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OHA.PTEE I 
SISGIiB PAEAMffiïBR

1. Introduction
Every experiment has one or more untoown parameter. Thus 

the purpose of the experimental work is to obtain the infomation 
about these imlmoTO parameters. The outcome of the experiment 
represents an observation obtained from a population having a 
certain form of frequency distribution specified by one or more 
imlaiowji parameter; therefore the outcomesrof the repeated 
experiment will represent a random sample drawn fx’om that 
population.

The problem of estimation is therefore to estimate the 
unlmovm parameters of the population from the observations 
of the sample which is drawn fx’om that population. Thus it 
is clear that we require to establish some systematic estimation 
procedure, in order to estimate the unknown parameters of the 
population from the information obtained from the sample 
observations.

There are seveî al methods of estimation; one of them is 
the maximum likelihood method vhioh is the oldest one. Each 
of these methods has some optimum properties, but the maximum 
likelihood method has all the properties of the best raethod 
of estimation.

The theory of estimation in fact has been highlighted 
by R, A, Fisher in his papers ’•On the Mathematical Foundations 
of Theoretical Statistics’* (1921) and "Theory of Statistical



Estimation" (1925)# in wlaich very fruitful work on the maximum 
likelihood has been done. In recent years Fisher and some 
other authors, introduced very ?àde developments in the 
maximum likelihood method, which has since been widely used in 
practical applioati ons.

The properties of the best method of estimation:
1,1 Consistencyt Let Xi, be a rajadom sample

of siise y\ dravm from a population having the probability
density function Let the statistic t (dc»,--- ' 2̂ *̂ )
be the estimator of the true value 0o of the parameter © , 
then t will be said to be a consistent estimator of Be, if

R-[|t-®‘>l>S j — ^^  as -Y\ ^

where S is any arbitrary small positive number,
1.2 Normality; If x is a continuous random variable 

with probability density function f ( a:, 0 , <f̂) defined by

then X is said to be distributed normally with mean 6 and 
variance <s'̂ f w h e r e e m d  This expression is
denoted by /V ( ̂  ,

1,5 ïïnbiasednesBs If a statistic t is obtained from the 
information of the sample observations with probability 
density function P then t is said to be an unbiased
estimator of the parameter 6, if



where E denotes, the expeotation. That is t lo centred on 
the value of the parameter,

1,4 Effioienc.v; In some oases there are more than one 
consistent and unbiased estimator for estimating the true 
value of the parameter. For example, the median in example 
9,7 (The Advanced Theory of Statistics, Vol. 1, page 213) 
is distributed normally^ as the sample siae tends to infinity 
and it is consistent and unbiased. The property which 
discriminates between these estimators, to show us the best 
one is called the efficiency*

If ti and ti are two estiamtors to the true value of the 
parameter with variances and Vz respectively and the minimum 
attainable variance is V , then the efficiencies of and t 
are respectively defined by

LI " andV ,

That is, the estimator with smaller variance will be more 
efficient than the other.

For example in the 08>se of the normal distribution 
defined by

f (k , e , = — A —  -

we have for any -n , the variance of the mean is

y\
and for large n , the variance of the median is

IT
2. V\

The efficiency of the median with respect to the mean is then



ê: ̂  —  /jll-'V\ / i-W

“ 0»^3”ï = 6 3 ‘”7 jp
TT

1.4(8') The Fisher’s Inequalityi Let x,,---? X'w he
a random sample from a population having a prohability density
function and let ^C^yy he an unbiased estimate
of gC©) a function of the unîmom parameter B . Then the 
inequality which is defined independently of any method of 
estimation is

\/r f-\ ^VCfc) > ^ -----------

where g'(9)ls the first derivative of and denotes the
variance of the statistic t , This inequality affords the 
minimum variance and also the amount of information on 0 
supplied by the sample observations which is defined by

To prove the inequality above we have to consider the 
following conditions be satisfied,

(a) The range of the stochastic variable is independent 
of 0 ,

(b) The frobability density function is differentiable 
under the integral sign.

Pro of 8 Let ( X/ 6 ) be the joint distribution of the
sample value s * The n

 ^  fc Q Ĉ / ci/ŷ -----------------------=. f o') '

In virtue of condition (b), m  have



^^ i  -

The covariance hetv;een t and ^  is given by
Gr O B

J . . . . J t  . ^ ^ G c U , — cUr= J —Jb ^  cW.--.cW..

We have that
/**■= i: w ) ]  j

where is the correlation coefficient between t and
I 3Cr 

Cr

That is

since o f , where V and 0 denote the variance and 
covariance#
Then

^ \ ) / ■ I Ĉr
Since

#• •

'/(fir) = K-̂ ) - f (
 ̂ f. cLy:

V  Vft)> f îC»).e.

l#4(b) Properties of Efficient Estimators;
Let t and t be two efficient estimators of the same



<s ̂parameter, each one having variance equal to and let the 
correlation coefficient between them he f • If t'' is another
estimator defined hy

then t will he an efficient estimator wi.th the same variance 
of t and t #

We have
Çt ; t ) Cav Ct

VÜArCfr) VO-V C,fcD ■w
\ 6-̂OOV(jr,t̂ ) n, .

Also we have
var ( fr -f J zz Vo-v- ) + 2, Ccrv

then

ie,
'<»- (t") te C - r )

Here f can not he less than 1, because var var C*̂) or
var (t') ; and since f is not greatex" than 1; therefore
f - 1, and so

var ) '
That is, for large samples the efficient estimators are 
equivalent,

l,4(e) Distribution Admitting most Efficient Estimator: 
We have from 1,4 (a) that



V W V C t - # - )  >  [cet, i l l )

This Ineqimlit^r may he written as

J[fc-^C®)]"- G-C*;0) J  ( i  GrCoc;e) ^ { j t  G( ;̂e)

where J" represents the multiple Integral and — cU-w .
From Schwara*s inequality, the equality occurs when

ie# t _ G
^ je ^ "'hT~

where & is constant dependent on 0 , Then

[ - J - - “ K + t x  + /

where IC is Independent of 0 , and X and Y ar e functions of 0 ' 
Hence

Q  3 (̂ Kt b X y )
- Gr̂ ( lc )( t ]/ ) ;

where Gr is independent of © * Since we deduced the last 
formula from the inequality ahove which affords the minimum 
variance when the equality occurs, thus the last formula 
represents the distrihution admitting the most efficient 
estimator.
Ezanple 1,1 Oonsider the Poisson distribution; the joint 
frequency function is then

e
jn ITT XI \

\ _  jus.̂ — -ŵ  I



Here
Cri "M ,TT Xi 1

Therefore the ûistrihutxon achiiits a most efficient 
estimator.
Example 1.2 Consider the normal distribution with unlmown 
mean and Imovm variance , the joint frequency function 
is then

Ct

Here
r « V /

u

(J'= e /  (zTT<yp

Therefore the distribution admits a most efficient estimator#
1,5 Suf f ioienoy ;
Let Xi, be a random sample from a population with

probability density function f Ĉ ,0) , Then the necessary 
condition that the estimator fc be sufficient for 0 is

irK^h^) - r;ct;©)rtĈ t7 2CO.) 
that is factorised into two parts, FîCt)b) ĉ epej-x̂ ent
on t and 9 only and —  ,x̂ ') i^ independent of 0 • We can
extend this property to more than one parameter. Let t,,—  
be estimators of the parameters then the necessary
condition that the estimators are sufficient for is

•vî



1.5(a) Til© General Distribution Admitting' Suffioient 
Btatistlci

Let , Xn. be a random sample and eaoli random variable
have density fimotion ̂ (x,0) then the joint distribution of the 
sample values is

FCx.e) = z i r f > ' n  

If there exists a suffioient statistic t , say, as an estimate 
of the parameter © , then can be factorised as

F(x,e) = f; Ct;0) Fi-Ĉ )
Taking the logarithm and differentiating with respect to ô 
we get

where H(t,0) is a function of t and B , If we substitute 
any particular value of B in H(tjô) then H Ĉ ;̂ ) will be a 
function of t , Alt;) , say, where may be put as

 ̂ ) j *

~  " - 7 T -  =  I"*'

•&t eft

Integrating with respect to .t, we obtain 
Wlk,6) = kl6)fvC(r) ce) .

Integrating with respect to 0 , we get
K(B) ACO-^ L10)4^'^C%') ,



that is,
F = F c/xj) [̂ K(̂ ) -Y L(0)J

where F is a function of x and FsĈ ) LĈ ) are functions
of 9
Example 1,3 Consider the normal distribution with mean 9 and 
variance (Ŝ , where is Imovm, then the frequency function 
may be put in the following form

Here

^ K(Q) t LCe) j ^  '
Therefore a sufficient statistic for 0 exists.

Example 1»4 Oonsider the Poisson distribution, then the ^oint 
frequency function will be such that

h =       - _-l--- £̂)f> Î loA^ - ,
TToCv! frxi\  ̂̂  ̂ J» \

Here
f 'Cx) = > _

TT Xi\

^ eocjp̂ K(9)̂ (y) 4L(o)j ~ (-x
Thus a sufficient statistic of 0 exists.



2* The Principle of Maxiiaym Mkelihood
is the frequency function of a population, then 

the likelihood function of a sample of size m drawn from that 
population, is defined hy

LCx,fr) = TTf(^^0) 
where ® is the parameter of the population#

Now, if the statistic tC«i> —  ̂ maximises the likelihood 
function hCoĉ e) for variations of 8 , then — >xw) is called
the maximum likelihood estimator of G *

In virtue of the foregoing, the statistic t will he
the solution of the equation

-3 L

or the solution of the equation
\ L

o

— o
U  3  0

"—— '—       "%=. /
h  0

S i n c e  L ( x , e )  + o  -

More frequently the last equation was found to be easier and 
more convenient in the practical work than the first one.

3* Oonsistency of Maximum Likelihood Estimator.
Let  be a random sample from a population

with probability density function and let 0 denote
the maximum likelihood estimator of the true value @6 of the
parameter 0 . Then we have to prove that

Pr ̂  \ 0*̂*“ Qb\ > ̂  ] — > o oub -vx
where & is any arbitrary small positive number. The following
conditions are supposed to be satisfied:



ÎCL) f Lt
/ -6 ̂  p-\
V  /'

D

?>& /ÔO V a@^ ye,
are finite and integrable over (-00,0 0  ̂, and

°’̂ ) J-/W \ '̂‘e " 1 P ^  iB finite and positive.

<“> £ - T V - G ‘-»-)‘X - ^ ^ ) e
Proofs By Taylor's theorem we have

C-^X
In virtue of condition (c) we obtain

6*-6o = _  Z_zhiL_)
V 'QÔ /0° / V / ----------*"')

(̂“̂ ),.'J_. (r̂)j
. E  ( ^ : . K - , ,,y.

ie.

Now

Also we can show that

/flo \ -Be /Aoyd'By condition (cL) we haye

2-
)

we can \vrite
2 X n h _ )  _  ^  P;

A - V v ~ ' ^ AProm (1) v/e have



Ÿy I I O'"- > s| rz
/  ̂ \ 
V y<y$o

^ 9  L

Pr

'SÔ'ï- ydo
l_f ̂ 2ÈlfL\

^ \  -̂8 /do\T̂
\ 1̂ ^  L
\ T>ê  JBo

\  ( 5 4o-g,fv ̂
^  \ y do

K

in virtue of the central limit theorem we have

^ \R k %

k7̂£C--3)Yë 00 distributed as  ̂')

Then
Pr||6'_e.|>%j ^Pr|M(o,0 > j

since "n is large, then k̂ \fr? will be large enough to make

Pr^NC^ï/O I  > o .
Then

Pr^\o'-eol >?>'J
That is, 0 is a consistent estimator of ©« «
Example 1*5 Let x,,-_be a random sample from a population 
distributed normally with unlmown mean o and variance # 
Then the likelihood function is

Taking the logarithm of both sides and differentiating with
I

respect to 0 , in order to estimate the value of B , we get
h h
30

The solution of 2 (T



7>

is z: X I ie. the sample mean is the estimate of the 
population mean. Now we want to shovf that ^ is a consistent 
estimate to © , We have by definition that if

Pr^\6c~e\ > s ̂  '— >■ as ^

where  ̂is a small positive number, then oc is a consistent 
estimate to B , Here

p,[i5-0i>s}=py(-̂ ) >(^y}
=  p4 > ^ o ) > 4 ^ }

where ^  is the variance of % # Since is sufficiently
large then

is.
P^j|i-01 > S I o .

Or
p,[|s-0j>s] = a[ j-ÿ®. I =

yfQ

Since is sufficiently large then cT
H-p5c_e\ > s ] — » o

Hence 5c 1b a consistent estimate to B .
To find the maximum likelihood estimate of , the 

population variance we have to differentiate the logarithm 
of the likelihood function with respect to , Here we

have L constant ---’ ;

then
z (tH-



Equating tliQ last equation to aero we get
KZ 2L(=c-iFf

■ - - • CT —     J•v\

and since _ ,
b y  -  - 'Vv--\

is the unbiased estimate of <̂’"then
S %  = -IL-, CT ̂V̂\ — \

where is the sample variance.
Now we must show that

Pr s i -  < r^ \  > — >  O •
Here

Pr\l si - >S] = Pr|̂  IT̂ Î 1
“  PrlNC°.\) > I —^ ° /

since is sufficiently large. Hence is a consistent
estimate of ,
4* The Maximum Likelihood Estimators are Asymptotioally,

Most Efficient» Normally Distributed and Unbiased,
Let X\ )-- ,x-v> be a random sample from a population having

a probability density function where © is the parameter#
Let ^ be the maximum likelihood estimator of the true value 

of the parameter © #
To prove the properties mentioned above, the following 

conditions must be satisfied,
(a) Ô is consistent *
(b) This condition is the estons ion of condition (a) ; 

that is

where L is the likelihood function.



(o) ^  ̂   ̂̂  is finite and positive in

some interval containing the true value e© •
(d) The attainable minimum variance proved independently 

of any method of estimation is defined by
VCe^)~ \ r  \ f c tx  ./ D _ go Ô 0 y Qo

(e) JL( i n  some interval containing'W\ c>0̂  J  "38̂ /
the ti'ue value B<> «

(f) — and are Integrable over *
By Taylor's theorem we have

Differentiating with respect to ô , we get

(̂ )e- (»'-̂ )ê ) 4 TrC.--M(5̂ )
In virtue of condition (k) and since ( ^ o -we■ \  o /ô*̂
obtain

Lo =
men V  àô ' V / d c

-----------
That is

' \ f 5^ ̂ 3 L

Here
Ô»/ ^  V de^ L.

V I àô’- 0‘

f dx



In virtue of condition (<4), we get
V. ( \ _ ̂  V
'^V ^0- Jo.

Then rewriting (A), we have
”VV

\ o V
^ ( e ’̂_0o) = - L \ ./— L

w \ / ( 0 o )

That is

By central limit theorem
y(^^fîlL) / f ^ r mV v  >e J o y  /-wV(0*)

is distributed normally vdth zero mean and unit variance .

Then — =L=^ is distributed as A/{̂  ̂ ' ) *

ghat is 0^ is distributed as '
That is means that 0 is distributed normally# Since is 
the mean of 0 , then 0̂  is unbiased# And since V/(0°) i© 
the minimum variance, then 0 is most efficient#

We can show that the maximum likelihood estimators are 
unbiased and most efficient by proof differ but modified from 
the proof above*

We start from equation (A) above? ie*

3 &TÇI L \ / / L
e  -  «■ -  -  C - ^ X .  / ( &<



In virtue of condition (6) we have

= constant = C ,

then / a L \
£•(0-6.)= _  = - -F 1  \ E

/Qo 3
and since

Ei(e‘) = E(ec) = 0o
ie# 0 is unbiased estimate of ,

Now to show that is most efficient, square both sides of 
the first equation above; we get

_ r y(l^^- 1_ Z-V )e

then

cfE(-̂ xj7rq7i^ r  f .y,
~>̂ co \ /e.

