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SUMMARY

Poly-(A) containing RNA was isolated by affinity chromatography 

from HeLa cells 5h after infection with Pig Herpesvirus I {Pseudorabies 

viru^ PrV) or mock-infection. 54% of the RNA from infected cells was 

shown by molecular hybridisation to be complementary to virus specific 

sequences. Both species of poly-(A) containing RNA stimulated 

incorporation of radioactive amino acids into TCA precipitable material 

in a wheat germ cell free translation system. It was concluded, 

therefore, that these RNAs contained significant amounts of mRNA.

The vitro translation products were examined by polyacrylamide 

gel electrophoresis and fluorography. Preliminary classification of the 

in vitro products of infected cell mRNA as viral or cellular coded was 

carried out by comparison of their electrophoretic mobilities with those 

of the ^  vitro products of mock-infected cell mRNA. The mobilities of 

the ^  vitro products were also compared with those of the polypeptides 

present in infected and mock-infected cell lysates and, with a few 

exceptions, in vivo labelled polypeptides which comigrated with those 

synthesised vitro could be identified. Further evidence for the viral 

origin of eight infected cell mRNA products was obtained by immune- 

precipitation of ijn. vitro products with antisera to the major capsid 

protein of PrV and by examining the products synthesised vitro when 

infected cell mRNA had been hybridised to PrV DNA prior to addition to 

the translation system.

The mRNAs were also translated in a mRNA dependent reticulocyte 

lysate and a similar spectrum of products was obtained. This cell free 

system, however, was more efficient in the synthesis of high molecular 

weight polypeptides. Translation of the mRNAs in a Krebs II ascites 

cell free system was also investigated.

The/
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The vitro translation systems were used to examine the 

applicability of the model for virus-induced shut-off of host cell 

protein synthesis proposed by Carrasco (1977). This hypothesis 

attributes the virus-induced shut-off to an increase in monovalent 

cation concentration in infected cells. In the wheat germ system the 

optimum conditions for translation of infected and mock-infected cell 

mRNA were similar whereas reticulocyte mRNA and encephalomyocarditis 

virus RNA showed slightly different requirements. Investigation of 

the optimum {K^} for translation in the Krebs II ascites system also 

suggested that translation conditions for infected and mock-infected cell 

mRNA were similar. Hence it was concluded that changes in the intra­

cellular monovalent cation concentration are unlikely to have a role in 

the PrV-induced shut-off of host cell protein synthesis.

Possible differences in the initiation rates for viral and 

cellular mRNA were also investigated ^  vivo. Protein synthesis in 

cells grown in hypertonic medium was compared with synthesis under 

isotonic conditions both early (2h) and late (6h) after PrV-infection 

or mock-infection. After infection with a number of other viruses 

protein synthesis has been found to be less susceptible to a hypertonic 

initiation block than synthesis in uninfected cells and the resistant 

polypeptides have been shown to be virus coded (Nuss ejb ad., 1975).

PrV infection did not result in any resistance to this initiation block 

and it was concluded that PrV mRNA is not more readily translated than HeLa 

cell mRNA under limiting conditions. Hence it did not seem likely that 

the PrV-induced inhibition of cellular protein synthesis could be due to 

an overall inhibition of protein synthesis because under such conditions 

PrV mRNA translation would be inhibited also.

The increase in average polysome size in PrV-infected cells which

has/
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has been reported by Ben-Porat ,£t al., (1971) and which has also been 

observed in this laboratory could be due to an increase in the average 

length of the translated region of infected cell mRNAs, This was 

investigated by allowing completion dm vitro of the nascent polypeptide 

chains on different size classes of polysomes isolated from cells late 

after infection or mock-infection. The results showed that such a model 

could not account for the increased loading phenomenon.

Thus no differences between PrV mRNA and HeLa cell mRNA which might 

account for the changes in protein synthesis which occur in PrV-infected 

HeLa cells could be detected.
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CHAPTER 1

Introduction

1.1. General Introduction.

Most mammalian cells possess the genetic information to direct 

synthesis of more proteins than are ever synthesised by any one normal 

cell. This implies a control of protein synthesis which by the nature 

of the eucaryotic cell may act at several sites. Control of trans­

cription is the basis of regulation but because of the physical separation 

of the transcriptional and translational processes and the longer half- 

life of mRNA molecules in eucaryotic cells other controls are possible. 

Primary transcripts differ from functional mRNA molecules and therefore 

processing as well as translocation from the nucleus to the cytoplasm 

is necessary. Both these processes are likely to be regulated. In 

the cytoplasm translation of the mRNA may be regulated in a number of 

ways: mRNA may be sequestered in non-translatable complexes; it may

fail to initiate or once initiated elongation may be inhibited. In 

a cell synthesising a large number of mRNA molecules and proteins these 

controls are difficult to study.

Virus-infected cells in which the synthesis of host proteins is 

inhibited and a more limited number of proteins are synthesised provide 

an important experimental system. The mechanism of inhibition of 

host protein synthesis is unknown and cannot be explained by dis­

appearance of host mRNA. The protein synthesising apparatus 

discriminates between host and viral mRNA. The availability of cell 

free protein synthesising systems has made it possible to study this 

discrimination and other changes in translation in infected cells in 

isolation from transcriptional and other controls.

Elucidation of the regulatory mechanisms in virus-infected cells

should/
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should provide an insight into the controls operating in uninfected 

cells.

1.2. Aim of this project.

The aim of this project was to characterise and compare the in 

vitro translation of Pig Herpesvirus 1 (pseudorabies virus, PrV) mRNA 

and HeLa cell mRNA with a view to gaining some understanding of the 

translational control mechanisms in infected cells. Where applicable, 

these studies were extended by vivo experiments.

1.3. The Nature of Viruses.

Viruses are infectious potentially pathogenic entities which are 

totally dependent on living cells for propagation. They possess no 

system for energy production or protein synthesis and utilise cellular 

machinery to direct synthesis of specialised particles which transfer 

the genome to other cells (Lwoff, 1957; Luria and Darnell, 1968).

The mature extracellular virus particle is termed the virion.

The viral genome, which can be either DNA or RNA, is enclosed in a 

protein coat (the capsid). In complex virions the capsid may in turn 

be enclosed in a lipoprotein membrane called the envelope (Caspar et al., 

1962) .

1.4. The Herpesviruses.

1.4.1. Classification.

Attempts to define a taxonomic system for viruses have been fraught 

with controversy generated by the difficulties inherent in integrating 

the ideasof scientists working on similar viruses isolated from hosts 

from disparate taxonomic groups. The first approach of the International 

Committee/
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Committee of Nomenclature of Viruses (ICNV) was to set up four specialist 

subcommittees to investigate the taxonomy of vertebrate, plant and inverte­

brate viruses and bacteriophage (Wildy, 1971). Further classification 

is based on the following criteria:

(i) Intrinsic properties of the virus including

type of nucleic acid, symmetry of nucleocapsid, 

presence or absence of envelope and number 

of capsomeres (Tournier and Lwoff, 1966).

(ii) Clinical features of the disease.

The division of viruses according to host species has now been 

shown to be inappropriate because viruses with similar intrinsic 

properties have been found in more than one phylum (Fenner, 1976).

The herpesvirus group was recognised as a genus in 1970 (Wildy,

1971) . In 1975 the International Committee for Taxonomy of Viruses 

(ICTV, formerly the ICNV) raised the status of the genus to that of a 

family (Herpetoviridae) and defined it as viruses with the following 

characteristics;

"Virion consists of a capsid 120-150mm in diameter surrounded by 

a lipid-containing evelope. Buoyant density (CsCl) of virion

1.27 - 1.29g/cm^. Capsid icosadeltahedral with 162 partially hollow
3capsomeres. Buoyant density (CsCl) of capsid 1.305g/cm . Capsid 

surrounds a core which consists of DNA wrapped around a protein spool. 

About 33 protein species in virion with molecular weights up to 

290,000.

Genome consists of linear DNA with both terminal reiterations 

and internal repetition of terminal sequences, G+C content 33-74%, 

molecular weight 92 - 102 x 10^,

Viral multiplication begins in the nucleus and is completed by the 

addition/
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addition of a glycoprotein-menibrane as the virus passes tlirough the 

inner lamella of the nuclear membrane into the endoplasmic reticulum. 

Margination of chromatin and intranuclear inclusion bodies are 

characteristic." (Fenner, 1976).

Representatives of the Herpetoviridae are shown in Table 1,4.1. 

The ICTV approved the definition of one genus to be known as 

Herpesvirus, At present the genus includes four species: human 

herpesviruses 1 & 2 and cercopithecid herpesviruses 1 & 3. The 

extent of this genus was determined by comparative serology. It has 

been suggested that serological cross-neutralisation may prove to be 

a useful criterion for systematic taxonomy of other viruses (Honess and 

Watson, 1977).

In 1971 the ICNV appointed a Herpesvirus Study Group to make 

recommendations on the nomenclature of the viruses. Thus, the 

following provisional system of labelling was proposed.

(i) The label for each herpesvirus would be an

anglicised form

(ii) Each herpesvirus would be named after the

taxonomic family to which its primary 

natural host belongs

(iii) The herpesviruses within each group would

be given arabic numbers. New herpesviruses 

will receive the next available.

(Herpesvirus Study Group, 1973).

These proposals, however, have not been consistently applied 

and are not widely adopted (Honess and Watson, 1977). Hence, the 

trivial names shown in Table 1.4.1. are frequently used.

1.4.2./



TABLE 1.4.1. (Adapted from Herpesvirus Study Group, 1973)

A list of some of the herpesvirus

Recommended Name Trivial Name (with common abbreviation)

Human herpesvirus 1

2

3

4

5

Cercopithecid herpesvirus 1

2

3

Equid herpesvirus 1 

Pig herpesvirus 1 

2

Phasianid herpesvirus 1

2

Cebid herpesvirus 2

Herpes simplex virus type 1 (HSV-1) 

Herpes simplex virus type 2 (HSV-2) 

Varicella-zoster virus 

Epstein-Barr virus (EBV) 

Cytomegalovirus (CMV)

B virus

SAG

SA8

Equine abortion virus (EAV) 

Pseudorabies virus (PrV)

Pig cytomegalovirus 

Infectious laryngotracheitis virus 

Marek's disease virus (MDV) 

Herpesvirus sairaairi (HVS)
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1.4,2. The Herpesvirion.

Roizman & Furlong (1974) described four major architectural 

components in the virion. The innermost, the core, is surrounded 

by three concentric structures, the capsid, the tegument and the 
envelope. The virion contains at least 33 polypeptides, DNA, lipid 

and polyamine.

1.4.2.1. Tlie Core.

In thin section of virions the core appears as an electron 

dense ring of 25 - 35nm in diameter surrounding an electron translucent 

centre or as an electron dense bar (Furlong ejt a^., 1972) . Two lines 

of evidence suggest that the core contains the ENA. Firstly, the 

structure is sensitive to DNAase but not to RNAase or proteolytic 

enzymes (Epstein, 1952; Zambernard & Vatter, 1966; Chopra et al., 1970) 

Secondly, use of a technique which selectively removes uranyl ions 

bound to DNA in stained preparations showed that the electron dense 

area contains DNA and led to the conclusion that the DNA was in the form 

of a toroid surrounding a protein plug (Furlong et ^ ., 1972). This 

structure has been confirmed in virions of several herpesviruses 

(Nazeriam, 1974; Perdue , 1976) .

In addition to DMA and protein, it appears likely that the 

spermine found in capsid preparations is located in the core (Gibson 

& Roizman, 1971; Roizman, 1978).

1.4.2.2. The Capsid.

The capsid has been extensively studied by electron microscopy.

In thin section it appears as a moderately electron dense structure 

separated from the core by an electron translucent shell. Tïie outer 

diameter/



diameter of the capsid has been reported to range from 85 - llOnm 

(Roizman and Furlong, 1974), It is not clear whether this variability 

is artefactual or reflects irherent differences among the herpesviruses.

The morphological subunits of the capsid, the capsomeres, are 

arranged to show 2- 3- and 5-fold symmetry. Consideration of the 

number of capsomeres along the side of the triangular faces and the axis 

of symmetry leads to the conclusion that there are 162 capsomeres 

arranged in the form of an icosadeltahedron. , Capsomeres are

hexagonal in shape and appear to be 12.5nm long. Tlie end projecting 

outside the capsid has a diameter of 8.0 - 9.0nm and a hole 4nra in 

diameter runs through the axis of the capsomere (Wildy et al., 1960). In

the intact capsid the hole appears to be blocked at the proximal end 

(Roizman & Furlong, 1974).

Evidence suggests that the electron translucent region between 

the core and the capsid, the pericore, is not empty. The core remains 

in the centre of the capsid even after prolonged centrifugation and 

pelleting (Gibson & Roizman, 1972). In capsids treated with NP-40 

for 30 minutes the core loses its shape and can be seen lying next 

to the capsid which does not appear to be morphologically altered 

(Abodeely et al., 1970). The nature of the material in the pericore 

is unknown and it is possible that it is an extension of the protein 

plug on which the DNA is wound. 8mid ct , (1977) have described a

structure in freeze fracture preparations which might be a pericore.

1.4.2.3. The Tegument.

Roizman & Furlong (1974) define the structure located between the 

capsid and the envelope as the tegument. Evidence for such a structure 

has been recognised by numerous workers (for references see Roizman 

&/
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& Furlong, 1974). Comparison of the polypeptides present in virus 

treated with detergent to remove the envelope witli purified capsid 

proteins showed the existence of polypeptides external to the capsid 

(Gibson & Roizman, 1972; 1974), These polypeptides have been

assigned to the tegument (Roizman & Furlong, 1974).

1.4.2.4. The Envelope.

The outermost structure of the virus is the envelope which consists 

of a trilaminar membrane with spikes projecting from its outer surface 

(Fong ejt , 1973; Wildy et al., 1960) . It is composed of 

glycoproteins, glycolipids and lipids (Morgan ^  , 1954), and

evidence suggests that it is derived from host cell membrane (Epstein 

& Holt, 1963; Watson & Wildy, 1963) . However, tlie virus envelope 

appears to be more fragile than the cellular membrane.

1.4.3. Pseudorabies Virus.

Pseudorabies Virus is one of the most widely studies herpes­

viruses and has typical physical characteristics of the family.

The ICTV recognised it as a possible member of tlie genus Herpesvirus 

(Fenner, 1976) ; however serological studies suggest that it is not 

closely related to other members of the genus (Killington et al.,

1977; Honess and Watson, 1977).
6 6PrV DNA has a molecular weight of 90 x 10 - 95 x 10 (Stevely,

1977) and a G+C content of 72mol% (Rubenstein & Kaplan, 1975).

Twenty polypeptides have so far been described in purified virions 

(Stevely, 1975).

McKercher (1973) has reviewed the manifestations of PrV infection

in/
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in vivo. Pseudorabies was among the earliest of the viral diseases 

recognised (Aujeszky,1902). It occurs most frequently in swine, 

cattle, sheep, dogs and cats and to a limited extent in rats and mice 

(Gustafson, 1970).

The virus causes two types of infection. In the pig, which is 

the natural host, the infection is latent in the adult but severe in 

the newborn. Mortality ranges from 100% in the newborn to virtually 
nil in the adult (Gustafson, 1970). In cattle and most other 

susceptible species, it is manifested as a rapidly fatal systemic 

disease characterised by signs referable to the central nervous system. 

The name "pseudorabies" comes from the clinical similarity to rabies.

Naturally occurring PrV infection is acquired by droplet 

infection or ingestion (Gustafson, 1970). Virus multiplication in 

the respiratory tract of swine facilitates its spread within the body 

since leukcocytes attracted to tlie infected area pick up virus and 

carry it to various body organs, in paricular the placenta, from whence 

it invades the foetus and causes abortion. Transmission of the virus 

along nerve tracts and hence to the medulla has been shown to occur in 

rabbits (Hurst, 1934).

PrV has a wide cell culture host range, replicating in rabbit, 

dog, and monkey kidney, in HeLa cells, mouse fibroblasts, and in 

chicken embryos (Kaplan, 1969). In cell monolayers the virus produces 

either syncytium formation or granulation and clumping of cells with 

eventual lysis.

1.5. Replication of Herpesviruses in Permissive Cells.

Herpesviruses can cause three types of infection. The most 

widely/
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widely studied is productive infection where virus multiplication talces 

place in permissive cells. Herpesviruses may also infect cells 

latently giving rise to no gross effect or oncogenically causing 

cellular transformation. This section will be concerned mainly with 

productive infection.
Virus multiplication can be divided into several phases. The 

first event is attachment of tlie viral particle to the cell. This is 

followed by penetration. After penetration the virus is rapidly 

uncoated and for several hours no infectious virus can be isolated from 

the cell (eclipse phase) . During tlie eclipse, viral macromolecular 

synthesis talc es place. Finally, infectious viral particles are 

assembled and released from the cell (Watson, 1973b).

The duration of the reproductive cycle varies from virus to 

virus and is dependent on the host cell, tlie multi.plicity of infection 

(moi), the temperature of incubation and the nutritional properties of 

the medium (Roizman, 1978). At 37°C and 50 pfu/cell, the cycle of 

HSV-1 in HEp-2 cells lasts 17 hours (Roizman & Furlong (1974). The 

cycle of PrV in BHK 21 cells infected at 40 pfu/cell is somewhat 

shorter being about 12 hours (Tyler _et al., 1973) .

1.5.1. Attachment.

Little is known of the receptors on the cell surface to which 

herpesviruses adsorb. Adsorption is volume and cation dependent 

(Roizman, 1978), and varies for different viruses (Darlington & 

Granoff, 1973). Attachment occurs at 4°C (Gostling and Bedson, 

1956) but penetration requires warming (Holmes & Watson, 1963), 

Enveloped particles are preferentially adsorbed.

1.5.2./
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1.5.2. Penetration and Uncoding.

Most of the information on the mode of penetration comes from 

electron microscopy and such studies must be cautiously interpreted 

(Watson, 1973b; Roizman & Furlong, 1974). Two mechanisms are 

currently proposed. One suggests that the virus enters by 

pinocytosis and the second that entry is brought about by fusion of 

the viral envelope with tlie plasma membrane (see Watson, 1973b) .

Both proposals provide for release of the capsid from the envelope 

into the cytoplasm. The mechanism of release of DNA from the capsid 

is not known. Soon after infection, however, viral DNA can be 

detected in the nucleus (Hochberg & Becker, 1968) and synthesis of 

virus specific macromolecules commences.

1.5.3. Viral RNA Synthesis.

The first synthetic event in replication is synthesis of viral 

RNA, Viral RNA is defined as RNA complementary to viral DNA.

Viral mRNA refers to viral RNA sequences isolated from polysomes.

1.5.3.1. Site of Transcription and Enzymes Transcribing Viral DNA.

Viral RNA is transcribed from viral DNA in the nucleus (WAgner 
and Roizman, 1969a,b; Roizman £t al., 1970). An a-amanitin- 

sensitive RNA polymerase similar to RNA polymerase II is used to 

transcribe viral ENA (Alwine ^  , 1974; Kemp et al. , 1976;

Ben Zeev ei:^, 1976; Ben-Zeev and Becker, 1977; Costanzo et al., 

1977). There is no evidence for synthesis of a viral induced 

polymerase activity (Lowe, 1978), but some studies suggest that the 

activity is altered (Saxton and Stevens, 1972; Kemp ot , 1976; 

Preston and Newton, 1976) and viral-induced modification of the host 

enzyme/
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enzyme has not been ruled out.

1.5.3.2. Physical Characteristics of Viral RNA.

The primary transcripts are larger than cytoplasmic viral RNA 

and processing similar to that of cellular mRNA occurs. Viral RNA 

is cleaved to yield message sized transcripts (Roizman ^  , 1970;

Wagner & Roizman, 1969a,b). Polyadenylic acid sequences (poly-(A)) 

are covalently linked to cytoplasmic viral RNA (Rakusanova et , 1972; 

Backenheimer & Roizman, 1972) . The poly-(A) is added post-transcription­

ally in the nucleus (Bachenheimer & Roizman, 1972) and cytoplasmic 

poly-(A) containing RNA represents most if not all viral RNA sequences 

present in the cytoplasm (Silverstein ejt , 1976) . Viral RNA lacking 

poly-(A) tracts has been found on polysomes but appears to share the same 

sequences as poly-(A) containing RNA. However, a significant fraction 

of the polysome associated viral RNA lacking poly-(A) is larger than the 

corresponding viral poly-(A) containing RNA (Stringer et al., 1977).

Viral mRNA contains a 5' terminal methylated oligonucleotide 

of the form commonly found in eucaryotic mRNAs (Bartkoski & Roizman,

1976, 1978; Moss et ai., 1977) . Early viral transcripts contain 

internal methylated nucleotides of the form 6methyl adenosine but 

internal méthylation of late viral transcripts is inhibited (Bartkoski & 

Roizman, 1976, 1978) .

1.5.3.3. Characterisation of the Viral Transcripts Present at Different 

Stages of Infection.

The programme of transcription of HSV-1 DNA has been examined by 

two groups.

Roizman and coworkers have found that in HSV-1-infected HEp-2

cells/
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cells viral transcripts complementary to at least 40% of the DNA are 

present at all stages of infection. The transcripts present early in 

infection or in cells in which viral protein synthesis is inhibited by 

cycloheximide do not differ from those found late in infection. The 

concentration of transcripts is always lower in the cytoplasm than 

in the nucleus and the nucleus contains transcripts not present in the 

cytoplasm. RNA complementary to 50% of the DNA is synthesised in cells 

treated witli cycloheximide but the cytoplasmic transcripts are 

complementary to only 10% of the DNA. On release of the cycloheximide 

block, new RNA synthesis is required before more transcripts appear in 

tlie cytoplasm thus suggesting that non-functional transcripts are 

syntliesised. This has led to the conclusion that translocation of 

transcripts is regulated in such a way that only functional transcripts 

are transported (Frenkeland Roizman, 1972; Kozak and Roizman, 1974; 

Roizman et. r 1974) .

Nuclear viral RNA contains complementary sequences transcribed 

from at least 30% of the genome (Jaquemont and Roizman, 1975). There 

is some evidence that this fraction of self-annealing RNA accounts 

for the fraction of nuclear RNA sequences that is not translocated 

to the cytoplasm (KozaJc and Roizman, 1975) .

In contrast, Wagner's group, using a similar technique, have 

described restricted transcription of HSV-1 in the presence of 

inhibitors of DNA and protein synthesis and suggest that protein 

synthesis is required for transcription of some regions of the DNA 

(Swanstrom et al., 1975). In agreement with these results Clements 

et al., (1977) have shown that RNA transcribed in HSV-l-infected cells 

treated witli cycloheximide hybridised to restricted portions of the 

genome. Similarly, Rakusanova et , (1972) define an immediate- 

early/
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eàrly class of viral RNA which is synthesised in the PrV infected rabbit 

kidney (RK) cells in the presence of cycloheximide. Jean et al.,

(1974) claim to have shown that immediate-early RNA is complementary to 

only 25% of tlie DNA by techniques with comparable sensitivity to 

those used by Frenkel e^ al., (1973).

Roizman's group, however, found that transcription in HSV-2- 

infected cells in the absence of cycloheximide is restricted to 21% of 

genome early in infection (Frenkel et ai., 1973). Hence, it is possible 

that different transcriptional controls operate for different viruses. 

However the differences described for HSV-1 are at present unresolved,

1.5.4. Viral Protein Synthesis.

1.5.4.1. Characteristics of Infected Cell Protein Synthesis.

Following synthesis and processing of viral RNA, viral protein 

synthesis commences in the cytoplasm. The overall pattern of protein 

synthesis depends on the host-virus system and the moi. In some cases 

there is an initial decline in the uptake of amino acids and the number 

of polysomes followed by a recovery as viral protein synthesis increases 

(Roizman et al., 1965; Sydiskis and Roizman, 1956) while in other cells 

there is a smooth switch from host to viral protein synthesis with no 

measurable decline (Haraada and Kaplan, 1965; Kaplan, 1973). Late in 

infection the rate of protein synthesis decreases and does not recover.

The switch to viral protein synthesis is reflected in the polysome 

size. Infection of cells with HSV and PrV results in an increased 

proportion of rapidly sedimenting polysomes and a decrease in the 

polysome to monosome ratio. This disaggregation of polysome increases 

as infection proceeds (Sydiskis and Roizman, 1966, 1967; Ben Porat 

et/



— 15 —

et al., 1971). The increase in polysome size correlates with the 

shift to viral protein synthesis. Kaplan et al., (1970) showed that 

proteins synthesised by PrV-infected RK cells have a lower lysine to 

leucine ratio than the proteins synthesised by uninfected cells.

It was then demonstrated that nascent polypeptides on large polysomes 

had the characteristic viral amino acid content. Hybridisation of 

polysomal RNA to viral and cellular DNA showed the predominance of 

viral sequences in large polysomes (Ben-Porat et ai., 1971) .

1.5.4,2. Criteria for Classification of Infected Cell Polypeptides 

as Viral.

Difficulties in classification of herpesvirus infected cell 
polypeptides have arisen because of the large coding potential and 

complexity of the herpesviruses and the incomplete shut-off of host 

protein synthesis. Hence, several criteria have been used.

Honess and Roizman (1973) classified infected cell proteins 

as virus-specific if they met one or more of the following criteria: 

(i) stimulation in the rate of synthesis

post-infection.

(ii) variations in properties of the protein

as a function of the virus strain 

infecting the cell,

(iii) immune precipitation of infected

cell proteins by antisera reactive 

solely with virus antigens.

On this basis 53 polypeptides were identified in HSV-l-infected cells 

(Honess & Roizman,. 1973; Heine et al. , 1974) ,

Marsden et al., (1976) further extended Honess & Roizman's

second/



” 16 —

second criterion by examining the polypeptides synthesised in cells 

infected with ts mutants of HSV-1 at restrictive temperatures. They 

identified 52 viral polypeptides including six low molecular weight 

species not identified by Honess & Roizman. Classification of HSV-2 

polypeptides has proven to be easier because host protein synthesis is 

rapidly shut-off. 50 polypeptides have been identified as viral by 

the above criteria (Powell & Courtney, 1974; Strnad & Aurelia, 1974), 

Similar analyses have not been carried out for other herpesviruses but 

the virions have similar numbers of polypeptides (Killington et ,

1977) and there is no reason to suspect that they may be less complex.

1.5.4.3. Regulation of Synthesis of Viral Proteins.

Controlled synthesis of virus specific proteins in HSV-l-infected 

HEp-2 cells has been described. Viral proteins form at least three 

groups whose synthesis is coordinately regulated and sequentially 

ordered. Analysis of the rate of synthesis of viral polypeptides at 

different times after infection showed the presence of groups differing 

in kinetics of synthesis (Honess & Roizman, 1973). Further studies 

with inhibitors of protein synthesis allowed definition of three groups 

which have been designated a, 3 and y . The a group is synthesised early 

in infection and maximally 3-4 hours post-infection. 3 synthesis is 

maximum at 5-7 hours and y proteins are synthesised at increasing rates 

until 12 hours post-infection (Honess and Roizman, 1974, 1975a).

Similar sequential ordering has been described in HSV-2-infected cells 

(Powell & Courtney, 1974; Powell jet af., 1975) .

a polypeptide synthesis requires no prior viral protein synthesis 

and the polypeptides are synthesised immediately on removal of a cyclo­

heximide block imposed at the time of infection. Three a polypeptides, 

two/
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two non-structural and one virion associated, have been identified in 

HSV-1 and 2-infected cells. They are all translocated to the nucleus 

immediately after synthesis, and are post-translationally modified 

(probably in the nucleus) and phosphorylated (Fenwick & Roizman, 1977; 

Pereira et , 1977) .

Synthesis of g polypeptides is dependent on a polypeptide 

synthesis and functional 6 polypeptides are required to shut-off a 

polypeptide synthesis. This shut-off is, at least in part, a 

translational event. 3 polypeptides have now been shown to form a 

heterogeneous class. A subset of the group is made in HSV-1 and 2- 

infected cells treated with amino acid analogues from the time of 

infection and thus synthesising altered a polypeptides. The 3 class 

contains both structural and non-structural proteins. Some of the 3 

polypeptides have been shown to be post-translationally modified and 

translocated to the nucleus (Honess & Roizman, 1974, 1975a; Pereira 

et al., 1977),

The relationship between y and 3 polypeptides is similar to that 

between the 3 and ct classes. y polypeptides are mainly the major 

structural proteins (Honess and Roizman, 1974, 1975a) . y polypeptide 

synthesis coincides with viral DNA synthesis and has been found to be 

decreased in its absence (Honess & Roizman, 1974; Roizman et al.,

1974; Powell et al., 1974) . It has been suggested that transcription 

of progeny DNA is necessary for optimal y polypeptide synthesis (Roizman 

1978). Powell et al., (1974) have suggested the existence of another 

class of proteins designated y^ which are totally dependent on DNA 

synthesis. Further, Ward and Stevens (1975) failed to detect synthesis 

of any y proteins when DNA synthesis was inhibited with araC. This 

discrepancy is unresolved but it is possible that the y proteins are made 

but/
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not detected by the methods employed (Roizman, 1978).

Such a cascade model is supported by the studies of Marsden 

et al,, (1976) on protein synthesis in cells infected with 

mutants of HSV-1 at non-permissive temperatures. However, their results 

suggest that this scheme is an over simplification and a more intricate 

series of control steps may operate.

At present the extent to which this scheme applies to other 

herpesviruses is not known. The immediate-early proteins synthesised in 

PrV-infected RK cells after release of a cycloheximide block correspond 

to the a class. These proteins appear to be more numerous than the 

a proteins of HSV-1 and -2 and no structural proteins have been detected 

(Ben-Porat et al., 1975), However, the different transcriptional 

programs described for various herpesviruses (see 1.5.3.3.) and the 

irreversible effects of cycloheximide on PrV and HSV-2 replication 

(Jean et al., 1974; FrenJcel £t , 1973; Powell and Courtney, 1974) 

suggest that the scheme must be extended only cautiously.

1.5.4.4. Post-translation Translocation and Modification of Viral Proteins 

Newly synthesised proteins migrate from tlie cytoplasm to the 

nucleus of infected cells (Fujiwara and Kaplan, 1967; Olshevsky et al., 

1967), Specifically, virus structural proteins enter the nucleus 

(Spear and Roizman, 1968; Ben-Porat e^ , 1969) where nucleocapsids 

are assembled but non-structural proteins are also translocated (Spear 

and Roizman, 1968; Pereira et , 1977; Fenwick and Roizman, 1977). 

Polypeptides probably enter the nucleus through the nuclear pores and 

nuclear accumulation is likely to be determined by the affinity of poly­

peptides for constituents of the host cell nucleus (Ben-Porat and Kaplan, 

1973; Fenwick et al., 1978) .

Polypeptides/
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Polypeptides can be modified in three ways (Roizman, 1978).

Rapid post-translational cleavages such as those seen in picorua- 

virus-infected cells do not occur (Honess and Roizman, 1973) .

There is, however, evidence for slow modification of an HSV poly­

peptide during capsid formation (Gibson and Roizman, 1974). 

Phosphorylation of structural and non-structural polypeptides of HSV 

(Gibson and Roizman, 1974; Pereira et al., 1977) and of structural 

proteins of PrV (Stevely, 1975) has been reported, Erickson (1976) 

has detected PrV-specified sulphated polypeptides.

Glycosylated polypeptides have been found in all purified 

herpesvirions analysed to date (Roizman, 1978) . However, most of the

information on their synthesis comes from HSV. Polysaccharide moieties

are added to completed precursor polypeptides by stepwise addition of 

heterosaccharide chains late in infection (Honess and Roizman, 1975b). 

