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CHAPTER I
OLINGLE PARAMETER

1. Introductlon

Lvery experiment has one or more unknown parasmeter. Thus
the purpose of the experimentel work is to obtain the infomation
about these ﬁnknown paerameters, The outcome of the experiment
represents an observation obtained from a population having a
certaln form of frequency distribution specified by one or more
unknown paramefer; therefore the outéomes«ﬁ?th@ repeateod
experiment will represent a-random sample drawn from that
population. ‘ww

The problem of estimation is therefore to estimate the
unknown paremeters of the population from the observetions
of the sample which is drawn from that population. Thus 1t
is clear that we require to establish some systematic estimation |
procedure, in order to estimate the unknown parameters of the
population from the information obtained from the sample
obgervations,

There are several methods of estimationy one of them is
the maximum likelihood method which is the oldest one,. Bach
of these methods has some optimum properiies, but the maximum
likelihood method has all the properities of the best method
of estimation.

The theory of estimation in fact hes been highlighted
by Re A. PFisher in his papers "On the Mathematical Foundations
of Theoretical Statistics" (1921) and "Theory of Statistical



Estimation" (1925), in which very fruitful work on the maximum
likelihood has been done. In recent years PFisher and some
other authors, introduced very wide developments in the
maximum likelihood method, which has since been widely used in
practicel applications.

The properties of the best method of estimation:

1,1 Consigtencys Let iy esseeeny X¥nbe & random sample

of size m drawn from a population having the probability
density function F(x,8), Tet the statistic t (X, ~---»%u)
be the estimator of the true value € of the parameter o ,

then £t will be said to bve a consistent estimator of 6., if

pr{}twec

>S}*“;’O 88 M —>

where & ig any arbitrary small positive number,

1.2 Normality: If X is a continuous random variable

with probability density function f (%,€,9") defined by

F(X;G,dl)=@—{;ﬂd_ WP{—.";%T(““B)I} g,

then X is said to be distributed normally with mean € and

variance o, where -o{8{® mnd o< s ke . This expression is

denoted by N(&»oh),

l.% Unbiasgedness: If a statistic t is obtained from the

information of the sample observations with probability
dengity function F(Xx,9 ), then ¢ is said to be an unbiased

estimator of the parameter 6, if

E(t)::e 5



where B denotes the expectation. That is t is centred on
the value of the paragmeter,

l.4 DTfficiency: In some cazes there are more than one

consistent and unbiased estimator for estinmating the true
value of the varameter. For example, the median in example
9.7 (The Advanced Theory of Statistics, Vol. 1, page 213)
is distributed normally, as the sample size tends to infinity
and it ig consistent and unbiased, The property which
discriminates between these estimators, to show us the best
one is called the efficiency.

If by and b, are two estimators to the true value of the
parameter with variances Wi and Varespectively and the minimun
attaineble varisnce is v, then the efficiencies of t.and t:

are respectively defined by

v v
ER“"TH‘ and Eﬁ=1f§:'

That is, the estimator with smaller wvariance will be more
efficlent than the other,
I'or example in the case of the normal distribution

defined by

! N i
161(K—9) 3 o

27 &

F('X,B,O’l):r‘__\ -"A‘Pi*

we have for any w , the variance of the nmean is

sl
P

and for large w, the variance of the median is

ot
2

The efficiency of the median with respect to the mean is then




At e e Pp——

= Ot63_‘ = 63‘7% -

1.4(a) The Fisher's Inequality: Tet x,,---->Xw be

a random sample from a population having a probability density
function F(x,®) and let E(xy,--->xw) be an unbiased estimate
of 9(@) a function of the unknown parameter © .  Then the
inequality which is defined independently of any method of

estimation is Vo s mf@)r‘ _ [a@Y
(€) 74 E(a ﬂo‘ﬂﬁ ,V\J (bﬂo—gg) d/)ﬁ

where §(®is the firet derivative of $®) and V() denotes the

variance of the statistiec bt This inequality affords the
minimum variance and also the amount of information on ©
supplied by the sample observationq which is defined by
b chF e da
DO

To prove the inequallty above we have t0 consider the

following conditions be satisfied,
(a) The range of the stochastic variable is independent
of ©
(b) The Probability density function is dif ferentiable
under the integral sign.
Proof: TLet G(x,9 ) be the joint distribution of the
sample values. Then

j_ﬂ_f EG(%,0) ci ———-clxm = q(Q) -

In virtue of condition (b), we have



j---f& &t - - - b = §(0) -

\ .
The covarlience between t gnd Efﬁ%% is given by

__\_. G . - | 2G A
f f G 20 \ CL"M = J’ ‘(L -_%-?9—— LX\ \’XM 2(3,(9) .

We have that

2 " 2G
e oo )] )

where [ 1s the correlation coefficient between t and
1 G

P L)

G ©0
That is

1L RG
V(L') REYY [CW(L’ G 'oe )]
since o ! » where V and C denote the variance and
covariance.

Then

YOIR
Vo 3 —
G 28

V(Cf 26 mv(@f—;&)z E(M -
;ME(MwF :?[ (a%ﬁ)ﬁdx,
V(’r)>[°&(9)]/’u_/ ( f)ﬁd«

¥ Ve > ‘/Mi: (3‘—5%‘1_&)&ﬁ dx whan 9(0)=6 .

Since

1.4(b) Properties of Bfficient Estimators:

/
Let £ and t be two efficient estimators of the sane




paramneter, each one having variance equal to 3;; and let the
correlation coefficient between them be F If t' is another
estimator defined by

£ = —?2'- (e+¢")
shen £ will be an efficient estimator with the ssame varience

of t and £ -

We have
p- cov (E,€7) _ cov (B, E)
J\m’v(_k—) WU::?) ,__Qf_z__‘ ’
%Y

ie
) cov(t,e) = __;?; P

Also we have
var (t+ L-’) = ver () o vav (7)) 4+ 2 cov (b, t7)

e ot ot &t
= M+M+1~,‘;~(’=1—;\-(\+?)>

then

T
o ¢ [« Lt
var L (e+tf) = ver(esrt’) = __ML lf’) ,

1e.

2

Uav-(tf’}t’: i\ ( \;? )
Here  cen not be less than 1, because var (£') { var (£) or
var {t'} ; and since [ is not greater than 1; therefore
P = 1, and mso

2,
var(t") = -—-9:—;—— :

That is, for large samples the efficient estimators are
equivalent.

1,4(c) Distribution Admitting wost FEfficient Wstimator:

We have from l.4(a) that




t G
V) Ve 55 > [cCes39)
Thie inequality may be written as

FT-3003)" Gor) e (35 Gy o 3 [ (5 25) G0 o5

wherea N( represents the multiple integral and e=dx, ---dxm.

From Schwarzts inequality, the equality occurs when

[e-90)) = £ &5

ies t WO UG

——— e .

Y

where L is constant dependent on © , Then

L?G“JT}ﬁuﬂﬂjde KteX+Y

where K is independent of © , and X and Y are functions of © .

Hence

G = exp (K+EX+Y)
= G'/@XP(‘:X“‘Y) 7

where C; is independent of © , Since we deduced the last
formula from the inequality above which affords the minimum
varience when the equality occurs, thus the last formula
represents the distribution admitting the mos+t efficient
estimator.

Lxemple 1.1 Consider the Poisson distribution; the joint

frequency funetion igs then

G(x;0) ===

..'na Z xi
6

poy
T‘TXL\
\

wx\a 1(29« Loy 0 --’\'\9}

{f

\



Here

G= —
‘qrxgl
% e _
J«’/XF'{ X+Y}: Mpfl(th)ﬁoge_me}-
Therefore the distribution sdmlts a most efficient
estimator.

Bxample 1.2 Consider the normal distribution with unknovwm

mean A and known variance o’ , the joint frequency function

is then
CTQ&;P):W Q""Pi 2625‘_(.9( }“) }
\
N T DAL HRA T R
Here
Gr/ “mz /CZTOJ' z
X exP{Lx+>/j ueoqssl (zt*?.'_ac—-fv\f‘)}

Therefore the distribution adnits a most efficient estimator.

1.5 Sufficiency:

Let xv5----,Xw be a random sample from a population with
probability density function £(x,9) ., Then the necessary
condition that the estimator t be sufficient for € is

T EC,0) = F(6,0)f (X1, - -y xm)
thet is f%F(“hG) factorised into two parts, Fi(e,0) dependent
on t and © only and f2(Xv>---,X~) i independent of 6 . We can
extend this property to more than one parameter, Iet b, — ,twm
be egtimators of the parameters o,,.-.,9w then the necessary

condition that the estimators ts are sufficient for 05 is



-{?’f(xi; 6!) "'"’"’6’\"\»\) - F‘ (&"7_—-)EM\;G\,——-19W) FZ. (I) *

1.5(a) The General Distribution Adwitting Sufficient

otatistics

Let &y, ---, X+ e & random gample and each random variable
have density function £(x,8) +then the joint distribution of the
sample velues is

F(,0) = T FCxi,0) =y
If there exlsts a sufficient statistic t , say, as an estimate
of the parameter © , then F(¥,®) can be factorised as
F(x,8) = f(t,0)F(*)
: T_aking the logarithm and clii‘ferenti&ting with respect to é

we get

DEerFs) o pf) _y(oo)
26 B 26

where H(t,0) is a function of t and & . If we substitute
any particular velue of 0 in W(E,8) then W(50) will be a
function of £ , A(Y) s say, where h(t) may be put as

h(8) = R1aG) T
C Now

£,0
?’”b(‘__’ ) - ddﬁg—’- — k(o)
(-e. dH(E,8) ~ k(@) clﬁ(l-')
. dt

Integrating with respect to £, we obltain
W (e,8) < 3%%5 = k(o) f(e) + £(0)
Integrating with respect to & , we get
-éag_F: KE)R(E)+ LB+ w(x) ,



that is,

F=Fexp [ K@) R(s) + L(o))

/
where F is a function of x and K(e) and L-(®) are functions
off © .

Example 1,3 Congider the normal distribution with mean 6 and

. Z o .
variance o s Where o is known, then the frequency function

may be put in the following form

F(0)= — Y -e,xgﬂl_z‘?le} anp - oo (87 220)] -

(2wer)™
Here
S B B NI ot
F= QW59% P% 2612‘ }
X exp{ K@) R(6) +1CO) ] = exh{ s %0 - S

Mherefore a sufficient statistic for © exists,

lixample 1.4 Consider the Poisson distribution, then the Joint

frequency function will be such that

-8 X

Flxo)=-e—2 . e ol
1) T el ﬁxi\ QXP{&‘}G 'V\e'}
1 \

Here
'
F(x)= -
T xil

¥ exp{ KOR() +L0)] = exp] (= togo-0)] -

Thus a sufficient statistic of ©  exists,



2. The Principle of Maximum Iikelihood

1£B(x,@) is the. frequency function of a population, then
the likelihood function of a sample of sizge w drawn from that
population, is defined Dby

L (=, 6) =TT £(x:,0)
where © i1s the parameter of{ﬁhe population.

Wow, if the statistic (% ,---, x«) maximises the likelihood
function L(%,®) for variations of & , then b(x,,--->xw) is called
the maximum likelihood estimator of @ ,

In virtue of the foregoing, the statistic b (.- 4) will be

the solution of the equation
» L (x, (‘})
) ’
or the solution of the equation
\ b L(x, e)
L. 20
) e&‘;} L(x,0)
26

i
o

ie.

il
¢

2

gince |_(x,0) o0 -
More frequently the last equation was found to be easier and
nore convenient in the pracitical work than the first one.

5« Congistency of Maximum Likelihood Eatimator.

Tet x, - yXw be a random sample from a population
with probability density function £(x,8) and let © denote
the maximum likelihood estimator of the true value ©¢ of the
parameter 8 ., Then we have to prove that
Pri\ex-9¢\>5}-——e.o o W =00
where & is any arbitrary small positive number. The following

conditions are supposed o be satisflied:



Ce«;r— nd (a?—&»gﬁ>
28 /6o 3% /g,

are finite and integrable over (-w,00) , and

A (gl __EE:E"_E’:&
" Lk o 20 /B

2 bog B\
39(} Gcﬁ dxe is finite and poesitive.
2 L-H
1 fog L
(e) LZ;J. e (9 9>( 'ael*\) 7

Proofs By Taylor's theorem we have

C@&WL) (aeo«gL)Ga_F(exﬁeo)(azf:iL

In virtue of condition (¢) we obtain

ie,
&“_%tm W“’L)aa/(a;??l“ -
Now
ae"if) j (bew)f’) £ o = o
% V( 3&,915) E(E&T‘}]E- W, e

Also we can show that

— ae”‘;}ﬁz z
E(25 ) = (2 %f
o oeé Oa

By condition (&) we haye

L (Rlal \ _ a2 bog f.
’H( 26% )90— E( 'BGE) V(bgogle

we can wrlte
e em (2525,

From (1) we have

o= (2835, (o (25, -

—_——— e .

——— —

kZ.

}



P\,Ue_eops}wﬂf - = >
(W)eo
A 3'{0‘;]?'{
Aoy (23
_ N ]t Qo
= Pr — ,\_“a"’*&’f}‘—> >y S
w 067 )60
L & adoghi
= R =5 (e SInks
K

In virtue of the central limit theorem we have

Fe
kJ——w Y_ (geﬂ > distributed as /\/(OJ ‘) ‘

Then
Pri‘e’L@o\)%} = Pe iN(o,\) > k%\r';?}
since m igs large, then k%Jyw will be large enough to make

P\”{N(O,\))k%m} — = 0 .

Then
P\‘{\Qxﬁeo‘ >%} S S s TN
That is, 0 is a consistent estimator of ©o

Ixample 1e5 Let x.,--,xw be a random semple from a population

distributed normally with unkunown mean 6 and varisnce o ,

Then the likelihood funciion is

i
L ;@ Ll = — 4 - _____!_N__ e - L S
(w78:65) (111'6‘1)12" W'){ :z.a’LZ( °) }
Taking the logarithm of both sides and differentiating with
respect to © , in order to estimate the value of @ , we get

D log L
=D = 2512(%-9)

The golution of



e
prinhiny

D Cogl-
20

T (xi-0) =0

N —_ . . M
is 6 =x 3§ 1le, the sample mean 18 the estimate of the
population mean., Now we want to show that X 18 a consistent

egtimate to 6 . We have by definition that if
Pr{\o?—~e\>8}~——>~0 ag M —> 0

where ® is a small positive number, then X is a consistent

estimate to 6 Here

Pr{lfx e|>5 {( >Z -3’—5@)1}

"‘PV'{XE’]} }

gt
T
where % ie¢ the variance of % , Pince 36,1 is sufficiently

large tThen

Pr Stﬂ:}—-—}'c !
ie.
Prilf"el>%}"“?’°‘
Or
Pr{"x 9‘>S}~Pri ;‘:e %@ }z?\r{“(al‘)>h§3{£’}

Since 1’}@.. is sufficiently large then
P-l1z-e\ 8] —o0
Hence X is a consistent estimate to & .,

To find the maximum likelihood estimate of ¢°, +the
population variance we have to differentiate the leogarithm
of the likelihood function with respect to & . Here we
have

- 2.
log b = constant — -—-li-qr\. @at& st "Z‘"Zﬁi(x'x)

ST T T o et T e




Bauating the last equation to zero we get
X2 2(9‘—37)2

o :——'———';\—-—'—" 2
and since —
¥l [ Sz z(xnﬂf)l
X = PYEEY >

s the unbiased estimate of o then

k& r
Sx = —nt z
x ey o

where S% is the sample variancs,
Now we must show that

Pri\’sﬁc—-zr‘\ )%E-“}O
Pri‘sé_dz‘>5}=‘3rl‘sz;o‘l %F

& Y Pr{NCo) > w?%"“"”

since 61;% is sufficiently large. Hence Sx is a consistent

Here

1

estimate of o2 .

4. The Maximum Iikelihood Estimators are Asymptotically,

Mogt Efficient, Normelly Distributed snd Unbiased.

Let ¥y ~—--,%~ be & random sample from a population having
a probability demsity function F(%,9) where © is the parameter.
Let © be the maximum likelihood estimator of the true value
% of the parameter & .

To prove the properties mentioned ahove, the following
conditions must be satisfied.

(a) ¢ is consistent -

(b) This condition is the estension of condition (a)3

that is

iz

al'\'\
ZL\(B 6)< “aeh+|>”““>*0)

where T is the likelihood function.



log P
() J (2 2 ) f dx is finite and positive in

some interval containing the true value . .
(d) The attainable minimum variance proved independently

of any method of estimation is defined by

\/(e.)_\/mj 360363 e

. a‘LEgL
(e) ]

) E( ) in some interval containing
' 287

the true value 6. «

(£) > log p nd ¥log F

t and —5g52~ are integrable over o0y 0)

By Taylor's theorem we have

(3)g = (90,2 =09 (255 4 £ (o 00f (521,

=1 a@t

Differentviating with respect to 6 , we get

”aﬂog!,,) (aﬂog[_)o NG e)cﬁaez (8- e)(z"ae\“

In virtue of condition (b) and since (ae;?’” )J"‘ o , WE

obtain

oq L
- (oo
Then ( ) ) 20
X L. 3 loq .
0"~ 0, = ae"“ >9/< aei ) """""" (")

Ve (6°-40) = - l‘ b%fa> / (a'l;;-il_)
34031’3 bog b 00
) f (a @oFCl“ =/ (%eﬁ eo"["""
él& 14
¥ = a&zL)‘% <aa:‘i€)& ..[ ( 557 Jo |

That is

Here



o R C Oy

Qo

In virtue of condition (d), we get

(bl fff':,LL) _ \
M D0O? c MV(&O) )

Then reéwriting (A), we have

ﬁ(éx_eo):u ;V%[‘Z(aeﬁ}ﬁ> ]
- mV(e)

1 - 33"”}?
W(G -%) \ )O/F V(e)

By central limit theorem

(g R
> 20 )eu/r:;'\/*@f)'

That is

is disgtributed normelly with mero mean and unit variance

\ X . . :
Th (g-0- ig distributed as AN(0, V) -
#h Wy ) (o,1)
fhat is O is distributed as /\/(6- ) V(Go)) .
That is means that O is distributed normally. Since 0. is
x x
the mean of © , then 6 is unbiased. And since V(0°) is
[

the minimum varisnce, then © is most efficient.

We can show that the maximum likelihood estimators are

unbiased and most efficient by proof differ but modified from

the p:r'on ahove.