= Lit 36 /6<
r-vv

CO z

I

Since the R.H.S. is the minimum variance then the maximum 
likelihood estimate has the minimum variance; ie.̂ -t*̂  most



efficient#
Example 1*6: Let X, >--- , be a random sample from a
population distributed normally ?nth mean 0  and variance ,
We want to find the maximum likelihood estimate to the parameter 
© and show that that estimate is unbiased, normally 

distributed and has the minimum variance. Here the likelihood 
function is

By taking the logarithm and differentiating with respect to 
Ô we get

^ ' X l ^ = - - y r - r c - e ) .

The solution of
Alzih- = o

is 0  ̂ X -
The moment generating function of x la defined by

~ I j -

Sinoe oc is aistrihuted normally vâth mean 0  and varianoe ,

represents a normal distribution formula of a random variable 
with mean 0 and varianoe <f̂  . Then

M%C:) = M  r E.%0:)

i
c<x|= ̂ -j;  4 br '«v C«A,vwi -V



That is X is distributed normally ?dth mean © (unbiased) 
and varianoe ^  * How we have to show that ^  is the 
minimum variance. The following equality affords the minimum 
varianoe

V
V(x) = -

AA

Here
cO

I»  V ]

- zz F  f ̂
"  S ^ X o o

- _2h_ (y ̂O'̂  ~ '
then

VO cr zoc ) -

i

So X is a most efficient estimate to © •
5• Successive Approximations to Efficient Estimators

Using Maximum Likellhood 
It often happens that maximum likelihood equations are 

difficult to be solved directly. In such cases we have to 
find by some inefficient method an initial estimate of the 
maximum likelihood. Then by successive approximations we 
obtain the efficient (maximum likelihood) estimate. How we 
deduce the formula which is used to find the approximations. 

Let 0 be the maximum likelihood estimate and © be the 
initial estimate to 6̂  , so 6̂  ̂L = will be denoted the
successive approximated estimates. Then we have by Taylor's 
theorem that



Since the left hand side equal zero, then

Ô -0‘" =£- - - k _ l l - 4 -  •

If r\ is large, then by the lav/ of large numbers we have

t (^ V „ ,  - E ( =  - c f l ^  ̂ iK(e.j
\ 'qq-l. Î<.v . %0 ^

Hence

%

that is

è = ô'" + i r

The last formula, may be v/ritten in general as

6 - "  . à- . IgL ( i ^ )
î>y X _ 1

When 0 is very near from 0 f will be used for a H  the
appr oxiBiat i ons.

6, The Maximum Xtlkelihood Estimator is Sufficient:

If there exists a sufficient estimator fcĈi ? — , say, 
to the true v£Ü.ue 0 4 of the parameter 0 , then

i



Then

L = n  f C^v®) = y  j

?= L\ (j=jQ') L-Ï.C9C) ,

i

£^L(^X^0 ) c L % 0 ) 4. £<ïtĵLt,Ĉ} -

Differentia ting with respect to 0 we get
^ L(X,e) 3  £crjL,Ct,̂ )

Here the solution of -f— -o is the solution of — =<? ,V V  ̂e
and since , -L involves the sufficient statistic

>0 e
èCx,, / , then it will he the solution of = o ,
Since the maximum likelihood estimator Is the solution of

therefore the maximum likelihood estimator is sufficient,
Bxample 1,7 Consider the normal distribution with unlaiown 

6
meanl̂ mid knoxwi variance # The likelihood function will 
be so that



V/e can show that x is themaximum likelihood estimate of B ,
In order to show that ^ is sufficient we must show that 
L C 0") can be factorised into two parts, one part dependent
on X and 0 , and the other part independent of Ô , That
is we have to show that

or
L O )  -  Lv (5 ,0 ) oc) ,

L,c^,a)

We have

where

C* / ô) = c - Z C^-e)

C - ^^TT<s ') ' î -  j i n d e p G J i d e n t  of 6 .

Then

L(oc,@) = (̂ C - 4- -^(^z.-vxx0 - w 6 p  ,

we notice here that the first term in the iskdependent
of 0 , and the second term is dependent on 0 and x ,

i



Therefore ôc is a sufficient estiuiate for 0 ♦
There is another v/ay to show that the iuax].mum likelihood

estimator is sufficient# In oui' foregoing discussion about
the sufficiency of the maximum likelihood estimator, we
mentioned that if there exists a sufficient estimator, than

3 ^
30

will afford it; ie* \ ^ must be dependent on and h3 e
(the sufficient statistic)# Therefore our criterion of 
sufficiency is to show that

3 O
is dependent on 6 and the statistic t #

In our example
I f n L  ' wc^-e')

which is dependent on 0 and x , therefore ^ is a Sufficient 
estimator for 0 .
Example 1,8 Consider the distribution of Poisson, the 
parameter 0 is unknom, then the likelihood function v/ill be 
such that ^-'vtO \

L Ô') = e & TT -xtV
-'V\0 'Y\OC I=- e e 

T̂TX i\1 '
'i'alcing the logarltlim aaaâ differentiating with respect to 0 we 
get

> ̂ <̂ 1- _ 'VV30 C t  "')
Hence

3 h_
30

is dependent only on 9 and X , therefore 5c is a sufficient



estimator for Q #
Example 1,9 In case of Binomial distribution with the 
parameter \> , the likelihood fuuiotion then will be such that

= (^) y 0 - v r *  -
Taking the logarithm and differentiating with respect to \> 
we get

3 k ’X. -w-x 
3^ '

—  'V\ ̂

-ViCx-

Since 5 io the maximum likelihood estimator of \ , then
^ is sufficient because

■3 Ur€̂ ^

is dependent only on % and |p ,
Example 1.10 Consider the distribution of Type III to estimate 
the parameter ^ , where the parameter h is Imown# The 
distribution of Type III is defined by

^  ot ^ 0 0

The likelihood :£\xnction is then
r̂ y [rwr «*

Talcing the logarithm and differentiating with respect to c< , 
we get

where ^  is the maximum likelihood estimate of ̂  • SinceA Q ̂
is dependent on ̂  and x only then the maximum likelihood estimateA

~  is sufficient*



I

OHAï>TEE II 
SEYElîAL PAMffiTERS 
1. Introductions 

In chapter I we discussed the prob3.em for a single 
parameter. In this chapter we arc dealing mth several
parameters; as a model let , be a random sample
drami from a population with joint frequency function

Ô,, — , 0 ^^ ; that is there arc parameters to be 
requiredé Hereafter we denote Ffe; ê)instead of
F  ,0-xa) and sometimes §, may be written as
a column vector such that

ê= 1
u

2. The Amount of Information:itt ¥ m umm n— nmw

\Vg have shorn in Chapter I (1.4(a)) that the amount of
t» A'Ov'̂Cj

information about the parameter 0 supplied from the
is given by

I-VX V 30
0O V

T>^f'Ÿç ^

i

where F is the density function of a single observation and 
■v\ is the sample size. In present case where ô is as several 
parametenrs the amount of infoxiaatlon about these parameters 
supplied from the corresponding estimators is as a square matrix 
of order wx whose (i,j)th element is

<ltV(4*n̂bÿ,'M
The inverse of this matrixMs called the variance-covarianoe 
matrix of the estimators of the parameters Ox,Ot-> , 0^ .



i

5* Buccessive ApproximationB to Efficient Estimators Using M.D# : 
ïn Chapter X section 5 we have shown that the formula 

used for the auocessivo approximations is given by

In case of several parameters the formula becomes such that

re'r" 1(1\ —
0,1t1 "1 ~ è'"’

b&'gF 1"bQ,\(1Klk;0̂ 3*̂*̂ F 
3

where P is itself the likelihood function and is a square
matrix of order whose (i,j)th eleiaent is

-  L 30C bé}
If 0 the initial estimate is very near to 0 the maximum 
likelihood estimate, then will be replaced by for
all the process of the approximations, Notet The application 
will be shown in chapter 3»
4. hiBtribution Admitting Sufficient statistics %

- | — n - " #  I # ' — T ~ r  “ “ ••'‘ “ • " ■ r i ' t i i i n i i i i i l i i i m  ~ T n i i  t r r ‘ r W i il i i i i i n i i M a n i i » T - - V  *  • •• t ü - - i r  I ~ f f  - h  - i t - i n n ' - n i i n  fi t ï i i t w — *  i > p .  m h  i n — w  i ~ n  i in i i m i ' m t n  i i  . . . .

Koopmaii (1936) has shown that if the distribution function
 ̂(c<v, , -xvA ; 0, , is continuous and not xero over some

continuous range of the o's  ̂and exists, then the
necessary and sufficient fonu of the function ^ to admit the 
sufficient statistics, is

’f\ =  ̂R C®) “V ---4- fe) + B (0)+ 1



where R(a) and , c are functions of 0
and X respectively.
Example 2.1 Oonsider the normal distribution with unlcnowii 
mean 0 and variablee cr̂ . The joint frequency function 
is then

xe#

F ('X, e ) O' )  I - -^e-')Sl j(̂ Tty L 20 26 1
whe re

—   —-------
'V\ -\

'X. - ~  y X/V\

Here

F C0) îi(̂ ) - - 'w oy ,

Z<5-̂ ^
R C® ̂ ~ ~ -i 'Vv CT ̂ ;%

= _ y n/y .

Therefore the normal distribution with unlaiown mean 0 and 
variance cf ̂ eidmfî ay suffi ci ont estimators for 0 and
Example 2.2 Consider the Type III distribution



where <X is known and ^ ^ ̂  . Then

[r(f) ] - [ - 1C-^)} -

Here

f»Ce) %'(^) = ~ z

1̂ (0) = - "vy ĉrĉ cr - 'vy f ĈO

Therefore there are aiiffloient estimators to F and ,
In this distribution it is clear that if ^ is imlmom there 
are no sufficient estimators, even if <5" and f are known, 

5# Maximum Likelihood Estima tors are sufficient
I'# # ." *  pN iJ^iimi i .i iui i w iii «#### '##,1    .■<11114 I I I I IÈ II# # # ! I ^  1* ^ 1* # ^ w , ' I t i« # a # I, M*  I i rpii m^mtLrnU

Let ,----  ̂9C'vx he a random sample from a population
with pr oh ability density function f 0 % ,--  ̂0^ ) and let
t\?----- he Bufficient estimators to 0v^------------ jO-wx
respectively. Then the likelihood fimction will he factorised 
such that

LC*;0 ) =: Ly(t;ô.)Li.Cæ)

where L,(t;§) is dependant on 0 and t only, and LzC%) 
ia independent of Q *

Bifferentlating with respect to 0i we get

0) , 3L%Ct;e)
— — véT- ’ ' = 'WV



since the solution of the equations

30ù

affords suffioient estimators then the solution of tho 
equations

-------------------—  o

affords suffiaient estimators too. Since the solution of 
the equations

?» L ■) ê ') 
"̂ 0 (

affords the maximum likelihood estimators, therefore they are 
sufficient.
Example 2.3 Consider the normal distribution with lufmown 
mean h a.nd variance 6^ # The likelihood function is
then

Differentiating the logarithm of both sides with respect to 
h we get

3
z r(x-%)lince <r =     j then

That is

3h



is dependent only on oc and , therefore the maximum 
likelihood estimate ^ is sufficient for h *

Now differentiating the logaritlim of both sides with 
respect to we get

3 ^ ' V / -

that is
3 ̂  L 
3

is dependent only on ̂ and , therefore is
sufficient estimator for , Finally ^ and are
sufficient estimators for h and .

6# Simultaneous Estlmaijon of Several Parameters 
?/e have shovm in Gimp ter I section 2 that if LC^^0) 

ie the likelihood function then the estimator of 0 will 
he the solution of the equation

3 LÇxjQ) _ ̂
3 0

so in the case of several parameters tho estimators of these 
parameters vdll he the solution of the equations

■----------- —— . =. o301 S ---
Where itself represents the likelihood function as
defined in section I of this chapter#
Example 2*4 Oonsider the normal distribution with unknown 
mean oc and variance <Ŝ . The likelihood function is then



Then
F ̂  — h 6 0^ <5 ̂

Differentiat1ng with respect to c< we get

then the solution of
'i> ^ o
3 at

is A - :K ; ie. the maximum likelihood estimate of ^
Is the sample mean x . How we differentiate with respect 
to <5 ^

^ - ï 5 - . " - î W 5 : c « - « r

Equating to zero we obtain

It is worth while to find the amount of information on the 
parameters ^ and supplied from the maximum likelihood 
estimators as illustration to section 2, chapter II. The 
(i,j)th element of the matrix which represents the amount 
of information is given by

'VA_ _ y  c-

Here
qseiïôj' / <.,j - )2- .



E a^(oc_<K) =

r f -Xh£L) _

V
-w
ZG^ <J

._r -F z a T  ̂ j

-w
2.(5 ^

Then the amount of information is given by
X'yx <5̂ o z= \

cŷ o

o -w o \

and the variance-covariance matrix is then
\
'V\

\
O

2 ( 5 4

a 1 o  '
2 < S ^ 0'^

'V\

o

that is the variances of ^ and  ̂ are and "W
respectively and the covariance of ^ and ^ is zero, ie 
correlation coefficient between ^ and Sr̂ is zero, 
Example 2,5 Consider the distribution of the bi varia te 
normal form, ie*

the



then
log P = constant - -̂ -vi oj _ ' -̂5 (%-h,y

2-('-r) [ ~

2f(x-h')0-h^) , C i - 7
<r,<ŷ ^ ôï̂ ~' { ~  ■£'*̂ C'- '

It can be shown that the solution of the equations

3 F L O Î =  ̂̂ --) ̂
30(

where O,, , O5 are h' > f respectively,
gives US the following estimators

To obtain the amount of information we must find the elements 
of the representative matrix

" V  / <s,X'-r)



I

r f

, r/2i'-Ê'o<jF \  L
'V\

c & & \  =
h(fyyjI X/a2' ' / /. B z\ 30 - p p

) =o■>̂ I 5F,ÿâî '

— O

Then the amount of information is given by the following 
symmetrieal square matrix



o o

zP
<rv<yz. -fp

o a.

o o

p̂ (z. - P q
cf.V

fP

o o
ff. ('-fi (\-f4 (\-p-)5

The variance-oovarianoe laatrix of the estimatore
hsfh'̂  ? j C5-X ̂ f given by the inverse of the matrix above
divided by ^  •

7* Wald Techniques 
The Wald technique for sol\d,ng the raaximum likelihood 

equations is related to his test* This test is used to laiow 
whether the unrestricted estimates of the unlmown parameters 
satisfy some relationships which specify the null hypothesis. 
Thus the idea of Wald technique is to estimate the unrestricted 
parameters of maximum likelihood eqi#ions.

Let be a random sample from a population with
probability density function P where G,, 8 %,
  y are unlmown parameters^ Then the estimât es of the



imreatricted parameters will be the eolution of the equations
3 L
Ô o<

where L denotes the likelihood funotion* If these equations 
are diffioult to solve we apply the suooessive approximation 
procoesses (section 3, chapter II) to find the maximum 
likelihood estimât es «

If the restrictions '< which specify the null 
hypothesis are

^ y -  R T-Ce) — - — - — ~ ̂
then the Wald test which deteimines whether the mires trio ted
maximum likelihood estimates satisfy these restrictions, is 
based on the statistic

which is distributed as , where is the
information matrix whose (i,j)th element is ~

1,3 - 1 ;---- ,'vvA j . 1© the K — column vector whose
element is and He is the 'wy'kV mtrix whose (i,3)th

element la 3 ̂ s(O)/ 'dBC • If ^  M  we accept the
null hypothesis and we reject it otherwise, where is
obtainable from the statistical tables with the corresponding 
degrees of freedom.

