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SUMMARY

European policy regarding sewage sludge disposal lays down (i) that the 

disposal option chosen should entail the least possible cost to the 

community whilst at the same time safeguarding public health, and (ii) 

that it should limit environmental damage and recognise the value of 

sludge as a resource. Disposal of sludge on agricultural land appears 

to be the obvious choice. Not only is this method economical but at 

the same time makes full use of its fertiliser value. Given that 

proper guidelines are followed,hazards to health and environment can be 

significantly minimised.

Of all the problems associated with disposal of sludge on land, heavy 

metal build-up in the soil is of greatest concern. The application of

potentially toxic elements in sewage sludge to grassland is now 

controlled in the EEC by legislation. The guidelines are based on 

metal levels in the receiving soil and in the sludge being supplied. 

However, the data upon which these guidelines have been formulated is 

far from complete. In particular, the influence of grassland

management practices such as liming, fertiliser-N use and 

ploughing/reseeding programmes on the availability of heavy metals 

requires elucidation. In addition, there remains doubt as to whether

three weeks no-grazing after sludge application is sufficient to reduce 

the risk of direct ingestion of sludge-borne metals by ruminants. 

Recently, concern has been expressed as to the potential reduction in 

soil microbial biomass in sludged soils.

Studies were conducted at grassland sites in west Scotland into factors



influencing herbage contamination by sludge adherence and the effects of 

liming, ploughing and fertiliser-N rate on heavy metal uptake. The 

effects of sludge application on the soil microbial biomass and 

nitrification potential were also investigated.

Experimental plots (involving all combinations of either ploughed and 

reseeded pasture or directly reseeded pasture, with no liming (pH 5.5) 

and liming (pH 6.3) and three rates of fertiliser-N (i.e. 0, 250 and 500 

kg N/ha/year)) were established on an alluvial soil previously under 

permanent grass. The site had received regular additions of sewage 

sludge of industrial and domestic origins for around 50 years. Effects 

on the uptake by herbage {Lolium perenne)^ and on soil distribution of 

Cd, Cr, Cu, Ni, Pb and Zn were investigated. Metal enrichment was 

evident to a depth of 2 0 0 mm, although metal accumulation was greatest 

over the 0-100mm depth. Although soil metal concentrations were above 

the lower limit set by the EEC (1986), their concentrations in herbage 

for the most part were neither phytotoxic nor zootoxic. However,

herbage Cd, in all treatments approached a zootoxic concentration. 

Liming resulted in a significant decrease in herbage Cd, Cu, Ni and Zn 

whilst increasing the rate of fertiliser-N led to significant increases 

in herbage Cd, Cu and Zn concentrations which could not be explained by 

a change in bulk soil pH. Metal concentrations extracted by both 0.43M 

acetic acid and 0.05M EDTA did not reflect these changes in metal 

uptake. Chromium and Pb were unaffected by either liming or 

fertiliser-N rate. Ploughing and reseeding led to short term (i.e. 

over the first two cuts) increases in herbage Cu, Zn and Ni. However, 

the redistribution of metals within the soil profile following
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cultivation, resulting in lower metal concentrations in the top soil 

compared to the undisturbed profile, could be of considerable importance 

in lowering the potential dietary metal intake of grazing animals.

A pot trial was undertaken to study the relationship between soil pH and

uptake of heavy metals by plants. A 50:50 soil:perlite mixture was

used as a growing medium for perennial ryegrass (L. perenne L.). To
3

this mixture the equivalent of 55m of digested sludge was added. A 

series of pH treatments (pH 4.0-9.0 in increments of 0.5 units) was set 

up. With the exception of Pb, herbage metal uptake decreased as pH 

increased from 4.5-5.0. With a further rise in soil pH over the range 

of pH 5.0-9.0 a more gradual decrease in herbage metal uptake was 

evident. Herbage Pb concentrations were independent of soil pH.

At a second site in the west of Scotland 2% D.S. sludge was applied at a 
3 . 3

rate of 27.5m /ha and 67,5m /ha in late March to a L. perenne sward.

At the same time, 12% D.S. sludge was also applied at the rate of 
3 3

67.5m /ha. In addition, half the number of plots receiving 67.5m /ha

of 2% D.S. sludge were cut one week before application. On the day of

sludge application and at weekly intervals thereafter for 8  weeks,

herbage from three replicate plots (0.5 x 0.5m) of each treatment was

harvested and analysed. Where sludge containing 2% and 12% D.S. was
3

applied at 67.5m /ha to an uncut sward, 35% and 55% respectively of

harvested dry matter consisted of sludge solids on the day of

application compared to 17% when 2% D.S. was applied to a previously cut
3

sward. Applying 2% D.S. and 12% D.S. sludges at 67.5m /ha to uncut 

swards led to respective increases in herbage metal concentration on the 

day of application of as much as 8  and 28 fold compared to the control



but the proportions of applied Cd, Cu, Mn, Ni, Pb and Zn adhering to

herbage as defined by 'Adherence Index' were all between 12-23%.

However, Cr and Fe appeared to behave differently on uncut herbage

treated with 2% D.S. sludge on which a much higher proportion of around

60% of the metal applied remained.

On the day of application, total F e , Cd, Pb (with the exception of the
O27.5m /ha treatment) and Cu concentrations of sludge-treated herbage 

were above those suggested to be toxic to ruminants. However, within

the 3 -week no-grazing period, Cu, Cd and Pb concentrations fell to safe

values where 2% D.S. sludge was applied but Fe required between 4-3 

weeks. In contrast, application of 12% D.S, sludge led to herbage 

having potentially zootoxic concentrations of Cd, P b , Cu and Fe for up 

to 8  weeks.

The dilution of adhering metals was brought about as a result of both 

plant growth and rainfall. However, their effects were not clearly 

distinguishable and could not entirely explain the observed dilution of 

metals. Hence, other factors may also have contributed to the removal 

of sludge metal from the leaf surfaces. The effect of rainfall in 

bringing about metal dilution especially that of Cr, Fe and Ni, derived 

from 2% D.S. sludge, was most evident when rain fell within one week of 

sludge application, but less so in grass given 12% D.S. sludge.

A pot experiment showed that drying the adhering sludge prior to the 

application of 'rain' resulted in no metal wash off. The rate of 

dilution was not only influenced by the amount and timing of rainfall



and the extent of plant growth but was also dependent on the dry solid 

content of the sludge. Adhering metals from the 12% D.S, sludge

exhibited a higher dilution rate than the same metals from the 2% D.S. 

sludge. This may be related to factors such as the electrostatic 

bonding of metals to leaf surfaces.

Reductions in the total soil microbial biomass C, as measured by the 

chloroform-fumigation'incubâtion method, ascribed to elevated soil metal 

concentrations, were observed in a sludged soil. However, in certain 

situations, sludge application may stimulate microbial populations even 

though soil metal levels are increased. The environmental significance 

of any decrease in microbial numbers is uncertain in view of the fact 

that the sludged soil exhibited a similar base respiration rate to that 

of an unsludged control soil, i.e. in the sludged soil there was greater 

CO2 production per unit weight of microbial biomass. This may

possibly reflect some microbial adaptation to enhanced metal 

concentrations in soil.

The effects of extended sludge application on soil nitrification 

potential, measured in terms of NO^-N production in a cyclic - continuous 

flow percolating system over a 20-32 day period, are not as distinct as 

the situation observed for microbial biomass C. Soil nitrification 

seems to be predominantly determined by soil pH. As pH increases, even 

over quite a narrow range, the delay period decreases whereas 

increases. Sludge application to land may thus influence nitrification 

more by its resultant change in soil pH than by any resultant increase 

in concentrations of toxic compounds. In fact, provided sludged soil 

is limed, sludging may enhance the soil's nitrification potential.



The results of this work are interpreted and discussed in the light of 

current legislation and codes of practice governing sewage sludge 

applications to agricultural land in the United Kingdom.



CHAPTER 1

REVIEW OF LITERATURE - INTRODUCTION

Historically the primary objective of sewage treatment works in the 

United Kingdom has been to produce an effluent which meets the 

conditions set out by the Royal Commission on Sewage Disposal (1898 - 

1915), ( cited by Mason, 1981). These criteria allowed no more than 30 

mg/1 of suspended solids and 20 mg/1 biological oxygen demand (B.O.D.), 

known as the 30:20 standard. By disposal into waterways, the Royal 

Commission envisaged that the effluent would be diluted with eight 

volumes of clean river water having a biological oxygen demand of 2  

mg/1. In practice, such a dilution is not always possible and the 

receiving water may also fall short of the 2 mg/1 B.O.D. requirement, 

meaning that a more stringent standard than 30:20 may be required for 

the effluent. The 30:20 standard, coupled with the 1963 U.K. Water 

Resources Act (HMSO,1963), set out measures to control water pollution. 

This, in turn, has led to more efficient sewage treatment processes and 

the consequent production of larger quantities of sludge requiring 

disposal.



1.1 METALS IN SEWAGE SLUDGE

1.1.1 CONTENT AND ORIGIN

The heavy metal load of the wastewater entering a sewage treatment 

works, and ultimately the metal content of the sludge derived therefrom, 

varies widely depending on a number of factors, such as geographical 

location and the type and quantity of industrial input (Berrow and 

Webber, 1972). The metal contents of various sewage sludges have been 

measured by a number of workers (Berggren and Odens, 1972; Berrow and 

Webber, 1972; Blakeslee, 1973; Sterritt and Lester, 1981). Table 1.1 

reproduces the results of surveys, carried out by Berrow and Webber 

(1972) and by Sterritt and Lester (1981), on the heavy metal content of 

sludges sampled from across England and Wales.

Metals in municipal wastewater originate from a variety of industrial, 

commercial and domestic activities (Klein et al., 1974; Gurnham et al., 

1979 cited by Patterson and Kodukula, 1984), as well as storm runoff

(Feiler, 1979). In some industrial towns as much as 50% of the total 

flow of raw sewage can be of industrial origin (Berrow and Webber,

1972). The presence of a particular industry can lead to large amounts 

of certain metals finding their way into sludge. For example, metals 

such as cobalt (Co), copper (Cu), nickel (Ni), and chromium (Cr) can be 

derived from electroplating, foundry processes and alloy production 

industries (Berrow and Webber, 1972). Even sludges from typically 

residential communities can contain Cu and zinc (Zn) concentrations in 

excess of 500 and 1000 mg/kg dry matter (D.M.) respectively (Page,
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TABLE 1.1 TYPICAL CONCENTRATIONS OF HEAVY METALS 
(mg/kg DRY SOLIDS) IN U.K. SEWAGE SLUDGE 
AND SOILS.

METAL SEWAGE SLUDGE METAL CONCENTRATION SOIL METAL CONCENTRATION

Range (1 ) Mean^^) Range (2 ) Mean^^) Range
value

Typic

Ag 5 - 150 32 < 1 < 1

B 15 - 1 0 0 0 70 2  - 1 0 0 1 0

Ba 150 - 4000 1700 1 0 0  - 4000 1 0 0 0

Be 1 - 30 5 < 1  - 40 3

Bi < 1 2  - 1 0 0 34 < 1 < 1

Cd <60 - 1500 < 2 0 0 1 - 1 1 0 25 0 . 0 1  - 0.7 0 . 1

Co 2  - 260 24 1 1  - 2490 105 1 - 40 15

Cr 40 - 8800 980 57 - 5190 707 5 - 1 0 0 0 1 0 0

Cu 2 0 0  - 8000 970 170 - 2080 721 2  - 1 0 0 2 0

Mn 150 - 2500 500 131 - 6120 667 1 0 0  - 3000 800

Mo 2  - 30 7 0 . 1  - 214 16 < 1  - 5 1

Ni 2 0  - 530 510 16 - 2 0 2 0 290 5 - 500 50

Pb 1 2 0  - 3000 820 27 - 45400 1550 2  - 2 0 0 30

Sn 40 - 700 160 3 - 329 57 < 1  - 1 0 3

V 2 0  - 400 75 2 0  - 500 1 0 0

Zn 700 - 49000 4100 93 - 9210 1930 1 0  - 300 80

(1) Berrow and Webber (1972).

(2) Sterrit and Lester (1981).
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1974) . The sources of these high concentrates is uncertain but can be 

derived from foods, galvanized metal, pharmaceuticals, cosmetics and 

rubber (Williams, 1975).

Every year approximately 12,000 t of the most environmentaly significant 

heavy metals pass through U.K. sewage treatment works (Rossin et al., 

1983) , and much of this metal finds its way into sludge (Davis and 

Carlton - Smith, 1980). Sewage treatment essentially involves a

sedimentation step whereby material capable of settling is deposited as 

sludge. At this stage much of the initial sewage metal load is removed 

as shown in Table 1.2.

Primary sedimentation, of sewage entering treatment works, removes only 

insoluble forms of heavy metals and has very little effect on the 

soluble metal concentration (Lester, 1983b), although some association 

of soluble metals with sewage particulates may occur prior to sewage 

entering the sedimentation tank.

Strong associations between sludge particulates and heavy metals, due 

to the formation of inorganic precipitates, organo - metallic 

interactions and by association with biomass, result during anaerobic 

digestion (Lester et al., 1983). The mechanisms involved in forming 

these associations have been reviewed by Brown and Lester (1979) and by 

Sterritt and Lester (1980). Several aspects of the activated sludge 

process have been shown to influence heavy metal removal efficiency such 

as nutrient supply and metabolic conditions of the biomass (Casey and 

Wu, 1977) , growth rate and age of cells (Friedman and Dugan, 1968) and

1 1



TABLE 1.2 PERCENTAGE METAL REMOVAL OF INITIAL METAL 
LOAD IN SLUDGE DURING SEDIMENTATION.

METAL % REMOVAL REFERENCE

Cd 60 - 72 Lewin and Rowe11,1973; 
Lester et al, 1979.

Cr 28 - 73 Stones, 1955;
Stoveland et al, 1979.

Cu 45 - 70 Stones, 1958 ;
Lester et al, 1979.

Ni 20 - 70 Stones, 1959a;
Stoveland et al, 1979a,

Pb 54 - 73 Lewin and Rowell, 1973; 
Lester et al, 1979. '

Zn 40 - 74 Stones, 1959b; 
Stoveland et al, 1979
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the association of metals with chelating and soluble complexing agents 

(Cheng et al., 1975; Stoveland et al., 1979b). Depending on the element 

concerned between 2 0  - 80 % of the metal content of settled sewage can 

be removed during the activated sludge process (Davis, 1980).

1.1.2 METALS OF CONCERN

The metal load of most sludges applied to agricultural land is generally 

much greater than that of the receiving soil (see Table 1.1) and

includes metals such as Cu, Zn, tin (Sn) , as well as silver (Ag) , 

bismuth (Bi) , and lead (Pb) . High concentrations of Cr and Ni tend to 

be restricted to a small number of samples (Berrow and Webber, 1972). 

This, combined with the fact that the metals introduced into the soil 

via sludge application accumulate in the surface soil layers (see 

Section 1.3.4) is potentially a cause for concern especially when these 

substances are assimilated by living organisms (whether plant, animal or 

man) in sufficient concentrations, and for a sufficient period of time, 

for harm to occur (Lester, 1983b). Concern about these metals and 

safeguards to define their environmental impact is influenced by the 

metal's lability and hence its toxicity. Jaworski et al. (1984) have 

listed a number of characteristics which would lead to the labeling of 

an element as being either an existing or potential environmental 

problem: -

(i) The element or its form has been shown to have adverse effects 

on human or animal metabolism, cause "mutations or is a known 

carcinogen ( eg. P b , Cd, As, Hg, methyl - mercury, Tl, Be, Cr, Cu,

13



F, Mn, Mo, Ni, Sb).

(ii) The environmental concentration of the element is expected to 

increase with the use of existing technology (eg. A 1 , Cd, Ni, Cr). 

(iii) New or developing technologies are expected to increase emissions, 

cause emissions in new geographic locations or emit new species 

of the element ( eg. Be, Mn, G a , As).

(iv) The rate of exposure or rate of accumulation is very high

( eg . Cd, methyl - mercury, Pb).

(v) The dietary habits or geographical location of a certain

subpopulation may make them more liable to higher rates of

exposure or absorption possibly resulting in body levels near the 

critical level (eg. As, P b , Cd, H g , Ni, Ti).

(vi) Certain elements may .effect the quality and quantity of the food 

supply available for human consumption resulting in food 

shortages ( eg. Cu, Ni, Cr, Zn, Mo ),

The number and complexity of forms of heavy metals, many of uncertain 

toxicity, which may enter the foodchain from sludge disposal on land, 

makes the compilation of a list of priority metal pollutants difficult 

and subject to continuous review as more information on a particular 

substance becomes available. At present, priority pollutants are those 

known to be toxic to bacteria involved in the sewage treatment process 

and those known to be phytotoxic or harmful to animals and man, 

especially carcinogens and those which accumulate in the foodchain 

(Davis, 1980 ). In this respect, field experiments carried out by Lunt 

(1959), cited by Berrow and Webber, 1972, showed that the amounts of Zn,

Cu and boron (B) present in most sludges could, in acid soils, be toxic 

to plants. In addition, results from a long term field experiment at
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the Woburn Market Garden, reported by Le Riche (1968), showed that crop 

uptake of Cu, Ni, and Zn increased following repeated sludge 

applications, emphasizing the danger of these elements accumulating in 

the soil. The 1986 E.E.C. Directive on sewage sludge utilization on 

land (E.E.C., 1986) identifies Cd, Cr, Cu, Ni, Pb, Zn, and mercury (Hg) 

as the metals which need to be monitored in agricultural soils receiving 

sludge.

As far as Cu, Ni, Zn are concerned, plant yield depression starts at 

considerably lower tissue concentrations than those which could be 

harmful to animals or man consuming these plants, with the possible 

exception of Cu which, at relatively low levels in forage (below 20 

mg/kg D.M.) may be toxic to sheep (Dalgamo and Mills, 1975). 

Consequently Cu, Ni,and Zn are recognized as being potentially 

phytotoxic elements ( Rohde, 1962; Webber, 1972; Williams, 1975; 

U.S.E.P.A., 1976; Marks et al., 1980; Beckett and Davis, 1982).

On the other hand, Pb and Cd are present in sludge in amounts not 

normally high enough to have any adverse effect on plant growth, but 

they may accumulate in plant tissue to give concentrations which may be 

harmful to the health of animals and man consuming them ( M.A.F.F.,

1978; Williams, 1980; Kloke et al., 1984).

Concern for the potential toxicity arising from the introduction of Cr 

and Hg, via sludge into agricultural soils, is not unanimous. Although 

Cr is potentially phytotoxic (Davis, 1983), no limit has as yet been 

agreed upon for its inclusion into the E.E.C. Directive regulating 

sludge utilization on agricultural land (E.E.C., 1986). This is due to
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the fact that Cr is present in sludge in the cationic form, and as such 

is relatively non-toxic to plants (Christensen and Tjell, 1984; Webber, 

1972; Williams, 1975). For its part, Hg is a well-known toxin and is of 

particular interest as it is a cumulative poison in animals and man 

(Davis, 1983; Dean and Suess, 1985). However, even when soils are 

greatly enriched with Hg, its uptake into the shoot is so small that 

levels are kept well below those that may be damaging to animals or man 

consuming these plants (Williams, 1975; Richardson, 1980; DoE, 

1981;Davis, 1983). Of these seven priority metal pollutants in sludge

i.e. Cd, Cr, Cu, Ni, Pb, Zn and Hg, it is widely accepted that Cd is the 

one of greatest concern, due to its rapid translocation into the edible 

parts of the plant and its acute and accumulative toxicity to man (Flick 

et al., 1971; Page and Bingham, 1973; Fleischer at al., 1974;

Chaney,1975; Davis and Coker,1980; DoE, 1981; Naylor and Kresse, 1983; 

Cline and O'Connor, 1984; Kloke et al., 1984; Dean and Suess, 1985).

1.1.3 METAL SPECIES IN ANAEROBICALLY DIGESTED SEWAGE SLUDGE

Anaerobically digested sludge is a complex mixture of bacterial 

residues and particulate and colloidal mineral and organic matter 

(Fletcher and Beckett, 1987 a, b ) . On leaving the digester, sewage 

sludge undergoes rapid oxidation and changes in microbial activity as a 

result of which chemical forms of heavy metals in sludge are in a 

complex equilibrium between several phases. Metal species in 

anaerobically digested sludges may be classified as follows (Gould and 

Genetelli, 1975; Elliott, 1984) :-
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a) Soluble forms,

(i) ionic forms

(ii) organic complexes

(iii) inorganic complexes

b) Co - precipitates in metal oxides

c) Precipitates

d) Adsorbed forms

(i) weakly adsorbed

(ii) chemisorption

(iii) adsorbed to clay lattice

e) Organometallic complexes

(i) simple complexes

(ii) chelates

f) Biological residues

Physical and chemical properties associated with the treatment process, 

including such paramétrés as pH, oxidation-reduction potential and the 

presence of complexing agents will determine the relative distribution 

between the various forms of each metal (Gould and Genetelli, 1975; 

Adams and Sanders, 1984b).

Much of the metal in sludge is associated with the insoluble solid phase 

either through adsorption or precipitation (Davis and Carlton-Smith, 

1980; Stover et al., 1976). Gould and Genetelli ( 1975) used

élutriation and filtration to fractionate heavy metals in digested 

sludge on the basis of sludge particle size. All metals examined were 

seen to be associated with the solid phase, in excess of 90 % being
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found in the particulate fraction (>100 urn) which contained 90 - 92 % of 

the total solids (Table 1.3). The supra-colloidal fraction (0.6 - 100 

um) contained most of the balance with the remainder in the colloidal 

(0 . 0 0 2  - 0 .6 um) and dissolved fractions (< 0 . 0 0 2  um) .

Mosey et al. (1971) reported that all heavy metals in sludge, with the 

exception of Cr, form extremely insoluble sulphide salts. Sulphide 

precipitation arises from bacterial reduction of sulphate under the 

reducing conditions of digestion ( Mosey, 1976; Ahring and Westermann,

1983). Precipitated and organically-bound forms predominate for all the 

sludge metals (Lester et al., 1983). although a significant 

concentration of Ni may appear in an exchangeable form (Stover et al., 

1976; Lake et al., 1984; Davis et al., 1985). Copper is generally 

present as a sulphide (Stover et al., 1976; Davis, R.D. 1981; Lake et 

al., 1984) although it has also been reported to occur in the organic 

matter fraction ( Baldwin et al., 1983; Fletcher and Beckett, 1987). 

However, Stover et al. (1976) reported that only 10 % of the total Cu in 

anaerobically digested sludge is bound to organic matter. An important 

factor that may regulate the extent to which Cu is present in the 

soluble organic fractions is the pH of the sludge ( Fletcher and 

Beckett, 1987b ). At a pH of 5 - 8  there is a reversible reaction

whereby Cu replaces protons on organic matter (Fletcher and Beckett, 

1987b). Sludge pH is also important in determining the degree of Cd and 

Zn precipitation as carbonates in sludge (Mosey, 1976), Cd binding to 

carbonates occuring at pH 7.2 whereas Zn requires a pH > 7.7 to form a 

carbonate (Mosey,1976).
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TABLE 1.3 DISTRIBUTION OF METALS (% TOTAL RECOVERED) 
IN DIGESTED SLUDGE IN RELATION TO PARTICLE 
SIZE (FROM GOULD AND GENTELLI, 1975).

METAL PARTICULATE SUPRA- COLLOIDIAL DISSOLVED
COLLOIDAL

Cd 90.4 8.2 1.4

"■■"Cr 92.9 7.1

Co 92.8 7.2

Cu 92.9 6.9 0.1 0.1

""Fe 95.5 4.4 0.1

Mn 95.5 3.4 0.1 1.0

Ni 95.0 5.0

~Pb 92.1 7.3 0.3 0.3

Zn 91.5 8.4 0.04 0.07
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Cadmium and Pb are generally present in sludge as carbonates ( Stover et 

al., 1976; Davis and Coker, 1980; Lake et al., 1984 ). However, Cd can 

also occur as a sulphide ( Davis and Coker, 1980 ), or bound to organic 

matter ( Davis and Coker, 1980; Davis et al., 1985 ) or as a phosphate 

(Davis and Coker, 1980 ). Chromium, as well as Zn, are generally

predominant in the organic fraction of anaerobically digested sludge ( 

Stover et al., 1976; Baldwin et al., 1983; Lake et al., 1984; Davis et 

al., 1985 ).

Although inorganic precipitates appear to predominate, there is mounting 

evidence to suggest that metal-organic interactions, adsorption onto 

microbial surfaces and assimilation by the biomass are important removal 

mechanisms (Lester et al., 1983). Most bacterial surfaces exhibit a 

negative charge over a fairly wide pH range ( > pH 4.0 ) and the

particles making up sewage sludge also exhibit charge in a similar 

fashion. On the basis of current knowledge, reactive groups such as 

carboxyl, hydroxyl, phenolic and suiphonate within the structure of the 

surface polymers may adsorb metals onto the cell wall (Foster, 1983). 

Structures with such a composition can be expected to have an affinity, 

for cations and this sorptive capacity is a very important retention 

mechanism for potentially toxic metal ions in sludge. Several gram 

negative species of bacteria in activated sludge produce extracellular 

polymers as capsules ( eg: Klebsiella aerogenes) or a gelatinous matrix 

(eg: Zoogloea ramigera) and these polymers have been shown to be

involved in the adsorption of exogenous metal ions from solution (Brown 

and Lester, 1979), This adsorption may occur in order to facilitate 

percolation through the cell wall to reaction sites within the cytoplasm
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by metals necessary for growth and metabolism (Beveridge and Koval, 

1981) or to enhance the polymer's protective function by increasing its 

resistance to decomposition (Martin, 1972; Martin et al., 1972). Of the 

total heavy metal content in anaerobically digested sludge 30 - 60 % of 

the Cd, Cr, Cu, Ni, Pb and Zn can be associated to the biomass (Hayes 

and Theis, 1976). Lester and Sterritt (1985) reported that microbial 

uptake of Cd, Cu, Mn and thallium (Th) are largely unaffected by a loss 

of viability, indicating that uptake of these metals is predominantly a 

passive process. In contrast, a loss of viability had a marked effect 

on the uptake of Ni ( Lester and Sterritt, 1985 ). Intracellular uptake 

of heavy metals increases with metal load but levels off when the heavy 

metal concentration in the digester approaches inhibitory or toxic 

levels ( Hayes and Theis, 1976 ).

Sewage treatment results in a shift away from the more easily 

extractable metal forms which predominate in raw sludge, towards less 

soluble and precipitated forms in digested sludge (Lake et al., 1984). 

Nonetheless, metals in the 'exchangeable', 'sorbed' and 'organically- 

bound' fractions are likely to be comparatively mobile following sludge 

disposal to land and are^ therefore^of particular interest (Davis et al., 

1985), Williams (1975) states that Cu and Zn, in particular, are 

present in sludges in a highly mobile form compared with that in soils. 

As for Ni, although its mobility in sludges is generally high relative 

to that in soil, it is of no significance since, in practice, there are 

few sludges which contain very high Ni concentrations (see Table 1.1).

21



1.2 METALS IN SOIL AND THE SOIL PROCESSES AND CONSTITUENTS 
AFFECTING THEIR AVAILABILITY

1.2.1 HEAVY METAL FORMS IN SOIL

Sewage treatment causes chemical transformation of metals to take place 

in sludge and thereby alters their bioavailability to plants. However, 

once metals are applied to soil, regardless of the form in which they 

are^ soil conditions determine their fate. These metals may (Page, 

1974)

(i) pass through the soil unchanged,

(ii) form insoluble or sparingly soluble inorganic and organic

compounds,

(iii) be sorbed by colloids as cations, anions or uncharged

species,

(iv) be volatilized from the soil (eg. Hg , As, Se) and

consequently lost from the soil system,

(v) be taken up by plants.

The ultimate form in which sludge metal is found in soil and its 

consequent fate is dependent upon rates of reaction and equilibrium 

between the incorporated sludge metal and soil constituents. Many soil 

materials can react to immobilize trace metals including clays, organic 

matter (i.e. organic acids, amino acids, humic acids and fulvic acid), 

hydrous iron and manganese oxides, carbonates, phosphates and living 

tissue and its residues (Gamp, 1945; Lindsay, 1972, 1973; Chaney and

Giordano, 1977; Keeney and Wildung, 1977; Adams and Sanders, 1985; Dean
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and Suess, 1985). In addition, genotype, age and growing conditions of 

the plant are important factors regulating bioavailability (Davis,1980). 

Since metal contamination persists in the top soil, any soil properties 

which reduce availability to plants will be important factors in 

determining metal toxicity, both to plants and to foraging animals.

Crop tolerance to toxic elements has been shown to be greater in soil 

than in hydroponic solutions, since soil can immobilize metals into 

unavailable forms (Melsted,1973). Immobilization has been clearly 

illustrated in experiments on the residual effects of trace element 

fertilizers. For example, following the application of Cu and Zn in 

fertilizers, less than 1 % of the Cu applied has been shown to become 

available to plants in the season of application (Boawn et al., 1960; 

Hodgson et al., 1966). Boawn (1974) showed that Zn applied to soil 

undergoes rapid immobilization in the first year and the remainder of 

available Zn is less rapidly tied up in the successive years. However, 

it is necessary to point out that metal application rates by fertilizer 

application are usually much lower than those originating from sludge 

disposal. Furthermore, extrapolation of results obtained from 

fertilizer application cannot be directly related to the situation where 

sewage sludge is applied as the metals forms within chemical fertilizers 

are different to those present in sludge.

A knowledge of the chemical forms of soluble heavy metals or of heavy 

metals associated with soil particles or colloids is essential for 

estimating bioavailability, mobility and chemical reactivity in soils. 