Spear and Roizman (1970) showed that HSV-specified glycoproteins 

partition with membranes. This suggested that the polypeptides are 

glycosylated ^  situ. Four antigen!cally distinct viral-specified 

polypeptides give rise to all the major glycosylated species detected 

in HSV-l-infected cells (Spear, 1975; 1976). PrV-infected RK cells

produce a non-structural sulphated glycoprotein most of which is 

excreted from the cell (Kaplan and Ben-Porat, 1975).

1.5.5. Viral DNA Synthesis.

Protein synthesis after infection is necessary to initiate the 

synthesis of viral DNA. However, the dependence decreases as the 

infective process proceeds and once DNA synthesis is established 

inhibition of protein synthesis diminishes, but does not abolish, it.

The pool size of all the dNTPs in infected cells increases and the 

overall/
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overall rate of DNA synthesis is higher than in uninfected cells (Cheng 

et , 1975). Increased uptalce of thymidine is dependent on viral 

transcription and translation (Bitüingmaier et al., 1975), hence, the

dependence on protein synthesis may be related to the pool size.

1.5.5.1. Site of Replication and Enzymes replicating viral DNA.

Histochemical and biochemical evidence indicates that viral DNA 

synthesis takes place in the nucleus, (Roizman and Furlong, 1974).

New DNA polymerase activities have been reported in cells 

infected with HSV, PrV, MDV, cytomegalovirus and equine herpesvirus 

(for references see Allen et af., 1977) varicella-zoster virus (Miller 

& Rapp, 1977) and EBV (Miller et , 1977). The physico-chemical

properties of the activities differ from those of cellular polymerases.

Viral polymerases are stimulated by salt (Boezi al., 1974) and 

inhibited by phosphonoacetic acid (Huang, 1975) and temperature labile 

activities have been described in temperature-sensitive mutants (Aron 

et al., 1975). There is evidence that more than one gene of HSV-2 

is involved in polymerase synthesis (Hay et , 1976; Purifoy and 

Benyesh-Melnick, 1975). However the full extent to which the polymerase 

activity is viral coded is not known and its importance to viral 

replication is not clear. in S phase cells EHV-1 DNA 

synthesis is carried out by cellular DNA polymerase before viral poly­

merase activity is detectable and there is evidence tliat the maximal 

levels of HSV-2 DNA polymerase occur after DNA synthesis has begun to 

decline (Purifoy and Benyesh-Melnick, 1975; Cohen et al., 1977).

Induction of thymidine kinase and DNAase have also been 

reported in herpes virus infected cells. There is strong evidence that 

tlie thymidine kinase is viral coded. The importance of these enzymes 

to/
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to viral DNA synthesis is not known (Ben-Porat & Kaplan, 1973).

1.5.6. Assembly, Envelopment and Release of Virus Particles.

The core and capsid of herpesviruses are assembled in the 

nucleus. Many different nuclear particle formations have been 

described (see Roizman & Furlong, 1974), but the flow of events leading

to assembly has not been unequivocally established. Perdue ejb al.,

(1976) have produced a model for core formation which suggests that DNA 

is inserted into capsids without a preformed core and organises core

formation. There is some other support for this (Friedmann et al,,

1975) but the alternative that DNA is incorporated into the capsid 

during initial assembly has not been ruled out.

The virion envelope is acquired by budding through a cytoplasmic 

membrane. Thin-section (see Watson, 1973b) and freeze-etch studies 

(Rodriguez & Dubois-Dalcq, 1978) show particles budding from the inner 

nuclear membrane, and it is generally accepted that this is the mode of 

envelopment. However, there are numerous descriptions of naked 

particles in the cytoplasm and other sites of envelopment have been 

proposed. Friedmann et al., (1975) have suggested that assembly can 

occur in the cytoplasm of cells which do not show nuclear changes as 

a result of infections.

Capsids budding through the inner nuclear membrane pick up dense 

material that is present on the nuclear side of the lamella. The 

location of this material allows its definition as tegument but it is 

not known whether it is the only material in the tegument.

Unenveloped capsids covered with a layer of material have been seen in 

the nucleus, (Roizman & Furlong, 1974).

Several mechanisms of release have been proposed. There is 

evidence/
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evidence for each and it is possible that the process depends on the 

virus (Watson, 1975b). One pathway provides for continuous partition 

from the cell cytoplasm. Thus the virion may bud into release 

channels which lead to the extracellular space (Schwartz & Roizman, 

1969) or be transported in vacuoles which are released by reverse 

phagocytosis (Morgan et al., 1959). Evidence suggests that in some 

cells release is effected by cell lysis (Watson ejt , 1964).

1.6. Alterations in Cell Structure and Function During Productive 

Infection.

All available evidence indicates that the consequence of 

productive infection with herpesviruses is cell death (Roizman, 1978). 

The causes of cell death are obscure but are undoubtedly related to 

the morphological and biochemical changes seen in infected cells.

Thus, host cell macromolecular synthesis is reduced or halted, the 

cell membrane is altered and other structural changes occur.

1,6,1. Structural Alterations.

The infected cell nucleus exhibits gross changes in the structure 

of the nucleolus, chromatin and nuclear membrane. During infection, 

the nucleolus becomes enlarged, and is frequently displaced toward 

the nuclear membrane and the nucleolar material is altered, '

Margination of chromatin occurs early in infection and is correlated 

with distortion of the nucleus and chromosome breakage. Late in 

infection long stretches of nuclear membrane ■ folded upon themselves 

are observed (see Roizman, 1978),

No unique feature characteristic of herpesvirus infection is 

seen in the cytoplasm (Roizman, 1978).

1.6.2/
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1.6.2. Cellular RNA Synthesis.

Infection of cells with herpesviruses leads to a gradual 

decrease in the rate of RNA synthesis (Ben-Porat and Kaplan, 1973),

The decrease in synthesis is least for RNA greater than 28S and most 

pronounced for 4S RNA (Roizman, 1978), The appearance of newly 

synthesised 28S and 18S rRNA declines rapidly after infection. This 

shut-off is not entirely due to tlie decrease in synthesis of 45S RNA 

or to changes in its méthylation, but rather to abortive processing 

(Roizman et al., 1970).

Changes in the rates of synthesis of the other cellular RNAs 

are less well characterised,Roizman et al., (1970) have shown that 

transport of non-viral RNA is different from that of viral RNA. 

Rakusanova et al., (1972) have evidence that cellular RNA species 

accumulate in infected cells and that these species differ from those 

present in uninfected cells. Other results show that cellular DNA 

is transcribed late in infection and some cellulcir transcripts become 

associated with polysomes (Stringer et al., 1977). Most of this 

information comes from DNA-RNA hybridisations and because cellular RNA 

contains many species present in different abundances and total 

cellular DNA contains reiterated and unique sequences the technique 

is limited. Hybridisation of RNA from HSV infected polyoma- 

transformed BHK cells to polyoma virus DNA does not suffer from these 

limitations and such studies have been used to show that transcription 

of polyoma DNA is specifically inhibited in HSV-infected cells (Pizer 

and Beard, 1976). Thus the overall cellular mRNA synthesis probably 

reflects different changes in the transcription of different sequences.

The mechanism of inhibition of host RNA synthesis is uhlcnown. 

SasaJci ^  , (1974) noted the presence of an inhibitor of nucleolar

RNA/
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RNA polymerase in HSV-infected cells but its role is unknown.

1.6.3. Cellular Protein Synthesis.

The overall inhibition of cellular protein synthesis in cells 

infected with herpesviruses has been established by the criteria used 

to identify viral polypeptides in infected cells (see 1.5.4.2.), 

However, the absolute degree of shut-off is not known. Cellular mRNA 

species have been found on polysomes late after infection (Stringer 

et al., 1977), and several polypeptides synthesised at this stage of 

infection have been identified as cellular (Honess and Roizman, 1973; 

Powell and Courtney, 1974).

The method of shut-off of host protein synthesis is not under­

stood. The inhibition of host RNA synthesis will account for some 

decline in protein synthesis and there is evidence for some degradation 

of mRNA (Nishioka & Silverstein, 1977). In addition, it seems likely 

that some translational control operates.

1.6.4. Cellular DNA Synthesis.

In general, infection of susceptible cells with herpesviruses 

leads to a decrease in the rate of cellular DNA synthesis (Ben-Porat 

and Kaplan, 1973). Exceptions are viruses such as EBV and MDV which 

can cause leucocyte proliferation and consequently increase DNA 

synthesis (Gerber and Hoyer, 1971; Lee, 1972). However, the 

synthesis of cellular DNA is inhibited in EBV-infected cells in which 

early viral antigens are synthesised (Gergely et al., 1976 a,b; 

Nonoyamaand Pagano, 1972) .

The time of shut-off of cellular DNA synthesis is dependent 

on the moi but is generally an early event. The mechanism of shut-off 
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is unknown. Ben-Porat and Kaplan (1955) have shown that inhibition is 

dependent on protein synthesis. Thus, two mechanisms are possible; 

virus induced proteins might act as inhibitors of cellular DNA 

replication, or the inhibition of cellular protein synthesis may lead 

to a decrease in synthesis of a cellular protein which is essential 

for cellular DNA synthesis. Ludwig and Rott (1975) have shown that 

inhibition of glycosylation in PrV-infected cells by 2-deoxy-glucose 

allows concomitant synthesis of viral and cellular DNA implying that a 

glycoprotein is involved. Bittlingmaier et al., (1975), however, 

have evidence that the early inhibition of synthesis is independent of 

the genome and raise the possibility that the inhibition may be due to 

changes in dTTP pools.

The physical changes in cellular DNA which have been noted (1.6.1.) 

may also be related to control of synthesis.

1.6.5. Alterations in Cell Membranes.

Cells infected witli herpesviruses acquire virus-specific antigens 

on their surface (Roane and Roizman, 1964). In EBV and HSV infection these 

antigens seem to be identical to those present on mature virions (Pearson 

et ai., 1970; Roizman and Spring, 1967). Comparison of the electro­

phoretic mobilities of membrane polypeptides with virion polypeptides has 

led to the conclusion that the viral polypeptides inserted into membranes 

are identical to those that become part of the envelope of mature virions 

(Roizman, 1978). The reason for virus-induced alterations of the plasma 

cell membrane is not obvious because unlike the nuclear membrane this 

membrane does not form part of the mature virion. It is likely, however, 

that these changes are related to alterations in the tendency of infected 

cells to interact with each other (their "social behaviour" Ejercito et 

al/
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al., 1968), and to the membrane's role in the infective process 

(Manservigi et , 1977) .

The social behaviour of infected cells is dependent on the virus 

strain and the cell type and infected cells may clump or fuse.

Manservigi ^  , (1977), have shown that there are at least two genes

involved in determining the social behaviour of infected cells and the 

existence of fusion promoting and fusion inhibiting activities has been 

proposed. These activities have been related to the presence or absence 

of two glycoproteins in the cell membrane of infected cells. There is 

also evidence that the pattern of glycolipid synthesis is altered in 

fusion-producing mutants (Ruhlig and Person, 1977). At present the 

mechanism of fusion and the relationship of macromolecules to the process has 

not been established.

1.7. Translational Control of Protein Synthesis in Eucaryotic Cells.

As discussed in the general introduction to this tlie sis (1.1.) 

control of protein synthesis may occur at a nuiiaber of levels. However, 

since the purpose of this project was an investigation of translational 

control, this review will be confined to the mechanisms by which 

translation of mRNAs present in the cytoplasm can be regulated in 

eucaryotic cells. Translational control also occurs in procaryotic 

cells. This subject has been reviewed recently (Lodish, 1976) and will 

not be considered here.

The mechanisms of control available are governed by the components 

of the system and hence it is useful to consider the apparatus and 

mechanism of protein synthesis.

1.7.1./
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1.7.1. The Mechanism of Translation.

A pathway for initiation of protein synthesis has been proposed 

recently by Staehelin and coworkers (Trachsel £t , 1977; Schreier et

al., 1977). This can be summarised as follows: The first step is

the formation of a ternary complex between raet-tRNA^ GTP and the initiation 

factor eIF-2. The complex then binds to the 40S ribosomal subunit and 

this quaternary complex is stabilised by eXF-1 and eIF-3 . The 

subsequent binding of mRNA requires eIF-3, eIF-4A and eIF~4B and is 

accompanied by ATP hydrolysis. elF-4C, like elF-1, apparently has a 

role in stabilisation. The {40S*met-tRNA^*GTP*mRNA‘initiation factor} 

complex then binds the 60S subunit in the presence of eIF-5 to yield an

80S initiation complex {80S*met-tRNA^‘mRNA} where the met-tRNA^ is in

the peptidyl site of the ribosome.

The intermediates proposed in this pathway have been described 

by a number of workers and the scheme is very similar to that proposed 

by Benne and Hershey (1978). However, most of the evidence has been 

obtained using reconstituted systems where the rate of protein synthesis 

is only a fraction of that observed ^  vivo and so it may be an over­

simplification. In particular, there is still no agreement on the 

total number of initiation factors. Two groups have identified a factor 

eIF-4D the role of which has yet to be confirmed (Kemper e^ , 1976;

Benne and Hershey, 1978) and very recent work on the mode of action of 

the haem controlled repressor (see 1.-7.2.3.) has shown that the eIF-2 

activity may be modified by another protein. Furthermore, the proposed 

pathway does not take into account possible cooperation of eIP-1 and 

eIF-4C in 60S subunit joining and the dissociation role of eIF-3 (Trachsel 

et al., 1977; Benne and Hershey, 1978).

Elongation, as far as is known at present, involves only two factors.

The/
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The subject has been reviewed by Weissbach and Ochoa (1976) and can be 

summarised as follows: The appropriate arainoacylated tRNA is brought

to the A site on the ribosome as a ternary complex consisting of GTP, 

elongation factor EF-1 and aminoacylated tRNA. Binding involves 

hydrolysis of GTP and the GDP*EF-1 complex is released and recycled.

The ribosomal peptidyl transferase then catalyses formation of the 

peptide bond. Translocation requires EF-2 and GTP. EF-2 and GTP 

form a stable complex which binds to the ribosome resulting in trans­

location and GTP hydrolysis. The EF-2 GDP is then released and re­

cycled. It is not clear how recycling of the factors occurs and it is 

possible that other factors may be involved in a recycling process such 

as occurs with EF-Tu and EF-Ts in procaryotes.

The termination process allows release of the completed peptide 

chain from the ribosome-mRNA complex. The peptide is thought to be 

located on the P site and its release requires a termination codon in 

the A site, a release factor (RF) and GTP, Available evidence suggests 

that the first step is GTP-dependent binding of RF to the A site.

This activates peptidyl transferase so that the terminal aminoacyl bond 

is hydrolysed and the completed polypeptide is released. GTP hydrolysis 

is required for the dissociation of RF from the A site.

1.7.2. Translational Control Mechanisms.

Translational controls can be seen as methods of regulating the 

availability of the components of the translational apparatus or of 

changing their efficiency. These components are now considered 

individually.

1.7.2.1./
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1.7.2.1. Low Molecular Weight Substances and tRNA.

Glucose starvation and amino acid starvation inhibit protein 

synthesis (Jackson, 1975). While such factors probably act at a 

number of levels, there is evidence that they affect translation 

directly. In both cases the energy supply may become limiting and small 

changes in ATP and GTP concentrations inhibit initiation and elongation 

(Rupniak and Quincey, 1975).

Amino acid starvation may, however, have effects beyond those on

energy metabolism or on the concentration of aminoacylated tRNAs. Thus,

if the concentration of a charged tRNA other than the initiator tRNA is

severely decreased, elongation of peptides might be limited. It has
hî sbeen shown, however, that when the charging of tRNA is inhibited in 

HeLa cells with L-histidinol both initiation and elongation are affected 

(Vaughan and Hansen, 1973). This led to the suggestion that deacylated 

tRNAs inhibit initiation directly. Such a hypothesis is supported by 

the observation that deacylated tRNAs inhibit the AUG dependent 80S 

complex formation in vitro (Kyner ^  ad., 1973). The details of this 

effect are not fully characterised. Kyner £t al,, (1973) suggested 

that deacylated tRNA competed with the initiation tRNA for the P site 

confining the effect to the early stages of initiation. Some evidence 

supports this (Hayes ejt a^., 1975; Pain and Henshaw, 1975) but it has 

been suggested that the lesion is between 80S complex formation and 

elongation (Warrington et , 1977) . A major difficulty is assessing 

the correlation between experiments using amino acid analogues and amino 

acid starvation studies.

It has also been suggested that the effect of tRNA might be 

related to the energy supply. An enzyme system which degrades GTP to 

guanine when uncharged tRNA is in the A site has been demonstrated in 

vitro/
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vitro (Grummt and Speckbacher, 1975) . Further, lowering the charging 
hi sof tRNA with L-histidinol depresses first the GTP then the ATP levels 

(Grummt and Grummt, 1976) . It is of interest that in procaryotes 

modification of GTP to (p)ppGpp is involved in suppression of protein 

synthesis in amino acid starvation (Block & Haseltine, 1974) .

A direct effect of tRNA on elongation has been demonstrated and is 

better characterised. Protein synthesis can be regulated by the avail­

ability of one or more iso-accepting tRNAs. In a tRNA-dependent cell 

free system oviduct mRNA and EMC virus RNA are not translated efficiently 

or with fidelity in the presence of rabbit reticulocyte tRNA although 

globin mRNA is, but efficient synthesis is achieved by addition of 

rabbit liver or ascites tRNA (Sharma ejf , 1976a) , In addition, the

amount of synthesis vitro can be modulated by specific tRNAs (Sharma 

et al., 1976b). ^  vivo, changes in the relative amounts of tRNAs and

the population of iso-accepting species have been correlated with changes in 

protein synthesis (Viotti et al., 1978) . These results may be related 

to the different amino acid compositions of the proteins being 

synthesised or to different mRNA requirements for iso-accepting tRNAs.

1.7.2.2. mRNA.

Regulation of the translation of mRNAs present in the cytoplasm 

can be achieved in three ways. Firstly, specific degradation of mRNA 

may occur. Secondly, mRNAs may differ in their ability to be 

recognised by the translational machinery. Thirdly, mRNAs may be made 

unavailable by complexing with other molecules.

The first two controls are dependent on differences in mRNA 

structure. At present only general features of mRNA structure are 

known and thus little is known about specific controls. Most 

eucaryotic/
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eucaryotic mRNAs have at the 3' end a poly-(A) tract (Brawerman, 1975) 

which probably has a role in preventing degradation (Revel and Groner, 

1978). With the exception of the picornavirus and satellite tobacco 

necrosis virus mRNAs, all eucaryotic mRNAs so far examined carry a 

7"̂ G "cap" joined to the 5' terminus by a 5'-5' pyrophosphate link.

This may be followed by one or two 2'0-methylated residues (Shatkin, 1976) 

The cap protects mRNA from 5' exonucleolytic degradation. It is 

required for initiation and is recognised by eIF-2 (Kaempfer ^  ,

1978) and eIP~4B (Shafritz et ad., 1976) the latter of which may be 

limiting in poliovirus infected cells (Rose et al., 1978). Other 

structural features such as internal méthylation have not yet been 

correlated with control.

mRNA translation can be controlled by sequestering mRNAs in 

messenger ribonuclear particles (mRNPs) non-associated with ribosomes.

Sea urchin embryos, for example, store histone mRNAs which are released 

for growth (Kedes, 1976). Active mRNA can be regained from immature 

duck erythrocytes by deproteinisation (Civelli et al., 1976), but 

Kennedy and Haywood (1976a) find that it is necessary to denature the 

RNA and suggest that translational control RNA (tcRNA) is involved in 

sequestration (see 1.7,2.7.).

1.7.2.3. Initiation Factors.

The total number of the initiation factors has not been completely 

defined and there is some disagreement on the way in which tliey regulate 

translation. On the one hand, cells could regulate the overall rate of 

chain initiation by the availability of factors which would be expected 

to affect all mRNAs. Alternatively, the cells could utilise message- 

specific components that would lead to changes in the types of mRNAs 

translated/
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translated. These mechanisms are not, however, mutually exclusive.

The availability of cell free systems which translate heterologous 

mRNAs at rates very close to those observed vivo suggests that the 

translational apparatus has tlie same specificity in all cells, Further­

more, the demonstration that the initiation factor which stimulates 

EMC virus RNA translation (Wigle and Smith, 1973) is eIF-4A (Staehelin 

e_t a^., 1975) and that the preferential translation of EMC virus RNA 

in a mixed viral/cellular mRNA population can be alleviated by eIF-4B. 

(Golini et al., 1976) suggests that apparent specificities may be 

due to different requirements of mRNAs for tlie same initiation factors.

Non-specific control of translation has been demonstrated in 

haem-deficient reticulocytes and it is becoming clear that this is due 

to inactivation of an initiation factor. In reticulocytes in the 

absence of haem protein synthesis proceeds for several minutes and then 

declines rapidly and disaggregation of polysomes and depletion of 40S* 

met tRNA^ complexes occurs. A cAMP-independent protein kinase which 

phosphorylates eIF-2 can be isolated from reticulocytes incubated without 

haem and, if added back to lysates, the kinase causes inhibition of 

protein synthesis (Farrell et_ , 1977). Phosphorylated eIF-2 has 

normal activity in promoting formation of 40S*met tRNA^ complexes in 

reconstituted systems where relatively large amounts of purified initiation 

factors are used. However, Ochoa's group have very recently isolated a 

protein which stimulates the activity of eIF-2 (elF-2 stimulating 

protein ESP) and have found that phosphorylation abolishes the interaction 

of eIP-2 with ESP so that the initiation factor is no longer active at 

the low concentrations found in lysates (de Haro £t al., 1978; de Haro 

and Ochoa, 1978). Thus it now seems very likely that the basis of 

inhibition of initiation in this case is phosphorylation of eIF-2.

Similar/
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Similar relationships have not yet been demonstrated for other factors 

but four initiation factor polypeptides, including eIF-4B, can be phos­

phorylated ^  vivo and an analogous role is possible (Benne et al., 1978),

Lodish (1974) has derived a kinetic rate equation for initiation 

and elongation of polypeptide chains which predicts that any reduction in 

the rate of initiation at or before binding of mRNA will lead to 

preferential inhibition of translation of mRNAs with lower initiation rate 

constants. Hence, control might be exerted by non-specific lowering of 

initiation rates which would favour the translation of "better" mRNAs.

Studies on inhibition of initiation have shown that such an effect can 

occur (see Lodish, 1976; Koch et , 1976).

However, more recent experiments using purified initiation factors 

suggest that this is an oversimplification. Addition of purified eIF-4A 

and eIF-4B has been shown to change the translation of a globin mRNA 

relative to 3 globin mRNA without increasing the overall rate of 

translation. Thus the effect could not be ascribed to an increase in the 

concentration of a rate limiting factor (Kabat and Cliappell, 1977) .

Other anomalous results have been reviewed by Revel and Groner (1978) who 

have proposed that contrary to Lodish's hypothesis, mRNAs do not have a

uniqueinitiation constant. They suggest that the efficiency of mRNA recognition 
by the ribosomal machinery is due to the overall kinetic parameters of 

the initiation system. Thus, changes in the concentration of factors 

modify the relative affinity of different mRNAs for the ribosomal 

machinery. In one sense then, the population of initiation factors has 

message specificity.

A more specific effect of initiation factors is proposed by Heywood and 

Goworkers who have reported a mRNA specific activity in partially 

purified eIF-3 preparations. They find that although translation of 

globin/
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globin and myosin mRNAs is stimulated by reticulocyte eIF-3 as might 

occur if the concentration of this factor were limiting, preferential 

stimulation of myosin mRNA translation is brought about by muscle eIF-3 

(Kennedy and Heywood, 1976a). A similar result was found for tubulin 

mRNA (Gilmore-Hebert and Heywood, 1976). They suggest that modulator 

molecules may be associated with eIF-3 (Kennedy and Heywood, 1976a,b). 

Further work is necessary to characterise these modulators.

In summary, it is clear that initiation factors have a role in 

translational control but at present this is not completely understood.

1.7.2.4. Elongation Factors.

It is generally assumed that elongation and termination of all 

polypeptides occur at the same rate. This implies an absence of 

differential control but general control of translation may operate at 

this level. An example of such control is the inhibition of protein 

synthesis by diptheria toxin. This protein catalyses ADP-ribosylation 

of BF~2 thus rendering it non-functional and inhibiting translation of 

all mRNAs. (Pappenheimer, 1977) .

1.7.2.5. Ribosomes.

There is no evidence that synthesis of ribosomes is an important 

method of short term control. Studies of inactivation are complicated 

by the association of factors with ribosomes. Phosphorylation of a 

ribosomal protein is associated with dsRNA-induced inhibition if protein 

synthesis (Farrell e_̂  ' 1977) but as this is not the only effect of

dsRNA its importance is unknown. Phosphorylation of other ribosomal 

proteins has been demonstrated but as yet tlie se events have not been 

correlated/
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correlated with control.

1.7.2.6. Other Factors.

Low molecular weight U-rich oligonucleotides (tcRNA) which inhibit 

protein synthesis vitro have been isolated from muscle (Kennedy et. ^1 »,

1978) /Artiemia salina (Lee-Huang ejt al., 1977) and rat calvaria (Zeichner 

and Breitreutz, 1978). Lee-Huang and coworkers have shown that their 

tcRNA blocks peptide chain elongation by interfering with the EF-1 

dependent binding of aminoacyl tRNA. The tcRNA isolated by Heywood and 

coworkers binds specifically to myosin mRNA and found in mRNP particles. 

They suggest that in addition to non-specific regulation, tcRNAs may have 

high affinities for specific mRNAs and may be involved in sequestering 

mRNA in non-translatable mRNPs (Kennedy and Heywood, 1976a; Kennedy 

ot al., 1978 and see 1.7.2.2.).

1.7.2.7. Summary.

Most of tlie controls described in this section can be defined as 

initiation or elongation specific. Most of what is known concerns 

control at initiation and advances are being made in determining the 

mechanism involved in regulation. Several models for control of 

initiation have been proposed. These will be considered in detail 

in Chapter 8. Control of elongation is less frequently observed and 

in many cases (see, for example, Orlowski and Sypherd, 1978) no knowledge 

of the mechanism is available.

1.7.3. The Interferon System.

Interferon induced translational control has been considered 

separately because it operates at several levels and its mode of action 

may/
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may illustrate a unifying principle. The subject has been reviewed 

recently (Revel & Groner, 1978) and can be summarised as follows:

Exposure of sensitive cells to interferon induces an antiviral 

state which at least in part results from inhibition of viral mRNA 

translation. The way in which discrimination between viral and 

cellular mRNAs takes place is not known and this discrimination is lost 

when treated cells are homogenised to prepare cell free translation 

systems. However, such studies have yielded information on the trans­

lational controls operative in those systems.

Extracts from interferon treated cells contain a dominant 

inhibitor of translation. The activity of this factor is potentiated if 

the extracts are incubated with dsRNA and ATP prior to addition to cell 

free systems. Activation requires ATP hydrolysis and is associated 

with protein phosphorylation and tire formation of a small nucleotidic 

inhibitor of translation.

Three principal phosphorylations take place. A ribosomal protein 

of molecular weight 67,000 is phosphorylated; eIF-2 is phosphorylated; 

and a protein kinase specific for arginine rich histones has been 

identified. The relationships between these kinase activities has not 

been fully characterised. The nucleotidic inhibitor has been identified 

as ppA (2')p(5')A(2*)p(5')A and has been shown to activate an endonuclease 

that cleaves mRNA (Clemens and Williams, 1978).

Translation is inhibited at both the initiation and elongation 

steps. Protein phosphorylation is likely to be involved in the 

inhibition of initiation and in particular the inactivation of eIF-2 

is similar to that occurring in haem deficient reticulocytes (Farrell 

et , 1977) . There is evidence also that the interferon induced 

translational control is.mediated by tRNA. Changes in the isoaccepting 

tRNA/
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tRNA levels (Zilberstein et al., 1976) may affect elongation and a 

deacylase activity which might induce deacylated tRNA suppression of 

initiation (see 1.7.2.1.) has been detected.

In summary, there appear to be a number of translational controls 

operative in interferon treated cells and these encompass many of those 

discussed in the previous section.

1.7.4. Translational Control in PrV Infected Cells,

The applicability of the controls discussed in 1.7.2. and 1.7.3. 

to the translational controls operative in PrV infected cells can be 

discussed. The length of the replicative cycle for PrV is short (1.5) and 

inhibition of host protein synthesis is an early event (1.6.3.). Hence 

induction of interferon and interferon-induced controls are unlikely 

to be important in cell culture although they undoubtedly have a role 

in vivo. For the same reason changes in the energy status of the cell 

are unlikely to have any effect. No changes in the tRNA population in 

herpesvirus-infected cells have been detected (Ben-Porat and Kaplan, 1973) .

It is probable, therefore, that controls act on the mRNA 

populations and on ribosomes and factors. Degradation of cellular mRNA 

requires an enzyme which recognises differences in the mRNA structure.

There are at present no known structural differences between viral and 

cellular mRNA. Both mRNAs contain caps and poly-(A) tracts (1.5.3.2.); 

hence recognition of these features cannot be important. It is possible, 

however, that differences in late viral mRNA méthylation (1.5.3.2.) may have 

a role in control. Nothing is known about factors and ribosomes in 

infected cells and except for the conclusion that a change in cap 

recognition is not important, no evidence is available.

In summary, then, very little is known about translational controls 

operative/
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operative in PrV-infected cells. In particular, proposed models for 

control have not been examined in this system. The controls operating 

in infected cells are likely to be similar to those in uninfected cells 

and hence the general applicability of these mechanisms is important. 

The work described in this thesis was undertaken to examine the 

application of models for translational control of protein synthesis in 

PrV-infected cells and to extend the general knowledge in this field.
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Chapter 2

Isolation and Characterisation of Poly-(A) Containing RNA.

2.1. Introduction.

Poly-(A) containing RNA was isolated from polysomes for two 

reasons. Firstly, cellular mRNA molecules are found in herpesvirus 

infected cells late in infection but most of the mRNA present on 

polysomes is viral (see Chapter 1). Therefore isolation of polysomes 

provides a means of separating viral and cellular mRNA. Secondly 

there is some evidence that ^  vitro translation systems are inhibited 

by excess RNA (Sonenstein & Brawerman 1976) . Only about 2% of 

HeLa cell polysomal RNA is mRNA and it is necessary to remove other RNA 

species so that sufficient mRNA can be added without inhibition by 

excess quantities of RNA. Most mRNA molecules synthesised in 

eukaryotic cells including those specified by herpesviruses contain 

3' poly-(A) tracts (see Chapter 1). Similar poly-(A) sequences have 

not been found in other RNA species and so isolation of poly-(A) 

containing RNA is a convenient method of isolating mRNA.

2.2. Isolation of Polysomes.

Polysomes were isolated from exponentially growing HeLa cells 

5h after infection with PrV and from mock-infected cells as described 

in the Materials and Methods, The yield of polysomes obtained was
9usually of the order for 60 Ag^^ units per 10 cells but was dependent 

on variations in cell growth. Good yields of polysomes and higher 

polysome to raonosome ratios were more consistently obtained when 

heparin was added to buffers as an RNAase inhibitor.

Profiles of polysomes spread on sucrose gradients are shown in 

Figure 2.2.1. In agreement with earlier results (see 1.5.4.1.) PrV 

infected/



PIG. 2.2.1. POLYSOME PROFILES IN PrV-INFECTED AND
MOCK-INFECTED HeLa CELLS

Exponentially growing HeLa cells were mock-infected or 

infected with 20pfu/cell PrV. After 5h the cells were 

harvested mechanically, lysed and the cytoplasmic extracts were 

layered onto 15-30% sucrose gradients. The gradients were 

centrifuged for llO rain at 27,OOOg in a SW27 rotor and 

collected by pumping from the bottom of the tube through a 

Gilford 2000 recording spectrophotometer which monitored the 

absorbance at 260nra.

