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INTRODUCTION

In the method of Tinive differences foy the numerical solution of
bowndovy-value problems, an elliptic paebiel differential cquabtion is replaced
by a set of simulteuncous lineor equations or “diffevence eguations", usually
simylé in form but large In number. Yoo of the papers waich ploneered this
mathod are those of Richavdson [1] and Liebmaym [2].

One of the maln practical difficulties of the finlte~dilfference method
lies in the solution of the large set of simzlioneous equations. Many
Iterative methods have heen proposed, ranging from procedures sultoble for
hand compubation, such as relaxation (Soutihwell [31), 4o systematic itevative
procedures swltable for automatlc computers,; such as those described in
Forsyshe and Wesow [4].

The desirve to aveld the iterative solubion of lavge sets of slmilbaneous
lineayr equations has led to the developwment of vawrlous diyect methods of attack
in vhich the concepbs of mabrix algebre usually play the major role (Bickley
ond MelNamee [5]). In some of these methods (e.g. Cornock [6]) the technigue
is to replace the solution of the large nunber of simvitancous eguations by
the solution of o much smaller number of more complicated equations. This is
usually carvried out by manipuleting the malrix of coelficients of the original
systen.

in this thesis o method of direct tyne is described ond applied to the
solution of boundary-value problems defined in rectangulor regions and reglons
which mey be dlvided into o rwber of rectanmilar sube-vegions. 0Only three

types of linear elliptic pavrbisl diffeventiel equations ere considered, nomely
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Laplace's equabion, V?ﬁ =0 , Poisson's eguation, V:b ='Z‘f'('x: $)» and the
steady-shate wave equatlon, V2¢ + {;6 =0

The method is related to some of the other divect methods (e.g. Covnock {61,
Kavlquist [7], Burperhout [8]) but the distinctive feabuve is thot the problem
is reduced to the solution of o relatively small nunber of simulbtancons squations
by using mathodsanalogous to Those available for partlal differential equations,
in particular separation of variables. Separation of variables has long beeca
used in solving difference equatious, e.g. Hllis [9:’1, 184k, More recently
Hyman [10], 1952, has used the technique in solving boundary-value problems
by diiference methods. No veference has been found, hovever, in whiech the
difference analogue of the related, but much move recent, transform bechuique
haos been applied. The foundation of the method described here lies in the use of
guch a difference annlogue and the method is henceforth referved to as "the
discrete transform method” .

The plan of the thesis will now be glven. In Chopter 1 the discrete trans-
form method is developed by consilderlng two simple boundayry-value problems in
rectangles, one involving Lnplace's egquation, the other Poisson's equation. It
is shown that this method of solving sets of difference equations is exactly
parvallel to the separatlon of vardebles and transform method of solving bthe
corresponding partial differential equations. In pavticular, the concept of
a "discrete transform” is introduced ond 1t is shown that, in exacht analogy
with the use of an invegral tvansform in continuous analysis, the effect of a
diservete transform is to reduce the dlwension of the problem by one. By this
is meant that the solution of & set of parvial difference cquations for
funcbion values at polants In a plane is réduced to the solution of a set of

second=~order ordinary difference equabtions for wnknown guantities sibusted on
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g line. It is also shown, in an oppendix, that vhen these second~ovder
difference equations aye non~homogeneous, they mny be solved by & webhod
anglogous to the Green's function wethed of solving non~homogencous second-
ordey diffeventlal equations.

Chepters 2 ond 3 ave concerned with "adjacent region” problems. These

involve vegions which can be sub-divided iuto rectangles such as the regions

shova in the accompanying figures. As indlcaved in Fig. (c) these vectangles

a & | 1 1 7 o
. &
- - o F .Y ——
D
(a) (n) (e)

oy be Infinite in one divection. In Chapter 2,two problems lnvolving Leplace's
equotlon are consildered while a steady-state wave problem in an infinite strip
containing an obstruetion (Fig. (c)) is illusirebted in Chapter 3. Using the
digerete transform method as developed in Gh&pteﬁ i, the solution of such
problems is reduced to the solution of a set of lineer simulbaneous equations
in woknown quantities introduced at mash polnts on the common boundary of the
two adjacent reglons (e.g. AB, GV, BF in Figs. {(a), (b), (e) respectively).
In comtinuous analysis the solution of such problems leads to an integyal
equation for an wnknown function introduced on the common boundary. Difficulties
ave encomnbered in solving such integral equations and ltowns in en abtempt bo
ovoid these that the discrete transform methed was initially devised.

in the nuasrical examples considered in Chapbers 2 mnd 3 46 ig shows: thob

the accuvacy of the discrelbo approxivations ls poor and that thelr rate of
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convergence t6 gxact values as the net spacing ls redwuced 1ls slow. Abtbention
wae therefore diverved from further conslderabion of gteady-state wave problems
to devise means of im@favinQAthe acceuracy of the approximate solutlons ébtaineﬂ
using diffevences. This has led vo investigations invo the numerical tveatment
of singular poiats in bowndary-valus probleme.

Although nany authors menbion the fact that singulay points need carveful
treagbiment. , very few specific wethode for dolag this appear to have been pube
lished. In fact the only useful vefersnces which have been fownd sre Southwell
[%1, vho uses an "advonce to a finer net" technique, and Motz [11], Jeffreys and
Jeitreys [12], and Woods [13], vho each describe mebtbeds for genevating special
differveace equations ot mesh points near the singlority. In section 2 of
Chapter 5 sowme varionts of these methods for treating singular poinbs ave
described, including o new method of generating speclel equations which coubines
ideas of Voods and Jeffreys and Jelfreys.

To provide a flexible tool Tor using speclal difference equations in
conjunciion with the discrete bronsform method,; an iterative method is developed
in Chopter & vhich ney be employed when speeisl difference equations are used
at any mesh points. L6 wowld also be possible 4o wse this iterative wmebhod in
conjunction with Fox's "difference correctlon process” [1h] 4o incroose the

acowvacy of discerebe gpproxinations obbained uslng straightforvard technlques.

In zectbion §_of Chapter 5 mumerical resulis; obtained using the method
developed in Chapter %, are glven for & parbicular problem in which the special
difference eguations derived in the previcus section are used. These results
gnable & compariscn o be made, on an experiventel beasis, of the effectiveness

of somz of the wethede proposed for dealing with singuloritize.



v

This comploten o desceription of ‘i;iza conbents of bthe thesls. o sumnyise,
the object of the thesls is to lavestigate various aspects of the applicatlon of
vhob 1o called "the Qicerebe transtorm method" to "adjacent vegion problems™.
The type of problem Por which the methed ls elalmed to be advantegeous s
illustrated in Chapber 3 vhich deals with the solubion of the :—:teez&;raﬁ':’:a‘t-e wave

equesion, V ¢ + 76 2O, dn o strip of infinlte exbent.



CHAPEER 1

.

FUONDAMEWNTALS ¢ THE DISCRETE TRAVSFORM METHOD

.0 Oholce of Bifference Mot Pex QRnG

The discrete trausfori method 18 developed hove for DHowdary value pro-
blens defined on roglongular reglons. For slmplicitys only sguove latticoes
ere used Lo cover bhe weglon ond only theeo types of net pabterns ave depld
with |

(=) tho five polnd squore mobt pabboran,

{b} +the Cive point diegonnl neb pabbervn,

{(c) ©ho nine voing neb yabborn.

Tor Iaplaoce's equabtion, Vasé = Q , and with reforgnce to the repulay avvdy
of polnts In flg. 1, those net pobierna aye:

{0') /‘¢a‘¢;"¢g_¢3“¢4 = 0O,

() 4B~ Bs-b -B,~, = O,

(c) Zod,- 4(¢1*¢a*¢3“‘ ) - (¥, B, + ¢7+¢€):‘ o,

-+

whove P is the walwe of ¢ ob the polnt mubered 'k'.

Fig. 1

Ve shall froquently wefor o pabtterns (), (b), and (e) simply os the ngunve,

dlagonal, end ning polint pobloens respectlively.

=

1.8 Tae Anolosy bebween bhe Sermiabion of Varioblos and Mronsforin Tochniaues

of Continvons Avalysis snd the Discrete Sronsform Method

Sepovatlon of variables ic cone of the oldest and mest powerinl methods
of solving coréain tyes of bmm%zw value problems in continuous oaualysis.

't hos also boen uscd to solve houade wy=valus problews muoweleally by
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difforence methods, e.g. Hymon [lo] and Derger & Lasher [a]. Inbegral transforms,
o convenient weans of application of the separation technique in continuous

anclysis, arce of more recent development, the papers of ﬁéaﬂéide ab bthe bepiming
of the present century on the mabthematics of electrical bransmission providing
the veal initlal impebus. UMany workers have heen engaged in this field, pavrtie
cwlarly in the lest twenby yeurs, and wony types of iantegral transforms are now
in use, These methods ave woll described in muserous texts, .. Sneddon [1v]
ond Trving & Mullineux {I1¢]. The effect of employing en intepgeal transform Lo
solve o pertial differentilol equation is (ultimately) to reduce the problen to
that of solving an ordinory dirfferentiel equotion. ITH secns that po corvesw
ponding technique has been used for difference equations.

in the following sectlons it ls shawn'thaﬁ & wabtrix analogue of the ianbeprel

Lrensiorn technique does exist for difference gquabions and that its effect is
to reduce the solution of the sob of simultancous equabtions to the solution of
a single (seconﬂ#arder) difforvence equation. To illusbrate bhe analogy the
cloged solutions of o simple Dirvichlel problem in two dimensions, problem 'At,
are obtained using both technigques. 0On the left hand side of the page the
solubion is worked out by the standevd separation of variebles and transform
techiique. On the right hond side 4t is shown that the corvesponding difference
euabtions may be solved by exactly the seme technlgue. Both these solutions ave
illustrated In wuch grester detail than is necessory in practice puvely to clardfy
vhe parallelion of the two technicques. Further the move impovtent corvesponding
canations ave similarly mivbered excent thab thosé for the discrete case have a
dosh superscreipt on the equation mumber e.g. (1.5.5') in the diserete cose

corresponds to (1.5.5) in the conbinuous.



A geeond simple boundary-value problem, probiem 'B', is then introduced
to shov that vhen the second-order difference equation vesulting from the
application of the discrebe transiorm is non~homogeneous o discrate Green's
functbion bechnique may be used o obbain ibts golubleon. This is in analogy
with the Green's function wethod of eolving the secondworder, non~homoegencous
diffevential equation avising from an integral transiorm attack on the original
porsinl differential eguation. Problem B hes aloo been chosen ia order To
1Llustrate the mosd convenlent way of positioning the squave lettilee when the
conditions on two parailel bounderies ave of Neumann type.

In this chapter; aud elsewherve in the thesls, the comson pracbice of

weleing diserete vaviables as subserinbs is adopbed as far as is convenient.
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1.3 Problem A. Dizichlet Problem for Laploce's Bquation Ve = 0 in g Deebougle

Ve consider the rectongle o be ofx<ga , © sa. <4 and teke P:o on
K=o, y=0 , y= 4 while ¢- }‘J) on x=o ([fig. 2]. The solubion of
of the general Dirichlet problom in o vectangle wmay be gbtained by suporposition

of the solubions of four problems of this simple form.

Tor the discrete case (fig. 2') vo cover the rectangle with e squave
lottice co-incldent with the bounderdes so that a= (m+)h , 6= (ma)h,
where h is the megh lengbth and m ,w arve positive integers. Sten measuves
+ and 5 ove taken In the x and au Qirections respectively and the value of 95

the mesh polut (X ,sK ) is denoted by &, s o Tho boundevy conditions then

sfoletesile
¢*)o= O,nl: }, R, o 3 ﬁé j s b-z,-»-,na
¢ =Q, 1= l,.?‘--.)"h\. 3 ﬁ‘”’, 'S"JRI""J%‘
B F%i% g

e use the % point square net pabtern so thot, ob any interlor point (+4 , sR),
(g 1.1)

- - - - = O 1€9 2w 'SS.?'\\,‘
4"¢‘1,$ ¢"“,s ¢4)5+' ¢"~,) S ¢",S"‘ o to

1) CEPARANTION OF VARTARLIG AUD (1) Tup DIGCRIE TRANSVORY MTION
TRANSFORM MELHOD

4 d
(,.T ¢=° _.;,‘,Pll:or - - 0o o
™~ Srw ©
o 2 331 ; °
.. v§-o o - =
©® 0 0 etk el e i N
- R : ; - o
¢=o > s”tiﬂ_mie~ L. - i :
) & “x s Qtwux
FiG. 2 Fig 2°



Bepablon s Bquatlons ave

2 <]
B—-é + M = O (1#3‘3‘]) l*‘¢"h$_d'l+bs— "’;s‘”- 7")s“¢"')s"=ol

s'x'a. éai
vhove | €9 €, 1€s €, (i.5.17)
Separate tha vavicbles Saparabe the vaviebles
1e@. deb ¢(x,a) = XY y) iee. lot @ 5= RODSE
Substitute in (1.3.7) to geb Substitube In (1.3.1') to gob
;( f—::{ + ._‘Y_ aﬁ{ = O l,.-klz*)(R(-m)fR(-i-:))-S%S)(S(SNHSCS-O) =0

2 . .
et L4y L -2 (1.5.8) e :S-'-C-)(s(sn)+5(s-f)) = arn, (r.5.27)
s
where A i eny veed nuwrber vhore A 1o any veal mumber

te. dY 4 Xy =o  (1.5.3) e S(+)-228() + 3(sD=0(1.3.5)
d‘y" .

. A -cA . s s

CUYp = R BT CL8G) = ARPe By,
[Brponentied functions ave used in whera /» » § ove solutions of
preforence to trigonomeibric funes LA+ = O,

tions mevely fov the pucpone of the

enalogy . ]

Apply bowndevy eonditions on J’=O Apply boundery conditions on s-= O_
ondl y = 3 ond S= wl

Y@=o=> A=-B S=o => A=~B

Y@)=0=> A 50) - o Seuyeo=> AR ™) = 0.

nt

1. I —— !
) (;Lh/,l"'—i) --(1-\/,1"-1 =0
et A= cnB

* eon ()04 Coim (m11)O —een(mt1) O +& dim (we)©
= Q.



1.8, Smdd =0 f.2,  Sm(m+r)O = O
;L = 'g-&' )«£’=0,I,R.,. K T I e = .'.{7_? 2 '{=o)’12a"',"’0-
6 ’ vé M+
£=0 is not pormissible since £=0 is not permissible cince
vhis jupliles 4) 2 0. . this implies Ad=1 and henee ¢ = Q0.
We thus obbtain an infiulte set of We thus obboin n distinet elgenvalues,
elgsovelies with corvesnonding sy A » €= 2, - -,y with corresponde
eigenfietions lag discrote eigenfunctions

Yy = A s~ Ly S, = A, (k=17 ).
Tab ét 2 ?51(0,5{(2), R cs/é(%)g ’

where ? z denotes a colww vector, and

define the mxn mabviz 4 by

-----------

D
Hy

A w1l ve called the Basle Mabrix of

the problem for the equarve net pattern.

wmg'

For S=1,2,....-.. ,m, equations (1.5.5'
may be writien
= (L4~ ol
A, = (k22,)8, ()
since A i reol ond symetric its lotent

roots ave veal (cquation (1.5.24)).
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The troneform for this problem is,

therefore,

g :
Fle) =j Plogloin Capcty (1.5.1)

and the laversion theorvem glves

¢('x,a)= %ZF(l,x)m% (1.5.5)
£=1

Apply this trensform to Leplace's
equation (1.3.1) by mitiplying
throush by om 74 and integrabe
v &N DYy om -—ﬁ LSS

isﬁg with respoct 16 Z, hetween linite

Siace these lotent voots ave elso dis-

tinet wo moy normalice »§ ¢ 80 Thok

S£

A

T

where r§ is the transpose of é and
£

Sﬁ is the Fronecker deliva fuanciion.

Define -:*;_ = § ¢.f‘, > ‘Pé-i‘;’ T ) ‘}Sfb'wj

Bouations (1.5.1') may then be wrltten

T —
°§£:§£"

in bthe motrin form

Rg “E-ruu:g-r-: =

~ N ~

Q ’ 's"s“':( Q)

vhere @ is the Wil vector with all
elements 2ero.

Bouation {B8) vill be referrved to as the

(Mateiz) Coverning Bauation of the problem

for the squave net pabtlern.

Define the discrete transform by

(1.5.0°

then, by the ovthogonality of vectors § X

n

Sl |
}g + 2.1
£=1
Apply the discrete transform to the set

Io?am‘
Fe.92 (1.55

of &ifference equations (1.3.1'")(i.c.
+
equation (13)) by pre~mléiplying by Qe .
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O and . Thus

X pon ( (1.3.6)
jﬁ»’@ J j m,gc(g O\l1.D

B¢
Inbegrating by parts,
S ¥ m{g&d = (f., jcﬁm
3 1)
- - (%‘I) F(eax) (1 '5'7)
(1.5.6) becones
2 v _ 2 2
g;".j‘ ¢ou~€"fgdg - (%) Fl{,x) =0

& pt- () iez)- o159

F?"x _,(71‘,";
(13

i.e.

;R = €0 ©

To eveluate (&) and D(€) we have the
boundary conditions on x=a and x=0.
= F({,a) = 0O .

frva

——

on x=a, ¢$=0

-fra

Cllle © =-Dft)e &

i.e.

= E(€)

soy

Thus
Tog = T .o (1.3.6
~{ Q%v& .é{‘.g-vu—:?{:g;l O ( )

Equation (o) shows that

S8 = (k-20,)$, (y
T o
hence M‘_,Q.g,_‘—'(#"éllf)@ﬂ - (1.5.7")

(1.5.6') becomes
(4 ‘2215) - t'-!-u Ff,-i-: =0

le. F, - (4-31£};:£ﬂ+5 ,, =0 (1.5.8")

?

* *
F(’,v = Cxl'} +D{§?€ )

where I’é and, §, are solutions of

o™ (422 )l +1 =0 (%)

To evalunbte C and 4 we have the

‘boundary conditions on +v=m+1 and

= 9.; = Ff,’h+1: o.

bkl ey

R
E

1

£ say



[a‘( -x) "t(r(“ *x) . "™ ~w-d
Rl = E@e Tt R 59) CELE(R e (s
On x=0, ¢= 3.(3) - Oa 4=0,§°=§3.,33, ----- ,gw}.-.q;- s POy
b T
-l-F("")‘Jﬁ‘})““éﬁ‘? U R = 3,8
-'f_g__a- (ia N Twmy
- E(0(E . F) = £, (77™)
From (), P, A
M,,L fa‘(ﬂ‘ b ’ - P ¥l
(L) =2 ) -y o p 2 (RS9 s
scah 't : 12 Jl IR 4 p ALY ~E o~
6' © ( "?{ )
From {1.5.5) From (1.3.5')
o> & "
St %T(Q ( {N 1, P"tﬁ—-:(p-nﬂ-f T
¢(‘K;J) % b 3' ) s -"—?147 L, = Z ( 'Cm“' L'.,. )[‘éﬂé]?s-ﬁ
£=1 ¢ ° L= Pe 98"" ’

xa;,t‘-';"tzrg] (1.5.10) (1.3.10')

Roth solubions (1.3.10) and {1.3.10') were obtained by transforming between
the lower and upper boundaxdies. In the continuwous case this is wsually referred .
to o0 a trangform "in the y dirvection". We sholl adopt a similar 't:e::minolcg:y'
for the discrete case and soy that the discrete tvansfornm hes been applied 'in
the § dQirectlon”. FProblem A eould, howvever, nlso be solved in o very sinilar

momer by transforming in the x (or +) divection. Ve now illustrate this

(i) ‘The Continuous Cage {i1) The Diseraete Cage
Instead of (1.5.2) we toke Tastead of (1.5.2') we take
{ d""x- l-?. (1.3 )
—42 .. 1.5.11) 1 wa) + REG-D) = XA, (1.3.11°)
X d’x‘l 2 R (R( ) ( ) 2
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where A is any real mumbey.

cx

Y
X0 = Ae  + Be ¢ x

In the maaer of the previous method

wa obtain the eigonfunctions

XG0 = AR) oim REX | R21)3, ..

Q.
by agswning X(e) = X () =0
[Nobe that, in this case, the eigenw

values & orve glven by

Rw%"" R=1,2,..... ]

P

vhere /1 ig any roal punber.
. - +
S RM) = AR+ Bg

In the wanner of the previous method we

obtain the n discrete eigenfunctions

RA(") = Hﬂ(/‘.&t ?gv) 5 ﬁ= ',-l',—h)'*“‘,

by sgowning  R(e) = R(m+1) = O
{Note that, in this case, we have n dis~

tinct eigenvalues, dg ooy, wheve

lﬂ': Qo‘:&_ﬁ' R E: l,-?)—-—‘,-n‘j
M)

Pefine Ry = 7 Rgt),Re@), - oo, Ryu)f

then, for +=1,2, - ... ... m , equobions

(1.5.11') may be weitten
QB& = (#“3/1&)8& .
The basic matrix i of the sawe form as

previously but is now of type (maxm )

CORETA = (h-axg) R (*)

and we may vovmlise Fp such thob
£
TR -
Re Re= Sﬁ -
Tat gs = 5‘#“3.‘ x,5?

to give the governing equation

'Sﬁ-—\s

N

-

&fs"%SH”E =

~ o=}



-1l =

where E‘, = ggs,o,-_-- . o§ OFf type (mxi)

1.0 the governing equation has now o

nonwzero risht hand pide.
Dafine the integral transiorm Define the discrete tronsforn by
o T ..
C“’J) =5 q'>(x,3) sim RT ol . Cgs = Np &
o ' @ ’
giving glving

oo
Bloug) = 2 Clhy) s
£

{1.3.12) = 2 Gy, s ’35 (1.3.12)
R=)
Applylng the transform we have Applying the transfora ve have
(I 1o - T s Ty
J g_fmﬁ:dm +S ‘3—;“'“& %‘d‘x o B,&@%s Rt g 254 Eﬁlss-
(1.5.13) (1.5.15%)
Now S %ﬁt sin BT o By (%)
[aj &"x] (K")S éﬂ) 0‘”& xd’x (4 21&);?‘; “Rﬁfs+1 8 SJ:B Q
o a0 s e (Eeee (HR2) G o~ Cr sy Gag, s RED
(- )yt O™ Chon =Gz~ B,
Rw ke )? ¥ sim RTX ol
- Br sty - (%) jf o
gince ¢(°.,3) 3(3)
C {1.3.15) hecomes (1.5.15') becomes
*e - {&zY - - [ K7 -.pr
%AG(RJ) ("d) Gl“g)" (”{,;)g(a) £ se (4 '?lf}.)éﬁs éﬁ.s'“ 8‘@5’
(1.5.44)

{(1.5.14")
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i.e. o pon~homogencons second order

differential equation
This equablon may be solved dy a

Creen's function technique

Phe polution is

v
G“'j) =J g(k,%) K(k;yln)dy

1.0y 8 pon-homogeneous second order

difference aguabtion.

A non-homogeneous difference egquation
will always vesult when the mabeix pgovern
ing equation has o non-zero right hond
glde. This will alvays be the case wien
dealing, fov example, with Poiscon's
equation, V@ = (% g) + The solutlon
of non~homogeneous difference equations
is a foivly eloborate process and 1o
illustrated in APPENDIX A. The method
is, however, annlogous to the Green's
funcbion method of solving sccond-order
differenbial equations. Ib will sulfice,
at the mowent, to quobe the solubion of
eguabion (1.3.1%%).

The solubion is

W ) .
Cﬁ,s = Z Kﬁs [8\& l::']

’ J
)=

whera . _ vheve
(@ﬁ_&. (b?)e‘%(b-”‘;))(e%y‘ -—E%_,) r (PEH-J; C?ﬁwﬂj)(Pﬂs‘ CP&S)
‘j_‘l - Ry + *i g
("% L TE) ¢ ) (a9ad PEU-98) .
K(‘jyl"])z 3¢y, kﬁ,s N < !
Rs /¢ R¥f¢. fizy _Ax M-S -3 ; .
(S0 Rl B ) G 2o Aoox)

2

- e =

d Y

L (P4 96 ) 967



P ond @ owe, oo before, solutions of
ol (4-22)L +1 = 0.
Bypom {1.5.18) Prom (1.3.02°)

e Sfagn] 1, -SSR

ot

xm%] (1.5.15) (1.5.15°)

TE ds ovldont dn bobh tho condinvoun and discrete coges Shat elosced solye
Bions of Mriehled probleoms In rostondles ave more cosily obbalaned by epplying
She draneforn bebueon pavallel bowdoxies on whdeh the duweticon vaﬂu::f:z:, 000 2010
From o commubabiopal palal of view, $he oloscd polubions ¢btolned for pooblen A
by tranforming botsmen sero bawderlos ave wore eacsily evaluabted than thooe

dedueed By m"mmm’mi% g dn tho otber ddvaection {compara e:;e:._agmmm; {1.5.,30%) with

£1.3.05%3, In Tack, 36 1o o zeneval yule $hat bobh Intepral ond Qluorohs Grenss

Torms ore moae slmady cppliced 4T bho trousform de talen dn the Glvegbion of thak
yorioblo vhoase auic o werpeniictlow o those bowadorias on whielh thoe Bowmyiney

eonditions ove wmoot almplo.

v is nod necesoary thak ¢ o om oone of the bhowniaedoes poeallel to the
divantion of trancforn ond thio vas dntvoduced only bo sdoplify dbe 3linebration.
Pow exonple, wo could hove postwloted thot ¢ = K( J) en x*x=Q  {Flg. 2y n b}

The oporoveiote boundory conditions for the dicerebo case [(Fig. 2') wourld then be

= = l .....
(ﬁ.m“')s k& ) 3 )a) )%.

$ide vould give the golubicns
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(2) in the continuous case

N & { 6'{( { R G ( )jb'() : (’nﬂ;id,']} 0"‘*%}
2 wh t5X L) of & W (a-x ) 4t L
¢(T,J) = Z;?‘ {’L "l)&‘ﬂ :1] ’17 + 73 03 A oktz“q_ )
" -o’

(%) in the diserebe coso

W, T - wq Pl T
:{’ _‘z % (P;"(P:)égﬂ "'(PA ~§ )é{@ S
5 am+i ~ e
s P " - i)
£z £ (?(', :
vhere He Rk, 48 0F type (wxo.