The distribution of metal cations in soils, can be subdivided into five

23



arbitrary, but recognizable, chemical pools, (Viets,1962; Berrow and 

Burridge, 1980) : -

(i) Ionic, molecular or colloidal forms in soil solution,

(ii) Exchangeable forms,

(iii) Chelated or adsorbed forms existing as organic or organo- 

mineral complexes,

(iv) Incorporated forms in secondary clay minerals or sesquioxides,

(v) Fixed forms held within the crystal lattices of primary and

secondary minerals.

In addition, Berrow and Burridge (1980) further subdivide pool (ii) into

(a) Readily exchangeable ionic forms on inorganic or organic 

'exchange-active' material,

(b) More firmly bound ionic forms on exchange complexes.

The divisions are not as clear cut as this classification seems to 

suggest. The relative amount of each form depends on the element in 

question and on the prevailing soil conditions. Pools (i), (ii) and

(iii) in Viets' (1962) classification, are believed to be in reversible 

equilibrium with one another, the equilibrium for each metal being 

affected by soil physico-chemical conditions and the metal's 

concentration in the respective pools. Pool (iii) is believed by Viets 

to be of most significance to plants because of its potentially greater 

size. The equilibrium between pool (iv) and pools (i) , (ii) and (iii) 

is normally established very slowly. For this reason, pool (iv) is not 

considered to be an important source of plant available metals, except
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over long periods of time. Pool (v) is not in reversible equilibrium 

with any of the other pools and its metals are released by weathering. 

Viets speculated that pool (v) may release more metals in the available 

form than highly stable secondary minerals in pool (iv).

It is far from clear as to which forms of heavy metal are available for 

plant uptake and the technique which best measures plant available metal 

(see Section 2.1 ). For instance, Berrow and Cheshire (1985) observed 

that peat addition to Cu polluted soils decreased the exchangeable (i.e. 

acetic acid -extractable) more than the complexed (i.e. EDTA- 

extractable) Cu soil fraction and this resulted in a reduced uptake of 

Cu by plants. They concluded that exchangeable Cu is probably more 

closely related to plant availability compared to other forms of Cu in 

Cu polluted soils. In contrast, in unpolluted and Cu deficient soils, 

plant available Cu is more closely related to organically complexed 

forms of Cu (Berrow and Reaves 1985).The form of metal most likely to be 

immediately available for plant uptake is that contained in the soil 

solution (Alloway and Tills, 1983). This supply of metal to soil 

solution depends on a quantity/intensity relationship determined by soil 

buffering characteristics determined by soil pH and soil cation exchange 

capacity (Gupta and Stadelmann, 1983). It is thought that Cu complexes 

by virtue of their size or net charge can either facilitate or strongly 

reduce Cu transfer across biological membranes (Jaworski et al.,1984).
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1.2.2 pH AND CATION EXCHANGE

Of the soil factors which determine that fraction of metal present in 

the soil solution and hence its availability for plant uptake, pH is 

widely recognized as being the most important (Deeper, 1972, Davis, 

1983; Hani and Gupta, 1983). Acidification of the soil system results 

in increased plant uptake of Cd (Linnman et al., 1973; Haghiri, 1976; 

Webber and Beauchamp, 1975; MacLean, 1976; Miller et al., 1976; Davies, 

1985), Ni (Patterson, 1971; Bolton, 1975; Bates et al., 1975; Adams and 

Sanders, 1983, 1985; Sanders et al. , 1986b) and Zn (Wear, 1956;

Peterson and Gschwind, 1972; Bolton, 1975; MacLean, 1976; Haq et al., 

1980; Iyengar et al., 1981; Williams et al., 1984; Albasel and 

Cottenie, 1985) which can lead to toxicity. In contrast, Cu uptake and 

its toxicity have been shown to be pH dependent only below pH 5.5 and 

above this plant uptake is independent of soil pH ( Rothamsted 

Experimental Station, 1985; Sanders et al., 1986). Such a clear-cut 

relationship between Pb uptake and soil pH has not been established. 

Plant uptake of Pb has been reported as being both dependent (Filipovic 

et al., 1961; Cox and Rains, 1972; Zimdahl and Foster, 1976) and 

independent (Bates et al., 1975; Andersson and Nilsson, 1976; Singh and 

Narwal, 1984; Davies, 1985) on soil pH.

The relative toxicities of metals may be linked to their comparative 

solubility at different pH levels (Filipovic et al., 1961; Davis and 

Carlton-Smith, 1984). In this way, acidification of a soil water

suspension leads to an increased concentration of metal ions in 

solution, as a result of cation desorption with H ^ , dissolution of 

solids and dissociation of organo-mineral complexes (Cottenie et al.,
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1984; Dean and Suess, 1985), Metal immobilization arising from increased 

soil pH may be partly attributed to the retention of metals, such as Cu 

and Zn, by H+ saturated montmorillonite (Kisk and Hassan, 1973) possibly 

as a result of hydroxide precipitation in the clay systems (Bingham et 

al., 1964). The retention of Cu, P b , Zn and Cd by clay - humic acid 

mixtures under alkaline conditions is determined by competition between 

the ability of organic matter to form soluble metal humâtes and the 

tendency of clay to strongly retain the sparingly soluble metal hydroxyl 

species formed at pH >6 (Hatton and Pickering, 1980). Metal 

immobilization due to precipitation as h^^oxides or carbonates, 

depending on the element, can also occur at a soil pH of 6  - 9 (Street 

et al., 1978; Dean and Suess, 1985). For instance, cadmium carbonate 

regulates Cd solubility above pH 7.25 (Street et al., 1978). Such pH 

dependent mobilization/immobilization processes are very complex and one 

mechanism could apply over only a narrow range of pH. Such is the case 

with Zn where at soil pH <5.5 its solubility is partly determined by 

nucléation or specific adsorption to hydrous oxide (McBride and 

Blasiak, 1979; Iyengar et al., 1981), and as soil pH increases to values 

>5.5 the adsorbing Zn is replaced by other cations. At soil pH >7.5 Zn 

mobility increases as a consequence of an increase in organic complexes 

in the soil solution (McBride and Blasaik, 1979).

Changes in metal solubility will also result in changes in metal 

diffusivity and leachability. In other words, as soil pH decreases 

metal diffusivity increases (Clarke and Graham, 1968; Melton et al.,

1973). For instance, in one particular study the total concentration of 

Zn in the soil solution decreased about 100- fold as the pH of the soil
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increased from 4.4 to 7.5 (Jeffrey and Uren, 1983). Consequently, as 

metals are removed from the rhizosphere due to plant uptake, there is a 

more rapid replenishment of metals in the rhizosphere of acid soils than 

in more alkaline soils. In a similar fashion, the greater metal 

concentration in the soil solution in acid soils can result in greater 

leaching of metals such as Zn, Cu, Ni, Cu, Cr, Pb (Tyler, 1978) and 

consequently the residence time of these metals in the soil decreases 

with the risk of ground water contamination.

The metal fraction in a soil solution is not only governed by pH but 

also by the soil's cation exchange capacity. All soils contain 

negatively charged colloids whose charge is balancedby adsorbed cations. 

Calcium (Ca) , magnesium (Mg), sodium (Na) and potassium (K) are the most 

common exchangeable cations in neutral soils, with hydrogen and 

aluminium (Al) ions dominating acid soils (keeper,, 1972). Hence, metal 

cations added in soil amendments will enter into competition with those 

already present on the exchange complexes. The cation exchange capacity 

of soil is determined by the nature and content of organic matter and 

clay, and to a lesser extent hydrous iron and manganese oxides (Hani and 

Gupta, 1983; Gupta and Stadelmann, 1983). Humus becomes

increasingly important as the seat for cation exchange as the pH of a 

soil rises, since for each unit increase in pH the change in cation 

exchange capacity of organic matter is several times greater than that 

of clays (Jenkinson, 1988).

Soils with a high cation exchange capacity can safely accept larger 

amounts of toxic metals relative to soils with low cation exchange 

capacity. In the U.S.A., metal uptake by crops has often been related
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to soil cation exchange capacity, i.e. for a given quantity of metal 

added, plant uptake is greatest from soils of low cation exchange 

capacity. Consequently it has been suggested that application of sewage 

sludge might be related to soil type, using cation exchange capacity as 

the criterion for regulating sludge disposal (Webber, 1980). It would 

appear that cation exchange capacity is particularly important for 

retention of Cd, in both polluted and unpolluted soils, than it is for 

either Zn and Ni (Soon and Bates, 1982). As cation exchange capacity 

increases Cd uptake decreases (Hagiri, 1974; Miller et al., 1976), this 

response being closely related to soil organic matter content. Lester 

et al. (1983) suggested that organic matter affects Cd adsorption more 

by its exchange capacity than by its chelating ability. The exchange 

capacity of humus is due mainly to carboxylic acid groups (R-COOH) which 

are dissociated to the carboxylate anion at the pH values found in all 

but the most acid soils (Jenkinson, 1988).

The capacity of coarse textured soils to reduce heavy metal 

concentrations in solutions derived from applied sludge is generally 

less than that of fine textured soils (Page, 1974; Adams and Sanders, 

1983, 1984). The concentrations of Pb (Doelman and Haanstra, 1979a), Zn 

(Shuman, 1975) and Cd (Cottenie et al., 1983; Kloke et al., 1984; 

Sauerbeck and Styperek, 1985) in the soil solution decreases as clay 

content increases. For instance, the threshold soil concentration at 

which Cd becomes toxic is < 2 mg/kg for light sandy soils but 4 mg/kg 

for loams (Sauerbeck and Styperek, 1985). Copper is also adsorbed by 

clays, adsorption decreasing in the order montmorillonite > illite > 

kaolinite (Kranskopf, 1970, as cited by Mortvedt et al., 1972).
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Moreover, sandy soils (Archer, 1980) and topsoils derived from coarse 

textured parent material (Thornton, 1981; Reaves and Berrow, 1984), tend 

to be low in total Cu.

1.2.3 CHELATION BY ORGANIC MATTER

The nature and content of soil organic matter are important factors 

controlling the availability to plants of heavy metals present in soil. 

Metallic ions, particularly Fe and A 1 , are tenaciously held by humic 

preparations and can only be removed with difficulty (Jenkinson, 1988). 

The role of soil organic matter in immobilising heavy metals has been 

studied by several workers. High concentrations of soil organic matter 

lead to reduced plant uptake of Ni (Halstead et al., 1969), Cd (MacLean, 

1976), Pb (Zimdahl and Foster, 1976) and Zn (Matsuda and Ito, 1970; 

Spotswood and Raymer, 1973; Claydon et al., 1974). However^ MacLean 

(1976) found that soils high in organic matter increased Zn uptake by 

lettuce. The reduction in metal concentration in the soil solution is 

probably due to the formation of insoluble metal-organic complexes 

(Albrecht, 1941; Mortensen, 1963). However, complexing can also lead to 

increased metal solubility (Petruzelli et al., 1981). Soluble chelates 

generally carry a negative charge and consequently are not fixed to the 

negative surfaces of the soil. Moreover, it is thought that Cu 

complexes by virtue of their size or net charge can facilitate or 

strongly reduce Cu transfer across biological membranes (Jaworski et 

al., 1984). In this respect, Mercer and Richmond (1971) showed 

that organo-copper complexes with molecular weights of > 1 0 0 0  are 

available for plant uptake, whereas those with molecular weights >5000
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are not.

The general reaction between a metal ion (M) and an organic ligand (A) 

can be described by the equation (Jenkinson, 1988)

jM + iA ^ = 5  M A
j i

However, little is known of the specific ligands which participate in 

individual complexing reactions in soils. Geering and Hodgson (1969) 

attempted to characterize the materials in soils responsible for metal- 

organic matter complexing. They separated soil organic matter into 

dialysable and non-dialysable fractions and found both fractions capable 

of complexing metals. The dialysable fraction was found to consist of 

acetic and other aliphatic acids, amino acids and peptides; the non- 

dialysable, largely of fulvic compounds with carboxyl functional groups. 

Soluble organo-metal complexes generally involve chelation with citric 

and oxalic acids (keeper, 1972; Bondietti and Sweeton, 1973), although 

chelates with several leaf sap components, such as ellagic acid, are 

also present in soil solution (Gomah and Davies, 1974).

The stability constants for reaction between humâtes and metal, 

increases according to the stability of metal complexes (Jenkinson, 

1988), with trivalent Fe and A1 being the most strongly held, and 

followed by the divalent metals in the order : -

Cu > Ni > Co > Zn > Mn > Mg > Ca > Ba 

This greater affinity of Cu for sorption onto humic acid has also been 

noted by keeper (1972) and Kemdorf and Schnitzer (1980). In addition, 

Schnitzer and Skinner (1966) reported that of nine divalent ions Cu 

formed the most stable complex with fulvic acid. The exact nature of the
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chemical bonds between humic substances and metal ions is still 

uncertain (Stevenson, 1982). It is generally thought that they involve 

binding of metals by functional groups such as carboxyl, phenolic and 

imide (Randhawa and Broadbent, 1965) as well as carbonyl groups (Khanna 

and Stevenson, 1962). De Mumbrum and Jackson (1956) used infra-red 

adsorption spectra to study the exchange reaction mechanism of Cu and Zn 

and concluded that reaction of Cu and Zn with organic matter, in the 

form of peat, involves a chelating action associated with C==0, N==0 and 

alcohol-OH groups. The fact that Cu retention by humic acids can be 

reduced by 50 % when the carboxyl and hydroxyl groups are blocked 

(Davies et al,, 1969), further underlines their importance in the 

chelation mechanism. The chelation probably involves the metal linking 

to two adjacent functional groups (Van Dijk, 1971 - cited by Jenkinson 

1988) : -

COO' COOV , .
+ Cu2+ — > 11 Cu +

/ \ /\OH 0

However, it is unlikely that a large proportion of cations are held by 

such a specific arrangement of functional groups (Jenkinson, 1988). 

Moreover, functional groups containing oxygen are not the only ones 

capable of reacting with metal ions, Cu in particular being able to 

react with the =N-H groups in the humic peptides (Stevenson, 1982) as 

well as with sulphhydryl groups (Dawson and Nair, 1950).

The reduction in metal availability due to complexing with organic
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matter, also results in reduced metal mobility within the soil system 

(Hodgson et al., 1965; Lund et al., 1976; Sposito et al., 1976; 

Holtzclaw et al., 1978). Nickel, Cd, Co and Zn being less strongly 

complexed than Cu are consequently more mobile than Cu. Copper is 

readily complexed by organic soil constituents, forming compounds of 

varying solubility. Copper deficiencies following the reclamation of 

peat bogs are common (Pizer et al., 1966). In fact, when organic soils 

of this type are treated with conventional soil extractants little or no 

Cu is removed, demonstrating that very stable organo-mineral complexes 

are present (Lucas, 1948). Incorporation of peat, when accompanied by 

liming to offset the acidification of peat, is effective in reducing Cu 

availability in contaminated soils (Berrow and Cheshire, 1985). The 

peat reduces the acetic-acid extractable (i.e. exchangeable) but not the 

EDTA extractable (i.e. complexed) Cu fraction in the soil (Berrow and 

Cheshire, 1985). This strong complexing to soil organic matter accounts 

for between 95 -99 % of total Cu present in the soil solution (Hodgson 

et al., 1966; Davies, 1975). In contrast, only 60 % of the Zn present 

in soil solution is in organic complexes (Knezek and Ellis, 1980) even 

though organic matter is more important than clays in retaining Zn 

(Himes and Barber, 1957) and up to 70 % of the total soil Zn content is 

bound to organic matter (Randhawa and Broadbent, 1965b). Moreover, Cu 

remains as an organic complex over a wide pH range (Williams et al. ,

1984). Humic acid and fulvic groups complex Cu at optimum pH of 2.5 - 

3.5 and 6  respectively (Mitchell, 1964). This can account for the fact 

that unlike other metals such as Zn,whose solubility in the moderate pH 

range (5.5 - 7.0) is not controlled by soil organic matter (McBride and 

Blasiak, 1979), soil Cu availability is independent of pH above a 

threshold value of 5.5(Sanders et al., 1986).
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1.2.4. HYDROUS METAL OXIDES

Hydrous F e , Mn and A1 oxides are considered to be important in 

controlling the concentration of heavy metals in soil solution and 

natural waters (Hodgson et al., 1966; Jenne, 1968;. Shuman, 1977;

Kalbasi et al., 1978; Vuceta and Morgan, 1978). For instance, soils 

with high amorphous Fe oxide content generally show lower metal 

extractability than those low in amorphous Fe oxide (Kuo et al., 1985). 

Moreover, although pH is an important factor influencing metal 

availability for any particular soil, its influence can often be less 

important than that of amorphous Fe oxide (Kuo et al., 1985).

The mechanism by which these oxides remove metal ions from soil solution 

is still unclear. However, it is thought to involve initial adsorption 

and subsequent occlusion.

Hydrous Fe oxide is more important in regulating Cd availability than is 

hydrous Mn oxide (Sauerbeck and Styperek, 1985). On the other hand Cu is 

influenced more strongly by the soil's Mn oxide than by the Fe oxide 

(McLaren and Crawford, 1973). Manganese oxide probably determines 

initial Cu adsorption and Fe oxide, by virtue of its greater abundance 

in the soil, is responsible for long-term occlusion (McLaren and 

Crawford, 1973). The selectivity order of hydrous oxides for divalent 

metals is Cd > Ni > Zn > Cu (Quirk and Posner, 1975; Kinniburgh et al., 

1976).

Jenne (1968) proposed that foreign metals are adsorbed on negatively 

charged sites, on hydrous oxides, for which Ca and Mg do not compete.
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This mechanism would probably involve (Leeper, 1972):

2FeO.OH + Zn%+— ZnFe^ 0^ +
goethite

Such a mechanism is supported by the fact that raising the soil pH by 

one unit greatly strengthens the fixation of Zn (Leeper, 1972). 

However, goethite is not usually thought of as an acid but as a 

potential base which adsorbs phosphate and molybdate by exchanging 

hydroxyl groups (Leeper, 1972). The oxide's surface contains OH groups 

linked to one, two or three Fe ions (Parfitt et al., 1976), although 

some 0^ ions are also present in the surface layer. Moreover, it is 

only the singly linked Fe - OH group that is chemically active, (Parfitt 

et al., 1976, cited by Mott, 1988). Consequently, goethite probably 

reacts as a base and not as an acid and would preferentially bind with 

the anionic forms of metal such as Cu (Leeper, 1972).

While heavy metals may eventually be occluded in hydrous oxides, the 

rate of metal occlusion is likely to be very slow. Futhermore, in 

temperate soils these hydrous oxides may have a highly disordered 

structure and may be present in only small concentrations (Mott, 1988) 

unlike tropical soils which being more intensely weathered, the oxides 

are both crystalline and present in much larger proportions (Mott, 

1988).
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1.2.5 PHOSPHATES

Mantaining adequate reserves of available soil phosphate is an essential 

aspect of agricultural soil management. Application of sewage sludge 

can itself contribute significantly to maintaining soil phosphate 

levels. Liquid digested sludge contains about 1.6 % (on a dry solid 

basis) (DoE, 1981) and unlike N applied in sludge it is not prone to 

losses from the soil.

Soil phosphate is known to play some part in altering the availability 

of heavy metals. Over forty years ago it was realized that the 

availability of Zn for plant uptake depended, not only on soil pH, but 

also on its phosphate content (Camp, 1945), with high soil phosphate 

concentrations leading to Zn immobilization. Since then several workers 

have observed the decreased availability, not only of Zn (MacLean and 

Dekker, 1978), but also of other metals like Pb (Zimdahl and Foster, 

1976), Cu (MacLean and Dekker, 1978; Racz and Haluschak, 1974) and Mn 

(Racz and Haluschak, 1974). In contrast, a high level of phosphate has 

been seen to increase the availability of Ni (Halstead et al., 1969; 

Crooke and Inkson, 1955). However, Pratt et al. (1964), working at high 

soil pH values, found that application of phosphate could alleviate Ni 

toxicity to plants. This pH dependent effect of phosphate on metal 

availability has also been reported for Cd (McLean, 1976) where 

phosphate application only reduces Cd uptake in acid soils, no such 

reduction occurring in neutral or alkaline soils. However, Zn uptake 

is reduced by phosphate addition at all soil pH levels (McLean, 1976).

It is generally assumed that antagonism between heavy metal and
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phosphate occurs within the plant. It is unlikely that reduced metal 

uptake in the presence of applied phosphorous is due to interaction 

between phosphates and metal in the soil. Leeper (1972) explains that 

some phosphates, such as Zng(P0 ^) 2 , are too soluble to explain poor 

Zn response in the presence of high concentrations of soil 

phosphate, although minerals of low solubility, such as plumbogummites 

or gorceixite, may play a role in immobilizing soil metals. It is also 

unlikely for the dilution of metal concentration in plant tissue arising 

as a result of the growth response due to greater phosphate availability 

(Wild and Jones, 1988). Phosphate application is seen to have a much 

greater effect on the Pb composition of shoots than on that of roots 

(Zimdahl and Foster, 1976), indicating that phosphate affect the 

translocation of Pb rather than its uptake. Similarly, phosphate is 

thought to interfere with the translocation or utilization of Zn within 

the plant (Olsen, 1972), However, no precise mechanism has been 

suggested for these effects.

1,3 EFFECTS OF SLUDGE APPLICATION ON SOIL CONDITIONS AND 
ITS METAL CONTENT

1,3.1 SOIL ORGANIC MATTER AND pH

The value of sewage sludge as a fertilizer has long been documented 

(Brenchley and Richards, 1920; Noer, 1926; Muller, 1929). It is a 

particularly valuable source of N and P, provided its application is 

correctly timed relative to sowing or planting of a crop. In addition, 

sewage sludge contains organic matter which provides humus and can^
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therefore, be a useful soil conditioner improving soil porosity (Pagliai 

et al., 1981; Guidi and Hall, 1983), aggregate stability (Borchert, 

1983; Furrer and Stauffer, 1983), water holding capacity (Epstein, 1975; 

Guidi and Hall, 1983; Williams, 1975), and hydraulic conductivity 

(Epstein et al., 1976; Gupta et al., 1977).

At the same time, sludge application results in increased soil cation 

exchange capacity (Epstein et al., 1976; King and Morris, 1972). This 

is attributed to the introduction of organic matter (Gupta and 

Stadelmann, 1983). However, the Department of Environment (1981) points 

out that application of liquid sludges at normal rates will not usually 

have any noticeable effect on soil organic matter content, although 

regular applications of sludge cake can significantly increase soil 

organic matter content. In addition, while it is possible that the 

effect of added organic matter in reducing the phytotoxicity of added 

metals is due to the resultant increase in cation exchange capacity, it 

is more likely due to the formation of insoluble chelates unavailable 

to crops in the short term (DoE, 1981). However, the fraction of soil 

organic matter which are mostly markedly increased by sludge application 

are fats, waxes and oils (Hinsely et al., 1976) and these organic forms 

will not contribute significantly to immobilizing metals (Hinesly et 

al., 1976) .

The application of sewage sludge to land can itself lead to changes in 

the pH of the receiving soil. Whereas sludge addition can increase the 

pH of acid soils (Bolton, 1975; Hemkes et al., 1980; Edgar, 1983) it 

generally leads to a decrease in soil pH (Cunningham et al., 1975; 

Kelling et al., 1977; Kuo et al., 1985). This soil acidification is
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probably associated with nitrification (Kirkham, 1974; Magdoff and

Chromec, 1977; Robertson et al., 1982; Lester et al., 1983);

i.e. + 2 O 2  — > NO]' + H 2 O + 2 H+

Consequently, application of a wet sludge, high in ammonium, will result 

in a greater reduction of pH than would be the case where a dried 

sludge, low in ammonium, is applied (Chang and Broadbent, 1980; Williams 

et al., 1984). Soil acidification is also thought to arise from the 

oxidation of sludge organic matter, leading to the production of organic 

acids (Kirkham, 1974; Robertson et al., 1982).

The chemical treatment of sludge prior to disposal is also an 

important factor determining soil pH. In this respect, Soon et al.

(1980) observed that soil pH is reduced by application of Fe- enriched

sludge, slightly affected by Al-enriched sludge and increased by lime 

treated sludge. Hence lime treatment not only reduces odours and kills- 

off most of the pathogenic bacteria in sludge (DoE, 1981; SAC,

1986), but the resultant increase in soil pH can go some way in 

ensuring that polluting metals are kept in relatively unavailable forms. 

However, water-, acetic acid- and EDTA - extractable Cd concentrations 

in sludge may increase following addition of lime (Bloomfield et al., 

1976) but acetic acid extractable concentrations of Cu, Ni and Zn do not 

(Bolton, 1975).
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1.3.2 TOTAL METAL CONCENTRATIONS

A sound knowledge of soil/plant/animal relationships is essential in any 

appraisal of hazards associated with the utilization of sewage sludge on 

land. Plant uptake of the heavy metals applied is the first important 

step in determining the potential toxicity of these elements to the food 

chain. This is strongly influenced by the amount and availability of 

metals in the topsoil. The increase in total soil metal concentration 

arising from continued sludge application to land is well documented 

(Andersson and Nilsson, 1976; Sidle et al., 1976; Vitasalo, 1978; Keefer 

et al., 1979; Davis, 1980; Hemkes et al., 1980).

Aerial deposition and phosphate fertilizer application are far greater 

contributors to the metal load of agricultural soils than is sludge 

which is only of importance on a local basis (Davis, 1980). For

example, in Denmark locally produced sludge was found to be a major 

factor in enhancing soil metal concentrations (Hansen and Tjell, 1978) 

but as sludge was only applied to a small proportion of the total

agricultural land area^ its contribution was only 4, 5 and 19 %,

respectively, of the total national input of P b , Cd, and Zn to soils. 

The remainder was accounted for by inorganic fertilisers and aerial

deposition (Hansen and Tjell, 1978), eg. 90 - 99 % of the Pb content of

ryegrass growing in a rural area of Denmark was as a direct result of 

aerial deposition (Tjell et al., 1979). In the U.K., land disposal of 

all the sludge produced would approximately require ^ 5 % of all the 

available agricultural land (Davis, 1980).

Increase in soil metal levels are a linear function of sludge metal
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loading (Andersson and Nilsson, 1972; Davis, 1981). Build-up of metals, 

such as Mn, Zn, Cu, Ni, C r , P b , C d , H g , and Co, in receiving soil can be 

brought about, not only by long term sludge disposal (Le Riche, 1968; 

Kirkham, 1975; Andersson and Nilsson, 1976; Webber,1980), but also by 

short term applications (Boswell, 1975; Hemkes et al., 1980).

1.3.3 AVAILABLE METAL CONCENTRATIONS

Following sludge application to land, there is an immediate increase in 

the concentration of heavy metals in the freely- available soluble and 

exchangeable fractions. In turn, this is followed by a more gradual 

release of metals by the solution of inorganic compounds and the 

decomposition of organic matter (Lewin and Beckett, 1980). 

Incorporation of sewage sludge into agricultural soils results in 

increased acetic acid, magnesium chloride, nitrilotriacetic acid (NTA)-, 

and diethylenetriaminpentaacetic acid (DTPA)-, extractable fractions of 

soil Cu, Ni and Zn (Bolton, 1975; Soon et al., 1980; Kuo et al,, 1985) 

and ammonium acetate extractable soil Cd (Andersson and Nilsson, 1974). 

However, Singh and Norwal (1984) reported that the application of sludge 

did not result in an appreciable change in soil exchangeable, sorbed and 

carbonate fractions of metals except Zn where the DTPA- extractable 

fraction increased with sludge application rate.

Any such inconsistencies between the findings of workers in observed 

changes in metal extractability following sludge application may be 

explained by the ensuing temporary, but massive rise in soil biomass 

(Lewin and Beckett, 1980). The rapid growth in the microbial population

41



may reduce, by assimilation, the increase in freely-available metal 

concentrations which follow sludge application. In addition, this may 

be coupled with a more gradual transfer of heavy metals into less labile 

organic complexes, adsorption sites and insoluble salts (Lewin and 

Beckett, 1980). Moreover, some sludge metal fractions are resistant to 

decomposition and release of metals from these fractions is very slow, 

if at all. Short term changes in metal extractability following sludge 

incorporation into soil were clearly demonstrated in a laboratory 

investigation carried out by Wollan and Beckett (1979). Over the first 

few days, subsequent to sludge incorporation, Zn extractability 

increased whereas extractable Cu decreased. However, this was followed 

by a more gradual equilibration period during which time the Zn 

extractable content fell and the Cu extractability increased in both 

cases to values higher than those present in the control soil. This 

greater extractability persisted for over 2 years (Wollan and Beckett, 

1979). Peaks in the potassium nitrate and DTPA-extractable fractions 

of Zn, Cd and Pb have similarly been observed 30 days after sludge 

application to land (Petruzelli et al., 1981), further underlining the 

temporal effects of sludge application on soil metal availability.

Notwithstanding any observed metal fluctuations, the greater 

extractability of metals from sludged soils persists over that found in 

control soils for a number of years following application of sewage 

sludge to agricultural land (Berrow and Burridge, 1980; Petruzelli et 

al., 1981; Sanders et al., 1986a). There also appears to be a tendency 

for the ratio between acetic acid- and ethylenediaminetetraacetic acid- 

(EDTA) extractable Zn, Cu, Ni, Cr and Cd to reach a constant value in
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long term sludged soils irrespective of the metal forms or 

concentrations present in the sludge (Berrow and Burridge, 1980).

