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SUMMARY

An improved method of purifying the arom complex from crassa 

has been devised. This procedure takes advantage of the t ig h t binding 

of the arom complex to blue-dextran sepharose and y ie lds around 3mg of 

pure enzyme from lOOg of lyoph ilised  crassa mycelia (30-35%).

Limited p ro teo ly sis  has been used to probe the domain structu re  

of the arom complex. The shikimate kinase a c tiv ity  of the complex is  

very suscep tib le  to in ac tiv a tio n  by p ro teo lysis and is  probably located 

on the surface of the arom complex. A 69000 molecular weight domain 

containing both the shikimate dehydrogenase and dehydroquinase 

a c t iv i t ie s  of the  arom complex has been characterised  by a combination 

of gel electrophoresis in  the presence of IM urea, 8 m urea and SDS 

and by su b s tra te -lab e llin g  of the dehydroquinase a c t iv e -s i te . The 

shikimate dehydrogenase-dehydroquinase p ro teo ly tic  fragment of the 

arom complex can regain shikimate dehydrogenase a c tiv ity  a f te r  

polyacrylamide gel e lectrophoresis in  the presence of 8 M urea. This 

domain of the arom complex can refo ld  in  the absence of the remainder 

of the arom polypeptide. Under the same conditions shikimate 

dehydrogenase a c tiv ity  was not regained from the arom complex a f te r  

polyacrylamide gel electrophoresis in the presence of 8 M urea.

Evidence has been obtained th a t a p ro teo ly tic  fragment of molecular 

weight 1 1 0 0 0 0  is  produced from the N-terminal region of the arom 

polypeptide and may catalyse both the dehydroquinate synthetase and 

EPSP synthetase reactions of the complex.

• Chemical m odification of the arom complex with formaldehyde/ 

sodium borohydride inac tiva ted  both the shikimate dehydrogenase and



dehydroquinase a c t iv i t ie s  of the complex. Shikimate pro tected  the 

shikimate dehydrogenase but not the dehydroquinase a c tiv ity  against 

inac tiv a tion  by reductive a lk y la tion . This and other evidence 

ind icated  th a t the shikimate dehydrogenase and dehydroquinase 

a c tiv e -s ite s  are sp a tia lly  d is t in c t .
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CHAPTER 1

INTRODUCTION

1, The organisation of the enzymes of the early  common pathway of

aromatic amino-acid biosynthesis

In b acteria  and in  p lants aromatic amino-acids are synthesised 

from phosphoenolpyruvate and D-erythrose 4-phosphate via the common 

interm ediate chorismic acid (Fig. 1). The s ta te  of aggregation of 

five of the enzymes of th is  early  common pathway of aromatic amino- 

acid b iosynthesis, those responsible for the overall conversion of 

3-deoxy-P-arabino-heptulosonic acid  7-phosphate into  5-enoylpyruvoyl- 

shikimate 3-phosphate, was studied in  a number of species of bacteria  

and fungi by u ltracen trifug a tion  in  sucrose density gradients (Giles 

e t  a l ,  1967; Berlyn and G iles, 1969; Ahmed and G iles, 1969). In 

crude ex tracts of six  d iffe re n t b acteria  (Table 1) these a c t iv it ie s  

were found to be separable by sucrose density gradient cen trifugation  

(Berlyn and Giles, 1969) whereas in  six  species of fungi the five 

a c t iv it ie s  were recovered in  the same ammonium sulphate frac tion  and 

sedimented together in  sucrose density  gradients (Ahmed and G iles, 

1969), The enzyme a c t iv it ie s  in  a further species of fungus, 

Neurospora c rassa , had previously been shown to sediment together in 

sucrose density gradients (Giles e t  a l , 1967) the sedimentation 

coeffic ien ts for a l l  the fungal species being sim ilar (Table 2) 

indicating  a molecular weight around 230,000 for a l l  of these arom 

enzyme aggregates.

Genetic studies o f the organisation of the genes coding for the 

five associated a c t iv it ie s  of the early  common pathway showed them to 

occur as a gene c lu ste r in  crassa (Gross and Fein, 1960; Giles 

e t  a l , 1967) and to be transcribed as a single polycistronic mRNA
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Table 2 The sedimentation co effic ien ts ts„_ ) and molecular
2 0 , w

weights of the aromatic synthetic enzyme of fungi.

Data of Ahmed and Giles (1969) except th a t fo r crassa 

(Giles e t  a l ,  1967)

Fungus S« molecular weight
2 0 , w

X lo '^

Rhizopus
sto lo n ife r

Phycomyces 
n itens

Absidia
glauca

Aspergillus
nidulans

Ustilago
maydis

Neurospora
crassa

11.3 232

1 1 . 2  228

11.6 242

10.8 217

C oprinus ^.0.9
lagopus 220

10,6  211

11.3 200



Table 3 The order of the genes of the arom gene c lu s te r . The

genes are l is te d  from the 5' end of the c lu ste r

Gene Enzyme
Step in  pathway 

(see Fig. 1)

Arom 1 Shikimate dehydrogenase

Arom 9 Dehydroquinase

Arom 5 Shikimate kinase

Arom 4 EPSP synthetase

Arom 2 Dehydroquinate synthetase B
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(Case and G iles, 1968). The order of the genes in the c lu ste r 

(Table 3) was f in a lised  by Rhines e_t ^  (1969) ,

2. P urifica tion  of the arom complex from Neurospora crassa

The f i r s t  reported p u rif ica tio n  of the arom complex of N_̂  crassa 

was th a t of Burgoyne ab (1969). Equilibrium cen trifugation  gave

a molecular weight of 231,000 for the complex and, although gel 

electrophoresis in  the presence of sodium dodecyl sulphate indicated 

a single subunit size of around 1 0 0 , 0 0 0 , equilibrium centrifugation  in  

guanidine hydrochloride revealed a heterogeneous preparation with 

species of molecular weights from 29,000 to 120,000.

Jacobson ab (1972) studied the conditions under which the arom 

aggregate d issociated  and found d issocia tion  to be favoured by high pH, 

low ionic strength  and high temperature. Jacobson e_t a i (1972) 

p u rified  an arom aggregate of molecular v/eight 230,000 which could be 

d issociated to y ie ld  a number of lower molecular weight active species. 

On the basis of th e ir  re su lts  on the d issocia tion  of the arom aggregate 

they estimated th a t a minimum of four polypeptide chains were present 

in the complex.

A d iffe ren t method of purifying the arom complex was devised in 

another laboratory (Gaertner, 1972) . The molecular weight of the 

complex pu rified  by th e ir  procedure was measured by sedimentation 

equilibrium centrifugation  and found to be 290,000. The pu rified  

complex, although homogeneous on non-denaturing gel electrophoresis, 

showed four ' subunits ' of molecular weights 54,000, 63,000, 84,000 

and 95,000 on SDS gel electrophoresis .
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In the same laboratory Gaertner and Cole (1976) iso la ted  the 

arom complex by a d if fe re n t procedure and showed th a t the p u rified  

complex was p ro teo ly tic a lly  degraded on storage. Immediately a f te r  

p u rifica tio n  the complex was homogeneous on non-denaturing gel 

electrophoresis but showed two major bands, a t  molecular weights of 

150,000 and 50,000, and many less prominent bands on SDS gel e lec tro ­

phoresis. On storage of the complex SDS gel electrophoresis showed 

the loss of the 150,000 molecular weight polypeptide and the production 

of a number of lower molecular weight species. The single band observed 

on non-denaturing gels of fresh ly  p u rified  complex was also lo s t  and 

replaced by a number of more rap id ly  migrating p ro te in s . The previous 

observations of m ultiple subunits of the arom complex could then be 

explained as a re s u lt  of p ro teo ly sis  during p u rifica tio n , however, the 

actual structu re  of the arom complex, whether a 't r u e ' multienzyme com­

plex or a m ultifunctional p ro te in , remained unclear.

Lumsden and Coggins (1977) devised a rapid method for purifying 

the arom complex which paid due heed to the problems of p ro teo lysis 

during p u rif ic a tio n . Precautions, the use of a DEAE-cellulose column 

under conditions in  which the arom complex does not bind but a number 

of active crassa proteases do and the maintenance in  the buffers 

of protease in h ib ito rs  a t  a l l  times, were taken to minimise p ro teo ly sis . 

During the preparation three of the enzymes of the arom complex, 

shikimate dehydrogenase, shikimate kinase and dehydroquinase, were 

shown to co-purify with a constant a c tiv ity  r a t io .  The purified  

complex showed a sing le  band on both non-denaturing gel electrophoresis 

and SDS gel e lectrophoresis, the subunit molecular weight being 

165,000. From the re su lts  of cross-linking and glycerol density
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gradient cen trifugation  experiments i t  was concluded th a t the enzyme 

was a dimer of s im ilar, and probably id e n tica l, polypeptide chains.

Gaertner and Cole (1977), using the p u rif ica tio n  procedure of 

Gaertner and Cole (1976) but including protease in h ib ito rs  in  the 

buffers used, concluded th a t the arom complex was a dimer of polypeptide 

chains of 150,000 molecular weight.

Both se ts of authors (Lumsden and Coggins, 1977 and Gaertner and 

Cole, 1977) indicated th a t genetic evidence favoured the presence of 

only one type of polypeptide chain in  th e arom complex.

The d ifference in  the subunit molecular weight reported by the 

two groups (Lumsden and Coggins, 1977; Gaertner and Cole, 1977) may 

be due e ith e r  to d ifferences in  the SDS gel system and marker p ro teins 

used or to p ro teo lysis of the enzyme prepared by Gaertner and Cole 

(1977). In e ith e r  case the higher estimate (Lumsden and Coggins, 1977) 

of 165,000 seems more re lia b le .

In a subsequent paper Lumsden and Coggins (1978) proved the arom

complex to  be composed of a sing le  type of polypeptide chain. P urified

complex showed a single band on polyacrylamide gels containing 8 M urea

] ^
and peptide mapping of arom complex labelled  with *~C on e ith e r 

cysteine or methionine residues revealed the predicted number of spots 

in  each case.

3, P oten tia l advantages of organised enzyme complexes

A number of p o ten tia l advantages of organised enzyme systems 

when contrasted with sequences of non-interacting enzymes have been 

proposed (G.R. Welch, 1977; F.H. Gaertner, 1978), The association  

of two or more enzymes may lead to conformational changes occurring
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in  the proteins such th a t the c a ta ly tic  e ffic ien c ies  of the associated 

enzymes are increased re la tiv e  to the unassociated enzymes. I f  the 

a c tiv it ie s  of the enzymes in  a multienzyme complex or in  a m ulti­

functional p ro tein  are sequential on a metabolic pathway the product of 

one reaction  may be channelled in to  the a c tiv e -s ite  of the next enzyme. 

Substrate channelling may have a number of functions. P o ten tia lly  

reactive interm ediates could be protected w hilst passing from one 

a c tiv e -s ite  to the next by being retained  within the enzyme complex. 

D ifferent metabolic pathways may u t i l i s e  the same interm ediate, in  

these cases i t  may be advantageous to compartmentalise the pathways thus 

preventing competition for a common pool of su bstra te . Such compart- 

m entalisation could be effected  i f  one, or both, pathways were catalysed 

by enzyme complexes and substrate-channelling between the enzymes of 

the complexes occurred. A th ird  proposed e ffe c t of substra te  channelling 

is  to  reduce the time elapsing on sh iftin g  from one steady s ta te  ra te  

to another, the tra n s ien t time. The tran s ien t time is  reduced since 

channelling removes the necessity  for each substra te  in  the reaction 

sequence to come to i t s  new equilibrium concentration in  the so lution  

by preventing exchange between enzyme-complex-bound and solution 

populations of su b stra te .

Coordinate control, e ith e r activa tion  or in h ib itio n , of more than 

one a c tiv ity  of an enzyme complex may occur, such control requires 

effec to r molecule binding to  a single s i te  and is  mediated by 

conformational changes transm itted through the complex.

A f in a l p o ss ib ility , applying predominantly to m ultifunctional 

p ro te in s , is  th a t the coordination of synthesis and aggregation of the 

enzymes of the complex may be sim plified  i f  the enzyme complex is
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encoded in  a single gene, transcribed  as a single mRNA and tran s la ted  

as a single polypeptide.

4. Properties of the arom enzyme complex

The arom enzyme complex has been claimed to ex h ib it a number of 

novel properties proposed for enzyme complexes (Gaertner _et a l , 1970; 

Welch and Gaertner, 1975; Welch and Gaertner, 1976). When considering 

the re su lts  of these studies i t  must be borne in  mind th a t the arom 

complex used had been only p a r tia l ly  p u rified  and had probably been 

subject to p ro teo ly tic  a ttack . I t  is  not c lear whether these properties 

are shared by in ta c t  p u rified  arom complex.

Gaertner e_t aA (1970) studied the ra te  of production of an th ran ila te  

from erythrose 4-phosphate and phosphoenolpyruvate and from the in te r ­

mediate shikimate under conditions in  which the arom complex was ra te -  

lim iting . Their re su lts  showed the arom complex to more rapidly 

catalyse the formation of EPSP from DAHP than from shikimate. I t  also 

appeared th a t, whereas the addition  of shikimate to assays containing 

su b sa tu ra tin g  concentrations of erythrose 4-phosphate had l i t t l e  or 

no e ffe c t on the ra te  of production of an th ran ila te , the addition of 

sub-saturating  concentrations of erythrose 4-phosphate to assays con­

taining  sa tu ra ting  shikimate concentrations greatly  increased the 

ra te  of production of an th ran ila te . Gaertner e t  (1970) suggested 

th a t these observations were b est explained i f  substra tes were 

channelled through the complex and the ra te  of reaction  of 'complex- 

bound' substra tes was higher than th a t of external substra tes due to 

a slow ra te  of entry of ex ternal substrates into  the a c tiv e -s ite s  of the 

complex.



Welch and Gaertner (1975) compared the ra te  of the overall 

reaction  catalysed by the arom complex (conversion of DAHP to EPSP) 

with the predicted ra te  of reaction  for a sequence of five unassociated 

enzymes, with the same k in e tic  constants, derived from a computer model 

of such a system. I t  was claimed th a t the arom complex s ig n ifican tly  

reduced the tran s ien t time, a measure of the delay between in i t ia t io n  

of the reaction and the attainm ent of a constant ra te  of reaction , 

when contrasted with the computer sim ulation. In addition to the 

cautionary note above concerning the purity  and s tru c tu ra l in te g rity  of 

■the arom complex used in  th is  work i t  should be noticed th a t the 

k in e tic  parameters used in  the computer model of Welch and Gaertner 

(1975) were those obtained with substrates which were supplied 'e x te r­

n a lly ' to the complex; i f ,  as suggested by Gaertner ^  ^  (1970), 

the ra te  of en'try of these substra tes into the complex may be slow, 

a comparison between the experimental data and the computer simulation 

may be invalid .

A fu rther novel k in e tic  property claimed for the arom complex 

is  th a t of coordinate ac tiva tion  by the f i r s t  subs-trate of the complex, 

DAHP (Welch and Gaertner, 1976). These authors studied the e ffec t 

of pre-incubation of the arom complex with DAHP on the k ine tic  

properties of the enzymes of the complex. In general the values

of the enzymes were unaltered by preincubation, however, the K^'s of 

a l l  the enzymes except shikimate kinase were lowered on pre-incubation 

with DAHP. The concentration of DAHP required for half-maximal 

activation  was around ImM and so did not appear to be caused by 

DAHP binding to the a c tiv e -s ite  of the f i r s t  enzyme. The coordinate 

activation  of the arom complex was discussed in the lig h t of previous 

proposals (Giles e t a^, 1967; Gaertner and De Moss, 1969) th a t the 

complex might e x is t to channel substrates down "the biosynthetic
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pathway thus compartmentalising the anabolic, arom complex, pathway and 

a catabolic pathway in  ^  crassa in  which a dehydroquinase reaction  

step also occurs. Coordinate activation  caused the shikimate kinase 

ac tiv ity  to become ra te -lim itin g  for the overall reaction  catalysed 

by the arom complex and could lead to  a breakdown of channelling of 

shikimate which would then become available to the catabolic pathway.

A short report (Vitto and Gaertner, 1978) has been made concerning 

the su scep tib ility  of the arom complex to p ro teo ly sis . The shikimate 

kinase ac tiv ity  of the complex was the most susceptible to p ro teo lysis 

by trypsin , chymotrypsin or a crassa protease preparation. DAHP 

protected each a c tiv ity  against pro teolysis to some extent. These 

re su lts  v/ill be discussed more fu lly  la te r  in  re la tio n  to date

presented in  th is  th e s is .

5. The mechanisms of the reactions of the aromatic synthetic

enzymes

Dehydroquinate Synthetase

The dehydroquinate synthetase ac tiv ity  present in  ex trac ts of 

E. co li was studied by Srinivasan e t  a^ (1963), NAD was shown to be 

a cofactor for th is  enzyme since no a c tiv ity  was detected in the 

absence of NAD or in  the presence of NAD'ase, Co**”*’was also required 

for c a ta ly tic  a c tiv ity . A hypothetical reaction  scheme was 

suggested by Srinivasan ^  ^  (1963) and subsequent work analysed in  

the l ig h t of th is  mechanism (Adlersberg and Sprinson, 1964; Rotenberg 

and Sprinson, 1970). Rotenberg and Sprinson (1970) found th a t 

tritiu m  incorporated a t  C-7 of DAHP was fu lly  re ta ined  in 3-dehydro­

quinate thus a t  no poin t in  the reaction  were the protons on C-7 of
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DAHP subject to  exchange with the solvent excluding ketonisation  of 

the postulated enol interm ediate IV (see Fig. 2). Further studies 

of the mechanism of tlie dehydroquinate synthetase reaction  were made 

by chemical ch arac terisa tion  of interm ediates formed during the reaction  

using large amounts of pure enzyme (Maitra and Sprinson, 1978). Maitra 

and Sprinson (1978) proposed the mechanism shown in  Figure 2, th is  

scheme is  consisten t with the observations of k in e tic  isotope e ffec ts  

on incorporation of tritiu m  a t  C-5 of DAHP (Maréchal and Azerad, 1976; 

Rotenberg and Sprinson, 1978) . A fu rther po in t concerning the ste reo ­

chemistry of the reaction  i s  known. The hydride tran sfe rs  to  NAD 

and from NADH occur with the same s te reo sp ec ific ity  (Maréchal and 

Azerad, 1976) since tr itiu m  incorporated a t  C-5 of DAHP is  re ta ined  a t  

C-4 of dehydroquinate.

3-Dehydroquinase

The stereochemistry of the 3-dehydroquinate hydrolyase (dehydro­

quinase) reaction  was determined by Hanson and Rose (1963). 

3-Dehydroshikimate was converted enzymatically to quinic acid by an 

ex trac t of A^ aerogenes containing dehydroquinase and quinate 

dehydrogenase in  t r i t i a ted  water. The t r i t i a ted quinic acid formed 

was chemically converted to c i t r i c  acid and th is  then trea ted  with 

aconitase (Fig. 3). After incubation with aconitase e ssen tia lly  

a l l  the tritium  present in  the c i t r ic  acid was removed in to  the 

water and, since the s te reo sp ec ific ity  of the aconitase reaction  and 

the stereochemistry of quinic acid were known, the dehydroquinase 

reaction  was deduced to involve a syn elim ination of water.

