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"I take the view, and always have done, that if you 

cannot say what you have to say in twenty minutes, 

you should go away and write a }jook about it»"

Lord Brabazon

"...that in all things He might have the pre­

eminence"

Col 1:18



SW IARY

This thesis describes the results of a collaborative research

programme between the Department of Electronics & Electrical

Engineering, University of Glasgow, and the Centre for Respiratory

Investigation, Glasgow Royal Infirmary. The research was initially

aimed at studying lung sound using signal processing and pattern

recognition techniques. The use of pattern recogntion techniques was

largely confined to exploratory data analysis, which led to an

interest in the methods themselves. A study was carried out to apply

recent research in computational geometry to clustering

Two geometric structures, the Gabriel graph and the relative

neighbourhood graph, are both defined by a region of influence. A

generalization of these graphs is used to find the conditions under

which graphs defined by a region of influence are connected and

planar. The Gabriel graph may be considered to be just planar and the

relative neighbourhood graph to be just connected.

From this two variable regions of influence were defined that

were aimed at producing disconnected graphs and hence a partitioning

of the data set. A hierarchic clustering based on relative distance

may be generated by varying the size of the region of influence. The

value of the clustering method is examined in terms of admissibility

criteria and by a case study.

An interactive display to complement the graph theoretical

clustering was also developed. This display allows a partition in the

clustering to be examined. The relationship between clusters in the

partition may be studied by using the partition to define a contracted

graph which is then displayed. Subgraphs of the original graph may be
il



.used to provide displays of individual clusters. This display should 

provide additional information about a partition and hence allow the

&ser to understand tlie data better.

The remainder of the work in this thesis concerns the application 

of pattern recogntition techniques to the analysis of lung sound 

signals. Breath sound was analysed using frequency domain methods 

since it is basically a continuous signal. Initially, a rather ad hoc 

method was used for feature extraction which was based on a piecewise 

constant approximation to tlie amplitude spectrum. While this method 

provided a useful set of features, it is clear that more systematic 

methods are required.

These methods were used to study lung sound in four groups of 

patients:- (1) normal patients, (2) patients with asbestosis, (3) 

patients with cryptogenic fibrosing alveolitis (CFA) and (4) patients 

with interstitial pulmonary oedema. The data sets were analysed using 

principal components analysis and the n e w  g r aph t h e r o r e t i c a l  

clustering method (this data was used as a case study for the 

clustering method). Three groups of patients could be identified from 

the data:- (a) normal subjects, (b) patients with fibrosis of the 

lungs (asbestosis & CFA) and (c) patients with pulmonary oedema. These 

results suggest that lung sound may be able to make a useful 

contribution to non-invasive diagnosis. However more extensive studies 

are required before the real value of lung sound in diagnosis is 

established.
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Chapter 1 Introduction

UmODUCTION

1.1 General Introduction

This thesis describes research into new techniques for pattern 
recognition and for lung sound analysis. The project was originally 
envisaged as a study of lung sound using pattern recognition and 
signal processing methods. However as a result of the use of 
exploratory data analysis techniques, some research was begun into 
such techniques themselves. Work on applying geometric structures to 
the clustering problem became a major part of the thesis.

The lung sound work is part of an ongoing collaborative project 

between the Department of Electronics and Electrical Engineering, 
University of Glasgow, and the Centre for Respiratory Investigation, 
Glasgow Royal Infirmary. At the time of writing the project is in its 
sixth year and has involved development of recording equipment, the 
recording of patients with different conditions and signal analysis by 
computer.

During recent years considerable interest has been shown in bio­
logical signals [1.1]. Among the most commonly studied signals are the 
electrocardiogram (ECG), the electroencephalogram (EEG) and electro­
myogram (EMG). Each of these signals has been studied for some time 

using signal processing methods. Remarkably, a signal used almost 
universally in physical examination, lung sound [1.2], has received 
very little attention in terms of signal analysis.

Among the data analysis techniques that are widely available are 
clustering methods. In view of the widespread and interdisciplinary 
use of clustering it is disturbing that little attention has been paid

1



Chapter* 1 Introduction

to clustering methodology [1.3]. In particular there have been some 
problems associated with the use of clustering techniques that are 
based on the visual notion of a cluster.

In recent years considerable advances have been made in the new 
field of computational geometry [1.4] and its application to pattern 
recognition [1.5]. One area that has not benefited from the progress 
in computational geometry is cluster analysis. The application of 
computational geometric techniques to clustering would seem to be an 
obvious area of research.

An interesting but difficult feature of this thesis is its inter­
disciplinary nature. Pattern recognition is itself derived from many 
fields e.g. electrical engineeering, computer science, psychology, and 
formal language theory. Physiological and clinical studies on lung 
sound are relevant to this thesis, and the pattern recognition work 
here borrows some ideas from geography and geophysics.

1*1.1 Pattern Recognition

Pattern recognition problems are part of everyday life. A human 
will use and interpret his/her senses and use them to learn about the 
environment. Seeing objects or hearing a conversation in the presence 
of noise may be easy to humans but are difficult problems to automate. 
Conversely machines perform better at tasks such as n-dimensional 

geometry. Human perception involves many complex processes that are 
not yet well understood, and so perception by machine should not be 
direct ed at imitating that of humans.

Historically pattern recognition has closely followed advances in 
computer technology such as the development of computer graphics and
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parallel processing [1.5,1.7]. In the twenty or so years of existence, 
pattern recognition methods have been applied to many different 
problems. Among the most widespread applications are character 

recognition (both of printed and handwritten characters), industrial 
fault detection, medical imaging and signal analysis. A number of 
reviews of pattern recognition have been written e.g. Nagy [1.8] and 
Fu [1.9].

In designing and implementing a pattern recognition system there 

are many considerations that can be taken into account. One scheme 
might be:

( 1 ) Problem formulation
(2) Interfacing with the real world
(3) Understanding the nature of input data
(4) Data reduction
(5) Decision taking
The first point is self evident. A digital pattern recognition 

system will usually be based on a computer and so it is necessary to 
interface it to the outside world. This stage might involve trans­
ducers, signal conditioning and analogue to digital conversion. In 
order to design a pattern recognition system properly it is necessary 
to understand the structure of the data. If data structure is 
understood properly the data properties can be exploited for greater 
efficiency. Unfortunately it is usually necessary to generate vast 
quantities of data at the input causing problems with computer 
resources. Reducing the data to a managable size is often the crux of 
a pattern recognition problem. Finally the output of a pattern 
recognition system is usually a decision, whether the decision is made 
by man or machine.
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1.1.2 Information Engineering in Diagnosis - A Personal View

Information engineering techniques have had an impact on a number 
of areas in medicine. Computers have been used to aid diagnosis, 
patient care and management. In diagnosis they have allowed a new 

understanding of some images and signals. Other research has been 

aimed at providing an automatic computerized diagnostic system 
[1.10,1.11].

The human body is very complex and so it is not really surprising 
that at times some systems will not function properly. When such 
functions are abnormal, disease is said to be present. The problem of 
diagnosis is therefore one of identifying probable causes of abnormal 
function which will then allow decisions to be made about patient care

hand treatment. Unlike simpler systems, such as industial plant, theK
information available rarely allows a definite identification of 
disease to be made. There may be for example a combination of several 
disease processes and a diagnosis may change as more is learned about 
a patient. In my view these factors suggest that a radically different 
approach is required for medical diagnosis when compared with fault 
finding in industrial systems.

What then should be the objectives of information engineering in 
diagnosis? In one extreme we might suggest developing some sort of 
automated diagnostic system and in the other developing sophisticated 
tools for the clinician. It is rather disturbing that engineers 
frequently desire to develop systems that replace rather than 
complement human abilities.

One area in which information engineering may benefit diagnosis 
is making quantitative measurements on what are normally subjective
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physical signs. This allows reproducibility between clinicians and 

permits a basis for objective comparison. Examples of such signs are 
auscultation and reading of biological signal traces.

Another very useful area in which information engineering plays a 
part is the development of non-invasive techniqoes. Some tests and 
mesurements on patients require placement of probes, or transducers, 
into the body which can be both hazardous and painful. There are 

inherent advantages in techniques which avoid this and which cause 
less stress to a patient. A good example of the use of non-invasive 
techniques is that of Bache et al [1.12] on cardiac output.

With these considerations in mind, the lung sound project has 
sought to extend .knowledge on lung sound to aid in diagnosis of 
respiratory disease. This is also the motive behind the use of pattern 
analysis rather than pattern classification techniques in this study.

1.2 Aims of Research

This research project originated as a quantitative study of lung 
sound signals by computer. This arose because of the recent increase 
in interest in using lung sound; largely as a result of the work of 
Forgacs in London [1.2]. Forgacs's contribution was rational 
explanations for each of the categories of respiratory sound which had 
previously been explained in terms that were less than scientific.

It was hoped that by recording patients from a number of 
different respiratory diseases, techniques could be developed to 
detect any differences between the sounds produced by the different 
groups. The emphasis was on recording and finding significant 
differences rather than on finding precise physiological information.
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Throughout the project it was realized that' it was important to 
consider the nature and appropriateness of the methods used. This led 
to a major portion of the work being done on geometry and clustering 
methods. These subjects arose because of an interest in pattern 
analysis methods that were used extensively in investigating lung 
sound. The work on clustering methods is probably of general interest 

in pattern recognition and was not strictly necessary for analysis of 
lung sound.

To summarize the main aims were twofold :
(1) To investigate new geometric methods in pattern recognition 

with particular regard to clustering.
(2) To study lung sound signals using pattern recognition 

techniques with a view to finding a source of clinically useful 
information.

1.3 Overview of Thesis Contents

Since much of the work will be relevant to clinical as well as 
biomedical engineering work on lung sound, it is difficult to write in 
a way that will be useful to both disciplines. A reader who is 
interested primarily in lung sound research should perhaps read 
Chapters 1-3 by way of introduction, then skip Chapters 4 & 5 which 
are concerned with pattern recognition methods, then read Chapters 6-8 
which all refer to lung sound analysis. A reader mainly interested in 
the new pattern recognition methods should concentrate on Chapter 1, 
then Chapters 3-5 and finally the conclusions in Chapter 8.

The following two chapters (Chapters 2 & 3) are designed to 
provide background material necessary for this thesis. Some ideas on 
the lung, the production and properties of lung sounds, pattern
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recognition and signal processing are introduced. The presentation of 
these topics is mainly limited to aspects of each subject that are 
relayent to later chapters.

The next two chapters (Chapters 4 & 5) are concerned with
u.geometric and clustering techniqes in pattern recognition. In Chapter 

4 some basic geometric structures are introduced with later sections 
describing original work in this area. Chapter 5 is mainly a 

description of a new clustering method based on a visual idea of the 
cluster, and of a complementary display to aid the user in 
interpreting the results. Chapter 5 utilizes some of the geometric 
structures in Chapter 4.

Chapters 6 & 7 describe work on lung sound. Chapter 6 is mainly 
about signal acquisition and analysis. Hie microphone system described 
was designed by a previous reasearch student - Joseph McGhee. The 
methods for analysis of lung sound are quite original although they 
were built on the previous experience of McGhee. Chapter 7 
concentrates on the comparison of breath sound between normal and 
abnormal subjects.

Finally Chapter 8 gives general conclusions on all aspects of the 
research described in this thesis.
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Chapter 2 Lung Sound

LUNG soum

2.1 Respiratory System

2.1.1 Structure

Respiration is a mechanism vital to life. It involves the taking 
of oxygen into the body and the removal of carbon dioxide. In primates 
the prinicpal organ responsible for respiration is the lung.

The respiratory system is conventionally divided into the upper 
and lower respiratory tracts; the upper tract comprising the nose, 
nasal sinuses and larynx, and the lower tract including the trachea, 
bronchi and the lungs. The lower tract can be further divided into two 
functional zones:- the conducting zone and the respiratory zone (or 
parenchyma).

The trachea extends down from the epiglottis, branching into the- 
left and right main bronchi. The bronchi in turn subdivide into 
several generations of smaller airways. At some stage these 
successively smaller airways no longer contain cartilage and become 
known as bronchioles. These also divide and terminate in alveolar 
ducts and alveoli. The alveoli are sacs 250pm in size at full 
inflation and are the sites at which gases diffuse across the 
membranes between airways and blood vessels. Each lung contains 
approximately 300 million alveoli.

On the opposite side of the alveolar walls from the airways are 
the capillaries. These are part of the circulatory system and are 
responsible for distributing blood within the lungs. Although we are 
primarily concerned with the airways here, the capillary system in the
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lung is vitally important.
Three main processes contribute to the functioning of the lung:

(1) Ventilation - the movement of air in and out of the lungs
(2) Perfusion - blood flow through the capillaries
(3) Diffusion - transfer of gases between alveoli and blood vessels 
along partial pressure gradients.

Ventilation has two phases, inspiration and expiration. Two 
movements are responsible for ventilation: (a) the movement of the rib 

cage by intercostal muscles and (b) the movement of the diaphragm. 
Clearly energy is expended in ventilating the lungs with contributions 
coming from the inertia of the rib cage and from resistance to airflow 
in the airways.

2.1.2 Overview of Respiratory Diseases

Before introducing the ideas of lung sound it is useful to 
classify respiratory diseases. For the purposes of this thesis we 
classifyi^according to functional disturbance: (a) restrictive 
ventilatory defect and (b) obstructive ventilatory defect.

Before describing the defects it is useful to define two lung 
function parameters that are measured during a maximal forced 
expiration that follows a maximal inspiration. The volume of air 
breathed out during the first second of this manoevre is termed forced

expired volume (FEV-j) the total volume of air expired is termed 
forced vital capacity (FVC).

Restrictive defect is associated with parenchymal lung disease 
and is characterised by a marked reduction in lung volume. There is a 

proportional reduction in both FVC and FEV̂  ̂Fibrosing alveolitis, 
allergic alveolitis and sarcoidosis are all examples of restrictive

10
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defect.

In contrast obstructive lung disease is characterised by a marked 

reduction in FEVi ^ smaller reduction in FVC, Obstructive defect 
is caused by diseases of the conducting airways such as asthma, 
bronchitis and emphysema.

2.1.3 Clinical Investigation of Respiratory Disease

Physical examination of a patient is of great importance in 
diagnosis of respiratory diseases [2.1]. Such procedures include:

1. General examination
2. Examination of the upper respiratory tract
3. Examination of the chest
The general examination will include looking for dysnoea 

(conscious awareness of breathing), cyanosis (blue colouration of the 
skin because of reduced haemoglobin), finger clubbing (increased 
curvature of finger nails leading to distortion of finger tips) and 

sputum examination.

The examination of the chest will include inspection of the 
respiratory rate and rhythm, palpitation, percussion and auscultation. 
In auscultation the clinician will listen for the quality and 
intensity of breath sounds, the presence of adventitious sounds and 
for vocal resonance.

Other important investigative techniques include chest 
radiography, blood examination, bronchoscopy, biopsy, pulmonary 
function tests and skin tests. Of these radiography has been 
especially valuable in clinical investigation in many diseases of the 

chest. Bronchoscopy and biopsy are of course invasive techniques.

11
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2,̂ A Auscultation of the Lungs

Auscultation is one of the most widely used examination 
techniques but often it is considered to be of little clinical value. 
Lung sounds heard at the chest wall may be divided into a hierarchy. 
The major division is into breath sound which is always present during 

breathing and adventitious or added sounds that are not normally 
present.

Conventionally breath sound is classified into normal or 
vesicular breath sound and abnormal bronchial breath sounds. An 
intermediate sound is sometimes referred to as bronchovesicular. 
Normally breath sound is louder in inspiration than in expiration. 
Bronchial breathing is an abnormal condition caused by the direct 
transmission of sound through the. chest wall resulting in a different 
quality and intesity of sound.

Adventitious sounds are normally divided into crackles, wheezes 
and pleural rub. Crackles are discontinuous sounds that occur in a 
number of diseases. These vary in quality and in position within the 
respiratory cycle. Wheezes are continuous 'musical' sounds with well 
defined frequency characteristics. Pleural rub is a creaking sound 
caused by the rubbing together of inflamed pleural surfaces.

The stethoscope will of course be used for listening to voiced 
sounds and percussion through the chest. However such sounds will not 
be considered in this thesis.

12



Chapter 2 Lung Sound

2„2 Lung Sound

In the last ten years there has been increasing interest in the 
study of lung sound. During that time there has been the formation of 
the International Lung Sound Association which aims to promote inter­
disciplinary research into lung sound, and has organized an Inter­
national Conference on Lung Sounds each year since 1976. Unfortunately 

many of the results on lung sound have appeared only in the lung sound 
conference abstracts rather in the open literature.

In this section we review the research into lung sound that is 
useful to this thesis. At the outset it is worth noting that some 
results are of immediate value to auscultation of the lungs whereas 
other results involve signal analysis which will require computational 
facilities.

2.2.1 Historical Background

The value of ausculation of the lungs has been known since 
Lat&nnec in the early 19th century. Laënnec in his classic work 
L'Auscultation Mediate [2.2] related sounds heard at the chest wall to 
anatomical features. He gave the name rale to describe the various 
added sounds heard through the stethoscope. He subdivided rales into 
four groups which he called moist, mucous, sonorant and sibilant 
sounds. Since then these terms have become modified in their use and 
have become more and more ambiguous.

In 1884 Bullar [2.3] carried out some experiments on the site of 
breath sound generation using an artificial thorax and sheep lungs. He 
concluded that breath sound was generated in parts of the respiratory 
tract where air passes from a narrower to a wider space.

13
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In 1925 Cabot & Dodge [2.4] performed what was probably the first 

frequency domain investigation of lung sound. They played lung sound 
through a filter bank and were able to distinguish between certain 
types of crackles.

Very little work was done on lung sound until the work of 
McKusick et al in 1955 [2.5]. They applied the sound spectrogram to 

problems of percussion, lung and heart sound. This allowed plots of 
intensity, time and frequency to be plotted.

During the mid 20th century the importance of auscultation in 
diagnosis of respiratory diseases diminished with the increased use of 

the chest X-ray. Furthermore the ideas on lung sound were frequently 
erroneous. A real breakthrough came with the work of Forgacs in the 
1960s and early 1970s which improved clinical knowledge of lung sound 
and produced far more reasonable explanations of the origins of lung 
sounds.

The 1970s have seen an increasing interest in lung sound research 
in the U.K., U.S.A., Japan, Europe and India. This has changed the 
emphasis from observations that are directly useful to stethoscope 
auscultation to more advanced signal processing techniques.

2.2.2 Terminology

A glance through relevant sections of some medical textbooks will 
indicate that there is considerable confusion about lung sound 
terminology. This has arisen for historical reasons and is discussed 
by Forgacs [2.6], Cugell [2.7], and Bunin & Loudon [2.8].

Laënnec originally described all added lung sounds as rales. This 
'Lord was then in current use in France for the rattle of sputum heard

14
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in dying patients. Apparently Laënnec used the Latin equivalent 
rhonchi in his casenotes. He used various adjectives to subdivide 
rales but with time the original usages changed and became less 
precise. Since that time the words rale and rhonchus have been applied 
to crackle and wheeze respectively.

In 195T Robertson & Coope [2.9] proposed a new terminology at the 
, end of a rather fanciful essay on Lafenec. The suggested terminology
was much less amibiguous that that in use for added sounds. It was

1. Continouous sounds (a) High-pitched wheeze
(b) Low-pitched wheeze

2. Interrupted sounds (a) Coarse crackling sounds
(b) Medium crackling sounds
(c) Fine crackling sounds (crepitations) 

The division into continuous and interrupted sounds (wheezes and 
crackles) is acoustically accurate yet straightforward. Providing the 
subdivisions of these categories can be defined accurately the. 
adjectives describing them should also be useful. For the purposes of 
this thesis we follow Forgacs [2.6] in using crackles and wheezes 
throughout.

Bunin & Loudon [2.8] give an intersting survey of the use of 

terminology in case reports up to July 1977. Their work suggests that 
the term crackle has rarely been adopted; the term rale being commonly 
used in American journals and the term crepitation being in frequent 
use in the British literature. The terms rhonchi and wheeze seem to 
enjoy a similar amount of usage. However with the publication of 
Forgacs' book [2.6] and the work of the International Lung Sound 
Association it is likely that the newer terminology will be used more 
frequently.

15



Chapter 2 Lung Sound

2.2.3 Breath Sound

Breath sound may be heard at a number of different sites. The 
term usually refers to the sound always present in breathing heard at 
the chest wall. However it may also be heard at the trachea or at the 
mouth. In contrast to continuous adventitious sounds (wheezes) the 
breath sound does not consist of one or more well defined frequencies 
but consists of filtered white noise.

Forgacs et al [2.10] drew attention to the use of breath sound at 

the mouth which is normally barely audible. In chronic bronchitis or 
asthma it can be heard at some distance away from the patient's mouth. 
He also showed that there was a linear relationship between the 
maximum breath sound amplitude and flow rate in both normal and 
obstructed lungs. He also notes the clinical value of abnormally loud 
and paradoxically quiet breath sound.

In contrast to breath sound heard at the mouth, breath sound 
heard at the chest wall is restricted by low pass filtering. There is 
no definite relationship between the loudness of breath sound heard at 
the mouth and the loudness of that heard at the chest wall.

The subject of the origin of breath sound has been contraversial 
from the early 19th century onwards. A number of different sites and 
mehcanisms have been suggested. Forgacs suggests a central turbulent 
source whereas Hardin & Paterson [2.11] suggest that it is caused by 
vortices at junctions between airways. This question is still largely 

unresolved.
Forgacs carried out some measurements on the attentuation and 

filtration of breath sound. He concluded that breath sound had an even 
frequency distribution between 200 and 2000Hz whereas sound recorded
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at the"chest wall falls at 10-20dB/octave from 200Hz.
Bronchial breathing is a condition associated with consolidation 

of the lung. Lung tissue may become airless between the chest wall and 

central airways and transmit sound with much less attenuation and 
filtration. The bronchial breathing sounds very similar to the 
tracheal breath sound and has a similar frequency range.

2.2.4 Crackles

Lung crackles have probably received more attention than any 
other type of lung sound. They are short explosive sounds heard either 
through the chest wall or through the mouth. Traditionally they have 
been attributed to the bubbling of secretions in the airways. While 
this is undoubtedly a reasonable explanation when the main bronchi 
contain sputum it does not explain crackling in cases of interstitial 
fibrosis when there is no liquid in the lung

Forgacs [2.12] offered an alternative explanation; he suggested 
that crackles might be caused by the abrupt opening of small airways 

in the lung. This is consistent with the observation that in fibrosing 
alveolis peripheral airways remain shut until late in the inspiration.

Nath & Capel [2.13] made a number of interesting observations on 
inspiratory crackles. They found that early inspiratory crackles were 
associated with diseases of airway obstuction including chronic 

bronchitis, asthma and emphysema. These crackles tend to be scanty, 
gravity dependent and were usually transmitted to the mouth. In 
contrast late inspiratory crackles tended to be associated with 
restrictive lung disorders such as fibrosing alveolitis, pneumonia, 
pulmonary oedema and asbestosis. In another study Nath & Capel [2,14]
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made .use of the repetitive nature of crackles were produced at a 
particular inspired volume rather than at a particular time from the 
beginning of inspiration.