The solution of the genoral Diwichlet problem in o rectangle could be obtaiued b!
superposing these latter solutions with the covresponding solutions of thoe pro-
blem in vhich ¢> is opeeified to be non=zero on the upper and lower boundaries.

Tn this cose owr btyansform would be in the x {or + ) directiom.

1.8 Problen A using Disconal end Nine Polnt Nebt Patlberns

o

Ihe mothod of solubion of howndary value problems using diagonal end nine
point uel patterns is annlogous in technique Lo the use of the square net
pottern.  Thus, the solution of problem A using these wels will only be sketched
briefly. Puacther, we shell show thot the dlscrebe golutions for the diagonal
and ming poins patterns can bhe ewprassed in fovas identicel with those slreciy
oiselned (§ 1.3) using a square net. Pefore proceedlag with this, hovever, the
effect of vonegero funchbion valuss ob the corners of the rectangle should be

considered.
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With the squave neb peblern no use is made of the function values ab the
corners of the rectangle sinee none of these appear in the difference cquation

for apny intevior point, e.g. ab point (R ,R ) [Fig. 1) the difference equation

ig
A
1" ¢l,l - sb.'a,\pw (’él,z - ¢0,l- ¢t,o = 0) s:2
\
and doern not involve the value ¢’o,¢, +» We l
Sz x *—
ways bhevefore, spook of zero hounderies
For & squave net even when the fuuction & % > x
- +e 122
a
values b the cxtremeties are nou=-zoro. G, b

Diagonad and aine point net patiterns do, however, moke use of the corner values,
a.g. ot podab (£ ,4) [(Fig. 4] the dlagonal net pabbern is

”“pc,,” ‘p.'z,.z - ‘!’o,z" Po,o~ ¢'.z,° = 0.
Sinece none of the column veebors .g (§ 1.3) involve corner values, in fovmulate
ing the set of dlegonal or wine polnt diffevence eguotions in mabrlxn form covacy
values mmst be placed on the vight hand side of the couation. This glves o
mobiis governing equabtion with o nonszero right hond side and the repulting
seconid-ovder difference equation is non~homogeneous. Fovr simpliclty, in this
sechion we sholl considey the corner values t0 be zevro aud shall tronsfori in
the "8" divection. %o illustrate the anslogy in technigque hetween the wie of
thege paticrns and the squave neﬁ;tg;;;aﬁions are nubered in correspondence with
those of the previous section.

{a) 9he Dioconal Neb

The dlfference oquations ave (g§ 1.1)



w §6 w

I+¢'l,; ¢d+l,$+ln ¢d-l,5#; ¢-v-‘,5‘l: "rﬂas».: © 2, (’.#.l.ﬁa“’ ° 9 a g
=W ' ’ —— o s B B e me e m -l
whaere lé-rsm, | £s ¢m . [Fige 5] * 3"‘?: J{
[ !
et P, = REDSE) . B :
- , PR R
{(1.h.92) vecomes - ‘“P’ﬁ, booeseos e e
e R T as s *
lb - R{t+) + R(‘i-u) S(su) + 5(5-!) . 0. FIG. O
R s
Tt ( S(sen + S(s+1) = 2R, (1.k.2%)
5(5)
whene ). 1s any veal aunbor.
" - 5 S .
e obtain .51 (9 = 94(/‘4 - fé) where 11 , ke oxd &)

are exactly the sowe an din § 1.3,

Dedine é e ?-&f'); 5¢("); e -,.Sc(‘s)] normeddoad as din § 1.5, and

g‘ ‘§¢1,u’¢~v,aa ot e ’¢'r,u§ .

-*

&i *
J-la
Bst
cr
23
;.:A‘
ok

The mobriy soverning equation of tha problem for the Alisconal ned

(:g""fl = o 2 ’ S + < e, (" .h-»{:‘l&)

..'-f ~ Xy

whave the bogie mateix B is of type { wxm ) and

SQlo..... ..O~

tot1o0... .. ..0

oleoetl o .. o
B =

< ., ot o1

LO - . 010




- . (? -*‘5*-05&)
B3, =2y e
S T
and, since B 1o mymuetrie, 3, 78 = rﬁ"-'lq Se . (1.0 7a)

T wm—
Applying the discrete transform, F, =3 %, to cqusbion (1.k.ea),
Y] L

we obbolu

ope T - -
W3 g, -3, 8(%.+%,) =0, (1.26'2)
il.2. lff:f’_f - {21£(F{,1‘§I+Fe,‘l-l) -'—'-O,
hees 2'{ F:C,-iﬂ - Q'ZF{,-! v?. -f v o, (1 H.8')

. '* .r
= +
AR AR A

where (.t( s V.C are solublons of 3-1 L2 Aol + ’1.8 = O, {1..82)

The boundary conditions on +=0 anll 4= mer ghen give

Fee = (4 M*)Se ,
(ug . v'ﬂ-u)

whera Q -= §§|;3;, s "'.3—-.‘,}.

n
By the iaverse formule, I.,, = 2 Ff} ’ §€ we obtain the solubion
~ i

=1

3

W

o v v»\ﬁ-f
%., Z( ~ "‘,M, )[ ] (1.5.10%)

...

For the squore net pattorn we aena&l that i:hez golution is {equation

(1.3.10'))
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5 -3 (% ALY )[él@]ée ()
&= Mﬂ(l) ?,t“"(l)

<
where, equation ($) (g 1.3), i}(l) = J"xg*\/a““ae*lz

cp‘(;\) = .?-ll-\/-?-l«lﬁ b el

Thug bhﬂ solutions for the diopgonel and squave net patteorns ave siuilav,

Ve
can, however, moke these solutions identical in form as follows.
From (1.4.50), U, = “‘/"‘1: , V«t = ""\/"142 )
A, A
Lok e = 2. i€ A, = :2—'—- then
A £ /‘"’1‘.;
- 2
’a,cf/‘) = ,,2?‘ +\/3 I‘y‘./,c * py (c.f. PL)
o &
Vo) = 2op N 3y e (c£.9,)
e way therefore write the disgonal net solublon as
it wal-s\-
- T,
f .:_z ( e 93: /"') )[S G] 5 (1.4.10%)
~ ¥ o~ a4
4.‘-:' & 9‘) % /“)

Solubion {1.4.10%) is identicnl with the saoware neb solution (*) excent thob,

in tha former the evaluation of f; and Q( is carvied out wsing M in the
Lebbor .14? is used,
(b} The Hine Point Neb

The diffevence equations are (F 1.1)

020 #4)5— lf‘(,é.“.,) 5+ ¢4,5."* ¢-f-1'5+ 4,8-1) N (éf#l,S#?' ¢q-,’5+;" ¢i~;).s..+

'VMS-;) O (i ;%61 ‘h)
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whore 1€+ $wm, 1$ssm,
et Pae= REDSE).
('ﬁ oibal '%3) hecones

20 - u% (RGsd +RO-D) | (s(sen + S(S0D)( ( Rtﬂomb-OX S(sen + S(s-l)) .0,

R(+) - S(® R S(s?
b -SLT(S) ( S(s+) + SCS'!)) = 24 s ) (1.5.2h)
where A Lo any vesd mwiher, to give S ()= A, (he - 26°) end Ay s hy

ol fo ave as In ff 1.5,

In the usual notoblon the wabrixn goverping equation of the problem for the nine

point et in

ke, - R (g-r-u + ?-r-.) 2 Quuy s 1$¥€m, (1 .hapb)

#

whewe bosle matricey € nad D ave of $ype { mwxw ) and

5-10 . ) 1o . o]
-] §-1 0 , ... 0 I &t o, o
o =1 §~1o ,, .0 ol & lo | )
¢ = y D=
o . o- 5' 0 . . . . ot 4
O . -9 | o o?q-i
. CSe= = (5-22,)8,, DS, “(‘“'214)5 {1.%.c0)
T (5- 22 )37. STD-.- (IH‘.'H.L)ST
v §l£ S e/2¢ ¢t e X ~£ (1da9b)

T
Applying the disorate transform, F:e, , :33 :f., » bo eouation (1.4.6b) we
obteln

I#STQ ’; ~¢¢ N ( '\-‘"'l -1 = O‘ (1 i ‘6‘13)



- 0 -
Lo l"‘(s- ‘22’43) F:-C,-r - (4+°2'2.&)(F€,4+: + Fiﬂ-:) = O
tee. Ca?h?&) F(;-m ) "‘2(5--"?':2&) F-C,r + (‘2* A,) Feq., = © (1.4.8')

Fe o= Colly 97,

where I, , My ove eolutions of (o?'*l&)ﬂfa"ﬂ(ﬁ”"g;lc)ﬂ( +{2+d,)=0,  (1.0.80)

The boundory conditions on +=o and A=w+1 fthen give

( "F\"‘("'f ‘*\J‘f—*)
F -

(,"' -~ N
( mg - ”zm') {

and the solutlon is

"
"““‘* 'HH--;
T
2~' ( ""“” M\‘H [S 6] (‘ 02'3'01&))
€= f - l

Thls solubion 3s agnin similar to the equave net pebbern (*) and may e made
Zdontlenl in form by the cubstitution
N, = B fuo. A, = MM

L

Ve woy then welbe the nine point net solution o

"(:;t_ Q: E :; ) STC S
{ = e 5] S (1.5.10')
~ Z( P *(.9) Q:'“(v) [ < ] £

€=t

Thus, fov the nine point patiern golubion g 2 and 904 eve evalugted using

1otead of A 2 s
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1.5 She Main Poluts of the Continuvous-Discrete Analopy

The povallelion bobtwoon the continuous and disorebo techniques ip evidont
and holds for any of the thvee not patterns. In parbicwier,the example (§ 1.3)
ahows that
(1) pre-mmisiplying the matrix governing equation of the discrete problon
by & row elgenvector of the basiec mabrin 4o equivolent o applying
the iategral tramsform to the parbial differenticl equabtion (equotions
{(1.3.h7 = 1.3.8%),
(11) the discrete inverse fowmia {equation (1.3.5Y) existo and consists of
only o finite linear combination of elgenvectors, c¢.f. egquation(l.5.5)

n

{(111) the effect of pre-multiplying the basic mobrixw by one of 1ts row clponw
vocsors (equation {1.3.7')) 1z avalogous o integration by pores
(cquation {1.5.7))s

(iv) opplication of thoe discrete bransform technique reduces the problem

$o the selution of o secondworvder diffevence equation (equation

(1.3.8')); c.f. a second-ovder differentinl cauation {equation (1.3.0)),

(v) (from APPEVDIN A) the technique of solving @ noa-homogeneons seconds
order dlfference equubtion {equation (1.3.14)) 18 analogous to the
Green's funchion method of solving o non-homogenasus pecondworder
dirferenticl couation {oquation (1.3.14)).
All the Dasle wabrices arisiag ln probles A were symwebric. Yhough convenient,
this is nob essenbial Dor the gpplicabion of the discrete transform. If the basic
mabrices in a paveiculay pregblem ave not symmetric the lden of biorthogonality

may be introduced as discussed in the next cection. 'The divect oceuvrence of



syimzteic bosle mabtrices in the problens of this thesis depends on two fachors:

{n) the anture of the conditions on the pavallel boundorien bobween vhich
the vransform is applied, end

(b)) the posltioning of the covering lobtlce in rolabion to dhese boundovies.
In preblem A the Dasie matryices were symmebric booouse we chioge the lathbice to
coincide with the bounderdes ab s=o  ond s= (w+Dr on which ¢ wan spocified.
I2 the conditions on those boundavies hod beon that %é =0 ; vhere %% is the

el

derivasive norpal to tha bowdary, & nobn~symasbelc _m‘é;r:i}: would have resulied.
This is due o the Tact that the veflection condition on such & boundory affcebs
pne of the off-dlaronal elenents of the mabyiz. For exouple, in problem A i the
condltion on y=o had been that éé_f 2O s de@. ¢ o = ¢ ol {Fig. 2%, p. 4},
then the besle metyix 7 would have been of type  (m+n) x (w+1)  (since we
now hove o consider Aifference equations on $=0 ) and

(4 -2 o .. ..0|
-l ¥ -l &.....0
©o ~l J ~10O0...0 (1.5.1)

D
i

- > - - - & - -

e ® v e m e e s

O.. .. . .0=1 =
[ O. . . . . .0~k

Uonepymmeberle bDagle matevices can somebinegs e convarsed inbo pymwbric form,

howavor, by a olight alterstlon dn the definitions of the vestors é and $
N
(g 2.3). This we now illustrate for the matriz A (equation {1.5.1)). Procceding

——

as dn § 1.3 we hove, for the above amended problem A,

AS,= (k-23,) S, , (1.5.2)

ﬁg-*-g — I - 9(‘\1’!’*( 2 ‘Sf SW, (].5,3‘;)

~ Pl ~ P
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where "»Sl.: §.S-'_(°), S0, , 'sc(“)} , g" = §¢¢’°,¢w,. o ...,¢"’“§J(l 55.0)

A = com (Re+) 5y
£ 2(m+)

Ir f:l is any nou~gingular wabtrix of the same ordev as A ; pre~multiplying
N

» €20,02, oo o, and A 15 given by (1.5.1).

equation (1.5.3) by M1 glves

m‘\' f\l""_ w%"‘*'ﬂ m%-f—' = Q . (1»5;&5)
) ! . -t ,
Leb Qg_*:I to give g = l’\:l £ . (1.5.6)
(1.5.5) becones MA P’)-‘E ' 3 ¢ !
" M A AT RN -E:.,-, = Q,
b ot ., |
1., . Q g-r B -S-H, - -,?j,'_. = 0O, (1_)”9)

?

' -1
whexe A= PTAM
~ N oA

~ * . Y -, " » ) (]
We now requlre to detvermlue {;’l a0 thal ﬁ ig gymnetyrle. It is sufficient

te choose M as a dlagonal mabyrix end, in fact,
~

M = d‘“c??\?"a’ U,---._,l} of oxder (m+r) X (wer) (1.5.8)
Fh.-,/ia..... .0

] -ﬂ “- -] Q.. ... o
. | o =t -t ©.,.0
. ﬂ - .

o .. . . O -l k-t
,_O- . . -

From (1.5.4), (1.5.6), and (1.5.8), &
i

Further, if we define -§¢ as S =.§

equation (1.5.2) may be written

A's,

~~&

1
~
+~

!

L ¥

*
h
172]



T ,T
andl, thevefore, gse ﬂ = (1"'-221) '&Se .

fhe yroblem moy then he solved in the uwsual way by applying the discrebte
l 'T ¢ 5 o - A el 132
transiorn, F_é .5 §_¢ §+ » bo the modified governing equsbion (1.5.7 ), Finding
7 )
the pavblculay solutlon of the vesulbing dlfference equation satisfying the
boundary condlbions at +=20 and = (we)n, and substitubing in the iaverse
- -
1 2 ¢ '
branslom fommula, g,‘r s F,g’,,. §c .
£:0

I4% is posaible, howevewr, bo position the labbice to give a symugtyic basice
mobrin divectbly wheo o Newmana boundery condition exlsts perpendicular bo the
direcsion of tyransforit. We shall discuss this in secbion 1.7.
1.6 The Discyvete Yransform Method from s Mabrix Stand-Point

in the previous secblons we inbtroduced the discrete transform wmethod os the
analogue of the sepayation of vaviables and transform technigue of continuous
analysis. UWe wmight, howvever, have introfuced the method purely from & wabrix
stond=point. The basic equation Lo be solved in problem A (8 1.3) was equabion
(B}, »- 7, namely | .

ﬁg*u%‘*-bl—?-r-.: 9 . {ﬂnéd}
This was solved essentlally by fianding eigenvalues, ( 4'322), and elgenvectors
éc of A
= (k- S,

: T
Then on pre=multiplying equation (1.6.1) by § o W Tound

T T
(#—“.’ZR‘() é( g-r— é;r-vv - étg-f..: o, (1.6.2)

+

When Q is nonesyimebriecnl we nead to Intreduce blorthogonol elgenvectbors;

*
) o &nd S o ¢ Such thab



As, =(k-23,)8, ,

T
A3, (‘*"-?1)3 o ,,,: A = (4-22 )5
On pre-mltiplying equation {1.6.1) by S :T we Tind, instead of (1.6.2),
*T &7 *T
(#‘J&) §£ ~ g“f'ﬂ ~¢ :«?vr- = 0. (1.6.3)

The discrete btransform is then F. = S * 1— with the exvansion foxmmle
¥ -e"' “‘c = + - JEI &t W RN

2.- 25’* Seand the extension of the analysis is obvious.
In order 4o glve an example vhere g non-symuetirlcal mabrix will slways avise
independens of the positioning of the ﬁet aud the condivlions on the boundaries,
consider Loplace's equabtlon in two dimensions in cylindrical polar co~ordinabes:

! éf %

o -'- f) ) + = O * = *
£ o S¢p de? (1.6.%)
IP we consider a square net of mash lengbh R and toke shbep measures o and J

in 2 and p divections respectively, then, in difference form (see e.g. Harbtree

{181), equotion {1.6.1) way be written

p— - . - IS
4¢£‘,’j *¢0*' . ¢ (' )¢ JJ)¢ J-"“O (inéub)
where ¢"uj= ¢ (ik, j")’

Sepavate the vaviables by sebving 4>£ .3 Z() W(j) and suppose we wish to tronsform
. ’ ,
in the ¢ (or J ) ddvection. The diffevence cquation from which the eigenvalues

and elgenvectors ave determlned is then

(1+4 )w(p-) - QAWE) + (1~ -»-)VQ-D o. (1.6.6)
This will glve »ise to a mn»symﬁm?icu. mabrix ﬁ . We cemob derdive explicli

expreagions for the elgenvalues, A » ox the cigeuvegtors, \g{ s From equation



{1.6.6) as we could in provicous sechions and, for sny pevéicular case, it mey
woell he convenleat 0 uge standard sachine pmgmims o obbain these.

Ve shall not approach eny of the problems of this thesls from the purely
mabrie st.anélwpmin'%; and shall not vequire (o obtain elgenvalues or elgenvectors
of bazic mabtrices by any wmeans obther than the evalua;i;im;x of expliclt expressions
derived by the uwse of separation of varisbles.

1.0 PROBLEM B A Boundary-Value Peoblem for Poisson's Bquotion in o Rectengle

This problem is introduced to i1llustvate two polnba:

{1} ‘the positioning of the latbice to glve divectly a symmetric basic
watrix vhen the tronsform is applied belween bovndaries wheve the
conditions are of Newsavn btype,

(2) the analogy bebween the method of solubion of a non-homogeneous
second~order difference equation aud the Green's function method
of solving a non-homogencons second-order dlfferentiel cquablion.

Congider the vectangle ©o $ax € , © € g € 4 [#ig. 6],
w:ith %St =0 om xzo ,x=Q,

x
aul p=o0 on yzo , y= & . o illus-

d
N
wrase point (1) we will transform in the ﬂ b= o
x dirvection.
é& » - 4 %ﬂ:
~QxT° v¢“5(7"3) ©
143, ze >
Fig. 6

I‘.he Diserete Froblen B

it was pointed out (8 1.5) that, with the net co-incident with o Neumann

btype boumdavy, bthe reflectlon condition atffects one of the off-diagonal elements
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The Selution of Probiem B by the Discrete TransPorm Mebhod

The method of solution is cgaln analogows o0 the separation of vaviagbles
andl tvansPorm technigue of combinuwous onalysls.

The difference equations ave, as above,
- - - = - g® 1.7.3
M"¢-c,s ‘P-ru,s 1,54 "b-c-:,s ¢¢,s-. A +,3 2 ( 7-3)

where O €4 Swm, | $5€w,
Lt 43 s R(+) S(s) and, since we are golog to trausform in the -+ directlons
]
walke
L (R +R(-D) = 22, (1.7.%)
R(+)
whore A is ony zeal muber. (In the usual woy, this is obtained by separation
of veriables in the homogeneovs equacion covresponding to (1.7.3).)
+ -+
R(+) = Ah + Bz

<
where }\- » @ ore solutions of o ~RAL +1 = O,

¥

On epplyiag the bowndory conditions (1.7.1) it con be shown that

T+ Y,

R‘ﬁ(*) s Cﬁ (}Lﬁ * e )) &‘-‘O,i,-!,-n,'w\.‘('t 7:5)

vhere A B Cod ;%% ;
Leb Ry = § Rﬁ("),Rﬁ(lJ, e Rﬁ(ﬂ)},m}d

¥5= §¢0,;0 ¢;’s:“'"" R ¢"H,S‘§‘

On aceownt of straddling the boundaries ot ~= —:'i and 4= -m-f—é the basie
mateix H s ~ - .

~ 3~lo.....0
-) -1 © . ..0
o) "‘ l‘- -, Cc. .0

D
il

Q.. . . o= =~}
0. . . .. 0~ 3

of type (m+1) x (me) (e, equation (1.5.1)).
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The motrix coveraings equation of the problem for the square net 1o then

AE %, —2, = -EF;, 1ss¢w (1.7.6)
vhore F, = g* § {o,52 {uss- -,.,g“'s} .
From equation (1.7.4) with ~+=0 ;1 , R, ...;™, we have
A Rg= (4-22%) Rg >
1.0, R& = (&- a'l;l.ﬂ) R&a

and wve will regard the B & noymalised to wnit length. The discrele transform

]

ig then

-
Gﬁs= gﬁ—f ’

gnd the iaverse formmle is 2 Gﬁ A K k- (1.7.7)

Applying this transform to equabion (1 f’ 6) we have

T
R7F,- K5 E,. BrE,,= “RIE, .
N ) G'ﬁ 3'“' (“V’ ‘21&)6*,5 + Gﬁ,s-ﬁ /-;ﬁla ) (1 “7"8)

T
TRELE I3ﬁ ; ,6* f g 1.e. & nen-homogeneons secondwoyder difference equation.

[
From the bowdery conditicas {(1.7.2) we regquive the solution of eguation (1.7.8)

pubject o the condivions that G* komer = O . Thig may be obbained, as

illustrased in Appendlx A, by a "dlgerete Graen's fuonction metbed". [In fack,

cauabion (1.7.8) is the oxowple chosen for illustrabtion ia Apvendix A (11)]. We
obtain

2 K& : P&,d ; (1.7.9)

Jtl

- y=n - L
(PﬁJ U8 T X - 9x7) )
(_:‘) (P 9 )( \!\4! 'V\.*! s SJ ’
Wbe"'e K&s ® ﬁ * ﬁ ) (1:?0"0)

( P* ¢& )( S -w-| QﬂS"\-—)
(Pﬁ 9*)( P* _ wH)

) S>¢JJ



and the howndery conditions ave pabtisfied.

The solution of problem B is Chen oblained from the inversion formule

(1.7-7) s
gs“Z(Zk’ﬁs ,J)RR (1.7.11)

=o J=!
Yote As for problem A; the poluticns of problem B for diagonel and nine point
net patterns can be expreseed in forms idenvical with equation (1.7.11). With
these patterns, hovwever, multiplying foctors of 2 and 6 ve spactively occur in
the definition of F {equation {1.7.0)) from which ﬁﬁ s (equation (1.7.8)) io
derived. These factove avise from the sebs of difference equabions corresponding
0 Poisson's equation. Instead of equation (1.7.3) we have
(o) for the dlagonal neb patbern

- _ _ L, o
Ll.d)"""“ L Se T, 34 ‘P""'Js‘" ¢4+c,s-.' Lh -n,s;(i“?’m)

and (b) for the nine point nebt pubtern

20‘6"15- 4‘(¢*+', $+ ¢'¢,3+:+ ¢'*-';3 4 8-0) (95“0 $0 ¢"'-‘.S+T 4’4-',::,‘#"0 L) = '“Zfs‘ '?':ﬁb)

1.8 SHolving %am*zdm:r«?%lm Peoblems in Rectangles by the Discrete Trongform Method

In this gection we list the basle steps involved in the use of the discrete
trangform méi:haﬁ to solve the type of boundexy walue problems in rectangles vhich
will ceour laber in this thesis.. These steps have been developsd in sections
1.5, 1.5 ond 1.7 and ave as followd:

{1) 1If pospible, choose the network
{a) %o coincide with those bowdaries on vhich Divichleb conditions are

speclfied,



a1
- “) o

and (b)) do straddle those boundaries where conditions involve a dervivaitive.
[The words "1 13968:3.‘%51@“ have been inserted heve since, 88 we shall see,

one is nob always able to adhore strictly to ruwles (a) and (b).]

{2) Separete the variables in accovdmice with the dlrection of trensfori.

{3) Apply tho conditions on the bowdories porpendicular o the dlvection of
vransiorm to obtaln explicit expressious for the elgenvalues and corvegs~
ponding elgenvectors of the basle matedx.

(L} Weite down the mabrig poverning equation and opply the discrete transform
1.2, premaltiply throughout by & row clgenvector of the basie mobrix. IF
Bhe bogle mabyix is not symeebric 1t must be wede so ;Lay avending the
definitions of the coluwn vectors g of fuaction values aund the cxpressions
for the elgenvectors obtained in (3). (Ve have illustvoted how this may he
porfomed in § 1.5.)

(5) ¥Por the resuwlbing sccond~order dlfference equation obbtain the solution

of Gtransform.
(6) Substitute the solusion (5) in the laverse transform formumle.
Nobe: Ia tmnéfgm‘aing betueen pavallel boundaries on which Divichlet conditions
ave specified it has alvendy been pointed out (p. 13) that the discrete transform
mebhod is mont slmply applled when the boundary values CP are zerc. I these
funetlon volues sre non=-zerd HULG congtant we may alvays exprops ¢' as o linecer
function of 'V) » S8y, where ‘\P has zero values on these bowaries, e.g. in
problem A (§.1.5, p. 1), 12 Plx,y)=c,don y=o, & vespectilvely then, if
we write | qb (-w..a) = 'lp(x,a)+c+ (d_-'.'(f) a s the problen is reduced to solving

Toplace's equation for Y in the vectangle with zero bouwndary conditions on
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Y= 0,4 and slightly modified Divichiel conditions on X =0 ,a, The Giue

solution c,b nay then be obtained from the solubion ';b by usivg the above relation.