The mechanism of the Eĵ  co li dehydroquinase was studied by 

Butler e t  a l (1974). These authors showed th a t the enzyme was
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inh ib ited  by sodium borohydride only in  the presence of the su bstra te , 

dehydroquinate, ind icative of a S ch iff 's  base interm ediate in  the 

reaction . A mechanism accounting for the stereochemistry of the 

elim ination was proposed on the basis of the S ch iff 's  base inteinnediate 

(Fig. 4). Abstraction of the hydrogen from C-2 of dehydroquinate 

is  f a c i l i ta te d  by the electron-withdrawing properties of the imine 

interm ediate CD and the carbanion (II) formed s ta b ilis e d  by formation 

of an eneamine interm ediate (III) . From th is  interm ediate a fa c ile  

pathway to the product imine (iv) e x is ts . Hydrolysis of the imine 

between product and enzyme then y ie lds free dehydroshikimate and 

enzyme.

Shikimate Dehydrogenase

Shikimate dehydrogenase from both co li (Dansette and Azerad,

1974) and Pisum sativum (Davies e_t a l , 1972) tran sfe r hydrogen to 

and from the A-face of the nicotinamide ring of NADP.

On the basis of studies with competitive in h ib ito rs  of shikimate 

dehydrogenase, which were p o ten tia l analogues of shikimate, and of 

the varia tion  of k ine tic  parameters with pH (Dennis and Balinsky,

1972) i t  was proposed th a t a group of pK  ̂ 9.6, probably a lysine 

residue, binds the carboxylate of shikimate and th a t a group with 

a pK  ̂ of 8.6 binds the 4-hydroxyl function of shikimate a t  the ac tive- 

s i te  of the pea enzyme. Further k inetic  and isotope exchange 

studies of the enzyme from Pisum sativum showed the enzyme to 

exhib it an ordered mechanism binding NADP p rio r to shikimate (Cleland 

e t a l , 1971).

EPSP Synthetase

Levin and Sprinson (1964) demonstrated th a t 5-enolpyruvyl shikimate
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3-phosphate (EPSP) was formed when shikimate 3-phosphate and phospho­

enolpyruvate were incubated with an ex trac t of c o l i . A mechanism 

for the addition of the enolpyruvyl residue to shikimate phosphate was 

proposed (Levin and Sprinson, 1964) (Fig. 5),

The EPSP synthetase reaction  was studied using phosphoenolpyruvate 

18
labelled  with O in  the enol e s te r  oxygen and by performing the 

reaction  in  t r i t i a t e d  and in  deuterated water (Bondine11 ^  a l , 1971) 

The phosphate released from the labelled  phosphoenolpyruvate contained 

a l l  the present showing C-0 cleavage of the phosphate e s te r to 

occur. Following incubation of shikimate phosphate and phosphoenol­

pyruvate with enzyme in  t r i t i a t e d  water i t  was found th a t the EPSP 

formed had incorporated tritiu m . No tritium  was incorporated into 

phosphoenolpyruvate on incubation with enzyme in  the absence of 

shikimate phosphate. After reaction  in deuterated water NMR spectros­

copy of the re su ltin g  EPSP showed th a t the deuterium incorporated was 

localised  in , and equally d is trib u ted  between, the two vinyl methylene 

p osition s. Bondinell e t  ^  (1971) noted th a t these re su lts  were 

consisten t with the proposed mechanism of Levin and Sprinson (1964) 

and fu rther suggested th a t the methyl group of the interm ediate was 

free to ro ta te  in  order to  explain the equal incorporation of 

deuterium in  the vinyl methylene positions of EPSP.

6 . The structu re  and evolution of m ultifunctional pro teins

Current theories of p ro te in  s tructu re  are based on the concept of 

the domain. The domain is  a folding u n it of p ro tein  s tru c tu re  and 

each domain performs a function, fo r example, nucleotide binding or 

c a ta ly s is . Domains have been recognised in  the pyridine-nucleotide



linked dehydrogenases (L iljas and Rossman, 1974) and i t  has been 

proposed th a t the very sim ilar nucleotide-binding domains of these 

dehydrogenases may have evolved from a simple ancestra l nucleotide- 

binding p ro te in . S im ilarly m ultifunctional pro teins are believed to 

be composed of domain stru c tu res  (Kirschner and Bisswanger, 1976).

M ultifunctional enzymes may have evolved by a process of gene 

fusion (Bonner a l , 1965) such th a t the c a ta ly tic  a c t iv it ie s  which 

were previously p roperties of separately  iso lab le  enzymes came together 

on a single polypeptide chain. I f  th is  is  the case then the con­

formation of th a t region of the m ultifunctional enzyme catalysing the 

same reaction  as the previously monofunctional enzyme is  presumably 

s im ilar. M ultifunctional enzymes can be thought of as a number of 

individual pro teins linked by sequences of polypeptide coded for by 

the previously in te r -c is tro n ic  regions of the genome (Kirschner and 

Bisswanger, 1976; Stark, 1977). I f  m ultifunctional enzymes do indeed 

a rise  in  th is  manner th a t the a c t iv it ie s  thus associated are often 

sequential in  a metabolic sequence, as in  the arom and fa tty  acid 

synthetase complexes, is  not d irec tly  explicable. I t  seems lik e ly  

th a t other processes as well as gene fusion are a t  work in  these cases. 

Such a process could be th a t of gene duplication. The substra tes 

of enzymes in  a metabolic pathway are sim ilar and sim ilar binding 

processes to each enzyme may occur thus each enzyme could have evolved 

from an ancestral ' substrate-binding p ro te in '.  The s tru c tu ra l gene 

for the ancestra l p ro tein  would be duplicated a number of times and 

each copy of the gene would evolve in to  one coding for an enzyme in  

the currently  observed metabolic ro u te . I f  the duplicated genes 

remained linked the evolved enzymes would be carried  on a m ultifunctional
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polypeptide. This model is  consisten t with the idea of the m ulti­

functional enzyme being constructed from a number of domains each 

catalysing one of the reactions of the complex and joined by spacer 

regions of polypeptide which are not necessarily  structured . Such a 

gene-duplication model of m ultifunctional enzyme evolution is  analogous 

to th a t proposed by Buehner e t  a l  (1973) for the evolution, from an 

ancestra l nucleotide-binding p ro te in , of the nucleotide binding domains 

of several NAD -linked  dehydrogenases.

7. The study of m ultifunctional enzymes by lim ited p ro teolysis

Native en2:yraes tend to be more re s is ta n t to  p ro teo lysis than de­

natured p ro te ins, thus the tig h tly  folded domains of m ultifunctional 

enzymes may be considerably more re s is ta n t to p ro teo lysis than the 

'spacer* sequences of polypeptide and may, therefore, be separable 

from the remainder of the p ro tein  by proteolysis (Fig. 6). After 

separation of the domains of a m ultifunctional enzyme by p ro teo lysis 

they may re ta in  the specific  folding ch a rac te ris tic s  they had within 

the native enzyme, becoming analogous to normal monofunctional enzymes, 

and i t  may be possible to ascribe any change in  th e ir  c h a rac te ris tic s , 

for example the response to  e ffec to r molecules, to a loss of in te r ­

action between the domains of the m ultifunctional enzyme.

Limited p ro teo lysis may also be used as a probe for conformational 

changes in  enzymes (C itr'i, 1973) since on binding small molecules the 

p ro tein  may become more or less susceptible to p ro teo ly sis . I t  is  

usually more reasonable to ascribe changes in su scep tib ility  to pro­

teo ly sis  to conformational changes in the pro tein  than to physical 

p ro tection  of la b ile  bonds by the small molecule ligand (Markus, 1965) ,
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I t  was asserted  above th a t one p o ten tia l mechanism for the 

evolution of m ultifunctional enzymes was by gene fusion. Such a 

process has been observed involving two of the genes of the h is tid in e  

operon in  Salmonella typhimurium (Yourno ejt a l , 1970) , The h is  D gene

of S_2. typhimurium codes for the enzyme h is tid in o l dehydrogenase (HDH) 

and the h is C gene for imidazolylacetolphosphate : L-glutamate amino­

transferase (AT) (Fig, 7). A mutant s tra in , TR 1024, was found in  

which the h is D and h is C genes had become fused by two fram eshift 

mutations near to , but on e ith e r side o f, the in te rc is tro n ic  region 

causing 'the normal punctuation signals between the two genes to be read 

out of frame and thereby not recognised (Fig, 8). The product of the 

fused genes was characterised  (Yourno e^ a^, 1970). on p u rif ic a tio n  

of the HDH a c tiv ity  i t  was found th a t the AT a c tiv ity  copurified , only 

one band, of molecular weight 88,000, being present in  SDS gels of the 

p u rified  enzyme. Neither gel f i l t r a t io n  nor chromatography on DEAE- 

sephadex resolved the HDH and AT a c t iv i t ie s ,  although in  both cases 

more than one peak of each a c tiv ity  was detected. The subunit molecular 

weights of wild-type HDH and AT are , respectively , 49,000 and 40,000 

so the molecular weight of 88,000 determined for the b ifunctional HDH-AT 

enzyme agreed w ill with th a t expected of the product of fusion of the 

two adjacent genes. Further proof th a t the b ifunctional HDH-at enzyme 

was a product of fusion of the genes for each a c tiv ity  was sought by 

peptide mapping of the p u rified  p ro te in . Tryptic peptide maps of 

the b ifunctional enzyme were the sum of maps of the individual wild- 

type enzymes. Amino-acid analyses of peptides derived from the HDH 

(four peptides) and the AT (four peptides) enzymes were compared with 

the re levan t peptides derived from the b ifunctional enzyme, in  a l l  

cases the peptides were of id en tica l amino-acid composition. No gross



difference in  primary stru c tu re  is  present in  the b ifunctional enzyme 

when compared with the sum of the two individual wild-type enzymes.

The occurrence of th is  mutant b ifunctional enzyme demonstrates 

th a t gene fusion is  a p lausib le  mechanism for the evolution of a t  le a s t  

some m ultifunctional enzymes. The mutant enzyme not only re ta ined  the 

a b il i ty  to catalyse both reac tions, and so must be able to fold  in  

such a way as to form the two a c tiv e -s ite s , but could also aggregate 

to form high molecular weight oligomers.

An in te re s tin g  extension of the work on the mutant HDH-AT b ifunct­

ional enzyme was a study of i t s  s tructu re  by lim ited p ro teolysis (Kohno 

and Yourno, 1971). The b ifunctional enzyme shows m ultiple bands on 

non-denaturing gel e lectrophoresis , re flec tin g  d iffe ren t s ta te s  of 

aggregation, which are not read ily  in terconvertib le ; a p u rified  form 

of one of these was studied by lim ited pro teolysis with trypsin .

The AT a c tiv ity  of the b ifunctional enzyme was very sensitive  to 

try p tic  p ro teo ly sis , the HDH a c tiv ity  being considerably more stab le  

in th is  respect. This re s u l t  pa ra lle led  work on the native mono­

functional enzymes suggesting the conformation of the domains of the 

m ultifunctional enzyme to be sim ilar to those of the individual 

monofunctional enzymes. Limited p ro teolysis of the bifunctional 

enzyme produced a main fragment of molecular weight 45,000 on SDS gel 

electrophoresis, close to  the subunit size of native hdh (49,000),

Gel f i l t r a t io n  of trypsin-proteolysed b ifunctional enzyme gave a 

molecular weight of 125,000 for the HDH fragment, considerably 

g reater than th a t of native enzyme ind icating  the presence of non- 

covalently bound peptides remaining associated with the HDH fragment 

a f te r  p ro teo ly s is .
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The re su lts  of lim ited p ro teo lysis of th is  mutant b ifunctional 

enzyme are consisten t with the presence of a two domain s tru c tu re , one 

domain catalysing the HDH reaction  and the other the AT reaction .

Each domain folds in  a conformation sim ilar to th a t of the native, 

monofunctional, enzymes,

A study of the b ifunctional enzyme, aspartokinase I - homoserine 

dehydrogenase I (AK - HSDH) (Fig. 9) of E. co li by lim ited p ro teo lysis 

yielded information on both the domain structu re  of the enzyme and 

the location of the binding s i te  for the in h ib ito r, threonine (Veron 

e t  a l ,  1972). In th is  work four proteases, chymotrypsin, papain, 

trypsin  and su b ti l is in , were found to give the same r e s u l t s . On 

p ro teolysis the AK a c tiv ity  was lo s t  whereas the HSDH ac tiv ity  was 

re la tiv e ly  s tab le , moreover, although a t  a l l  times the AK a c tiv ity  

remaining was inh ib itab le  by threonine, the HSDH a c tiv ity  was 

gradually desensitised  implying th a t the inh ib itory  threonine binding 

s i te  is  located in  the AK domain of the in ta c t  enzimae. Gel e lec tro ­

phoresis of enzyme a f te r  d iffe re n t times of p ro teo lysis showed, on 

non-denaturing gels, the loss of the native enzyme with formation of 

a faster-running, HSDH ac tive , p ro te in . SDS gel electrophoresis 

showed the conversion of the native 86,000 molecular weight subunit 

to a subunit size of 55,000. Gel f i l t r a t io n  on sephadex G.200 was 

used to fu rther characterise  the products of p ro teo lysis . After gel 

f i l t r a t io n  a HSDH fragment devoid of AK ac tiv ity  was obtained with a 

molecular weight of 110,000. The molecular weight of th is  fragment 

was confirmed both by sucrose-density gradient cen trifugation  which 

gave a sedimentation co e ffic ien t of 6.0 S, corresponding to a molecular 

weight of 109,000 and by sedimentation equilibrium centrifugation



which gave a molecular weight of lo8,000. The fragment was therefore 

a dimer of two 55,000 molecular weight polypeptides. Protein chemistry 

was used to show th a t the HSDH domain was located a t  the C-terminal 

end of the polypeptide chain. C-terminal amino-acid analysis using

carfaoxypeptidase A showed both the HSDH fragment and the native enzyme 

to have valine , glycine and leucine as the three amino-acids nearest 

the carboxyl terminus (sequence -leu^-gly-val-COg). N-terminal

analysis of the HSDH fragment gave two amino-acids, isoleucine and 

alanine, neither of which corresponded to the N-terminus of the native 

enzyme (methionine).

An in te re s tin g  mutant. Gif 108, was found which had only AK a c tiv ity . 

On peptide mapping of the native AK-HSDH bifunctional enzyme, the HSDH 

fragment derived by lim ited  p ro teo lysis of the b ifunctional enzyme and 

the mutant enzyme carrying only the AK ac tiv ity  the maps of the HSDH 

fragment and the mutant AK were found to be complementary. The AK 

domain was, therefo re , the N-terminal region of the b ifunctional enzyme. 

The mutant enzyme was threonine inh ib itab le  showing the threonine 

binding s i te  to be located in  the AK domain.

These re su lts  showed the AK-HSDH b ifunctional enzyme to be com­

posed of two domains both of which were c a ta ly tic a lly  active when 

iso la ted  from each o ther. Since threonine in h ib its  both a c t iv it ie s  

in  the native enzyme but not the HSDH fragment a c tiv ity  and the 

threonine binding s i te  is  located in  the AK domain the two domains 

must in te ra c t in  the native enz^mie to transm it a conformational change 

from the AK domain to  the HSDH domain on threonine binding to the 

inh ib ito ry  s i te .

Limited p ro teo lysis of b ifunctional enzymes can lead to the iso la tio n
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of active fragments and thus give information on the domain stru c tu re  

of such enzymes. When m ultifunctional enzymes with more than two 

a c t iv it ie s  per polypeptide are considered p ro teo ly tic  fragments 

carrying more than one a c tiv ity  may re su lt ,  th a t i s ,  the fragments 

may tliemselves be m ultifunctional. In these cases the m ultifunctional 

fragments may s t i l l  be regarded as domains since they are presumably 

tig h tly  packed regions of polypeptide and i f  ' low er-order' domain 

s tru c tu re  ex is ts  w ithin them i t  may require X-ray d iffrac tio n  analysis 

for i t s  e lucidation .

The enzyme a c t iv i t ie s  m ethylenetetrahydrofolate dehydrogenase,

raethenyltetrahydrofolate cyclohydrolase and form yltetrahydrofolate

synthetase (Fig. 10) are associated as a tr ifu n c tio n a l enzyme in

porcine l iv e r  (Tan e t  a l , 1977). P roteolysis of th is  enzyme with

trypsin  in the presence of NADP led to the loss of synthetase a c tiv ity

with l i t t l e  change in  e ith e r  the dehydrogenase or cyclohydrolase

a c tiv it ie s  (Tan and MacKenzie, 1977) . A ffin ity  chromatography on 

“h
NADP -sepharose with substra te  e lu tion  using an NADP gradient was 

used to purify  a b ifunctional fragment carrying both the dehydrogenase 

and cyclohydrolase a c t iv i t ie s .  The purified  b ifunctional fragment 

had a subunit molecular weight of around 33,000 as opposed to 100,000 

for the native tr ifu n c tio n a l enzyme. I t  was proposed th a t the small 

size of the b ifunctional fragment re flec ted  a close association  between 

the two active-sites and substra te  channelling was la te r  observed b^ween 

these two a c t iv i t ie s  in  the n ative  enzyme (Cohen and MacKenzie, 1978) .

Chymotryptic p ro teo ly sis  of th is  tr ifu n c tio n a l enzyme gave com­

plementary re su lts . The dehydrogenase and cyclohydrolase a c t iv it ie s  

were lo s t  more rapidly  than the synthetase a c tiv ity . Following
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chymo tryp t ic  p ro teolysis i t  was possible to purify  a synthetase fragment 

by passing the enzyme through a 2'-5'-ADP-sepharose column to which 

the remaining unproteolysed enzyme, carrying the dehydrogenase ac tive- 

s i te ,  bound whereas the synthetase fragment was washed through. The

subunit molecular weight of the fragment was 67,000 as measured by SDS 

gel e lectrophoresis. Immunochemical techniques showed no iden tify  

between the two p ro teo ly tic  fragments implying they were derived from 

two d is t in c t  sections of the native p ro te in . Amino-terminal sequence

analysis of the dehydrogenase-cyclohydrolase fragment showed i t  to be 

cleaved from the N-terminal end of the polypeptide chain.

The re su lts  of p ro teo lysis of th is  tr ifu n c tio n a l enzyme are 

consisten t with a two-domain stru c tu re , the C-teirminal domain carrying 

the synthetase a c tiv ity  and the N-terminal domain containing both the 

dehydrogenase and cyclohydrolase a c t iv it ie s  (Tan and MacKenzie, 1979).

The fa tty  acid synthetase complex has been studied by lim ited 

p ro teolysis with trypsin  and chymotrypsin (Agradi ^  a l , 1976) and a 

thioeste.rase domain p u rified  following p ro teolysis with trypsin  (Smith 

e t  a l , 1976) and with e lastase  (Guy e t a l , 1978).