Subsequent work has been very largely based on waveform analysis 
of crackles in both time and frequency domains. Two approaches have 

been prominent both being first used by Murphy's group in Boston: (i) 
time expanded waveform analysis [2.15] and (ii) spectral analysis 
based on the discrete Fourier transform (DFT) [2.16]. Time expanded 
waveform analysis is simply the observation of the nature of lung 

sound waveforms by chart recorder run with a suitably large time 
scale. While this is a very simple technique from the point of view of 
signal processing it has allowed details of waveforms to be used that 
were not used in older studies e.g. Forgacs and Nath & Capel. Spectral 
analysis using the DFT has been widely used because of the 
availability and speed of the fast Fourier transform algorithm.

A nimber of such studies have suggested that different types of 
crackle may be associated with different diseases. Murphy and Holford
[2.17] were able to differentiate between crackles in asbestosis and 
cardiac failure using time expanded waveform analysis. Kudoh et al
[2.18] noted differences between those in fibrosing alveolitis and 
bronchitis using sound spectrograms. Mori et al [2.19] studied 
crackles in tuberculosis using time and frequency domain analysis.

Regrettably there seems to have been very little of clinical 
value that has arisen from the many studies of crackles. One reason 
for this may have been inappropriate use of time and frequency domain 
waveform analysis techniques. Crackles also present a considerable 
data reduction problem because many of then can be present in one 
breath cycle. There would also appear to be a basic limit to the value
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of crackles in the diagnosis of disease since crackles are usually 
associated with advanced rather than early stages of diseases such as 
asbestosis (see Epler et al [2.20]). Murphy however suggests a number 
of possible applications for analysis of crackles in the future 
[2.21].

2.2,5 Wheezes

Wheezes are continuous lung sounds that have a 'musical' quality. 
It is clear from the description 'musical' that these sounds are of 

well defined pitch. Wheezing is usually associated with obtructive 
disorders and consequently the sounds are generated in the conducting 
airways of the lungs. For many years it was assumed that they were 
generated by an organ pipe type of mechanism. Forgacs however produces 
convincing evidence to suggest that the wheeze is caused by a 
mechanism similar to that of a reed in a toy trimipet. He suggests that 
if the bronchus walls are in contact they will operate as a reed. More- 
recently Grotberg [2.22] has done some theoretical analysis suggesting 
that flutter in a collapsible channel provides a good model for wheeze 
behaviour,

Forgacs [2.23] identifies four types of wheezing (a) fixed 
monophonic wheeze, (b) random monophonic wheeze, (c) sequential 
inspiratory wheeze and (d) expiratory polyphonic wheeze.

A fixed monophonic wheeze is usually a sign of an incomplete 
occlusion of a bronchus by a tumour or a foreign body. The random 
monophonic wheeze is caused by widespread airway obstruction e.g. in 
asthma. A sequence of short monophonic wheezes may occur in diffuse 
interstitial pulmonary fibrosis. Polyphonic wheezing is usually 
associated with widespread airway obstruction.
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When compared with crackles relatively little research has gone 
into the signal processing of wheezes. A number of studies have used 
spectral analysis techniques to study the time varying frequency 
content of wheezes. However at the time of writing there would appear 

to be a lot of fruitful work that could be done on extracting further 
information from wheezes.

2.3 Directions in Lung Sound Research

In studying lung sound it is felt important to make distinctions 
in the aims of research projects. Here a distinction is made between a 
physiological and a clinical approach. Although these approaches are 
related they differ in their main objectives and thus may differ in 
the way experiments are performed.

Very briefly physiological studies of lung sound signals aim to 
understand the mechanisms of production and transmission of lung 
sound. This means that accurate measurement and estimation of 
physiological parameters is of prime importance.

In contrast clinical studies will aim to provide information 
capable of distingushing normal from abnormal, or disease A from 
disease B. To this end utility to diagnosis is of prime importance. 
The recording systems must be designed to operate in normal hospital 
conditions without elaborate arrangements being made. Some 

interference is tolerable providing it is of a constant nature over 
different recordings. The data analysis must aim at differentiating 
different types of sound rather than at accurate parameter estimation.

The investigations described here are primarily of a clinical 
nature. However it must be stressed that as far as possible attention
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has been paid to the physiological factors involved.
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Chapter 3 Pattern Recognition

PATTEm) RECOGNITION AfID SIGNAL PROCESSING

3.1 Introduction

Pattern recognition has been a significant field of study within 
information science and engineering since the early 1960s. It has 
grown with the increasing sophistication and availability of computer 
technology, and has drawn on many disciplines e.g. mathematics, 
statistics, control theory, psychology and formal language theory. 
Unfortunately there have been very few research journals devoted 
exclusively to this field.

Probably the most widely studied source of data in pattern 
recognition is pictorial data. Time varying signals of one or more 
channels are widely used in medicine and geophysics and constitute 
another important class of data. As with image data, a systematic 
approach to the pattern recognition of such signals is of great value. 

In this chapter an attempt is made to introduce the basic notions of 
pattern recognition and signal processing relavent to succeeding 
chapters with particular emphasis on the interface between and 
techniques common to these fields.

The pattern recognition process is frequently divided into a 
number of interacting components. In practice these components may not 
be easily distinguished, but give a convenient representation of the 
process. Chien [3.1] divides pattern recogniton into three basic 
stages:- data acquisition, pattern analysis and pattern 
classification. Data acquisition involves interfacing the pattern 
recogniton system to the real world situation under study. In 
biological signal analysis this stage would involve transducing,

24



Chapter 3 Pattern Recognition

conditioning and sampling the signals. Pattern analysis might involve 
finding suitable dimensionality reduction methods and exploratory data 
analysis. Pattern classification involves the design and 
implementation of decision logic for classifying input data items.

Another division of the pattern recognition field is by the 
approach made to the problem. In the statistical or geometrical 

approach [3.2] to pattern recognition data is explored or classified 
by representing it as an n-dimensional vector. The structural approach 
[3.3] in contrast presupposes that the data can be described 
recursively by simpler patterns. It was found that formal language 
theory was particularly appropriate to this approach which is why the 
terms syntactic and linguistic pattern recognition are used. Both 
these approaches have proved useful in pattern recognition of signals.

Signal processing or conditioning has always been an important 
part of the electrical engineering field. With the development of the 

computer, digital signal processing has added an important new 
dimension to this area. For example the ability to sample and store 
signals removes the usual time restraints and allows the time scale to 
be altered or even reversed. Additionally the discrete versions of the 
Fourier transform and correlation functions have changed what were 
primarily theoretical tools to practical ones. Operations to condition 
and analyse signals may be performed in either the time or frequency 
domains making the transitions between these domains especially 
important. In fact the study of spectral estimates has become an 
important field in its own right.

In applying pattern recognition techniques to signals the 
approach will depend on how much knowledge is available about the 
processes which generate the signals. If sufficient knowledge is

25



Chapter 3 Pattern Recognition

available, problems may be solved by modelling the process itself. 

Since this ideal situation will not always occur, some interfacing 
between a signal and a pattern recognition system may be possible by 
fitting a model to the signal. Finally at worst a purely pattern 
recognition approach may be used which assumes nothing about the 
incoming signals.

In this chapter some basic techniques of pattern analysis and 
signal processing are outlined. The emphasis here is on pattern 
analysis rather than pattern classification because of the almost 
exclusive use of pattern analysis techniques in this thesis. The 

presentation of material is intended to emphasize techniques common to 
the two areas of interest notably some linear transformations that may 
be applied to both feature extraction and spectral analysis. Finally 
segmentation and feature extraction techniques for signals are briefly 
reviewed.

3.2 Dimensionality Reduction

In statistical pattern recognition, data input usually takes 
place with a data matrix. Suppose we have a data set of N patterns 
[X-j where each pattern is characterized by n measurements
or features [X-j ,...,X̂ ]. Each pattern Xĵ  corresponds to an n- 

dimensional vector i.e. Xĵ = [x^i^,Xi2,'",Xin]' The data set may be 
represented by an N x n data matrix. We may view this data set in one 
of two ways:

(1) The set P = {p̂  ,P2,**»,Pn} of N points in an n-dimensional primal 
Space [3.4] (or feature space) each corresponding to a pattern.

(2) The set Q = {q-] ,q2»**MQn^ of n points in an N-dimensional dual
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space [3,4] (or pattern space) each corresponding to a feature.
In general pattern recognition algorithms have operated in the 

primal space. However Daly [3.4] points out that a problem posed in 
the dual space is sometimes easier to solve than the corresponding one 

in the primal space. Also primal-dual algorithms operating in both 
spaces may be of value. In the statisical literature the distinction 
is also apparent with principal coordinates analysis being computed, in 
the primal space and principal components analysis being computed in 
the dual space.

In either space computation can take place by representing points 
by their cartesian coordinates. However geometric constructions offer 
a much more compact description of spatial ideas. Hence it may be 
convenient to transfer our data representation from the coordinates to 
geometric structures.

Frequently input data in pattern recognition is of a very high 
dimensionality and will have a certain amount of redundancy. This 
"curse of dimensionality" impairs an understanding of the nature of 
the data and can worsen the complexity of the algorithms involved. Two 
methods of dimensionality reduction may be distinguished, namely 

feature selection and feature extraction. Given input data of n- 
diraensions and a reduced dimensionality of m, we may either select a 
subset of ra of the n input variables or extract m variables by 
choosing a subset of m variables in a transformed space.

The problem of dimensionality reduction is of course vital to 
exploring data. In this case mapping algorithms are frequently used to 
reduce the dimensionality of a data set to two or three dimensions and 
therefore allow a person to view the point set. This particular 
approach will be considered in the next section whereas more general
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considerations will be dealt with here.
The aim of feature selection is to choose a subset having m of 

the input variables so that there is no need to use redundant or less 
useful ones. If we assign a cost to taking a particular set of 
measurements, feature selection will minimize the cost by removing the 
necessity of making all the measurements. In contrast, feature 
extraction utilizes all the input measurements and obtains a lower 
dimensional vector by some transformation. A number of reviews of 

dimensionality reduction techniques are available e.g. Levine [3.5], 
Kittler [3.6] and Toussaint [3.2].

Feature selection is frequently achieved by optimizing a 
criterion that is feased=©n classification error. Among such criteria 
are those based on probabalistic distance measures (e.g. Mahalanobis 
distance), dependence measures and Euclidean distance. However the 
main drawback of these techniques is that the criterion must be 
evaluated (JJ) times. Clearly this can lead to considerable computation 
as n grows larger, rapidly becoming impossible. Various suboptimal 
"top down" and "bottom up" approaches are available [3.2,3.7] which 
involve much less computation.

Feature extraction methods could be based on linear or nonlinear 
transformations of the input data. Among the best known methods are 
those based on the Karhunen-Loeve and other rotational 
transformations, those based on finding discriminant vectors, and 
those based on separability measures. In contrast to feature selection 
techniques, feature extraction involves finding an optimal 
transformation matrix and is computationally less demanding.
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3.3 Exploratory Data Analysis

In the pattern recogintion field problems of exploratory data 
analysis frequently arise. Given a multivariate data set what is its 

underlying structure? Do any 'natural' groupings exist in the data? 
These problems may be tackled by a number of techniques including 
clustering methods and mapping algorithms. This field is closely 
related to dimensionality reduction particularly with regard to some 
of the mapping techniques. Two main areas are briefly reviewed here - 
cluster analysis and mapping algorithms.

3.3.1 Cluster Analysis

Cluster analysis has proved to be a useful tool in biological 
studies using multivariate data. A number of methods have been 
developed for this purpose and have found ready acceptance in pattern 
recognition. Many contributions have been made to cluster analysis by 
pattern recognition researchers themselves. The fact that there are 
many different ways of interconnecting and grouping points has led to 
a proliferation of new techniques in different part of the literature. 
Suitability of a particular clustering technique depends a great deal 
on the application. For example in numerical taxonomy very specific 
requirements on cluster formation are made, whereas in pattern 
recognition it may be quite acceptable to cluster points in a way 
analagous to human visual perception. Also the appropriateness of a 

particular technique to the data is very important. To a greater or 
lesser degree a technique imposes a structure on the data and so the 
utility of a particular technique will depend on how appropriate the 
imposed structure is.
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In general, approaches to cluster analysis have been heuristic 
rather than theoretical. Jardine, Jardine & Sibson [3.8], Jardine & 
Sibson [3.9], Sibson [3.10] and Wright [3.11,3.12] have developed 
formal approaches to cluster analysis. The approaches of these authors 
have led directly to methods based on their propositions [3.13,3*14]. 
In contrast most new techniques in the pattern recognition field have 
been based on applying techniques such as optimization or graph theory 
to the clustering problem.

With a very diverse literature, there is unfortunately a 
confusing range of terminology in current use. For example in the 
taxonomy literature the word classification is used synonymously with 
clustering. Here we restrict the use of the word classification to 
denote the assignment of unknown patterns into pre-specified classes.

Recently there has been mounting concern over the use of cluster 
analysis in pattern recognition. These methodological questions, 
raised largely through the work of Dubes and Jain, involve the 
interpretation of results from a clustering method and will be 
considered in Chapter 5. There are a number of reviews on cluster 
analysis in the literature e.g. Cormack [3.15], Everitt [3.16] and 
Scoltock [3.17].

3.3.2 Mapping Algorithms

Another approach to exploratory data analysis is to find a low 
dimensional representation of high dimensional data. Clearly if data 
can be adequately represented in two or three dimensions, the user can 
conceptualize geometry of the data set which may allow better 

judgements to be made on the problem. It is fairly obvious that
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obtaining low dimensional displays of multivariate data is akin to 
dimensionality reduction problems such as feature selection.

Mapping techniques may be subdivided into iterative and non­
iterative methods. A noniterative mapping can be calculated by a 
precise formula and will therefore be unique. Iterative techniques 
however invoIve optimization of some objective function which compares 
high and low dimensional representations. We will briefly review some 

linear non-iterative mappings and some nonlinear iterative mappings.
Probably the two best known types of linear transformation are 

the principal components (or Karhunen-Loeve) transformation and 
discriminant vectors transformation. Each of these techniques is based 
on finding eigenvalues and eigenvectors of a matrix.

In the case of principal components an attempt is made to find a 
transformation that preserves the structure of the data in the least 
mean square error sense. If labels are available discriminant vectors 
may be used to find a transformation that gives the best 
representation according to a discrimination criterion.

Iterative mapping techniques have evolved in two similar ways. In
the statistics literature such techniques have been known as
multidimensional sealing [3.18-3.21] whereas in pattern recognition
they have been called nonlinear mappings [3.22,3.23]. However the
approaches may be distinguished. A major practical difference is that,
in general, multidimensional scaling techniques are capable of using
non-metric dissimilarities whereas nonlinear mappings in pattern

%recogniton tend to be based on the Euclidean metric. Let dĵ j denote 
the distance between entities i and j in the higher dimensional space 
and let d^j denote the distance in the lower dimensional space. 
Multidimensional scaling techniques attempt to satisfy a monotonicity
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constraint i.e. one where the rank order of the d^js is the same as 

the d^js; in practice this is impossible to achieve and so an 
objective function is used to get as close to this as possible. 
Nonlinear mappings tend to be based on optimizing an error function 
between the two representations.

Mapping algorithms are reviewed by Chien [3.1], Everitt [3.24] 
and Terekhina [3.25].

3.4 Linear Transformations

Among the most commonly used techniques for feature extraction 
and mappings to lower dimensions are linear transformations. Among 
these techniques that are widely used are the principal 
components/Karhunen-Loeve transformation and the discrete Fourier 
transform (DFT). Both these techniques may be approached from the 
point of view of either time series analysis or multidimensional 
feature rotations. In practical terms a multidimensional feature 
vector may be processed in the same way as a time series. In view of 
the uses to which these techniques are put in later chapters we 
explain the principal components transformation as a feature rotation 
and the DFT from the point of view of time series.

3-4.1 Principal Components/Karhunen-Loeve Transformation

The title of this section suggests the all too frequent disparity 
between the statistics literature and the engineering literature when 
describing identical or similar techniques. An attempt is made to 
introduce the ideas behind this technique drawing from both 
literatures.
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Frequently we encounter a data set of n correlated variables, and 

it would be useful to transform them to a new set of uncorrelated 
variables. Such a set of uncorrelated variables is termed the 
principal components of the data and will be a linear combination of 
the original variables.

Since our objective will be dimensionality reduction it is 

important that the first few principal components account for most of 
the variation in the data set.

Let %T _ be an n-dimensional random vector variable
having mean^ and covariance XT. We seek a vector Y of new variables 

Ŷ ,,,,Yĵ  which are uncorrelated and whose variances decrease from 
first to last. Each Yj will be a linear combination of all the Xĵ s 
i.e. Yj = a-jjX̂ i + a2jX2 -f- .... + a^jX^

= â ÿ
where a.j = [â j,...â j] is a vector of constants subject to the 
condition a^j = 1 â aj = 0 k/j

The first principal component Ŷ  is found by choosing a-j so that 
the variance of is maximized subject to = 1. Similarly the
second principal component Y2 is found by choosing ^  so that Y2 has 
the maximum possible variance while being uncorrelated with Y'j. All 
the other Yjs are derived in the same way.

It can be sW-v (see e.g. Chatfield & Collins [3.26]) that the 
vectors a.j are the eigenvectors of the covariance matrix Ewhere a 
particular vector is the eigenvector corresponding to the jth 
largest eigenvalue. Furthermore the eigenvalues can be interpreted as 
the variances of the different components.

The Karhunen-Loeve transformation in the engineering literature 
is defined in the same way. A number of variations in forming the

33



Chapter 3 Pattern Recognition

covariance matrix are possible depending on the purpose of the 
transformation and on whether a priori labels are available [3.27- 

3.29].

3.4.2 The Discrete Fourier Transform

The discrete Fourier transfom (DFT) has proved to be a useful
tool in many aspects of electrical engineering. For the purposes of
this chapter it is especially useful as a tool for feature extraction
and time series analysis.

As in other linear transfomations, each output variable isK ^
found by a linear combination of the input variables X̂_

= 2  Xĵ exp(-2 jïïki/n)
where j =7-1. In general the Xj_s may be complex numbers and the Yi.s
are always complex. Tliis expression is usua].ly written as 

1 •Ŷ  = where W = exp(-2jfr/n)
^  J-

The DFT is then given by Y^ for k=0,...,n-1
Clearly if we consider the X̂ ŝ as samples of a time series we 

obtain the familiar use of the DFT to transform the series to a 

sampled frequency domain representation Ŷ .
The DFT has come into widespread use through the availability of 

the fast Fourier transform (FFT) algorithm [3.30] which has allowed 
rapid computation of the DFT. Computation of the DFT requires 
computation proportional to n̂  whereas the FFT algorithm requires only 

0(nlog2n) time. With such an efficient algorithm the DFT has become a 
popular tool in spectral analysis and feature extraction. The 
properties of the DFT and the development of the FFT algorithm are 
described by many authors [3.31-3.33].
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3.5 Spectral Estimation

This section briefly reviews techniques for estimating power
spectra. Although a variety of techniques are mentioned, we

concentrate mainly on those based on the discrete Fourier transform
since they are computationally efficient. The discrete Fourier
transform is also used in biolgical signal analysis to obtain

k
amplitude and phase spectra [3.55]; however this section is restricted 
to power spectral estimation. A comprehensive review of spectral 
analysis techniques is given in a paper by Kay & Mar pie [3.34] and in 
a reprint series edited by Childers [3.35].

One of the first pioneering steps in spectral analysis was the 
"periodogram" approach of Schuster [3.36] who studied variation in sun 

spot numbers. Wiener discovered the relationship between 
autocorrelation and power spectral density which was implemented in 
the moving average (MA) approach of Blackman & Tukey [3.37]. This 
became the most popular method of spectral estimation until the 
development of the FFT algorithm, which gave a fast route to the 
periodogram estimate.

During the late 1960s several modelling approaches to spectral 
estimation were developed. The maximum entropy method (MEM) 
[3.38,3.39] and autoregressive method (AR) [3.40] were shown to be 
equivalent for one dimensional data [3.41]. These methods offered an 
improvement over methods based on the DFT, especially for short data 
records, but at a cost of additional computation.

We concentrate now on the properties of direct spectral 
estimation based on the DFT, Firstly we must consider some preliminary
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results. Consider a deterministic analogue signal' x(t). Assuming that 
the signal energy is finite the continuous Fourier transform (CFT)
X(f) exists and is given by

X(f) = Jx(t)exp(-j2/Tft)dt

The term "spectrum" S(f) of x(t) is frequently used to describe 
the squared modulus of the CFT,

S(f) = I X(f)

S(f) is an energy spectral density (ESD).
If instead of a continuous function x(t) we have a data sequence

Xĵ sampled at equally spaced intervals &t over a finite time window 
(n=0 to n=N-1) we may develop the discrete Fourier transform (DFT) 
consisting of N equally spaced frequency values (frequency spacing Af 
= 1/NAt),

N-l
X^ = At 2  x^exp ( -2 j n mAfn At )

Va'= At Zĵ Xĵ exp(--2j Jtmn/N)
We may now define the periodogram ESD estimate by 

= I X^ 1̂  for m=0,...N-1 
If we consider the signal to be given by a wide sense stationary

process the derivation is somewhat different. For a stationary random
process the autocorrelation function is given by 

R̂ )r(l) = E[x(t4-Z)x*̂ '(t)]
This is related to the power spectral density (PSD) P(f) by 
P(f) = j Rx5̂ (T)exp(-2nf'c)dT

If we additionally assume that the process is ergodic in first
and second moments, we may substitute time averages for ensemble
averages and give the autocorrelation function by 

Ryy(T) = TTm ̂  f x(t+T)x*(t)dt 

Fihe power spectral density may thenĵ be given by
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fT

P(f) 1 1 x(t)exp(-j2/rft)dt | ^
The (raw) periodogram estimate of the PSD is a sampled data 

version of the above expression.
N “ t

^per(T) 1 At x^ exp(~j27-tfnAt)

^per(^m) " ^m "NAt I

where the are the values of the DFT of the sequence
A blind use of the periodogram spectral estimate may be 

misleading. This is mainly because the variance of the estimate is 
poor [3.39]. The expression for variance is given by

var[Ppej.(f)] = + 0(H-1)
and if r and s are integers and g=2nr/N and h^PsTs/N then the 
covariance is given by

cov[Pper.(g),Pper-(W] = OCN-q
These results are crucial since the variance of the periodogram 

estimate will not change no matter how large N is. Also individual 
ordinates in the PSD estimate have small covariances compared with 
their variances giving rise to the irregular appearance of the 
periodogram. In fact it can be shown that the ordinates are
asymptotically independent chi-squared variables with two degrees of
freedom.

Two approaches have been suggested for obtaining more consistent
spectral estimates from the periodogram. The first is to smooth the
periodogram and the second is to average several periodograras.

Consider an ordinate X̂  ̂in the periodogram. From the previous 
arguments it is clear that the p ordinates before and p ordinates 

after may be considered approximately independent chi-squared 
variâtes. This suggests that a better estimate would be an average of 
the periodogram ordinates in the neighbourhood of X̂ .

^ Fan cieCa){s o f  p r o o f  , g y
T'Y , rtN'b ‘3TO C fi/-=?STi CT

Me " a ( \f(̂5
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i.e.
p

ŝmootĥ Tjji) = 1/(2p+1) m/0
it can be shown that

var[Psmooth(fm)] = (1/(2p+1)).P„(fi„)2 + 0(N-1) m/0
and hence that the averaging of (2p+1) periodogram ordinates has 
resulted in a reduction in variance by a factor of (2pa-1). The 
smoothed ordinates are now chi-squared variâtes with (4p+2) degrees of 
freedom. However the bias of the spectral estimate is likely to 
increase with m resulting in a tradeoff between the two parameters 
[3.42].