The polysome regions are as indicated. The slow sedimenting 

peak contains monosomes and subunits.

a) Mock-infected cell polysomes

b) PrV-infected cell polysomes
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infected cells were found to show a higher proportion of rapidly 

sedimenting polysomes and a higher monosome to polysome ratio than 

mock-infected cells.

2.3. Preparation of Poly-(A) Containing RNA.

2.3.1. Extraction of RNA from Polysomes.

RNA was isolated from polysomes which showed the characteristic 

virus-infected or mock-infected profiles on sucrose gradients as 

described in the Materials and Methods. 90% of the A^^^ units in 

the polysomes could be recovered by this method,

2.3.2. Affinity Chromatography.

Poly-(A) containing RNA can be isolated on the basis of the 

ability of poly-(A) tracts to form hybrids with poly-(U) bound to 

Sepharose (Lindbergh and Persson, 1972) or oligo-(dT) bound to 

cellulose (Aviv and Leder, 1972) . Hybrids are readily dissociated 

with buffers of low ionic strength.

Poly-(A) containing RNA was isolated from rabbit reticulocyte 

RNA by affinity chromatography on poly-(U) Sepharose as described in 

the Materials and Methods and was found to stimulate incorporation 

of radioactive amino acids into Trichloroacetic acid (TCA) precipitable 

material in cell-free translation systems. Poly-(U) Sepharose 

chromatography of polysomal RNA isolated from infected and mock-infected 

HeLa cells did not, however, yield a similarly active fraction 

although bound material with measurable RNA content was recovered 

from the column. The bound fraction was precipitated several times 

from ethanol at -20°C to remove any inhibitory substances but 

stimulatory material could not be recovered.

Oligo/
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Oligo-(dT) cellulose chromatography of rabbit reticulocyte RNA 

and polysomal RNA was carried out as described in the Materials and 

Methods, An elution profile of the polysomal RNA washed from the column 

is shown in Figure 2,3.2*1. Most of the polysomal RNA was not bound and 

passed straight through the column. Loosely bound material, probably 

containing short poly-(A) tracts was washed off by the intermediate 

buffer which is of lower ionic strength than the starting buffer.

Bound material was rapidly eluted with elution buffer. Recovery of RNA 

from oligo-(dT) cellulose columns is shown in Table 2.3.2.1. 1.1 - 2,6%

of the input RNA was bound.

The oligo-(dT) cellulose fractions were precipitated twice with 

ethanol at -20°C and material from rabbit reticulocytes and mock-infected 

or infected HeLa cells was shown to have mRNA activity in cell-free 

systems. Some mRNA activity could also be demonstrated in the unbound 

fraction but the stimulation was considerably less than that observed 

in the bound fraction.

2.4. RNA-DNA Hybridisation.

Poly-(A) containing RNA from PrV-infected cells was assayed for 

the presence of viral coded sequences by hybridisation to PrV DNA 

bound to nitrocellulose filters. Polysomal RNA was prepared from 

mock-infected and PrV-infected HeLa cells 5h post-infection labelled
3

with { H}-uridine for 3h prior to harvesting as described previously. 

Poly-(A) containing RNA was prepared by oligo-(dT) cellulose 

chromatography as previously described, except that ethanol 

precipitation was replaced by gel filtration through a Sephadex G25 

(coarse) column (0.5 x 6cm) and lyophilisation. This was necessary 

because to obtain as high a specific activity as possible without 

using/
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FIG. 2.3.2.1. ELUTION PROFILE OF POLYSOMAL RNA FROM OLIGO-(dT)

CELLULOSE AFFINITY COLUMN

Polysomal RNA from mock-infected HeLa cells was dissolved in

starting buffer and applied to an oligo-(dT) cellulose mini-column.

The eluate was pumped through an LKB 8300A Uvicord II which recorded the

percentage transmission at 260nm. The column was washed•initially with

starting buffer, then intermediate buffer (I.B) and elution buffer (E.B)

were applied sequentially as shown.



— 4 2 “

TABLE 2,3.2.1

Binding of Polysomal RNA to Oligo-(dT) Cellulose Affinity

Chromatography Columns

Polysomes
yg Polysomal 
RNA Applied

yg RNA 
Bound % Bound

Mock-infected 1650 32 2.0

3000 34 1.1

PrV-infected 1260 29 2.3

1900 29 1.5
It 2340 61 2.6
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using excessive quantities of isotope only three burlers of mock- 

infected or infected cells, one of which was labelled with 20yCi/ml
3{ h )-uridine were used and the amount of bound RNA thus obtained was 

small and subject to considerable loss in ethanol precipitation.

Poly-(A) containing RNA from infected cells was dissolved in 

0.1 X SSC and samples containing 0.1 - O.Syg were hybridised to 

filters containing 5yg PrV DNA as described in the Materials and 

Methods. Mock-infected cell poly-(A) containing RNA was also 

hybridised to estimate the extent of non-specific binding. Over 50% 

of the poly-(A) containing RNA from infected cells bound to the 

filters while less than 2% of the cellular RNA was bound (Table 2.4.1.)

2.5. Discussion.

Poly-(A) containing RNA was isolated from polysomal RNA rather 

than total cytoplasmic RNA because this provided a means of selecting 

viral RNA. An additional advantage was that the characteristic 

changes in polysome profiles provided a means of monitoring viral 

infection. Infected cells were harvested during the eclipse phase of 

growth when no measure of virus production could be made and morpho­

logical changes were not apparent. Variations in the growth of tissue 

culture cells occur from week to week and can cause variation in the 

infective process. Poor infections were apparent when sucrose 

gradients were scanned and the preparations were discarded.

Poly-(U) Sepharose chromatography has been reported to remove 

non-poly-(A) containing RNA more efficiently than oligo-(dT) 

cellulose chromatography (Bishop et al., 1974; Vass, 1975). W. Schuch 

(personal communication) has found that this method of oligo-(dT) 

cellulose chromatography yields preparations contaminated with rRNA. 

However/
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TABLE 2.4.1.

Hybridisation of Poly-(A) containing polysomal RNA from 

PrV-infected and mock-infected HeLa cells to 

PrV DNA bound to nitrocellulose filters.

containing Input %
RNA yg cpm Bound Bound

PrV - 
infected 0.1 340 189 54.7

Mock-
infected 0.3 866 16 1.8
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However, for the purpose of translation pure poly-(A) containing RNA 

is not necessary and this method yielded sufficiently enriched 

material.

There are several possible reasons why polysomal RNA fractions 

with mRNA activity could not be obtained by poly-(U) Sepharose 

chromatography of polysomal RNA, Poly-(U) Sepharose elution buffer 

contains SDS and is of higher ionic strength than oligo-(dT) 

cellulose elution buffer and while the quantity of reticulocyte poly-(A) 

containing RNA is sufficient that it can be dissolved in a large enough 

volume to dilute out these contaminants to insignificant levels, 

similar quantities cannot be obtained from cultured cells.

Contaminants may be removed by reprecipitation but recovery of small 

quantities of RNA is poor and it is likely that equivalent losses of 

RNA and contaminants occur so that the final precipitates still contain 

too high a ratio of contaminant to RNA.

Secondly, it is likely that lack of experience in the techniques 

contributed to the failure as these experiments were carried out during 

the early part of the work and have not been repeated. Again, the 

large quantities of reticulocyte RNA would account for the success of 

the technique with this RNA. *•

RNA-DNA hybridisation showed that the poly-(A) containing RNA 

from the polysomes of PrV-infected cells contained appreciable amounts 

of virus specific RNA. This RNA species was therefore termed viral 

mRNA although cellular mRNA species and rRNA are probably present.

Poly-(A) containing RNAs from mock-infected HeLa cells and from rabbit 

reticulocytes were similarly termed cellular and reticulocyte mRNAs 

respectively.
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Chapter 3

Characterisation of the Wheat Germ Cell-free System.

3.1. Introduction.

Eucaryotic cell-free translation systems capable of translating 

exogenous mRNAs have been prepared from many sources including rabbit 

reticulocytes (Hunt & Jackson, 1974), Krebs II Ascites cells,

(Mathews and Korner, 1970), HeLa cells (Weber et , 1976) , Xenopus 

oocytes (Gurdon £t al,, 1971) and wheat germ (Roberts and Paterson, 

1973; Davies and Kaesberg, 1973; Marcu and Dudock, 1974). The 

usefulness of some of these systems is limited by the low efficiency 

of translation observed vitro and by the high endogenous levels of 

protein synthesis which obscure products made by exogenous mRNAs.

The wheat germ cell-free system does not have these disadvantages.

The efficiency is high compared to other systems and endogenous 

protein synthesis is low (Roberts and Paterson, 1973) . The system 

is capable cf translating a variety of heterologous mRNAs ranging from 

Q3 bacteriophage (Davies & Kaesberg, 1973) to pro a collagen 

(Benveniste ejt , 1976) as well as many relatively homologous mRNAs 

from plant viruses (Davies and Kaesberg, 1974) . In addition, large 

quantities of extract may be rapidly prepared from readily available 

material.

This system was therefore investigated for ability to translate 

viral and cellular mRNAs. Translation of reticulocyte mRNA in the 

system has been demonstrated (Roberts and Paterson, 1973) and was 

used for comparison.

3.2./
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3.2. mRNA Activity of Viral, Cellular and Reticulocyte mRNAs.

mRNA activity is the ability to serve as a template for protein 

synthesis. For the purpose of this chapter mRNA activity is defined 

as the ability to stimulate the incorporation of radio-active amino 

acids into TCA precipitable material. This definition does not imply 

that the mRNA directs synthesis of the complete polypeptides found in 

vivo. There are several reasons why this may not be so and these will 

be considered in this chapter where appropriate and more fully in 

Chapter 4.

Viral, cellular and reticulocyte mRNA were assayed for mRNA 

activity in the wheat germ cell-free system. Wheat germ extract was 

prepared and assays set up as described in the Materials and Methods. 

Assays containing 75mM K , l,5mM Mg , 0.2mM spermidine were incubated 

for 90 min at 25°C. All three mRNAs were found to have significant 

mRNA activity under these conditions (Table 3.2.1.). The mRNA activity 

of the polysomal RNA which was not bound to the oligo-(dT) cellulose 

column is shown for comparison.

3.3. Characterisation of Optimum Conditions.

Considerable variations in the optimum ionic concentrations for 

translation of mRNA in the wheat germ cell free system have been 

described. Some of these are due to slightly different methods of 

preparation of the extract and others are peculiar to the mRNA species. 

Hence, the optimum conditions were characterised for the mRNA species 

and wheat germ investigated in this study.

3.3.1/
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TABLE 3.2.1.

Stimulation of the Wheat Germ Cell-free System by Exogenous RNA,

RNA
Species

RNA
yg/ml *Stimulation

Viral 8.8 16

Cellular 6.8 13

Reticulocyte 16.6 19

Viral polysomal 
unbound 70 5

Cellular polysomal 
unbound 86 6

* Times endogenous (1240 c pm )
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'f'3.3.1. Optimum K Concentrations.
"hThe optimum concentration of K for mRNA activity of the three 

mRNA species^ under investigation was determined by varying the amount 

of KCl added to assays. In these experiments the assays contained 

2.5mM Mg but no polyamine and TCA precipitation was carried out on
3

filters. Figure 3.3.1.1. shows the amount of { H}-leu incorporated 

at various K concentrations. The optimum concentrations are in the 

range 60~76mM for viral and cellular mRNAs and 74~81mM for reticulocyte 

mRNA. Similar optima were found for several different mRNA and wheat 

g e m  preparations.

Weber ^t ai., (1977) reported that the apparent inhibitory 

effects of high {K^} on cell-free protein synthesising systems are due 

not to K but to concentrations of Cl ions exceeding those normally
-j-found in vivo. A breakdown of the sources of 'endogenous' K in the

standard wheat g e m  assay mix (Table 3.3.1.1.) shows that the 'endogenous'
“ +Cl concentration is 36mM. Hence addition of K as KCl to a final

concentration of lOOmM leads to a Cl concentration of 80mM which is

the upper limit of the physiological range (Berstein, 1954), The

K optimum for viral and cellular mRNA was therefore examined using

CH^COOK as the source of K . The results are shown in Figure 3,3.1.2.

The optima are not significantly higher than those found with KCl but

the range of incorporation is wider.

3.3.2. Optimum Mg Concentration.

The Mg optima observed for translation of various mRNAs in 

the wheat germ system in the absence of other polyvalent cations are 

in the range 2-4mM. The concentration of Mg for maximum mRNA 

activity/
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FIG. 3.3.1.1. THE EFFECT OF {K } ON SYNTHESIS OF TCA PRECIPITABLE
MATERIAL IN THE WHEAT GERM SYSTEM, I

The {K } in wheat germ assay mixes (A3.4,11.) containing 12.2yg/ml 

viral (PrV) mRNA, 11.2yg/ml cellular (HeLa) mRNA, 17.3yg ml globin 

(rabbit reticlocyte) mRNA or no added mRNA was varied by addition of
3KCl. Assay mixes contained 50yCi/ml { H>-leucine (53Ci/mmol). The 

{Mg }was 2.5mM and no polyamine was added. After incubation the 

synthesis of TCA precipitable radioactivity (cpm/5yl) was measured 

by precipitation on filter discs and scintillation counting.
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TABLE 3.3.LI.

Contributions to the K Concentration in Wheat Germ Assay Mixes.

Source of K
Contributing

Compound Final {K^} in assay

HEPES buffer KOH 13.6mM

Energy Mix KOH 2.3mM

Wheat Germ Extract KOH 3 ,7mM

Wheat Germ Extract KCl 36 .OmM

Total 55 ,6raM
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FIG. 3.3.1.2. THE EFFECT OF {K } ON THE SYNTHESIS OF TCA PRECIPITABLE
MATERIAL IN THE WHEAT GERM SYSTEM, II

The {K } in wheat germ assay mixes (A3.4.11.) containing 28)jg/ml
3viral (PrV) mRNA or S.Gyg/ml cellular (HeLa) mRNA and 50yCi/ml { h }- 

leucine (53Ci/mmol) was varied by addition of CH^COOK. Assay mixes 

contained 2.5mM Mg and no added polyamine. After incubation the 

synthesis of TCA precipitable material (cpm/5yl) was determined by 

precipitation on filter discs and scintillation counting.
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activity of the three mRNAs under investigation was determined in 

wheat germ assays containing 75mM K and no polyamine. The effect 

of added MgCCH^COO)^ is shown in Figure 3.3.2.1. Amino acid 

incorporation was maximum at 2.5raM Mg

3.3.3. Optimum Polyamine Concentration.

Polyamines are polyvalent cations found in all procaryotic and 

eucaryotic cells. The polyamines found in eucaryotic cells are 

putrescine, spermidine and spermine, the biologically active species 

being the latter two. Their roles in cellular growth and metabolism 

are many and diverse and they are implicated in transcription and 

translation in all cells. Their effect is maximal at suboptimal 

concentrations of Mg but they cannot completely replace Mg 

(Cohen, 1971).

The optimum concentration of spermidine for mRNA activity in
++the wheat germ cell-free system at suboptimal Mg (l.SmM) was

therefore investigated. Figure 3.3.3.1. shows the incorporation of

amino acids at various spermidine concentrations in assays containing

75mM K . The optimum concentration of spermidine is 0.2mM for

viral and cellular mRNA and 0.3mM for reticulocyte mRNA. The

enhancement of incorporation by spermidine over that observed at

optimum {Mg^^} is shown in Table 3.3.3.1. Addition of spermidine at 
H—hsuboptimal Mg concentrations leads to a 1.6-fold increase in the 

incorporation observed at optimal {Mg }.

3.3.4. Definition of Standard Conditions.

The optimum concentrations of K for translation of the three 

mRNAs vary slightly but a common region of high activity is observed, 

Hence/
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FIG. 3.3.2,1, .THE EFFECT OF {Mg } ON THE SYNTHESIS OF TCA PRECIPITABLE 
MATERIAL IN THE WHEAT GERM SYSTEM

■f+The {Mg } in wheat germ assay mixes (A3.4.11.) containing 16pg/ml 

viral (PrV) mRNA, 20.8pg/ml cellular (HeLa) mRNA, 16.5yg/ml globin 

(rabbit reticulocyte) mRNA or no added RNA was varied by addition of 

Mg(CH^COO)^. Assay mixes contained 50yCi/ml {^H}-leucine (53Ci/mmol).

No polyamine was added. After incubation the synthesis of TCA 

precipitable material (cpm/5pl) was measured by precipitation on filter 

discs and scintillation counting.
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FIG. 3,3,3.1. THE EFFECT OF ADDED POLYAMINE ON SYNTHESIS OF TCA 
PRECIPITABLE MATERIAL IN THE WHEAT GERM SYSTEM

Tlie effect of polyamine on wheat germ translation assays was

investigated by addition of spermidine to assay mixes (A3.4.11.)

containing viral (PrV, 16ug/ml) cellular (HeLa, 20.8vig/ml) , or globin
+ + 1(rabbit reticulocyte, 16.5yg/ral) mRNAs or no added mRNA. The {Mg } 

was l.SmM and assays contained 50yCi/ml {^H}-leucine (53Ci/mmol).

After incubation the synthesis of TCA precipitable radioactivity (cpm/5yl) 

was measured by precipitation on filter discs and scintillation counting.
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TABLE 3,3.3.1.

Enhancement of mRNA Stimulated { h }-leucine incorporation 

in Wheat Germ Extracts by Spermidine.

Exogenous
mRNA {Mg++} {Spermidine}

TCA precipitable 
cpm/Syl

Cellular l.SmM 528

Cellular 2.5mM 38 43

Cellular 1 ,5mM 0, 3mM 6121
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Hence a standard {k *̂} of 75mM was chosen. The optimum concentration 
“I" *4"of Mg was found to be 2.5mM, however, addition of 0.2mM spermidine

at 1.5mM Mg gave enlianced incorporation over that observed with Mg

alone. Thus the standard salt conditions chosen were 75mM K ,
•|—̂1.5mM Mg and 0.2mM spermidine.

3.4. Endogenous Amino Acids in Wheat Germ Extracts.

Marcu and Dudock (1974) found that the stimulation of labelled 

amino acid incorporation above background by exogenous RNA in the wheat 

germ system was reduced by only 47% if amino acids were omitted from 

assays. Roberts and Paterson (1973) also suggest that there may be 

significant amounts of endogenous amino acids present after gel 

filtration. This has been confirmed by H.H. Singer (personal 

communication). Incorporation in mRNA stimulated assays with or 

without exogenous amino acids was therefore examined. Table 3.4.1. 

shows that reticulocyte mRNA stimulated incorporation is not significantly 

decreased in the absence of exogenous aas. This showed that endo­

genous amino acids were present in sufficient concentration to support 

the maximum amount of protein synthesis in this system.

The concentration of endogenous methionine and leucine was 

then estimated as follows. Standard assays containing no exogenous

unlabelled amino acids were set up and incubated with increasing amounts
3 35of { H}-leucine or { S}-methionine. Trace amounts (O.02yCi/assay)

of the other labelled amino acid were added to ensure that protein

synthesis was constant. Incorporation into TCA precipitable material

was determined by precipitating assay mix proteins in the presence of

carrier and counting in solution (see Materials and Methods). This

method was chosen because it was possible to include a tRNA déacylation

step/
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TABLE 3.4.1.

The Effect of Exogenous Amino Acids on RNA Stimulated 

Incorporation in Wheat Germ Extracts.

RNA Assay mix
{^H}“leu incorporated 

cpm/5yl

Endogenous No exogenous aas 260

19aas at 20iaM
+ lyM leu 250

Reticulocyte No exogenous a as 27,190
mRNA 19aas at 20yM

+ lyM leu 30,300
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step, and because double-labelled samples are counted more efficiently 

in solution. The percentage of total label incorporated was 

calculated and plotted against the amount of added amino acid (Figure 

3.4.1.) . The incorporation of the tracer amino acid was found to be 

constant in both cases.

The decrease in incorporation declines exponentially and the 

endogenous amino acid content can be calculated in the following way;

The amount of exogenous amino acid necessary to reduce the percentage 

incorporation at any point on the curve to half its value at that point 

is equal to the amount of endogenous amino acid plus the amount of 

exogenous amino acid already added at that point. However, in neither 

case was sufficient exogenous amino acid added to reduce the 

incorporation by 50% and since the decrease is not linear it was 

necessary to calculate the endogenous amino acid content as follows:

Because the amount of protein synthesis is constant the incorporation 

of amino acid is a constant K praol/assay. If the percentage 

incorporation when x pmol are added to the assay is Ix, then

Ix = X 100E+x

where E = number pmol of endogenous amino acid. Similarly when 

y pmol are added

ly = ^

Rearranging _ iy(y) - ix(x)
IX - ly

For leucine, if x = 20pnol and y = BOpmol, then 15yl wheat 

germ extract contains 83 pmol lew. Similarly, for methionine, if x = lOpmol 

and y = 30, 15yl extract contains 57 pmol mel. Hence, for these points 

the endogenous



PIG, 3.4.1. PERCENTAGE INCORPORATION OF EXOGENOUS AMINO ACIDS
IN THE WHEAT GERM SYSTEM AS A FUNCTION 
OF EXOGENOUS AMINO ACID CONCENTRATION

The concentration of amino acid in standard wheat germ 

assay mixes (A3.4.11.) containing 3.3yg/ml viral mRNA was varied 

by addition of different amounts of {^H}-leucine or {^^s}-methion'ine, 

Assay mixes were incubated as described (AlO.2.) and the synthesis 

of TCA precipitable radioactivity was measured by precipitation of 

assay mixes in the presence of carrier and scintillation counting. 

The percentage of added labelled amino acid incorporated into 

polypeptide was calculated.

3(a) % added { h }-leucine incorporated as a function of

added leucine

35(b) % added { s}-methionine incorporated as a function

of added methionine
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concentrations of methionine and leucine are 3,8yM and 5,5yM respectively

3.5. Time Course of the Wheat Germ System.

The time course of vitro protein synthesis was characterised 

in two ways :

The incorporation of radioactive amino acids into TCA

precipitable material in response to added viral mRNA was measured as
35a function of time. Standard assays labelled with 400yCi/ml { s}-

methionine were incubated at 25°c for the appropriate time. Incor­

poration was stopped by rapid addition of SDS and g^mercaptoethanol 

to final concentrations of 2% and 5% respectively and immediate 

incubation in a boiling water bath for 2 min. Duplicate 5yl aliquots 

were removed and the TCA precipitable activity determined by the filter 

method. The time course of the assay is shown in Figure 3,5.1,

The incorporation was found to increase linearly for 45 min. No lag 

phase was detected.

The remainder of the assay material was used to examine the poly­

peptides synthesised as a function of time, 15yl aliquots of the 

samples were adjusted to 20% glycerol fractionated on 12% polyacrylamide 

gels and the vitro products were detected by fluorography as described 

in the Materials and Methods. A fluorograph of viral mRNA products is 

shown in Figure 3.5.2, Products were detectable after 15 min incubation 

and some high molecular weight polypeptides were detected after 30 min, 

Maximum synthesis of large products was not achieved until after 60 min 

incubation although incorporation plateaued after 45 min.

3.6/



56a

o
X
Sao

30 60 90
Time (minutes)

FIG. 3.5.1. TIME COURSE OF SYNTHESIS OF TCA PRECIPITABLE MATERIAL
IN THE WHEAT GERM SYSTEM

35Assay mixes containing PrV mRNA (14.4yg/ml) and 460yCi/ml { s}~
methionine (1035Ci/ramol) were incubated for the appropriate time. 

Incorporation was stopped by denaturing in SDS and g-mercaptoethanol 

as described (AlO.2) and the synthesis of TCA precipitable radioactivity 

(cpm/3yl) was measured by precipitation on filter discs and scintillation 

counting.



FIG, 3.5.2. TIME COURSE OF POLYPEPTIDE SYNTHESIS IN THE
WHEAT GERM SYSTEM

The relationship between the time of incubati.on and the 

polypeptide species detectable in wheat germ assays was 

examined by polyacrylamide gel electrophoresis of aliquots 

of assay mixes incubated with PrV mRNA for different lengths 

of time (see previous Figure, 3.5.1.). Aliquots containing 

approximately 1/4 of the original assay mix were made 20% in 

glycerol and the polypeptides were separated on a 12% polyacrylamide 

gel. Tiie gel was processed for fluorography and exposed to 

X-ray film.
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3.6. Dose Dependence of the Wheat G e m  System.

The dose response of the wheat germ system to exogenous RNAs

was characterised in the same way as the time course.
35The incorporation of { s}-methionine into TCA precipitable 

activity was determined by the filter method in wheat germ assays 

programmed with 0.8-35yg/ml exogenous mRNA. The dose response for 

viral and cellular mRNA is shown in Figure 3.6.1. The maximum 

stimulation of incorporation was observed with RNA concentrations of 

approximately Syg/ral. Maximum stimulation was 9-10 times the endogenous 

incorporation and represented incorporation of 5 pmol methionine.

The effect of high concentrations of RNA was examined using 

polysomal RNA not bound to oligo-(dT) cellulose. This material was 

precipitated three times to remove SDS. The stimulation of incorporation 

is shown in Table 3,6.1. Increasing the concentration inhibited the 

mRNA activity.

The polypeptides synthesised iu vitro in response to various 

concentrations of mRNA were examined by polyacrylamide gel electro­

phoresis and fluorography. Pluorographs of the vitro products of 

viral and cellular mRNA are shown in Figures 3.6.2.(a) and 3.6.2.(b).

Hiere is an increase in synthesis of high molecular weight polypeptides

as the mRNA concentration is raised to 6-8yg/ral. This corresponds to
35the maximum stimulation of incorporation of { s}-methionine into TCA 

precipitable material (Figure 3.6.1.). Further increasing the 

concentration of exogenous mRNA decreases the proportion of high 

molecular weight products.

3.7. Discussion.

mRNA was defined as RNA which bound to poly-(U) Sepharose or

oligo/
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FIG. 3.6,1. DOSE DEPENDENCE OF SYNTHESIS OF TCA PRECIPITABLE MATERIAL
IN THE WHEAT GERM SYSTEM

Wheat germ translation assays in which the concentration of

exogenous mRNA was varied from O - 35yg/ml were carried out as described

in the Materials and Methods (AlO.2.) . Assay mixes contained 460iiCi/ml 
35{ S}-methionine (l080Ci/mmol). Synthesis of TCA precipitable radio­

activity was measured by precipitation on filters and scintillation 

counting. The stimulation of endogenous incorporation (no exogenous mRNA) 

for cellular (C) and viral (VI) mRNA was calculated.
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TABLE 3.6.1.

Stimulation of Amino Acid Incorporation in Wheat Germ Assays 

by Polysomal RNA not bound to Oligo-(dT) Cellulose Columns.

RNA Species

RNA
Concentration 

y g/ml
*

Stimulation

Cellular gnbound 86 4.1
II II 156 2.0

Viral unbound 70 4.5
II It 138 1.0

* Times endogenous (980cpm )



FIG, 3.6.2. DOSE DEPENDENCE OF POLYPEPTIDE SYNTHESIS IN THE
WHEAT GERM SYSTEM

The relationship between the concentration of inRNA and the 

polypeptide species detectable in wheat germ assays, was examined 

by polyacrylamide gel electrophoresis of aliquots of wheat germ 

translation assays incubated with a range of viral (PrV) or 

cellular (HeLa) mRNAs (see Fig. 3,6.1.). Aliquots containing 

approximately 1/4 of the assay mixes were treated for electro­

phoresis and the polypeptides were separated on 12% polyacrylamide 

gels. The gels were processed for fluorography and exposed to 

X-ray film. , V;.

Different gels were used for the upper and lower ranges of mRNÀ 

concentration and the migration distances were différente The 

connecting lines indicate bands with the same relative mobility.

(a) viral mRNA stimulated assays

(b) cellular mRNA stimulated assays
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oligo-(dT) cellulose. This definition was verified in this chapter 

by the finding that "mRNA" stimulated incorporation of amino acids 

into TCA precipitable material.

No differences were observed in the optimum concentration of 

cations for translation of viral and cellular mRNA whereas reticulocyte 

mRNA exhibited a slightly higher {K } optimum. These results are 

important in relation to models for translational control and will be 

discussed further.

The reticulocyte mRNA requirements for K and Mg differed 

from those previously described for this messenger (Roberts & Paterson, 

1973) emphasising the necessity of determining these conditions for 

individual mRNA and wheat germ preparations.

In agreement with other reports (Hunter et al., 1977; Marcu

and Dudock, 1974; Konecki et ad., 1975; Atkins et ad., 1975;

Ricciardi ejt aJ.., 1978) , addition of polyamines enhanced the maximum 

incorporation observed with Mg alone. Polyamines increase the 

elongation rate (Hunter et , 1977) and there is also evidence that 

they have a role in initiation (Konecki et ad., 1975). tRNA charging 

is enhanced by polyamines and this could increase the incorporation of

limiting amino acids (Tabor & Tabor, 1972).

The presence of endogenous amino acids in the wheat germ extract

is not surprising because the combination of coarse grade Sephadex and

a high flow rate leads to large zone broadening. Endogenous amino

acids lower the specific activity of the labeled amino acid. Therefore

in order to obtain as high a specific activity as possible in assays

where the ^  vitro products were to be examined relatively large amounts
r 35 1(500yCi/ml) of high specific activity (>800Ci/mmol) 1 S j-methionine 

were used. In other studies lower specific activities have been used 

to obtain equivalent incorporation
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(Roberts and Paterson, 1973; Prives et al., 1974; Hunter et al.. 1977). 
It is possible that their extracts contained lower amounts of endogenous

amino acids.
Incorporation of amino acids into TCA precipitable material was

determined either by hot TCA precipitation on filters or by TCA

precipitation from solution following alkali treatment to discharge tRNAs.

tRNA is TCA precipitable (Soffer, 1974) and hence precipitation of

charged tRNAs may overestimate the amount of amino acid incorporated

into polypeptides. For most purposes this is not important because the

amount will be constant between assays. However, precipitation of

charged tRNAs may be important where the amount of labelled amino acid was

varied as in the determination of endogenous amino acids. Therefore in

this case tRNAs were discharged by alkali treatment.
35Incorporation of { S}-methionine into TCA precipitable material 

increased linearly for 45 rain. The absence of the lag phase noted by 

others (Roberts and Paterson, 1973; Marcu and Dudock, 1974) may be due 

to polyamine induced suppression of the lag phase (Thang ^  , 1976)

or to the fact that the first time point was 15 min. Synthesis of the 

highest molecular weight product was not achieved until after 60 rain 

incubation. It is probable that after 45 min the rate of protein 

synthesis had slowed considerably so increases in incorporation were 

insignificant in terms of the total incorporation butuelongation of 

high molecular weight polypeptides was not completed until after 60 

min incubation.

Excess polysomal RNA was found to inhibit incorporation in the 

wheat germ system. The reason for this is not known. Sonenshein and 

Brawerman (1976) , have suggested that polysomal RNA contains an inhibitor 

of translation but this has not been identified. Although increasing 

the concentration of mRNA to 35y;_g/ml did not inhibit incorporation, 

the/
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the maximum sized products were not detectable at mRNA concentrations 

exceeding lOyg/ml. A similar observation has been reported for 

Brome Mosaic Virus (Zagorski, 1977). One possible explanation for 

this is that by increasing the RNA concentration the number of mRNAs 

initiated increases and the average polysome size decreases. If 

mRNA is protected from endonucleolytic cleavage by ribosomes, then 

fewer ribosomes per mRNA would lead to an increased rate of degradation 

and a decrease in the number of high molecular weight products.
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CHAPTER 4

Characterisation of Cell-Free Translation Products.