We start from equation (A) above; ie,

X _ E)e«T‘JL b QQ‘SL
- 0=~ )6’/ YR )eo‘



In virtue of condition (&) we have

v Loy _ »> by b
( bet ( D )eudconstan‘b )
then 5 leg
; E “‘5@“‘) Cy, §
- 0-0)= — ¢ w_ﬂ_\_, __b__L 3
E(o=e) c - CZ&E( 26 eo?g
and since bl
d _
E(AD), =0
then -

£(0) =F(0) = 0o

ie. ® is unbiased estimate of ©o

Now to show that © is most efficient, square both sides of

the first equation above: we get

awn
(9"— 60)’" - 8.

37' Em;!..
Tyer 90

TR0 /[ (et ],

o)~ h@wo/jp%uoqi
ek “m/ LSO

SN w/ f (50re)
Ry

Since the R.H.S. is the minimum variance then the maximum

then

likelihood estimate hag the minlmum variancey ie, i+ most



efficient.

Example 1.6% Tet %, ,-——--,%Xw be a random sample from a

population distributed normally with mean © and variance o°

Ve want to find the maximum likelihood estimate to the parameter
o and show that that estimate is unblased, normally

distributed and has the mininum variance. Here the likelihood

funetion is

L(oc;(—},o“):-_

\ \ - 2
axb - —— (-0 } .
(uro")l% \31 ZGZZ(K )
By taking the logarithm and differentiating with respect to
0 we get

e T T o 2 (x-0)

The solution of
P Ea—ﬂ L
20

= @

X, —
is Q = X -

The moment generating function of X is defined by

M x ) =E'ét)=i: ext\[z'?!r_'d* M\’i“ z‘al(“*e)ﬂ“}

= expfLitstrte] .

Since o is digtridbuted normally with mean © and variance ¢°

then

]
expiLcoireal
represents a normal distribution formula of a random variable

with mean 9 and variance 6% . Then

Mz - P/‘—‘,V-‘Z.'x“:)

ol w0t
=C4P§’Jit?'-;‘—z+ _____ +t5munmw5-\- = }

= ex\v{.!znbz%:-&et} .



That is X is distribubed normally with mean © (unbiased)
and variance ST .  Yow we have o show that S is the

minimum variance. The following equality alfords the minimum

varilance
V(%) = ST "
"3
“"AL, (“*‘fe“')«ao-&F
Here
e’c_‘ [ YA
"V\j (b AF) —&,?Cl’)(:‘\/\’( i_#(g{_&‘)}?é«
- ™ = x-2)" § dx
_ ’Eﬁiw (x-%) ¢
- R _ st _ Mm
= —& =5
then

_ st
\/(x3=='::
So X is a most efficient estimate to © -

5. Successive Approximations to Lfficient Estimators

Using Waximum Likelihood

It often happens that maximum likelihood equations are
difficult to be solved ﬁmr ctly. In such cases we have {0
find by some inefficient method an initial estimate of the
maxinum Likelihood, Then by successive apyroximetions we
obtain the efficient (maximum likelihood) estimate. Now we
deduce the formula which is used to find the approximations.

Kio

X
Tet © be the maximum likelihood estimate and ©  be the
X
initial estimate to @ s S0 8"’ (=% -— will be denoted the

successgive approximated estimates. Then we have by Taylor's

theorem +that



(550 == (35 -0 (5 )

Since the left hand side equal zero, then

é
(b maL)x@
& A
bleagL
-——S-é-"-:"'" X(O)

If n is large, then by the law of large numbers we have

B@" K“’) 531 "to) = n@) = -
"‘ "10) d L 2 3"‘3 F
"(o) "(OJ >

O =
1
oO»

Hence

that is

- Cou |l
X (4an) ) ! 9“3 x
e — -—-\- I é“‘, b@ ekk)

X{oy X |
When © is very near from © , Lg»  will be used for all the

approximations.

6. The Maximum Dikelihood Bgtimator is Sufficient:

If there exists a sufficient estimator (X, —--) %X) s S8Y,

to the true value €+ of the parameter © , then .




1

L(x,0) = T E(x0) = '\%‘iﬁ(b,e) H(X)}

L..\ (b).e) L-,_(oc) .

H

Then
CqL(x,e) = ecr}L\(.t;Q)+ ea-n)_\..-;,('x) -

Differentiating with respect to 9 we get

»log(x,0) D g La(k0)

D0 e
I Cog L.
HHere +the solution of qéégt—=c is the solution of EL%%—Lzo;
and since MEQEQEL involves the sufficient statistic
e

E(%y9---, %) , then it will be the solution of %’g.‘:_zo .
Since the maximum likelihood estimator is the solution of

2 Lyl

e '

therefore the maximum likelihood estimator is sufficient.

Bxample 1.7 Consider the normal distribubion wlith unkunown

a8
mean fand knmown varisnce ¢° . The likelihood funection will

be 8o that

26 7%

L(*)Q)xme«/?i— ! Z(fx-e)l} .




We can show that % is themaximum likelihood estimate of € .
In order to show that X is sufficient we must show that
L(x,0) can be factorised into two parts, one part dependent
on X and © , and the other part independent of © ., That

i8 we have to show that

L (x, e) = L,(%,0) La(x),

or

Cog L (x,0) = log L., (£,8) 4 Cog Lo(x) -
We have

\
Crgl(x,0) = C = ¥ (x-e)"
where
5

C= émo‘i‘/ ey } independent of © .,

Then

&wl_(x,@)s(}p.zgzzx1>+

2\61(1“729 —-— '1/\61) 2

we notice here that the first term in the R.H.S. iswdependent

of & , and the second term is dependent on © and X



Therefore x is a sufficient estimate for © .

There is another way to show that the maximum likelihood
estimator is sufficient. In our foregoing discussion about
the sufficiency of the maximum likelihood estimator, we

mentioned that if there exists a sufficient estimator, then

2 log L
T - O
will afford its ie. )E?GL must be dependent on © and bt

(the sufficient statistic). Therefore our criterion of .

| sufficiency is to show that
> O
is dependent on © and the &tatistic &

In our example

plogl % -0
20 o"-m( )

which is dependent on 9 and X y therefore * is a Sufficient
estimator for © .

Bxample 1.8 Consider the distribution of Poisson, the

parameter © is unknown, then the likelihood function will be

such that B
L ((x.l e) - e’ e' n
n K\
“MQ mx \
= & e =
v\

Taking the logarithm and differentiating with respect to © we

get

Y loqg L. -
50— =~ (%)

Hence

2 leg L

206
is dependent only on © and X , therefore X is a sufficient



egtimator for &€ .

Txample 1.9 In ecase of Binomial distribution with the

parameter p , the likelihood function then will be such that
L) =(3) P O-w"
Paking the logarithm and differentiating with respect to P

we get

Since x is the maxiwum likelihood estimator of v , then

2 is sufficlent because
? bq L

3
is dependent only on X and P

fxample 1.10 Consider the distribution of Type III to estimate

the parsmeter & , where the parameter X is known. The
distribution of Type ITIT is defined by

oy 2 1/ 1) £
The likelihood function is then

L Go) 7o) é“““"/"/ [rm™
Taking the logarithm and differentiating with respect to x ,

we gevt

beogt-::q“>\{ XA }

DX =% X

- L
where %E i1s the maximum likelihood estimate of &« . oince 2’33

is dependent on-§:an&cxonly then the maximum likelihood estimate

%% is sufficient.



CHAPRER II
SEVERAL PARANBTERS

1. Introduction:

In chapter I we discussed the problem for a single
paremeter. In this chapter we arc dealing with several
paramebersy a8 g model let x,, -—--,xw ke a random sample
drawn from & population with joint frequency function
F(u‘,__-,x“;e.,_ﬂem); that is there are w parameters to be

regquireda. Hereafter we denote F(%;Q) instead of

F(xis~—, Xm; 0, ,~~----,9m) and sometimes € may be written as
a column vector such that .

6= e§\

~s Bw

2. The Amount of Information:

We have shown in Chepter I (1.4(2)) that the amount of

ré,,@ ANG ARbwa

information about the parameter © supplied Trom the shosEbssec

where [ is the denslty function of & single observation and

is given by

N is the sample sige, In present case where 8 18 as several
paraneters the amount of information about these parameters
supplied from the corresponding estimators is as a square mabtrix

of order wi whose (i,j)th element is

"'"‘“E -——-———-»«-——-bzgo—gp . {:j'—:‘)?':*-"J'W‘
n 26:20; !
divided by m

The inverse of this natrixAis called the variance-covariance

matrix of the estimatvorsg of the perameiters ©,,91, --- -, 0m ,



3. Successive Approximetions to Bfficlent Hstimators Using M.L.:

In Chapter I section 5 we have shown that the formula

used for the successive approximations is given by

’é(m \)_. e(\«) *(«) (‘0 L_)
Xite)

In case of several psrameters the formmla becomes such that

oo 0 ] > log F
t
: = [+ L gt o
v 1 ~~ )
] : ‘l
) X1Kk) »log F X ()
Bnes . ] 0 B~ @\,

where I is iteelf the likelikhood function and 1¥° is a square

natrix of order w whose (i,j)th element is

. 160-[:
“"~<—%——§::—> =Nt
Koy

If 9 the initial estimate is very near to é, the maximun
likelihood estimete, then ,—E_’é“"’ will be replaced by f@f’ for
all the procesgs of the approxiwmations. Note: The application
will be shown in chapter 3,

4. Distribution Admittine Sulficient Statisticss

Koopman (193%6) has shown that if the daistPibution function

A(%y - %3 0 5-m--2, 0~ ) 1S continuous and not mero over some

‘ofx

continuous range of the 0s , and exists, then the

necessary snd sufficient foxm of the 11.11101;1031 N to admit the

sulficlent statistice, is

o= exp Ylﬁ (©) B (X) & === & P (8) () + Rce>+%a(«)f :



where f(e) apna %c() y L=osh,2, — ;™

and X respectively.,

Iixosmple 2.1

mean © and varisnce o,

is then
F(«,’Q,Gl): __,____‘_____ a2n I -x_e)-l
Grogs 1 amE oo
i«
\
F(x0,01) = . - gxpif_zziemw051-—i__M(f
et ()3
where
. Y (x-x +
Sx= Y ;
and
K = -—n—"\-ZDC
Here
_ \ ~ 2
ﬁ(e)%\(x)—h";;_—i'\/\(x-—e) ;
Pr(0) D() = ~ 2 () S
R(_e) = --T\?-_'y\ ec—caﬁ'l )

?10("()‘-"- --—Z‘—-MCO":"ZW .

Therefore the normal distribution with unknown mean 0

variance O °

adnigas sufficient estimators for ©

are functions of ©

Consider the normal distrivution with unknown

The Joint frequency function

and

Lixample 2.2 Consider the Type ITI distribution

T (x:)e—’”""i‘(x;“

i

6

and

T

Ve,



whore o« is known and & X <00 Then

FX0 NV, 0 ) = \ x—‘XM(e—‘) x -~ !
)= s Er’\(e)]“(ﬁ) v L CE)f

Here

R Bi(x) = - v (";"‘)

B(0) 1) = M (P-1) g (x- )
e R(8) = -m{ logo—m brg (0)

Therefore there are sufiicient estimetors t¢ ¢ and & .
In this dlstribution it is clear that if «  1is unknovwn there
are no sufficient estimators, even if o and ¢ are known.

5. Maximum Likelihood stimstors are sufficlent

et x5 ———--,%Xw be a random sample from a population
with probability density function (0,5 ---,0~) and let
Evy —mmmo o >Em be sufficient cstimators to O1> ———--- ,0m

respectively. Then the likelihood funetion will be factorised

guch thet
L(x0)=b(e5@)ba(x)
where L, ,(t;0) is dependent on © and t  only, and L2(x)

is independent of 6 .

Differentisating with respect to ©( we get

5 £
0 6L




aince the solution of the equations

DLk 8)
20t -

afifords sullicient estinators then the solution of the

eguations
DL(%59)
DO

nffords suf ficlient estimators too,. Since the solution of

the equations

DL (%5 9)
D0

affords the maximum likelihood estimators, therefore they are
sufficient,

Ixamole 2.% Conslder the normal distribution with unknown

mean M and variance c* . The 1¥kelihood function is

then

L(ks6t) = o @ﬂwﬂ“ Pi, Z(N—h)i}

Differentiating the logarithm of both sides with respect to

o owe get
d byl _
Sk 57 2 (x=1)
since = S% = Zjii;x) , then
2 ly b _
Thet is

oM



—

is dependent only on x and W , therefore the maximum
likelihood estimate < is sufficient for M .,
Now differentiating the logarithm of both sides with

respect to 6 we get

be&‘}L*___fV\
252 = aet ¥ 20"‘* L(>x-%)
that is
bﬂo—gl_
ot

kR i 2 .
is dependent only onSx and &% , therefore Sx i
sufficient estimator for ¢° ., Tinally X and S% are
sufficient estimators for M amnd &6°

6. Simultaneous listimaitbn of JYeveral Parame ters

Ve have shown in Chapter I section 2 that if L (x,0)
18 the likelihood function then the estimator of © will

be the solution of the egquation

D logLl.(,0)
>0

go in the case of several parameters the estimators of these

parameters will be the solution of the equations
d boq F(%;0)

YR - L=\ —— -5,

where F(%,8) itself represents the likelihood function as
defined in section I of this chapter.

dxample 2.4 Consilder the normal distributlon with unknown

mean « and varience 6% . ‘The likelihoed function is then

FT(XUC*)G ) vy — X — X
Gn|a') = { zo7 - ) }



Then

\ 2.
é’o—j F = Co—m/aw-——‘i-zv\ 0.0361._. o1 2(')(—0() .

Differentiating with vespect to X we get

> Eo—g F —
o = =7 L (x=%)
then the solution of

2x
is K= XK ie, the mayximum likelihood estimate of «

ig the sample mean X . Now we differentiate with respect

to ¢*
bEOBF . MAY \ 2z,
56t . Zor Y Lg% 2 (x-e)
_ \
== 257

Eoguating to zero we obtain

t= ok L(x-R)
It is worth while to £find the amount of information on the
parometers &K and 6 * supplied Lfrom the maximum likelihood
estimators as illustration to section 2, chapter II. The
(i,j)th element of the matrix which represents the amount

of information is given by

_ g (2 fF L
Mt-(w L,y = Lo,

— E (326‘7‘3(:)

Here



_ % loy \
E(E35) = -5rx-w)

"ET(jbi&ﬁF— _
DR “”[26» 6 2 (x- x))

— "M M
- 20k ol
- Al

2064

Then the amount of information is given by

~ \

\ — o —_
™ | o% = | &z
\
‘W
o A o —
204 204

and the variance~covariance matrix is then

t \ —\ -\ \
w~ | 6% — ! Ty ©
= M\ 24¢ 20

x X
that is the veriences of X and ©6° sre < and =<
x
respectively and the covariance of ® and O is zero, ie. the
- oy - 0] X ® .
correlation coefficient between X and o° is zero.

Example 2,5 Consider the distribution of the bivariate

normal form, ie.



F-(ixl'/"“)f"i,saz, .t E)

\

:Mw - x \
[lTrG,Gt(l—f"*)"'iJM Ff z(“,) [(X ) 20( :_:{.Ej M) L‘”lh)}

then

log P = constant ~ L Loqa™— 1, og 6% (5~ ,m)
1(‘-(") S\*

2 PR (3 p)?
RS + 0,2 }_LZ:M erh(l—fz').
It can be shown that the solution of the equations
? Cog F — 6 i=\,2,---5,5
DOK
where ©0.,0.,03,04,05 are Mok, 65,065, ¢ respectively,

gives us the following estimators

To obtain the amount of informabtion we must find the elements

of the representative matrix

. T Coq F \ 1loaq N \
\ oq 3 EAR
T t( 1 = » - T = —
br‘\ ) ’.‘1(\ ?1) wm ( b}\z) . f(\_e"‘) )




L -20%4 2"

b(a',‘) T ‘_e'z.

/\
o/
~
T
-
~

E(at&;«;F‘) o -zt 3Ql

ot T

(v Tz e

_ap(2byb N
‘ bz'ea'gF ZP - ble
— = > el — '9-3"_"-—-—’:
Mm E(b"\, af\1> Gy O, 'l‘ L(afu b6|1> =20
A LAY _ap[aéyF
W 2t /T (SR )T
dh M 2F
LE B‘leg—ﬂF o \ bieoﬂF
T aa Yy - ’ “TAE dpdet )T 2
Dh O 26
Wy 2tb9f =0, ) E(25%9F ¢
" DM P m bo.‘bm‘): O e
_—
rE(Ler). (2-¢%) Lg (2F N (=)
= T e —— o~ iapg =~
P X S, (\.._e'l) ™M dozd( 0’;(\—6‘)1

Then the amount of information is given by the followlng

gymnetrical square matrix



L

S“[(\—-ez) O:G‘Z
2f |
GOz 6‘-;2(1 ,_(L)
o o
o o
< [

-2 %436

St (V09

T

c!

T ————itr
6\1 .6-1_L

e*(2-¢%)

—_— mmz (\-—(")1

O O
o S
2 3 2
i £ (z-¢7)
o ot ot -eF
V—2¢% 3 €Y P3(2-¢1)
o (1-¢7) SCRID Y
£ (2-¢2) ERTAGES o
s -e%)° (1-p%)3

The varisnce=covariance matrix of the estimators

X X LSRN X1 X
f‘\,"\i)o“ ;Gt)e

divided by W .,

T

Wald Technigque:

is glven by the inverse of the matrix asbove

The Wald technigue for solving the maximum likelihood

equations is related to his test,

whe ther the unrestricted estimates of the unknown i

This test iz used to know

aneters

satisfy some relegbionships which opeclfy the aull hypothesis,.

