x,x) (2—21)

Note the difference of equations (2-19) and (2-20)., The
quantity N(t) is itself a random process and can be consid—
ered as the error term of the approximation procedure, In
order to minimise the approximate error, a common criterion
is to minimise the mean square value of the error process
N(t)., Hence it is required that b. and we are chosen such
that

B(N(t)) = B( [ bextwe x — g(x,:&)]z ) (2—22)

is minimised for t € T, The first and second derivatives of
B(N{t)) with respect to be, wi are

%ﬁ E(NY) = 2B(bex*+ wlxk —xg(x,%))
a 2 EA A . .
Soh E(N") = 2E(wex + bexx — xg(x,x))
S 2 "

Sg: B(NT) = 2B(x%)20

S 1 2

W)LE(N ) = 2B(x*) =0

2
2

Y gty o8 2
<5 E(NY) SoT) E(NY) - [&BME(N )} =

4{ B(X)E (©)— E(xx )) 20

Prom the above it is seen that the necessary conditions
for minimising E(N(%))are

S

.
S5 E() = 0 and S5, B() = 0

Hence, b, and w, are the solutions of the equations
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b, E (%) + w. E (x)— E (Zg(x,%))= 0
. (2=-23)
W, B (%) + b, B(xx)-B(xg(x,%)) =
In this form, the solutions for b.and wi, requires the
knowledge of the indicated expectations, which are obviously
unknown, There are two possible approximations at this
point, The joint density function P (x, 1t%%, t) may be
replaced by the stationary density function Ps (x,x) computed
from the original nonlinear equation (for example solving
the appropriate Fokker —Planck equation when possible) or
P, (x,Xx) can be determined approximately using the linearized
equation (2-19)(convensional equivalent linear technique)..

The latter is now applied for the Duffing system excited by

stationary Gaussian input with zero mean, A  further
assumption is made that x and x are jointly stationary but
not necessarily Gaussian, This implies

E(xx)= E(xxX)= 0
Hence for the system
X + bx + w., (x+8%) = F(%) (2—24)
equations (2-23) become
ng(ﬁc)L— E(x'+ ) (%x + gxx)) =0

oy . N 4 (2=25)
We B(X)— BE@ xx+ wy(x + Bx)) =0

w(1 + B %—P—g) (2—-26)

Hence the equivalent linear equation becomes

0r b= he

X

X, +bx + (1 + B 3§ L T(%)

Jx= F (2=27)

Where both the expectations involved are urknown., If equation
(2=19) is used to evaluate the unknown ratio

| BE(x!y /E(X) = 3 ou (2-28)
therefore

we = wh (1 + 3Boy,) (2—29)
thus
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X, +Dbx, + wi (1 + 3Bo)x = F(%) (2=30)

The variance o, of the output displacement can be computed
from the spectral den51ty functlon S. (w) of F(%) as

o, fSw(w)dw . le(lw)I 5(w)dw
where °
H(iw) = (wi— @ + 1 bw)
= (W= w'+ 1bo) (2-31)
For ideal white noise acceleration input of intensity S,

o SOTE
O« = Shws (2=32)

Substituting equations (2—-28) in equation (2-31) and
rearranging

68 Db wioe + 2bwio. = Som (2-33)

It will be shown later that this equation provides an
underestimation for the variance of the nonlinear response
displacement.
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2,3 Discussion

The analysis previously shown are consistent up to equations
(2-26), If the values for b,, we were to be evaluated
precisely the expected values indicated in equations (1-25)
should be calculated using the correct probabilities, These
can only be obtained through the corresponding Fokker—Planck
equation or the moments may be calculated by a simulation
process as the one developed in this project. Wolaver [12]
has shown that in the case of a system where only the stiff-—
ness law is nonlinear and where excitation dis a Gaussian
white noise process, the equivalent linearization methed can
lead to the exact mean square value for the stationary dis—
placement regardless of the magnitude of the nonlinear term,
He has also proved that in this case the MNMaclaurin series
expansion of the approximate autocorrelation function Rxx (%)
of the stationary displacement obtained from the equivalenf

" linearization agrees with that of the exact autocorrelation
function up to the < term, (Appendix Bl),I%t is unreasonable
however to attempt to derive any more information about the
nenlinear system through this technique, Further what might
seem as an advantage of the method, i.e. the exact value for
the mean square response displacement, loses its significance
since that in order to obtain the correct mean square¢value,
we should be evaluated using the correct ratio of %%%r}which
implies the previous knowledge of the moments, through some
other method. Eence the only additional information that can
be obtained through the technique is the approximate auto—
correlation function., The usefulness of this knowledge will
be investigated in Chapter 5.

In addition to the methods outlined in sections 1 and 2 of
this chapter, the perturbation and heuristic methods are also
presented in Appendices B.,2 and B, 3. These are only
applicable for nearly linear systems. The perturbation
technique 1s closely related to the classical perturbation
methods used in the solution of differential equations
[22-24]) . The heuristic method, named thus by Crandall
who devised it, is an early attempt %o provide a simpler
derivation of the results obtained by perturbation techniques

[23] .
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CHAFTER 3

NUMERICAT, STMULATION

Before proceeding to outline the details of the numerical
simulation technique employed, 1t is appropriate to describe
the general problem of response simulation for dynamic
systems, The general simulation problem can be visualised
in three separate stages:—

a) Description of the input,

b) Definition of the system in the form of differential
equations,

c) Numerical solution of the set of differential equations
describing the system for the input defined,

Clearly for the particular problem of response simulation
of the Duffing system, stage (b) is already defined., It was
therefore towards the two other stages that particular
attention was drawn,

In this chapter only essential features of the simulation

technique will be outlined along with a list of tests of the
technique, More details may be found in Appendix C,
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3,1 The Numerical Integration

For the numerical integration of Duffing's equation, the
main criterion for the selection of a particular technique,
and the set up of the whole simulationprocedure is the suit-
ability of the process to cope with random input., Inevitably
as it 1s the case with all computer work, economy of
computer time is also important,

The simulation was performed on the ICL 2976 main frame
computer at Glasgow University., The facilities available
include a package of numerical integration routines which
were supplied by NAG LTD,, under the general title

NAG FORTRAN Library Mark 7,

For simple problems with low accuracy requirements, that is
problems on a short range of integration, with derivative
functions which are inexpensive to calculate and where only
a few correct figures are required, the best routines touse
are likely to be the Runge - Kutta Merson routines, For
large problems, over long ranges or with high accuracy
requirements the variable—order, variable—step Adams rou—
tines should usually be preferred, For stiff equations,
that is those with widely different natural frequencies,the
Gear variable—order, variable—step routines are often
superior.,

All the NAG procedures are called in the user's program in
the form of a subroutine, The problem is formulated as a
gset of first order ordinary differential equations is de-
fined in an other subroutine as an external function (EF)
Each call of the NAG, integrates the differential equations
from t to t + A%,

Hence if the solution of the initial wvalue problem

¥+ 2%w, x + g{x) = (%), x(0) = A, x(0)= B (3-1)

is required, the EF should be defined as

(3~2)

jof [oF
o
I
N
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[=7]

Z

= = F(t) — 2tw,z — g(x)

<t

This subroutine should have some means of accessing informe—
tion about F(t)., If F(t) is deterministic then this
information can be included in the EF, If however F(t) is
random and represented by a digital signal sampled at a
given rate At, problems arise especially if a variable—step
technique is used,

The way chosen to overcome this problem is as follows:—

Since the input would be sampled at regular intervals the
step length should be set to a value smaller than the data
spacing At, by the integration method automatic process
depending on accuracy requirements, then values of excitation
between the specified values will be taken to lie on the line
joining the surrounding specified points, Alternatively,

the integration should be performed only at times where the
excitation is known i,e, at multiples of the data spacing,

in which case only fixed step routines could be used,
Unfortunately, variable step routines are desirable for
reasons other than theilr wvariable step facility being
generally of a higher order than the fixed step methods
available in the packages, and much faster,

With the continuity of the input guaranteed by the linear
interpolation, instead of proceeding to obtain the response
of the system with the initial conditions for the complete
input., the following 'segmentation' of the solution was
proposed, The numerical integration routine would be called
to integrate the system using the initial conditions at some
point in time t, up to t. = t, +-A%t along the straight line
segment from t, to ¥, at this point the routine would be
reset to regard the values at t as initial values to pro
ceed to obtain the solution at t, = t, +4% = t, + 2at.
Again there is no justification for this method except that
it allows the use of low accuracy requirements hence the
less expensive Runge—-Kutte-Merson routines, This technique
is the easiest method of making certain that all the
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excitation data points are used by the integration sub
routine, since the integration steps of the routine are
automatically set., The particular subroutine selected was
a Runge-Kutta-Merson version, implemented by NAG under the
code name DO2BAF,

The idea was first tested using deterministic excitation.

Two programs were used, ldentical in all respects the only
difference being the definition of the excitation data.One
used a deterministic definition of the input in the formof

a function which provided the exact excitation at any
required point, and the other the interpolation idea outlined
above, The output was printed at the end of each interval.
The first step was to find the most reasonable time interval
in terms of accuracy and economy.,The deterministic excitations
used for these tests were:-

a) A sinusoidal signal defined as.-—
F(t) = F, sin(wt) of fixed frequency w and
b) A modulated sinusoidal signal defined as:-—

P(t) = F, cos(we t) sin(wt) where we is the modulation
frequency. The system was defined by the differential
equation:—

X+ 28wk + wa (1 + Bx) x = P(%) (3=3)
with initial values x = x = O

It was observed that the substitution tends tounderestimate
the output as the interval increases, Although a sampling
rate of eight points per cycle of input produced good results
a sampling rate of twelve points per cycle was adopted.
Typical response records are shown in figures 2,a-2.d. The
tests were performed for a wide range of damping and non
linearity constants, For high nonlinearity with = {ypical
values of 8 = 10, P, = 40, Wy =7 (i.e, Y in the range of
1600, Section 4.1 for significance of Y) the sampling
process produced smoother shapes for the response velocity
oscillations, than the process using a functional repres—
entation of excitation., Figure 2.d. This was taken into
account when the simulation was modified to handle random
excitation. Purther, the investigation of the response

- 27 =



—_— - == - L R i e —e e =

—_— R T

————— - —

function representation of input are called exact and the

T T T

X

A-t = Oo 0155

Y i

w = 2%

Response Displacement for

P(t) = 40 sinwt

12pts/Cycle

At Approx.

at = 0,083,

results, obtained by using the method of linear interpretation

of the Fxcitation are called approximate,




At Approx.

12pts/cycle

T
et p— e S ——,
w« ——— —g
&
— — =
= P 1
- — o} —— D
S, .-
R e
e R T'o S . ————— e e e
e g ———
— PRSI [ S o = mamen —

Figure 2.D

SR i ) B S )
B T W R e NSV
P
e e e L
e — T
— ) — .
e ————————
3 S ———

Response velocity as for Figure 2a

e e et et e _ s e
R v ~_
e r———————, i SR T e
et et B e — — .'.I.

e J— ; -
e L g e e —_ e e 1]
et R ———— [~

| — - .

e e
=TT 2 e <
— —— ¥
T
e —

e _ =
: . e PSR e

T T T T e e e - e T te—— At e e

N B =
B B M I D ——
1 [l




At Approx.

e e e T — e
e T T ————
Y
e & S e
———— Chr—
———— e

40 sinwt
|

T=0,1
g = 10.0
2n
=X

n—
=

W
A
t
i
i
]

i
|

f
I
I
52
Response Displacement to

P(t)

12pts/cycle

Figure 2.¢
- 30 —

Pt 4
PE— I RSN S e
e S e A e e
T T e e o
e~
g
I = )
— g ]
- e b .
_ T

)
5
4.5
SE
.9
d.5




gt
[y
— 3 ——
. e
Pt
e — e —————
R e
g e
——— e |'|||l‘1)|l.|.[\||\\b
b
-
—— e e
-
—— R
e e -yg—
Ve P
e e e,
e 4

ST e
e

e e i e, .

jro-puaa e SUSEPSES II\IIMU

g =

A —
——
g A
e e t D
——
.- e e e e T
-—— B B
m . *
- —_ -
e U —— I
— e
S —— —
L N,
-
Y
S

At

- 31 -

Figure 24

Response Velocity as for Figure 2.C
Response Velocity as for Figure 2,C




under sinusoidal excitation, also served the purpose of
providing a behavioural pattern for the settling time of
the system, to be used as an indication of the behaviour
of the settling time under random excitation.

One of the most important deterministic manifestations of
the nonlinearity of the Duffing system is the Jjump
phenomenon (Appendix A.1). Although this phenomenon can
not occur under broad band random excitation [ 32] it is
almost certain to occur under narrow band excitation.,The
modulated sinusocidal excitation used to test the simule—
tion process proved the ability of the method to cope with
response jumps. A theoretical response prediction for
such excitation is shown in Appendix A.3. Figure 3 shows
a computer plot of the response obtained by the numerical
gimulation.

HEaving proved the ability of the simulation process to cope
with the deterministic inputs and jump phenomena, the next
gtep was to test the process for random excitation., The

NAG library contains subroutines which can provide a set

of pseudorandom numbers belonging to a population with a
gpecified probability density function. The adjective
'pseudo' is included because the obtained numbers are
perfectly reproducible and the only random element involved
is associated with the fact that they are generated by
means of a periodic sequence of integer numbers of extremely
long periods, thus ensuring very small correlation of
consecutive numbers. The first tests of the method were
conducted using a subroutine(NAG subroutine GCSDDF)that
produced a set .of random numbers with normal distribution
and were defined mean and standard derivation. The numbers
generated were set up in an array and a time interval At
was assigned between them., Thus it could be assumed that
these numbers represented sampled values of a random process
F(t) of given mean and standard deviation, The frequency
scale of this process is determined by the number of points
per record (2K) and the time interval At. A Fast Fourier
Transformatibn algorithn may be used (NAG subroutine COGAAR)
to obtain the power spectrum of the above process, over a
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Figure 3.,a

Execitation

P(t) = 40sin{wt)cos(wet) with w = 2%, we/w = 0,001
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Figure 3,cC

Response displacement and velocity of the Duffing equation
B=1,.0, wy =nm and v = 0,1

(Illustrat-i AN AF [Gr1imn mhanamasmaa)



number of sample records of 2K points each. The +time
duration of the records T = 2KAt determines the fregquency
resolution of the power spectrum, whereas the time interval
At determines the highest frequency content of the signal.

The simulation process was tested for a linear system 3 =0)
with the excitation data produced as described above., The
response displacement and velocity records were processed

and the response spectra obtained agreed with the linear
theory,

However this method of producing excitation data was con—
sidered unsuitable for use in connection with the nonlinear
system and an alternative method was devised., As it will
be explained in the next section.
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3.2 The excitation Spectrum

A random excitation signal may be thought of as composed of
sinusoids of different frequencies, Such a signal will be
used to obtain the response of the Duffing system  through
the numerical integration of equation (3~3), The descrete
gystemr tests showed that in order to obtain the correct out
put for a sinusoidal excitation, the input should be sampled
at a rate of twelve points per cycle, If this rule is not
observed then the input components which are under sampled,
will be under estimated or even ignored by the integration.
Cne of the reasons for this is the linear interpolation
between input data points, which 'straightens the bends'and
affects the r.m.s, of the signal. The excitation spectrum pro
duced as described at the end of the previous section repre—
sents a signal whose highest frequency component is sampled
at a rate of two points per cycle (Nyquist frequency). Thus
the two processes (the FFT and the numerical integration)
interpret the same signal in two different ways., In terms
of power spectra, the FPT reproduces the true power spectrum
Figure (4.,a) whereas the numerical integration results would
suggest an excitation spectrum as shown in Pigure (4.b).

l
S | So |

W w wf6 We. w

(a) (b)

Figure
In the case of a linear system and for a constant number of
data points per signal, At between points may be selected
such that the frequencies of interest lay below w, /6., In the
case of the Duffing system however the frequencies- . of
interest are not known precisely since the response spectrum
shifts [ 10] with increased intensity of the input, and
there 1is also the possibility of superharmonic resonance,
One could use low pass filters to cut off the unwanted under
sampled) frequencies of the input, or use curve fitting
techniques to increase the sampling rate, These are however
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expensive techniques which also present their own problems,
Por a low pass filter. for example, a critically damped
second order linear system would have to be integrated and
its response used as exclitation for the Duffing system,
Instead it was decided to produce an input signal with a
spectrum that could be 'seen' correctly by both the FFT and
the numerical integraticn technique. This should produce a
an FPT spectrum which would look like Figure (4.c).

i
Stw)

Wel 6 c@ -;

Figure 4c¢c
Where we is the Nyquist frequency (two points per cycle).
It can be shown that by introducing a random phase angle
@ (w) with a uniform distribution between O to 2rn to each
term of a smoothed spectrum such as the one shown above
an equivalent complex fourier transformation F(w) can TDe
calculated as follows

() VE(w) et

.
2n
g;(VG(wJ cos @. + VS(w) sin @)

from which (3~4)

We

We
F(t) =-2%?fF(w)elwt dw =%f\/8(w) cos (Wt + PJdw

~We
where ¢, = ¢ (w) (2=5)

This is based on the consept that any random signal can be
represented as an infinite series in the form

F(t) = c,cos (Wb + Pn) (3-6)

where the frequencies w, are distributed densly in the
interval (0,o), the phases ¢, are random and distributed
uniformly between O and 2x, and the amplitudes ¢, are such
that in any small interval of freguency dw,

- 37 =



Cwrdw
iy
2

W= ww

cr = S(w)dw (3~7)

where S(w) is the energy spectrum of F(t) and is a continuous
function of frequency w, S.O.Rice[;l] has used this method
to describe noise signal and obtain its statistical
properties, There remains however the question of staticnary
and Gaussianity of this signal, These are answered in
Appendix C, along with more details of the excitation signal
production method and its properties,
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3.3 Testing the Mumerical Simulation for Random Excitation

The complete simulation, with the new input, was tested for
a linear system and agreed with the theoretical predicticns.
The tests on the nonlinear output were the following.,

A cross check of the displacement, velocity and acceleration
spectra was made using the property of spectra

S¥%(w)= w' 5%xx(w) = w*Sxx(w)

The accelaration spectrum was also calculated from data
values using the relation

¥ = F(t) — 2fw.x — wy (1+8¥)x

An example of these comparisons may be seen in Figure 5.

The suitability of the Runge — Kutta — Merson numerical
integration routine was compared with the more accurate
(and more expensive) Adams routine, as follows. It can

be seen from the previous section equation (3—6) that it

is possible but very expensive, to represent the input in

an exact continuous form and hence avoid the linear inter—
polation between the points and provide greater accuracy.
The system was integrated using this form of input by both
routines, The response values for the two methods agreed
very well, (maximum recorded relative discrepancy 0.07%),
Although the integration proceeded for only 4o of the complete
record normally used there is no reason why this argument
should be affected for the complete record. The two routines
were also used to integrate the system with the input in
sampled form i.e., linear interpolation between points. As
can be seen from Figures 6.a to 6.,z., the Runge — Kutta —
Merson routine agreed better with the previous integration
of the same input in the continuous representation. A
possible explanation for this is that the Adams routine being
more accurate is also more sensitive to the linear interpo—
lation between imput points, It was not possible to obtain
spectral estimations of the output obtained by integrating
the system using the exact representation of input, because
of the limited data obtained. As noted earlier the continous
representation of the input without the help of the linear
interpolation between points is very expensive, this is due
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Figure 6a

Sample of excitation record (1/40 of T)
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(b)

(e)

Figures 6b,c

Displacement and velocity response
uging functional expression for
excitation data. Bunge-Kutta—Merson
technique
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(e)

Pigures 6d,e

Sampled excitation. Runge-Kutta
Merson integration ftechnique
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Figures 6f,¢

As for Figures 8d,e, Adams
numerical integration technique
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to the fact that sinuscidal values are relatively slow
computer process and the number of evaluations is over—
whelming (well over 340X4096 per realisation).