1.9 Some General Cowments

I.é’mb.’_i.ema A end B have served o illustrate that there ls o sbep~by-gtep
snalogy belbvesn the discrelte transford method of solving a bowndory-value problen
expressed in finite Alffercuce form and the separvation of variables and transfomm
mathod of solviag the corvesponding conbinuouws problen. The wethod cown obviously
bhe uged to solve the finite diffevence eguabtions corvesponding to any pavkial
aifferential equation problem whlch can bBe solved by seporation of variables,

@.£. In cylindvical ov other sepgrable cowordingte systems. In chepbers 2 and 3
vie will show how the method nay be extended to problems in reglons which can be
divided into sub-~regions in ctch of which the sepavaiion of varisbles technique
is epplicable.

ThH will be nobiced that the solutions of problews A end B (equations (1.5.10%)
and (1.7.11)) iavolve only finite sumobtlons and lend themselves easlly o numerie
cal computation. The fowms of these dlscvete solubions indicste thet, if desived,
wo can ¢ghteln the golution over only o povd of the tobal reglon of the problem
and, in particular, we can obbtain the solutlon at 2 specified net polint. (Thewe
g po gdditional difficuliy in dealing with problems involving infinite or seni-
infinlte strips -~ see the problem of choplber 3.) In addibion, a definite high
degree of accuracy in the solublions of the originel set of difference eqguations
way be obbeined afber o specificd number of arithmebic opevations. The accuvacy
of a discrete epproxination to the true analytic solubion nay be improved by
inevessing the nunber of mesh points in the regilon. %hus, it is possible to

obiain o pood estinate of the tyue solution by oxtrepoleting o cuive obbtalned



by plobting a sevies of solutilons gegalnst the corvesponding net opaecings. An
improvemsnt on this lotier technigue is provided by the foct that difierent ney
patterns may be used to ¢htain different approxivatilons. By obtalining sevies
of solutions Tor different neb patterns and different net spacings, a cuvve
may be dvawn fov each patbern and the true solublon estimated. Further, in
certaln clreumgtances the use of a dlagonel net glves an upper limit to the true
solutlon while a lower limit is obtained using 8 sguove net e.g. problems A and
B, (It should be noted thet the discrete transform mebthod may be applied with
recbangular net patterns in exactly the same way. These ave, however, nob used
in the problemz of thisg thesis.)

In the rompinder of this gecbion we discuss bthe velabion botween the
discrebe transform method and other methods which have gppeared in the lltervature.

The disercbe transfomm wethof of solving diffevence equations for ﬁoun&aryw
value problems Ls cledned 0 be a new method only in the same sensge vhat, Lthough
Fourier tyansfornsy are usually thought 0 be a relatively modern technique, they
pre veally only o different way of applying the Fouvier lnbegral. It is veally
only o new mebhod of application of a very old techalque, nawely sepevabtion of
vaviables. The sepovation of veariables techmigue ibseld was used to solve
difference equaitions abt least as early as 184k (Bilis {9 ]). OF the more recent
references we menbion Hymen {w] and Berger and Lasher [i6}. Iyman bas used the
techuique to obbain sbarting values for his 'step-ahead’ wmethod of solving
bomdary-value problems while Bevger and Lasher have employed it to dewive
expressions for discrete Green's functions for the difference equabtions corves-
ponding to Poisson's equation. [The annlytical summabion required in Berger and

Imshev!s paper (Appendix 1) is avoided if the discrete transform mebhod is used. ]
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The diserete transform method 1s ¢losely linked to certain mabrix methods
deseribed by Karlquist [¥], Couvnock [k, Purgerhout (& 1, ond Bickley and
Mellamee [8). Hach of these auwthors hove Jllustrated ways of inverting what
Plekley and Melemee eald the "big' matrix. The wethod illustrated in sectlon T
of Korlgviot's paper is most closely related to the discrete trensform method
bub seems Lo be more complicated in derivation. The solublon of non-honogencous
second~order dilfference equations has been fllustrated by Moskovitz [19)] by &
nethod which is relabed to thot Lllustroted iu Appendix A (33). Moskovibz does
nots however, iundicate that the method 1ls the discrete analogue of the Green's
funetion technique of solving non-homogencous second-order differential equations.

1.10 Points of Compubobional Intevest

He have olready indicated that the dipcrete elgeavalues d nay be compuied
easlly es cosines of integral multiples of a cervbaln basic tugle e.g. in problen
A {p1.3) the A ¢ were shown to be cosines of integral mditiples of the angle ;—i%' .
The covresponding dlserete elgenfunctions cen also be expressed in terms of trigoe
nomgtrie fanctlons. Wo illustrobe this consider again problen A. We gaw thabt the

discvebe eigenfunctions weve gilven by (p. 6)

S, = A (hg=2,) . €t oeciim, (1.10.1)
vhere o, = A, + VA, g, 21"\/‘1:" s Ag= e 6, and 8, = f_f;;""i‘_' . Thus
5,(5) = A (c0:56,+i 00058, » SO, +i8in 86, )
BeAon 86, . (1.10.2)

In proctice the orthogonal elgsnvectors é e ave not normalised to be of waid

lengbh bus such thab e?e( )= | . On this basis ve may weite (1.10.2) os
S,(s) = 225% (1.10.3)
O ©
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{The effect of this normalisation on the previous theovy is mevely to introduce
X . 8TS
o 'scolor producs' fackor, A e T Do D¢ ¢ into the denominator of each teim
in the finite series. This arives because we requive to delfine an luverse
%
. F S,e ; . ‘ . ‘ e o 3
Formulo an g’* = €, _—;,,_a »] For hand computation and when using
€=y
Y]
an oubocode schene on o Algltel computer 16 18 casiew Yo compute the elgen-
vECHOrs :§ P using the expression (1.10.5). If the discrebe transfornm
solution ds progrommed for evelusvlon using the basic languoge of a partlculey
eompuber, howvevewr, it may be more officlent to use the equivalent expression
devived from equation (1.10.1), namely
) A 3 < s
. - £ - )
. é.ecs) W&- . (36160"“\")
Me~ 2 e
Thus, all guandblities occurving in bhe solubtiong (1.3.10') end (1.7.11) ave
capable of simple avlthmeblceal evoluatlon. Further, the gquantities which we have
denoted by PO, @ (0 and which are solutions of the quadrvatic equaticn
2 & & -~ 2,
oL = (k- )ol+ =0 ave comuon bo solubions of all problems by the Alscrete tvansform
mebhod {see e.g. (1.3.10"), (1.5.15'), (1.7.11)). We could therefore, design o
computer programme to compute tobles of these quantities for various values of A
once and for all. It hes alveady been pointed out (8 1.4) that P and @
vegavded as funcbions of pavameters velated to A s ocour in the sclubions of
problems vhen disgonal and nlne point net pablerns ave used. Consequently; the
game computer programye mpy be used Lo compute Lables of P and @ for use with
these patterns.
The diveet computation of solubions given by the discrete transform method
does not reguive o machine with as large o stovege capeelty as may be thowght ot
Mrat eipht. This is due to the fact that the only gquantitles which need be

permanently stoved ave the elgonvectors of the baasle meteix or quantltles reloted
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o them. For example, consider the solution of problem A {§ 1.3). Iy equation

(1.3.10") we hove

> MmMEl- WL o
g*"'Z(P‘“:T | )[‘5 GlS,  (1105)
1 B =@

and by normalising the elpenvectors §_ ¢ 8ceording to (1.10.%) or (1.10.h) this

noy be weibthen

M

~

z.e‘c* ""'e ' (1»1(}06)

N
I

. {
' Y IR Y

] P - T - [STG] Se
In this equatlion (1.10.6), Z‘e,., = ( 'ewn 2‘1 ) L = [ée --] _2\:"‘
and A : = g%r S ¢ o Thus if we pe e.man&z_ntly gtore the colum vecbors 2' P

(i.c. > numbers ) we can compute the solution for each column vec‘t;aér* g v
e, R, oo o, v Individually by ueing for column vector ry 22 only

values of Z, g (2= 1,2, ..o ,m). The Z, , may thewselves be compubed
individunlly for each + inside the machine or caleulatec‘{ from the tables

mentioned in the previous pavagraph. Simller remarks mgy be applied to the

avaluabion of the solution of probiem B (equation (1.7.11)).
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CHAPTER 2

T SOLUTION OF DOUNDARY-VALUE PRODLEMS DEFINCD OV ADJACHNY RECTANGULAR REGTIONG

2:1 Tosis of the Method

In this chapteor the discrete transioviz method is exbended o dend with
houdary=-valuge problens defined on roglons composed of adjacent rectangles.
A siwple example 1s given by the T-chaped veglon of Fig. 8 which can Lo oplli
into the subrogions ADCD and IFG.

The discrvete tronsioun method of A 8

golving such problems is as dollows.

For simplicity, we will counsider @

voglon composed of only two adjacent [ T R ¢

voctangles (e.g. Fig. 8) so that we

hove only one common boundaxy ( HE ).

G F
The exbension to more complicabed vegilons Fig. 8

will be obvious. Ve fest cover the whole region with o sultably positloned
labtice and inbroduce wnknow quanvibies at the polnts of intersection of the
mesh lines with the coumon boundary. Uormally the wech is chosen to colneide with
the comon bBouwndary oo that the polnts of intersection ave maesh points and the

unkaown guantities ave funetion values. This will alweys be the case in this

* . . .
chayi;e&:u‘ Suppose there ave "' mech points on this bowndary end let us denote

@

Occasionally, however, problems ovise in vwhich the novasl derivative 1o specified
over part of the common bowrdery hetween the tvo edjocent rectangulor veglons. In
puch coues greabor accuracy io provided by positioning the lattice to styraddie
whis boundary. Unhuowm devdvatives ave then inbroduced ot the poinbs of iaveipw

geetlon oFf the swsh lines with that powe of the common houndery on vhich no con
ditiong ave speaificd. The steady wave problem comsidered in chapter 3 ip a case
in point.
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the v ' anhnown function values by {,‘, exl,d,. ~----. ,m . Yo now apply

the dlscrete travsform method In the monney illustipbed in Chapter 1 %0 each

of the subevegions individually. This cbubles us to obtain solubtions for Bobh
sub~replons Iin torme of the 'w ' wknown Sunction vaelues 5’, o The oviginal dlife-
vence agquation of the problem must, however, be sabticfied ot cach of the *mw '

maeh poinbs oa the comnon bowdary. {This is Inown es the "£Ltting” or "mobtehing”
process of the problem.) The problem is therefore reduced to the solution of o
et of '» ' slmitoncous lincay eguations in the '« ' wlmowns 7 + Ve bave, in
foek, reduced the dimension of the problem by one in that the get of diffevence
cguoablons at pointe in o plone is weploced by & set of ginmultoncons equations ob
points on o liae.

If the reglon 1o such that 16 con be sub-divided in more than one way {e.g.

Flee 9), the submdivision which wili give A E
[ - WY
wise o the smollest mubor of slmilaneous
aquations aghowld bhe weed. In Fig. 9, fovr D c e
axanple, since DO ig lose thon CG wo wonld :
L}
sub-Aivide the Leshaped reglon inbo the two. f
¥
rectangulay reglons ARCD aud DEFI ond use o :
: H [ F
aintehing process at mesh points on DO. FiG. 9

The Bigcrabe Proneform Method con clearly be extended to deal with othoer
types of reglen provided thoy way ho divided into oubereglone in each of which
sepavasion of vaviables i eppllcable. Froblems of this sovk may also be solved
by the conbtinuous technique of sopavation of vorlables end transiorms bub, in
thic case, ve must introduce an uwnkiown j‘um:{;ién on tho comuon bowdary. The
£itting conditions on thiec boundery then glve rise to oo duteprel couation. We

nay, vhevefore, extend our points of annlogy (g 1.5) bebween the diecrete bransform



e g
o "\gi.p =
v

tochnigue aund the continuous sepsrption of varighbles eud tranefors technigue
50 soy thobt o set of simulioncous lincar equations dg the analopue of an inbegral
eounbion

G@%@ﬂ: {b] deseribes o method of solving these problems which is closely
related to the discrete tvonsform technique. He expresses the conwlete seb of
Alfference equations as o ‘big' mabrin equation. By pro~mulbiplying the ‘big!
mabyin by enother matvin o convert it intg a cevisin lower trievgular form,
he i led bo solve a seb of sl nulioneous linear eqwé:a‘;ﬁmm ot wech polnks on w
meeh g porallel to the comumon bouwndary e.g. In Fig. @, 17 Myrichlet conditions
ave spseliled on AB, he would solve eguations &b mesh poluts on ab. The liscrete
Tronstorm Method seems b0 be slmpler in dewivotion and applilension and more sulite
oble for cutomatle machine conputation.

The basic sbeps involved in solving bhoundery-valus problems :m, rectanguior
veglons heve been 1isted in § 1.6 (».30) and the weader would be well advised to
rafresh his m&mmy on ‘iﬁzam ab this point. In adjecent reglon problems it 1s
sonebimas impossible, on accownt of the boundary dimensions, to posiblon o square
lottice to eolacide with Dirichiet boundavies wbhile ot the cane tine straddiing
bowadaries vhore derdvative conditions ove speelfied {8 1.8, step (1), (2) and {b)}).
It ip wope convenilent, 1n such clycunsiances, (o popition the labbice to colncide
with voundarios of thoe latler type. Mn alicvngilive may be provided, however, by
the use of @ pectangnlor lettice bub wo shall nob do this.

In this chapter, as in chapter 1, wo will use the sysibols P ana Q so

. , 2 4 = "
yoprasent the solubtions of the gquadvabtic eguations of ~ (4~2)el + | = O . ‘Thus

Pea-2+V3-ka42* , @ = 2-a-V3-k2+2%. (&1 1)
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2.8 4 Tyo-Biuensional Rectoneulor Box Condenser Froblem

For simpliclty-we shall consider the case in vhich the rechangles ave
eoneentric and hove coveesponding sides parallel (Fig. 10). Furbther we shall
asgune the immer recvbtangle to have poteatial

wmlty and the ouber to be carthed. The pro-

L]

blem i6 b0 determine the distribubion of

potential in the regilon bowded by the two

rectangles . ! x
F E

By symebry, we need only consilder one e—>
) H S
quarter of the total reglon which wo way toke T el ™
d |
as the bottom »ight hand corner. The problem d
A ) C
thevefore refuces to the solution of Laplnce's Flg. 10

equation in the Le~shaped reglon ABCDEFGH (Fig. 10) with the boundary conditions
?5=o on ABC,cpe, ¢ =1 on HGGF, _3_@ =0 on HA and %ﬂ = O on FE,
i.e. an adjocent reglon problem. * J

Forr the purposes of lllustrablon suppose the dimensionsof the problem

ore such that a sguare labiice may be

¢ =0
chosen to colnclde with AC ,CE ,FB , F ‘ 3y - £
-'---;--....L. - 9
HD , ond FE and to streddle HA (Fig. ! | :{
! | .
. H
. . L Co===t
11). Assuma (Fig. 11) that < » o s ¢=IF; -
I t
that we will get fever simultancous equns- I | ¢= o
. o o C) S [
tiong o golve i we divide the veglon ;‘ IR NN 0 A (7 A
iy \ t )
0 Ity ¢ !
into the dwo vechangles ABGH  and 3Ll o @ B »
ox |} bt L
v LI |
BcDEFG  snd then mateh acrvoss 86, ! ';'ri ------- P
i Sk /L1 R
Let there be 'n' interlor mesh poiuts on A FlgC1 c



o 4] e

BG , 'm' on GD and denote the 'n' unknown function values on B& by g, fa,---.

. e e e, {.,v « As explained in § 2.1 the ’hechnique. ig te obtaln the solutions,
in terng of these (,; o OF the bouwndaxy~value proviem for Laplece's equabtion in
each recbangle individually and o evaluate the {,; by o natching process on B& .

The rectangle ABGH  will be kaown as z'@gim {1), rectangle BCDEFE& o
resgion (2) and we shall use superscripts (1) and (2) to ddstinguish quantiblies
derived for the two reglons. UWe shall illustrate the solution using a squere
neb patbern bub solubions for diagonsl and nine point patterns may be oblained

in exactly the same way.

. b (#-.-. { G
(1) Thg pectongle ABGH T !
e e Rt - {7~
Consider that the boundaries of A }
?&.'.t,gs::t‘#qﬁ :
this rectongle (Fig. 12) ave glven by seadd o o ide
o
N b
qe-ﬁ,?:“-&l, Sz 0, S= mn+l, 5_’-: : 'i b=o ; ‘8’:
Qteoter £ 8
The seb of difference equatlions to be
solved is bhen Fig. 12
(4] (0] ) (3] ¢
4 ¢1,S - qb«nl,s B d"hs-u - ¢‘t-'.s- ¢'b$—o =0 (2“&'%&'}
O $+<sk , 1€ssn ;, with the boundary conditions
¢ W “ S=1 2 ", (3 e :ff.“ia)
. - PRI L] ® Enta
¢'I,S = ¢o,$ : ¢*+l, s Z’S ) ’ s M
(0 ()
- . s e O, . onn, R 1,0 5g
4’4,0 = © ! ¢"’t"‘“ 2 e ? (2.2.32)

e shell transform in the 's' dirvection and in order Lo inbroduce a funcbion which

1o gero on the boundaries S=o0 and S=(m+)i , we sab
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T

“) . CIJ

Yy = ¢ (=) - % , Le. W, o= bps~ 2. (2.2.4)

Mo |

In temms of W v ¢ therefore, the set of difference equatlions o be solved is
]

' - - - = 2.8.1b)
u‘wﬂl,s“’p‘ftl,s ‘P V’.,.,’s 7’*“_' 0, ( & )

*, S5+

OSvsR, I$s S, with the bowmdery conditions

« 7 - 3
“P...‘g‘ ’wo,s.; y’ﬁﬂ,s 15 ey 2 SELR e Lo, (2.2.

V"-\r,o = ’p'b'\uu = 0, +20,L3,.-.., K (2.2.50)

We inbroduce the vecbor
———
E, = §'p,m,’¥a,”, ....... Ve .

By the game method veed to devive equation (1.35.10') it cen be showm that

W
cq) (l) Cl)
= E S 55
z G('h-l ~e g ) (2.2.5)

L=y
G (l) "
_‘” § I ?g’ q‘,.ﬂ,ga H.’.-.~’gh-“:"'§)§in§1

P Cl)
where J_*__,L
t !

0)
Cl) (o? (l) (4 . t <))
S S € f") L -S;(m' » In these foumloe I; and @,
@) () ()
pre defined in equatilon (2.1,1) with A= ‘22 where A e = ¢ 6
€1) 2 -+
10 Otm S 9 (4} L ) (U O
and S, (=) = me" (53 110, p.3k) , 6, = Pl 8 = I D¢ -

(n ()]
Dofine :{ ?4’.‘,, s Paa, v e 4’.,“} then from (2.2 4) and (2.2.5)

W
' cu" m}
£
L =

o ( rl w

N
u
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N l‘!_:; o

(O]
vheve [\Y = ? L, e-e ""'f& Thus the solution, %—, » of Taplace's squation in
the region ABGH is

z5 A r%&mﬁ. in temms of 'n' waknown function velues Lovbar i &

b
contained in the mabrix G (“3.5_, 59,

¢

F cbvf me] Tameitd B
(2) The rectongle BOIFEG [T i
Ssnajl - —=mm- -0
Tet the boundaries of this rectangle \ i
- 1
1
1
bhe (}l’i& } 420 +=(ﬂ+l)h, S$v0, S= fw\.-i-‘li-l)i cb'-ﬂ : : ¢._._.°
|
......... 4 -
The set of didference equations to be !
G 1 ' _Ip
Samus! N il _l_
t ¥
solved 1s then sem gfme o —m -
o ‘
P '
(,, (£} (£} () , I i
- - - O LIS 1
4¢-. 'S .‘," s +,54%1 a-,3 ¢"‘g“l " {(:2 2 ?) gat .:k L2 R | .
i : =O [
=0 Fzm, C
| € + & wm, 1§85 € weyj+l, with the 8
boundary conditions Fig 13

(o Guammha e
Q Sz ha,.... .
= ) 3 s ~+ - ¢]
¢°)5 ! S n‘,‘“,‘,;,...“l\‘i&h . i, S 2 J'N)J (,ﬂ: ,2,&)
-

[} (2) (2 ‘
¢"‘°=Q Y 4’*.«-*_‘; = 4"#"-*3-&1 » FE LA, ey M, (2:2.9)

Sinee the lattice is coincident with the Newnann homdnry FEB the bosic mobrix

of the problem 1s not symmetrical. To make the matrix symoetric we reguirve o

define ((3 3&: i. . n))

(2) (€Y a
5 i s (C) s s (‘Wf“) c“‘l")faﬂt_}_
J3
Ca) A) ‘a’l) ‘l’ “,
§¢"o' 4 TMR Y T e ‘kmuj ) DA z

\'£}
Proceeding in the momner indiecated in § 1.0 it e&z,n be ghowmn that

a)

f Z P,,.e [SC»G_QJ] age | (2.2.10) v

R 2
{2)
=) A‘



w b -

~n+a-+ 'MH-*J'
AR t
vhere By = £ Q‘ and G = §{.,g,.---- v G b loe - - ;IE
3 P‘AJ"‘\!I (3)“."'
4 9.
of type (n+j+1)x 1 . In these foummloe, (P_e are defined by {(2.1.1) wit
() : (a) (2) ) (£} L+ 2y
A=A, uhere Ay = con§ ond 6 = M .+ The elements o (S) of
(2 Cay «:..sa"” o?("‘*'J*'l)(a)a T 2
Se ave glven by &, ()= 227 and 4, = ée S, .
. ca) St 9_, .
Thus the solubion, _3; v of faplace’'s cguation in the veglon DBUDEFG is

expressed 1n tevns of the
et
[a

The "Mabohing”

mstbada (p.2.10),

Procean

on BG& (Fig

0t uvaknewn function values

o contedned in the

11) we have $o soblofy the diffevence form of laplace's esquablon

at ench of the mesh pm.mi*s fﬂm
“‘5 ¢ {S*!.- {Sq = J S= L300, W (2‘2«2-1])
where f,=0 ond £, .=/ . gl T -
(4] [‘Sta) G(;) Se (9
From equation {(2.2.10) 4)": = P;)g e = A“) s
L=} e
»w
. ¢ (2) ,
. hs *s. 0% T Cs ’ (2.2.12)
My vei
- () ) o .“" -5'“() 4jv) .S‘”
whore a., = D Pie S (% () end /3 s, 0 + 2 O ) O [s
& [ ? ——— s ey {,C .
' A(-’u“ iz mn va A
<= £ r
bad T
(&} (DD w
From equation (2.2.0) ¢‘,s = 2 d#,t [wc G S (.:) O T
- . AC:) M+
£
) <
. . 5 - |
. ¢£S = z ’63‘5 1& + ::;-; r (&.ég?‘bt,s)
) ‘ b=
where —6 . T Z o( D Se () '

Cl)‘




oa I{:} -

Substitute from (2.2.12) and (2.2.13) into (2.2.11) to obtain

o WA
. - - . . -~ 3 - = O, §24,3,: -+, w,
H"S - 2 at z" s {S’H Z : 65,.', go o (s--; ) A AR
¢= il
e
" ws Bi = Bs o, EThRmom (2.2.aL)
Sii
it
s S+l 5+ “
- ey, — - . - s
vhere Wg. = ‘b&e S,-_ 8‘ ag; 65”_ , B3= €y ,.:_;' + gs .

a

We thus obtain o st of

{

'n' simulioncous lincar equabions {2.2.14) in the

‘n' uwknowns o . The selubion of the problem is then dbinined by evaluabing
) . . () .

the vectors G (equation (2.2.5)) and Q (cquation (2.2.10)) and sub-

stitubing these into solubions (2.2.6) and (2.2.10) respectively

In Fig. 14 (p. kb ) results, cbinined on a desk calculator, ave recorded

For the cage m=8 , wm=3 , j=4&
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. RESULTS FOR' TWO-DIMENSIONAL RECTANGULAR BOX CONDENSER PROBLEM -~ -

. aSE:n =2, m=3, 3=h

1.00000 - 0.7MO3E . 0.48678..  0.24091 . 0

1|.00000 - d.73728 olug2gn R

1. 00000

o

.7258u1  _ 046928 0l22987 o

=

.00000___ 0.69681 ___oL.43846 _ oleliys 9|

1.00000 1.00000 .00000 __ 0.62293 _ 0.37601 . 0.17868 ___OID

Ol

65160 a.63520 d.58200 - 0Lh1891 ok26397 _ ol12697 o

0.31960 030719 ole7398  ol20672  0.13398 _ 0l.ogs2k  of

FIG. 1k
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2.5 A Tyo-Dimensioual Squave Bow Condenser FProblem

A particulor case of thoe proviovs rectanguler box condenser problem occurs

X

\ .
\ivhem both woctangles ave squave. Though the methed of § 2.2 may be used, this

problem may he solved in another way sinee, by symwetzy, we need now consider ‘

only one~cighth of the intevr~hox végion and the problen moy be depicted pictowie

plly as in Fig. 15. ( %?_ is ueed

o denote the devivative of ¢ novial =

to the boundesy. )

éé::b VaqS =

m--———-—--

In the digervete transform mathod of o
solving this problem we choose a squars p =0
labbice to- colnelde with AC and HG and
such that GC cotncides with e node on F.ig; 15

each mesh row. Thus 1 there ave 'n' mesh lines bebween AC and HE there will

- be 'n’' mech polnts on GC . The nel mey either colncide with AW (Fig. 16) ov
ghraddle AH depending on the divensions

of the problem. We {iyst lgnove the

boundory 6C and use the discrete transe

s |
n

i
a

%
n
3
]
I
]
]
i
[]
1
1
i

form mabthod (transforming in the "a" : . l_ e — _'! e
h 1
direction) to obtain a solution iunvolving b, %s ! l: .
'n' arbitrary constants in the semi-iunfflalte 5;’ - -E' - B’;;o'f —i *:'; -
tectangic IANT {(Fig. 16). (Ve sssume e ' L TR
¢=0,1 on AL , HT zespecsively), Fig. 16

These erbityory consbants ave then evaluated by usiang the dlfference equabicas
abt mesh polnts on &C which arve specified by the conditions of symmebyy of bthe

solubion abowt this line. As in the previous aljecent weglon oxmnple this



- l!,a e

problen is therefore reduced to the solubion of a seb of miﬁmiﬁmmu@ Lineay
equations ab points on @ llde. ;

o 1llustrate the nethod we shall consider the case in vwhich the sides of
the owber square are Wwice the lensth of thoge of the inner so 'ﬁmﬁ the lattlce
wmuat coinelde with AM (Fig 16).