4.1. Introduction.

The e::^eriments described in the proceeding chapter showed that 

the wheat germ cell-free system is efficient in synthesis of acid 

precipitable polypeptides in response to mRNA isolated from PrV 

infected and mock-infected HeLa cells and reticulocytes. The size of 

the products was shown to depend on the time of incubation and the 

concentration of mRNA. This chapter describes attempts to correlate 

the iu vitro products with the polypeptides found ^  vivo.

Before carrying out classification, the synthesis of high mole­

cular weight polypeptides in the wheat germ system was examined. Most 

of the proteins whose synthesis in wheat germ extracts has been verified 

have molecular weights less than 100,000 and difficulties have been 

experienced in synthesising larger products (Anderson et al., 1974). 

mRNA from PrV-infected and mock-infected HeLa cells should code for a 

number of polypeptides with molecular weights greater than 100,000 and 

hence a system capable of translating these was necessary.

4.2. Cell-Free Synthesis of Globin.

Globin is a small polypeptide having a molecular weight of 

17,000. Reticulocyte mRNA, which contains 90% globin mRNA (Lodish 
& Desalu, 1973), or the 9s globin mRNA prepared from reticulocyte mRNA 
has frequently been used to examine the ability of cell-free systems 

to translate exogenous RNA and globin has been identified by tryptic 

digestion and peptide mapping (Roberts & Paterson, 1973; Mathews,

1972) or by ion-exchange chromatography (Gurdon et , 1973) .

Re ti c ulocy te/
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Reticulocyte mRNA was prepared as described in Materials &

Methods and translated in the wheat germ system with exogenous 

polyamine completely replaced by 2,5mM Mg . The assay products 

were separated on an 18% polyacrylamide gel and detected by fluorography. 

Chymotrypsinogen A and cytochrome C were used as standards to estimate 

molecular weights. The fluorograph is shown in Figure 4.2.1, Two 

mRNA preparations were translated and in both cases the major product 

had an estimated molecular weight of 17,000. Hence, it was concluded 

that complete globin chains were being synthesised.

4.3. Synthesis of High Molecular Weight Polypeptides,

Pluorographs of the products of viral and cellular mRNA 

translation were shown in 3.5 and 3.5. The optimum concentration of 

mRNA and the minimum time of incubation for synthesis of the largest 

polypeptides were defined. The maximum size of polypeptides is 

further examined in this section in order to clarify the role of 

monovalent (K ) and polyvalent (polyamine) cations.

Mathews and Osborn (1974) measured the elongation rate for the 

Krebs II Ascites system programmed with encephalomyocarditis (EMC) 

virus mRNA and found that it was 2.3 times higher at 150mM K than 

at 50mM, although the overall amino acid incorporation was maximum at 

lOOmM. Harwood , (1975) and Benveniste et al., (1976)

described synthesis of pro a collagen (molecular weight 155,000) in 

wheat germ extracts of 150mM K , At lower {K }, incomplete poly- 

peptides were synthesised although the total incorporation was higher. 

This K requirement for synthesis of high molecular weight polypeptides 

may be due to the fact that the increased elongation rate should allow 

complete translation before the mRNA is degraded by endogenous 

nucleases/



PIG. 4.2.1. PRODUCTS OF RABBIT RETICULOCYTE mRNA TRANSLATION
IN THE WHEAT GERM SYSTEM

Two preparations of rabbit reticulocyte mRNA were added to
++wheat germ assay mixes (A3.4.11.) which contained 2.5mM Mg ,

35no added polyamine, and 150yCi/ml { s}-methionine (920Ci/mmol). 

Assay mixes were incubated as described (AlO.2.). lOyl aliquots 

were treated for electrophoresis and the polypeptides were 

separated on an 18% polyacrylamide gel, Chymotrypsinogën A 

and cytochrome C were run in parallel slots as standards.

The gel was stained with Coomassie Brilliant Blue, processed 

for fluorography and ej^osed to X-ray film.

Molecular weights calculated from the standards are shown.

Track:

A reticulocyte mRNÀ I (3.2^g/ml)

B reticulocyte mRNA II (37.4yg/ml)

C no added mRNA
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nucleases or to an absolute requirement for K to stabilise mRNA-

ribosome-elongation factor interactions. The translation products of
+viral mRNA were examined at 4 concentrations of K (Figure 4.3.1.).

+ +At 130mM K there is no detectable polypeptide synthesis. At lOOraM K

there is much less incorporation than at 75mM K but no significant

change in the maximum size of the products synthesised. However, one

effect is evident. Differential suppression of polypeptide synthesis

can be detected. Visual inspection of the fluorograph shows that some

polypeptides are more résistent to high {K^} than others. Polypeptides
+a-g are synthesised in higher proportions at lOOmM K while the synthesis 

of polypeptide A is much more suppressed than the synthesis of other 

polypeptides.

An alternative method of increasing the size of products was

used by Villa-Komaroff et , (1975) . They showed that in a HeLa cell

free system, the size of products is increased by raising the {k "*"} from

90mM to 155mM after 15 min and continuing incubation at the increased

{k "**} for a further period. The effect of such a "salt shift" on

translation of PrV-infected and mock-infected HeLa cell mRNA in wheat
+germ was examined by incubating assays for 15 min at 75raM K and then 

raising the {K**'}to 148mM by addition of 1/25 volume of 1.9M KCl and 

incubating for a further 75 min. The inhibition of synthesis brought about 

by salt shift is less than that observed when assays are incubated with 

high {K } from the start of the assay (Table 4.3.1.). The effect of 

salt shift on the size of products of viral mRNA is shown in Figure 4.3.2. 

Under salt shift conditions both the maximum molecular weight detected 

and the proportion of high molecular weight material synthesised are 

increased. A polypeptide with the same electrophoretic mobility as 

the major capsid protein of PrV was synthesised in salt shift assays 

but/



FIG. 4.3.1. THE EFFECT OF {K^} ON POLYPEPTIDES SYNTHESISED
IN THE WHEAT GERM SYSTEM

Viral (PrV, 8.8]jg/ml) was added to wheat germ assay mixes>

(A3.4.11.) in which the {k ^} was varied by addition of KCl.
35Assay mixes contained 570]jCi/ml { s}-methionine (1080Ci/mmol) . 

After incubation, lOyl aliquots were withdrawn, treated for 

electrophoresis and separated on 12% polyacrylamide gel. The 

gel was processed for fluorography and exposed to X-ray film. 

The tracks showing products synthesised at 100 and 130
*1*mM K were exposed to 2h times as long as the other two tracks. 

Polypeptides designated a-g were synthesised preferentially at
"t*lOOmM K and polypeptide A was suppressed preferentially at 
tlOOmM K .
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TABLE 4.3.1.

Inhibition of protein synthesis in wheat germ extracts brought 

about by variations in the concentration of K .

Exogenous
mRNA

Initial
{K+}

Final
{K+} cpm/yl %

Inhibition

Viral 75mM 75mM 50,300

75mM 148mM 47,700 5.2

Viral 75mM 75mM 56,400

75mM 148mM 41,200 27.9

Viral 74mM 74mM 32,800

144mM 144mM 9,100 72.2

Viral 75mM 75mM 155,400

130mM 130mM 29,500 81.0



FIG. 4.3.2. THE EFFECT OF INCREASING THE {K } DURING
INCUBATION OF THE POLYPEPTIDES SYNTHESISED 

IN WHEAT GERM ASSAYS

Wheat germ translation assays of viral (PrV, 38yg/ml mRNA

were carried out under constant salt conditions (75mM k "̂,

2.5mM Mg ) or salt shift conditions where the initial catidn

concentrations were the same as for constant salt assays but

the { xj was raised to 145mM by addition of 2pl 1.9mM KCl after
- 3515 min incubation. Assays were labelled with 125yCi/ml { s}-

methionine (920Ci/mmol) . 20]il aliquots were treated for

electrophoresis and coelectrophoresed in a 10% polyacrylamide 

0.5% DATD gel with PrV virion and capsid (A9). The gel was 

processed for fluorography and exposed to X-ray film. A longer 

exposure time was used to detect faint bands.

V: viral mRNA, constant conditions

V+K^: viral mRNA, salt shift
The top left portion of the gel was exposed for 14 days and the remainder 

for 2 days, because the high molecular weight in vitro products were 

present in low amounts.
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but was not detectable under low salt conditions.

Hunter £t a^., (1977) examined the role of polyamines in the

wheat germ system. They found that addition of spermine and

spermidine increased the elongation rate and enhanced the synthesis of

high molecular weight products. Increases in the size of products in

the presence of polyamines have been reported by several groups

(Fritsch et ad., 1977; Thang et al., 1976). Figure 4.3.3. shows that

the maximum molecular weight of products synthesised in the presence of

spermidine (Tracks A & B) is greater than that of the polypeptides

synthesised in low K concentrations (Tracks G & H) .

Qualitatively the increase in molecular weight observed when

spermidine is added to the assay system is similar to that brought
“I*about by increasing the K concentration (Tracks D & E). However, 

spermidine also enhances the total incorporation and hence translation 

in the presence of spermidine was considered to be a more efficient 

method of increasing molecular weights and was used in the following 

characterisation of products.

4.4. Classification of in vitro products by co-migration studies.

Preliminary classification of the polypeptides synthesised

in vitro as viral or cellular coded was carried out by comparison of

electrophoretic mobilities in SDS polyacrylamide gels. A fluorograph

of the vitro products together with cell lysates prepared from PrV-
35infected and mock-infected HeLa cells labelled with { S }-methionine 

from 4.5 to 5.5 h post-infection and purified PrV capsid proteins is 

shown in Figure 4,4.1. Polypeptide molecular weights were calculated 

using albumin, trypsin inhibitor, chymotrypsinogen 2̂  ovalbumin,

3 galactosidase and RNA polymerase as standards. The largest poly­

peptide/



FIG. 4.3.3. POLYPEPTIDES SYNTHESISED UNDER DIFFERENT CATIONIC
CONDITIONS IN THE WHEAT GERM SYSTEM

Wheat germ translation assays of viral (PrV, 8.9iig/ral) ,

cellular (HeLa, 12.8|jg/ml) and endogenous mRNA were carried out

under standard salt conditions (0.2mM spermidine,. 75mM K , 1.5mM

Mg , see A3.4,11.) without added polyamine at optimum {Mg }
+ ++(75raM K , 2.5mM Mg ), or under salt shift conditions where the 

initial cationic conditions were 75mM K , 2,5raM Mg but were

altered after 15 min incubation by addition of 2yl 1.9M KCl so
+ 35tiiat the final {K } was 148mM. Assays contained STOyCi { S}“ .

methionine (1080Ci/mmol). lOyl aliquots of assay mixes were

treated for electrophoresis and separated on a 12% polyacrylamide

gel. The gel was processed for fluorography and ejqposed to X-ray

film.

Track

A Cellular mRNA, standard salt.

B Viral mRNA " "

C Endogenous mRNA, " "

D Cellular mRNA without added polyamine

E Viral mRNA " " "

F Endogenous mRNA " ” "

G Cellular mRNA salt shift

H Viral mRNA " "

I Endogenous mRNA " "

cpra/track

3,300

11,400

13,200

7.000 

11,500 

12,000

2,700

9,800

4.000
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FIG. 4,4.1. CLASSIFICATION OF PRODUCTS OF PfV AND HeLa 
CELL mRNA TRANSLATED IN THE WHEAT GERM 

SYSTEM BY COMIGRATION

Wheat germ translation assays of viral (PrV, 6.0yg/ml) 

cellular (HeLa 3.2yg/ml) and wheat germ endogenous mRNA were 

carried out as described in the Materials and Methods (AlO)
35 ;Assay mixes contained 500yCi/ml { S}-methionine (1080Ci/mmol).

lOpl aliquots from the assays were denatured for dectrophoresis
35 ■and separated on a 12% polyacrylamide gel in parallel with { s} 

methionine-labelled PrV capsid (A9) and cell lysates prepared 

from PrV-infected and mock-infected HeLa cells labelled with 

{^^s}-methionine so that the in vivo polypeptides correspond to 

those coded by the viral and cellular mRNAs (A9).

PrV capsid proteins are labelled in accordance with the virion 

polypeptides (VP) described by Stevely (1975); polypeptides 

detectable in infected but not mock-infected cell lysates are 

labelled infected cell polypeptides (ICP)? polypeptides 

detectable in ^  vitro products of viral but not cellular mRNA 

are labelled viral coded polypeptides (VCP)? polypeptides detectable 

in vitro products of both viral and cellular mRNA are labelled 

cellular coded polypeptides (CCP) and the polypeptides detectable 

in wheat germ assays in the absence of exogenous mRNA are labelled 

endogenous polypeptides (EP) . The various polypeptides are;.designated
-3by their molecular weights x 10

Track cpm/track

A PrV capsid 35,000
B Mock-infected HeLa cell lysate 205,000
C PrV-infected HeLa cell lysate 198,000
D Viral mRNA products 307,000
E Cellular mRNA products 280,000
F Endogenous products 40,000



66b

VP IC P VC P CCP EP

2 -

9
1 1

14 -

16
18

w

19 - &

lOO

2W
20-7

a>s
2oS*
ao 4
ao'Z
ao 1
20
JOa

. aok
ao*.

B D E

The upper portion of tracks A, B, C was exposed for 44h and 
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exposed for 65h and the lower portion for 24h. Track E was exposed 

for 65h.
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peptide synthesised in viral mRNA assays had a molecular weight of

150.000 while the largest cellular product was 102,000,

The proportion of low molecular weight products synthesised 

in vitro is much higher than is found in vivo. The synthesis of a 

high proportion of low molecular weight products is a recognised 

feature of the wheat germ system. Schechter & Burstein (1976) showed 

that some small polypeptides synthesised in wheat germ are premature 

termination products. Thus, it is difficult to classify polypeptides 

with molecular weights less than 20,000.

Comparison of the migration distances of viral and cellular mRNA 

in vitro products showed that at least 29 polypeptides were synthesised 

only in assays programmed with viral mRNA. A further 35 polypeptides 

present in viral mRNA assays co-migrated with products of cellular mRNA. 

After the exposure time used to develop this fluorograph, no high 

molecular weight endogenous wheat germ proteins were detectable, but 

after longer exposure a polypeptide with a molecular weight of 94,000 

was identified. Eleven polypeptides with molecular weights between

20.000 and 22,000 could be detected. The endogenous products accounted 

for 11 of the 35 co-migrating viral and cellular mRNA products.

Hence, a total of 53 products of exogenous mRNA could be detected in 

viral mRNA programmed assays.

Viral and cellular coded proteins present in the products of 

infected cell mRNA were further differentiated by examining the relative 

proportions in co-migrating bands. Cellular coded protein 39.5 (CCP 

39.5) was synthesised in approximately the same concentrations in assays 

programmed with both mRNA species and was present in a similar 

concentration in cell lysates. Most of the other CCPs were present in 

reduced amounts in the viral mRNA products.

Comparison/
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Comparison of the proportions synthesised vitro was used to 

aid classification of polypeptides co-migrating with endogenous protein

20.1 and 20 (E 20.1 and E20). The ratio of E 20.1 to E 20 was much 

lower in the cellular mRNA stimulated assays than in the viral mRNA 

assay. This suggested that although the products have the same 

apparent molecular weights, they might not be identical. The band 

co-migrating with E 20.1 could contain a viral coded protein (VCP). 

Alternatively, a cellular protein which was present in reduced amounts in 

infected cells might be co-migrating with E 20 and thus increasing the 

relative proportions in the products of mock-infected cell mRNA. 

Comparison of the relative amounts of E 20 and CCP 20.2 suggested that 

the first explanation was unlikely and hence the band co-migrating with 

E 20 was designated VCP 20a.

Co-migration studies were further used to examine the relationship 

of polypeptides synthesised ^  vitro to those found in mock-infected and 

PrV-infected cell lysates. 22 of the polypeptides synthesised in vitro 

designated VCPs co-migrated with polypeptides found only in infected 

cell lysates. VCP 150 co-migrated with the major capsid protein VP2 

which has a molecular weight of 150,000. This polypeptide was present 

only in infected cell lysates and iu vitro assays programmed with viral 

mRNA. Other polypeptides closely co-migrating with it were not 

identified. Hence, it was classified as VP 2. VCP which co-migrated 

with VP 9, VP 11, VP 14, VP 16 and VP 18, VP 19 were also identified 

but their classification must be considered less absolute because CCP 

with similar electrophoretic mobilities were identified.

4.5./
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4.5. Immune Precipitation of in vitro Products.

Although most of the mRNA on polysomes of 5 h post-infection 

is virus coded, it is likely that some cellular mRNA species are 

present and therefore, "viral" mRNA may code for cellular proteins 

(see Chapter 1). Comparison of the vitro products separated on 

polyacrylamide gels showed that some polypeptides are synthesised 

exclusively by viral mRNA. By this means the major capsid protein 

VP 2 can be identified. However, a more definitive means of identif­

ication is desirable for the following reasons:

(i) polypeptides synthesised in response to 

infected cell mRNA may represent virus-induced 

cellular polypeptides.

(ii) the total number of polypeptides 

synthesised in exponentially growing HeLa 

cells and PrV-infected cells is large and 

different proteins with similar molecular 

weights are not well resolved.

Precipitation with the appropriate antisera is known to be an 

extremely specific method of identifying polypeptides. Therefore, 

antisera to the major capsid protein and infected cell lysates were 

raised.

4.5.1. Preparation and Characterisation of Antibodies to VP 2.

Infection with PrV is lethal to rabbits, hence it was necessary 

to ensure that no infectious particles were inoculated into the 

animals. Purified PrV capsids were denatured by boiling in SDS and 

electrophoresed into a polyacrylamide slab gel. A section of the gel 

was stained to locate the major capsid protein and the band 

containing/
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containing this protein was cut out of the gel, crushed and used to 

inoculate rabbits. Antiserum was collected at intervals and 

assayed for the presence of antibodies by the Ouchterlony double 

diffusion method as described in the Materials and Methods.

Sera were tested against purified PrV capsid proteins 

solubilised in 2% (w/v) SDS, PrV-infected and mock-infected total 

HeLa cell lysates boiled in 2% (w/v) SDS and cytoplasm prepared from 

infected and mock-infected cells in the absence of SDS. The serum 

from immunised rabbits reacted with purified capsid proteins 

(Figure 4.5.1.1(b)). It also showed formation of precipitin lines 

with the SDS treated cell lysates (Figure 4.5.1.1(a)) but did not 

react with the cytoplasms in the absence of SDS, although 5 h infected 

cell cytoplasm contains VP 2. The antiserum was absorbed with SDS 

treated mock-infected cell lysate to remove cross-reacting material.

The resultant absorbed antiserum did not react with capsid proteins 

or the SDS treated cell lysates (data not shown) .

It was therefore concluded that there was antibody activity in 

the serum directed against SDS-protein complexes. However, it was not 

obvious whether there were antibodies to VP 2 because although the 

serum did not react with infected cell cytoplasm, it was possible 

that there were antibodies to antigenic sites on the VP 2 which were 

not exposed unless the protein was denatured by SDS.

The specificity of the antiserum was further characterised by

indirect immune precipitation. SDS treated cell lysates labelled 
35with{ 8}methionine were diluted with TKM-det buffer, incubated with 

rabbit serum for 15 min and then the total rabbit immunoglobulin G 

(IgG) was precipitated with goat-antirabbit-IgG serum (GAR). A 

higher percentage of the input radioactivity was precipitated from PrV- 

infected/
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FIG. 4.5.1.1. ANTIBODY ACTIVITY OF ANTISERUM RAISED AGAINST SDS-DENATURED
PrV MAJOR CAPSID PROTEIN

The antibody activity of antiserum raised by inoculation of rabbits 

with SDS-denatured PrV major capsid protein against SDS treated PrV-infected 

or mock-infected HeLa cell lysates, against PrV-infected or mock-infected 

HeLa cell cytoplasms and against SDS-denatured PrV capsid was examined by 

double diffusion in agarose/polyethylene glycol gels as described in the 

Materials and Methods (A.14.2.). The gel was stained with Coomassie 

Brilliant Blue and dried before photographing.

(a) o antiserum
o SDS-PrV-infected HeLa cell lysate ,
® SDS-mock-infected HeLa cell lysate

(b) I o Antiserum
o SDS-PrV capsid

(c) a antiserum
o PrV-infected HeLa cell cytoplasm 
® Mock-infected HeLa cell cytoplasm

Staining was necessary because the cell lysates were too dilute 

to give good precipitin lines. Blotching was caused by the stain 
and overfilling wells
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infected, cell lysate than from mock-infected cell lysate (Table

4.5.1.1.). The precipitates were solubilised and examined by

polyacrylamide gel electrophoresis. A single polypeptide which co-migrated 

with VP 2 was precipitated from the infected cell lysate and no 

detectable polypeptides were precipitated from the mock-infected cell 

lysate (Figure 4.5.1.2.) , There may have been several reasons for 

the failure to precipitate polypeptides from the mock-infected cell 

lysate. It is possible that the antigen was present in such excess 

that the equivalence point was surpassed and the rabbit anti-SDS 

immunoglobulins did not have antigenic sites accessible to the goat 

antiserum. Alternatively, the fact that the Ouchterlony test is more 

sensitive than coprécipitation (Gill, 1972) may account for it.

However, the indirect immune precipitation made it possible to 

conclude that although the serum had a general reactivity against SDS 

treated polypeptides, it also had a specific antibody to VP 2.

4.5,2. Precipitation of material synthesised in vitro.

IgG was prepared from rabbit anticapsid serum and used in immune 

precipitation studies of polypeptides synthesised in the wheat germ 

cell free system stimulated by viral and cellular mRNAs. The 

antibody activity of the purified IgG was characterised by double 

diffusion assays (Figure 4.5.2.1.). The cross reactivity was found 

to be the same as that of the serum.

In vitro wheat germ assays were diluted with PBS-det and 

treated with rabbit anticapsid IgG and GAR. The percentage of the 

total TCA precipitable material polymerised vitro which was 

precipitated by the anticapsid antibody is shown in Table 4,5.2.1.

A higher percentage of the input material was precipitated from the 

viral/
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TABLE 4.5.1.1.

Precipitation of cell lysate polypeptides with 

Rabbit Anti-capsid serum.

Material 
treated with 
antiserum

cpm
input

cpm in 
precipitation

% cpm 
precipitated

SDS-PrV-
infected HeLa
cell lysate 15,730 3,720 24

SDS-Mock-
infected HeLa
cell lysate 23,950 640 3



FIG. 4.5.1.2. POLYPEPTIDES PRECIPITATED FROM PrV-INFECTED AND
MOCK-INFECTED CELL LYSATES WITH A^TISERUM 

TO PrV CAPSID

Splaliquots of SDS-denatured PrV-infected and mock-infected 

HeLa cell lysates (A9.1.) were diluted with 200yl of TKM-det buffer 

(A3,8.4.) and treated with 5yl rabbit anti-PrV capsid. serum and 

ISOjil goat anti-rabbit IgG serum as described in the Materials and 

Methods (A14.5.). The immune precipitates were coelectrophoresed 

with PrV capsid proteins in a 12% polyacrylamide gel. The gel 

was processed for fluorography and exposed to X-ray film.

TCL Immune precipitate from PrV-infected cell lysate 

CCL Immune precipitate from mock-infected cell lysate 

Capsid PrV capsid showing the major capsid protein VP2

Fogging in the left-hand tracks is caused by the use of old film.
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FIG. 4.5.2.1. ANTIBODY ACTIVITY OF IgG PREPARED FROM ANTISERUM RAISED 
AGAINST SDS-DENATURED PrV MAJOR CAPSID PROTEIN

The antibody activity of IgG prepared from antiserum raised by 

inoculation of rabbits with SDS-denatured PrV major capsid protein against 

SDS-denatured infected or mock-infected HeLa cell lysates and SDS-denatured 

PrV capsid was examined by double diffusion in agarose/polyethylene glycol 

gels as described in the Materials and Methods (A.14.2.). The gel 

was stained with Coomassie Brilliant Blue and dried before photographing. 

The centre well contained IgG and antigen solutions in the outside 

wells were as follows :

O PrV capsid

o SDS-PrV-infected HeLa cell lysate

® SDS-mock-infected HeLa cell lysate
I

Precipitin lines are shown in a line diagram for clarity.

Staining was necessary because the precipitin lines were weak. This 

caused the extensive blotching around the centre well.
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TABLE 4.5.2.1.

Precipitation of polypeptides synthesised in vitro

with Rabbit Anticapsid IgG,

Material 
treated with 
IgG

cpm
input

cpm
precipitated

% cpm 
precipi tated

Wheat germ 
assay
stimulated with 
viral mRNA 392,990 18,830 4.9

Wheat germ 
assay
stimulated with 
cellular mRNA 981,870 9,690 1.0
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viral mRNA stimulated assay. In the absence of SDS, no immune 

precipitation of the polypeptides synthesised vitro in response 

to either mRNA was detected.

Examination of the products (Figure 4.5.2.2.) showed that a 

band which co-migrated with the major capsid protein was 

precipitated by anticapsid IgG. These studies allowed unequivocal 

identification of the major capsid protein VP 2.

4.5.3. Preparation and characterisation of antibodies to

Infected cell proteins.

Antibodies were raised in rabbits against 5 h PrV-infected 

BHK/21 (C13A) cell lysates by a similar method to that used to raise 

antibodies to VP 2. SDS-treated cell lysates were electrophoresed 

a few millimetres into a 15% (w/v) polyacrylamide gel. The band 

containing the total polypeptides was excised from the gel and used 

to inoculate the rabbits. Sera were tested for antibody activity 

by the Ouchterlony diffusion method. Figure 4.5.3.1. shows that 

the serum contains antibodies to SDS treated PrV-infected and mock- 

infected HeLa cell lysates. The cross reaction between antibodies to 

BHK proteins and HeLa cell proteins was expected because proteins 

which have the same function will be present in both cell types and 

will show very little species diversity. In addition, it was likely 

that some of the antibody to SDS would be present.

The antiserum was treated with mock-infected HeLa cell lysates 

to absorb out cross reacting antibodies in the absence of SDS.

Serum treated three times (Figure 4.5,3,1.) showed reduced reactivity 

with SDS-treated infected cell lysates and very little cross reaction 

with SDS treated mock-infected HeLa cell lysates.

Attempts/



FIG. 4.5.2.2. POLYPEPTIDES PRECIPITATED FROM IN VITRO 
TRANSLATION PRODUCTS WITH ANTISERUM TO 

PrV CAPSID

5 620yl aliquots containing approximately 4 x 10 and 10 cpm 

were withdrawn from wheat germ assay mixes which had been 

incubated with viral (PrV) and cellular (HeLa) mRNA respectively. 

They were diluted with 200yl PBS-det (A3.8.3.) and treated with 

5y rabbit anticapsid IgG and 105yl goat antirabbit IgG serum as 

described in the Materials and Methods (A14.5.). The immune 

precipitates were coelectrophoresed with unprecipitated aliquots 

of viral and cellular mRNA stimulated wheat germ assay mixes on 

a 10% polyacrylamide gel.

Track:

A Viral mRNA products

B Cellular mRNA products

C Immune precipitate from viral mRNA stimulated assay

D Immune precipitate from cellular mRNA stimulated assay.

Tlie position of VP2 was determined by coelectrophoresis of

standards.
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(a) (b)

FIG. 4.5.3.1. ANTIBODY ACTIVITY OF ANTISERUM RAISED AGAINST PrV-INFECTED 
BHK/21 (Cl3A) SDS-DENATURED CELL LYSATE

Antiserum raised by inoculation of rabbits with PrV-infected BHK/21 

(C13A) SDS-treated cell lysates was absorbed with mock-infected HeLa cell 

lysates. The antibody activity of the absorbed serum against SDS-denatured 

PrV-infected or mock-infected HeLa cell lysates was compared with that of 

untreated serum by double diffusion in agarose/polyethylene glycol gels 

(see Materials and Methods, A14.2,). The gel was photographed unstained.

(a)

(b)

Centre well, SDS-PrV-infected HeLa cell lysate 

Centre well, SDS-mock-infected HeLa cell lysate 

o absorbed serum 

• untreated serum
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Attempts to further characterise the specificity of the 

absorbed antiserum by precipitation of radioactive antigen from 

solution by double precipitation with GAR were unsuccessful. It was 

not possible to precipitate a higher percentage of the TCA precipitable 

radioactivity from viral mRNA stimulated assays than was precipitated 

from cellular mRNA stimulated assays.

Examination of the products on gels was hampered by two problems 

Firstly the total radioactivity j precipitated was very small, probably 

because of the low antibody activity of the serum, and secondly, 

precipitation of rabbit IgG with GAR leads to large precipitates 

which overloaded the gel causing distortion of the polypeptide bands 

with molecular weights less than 100,000. This problem was also 

encountered with anticapsid serum but to a much lesser extent because 

the IgG protein chains (molecular weights 23,000 and 50,000) migrated 

ahead of VP 2.

For these reasons it was not possible to show precipitation 

from viral mRNA stimulated wheat germ assays with antiserum to 

infected cell proteins.

4.6. Hybrid arrested translation.

Immunoprécipitation studies did not prove useful in 

identification of polypeptides synthesised ^  vitro other than VP 2 

because of the non-specificity of the antisera. Therefore, an 

alternative method of classification was necessary.

Paterson e^ , (1977) found that mRNA when hybridised to 

its complementary DNA did not direct cell-free synthesis of complete 

polypeptides. Translational activity of the mRNA was recovered 

upon the heat melting of the hybrid. The technique, which is 

termed/
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termed hybrid arrested translation (HART), has been used to 

investigate the polypeptides coded by different abundance classes of 

mRNA in chick myoblast (Paterson & Bishop, 1977) and mouse liver 

(Hastie & Held, 1975).

The technique can be extended to the detection of genes in 

double stranded DNA by hybridisation in high concentrations of formamide 

which favour RNA-DNA hybridisations. In this way the specific protein 

coding regions in restriction fragments of Adenovirus 2 DNA were 

mapped (Paterson et ab., 1978). HART has also been used to identify 

the polypeptide products of the eight RNA molecules of fowl 

influenza A virus (Inglis et , 1977) .

The technique was used to identify the viral coded polypeptides 

in the in vitro translation products of "viral" mRNA. PrV DNA 

was hybridised to viral mRNA as described in the Materials and 

Methods and identical samples either melted by heating at lOO°C for 

60 s followed by quick chilling or retained in hybrid form. The 

precipitated nucleic acids were then translated in the wheat germ 

system. The translational activity of the treated mRNA was less 

til an that of the starting material. The reduction may have been 

caused by loss of mRNA or inhibition of the system by the increased 

concentration of nucleic acid. However, significant stimulation 

of activity was shown by both the intact and the melted hybrids 

(Table 4.6.1.). The translational activity was reduced by 50.6

The vitro products of melted and hybridised mRNA are shown 

in Figure 4.6.1. Comparison of tracks B and C showed that synthesis 

of some proteins was suppressed in the hybrid. The relative 

intensity of bands in these tracks was measured on a microdensito­

meter and reductions in peak heights were quantitated

by/
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TABLE 4.6.1.

Incorporation of TCA precipitable material in hybrid 

stimulated wheat germ assays.

mRNA cpm
incorporated

/50ul

*
%

reduction

Endogenous 128,530

Viral mRNA-PrV DNA 
hybrid 262,720 50.6

Viral mRNA-PrV DNA 
treated hybrid 400,230

♦The percentage decrease was calculated in the following way: The

endogenous incorporation was subtracted from the cpm incorporated in 

exogenous mRNA stimulated assays; the corrected cpm for the 

undenatured mRNA-DNA hybrid stimulated assay (134, 190) was subtracted 

from the corrected cpm for the melted hybrid assay (271,700) and the 

difference (137,510) is expressed as a percentage of the corrected cpm 
incorporated in the melted hybrid assay.