Agradi _et ^  (1976) studied the e ffe c t of p ro teolysis with 

trypsin  or chymotrypsin on the seven reactions catalysed by fa tty  acid 

synthetase and on the overall reaction  of the complex. As p ro teo lysis 

with e ith e r protease increased the overall fa tty  acid synthetase 

ac tiv ity  decreased and the product sp e c if ic ity  sh ifted , the only 

component reaction to be inh ib ited  was th a t catalysed by the th ioesterase  

I t  was observed th a t on ammonium sulphate p rec ip ita tio n  of proteolysed 

fa tty  acid synthetase s ig n if ic an t amounts of th ioesterase  remained in 

the supernatant a f te r  p rec ip ita tio n  of a l l  the residual fa tty  acid



synthetase a c tiv ity . Following trypsin  p ro teo lysis of fa tty  acid 

synthetase a th ioesterase  fragment was pu rified  by ammonium sulphate; 

p rec ip ita tio n  and gel f i l t r a t io n  (Smith e^ a l , 1976), The molecular 

weight of th is  fragment was estim ated, by gel f i l t r a t io n ,  to be 

32,000 and i t  cross-reacted  with a n ti- ( fa t ty  acid synthetase) y-globulin , 

i t  was therefore iramunologically sim ilar to the th ioesterase  in  the 

native complex and probably had a sim ilar te r t ia ry  s tru c tu re . Further

studies of the iso la ted  th io esterase  fragment by Dileepan e^ (1979)

showed th a t trypsin  fu rth er cleaved the fragment in to  two sm aller poly­

peptides each of 17,500 molecular weight. The th ioesterase  domain of 

fa tty  acid synthetase can also  be released by d igestion  with e lastase  

(Guy e_t a l , 1978) . During the course of e lastase  d igestion  the 

overall fa tty  acid synthetase a c tiv ity  was lo s t  while the tliioesterase 

ac tiv ity  increased. A polypeptide of molecular weight 35,000 was 

formed rapidly and could be iso la ted  as an active th ioesterase  fragment 

by ammonium sulphate p re c ip ita tio n . E lastase did not a ffe c t the 

other a c t iv it ie s  of the complex since fa tty  acid synthetase ac tiv ity  

could be recovered a f te r  p ro teo ly sis  by the addition of medium-chain 

th io es te ra se .

P roteolysis with both trypsin  and e lastase  released th ioesterase  

domains of sim ilar molecular weight from fa tty  acid synthetase suggesting 

th a t a t  some poin t on the complex there is  an exposed loop of peptide 

sensitive  to  p ro teo ly tic  attack  and showing th a t lim ited p ro teolysis 

can be used to gain information on the s tructu re  of large m ultifunctional 

p ro te in s .
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CHAPTER 2

MATERIALS AND METHODS

Chemicals

The chemicals used in  th is  work were obtained from the following 

sources; DTT, th io g ly co llic  acid , phenylmethyl sulphonylfluoride and

oc
DL-N -benzoyl-L-arginine-p^ n itro an ilid e  from Sigma (London) Chemical 

Co., Kingston-upon-Thames, Surrey, U.K.; Nitro Blue Tétrazolium, 

phenazine methosulphate, sodium borohydride, guanidine hydrochloride 

(a r is ta r  grade), hydrogen peroxide (100 vols) and a l l  chemicals for 

polyacrylamide gel electrophoresis from BDH Chemicals, Poole, Dorset, 

U.K.; benzamidine hydrochloride and shikimic acid from Aldrich Chemical 

Co., Gillingham, Dorset, U.K.; phosphoenolpyruvate, NAD, NADH, NADP, 

NADPH, ADP and ATP from Boehringer Corp. (London) L td ., Lewes, Sussex, 

U.K. ; Coomassie B r i l l ia n t  Blue G.250 and Coomassie B r i l l ia n t  Blue R.250

3
from Serva Feinbiochemica, Heidelberg, West Germany; sodium boro-[ H]- 

hydride from The Radiochemical Centre, Amersham, Bucks, U.K.; Sephadex 

G-25 (medium grade) from Pharmacia (G.E.) L td ., London, W.5, U.K.; 

DEAE-cellulose (DE52) from Whatman Biochemicals, Maidstone, Kent, U.K.; 

ammonium dehydroquinate, 3-deoxy-D-arabino-heptulosonate 7-phosphate 

and dimethyl suberimidate dihydrochloride were g if ts  from Dr. J.R. 

Coggins and were prepared as previously described (Lumsden and Coggins, 

1977). Shikimate phosphate was also  a g i f t  from Dr. J.R . Coggins.

Urea was obtained from BDH and re c ry s ta llise d  from absolute alcohol 

before use. Blue dextran-sepharose was a g i f t  from Dr. P.A. Lowe.

2. Proteins and Enzymes

Myoglobin and e lastase  were obtained from BDH; rab b it muscle 

aldolase from Boehringer; trypsin  (TPCK tre a te d ) , chymotrypsin and
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Figure 11 A typ ica l standard lin e  for the estim ation of molecular 

weights of polypeptides separated by SDS polyacrylamide 

gel electrophoresis. The standard pro teins used were, 

arom complex (165000); pyruvate dehydrogenase multienzyme 

complex (El, 100000; E2, 83000 and E3, 56500); aldolase

(40000) and myoglobin (17200). The v e rtic a l bars ind icate 

the m obilities of the two major polypeptides formed a f te r  

trypsin  p ro teo lysis of the arom complex.



papain were from Worthington Biochemical Corp., Freehold, NJ 0 1 1 2 1 ,  

U.S.A.; s u b ti l is in  carlsberg (Type V lll) and soy-bean trypsin  in h ib ito r 

(Type 1-S) were from Sigma. Agarose-trypsin in h ib ito r (capacity 

3mg trypsin/m l se ttle d  resin) was obtained from Research Products, Miles 

Laboratories In c ., E lkhart, Ind. 46514, U.S.A. Lima-bean try p sin / 

chymotrypsin in h ib ito r was a kind g i f t  from Dr. J .  Kay, Department of 

Biochemistry, University College, C ardiff CFl IXL, Wales, U.K. and 

pyruvate dehydrogenase from Escherichia co li was a g i f t  from Dr. J.R . 

Coggins. Pyruvate k in ase-lac ta te  dehydrogenase mixture was obtained 

from Boehringer.

3. Polyacrylamide Gel E lectrophoresis

Polyacrylamide gel electrophoresis in  the presence of sodium dodecyl 

sulphate was performed as described by Weber and Osborn (1969). P rotein  

samples for electrophoresis were made 1% (w/v) in  SDS, 1% (v/v) in  

2-mercaptoethanol and 20% (v/v) in  glycerol, and immediately placed in  

a bo iling  water bath for 2 rain. Bromophenol Blue (0,002% w/v) was 

added to the sample and electrophoresis a t  7mA/gel performed in 5% 

polyacrylamide gels in  O.IM sodium phosphate pH6.5 containing 0.1% SDS, 

A fter electrophoresis the position  of the dye was marked with a wire.

A typ ical molecular weight estim ation is  shown in Figure 11.

Electrophoresis in  5% (w/v) polyacrylamide gels containing IM urea 

was by the method of Davis (1964) as modified by Hayes and Wellner (1969) 

except th a t the gels contained IM urea. Gels were pre-run for 30 rain 

a t  2mA per gel p rio r to electrophoresis of the p ro tein  a t  the same 

current. After electrophoresis in  th is  manner gels could be stained 

for enzyme a c tiv ity  as well as for p ro tein .
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Electrophoresis in  4% Cw/vl polyacrylamide gels containing 8M urea 

was by the method of Davis C1964) as modified by Hayes and Wellner 

(1969) except th a t the upper well buffer contained 0.02% (w/v) 

th iog lyco llic  acid in  place of DTT. Samples were made 8M in  urea by 

the addition of so lid  re c ry s ta llise d  urea and incubated for 20 min a t  

25^0 p rio r to  e lectrophoresis . Gels were pre-run for 30 min a t  3mA/gel 

p rio r to electrophoresis a t  the same current for 135 min.

For two-dimensional polyacrylamide gel electrophoresis the f i r s t  

dimension tube g els , e ith e r containing IM urea or 8m urea, were run 

in gel tubes of in te rn a l diameter 0.4cm. The f i r s t  dimension gels 

were equilib rated  with O.IM sodium phosphate pH6.5, 0.1% (w/v) SDS,

0.5% (v,/v) 2-mercaptoethanol before electrophoresis in  second dimension 

5% polyacrylamide slab gels (6cm x 6cm x 0.5cm), containing SDS overnight 

a t  12mA in O.IM sodium phosphate pH6.5, 0.1% SDS.

4. Polyacrylamide gel stain ing

Polyacrylamide tube gels were stained for p ro tein  by incubation 

for 45 min a t  40^0 in  0.1% (w/v) Coomassie B r i l l ia n t  Blue G.250 in 

m ethanol/acetic acid/water (5:1:4, by volume) and destained, also a t  

40^0, in  methanol/acetic acid/water (1:1:8, by volume) (Lumsden and 

Coggins, 1977).

Polyacrylamide slab gels were stained for p ro tein  for 110 min 

e ith e r as above or by incubation, with shaking a t  25°C in  0,1% (w/v) 

Coomassie B r il l ia n t Blue R.250 in  methanol/acetic acid/water (5:1:4, 

by volume). Gels were destained in methanol/acetic acid/water (1:1:8, 

by volume) a t  40°C.

Shikimate dehydrogenase a c tiv ity  was detected by a modification



of the general method of Gabriel (19711 as described by Lumsden and 

Coggins (1977), Gels were soaked fo r 30 min in  0.025M Tris/HCl pE9,0 

to remove DTT then in  a reaction  mixture which contained 0.25M Tris/HCl 

pH9.0, 0.5mM NADP, 0.5mM shikimic acid , 0.5mg/ml N itro Blue Tetrazodium 

and Syg/ml phenazine methosulphate.

EPSP synthetase a c tiv ity  was detected by a method devised by Dr. 

G.A. Nimmo (unpublished work) . Gels were soaked for 30 min in  O.IM 

glycine/KOH pHlO.O then in a reaction  mixture which contained, O.IM 

glycine/KOK pHlO.O, 8mM CaClg, ImM shikimate phosphate, 2mM phosphoenol- 

pyruvate. Active species were detected by the appearance of white 

bands of p rec ip ita ted  calcium phosphate.

Polyacrylamide tube g e ls .s ta in ed  for p ro tein  or for shikimate 

dehydrogenase a c tiv ity  were scanned a t  600nra in  a Gilford spectrophoto­

meter f i t te d  with a model 252 gel scanner.

For the estim ation of the areas of peaks on gel scans data were 

d ig itised  using a Summagraphics ID-CTR data ta b le t d ig itiz e r  and 

processed using a D ig ital PDP 11/34 computer with an RSX llM operating 

system programmed in Fortran.

5. Detection of R adioactivity in  Polyacrylamide Gels

Radioactivity was detected in  polyacrylamide gels as described by 

Bates eh ^  (1975). Gel s lic e s  containing p ro te in , or 1mm gel discs 

i f  the en tire  gel was s liced , were placed in  p la s tic  s c in t i l la t io n  v ia ls  

and dried a t  40^C. The dried gels were so lub ilised  by incubation in  

0.3ml of 100 vol hydrogen peroxide e ith e r overnight a t  40°C or 60^0. 

S c in tilla n t (3ml of toluene tr i to n , 2:1 by volume, containing 5g/l 

2,5-diphenyloxazole and 20g/l 1 , 4 - b i s  ( 5 - p h e n y l o x a z o l “ 2 - y l )  benzene)



was added and the samples counted in  an Intertechnique SL 4000 

s c in t i l la t io n  counter.

5. Enzyme Assays

Enzyme assays were performed using a Unicam SP8000 spectrophotometer 

with a slave recorder attachment. All assays of the enzymes of the 

arom complex were performed in  a to ta l  volume of 1 ml a t  37^0, except 

for ce rta in  specified  k in e tic  studies which were performed a t  25°C.

Dehydroquinase (3-dehydroquinate hydrolyase, E.G. 4.2.1.10) was 

assayed as described by Lumsden and Coggins (1977). The reaction  

mixture contained O.lM Tris/HCl pH7.5 and 0.33mM ammonium dehydroquinate;

production of 3-dehydroshikimate was followed a t  234nm (e = 1,2 x 1 0 ^

“1 -1 
l i t r e  mol cm ) .

Shikimate dehydrogenase (the reverse reaction  of enzyme 3 of the 

complex, 3-dehydroshikimate reductase E.C. 1.1.1.25) was assayed by 

following the reduction of NADP a t  340nm (e = 6.18 x 10^ l i t r e  mol  ̂

cm ) in  a reaction  mixture containing O.IM Nâ CÔ  pHlO.6 , 4mM shikimic 

acid and 2mM NADP (Lumsden and Coggins, 1977).

Shikimate kinase (E.C. 2.7.1.71) was assayed by coupling to 

pyruvate kinase and la c ta te  dehydrogenase (G.A. Nimmo, unpublished work). 

The reaction  mixture contained ImM shikimic acid , ImM phosphoenolpyruvate, 

0,2mM NADH, 2.5mM ATP, O.IM KCl, 20mM MgCl^, 50mM triethanolam ine 

hydrochloride pH7.2, pyruvate kinase and la c ta te  dehydrogenase. The 

oxidation of NADH was followed a t  340nm.

Dehydroquinate synthetase was assayed by coupling to the dehydro­

quinase and dehydroshikimate reductase a c t iv it ie s  of the arom complex.

The assay so lu tion  contained 50mM triethanolam ine hydrochloride pH7.2,



O.SmM NAD, O.lmM NADPH, 0,45mM DAHP. The oxidation of NADPH was 

monitored a t  340nm,

Trypsin was assayed.by the method of Erlanger ^ t  (1961). The

assay was performed a t  25°C in  a volume of 3m1 containing O.lmM BAPNA

and 50mM Tris/HCl pH8 .2 . The production of £_-nitroaniline was followed

-1 -1
a t  410nm (e = 8 8 0 0  l i t r e  mol cm ) .

For a l l  the enzyme a c t iv i t ie s  of the arom complex one u n it is  

defined as the amount of enzyme th a t catalyses the conversion of Ipmole 

of substrate/m in a t  the s ta ted  temperature. One u n it of trypsin  is  

defined as the amount of enzyme th a t catalyses the formation of Inmole 

of p -n itroan ilin e /m in . The sp ec ific  a c tiv ity  of the trypsin  was 

720 units/mg.

7. Substrate Labelling of .the Dehydroquinase Active-Si te

To proteolysed arom complex a t  0°C in  50mM sodium phosphate pH7.5, 

0.4mM DTT was added ammonium dehydroquinate to a f in a l concentration of -

3
O.lmM. Successive a liquots of sodium boro-[ h] - hydride, dissolved in# 

ice-co ld  lOmM sodium hydroxide, were added. The dehydroquinase a c tiv ity  

was measured between each addition . When the dehydroquinase a c tiv ity  

was reduced to  around 15% of the s ta r tin g  value the reaction  so lution  

was s t i r r e d  fo r a fu rth er 30 min a t  Ô C to allow v o la ti le  tr itiu m  to
i

escape. Excess tr itiu m  was then removed by gel f i l t r a t io n  through 

sephadex G.25 (medium) and the labelled  pro tein  recovered.

8 . Growth of Cells

Neurospora crassa s tra in  74-OR 23-lA (F.G.S.C. No. 987 obtained 

from the Fungal Genetics Stock Center, Humboldt State University 

Foundation, Areata, CA 95521, U.S.A.) was grown as described by 

Lumsden and Coggins (1977). Cells were rou tinely  grown by Miss A.A. 

Coia or Miss B. Brodie.



CHAPTER 3

RESULTS

1, P u rifica tion  of the Arom Complex from Neurospora crassa

The method of p u rif ic a tio n  of the arom complex reported by Lumsden

and Coggins (1977) has been revised and improved for use on a larger

sca le , 100 grams of powdered, lyophilised N. crassa c e lls  were s t ir re d

in to  1500ml of O.IM Tris/HCl pH7.5, 0,4mM DTT, 1.2mM PMSF, S.OraM EDTA,

s tir re d  for 1 h a t  4*̂ C then centrifuged for 30 min a t  25000g. The

-1
supernatant conductivity was adjusted to 4mn by the addition of IM KCl 

and then applied to  a column of DEAE-cellulose (15 x 6.5cm) p re -eq u ilib ra - 

ted with 50mM Tris/HCl, 75mM KCl, 0.4mM DTT, 1 .2mM PMSF. The eluate 

containing arom complex, which did not bind to th is  column, was co llected  

and incubated for 90 min a t  37°C. After a fu rther cen trifugation

for 45 min a t  25000g benzamidine was added to the supernatant to a 

concentration of ImM. The p ro tein  p rec ip ita tin g  between 40% and 50% 

satu ra tion  with ammonium sulphate was collected , resuspended in 2 0 ml of 

O.IM Tris/HCl pH7.5, 0.4mM DTT, 1.2mM PMSF and dialysed overnight against 

2 l i t r e s  of 50mM Tris/HCl pH7,5, 0.4mM DTT, 1 .2mM PMSF. The enzyme 

was then applied a t  100ml/h to a column of DEAE-cellulose (13 x 2,5cm) 

pre-equ ilib ra ted  with the same buffer and the column then washed with 

buffer containing 30mM KCl a t  200ml/h u n ti l  the A^^  ̂ of the eluate was 

less than 0 ,1 . P rotein  was then eluted from the column, a t  a flow- 

ra te  of lOOml/h co llec ting  6  min frac tio n s , with a lin ea r 1000ml gradient 

(30-300mM KCl) in the same buffer. The fractions containing arom

complex were pooled and applied d irec tly  to a column of blue dextran- 

sepharose (4cm x 1cm), th is  was routinely  done overnight and the flow- 

ra te  adjusted accordingly. After the sample was loaded the column 

was washed with O.IM Tris/HCl pH7.5, 0.5M KCl, 0.4mM DTT, 1.2mM PMSF 

a t  lOml/h co llec ting  12 min fractions u n til the of the eluate was



Table 4b The results of some typical purification of the arom complex

Preparation

Yield

shikimate 
dehydrogenase 
a c t iv ity  C%)

Protein  (mg)
Specific 
a c tiv ity  

(units/mg)

31.5 2.4 91.0

31.7 3.1 78.5

26.0 3.1 71.5

32.1 4.0 61.0

30.3 3.7 77.0

31.5 2.9 75.2

The ra tio  of the shikimate dehydrogenase/dehydroquinase/ 

shikimate kinase a c t iv i t ie s  o f the arom complex is  

6 .45/1.22/1.00



Table 4 Purification of the arom complex from lOOg ^  crassa.

The a c tiv ity  measured i s  th a t of the shikimate dehydrogenase 

component o f the arom complex.

Stage Vol. (ml) A ctiv ity  Cu/ml) ̂ ° ^ ^ i t ^ ^ ^ Y i e l d (%)

Extraction 1300 0.53 689 100

F irs t  DEAE- 
cellu lose

1180 0.48 566 82.1

Heat step 1155 0.50 579 83.9

™ 4 > 2"^4 31 12.3 381 55.3

Second DEAE- 
a llu lase

78 3.6 280 40.6

Blue Dextran 
Sepharose

7.6 28.5 217 31.5

The specific  a c tiv ity  of the p u rified  arom complex was 

75,2 units/mg.



zero, usually about 4 h. The arom complex was then eluted d irec tly  from 

the column with a step of O.IM Tris/HCl pH7,5, 1.5M KCl, 0.4mM DTT,

1.2mM PMSF. The frac tion s containing the arom complex were pooled, 

dialysed overnight against 500ml of 50mM sodium phosphate pH7.5, 0.4mM 

DTT, l.OmM benzamidine, 50% (v/v) glycerol and stored a t  -15^C.

Arom complex p u rified  in  th is  way was obtained in  30-35 per cent 

y ie ld  with a specific  a c tiv ity  of 70-80 units of shikimate dehydrogenase 

per mg (Table 4 and Fig. 12).

Lumsden and Coggins (1977) employed cellu lose phosphate, a possib le 

a f f in i ty  adsorbent for the arom complex (Cole and Gaertner, 1975), as 

the la s t  stage in  the p u rif ic a tio n  of the arom complex. When substra te  

elu tion  with e ith e r ATP or shikimate was attempted no enzyme a c tiv ity  

was eluted from the ce llu lose  phosphate column by e ith e r su bstra te . 

Sim ilarly no arom complex was eluted from blue-dextran sepharose by 

5mM ATP nor by 15% (v/v) glycerol in  the presence or absence of 5mM 

NADPH nor by lOmM NADPH in  the absence of g lycerol.