This approach was suggested by Daniell [3.43] in 1946. 
Subsequently other more complex filters have been suggested for 
spectral smoothing. Bartlett [3.44] developed an alternative approach 
which was based on dividing the time series into segments and 
averaging the periodograms of individual segments. This also leads to 
a reduction in the variance of the estimate. Welch [3.45] suggested an 
FFT-based procedure for doing this following the work of Bingham ex- al 
[3.46] on modified periodograms.

The frequency resolution of the periodogram estimates are limited 
by the (explicit or implicit) windowing applied to the input time 
series. If the data is not tapered (implying a rectangular window) the 
DFT contains significant sidelobes. This is because the multiplication 
of the input time series implies convolution of the desired transform 
with the transform of the window in the frequency domain. The effect 
of the sidelobes is known as spectral leakage. Spectral leakage can be 
reduced by a choice of a suitable data window. Harris [3.47] provides 
a detailed comparison of various windows, some of his results being 
corrected by Nuttall [3.48].
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In contrast to the problems of the periodogram some of the more 
recent modelling approaches provide both good estimates and good 
frequency resolution. Windowing is not required and smooth spectral 
estimates may be obtained directly. However there are additional 
problems that are associated with fitting a model to the signal, A big 
problem is to select the correct model order; if the order is too low 
the estimate will be smooth, and if the model order is too high the 
estimate will contain spurious detail.

3-6 Segmentation & Feature Extraction Schemes

Although not actually implemented systematically during the 
course of this research it is worth briefly considering the problem of 
feature extraction from a signal. This involves some of the common 
ground between pattern recognition and signal processing alluded to 
already.

In the consideration of spectral estimation techniques above, it 
was noted that the time series was assumed to be stationary. Many 
signals are locally stationary but exhibit longer term changes. It may 
then be justifiable to compute local spectral estimates for each 
stationary interval. Signal analysis may then be considered in two 
stages : - (1) the segmentation of the signal into quasi-stationary 
intervals and (2) finding a representation for the signal over that 
interval. This type of approach is outlined by Sanderson & Segen 
[3.49] who applied this approach to EEG analysis.

The first stage depends on detecting change in a time series. 

Several approaches have been suggested, Segen & Sanderson [3.50] have 
developed an approach based on a transformed sequence, and Bbdenstein 
& Praetorius [3.51] use a spectral error measure based on linear
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prediction [3.49]. The ideal way of representing a segment involves 
some sort of model. Autoregressive models have been frequently 
suggested as a basis for specifying signal segments [3.47,3.48,3.50]. 
It is to be hoped that the model parameters provide suitable features 
for a pattern recognition system.

A number of advantages arise from a piecewise stationary approach 
to signal analysis. Appropriate segmentation will allow preservation 
of local detail such as transients which are often significant in 
biological signal analysis. Clustering of segment parameters has been 
suggested as a means of data reduction. If the segments cluster well 

the signal may be represented by a sequence of symbols. This then 
allows a linguistic [3.54] as opposed to statistical approach to be 
used.
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Chapter 4 Geometric Structure

GEOMETRIC STRUCTURE IE PATTERÎ  RECOGNITION

4.1 Introduction

In analysis of multivariate data, we are confronted with a set of 
N n-dimensional measurements which might be represented spatially by a 
cartesian coordinate system. In pattern classification we are 
concerned with deciding whether a given vector lies in a particular 
class. In pattern analysis or exploratory data analysis we seek to 
find structure in the data set. Clearly the analysis of multivariate 
point sets suggests a geometric approach; yet until recently such 
problems were not tackled in an explicitly geometric way. With the 
growth of computational geometry, new approaches have been suggested 
based on formal geometric structure.

Probably the first suggestion of the power of computational 
geometry was in Sham os and Hoey's use of the Voronoi diagram to solve 
a wide range of geometric problems [4.1]. This showed that by 
developing computationally efficient algorithms for fundamental 
structures such as the Voronoi diagram, efficient algortihms were also 
available for a wider range of problems.

More recently computational geometry has been applied to a number 
of problems in pattern recognition. Examples include nearest neighbour 
decision rules [4.2], the shape of a set of points [4.31, 

decomposition of polygons [4.4], and cluster analysis [4.5]. For 
comprehensive reviews of work in this area, the reader is referred to 
Toussaint [4.6,4.71.

In this chapter we first consider the basic geometry of a 
multivariate point set, then define some fundamental geometric
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structures and list some of their properties. For this it is necessary 
to introduce the ideas of computational complexity and graph theory. 
Finally we consider other structures based on the idea of the region 
of influence [4.5].

4.1.1 Simple Gecmietry in n-Dimensions

Before discussing geometric structures in pattern recognition it 

is worth considering some simple terms in n-dimensional geometry; a 
full treatment is given in Kendall [4,8].

We are concerned^a space typefied by the variables 
(X-j ,X2,...,X̂ ) where the Xj_s can take any real value. An equation in 
the variables Xj_ defines a subspace of Sĵ  which may be termed a 
variety. If the degree of the equation defining the variety is r, the 

variety is said to have order r and is denoted by A point in the
subspace will be specified by n~1 coordinates.

Linear spaces are of particular importance. These are varieties 
of order 1 and are known as flats or hyperplanes. In p linear 
equations define an (n-p)-flat. Clearly a p-flat is a flat space of p- 
dimensions.

A polygon is a very useful structure in 2-dimensions and is being 
increasingly used in pattern recognition [4.4]. The generalization of 
a polygon in n-dimensions is termed a polytope. A polytope is a figure 
bounded by a set of (n-l)-flats. Clearly two (n-l)-flats will 
intersect meeting at an (n-2)-flat.

The minimal number of (n-l)-flats that can enclose a space to 
form a polytope is (nn-l). Hence in two dimensions such a structure is 
a triangle; in three dimensions it is a tetrahedron and in n- 
dimensions a simplex.
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Taking Kendall's example it is useful to consider the simple 
properties of the simplex.

A triangle has 3 sides and 3 vertices.

A tetrahedron has 4 faces, 6 sides and 4 vertices.
A 4-dimensional simplex has (̂ ) 3-flats meeting in (̂ ) = 10 ways 

to form 2-flats. These meet in triplets in (̂ ) ways to form 1-flats 
and in sets of 4 in (̂ ) ways to form vertices.

The case for any number of dimensions can be worked out in a 
similar fashion. These properties of the simplex are essential to an 
understanding of say the Delaunay structure in higher dimensions.

4.1.2 Compiitatî-onal Complexity

Whenever a computational method is being applied it is obviously 
an advantage if the computer resources available are used roost 
efficiently. Whether an algorithm is for serial or parallel 
processing, a vital consideration is the computation time and in 
particular the effect on time if the problem grows in size. One of the 

most spectacular examples of this is the discrete Fourier transform 
which was computationally infeasible until the development of the fast 
Fourier transform algorithm [4.9].

In order to consider the effect of size of input N on running 
time we assume a random access machine with infinite precision and 
asymptotic time complexity [4.6].

Firstly we define the commonly used 0- and fl-notation.
Let f(N) = 0(g(N)) iff there exists a positive constant c such 

that̂  lf(N)l < c. lg(N)l for all N above some finite value.
Let f(N) *-/i(g(N)) iff there exists a positive constant c such
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that  ̂ lf(N)l > c lg(N)l for all N above some finite value.
If the two conditions exist for a particular algorithm then 

0(f(N)) and l%(f(N)) are the upper and lower bounds for the time 
complexity of the problem.

An algorithm is said to be optimal iff the upper and lower bounds 
are equal to within a positive constant f(N) = 0(g(N)) =il(g(N)). For 
a particular size of input N the worst case complexity is defined to 
be the maximum complexity over all possible inputs. Hence an '0(g(N)) 

algorithm' is an algorithm with worst case complexity 0(g(N)). If we 
assume a distribution of inputs, we may define the expected complexity 
to be the average complexity over all inputs of size N from that 
distribution.

The distinction between worst case and expected complexity is 
important [4.10]. It is possible for an algorithm to have a lower 
bound on worst case complexity that is greater than its average case 
complexity. An example of this is the 2-dimensional convex hull 
problem where many optimal algorithms have been developed (i.e. 
O(NlogN) and ll(NlogN) worst case performance) but for which Bentley 
and Sharaos found an 0(N) expected time algorithm for some inputs 
[4.10].

Many of the results in geometric complexity are only for sets of 
points in the plane, but apart from some image processing problems, 
data sets used in pattern recognition are generally of higher 

dimensionality. Bentley and Shamos [4,11] and Bentley [4.12] derive 
some results in geometric complexity in higher dimensions but a 
significant problem is that an algorithm may be efficient in terras of 
N the number of points but may increase exponentially with 
dimensionality n. Thus some algorithms that are inefficient in terms
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of N may run faster than those efficient in N in higher dimensions.

4.1.3 Graph TLieory

Graph theory has emerged as a tool in many fields. Because of the 
intuitive appeal of representing data by a set of points and a set of 
interconnections, graph theory has received wide use in pattern 
recognition. In this section we define a graph and describe some 
simple properties.

A simple graph G (Fig 4.1(a)) is the pair (V(G),E(G)) where V(G) 
is a non-empty finite set of vertices (or nodes or points) and E(G) is 
a finite set of unordered pairs of elements of V(G) called edges; 
alternatively V(G) is the vertex set and E(G) is the edge set of G.

A general graph G (Fig 4.1(b)) is defined as above but allowing 

the existence of loops (edges joining vertices to themselves) and 
allowing multiple edges between a pair of vertices.

Two vertices of a graph G are said to be adjacent iff there is an 
edge joining them. The degree of a vertex G is the number of edges 
incident on that vertex.

Two graphs Ĝ  and G2 are said to be isomorphic iff there is a one 
to one correspondance between the vertices of G-j and Gg such that the 
number of edges joining a pair of vertices in Ĝ  is equal to the 
number joining the corresponding pair in G2.

Two graphs G-] and G2 are said to be homeomorphic iff they can 
both be obtained from the same graph G^ by adding new vertices of 
degree two into the edges of Gg.

A subgraph S of G is merely a graph all of whose vertices lie in 
V(G) and all of whose edges lie in E(G) i.e. V(S) c V(G) and E(S) c 
E(G). A supergraph of G is a graph of which G is a subgraph.
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A simple graph which has every pair of vertices adjacent is 
called a complete graph. A complete graph on n vertices is denoted by 

(Fig 4.1(c)). A bipartite graph is a graph whose vertex set V can 

be divided into two disjoint subsets and V2 such that every edge of 
G joins a vertex of to a vertex of Y2- A complete bipartite graph

(Fig 4.1(d)) is a graph with r and s members of and V2 

respectively and where any given member of is connected to every 
member of ¥2»

A connected graph is a graph that cannot be expressed as the 
union of two graphs. Clearly any disconnected graph can be expressed 
as the union of a number of connected subgraphs. More informally in a 
connected graph it is possible to travel from a given vertex to any 
other vertex by travelling along graph edges.

An elementary contraction of a graph G is obtained by 
identifiying two adjacent points u and v so that u and v are replaced 
by a new point w which is adjacent to the neighbours of both u and v. 
A contraction of a graph G (Fig 4.2) is obtained by applying one or 
more elementary contractions.

A disconnecting set e of a graph G is a set of edges of G whose 
removal disconnects G. If additionally no subset of e is a 
disconnecting set then e is a cutset. If a cutset contains only one 
edge it is called a bridge. A separating set v of a graph G is a set 
of vertices of G whose removal disconnects G. If this set has one 
member the vertex is called a cut-vertex (or cutnode or outpoint).

A nonseparable graph is connected and has no outpoints (e.g. the 
graph of Fig 4.2(a)). A block of a graph (Fig 4.3) is a maximal 
nonseparable subgraph. An alternative name for a block is biconnected 
component. An alternative definition for block is that a subgraph is a
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block iff for every distinct triple of vertices pĵ ,pj,p̂  there exists 
a path between Pĵ and pj not including p^ for sets of points with 
three or more vertices.

A plane graph is a graph drawn in the plane in such a way that no
two edges intersect except at a vertex to which they are both
incident. A planar graph is any graph isomorphic to a plane graph. 
There are a number of special properties of planar graphs with 
Kuratowski's theorem and Euler's formula being particularly useful. 
Theorem 4.1 (Kuratowski) A graph is planar iff it contains no 
subgraph homeomorphic to or

Clearly this result is useful in proving whether or not a graph
is planar.

If we consider a plane graph, it is clear that it defines regions 
known as faces. There will always be one region that is unbounded 
known as the exterior face. The number of faces may be found using 
Euler's formula.
Theorem 4.2 (Euler's formula) Let G be a plane graph with 1 vertices, 
m edges and n faces. Then l-m-i-n=2.

a.
From a consideration of Euler's forrâ a we can obtain the useful 

upper bound for the number of edges in a planar graph having 3 or more 
vertices. Since every face is bounded by at least 3 edges and since 
each edge divides two faces 3n < 2m. Substituting into Euler's formula 
we obtain Corollary 4.2A.

Corollary 4.2A If G is a simple connected planar graph with N 
vertices, the number of edges m in G . m < 3N-6

A forest is a simple graph containing no circuits and a connected 
forest is called a tree. A spanning tree is a connected graph 
consisting of one tree.
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4.2 Outline of some Basic Geometric Structures

Six basic geometric structures are introduced and briefly 
reviewed, each being applicable to a wide range of problems in pattern 
recognition. These are (1) the convex hull (CH), (2) the Voronoi 
diagram, (3) the Delaunay triangulation (DT), (4) the Gabriel graph 
(GG), (5) the relative neighbourhood graph (RNG), and (6) the minimal 
spanning tree (MST). The convex hull is included for completeness 
rather than for detailed discussion later. For simplicity we first 
consider these structures in the plane (Fig 4.4) but we note that each 
generalizes to higher dimensions. In the following subsections let P = 

{p-j ,P2,..,pn̂  denote a set of N distinct points in the plane.

For the same set of points P these six structures are closely 
related. The convex hull is a subgraph of the Delaunay triangulation 
and the vertices on the convex hull are the same vertices as those 
having tiles of infinite size in the Voronoi diagram. Four structures, 
the DT, the GG, the Rî'JG and the MST are very closely related i.e.

DT; 2 GG 2 RNG 2 MST

4.2.1 The Convex Hull (CH)

The convex hull (CH) of the set P (Fig 4.4(a)) is the minimum 
area convex set of vertices of P. The convex hull problem may be 
subdivided into two problems depending on the input data - the convex 
hull of a set of points and the convex hull of a polygon [4.6]. The 
convex hull has a wide range of applications in pattern recognition 
including tests for linear separability, cluster admissibility, and
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concavity, describing the shape of a set of- points and image 
processing. More recently Edelsbrunner et al [4.3] have considered a 
generalization of the convex hull, the, ot-hull, and have shown its 
importance in finding the shape of a set of points. There is a 

considerable literature describing convex hull algorithms, but they 
will not be discussed in any detail here.

4.2.2 ]

The construct known as the Voronoi diagram [4.13] in 
computational geometry, the Dirichlet tesselation [4.14] in 
mathematics and Thiessen polygons [4.15] in geography is very widely 
used. Applications range from interpolation and finite element 
analysis [4.16] to nearest neighbour decision rule editing [4,2].

The Voronoi diagram (Fig 4.5(b)) consists of N disjoint regions 
or tiles, each tile enclosing one point Pĵ. A tile Tj_ is defined by 

Tĵ = {x: d(x,Pi) < d(x,pj) for all i  ̂j]
In general tiles meet in threes at points known as Voronoi points - 

unless there are four or more cocircular points. The straight line 
segments at the boundaries of adjacent tiles are called Voronoi edges. 
Each tile consists of a finite convex polygon except for those points 
lying on the convex hull, whose tiles extend to infinity.

Shamos and Hoey [4.1] describe an O(NlogN) optimal algorithm for 
finding the Euclidean planar Voronoi diagram based on a divide-and- 
conquer approach. A number of algorithms have been proposed for 
finding the n-dimensional Voronoi diagram including those of Brown 
[4.17] and Bowyer [4.18],

Some theoretical results are available on the properties of the 

Voronoi diagram including those of Sibson [4.19] and Miles
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[4.20,4,21]. Lee and Wong [4.40] consider computation of the Voronoi 

diagram in L-| and L̂  ̂metrics.

4.2.3 Delamîay TrîaEUgulation (KT)

Considering the Voronoi diagram of a point set P, we can form a 
triangulation by joining a pair of points Pj_,Pj iff they share a 
common Voronoi edge. The resulting triangulation is called the 
Delaunay [4.22] or locally eqiangular triangulation [4.23]. This 
triangulation has a number of useful properties including the circle 
criterion [4.1].
Lemma 4.1 (Circle criterion). Any edge Pj_,Pj is an edge of the 
Delaunay triangulation iff there exists a point x such that the circle 

centred at x passing through p̂  ̂and pj contains no other points from P 
(Fig 4.5(a)).
Corollary 4.1A Any edge (pj_,Pj) on the convex hull of P is an edge of 
the Delaunay triangulation.

Lemma 4,2 The triangle Pi,Pj,Pk is a Delaunay triangle iff its 
circumcircle contains no other points of P.

In addition to the circle criterion, the Delaunay triangulation 
possesses the locally equiangular property. Sibson [4.23] showed that 
the circle criterion and locally equiangular property were equivalent. 

Consider a set of four points a,b,c,d forming a convex quadrilateral 
adbc in the plane. This quadrilateral may be triangulated by using 
either ab or cd as diagonals. We now state the max-min angle criterion 
which is used to make the triangualtion as nearly equiangular as 
possible.
Lemma 4.3 (Max-min angle criterion) If two triangles in a
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triangulation have a common edge, they form a quadrilateral with that 
edge as a diagonal. If that quadrilateral is strictly convex, then the 
replacement of the existing diagonal by the alternative one must not 
increase the minimum of the six angles in the two triangles forming 
the quadrilateral.

Either criterion will yield a triangulation which is a dual of 

the Voronoi diagram unless degeneracies exist. Suppose we have a 

cyclic pentagon abode, then from the Voronoi diagram we see that there 
are no edges which will triangulate the pentagon (Fig 4.5(b)). Instead 
we have a Delaunay pentagon or more generally a Delaunay polygon. 
Sibson [4.23] calls the construct with Delaunay polygons the Delaunay 
pretriangulation and the triangulation formed by the arbitrary 
triangulation of all Delaunay polygons the completion of the Delaunay 
pretriangulation. A misconception was held that the Delaunay 
triangulation was also the minimum weight triangulation [4.1], however 
Lloyd showed that this was incorrect by counter-example [4.24].

Since the Voronoi diagram in the plane is a planar graph it has a 
maximum of 3N-6 Voronoi edges (Corollary 4.2A), and since each of 
these edges corresponds to aKedge of the DT, the planar DT can be 
computed from the Voronoi diagram in 0(N) time. Hence the DT can be 
computed via the Voronoi diagram in O(NlogN) time [4.1], More recently 

Lee and Schachter [4.25] describe two algorithms for computing the 
planar DT directly running in O(NlogN) and O(N̂ ) time.

The ideas of the circle criterion are easily extended to higher 
dimensional spaces. Instead of using triangles we have n-simplices 
whose points lie on the surfaces of n-dimensional hyperspheres. Watson 

[4.26] describes an algorithm for finding Delaunay simplices by 
updating the structure one point at a time.
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4.2.4 The Gabriel Graph (GG)

Given the set of N points in P we may define the disk of 

influence (Fig 4.6(a)) of points Pj ,pj by
- DISK(p^,p j) = {x: [d̂ (x,p̂ )-{-d̂ (x,pj)]  ̂d̂ (pj_,pj) i i j}

Clearly pj_ and pj lie on the edge of the disk of influence which has 
diameter d(pĵ ,pj). We may use this to define the Gabriel graph (Fig 
4.4(d)).

(Pi,Pj) € GG iff p|̂  ̂DISK(pj_,Pj) for all p^ e P i^j^k
The terms least squares adjacency criterion and least squares 

adjacency graph [4.27] aî e alternative names for the above definition 
and the Gabriel graph respectively. Gabriel and Sokal [4.28] 
originally defined the graph for use in geographical variation 
analysis. Since then Matula and Sokal have derived a number of 
properties of the Gabriel graph in the plane.

Howe [4.29] showed that the GG was a subgraph of the DT, and 
Matula and Sokal [4.27] showed that the minimal spanning tree was a 
subgraph of the GG. Howe gave a lemma defining the relationship 
between the GG and DT.

Lemma 4.4 [4.29] The Gabriel graph of P is a subgraph of the Delaunay 
triangulation of P. Also any edge of the DT, (Pi,Pj) is also an edge 
of the GG iff the line segment joining p̂  to pj intersects the Voronoi 
edge common to tiles Tĵ and Tj at a point other than the endpoints of 
the Voronoi edge.

This result is used in Matula and Sokal's O(NlogN) algor' ithm for 
the GG of a planar set [4.27]. This algorithm finds both the Voronoi 
diagram and the DT, then obtains the GG from the DT using Lemma 4.4. 
From Lemma 4.4 it is clear that Miles's definition of full neighbours
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[4.21] corresponds to the definition of Gabriel neighbours. A number 
of related results are available for the expected number of Gabriel 
neighbours of a point E(Nq ) as N In two dimensions Matula and 
Sokal show that for points uniformly distributed in the unit square, 
E(Nq ) is 4. In the corresponding result for three dimensions Miles

[4.21] gives E(Nq) as 8, and finally Devroye [4.30] generalizes these 
results to give E(Nq) as 2^ for any underlying density in n- 
dimensions.

4.2.5 The Relative Neighbourhood Graph (RNG)

Another way of defining neighbourhood has been suggested by 
Lanlcford [4.31]. He defined points Pi,Pj to be relatively close iff 

d(PijPj) < max[d(pj_,p̂ )̂,d(pj,pĵ )] for all k=;1,...,N iW^^k 
Toussaint [4,32] gave a more convenient definition using s instead of 

< in the above expression. Only Toussaint's definition v/ill be 
considered below.

An equivalent definition is to define the RNG of P (Fig 4.4(e)) 
using a lune of influence (Fig 4.6(b)) for each Pj_,Pj where

LHNE(pj_,Pj) = {x: d(pi,pj) < max[d(x,pĵ ),d(x,pj)] i/j}
As in the GG definition, the RNG may be defined by linking points 

Pi,pj iff LUî'ÎE(p̂ ,Pj) is empty.
Toussaint [4,32] proved that the RNG is a subgraph of the DT and 

that the MST was a subgraph of the RNG. He stressed that the RNG does 
not impose a particular structure such as a tree or triangulation, and 
also extracts a perceptually meaningful structure from a set of 
points.

O'Rourke [4.41 ] describes properties of and gives algorithms for
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the RNG in L-| and metrics.

4,2.6 The Minimal Spanning Tree (MST)

The minimal spanning tree of a set P (Fig 4.4(f)) is formed by 
connecting points in P so that the sum of edge lengths is the minimum 
over all spanning trees of P. Shamos and Hoey [4.1] show that

finding the DT first then obtaining the MST from the DT. In higher 
dimensions Bentley and Friedman [4.331 give some algorithms with fast 
expected time.