Consider the seml-infinite rectengle TANT and suppoae that 1ts boundaries
&wr glven by T=0 , Sz , s=(w)q.

Ve sob Vs = ¢¢,& ~ 2, swoua,. ce s WL % 0, (2 5.1)
The difference equabions for Y ave

. y‘-r,s“ 7+, s*’*r,sw T-1,3 V’"‘:'&‘l =0, (2.3.2)

+20 , 1 $8¢aw , with the bowdery condibions

— — ' ------- (?aﬁ—f}
"P'ho - "L-n'wn = 0, ¥ o, 1,3, . € )
.= A= ')-2,--..-.)“' ‘ (;:Z 515-)
Y., Ls ?
If we aeg:uw * i = § '%,n qu,a 3 c e e en J%,"\g then on applying o discrete

'i;x*amazﬁ'mfm in the "s" direction to equations (2.5.2) and uwesing the mve boundary

conddtionsg 1t eany be shown thab

Act

(-v
Z C, i . (2 3.5)
.¢,

, (L)) +
in {2.3.5) the €, are arbitrary constants while V, = Fp +g, (P_g s P

being defined by equation (2.1.1) with A=a, and =08 , - f—n}")
T L)
Further A ‘: * O¢ S, oud 5 = ?S G, S, - -, S, ("wahe:t*a S0 = & S :‘ '
dmle
e E ?‘P-r,n hnart Tt nj then by {2.3.5) and (8 3. l)wa have
. RN L))
E., = C‘*"Y‘- -'.;s-f + - 'AY J {2 5.6)
~ L= F} LY
- L



e 2;9 "

N = i 1,,: “““*’“}' Henee
~

W
)
- ¢V o S, (s S o B L
}, §° :E: et X+ : (2.3.7)
» 2 wdi
. ’ .( = A_"
To evaluvote the orbitvary constants C ¢ Ve hov use the difference equations
~

ot mesh points on &C (Fig. 16). fAny mesh point on 6C has co-ovdinates of the
form ( (i +R)A , (wei-R) &) , vhera Re La,--<,» . 9has, by the reflection

condition on this bhoundary, the diffecence equations on GC are

"'¢n}wl+ﬁ,n+l-ﬁ N ‘24’%&&,-«”-5 h &cﬁ"“"’*“,ﬂ-ﬁ =0, 1(:"'?""‘“' {=.5.8)

Substitution of (2.3.7) iu (2.3.8) glves

", ~y
=1 (weitrk) N | ¢ +R) » 4)
s i-A) ] X (mei1d , :
22,6% AL ) oy aeert) Sl g0 |
L=t A_‘ L= A-l. L= A‘A ke
3 ' | -
e 2 weeCe T TN Re 3,1, (2.5.9)
L=1
(wetrh)  (maR) ‘ (n+i+h)
vhere Wg, ( V, — V O_S&,_(:’_"_:g_’? - \./4 a3y (m-R) ‘

3 4[\

{(2.5.9) constitutes o set of 'w’ slmulbonecus lineay equations ln the 'n' arbibrory

~

constents ©, . BHvalvation of these constonis ond substitubtion in equation (2.3.6)
then gives the required solubion ,

it should be pointed out thet, though the solutlons g - (equation (2.35.6)),
NEO 0, R, ..y #wtl {Fig, 16), may be evoluated to give funcilon values
ab all polats in the intere-sguore veglon CANW , only those funcbion velues fop
poinbs lying in the domain of the origine) problem arve covrect. {(Nobte thot CwW

coineldes with o side of the ouber squore). Thot funcbion values ab mesh poinés




oy ?}Q £

within the inter-square region GCWare incorrect is due Lo the method adopbed to solve
thig problem. In order Lo obtaln the solution in the semi-infinite vectongle TANF
we requirved to sob 47 =l on GJ. Thus, irvespective of the volues of the arbitrory
gonstents in this latier solution the dilfference cquation ab the point S ) fow
example, will only be satisfied i 4>R = | yhich is not the case The funchion
volues ot mesh polats on the boundary GC ore only correct becouse, by our mnenner
of evaluating the arbitrary consglonts C ¢ 2 W have imposed bthe copvect dlifference
equations at these polnte

Certain difficulties arise in the above method vhen diagonnl or nineg point

*

net potberas are wsed. These difficulitles ave due to the fact that the difference
e@um;:imm at the points K, h , .., P [Fig. 16] now involve funcblon values

at points on the opposite side of &C . In portiewlar, the difference equation

at the point K involves the funetion value ot the point @  and o apply the
wethod ve vegquive o get 45? = |, fTous the solubion dbbalved would give funchion
values such that the difference equabtion at K will only be sablsfied i€ Q is o
wnit pobtential. Whe solubion wouldd, therefore, be incorrect , It is posslble o
overcone these difficulbties by uwslng speclial nel pobterns abt the polnks K , L& -,
cusey P, when solving in the seml-infinite rectongle TR H3J, bub we will not discuss
thig hove. Solublions for the diagounsl and nine polint neb pabberne may be obtained
by weing the adjocent region mebthod {(§ 2.2) wheve the sbove difficuliies do nob

21rise.

2. Computotlon of Solubotions for the Squorve Dox Condenger Feoblon

In this sectlion we discuss the antomabic computation of solublons for the
squave box condenser problem illustrated in the previous section.
Since in problems of this sort we ave usunlly interested in the potential

values ab all mesh polnts of the reglon we First group the molutions (2.5.6) for
&



20 s 1 34 5 sesy Rwtl , in the Form of & single matrix aquation. We

dafine
T
§ L , IR ~a“’§{::§;‘ bype (-'lnh?.)xw,
[ V.z ]w}'ie“fc: » is the rov nuaber, 4 the column mwiber,
OL+ € Al , 1€ L€,
+
S T T
S =§‘?‘J‘ ,.éi - aa e, é&. oFf type NnX™
o~ l" a? Al
< »
C‘> T .?Cucz; T C'wg'
e
= - TnT
Mo 25 AN, W for tme (ameadem,
P
It can then be shown thab f = X £ é’ + CJ . (2.4.1)

The matriz ayrvey f gives funcbion values abt o1l polnte In the rectangulor reglon
CANW {(Fig. 16) bub, &s was pointed oub in the previous section, values at points
ou the vight of ¢C are nalther correct noy reguirved The Livst xow of %' gives
values of 43 ‘aﬁ; poinbs on +=0 , the aaccmﬂ on =1, and so on .,

The set of simultancous equations (2.%.9) for the eveluntion of the 'n'

avhlbrary congtonts C ¢ HRY be written 1n the mabrix form

uc = Z, (2.h.2)
vhere g- = [“ﬁg] of type wxw , £ = 5 Ci,Caprmm-en .eﬂ\f ; and & 1o the (wmx)
coluim vechbor cach of whose clements has the value ( - ;":;-) .  Hence

c = uw'z (2.%.3)

" P N

This problen has been programmed for the Deuce electronic computer (Mazk 3T

version). Two of the simplified programming schemes aveiloble were used, namely



i
o BE e

- i

Mubaande and the Generad Inbovprebive Progessme {(G.5.9.). Alphocode is one of

The norial by ssés:s of aubo~eode ncheme and woerks enbively in flosting podns binony
arithistic, GI.0. do o powerdal avbeecode sehwass devleed for mabrix esloviatloos.

Tt el works dn flooting polutd binevy avitinetle bt tuwo Tovas oy be useds fnliy-

Plosbiog and bleck-floating , A wmatzln 1o sold o e fully flooted vhon ecch

elemant 1o Individuelly exprepped oo o flosting point madwrs A0 Is endd 4o e

bloek flonted when all olemente hove the gong expouent, tho cxponont for o

«!L

partionior macsedx helag debtewnined by its lavgont elensnt . Though slower, it is

aoe accurabe o work with mabzices In fully-flesting fomm and this wes tho form
veed for wabyix calewloblions in our problen exeeph In finding the inverse of thae -
nabrin of copfficionts W of the Pitting eguatdons (R.0.2). (3% was necessary 6o

7 J o ,
riok™ ) oulato

Dloeck Floak 4o finding this dnverse sinee go G.1.0. subronbine {or
Por luverting o fully-Pleating motyic.) Aucther advontoge of nsing fully-fioating
mobeicen 4 that dobte and resulis 1n this fovm oare conpon to bobth aubo~ewds
BUNCMRS .

Since tuo oube-code ooheRes. DG WS ad Bhe yrogeomne for the sqovoe condences
problen ves dlvided fnte two pavbs.  In pevs () he wokrices Y, g -
axnd Q’l wore oomned wsing Alphasede and punehed on carde I flly-logting form
po that Shey were Jmmdictely ovoiloble as anta for the 400 pove of Che pro-
gresne o In opavt (2); G.I.P. was veed (o) to wert U, (B) B0 colevlove C

D
and henee € and, finally, (o) to compube dhe solublon g given by equaeion

e
o *to -
{2.h,1). Flovw dicgrans for vhene dyo aubo-cods mwenromIne Bre glven o p. 56.

IL will be notlecd fvon these floy Alogroms that the only date vhieh pesd

he goneadly panched ove the nwifors "0t and 'Rt end 1t e consequently & vevy

t

gopy wixbber Lo aupuha solublons for vardous nob opacings l.e. vordons values




of 'n'. Resulbts have been obtained on the Peuce Computer ot Glasgow University
forn=3, 5 T, 9 and the solubtion for n = 3 io shown in Filg. 17, ». 95. The
manaer of computation of the matrices y and § hae alveady been indicabed in
§1.10  T% is clearly essential that the matrin of coefficients g- of the
fibbing eguasiony {2.4.2) shovid be compused accurately. No difficuliy was
experienced in this, howevey, due o the Agphacode programne working in fullye
Floating avithmetic and 0o gealing was nocessory. The vesulting range of the
elements of this matrix and the necesolty to block-Tloab, however, led to the
use of an Lterative formala in finding the luverse of glo in the cases + = ¥
gnd 1 = Q. The iterablive formmds vsed was

W..., = (2T -V

ALY it g) \4:/"\'
where \ja in & fivet spproxinaition to the true inverss of 'l;l, and _;E 1 the unls
matrizx. X6 chould be poinbed out that the emuations themselves were not bodly
ili-condibioned. Results vere cbtalned to an accuracy of T of the 9 decinal
places carried by the machine,

A feature of thece repulls is the neav-lincoy convergence of the epproxle
male P values ab a particidor point as the net spacing is yeluced. This is

shown by the graph on p. 55 which has beon ohbained by plotbing the ¢ values

ab the nid-point of the houndaxy GC (Fig. 16) asainst (_;-‘!;) for valwes of

n= 3%, 5 T, ond 9. [Nobe thab f«:'.":l) ig proportional to the net spaciag 'hf,

gince {n + 1) h = d (Fig. 16)]. The figures Trom which this graph 1s drowa
ave contelued in the tebles in Appendlx G,

Ho theory secne 4o oxiet wo explain thia rate of convergence. As far of
the aubhor i owave the publlched papers have dealt oaly with elther Dirichled

or Newnann problems Dub not with problemg in which Diwichlet conditions ave



specifled on pavt of the boundary while Neumomn condditions are apeclificd on

the reminder. UWe vecall that the latter was the coge vhen we solved the

square hox condenser problen by cousidering only one-cighth of the inter~nguare
veglon (§ 2.3). The veol problem, however, L.c. one squarve inside enother, is
a Divichlet problem in & dovbly-connected region in which four of the inbterior
angles ave greater thon W . (These angles sve the mugles ab the covners of
the foner pauare.) It scoms that only Loasonen [20] bhas considered the mi;e of
convergence of discrete approwimations o the exact waluwe in Divichlebd problemo
viiere interlor angles o W , ody > 1, ocowr. Further Loasoten has considered
only problens defined in sinply-comioched veglons. iz theory shows that the
trugentdon evror, l.¢. the difforence bobtween the exact value and an epproximate

Y
value obtained using flnite diflevences, should vary as £ vhere AW

o« > 1 ;5 is the grestest inberior angle. In our cose of = % so that, fov
Lossonen's btheory o be valid in the doublyw-conuected rvegilon of our pvoblem we

Y
L n, ) 3 o Y,
ghould ewpoet the error Lo vary as 4%, Instead, using the fact that the

true potentlal value ab the midepoint of GC is 0-19YS  (Chapter 5), we have
1y
found that the exvor vavies as 1,
It would Be worthevhile teying o justify the value of this cxponent
theorebically bue the aeccuvacy of the discrete approximations is so poor that

1% was thouwaht preferable fo investlgote methode for dnproving this zcouracy.

Thig is done in Chapter 9.
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POTENTIAL DISTRIBUTION IN THE TWO-DIMENSIONAL SQUARE
BOX CONDENSER PROBLEM WITH n « 3.

(Results quoted to only 5 decimal places)
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FLOW DIAGRAMS FOR THE COMPUTATION ON THE DEUCE CCMPUTER OF SOLUTIONS OF
THE SQUARE BOX CONDENSER PROBLiIM USING A SQUARE NET PATTERN

PART (1) ALPHACODE PART (2) G.L.P.

READ MATRIX
OF COEFFICIENTS

FORM AND PUNCH

MATRICES a AND M [INVERT U
READ MATRIX
EIGENVALUES % OF RIGHT-HAND
SIDE, Z
£ in diag.
form
READ
TEST r
r=2n+1
TEST | READ M
\ s
[ PUNCH S |
>
[PUNCT VI

FORM U, PUNCH

YPABT (2)



CHAPTER 3

2 2
A STEADY-STATE WAVE PROBLEM: THE HELMEOLTZ BQUATION, v ¢ + & ¢ = 0.

5.1 Introduction

In chapbers 1 and 2 we have illustrated the discrvete transform method of
solviug houndayy-value problems in rectangular reglons and yegions csomposed of
adjacent rectangles. We show in this chapber how the same techniques mey be
applied to obtain solubions of steady~state wave problems iun similar types of
nesion.

Before giving ﬁeﬁaiis:‘; (in § %.2) of the particular problem used i"‘a:;* ill.ua'-v
tration, in t.hia secbion we ghall cexaming gome of the ground<work involved in
its solubion. Consider the propagation of waves in the two-dimensional duct,

: Ylx, v, t)
o £ 4 € RE, ~o0 < x <00, {Fig. 18]. With wave i‘macrhion/(thg egquation

of the wave motion is 2 = o
+
L 2 2 T J
SY L ¥ (L Y
Ax* aga et at? ?
vhere ¢ ig the veloceity of the waves, At < 3
y ) - = O . T
and we have 33.' =0 on y= 0,2 ! % - o .
t it dl} 7> X
Paking o time factor = and
letting ’\b(%.y,t) = ¢(x.cc]) a.hwt P Fig. 18
the steady~state wave equatlion is
Q
S ¢ Y S ¢

J

R
» and %é =0 g = O,xR6 . Separabtion of variables gives

2
where R = =

. o
the solutlion /

£l x
96 = m"g_%‘( s J’e ,€’=O,l,-?,--..

2% (3:1-2)
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e’f\l‘ 2 a - ] . ¥ 3
where 3 ¢ = ( ‘-&—') - & - We shall confine ouvselves Lo the case in which
theve is only one propagnbting nole, all others being exponsnbielly abtenuatbed.
This means thot, for €»o0 , ,}’e muast be real while ),D'- ¢k and therefore R

mash be suckh that

O < ROR S 3y, {5.1.3)
. -t , ¢ Rx
Using the diae factor < » the steady-wave function 9'> = corresponds o
c(hx-wt) .
the progressive wave Y=z < which is o wave travelling from left to

vight while ¢ = e o corresponds Lo & wave btravelling in the opposite dirvecebion.
We shell now obtain results corresponding to equations (%.1.2) emd (5.1.3) using
g disovete transform pttack on the set of dAifference equations ecxs:;respnnamgg to
the Heluholts equation (3.1.1).
We fiest cover the region with e squarve lattice positioned so thet it

gbraddies the upper and lower edges of the duct (Fig. 19). 'Take step mensures

. A L] " t
+ aud § in the x and 3 Glrections U — 5 R RN FU g M R,
by
o — ) | I
regpectively and suppose the elpes of b , : :
a v
the duet covraspond to Ss=-%  aod v b L
FLI R ——'-"'!'-I—"'j'—*'"—lv"‘-"'-'"--'—”
o l T i % s | ] | 1 I
S=zn+ < . Using a sguave nel Stoemm b L -
o ro T T ~ 1
U TS DY S K I S Y
pavtorn, the sot of dilference equaw
tions covresponding to equation (3.1.1) Fig. 19
is
B - - - - - 3.1,
Cle~ B )¢-t,s ¢'\‘+f,5 +,84) +-4 S qsd,.s-. = 0, (3.1.1)

where K 48 the net spaecing, 0 ¢ S £ v , and + can have any integral value.

In the "s" Qirection we have the boundery conditione

¢'*J"= ¢":° b é"o’\' = ¢"’J""+l (3°‘i§)



"S"

Separating the variables and tramsforming in the divection it can be showu,

as in problem B, § 1.7, p. < -, that the elgenvalues of the separation constant

KX ave given by

- €w -
,z_e'.: Co'.se_e N 96 = ;—;.' ) f—O,f‘Q‘..-‘w, (3.1‘6)

with corresponding discrete eigenfunctions ’j-;e(s‘) given by (§ 1.10, p. 3¢ ),

. O,
S, () = cor (Rs+1) 3 . (3.1.7)
con» Oy
2
Further, if we define ithe wvector é ¢ by
- . 35.1.8
S, = 3REG0, S (3.1.8)
- - Th . T
then A S, = (4-23,)$, ov 5,0 = (4-223,)S, (3.1.9)
where the basic mabrix fl is of type (m+1 )X (m+1 ) and
(3 -1 0.. .. .0
-} 4 =t o....0
R =|e ! 4-10...9 (3.1.10)
©....... .0=l 4~}
o.. . -..0~13
The mabtrix governing equation of this problem for a square net ls
L Py~ .
ﬁ§+ - &% g-r g_'f-n ‘ag«c-n - 9(..“,,),”‘ (5.1.11)

wvhere the colum vector g-r is

g:,, = §¢-§,o’¢1,u > TT T g ¢+,w} , (3.1.12)

By applying the discrete transform, solving the rvesulbing second~order difference

equabtlon, and substituting in the inverse formula, we can show that

W
¥*=;(C£C¢;+D£\{J) §e (5.1.13)
=0

where C, , D ore arbltrary constents. In this equation the quantities Uc » ¥y

are given by



w 6O -

U=+ §C¢~ﬁ"£"- 22, h/(&»ﬁ*&*-.ut)f#f ,
(3.1.1%)

o 4§00 06"-22)- [T

and U« V=1, €<0,1,...,w. Fouebion (3.1.13) 15 o general solution involving

g

{ m+1 )} discrebe wodes and correspounds to the continuous solubion (3.1.2). If
assure that we have only one propagabing mode, only one U ¢ andl, therefore, one \(,_
con bo complex. TFrom equation (5.1.6), wax ’Q.e = A o= I so that W, , Y, ave

complex slnce k4 #o . In oxder that all other (U, , V, should be real and

e ' e
coryespond Lo attenuated modes, R must be such thel
(h-8%-22,) % 4, €= 13,0
1.a. Cé- &'14'1-.2,1&) > R,
{(The negative root is impossidble aince a?le <2 and the above relabion %ms'i; hoid
for all K )
so. BRYE 222, = A-wnE,) = MA“% .

1.e. O <Lkk € Qom § since RA is positive.
. 4 ‘
Hence; from (3.1.6) we have

o< kR £ a?biw(‘.ﬁ'i. ))s:inae’: €= | gives emallest value of &, .
o % 1)

£
0 < 20k ‘S.Q(‘hﬂ-l)él;w(z%im)) . (3.1.15)
ntl

since @26 = (me)h [Fig. 49]. (5.1.15) corresponds to (3.1.3) since, as m~a a0 ,

2(M+1) 6 C.:;“)) - W,

For our fubuve convenience we shall reswelte solubion (5.1.15) in the foim

T - (cu+RV)S, + 2, (G4 B YY)S,  (5.0.6)

~
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vhere U, » Vo arve complex aud corvespond to the propagating mode and U e » Ve

(( sl,a,.--. , n) are vesld and corvespond vo abttenuated medes. By enalogy with the
conblnuous chse, teldng tloe factor < ¢t , Uo corvesponds to & wave travelling
from lefh to right and Y to a wave travelling in the apposite direction,

Wo will now turn o the solubtion of o particulayr steady-state wave problem.

5.8 A Steady-Stohe Wave Problem

Gonaider the propagatlion of waves la & two-~dimensional duct conbaining an
obstruetion perpendiculayr to the divectlion of propagation. In particulay suppose
the duet Lo be givea by o € Y € 0, ~00 < x <00 (1.0. a8 in § 5.1) and let the

obhetructlon Lie on the lineor seguent x=o , C € J € R0 ubere © < ¢ < 6 (Fig, 20)

Due to the presence of the obstructlon the T}
' A ]
ineident waves are split iato refleclhed I
INEIDENT o b-c
ogud Lranswitted portions go that we hove YA l TRaNsaTEs
. Py n 1 - o 1 1} &ﬂ—g:i? wnves
the following "vadiation conditlions’: WAvEs
() on the le¥t of the obstruction waves = >
mey travel in both the positive and Mg, 20
negabive "x" directions, ond
(b) on the vight of the obstruction waves may only travel in the posibtive “x"
direcbion.
.. , -l i . : .
Taking o Tume factor < our problen ins then to solve the Helmholiz equation
Q 2
3¢ ¢ 2¢ -
2t Ih Ot k o, (3.2.1)

Ax )y
in the iafinite strin O £ J €26, ~00 < x <0 gsuch that
> , -
(s 35 =0 o y=0,20,
(: é.é = O 0 X=0-,x=0+ ,C SJ ¢ ¢ (i.e. zero normel devivasives

ax
on both sides of the obstruction).

)
)

il
Juan

o
»

Y.

N



It t""ﬁ
= é).x
Jie ™

{334 she codiobion conditionn o) en? {b) ove maiisticd, and
fiv} ¢ to Dinlbe ob x= oo .
Fopr aimplicolby we ahall asous bhab o < 264 € so bhat, by cawbion (5.1.53;
i Dove only one prophgoblng soeda.
This problem io av adjocens vaglon problen with smi,wr plons gonsiosbing of
the v pownicdnfindteo veabungles on olthsy side of the ohotruebion. Tt didfers

Feom bhe ofacont veglon problems disous

with the Helpbolts ogunbion in infindbe roplong wlil

of rodioblon eonddlbions ool o ooy hnve o gorivative oow
aff the comnon Hownadniyr.
4 An

5.5 Uho Moovobne Hrausiern i

wd in ohoapber 2

i Elml

Hevhod of Bolving tin Stood

JY

FopdNes W AYS A0 Qoneernrd

consaouent inbzodueblon

RS,

Nyeihote Yave Deoolan

o eethod o solving this odjaoent roglon py

R5

dscuseed v chapbar 2 Ao that we oblaln solubio

slem o simllor to thoso

a5 An bexms of wolowy aquontibd

RS 1
Yor coch of the svberoglions aad thon wse o mabdohing wrocess Lo gvalunte thoss
guantition. b diffors, howower, in bthat unlnous guontitieon wecd only be lnbro-
duecd over porbh of thn ommrm bowaduey and o maschdng weosess noed only Do

applied over this part.

inddnl of 'i»w Qavivative conditions opoacified

with & sgenre lebtied to sbraddio tho houwndavias of

*

end snoh bt the endepoint of the dhobruetion ldos

2.

Lt Bho howdnries of the

) wre fivst eover the voglen

Phe duet aod the ohobrueslon

v sl

oh thn contre off o

—l-—:t——._—__-—

L
|

_!—n—--——h—n—-

, . . e
duod he glven by S= ":2' 2 S$= "‘""i ’ INCIDERTS, |} J} 1, : !
o by !
ond ol the endspolnt of the obsbrugs 2007 T T Ty ;-:ﬁ“.’l'y ; {'ﬂwsﬁ'ﬂz; S‘J'j'
- ——— = - '—'i-ﬁ-i—'- —————— 3
tion o e b tho contye of Ghe aqure Keesecrep 1™ | ; NI M
UL S N A S
bougded by Yse- , veov , sz Kk s= ()R, R j_ :_ i _r_—‘ —
3o il ATOa A0S} ¥z 2
whove R 4o the nob spaednyg.  Uolng o sgoe Big. &



net pobbern the selt of difference eguabtions which must be solved is

C#"’ﬁaﬁa) ¢—*,;_ ern,s— 4,5+ - 'M,s— ¢1,s-| = OJ (ﬁ*f‘*l)
there 0$ 8 $w and + can have any posibive or negative inbegral value or may be
mero (Fig. 21). Since wa agsume only one px*é;mgai:mg mode L20R must eatisfy the
relation (3.1.15).

Using only the Neowsonn conditions on the edges of the duct;, equation (3.1.106)
gives a genersl solution in each semi-lufinite rectangle involving (An+ )
arbivrary consbents. By the rodiation conditions ((a) and (b) 8 3.2) end the
conditions of finlteness at infiulty in the x-Aivection, for the seni-infinite
rectongle on the left of the cbatruetlion we may welie

"
+ > *
§ = (ao +RY% )§o ""; quz c'§(; ) (5.5.20)
L =l

1’

vheve Ry R,.... R, ave arbitvery consbants, '.:!: is given by (3.1.12), o e by
(3.1.8) and W, , Vp by {(3.7.14). (In equabtion (3.5.2a) we have asgwsed the
Ineldent wove to have walt inbensity.) The solution takes bthis Porm since, as
wvas pointed out in § 5.1, W, , Vo are complox, aarresmnc‘img to waves travelling
to the vight and left respectively, vhile U—e is veal and U e?! £=203,--,m.