Thus the ides of Wald technigue is to egtimete the unrestricted

paraneters of wmawlmum Likelihood equdlona.,

probability density funetion ﬁ(xie"~-’“>0”“), where

Let xvy ——>xXw bhe a random ssmple from a populetion with

~——~3 @ are unknown parameters.

e" @1.,

Then the estimates of the



unrestricted parameters will be the solution of the equations

D fog L.
DO

= QO L:"_.\)'Z.?._-__-,'\fv\

wheve L denotes the likelihood function. I these equations
are difficult to solve we apply the successive épproximatian
procecesses (section 3, chapter II) to find the maximum
likelihood estimates, |

‘If'thé rvestrictions & (<w) which specify the null
hypothesis are

Ai(@)=Re@)= —~ —- = hk(®) =©

then the Wald test which detemmines whether the unrestricted
naximum likelihood estimates satisfy these restrictions, is

based on the statistice
- -\ .
RS Hs (K16) " M| R

waich is distributed as )C}K}, vhere (%ﬁié) is the
information matrix whose (i,3)th element is “%XE:(%;é§%?>

iy =1, -c-nn 5..0R(0) is the K— column vector whose

i element is fi(0) and Ho is the wixk matrix whose (i,j)th
element is D ﬁj(@)/bei P Xsz} X' we accept the
null hypotheéis ond we reject it otherwise, where X  is
obtainable from the statistical tables with the corresponding
degrees of freedom.

8. Lagrange Nultipiier Technique

This technique is related to the test of the null

hypothesis which says whether the restricted estimates of the



unknown parameters nearly maximize the likelihood functions,
In virtue of the foregoing mentioned the idea of the lagrange-
multiplier technique will be the procedure for estimating the
restricted parameters of the restricted likelihood equations.
et X,xXv, —w--- 5 X be & random sample from a
population with probability density function ?(3,39|),,qe~“)
where 0,01, —-5 0w  and Gwm are unknown parameters, and

let there be k(<w) restrictions in the form
ﬁ\l(e)-: R'L(e): ——_—— = R\((G).:o

then the estimates of the restricted parameters will be the
solution of the equations

\ 2 bl RANON ‘
A 30¢ + Z )3 26 =0 (L: \,2)_—,'\4\/\) N

ﬁd(e) =0 (52\913—--7\\))

where h\;A1>--:)K are Lagrange multipliers, and B is the
likelihood function,

Usually, in practice, these equations are difficult +to
solve, s0 in such cases we usce the successive approximations
procedure (section 3, chapter II) to calculate the maximum
likelihood estimates, Here the successive approximaétion form

will be such that

) e - ) S
I‘ |(’+l 9, ‘ Efﬁ_ll + XA dh)

: — ! + =lo W be' J a\be‘

1& - l |

® by 4

dLlegl W

w % : 2

; ! - Ho © Re)

'{’ 4 o xS &
| Ak A 5’ Rk(e) - 0"

. - L o - s 4




where »;3—,\,1:9 and Ho are as defined in section 7 of this chapter.

For if - Ty B y
mio Mo Ao Be
/
—HB Ie) ©> Be CB (o)
o )
L. J L N

then = 0& will be the variance~covariance metrix of the
restricted maximum likelihood egtimates,

There is a very useful method to find the inverse of the

matrix 'Y 7]
L S
Vi

-H O

The Procedure:
1) obtain (LT)" .
2) Compute H' (HLIY' ana W(I)' .

3) Obtain [ W (MIY'H) " = -cC
4) Compute R = C [ H,(-‘a,l,)_‘]
5) Compute & = (X T},y‘ + B [H’("«:})ﬂ] s The last matrix

ig symmetrical, and this property gives us good check on
our computation.

The Tagrange-multiplier test is defined by the statistie

- oy - -

\ 3 Coql. 0 ? bog L
~ >0, <_L @> 20,
' AA a0 .
' 1
! !
| 9~ 16 30 | ©




@ .
where © is the restricted maximum likelihood estimate.

This statistic is distributed as )Cz[k] ¢ therefore if

Xf[kj < X we accept the null hypotheslis and we reject it
otherwise, where X" is obtainmable from the statistical table
with the corresponding degrees of freedom.

9. Sincular Information Matrices:

In both of the previous techniques the information matrix
was non=singular because it is related to the identifiability
parameters, But some~times the information matrix is
singular in a case when the unknown parameters is identifiable
by some imposed restrictions. In such cases we have to do
some modifications to make a non-singular matrix.

Let 01,0+, ——-, 0w be unknown parameters with W
regtrictions in the form

Ri(e)=he(0)=_— _-f, (6)=o
and let there be d(<k) restrictions which make the vw
parameters identifiable, then the (k-4) restrictions will
gpecify the null hypothesis. Now, the vk matrix WHe whose

2h;(0)

(1yj)th element is -5~  could be partitioned into

[ Mo Hee) where W is wxd matrix whose (i,j)th element is
"a"%%?—)* then the matrix [ Te +He Hip ) will be non-
singular, Therefore in such cases we have to replace

L% To+ He Ho ) instead of X Yo and so the
successive approximations procedure will be in the following

Forms



- -\
) - X ¢ 2y L
X €x| -
e\* P ?‘ + {‘"‘-{{;‘Je + qu H;G } ©) 20,
\ t
| | |
\ \
. dlogr. | wpg
e b4
éq:\( ] O i 20 JQ

for the Wald technique, and

» ®(‘ n r ®e T ™ —|""‘ i + D%L

" : " e
Ao

] ! Lo +HoWo -y e \
' t o \ =
. \
@ ey — oe | ¢ bt :
o | = 4 ;
& o | T 5w 7
a At Ad(©)
\ \ / )
: ! ~He © !
€4y ! (o)
M| e | JQ Rk (9)

for the lagrange-multiplier technique,
The statistics of Wald and Dagrange-multiplier tests for
the null hypothesis, which says whether the unknown parameters

satisfy the (k-d) wrestrictions, will become

w (6 [ Mg (LI + HE HE ) Hé*]“ R(8) >

and

=2|-
v
@

20 a _G




respectively, and each statistic is distributed as %}k_d) .

The estimate of the variance-covariance matrix of
® .S

-\
Oy ——-50wm will be given by J,‘.;\[J,‘-d}e +H\eH(e_§gv and so

-\
L [(xle +umﬂ{e]5 will be a bhetter such estimate, If

- , “‘ — —
~io+HioHe  —He Ae  Bo

e
—_—

Q. / ~

~MHa o é) Bo Ceo [&

then + PN§’ will be the estimate of the variance~-covariance
. & ® ; = ;

matrix of & , —-- 0w and L AP will be a better such

estimate,



10, HNaximuwm Dikelihood Estiwmates of the Mean and

Variance of Normal Povulations from Iruncated

Samples.

Tet M and S De the mean and variance of a normal
population., Let X« be the truncated point measured on the
original scale of the variate X (the variate of the complete
distribution) and ‘E‘ be the truncation point measured in standard
units of the complete distribution. Then we can write . such tha
o= Xo—of
that is
= ot O f
Then the probability deusity function of the variate x'(: x—ﬂ«:)
in the truncated normal distribution will be such that

Foys g7 () £ To()

\’zﬂ' S

_...\._.(x'-\-ﬁ'r)’“

2

— \ e I
2 &

1.05) -_-f R
¢ \/‘z’ff‘e de

Hereafter we will abbreviate I««(ﬂ t0 Lw . The likelihood

‘%'?Z(x-‘-d?) (L-}

_—0(%) ’

where

/
Tunction of x is then

L(x7) = 7—“_—"1‘";“
2\



where " ig the mumber of the known measured observations

f 1
Xty L=ty —cyMm Phen

log T{x ) = constent - wlogs —~—;‘_—Z("’*;">l—«« loq To

Differentiating with respect to § and o we get

L X+ 5 9
Di""? ( ?) “ "a_l.

gl _ ) §
(o

D20 )

Then the maximum likelihood estimates of § and 6 will be

the solution of

i(x+6f N ?Io

‘ e = ®
Lo X
—_— x ’ W
6‘2(?*+“F)“”E”=° ——_——— ®
Sinece, by definition
o2 1%
I’V\ = ‘ (b“f) -'-‘ftI
Jar ¢ —w ¢ de |
we get
(‘v\-\-\):[h.” —}-‘{'I“_.—_[“_‘ - o — e @
and
X
"%-:1 =~ Loy
ie. ST,
]
2§ ~ Toy

Hence the equation (L) and (2) will be such that



— —— —— i S

! o
N ,
I'd
—3 Ix ———_L'—-‘ —— ._.../:‘__...... — e e v e
from equation (3) weing Y-y =L,+§ls , we get
'//
ME,“‘ 6 Y\ MI‘ - e e T T T @
To
iy o
f‘:‘xl-{-é'?-“f,mmo‘_‘:o mmmmmm @

. &
Trom equation (1) we get

x'=6 :]{:—L ——————— @

/ . «
Substituting the value of X in equation (2) we get

- '1' T I\ '
Z’x + 6 f'\’\——“hf\/\ﬁ =0
\ [\

Hence

Z'Xrt: [ “61(10—?[\)
1 o
Prom equation (3) using =21z2= To-§FLy , We get

an _—

Z:xllz T =t a6 -——-—-"““@
' To

Substituting the value of o obtained from equation (4), in

equation (5) we get

fonnd X

Lo i

T
i'xlt""‘ ZIL —_— I:D
\

=7 'Z.I“LIQ

= x
T
I,

ie.



— sz
,“E‘:'x 'ZI?_IQ

SR A = __——*{—_
(I<) W
Since the gquantity in the left side is known, then the value of
T.'LT.Q R
f corresponding to E—T—i— will be obtainable from the
1

"iathenatical TablesY Vol, 1 of the British Association for
the Advancement of Science. Also from the vables mentioned
above we find the values of Lo anda Ly corresponding to the
value of § , By substituting the values of Lo ama I, .
in equation (4) we obtain the value of 6 . TFinally
substituting the values of X., 6 and § in

f=Xo-6¢§
we get the value of fo

The variance-covariance matrix of %—' ond 6 1is given by

ol -1

963¢

RS s

_E(b“*‘@*ib> (2l -\

Herec

(1&7L):_E<;‘~1____Zxﬂ. 632_?’{4')
SR

_,E'éi@_"; _ Ex’
26 3¢ ““f—<"'(’;:a"' = -




L 2T
”‘Eb&ﬁ>:—- cmgp 2 (2N M e
2¢" e 11( To 5

- E(_M + MI:.[:‘ _ ’V\%-t — (‘ 01—“2 ~—1~ )

Hence the variance-covariance matrix of §{ and & is

M

]:“ M (3 !:!”' 2 5%’ \ _ M’ -
~ - ag*
— 'V\fx— XoI-z — I:‘
are n (\+ T« )
L ]
ca — -
| i L = ! ) amx’
= - 1, T T
] sgx’t $x
an Ty 2 —\
o * & g - (<)
L i

where A is the determinant of ;_\ .

COHEN, A.C., has discussed in his paper, Ann. Math, Stat. -
Vol., 21, 1%%0 pP. (557~569), the maximum likelihood estimates of
the mean and variance of normal populations from singly and
doubly truncated samples having known truncation points. In
doubly truncated samples he dliscussed three cases: (i) when the
nunber of the unmeasured observations is unkrown; (il) when the
number of the ummeasured observatiouns in each t'tall'! is knownj
and (1ii) when the btotal number of unmeasured observations knowm,
but not the number in each 'tail’', some numerical examples are

given in this paper,
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CHAPTER IIX
APPLICATIONS OF MAXIMUM JLIKELIHOOD MITHOD
1, SINGLE PARAMETERS

It ie worth while to apply some other methods of estimation
in example %.1 and %.2 to show that the maximum likelihood
method is the best, The methods are:

(a) Maximum Likelihood method

(b) Minimum X method

(¢) Product method

(&) WVeighted mean method

(e} Additive method, also called Lmerson's formula

Ixample 3.,1: (Carver, Genetics, XII, (415-440) 1927), showing

linkage between the sugary factor in maize and a factor for
white base leaf. The case was oneof repulsion, and the numbers

of seedlings counted were as in the following table

Starchy. PUSBLryY
—- : e o e o et 12 et e er e o] o tal
CGreen | tWhite Green White
Observed 1997 906 G04 52 %8%9
.’.*riu? et 3:1' 2} -e ;ln w1 E—I‘-
L Bxpected 4(2+}?) 4(1 P) 4(l P) i3 n

- z » - - L 3 L]
Here P =P is the linkage value, and P 18 the recombination
value, The paremeter will be estimated is bo.

(a) Maximum likelihood method:

Procedure: ILet w,,v2, vy, Wy denote the observed values

then +the likelihood function is



,L::{#(pr)} i‘ OﬂP) i‘ Q—P)} i p My

and

log I = constant + n, log(2+P) + n, log(l~P) + n, log(l-P)+n,lo

The estimate of the paraemeter P will be the solution of

Here we have
dlogh . n24ngs 4+
“‘a“Pﬁ“ = 2P “1-P T

Hence P will be the solution of

1y .. Radne N
¥ T Ti-p Y p o< 0

By substituting the observed values we get

1997 _ 1810 32
-1 +t F =0

Solving the equation we get
P = 0,035712
Hence
P = VP = o.,18808
We have from l.4(a) chapter I that the veriance of P will be |

given by

vE = —

then



v(p) = 1/% ‘2%"’1%:““%)

2P(1~P) (2+F)
n(1+2P)

2:%x.0.035712 x 0,964288 x 2,035712 _ ¢, 34005 x 10™%
3839 x 1,071424

rom Appendix 1 we have

v

vp = Z?,

then the standard ervor of P is

/5 \
VVp = ~¥§ = o0.0l542 .

YA
(b) Winimwm X Method:

T
Procedure: The method of minimum X is expressed in the

equation

2

112. Ny -
(:E”f It I”? * TP j> .
The best estimate of P should make :X: a minimum and this

will lead us to the equation of the 4th degree such that

1
D)C :.&m(} 'M? _+'W1+M; _ V@ = o
N O HA (= e 1

By substituting the obmepved values and solving the equation

for P we get
P = 00035785
Hence

P=VP =o.1897

The varisnce of P will be given by the same formula of method



(a) aboves ie.

2P(1-P) (2+P)

Vp :
n(1+2P)

[

= 0,3415 x 1074

Then the standard ervor of the recombination b is

\'
We' = \/55-= 0.01547 .

(¢) Product Method:

Procedure: The method of product is defined by the

LTI T P(2+P)
) N, 1-P)2

By substituting the observed values and solving the eguation for

equation

P we get

P = 0.035645
and 80

P = 0.1888
The veriance of P is giveﬂ by

vp - 22Q-P) (2+P)
n(1+2P) (Appendix I)

2 x 0.035645 x 0.964355 x 2.,035646
3839 x 1.071292

H

|

0.,00003411

Hence the standard error of b is

VIS
VVP 2%;/% = e.0 1545 .



ol

(d) Vedghted mean methods:

Procddures This method is defined by the equation

n(4P-1) = n, - %n, - 3n; + 90,
e 4nP = 2n, - 20, - 2n, + 10n,
By substituting the observed values snd solving the equation
we get
P o= 0,045194
Hence |
P = 0.,2126

The variance of P is given by

Vp . 1.+ 6P = 4P°
in (Appendix I)

1+ 6 x 0,045194 = (0.045194)"
4 x 3839

i

and so the standard error of b is

A \/?g?= 0.02133/

(e) Additive method

Proceduret This method is defined by equating n, + ny

to its expected value '%(2+P) + %@‘= % (1+P), and so we get
the equation

nP = n, «n, =g+ n,
By substituting the observed values and solving the equation
we get

P = 0.057046



andso

P = 0.2%38

The varisnce of P 1is given by

vp = L=B _ 1= (0.057046)

n 38%9

= Ou000259

and so the standard error of ¥ is

‘/\/P': Ve _
V—;?;~ 0.03373

(Appendix I)

Now we summarise the results of the five methods by the

following table

\lethod

Recombination

\:o

Maximum likelihood
= * - 'L
Mininum X,

Product formula

Velghted mean

Additive method

R S

0.18917
0.,1888
0.2126
00,2388

0.18898

Standard error

0.03575

of b
0,01542
0. 01547
0.,01545
0.02133

e

The table above shows that the sbtandard error of the maximum

likelihood estimate is the smallest, and since the standard error

is the square root of the variance, therefore the variance

of maximum likelihood estimate is the smallest.

maximum likelihood nethod is the most efficient.

That is, the



Ixample %.2: De Winton and Haldane have recorded the results

of selfw-pollinating and intevcrossing Primula sinensis plants
that were heterzyzous for the two genes I'y £ and Ch, ch,

These genes are linked snd the 4364 individuals observed in

the progeny of coupled double heterozygotes showed the following

segregation in the table below:

Tah Ich £Ch feh | Total

QBSERVED 2972 170 190 831 4164
EXPEOTED | Z(2+P) %(1«1)) %(1--13) IP n
Here P = (1-P)* 1is the linkage value snd b is the

recombinagbion value. We have to estimate the value of the

paremeter P

(a)

Maximum likelihood method:

Procedure: Let myi,wmaiyM3i, My denote the observed values

then the likelihood function is

R EEO R ECUIN EE A T

Then
log L = oconstand + n, log(2+P) + (n,+ n3)log(l-P)+ n,logP
and
2 éry L. 1, No 3 n
5p = AP " i=p- YT

Since the estimate P is the solution of the equation

byl
DP -



Then P is the solution of

mp Bt v % = 0

By substituting the observed values and solving the equation
we get

Po= 0.824734
Hence

b= \-—VHF;‘ = o-04185 |
The folmulas for the variances which are used in the previous
exomple will be used in thés e}:é.mple toos therefore, the

vayriance of P will be given by

Vp - 2PQA~P) (2+P)
n(1+2P)

= 0,7402 x 104

Hence

Wi = Z’;’ = 0.0047%7

T
(b) winimum X Method:

2
Procedure: The method of minimumm X is defined by making

k™
X minimum in the equatbtion

* 4 [ n ne + 1 na
-— —— A + L 3 k1 - -
76 n \ 2+F 1P tP ) n

That is the cstinmate P will be the solution of



%
2p

- O

This will lead us to the equation

T e S
n. + ms 1y By oo g

(1-P) B =) i

Substituting theobserved values and solving the equation we

get
P = 0.8246

The variance of P is given by

Vp = 2P(1~P) (2+P)
n(1+2P)

= 0.00007407
Hence

P=1-yP' = 0.09193
V\/P :\/-,_;\%2 = oc.co 47394

(e¢) Produet Method:

Proceduret This method is defined by the formula

mue . P(2+P)

vubgtituting the observed values and solving the equation, we
obtain
P = 0.8252

Hence

P-‘—“"{E—‘: O-OCH6



The variance of P is given by

Ve _ 2P(1-P) (2+P)
= n(L+2P)

= 0.00007427

Hence

W' = [ = 0,004743

(d) Velghted mean method:

Procedure: This method is defined by the equation

n(4P-1) = 1n, = 30, = 3n3 + 90,

ie,

4nP

1

21y = 2n, =~ 2nz + 10n,,

By substituting theobserved values and solving the equation,

we get

P

i

and 80

0.812439

P=1-{P" = (,008652

The veriance of P 1is given by

\/P = 1+6P*§f1

4n

= 0Q000194189

Hence

W = Y2 = 0.00773



(e) Additive Methods

Procedure: This method is defined by equating n, + n,

to its expected value«%(2+P) o+ %@ = -g(1+P), and so we get
the equation
nP = n, =~ ng - nz + ny
By substituting the observed values and solving the equetion,
we got
P = 00,8260

and 80

F=1 ~yP = 0.09083
The variance of P is given by

Vp . A=B
nmn

= 0,000076
Hence

— N .
|/\/p: = ]/W = 0.004f98

The results of the methods are summarised in the following

table
. i

S Recombination | Standard

jﬂ.{.JTlIOi} \:, 2’ error Of \—,\
Maximun likelihood 0.091851 é 0. 004737
Minimum X 0.09193 | 0.004739
Producet formula 030916 L 0.004743%

4

Welghted mean 0,098652 i 0.00773
Additive methed 0.09083 . 04004798




Ve see in the columm 3% of the

the maximonm likelihood estimate is thesmollest one, so the

maximum likelihood method is the most efficient.