1.3,4 MOVEMENT OF SLUDGE DERIVED METALS

The environmental significance of an increase in soil heavy- metal 

levels, arising from sewage sludge application to land, becomes more 

apparent when it is realized that the applied metals, are normally 

retained within the top 2 0  cm of undisturbed soil, in which the highest 

concentration of plant root occurs. Most workers investigating this 

metal accumulation in sludged soils have^ thus^ tended to restrict their 

sampling to within this surface 20 cm depth. This general lack of metal 

(e.g. Cd, Cr, Cu, Ni, P b , Mn, Co, H g , As, Se, Zn) movement within the 

soil has been reported by many authors : Andersson and Nilsson (1972) , 

Kirkham (1974) , Giordano and Mortvedt (1976) , Vitasalo (1978) , Damgaard- 

Larson et al. (1979), Sommers et al. (1979), Williams et al. (1980), 

Chang and Broadbent (1980) , Kuo (1981) , Jones and Jarvis (1981) , 

Emmerich et al. (1982), Elliot (1984), and Williams et al. (1984). Even 

as long as 2 0  years after prolonged disposal (2 0 yrs), sludge metals are 

held within this surface layer of soil (Rothamsted Experimental Station, 

1985). This accumulation of metals within the topsoil exhibits an 

asymmetrical pattern. Hemkes et al. (1980) observed that the 

accumulation of Cd, Cr, Cu, Ni and Pb was greater in the top 2 - 5 cm 

depth than in any other layer within the top 25 cm of soil.

One would expect to find the greatest degree of metal mobility in soils 

or sediments with a high sand content (see Section 1.2.2.). However,
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Ketchum and Vaccaro (1977) reported that, on sand filter beds which had 

been used for 33 years to filter secondary sludge effluent, metal 

accumulation was restricted to the upper 6  cm of these beds.

Under certain conditions metals may migrate to depths in excess of 20cm. 

Indeed, metal enrichment to depths as great as 3m has been observed 

under some sludge disposal ponds (Lund et al., 1976). Even where sludge 

is applied to land for relatively short periods of time (Hinesley et

al., 1972) movement of Cr, Cd, Cu, Pb, Ni and Zn to depths below 15cm

can occur.

Generally, in excess of 90 % of the total metal load applied to soil via

sludge accumulates within the top 20cm depth ( Sidle et al., 1976;

Parker et al., 1978; Chang et al, 1984). However, individual elements 

have been shown to exhibit disparate retention. Page (1974) concluded 

that between 33 - 56 % of the total Pb, Ni and Zn applied to soil were 

retained in the surface 15 cm, that Cu retention was slightly lower at 

27 - 31 % and that 17 - 26 % of the Cr and Cd was retained. This also

implies that metal movements to depths greater than 15cm occurs, as the 

proportion of applied metals taken up by plants is very small (see

Section 1.4.2.), and indicates that the degree of metal retention and,

therefore, its movement down the profile, depends on the metal in 

question. In this context, Boswell (1975) noted that whereas Cd, Cr, Cu 

and Pb are all retained within the 15 cm layer, following the

application of 16 t/ha of sewage sludge to an acid soil, Zn had moved 

down to depths as great as 30cm. This greater migration of Zn was also 

observed by Touchton et al. (1976). In this case surface applications

of sludge within a 2 -year period, had increased the concentrations of
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Pb, Cu, Cd and Fe in the top 7.5 cm layer whereas Zn had moved as deep 

as 30 cm.

Metals differ in their mobility in soil and, in general, three groups 

can be discerned ( Sidle et al., 1977; Sidle and Kardos, 1977; Holtzclaw 

et al., 1978; Tyler and McBride, 1982; Davis, 1983) : -

(i) mobile - Zn, Cd, Ni.

(ii) immobile - P b , Cr, A g .

(iii) intermediate - Cu.

In slight contrast, Hickey and Kittrick (1984) recorded the order of 

metal mobility in soils and sediments as being Cd > Zn > Cu = Ni. 

Leaching experiments have confirmed the general mobility of Zn and Cd 

and the relative immobility of Cu and Pb (Lagerwerff et al., 1976). It 

is widely accepted that of these contaminants Cd displays the greatest 

mobility (Tyler and McBride, 1982; Brown et al., 1983; Kiekens and

Cottenie ,1983, 1985). Nonetheless Cd movement down the soil profile is

very slow. In fact,analysis of soils which had received sewage 

effluent and sludge for 11 years ( Sidle and Sopper,1976), demonstrated 

that no Cd movement occurred beyond the 0 - 5cm depth.

Limited metal movement down the soil profile is due to various soil

constituents which react to immobilize trace metals (see Section 1.2). 

Apart from the reactivity of the element concerned,the physico-chemical

properties of the soil itself affects the distributional pattern of

applied metals. Immobility can be attributed to specific adsorption 

reactions with manganese oxides > organic matter > iron oxide > clay 

minerals (McLaren and Crawford, 1973).
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Metals added to soil via sludge are therefore seen to persist in the 

uppermost layers of the soil for very long periods of time and are 

potentially available for uptake into plants and the foodchain. The 

forms of metals immediately available for the plant uptake are those in 

the liquid phase, i.e. in soil solution ( Alloway and Tills, 1983). 

However^ it is necessary to point out that many workers have used the 

terms 'available' and 'extractable' as though they were synonymous (see 

Section 2.1), as well as having correlated availability of an element or 

ion with its mobility. In this way^ the mobility of an element or ion 

can be defined as its ability to transfer from the solid to liquid phase 

of the soil system (Cottenie et al., 1983), that is, its mass per unit 

weight or volume in the liquid phase plus the amount that can be 

transferred to the liquid phase by changing conditions in the soil 

system. It has been suggested ( Lewin and Beckett, 1980) that there iŝ  

in fact^ no distinct available fraction of any heavy metal in soil, 

though heavy metals are released, during crop growth, from one or more 

pools in which they are retained. In addition, it might be possible, to 

find extractants which release metals in proportion, but not equal to 

the quantities which are likely to become available to a crop ( Lewin 

and Beckett, 1980) (see Section 2.1). However, the definition of 

relationships is dependent upon soil and crop types.
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1.4 THE BIOAVAILABILITY OF METALS IN SEWAGE SLUDGE

1.4.1 INTRODUCTION.

The hazards associated with the introduction of heavy metal pollutants 

into soils from sewage sludge and their effects on the foodchain depend 

on potential metal toxicity and the degree of adsorption by plants, 

animals and man. As movement of sludge metals down through the soil 

profile is very limited (see Section 1.3.4.), the chance of metal 

contaminants reaching ground water supplies is very slim, with the 

possible exception of boron (B) , molybdenum (Mo) and selenium (Se) 

(Davis and Carlton-Smith, 1980). However, the degree of metal movement 

down the soil profile will depend on the prevailing soil conditions, 

such as pH and cation exchange capacity. Hence the likelihood of 

contamination would be greatest where a sandy soil with a low organic 

matter content, overlies a shallow water table. Conversely, where the 

water table occurs at depth trace element contamination is very unlikely 

(Page, 1974; Higgins, 1984).

As only a very small proportion of the contaminating metal is lost from 

the topsoil by either leaching or plant uptake (where a crop is 

harvested) any capacity of the soil to convert, with time, the heavy 

metals into forms available to plants will be an important factor in 

governing their toxicity. When metal contaminated sludge is applied to 

land the metal fraction which is bound to organic matter will in theory 

become more available as the organic matter progressively decomposes. A 

situation could arise where^ if organic matter supplementation of a metal 

polluted soil to cease, a point would be reached when, due to a gradual
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organic matter depletion, released metals attain levels toxic to plants 

- the so called 'Time-bomb* affect (Leeper, 1972; Chaney, 1973; Haghiri,

1974). This affect is of greatest relevance to those metals whose soil 

chemistry is significantly influenced by organic matter, (i.e. Cu, Zn 

and Cd). Sludge organic matter decomposes at a rate of 20 - 25% per 

annum (Spotswood and Raymer, 1973) and as such is relatively unstable. 

Simulated oxidation of organic matter by treatment with hydrogen 

peroxide resulted in increased Cd extractability (Lagerwerff et al., 

1976) implying that a large proportion of the total Cd present in soil 

may be gradually solubilized and eventually become available for plant 

uptake. However, available evidence contradicts this theory and 

immobilization of sludge metals occurs with time (Giordano et al., 1975; 

Kelling et al., 1977; Healey, 1984; Kloke et al., 1984), indicating 

that the gradual solubilization of metals arising from the decomposition 

of sludge organic matter may be partially compensated by the adsorption 

capacity of the soil (Giordano et al., 1975). As heavy metals are 

released from their more labile forms^ they accumulate in non- 

biodegradable organic complexes or in insoluble crystalline precipitates 

involving more common elements (Lewin and Beckett, 1980). Moreover, the 

organic matter groups that retain metals such as Cu represent a 

minuscule fraction of the total organic matter content of soils. 

Besides, soils have other sources of organic matter, such as roots, 

seeds, pollen, foliage and animal remains. The popular concept that a 

toxic flush of metals could be released when organic matter declines 

beyond a critical point now seems to be unfounded (Davis, 1980; Davis 

and Coker, 1980; Elliott, 1984).
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Interpretation of experiments aimed at evaluating the phytotoxic effects 

of metals in sludge have not proved easy. Phytotoxicity is normally 

measured in terms of crop yield but, whereas some metals may reduce 

yield, the plant nutrients in sludge may increase it, confounding the 

interpretation of yield data. Much of the knowledge on the effects of 

metals on plant growth and composition has come from research using 

hydroponically grown plants or plants grown in soil to which metal salts 

have been added. Unfortunately, it is not possible to assess the 

effects on yield of metals in organic wastes directly from such 

investigations. Nevertheless, there have been a number of studies 

whereby direct comparisons of plant growth between the effects of metal 

salts and sewage sludges supplying similar amounts of metals have been 

made. Such investigations have shown that although metal salts provide 

a simplified system that allows the effects of metals to be identified 

without confounding effects arising from the presence of other sludge 

components, they invariably lead to higher metal uptake by crops 

(Dijkshoorn and Lampe, 1975; Mortvedt and Giordano, 1975). In fact, 

salt forms of Cd, Ni and Zn applied to soil are taken up by plants 5 - 7  

times more readily than the same heavy metals applied in sewage sludge 

(Kloke et al., 1984).

Questions concerning the toxicity of metals in sludge could be answered 

much more easily if it were possible to hold constant the components of 

sludge, whilst altering the metal content to suit experimental 

requirements in such a way that the yield of the indicator crop depended 

entirely on the metal content of the sludge. Such a technique, widely 

used in the U.S.A., involves 'spiking' sewage sludge directly with 

soluble inorganic metal salts and allowing the mixture to equilibrate
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for a period of time, usually a few weeks, prior to its incorporation 

into the soil. Where such 'spiked' sludges have been compared to 

inorganic metal salts for their effects on crop yield, Ni, Cr, Cd, Cu 

and Zn concentrations in the test crops have invariable been lower for 

the 'spiked' sludge treatments (Cunningham et al., 1975; Giordano and 

Mays, 1977). Unfortunately, it would appear that metals added as 

inorganic salts to 'spike' the sludge remain in more soluble and readily 

available forms than do metals in unenriched sludge, which are generally 

present in a variety of insoluble forms (Stover et al., 1976) (see 

Section 1.1.3.). In this respect, the availabilities of Zn, Cu, Ni and 

Cr as determined by extraction with ammonium acetate, acetic acid and 

EDTA are considerably less in sludge formed by digestion in the presence 

of the metals than in sludge obtained by treatment with the metal salts 

added after the digestion process (Bloomfield and McGrath, 1982). 

Moreover, even after a yearly equilibration in the soil, Cd uptake from 

'spiked' sludge remained greater than that from digested sludge 

containing a high Cd concentration (Webber, 1980). Extraction of this 

soil with acetic acid and EDTA confirmed that the added Cd in' spiked' 

sludge had remained in a more available form (Webber, 1980).

In view of these problems a new method for sludge enrichment has been 

developed in Britain by the Water Research Center. Sludges containing a 

controlled metal content are prepared by enriching the sewage, from 

which the sludge is produced, prior to treatment (Davis and Carlton- 

Smith, 1981). In plant uptake trials, the availabilitity to crops of 

metals in these experimental sludges correlated closely with the 

availability to crops of metals in real sludges collected from sewage 

treatment works (Davis, 1980).
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1.4.2. PLANTS

Metal contamination of the surface soil arising from sludge application 

is known to be virtually permanent, removal by leaching and by the crops 

being negligible (Purves, 1972; Bates et al., 1975; Davis, 1981).

However, although uptake of metals may be negligible, the effect of even 

short-term application of sewage on the metal composition of plants may 

be profound. Short-term sludge application to agricultural soils has 

resulted in increased plant tissue concentration of Zn, Cu, Ni and Cd 

(Boswell, 1975; De Vries and Tiller, 1978; Berrow and Burridge, 1980; 

Soon et al. , 1980; Korcak and Fanning, 1985), but not of Pb and Cr

(Bolton, 1975; Andersson and Nilsson, 1976; Kelling et al., 1977; Soon 

et al., 1980). These increases in metal concentrations are not only 

restricted to the crops harvested immediately following sludge 

application but persist for a number of years, even after a one-off 

sludging event (Chaney et al., 1977; Berrow and Burridge, 1980). 

However, although increased concentrations of potentially phytotoxic 

metals such as Cu, Ni and Zn can occur in plant tissue, these increases 

are generally not large enough to induce a yield reduction (King and 

Morris, 1972a; King et al., 1974;. Webber, 1980). Indeed as a result of 

nutrients added in sludge, crops often show an improved yield (Boswell,

1975). However, where metal rich sludge is applied, yield reductions 

do occur (Berrow and Burridge, 1980).

Unfortunately, there are relatively few examples of long term 

experiments designed to study the effects of sludge application on crop 

metal composition. Results from such investigations further illustrate 

the increase in plant Cu, Ni and Zn concentrations following sludge
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application to land (Rhode, 1962; Le Riche, 1968; Patterson, 1971) and 

the ensuing yield reductions (Rhode, 1962; Patterson, 1971), whereas P b , 

Hg, Se, Co, Cr and Mo concentrations in plant tissue remain unchanged, 

even after prolonged sludge disposal (Andersson and Nilsson, 1972).

Crop species differ greatly not only in the case of metal uptake 

(Andersson and Nilsson, 1972; John, 1973; Davis, 1980; Davis, 1983) but 

also in their tolerance to heavy metals (Hunter and Vergnano, 1952; 

Marks et al., 1980). Such differences are also found between cultivars 

of the same crop (Bagchi, 1976; John, 1973). Generally the faster 

growing crops (or accumulator species) and in particular leafy 

vegetables like lettuce, take up metals more readily than slower growing 

crops like potatoes, carrots and runner beans (Dowdy and Larson, 1975; 

McIntyre et al., 1977; Richardson, 1980; Webber, 1980). Differences 

also exist between metals most readily taken up by the various 

accumulator species. For instance, lettuce can accumulate particularly 

high amounts of Pb , whereas red beet and leeks accumulate large 

quantities of Ni, even from uncontaminated sites (Richardson, 1980). 

Within individual plants there is also an asymmetrical distribution of 

metals, vegetative tissue containing higher metal concentrations than 

fruiting, root or tuber tissue (Dowdy and Larson, 1975).

In general, vegetables and potatoes are more sensitive to metal toxicity 

than are cereals which, in turn, are rather more sensitive than grasses 

(Chumbley, 1971). However, it has been suggested that the upper 

critical concentrations at which Ni, Cu and Zn cause yield depression 

does not vary between species (Beckett and Davis, 1982).
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The effect on crops of potentially toxic metals will depend, to some

extent, on interactions between the metals concerned, not only in the

soil, but also within in the plant. These interactions can either

enhance or alleviate toxic effects. Five ways in which two potentially 

toxic elements can interact have been identified (Beckett and Davis,

1982)

(i) Independent

(ii) Weakly additive

(iii) Additive

(iv) Synergistic

(v) Antagonistic

Independent behaviour is exhibited by metals such as Zn, Cu and Ni when 

their concentration in plant tissue are all below their toxic threshold 

(Davis, 1980). That is, at subcritical levels the element present in 

the highest concentration relative to its critical concentration 

determines the phytotoxic effect. However, when a plant is already

suffering toxic reactions to a single element, its effects may be

enhanced if a second element is also present in amounts sufficient or 

nearly sô  for it to be toxic by itself. In this case, the overall effect 

for metals such as Cu, Ni and Zn, may be additive and can cause greater 

toxicity than the sum of the two separate effects (Davis, 1980),

Japanese scientists have shown that the addition of Zn to soil increases 

Cd adsorption by rice plants (as reported by Asami, 1984). They assumed 

that Zn dissociates the Cd fixed to binding sites in soil due to 

competition for these sites, consequently increasing Cd availability. A
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similar synergism between Zn and Cd has also been observed in rice

plants grown in culture solution (Asami, 1984). In contrast, Lagerwerff 

and Biersdorf (1972) observed that increasing Zn levels in culture

solutions suppressed Cd uptake by radish. They concluded that with the

low Cd concentrations present in the nutrient solution, Zn competed with 

Cd for absorption at sites of uptake. It would appear that Zn

interferes with both Cd absorption into the root and into the vacuole 

but once Cd is absorbed its rate of translocation into foliage is 

increased by Zn (Honma and Hirata, 1976). The ratio of Cd to Zn in 

solution is important in controlling the occurrence of synergism and 

antagonism between these two elements (Honma and Hirata, 1976). When 

the Zn/Cd ratio is low the presence of Zn facilitates Cd uptake (Honma 

and Hirata, 1976) whereas high Zn/Cd ratios lead to suppresed Cd uptake 

(Haghiri, 1974; Honma and Hirata, 1976). Similarly as the Cd/Zn ratio 

increases Zn solubility decreases (Bingham et al., 1976), possibly due 

to the precipitation of Zn with Cd as a mixed carbonate.

Antagonism has also been shown to occur between other metals besides Zn 

and Cd. For instance, Cu toxicity interfers with the uptake of other 

metals, notably Fe and also deranges the normal processes of nutrient 

accumulation by roots (Chapman, 1966). However, Cu uptake is itself 

depressed by both Ni and Zn (Dunne, 1956; Chaudhry et al., 1973; Davis 

and Carlton-Smith, 1984). Soil pH can influence the interactive

behaviours of metals. Whereas at high pH levels Cu sorption is 

decreased by the presence of Zn and Cd, at pH levels < 5 their presence 

does not interfere with Cu uptake (Kuo and Baker, 1980). Similarly, Cu 

and Cd depress Zn sorption at low pH, while slightly enhancing Zn 

sorption at higher pH levels (Kuo and Baker, 1980).
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1.4.3 ANIMALS AND MAN

In certain soils plants can grow at normal rates exhibiting no toxic 

effects and yet contain sufficient Se, Cd, Mo and Pb to cause either 

direct toxicity or metabolic imbalance in animals that consume these 

crops (Allaway, 1968). Other plants, however, may grow normally but 

contain insufficient concentrations of Co, Cr, Cu, Mn and Se to meet the 

dietary requirements of animals. Thus, with respect to certain trace 

elements added to soil via sewage sludge, the quality of feeds and foods 

could, under certain circumstances, be improved, while in others, 

detrimental effects may be encountered.

Few cases have been recorded of toxic effects in animals, such as 

reduced growth rates or mortality, arising from sludge application to 

agricultural land, although, in practice, cases are difficult to detect. 

One isolated case has been reported where stock was effected through the 

application to pasture of a high Mo-content sludge at heavy rates over 

many years, and another where sludge with an exceptionally high F 

content had been applied to land already contaminated with F (DoE,1981). 

Earthworms have been shown to concentrate elements such as Cd and Zn 

in their tissue (Helmke et al., 1979; Hartenstein et al., 1980; Kruse 

and Barrett, 1985). Such biological magnification may present a 

potential hazard for foodchain transfer of heavy metals - earthworms 

being an important food source for many amphibians, reptiles, birds and 

mammals. In recent years concern has also been expressed about possible 

soil microbial inhibition due to prolonged sludge disposal to 

agricultural land (Brookes et al., 1984; Long, 1985; Brookes and 

McGrath, 1986). Many have attributed this deleterious effect to the
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build-up of heavy metals resulting from disposal (see Chapter V ) .

Ultimately, it is the safeguarding of man's health that is of the utmost 

concern. Little is known about the metabolism of heavy metals from 

ingested plant material. A number of plant constituents such as pectate 

or phytate are expected to strongly reduce the bioavailability of metals 

to monogastric animals, whereas in the rumen of cattle insoluble 

sulphide may form^leading to decreased intestinal absorption.

Nevertheless, experiments in which animals have been fed with soluble 

metal salts show that after absorption most trace metals accumulate 

preferentially in a few organs or tissues^ leaving the others relatively 

uncontaminated (Jaworski et al., 1984). For instance, Cd concentrations 

in animal tissues decrease in the order kidney > liver > lung > bone > 

brain > muscle, while in the case of P b , the decreasing order is bone > 

kidney > lung > spleen > muscle. Thus, selective consumption of muscle 

rather than offal can act as a barrier to the transfer of heavy metals 

in humans even when pasture soils contain excessive amounts of metal. 

Processing of crops, prior to human consumption also lowers the metal 

contents of foodstuffs. Washing vegetables reduces Pb levels by 61 - 82 

%, and Cd levels by 29 - 57 % (Kampe, 1983). In the case of potatoes,

94 % of the Pb and 50 % of the Cd is located in the skin, and peeling

reduces the contents accordingly. Nevertheless, a survey of an old Pb 

and Zn mining area in north-east Wales revealed that an extensive area 

of agricultural land was contaminated by Cd, Pb and Zn and a subsequent

study of women resident in the area demonstrated a clear association

between blood Pb concentrations and the consumption of home grown 

vegetables (Gallacher et al., 1984).
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1.5 REGULATIONS FOR SLUDGE DISPOSAL TO AGRICULTURAL LAND

1.5.1 THE 'ZINC-EQUIVALENT' CONCEPT

The first attempts in the U.K. to lay down standards to regulate sludge 

disposal to agricultural land was made by ADAS (Chumbley, 1971) based 

upon a series of pot trials and field experiments started in 1969. 

Until very recently these guidelines were still being used by sludge 

producers in the U.K.. These recommendations suggested that the 

relative phytotoxicities of Zn, Cu and Ni were in the ratio of 1:2:8 

respectively. It was also assumed that the toxic effects of these three 

elements were related and additive and that the amount of toxic metals 

in sludge could be expressed as a single figure, i.e. the zinc- 

equivalent, by adding together the Zn content, twice the Cu and eight 

times the Ni content. The zinc-equivalent was related to a total 

loading (kg/ha) or to an available (EDTA-extractable) concentration in 

soil (mg/kg). Where there was no previous soil contamination, it was 

concluded that an addition to the soil (pH value close to 6.5) of 250 

mg/kg of zinc - equivalent was permissible over a long period (about 30 

years).

The zinc-equivalent was a convenient concept because all three elements 

(Zn, Cu and Ni) usually occur together in sludge in higher 

concentrations than they do in soil and are usually the only sludge- 

derived metals which adversely affect plant growth. Its introduction 

was thought to be opportune at a time of rapid expansion of sludge use 

on agricultural land in the U.K. and it represented the first real
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attempt to control metal contamination of soil and offset crop 

phytotoxicity. It undoubtedly served a useful purpose in ensuring that 

soil was protected.

Since that time, the zinc - equivalent concept has received much 

criticism. Work reported by Davis and Beckett (1978 a, b) and by 

Matthews (1978) suggest that the toxic effects of Zn, Cu and Ni only 

become additive when one or more approaches its individual toxic 

concentration. In addition the toxicities of Cu and Ni have been

overestimated. For instance, Cu and Ni were found to be less than twice 

and less than three times, respectively, as toxic as Zn to red celery 

and lettuce, when based upon their total soil concentration (Doyle et 

al., 1978). Whereas, when based on their extractabilities Cu and Ni 

were only 0.4 and 5.9 times as toxic respectively as Zn (Doyle et al., 

1978). A report from the U.S.A. Council for Agricultural Science and 

Technology (1976) stated that the toxicity of Zn, Cu and Ni were 

generally not additive and that the zinc - equivalent greatly 

underestimated the amounts of sludge-borne metals which could safely be 

applied to soils of near neutral or alkaline pH. It was also stressed 

that the zinc -equivalent does not uniformly apply to a broad range of 

crops. These conclusions have also been confirmed by numerous other 

field and pot trials with sludge treated soils (Bolton, 1975; Coker et 

al., 1982; Johnston et al., 1983). Crops vary greatly in their 

sensitivity to trace metals in soil, which makes the calculations of 

application limits very difficult except on the basis that they should 

allow even the most vulnerable crop to be grown safely (Webber, 1981). 

Although there are reservations (DoE, 1981)^ the zinc equivalent, as 

originally proposed, has remained a guideline for sludge utilization on
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land in England and Wales. In contrast, this concept was never adopted 

by other countries including the Agricultural Advisory Services in 

Scotland (SAC, 1986) and in the recent E.E.C. Directive on the use of 

sludge on agricultural land (E.E.C. , 1986), Zn, Cu and Ni are treated

independently.

1.5.2 GUIDELINES

Since 1971, several countries have introduced guidelines regulating the 

use of sewage sludge on agricultural land, some of which had the force 

of law. However, it is important to note that since 1986, agreement 

between E.E.C. member countries has led to a common policy on sludge 

disposal (E.E.C., 1986). In a review of some of these guidelines,

Webber et al., (1983) state that these are based on one or more of the 

following assumptions : -

a) that heavy metal concentrations in sludge applied to agricultural 

land may not exceed defined limits,

b) that heavy metal loadings to agricultural land may not exceed 

defined limits,

c) that heavy metals are less likely to cause problems if they are 

added to soil in several small increments during an extended

period of time, rather than in one or few large increments, and

d) that heavy metal concentrations in soil may not exceed defined 

limits.

Guidelines which were in force in several European countries and in the

U.S.A. and Canada are reproduced in Tables 1.4 - 1.7, as given by Webber
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TABLE 1.6 NORMAL BACKGROUND (bkg) AND MAXIMUM PERMISSIBLE (pmrm) HEAVY METAL 
CONCENTRATIONS (mg/kg DRYwt.) IN AGRICULTURAL SOILS (FROM 
WEBBER ET AL., 1983).

France Germany Scot land England £ Wales
E lement perm bkg perm bkg^ perm bkg perm

non- g 
calc calc

As 2-2.5 12 5 1 0 10

B 1 3.25 3.25

Cd 2 0.2 3 0.5-3 4 1 3.5 3.5

Cr 150 30 100 30-200 80 100 600 600

Cu 100 30 100 5-125 60 6 140 280

F 200 500 500

Hg 1 0.1 2 0.05-0.5 0.4 <0.1 1 1

Mo 0.5-4 2 2 4 4

Ni 50 30 50 25-100 40 1 35 70

Pb 100 30 100 50-150 80 50 550 550

Se 10 0.2-5 6 0.5 3 3

Zn 300 50 300 75-250 150 2.5 280 560

Zn-equi avlent 20. 5 280 560

FOOTNOTES :

Va lues are total concentrations in soil except for England and Wales Zn.
Cu and Hi extracted by EDTA and B extracted by hot water.

England and Wales - values shown are mg/l.

Maximum permi ssible Zn, Cu and Ni concentrations are subject to the
zinc-equivalent limitation.

(1) SAC. 1986.
(2) Values are quoted as kg/ha (to 200mm sampling depth).
(3) calc = calcareous.
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TABLE 1.7 E.E.C. 1986 DIRECTIVE RANGES FOR
CONCENTRATIONS OF HEAVY METALS IN SOILS 
AND SLUDGES (mg/kg DRY-MATTER) (FROM COUNCIL 
OF EUROPEAN COMMUNITIES, 1986).

Element
(1)

soil Sludge
(2)

Sludge 
Annual addition 
(kg/hg) based 

on 10-year 
average

Cd
(3)

Cr

1 - 3 20 - 40 0.15

Cu 50 - 140 1000 - 1750 12

Ni 30 - 75 300 - 400 3

Pb 50 - 300 750 - 1200 15

Zn 150 - 300 2500 - 4000 30

Hg 1 - 1.5 16 - 25 0.1

FOOTNOTES:

(1) For soils with a pH value of 6 to 7. Higher limit 
values may be set by member states where the soil 
pH <7.

(2) Member states may permit those levels to be exceeded 
in the case of the use of sludge on land 
which at the time of notifcation of this 
Directive is dedicated to the disposal of sludge but 
on which commercial food crops are being grown 
exclusively for animal consumption.

(3) No limit values for chromium have as yet been set.
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et al. (1983) and SAC (1986). Examination of these tables indicates the 

wide variations that existed between guidelines adopted in different 

E.E.C. countries. For instance, although it is widely accepted that 

highly contaminated sludge should not be spread on agricultural land, 

there was disagreement as to what metals should be regulated and at what 

concentrations the limits for 'acceptable' sludge should be set. Of all 

the countries given in Table 1.4, only Denmark listed four metals whose 

sludge concentrations needed monitoring, the other countries specifing 

at least seven elements Cr, Cu, Hg, Ni, P b , Cd and Zn. In addition,

the guidelines for England and Wales (DoE, 1981) have specified control

in three aspects of sludge use, these being (see Table 1.4)

(i) Pb applied to grasslands, garden or amenity areas

(ii) Fluorine (F) applied to grazing land (see Table 1.4)

It has also been suggested that more emphasis should be placed on 'safe' 

exposure standards based upon sludge metal ratios (Huisingh and 

Huisingh, 1974). Chaney (1974) recommended that the Cd content of

sludge to be added to soil should not exceed 1 % of the Zn content and

if possible less than 0.5 % and less than 15 mg/kg D.M.. At these

concentrations of Zn and Cd it is believed that crop injury would occur

from Zn before the Cd content of the crop constitutes a health hazard.