In the ssme woy, for the senmi-infinite recbangle on the »ight of the obsbruction

wve may wirlte

o
— A 2 +
= +
2 =T U S, T Ve 3, - (3.2.20)
£=1
M
vhere T, , Ty 5 ..o, T, ave wrbitvary constents snd X is used instead of

g-r siuply to avold confuslion. We have thus obbained solutions iu both sub-
-

reglons, each solution involving (w +t) arbitrary constants.
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i }paem::ﬁﬂw:*é ig to exproos these solublons in torms of wabnown quanbitics
introduced on the comaon houndary and then vo evaluate these using o wmatehing
progess.  Defore we chow in detaldld how this way ve cnyeled oub, however, wo
ghall first discues the logic bebind the matebing process used and, o elovily
this logle, shall considey the analogons matehing procedures which would be
adopted In the conbinuous crpe.

In the conbimons cagse the bousdary conditions on x =0 ayes

{1) 4> ig conbinuons auuress x=0, 0 ¢ y $c,
{11) %% is conbimwous aeross x=o, o€y S¢,
iﬁ.z‘;:‘i.fﬁ %£ = 0 N X=O0- Wi X=o+ > CSJ S 2o,
There are btwo procedures which couldd o adopbed:

(o) iv wo aosume that ( %5’ )xa‘&gmm the wikaown Tuackion ( ( ) for O€y €c
ye onn axpress the potontials in the two veplons x> o and x ¢ o In tomm
of £y). M integral sguablon for £ {I’ 1s thon obbained using condition
(1) that @ 1o conbinuous mcross X =0, O¢ y € e

() IF wo cscwse that the dlscontinwliy in qﬂ aoeross x=20 is glven by
e wnhnown funebion 3 ( J) for C¢ Y € f-% e can expvess the potentiois on
olther side of x=o in temms of g(y) . Ty uwelng condition {333.) that %Si i
conbtlomous acvoss the dhotacle we can obbain an integral couabion fop J ( J) .

Dioarete annlosuos of bobth {a) and (b) exist as we now indicate.

(A) fhe diserebe anmlogue of method (2) is es follows. We inbroduce ( 4t

wibaown quantibics, s , defined Ly

#

d‘s = 'waas- O)S 2 s'?‘o.o'a‘za"".a‘j 2 (33"35*5)

whera 0,8 and V’o‘, S donote potontisls ot the podnts dndicated in Flg. 82,
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[To avoid confusion, in the remaindey

of_thie chepter the syubols P _snd P

, - s - v W ﬂ'“ '— .|‘ L"| L] rﬂ - s - 2 ]
vidl be meed to denote potentipls in R T . g
t i
. . U I O T
e geml-~infinite yectangles on bhe N I b
LS IR - e feive e Jufbor Eeciy - W R e e Se3t!t v ma e = W -
J--'-"('P-—["]_!'I'": llb
lefh_ond rieht of the obstruction Stk R B
i !
R o 1 L '
reppectively. Theve is, thevefore, no see o = -’lf-*- L D
v el 1} 1
. . . m e - - L T e S L
aubiguity in aliowing two mesh lines to N5-3 4i-1 120 ¥20 431 122
have the step neasure +:0 ] Fig. a»

Bscept fov a factor R {i.e. the net spacing) the quantities o(s g0 defined ave
approwingte normal devivatives on horigontol mesh lines bebween the end of the
obhetrration and the lower wdpe of the duct. Asg we ghall chow in detall later
the potentisls @, o and \b_,, s con be expressed In terms of these quontitles

and, in pavticuwlar,

3
Gos = Z ®s,0 % * Cs (3.3.4)
¢zo
~1 ol .
and VJO’., = b, % . (5.3.5)
tvo

The condition of conbinuity acvoss the gap hwetween the end of the obstruebtion
and lower ¢lge of the duct ls nov thet these values must be releted by equation
(5.5.5). Subsbitubing (;;3%;‘3}) and (e;’uﬁ, ) into equation (3.3.3) wo obtain the

set of shmiltencous linear eamabtions
/

J
SV (o - 6] % ey, seoma...
ds + S"b 3,& ¢ S 20,LR,... )J . (3#5%6)

¢ =

o



Ingtead of an integral equablon ve thus veguire to solve a sob of (3 +1)
linesr equablons in the wilmown “devivabives” ofg, whove (j+1) io the nuber

of horizonval mesh Lines between the end of the obsbruction and the lower edse

of the ducl.

(B} A discrete anslogue of the conbinuous method (b) cen he obtalned in &
gimiler way. We shall nob go into this in detall bub mreii;y gtote that in

shie cnge vo requive to solve & get ofF ('n- 1} simadboneous linear equations
o qQ

vihere (»-j) g the mwiber of mesh lines gutbing the obstruction. This method
would therefore be prefeveble 1f the obstructlon extends less than half-wey
across the duct.

Ve shall now return to dhe solubion of our problem end will use the
ddserete matehing procedure (A).

n account of the Hewmamn conditiong o bhe cbstruetlon and on the upper
boundazy of the duct, the difference equabtlons at mesh polnte with §>; on +v=o-

(FPig. 21) woy be weitten in the form:

- ¢°.3"* (#-ﬁiﬁa)gso,s“ ¢o,su~ c,501,.". - ¢-l,s =0 LIS J R N

3:3+7)
Y2 ’ - - = 0
- ¢0,n-l+ (3-3 A )¢°.:"~ O, é‘"“’
At mesh polnts with 3¢ ,, the corvesponding difference equabions ave
'e Q -— bl -
6.3' & ﬁ' )éo)o C, ﬁo,o ¢"bu o
- {3.3.8)

..¢°'H+ (#‘ﬁ"fc‘)¢°’5" 560’8‘_;‘ 0,5 ¢__"5 20, SshA, oy
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12 we intvoduce Dl (5 s 9 Rpemt o d ) defined by equation (5.3.5),
the set of difference equabions (5.5.8) becones

(3‘&‘2"3) ¢°;° - ¢o,: = %a,0 ~ P-1,0 ol

o,

#

aé.s ) 5"')41"‘*\)'

- 450 W (4- %) 9‘%3 = %o,s41 Po,s 7 4)":5

Rouesions (5.5.7) and (3.5.9) mxy then be writien oe the mabrix difference

aquotlons

AT - (AL -, = G (

~ o O "

o
N

L%
"
-l

A

vhere (E = ?40, ody, v "1 49,0, .. ga bype (w+1) x ) and /3 is glven by
eguakion {3.1.10). Procecding in a similor maxmer we con show that the sob
of difference aquations on += o+ (Fig. 21) gives the matrix diffevence equation

~ AQ

AZ - (1+&%YF, - 7 = -G (3.5.100)

|

wheve “E
~

1n uged iastead of _'f on the »ight of the obsbruebion to avold
e
confsion.

From equation (5.3.22), we have

$ = (1+R.) S, *+ Zﬁc ée ) (5.3.11a)

~Q é’=f
.
- -~ ~
2= (RN )S, t 2 R4S, | (3:5-120)
~ £=1

. . I T
Pre-mulbiplying equation (5.3.10a) by fCS.c (€00, m ), and wsing the above

oquetlons and eqation (3.1.9) we have, by the orthogonalilty of the vectors ,;S e
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T
€

A

’ G
LY
©

G
R, = § = = Me s R-C )
° AP 4 | A2,

siore Dy x Sp S, Bo= (3-8X-22-V") | B (3-€han,-u),

—‘ “ \ 3 b B+ .
and Mo = 7;. ( 3-R%- 22, U, '} By samiloly treoting equabion (3.5.10b)
o

€202, m, {5.3.15)

e eon onor thnds
T
G T -r
o~ ‘ I = = R.S ra ‘3

> e
Agpe AR,

i&y“ o ¥ mm"ic. nowavirsdlanend § 0 ey b g A 4: STs ORI S ny oy "'i“.‘ & wso w;,w} -
T Cacalor peodues’ fachors L T D¢ Dy eccovring in equabiony (3.5.13) and

T, = -

5.5.1h
) e-'-",d?‘-..-}w, €J E:)

s

{5.3.10) are due 4o the faob thut we have nob norsnlised the veobors gfa
{oguation {5.1.8)) to have wmit Jength bub such thab =5; (o) = | {equation {3.1.7)).]

golusions {9.%.20) and 3.5.00) awe then

.
T 1 T
¥ S + :
Lo "‘"“*'Zg e )\@ )-o * 2, (""a" )a;:?g , (3.3.198)
~ AO PU =/ A"‘P’e

Fhe selubdons in both semd-dinflolie sectonedes ove thus expressed in desns of

dhe (j+1)  unknown "dendvabdves” ods, S=04, - ---, 0 , contained du the veckow
G (equnion {5.3.10a)).
o eveluste the valmowns ol ; we use the mobcohlog process glven by equation

{5.5.5}, Trom equaticon {3.5.190),

¢O,S = Cl-/uo).s;f.ﬂ +€Z(:_i_¢;; ) 'SC (s) {5.5.16)
=0 S [



tL.e. ¢o)s

s I
<
ag .o, + ¢

4 s (3.5.17)
(=0
SIAGEAO)
wheve Qg = z L ond €5 = (1~ pg)ef(s)and those glve
€:z0 A‘, p!’,

arplleit cupressions o the guantlities a s,. »Ss occurring in equation

(3.3.4), Similevly from eguation (3. :;.'i 503 we hove

S (s
%05 APg) e()

-4-. o o amd
- . P 15
t.e, ’V)a’s = 2 / "'s,; °J'. ) ( 7 )

o0

1,

where 6, .=~ Qg . We thus obtain explicelt expressions for the gquantities
F XY

G

s,.  oceurring in equablon {5.%.5). The simulioncous equations {5.%.6)

way chen He wrlbten

R)

— Sy

P (Rag, + )% = mey, sconan; (5.5.49)
tzo

Cur problem is now reduced to the golubion of a pet of ( i+ 1) silmulioaneons

Lineor equablons in the ((+1) wiknowmn devivatives s, S=9,0,3,---,)

A

Solving thege ecquationsg and oubstitubing the quantibies oy, S=0,1,a,..., J
into the vecsor G occurring in equations (3.3.158) ond (3.3.15b) then gives the
polubion of the problem.

The solublon of cquations (3.3.19) is not as camﬁl.rc el as moy be thought.
Though tha coefficients ave complex, cach hoo the same impginary port. This
follows fyom the foet thet in the finike sevies determining Qg ; (equation
(5.5.17)) oaly /3° (equation (3.3.13)) ic complex and by Jdelinition, (equation

(3.9.7)), S,(5) =1 . Thus the coefflelents in (3.5.19) may be written:



. TQ a

s ol N S, () S, (5) s
Lag ;. + S, =A“:= +°7-§ ‘_af- + 8
DF° €= A-l. /‘3‘(-

vhere only the flret term on the right band slde is compley and is independent

of both ¢ eond § . Further, since S (s)sz ! , the wight hand sides of equations
{5.5.19) have the some complex value 5,%4- 1) (equasion (5.3.17)). We nay,
thovefore, stbbract one of these eguations from all the others to give & peb

of ( 3t 1) equations vhich conslsts of one equabtlon with complex coefficients

ond o complex vight hand side while the remsining ‘:, "

equations bave real
coefficliants and sero vipht hard sidos.

Clearly the number of oquations which we wequlre to solve oy any given
ned opaciong depends on the sunber of mesh lines bobween the end of the
obstruetion and the lower bBowdery of the duct. ~The longer the cbstruction,
the fewer equations which must be solved. Resulits, for = 3, 5, T, and 9
[Fig. 21], hove been obbtained on a desk caleulator for the case in which the
obagtruction extends hall-way across the duct so that we requirved vo solve seis
of 2, 3, b and 5 equakions respectively. (The velus of R s assumed to be
such that 6k = 2 {equation (5.1.15)). In Fig. 23, pY¥oa, we vecord the
rosdts for the caso ia which n = 3.

§ 5.4 Solution of the Steady-State Wove Problem using Diegonal and Nine Poing

Nos Poavtemny

The solution of the problem of §§ 5.2 using dlogonnld and nine point net
potberms may be obtalned in the manmner of the provicus seebion except Tor minow
modifications in the Litting procese. Quy method of golubion using the squere
not pattora was dependent on the formation of the mabrin difference equatlons

(5.5.102) and (5.3.100). It was through these cquobions thab we were oble Lo
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RESULTS FOR WAVE PROBLEM, WITH THE OBSTRUCTION STRADDLED,

USING A SQUARE NET PATTERN

18501 1.75506 2.052L5 - |-0.157k3 -0.34840 -0.59916
-0.584881 -0.597301 ~0.568621 +1.052751  +0.960391  +0.T73p1T1
10059 1.60886 1.8011 0.07329 -0.20260 -0.51466
-q.522321 - =0.48Y051 -0.B97791 +0.881921 +0.8521 44 +0.67B611
| | |
|
" 0.97165 1.37586 1.313 0.561%9 0.03040  -0.39171}
0. 431291 -0 316541 -0.P36261  +0.920381 +0.679631 +0.58p581
0.901 78 ©1.25655 1.186j2 ~ 0.68888 0.14670  -0.3158
-0.375121 -0.230431 = +0.05T981 - +o.426141 +0.593521 +0.52p401
| i

Fig. 23
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oxpress the solubions in each of the sub-reglons in tewms of the ( 3t 1) uaknown
guantitvies intveduced on the lower pawt of the common boundary. ITa fact, the
wbnovn guentities were defined in the manmner of equation (3.5.5) to make the
formation of these matrin difforence oqu -‘é:iona; pogsible. HWhen diagonal or zﬂ'm
point nebh pattors ave wged, howover, the covregponding mabrin difference equetlons
cen only be fowmed 1f we inbroduce ({+2) wiknown guantitles, defined in a
slightly difforvent manner, on the lower part of the cosmon bonadary. Fow example,
in the z&:ié:-.a point pabbern case, vhe ( 3 +2) unkaowm guantibties vhich must ba
introdueed on mosh lines Ss ©,i,2,---,)+ [Fg. 28] eve given by
Bs © ‘*('\L’o,; 95@, .s) + (’\“o,sﬁ o,.wu) + (Y’O,S#r 0,5~ )1 329,42, --4
{5.4.1)
Biwn® Vo, %, - | ,
To solve the problem wging dlagonal or nine point net palterns we therefove
reguive Lo solve & gob of ( 3 +x) sinmlianeons equations, these cquations heing
cﬁﬁzai::icz& nsing o mytching process determined by the dedinitions of the waknowa
quantities, e.g. equations {H.h.1). |
e do not prove heve wiy (,j +2) uohknown quantities are regwived bhab perely

3, ¥,

gbobe thab the veason Lies in the poowmatrical avvangement of the vointa involved
in bhese povterns (B 1.1). Reoulls, for a = 5, 5, T, ond 9, corvesponding o
those for the squore uet pabbtorn, have been obtedned using o nine point net
PACTETR .

§ 5.5 Reflection and Tranpsmlosion Goelflelents

Trom equation (3.1.2) and on pecownt of the radiation and fialtencss

son@itions given In 8 5.2, p.6l , the conbinuwous solublons in vhe seml-infinite



ronbongles on either elde of tho obptruction ooy be weltben am

o0 x
¢ kx - Rx Ex QJI.
(o) on tho lofb: 95 = = + Ro-e. + Z I?,.W-\ 3(\‘-]’ )
00 <=t

cRx o ¢ {5.:5.1}

' x
o~ - J’_&
{1} on the viohi: ¢ = T,e + ) ‘?.e Con ig £ ,

whove Re P 7_'2 5.( =0 1 , 2 45.-.... } s Gve orbibrary eoustanbs. (E.S{)Zmi;:?,m:;@
£a) and (b} corvospond o the dlscrete solubions (3.3.20) and (9.5.80)). Cons
shonbts of convidorable fabeoresh dn this problem ave the (enevey) refiectlon and
. = . Farat a R Q a ) & F oo pw ¥ a
Grensnioeion coafilaioats, , ol ond I'T;,I {ogusion (5.5.1)). Ioldwin oxd
feins [ R0 1 hove shown, wsing an integeal equation mebhod, thas, vhen the

shotruetion axbends halfwvay sovoss bhe duch, bhw tvue velues of these quanbitieo

o
< T} -] . 1 LY ¥ .
ave given by [R,| = 4m"p ITol = c0xp whiove P = 2, (1) anc vim 24K,
me) L B
Suraring thio sevige fow £ by fnlerts Ceaneform mpthod these foamles plve, fov

the cose in videh WR =3
IR‘,]"= gaoste I = 0,778,

Usdiog tha disorede broanoforn mobiod apgrowivabe values fov these guantition
hove been obbtodined for variows neb opocings and fow bobth cguora asd alne poind
neh pebtornn. . dn the somure ek case vhoe formdes Yor Rb and Ty oiven in
fz»:{}fwmm@z, {5.5 15) and {5.3.1h) veve cnployed for this pursose while covrosponis
fng Povmnioe vere veed in tho nine point cose. Fhe nob spoeings amployed
eorraopondod o valuee of » equol G0 3y 9, Toapd © (Mg 21} Ty p’ic:w,m the
aparosinabe valusn of II‘?.,I'2 ond lTola&gﬁfz,;iah:%t “LH » Brophs soy be drawm 0
iiiustroto the coavergence of tho dincrebe solublons o the tyue solubion oo
the nob spacing i relucsd  OGa pSa, o muber of sueh grephs oye veproduced

those auwwbored (15) and {(IN) covwenponding to the mebthod dllusbrebed in the



previous gections, uslng square and aine polnbt neb patberns respectively. The
grophs (18) and (IW) show that by this method couvergence is near linesr bub
slow.

B 5.6 Obther mebhode

In § 5.3, on accomnt of the Neumann conditlons on the obstruction, we chose

the lattine bto gtraddle the common hmmiwya (For convenience we shall call
this case (1)), Due to the slov rabe of convergence menbtioned in the last
secbion, it seemad worth~uvhile Lo consider the solution of the problem vhen the
lebtilee is chosen to be colncident with the common howmdsry. Two cases have
been considered which we shall refer to as cases (2) and (3) rvespoobively.

In case (2) the lablice wae chosen so that the end-point of the obstruetion

was colucident with a mesh point (Fig. ab).

otntsdhaiibualinlie T Tiut teull i Sttt
The mamer of solublon wos the same as in e -J' - - -7,‘- -E- - - -
|
3 3.3 except thet the conbinuity condition 2L .- $— ..: - -;.- - :\i[ - ————
giving the (§+1) simultanecus equations Z.'_-:'.'._"_:_ o _'LT&:E_— _:'-_ o
(I
in tha ( $+|) wknown devlvatives intros o L . :T _{ _,:f..i_. :r' _______
dueed on +%0 @b $=O0, 1 , & ;.-cj, e T T
was eupressed as g, 2k

4’0,5‘: 'V’o,s 3 SFO LR
{c“:{‘, aguabion (3‘:33))

Tn case (3) the latbice was chogen so that the end-polnt of the obsbruction

e n i e v A ST R W MR SR e e e

1oy wideway bebween two mesh points (Fig. D ———— f:___ - _:_ e LLEE
25}, A slighily Qifferent mabehlag process syt E i L _{__{__ L
| |
was used in this case which we shall byiefly e m e 'SF '*:"“ 'il' 'i"' ‘:‘ _;j' """"
illustrate . sse __5 -1 ; _:_ i__ -
______ T I - L ———.
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Agsume, on the left off the obstruction line ~+=o0 , thad

() = od, ek,

“2,s ? S20,0,3,.-0, v, .
LY
Then by Taylor sevies expansions sbout the points (0,58 ), s=0,0,. .., n
3% con he ghown that
£ ( éﬁ ("’osp
ox

LEY-

"

}Jﬂn

4,28, + 1%, Tl o, (3.6.0)

tiheys &s 0, S>3 » a.:zﬂ. the gquantivies &5 80 delined are, except for o
factor R spproximate normal doerdivatives o the leih of +:0 .« Wrlting

eguations (3.6.1) 1o matrix form wo hove

" - L - -
% 'ge "2?" * < ?-.; - ﬁ: ‘ {90@’8)

where g; = §¢~.0'¢'M yroes ,é,,,jamﬁ 'i = 5}0»(}::' o i @9 ,O}Qf type
{(m+1 ) x) . Similarly by deriving oxpansions for the aprmmimuca nowmal
devivetives on the wight of v=zo and using the continuity of ﬂeﬁm{;:im
goeress 4= 0 , we obbain

2 F,-2F + 4 F, = -H (3.6.3)

~ 2

whero g;‘ = § wq‘og ‘y,q‘, »- ) "V)'i\-} .
Bomabions {(3.6.2) and (3.6.3) correspond to the mabrix difference equations
{(5.5.100) and (3.3.10b) of § 5.5 and are treated in esectly the sawe woy to
'y r L3 4, LY
express the solublons ,ﬁ_r end I in the seml~infinite rectongle on the left
(o J [l
and on the vright of the cbstruction respechively in terms of the ( ;\H )
wknown devivetlives a' ' (3 = 0, 1, 8 oo J) As in §§ 5.5 these unknown
devivobives ave then evaluanted using the seb of { 3+ } simulioneous linear
equabions obtained wodng the condition off conbinuity of the solution across the
gop betwesn the ond of the obstruchlion and the lower edge of the duct. In this

ease this condition 1s expressed in the form:



The abeady-stabe wawve problem has also been golved by o soend-continuous

method by leaving the Yx" varieble in the wave function ¢(x, ) eontinuous

buk mixxg gifference epprowimations in the

3 P directlon. Only horizontal

meah Lines we are therefore usad end, as in case (5), theme vere positioned so
that the ond-polnt of the obstruction lay nld-vay belween bthe two lines given
by 5= J ¢ oand S= (,'yH ) {(Fig. 25). The method of solution nsed was similay bo
case (3) bub the mabrix dfforence equations (3.6.2) and (3.6.3) were written

singply ag

'

( o(.g—(x.)) - d F(x) - H
clbx X0~ dx /x<o4+ ~
where :‘?ﬁ(") = §¢("a°)4v é‘*’ ")a -, ‘ﬁ("a“k)z R :f(x)= f'll(‘m), V‘(‘aﬂ, s vy 36(!;'-‘-1
Graphs, covresponding to those of case (1), ave also shown on p.YSa for
cases {2) ond (%) weing verious net petberns. o dlstinguish the graphs we
have anwnotated them by means of o mmber avd a lebbter  The nunber corresponds
to the cpse (i.e¢. 1, 2, or %} and the lebber to the “E;y;g@ of neb patberm (8 =
mfaum* e; D = dlagonnl, ¥ = nine point). PFor exomple, (38) is the graph obbtoined
in cowe {3) using & squore net patbern. (Tt should he nobed thet in oblaining
these grophs we assumed the obsbruction to extend balf-«wmy across the duab.
n emse {2), thevefors, only even values of "n" erve possible vhile in coses
(1) and (3) ™" maot be oad. ) CGeaphs Ffor the semi-conbintous method sre
indisbingudehsble, on the sceale u%@; from those obtained in case (3) using
g dlegonad pet i.e. eurves (3D).
These graphs 1llustrabe bwo main poinbs:
{n) in each case convergencs is near-~linear, but the accuracy of the discrete

approximations is poor.



L] ‘rﬁ w

{b) in some cases convergence is "from above” while in othevs 3t is "from
helow'. In porbicular, convergence from gbove occurs when the net is
chosen such that the »@ﬂé&ﬁ:@aﬁ.m of the chstruction colucldes with o mesh
point . Grophs corvesponding to dlagonal and squors net patierns do nobk
converge from opposite dlvections elthouvgh one might expect this from the
eryvor terms in the vespecbive difference approxiusiions Lo the porbisl
ditferential ewmablon.

It secns that no theory exists ab the present woment to é}@l&im these
vesulés buk, in case such o theory is produced by someone obher than the cuthor
of this thesis, the figures from which these graphs ore dvawn ave given in

Appendix B.
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COAPTER L
AN ITERATIVE PROCEDURY UBING 108 DISCRETE TRAVSFORM METHOD

4.1 Intveduebion

In the squore box condencexr problem of Chopber 2 and the steady-state wave
problem of Chopter 5 4% hos already been poinved oub thot the acem‘acy of i:h,é
vesulie obbained Ly using stendard finlbe dilference equations ig poor. Movew
over bthe rate of convergence of discrete approvimations to the exact values asg
the neb spacing is veduced is slow. The réason for these facts is the cccur-
renee e:af singularitics due to the presonce of sharp corners. I6 will be shown
in Chapter 5 that, ab loagh in the condenser problem, both the accurvacy ami
the vote of convergence can be impyoved by weing speclael difference equations
at mesh polnts neay the singwlarity. Ia ovder Lo provide a flexible tool fow
uping these special eguations in conjunction with the disevete transform method,
ve illustrate, in this chapter, an lterative procedure fovr solving the condenser
problen vhen speclal diffevence eguasions ave used abv any mesh paizlta% .

The idea on which this itevative procedure iz based is of geneval appli-
cotlion. It may be used to solve the finite difference cquations corresponding
o any ellipbie partial differentinl equation problem which can be solved by
geparasion of vaviables vhen some or all of these difference equations are of
apecial fowa. The method may also be used in conjunction with Fox's 'differvence
corvection procasst | W J to increase the accuracy of dlscrebe epproximabtlons
obtelined using straightforwerd technlques.

b2 The Iterative Procedure

Rofore coneidering the specific problem in § 4.5 we state the geneval

mevhod. Suppose that instesd of the standerd square net pabttern (8 1.1) for
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Laploce's cauation ab the polnt (+K , 8K ) we have a move general equsbion:
M 4’.,,;" ("‘c ¢-H-),s + <, ¢+,S+l + oe& 4"'-!,3 + J* ¢\"05“")
- (P, ¢""l,$"'+ Pa é""! S+ + BB¢Q-!.S-' + ﬁ‘f ¢"+‘, 5'0)

T = ©,

(h.2.1)

wheve the of ¢ s /3;, s wees BPE constants bub thelyr valuss nzy depend ou the

pavtlanler poind under consideration. We shall write this general eaquabion

»*
L .4')-#)3 = © {4.2.2)

»*
where af is @ linesr diffevence operator. Bausbilon (L.2.1) may be weibben

Qs

in the form:
“'4’1‘.5“ ¢'H-|,s_ (‘b-r,sun ¢¢-';3_ "6'*.&-! = (ol,- 1) ¢-u-0,s + C“‘.{') ‘;b—f,s-u
+ Cd-’»— D ¢>1-l,3+ Caf"-vl) 4)'*,3-; + ﬁ' ¢1‘+I,S~H + A‘p-r-n,s“
t Py ¢-M,s-4 + Py ¢’-Ht,s~c e {(h.2.5)

1.0 f‘j’vﬁ; = M ¢'f,! {h.2.h)})
whore o » TN ave linear difference operators such that

b 3
L-M = & (h.2.5)
ef ig, in fact, the standard squave net pabsern linear operator for Leplece's
equation
Cheoosing an initial guess, qb,,‘, » Tor the fuaetion values at &ll mesh~
podnss of the reglon we define an Lterative procedure by

(Hci

(M
‘f‘ﬁ-& s 'chfl.*'s s h=osna, .l (%.2.6)

(» .
where & superseripb denotes the pth itevate. Further, letl

..
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(h+) Chey (R |
Sy = buy mPas (4.2.7)

;s

(h)
On subtracting L ¢ ,s From each slde of cquation (L.2.6), we obtain
(h+v)
S.,,‘, . (f" W’Z) 951,3 ’
*, (k)
= f ¢4 s 2
CA-H) (h)
1., L g = - R.,'s BEY (4.2.8)

(M
where R +,s is the "residual” ob the pth itevabion, i.e. the non-zero

1

i

aquantity obtained when the approximobte values of 43.,..3 found at the pth
iteratlon are subsbitubed in the lefhond side of equation (b.2.2).