Tixample %.%8

The data of thls example is given in the

following tabhle:

I'reguencies observed in an P,

colour and pale green seedling (BRUNSON'S data).

table that thestandard error of

segregation for aleurone

CR Cr+cR+cx: | SEEDLING TOTAL
Pg; 1907 | 1053 2960
bg, -w300 686 986
| Aleurone total | 2207 | 173 | n = 3946

In the case involving complementary factors, the probabilities

in the four classes will be as in the following btable:

CRPg, CRbg, (Cr+cR+er)Pg, (Cr+eR+or) bg, | TOTAL
OBSERVED | 1407 300 10573 686 5946
W TaE B 311 ;l N 3n 31'1 [ o+ ;l__ 2
BXPRCTED m-(:-zw) 7 (1-P) -3:5(.»3-3) 16(1+5p) n
Here P = P* is the linkage value snd P is the recombination
value, In this example we will apply one method bto estimate

P in addition to the maximuwn likelibcod method.

is called Brunson's formula.

(a)

faximum likelihood method

Procedure :

This method

et nomuy,ny, My donote 'the observed values



then the likelihood function is

L-{x e 2 aml” {f‘g(zmp)}“"{%(nm}""“

log L = K + n,1log(2+F) +4n,log(1-P)+n3log(2~P)+n, log(1l+3F)

and

where K is & constant, The egtimate P is the solation of

the equation
2 log L
PP -
ie, the solution of

Wy M Nz N
2+ 1-P 2P  1+3P = 0
By substituting of the observed values and solving the eqguation,
we get
P = 00,5902
Heance
P=YP = 0.7682
in equal crossing in male and female, or
I-p =1 - 0,7682 = 0,2318 crossing over, with coupling.

The variance of P is given by

VP--\ E(bl%l-)_ y  (24P)(1—P)(@-P)(1+3P)

3m 5+2P- 4Pt
and
‘ TR (2+ %) (1-¥) (2= F) (143 F)
e S G )

Substituting for p , we get

Vp = 0,000124



Hence
VVP = 0.011 ie the stendard error of P
(p) BRUNSON'S MBTHOD

Procedures The method of Brunson is delined by the formula

where Mi,Mm1, M  and my are as de£§ﬁed i (a).

Wow if we substitulbe the observed valués and solve the equation we get
P = 0,767

Let T be any function of the frequencies, then the vadance

of T will be given by the general formmla (B) in Appendix (I);

svio - Do @)1 (6)

where O is the probability corresponding to the 1ith class,

ie.

Here let T = P then

T = %gn (1, -~ ny = 0y + 3n4),

Then
Y AT 2 6
(AT _ 4

o (@) = wnlieme fems 2 enigoon

_32(1+P)
ainmt
(%;,552 (__ 16(n, =~ n. = nz + 30y ) -

isn? _

]
£



Then

L v(m) =

VP

52(1+) Pt
e ne

32+32P = 27P°
27Tn

4

and sinece we have

Vp

then

- ¥P
4P
_ 32432P - 270"

1080l

_ 32432 P - 27P"
108n p*

Substituting thevalue of P we obtain

Vp

—
~a

0,000165

The following table shows the comparison of expected with

observed frequencies

| ' CRPy,  CREy I(CrrcRec)R|(CrecRecr)hl  m
] Er s - s e - B B R RISt S -
 OBSERVED . 1907 300 . 1053 636 | 29u6
- M. 1416, 20 | 104308 .
EXPECTED Yr%L ;qusu; 3oszoil 683-30 | 3946
i . BR. 1915 305 | 1okhk 682 I 39quo
| S E s

We can ealculate

;Xf-== z: (Ubserved - Bxpegted)

(Bxpected)



to show how far the observed values are associated with the
expected valves. We have
X ror maximum likelihood method = §,185 ,
?szor Brunson's method” = 0.2165
In each case the degrees of fireedom are 2. From the statistical
table we have ?Ci¢5 = 5,99 for 2 degreess of freedom.. We
gee in the two methods that the observed frequencies are
associated with the expected frequencies bubt the maximum
likelihood method seems better than Brunson's method,

The following table shows bthe summarised results of the

HTwo methods

U U U OGSO

oo e e ey
: _ !
WETHOD Eecomb%?aulon § Varia?ce of
e e i e
. Maximum likelihood 0,.7682 ¢ 0.,000124
: ; ' |
. Brumson's formule 0,767 | 0,000165

Ve see from the table that the variance of maximum likelihood
estinate is smaller than the variance of the egtimate of

Brunson's method, therefore the maximun likelihood method is

more efficient theii: Brunson's method, We cam slso calculate the
efficiency of Brunson's method with respect to the maximum
likekiHood method

_ Vemeo _ 0,000124 _
B =y = Goooics = 9%

ie. the efficiency of Brunson's method 18 75 per cent.



2. SEVERAL PARAMERERG

Bxample 3,43 The data in the following table showing the

effect of a sevies of concentrations of rotenone when sprayed
on Macrosiphoniella sanbornl, the chrysanthemum aphis, in
batches of about fifty.

Toxicity of Rotenone to Macrosiphoniella sanborni

'; Caucenkwa.kioav No.of tmsects | No. aFFch-ed Z Kit{ Cauci::g;a.t’ﬁ:\ E“"P':‘:'(‘ﬁa"

L e () Sl b (x)  Probit

“ 0.2 50 i %R 1-ol CRAR
LA 4q .y 86 0. %9 6.08

51 g 46 24 52 o 5.05

! 38 A

3 | 48 16 33 o 58 | 4.56 |
i 2.8 .50 | 6 1 o4y 1 3e32

The last column is obtained from Table I ("Mransformation of
percentages to prebits"%, -~ Mnney, Probit analysis PP. 22,)

(a) Procedure: If P is the expected propovtion of animals

killed by the dosage Xo ¢ then P will be in the form

P*j% RIS
= e dx -
-0

yar ' o

The estimation of the parameters A and 0 is based upon the

problt transfomation of the experimental results, ie. to
converbe the dose X into a probit (euglvalent normal deviate +5),
then the probits will be related linearly with the dose x

{or log x ). In virtue of the sgbove assumption, P, will be in



the following form

P A[*, \ o TEET
= e OL\.'
- \}QTI'

Y= 5 + —S'.—-(x—-rx\

where

It is found nmore convenient to put Y as

Y':: 0(+F39C
and estimate the »arametors o and P rather than M and o
where
5
M= and & =_'_
F g

Now +the probability of ¥ responding is

() PUC-py"

then the likelihood function will be such that

L= G pre-pn )
and

log I = K-kzz[r&?P+CM_v)€f}o~pi)

where K 1is congtant, Differentiate with respect to

and B , we get

L -
3_6_"2__.:7 T3P aoe P
o —L P o —P  x

Sl E)-nlen )



where R=1-P and 2% - ;

By the seme way we obtain
Ll _ - [P\ 2P
s | () 3% A

Y'l.
Let ( ﬁ ) = 4 , then the maximum

likelihood eguations will be such that
—-npP - O
L&) 2]
l Y‘-—MP) 7 0(] o

We can get the values of P and 2 correspondings to the values

of x4 P and x, The variance-covariance matrix of the

parameters X and [3 is glven by

-1 d 5°:JL> Loyl
. E( -F
1—, = oxX* 203P

_pf¥3legl —(_31‘;'15_)
E( i E(5p

L -

and since we can show that

G )

and _( 2%y o [ ATt
L('bocb[s>zz_ "“éx)

then the variance-coveriance matrix of the parameters X gnd P

will he such that



-1

I

U= TG (E)

M?}..’K — f i txt
Y% L

(b) The Initial Ustimgtes: Usually the maximum likelihood

equations are Aifficult to solve, therefore we have 1o get aun
initial estimate oL the maximum likelihood estimates and by
successive approximations (section 3, chapter II), we obtain

the estimates of maximum likelihood equations. The procedure
for getting the initial estimates in thie example is to plot

the dmpirical probits in the last column of the table above against
the corresponding dosages, Draw a straight line by eye through
these points, then by this line we get the value of M
corresponding to the value of ¥ = 5 , ie. the value of

the dose which kills 50% of the group. Also we get the value
of 7}~=.%%% , Which is the rate of increase of the probit
value per unit inerease in x . After getting the values of

M and S we calculate the wvalues of x and £ from the

relations

- Pt

then by substituting the values of X , P and x in the linear

relation

Y= xapx



EMMpirica

O1 0.8 ko

Cg ytc» v =" VAN



we get the valuve of Y. Corresponding to the values of Yi
we £ind from the tables the velues of PL and 4i and then we
calculate the successive approximations.

(e¢) The Calculations:  Trom the figure we find

and

:. X = 2;03

The first approximation is given by

. o] VT peege
“() — d(o + ;&’:F‘“ bo\
0! ? » togl o
p J P ‘O:a DE'N)F(\
We have Yi = o« + B , then
Y\ - 2.03' +' 4—.3 < 1.01 = 6.4 P‘ = 0.92, Z\ = 0015
Yz_ =X 2.03 4 4;3 X 0.89 = 5.9 P?_ = 0.82" Zz - O¢27
Y3 = 2.03 v 4-3 X 0471 = 5,1 P; = 0054, ZS = 0,40
Yq = 2,05 + 4% x 0,58 = 4.5 Pq = 0031’ ZQ = 0-55
Yg = 2‘03 + 4"3 K 0041 & 3.8 P5 = 0.12’ Z_s = 0019

‘I\/l‘fl
~
3
-
N,
AN
it

50 % 0.3 + 49 % 0,47 + 46 X 0.63 + 48 X 0,58 +50x(
= 15 4+ 2%,03 + 28,98 + 27.84 + 16.50

111.35

|



Mo

(M’lzgc )
XY = 1535 + 20,50 + 2058 % 16,15 + 6477
79415

it

il

_Mw

ML
( PQ_X 15,30 + 18.25 + 14,61 + Q.37 + 277
60.%0

il

a) (o)
Then the v:ariancewcova,rismce matrix of X and P 148

-\ -\
T = W35 1918
~

9.5 He30

~o:\16 o248

Also
?’e"%) it =50 K042
[{+} —
y= ( o q2Xew3 >a.|‘3 +<‘f:-;;f-‘?&::-82 027 & 24-L6Xo-5h 46 Xo-54
Xo- 1% e 5l Xo. %6 o4
{6 — 4 & X 3\
—\—(,,3‘x°‘6q \35 +(6 bOXo l?_. o
a1l Xo-88 \q
= - 02'3‘
and .
';éngi>
0y = — o 1k
g /P '+



Then

-l 2--03
.3

+

o 13 Y

—o:\ 6

-~

o5

-0-25

—
—_—

—o V16
o 248

2.\
.05

- 0.2

_‘_o"

We repeat the vrocess again because the corrections are

smal l
Yo = 2,18 + 4,05
Y, = 2,18 + 4,05
Y"s = 2.18 + 4'05
DQ@L
)“;:: --O 81

(?&QL )m= -0,82

Then

I

x 1,01 = 6.25

X 0.89 = 5178

X 071 = 5.06

X 0,41 = )084

+ 0,4 + 0,01 + 1.06 =

+ 5,7 + 0,01 + 0,61 =

218 ° 134 —o-116
+

Y05 ~o. |16 o248

L L

..2_-\? Y h_.o.o‘g = 2_\‘

.05 L"‘l‘l .2y

0,89,
= 0.78,
0.52,
0432,
0.12,

6406

D5

6.66
5.5

!

not

0.18
0,29
0.40
0436
0.20



We vepeat the proces8s agein because the

corrections

small
Y\ = 2.1 + 4&&4‘ X 1000 - 6.38 Pl = OQ92, Z\ =
Y, = 2.1 + 4,24 % 0,89 = 5,87 P, = 0.8, %, =
Y; = 2e) + 4424 x 0.7L = 5,11 P, = 0,54, by =
Yl,- = 24l + 4924‘ X 0.58 = 4‘556 :Pl.r = 0533, Zl‘. =
Y5= 2;1 + 4924 b 004‘1 = 3:84- P5 = 0;12, ZS E]
36
dlog |
(ﬂﬁﬁ?‘j¥h=~+.l4 + 3,61 = 0,90 + 0,15 = 1,34
Then
33 " '\ r
2.\ o \34 —o\16 -1\ 3
G | = + : ~\-3 ]
P tLbl% ~ea16  o2HE |
— F 2.9 -+ o003 | — z;‘\g T
4.24 —0.\3 4 N

VWie repeat the process of dwprox1mftion again because one of the

two corrections is still not small.

2413
2,13
2,13
2413
2,13

i

+ 4,11 x 1,01
+ 4,1L

Rt

x 0,89
X 0.71
X 0;58

il

+ 4411
+ 4911
+ 4,11

il

X 0441

6,28

P = 0.90, 32
P, = 0,79, 4,
P; = 0452, ¥4,
P, = 0,31, 4,
Pe = 0,124 45

are not

0.15
0.27
0.40
0.36
0.20

0,18
029
0.40
0455
0420



P_‘f?f:._) = o=@ 4+ 5,75 + 0,01 + 1,83 = 5¢6

P (7

&«

2oyl | .
”"“{ky= 2,02 + 5,12 + 0,01 + 1,06 = 4.2

2B
X ] 2413 4 o 3l —o V16 5.6
P“” -\ ~e:\16 o248 H.2
B
— | 213 4 | @0l — 2\
Ly 1\ 0-06 .1

- -

Then

We see here that the corrections are sufficiently small,
therefore the estimates of the maximup likelihood equations
are

X

X
X = 2,14 and P = 4,17

R ®
il

Now the values of Yi's and ( 2,14,

X
P = 4,17 and xi’s are

VAR
T )i s gorresponding to

Y, = 2,14 + 4,17 x 1,01 = 6,35 (4°/PQ), = 0.32, B, = 0,91
Yo = 2,14 +14,17 x 0,89 = 5,85 (3" /rQ), =.0.48, P, = 0.80
Y; = 2,14 + 4,17 x 0,71 = 5,10 (2*/PQ);, = 0,63, P; = 0.54
Yy = 214 + 4417 x 0,58 = 4,56 (2"/BQ)y = 0.59, P, = 0.33
Ys = 2,14 + 4,17 x 0,41 = 3,85 (2°/PQ)s = 0438, P; = 0,125

5
mt t ~ .
Z(”Fé{"“): 500632 + 49 x 0,48 + 46 x 0.6% + 48 x 0,59 4 50 x 0.38

= 16,00 + 23.52 + 28,98 + 28,%2 + 19.00 = 115,82



81.89

i

5 z ‘ e
Y(22Z) = 16416 + 20493 + 20458 + 16443 + 7479

!

f LAt

‘ W = 16952 + 18&65 + 14.61 e 9-55 + 3;19

i

62.28

X X .
Then the variance~covariance metrix of X = 2,14 and P = 4.17 is

-\

Ns. 82 1.9 0\ 62.2% -8\.%q

$1.89 62-28 5013 | _g1.99 us.32
ie, \

‘\5\%2 8‘.3(\ @,\2_'3) ___o_‘6‘

B89 62.28 —e\6) ©22 3

The linear relation between the probit and the log dose is then

Y = 2,14 + 4,17

The estimate of the log dose which kills 50% of the group is

X
S = 5% L 5-20% 686
= =

B - TR |

The variance of A is given by

\/x - l ) ! + (P—.f)—t ‘l
r" ’3 \,Z“w Zf\(\w ('x ..52_)7-
X = é?zf - \;i;; = 0721

()‘ﬁﬂ'f)l-—- (0.65’6 «—o-”lz\y"-,: o.00\225

5.82
me (x_g?) = 10.996

Then



1 K. 1 + 0,00122 ]
IK.?Z?)*« 115,82 -—T-O—:gg%

= 0,058083% (0.0001114 + 0.008634)

<
3
i

0.000508,
and 80

%
W = 0,686 X 0,023

To test the association of theboserved freguencies with the

T
expected froquencies we use )X = test,

=) z
7’: Z ""“P) _ i w{t-P)
t MP(""P) \ PQ‘
4q(o-86-o-$o)7' N 1.1-6(0 52 -0 bl}) 43(0.33__0_33)?_

50 (088~ 241)"
( 2-80 X020 o 5l Xo-4 8 033X 671

0:q1 X o-09

5‘0(».!?_—-0‘ 125)1
o 25 Xo. 815

1l

= 1137

The degress of freedom are 3, end )C°°5 = 7.81 for 3 degrees
off freedom from the statistical table. This shows that the
observed Irequencies are associagted sufficiently with the
expected frequencies.