Zahn [4.34] describes some of the properties of the MST and 
considers its perceptual relevance. Because of this he suggests that 
it is a good structure for cluster analysis. Gower and Ross [4.35] 
show the link between the MST and nearest neighbour (single linkage) 
cluster analysis.

4.3 Graphs defined by a Region of Influence

4.3-1 Definitions

In the above section it was noted that the Gabriel graph and 
relative neighbourhood graph have similar definitions - in each case a 
pair of points are connected iff a specified region is empty - the 
disk of influence and lune of influence respectively. We may 
generalize these ideas and consider the set̂  S of graphs defined by a 
region of infln^ee.

Let S = denote the set of graphs which have vertex
set P and whose edge sets are defined with respect to a region of 

influence; let ,̂  = {R'|,R2,*--} denote the corresponding set of
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regions of influence; and let R̂ CPidPj) denote the region of influence 
formed by applying the definition to the pair of points Pj_,Pj* Any 
graph of P is defined by

(Pi>Pj) e S]̂ iff p^ 4 R-i(p̂ ,Pj) for all k=1,..,N i^j^k
d(pi,p̂ >̂0, d(pj,p̂)>0

where the region R̂  defining is given by the set
Rl(Pi,Pj) = {x: f[d(x,p^),d(x,pj)] < d(p^,pj) î j}

where
R̂ p̂̂ p̂j) when d(pĵ ,pj) = 0

and

Rl(Pi,Pj) = %i(Pj,Pi) 
i.e. f is well behaved in the sense of yielding a finite non-empty 
region for d(p^,pj) > 0.

Clearly by using this generalization RQQ(p̂ ,p,̂ )=DISK(pj_,pj) and 

RRNG(Pi>Pj)=i>lJNE(pi,Pj) we obtain the GG and RNG. It might be expected 
that the region of influence will determine some of the basic 
properties of these graphs - this is considered in a later subsection.

4.3.2 Algorithms for finding graphs e S'

It is possible to consider general algorithms for any graph S-j. e 
 ̂S, Two general algorithms are given, both being based on applying 
'region tests' to candidate graph edges. The first, GEN-1 is simply a 

generalization of Toussaint's RNG-1 algorithm [4.32], and the second, 
GEÎP-2 is a generalization of Urquhart's RNG algorithm [4.36].

Consider the definition of a graph defined by a region of 
influence Sj given above. A logically equivalent expression n 6 

(PijPj)  ̂ iff p^ € ^l(Pi'Pj) any k= 1,..,N i;̂ jAc
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Toussaint's RNG-1 algorithm considers every'one of the N(N-1 )/2 
possible edges and tests each possible edge using all the other points 
in P, This algorithm easily generalizes for any graph S^ e S giving 
GEN-1. In Urquhart's RNG algorithm [4.36] it is noted that the basic 

operation of testing a candidate edge (pj_,pj) with another point P|̂ in 
Toussaint's algorithm involves three inter-point distances. If we 
replace this basic operation by one that tests each of the possible 
edges in the triple of points we will be able to reject some edges and 
throw them away. The elimination of possible edges substantially 
reduces the number of edges that have to be tested. This throw away 
scheme is easily generalized to any graph g s.

Algorithm GEN-1
(1) Find the interpoint distances d(pĵ ,pj) for all i,j=1,...,n, i>j
(2) For each pair of points (pĵ,pj;) apply the appropriate region test 

using each p̂  ̂for all k=1,...,n i^j^k
(3) Iff the given pair (Pi,Pj) satisfies the region test for all p%, 
then (Pj_,Pj) € S-L

Algorithm GEN-2
(1) Find the interpoint distances d(pj.,pj) for all i,j = 1,...,n, i>j
(2) For each pair of points (pj_,Pj) that has not previously been 
eliminated, do step 3 using pĵ for all k=T,...,n i?̂j?̂k (unless (pj_,pj) 
becomes eliminated by step 3 for some k). Iff (pĵ ,pj) satisfies the 
region test for all p^ then (Pĵ ,Pj) e Ŝ .
(3)(i) Apply region test to (p̂ iPj) using pĵ
(ii) Apply region test to (Pj_,Pî) using pj
(iii) Apply region test to (pj,p̂ )̂ using
(iv) Eliminate any of these pairs that fails the region test
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Algorithm GEN-1 runs in O(n^) time and requires the storage of 
n(n-1)/2 distances. Algorithm GEN-2 runs in less than 0(n3), but more 

than O(n^) time, and requires the storage of n(n-1)/2 distances and 
n(n-1)/2 binary indicators to record eliminated edges. Although there 
is no formal worst case complexity analysis for GEN-2 it is clear in 
practice that there is a substantial saving in computation when 
compared with GEN-1.

4,3-3 Obtaining Subgi-̂ aphs of the Delaunay Triangulation

The Delaunay triangulation of a set P = (p-] ,P2j>Pn^ of n 
points in the plane can be found in 0(n log n) worst case running time 
[4.25]. Clearly it is important to know whether subgraphs of the DT 

can be computed with similar efficiency. Suppose we have a subgraph 8,̂  ̂
e 3 of the DT defined by a region of influence e 5. If R^ is^such 

that if any points lie within Rm(Pi,P^)> at least one will be a 
Delaunay neighbour of both and p,s. An 0(n log a) algorithm may be 
constructed for̂ Ŝ ,̂ since algorithms in this class will be able to 
test each edge of the Delaunay triangulation for inclusion in by 
simply testing the set of common Delaunay neighbours. If one of the 
Delaunay neighbours lies within ^̂ (PiiPj) then (Pi,Pj) i otherwise 
(Pi,Pj) e Ŝ . Such a region of influence is said to have the Delaunay 
neighbour property. Urquhart proposed computing the planar RNG using 

this type of algorithm [4.36], but Toussaint [4.37] showed by counter­
example that the algorithm would not always yield the RNG; hence the 
question of the Delaunay neighbour property of a region is important.

Consider a set of four points a,b,c,d forming a convex 
quadrilateral adbc in the plane (Fig 4.7). This quadrilateral may be 
triangulated by using either ab or cd as diagonals. The Delaunay
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triangulation, by the circle criterion, will have ab as a diameter iff
d lies strictly outside the circumcircle of abc; cd as a diameter iff
d lies strictly inside the circumcircle of abc; and either ab or cd as 
a diameter in the degenerate case of adbc being concyclic. In the 
following discussion, degenerate cases are considered in the context 
of the completion of the Delaunay pretriangulation [4.23].

Lemma 4.5: Suppose two points a and b are connected by an edge of the 
Delaunay triangulation. If one or more points lie within a circle 
having ab as a chord, exactly one will be a Delaunay neighbour of both 
a and b (degenerate cases are considered below).
Proof: A third point c will not be a Delaunay neighbour of ab, if any 
point lies within the circumcircle of abc [4.1]. If we consider the 
circumcircle of abc (Fig 4.7), we can denote the region within the 
circumcircle on the opposite side of ab from c by D̂  and the region 
within the circumcircle on the same side of ab as c by Dg.
Case (1) If a point d lies in D̂ , from the locally equiangular
property ab cannot be chosen as a diagonal of adbc and hence cannot be 
an edge of the Delaunay triangulation. However, since we know a priori 
that ab e DT, there is a contradiction and so d may not exist within
D-j.
Case (2) If a point e lies within Dg, then we can replace the 
circumcircle abc by the circumcircle abe and repeat the argument of 
cased ). If a point still lies within the current circumcircle, a new 
one is found until no points lie in the current Dg. At this point the 
circumcircle abz, where z denotes the last point to be found within 
Dg, is empty and so z is a Delaunay neighbour of both a and b.

Also if no points lie within a circle having ab as a chord, but one 
or more points lie on the boundary of the circle, then one (if only
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one point lies on the boundary) or two of these will be Delaunay 
neighbours of both a and b.

Corollary 4.5A: Suppose two points a and b are connected by an edge 
of the Delaunay triangulation. If one or more points lie within the 
circular region having ab as a diameter, then one point will be a 
Delaunay neighbour of a and b, and so the region of influence R^ 
possesses the Delaunay neighbour property.
Proof: This is obvious, and the same degenerate case considerations 
apply.
Corollary 4,5B: The only regions of influence having the Delaunay 
neighbourhood property are those whose boundaries consist of two major 

arcs of circles of equal radius, having ab as a chord, the arcs lying 
on opposite sides of ab; such regions include the circular region 
having ab as a diameter (R̂ ).
Proof: We first show that a necessary condition for a region to have 
the Delaunay neighbour property, is that it is bounded by an arc of a 

circle passing through ab. From Lemma 4.5, a circular region having ab 
as a chord, and containing at least one point, is guaranteed to 
contain a Delaunay neighbour of ab. Consider a region D, lying on one 
side of ab and containing a single point c. The point c will be a 
Delaunay neighbour of ab iff no points lie within the circle abc 
[4.1]. Suppose that D has a boundary that does not include an arc of a 
circle having ab as a chord, then if c is just inside the boundary of 
D, we may have c such that DnC i 0, where C denotes the region bounded 
by the circle abc. Thus it is possible for a point lying outside D to 
lie within the circle abc, and c is not guaranteed to be a Delaunay 
neighbour of ab. Hence the region D does not possess the Delaunay 
neighbour property. If however, D was bounded by an arc of a circle
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passing through ab, from Lemma 4.5 c would be a Delaunay neighbour of 

ab. Thus any region Rqi e A having the Delaunay neighbour property, 
must be bounded by arcs of circles having ab as a chord. By 
definition, (if drawn in Euclidean space) possesses bilateral
symmetry about ab; hence R̂  ̂must be defined by arcs of equal radius, 
each having ab as a chord. Since a region Rĵ g i? defined by minor arcs 
of circles passing through ab defines a graph Sĵ ^ DT, the only 
regions having the Delaunay neighbour property are those bounded by 
major arcs or the circle having ab as a diameter.

Since it is preferable that regions of influence be defined by 
simple functions f the practical range of those having the Delaunay 
neighbour property is restricted to the circular region with ab as a 

diameter, i.e. R^ = Bqg* %^us, in practice, the only graph that is 
conveniently computed from the DT by testing the set of Delaunay 
neighbours is the GG.

From the above discussion, it is clear that the planar RNG 
algorithm of Urquhart [4.36] is only approximate (RNGy) since the lune 
does not possess the Delaunay neighbour property. Toussaint and Menard 
[4.38] describe a better approximation (RNĜ ) where the approximations 
are related by

RNG s  RNGrp c  rNG q c  GG 

Matula and Sokal [4.27] describe an optimal algorithm for computing 
the Gabriel graph using both the Voronoi diagram and the DT. Clearly 
since Rqq possesses the Delaunay neighbour property, we may compute 
just the DT using the algorithm of Lee and Schachter [4.23] then apply 
region tests to each DT edge using the neighbours of that edge - this 
algorithm being optimal also.

Recently Bowyer [4.18] and Watson [4.26] have produced efficient
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algorithms for computing the Delaunay triangulation in more than two 
dimensions. If P is defined for a k-diraensional Euclidean space, 

Bowyer's algorithm runs in 0(a^n^^-i- b̂ n) time, and Watson's in 
0(n(2k“1)/k) time. However the factor b^ in Bowyer's algorithm 

increases significantly with increasing dimensionality. With large 
dimensionalities (e.g. k>15 for a mainframe computer) the algorithm is 
therefore liable to become inoperable [4.39]. The definition of the 
Delaunay triangulation, Lemma 4.5 and its Corollaries may be 
generalized to k-diraensional spaces, and so the Gabriel graph may be 
computed from the Delaunay simplex by merely applying the region test 
to each edge using its set of Delaunay neighbours.

4.3-4 Comiectivity and Planarity

It is to be expected that the definition of will determine 
whether or not Sĵ is connected. Consider Lemma 4.6.
Lemma 4.6: is the maximal region of influence  ̂A that is
guaranteed to give a connected graph 
Proof: From the definition of R̂ , a necessary condition for Sj_ € 5 to
be connected is that it will always join a point to its nearest

neighbour. Any region R^ Rĵĵq (Fig 4.8) is not guaranteed to connect 
a point to its nearest neighbour, and so will not necessarily be 
connected. This Lemma may easily be illustrated for a region R^ ^ RrnG 
by constructing a three point example. (See also Toussaint [4.32]) 
Lemma 4.7 Rqq is the minimal region of influence that is guaranteed 
to define a planar graph of a planar set P.

Proof Consider a region of influence that is just smaller than Rqq 
i.e.

66



Chapter 4 Geometric Structure

R* = {x: d̂ (x,pĵ )+d̂ (x,pj) < d(p^,pj) i^jl 
note that the Rqq is defined using < rather than <. Consider the set P 
of six cocircular points, then the graph S% of P is given in Fig 
4.9(a). Clearly this graph is isomorphic with g (Fig 4.9(b)) and 
hence S.;;. is not planar by Kuratowski's theorem (Theorem 4.1). Tlius any 
graph defined by a region of influence R^ ̂  Rqq is not guaranteed to 
be planar.

4.4 Discussion

This chapter examines a number of structures that may be used in 
statistical pattern recognition. Such structures offer computationally 
attractive solutions to problems in pattern recognition. It is now 
widely known that the DT, GG, RNG, and MST are closely related graphs. 

However the differences between the GG and RNG are not clear.
The difference between these structures becomes significant when 

constructing algorithms. The planar GG may be computed from the planar 
DT in 0(N) time, however the planar RNG may not. An investigation of 
the differences between these structures was based on generalizing 
both structures as graphs defined by a region of influence. This 
showed that efficient computation of such graphs depended heavily on 
the shape of the region of influence.

Two further important properties arise from allowing the region 
of influence to vary. The RNG may be considered to be 'just connected' 

and the GG to be 'just planar'. The use of a region just larger than 
the lune used in defining the RNG may result in a disconnected graph, 
and a region just smaller than the disk used for the GG may yield a 
non-planar graph. The connectivity result is not limited to 2-
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dimensions and is vital to the work of Chapter 5
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Chapter 5 Cluster ing

A GHĵ H-THEOEETICr^ CLUSTERING biETHCB

5.1 Introduction

Clustering is an approach to the analysis of data common to 
pattern recognition, and to the biological and social sciences. 

Clustering methods partition the data into subsets so that two data 
points within a cluster are considered similar in some sense whereas 
two data points from different clusters are considered dissimilar. 
Over a number of years, a variety of approaches have been devised; the 
idea of a cluster does not have a precise universal definition, and so 
a given clustering method will reflect a particular interpretation of 
the clustering problem,

Tlie clustering methods may be grouped into a number of classes 
e.g. (a) parametric methods, which assume underlying Gaussian 
distributions in the data; (b) methods which partition data according 

to a dissimilarity matrix e.g. single link and complete link; (c) 
methods which are based on a visual perceptual model of clusters [5.1-
5.3]. Graph theoretical techniques have been used extensively in 
clustering methods. Such techniques include (i) breaking of the 

minimal spanning tree (MST) of the data set e.g. single link 
clustering and Zahn's edge inconsistency methods [5.3]; (ii) the use 
of directed trees [5.2,5.4]; (iii) nearest neighbour techniques 
[5.3,5.5-5,7] (although these are not necessarily graph theoretical); 
and (iv) graph colouration [5,8]. Some of these techniques have proved 
useful in analysis of data containing non-globular clusters.

In the following study, an approach is considered based on a 
visual model of clustering. This work was motivated by a consideration
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of Zahn's classic paper on MST methods [5.3]. A hierarchic clustering 
method is described which is based on limited neighbourhood sets 
[5.1]. The performance of this technique is considered using a number 
of two-dimensional problems, and is shown to avoid some of the 
problems associated with Zahn's original methods. Two of the 
geometrical structures (the relative neighbourhood graph (RNG) and 
Gabriel graph (GG)) recently suggested for use in pattern recognition 
by Toussaint [5.9] are exploited. These graphs may be generalized 
giving a family of graphs defined with repeat to a region of 
influence. Such graphs connect two data points whenever all the 
remaining points in the data set lie outside the region of influence 
of the two data points (Chapter 4). In this way we may choose a 
definition that may be used to partition data directly.

Some methodological problems are discussed with particular 
emphasis on the problem of clnster IdenHfication. An extension of the 
graph theoretical clustering method which gives an interactive 
approach to this problem is described. The operation of a display for 
interactive clustering is illustrated by taking the lung sound data 
set of Chapter 7 as a simple case study.

5.2 Clustering Methodology

5.2.1 Problems in Clustering Methodology

There are a number of problems associated with using clustering 
methods. A clustering algorithm will be guaranteed to partition a data 
set regardless of whetlner there is any significant cluster structure. 
Thus it is important to ask a number of questions about the data and
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to establish whether the clustering results are due to genuine 
structure in the data or are merely artifacts of the clustering 
algorithm. Some important questions are listed below (those referring 
exclusively to hierarchic methods are marked''" and those referring to a 
visually based method are marked"̂ ):

Ic Does the input data show a clustering tendency or is it 
random?

2a Is tlie method appropriate to the data?
3* Does the hierarchy reflect the data structure? (Cluster 

stability)
Is any partition a good summary of the data?

5a Are any of the clusters real? (Cluster validity)
6t What type of clusters have been produced? (Cluster 

identification).
Clustering algorithms are data dependent and so results will only 

be meaningful if an appropriate clustering method is chosen [5.11]. 
Having obtained a partition or a hierarchic clustering, it is 
important to establish which clusters if any are valid. This problem 
of cluster validity involves qualifying the results by means of 
suitable statistical tests increasing the value of the clustering to 
the user [5.12]. Unfortunately there are few straightforward validity 
methods short of computationally expensive Monte Carlo simulations. 
Many of these techniques are only appropriate to absolute (as opposed 
to relative) distance methods as they are based on the random graph 
hypotliesis. However recently Backer & Jain [5.13] and Bailey & Dubes

[5.14] have suggested new approaches.
In hierarchic clustering, the data set is ’fitted’ to a sequence 

of nested partitions, conventionally displayed as a dendrogram, but
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the imposed structure obscures the more complex relationships between 
the clusters obtained, unless the data is ultrametric or near 
ultrametric. The problem of cluster stability [5.15] involves (a) 
whether tlie hierarchy is representative of the overall data structure,
(b) whether any individual partition is a good summary of the data and
(c) whether any individual clusters in the hierarchy are real rather 
than being an artifact of the clustering algorithm. Smith & Dubes
[5.15] consider various statistics to test cluster stability.

Problems occur with the use of the visually oriented non­

par ametric methods frequently used in patttern recognition. Such 
methods were developed following the realization that conventional 
parametric methods would fail to take account of unusually shaped 
clusters and impose a particular structure instead. But with the 
resulting variety of acceptable cluster types, the user has additional 
problems in interpreting the partitions produced. For example the user 
might draw different conclusions according to whether a given cluster 
was globular, chained or bridged. Possibly a user would benefit more 
from solving this problem of cluster identification than from being 
able to detect a very wide range of cluster types. Surprisingly few 
aids are available for this problem.

In pattern recognition, cluster analysis is considered to be a 
tool for exploring data and suggesting hypotheses. Advances in 
interactive graphics are particularly amenable to exploring data. 
Usually interactive pattern recognition techniques involve linear, 
non-linear or functional mappings of the multivariate data set onto a 
2-dimensional display (see Chien [5.16]), and some of these have been 
described as 'interactive clustering' methods [5.17,5.18]. However 
there is little scope for interaction with the results of conventional
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clustering methods apart from the interactive entry of parameters 
before or during computation. This led to the development of a simple 
display to complement the above graph theoretical clustering method.

5»2.2 Using a Visual Clustering Methodology

A visual model of the clustering problem is one in which 
clusters are defined (in two-dimensions) in a way that relates to 
human visual perception. A method based on this model should produce 
clusterings in 2 or more dimensions similar to those perceived in tv7o- 
dimensional scatter diagrams.

It is clear that local, global and contextual factors have a part 
to play in human visual perception of dot patterns. Consider a few dot 
patterns;- Fig 5.1(a) and Fig 5.1(b) would probably be considered to 
have a number of well separated clusters; in Fig 5.1(c) and Fig 5.1(d) 
the clusters may be distinguished by local changes in point density; 
in Fig 5.1(d) and Fig 5.1(e) there is a 'bridge' connecting the two 
subclusters; and in Fig 5.1(f) the data might be divided into three 
subsets around the local maxima in point density. Context undoubtedly 
plays a part in the visual identification of clusters [5.19,5.20].

It is useful to contrast the objectives of a visual clustering 
methodology with for example clustering in numerical taxonomy, A 
taxonomist is interested in classifiying populations of organisms into 

a hierarchy of species. A clustering technique will therefore be the 
means of obtaining such a hierarchy of organisms. Because of this very 
specific requirement there may be very strict restrictions on which 
algorithms are suitable [5.21]. The basic data unit is the operational 
taxonomic unit (OTU) which may be the smallest representative of a
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biological population.
The visual model of clustering allows the separation of 

populations with unusually shaped or differently spaced distributions, 
and allows a chain of points to be a reasonable cluster (Fig 5.1(b)). 
The visual model is more suited to pattern recognition than to the 
construction of taxonomical hierarchies since the OTU is itself 
representative of some population [5.21], whereas generally in pattern 
recognition, all meîabers of (undefined) populations are likely to be 
present. Thus in constructing taxonomical hierarchies, the-clustering 
problem is a question of clustering representatives of distributions, 
whereas often in pattern recognition clustering is a technique to 
explore data and detect the distributions, making use of the wide 

range of cluster types that are acceptable in the visual model. 
Implicit in visually oriented clustering methods such as that of Zahn 
[5.3], is the notion that relative distance is important in the 
pattern space, in contrast to the single link method which is based on 
absolute distance.

Zahn’s method of cluster analysis involved finding the MST of 

the data set, then removing the MST edges that were found to be 
inconsistent. In view of the fact that the MST is a tree, the removal 
of one link will partition the data set. This technique was generally 
successful in detecting disjoint clusters (e.g. Fig 5.1(a) & Fig 
5.1(b)), but did not always work directly for changes in point density 
(e.g. Fig 5.1(c) & Fig 5.1(d)). Heuristic solutions were offered to 
problems of bridged and touching Gaussian clusters (e.g. Fig 5.1(e) & 
Fig 5.1(f)) but these were specific to each particular problem, and 
would require a priori knowledge of the nature of the data set to be 
effective.
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Jarvis [5,6] has pointed out that with some arraugments of 
clusters, Zahn’s methods may fail to break obviously inconsistent 

edges (Pig 5.2(a)). Also the MST does not necessarily contain every 

consistent edge and so the removal of a single edge may lead to an 
inappropriate clustering. Another problem of using the MST is that, at 
a low level, it is very sensitive to changes in the position of a 
particular point [5.19]. Jarvis [5.6] tried to overcome some of the 
problems of using the MST by combining MST methods with the shared 
nearest neighkx)ur clustering method [5.7]. However, it is questionable 
whether the k-i#s give the ’best’ set of neighbours for representing 
data structure [5.5,5.22].

Interestingly Jarvis suggested that the MST has a limitation on 
its ability to represent data structure in terms of relative distance. 
The alternative to combining the MST with shared nearest neighbours is 
to ask whether another graph would give a better representation of 
data, in the relative distance sense, than the MST. Recently, in an 
important study, Toussaint [5.23] has suggested that the relative 
neighbourhood graph (RNG) is better at extracting a perceptually 
meaningful structure from a data set than the MST. The RNG does not 
impose a particular structure (e.g. tree or triangulation) on the 
data, and thus is better able to represent the data; the RNG is also 
much less sensitive to changing the position of a point. Toussaint 

showed that the MST is a subgraph of the RNG, and gave a number of 
examples where the RNG extracted a meaningful structure from the data.