The final formulae for the iterative procedure are thevefore:

(h+1) o M Che) ‘
brs = b, *+ S4s (=)
l #Z‘-.Q #
(hed) (A (2.9
vhere f S«r,s =" R?,s . (h)

The basic principle involved in the iterabive proceduve (4.2.9) is that we
compute accurately residuals ab each mesh peoint of the regilon using the
difference eguation sppropriate o that point but reduce or "relax" these
residuals using the simple equation for the square net pabttern. (This principle
has previousiy been adopted by various users of relaxation methods of solving
difference cquabions, e.g. Voods [ 13 1.) As in ovdinary relaxabion, the .
itevative process is continued uatil the residuvals, R’,,f: ’ s @b all nesh
points of the reglon ave less thaun &€ , say, where € is auy swpll owibher

previously specified.
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3 (k) 3 * . LI
In this procedure, residusls, K 4,8 o 8t the pth stage of the iteratlon,
: . ) (h+t)
are coupubed for all poinbs in the reglon and then the corvections S,,.s
pre computed for 2ll points using equation (bM1.2.9). The procedure is,
thereforve, related to the method of simulianeous dlsplocements fovr solving
boundery=value problems in finite differences {sece, e.g. Forsybthe and Wesow
{ & 1, p. 220). We sholl now illustrate how this "simultansous velaxabion

of residuals” may be cavried oub using the discrete transform wmethod.

% She Sausre Box Condenser Problem with Special Difference Douabtlons ab

Ay Vesh Pointa

The problen consldered in § 2.3 covsisted of the solution of Leplace's
equation in ‘f.@:tee' reglon bebween tvwo concentric squaves with corvesponding sides
peraliel and such that the sides of the laner squave were half the lengch of
those of the outer. The inner aquore wes assumed o have pobtontiel unity vhile
the outer sguave was asswed to be eorthed. It was shown that, on accouwnt of
the synmatyy of the problem, we needed to consideyr only one-elghth of the lutere
squave vogton (see Fig. 15, p. 4T7). We consider the some problem in this
gection exceepy dhat, insbend of using .“bhe ovdinary square net patbern gt each
mesh point of a square labtblee covering the reglon of the problem we allow

=0
the use of any eppropriate Allfevence equablon at any of the mesh points.

" Simple emomples of apgroprlate difference eguations ave the diagonal ond nine
polnt net pabtern equatlons (§§ 1.1), It was pointed out, in § 2.3, p. 50, that
diffieulties pre encowtbterved when we vy o solve this problem as o single region
problem with these difference patberns. We suggested that solutions cowld he mor
eopily obtalined by considerdng one-quarter of the inter-squarve veglon and reghrd.
ing the problen as an adjecent reglon problem. However, solutions usieg diagonal
or nine point net pobborns can easily be obbeined by the method of this section
vhere the problem is regovded ag o single-vegion prdblem. This has been carrvied
out For vhe nlne-point pabtern. See § b,
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Binee the disnensions of the weglon and the conditions oo the bowndaries
are the sane as in 8 2.5, ve position the covering ladttice in the soue mannep.

Thot in, the lodlice ig positioned

, H w _ T
(Fig, 26) to colncide with AC, HG, , - - - -
Sam fomds ~ — — — — e e e =
and AU and such that GC colnclides semet b tl e e
with o node on each of the 'n' mesh ]
l e emm
EG“TS * Swl )= —-1 ————— -+

: 420 42/

The iterative proceduve (1.2.9)

is veed in the following way. AL any Tieg. a6
_ 49
ghage in the iterabtion values 43 are lnown for the pobentinls at all
(h)
mesh points. From these, residuals R +,3 ore compubed ab cach point using

Ch+eo)
the difference eguabion appropriate to thet point. Then the corvechions 5., s

ave compubed Lrom:
Chary o (R Che) (h+) (he) (0

"l' S-r,s B +¥1,S B +,34+1 +-1,8 80 +3 2 (l!";;,h.})
subject to the conlitions =0 on AC and HG and Nouwmonn conditions on AN
oxd GC as indicoted by the arvows in Fig. 26. The new potential values ave

then obbained from

(h+1) (h) (R
bos = a8, (43.2)

(o)
To stort the process we guess or compute suitable initisl values é i .

Bouabions (4.5.1) sve solved using the discrese transforn method as follows.
We firgt obtain velues of the repiduals at mesh points in the inbterior of the
rogion GCWusing the reflection condition on GC (Fig. 26). The bounda~ y G¢

is then dgnored For the present ond, Dy transforming in the "s" ditection



w 81 -

and using the Noumann conditlon on AN , we obtain o solubion in the semi-
infinite rectanmle TAHT involving 'n' arbitvary consbonbs (ve assume S=©
on AL and HJ ond zero rosidunls ab mesh polnts with +>Xm+l Jo A ' mxaw !
sot of simvlbancous cquablons is then obbained for these avbitrary constants
by using the condition of symmabry gbout GC . The romeinder of this section
in devobed o the Sechnical details of this proceduvre.

The solubion in the seni-infinlte rectangle TANT can be obbtained by the
uathod alveady diccussed in 8 1.5. In mabylx fovm, cauations (L.3.1) oves

ke o e o (h) (h)
- - +-q ~ T . ¥ > Qa (il-a:})ofé)

~

tien)
Hon)
il
i
A

pole 2 ey

vhere A hos been glven on p. 6 and
-

ALY Chet) (k1) S (kn);
8 = § L N cs-fa, y ~ o7 r T ’
~ ’
(A) j
§R¢IJ ‘iﬂ.)"’"' ‘R’f,‘h, .
(lm)
Sinee the values of S on s:0 and 8= (w+):. ave mero, as dn § 1.5 we use

elgenvalues A ¢ ond elgenvectors § ¢ aueh Thab

T
On pre-mutvivlying equation (4.3.3) by § g e obbadin:

(h+o) Ud-lJ (A+i) (A
F:E,-Mv = (b~ 22, ) F-é‘,,-l-: = ]3-9,'* . (&:5.4)
(he) T (heo) LT (R
were F, . = S, § and  Po. = 9, B, . When the
N — e LAY (o™
~ - (At}
- (hend ave Jdetermined, the can be found frow the inverse formls,

2,'? ~T
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. (A+D) ki - Chﬂ)s
.§.+ = Z : ‘.:i‘,rv- € (L3.5)
~ £=1 A_g:a
2 ™
Thers Ae = ;§e ,§£ since, in practice {g 1.10), QS ¢ 1o normalised such that
S a(t) =1,

te next solve the equation (4.3.4) oubject to the boundary condition
(h+?) (h+1) |
e = Fe, €= 1,2, s, (4.3.6)

3

By using mobthods similar to thogse developed in Appendix A 1t can be shown thot

o gorticular solubion of cuyuation (4.5.4) setisfying the condition (4.5.6) is

(R o
€,4 = Z K‘ea"' {B‘eti’ ) (4.5.7)
LTO
o, [+ ¢ L,
i (1-¢ . [4f-¢
Thore K (t) - [).e - {p,i , l"f‘ >,(:, ’ L# Qa (!»Ev 3 8}
- ﬁ"f Pe" @e I ' ‘ e« Je
{4f-4 4L
. Pe , [+l>¢, L =0,
ol
Pe" Q-ﬂ.

Pe » Pe belng solutlons of ol - (k-a2 4)0( +({ =0, On adding a complemecntory
function satisfying the condition (4.38), the complete solution of (h.3.h) is

found to be:

(h+1) A ) (h)
£, = C.e, Yé_ + r.‘i,«r ' (2.3.9)

A)

) + T ] (h)
= [ +P  and Cgp  is on avbitrery constout.

(+
where V.,e

From eqaabioa (B.3.5) we hove

— (A1) 1 (h) () My s
S = %Cg Ve + s _{ ‘-!A% 3 (4.3.10)

~ T



w %

1.@. the correction Yor the function value at the point (+K ,sK) ot the

( b+t }th dterabilon iw

“

S (hu)_- Z c (“Vm.se(s} D ()

"’3 - "e £ """‘“":i + "’,3 p ) ("}"20"‘)
‘f" A.é
s)
whera Z r’ &+ 5‘%‘ . (1.5.12)
£

(h

To evaluate the arbitrary constants C ¢ Ve now use the difference
equations ab mosh points on GC (Fig. 26). These ave:

Ch+D (h+1) (h+0 ) &

[ - - ™ » =’J -ve ‘.'r . o

mrt+ R , =R 2 S"“*“a"‘”'& o ""*”ﬁ:'“'& w8, mei-R e la3013)
Eauetions (4.5.11) and (4.5.13) ave anslogous to equations (2.5.7) and (2.5.8)
and follouing the procvedure illustvabed Lor these latter equations to obtain

equabions (2.3.9) in 8 2.5, we obtain the malogous equations:

2 48] (A .
Z wgeCe T da Raty2, oo, (2.3.14)
=

vhere ug, eave defined in the line mmedmuely fol.!.cxw.iag, equation (2.%.9) and

n 7y
(A f § g S, (wei- k)
C&& =3 Rm-l-u-'& =R " g 2T f,f»::“ﬁ ,-'2 Y AQ

()
S, (m-R)
+Z r;’-.'**‘“% "é"’“'""“‘s + (h3.13)
£=1 AJ;

An lwportant feabuve of the Fitting equebions (1.3.14) ds that the coefficlents
Upp 86 independent oFf A w0 thubd the mebriy of cgeff:te;f.enﬁs need ha inve:;:-tec‘l
ouce and for all.
The covvection at the polnt (+K ;54 ) is then obbalned by substibubing these

solubions indo equation (2.3.11) or, elternctively, into (%.3.10).
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i} bk Compubobion of Solubions Cfor Square Pox Condenser Froblen using the

Thorabive Procedure

In order to deserlbe o convendent mebhed for carvying oub the compubabtions
fuvolved In the procedure of §§ 4.5 on an anbounbic compuber, e express the
fovimulae of 8§ 1.5 in matriz Lform.

o2

We frst wrlbte the iterative formmla (B.3.2) in metriz form Dy introducing

Lﬁxﬁ (§1%7
1

ke

ie

r _.-T v T
~ N O 2 A~ ) » %éq‘gl P ]
—-T T - T
'§£ ) ‘;"'é"hL“" 'é&m-ﬂi“
am— r 3 i
'Eﬁ’l’é‘}l’ig .%‘* = § ¢'{-‘. p ] ¢+‘a) A | ¢-"“§ ) %* = §'§.’*", é."a) el B Y fsq,“?ﬁ fg E!.z"'lﬂ

-

S ore, therefore;, both of 4ype {edm+2 )X . The ibevesive formila (.3.2)
N

way then be wedtien as:

(R0 o (h) = Che)
4 =3¢ "+85 (Bakat)
o~ i~ s
— (he®
The makriz avvay 9 gives corrections, ab the { A+l Yoh iteration, for
L .

all points of the vectonglor region CAHW{(Fig. 26) but, since wo have
ppswied S =0 on GJ s corroctions ab mesh peints on the right of 6C ave neither
correct nor roguived. {(This moy be shown by on argmoent einilor to thet given
in connection with the direct mebhod of solving tha eseguafrfé hox condenser proe
blen wsing the ordinavy five polut square net pabiern (pp. #9,8¢).) Conse-
quently funchion values given by { ket ) for the { h+1 ok stevabe on the
richt of 8C gre Incorrect. o uwse is mode of these however in compnbing
vosidusis dn this reglon pince, g mentioned previously, these regsidunls ore

ohtained by refleetion aovons GC .



m85n.

(h+t)
Ve shoall now deridve o nsbriyg

expression for &
N

) (K
Ch_ [ Cﬁf vw

« Deflne

+ f'; " ] , Where o dg the row muvber and €
’ the column ey, © €4+ € Aul, 15 €sw

S, S T
and é’ ) §A'a'far--- »gﬁgoi‘ﬁme (mxm ),
then, by equasion (#.3.710),

2ioni

h+t) C;‘)
[ - % S '

{éhlfuﬂ)
C+)
Farther define V = [ v vhere + is the row number, € the
~ colunn mmber,

® (N . CA) C “’z
= dszﬁ{g? e ’

)A.J A

0

[
(M [ P ‘ )] of Q'm:}t (A2 )xm, ee. © S S Ant,

() cm“’ (A |
then g = ‘}.,/ C i+ f : _ (h.h.5)
From equatlons (.2.2) and (4.4.3),
< (M9 ' (M)
S - (vemer)E. (o)
(LY (n
How 1 wo dedine B = [ R 4,5 §. T the xow nmuber, S the colwin mudber
ivoe of type (Rwmea )xm,
N 2 <? =
= ﬂ:;ag%A“AJJ..-,.,A,,f,
(o™
(h Y T
P o= RT(AS)
(¢)
Ke = [ e,

vhere + is the vow maber, ¢ Fhe
column nurber o that mabrixz Ke
18 of Gype {dwmer I x (dmw 2 )
(equation (4.3.8)), and since

1 €0 $w » theve ave 'n' matrices

'fg’
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o
o

I

and 3? e = and(wanw) mabrix whese only non-zevo element is (€,¢)
with value wity,

it con be shovn bhab
. "

"1 )
= ; ISQ & 2.91 ) (k.53

.

Trom equabions (MJuh) and {(3.0.5),

L (A0) w? & (R )
= (YE *; e l2 oo <, (4.2.6)

il

and this is the form used for couputation.

The sot of simultaneous equations (L.3.14) may be written in the form

%Sm‘~‘ é’m, | | )
whore U = [ugeor type (nxwmy , €N §efe®. ,C.f?émc'i C;,U‘f_. S
.51“;. Hence " Y ~
NN C (h18)

This conpl ri.es the matrix fommmlation of the mﬂw(i of § &.3. Ve next
discnss the compubational proceduwre on the Douce electronic compuber (mark II
vorsion) wsing the two aubo-code schemes, Alvhacode and G.I.P., referred to
in ::3 2-&4

R 7 =t '
The motyices & sV s A4 5, K560, ..,m, and U do not alter during
o (% N 0\£ N
vhe lberative procedure and ave, therefore, computed once and for all priocr to
the shbart of the maln iterative programas. The compubabion of the matrices
o qg! ) o ) .
,S' » X s and (é hes already been indicobed in g 2.0 end in the flow diamran
N\
on pe 56. By minor modifications of the Alphocode part of the programms in
8 adwe con aloo compube the matvices A ond K K¢ » €=0,2,----. , , The

-
elomantn A : = § A g‘S ¢ o5 A are unirea in the compubobtion of the matrix ,5'

A



o £ o

co vhat we nood only mprange o storo these appropviabely to obboin A o Bach
(a4

eX L + 1or ey, Tty «pa 23 Peh i) '-?-.v-". PATTY YU A LY R T
aotpdn K Ke weny he Povied whdle commubing the mobein X o Ohio followe fran tho

) (D
ot thet elopents of both K, oud .¥ s Lo, K o4 ond Ye respoohively, oo
~
swpronead dn bovms of the guantisies £ ¥iE) ‘-P (oo acmnbions {h5.8) o

4 - " ey iy o e 5 any 5 e 21 v B viaan 0 P o )
(5.3.093), o prection it is caslor Lo conplte the dwonorose of !S o Binee s
thon reguive So eompnbo oly She Jirst ond pecond rous, 01 obhse rows tedog
dadueed Crom the second vow. The peasons for hls ave: {a) in JL 63,
pabrdens oro storeed By powr (D) @ feclilly czioby Fov moving Wlooks of mwibess
[ T \n S N N 5% y P T N 3, . £ T . PRI T
badd dn eonsocwiive stovas, ond (o), from equbion (B30}, K do of éhe
Foral -

" Rn+d
o U P Pe 1 - P o A
) '3 P ] 3 y - - ’ )-.. e )"!‘ £ ¢£
2~ P Fo~9, 2 - P
2 2
o, o s PQ“ Q-f- '?E-gpl. ".‘.)'2: 9')'2
k T P ¢ » P 0 ) - ——— 2 L £
= = 9 T Ve e
~ L £ € "C a{. A
- Rn=i LY
o, o , o , L% 8™
P, -
R e L . e__?'e Pg" @e
Lo, o , o o, T ILT.T. T e
Tho dtavebive procedure ovolves thoe wen of Jour auto-ecle proprtnmtes,
we An Alphaecode ond fuo dn G.3.B.  In Alphocode progroume 1) the meberiz
(h . .
ef rooidanis !3 © de computed ond opunched ouk Gogether with o column vosbor
w
H™ o8 posiduale ob wmesh podnte on the bouwndary GC (wigm. 26), the lokbor
“ .
. Y 3 » L) "
badng rogquived for lobor compuiosion of the modteizn (\{( wgad dn the LBty
oguabionz. X0 prowsomtn (1) 40 thon used o 1 fczaﬁ: Hhe mmerdead magaltede
ot ] A, b 2y (L) . A
of e loypost rasidunl, Lo conpube Hhy oaneris E » Lo fora tha apbyicen
( b Xl
SQ , o3, -0, w, and then o cougube the mabrix !:’ {opuntdon (h05)).  Using
N

(3

U\) . (h) A
tho wabviess M o 7 ‘ishm SEEX o N é/( 1g ecoupniad Ao Alphaoendo
Lo

[aSd
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programme (2). Finally €.I1.P. programme (2) is used (o) to compube the columa

(h) 0y
vector € 5 (equation {(4.4.8)), () to dlagonmalise €, {e) to compute

[

= (h+1) _
the mabrix O {caquation (4.4.4)), and finelly (3) to obbtain Lhe next

~ (lﬁl)
Lhevate % {equation (h.b.1)). Tlow diogeaws for these programmes, showing
only the nain sheps are given on p. 89 .

Bach of these programmies is arvanged to work in fully-flenbing é.riﬁhméﬁic 3
it being necespgary bto hlock~flost only vhen porforning motyix additions ia
G.E.P. (1) and G.1.P. (2). To loss In accuvacy is caused by this, however,
gince elements of auy one of the matrices involved are of the same ovder of
aagnitude.

A move efficient stonderd Deuce programne { &4 1, weitten in basle machine
lengmtage aud working in fived-point avibthmebic, exists Tor solving problems of
this noture. This ptandard programme is, however, able bto denl with dilfevence
equbions involving only jgoﬁeﬂt:i&ls ab the five pointe of the ordinary sguare
net pabtern (§ 1.1) and can only give resulis accurate to Tive decimpl diglts.
The auto~code programues discussed in This sectlon con deal with gny difference
gpproximations to Leplacets ﬁaamtion Involving pobentials ab any of the points
of the mine point net patiern and has been used to obtain resulits accurate to
seven of the nine decimal Qiglts carvied by the mochine.

As an exauple of the use of the above Lterative procedure resulis hove
been ohtained for the condenser problem when the gpecial difference eguntions
were taken os the difference equations of the ordinury nine point net peabiern.
Tao cases hove been dealt with corrvesponding to values of n = 3%, 5 wheve 'n!
is the mmber of mesh lines bebween the boundaries AC and §G (Fig. 26) and
resulis Por the case 1 a' 3 pre shown ln Fig. 27« In this problen, and also in
he problems solved in Chapter H, 1t has been Lound Hhak 'Zzhse.ma;;imma residual is

refuced by o factor of approminately 6 after each fteration.
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SLOW DIAGRAMS FOR SQgJARE BOX CONDENSER PROBLEM USING ITERATIVE
METHOD (ITERATIVE PART ONLY)

ALPHACODE PROCRAMME (1 )
I

* VALV
rofl mATg

Con\'we Afo (k

2.t "V,
Of AeSIOVALS
RVOW Cokopsst/ ALPHACODE PROGRAMME (2)
VCcfoR
BSIOUAKS OV@C

G.1.P. PROGRAMME (1)

G.1.P. PROCBAMME (2)

ReAD A,jS I
SToP aDforn Clegjj

\/

READ KE: AAD
Fof® 9 ,/' "V/*A

THST /



g0

" SQUARE CONDENSER PROELIM WITH ORDINARY NINE POINT NET PATTERN
' CASE, n = 3. (RESULTS QUOTED TO FIVE DECIMAL PLACES)

©'1.00000 -~ 1.00000 1.00000 1.00000 1.00000
H | T _

0.7k283_ 0.7hO37_..0.75100 0.70600 _0.63429

0.4D00Y  0.BETT _0.kT502 O.MKTTI _0.39291 030087

0.2h304  0.24090 0.253k2  0.2075h  0.18960  0.1917  0.10112

o oo 9 0 0 q

Fig. 27
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CHNPEER 5

T TREATHERD OF THE STUGURARTTY IN TUR SQUARE BOX CONDENSER PROBLEM -

\
a1 Inbroduction

Alchough iy authors menbion: the fact that sioguler polints in beunda:r:f—
volue problems vequive careful treatment, very few specific methods fox deing
this appear to have been published. In faet the only useiul re:z’i'erences which
have been Ffound ave Southwell [3] vwho uses an 'sdvance to & Piner nebt' taé‘miﬁne;
and Motz [11], Jeffroys and Jevfveys [12] and Woods [13] who each demé:*i,ba‘-
wethode for generabing speelal diflevence equations ab wesh pointg in the
vicinity of the silnpulariiy.

The objects of this chapber are two-folds
{a) to describe methods for generabing apaeiai irfevence equations wmc;h’aﬁs
vm’:imms' of those of the obove cuthors and to describe a new method in
mﬁ.(.h idans of Woods and Jelfireys and Jei‘:i‘mw are combined, |
{(b) +bo present numerical resulbs Ffor the sguave box condenser problem when the
singlar point is treated by all the methods in (a); this enshbles o e‘szz,x-‘-'
parloon o be mae on on experinental 'hama; of the effectiveness of fi‘é‘l&ééﬁé
m@uhaﬂs in inereasing the accuracy of diservete approximations o %‘zhé mu@
potential valuss. (The published numerical vesults ave fow in nﬁzﬁzei- gﬁf&
there neems to be practically no discunsion of the lumprovement in asceuracy
cbtainoble by using these special methods. ) | |
Wa ceﬁfﬁn@ cuvselves Lo saiz:rm‘i,aritieé of the kind which Woods has clossified
N .
as Type I, 1.6, g;‘unci;ie}r;' ‘zraluea neasr the singularity ave finibe hub depivat :3. VES

tend to mzﬁ’mﬁsy on agpraaﬂm:xm 'i;ha singalayr point.



5.8 The Generation of Speclal Diffevence Rquations

In this secblon we Plvst deseribe the methods of Mebz and Jeffreys and
Jefiveys aud indicate how 'i;h@ se have been modified fov our purposes. Woods's
wmathod 18 then introduced and this leads us into o description of the new
mebhod of geneyabing speeial difference egu,ut.mnm We finally show how i:hé
Finer nob idea of Southwell may also he used bo generate speclal diffevence
equabions ot mesh peints of the owliginel, vepular lattice. A singwlewity of

Bype T exlebs dn the sguave box condenser wroblem of Chopber 2 aud this is used

%

For the puvposes of lliwsbtrabion, ’
Tho veoson for tha ingecuwracy and the slow convergence of the discrete
pororinations in the condenseor problea is the ropld verdabion of the @ﬁ’iﬁﬁﬂiﬁaﬁ.
field near the sharp covaew, L.e. the polind G in Fig. 28. This means that the |

prdinavy equatiocns for g squave

dabbice (8§ 1.1) ave nob adequate F £
. —
* e e P!
tiffevonce yepresentations of the ; ;
¥ ’ % 3 x + 3 ] I |
portlal difforential equation in i il
’ . s ot e s e -
" ) as R A
this vegion. In oxder to develon B D
a 3, 51 J ¥, ybe Vi 3 4o HL iﬂ-if I-l-i ------ \'(
BOFE Qoounate reprosentations, 1t SRR .
i 19t 14 lM."' D
is convenlent bo bal Q"{ﬁllﬁ - —— {;,,—-:,: :-,g-l-,- -
\ P
x i l ' ]
geconnt of the special, behnviouws T L
i I | : \
of the field near the singulerity. Loyt
* L\l ,x s H B c
To do Ghis we nee She fact that It
5 poosible to represent the fisld Fig. 28

I the nedghbowrhood of ¢ by o ceries sbhout & of ¢the forpu

¢ 9+91y0m/9+9+6mo29+9*‘“‘ ©+.---- (5.2.1)
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where © = O covvesponds to GH  aud ;t:he A; ore congbants. This serdes is
obtained by separating the variables, ignoring vhe boundary ABCW . |

In the method of Motz [11] 1t is sssumed thab the fleld near the singu-
loxdty is adeguubely reprosented by a sories of the above hype with & finite
ober of terms. ID the Minlte series has ‘n' terws then 'n' points gome
Gistonece from the singwlarity ave chogen and the 'n' arbitravy constonts
ara exprepsed in tepms of the pobentials ab thege poluts. The finite serles
1z Ghen used o oxpress the potentials at points in the nelghbourhood of the
. singularity in texms of the potentlals ab Che move distent polnte. For exeuple,
18 med , wo may express Ao , Ay, and A, in ters of '75;, s P s

and @, (Fig. 28) and the finite series may then be writlen:

$= ()b, +7:(.9 ¢, + 7, (+,©) ., - (5.2.2)

Dy substitublog appropriate values of '+ ' wud '€ 7 Pov the point ‘s ', say,

in equation {5.2.2) we obtaln the speciel diffevence cauationt

‘{‘¢5 = d’ ‘ﬁ.’u +d2 ¢IO + d.! ¢ga 2 (50}213})

where the o, are nuwuericsl constants. Speciel diffevence eguntions for the
poinks *2' aud 6! may be obbained in simllay fashion.