FIG. 4.6.1. PRODUCTS OF HYBRID ARRESTED TRANSLATION

0.4yg viral (PrV) mRNA was hybridised to a tenfold exdess

of PrV DNA as described in the Materials and Methods (A8.2%

One half of the sample was heat denatured and both hybrid and

melt were added to wheat germ assay mixes (A3.4.11.), The
35assay mixes contained 400yCi/ml { s}-methionine (820Ci/mmol) 

and were incubated as described (A10.2.). lOyl aliquots were 

treated for electrophoresis and separated on 12% polyacrylamide 

gels. Gels were processed for fluorography and exposed to X-ray 

film. Two exposure times of the gel are shown. Viral coded 

polypeptides (VCP) and cellular coded polypeptides (CCP) are 

labelled in accordance with Fig. 4.4.1.

cpm/track
Tracks A and C mRNA -DNA hybrid products , 105,000

Tracks B and D "melted" mRNA-DNA products 160,000

Tracks A,B were exposed for 72h; tracks C,D for 120h.
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by cutting out and weighing several clearly defined peaks. The 

ratios of the peaks relative to CCP 39.5, which was of approximately 

the same intensity in both tracks, were calculated (Table 4.6,2.). 

Seven polypeptides which had been putatively classified as viral by 

co-migration were found to show suppressed synthesis in the mRNA-DNA 

hybrids. This confirmed the viral origin of these polypeptides.

4.7. Classification of polypeptides preferentially synthesised 

at elevated K concentrations.
The studies on the effect of elevated K concentrations on 

polypeptide synthesis in vitro (4.3.) showed that some viral mRNA
“j-products were preferentially synthesised at lOOmM K . The

identity of these polypeptides can now be considered in the light of

attempts to classify the vitro products described in the proceeding

three sections.

The products of viral and cellular mRNA synthesised under

standard conditions together with the products of viral mRNA synthesised

at lOOmM K and the products of mRNA extracted from infected cells

treated with cycloheximide from the start of infection are shown in

Figure 4.7.1. The "viral" mRNA species contains late viral mRNAs

and the mRNA extracted from cycloheximide treated cells should

contain only immediate-early viral mRNA (Ben-Porat & Kaplan, 1973},

Classification of the polypeptides is shown in Table 4.7.1. Three
+of the seven polypeptides whose synthesis is elevated at lOOmM K 

have been classified as viral coded by co-migration studies. Poly­

peptide A is classified as viral by co-migration and HART. Comparison 

of electrophoretic mobilities suggested evidence that VCP 43.5 might be an 

immediate-early protein.

4.8./
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TABLE 4.6.2.

Ratio of viral mRNA products synthesised in HART assays 

relative to cellular coded polypeptide 39.5 (CCP 39.5).

Polypeptide Melted hybrid Unmelted hybrid

CCP 97 ,88 1.0

CCP 39.5 1.0 1.0

VCP 105 0.94 ND *

37 1.4 0.5

36.5 1.6 0.94

28 4.8 2.2

26.5 3.3 1.6

26 3.9 1.7

25.5 3.5 1.8

* ND not detectable



FIG. 4,7,1. POLYPEPTIDES SYNTHESISED AT DIFFERENT {K^} IN THE
WHEAT GERM SYSTEM

Cellular (HeLa, 6,4tig/ml) , late viral (PrV, 8.8]jg/ml) and 

immediate early viral (PrV, 5yg/ml) mRNAs were translated in the 

standard wheat germ assays (A3.4.11.). Late viral mRNA was also, 

translated in an assay mix where the {K^} was increased to lOOmM 

by addition of KCl. Assay mixes contained 570yCi/ml {^^s}- ; 

methionine (lOSOCi/ramol), PrV immediate early mRNA was prepared 

by oligo-(dT) cellulose affinity chromatography of polysomal RNA 

extracted from PrV-infected which were treated with cycloheximide 

from the time of infection until 15 min prior to harvesting and 

was a generous gift from Mr.M, Chowdhury. lOpl aliquots of 

assay mixes were treated for electrophoresis and the polypeptides 

separated on a 12% polyacrylamide gel. The gel was processed for 

fluorography and exposed to X-ray film.

The viral mRNA products which show enhanced synthesis of 

lOOmM K are designated a-g and one whose synthesis is suppressed 

is designated A,

Late V 75: late PrV mRNA, 75mM K***

Late V 100: late PrV mRNA, lOOmM

lEV 75: immediate early PrV mRNA, 75mM

C 75: cellular mRNA, 75mM
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TABLE 4.7.1.

Classification of polypeptides showing altered patterns
+of synthesis at lOOmM K

Polypeptide 
stimulated at 

lOOmM K"̂

Polypeptide 
inhibited at 
lOOmM K+ Classification

a VCP 43.5

b CCP 38

c VCP 36.5

d CCP 27.5

e CCP 26.5

f VCP 24

g EP 21.2

A VCP 28



— 81 —

4.8. Discussion.

These studies show that synthesis of polypeptides with molecular 

weights greater than 100,000 is possible in the wheat germ cell free 

system. However, the population of polypeptides synthesised ̂  vitro 

differs from that found vivo. The proportion of total radioactive 

label incorporated into high molecular weight material is much lower 
in vitro and the number of polypeptides with molecular weights less than 

25,000 synthesised vitro is higher than is found in vivo. It has 

been suggested that premature termination will be found to be a feature 

of all ^  vitro systems (Boirae and Leder, 1972) . Such incomplete 

polypeptide synthesis may occur because of mRNA degradation (Hunter 

et al., 1977) or may be due to limiting features of cell free systems.

One interesting point is that the low molecular weight poly­

peptides are of discrete sizes and the banding patterns are reproducible. 

This suggests that synthesis of low molecular weight polypeptides is not 

a random event.

Co-migration studies have identified twenty-nine polypeptides 

present in assays programmed with viral mRNA which are not synthesised 

in response to cellular mRNA. A further twentythree viral mRNA products 

have the same electrophoretic mobility as cellular mRNA products. Most 

of the polypeptides are found in reduced amounts in viral mRNA 

stimulated assays suggesting that at least some are of cellular origin. 

However, a definitive classification cannot be made on the basis of 

co-migration studies alone. An alternative classification is based on 

the suggestion that addition of mRNA to wheat germ extracts stimulates 

endogenous synthesis. Thus, some of the polypeptides could be 

endogenous proteins which were not detected on the absence of exogenous 

mRNA. However, the synthesis of high molecular products is not 

stimulated/
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stimulated by reticulocyte mRNA.

The vitro products of both mRNA species contained polypeptides 

which had no detectable counterpart in cell lysates. There are three 

possible explanations for this. Firstly some of the in vitro poly- 

peptides may be incomplete products due to degraded mRNA or incompleted 

translation. Secondly, post-translational processing of polypeptides 

occurring in a heterologous cell free system is not analagous to vivo

processing. Cleavage of precursor molecules (Maurer at al., 1976) and 

glycosylation (Katz , 1977; Inglis ejt , 1977) do not occur.

Finally, classifications such as these are subject to the limitations 

of the technique. Polypeptides present in small amounts are not well 

resolved in one dimensional gels and there are a large number of proteins 

present; hence, the failure to detect co-migrating bands does not 

preclude their existence.

Further investigation of the origin of the ^  vitro polypeptides 

by immunoprécipitation confirmed the identity of VCP 150 which was 

classified as VP 2 by co-migration. Failure to verify the viral origin 

of other polypeptides by this method probably occurred for two reasons. 

Firstly, immunoprécipitation from the wheat germ system has been found 

to be difficult and high backgrounds have been observed (Nakanishi 

et ai., 1977). This has been attributed partly to the presence of 

incomplete polypeptides chains (Schmeckpeper ejt , 1974) . Secondly, 

problems arose because of the non-specific nature of the anti-serum.

Preparation of antiserum to SDS-treated viral polypeptides by a 

similar method to that used here has been described (Johnson et al.,

1972; McMillan and Consigli, 1977) . The antibody activity of the serum 

has been shown to be directed against the dissociated proteins and 

antisera did not react with intact virions. The antigens on whole 

virus/
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virus were assumed to differ from those on the individual viral poly­

peptides. This was confirmed by these studies which showed that it 

was necessary to treat proteins with SDS to demonstrate antibody 

activity in antisera to SDS denatured proteins.

In addition, these studies showed a non-specific activity against 

SDS denatured proteins not previously noted. This prevented absorption 

of anti-HeLa cell protein antibodies from antisera to infected cell 

lysates because in order to do this efficiently it would have been 

necessary to use SDS treated HeLa lysates and this would cause non­

specific precipitation of viral antibodies. Treating anticapsid 

serum with SDS denatured HeLa cell lysates removed all antibody activity. 

Some reduction of anti-HeLa cell protein activity was achieved using non- 

SDS denatured HeLa cell lysates but several precipitations were necessary 

and the reduction may have been simply due to loss of IgG. Hence, it 

was concluded that this method of raising antisera was unsuitable for 

these purposes.

HART proved to be an efficient means of classifying polypeptides 

synthesised ^  vitro. The failure to identify more polypeptides by this 

method is probably due to the reduction in synthesis observed in HART 

assays. It seems likely tliat further application of the technique 

would yield more information.

The experiments described here showed that preferential synthesis
4“ 'I*of some polypeptides occurred at elevated K vi tro. K resistant

species were found in all three mRNA populations - viral, cellular and 

endogenous. Similar observations have been made for the synthesis of 

rat liver albumin (Tse and Taylor, 1977) and polyoma virus polypeptides 

(Wheeler ^  ai., 1977) . These studies are of interest with regard to 

the hypothesis that monovalent cations have a role in viral-induced 

shut/
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shut-off of cellular protein synthesis (Carrasco, 1977) and will be 

discussed further.
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Chapter 5

Comparative Studies in Three Cell Free Systems.

5.1. Introduction.

A common feature of a number of virus infections is the diversion

of the protein synthetic apparatus from translation of host cell mRNA to

an almost exclusive translation of viral mRNA. There is evidence that

translational control has a role in the process and mechanisms for
preferential translation of viral mRNA have been proposed. One

hypothesis attributes the preferential translation of viral mRNA to a

virus-induced elevation of the intracellular monovalent cation concentration

to a level which is inhibitory to cellular but not viral mRNA translation

(Carrasco, 1977). Support for this model comes from the observation that
+EMC virus RNA exhibits mRNA activity at a 25mM higher K concentration 

than reticulocyte mRNA (Mathews, 1972) or total mouse cell poly(A)- 

containing RNA (Carrasco and Smith, 1976) in cell free system prepared 

from Krebs II ascites cells.

Studies on translation conditions described in the preceding two 

chapters have shown that there is no difference in the translation 

characteristics of HeLa cell and late PrV mRNA in wheat germ extracts.

Thus the model does not seem to be applicable to herpes viruses. It 

remains possible, however, that differences are masked in such a heterologous 

translation system and therefore the translation of EMC virus RNA and PrV 

viral mRNA was compared in the wheat germ system and the translation, of 

these and other mRNAs was investigated in other cell free protein 

synthesising systems.

A second reason for investigating translation in other cell free 

systems was to provide a check on the authenticity of "exogenous mRNA 

products/
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products" detected in the wheat germ system.

5.2. Translation of EMC Virus RNA in the Wheat Germ Cell Free System.

5.2.1. Isolation and Characterisation of EMC Virus RNA.

EMC virus RNA was extracted from purified virus by the phenol: 

chloroform:isoamyl alcohol technique at pH 9.0 as described in the Materials 

and Methods for extraction of RNA from polysomes. The RNA was 

precipitated three times to remove SDS and assayed for mRNA activity 

under standard conditions in the wheat germ cell free system. As 

noted by Daggleman and Beard (1976) EMC virus RNA was found to be a 

comparatively inefficient messenger in wheat germ assays. The maximum 

stimulation of endogenous activity observed at an RNA concentration of 62pg/ml 

was four fold.

The mRNA activity was verified by examination of the vitro 

translation products by polyacrylamide gel electrophoresis and fluorography.

At least fifteen polypeptides witli molecular weights ranging from less 

than 20,000 to 105,000 which did not comigrate with products of endogenous 

or other exogenous mRNA were synthesised (data not shown).

+5.2.2. The Optimum {K } Concentration for Translation of EMC Virus RNA 

in Wheat Germ Extracts.
3The incorporation of { H}-leucine into TCA precipitable material in 

wheat germ assays stimulated by EMC virus RNA at varied {K^} was investigated 

by addition of KCl to standard assay mixes. The result of such an 

experiment is shown in Figure 5.2.2.1. The effect of variations in {K*} 

on PrV mRNA activity (from figure 3,3.1.1.) is shown for comparison.

The optimum concentration of K was similar for both RNAs but the messenger 

activity/
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FIG. 5.2.2.1. THE EFFECT OF {K } ON EMC VIRUS RNA AND PrV mRNA
STIMULATED SYNTHETIC ACTIVITY IN THE WHEAT 

GERM SYSTEM

The {k '*'} in wheat germ assay mixes (A3.4.11.) containing 96%ig/ml 

EMC virus RNA was varied by addition of KCl. Assay mixes contained
350yCi/ml { H}-leucine (56Ci/mmol). After incubation the synthesis of 

TCA precipitable material was determined by precipitation on filter 

discs and scintillation counting.

The PrV mRNA stimulated synthesis as a function of {K^} (from 

Fig. 3.2.2.1.) is shown for comparison. The left-hand scale refers to 

EMC virus RNA stimulated incorporation, the right-hand scale to PrV mRNA 

stimulated incorporation.
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activity of EMC virus RNA was present over a wider range of {k ”*"} than 

that of Pr viral mRNA. Pr viral mRNA-stimulated .incorporation drops 

to endogenous as the {K**"} approaches lOOmM while EMC RNA maintains 

stimulation to 120raM K .

5.3. Krebs II Ascites Cell Free Translation.

5.3.1. mRNA Activity of Exogenous RNAs in Ascites Extracts.

S30 Krebs II ascites cell extracts were prepared and preincubated 

as described in the Materials and Methods. The mRNA activity of EMC 

virus RNA and reticulocyte, Pr viral and cellular mRNAs was determined 

in preincubated S30 containing 71mM K^ and lOOyCi/ml {^H}-leucine.

Assays were incubated at 37^0 for 50 min and the incorporation into TCA 

precipitable material was determined by the filter method. Similar 

assays were also carried out with unincubated S30 where the {K^} was
377mM and assays contained 80yCi/ml { H}-leucine. The total incor­

poration and the stimulation of endogenous incorporation are shown in 

Table 5,3.1.

EMC virus RNA and reticulocyte mRNA gave equivalent stimulation 

of incorporation in preincubated extracts. However Pr viral and 

cellular mRNAs were found to be . poor messengers under these 

conditions and variation of RNA, K or Mg concentrations did not 

increase the stimulatory activity. For these mRNAs stimulation was 
only observed at a concentration of 0.8yg/ml. is good stimulation per yg.

The translation of EMC virus RNA and Pr viral mRNA was compared in 

unincubated ascites extracts because it has been noted that the pre­

incubation step preferentially curtails the ability of the system to 

translate heterologous mRNAs (Mathews, 1972). In this case equivalent 

stimulati.on was obtained with both RNAs but because the level of endo­

genous/
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TABLE 5.3.1.

mRNA Activity of Exogenous RNAs in Krebs II Ascites Extracts.

Ascites
S30

Exogenous
RNA

species

RNA
concen­
tration
yg/ml

3{ h }“ leucine
incorporated
cpm/

5yl *Stimulation

unincubated - - 10,380

viral 0.8 17,820 1.7
EMC 60 20,160 1.9

preincubated - - 2,820

viral 1.6 4,510 1.6

preincubated - - 2,260

EMC 62 25,700 11.4

preincubated - - 1,900

reticulocyte 37 21,670 11.4

reticulocyte 74 20,460 10.8

* Times endogenous
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genous protein synthesis is high in these extracts and the stimulation 

low, translation in unincubated extracts was not considered useful.

5.3.2, The Effect of Variations in the{K^}on mRNA Activity in 

Ascites Extracts.

The effect of variations in the {k ^} on mRNA activity in the 

ascites cell free system was investigated by addition of KCl to assays. 

The {k ”̂} dependence of stimulation of incorporation by EMC virus RNA and 

Pr viral and reticulocyte mRNAs is shown in Figure 5.3.2.1. EMC virus 

RNA shows optimum stimulation in the range 95-llOmM which is similar to 

that described by others. The optimum for reticulocyte and viral mRNAs 

is approximately 50mM.

As discussed previously, (see 3.3,1.) there is evidence that the 

chloride ion may be involved in inhibition of translation. The ascites 

cell free system is buffered by 25mM Tris HCl pH7.5 so before addition 

of KCl the {C1 } is 20mM, Addition of 60mM KCl raises the (C1 } to 

80mM which is the upper limit of the physiological range. It is 

therefore possible that translation may be affected by excess Cl ,

5.4. Rabbit Reticulocyte Cell Free Translation,

The unfractionated reticulocyte lysate is a highly efficient cell 

free protein synthesising system with vitro translation rates close to 

those observed in intact cells (Hunt & Jackson, 1974; Mathews & Osborn, 

1974), However, although exogenous mRNA can be translated in the system, 

the endogenous activity is sufficiently high that stimulation of amino 

acid incorporation by exogenous mRNA cannot be detected. Thus it is 

necessary to use mRNAs whose products can be readily identified.

When this project was started the unfractionated reticulocyte lysate did 

not/
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FIG. 5.3.2.1. THE EFFECT OF {K^} ON SYNTHESIS OF TCA PRECIPITABLE
MATERIAL IN THE KREBS II ASCITES SYSTEM

The {K^} in Krebs II ascites assay mixes (A3.6.14.) containing

l.Syg/ml PrV mRNA, 4pg/ml globin (Rabbit reticlocyte) mRNA^ 24yg/ml EMC

virus RNA or no added RNA was varied by addition of KCl. Assay mixes
3contained 57yCi/ml { H}-leucine (52Ci/mmol). After incubation the 

synthesis of TCA precipitable radioactivity (cpm/5yl) was measured by 

precipitation on filter discs and scintillation counting, 

o EMC virus RNA 

# Globin mRNA

X Viral (PrV) mRNA

▲ No added RNA
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not seem to be useful for investigating the stimulatory activity of the 

heterologous mRNAs of mock-infected and PrV-infected HeLa cells.

However, a mRNA dependant reticulocyte lysate (MDL) which does 

not have this disadvantage has since been developed (Pelham & Jackson,

1976) . An unfractionated reticulocyte lysate is treated with micrococcal 

nuclease to degrade endogenous mRNA and after an appropriate time, nuclease 

activity is arrested by chelating calcium ions which are required for this 

nuclease activity. The treated lysate has low endogenous activity, no 

detectable nucleases and translates exogenous mRNA almost as efficiently 

as the untreated lysate.

5.4.1. mRNA Activity of Exogenous RNAs in the MDL.

Pr viral and cellular mRNAs and EMC virus RNA were assayed for

mRNA activity in a MDL prepared as described in the Materials and Methods.
35Assay mixes containing 50yl of MDL and mRNA and { S}-methionine in a

final volume of 57.5yl were incubated at 30°c for 90 min. Table 5.4.1.1.
35shows the exogenous mRNA stimulated incorporation of { s}-methionine into 

TCA precipitable material in the system.

The products of exogenous RNAs in the MDL were examined by poly­

acrylamide gel electrophoresis and fluorography (Figure 5.4.1.1.).

Aliquots of the assay mix were treated with SDS and B-mercaptoethanol as 

described in the Materials and Methods and applied directly to the gel.

The high concentration of globin leads to some distortion of the ion front 

but did not affect the separation of high molecular weight polypeptides.

The polypeptides were not rigorously characterised but a polypeptide with 

a molecular weight of 150,000 which comigrated with the major capsid 

protein of PrV was readily detected in Pr viral mRNA programmed assays.

The/
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mRNA Activity of Exogenous RNAs in the Messenger 

Dependent Lysa-te Cell-free System

RNA
Species

Concentration
mRNA

(ug/ml)

35{ s}-methionine 
incorporated 

cpm/3ial *Stimulation

Endogenous
mRNA 7,200

Viral mRNA 7.3 20,800 2.9

Cellular mRNA 10.8 26,000 3.6

EMC virus RNA 41.7 15,000 2.1

* Times endogenous



FIG. 5.4.1.1. PRODUCTS OF EXOGENOUS mRNA TRANSLATION IN 
THE MESSENGER DEPENDENT RETICULOCYTE 

LYSATE

Messenger dependent reticulocyte lysate (MDL) translation

assays of PrV mRNA (T.Oyg/ral) , HeLa cell mRNA (12.0vig/ml) and

EMC virus RNA (49.2yg/ml) were carried out as described in the

Materials and Methods (All,4.), Assays were labelled with 
35{ s}-methionine (420iiCi/ml, lOSOCi/mmol) . Assay mixes were 

treated for electrophoresis and the polypeptides were separated 

on a 12% polyacrylamide gel. The gel was processed for 

fluorography and exposed to X-ray film.

Molecular weights were estimated by comparison with 

Figure 4.4.1.

VI, PrV mRNA 

C, HeLa cell mRNA 

EMC, EMC virus RNA 

E, No added mRNA
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The Pr viral and cellular mRNAs used in this experiment were the 

same preparations as those used to programme the wheat germ assays described 

in 4.4. Comparison of the polypeptides synthesised in the MDL (Figure

5.4.1.1.) with those detected in the wheat germ system (Figure 4.4.1.) 

showed that the major polypeptides synthesised are the same in both systems. 

The proportion of high molecular weight products synthesised in the MDL, 

however, was higher tlian that in the wheat germ and longer exposure times 

were not necessary to detect polypeptides with molecular weights greater 

than 40,000.

5.4.2. The Effect of Variations in the on mRNA Activity in the MDL.

The MDL used in these experiments had been prepared by the batch 

method described by Pelham and Jackson (1976), The concentration of 

added K present in the MDL is 102mM and because the lysate is not
-f-fractionated by gel filtration endogenous K is present. Therefore it

was not possible to investigate fully the optimum K for translation of

exogenous RNAs. Instead the translation activities were compared at

{K^} from 102 to 157mM.

The {K^} was varied by freeze drying concentrated solutions of KCl
35in assay tubes prior to addition of MDL, mRNA and { s}-methionine 

because of the limited volume which can be added to assay mixes. Assays 

were incubated as previously described and the total radioactivity 

incorporated was determined by TCA precipitation on filter discs. The 

results of such an experiment are shown in Figure 5.4.2.1. No species 

of RNA showed significant resistance to the increased concentration of 

KCl.

5.5. Discussion/



FIG. 5.4.2.3. THE EFFECT OF {K } ON SYNTHESIS OF TCA PRECIPITABLE
MATERIAL IN THE MESSENGER DEPENDENT RETICULOCYTE

LYSATE

The {K } in messenger dependent reticulocyte lysate (MDL) assay

mixes containing llyg/ml PrV mRNA, 4yg/ml cellular (HeL^ mRNA, 22jjg/ral

EMC virus RNA or 18yg/ml rabbit reticulocyte mRNA was varied by freeze

drying concentrated KCl solutions in assay tubes before addition of the. '35MDL (All,3.) and RNA, Assay mixes were labelled with 250pCi/ral { S}-

methionine (820Ci/ramol). They were incubated as described (All,4.) and 

the synthesis of TCA precipitable material (cpm/Syl) was determined by 

precipitation of aliquots on filter discs and scintillation counting.

(a) # PrV mRNA

X Cellular mRNA

(b) e EMC virus RNA
X Rabbit reticulocyte mRNA
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5.5. Discussion.
EMC virus RNA was found to be a poor mRNA in the wheat germ cell 

free system but was translated well in the ascites system. This 

result, together with the observation that discrete sized products are 

synthesised in EMC virus RNA programmed wheat germ assays, provides 

evidence that the EMC virus RNA used in these studies was functional.

The raRNA activity demonstrated for Pr viral and cellular mRNAs in 

the wheat germ system could not be reproduced in preincubated ascites 

extracts and the activity observed was considerably less than that of 

EJyC virus RNA and reticulocyte mRNA. The reason for this is unknown 

but the possibility remains that a more vigorous characterisation of 

translation conditions would yield better results. It is clear, however, 

that there are inherent differences in the translation characteristics 

of mRNAs in different systems.

The optimum {k "**} for EMC virus RNA stimulated incorporation in wheat 

germ extracts was similar to that observed for viral (PrV) mRNA but was

less critical in that activity was still observed at relatively high

{k "̂} . In ascites extracts, however, this RNA exhibited a requirement 
for a considerably higher {k ^} for maximum mRNA activity than viral (PrV) , 

or reticulocyte mRNAs. Thus, although differences in {K^} optima 

are less obvious in the wheat germ system than in the ascites system, these 

results agree with the previous observation (see 3.3.1.) that late PrV 

mRNA does not have different {K^} requirements for ^  vitro translation

from those of HeLa cell mRNA,

Pr viral and cellular mRNAs and EMC virus RNA all showed raRNA 

activity in the MDL cell free system. The stimulation observed in this 

system was less than that found in the wheat germ system (of Table 3.2.1.) 

but the dose dependence was not determined and it is possible that these 

concentrations/
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concentrations which saturated the wheat germ system were suboptimal in

the MDL. In addition, the difference may be related to the use of
35 3{ S}-methionine in MDL assays instead of { H}-leucine as in the wheat

germ assays.

Comparison of the Pr viral and cellular mRNA products synthesised 

in the MDL with those synthesised in the wheat germ system confirmed the 

fidelity of the wheat germ system. The MDL, however, was more efficient

in synthesis of high molecular weight products than the wheat germ system. 

These results suggest that the MDL will prove a useful system for 

translation of PrV and HeLa cell mRNAs.
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CHAPTER 6

The Effect of Hypertonic Conditions on Protein Synthesis Vivo

6.1. Introduction.

Protein synthesis in exponentially growing HeLa cells is rapidly 

inhibited when the cells are subjected to hypertonic medium. The lesion 

is at initiation and is accompanied by complete breakdown of polysomes 

(Saborio et ai., 1974) . However, protein synthesis in HeLa cells 

infected with poliovirus, vesicular stomatitis virus and vaccinia virus 

is relatively resistant to hypertonic medium and the polypeptides 

synthesised in the presence of a hypertonic initiation block have been 

shown to be predominantly of viral origin (Nuss et , 1975; Oppemann 

and Koch, 1976a). Growth in hypertonic medium has also been used to 

unmask synthesis of viral proteins in cells where host protein synthesis 

is not inhibited after virus infection (Oppermann and Koch, 1976b).

On the basis of these results a model for translational control 

which attributes the virus-induced shut-off of host cell protein synthesis 

to an overall decrease in the initiation rate such that only virus mRNA 

which has a higher initiation rate than most cellular mRNAs is 

translated (Nuss ejt , 1975). The model is supported'by studies using 

other inhibitors of initiation such as dimethyl sulphoxide and ethanol (Koch 

et al., 1976) .

Until recently, (see Gupta and Rapp, 1978) experiments of this 

nature had not been reported for herpesvirus-infected cells. It was 

therefore of interest to examine the effect of the hypertonic initiation 

block on protein synthesis in PrV-infected cells.

6.2/
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6.2. The Effect of hypertonic media on protein synthesis.

Protein synthesis in infected and mock-infected HeLa cells was
3compared by determining the incorporation of { h }-methionine into TCA 

precipitable material at appropriate times after infection as described 

in the Materials and Methods. The total incorporation per coverslip 

at 2 h and 6 h after infection or mock-infection is shown in Table

6.2.1. At 6 h protein synthesis was decreased in virus-infected cells. 

The effect of hypertonic media on protein synthesis was examined

by adding NaCl to the medium 30 rain prior to harvesting and determining 

incorporation as previously described. Results of such experiments 

at 2 h and 6 h after infection or mock-infection are shown in Figure

6.2.1. To allow readier comparison of the relative sensitivities

to hypertonicity the incorporation at elevated NaCl concentrations is 

plotted as a percentage of that in normal medium. This was particularly 

important at 6 h post-infection because protein synthesis in infected 

cells was already considerably depressed and a similar percentage 

decrease represented a smaller decrease in the number of counts 

incorporated. Plotting the results in this way shows that protein 

synthesis in infected cells at high levels of added NaCl is inhibited 

as much as that in uninfected cells. At low levels of added NaCl 

infected cells show an increased sensitivity to the hypertonic treatment.

6.3. The effect of hypertonic media on polysomes.

The effect of hypertonic media on mock-infected and PrV-infected 

HeLa cell polysomes was investigated by appropriately adjusting the 

NaCl concentration in the medium 15 min prior to harvesting.

Cytoplasmic extracts were centrifuged through sucrose gradients and

the polysomes profiles recorded as previously described. In accordance

with/
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TABLE 6.2.1.
Incorporation of { h } methionine into normal and infected HeLa cells

Time after infection or {^h } methionine (cpra/coverslip)
mock-infection Mock-infected Infected

2 h 4423 4594

6 h 4644 2190

HeLa cells were grown on glass coverslips in 50mm Petri dishes and 

infected with PrV or mock-infected, 15 min before harvesting
3
{ H }—methionine (15yCi/dish) was added. Coverslips were removed from 

the dishes, washed 3 times with 5% (w/v) TCA, once in ethanol and the 
radioactivity measured by scintillation counting.

Incorporation in isotonic medium:

mock-infected

PrV-infected

2h

4423

4644

6h

4594

2190
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PIG. 6.2.1. EFFECT OF HYPERTONIC MEDIUM ON PROTEIN SYNTHESIS IN
PrV-INFECTED AND MOCK-INFECTED HeLa CELLS

HeLa cells were grown on glass coverslips in 50mM Petri dishes and

infected with PrV (A) or mock-infected (o). 30 min before harvesting

the medium was replaced with normal (isotonic) medium which contained
3llOmM NaCl or medium made hypertonic by the addition of NaCl. { h 1- 

methionine ( 15jjCi/dish) was added to the medium 15min before harvesting. 

Coverslips were removed from the dishes, washed three times with 5% (w/v) 

TCA, once in ethanol and the radioactivity was measured by scintillation 

counting. The incorporation into acid-insoluble material is expressed 

as a percentage of that occurring in isotonic medium.

Incorporation in isotonic medium:

mock-infected

PrV-infected

2h

4423

4644

6h

4594

2190
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with previous reports, growth in hypertonic media caused disaggregation 

of polysomes in uninfected HeLa cells (Figure 6.3.1. a-c). A similar 

decrease in the number of polysome was found in PrV-infected cells 

(Figure 6.3.1. d-f) . In both cases no polysomes could be detected when 

cells were incubated in media containing 260mM NaCl. The reduction 

in the number of polysomes was quantitated by calculating the polysome 

to raonosome ratio at various degrees of hypertonicity. The amounts were 

calculated by cutting out and weighing the areas under the curve 

obtained from the chart recording. Figure 6.3.2. shows the ratios in 

mock-infected and infected cells at differing NaCl concentrations. 

Although the percentage reduction is less because of virus induced 

disaggregation of polysomes, polysomes in infected cells are no more 

resistant to hypertonicity than those in uninfected cells.

6.4, Discussion.

Both sets of experiments showed that protein synthesis in 

herpesvirus infected cells is no more resistant to growth in hypertonic 

media than protein synthesis in uninfected cells. At low levels of 

hyper tonicity infected cells show an increased sensitivity to tlie hyper­

tonic treatment. This may reflect some effect of the virus on the cell 

membrane which facilitates equilibration of extracellular and intra­

cellular ion concentrations. These results will be considered further 

in Chapter 8.