8# Lagrange Multiplier Technique 
This technique is related to the test of the null 

hypothesis which says whethes? the restricted estimates of the



unimowîi parameters nearly maximize the likelihood functions. 
In virtue of the foregoing mentioned the idea of the Lagrange* 
multiplier technique will he the procedure for estimating the 
restricted parameters of the restricted likelihood equations *

Let  j) he a random sample from a
population with prohahility density function
where 0 v) 0% ̂ ^  aa'id 0 ^  are unlmowi parameters, and
lot there he kC<^) restrictions in the form

fv.x(̂0)=  = R\<Co) = o

then the estimates of the restricted parameters will be the 
solution of the equations

where -- are Lagrange multipliers, and % is the
likelihood function#

Usually, in practice, these equations are difficult to 
solve, so in such cases we use the successive approximations 
procedure (section 3, chapter II) to calculate the maximum 
likelihood estimates# Here the successive approximation form 
will be such that

" - - -G,
1

\(I —
11\1 t - He

Ap d-VM
X' - Het1 1 o R«(e) ;

/k' i  J (0)0
 ̂ V 'KkCe) . .L ^I*



where and He are as defined in section 7 of this chapter.
For if

- He He Be
-H e  o CO> Be Ce

e Ô

then ^  will he the variance^covariance matrix of the
restricted maxinnm likelihood estimates.

There is a very useful method to find the inverse of the 
matrix

L-H
The Procedure;
1) Obtain (-^î)
2) Compute H'"  ̂ and H (̂ -̂ 1 ) ' W ̂
3) Obtain = - c
4) Compute '̂'= c [
5) Compute -V L^^C'^îT'l ) The last matrix

is symmetrical, and this property gives us good check on 
our computation.
The Lagrange-multiplier test is defined by the statistic

i - 3
3 6 i
111

/

(f&'T A  L

(
\
\

\

3  l

3  O-wv e

\

' ^ C ^ L

-

&
0



where H is the reetricted maximum likelihood estimate*
This statistic is distributed as , therefore if

^ ̂  w  accept the null hypothesis and we reject it 
othervd.se, where is obtainable from the statistica.l table 
with the corresponding degrees of freedom.

9. Singular Information Matrices;
In both of the previous techniques the information matrix 

was non-singular because it is related to the i dent if lability 
parameters* But some-times the information matrix is 
singular in a case when the unknomi parmieters is identifiable 
by some imposed restrictions# In such oases we have to do 
some modifications to make a non-singular matrix*

Let ôijÔT-, 7 be unlaiown parameters with K
restrictions in the form

   ki^ce)^c>

and let there be restrictions which make the 'w>
parameters identifiable, then the restrictions will
specify tlie null hypothesis* Now, the matrix He whose
(i,j)th element is could be partitioned into
[ H,0 where H,e is'vv̂ â matrix whose (i,j)th element is

then the matrix C-^î0 + H,e ] will be non
singular. Therefore in such oases we have to replace 
[ ̂  Ie + (4,8 Hi0  ̂  instead of -1 1 = 0  and so the 
successive approximations procedure will be in the following 
forms



0 ^ '  ' e f
I +

1
\ V

I L
[
\

\\
x£+t
tf,vv\ O-vn

_

3 ̂01 L
\
\\\

3 L
2> '̂'w\

for the Wald technique, and

1 o f  1111t
11
tt

%
/ r

— ' i "

11
\

\1

A k

1
% (
A k

X.TA Ï0+H,eHiô -H10

- H)0 O
(O)6

i !I j
1 y y. 3Kj

30*vn f ' 3Ô-.H

AkCe)

for the Lagrange-muXtiplier te clinique.
The statistics of Wald and Lagrange-multiplier tests for 

the null hypothesis, which says whether the unknown parameters 
satisfy the restrictions, will become

and

'V\ }r\x§ mT^) ' fi(e) >

3 Ôrt̂  L
3 0 I 
(1

/

4  M  Hie H,e
-Ï

€>
e

3
he,

»

3 h
3  0 "vwi

e
6

,\
3  L
3 0 -vvi

0
0



respectively, and each statistic is distributed as %  [,<_a] , 
The estimate of the varianoe-oovariance matrix of

It H p  ̂ -w-\0, ,— p0VA will be given by 1 t and so
•I will bo a better such estimate* If

■:;̂Ie + H(ôHte “He 00 Be
-  He ^

-  ,
w
0 Be Ce

then ^  will be the estimate of the variance-covarianoe
0 0 — matrix of Ô» > — --,0̂  and ^  will be a better such

estimate*



10* Maximum Likelihood Estimates of the Mean and 
Variance of Normal Populations from.Truncated

Samples*
Let and be the mean and variance of a normal 

population* Let be the truncated point measured on the 
original scale of the variate X (the variate of the complete 
distribution) and f be the truncation point measured in standard 
units of the complete distribution* Then v/e can write such thai

that is
Z2 "f- ̂  ̂

Then the probability density funohon of the variate x x-oco^ 
in the truncated normal distribution will be such that

1 ~-x( X-A Y
_ _ e  X < r  ) ^

( /X+6tV-«■ 7 i.cn,

where

Hereafter we will abbreviate X'vx(t) to X-vx # The likelihood
/function of x is then

L ^



where ^ is the number of the Imown meaauĵ ed observations
f) *- = '7 — « Then

log L(x' ) =s constant - ^ log ""irÇ  
Differentiating with respect to S and we get

b ^  T/\ 31.

o

Then the maximum likelihood estimates of f and ^ will be 
the solution of

 ®
 0

Since, by definition
OÛ I -

/FiP J f
we get

T-vt %= — !—  /

C'W+Ol^^^ + f Iâ  — o   (S
and

a»t - f-w-v
ie.

3 To _  Y

Hence the equation (X) and (2) will be such that



-vy
/

4'

^ ' T o

From equation (3) using 1-̂  , we get
X —  ^ "VA  -X-̂   — ■ Q     —  —  —  —  - 69

t o
XT X  4- 6"  ̂T/\ X   ̂™  "w < y ^ = . o    —  —

From equation (l)̂  we get
5c'= 6 X    ®

X.O

Substituting the value of in equation (2) we get
AA

X 4“ 6̂  ̂AA 'w 6“ ̂ =. o
Hence

Jo

From equation (3) using % 1% - lo-^X\  ̂we get
aa2Z X ’̂ = -2:i --------
' lo

Substituting the value of ̂  obtained from equation (4), in 
equation (5) we get

i,

~ i T
le.



(W
IxL
ir

Since the quantity in the left side is Imown, then the value of
Ît-XS corresponding to  ̂ ®IC will 1)0 obtainable from the

^'Mathematical Tables" Vol. 1 of the British lâssocis.tion for 
the Adyancement of Soienoe* Also from the tables mentioned 
above we find the values of To and corresponding to the 
value of f * By substituting the values of I® and 1| . 
in equation (4) we obtain the value of G , Finally 
substituting the values of <s and i in

"TC o ^

v̂e get the value of /k *
The variai! ce-covarianee matrix of  ̂ and is given hy

P-/ \

)

_  \

Heroe

' Çf»')

'W (ill, +■T, T  “ ---
—  /

)
—  h -  /



/ ÿX» VJ1

3" I.

= - f  - aa *v-'VXI-l -wl.j
Lo lo

loX-z — X-\-l-\ \Ï ;
Hence the variance-oovariance matrix of f and <5* is

i ' =
/V

"W
<s

'Woe

'V \  cx /I Ïoî-ï — 1I~̂ \ 
"  0 +   ÎT )

\

A
C''X X»X-z —X”i; ) W.OC

__ / 
O’ zf-3? -0

where ^  is the determinant of I
OOHEH, A*G.j has discussed in his paper, Ann, Math. Stat* '

oVol. 21, 1^50 pp.(557-569)> the maximum likelihood estimates of 
the mean and varimice of normal populations from singly and 
doubly tmncated samples having known trimcation points. In 
doubly truncated samples he discussed tteee cases: (i) when the
number of the unmeasured observations is unknoma; (ii) when the 
number of the unmeasured observations in each 'tail* is knownj 
and (ill) when the total number of unmeasured observations loiown, 
but not the number in each 'tail*. Some numerical examples are 
given in this paper.



CHAPTER III 
APPIiIOATlOHS OF MA3CIMTO LIÎŒLÏH003) miHOD

1. SIRCLE PMAMJîTEH;
It is worth wlife to apply some other methods of estimation 

in example 3 . 1  and 5 * 2  to show that the maximum likelihood 
method is the best# The methods are;

(a) Maximum Likelihood method
(b) Minimum %  method
(o) Product method
(d) Weighted mean method
(e) Additive method, also called Emerson's formula 

Example 5.1; (Carver, Genetics, XII. (415-440) 1927), showing 
linlcage between the sugary factor in mai%e and a factor for 
white base leaf. The case was oneof repulsion, and the numbers 
of seedlings counted were as in the following table

I . . . . .
Starchy Sugary

Total
.Green V : 1 White Green White

Observed 1997 9 0 6 904 32 3839
[.:Ex.pected J(2+P) (̂I'̂ P) f(i-ï) 2 ;p4"̂ n

Here P «= is the linkage value, and is the recombination 
value. The parameter will be estimated is 
(a) Maximum likelihood method;

Procedure; Let , -v\T . nn, , v\i. denote the observed values 
then the likelihood function is



i i c . , p ) r  u p p

and
log L « constant + log(2+P) + log(l-P) t n^ lpg(l-P)+ii^lo

The estimate of the parameter P mil be the solution of

3 P
Here we have

î>logÏj n\ iiztna * nq.
“  'T=F- + V

Henoe P will be the solutiOH. of

^  + î 6 « 0

By substituting the observed values we get 
1997 1810 . _ n

Solving the equation we get 
P ^ 0.035712

Hence
y = = 0 , 1 8 8 9 8

We have from 1.4(a) chapter X that the variance of P will be 
given by

V ( P )  =: -------

>p
then



v(i>) » Y  f

= 2 P(1 -P) (2 +P)
n(l+2P)

= &x_0m35712 X Q,m!t288_%_2.0g.712 ^ 0.54005 x lO"^
3859 X 1,071424

From Appendix I we have 
1T|, =

then the standard erx̂ or of is

= \Ij,P
(h) Minimum %  Method;

=z o.olSkl .

Procedures The method of minimum %  is expressed in the 
equation

%The best estimate of P should make ')C a minimum and this 
will lead us to the equation of the 4 th degree such that

_ U
3P

By substituting the obeifved values and solving the equation 
for P we get

P ^ 0.055785
Hence

I’= yF~’ = o • 18 9/7

The variance of P will be given by the same formula of method



(a) above ; ie.
V p  =  g P d r P )  (2+P) 

nd+2P)

= 0.3415 X 10"^
Then the standard error of the recombination is

A T  = / ^ =  0.01547 •

( c ) Pro duet Method :
Procedure : The method of product is defined by the

equation
=S p(2+p)

t'l-P)̂

By substituting the observed values and solving the equation for 
P we get

P = 0*035645
and GO

y =  0 . 1 8 8 8

The variance of P is given by

VP = 2P(1-P) (2+P)
n(l+2P) (Appendix l)

_ 2 X 0.035645 x 0.964555 x 2.035646
3839 X 1.07129,2

= 0.00003411

Hence the standard error of  ̂ is

V p  '
- “  o » o I S^-S' .



(d) Weighted mean method:
Procédure ; This method is defined hy the equation 

n(4P-l) « n» - 3n^ - + 9n^
4 n? 2 n , - 2 n̂ . - 2n^ + lOn 

By substituting the observed values and solving the equation 
we get

P = 0*045194
Henoe

t» = 0,2126
The variance of P is given hy

Vp _ 1 + 6P - 4P
I  3 5 5  " III#  I i i i i * i r i n i i4n (Appendix I)

= 1 + 6 X  0.045194 - (0.045194) 
4 X 3859

= 0,00006413
and so fclie standard error of is

/ ^ =  0.02133,' •
(e) Additive method

Procedure ; This method is defined by equating + n̂ . 
to its expected value ^(2 +P) 4- ÿp = ̂  (itP), and so we get 
the equation

nP = n̂  n% - n^ +
By substituting the observed values and solving the equation 
we get

P « 0.057046



andso
 ̂= 0 , 2 3 8 8

The variance of P is given hy

VP = irZ 
11 3839 (Appendix I)

0 . 0 0 0 2 5 9

and so the standard error of V is

fVp^4P «  0 . 0 3 3 7 5

how we summarise the results of the five methods hy the 
following table

Method

Maximum likelihood 
Minimum
Product foimula 
Weighted mean 
Additive method

I Ee combinat ion
I__  ^    .....
I 0,18898
I 0 . 1 8917

j 0 , 1 8 8 8

I 0,2126

0,2388

Standard error of
0,01 5 4 2

0.01 5 4 7

0.01545

0. 0 2 1 3 3

0 , 0 3 3 7 3

The table above shows that the standard error of the maximum 
likelihood estimate is the smallest, and since the standard error 
is the square root of the variance, therefore the variance 
of maximum likelihood estimate is the smallest. That is, the 
maximum likelihood method is the most efficient*



Example 3*2: De Winton and Haldane have recorded the results
of self-pollinating and intercrossing Primula sinensis plants 
that were lieteraygous for the two genes F, f and Oh, ch.
These genes are linked and the 4164 individuals observed in 
the progeny of coupled double hétérozygotes showed the following 
segregation in the table below:

Bail
OBSSKVJSB
BXPBOÏÏÏB

2972
|(2+P)

Boh j
 ̂ ...

fOh foil Total
17L 190 831 4164

f(l-P) 1 |P n
_______  __!.. _______

Here P == (1-b)̂  is the linkage value and  ̂ is the 
recombination value. Wo have to estimate the value of the 
parameter *
(a) Maximum likelihood method ;

Procedure : Let denote the observed values
then the likelihood function is

'V\(

Then

and
log L = oonstand t log(2+P) + (n^t 1 1 3)log(l-P)*f n logP

<> niL ins . ÏI1

Since the estimate P is the solution of the equation
'h *-
bP



Then P is the solution of

= 0

By substituting the observed values and solving the equation 
we get

;p  =  0 * 8 2 4 7 3 4

Henoe
y* — 1 —\/p = o ' o 11 y 5̂ I

The fo&mulas for the variances which are used in the previous
example will be used in this example too; therefore, the
varianoG of P will be given by

v p  =  2P(1-P) (2+P) 
n(l+2 P)

= 0 , 7 4 0 2  X 1 0 "^

Hence
0 . 0 0 4 7 5 7

(b) Minimum X" Method;
Z

Procedure : The method of minimum pC is defined by making
A  minimum in the equation

That is the estimate P will be the solution of



7> p

This mill lead us to the equation

= 0

Substituting theobseinrsd values and solving the equation we 
get

B = 0.8246
The variance of P is given by

Vp _ gP(l-P) (2+P)
n(l+2P)

= 0.00007407
Hence

^  C P . O  C||Cj 3 

 ̂* ~ - 0 . 0 0  41 3 7

(o) Produot Methods
Procedure: This method is defined by the formula

niUlf _ P(2+P)
_  _  -ijZFW

Substituting the observed values and solving the equation, we
obtain

P = 0*8252
Hence

= \ / P ' o * o 6



The variance of P is given hy

= 0.00007427 

Henoe

A P  = = 0,004743

(d) Weighted mean methods
Pro ceci ure s This method is defined hy the equation 

n(4P-l) = n, - 3n^ - t 9a^
ie*

4nP = 2iii - 2 n 2_ - 2n^ t lOnî

By substituting theobserved values and solving the equation,
we get

P ;= 0.812439
and so

H  I - = 0*096652

The variance of P is given by
Vp ^ lt6 P-hP^

4n

= 0.000194189

Hence
Av' = = 0,007734P



(e)r Additive Method:
w v i i H M m n U  1. " ' #  I l l # —  w ,

Procedure : This method is defined by equating ii ̂ 
to its expo0 ted value ^(2 +P) + ÿp - ^(l+P), and so we get 
the equation

nP - - xiz - n^ 4
By substituting the observed values and solving the equation, 
we get

P = 0*8266
and so

c 0.09083
The variance of P is given by

Vp ^ izEl m

Hence
0*000076

0.004798
The results of the methods are summarised in the following 
table

METHOD
I

Recombination J
w i

Standard j 
error of h

Maximum likelihood 0*091851 !g 0.004737 1
Minimum 0.09193 1 0.004739 i
Product fomula 0Î,0916 1 0 .004743
Weî ÿited mean 0 . 0 9 8 6 5 2  j 0.00773
Additive methed 0,09003 ; 0.004798 !