Ve have modifled Mobs's method siightly by expregsing the potentiol ot any
point near bthe simglerity in torms of potentials ot lmmediately neighhouring

points. Tor ozample, we welte:

#'955 =B Pt hs ¢,¢+ﬁ3 ¢+ P ¢; > C(5.2.0)

ov, HO obigin o wove accurate Joxmmla,



mg}l%m

e b %.ﬂ}a Bor *psbu + i Pio thatu thtdo tha bt s b (5-2.5)
The coefficlents /3;, and A/;, arve detormined by & wethod preecisely similoy
to thab described above for the ordglual Mobz methed. Numerieal velues of
these coofficlents ave given in Appendiz D (i) For the spoeial equablons ob
the points 5%, '2% and '6'. (In this appendix, equabtions like (5.2.4) ove
veferred b0 as five point special equabtions and those like (5.2.5) as nine
polnt spenial eguations. )
In both the origineld Motz methoed and lis adapbation,; the nuwber of
undeteramined coofficlents A; in the finlte series:
M

¢=hA,+ ﬁ.'ryi"“%@ + 9;*“6%49 S . “:‘*[lﬂ:{})@

is exactly equal to the nwiber of potentials in temms of which the F);, are

expressed.  In the method of Jelffreys and Jeffreys {12], however, the muber of

A, is less than the awher of potentials and the wethod of leagt squares io
used bo determine the opbimwn values of the A; . This is cavried out as

follown. %he firvet fow toims of the series ave taken, soy
A . Q.
d= A+ Ay 'L,..ge + Ayt 40RO (5.2.6)

ond the regidund; R3 s &6 the poing °* 3 'ois defined by
/s 2
- . " - . A .
L= §m A Ay e 26 A v 828
The sun of the squaves of these vesiduals ab the polnts with j= 13, Th, 10,
15, 16, 11, 17, and 18 (Pig. 28) sre thon minimized in the uoual woy and {the

opblovua values of A, , Ay , and A, expressed in terms of the potentiels ot



these points. The speeial difference equations at the poinbs '5%, 2% and '6*
are dbbained by subsbitublng these opbimum expressions luto equation (5.2.06)
applied to Pg o, P, and ¢ din turn.

We hove also wedified Jeffrveys ond Jeffreys wethed in order to obiain
spoclal dilference cquabtions :a:}*;;g}x;'eﬁain% the potentiald, abt ecach point In the
vicinity of the singulovity in terxms of bthe pobenbtials ot points in its imuge
diate nelighbourhood. For example, Lo obtgln the five polnt special difference
equation at the point '5' (Fig, 28) we ninimize the sum S; = Z R ;
where (= G, 13, 1h, g,a aund 1 ov, for the more accurabe nine pa\:!m‘i; equation,
3= 9, 13, 21, 4, 10, 2, 0, 1, and 9. Substitution of the optimum expressions
obtained for A, , A, waud A, into equation (5.2.6)} wpplied to the point 'S

then gives the special Aifferance egquation:
‘Mt)s = B ¢13 + Pi‘pm"' Ps ¢a + /3495,
in the firot case; and in the more accurate case, the eguation

L‘¢S = k.¢13* ga¢:u + k& ¢u¢. +J’¥ ¢l°+(?s¢" +J"’ ¢° +J"*¢' +J'8¢9 '
Special difference squabions ob the pointe '2' and '6° ave devived in similew
fashion. Numerical values of the coefficlents ocewrying :is::xl both the Live point
aud nine point equaltions ave glven Por each of the polnts 5%, 'R' and '6! in
Appenddx D{L)

Before proceeiing furtheor we polnt oubt thebt in the Motz and Jeffreys end
Jeffreys methods, and in their adapbabions, special difference equabions ave
obtrined ia vhich all cosfficlents have definite fixed values. These special
equabions moy therefore be used in both iterative and direct mebthods of solviag

the problem. The method of Woods [131, as he descvibes 4L, may only he used
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dterauively since the speeial dilffevence eguabions change ot ench stage of
bhe fterabion. We shall now illustrate one of Woods's methods for generating
special dlffereuvce equations in the neighbowrhood of the siungularity and shall
degeribe 1%, as Woods has done, for wuse In conjunction with the relaxation
method of solving difference eguublons.

Woods nses only the term in -r.%cd... %O  of the serles expansion

{5.8.1) aud writes the potential function gb as
s . < o
b= o+ 8B +thH (5.2.7)

viere of 1s a congbant and ”l-) is o barmonice functlon waich 1s assumed Lo be
well behaoved in that 1t can be vopresented by one of the standard sguare neb
formalag (gg 1.1} even ot mesh points in the vicinity of the siapularity. The
solution dgnoring the singulavity, f.o. ’l) » i poguned mown and, ab the pth
stage of the relexablion process, vegiduols, R:fh) » &b each point ! j ' of the
region ove compubted Lrom thoe special difference equatlions

)

(» M p 5, .
x¢‘l_ - o of"“j ‘W%Oj = RJ ) (E}aiﬂ»g)

where of is the Laplace difference operator for the opdinevy five point squave
neb pattern. Houation {(5.2.8) Pollows fron cquabion (E}.@E&ﬁ‘?) gince, by ouwr
inttial assunpbion, of H;=© - It can be shown thob ol *r;AéJ-» S s
nepligible for pointe pot dn the imsediste nelghivouvhood of the singulevily

80 bhat, as in the Motz and Jelfreys and Jeifrveys methods, specisld difference
&;*qmt:loz&s. are only used at the polnts '5', '2', and '6' in Fig. 28. These
equations change, however, oince, as indicated in equation (5.2.8), the value
of bhe "consband” of depenis on the stoge of the valaxsbion process. { ol.(N is

gvatuated using o difference equatilion centred on the pingwlay poins G (Fig. 20)
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and the reador is veferred to Uoods's originel paper for g descyiption of how
this is done.)

Ve now describe o new mothod of generatlug swecial difference cquations ab
wosh points in the vicinity of the sinpulerity. Thic method has beea developed
Lo varicus reasons including the fact that, in three-dimensional problems
involving shorp corners, it is possible to establish the nature of the singu~-
lovity ot a corney but 1t la difidicult to obtuin more than the fivst tema of
the syshbematlic series expansion sbout the singuloar point. Woods's idea of
uoing enly the dominant term in the series expansion has thevefore been
incorporated in this new mothod but the iteration inherent in his method hns
been avoided by using Jefiveys and Jeffreys least squaves technique. The

metholl is consequently referred Lo as the Least-Squares-Uominsnb-Term method

or the L.5.0.T. method for brevidy.

We write
b = A+ B y© +atbx +ey +d (<% J)"‘-e'xa (5.2.9)

where A ;) O 4 s © o » and @ pee avbiteery constanbs. Ia thios cquation

the flrst term is the dominawh tewm of the serdes expansion gboub the corper

peint while the remainder 1o o Teylor series expansion ghout the point ot wvhich

e soecial caquation 1s to be compubted. (If the speeial equation iz ¢o be

computed ot the point '5°' (Fig. 28), then for the point '2', for exawmple, the
expression on the right of cauabtion (5.2.9) ig Bw:% o0, +a+ R +di?
whore K is the net spacing. ) We now define the residusl R.'s et the point * ;'
byre

W%,

Rj: ¢1-F)qj éo-—% 94 ~a- Ox. ‘ca ~d(x} T )~¢.'x Yy (5.2.10)
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Buppose we wish to compube the speclal difference eguabtlon at the point 'S5,

(Fig. 28). e write

55 = 2 R (5.2.11)
vhere w 3 ig o weighting factor to be discussed leteyr and the suamatlon is
over the points with J= 5, 13, 21, 14y 10, 2, 0, 1, and 9. A seb of six
simulitancous lineny equebions in the six arbitrary constonts A, o, by ¢, &,
and e is then obtalned by ninimlzing 5: with vespact to each of these cone
ghants in burn. Solution of these equations enebles us Lo express the arbibrary.
consbants in texms of the Huncbion values d’s P 15,; s 4’;, 2 95.., » 4’,, ? ‘P; s

b » P , and ¢q . {Ihe solution of the equations iz easy in pracbice
since only one equation involves sll six unknowns. BEach of the others involves
only A and one other wnknowt. ) Subsbitubion of these opbinum expressions in
equation (5.2.9) applied to the polnt 'S' then glves the regquired special

eguotion which is of the foum:

hds= ko St Jadasth Pr + & e +J’s¢z +J’a¢’o +J7¢:+J"E¢9 . (5.2.12)

Only two sets of welghting factors w i have been useld. For the polnt '5%,
for example, there ave:
(a) w i S l, and
(b) we= R0, Wyg T Wy T Wy T = b, 0, 30,2 W= Wy = I)
i.@. the weighting factors of the ordinsyy nine point net pottern.
Special Qiffevence egquationg for the points numbered 'L and '6* (Fig. 28)
can he obtaineld in oxactly the sawe mamer go that illustrated shove for the

podnt '5'. Numerical values for the coefficients in the special differvence
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equbions ab the polats 57, '2', and 'O, using bobth pebe of weighting Ffactors,
are glven in Appendix D(i),

It should be nobed thabt speclal difference squations involving only pobene
tial values ab five mesh points eaunot be obbalned by thils wethod. This is due
o the facht that in the least squares process we requive to minimize with
respect to six wiknovas so thet, on subsbitution in equation (5.2.9), trivial
exoresaions (e.g. gbs = ¢5- Y will be obtained if potentiel values at less than
peven uesh points ave involved.

fio far we hove described methods of generabing special difference equations
in whilch explicit account of the behaviour of the ficld near the singwlarity hos

been btaken. Southwell's method of 'edvance to & finer nelb' takes no such

expliclt account of this beboviour bub introduces o neb of smaller mesh size in
the region where the field | |
is chengiag wapidly (Fig. 29).
By so dolng the error in using
the ordinary sguave netb foromlae
ae gpproximations to the pavbial
differential equation is veduced.
The idea of o vefined mesh ovew

vart of the region of the problem

cannot be naed directly in con-
Juaction with the discrete transge
Form mabhod for vhich o regulay
net ie essential. Nevertheless it

is possible to develop sultable Fig. 29
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special difference equatlions ob mesh points of the original, rvegular neb by
combining difference equations for the refined net.
For exsmple, conslder the mesh poind 'th! in Pig. 29. The difference

egtf.ﬁtiﬂn:a at the points ‘a', 'b', A‘c‘ and '14' ave:

P, = :-‘-_ ( 155 + Q& + ﬁ,, + 4’,_) , (ovdinory saveve net patiern),
¢’6 - 'h (¢‘3+ by + Py 4’5) , lordinery diagonel net pattern),
¢c = 4 (ps+ o, + 8o * @,) , (ordinary diogonal net pattern),

and ¢m=i¢m+%¢so+t 'O+%¢q'

This last equation is a "non~uniform maesh" equation cbtained in the usual woy
by Taylor sevles expansions about the point '14'. The apeciel difference
equation ot the point 14 involving only potential valuss et polnts of the
original, regular net is then obtained by eliuwinating the three values (bq_ »

¢ 6 ? and Cbc. in the almve- Tour equations. It is found that this procedure
sives

by = 0953358, + 7.0566?15730 + 0.955336, + 9.153353% + 0.89(300965

!

+ 0.13;’33;«396‘3"
Special dlfference equations have been obtalned la a sindiler ::wmm Lo
the poinss 21, 10, 15, 282, 6, 2, 5, and 13 (Pig. 29) aud these are glven in
Appendix D{1i).
 [Special difference equatlons were compubed for nine mesh points since we
have only used @ slight refinement of the net in the vicinity of the singularity.
To be oxack, we have mevely halved the net spacing. As o result of this refines

ment the equations et the points '6', '2'; 'S5 and '13' turn ous bo be those
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pgiven by the ordinavy unine point ned pabtberm. It was nevertheless vhoushb
worbth-vhiie to use these equations Lo the purposes of experiment j
2.5 Numericol FProceduve and Resulis

Various resulis have heen obtalned for the squave hox condenser problen
neing the special diffevence caquations ab mesh points in the neighbourhood
of the siagularity developed In the lwst section. Whe cowmputations hove been
perforimed on the Deuce computer av Glasgow Unliversity using the iterative
proceduve described in Chapter 4.

As we vecall (p. 78), in this proccdwre we compute accurately the
residuals ab each mesh point uwsing the differvence equation appropriate to -
that polnt, and thon relax thege residuals using the simple squarve neb poabttern
eguations. It is nobt o source of difficulty il the difference eguatlons change
from one dterate o the next since these ave only used in the computabion ;)i‘
the residuvals. Woods's method, in vhich varying aj}ecm}, difference cquations
arlse, therefore reguirved only a slightly different Alphacode programue to
compube the matrizx of vesiduals {see § h.b and the flow diagrem on p. 89),
the constant a(.‘“ being computed using the mebhod described in Woods's original
DODEY « |

For bthe adapted Mots method, the adapted Southwell method; and '{;hé Woods
mathod, results have been obbained only for cases in which the ordinary five
poind sguare net pattern equations (§ 1.1) vere used ot mesh poinbs other than
shiose ot which speclal poatteras weve useﬁ.' (such points will be zeferved o

#

as "ordlinoyy” points while points at which specinl difference equations are used

will be referved to as "speclal" points.) Uslng the adepbed Jeffreys and

Jeffreys method and the Least-Squaves-Dominont-Terin method, wesults have been

PR



obtained for cases ian vhich the ovdinary ﬁ:‘ivc:: pOlnt net pabiern equavlons were
uwsed ok ordinery points and olso for cases in which the ordinary wine polnt net
pabborn egusbions wers weed ab these poinbs. Furthovaore, in wost cases resulis
hove beon obbadned for valuen of o = 3;39135'5"6” s ond 9, vhere "n' i the wmwbher of
mosh Jiaes bebween the side of tho ovber souave (AC (¥ig.20)) ond the corrose

ponding side of the jwoner {(H3) aad povellel to thom.

To ililwsbrobe the offectiveness of thege mathods in increasing the accuvroey

end the zoie of couvergones of the dlscrete epproxivations, o cets of graphs

have been dvarm.

The fivst oot (seb I, p.10%) shous gravhe of the voteutial values qﬁ au bhe
mid-point of ¢ (Flg 20, p.9R) plobled aﬁ?ﬁ'mt(ﬁu » which is propovbtional o
the neb spaclug. Thoese grepbs ove wwhered fvom (1) to (5) and covvespoud 4o
the use of the following dlifference egquutionss
(1) nowmel five point soquore web natborn ob all mwesh poinks, i.e. no provision

made for the specleld behaviowr of the Lield near the siaguloylvy,

{2) normal nine point net pobbern equotlons ab 2}l wosh pointe,
{(5) mowsel five polnd soquove ach pabbern eqgubions ab ordinaey polnbs, speelol
equailons éhf;aizm‘i by the adapsed Southwell mothod ab poinks numbered 21, 1%, 10,

15, 82, 6, 2, 5, ond 13 in Fig.80, p.99,

(1} wnozmal aine point pabicyn ecgaz.e.'iz:;fpzzs) ab ordinory podnss, gpocial cguntions
obtalned by the L.8.0.9%. aebbhod with weighting foctors of noraal nine poiut

patoorn, (L.o.(b); 0.90), ot polats muhered 5, &, and 6 in Fig.29.

e cusve wavbered (9) 18 o representobive cuvve corrooponding to the use of

the normal ©ive polut aguare age posbern couations ot ordinery points oud

2,

aspnelal eguoblons obtoalned by oy of the soeries expansion methods ab pointo
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numbeved 5, £, and 6. (It ie practleally impossible o distinguich the curves
Por bthe variovs sevien expansion methods on $he seale wseld fov thile seb of
ceephs )

The woin feabuven illustrabed by the graphs of Set ¥ sve as follows.

(1) I no sccount ie boken of the speeinl behaviour of the ield ma,.:* i}h@
glngelerity no significent luprovement in elther the accuracy ov the rete of
CORTRTESICe of the diserebe approslmablons to the exaet value ls oblalned 1
the aine point net patbern eouation ie wsed ab cach point instead of the Tive
polat square net patiern equatlion, {orepts (1) and {(2)).

Astenpbs hove beon made to caleulote the oxaet value by transforming the
trageseldal reglon ABGCHE (Pig.28) inte o rectonguloy yegion as oublined in
Chopter £ of Bowman®s "Ellipbic Fancbleons"[85]. Unfortunabely success has nob
yeb been achicved. CGraphlceal estlmabtes, howaver, glve a value of E}‘.TE}Tﬁﬁgaﬁﬁm aJ
(31) Groph {3) shows that the adepbed Soubhwoll mothod is nob very effective if
the net in the viciniby of the singlarity is refined by wmerely helving the
mosh size. To obtein the acctracy of Ghe serdes expansion methods (grephs {(B)
and (5)) we vould requive to use o mwh greober refinement. This hos nob been
avtonpbed ince the amownt of lobour fuvolved mum be preator than that
voguived for the sevles cxpmnuionamethods.

(334) 1F the singulavity io treated by gy of the series expansion methods, the
abaolute accuracy is smoh improved, (grophs (W) and (5)).

The second seb of graphs (Seb IT, p.04) corvespaads o the use of Ghe
yarious serles oxponsion mebhods of trenting the elogularlity so that in all casen
only three speeipd poinbs ave duvolved, nsuely the poluts wwbeved 5, 8, ond 6

in Fig.08. Theome prayhs show plobs of the pobentlel values qb o the nid-point

. \ - ) . - .
of (0 agyinat - awhich is propoviiional %o £ . The ccale on the ¢- exis is Fowr

(n+1)
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tivos as fine as that on the 4> é.z«::,?.as. in seb I and, for roosons of clovity,. mﬁ gl
wlobbed points eve shoim. |

e lebboring of the graphs corvesponds o the use of the diffevence eg’aﬁ«i
Hlons glven dn the following boble vhere:
*afindicates that the nowmal flve point zovare net patiern equatlons wvere used av
ordinavy poinis;
Htindlentes that the aormal plae point net pabtern equatlions were wsed av
QE?@:?.&"I%KL";'V POLNTE
w® is bthe nwber of Luncbion valuss in the compusobion of the special diiflevence
souablons, and
{{1)" indleatos thab the welzhting factors of the movinl uine polnt net wobborn

vere used with the L.8,D.4, mothod.

. et Pabbern Method of Compubing
u@i}&}h N ) 2 " g, toeey = fﬁ
ot Oxd. Pointe Gpeclal Sguntions
A & Adepied Mobs. 5
0 o Yoods
) Adepted deffreys eud Jeffroys. 5
Afepbed Mote.
¢ f 2 4
W L8080}, Y
B g Adepbed Jdeffreys end Jeffreys. &
@ ) T80T (1) 9
¥ N Adepted Jeffvays and Jeffreys. o
&}7 1{'} &v&;w:ﬁ *&?9 9
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The main fettuves illusbtyated by the gyaphs of Seb I ave as follows.

{i) 9o rabte of convergence of the ddserebe approvinabions to the exack vz:#me;

} , | 2
oz the net speoing is reduced i of the oxdeyr of £ (e.f. the ovder of R

AT no special eguetlons ave used).

(%u I Pive polnt sqguare ngd pobtory equabions ave used ot ordinscy points,
therpa is only o suadl luovovement in the gecuracy of the diserete approne
Tmatione vhen niune polnd spoeigl difference oquabions ave used insbend of
five point squations {(o.g. gm@hﬂ Band D ). The ocowracy is much improved,
howover, AF nine podnb vel vavbern equations ave wsed v fgi:’c“i:zmry poinis,
(oo, grophs ¢ ond B). e veecoll Prom Seb I thet this is not the case
vhen no ﬁﬁ:gsm:ial equabions ave used.

{134) 12 the sawe type of net patierns ave wsed (see (1)), no oune serics
expansion webhod of treating the slagulavisy is sipnificently move eifective
then the others in :hmweézésmg the ascurasy. JIn pavblenlar, the L.0.D.9.
mathod is os effechive as any of the sthoeds proposed by vrevious guthors.
o theory seemg Lo exlat wihxlch *sfs';r‘.‘:t.-:?. explain these resulits bub, 1n case such

e theory should be producads the fligures Srom which the graphs of bobh Sets I and

1T ave dvaya ave glven iun Appendix ¢,

In Flg. 50,0.107, resulis are socorded for the case n = 5 vhen nine point
ey @a‘h‘émm souabions ave wed ot ordinery points and the gpeclel equations ave
computed using the L.8.0.90.(%) wethod. These rosults arve in almost oxeed eproes
wonrt with those glven on p. 179 of Wools's paper [151. (Wocds, however, only

pives vesuliss bo four declmal places).
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SQUARE CONDENSER PROBLEM WITH (1) SPECIAL EQUATIONS CCMPUTED

BY L.S.D.T.(W) METHOD. (2) NINE POINT NET PATTERN EQUATIONS
AT ORDINARY POINTS

CASE ns 3 ( RESULTS QUOTED TO FIVE DECIMAL PLACES )

79hs 0.73888  C.72778  ¢.69711  0.61202 X) A5799

U885 0.1%8486 CI*7I1%6 ¢.44087 (G38255 079675~  .19750

217206 C€.23965 C23134 C.21418 C,18517 0.1U0006 0.09799 A 014907

FIG. 30
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G.h A Direct Method of Solving the Squove Now Condenser Froblem

when Speciel Difference Bguzbions ove used ab e few wesh points.

In Chapber & we have sfémm how the discrebe bransform wethod con be ued
in an lterabive procecduve to solve the squave box condenser problem vhen
Cspecial divference equablons eve used ab any or all of the wmesh points. :i‘a‘; This
section W show how the mothod uny oleo be used Lo obiain the solution dlrectly
when speciel eguations ave used ab only a few mosh poinbs. (We rewcall (gg; 5.8,
5.%) thet in decling with the sinpulavity only & few special ecuations wove
used } |

The labbice is popiticned in vhe soue

H
way og before (Mg.51) so that there ave 'nf

3w

moph points on the bowhdary G0. ¥or sime s

phicity wo shall apsune cthat o special AP0~

erence eauation i used abt only one megh % J°°°
A 430 1%} 12 nef é.-- —:-[

point, oay ( hhgh), uhich does not lie on Aznar

ae. (Specilal eguations ab mesh points on Fig. 31

)

G0 are conoidered laber). A6 all obther wesh poinbs the nowmual Live point squarve
net pabiern equasions ave used.

We firast avvenge the speciol equation in o form conveniept Por uwse with the
diservete brancfori method. As dn § 5.2 we ropvesent this equation in operabtor
Torin by

¥ ,
L7¢, =0 (5.5.1)
* '\u?_
shere af ig the approprisbe linesr diffovenco oporator. Bouauleon (5.4.1) moy be

wedbben as

I¢“'Q = M¢A'2 (ﬁoﬁ'n:‘a)
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vhere af is the standard Dive point squeve nes pabborn Lingoe differcnce operavor

>

| | *
for Teplace'n equablon ond M is o linear diffevonce operabor such that &- M=o .

In ovder to obtuln o discerebe functlon which i zevo on the wpper and Llower

~
RN

bowylaeies of the reglon; we sab

s

Yy,s= B = 2, (5.4.3)

In berms of Y, equabions {5.5.4) and (5.5.2) ave then resgochivoly
x* g oo
= Jk
A P T (5.k.1)
=M 4 R
and L Py ¥rg * Rhgo (5.2.5)
vhere K, 1o o kuowa constent whose valuc ey depend on the pavbicular point
19 M
{(hh,qh) wder considerntion. Wo now sob
T¥hq = Py (5.11.6)
whene  Dp g = MYy Khg > (5.8.7)
ond th:m vopnrded ag o congbont o be deteymined.
tur problem is vherefore to sclve the seb of difference sguotions :
- - - e = N
"'y’q,s T’-ﬂ—n,s N, 541 ‘w-l-n,s ’P,,‘S_, S-r Ss D}\,i ) (5.1 ‘(‘%)
defingd ob wosh polnts of the region ABCCH subject to the bousdary conditions
- h— - ¥ .*}: .?‘w & wLe 3 a-".“: LA jy $13 :} ‘L‘i
Vuo® Fuar™ @0 Wor 57 ¥y, Vi Newmman conditions on ¢ on GO. The solwsdion
1o then obbadned using equabtion (5.4.3).
In the wual woy we fyst igoore the boundsry GO and obtain o solubion,
lavolving arbibvary consbanbs, Ju the somi~iofinlie rechbougle IAW. (Ve ossuns
Yoo on BI and G5Y.  The mebyin poveralug equation is

A
Q%‘.,ﬂ 1‘ - I = S,‘. 2 A >0, (5"!5‘*‘&})

a~ it} ol o }
vhove A ig glven on p.6, F 511»,,’ ,;W..,;,----,w.,"i and By is on (wx1} colum vechor
vhose oaly nonezero element is the Qbh one with {ualsnovn Jvalus DL, 9" Foaustion
{5.4.9) is of the some form and eubjeet %o the seme boundery conditlons oo
)

eomablon (ha.3), 9. 8L, oo that ibs solubion way bo fouwnd in exactly the pomoe

ARIN0TY «
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T, as da § L5, e deternine elpenvaluen 22 , o030, 000 elgonvestors
&Se = § S$,02,5,6),. - ,S;G-J] guch thab
T T
S, A = (#-52'1,_) S,

A A~

T ‘
Bre-mittdplying equabion (5.0.9) by S, we obbain

Fab-ln = (42 1-6) Féa‘* + F‘ea""’

M
T
- /‘?e S-r Elu

T

h o
- S.,. P,g,‘v ) (f;h.i!-alﬁ)

- T‘_ & T - NG X % 2 A 5 e g Ny
wheve B =S ¥, and By REAN 508, g+ Using & methnd similer o vhat

fl

developed in Appeniiz A, we Flad theb o poviiculor solutlon of equavion {5.5.10)

gobislying the condition F: N ‘: L gg;hsaﬁ by
'3 )

wel b
(v rlp‘f =T Zﬂ K"e"’ S"‘ B‘t&h )

vhore K 1o 18 Gedived in equation {(1.5.8). Honce
/]
(k)
r - Kes P
£+ g sh

1

H

»
~Kee S l0) By g (5.5.12)
Un adding a complowentovy funchion setlefylng the conditlon that F, < F
4

the complete solubion of gouation {5.0.10) is
- - 49 o
’_-t,wr = C-l. V-C - K.{ﬂ SL(%) DIL,Q ’ {5.h.08
™)

o, LR ] ; s ,
vhave Cp 4o an axbitvary constont ond Y, = F+¢,,(P ond P belng solubions of

- R ? i o I - “‘F : .s.e N = T
ol = (k-2 ) +1 =o)¢ Bning the loverse fovmide, =20, :E.‘;sfmam A2 S, 8¢ ,we
t' -

A
dhen hoave

W
T, - z (V% ™ Ke, 5,,,(?)011,9)9_@1. (5.0.15)
. ~ =1 . A&
HONGaS “
+) (A
\Y; S, (s)
Yy = ;“ (C: e " Keo Sele) o e) == (3.h.30)
LY £
and, by cquaslons (5.4.3) and (5.5.14),
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The solubion sb,,‘s in the peml-infiniie rectangle TAHT s thus expressed in berms
of ghe {mH) arbitvavy constonte C),C,,---, C, and DA:‘E"
A dn ) 2.% o sob of'nsiwdlianeous Linesr equations swith those (w1}

v, LB

mé’a:?;hmm?;r constants as wabnowns g obbained by using the Alffevence eguations ob
mesh points on GO, these "£itting' cguations being specificd by the condiblon of
symmebry of thy solubion ebout this bouadexry. The {w+t) ¢h aguation ls obtained
by superposing the condibion thet the speciel eguebion {S.2.1), . ﬁk’i O, s
be aabisfied Alterabively equasion {5.0.7) may be wed). Solubion of these
equations ond subsbitubion 3u equabtlon (5.4.15) then glves the solubion of fhe

- problem.