In view of these properties, it is suggested that the RNG or 
graphs with similarly flexible properties e.g. the Gabriel graph 
[5.24] might provide a better framework for relative distance 
clustering than the MST.
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5.3 Limited HeigMTourhned Sets aid Clustering

Having outlined some of the problems of using a visual clustering 
methodology we now outline a new clustering method. It is very easy to 
fall into the trap of 'selling' a new clustering technique and 
overlook the deficiencies. We will attempt to avoid this by 

considering objective measures such as the admissibility criteria, but 
the evaluation of the new technique is far from exhaustive.-

5.3.1 Tiies Limited Neighbourhood Concept

Lankford [5.1] describes criteria for clustering algoritlms that 
were defined by Neely. These criteria are based on a visual model of 
clustering, and are collectively known as the limited neighbourhood 
concept.

To introduce this topic, a number of clustering definitions are 

presented. Let P - {PifP2f"Pn^ denote n points in space, and let 
<̂ (PifPj) denote the distance between points pĵ and Pj according to the 
given metric. A clustering C(P) is a partition of P into m non-empty 
subsets of P denoted by C(P) = . The clustering should

in some way reflect the structure of the data, without making any a 
priori assumptions.

Clustering methods may be either hierarchic or non-hierarchie. A 
hierarchic clustering is a sequence of nested clusterings, whereas a 
non-hierarchic clustering seeks a clustering that is optimal according 

to some criterion, A strictly hierarchic clustering C(P) is a sequence 
of n clusterings C(P) = C2,C2,...Ĉ , where contains n clusters each
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consisting of a single data point C^ - ‘̂̂ll^^l2'*'*“‘̂]n̂  and Cĵ 
contains a single cluster with n points C^ ~ Each clustering Cj

is associated with a dissimilarity value dj where dj_2 

j=2,...,n; and where Cj is formed by merging two clusters of Cj_̂ . The 
dissimilarity value d* must satisfy the ultrametric inequality for all 
points in P [5.25,5.26] i.e.

d*{x,y) < max [ d* (x,z) ,d* (y,z) ] Xÿ̂ yp̂ z 
in addition to the normal requirements for a metric. Consideration of 
a dendrogram which is a graphical representation of a hierarchic 
clustering, shows that the hierarchy is meaningless unless the 
dissimilarity values are ultrametric.

A dendrogram is very simply a representation of a hierarchy. One 
axis represents dissimilarity, and at each partition a horizonatal 
line is drawn at the dissimilarity corresponding to the partition, 
vertical lines are used to denote the two subclusters formed (see Fig
5.3). A number of different styles have been used to draw dendrograms 
but they all contain essentially the same information.

The basic approaches to hierarchic clustering algorithms (as 
opposed to methods) are the agglomerative and the divisive ones. The 
agglomerative algorithm starts with clustering C^ and then 

progressively merges clusters until the single cluster C^ is reached. 
In contrast, the divisive algorithms initially have clustering C^ 
which is divided at each level until individual points at level Cĵ are 
reached.

The limited neighbourhood set criteria [5.1] are (in modified
form) :
(1) Connectivity; all points within a cluster Cĵ £ C(P) should be 

connected, (In the original statement of these criteria Neely used
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'strongly connected' rather than 'connected'.)
(2) Consistency: for adding a new point t with a set of neighbours 

N(t), if Cĵ £ C(P) and N(t) c Cĵ then there exists a cluster Cĵ' e C(P 
y t) such that Cĵ' is identical to c^ u t for some partition of P.
(3) Local stability: suppose Cĵ e C(P) and a point t is added such 

that N(t) n Cĵ - 0 then there is a clustering ĉ ' e C(P u t) such that 
0 =̂0 '̂ for some partition of P.

These criteria do not assume any particular distribution and so 
are suitable for use with a visual model of clustering. In Lankford's 
paper, the concept of relatively close neighbours and hence the PNG is 
introduced. A general purpose neighbourhood set algorithm is used to 
compute 'association' between points which then clusters the data. 
However the use of the RNG to form neighbourhood sets v?as not 
considered to be very good, probably because of the clustering 
algorithm rather than because of a property of the graph itself.

Returning to tlie visual concept of clustering, it is interesting 
to note that botli Zahn [5.3] and Toussaint [5.23] use connected graphs 
to describe tlie data set. While tlie se provide good descriptions of dot 
patterns, it would be interesting to find a graph that is disconnected 
when obvious clusterings occur (each connected subgraph corresponding 
to a cluster). If data were partitioned directly in this way, the 
graph would immediately fulfil the above connectivity criterion; 
clearly, and if it also defined a reasonable set of neighbours it 
would meet the consistency and local stability requirements. Obviously 

such graphs would be of immediate value in the clustering problem.
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5.3.2 dsfin'sd by a variable Region of Influence

Regions of influence that are larger will cause fewer pairs of 
points to Joe joined, aiil whereas the RNG and GG are connected graphs, 
regions larger than the lune may lead to disconnected graphs (Lemma 
4.7). In this section three variable region definitions are proposed, 
namely those suggested by Figs 5.4(a) and 5.4(b), as the basis of a 
clustering method based on the GG and RNG respectively.

These definitions are novi considered formally. It should be 
noted that although the Delaunay triangulation (DT), like the GG and 
the RNG is capable of producing limited neighbourhood sets, the DT 
cannot be defined by.a region of influence in the same way.

Clearly, any graph e 5 will be defined according to some 
notion of neighbourhood, and will define a limited neighbourhood set. 
If f is based on a simple operator, or a simple combination of 
operators, the resulting graph will be reasonably easy to interpret 
and compute: the regions of Fig 5.4(a) and 5.4(b) were chosen because 
they correspond to simple combinations of functions.

From Lemma 4.7 any graph e S where R^ n Rr^q ^ 0 may be 
disconnected. Therefore such graphs may be usable in detecting 
clusters. Consider the following examples of such regions of influence 
(corresponding to the regions of FigS'î -a andi'̂ b) which incorporate 
explicitly an idea of relative distance and a parameter d :

Rp(PirPjfd) = RgG(PifPj) u {x:min[d(x,pĵ ) ,d(x,Pj)]< d.d(pĵ ,pj)i/j} 

(Pi;Pjf̂ ) == ^RNG(Pi^Pj) u {x:min[d(x,pĵ ) ,d(x,pj)]< 0.d(p̂ ,Pj)if̂ j} 
where o' is a factor of relative edge consistency. Obviously, Ŝ (d) c 
GG and Ŝ ld) s RNG. Thus Ŝ (6) is obtained from the GG by removing 
edges (Pĵ ,Pj) if the ratio of d(pĵ ,pj) to min [d (pĵ ,p̂ ) ,d (pj ,p)̂) ] is
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greater than o'; where and p;̂ denote the nearest Gabriel neighbours 
to pĵ and P-* respectively j ; Pi?̂ b̂ *

Variation of d controls the fragmentation of the data set and 
hence it might be expected that varying o would give a sequence of 

nested clusterings» (Differences in clusterings produced by Sg(d) and 
Sgtd) may occur at a low level of dissimilarity, depending on the 
relative distances of nearest relative or Gabriel neighbours to the 
edge in question). We may therefore associate with each edge of the GG 
or RNG, a similarity o'’ (or a dissimilarity d'̂ l/cr') at which the 
edge is broken. As the graph edges are broken it is clear that the 
breaking of some edges will partition the data set. We may therefore 
associate the similarity (or dissimilarity) value required to break 
that edge with the partition formed. We denote the value of d’ 
corresponding to the edge that partitions the data by d'% Since o' is 
defined as a ratio of distances it is easily shown that the 
ultrametric dissimilarity coefficient d* is continuous, and hence

(d) and 82(d) may be used in hierarchic clustering.
The objective of hierarchic clustering is to produce a set of 

nested clusterings. The effect of increasing the measure of relative 
edge consistency o', is that of progressively breaking the data set 
into a greater number of smaller clusters. Clearly not every link that 
is broken will partition the data set, tiiis being desirable since it 
avoids spurious partitions (c.f, Zahn’s method).

It is clear that this method will allow 'chained clusters’ which 
is consistent with a visual model of clustering. This is often 
criticized as being a defect in a clustering method, but Jardine & 
Sibson [5.21] stress that continuity in the ultrametric dissimilarity 
coefficient is more important.
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5,3,3 Examples

A number of two-dimensional dot patterns are given in order to 
see the effectiveness of tlie clustering method in terms of examples 
that can be interpreted visually. These problems are similar to those 
given by Zahn [5.3], and a value of o' “ 0.5 has been used frequently 
for comparison.

The first examples (Figs 5.5-5.7) show a number of clusters 
which may be easily separated visually, either because of being 
spatially separate or because they have different point densities. The 
method successfully distinguishes between these rather obvious 
clusters.

The second set of problems are examples of touching clusters 
(Figs 5.8-5.10). Evidently the question of touching clusters is not 
well defined [5.2], however each of these examples would probably be 
regarded as touching. Fig 5.8 shows two clusters joined by a few 
obvious strays, the clusters being distinguished successfully. In Fig 

5.9 there is a homogeneous bridge linking the clusters, which is not 
split. Fig 5.10 problem shows touching clusters with obviously 
different point densities in each cluster; these are clearly 
distinguished.

In order to see the operation of the hierarchic clustering 
algorithm on a real data set, the two class Iris data was used. The 
classes used (Iris Setosa and Iris Versicolor) are well known to be 
disjoint, so a partition might be expected at a relatively high d*. 
The projection of the GG of the Iris data (Fig 5.11(a)) was obtained 

using the first two Karhunen-Loeve axes. Ihe dendrogram (Fig 5.11(b))

85



Chapter 5 Clustering

shows a definite partition into the tv/o Iris classes (d = 6.199), and 
partitioning within the classes at a lower level.

5.3,4 A New Hierarchic Closterieg Algorithm

The clustering methods based on 8^(0) and S,̂{a) may be used in 
two ways. The first is the obvious 'direct' approach, partitioning the 
data set for a given value of o' (e.g. O =0,5). The second is to 
produce a hierarchic clustering from one of these graphs. The 'direct' 
clustering is fairly obvious from a consideration of algorithms for 
computing any graph 8̂  c S, The clustering methods based on Ŝ CO) and 
82(d) could be implemented by either divisive or agglomerative 
algoritiims. Here we consider an agglomerative algorithm.

The clustering algorithm has been implemented on a GEC 4070 
computer in four programs. The aim is to produce a dendrogram to 
represent the hierarchic clustering. We require to find the ordering 
of the n points along the bottom of the dendrogram (which we store in 
an n-element 'dendroram position vector') as well as the partition 
levels.
Program 1
(a) Obtain the GG or RNG in the required metric

(b) For each edge (Pĵ ,pj) e GG (or RNG) find the value of d' required 
to break that edge (d' = 1/d').
Program 2
Sort graph edges in ascending order of dissimilarity 
Program 3
(a) Form n clusters of one member (i.e. Cĵ)
(b) For j=l,n~l
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(i) Take new graph edge (PirPĵ ) until pĵ  and pĵ  belong to 
different clusters.
(ii) Form partition at level d* by merging Cĵ  ̂and Cj(d-d''")
(iii) Store label and number of points in cluster ’lost' through 
merging.
(c) (i) Initialize dendrogram position vector to 
(ii) For j=n-l,2

If Cj_q c Cj+g^[ replace first h entries of Cj+i^^ in dendrogram 
position vector by Cj; where h is number of points in ĉ  „ (already 
found in (b)(iii))
Output value of d*
Output position of partition for drav/ing dendrogram 
Pmgram 4
Drav/ dendrogram in the style of Rohlf [5.27].

Program 1 may use one of a number of algorithms (see Section 
4.3,2). This requires the storage of n(n-l)/2 real locations and n(n- 
l)/2 binary locations for GEN-2. Program 2 requires the storage of e 
graph edges and workspace. Program 3 requires the storage of 6 vectors 
of n integers for merging and forming the dendrogram.

Initially the dendrograms were plotted with the partitions 
arranged as they appeared in the program. However the plotting time 
was significantly reduced by plotting the smaller side of the 
partition closer to the stem. This style of plotting also seems to 
make tlie dendrogram easier to interpret.

An interesting feature of tliis algorithm is that if at the start 
of program 2 we input the distance d corresponding to each graph edge 

rather than d', the single link dendrogram will be computed. This 
takes advantage of the fact that both the GG and RNG are super graphs
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of the MST, which has been shown to contain all edges required for 

single link clustering [5.28]. Thus the method can do relative 
distance and single link clustering in the one operation, to yield 
complementary descriptions of the data set.

Additionally we might use a hybrid of the relative and absolute 
distance as the basis of a clustering method. This can be done by 
multiplying the relative and absolute distances for each edges and 
using the hybrid edge dissimilarity d" in the clustering algorithm 
(where d'’(pj|_,pj) = d ' (p̂ ,pj) .d(p̂ ,Pj) ) .

5.3.5 Admissibility Criteria

The clustering techniques described here have had a measure of 
success in clustering data using an Approach foaspd. on relative 
distance. Clearly there will be some disadvantages associated with the 
method and an objective comparison v/ith other methods is required. We 
now consider the admissibility criteria, defined by Fisher & Van Ness 
[5.29], and subsequently used by Dubes & Jain [5.11]. We firstly 
define the criteria then list how they apply to the new clustering 
method. The properties are fairly easily understood and will not be 
proved formally.

Consider a set P = M points clustered into k

clusters cg,C2;«..,C]̂ where

2̂. 1 Pg / * “• f P j} / 2̂ ~ {pĵ 'if"»} ™ {... f P|\̂}
Let Q = {qi,q2/— denote any reordering of the points and let the
set of k clusters c*2̂ ,c'2;..*fC')̂  be the image of C]_,...,C |̂ where

c 2 “• {qg f * * f q j} f c 2 " {q j+2 r • } r • • • f ^ k " {' * * f ^
Then a clustering C(P) = {c2,..,,C|̂} is said to be image admissible if
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it does not have an image that is uniformly better in the sense that

(1) d*(pj,pj) > d^(qi,qj) where the ith and jth points belong to the 
same cluster and
(2) d*(pi,pj) < d*(qj|̂ ,qj) where the ith and jth points belong to 
different clusters,

A clustering C(P) = {ĉ ,a,,,C|̂ } is said, to be convesr admissible 
if the convex hulls of each of the k clusters do not intersect. 
Clearly in some cases it is desirable to have non-linearly separable 
clusters whereas in other situations it is not. Hence this criterion 
may be helpful in choosing an appropriate technique.

Given any set of points P we find the ’linkage' or MST of each 
cluster The clustering is linkage admissible if the
linkages are pairwise disjoint (an infringement of this criterion is 
shown in Fig 5,12). It is worth noting that this definition is only 
applicable to two dimensional data.

A data set is well structured k-group if there exists a 

clustering C(P) -- {C2,...,C|̂ } such that all within cluster distances 
are shorter than between cluster distances

A clustering is exact tree admissible if it generates the same 
dendrogram as the single linkage (nearest neighbour method) given 
ultrametric data).

Some criteria refer to specific situations. Proportion 
admissibility refers to the duplication of points in clusters. A 
clustering method is point proportion admissible if points can be 
duplicated without altering the resulting clustering. A clustering 
method is cluster proportion admissible if it gives the same 

clustering for duplication of points over an entire cluster. A 
procedure is cluster omission admissible if the omission of an entire
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cluster in tlie input data does not result in a change in the remaining 
clusters.

In some situations the data is only of ordinal significance. In 
such cases only the rank order of tlie dissimilarities is significant. 
A clustering technique is monotone admissible if applying a monotone 
transformation to the dissimilarity matrix results in no change to the 
clustering.

We now give some admissibility results.
Lemma 5.1 Clustering based on the graphs & S2 is image 

admissible.

Tiiis follows from the fact that the clustering is not determined 
by the order in vjhich data is presented to the algorithm. The derived 
dissimilarity d̂' is ultrametric ensuring that the method is image 
admissible.
Lemma 5.2 Clustering based on the graphs & 82 is not convex 
admissible.

The graphs & ^2 allow nonlinearly separable clusters and hence 
do not meet this criterion.
Lemma 5.3 Clustering based on the graphs & S2 is connected 
admissible.

This criterion is infringed if a point from one cluster lies on 
an MST edge of another cluster. Let us assume that the clustering 
based on or S2 is not connected admissible. Then we have a 
situation similar to Fig 5.12 with the point c lying on or over the 

edge of the MST edge (a,b). Using or S2 c lies within DISK(a,b) or 

within LUNE (a,b) and hence a and b cannot be connected by Sj or 82» 
Thus the position of c requires that a and b belong to different 
clusters giving a contradiction. Hence and S2 connected
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admissible.

Lemma 5.4 Clustering based on the graphs & 82 is not k-group 
admissible.
Lemma 5.5 Zahn's MST clustering method is not k-group admissible.

Both Zahn's MST clustering method and the 8^/82 clustering method 
are based on relative rather than absolute distance. They will 
therefore permit some intra-cluster absolute distances to be greater 
than some inter-cluster absolute distances subject to intra-cluster 
relative distances being less than inter-cluster relative distances. 
Lemma 5.6 Clustering based on the graphs 8  ̂ & 82 are cluster 
proportion admissible.

The clustering based on 8  ̂and 82 obtains its edge dissimilarity 
d'(Pifpj) by considering neighbours that are not coincident with 
either p^ or Pj. The method is therefore insensitive to the 
duplication of either points or entire clusters. '
Lemma 5.8 Clustering based on the graphs & 82 is cluster omission 
admissible.
Lemma 5.9 Zahn's MST clustering method is not cluster omission 
admissible.

Fig 5.2(a) illstrates tlie fact that Zahn's method is not cluster K
omission admissible. The removal of the outlying cluster could result 
in a change in the remaining clustering. It is also evident that the 

omission of the same cluster will not alter the clustering if 8  ̂or 82 

are used.
Lemma 5.10 Clustering based on the graphs 8  ̂& $2 is not monotone 

admissible.
This follows from the fact that the clustering is based on the 

ratio rather than the rank order of inter-point distances. If it
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relied only on the rank order of distances it would be monotone 
admissible.

5,3.6 Appraisal

Since the techniques described are analagous in some ways to the 
MST methods of Zahn, it is worth returning to some of the problems 
encountered with that method. The problem of Fig 5.2(a) does not 
arise, and tlie obviously disjoint clusters are separated easily (Fig 
5.2(b)). Tlie problem of tlie graph not containing all consistent links 

is less likely to occur in methods based on the GG or RNG than in MST 
methods.

Obviously disjoint clusters are characterized by the clusters 
lasting over a reasonably wide range of d* (Fig 5.11(b)), homogeneous 
clusters having different point densities (e.g. Fig 5.10(a)) tend to 
fragment over a narrow range of d̂' (Fig 5.10(c)), but the dendrogram 
of random data from a uniform distribution, however, has neither of 
these properties.

It is v7orth observing that the clustering results above resemble 
those of Gowda & Krishna's mutual nearest neighbour (MNN) method 
[5.5]. In fact there is a tenuous link between the methods. We may 
define a mutual nearest neighbourhood graph of value 2, £ S
which links points having a mutual neighbourhood value of 2 and whose 
region definition is

(Pi'Pj'2) = {x:min[d(x,pĵ ),d(x,pj)] < d(pĵ ,pj) i/j]
Clearly %m(Pi'E)jf2) = R̂ (̂p̂ ,̂pj,1.0) = ^2(Pi'Pj'l'O) (see Fig 

5.4(c))
Zahn [5.3] also gave a number of heuristic techniques for
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clustering, involving separate tactics for dealing with clusters 
having necks, touching Gaussian clusters and point density problems. 
There may be problems in using these heuristics, but in view of their 
extensive use, it is worth considering the use of such heuristics in 

the framework of the GG and tlie RNG.
. Zahn's heuristics were based on obtaining information along a 

diameter, or near diameter of the MST. The heuristic used in the 
touching cluster problem (joined by a neck) involved finding tlie depth 
of branching from the diameter. A partition was made at the best local 
minimum in the diameter histogram. The touching Gaussian cluster 
problem was approached by finding the minimum of a point density 
histogram along a cluster diameter.

It is clear that Zahn's touching cluster method cannot be 

directly emliedded within the GG or RNG since branching depth implies a 
tree. However a heuristic might be constructed using the degree of a 
point on the diameter rather than branching depth. Fig 5.9 shows an 
example where any of these heuristics may produce useful results, 
however in Fig 5.13 none of the heuristics were likely to be very 
effective (see histograms, Figs 5.9(b) and 5.13(b)), The difference 

between the two results is probably attributable to the MST diameter 
passing through the centres of the clusters in Fig 5.9 whereas it 
passed close to the cluster boundary in Fig 5.13. However, the fact 

that the graphs Sĵ(cf) and 8 2(d) leave a neck may be exploited 
interactively [5.30] as described later.

An alternative to Zahn's Gaussian cluster heuristic might be to 
compute point density along tlie diameter using the neighbours of that 
point rather than just neighbours along the diameter. Such an approach 
would be less sensitive to actual details of the diameter.

93



Chapter 5 Clustering

Each of the above suggestions still relies on the MST diameter 
to partition the data and may be criticized on the same basis as 
Zahn’s heuristics. So the above heuristics will yield less meaningful 
results titian tlie clustering method described in section 5.3.4.

5.4 Inteiractive Clustering

We now return to tlie problem of cluster identification. In this 
section we projoose a way in which information contained in the GG or 
RNG may be exploited to help in this problem. The result is an 
interactive display that complements the clustering method described 
in section 5.3.

5.4.1 An Interactive Clustering Display

The fundamental idea behind the intc otive display is that the 
user selects a partition of interest from tiie dendrogram, then inter- 
and intra-cluster relationships are represented graphically, A 
hierarchic clustering method based on any of the above ideas will 
define a spanning tree in the data set, the spanning tree being a 
subgraph of tlie GG (or RNG) but not necessarily the minimal spanning 
tree (MST), leaving much of the geometric information contained in the 
GG (or RNG) unused. A partition of the data set may be used to define 
subgraphs and a contraction of the GG (or RNG), where each subgraph 
corresponds to a cluster in that partition and the vertices of the 
contracted graph correspond to individual clusters, enabling all the 
geometric information in the GG (or RNG) to be accessed and used 
interactively. The geometric ideas used for connecting points may be
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extended to describing interconnection of clusters; it would be 
interesting for example to know the neighbourhood set of a given 
cluster.

Consider a hierarchic clustering C(P) = Cj_,C2f-c,,Cĵ  where Cj 

contains N clusters of 1 point (i.e. the set P), and C^ is a single 
cluster of W points. For a particular partition C]̂  = 
{Ckir*o.fCkif.̂ ,̂Ckp) where p=N-ktl the subgraph the GG (or
RNG) corresponding to cluster Cĵ  ̂has a vertex set V(G]̂ 2)-̂ kl has 
an edge set E(G^i) given by {(Pĵ fPj) for all (p̂ rPj) e GG, pĵ e ĉ ^, 
Pj e c^^}. The contraction of the GG (or RNG) corresponding to a 
partition Cĵ is obtained by contracting each edge of the GG (or RNG) 
within a cluster i.e. G^ has a vertex set V(Ĝ )=C]̂  and edge set E(Ĝ )̂ 
“ GG \ E(G]̂ ĵ ) X ” l,2,...,p

Having defined inter- and intra-cluster relationships in terms of 
subgraphs and a contraction of the GG, the crucial question is how 
these graphs are best displayed. A simple solution was to arrange the 
vertices of the graph around a circle in a meaningful way and then to 
mark in tlie graph edges. It was decided to position points using graph 
properties rather than use multidimensional scaling favoured by 
Jardine and Sibson [5.31] on their display for clusters.