?;e see in the column 3 of the table that thestandard error of 
the maximum likelihood estimate is thesraallest one, so the 
maximum likelihood method is the most efficient,
Examnle 5.3* The data of this example is given in the

n i i  I * "  W

followdng table;
Frequenoiee observed in an segregation for aleurone 

colour mid pale green seedling (BRUHSOH'S data).

Aleurone total

OR j Cr+cE+cr; 
1907 j 1053
300 I 6 8 6

2207 i 173$

SBEDWHS TOTAL 
2960 
986 

n = 3946

Id. the case involving complementary factors, the probabilities 
in the four classes will be as in the following table:

OBSERVED
BXHSCTED

ORPs

||(2+P)

ORt̂ g,
300

S a-r)

(Cr+oR+cr)Pg,
1053

g(2-P)

( cr+cli+or ) kg,
686

TOTAL
39#'"
n

Here P = is the linkage value and iP is the recombination 
value* In this example vfe will apply one method to estimate 
P in addition to the maximum likelihood method* This method 
is oaAled Brunson's formula.
(a) Maximum likelihood method

Procedure; Let ,'vvî denote the observed values



then the likelihood function is

and L J L J L 1

log L = K 4 n̂ log(24-P) +n2.1og(l-P)4'n3log(2-P)+n̂ log(l4*3P)
%vhere K is a constant* The estimate P is the solution of 
the equation

>P
ie* the solution of

n, ÏI2. XI3 nu 
24? ^ “ 2Zp If^P = 0

By substituting of the observed values and solving the equation, 
we get

P = 0 * 5 9 0 2

Hence
k=/F = 0 . 7 6 8 2

in equal crossing in male and female, or
I - /̂ =a 1 - 0*7682 =3 0*2318 crossing over, with coupling.

The variance of P is given by
4 (2-4Pj(l-P)(̂ -’P)Cl43Pj)
3VV 5 -_|-X p —

an ci
_ VP'. „ VP _ (2+kq (l-P̂ ) (2-f) (1+3 k") 

- (ïïp)" -  -----------------------

Substituting for , we get
Vf, = 0 . 0 0 0 1 2 4



Hence
- 0 * 0 1 1  is the standard error of

(b) BEaHSOH'B METHOD
Procedure : The method of Branson is defined by the formula

 ̂ - n.2. -  4* 3n,t)

where 'ŵ  and 'wi+ are as defined (a)*
How if we substitute the observed values and solve wc ̂ et

=  0*767

Let T be any function of the frequencies, then the vahanoe 
of T will be given by the general formy.la (B) in Appendix (I); 
ie*

XA.

where is the probability corresponding to the ith class* 
Here let T = then

T - (31 \ ai. - ÎX3 4 5îii,),

Then

And

32 (t + p)
ai



Then

n

«• Vp „
21X1

and sinoG v/e have

then

- s

X

V p  =  5 2 + 5 2 P  - gTP"" 
l O S n P

«  52+32 f  - 27 P  
1 0 8 a  k'-

S u b s t i t u t i n g  t h e v a l u e  o f  ^ we o b t a i n  

=  0, 0 0 0 1 6 5

The following table shows the coBiparison of ê cpected with 
observed frequenciss

....  ' CRPg,.' C R k̂r l(Cr, c Rtr)%j(cV̂  cR+cr)̂ ..W
OeSt'RVtD i : 1401 3 00 ; loS'J

ML. 303 1 0 1 (043-08
6 ^ 6  I 3946

i
6S3'30 i 3946L?<PeCTBO I BR. \9I5 305 j (044 I 6g 1 i 394-6

.1

We can calculate

v = z Dbserved - Expeote ■2.

(Expected)



to sîlow Ilow far the observed values are assoelated with the 
expected values. We have

for maximum likelihood method = $*185 >
p(j for Brunson's method « 0*2165
In each case the degrees of freedom are 2* From the statistical 
table we have = 5 * 9 9  for 2  degrees of freedom.. We
see in the two methods that the observed frequencies are 
associated with the expected frequencies but the maximum 
likelihood method seems better than Brunson's method,

The following table shows the summarised results of the 
two methods

METHOD Recombinat1on i Variance of
y ■ ^

Maximum likelihood 0*7682 | 0*000124
i IBrunson's formula 0*767 I 0*000165i i

We see from the table that the variance of maximuq;i likelihood 
estimate is smaller than the variance of the estimate of 
Brunson's method, therefore the maximum likelihood method is 
more efficient th##$ Brunson's method* We can also calculate the 
efficiency of Brunson's method with respect to the maximum 
likeMliood method

ie. the efficiency of Brunson's method is 75 per cent*



2. SBYMik'h PARMETIRS 
BxmpXe 3 *4 : The data in the following table showing the
effect of a series of o one ent rati one of rotenone when sprayed 
on Maoroslphoniella Banhorni, the ohrysanthemim aphis, in 
batches of about fifty.
Toxicity of Botenons to MacroBiphoniella sanborni

CQ+icevL fcKtttriovi

10,2 
1 1  

5̂A
3‘8  

% , 6

iVisec.frŜ  I /v/o , ixffe-cted

50
49
46
4g
6^0

Cr)

44 
4U 
X4 
\ 6  
6

2 ______
-VX c e-w t Uo >\

C x  )

t vvip iVt cd.
py-Q bit*

%% 1 -o\ e,\%

% 6 6 ,o&
5 1 0*11 S ‘05

3 3 o , 5 & 4  5̂ 6
11 0*4^ 3 ‘̂ 2

The last column is obtained from Table I ("Transformeition of 
percentages to probita"|v̂  - Finney, Pro bit analysis PP, 22, )
(a) Procedure; If P is the expected proportion of animals 
killed by the dosage X-o , then P m.11 be in the form

P- Loo 6
ctoc '

The estimation of the parameters and C’ is based upon the 
pro bit transfomation of the experimental results, ie, to 
converge the close into a probit (euqivalent normal deviate 4 5 ), 
then the problte will be related linearly with the close x ,
(or log X ) * In virtue of the above assumption, P, vd.ll be in



the following form

P - f  ' e '  A.
\/2JV

Where
Y r: 5 +

It is found more convenient to put Y as
Y = X + p oc

and estimate the paraaiietcrs ^ and P rather than h and cr , 
where

. IY  n — - —  and (5 =
p ~ - p •

How the probability of ^ responding is
(T) p " 0 - ?)""'■

then the likelihood function will be such that

< - . T T [ C : ) p - o - p r - ]

log ii —  K  4  T T  -V C ' W -  C\

and

where K is constant* Differentiate with respect to 
and p p we get

oi

ZTL V pa / l \ T ô r J -^j



where and 'hoi.
>P
2»Y

By the seme way we obtain
b L_ y-7 /r-'vxpN ^p

^  L V PQ- / W X:

Let I Lby
/  \ ^-L y -
V 7?^ ̂  ̂  J = Ü , then the maximum

likelihood equations will be such that

c r-"w P 
V PGl Z —  Q

— o

Vfe can get the values of P and Z eorrespondings to the values 
of , P and X * The varia,nce-oovarianee matrix of the 
parameters <x and P is given by 

\I

- E

and since we can show that

V V  Y )

pm

and
) ~ 2 -

?Ql

PÔ-

-El L

)
fô-

then the variance-covariaiiDe matrix of the parameters <x ajxcl P 
will be such that



-I

J

(b) The Initial Estimates: Usually the maximum likelihood
equations are difficult to solve, therefore we have to get an 
initial estimate 6 f the maximum likelihood estimates and hy 
suooessive approximations (section 3, chapter II), we obtain 
the estimates of maximum likelihood equations* The procedure 
for getting the initial estimates in this example is to plot 
the èmpirioal pro bits In the last column of the table above against 
the corresponding dosages* Drav/ a straight line by eye throu^i 
these points, then by this line we get the value of 
corresponding to the vOlue of Y = 5 # ie# the value of
the dose which kills 5Q% of the group* Also we get the value 
of ^  ~ f  which is the rate of increase of the probit 
value per unit increase in oc . After getti% the values of 
h  and we calculate the mlites of cx and P from the 
relouons

then by substituting the values of (X , p and x in the linear 
relation

Y = c<. + p oc



Ê-M.piric.a£
Prokctr

7

o.|

o 1 0.8 l«o

C*g y t c » v *  ̂ y \ ^



we get the value of Y* Corresponding to the values of Yi 
we find from the tables the values of Pi and and then we 
calculate the successive approximations*
(c) The Oalculations: From the figure we find

P <5 o)
and

“ h‘3

S-OC 5--tX

=  2*03

The first approximati on is given by
r<*)

p
hr;#"

We liave Yd, s <=<”’+ P ,

Y, ss 2,03 + 4 .3  X U31 = 6 ,4

Yz. = 2 ,03 + 4 .3  X 0 .89  = 5 .9

Yj = 2 .03 + 4 ,3  X 0,71 = 5 .1

Y4. = 2 ,03 + 4 .3  X 0,58 « 4,5

Y5 = 2,03 + 4 .3  *  0 .41  ? 3.8

> ̂  L
> tcngL_ _ _

then

r, = 0,92, Z, = 0.15
= 0.82, ẑ = 0,27
= 0,54, z, = 0,40

p. = 0,31, 24 = 0.35
= 0.12, Z5 = 0,19

Then

1  \  ^  = 50 X 0 .3  + 49 X 0.47 + 46 X 0.63 + 48 x 0 ,58  +50x(

« 15 + 23,03 + 28,98 + 27.84 + 16,50  

= 111.35



t  = 15.15 + 20.50 + 20.58 + 16-15 + 6.77

= 79.15

t ( 2 2 ^ )  .  15.30 + 18.25 + 14.61 + 9.37 + 2.77

s 60.30

Thon the variance-
d r

oovarian.ee matrix of
\

T _  n\35 m-iŝ
“̂c|.\5‘ 6o'30

and P
Ço>

-o \16 °

Also

c. "'0 .2 ^

and

1>P / f
- JCo> —



Then

p,OJ

-
2.03

1+-3
" t

0 , 1 3 4

— 0* \ i  6

—Oi \ n 6 
8'Z4%

‘
2- ' 05 o-\S Z - \ S

h ' 3 — 0 ' Z 5 4 - o s -
L J

\.o'̂

We repeat the proeeee again heoauae the confections are not 
small

Y, 2,18 + 4.05 X 1 .01  = 5.25 P, =  0 .8 9 , 2, «  0 .18

Yz £S 2,18 + 4.05 X 0,89 = 5.78 Pz =  0 .7 8 , = 0,29
Y 3 2,18 + 4,05 X 0.71 = 5.06 P3 = 0 .52 , 23 =  0.40

Y 4 2,18 + 4,05 X 0 . 5 8  = 4.53 P4 = 0.32, 24 =  0 . 3 6

Y 5 2.18 + 4,05 X 0,41 = 3 . 8 4 Ps =  0 . 1 2 , 2  s =  0 . 2 0

-O.ei + 6.4 + 0.01 + 1.06 • 6.66

>/3 \,m -0.82 + 5,7 + 0 . 0 1  + 0.51 = 5.5

Then
■ ' 2*\y © ‘131+ -'‘>-116

'
6 » 6 6

p W ~ ® ' n  6 © 2 4 # ^■'5'
-

-0-0 %



We repeat the prooeea again heoause the corrections are not 
small
Y\ =: 2 . 1  + 4*24 X 1 .0 . =
Yz = 2 . 1  ̂ 4*24 X 0.89 =
Y3 « 2 * 1  + 4.24 X 0.71 =
Xî ^ 2*1 + 4 . 2 4  X 0*58 —

5.38 r, = 0, 92, 2, « 0.15

5.87 Pz « 0 ,8 1 , 2z = 0.27

5.11 P3 = 0 .5 4 , 23 = 0.40
4.56 = 0 .3 3 , 24 » 0.36

3.84 Ps = 0 .1 2 , 2s = 0.20

1,35 + 0.26 = -1 .1 3

0,96 + 0.15 = #1,34

Then
o<
,C3j

Z'\ © 1 1 6
4-

4'Z4 o. ZH 5
-

2-1 4- %'13

-0.13 4 8 »
- -

-\.\3 
-  \ -34-

We repeat the prècess of approximation again hecause one of the 
two corrections is still not small.

Y , =  2 , 1 3 + 4 , 1 1 X 1  ♦ 0 1  =5 6 , 2 8 P, =  0.90, z, =  0 , 1 8
Y i =  2 . 1 3 + 4 , 1 1 X 0 , 8 9  = 5 . 8 0 Pz =  0 . 7 9 , Z z =  0.29
Y3 =  2 . 1 3 + 4 , 1 1 X 0 . 7 1  = § . 0 5 P3 =  0 . 5 2 , 23 =  0 . 4 0
Y^ = 2 . 1 3 + 4 . 1 1 X 0 , 5 8  = 4 . 5 1 P4 = 0.31, 24 = 0 , 3 5
Y s « 2 , 1 3 + 4.11 X 0 . 4 1  » 3 , 8 2 Ps = 0 . 1 2 , Z5 = 0,20



('Ü rih .V  « -2  + 5.75 + 0 .01  + 1 .83V  ï>« /i" 5*6

/ ) t<r<i |_ V
- 2*02 +  5*12 +  0*01 +  1*06 =  4.2

Then
1 Z'I3 13 1+ — O' 6 s .6

p"" 441 4-
-  <5" n 6 © 24 ? 4-'Z

p n
- %'t3 4- cs * O 1 —T

4'\V o . o 6 4-n
-

We see here that the corrections are sufficiently small, 
therefore the estimates of the mmimu® likelihood equations 
are

X i?
0  ̂e 2.14 aiid F = 4.17

how the values of Yi^s and 
r “ 4 * 1 7  and are

5 corresponding to ot = 2,14,

Y, = 2 .14  + 4 .17 X 1 .01  = 6.35

Yz « 2.14 + 4 ,1 7  X 0.89 « 5.85

Yj = 2 .14 + 4 .17  X  0.71 = 5 .10

ï̂l̂  = 2.14 + 4.17 X 0 ,58  » 4.56

Ys = 2.14 + 4 .17  X  0,41 « 3,85

)  = 50x0,32 + 49 X 0 ,48  + 46 x 0 .63 + 48 x 0.59 + 50 x 0 .38

(zV pq),
(zV pQ)z
(zV pq)?
(zV pQ>4
(zV pq)s

0 .3 2 , P, = 0.91  

0 .4 8 , -  0 .80

0 .6 3 , Pj = 0 ,54  

0 ,5 9 , Pzf = 0.33  

0 .3 8 , P  ̂ = 0,125

16.00 + 23.52 + 28,98 + 28.32 + 19.00 = 115.82



5" ^
16.16 + 20.93 + 20.58 + 16.43 + 7.79 - 81.89

 ̂ X X
^V%r-)= 16,32 + 18.63 + 14.61 + 9.55 + 3.19 = 62.28

Thera the varimioe^covariaiioe matrix of ^ =2*14 and P = 4.17 is
)1S.

*■

Fl'3'4
— \

V 62 .Zg'

62.22 501'3 U b * S 2

ie.
\\s, %z o. \ 2. 3) —'0.\6 \

%\'%i 6%.2% —  Cj \6 \ O ’Z Z S

The linear relation between the pro bit and the log dose is then

Y » 2.14 4 4*17 oc

The estimate of the log dose which kills 505̂  of the group is

K = 0.686
' p  4  II

The variance of jn is given by

V[i =-4KP
X _»X -I

"T2J-WU1

^ ns. n = 0'1Z|X'VV z43
( ^  o . o o \ 7-2 Ç

E-vvto = ^  = MS'

)_'wto ~ \0. 416

Then



= T O T F  I + -•■ro i l

= 0,058083 (0.0001114 + 0.008634)

= 0.000508, 
and so

A « 0*686 i 0.023

To test the association of theboserved frequencies with the
2 _

expected frequencies use pC - test*

I PO-P^ T
U.^(o-%6-a-Scf '  ̂ I(.&Co-33-» 35f

-  o.q|Xo o<1 Z s o  X o-ZO 4 6  o.33%«'6l

5’o(̂o./Z'”©‘ 125̂^
^ o . U b  X o . S T ?