Finally, an important test was performed only after a
certain amount of knowledge was obtained about the system
using the simulation technique, It was established that
there exists a maximum frequency of response (w.) which
depends on the intensity of input, beyond which any input
component is ineffective as far as the system is concerned,
(Section 5.1), This implies that if w. is less than w./6
in Figure 4.b the response should not be affected by the
curved part of the input spectrum since the system does not
respond at these high frequencies >w,). The random number
generating routine GO5DD5 described in Section 3.1 was used to
produce data that conformed with the above restrictions.
The response of the system to this input agreed with the
response obtained using input data produced with the method
described in Section 3.2, This comparison proved that the
two inputs are compatible under the conditions mentioned
above and also tc some extent the existance of the afore
mentioned frequency.(w.)
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CHAPTER 4
THE _NON — DIMENSIONAT FORM OF THE DUFFING SYSTEM

The existance of the well-known transfer function for the
linear system makes it possible that one can visualise the
behaviour of the linear response fairly accurately just by
looking at the values of stiffness, damping, mass and the
form of excitation for the particular system., On the other
hand, in the case of the nonlinear system, even if one
knew all the system parameters there is no simple way of
obtaining the information on the nonlinear response, The
description of the response is further complicated by the
increase of the gystem parameters due to the nonlinear
terms.

In this chapter the dimensional analysis technigue will be
applied to the Duffing system under sinusoidal and random
excitations, The dimensional analysis promises to reduce
the number of independent variables by three (Section 1,5).
The advantages of being able to obtain even a rough guidance
on the behaviour of a system by thinking in terms of two
variables instead of five (m,k,c,B, F(t)) are self evident,.It
is hoped that the presentation of response properties of
the system in non—dimensional form will provide a better
understanding of the properties of the system and also
make best use of the numerical simulation results by trans—
forming them into more versatile general qualities whose
effects will be more easily interpretable, Further it is
always possible to revert to dimensional qualities if
required,
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4,1 The Deterministic System
Consider the response governed by the equation
n¥X + cx + k(x+Bx’) = F. cos (wt+y) (4=1)

The amplitude response x 1is given approximately by the
relation (Appendix A)

[ (1+fgxi —o)+ (210) ] xi = F. (4-2)
where Q= w/Wwm , Ww =vVk/m, F. = F /o and (= c/2Vknm

The non-dimensional form of equation (4—2) is simply

3 2 - i E?: _ F: - Ft
(1+3',8X0 —Q) -+ (Zgﬂ) =xr = m“*w::xi = krx: (4-3)

This provides the following independent non-dimensional
groups

W kS 1 kS
8X, , ! and k x /7,

A further independent combination is also possible gF. /X',
For fixed damping ratio ({ = constant) each of the guantities
X, ,8,%, can be treated as an independent variable, Thus the
non—dimensional group BF:/kl may be used as index either of
Fo or of B the other being assumed fixed, If for example
this quantity is used as a measure of the effect of 38 on the
response, the relation

K'x"/Fe = @ [ BF:/K", w/wn, b (4—4)

should be used(Figure \7). If on the other hand B’H‘:/EL is
used to show the effect of F. on the response, the relation

Bxy = & [ BFa/K", w/wuy §] (4=5)

should be used(Figure 8), Thus it is possible to combine
the non—-dimensgional groups in relations that will make the
effects of changes in particular parameters of the system
directly observable, It is emphasised that both the non
dimensional plots Figures (7,8) and a dimensional one from
which the former may be derived contain the same information,
each being readily convertible in any other, The notable
difference however being, in the case of the non-dimensional
plots, the ease of interpretation, Equally important is the
fact that the behaviour of the system can be completely
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described through just two parameters BF,/k* and {, For
example, the quantity Bx. which is a measure of the system
nonlinearity, (i.e. the deviation from the linear stiffness
law), has a unique relation with the quantity gF./k’ ex—
pressed by equation (4-5), so does the resonant frequency
and the frequencies where jumps may occur, Thus if the
quantity BF./k" is kept constant in the system, while its
individual parameters (with the exception of {) are changed,
the system will exhibit the same nonlinear properties., An
increase in the value of BF:/k1 implies an increase in non
linear behaviour, provided that is kept constant and the
opposite is also true, '

The following symbols will be reserved for the non
dimensional quantities of the Duffing system under
sinusoidal excitation.,

o= kX' x5/Fe
6 = BX%:

Y = BF:/};
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4,2 The Duffing System Under Broad Band Random Excitaticn
Consider the response governed by the equation
m¥ + cx + k(x+8x ) = P(t) (4-6)

The excitation F(t) at the firsit stage of this investigation
is to be a Gaussian broad band stationary random process.
Such an excitation is characterised by its spectral density
Se(w), and its cut off frequency w. Figure 9,

Stw) |

S

We w
Bioure

The spectral density of the response displacement x(t) is
to be investigated, Hence the parameters of interest are the
following, (Their dimensions in brackets)

Sx(w) (T'7) n M)
3. (M) c  (MT7)
‘ (4~7)
W (1) x  (uT™)
we (1) 5 (17

From these the following non—dimensional groups may be
constructed,

Q= wAk/m, Qo= wAk/m, = c/2k
and AR) = X S.(2) /8, B(Q)=8S, (2Wk/m
The group I = 8S.A/mk® will also be found useful. This may
be thought of as an equivalent quantity to the norn—-
dimensional group T, 8/k* of the deterministic system., This

similarity is however only apparent and will be discussed
further in the discussion to this chapter.

The plct of response spectra and other statistical quantities
is sought in a way which will bring out the influence of
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changes in the nonlinearity perameter B, excitation
intensity S, excitation band width w. ete, As response
parameters the non-dimensional groups of either]ﬁ%Q/aor
BSQ/E7E can be used, where the choice will depend on the
influence which is to be brought out and under the same
considerations used in the deterministic case, Thus the
following relationships of the form

k*8,(w)/8, = #(BS,/VIK, o/3[km, w //k/u, wjk/m)
(4-8)
or A =&( T s € ’ Q. y & )
and 8S;(w)yk/m = v(8S, //mk’, ¢/2/km, w./[k/m, w/A/k/m)
(4-9)
or B =vw( T , ¢ ) Q. , Q)

can be assumed, In equation (4~8) the group ¥ S, (w)/S, is

a convenient response parameter and variations of the group
BS, /f/mk’ may be used to illustrate changes in 8. In equation
(4=9) the response parameter 8S.(w)/k/misused and the same
variations of the group BS/fEE; may\be used to illustrate the
effects of changes in § . The influence of the damping and
the band width which arise from the groups c¢/2/mk and

W /§7ﬁushould be investigated separately. Hence the spectral
response relations may be plotted, for each given value of
damping, in the manner shown in Figures (10,11)

AJ For walues of B For values of [
and 3 = constant and 3 = constant
N Q
Figure 10 Figure 11

For any single value of 88 //mk’ i,e, for any single curve
on Figure (11 ) one can integrate 8S, (w)/k/m over the range
0 < wA'k/m >0 +to obtain

Bo.,

X

-6 J slwiaw = [ g5, (2)/%man (4-10)
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where @ = w/\/ K/M ..

The resulting values for 8o, can then be plotted against
the corresponding values of BS,AfEE?, to obtain a separate
curve for each value of damping. This implies that there
is a fixed relationship connecting Bo, , BS‘A/EE? and , of
the form

8, . ==, [ BS. A/mk , ¢ ] (4-11)
or ggt ==,[ T , U]

Once the form of equation(4—11) has been established the
magnitude of Bo;' for any given combination of S, ,k,m,3 and
{ is determined. In fact looking back on equation (2-10)
derived from the Fokker — Planck equation

- @
fx" P(x)dx
-®

{w

<¥X> = ¢ fx" exp (- ;E-S-;-*-(zx‘ +8x" ) )dx (4=12)

-

il

1
<X >

X % 8 Vmk’
but S, = S, /m* and '—,"U:-QTH-L" ""\fjﬁ;'—:ﬁ‘/tﬁ&/ﬂlﬁk’ = B(/I‘w

hence the non-dimensional form of equation (4-12) is

w

co
B<x'> = cJ[ Bx" exp (= Yw (28x +8" x' )dx (4~13)
-

which shows a unique relationship of the form

8o, =x[I/¢] (4-14)

The occurance of the ratio of the two non—dimensional groups
in the probability density function shows that for Gaussian
(white noise) excitation the second moment of the response
displacement can be described in terms of a single non—
dimensional parameter namely the ratio I'/t, Whether this
holds true for the spectrzl response is yet to be inves—
tigated in chapter 5,

Finally, regarding the velccity and acceleraticn nor—
dimensional quantities related to the corresponding spectral
values, these can be defined as follows,
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Av

¥ S, /S wi Aa k- Siz'/Sl wf\

By = 5%¢% Ba

where w, = k/m,

These quantities are expected tc depend on the same pare—

8S, /u,

meters on which the corresponding displacement quantities
depend as per equations (4-8),(4-9), However once the
response displacement spectrum is obtained it is a simple
matter to obtain the response velocity and acceleration
spectra through the relation

s¥(w) = 8x(w) « = Sx(w) w'
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4,3 Discussion

The responses of the Duffing system are conveniently plotted
by making use of the non—-dimensional groupings outlined above,
This is so whether excitations are at a discrete frequency

or random, Purther the groupings in the two cases do at
first seem remarkably similar, These similarities however
are only superficial and the groupings are in fact extremely
different, Specifically the response relationships in the
two cases are as follows,

K x,/F, =9, (B8R /¥, w//k/m) (4-15)
for the discrete system
kK S (w)/s, =9, (8BS ffmk, wjfk/m) (4-16)

for the random, Where in these equations the rest of the
groups are assigned constant values, Comparisons can only
be made 1if some relation is established between BF:/kt and
8S, //¥m and between k' x3/F. and k'S -(w)/S.. No such
equivalence exists and the only common parameter in the two
equations is the frequency, This eliminates any hope of
obtaining enlightenment about the random responses from the
better known results for sinuscidal excitation,

Regarding the system under band limited or high pass filtered
excitation processes equations (4~8),(4—-9) still apply., The
influence and the meaning of the term however changes,
This is further discussed in chapter 6,

Finally it should be made clear that the non—dimensional form
of the response displacement in the time domain is /B x(+t),
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CHAPTER 5
RESPONSE TO BROAD BAND EXCITATION

With reasonable confidence on the simulation procedure
having being established, specific problems regarding the
response of the Duffing system, were setup for investigation,
The theoretical concept of ideal white noise excitation in
general leads to considerable simplification of the mathemat-
ical analysis involved in theoretical response prediction
methods, In order however for the analysis to change from
an interesting exercise of higher mathematics to a practical
response prediction method, this type of excitation should
be compared to more realistic ones, The Fokker — Planck
approach assumes stationarity of the response of the Duffing
system under white noise excitation, and produces its joint
probability density function under such excitation, The
simulation procedure on the other hand can produce samples
of the response to a broad band signal of given frequency
cut—off, Thus a question arises, as to how wide the band
width must be before the findings of the Fokker — Planck
approach apply to the more realistic broad band excitation.
The question of stationarity of the cutput is also very
important not only as a check of comparability of the two
methods but also as a property of the response of the system
for a given excitation. These questions are the subject of
Sections 5,1 and 5.2, The description of the displacement
response spectrum, as calculagted through the simulation pro-
cedure, is the subject of Section 5.3. In the next section
an attempt is made to link the properties described in
Section 5.3 to existing theory and io compare the simulation
derived statistical properties with the corresponding ocnes
obtained through the Fokker — Planck approach., Finally in
Section 5,5 the spectral properties are used to provide a
simple means of sketching an approximate shape for the
response displacement spectrum of the system under broad band
Gaugsian random excitation.,
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5.1 Excitation Spectra, Broad Band Excitation as an
Approximation to White Noise.

It should be restated here that the aim of this project is
to investigate the response of the Duffing systemunder broad
band excitation. The purpose of this section is simply to
investigate the comparability of the Fokker — Planck approach
to the simulation process,

In numerical simulation white noise can only be approximated
by a 'suitably' broad band signal, In the case of a linear
signal for example a broad vand signal of frequency cut—off
W is suitable to simulate white noise excitation, if w. 1is

such that
jeo]
JaET
We

where S, is the intensity of the white noise excitation and
H(w) is the transfer functicn of the linear system, In the
case of a nonlinear system however the possibility of subor
superharmonic excitation or more cecmplicated mixed frequency
responses may be expected, This coupled with the absence of
a transfer function for the Duffing system, require more
careful justification for the use of broad band signals to
similate white noise excitation or vice versa.

2

S, dw =0

Manning [24] has predicted, using the heuristic approach
and analog computer simulations that the resonant frequency
of the response spectra of the Duffing system under white
noise excitation will shift to higher frequencies as the
intensity of excitation is increased. The - equivalent
linearization technique seems to suggest this too, Thus the
étarting point of this investigation is to observe the effect
on the response of the Duffing system under a broad =~ band
excitation of given intensity and different frequency cut
offs,

Looking back in Section 4.2 a measure of excitation intensity
and hence nonlinearity is given by the norn~dimensional para
meter I' = Bs,w“/kﬁ. A series of programs were run to obtain
the response of the system under broad band excitation fora
fixed value of Y and a range of cut-off frequencies Q. (=w/w,).
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The process was repeated for selected values of I and
different values of damping ., The range of frequency cut
offs in some early cases varied from 6w to 70w ., No sig—
nificant changes were observed in the spectral values or
the statistical estimations of the mean, variance, third angd
fourth moments of the respomnse., Further the probabilistic
information obtained through the simulation process agreed
very well with the corresponding predictions of the Fokker
Planck approach, |

Examples are shown in Table 5.1, The numbers in brackets
are the variance of the estimations over the forty real—
isation used in each case, It is seen here that as Q.
increases the estimations become less consistant (numbers
in brackets)., This is due to the fact that the record
length is shortened for increased Q. with constant number

of points per record
Table 5.1

/o~ 6 10 20 o
10, |1.65(0,07) 1.67(0,04) 1.7(0.4) 1,65 ]| Bd:
¢=0,2 |2.27(0.006) 2,25(0,025) 2,23(0,04 2,28 |Ku
160, |[7.35(6.6) 7.37(6.8) 7.02(14.,0) 7.30 | g%
¢=0,01}2,13(0,03) 2.05(0,04) 2,06(0,05) 2,20 | XKu

Harmonic response in the form third harmonic to the frequency
was observed at a constant 3 orders of magnitude less than
the resonant peak for the displacement spectra., Further it
was observed that when w, moved below the range of frequencies
where the third harmonic excitation occurred the change in
the response was insignificant (to a varying degree for dis—
placement, velocity and acceleration responses as was to be
expected), This was further justified by the work done in
the case of band limited excitation (Chapter 6),which proved
that w. has to slice g major part off the range of response
frequencies which are excited by a broad band sigrnal of the
same intensity, before any significant deviations are
observed from 'normal' behaviour of the system, The term
'nermal' is used here to describe the pattern for the response
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of the system to broad band excitation as it is described in
Section 5. 3. Figures 12.a,b show the non—dimensional
smoothed spectral response displacement and velocity of the
Duffing system under a broad band excitation of the same
intensity (I') and two different band widths.

Hence it was established that there can be a 'limit frequency'
w, such that given a broad bvand signal with cut off frequency
w. >2Ww,., the response of the Duffing oscillator to this broad
band signal is to a good approximation the same as to a white
noise signal of the same intensity. The non—dimensional form
of the limit frequency will be @.= w,/w, where w, is the
natural frequency of the linear system, i.e, w, =/k/m, Of
course w. cannot be precisely defined (the same is also true
with the linear system), However the following hypothesis
provided a criterion for an evaluation of Q. for different
intensities of input and damping ratios. It was assumed that
any spectral value of the response displacement which is less
than ZL/].OOJU]CL of the peak value of the smoothed spectrum 1is
insignificant i.e., Q. 1is found where

s.-(a) = s (2,)/100

where @, 1s the abscissa of the maximum value of the smoothed
displacement spectrum. The response remains practically the
same for values of w, much larger than the one defined above,
As mentioned earlier third harmonic response was observed
with a magnitude approximately S, .(9+)/1000, hence the broad
band signal with frequency cut off w, = w, will givea dig~
torted picture of the third harmonic part of the response,
However the advantage of having w.~w. are greater frequency
resolution and more reliable statistics through  longer
records, The disadvantage is increased computer time, This
can be seen in Figures 13,14 where the unsmoothed form of the
spectra of Figure 12 are shown, Figure 14 has a greater
frequency resolution as a result of the reduced band width of
the excitation and the constant number of points in each
realisation, The corresponding computer fime involved to
produce the two responses is 716 and 8 84 seconds respectively,
The cut off frequencies -can be clearly seen in the logarithmic
Figures 13b and 14b at @= 6,10, The slope at Q= 6 in
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Figure 12b is due to the smoothing process of the spectrum
and is much sharper in reality as can be seen fromFigure 14,
In Figure 12b a small third harmonic response can also be
obgerved, The above observations will be noticable through
out the spectral response curves to be presented in this
chapter, ©Not all the response spectra presented in  the
following sections where obtained for Q.= .., Thisisdue
to the fact that knowledge of the w. value can only be
obtained from the simulation process itself,

In retrospect however one can state a rule of thumb regarding
the range of cut off frequencies a broad band can have in
order that the probabilistic information of the Fokker—Planck
equations apply to the response, In Secticn 5.4 a simple
relationship will be developed between the excitation para—
meter ', the damping coefficient 3 and the resonant frequency
of the response displacement spectrum Q.. Using this re—
lationship and the observations regarding the third harmonic
regponse outlined in this section one can confidently expect
the findings of the Fokker — Planck approach to be valid for
a broad band excitation if Q@ 230, , Figure 15 shows aplot
of QLversusIV?for different values of §{ evaluated using the
criterion (S (Q.) = 8, ~(9,)/100) outlined earlier.
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5.2 Stationarity of Response, The Autocorrelation Function

One of the criteria of stationarity of a signal is the
invariance of the autocorrelation function with respect to
time shift, Eere the displacement and velocity responses
for a given input were used to estimate their autc— and
crosgs-correlation functions, As mentioned earlier (Chapter
3) forty realisations (4096 point each) of response
displacement and velocity were provided through each program
run for the given excitation and system characteristics.

The above correlations were calculated for each set of data
repeatedly, using the steady state part of the response and
a different starting point (in time) everytime., All est—
imations agreed in shape well, the values of Rxx(0),R%x(0)
were very close to the values of cf,a; galculated from the
spectraand inversion of the spectrum provided (Figure 16a,b)
correlations functions which were very similar to the ones
obtained directly from the data. The small discrepancies
were due to the different number of data points involved in
the two approaches i.e. for the spectrum derived correlations
the complete record was used (40 x 4096 points transient)
whereas in the rest only part of the response was used, The
test was repeated with more than one excitation signals of
the same intensity with the estimations failing to disagree,

An other indication of stationarity was the wvalues of
variances calculated for the statistical properties of the
regsponse., As mentioned in Chapter 3 each response statis—
tical value was calculated along each realisation and the
resulting forty . values were averaged to obtain the mean
value, At the same time a variance was calculated for the
particular quantity. Although based on forty values
these variances showed a very small scatter of the statis—
tical values over the forty realisations., Examples are
shownn in Table 5,2, It can also be seen from the table that
the simulations involving higher damping tend to be more
consistent
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r/e¢ 3200 500 160 10

¢ 0.20 0,01 0.20 0,01 ;0,20 0,010,200 0,01

Bo, 33.74 32.88 [13.24 12,82 |7.39 7.62|1.66 1,52

D | 0.12 0.21 | 0,10 ©0.39 |0.08 0.37 |0.07 0.40

Ku 2.10 1.85 2.17 1.85 { 2.19 2.07 | 2.28 2.08

Dk | 0.05 0.12 | 0.06 0.11]0.05 0.12|0.04 0,12

Finally comparison of ensemble averaged statistical values,
with the corresponding values obtained through averaging
along each realisation, produced poor agreement. However
this is a result of the different number of values involved
in each calculation., Ensemble averaging involved forty one
values whereas each realisation involves 4096 points less
the transient part which is usually between 500-1500 points
for the different excitation intensities and system para—
meters used in this investigation.

The shape of the autocorrelation function seems to behave as
[a0]
f IxR(‘t’){d’f <
<«

which is a condition under which the random quantity S (w),
the spectral estimation over a signal of duration T, will
lend to the true spectral value ags T —00 [7.) The consis-
tency of different spectral estimations give further support
to the above argument. However the responge being non
Gaussian there is no directly available estimator for the
confidence limits of the spectral values
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5.3 Observations on the Response Spectra of the Duffing
System Under Broad Band Random Excitation

The numerical simulation outlined in chapter three provided
time records of response displacement and velocity. These
were processed by a separate program, which derived the
regsponse spectra ( using a Past Fourier Transformation
algorithm) and calculated the statistical values of mean
square variance, kurtosis and skewness {(Chapter 3, Appendix
C.4).