2. The A ctivity-R atio  P lo t

Following trypsin  proteolyses which were terminated by passage 

of the so lution  through a column of immobilised soy-bean trypsin  

in h ib ito r (Chapter 3, Section 3.1) i t  was desirable to estimate the 

degree of p ro teolysis which had occurred. A graphical method was 

devised which re lied  only on assays of the proteolysed m aterial and 

was independent of the amount of trypsin  used or the duration of 

p ro teo ly sis .

This p lo t depends on the fac t th a t the shikimate kinase a c tiv ity  

is  lo s t  rapidly re la tiv e  to the shikimate dehydrogenase and
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Figure 12 3% SDS polyacrylamide gel electrophoresis of A,

purified  arom complex and B, cross-linked aldolase 

The gels were run as described by Lumsden and 

Coggins (1977).
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Figure 13 A c tiv ity -ra tio  p lo t re la tin g  the shikimate kinase/shikim ate 

dehydrogenase (E4/E3) a c tiv ity  ra tio  to the shikimate 

kinase (E4) a c tiv ity  remaining a f te r  p ro teo ly sis .
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Figure 14 A c tiv ity -ra tio  p lo t re la tin g  the shikimate k inase/

dehydroquinase (E4/E2) a c tiv ity  ra tio  with the shikimate 

kinase (E4) ac tiv ity  remaining a f te r  p ro teo ly sis .



dehydroquinase a c t iv it ie s  of the arom complex during p ro teo lysis with 

trypsin . To a good approximation the shikimate dehydrogenase 

ac tiv ity  is  unaffected by p ro teo ly sis . I f  a graph of the ra tio  of 

the shikimate kinase a c tiv ity  to the shikimate dehydrogenase versus 

the amount of shikimate kinase a c tiv ity  remaining a f te r  p ro teo lysis 

(expressed as a percentage) i s  p lo tted  i t  is  found to vary from zero, 

when no shikimate kinase a c tiv ity  remains, to 0,155, the ac tiv ity  ra tio  

of the arom complex when no p ro teo lysis has occurred. Accumulated 

experimental data f i t  the predicted  line  well (Fig, 13). This so called  

' a c t iv i ty - r a t io ' p lo t provides a convenient method of monitoring the 

extent of p ro teo ly sis , A sim ilar a c tiv ity - ra tio  p lo t re la tin g  the 

shikimate kinase/dehydroquinase a c tiv ity  ra tio  with the shikimate kinase 

ac tiv ity  remaining a f te r  p ro teo lysis may be constructed (Fig, 14).

Limited P roteolysis of the Arom Enzyme Complex

3,1 Limited P roteolysis of the Arom Enzyme complex with Trypsin

Proteolysis of the arom complex was performed a t  25°C in  SOmM 

sodium phosphate pH7,5, 0,4mM DTT, ImM EDTA to which was added any 

required pro tecting  ligands and the desired amount of trypsin . The 

arom complex to be proteolysed was e ith e r dialysed against th is  buffer 

overnight p rio r to the experiment o r, in  the case of some sm aller scale 

experiments when only the loss of a c tiv ity  was being monitored, the 

glycerol stock solution  of arom complex was d ilu ted  in to  th is  buffer.

In the cases in  which the arom complex was d ilu ted  p rio r to p ro teo lysis 

the ra te  of loss of a c tiv ity  was lower than when arom complex was 

dialysed p rio r  to the experiment since benzamidine, a competitive 

in h ib ito r of trypsin  (Mares-Guia and Shaw, 1965), is  present in  the
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Figure 15 The e ffec t of p ro teolysis with 6.96 units/m l trypsin

on the shikimate kinase CO), shikimate dehydrogenase (A) 

and dehydroquinase CQ) a c tiv it ie s  of the arom complex.



glycerol containing buffer in  which the arom complex is  sto red .

P roteolysis was stopped in  one of the following three ways:

(1 ) by d ilu tio n  in to  an assay cuvette when studying the ra te  of loss 

of enzyme a c tiv ity  alone; (2 ) by the addition of soy-bean in h ib ito r , 

a three times weight excess over tr^^psin, when gel electrophoresis was 

to be performed or; (3) by passage tdirough a small column of immobilised 

soy-bean trypsin  in h ib ito r , approximately 1 ml bed volume, poured on top 

of a sephadex G.25 column (10cm x 1cm or 20cm x 1cm depending on the 

volume of the sample) allowing removal of trypsin  and desalting  in  one 

operation,

3,2 Proteolysis in the Absence of Substrates of the Arom Complex

Arom complex was incubated with 6.96 units/m l trypsin  and a t  

in te rv a ls  a f te r  the addition of trypsin  samples were withdrawn in to  soy­

bean trypsin  in h ib ito r to stop the p ro teo lysis (method (2) above), A 

control experiment was performed to  which no trypsin  was added. The 

shikimate kinase, shikimate dehydrogenase and dehydroquinase a c t iv it ie s  

of the samples were tested  and SDS polyacrylamide gel electrophoresis of 

aliquots from each sample performed.

Shikimate kinase a c tiv ity  was quickly lo s t  under these conditions 

(Fig. 15) w hilst the shikimate dehydrogenase and dehydroquinase a c t iv it ie s  

were scarcely affected . SDS polyacrylamide gels of m aterial proteolysed 

for increasing lengths of time showed the rapid disappearance of the 

165000 molecular weight arom band and the appearance of a number of 

lower molecular weight polypeptides (Fig. 16). After p ro teo lysis 

for 1  min, by which time the shikimate kinase a c tiv ity  was reduced to 

52% of the control, two major bands were present with molecular weights 

of 69000 and 110000 and a fu rther minor species of molecular weight
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Figure 16 SDS polyacrylamide gel electrophoresis of arom complex

proteolysed for increasing times (given here, as in  other 

figure legends, in minutes) with 6.96 units/m l trypsin  in 

the absence of arom complex substra tes . Proteolysis was 

stopped by method (2 ) .



Table 5 The e ffec t of substrates of the arom complex on the time 

for f i f ty  per cent inac tiva tion  (t^) of the shikimate 

kinase a c tiv ity  by trypsin

Protecting ligand(s) t^  (min)

None 3 . 6

MgCl̂  + ATP 5.5

MgCl  ̂ + ATP + Shikimate 16

MgClg + ADP + Shikimate 43.5

Shikimate 11

NADP 4.4

NADP + Shikimate 26

DAHP 6.2

The concentration of the pro tecting  ligands are as given in  

the legend to Fig. 17.
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124000 was also p resen t. After 3 min incubation the arom polypeptide 

was almost completely lo s t  and the shikimate kinase ac tiv ity  had dropped 

to 11% of the contro l. The main polypeptides present were those of 

molecular weight 69000 and 110000? the 124000 band had disappeared.

On fu rther p ro teolysis the 110000 molecular weight p ro tein  was degraded 

whereas the polypeptide of molecular weight 69000 was re la tiv e ly  

s tab le .

3.3 Protection of the Shikimate Kinase A ctivity  by Substrates of 

the Arom Complex

In order to investiga te  the pro tective e ffec ts  of substrates of 

tlie arom complex on the ra te  of loss of the shikimate kinase ac tiv ity  

during p ro teo lysis with trypsin  a se ries  of experiments were performed.

In these experiments twenty m icro litres of arom complex were d ilu ted  

to 0 . 2 ml with the usual buffer used for pro teolysis to which had been 

added the su bstra te , or combination of substra tes , to be tested .

Trypsin was added to a concentration of 7,2 units/m l and aliquots re ­

moved a t  various times and assayed for shikimate kinase ac tiv ity  by 

d ilu tio n  in to  assay cuvettes. A number of substrates and combinations 

of substrates protected the shikimate kinase ac tiv ity  against p ro teo lysis 

by trypsin  (Fig. 17 and Table 5). Protection of the shikimate kinase 

ac tiv ity  by these substra tes i s  most reasonably a ttr ib u ta b le  to conform­

a tional changes induced in  the arom complex by substra te  binding (see 

Discussion S ection),

3.4 Proteolysis in  the Presence of Shikimate Phosphate

To arom complex in  the phosphate buffer used for p ro teo lysis was 

added shikimate phosphate to a concentration of 1.9mM, Trypsin,
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Figure 17a Inactivation  of the shikimate kinase ac tiv ity  by pro teolysis 

with 7.2 units/m l trypsin  in  the absence of substrates of 

the arom complex CO) and in  the presence of lOmM MgCl  ̂ +

ImM ATP CD) ; ImM shikimate (A); lOmM MgCl  ̂ + ImM ATP +

ImM shikimate (■) ; lOmM MgCl̂  + ImM ADP + ImM shikimate (•) . 

Assays were performed by d ilu tin g  samples in to  assay cuvettes 

a f te r  various tim es.
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Figure 17b Inactivation  of the shikimate kinase ac tiv ity  as in  the 

legend to Figure 17A in  the absence of substrates (O) 

and in  the presence of 5mM NADP (□); ImM DAHP (•);

ImM shikimate (A); 5mM NADP + 5mM shikimate (■).
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Figure IB The inactivation  of the shikimate kinase (0), shikimate 

dehydrogenase (A) and dehydroquinase (D) a c t iv it ie s  of 

the arom complex by p ro teolysis with 7,6 units/m l 

trypsin  in  the presence of 1.9mM shikimate phosphate. 

Assays were performed on samples trea ted  with soy-bean 

trypsin  in h ib ito r a t  various times a f te r  the addition 

of trypsin  (method (2 ) in  te x t ) .



7.6 units/m l, was added and a t  in te rv a ls  aliquots were trea ted  with 

soy-bean trypsin  in h ib ito r (method (2) above), The samples were 

assayed (Fig, 18) and analysed by SDS polyacrylamide gel electrophoresis 

(Fig. 19), The shikimate kinase a c tiv ity  was rapidly  inactivated  and 

the arom band on SDS polyacrylamide gels quickly lo s t .  The main bands 

formed on SDS polyacrylamide gels had molecular weights of 110000 and 

70000, The former band was ra the r unstable and disappeared on prolonged 

exposure to trypsin  whereas the l a t t e r ,  70000, band was more s tab le ,

3,5 Proteolysis in  the Presence of Magnesium, ADP and Shikimate

A study of the p ro teo lysis of the arom complex by trypsin  in  the 

presence of a mixture of magnesium, ADP and shikimate, which could 

p o ten tia lly  form a dead-end complex a t  the shikimate kinase a c tiv e -s ite , 

was carried  out. The arom complex was dialysed overnight against 50mM 

sodium phosphate pH7.5 containing 0.4mM DTT, lOmM MgCl  ̂ and 5% (v/v) 

g lycerol. P rior to p ro teo lysis ADP and shikimate were each added to 

a f in a l concentration of ImM. The p ro teo lysis was performed with 

7 units/m l trypsin , samples withdrawn a f te r  15, 45 and 90 min and 

p ro teo lysis stopped with soy-bean trypsin  in h ib ito r (method (2 ) above). 

The shikimate kinase, shikimate dehydrogenase and dehydroquinase 

a c t iv it ie s  of the proteolysed samples and of the contro l, incubated 

in  the absence of tryp sin , were determined (Fig. 20) and SDS polyacryl­

amide gels run (Fig, 21), The shikimate kinase a c tiv ity  was again 

lo s t  more rapidly  than e ith e r the shikimate dehydrogenase or dehydro­

quinase a c t iv i t ie s ,  SDS polyacrylamide gel electrophoresis showed 

the loss of the 165000 molecular weight arom polypeptide and the 

appearance of major polypeptides of molecular weight 69000 and 

125000, A minor band was present with a molecular weight of 110000,
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Figure 19 Time-course of p ro teo lysis  of the arom complex with 7.6 units/m l 

trypsin  in the presence of 1.9mM shikimate phosphate monitored 

by SDS polyacrylamide gel e lectrophoresis. P roteolysis was 

stopped a t  d if fe re n t times by withdrawing samples into  soy-bean 

trypsin  in h ib ito r (method (2 ) in te x t) .
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Figure 20 The e ffe c t of p ro teolysis of the arom complex with 7 units/m l 

trypsin  in  the presence of lOmM MgCl^f ImM ADP and ImM 

shikimate on the shikimate kinase CO) , shikimate dehydrogenase 

CA) and dehydroquinase CO) a c tiv it ie s  of the complex. Pro­

teo ly sis  was stopped a t  various times a f te r  the addition of 

trypsin  using soy-bean trypsin  in h ib ito r (method (2 ) in  te x t) .



o 15' 45' 90' STD

Figure 21 SDS polyacrylamide gel electrophoresis of arom complex

proteolysed for increasing times with 7 units/m l trypsin  

in the presence of ImM ADP and ImM shikimate. Proteolysis 

was stopped a t  various times using soy-bean trypsin  

in h ib ito r (method (2 ) ) .
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After 45 min p ro teo lysis the predominant band was th a t of molecular 

weight 69000 while a f te r  90 rain exposure to trypsin  polypeptides with 

molecular weights 69000, 64000 and 37000 were presen t.

3.6 Proteolysis in  the Presence of Shikiraate and NADP

Arom complex was subjected to p ro teolysis in  the presence of 

shikiraate and NADP, both a t  a f in a l concentration of 5mM, and the re ­

action stopped by the addition of soy-bean trypsin  in h ib ito r (method

(2) above). The ra te  of loss of the shikiraate kinase a c tiv ity  

increased as the concentration of trypsin  used for the pro teolysis was 

raised  (Fig. 22). SDS polyacrylamide gel electrophoresis of a time- 

course of p ro teo lysis with 6  units/m l trypsin  in  the presence of NADP 

and shikiraate showed a progressive loss of the native arom polypeptide 

with the formation of lower molecular weight polypeptides (Fig. 23).

After a prolonged exposure to  trypsin  (240 rain, 5,34 units/m l) 

most of the shikiraate dehydrogenase ac tiv ity  was presen t in  a fa s t-  

moving band on polyacrylamide gels containing IM urea stained for 

th is  a c tiv ity  (Fig, 24), At th is  stage of p ro teo lysis two main bands 

were present on SDS polyacrylamide gels with molecular weights of 

68000 and 63000 (Fig. 25),

The molecular weights of the p rincipal polypeptides formed by 

pro teolysis with 7,2 units/m l trypsin  in the presence of NADP and 

shikiraate were determined on a sample of arora complex proteolysed 

u n til  the shikiraate kinase a c tiv ity  was around 50% of the s ta r tin g  

value and from which trypsin  was removed using immobilised trypsin  

inh ib ito r (method (3) above). SDS polyacrylamide gel electrophoresis 

showed three main bands to be present (Fig. 26), residual arom
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Figure 22 The ra te  of loss of the shikimate kinase a c tiv ity  of the 

arom complex on p ro teo lysis in  the presence of 5mM NADP 

and 5mM shikimate with trypsin  a t  concentration of 

2.58 units/m l (D) ; 5,91 units/m l (0 ) and 14.1 units/m l (A)
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Figure 23 Time-course of p ro teo lysis of the arom complex with 6  units/m l 

trypsin  in the presence of 5mM NADP and 5mM shikimate studied 

by SDS polyacrylamide gel e lectrophoresis. P roteolysis was 

stopped using soy-bean trypsin  in h ib ito r (method (2 ) in te x t) .



Figure 24 Shikimate dehydrogenase a c tiv ity  s ta in s  of A, arom complex 

proteolysed with 5.34 units/m l trypsin  for 240 min in the 

presence of 5mM NADP and 5mM shikimate and B, unproteolysed arom 

complex a f te r  polyacrylamide gel electrophoresis in  the 

presence of IM urea.
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Figure 25 SDS polyacrylamide gel electrophoresis of A, cross-linked 

aldolase and B, arom complex proteolysed for 240 min with 

5.34 units/m l trypsin  in the presence of 5mM NADP and 5mM 

shikimate. Proteolysis was stopped using soy-bean trypsin  

in h ib ito r (method (2 ) in the te x t) .
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Figure 26 SDS polyacrylamide gels of A, pyruvate dehydrogenase

multienzyme complex marker and B, arom complex proteolysed 

with trypsin  in the presence of 5mM NADP and 5mM shikimate. 

Proteolysis was stopped using immobilised trypsin  inh ib ito r 

(method (3) in te x t) .
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Figure 27 Characterisation of a shikimate dehydrogenase domain of the 

arom complex obtained by trypsin  p ro teo ly sis . Gels A and B 

are SDS polyacrylamide gels stained for p ro te in . A is  a 

control sample of arom complex, the pro tein  in  B had been 

treated  with 7.5 units/m l trypsin  for 15 min a t  25°C in the 

presence of 5mM NADP and 5mM shikimate. P roteolysis was 

stopped by passing the solution through immobilised trypsin  

in h ib ito r . Gels C and D are polyacrylamide gels containing 

IM urea of protein prepared as for gel B, Gel C was stained 

for shikimate dehydrogenase ac tiv ity  and gel D for p ro te in .

Gel E in  a second dimension SDS polyacrylamide slab gel run 

a f te r  f i r s t  dimension gel electrophoresis as for gels C and D.
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polypeptide, a fragment of 1 1 0 0 0 0  molecular weight and a second 

fragment of molecular weight 68500.

3.7 The C haracterisation of a Bifunctional P ro teo ly tic  Fragment

of the ^ om Complex

In order to characterise the products of trypsin  p ro teo lysis of 

the arom complex a large-scale  p ro teolysis experiment was performed. 

l,75mg of arom complex were proteolysed with 7,5 units/m l trypsin  in  

■the presence of 5mM NADP and 5mM shikimate. After 15 min "the reaction  

was s-topped by passing the so lu tion  through immobilised trypsin  

in h ib ito r and gel f i l t r a t io n  in to  SOmM sodium phosphate pH7.5, 0.4mM 

DTT. Dehydroquinase a c tiv e -s ite s  were then labelled  by reductive 

a lkylation  of the S ch iff 's  base interm ediate wi-th sodium boro-[ H] - 

hydride (specific a c tiv ity  555mCi/mmole) . After gel f i l t r a t io n  -to 

remove excess -tritium the labelled , proteolysed arom complex was 

dialysed against 50mM sodium phosphate pH7.5, 0.4mM DTT, ImM benzamidine, 

50% (v/v) glycerol for storage a t  -15^C.

Polyacrylamide gel electrophoresis in  the presence of IM urea 

separated three bands of p ro tein  and of shikimate dehydrogenase 

ac tiv ity  (Fig, 27 gels C and D). Second dimension SDS polyacrylamide 

gel electrophoresis showed the most slowly migrating IM urea gel band 

to con-tain arom polypeptides only, the centre band to contain a l l  

three of the major sizes of polypeptide present and the fa s te s t  moving 

IM urea gel band to contain only the sm allest, 68000 molecular weight, 

of the major polypeptides p resen t. Since the 68000 molecular weight 

polypeptide stained for shikimate dehydrogenase ac tiv ity  i t  must carry 

the shikimate dehydrogenase component of the arom complex.



ble 6 The incorporation of tritium into, and the specific

rad io ac tiv ity  o f, the major polypeptides present a f te r  

trypsin  pro teolysis of the arom complex

Molecular Tritium % Total *Amount of Protein Specific Radio-
Lght (xlO“ )̂ c.p.m. c.p.m. in  gel band (P) a c tiv ity  (EEE)

165 850 39.7 1.400 607

110 63 2.9 0.929 67.8

6 8  1228 57.4 1.962 626

?he amount of p ro tein  in  each gel band is  expressed as the product of 

h e  area under the peaks of coommassie blue stained gels and 

here  M is  the molecular weight of the band under consideration.
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Determination of the rad io ac tiv ity  in  s lic e s  of SDS polyacrylamide 

tube gels was used to locate the dehydroquinase a c tiv e -s ite s . Tritium 

was present in  the 165000 molecular weight arom polypeptide and in  the 

68000 molecular weight fragment (Fig. 28). By estim ating the amount 

of p ro tein  present in  each gel band by in teg ration  of the peak areas of 

gel scans of coommassie blue stained  SDS polyacrylamide gels a specific  

rad io ac tiv ity  was calculated  for the arom polypeptide and for each of 

the two major fragments (Table 6 ).