Most countries have set limits for the total loadings of heavy metals 

which may be added to soil via sludge application in a specified number 

of years ( Table 1.5 ). Denmark and Finland are the only countries 

which regulate only Cd and no other metal. All other countries regulate 

at least five metals. In Denmark and Finland it is assumed that by
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restricting Cd loading the addition of other metals will remain within 

acceptable levels ( Webber et al., 1983 ).

Maximum permissible heavy metal concentrations for agricultural soils 

(Table 1.6 ) were only defined by four countries : France, Germany,

Scotland and England and Wales. In these countries sludge application 

must cease when one or more heavy metal concentrations in the soil

equals the specified limits. The approach in England and Wales of

placing limits solely on soil metal concentrations and not on the metal

load of the sludge being applied^ meant in effect that any sludge, even 

the most contaminated, could, in theory, be applied to agricultural 

land, a view not held by the other countries including Scotland.

Certain guidelines have taken into account plant factors when specifying 

the limits to be improved. In Germany, sludges had to be applied before 

the growing season to grassland, vegetables and fruit crops ( Moller, 

1982 ). In Holland, different quantities of sludge were specified

depending on whether it was applied to arable land or pasture ( Moller, 

1982 ).

In the U.S.A. the quantities of metals which may be applied to land 

depend on the cation exchange capacity of the receiving soil. It is 

assumed that a soil with a cation exchange capacity of more than 15 

meq/lOOg soil can tolerate a metal load four times greater than can a 

soil with a cation exchange capacity of less than 5meq/100g soil 

(U.S.E.P.A., 1977 ). The pH of the receiving soil is taken into account 

in the guidelines for England and Wales ( DoE, 1981 ). These

recommended a pH of 6.0 for grassland, 6.5 for arable crops and a pH
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above 7.0 for significantly contaminated soil.

1.5.3 THE 1986 E.E.C. DIRECTIVE

The very existence of hundred-fold differences in the limits of heavy 

metal loading that could be applied to agricultural land in different 

countries, despite the scientific evaluation which had been made on 

environmental impact remains a clear indication of the very large gaps 

in our knowledge from which 'safe* and 'unsafe' concentrations and 

loadings can be defined.

In 1986 the Council of the European Community issued a Directive 

"on the protection of the environment, and in particular of the soil, 

when sewage sludge is used in agriculture" ( E.E.C., 1986 ). The

purpose of this Directive ( Table 1.7 ) was to ensure that man, animals, 

plants and the environment were fully safeguarded against possible 

harmful effects from the uncontrolled use of sewage sludge on 

agricultural land, and to promote its correct disposal. At the same 

time it was felt that "the disparity between the member states' 

provisions on the agricultural applications of sewage sludge might 

affect the functioning of the Common Market". The 1986 Directive 

stipulates that each member country must comply by producing guidelines 

not later than June 1989. Haigh (1987) explains that the Community had 

shown concern on the use of sewage sludge in agriculture even before the 

Community Environmental Programme had come into existence. In 1971 a 

research programme investigating certain aspects of sludge utilization 

was initiated as part of the work of European Cooperation in the field
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of Scientific and Technical Research and became known as COST Project 

6 8 . In 1983 conclusions drawn by the COST 68 Project and which were 

probably foreshadowed by the report of the Second Community Environment 

Programme, undoubtedly led to proposals for a Community Directive 

(Haigh, 1987). In 1982 a draft Directive was circulated among member 

states for comment and discussion.

The 1986 Directive requires that all sludge applied to agricultural land 

must have undergone pretreatment, but member states may authorize, under 

their own conditions, the use of untreated sludge, only if it is 

injected or directly worked into the soil. Maximum permissible soil 

metal levels are defined and sewage sludge application must be banned 

whenever the concentration of one or more metals in the soil already 

exceeds the limits laid down at the national level except on existing 

dedicated sites. The use of sludge is also regulated to ensure that 

heavy metal accumulation in the soil does not exceed these limits.

Regulation by member states may be either of the two methods : -

(i) upper limits can be set on the maximum quantity of sewage

sludge which may be applied per unit area per year while

observing the limits for metal concentrations in sludge

selected from ranges laid down in the Directive;

(ii) the limits on metal loading per year as laid down in the 

Directive can be applied.

On grassland there is^mandatory period of not less than three weeks 

following sludge application after which grazing or harvesting is
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allowed. Sludge must not be used on land on which fruit and vegetable 

crops are growing ( with the exception of fruit trees ). Moreover, 

where fruits or vegetable crops are normally in contact with the soil 

and eaten raw, sludge application must occur at least ten months prior 

to harvesting.

Soil pH is also taken into account. Where the pH of the receiving soil 

is below 6.0^ Member States are required to take into consideration the 

increased mobility and availability of metals and, if necessary, impose 

tighter limits. Where soil pH is above 7.0, Member States may permit 

the limit values they have fixed to be exceeded. However, the maximum 

authorized concentration of these metals must in no case exceed those 

values by more than 50 %. The official U.K. guidelines in response to 

this Directive are yet to be published.
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CHAPTER 2

PREPARATION AND ANALYSIS OF SOILS AND HERBAGE

2.1 INTRODUCTION

The environmental significance of the accumulation of sludge-metals in 

agricultural soils depends largely on how much of the metals are 

availabe for plant uptake. As land application become more important 

as a disposal option for sewage sludge, an urgent need for a method of 

measuring 'available' metal fractions has been felt. The 'available' 

fraction should, strictly speaking refer to that proportion of soil metal 

which can be absorbed by plants. However, as such, there is no distinct 

'available' fraction of any metal, although heavy metals are released 

during crop growth from one or more of the pools in which they are 

retained (see Section 1.2.1.). Consequently, a full understanding of 

the effects of soil heavy metals on plants could only be achieved by a 

precise knowledge of metal spéciation and plant response to each species 

(Lester et al., 1983). The complexity of mechanisms and reactions in 

which soil-heavy metals are involved, namely dissolution precipitation, 

adsorption-desorption and complexation - décomplexât ion reactions 

(Cottenie et al., 1983), make the accurate determination of soil metal 

status very difficult. Determination of the 'available* fraction in 

terms of actual plant uptake is a very slow process and so soil 

scientists have developed more rapid analytical methods using chemical 

extractants. In theory, these extractants, model plant roots in their 

ability to remove trace elements from the soil; that is the extractants 

dissolve metals from the various soil pools in quantities that are

69



proportional, but not equal, to the quantities that are likely to be 

released to a crop. The choice of extracting solution has often been 

based on empiricism, rather than on purely theorectial considerations 

(Kiekens and Cottenie, 1985), although some theoretical aspects may have 

inspired their adoption. Extracting solutions have been used for either 

selective determination of one single element or for simultaneous 

determination of a number of elements. Their value is normally judged 

as a function of more or less satisfying correlations obtained between 

the extracted amounts and the metal content of plant tissue. In such 

instances it would, therefore, be more appropriate to use the term 

'extractable' rather than 'available' metal.

Soil constituents, especially trace elements, can be brought into

solution stepwise, using extractants of increasing strength, starting 

with pure water and in the final attack, strong acids, to obtain the 

total amount (Viets, 1962). Such a series of extractants, which mobilise 

the various forms of soil metal species (see Section 1.2.1.) in a 

stepwise succession, has been proposed by Berrow and Burridge (1980) : -

(i) water;

(ii) ion exchange extraction using neutral salts (eg. ammonium 

acetate);

(iii) dilute acid extraction (eg. acetic acid), which also attack 

some insoluble salts;

(iv) extraction by chelating agents (eg. EDTA);

(v) total extraction by strong acids.

Each extractant will displace some, if not all, of the fraction

displaced by the less vigorous reagents preceeding it (Berrow and
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Burridge, 1980). The relative amount extracted will depend on the

element in question and on the prevailing soil conditions.

Sequential extraction has been employed to portion heavy metals between 

various soil fractions. Such procedures utilize a series of selective 

extractants to remove metals from the various soil fractions. For

instance, McLaren and Crawford ( 1973 ) developed a sequential

extracton procedure using 0.05M calcium chloride (CaCl2 ) , 2.5 % acetic

acid, IM potassium pyrophosphate, acid diammonium oxalate (pH 3.25) and 

hydrofluoric acid, to separate soil Cu into soluble-exchangeable, 

weakly-adsorbed, organically bound, occluded and residual fractions 

respectively. Most sequential extraction procedures have been used to 

study native or background levels of trace metals (Le Riche and Weir, 

1963; Shuman, 1979; Tessler et al., 1980). Recently, attempts have also 

been made to fractionate the heavy metals in contaminated systems, such 

as harbour sediments (Gupta and Chen, 1975) and soils and road dust 

(Stover et al., 1976; Elsokka.ry and Lag, 1978; Harrison et al., 1981; 

Miller and McFee, 1983; Kuo et al., 1983) and has proved very useful in 

assessing the relative importance of metal forms in soils and sediments. 

However, the method is very slow, tedious and labour intensive and is

unsuited for routine use.

Measurement of total trace metal concentrations in soil, by extraction 

with strong acids, is not a good indicator of that metal fraction 

available for plant uptake (Cottenie et al., 1983; Hani and Gupta, 

1983; Kuo et al., 1985; McGrath et al., 1985). Determination of total 

soil metal concentration indicates the extent of contamination but not

its biological significance, since a significant fraction may be
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present in the non-available form. Nonetheless, Purves and Ragg (1962) 

found that where total Cu concentration was < 2 mg/kg, in soils of the 

Eckford series, (developed from old sandstone in south-east Scotland), 

this provided a useful indication of soils likely to give rise to Cu 

deficiency in cereals. Similarly, total soil Cu content provides a good 

indication of Cu availability in chalk soils (Davies et al., 1971).

In Britain, 0.5M acetic acid is used on a routine basis to measure plant 

availabilty of a wide variety of metals, except for Cu which is measured 

by 0. 05M EDTA (Mitchell, 1964). Both these reagents have been 

extensively used to identify metal contamination of soil (Le Riche, 

1968; Purves and McKenzie, 1969; Beavington, 1973; Webber, 1974). In a 

Scottish context, acetic acid and EDTA have been used, by the Macauly 

Institute for Soil Research, in the mapping of extractable trace metal 

contents in soil (Berrow and Reaves, 1984). Acetic acid is used to 

measure extractable Cr, Co, P b , Mo, Ni, Ti, V and Zn, whereas EDTA is 

used for Cu, Mn and Zn. Moreover, Chumbley (1971) proposed that in 

regulating sludge disposal to land. Ni and Zn in soil should be 

monitored in terms of their extractability in 0.5M acetic acid and EDTA 

used for monitoring Cu.

EDTA extracts the exchangeable, readily soluble and organically 

complexed fractions of soil metals, as well as part of that fraction 

sorbed by sesquioxides (Davies, 1975). Extraction with EDTA has been 

widely used as an indication of plant available Cu under deficiency 

conditions (Borggaard, 1976; Robson and Reuter, 1981) and good 

correlations between EDTA-extractable Cu and crop uptake have been 

obtained (Oien, 1966; Lakanen and Ervio, 1971; Beyers and Hammond, 1971;
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Osiname et al., 1973; Tills and Alloway, 1983).

EDTA extraction is also a good predictor of plant available Pb (Alloway 

and Tills,1983; Davies, 1975, 1985), Zn (Viro, 1955; Trierweiler and

Lindsay, 1969; Berrow and Burridge, 1983) and Cd (Davies, 1985). In 

this respect, the incoporation of soil pH and organic matter content 

into the predictive equation provides better results for estimating 

plant uptake of Zn (Haq and Miller, 1972) and Cd (Haq et al., 1980).

For its part acetic acid is the most widely used extractant (Mitchell, 

1970). By virtue of being a weak acid and at the same time showing some 

complexing ability via its associated anion (ie. acetate), makes acetic 

acid a useful reagent for estimating the mobile reserves of certain 

elements in soil (Leeper, 1972). It has proved particularly valuable 

in determining plant available Cd, Zn and Ni (Hunter and Vergnano, 1953; 

Ng and Bloomfield, 1962; John et al., 1972; Haq et al., 1980;. Berrow 

and Burridge, 1983).

In recent years^ there has been a shift away from using acetic acid to 

that of weak salts which are more sensitive to soil conditions

especially soil pH, which as previously discussed (see Section 1.2.2.) 

plays a major part in determining soil metal spéciation and hence

availability. Ammonium acetate (Symeonides and McRae, 1977; John et

al., 1972 ; Andersson and Nilsson, 1974), sodium nitrate (Gupta and

Stadelmann, 1983; Hani and Gupta, 1983), calcium cholride (MacLean and 

Dekker, 1978; Sanders et al., 1986a) as well as water (Adams and

Sanders, 1985) have all received considerable attention.
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The soil solution is the interface between the plant root and the soil. 

Consequently^ the concentration of metal in soil solution is likely to 

be closely related to the bioavailable fraction. The main advantages of 

using water extraction are (Adams and Sanders, 1985):-

(i) it involves no chemical reagents,

(ii) it does not lead to destructive sampling of the soil, and

(iii) it extracts that fraction which is immediately available to

plants or which is in rapid equilibrium with labile forms.

Good correlations have been obtained between the concentrations of Cu, 

Ni and Zn displaced by water extraction and their concentrations in 

plant tissue (Bingham et al., 1976; Davis, 1979; Valdares et al., 1983). 

However, on practical grounds, soil solution measurements are not 

suitable for routine soil metal analysis since as well as being time 

comsuming, they require sensitive analytical techniques due to the very 

low concentrations extracted^ and water extraction is prone to 

contamination problems (McGrath et al., 1985).

Neutral salts extract larger concentrations of most metals than are 

present in the soil solution, but not as much as acetic acid or EDTA 

(McGrath et al., 1985). Besides displacing those metals present in the 

soil solution, their cations can exchange for weakly held cations on 

soil exchange sites (Viets, 1962). One such widely used extractant is 

ammonium acetate. It is seen to yield good correlations between the 

levels of Ni, Cd and Zn extracted and that taken up by plants (Soane and 

Saunders, 1954; Misra and Pande, 1974; Haq et al., 1980). However,

Andersson and Nilsson (1974) point out that ammonium acetate extraction 

is only sensitive to pH when it is prepared at pH 7 and not when
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prepared at pH 4.8, at which it masks any influence of soil pH on metal 

availability.

Sodium nitrate (O.IM) is especially useful in determining plant 

available Cd (Sauerbeck and Styperek, 1985; Hani and Gupta, 1985). Its 

two main advantages according to Hani and Gupta (1985) are : -

(i) the amounts extracted from different soil types correlate

well with the amounts taken up by plants, and

(ii) regardless of the physico-chemical properties of the soil an

almost uniform soil metal content, results in defined 

biological effects in plants, where the values for Z n , Cd 

and Cu are 1.0, 0.06 and 1.5 mg/kg respectively.

However, the amounts of metal, and Cd in particular, dissolved by sodium 

nitrate from soils are often very small (Hani and Gupta, 1983; Sauerbeck 

and Styperek, 1985). Consequently, even with flameless techniques the 

soluble metal fraction in most soils cannot be ascertained. For 

instance, whereas the maximum permissible Cd concentration in soil 

receiving sludge is 3 mg/kg (E.E.C., 1986), sodium nitrate-extractable

Cd in soil containing 2 - 4mg Cd/kg (total) can be too low for detection 

(Sauerbeck and Styperek, 1985).

The use of calcium chloride (O.IM) extraction is very promising. It is 

a slightly stronger extractant than sodium nitrate, removing more metal 

and consequently poses less of an analytical problem (Juste and Solda, 

1985). The most important advantage of calcium chloride extraction over 

sodium nitrate is the fact that it dissolves a sufficiently large 

proportion of available Cd, even in situations of low Cd contamination
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( 1 - 2  mg/kg) (Sauerbeck and Styperek, 1985). At the same time it is 

still sufficiently weak to reflect the modifying effects of individual 

soil properties (Sauerbeck and Styperek, 1983). Furthermore, calcium

chloride extractable Cd is seen to reflect changes in Cd uptake which 

occur over the years following sludge application and will also reflect 

the difference in availability between artificially enriched sludge and 

sludges with naturally high levels of metals (Sauerbeck and Styperek, 

1985). Good correlations have also been obtained between calcium 

chloride extractable Zn and Ni fractions and their relative uptake by 

plants (Sanders et al., 1986 a, b).

Many other extractants have also been used with varying degrees of 

success, eg. nitrilotriacetic acid (NTA) (Soon et al., 1980),

hydrochloric acid (Wear and Sommer, 1947), DTPA (Keeney and Walsh, 1975; 

MacLean and Dekker, 1978; Adams and Sanders, 1985; Hani and Gupta, 

1985), ammonium nitrate (Davies, 1985). However, many of these

extractants are so condition-specific that a blank adoption of them

without proper assessment prior to their being used to determine the 

'available' fraction is not advisable (Singh and Narwal, 1984). 

Knowledge gained from previous correlation studies for a given 

extractant may or may not be valid under different soil conditions and 

for different crops or for sludges derived from different sources

(Keeney and Walsh, 1975). Measurements made with these non-conventional 

and conventional extractants can^ therefore^ only be of value in 

predicting plant uptake, and hence toxicity, if appropriate calibration 

curves plotting extractable soil metal against plant uptake are at hand 

for the particular soil and crop under consideration (Davis, 1979),
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otherwise the results obtained with extractants may be misleading. As 

the extracted amounts represent the equilibrium concentration obtained 

by the contact of the solid soil phase with the extracting solution, the 

analytical results will be influenced by the operating conditions such 

as soil/solution ratio, extraction time and ambient temperature (McLaren 

and Crawford, 1973; Kiekens and Cottenie, 1985).

In spite of numerous attempts, no universal extractant has yet been 

found which can predict metal availability to a wide variety of plants 

under a wide variety of conditions. It would^ therefore^ appear that the 

only reliable test for the affects of sludge application on crop metal 

content is the actual analysis of the crops growing on the receiving

soil. Plant tissue analysis offers a direct method of measuring the
ciphysiological status of plants in connection with either defj^ency or 

toxicity, the concentration of trace elements in plants having a direct 

bearing on the health of animals consuming them. Crop tissue analysis 

can provide a useful complement to soil analysis for monitoring 

purposes, i.e. soil analysis indicates the extent of contamination, 

while plant analysis indicates its significance. Plant analysis offering 

a direct method of measuring available metals in soil, since the 

concentrations of metals in plant tissue are the integral result of all 

the factors which have affected uptake up to the time of sampling (Davis 

and Carlton-Smith, 1980), no soil analysis being able to predict or 

replicate this.

Unlike chemical extraction, bio-assay techniques are relatively slow. 

Such methods have been criticised in that in the field situation they 

will only indicate the toxicity problem after it has already arisen
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(Page, 1974). whereas what is needed is a procedure that will identify 

the problems before they occur. However, plant analysis need not be 

retrospective since small scale tests with a sludge and the soil to 

which it will be added can be completed before sludging of the field has 

occured and the results used to predict the hazard. Moreover, regular 

sampling of crops growing on sludged fields affords an essential monitor 

for assessing future sludge disposal practice.

Sampling plants grown under controlled conditions has the advantage that 

problems of leaf contamination are minimized and growing conditions can 

be well-defined and controlled. In addition, glasshouse trials offer 

ease of husbandry, large replication, are cheap to mantain and subject 

to less experimental error than field trials (Kuntze et al., 1983), 

Plants can also be grown at any time of the year and the uptake observed 

after one application of sludge providing a basis for assessing the 

probable hazard of subsequent applications.

There is evidence that the tissue metal concentrations are greater in 

plants grown under glass than those grown in the field (Davis, 1981; 

DeVries and Tiller, 1978). This is probably due to the more favourable 

growing conditions prevailing in the greenhouse. Watering of pots is 

much more rapid and regular than in the field, glasshouse temperatures 

exceed those in the field by several degrees both during the day and 

night. This results in increased evo-transpiration which in turn can 

result in increased amounts of metals reaching the leaves (Kuntze et al., 

1983) . The higher soil temperature in the pot can also result in 

increased solubility of some metal complexes (Stephenson and Collis- 

George, 1974).
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Thanks to the higher metal concentrations found in plants grown under 

greenhouse conditions as opposed to those found in plants grown in the 

field situation, the results obtained from pot experiments can be 

considered as the ’worst-case' situation, thus affording a margin of 

safety for assessing sludge disposal practices to agricultural land 

(Davis and Carlton-Smith, 1980), However,it would be unwise to base 

soil metal limits for land application of sewage sludge on results 

obtained from glasshouse trials (Kuntze et al., 1983), disposal 

guidlines should ultimately rely on date obtained from actual field 

experiments.

Whichever method is ultimately adopted, i.e. chemical extraction or 

plant analysis, there is a need to ’standardise' the plant species used. 

Ryegrass and barley are well suited for such a purpose as they are 

common crops in Britain and easily grown and harvested. In addition, 

their upper critical concentrations for many metals are well known 

(MacNicol and Beckett, 1985). The more information obtained for a 

particular plant species or chemical extractant, the more useful it 

becomes as its adoption will be based upon a wider spectrum of 

soil/sludge/plant combinations.

In the following sections the general methods employed throughout this 

work for the analysis of soil, herbage and sludge are described.

The results pertaining to the extraction of soil using acetic acid, EDTA 

and aqua regia are described in the following chapter (Chapter 3).
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2.2 MATERIALS AND METHODS

All analyses were carried out in duplicate. Where appropriate, blanks 

were used to quantify background contamination. All equipment used for 

trace element analysis was acid washed in 0.5M HNO^.

2.2.1 SOILS

2.2.1.1 SAMPLE PREPARATION

Fresh soil, was rubbed through a 5mm stainless steel wire sieve to 

remove stones and plant material. The sieved soil was then transfered 

to aluminium trays, spread out into a thin layer, placed into an aerated 

oven at 30°C and left to dry for 24hrs (minimum) (ADAS, 1986). The air- 

dried sample was then gently ground to pass through a 2mm round-hole 

sieve (see Appendix A ) .

2.2.1.2 pH DETERMINATION

2The pH of 10cm <2mm air dried soil, was measured using a 2.5 : 1 (V/V) 

water to soil mixture (ADAS, 1986).

A 2 ; 2 (V/V) water to soil ratio was used where the pH of moist soil 

was required.
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2.2.1.3 LIME REQUIREMENT

Lime requirement was measured using a soil-lime incubation technique. 
3 .10cm soil samples were mixed with increasing amounts of calcium 

hydroxide (Ca(0H)2)» stored moist with 25ml distilled water for 10 days 

and shaken daily for 2hrs. Soil pH was measured at the end of the 

incubation period. The amount of CaCOH)^ necessary to increase soil pH 

to desired levels was determined from a calibration curve of pH vs 

weight of Ca(0 H ) 2  added.

A similar procedure was followed, to. determine the weight of aluminium 

sulphate (Al2 (SO^)2 ) required to lower soil pH to desired value.

2.2.1.4 AIR-DRY MOISTURE CONTENT

Samples of lOg ( i  O.Olg) <2mm air dried soil were weighed into silica 

crucibles and placed in an oven (105°C) for 24hrs. The crucibles were 

then cooled in a dessicator and weighed. Loss of weight was expressed 

as % air-dried moisture (Avery and Bascorab, 1974).

2.2.1.5 TOTAL OXIDISABLE ORGANIC MATTER

The procedure followed is that described by ADAS (1986), involving the 

oxidation of soil organic matter by gently boiling with a solution of 

potassium dichromate, sulphuric acid and orthophosphoric acid. Excess 

dichromate was determined by titration with ferrous sulphate solution.
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2.2.1.6 LOSS ON IGNITION

Air-dried ( <2mm ) soil was ignited at 680^0 in a muffle for 18hrs 

(Avery and Bascomb, 1974). The loss on ignition was expressed as a 

percentage loss of weight of oven dry soil.

2.2.1.7 SOIL PARTICLE DISTRIBUTION

Following the destruction of organic matter by hydrogen peroxide of <2mm 

air-dried soil the clay and silt fractions were determined by the 

hydrometer method (Bouyoucos, 1951). The sand fraction was then 

collected and separated using nested sieves.

2.2.1.8 TOTAL NITROGEN CONTENT

The method used involved the conversion of soil organic nitrogen to 

ammonium-nitrogen by digestion with sulphuric acid and sodium sulphate, 

using a copper-selenium catalyst (ADAS, 1986). The ammonium is then 

converted to ammonia by means of sodium hydroxide and removed by steam 

distillation, and collected in boric acid. The ammonia is then 

determined by titration with dilute sulphuric acid.

2.2.1.9 EXTRACTABLE PHOSPHOROUS AND POTASSIUM

Soil P and K are extracted by 0.43M acetic acid at 20 + 1*̂ C (MISR/SAC,

1985). A 1:40 soil/solution ratio was used where 5g of <2mm air dried
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soil were shaken with 200ml 0.43M acetic acid on an end-over-end shaker 

for 2hrs and filtered immediately. The extract was measured 

spectrophotometrically.

2.2.1.10 EXTRACTABLE NITROGEN

2M potassium cholride is used to extract NH^^- and NO^ " nitrogen from 

moist soil. The ammonia is released by adding magnesium hydroxide and 

removed by distillation to be determined by titrating with sulphuric 

acid. Nitrate nitrogen is similarly determined following its reduction 

to ammonia by Devarda's alloy (ADAS, 1986).

2.2.1.11 EXTRACTABLE C d , Cu, Ni, Pb AND Zn BY 0.43M ACETIC ACID

Five grams ( + O.Olg) <2mm air-dried soil was extracted in 200ml 0.43M

acetic acid (DoE/Nat. Water Council, 1982), in a 500ml PTFE bottle, 

shaken overnight (16 hrs) on an end-over-end rotator at 20rpm at 18°C. 

The solution was filtered through Whatman No. 540 filter paper and the 

first few mis rejected. The remaining filtrate was used for 

determination by atomic absorptiometry.

2.2.1.12 EXTRACTABLE Cu AND Zn BY 0.05M EDTA

A 1:5 soil: extractant ratio (W/V) was used in which 15g <2mm air-dried

soil, was extracted in 75ml 0.05M EDTA at pH 7.0 (DoE/Nat. Water

Council, 1982) in 250ml PTFE bottles. The solutions were shaken for Ihr
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o
on a 20 rpra end-over-end rotator, at 18 C, and immediately filtered 

through Whatman No. 540 filter paper, rejecting the first few mis. The 

remaining filtrate was used for metal determination by atomic 

absorption.

2,2.1.13 TOTAL (AQUA REGIA EXTRACTED) Cd, Cr, Cu, Ni, Pb AND Zn

The method employed is one based on the procedure described by Berrow 

and Stein (1983), and used for routine analysis at the West of Scotland 

College.

Three grams ( ± O.Olg ) of <2mm air-dried soil was placed into a 100ml

graduated boiling tube. To this 22.5ml of 6M redistilled HCl and 7.5ml

redistilled 15.7M HNO were added and allowed to stand overnight at room
3
o

temperature (20 ± 1 C ) .  The tubes were then placed in a Tecator
o

digestion block and left for 30mins at 80 C or until the frothing

subsided (whichever was the longest). The temperature was then 
o

increased to 140 C and left for 2 hrs for the digestion to be completed.

After cooling, distilled water was added to bring the final volume to 

100ml. The digests were then shaken and filtered through Whatman No. 

542 filter paper. The filtrate was then used for heavy metal 

determination by atomic absorption.
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2.2.2. HERBAGE

2.2.2.1 SAMPLE PREPARATION

Immediately on receipt, approximately 200g of fresh herbage was sub

sampled and placed in an aluminum tray, lined with greaseproof paper, 

and dried overnight at 95°C in a forced draught Unitherm oven.

After cooling, the samples were weighed to determine dry matter content. 

The dried material was then ground in a 20cm steel hammer mill (Scott et 

al., 1971). The ground samples were stored in paper bags.

A 5g subsample of dried herbage was placed in a glass vial, oven-dried 

at 100°C and then cooled and stored in a CaCl 2  filled dessicator.

2.2.2.2 TOTAL HERBAGE Cd, Cr, Cu, F e , Mn, Ni, Pb AND Zn BY 
DRY COMBUSTION

The underlying principle behind this method is that the organic matter 

of the plant material is destroyed by dry combustion. The soluble 

mineral constituents in the resulting ash are then dissolved in 

hydrochloric acid. Any silica present is dehydrated and thereby made 

insoluble.

The method followed is based on that described by Scott et al., (1971). 

Two grams ( i  O.Olg) of dried milled material, taken from a 5g 

subsample, was ashed overnight at 470°C in a Lenton Thermal Design Ltd. 

muffle furnace, allowed to cool, moistened and taken to dryness. This
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was followed by a second overnight ashing. The residual ash was then 

refluxed with 5ml of 6M HCl for 20mins. , taken to dryness, baked for 

20mins, and refluxed with 2.5ml 6M HCl for a further 15mins. The 

solution was then taken up to 25ml with distilled water, filtered 

through Whatman No. 541 filter paper, ready for trace metal 

determination by atomic absorption.

2.2.3 SEWAGE SLUDGE

2.2.3.1 PREPARATION OF SAMPLE

A bulk sample of sludge of approximately 11 was homogenised by vigorous 

hand shaking.Approximately 150mls of known weight of fresh homogenised 

sludge was poured into a clean aluminium tray and left overnight to dry 

in a forced-drought oven at 95^C. The dried sludge was then milled 

using a Tecator Cyclone Sample Mill and stored in plastic bags for 

subsequent analysis.