A gample of the raw response spectra was shown in PFigures
13a,b, The excitation spectrum is by definition perfectly
smooth (Section 3.2) and the response spectra obtained for
the linear case (B8 = Q) were equally smooth., However this
was not the case with the nonlinear system Figures 13,14
The 'spiky' shape of the response spectra of the nonlinear
gystem was smoothed using a frequency averaging technique
(moving average) of twenty one adjacent spectral estimations
(data tapering and other 'mild' smoothing techniques did
not have noticable affect), This was necessary in order
that the spectral shape was more clearly defined in figures
where spectra were plotted against linear scales, The
logarithnic scales suppressed the phenomenon as seen in
Figure 14. The averaging process reduces the effective
frequency resolution but this does not present a problem
for a record which is already oversampled as far as the
P,P, T, algorithm is concerned (Section 3.2). Perhaps it is
worth noting that this phenomenon may be misinterpreted if
the frequency resolution of the analysis is small (Af large).
In this case the spectrum appears %o have more than one peak
especially so if the band of response fregquencies is broad
(i,e. large value of I'/¢ see later), However if a different
input record is used to obtain the response spectra the
multiple peaks usually change frequency and if the frequency
resolution is increased the peaks split, PFigures 13 ,14
give an indicaticon of this phenomenon which becomes much
more pronounced as the width of the spectrum increases., The
spiky spectrum is regarded as an inadequecy of the numerical
procedure to calculate a smooth spectrum for a non Gaussian
process for the number of samples used. A negligible
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improvement was obtained through the doubling of the number
of realisations, This seems to suggest that the number of
realisations must be greatly increased before any worth
while improvement is observed on the spectral smoothness,

On the basis of chapter 4 all results presented here are in
non-dimensional form., At this point a reminder of the non
dimensional quantities involved may not be out of place,For
the system

m¥ + cx + k(x+8x’ ) = F(%)

Where F(t) is a broad band random force of spectral inten—
sity S,. The displacement related non-dimensional quanti-
ties I'yB,A.are defined as follows

I = B35, w"\/kiy (w:\ = % )

and may be thought of as an adjusted (for the particular
system) excitation parameter., B = 8S,wis the nondimensional
regponse displacement spectrum (BS;/w,forvelocity and denoted
by Bv). A = B/I' = ¥*S;/S, this does not define a transfer
function but it is reminisent of the transfer function ofa
linear system (for velocity k' S,/S,w) = Av). As already
discussed in Chapter 4 the statistical quantities may be
obtained as a function of the ratio I'/t whereas the dim—
ensional analysis indicates that these parameters (T,t)
should be separate when describing the response spectra.

(¢ = ¢/2/km), In Figure (17a—f) the response spectra for
{= 0,05 and different values of ' are shown as suggested
by the analysis, Subsequent figures show response spectra
plotted for constant values of the ratio I'/%., Although the
presentation of response characteristics in terms of the
separate parameters I' and ¥ may be more accurate in some
sense there are indications that the use of the ratio par—
ticularly facilitates description of response under broad
band excitation with the obvious advantage of reducing the
number of independent system variables %to one, Plotting
non—-dimensional response spectra (B) for constant values of
the ratic I' /T ensures that the spectral curves will contain
the same area as discussed in Chapter 4. The B CUrves
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Figures ( 18a-e ), ( 19a—e ) confirm this and show that the
spectral shapes are extremely similar. In these figures,
where the quantity B is plotted against the non—dimensional
frequency (= w/w,) for constant values of I'/{ between 10 and
3200 and § wvalues of 0.2,0.1,0.05,0.01, the main body of the
curves are almost overlapping, the resonant frequencies (R.)
coincide and the peak values B(R,) = B max are at the  same
level, However the agreement is not so good at the tailsof
the curves, Since the area enclosed ig by definition the
same, the peak shapes must be slightly different in oxrder
that the area contained under the curves remain the same.In
fact the value of B(0) is higher as the value of § is in—
creased (see Table 5.3) but changes very little for
different values of I'/{ e.g. for ¢t = 0,2 B{(0) = 0,12 forT/¢
10 and B(0) = 0,3 for T/t = 3200, At the same time B( . )
changes from B(R,) = 1.2 forT /¢ = 10 to B(R,) = 6.2 for I/¢
= 3200 and the width of the peak at 1/2 B(9,) from 1.10 to
4.5 @, This shows that by far the most important part of
the response spectrum lies on either side of the resonant
frequency where the spectral shapes for constantI/{ratio
almost coincide, When the spectral gquantity A = B/T =lf§/&
is plotted against the corresponding non-dimensional fre—
quency for constant values of I'/t yet another interesting
observation can be made regarding the value of the quantity
A at zero frequency. For each value of I'/{ there is a small
range of values within which the values of A(Q) concentrate.
Figures (20a—e), This is a consequence of the relative
invariability of the B(0) values wrt I and gives a more
clear demonstration of the weak influence of the excitation
level on the low fregquency response of the system for this
type of excitation., Assume for a moment that a set of non
dimensional curves for a given value of I' /T were derived
through the simulation of a single system for different values
of ¢ (i.e. all system parameters constant except ¥). As T
(which expresses the excitation level) varies proportionally
to T, to maintain the ratio I'/ ¥ constant, the A(O) values
concentrate near a single value, Now the A(Q) values are
proportional to the ratio B(O)/S‘, but as already seen the
value of B(0O) for some excitation level and constant T de—
pends mainly on Y, Hence the concentration of the A(O)
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values show a nearly proportional dependence --0f +the -zero

frequency response on the damping parameter . The plots of

A are reminiscent of the transfer finction of alinear system

for different values of damping and indeed the definition of

A= ﬁs;/s‘ would be the transfer function if the system were

linear. However there is no such thing as a transfer

function for the nonlinear system since the quantity bears no

connection with any other form of excitation but the one that

caused it (Broad band), The fact that A(0) values concentrate
in a particular range for a given value of I'/{ is a further

property of the system., It demonstrates the effect of damping
on the low frequency components of the response. One tends

to think of the value A = k¥ S./S, at zero frequency as the

static solution for a given excitation level divided by that

excitation level, However this is far from being the case

here, For a linear system the quantity A(0) = B(0)/r  would

be the value of the transfer function at zero frequency and

equal to unity.

From the above discussion the following conclusions may be
drawn. The B(0) values depend mainly on the value of { the
damping coefficient and the A(Q) values mainly on the value
of the ratio I'/{ , Although the static solution must
contribute to the zero frequency response its contributionis
negligible (expressed through the small variation of B(0)
values for constant ¢ and the scatter of values of A(0) for
different damping ratios and constantT /% ).

Observing the spectral plots the following general conclus—
ions may be drawn. The resonant frequency ( Q.), the width
of the spectral peak (W), the value of B(Q.) and the area
under the B curves, all increase as the ratio of I'/¢ is
increased. The opposite is true for the value of A(O),
These processes are smooth as can be seen from Figures (21—
25), where these gquantities are plotted against the ratio
I/%, TFurther the spectral peaks appear symmetric about the
resonant frequency .

Harmonic response is observed at three times the resonant
frequency of the response spectrum. For the displacement

-T2 =



spectrum the third harmonic response is at a constant three
orders of magnitude smaller than the response at resonance
i.e. B(39,) =B(Q)/1000. The third harmonic response is
best observed in the velocity spectra Figures (27-29%),This
type of response is further discussed in the next Chapter.

As mentioned earlier the properties of the system  may be
observed more accurately in terms of I' and ¢ instead of
their ratio, However such a representation would be more
suitable for a mathematical approach. For engineering app—
lications, where more practical considerations are of
importance, the representation of response properties in
terms of the ratio I' /Y seems more advantageous. The
advantages being a less complex description of response by
use of one variable ([/Y) instead of two (T and¥ ) and the
dependence of the statistical and spectral values of the
same parameter (I/Y¥)., PFurther if the fact that the spectral
values calculated through the simulation process are not
exact (bias, numerical integration errors etc.), is taken
into account, then the presentation of these values as
functions of the ratio T'/% simply does away with complicated
and not so accurate information and at the same time pre—
serves essential features of the response. For example
Figure (24) assigns a single value of B( ) for each value
of T/% say B(®,) = 3.75 at I'/T = 500, Whereas the spectral
peak values in Pigure (18d) scattered between B(n.) = 3.6

and 4, Tor forty realisations the error involved in
the case of Gaussian data in the calculation of spectral
values is ~ 15%, Hence it seems pointless to quote the

above values of B(Q.) separately as it would be the case if
the results were presented in terms of T and T instead of
their ratio., Finally the representation of results in terms
of T/5 does not exclude the possibility of producing  the
sets of curves which would present the results in terms of
I'and ¥ as in Figure (26)( small adjustments would have 1o

be made and the spectral response curves enclosed would be
ugeful ).
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Table 5.3

Values of B(Q,)

P~ 0. 20 0.10 0.05 0,01
10 1.19 1.35 1.45 1,28
40 2.05 1.98 2,00 2,12

160 2.85 2,96 3.03 2.92

500 3.62 3.87 3.73 3.97

3200 6.25 6,06 6. 30 7.40
Values of B(0)

T~ 0., 20 0.10 0.05 0.01
10 0.12 0.06 0.04 0.0l
40 Q.20 0.10 0,06 0,01

160 0,22 0.14 0.06 0,01

500 Q.21 0.15 0.09 0.02

3200 0,32 0.19 0.09 0,03
Values of A(O)

P~ 0,20 0.10 0,05 0.01
10 0.06 0.06 0.08 0,10
40 0.025 0,025 0,028 0.03

160 0.007 0,009 0,008 C.009
500 0.0021 0,003 0,0035 0,004
3200 0.0005 0.0005 0, 0006 0.001
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Figures 17a~17f Illustrate respomnse
spectra for constant T= 0,05
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Figure 18a

Figures 18a—20e illustrate response spectra of I/
values with % = 0,2, 0,1, 0,05, 0,01

For B spectra the value of for the particular
curve is judged by the magnitude of the B(0) value
of that curve, The order from top to bettom is

T= 0,2, 0,1, 0,05, 0.01l. As shown above,

For A spectra see Figures 20a-20e,
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For A spectra the value of ¥ for the particular
curve is judged by the magnitude of the A( Q)

value pf that curve in the order shown above,
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Flgure 21

Second and fourth moments of response displacement

versus ['/7 values

(T= S, w/k*)
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Vidth of B curves at B( )/2 versus I'/x
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Figure 27a

Figures 27a-29¢

Selected non—dimensional response velocity spectra
for v from 0.0l %o 0.2
(Bv = Bsk/wna Av =Kk 1S}'('/(S\ W ) )
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5.4 Connection with Existing Theory

In this section an attempt will be made to express some of
the response properties in simple mathematical relations by
investigating their connection with existing theory.

It has been established in Section 5.2 that the response of
the Duffing system under a 'suitable' broad band random
process approximates, to a good degree the response of the
system under white noise excitation, This makes possible
the use of the exact expression for the joint probability
density function of the response displacement and velocity,
(which is derived through the solution of the appropriate
Fokker — Planck equation. Section 2.1) to calculate the
response statistics, The probability density function for
the non-dimensional response displacement may be expressed
in terms of the ratio ['/% (Section 4.2)

P(XJB) = ¢ exp {_ t4r[sxz +%Bqu } (5=1)
where ¢ is the normalising constant governed by
QO
fE(x\/Ti)dx = 1/B
-

The odd moments of displacement are zero since equation(5-1)
is an even function. The non zero moments are best
calculated through numerical integration since the x* term
in equation (5~1) diminishes the importance of the tailsof
the function, R.H.Lyon [ 17] has developed exact expressions
for the moments of response displacement invelving parabolic
cylinder function., However it is possible te derive a
simple expression for the displacement variance wusing the
equivalent linearization technique., As already mentiened
(Section 2.3) Wolaver [ 12] has proved that the equivalent
linear system will have the same response displacement
variance as the Duffing system, provided that the natural
frequency of the equivalent linear system is calculated
using the exact response probability density function of the
nonlinear system, Thus for the system
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¥4 2TW,. X + wa(l+8X )x = F(t)/m (5=2)
the equivalent linear system
X, + 25w, + ux, = F(t)/m (5=3)
where T(we =7 Wqy
we = o, (1+8E(X)/E())

Will have the same variance provided the ratio E(X)/E(X) is
calculated using the equation (5-1)., The statistical value
of Kurtosis (Ku) evaluated by the simulation process also
provides an estimgtion of this ratio

M

Ku = ( 2 (x,.— 2))/u (5-4)

(=1

where M is the number of points involved in the calculation
and X the mean value of these points., Since

X ~ 0 therefore E(¥) = o

M

2ox/M = Ku o} = E(R)

i

therefore Ku ~ E(#)/E(x)*
therefore KuE(®) ~ BE(X) /E(X) (5=5)

Hence the equivalent linear frequency becomes
we = w, (1+EKuoy ) (5=6)

and equatien (5-3) becomes

¥, + 2%w.%, + wh(1+pKuc’ )x = F(t)/m (5=7)

[}

ok = S, n/4uwm
S, t/4%w, we '

S, n/4%vw, (1+pKuo; )m™ = ox (5-8)

where S, 1s the intensity of the excitation spectrum.
Rearranging equation (5-8)

]

(o2) ERudtwl + of 47wh = S, n/m’ (5-9)
multiplying both sides with m* Bw,/k'%
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Pokker — Planck equation

Kurtosis Ku versus I /4 through
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(Bo) 4Ku/m + Boi 4/m = BS,w. /K =T/% (5-10)

or

go; = (=1+V 1+Kurnt/x) /2Ku (5=11)

Provided the correct value of Ku is used in the above
equation, it should provide the exact value of Bc: for the
response displacement for a given value of I'/%, Kurtosis
is a funection of '/t as indeed all statistical values of
the system that can be derived from equation (5-1).

Ku = 8" BGAABE(X)) = BGOAE(E))

Pigure 30 shows the asymptotic behaviour of Kurtosis
versus ' /3. The values were calculated numerically from

the exact expression for the probability density function

of displacement. It can be seen that as I'/Y —oo,ku —2,2
and as ['/7—=0,Ku—-3 (linear case, Gaussian distribution).
This behaviour justifies possible use of equatien (5-10)

as an empirical relation with a suitable constant value

for ¥u., Table (5.4) displays the values of Ku calculated

by the simulation process and the exact probability functien.
Also displays the values of Bo, calculated by the simulation
process, the exact probability function, and equation (5-10)
with Ku as evaluated by the simulation process., The
corresponding fourth moments are alsc displayed, The entries
in that table are all non—dimensional, Further the entries
with suffix eqc. are calculated with a constant value of

Ku = 2, 3.

Figure (31) shows the displacement response spectrum of the
nonlinear system for I'/y = 500 and the corresponding spectrum
of the equivalent linear systems for Ku = 2.2

(Ku = 3 is the value used in the equivalent linearization
technique when the exact probability density function is
ignored as in Section 2.2), Although the spectral shapes
are different their resonant frequencies seem to be the same
Locking back at equation (5-6)

we = wa(l+pKuc )

for Q = we/wa
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Pigure 31
Comparison of response displacement spectra
(1) Duffing system <t = 0.05,I /¢ = 500

(2) Corresponding Equivalent linear system
(Se = lHe(m)l S.)
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2

N= 1 + BKUU; (5"'12)

if equation (5-10) is solved for Bo (positive root only) and
substituted above, the following relation may be obtained

(= q") 4/(Kur) =T/% (5-13)
or
a = (1 +y 14Kunl/k ) /2 (5-14)

The above equation provides a simple relationship between
the natural frequency of the equivalent linear system and
the ratio /x. Table 5.5 displays the computed values of
regsonant frequency of the displacement response spectra of
the nonlinear system and the resonant frequencies of the
equivalent linear systems for different values of I'/Y. Thus
the combination of three fundamentally different methods

has produced two useful formulae, equation (5-10) which
describes a parabolic relationship between the nondimensional
response displacement variance Bo; (or area under B curves)
and T/5, and equation (5-12) which describes a similar valid
relationship between the natural frequency of the equivalent
linear system and I'/, From this last relationship the
resonant frequency of the response displacement spectrummay
be predicted since the resonant frequency of the two systems
(i.e. linear and nonlinear) seems to be the same over a
large range of I'/Y wvalues,

Table 5,5
T/% 10 40 160 500 3200
Q. 2,11 3.01 4,07 5,28 8. 60
U | 2.1% 2,95 4,10 5. 40 8.52
QUee| 2016 2.97 4,14 . 5,46 8. 65
Qres| 2,32 3.19 4.46 5.90 a. 35

As mentioned before the property of the equivalent linear
system that was utilised to obtain equation (5-10) was proved
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mathematically by Wolaver [12 J.Wolaver has also proved that

the Maclaurin series expansion of the approximate auto
correlation function Rxx(%¥) of the stationary displacement
obtained from the equivalent linear system agrees with the
exact autocorrelation function up te the < term. However
the gignificance of this can only be appreciated when the
autocorrelation functions of the nonlinear system and its
corresponding equivalent linear system are compared as in
Figure 32, It is seen there that the frequency of
oscillation of the two functions are almost identical for
the first cycle at least., This of course determines the
regonant frequency of the response., The difference in
width of response spectral peaks is also obvious from
Figure 32, The corresponding spectra are shown in Figure
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(a) Equivalent linear system At = 0,01665
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(b) Duffing system At = 0,01665

Figure 32

Response displacement autocorrelation function
for 1= 0,05, I'/Y = 500, wny = n/2
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5.5 Graphical Representation

In this section the properties of the response displacement
spectrum summarised in Figures 21-25 are utilised to
provide a simple graphical method of sketching the response
displacement spectrum in its non—dimengional form as

B = 85, (R)w. for a given value of ' /4. The method may be
split in two stages. Given a particular value of T'/Y, in
the first stage an isosceles triangle of area equal +to

Bo, (=f(I/%)) is designed to represent the spectral response
(Figure 33) with its apex at 9, and its height approximately
equal to B(9,)., The triangular shape gives a rough idea of
the gystems spectral response, that may be adequate for some
practical applications. A more detailed sketch may Dbe
developed from this basic figure, if the data provided by
Pigures 23,24,25 are used to clip the peak, obtain the
value of B(0) = A(Q) I and modify the width at  1B(Q,)
heights,

As it can be seen from Figure .33. the idea of approximating
the response spectrum by a isosceles triangle is suggested
by the symmetry of the spectra about iy and the - similar
slope of the peak sides, Once it was decided that the
essential features of the approximate shape would be

a) 1its area = Bo; (from equation (5=10)) and

b) its apex positioned at @ (from equation (5-12)), a
slope had to be found that would best fit the spectral shape.
Thus if the height of the triangle is denoted by h and 1ts
base by 2a then

Box = ha (5-15)
tan® = h/a
where © ig the base angle.,
therefore a = Vbc,Vi?qﬁﬁﬁg (5~16)

h = [Box/ tan6

By trial and error the value of tano = 1428 was judged teo
give best overall results, Hence in order to draw the
triangular figure one would have to evaluate (assuming Ku =
2.2) for a given value of T/¥
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Graphical representation method of
non—dimensional response displacement
spectra
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a) Q. =1 (1 -;-\/4I+2.:21c1’/7;)/2]w1

to position the figure (or more accurately Q.= 1-T.)

b) Bt = (= 1 +/1+2,2nl/% )/4.4
c) h = 1,195 \[ch
a = 0.83 \/Boy

Then simply draw the isosceles triangle with its apex
positioned along a line at Q., height h, and base 2a., This
is demonstrated in Figure 33 and over estimates the
computed values of B(q,) by 6.5, 10.7, 6.8, 14,7%for I'/X =
10,40,160,500 respectively. PFor a Gaussian signal (this is
not such) the confidence limits for forty . averages
suggest an error + 15.8%..

An improvement on this figure may be brought about by
reading the appropriate computed value of B(R, ) from Figure
' 24 and the value of A(Q) from Figure 23 to find B(0) =
A(O)T and adjusting the shape free hand, This last improve—
ment becomes more important as ¥ increases since B(0) ——O0 as
T —0, In Figure 33 - it seems there is very little
correction to be made for the width of the curve at the
height of %B(Q,). However Figure 25 can always be used

to double check the width of the refined sketch at frequern— _
cies where B(n) = 4+ B(q,). The response spectra of accel—
eration and velocity may be obtained from the displacement
spectrum through

Bv(Q) = BS;(@)}%N=BSX(Q)wﬂr? = B(p)o"

Ba(n) = BSy(Q)/wh = BSx(R)w.a'= B(R)a*
and Av(R) = Bv(Q)/T, Aa = Ba(q)/r'(see also section 4,2).