C 1-131

The degrees of freedom are 3» and ^ 0 . 0 5 - 7*81 for 3 degrees 
of freedom froBi the statistical table. This shows that the 
observed frequencies are associated sufficiently with the 
expected frequencies*
teEEisnsl* (I)a,ta of Example 3.4)

In example Z A  we wboû the probit transformation to 
estimate the parameters and (S' * In this example we are 
using the logistic formula



P =  !----
i-t-

where P is as defined in exemple g*Ü and oc and ^ are the 
parameters to he estimated. The paraBieter will he such 
that

P
We can show that the maximum likelihood estimates of ^ and P 
will he given hy the solution of the equations

3 L

where K is the number of the groups exposed to the ejsperiment, 
is the number of theindividu^ls within the group, is the 

number which responded and Pi is expected proportion of the 
individuals killed by oc; , the log dose. Usually in practice 
the two equ8,%lons above are difficult to solve, hence in such 
cases we have to find initial estimates and by successive 
approximations we obtain the maximum likelihood estimates.
The procedure of getting the initial estimates is as follows. 
Plot against occ , then draw by eye a straight
line th370ugh these points and by this line we get the initial 
estimates. The follo?dng graph shows the initial estimates 
which are obtained,

how we start to calculate the values of the points which 
designate the straight line* Here let



10e.

= ̂ c (

= H

Then
» loge 1^ = (0.4771 - 1.3424) 2.3 = -1.89
= loge ^  = (0.0000 - 0,7782) 2.3 == -1.79

5̂ » loge II = (1.3424 - 1.3802) 2.3 « -.0.087
^4= loge II = (0.3010 - 0.0000) 2,3 = 0,69
5̂ = loge = (1.3424 - 0.4771) 2.3 = 1.89

When X =: o , we get from the graph that ^ = 4,4 - ^ ,
and when ^=o we get from the graph &lso that ^ = 0 .7 *
Since £ ̂  oc. - p cc then

oc — p  ZZ o

ie,
_£L = JtiL = 6 . 3  
°'l o.-\

Hence the Initial estimates of oc anû p are « 4,4 and == 6,5 
How we calculate according to the values of xPs ^
C©)and p Here we have

Pi = . -L  --  ,
ia. '+ «



?

|.o0.2CL q!

-z



r,

log 

1

— 1 s= 0 .14

’to (%" - =

— 1 == 0*299

1°®(0 “ l)

^  -  1 “ 0 .93

loaBfo (ir 1  ̂  =

(fe- 0 ■

4.4, -  6 .3  X 1.01
2 .T

r , = 0,81

4 .4 -  6 .3  X 0.89
2 .3

Pz == 0.77

4 .4 -  6 .3  X 0.71 .
2 .3

• 0*52

4 .4 -  6 .3  X 0 .58  ,

2 .3

P  ̂ := 0 ,37

4 .4 -  5 .3  X 0.41

=, ..9683»

Pff 

Hence

-  1 = 6 .14

2 ,3  

Ps = 0 .14

« 0.7883 ,

(-
and

■̂ P ^  =. Z.H-3

The information matrix la given by

i-X'\\
- L ir/

V y

v><x>P y )



Then the variance-oovarian oe matrix of

\yoiip I

and
-I

I S

t*>7IK / p

How

) - 1  ^ I ' W v R ( P O

€
îPêor̂  L

2_ -'̂ i Xi
p< 0 - p O

"  '1" 'VV'Xi. -apt* Z PL C'-p O

then by Bubstltutlng the values of Xi's , 'w/s and Pi-'̂ vie get 
Z'^' P: (l- PL ')= 4-2,6483

S*ST- /__ -ni %i Pi (\ - Pi ) = -3 0 , 1 7 6 7

z  Pi(\-PL')= 22.7244

Hence
l”'

1
42.65 -30.18
-30,18 22.72

0.39 0 . 5 2

0*52 0,73

The first approximation Is then



U)ne
PO)

'
4#4 + 0.39 0,52
6.3 0.52 0.73

■ #

r ^ -

S3 4,4 + 0.64 S3 5.04
6,3 0.^5 7,25 _

-1.59
2.43

Repeat the process again for the second saproximation

■=X.0076

^  - 1 = 0.102

P. - 1 « 0,243

-  1 =  0,898

- 1 = 2,31

Ps 
Then

- 1 = 7,92

5.04 - 7.25 X 1.01
2.3'

r, 0,91
5.04 - 7.25 X (>.89,

2.Y

P z ts 0.80

5,04 - 7.25 X 0.71
"  ’T.T"'

5*3 = 0.52
^,04- 7,25 X 0.5,8

2.3

P4 a 0 . 3 0

5.04 - 7*25 X 0.41
""2,3

Pg — 0,11

= 1',3859

V.9533

= 0,3630

= 0,8989



Hence

It)£< 5.04 + 0.39 0 . 5 2

r 7 , 2 5
a,

0 . 5 2 0,73

5.04 + -0 . 2 3 cs 4.81
7 . 2 5 -0 . 2 3 7.02

—5*48 
2.17

We repeat the procese again to get the third approKivwcA.-tiovx
\02log,„ -  1̂ =  i f .XtO l = \ .0086

-  1 =  0.102 0,91

log,, -  l ) =  lT m ..r. T : 0 2 % 0,89

P -  1 = 0,257 P, 0.81

log,, - 1^= 7 /0 2 , X 0.71 ^ V:,9243

— 1 =! 0 ,84 P3 = 0 .54

log,, hP2-„Z. 7zO&%._Q.,58 ^ 0.3167

à- - 1 = 2 . 0 7  Pa, = 0,33

log,o(^ - 1)= ̂ 81 -  7.02 X 0 .41   ^73------- = 0,8356

"p— — 1 = 6.85 Ps- = 0.13



ÎShen

\ > -  -0-16

Hence
"

o< 4,81 4- 0.39 0,52 0.37
(3)
P 7,02 0.52 0.73 -0.16L J -

r -1 -

4.81 + 0.06 = 4.87
7.02 0.07

-
7,09

¥/e repeat the process again to obtain the fourth approximation

 ̂p'̂ ' ** 1 ̂ 4*87 - 7.09 X 1.01> 1 * 1  v M f c M i  I 2,5 ■\',0040

P, -  1 =  0.101 P, = 0.91

P, - 1 = 0,237

log,. ( t - )
P, = 0.81

1
P. 1 = 0.849 Ps = 0*54



4.87

i— — 1 = 2*13 P4. = 0 . 3 2

log'« IPs
2\ g 4.87 ** 7 ^ 0 9  X Q»,41 _ 0.8535

Pç = 1 2 ;

Then,

Henco

c-

p
(4;

ÿ C(r; L \
J w -  0,32

0,39
0 , 5 2

-0.07
—0.08

» 4,87 *

J
7 , 0 9

-

ss
-
4,87
7 , 0 9

0.52
0.73

-0.61
0,32

' 1
4,80
7.01

We repeat the process again to get another approximation, 

log,» ̂ §7 - 1) = li.§2-=-Jŝ LZJii21 =1\0087

1 " 0^102 

10g,o ( V  “ 1^

p, = 0,91
4.80 - 7.01 % 0.89

o = t.3744

77 -  1 = 0.237 = 0,81



log . l) . . 1.9250

If 1 =  0.838 Ps = 0,54

P4  « 0 , 3 2

/1 ,\ . 4.80 - 7.01 X 0.41JLOg,() ( —  J. J ..... .'>"-*w\irs- / =' 0*8373

P, - 1 = 6*88 P5  = 0*15

5?hen

/ h \
V  > « J r “

Hence
fs)« ss: 4,80

'
4*

7 , 0 1 L

6.39 0 . 5 2

0 , 5 2  0,73

We notice here that the estimatsB
4,81

around the estimate 7,02

■0,11
0.11

4,81
7 , 0 3

4.87 4,80 4,81
# *7,09 7 , 0 1 7.03

are

(Z)p lie nee ot"" « 4,81 and - 7*02

will be the maximum likelihood estimates of ^ and  ̂, ie, 
oc = 4*81 aaid p = 7*02, The value of ^ is then



XK 0<
h 7702 0#685

ie. the value of the log dose which kills of the group 
exposed to the experiment.

How to get the variance^covariancé matrix of maximum 
likelihood estimates oc and p , we have to find the f ̂''s 
corresponding to ^ and ^ * The values of these
are calculated in the third process of approximation and these 
are
P, « 0.91* Pz = 0.81, P3 « 0.54, P^ « 0.35, 1̂  = 0.13,
then

Z  Pi ( ( -  Pi's = 3 ^ ,0 Z
5-

"Z'^i^!fiPl (l-pi') = - Z 7  - 2 h
S'

Z  P,- (1 -  Pi) = 2 0 , 3 0

Thon
_r\T 39,02 -27,24 0.4044 0.5426

-27,24 2 0 . 3 0 0,5426 0.7773

How we use pC to show the association of the observed frequencies
with the expeote.

_  ^  vVv
, PlO-Pi)

« 50(0*88-0,91) 
0,91 X 0.09

49(0,86-0.81) . 46(0.52-0.54)
0,81 X 0 , 1 9

0,33 X 0,67 0.13 X 0,87

0,54 X 0 , 4 6



7C = 0,549 + 0,796 + 0.074 + 0.000 + 0.044 
« 1#

The degrees of freedom of ^  = 1*463 are 3* and slncejX̂ .̂ y- 7*81 
for 3 degrees of freedomj hence the observed frequencies are 
sufficiently associated with the expected* The variance of fî 
is given by

I \ +•̂vx to ^ -VI to (jx - “V ̂

whei*e U3~|ptis obtainable from Table III P.571 in

C ^ *6st> o ,n — 0'0o \ 6
J5" iT

wi - 3q.3B , 21 -3?y=: \ ‘3 \ S

Hence
V,

r
49,28 1 0.001296

a 0.00053572

and so
^ 5= 0̂ 685 i 0.023

Example 3*6s This example is on the blood groups where there 
are three parameters y t V 1r ^̂ bich represent the gene
frequencies of 0* A and B. The expected probabilities of the



six genotypes (four phenotypes) in random mating are found 
as follows

" ... ... .i......
Phenotype j Genotype Probability

1 ' 0 I 00
AA 1 r] ,

^ i AO f 2.\-y J
\ BB 1 V")

® 1 BOj ^
AB 1 AB

The dat€i is in the following table
j ..... - 1

Phenotype j 0 A B AB
! Observed 182 6^ -- -

* Expected 1 vw^

TOTAL

y\

(a) Bernstein^s Methods
We CcUi consider the estimates of Bernstein*s method as 

an initial estimates to the maximum likelihood estimates. The 
estimates of this method are given by

r :=

C'+ZD)



where

— I) = K 4- ̂  4 ̂  \

and

where O^ A and B a,re the observed frequencies. By 
substituting the observed values we obtain 
w « 0*64234, V* ̂  0,26449, 0,09317

(b) Maximum Likelihood Method;
The likelihood function is

v/here 0 is constant, How we can put the probabilities as 
follows

6\ =
Ôz. - - r^
Ô3 z= V~%)

Gq = Zb1r
for the partial derivative of 01 with respect to Y which is desirec 
to be put in the form

and
Q̂  = h"
9z= p-V-2̂ .
Ù3 - (i_ )pY -
0 4  “

for the partial derivative of Oi ?dth respect to % which is
desired to be put in iiie form %—  - j —  AïL .

}>y 3%.



Then by talcing the log of the likelihood function and 
differentiating with respect to \ and % as independent 
parameters we get

= -g- ^

and

- 01

Ti^^L _ 6
8, 0^ 03 0*4-

By substituting the known values we get 
/ ̂ ̂0̂ L \k= (-5.11362)176 + (3.13543)182 + (-1.45217)60 + (3.75086)17

= -0,20444

(-3.11362)176 + (-1,27104)182 + (10,00685)60 + (10.7550'̂ '
= -0.09321

where and are the Brunstein's Method estimates.
To get the information matrix we have to find

4 | Z -  = - [1^ -^(1'')'+ t t y ]

— 1 £ \



to, tPjBy substituting the va].ues of , Y * ^ and 'vx we get

= 435 X 9,00315 x ̂  = 9,00315

- Jr C )  = 435-gx 23.21612 x 23.21612^4" / - - 455

(~Tf^')- 435 X 2,47676 x T35” " 2*47676

The information matrix is then

9.00315 2,476761
2,47676 23,21612

and so

I - 1
-2.41616

— 2. M*”î <5 6 
4,00315'

0.000 2l6305'

— p.oooo 2 806

o  • o o o o  2 & o 6 

O - O O O  (0202

where A  1$ the de terminait of I » Then the first
approximation is given by

(V

, o >

1 =
16}

T~’~V —(o ) > L
jl-éfZlb.8̂- (oj,

0,26449 + 0.00026305 -0.00002806 -0,20444
0,09317 -0.00002806 0.00010202 -0,09321



1“
0,26449 + -0.00005116
0.09317 -0.00000377

0.26444
0.09317

Since the corrections are very small then 
k = 0,26444^
1r =  0.0 9 3 1 7 ,  

a n d  r «  l - ( v + 4 )  t= 0 , 6 4 2 3 9

are the maximum likelihood estiBiates*
Here the variance-oovariance matrix of P and ^ is 

0,00026305 -0.00002806
-0,00002806 0.00010202

and the variance of is given by
/0~̂  (26305 + 10202) + 2 x 10 (-2806)

0.00030893

The following table shows the results obtained

Parameter Estimate Variance
L _  ^

00.26444 0.00026305
% 0.09317 0,00010202

0.64239 0.00050893



(o) Walcl Technique?
Let 0%= ; 0 3 = and 0!̂:= and let -ni,
be the observed fraquenoy for Bi # Then the 

likelihood function is
/ \V\3 / ̂9 , Y V  Qz Y  / e 3  \  / 04

2>‘ y \ B V  V V B'

vfhere ^et=-\ is the imposed restriotion for identiflability 
of the four parameters* Then

Jh 4-L — ^  -Hi -&rg ̂ ê — -yi ^  0i

3 6»i 01

By equating the last eqution to sero we get

'W
Therefore

How we have

X
0I =  -2 ^  ̂  y\

m .
4 5 5

0 , 4 0 4 5 9

X
O z  = •'Wi.yx “

182 _
435

0,41840
X
0 3 rr--Vi 7 ^

””-v\ ** AÇL «435
0,13793

% -
■Vvif _ 17

435
0.03908

0 z 03-Tr^-PH'"



then

yJOt^ ~  Y' y \jOy-f92. =  \x-\r)T 7 y / ô T ^  0 3  ' = . < ^ - V V -

ancl since
+ Ir “ N

then

ie y0) -f 0% -f- yo,+0 3 " ŷy—) —- ̂
that is we have one arestriotion for the unrestricted parameters 
Now we have to test the null hypothesis hy askiaig whether the 
©stiniates of the imrestxlcted parameters 01 7 1 h —  ̂̂4 satisfy 
the restriction above* The statistic of Wald test

-n f\ C&) [ h § ( Z X I  t  ' fv (.6)

The restrictions including the Identifiable are

Co) = ~

+ / 1 Z & T

then

and

o

O'OOjl
OxO<?S^

a



Also
X - ' -  \ - ( -\

— - ( 4— \&z - \ — ]
- ( t ~ ' — (
— \ -\

then

+ Hie

o
6' tv( sq-o

o 0’(3nc)3
o

o
<5.o3qo%

J
Hence

=?
 ̂ \ \ \

0 4 - 4 o*5'5' 0 6 % o
0.404.59 0 0  0 \ 0.44

0 o,4\s40 0  0 \ 0 .