2.2.3.2 TOTAL Cd, Cr, Cu, Fe, Mn, Ni, Pb AND Zn CONCENTRATION 
IN SEWAGE SLUDGE

The digestion procedure employed is that previously described for the 

determination of total soil metal concentrations (see Section 2.2.1.13).
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2.2.4 DETERMINATION OF HEAVY METALS

2.2.4.1 PREPARATION OF STANDARD SOLUTIONS

Multi-element standards solutions were prepared in the relevant 

extracting solution. In so doing differences in physical and chemical 

interferences during atomic spectrophotometry between the standards and 

the extracts were minimized (Kirkbright and Sargent, 1974).

2.2.4.2 ATOMIC ABSORPTION SPECTROPHOTOMETRY

Cadmium, Cr, Cu, Ni, Pb and Zn concentrations in soil, herbage and 

sludge extracts were read on an Instrumentation Laboratory AA/AE 

spectrophotometer, model 757, equipped with a single-slot burner and an 

air-acetylene flame, except for Cr which was determined in a N 2 O-C 2 H 2  

flame (see Table 2.1)..For the determination of all the elements, except 

Cu, a Smith-Hieftje background correction was applied.

Each individual sample was read over three consecutive 3sec. integration 

periods and the mean reading recorded. To minimise sample evaporation, 

all the extractants were read within 48 hrs of preparation. Moreover, 

EDTA extracts were read within 6hrs of extraction to prevent 

precipitation of EDTA complexes.

To reduce errors and interferences, flame conditions were optimised each 

time the instrument was used. Standard solutions were read at regular 

intervals and calibrations adjusted as necessary.
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TABLE 2.1. ATOMIC ABSORPTION SPECTROPHOTOMETER, 
OPERATION PARAMETERS AND SENSITIVITIES.

ELEMENT Cd Cr Cu Ni Pb Zn

Wavelength 228.8 357.9 324.7 232.0 217.0 213.0
nm

Lampcurrent 2.5 4.0 3.0 8.0 3.0 3.0
mA

Slit width 320 160 320 40 320 320
urn

Sensitivity 0.01 0.06 0.03 0.06 0.10 0.01
ng/ml/18ABS

Upper limit to 2 5 4 5 15 1
linear range 

ng/ml

Detection 0.001 0.003** 0.002 0.01 - 0.00
limit 

ug/ml

FOOTNOTES :

* Kirkbright and Sargent (1974).

** The detection limit for a N 2 O-C 2 H 2  flame is
expected to be lower than this value quoted for
an air-CPV2y2 fia^e.
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Copper, F e , Mn and Zn concentrations in sludge contaminated samples were 

determined using a Thermo Electron Plasma 100 emission spectrometer (see 

Table 2.2). Each individual sample was read over five consecutive Isec 

integration periods and the mean reading recorded.
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TABLE 2.2. PLASMA EMISSION SPECTROMETRY; OPERATING 
CONDITIONS AND DETECTION LIMIT.

ELEMENT WAVELENGTH

nm

TORCH HEIGHT

mm

DETECTION
LIMIT
ug/ml

Cu

Fe

Mn

Zn

324.75

238.20

257.61

213.856

14

20

20

14

0.0054

0.0046

0.0014

0.0018
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CHAPTER 3

EFFECTS OF CULTIVATION, LIMING AND NITROGEN FERTILIZER RATE ON THE 
DISTRIBUTION AND UPTAKE OF HEAVY METALS BY GRASS

3.1 INTRODUCTION

The most common soil management practices in agriculture generally 

involve the enhancement of soil nutrient availabilities by fertilizers 

and lime application and the amelioration of soil physical conditions by 

cultivation and drainage.

Lime application in Britain has a long history dating back to Roman 

times. Spreading chalk on some loam and clay soils was considered, 

among other things, to make these soils easier to cultivate. Nowadays, 

the need for liming is seen primarily as a means of maintaining a 

satisfactory soil pH for crop growth (ADAS, 1981) since plant species 

differ in their tolerance to soil acidity (Table 3.1). At low pH values 

the growth of many agricultural and horticultural crops is reduced and 

at high soil pH levels some plants are susceptible to trace element 

deficiencies. Soil pH has a very strong influence on the mineral 

composition of plants (see Section 1.2.2). Consequently liming, with 

its associated increase in soil pH, results in reduced uptake and hence 

lessens the risk of toxicity of Ni, Zn, Pb, Cd and Cu (John and Van 

Laerhoven, 1972, 1976; King and Morris, 1972a; MacLean and Dekker, 1978; 

Naylor and Kresse, 1983; Asami, 1984; Davies, 1985). However,

increased soil pH leads to increased Mo uptake (Davies and Jones, 1988) 

and can result in Mo-induced Cu deficiency in ruminants (Thornton and 

Webb,1975).
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TABLE 3.1 SOIL pH VALUES BELOW WHICH CROP GROWTH IS 
ADVERSELY AFFECTED ON MINERAL SOILS (FROM 
ADAS, 1981).

pH

Barley 5.9

Clover (white) 5.6

Lettuce 6.1

Lucerne 6.2

Oats 5.3

Potato 4.9

Rape 5.6

Ryegrass 4.7

Tomato 5.1

Wheat 5.5
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Large quantities of fertilizers are regularly applied to soils in 

intensive cropping systems to provide adequate N, P and K for crop 

growth. In Britain, the use of chemical fertilizers has increased 

dramatically over the past century (Table 3.2). The application of N is 

recognised as being important in increasing the productivity of 

grasslands in temperate regions. On average, in 1986, 162kg N/ha was 

applied to grazing land on Scottish dairy farms (SAC, 1986), with 

about 220 and 107kg N /ha applied to grassland cut for silage and hay 

respectively (SAC, 1986). Fertilizer application affects the mineral 

compostion of crops. A well known example of this is induced Mg 

deficiency in crops following the application of or Ca^^

containing fertilizers (Mengel and Kirkby, 1987; Marschner, 1986). In 

anion uptake, antagonistic effects are less common although Cl , 30^^ 

and H 2 P0 ^ uptake can be stimulated when NO^ uptake is strongly 

depressed (Kirkby and Knight, 1977). The most common anion interaction 

is that between NO^ and Cl . High Cl levels depress NO^ uptake and 

vice versa (Mengel and Kirkby, 1987). Fertilizer may also affect 

concentrations of minerals in plant tissue not present in the fertilizer 

such as micronutrients (eg. Cu, Mo and Co) (Hemingway, 1961, 1962;

Klessa et al., 1989). Whether these concentrations increase or

decrease depends largely on the soil status with respect to the mineral 

in question (Fleming, 1973). The more rapid growth stimulated by the 

application of one element may produce a dilution effect on a second 

element under conditions of marginal soil availability, or luxury uptake 

if sufficient is available. These effects occur with both

nitrogenous and phosphatic fertilizers and are generally more marked 

with the former (Little, 1981). The application of fertilizers can
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3.2 FERTILIZER USE IN 
YEARS FROM 1913 
TONNES) (FROM WILD,

THE U.K. 
TO 1984 
1988).

IN SPECIFIED 
(THOUSANDS OF

N P2O5 KgO

1913 29 183 23
1939 61 173 76
1950 229 468 238
1969 803 484 465
1982 1416 446 483
1984 1588 488 559
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also result in changes in sward composition. As plant species differ 

widely in their ability to take up metals (see Section 1.4.2 ) a shift 

in sward composition can result in a change in the net mineral 

composition of the sward. For instance, in areas of high soil Mo, 

non-nitrogenous fertilizer application has resulted in molybdenosis in 

stock. This has been attributed to the increase in clover, which

contains higher Mo content than grass (Fleming, 1973).

Soil cultivation has a number of objectives (Davies and Payne, 1988)

(i) to obtain a seedbed,

(ii) to kill weeds,

(iii) to undo damage done by previous traffic over land,

(iv) to incoporate crop residues,

(v) to increase permeability of the surface soil or subsoil.

However, the effect of cultivation on metal uptake has not been

elucidated. In theory, the resultant improvement in soil

permeability would be the most likely factor to have an effect on metal 

availabilty through improved root growth and drainage. Moreover, 

following cultivation there is an increase in organic matter 

decomposition (Jenkinson, 1988), whose rate declines with time (Foth, 

1978). This increased decomposition rate and the lower soil organic 

matter content can result in increased heavy metal mobility and^ hence^ 

plant availability (see Section 1.2.3).
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AIMS AND OBJECTIVES

As outlined above the adoption of a particular agricultural technique 

(eg. liming, cultivation and fertilizer use) can have a significant 

influence on the mineral composition of crops. The aim of the work 

described in the following sections was to investigate the influence of 

farming practices (i.e. fertilizer N rate, cultivation and liming) on 

sludge metals in grassland soils in the west of Scotland with respect 

to their;

i) uptake by grass,

ii) accumulation and distribution in soil profiles,

iii) extractability in acetic acid and EDTA as related to (i).

For this purpose a field experiment was set up on permanent grassland 

with a long history of sludge disposal on site. Concurrently, a pot 

experiment investigating the effects of pH on metal uptake by ryegrass 

was also carried out.
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3.2 EXPERIMENT 1 - FIELDWORK

3.2.1 SITE AND SOIL DESCRIPTION.

Trial work was carried out at Lower Carbarns Farm (Nat. Grid Ref. NS 773 

537), one of the few long-term sewage sludge disposal sites on 

agricultural land in the West of Scotland.

The field borders the southern perimeter fence of the Carbarns Sewage 

Treatment Works (see Plate 3.1). Digested sludge has been applied to 

the farm since 1934. For many years the sludge was actually used to 

irrigate the fields and the remnants of disused irrigation ditches lay 

witness to this.

The sewage draining into the Carbarns Sewage Treatment Works is mainly 

of domestic origin, although some industrial wastes are also present, 

particularly abattoir, light engineering and film processing wastes. 

However, before the decline in Scotish steel industry, the works 

received effluent from metal plating, steel pickling and store polishing 

industries, which undoubtedly contributed to the metal load of the 

disposed sludge. Currently, the Carbarns Works serves a population of 

44100 and produces 20000 gallons of digested sludge per day, all of 

which is disposed on to agricultural land (McCluskey, personal 

communication).
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PLATE 3.1 PART OF SURVEY MAP (SHEET NS 75) SHOWING LOWER CARBARNS
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SITE DESCRIPTION

Relief

Elevation

Slope

Aspect

Slope form

Climate

Rainfall

Vegetation

Land use class

Soil parent material

Soil Association 

Soil series 

Major soil Group 

Drainage

Gently sloping alluvial terrace 

in river valley of the Clyde, 

1 0 0 m 

3°

SSW

Straight.

Warm moist lowland.

900mm

Permanent grass.

3.2

Till derived from shales and 

sandstone from carboniferous 

sediments.

Rowanhill.

Caprington series.

Gambie Stagnogley.

Imperfectly drained.
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PROFLIE DESCRIPTION.

Horizon Depth Description

Ap 0 19cm Dark reddish brown (5YR 5/2) clay loam. Moderately

developed/fine to medium subangular blocky structure

breaking to fine or medium crumb. Low packing 

density; moderately porous with fine fissures and 

some coarse fissures randomly orientated in 

horizontal and vertical planes. Medium size

macropores; brittle; moderately firm; moderately 

sticky and very plastic; slightly moist. Common 

very fine distinct and clear reddish brown (5YR 4/4) 

mottles; moderate organic matter; fine abundant 

fibrous grass roots; few very small rounded stones; 

gradual irregular boundary into B horizon.

B 19-62cm Dark reddish brown (5YR 3/4) clay loam. Moderately

developed medium prismatic peds; medium packing

density; moderately porous, with medium fissures. 

Semi-deformable, moderately weak; very sticky and 

very plastic. Few, fine, prominent and sharp black 

(5YR 2/1) mottles. Common, very fine, faint and 

clear reddish-brown (5YR 4/3) mottles. Low organic 

matter as common, medium, distinct and diffuse 

brownish black (5YR 3/1) mottles. Fine and many 

fibrous roots changing to common with depth. 

Few very small rounded stones.
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An area 24m x 23m immediately adjacent to the perimeter fence of the 

Carbarns Works was enclosed by a fence in Spring 1985 to exclude cattle 

from the neighbouring field.

This area was divided into four blocks, each block consisting of 12 

plots of 2m X 1.5m, on which 12 treatments were randomized (see Section 

3.2.2). Each plot was separated from its neighbour by a Im discard 

strip. A 5m discard was allowed between the experimental area and the 

enclosure fence.

To enable the long-term effects of sludge application on the 

concentration of soil heavy metals to be quantified, an 'unsludged' soil 

was sampled on the same farm at a distance of about 135m from the trial 

site (Nat. Grid Ref. NS 772 536), immediately adjoining the east side of 

the farm steading. This area was previously used as an orchard and now, 

following uprooting of the trees, serves as a small paddock where a 

mixed sward exists.

3.2.2 TREATMENTS

Twelve treatments, each replicated four times were set up. The

treatments involved ; -

a) Cultivation

b) Liming

not ploughed (0 ), 

ploughed (1 ).

not limed (0 ), 

limed to pH 6.3 (1)
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c) Fertilizer N rate - 0 kg/ha (0),

250 kg/ha (1),

500 kg/ha (2).

These were combined in all possible ways, i.e. : -

Cultivation Liming Fertilizer N rate

0 0 0
0 0 1

0 0 2
0 1 0

0 1 1

0  1 . 2

0 0
0 1

0 2

1 0

1 1

1 2

3.2.2.1 CULTIVATION

During the second week in March, 1986 the 24 plots that had been

designated for cultivation were dug up. As a tractor could not be used

for the job, due to insufficient plot width, the plots were dug

manually. To best mimic the action of a motorised plough, it was

decided to invert the top 20 cm of soil by spade. The inverted grass
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layer was then vigorously broken up using a spade.

In order to obtain a comparable sward on both cultivated and 

uncultivated plots, the existing sward on the latter was killed off 

using glycophosphate i.e. 'Roundup'. To maximise kill off a first dose 

was applied during the last week of March, followed by a second 

application 20 days later. On 27th May, 1986, following a base 

dressing of fertilizer, (see Section 3.2.2.3), the entire experimental 

area was sown to perennial ryegrass (XoJium perenne L. cv Springfield). 

Sowing was carried out by means of a controvertor. A seeding rate of 

45 kg/ha was used.

3,2.2.2 LIMING

Soil samples from each of the 24 plots that were to be limed to pH 6.3 

were collected before sowing. Using a hand auger, 15 individual 

cores, to a depth of 10 cm, from each of these plots were taken. The 

samples were then bulked and the pH determined on <2mm air-dried soil. 

The lime requirement of six samples (3 each from the ploughed and 

unploughed), chosen at random from the group of 24 samples, was 

measured. As the buffering capacity of each of the six samples 

analysed was very similar, the mean lime requirement was used to 

calculate the amount of Ca(0 H ) 2  required to increase soil pH to 6.3. 

In calculating the weight of Ca(0 H ) 2  needed for each individual plot, 

it was assumed that there is 2500t soil/ha to a depth of 20cm. Calcium 

hydroxide was used in preference to calcium carbonate as the latter, 

unlike Ca(0 H ) 2  is slow acting and contains a number of impurities making
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the attainment of the target pH that much more difficult, especially in 

trials of short duration.

The lime was surface applied by hand to the plots at the begiiîing of 

May, that is 3 weeks prior to sowing. Due to the time scale of this 

experiment ( 2  yrs) and the well- known difficulties in obtaining and 

mantaining target pH in fields trials, liming was carried out only on 

this one occasion.

The pH of all plots, for each depth sampled (see Section 3.2.2.4), up 

to and including 75 - 100mm, were measured at the end of the second

season, using the soil samples collected for heavy metal analysis. 

Moreover, the pH of the eight control plots, i.e. cultivated and 

uncultivated with no lime and no nitrogen, was measured for all the 

depths sampled.

3.2. 2.3 FERTILIZER N TREATMENTS

The first dressing of fertilizer N, as NH^NO^ (34.5% N ) , was applied one 

week prior to sowing (20th May 1986). Thereafter^ N was applied one week 

after the spring and summer grass cuts.

The rates of N applied were 0 kg/ha, 250 kg/ha and 500 kg/ha. These 

rates represented the total N applied during one growing season and were 

split into three applications : -
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kg N /ha

Low N High N
rate rate

Before spring cut 105 2 1 0

Before summer cut 85 170

Before autumn cut 60 1 2 0

Total application 250 500

At the same time as fertilizer N application, a base dressing of 110kg

P 2 0 5 /ha and 190 kg K 2 Ü/ha as triple superphosphate (43% P^O^) and

granular potash (60% K 2 O) was given to all the 48 plots. In common

with N, the total dressings were split over three applications as

follows : -

kg P^O^/ha kg K^O/ha

Before spring cut 50 80

Before summer cut 30 70

Before autumn cut 30 40

Prior to sowing, each plot received an NPK dressing equivalent to that 

applied before the summer cut. In other words, in the first years only

145kg N/ha and 290kg N/ha were applied for the 250kg/ha and

500kg/ha treatments respectively.

The first fertilizer dressing of each season, that is the one prior to 

the spring cut, was spread about one month before the first forcasted 

harvesting date.
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3.2.3 SOIL SAMPLING

Prior to sowing but following cultivation and sward kill-off, soil 

samples were collected from each of the 48 plots on the 24th April 1986, 

and five soil cores collected per plot. These cores (54mm i,d.) were 

taken randomly from outside the herbage cutting area of each plot and 

each core subdivided into seven depths : -

0 - 25 mm

25 - 50 mm

50 - 75 mm

75 - 100 mm 

100 - 150 mm 

150 - 200 mm 

200 - 300 mm

The corer used consists of a tall stainless steel pipe with a wide rim 

attached at the 2 0 cm mark, serving both as a 'depth gauge' and as an aid 

to pushing the corer into the substrate. The boring end is tapered to 

facilitate removing the soil core. The 200 - 300mm samples were

collected using a dutch auger. The 0 - 200mm core was divided on a

graduated wooden board using a stainless steel knife. The five

replicate cores, at each individual depth, were then bulked and kept in 

polythene - lined paper bags for subsequent analysis.

Soil sampling was repeated at the end of the second year, that is at the 

end of the second growing season on the 15th October 1987. On this 

occasion, the five soil cores were randomly collected from the whole 

area of each plot.
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The 'uncontaminated' site was similarly sampled on the 24th April 1986 

and the 15th October 1987. Five samples were collected, each composed 

of five cores taken in a zig-zag fashion from throughout the paddock.

3.2.4 HERBAGE SAMPLING

Five grass cuts were taken; two during the first growing season and 

three during the second, i.e.

13th August 1986

6 th October 1986

27th May 1987

13th August 1987

7th October 1987

The grass was harvested with a motorized 'Agria' grass cutter which 

provides a 1.2m wide cut. As a result of this cutting width a 0.15m 

wide 'buffer zone' was present at each side of the cutting edge from 

which the first year soil samples had been taken (see Section 3.2.2.4). 

The fresh weight yield of each plot was recorded on site and herbage 

samples returned to the laboratory for drying and heavy metal analysis 

(see Section 2.2).

In view of the fact that some grass from each plot would be required for 

heavy metal analysis, samples were taken using stainless steel hand 

shears from a central strip running the length of the plot prior to the 

grass being harvested with the mechanised grass cutter. This procedure
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was followed to avoid soil contamination which would have been 

inevitable had the samples been taken from the swath of the 'Agria'. 

These samples were included in the fresh-yield measurements. At the 

end of each harvesting session, the entire trial site was cut and the 

grass removed to ensure a uniform sward. For the first cut (August 

1986) much of the sward consisted of chickweed (Stellaria media L.). 

Although this was included for fresh weight determination, it was 

excluded from the samples destined for trace metal analysis. After this 

first cut the chickweed was out-competed by the faster growing ryegrass.

3.2.5 EXPERIMENT II - POT WORK

Top soil (0 - 10cm) from Temple Field at the West of Scotland College 

(Nat. Grid Ref. 381 237) was sampled on the 3rd December 1986 and air- 

dried and milled (as described in Section 2.2.1.1). This soil is an 

imperfectly drained loam on reddish brown clay till of the Bargour 

series. A 50 : 50 (v/v) soil-perlite mixture in plastic potting bags 

(51) was used as a growing medium for perennial ryegrass (Lolium perenne 

L. cv Springfield). Perlite was added to < 2mm air-dried soil to

facilitate drainage.

A series of pH treatments (pH 4.0 - 9.0; in increments of 0.5 units)

were set up by adding appropriate amounts of Ca(0 H ) 2  and Al 2 (SO^ ) 2  to

soil. Digested sewage sludge, from the Maudslie Sewage Treatment Works 

near Lanark, equivalent to an application rate of 55m /ha was then 

incorporated into each of the soil-perlite mixtures. The composition of

the sewage sludge is given in Table 3.3. After a two month
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TABLE 3.3 COMPOSITION OF MAUDSLIE SEWAGE SLUDGE APPLIED

pH 6 . 8

% dry soilds 1.4

METAL mg/kg dry solids

Cd 3.6

Cr 65

Cu 297

Ni 22

Pb 326

Zn 616
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'equilibration' period during which time the pots were kept moist, the 

pots were sown with ryegrass at a rate of 50 kg/ha. To ensure an 

adequate water supply, each pot was kept on a perlite bed regularly 

watered with deionised water. In the greenhouse, the pots were placed 

into four seperate blocks (representing the 4 replicates per treatment). 

Within each block the 11 pH treatments were placed in a random fashion. 

So as to maintain good and healthy growth throughout the experiment a 

standard liquid feed (see Appendix B) was applied to the soil surface on 

three occasions. Two herbage cuts were obtained, the grass being cut 

when 15 - 20cm long. The soil pH of each of the 44 pots was recorded 

at the start, i.e. after the addition of Ca(0 H ) 2  or Al 2 (S0 ^)^, and 

after the second cut. Fresh and dry weight herbage yields were

recorded and herbage and soil analysed for total Cd, Cr, Cu, Ni, Pb and 

Zn.
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3,3 RESULTS

3.3.1 CARBARNS FIELD TRIAL

Soil concentrations of total (aqua regia-extractable) Cd, Cr, Cu, Ni, Pb 

and Zn concentrations within the depths 0-25, 25-50, 50-75, 75-100, 100- 

150, 150-200 and 200-300mm of samples collected in March 1986 and

October 1987 were measured. With the exception of Cr and Cu, total 

soil metal concentrations recorded in both years were similar (Appendix 

C) . Chromium concentrations of the first year samples, when

considered on a depth by depth basis, were, however^ seen to be 

significantly (P < 0.001) greater than those recorded in the second

year. In contrast, when considering depth as the sole source of

variation, or in conjunction with cultivation, total Cu concentrations 

in the 1987 samples were significantly (P < 0,05) higher than those 

measured in 1986.

In the uncultivated soil, metal concentrations were seen to change

significantly (P < 0.001) with depth (Appendix C) . With the exception 

of Ni which showed a significant (P < 0.05) increase between the 50 - 

75mm compared to the 0 - 25mm depth, all other metals showed no

significant change in concentration within 0 - 100mm (Table 3.4).

However, at depths below 100mm metal concentrations decreased 

significantly (P < 0.05) as depth increased (Figures 3.1 - 3.6).

Significant (P < 0.001) differences existed between the total metal

concentrations, in the soil profile of the sludged uncultivated plots 

and the unsludged soil (Appendix C) . In contrast to the previously

1 1 1



TABLE 3.4 CHANGES IN TOTAL Cd, Cr, Cu, Ni, Pb AND Zn 
CONCENTRATIONS (mg/kg AIR-DRY SOIL) WITH 
DEPTH IN THE UNSLUDGED (UNSL.), 
UNCULTIVATED (UNCULT.) AND CULTIVATED 
(CULT.) SOIL PROFILES (CARBARNS FIELD 
EXPERIMENT).

DEPTH/mm UNCULT,
Cd

CULT. UNSL. UNCULT.
Cr

CULT. UNSL.
0-25 1.54 1.24 0.87 113.7 1 0 0 . 8 97.125-50 1.45 1.30 0.95 118.1 106.0 99.3

50-75 1.46 1.36 0.93 1 2 0 . 1 1 1 0 . 8 103.0
75-100 1.47 1.43 0.94 116.9 1 1 2 . 8 103.9

100-150 1.25 1,32 0.87 108.4 109.8 107.0150-200 1.05 1 . 1 1 0.89 1 0 1 . 1 103.0 107.5
200-300 0.79 0.78 0.90 103.2 103.7 114.1S.E.D.(1) 0 ..13 4,.87S.E.D.(2) 0 ,.07 2 ,. 8 6S.E.D.(3) 0 ,.16 6 ,.27

Cu Ni
DEPTH/mm UNCULT. CULT. UNSL. UNCULT. CULT. UNSL.

0-25 78.3 64.1 39.5 27.2 24.3 28.1
25-50 80.8 69.6 41.4 28.7 26.3 29.350-75 82.1 75.0 41.1 30.6 28.5 30.6
75-100 81.5 77.5 41.5 30.8 29.1 30.5100-150 71.7 74.9 42.9 26,7 27.4 32.2150-200 61.6 65.5 40.8 23.2 24.3 32.8200-300 50.3 49.4 44.0 20.5 21.4 32.8S.E.D.(1) 6 .74 1 .78S.E.D.(2) 3,.96 1 ..05S.E.D.(3) 8 ,. 6 8 2 .29

Pb Zn
DEPTH/mm UNCULT. CULT. UNSL. UNCULT. CULT. UNSL.

0-25 
25-50 
50-75 
75-100 

100-150 
150-200 
200-300 
S.E.D.(1) 
S.E.D.(2) 
S.E.D.(3)

169.4
179.3
185.4
183.5 
163.0 
120.2
80.0

127.4
146.7
158.7 
166.0 
156.2 
123.6
86.3

108.8 
111.6 
119.3 
116.8
114.6 
112.9
132.7 

29.43 
17.28 
37.87

255.8
252.2 
266.1
275.3 
245.7 
193.6 
139.0

209.3
228.5 
251,2 
256.0 
242.9
205.6 
142.8

164.5
167.2 
167.0
158.2
155.2
153.3 
143.8

30.03
17.64
38.64

FOOTNOTE: S.E.0.(1) = HORIZONTAL AND DIAGONAL COMPARISONS OF DEPTHS BETWEEN EITHER
UNSLUDGED VS. UNCULTIVATED OR UNSLUDGED VS. CULTIVATED.

S.E.D.(2) = HORIZONTAL AND DIAGONAL COMPARISONS OF DEPTH BETWEEN 
CULTIVATED VS. UNCULTIVATED.

S.E.D.(3) = VERTICAL COMPARISON OF DEPTHS WITHIN UNSLUDGED.
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FIGURE 3.1 CHANGES IN TOTAL CADMIUM CONCENTRATION IN THE
UNCULTIVATED/ CULTIVATED AND UNSLUDGED SOIL PROFILES
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FIGURE 3.2 CHANGES IN TOTAL CHROMIUM CONCENTRATION IN THE
UNCULTIVATED, CULTIVATED AND UNSLUDGED SOIL PROFILES
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FIGURE 3.3 CHANGES IN TOTAL COPPER CONCENTRATION IN THE
UNCULTIVATED, CULTIVATED AND UNSLUDGED SOIL PROFILES
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FIGURE 3.4 CHANGES IN TOTAL NICKEL CONCENTRATION IN THE
UNCULTIVATED, CULTIVATED AND UNSLUDGED SOIL PROFILES
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FIGURE 3.5 CHANGES IN TOTAL LEAD CONCENTRATION IN THE
UNCULTIVATED, CULTIVATED AND UNSLUDGED SOIL PROFILES
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FIGURE 3.6 CHANGES IN TOTAL ZINC CONCENTRATION IN THE
UNCULTIVATED, CULTIVATED AND UNSLUDGED SOIL PROFILES
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described situation for the uncultivated sludged soil, the metal 

concentrations in the soil profile of the unsludged soil were constant 

with depth (Table 3.4). Chromium and Pb concentrations in each of the 

layers making up the 0 -1 0 0 mm depth in the uncultivated sludged soil 

were significantly (P < ,0.05) greater than the concentrations present 

in the unsludged soil. This significantly (P < 0.05) increased metal 

concentration in the sludged uncultivated soil over that present in the 

unsludged soil profile was evident to a depth of 150mm in the case of Zn 

and Cd and down to 200mm for Cu. Over the 0-100mm depth the

concentrations of Cu, Cd, Zn, Pb and Cr in the uncultivated sludged soil 

were on average 99, 61, 60, 57 and 16% respectively greater than that 

found in the unsludged soil. In contrast, not only were the Ni

concentrations in the 0 -1 0 0 mm depth of the unsludged soil no smaller 

than those recorded in the sludged uncultivated soil, but below this 

depth Ni concentrations in the unsludged soil were significantly (P < 

0.05) greater than those recorded in the sludged soil.

Mean total soil metal concentrations (i.e. the weighted mean of metal 

concentrations over all 7 depths) was not affected by either the 

application of lime or fertilizer N (Appendix C) . Similarly,

cultivation did not alter these total metal concentrations within plots. 

However, it did lead to a very significant (P < 0.001) change in the 

distribution of metals in the soil profile (Appendix C) . Metal

concentrations in the cultivated soil increased with depth to reach a 

maximum concentration in the 75 - 100mm layer (Figures 3.1 - 3.6).

Below this, concentrations declined to reach a minimum in the 200 -

300mm sampling depth (Table 3.4). Metal concentrations in the surface
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0  - 7 5 mm were seen to be lower in the cultivated plots than in the 

uncultivated soil (Figures 3.1 - 3.6). Differences in total metal

concentrations were generally greatest between the cultivated and 

uncultivated soil for the 0 - 25mm depth where, on average, the

uncultivated soil contained 24, 13, 22, 12, 33 and 22% more Cd, Cr, Cu 

Ni, Pb and Zn respectively than did the cultivated soil (Table 3.4). 