Note the non—dimensional form of the areas under particular
spectra
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Examples of acceleration spectra shown in Figure 347 and
velocity spectra in Figures 27-28b,
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Non-dimensional response acceleration spectrum

See also Figure
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CHAPTER 6
EFFECTS OF DIFFERENT FORMS OF EXCITATION SPECTRA

This chapter may be thought of as a first attempt in
investigating the response of the Duffing system under
band limited and high pass filtered random excitations, It
is also hoped that this work will provide more insight to
the behaviour of the system under broad band excitation and
prepare the ground for future research regarding these
types of excitation, An attempt will be made to answer
mainly two questions, First, whether it is possible +to
describe the response spectra for the Duffing system under
the aforementioned excitations using the ratio I'/t instead
of the separate parameters I' and ¥ and second, whether the
equivalent linearization technique, either din its conven—
tional or improved form, is applicable for this type = of
excitation for the large nonlinearities investigated,
Pinally, in Section (6.3) an argument is put forward in
favour of a possible property of the system that could pro—
vide a link between the radically different behaviours of
the system under the different forms of excitation spectra
congidered,
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6,1 Response Spectra Under Band Limited Process

Looking back in Section (4.2) it can be seen that  the
formulations derived through dimensional analysis for the
gystem under broad band excitation, are still valid for the
system under band limited random excitation, This is due
to the fact that the definition of the excitation spectrum
remains practically the same, Hence the response spectra
may be expressed in the form

¥'s, (w)/S, =¢/[Bs /oK, ¢/2/km, w./k/m, wik/m] (61)
or
A=o[T,7,0,0]
and
BS (wik/m = [ 85, /oK , c/2/km, w./A/k/m, w/\/k/m] (6-2)
or

B=v[T,T, 0]

Naturally functions &, , ¥, are in general different from the
corregponding functions ®,¥ of equations (4-8), (4-9), used
to describe the response under broad band. Another noticable
difference in the formulation of the problem 1is the impor—
tance of the €. term (the cut off frequency). The influence

of this term on the response of the system under broad band

excitation has been proved unimportant., Here however the

the value of the cut off frequency () is expected to have

a decisive influence on the response of the system, Again

the area under a single B curve represents a nendimensional
mean square response displacement of the system,

(e o]
30t = [ 85, (2)¥/m an (6-3)

where Q= w fi7ﬁ.

It is seen here that the number of parameters necessary to
describe the system response has increased by one (). How
ever in the broad band case the number of parameters were
further reduced by describing the system in terms of the
ratio T/t instead of the separate parameters T and § as
suggested by equations (4-8), (4—9), Hence it is important
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See also Figure 36a
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Figures 37a-—38b Response displacement
spectra with excitation

Cut off frequencies at Q. = 6,5,4,3,2,1 (for ¥
and cut off frequencies at Q.= 6,5,4,3
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Figure 39

Sample of response-spectra before

frequency averaging (%7 = 0.2)
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Example of velocity response spectra
(v = 0,2) corresponding to Figure (37D)
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to investigate if this simplification can apply for this
case too,

Figures 35 to 40 show the response spectra for values of
I/t = 40 and 500 for different cut off frequencies and for
two damping ratios Y = 0,05,0,20., Figure 41 shows the area
under the spectrum as the band limit is reduced and also
shows the area under the response spectrum te the corres—
ponding broad band signal (same intensity) up to the cut
off frequency of the band limited process. As mentioned
garlier the parameters describing the system have increased
by one, namely the frequency cut off of the band limited
process. This may be defined simply as Q= w, /w.. But a
more complicated definition involving the broad band
resonant frequency and the peak width (hence indirectly
I/t) may be more meaningful say Q= @ * aW where a< R
and W the width of the resonant peak as defined in Chapter
5. The work done in this section did not indulge in
establishing such precise relationships, but attempts pro—
vide a first look into this subject which may be found
beneficial to further research into the subject. It may
be said that the general pattern established in the
previous chapter on the behaviour of the response spectra
to a broad band excitation is in general retained less so
however as Q. is reduced below . (the resonant frequency
for the broad band excitation )., As far as the main bedy
of the spectrum is concerned, the shape of the response
spectra for N,<2.< R, (9. is the limit fequency ( see
Section 5.2)) could have been produced (to a good approx—
imation) by a simple truncation, at 9., of the broad band
regponse spectra, Iurther for a given pair of values of
I/t and 9, the corresponding response spectra have the
same B maximum, A(O),Ww and Bo, values which are different
from the corresponding ones of the broad band case (i.e.
same T'/¢ but Q. 29.)., Hence if ,< Q.,< 2, the response
spectra for this case may be described for each value of
R,y in the manner the response spectra for the broad band
case were described i.e. in terms of figures similar to
Figures (21~25) which may be though of as derived for
N.29R, However further reductions of Q. i.e. Q. <, ,
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seems to suggest that [' /T cannot any longer adequately
describe the response spectra and that I' and Y should be
treated as separate parameters,

At this point it may seem strange for the usefwlness of
the ' /T parameter to diminish. This parameter has served
the purpose of a general system parameter, combining both
excitation and damping values. As discussed earlier this
strange combination, although it may serve the purpose of
describing the spectral quantities A,B with a varying
degree of success depending on the type of excitation and
the individual values of T and T, it is more suitable for
degscribing statistical quantities., A possible future
mathematical solution of the problem, will probably find
the combination unsuitable for the purpose of describing
spectral quantities and split it in its components [ and¥v.
For the present taking into account the limitations of the
numerical techniques to describe spectral values ( Bias,
length of records, numerical integration accuracy,etc.) it
seems a very attractive proposition especially for engin—
eering purposes. The motivation behind the use of the
ratio I'/Y as a simple parameter describing the response
under broad band excitation, was its appearance in the
non—~dimensional form of the probability density of the
response displacement derived through the solution of the
appropriate Fokker -~ Planck equation (Chapter 4)., This
golution is not available however for band limited exci~-
tation. The statistical quantities calculated by the
numerical simulation technique suggest a different
arrangement for the joint probability function, although
the question of statistical independence of velocity and
displacement was not attacked the values of Kurtesis for
veloclity suggest that its probability distribution isne
longer Gaussian and depends on Q.. In fact by observing
the Kurtosis values in Table 6,1, it is seen that as Q.
is reduced from the broad band value (9.), the value of
Ku for the response velocity drops gradually from 3
(Gaussian) to some minimum value (~2,3)., This  seems
to happen as . is in the range of frequencies near the
resonant frequency of the system under broad band
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excitation (Q.). As @, is further reduced, the Kurtosis
value gradually increases towards the Gaussian value 3., The
Kurtosis values of the displacement remained roughly-at the
same level as for the broad band input, however this is not
conclusive since the error involved in the evaluation of
this quantity depends on the fourth moment and may require

much longer records in order that small changes are confi-

dently detected. Table 6.1

Computed Values of Kurtosis
T /=40 I /v =500
¢ | Displacement Velocity Displacement Veloeity
Ne 0.05 0,20 0,05 0,20 0.05 0.20 0.05 0,20

Q.2.15 2,23 2,64 2,90 | 2,14 2,17 2,63 2.79
6 | — —_ = = 2,05 2,11 2,33 2,40
5 | — N 2,03 2,08 2,22 2,30
4 |2.18 2,19 2,67 2,63 | 2,02 2,10 2,15 2,30
3 (2,09 2,15 2.31 2,38 | 2.11  2.09 2.30 2.46

2 2.13 2413 20 27 20 39 2;11 — 2' 50 —

112,11 2.15 2.81 2.70 2,00 —_— 2,80 ==

The mean response values for displacement and velocity were
zero as expected, There were no tests carried out on the
stationarity of the response, although the consistant
spectral estimations suggest stationarity.

An interesting observation can be made on the response
spectral shape when the cut off frequency is reduced below
the resonant frequency of the broad band case, In Figure
35a for example it is seen that there are two peaks in the
response gpectrum for $% = 1 one that coincides with the
frequency cut off of the input and the second appears at a
glightly higher frequency ( ? = 1.75). This is a phencmenon
that may be linked with the behaviour of the system response
at low frequencies in the case of the broad band excitation
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(the effect of damping at these frequencies) and the response
under high pass filtered excitation. An attempt to link
these phenomena will follow the observations on the response
of the system under a high pass filtered process.

The applicability of the equivalent linearization technique
was also investigated., The analysis presented in Section
2.2 1is, up to equation (2~26), in principle valid for any
type of random excitation. Hence for the system

X + 2TwnX + wa(x+8x ) = F(t) (6—4)
the equivalent linear system
X, + 2w x, +w X, = F() (6=5)

where

twe =TS w, and w, = w,(1+8 %&c—%) (6-6)

is expected to give the best approximation to the response
of the nonlinear system in the mean square sense, This was
proved true when F(+t) is broad band provided the ratio
B(x")/E(x") is given the exact value (Section 5.4). In the
case of band limited excitation an approximate evaluation
of this ratio was possible through the simulation technique.
Hence

w, = w,(1+BKuo, ) (6~7)

where Ku is the value of Kurtosis and ¢! the variance of the
response displacement as calculated by the numerical
simalation, The variance of the equivalent linear system
may be calculated through

We,

- [

C
therefore Qe

o, f We S, ‘ H, (@)

o)

1

H, (w) | dw

Q
It

b

an (6-8)

where S, 1s the intensity of the band limited random process
and H.(w) the transfer function of the equivalent linear
system, The integral may be evaluated as per
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Q. 2

oy fwoS\H(Q)

Q,
o0 = [I(9,%) = I(n,5)] nS/4 w
3

an

where 0 = w/w, and
I(R,3) = (1/n) tan [2x@*/(1-2)] + (6~9)
+(¢/2m/ =) 1n [ (1+ Q20 T=7 ) /(1+ 20— 2/ 1=7" )]

Hence the results of the equivalent linearization technique
can be compared with those of the simulation, by comparing
the value of o, from equation (6-8) with the value of o
for the nonlinear system obtained from equation (6—3) numer—
ically., Table (6.2) displays the corresponding values of
Bo,, and Bor . The values of Bo. were obtained by evaluat—
ing equation (6~7) using the value of Ku gquoted in the
gimulation results for the particular case,

Also displayed in Table 6.2 are the values of Bo,. ,807 .
The value 80y was calculated through the equivalent
linearization method by making use of the value Bo, (ob-—
tained through simulation) and a constant value of Kurtosis
Ku = 2,2 (the assymptotic value of Kurtosis for broad band
excitation), The Bo, value was calculated using the con—
ventional equivalent linearization techniqgue 1i,e, the
equivalent linear frequency was calculated using the value
of Bo, obtained from the linearized system equation (B = O)
for the given excitation using equation (6~9) and Ku = 3,
The wvalues of 8oy are also shown in Figure 4.1 , It can
be seen that the equivalent linearization technique under
its present form produces poor results especially for large
I'/< values and especially when 9 is in the vicinity of 9 .
In particular the conventional equivalent linearization
technique is proved totally unsuitable for the system under
band limited excitation.
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Table 6,2

T = 0,20 T =0,05

8o,  Bo., 8. BO Bo%  Bo.  Bo..  Bo.,

Qe F/g = AQ

Q 3.47 3.54 3.56 3.07 3.49 3.70 3.56 3.07

41 3,31 3.71 3.70 0.004 3.35 3,76 3.74 0.001
3] 2.85 3,94 3.76 0,003 2.77 4,50 4,28 0,0007
21 1.85 1.91 1.72 0,002 1.55 1,59 1.23 0,0046

1 1.14 1.07 0.80 0.002 0.66 0,49 0.47 0,0007

QJi3.24 13,22 13,14 11.28 13,43 13.31 13.14 11,28

611,33 15,15 14.47 0,0004 (11,39 15.94 14.89 0,0001
5{ 9.58 16,72 15.18 0,0003] 9.22 19.53 17.86 0,00001
417,45 10,28 7.36 0,0002| 6.90 23.52 9.34 0,00005

31 5.54 4.58 3.85 0,0002| 4,47 3,15 2,39 0.00007

For broad band the exact value of Bo; from the FokkermPlanck
approach is 3.53, 13.14 for I'/x = 40, 1500 respectively.
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6.2 Response Spectra Under High Pass Filtered Process

Figures 43a. to 44b show the response displacement and
velocity spectra of the Duffing system under high pass
filtered process, for a I'/tv value of 500 and damping ratio
T=0,2, 0.05 at different cut off frequencies. The number
of parameters describing the system are the same as for the
band limited case, Although there are two cut off
frequencies for the input spectrum(Figure 42 ) only the
lower one is of significance to the system, since the upper
frequency is positioned such that it is above the limit
frequency for the broad band case (Section 5.1). The upper
cut off

S
Qe = Q.
Qer Qe Q
Figure 42
frequency would become important if it were lower than

the limit frequency and in that case the input would probably
be described as narrow band. Again the non-dimentionagl
definition of the low cut off frequency used here is . =
We/Wn but a more useful definition may be in terms of the
resonant frequency that would be possible for the gsysten
under broad band excitation of the same intensity and the
width of the corresponding peak, as described for the band
limited case. Hence the relationships predicted through
the dimentional analysis in Section (4.2) are still wvalid

k S.(w)/8, = o, [ 85, N mk’, c/2/km,w.. Ak/m,wAk/n ]
or (6-10)
A=d [T,7, Q, ]
and
85, (w) k/m =¥, [ BS Ak ,c/2/km,w. A k/m,w// /o ]
or (6-11)
B=w [I,%, R, ]
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Obsexrving the response spectra and statistics it is seen
that as the low cut off frequency R« is increased gradually
from zero (broad band case) the response remains practically
unaffected, and almost identical to the response under broad
band excitation, At some value of Q. above 2 = 1 and well
below v there is a drop of the response - speetra to nearly
noise level. This -transition depends on the damping of the
system and occurs more abrubtly and at a2 lower frequency as
damping is reduced, Thus it is seen that the ratio I'/x is
not a suitable parameter for the description of the response
of the system under this type of excitation except when
Qu<l, The critical frequency ( Ru«) where this +transition
occurs is a function of both I and 1 treated as independent
parameters i.e.

Q:\_c‘r"—‘ = [1_‘ ) \S-] (6—12)

The equivalent linearization technique can be applied for
this type of excitation as well,Equation (6—~9) can be used
to evaluate '

Qe

Boy. = f w, S, lf-Hq(n) rdQ (6-13)
9

where w, = ws (1+Eu3ci), =% w./w. etc., and with the values
of Ku and o as calculated through the simulation. :
Table 6,3 shows the value of 8o, as computed through the
simulation, the values of Bow as described above, the value
of Boi, calculated as Boy only with Ku = 2.2 and the values
of Bo,, calculated through the conventional equivalent linear
ization technique, TFor values of Qu>R. (practically mno
response) all three values obtained through the equivalent
linearization technique agree well with the simulation values.
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Table 6,3
I 4= 500
T = 0,2 T = 0,09
Qer
Boy  Bo B Bon, Box 80w BO 8o,

7.00f 0,099 0,097 0.097 0,097 0,057 0,024 0,024 0,024
5.30] 0,249 0,242 0,240 0,242 0.19 0.060 0,059 0,063
3,50 9.22 13,26 1.443 1,105 2,84 C,436 0,524 0,22
2.50 p— — 12,57 13,61 13,61 1,136
1.801(12.62 13,08 13.42 13.54 |12.98 13.58 13,23 46,80
0.00113.24 13,22 13,14 11,28 |13.,43 13.31 13.14 11.28

However when

is no

Qe is in the vieinity of Q.o this agreement

longer there. B0, seems to be a more reliable egt—
imate in this range while the value obtained through the
conventional equivalent linearization technique (Bon ) is
in total disagreement with the simulation results,
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6.3 Discussion

All three types of excitation considered up to now, may be
thought of as special cases of a more general type of
excitation of the form shown in Figure 44 .

)
S

'QCL 'QC 'Q
figure 44

Where for broad band excitation Q =0, Q>Q
for band limited excitation & =0, €<
and for high pass filtered process Q>Q >0 and € >0
where Q. is the resonant frequency of the response displace—
ment spectrum under broad bvand excitation. Al though the
response spectra of the system under these excitations
exhibit radically different behaviour for certain values of

0, and @ the responses are almost indistinguishable, The

following is an attempt to throw some light on this phenom—
enon .,

The range of frequency cut offs beyond which the level of
response drops to noise level, for the system under high
pass filtered process, seems to overlap with the range of
frequencies at which the response under band limited exci-
tation develops the second peak. These frequency ranges
cannot be defined cleérly with the present amount of data,
However the simulation for I'/¢{ = 500, § = 0.2 suggest that
the response under high pass filtered process drops to noise
level roughly above 4Q whereas under band limited excitation
the double peaked gpectrum occurs for cut off frequencies
below 302, The two ranges overlap by 12, Clearly the
coincidence of the two phenomena in this narrow . range
deserves further investigation. It may suggest that the
most significant part of the excitation whether broad band
or band limited or high pass filtered is the one enclosed
by this narrow band. At this stage one could think of the
third harmonic excitation. The phenomenon is a result of
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excitation frequencies near the resonant frequency of the
system and not of excitation of the same frequency.Naturally
these are not the only harmonics which result from the
excitation of the system but they are the most readily
observable ones, It could be that the excitation within
the overlapping frequency ranges stated above is responsible
for the bulk of the response, In other words,mest of the
response observed is a combination of response over _that
small frequency range., It can be seen from the respounse
spectra under band limited and high pass filtered processes
that such a narrow band can be defined by assigning as its
upper frequency the highest frequency used in the band
limited experiments and as its lowest the lowest one usged
for the high pass filtered process experiments, For guch
an excitation the response will probably be very close to
the responses obtained under the corresponding band limited
and high pass filtered process which are themselves com-—
parable with the response under broad band excitation,
Figure 44a shows the four possible types of excitation
that could result the same response for a given system,

i
S, S,
o L d
0 Q
(a) (1v)
| [
S, S,
ot T
Q Q
(e) (d)
(a) Narrow Band - (b) Band Limited

(c) High Pass Filtered (d) Broad Band
Pigure (44a)
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The question therefore is how narrow band can this
excitation become before its response is radically different.

On the question of the suitability of the equivalent linear
ization technique in predicting the mean square response
displacement of the Duffing system under the two types of
excitation considered in this chapter the following conclu—
sions may be drawn, The conventional equivalent lineariza—
tion technique is totaly misleading in its predictions
(value Bo, in Tables 6.2 and 6,3) for both cases. In the
band limited case the equivalent linearization method with
Box from simulation and Ku = 2,2 provided the best approx—
imation to the simulation results. PFurther the predictions
of this version of the equivalent linearization techniques
are very misleading over a range of frequency cut offs in
the vieinity of Qv (the resonant frequency of the system
under broad band excitation).

For the high pass filtered process the method with both
Bo, and Ku as computed through the simulation provided the
best approximation to the simulation values, Further for
very low values of I/T(<1l) it is expected that all three
types of equivalent linearization methods will provide
better agreement with simulation due teo the fact that the
resonant frequency (9,) of the nonlinear system under broad
band excitation will be c¢lose to the natural frequency and
the shapes of the two spectra, (Duffing and - equivalent
linear . systems) will be very similar,
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CHAPTER 7 DISCUSSION

The prime objective of this study has been to obtain the
response spectra of the Duffing system excited by a Gaussian
broad band random process, through the use of numerical
gimulations and to identify behavioural patterns of these
spectra. The task was greatly simplified by the use of
dimensional analysis which indicated a useful way of reducing
the number of parameters., In fact the dimensional analysis
applied to this mechanical systems reduces the number of
independent variables by three, In Chapter 4 it was shown
that the description of the non~dimensional | spectra is
possible in terms of two basic parameters namely I' and T .
However when the actual spectra were produced it was possible
to describe most of their properties as a function of one
variable only, the ratio /5. The appearance of this ratio
in the expression for the probability density function for
the stationary system response, derived through the solution
of the appropriate Fokker — Planck equation, makes it par—
ticularly suitable for describing such statistical quantities
that can be obtained from this function. The resonant
frequency is also a function of the ratic I' /Y as has been
proved by the simulations and confirmed to some extent by
the equivalent linearization technique in Section . 5,4 .
Thus it is possible to express two important properties of
the response spectrum as functions of the ratio [/Y ,namely
the area under the spectrum and the resonant frequency.
Strictly speaking the spectral shapes are not a functionof
r/c, as it is proved mainly from the near zero.  frequency
response, and can only be accurately described in terms of
the separate variables I' and 7, However the similarity of
the spectral shapes for conmstant I' /Y and the inherent in—
accuracies of the simulations, makes it possible to describe
the resulting spectral shapes in terms of the ratiol/r with—
in the confidence limits of the numerical simulation. A
result of this is the graphical method described in Section
5.5 for sketching the response spectrum for the Duffing
system under broad band excitation for a given valueof I'/¢.