0 C3 0'\3143 0
1 0*6$

0 <0 0  ^o'i‘\o'i
1 0

* >

o. 40451 O-41&40 0 (3193 0 .0 3 9 0 &

o*nZ o.%3 o.o^SS o

\ 0-5"

0-5 o %1

V 0-44

V 0-5S* 
\ o  • 6  S 

\



therefore
•w Î Hè -t H,e ^C®)

0 0,008 1 0,5 ’-1 0
0,5 0,27 0,008

455

= 455 X (0,02) ' X 64 X IcT"̂  = 1.592

We have from Statistical (Cables that = 9*84 for
one degree of freedom* Since

i <  (̂ PCo.ob- = 3^4^) ’

we accept the null hypothesis on 5^ level of significance# 
(d) iagrange Multiplier Üeclmiĉ ue

(Co apply liUgrange multiplier technique we consider the 
probabilities

1r +

The likelihood function is then
\̂ 6

(XfvycL 2-lrir
(Ip-v-v+r)

L  =
(V’+'ir + V')"

(yi y  v6ol?̂ +2.J>r \ / <Ç-+'L‘f̂r
((=>+<t+v-y

2)>Tr

and
log L « 2 X 176 log r + 1821og( -f2K) + 60 log( 2 1 -v-) -

^ n log a - 2 X 455 log( t r )

Differentiating with respect to r , and ̂  we get



P |i2i + 182 + _ 1:1.T> V- I r y+2v

■&/>

■» ̂<rgL
-ry-

!=• + 2{.

+11 
[ 1̂'

iJ§.)(> + <p̂v-

435
t>+‘ir+'“

differentiating again with resp ct to , \> and %■ and taking 
tlieexpeoted value vve get

— J. rV\ ̂

■Vl (^ )
- ± r  / \

V yj+iV +

J, C /  .
( . T O V ~ )

-  J-■vvc V 3 “ 2 ) _
(^ + <i, V-)

Consider the -Bernstein method estimates aa initial estimates of 
the maximum likelihood estimates. Olien siihstituting these 
estiynates which are

V- « 0#64234, V = 0#26449, % ̂  0.09517



in the equations above we get 

J- _ 0,055•Vi b V- ^55

L *0.126
"  "  455

\ ■&4ôl- -0.007
■vv 455

__Xff

(■^) '
^  =X Oé

'W

952

72

x f f  y ^ L  \
■vv ̂  h 1 2 . 1 0 4

r / y ^ L  \
\ >v>f> -1,658J.

-2

We have here only the identifiable restriction

(. o) — y~-̂r y ̂  \ ^  ̂  ->
therefore

Hfe; = [ I 1 I ] ;



and
Hie' 0,952

-1#65B

Then
H.é"

■1.658
2.72

-1,865
-2

■1.865 -2 12

1.952 -0.658 —0»
■0.658 5.72
■0.865 1 15,

0.57 0,114 0,047
0,114 0.5 0,05
0,047 0.05 0.082

1
1
1

1
1
1

1
1
1

Then the first approximation vr}.ll he given by

■i."' rr 0,64254
r 0.26449
%

^ _ 0.09517

then

0,57 0,114 0,047
0,114 0,5 0,05
0,047 0.03 0,082

n)r
-
0,54254 + 0,0000356

f'' 0,26449 -0.0000734
fL ' 0.09317 -0.0000042

0,64258 
0.26442
0.09517

0.055
-0,126
-0,007

1
455



We repeat the process again to get the second approximation, 
using the new estimates (first approximation’estimates)♦
Then we f3.nd that

-0.0156

-  0.046

( ito = -*0.036
'V

and so the second approximation will be (given by
11> ' -
r 0,64258 i' 0,57 0,114

0,26442 0,114 0.5
(z)
V 0.09317 0,047 0,05

K 0,64238 + -0,00001
0,26442 0.00003
0.09317j -0,00001j

0.047
0.03
0.082

0.64237 
0.261 
0.09316

-0,014
0,046

-0,036

1
435

By repeating the process again using the new estimates we get 
f h ̂  L \I 0,0032

“ ' “ 5 7



and so the third approximation will he given hy

(3)
r e 0.64237 ' + 0,57 0,114 0.047

0.26445 0,114 0.3 0.03
<■3)

_  ? _
0.09316j 0.047 0.03 0.082

©.003
- 0.032
0.057

455

_

Z3 0,64257 + 0.000002 0,64237
0.26445 -0.000017 0.26443
0,09316j 0,000008 0,09517

Repeating the process again using the new estimates we get

-0.0025c-

/ > M L  \ 0.018

Then

J4)

%

0,64257
0.26443
0.09317J -

0*64237 +
0,26445
0,09317

0.57 0,114 0.047
0.114 0.3 0.05
0.047 0,03 0.082

-1
-0.000002 
0.000010 
-0#000010

- 0.002
0.018

à0.055

«L.
455



0.64237
r 0,26444

-

0.09316

We Bee here that the sets of estimates of r $  ̂ and 
obtained by the four suocesBive appx^oximations are sli^itly 
different from each other and they are close to the estimates 
obtained by the technique of (b) above. In fact in this 
case, the obtaining of the accurate estimates to five decimal
points is unlikely and so it is unlikely that the estimates
of (b) can be arrived at in which the two parameters and ̂  
are considered to be independent and r is kept as dependent since 
y + «1, Hence if we approximate the estimates of (b)
and each set of estilaates of -2#-2- (d) to four decimal points , we
will find the estimates of each set are equal to the corresponding 
estimates of the others, except the estimate of  ̂in the set of 
the second approximation in which y = 0.26445* Therefore, we 
will consider that the maximum likelihood estimates of the 
restricted paxwaeters r ,  ̂and ^ are

\r 0.6424
f 0,2644®1 0,0932

Now no test the hypothesis by asking \#iether these restricted 
estimates are sufficiently near to the maximum likelihood 
estimates. Binoe the Bernstein estimates are very close to the



lagrange ïiiultiplier estimatesj therefore we will use the 
varlanoe-oovariaiice matrix of Bernstein’s estimates as the 
varianee-covariance matrix of lagrmige multiplier estimates, 
the statistic of Bagrange multiplier test is

t/
±y\ 'b L i e +  H,eH \Q

-\

(6)e

(D
e

2>0)

1>
^ 0̂yv\

iS>
?e 0 denotes the Bernstein*s estimates Here we have

f

•0.012

0.127

■0.278

Since the Lagrange mmltiplier statistic is, in our example,
distributed asj% - distribution with one degree of freedom 
then,

X c
-6

10
455 >12 127 -270 0,57 0,114 0.047

0,114 0.5 0,03
0.047 0.03 0,082

-12
127

=  21 X 10
z

We have t h a t “ 3.64 for one degree of freedom, and



since
[I] =

we accept the hypothesis on 5f̂ level of signlficaiice# 
Furthermore, the hypothesis is accepted on 99#gÿ? level of 
significance#

€> ? ®The varianoe-covarlanoe matrix of r , f and % will be 
given by X , where , as it denoted in 9. Oh# II
The Procedure of getting is discussed in 8# Oh#II,
Here

0.00059 -0,00029 -0,000092
•0,00029 0,00035 -0,000053
•0,000092 -0,000053 0,00014

t v

If we look back at the variances of ^  ̂̂  which
obtained in-BtB’ (b) we will see that the variai ces of

f Ç 9 f are slightly larger than of f f ^ b y  the 
fifth decimal points. The reason for these differences is 
of course due to the operation of the approximations to the 
numbers used for the whole work of this technique.



GHAP'l'ER Tg 
mœiIHOOI) RATIO TEST

1* XntroduQtlon î
wmrnmrmojmhI  m  m i iiii uü j ü ' [■■iimi in w i^ ijw

The following important definitions are worth mentioning, 
Definition 1, If OH la the critical region of the test 

(the critical region of rejection of the null hypothesis VAo 
against the alternative hypothesis , then P(CB.sHo), the 
prohahility of rejecting Mo against H> (no matter ?hich one is 
true) is called the power function. The value of P(OR:Ho) at 
the parameter point is called the power function of the test at 
that value of the parameter#

Definition 2, Bet he the probability of rejecting Ho 
against H» when Ho is true. Then oc is called the significanoe 
level of the test# or the sise of the test,

Definition 3» A teat is said to be unbiased if 
P(ORîHo) (H, is true) > P(QHgHo) (H- is true) ,

Definition 4# If there are two tests with the same si^e^ 
and if

P, (GE?Ho) )> \(QRiEo)p is true
then the first test is said to be uniformly more powerful than the 
second. Hence if there are 'n tests with the same si%;e, then 
the one which is uniformly more powerful than each one of the 
■VA tests is called the uniformly most powerful test.

The likelihood ratio test is related to the maximum 
likelihood method of estimation and it is modified by the 
Heyman-PearBon theory of testing the statistical hypothesis.



It lias been shown that likelihood ratio test is the uniformly 
Bxost powerful test if such exists# In (,1 ̂ and (20) it has been 
discussed that the likelihood ratio test has the px'operty of 
unbiasedness * It is worth while showing that this test is 
based on a sufficient statistic if such exists*

Let ---, be a random sample drawi fx*om a population
has a distribution defined by fCx,o)  ̂and let i be
a suffioient statistic for 0 , Then the likelihood function 
will be factorised such that

L  =\_, L z C ’̂ ,,--,TCvv)
if we denote by L(_oc,4') the maximum of specified by
the null hypothesis Ho , and the maxmuiu of
specified by the whole space of the parameters, then the

IaXjüt
likelihood ratio test as we will s h e i s  given by

.  LC*>è)
LlXi^ ■

Then

L, Ct; ê ) L-zC'3Cf> --jOC-aa') LvCt-̂e')
since the numerator end the denominator are both functions of 
a sufficient statistic, then S will be a function of a 
suffioient statistic, and so the likelihood ratio test is based 
on a sufficient statistic*

Let X,,----  ̂x-vx be a raadom sample drawi from a population
with probability density function defined by f __,
and let ~cx denotes the whole space of the 'vv\ parameters and w  
the subspace specified by the null hypothesis Ho * Then the



alternative hypothesis H\ will he specified by the subspace
, Let denotes the likehhood function designated

by the whole apace of the parameters and L(w) denotes the 
likelihood function designated by u) * Then the likelihood 
ratio test is defined by the statistic

where L ( w a n d  are the maximum of and LC-^')
respectively. Since each of L(w) and L-C-^) ie positive and 

is a subset of Lc^) , then  ̂4 X 4\ and the critical 
region for the test will be defined by ©4 A ̂  where X<x 
is a proper fraction aooordihgly to the desirable piobability 
o< which is as defined in definition 2, Therefore, we reject
the null hypothesis Ho, if, and only if,

X 4
It has been shown by S. S, Wilks (22), that for large

samples and under some conditi ons, -, z -6rg_\ is distributed as 
1

yC - distribution with "vv\_r degrees of fi*eedom, where r is the riumbe
of the parameters after the restrictions; le* if K is the
number of the parameters wlvich specify the null hypothesis Ho , 
then K̂ -rrï'vvs , (Appendix II)* We ivill shov/ in the following 
sections that X or the function of X is distributed as 
t - distribution and F - distribution, also we will show that 

has %  - distribution,
2, A teat of the Bignificanoe of the Population Mean:
(a) Ho Simple and Hi Composite:

Let X»,--- 7 x-w be a randoüi sample drawn from a population
distributed normally with untooMi mean ̂  and known variance 2. #



ave Ho'. w113- be tested against * The
space and the subspace w are then

and

Then

C F ) «>0<̂ <̂ /)07 « C^CSa ^

I C h ’ o ,  o  <<s/ < ; I

(zTT I 2<5,-' ^
(ZTT { ” i t  ^ ]

mid so

A  = i d i )

Binc<

° * ^ n - r t  « « - * ) ' - 7 î ? l c - m ' }

l-iii- is distributed as ̂-distribution
with ' -1 degrees of freedoni, therefore m  rejsdt the hypothesis

7- %Ho if̂  and only if ̂ ^  '̂ <̂x

(b) Ho and H\ are both composite :
Bet Xy y Xw be a random sample drawn from a population

distributed normally with unknown mean h andAlmowTi variance 6̂ #
Here the npll hypothesis Ho ; ^ ̂  will be tested against
the alternative hypothesis M» • f̂ o , and so end w will



be such that

U>

I ’ o<6-^<^oo j

U  h> h =" h' i
Then hy getting the maxitiium likelihood estimates for the 
required parameters, we obtain

A  = »-(w) 
L ( A )

T C ^ - x y  
r  (oc-

H.%

I +
X

and so the likelihood ratio test will be based on the statistic 
t  , therefore we reject Ho if and only if ̂

I b| ^ bo<
Since F= » then we can say that Wo will be rejected if and 
only if,

( f = F  ) >  ( t V  = F«)



Bxamile 4*1
If oĉ ̂ ±3 a random sample from a population

having a distribution defined hy and the sample mean
ÔC ̂  \ , Test the null simple hypothesis Ho’- o  ̂against
the alternative composite hypo the sis Hi'0>o * Use the 
signifioaaice level of the test 0.05*

We have from (a) section 2 that
Ç y - M  f

“ <Sa j

is distributed as ̂ -distribution with \ degree^ of freedom 
and Ho will be rejected if, and only if,

Here
t , .a

X
From the statistical table = 3* for \ degreer of
freedom. V/e find hero .tliat

(y = (2 •5̂ i)y (yi c.5 - 3 •» m-)
therefore we reject jue hypothesis Ho in favour of the alternative 
hypothesieu H% on level of significance*
Bxample 4*2

Bet >Xio be a random sample from a population wLiioh
has a distribution defined by , aid let the sample

— fO _ n

mean X ss o#6 and = 5 *6 * Test the null composite
f-f o Î 0̂zzd> fitt. cÔ€i>y



hypothesis Ht - at the 5^ significanoe level.
We have from (h) section 2 tîiat

^  C3?-h°)
fc

y V 'W'-v J

is distributed as b- distribution mth 'w-\ degrees of freedom. 
By substituting the observed values we get

/(V)
We have fc.- 2.26 for 9 degi’ees of freedom (Statistical Table).0 05

Since

(^t'3) ^ (̂ 6:0.05 - Z. 2 6  ̂

we reject the null composite hypothesis Ho in favour of the 
alternative composite hypothesis W\ on 5/-̂ significance level.