FIG. 6.3.1. THE EFFECT OF HYPERTONIC MEDIUM ON
POLYSOME PROFILES

Exponentially growing HeLa cells were mock-infected or 

infected with 2Cpfu/cell PrV. After 4h 45min the medium was 

replaced with normal (isotonic) medium or medium made 

hypertonic by addition of NaCl. 15min later (5h post-rinfection) 

the cells were harvested. Cytoplasmic extracts were prepared 

and layered onto 15-30% sucrose gradients. Gradients were 

centrifuged for llOmin at 27.000g in a SW27 rotor and collected 

by pumping from the bottom of the tube through a Gilford 2000 

recording spectrophotometer which monitored the absorbance at 

260nm,

(a) mock-infected cells, isotonic medium, llOmM NaCl

(b) mock-infected cells, hypertonic medium, 160mM NaCl

(c) mock-infected cells, hypertonic medium, 260mM N a d

(d) PrV-infected cells, isotonic medium, loOmM NaCl

(e) PrV-infected cells, hypertonic medium, 160mM NaCl

(f) PrV-infected cells, hypertonic medium, 260mM NaCl
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A PrV 
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FIG. 6.3.2. DISAGGREGATION OP POLYSOMES IN PrV-INPECTED AND 
MOCK-INFECTED CELLS IN HYPERTONIC MEDIUM

The ratio of polysomes to monosomes in PrV-^infected and mock-infected 

HeLa cells subjected to 15min treatment with hypertonic medium (see Fig.

6.3.1.) was estimated by cutting out and weighing the appropriate areas 

of the optical density trace obtained from the recording spectrophoto­

meter (see Fig. 6.3.1.).
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CHAPTER 7

Translation of Polysomes

7.1. Introduction.

Polysomes prepared from herpesvirus infected cells show an 

increase in the number of rapidly sedimenting polysomes when compared 

with those prepared from mock-infected cells. The shift in polysome 

size is related to the synthesis of viral polypeptides and the large 

polysomes are involved in synthesis of viral proteins (see 1.5.4.1.),

A similar increase in polysome size is found in picornavirus 

infected cells (Penman et j^. ̂ 1963). In this case the large 

polysomes can be correlated with the large size of the mRNA, which is 

a single molecule with molecular weight 2.6 x 10^, in contrast to 

the heterogeneous and generally smaller cellular mRNAs. A 

correlation between polysome and polypeptide size has been demonstrated 

in cells infected with the rhabdovirus vesicular stomatitis virus (VSV).

VSV G protein, molecular weight 63,000, and the N protein, 50,000, are 

synthesised on polysomes with a mean size of 8 ribosomes/polysome while the 

M protein, 24,000 is synthesised on polysomes of considerably smaller 

size (David, 1978).

Vass (1975) examined the nascent polypeptides on heavy and 

light polysomes in HeLa cells infected with PrV and mock-infected cells 

and found no such relationship. Instead at 2h h post-infection the 

heavy polysomes seemed to contain a higher proportion of low molecular 

weight nascent polypeptides than is found in the light polysome 

fraction.

The availability of a cell-free system makes it possible to 

study the increased mRNA loading more closely. Using such a system 

the/
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the polypeptide synthesis in different size classes of polysomes can 

be examined in order to investigate the involvement of large poly­

somes in viral protein synthesis and the relationship between polysome 

and polypeptide sizes.

Synthesis of high molecular weight polypeptides in the wheat 

germ cell free system stimulated by mRNA is very inefficient.

Hence, these studies were carried out using polysomes to stimulate 

polypeptide synthesis.

7.2. Investigation of the Products of Polysome Translation.

7.2.1. Polysome Translation Characteristics.

The wheat germ cell free system has been used mainly for

translation of mRNA. However, a few studies involving addition

of exogenous polysomes have been carried out.

Polysomes have been added to unfractionated wheat germ extracts

which contain endogenous polysomes (Sun et al., 1975; Luthe and

Petersen, 1977) and to the SlOO fraction prepared by centrifugation

of the unfractionated extract at 100,OOOg to pellet endogenous

polysomes (Higgins & Spencer, 1977; Jones ^  al., 1977). The

activities observed are similar.

Translation characteristics differ slightly from those

described for raRNA. The optimum {Mg } lies in the range 5-6mM

which is twice that observed for mRNA. The optimum (k "*"} has not

been carefully examined. Higgins & Spencer (1977) used 130mM K

but other studies have been carried out with 60-70mM K . H.H. Singer

(personal communication) found that maximum stimulation of incorporation
H"was observed at ISomM K . Generally, the time course is shorter than 

for raRNA.

7.2.2./
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7.2.2. Polysome Translation.

Polysomes were prepared from PrV-infected and mock-infected

HeLa cells 5 h post-infection as described in the Materials and

Methods. The pellets were rinsed with 2M sucrose and resuspended by

vortexing in sterile deionised water. One unit of polysomes

was added per 50yl assay containing 15yl unfractionated wheat germ 
"f"extract, 180raM K , 0.4mM spermidine and 2.5mM Mg . Assays were 

incubated at 25°c for 90 min. Freshly prepared polysomes were used 

because the activity was found to decrease rapidly on storage at 

-20°C. Stimulation of the endogenous incorporation by exogenous 

polysomes is shown in Table 7.2.2.1.

The products of polysome translation were examined by poly­

acrylamide gel electrophoresis. Figure 7.2.2.1. shows a fluorograph 

of the products. No endogenous products were detected in a parallel 

track on the same gel after this exposure time. Comparison of the 

polysome products (Figure 7.2.2.1.) with the mRNA products (Figure

4.4.1.) shows that the proportion of high molecular weight products 

synthesised in polysome stimulated assays is considerably greater.

The highest molecular weight detected in products from viral 

polysomes was 150,000 while the maximum size of mock-infected cell 

polysome products was 115,000. The proportion of high molecular 

weight products synthesised on viral polysomes was greater 

than was synthesised on mock-infected cell polysomes (Fig. 7.2.2.2.).

The fluorograph shows that there are at least 18 polypeptides 

with molecular weights greater than 20,500 present in infected cell 

polysome translation products which are not present in the products 

from mock-infected or PrV infected cycloheximide treated cell poly­

somes. Eight of these polypeptides co-migrate with polypeptides 

present/
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TABLE 7.2.2.1.
35Incorporation of { S } met into TCA precipitable material 

in wheat germ extracts stimulated with polysomes.

Polysomes
--- ■ ■ - .—  " ' ■

cpm incorporated 
^50 Ml

----------
*Stimulation

Wheat germ 
endogenous 110,330

PrV infected
HeLa cell 850,490 7,7

HeLa cell 630,610 5.7

* Times endogenous



.FIG. 7.2. 2.1. PRODUCTS OP IN VITRO TRANSLATION OF POLYSOMES .. •

Polysome pellets were prepared from PrV-infected and mock- 

infected HeLa cells 5h after infection and from PrV-infected HeLa 

cells which had been treated with cycloheximide from the time of 

infection until 15 min before harvesting as described in the

Materials and Methods (A5. ). Cycloheximide treated polysomes' -,
were generously supplied by Mr. M. Chowdhury. The pellets were 

rinsed with sterile 2M sucrose and suspended in deionised water.

Polysomes were added to wheat germ assay mixes (A3.4.11.)
+ ++ containing ISOmM K (added as KCl), 25mM Mg 0.4mM spermidine and

35SOOpCi/ml { s}-methionine (1080Ci/mraol) to a concentration of 20

A--^ units/ml. After incubation, lOyl aliquots of assay mixes 260 :
were treated for electrophoresis and electrophoresed in parallel 

with PrV capsid and PrV-infected and mock-infected HeLa cell 

lysates (A9). The gel was processed for fluprography and exposed 

to X-ray film.

Track:

A Mock-infected HeLa cell lysate 

B PrV-infected HeLa cell lysate 

C PrV capsid

D Products of cycloheximide treated PrV-infected cell polysomes

E Products of PrV-infected cell polysomes

F Products of mock-infected cell polysomes

Track E Polypeptides labelled 1-18 are present only in infected cell polysome 

products

Track F Polypeptides labelled 1-21 are present in both infected and mock- 

infected cell polysome products
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PIG. 7.2.2.2. MOLECULAR WEIGHT DISTRIBUTION OF THE IN VITRO
PRODUCTS OF PrV-INFECTED AND MOCK-INFECTED 

CELL POLYSOMES

PrV-infected and mock-infected cell polysomes were harvested 

in the wheat germ system. The products were separated on a 12% 

acrylamide gel and detected by fluorography (see Fig. 7.2.2..1.), 

The film was scanned on a Joyce Loebel Autodensidator. The

percentage of total products present in four molecular weight 

ranges was calculated by cutting out and weighing the area under 

the curve.

C, mock-infected cell polysome products 

V, PrV-infected cell polysome products
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present only in the infected cell lysate. The other polypeptides may 

arise either from premature termination of translation or they may be 

precursor polypeptides which are post-translationally modified in the 

infected cell.

Co-raigrating polypeptides synthesised on both infected and mock- 

infected cell polysomes are indicated in the Figure. With one exception, 

these co-migrate with polypeptides in infected and mock-infected cell 

lysates. A band co-migrating with the cellular polysome product 6 is 

detectable only in the mock-infected cell lysate. Hence it is possible 

that the in vitro co-migrating products are not identical. This 

observation emphasises the importance of a more definitive means of 

classification.

7,3. Investigation of the polypeptides synthesised on different size

classes of PrV-infected and mock-infected HeLa cell polysomes.

Polysomes from PrV-infected and mock-infected HeLa cells were 

divided into 3 size classes by fractionation of sucrose density 

gradients of cytoplasmic extracts. Figure 7.3.1. shows the division 

of polysome gradients into heavy (H), medium (M) and light (L) poly­

somes. Two different fractionations of PrV-infected cell polysomes 

were examined. The L fraction defined in 7.3.1(a) contained 2-6 

ribosomes/polysome while that defined in 7.3.1(b) contained 2-4 

ribosomes/polysome. Hence the L fraction in (a) overlaps with the 

M fraction in (b). Mock-infected cell polysomes (7.3.1(c)) were 

fractionated so that the L polysomes contained 2-4 ribosomes/polysome. 

Polysomes were pelleted from these fractions and translated in the 

wheat germ system as described previously. The products were examined 

by electrophoresis and fluorography and are shown in Figure 7.3.2,

It/
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PIG. 7.3.1. FRACTIONATION OF POLYSOMES INTO THREE SIZE CLASSES

Exponentially growing HeLa cells were mock-infected or 

infected with 20pfu/cell PrV. After 5h the cells were harvested 

mechanicallyr lysed, and the cytoplasmic extracts were layered onto 

15-30% sucrose gradients. The gradients were centrifuged "for 

110 min at 27,000 in a SW27 rotor and fractions containing 

approximately 1ml were collected by pumping from the bottom of the 

tube through a Gilford 2000 recording spectrophotometer which 

monitored the absorbance at 260nm. The heavy (H), medium (M) and 

light (L) polysomes were pooled as indicated by the arrows.

(a) Experiment I, PrV-infected cell polysomes

(b) Experiment II, PrV-infected cell polysomes

(c) Experiment II, Mock-infected cell polysomes



FIG. 7.3.2. IN VITRO TRANSLATION PRODUCTS OF DIFFERENT SIZE 
CLASSES OF PrV-INFECTED AND MOCK-INFECTED V 

CELL POLYSOMES

The polysome fractions defined in Fig. 7.3.1. were pelleted, 

rinsed with 2M sucrose and suspended in deionised water. One 

A^eo unit of each polysome fraction was added to a wheat germ, assay

mix (A3,4.11.) containing ISQmM (added as KCl) 2.5mM Mg^^,
35 ‘ '0,4raM spermidine and 500yCi/ral { s}-raethionine (l080Ci/mmol).

After incubation, lOyl aliquots of tlie assay mixes were treated 

for electrophoresis and the polypeptides were separated on a 12% 

polyacrylamide gel together with PrV capsid proteins. The gel was 

processed for fluorography and ej^osed to X-ray film.

The major capsid protein of PrV (VP2) is indicated. Poly­

peptide k is found on light or medium polysomes. Polypeptide 1 

is found mainly on heavier polysomes (CP(X) is a cellular poly­

peptide with the same migration rate as polypeptide 1.

The black "blobs" are due to blackening of the film by DMSO.
Track:

A PrV capsid

B Heavy PrV-infected cell polysomes, experiment I 

C Medium " " " " "

D Light " "

E Heavy " " " experiment II

F Medium " " " " "

G Light " " " " "

H Heavy Mock-infected cell polysomes, experiment II 

I Medium " " " " "

J Light
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It was difficult to obtain the same incorporation for all fractions 

in polysome translation assays, possibly because of resuspension 

problems and therefore the exposure times were varied.

High molecular weight polypeptides are synthesised on all size 

classes of polysomes in both infected and mock-infected cells. There 

is a decreased proportion of low molecular weight material synthesised 

on heavy polysomes in both cases, but .the decrease is greater in virus 

infected cells. (Fig, 7.3.3,),

The restriction of synthesis of cellular polypeptides to light 

polysomes in the infected cells cannot be detected. However, two 

polypeptides exclusive to infected cell polysomes show restricted 

synthesis. Polypeptide 1 is present only on M and H polysomes. The 

mobility of this protein is similar to that of a cellular protein 

CP(x) which does not show restricted synthesis. Polypeptide k is 

present in very much increased proportions on the light polysomes.

In experiment I, where the L fraction contains 2-6 ribosomes per polysome, 

the protein could only be identified in the products of L polysomes.

In experiment II where polysomes containing 5-6 ribosomes formed part of 

the M fraction, the polypeptide was synthesised on both L and M poly­

somes. Hence its synthesis is confined to polysomes with 2-6 ribosomes 

per polysome.

The restriction of synthesis of polypeptide k to relatively small 

polysomes leads to the conclusion that initiation occurs at a low 

frequency on the mRNA. The low initiation rate, however, seems to be 

compensated for because relatively large quantities of the protein are 

synthesised on the light polysomes.

7.4./



FIG. 7.3.3. MOLECULAR WEIGHT DISTRIBUTION OF THE IN VITRO 
PRODUCTS OF HEAVY AND LIGHT PrV-INFECTED 

AND MOCK-INFECTED CELL POLYSOMES

Heavy and light PrV-irifected and mock-infected cell polysomes 

were translated in the wheat germ system. The products were 

separated on a 12% polyacrylamide, gel and detected by fluorography. 

(see Figure 7,3.2.). The film was scanned on a Joyce Loebel 

Autodensidator. The percentage of total products present in 

four molecular weight ranges was calculated by cutting out and 

weighing the area under the curve,

CL, mock-infected cell light polysomes

CH, mock-infected cell heavy polysomes

VL, PrV-infected cell light polysomes (Ejg). II, Fig. 7.3.1.)

VH, PrV-infected cell heavy polysomes (Exp. II> Fig. 7.3.1.)
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7.4. Discussion.

The ionic conditions used for polysome stimulated translation

in wheat germ extracts differ from those used for translation of

mRNA. These differences may be related to the roles of cations

in polypeptide synthesis. Mg is involved in stabilising RNA-protein

complexes and it is possible that the higher Mg requirement is
+related to the increase in polysome concentration, K has a role in

initiation and elongation. Initiation is inhibited at high {K }.
+Translation of mRNA is reduced to 19% of that observed at 75mM K

*4*when translation is started in 130mM K but if assays are preincubated

at 75mM K then K is added to ISOmM, this drastic inhibition is not

observed (see 4.3.). Higgins and Spencer (1977) found that only 15%

of polysome stimulated incorporation was due to initiation in wheat
*4"germ assays of 130mM K , Hence the polysome stimulated synthesis

described here is probably due mainly to elongation of polypeptides

initiated vivo.

Elongation rates are increased at high {k ^} (Mathews & Osborn,
+1974). However, the overall inhibitory effects of high K precludes 

the use of such conditions for mRNA translation. Polyamines are 

used to increase the elongation rates ^  vitro (Hunter e_t al., 1977) .

The advantage of polysome stimulated translation is that elongation 

rates can be increased by both methods. This may account in part for 

the increased proportion of high molecular weight products synthesised 

in polysome stimulated assays. The faster rate of elongation increases 

the probability of each ribosome completing translation of a full-length 

protein before endonucleolytic cleavage.

At least two other factors which reduce mRNA degradation con­

tribute to the decreased synthesis of low molecular weight polypeptides. 

The/
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The use of polysomes reduces the number of operations involved prior 

to translation and therefore the possibility of mRNA degradation. 

Further, the large amount of rRNA introduced into the system protects 

mRNA by providing an alternative substrate for endonucleolytic attack.

These studies were designed to investigate the 

increase in polysome sedimentation rates in PrV-infected cells. The 

polysome translation shows that in PrV-infected cells at 5 h post- 

infection, with two exceptions, there is no difference in the poly­

peptides synthesised on different size classes of polysomes. It was 

not possible to identify cellular polypeptides which are synthesised 

predominantly on light polysomes and hence confirm the involvement of 

larger polysomes in viral protein synthesis. However, it is not clear 

how much cellular protein synthesis is taking place at this time, and 

the polypeptides were only classified by co-migration so it is possibb 

that such effects were not recognised.

Vass (1975) found no relationship between the size of nascent 

polypeptides and polysome size. At 2h h post-infection the heavy 

polysomes seemed to contain a higher proportion of low molecular weight 

material. These experiments do not show conclusively that there is no 

relationship between polysome size and polypeptide size because the 

difference may be caused by different rates of initiation in the mixed 

viral and cellular mRNA population present at this time.

Elongation ^  vitro showed that some relationship between the 

polypeptide and polysome sizes exists. In PrV-infected and mock- 

infected cells the proportion of low molecular weight polypeptides 

decreases as polysome size increases. The number of ribosomes is 

limited by the length of the translated region of a mRNA molecule.

If the rates of initiation are the same, a short message will have 

less/
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less ribosomes than a long message because rounds of translation will 

be completed earlier. However, although the in vitro polysome products 

are larger, there is no such difference in the maximum size of poly­

peptides in infected and mock-infected cell lysates so it is unlikely 

that the increase in polysome size is related to the size of poly­

peptide in infected cells.
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Chapter 8 

Discussion and Conclusion

The general aim of this project was to examine some possible 

mechanisms for translational control in PrV-infected HeLa cells by 

translation of viral and cellular mRNAs vitro. The initial require­

ments for such a study were the isolation of mRNAs and the setting up of 

a cell free protein synthesising system capable of translating these 
mRNAs.

Selection of mRNAs from other RNA molecules present in cells is 

made possible by the presence of 3' poly-(A) tracts on mRNA molecules 

(see 1.2,3.2.). Since herpesvirus infected cells contain both cellular 

and viral mRNAs, a method of separating these is required. Clearly the 

definitive way of separating putative viral and cellular mRNAs is by 

hybridisation to the appropriate DNA. One disadvantage of using such a 

method is that it requires a large number of manipulations and the 

probability of damage to the RNA is high. Furthermore, the quantities 

of mRNA obtained are very low. For these reasons, no attempt to isolate 

mRNAs by hybridisation was made. Instead, viral mRNAs were preferentially 

selected by using only polysomes for isolation of mRNAs., The rationale 

for this is that it has been shown that while a significant amount of 

cellular mRNA is present in the cytoplasm in PrV-infected cells 5h post­

infection most of the polysome associated mRNA is virus specific 

(Rakusanova ^  , 1972). Application of these results to this study

is particularly justified because the virus stock used in this study was 

originally obtained from the above group of workers.

Further to this, in pilot hybridisation experiments 54% of the 

polysomal poly-(A) containing RNA from PrV-infected cells was shown to 

contain/
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contain sequences complementary to viral DNA. Since saturation analyses 

were not carried out because of the limited time available and because 

it was likely that the polysomal poly-(A) containing RNA contained some 

labelled rRNA (see 2.5.) this may represent a minimum estimate. Thus 

it seems justified to assume that viral mRNA was preferentially selected 

by this method.

Isolation of polysomes had the additional advantage that, by 

inspection of the sucrose density gradient polysome profile, the efficiency 

of infection could be monitored (see 2.5,).

The mRNA activity of these putative viral and cellular mRNAs was 

then examined in in vitro protein synthesising systems. The system chosen 

initially for study was that derived from wheat germ. There were two 

reasons for this. Firstly, this system was reported to be useful for 

translating a number of heterologous mRNAs (see 3.1.). Secondly, (and 

this was important at the early stages of the study), the endogenous 

activity was low. This made it possible to check the mRNA activity of 

the putative mRNAs simply by measuring their ability to stimulate 

incorporation of radioactive aminoacids into TCA precipitable material.

Such an assay would not have been possible with the reticulocyte lysate 

which was the alternative choice. The unfractionated lysate is a very 

efficient cell free translation system but has high endogenous mRNA 

activity and identification of exogenous mRNA activity would have required 

examination of the vitro products. This was somewhat impractical in 

the early stages of developing the techniques. Subsequently, however, 

a messenger dependent reticulocyte lysate became available and this 

was found to be useful in the later stages of this study.

Incubation of the putative mRNAs in a wheat germ cell free system

showed/
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showed that both PrV-infected and mock-infected HeLa cell polysomal 

poly-(A) containing RNAs could stimulate incorporation of amino acids 

into TCA precipitable material. It was concluded therefore that these 

RNA species contain significant amounts of mRNA.

Characterisation of the cation concentrations required for 

maximum stimulatory activity in the wheat germ system showed that the 
requirements were similar for viral and cellular mRNAs and allowed 

definition of standard conditions for translation (3.3.4.). The dose 

response, time course and presence of endogenous aminoacids in the system 

were also characterised. These features have already been discussed 

(3.7.) .

The mRNA activity was further characterised by an examination of 

the polypeptides synthesised ^  vitro. The ^  vitro products of viral 

mRNA differed from those of cellular mRNA and preliminary classification 

of these polypeptides as viral or cellular coded was carried out by 

comparison of the electrophoretic mobilities of infected cell mRNA 

products with those of cellular mRNA products. A significant proportion 

of the polypeptides classified as viral coded were shown to comigrate 

with polypeptides present in infected but not mock-infected cell lysates. 

However, classification on the basis of comigration cannot be considered 

definitive (see 4.5. and 4.8.) and clarification of the origin of the 

polypeptides by immune-precipitation and hybrid arrested translation was 

sought.

Immune precipitation with antisera raised against the major capsid 

protein of PrV verified that this polypeptide was synthesised in assays 

programmed with viral mRNA. Synthesis of 7 polypeptides which had been 

classified as viral coded by comigration was shown to be significantly 

decreased/
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decreased when viral mRNA was hybridised to PrV DNA prior to translation 

thus confirming their origin. Confirmation of the preliminary
(

classification was therefore possible for 8 of the 29 infected cell mRNA 

products assigned to the "viral coded" class. The usefulness of these 

methods for classification and the reasons for the limited success 

obtained have been extensively discussed (4.8.) and will not be dwelt on 

here.

These results show clearly that PrV mRNA can be translated vitro 

in a heterologous cell free system without addition of specific initiation 

factors. This result is in contrast to that reported for EHV mRNA 

translation vitro (Allen & Bryans, 1976) but is in agreement with the 

observations of Preston (1977) for ^  vitro translation of HSV mRNA,

The availability of a messenger dependent reticulocyte lysate 

(MDL) made it possible to explore some of the conclusions that had been 

drawn from the wheat germ system and to examine critically its usefulness. 

The low proportion of high molecular weight polypeptides synthesised in 

wheat germ extracts relative to the proportions found in cell lysates has 

already been noted (see 4.8.). One possible explanation for this was 

that the mRNA was degraded. This could also account for the presence of 

some of the polypeptides synthesised vitro which did not comigrate 

with any of those detectable in cell lysates. When the same mRNA 

preparations were translated in the MDL, and the wheat germ system, the 

major polypeptides synthesised were the same but the proportion of high 

molecular weight products in the MDL differed considerably from that in 

the wheat germ system and was more representative of that found in cell 

lysates. This showed that the low proportion of high molecular weight 

products synthesised in wheat germ extracts could not be attributed to 

degradation/
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degradation of mRNA prior to addition to assays. Further, it leads to 

the conclusion that although the wheat germ system is capable of recognising 

initiation and termination signals and translating heterologous mRNAs to 

give apparently the same products as are synthesised in the more 

homologous reticulocyte system, the proportions of polypeptides synthesised 

are not representative of the proportions of mRNAs present. Thus 

comparison of the two systems justifies the use of the wheat germ system 

in the experiments described in this thesis but shows that its overall 

usefulness is limited to studies where it is not essential that the amount 

of product should reflect the concentration of its mRNA. The products 

synthesised in the MDL appear to be more representative of the mRNA 

species but they may not be quantitively so and a similar limitation 

may apply to this system.

The results described in this thesis require comment with regard 
“I*to the role of K in protein synthesis. As v/as previously noted (4.3.) 

synthesis of proa collagen (molecular weight 155,000) in the wheat germ 

system is only detectable at a of 150mM (Benveniste e^ , 1976;

Harwood et al., 1975). The elongation rate in the ascites system is 

elevated at high (Mathews and Osborn, 1974) and hence the requirement
t - ifor high {K } for synthesis of high molecular weight proteins in wheat 

germ extracts may be related in part to an increase in the likelihood 

that translation of large mRNAs will be completed before they are degraded 

by nucleases.

The experiments described in this thesis showed that increasing 

the {k ^} in wheat germ assays stimulated by PrV or cellular mRNA to more 

than lOOmM almost completely inhibited synthesis of all polypeptides.

A similar result has been reported for wheat germ assays programmed with 
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tobacco mosaic virus RNA (Marcu and Dudock, 1974) . Recent evidence

suggests that this apparent discrepancy may be due to differences in

the anions. The optimum {k "*"} for translation has been shown to be
"I*higher when CH^COOK is used as the source of K than when KCl is used 

and hence it has been concluded that vitro translation systems are 

inhibited by Cl (Weber et , 1977; Kemper & S tolar sky, 1977).

In the experiments described above Benveniste and coworkers used
+ +CH^COOK as a source of K . They reported that at 150mM K protein

synthesis was 70% of that at optimal {k^}. Harwood et al., (1976) used

high concentrations of KCl and examination of their data suggest that 
"4*at ISOraM K the total protein synthesis was less than 10% of the maximum 

possible. It seems likely that in this case proa collagen was only 

detected because the mRNA used was enriched for its mRNA. It is 

probable also that the failure to increase synthesis of high molecular 

weight products in the experiments described herein and in those carried 

out by Marcu and Dudock (1974) was due to the use of KCl and a mRNA 

population which was not enriched for species coding for large polypeptides 

Further to this, when the optimum {k "̂} for translation of PrV 

and cellular mRNAs in the wheat germ system was examined using CH^COOK, 

significant stimulation of protein synthesis was observed at higher {k "*"} 

than when KCl was used. In retrospect, it seems likely that supraoptimal 

K with CH^COOK as the anion would be useful in increasing the synthesis 

of large polypeptides in the wheat germ system.

Having established that viral and cellular mRNA have been isolated 

and can be translated vitro, features of this translation in relation 

to the herpesvirus-induced suppression of host cell protein synthesis can 

be discussed.

Virus/
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Virus-induced inhibition of cellular protein synthesis at the 

level of translation can be brought about in three ways:

(a) removal of host mRNA by degradation 

or sequestration

(b) inhibition of initiation of host mRNA

(c) suppression of elongation of host mRNA.

The information available on herpesvirus-induced shut-off is limited and 

definitive support for any one mechanism is lacking. Ben-Porat et al., 

(1971) have some evidence that RNA and protein synthesis are required 

for the shut-off and have suggested that synthesis of a virus specific 

protein which is rapidly turned over is necessary for inhibition. Such 

a protein could act by any one of the above mechanisms. Some degradation 

of host mRNA does take place in herpesvirus-infected cells but cellular 

mRNA is still present late after infection (see 1.6.2.). Thus some 

direct effect on initiation or elongation is likely (see also 1.7.4.).

Hackett et al., (1978) have some evidence that changes in the 

elongation rate may occur in mengovirus-infected Erlich ascites tumour 

cells. They compared the translation of viral RNA and uninfected cell 

mRNA in fractionated cell free translation systems derived from virus- 

infected and uninfected cells and found that preferertial translation of 

viral message occurred in the infected cell system. 70% of this 

partiality could be attributed to initiation factors and 30% was due to 

the pH5 enzyme fraction which contains elongation factors, tRNA and tRNA 

synthetases. Their evidence supports the hypothesis that the influence 

of the enzyme fraction could be the result of a slowdown in the 

elongation of host-specific polypeptides. It is generally agreed, how­

ever, (and the above study corroborates this) that most translational 
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controls operate at initiation (Lodish, 1976).

At present there is little evidence to support the view that 

message specific initiation factors have a major role in translational 

control. It is likely that the initiation rate of individual mRNAs 

depends on interactions among a set of initiation factors which are 

common to all eucaryotic cells. Changes in this population alter the 

initiation rates (see 1.7.3.). Thus a virus might control protein 

synthesis by altering the availability of initiation factors or changing 

their interactions so that the resulting environment favoured viral mRNA 

translation.

A specific mechanism for such a change in the "initiation state"

of a cell has been proposed by Carrasco (1977). His hypothesis concerns

the shut-off of host cell protein synthesis in virus-infected cells which

is attributed to a virus-induced increase in the intracellular monovalent

cation concentration. The model is based on the fact that optimal

ionic conditions for cellular and EMC virus RNA directed protein synthesis

in vitro are different (Carrasco and Smith, 1976) . It suggests that

viral proteins alter the membrane permeability so that Na leaks in and 
*4*K leaks out. This change in ionic conditions specifically inhibits 

cellular mRNA translation.

The idea that ion concentrations can play a part in cellular
H"“f"metabolism is not novel and central roles for Mg (Rubin, 1977) and Ca 

(Durham, 1977) have been proposed. However, such a role for monovalent 

cations has not been previously explored.

The model is supported by observations made in a number of systems 

which show that real differences in {K^} optima for translation do exist. 

Furthermore, where differences in optima are not detectable, some mRNAs 

show less stringent dependence on optimal conditions than others and are 

more/
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more readily translated in suboptimal conditions. Changes in membrane 

permeability are seen in EMC, mango and Seraliki Forest virus infected cells 

concomitant with the onset of viral protein synthesis (Carrasco, 1978) and 

virus induced changes in cell permeability have been documented by others 

(Durham, 1978; and see Carrasco, 1978). Moreover, alterations in the 

internal {Na }/ {k  } ratio by inhibition of the sodium pump have been shown 

to inhibit protein synthesis in HeLa cells (Ledbetter and Lubin, 1977),

The critical point in this theory, however, is that an increase 

in the internal {Na^}/{K^} ratio takes place concomitantly with inhibition

of host protein synthesis, Carrasco and Smith (1976) have shown that
86 -H +uptake of Rb (which is an authentic analogue of K ) decreases in EMC

virus infected L cells at the time when viral protein synthesis becomes

detectable. This change is attributed to the synthesis of a viral

structural protein. Such a scheme accounts for the fact that inhibition

of host protein synthesis takes place in picornavirus-infected cells

without viral protein synthesis if high multiplicities of infection are

used (Baltimore, 1969) . However, other evidence suggests that if such

changes are responsible for the virus-induced shut-off, the mechanism is

not generally applicable. Francoeur and Stanners (1978) could not detect

any change in the uptake of ^^Rb^ in vesicular stomatitis virus infected

cells until some time after inhibition of cellular protein synthesis had

commenced (Stanners ejt , 1977). Moreover, Egberts et , (1977) have

shown that in mengovirus infected cells, while a decline in the internal

{k ^} and a rise in the {Na^}/{K^} ratio begins when viral protein is maximal,

during the early shut-off of host protein synthesis, the intracellular

{Na^}/{K^} ratio falls.