Bxample 3.5: (Date of Example 3.4)

In exanple 3.4 we used the probit transformation %o
estimate the parameters kA and ¢ , In this example we are

using the logistic formula



P= |

oK, —
1+ e B¥

where P is as defined in exsmple 3.4 and X and f are the
paraneters to he estimated, The perameter M will be such
‘that x

e
We can show that the maximum likelihood estimates of & and P

will be given by the solution of the equations

Coqg L. S
.Eggmz?;Qm?hwwtzo

L3
B g("“""“""i)“‘*ﬂ’

where K is the number of the groups exposed to the exmperiment,
MW is the mumber of theindividudls within the group, Wi is the
number which responded and Pi  is expected proportion of the
individuals killed by xi , the log dose, Usually in practice
the two equa%ions above are difficult to solve, hence in such
cases we have to find initial estimates and by successive
approximations we dbtain the maximunm likelihood estimates,
The procedure of getting the initial estimates is as follows.
Plot eﬁk[(“i‘”“Q/Wﬁ) against o , then draw by eye a straight
line through these points and by this line we get the initial
estimates, The following graph shows the initial estimates
which are obtained,

Now we start to calculate the values of the points which

designate the straight line. Here let



WM — WAy )

gi = ‘Zaja

= layy, w) lrg 0

wAL
Then . : i
0\ = Loge 37 = (0.47T1 = 1,3424) 2.3 = =189
2 = 1oge %’-5 = (040000 = 0,7782) 2.3 = =L.79
03 = log. §F = (143424 - 1.3802) 2.3 = =.0,087

li = Log, $8 = (0.3010 = 0.0000) 2,3 = 0,69

i

U5 = log, £% = (1.3424 = 0,47T1) 2.3 = 1.89
When xX=o0 , we get from the graph that ¢ = 4.4 = & R

and when £=o we gebt from the graph #lso that X = 0,7.

Since L=zx-fx thexn

‘X—QF]F = Q
1e,
[3_._._0.5_..,,__’:.‘.'_'_1!‘-::63
o7~ o

o to o
Hence the initial estimates of & and P are K = 4.4 and P) = 0,3

Wow we calculate R‘S according to the values of xi's , &

(€3]

and P Heve we have

PI:—"—" - Y
ie,

Then



02



1 _ 4ed - 643 x 1.0 _ 7
log, (—15'* - 1) = 5% = 1.1465 ,
- -1 = 0.14 P, = 0.88,
\

hod = 6.5 % 0,89 _ 7, |
1log, (%3:‘ - 1) = — = \',4752,

23
%; -1 = 0.299 P, = 0.77,

1 — 4)4 - 603 X 0‘71 .0 ;
lﬁglo (‘F’gﬂ -~ l> = 2.3 = ¢9683.
B~ 1=0.93 P, # 0,52 ,

10510 (14 - l) - Ao w 6;53}{ 012_52 - 0.23?4’
$- -1 =1.73 Py = 0437 ,

1 _ded = 043 x 0,41
log,, (?; - 1) = o 53 = 0.7883 ,
-1 =614 Ps = 0.14

5
Hence
2 bogl 5
( Bo-g )o((” - Z(’V\\.PL-WL\) = —-\.59 )
and

¢ 5
(—B—b—(f—;_t (0)_5—_(»“‘\“’\«{?;)9:{:2‘14-3-
\

The information matrix is Ziven by

~ ) o2 begl |
-‘,;\&; o _Lt‘( ?ﬁm"-) LL()&?(?)

Lp(Rea) (2t
COSTIT: S

! ")




Then the variance~covarim ce natrix of and ig
—1

=\ (2L dbogl.

L = L( > L(Mbﬁ

—F bzfo-gl_. - v log
L b“aﬁ BF.L ted Pv:a,

Now

. 5
Y e *z‘j'\«i«x{ Pi('“P()

2 bzegygl__ — > . oR =
~k V)“”\Z"‘“”‘l S ° L‘w‘fxi‘f’c(\-—Pi)

then by substituting the values of Xi’s, wis and Pis we get
5

?_‘:"’“’ R (1- Pi )= 42,6483
5

“Z'vu'xi P (\ - P )_.__ -30 1767

)
}r VX R (- P )= 22,7244

Hence - ™ T -\
r' = | 42.65 ~30,18
~50,18 22472 |
= | 0,359 0.52
0.52 0«75

The firset approximstion is then



o1 [0

= 4.4 + (0.%9 0,62 -1.59
B 6.3 | | 0,52 0,75 2443
_ - r
= | 444 |+]|0.64|=]|5,04
Gl _04‘]5 TelB

Repeat the process sgain for the second & proximation

il

- 7,25 ~
legm(%r - 1): 2204 = 20 X L.0L ..V, 0076

3
%’T -1 = 0,102 P, = 0,91
- o ¢ -

10@,0 (%3-; - °>z 204 :EL:-%) S 0’39 = 1,3859
%... -1 = 0,243 Pa = 0,80

2

| - 25 x 0.7 <~ .
1ogm<; ~'%)m 2208 = Jeg2 2 0. 1L 27,9533
1 " (] o
‘F; - 1 = 0,098 ;,3 - 0.52

5 - 7,25 5 '
tog (B - 1)= BE= L2 X 050 _ 0,565

’1?': had 1 = 2‘31 Pq_ = 0030
(1 o 2804 ~ Ta25 x 0,41 p
logw<;% - ) 5o - = (,80989
- -1 =7.92 Ps = 0,11
5 ,
Then




Hence

x| = | 5,041 +]0.39 o,.s?.W ~3448

Ly

P ] T+25 0.52 073 ] 2617
5.04 | + ] =0.23] =] 4.81
Te25 -0.25 7.02J

r

H

We repeat the process again to get the third ap‘:roximution

10g'0 %‘.\_ . .1>= 4-81 - 7902 x 1-01 =‘i’q0086

2¢3

L -
T~ -1 =0.102 P, = 0,91
10g'o ,_:;?;: - 1>= 4,81 = ‘;:%}2 x 0.89 =‘;:.3749
$= = 1 = 0,237 P, = 0.81
A2

1 » — - of 3 ' o
%; ~1=0.84 Py = 0,54
%- -1l=2 Py = 0433

.07
log, (%5; - 1>= 181 = 7.02 X 041 _ g, 5356

iI
o
.
-
kS

%;w1=6,85 P,



Then

it

0.57

(z loq L.
DX )0““

dLeq L
T )(t)= ~0.16

E
Hence
2= 4,01 ]+ 0.39 0,52 | | 0457
B | |7.02] |o0.52 0,73 | [ -0.16
i T 0
7.02 | 0.07 7.09
L o .

We repeat the prccess agaln to obtain the fourth approximation

A

&~ 1 = 0,101 P, = 0.91

s _ 4487 = 7.00 X 0489 _ 7 2ox
tog, (Pz "1> = 55 =\, 3739

1

":{:5: - 1L = 0,237 P‘Z. = 0481

log L. 1 = 4.87 =~ 7,09 % 0,71 _ V. 006
=10\ By 7.3 - = V,9287

- -1 = 0.849 Py = 0.54

3



We repeat the process again to

4,80 - 7 01 =

.8' - QO 0¢r8 —
10, (37 - 1) = 481 = 1:09 % 058 - 0,5295
1 o 0. %0
'ﬁ:’ -1 = 2,1% Pq = 0492
$-- 1= T4 Py = 120,
Then
b3 L.
( e;i )O({g,u 0461
pémy L '
313 )(31-': 0;32
P
Hence A |
&) <la.87| %] 0,39 0.52 | |=0.61
B 7.09| |0.52  0.75 | | 0.32
- L
- 1 r
= (4,87 ] + | =0.07 | = | 4.80
L?.og'1 ~0.08 7,01

get another approximnation.

1'01

—

10810 (1“‘ - 3) 5 = \,0087
a};— -1 = 0,102 P, = 0,91
108, (-g—- ~1) =480 =Tl 2 009 - 3744
%,; -1 = 0,237 P, = 0,81



o

(2 _ 4480 = 7,01 X 0.7 _ N qo
105:10 (PS - 1> ——— 2.3 = 19250

1 e |
I -~ 1 = (.8%8 P = 0,54
o 3 3
Lo, (‘%;‘ - 1> _ 4.80 - é%l £ 058 . (.3100
%? -1 = 2,09 Py = 0,32
1080 <%,; -1) = &80 = TOL 5 041 o,8575
2= -1 = 6,88 Ps = 0,15
s
Then
) fa‘gL ‘
(28 Yo ot
> bogl .
T)g““ 0,11
Hence }
’5)
= = 4;\80 + 0:39 0&52 """0011 = 4‘!81
L5y
F T+0L 0s52 073 0.11 7403

4,87 4,80 4,81
7.000 |7.01 |7.0%

4,81
around the estimate hence o = 4,81 and £ = 7,02
7402}

We notice here that the estimmaa are

will be the maximum likelihood estimates of & and g , ie,

X = 4,81 and ﬁ = (.02, The value of Ff ig then



= 74- = 0.685

ie. the value of the log dose which kills 50% of the group
exposed to the experiment,

Now to get the variance~covariancd matrix of maximum
likel ihood estimatesA&-an& ﬁ s we have to find the Pi’s
corresponding to xi's, X and g . The values of these Pis
are calculated in the third process of approximation and these
are | |
P, = 0,91, P, = 8L, P; = 0,54, P, = 0,33, Pz = 0,13,

then

Miﬁ(u4%):iymoz

nexiPe(i-pd) = ~27.2 4

Sl 'M“’ ™My

Wi R(1-p) = 20.30
Then |
T_[ 30000 -27.24 |7 =|o0.s044 o0.5426
-27.24 20,50 0.5426  0.7773

2
Now we use 76 to show the associstion of the observed Lrequencies

with the expecte,

1 i V\\(E’L—P._
N P'-(‘ P\
- 50(0,88-0,91) , 49(0s86~0,81) , 46(0.52~0.54)

+ 43(0.§3-O,—33l » Bo(oilz"'oulg)
0.3% x 0,67 0,13 x 0.87




e

K = 0,549 + 04796 + 0,074 + 0,000 + 0.044

= 14463

.2 2
The degrees of freedom of ?C = L.463% are 3, and siuce}ﬁwﬁ= T«81
for 3 degrees of freedom, hence theobserved frequencies are
sufficliently assceiated with the expected. The wveriance of ﬁ

is given by

\/x: ,3;1[ \ 4 (,"—"() ,

Z““’ me(x—i)L

where w=p% is obtainable from Teble III P,571 in (M)

— Z‘V\\' X tvi15- 1t X3,
= —— = — = 0. |, = .
~ - wi Tus SO TRy fr=ud-28

(r: - &)1: (o‘SSf; ...o."]?.\)z: o.oo\1q6

5 5
zjmiwi:23$33, Z:wduﬁ(X—ffﬁ.LB\S
! ]
Hence
Vs = 1 1 + 0.001ag§
= 49,28 ; §33J ' IQ3I5
= (,000535572
and 8o

K = 0,685 £ 0,023

Ixample 3.6: This example is on the blood groups where there

are three parameters v, p and § which represent the gene

frequencies of 0, A and B, The expected probabilities of the



aix genotypes (Lour phenotypes) in random mating are found

as follows

Phenotype Genotype Probability
Q 00 r*
AA p* )
A ‘ AO z‘g . \7 &1 \’ L
f BB h
B RO 2qr } 9y + 29
AB L 4B 2%
The data is in the following table
- Phenotype Q A B AB TOPAL i
SN S R . :
' Observed 176 182 60 17 4355
(Bxpected | MY [w(pirzbr) [m(ge2ar) | 2hgm n

(a) Bernstein's Method:

Ve can congsider the estimates of Bernsteint's method as
an initial estimates to the maximum likelihood estimates, The

estinates of this method are given by
Y= (D) (v 1D)
b=(+iD)

g =(+riD) 9



where

and

i
A e . O+B [6+A
v \/'v\ k ‘)'"\—' an ? Clr,:‘_" ___O’::H_

where O, A and B ave the observed freguencies. By
substituting the observed values we obtain
Y = 0,642%4, b = 0.26449, Y= 0.09317

(b) Maximum Likelihood Method:

The likelihood funchion is’
L = (\r‘)a (Fﬁlk‘f)ﬁ (q,“‘+7—q,r)é (z\o le)ﬁTg X C

where 0 1is comstant. Now we can put the probabilities as

Follows
Oy=YvY"
0z = (\—v‘L)L--T‘l
©3=9"+2¢(-P-1)
Oy = 2p9,

for the partial derivative of ©O( with respect to P which is desire«

to be put in the form %-%L = %9‘_} _:%{_ .
and
h=vr"
Or= P+ 2p(\-F-1)
O3 = (=) — ™
Ou = 2pq

for the partial derivative of Ol with vrespeet to 9 which is

desired to be put in the form 8L - 30L dv
24, AV ¢,



Then by teaking the log of the likelihood function and
differentiating with respect to b and 9, as independent

parameters we get

Pyl 5 A 8 AB
s = o () Her G )+ R ()

and

3 lorg L. o A B
=7 G R S GO R N O B (F)
By substituting the known values we get

2oyl
ST o= (~3.11362)176 + (3.13543)182 + (~1.45217)60 + (3+75086)17

= =0.20444

b.;:’:_%”m (-3.11362)176 + («1,27104)182 + (10,00685)60 + (1L0.73307L"
= "'0009321

(o) . 0 . , .
where P~ and § are the Brunstein's Method estimates,

Po get the information matrix we have to find

BzeygL

R AU 5 _ 2 ﬁlﬂ * E _
b T [e.‘( ) Y g
l’-(a‘zeog’“ 1 ( 1 \ )1 i z 1 -
Bpt = ‘9"'; —2r) + o (zv) 4+ '—e—;(—zg) A+ ~—éT @,%3
~L1E b‘

Bcg?— )—- 5 G2 ) e L 5 (-2p)° +~(zw) +__, 2p)"

Lg 3l *
g )= 5 () + 4 ()G )+-—(~27,3( ¥+ 5GP

—



- o (o)
By substivuting the values of ¥ s & and v we get

\)
3 E(ZSEEY = 435 x 9,00315 x ks = 9.00315

25.21612

S

il

53
i

“wE (b'aq,“n )= 455 X 23, 21612 x ».J-:-

- 1.
-%E ?’Bf;;r) 435 % 2.47676 x 7= = 2447676

The information matyrix is then

4 L=|9.00315 2447676
2,47676 2%,21612
and 8o -
-3 23.21612 -2.-L476716
T _ !
~ w35 A |—2.47676 Q100315
1
000026305 —0.00002308§
—o0000 2806 0.000l02072

.

where D ig the determinent of E%'ET L.  Then the first

approxination is given by

-

P(U i P((?) + T —\ } CO‘% L
- o) _"'f,—F_—
1 ()} [
Tr( ’ ¥ 2 ;‘? (o)

i

Ce26449| +| 0,00026308 ~Q.00002806 | | ~0,20444
0,09317 =0, 00002806 0.00010202} | «0,09321




- "
p | = | 0.264491 + | ~0.00005116

Y L0.09317 ~04+ 00000377

-
0.26444

0. 09517

it

Sinee the corrections are very small then
P = 0,26444,
¥ = 0,09317, _

and ¥ = 1-(p+%) = 0,64239

are the maximum likelihood esfimat@s.
Here the varianeencovarianee!matrix of F and i is
0,00026305 ~0,00002806
-0,00002806 04000106202

and the variance oi is given by
-8 -&
Ve = (0 (26305 + 10202) + 2 x 10 (~2806)

= (,00030893

The following table shows the results obtained

Paramneter Estimate' Variance
P 00.26444 | 0.00026%05
q 0.09317 0, 00010202

~x




(¢) Wald Technique:

Tiet 61=Y", O.= Prrepr, esaqﬁ 19v and O4=12p% and let mi,

L=\, % be the observed frequenecy for B( . Then the
likelihood function is

-" <Z> ( o: (zejw

where ) ©i=\ 1is the imposed restriction for identifiability

of the four paramneters, Then

el
Zv’ﬂL = Z_Miéo—ﬂed—meo'}f:@[
' 1

Dbyl ol W™
_— = — T
DO O 5 el
1

By equating the last eqution to zero we get

o = 8
Therefore
S =2 = I8 - 0,40459
435

0. =M .%%%. = 0.41840

43

0, =2 = 80 = 0,13793
4355

X e

Qq :._’:\../_‘Ai = 3_1!,... = 0,0%908
4355

Wow we have

e‘:.V‘L) 61_-;\“1-\'7-\3\", 63'—%—1-!-7'?5‘"» ©y=2P%



then

\/gl—\:\”, JQ\-i“G-L = bAv m:%+\"‘

and since

PG Y =)

Yot 0= *\[9-\_‘ +vV oyv 03 ——m*\[é? =\

\/m-f/eﬁe; -—\E’TM\:O:R(G)

that is we have one restriction for the wnrestricted parameters.

then

i

Now we have to test the null hypothesis by asking whe ther the
estivates of the unrestricted parameters OL,l=\ W satisfy

the restriction above. The statistic of Wald test W
X ’ —_— N Vux —\ A
w R (®) [Ha(-,:—,\gé +H\’é¥\\ﬁ> “e\ }(8)
The restrictions including the identifiable are

x b
f’\\((ﬁ):ze;_\.;«_o
\
3 5, 4 Y {é—'_.\ = 0-~00D
£ (8) =V 8, +8. 4V &40 — VO

then

.\008

O O

and



Also

]
- — \ -\ -\ —
O \
L\«
m A = —\ <+ =\ -\ -\
62
~\ ~ %;~w —
3 \
— . i L |
| \ \ Bu |
then -
o-olts5q o
D L}
. I" A - o \3Y0 o
mﬂe +H‘e H\a -
© ©:13193
o <>
-
Hence PP .\
HE(RIs +Hane) wa
S0 \ \ ool 59 o o o | \
oy o.55 o©.6% o o 3\3140 = o \
o < o \3\q2 o \
o =) < <-0390%
L |
L J
orlba4 59 ©- 41340 0-137193  ©.03908 \ SR 1
o113 o-23 0.093% o \ o.55
b \ ©.6%
’\ <
! 0-5 -
o5 927

[

>.0390%




Therefore
MF\(G)[ (—‘ﬁlé—v\-\\ 'é .X h(9)

435 [o o,ocss] 1 8.5 17 [ 0 J

i

Oeb 0227 10.008

- -6 ‘
435 x (0,02) x 64 x 10 = 1,%92

i

.

We have from Statistical Tables that Xows = 3,84 for

one degree of freedom. Singe

()(,:\-3‘\1)((%2@5 *':3‘34) ’

we accept the null hypothesis on 5% level of significance.