3,8 Gel E lectrophoresis of Trypsin Proteolysed Arom Complex in  the

Presence of 3M Urea

Gel electrophoresis in  the presence of 8 M urea combined with second 

dimension SDS polyacrylamide gel electrophoresis was used to study the 

products of trypsin  p ro teo lysis  of the arom complex. Arom complex 

proteolysed in  the presence of 5mM NADP and 5mM shikimate with 7.5 units/m l 

trypsin , and from which the trypsin  was removed by passage through 

immobilised trypsin  in h ib ito r  (method (3) above), containing predominantly 

unproteolysed arom polypeptides and polypeptides of molecular weights 

106000 and 69000 was analysed in  th is  system. The 165000, 106000 and 

69000 molecular weight polypeptides were completely separated by gel 

electrophoresis in 8 M urea and, as shown by carrying out two dimensional 

electrophoresis using a 5% SDS polyacrylamide slab gel as the second 

dimension, only one species of molecular weight 69000 was present 

(Fig. 29).
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Figure 28 Location of dehydroquinase a c tiv e -s ite s  on the polypeptides of 

trypsin-proteolysed arom complex prepared as described in the 

te x t. SDS polyacrylamide gel electrophoresis was used to 

separate the polypeptides of the proteolysed complex. The 

bottom trace is  a densitometer scan of a coommassie blue 

stained  gel showing unproteolysed arom complex and two major 

fragments of molecular weights 110000 and 58000. The upper 

trace shows the tritiu m  present in 1 mm discs of a s liced  ge l.
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3.9 Renaturation of Shikimate Dehydrogenase A ctivity  of Trypsin

Proteolysed Arom Complex a f te r  Gel Electrophoresis in  the 

Presence of 8 M Urea

Following polyacrylamide gel electrophoresis in  the presence of 

8 M urea as above shikimate dehydrogenase a c tiv ity  could be detected 

a f te r  washing the gel for 50 min in  100ml of 25mM Tris/HCl pH9.0, 0.5mM 

DTT with shaking and then sta in ing  for shikimate dehydrogenase a c tiv ity  

as usual (see M aterials and Methods). Shikimate dehydrogenase a c tiv ity  

was detected only in  the region of the gel containing the 69000 molecular 

weight p ro teo ly tic  fragment (Fig. 29) .

3.10 Cross-Linking of Trypsin Proteolysed Arom Complex with Dimethyl 

suberimidate

Arom complex which had been trea ted  with 7.2 units/m l trypsin  for 

15 min in  the presence of 5mM NADP and 5mM shikimate was subsequently 

cross-linked with dimethyl suberimidate. The cross-link ing  reaction 

was performed in  O.IM trie thano lamine /HCl pH8,2 for 1 h a t  25^C with 

20mM dimethyl suberimidate. After th is  time O.lM-ammonium bicarbonate 

was added and samples run on SDS polyacrylamide g els. Two major bands 

were evident on 3% SDS polyacrylamide gels ind istinguishable from those 

observed on cross-linking  native arom complex (Fig, 30).

3.11 Kinetic Studies o f Trypsin Proteolysed Arom Complex

The proteolysed arom complex used to determine the for NADP 

and shikimate consisted mainly of the 69000 molecular weight b ifunctional 

fragment. This proteolysed complex was produced by incubation with

7,1 units/m l trypsin  for 90 rain in  the presence of 5mM NADP and 5mM
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Figure 29 Polyacrylamide gel electrophoresis of trypsin-proteolysed 

arom complex in the presence of SDS and 8 M urea. Gel A 

is  an SDS polyacrylamide gel; gels B and C are 8 m urea 

polyacrylamide gels, gel B was stained for shikimate dehydro­

genase ac tiv ity  and gel C for p ro tein . Gel D in a second 

dimension SDS polyacrylamide slcLb gel loaded from a gel run 

in  the same manner as gels B and C.
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Figure 30 3% SDS polyacrylamide gel electrophoresis of A, cross-

linked, trypsin-proteolysed arom complex and B, cross-linked 

arom complex.



Table 7 The K values of the substrates of the shikimate 
m

dehydrogenase and dehydroquinase components of native 

and of trypsin  proteolysed arom complex

Substrate

K (UM) 
m

Native arom complex Proteolysed arom complex

Shikimate

NADP

dehydroquinate

20.1

41.4

6.4

16.7

25.8 

9.8

Table 8  The Arrhenius ac tiva tion  energies of the shikimate

dehydrogenase and dehydroquinase components of native 

and of trypsin  proteolysed arom complex

A ctivity

(kcal.mol )

Native arom complex Proteolysed arom complex

Shikimate
dehydrogenase

dehy droquinas e

14.0

8.3

18.2  ̂

9.6
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shikimate, a f te r  th is  time the trypsin  was removed by passing the

solution through a column of immobilised soy-bean trypsin  in h ib ito r

and gel f i l t r a t io n  in to  50mM sodium phosphate pH7.5, 0.4mM DTT. Also

present in  the proteolysed sample were polypeptides of molecular weight

63000, 84000 and 110000 and very small amounts of unproteolysed arom

polypeptide (Fig. 31), For both native and proteolysed arom complex

the for NADP in  the presence of 2inM shikimate was determined (Fig. 32

and Table 7) as was the K for shikimate in the presence of 2mM NADP
m

(Fig, 33 and Table 7). These were found from assays a t  25^0 in  O.IM 

potassium phosphate pH7,0, The for dehydroquinate was also found 

under the same conditions for native and for proteolysed arom complex 

(Fig. 34 and Table 7} .

From the v aria tion  of ra te s  of reaction  with temperature, in  O.lM 

potassium phosphate pH7.0, the Arrhenius ac tiva tion  energies of the 

shikimate dehydrogenase and dehydroquinase reactions catalysed by both 

the native (Fig. 35} and proteolysed (Fig. 36) arom complex were ca l­

culated (Table 8 ) .

3.12 The E ffect of S a lt  end Dénaturants on the Shikimate Dehydrogenase 

A ctivity of Native and of Trypsin Proteolysed Arom Complex

In the course of active-band centrifugation  experiments i t  was 

observed th a t the shikiraate dehydrogenase ac tiv ity  of the arom complex 

was increased in  the presence of 0.3M sodium chloride, th is  e ffe c t was 

fu rther investigated . The shikimate dehydrogenase ac tiv ity  of native 

arom complex and of trypsin-proteolysed arom complex (7.2 units/m l 

trypsin  for 15 min in  the presence of 5mM NADP and 5mM shikimate) 

a t  both low substrate  concentrations (2mM NADP and 4mM shikimate) 

and high substrate  concentrations (lOmM NADP and lOmM shikimate)
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Figure 31 SDS polyacrylamide gel electrophoresis of the proteolysed 

arom complex used in  the k ine tic  stud ies.
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Figure 32 Determination of the for NADP of native arom complex (•) 

and of proteolysed arcan complex (0) . Assays were performed 

a t  25^0 in  O.IM potassium phosphate pH7.0 in  the presence of 

2mM shikimate. Lines were f i t te d  to the experimental data 

by the method of le a s t  squares.
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Figure 33 Determination of the for shikiraate of native (•) and of 

proteolysed CO) arora complex. Assays were performed a t 

25^0 in  the presence of 2mM NADP in  O.IM potassium phosphate 

pH7,0.



>

s
s

I
I

20 40 8060 100

[dehydroquinate] (yM)

Figure 34 Determination of the for dehydroquinate of native arom 

complex (•) and of proteolysed arom complex (0). Assays

were performed a t  25 C in  O.IM potassium phosphate pHV.O.
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Figure 35 Arrhenius p lo ts  fo r the shikimate dehydrogenase (D) and

dehydroquinase (A) reactions of the arom complex. Assays 

were performed in  O.IM potassium phosphate pH7,0.
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Figure 36 Arrhenius p lo ts  fo r the shikimate dehydrogenase (P) and

dehydroquinase CA) a c tiv it ie s  of proteolysed arom complex.
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in  the presence of various concentrations of sodium chloride in  O.IM 

Tris/HCl pH8.85 was determined. The e ffec ts  of sodium chloride con­

cen tration  on the shikimate dehydrogenase ac tiv ity  of native and of 

proteolysed arom complex were sim ilar (Fig. 37).

The e ffec ts  of urea and guanidine hydrochloride concentration on 

the shikimate dehydrogenase a c tiv ity  of native and of proteolysed arom 

complex when assayed in  O.IM Tris/HCl pH7.5, 2mM NADP, 4mM shikimate 

are shown in  Figures 38 and 39, again the e ffec ts  on both native and 

proteolysed arom complex were sim ilar.

3.13 The E ffect of Trypsin Proteolysis on the Dehydroquinate 

Synthetase Activ ity  of the Arom Enzyme Complex

The inac tiva tion  of the dehydroquinate synthetase component of 

the arom complex by p ro teo ly sis  with trypsin  was studied in  the same 

manner as the substra te  p ro tection  of the shikimate kinase a c tiv ity .

Twenty m icro litres of arom complex was d ilu ted  to 0,2ml with the usual 

buffer used fo r p ro teo lysis  and the p ro teo lysis performed with 7,2 units/m l 

trypsin . At various times a f te r  the addition of trypsin  samples were 

taken and the dehydroquinate synthetase a c tiv ity  assayed by d ilu tio n  

in to  assay cuvettes. The experiment was performed in  the absence of 

substrates and in  the presence of 1 .9mM DAHP, the substrate  of the 

dehydroquinate synthetase reaction . Figure 40 shows the inac tiv a tion  

observed and, fo r comparison, the ra te  of loss of the shikimate kinase 

a c tiv ity  in  the absence of DAHP.

3.14 Polyacrylamide Gel Electrophoresis of Arom Complex Proteolysed 

in  the Presence of DAHP

DAHP, the substrate  of the f i r s t  enzyme of the arom complex,
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Figure 37 The response of the shikimate dehydrogenase a c tiv ity  of 

native CO) and of proteolysed (A) arom complex in  the 

presence of low Cright) and high (le ft)  substrate  concen­

tra tio n s  (see tex t for d e ta ils) to the concentration of 

NaCl present during assays.
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Figure 38 The response of the shikimate dehydrogenase a c tiv ity  of

native arom complex to  urea concentration in  the absence (O) 

and presence (©) of 0.3M NaCl and also the response of pro­

teolysed arom complex in  the absence ( ) and presence (%) of 

0.3M NaCl.
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Figure 39 The e ffe c t of guanidine hydrochloride concentration on the 

the shikimate dehydrogenase ac tiv ity  of native (0 ) and of 

proteolysed CA) arom complex.
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Figure 40 The e ffec t of p ro teo ly sis  of the arom complex with

7,2 units/m l trypsin  on the shikimate kinase Co) 

and dehydroquinate synthetase C.V) a c t iv it ie s  in the 

absence of substra tes and on the dehydroquinate 

synthetase a c tiv ity  when pro teolysis was performed 

in  the presence of 1.9mM DAHP ( T ) .



Table 9 The time for 50% inactivation (t^) of the enzyme

a c tiv it ie s  of the arom complex on p ro teolysis with 

trypsin  in  the presence of DAHP

A ctivity  t^  (min)

shikimate kinase 7.5

dehydroquinate synthetase 60

shikimate dehydrogenase >> 60

dehydroquinase >> 6 0
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dehydroquinate synthetase, pro tected  both the dehydroquinate synthetase 

and the shikimate kinase a c t iv it ie s  somewhat against p ro teo lysis by 

trypsin  (Figs. 40 and 17}. Arom complex was dialysed overnight against 

SOraM sodium phosphate pH7,5, 0„4mM DTT, ImM EDTA, DAHP was added to a 

concentration of 1.9mM followed by trypsin  to a concentration of

7.2 units/m l, during the reaction  samples were period ica lly  taken and 

p ro teo lysis stopped with soy-bean trypsin  in h ib ito r (method (2 ) above).

The samples were assayed for shikimate dehydrogenase, shikimate kinase, 

dehydroquinate synthetase and dehydroquinase a c t iv it ie s  and also 

analysed by SDS polyacrylamide gel electrophoresis. The shikimate 

kinase ac tiv ity  was lo s t  most rap id ly , the shikimate dehydrogenase and 

dehydroquinase a c t iv i t ie s  were re la tiv e ly  unaffected and the dehydroquinate 

synthetase a c tiv ity  lo s t  a t  an interm ediate ra te  (Table 9). SDS gel 

electrophoresis showed two main p ro teo ly tic  fragments to  be formed 

(Fig. 41), one of molecular weight llOOOO the other of 68000 molecular 

weight. The amount of p ro tein  p resen t in  the arom band and as each 

of the major fragments was estimated from measurements of the areas under 

the peaks of scans of the coommassie blue stained SDS polyacrylamide 

g els. The ra te  of loss of p ro te in  from these bands was correlated  with 

the ra te  of loss of the a c t iv it ie s  of the arom complex (Fig. 42).

The s ta b il i ty  of the shikimate dehydrogenase and dehydroquinase 

a c t iv it ie s  co rrelated  well with the s ta b il i ty  of the 68000 molecular 

weight fragment and the loss o f the shikimate kinase a c tiv ity  was 

reasonably correlated  with the loss of the arom band. The 110000 

molecular weight band was lo s t  more rapidly than the 58000 molecular 

weight band and le ss  rapidly  than the arom band. The ra te  of loss 

of the 1 1 0 0 0 0  band d id  not correspond p recisely  with the ra te  of loss 

of the dehydroquinate synthetase a c tiv ity .
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Figure 41 SDS polyacrylamide gel electrophoresis of samples of arom

complex proteolysed with 7.1 units/m l trypsin  in  the presence 

of l,9mM DAHP for various tim es. The p ro teolysis was stopped

by the addition of soy-bean trypsin  in h ib ito r (method (2 ) ) .
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Figure 42 The e ffe c t o f trypsin  p ro teo lysis in  the presence of 1.9mM DAHP 

on the shikimate kinase (O), dehydroquinate synthetase (V) , 

shikimate dehydrogenase (A) and dehydroquinase (a) a c t iv i t ie s  

of the arom complex and on the amount of p ro te in  in  the arom 

bojind {•) , the sum of the arom and llOOOO bands (T)  and the ^

sum of the arom and 69000 bands (■) on SDS polyacrylamide g e ls . 

The amount of p ro te in  .in each gel band was calcu lated  .as the 

product of the area under the peak of the gel scan of coomassie 

blue stained  gels and where M is  the molecular weight

of the polypeptide under consideration. Protein  was 

estimated in  two gels. The extrem ities of the bars are a t  

the values found from each gel, the points are a t  the mean 

of the two values.



Table 10 The values in polyacrylamide gels containing IM urea 

of native arom complex and of the fragments of the arom 

complex produced by p ro teo lysis with trypsin  in  the 

presence of DAHP

Protein
sta in

shikimate 
dehydrogenas e 

s ta in

RPSP
synthetase

s ta in

Native arom complex 0 . 2 0 0 . 2 2

Proteolysed arom complex 0.32 - 0.35

(experiment 1 ) 0.42 0.44 —

Proteolysed arom complex - 0.29 0.29

(experiment 2 ) - 0.41 -



-  4 0  “

Polyacrylamide gel electrophoresis in  the presence of IM urea and

in  the presence of SDS were used to study arom complex proteolysed

in the presence of DAHP. Arom complex was dialysed overnight into  

the buffer used for p ro teo lysis  experiments. DAHP was added to a 

concentration of 1.9mM and p ro teo lysis  performed with 7,2 units/m l 

trypsin  for 30 min a t  25^C. After th is  time p ro teo lysis was stopped

by the addition of soy-bean trypsin  in h ib ito r (method (2 ) above).

Polyacrylamide gel electrophoresis in  the presence of IM urea showed 

th a t p ro tein  migrating fa s te r  than native arom complex had been formed 

during the p ro teo lysis (Fig, 43), Polyacrylamide gels of native arom 

complex and of proteolysed arom complex were stained  for shikimate 

dehydrogenase a c tiv ity  and for EPSP synthetase ac tiv ity  (Fig. 43).

The values for native arom complex and of the bands present on gels 

of proteolysed arom complex were calculated (Table 10), the re su lts  

of a sim ilar experiment in  which b e tte r  reso lu tion  of shikimate dehydro­

genase components of proteolysed arom complex was achieved (Fig. 44)

are also presented in  Table 10, Gel electrophoresis in  the presence 

of IM urea was not wholly successful in separating the polypeptides 

present in  the proteolysed sample of arom complex. I t  appears th a t 

the more slowly migrating band of shikimate dehydrogenase a c tiv ity , 

which also s ta in s for EPSP synthetase, contains polypeptides of 

molecular weights 109000, 6 8 0 0 0  and 51000 while the more rapidly 

migrating band of shikimate dehydrogenase ac tiv ity  contains only 

polypeptides of 60000 molecular weight (Fig. 44).

3.15 C haracterisation of an Anomalous Trypsin Proteolysis Experiment

In one experiment in which arom complex was proteolysed with 

7 units/m l trypsin  in the presence of 5mM shikimate and 5mM NADP the 

molecular weights of the polypeptides found on SDS gels were not as
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F i g u r e  4 3  P o l y a c r y l a m i d e  g e l  e l e c t r o p h o r e s i s  i n  t h e  p r e s e n c e  o f  IM 

u r e a  o f  a r o m  c o m p l e x  p r o t e o l y s e d  i n  t h e  p r e s e n c e  o f  DAHP.

Gels A and D are of unproteolysed arom complex stained for 

p ro tein  and EPSP synthetase ac tiv ity  respectively . Gels B,

C and E are of proteolysed arom complex and stained for p ro tein , 

shikimate dehydrogenase ac tiv ity  and EPSP synthetase a c tiv ity . 

The heavy bands below the wire on gels D and E are due to the 

presence of phosphate in the sample loaded onto the gels.
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Figure 44 Polyacrylamide gel electrophoresis of arom complex proteolysed 

with 7.2 units/m l trypsin  in  the presence of 1.9mM DAHP for 

30 min a t  25°C. P roteolysis was stopped with immobilised soy­

bean trypsin  in h ib ito r (method (3) in the t e x t ) . Gel A is  

an SDS polyacrylamide gel stained for p ro te in , gel B a polyacryl­

amide gel containing IM urea stained for shikimate dehydrogenase 

a c tiv ity  and gel C a second dimension SDS polyacrylamide gel 

loaded from a gel run as for gel B.



Table 11 The ac tiv ity  ra tio s  measured before and a f te r  p ro teo lysis 

with 7 units/m l trypsin  for 15 min in  the presence of 

5mM shikimate and 5mM NADP

A ctivity  Ratio 

Measured

Ratio p rio r to 

p ro teo lysis

Ratio a f te r  

p ro teolysis

e4
E 2 ,

0.1558 0.0535

E4
E2

0.7328 0.2866

E4
El

4,878 2.518

El = dehydroquinate synthetase 

E2  = dehydroquinase 

E3 = shikimate dehydrogenase 

E4 = shikimate kinase
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expected on the basis of previous experiments. P roteolysis was 

performed a t  25°C for 15 min and terminated by passing the reaction  

solution through immobilised soy-bean trypsin  in h ib ito r and gel 

f i l t r a t io n  in to  50mM sodium phosphate pH7.5, 0.4mM DTT (method (3) 

above). The a c tiv ity  ra tio s  were measured before and a f te r  p ro teo lysis 

(Table 11) and indicated  th a t around 35% of the shikimate kinase 

ac tiv ity  remained as did around 6 6 % of the o rig in a l dehydroquinate 

synthetase a c tiv ity .