Results described in this thesis suggest that the model is not 
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applicable to herpesviruses. Experiments have shown that the basic 

premise - that viral mRNA is translated at a higher monovalent cation 

concentration than cellular mRNA - is not true for late PrV mRNA and HeLa 

cell mRNA. This conclusion was reached from studies on translation of 

exogenous RNAs in the wheat germ and Krebs II ascites cell free trans­

action systems. In the wheat germ system the optimum {K^} for the 

maximum stimulatory activity of Pr viral and cellular mRNAs were the same 

but maximum activity with reticulocyte mRNA required a slightly higher 

{K^}. The stimulatory activity of EMC virus RNA in wheat germ extracts 

showed less stringent dependence on {K^} further verifying that differences 

in optima are detectable in this system. An examination of the stimulatory 

activity of these RNAs in Krebs II ascites extracts also supported the 

conclusion. EMC virus RNA showed maximum mRNA activity at {k *̂ } similar 

to those described by others while reticulocyte mRNA had a significantly 

lower optimum {K^4 for translation. Although PrV mRNA did not translate 

well in this system, the only mRNA activity detectable was found at 

similar {K^} to that found to be optimum for reticulocyte mRNA.

These results do not, however, rule out the possibility that although

the optimum {K^} for maximum stimulatory activity of viral and cellular 
the translation of 

mRNAs are similar, some viral mRNAs might be more resistant to supra-

optimal {K^}, Examination of the polypeptides synthesised in the wheat
^ the synthesis of

germ system in response to viral mRNA at elevated {K } showed that^some

polypeptides was resistant to the high {k ^}. However, when these

polypeptides were classified by comigration and HART they were found to

contain both viral and cellular coded species. Thus 'there was no

correlation between the genome coding for the protein (viral or cellular)

and the resistance to elevated {K^}. It is unlikely, therefore, that an

increase in the intracellular monovalent cation concentration has a role

in/
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in the switching off of cellular protein synthesis in HeLa cells late 

after infection with PrV.

The possibility that monovalent cations have a role in the early 

switch from cellular to viral protein synthesis was not examined. The 

population of mRNA molecules on polysomes changes throughout infection 

and a scheme whereby the initial switch from viral to cellular protein 

synthesis is controlled by ion concentrations but later becomes independent 

can be envisaged. However, if Carrasco's hypothesis does account for the 

early changes after PrV infection, some modification is necessary: 

synthesis of structural polypeptides which have a role in altering membrane 

permeability ih this model is a late event in replication in PrV-infected 

cells and the shut off of host cell protein synthesis is achieved early 

in infection even when low multiplicities of infection are used.

At this juncture it seems pertinent to consider the applicability 

of the model to picornaviruses in general. Recent data (Rose et al.,

1978; Helentjaris and Erhenfeld, 1978), suggests that changes in the 

initiation factor population in poliovirus infected cells may be responsible 

for the shut off of host cell protein synthesis. This information is 

by no means definitive but implies that the mechanism of shut off is much 

more complex than Carrasco's model predicts.

One further point requires comment. The optimum {K*̂ } for translation 

of EMC virus RNA was determined in all cases by addition of KCl to in 

vitro translation systems. In view of the fact that Cl seems to inhibit 

protein synthesis, it may be necessary to interpret these results to mean 

that the stimulatory activity of EMC virus RNA is less inhibited by Cl 

than that of cellular mRNAs.

A more general model for virus-induced inhibition of host protein 
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synthesis has been proposed by Nuss, Oppermann and Koch (1975). According 

to this model the preferential synthesis of viral proteins is brought 

about by a non-specific lowering of the peptide chain initiation rate with 

the result that only viral mRNAs, which have a higher rate of initiation 

than most cellular mRNAs, are translated. The hypothesis is based on the 

observation that protein synthesis"in HeLa cell infected with poliovirus, 

vesicular stomatitis virus and vaccinnia virus is less susceptible to 

hypertonic initiation block (see 6.1.) than protein synthesis in mock-infected 

cells. Furthermore, when cells are grown in hypertonic media the poly­

peptides synthesised are predominantly viral (Nuss et ^.,1975; Opperraann and 

Koch, 1976$.

This model is an application of the Lodish model for translational 

control which predicts that if the overall initiation rate in a system is 

lowered then only those mRNAs with high initiation rate constants will be 

translated. The Lodish model is based on a static initiation rate 

constant in contrast to the more recent proposal (Revel and Groner, 1978) 

that the initiation rate constant for a mRNA is determined by the 

interactions between initiation factors and is altered by changes in the 

initiation factor availability (see 1.7.2.3.). Despite the possibility 

that it is an oversimplification, the Lodish model is useful in examining 

a complex situation about which very few details are known. Likewise the 

proposed mechanism for viral control of translation provides a framework 

within which to examine the differences in mRNA translatability,

The experiments described in this thesis showed that both early 

and late after infection of HeLa cells with PrV total protein synthesis 

was no less susceptible to media containing elevated concentrations of NaCl 

than it is in mock-infected cells. At 5h post-infection the total amount 

of protein synthesis is decreased and therefore it is possible that the 
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initiation rate at this time is lowered to such an extent that viral mRNA 

is already initiating under limiting conditions and cannot maintain 

initiation when a further block is applied. However, at 2h post-infection 

conditions are not limiting since total protein synthesis is unaltered 

and therefore such an explanation cannot account for the difference 

between the observations made with PrV and those described by Koch's 

group for other viruses. It must be concluded then that PrV mRNA is 

not more resistant to inhibition of initiation than cellular mRNA.

Hence it is unlikely that this mechanism for virus-induced suppression of 

host cell protein synthesis is applicable to PrV.

This conclusion cannot, however, be extended to the herpesvirus 

family in general. Gupta and Rapp (1978) have reported that protein 

synthesis in human embryonic lung cells infected with cytomegalovirus is 

resistant to hypertonic initiation block and have identified viral 

structural proteins in the resistant polypeptides. Although PrV and 

cytomegalovirus belong to the same family, they exhibit quite different 

effects on cellular metabolism under normal growth conditions. After PrV 

infection host protein synthesis is inhibited and there is an overall 

decrease in total protein synthesis. In cytomegalovirus-infected cells, 

however, the total protein synthesis increases after infection and the 

virus polypeptides form only a minor portion of the total population of 

polypeptides synthesised (Gupta and Rapp, 1978). Hence there may be no 

conflict between these two results,

A further part of this study was designed to investigate the 

reason for the increased number of rapidly sediraenting polysomes in 

herpesvirus-infected cells. Increased

loading of polysomes may be brought about in three ways :

(a) an increase in the size of mRNA species

(b)/
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(b) a lower rate of elongation in infected cells

(c) a higher rate of initiation in infected cells.

If the average length of the translated region of infected cell 

mRNA is longer than that of cellular mRNAs, then, provided the initiation

and elongation rates are the same for both species, the longer mRNA will

load more ribosomes and thus contain more rapidly sediraenting polysomes. 

Such correlations between the size of polypeptide and polysomes are known 

(see 7.1,), Evidence discussed here, however, leads to the conclusion 

that this is not the reason for the increase in polysome size found in 

PrV-infected cells.

Harris and Wildy (1975) have shown that the size of total poly-(A)- 

containing RNA isolated from HSV-1 infected cells does not differ from 

that isolated from mock-infected cells. This was extended by Vass (1975) 

who showed that there is no detectable difference in the size of poly-(A) 

containing RNA found on heavy and light polysomes in PrV-infected and 

mock-infected HeLa cells. These results suggest that there is no 

correlation between polysome size and mRNA size but the possibility 

remains that the length of the translated region is independent of the size 

of the mRNA molecule. That this is not so is suggested by experiments 

which show that when PrV-infected and mock-infected HeLa cells are grown 

in low concentrations of cycloheximide so that elongation is the rate 

limiting step in protein synthesis, small mRNAs are found on light 

polysomes and larger mRNAs on heavy polysomes (Vass, 1975).

Furthermore, there is no evidence that the polypeptides synthesised 

in HSV-1 infected cells are larger than those found in uninfected cells 

or are processed from larger precursors (Honess and Roizraan, 1973) as is 

the case in picornavirus-infected cells where a similar increase in 

polysome size is observed.

The/



- 122 -

The experiments described in this thesis extend these results. 

Fractionation of polysomes into three size classes and the run-off 

of nascent polypeptide chains in an vitro translation system showed 

that the polypeptides synthesised by all three classes were similar 

(7.3.) . The proportion of large polypeptides synthesised on heavy 

polysomes was higher than that on light polysomes but some correlation 

between the size of the translated region and the polysome size is 

expected and this change in proportion was similar for both virus-infected 

and mock-infected cell products.

Although the maximum size of total infected cell polysomal products 

was slightly greater than that of the largest cellular products detected 

(7.2.2.), this is not thought to be significant. There was no difference 

in the maximum size of mock-infected and infected cell polypeptides 

labelled vivo and it is unlikely that the high molecular weight polysome 

products found iri vitro are unprocessed precursors because they comigrated 

with in vivo polypeptides. Hence, the large polysomes could not be 

correlated with synthesis of large polypeptides,

A decrease in the elongation rate would lead to an increased 

density of ribosomes on mRNA and therefore a shift in the sedimentation 

profile. The importance of such a mechanism is difficult to assess 

because the effect on polysome size will depend on the degree of decrease 

in the elongation rate. If the elongation rate is lowered to such an 

extent that elongation becomes rate limiting for translation, then the 

length of the translated region of the mRNA will be proportional to the 

polysome size and this clearly is not the case. However, the possibility 

that some decrease in the elongation rate does occur cannot be excluded.

An increase in the average rate of initiation of polypeptide chains 

coupled with no change in the elongation rate would lead to a higher 

density/
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density of ribosomes on mRNA, The observation that in PrV infected 

cells at 2^h post-infection heavy polysomes contained a higher 

proportion of low molecular weight nascent polypeptides suggests that 

the increased loading of ribosomes on mRNA may be related to an increased 

rate of initiation. Evidence presented here (see 7.3.) that synthesis 

of two polypeptides was restricted to particular size classes of polysomes 

verifies that differences in initiation rates do occur. Although no 

conclusions on possible changes in initiation rates can be drawn from 

this data, the results do not disagree with such a model.

Final conclusions on the mechanisms involved in switching off host 

cell protein synthesis in herpesvirus infected cells and in the increased 

loading of ribosomes on mRNA are not possible from the experiments carried 

out in the course of this study. The results merely serve to eliminate
-f-some possibilities. The hypothesis that an elevated internal monovalent(Na ) 

cation concentration allows preferential synthesis of viral proteins late 

after infection of HeLa cells with PrV is ynsubstantiated. The 

possibility remains that such a change controls early events in viral 

replication, but in view of the still highly hypothetical nature of the 

model this idea must be regarded with caution. The proposal of Ben-Porat 

^  a]^., (1971) that the switch-off is due to synthesis of a viral protein 

remains viable, but, beyond the conclusion that such a factor does not 

operate by a non-specific lowering of the initiation rate in infected 

cells, no conclusions as to its possible mode of action can be made.

The increased loading of polysomes may be caused by changes in initiation 

or elongation.

It seems likely that viral gene products will be involved ±i changing 

initiation factor interactions and the "initiation state". The coordinate 

control and sequential ordering of polypeptide synthesis in herpesvirus- 
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infected cells suggests that the regulatory mechanisms will be complex. 

Immediate-early proteins may be responsible for an initiation state 

unfavourable for cellular mRNA translation? the early proteins, which 

decrease translation of immediate-early proteins, are likely to alter this 

initiation state, and the late proteins which inhibit synthesis of early 

proteins again are likely to change" initiation conditions from those 

established by the early proteins. Thus controls on host mRNA trans­
lation may change throughout the course of infection. Overall changes 

in the energy status of the cell and a decrease in the efficiency of 

the protein synthetic apparatus related to inhibition of host cell 

raacromolecular synthesis may also contribute to alterations in protein 

synthesis in herpesvirus-infected cells.

This project represents a very preliminary study of these control 

mechanisms. However, the experiments described suggest that it is 

likely that future work based on the approach adopted here, (namely 

the vitro translation of isolated mRNA) will yield much interesting 

information on the nature of the intricate controls operative in herpes­

virus-infected cells.
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Appendices. I . Materials

Aj.____Biological Materials

1 Virus

Pig Herpesvirus 1 (pseudorabies virus, PrV) was originally derived 

from a stock preparation (Kaplan & Vatter, 1959) and has subsequently 

been plaque-purified three times. The virus stock is prepared by growth 

in baby hamster kidney cells (BHK cells).

2. Tissue Culture Cells.

A continuous line of baby hamster kidney fibroblasts was used 

for growing virus for all stock preparations. This cell line was isolated 

by Macpherson and Stoker (1962) and was designated BHK/21 (C13). The line 

has since been adopted to grow in the absence of tryptose phosphate (C13a ).

The monolayer adapted human epithelium cell line derived from a 

cervical carcinoma (Gey e;t al., 1952) and known as HeLa cells was also 

used in this study,

3. Wheat germ.

Jordan's Natural Wheat Germ, Holme Mills, Biggleswade.
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A2, Chemicals

1. Radiochemicals

All radioactive compounds were obtained from The Radiochemical

Centre, Araersham, Bucks.

{5,6- nluridine

L-{4,5- ĥ }leucine 
35L-{ S }me thi onine

3L~{methyl- H}methionine

40 - 60 Ci/mmol 

50 - 60 Ci/mmol 

800 Ci/mmol 

5 - 1 5  Ci/mmol

2. Chemicals for Liquid Scintillation Spectrophotometry. 

The chemicals were obtained as follows

2,5 diphenyloxazole (PRO)

Toluene, A.R. Grade

p-Bis(£-raethylstyryl) benzene 
(Bis MSB)

Triton X-lOO

NCS Tissue Solubilizer

Koch Light Laboratories Ltd., 
Colnbrook, Bucks.

Eastman Biochemicals, 
Kodak Co.

Rohn & Haas (U.K.) Ltd., 
Croydon.

The Radiochemical Centre, 
Araersham, Bucks.

3. Materials for Polyacrylamide Gel Electrophoresis.

Acrylamide
NN' Methylenebisacrylamide

Ammonium persulphate

NN' Diallyltartardiamide 
(DATD)

NNN'N* tetramethylethylenediamine 
(TEMED)

BDH

Aldrich Chemical Co, Inc., 
Milwaukee, Wis,

Kock-Light Laboratories Ltd., 
Colnbrook, Bucks.

4./
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4. Materials for in vitro Translations,

N'-2-ethanesulphonic Acid (HEPES)

Dithiothreitol (DTT)

Spermidine trihydrochloride

Spermine tetrahydrochloride

Glutathione Reduced Form

Phenylhydrazine hydrochloride

Haemin Bovine crystalline

Ethylene-glycol“bis (2-aminoethyïether) 
-N,N*tetraacetic acid (EGTA)

Sodium pentobarbitone (Nembutal)

Creatine kinase

Creatine phosphate

Micrococcal nuclease (8000 units/mg) 

L-amino acids

Adenosine 5'-triphosphate (ATP)

Guano sine 5'-triphospha te (GTP)

Sigma Chemical Company.

May & Baker Ltd., Dagenham,

Boehringer Mannheim, GmbH, 
Mannheim, West Germany.

Calbiochera Ltd,, La Jolla, 
California.

P-L Biochemicals Inc., 
Milwaukee, Wis.

5. Chromatographic Materials.

Sephadex G25 (coarse grade)

Sephadex G25 (medium grade) 

CN-Bromide activated Sepharose 4B 

Oligo-(dT) Cellulose

Pharmacia, Ltd., Uppsala, 
Sweden

Collaborative Research Inc., 
Waltham, Mass.

6. /
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6. Photographie Materials

Kodak X“Omat H X-ray film, Kodak DX-80 developer and Kodak 

FX-40 X-ray liquid fixer were supplied by Kodak Ltd., London.

7. Other Materials,

Heparin, freeze dried

Absolute Alcohol, A.R. Grade

Whatman No. 1 2,5cm filter 
paper discs

3-mercaptoethanol

3”Methyl~1-butanol 
(isoamyl alcohol)

Trichloroacetic acid (TCA)

Bovine serum albumin trypsin
inhibitor, RNA polymerase molecular 
weight standards

Ovalbumin, chyraotrypsinogen A 
molecular weight standards

Evans Medical Ltd., Speke, 
Liverpool

James Burroughs Ltd., London.

Whatman Ltd., Maidstone,
Kent.

Koch-Light Laboratories Ltd., 
Colnbrook, Bucks.

Boehringer Mannhein, GmbH, 
Mannheim, West Germany,

Mann Research Laboratories 
Ltd., Inc., New York.

Other materials were purchased from BDH or Sigma and were 

"Analar" or its equivalent.



- 129 -

A3. Composition of Standard Solutions.

A3.1. Cell culture media.

1. Eagles Minimal Essential Medium (MEM) (Modified) .

(Busby, House & Macdonald, 1964).

Amino Acids mg/1 Vitamins mg/1

L-arginine 126.4 D-calcium
pantothenate 2.0

L-cystine 24.0
. Choline chloride 2.0

L-glutamine 292.0
Folic acid 2.0

L-histidine HCl 41.9
Inositol 4.0

L-isoleucine 52.5
Nicotinamide 2.0

L"leucine 52.5
Pyridoxal-HCl 2.0

L-lysine HCl 73.1
Riboflavin 0.2

L-methionine 14.9
Thiamine HCl 2.0

L-phenylalanine 33.0

L-threonine 47.6

L- tryp tophan 10.2

L-tyrosine 36.2

L-valine 46.8

Inorganic Salts and Other Components

CaCl2.2H20
KCl

MgSO^.THgO
NaCl

NaHgPO^.ZHgO
NaHCO^

Phenol Red 

D-glucose 

Penicillin

mg/1
393

400

200

6800

140

2200
17

4500
510 units
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Inorganic Salts and Other Components (Contd) mg/1
5Streptomycin 10 jig/ral

MEM was prepared from a powder supplied by Flow Laboratories 

which was dissolved to give a 10 x concentrate of the medium. 

Bicarbonate, penicillin, streptomycin and phenol red were added 

separately.

£. EClO

90% Eagles MEM sv^pleraented with 10% calf serum (v/v).

3. Earle's Balanced Salt Solution (BSS) .

0.13M NaCl, 6mM KCl, ImM MgSO^, ImM NaH^PO^, 2mM CaCl,0.015%

(w/v) phenol red, chloroform to a final concentration of 0.1%.
2Sterilised by autoclaving at 15 lbs/in for 20 min.

Sodium bicarbonate.

5.6% w/v NaHCO^, 0.0015% (w/v) phenol red. Sterilised by 

millipore filtration using a 0.22 micron membrane.

5, BSS + bicarbonate.

450ml BSS + 20ml sodium bicarbonate.

6._____ Phosphate Buffered Saline (PBS) .

0.17M NaCl, 3.4mM KCl, 10.OraM Na^HPO^, l.emMKH^PO^ 0.7mM 

CaCl^r 0.5mM MgCl^ pH 7,2.

7./
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7.____ Formol-saline.

0.077M NaCl, O.IM Na^SO^ 3.6% (v/v) formaldehyde.

^ _____Giemsa Stain .

0.75% (w/v) Giemsa in glycerol - methanol 1:1 (v/v)

A3.2. Solutions for mRNA preparation.
2Sucrose solutions were sterilised by autoclaving at 51bs/in 

for 50 min. All other solutions were autoclaved at 15 lbs/in^ for 

50 min.

1._____ Reticulocyte Standard Buffer (RSB) .

O.OlM NaCl, 0.003M NgClg, O.OIM Tris-HCl, pH 7.4,

Heparin was added just prior to use.

2  ._____pH 9.0 Extraction Buffer.

O.IM NaCl, O.OOIM EDTA, 2.0% (w/v) SDS, O.lM Tris-HCl, pH 9.0,

3. NETS.

O.lM NaCl, O.OIM EDTA, 0.2% (w/v) SDS, O.OlM Tris-HCl,

pH 7.4.

4. Lysing NETS.

As above but with 1.0% (w/v) SDS.

5. Elution Buffer I.

O.OIM KgHPO^, O.OlM EDTA, 0.2% (w/v) SDS in 90% (v/v) 

formamide, pH 7.5.

The formamide was deionised by stirring with Bio-Rad Mixed

Bed/
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Bed Ion Exchange Resin AG 501-X8, 20-50 mesh.

6  .____ Concentrated Salt Buffer.

0.7M NaCl, O.OSM Tris HCl, O.OlM EDTA in 25% (v/v) formamide,

pH 7.5.

7. Elution Buffer II.

O.OIM Tris HCl, 0.2% (w/v) lauryl sarcosine, in 90% (v/v) 

formamide, pH 7.4.

8 .____ Qligo-(dT) Cellulose Loading Buffer.

0.5M Lid, O.OOIM EDTA, 0.1% (w/v) SDS, O.OlM Tris-HCl,

pH 7.5.

9  .____ Oligo-(dT) Cellulose Intermediate Buffer.

O.lM LiCl, O.OOIM EDTA, 0.1% (w/v) SDS, O.OlM Tris-HCl,

pH 7.5.

10 .____ Oligo-(dT) Cellulose Elution Buffer.

O.OOIM EDTA, O.OIM Tris-HCl, pH 7.5.

A3.3. Hybridisation solutions,

1  ._____Standard Saline Citrate (SSC) .

0.15M NaCl, 0.015M Na citrate.

2 ._____Hybridisation Buffer.

O. 75m  NaCl, 0.005M EDTA, 0.25% (w/v) SDS, O.OlM Tris-HCl,

pH 7.5.
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2:_____ Formamide-NaCl-PIPES (FNP) .

80% formamide, 0.4M NaCl, lOmM PIPES, pH 6,4 at room 

temperature,

A3.4. Solutions for Wheat Germ Preparation.

1  ._____Extract Buffer.

O.lM KCl, O.OOIM MgfCHgCOOig, 0.002M CaCl̂ , 0.02M HEPES 
0.006M 3-mercaptoethanol. Solution made in deionised water, to 

pH 7.6 with 5N KOH and autoclaved prior to addition of 
3-mercaptoethanol.

2. Column Buffer.

0.12M KCl, 0.005M MgCCH^COO)^ 0.02M HEPES, 0.006M 

3-mercaptoethanol, pH 7.6. As above.

2;_____Energy Mix.

ImM ATP, 20uM GTP, 5.5mM creatine phosphate, pH 7,6 with

KOH.

4. 0.12M Dithiothreitol (DTT).

Dissolved in sterile deionised water and bubbled with N^ 

for 10 min. Stored in small aliquots at -70°C.

5. Creatine Kinase.

Img/ml in 50% (v/v) sterile glycerol.

6. Salt mix.

IM HEPES, pH 7.6, sterile.
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7. Amino acids.

Approximately 4CX)yM glycine, alanine, arginine, aspartate, 

histidine, isoleucine, lysine, phenylalanine, proline, serine, 

threonine, tryptophan, tyrosine, valine, cysteine, glutamine, 

glutamate, asparagine, (methionine or leucine), Heated gently in 

sterile deionised water to dissolve and filtered through a 0.45 

micron HA millipore filter. Stored in small aliquots at -20°C.

8. Spermidine.

lOmM Spermidine trihydrochloride pH 7.5 with IM KOH in sterile 

deionised water. Stored at -20°C.

9  ._____Spermine.

0.86mM Spermine tetrahydrochloride pH 7.6 with 1m KOH in 

sterile deionised water. Stored at -20°c.

10. Salt solutions.

Solutions of KCl, KCH^COO, Mg(CH^COO) ̂  were prepared to vary 

the cation concentrations.

11 . ATP mix (lOOiil) .

Standard, to give conditions defined in 3,3.4.

25yl energy mix 

5pi creatine kinase 

lOpl DTT 

lOpl spermidine 

lOpl 0.9M KCl 

lOpl Salt mix 

30/
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11. ATP mix (lOOyl) (Contd):

30pl isotope or other

12. Assay mix (50yl).

ISyl wheat germ extract 

lOyl ATP mix'

25^1 HgO, isotope or other

A3.5. Solutions for Reticulocyte Lysate Translation.

1. Glutathione.

0.5M glutathione in H^O, pH 6.0 with NaOH.

2. Phenylhydrazine.

2.5% (v/w) phenylhydrazine hydrochloride in H^O containing 

0.5% (v/v) 0,5m  glutathione (2.5mM), pH 7.0 with NaOH. Stored 

in lOral aliquots in light free tubes at -20^C.

3. Haemin.

lOmM haemin, 0.5M KCl, 0.2M Tris-HCl pH 8.2 in 95% (v/v) 

ethylene glycol.

4. Creatine Kinase.

5rag/ml in 50% (v/v) glycerol, sterile

5 . K^/Mg^^ Solution.

2M KCl, O.OIM MgClg, sterile.

6./
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6. Creatine Phosphate.

0.2M creatine phosphate in sterile H^O.

7, Amino acids.

Approximately 1.4mM glycine, alanine, arginine, aspartate, 

histidine, isoleucine, lysine, phenylalanine, proline, serine, 

threonine, tryptophan, tyrosine, valine, cysteine, glutamine, 

glutamate, asparagine (methionine or leucine). Heated gently 

to dissolve in sterile deionised water and filtered through a 0.45 

micron HA millipore filter. Stored in small aliquots at -20°C.

8. Master Mix.

K /Mg solution, creatine, phosphate, amino acids in ratio 

1:1:1 (v/v/v).

9. CaCl^.

O.lM CaClg, sterile.

10. Micrococcal nuclease.

Img/ml in sterile water stored frozen at ~20°C.

11. EGTA.

O.lM EGTA to pH 7.4 with KOH (tetrapotassium salt).

Stored at 4°C. Sterile.

12. Assay Mix.

50pl MDL

7.£pl HgO, RNA or isotope
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A3.6. Solutions for Krebs II Ascites Cell Free Translation.

1._____Tris Buffered Saline (TBS) .

0.146M NaCl, 0.035M, Tris-HCl, pH 7.6.

2 ._____ Reticulocyte Standard Buffer (RSB).

O.OIM KCl, 0.0015M Mg(CH^C00)2, O.OIM Tris-HCl, pH 7.5, sterile.

3. Medium 125K.

0.125MKC1, 0.005m  Mg(CH^COO)^, 0.005M g-mercaptoethanol, 

0.025M Tris-HCl, pH 7.5. 3-mercaptoethanol added after autoclaving 

at 151bs/in^ for 50 mins.

4. Medium 50K.

As above but 0.05M KCl.

5._____ Dithiothreitol (DTT) .

0.5M dissolved in sterile deionised water and bubbled with 

N^ for 10 min. Stored in small aliquots at -70°C.

6. Creatine Kinase.

20mg/ral in 50% (v/v) glycerol, sterile. Stored at -70°C.

7 ._____Energy Mix.

50mM ATP, 5mM GTP, 250raM creatine phosphate pH 7.5 with 

KOH. Stored in small aliquots at -20^C.

8./



-  138 -

8. Amino Acids,

As for Wheat Germ (9,3.4.7.)

9  ._____Spermidine .

As for Wheat Germ (9.3.4.8.)

10. tRNA.

Wheat germ tRNA 3.75 mg/ml in sterile deionised water.

Stored at -20^C.

11, Tris-buffer solution.

0.25M Tris-HCl, pH 7.5.

12 . Potassium solutions.

The total concentration contributed by the S30 and energy
tmix is 32mM. K was added to give the final concentration indicated 

in the Results by addition of concentrated KCl to the assay or ATP 

mixes.

13. ATP Mix (lOOpl).

20pl tris buffer solution 

lOpl amino acids 

lOyl energy mix 

lOyl tRNA 

lOyl spermidine 

5pl DTT

5pl creatine kinase 

30yl KCl, H^O or radioactive amino acids.
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14. Assay Mix (SOyl).

30yl S30 

lOyl ATP mix

lOyl RNA, HgO, KCl or radioactive amino acid,

A3.7. Solutions for Electrophoresis of Proteins.

1 ._____ Electrode Buffer.

0.192m  glycine, 0.1% (w/v) SDS, 0.025M Tris-HCl,

pH 8.5,

2, Main Gel Solution.

0.1% (w/v) SDS, 0.1% (v/v) TEMED, 0.14% (w/v) ammonium 

persulphate, 0.375M Tris-HCl, pH 8.8 containing acrylamide and 

bis-acrylamide in the ratio 1:0.033 or acrylamide and DATD in 

the ratio 1:0.075.

2:_____Stacking Gel Solution.

0.1% (w/v) SDS, 0.1% (v/v) TEMED, 0.09% (w/v) ammonium 

persulphate, 1.0% (w/v) agarose, 0.125M Tris-HCl, pH 7.0, containing 

3% (w/v) acrylamide, 0.1% (w/v) bis-acrylamide or 3% (w/v) acrylamide, 

0.15% (w/v) DATD.

4. Coomassie Blue Stain.

0.25% (w/v) Coomassie Brilliant Blue in 45% (v/v) 

methanol, 5% (v/v) glacial acetic acid.

5./
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5._____ Des tainting solution.

45% (v/v) methanol, 5% (v/v) glacial acetic acid.

A3.8. Solutions for Immunological Techniques.

1. Phosphate Buffered Saline A (PBS A) .

0.17M, NaCl, 3.4mMKCl, lO.OmM Na^HPO^, 1.8raM KH^PO^,

pH 7.2.

2 ._____ Polyethylene Glycol (PEG) .

12% (w/v) PEG, in PBS A. Dissolve 4g PEG in 4ml water 

by heating gently, then adjust the volume to 33ml with PBS A.

3 ._____ Phosphate Buffered Saline with Detergent (PBS-det) .

1% (w/v) SDS, 1% (w/v) sodium deoxycholate, 0.5% (v/v) 

Triton X-lOO.

4  ._____ Tris-Potassium-Magnesium with detergent (TKM-det) .

O.lM KCl, 0.005M MgClg O.lM Tris-HCl, pH 8.0, 1% (w/v) 

Sodium deoxycholate, 1% (v/v) Triton X-100, 0.5% (w/v) SDS.

A3.9. Scintillation Solution.

1. Toluene-PPO.

0.5% (w/v) PPO in toluene

2./
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2. Trlton-toluene.

0.5% (w/v) PPO, 0.05% (w/v) Bis MSB, 35% (v/v) Triton X-lOO, 

in toluene.
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II. Methods

A4. Cell Culture Techniques.

a 4.1. Propagation of cells.

HeLa and BHK/21 (C13A) cells were routinely cultured as 

monolayers in 80oz Winchester bottles (burlers) according to the 

method of House and Wildy (1965)”. The burlers were gassed to 

give an atmosphere of 5% 002/95% air. 0.02% phenol red was used 
to indicate acidity.

For serial passaging, the cells were removed from the glass 

by treatment with trypsin/versene, suspended in EClO (A.3,1.2.), counted 

and dispensed into sterile burlers containing 180ml of EClO, in 

aliquots of 18 - 22 x 10^ cells. Cells were not used beyond a 

passage number of 15 (Shedden & Wildy, 1966). These cultures were 

maintained by the staff of the Wellcome Cell Culture Unit of this 

department.

A4.2. Contamination Checks.

All sterile media, and passaged cells, were checked regularly 

for bacterial, fungal or PPLO infection as follows:

Bacterial Contamination: aliquots were placed on blood agar plates

and brain-heart infusion broth at 37^C. Results were considered to 

be negative if no growth was seen after 7 days.

Fungal Contamination : a small volume of the sample to be tested

was added to Sabouraud's medium and incubated at 32°C. No growth 

in 7 days was assumed to indicate the absence of fungal contamination. 

PPLO infection; agar plates were seeded with passaged cells by 

piercing the agar surface with a charged pasteur pipette. The 

plates were grown in an atmosphere of 5% CO2 in N2 at 37^C.
Infected/
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Infected cultures resulted in the occurrence of the characteristic 

"fried egg" appearance of PPLO colonies on examination of the plates 

under the microscope. These cultures were discarded.