(d) Lagrange Multiplier Technique

To apply Tagrange mulitiplier technique we consider the

probabllities
\"?' b PL»‘-Z‘,YQ > %1+1‘lrv- » ancl 2?%— ~
(pra.r)? (Prgtr)® (prgav) (p+g4r)*

The likelihood function is then

L = +?—P\* cg + 24v 2k
(‘”“'*") CFremt ) vt )\

log I = 2 x 176 log v + 182log (¥ +2Pr) + 60 log( 4+ 29r) -
+ 11 log 2P = 2 x 435 log(P+¢+ 1)

and

Vifferentiating with respect tovr, p and 9 we get



-U

2L 176 182 60 435
Tl r +21r  gt2v PtqAr

2 fogl .5 182(|°+r) + L1 435
P+ 2pr 2p  pryavr

g e -

2 logl. 5)60( k) 17T 435,
92+ 29 ¢ * P+ 3y

Differentiating again with respect to ¥ , p and 4 and taking

theexpected value we get

N Y 29, _ \
R C Y (.,

""T\L,\E 2 g >___2 (P"""Y 4 T \
?pr Pe+ Zhr P (P+qtv)?

. E<szo~3L> (C(,,-H'*)Z N P \
g gtt2qv % (P+g+v)"

'E(bt&rﬂl‘ _ 9 b ‘ \
ovap )T Prav 1

(\o+cl,+\r-)
gL
’Mt W)z& % . \
rer (praony
24 \
“%E<"“——ﬂ-—bb c:gL = 2 ) _
Pig (P+q4v)"

Consider the -Bernstein method estimates am initisl estimates of
the maximum likelihood estvimates. Then substituting these

egtimates which are

F = 0.,64234, P = 0,26449, q = 0,09317



in the equations above we gev

N bl 0,053

i

Lo eflegl w0,106

a—

g }P

fi

v végl 0,007

— —

1% 9% }z(r "‘

- 2%brglL
*a‘:b( = ) = 0,952
—AE (2ot N
M ( 2 b = 24772
"“R':*-(?}%L 12
ng & « 104
TME\vop )= ~l.658
!
W\ I = =1,8648

J' —— p—
W b,bbf, = g

We have here only the identifiable restriction

hi®)=v+br -\ =02 ,

therefore

‘er):[l I



and

"+ Hie’ Wi o

Then the first approximetion will be given by

it

It

| 0.64234]

| 0.09317 |

[ 0.64234 |

L0.09317

0.26449

0,26449

-

064238
0,26442

0.09317J

+

1
=| 0,952 -1.658 ~1.865 | +
-(,658 2e72 b3
L~0-865 1 15.104J
=| 0.57 0.114 0.047
0‘114‘ 013 0003
L_C)...OJW Q.03 0.082
0.114 0,3 0,03 -0,126
| 0,047 0.03  0.082)| 0,007 |

B R
(. 0000%56

~0.0000734

|~0.0000042 |




e repeat the process again to gelt the second approximation,
uging the new estimates (Lfirst approximation estimates).

Then we find that

(~bEV1Lﬁ)u)= ~0.0136

é
(M‘:_ Wy == 0.046

(:32??5%>u)= ~0.036
LA

aund 8o the second approximation will be given by

0] = [o.64258 ] + [0.57  0.224  0.047 ][ ~0.014 L
b 0,26442 | | 0,114 0.3 0.05 || 0.046| 433
bi“J (0.,09317 | | 0.047 0,05  0.082 || ~0,036
. L :
= | 0,64238] +| ~0.00001 | = | 0.64237
0,26442 | 0.,0000% 0.26545
0.09317| | ~0,00001 | 0.09316

\
By repeating the process again using the new estimates we get

( > byl );nm 0,00%2

DY
> Log L e
(}ﬁng—";Pm -0,03%2

dleg L
So )= 0,057



ond so the third approximebion will be given by

-

r (3)-1

0426445

[ e |
0464237

'0509316J

—

0,64237
0.26445

Logoea:smJ

0657
0,114 0,3

0,114

| 0.047  0.05

o)

+| 0,000002
~(, Q00017

0.00QUUSJ

Repeating the process again using

L
T2 w= ~0,0023

(P57

(fa&mL-

13)-

» oyl
°% Jg

0464237
04264473
0.09317

o)
—

L

r0§64237

0e2644%

0,018

(3):: ""O 'S 035

0.57
0.114 0.3
L0.047 0,06%

|

0,114

+ | -0,000002

0.000010

-O;OOOOIOJ

0.047 0,003

0.03 *U¢032

0.05'7 J

0.082

- .
0.642%7

0.2044%

—

0.0471 *0.0021
0.03% 0.018

the new estimntes we get

435



r I r - }

0.64237
0.26444
& | '0.0‘3'516_J

It

We see heve that the sets of estimates of v , b and q
obtained by the four successive approximations are slightly
different from each other and they arxe cloese to the estimates
obtained by the technique of 2+v& (b) above, In fact in this
case, the obtaining of the accuratbe gstimates to five decimal
points is ualikely and so it is unlikely that the estimates
of %8 (b) can be arrived at in which the two parameters p and q
are considered to be independent and r is kept as dependent since
P+q+ v =1, Hence if we approximate the estimates of 2+2(b)
and each set of estimates of 22 (d) to four decimal points , we
will find the estimates of each sel are equal to the corresponding
gstimates of the others, except the estimate of P in the set of
| the second apyroximation in which $9°m 0.206445. Therefore, we
wlll counsider that the maximum likelihood estimates of the
regtrict~d parameters v , p mnd q ave

- -

0.6424

® ——
r Y-y
i1 0.2644
&
4 ] |0.09%2

Now we test the hypothesis by asking whether these restricted
egtinates are sufficiently near to the maximum likelihood

estimates, Since the Bernstein estimates are very close to the



Lagrange multiplicr estimaetes, therefore we will use the

variance~covariance matrix of Bernsteints estimates ag the

variance-covariance matrix of lagrange multiplier estimates,

the statistic of Dhagrange multiplier test is

L
"

g

i bfr,rg_L
6y

i
1

D log L
2 O0ma

L

7/

-l

A
2%

To+ HioHis

—\ [

(B)
o

K

where © denotes the Bernstein's estimates,

B grgL
dF

2l L,

e ——— eetetd

2op

(

2%

> bog L

)

),ga: 0,127

o= ~0,012

®= =0,278
7

> loy

28,
\
|
}
BemgL @
O

L N

Here we have

Since the ILagrange multiplier sivatistic ls, in our example,

2 .
distributed as;)ﬁ ~ distribution with one degree of frecedonm

e
—

-6

-6

21 x 10

2
We have that/)co.o5

L -12 127 ~278}

.5 » 834

0457
O0.114
0.047

-

0,114
0.3
0.03

0.047
0,03

0.082
)

~12
127
=278

for one degree of freedom, and




since
A -6 2z
(Xl[‘]}“—"-l\&lo )<(%o‘°5=3-3“!'>
we accept the hypothesis on 5% level of significance,

Purthermore, the hypothesis is accepbed on 99,5% level of

gignificance,
. . e 2 ® .
The variance~covariance matrix of v , P and § will be
. - % A9 . . .
given by L Ag” , vhere @ = , &8 1t denoted in 9. Ch. II.

—

The Procedure of getting Ag’ is discussed in 8, Ch,II,
Here

Réﬁ) =| 0,00039 -0 . 00029 ~0. 000092
-0, 00029 0.000%5 -0+ 000053

-y

1
ha!

| =0 ,000092 -0, 000053 0+ 00014 J

.

.
If we look back at the varlances of v, f; ’ 31; which

obtained in 252 (b) we will see that the variam ces of

4 , \f ’ cf are slightly larger then of ¢, b , § by the
£ifth decimel points. The reason for thesge differences is
of course due to the operation of the approxinations to the

munbers uged for the whole work of this technique.



CHAPTER TV
LIKELTHOOD RATIO TEST

1. Introductions

The following importent definitions are worth mentioning.

Definition 1. If CR dis the critical region of the test

{the critical region of rejection of the null hypothesis WHe
sgainst the alternative hypothesis Wi ), then P(CRiHe), the
probability of rejecting He against W, (no matter vhich one is
true) is called the power function, The value of P(CR:H.) at
the parvameter point is called the power function of the test at
that value of the parameter,

Definition 2. let « be the probability of rejecting Vo

agalast H when Ho is true, Then X 1is called the significance
level of the +test, or the size of the test.

Definition %, A test is said to be unbiased if

P(CRsHo) (H, is true) > P(OR:sHo) (Ho is true)

Definition 4. I there are two tests with the same size,

and if
P, (OR3H,) > B(CR:H.), H, is true

then the first test is said to he uniformly more powerful than the
second, Hénce if there are M tests with thesame size, then
the one which is uniformly more powerful than each one of the
W tegts is called the wniformly most powerful test.

The likelihood ratio test is related to the maximum
likelihood method of estimation and it is modified by the

Neyman-Pearson theory of testing the statistical hypothesis,



It has been shown that likelihcod ratio test is the uniformly
mogt powerful test 1f such exists. In (MY and (20) it has been
discussed that the likelihood ratic test has the property of
unbiasedness, It 1 worth while showing that this test is
based on a sufficlent statistic if such exists.

Let xy,———,%xm , be & random sanple drawn from & population
has a distribution defined by F(x,0) , and let b(xi,-->xw) be
g sufficient statistic for © .,  Then the likelihood funcition
wlll be factorised such that

L (x,0)=L, (t,0) L2 (x,-->xx)
if we denote by \-(x,8) the maximum of L-(x,8) ghecified by
the null hypothesis Ho , and L(x,8) the waximum of -(x,0)
specifled by the whole space of the parameters, then the
likel ihood ratio test as we will shoﬁj??s glven by

L(x,8) ‘
L('x:é\)

N =
Then

L\(h)é)\—lcxu """'Jx'V\) _ L\(‘:,é)
L!("-‘)a)l-?-(x!;'—-y’xw\) L\(b)é)

—
—

gince the numerator and the denominator sre both functlouns of
a sufficient statistic, then A will be a function of a
sufficlient statistic, and so the likelihood ratio test is based
on a sufficient statistic,.

Let Xy ===y N be a racdon sample drawn from a population
with probability density function defined by § (x; 0., Om)
and let -2 denotes the whole space of the w parameters and w

the subspace specified by the null hypothesis He , Then the



alternative hypothesis Yy will be specified by the subspace
<% .w , TDet L(<2) denotes the likelhood function designated
by the whole space of the w parapeters and L (w)denotes the
likelihocd'funcﬁian degignated by w Then the likelihood
ratio test is ﬁefined by the statistic

A= BCE)

(5

where (W) and L() gre the maximum of L(w) and L)
respectively,  Since each of L(W)and L() is positive snd
L(&) is a subset of L) , then o< A<\ and the critical
region for the test will be defined by o N { M where Ax
is a proper fiaction accordingly to the desivable probability
& which is és defined in definition 2, Therefore, we reject

the null hypothesis Wo, if, and only if,
A S A=
It has been shown by S. S, Wilks (22), that for large

sanpples and under some conditi ons,ﬂz&rg.% is distributed as

)Cz - distribution with wa-v degrees of freedom, where vris the nunbe
of the paramneters after the regbrictionsy 1e. i¥f X is the

nmanber of the parameters which specify the null hypothesis Vo ,
then K4v = , (Appendix II). Ve will show in the following
sections that A or the fuuction of N is distributed as

b - distribution and F - digtribubtion, also we will show thatb
~283) has )6 - distribution.

2« A test of the Significance of the Population HMeans

() He Simple and H, Composite:

et Xyy ~=-->Xm be a random sample drawn from & population

2.
distributed normally with unknown mean h and known variance S .



Heve Woil =ko will be tested against Witk Fpoe o The

gpace -2 and the subspace w are then

o ={(r~>6o")= —0 L ph Lo, L8 oo ]ﬁ

and

w:{(k,so‘-): h=ho, 0 <65 < 00 }
Then

L) = z}};;)-;«{ exp {-— o Z('x-r*)"‘}

L (w) = -(;—_'i:)z exp {_~ Y (% o) &
and so

D S B T

2 6.

Z

1
= ig distributed a,sx--éiist;vibx,rbitm

Since %W (*f-—,ko}}

with ‘1 degree. of freedom, therefore we rejedt the hypothesis

st Z
Ho if, and only if , ¥ S X«

(b) Ho and Hy are both compvosites:

et Xy 5 ——-—, Xa be a rvandom sapple drawn from a population
Un
digtributed normally with uvnknown mean M andhknown variance 6° .
Here the ngll hypothesis o 3 M = o will be tested against

the alternative hypothesis Hi' M ¢ o y 2nd 80 2 and w will



he such that

SRR LG e R
w;i(h;é‘l): = e, a<6‘<oo}

Then by getting the maximum likelihood estimates for the

required parameters, we obtain

PEEEUICORNE BEPXCIT S MR
. LC.KS_) Z('x"f'\")i

| \

1| A - (U Y
|+ M (X~ f-Lo) 7 [\+ rv:i\—xi
¥ (R

andvso the likelihood ratio test will he based on the statistic

1

bt , therefore we reject He if and only if,
|t‘ p) b

2 . 4 0 o
Since F=t , then we can say that HWo will be rejected if and

only if,

(e=F) > (¥u=f)



Tranple 4.0

If Xy,---->Xzs g a random sample from a population
having a distribution defined by N (=, 9>‘0 and the sample nean
x=1\| , Test the null simple hypothesis He! &=o0 y against
the alternative composite hypothesis Wy1©>0 |, Use the
glgnificance level of the test = 0,04,

We have from (a) section 2 that

/1/;{\/2? (£-pe) }1

1 Sa

2
is distributed as /'l‘./—- distribution with -\ degree of freedom
and He will be rejected if, and only if,
2. 2
X X

Here
2

e

_ 2
From the statistical table  Xo.o5 =384 for |. degree: of

freedom, We £ind here that

(%/;(25)t)> (1’:.0523-3‘4')
therefore we reject cue hypothesis Hoe in favour of the slternative
hypothesisu Hy on 5% level of significance.

Bxanple 4.2

et xv,——>Xw be a rendom sample from & population which
has a distribution defined by N(6,6%) , md let the sample

- 10 2
mean X = 0,6 and Z;(vfd»—x) = 3,6, Test the null composite

ﬁvpalw Ho: 6=0 a—W’ Hie ollitiraraline Ctm/\—o%af



hypothesie H,:©O#o0 at the 5% significance level.
We have from (b) section 2 that

Vad (£ -ho)
/()

k

is distributed as E-distribution with w-v  degrees of freedom,

By substituting the observed valuss we get

—
.6 —o0
:_ng(o ) = 3

V(5%

We have b, o= 2.26 for 9 degrees of fireedom (Statistical Table),

t

Since

( E= 3) >(l’-'o.o':-3 '—“—2‘26)

we reject the null composite hypothesis Ho in favour of the

alternative composite hypothesis W\ on 5% significance level.

3¢ The test of the Fquallty of two populalions means:

Let R > Xaa and W — —-->%aa  are two ramdom ssuples
drawn from two populations with probability density functions
Fo(xs M>62) and Fz(3-§f«1,6‘). We have to test the aull
compogite nypobthesis He:pi=phr= against the alternative

composite hypothesis Hy: MifMz Here

Jl :{(f“ir"\’-)‘sl):"m<f‘*'<m ? _og<rn<o<), a<61<00}

o = {(hukws‘)‘- TR s sp< 06w |



and Xy,—~-%XYMo-—-¥m gre masa vandom variables then

MA L an “ 2 “ L 1
L (Y = [ — )z "”"F{—- 2Oy - l]'
26 26 ©
and
WAL e 2 e )
Loy = (— ) - “”’(F{“‘ G R G-k }
276 * 2 8%

By solving the ecquations

'afa. - <@ > 28T
B eogLC-—Q-) =0 , ((:::1,2) y M =
b/m r-XeJ

we get the maximug likelihood estimetes ol these parameters,

end then substitubting these estimates inlow)and LG*)we obitain

L(S) andl 5, Finally we cao show that
R )
. ’ \ 1
5= B(2)
L(-) l - [Mfw\/(v\—\-qu—_‘ (%-9)"
PNCE I >(4-9)"
or
2.
Wi v \

[v\w/(fvwrW)J (=-3)°
5 (x-%)° +z_“cs 9)°




gince

\/&‘:”:7 (%-9)

/ S0~ ) £(4-5)°

Mt 2,

T =

ils distributed as k- distribution, then
2

A“*w _—

and the test will be based on the statistic T with “Mtw-2

N e

Myram—2 4+ T

degrees of frecdom., We reject the null composite hypothesis
Ho if A{daty ie. if | T} D b« , whore bxis obltainable from the
statistical tables with corresponding probablility X and w2
degrees of freedom and we accept it otherwise, The probability «,H
slgniflcance level of the test will be put in the form

0(=Pr{)\ < A “0}
ox

X = Pv{lTl > b Ho}

In virtue of the two formms pbove we can say that the hypothesis
Ho will be rejected if endlonly if
Pr{)\ﬁ Aol Ho’gé‘_o(
oxr
Pri Tl > bt Mo b <
and we accept it otherwise,

4o The Test of the Bguality of Sewerel Meang:

Let Xy, Xy ,---9yXyxy; be a random gaunple of size K drawn from

the jtk population whose distribution 18 normal with unkuown mean



My and variance 61, where J=L-->%€ gay, Here we have to test the
null compesite hypothesis \Aa:ht=&i;-~=ﬁk=r* against all the
aliternative composite hypotheses;; Now the whole space of the
parameters and the subspace which specified by the hypothesis

Ho will be as follows

ey bt s e <oige ]

and

Then

e LK .
Lc—‘l):(-‘«bz @x\’{‘“ fee o (X9 H) E

ok Lk
L(w) = ! 139( - E%_‘('x\,._p«)ﬂ
2me " Y 26 °

By solving the eguations

dlrgl(w)  dlml(w)  ylyl(a)  séml(a) \
Bf« 351 -7 D6 ? =< bf'\,j =0, J=\,— &

we get the maximum likelihood estimates of these parameters.

b)

Substituting these estimates inLbWandL(<)we obtain L(H)and
LX) , Then we can show that

2K

£ K
L(&) ) Jz._,;‘zl;(«c‘j"’?'d')l =
v o~ £ &
L(n“) ZZ:('X!‘J—'-’?)I

=t C=1

A =



1€,

i

Dince Lk .
F s oRY /st Xte-1]

J=t =y

Z%f(xc.s - %)/ 6" X" [2ee=v))