Outpoints and cutedges are of considerable importance in 
identifying simple cluster types. This is especially so if the 
clustering method relies on point density changes because 'necks’ in a 
cluster will remain unbroken unless they correspond to a change in 
point density. Thus if the outpoints can be identified Interactively 
tliis limitation of the clustering can be overcome.

Points were arranged around the display in such a way that 
biconnected components appeared on the same sector of the display.
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AhOf Hopcroft and Oilman [5.32] describe an efficient algorithm to 
detect biconnected components of a graph of e edges in 0(e) time. Each 
biconnected component is arranged in depth first order.

The display may be used interactively once the partition is 
selected and either the contraction or subgraph is chosen. Graph edges 
may then be broken interactively by varying dissimilarity to give an 
understanding of tlie geometry of the clusters in the partition or to 
give clues to tlie type of cluster generated.

5.4.2 Algorithm far fmdinq the Display

Having described the display informally we now consider how to 
form such a display. Firstly we give some matliematical preliminaries, 
these results being stated without proof, the proofs being given in 
AhOf Hopcroft & Oilman [5.32].

The algorithm used for finding the display is based on a depth 
first search of a connected graph. Such a search partitions the edge 
set E of G into two subsets T and B. The set T is the set of tree 

edges and B is the set of back edges (Fig 5.14). An edge (Pj[,Pj) is 
placed in the set T if, when we are at the vertex pĵ examining the 
edges (pj[rPj), the vertex pj has not been visited; otherwise (Pi,pj) 
is placed in B. The subgraph (V,T) of G is called the depth first 
spanning tree, and the vertex at which the tree was started is called 
the root.

Aho et al [5.32] describe an efficient algorithm for the depth 
first search of a graph. The algorithm runs in 0(max(n,e)) time for a 
graph with n vertices and e edges. A tree may be ordered from its root 
by considering the root to be the senior ancestor and the points
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connected to it to be descendants. This idea is embodied in the 
following lemma.
Lemma 5.11 If (Pĵ ,Pj) is a back edge, then in the spanning tree pĵ is 
an ancestor of pj or vice versa.

The depth first search imposes a natural order on the vertices of
the graph. This approach may then be modified to find blocks or 
biconnected components in tlie graph.

We can define a relation on the edge set E by saying that the

edges e^ and ey are related if there is a cycle containing both ê  and
(x/y). This equivalence relation partitions tlie edge into classes

so that tv/o edges are in the same class if they lie on a common
cycle. For a particular class of edges Eĵ having a vertex set Vĵ, vie

say that the graph = (Vĵ,Eĵ) is a biconnected component of G.
The following lemmas provide information on biconnectivity.

Lemma 5.12 Let Gĵ = {V̂ ,Eĵ ) be a biconnected component of a connected 
graph G = (V,E) for 1  ̂i C k then
(1) Gĵ is biconnected for each i, 1 i  ̂ k

(2) For all i/j Vj n Vj contains at most one vertex.
(3) a is a cutvertex of G iff a e n Vj for some i/j.
Lemma 5.13 Let G = (V,E) be a connected graph, and let S - (V,T) be a
depth first spanning tree for G. Vertex a is a cutvertex of G iff
(1) a is the root and has more than one descendent or
(2) a is not the root and for some descendent s of a there is no back
edge between any descendent of s and an ancestor of a.

Aho et al gave an algorithm for finding the biconnected
components of a graph in 0 (e) time for a grajh with e edges.

The display was formed using this information. The idea was to

place points around the display so that the biconnected components
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were displayed together. Tlie algorithm would output points after using 
information from the depth first spanning tree and the biconnected 

components.

First all the points in the first biconneceted component are 
positioned in depth first order. Then the next biconnected component
3A dispay is positioned in the same way, and the process is continued

.

until all points are positioned around the display.

5.4.3 A Clustering Case Stu%

In order to understand better the problems of the new graph 
theoretical clustering methods and interactive display, we describe a 
case study using real data. Since this thesis is concerned with both 
theory an a particular application of pattern recognition methods, it 
is appropriate that we use the lung sound data sets of Chapter 7. As 
described later (Chapter 7) if one class (pulmonary oedema) is 
removed, the remaining data forms two obvious clusters (Figs 7.2(b) 
& 7.3(b)), Two versions of the data were available;- (a) the original 
20-dimensional data set and (b) a set based on the first six features.

We therefore consider the application of the relative distance 
methods Sj(o) and S2(d) to the more difficult 6-dimensional data set. 
Clusterings of this data based on absolute and hybrid distance are 
given in Chapter 7. The presentation here is therefore aimed at 
examining problems associated with tlie new methods.

The difference in difficulty in clustering the 20- and the 6- 
dimensional data sets by Ŝ fd) is apparent in Figs 5.15 and 5.16(a). 
Allowing for a few outliers, tlie 20-dimensional data partitions into 
two major clusters over a dissimilarity range of 1,25-1.55; however
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the corresponding partition that occurs in the 6-dimensional data {Fig 
5.16(a)) is less than obvious, even allowing for outliers. At a 
dissimilarity of 1.75 tlie plotting of the graph edges on the first two 
principal components of the data (Fig 5.16(b)) shows that no 
partitioning of the data has occured although many of the GG edges 
have been removed. At dissimilarities of 1.5 & 1.45 (Fig 5.16(c) & 
(d)) some of the points corresponding to normal patients (marked *) 
have broken away from the main cluster whereas the rest of the normals 
are linked to the asbestosis and CFA points (Æ3 and A respectively).

This situation v/as investigated using the interactive display 
(Fig 5.17). The inter-cl us ter connected graph (Fig 5.17(a) shows that 
all the clusters are linked to the main one (cluster 31) which spans 
most of the data set (Fig 5.17(d)). As the display is reduced to a 
dissimilarity of 1.45, the outlier points break away from cluster 31 
without revealing any structure.

Fig 5.18 shows the results of using S2(c5) to cluster the same 
data set. Allowing for outliers, the data forms a partition of two 
obvious clusters for dissimilarities between 1.6 and 1.7. Figs 
5.10(b)-(d) show the fragmentation of the data set down to a 
dissimilarity of 1.5. Note that one CFA point (A ,)  is clustered with 
the normals.

The inter-cluster relationships at a dissimilarity level of 1.5 
are shown in Fig 5.19; the clusters with numbers greater than 140 
being normals. The normals are connected to the other points by tv/o 
edges (31,160) and (66,160). The edge (31,160) breaks without yielding 
a partition whereas (66,160) causes a partition between the normals 
and other points.

Displays of individual clusters are given in Fig 5.20. Fig
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5.20(a) shows cluster 31 (the main asbestosis/CFA cluster in Fig 
5.18(a)) is very well connected even at a low level reflecting that 
cluster's dense nature. In Pig 5.20(c) cluster 66 appears to be rather 
straggly with a few tails, and cluster 160 is simply a pair of points 
(Fig 5.20(d)).

Comparison of Figs 5.16(a) and 5.18(a) suggests that the 

partitioning produced by is better than that given by (o').
While it is pointless basing conclusions on one data set it is 
possible that the fact that the RNG is sparser than the GG means that 
82(d) gives a better partition than 82(0’). It is worth noting that the 
poor results obtained by using Sĵ(d) are improved by the use of hybrid 
dissimilarities (Fig 7.4(d)).

5.4.4 Discu.ssion

The case study should serve to illustrate how additional 
information on a clustering may be recovered interactively. This 
display of course does have a number of limitations. Firstly the 
method depends on the ability of the GG (or RNG) and their associated 
edge dissimilarities to reveal the geometry of tlie data. Secondly the 
attempt to provide cluster identification is dependent on finding 
outpoints in the graph displayed.

There is also the effect of dimensionality, which will directly 
affect réponse times on the display. The arrangement of points around 
the display is found in 0 (e) time where e is the number of graph 
edges. Devroye [5.33] has shown that the expected number of Gabriel 

neighbours of a vertex is 2^ for any underlying density as N . (At 
present the expected degree of a vertex in the RNG is not known).
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Therefore this computation may increase significantly with 
dimensionality, deteriorating response times and so degrading user 

performance [5.34].
There is also a limit to the number of points that may be 

usefully displayed around a circular display. As the number of points 
increases to 40 and more it Iiecomes difficult to see the structure of 

the graph displayed. However this effect could be minimized by marking 
the cutnodes and cutedges in a different colour, or by replacing 
Individual points in a large cluster by a low level clustering.

Toussaint and Poulsen [5.35] describe a heuristic dual space 
feature selection method based on Zahn's MST clustering methods [5.3], 
This involved clustering the n features in N-dimensional space then 
selecting say one feature per cluster. Wismatli, Soong and A]ql [5.17] 
obtained encouraging results by using this heuristic in conjunction 
with a non-linear mapping algorithm. Clearly the interactive cluster 
display could be used instead of the nonlinear mapping. However 
Roberts, Henderson and Hanka [5.36] point out that proximity in the 
dual space - implicit in tlie heuristic - is not guaranteed to give a 
good feature set.

The idea of using a circular display to show geometry in a 
clustering need not be confined to tlie above methods. In a partitioned 
clustering it would be interesting to study inter-cluster 
relationships perhaps by finding the Gabriel graph of cluster 
centroids, then displaying tlie graph interactively. In some data sets 
the points may simply form a cloud with no spatial cluster structure. 
If a priori labels are available it is possible that points with a 

particular label occupy a paticular part of the space. In such a case 
if the 'cloud' of points can be broken up by a clustering algorithm
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the display could be used to explore the inter-cluster geometry.

5o5 Overall Discussion

A nonpar am etrie hierarchic clustering method has been developed 

based on the concept of limited neighbourhood sets [5.37]. By 
considering a family of graphs (which includes the GG and RNG), two 
types of graph have been defined that are capable of partitioning the 
data set according to relative distance. The method is capable of 
distinguishing disjoint clusters and homogeneous clusters separable by 

changes of point density. It must loe stressed that whether or not the 
clusters produced by the method are reasonable to the user, the 
dendrogram gives a meaningful summary of local data structure in terms 
of relative distance.

Some of tlie limitations of the clustering method are considered. 
Although the treatment is far from exhaustive the admissibility 
criteria do provide a basis for comparison with some other methods. 
The fact that the technique is locally sensitive is wortli considering 
when using tlie technique. The ability of the method to partition data 
is limited by the extent to which the structure is shown at a local 

level. This presents no problem in well structured point sets, but in 
many situations global considerations should be taken into account. In 
such situations it is probable that a global clustering algorithm 
would be appropriate although it is possible that some sort of 
preprocessing of the input data could allow the cluster structure to 
be better reflected at a local level [5.38].

A comparison with Zahn's heuristics for clustering using tlie MST

102



Chapter 5 Clustering

is given. The illustrations suggest that some of Zahn's heuristics, 
notably those using the MST diameter will not always work well. It 
might ha v/onde red hov/ useful results will be when based solely on some 
heuristic tactic as opposed to some consistent criterion. Other 
heuristics e.g. that of Lee [5.39] are designed for efficient 

computation of methods at the expense of suboptimal results. Although 
Dubes St Jain [5.11] report useful results from Zahn's heuristics it is 
felt that they must be used with care.

There are a numlaer of problems associated with using clustering 
algorithms. Tv/o of these - the problem of cluster identification and 
the lack of information on inter-cluster relationships - may be 
tackled interactively. The display v/as successful on some simple 
problems by providing tlie user with information tliat would otherwise 
te lacking. Despite limitations to the display, this facility should 
prove useful to tlie user. Clearly the display used is by no means the 
only one that is possible, and other information could be accessed 
using different means. Further research into interactive aids for the 
cluster user is urged.

Finally it should be stressed that there is no such thing as a 
universal clustering method. Since the value of a particular technique 
is data dependent, we should ideally have a range of techniques 
available offering different types of clustering [5.11]. In this 
respect the above clustering method should provide a reasonable 
clustering based on the visual idea of the cluster.

103



Chapter 5 Clustering

Refer̂ ïces

5.1 P.M.Lankford, Regionalization: Theory and alternative algorithms, 
Geogrl. Anal., 1, 196-212 (1969)
5.2 R.Mizoguchi and M.Shimura, A non-parametric algorithm for 
detecting clusters using hierarchical structure, IEEE Trans. Patt. 
Anal. Mach. Intelleg., PAI4I-2, 292-300 (1980)
5.3 C.T.Zalm, Graph-theoretical methods for detecting and describing
Gestalt clusters, IEEE Trans. Comput., C-20, 68-86 (1971)

f"5.4 WoL.GuKoontz, P.M.Narenda and K.Fukunaga, A graph-theoreticalK
approach to non-parametric cluster analysis, IEEE Trans. Comput., C- 
25, 936-944 (1976)
5.5 K.C.GoWci a and G.Krishna, Agglomerative clustering using the 
concept of mutual nearest neighbourhood, Pattern Recognition, 10, 105- 
112 (1970)
5.6 R.AoJarvis, Shared nearest neighbour maximal spanning trees for 
cluster analysis, Proc. 4th Joint Conf. on Pattern Recognition, 308- 
313, Kyoto, Japan (1978)

5.7 R.A.Jarvis and E.A.Patrick, Clustering using a similarity measure 
based on shared nearest neighbors, IEEE Trans. Comput., C-22, 1025- 
1034 (1973)
5.8 M.Delattre and P.Hansen, Bicriterion Cluster Analysis, IEEE 
Trans. Patt. Anal. ^ Mach. Intelleg., PAI4I-2, 277-291 (1980)

5.9 G.T.Toussaint, Pattern recognition and geometrical complexity, 
Proc. 5th International Conference on Pattern Recognition, 1324-1347, 
Miami U.S.A. (1980)
5.10 R.A.Fisher, The use of multiple measurements in taxonomic 
problems, Ann.Eugenics, 7, 178-188 (1936)

104



Chapter 5 Clustering

5.11 RDubes and AlWain, Clustering techniques: the user's dilemma. 
Pattern Recognition, 8, 247-260 (1976)
5.12 R.Dubes and A.K.Jain, Validity studies in clustering 
methodologies. Pattern Recognition, 11 (1979)
5.13 B.Backer and A.K.Jain, A clustering performance measure based on 
fuzzy set decomposition, IEEE Trans. Patt. Anal. & Mach. Intelleg., 
PAMI-3, 66-74 (1981)
5.14 T.A.Bailey and R.Dubes, Cluster validity profiles. Pattern 
Recognition, 15, 61-83 (1982)
5.15 SoP.Smith and R.Dubes, Stability of a hierarchical clustering. 
Pattern Recognition, 12, 177-187 (1980)
5.16 Y.T.Chien, Interactive Pattern Recognition, Marcel Dekker (1978)
5.17 S.K.Wismath, N.P.Soong and S.G.Akl, Feature selection by 
interactive clustering, Pattern Recognition, 14, 75-80 (1981)
5.18 H.Niemann, Interactive clustering of patterns, Proc. 4th 
International Joint Conference on Pattern Recognition, 301-304, Kyoto 
Japan (1978)

5.19 B.Rosenberg and D.J.Langridge, A computational view of 
perception, Perception, 2, 415-424, (1973)
5.20 J.F.O'Callaghan, Human perception of homogeneous dot patterns, 
Perception, 3, 33-45 (1974)
5.21 N.Jardine and R.Sibson, Mathematical taxonomy, Wiley (1971)
5.22 J.F.O'Callaghan, An alternative definition for neighbourhood of a 
point, IEEE Trans. Comput., C-24, 1121-1125 (1975)
5.23 G.T.Toussaint, The relative neighbourhood graph of a finite 
planar set. Pattern Recognition, 12, 261-268 (1980)
5.24 D.W.Matula and R.R.Sokal, Properties of Gabriel graphs relavent 
to geographic variation analysis and tlie clustering of points in the

105



Chapter 5 Clustering

plane, Geogrl. Anal., 12, 205-222 (1980)
5.25 CoJardine, N.Jardine and IlSibson, The structure and construction 
of taxonomical hierarchies, Math. Biosciences, 1, 173-179 (1957)
5.26 S.C.Johnson, Hierarchical Clustering Schemes, Psychometrika, 32, 

241-254 (1967)
5.27 FoJ.Rohlf, Hierarchical clustering using the minimum spanning 
tree, Comput.J., 16, 93-95 (1973)
5.28 J.C.Gower and G.J.S.Ross, Minimum spanning trees and single­

linkage cluster analysis. Applied Statistics, 18, 54-64 (1969)
5.29 L.Fisher and J.W.Van Ness, Adraissable clustering procedures, 
Biometrika, 58, 91-104 (1971)
5.30 R.B.Urquhart and J.E.S.Macleod, Interactive hierarchic 
clusterings a display based on graph theoretical methods, Proc. 
International Conference on Cybernetics and Society, IEEE, 11-15, 
Atlanta U.S.A. (1981)
5.31 N.Jardine and R.Sibson, The constrction of hierarchic and non- 
hierarchic classifications, Computer J., 11, 177-104 (1968)

5.32 A.V.Aho, J.E.Hopcroft and J.D.Ullman, The design and analysis of 
computer algorithms. Add i son-W es ley (1974)
5.33 L.Devroye, Personal communication
5.34 L.Leiker, Human factors relevant to the computer user, Proc. 
Southeast Region ACM Conf., Atlanta, U.S<A, (1981)
5.35 G.T.Toussaint and RcS.Poulsen, Some new algorithms and software 
implementation methods for pattern recognition research, IEEE Computer 
Society's Third International Computer Software and Applications 
Conference, 55-63 (1979)

5.36 S.J.Roberts, L.P.Henderson and R.Hanka, The dual space and its 
use in feature selection, Proc, 5th International Conference on

106



Chapter 5 Clustering

Pattern’Recogntion, 1188-1190, Miami U.S.A. (1980)
5.37 R.B.Urquhart, Graph theoretical clustering based on limited 
neighbourhood sets, Pattern Recognition, 15, 173-188 (1982)
5.38 F.R.Dias Velasco and A.Rosenfeld, Some methods for tlie analysis 
of sharply bounded clusters, IEEE Trans. Syst., Man & Cybernet., 10, 
511-518 (1980)
5.39 R.C.T.Lee, A sub-minimal spanning tree approach for large data 
clustering, Proc. 2nd Internat. Joint Conf. on Pattern Recognition, 
Copenhagen, 22-26 (1974)

107



FIG 5.1

. Examples of visually identifiable clusters.

(a)

FIG 5.2
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(a) Inconsistency in Zahn’s method (using depth of 3). 
Link AB  will be broken at inconsistency of 1.95, but if the 
outlying cluster is removed AB  breaks at inconsistency of 
3.23 : (b) method based on Link always breaks at d* =  

3.33 (ff =  0.3).
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FIG 5.4

(a)

•t2

(a)

(b)

FIG 5.5

! (c)

(a) A set of points showing several obvious clusters ; (b) 
relative neighbourhood graph of (a); (c) SjfO.S) of (a).



(a) FIG 5.6

(b)
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(c)
(a) A set of points showing three homogeneous regions 

o f different point densities; (b) G G  of (a); (c) Si{0.5) of (a).

(a)

FIG 5.7

(b)

(a) A  set of points ; (b) SjlO.S) of (a). Note that 
separates the chained cluster from the annulas, fragmenting 

the chain slightly.



FIG 5.8

FIG 5.9

(a) Gabriel graph of a set of points forming two clusters 
with intermediate strays; (b) Si(0.5) of (a).
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RNG

BA

(a)

(a) A set of points having a neck between subclusters 
[no partition produced by either Si(0.5) or 52(0.5)]; (b) 
histograms of M S T  diameter using M S T, G G  and R N G  
[S i(0 .5)and 52(0.5)have histograms almost identical to those 
of the G G  and R N G  respectively]. The M S T  histogram uses 
branching depth, whereas the G G  and R N G  ones use degree 

of each point. The arrow indicates the obvious cutpoint.

! (b)

For caption see over.

FIG 5.10
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(a) A  set o f points showing two touching clusters of different point densities; (b) S i(0.5) of (a); (c)
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(a) Karhunen-Loève projection o f G G  of two-class Iris data [ / m  setosa (upper) and Iris versicolor 
(low er)]; (b) dendrogram of two class Iris data with I . setosa 1 -50  upper partition and I .  versicolor 51 -100

lower partition.
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FIG 5.12
In fr ingement of linkage admissibil ity



Criterion

Table 1

S 1/S 2 Zahn M S T  Single link

Image yes yes yes
Convex no no no
Connected yes yes yes
Exact tree * * yes
Æ-group no n o t yes
Point proportion yes yes yes
Cluster proportion yes yes yes
Monotone no no yes
Cluster omission yes n o t yes

*  N o t applicable since method based. on relative distance.
t  See Jarvis.*®’

FIG 5.13
(a)

(b) MST

GG

RNG

(a) Set of points showing a neck between two 
subclusters; (b) histograms along the M S T  diameter. Note  
the difficulty in drawing conclusions from the histograms -  
except, perhaps, that of the G G . Arrow indicates obvious 

cutpoint.



FIG 5.14

Depth first search:  
T ree  edges are solid 
Back edges are dashed



FIG 5.15

S, clustering of the 
20-D lung sound 
data
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FIG 5.16(a)
S, clustering of 
the 6-D lung 
sound data
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FIG 5.16(b)
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FIG 5.18(a)
Sj c lustering of the 
6-D lung sound data
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FIG 5.18(b)
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Chapter 6 Signal Acquisition

ACQUISITION ANALYSIS OF LUNG SOUND SIGNALS

6ol Introduction

Analysis and interpretation of lung sound requires several 

stages. The first is the acquisition of the signal by means of a 

suitable transducer. Then various conditioning and analytical 

techniques may be used to analyse the signals. This chapter briefly 

discusses the techniques used during lung sound studies and describes 

the basic properties of the sounds studied.

Throughout the theoretical sections of the thesis it has been 

mentioned that the appropriateness of analysis techniques is data 

dependent. This is certainly true of lung sound and an attempt is made 

to discuss tine relevance of tlie different approaches that are used.

It is unfortunate that relatively little work has been done on 

the design and testing of transducers for lung sound. Frequently work 

has been published giving details of parameters derived from lung 

sound with no regard for the limitations of the transducers. Similarly 

there has been relatively little systematic work done on techniques 

for lung sound signal analysis. Tine availability of the F FT algorithm 

has enabled a large number of workers to use spectral analysis, 

although apparently paying little regard to tlie assumptions inherent 

in the technique.

It was decided from the outset to aim for clinical ratlier than a 

physiological investigations of lung sound. Recordings were therefore 

made in relatively normal hospital conditions. It was felt tliat if any 

of the techniques that were developed were to be useful, it would be 

necessary for them to be used at the bedside rather than in a special
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soundproofed environment. Therefore a major consideration has been 
reduction of ambient noise during recording. Also it is felt tliat tine 

recording/analysis system must tolerate some noise.

6.2 Transducers

In earlier times a physician performed auscultation by placing 
his ear against the patient's chest. This was unsatisfactory since it 
was not always advisable to be so close to a patient's body. Laënnec 
made a considerable advance by inventing the stethoscope. This removed 
the need for physical contact between the doctor and patient and 
doubtless improved the reception. Progress has been made since then 
and the binaural stethoscope has become a familiar feature of today's 
doctor. E-rtel et al [6.1-6.3] carried out a number of studies on 
stethoscope acoustics.