3. The test of the Bquality of two populations moans :
Let ,— ---, X'vy and  -̂ '̂vw are two ran.dom samples

dravdi from two populations with probabilitjr density functions 
f ̂ and Fî'C'A-̂ ^ # V/e have to test the null
composite hypothesis Wc'b\-h'^-h against the alternative 
coBiposite hypothesis H i : fc\i + F z . Here

^ K fĉl 4*̂  9 5 Û < 5 ̂4̂90 I

^  h':' ? 6^y. - =:(Aq-|̂ <0O y C7<<5^<P0 I



and — -ï'é Avx are 'ŵ-'vv, random variables then
•VW+ <V\

L(w) =
zirf exj:> 1̂ —

z <5

and

LC-^) = \
■wy-V n/\

2xr(f ̂

By solving the equations

< —    !----------
’ z

3
  -  O  ;>

3 ĉrÿ LC^) 
3 ^ O )

A ^ ^ A l f l = o , 0=1,2),
i>/̂ i ^ 3 (T

we get the maxi mu# likelihood estimates of these parameters, 
and the:ri substituting these estimates inL(y>)and iC-̂ )we obtain 

) andLC"^ )# Finally we can show that

'wv -V ̂

\ = H 1 )
LC-^) '̂Vy'wy ̂(vA.  ̂)

I -h

o r

X

•vv-VVm

\ +
l̂w-wv. ̂ ̂ ' W Cx~

AAA ^  V "7
r  c-â-a)



Binoe
■'VV -V/v/V

'vv>V-'vw — 7,

is distributed as t-distribution, then

A
*VV *V 'VAA. — X

'Vv-V'wv—X -v”r ̂
and the test be based on the statistic T with "vv-V'vwv-z.
degrees of freedom. We reject the null composite hypothesis 
Ho if iG# if I ^  , where b«.iB obtainable from the
statistical tables with corresponding probability and 'm -v'wv-z 
degrees of freedom and we accept it otherwise* The probability 
significance level of the test will be put in the form

c< = Pr A 4 Ho j
or

X — FV ̂  |T| : Ho^

In virtue of the two foms above we can say that the hypothesis 
Ho id. 11 be rejected if anÈpnly if

^ ̂  ̂  ' Ho^ 4.^
or

Pv\\Tl >b<A', V\n < (K

and we accept it otherwise*
4* The Test of the ]!:quality of Beyearel Means:
Let Xv̂ , be a random sample of sijse K drawn from

the jtk population whose distribution is normal with unlmown mean



hi and variance ^ , where say. Here we have to test the
null composite hypothesis Hoi p against all the
alternative composite hypotheses. How the whole space of the 
parameters and the subspace which specified by the hypothesis 
Hô will be as follows

-42. " ̂  ̂ ^  <4^ > o <46“̂ <̂ oo

and

Then

2TT6̂ Z  <3

LCw) = / — !— \  ̂  e^<b{--- ^  ^  ^
ZTTŜ  / » 2-5 ̂

By solidng the equations 
 ̂&r̂ L (w) >6r̂ LĈ )

we get the maximum likelihood estimates of these parameters# 
Substituting these estimates in i(^)and L(-̂ ')we obtain LC*̂ )and 
L (r̂ ) , Then we can show that

A = n , /V . -  \  — n—k



le*
%, k

A  =
& k

J-1 1=I
je kr  ç  c<xii - yif =( i~i

S- k
ZZ ̂ — y-S -\- oc.̂- _ oc ̂Jzt L=l /

i. k
J = t -̂\

- f i  k f i  k
L  L  L, L  (x., _^yJ-< C-X ' C~s /

\

1+ -iàsXzîls k
Jrmc^^.j-x-aVI-» t*=t /

Since x! k
x h - o  

h  f  c A /  6- ̂  x u c k i y

then F = | x l  ,] /((-') j/(X^ck distributed as F - distribution

with and fCk-() degrees of freedom, and eo the test will
he based on the statistic F* Here as A decreased P increase# 
therefore we reject the hypothesis Ho if, and only if,

F > R x
where oi is the significance level of the test. That is

c<



or
Pr|r ■\4ol

and so we rejeot tliehypothesis Ho if, and only if.

Pr| A X«. : ^ CL

xe

We can find Ft from the statistical tables if K and the 
corresponding degrees of freedom of F are known#
4,1 The case of the Effects of two factors on an outcome

Let Xij , 1 = 1, _^>k; _ — J e. be stochastically independent
random variables having normal distribution with mean and
variance , If we put in the form

zz ^ f ClL' bj
where

V  • ^= <y and H  b j = Û ^
1=1 j = l

then
yUt'i ~yUi.‘7  ---- -  ̂ y _ _ _ _ _ _ _ _ _ _ _  ̂X

it means that
b ̂ b 2 ̂  " = b (? - o since YI = o

Jr=}
and

/K)'i-Fji= =Fi'<, J=  ,0.

kit means o- = ----= = o since %% ar = o ,
Therefore we can replace the null composite hypothesis Hoi |kù = —
by Ho ' b, =Wzr: = lu ordcr to test it against all the



alternative composite hypotheses. Here jv. and <** will be 
such that

(b> «-'7—  7bje,sq;
o

1-1

AO
J -1

AO

UÜ z:

- OO <( jlA. < AO
k

— OO < £XC < AO %2 OLvzi

bl =  b-T— - - - - - - -   -  Q

< 6*̂ <;̂7o

and 8 0

L (A> 5 z:
2TT5

^  j 1 « k
1 ~ Tjr I L  - F- y[ iJ=f (=' ''̂

az
27T5 ^1? I

J = 1 I* C f

Now
> L(w) 

3<5^ z<$ jr, 1 = 1/_ )_ C^M “ K'̂  ^ ?



then    = o gives -  i_ 2_ "'b“ ^3 <y ̂ fik j=i i-f

where b and as will he shovm are the maximum likelihood 
estimates of /a and . Here

y Ce^LCw) , g x  X V k O3 /a. 5 ̂ %ZZZ (xtj -b} since ^  =j=i *̂-1 t=f

3-^^ LCco) A. \ Y"then ---2----1- = o gives p  = Z_
3  /a. Jc| 1-1

Now any  -,k can he written as <x,o
and £3 0 we can therefore take the partial derivative of ^^L(w) 
with respect to for d- \y # Here we have

then

-£fr̂  LC<^)i^Ÿy }—  c^r.j _fA._a.cy 4- g_(XkJ - F -  Cik)^}
U= I •-■= I J = I J

^ zTT5'̂

^ L(w) _ g, ^
> ac £ ^ h  i- Ĉ '̂-'i - -  ""M ’ *•'='> -->><-(

J=| t=%

and so gives f] _ iC. _ - o ,T» AC jç; 7F / '
i®- H  L . _  fiCk-oA- ë  ,1=1 I" I

£
la- — 23 ̂i<: + -̂/v +  ̂«k — o then

J-t

^k = %- - h  and so cC; = - ^Z Z
j=(  ̂ J=>

In the same way we can show that the maximum livelihood estimates



of the parameters in are
f K— * V ~  . A. I ^ _ .A g  1 f\

h  ~ Tk” Z- ̂  ” "~x~ 4-  ̂ ^  " 1% ̂  J - bJ-i l̂-l y)~y

a n d  ^ - J _ £  ̂  (%.- _ / 2 _ â À  _ C, )" -
jri ( -,

The likelihood ratio is then

LCA)
z

k

^®’ ^  « k  ̂ k
/cTT -cvc -v>̂  ^  z r  c<kt'j'-voc -oco,- x.j yX __ j-( i'=t „ J *-='   ^

~  r  - p ^ - à c y "  ~ f_ ±  C3‘.jj--x-̂ £.+ 6^y
J=i t̂ i j=\ i<-\

where - Xx\-ôc ̂ bj = , Then hy using the
"Z._

analysis of varianoe could he \̂ a*itten such that

è  ̂  C ̂  ^ — xc. — X *j yA — J-1
^  ̂  X —  _ _ \2l H  ( ̂  4 X - X(. - OCy ̂  - X )J = i C-i ̂

f k _11 + X — Xii., — 5Jîl t'-»
t  tixcj + x̂ xc. -;y)% 1 1  c-.' -^y
j", tv, ^

 \ _

S i

£ Jl 1
Ji_ ), Ĉ Cj+<K -XC. -X-j)
J=i t=flAACt

jg kzrr Aj=i (-1
£ k . — T,ZTZI +X -X(\- X ] Y/ 6 ̂ [Oi-OCk-%)]



P _  x p - i i A o

Ê«-')ck-i)3 /(f-iXk-,) is diatributed as
F-'divBtribution with and (f-i) Ck-\) degrees of freedom,

and so the test will be based on the statistic F# Since F 
increase# as A decreases, m  reject the hypothesis Ho if, and only 
if,

F

where o< is the significance level of the test such that

Pr ̂  ̂  ̂  ' Ho j ^

4*2 In Case V/Iien the Variance is ICnown;

or

Let ) xA , ----------------be a random sample drawn from
population whose distribution is nomal with unlmown meankand 
known variance <sj" , where — ? & , say# Here we have
to test the null composite hypothesis Ho,  ̂ against ‘
all the alternative hypotheses. Then the whole space of the 
parameters and the subspace which is specified by the hypothesis 

Ho are as follows

an
VO < y   y f ^ —  CÙ ̂  F ' “  = b ^  - fA 7 4  <SY 4.^^ \

/ X k 7
md so L c - ^ A ( - 7 ^ y  ^



and.
 ̂ kIKyL̂TTSo J

Lc--') = \ --£±KîzK
By solving the equations

we get the maximmi likelihood estimates of the required 
parameters. Suhstjauting these estiimtes in LC-̂ ') and 
give us

L(-̂) = Z—LX̂  j-
' z\T<ŝy j ’ 1 2.6.̂

The likelihood ratio test is then

L(^) I <̂5ô

=■

4 fa/X

then
_ 2 ^ ^ x =  ç c ^ - j - 5 ) y ^



Since iB distrihuted as ̂ -distribution
with -̂1 degrees of freedom, then *-21ogA is distributed 
asX(̂ -3 * And so we reject the hypothesis Ho if, and only if,

X  >
where ck is the significance level of the test#
Example 4#5

Let xij  J = be a random sample from the jvk
population has a distribution «defined by /V(x ; Oj, and
let = 75#2,Xz:= 76*6, == 71,2 and EC^u-x,2)"=:t 5 4 *3 ,
Test the null composite hypothesis Moî 0,-0^ against the 
alternative composite hypothesis Mr- + Gz at 55̂ level of 
significance#

We have from section 3 that

/
W -VVV / ~7   \

Æ 14 + — 2

is distributed as b-distribution with -w-vvvi-z degrees of freedom* 
By substituting the observed values we get

7" rr — — —— — —— ---
y ( r? /

We have - 2*14 for 14 degrees of freedom (Statistical Table)* 
Since

(iTl = 2 > (to.os^ ■̂•'‘4)



we reject the hypothesis Ho on 5)6 level of significanoe.
Example 4*4

Let 3 be respectively the moans of three
independent normal distributions having common but unlmom 
variance * Test the null composite hypothesis Ho : =

against all possible alternative hypotheses at the 
5)6 level of signifioanc e * The following table shows the
observed values of three samples of size 5 obtained from three 
populations#

Sanple
(1) 3 01 - 1 0  2
(2) I 2 5 1 3  5
(5) j 4 3 6 8 5

OFly - IZ — • ̂ I =o.S

-^ ! -P

'̂'3 =
S'

* L  ̂  ' 3 =  ̂ 1 KK - 5. z S’
X - *  2 f = 3-

15'

We have from section 4 that
t i<

F if
is distributed as E-distribution with degrees of
freedom# By substituting the observed values v/e get



3 6T

A-1 = ZZf.16615

—£ Ç C ^ ^ j ) 3 S'
\ 2 I I

\<̂T- 
I 2KS

|<̂ Z
6o

Then
E 24.26675 x 60

— t:w” “ 7,6

We have h>.os-= 3 ̂ 1 for 2 and 12 degrees of freedom (Statistical 
Table)# Since

(r=n.6) > 3
we reject the hypothesis Ho on 5)6 level of significance. 
jjlxample 4*5

If are three samples of size 4 from three
populations haying normal distribution with mean j - t ^H  ̂ 
A 3 -2.h^j-o and common but unlmowa variance ^ . Test the
null composite hypothesis Ho \ b , - b against all possible 
alternative hypotheses. The following table shows the observed 
values

I Sample II a )  I 3 -1 0 6I ( 2)  } 5 2 2 6
(3) 5  1 0



4
*̂\ “ =. ^ \

&

4
V
3 H  = (

^ 1 ÔCi, ^ _i_
3 E x . i  . 4 m

4
= - i r £  = C 6

4 )
3 E ^ 3 i  = 

\
V
3

\
3 - - 1'

We have from 41 that

' I
is distributed as E-distribution v/xth (5-1) and (5-1) (4-1) 
degrees of freedom* Then by substituting the observed values 
we get

3 ^ 3
£  >_ C^'i + zi. +.\%6F^_3
' ’ I t  \ I

—  -b Z, S2 — (̂ 2S-3 0H^^X|6 -XS^ =: 5T,S 3

" 0  X  r  C^'à - x )  = 3  .2 5- _  18 2 . ^ % ^  -

Therefore
S' = = 18.3

V/e have Cos - 5*14 for 2 and 6 degrees of freedom (Statistical 
Table)* Since

^p=i.|8*3^ ^(̂ Fb.os*~*̂ d 4^



we reject the hypothesis V\o on 5)6 level of significanoe#
5* A Test of Signifloanoe of the Corrélation Ooeffioient:

If oc aid have a divariate normal distribution with 
means and , variances gZ and and correlation 
coefficient f , Here the null composite hypothesis will be 

ie, x and y are independent, and the alternative 
composite hypothesis will be ^ , ie, jc and ^ are
dependent# The space of the whole parameters and the subspaoe 
specified by Ho are tlien

hv cT|S P ) ’• - <f<î I

ĵC  ̂ c> (Sx ĉjx) J, f-o I

This problem has been discussed in details in (15), 
therefore it is worth while to put this disoussion in Appendix 
III and mention here the statistic on which the likelihood ratio 
test is based# The author has determined the probability 
density function of the statistic E, the correlation coefficient 
of the randoBi sample ( when f -  0  and % ,
The form of this probability density function is

where <r<\ is the observed value of R. If the significance 
level of the test is p< , then

o  < C <  \



If CK and are then c will be determined and so we
reject the hypothesis Ho;f=o  ̂if, and only if,

^ c
and we accept it otheiv/ise.
Bxamnle 4*6

A random sample of size = 6  from a beveriate normal 
distribution yields the value of the correlation coefficient 
to be 0*89. Would we accept or reject, at the 5)6 significance 
level, the null hypothesis that f 

Y/e have

and
r ( ^ )  . , ,

q  — ------------------------   C' ^ )

ru) r(=4^)

'W-l#

Since - 6  aa.v

O' o *r
T

i e. c^- 3c -J- \ <\ = o

By 8 olV3.ng this equation we obtain C P= O.Bu'u Here
thus we reject the null hypothesis on 5/6

level of sî piificance.



6* A Test of Equality of Variances of Two Populations :
Let > be a random sail pie drama from

population wlaose distribution is normal with mean N  said variance 
<53'* We have to test the null composite hypothesis =
against the alternative composite hypothesis V\\; ©7̂ 6 <5"̂  * Here 
the space of the whole parameters and the subspace co which 
is specified by Ho are as follows

U)

Then
L

- |(h< (S,'-̂ < PO ̂ o< I

and

Solving the equations
^ L(w) ^^cmLCuj)

> ^ 3  — 3 ^  - O ,  _

j f we get the maximum likelihood estimates of these 
parameters. Then substituting these estimates in Lc-^) and 
L̂ lo) vve obtain L(A_) and bC^) , The statistic A is then

L(w)
LcA) / ̂  ̂ \I< ~ ~r~TZ TinFTT E.v -\K



xe

_ i-,, V 4
Fc*,.-x.,y 1
E(xu-x,y

le#
<s ̂
?

Oonsicler
f Cz-) = Z.