J=t =0

then | :{XW-‘] /(l_,)} / { X[ac|<-.z] /w(_q}ig distributed as ¥ - distribution

with R2-1 and £(x-1) degrees of freedom, and so the test will

be based on the statietic I, Here as A decreased I increasef
therefore we reject the hypothesis Ho if, and only if,
F }, fx

where K is the significance level of the test. That is

X = P\r{)\ < At \"\o}



oxr

X = P\‘{F— >/F—“ :Ho}
and 80 we reject thehypothesis Ho if, and only if,

Pr{)\ Q)\oa:\-\o} <&
iﬁg
P\r{‘:}f;fx ' Ho} { X
We can Find Fx from the statistical tables if &K and the

corresponding degrees of freedom of ' are kunown,

4,1 The case of the Bffects of two factors on an outbtcome

Det xiy , 0=, -—Kid=1, - ~-,2 be £k gtochastically independenc
rondom variables having normal distwibution with mean Moy and

2
variance ¢ o, If we put kg in the form

o= a4 by

where
k g2
Z Oy = o and Z \Jj = o |
L= j:l
then
f&lll=fxl:2=:~-—-—-:f"~l'v¢, I:=-‘\77—)_—-,K
it meens that
£
by=bzz ——=b0=o since ) bj=o
J=)
and
fE RS o = J=a,
L) N k
lt neans A g = Ahy = - __—_-C[k =0 glinee Z: ai = o ™
=1
Therefore we cen replace the null composite hypothesis Holhiy=-- = i

by Hot by=b, -~ _—ve-c in order to test it against all the



alternative composite hypotheses. Here 2. and w will be

such ‘that

— <~l"‘<a° K
._.00<CL\<DO Z(‘A‘:O
=1
£ = (}’\) PN 70‘\(:‘3!7"‘"?2 )61):
2
—eo L biL®® T bi=o
J=1
Q<GZ<DO
\
-0 <Iu\_<oo
k
—N)(ac(oo 2____::“‘=o
w = (}-\76\.(>"'7“k7b|7-—7‘31161)'. B
b\:‘:'L._—--—\:v-E:o
e 670
and s0
£k
=K LI
Lewy= (1) g
= ex Xh e
2T ° Pl 26? ugg( ok )
2 w
2
L(-f?-):: | exp {4 — Ly ke S
2WSs™ !? 2‘61&1:7{’_:( F )
Now
£
. — I - L (4§ = pma)
>6 2s ze™ T oy



» loa L (w) re oy & C A A\
—= sives Cw = —— Xy - - i >
S =° &l v JZZ( o - - di)

then

A - -
where ,Q and a¢ as will be shown are the maximum likelihood

estinates of M and o« Here

2 &gL(W) = szk(x“J“ 3

D ,« 61 Ja=1 =1 C=q
g k
Bf L(W A N .
then °3 ) = o sives Moo= —EL—Z ) i)
af*— k J=p Os)
Now any ol ,t=\ -, K can be written as = —(Qu—+ra, ta,t -+ a
y

and so we can therefore take the partial derivative of ﬂrgLCw)

with respeet to al for ¢=\, —_-_,x-\ , Here we have

£ K-t £
,"*‘ ) N Z
RIS a Y SN N ORI

d=1

— _‘g—f_ﬂa—} 2Te™*

then
£ ko
2 bog L(w) - .
2ac 5:32%2 o (xii o) o Gy
€ k-t
Leql (w)
and 80 b vives Xei — fo — _
D = ° gg( $- “‘")““”
£ k-1 K-t
i6~ Z:Z’_Q(Q‘J'“_Q(k-\)p\_.ﬁzﬂi = o
J=v =y =1
2
J=t

a 2
Y A A! . A
ak:f‘“ ) Xy — f and 80 a; = _ﬁ‘_%_‘ ®ij

In the same way we can show that the maximum likelihood estimates



of the parameters in £z are

~ f —g—- K "~ ' _.g.. n ~ \ K
- P - by= L -
,“- P JZ:; é“ XtJ » ad 2 JZ; Xy r‘ Py 3 < g‘ﬂ(‘d
\ X A -
ffilld 6_;-‘_ = TZ)__(“‘J “rA_CLL — bd) -
R Oz =)

- J1 =
L~ I ®
L(<2) (> - = )"
9= L=y
iet 5 E k . n . f k _ 2
W Z:Z(Xu_,.ﬂ‘h —.c\.__\:.‘) Z“‘Z——(‘xl.} +oc-—9£c-3_c_‘d)
>\ — 1:!2 - = J_;‘ “:‘
S (w -fR-d)? X (xy-¥-Kex )T
J=t = v =

where M=%, ad=X.-&, B=xj-x o Then by using the

2.
analysis of variance A*™ could be written such that

£ Kk _ - .=
z= 4‘%;(«.“,’+&‘~xc._x3)
— J= [ 3t
N = 2 % - _ <
ZZ(’—’“.&*“—“"‘\‘ — Xy & Xy =X
J=1 €=t
7 x R _ n
> (XG+X X = X5 )
J=t o=t
- £k R o £ k N2
33 (e + &R %) T T (%)
d=t =1 9=t L=
. \
== W — .
\ + JZ‘T %(“"HD()
£ 3 .y
Z_ 2 (xcj +K ~ e, -o"c.,;)
S. J=t C =t
S (E—x) e ‘
J=o =t ? X[ﬁ“‘]
gk = - y
) (% 4% ~xi-%3Y/ 6" 26 [~y e-v)



Fo X /e

%E(e-q(k...)] / (2-1) (k1) is distributed as
F- distribution with 2~y and (£-v) (k-1) degress of freedom,

and so the test will be based on the statistic ¥, Since I
increased as A decreases, we vejecht the hypothesis Woif, and only
it,

+ > Fx

where « 1ig the significance level of the test such that

X = P\r‘ { F:x Ho }
or

PVE[FB'FR: Ha} <X

4.2 In Case When the Variance is Knowns

Let Xy %) 9 -0 — - o = > X be a random sample drawn from jw
population whose distribution is nomal with unkunown meank,and
known variance 6, 4 Where j=1,2,-—, 2 y 88y, Here we have
to test the null composite hypothesis He:pzpr=— =pr=p  against -
all the alternative hypotheses, Then the whole space of the
parancters and the subspace which is speeclfied by the hypothesis

Ho are os follows

I L I HE S P O {

and

W= i(‘*""“?f"lr& )‘-*°°<\\\"—‘M=M=r\<m) o<s:<oo1]

and S0 L(-rl‘) (21%0 Tﬂ/x"{ e ZZ(”“J* ko) H




and

By solving the equations
Qo—gL_CL La—gl_w
> ¢ ):o and 2 ‘ ):o =4, .,
?HY oM

et the maximum likelihood estimates of the required

we g
parsmetors. Substiuting these estimates in L(=2) and W(w)
give us
\ 2K ﬂﬁ — \2
IN 7 <y — Ky
L (<) = ) e {- LX)
27 6 _ 2. 6o
] i (= 2
L(®y = ﬂ“F 26o
m‘GA

The likelihood ratio test is then

%'A L(L:J - MF{":":‘ .i:-lt:l
L &= 2. Go
(T 5)°

Ky —

= w\a{~. K (R = }
26a

{ E_:(’>‘5.)-—'>7)1]T

= & — gzt
b 2 65 /%
then
2 /ot



Since g_(fj —9?)2/%;5- is distributed as )672 distribution

with £-1 degrees of freedom, then =2log)X is distributed

as )621_3. And so we reject the hypothesis Ho if, and only if,
X3 Xow

where &X is the significance level of the test.

Example 4.3

Let Xiy,X,-..—»Xs; > d=1,2. Dbe a random sample from the iw
population has a distribution defined by N(X;€;,6*)  and
let Xy = 75,2, Xa= 78,6, Z&‘:(xu —1211)1 = Tl.2 and ;ﬁ\f(xn—i“c‘zf: 54.8,
Test the null composite hypothesis Hey 6,=0, against the
altermative composite hypothesis Wit 0 F 02  at 5% level of
significance,

We have from section 3 that

v (fx\—xz)

MY

i:'_('xu - ;q)l-'- 2_(\9(('1.—5(—‘1)1
m+wi—2

ls distributed as b-distribution with waw-z2 degrees of Treedom.

T =

By substituting the observed values we get

/% (15:2-18:6)

:.__________,__,_.._————-—-—*‘*‘“‘:_2-2.7

\/( l Hw 5)

Ve have b, ,5» = 2,14 for 14 degrees of freedom (Statistical Table ).

Oince

(rr’] = 2.11) > (to,ogf—- 7—*!4—)



we reject the hypothesis Ho on 5% level of significance.

Example 4.4

Tet fuspzs s be respectively the means of three
independent normal distributions having common but unknown
variance 6%, Test the null composite hypothesis Ho: b=
M2=M3=h against all possible alternative hypotheses at the
5% level of significance. The Tollowing table shows the

observed values of three samples of size 5 obtained from three

populations,
_. Semple | N
(1) 3 0 «1 0 2
(2) 2 5 1 5
(3) 4 3 8 5

Aoz o= _ -
3 = X3 = - = 5.2
3 ¥ 46
— \
x—"‘?‘f\:f‘ falN! = T 3.07)
We have from section 4 that
£ K
2 . _ 2\ /e-
- )(,,_—1_..]/2-1 _ Jg%.:.‘(x-, x)/ \
= Y T Tk ‘ ___1/
Aey — e £ (k=
X fege- ) [ 20-0) AP ) )

is distributed as F-distribution with -\, L(«-) degrees of

freadom. By substituting the observed values we get



A -y Z
5 5 (x5 ER \q2 192
T CG-%g) Y (xes - - -
2(%-1) 12 %“ (ees =5 VZXS 60
Then
2 . 24.260675 x 60 _
P= =5 = 746

Ve have F.os=3-8394 for 2 and 12 degrees of freedom {Statistical
Table)e Since

(F=16) > (fowos= 3.39)
we reject the hypothesis Hoon 5% level of significance.

lIixanple 4.5

If $,%5:,%33 are three samples of size 4 from three
populations having normal distribution with mean qu::pu~“€+bin
i?“‘=°r'iﬁﬂ:u> and common but unknown variance S . Test the
null composite hypothesis Hotbi=bz=b;=b  against all possible

alternative hypotheses, The following table shows the observed

valueﬁs gt 0 s rimare o raniee} S S st aE St 11t 2 e
| Sample
T
(2) 5 2 2 6
(3) 7 2 5 10




W
= \ a 3
Ky= = ) Xy = = = \ o
\ L\_Z‘. \ o pA X\ m—é—‘zx\j:““‘s‘b—“:g
!
"zz:iifx\l;_‘i_ - X. v 3 3
R L.
— t
X3 = LY xig- R _ ¢ — 3
3= = ) !
& 7 L x3'“-§—£°<35-—' 3= 23
\
_ 2 4
X =1 ¥y« Sl _ 3
12 O = =g =3 Xy, = ) 22
r 2 “""E“’qudz =13

is dimtributed as P-distribution with (3~1) and (3-1)(4~1)
degrees of freedom. Then by substituting the observed values

we get
3 4 2 n
. - — —— — l‘- 3
}; 2,“ (x5 - Ko - F5+% )= g); X F\LR 3T R 4 ¥ xS
[} A} ]

ar—

= 293 + \R2.52 — (zs3.'|q+ 2.\6-7.5)2 5.5 3

I %
(Ll'-*\)gg(i‘:‘—-&")z = 3 (216.25' — l82..57q> = lo\-19

Therefore

p o= 20L.19 | 453

*

We have Fes = 5.14 for 2 and 6 degrees of fréedom (Statistical

Table). Since

(F=18.3) > (FJ,.QS:s‘W)



we reject the hypothesis He on 5% level of significance,

5, A Test of Significance of the Correlaticn Coefficient:

If ¢ snd Y have a divariate normal distribution with
means M and Mz 4 variances o and S. and correlation
coefficient €. Here the null copposite hypothesis will be
Ho: =0, e, x and §y are independent, and the alternative
composite hypothesis will be His f 0, ie., x and Y are
dependent, The space of the whole parameters and the subspace

gpecified by He are then

€2 -={( Mok 650, P )1 — 20 i, heK00, o6, 60, —|<f’<\}

W ::'{("‘H"“""‘é‘tz) 6':‘;6)" R G A XPY LA °<5‘z"6:<m’ f=o }

Thig problem has been discussed in details in (15),
therefore 1t is worth while to put this discussion in Appendix
IIT and mention herve the statistic on which the likelihood ratio
test is bhased. The author has determined the probability
dengsity function of the statistic R, the correlation coefficient
of the random sample ( o,W( ), ¢=v,2,-— v when f = 0 and wy2 .

The form of this probability density function is
_"L\_:‘_) AL
|r 7—'\v-\—-'l. (l__ 1) b ’
V("{) r( PR )

where -1<r <\ 1is the observed value of R, If the significance

() =

level of the test is &« , then

\
L’i‘__-;l CA—(\")C{.V‘ o< C <\



If ® and W are kunowi, then ¢ will be determined and so we
reject the hypothesis Hoif=0 , if, and only if,

\rl > C
and we accept it otherwise.

Bxample 4.6

A random sample of siwe W= 6 from a beveriate normal
distribution yields the value of the correlation coefficient
to be 0.89., Would we accept or reject, at the 5% significance
level, the null hypothesis that 9‘= b?

We have

|
—%—-:J;’ g_(v-)dv-

: '“"‘ -l
Flr) = ) (-v™) >

(%) 1(25%)

and

! é,f
o-of __/J' ) - S—4L
= (r—v¥ ) 2 Ar
¢ F(—;_) f’(f’;”‘)

~ 3 ‘ 2 — 3 2 A3
~4J<h¢)drw:{?wC+3Cf
C

: 3
€. CT—=3CH+ 19 =0

.

By solving this equation we obtain C = 0.80"t, Here
Iri=e-3ad0.8\, thue we reject the null hypothesis We =0 on 5%

level of significance.,



6. A Test of Mouality of Variances of Two Populations:

Tiet o >X2), —---y Xy, Jd=1,2 be a random semple drawn from
population whose distribution is normal with mean M and variance

T

S; We have to test the null composite hypothesis Weicl=6S=6"
against the alternative composite hypothesis \'\\:6\1% Gz o Here
the space > of the whole paraneters and the subspace w which

g specified by Ho are as follows

Jl:{(h\:r*w‘y‘l"s*“)? — L R, 0K 6% 65w }

W= {(F‘Hl‘“ﬂf\za SLL)" "R RHRRS ol sl 61 o }
Then
L(‘Q-) = ( z;i w Xp {“ E\i{—‘ (XCJ—’*HJ) E ’
?.n—o"\)z (?_Tr67_ T v =9
and

w) = ! 7
L) = exp {“ 2‘6222(%‘;—}\5)}

(2—“_.6 2 ) i<
Solving the equatlions

d bog L(2) . v Lrgl (<) D brgl(w) 3 2 log L(w)
PR T Tesy TV T e T TRy Te0

d=\v,2 , we get the maximum likelihood estimates of these

poaraneters, Then substituting these estimates in L () and

L(w) we obtain L(*) and L(RX) » The statistic A is then

K
Loy (st Thea sy o2y )
L(-!??-) (8"’- )k - [ .’-‘%("i\“"z\)‘l*" ,’:‘:("h_—’;-t)l ‘)k

2 K



iea

L ' — 21 Kk !
>\ _ 2_‘< i‘k(am— X2) |3 - ?('xfl-f-1)z K
PXCTRL >
Y ' Z(X““ ‘)
\
ie. A
z - K A 2
k 6:. =T z k
>\ = 2 [ A )z/[‘ + ff }
5, o\°
Consgider 5
?(1) either -z 9
(\+‘Z_)
or o4 Z L\
then
M = ke KA
2z 2z 2 (W)
= 'f‘ Z =1
{eo f oz >

p° if o<z <)
That is means that N decreases when Z increases and A dem?easas
when Z decreases, Since _ 4.

Oz
GA‘I

igs distributed as F=-distribution withix-\,k-v] degrees of freedom,

then the likelihood rabio test may be based on the statistic .
If o ig the significance level of the test, then we accept the
null composite hypothesis He: 6= 65=6"

E—{i LFL F%a

and we reject it otherwise., The alternative hypothesis in this

y 1fy and only if,

case is called "two~sidedl, Tn the case when the alternative

hypothesis is "one-sided! the critical region will be as follows:



il 4

~ ~
When S2) S\ then %>‘ and so we reject the null composite
, ' ]

hypothesis Hor6'=6. =6" if, and omly if,

JR— .

b Y be -
Vhen G- <3‘1 then o(—%—f‘; <\ and s0 we reject the h}gp@thesia
Ho if, and only if,
F L Fox

The test will be appliled as well, when the sizes of the
two samples are differvent. If w and " are the siges of
the two samples then F will be distributed as P-digtribution
with [wa-v, -1} degrees of freedom,.

Here Fi-x represents the lower percentage point., Ve can
find this point from the statistical Tables by interchanging the
degreed of freedom (w—-Vv) and (w-\) and taking the reciprocal
of the tabulated value.