Design of a suitable lung sound transducer will depend on the 
particular site chosen for recording. We might divide the sites into 
three contrasting areas - (1) the mouth, (2) the trachea and (3) the 
chest wall. At the mouth tlie lung sound transmission is simply through 
air in the mouth. Tracheal sound is transmitted tlirough the cartilage 

of the trachea and a thin layer of tissue below tlie skin. At the chest 
wall the sound will be transmitted through the lung tissue, the 
pleural membrane, the intercostal muscles and the ribs before reaching 
the surface. The acoustic impedances at different sites will of course 
influence the ideal design for a transducer. A transducer for picking 
up sound at the mouth will be designed for detecting sound in air 
whereas one designed to pick up sound from the chest wall must be 
designed to match the impedance of the chest wall.
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Regrettably the fact that tlie chest has a much larger impedance 
than air has rarely been taken into account. A notable exception is 
the work of Burch & Stock [6.4] who designed an improved stethoscope 
for listening to heart sounds. In view of the complex structure of the 
chest wall it is difficult to estimate the impedance and produce a 
design tliat couples well. Also the problem of designing suitable tests 

for lung sound transducers is largely unresolved with many authors 

quoting results of testing the microphone in air. Gavriely et al [6.5] 
tested their transducer using a vibrating rubber membrane which took 
account of skin vibration but not of the transmission of sound through 
the chest.

The transducer used for the experiments described here v;as 
designed by McGhee [6.6] and based on earlier v/ork by Guard [6.7]. It 
consists of a General Radio &-inch electret microphone (Type 1962- 
9602) witli a matching preamplifier, both of which fit into a tubular 
aluminium enclosure and is linked via a fixed gain amplifier to an FM 
tape recorder. The microphone and preamplifier have a -2dB bandwidth 
of 5Hz-20kI-Iz (manufacturer's data) although this response will be 
modified by the enclosure.

Tlie enclosure is basically a thick aluminium tube surrounding the 

microphone and preamplifier. This is to act as a mechanical mass 
element which attentuates ambient sound reaching the microphone. The 
enclosure is fitted with a rigid Tufnol diaphragm 0.64mm thick which 
is designed to crudely match the microphone to the chest. This 
improves the ability of the microphone to detect sound from the chest 
and simultaeneously reduces tlie ambient sound recorded.

A certain amount of work has been done on testing tlie microphone 
and enclosure system by Howie [6.8] but results are still of a
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preliminary nature. The aim of his experiments was to investigate 
whether the microphone system was effective at picking up sound from 
within the body. He studied sound transmitted through air and through 
gelatin (which was used to simulate the mechanical properties of human 
flesh), and showed that the microphone response in air is quite 
different from that obtained when sound is passed through gelatin (Fig 
6.1). The reasonably flat response obtained through gelatin, over the 
frequency range of interest, encourages the belief tliat the transducer 
design is effective at coupling into the chest, however it is realized 
that the transducer design is still far from ideal. Once useable 

signals were being recorded this research concentrated on signal 
analysis rather than, acquisition

Initially two FM tape recorders were used (an Ampex FR1300 and a 
Racal Store-’-4D). The recordings v/ere carried out at a tape speed of 

60incS~̂  (1524mm.s~̂ ), ensuring that all frequencies from 0 to 20kHz 
could be recorded. Tests were carried out to determine any differences 
between recording levels in the two recorders and compensation was 
carried out in software. Followirg the preliminary study, recordings 
were made exclusively on tlie Racal Store-4D at 30in.s“ ,̂ which allowed 

the recording of frequencies between 0 and lOkHz.
All recordings made were of sounds from the postero-basal 

segments of the lower lobes, since there may be some variation in 
amplitude and spectra when sounds are recorded at widely separated 
sites over the chest. The subjects were seated and the microphone 
assembly was hand-held against tlie chest wall over the ninth or tenth 

intercostal space posterially. Auscultation through a stethoscope was 
performed immediately before recording, and the sound was monitored by 
headphones during recording. ■
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At first tine recorded signals were digitized and stored directly 
by a PDPll/45 computer. Due to software overheads the tape speed was 
reduced by a factor of 32. For the analysis of the asbestosis 
recordings software was developed by a technician to log data using an 
SBC-100 microcomputer. This permits logging in real time and allows 
much larger sampled data files. Data files are then transferred to the 
PDPll/45 for analysis. A schematic of the recording and analysis 
system is given in Fig 6.2.

Pneumotachygraphs are frequently used to monitor tine transitions 
between inspiration and expiration during lung sound recordings. In 
early recordings the transitions were identified aurally but in all 

the later ones a thermistor probe was used. A bead thermistor was 
mounted on a probe that was attached to a headset worn by the patient. 
The change in temperature associated with direction of breathing gave 
a signal which was differentiated, amplified and recorded as a second 
channel. This provided a useful alternative to the pneumotachygraph 
v/hich is cumbersome and may slightly affect the recording (see Section 
7.3).

6.3 Lung Sound Sign.al Analysis

A survey of lung sound research was given in Chapter 2 and one on 
signal processing in Chapter 3. This section is specifically on the 
use of signal processing techniques in lung sound analysis. A 
subsection on adventitious sounds is included but it is not intended 

to be comprehensive.
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6o3J„ Breath Soimd

Breath sound is a continuous signal but has no harmonic structure. 
It is a random signal in contrast to the adventitious sounds which 
have regular waveforms. Since the signal is continuous it might be 
expected that frequency domain techniques would prove useful. The 

cyclic nature of breathing suggests that the envelope of the breath 
sound is of interest. Weiss & Carlson [6.9] show some interesting 
traces but apparently there is no quantitative work using tliis method.

Probably the earliest work on spectral analysis of breath sound 
was that of Cabot & Dodge in 1925 [6.10]. With the invention of the 
sound spectrograph, McKusick et al [6.11] investigated the spectral 
properties of breath sound. Subsequently Banaszak et al [6.12] have 
used filter banks to study breath sound at different flow rates.

The next technological influence was the availability of FFT 
algorithms which offered an efficient route to special analysis. 

Unfortunately the published work in this area shows little regard for 
the different ways in which the technique may be used.

Mori et al [6.13] showed spectra from a number of different 
diseases. However the spectra shown are of low resolution and on a 
very limited number of patients. In probably the most thorough 

investigation of the spectral properties of breath sound, Gavriely et 
al [6.5] used smoothed averaged spectra. While this is reliable 
statistically, any time variation in the spectra v/ill become obscured 
by averaging. An unfortunate feature of their paper is that they 

termed ampitude spectra ’power spectra' which is confusing. From the 
averaged spectra they computed the slope of the log of the curve and a 
'maximal frequency’ which is the maximum frequency at which lung sound
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is observable. However their parameter of maximal frequency will 
probably depend on the dynamic range of A/D converters. Nevertheless 

their results are important in providing a thorough analysis over a 
variety of chest locations.

In Gavriely's paper it was suggested tliat spectral properties of 
breatli sound would be expected to change with disease. Confirmation of 

this came independently with the work of Urquhart et al [6.14] which 
is described and dicussed in Chapter 7. Since then Chowdhury & 
Majumder [6.15] have found differences in spectra in patients with 
tuberculosis. Unfortunately the different spectra described here are 
not easily compared because of differing recording equipment and 
estimation methods.

6.3.2 Adventitious Sourds

In recent years crackles have been studied by a relatively large 

number of groups in the U.S.A., Japan and Europe. Despite the 
intensive effort the results obtained so far, using both time and 
frequency domain methods, have been rather disappointing.

In the time domain Murphy et al [6.15] have suggested time 
expanded waveform analysis for investigating crackles, which simply 

investigates crackles by plotting them on a large time scale. This 
approach yielded some interesting results and has been used by a 
number of v;orkers (e.g. [6.16-6.18] ). Mori et al [6.18] examined the 
time domain properties of crackles in tuberculosis using a method 
based on zero-crossing.

Murphy & Sorenson [6.19] also investigated the spectral 
properties of crackles using the FFT algorithm and again tliis idea has
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been adopted by other workers [6.18,6,20-6.22]. However few of the 
workers have noted that the DFT assumes periodicity in the time 
domain. Thus the spectral results are really based on a train of 
equally spaced crackles rather than on individual crackles. Perhaps 
better results could be obtained using the chirp z-transform (CZT) 
algoritlim which would take acount of decays in the signal.

Forgacs [6.23] discusses the clinical significance of wheezing at 
different frequencies. However the only reports of digital spectral 
analysis are those of Baughman & Loudon [6.24] and Maeda et al [6.25] 
who used the DFT to study the variation of the frequency content of 
wheezes during the course of breathing.

6.4 Teciioiques for Breatîi Sound Analysis

At this stage it is wortii stressing that the spectra used in the 
initially were amplitude spectra, as in Gavriely et al [6.5]. However 
for later work.it was decided to use power spectra since it would 
allow a direct comparison between DFT-based and other estimation 
techniques,

6.4.1 Spectral Analysis

Since breath sound is basically a continuous signal, a frequency 
domain approach was adopted from the outset. This was initially 
carried out by McGhee [6.6] and continued in the work described here. 
A number of conflicting requirements influence the approach to 
studying the signals.

Firstly the lung sound signal is cyclic in nature. Different
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mechanisms are involved in inspiration and expiration and so these 

phases must be segmented and considered separately. Secondly, and 
although this has not yet been shown in a systematic study, it is to 
be expected tliat tiie signal properties may change during the course of 
an inspiration or expiration. Initially therefore it was decided to 
concentrate on the latter portion of the inspiration partly because of 
the fact that in some diseases crackles appear during this part of tiie 
cycle.

It was also felt desirable to use a DPT-based approach to 
spectral analysis for efficiency in computation. The computation of 

the DFT using the FFT algorithm immediately leads to a number of 
problems. The readily available FFT algorithms require tlie number of 
input points to be a power of 2. This means tiiat with the duration of 
the inspiration varying from individual to individual, the differences 
had to be accounted for by either fixing the length of the time series 
used or by adjusting the sampling rate so tliat the tlie number of input 
points corresponded to the number of samples required to digitize the 
late inspiratory segment. For the preliminary study McGhee [6.6] 
selected the latter approach.

The selection of this approach causes some immediate problems. 
Firstly a variation in the time domain sampling rate causes a 
corresponding variation in the frequency resolution of the DFT. This 
must then be taken into account in any further processing especially 
when comparing spectra.

The use of the DPP naturally leads to a periodogram estimate of 

the power spectrum. As discussed previously (Chapter 3) the raw 
periodogram estimate has a very high variance and so it is desirable 
to reduce the variance by either smoothing individual periodograms or
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averaging periodograms from different time segments.

In view of the fact that little is known about the breath to 
breath variation of the signa].s it was felt desirable to smootli rather 
than average periodograms. The use of smoothing is also useful in 
patients vjho are difficult to record, since it means that the 
recording of only one uncontaminated breath cycle is necessary for 

analysis. However in a preliminary study the variation in sampling 
rate prevented the use of standard periodogram smoothing methods. 
Instead a rather ad hoc method was used to simultaneously smooth the 
spectrum and extract features. This method is described in detail in 
the next subsection.

Despite the encouraging result obtained in tiie preliminary study 
(Chapter 7) it v/as felt unwise to continue with such an ad hoc 
spectral estimate in any systematic study of lung sound. In view of 
this, software was developed to allow a more rigorous approach to 
spectral estimation. Firstly it was decided to have a constant 
sampling rate which would then allow conventional smoothing techniques 
to be used, although it hoped that the differing lengths of breath 
cycle will not adversely affect the results. Secondly it was decided 
to investigate the maximum entropy method (MEM) of spectral analysis 

which allows statistically reliable spectral estimates to be obtained 
using time series of different lengths.

The use of the various smoothing techniques is illustrated in 
Figs 6,3-6,5. Fig 6.3 shows the smoothing of a raw periodogram 
spectral estimate, tlie removal of the spurious spikiness allows the 
spectrum to be more easily understood. In Fig 6,4 the same data is 

smoothed by (1) a Daniell window [6,23], (2) a cosine window and (c) 
an autoregressive model. The Daniell window gives a more spiky
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estimate than tlie cosine window. The autoregressive smoothing [6.24], 

or maximum entropy spectral analysis [6.25], does not require 
computation of the DFT and is shown for comparison. The use of the 
autoregressive method requires the selection of a suitable model 
order. Fig 6,5 shows tlie effect of varying the model order witli lower 
order models giving much smooflier estimates at tlie expense of losing 
detail.

Since a good deal of work on selection of model order was 
required before maximum entropy method spectra could be used 
routinely, the later work on spectral analysis (e.g. Section 7.3) used 

cosine window smoothing of the periodogram. This cosine window is 
essentially tlie same as the sine window used by Gavriely et al [6.5],

S.4o2 IfemaJ-ization aisS Feature Extraction

In order to carry out exploratory data analysis it is crucial to 
provide a suitable data reduction stage. In the preliminary study it 
was considered of great importance to compare a given frequency 
interval in one spectrum with the corresponding range in another. 
Visual inspection suggested that spectral shape at lower frequencies 
was significant. The frequency range 0~400Hz was divided into 20

unequal frequency intervals (Table 1), the closer spacing at tiie low
frequency end being intended to take account of the relative 
significance of tlie se frequencies. Furthermore it was felt that that 
the shape of the spectral envelope was significant.

The time interval digitized was always the latter half of the

inspiration. As indicated earlier the sampling rate was allowed to 

vary to take account of differing lengths of breath cycle. The time
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interval was always in the 0.6-1.4s range but witli the anti-aliasing 
precautions being based on the lowest sampling rate used (730 Hz). The 
logging was always 2048 points for use with a 2048-point FFT 
algorithm.

A heuristic piecewise constant approximation was devised to 

extract data from the amplitude spectrum over the chosen frequency 
intervals. The approximation took place in two stages: firstly peak 
detection over a given interval, and secondly averaging of peaks
within each interval. For a particular spectral amplitude a^ at
frequency f̂  ̂to be recognised as a peak:

(i) must satisfy the conditions â  > â _g and â  > a^+p
(ii) f̂  ̂must lie outside the range over which mains frequency (at 
50Hz) and its 3rd and 5th harmonics were likely to vary and
(iii) f^ must lie no closer to another selected peak thatn 4Hz in 
order to take account of the differences in spectral resolution. The 

value 4Rz was derived from the lowest resolution spectra in which the 

minimum peak widtli fn+]“ '̂n-l 3.54Hz. This value was rounded up to
4Hz,

Tlie amplitude value corresponding to each frequency interval was 
then taken to be the average of the selected peaks in the interval 
(Fig 6.6). Unnormalized results obtained directly from this feature 
extractor proved to be disappointing.

Since tlie magnitude of the spectra is related to signal magnitude 
in the time domain, it is influenced by extraneous factors such as 
chest wall thickness. It was therefore considered necessary to 
normalize the spectral values, which is also consistent with the 
observation tliat tlie spectral shape rather than the actual magnitude 
is significant in biological signals [6.26].
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The values in a particular interval were normalized by dividing 
the area under the approximation within tiie interval by tlie total area 
under the approximation. The resulting values are then dimensionless 
and hence are in arbitrary units. This normalization proved crucial in 
obtaining tlie results of Chapter 7.

The software developed for analysing the asbestosis recordings 
aimed to avoid the complications of the above method. In retrospect it 
was felt that a suitably smoothed spectra would yield a better 
indication of spectral shape tlian the envelope of the spectral peaks 

(each of which would be subject to high variance). While no feature 
extractor has been tested a suitable normalization for the spectral 
estimate is proposed Iielow,

It is suggested that in order to extract data from a smoothed 
spectral estimate we should eitlier divide the frequency intervals into 
a set similar to Table 1 or select a set of frequency values. Data 
could then be extracted from the power spectrum by averaging the 
smoothed periodogram over each interval (giving a rather better 
piecewise constant approximation) or by taking ordinates corresponding 
to the chosen frequency values.

The values would then be normalized by

(1) Power “ for the piecewise constant approximation
(2) for ordinates
where is the power spectral estimate at frequency f̂  ̂and Af is the 

interval between two frequencies in the DFT i.e. Af - fĵ +l'̂ m
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6o4o3 Inflnemce of IM:ecference on Spectra

Before exploring lung sounds using spectral analysis techniques 

it is useful to establish the extent of interference from various 
sources. If the interference is likely to be constant, and the 
objectives of the experiment are purely comparative, then the 
interference constitutes a systematic error that does not affect any 
comparisons made.

Three sources of interference must be considered:- (a) ambient 
sound, (b) internal biological sound and (c) handholding. The ambient 
sound is reduced as far as possible by the transducer design. Internal 
biological sounds include the heart, the muscles and the gut. Bad 
contact with the microphone is easily noted during recording (and 

hence data rejected) providing headphones are used, but there could 
additionally be some low frequency interference due to unsteadiness in 
handholding.

The combined effects of ambient sound and handholding were 
investigated by handholding the transducer against a block of gelatin 

under normal ambient conditions. This type of interference appears to 
be small compared with late inspiratory breath sound (Pig 6.7).

Yoganathan et al [6.27,6.28] have studied heart sounds and have 
observed significant components in their signals below 100 Hz. However 
their results are not directly relevant to a consideration of 

interference to lung sound recordings because of their analysis 
metliod. Since heart sounds are transient, they remove tlie segments of 
tlie signal betv/een beats and thus allow tlie signals to be analysed as 
if they were continuous. Therefore their spectra do not represent 

interference possible in lung sound recordings. Also there was no
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evidence of the characteristic heart sound waveforms appearing in 
recorded data indicating that the precaution of recording from the 
right lung is adequate,

6o5 Discussion

The results above suggest that although the matiching of the 
microphone to the chest was not ideal, the means of recording lung 
sound are sufficiently good for experimental work. The levels of 
interference are low enough to permit useful extraction of data from 
the lung sound. In any case any systematic errors would be relatively 
unimportant in comparative studies between disease groups.

The problem of analysing a segment of signal from varying lengths 
of breath was tackled in two different ways. The earlier ad hoc 
techniques did produce useful results (Chapter 7) yet would not be 
advisable for more than an exploratory study, A more tliorough study of 
lung sound requires a more rigorous approach to spectral estimation, 
based either on smoothing the periodogram or on MEM, For MEM to be 
used as a tool a thorough investigation of appropriate model order, 
e.g. using the Akaike information criterion [6,29], would need to be 
undertaken using a wide variety of recordings. Additionally an 
investigation of the stationarity of the signal would give useful 
information on the best way to approach spectral estimation.

The feature extraction problem was solved by comparing the 
spectra over a number of frequency intervals. However for this 
information to be meaningful the spectra had to be normalized to 
emphasize spectral shape rather than signal intensity. It is likely 
that a similar feature extraction method with normalization could be
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employed on future DFT-based spectral estimation methods. 
Alternatively features might be obtained from coefficients obtained 
during maximum entropy spectral analysis.
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Table 1

Interval

Lower
frequency

(H z)

Upper
frequency

(H z)

1 2 8
2 8 16
3 16 24
4 24 32
5 32 40
6 40 50
7 50 64
8 64 76
9 76 88

10 88 100
11 100 116
12 116 132
13 132 150
14 150 175
15 175 200
16 200 225
17 225 250
18 . 250 300
19 300 350
20 350 400
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Chapter 7 Breath Sound

BREATH SQIMD m  RESPIRATORY DISEASE

7ol Introduction

If any biological signal is to be of value in clinical medicine 
it must first be shown to provide information suitable for diagnosis 
and assessment of disease. In this context an experiment was devised 
to compare, by pattern analysis techniques, the spectra of lung souiids 
in patients with various respiratory diseases and in normal subjects.

Despite the advances in respiratory medicine in recent years, 

some diseases are difficult to diagnose. An example of such diseases 
are the pneumoconioses which are caused by damage to the parenchyma by 
inhaled dust. Asbestosis is an example of a pneumoconiosis with 
widespread risk in a number of industries. The effects of asbestos 
fibres on the lung are long term and may occur after withdrawal from 

exposure [7.1]. There is no method capable of the early detection of 
asbestosis and any more sensitive technique than those already 
available would be valuable.

With tliese considerations in mind our preliminary study included 

four groups: five patients with asbestosis, a disease associated with 
progressive fibrosis of the lungs; five patients with cryptogenic 
fibrosing alveolitis (CFA), v/hich also is a fibrotic process but has a 
more marked inflammatory response; five hospital inpatients with 
radiological evidence of pulmonary oedema; and five healthy male non- 
smokers as controls. All the recordings were performed using the 
methods described in Chapter 6.

Investigation of the amplitude spectra of late inspiratory sound 
suggested that they tended to differ slightly from group to group (Fig
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7.1). This then led to an analysis of the data set by extracting 
features from the amplitude spectrum. For each inspiration analysed, a 
20-dimensional feature vector was extracted using the piecewise 
constant approximation described in Section 6.4. Seventy inspirations 
were analysed from each group. The 20-dimensional data set was then 
passed on for pattern analysis.

Two complementary pattern analysis techniques were used:- linear 
mappings and cluster analysis. The linear mapping used was the 
principal components or Karhunen-Loeve transformation [7.2], and the 

clustering method [7.3] used is the new graph theoretical method 

described in Chapter 5 of this thesis. The data set described here is 
used in Chapter 5 as a case study where a more technical consideration 
of tlie results is given.

Since the results given in this section 7.2 are based on late 
inspiratory sound, and since the spectra differ somev/hat from those 
published elsewhere, the time variation of spectra is considered 
briefly in Section 7.3. The effect of recording using a 
pneumotachygraph is also shown.

7o2 Pattern Analysis

7.2.1 Principal Components Analysis

Principal components analysis was used throughout the development 
of the feature extractor. It provided a useful 2-dimensional 
representation of the data and gave a measure of feedback on the 
quality of the features produced. Information gleaned using principal 
components analysis led to the use of a normalization in feature
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extraction»

The normalized features were first processed by computing the 

principal components of the 20-dimensional data set. Most of the 

variance is accounted for in the first two principal components (46% 

and 27% respectively). A plot of the first two principal components is 

given in Fig 7.2(a) p each point representing one inspiration. There 

are 70 points in each of the 4 groups of 5 subjects i.e. an average of 

14 inspirations per subject.

Several observations can be made. It is quite clear that the CFA 

and asbestosis groups are completely interpenetrating in the first two 

principal components. In view of the similarity between these two 

diseases, the overlap is not surprising. However the region containing 

these two groups together is completely separated from the region 

containing the normal group (Fig 7.2(b)) and is easily discriminated 

from the pulmonary oedema region. There is some overlap between the 

pulmonary oedema and normal groups but the group means are well 

separated.

A consideration of the spectra in Fig 7.1 suggests that at higher 

frequencies the features contain mainly system noise. It was therefore 

decided to examine the effect of removing the higher frequency 

features. Useful results were obtained by this feature selection and 

we show tie results of using 6 features corresponding to 0-50Hz.