A4.3. Propagation of Virus.

Monolayer cultures of BHK/21 (C13a ) cells (approximately 10^ cells 

per burler) were infected at a multiplicity of 1 plaque forming unit 

(pfu) per 300 cells in 20ml medium. Virus was allowed to adsorb for 

Ih, then the innoculum was removed and replaced with lOOml of 

medium. The cultures were rolled at 37^0 for 36h, then harvested 

aseptically by shaking the bottle to dislodge cells into the medium, 

transferring to centrifuge bottles and spinning at 600g for 10 min.

This pellets the cells; the supernatant was then spun at 15,000g for 

2h to pellet the virus. The pelleted supernatant virus was resuspended 

in EClO (1ml for every burler used), and gently sonicated to make the 

suspension uniform. Aliquots were stored at -70°C,

Cell associated virus, prepared by resuspending and sonicating 

the cell pellets, gives a low titre and was used only for production 

of virus stocks.

Plaque assays were carried out on monolayer cultures of BHK/21
9 11cells and normally gave titres of 10 - 10 pfu/ml.

A4.4. Plaque assay for PrV.

Confluent monolayers of BHK/21 cells in 50mm Petri dishes, 

which had been seeded at 4 x 10^ cells/dish 18 hours previously, 

were infected with serial dilutions of PrV in 0.2ral EClO, After Ih 

adsorption/
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adsorption at 37°C, the excess was poured off, 4ml medium was added 

and incubation continued. After a further h, 50pg/ml heparin was 

added to the medium to prevent vertical transmission of the virus,

28h after infection, incubation was arrested, the cell sheet was 

washed with PBS and fixed with 3ml formol-saline per dish (30 min at 

room temperature). Plates were then stained with 0.5ml Giemsa stain/ 

dish for 1 h at room temperature, excess stain was washed off very 

gently with H^O and plaques were counted under a low power microscope.

A5. Preparation of HeLa Cell Polysomes.

HeLa cells were seeded at 20 x 10^ per burler and incubated at 

37°C in 5% CO^ for 2-3 days. When the cell density had reached 

80-100 X 10^ the cells were infected at 20pfu/cell in 20ral of the 

medium in which they had been growing. This slightly acid medium was 

used because adsorption is more efficient at lower pH's. After Ih, 

the excess was decanted and 50ml of fresh medium prewarmed to 37^C was 

added. Radioactive uridine was added at the appropriate time after 

infection if the RNA was to be labelled. If poly-(A) containing RNA 

was to be prepared from the polysomes, a minimum of 16 burlers was 

used.

At the appropriate time after infection the cells were harvested 

mechanically. The growth medium was poured off and the bottle rotated 

in an ice-bath. lOral ice-cold BSS + bicarbonate (A3,1.3.) was 

pipetted into the burler and the cells were removed from the glass by 

means of a rubber scraper, and pelleted by centrifugation at lOOOrpm 

for 5 min at 4°c in a MSE Major Centrifuge. Pellets containing up 

to 300 X 10^ cells were suspended in 2.5ml RSB (A3.2.1.) containing 

O.Img/ml heparin and the cells allowed to swell for 5 rain before being 

disrupted/
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disrupted by gentle homogenisation (4 strokes in a teflon/glass 

homogeniser at low speed). The nuclei and large cell debris were 
pelleted at 2,500 rpm for lOmin. 2.5ml aliquots of cytoplasmic 
extract were immediately layered onto 34ml 15 - 30% (w/v) sucrose 

gradients in RSB containing Img/ml heparin. Gradients were centri­

fuged in a SW27 rotor at 27,000 rpm for 110 min at 4^c, then harvested 

by placing a needle down the side of the tube to the bottom and 

pumping through a Gilford 2000 recording spectrophotometer. The 

absorbance was monitored at 260nm and the gradient divided into 

polysomal and monosomal fractions. The polysomal fractions were 

pelleted by centrifugation in a SW27 rotor at 20,000 rpm for 17h or 

in a 60Ti rotor at 45,000 rpm for 3h at 4°c.

To examine the effect of hypertonic conditions on polysomes 

the growth medium was replaced with fresh medium (prepared from calf 

serum which had been dialysed overnight against distilled water) 

containing the appropriate NaCl concentration 15 min prior to 

harvesting. Polysome to monosome ratios were computed by cutting out 

and weighing the ^2So of the gradient.

A6. Extraction of RNA,

RNA was extracted from polysomes essentially as described by 

Mendecki et al., (1972). Polysome pellets were rinsed with sterile 

2M sucrose, drained and resuspended in pH 9.0 RNA extraction buffer 

(A3.2.2.) by repeated pipetting and vigorous mixing at a concentration 

of approximately 10 Ag^^ units/ml. The polysome suspension was 

diluted with an equal volume of phenol:chloroform:isomyl alcohol 

(50:50:1) (v/v/v) mixed vigorously for 10 min and centrifuged at 3000

rpm in a MSE Major Centrifuge for 10 rain at 8°C. The aqueous layer 

was/
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was removed and the organic layer re-extracted with an equal volume of 

extraction buffer. The two aqueous phases were pooled, and re-extracted 

with the phenol-chloroform solution. The final aqueous phase was 

diluted with 2 volumes of ethanol and the RNA allowed to precipitate at 

-20°C for at least 2h.

RNA was extracted from rabbit reticulocytes essentially by the 

method of Perry et al., (1972). Washed red blood cells were lysed by 

addition of an equal volume of lysing NETS (A3.2.4.) and immediately 

diluted with one half volume of phenol : chloroform:isoamyl alcohol 

(100:100:1) (v/v/v) saturated with NETS (A3.2.3.). The mixture was 

shaken at room temperature for 30 min, then centrifuged for 10 min at 

12,000g. The aqueous phase was removed and the RNA precipitated by 

addition of 2 volumes of ethanol and standing at -20°C for at least 

4h.

A7. Isolation of Poly-(A) Containing RNA.

A7.1. Poly-(U) Sepharose Affinity Chromatography.

Poly-(U) Sepharose was prepared by a modification of the 

method of Wagner et al., (1971) for preparation of Poly-(rl:rC)

Sepharose (L. Fitzmaurice, personal communication). 15g of activated

Sepharose 4B was washed with 600ml of O.lM KPO^, pH 8.0, which had 

been stirred overnight with 0.01% diethylpyrocarbonate (DEP) to destroy 

RNAse and then autoclaved to remove all traces of DEP, on a baked 

Buchner funnel. The Sepharose was re-suspended in 15ml of the same 

buffer containing 9mg poly-(U) and stirred gently for 17h at 4^C.

The poly-(U) Sepharose was then washed with elution buffer I (A3.2.5.) 

and concentrated salt buffer (A3.2.6.) and stored in 50% glycerol,

50% NETS.

Poly/
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Poly-(U) Sepharose columns with a column volume of approximately 

Irai were poured in mini columns made from pasteur pipettes plugged with 

glass wool and baked at 2CX3°C. The columns were washed with 10 column 

volumes of elution buffer II (A3.2.7.) and then equilibrated with NETS. 

Polysomal and reticulocyte RNAs were pelleted by centrifugation at 19,000g 

for 20 min at 0°C. The RNA was dissolved in l-2ml NETS and the solution 

was cycled three times through the poly-(U) Sepharose column. The bound 

fraction was eluted from the column with 3m1 of elution buffer II and 

the RNA precipitated with two volumes of ethanol at -2o°C for 17h. The 

RNA was pelleted as above, dissolved in 0.4M NaCl and re-precipitated 

twice more. It was then dissolved in 50-200pl sterile deionised water 

and stored at -20^C until required for translation.

A7.2. Oligo-(dT) Cellulose Chromatography.

Oligo-(dT) cellulose was suspended in deionised water and poured 

into minicolumns (see A7.1.) . Approximately O.lg dry weight oligo- 

(dT) cellulose was used for affinity chromatography of up to 120 A^^^ 

units of polysomal RNA. The columns were washed with lOml 2% (w/v)

SDS and then equilibrated, with loading buffer (A3.2.8.) . . The RNA

solution was warmed for about 10 min in a water bath at 50°C and 

cycled three times through the column. Columns were washed with 

intermediate buffer (A3.2.9.) until the A^^^ was less than 0.01 and 

then the bound RNA was eluted with 1.5ml elution buffer (A3.2.10.).

The bound fraction was made 0.4M NaCl by addition of a tenth volume 

of 4M NaCl and precipitated and dissolved for translation as previously 

described.

A8/
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AS. DNA-RNA Hybridisations .

A8.1. Hybridisation on Nitrocellulose Filters.

PrV DNA was prepared as described by Stevely (1977) . CsCl 

was removed by dialysis against distilled water. The DNA solution 

was adjusted to 0.1 x SSC (A3.3.1.) and sheared by passing 12 times 

through a 25g needle. The DNA was then denatured by addition of an 

equal volume of IM NaOH which was neutralised 15 - 20 min later by 

addition of 3 volumes of a solution containing 3M NaCl, IM Tris-HCl, 

pH 8,0, IM HCl in a ratio of 2:1:1 (Birnstiel et al., 1968) . The 

solution was then passed by gravity through 13mm HAWP Millipore filters 

presoaked for 2h in 2 x SSC and held in Swinnex-13 filtration units 

which were fitted with 10ml perspex tubes. Filters were then washed 

with 2ml 2 x SSC, dried at 80^C for 2h, numbered with a soft lead 

pencil and stored dry at -20°C (Gillespie and Spiegelman, 1968).

When required, the filters were soaked for 2 h in 2 x SSC.

RNA dissolved in 0.1 x SSC was denatured by heating at 115°c for 

5 min. Aliquots of RNA were added to filters placed in sterile vials 

and enough hybridisation buffer (A3.3.2.) was added to allow the disc 

to float freely (approximately 400yl) . (Jacquemont and Roizman, 1975) .

The vials were incubated at 66^C for 20h. The filters were removed 

from the vials and washed by a batch method (Birnstiel et al,, 1968); 

filters were placed in a 21 beaker with 11 2 x SSC at room temperature 

and kept under continuous agitation for 30 min. This washing procedure 

was repeated twice. The filters were then incubated in 5ml 2 x SSC 

containing pancreatic RNAase (50yg/ml) for Ih at room temperature, rinsed 

twice with 2 x SSC and dried under a heat lamp. Radioactivity incorpor­

ated was determined by liquid scintillation counting in toluene-PPO.

A8.2/
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A8.2. Hybridisation in Solution.

PrV poly-(A) containing RNA was hybridised to excess ENA in 

solution as described by Paterson et al., (1977). Appropriate amounts 

of DNA and mRNA were mixed in a very small volume of water in a 1.5ml 

Eppendorf centrifuge tube. Samples were heated at 100°C for 60s, 

quick chilled in a dry ice methanol bath and spun for 10s in a micro- 

fuge. 25yl of FNP (A3.3.3.) was added per sample and hybridisation mixtures were 

incubated at 66°C for 2,5h. Reaction was terminated by addition of 

2ooyl cold distilled water, 20yg E . coli tRNA was added as carrier.

Samples were divided in two. One portion was retained in hybrid form 

while the other was heated for 60s at 100°C and then quick chilled in 

dry ice methanol. Samples were then adjusted to 0.2M sodium acetate, 

pH 5.5 and the nucleic acids precipitated with 2.5 volumes of ethanol 

at -20°C. The pellets were collected by centrifugation at 12,OOOg for 

lO min at 4^C, washed and recentrifuged twice with 0,75ml 70% (v/v) 

chilled ethanol. Residual ethanol was removed by lyophilisation just 

prior to translation. Pellets were suspended in deionised water for 

in vitro translation.

A9. Preparation of PrV Cap si d and Cell Lysates.
35PrV capsid was prepared labelled with { s}  methionine as

35described by Stevely, (1975). {S } methionine labelled infected and 

mock-infected cell lysates were prepared as follows. Two burlers of 

exponentially growing HeLa cells were mock-infected or infected with 

PrV at 20pfu/cell. 4^h post-infection 200yCi {^^s} methionine for 

a further hour. At 5^h post-infection, the cells were harvested and 

lysed in 1ml RSB (A3.1.), then adjusted to 2% (w/v) SDS, 5% (v/v)

3/
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3-mercaptoethanol and heated in a boiling water bath for 5 rain.

AID. Wheat Germ Cell-free Translation of mRNA.

The method used was a combination of the methods described by 

Roberts and Paterson (1973) and Marcu and Dudock (1974).

AlO.l. Preparation of the Wheat Germ Extract.

2g wheat germ (Al.3.) and 2g acid washed (2M HCl) baked sand were 

ground in a baked mortar and pestle (precooled to 4°c) for 1 min.

4ml extract buffer (A3.4.1.) was added and the mixture transferred to a 

centrifuge tube and spun at 16,000 rpm in a Sorvall SS34 rotor for 12 

min. The supernatant was carefully removed avoiding the yellow fat 

layer and 1.5ml was applied to a 1.7 x 21cm Sephadex G25 (coarse grade) 

column pre-equilibrated with column buffer (A3.4.2.). The eluate was 

collected into sterile tubes and the optical density at 260nm was 

measured. Fractions with optical densities greater than 90 A^^^ 

units/ml were pooled and spun at 16,000rpm as above for 20 min. The 

supernatant was divided into 200 - 400yl aliquots, quick-frozen and 

stored in liquid Extracts were thawed immediately before use and

repeated thawing and refreezing did not signficantly alter the 

translational activity if the extract was thawed for a short period and 

quickly refrozen in liquid N ^ . The whole procedure was carried out at 

4°c. Sephadex was autoclaved prior to use and all tubing was filled 

with 15% (v/v) HgOg for 20 min and then rinsed with sterile deionised 

to inactivate RNAase before packing.

A10.2/
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A10.2. Translation Assays.

Assays were started by adding wheat germ extract to the mixture of 

ATP mix (A3,4.11.) mRNA and isotope. The assay mixes (A3.4.12.) were 

incubated at 25°C for 90 rain (unless otherwise stated in the Results). 

Assays were stopped by addition of lOyl 10% (w/v) SDS and 3yl 

3-mercaptoethanol and heating for 2 min in a boiling water bath, or by 

cooling on ice.

The TCA precipitable radioactivity incorporated was determined in 

one of two ways :

(i) Aliquots were spotted on 2.5cm Whatman No. 1 filter discs

supported on a pin and placed, while still wet, gently into

ice-cold 10% (w/v) 'TCA' containing the amino acid used for
-5labelling at a concentration of lo  M. The filters were

left at least lomin in this solution and then washed

successively in 5% (w/v) TCA at room temperature, 5% (w/v)

TCA at 90°C, ethanol-diethyl ether (1:1) and ether for

lOmin. Filters were air dried for 5 min, then placed under

a heat lamp for 5 min prior to counting in toluene-PPO

(Bollum, 1968), 3yl aliquots were counted from assays 
35labelled with { s} methionine and 5yl aliquots from 

assays labelled with {^h) leucine.

(ii) Assays were diluted lOfold with TKM-det (A3.8.4.).

40yl aliquots were removed; an equal quantity of 0.2M NaOH 

was added and the samples were incubated at 37°C for 15min.

Samples were neutralised with acetic acid, approximately 

20 vg bovine serum albumin was added as carrier and protein 

was precipitated by adding 50yl 25% (w/v) TCA, then Irai 

10% (w/v) TCA. Samples were left for several hours at 

4/
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4°C, then precipitates were pelleted by centrifugation 

in an Eppendorf 3200 microfuge at 800g for 30 secs.

The pellets were washed three times with 10% (w/v)

TCA and dissolved in 40yl NCS tissue solubiliser.

Radioactivity incorporated was determined by

counting 20yl samples in 10ml triton-toluene scintillant.

All, Reticulocyte Lysate Translation of mRNA.

All.l. Reticulocytosis.

New Zealand White Rabbits were made anaemic by a modification of 

the procedure of Waxraan and Rabinowitz (1966). The rabbits were injected 

subcutaneously on four successive days with approximately 0.4ml phenyl­

hydrazine solution (A3.5.2.) per kg body weight. The rabbits were 

rested for two days and on the seventh day they were anaesthetised by 

injection of a solution of equal volumes of 1% (w/v) heparin and sodium 

pentabarbitone solution (Nembutal) into the ear vein (1.5 - 2.0ml per 

2.5kg rabbit). Rabbits were bled out by heart puncture into 

heparinised syringes and the blood was transferred to sterile tubes.

To ensure that the animal was dead the chest cavity was opened and 

drained of blood. This procedure yielded 80 - 150ml blood per 2,5kg 

rabbit.

All.2, Lysis of Reticulocytes.

The red blood cells were pelleted by centrifugation at 2000rpm 

for 10 min at 4*̂ C in a MSE Major centrifuge. The serum was removed 

and discarded. The cell pellet was resuspended in 3-4 volumes of 

BSS and centrifuged again at 2000rpm. The supernatant and buffy 

coat (white cells) were removed by suction. This was repeated twice 

more/
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more to remove all white cells. If the reticulocytes were to be 

used for preparation of mRNA they were then lysed by addition of lysing 

NETS and RNA was extracted as described in A6. If a translation 

system was to be prepared they were lysed by addition of an equal 

volume of sterile deionised water, mixed vigorously and left on ice 

for 3-4 min. The lysate was then centrifuged at 16,OOOg for 10 min 

to pellet the cell debris. The ruby red supernatant was stored in 

800yl aliquots at -70°C.

All.3. Preparation of Messenger Dependent Lysate (MDL).

MDL was prepared by the batch method described by Pelham and 

Jackson (1976). Lysate was thawed and SOOyl aliquots were rapidly 

made 50^g/ml in creatine kinase and 25uM in haemin by addition of 

25yl haemin (A3.5.3.) and 10yl creatine kinase (A3.5.4.). 150yl

master mix (A3.5.8.) was added to each tube; then the lysate was made 

ImM in CaCl^ and lOyg/ml in micrococcal nuclease by addition of lOyl 

CaClg (A3,5.9.) and lOpl nuclease (A3.5.10,), After thorough mixing 

it was transferred from ice to a water bath and incubated at 20^C 

for 15 min. The digestion was stopped by addition of 20yl EGTA 

(A3.5.11.) to chelate Ca . The MDL was stored in 200yl aliquots at 

-70°C.

All,4. Translation Assays,

Assays were started by adding 50yl MDL to mRNA and isotope to 

a total volume of 57,5 yl. Assay mixes (A3.5,12.) were incubated 

at 30^C for 90 min, then cooled on ice and the TCA precipitable 

radioactivity was determined by the filter method.

A12/
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A12. Krebs II Ascites Cell Free Translation of mRNA.

Cell free translation in Ascites 830 extracts was carried out 

essentially as described by Mathews and Korner (1970). Wheat germ 

tRNA was added (Aviv et al,, 1971) .

A12.1. Growth of Krebs II Ascites Cells.

Ascites cells were maintained by the intraperitoneal injection 

of 0.2ml ascitic fluid (approximately 25 x 10^ cells) into mice at 7 

day intervals.

A12.2. Harvesting of Ascites Cells.

Seven days after inoculation, mice were killed by cervical 

dislocation. The abdominal skin was swabbed with 70% (v/vj alcohol 

and drawn back. The peritoneum was cut open over a filter funnel 

covered by muslin and the cells were collected into a 250ml glass 

centrifiige bottle (on ice) containing a few mis of ice-cold TBS 

(A3,6.1.). The mouse peritoneum was rinsed with ice-cold TBS,

Ve^fblood tumours were rejected. All subsequent operations were 

carried out at 0-4°C. The cells were washed about three times in TBS 

by repeatedly pelleting by centrifugation at 1500 rpra for 3 rain in a 

MSB Major centrifuge. When most of the red blood cells had been 

removed, the volume of cells was measured by resuspending in sterile 

TBS and spinning at 2000 rpm for 10 rain in a graduated centrifuge 

tube. All subsequent operations were carried out in sterile solutions 

with RNAase free apparatus. The cells were resuspended in 1.5 volumes 

of RSB (A3.6.2.) and allowed to swell for 15 min. The cells were then 

burst open by homogenisation in a tight teflon/glass homogeniser (20 

strokes at maximum speed) and 0.11 volumes of ten times concentrated 

medium/
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medium 125 K (A3,6.3.) was added. The extract was centrifuged for 

10 min at 15,000 rpra (30,000g) in a Sorvall SS34 rotor. The 

supernatant (S3o) was removed, and recentrifuged. The second S30 

extract was used immediately to prepare translation extract.

A12.3. Preparation of Translation Extract.

15ml of S30 was applied to a 45 x 2.7cm Sephadex G25 (medium 

grade) column pre-equilibrated with medium 125K. 15ml concentrated 

eluate was collected and the concentration of KCl and Mg(CH^COO)g 

adjusted to 125mM and 5mM respectively. Other reagents necessary for 

translation were added to give the following concentrations: 5mM DTT,

50mM ATP, 5mM GTP, 250mM creatine phosphate, O.2mg/ml creatine kinase 

and 50mM each of the 20 essential amino acids (A3,6.8.). The 

mixture was incubated for 40 min at 37^C, cooled on ice for 15 min., 

then centrifuged at 2000 rpra for 15 min. The preincubated 830 was 

reapplied to a 45 x 2.5cm Sephadex G25 (medium grade) column equilibrated 

with medium 50K (A3.6.4.). The most concentrated fractions were 

collected and stored in 400yl aliquots in liquid

S30 was thawed immediately before use and repeated thawing and 

refreezing did not significantly reduce the translational activity if 

the extract was thawed for a short period and quickly refrozen in 

liquid N^. RNAase free conditions were obtained as detailed for 

wheat germ preparations.

A12.4. Translation Assays.

Assays were started by adding 830 to the mixture of ATP mix 

(A3.6.13.) raRNA and isotope. Assay mixes (A3.6.14.) were incubated 

at/
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at 37^C for 60 min. then cooled on ice and the TCA précipitât le 

radioactivity was determined by the filter method detailed for 

wheat germ assays.

A13. Separation and Detection of Polypeptides in Polyacrylamide Gels. 

A13.1. Polyacrylamide Gel Electrophoresis.

Electrophoresis was carried out using a discontinuous system 

as described by Dimmock and Watson (1969) and Laemmli (1970).

The gel apparatus was constructed from two 20 x 20cm glass plates 

separated by perspex spacers 0.15cm thick. The plates were held 

together by fold-back bulldog clips and vacuum grease was applied to 

the outside edges of the specers to prevent leakage. The bottom of

the gel was sealed by supporting the plates vertically in a trough and 

pouring a plug of 15% acrylamide main gel solution (A3.7.2.) which 

filled the trough and the bottom of the plates. The solution was 

allowed to run down the inside edge of the spacers to form a thin seal. 

When the plug had polymerised the main gel (18 x 18cm) was poured and 

overlaid with water. After at least 30 min the water was poured off 

the main gel and a stacking gel (A3.7.3.) was applied. Sample wells 

were made by pushing a plastic silicone-coated comb into the stacking 

gel before it set. This was withdrawn after at least 15 min. leaving 

a stacking gel with a height of 0.7 - 1.0 cm at the bottom of the wells. 

For electrophoresis the gel was supported vertically in a perspex 

electrophoresis tank. Contact with an upper tank was made by way of 

a wick of Whatman 3MM Chromatography Paper and a 0.5cm sponge.

Proteins were denatured prior to electrophoresis by addition of 

concentrated reagents to yield final concentrations of 2% (w/vj SDS 

and 5% (v/v) 3-nie reap to ethanol followed by heating in a boiling water 

bath/
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bath for 2 min. Bromophenol blue and glycerol were added to final 

concentrations of 0.002% (w/v) and 20% (v/v). Samples with a total 

volume of up to lOOyl were applied to the gel and electrophoresed at 

lOOV until the tracking dye was approximately 1cm from the end of the 

gel.

35A13.2. Detection of { s} Methionine Labelled Polypeptides Separated 
on Gels.

Radioactive polypeptides were detected by fluorography (Bonner 

& Laskey, 1974) . After electrophoresis, gels were soaked in three 

changes of 8-10 volumes of dimethyl sulphoxide (DM80) for 20 min. 

each change. DMSO baths were used several times in the same sequence 

The gel was then shaken for 3 h in 4 volumes of 22,2% (w/v) PPO 

in DMSO and then washed under running water for a further 3 h before 

drying under vacuum. The dried gel was placed in contact with Kodak 

X-Omat H X-ray film between heavy glass plates and e:;gosed at -7o°C 
for the appropriate time. The film was developed in Kodak DX-80 

developer and fixed with Kodak FX-40 X-ray liquid fixer.

A13.3. Estimation of Molecular Weights.

Gels were calibrated by coelectrophoresis of albumin (68,000), 

trypsin inhibitor (21,000), chymotrypsinogen A (25,000), ovalbumin 

(45,000), 3-galactosidase (130,000) and RNA polymerase (39,000, 

155,000, 165,000). After electrophoresis gels were stained by 

immersion for 1 h in Coomassie Blue Stain (A3.7.4.) and destained by 

several changes of destainer (A3.7.5.). Gels were impregnated 

with PPO as described in A. 13.2. and dried. The molecular weight of 

the standards was plotted against their migration distances on semi- 

logarithmic/
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logarithmic paper (Fig. A13.1.). The relationship is non-linear.

The molecular weights of polypeptides synthesised vitro were estimated 

from the calibration curve and used to calibrate other unstained gels 

because staining reduced the efficiency of fluorography.

A14. Immunological Techniques.

A14.1. Preparation of Antisera.

Antisera were raised in rabbits against the major capsid

protein of PrV and a PrV-infected BHK 21 cell lysate harvested 5 hr

post-infection. Purified capsid proteins (A15) were made 2% (w/v)

SDS, 5% (w/v) 3-me r cap toe thanol and electrophoresed into a 10%

acrylamide slab gel (A13). A section of the gel was stained to locate

the major capsid protein and the band containing this protein excised

from the unstained area, crushed, mixed with Freunds adjuvant and
-Jfe*injected into rabbits. The BHK 21 infected cell lysate was similarly 

electrophoresed about 1 cm into a 15% acrylamide slab gel and the total 

proteins cut out and injected into rabbits. Antisera were collected 

at intervals and assayed for the presence of antibodies. Goat anti­

rabbit igG antiserum was prepared by immunisation of goats with rabbit

IgG and was a generous gift from Mrs. H.H. Singer.
^Three doses of 200yg protein were injected at two week intervals.

A14.2. Double Diffusion.

Antisera were assayed for antibody activity by a modification 

of the technique described by Ouchterlony (Ouchterlony, 1964). Hot 

(60°C) 1.5% (w/v) agarose in PBS A (A3.8.1.) PEG (A3.8.2.) and PBSA 

were mixed in a ratio of 4:1:1 and 2.5 ml aliquots were immediately 

applied to 7.5 x 2.5 cm glass slides by moving a pipette along the 

centre of the slide. The solution was left 15 min to set, holes 

were/
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FIG. A13.1. ELECTROPHORETIC MOBILITY AS A FUNCTION OF POLYPEPTIDE
MOLECULAR WEIGHT IN A 12%BIS-CROSSLINKED 

POLYACRYLAMIDE GEL '

Commercially supplied molecular weight standards were denatured 

according to the manufacturers' instructions and electrophoresed 

into a 12% hii s-crosslinked polyacrylamide gel. The gel was stained 

with Coomassie Brilliant Blue, and processed for fluorography. The 

migration distances from the top of the main gel were measured and are 

plotted against the molecular weight on a logarithmic scale.
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were cut with a punch and the agarose removed with a pasteur pipette. 

The holes were filled with antiserum or antigen and the slides placed 

in an airtight box with a damp filter paper and left overnight at 

room temperature.

A14.3. Absorption of Antibodies.

Uninfected HeLa cells were harvested and lysed in the same way 

as for polysome preparation (A5.). If the lysate was to be treated 

with SDS, the volume was kept as small as possible; SDS was added to

a concentration of 1% (w/v), the lysate was boiled for 2 min, and then
8diluted with distilled water to 10 cells/ml. Antisera were absorbed

9by adding the lysates from 10 SDS-treated or untreated cells to 1 ml 

antiserum and incubated overnight at 4°c (Sira and Watson, 1973).

The absorbed antisera were centrifuged at 40,000 rpm for 1 h in a 

Beckman SW40 rotor and the supernatant fluid concentrated to the 

original volume of serum in an Amicon microfiltration cell Model SMC,

A14,4. Preparation of IgG,

Two volumes of 27% (w/v) Na^SO^ (at 37^C) were added dropwise 

to one volume of serum stirred gently at room temperature. The 

precipitate was pelleted immediately by centrifugation for 10 min. 

at 3,000 rpm in a Mistral 4L centrifuge. The precipitate was 

dissolved in approximately one-fifth of the original serum volume of 

water and dialysed overnight against 50 - 100 volumes 15% (w/v)

Na^SO^ at room temperature. The precipitate was pelleted as above, 

dissolved in one tenth of the original serum volume of PBS and dialysed 

overnight at 4°C. The IgG solution was spun at 12,000g to pellet 

denatured protein and debris and stored at -20°O.
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A14.5. Indirect Precipitation.

Cell lysates and wheat germ assays were diluted with buffers 

containing detergent (A3,8.3,; A3.B.4.) in 1.5ml Eppendorf microtubes

and incubated for 15 min, at 37°C with 5yl antiserum or IgG, The 

appropriate volume of goat anti-rabbit IgG antiserum was added to 

precipitate all the rabbit IgG and incubation was continued at 37°C 

for a further 45 min. The precipitates were left overnight at 4°C, 

then pelleted by centrifugation at 800g in an Eppendorf 3200 centrifuge 

for 4 min. The precipitates were washed three times with buffer then 

dissolved in 5% (v/v) g-mereaptoethanol, 2% (w/v) SDS by treating 

at 100*^C for 2 rain.

The volume of goat anti-rabbit IgG antiserum required to 

precipitate the rabbit IgG was determined by titration. Increasing 

volumes of goat anti-rabbit IgG antiserum were incubated with a constant 

volume of antiserum or IgG for 1 h at 37^C then overnight at 4°c,

The precipitates were pelleted as above, washed, dissolved in 0.1 ml 

0,2m NaOH and the concentration of protein was determined spectro- 

photometrically using the following formula:

{Protein} = — pg/ml 1 . 3 5

The volume of goat anti-rabbit IgG antiserum which gave the largest 

precipitate was thereafter used in indirect precipitation,

A15, In vivo Labelling at Elevated {NaCl}.
.1 w #  — '■■■* - ■ --- - ....

HeLa cells were seeded at 10^ cells in 50mm Petri dishes 

containing glass coverslips. When confluent (2-3 days) they were 

mock-infected or infected with 20pfu/cell PrV. After 1 h at 37°C 

the medium was replaced with EClO (prepared with dialysed serum, 

see/
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(see AS). NaCl was added to the appropriate concentration 30 min.
3before harvesting and ISyCi { h } methionine was added to each dish 

before harvesting. Coverslips were removed at the appropriate time 

after infection, washed three times with ice-cold 5% (w/v) TCA, once 

with ethanol and then counted in toluene-PPO.

A16. Liquid Scintillation Spectrophotometry.

The amount of radioactivity present in proteins was determined 

either by TCA precipitation on filter paper discs which were 

subsequently dried and counted in toluene-PPO (A3.9.1.) or by 

dissolving the protein solution directly in triton-toluene scintillant 

(A3.9.2.). { h }-labelled RNA was either dried on filters which were

counted in toluene-PPO or dissolved in triton-toluene. The efficiency
3 33of counting for { h } on filters was 7.5% and for { s} was 65%.

The efficiency of counting for {^h } in solution was 57% and for {^^S} 

85%.
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