SDS polyacrylamide gel electrophoresis showed the main polypeptides 

present a f te r  p ro teo lysis to  have molecular weights of 1 2 2 0 0 0 , 68000, 

62000 and 50000; no unproteolysed arom polypeptide remained (Fig. 45).

Polyacrylamide gel electrophoresis in  the presence of 8 M urea 

separated a number of p ro te in  bands. Second dimension SDS polyacryl­

amide gel electrophoresis estab lished  th a t each of these bands contained 

only one size of polypeptide chain (Fig, 45).

After polyacrylamide gel electrophoresis in  the presence of 8 M 

urea shikimate dehydrogenase a c tiv ity  could be detected in  the gel a f te r  

soaking for 50 min in  lOOml of 25mM Tris/HCl pH9.0, 0.5mM DTT and then 

stain ing  for a c tiv ity  as usual. Shikimate dehydrogenase a c tiv ity  

was found associated with the polypeptides of molecular weights 1 2 2 0 0 0 , 

6 8 0 0 0  and 62000 but not with the most abundant polypeptide of molecular 

weight 50000 (Fig. 45), Other shikimate dehydrogenase stain ing  bands 

are probably associated with a minor polypeptide of molecular weight 

around 48000 not resolved from the major band of molecular weight 

50000 on single dimension SDS gel electrophoresis, and possibly with 

a polypeptide of molecular weight 37000.
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Figure 45 Polyacrylamide gel electrophoresis of trypsin-proteolysed arom 

complex. Gel A is  an SDS polyacrylamide gel. Gels B and C 

are polyacrylamide gels containing 8 m urea stained for shikimate 

dehydrogenase ac tiv ity  and protein  respectively . Gel D is  

a second dimension SDS polyacrylamide slab gel loaded from a 

gel run as for gels B and C.
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Figure 46 The e ffe c t of p ro teo ly sis  of the arom complex with 3yg/ml

su b ti l is in  a t  0°C on the shikimate kinase (O), dehydroquin­

ate synthetase (V), shikimate dehydrogenase (A) and 

dehydroquinase (O) a c t iv it ie s  of the complex. Assays 

were performed by d ilu tin g  aliquots of the reaction  

so lu tion  in to  the appropriate assay cuvette a t  various times 

a f te r  the addition of p ro tease .



4.1 Proteolysis of the Arom Enzyme Complex with S u b tilis in

Proteolysis of the arom complex with su b ti l is in  was performed in 

50mM sodium phosphate pH7.5, 0.4mM DTT, ImM EDTA a t  e ith e r 25^C or 0°C.

The reaction  was stopped e ith e r by d ilu tin g  proteolysed arom complex 

in to  an assay cuvette for a c tiv ity  measurements or by adding a freshly  

prepared 6 mg/ml so lu tion  of PMSF in  95% ethanol to a f in a l concentration 

of l,2mM.

4.2 The S uscep tib ility  of the Shikimate Kinase, Dehydroquinate 

Synthetase, Shikimate Dehydrogenase and Dehydroquinase A c tiv ities  

to P roteolysis with S u b tilis in

Small scale experiments were performed to te s t  the s ta b i l i ty  of the 

enzyme a c tiv it ie s  of the arom complex toward p ro teo lysis with s u b ti l is in .  

In each case twenty m icro litres  of arom complex was d ilu ted  to 0.2ml 

with 5QmM sodium phosphate pH7.5, 3yg/ml s u b ti l is in  added and the 

a c tiv ity  measured by d ilu tio n  in to  assay cuvettes a f te r  various periods 

of incubation with protease a t  0°C, Figure 46 shows the loss of a c tiv ity  

with increasing length of incubation for the four a c t iv it ie s  measured, 

shikimate kinase, shikimate dehydrogenase, dehydroquinase and dehydro­

quinate synthetase. As was the case with trypsin  the shikimate kinase 

a c tiv ity  was rapidly  lo s t ,  the dehydroquinate synthetase ac tiv ity  was 

inactivated  le ss  rapidly  and both the shikimate dehydrogenase and 

dehydroquinase a c t iv it ie s  were re la tiv e ly  s tab le ,

4.3 Polyacrylamide Gel E lectrophoresis of S u b tilis in  Proteolysed 

Arom Enzyme Complex

The sizes of the p ro teo ly tic  fragments produced by cleavage of the 

arom complex with su b ti l is in  were studied by SDS polyacrylamide gel



electrophoresis. Two methods were used to stop the reaction , boiling  

the reaction  mixture or addition of PMSF as above. The la t te r  method 

was used to investigate  the molecular weights of the polypeptides produced 

by p ro teo lysis a t  0°C and a t  25^C.

4.4 Termination of S u b tilis in  Proteolysis of the Arom Complex by 

Boiling

Arom complex was dialysed overnight into 50mM sodium phosphate pH7.5, 

0.4mM DTT, ImM EDTA a t  4^C and then proteolysed with 3yg/ml su b ti l is in  

a t  0°C. During the p ro teo lysis  samples were removed and assayed by 

d ilu tio n  in to  assay cuvettes and a t  in te rv a ls  during the reaction  aliquots 

were taken, boiled for 1.5 min to inac tiv a te  the protease, and analysed 

by SDS gel electrophoresis (Fig. 47), A control incubation was run in  

the absence of pro tease. SDS polyacrylamide gel electrophoresis of arom

complex proteolysed in  th is  manner showed two major fragments of molecular 

weights 66000 and 50000. At early  times during ttie reaction  higher 

molecular weight polypeptides, 156000, 120000, 104000 and 79000, were 

observed.

4.5 Termination of S u b tilis in  Proteolysis with PMSF

Proteolysis of the arom complex a t  Ô C was performed as described 

in  the previous section except th a t the reaction  was stopped by trea tin g  

samples with PMSF to a f in a l concentration of 1 .2mM. The samples were 

subjected to SDS polyacrylamide gel electrophoresis (Fig. 48).

P roteo ly tic  fragments of molecular weights 125000, llOOOO, 69000 and 

52000 were produced. After 30 min the main bands were those of 

molecular weights 69000, 52000 and llOOOO.
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Figure 47 SDS polyacrylamide gel electrophoresis of a time-course of

su b til is in  p ro teo lysis of the arom complex a t  0°C. P roteolysis 

was stopped a t  various times by bo iling .
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Figure 48 SDS polyacrylamide gel electrophoresis of a time-course of 

p ro teolysis of the arom complex a t  0 °c with si.ib tilisin . 

P roteolysis was stopped by the addition of PMSF.
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Figure 49 The e ffe c t of p ro teo lysis of the arom complex with 3pg/ml 

su b ti l is in  a t  25^0 on the shikimate kinase (O), shikimate 

dehydrogenase (A) and dehydroquinase (□) a c t iv it ie s  of 

the complex. P roteolysis was stopped with PMSF (see text)



4.5 Proteolysis of the Arom Complex at 25^c with Subtilisin

Proteolysis of the arom complex a t  25^C was performed in  the same 

manner as was p ro teo lysis a t  O^C. The concentration of s u b ti l is in  used 

was 3yg/ml and the reaction  was stopped by mixing samples of the reaction  

solution with su ff ic ie n t PMSF to give a f in a l concentration of 1.2mM.

The shikimate kinase, shikimate dehydrogenase and dehydroquinase 

a c t iv it ie s  of the samples were measured (Fig. 49) and SDS polyacrylamide 

gels run (Fig. 50). The molecular weights of the fragments produced 

by p ro teo lysis a t  25°C were the same as these found a f te r  p ro teolysis 

a t  0°C. After lo min p ro teo lysis the only fragments present had 

molecular weights of 6 8 0 0 0  and 50000.

A fu rther su b ti l is in  p ro teo ly sis  experiment performed a t  25°C again 

showed the shikimate kinase a c tiv ity  to be rapidly lo s t .  In th is  case 

the fragment produced a t  a molecular weight around 50000 was resolved 

into  two components, one of molecular weight 52000, the other of 50000 

molecular weight (Fig. 51).

4.6 Location of Dehydroquinase A ctive-Sites a f te r  Proteolysis of the 

Arom Complex with S u b tilis in

Arom complex was proteolysed a t  0°C for 30 min with 3yg/ml s u b til is in  

and then PMSF added to a concentration of l,2mM to stop the reaction .

The dehydroquinase a c tiv e -s ite s  of the proteolysed arom complex were

3
then labelled  by reductive a lky lation  with sodium boro-[ K]-hydride 

(specific a c tiv ity  5OOmCi/mmo1e) of the S ch iff 's  base formed with 

dehydroquinate during the dehydroquinase reaction . Excess tritium  was 

separated from the labelled  pro tein  by gel f i l t r a t io n  and the pro tein  

stored a t  -15^C in  50mM sodium phosphate pH7.5, 0.4mM DTT, ImM EDTA,

50% (v/v) g lycerol.
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Figure 50 SDS polyacrylamide gel electrophoresis of arom complex

o
proteolysed with su b ti l is in  a t 25 C. Proteolysis was 

stopped a t  various times by the addition of PMSF.
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Figure 51 SDS polyacrylamide gel electrophoresis of arom complex 

proteolysed with s u b ti l is in  a t  2 5 ° c .  Proteolysis was 

stopped by the addition of PMSF, In th is  experiment two 

bands of molecular weights 5 2 0 0 0  and 5 0 0 0 0  were resolved.
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After the p ro teo ly sis  92% of the o rig ina l shikimate dehydrogenase 

activit:y remained as did 79% of the o rig inal dehydroquinase a c tiv ity . 

Substrate labelling  of the dehydroquinase a c tiv e -s ite  reduced the 

residual dehydroquinase a c tiv ity  to 1 0 % of the s ta r tin g  value but did 

not a ffe c t the shikimate dehydrogenase a c tiv ity ,

SDS polyacrylamide gel electrophoresis was used to separate the 

polypeptides produced by p ro teo lysis (Fig, 52). The major band on the 

gels was the fragment of molecular weight 69000. Also present was a 

■trace amount of unproteolysed arom complex and fragments of molecular 

weigh-ts 109000, 96000, 54000 and 51000. In order to find  which poly­

peptides contained -the dehydroquinase ac tiv e -s ite  SDS polyacrylamide 

gels were s liced  into 1 mm d iscs, so lub ilised  with hydrogen peroxide and 

the tritium  present in  each determined by liqu id  s c in t i l la t io n  counting 

(Fig. 53).

Dehydroquinase a c tiv e -s ite s  were located on -the 69000 molecular 

weight polypeptide and also in  the bands of 54000 and 51000 molecular 

weight.

5.1 Proteolysis of the Arom Enzyme Complex with Chymotrypsin

Proteolysis of -the arom complex wi'th chymo trypsin  was carried  out 

in  the same buffer as p ro teo lysis with trypsin . P roteolysis was ended 

ei-fcher by d ilu tio n  of samples in to  assay cuvettes or by the addition of 

a freshly prepared solution  of lima-bean trypsin/chymotrypsin in h ib ito r 

in  the same buffer to a concentration ten times th a t of the protease by 

weight.
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Figure 52 SDS polyacrylamide gel electrophoresis of A, arom complex 

proteolysed a t  0°C with 3yg/ml su b til is in  for 30 min p rio r 

to lab e llin g  of the dehydroquinase ac tiv e -s ite s  with dehydro­

quinate /sodium boro-[^H]-hydride and B,  standard proteins for 

molecular weight determ inations.
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Figure 53 Location of the dehydroquinase ac tiv e -s ite s  of arom complex 

proteolysed with s u b ti l is in  a t O^C. The lower trace is  a 

densitometer scan of a coommassie blue stained  SDS polyacryl­

amide gel. A sim ilar gel was sliced  in to  1mm discs and the 

rad io ac tiv ity  present in each determined, th is  is  shown in 

the upper tra ce .
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Figure 54 The e ffe c t of p ro teolysis of the arom complex with 

l,25yg/ml chymotrypsin on the shikimate kinase (O), 

shikimate dehydrogenase (À) and dehydroquinase (D) 

a c t iv i t ie s .  Assays were performed by d ilu tin g  

samples in to  the appropriate assay cuvette a t  various 

times a f te r  the addition of protease.
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5.2 The S ta b ility  o f the Enzyme A ctiv ities  of the Arom Complex 

to Proteolysis with Chymotrypsin

The s ta b i l i t ie s  of the shikimate kinase, shikimate dehydrogenase 

and dehydroquinase a c t iv it ie s  of the arom complex toward p ro teo lysis with 

chymotrypsin were tes ted . Twenty m icro litres of a stock solution  of 

arom complex was d ilu ted  to 0.2ml with SOraM sodium phosphate pH7.5, 

p ro teolysis was then performed with 1.25iig/ml chymotrypsin a t  25°C, a t  

times a f te r  the s t a r t  of the incubation samples were taken and assayed 

by d ilu tio n  into  assay cuvettes. The shikimate kinase a c tiv ity  was 

more susceptible to p ro teo lysis than e ith e r the shikimate dehydrogenase 

or dehydroquinase a c t iv it ie s  (Fig. 54). The shikimate kinase a c tiv ity  

was lo s t  more rapid ly  when higher concentrations of chymotrypsin were 

used in  the incubation.

5.3 SDS Polyacrylamide Gel E lectrophoresis of Arom Complex Proteolysed 

with Chymotrypsin

SDS polyacrylamide gel electrophoresis of samples of arom complex 

proteolysed for 2, 5, 15 and 30 min with 1.45yg/ml chymotrypsin was 

performed. The p ro teo lysis was stopped using lima-bean trypsin/chymo­

trypsin  in h ib ito r and a control incubation performed in  the absence of 

p ro tease .

With increasing times of p ro teo lysis the arom polypeptide was lo s t  

(Fig. 55) and polypeptides of molecular weights 124000, 107000, 69000 

and 51000 formed. After 30 min incubation the 69000 and 51000 poly­

peptides were the major products,

6 . P roteolysis of the Arom Complex with E lastase and with Papain

The time-courses of p ro teo lysis of the arom complex with e lastase
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Figure 55 SDS polyacrylamide gel electrophoresis of a time-course 

of p ro teolysis of the arom complex with 1 . 4 5 jjg/ml 

chymotrypsin.
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Figure 56 SDS polyacrylamide gel electrophoresis of a time-course 

of p ro teo lysis of the arom complex with 5ug/ml elastase,
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Figure 57 Time-course of p ro teo lysis of the arom complex with 5yg/ml 

papain monitored by SDS polyacrylamide gel electrophoresis



Table 12 The e ffe c t on the a c t iv it ie s  of the arom complex of cross* 

linking in  the presence and absence of the substra tes of 

the shikimate dehydrogenase component of the complex

Shikimate 
dehydrogenas e 
a c tiv ity  (%)

Dehydroquinas e 
a c tiv ity  {%)

Shikimate 
kinase 

a c tiv ity  (%)

Control 100 100 100

Cross-linked arom 
complex

163 96 55

Arom complex cross- 
linked in  the 
presence of NADP and 
shikimate

148 33 71
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and with papain were followed by SDS polyacrylamide gel electrophoresis, 

Arom complex was proteolysed with e ith e r 5yg/ml e lastase  or papain in 

50mM sodium phosphate pH7.5, 0.4mM DTT, ImM EDTA. At in te rv a ls  a f te r  

the addition of protease samples were removed and boiled to stop 

fu rther p ro teo ly sis .

The arom complex was degraded only s lig h tly  by e lastase  in  1 h under 

these conditions (Fig. 56). The molecular weights of the polypeptides 

formed a f te r  th is  time being 123000 and 52000.

In con trast to the low amount of p ro teo lysis caused by e las ta se , 

papain rapidly attacked the arom complex (Fig. 57). After 5 min no 

native arom polypeptide remained, proteins of molecular weights 98000, 

84000, 68000 and 50000 having been formed. After 1 h fu rth er p ro teo lysis 

had occurred and polypeptides with molecular weights 68000, 50000 and 

36000 were observed.

7. Chemical Studies of the Arom Enzyme Complex

7.1 The E ffect of Cross-Linking on the A ctiv ities  of the Arom Complex

The e ffe c t of cross-link ing  the arom complex with dimethyl suberimidate 

on the a c t iv it ie s  of the shikimate dehydrogenase, shikimate kinase and 

dehydroquinase components of the complex was studied. Cross-linking 

was performed with 20mM dimethyl suberimidate a t  25^C for 1 h in  O.IM 

triethanolamine/HCl pHS.O, 0.4mM DTT in  both the presence and absence 

of 5mM shikimate and NADP. A control incubation was performed to which 

no cross-linking  reagent was added. After 1 h the cross-linking 

reaction  was terminated by adding ammonium bicarbonate to a f in a l 

concentration of O.IM. ■ The three enzyme a c t iv it ie s  were assayed.
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Figure 58 The e ffe c t of reductive a lky la tion  of the arom complex 

with formaldehyde/sodium borohydride on the shikimate 

dehydrogenase (le ft) and dehydroquinase (right) 

a c t iv it ie s  in  the absence (A) and in  the presence of 

5mM shikimate (0).
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Cross-linking both, in  the presence and absence of NADP and shikimate 

affected  the a c t iv it ie s  of the arom complex (Table 12).

7.2 Reductive Alkylation of the Arom Complex with Formaldehyde 

plus Sodium Borohydride

The e ffec t of reductive a lky la tion  of the arom complex by 

formaldehyde and sodium borohydride on the shikimate dehydrogenase 

and dehydroquinase enzyme a c tiv it ie s  was examined. To arom complex 

in  0.4ml 50mM sodium phosphate pH7,5 was added successive aliquots of 

2 vimoles of formaldehyde followed by O.65pmoles of sodium borohydride. 

The enzyme a c tiv ity  was measured between each addition of formaldehyde 

and sodium borohydride. The e ffe c t of including 5mM shikimate in  the 

reaction  so lution  was investigated , Shikimate dehydrogenase and 

dehydroquinase a c t iv it ie s  were inactivated  by reductive a lky lation , 

the shikimate dehydrogenase a c tiv ity  being protected by shikimate 

(Fig. 58) ,



-  49  -

CHAPTER 4 

DISCUSSION

1. Purification of the arom enzyme complex

The arom enzyme complex of crassa was p u rified  to homogeneity

by Lumsden and Coggins (1977). Despite the reasonable y ie ld  of the

p u rifica tio n  procedure (around 25%) less than Img of enzyme was obtained 

from 20g of lyophilised N. crassa mycelia. When the procedure was 

scaled-up to allow the ex traction  of lOOg of mycelia in  each preparation 

i t  became less re lia b le . In p a rticu la r  the f in a l step of the 

p u rifica tio n , chromatography on cellu lose phosphate, did not always 

y ie ld  pure arom complex. The enzyme used in  th is  study of the arom 

complex was p u rified  by a method based on th a t of Lumsden and Coggins

(1977) but using chromatography on blue-dextran sepharose ra the r than 

on cellu lose phosphate as the f in a l p u rifica tio n  step . The arom 

complex bound tig h tly  to blue-dextran sepharose allowing the contaminant 

pro teins s t i l l  p resen t a t  th is  stage to  be eluted p rio r to elu tion  of 

the p u rified  arom enzyme complex with- s a l t .  This procedure read ily  '

allows the iso la tio n  of around 3mg of pure arom complex from lOOg of 

lyophilised  ^  crassa mycelia.