The principal components analysis of the six dimensional data set 

(Fig 7.3(a)) suggests that most of the information is contained in the 

1st component whose eigenvalue is dominant (the first two principal 

components account for 65% and 16% of the data variance). Again there

is a good separation of the fibrotic diseases from the normals (Fig 

7.3(b)).
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7.2.2 Cluster Analysis

Despite tlie fact tliat good results were obtained using principal 
components analysis, it is useful to study the data by means of a 
technique that works in tlie higher dimensional space. It was decided 
to use the graph theoretical clustering methods described in Chapter 5 
to see if the groups clustered as well in 20- or 6-dimensions as they 
appear to in Figs 7.2 & 7.3. The matter of greatest interest in 
diagnosis is how well separated the normals are from those with 

fibrotic disease. (Pulmonary oedema is easily diagnosed by other means 
than lung sound, whereas fibrotic dieseases are harder to detect). It 
was therefore decided to concentrate on asbestosis, CPA and normals.

The clustering programs described in Chapter 5 allow clustering 
based on relative distance, absolute distance or a combination of the 

two. Also it may be based on either the relative neighbourhood graph 

or the Gabriel graph. In either case the absolute distance clustering 

is identical to nearest neighbour or single linkage clustering. All 

three types of dissimilarity were tried and a strikingly similar 

picture emerged. Full details of the relative distance clustering in 

6-dimensions are given in Section 5.4.3 as a case study of the 

clustering technique, but the single link and hybrid dissimilarity 

clusterings are shown in Fig 7.4. The treatment given in this chapter 

concentrates on results rather than methods.

The general picture is that the normals are separable from the 
fibrotic diseases both in terms of absolute and relative distance. 
This confirms tlie picture suggested by principal components analysis. 
In Section 5.4.3 the display of the main cluster containing asbestosis

130



Djiecii-ii Düuna

and CFA confirms that the groups are highly interpenetrating and that 

that cluster has no obvious subdivisions.

7.3 Time Variation of Spectra

The results obtained in Section 7.2 were obtained by analysis of 

late inspiratory breath sound. Wliile a number of authors have proposed 
time varying spectral analysis based on the DFT (e.g. [7.4]), very 
little systematic analysis has been undertaken. Frequently papers have 

been published stating that the maximum power in the breath sound 
spectrum is in the 100-300HZ range [7.5]. In view of the fact that the 
late inspiratory spectra, e.g. those in Fig 7.1, are different it is 
important to see hov; dependent the spectra are on the phase of the 
respiratory cycle. Another point of interest is the effect on sound 
recording of breathing through a pneumotachygraph which has been 
employed in a number of studies.

A number of recordings were processed by sampling at 997.4 Hz 
using the SBC100 microcomputer. This permits loggings of up to 15k 

samples thus allowing tlie selection of segments for further processing 

from the sampled data. The signals were analysed using 1024 point FFT’ 
algorithms followed by spectral smoothing. A higher sampling rate and 
larger size of transform could have been tried, but this exploratory 
study aimed only to cover the frequencies used in earlier studies.

Fig 7.5 shows the time plot of a normal subject. The early part 
of the inspiration obviously contains higher frequency components than 
the late part. The late inspiration is also easily separated from the

expiration by its lower frequencies. These simple observations were 
confirmed by dividing the time series up into 1 second segments with

131



Chapter 7 Breath Sound

50% overlap. The overlap is useful to avoid detail lost by use of a 4- 
term Blackman-Harris window [7.6]. Fig 7.6(a) shows that in early 
inspiration there is considerable power above 100Hz, but this 
diminishes rapidly during the first half of the inspiration. The lower 
frequency sound is then comparable to that of Fig 7.1 during the 
second half inspiration. The expiration (Fig 7.6(b)) apparently does 
not change so dramatically.

Fig 7.7 shows an inspiration from the same normal subject as Figs 
7.5-7.6. This time the subject is using a pneumotachygraph and the 
signal is attenuated. Fig 7.8 shows that the spectral i;3attern during 
the course of the inspiration is basically the same although at a 
lower amplitude. A further comparison was obtained by averaging three 
late inspiratory segments (Fig 7.9).

Finally we show time varying spectra in a case of asbestosis (Fig 
7,11). The length of breath cycle shown in Fig 7.10 is much shorter in 
this case but it may give an interesting comparison.. Tlie early and mid 
sections of the inspiration have a greater proportion of high 
frequency sound than in normals (Fig 7.4) and adventitious sounds are 
present. The late inspiratory segment (segment 4) also has more higher 

frequency components than the normal despite the fact that there is 
virtually no evidence of crackles in that segment.

These results suggest a clear distinction between the spectra in 
early and late inspiratory sound. The spectra of early inspiratory 
sound correspond well with spectra reported in the literature whereas 
the late inspiratory spectra correspond well with those of Fig 7.1.
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The lung sounds detected at the chest wall are the summation of 
breath sounds and any additional adventitious sounds relating to 

disease of the airways or lung parenchyma. This preliminary study was 
confined to conditions in which the only adventitious sounds present 
were crackles. Although differences between crackles can be detected 
using the stethoscope, the features identified have not proved 
reliable in clinical practice where inter-observer variability is 
marked [7.7]. Electronic recordings offer a more precise tool for the 
characterization of crackles, and one study employing time-expanded 
waveform analysis has differentiated between the crackles of 
asbestosis and those of cardiac failure [7.8].

In contrast, the breath sound component of the lung sounds in the 
respiratory diseases in which crackling occurs have received little 
attention. Several factors may have contributed to this situation. 
Firstly auscultation using the stethoscope is less sensitive to the 
low frequency sounds and so, in clinical practice, it is seldom 
IDOSslble to comment on changes in breath sound unless there is a gross 

alteration. Secondly, recording equipment designed for studying 
crackling may selectively filter out lov; frequencies [7.9,7.10].

In this study differences in the lower frequency sounds were 

found to distinguish the recordings into three groups. In view of the 

fact that crackles in the conditions studied have spectral peaks above 
400Hz it is most unlikely that they contributed to the low frequencies 
analysed. Also the energy contained in the crackles is much smaller 
than that of the underlying breath sound. (However it might be 
possible to remove the effect of crackles by using the recent robust
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resistant spectral estimation methods [7.15]») The breath.sound may 
therefore contain diagnostically significant information of a type 
hitherto unsuspected in the diseases studied.

A number of mechanisms might account for change in the low 
frequency lung sounds. The normal breath sound is determined by both 
the physical events within the airways producing an acoustic signal,
i.e. generation, and the modifications by the structure through which 

the sound passes to reach the chest wall (transmission). While the 
site of generation is still uncertain, it is widely accepted that 
transmission through the lung is the major factor resulting in the 
predominantly low frequency of tlie sound heard at tiie chest wall. Many 
factor including flow rates, regional ventilation, lung volumes and 
posture [7.11,7.12] influence the breath sounds in normal subjects. 

Therefore it is likely that the structural and physiological 
abnormalities associated with lung disease account for the alteration 
in the lower frequency sounds irrespective of any adventitious sounds 

produced.
It is realized that in recording a number of individuals there 

will be differences in flow rate. However existing research suggests 
that flow rate affects sound intensity rather than spectral shape. 
Forgacs [7.13] describes the variation of sound intensity with flow 
rate and Banaszak et al [7.14] give evidence to suggest that spectral 

shape does not change with flow rate. However the time varying spectra 
suggest that the spectral shape during the course of a breath cycle is 
related to the mechanics of breathing. Tlie higher frequency components 
of the sound are probably related to lower lung volumes and so an

explanation of the spectral differences in asbestosis in terms of 

reduced lung volume cannot be ruled out.

134



WL L.1 1 ou UI lU

The fact that the recordings were obtained from recordings made 
in a -general ward rather than in a special soundproofed environment is 

also encouraging. If analysis of lung sound signals can be improved, a 
useful contribution might be made to the repetoire of non-invasive 
diagnostic techniques in general.

Finally it is worth noting that the above results were based on 
breath sound of relatively low frequency. These frequencies have been 
ignored since 1929 when Hannon & Lyman [7.16] reported tracings very 
similar to Pig 7.5.
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FIG 7.6(a) Inspiration
Segment numbers correspond to those 
in Fig 75
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FIG 7.6(b) Expiration
Segment numbers correspond to those 
in Fig 7.5
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FIG 7.8 Inspiration
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FIG 7.9(a)
Averaged spectra plotted on a linear scale
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FIG 7.9(b)
Averaged spectra plotted on a log scale
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FIG 7.10
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FIG 7.11
Segment numbers correspond to those in Fig 7.10
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Chapter 8 Conçlus ions

c m c m s i D M s  _ &  s m o E s r i m s  wm m i r u R R  r e s e a r c h

8«1 General Conclusions

Although it is hoped that the research described in this thesis 
reads as a whole, the conclusions are best divided into two sections. 

The new geometrically-based pattern recognition techniques should be 
considered as general research tools whereas the methods developed for 
lung sound signal analysis are for a particular application,

8olnl Pattern Recognition Techniques

This work has extended the application of computational geometric 
techniques to pattern recognition. Some properties of the Gabriel 
graph (GG) and relative neighbourhood graph (RNG) have been derived. 

These have been based on generalizing the definitions of the GG and 
RNG and considering graphs defined by a region of influence. The 
effect of tiie region of influence on the connectivity and planarity of 
the resulting graph are particularly important and the connectivity 
property has allowed the development of a new non-parametric 
clustering technique.

The clustering work is similar in its aims to the earlier work of 
Zahn [8,1] in that it attempts to form clusters according to a visual 
perceptual model for the cluster. However there are some deficiencies 
in the use of the minimal spanning tree (MST) for clustering. The nev; 

clustering method is capable of detecting clusters that are either 
disjoint or separable in terms of point density while overcoming some 
of the limitations of the MST, An important property of the method is
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that the dissimilarity coefficient implied by the technique is 

continuous. The principal conclusion of this part of the work is that 
the RNG and GG are better structures on which to base a visually-based 
clustering method than the MST.

The use of such structures has also allowed the development of an 
interactive tool for studying the inter-relationships between clusters 

and for identifiying the types of cluster found. This aid should give 
the user a greater amount of information on a partition in the 
clustering and hence gain a greater insight into the results. It may 
also be viewed as a method for recovering information from the GG (or 
RNG) that is not used in the clustering.

Results obtained using these methods have been encouraging 
although it must be realized that any clustering technique is limited 
by the appropriateness of .Its underlying assumptions to the data being 
studied. Hence this clustering technique might find a useful place in 

a suite of clustering methods each of which would generate clusters 
according to a different set of assumptions [8,2].

8«1.2 Lung Sound Signal Analysis

This work has shed further light on whether lung sound signals 

could be used in the diagnosis of respiratory disease. In a 
preliminary study comparing three diseases with normals, using 
spectral analysis and pattern recognition techniques, the following 
groups were distinguished: (a) normal subjects, (b) patients with 
fibrosis of the lungs (asbestosis and cryptogenic fibrosing 
alveolitis) and (c) patients with interstitial pulmonary oedema. 
LVidence was found to suggest tiiat these differences were attributable 
to changes in breath sound rather than added sounds. This conclusion
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does have encouraging implications for diagnosis since alteration in 

breath sound had not previously been recognised as important in the 

diseases studied.

Additionally some work was done to investigate ways of improving 

the analysis of lung sound signals. This was to identify sources of 

systematic error in recording and to avoid the use of ad hoc methods. 

The main conclusion of this work was to use better spectral estimates 

by smoothing the periodogram and to normalize the spectral features. 

New software was developed to process the recordings systematically, 

based on the improved methods of analysis, but time did not permit the 

completion of this v/ork.

The ultimate aim of this work would be to develop some sort of 

diagnostic aid and/or screening test for asbestosis. The results so 

far do not exclude this possibility although a considerable widening 

of the research is required to prove that this is m o r e  than 

speculative.

8«2 Suggestions for Furtlier Research

8.2,1 Pattern Recognition Techniques

One area in which there is a need for further research is the 
properties of the GG and RNG in higher dimensions and in non-Euclidean 
geometries. Matula & Sokal [8.3] derived a number of useful properties 

of the planar GG. Knowledge of some of these properties for the RNG 
e.g. the number of edges in a maximal graph would be useful especially 
in higher dimensions.

Another more speculative line of research is to apply the graph
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theoretical techniques to optimization of non-linear mapping 
algorithms. This is proposed in some detail in Appendix 1.

B.2..2 Lung Sound Signal Analysis

One of the long term technical objectives of this work must be to 
provide suitable instrumentation to make acquisition and analysis of 
lung sound a routine matter. When this is done the bulk of the 
research can become clinical.

A major limitation of the work on lung sound has been the 
difficulty of data acquisition v̂ ithout dedicated equipment. Frequently 
during the asbestosis recording programme suitable patients were 
visiting the Royal Infirmary but equipment could not be brought 
together quickly enough to organize a recording. Additionally the long 
time taken to analyse tapes prevented any feedback of results into the 
clinical environment. Wlien compared with direct data logging the use 
of the tape recorder is very cumbersome and time consuming,

A major improvement would be to invest in a microcomputer-based 
data acquisition and analysis unit. Such a unit, if designed with 
suitably simple controls, could allow doctors to make recordings at 
short notice and allow much more rapid data collection, Tlie provision 
of standard analyses e.g, breath sound spectral estimates would 
permit the use of quantitative lung sound analysis in the clinical 
situation, Ihis would probably allow far more insight into lung sound 
from the clinical angle than is possible at present. Sampled data 
could regularly be transferred to a computer at the University for any 
further processing without time being wasted on data logging. Such a 

unit could either be built from scratch or by adapting a standard 
microcomputer. Another difficulty was in persuading outpatients to
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volunteer to be subjects in the experiments,
A number of specific projects naturally arise from the work 

described int this thesis. These can be divided into (A) improving 

existing analysis techniques and (B) furthering clinically orientated 
research into lung sound. In a sense both types of project could work 
hand in hand since progress in improving analysis techniques is best 
judged by its suitability to clinically based research.

These suggestions are listed belov;:- 

A1 Transducers
Very little is currently known about the best way in which to 

design and test lung sound trasducers. One of the major problems is 
the estimation of the acoustic parameters of the chest wall and to 
incorporate this information into future transducer designs. An 

obvious approach would be to study the transmission of sound across a 
sheep's thorax,

A very interesting line of research would be to investigate 
hydrophones. The acoustic properties of the thorax are broadly similar 

to those of water and so hydrophones might be more suitable 
transducers than the microphones used at present,
A2 Signal Stationarity

Spectral estimation techniques frequently assume stationarity of 
the signal. While inspiration and expiration have been carefully 
segmentedf it would be useful to investigate the stationarity of tiie 
signal using techniques discussed in Section 3,6, Ideally this would 
lead to a splitting of the lung sound signal into quasi-stationary 
segments,

Clearly segmentation would have to be considered in some sort of 

hierarchy [8,4], At the top level there is segmentation into
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inspiration and expiration. Below this we require to investigate 
whether an inspiration (or expiration) should be be subdivided for 
spectral analysis. At a low level we require segmentation into breath 
sound and adventitious sounds,
A3 Spectral Estimation

The problem of variation in the length of the breath cycle led 
initially to an ad hoc approach to spectral estimation, A more 
systematic approach avoided the ad hoc solution but still did not 
solve tlie problem of having input data (samples from a breath cycle) 
of differing lengths. This problem could largely be overcome by using 
either the chirp z-transform (CZT) algorithm [8,5] or maximum entropy 
spectral analysis [8,6],

Unlike the usual FFT algorithms? the CZT algorithm may have a 
number of output points that is unrelated to the number of input data 
points. Therefore the CZT algorithm could be used to compute DFTs of a 
fixed resolution while being given input sequences of varying lengths.

Maximum entropy spectral analysis is equivalent to fitting an 
autoregressive model to the data. Since the data length is not 
determined by the order of the model it is clear that this method is 
less impaired by variation in the length of the breath cycle.

Yet another alternative is to seek higher resolution at the lo'w 
frequency end of the spectrum, Oppenheim et al [8.7] describe an FFT 

based method for doing this, however care would need to be taken in 
smoothing a spectral estimate based on this technique.

So far no accurate estimate of the influence of crackles on 
breath sound spectra has been obtained. Recently robust spectral 
estimation methods have been described for excluding impulse-like 
interference from signals,[8.8] , and such a method would solve this 
problem
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In section 6.4,1 the problem of differing lengths of breath cycle 

were discussed, A rather different approach to pattern recogntion of 

lung sound would be to match patterns of different length using 

dynamic time warping [8,9] which is widely used in speech recognlion 

where problems arise because of words being spoken at different rates. 

Itakura [8.10] has shown that linear predictive coding of data matches 

well with dynamic time warping and Montpetit [8.11] has already 

demonstrated linear predictive coding of lung sound.

BI Asbestosis Study
A larger scale recording programme for studying breath sound in

asbestosis has already been completed. This study involves the 

recordings of over 30 individuals with a history of asbestos exposure. 

The aim is to extend work done in the preliminary study and gain 

further insight into the potential use of breath sound in the 

diagnosis of asbestosis.

B2 Studies of Other Diseases
It would obviously be interesting to know whether and how breath 

sound changes in a number of diseases. For example it would be 

interesting to compare asbestosis with other occupational, lung 

diseases. Sarcoidosis while having a broadly similar radiological 

pattern to asbestosis is usually associated with fewer crackles? hence 

it would be interesting to see if there were any differences between 

the diseases in terms of breath sound as well.

B3 Possible Relationship with Lung Volume

It has been suggested that alteration in breath sound in 

asbestosis is caused by a change in filtration of the sound passing 

through the lung. Since asbestosis is a restrictive defect? late 

inspiratory breath sound is likely to be associated with smaller lung
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volumes than with normals. Therefore it would be interesting to study 
spectra at different stages in the breath cycle and see if there is 
any correlation with lung volume. If such a relationship existed it 
might in part account for the spectral differences observed in 
asbestosis.

Al.though this experiment appears to be physiological in its aims? 
it is felt that it would be a useful test of the diagnostic value of 
breath sound in asbestosis. If there is a strong correlation between 
breath sound spectra and lung volume or transpulmoary pressure? there 
is little point in measuring breath sound since the same information 

could be obtained from pulmonary function tests. Tî.ie exigeriinent would 
probably have to be based on breathing manoevres similar to those used 
by Nath & Capel [8.12].
B4 Bronchial Breathing

Until recently bronchial breathing was the only recognised case 
of breath sound changing with respiratory disease. However virtually 
no work has been done to quantify these changes. It would be 
interesting to examine changes in breath sound during the development 
and disappearance of bronchial breathing.
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Appendix 1 Nonlinear Mapping

APPÎJM)IX 1

PROPOSAL FOR A N m  NONLlMEfiR MAPPING AI/30RITBM

Mapping algorithms are commonly used in exploratory data 

analysis. Such methods may be either linear or nonlinear. In turn the 
nonlinear methods may be either iterative or noniterative. Here we 
propose a new method of optimizing iterative nonlinear mappings. The 
term 'nonlinear mapping' (NLM) is normally reserved for techniques 
similar to that of Sammon [AIJJ ? whereas the term 'multidimensional 
scaling' (MDS) is usually restricted to methods following Shepard 
[Al,2?Alc3] and Kruskal [A1.4?A1.5].

Let us consider a point set P in h-dimensional space (h > 2)? we 
require to map the point set into a 2-dimensional configuration which 
in some sense preserves the structure of the data. Let d’̂j denote the 

distance between points p̂  and Pj in the h-dimensional space and let 
d:̂  denote tlie corresponding 2-dimensional distance.X J

In designing a nonlinear mapping algorithm four questions are 
important [A1.6] :

(1) Which distance or dissimilarity measure should be used ?
(2) How do we choose an error function E ?
(3) How do we obtain an initial configuration prior to 

optimization ?
(4) When do we stop the optimization ?
Here we are only concerned with the choice of E since that 

determines the approach to optimization. Chien [Al.6] has shown that 
with some data sets the choice of a good initial configuration can 
improve tlie convergence rate of the mapping.
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The 2-dimensional representation is obtained by minimizing the 
error function E. Chien [Al,6] lists a number of different error 
functions which emphasize different aspects of data structure.

These functions are all in the form
E = f (e' -) for all i?j •- 1?...?N i/j and where e -• ~ (dî-i - d*^)

-'-J -^J -^J •*-J

E is therefore a function of 2N variables (the coordinates of the 2- 
dirnensioiial representation) and contains N(N-l)/2 terms.

A major problem in optimizing E is computation time. Chang & Lee 
[A1.7] describe a heuristic method for reducing computation time known 
as the 'frame' algorithm. Hiis chooses a frame of M points where M <<
N then maps the data in two stages. Initially a 2-dimensional
representation is.found for the frame? then the remaining (N-M) points 
are positioned using the frame as a reference. They also propose
optimizing the error function one term at a time by the 'relaxation
method'. This results in a considerable reduction in computation time 
but at a cost of less accurate representation.

The disadvantage of the frame algorithms is that the reduced set 
of terms that are optimized is not chosen systematically. Tliis results 
in a loss of structural information if the choice of frame is poor.

Consider a generalization of the error function
E - f(ejj) for all i,j where (p̂ rpj) 6 G

where G is a set of point pairs. Each of the two stages of the frame 
algorithm fit into this framework where only the inter-relationships 
determined by the frame are listed in G for each stage. In fact we may 
regard G as the edge set of a graph. The expression of E used by 
Sammon [Al.l] is then based on the complete graph The description 
of the error function in terms of a graph immediately suggests ar, 
alternative approach to error functions which is outlined below.
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It is to be assumed that to some extent users are interested in 
local data. In other words the configuration of a particular point 
with respect to its neighbours is more important that its relationship 
with individual points in distant clusters. For example in Fig Al.l we 
are more likely to be interested in the relationship of b to d than 
that of b to e. So let us assume that we require a point to be well 
represented in relation to its immediate neighbours at a low level* 
Following Terekhina [A1.8] ? Chien [Al.6] lists a number of error 
functions including ones that emphasize local structure. However local 

structure is interpreted simply as short distances? and all interpoint 
distances are included in the error function. This interpretation 
neglects important inter-cluster relationships (e.g. in Fig Al.l the 
relationship of c to e is an important ‘local' relationship even 
although d^^ is relatively large).

Thus a good approach to optimizing an NLM would seem to be to 
combine the local and graph approaches by choosing a suitable graph. 
Two graphs are obvious candidates - the Gabriel graph and the relative 
neighbourhood graph. Both these graphs extract a local structure from 
an h-dimensional data set? but the edges are not resticted to just 
short distances. If we choose a suitable graph tlie relaxation method 
can then be used to find a 2-dimensional configuartion.

We could simply use the RNG or GG directly. The expected number 
of edges in an h-dimensional GG is 2̂ . The expected number of edges in 
an h-dimensional RNG is not known but will be substantially less. A 

useful constraint is that a point in h-dimensional space may be 
uniquely specified in terms of its distance to (h+1) neighbours.

We should then seek an 'augmented' RNG? RNG*̂  that satisfied that 
constraint for each point. Therefore the problem of finding a new
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mapping will partly be that of suitably augmenting the RNG, It is 

fairly easy to top up the RNG with edges so that each point has (h+1) 
or more neighbours? however if there is a cluster structure to the 
data a cluster might be connected to the rest of the data by only one 
or two RNG edges. Hence v;e might also want to find the major clusters 
in the data first (just a few!) and then sure that each cluster is 

connected to (h+1) neighbouring clusters, /Another approach to finding 
a 2-dimensional representation is to ensure that the augmented graph 
connects a point to at least 3 neighbours to yield a unique 2- 
d imens iona1 con figuration.

Should this approach succeed there might also be an application 
of the RNG to the MDS,of a point set. Furthermore the graph might be 
the key to 'recursive applicability' of the mapping [A1.6],
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