This reduction in surface soil metal concentrations brought about by 

cultivation resulted in Cr, Pb and Zn concentrations in the 0-50mm depth 

of the cultivated profile being no greater than those present in the 

unsludged soil (Table 3.4).

Herbage metal concentrations were influenced by all three management 

practices investigated, i.e. cultivation, liming and fertilizer N use. 

In the short term, cultivation was seen to have a significant (P < 

0.05) effect on herbage Cu, Ni and Zn concentrations (Appendix D) . 

However, in the longer term, herbage metal concentrations were 

significantly (P < 0.05) affected by liming and fertilizer N rate

(Appendix D ) .

Cultivation significantly (P < 0.05) increased herbage concentration of 

Cu, Ni and Zn, of both the 1986 cuts, by about 18, 43 and 14%

respectively in the summer cut (1st cut) and 7, 26 and 10% respectively 

in the autumn cut (Table 3.5). The declining trend in the herbage 

metal concentration from the cultivated plots relative to the 

uncultivated plots led to no significant difference being recorded in 

any of the second year cuts, with the exception of Ni which in the 

spring 1987 cut, showed a significantly (P < 0.05) higher (18%)

concentration in the herbage sampled from the cultivated plots.
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TABLE 3.5 HERBAGE Cd, Cr, Cu, Ni, Pb AND Zn CONCENTRATIONS 
{mg/kg DRY-MATTER) FOR ALL TWELVE TREATMENTS 
IN ALL FIVE CUTS (CARBARNS FIELD EXPERIMENT). 
EACH READING IS AN AVERAGE OF 4 REPLICATES.

TABLE 3.5 (i) CADMIUM.
CUT

N-FERTÏLIZER 
kg N/ha/yr

08/86 10/86 05/87 08/87 10/81

UNCULTIVATED
UNLIMED 0

250
500

0.70
0.63
0.58

0.41
0.40
0.45

0.34
0.49
0.61

0.39
0.27
0.31

0.40
0.45
0.49

LIMED 0
250
500

0.55
0.47
0.68

0.39
0.43
0.40

0.33
0.47
0.53

0.33
0.35
0.32

0.37
0.52
0.48

CULTIVATED
UNLIMED 0

250
500

0.58 
0. 65 
0.57

0.40
0.44
0.46

0.39
0.48
0.50

0.36
0.34
0.29

0.47
0.47
0.51

LIMED 0
250
500

0.64
0.61
0.48

0.37
0.43
0.42

0.39
0.49
0.56

0.32
0.26
0.33

0.41
0.46
0.51

S.E. 0.07 0.03 0.03 0.02 0.03

TABLE 3.5 (11) CHROMIUM
N-FERTILIZER 08/86 
kg N/ha/yr

10/86 CUT
05/87 08/87 10/87

UNCULTIVATED
UNLIMED 0

250
500

0.73 
0. 79 
0. 55

0.96
1.72
1.12

0.98
1.07
1.51

1.16
0.81
0.76

1.20
2.03
1.15

LIMED 0
250
500

0.71
0.87
0.83

1.10
1.02
1.08

0.78
1.48
1.26

1.00
1,19
0.88

1.36
1.61
1.62

CULTIVATED
UNLIMED 0

250
500

0.87
0.63
0.81

1.27
1.27 
1.22

1.09
1.21
1.26

1.20
1.02
0.85

2.19
1.32
1.85

LIMED 0
250
500

0.66 
0.99 
1.00

0.92
1.09
1.15

1,00
1.27
1.45

0.82
1.36
1.15

1.46
1.99
1.71

S.E. 0.11 0.20 0.12 0.17 0.39
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TABLE 3.5 (iii) COPPER
CUTN -FERTILIZER 

kg N/ha/yr 08/86 1 0 / 8 6 05/87 08/87 10/87

UNCULTIVATED
UNLIMED 0

250
500

9.49
10.08
9.45

7.53
10.25
12.37

4.74
8.96

1 2 . 8 6

4.54
5.42
8 . 0 2

7.51
11.39
12.76

LIMED 0
250500

8.79
9.108.92

7.53
9.5910.63

4.91
8.7911.65

4.40
4.95
7.99

7.28
11.0512.17

CULTIVATED
UNLIMED 0

250
500

10.31
12.09
10.64

8.47
11.16
13.12

4.97
10.57
13.09

4.54
5.71
8 . 0 0

7.44
10.96
14.14

LIMED 0
250
500

11.04
11.17
10.79

7.56
10.45
10.96

4.50
9.30

11.64
4.37
5.27
7.52

6.61
10.49
12.45

S.E. 0.45 0.37 0.42 0.36 0.51

TABLE 3.5 (iv) NICKEL
N-FERTILIZER 
kg N/ha/yr

UNCULTIVATED
UNLIMED

LIMED

CULTIVATED
UNLIMED

LIMED

0
250
500
0

250
500

0
250
500
0

250500
S.E

08/86 1 0 / 8 6
CUT

05/87 08/87 10/87

4.21 4,03 4.12 4.64 3.923.68 5.03 4.20 4.38 3.444.22 4.65 5.48 5.30 4.14
3.95 2.94 3.20 3.15 2.312.73 2.47 2.58 2,79 2 . 1 03.78 3.55 3.74 4.21 3.19

5.,65 5,. 17 5.,19 4,,61 4.,515., 8 6 5,,51 5.,56 5,,58 4.,455., 18 6 ,.30 6 ,,08 6 ..48 4,,83
5,,30 3,,97 3,,28 3,,58 2 .,794.,98 3,,42 3.,26 3,,44 2 .,595,, 17 4., 1 0 4.,17 4,.55 3.,64
0 .,62 0 ,.62 0 .,53 0 ,,55 0 .,54
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TABLE 3,5 (v) LEAD.
N-FERTILIZER 
kg N/ha/yr

UNCULTIVATED

08/86 1 0 / 8 6
CUT
05/87 08/87 1 0 / 8 >

UNLIMED 0
250
500

1.48
1.39
1.60

1.791.62
1.77

1.33
1.741.99

1.31
0.73
1 . 1 2

1.27 1.62 
1.58

LIMED 0
250
500

1.40
1.56
1.51

1.63
1.48
1.55

1.29
1.58
1.92

1.44
0.93
0.80

1.19
1.31
1 . 2 2

CULTIVATED
UNLIMED 0

250
500

1.50
1.43
1.52

1.91
1.81
1.55

1.43
1 . 6 8
1.79

1.171.36
0.94

1.34
1.45
1.77

LIMED 0
250
500

1.50
1.46
1.47

1.51
1.52 
1.35

1.37
1.51
1.83

1 . 1 0
0 . 8 8
1.13

1 . 2 2
1.56
1.54

S.E. 0.07 0.15 0 . 1 0 0.14 0.15

TABLE 3.5 (vi) ZINC.
N-FERTILIZER 
kg N/ha/yr

UNCULTIVATED

08/86 1 0 / 8 6
CUT

05/87 08/87 10/87

UNLIMED 0
250
500

68.41 
6 6 . 8 6  

83.05
48.81
63.72
84.05

42.16 
66.64 
95.81

44,12
53.81
88.27

65.55
89.14
98.97

LIMED 0
250
500

59.33
57.28
69.78

42.22 
51.91 
6 6  .48

41.0857.33
78.13

38.97
42.50
78.28

52.66
72.94
81.64

CULTIVATED
UNLIMED 0

250
500

77.27
81.59
79.58

55.91
71.80
90.08

52.42
81.94

1 0 0 . 1 1

50.97
67,47
87.59

70.58
102.59
115.56

LIMED 0
250500

80.72
74.9568.59

49.56
64.67
62.59

41.86
71.4770.63

45.28
57.20
67.81

59.58
83.8083.86

S.E. 5.98 4.76 5.60 5.87 6.58
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Liming of the soil was particularly effective in bringing about a 

significant (P < 0,01) decrease in herbage Ni concentrations, apart from 

in the first cut of 1986 (Table 3.5). On average, Ni concentrations 

were 33% lower in herbage from limed plots compared with the unlimed 

plots. Similarly, Zn concentrations were significantly (P < 0.01)

reduced by about 18% as a result of liming , although in the August 1986 

cut^ only an 11% reduction was observed (P < 0.05). A significant (P < 

0.01) decrease in herbage Cu concentrations of approximately 9% was 

observed in cuts 2 and 3 (i.e. the autumn 1986 and spring 1987 cuts

respectively) in the limed plots. No such effect of lime on Cu

concentrations was however observed in cut 4 (i.e. the summer 1987 cut) 

although liming resulted in a significant (P < 0.05) decrease in Cu

concentrations in the autumn 1987 herbage, albeit of 6 %.

The single surface application of lime was seen to have had a

significant (P < 0.01) effect on soil pH (Appendix E) . In the limed 

soil profiles, the pH of the 0-25mm 25-50mm, 50-75mm and 75-lOOmm

depths were on average 0.9, 0.6, 0.4 and 0.3 pH units higher

respectively than those recorded in these soil layers of the unlimed 

plots (Table 3.6). However, it was only in the 0-25mm and 25-50mm 

depths that this difference in pH between the limed and unlimed soil 

was significant (P < 0.05).

Soil pH was itself seen to be highly correlated with herbage Ni, Zn and

Cu concentrations (Table 3.7). In fact, using best fit regression 

analysis (Appendix F) to help explain the observed herbage metal 

concentrations as affected by management practices (i.e. liming,
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TABLE 3 . 6  CHANGES IN SOIL pH WITH DEPTH IN THE 
CULTIVATION, LIME NITROGEN APPLICATION 
TREATMENTS (CARBARNS FIELD EXPERIMENT).

0-25
DEPTH/mm 

25-50 50-75 75-100

UNLIMED UNCULTIVATED 5.66 5.44

CULTIVATED 5.33 5.38

5.34 5.47

5.51 5.45

LINED UNCULTIVATED 6.48

CULTIVATED 6.38

6.03 5.72 5.70

6.05 5.88 5.73

S.E.(1) 

S.E.(2)

0.08 (same level of cultivation and lime) 

0 . 1 1  (all other comparisons)

DEPTH/mm
NITROGEN 0-25 25-50 50-75 75-100

Okg/ha/yr 6.23 5.86 5.53 5.46

250kg/ha/yr 6 . 0 0 5.81 5.74 5.71

500kg/ha/yr 5.66 5.51 5.64 5.61

S.E.(1)

S.E.(2)

0.07 (same level of nitrogen) 

0.09 (all other comparisons)
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TABLE 3.7 CORRELATION (r) BETWEEN HERBAGE METAL CONCENTRATIONS 
AND SOIL pH, ORGANIC MATTER CONTENT, TOTAL AND 
EXTRACTABLE METAL CONCENTRATIONS (0 - 100mm SOIL 
DEPTH) (FOR CLARITY ONLY SIGNIFICANT CORRELATIONS 
(P < 0.05) ARE SHOWN).

ACETIC %ACETIC
HERBAGE TOTAL ACID EDTA ACID %EDTA pH O.M.
CADMIUM
1st CUT 
2nd CUT 
3rd CUT 
4th CUT 
5th CUT

0.37 0.32
-0.34
-0.33

COPPER
1st CUT 
2nd CUT 
3rd CUT 
4th CUT 
5th CUT

0.36
0.33

0.47
0.44
0.33

0.32
0.30

0.63 -0.40
-0.50
-0.31
-0.42
-0.35

-0.48

NICKEL
1st CUT 
2nd CUT 
3rd CUT 
4th CUT 
5th CUT

-0.41
-0.41
-0.35
-0.36
-0.34

0.31
0.39
0.49
0.46
0.40

-0.56
-0.69
-0.79
-0.79
-0.79

-0.43
-0.43
-0.36
-0.34
-0.33

LEAD
1st CUT 
2nd CUT 
3rd CUT 
4th CUT 
5th CUT

0.40

0.32
0.37

0.36
0.30

0.32

0.29

ZINC
1st CUT 
2nd CUT 
3rd CUT 
4th CUT 
5th CUT

0.30
0.33
0.28

0.34
0.37
0.28
0.33

0.36
0.38
0.36
0.40

0.29
0.41
0.30
0.38
0.43

-0.59
-0.70
-0.56
-0 . 6 6

-0.70

FOOTNOTE: HERBAGE Cr WAS NOT SIGNIFICANTLY RELATED TO
ANY OF THE PARAMETERS SHOWN.
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fertilizer N and cultivation) and soil parameters (i.e. total and 

extractable metal concentrations, pH and organic matter content over the 

top 1 0 0 mm of soil within which depth most grass roots are found) , soil 

pH was seen to best explain Cd, Ni, Cu and Zn herbage concentrations. 

Herbage Ni, Cu, Zn and Cd concentrations were inversely proportional to 

soil pH, although such a relationship did not hold true for Cd 

concentrations in any of the herbage sampled in 1986. In this

instance, Cd concentrations were seen to be directly proportional to 

soil pH (Appendix F ) .

The concentration of metal in the herbage was seen to be influenced 

significantly (P < 0.05) by the application of N fertilier (Appendix D ) . 

In particular, Cu and Zn concentrations in herbage sampled after and 

including October 1986 were significantly (P < 0.05) increased as

fertilizer N rate increased (Table 3.5). Copper and Zn concentrations 

in the herbage from plots receiving 250kg N/ha/yr were respectively 20- 

97% and 23-56% greater than the concentrations recorded for herbage from 

the no N control. Similarly, the concentrations of Cu and Zn in

herbage receiving 500kg N/ha/yr contained respectively 14-47% and 9-46% 

more than herbage which had received half as much N. Although

increases in herbage Cd, Ni and Pb concentrations were observed as the

rate of fertilizer N application increased, this effect was not as 

.pronounced nor as frequent as that recorded for Cu and Zn. For

instance, herbage Cd concentrations only exhibited a positive response 

to fertilizer N in the first and last 1987 cuts, whereas in the second 

1987 cut, herbage from the no N control contained significantly (P < 

0.05) higher Cd concentrations (13%) than the N treatments. The
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response of Pb to fertilizer N was identical to that of Cd. For its 

part, Ni concentration in herbage which had received no N or the low N 

rate were similar but significantly (P < 0.05) lower than that derived 

from the high fertilizer N rate. The influence of N application rate 

on herbage metal concentration is further described in the predictive 

equations (explained previously and given in Appendix F ) . In these 

equations fertilizer N rate was considered as 0, 1 and 2 which

represented 0, 250 and 500kg N/ha/yr respectively.

Chromium concentrations in the herbage were seen to be independent of 

all three management practices (Appendix D) although in the spring 1987 

cut, fertilizer N rate was seen to have a significant (P < 0.001)

effect on herbage Cr concentrations (Table 3.5).

Herbage dry matter yield was seen to be significantly (P < 0.001)

increased by the application of fertilizer N (Appendix G) . In

contrast, both soil cultivation and liming did not change the overall 

herbage dry matter yield. Nitrogen application resulted in a 

significantly (P < 0.05) greater herbage dry matter production than that 

obtained from the plots which had received no fertilizer N. However, 

the dry matter yield from herbage receiving 500kg N/ha/yr was no greater 

than that obtained from herbage supplied with only half the amount of N 

fertilizer (i.e. 250kg N/ha/yr) (Table 3.8). The effect of fertilizer N 

on yield became more apparent with successive cuts. Whereas no 

significant effect was seen in the first cut following sowing (i.e. 

August 1986) , in the October 1986 and May 1987 cuts application of 

fertilizer N led to a 41% increase in herbage yield, and this increased 

to 64% and 85% over the two subsequent cuts, that is August 1987 and
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TABLE 3.8 DRY MATTER YIELD OF EACH OF THE 5 HERBAGE
CUTS (TONS/ha). EACH READING IS AN
AVERAGE OF 4 REPLICATES (CARBARNS FIELD
EXPERIMENT).

CUTTING DATE

NITROGEN 
kg N/ha/yr

UNCULTIVATED

UNLIMED

LIMED

CULTIVATED

UNLIMED

LIMED

0
250
500

0
250
500

0
250
500

0
250
500

S.E.

08/86 1 0 / 8 6 05/87 08/87 10/87

5.37
5.21
5.92

2.37
3.21
3.25

4.17
6.17 
5.71

3.83
6.08
5.92

0.92
1.96
2 . 1 2

4.33
5.21
4.96

2.42
3.42 
3.29

5.04
6.25
5.83

3.75
7.29
5.46

1.17
1.92
2.25

4.83
5.67
5.37

2 . 0 0

3.29
3.17

3.83
5.50
5.79

3.42
5.83
5.50

1 . 0 0

1.71
1.75

5.67
5.54
5.00

2.33
2.87
3.29

3.83 
6.46 
5.87

3.54
5.83
5.75

1 . 1 2

2.17
1.75

0.58 0.17 0.38 0.51 0.15
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October 1987 respectively.

Mean uptake for each of the six metals (Cd, Cu, Cr, Ni, Pb and Zn) in 

each of the five cuts are reported in Table 3.9. Of the three

management practices investigated, soil cultivation was seen to have 

little effect (Appendix H ) . In fact, it was only in the first cut that 

the Cu and Ni uptake by the herbage from the cultivated plots was 20 

and 42% higher respectively, than that recorded for herbage from 

uncultivated plots (P < 0.05). In contrast,, the rate of N application 

had a very marked affect on metal uptake. With the exception of

herbage sampled in the summer of 1986 (cut 1) the application of N led 

to a significantly (P < 0.05) higher uptake of all six metals (Appendix 

H) . In particular, the uptake of Cu and Zn was significantly (P < 

0.05) increased as fertilizer N rate increased. The uptake of Cu and 

Zn by herbage receiving 250kg N/ha/yr was increased by 86-180% and 77- 

158% respectively,over that recorded for the herbage which had received 

no N. A further significant (P < 0.05) increase of 16-35% and 13-31% 

in the uptake of Cu and Zn respectively, was observed in the herbage 

which had received 500kg N/ha/yr over that treated with 250kg N/ha/yr. 

The uptake of Cd, Cr, Ni and Pb was significantly (P < 0.05) increased 

by the application of 250kg N/ha/yr compared to that recorded for the 

herbage which had received no fertilizer N, with increases of 54-116%, 

72-100%, 42-75% and 34-119% respectively. However, increasing the

application rate to 500kg N/ha/yr led to no significant increase in Cd, 

Cr, Ni and Pb uptake over that recorded for 250kg N/ha/yr, although in 

the cut taken in autumn 1987 (cut 5) Ni uptake by herbage receiving 

the high nitrogen treatment was 37% greater than that of herbage
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TABLE 3.9 HERBAGE Cd, Cr, Cu, Ni, Pb and Zn UPTAKE (g/ha). 
FOR ALL TWELVE TREATMENTS IN ALL FIVE CUTS 
(CARBARNS FIELD EXPERIMENT). EACH READING IS AN AVERAGE OF 4 REPLICATES.

TABLE 3.9 (i) CADMIUM

N"FERTILIZER 
kg N.ha/yr 08/86 1 0 / 8 6 05/87 08/87 10/87

UNCULTIVATED
UNLIMED 0

250
500

3.833.21
3.50

0.96
1.29
1.42

1.41
3.04
3.46

1.50
1.71
1.83

3.46
0.87
1.04

LIMED 0
250
500

2.29
2.42
3.54

0.961.46
1.29

1.67
2.96
3.00

1.25
2.50
1.75

0.42
0.96
1.08

CULTIVATED
UNLIMED 0

250
500

2.91
3.79
3.08

0.79
1.50
1.46

1.46
2.67
2.92

1.24
1.92
1.58

0.46
0.83
0.92

LIMED 0
250
500

3.71
3.58
2.46

0.87
1.29
1.37

1.46
3.12
3.29

1 . 1 2
1.54
1.87

0.46
1 . 0 0
0.87

S.E. 0.62 0 . 1 2 0.23 0.18 0.08

TABLE 3.9 (ii) CHROMIUM
N-FERTILIZER 
kg N/ha/yr 08/86 1 0 / 8 6 05/87 08/87 10/87

UNCULTIVATED
UNLIMED 0

250
500

3.87 
4.12 
3 .17

2.29
5.75
3.67

3.96
6.62
8.46

4.37 
5.04
4.37

1.08
3.50
2.42

LIMED 0
250
500

3.25
4.50
4.04

2.67
4.17
3.50

3.87
9.25
7.29

3.71
8.50
5.17

1.58
3.04
3.62

CULTIVATED
UNLIMED 0250

500
4.25
3.62
4.37

2.544.29
3.92

4.25 
6.62
7.25

4.04
5.75
4.67

2.25
2.17
3.12

LIMED 0
250
500

3.795.62
5.04

2 . 1 23.12
3.75

3.71
8 . 1 2
8.50

2.87
7.83
6.58

1.544.12
2.92

S.E. 0 . 8 6 0.71 0.71 1.09 0 . 6 8
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TABLE 3.9 (iii) COPPER 
N-FERTILIZER
kg N/ha/yr 08/86 1 0 / 8 6 05/87 08/87 10/87

UNCULTIVATED
UNLIMED 0

250500
51,33
53.21
54.83

17.79
32.92
40.00

19.42
55.17
73.00

17.37
33.17
47.00

6.92
21.75
26.62

LIMED 0
250
500

39.42
47.42 
43.37

18.17
32.42
34.42

25.12
54.33
67.29

16.46
36.0044.42

8.62
2 1 . 1 2
27.54

CULTIVATED
UNLIMED 0

250
500

48.54
67.12
57.25

17.08
36.12
41.75

19.62
57.83
75.79

15.33
32.92
44.04

7.46
18.79
24.75

LIMED 0
250500

62.96
59.04
51.62

17.67
29.83
35.96

17.21
60.2568.17

15.42
30.21
43.04

7 .58
22.87
21.87

S.E. 5.45 2.03 3.86 2.95 2 . 0 0

TABLE 3.9 (iv) NICKEL
N-FERTILIZER 
kg N/ha/yr 08/86 1 0 / 8 6 05/87 08/87 10/87

UNCULTIVATED
UNLIMED 0

250500
22.58
19.2923.92

9.29
16.2515.71

15.21
26.0430.83

16.79
27.17
30.71

3.29
6.17
8.33

LIMED 0
250
500

18.33
13.7917.04

7.00
8.29

11.37
15.42 
16.3720.42

11.75
20.04
24.46

2.62
3.757.33

CULTIVATED
UNLIMED 0

250
500

25.29
30.92
27.75

10.58
17.46
2 0 . 1 2

18.25
29.92
35.46

15.79
33.25
37.25

4.33
7.12
8.62

LIMED 0
250
500

29.96
25.87
24.08

9.46
9.46 13 .21

11.83
20.25
24.62

12.67
19.08
25.54

3.04
5.46
6.50

S.E. 3.30 1.03 1.59 4.72 1 . 2 1
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TABLE 3.9 (v) LEAD
N-FERTILIZER kg N/ha/yr 08/86 10/86 05/87 08/87 10/87

UNCULTIVATED
UNLIMED 0

250
500

8.04
7.33
9.62

4.25
5.21
5.67

5.37
10.71
1 1 . 1 2

5.08
4.50
6.33

1.17
3.17 
3.42

LIMED 0
250
500

6.04
8.08
7.46

3.96
5.04
5.04

6.50
9.87
11.25

5.37
6.54
4.58

1.37
2.50
2.75

CULTIVATED
UNLIMED 0

250
500

7.25
8.17
8 . 1 2

3.75
6 . 1 2
4.96

5.33
9.25

10.46
4.00
8.085.21

1.42
2.54
3.08

LIMED 0
250
500

8.50
8.17
7.29

3.50
4.42
4.46

5.21
9.75
10.75

3.83
5.00
6.50

1.37
3.46
2.83

S.E. 0.94 0.53 0.76 0.91 0.41

TABLE 3.9 (vi) ZINC
N-FERTILIZER kg N/ha/yr 08/86 1 0 / 8 6 05/85 08/87 10/87

UNCULTIVATED
UNLIMED 0

250
500

369.17
353.33
502.08

114.17
203.33
272.92

168.33
410.83
540.83

162.92
332.08
515.83

56.67
166.6720.71

LIMED 0
250
500

262.50
292.08
339.17

101.25
172.08
213.75

2 1 0 . 0 0
354.58
448.33

145.83
333.75
441.25

62.08
138.33
185.00

CULTIVATED
UNLIMED 0

250
500

362.08
455.42
430.42

112.50
232.08
286.67

205.42
450.42
575.42

176.25
393.33
487.08

71.67
171.67
204.17

LIMED 0
250
500

472.08
399.58
325.42

118.75
184.17
204.58

155.42
454.58
415.00

159.17
333.75
385.42

64.17
181.25
147.08

S.E. 53.39 20.41 37.24 54.21 18.18

133



receiving 250kg N/ha/yr (P < 0.05). The application of lime had a

significant (P < 0.05) influence on the uptake of Ni (Appendix H ) . In 

all but the first cut, Ni uptake by the herbage from the limed plots was 

32-52% lower than that from unlimed plots. A similar significant (P < 

0.05) reduction in Cu and Zn uptake by the herbage from limed plots was 

also observed (Appendix H ) . However, whereas a reduction in Zn uptake 

of 15-23% for herbage from the limed plots was recorded in cuts 1 - 3

(i.e. summer and autumn 1986 and spring 1987)^ it was only in the cut of 

autumn 1986 that lime application led to a significant (P < 0.05)

reduction in the uptake of Cu,with the herbage from limed plots showing 

10% less Cu uptake than the herbage from the unlimed plots.

Herbage metal concentrations were significantly (P < 0.05) correlated to 

acetic acid- and EDTA- extractable metal concentrations in soil (Table 

3.7). However, for some metals such as Cd, these correlations were only 

apparent in one single cut, whereas other metals such as Zn and Ni 

showed significant (P < 0.05) correlations between herbage

concentrations and percentage acetic acid- and EDTA- extractable soil 

concentrations, (i.e. the metal concentration extracted in acetic acid 

or EDTA expressed as a percentage of the total metal concentration), for 

all five cuts. Nevertheless, notwithstanding these significant 

correlations, even in the case of Zn and Ni, acetic acid- and EDTA- 

extractable levels did not explain the observed metal concentrations in 

the herbage when these were included in the predictive equations 

(Appendix F) . In addition, unlike herbage metal concentrations, soil 

metals extracted by acetic acid and EDTA, whether expressed as a 

concentration or as a percentage of total, were independent of

134



cultivation, lime and N fertilizer application (Appendix G).

In the soil profile, acetic acid- and EDTA- extractable metals, 

irrespective of whether considered as a concentration (Tables 3.10 and 

3.11) or as a percentage of the total metal (Table 3.12), showed a 

similar distribution to that previously described for the total metal 

concentrations. Moreover, as was the case with total metal 

concentrations, the sludged soil contained significantly (P < 0.01)

greater concentrations of acetic acid- and EDTA- extractable metals as 

compared to those present in the unsludged soil, except in the 2 0 0  -

300mm sampling depth (Tables 3.10 and 3.11). Furthermore , the

proportion of total metal concentrations extracted by both EDTA and 

acetic acid was significantly (P < 0.01) greater in the sludged than in 

the unsludged soil (Appendix C) . However, the proportion and 

concentration of metal extracted by both acetic acid and EDTA in both 

the cultivated and uncultivated profiles of the sludged soil were no 

different to those present in the unsludged soil at depths below 2 0 0 mm 

(Table 3.12).

It should be pointed out that the acetic acid- and EDTA- extractable 

metal concentrations read for the second year samples were significantly 

(P < 0.05) greater than those measured in the first year (Appendix C) 

with the exception of EDTA- extractable Zn for which the converse was 

true. These differences could not be explained by either cultivation, 

liming or fertilizer N (Appendix C) . In addition, these differences 

showed a significantly (P < 0.01) uneven distribution with depth, with 

no one uniform trend being common to the metals. Interestingly, there
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TABLE 3.10 ACETIC ACID EXTRACTABLE Cd, Cu, Ni, Pb AND 
Zn CONCENTRATIONS (mg/kg AIR DRY SOIL) IN 
THE UNSLUDGED (UNSL.), UNCULTIVATED
(UNCULT.) AND CULTIVATED (CULT.) 
PROFILES (CARBARNS FIELD EXPERIMENT).

SOIL

Cd Cu
DEPTH/mm UNCULT. CULT. UNSL. UNCULT. CULT. UNSL.

0-25 0.82 0.59 0.36 5.90 6.76 1.74
25-50 0.74 0.59 0.38 7.59 7.88 1.88
50-75 0.75 0.61 0.30 8.69 8.39 1.76
75-100 0.70 0.63 0.33 9.01 8.49 1.48

100-150 0.59 0.59 0.23 8.33 8.39 1.64
150-200 0.42 0.54 0.32 7.69 7.69 1.64
200-300 0 . 2 2 0.27 0.52 6.23 5.97 1.21
S.E.D.(1) 0 .1 0 0.87
S.E.D.(2) 0 .06 0.51
S.E.D.(3) 0 .13 1 . 1 2

Ni Pb
DEPTH/mm UNCULT. CULT. UNSL. UNCULT. CULT. UNSL.

0-25 6.45 5.47 3.46 8 . 0 2 6.50 3.13
25-50 7 .16 6 . 1 1 3.48 9.63 7.72 3.04
50-75 8 . 1 1 7.22 3.22 9.48 8.14 3.14
75-100 8 . 1 1 7.81 2.99 8.93 8.34 2.44
100-150 6 . 2 2 7.31 3.02 8.06 8.51 3.64
150-200 4.50 6 . 0 0 2.70 6.06 6.89 2.71
200-300 3.22 3.88 3.27 3.89 4.07 3.42
S.E.D.(1) 0 .54 1.42
S.E.D.(2) 0 .32 0.83
S.E.D.(3) 0 .69 1.83

Zn
DEPTH/mm UNCULT. CULT. UNSL.