The arom complex of crassa contains both a dehydrogenase and

a kinase enzyme a c tiv ity . Many kinases and pyridine-nucleotide-linked

dehydrogenases contain homologous regions of three-dimensional s tru c tu re , 

the dinucleotide binding fold , and i t  was suggested th a t chromatography 

on cibacron blue columns may be a general method for recognising and 

purifying pro teins containing th is  super-secondary s tru c tu ra l u n it 

(Thompson e^ a l , 1975) . Attempts to elu te  the arom complex from blue- 

dextran sepharose with substrates of the shikimate kinase or shikimate 

dehydrogenase components of the complex were unsuccessful. Chromato­

graphy on blue-dex-tran sepharose is  probably not a form of a ff in ity  

chromatography of the arom complex.
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Chromatography on blue-dextran sepharose has proved invaluable 

not only in the p u rif ica tio n  of the arom complex but also for obtaining 

preparations of an th ran ila te  synthetase and chorismate synthetase which 

are free  of arom complex. These preparations are necessary for use as 

coupling enzymes in  the fluo rim etric  assay of the la s t  enzyme of the 

arom complex, EPSP synthetase. Neither chorismate synthetase nor

an th ran ila te  synthetase bind to  blue-dextran sepharose. The m aterial 

which washed through the blue-dextran sepharose column during p u rif ic a ­

tions of the arom complex is  a useful source of both of these enzymes 

which may subseuqently be separated by chromatography on cellu lose 

phosphate (Coia and Coggins, unpublished re su lts ) .

2. The e ffe c t of p ro teo lysis on the enzyme a c t iv it ie s  of the arom

complex and the molecular weights of the polypeptides formed

A study of the arom complex by means of lim ited p ro teo lysis was 

undertaken. I t  has been observed in  investigations of m ultifunctional 

enzymes th a t one or more of the enzyme a c tiv it ie s  may be unaffected by 

pro teolysis (see Chapter I , section 7 for examples). In keeping with 

the domain theory of p ro tein  stru c tu re  these p ro tease -re s is tan t regions 

are thought to be independent s tru c tu ra l domains of the m ultifunctional 

enzymes and our goal was to attempt to iso la te  a t  le a s t  one such domain 

of the arom complex.

Limited p ro teo lysis of the arom complex was achieved in  a number of 

ways. The p ro teo ly tic  enzymes trypsin , su b ti l is in , chymotrypsin, 

papain and e lastase  were used. In the case of p ro teolysis with trypsin  

the e ffe c t of performing the p ro teo lysis in  the presence of a number of 

substrates of the arom complex was investigated . When a number of 

proteases are shown to produce sim ilar p ro teo ly tic  fragments of a



Figure 59 The order of the genes of the arom gene c lu s te r (Bhines 

e t  a l , 19691 and the corresponding order of the enzymes 

on the arom polypeptide. The genes are numbered 

according to Rhines e^ a l , (19691 and the enzymes 

according to th e ir  order on the metabolic chain.

3 ' Arom 2 Arom 4 Arom 5 Arom 9 Arom 1 5 '

El E5 E4 E2 E3 CÔ H

El = dehydroquinate synthetase 

E2  = dehydroquinase

E3 = shikimate dehydrogenase

E4 = shikimate kinase

E5 = EPSP synthetase



large enzyme the assignment of these fragments as domains of p ro tein  

s tru c tu re , linked to the remainder of the pro tein  by exposed loops of 

polypeptide, can be more confidently made than on the basis of re su lts  

with a single p ro tease . The order of the genes coding for the five

a c tiv it ie s  of tlie arom complex has been deduced from genetic studies 

(Rhines e t  a l , 1969). From a knowledge of the order of the genes the 

order of the enzyme a c t iv it ie s  on the arom polypeptide can be derived 

(Fig. 59). The dehydroquinate synthetase ac tiv ity  is  located a t  the 

N-terminus of the polypeptide and the EPSP synthetase is  adjacent to 

i t .  The shikimate kinase is  the cen tra l enzyme of the complex with, 

toward the G-terminus of the arom polypeptide, the dehydroquinase and, 

f in a lly , the shikimate dehydrogenase. As w ill be demonstrated below 

the re su lts  of our lim ited  p ro teo lysis  studies of the arom complex are 

consisten t with th is  order of the enzymes on the arom polypeptide.

The shikimate kinase a c tiv ity  of the arom complex was susceptible 

to inactivation  caused by proteolysis, with trypsin  (Fig. 15), s u b til is in  

(Fig. 46) and chymotrypsin (Fig. 54). In each case the shikimate 

dehydrogenase and dehydroquinase a c t iv it ie s  were re la tiv e ly  re s is ta n t 

to pro teolysis w h ilst, on p ro teo lysis with trypsin  or s u b til is in , 

the dehydroquinate synthetase a c tiv ity  was lo s t  more rapidly than the 

shikimate dehydrogenase or dehydroquinase a c t iv it ie s  but less quickly 

than the shikimate kinase a c tiv ity  (Figs. 40 and 46). These re su lts  

are most easily  explained by a model of the arom complex in  which the 

shikimate dehydrogenase and dehydroquinase a c t iv it ie s  are contained in 

p ro tease -re s is tan t domains, the dehydroquinate synthetase a c tiv ity  is 

catalysed by a somewhat less stab le  domain and sequences of the arom 

polypeptide necessary for the shikimate kinase ac tiv ity  are exposed to 

p ro teo ly tic  attack  on the surface of the complex.



SDS polyacrylamide gel electrophoresis of arom complex proteolysed 

for increasing times w ith trypsin  showed the rapid loss of the 165000 

molecular weight arom polypeptide and the appearance of two major bands 

of molecular weights 110000 and 69000 (Fig. 16), The shikimate kinase 

a c tiv ity  is  rapidly lo s t  on p ro teo lysis with trypsin  (Fig, 15) and is  

located in the centre of the arom polypeptide (Fig. 59). Trypsin 

pro teolysis of the arom complex thus appears to involve cleavage of 

the arom polypeptide in  the region responsible for the shikimate kinase 

a c tiv ity  resu lting  in  the production of two large p ro teo ly tic  fragments, 

one derived from the region of the arom complex toward the N-terminal 

end of the polypeptide and the other from the region of the arom complex 

toward the C-terminal end of the arom polypeptide.

A number of substra tes of the arom complex were shown to decrease

the ra te  of loss of the shikimate kinase ac tiv ity  caused by p ro teo lysis

with trypsin  (Table 5). Substrates of not only the shikimate kinase

component of the arom complex but also of the shikimate dehydrogenase and
'  ' (■ 

dehydroquinate synthetase components (Table 5) slowed the ra te  of

inactivation  of the shikimate kinase ac tiv ity . Vitto and Gaertner

(1978) also found the shikimate kinase a c tiv ity  to be inactivated  by 

p ro teolysis and suggested th a t p ro tection  by DAHP was caused by conform­

ational changes of the arom polypeptide although no physical-chemical 

evidence was presented to support th is  hypothesis.

SDS polyacrylamide gel electrophoresis was used to investigate 

the molecular weights of the p ro teo ly tic  fragments of the arom complex 

produced by pro teolysis with trypsin  in  the presence of shikimate 

phosphate, DAHP, NADP plus shikimate and also ADP plus shikimate.

These combinations of substrates protected the shikimate kinase ac tiv ity  

against pro teolysis to d iffe ren t extents (Table 5). The molecular 

weights of the main fragments observed on SDS polyacrylamide gels are



Table 13 The molecular weights of the major polypeptides formed by 

trypsin  p ro teo lysis of the arom complex in the presence of 

various substrates of the arom complex

-3
Substrates presen t Molecular weight (x 10 )
during pro teolysis of major polypeptides formed

None 110

69

Shikimate phosphate 110

70

Shikimate + NADP 110

63.5

DAHP 110

6 8

Shikimate + ADP _ 125

69

The molecular weight of the in ta c t  arom polypeptide is  

165000 (Lumsden and Coggins, 1977)
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given in  Table 13. In a l l  cases a polypeptide of molecular weight 

around 69000 was produced and, except in  the case of p ro teo lysis in 

the presence of ADP plus shikimate, th is  was accompanied by a band a t  

about 110000 molecular weight. After prolonged p ro teo lysis a 64000 

molecular weight polypeptide was formed and since the formation of th is  

band correlated  with the loss of the 69000 molecular weight band i t  

seemed like ly  th a t th is  band was derived from the 69000 molecular weight 

band. The peptide bonds cleaved by trypsin  in  the absence of 

substrates and in  the presence of shikimate phosphate, DAHP, and shikimate 

plus NADP appear to be in  sim ilar positions on the polypeptide chain.

The presence of ADP plus shikimate, the most effec tiv e  combination of 

ligands for pro tecting  the shikimate kinase a c tiv ity  against p ro teolysis 

by trypsin , produced a s lig h tly  d iffe re n t p a tte rn  of fragments. In 

p a rticu la r  a polypeptide of molecular weight 125000 was formed and the 

110000 band was presen t in  low amounts (Fig. 21).

To in te rp re t these patterns of p ro teo ly tic  fragmentation i t  was 

necessary to try  and estab lish  which a c tiv it ie s  were associated with 

which fragments. Since the shikimate dehydrogenase and dehydroquinase 

a c t iv it ie s  of the arom complex were essen tia lly  unaffected by lim ited 

p ro teo lysis i t  was decided to concentrate on estab lish ing  which of the 

p ro teo ly tic  fragments contained these two a c t iv i t ie s .

3. Evidence th a t the 69000 molecular weight fragment is  a

b ifunctional domain of th e arom complex containing the 

shikimate dehydrogenase and dehydroquinase a c t iv it ie s

Simple polyacrylamide gel electrophoresis of proteolysed arom 

complex in  the absence of dénaturants fa iled  to resolve components 

of the proteolysed m ateria l, nor were any low-molecular-weight 

shikimate dehydrogenase-active fragments separated by active-band



Figure 60 The proposed stru c tu re  of the components of proteolysed

arom complex separated by polyacrylamide gel electrophoresis 

in the presence of IM urea (Fig- 27),
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u ltrace n trifu g a tio n . The inclusion  of IM urea in  polyacrylamide 

gels perturbed the stru c tu re  of the proteolysed complex su ff ic ie n tly  

to allow the separation of d iffe ren t partia lly -aggregated  forms of the 

p ro tein  CFig. 27) .

The mechanism o f the dehydroquinase reaction involves a S ch iff 's  

base interm ediate (Butler e t  a l , 1974; Lumsden and Coggins, MS in 

preparation) providing a convenient method of sp ec ifica lly  lab e llin g  

the a c tiv e -s ite  by reduction of th is  interm ediate with sodium b oro -[ H]- 

hydride. Dehydroquinase-containing p ro teo ly tic  fragments of the arom

complex could be located a f te r  polyacrylamide gel electrophoresis by 

the detection of tritiu m  in  gel s l ic e s . Shikimate dehydrogenase- 

containing fragments could be located a f te r  polyacrylamide gel e lec tro ­

phoresis by stain ing  for th is  a c tiv ity  (Chapter 2, section 4).

Second dimension SDS polyacrylamide gel electrophoresis of 

proteolysed arom complex separated by polyacrylamide gel electrophoresis

in the presence of IM urea, which resolved three bands of p ro tein
'

coincident with three bands of shikimate dehydrogenase a c tiv ity , 

showed th a t (a) the most slowly migrating band contained 165000 molecular 

weight polypeptides, (b) the centre band contained polypeptides of 

molecular weights 165000, 110000 and 69000 and (c) the fa s te s t  moving 

a c tiv ity  band contained only 69000 molecular weight m aterial (Fig. 27). 

These were in te rp re ted  as being (a) unproteolysed arom complex, which 

probably migrates as a dimer under these conditions, (b) a mixture of 

two species of proteolysed arom complex one containing one unproteolysed 

polypeptide and one 1 1 0 0 0 0  polypeptide and the other containing one 

unproteolysed arom polypeptide and one 69000 polypeptide and (c) a 

69000 molecular weight shikimate dehydrogenase fragment derived from 

arom complex in  which both polypeptides had been cleaved by trypsin  

(Pig. 60).
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When proteolysed arom complex in  which the dehydroquinase ac tive- 

s i te s  were labelled  as above was analysed by SDS polyacrylamide gel 

electrophoresis the dehydroquinase a c tiv e -s ite s  were located on the 

165000 and 69000 molecular weight polypeptides CFig. 28). P ro teo ly tic  

fragments of the arom complex of molecular weight 69000 stained  for 

shikimate dehydrogenase a c tiv ity  and carried  the dehydroquinase active- 

s i te .  E ither two polypeptides, each of molecular weight 69000, were 

produced, each catalysing  one of the reactions, or the 69000 fragment 

was a b ifunctional domain of the arom complex. The shikimate dehydro­

genase and dehydroquinase a c t iv it ie s  of the arom complex are adjacent on 

the arom polypeptide, on the C-terminal section of the p ro tein , as can be 

deduced from the order of the genes (Fig. 59). I t  seemed probable from

the size  of the fragment th a t i t  was b ifu n c tio n a l.

Since the arom complex i s  a dimer of id en tica l polypeptide chains 

(Lumsden and Coggin s , 1977 and 1978) each polypeptide contains the 

dehydroquinase a c tiv e -s ite  and can be labelled  with dehydroquinate/ 

sodium boro-[^h] -hydride (Lumsden and Coggins MS, in  p repara tion ). '

Calculation of the spec ific  rad io ac tiv ity  (cpm/mole) of bands separated 

by SDS polyacrylamide gel electrophoresis showed th a t the specific  

rad io ac tiv ity  of the arom band was very sim ilar to th a t of the 69000 

band (Table 6 ) .  This strongly suggested th a t most, i f  not a l l ,  the 

69000 polypeptides carried  the dehydroquinase a c tiv e -s ite  and were, 

therefore, b ifunctional domains of the arom complex. SDS polyacryl­

amide gel electrophoresis in  a T ris-glycine system fa iled  to separate 

the 69000 band in to  more than one component.

Further evidence for the homogeneity of the 69000 fragment was

obtained by polyacrylamide gel electrophoresis in 8 M urea. Under 

these conditions a l l  the polypeptides of trypsin-proteolysed arom 

complex are resolved. The fa s te s t  moving band, a f te r  removal of 

urea and renaturation , was found to contain shikimate dehydrogenase
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a c tiv ity  CFig. 291. Second dimension SDS polyacrylamide gel 

electrophoresis showed th a t only polypeptides of molecular weight 

69000 were presen t in  th is  band. This m aterial must correspond to 

th a t already shown to contain the shikimate dehydrogenase and 

dehydroquinase a c t iv it ie s  a f te r  p ro teo ly sis .

SDS polyacrylamide gel electrophoresis of arom complex proteolysed 

with chymotrypsin CFig. 56), papain (Fig. 57) and s u b ti l is in  (Fig. 48) 

showed th a t a fragment of molecular weight 69000 was produced.

Proteolysis with s u b ti l is in  was stopped e ith e r by boiling  or by 

inactivation  of the pro tease with PMSF p rio r to SDS polyacrylamide gel 

e lec trophoresis . When p ro teo lysis was stopped by the addition of 

PMSF (Fig. 48) a polypeptide of 69000 molecular weight was formed.

When pro teolysis was stopped by boiling  the higher molecular weight 

polypeptides were lo s t  more rapidly  than when PMSF was used to stop 

the reaction  (Figs. 47 and 48). This is  probably caused by regions

of the arom complex denaturing more rapidly  than su b ti l is in  and
■

being rapidly  degraded.

Thus the 69000 molecular weight p ro teo ly tic  fragment of the 

arom complex produced by treatm ent o f the complex with s u b ti l is in  

or with trypsin  under several d iffe re n t se ts of conditions, and 

probably also with chymotrypsin and papain, is  a s tru c tu ra l domain 

of the arom complex. This domain contains the shikimate dehydrogenase 

and dehydroquinase a c t iv it ie s  of the complex and must be, on the basis 

of genetic evidence, derived from the C-terminal region of the 

polypeptide (Fig. 59).

4. Comparison of the properties of the shikimate dehydrogenase and

dehydroquinase a c t iv it ie s  of native and of proteolysed arom complex 

Comparison of the properties of the a c tiv it ie s  of m ultifunctional
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proteins with those of c a ta ly tic a lly -ac tiv e  domains may give some 

in s ig h t in to  how incorporation in to  an organised system modifies the 

enzyme a c t iv it ie s .

The properties of the shikimate dehydrogenase and dehydroquinase 

components of proteolysed arom complex were compared with those of 

native arom complex. L i t t le  change in  the ac tivation  energy for 

e ith e r reaction, or in  the for shikimate or dehydroquinate was found 

(Tables 7 and 8 ) .  The fo r NADP of the shikimate dehydrogenase 

ac tiv ity  decreased from 41yM to 26yM a f te r  p ro teolysis ind icating  a 

s lig h t change in  p ro tein  stru c tu re  enhancing somewhat the binding of 

NADP. The response of proteolysed arom complex to the concentration 

of sodium chloride (Fig. 37), urea CFig, 38) or guanidine hydrochloride 

CFig. 39) in assays was very sim ilar to th a t of native arom complex.

The a c tiv ity  changes observed are probably caused by s tru c tu ra l changes 

within the shikimate dehydrogenase domain of the arom complex. The 

sim ilar p roperties of proteolysed and of native arom complex ind icate  

th a t pro teolysis does not much change the structu re  of the shikimate 

dehydrogenase-dehydroquinase domain of the arom complex.

Domains of p ro tein  s tructu re  may be not only s tru c tu ra l and 

functional units of the p ro te in  in  i t s  fin a l folded s ta te  but also 

separate units o f folding of the polypeptide chain. That i s ,  

although the primary structu re  of a p ro tein  d ic ta te s  i t s  f in a l te r t ia ry  

s tru c tu re , fo r large multi-domain proteins i t  may be th a t each domain 

folds reasonably independently. Following polyacrylamide gel 

electrophoresis in the presence of 8 M urea shikimate dehydrogenase 

ac tiv ity  could be recovered associated with the 69000 molecular weight 

trypsin-generated fragment of the arom complex (Fig. 29). The 

shikimate dehydrogenase enzyme of the arom complex is  located a t  the
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C-terminus of the polypeptide and i s ,  therefore, the la s t  region of the 

p ro tein  to be synthesised. The recovery of a c tiv ity  of the iso la ted  

domain of the arom complex means th a t the folding of th is  domain is  not 

dependent on the previous folding of the remainder of the arom 

polypeptide. The 69000 domain may represent an independent folding 

u n it of the arom complex.

Shikimate dehydrogenase a c tiv ity  was not found associated with 

165000 molecular weight arom polypeptides a f te r  polyacrylamide gel 

electrophoresis in  8 M urea (Fig. 29). The folding pathway of 

unproteolysed arom complex leading to the recovery of shikimate dehydro­

genase ac tiv ity  may be d iffe ren t from, and is  slower than, th a t for 

iso la ted  domains of the arom complex. Shikimate dehydrogenase a c tiv ity  

was recovered from a p ro teo ly tic  fragment of molecular weight around 

122000 (Fig. 45), the difference in  folding pathways between arom 

complex and iso la ted  domains of the arom complex may be due to in te r ­

action between the N-terminal and C-terminal regions of the arom ,

polypeptide.

Something of a p a ra lle l  with these re su lts  on the refolding of 

domains of the arom complex may be found in  work on aspartokinase I I  - 

homoserine dehydrogenase I I  of E. co li (Dautry-Varsat and Garel, 1978). 

The k in e tics  of the refolding of both the native b ifunctional enzyme 

and a p ro teo ly tic  fragment containing homoserine dehydrogenase ac tiv ity  

were studied. The refolding of the p ro teo ly tic  fragment was much 

fa s te r  than tha t of the corresponding region of the in ta c t enzyme 

suggesting th a t, although the homoserine dehydrogenase domain of the 

enzyme could refo ld  when iso la ted  as a p ro teo ly tic  fragment, the re ­

folding of the same region of the in ta c t enzyme involved in terac tio n  

with the remainder of the p ro te in .