In ensuing the aims of this study it was possible to make
secondary observations which are worth noting at this poeint.
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Most important of these is perhaps the light shed on the
term 'weak' nonlinearity used in connection with the approx—
imate techniques, Non—dimensionalizing the expression for the
mean square response of the system derived by the
perturbation technique (Egquation 1—8) and the heuristic
approach the following expression is obtained*

A

B(x> =% (1 =-3FT/) (7-1)
To avoid negative values here I' /. must be < 0,42 and the
equation is expected to break down much earlier, In fact.for
I/fe = 0.1 B<x> = 0.06 which under estimates the true answer
by =10 ., ZFor this value of '/t = 0.1, %= 1,085 i.e.aminor
shift from the natural frequency. Also the peak value of
the linear system i,e. with g = 0O

Sy (we) = 8, /4u¥m  for light damping (7-2)
since S =Tk/Buw, .. B85« (w,)w =T/ 4% (7-3)

forI'/t = 0,1 3B(w,) = S (w.)w, = 0,025 which  compares

with the extrapolated value shown in Figure 24, - These
values indicate a nonlinearity that could be safely ignored
for most applications, since the system is _practically

linear. It was mentioned in the introduction that a number

of simulations (mainly analog) have been performed by various
researchers for the purpose of verifying results obtained by
different approximate methods, Unfortunately the simulations

were performed for systems with weak nonlinearities, For
example the highest value of I'/Y used by A,B.Budgor and co-
workers [ 28 ] to prove the accuracy of - !Krainechman's'

method was [/Y = 0,1 and J,E.Manning [24] . (New heuristic
approach) I'/¢ = 1,2, It is at least ambitious to expect
observations based on results for such low values to hold
true when the real nonlinear behaviour of the system mani-—
fests itself,

* In Equation (1-8) o = 52 ___ i,e, response for 8 = 0 but

S
r 45w, m
4 p14
B # 0 and Bo, = oy
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Still on the topic of 'degree' of nonlinearity, it may De
stated that in general, it is only - through
dimensional analysis and certain theoretical considerations
that one can define a measure of the amount of nonlinearity
inherent in a system's response, In particular for the Duffing
system the amount of nonlinearity is by definition the term
8x., for sinusoidal excitation and Bo} for random, However
these terms imply previous knowledge of the response and it
is perhaps more convenient to think of the system Ybecoming
more nonlinear as its Y, ( sinusoidal ) or I', ( random )
values increase, The advantage being that these quantities
(Y,I') involve only system and excitation parameters.

Of the approximate techniques the equivalent linearization
technique deserves a further mention here, A4As already seen
in (Section 2.2) there are two ways one can evaluate the
expectations equation (2-25)) required for calculating  the
natural frequency (w.) and damping coefficient ( %) of the
equivalent linear system, either by . use of the
linearized equation(conventional equivalent linear technique)
or by use of the exact probability density function of the
nonlinear response, Both approaches for the Duffing system
under broad band excitation, (or indeed white noise)lead to
equations (7—4) and (7-5)

(8o% ) 4Eu/n + 8ok 4/n = I/v (7-4)
(9" =) a/(Run) =T/s (7-5)

The two approaches differ only in terms of the value of Ku
used, PFor the conventional equivalent linearization tech—
nique (Section 2.2) Ku is constant and equal to 3, since it
uses the linear system to evaluate equation (2-25), In the
other case Ku is determined by the exact probability density
of the nonlinear response, and varies in the range 3 t0 2.2.
For Ku = 3 equation (7—4) systematically under estimates the
value of Bcig whereas equation (7—-5) over estimates Q. the
resonant frequency of the spectrum., When the true value of
Ku is used equation (7—4) gives the correct value of Bo: for
a given value of I/t , This however is not original
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information since to calculate Ku, Box has to be found
beforehand using the probability density function., The one
and only original contribution of the equivalent linear—
ization technique to our problem is equation (7-5). This
equation provides the resonant frequency of the . -response
displacement spectrum of the Duffing system in terms of the
excitation parameter I', Although it was known [ 12]
(Appendix B.l) that the autocorrelations of the two systems
(egivalent linear and Duffing) were similar in some respects,
it was possible to observe the coincidence of their resonant
frequencies only through the numerical simulations, The
differences in other respects between the spectra of the two
systems for I'/t = 500 was shown in PFigure 31. However for
small values of I/t (£0.,1) the spectrum of the equivalent
linear system is remarkably similar to the nonlinear one as
A,B.,Budgor and co workers [28] have shown with their own
simulations., This supports the notion that for 'wesk' non
linearity the Duffing system behaves like a linear system
with a slight shift of resonant frequency as far as 1its
regponse spectrum is concerned,

In Chapter 5 it was shown that the properties of the
response of the Duffing system under mathematical white
noise (derived through the solution of the appropriate

Fokker — Planck equation) also apply to the response of the
system under Gaussian broad band random excitation. it
seems however that this is not always the case, I.W.Wedig
has produced the response spectra of the trilinear system

m X + 2cx+ g(x) = P(%) (7=6)
g(x) = k[(1+¥)x - Yx]
with ¥ = 0 for |x|<x, and x_, =-x. for x<-— X,

under mathematical white noise, Tigure 45 1is reproduced
from reference [33] the symbol c\f in this figure stands
for the mean square response of the linearizes system (i.e.
Y = 0) under white noise force excitation of intensitysS,.
i.e. oy = n5,/(4 & o) Qualitatively the behaviour shown
in Figure 45 may be explained as follows. The response
spectrum has two resonant frequencies w, =\/m andw, =
m. The amount of response at each frequency is
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determined by the quantity x,/0.. For low values of o, most
of the excitation results in displacements x < |xd hence
most of the response has resonant frequency w,, As o, in—
creases most values of F(%) produce response which is  out
gide the — x, to x. range, hence most of the response has
resonant frequency w,. The existence of such closed form
golution was considered a good test case for the simulation

programs, However as it can be seen from Pigure 46 the
gsimalated response displacement spectra for this system
under broad band excitation are radically different from

Figure 45 . The fact that the system parameters for the
two figures are different is irrelevent. What is important
i3 that the simulation spectra do not have two peaks at w,

and w, but as the ratic x,/0., is reduced there is a gradual
shift in a single resonant frequency in the range w, tow,.
This discrepancy between the responses under mathematical
white noise and broad band was also confirmed by Professor
I.W.Wedig in a private comunication to Professor J.D,Robson
and is also discussed in a second paper by I.W.Wedig [ 34] .
Further if the piecewise linear stiffness of equation (7-6)

is thought of as an approximation for part of the Duffing
cubic stiffness or vice versa then the general behaviour of
the spectra of Pigure 46 agrees with the response spectra
shown in Chapter 5 , better than those for white noise
excitation in Figure 45 .

In general it may be stated that in investigating - _ - the
response of nonlinear systems, there is always the danger
on the part of the researcher in thinking with a linear back
ground, The inapplicability of the linear intuition and

theory was well demonstrated for the response of the Duffing
system under the three different types of excitation consid-—
ered in this work., I.W,Wedig's example is a further warning
possible unsuitability of mathematical white noise excitation
to describe realistic excitations for nonlinear systems,

In this project the response power spectra of the Duffing

system under broad band excitation were described in relative
detail., However the description of the response in general
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is far from complete. The response being non - Gaussian
needs to be described in terms of higher order spectra as
well, In this respect the simulation process used here
may be found useful, although the number of realisations
per estimation will probably have to be increased,Certain
agspects of the response under band limited, and high pass
filtered processes were briefly investigated posing more
questions than producing answers., PFuture research in this
direction will probably reveal much more interesting
behaviour in terms of probability distributions and' jumps'
of the type seen in Section 6.2.. The variety of geomet—
rically shaped excitation spectra to be used is enormous,
but perhaps more interesting would be the case where the
response of a linear system under broad band excitation
was used as excitation for the nonlinear system or the
simpler case of the Duffing system under narrow band
excitation.,This problem was treated by -R.H.Lyon and M, Heckl
[32] in terms of the equivalent linearization technique.
R.H.Lyon has also proved that multi—valued behaviour ( jump)
cannot exist when the excitation is broad band, A broad
band signal may be thought of as a random -sequence of
impulses, each impulse imparting a certain - amount of
Kinetic energy to the mass regardless of its . .state of
motion, In this way, the power of the signal .is nov
affected by the state of motion but depends on the impulse
gstatistics. This forces the dissipation to be constant and
equal to the power input (when the system . reaches its
steady state) and consequently, its mean square velocity
which is proportiona.’ to the dissipation is determined,

Clearly from the above, what is needed for the occurance of
jumps is an excitation which can exchange energy with  the
system over a cycle or s¢ in order that more than one
'equilibrium' level may be attained consistent with the
equations of motion., It is well known that ginusoidal ex—
citation satisfies this requirement [35] , but the argu-
ment also suggests that a random source which correlates
with itself and hence with its response over a few cycles
of motion can produce the same effect, As it was seen
in Chapter 3 the present numerical simulation can cope
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with jump phenomena for deterministic excitation, however
it should be used with caution for random analysis and the
response spectra for such an excitation will probably pre-
sent problems of interpretation,

An investigation of the softening Duffing system (B < O )
would also be very interesting.
The equivalent linearization technigue
is applicable for negative B, PFigure 47 shows aplotof
Bo,versus I /% for negative values of B using the equiva—
lent linearization technique according to

Bot = (= 1+ 1+KunI/%)/2Ku (7-7)

for a constant value of Ku = 3,

Although the present simulation technique is in principle
capable of dealing with a negative B the problem of
gingularities in the solution should be closely observed,
since the numerical integration technigues cannot function
in a range where singularities occur. It is worth noting
that according to eguation (7-7) there are two possible
values for Bok. for givenI'/Y (for positive B there are also
two values for Box but one is negative hence inadmissable),
and that the value of I'/Y cannot exceed — 0,1061  without
Bo. becoming a complex number.

The gimulation programs are listed in Appendix C4 . It can
be seen from a closer study of these lists, that +the only
major change needed to deal with different forms of non
linearity will have to be made in subroutine FCN of the
numerical integration program which defines the set of dif-
ferential equations describing the system of interest. This
naturally widens the choice of possible future investigat—
ions enormously. Further it may be confidently stated that
any simulation work with nonlinear systems will have a lot
to benefit from previous dimensional analysis of the prob—
lem, which will facilitate the planning of similation
experiments and the description of the outcome
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A,l1, The Duffing System Under Sinusoidal Excitation

This section will give a brief review of the properties of
the Duffing'systeﬁ under sinuscidal excitation and serve as
a reminder of the nonlinearities of the system, which had
to be taken into account when setting up the numerical sim—
ulation, This type of excitation was used as a check of the
reliability of the simulation process in the first stages of
this work.

Let us consider therefore a Duffing system having =~ . the
equation of motion

m X+ cx + k(1+8X )x = F, cos (wt+g) (A.1-1)

where w, =V k/m

by considering only the fundamental component of the response
as a sultable approximation it is easy to show that the amp-
litude response x,, must satisfy (see also Section A.2),

A

[(1+d8x, — o) + (X) ]xl = F (A 1-2)

-

where Q = w/w.,
F =1“°/1m»1“ and ‘S::T%{m

For fixed excitation amplitude and light damping the response
curves generally have the form sketched in Figure ( A,1-1)
which depicts the steady—state peak response amplitude as a
function of the frequency of excitation. The curved resonant
peak of Figure (A,1-1) lies at the heart of one of the more
important nonlinear phenomena, the jump. In the shaded region
the theoretical response is triple—valued but the locus be—
tween points two and five is unstable, When the frequency of
excitation is very slowly increased from zero, the steady
response amplitude follows the curve of Figure (A,l1-1)from eone
to two., If the excitation frequency is increased further,

there is an irregular transient motion, after which a steady
gstate is achieved with amplitudes on the branch of the curve

from three to four., Now when the excitation frequency is
slowly decreased, there is no peculiarity in the response from
point four until the point five is reached. Here if the
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excitation frequency is further decreased, there is again
an irregular transient followed by a return to the steady
state along the branch of the curve from six to one. In
Chapter (4) the non—dimensional form of the Duffing system
was outlined and it can be seen in Figures (7 and 8) that
the characteristic shape of the Figure (A.1-1l) 1is still
there,

While testing the simulation process, using sinusoidal ex
citation, it was possible to establish a general pattern for
the behaviour of the setling time of the system when excited
from rest, The term setling time implies the time interval
after which the system settles into a steady oscillation,
and should be discriminated from the term 'transient' which
applies to linear systems only because of its properties.Ilt
is beyond the scope of this work to establish detailed
account of this behaviour, It was only necessary to obtain
a rough idea of the amount on data that should be excluded
from the realisations when calculating the response spectra
of the system under random excitation, It was observed that
the duration of the setling time decreased with increased
damping ratio as expected, the effect of changes in the non
linearity parameter g or the level of excitation F, was
relatively insignificant (all other parameters remaining con-
stant), Pigure (A.1~2) shows the effect of different dam-
ping values on the non—dimensional quantity a = kx/F.., The
following are some of the best known properties of the
Duffing system.

a) The free vibrations of the system are:=—

1) Symmetrical periodic oscillations but not sinusoidal.

2) Period and oscillations depend on the amplitude
the resgponse,

3) The free vibration frequencies form a locus on an
amplitude — v — frequency graph called the free
vibration backbone,

b) The steady state response of the system to a periodic
force excitation
1) i1is generally periodic with same period as the
excitation.
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Response displacement amplitude as a function

of non-dimensional frequency for the Duffing
system under sinusoidal excitation,

Figure A,1-2

3
Non—dimensional response displacement amplitude
as a function of frequency for the Duffing
system under sinusoidal excitation and different

damping ratios,
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2)

The wave shape of the response oscillationis in general
different from that of the excitation and also from the
free vibration, Moreover the response wave shape changes
with the level of excitation and with the nonlinear term.

Particularly when the excitation is sinusoidal of slowly
varying fregquency it is possible to observe the jump
phenomenon.

- 175 =



A.2, Approximate Solution Involving Third Harmonics for
the Duffing System Under Sinusoidal Excitation.

The possibility of improving the approximate solution given
by equation (A.1~2) was also investigated by incorporating
the third harmonic in the solution., This section contains
detalls of the harmonic balance method to obtain expressions
which will provide a response which is a mixture of the
fundamental and third harmonic.

Consider again equation (A.1-1).If the solution
X = X, cos Wt + x; cos 3wt + ¥y, sin 3wt (A, 2=1)
is assumed. Then
£ =x cos wt + xi cos 3wt + y: sin 3wt
+ 3}:? x, cos 3wt + 3x,y, cos wt sin 3wt
+ 3% x, cos 3dwt cos wt + ?;X?y3 cos 3wt sin 3wt A, 2=2)
+ 3y x sin 3wt cos wt + 3 ¥'x, sin 3wt cos 3wt
+ 6X X,y, cos wi cos 3wt sin 3wt
Substituting (A.2-2) in (A.1-1)
- mlecos wht — 9mw X, CcOo8 — Imw’ v, sin 3wt
— owx, sin wt — 3Jewx, sin 3wt + 3cwy, cos 3wt
+ k x cos wt + kx ;cos 3wt + ky, sin 3wt (4.2-3)

+ k¥ — F, cos wt cos ¢ + F,sin wt sin ¢ = 0O

We can obtain suitable coefficients for coswt, coslwt in
(A.2-1) by requiring that the coefficients of coswt,sinwt,
cog3wt,sindwt in (A, 2=3) should vanish,
With A = 2 u = £ this requirment leads to equation (A.2-4)
- 3 yprt S S
x,{ md + k + 4\k§x}{l F A+ 20+ 2>\}} = T, cosg
x,{— cw + 3kBX, u} =— F,8in ¢
1 1 . . . (A.2—4)
— 9mwA + 3cw u +k>\+zk|3x,{l+3>\+6}\+ 3u ?\}:O

-9mtﬁu—3cm>\+ku+%k;3xf{ua+2u+2ul>\}=0
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These expressions equations(A.2-4), can be reduced to
equation (A.1=2) under the assumption that the third harmonic
components in the solution are much smaller than the fun—
damental i.e, A, u € 1, so that all products of A, 4 wvanish
and equations(A.2-4) become

x [ o+ k + %ksxf] = F cosg
X, (= ow) = = F sing

x
therefore x. [(— mo + k + %ksx‘) + (cw)I] = P,

(A.2=5) or (A.1-2)

The get of equations (A,2—4) were solved numerically, The
gsolution showed that the ratio of third harmonic to funda~
mental in the response did not exceed 0.15 for the highest
nonlinearity examined (Y = BFf/kt = 3,11 see also Section
4.1 for the significance of Y). It should be noted that
although the solution in this appendix is expected to pro—
vide more accurate values for the response, it is still an
approximation to the exact answer since it ignores the rest
of the harmonics,

Table A2 shows the response predictions for the two
approaches for ¥ = 3,11, Y= 0,1, The values for the
fundamental are also plotted in Figure (A,2-1) in their non
dimensional form i.e, a = ¥x /R" versus 2= wAlkm,
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—— Equation (4.2-5)

.-+ Equation (A.2=-4) i,e. involving third harmonics
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A.,3., The Duffing System Under Modulated Sinusoidal
Excitation

Consider the response to be expected from the Duffing system
equation (A.1-1) due to an excitation of the form

P(t)=F, sin (w,t) cos (wt+g) (A, 3=1)

where w, << w

instead of the excitation F(t) = P, cos (wt+p) used earlier
equation (A.1-1). Hence the Duffing system is now excited
under a sinusoid of slowly varying amplitude. It will be
understood that this form of amplitude variation is quite
arbitrarly chosen: +the sin wet function is simply a con—

venient function providing a fluctuating envelope and so
giving some slight resemblence toc a part of a narrow . band
random excitation. Consider again equation (4,1-2). The

behaviour indicated by this equation is usually portrayed by
response curves of the form of Figure (A.3~1) but it will be
more convenient here to plot response for constant values. w,

and this is done by Figure (A.3~2) for B =1, ¥ = 0.1 as
typical values, Provided that the ratio w./wis small enough
one can use Figure (A,3~2) to determine the amplitude of

response X, arising from any amplitude of excitation of the
given fixed frequency, This provides the envelope x, of the
response which corresponds to the excitation envelope F, sin
w,t, and typical x,,t curves as plotted in Figure ( A,3=3),

The effects of the jump phenomens can be seen clearly in
Figure (A.3-3). For small enough excitations they have no
effect as the T, ,x, relationship involves one branch of

Figure (A,3~2), but greater excitation amplitudes involve the
alternative branch so that much greater amplitudes then arise
and response amplitudes only return to lower values when the
form of Figure (A, 3~2) permits it. The important point here
is that in general the response of the system to a particular

excitation is affected by both upper and lower values of
Pigure (A.3-2) during different points of its history. Only
in special cases will a single branch predominate over an

extended interval of time,
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Pigure A.31 Response displacement amplitude as a function

of non—~dimensional frequency for the Duffing
system under sinusoidal excitation,.
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B.1l., Notes on the Equivalent lLinearization Technique

Consider the nonlinear system
X + bx + g(x) = P(t) (B,1-1)

Where F(t) is white noise Gaussian process. The solution of
the corresponding Fokker — Planck equation (Section 2.1)
results in the following stationary probability distribution,

2

P (x,x) = ¢ exp{-— Q_é:}.c_ - G(x)} (B.1~-3)
where G(x) = %’?f g(n)dn (B.1-3)

]

and S, the intensity of the white noise excitation. Then

7 @
Rxx(%)= — —%E,-t}%il)-=—ff [2cn'c+g(x)] P, (x,%) B (x,x,t)dxdx
-0
t20

where P. (x,x,t) = the transitional probability distribution.
and P.(x,x,0) = x

(oe)
2
%X—JE—('—'V—LZ .= —ff xg(x) P, (x,%x)dxdx = — R¥x(0)
- D
since Bc(x,x) is odd symmetric in X
(o 0]
but Rxx(0) = — ff x° P, (x,x)dxdx = %—% (B.1-5)
-
for the nonlinear system, Also equation (B.,1—4)
Rxx(0) = E(xg(x))
but wz = EEX sz (see Section 2,2(equation 2-22)) (B, 1~6)
therefore .
oo S
¢ T 2% E(x5)

For the equivalent linear system (equation(2-18))Section 2,2)
' X, + bx, + we x, = F(t) (B,1-7)
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(B,1-8)

Which proves that the equivalent linear system have the sgame
mean square response displacement as the nonlinear system..
The same is also true for the response velocity of the two
systems,

The MacLaurin series expansion of the autocorrelation
function is

n

Rxx(7) = R(0") + R(0") 7 + 5, R(C) 7'+ 3 R(Q) ¥ +,_. 720

It was proved above that the first term is the same for both
the nonlinear system and the equivalent linear, Further for
the equivalent linear system.