0-25 77.84 57.88 51.03
25-50 69.22 61.20 50.13
50-75 74.25 70.76 45.26
75-100 79.95 74.42 42,05
100-150 68.59 72.35 40.77
150-200 46.17 59.02 40.57
200-300 31.96 34.91 37.82
S.E.D.(1) 9 .74
S.E.D.(2) 5 .72
S.E.D.(3) 1 2 .53

FOOTNOTE: S.E.D.(I) = HORIZONTAL AND DIAGONAL COMPARISONS OF DEPTHS BETWEEN EITHER
UNSLUDGED VS. UNCULTIVATED OR UNSLUDGED VS. CULTIVATED.

S.E.0.(2) = HORIZONTAL AND DIAGONAL COMPARISONS OF DEPTH BETWEEN 
CULTIVATED VS. UNCULTIVATED.

S.E.D.(3) = VERTICAL COMPARISON OF DEPTHS WITHIN UNSLUDGED.
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TABLE 3,11 EDTA EXTRACTABLE Cu AND Zn CONCENTRATIONS 
(mg/kg AIR DRY SOIL) IN THE UNSLUDGED 
(UNSL.), UNCULTIVATED (UNCULT.) AND 
CULTIVATED (CULT.) SOIL PROFILES (CARBARNS 
FIELD EXPERIMENT).

Cu Zn
DEPTH/mm UNCULT. CULT. UNSL. UNCULT. CULT. UNSL.

0-25 39.3 31.8 16.4 75.8 50.1 52.3
25-50 41.7 34.6 16.6 63.8 53.0 49.8
50-75 42.2 37.7 16.5 67.4 62,5 45.4
75-100 41.9 39.1 16.2 72.7 67.3 41.7
100-150 36.7 37.6 17.4 59.5 65.2 40.0
150-200 29.9 32.7 16.0 37.3 51.6 39.9
200-300 24.0 22.9 16.0 25.3 27.4 34.3
S.E.D.(1) 3 .45 9 . 0 2

S.E.D.(2) 1 .97 5 .30
S.E.D.(3) 4 .31 1 1 .61

FOOTNOTE: S.E.0.(1) = HORIZONTAL AND DIAGONAL COMPARISONS OF DEPTHS BETWEEN EITHER
UNSLUDGED VS. UNCULTIVATED OR UNSLUDGED VS. CULTIVATED.

S.E.D.(2) = HORIZONTAL AND DIAGONAL COMPARISONS OF DEPTH BETWEEN 
CULTIVATED VS. UNCULTIVATED.

S.E.D.(3) = VERTICAL COMPARISON OF DEPTHS WITHIN UNSLUDGED.
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TABLE 3.12 CHANGES IN MEAN ACETIC ACID- AND EDTA- 
EXTRACTABLE METALS (EXPRESSED AS A PERCENTAGE 
OF TOTAL SOIL METAL CONCENTRATION) AND 
ORGANICALLY BOUND Cu (mg/kg AIR DRY SOIL) 
WITH DEPTH IN 2ND YEAR UNCULTIVATED 
(UNCULT.), CULTIVATED (CULT.) AND UNSLUDGED 
(UNSL.) SOIL PROFILES.

DEPTH/mm
0-25 

25-50 
50-75 
75-100 

100-150 
150-200 
200-300 S.E.D.(1) 
S.E.D.(2) 
S.E.D.(3)

DEPTH/mm
0-25 

25-50 
50-75 
75-100 

100-150 
150-200 
200-300 
S.E.D.(1) 
S.E.D.(2) 
S.E.D.(3)

DEPTH/mm
0-25 

25-50 
50-75 
75-100 

100-150 
150-200 
200-300 S.E.D.(1) 
S.E.D.(2) 
S.E.D.(3)

Cd-% ACETIC ACID Cu-% ACETIC ACIDUNCULT. CULT. UNSL. UNCULT. CULT. UNSL
54.7 48.7 23.8 7.5 10.7 2 . 652.2 46.1 2 2 . 8 9.3 11.4 2.751.8 45.5 18.9 1 0 . 6 11.3 2.548.1 43.9 2 1 . 6 1 1 . 1 1 1 . 0 2 . 149.1 46.1 31.4 11.7 1 1 . 2 4.540.8 49.3 42.7 12.4 1 1 . 8 4.728.1 33.0 137.7 1 2 . 2 1 2 . 0 6.5

6 . 0 1 0 .5013 .17 1 .09
1 0 .24 0 .85

Ni-% ACETIC ACID Pb-% ACETIC ACIDUNCULT, CULT. UNSL. UNCULT,. CULT. UNSL
23.8 
25.1
26.8 
26.6
23.6 
19.3
15.7

22.6
23.2
25.4
27.0 
26.8 
24.6
18.0

7.2
7.0
6.1 
5.7

10.9
9.623

1.042.27

4.8 
5.6 
5.3
5.0
5.0
5.1
4.8

5.2
5.4
5.1

0.350.77

1.6
1.5
1.5 
1.1
3.4 
2.7
5.4

1 .77 0 ,.60
Zn-% ACETIC .ACID CU-:% EDTAUNCULT,. CULT. UNSL. UNCULT. CULT. UNSL

30.4 27.7 17.7 50.5 49.6 24.227.5 26.7 17.2 51.8 49.7 23.328.0 27.9 15.5 51.7 50.4 23,329.2 29.0 15.2 51.7 50.6 2 2 . 828.1 29.7 30.0 51.5 50.6 46.723.2 28.1 29.7 48.5 49.9 45.622.3 23.6 59.0 47.4 46.1 83.9
1 .15 1 .,36
2 .53 2 .,98
1 .97 2 ,,32

ZN- % EDTA ORGANICALLY BOUND CuDEPTH/mm UNCULT. CULT, UNSL. UNCULT. CULT. UNSL
0-25 29.8 23.9 18.0 33.4 25.1 8.525-50 25.4 23.1 16.8 34.2 26.7 8 . 650-75 25.5 24.8 15.4 33.5 29.4 8 . 675-100 26.6 26.3 14.9 32.9 30.6 8 . 6100-150 24.3 27.0 29.2 28.3 29.3 18.3150-200 18.8 24.6 29.0 22.3 25.1 16.8200-300 17.6 18.4 53.1 17.7 16.9 34.4S.E.D.(1) 1 .15 1 ,, 6 6S.E.D.(2) 2 .51 3 ,, 64S.E.D.(3) 1 .95 2 ,.83

FOOTNOTE; S.E.D.(I) = HORIZONTAL AND DIAGONAL COMPARISONS OF DEPTHS BETWEEN EITHER
UNSLUDGED VS. UNCULTIVATED OR UNSLUDGED VS. CULTIVATED.

S.E.D.(2) = HORIZONTAL AND DIAGONAL COMPARISONS OF DEPTH BETWEEN 
CULTIVATED VS. UNCULTIVATED.

S.E.D,(3) = VERTICAL COMPARISON OF DEPTHS WITHIN UNSLUDGED.

ORGANICALLY BOUND Cu = (EDTA minus ACETIC ACID) EXTRACTABLE Cu
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appeared to be less of a difference between measurements taken for each 

sampling depth in the first and second year for the cultivated plots.

Soil organic matter (% loss on ignition), measured for the first year 

soil samples, was seen to be significantly (P < 0.05) correlated (r = 

0.41; n = 48) to herbage Ni concentrations in all five cuts (Table 3.7). 

Inclusion of this soil parameter, together with soil pH, resulted in 

predictive equations which best explained the observed changes in 

herbage Ni (Appendix F)̂  where soil organic matter and herbage Ni 

concentrations were inversely related. Similar effects on herbage Cr 

and Zn were also present^ however, these were transient and were recorded 

in only one single cut.

Soil metal concentrations, both total and extractable, showed 

significant (P < 0.05) positive correlations with soil organic matter 

content (Table 3.13). Best fit regression analysis (Appendix I)

showed that soil organic matter was a major predictor of soil total and 

extractable metal concentrations, with the only exceptions of EDTA- 

extractable Cu concentrations and acetic acid-extractable Zn 

concentrations, which were best explained by their total soil metal 

content.

A measure of Cu and Zn bound to soil organic matter could be estimated 

by subtracting the acetic acid extractable concentration from the 

concentration extracted in EDTA (Berrow, personal communication). 

While this was possible for Cu, Zn concentrations extracted by both 

EDTA and acetic acid were similar. The amount of Cu bound to organic 

matter was seen to be unaffected by cultivation, liming and fertilizer N
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TABLE 3.13 CORRELATION (r) BETWEEN SOIL pH, ORGANIC 
MATTER CONTENT, TOTAL AND EXTRACTABLE 
METAL CONCENTRATIONS AND % EXTRACTABLE 
LEVELS (FOR CLARITY ONLY SIGNIFICANT 
CORRELATIONS (P < 0.05) ARE SHOWN).

ACETIC %ACETIC
ACID EDTA ACID %EDTA O.M. pH

Cd-TOT
Cd-Ac
Cd-%Ac

0.64 N.A.
N.A.

0.72
0.65
0.29

Cr-TOT 0.60

Cu-TOT
Cu-Ac
Cu-EDTA
Cu-OM
Cu-%Ac
Cu-%EDTA

0.65

0.54

0.31

0.94
0.71

0,98

N.A.
N.A.

N.A.
0.31
N.A.
0.40

0.71

0.67
0.76
-0.54

-0.39

-0.46

N i -TOT 
Ni - Ac 
Ni-%Ac

0.76 N.A.
N.A.

0.71 
0 . 6 6  

0.37
-0.30
-0.45

Pb-TOT 
Pb - Ac 
Pb-%Ac

0.87 N.A.
N.A.

0.69
0.62

Zn-TOT
Zn-Ac
Zn-EDTA
Zn-%Ac
Zn-%EDTA

0.95 0.92
0.98

0.57

N.A.
N.A.

N.A.

N.A.
0.89

0.71
0.74
0.79
0.43
0.55

-0.33
0.39

FOOTNOTE ; N.A. = NOT APPLICABLE.
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application (Appendix C) . Organically-bound Cu (Table 3.12), as was 

the case for the soil organic matter content (Table 3.14), exhibited an 

uneven distribution with depth which was significantly (P < 0.01)

affected by cultivation. In both cultivated and uncultivated plots

the changes in Cu bound to organic matter were similar to those

previously described for total soil metal concentrations.

Soil organic matter was highly correlated (r = 0.76; n = 336) to the

organically-bound Cu fraction in the soil (Table 3.13). However, the 

concentration of soil Cu bound to organic matter was best explained by 

total soil Cu concentration and inclusion of soil organic matter into 

the predictive equation did not result in any significant improvement of 

the latter (Appendix I).

3.3.2 A POT TRIAL INVESTIGATING THE EFFECTS OF SOIL pH ON 
THE UPTAKE OF METALS

Table 3.15 reports the mean herbage Cd, Cr, Cu, Ni., Pb and Zn 

concentrations in both cuts. With the exception of P b , herbage metal 

concentrations showed a significant (P < 0.05) decrease as soil pH 

increased from 4.5 - 5.0. With a further rise in soil pH over the 

range of pH 5.0 - 9.0,a gradual decrease in herbage metals was observed. 

However, Cu concentration in the second cut herbage exhibited a 

significant (P < 0.05) increase as soil pH increased over the range 5.0 

- 6.5 , although above this pH herbage Cu decreased. Herbage Pb

concentration was independent of soil pH.
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TABLE 3,14 CHANGES IN SOIL ORGANIC MATTER CONTENT 
(% LOSS ON IGNITION) WITH DEPTH (CARBARNS 
FIELD EXPERIMENT).

DEPTH/mm UNCULTIVATED CULTIVATED

0-25 19.48 11.82

25-50 17.18 12.48

50-75 15.43 13.17

75-100 14.22 13.95

100-150 12.19 14.23

150-200 9.65 12.29

200-300 8.11 9.60

S.E.(l) = 0.36 (between uncultivated and cultivated) 

S.E.(2) = 0.21 (within uncultivated or cultivated)
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3.4 DISCUSSION

Over the years, and in particular, over the last decade, the metal load 

of the anaerobically digested sewage sludge disposed on to land by the 

Lower Carbarns Sewage Works has decreased (Table 3.16). This reduction 

has been due to both the recession experienced by the local steel 

industry and also to tighter quality standards imposed on effluents 

discharged by industry. At present, the only industrial effluent 

treated by the Lower Carbarns Works is that originating from a film 

processing laboratory and some light engineering concerns. In the past^ 

the industrial load of the sludge was supplemented by a number of steel 

works and plating shops which contributed significantly to the Cr, Cd 

and Zn load of the sludge. Application of sludge from the Lower 

Carbarns Sewage Works on to adjacent permanent grassland for over fifty 

years, has led to an increased metal concentration in the treated soil. 

This has been confirmed by trials reported in this work on the very 

same soil (see Table 3.4).

In the unsludged soil, metal concentrations (mg/kg air-dry soil) were in 

the range 0.87-0,95 Cd, 97-114 Cr, 39-44 Cu, 28-33 Ni, 109-133 Pb and 

144-167 Zn (Table 3.4). Accumulation of organic matter and/or the 

activities of man, particularly in industrial areas, can strongly 

influence the total trace element content of the A horizon (Berrow and 

Ure, 1985). In fact, these authors reported an increased concentration 

of P b , H g , Cu and Zn in the A-horizon relative to the concentration 

found in the B-horizon due to an accumulation of organic matter in the 

former. Concurrently, organic matter accumulation in the A-horizon 

resulted in a decreased concentration of Ba, Cr, Li, Mn, Ni, Ti and V
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TABLE 3,16 TOTAL Cd, Cr, Co, Cu, Fe, Mn, Ni and Zn 
CONCENTRATIONS (mg/kg DRY. SOLIDS) IN 
ANAEROBICALLY DIGESTED SEWAGE SLUDGE FROM 
THE LOWER CARBARNS SEWAGE WORKS IN THE 
YEARS 1978, 1983 AND 1987 (DATA SUPPLIED 
BY THE LOWER CARBARNS SEWAGE WORKS).

METAL 1978

YEAR

1983 1987

Cd 8.4 4.9 3.7

Cr 164 71 70

Co 1 1 6 . 8 5

Cu 506 487 418

Fe 24500 19300 21800

Mn 843 554 400

Ni 174 58 35

Zn 1324 935 775
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relative to that found in the B-horizon (Berrow and Ure, 1985).

Concentrations of Cu, C d , Zn, Pb and Cr over the entire 100mm sampling 

depth were respectively 99, 61, 60, 57 and 16% higher in the sludged 

soil than those recorded in the unsludged soil (Table 3.4). However, 

whereas metal concentrations in the unsludged soil showed no significant 

changes with depth, as was also reported by Berrow and Reaves (1984) 

from their survey of background metal concentrations in Scottish soils, 

in the sludged soil metal concentrations showed an uneven distribution 

in the soil profile with highest concentrations of Cd, Cr, Cu, Pb and Zn 

being recorded over the top 100mm. Thereafter, with each subsequent 

increase in sampling depth (i.e. 100 150mm, 150-200mm and 200-300mm) a

significant reduction in metal concentration was recorded. The marked 

accumulation of added sludge metals in the surface 1 0 0 mm of soil has 

been noted by many other authors (see Section 1.3.4). Berrow and

Reaves (1985) attributed this to the immobility of applied metals and 

their consequent retention close to the zone of incorporation and to the 

influence of organic matter which is known to bind several metals, 

especially Cu, quite strongly (see Section 1.2.3). The accumulation 

of metals in the surface soil layers has led to a situation where the 

concentrations of metals in the sludged soil are only significantly 

greater than those in the unsludged soil up to a depth of 100mm for Pb 

and Cr, 150mm for Zn and Cd and up to 200mm for Cu, and at greater 

depths there is no indication of any metal enrichment due to sludge 

disposal to land. In marked contrast, not only did the Ni

concentrations in the sludged soil show a significant increase with 

depth over the top 100mm, but curiously. Ni concentrations in the 100- 

300mm layer of the unsludged soil were greater than those recorded in
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the sludged soil (Table 3.4).

The total metal concentrations recorded in the sludged soil were 

unchanged by the application of both lime and fertilizer N. Similarly^ 

cultivation did not lead to any significant change in the mean (0 - 

300mm) soil metal concentration. However, soil cultivation did

result in a radical change in the distribution of metals in the soil 

profile. Whereas metal concentrations in the uncultivated plots were 

highest over the 0 -1 0 0 mm depth, in the cultivated soil the highest metal 

concentrations were recorded over the 75-150mm depth (Table 3.4). As 

traditional cultivation involves soil inversion, such a redistribution 

of metal concentrations is to be expected. Soil inversion led to soil 

with relatively lower metal concentrations being translocated from the 

deep layers to the surface, with respective Cd, Cr, Cu, Ni, Pb and Zn 

concentrations being on average, 24, 13, 22, 12, 33 and 22% lower in 

the 0-25mm depth of the uncultivated soil than in the cultivated soil.

From a health aspect, the significant reduction in metal concentrations 

of the surface soil resulting from the cultivation of soil^ may be of 

particular relevance in determining the total metal intake of grazing 

animals. During grazing, involuntary ingestion of soil together with 

herbage is known to occur (Healy, 1974) and does not appear to be the 

result of a depraved appetite (Healy, 1974). In New Zealand, under 

intensive farming conditions, soil ingestion by grazing animals has 

been recorded throughout the year and although a winter peak in soil 

intake has been observed, ingestion during the remaining part of the 

year accounted for about half the total annual soil intake (Healy, 

1972). In this way, soil ingestion can account for as much as 15-25%

1 47



of the total dry matter intake of grazing animals (Healy, 1972 and 

1974). However, the amount of soil ingested by grazing animals varies 

greatly and is known to be particularly affected by soil type, stocking 

rate, season, stock management and earthworm activity (Fleming, 1986; 

Healy, 1973). For instance, under New Zealand conditions, Healy (1973) 

noted that whereas sheep ingested relatively small amounts of soil when 

availability of fresh pasture herbage per sheep was approximately 

300kg/ha, when available herbage fell to approximately lOOkg/ha, sheep 

ingested approximately 600g soil/day. Under Scottish winter conditions 

intake of soil by grazing sheep may exceed 400g/day (Field and Purves,

1964). Measurements by Thornton (1974) showed that in South West England 

soil ingestion by grazing cattle over the winter months ranged between 

140 to 1400g/day.

Ingested soil may be an important source of trace elements in the diet, 

and perhaps the main source of elements, such as Co, which are present 

in relatively small amounts in the herbage as against relatively higher 

soil concentrations (Thornton, 1974). The beneficial effects of such 

ingestion were recognised very long ago when, in England, Co deficiency 

in sheep was successfully treated by dosing with a suspension of soil 

in water whereas anaemic pigs were provided with upturned sods (Fleming, 

1986). On the other hand, soil ingestion may also lead to undesirable 

effects, e.g. excessive wear of incisor teeth in sheep caused by the 

physical abrasion of the teeth with ingested soil (Healy and Ludwig,

1965).

It is now recognised that ingested soil is an important pathway for 

metal absorption by animals especially in areas which are naturally
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contaminated (geochemical pollution) or where enhanced metal levels have 

resulted from man's activities. Ingested soil as it passes through 

the animals's alimentary canal is subjected to a range of conditions 

associated with the digestive process. In particular, differences in

pH between the abomasum (c. pH 3.0) and the rumen (c. pH 7.0) as well as 

the effects of enzymes and microbial flora in the intestines are 

important and exercise significant effects on metal absorption (Fleming, 

1986; Kjellstrom et al., 1984). Other processes, such as 

complexation, may also be involved. Soil may contribute to the pool 

of elements in the intestinal solution and may thus either raise 

concentrations, or it may compete for elements in solution and thus 

lower their concentrations (Healy, 1972). These changes in

concentration influence animal nutrition, for it is from this pool of 

elements in solution that elements are absorbed into the bloodstream. 

Alimentary tract conditions may^ therefore, increase or decrease heavy 

metal availability to the animal. Short-term animal studies using 

radio isotopes showed that ingested soil can be a source of Co, Mn, Se 

and Zn (Healy et al., 1970 cited by Healy, 1973). Increased retention 

of C a , Mg and P following soil ingestion has also been reported (Grace 

and Healy, 1974) and Healy (1974) has pointed out that ingested soil 

may constitute a useful and significant source of Cu, Mn, Se and I.

Ingested soil may supply more of the various elements than does 

herbage. For instance, cattle have been reported to ingest ten times 

more Cu, Pb and As from soil than they do from herbage (Thornton, 

1974). Even where soils do not contain anomalous levels of elements, 

it is thought that soil ingestion exercises some effects. Thus

Stratham and Bray (1975) considered that I intake by sheep from
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ingestion of a clay soil was greater than that from a sandy one, as 

sheep grazing on the latter had more goitrous lamb than those grazing on 

the former. One of the most common trace element disorders associated 

with livestock production is that of Cu deficiency. This is frequently 

associated with high levels of No in herbage and is exacerbated by high 

intakes of S. Iron has now been implicated in the complex mechanisms 

that bring about hypocupraemia in animals (Suttle et al., 1982) and this 

being so, soil intake is brought into sharp focus, as it can be a major 

source of ingested Fe (Healy, 1973). Recently, it has been suggested 

that a possible mechanism for copper depletion may first involve 

precipitation of FeS in the rumen followed by release of sulphide in the 

more acid abomasum with resultant trapping of potentially absorbable Cu 

as insoluble CuS (Suttle et al., 1984). Other elements such as Zn and 

Cd may also be involved and can also act as antagonists towards Cu 

absorption (Little, 1981).

Soil ingestion may be of particular importance and concern when 

considering the intake of Pb by grazing animals. Lead is a cumulative 

poison and its intake and translocation into the food chain is generally 

controlled effectively by its immobilization in plant roots. Lead is 

so immobile in the soil that the only effective pathway into the food 

chain is via direct ingestion of soil (Dean and Suess, 1985) as this 

route by-passes the soil-plant barrier. Cases of Pb poisoning in 

cattle, at times leading to death, are still reported occasionally 

around historical mining sites in Derbyshire, when animals stray on to 

mine spoil (Thornton and Abrahams, 1984). On these historically

contaminated soils, the cattle take in the majority of the Pb in the 

form of accidentally ingested soil (Thornton et al., 1983 cited by
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Thornton and Abrahams, 1984). Soil Pb concentrations in areas of 

varying Pb contamination have been shown to clearly reflect the Pb 

concentrations found in the blood of animals grazing herbage growing on 

these sites (Thornton and Abrahams, 1984). Russell et al. (1985) 

reported that at these sites up to 87% of the Pb assimilated by cattle 

was attributable to ingested soil, and though this proportion was 

greatest on heavily contaminated land, even where the soil was only 

slightly contaminated, soil ingestion contributed to more than 40% of 

the total Pb load assimilated by the animals.

In view of the above, soil cultivation, especially of those sites where 

metal concentration of the surface soil has been increased following 

man's activity, may be desirable. Soil cultivation, in bringing soil 

of a lower metal load to the surface, would lead to a reduced 

assimilation of potentially toxic metals, such as Pb and Cd, by grazing 

animals. Moreover, soil ingestion may result in more subtle ill-effect 

on the overall health of the grazing animal and need not necessarily be 

reflected in increased blood and tissue metal concentrations. For 

example, the substantial increases in the amounts of elements like A 1 , 

F e , Mn and Zn in rumen liquor may affect rumen microflora, perhaps by 

influencing their metabolic activities, and/or by changing the rumen 

populations (Healy, 1972). In this respect Martinez and Church (1970; 

cited by Healy, 1972) observed both stimulatory and inhibitory effects 

in in vitro cellulose digestion.

Cultivation of the sludged soil at Lower Carbarns although reducing the 

concentrations of potentially toxic metals available to the ruminant in 

ingested soil, increased the metal content of herbage available for
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animal consumption. Herbage sampled from cultivated plots contained 

Z n , Cu and Ni concentrations which were circa 14, 18 and 43%

respectively greater than those present in herbage growing on 

uncultivated plots (Table 3.5). However, when considering metal uptake 

by herbage, cultivation was seen to have a significant effect only on 

the uptake of Cu and Ni, but not on the uptake of Zn (Table 3.9).

Cultivation leads to changes in the physico-chemical conditions of the 

soil which are both varied and complex. When grasslands are used for 

agriculture, there is a decline in soil aggregation and soils become 

more compact (Foth, 1978). Soil compaction results in an increase in 

micropore space, and a decrease in both macropore and total pore space. 

Cultivation has the immediate effect of loosening the soil and 

increasing soil aeration and water infiltration (Foth, 1978). All 

these effects permit better growth and development of plant roots. A 

larger root system provides a larger soil volume from which the plant 

can absorb nutrients. Consequently, the total availability of metals to 

those plants growing on the cultivated soils would be greater than their 

availability to plants growing on uncultivated soils. However, were 

the increases in metal concentrations in herbage from the cultivated 

plots to be due solely to this greater root development, then an 

increase in the concentration of all metals, and not just of Cu, Ni and 

Zn, would be expected. Of possibly greater significance is the

increased microbial activity resulting from improved aeration and 

organic matter incorporation in the cultivated soil. A stimulation of 

the rate of microbial decomposition of soil organic matter results in an 

associated increase in the rate of resolubilization of those metals 

bound or associated with the soil organic matter fraction. The
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significance of this process in terms of metal availability would be 

greatest for those metals such as Cu and Zn^ which are known to be 

strongly associated with organic matter in soil (see Section

1.2.3). As such, the availability for plant uptake of these metals 

would be determined by the rate of organic matter breakdown. However, 

the enhancement of soil organic matter mineralization following 

cultivation is transient (Jenkinson, 1988). The short term nature of 

this effect of cultivation on mineralization and its implications to 

metal availability has been noted in this work. In fact, it was only 

over the first two cuts following soil cultivation (i.e. cuts 1 and 2 ) 

that Zn and Cu concentrations in herbage from cultivated plots were 

greater than those recorded in herbage from uncultivated plots. 

Moreover, this effect was less pronounced at the second cut (Table 3.5).

In the case of Ni^ the effect of cultivation extended into the second 

year of the experiment^ being detected in the Spring 1987 cut (cut 3). 

This extended effect may have arisen from a localised decrease in soil 

pH associated, with the decomposition of the old grass sod which took 

place at some depth beneath the soil surface. The pH at which the 

concentration of Ni present in the aqueous phase of a soil sludge 

mixture shows a sharp increase, as pH decreases, is much higher than 

that for Cu and Zn. Whereas the concentration of Ni in the aqueous 

phase of a soil-sludge mixture increases sharply as pH decreases below a 

'threshold' pH of 6.3, for Zn and Cu this 'threshold' is lower at pH

6.1 and 4.8 respectively (Adams and Sanders, 1984).

The absorbtion of heavy metals by plants is highly dependent on soil pH 

(see Section 1.2.2.), so that the practice of liming to improve growth
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has important additional affects on crop composition. The uptake and 

hence toxicity of many metals is reduced by raising soil pH (see Section 

1.2.2.) although Mo and Be are notable exceptions. At Lower Carbarns, 

the single surface application of calcium hydroxide, aimed at raising 

the soil pH from a background level of 5.5 (mean for the top 100mm) to a 

target pH of 6,3, resulted in a 0.9, 0.6, 0.4 and 0.3 unit increase in 

the pH of the soil sampled at depths of 0-25mm, 25-50mm, 50-75mra and 75- 

100mm respectively. However, it was only over the 0-50mm depth that 

this increase was found to be significant (Table 3.6).

The herbage concentrations of C d , Ni, Cu and Zn, from both limed and 

unlimed plots, were best explained by soil pH (Appendix F ) , with herbage 

metal concentrations inversely proportional to soil pH. A similar 

relationship between soil pH and herbage heavy metal concentrations was 

evident where L. perenne was grown on soil ranging in pH from 4,5 - 9.0 

(Table 3.15). In this pot experiment, a significant reduction in 

herbage Cd, C r , Ni, Cu and Zn concentrations was recorded as pH 

increased over the range 4.5-5.0. As pH increased beyond this level no 

further significant reduction in herbage metal concentrations was 

recorded, not even for Zn and Ni whose uptake is known to be 

significantly affected by pH up to a value of 7.5 (Rothamsted 

Experimental Station, 1985).

In the field situation at Lower Carbarns, liming resulted in a 

decreased metal concentration in herbage. Nickel, Zn and Cu

concentrations in herbage from limed plots were on average 33, 18 and

9% respectively lower than those recorded in herbage from unlimed 

plots. However, this significant reduction in herbage Ni and Cu
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concentrations was not evident in the first cut following lime 

application (i.e. Summer 1986),

Although Cu, Ni and Zn uptake was similarly reduced as a result of 

liming, the effect was smaller (Table 3.9). A reduction in the uptake 

of Cu was, for instance, only recorded in the Autumn 1986 cut (cut 2), 

Similarly, a significant affect of liming on the uptake of Zn was only 

evident in the first three cuts and no significant reduction in Zn 

uptake was observed in the Summer and Autumn 1987 cuts. In contrast, 

lime application reduced the uptake of Ni in all but the first cut, as 

was the case for herbage Ni concentrations.