With only one specilal aguablon therefore, the problen veduces o the solutloa
of p set of (wH) simaltoncous Jineay eguetlons. Similarly, if tvo speciel polnbs
ot on 66 eve dnvolved we may solve the problem by inbvofueing two arbityery
constanks, soy Dy and D, , in $he ey Lliusbrated fn equotions (5.%.0) - (5.4.7),
We are then led o solve o seb of (wel) similtoncous linear equaticas, ‘o' of
thege eguations being obiained from the Liitdng equabions st mesh polnts on 60 and
bhe vepnpindng tvo from the ss:\};;‘aa:}:a?, gauabions thenselves. The bechnigue sould
elesydy be exbended bo deal with coses vhove @f@@aiﬁﬁ difference equmbiong ave
ueed ob ony muber of wash polubs; bub; as each gpecial point reguives the
inbrofuction of a pew sbibevary consbont and consequently an addivionsl slml-
taugons Lineor equablon, the wethod ls practical ondy vhen o ffev speciel points
are iuvobved.

A éjggeeiéﬂ, difference egubion ob any mosh polub on the bowdery GC however
does not reguire the lutrotuetion of a new arblivery cowstent and thevelfore dove

nob increase the muber of equations which must eventually be solved. This is
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due to the Pact that, in order to obtain a solution lnvolving erbitrary constants
in 'b&ic,a sem:iﬁnfinﬁ:&;ea rectongle 3:5;:%13’, we ignore the presence of the bowndary GO
ond assune that the povmal five polnt squave nel patiern equations are used ab
wesh poinbs co-incident with it. The difference equabtions actunlly used ab these
meoh points are only imposed on this solution as fitting equations. Thus any
speclal equation ab o mesh point on G0 may Do used in its ovigiaal form, i.e.
;{"(;d';o » azgsa— the fitbing equabtion ab that point.

In f 5.8 wo showed how the singwlerity in the condenser problem may be taken
aecount of by using special difference equobtions at throe mesh poinbs ia ibks
limediate v:?.c:in‘;l'i:yﬁ ona of vhich lies on the bouwndary GC. Thus in solving the
condensey problem with these aspeciel equations asd with tlie normal five point
squave net pabbern equations at ordinary polinbs, we regquire o solve e sch of
{(~+2) simnlianeous linear equations if the dlvect method is used. ( 'n' is the
nwmbor of Fithlng equations on the bowndewy GO, (Fig. 31)). RBstlis hove been
obtnined on a desh coaloulator fow the siﬁl}?l@ case B = 5 when 'bhca. singularity
i btreated by the adapted Mota and:xthe efapted Joeffreys end Jeffrays methods.

This direct nethod moy be wsel in a similar way vien diegonal or niune polnd
neb poblern equabtions are used ab m:;c‘;ﬂ.imwy points i, inctead of equabtilon (G.%.2),
we take » > N .

> w L rg= ™ ﬁe‘z e 'f, ¢/~£= " Py
whevae .f and f ere respeetlvely the staundard diasgonal and nine point net pobiern
_ b L]
Linear dlfference operators for Loploce’s eguation and M " ana M eve such thob
,fi LZm®° =ff M. 13 wos pointed oub ab the end of g 2.5,(5.50), hovever,
speciel difference eguabtions must be woed at the polnte K, L, ..., P in Fig. 31.
T, to obtein the solution for the ordinary disgourld or nine polnt net paticrn,

we ave led o solve a seb of v simnlsoneous linear eguations.
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5.9 Concluding Remacls

The purvpose of this thesis has been bo indvoduce and teo i1llusitraite the
Ydisorate trensform method" of obtalining the nunericel solublon of oundorye
vlue prﬁhlems expressed in terms of flalte diffevences. The method has boown
shown o be the dlfferense annlogue of the sepmrabtion of varlebles and transiovm
technique of conbtinucus analysic. It may be applied to solve the finlie
dificrence eguatlons covresponding to any pavtial differcutlel eguatlon problcn
defined in o veglon which can e divided into & mwher of sub~regions in cach oF
which seoparvetion of varichles is applicable.

To give the veadoy some perspaective howover, 1t showld e cmphosiced that
the sluple problems consldered in Chopbers 1 and 2 vove dnbroduced only for the
purpose of developiag thg mothod and to bring oub bthe polnbes of analogy belvoen
the diserebe aud the contimuovs techniques. Thoe discrete travsforn wethod ic
not odvocated as the best wmethod of solving ouch problems. One of the edvanteges
of the method g that It can be wed ©o solve problems defined in reglons which
nre infinite in one dlyection, This was illwetrabed in Chapter I vhere ve
congidered o sbeady-stanbe vave problem in an dafinite strip. The author hopes
that, hoving shown how the mebthod sy be applied, 1t may prove o uwseful vool fov
polving problens of practlenl fmportence in wave-guide theory for vhich uo
goavenient nunerical methods euint ab present.

it seens Ai¥ficuds o obteln ony theorebical cuplovacion of the resulis .
obtoined in ths squave bhoz condenser problem and the stondy-gbtote wave problen,
and it was thought better 40 investigote mothode of Swovoving the aceuvacy of
the difderence oppromimabions. This declelon was aleo taken in view of the

popreiby of published papers on webthods of treating singulavitices in bouwndary-
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vadue problens and, in pavsiculay Aé;he:m has been prachlealiy no discwssion on
the effectivencse of these methols in dwproving accuracy. The l.at‘aer Doxh of
the thesis hes therefore been ehneernsd, in the sain, with "numerical expovi-
menbation”, and with the inbroductlon of the L.S.0.0. mobhod of tresting singular
voints. Resulibs hove beenr glven oaly for the simple condenser problem bub
investignbions have olso been carvied oub into tho applleation of the L.8.D.W.
mathod of tresting the singulaylty in the ‘ sbeady~gtate wvave problem. It was
hoped to dnclude resulbs for this labtter prablem but difficultics have been
eneotnberad with the Uessel fuacbions of various orvders dnvolved ond ne sotls
foctory specisl equablions have as yob beon oblained. The solutlon of The steady=
gtote wave groblen dbtoeld with special cquations ot mesh polubs neor the end of
the ohgbruction presconts no Alffilculty, & dlvect mobhod similor to that Lllus-
trated 1n § 5 I Por the condenser problem bedng used.

In swumarys the practicol eribteria satisfled by the dlucrete transiorn
method nay be listed as follows. Thoe method is
(o) eble to deal with equabions of move complicsbed Pform then Yaploce’s or
Poiscon’s cguatlon,
(b) abile bo deal with problems vhere bowndaries may he abt infinilte distance,
(¢} capable of allowing the treatment of singwluorities by meens of speciel
dlfferenco sguatlons,

() sulteble for eutomabilc machine compubablon.
The outhor hopes that cacugh has been done 0 reveal the potenbiolities of this
nawy ddreet mebhod of solving sebs of difference eguations corraespouding o

bhoundary-valuse problems and also o Lllustrate the effectiveoness of the L.5.0.%.
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mebhod of treoting sinmularities. In pavticuler, sineo the offect of the disceroue
transforn ie to reduce the dimension of the problem by ong, the solution of o oot
of yeriiel difference equetions ob mash points in space willl be veduced Lo the
golusion of o sob of ordinawy difforence eguations for wiknown quanbitics ab

wesh points in o plane. Uhe discreve tronsPorm method moy thovelove prove

pracelenl for solving bowrlovy-value problems in three dimensions.
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APPENDIX A

The Particular Solutions of Certain Non-Homopeneous Second-Order Difference

Lquations

Particulay solutions of the non-hcmogeneeﬁs secondworder differenee
equations oceurring in this thesis may be obtained by & mebhod analogous o
the Creen's fTunction method of obtaining particular solutions of non~homogeneous
second-order differential equations. We will, therefore, refer to the method
28 the discrete Green's Dunetion method, Wo illustrabe this analopgy we now
oblain

(i) a parbiculer solution of o simple second~order @iffercutiol cquation

using the conblnvous Green's function mebhod, oand

Lot Kol )

) & particular solution of o simple second-order difference equatlon

(.

fs
e

using the dlscrete technigue.
Corregponding equations are similarly nubered.

(1) The Continuous Green's Function Mebhod

Consider the differential equation
9_‘.qu(£) - <G (2) = F(=), (a{i))
dz?
vhore G (&) , F (i‘) are defined in the intovval O0€z2 < ¢ and o is o conpstant.
Suppose we have the boundary conditions that Gle) = G(d = o,
We seek o Creen's funcbion, K(z,8) say, vhich ie such that {a) K (e, 9 )
regorded as o Tunchion of 2 , sabisfies the homosencous Fform of (A(L)1) except

Gq.i:' 23 g ')

1. ?'2“(*»_5__)_ L LK (2,8) =0, (A(1)2)
dz?

oxcept ab z=§



(v) K (z,%) pabistles the bouadary conditions imposed on G (2),

1.c. K(e:§) = K(e,8) = o, (A(2)3)
(e) K(2,8) is o continwons funeiion of 2 ot 2-§ ,
() ©he disconsinuity in devivesive of K with vespeet vo 2 ot 2= § ic &

constend vilch vo may toke as walby
e g_ls] - [%ﬁ] = . (A1)
2 2
2=§+ 2§~

Under those conditions 1t can be chown thot (vee e.g. Babonan [83],

Movee & Foohbach [2u])

K(2,6) = K(§,2), - (A1)5)
and (e j K(2,6) F(5) s . (A(3)6)

Since we chove K to setisfy the houndary conditlons (A(1)3) the solution G(2)
gutonaticolly seblsfies the sahe conditiong.

reon (A(1)2) and (A(1)3) we deduce

H(g) “’"a“ ‘“z) b) z<§,

K(z¢) - BE)(SCTIMED) ue, (aa)

wieve A(5) , B(5) are arbivrory consbanss wlth vospect 4o 2 .
donditions (¢) and (d) ore then used to ovalvete A(S) , B(‘i) and wo

obtoin

wc) - “c)\y A& -ol&
(2CEe) (S (=" ) T

(a(1)3)

b Z>I§_

K(z,5) = (D

(5 ?)(4,_* G- © -t i)
2‘(( Mt’. —-alc)




The parbicular solution, G(2) , of (A(1)1) ie then glven by substituwbing
(A(3)8) 1nto (A{1)6).

(1) The Discrete Green's Faueblon Method

Sonpider vhe dlffevence equatlon
Gt-n B (#hal)et + @t-l = Ft > (ﬂ(ﬁ.i)l)

wviore 14t $h and A s o constont. Teb the bowndory conditions bo thob

G, =G, = 0.

(v
We will denobe the dlsevebe Green's fumetion by Ko . (A supevscript

19 used for the second discrote voriohle since subscelpts in addltion to "¢
ave newally involved in pracbice, e.g. the svbseriph normally associgbed with

the elgenvalue A in equation (A(31)1))

(o) v, 4
K, is chosen puch that
1 ‘I’) 2 £ ] 1. . ¢ I
(') K, sebisfies the homogencous form of equation (A(12)1) except at t=v,
(v) (v) vl
J.@. Koo, ~ (#-22)Ky + K., =0, (a(i1)2)
eucept at C=2v
(V) 3 o~ . —
{»') K " savlofies the boundery conditlons iwmposed on G'(.- R
() ()
1.6, Ko = KI\H = O, (A(31)3)

, (v . " ) . . .
{c') the ewpressious for K.~ dewived Tvom (a') and (b') on the left and

A , S 2
on the right of t=v ave cgmal at t:=v , l.o. K, in

Yooubinwous” at tev .
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()

(') at t=v, K ¢ gatietion equabion (A{L1)1) with wnilty on the »ight
hond side |

(v

WVl

Cu) (v)

(“' 2K+ Ky o=, (Il(:i:?.}h)*

4.6, K

Under these condlitlong wo will now chow thot

(v ' » ) -
{a) Ktu is eymuetric in € ond o l.e. Ke = K‘ft (a(ii)p)
{(B) the porticular solubilon of (A{(11)1) io given by
b
(v
G, = D Ke Fu . (A(11)6)

()

Note that siuee K¢~ is choven o sobisly the bowndary conditions (A(i1)s) Gy

onbomoslienlly saticfles the same condibiong.

() (+)
(A} To show thay K, = K.
- (e (v) ) '
Zet K, ond K[ be euy two dlocvete fuactions eatisfying condibions

~

(a¥) = {a'). "hus, fvom (A{11)2) ena (A1),

(& (+) 05
K = (-22) “s tKoo= 8 (1)
(» (v) v
and K‘s ~ (&- QI)K 3-. = S,‘; > (2)
(A(.’ii)’x} oy be wedbbon
Ko k7 L K- LAl
A A A" &

This i tho owelosue of the dovivabive dlocontiaulty condition (d) of the
c:m;‘isﬁ.zm(ms case slnce ( (-2) da of the ovdey of ﬁ. {e.p. in prdblem B
(i 1.7, p. 28) we chowed thot

lﬁ = co:;eﬁ = w(ﬁ“

L 41

) - (k) e (B3 < coth).

LA
Sovies expaapion of this wosine shows that (1-2) 35 of the ovder of A )



whare S 3 i the K *ml&zcﬁ;er delia fonetion.

S
Ytsiply (1) by K ; (8Y vy K ; @nd subtract. Wo obbain

(v (t) &) (t) (e) > (e) Met (t) (V) -
K‘i K._.\'" K.i" Kj + K K K‘i“ § = KJ S,_\ —K,,\ SJ . (.ﬁ)

su (3) from je1 bo j=pb ond uee the "continuity” condition (o'}, then

z’v: KC"’KCt)_Km K (Y ) (€) c m 23,( 3 _K“‘l f-vf
A‘ S'H 3y +Kj Kj" JQ-I

5
The mlddle tewms cancel in this sunmailon and ve obiaia

() (e) (v (t) W (o () (v’ (t)
K K - Kov K‘ + Kh KI.,-H = K K}., = Kt - Ku - (}i)

] [}

. Ky = Ko (a(33)3)
Thus proporty (A) holds.
(o)
(0) o show thes G Z K¢
us)
From (A(?i}i) we have Gw,* (4-22)6, +G,., = F, . (5)

()
Feem (A{32)2), (A(23)h), and the symmctry of Kg we have

(e (&) (&) ¢
Koo ~ (4-30 K, + K., = 3, (6)
(13]
(5)x % ~ (6)x &,
) ) ® (> {e) t '
k‘ftcuu - Kv-l GU’ + Ku- G\:-. - Kv" G\J" = K'&r Fu- - cu- S.u, (T)

Swndng (7) feom v=!  fo ve=h  and using boundavy conditions on K and G

e ouieln
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G
if
X

G -~
e
q"'ﬁ

(u) "
- 24 Ke Fu - (A(22)5)
A Y]
Thus property (B) io proved.
Having obtained the prelimlnavy results (4) ead (B) we now obtain the

pavticulor solublon of equeslon (A{11)1).
Feon (A(11)2) and (A(11)3)

() Q(Pq- ‘?&) teu, ‘
t ° B, (le (9}'“ t) E>v, (a(ii)r)

where A, , B, ave constants independent of € ana P, ® wve solublons of
p‘-cmn)]sw = O, | S £53

Conditions {e') and (A7) ave then uced o evaluate P, , B, , noting from (x)

that A% = P+@ , and we obiain
V- h- h- ¢
(P "L u )(P qQ ) t <y
K(v) ~ (pP- 9)( PL'H h-n)

t n Aot ke
(P gU)(PEML EH) , tyu,
(P'Q)CP‘**'._QMJ)

]

(A(31)8)

The pavticulayr solublon, Gt , of (A(1i)1) is then given by subsﬁiﬁuﬁingé
{(A(31)8) anto (A(i1)6).

Thng, the exoaple lustrabos that the dlscrote Green's function methed of
obtaining porticwlar solutlons of non~homopeneous, seconde-owder differenve

equations is exactly paveilel o the conbinuous Gieen's Dunchbion method used for
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aon~honogeneous, second~order differcntial equabions. I ﬁhauld‘be noved tha$
condibions (o), (é), aud (&) in the conbinuous cose, ov (a'), ('), and (a')

in the discrete,; ave common for bhe solubion of auy non-homogensous, scoond-
order diffoventinl, or Alffevence, cguabion. The eousblon (A(1)3), or (A(11)3),
will he diffevent for difPerentlal, or ditference, equations subdject to boundary
conditions other than those prasent in the cxawple illustrated tut the ﬁeehniq 26

uged in solution ave exacebly the gons.
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AFPENmX B

STEADY-STATE WAVE PROBLEM: AFPROZIMAXICXIS TO THE (ENERGY) REFLECTION AND

TRANSMISSION COEFFICIENTS

CASE 1 (a) Square Net Pattern (b) Nine Point Net Pattern
n *0 = TO = n «o'" *0 —
3 0.5962 0.6058 3 0.2977  0.7023
5 0.5318 0.6682 5 0.2696 0.7304
7 0.5020 0.6980 7 0.261 U 0.7386
9 0.2849 0.7151 9 0.2532 0.7448
CASE 2 (a) Square Net Pattern (t) Nine Point Net Pattern
n «0* n \"% AT
2 0.0744 0.9256 2 0.0938 0.9062
U 0.1217 0.8785 U 0.1376 0.8624
6  0.1467  0.8553 6 0.1593  0.8407
8 0.1618 0.8382 8 0.1721  0.8279
CASE 3
(a) Square Net Pattern (b) Diagonal Net Pattern (c) Semi-Continuous Net
n T * n R 2 T 2 n T 2
*Q = o (1 (1] *0 = (1
3 0.4720 0.5280 3 0.3485 0.6515 3 0.5419 0.6581
5 0.3731 0.6269 5 0.2962 0.7038 5 0.2981 0.7019
7 0.3294 0.6706 7 0.2742 0.7258 7 0.2776 0.7224
9 0.3052 0.6948 9 0.2637 0.7363 9 0.2651 0.7349
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APPENDIX C

SQUARE BOX CONDENSER PROBLEM: POTENTIAL VALUES AT MID-POINT OF GC
(a) Ignoring Singularity

n 5 Point Net Pattern 9 Point Net Pattern
3 0.20k2 h 0.20402

5 0.20172 0.20131

7 0.20048 -—

9 0.19977

(b) Singularity Treated in Manner of (a) Southwell, (b) Motz, (c) Woods

(A1l with five point square net pattern at ordinary points).

n (a) (b) (b) (¢)
with 5 Ft. Spec. Eqns. with 9 Ft. Spec. Eqns.

3 0.20298 0.19648 0.19677 0.19669

5 0.20062 0.19707 0.19717 0.19714

7 0.19967 0.19752 0.19734 0.19732

9 0.19914 0.19740 0.19740 0.19739

(c) Singularity Treated in Manner of Jeffreys and Jeffreys

5 Ft. Eqns. at Ord. Pts. 5 Ft. Ordinary 9 Ft. Ordinary
5 Ft. Eqns. at Spec. Pts. 9 Ft. Special 9 Ft. Special
3 0.19669 0.19685 0.19755
3 0.19714 0.19721 0.19752
7 0.19732 0.19735 0.19751
9 0.19739 0.19742 0.19751

(d) Singularity Treated by Least-Squares-Dominant-Term Method

1 9 Ft. Ordinary 5 Ft. Ord., Weighted 9 Ft. Ord., Weighted
9 Ft. Special 9 Ft. Special 9 Ft. Special

3 0.19764 0.19678 0.19750

5 0.19752 0.19716 0.19751

7 0.19751 0.19735 0.19751

(Weighted = Weighting Factors of Ordinary Nine Point Net Pattern)
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APPENDIX D(i)

SPECIAL DIFFERENCE EQUATIONS FOR SQUARE BOX CONDENSER PROBLEM

Abbreviations A.M. = Adapted Motz Method.

A.J.J. = Adapted Jeffreys and Jeffreys Method.

L.S.D.T. = Least-Squares-Dominant-Term Method, vy = 1.

L.S.D.T.(W) = Least-Squares-Dominant~Term Method with
weighting factors of ordinary nine point
net pattern.

Special equations were used at the points numbered 5, 2, and 6 in the

above figure.

(1)(a) Five point special difference eguations at the point 'S5’

Since 4>= 1 on HG these special equations are of the form

W’S =P ¢13 * 52¢}h t 534)2 +

METHOD B Bz Ba Ba
A.M. 1.00978 | 0.99022 | 0.98752 | 1.01248
AJ.J. | 1.02387 | 0.97613 | 0.99769 | 1.00231

(1)(v) Nlne p01nt special difference egyations at_the point '5'

e Yt A Bt e b ¢ ST

Since 4,_ t on BG these special eqpatlons are of the form

“#’5?- 7; #’1.3 +_, ?2 ‘#g«.j* 73 4’1&: *77@ 4’10 ‘+ _759(’2




NS
E .

METHOD |

?'1\

73

T4

=

0.15077

1s%e7Tl

: Y2 . 75
CAM. | 0.80016 | 0.20000 | . 0.7998k | 0.19856 "0.82024
AJ.J. |.0.46501 | 0.50725 | 0.52049 .| 0.54023 | O.hg5Mh | 1.47158
| L.sd.T. | 0.32764 | 0.56499 | 0.54239 | 0.28540 | 0.88681
| L.s..m(w)| 0.75059 | 0.22205 |  0.80536 0.89%513 | 1.17812

18120

(2)(s) Five point special differemce equations at the point '2'

Since ¢= ! on HG, these special equations a.i'e of the form

L, = B, by + B, ‘p;o + BsPg + By

METHOD B1 B Ba Ba
A.M. 1.10556 | 1-00000 | 1.10556 | 0.78888
A.J.J. 1.06111 | 1.06111 | 1.06111 | 0.81667

(2)(b) Nine point specisl difference equations at the point '2'

Since ¢a =

1 on HG and ci)g = ¢3 these equations are of the

by = 75+ byt Tadig t NP ¢ 5P + 8

form

METHOD 71 72 73 74 7s 5
AM. 0.88512 0.21390 0.86404 0.21390 0.88512 0.93792
AJ.J. |0.56919 0.56919 0.56919 0.56919 0.5_6919 1.15405

L.S.D.T. |0.5T7379 0 57238 0.55401 0.5686L4 0.58127 | 1.14991

L.S.D.T(w)|0.84887 0.16056 1.04641 | 0.19T9N 0.TTk16 0.97209
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(3)(a) Five point speclalJ. difference equations at the point *6%*

Since “A3 " A6 ' these special equations are of the
form

METHOD Pi P2 P

AM. 2.04217 1.95783 0

A.J.J. 1.96088 2.00000 0.03912

(3)(b) Nine point special difference equations at the point *6*

Since = 1 on HG, <2 *3 > A10 "~11 ' ~A15 " *;6 '

special equations are of the form

A%E = T, %2 72%7A10 73 A5 + 72 n22 T 0

METHOD s 71 72 73 74 6

AM. 1.64272 0.39503 1.60107 0.19946 0.16172
AT 1.07848 1.03727 1.01331 0.49336 0.37758
L.S.D.T 1.70211 0.73059 0.83671 0.58164 0.14895

L.S.D.T(W) 1.76760 0.34427 1.54585 0.22807 J 0.11621
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APPENDIX D (1i)

Special Difference Equations for Square Box Condenser Problem using

the Adapted Southwell Method

H o=/
IT

Special difference equations were used at all points marked with crosses
In the above figure and were as follows:
At point '21'

421 - 0.953)* - 1.06667*,8 - 0.93535*,q - 0.1))))*2 - 0.80000% - 0.13333%,

while equations at points '14' and '10' had the same coefficients.

At point '15'

- 0.96552*70 - 1.10574*21 - 0 96552*22 - 0.82759*5 m 0 13793*2 " O

At point '22'

4*22 - 1+73535*1* - 0.15555* ~ - 2.00000* Q - 0.15333*5 = 0.

At point '13'

4*¥72 - 0.80000%2 = 0.20000%2" - 0.80000™2" = 0.20000* " - 0 80000*2 1 20000 = (

while the equation at the point '5S' had the same coefficients.
At point '2'

4*¥2 - 0.84211*2 - 0.21053*,k - 0.84211*70 « 0 21053*,~ - 0.84211** - 1.05262 = 0.

At point '6'

®A ®A * A _ * A * - 0.20000 = 0.
4 b 1.;?.99_99__2 0.40000 10 1.60000 s 0.20000 2

The constant terms occurring In the special equations at points numbered

15, 5, 2 and 6 are due to the fact that * = 1 on HG In the above figure.
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