R(0") = 0, R(0") = — w® R(0),R(0") = b« R(Q)
for the nonlinear system

R(T) = f7 X252, (x,%)dxds = O

—D

R (0 1 %

B0 L [xe(x) B(x,0)axai = — ul
QO

from equation (B,1-4) and (B,1-6)

mo, @®
and %%%5) = -g—i- f/ xg(x) P, (x,%x)dxdX= b w,
-0
where
@ -
ERT Y= D -/:/‘[bi+g(x) - % %ﬁézi]ﬁ (x,%x)P.(x,%,t)dxdx
-2
but ©* = 0, B, is odd symmetric in x and P, (x,%,0) = x

t

co
therefore R(0) = bff xg(x) P, (x,%)dxdx
o

" N
therefore R(0C) = — b R(0O)

Hence the Maclaurin series expansion of the autocorrelation
of the two systems is identical for the first four terms.
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B.2., Perturbation Analysis

The perturbation approach is well developed in the study of
deterministic nonlinear problems when the nonlinearity is
congidered small, For nonlinear random - . differential
equations, the same technique can be applied under certain
restrictions,

Consider again the single degree of freedom nonlinear

system - whose response x(t) is related to an excitation
F(t) by the differential equation

X + bx + w,(x+eg(x)) = F(t) (B, 2-=1)

where (x+eg(x))is the nonlinear restoring function.The total
restoring force has been separated into a linear contribution
plus a nonlinear part., The shape of the nonlinearity is
desgcribed by the function g(x) and the relative magnitude is
indicated by the parameter ., When € = O, the oscillator is
linear, The perturbation method is based on a series expan—
sion in powers of € and is only expected to be valid for
motions in which the nonlinear part of the restoring force
remains small in comparison with the linear part.The precise
sense of the word small is seldom specified in most appli-
tions of the perturbation method. The basic step in the
perturbation method is to assume that the sclution to

equation (B.2-1) permits an expansion in powers of €

x=x_(t) + ex, () + € x,(%) +,., (B.2-2)

This expansion is assumed to satisfy equation (B.2-1) identi—
cally in e, We therefore insert equation (B.2-2) into
equation (B,2-1) and collect terms having the same power of &,

[X, + bX,+ wix,— P(t)] + e[X + bk + wix + wg(x,)] +
+ e[¥, + bx, + wix, + 'wtx;g(x,)] +ooo = 0 = (B, 2=3)
If equation (B.2-3) is to be satisfied identically in e, each
square bracket must separate by vanish., This provides a
chain of linear problems which x.,(%t) may be considered as a

linear response to an excitation that is nonlinear function
of the previously determined x.(t). The function x,(t) that
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makes the first bracket in equation (B.2-3) vanish can be
represented by the convolution integral

@3}
x, (%) = Jff(t—m) h(t)ds (B, 2—4)
o]
where h(t) is the response function to a unit impulse

h(r) = (u.‘t\--‘l)’é/ti.)w1 exp {— bt/2 }sin (u):--‘t>t2/‘4.)v2 T
(B.2-5)

In the same way, the function x&t), which causes the second
bracket in equation (B.2-3) to vanish, can be represented as

x(t) = - wijf g[x(t=T)] n(7)ds (B, 2-6)

and thus the entire chain of functions x (%) needed for
equation (B.2-2) can be obtained, at least in principle, In
practice, the integrations required for v =2 usually become
intractable and the approximation (x,6 +€x,) is used.

For the case under study the perturbation technique has very
little to offer and which is worth comparing with the ’
results of the numerical technique since in practice it res—
tricts its finding for very small departures from the linear
range. Purther the order &* solution [24] leads to a very
important conclusion | namely that the nonlinearity para—
meter, € must be small compared to the damping loss factor b
in order for the perturbation solution to be accurate or

1
€ §%§Q<z1
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B.3. [The Heuristic Approach

The underlying idea of this approach (named thus by Crandall
[231)), is that provided the system damping is light, the
stationary nonlinear response can be viewed as a sequence of
free undamped vibration 'cycles' in which there is a slow
random fluctuation of amplitude and phase, This concept pro—
videgs a useful viewpoint for describing the statistical
response of linear systems to Gaussian excitation. When
extended to nonlinear systems the same picture can be . used
and more over correct quantitative results can be obtained
for small nonlinearities, provided the deterministic
variation of period with amplitude in free vibrations is ao—
counted for., It should be noted that the procedure is devoid
of mathematical rigor. Furthermore it is not especially
advantageous from the stand point of simplicity of calculation
and the range of nonlinearities with which it is capable of
dealing is the same as that of the perturbation technique,In
fact the expressions derived for the mean square response and
autocorrelation function are identical.

For the nonlinear system
X + bx + w, (x+eg(x)) = F(t) (B, 3=1)

where g(x) = nzmg,uxﬂ and €>0, the stationary response to white
Gaussian noise is such that at a fixed time the velocity
function remainsg a Gaussian random variable with variance oy ,
while the distribution of x(t) becomes a non Gaussian random
variable with unknown variance oi. The peak velocity V re—
tains its Rayleigh distribution while the distribution of
peak displacement X becomes non Rayleigh. Because of the
invariance with respect to € of the distribution of V one can
employ V as the fundamental measure of cycle amplitude. The
expressions that can be derived thus are as follows [23'].
For the expected frequency response

N
_ g 2 (V2 o.) n+2
E(w\“) = W, [l + Os "H“g/% n+l r ( 2 )]

where o, = %—§L and S is the excitation intensity. For the

n

mean sguare resgpolse



where

g4l
A =38 (2 o T (12

Indeed for the Duffing equation
E(X) = ¢! — 3&c

a result identical to perturbation and valid only for eo.<<l.
For the autocorrelation function

hxh):cimhd-sA[Mr)+ MT”

where

0(7) =é'l/2b1 (cos pt + %5 sin pT )

p(T) = 8% ”l/ZbT[(pT . 2

o]
i
£
|
o’
<0
N

Manning [ 24 | has introduced some refinements in the above
method by using the exact expressions for the envelope
probability distribution for the free oscillations of dis—
placement instead of velocity and obtained the spectrum of
the response to white noise by decomposing each cycle of non
linear vibration (or what is assumed to be the response) into
its Fourier components. However the limitations of the

approach remained the same, i.e, light damping, small non
linearity.
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C.l. Theory of Numerical Integration Methods

It must firstly be stated that the theory  of Numerical
Integration Methods is very complex, While the fundamental
ideas behind the integration techniques are simple, their
practical application is indeed very complicated. This is
especially true of such factors as error estimation, pre—
dictor correctors, and similar parameters, Congiderable
research has been carried out to develope these technigues
and several computer 'packages' are currently available,
The specific details of the theory on which these packages
are based need not concern the vibration analyst. It will
be sufficient to have a general grasp of the principles in—
volved so that prudent choice of the user—specified variables
in such packages may be made,

To this end a brief description of the theory will be given
here and will be of a sufficiently general nature to be
applicable to a wide range of integration packages,

As stated above, it is required to solve a set of different—
ial equations, These equations are generally of the second
order, but to avoid needless complication a single equation
of the first order will serve to illustrate the techniques
for the time being., Consider the initial value problem

v = £(x,7), y(x.) = y. (C.1-1)

The first step is to find the value y, which is the solution
of the differential equation for x = x, + h, where h is some
fixed value known as the step length (size), Recall Taylor's
series to estimate y,

z I,
y(x+h) = y(x) + hy(x) + %r-y,(x) Foue (C.1=2)
writing y = f(x,y) = fi—
_ h oo B
y(x+h) = y(x) + bf + o7 3L o+ (C.1-3)

where f,f%f” are evaluated at (x,y(x)).
If h is small, terms in n R n...ete, may be neglected giving
the approximation.—
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y(x+h) = y(x) + bhf (C.1-4)
The computation may now proceedf—
y(x.+h) =y, =y + hf(x,,y.) (C.1-5)
y(x,+2h) =y, = y. + hf(x +h,y, ) etec,

.................

y{x,+nh) = y, = y.., + Wf(x.+(n-1)h,y.., )

Pigure (C.1-1) illustrates this technique graphically, In
an attempt to follow the curve from the point (x, ,y,) a
distance h, in the x direction is moved at gradient £(x,,y,).
This defines the new point (x,+h,y ). A further distance h
is moved with gradient f£(x,+h,y, ) to the point (x,+2h,y. ).
This process is repeated throughout the range of integration,
It can be seen that as the integration proceeds the estimated
points gradually move away from the curve. For convenience,
the step length is kept constant but this not need be the case,
This very simple process is the Euler method it is a first
order method since only terms up to the first power of h are
considered in the Taylor's series. The omission of orders
of h greater than or equal to 2, causes a truncation error of
order h . Further error is introduced since the estimation
of y(x,) is based upon the value y(x.-.) which is itself an
estimate, As illustrated graphically these errors can mount
up as the integration proceeds.

However a much improved solution can be obtained by a simple
modification, This is the adaptation of a correction pro—
cedure, Refer to Figure (C,1-2). As in the previous method
the point y, is calculated, The derivative at this point is
determined i.e, f(x_+h,y, ). The average of the derivatives

at y, and y, is found and a2 new approximation y@ is obtained
i,e,

@)

¥, =y + %(f(x”y;) + f(x +h,y, )) (C.1—~6)

Further approximations y, can be made by using the current
value y, i.e,

(4]

E)]
Y, =y, + %(f(xo,yo) + f(x°+h,y(‘ ) (C,1=7)
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After sufficient corrections have been made, the final value
of yv can be used as a starting point to obtain the point y,.
Similarly, corrective procedures can now be applied to y, .
This process is repeated over the entire interval of inte—
gration, This is known as the Euler—trapezoidal method., It
provides a simple example of a predictor corrector formula, .
The predictor~corrector methods employed in the integration
packages are based upon the same principle but information on

several previous values are used to obtain an increase in
accuracy.
The Euler method would not .bhe used in practice, in

view of its simplicity and resultant inaccuracy.More refined

versions based on the same principles are however, currently

in use, The other class of methods in widespread use is the

Runge — Kutta type. Many versions of this type exist but are

all based on estimates of the derivative, not only at the ends
of the interval h, but also at intermediate points.A further

feature of these methods is that the calculation uses only

the values at the initial point and previous estimates are

neither used nor stored, A typical example of a Runge-Kutta

method will be outlined to indicate the method of computation.
The example is a fourth order version. The step size will be
agsumed constant but, again need not be so — in a variable

step version the length of the step would be determined in

accordance with some error criterion. Use of this method

regquires four quantities to be calculated at each integration
interval namely;-—

)
"

- = h £(x,,y.)

h n
= h f(x“+-2-,y ""@2_)

o'
]
!

(C,1-8)

Q
i}

jol bu
. h f(xn+§,y“+1?

[oF
3
]

h f(x,+h,y, +c,)
The value y,, 1is given by

N =y, + %(a“ + 2b, + 2¢cw + du)

al

Since y = £(x,y) =Ay/h it can be seen that a,, b,, C., Q.
are estimates of the increments in y at the left hand, twice
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at the centre, and at the right hand of the integration
interval. 1In calculating y,. , the previous estimates a,,
by yCn,4,, are available and a weighted—average value of
these increments in y provide the estimate of the value

Ywr o Most dynamic systems can be represented by sets of
second order differential equations of the form
y = £2(x,7,5) (C.1-9)

The derivative of Taylor's series is required

' ’ /" h" "

y (x+h) = y (x) + hy (x) + z—ry(x)...
The Runge — Kutta method when applied to second order
equations requires computation of the following wvariables

at each step

an = f(x“ 1 T ,;Yq:)

(S 1=

4
noting that y,, y. are evaluated up to the term in h in
the relevant Taylor expansion.

b= § £(xa + 51V + aur¥a + 20)
where a, = % (yo + %3)

cw =5 £(x, + B3, + a,,y, +b,)

d, = % f(x, + h,y. + B“,y.,: + 2c.,)

where 8, = h(y., + c.).

The new value y 1s now given by

.. = ¥. + by, + R,)

where
Rﬂ:%(an+b“+cn)
and
, / *
y"\b\ = y‘"l + R"‘
where 1

Bt =3 (a, + 2b, + 2c. + dn)
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The next step in the routine will require yxﬂ . Repetition
of the above sequence is performed throughout the interval
of integration. In the methods described above, the gtep
length h has been assumed constant, The facility of a
variable step length is offered by many routines and will
be mentioned here, The operation of these methods is as
follows., A value of h is chosen within the program -~
usually as some fraction of a user—specified parameter and
the first step executed. The value of the step length is
reduced and the step re—executed. If the difference between
two computed values satisfies the error criterion, the
solution is accepted, If it is outwith the specified error,
h is further reduced until the error criterionis.satisfied.
The specified error may be a relative or an absolute error
and in many packages is specified either by the user or by
default, Integration routines vary considerably in the
type of error criterion adapted., It must be emphasised
that while the simplest integration method will certainly
give only approximate solutions, very sophisticated routines
need not give highly accurate estimates., It is a fact that
in striving for a high degree of accuracy, problems of
stability can arise! i.e., the errors become greatly magni-
fied as the computational sequence progresses until the
routine breaks down, It is practically impossible to state
with any certainty, that a particular routine will give
good results with a particular type of problem, without
prior testing, Clearly great care must be taken whenusing
numerical integraticn methods — this cannot be stressed too
highly — since the margin between a very good estimation
and a very poor one can be slight.

The above outline of the theory of integration methods is,
of necessity, brief., However, it should be sufficient for
most applications when considered in conjunction with the
information provided in package user-manual,
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C.2., ZExcitation
a) Stationarity of the Signal

The excitation is defined by

X
2: c.cos (w.t — g.) (Cc.2-1)

i

X(%)

2: c, (cos ¢, cos(w.t)+ sin 9., sin(w.t))

el

Il

Where the frequencies w, .are distributed densly in the
interval (O,w%), the phase ¢, are uniformly distributed
between (0,2n) and the amplitudes c, are such that any small
interval of frequency dw satisfies,

w4 dw

:E: £ ¢y = s(w)dw (C.2=2)

Wy

It will be shown that X(t) is stationary in the wide sense
( [7} p.304) with zero mean and find its autocorrelation,
Equation (C.2-1) can be written

X(%) =‘§:(awcosw“t + b, sinw,t) (C.2=3)
where -
2, = C.,COSP
b, = c.sing,
(for our input ¢, = const = 1)
< X(8)> =<(§:(a“cosw“t + b, sinw,t) D
=(2gla,,b.) >
additivity propexrty of { >.
CX(1)> =2Xgp
but g(a,,b,) is the sum of two random variables
therefore {gla, ,b,)> =<a,cosw.t> +<{ bpsinw,. t > (C.2=4)

since a,,cosw.t are independent this average is equal to
zero for da.,y =<{b> =0

*Note that for the sake of convenience in notation the exci—
tation is denoted as X(t) not as F(t).
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R(t,,%,) =<(E2(a“cosw“t\-kb“sinwmt,ﬂ.[2:(a"coswqt1 + b,sin
0.t

if <a, b.> = 0 all cross terms are eliminated (C.2-5)
hence R(t,,t,) = 2.<a.(cosw,t, cosw,t,) + b.(sinw.t, simw.t))>

Z

¥Z<§l[cosw“(t, -t,.) + cosw, (%, +t1)]+ %i[cosww
(t,~t,)— cosw.(t + tL)] >
if (b, > =¢aL> = o)
therefore R(t,,t.) = 2xa > cosw,t = o cosw,T = R(T)
where 1T = t, -—t, (C,2—6)

Hence necessary conditions for X(t) to be stationary in the
wide sense with zZero mean and autocorrelation

R(r) =)o) coswat

is that the random variables a.,b. both have

1) =zero mean <{a,> = {(b,>=0
2) are uncorrelated ¢ a.,- by =0
3) <d>=<bad= ol
These conditions are satisfied by our particular a., Dbw.
{a,ba > = < sing,.cosy. >
and since the probability density f(¢) = 1/2n
g((p) = ging cosp = a b

paiy

2
i~ _ T __l__[siano] _
{ab, > = sing cosy 35— dg = 5= | =5== .= 0
also
{an> = b.,> =0 and ¢(a.)> =< b.> =1/2
Note a,,b,, are uncorrelated but not independent since
a, = £f(b,) , a. =y1-0v,
The probability density function of a, = £(a,) = = ;i
1 1
and f(b,) = e T—o-

ch
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b) The Central Limit Theorem

Consider a sequence X, ,...,%,9».» 0f independent random
variables with respective densities f; (x). It is  known
from the law of large numbers that the variance of their
mean X = (X +X,+..+%,)/K is small for large K, Hence
(from the Tchebycheff inequality) the density fx(X) is
concentrated near its mean., However the law says nothing
about the shape of this density (fz(X)). It turns out that

as K increases f;(X) tends to a normal curve regardless of
the shape of the densities fi(x) ([ 7] p.266) provided that
fi (x) has finite area, mean and variance, Hence what ever
the probability of

x.(t) = a, cosw.t + b, sinw.t (C,2=7)

its mean over X wvalues

NS
will have a Gaussian distribution provided K is large enough
and density fi(x) has finite area, mean and variance.

The input signal equation (C,2-=1) may be thought of as such
an average value multiplied by a constant i.e.

1’3
ORI

It is also true that some averages approach the Gaussian
distribution faster than others, depending on their original
distribution e.g. [7 ] p.268.

f,‘(x) X =X+ X;

1 -
7 % X=X, * X+ Xy

Q.50
7

x X

0 T 2r ar
— i) — fla)

e L et ,L\/—Zevzrz—n.w;?/r2
T T T "
{

(a) () c}

4 N
D

Figure C, 2~ 1

An attempt will be made to show that this is the case with

the excitation X(t)
K

x(t) = 2 x(t) (c.2-8)

N
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x.(t) = cos (w.t + @) (C.2-8)

If we select randomly some x:(t) from the sum then x (%) can
be regarded as a function of a random variable 2; which is
the sum of the random variables ¢, w: Figure (C,2-2), This
way we can regard w: as a random variable uniformly distri-
buted between 0, and w« = 2 n say.

@ AN L -
hd) [VAVAVEAVAVEVEY x.{%)

xf )

AAAAAAAA

vvvvvvvvv

Pigure C,2=2

I(s

Hence 2z = 9, + w; , ¢,w; are independent therefore

re}

density f,(z) = f f, (W) fqlz—w)dw
[¢]
where KO © <0 or 9> 2n
fq((P) =)
(l O=op =
= <@ =2n
0 w <0 or w>&n
fw(w) =
-a%—n- C=w=2yn
hence f{z) =/Z 44)3;1 dz =2 /44 , 0<z <27
2T N
— ——l — —-—-—-l T
= A s dz = Son 2n < z< 7
Zag T
=f ﬁ-dz:ﬁ—g“%-h——z- 12‘.lJTE<Z<2TE(¢+l)
Rt
=0 z< O or zz 2n(yp+1)
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<2y =¢ 9>+ Cwd,<{a>=((2n) + (2n))/3 = 44n*/2

f o) flw) f(z)
12w
lp2ym \
Y w z
0 Tt 0 2y o 2m 2y

Figure C.2-3 2nlir+l)

hence f,(z) can be described in general as
az O<z=<2n
£, (z) b . 2n <z An (C.2=10)

—az+f An<z< 2(¢+1l)n

x.(t) is a function of the random variable z (since the
process is stationary t can be ignored)

Xm = g(2.) = cos(z.) (C.2=11)
density fro (Xa) = f, (glz)) = A“V_: £.(z2.)/g (z.)

where z. is the solution to equation (C.2-11)

g (z) = — sinz = =V 1-x.
therefore £, (x,) = — Zfz_.. (2.)
1-x, 7

Equation (C.2-11l) has two solutions for every 2n interval of
Z Say %, 42, for the interval 0< z<2x and 2, = 21 — Z,, 3,
"x, for the interval Apn< z<2(+1l)n there exist an
other two solutions say 2;,z., their density equal to £(z,),£(z)
respectively, Finally in the interval 2rn< z< 2y n we have

(¢~1) number of solutions.