Te A Tegt oi the lquality of the Variances of K Populationss

Let <\, xtz, ——--~>Xim¢ be a random sample drawn from the
LR population whose distribution is normal with unknown mean mi.
and variance 6% y =, -k, Now we have to test the null
hypothegis Ho: 6= 61z —m=6=G" against all the possible
alternative hypotheses, Here
s {(r“wh)hk’ 5% ““"*‘76;)1 SO MR, o s }
and

w = - 2
{(h‘? '“"7}‘\(‘)6! -)--—_..,6‘.:): hm(t“(”? °<6\‘1=61<A0}



Then

L(2) = \ exp ”_,\__Ki‘cm('_fil;ﬁ“ﬁl
(z;—r)vf S s 2 = S

and

W M
\ \ .\
SRR SRR

\
(o
<

where W= Zm; « By solving the equations

\
d logl(2) D log L(=) > bog L (w) D fog ) (w)
; — O = O =0 aand T SO,
‘a)m Do 2 |l r- Xk

we get the maximum likelihood estimates of the required parameters.
Then by substituting these estimates in L(w) and L (=) we obtain

L) = ( ZN_L) &x}:{ ) (-xts-fc.)l}

=t 4=t

{ Z Z (XLJ - ‘Xt }

2
1 A
(2-[' %':‘\_s— Mk o=l J=y

R

and

A — LY " . .
where 6, Xi., { are the maximum likelihood estimates of &5 fl
and S respectively, then the likelihood ratio is

A = L(&:) = A
L) S

A Am A My
M‘ Sz . Sy

then
k ~ a
ﬁo'g./\-: Y mi fog 50— Mﬂa*gd

c=\

H gt d ot ]

1



Wow we use the modified test by Bartlett which is defined by
the statistic

Ve k s
(i) log 8 * =} (i) g0
\ K | B \
e L () -]

. =\ \
(’XL‘J—-’KL.) , 6{‘:1: ot Ao

———

| =

where

‘a2

s °

igH

(’.‘(ld —-Q(L )L

,,\"15

k
< L)

=

”

are unbiased estimates of & amd S respectively., Here the
T
statistic T is distributed as X,- distribution with kK-Udegrees

of freedom. Therefore we reject the hypothesis Ho if, and

(T=x") > Xow -

only if,

Ixample 4.7

In sampling from two normel distributions the following
observed values were obtained from samples of size 25: S\ = 1,25,
S: = 1.97. Test at the 5% level for equality of variences,

Here the aull hypothesis will be such that Ho! 6= 6c
and the albernative hypothesis W &°= &° |, Ve have from
section 6 that A

S

n
6\

ig distributed as P-distribution with (K=~1) and (K-1) degrees
of freedom, where K is the sample size, Then

S.\vAan

F= S T2 s

= 516

ig distributed as P-distribution with 24 and 24 degrees of

freedom. We have from Statistical Pables that Foos = 2.27
N 3



=o.uly with 24

with 24 =snd 24 degrees of freedom and Giegc = —
| 0 \

and 24 degrees of freedom. Since

(F;«p_.zﬁ=°'4'+><(F’= ‘-5‘16) < (E;—;:S‘: ?__2_‘)

therefore we accept the hypothesis He

Bxample 4.8

Given the following 5 sample variances based on 10
observations each, test the hypothesia that the 5 population
variances are equal, The sample variances sare 22, 40, 30, 352,
12,

Here the null hypothesis will be such that Mot 6y e =65 =6 .
We have from section 7, that

T= [('v\~k) lrgé ™ )‘:":(W_‘)é,gég]/l + 5(_":;)"[?(“\0 - -:4()

is distributed asJXf- distribution with k-1 degrees of

freedom, where

‘1 \ ER::\_( - \ My
S = Y (% — . s = Y (xey—ace ) -
n-k & J‘:uc ) ? * ML —) ?f; ( "o <)
Here
A noT
6{1 1\\6|z+ ——-t+WNs G5 _ f0(2-2+lhu+ Jo+ 3?.-\-\2) 2712

- -\ 50 -5 T q

‘o2 ’V\i_ AT

St = S¢ >  then

5
- (lz
Z (me _\) 20-3,01 :‘\{ Loy, .%0-)(7,7.4- lq:—;’-xtpo—& ———— !Lo-%%l)(lz 1[

=9 {5(%'%%‘*) thogaas bognor g %‘13

= 65, 4]



(=) Loy 87 = 25 log T2 = 45 (Lo 272 Goyq)

=45 (24346 — 0 q542) = 66.6130

Therefore
- . 0 — 6511k}
L X
'4'11 9 45

We have from the Statistical Tables that Xﬁws = 9449 with 4

degrees of freedom. Since

(T.-: |.’+’+) < ( X):-osz C\'L‘C‘)

therefore we accept the hypothesis Ho ,



APPENDIX I

The Sompling Variance of Statistices

If XXz, —-—-3Xw  arew random variables, then the mean

value and the variance of ¢ will be defined by

X = X

™3

-
W <

)
w L G-

(=t

-

and
respectively.
Now if x 1is éxpressed in a linear function such that
X =it gt - - —- ¢ Deme
where v\i,i=1,2,--~ Y denotes the observed frequency in the iiR
class, then the mean value of X will become
W g(ec o)
where Ot (a linear function of X ) is the probability correspond-~

ing to the class i, Hence the variance of x will be glven by
V(%) =W { T (eitd) —[ ) (ecﬂe)]l} —= - = =AY
L [
FPor any funection of the observed frequencies by which the

statistic is defined, there is a general formula which affords

a variance very near to the sampling variance of the statistic.

V(=)= m):{ (M } (%;’i)z-m————-(‘%)

where O and v are as defined above. Vow we are intevested

The Todmula is

in three forms of functions by which X is defined,
(a) Let x be defined by

NX = Ny~ N1 WM 3+ Ny,



then ‘the varlance of x will be glven by elther formula (A) ox
formula (B), but we are going to apply formula (B) which is the

general one. Ve have
73

c=1 L350 T gt (1+9‘+"9C+\ X+ x) . N

,V\'z..
and
1

..P_.?i. = [ M ~Mz-MNMNz3x My > x©

b'\’\ W —— N b
where

6\'—“"1“"(7"\'9()3 B1= 03 = ) !

Then

V(’X) = W - { .
L (‘M) o ( > -
(b) Tet x be defined by

NX = 2M -2V —-TWMy —\-\0'\’\%

then
I
7
Z el‘ —-E-—Df.. - .-—L.__ 2.
= i (6n™ ( Tk -y - x4 259<>':'_ ‘169_(L
A
and
(i’?i..) — [ ! z 9(1
M — ! T A\ VW -wvg —
2 297 | 2 ’V\:'s—\-:)'v\.,l,)] — .-.-;.‘I__
Then




(e) Let x be in the form

My Wy 9((2-}-“)

Mg M3 - (‘—X)t ?
then

ﬁ&;’.’n;-ﬁlﬂ}’”q — ZD’g_'Vlvx_—-— ,219’33 =

ﬁovg_gc+ ﬁog(z.y ) 2 ﬂa'g,(t-—'x)
Differentiating with respect to

ML, i'—-‘—-‘:—'——)Lf we {_.‘,'e't

»x _ A\ xX(-x)(z+x)
My MW >

O - 2 (l+2x)

! 1 {

] \ \

' ! 1

\

dx . | x (1) (2 +)
T)Mq.m Mg

2 (\+2%)
then

2 (1+2x) Wy Mz

T
o (\-oc){(z4x) \ 24 \-x
z (1 1x) pat (%\L)‘L (
By replacing % by & we get
n

= dmi 2(‘*zx) *;;F T + — + }

4

Z{e\( m) _ 22X (1 =x)(z4x)

(=1 W (14 2x)

k 2 -
Z o 2% ) = | XO-x)(aax) A EFYX X V- x
S 2ad i 7t +* <

i

'

Hence

Since the formula

WMoz (\-—’X)l
does not involve the number w , therefore

D x

- O
D WM

and so



If 4y is such that
X=Y" or x=1-y*
then the varliance of Y. will be as followss the variance

of the statistic which satisfies the maximum likelihood will

V(“)“\/MZ{G‘ (b@o }

where ©{ is as defined before. Then the variance of % will

\/(\a)..\/rm { bé’gﬂ)}.

be given by

be gilven by

Now
DQL' _ 39(: bf)( - 69(
5y T ox 3y | ¥ ox
an
()G
Hence
Viyy = \/q-fva\ ‘ )91) }
(.
ie,

= Ve .
V) = i (*)



APPENDIX II

THEOREM: (Por Large Samples)

If F(Xx5015--7)8m) ig the prebability density function of
a population, and the maximum likelihood estimates of Ot
exist with a known distripution function, then the distribution
of =2 log A ig, except the terms of order ﬁ\l_‘—‘: y Glstributed
as )Cl with m-r degrees of freedom, where N is the
likelihood retio and wi-r is the number of the parameters which
specify the null hypothesis,
Proof:

et xy,——---»Xar be a random sample drawn from a
population vwhich has a distribution function (601,00 m) -
Then the likelihood function is

L(x;0) = fr]e (%3015 —ms O~ -

TLet the null composite hypothesis HeiOi=Ool ,l=v+\,-—"™M 16 agted
against all the possible alternative composite hypotheses and
let <= be the whole space‘oi‘ the W parameters and w be the
subspace specified by We .,  Then L(=2) and -(w) will be the
likelihood functions désigrneted by <2 and W regpectively. The

likelihood ratio test will be defined by
ICON
L2
where L(WL) and L(A) are the maximwm of L(w) and L (=) respectively.
To find the approximation®ts the distribution of N we have to
assume that the maximum likelihood estimates of O , 8¢ , say,
exist, and so their distfibution will be such that

|atJl iy

L (o) = (ﬂ)m F{“__m ms‘\n} Grev)



where “aw N is positive definite, ay=-C ;.fif) =(5:~Bc)\ﬁ?

and Y is of order ./::T' . By taking the logarithm of L (=)

and differentiating with respect to 2 » £=0,2, i v,

we get

dlogl(=) \__bla:j] Ay Ly .« o
Sas - 2 [‘ac_;‘ Yy, *‘“z: 502 Ja.SJ-l--?_*WZ_:%%gi*liR;atﬂ%t

o

Bince “ ail\ is symmetric and C8=V525 ———ey v then

JZa;ﬁJ'ﬂi = Z acg Y
5

then
? bog L.(=>) \ Vo3 ag)
= — — )a‘d
28 2. |al“-" 26, — BYrS Yidy v+ v wn > ata“dl
Solving the equations
betfg!_.(ﬂ) = ﬁ:\,?_,_.--,'w\
? Be
[ N x A
we obtain & > - -~ — 04 We can show that \911— et\ is of
order ‘[_‘_‘__ y Bince ay of afder 1 and bWl 48 non~singulars
Wi
Then, . ‘ am"‘-:
(zTr =

where \p'/ is of order T

Now, we can write L(w) as

l.,]

_ \Rm‘j‘z - . /
L (w) =220 0% {—*ﬁ-z_ i 30y — L X, } G+ ve )

v

/ \ 4
where VYo is of order ’ ?C,, = ): oy WYy , Qegj = —F ”Z"'BF
V'V\ 1 =vrl bec 28j O,
Cod=raty o — vy Yl = Y0 =Gt where G¢ is a
. s —
linear function of Qei,l=re,.w 4, and & =\ 0" where

Heles 1| is defined by

n i) u*"" [j \\é'iﬂ] » A is an vX¥ matrix.



By solving the equations

2 'ieo-gLCw) _

20618

R =v,2,—— WA

and substituting the estimates obtained in L(») we get

\a-n\‘)\ 2 4
L( )'— A “-%: e ' o ?

OB exp (= £ X5 ) (1+We)
lr ‘

where We is of order —< Then ) i8
1/’1/\

L (&) 2
A= LAy = exp (4 %06 ) (1+ W)

vhere Wi is of owder y aud so
R K
Hzﬁoﬂ/\: Xo+ V2 '“Q:—.O(j-‘a"\
Here if we neglect W= , then
(A
-2 2"3 A= Yo

ie, -2 log A is distributed as X‘(- distribution, Now we have to
show that the degrees of freedom of =2 log A are wa-vr, The

characteristic function of -2 log A is

éte)—_—g[g*i"‘%x)] ._J Ly SEC¥ )
<t J ey

where W3 = O(W'L”) Then
-y

C}P(b)_.( ) (-—-—-t*—") h Y M > 00

on any finite interval {er1lC ., And since this form is the

dy, - -dgm

A Yoy Xo ik 4 )} ()

l)J !

characteristic function of any quanvity distributed as XJZ——
distribution with m-v degrees of freedom, then 2 log A is

digtributed as Xlﬁ distribution with mM-v degrees of freedom.



APPENDIX ITIX

The Distribution of theSample Correlation Coefficient when P=0

et (%Hu9) s — — — (Xm,9)  be @ random ssmple from a
population having a bivariate normal distribution with means,
variances and correlation coefficient MM s> &% 67 gng @
respectively, Let ¢ be the sample correlation coefficient,
We can show that if the null hypothesis 'Ho‘.f’ =0 is true, then

the 1likelihood ratio test will be such that
h'a N

_ \__{ T (xi-®)(%-9) ]L =
v X (xi-= ) F(a-9)

. 2
1C, " 2
I—A =V

Hence the test may be based on v , thus we must Khow the
distribution of ¥ ,
Let C= Y (xi-%)(%:-3) > Vi= Y (>x-%)" and Vo= Y (9-3)

then v will be such theat
e

V= —=———="
y ViV

Now we need to show that v is independent of %,Y ,™W
snd Vi . When @ = 0, the moment generating function of v

will be given by

) ZCxi—-i')(“é'c'q ) \ .
€)= _f J < ) exp (L =~ 2D dxdy, - Axady
My 2776, 6¢ p r"“'X(x‘__f),_ > (o3 2

where Di = ("""" "5“ Tet ¢ = ~—3<—‘:—t"— and
Gy Sy
. N~ e
Ki= ——our then

e )]



S @e-2)" ¥ ewy

ad £ " e e
I"lv(b)af--f (—2-‘;) @x‘a{t PEADME 50k ) b dedi - dgede

We see here that the moment genwating function of v is independent
oF MiMa, 6 and oz , In virtue of the generality of the
theoren on page 123 in (15) s will be independent of X ,q, i
and Vi . Hence we can wyite

E(r)E(viwn) = E(c*)

or RN N o
E(r )_. E('U‘\Vz)

Now we ave showing that the moment generating fumnction of
2 (= ) (30~ )
“
is (ift‘)"? » Where ~\ELLW o Let Ac= Xi- My and
Be=Yc~-pmz 3 here AV and Bl are two vandom varisbles
distributed normelly with mesns zero and variances one., Then

the moment generating funcition of AB is

0 . )
Mag ® = X eH}B ﬁ%(ﬁuﬁl)
o dadp |
-0p T—o00

0 29
_,,f [ ! em%(ﬂﬁtB)thf B*(:-t")
—-—py o0 2T C‘HAB

Let U= A-eRB and =R ‘then

2w 2w
28 OB -t
= = 1 > ®. J: |
2v. v o \
2R 2B

Hence



where - 2% 'Lr’"(|-—t:‘—) . Then

and so
M)‘:‘ﬂmc *) = (l~t‘)"%

Now we can amalyse 2 (x¢ -pm) (we- M such that

T (xe-p (i) = o= —~8) A n(E- 1) (J = M)

Sinee it can be shown thatd Z(xc-&')(a\a—-i:\) ig independent
of X and § , then the two terme in the left hand side
will be independent. oince the moment generating function of
N (X)) (T - ) is (pt‘)"T then the moment generating functlon

of ) (xi-%)(N:-3)  will be (l-t“)“r’ti. Since

Mc(f):‘: E E’C) ’
then it is easy to show that

E(Cw) = MZT (@
where Mc @ is the wmw derivative of the moment generating
function at t=o under the integral sign. I'rom this we find
that M7 ) is an odd function when w is odd, and hence its
integration over (-3 ) equal to zero, But when w is even

Bt . .
then M (0) becomes an even function. In our problem w ig



evorny equal to Z. Hence

M-

E{c") = P‘_\fz:(c)) - [7’1 (-e) ™ %t_

2¢et
= W\
T
How, since each of Vi and V: having & X- distribution with wm-\
degrees of freedom and since it can be shown that the moment
2
generating function of X with ¥ degrees of freedom is

(wzt)'% , (w< 1)

then the moment generating function of each of Vv and Vi is

patel

(\ - ?-t> “ .
W |
ra

EQR) =E(v2) = M) = Moy - { 2 (i-2£) = }
¢t t

Hence

=
= wn—\

Then

£ (Cl) an-\ \

—

E('\f‘) E(’V‘x) B (n—)? T M=)

EC\"I) =

We can show, that if X, and X1 are stochastically independent
random variables each having gamma distribution, and their
joint probability density function is

\ oK—\ B

P(xvyxi) 2 oo Xy X et elxyded Y,
%) = @) O el g
then the marginal probability density funetion of 7z = X
Xy+ X2
will be given by
Ul B) -y B2
3\(1) = 2 V-7 . el L\
@) ((#) (-2

Then



() (1 e i
E - 4 \ B4
('Z-) r(“) vy J Z. (l—-“z_) 42

= TP My Tee)
VET(P) v imirry

(< +B) [7(x+1)

1)

— o
T 17 (ot B 1) X+ P
We see here that if x=1 and f= “2'_1 then,
E ("2..) = E(\"l)

Honce at «=-- and p= W2 we get

A

(= Loy n-y

h(r) = [=2) . (=2) 7

KEAKESS

Since wekinterested in the distribution of v , we let P=VZ'

then
) 5o ey
(B = P -P*) * . -
3‘ r(%‘)r(“;_"") ( ) (\ P) P <Py
- 2 F(Mz‘: )1 (‘_Pt)ﬁ:z—i
VT (%)
Thexn

r(=24) o <
HOED, Tered

3= 39.(r) =
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SUMMARY

This thesis is the comprehensive study of the nethod of

R R

maxinum likelihood and its relative merit bver other methods of

s

estimation. This method of estimation, developed by H. A. Fisha%:;

in 1921 is the oldest method. Since that time, Pisher and some |

others have introduced wide successive developments which led the

naximum likelihood method to be used in most practical spplications.
In chapters I and IT (where single and several paramebers

are eonsiéered) it has been shown that the method of maximum

likelihood has all the properties of the best method of estimation;’

that is, the estimators of the maximum likelihood method have the f

property of consistency, and they are asymptobtically most

efficlent, having normal distribution and also they are unbiased

estimators, Also it has been shown that if a sufficient

estimator exists, then the methed of maximum likelihood af fords

it The inequality of Fisher hag been discussed which supplies

the maximum attainable variance when the equality holds, There

has also been discussed the process of the successive

approximations by which the meximum likelihood estimates can be

obtained in cases when the maximum likelihood eguations are

difficult to be solved, The VWal d technique and Lagrange

multiplier technique are explalined for estimating the unrestricted 5
i

and the restricted parameters with thelr tests respectively. A
In chapter 1IIT there has been shown the practical

applications of the method of maximum likelihood. In the field |

N
i

of genetics we applied some other methods in addition to the



maximum likelihood method and we saw that the estimates of
this method are the wmost efficient, In thefield of bloasse
we have shown the applications of the method of maximum
likelihood for estimating the two parasmeters using the probi
transiormation and the logistic formula. In the field of
blood groups, the application of the maximun likelihood meth
has been shoﬁn.for estimating the three parameters. Vie hav
mentioned the Bernstien method and applied both the Wald

and the Legrange multiplier technlgues for estimating the
unrestricted and the restricted paraneters.

In chapter LV we discussed the likelihood ratio tegf
which is frequently unbiased and based on & suffilcient stati
and also it is the uniformly most powerful test. In virtue
of the desirable properties mentioned above, this test
becomes wore aggurate for testing the statistical hypothesis

~than the others.