Figure 61 The reactions catalysed by the two dehydroquinases of 

N. c rassa . The upper p a rt of the scheme shows the 

reaction  of the inducible catabolic  pathway and the lower 

section the co nstitu tiv e  biosynthetic pathway. The 

enzymes labelled  { p i ,  are the f i r s t  three

a c tiv it ie s  of the arom complex.
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5. Comparison of the 69000 molecular weight b ifunctional domain

w ith other m ultifunctional enzymes

M ultifunctional enzymes are considered to be constructed from 

domains and each domain is  usually thought of as catalysing a single 

reaction . A b ifunctional domain has been iso la ted  from the t r ifu n c t­

ional enzyme methylenete trahydrofolate dehydrogenase, m ethenyltetra- 

hydrofolate cyclohydrolase, form yltetrahydrofolate synthetase by lim ited 

p ro teolysis with trypsin  CTan and Mackenzie, 1977). As described in  

Chapter I ,  Section 7, th is  b ifunctional fragment contained the dehydro­

genase and cyclohydrolase a c t iv i t ie s  of the tr ifu n c tio n a l enzyme. The 

dehydrogenase and cyclohydrolase a c t iv it ie s  were la te r  shown to be 

functionally  in teg rated , p re fe ren tia lly  channelling the product of the 

dehydrogenase reaction  through the cyclohydrolase (Cohen and MacKenzie, 

1978), The close s tru c tu ra l re la tionsh ip  between the dehydrogenase 

and cyclohydrolase reactions may be a consequence of a functional require­

ment fo r e f f ic ie n t  substrate-channelling  between the two a c tiv e -s ite s .
' • ■ I-

The shikimate dehydrogenase and dehydroquinase a c t iv it ie s  of the arom 

complex are contained in  a b ifunctional domain. Substrate-channelling 

between the shikimate dehydrogenase and dehydroquinase a c tiv e -s ite s  has 

been proposed as one function of the arom complex (Giles e^ a l , 1967) ; 

channelling between these two a c tiv e -s ite s  would prevent competition 

for substrates between the dehydroquinase ac tiv ity  of the arom complex 

and a second, catabo lic , dehydroquinase present in  crassa (Fig. 51). 

The close s tru c tu ra l re la tionsh ip  of the shikimate dehydrogenase and 

dehydroquinase components of the arom complex may re f le c t  a close 

functional re la tion sh ip .

The question of the organisation of the shikimate dehydrogenase 

and dehydroquinase enzymes of the shikimate pathway in p lants has been 

addressed by a number of workers (Boudet ,  1971; Boudet  and Lecussan,
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19.74? Boudet e t  a l , 19.75? Koshiba, 1977? Polley, 19781. A 

varie ty  of techniques was used to attempt to separate the a c t iv i t ie s ,  

mainly in  crude ex trac ts . In a l l  cases studied, the shikimate 

dehydrogenase and dehydroquinase a c t iv it ie s  appeared to be associated 

as a complex of native molecular weight around 55000. In one 

species, Zea mays, a second dehydroquinase free of shikimate dehydro­

genase was detected (Boudet ^  a l , 1975) . I t  was suggested th a t the 

shikimate dehydrogenase-dehydroquinase complex might e x is t to channel 

substrates through the shikimate pathway without competition from 

other metabolic pathways, an analogous ro le  to th a t proposed for the 

arom complex of N. crassa (Giles e t a l ,  1967) (Fig. 61). Polley 

(1978) p u rified  shikimate dehydrogenase and dehydroquinase from 

Physcomitrella patens. His preparation contained only one size of 

polypeptide chain, molecular weight 48000, and sucrose density gradient 

cen trifugation  gave a molecular weight of 49500 for both a c t iv i t i e s ,

The shikimate dehydrogenase and dehydroquinase a c t iv it ie s  are probably 

catalysed by a b ifunctional polypeptide.

In several species of p lants shikimate dehydrogenase and 

dehydroquinase may occur as a b ifunctional enzyme sim ilar to the 

b ifunctional domain of the arom complex of c rassa . ' I f ,  as has 

been suggested, one function of both the p lan t enzymes and the crassa 

arom complex is  th a t of substra te  channelling i t  would be of in te re s t  

to discover i f  the requirement for th is  function had led to the 

evolution of sim ilar p ro tein  s tru c tu re s .

6 . Evidence th a t the 110000 fragment is  formed from the N-terminal

region of the arom polypeptide

Proteolysis of the arom complex with trypsin  under a varie ty  of 

conditions produced a polypeptide of around llOOOO molecular weight
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(Table 131. The order of the a c tiv e -s ite s  on the arom polypeptide 

(Fig. 591, deduced from the genetic studies of Rhines e t  a l C1969) 

which established the order of the genes in  the gene c lu s te r , ind icates 

th a t dehydroquinate synthetase is  a t  the N-terminus of the arom 

polypeptide and EPSP synthetase is  adjacent to  i t .  A number of re su lts  

suggest th a t the 110000 fragment may be formed from th is  N-terminal 

region of the arom polypeptide.

DAHP, the substra te  of the dehydroquinate synthetase reaction , 

p ro tec ts the dehydroquinate synthetase ac tiv ity  against inactivation  

(Fig, 40) and also s ta b ilis e s  the 110000 molecular weight p ro teo ly tic  

fragment (compare F igs. 16 and 41).

After polyacrylamide gel electrophoresis in the presence of IM 

urea to separate d iffe re n t forms of proteolysed arom complex the EPSP 

synthetase ac tiv ity  was located in  a region of the gel containing 

polypeptides of molecular weights 110000, 69000 and 51000 (Table 10 and 

Fig, 44). As shown above the 69000 polypeptide contains the shikimate  ̂

dehydrogenase and dehydroquinase a c t iv i t ie s .  The EPSP synthetase 

a c tiv ity  must therefore be associated with e ith e r or both of the 

polypeptides of 110000 and 51000 molecular weight.

After polyacrylamide gel electrophoresis in  the presence of 8 M 

urea shikimate dehydrogenase could be recovered and detected in  the 

gel. When a sample of arom complex containing predominantly 165000, 

110000 and 69000 molecular weight polypeptides was run in  th is  system 

no shikimate dehydrogenase ac tiv ity  was associated with the 1 1 0 0 0 0  

molecular weight polypeptide (Fig. 29). This could mean th a t e ith e r 

the 1 1 0 0 0 0  polypeptide does not contain the shikimate dehydrogenase 

a c tiv e -s ite , and is  not derived from the C-terminal end of the arom 

complex, or th a t i t  did not refo ld  into an active conformation. In
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another experiment shikimate dehydrogenase ac tiv ity  was detected in 

a polypeptide of molecular weight 122000 (Pig. 45). For th is  

reason i t  would be expected th a t the 1 1 0 0 0 0  fragment, i f  i t  did 

catalyse the shikimate dehydrogenase reaction , would have refolded in 

such an experiment.

When proteolysed arom complex in  which the dehydroquinase ac tive-

3
s ite s  had been labelled  with dehydroquinate/sodium b oro-[ h]-hydride 

was run in SDS polyacrylamide gels no rad io ac tiv ity  was found in  the 

110000 band (Fig. 28). Therefore the 110000 band did not contain the 

dehydroquinase a c tiv e -s ite . Since the 69000 polypeptide contained 

both the shikimate dehydrogenase and dehydroquinase a c tiv e -s ite s  but 

the 1 1 0 0 0 0  molecular weight polypeptide did not contain e ith e r the 

dehydroquinase or the shikimate dehydrogenase a c tiv e -s ite  i t  seems 

very lik e ly  th a t the two p ro teo ly tic  fragments must be formed from 

d iffe ren t regions of the arom polypeptide. I t  follows th a t the 

1 1 0 0 0 0  molecular weight p ro teo ly tic  fragment must be derived from the ' 

N-terminal region of the arom polypeptide and should therefore contain 

the dehydroquinate synthetase and E P S P  synthetase a c tiv e -s ite s .

The fa te  of loss of the a c t iv it ie s  of the arom complex could be 

co rrelated  with the ra te  of loss from SDS polyacrylamide gels of the 

polypeptides supposed to catalyse each reaction. (Fig. 42). The loss 

of the shikimate kinase ac tiv ity  could be reasonably a ttr ib u ted  to 

the loss of the arom band. The s ta b i l i ty  of the shikimate dehydrogenase 

and dehydroquinase a c t iv it ie s  was re flec ted  by the s ta b i l i ty  of the 

69000 molecular weight fragment. The ra te  of loss of the dehydroquinate 

synthetase a c tiv ity  was much slower than the ra te  of loss of the 

165000 arom band and was also  slower than the loss of the 110000 band.

The discrepancy between the ra te  of loss of the dehydroquinate synthetase



Figure 6'2 The proposed locations of the pro teas e -sen s itiv e  regions 

of the arom polypeptide. Diagram (a) i l lu s t r a te s  the 

predominant p ro teo lysis  proposed when tryp sin  is  used in 

the absence of substra tes or in  the presence of DAHP, 

shikimate phosphate o r NADP plus shikim ata. Diagram (b) 

i l lu s t r a te s  the predominant p ro teo ly sis  suggested to occur 

with trypsin  in  the presence of ADP plus shikimata.

Diagram (b) also  shows the possib le  locations of the 

p ro teo ly tic  events responsible fo r forming the 62000 and 

50000 molecular weight shikimate dehydrogenase-active 

polypeptides seen in  Fig, 45,
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a c tiv ity  and th a t of the llOOOO hand i s  explicable i f  p ro teolysis 

increases the a c tiv ity  of the dehydroquinate  synthetase ac tiv ity  

approximately two-fold. From these re su lts  i t  thus seems lik e ly  th a t 

the 110000 fragment is  derived from the N-terminal region of the arom 

polypeptide and contains both the dehydroquinate synthetase and EPSP 

synthetase a c t iv e -s i te s .

7. The location of p ro tease-sensitive  regions of the arom polypeptide

The shikimate kinase a c tiv ity  of the arom complex is  rapidly  lo s t  on 

p ro teo lysis with trypsin  CFig. 15} ,  s u b til is in  (Fig. 46) or chymotrypsin 

(Fig. 53) suggesting the shikimate kinase contains a p ro tease-sensitive  

sequence on the surface of the arom complex necessary for a c tiv ity . 

Proteolysis with trypsin  in  the presence of a number of combinations of 

p ro tecting  ligands produces polypeptides of molecular weights 1 1 0 0 0 0  

and 69000 [Table 13), Trypsin p ro teolysis of the arom complex 

probably involves cleavage of the polypeptide in the region of the 

chain responsible fo r the shikimate kinase ac tiv ity  producing a 1 1 0 0 0 0  < 

molecular weight fragment from N-terminal side of the cut and a 69000 

fragment from the C-terminal end of the chain [Fig. 62), This is  

consisten t with the re ten tion  of shikimate dehydrogenase and dehydro- 

quinase a c t iv it ie s  by the 69000 molecular weight p ro teo ly tic  fragment, 

with the rapid loss of shikimate kinase ac tiv ity  during p ro teolysis 

(Fig, 15) and with the observations ind icating  th a t the 110000 fragment 

comes from the N-terminal region of the arom polypeptide. The 

discrepancy between the molecular weight of the unproteolysed arom 

polypeptide (165000) and the sum of the molecular weights of the 

p ro teo ly tic  fragments (179000) may ind icate th a t the in ta c t arom 

polypeptide runs anomalously fa s t  on SDS polyacrylamide gels.
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In one trypsin  p ro teo ly sis  experiment a considerable amount of 

shikimate kinase a c tiv ity  remained despite the absence of any 165000 

arom band. Dehydroquinate synthetase a c tiv ity  was also present in  

the absence of any 110000 molecular weight polypeptides. Polyacrylamide 

gel electrophoresis in  the presence of 8 m urea separated the polypeptides 

presen t in  th is  sample of proteolysed arom complex (Fig. 45), Shikimate 

dehydrogenase ac tiv ity  could be recovered in the bands containing the 

122000, 69000 and 62000 polypeptides but was not associated with the 

major polypeptide of molecular weight 50000. P roteolysis in  th is  case 

probably involved f i r s t  the cleavage of the dehydroquinate synthetase 

from the N-terminus of the arom polypeptide as the p ro teo ly tic  fragment 

of molecular weight 50000. The remainder of the polypeptide, molecular

weight 122000, would contain the shikimate kinase a c tiv ity . From th is  

region, on fu rther p ro teo ly sis , would be formed the 69000 molecular 

weight fragment (Fig. 6 2 1 .  The p ro teo ly tic  fragments produced in  th is

experiment were of the same molecular weight as those produced by 

trypsin  p ro teolysis of the arom complex in  the presence of ADP and 

shikimate, the pathway of p ro teo lysis in  both cases may be the same, 

as may the pathway of p ro teo lysis with e lastase .

The production of a polypeptide of molecular weight 50000 possibly 

catalysing the dehydroquinate synthetase reaction suggests th a t the 

b ifunctional 110000 molecular weight fragment might contain a 50000 

molecular weight domain catalysing the dehydroquinate synthetase 

a c tiv ity .

P roteolysis of the arom complex with chymotrypsin (Fig, 55) and 

with s u b ti l is in  (Fig. 48) in  which polypeptides of molecular weights 

around 125000, 1 1 0 0 0 0 , 69000 and 50000 are formed may involve the 

simultaneous occurrence of the two mechanisms of p ro teolysis i l lu s tr a te d  

in Figure 62.
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The proposed locations of the p ro tease-sensitive  regions of the 

arom complex p red ic t ce rta in  re la tion sh ip s between the polypeptides 

produced on p ro teo ly sis . Peptide mapping could be used to te s t  these 

proposals, for example, the peptide maps of the 69000 and 110000 

fragments should contain no common peptides and when combined should 

y ie ld  a map sim ilar to th a t of unproteolysed arom complex.

8 . Evidence for non-covalent in te rac tio n s  between d iffe ren t

regions of the arom complex 

A fter lim ited  p ro teo lysis of a m ultifunctional enzyme any large 

fragments formed may e ith e r  be re leased  free  of the remainder of the 

p ro te in , the system then becoming analogous to a mixture of separable 

enzymes, or they may remain non-covalently bound to the remainder of 

the p ro te in , the system then being more akin to a multienzyme complex. 

To te s t  these p o s s ib i l i t ie s  trypsin  proteolysed arom complex was cross- 

linked with dimethyl suberimidate and also subjected to active-band 

u ltracen trifug a tion  during which the shikimate dehydrogenase ac tiv ity  

was monitored. G ross-linking with dimethyl suberimidate produced 

predominantly two species with molecular weights very sim ilar to the 

arom monomer and dimer on SDS polyacrylamide gels ind icating  th a t the 

polypeptides of trypsin  proteolysed arom complex remain associated 

CFig. 30). Active-band cen trifugation  confirmed th is  re su lt ,  no 

slowly sedimenting shikimate dehydrogenase a c tiv ity  being observed. 

Since the polypeptides produced a f te r  p ro teolysis of the arom complex 

remain associated then non-covalent in te rac tio ns must occur between 

d if fe re n t regions of the arom complex. Such in te rac tio ns could 

allow conformational changes in i t ia te d  in  one domain of the complex 

to be transm itted  to other domains,



9. Comparison of the re su lts  of lim ited  p ro teo lysis of the

'^tom complex with e a r l ie r  a r t ifa c tu a l  quaternary s tructu res

Early p u rifica tio n s  of the arom complex were dogged by the problem 

of p ro teo lysis of the complex during the preparation. In two cases 

CGaertner, 1972? Gaertner and Cole, 1976). the ’subunit* s tru c tu re  of 

the  arom complex was studied by SDS polyacrylamide gel e lectrophoresis.

In the l a t t e r  study (Gaertner and Cole, 1976) the complex was shown 

to be progressively degraded on storage. Some differences in the 

apparent molecular weights o f the fragments due to the d iffe re n t SDS 

polyacrylamide gel systems and marker p ro teins used might be expected 

between th is  work and the work of Gaertner (1972) and Gaertner and Cole 

(19 76). For instance in ta c t  arom complex in  the hands of Gaertner and 

Cole (1976 and 1977) has an apparent molecular weight of only 150000 as 

opposed to  165000 (Lumsden and Coggins, 1977). The molecular weights 

observed by Gaertner (1972) and Gaertner and Cole (1976) are remarkably 

sim ilar to those of fragments produced by lim ited  p ro teo lysis of the 

arom complex (Table 14). This correspondence may be caused by chance, ' 

due to  the number of fragments p resen t, or may ind icate  th a t endogenous 

N. crassa proteases cleave the arom polypeptide in  sim ilar positions 

to  the proteases studied here. The la t t e r  in te rp re ta tio n  is  consisten t 

with there being a lim ited  number of exposed bonds on the surface of the 

arom complex predominantly between domains of the complex.

10. Chemical m odification studies of the a rom complex

After cross-link ing  of the arom complex with dimethyl suberimidate 

a t  le a s t  three of the enzymes of the complex, shikimate dehydrogenase, 

dehydroquinase and shikimate kinase, were active (Table 12), The 

shikimate dehydrogenase a c tiv ity  of the arom complex increased a f te r  

cross-link ing  (Lumsden and Coggins, 1977 and Table 12), the-shikim ate 

kinase a c tiv ity  decreased (Table 12) and the dehydroquinase ac tiv ity
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was re la tiv e ly  unaffected (.Table 12) . Performing the cross-link ing  

reaction  in the presence of NADP and shikimate caused inac tiv a tion  

of the dehydroquinase a c tiv ity  while the shikimate kinase a c tiv ity  

was protected against inac tiv a tion  (Table 12).

The dehydroquinase component of the arom complex, in  common 

with the co li dehydroquinase (Butler e^ a l , 1974), can be inactivated  

by reductive a lky la tion  of a S ch iff 's  base interm ediate (Lumsden and 

Coggins, MS in  preparation) and therefore contains an e ssen tia l lysine 

residue a t  the a d tiv e -s ite . Shikimate dehydrogenase also contains an 

e ssen tia l lysine residue since i t  can be inactivated  by both methyl 

acetim idate and formaldehyde/sodium borohydride (Lumsden and Coggins,

MS in  p repara tio n ).

The dehydroquinase component of the arom complex is  inactivated  by 

formaldehyde/sodium borohydride (Fig. 59). P rotection  experiments with 

shikimate showed th a t shikimate protected the shikimate dehydrogenase 

against inac tiv a tion  by formaldehyde/sodium borohydride but did not
4

p ro tec t the dehydroquinase (Fig. 59). The shikimate dehydrogenase and 

dehydroquinase a c tiv e -s ite s  are, therefo re , sp a tia lly  d is t in c t  and the 

lysine residues modified by formaldehyde/sodium borohydride^at the two 

a c tiv e -s ite s  are d iffe re n t. Methyl acetim idate does not inac tiv a te  the 

dehydroquinase component of the arom complex (Lumsden and Coggins, MS 

in  preparation) whereas formaldehyde/sodium borohydride does. The 

lysine residue modified by formaldehyde/sodium borohydride is  probably 

th a t involved in  S ch iff’s base formation with dehydroquinate. The 

environment of th is  residue precludes reaction with methyl acetim idate 

perhaps due to the charge of th is  reagent. The b ifunctional fragment 

of the arom complex therefore contains two d is tin c t  a c tiv e -s ite s  and the 

in te re s tin g  question is  whether the product of the dehydroquinase 

reaction is  channelled in to  the shikimate dehydrogenase a c tiv e -s ite .
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