= cos’

=L _[(=1) b + 2az, + 2az]

V 1-xr
= —{(&=1) b + 2 a +(2n~ z)2a] A/ I—=x]

f’&g‘( X'«\) =

=[(p=1) b + 4an] A 1-x,
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hence

< xhD mJ[ xifﬁ(xﬂ) dx, = wn/2 (C.2=~12)

area

]
P
Painy
»
3
Q.
™
]
=

-2

The shape of f, (x,) is sketched in Figure (C,2-4)

f{x)

|
|
i
|
!
|
|
J
i

X

~ e e ————

0 7
Figure C,2-4

Although the shape is far from normal, the conditions for the
central limit theorem +to apply are satisfied equation
(C.,2=12)

Proceeding as above we can select two x.'s and form a new
random variable (random selection)

U =X, + X

the pd f(u) is given by the convolution integral

o=

flu) = f £, (x.) £, (uw-x,)dx, (C.2-13)

-
$

for the ease of calculation we shall put

£x,) = =£=,  £(x.) = ==
1-x., 1-x..

if we use, the characteristic function of these densities e, g,
(C.2=13) is equivalent to

G, (w) = cgjw) <g£w) (C.,2=14)

(Note ¢ here w is not the random variable w; )
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where

B (w) = k / e NT—x" ax

o oo

= - kj_/rsinwx J1l=x" dx + kJ/' cosw 1-x dx

- ® -2

\
b (w) = kv/ncosw v 1=x"dx
~-{

hence

This integral results a Bessel function of the first kind

[4].
therefore d (w) = k(n/2) &, (w)
therefore Gu. (w) =(7/4)k Jw) Jo(w)

The inverse fourier transform of G.(w) will give us the
required density of X(t) = Z x,(%).
Ny

Proceeding as above and using the properties of convolution
one can find an exact expression for the density of X(%) =

Zx.,\(t).

If we denote the convolution integral of f,g by fxg and
with bars the fourier transforms, then

Now in producing the excitation signal numerically K was
340* thus to obtain the exact probability density of the
signal, a convolution of 340 characteristic functions is
necessary.

Figure (C.2-5) compares the density function after 60
convolutions with the normal.

*See Pigure (C.31) for 4096 points in time domain, K = 2048
MK = 340 K/6,
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C.3. Generation of the Excitation Signal

Generally speaking, if we have a large set of numbers which

are agsumed to be digitised from some time history, the

individual values determine the probability distribution of

the record, and the order in which the numbers appear defines
the 'frequency composition' of the sample. If, for example,
the numbers in the sample increase and then decrease period-—
ically, the time history can be considered to be a  narrow

band, If, however, the numbers exhibit no periodic pattern,
they will be representative of wide band random, The set

however may be arranged in an infinite number of ways giving
different frequency contents when each number is associated

with a time co—ordinate., In particular for the input process
described in Sections (3.2) and (C.2), The input signal is

produced as follows.

The sine and cosine components of the signal are defined as

An = a sin (g, )
!n = 2,310~0M:K
Bn = a cos (on)
An = 0
} n = 1,m+l,cooK
Bn =0
S
1 MK K

Figure C, 3~1

Where ¢, is a random angle uniformly distributed between
0 = 2n., The inverse FFT of these components returns a
series of numbers (28) which is regarded as a digitised
time history. When a time interval At is defined for
these data the process is uniquely defined., 1i,e.

T =4t XK, Aw = 2rnAf
Af = 1/, wn = 27KAf, uMK= 2nMEKAL

S(w) = %%?*: == = 5,Aw for nAw<w<{(n+l)am and o* = % Wany
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It is known that the Fourier coefficient S« at a particular
frequency n is the contribution to the mean square of the
signal at this frequency

Sq = (fn + Bn)/2 = [a* sin (g, ) + a*cos (9,)]/2 = a* /2

Therefore if the data are multiplied by a constant D

MK
D F(t) =D x «a Z cos(w., t+9, )
therefore ™
S. = (Da) /2
therefore
' S, (w) = D o T/4x
therefore

Q
]

h Dlalwmu/Z

It is obvious from the above that the same series of numbers
may be used to represent signals of different frequency and
energy contents but of the same probability distribution, by
assigning to it different values of At and D, It should be
noted that the number of points transformed, 2K must be
large enough to produce dense spectral definition ( small
band width) and alsc small enough to be handled economically
by a computer., This and the need for 2K to be equal to an
even power of two for the FFT algorithm leads to values of
2K in the region 256-8192, At first 1024 points were chosen,
but when this proved inadequate in certain circumstances it
was increased to 4096, To obtain a relatively smooth
spectrum and more reliable statistics forty blocks of 2K =
4096 points were used with the phase angle continuing to be
randomised between them. These are treated as forty
independent events,
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C.4., IListings of Simulation Programs

The complete simulation process is described in Figure(C.4~1)
in the form of a flow diagram,

The excitation data are produced through the program — called
INPUTUN, (the last two letters in the program name signify an
unformated program input-output) and stored in a file(usually
on a demountable disc)., Next the excitation data are read by
program PR6UN which handles the numerical integration and
stores the response in another demountable file, Program
REC6ETUN accesses the response displacement and velocity data
and calculates their spectra and statistical values, The
spectral data are stored on line formated this time for access
by the frequency averaging program FRAV, Thus the spectral

values are ready to be plotted by the appropriate program in
their smoothed form.

a) The Input Program. (INPUTUN)

This program produces the input signal in the ménner described
in Section (C.3) One defines the spectrum of the . required
signal by supplying its sine and cosine components up to the
cut off frequency W These we supply to an inverse FFT sub
routine (supplied by NAG) with a random phase between them and
which is uniformly distributed between O — 2% and the FFT re-
turns the time signal., The process is repeated to produce an
ensemble of M (here M = 40) realisations of 2K number of
points each (here 2K = 4096), The random phase is supplied by
a NAG subroutine which produces random numbers uniformly dis—
tributed between O = 1., Hence the sine and cosine components
supplied to the inverse FFT (code name(C6AAF) are

An = 1 gin(e ) } for n=1,2,3,...,MK
Bn =1 cos(e )
and An = Bn = O for MK< ngK

where ¢, = 2rnr and r is a random number uniformly distributed
between 0 = 1 (NAG subroutine CO5CAF), The time signals (2K)
are stored in a file (on demountable disc) to be accessed by
the numerical integration program as unformated numbers, A
flow diagram of this program is shown in Figure (C,4-2).
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b) The Numerical Integration Program (PR6UN)

This program reads the data stored in the file - mensioned
above, one realisation at a time., Multiplies the data by a
constant (to increase or decrease the energy content) see

Section C.3) and using a user defined time interval and zero
initial conditions, integrates the set of differential eg-
uations describing the system (subroutine FCN), according to
the technique described in Section 3,1 , The response data
(displacement and velocity i.e. 2 x 2K points) are  stored
unformated in a file and the program returns to read the
next excitation record, The process is repeated until all
M(= 40) excitation records are used. A flow diagram is
shown in Figure (C.4-3).

¢) The Response Analysis Program (REC6ETUN)

The stored response signals (2M) are read and processed by
this program two at a time (displacement and velocity). The
first LIR number of points of each signal are _scraped to

allow for the settling time, There is also an option to
taper the data before obtaining the spectra. The data are
processed to produce certain statistical information and
then zero padded before the spectrum is obtained. The pro—
cess is repeated until all signals are processed and an

average value for the spectrum obtained,

The statistical data obtained are the same for displacement
and velocity records. The list of the displacement statis—
tics and the way in which they are obtained is as follows.

a) For each individual record

1) Mean displacement of frame j (j = 1,M)

2%

2 = (2 x) g

L=

2) Mean square value

2K ‘
- L
DXk
Ll
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3) Variance

1 A2

N
g} = X' - (X)

4) Skewness

L
ssi= (D, (xe— %)) W
o=t

5) EKurtosis

('S
i
Ku; = ( EE: (x, = %)) §§K%ETF“

b) Overall statistics were obtained as the average values
of the above wvalues, ' '
e, g, for M number of records
M
= (%)

=t

= [

M
— A
, T2 (%) & et
J=t

the variance of the overall statistics is also calculated
€. 8.

M
o’ of mean averages = (2(5{\5 > ) FJE- (%)
3=t

The power spectrum was obtained by taking the FFT of each
zero padded (LTR number of zeroes to make 2K number of
points again) signal which produced the sine and cosine
components of the signal., These were squared and added
together for each frequency (raw spectral demsity). The
power spectrum components S, at each frequency (wQ is
the sum average of the above process cverall M records
and divided by 2. The area under the spectrum was ob—
tained as the sum of these components

'S
A=2D.S,
=t

Also the second and fourth moments were defined as

K “
My = ) L S, M; = Lo S,
Mt M|
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where L is the lever (integer number) from the origin w = O,
The following relations apply

KK
A = Zs'“,

(Aw) M,, ms = (Aw)' M,

o

m,

il

It must also be noted that since the output is not Gaussian
strictly speaking the error estimations of the spectrum
based on the Chi square Pothesis do not apply.Hence such
standard error estimations as € = LA/ B, T where B, is the
band width of analysis and T the record length, which is
used to obtain an estimation of the random error involved
in the spectral estimates, cannot be used confidently,

In this program there are alse options for tapering the data
subtracting the mean and ensemple averaging. However as
discussed in Section (5.3) it was necessary to frequency
average the response spectra. This was achieved through
program FRAV listed here which uses a 21 point moving
average technique taking into account the symmetry of the
spectrum about the zero frequency, Figure (C.4~4) shows

a flow diagram of program REC6ETUN,
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Generation of
excitation records ~QCP 100
Prog. INPUTUN

40 x 4096
data points

Numerical
integration ~QCP 1200
Prog. PR6UN

40 x 4096 x 2
Regsponse data
points

FEFT and statistics
of response dkr ~ QCP 50
Prog. REC6ETUN

2 x 2048
spectral
values

Smoothing spectra
Prog. FRAV

]

Plots of
non~dimensional

spectra

Figure C4-—1

Flow Diagram of Complete Simulation
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Write Time
Record in
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Figure C4-—2

Flow Diagram of Program INPUTUN
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[a}

PROGR3e INPUTUN

TwIS PROGR M PIDOUCIS 2xAL TIME DATA Fodm A
“Y UPPER & A LOWEZ FR™Q, CUT OFFa WK IS THE
& MK] IS THE LOWSEI NKI IS THE MAX FR:IQ

IMPLIZIT REAL*T(A=u, C=1)

DIMEINSION AC2033) ,3(Z20530) ,ILIST (24
= AD(:,e) w0, e, K, *1 NKT LK

NKZ=K/2

NT=NKZ+T

IF(LKa33.3) CALL G23C2F(D)
IF(LK.TGa3) WRITE(S,10

SIUARE SPECTRUM
UPPSR CUT OFF

CF THZ AMALYSIS.,

’
FGR THE CONTENTS 07 A, 3, ILIST, NK2, #1, N1
Ak

READ NAG SUSROUTING C0& F
M1 IS THI NQ OF S4MPLIS GINERITE
I7 L¥.230 PITFRENTRUNS WILL PRODUC_
WRITE(8,1338) MK, NKZ
90 11 1I=1_,d4K1
20 5§ IZ=1,MKJ
ACIZ2)Y={ .2
3(I2)=..D0
) CINTINULE
20 1 I=#K3+1 LMK
FANGCI)Y=2=3 1413927 +GC3CAE(R)
GOSCAF PROCZUCZES RANXOOM NGS UNIFORMLY
DISTRIBUTES 38TwEEN -1
ACI)=Co3(FANG(I))
BCI)=3INCFANG(I))
1 CONTINUR
30 2 I1=mx+1 . N1
ACIT)I=T7 L3
3(I1)Y=3,3
2 CONTINuUZ
CALL. CI5AAF(A, B, ~1, - T3U?
IND=T
JND=As
09 3 I13=1,32
WRITECS)CACL) ,d=Ta0 ,JdN0)
IND=INT+54
JE¥D=UINDIFAL
k] CONTINUE
INgS=1
JNE=62
00 & I4=1,32
WRITE(S) (3(3) ,Jd=L"3,4N8)
INB=INE+54
JNBE=JYT LA
& CONTINUZ
103 FORMAT(/2:213.3)
#RITT (5,123 (a1}, I=1,8), (5«
11 CONTINUZ
WRITE(G6,112) M,
102 FOaMAT(///? PCBER
320X, * CUTQFF=" I
s13x~'"‘oouc 0' s,
108 FQRMAT(IX,212 10)
187  FORMAT(/// " sdew—uw®  TCOUNTER SET
STOP
END

il
.
Y

£

-

- 214 -

THE

),

Sams

MO S

1=1,3)

=, 'PTS ZACH')

DEFINED

FRZA.. OF

zY
THE



Input. ! System

Constants, t,

No.of Records
No,of Pts/Record

1

" Input.Excitation
Record from
File A

Store Excitation |
in array,
Initial Conditions

Numerical
Integration
from

t to t+at

Last

No —

At

Yes

Write Response
Displacement
and Velocity

arrays in File B

No

Figure C4—3

Flow Diagram of Program PR6EUN
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K=NG. OF POINTS P22 RECORQ

A= AVIRAGS VALUZ TO 8% ADOZID TO INPUT VALLEC
DAMPING £O0z%a "IETAT

8= NONLINEZARITY COSFF-a
FRIN= NATURAL FRE3.(RARPSY/ PI
TINT= TIMT INTZRVIL BETWEZIZIN INPUT NOS

D= MAGMLIFICATICON F4CTOR FOR INPUT
KL1,KL3 Ta S€ USED BY PRYG, RECEZITUN
REZ ALSO INPL .DOCUMENT FOR NAG SUBROUTINZ pC2B<F

s v am i e i mwr m Ay

-

OO OOMOO0OO00O0NO0ONn
T
3
=2
LY
]

IMPLICIT RcALt‘(A~4,0 D]
DIMEINSION Y(2),F(C(2) w(2,18), SNP(#?GG) QUTO(4108Y,00Tv(sC
g8,8T(43)
COMMON FRN,DAMP,.B,ORAD ,CONEW,A
EXTERNAL FCN
READ(3 . %) NKT,K,A,0AMP 3, RN _ ToL ,TINT, KLY ,KLZ,
CALL 1Z L9HEWASK(64 IJKXL)
PI=ATANM(T.0) 240
FRN=PI «ERN
NK2=K/2
READ(T1,108) MY NK12
K1=K+1
WRITE(I,107)NKT K, 8K2 ,KL1 K3
WRITE(S,1)7INKY K NK2 ,KLT ,XL3
WRITE(A,101)FAN,DAMP,2 X, TINT,TOL ,A,D, MK, K12
N=2
IFalL=2
0a 11 JJ=1,.NK1
C +++4++tbtttdbbtrttrrttrrtdbtbtbotttttt it irbrt +t
IND=1
JND=44
0o 1 1=1,64
READCTIT) C SNPCUK) LJK=IND,JIND)
IND=IND+O4
JND=Jnil+44
1 CONTINUE
[ o R B e o o R R e e b T T R
SNP(K+1)=0 .3
STCJI)Y=SNP(1)
Y(1)“0 QD
¥Y{(2)=3-.0
WRITE(S,106)(SNP(I) . I=7,3)
¢ LIMEAR INTERPOLATION 2ETWIEN INPUT DATA PTS.,
c v A D TS A Y s i A S W SR A W WS Sk S R e e e O W S P D O W
Bo 2 J4=1,K
X=C(J=1)=sTINT
DIF=(SMP(J+1)=CNP(J)) «D
GRAD=DIF/TINT _
CONZW=CSNP(JI ) D=CRAD *X
XEND=J+ATINT
QUTO (Y=Y (1)
QUTV(JI=Y(2)
CALL N7 Z2BAFCX,YEND,N,Y , TOL,FCN, W, IFAIL)
TOL=ABS(TOL)
IF(TOL LT .0 LCIWRITE(E,104)
Z CONTINUZ
Ctttttdtttbtttitdbrrtdttrrdtritt bbb ribtrrhbhbed bbd ot
INT=1
INZ2=64
80 3 ML=1,64
WRITE(Z) (QUTD(JZ)Y,JdZ=INT,IN2)
INT=INT+64
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c

I

IN2=1ciZ2+685

CONTINUE

IN3=1

INb=Ea

DO 4 ¥3=1,64

WRITZ(R) (QUTVIJX),dX=IN3 ,ING)
IN3=INZ 434

INGL=INL+8

CONTINUE

R o B T A b Tk B A A R o =Y

11

101

10 -
103
107
105

CONTINUE

WRITE(L,136)(ST(1),I=1,NKT)

FORMAT(/ * NAT-.FREA=",F10-.7," DAMP="
& * NO-.OF DATA PTS=",IS5,2X,°TINMZ INT=
&* TOLZSANCE=?,710-.7,5X,"MSAN INPUT=
&/5%X,"CUT OFF=",21C,*MAX FR=*,I1Q)

FORMAT(/ ' RANGZ TGO SHORT FOR TOL")

FORMAT(/33215.3)

FORMAT(314)

FORMAT(1X,2I10)

STOP

END

SUBROUTINE FCNC(T,Y,F)

IMPLICIT REAL=Z(A=# ,0~2)
DIMENSION F(2),Y(2)

COMMON FRN,DAMS,3 ,3RAD,CONEW A
FORS=CPAD*T+COMEW

FCty=Y(2)

”
T
L4

T N R

F(2Y=FQRS=~Y(2) +2*xD2MP+*FRN =FRNAFRNA(1+2xY (1) =Y (1)) 2xY (1)

RETURN

END
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Input: No.of Records
No,of Pts/Record
No.of Transient Pts.

Input:Displacement
and Velocity
Records from

File A

Assign in array
5.8, part of
Records only

Extract statistics Print
update overall ' Record
statistics tatistic

Zero padding,
FFT,

No
Write spectral Calculate rint overall
values in overall statistics statistics
gelected File B and variances and variances

( Stop )

Figure C,4—4

Flow Diagram for Program REC6ETUN
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PROSRAM RICASTUN
IMPLICIT REAL#3(A~¥,0-1)
JIMENSION QUTD(5108),552 (2030),583(2020),ILIST (243,

F0UTV(-120>,0UTD1(2050) ,0UTS2€¢2053),0UTV1(2C30) ,0UTVE (2G50
£,T882(2052),TS8S3(2750) ,EMEAND(L100) ,EMEANV(L100) , TCOZF(5CM

CAkhr AR AR AN AR KRR RR XA AKTET KL KTH R LA R ERL R F AR KAk T KR ARk kX kLR AT *T
THIS PROGRAM ACCEPTY NX1 SAMPLES , SUESSTRACTS EACH TRANSIEINT,
CALCULATES STATISTICS *ND OP TIONALY TAPERS EACH TO PRODUZLE
STATISTICS ARE CALCULATED ALONG EACH REZCORD AND ALSO AS
ENSEMBLE AVERAGZS 20Ws THE RECCROS, VARIAMCE VALUES ARE
CALCULAT=D FOR MOST STATISTICAL ESTIMATIONS
THS POWER SPECTRUM OF THZ PROCESSES QUTOROUTV..