(MX)'

then
> _  U_____

ZZ(|+0 ,̂

either -x > » 
or c. < X < \

O - x )

- O if z. = \ 
if* z > \

^ Û if *><z < ̂
That is means that A decreases when z increases and A cLe.creasee
when Z decreases# Since

[#]
is distributed as E-distribution wlth[»<-'? 1<-»1 degrees of freedom, 
then the likelihood rafcio test may be based on the statistic E*
If is the significance level of the test, then we accept the 
null composite hypothesis Hoi 6 ^̂=; 6  ̂ , if, and only if,

< F < %
end we reject it other?dse# The alternative hypothesis in tlxLs
case is called "two-sided"# Tn the case when the alternative
hypothesis is "one-sided!* the critical region \,vill be as follows:



 ̂ " Z _When then end so we reject the null compo8 it<<S'|
hypothesis Wo\  ̂ if, and only if,

F >/ ‘
When dz then o<~^<\ end so we reject the h^pàthesls
Ho if, and only if,

F 4F-^
The test will be applied as well, when the sizes of the 

two samples are different* If 'vw and ^  are the sizes of 
the two samples then P will be distributed as P-distribution 
\i?ith U-vvx-),-vx-i 3 degrees of freedom#

Here F,„« represents the lower percentage point# We can 
find this point from the statistical Tables by interchanging the 
degreed of freedom ) and ) and taking the reciprocal
of the tabulated value*
7* A Test of the Equality of the Variances of K Populationsg

Let  be a random sample drawn from the
nu population whose distribution is normal with unlmoMi mean
and variance  ̂c-\y ,k * Mow we have to test the null
hypothesis H o ; <5  ̂ against all the possible 
alteimative hypotheses# Here



Tî3.en

. r . K  n
L — 7 n:r j — ^  j

k
where w  ~ -ŵ # By solving the equations

'2itcr^L(^y '^Ùt̂ LC'^) h  b i c ^ L ( w )
- ^ 7% = ° ’  ’- TfTi->

we get the maximum likelihood estimates of the required parameters 
Then by substituting these estimates in L( w) and L C-̂ 5 we obtain

ana . k Mi _
^ —  f 'ĉ\ j=\

where are the maximum likelihood estimates of
and respectively, then the likelihood ratio is

^  L(iL) r ' â r - -

then

JÙcr̂  X zz  ̂ -v\V *5k — OA. £o~gc=\

 ̂' —  2  £^cr<^A =. 'V\ 2cr^ ^ ,
C=l



Mow we use the modified test 'by Bartlett which is defined by 
the statistic

 ̂ k /

where
[ + — —̂  r r  f - E A  _ — 1

x(k-0 L I J
, , k -vn' ,

^ - -w-vr V- 5Z(xCjt=-( .1-1 *■ ' J -  1

are unbiased estimates of and respectively# Here the
zstatistic T is distributed as distribution with k-i degrees 

of freedom# Therefore we reject the hypothesis V\o if, and

Example 4#7
In sampling from two normal distributions the follov/ing 

observed values were obtained from samples of size 2 5 : “ 1 .2 5 ,
= 1*97. Test at the 5 ^ level for equality of variances# 
Here the null hypothesis will be such that Ho : <5‘,̂ = <5‘t 

and the alternative hypothesis # We have from
section 6 that ^

<E/
is distributed as E-distribution with (K-l) and (K-1) degrees 
of freedom, where K is the sample size# Then

F= —  = r n  = , . ^ 1 6

is distributed as F-distribut ion with 2 4  and 2 4  degrees of 
freedom. We have from Statistical Tables that Fo.osr = 2#27



with 24 and 24 degrees of freedom and = ~ ~  - ̂-4-4 with 24% 2 ' 21
and 24 degrees of freedom* Sinoe

hS 1  6  ̂  ^ F.qs-~
therefore we accept the hypothesis Hq ,
Example 4.8

Given the follov/ing 5 sample variances based on 10 
observations each, test the hypothesis that the 5 population 
variances are equal# The sample variances are 22, 40, 30, 32, 
12,

Here the null hypothesis will be such that He i --
We have from section 7 , that .

jlS-k) tC-MO-.) I 3 ^  [E
is distributed as - distribution with degrees of 
freed cm, where

'W-~ Z X -  xt T  = -J—  n  -■vc-E '
Here

''z  + 'V\5̂iÈ5- fO(̂2.zi-tfû+?o + 31-v u) %
G  zz "—

fV
'Vv-Vc; 5~0-5'

J-  ̂ ^<5  ̂ =  ) then

b

1  C-^C-v) i.r^^X4o+-----+ i± A U |

= 65-, If 4 I



™  4 - 5 ' ( ^ 2 _ , 4 3 4 - 6  —  o * 4 b  42 ^  =  6 < 5 . 6 ' l % o

Tlierefore
• 6 1 s o — SS~* t f ^ I 1 I J 

I =r --------------------------  =  h 4 4

• + TV[f " ITf ]
We have from the Statistical Tables that - 9*49 with 4
degrees of freedom* Since

(~r^ ,.4 4 ) <
therefore we accept the hypothesis Ho #



APPENDIX I 
îhe Sampling Variance of Statistics

If Xv, xz ̂ -—  5 ocnA are n random variables, then the mean
value and the variance of oc will bo defined by

v\
ix:

and
si = Zr H  (S‘C - s y^ .VI

respectively#
low if ec is ëxpressed in a linear function such that

X ̂  *'V\ ̂ ̂ I — “■"■ " *• ” *V V“ J

where 1 =; u%/ — ? V denotes the observed frequency in the ijd5
class, then the mean value of x will becomet"

-W n  C©*: « 0r=i
where 0  ̂(a linear function of x ) is the probability correspond* 
ing to the class i , Hence the variance of x will be given by

VC*) = -v\|^CCe.&r) - [ E C e . i O y j ---------(f\>

For any fimction of the observed frequencies by which the 
statistic is defined, there is a general formula which ejTfords 
a variance very near to the sampling variance of the statistic#
The fo&mula is

v w . v . ç [ e i ( ^ l i ) ’ j - v ( ^ y --------- (=)

where Oi and y<\ are as defined above. low we are interested 
in three foms of functions by which x is defined#
(a) Let X be defined by

•VVXsz y\iy



then the variance of x \¥ill Toe p̂Lven by either formula (A) or 
formula (B), but we are going to apply formula (B) which is the
general one# \Ye have 

4

and

^ M.T. - ^ 3  Ar TAl#,E) ' (■^ v\*̂ ] W
where

ô . = - T O ^ ^ ) ,  Ô.= 03= ̂ O-oc) , .a*Then

(b) Let X be defined by
ij.v\ y: = -VlO-vxî

then

f
A . /  b X  I V \ + 6 x

 ̂ I 4'V\

and

Then
1+ 6 X — 4 Xvfx) = -v,L 4 vi



(o) Let oc be in the form

then
-f* '̂Lf — 3 = X 4-  ̂ C* ̂

Differentiating with respect to  ̂- F --- ;4 we get

then

%>x
'b 4̂1 

I
I

\ X C%-x) ( 2 4.g()
2 O + T-X)

3> X _  _h xC»-x) Çt̂-̂'x)
■»/Wq. "Mit zCH-'iOf)

Ô' (fe) i " 2 (1+ 2 X) JL4
-Z--VX l-X \-x X—  ^  --  1- -------------- V  :
V ll 'W,

_  3 xO-x:)C^+x>
—2. 4 AA

2 4 X  V — X  \ — X  X
+   -V -7 -Vm m #  (%

By replacing 2^ we get
11

ôi/hiV I _ i

Hence

OAt  l"W

z(̂ l+2 x) I 4 Tt'  --- A
2 + X \ —X X

Since the formula
•V>, 'VAq.

Oa (̂\-V Tx')

X (z-+ x)
Mx.-vv3 \ -  x) ̂

does not involve the number -w , therefore
b X3 'vv a

and so



AA ((-f Z X )

If '4- Guoli that
3C—  ̂  or X - \

then the variance of ^  will he as follows § the variance 
of the stativStic which satisfies the maximum likelihood will

where is as defined before # Then the variance of % will
be given by

Mow

and

Hence

%e.

2>ÿ- ^2>5c

A*"'̂  [irCW ]
V*j; = -E- Vcoc) .4X



APPBKDIX II 
THEOREMS (for large Sanples)

If j ei )--? 0 '̂) 1B the prabability deiisity funotion of
a populatio3a, and the maximum likelihood estimates of Gù 
exist with a known distribution function, then the distribution 
of - 2  log A is, except the terms of order , distributed

nas pC with-vv\-r degrees of freedaii, where A is the 
likelihood retio and is the number of the parameters v/hioh
specify the null hypothesis#
ProofI

Let X|,----->'X/vx be a random sample drawn from a
population which has a distribution function f '
Then the likelihood function is

L(xie) = TT f -
Let the null composite hypothesis H o i b e  tested 
against all the possible altemative composite hypotheses and 
let be the whole space of the -vw parameters and ui be the 
subspaee specified by Ho * Then V-C-̂ ) and will be the
likelihood functions dèsighated b y a n d  ̂  respectively. The 
likelihood ratio test will be defined by

v/here^C^) and are the maximum of l-Cw) and respectively* 
To find the approximatio#td the distribution of A  we have to 
asBumie tlmt the maximum likelihood estimates of 0 c  ̂ ; say,
exist, and so ’Iheir distribution will be such that

= -4-iLr *^1’ 1-4- h  (, + T')



where is positive definite, = -C
and Y  is of order • By taking 'th.e logarithm of
and differentiating with respect to Qg , ^ z,  ,
we get

> 6 (rg L C^) _ > 3 Æc'j-7"a/jj ^  0̂-4

Since \\«-m \\ is symmetric and = ' :> z ,----? , then

then
JL ̂aS'A) ^ y* au a LJ /

> L C^) . A ^ r _ L .
L i*‘j|

' >ko|

Solving the equations
J

=1 o i.= », Z, - 3"Wi3 ̂ LC*z) _
3 ̂jg<S A I Vwe obtain 6 i >---—? G-vvl , V/e can show that \ - 0 A 3 is of

order
Then

0 inoe of odor 1  end il is non-singular* 

L ( X )  =  c I + y ' )

where ifr io of order
(.TT)

\

Mow, we can write L(w) as

Z T̂- ~* X >0 ̂ iVi-' ^
"WV

whei’e Y» is of order , pCo = ) ,

C»+ y 7

vW ' =-C
C J = v-+\ -------) -WA \ y [ =i 3 V - dVi , whc3?e Cri is a
linear function of 0 »* , I = r+u , and |) acj \\ = \\ '

11 is defined by
where

B
lUVfi A is an rxr matrix.



By solving the equations
A L~Ĉ J

= 0 VvA3
and substituting the estimates obtained in we get

/ ZTTJ V  ̂ ^
1 ywhere Vo is of order * Then A is

^ ™ C" F X>̂ o ̂  14 VT ̂

where Y\ is of order-L-, and so/v\
- ̂  + Vî Yi =: 0

Here if we neglect V% , then
-  Z A  "  ^  o

ie, “ 2  log A is distributed as distribution, 'low we have to 
show that the degrees of freedom of -2 log A are , The 
oha3?aoteristio function of - 2  log A is

#Cf). . J - J l m

l̂lot j 1

"Wx

w-Wi.
X- J  —  J  4 L  yf+xlC't- t d  (h

L iV~i J

where Ya = Then
— / \ m e  / X— X—cÿ rẑ L̂j ( "% - L tA AA. —> AO

on any finite interval lt\<C , And since this form is the 
character?!Stic function of any quantity distributed as X» —  
distribution with degrees of freedom, then - 2  log A is 
distributed as % - distributi on vd,th Vvi-v* degrees of freedom.



APPENDIX XII
The Distribution of the Sample Oorrelation Coefficient when P^Q

Let ?------> 3-̂') be a random sample from a
population having a bivariate noimial distribution with means, 
variances and congélation coefficient  ̂ and P
respectively* Let r be the sample correlation coefficient *
V/e can show that if the null h y p o t h e s i s  \F; f = o true, then 
the likelihood ratio test will be such that

\  I / i : (*<-*)" ECsi-ay J

ie, -&

Hence the test may be based on r , thus we must Imow the 
distribution of T *

Let c=: ^ and i
then r will be such that

er = /vrvT
Now we need to show that r  is independent of y ,
and Vz * V/hen P ™ 0, the moment generating function of r
will be given by

where Di = . Let Hi = -2SlplL



Tic* *0 /i(A-%rz(W

We Bee here that the moment generating itmctioii of r is independent
of /<( :> cS'i In virtue of the generality of the
theorem on page 1 2 3  in he independent of '̂a ,
and Vi * Hence we can irrite

CCr')r(v,\r.)= CCc-)

Mow we are showing that the moment generating function of
H  Ĉ ( - ĥ )C'̂ < -

is  ̂ » where ~\<fc<v # Let flt- xc-^, and
Bt'=: yr-̂ vz ; here fli and Hi are two random variables 

distributed normally with means sero and variances one. Then
the moment generating function of AB is

1>0 ̂ <x>
,  MB -±(Â +g%)

d.9 dB

aft Jb

u- fl - fcB and v= B then

3B I - It

^ It o
2>4

Hence

=  \ U. J =  %



2ir

where -z.̂ - i_b̂ ) • Then
Mme G=) = I_ ^

and BO
G:) = '*'

Mow we can analyse (_ '̂ C- such that

nC^c-h.'^Cyi — -i') a " C * - ■

Since it can be shorn that is independent
of % and ^ , then the two terms in the left hand side
will he independent* Since the moment generating function of 
' w C ô f - is (i„ey^ then the moment generating function

•v\-l
of will he(i-t'"̂  * Since

Mc(^=: CC&f ) ,
then it is easy to show that

c(c?") zr nr<-) 
where M  Z' (̂) is the -wvvh derivative of the moment generating 
function at under the integral sign* From this we find 
that is an odd function when w  is odd, and hence its
integration over (-oo) «o ) equal to 2sero* But when ^  is even 
then (o) he CO mes an even function* In our problem 'm is



even, equal to 2 . lie no e

=  V v -  \

XNow, since each of or, and having ̂  X- distribution with'vv-y 
degrees of freedom and since it can be shown tha,t the moment

<z,
generating function of ^  with  ̂ degrees of freedom is 

then the moment generating function of each of xq and Vh is
'VV —  I

Hence
(, - it)'

ETC'v.') =E(iA.) = m V, Co) = M Vi Co) _ I ̂
>-

t  ~  o

= w-V
Then

C tf),
ECv,) E(yt)

V/e can show, that if and are stochastioally independent 
random variables each having gamma distribution, and their 
joint probability density function is

o ̂ 0c-v<<>0 p

then the marginal probability density function of z = — ^ —
'K ,+  X z

will be given by

r . p) £X-\

Then



 ̂ r(«)rcp') I
l + x - l

r(«)rcp) ^

-  r̂ ĉ -̂n)rcp;
"rw?(p) vo^T^

rc^+p) r("K-+,) ^

pc^) rc^xf pt 1̂ ~ ~0<+p

e see here that if x oM ^ = - ̂ 2^ them,

P c^) = ec'f'O
Hence at and p- _'̂ ~L- we get

ore
Biiioe weAlnterestecl in the die tribut lorn of r # we let ?= V ?  
them

r ( ^ ^ )  -nri= z  --- ^— - C'-P")ra)r(^)
Then

^ V\'—\ \I /  - - - - - -    \ l 2 d L
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1
SüffiÆARY

) 'This thesis is the comprehensive study of the method of r-
I iïïiaxinnM likelihood and its relative merit èver other methods of f 

estimation. This method of estimation, developed by ii. A, Fisheri 
in 1921 is the oldest method. Since that time, Fisher and some ■ 
others have introduced wide successive developments which led the 
maximum likelihood method to be used in most practical a.pplioations.

In chapters I and II (where single and several parameters 
are considered) it has been shown that the method of maximum 
likelihood has all the p3?oparties of the best method of estimation;

Ithat is, the estimators of the maximum likelihood method have the 
property of consistency, and they are asymptotically most • ;
efficient, having normal distribution and also they are unbiased 
estimators# Also it has been shown that if a sufficient 
estlBiator exists, then the method of maximum likelihood affords 
it# The inequality of Fisher lias been discussed which supplies 
the maximum attainable variance when the equality holds# There 
has also been discussed the process of the successive 
approximations by which the maximum likelihood estimates can be 
obtained in cases when the maximum likelihood equations are 
difficult to be solved# The Wald technique and Lagrange 
multiplier technique are explained for estimating the unrestricted j 
and the restricted parameters with their tests respectively# ;

In chapter III there has been shomi the practical 
applications of the method of maximmn likelihood. In the field j

J ;of genetics we applied some other methods in addition to the ' 1



maximum likelihood method and we saw that the estimates of 
this method are the most efficient. In thefield of hioasse 
we have shown the applications of the method of maximum 
likelihood for estimating the two parameters using the proM 
transformation and the logistic fonuula. In the field of 
blood groups, the application of tine maximum likelihood me tin 
has been shown for estimating the three parameters, Y/e hav 
mentioned the Bernstien method and applied both the Wald 
and the iagrange multiplier techniques for estimating the 
unrestricted and üie restricted parameters.

In chapter IV we discussed the likelihood ratio test 
which is frequently Unbiased and based on a sufficient stati 
and also it is the uniformly most powerful test. In virtue 
of the desirable properties mentioned above, this test 
becomes more aemirate for testing the statistical hypothesis 
than the others.