OO ONOOOOO0O0O000

Q=== IF KL1=1 THZ MEAN IS SUESTRACTSD FROM TH3: PROCESS:

C wmanan

9
c

NK2Z
TP
LTR

(2 A 2 F I ELI RS R LS TS SR TLL S R >R LR R RELISETETELIERLIERTE LIRS RS SR LR EE LR
NK1

NO. OF SAMPLES
NO. OF POINTS IN EACH SAMPLE
1/2 % X A
1 = YES : TAP = 7 = NO
NO. OF POINTS BEFORE SETLING

LU I L ]

FQR THE CONTENTS OF ILIST,MI,ZTC.,LO00K 3L30 IMPL.DOCUMENT
FO< NAG SUBROUTINE COcAAF

(A A R E S AL A AR R EEL P ERS RIS ETERIEET R RS EEXE IR EE LN

READ(11,109)NK1,K, NK2 ,KL1,KL3
WRITE(E,109INK1 K NK2 KL 1,KL3
READ(5,*) TAP,LTR

(511
wr

IF KL3=1  QUTVY IS IGNCRED
M1=24

NT=NK2 +1

K2=K-LTR

PG 9 I0=1,NK2
EMEAND(IC)=0.0
EMTAND (I0+NK2)=C.0
EMZANV (10)=0.3
EMEANV (I0+NK2)=3.0
§82(10)=0.0
$$3¢10)=0.3
CONTINUE

C COSINE TAPER OVEZR 1/10 OF RECORD AT B0TH :INDOS

c

2
c
c

33

IF(TAP .2Q.3.0) 60 TO 33
TAPZR=0.0038312

NTAP=K /10

DG 2 IT=1,NTAP

KT=IT-1
TCOS=SINC(KT*TAPZIR)
TCOEFCITI=TCOS*TCOS
CONTINUE

ovaAZ={.0
OVA3=0 .3
QVR2=C .0
OVR3I=( .0
ovs2=0.0
QvsS3I=0_0
ovez=g .0
ovVe3=5 .0
ovsaz=3.0
ovsa3=0.d
S0VA2=0.0
SOVA3I=0.0
SOVR2=0.0
SOVR3I=0.0
Sovece=Q.C
SOVC3I=0.0 .
SQvse=J.0
savs3=a.0
S0Vs8Q2=0.3
SOVSR3I=3.7
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THZAND=T .3
TMSANV=0_.d
ZMIND=C.O
EMAKD=0 .2
EMINV=2.D
EMAXV=].d
2O 111 J4=1,NK1

CAtitttrtttttdrtrrtrrrttritttt ddbrttttttttrtttbtredt st

33

IN2=64

INT=1

DO &b JN1=1,64
READCI1)COUTDCEINY ,IN=INT ,INZ)
INT=INT+64

INZ=IN2+64

CONTINUE

IF(KLI .EQ.1Y GO TG 36

IN3=1

ING=&4

DO 55 JUN2=1,64
READCITY (QUTV CINY ,IN=LN3 ,ING)
INI=INI+64

IN4=INL+64L

CONTINUE

Ctdtttttbtdttttttrttitrtrtrttd tbddddbrttrt ettt Frtt+
$6 AvVZ2=0.%

13

AV3=0.0
VAR2=Y L0
VAR3=0 .0

DO 13 I8 =LTR,K

EMEAND (I8)=ZMEAND (Z8)+QUTD(IE)
IF(KL3.EQ.1) GO TG 13

EMEANV (IB)=EMEANV (I12) +0UTV(IB)

CONTINUE

DO "1 I=LTR,K

AV2=AVZ+OUTD(I)
VARZ=VARZ+OUTD(IX*CUTD (I

IF(KLI .EQ.1) GO-TO 1
AVI=AVI+OUTV(I)
VARI=VARI+OUTV(IX*QUTV(I)

CONTINUE

AVZ2=AVZ2 /K2

AV3=AV3/K2

SQM2Z=Vva32/K2

SQM3=VAR3/K2

VARZ =SQMZ~AVZ *AV2
VARZI=SQMI~-AVI*AV3

sk2=0.0

$K3=0.3

CUR2=C .0

CUR3I=C .0

XM2=0.02

XM3=0.12

Xmrz=;.0

XMi3=0.0

D0 3 I2=LTR,K
QUTDC(IZ2)=0UTD(CIZ2)-2V2
SK2=SKZ+QUTD(I2)Y*0UTD(I2)*=0UTD(12)
CURZ=CURZ+QUTD(IZ2)*QUTDC(I2)*QUTD(I2)*0UTD (12)
IFCOUTD(IZ2Y .GTAM2) XKZ=0UTC(I2)
IFCQUTORCIZ2Y aLTL.XMIZ)Y XMIZ=QUTOC(I2)
IF(KLI .ZQ.1) &0 TO 3
QUTV(IZ2)=0UTV(IZ2)=AV3
SK3I=SK3+QUTV(I2)*GUTV(IZI*XQOUTY(IZ)
CURZ=QUTV(IZ) »QUTV(IZY*Q LTV{(IZ2)*0UTV(I2)+CU2
IF(QUTV(IZ2).GTXM3) XM3=CUTV(IZ)
IF(OUTV(IZ) LT XMIZ) XMI3I=QUTV(IZ)
CONTINUE )

IF(KLT.2Q.1) GO TO 17
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¢

22

D0 8 I1=LTR,K :
OUTD(L1)=0UTDCIT1)+2V2
IF(KL3 .E@.1) GO TO 8
QUTVIITI=QUTV(I1)+:+V3
CONTINUS

IF(TAP.3Q.J.2) 60 70 &

DO 22 ITT=1,NTAP

ITV=K=ITT+1

OUTD (ITT+LTR) =0UTOCITT+HL TRI*TCOIF (1TT)
QUTC (ZTV)=CUTD (ITVI+TCCEFCITT)
QUTV(ITT+LTR)=0UTVCITT+LTRI*TCOSF (XTT)
OUTV2CITVI=0UTV2CITVI *TCOEF(ITT)
CONTINUE

ZERQ PEDOING TO ACCOUNT FOR LTR

ChrrtRAAATXXIARIEX AR AKX A XN AL L AN FAAX T AT A K XAA kA kKX $5%

&

-
(%11

13

12

DO 15 I¥=1,NK2
OUTDI(IMI=0UTD (IM+LTR)
IF(KL3.26.1) GO TG 15
QUTVI(IMA)=QUTVCIM+LTR)
CONTINUEZ

D0 16 IN=1,NK2-LTR

QUTD2 (IN)=QUTD (IN+NK2 +LTR)
IF (XL3 .EG.1) GO TO 16
OQUTVZC(INI=OUTV(IN+NKZ +LTR)
CONTINUE

DO 18 INK=NKZ2-LTR, NKZ
CUTPZ(INKI=0 T
IF(KL3.8@.1) G0 TO 18
CUTV2 (INK2 =0 .0
CONTINUE

ChrrEH AAR AKX XA A LI RAR KN AL AR A XA XTI At Adkh ok dd kdkok kk

C

11

SK2=SK2/(K2*VARZ*x(3./2.1))
CURZ=CURZ/(KZ2*VYARZ*VARZ)

IF(KL3.EQ.1) GO TO 11
CUR3I=CUR3I/(KZ2*VARIxVARTD)
SK3=SK3/(K2*VARI**x(3_./2.))

WRITE(S,104) JJ
WRITS(H,132)AV2 ,VARZ,SK2 ,CURZ  XM2 XMI2,SQM2
IF(KLIEQ.1)Y GO TQ 3

WRITE(S,135) 4

WRITE(G,102) AV3I_ VAR ,SK3,CURI XM3, XMI3Z,5aM3
CALL CJGAAF(OUTDT1,DUTD2,N1,.FALSE ., M1, ILIST)
IF(KLI .EQ.1) GO TO 6

CALL COSAAF(QUTVT OQUTV2, N1, FALSE. MT,ILIST)
D0 7 I3=1_,NK2Z2
SSZ2(I3)=852CI3)+0UTDT (I3 )*QUTDT(I3)+0QUTD2 (I3)*xQUTD2C(I3)
IF(KLI.EQ.T) GO TO 7
SSE(IZI=SS3(I3N+QUTVICIZI*QUTVTI (I3 +QUTVZ (I3)*QUTV2(I3)
CONTINUEZ

QVAZ=0VAZ2+AV2

QVRZ=0VRZ+VARZ

CVvsS2=0VvS2+SK2

ovsSazZz=Qvsaz2+samz

OV C2=0VCZ2+CUR2Z

SOVAZ=S0VAZ+AV22AYV?

SOVRZ=SOVRZ+VARZ*VARZ

SOVS2=3530V32+8SK2*SK2

SOVC2=SOVC2+CURZ*CUR2
SOVS@2=5QusSQ2+Sam2x3am2

IF(KL3.EGQ.1)GC TO 111

OVA3S=QVA3+AV3

OV¥R3I=QOVRI+VARS

OVS3=0VS3+3K3

OVC3=0V(C3+CURS

0VSA3=0V3Q3+Sam3

SOVA3Z=SOVAZ+AVI*AVE
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T SOVR3I=SOVAZ+VARI*VARS
SQVS3I=30V33I+SK3I=SKT
SOVC3I=SCVI3+CURI*CURS
S0VSQ3=SOVSQA3+S5GM3I*SQM3

111 CONTINUE

EVARV=0.J
EVARD=3.0
o 14 I9=LTR,X
EMEAND (I9)=EMEAND (I9) /NK1
EMEANV(IG)=EMEANV (I9) /NK1
TMEANO=TMEAND+EMEANDC(ID)
TMZANVSTMEANV+EMZANVII
IFCEMEAND(IG) W LTLEMIND) EMINO=EMEANO(LID)
IF(EMZAND(L?) .GT-EMAXD) EMAXD=EMEAND(I?)
IF(EMEANV(IS) LTEFINV) EMINV=EMEANV(IO)
IF(SMEANV(IO) LET.EMAXV)Y EMAXV=EMEANV(IF)
EVARV=CEVARVHLEMEZANV(I9)*ZMEANV(ID)
EVARD=SVARD+EMEAND(IG) *SHZAND(IS)
1% CONTIMNUE
TMSANV=TMEANV /KZ
TMEAND=TMZSAND/KZ .
EVARV=(EVARV/K2)=T¥ SANVETMIANV
EVARD=(ZVARO/KZ2)~-TM SANO* TMZAND
spme={..0
SPM3=0 .0
SPMIZ=1.0
SPMI3=1.0
SUMS2=C.C
SUM3I3I=CG.J
sumsz2=C.3
sumMs3z=0.2
SUMS24=0.0
SUMS3I4=0.30
KK=NK1%*2.3
C
C CALCULATION OF MOMENTS ,MAX _MIN ,OF SPECTRA
C******* hAdRXRRETEA K kdkdd i kh Ll ARXX X HThddkddk kirk k% k& &% ok
DO 10 I4=1,NK2
F6=14
F2=14*14
F4G=F2*xF2
TSS2(I4)=582(I14) /KK
SUMS2=SUNS2+TSS2(14%)
SUMS22 =SUMS22+F2+xTSS2 (T4
SUMS24=SUMS24+F&*TSS52(14)
IF(I4.5Q@.1) 60 TO 20
IF(TSS2(I4) .GT.SPMZIPTZ=F4
IF(TSS2(I4) . GTL.SPMZ) SPM2=TS5S2(1I4)
IF(TSS2(I4) .LT.SPRKIZ) PT12=F6
IF(TS32(14) JLTL3PMIZ) SPMIZ2=TSS2(I&)
20 IF(KLI.EQ.Y) GO TO 10
TSS3(I4)=3S3(14)/KK
SUMS3I=SUMS3I+TSS3I(14)
SUMS32=SUMS32+F2%x7583(14)
SUMS34=SUMS34+F&*xTS5S3(14)
IF(I4.EQ.1) GO TO 10
IF(TSS3(I4).GTLSPME) PT3=F&
IF(TSS3(14).6GT.SPM3) SPM3=TSS3(I4)
IFCTSS3(14) _LT.SPMI3Y PTI3=Fé
IFCTSS3(I4)LTLSPMI3Z) SPHIZ=TSS3(14)
10 CONTINUE
c*****************i****t* (P R R RIS E I REEFETERITETELTLEEEE S L
WRITE(8,103) (TSS2(¢I),I=1,NK2)
IF(KL3.LT.1) WRITE(E,103) (TSS83(1),I=1,NK2)
IF(KL3 .5T.1) WRIT=Z(8,103) (TSS3(1) ,I=1,NK2)
OVA2=0VAZ/NK1T -
QOVRZ=GVR2/NK1
OVS2=0VS2/NK1

- 222 -~



QVC2=0V(Z/NKT
OVSQ2=0VSIZ/NK1T
SOVA2=3S0VA2/NKI=0QVi2*x0VA2
SOVR2=S0VI2/NKI1=0V:2*CVRZ
SOVSIZ2=SQV32/NK1=-QV32*0QVsS2
SOVC2=S0VCZ/NKT1=-QVr2x0vC2
SOV3SQRZ2=SOVSQ2/NKT1=-VSQ2+CVSa
IF(KL3.23.1) GO TO 1181
OVAS=0VAI/INKT
OVRI=QVRI/NKT
OVS3I=CVS3/NKT
OVE3I=0OVCI/NKT
ovVsSQ3=0ovsa3/NK1
SOVAZI=SOVAI/NKT1-QVA3I*QVAJ
SOVR3=SOVQ3/NK1-CV13*OVR}
SOVS3=S0VS3I/NKT1=-0Vs3x#QVS3
SOVC3=30VC3/NK1=0VI3%0VE3
SOVSQ3=30V3Q3/NKT=0VSQ3*0Vsa3
11C1 WRITE(6,1102)
WRITE(0,1133) QVAZ,0VRZ,0VSZ ,0V€2 ,0VSG2 ,THEAND ,SMAXD ,EMIND,EVARD
RITE(S,11135) SJMSQ,SJ&SZZ SUMSZ’
IF(KL;.AQ 1Y GQ TQ 114GS
WRITE(S,1104) CVA3Z,0VR3, CVSI,QVC3 ,0VSQ3, TMEANV EMANV ZMINV, EVARY
un17=<e,1x1s> SUMSI ,5UMS 32,5UX534
1155 WRITE(:,1112)
wazr (5,1113) SOVA2,S0VRZ,S50VS2,30VC2,S0V 3562
IF(KL3.Ea.1) 50 TO 1106
WRITECA,1114) SOVA3,SOVR3,S0VS3,S0VC3,50Vsq3
1166 WRITE(6,1G7) SPM2,PT2,SPMI2,PTIZ
IF (KL .50-1) GG TO 12

WRITE(A,108) SP®3,PT73,SPMI3, PTL3

132 FORMAT(I':::'AVFRG’:=',F11.7,SX,‘::::VARIJNCE=',F11.?,
E/% ::z:SKEWNZSS= ',F11.6,5X," :1::KURTGSIS= ',f11.6,/ " MAX VALUE=
&,F11.5,5X," MIN VALUE= ' ,F11.8, 11X, £f MEAN SQ . VALYE=',F11.4)

103 FORMAT (/8213.8)

104 FORMAT(/®:3:2:2z:QUTPUT $S OISPLzzssze*, IO

105 FORMAT(/®z2:::22:::QUTPUT S§S VELL:z:szez:',I&)

07 FORMAT(///' =—-- AVERAGE OISP SP OUT ----'/' MAX=*,215.3,%AT = !
£,F6L2,5X,"MIN ="_,E15.8," AT =',F8.2)

108 FORMAT(///*==== AVZIRAGE VEL SP OUT ==='/" M¥AX= ' _£15.8,"' AT ='
&,F6.2,5X,"MIN =",815.8," AT =',Fé.2)

1132 FORMAT(///* * kN K Kk * OVERALL STATISTICS Akkxkk kA" /[
%)

1112 FORMAT(Z//? * &k ok kk CORRESPONDING VARIANCES **xxxT//
&)

1133 FORMAT(///'===-= QUTPUT DISPLACEMENT —==-'/SX, "MEAN= *,F10.6,5%,

&'WARIANCE= *,F10.6,/5%," SKEWNESS= ',F10.6,5X,"KURTOSIS= ' ,F10.6,
85X, MZAN $Q= *,F1G.4//" ENSEMBLE MEAN',F1G.6,5X, 'Max=",F10.6,
85X ,"MIN= *,F10.6,5%, "VARIANCE OF MEAN= ', §1G.6) .

1113 FORMAT(///'-=——= QUTPUT DISPLACEMENT ~——='/SX,'MEAN= ', F10.6,5X,
&'VARIANCE= ',F10.6/5X, "SKEWNESS= *,F13.6,5%X, 'KURTOSIS= *,F1G.6,
&5X,' MEAN SQ.= ',F10.8)

1134 FORMAT (///'==~= QUTPUT VELOCITY =-——='/5X, 'MEAN= ' ,F10.6,5X,
RYVARIANCE= *,F10.6,/5%," SKEWNESS= *,F10.6,5%, KURTO3IS= *,F10.6,
&5X,' MZAN SQ=',F10.6/I' ENSEMBLE MEAN=', F10.6,5X," AX=',F10.6

&8,5X,* MIN= ", F1C0.6.5X." VARIANCE OF MZAN=',F10.48)
1114 FOQMAT(///‘—“‘- QUTPUT VELQCITY ----'/:X 'MZAN= 'LE1TD.6,5X,
&' VARIANCZ= ', F10.6/5X,* SKEWNESS= ',F10. 6 #3X,"KURTOSIS= ' ,F10.6,

¥5X," MZAN Sa.= *,F10.69

1115 FORMAT(//' ARSA UNDER SPEC(A)=",F20.10,4X ,%A**2=" ,F20.10,4X,
LrARRL=",F23.10)

109  FORMAT(5I4)

12 STGP
eNDd
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PRCGRAM FRAV
THIS PROGRAM SMOOTHS THE SHAPE OF THE DATA IN ° & V ARRLYS
USING AMOGVING AVEZAGSI OF 27 POINTS«ASUMES Sy¥VMITRY ABQUT THE
VRIGINWALSO LOCATES THE POSITION AND VALUE OF MAX AND MAX/1ZQ
CF THEZ SMZOTHED SkKAPE®
DIMENSION D(207Q),v(20302,01(2080),v1(2080)
8,02(227°C) v2(2030)
N=243
N2 =N=1
N3 =N+

READ(IT,1C0)Y (2(I),I=1,N),(V(I) I=1,N)
p1{10)=0(1)
yi1gr=v(1)
Do 11 I=2,11
12=I=1
D2(12)=D(12=1)
ve (12)=Vv(12~1)
11 CONTINUE
00 12 I1=2 N
02 (¢I1+%)=2(1I 1)
VZ(I1+53)=v(I1)
12 CONTINUE
BO 1 J4=11 N2
B1CII=(02(J=1)+02 (J+1>+D2(¢JY+D2(J=2) +02(J+2)
E+02CJ~2)+02(J+3Y+D2(J=4) +D2CJ+L)+D2(U+5)I+DE(J=5F3)+02 (J+5)+
&D2 (J=0)+D2(J+7)402(J=7)Y+02(J+B)+D2(J =3) +D2CJ+FI+D2{(J=-FI+02(I+12)
&+02(J=-132) /21
V1 (JY=(¥2 ¢t ) +v2 (J+1) +y 20 J) +V2(Jd =2 +V2(J +2) +V2(J+42+V2 (J=4)
BHV2(J+IIFV2(J=3)+V2(J4+5) V2 J=5) +V2 (J+6)+V2(J=8)+V2(J+7)+
EV2 (=70 +y2 (J+3)+V2(J=3)+ V2 (J++V2 (=9 +V2CJ+102+V2(J=103)/21
1 CONTINUE
DO 2 41=N,N3
0131 =0
v1(J1) =34
2 CONMTINUE
WRITECT,130) (31 (I, I=1C N3, (V1(D),I=1C0,83D
ccC
cc
DMAX=C-,0
YeAX=G..0
$D =00
SV-:O'BG
Do 13 »=19,n3
SD=$0+01 (M)
SV=SV+y1(M)
IF(DT (M) . 5T.DMEX) GO TC 14
12 IF(VI(M)GT¥MEX) GO TO 16
GQ TO 13
T4 dMAX=D1(M)
FRD=M
GO TO 15
12 VFAX=VT(F)
FRVY=M
13 CONTINUE
WRITE(%,99)S0,SV,DMAX, FRC,VMAX, FRY
I3 FORMATC " D AREA="',F13..5/" V¥ AREA=" ,F135,5/% MAXD=",715-.5,3x%,
&PAT=,F18..5/ " MAXV=",F15,5,%AT=", F18-.5)
RATD=0¥AX/100
RATV=V¥AX/10QQ

K=FRV 19  CONTINUE
DO 17 I4=K,N3 20 WRITE(E,P3) V1(xk3),K3
K2=I4& 1 FORMAT(/82135..8)
IF(p1(T4)-.LT--RATDY GC TO 17 STOP

17 CoNTInNUE

- END
13 WRITE(L,93) D1(K2),k?2

Fn» FORMAT(// * LIMO=',F15a5,4X,"AT=",15)
DO 19 T3=K,N3

K3=13

IFVI(I3) L T-«RATYV) GO TO 20
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