Application of N fertilizer may affect the trace element contents of 

plants in several distinct ways. In the first instance, where the 

amounts applied are relatively large, up to 400kg N/ha/yr, soil 

conditions, such as the osmotic potential, can be significantly

altered (Burridge et al., 1983). Secondly, changes in the trace 

element content of plants can occur as a consequence of increased plant 

growth. Thirdly, plant uptake of trace elements may be affected by 

changes in the relative amounts of the major elements (and minor 

nutrients) available to roots. Furthermore, each of these three types 

of effects has a variety of causes. Thus, it is often very difficult 

to explain observed effects of fertilizer N on the trace element 

content of plants under field conditions, because single factors can 

seldom be isolated.

At Lower Carbarns the rate of application of fertilizer N had a profound 

effect on the herbage concentration of Cu and Zn (Appendix D) . As
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fertilization rate increased so too did the concentration of Cu and Zn 

in herbage. In fact, not only was there a significantly higher 

concentration of Cu and Zn in herbage which had received 250kg N/ha/yr 

over that recorded in the herbage which had received no N, but a further 

increase in the rate at which N was applied, i.e. 500kg N/ha/yr, led to 

a further significant increase in herbage Cu and Zn concentrations 

(Table 3.5). In practice, Cu and Zn concentrations in herbage which 

had received no N were respectively 20-97% and 23-56% lower than those 

found in herbage from plots supplied with 250kg N/ha/yr. In turn, the 

Cu and Zn concentrations recorded in the herbage from the latter plot 

were 14-47% and 9-46% lower respectively than those present in the 

herbage which had received 500kg N/ha/yr. The C d , Pb and Ni 

concentrations in the herbage sampled in 1987 were also significantly 

affected by fertilizer N (Appendix D) . However, these effects were 

neither as pronounced nor as consistent as those observed with Cu and 

Zn. For instance, whereas Pb concentrations in herbage sampled in 

Spring 1987 were seen to increase with an increase in fertilizer N 

rate, in the next two cuts (i.e. Summer and Autumn 1987) the herbage Pb 

concentration^ which had received no N^ was greater than that present 

in herbage sampled from plots which had received 250 and 500kg N/ha/yr 

(Table 3.5). In contrast, Ni concentrations in herbage receiving no 

fertilizer N and that which had received 250kg N/ha/yr were similar and 

at the same time significantly lower than the concentration recorded in 

the herbage which had received 500kg N/ha/yr (Table 3.5).

Application of fertilizer N had a very marked effect on the total dry- 

matter yield of the herbage, which increased as N application rate 

increased (Table 3.8). As such^ the rate at which fertilizer N was
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applied was seen to have a very significant effect on the uptake of all 

metals in all but the first cut (Summer 1986). As a rule, the uptake 

of Cd, Cr, Ni and Pb by the herbage which had received 250kg N/ha/yr 

was greater than that recorded where no N was applied. However,

increasing the fertilizer N application rate to 500kg N/ha/yr led to no 

significant increase in the uptake of Cd, Cr, Ni and Pb than that 

recorded where herbage had received 250kg N/ha/yr. In contrast, not 

only was the uptake of Cu and Zn increased as the application rate of 

fertilizer N increased from 0kg N/ha/yr to 250kg N/ha/yr, but a further 

increase in the uptake of both these metals was achieved when the rate 

of N fertilizer application was increased to 500kg N/ha/yr.

Two widely recognised direct effects of fertilizers on soil conditions 

are (i) impurities in the fertilizers may significantly increase the 

total trace element content of the soil and (ii) soil pH may be changed. 

Both (i) and (ii) can lead to changes in the availability of trace 

elements to plant roots, and thus, affect their uptake. The effect 

(i) depends strongly on the origin of the fertilizer used and trace 

element impurities in inorganic NPK fertilizers are more likely to be 

associated with the phosphate component (Swaine, 1962). At Lower 

Carbarns, application of NH^NO^ fertilizer did not affect the total soil 

metal concentration, not even that of the surface 0-25mm soil layer 

(Appendix D) . An instance of effect (ii) is provided by ammonium 

sulphate which is well known for its acidifying effect on soil. Heavy 

applications of N in this form can produce effects on trace elements 

opposite to those that result from liming. Application of NH^NOy can 

equally affect the pH of the soil. All ammonium salts cause soil 

acidification and loss of exchangeable cations, with the loss of Ca
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predominating in most soils (Wild, 1988), The main cause is the 

oxidation of to yield protons and NO^ . Under field conditions

some of the NO^ produced by this nitrification, is leached out of the 

soil as calcium nitrate. In addition, Ca may also be lost as an 

associate cation if fertilizer-derived NO^-N is leached. With ammonium 

sulphate, Ca is leached with the sulphate making this the most 

acidifying of the commonly used fertilizers (Wild, 1988). However, the 

loss of Ca following the application NH^NOg is much smaller because, if 

most of the nitrate which is added or formed by nitrification is taken 

up by the crop, there is no excess anion to be leached which would 

require Ca as a counter ion (Wild, 1988). Volatilization of as

NHg may also contribute in the acidification of the fertilized soil 

(Rowell, 1988). However, the affect of NH^NO^ on the pH of the 

receiving soil may be much more influenced as a result of the uptake of 

NH^^ and NO^ by plant roots. The subject of ammonium versus nitrate 

nutrition has been reviewed by Haynes and Goh (1978) and Kirkby (1981). 

Generally, as nitrate concentrations in the soil are usually much higher 

than ammonium concentrations, the main source of N for non-leguminous 

crop plants is nitrate (Wild, 1988). In nutrient solutions most crop 

plants grow equally well whether supplied with nitrate or ammonium given 

that relatively low NH^-N concentrations are present and that pH is 

adjusted. For the majority of plants, the highest growth rates are 

recorded when a combination of both nitrate and ammonium ions is 

supplied (Clarkson and Warner, 1979)^ although certain species of plants 

may show preference to ammonium as opposed to nitrate and vice versa 

(Haynes, 1986). Flowing solution culture studies have shown that 

nitrate fed plants raise pH and ammonium fed plants lower it (Rowell, 

1988). In the field situation, the effects on the pH of the bulk soil
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are very much smaller than those observed in the rhizosphere (Marschner, 

1986). Root induced changes in the rhizosphere pH are brought about by

the excretion of H^ or HCO^ . This excretion is related to the

cation/anoin uptake ratio and is an indication of the need to maintain 

electrochemical balance both in root cells and in the external solution 

(Marschner, 1986). The form of N supply has the most prominent 

influence on the cation/anion uptake ratio and thus on rhizosphere pH, 

When the rate of NOg-N absorption exceeds that of NH^-N, HCO^ is

excreted and if the opposite is true, H^ is excreted by the root 

(Marschner, 1986). The changes in the root zone are at a maximum when 

the soil pH is about 5.3, as was the soil pH of the unlimed Carbarns 

soil, because at this pH^ diffusion of acidity is slow (Rowell, 1988). 

It is from within the rhizosphere that most of the uptake of

micronutrients occurs (Rowell, 1988). Had the situation arisen where 

NH^* was preferentially absorbed as can occur under relatively low soil 

temperatures or in non-nitrifying soils (Haynes, 1986), this would 

have resulted in a decrease in rhizosphere pH and hence an increased 

availability of heavy metals whose availability is greatly influenced by 

soil pH (see Section 1.2.2).

Increased growth in response to fertilizer application, especially of N, 

can also affect plant trace element concentrations for a number of 

reasons. For example, where the increased growth of shoots is not

accompanied by a comparable increase in the uptake of trace elements, a 

dilution effect occurs. Such an effect might have led to the situation 

observed at Lower Carbarns where for the fourth cut (Summer 1987) the Cd 

concentration in the herbage from plots which had received no N 

fertilizer was greater than that recorded in the herbage which had been
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treated with both 250 and 500kg N/ha/yr (Table 3.8). A similar

situation was noted for Pb concentration in this same herbage. Lead, 

unlike Cd which is rapidly translocated from the roots to the leaves, 

tends to be immobilized in the root and only a small fraction of that 

taken up is actually translocated (Webber, 1980). Hence, in the case 

of Pb the increased dry matter production may not have been matched by 

an equivalent increase in Pb translocation. Nitrogen application may 

also alter the stage of growth and its form, for example, the leaf:stem 

weight ratio. Different parts of plants are known to have different 

concentration of heavy metals. In general, the most metabolically- 

active plant parts, especially the strongly transpiring plant leaves, 

exhibit considerably higher heavy metal contents than stems and storage 

organs or fruits and seeds respectively (Davis and Coker, 1980; Kloke 

et al., 1984). Changes in the proportion of leaf, stem, reproductive, 

storage and fruiting tissues of the L. perenne sward as influenced by 

fertilizer N use and season (i.e. stage of maturity) would consequently 

have resulted in changes in the metal concentrations.

As well as the effect of fertilizer N on promoting growth, the 

botanical composition of a mixed pasture may also change as a result of 

fertilizer treatment, an instance being the suppression of clover by 

high N applications. Although the experimental field at Lower Carbarns 

was sown out solely to L. perenne, this effect will be relevant to 

grass/clover leys. Different species of plants have different 

capacities to absorb and translocate metals (see Section 1,4.2). For 

instance, on soils low in Cu, clover generally contains less Cu than 

does ryegrass, whereas on soils high in Cu, the converse is true 

(Mitchell et al., 1957; cited by Burridge et al., 1983). Thus, a

160



change in the relative composition of a grass sward would influence the 

herbage metal concentration of a mixed sward.

Nitrogen is a major constituent of all proteins. In plants, both Cu 

and Zn are closely associated with a number of proteins. Copper is 

required for the synthesis of a number of proteins amongst which are 

plastocyanin, superoxide dismutase, cytochrome oxidase, ascorbate 

oxidase, phenolase, laccase and amine oxidase (Marschner, 1986). For 

its part, Zn is present in a number of plant enzymes: alcohol

dehydrogenase, superoxide dismutase and carbonic anhydrase and is also 

required for the activity of various other types of enzymes such as 

dehydrogenases, aldolases, isomerases, transphosphorylases and RNA and 

DNA polymerases (Marschner, 1986). Copper iŝ  in fact, highly correlated 

with the true protein content of plant material (Rasheed and Seeley, 

1966) .

At Lower Carbarns the increased concentration of Cu and Zn in herbage in 

response to fertilizer N from 0-500kg N/ha/yr may be attributed to the 

increased synthesis of protein. Similar positive interactions between 

N application and herbage Cu concentrations have also been established 

by Burridge et al. (1983) on soils having an adequate supply of Cu or on 

deficient soils which had been treated with Cu. In fact, it is well 

known that the Cu concentration in herbage growing on Cu-deficient soils 

is decreased by application of fertilizer N (Reith, 1975).

Chromium, its uptake and concentration in the herbage, unlike the other 

metals , was unaffected by any of the three treatments, that is, 

cultivation, liming and application of fertilizer N. Only on one single
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occasion was a relationship shown between either the uptake or 

concentration of Cr in the herbage and the application rate of 

fertilizer N. In this instance, the herbage which had received either 

250kg N/ha/yr or 500kg N/ha/yr had a higher Cr concentration and uptake 

than was recorded in the herbage which had received no fertilizer N. 

Although, it is now well established that Cr is required by animals for 

glucose metabolism, an essential role of Cr in plant nutrition has not 

as yet been established (Davies and Jones, 1988). The chemistry of Cr 

in soil is poorly understood. It appears, that in soil Cr is present 

predominantly as Cr (III) as the relatively more phytotoxic Cr (VI) is 

rapidly reduced to the insoluble forms of Cr (III) in aerobic soils 

(Davies and Jones, 1988). However, Bartlett and James (1979) have 

suggested that in aerobic soils with high pH and low organic matter 

content, Cr (III) is unstable and is oxidized to Cr (IV). Chromium is 

so strongly fixed in near-neutral soils that it is hardly absorbed by 

plants (Jaworski et al., 1984). Transfer coefficients in the range of 

0.01-0.1 (plant/soil) illustrate this behaviour (Kloke et al., 1984). 

The mechanisms involved in the uptake and translocation of Cr in plants 

are not understood. There is, however, evidence that Cr (VI) is reduced 

to Cr (III) within the plant and that irrespective of the form in which 

it is supplied most of the Cr is retained in th,e roots (Davies and 

Jones, 1988) . Thus, any changes in Cr uptake, as a consequence of

liming, cultivation or fertilizer N application, could have been masked 

by immobilization of Cr in the root and, therefore, any change in Cr 

availability brought about by grassland management practices is 

difficult to elucidate.

Although herbage analysis is obviously the more direct way of
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establishing the effects of soil management practices on the 

concentrations of metals in plants and, hence, their implications to plant 

and animal health, there are practical reasons why soil analysis is 

often preferred. For instance, one of the chief reasons is the

possibility of being able to sample soils at almost any time of the

year; herbage sampling, on the other hand, is much more restricted 

(Burridge et al., 1983). A large and varied array of soil extractants 

have, thus, been used, with varying degrees of success, to predict the

availability of a number of metals for plant uptake (see Section 2,1).

When sludges are mixed with soil, there is a substantial reduction in 

the concentration of metals extracted by water (Bradford, 1973; cited 

by Page, 1974). However, the concentrations of all trace elements in

the sludge-amended soil normally exceed those commonly observed for 

saturation extracts from soils not treated with sewage sludge (Bradford, 

1973; cited by Page, 1974) and large increases in the extractable metal 

concentration in soils following sludging are well documented (Andersson 

and Nilsson, 1972; Berrow and Webber, 1972; Andersson and Nilsson, 

1974; Bolton, 1975). At Lower Carbarns, the proportion of total metal

concentration in the soil extracted by both acetic acid and EDTA was

significantly greater in the sludged soil than in the unsludged soil 

(Tables 3.12). On average, over the 0-200mm depth, the proportion of 

total Cd, Cu, Ni, Pb and Zn extracted by acetic acid was 84%, 225%,

214%, 155% and 33% respectively greater in the sludged soil than in the 

soil which had received no sludge. On the other hand, the proportions 

of total Cu and Zn extracted by EDTA from sludged soil were only 64% 

and 22% respectively greater than from the unsludged soil. The 

concentration of acetic acid-extractable Cd, Cu, Ni, Pb and Zn,as well
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as the EDTA-extractable Cu and Zn was also significantly greater in the 

sludged soil than in the soil which had no history of sludge disposal 

(Tables 3.10 and 3.11). Over the 0-200mm depth, the concentration of 

acetic acid-extractable Cd, Cu, Ni, Pb and Zn in the sludged soil were 

on average 109%, 366%, 115%, 177% and 54% respectively greater than

those recorded in the unsludged soil. On the other hand, increases in 

EDTA-extractable Cu and Zn concentrations in the sludged soil were not 

as pronounced, being only 134% for Cu and 40% for Zn.

Acetic acid and EDTA extractable metals, expressed either as a 

concentration or as a percentage of the total metal concentration, 

showed significant correlations with the metal concentrations found 

in the herbage (Table 3.7), as reported by a number of other workers 

(Richardson, 1980 and Berrow and Burridge, 1983). Such significant 

correlations have prompted many authors to state that the fraction of 

soil metals available for plant uptake could quite easily be predicted 

by determining the acetic acid- and EDTA- extractable metal 

concentration in the soil. One very important consideration when

assessing the validity of using any extractant to determine the plant- 

available metal fraction in a soil, is to compare the response of actual 

plant metal uptake and metal extractability under changing soil 

conditions. Cultivation, liming and fertilizer N application all led 

to significant changes in herbage metal concentrations. However, none 

of these three management practices resulted in any significant changes 

in the amounts of metal extracted by either acetic acid or EDTA. This 

insensitivity of acetic acid- and EDTA- extraction to soil management 

practices tends to discredit the use of either of these chemical 

extractants for predicting metal uptake by plants. The inability of
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both acetic acid and EDTA to reflect changes in metal toxicity as a 

result of liming has been commented upon by Bolton (1975). This

inability of both acetic acid and EDTA to reflect changes in plant metal 

concentrations subsequent to changes in soil physico-chemical 

conditions, particularly following lime application, has been ascribed 

to the 'swarming' effect these extractants have on soil pH (see Section

2.1). Since soil pH is a major determinant of heavy metal

availability, it is for this reason that weaker extractants such as 

water and calcium chloride have recently been put forward as 

alternatives to acetic acid and EDTA. However, chemical extractants 

can never mimic living systems like plants. Plants respond to soil 

management practices in ways which can never be mimicked by chemical 

extractants. For instance, an increase in herbage metal uptake could 

be due to increased root growth and not to pH. Equally, changes in 

the soil microbial biomass, herbage dry-matter production and in the 

micro-environment of the root, brought about by varying management 

practices, cannot be taken account of by choice of extractant.

Substracting the concentration of metal extracted by acetic acid from 

that fraction extracted by EDTA, yields a measure of how much metal is 

complexed with organic compounds (Berrow, personal communication). 

Whereas acetic acid extracted similar Zn concentrations as did EDTA, the 

latter extracted much more Cu than did acetic acid. The soil chemistry 

of Cu is intimately related to the organic fraction in soil (see

Section 1.2.3) and Cu availability is largely determined by the nature

of the Cu-organic compounds complexes present in soil (see Section

1.2.3). However, at Lower Carbarns the concentration of Cu in the

herbage showed no relation to the Cu held by soil organic compounds
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(Table 3.7). In contrast, herbage Ni concentrations were best

explained by soil pH and organic matter content (Appendix F) . Nickel 

concentrations in the herbage decreased as the soil organic matter 

content increased. A similar relationship was exhibited by both Zn 

and Cr but this appeared to be a transitory or chance relationship 

holding for only one cut.

The accumulation of metals in the surface 0-150mm of the soil makes the 

application of sewage sludge to land a long-term pollution risk to both 

plant and animal components of the food chain. The absorption of

metals into the food chain, via plant uptake or by involuntary soil 

ingestion by animals, is greatly affected by grassland management 

practices. Herbage Cd, Cu, Ni, and Zn concentrations are reduced by

liming whilst increasing the rate of fertilizer N application increases

herbage C d , Cu, Ni, Pb and Zn concentrations which could not be

explained by changes in bulk soil pH. Metal concentrations extracted 

by both acetic acid and EDTA did not reflect these changes in metal 

uptake. Chromium uptake was unaffected by either liming or fertilizer 

N rate. Ploughing and reseeding led to short-term (i.e. over the first 

two cuts) increases in herbage Cu, Zn and Ni. However, the resultant 

decrease in metal concentrations in surface soil after ploughing could 

be of considerable importance in lowering the dietary metal intake of 

grazing animals.
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CHAPTER 4

EFFECTS OF LONG TERM SLUDGE APPLICATION ON SOIL MICROBIAL BIOMASS AND 
NITRIFICATION

4.1 INTRODUCTION

The soil microbial biomass, consisting of soil bacteria, fungi, algae 

and protozoa has been termed "the eye of the needle through which all 

dead organic matter entering the soil must pass as it is broken down to 

its organic components that plants can use once again" (Jenkinson, 

1977). In terrestrial ecosystems, about 90% of the energy associated 

with soil organic matter is utilised by decomposers (Doelman and 

Haanstra, 1979). Without micro-organisms, the soil would become a 

repository of dead organic remains with no facility for recycling vital 

nutrients, such as C, N, P and S for plant growth.

Typically, the biomass comprises between 2-3% total soil organic C, 

equivalent to about 0.3-It microbial C/ha in arable soils and 

considerably more in grassland (Brookes et al., 1984). Bacteria are 

the most numerous soil organisms with viable populations estimated 

at up to 2 X 10® individual cells/g soil (Harris, 1988). Bacteria are 

also the most diverse in terms of species and function (Harris, 1988). 

The soil microbial population is an important labile reservoir of N, P 

and S (Jenkinson and Ladd, 1981) and are fundamentally involved in 

important transformations of soil N such as ammonification, 

nitrification, denitrification and N 2  fixation. In this way, up to 

half of the total N uptake by cereal crops can be derived from soil
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organic N mineralization during the growing season (Rothamsted 

Experimental Station, 1981).

In addition to its role in nutrient cycling, the biomass and its 

metabolites are important in creating and stabilising soil structure 

(Elliott et al., 1983; Foth, 1978) and in the breakdown of pesticides 

(Harris, 1988b). Of considerable interest in recent years has been the 

possible significance of microbial excretions which influence plant 

growth. These include products such as ethanoic acid, ethylene and 

various plant regulatory compounds with gibberelin-like or indole acetic 

acid-like properties (Harris, 1988b). Moreover, the production by 

bacteria of powerful Fe chelating compounds called *siderophores' have 

been described which result in the decline of root pathogens (Emery, 

1980; cited by Harris, 1988).

About half a million tonnes of sewage sludge, as dry matter, are now 

applied annually as organic manure to agricultural land in Britain. 

Soil biomass generally increases in response to inputs of decomposable 

organic substrates (e.g.: animal manures and plant residues) to soil

(Jenkinson and Ladd, 1981; Schnurer et al., 1985). However, some

sludges in Britain contain potentially toxic metals, such as Cu, Z n , Ni, 

Cd, Pb and Cr, which can accumulate in soil after prolonged additions 

(see Section 1.3.2). Recently, concern has been expressed as to the 

potentially harmful effects these heavy metals might have on microbial 

populations and processes in agricultural soils receiving sewage sludge 

amendments (Brookes et al., 1984; Long, 1985; Zibilske and Wagner, 

1982).
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Micro-organisms need some heavy metals (e.g. Co, Cu, Fe, Mn and Zn) as 

essential nutrients. However, in sufficiently high concentrations each 

metal may become toxic. The manifestations of this toxicity may vary; 

changes in cell morphology, changes in cell metabolism or a decrease in 

species diversity of bacteria (Damyanova, 1983). The effects of heavy 

metals on micro-organisms or microbial enzymes in vitro under controlled 

conditions are well documented (e.g. Tyler, 1981). However, to

extrapolate such data to a field situation can be misleading as soil 

properties, particularly pH, cation exchange capacity and chelating 

ability, generally act to reduce the biological availability of heavy 

metals (Babich and Stotzky, 1976, 1977; Baroux and Sechet, 1974;

Mikkelson, 1974) . For instance, whereas a Pb concentration of 375

ug/g in a sandy soil led to a 15% decrease in soil respiration, a 

similar reduction was only attained with 1500 ug/g in a clay (Doelman 

and Haanstra, 1979).

Assessment of metal toxicity on microbial numbers and activity in soil 

has been investigated using soils formed on parent material rich in 

trace elements (Troyer et al., 1980; cited by Brookes et al., 1984), on 

soils amended in the laboratory with soluble metal salts (Doelmnan and 

Haanstra, 1979a) or using soils contaminated with metals by agricultural 

or commercial activity (Brookes and McGrath, 1986). It has been

suggested that metal pollution of soils not only adversely affects 

microbial biomass and activity but also brings about a change in species 

abundance and composition (Houba and R e m a d e ,1980; Olson and Thornbton, 

1982; Wassel and Mills, 1983; Barkay et al., 1985), and in more severely 

metal-polluted environments, bacterial or fungal metal tolerant
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populations have been identified (Timoney et al., 1978; Doelman and 

Haanstra, 1979; Davey and Reanney, 1981; Duxbury and Bicknell, 1983).

Microbial activity can be used as an indicator of metal toxicity in

soils where rates of consumption of substrates and production of

synthates, as well as the activity of specific enzymes, can be measured. 

For instance, exposure of soils to elevated heavy metal concentrations 

can result in a marked decrease in urease (Tyler, 1974) and acid 

phosphatase (Juma and Tabatabai, 1977) activities. Deleterious effects 

on soil respiration (Bhuiya and Cornfield, 1972; Bond et al., 1976; 

Tyler, 1974; Damyanova, 1983; Doelmnan and Haanstra, 1979a), organic 

matter decomposition (Ebregt and Boldewij, 1977; Doelman and Haanstra, 

1979a,b), P mineralization (Tyler, 1976), N 2  fixation (Brookes et al., 

1986) and ammonification (Tyler, 1975), have also been reported where 

soil metal content is increased. However, the activity of other

enzymes such as B-glucosidase may not be affected by increased heavy 

metal exposure (Tyler, 1974). The particular function of bacterial 

enzymes may also determine their response to metals. For example, 

exocellular enzymes are more exposed to metals in the soil solution than

endocellular enzymes. Thus, Brookes et al.,(1984) suggested that the

activity of enzymes inside living cells is a better indicator of the 

effects of metal toxicity on microbial activity than are exocellular 

enzymes which are more exposed to the soil solution and are 

consequently more prone to metal inhibition.

Effects of metal toxicity on microbial biomass in soil have been 

studied by direct counting, viable counts using dilution plates or most 

probable number techniques (Brookes et al., 1984; Waid, 1984).
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However, these approaches are very subjective and results largely depend 

on the method employed. The principal problem in estimating microbial 

biomass by direct microscopy is distinguishing living organisms from the 

necromass, particularly dead fungal cells, in that living and dead 

cells both respond to dyes (Brookes et al., 1986). In addition, viable

counts may be criticised as only measuring the organisms which will grow 

on the specific culture medium used and, consequently, greatly 

underestimate total soil biomass (Jenkinson and Ladd, 1981).

Measurements of total ATP (adenosine 5-triphosphate) (Jenkinson and 

Oades, 1979) or, following soil fumigation, total readily respirable

organic C (Jenkinson and Powlson, 1976), have each provided convincing 

biochemical measures of living cell components which, if used with 

appropriate caution and experimental controls, are thought to provide 

reliable estimates of total soil biomass (Waid, 1984). ATP occurs in 

all living cells and can be measured readily and accurately by the 

luciferin - luciferase system. The fact that ATP in dead cells is 

rapidly decomposed (Holm-Hansen and Booth, 1966) , as is extracellular 

ATP in soil (Conklin and MacGregor, 1972) enables the living soil 

microbial biomass to be quantified by ATP determination. The main 

difficulties in using the ATP technique are in extracting it efficiently 

from soil and in relating the extracted amount to the amount of biomass 

in soil (Waid, 1984). Attempts have been made to find other specific 

biomass constituents that could be used to gauge soil biomass, such as 

muramic acid, n-acetyl-glucosamine and nucleic acid bases, but without 

success (Jenkinson and Ladd, 1981).
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In 1976, Rothamsted Experimental Station developed a new method for 

measuring the microbial population of soils (Jenkinson and Powlson, 

1976). The chloroform fumigation method is essentially a bio-assay 

technique. It involves killing the soil biomass by chloroform vapour 

and, after fumigant removal, the killed cells are decomposed by a 

recolonising population. When a soil is exposed to a volatile

fumigant, the fumigant removed, and the soil incubated, oxygen 

consumption, over a short period, is found to be greater than that for a 

control unfumigated soil (Birch, 1959) and evolves more CO 2  (Powlson and 

Jenkinson, 1976). Jenkinson (1966) proposed that this "flush of

decomposition" was due to the decomposition by the survivors (or by an 

inoculum) of cells of organisms killed during fumigation. It assumed 

that the recolonising population mineralizes the same amount of non

biomass soil organic matter in both the fumigated and unfumigated 

control soil. Powlson and Jenkinson (1976) and McGill et al. (1981) 

suggested that the cytoplasmic component of the soil microbial biomass 

is the fraction that is mainly mineralized during fumigation since 

stainable microbial cell walls are still apparent more than 50 days 

after aerobic incubation of a previously fumigated soil (Jenkinson et 

al., 1976). To provide a true measure of soil microbial biomass a near 

total kill is required. In this respect, chloroform fumigation can 

yield a 99.9% kill-off (Shields et al., 1974). The chloroform

fumigation - incubât ion technique has been widely used for studying 

biomass C in agricultural systems and, with modifications, biomass N 

(Shen et al., 1984), biomass P (Brookes et al,, 1982; Hedley and 

Stewart, 1982) and biomass S (Saqqar et al., 1981) can also be measured.

Chloroform fumigation and soil ATP measurements have been used to
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investigate short-term effects of field applications of metal 

contaminated sludge on soil biomass (Eiland, 1982; Zibilske and Wagner, 

1982). For soils receiving sludge, there is evidence to suggest that 

soil metal concentrations at or below current permitted U.K. levels seem 

to adversely affect total soil biomass and microbial activity (Brookes 

and McGrath, 1984; Brookes et al., 1984).
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AIMS AND OBJECTIVES

It is clear from the preceding section that heavy metals can have a 

marked affect on soil microbial population and activity. An experiment 

was therefore devised with the aims and objective of investigating the 

effects of past sewage sludge applications to agricultural soils in 

relation to:

i) soil microbial biomass as measured by the 

chloroform-fumigation-incubation technique,and ; 

ii) soil nitrification potential.

Moreover, the effect of pH, of a sludge amended soil, on the 

nitrification potential was also studied.
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4.2 MATERIALS AND METHODS

4.2.1 SOIL DESCRIPTION

Soil samples were collected from three sites in the West of Scotland 

namely Lower Carbarns Farm (Nat. Grid Ref. NS 773 537), Auchterhead Farm 

(Allanton) (Nat. Grid Ref. NS 862 553) and Maudslie Sewage Works (Nat. 

Grid Ref. NS 806 505).

Details of the soils' physical and chemical properties are given in 

Tables 4,1 and 4.2. The sludged and control soils from Lower Carbarns 

Farm (referred to as Carbarns soil) are described in Section 3.2.1. 

The Allanton soil samples were collected from a 15.2ha permanent 

grassland field which has received regular sewage sludge amendments 

during 1978 - 1988. The control Allanton soil was collected from the 

boundary of this field which, being adjacent to a stream, had not 

received any sludge. The sludged field sampled at the Maudslie Sewage 

Works has in the past been used as 'sacrificial' land for disposal of 

sewage sludge originating from the Works. This land is now used for 

grazing. The Maudslie control soil was collected from the field

boundary. For the nitrification experiment the control Maudslie soil 

was collected from the side of the field which borders the River Clyde. 

However, for the determination of biomass the control Maudslie soil was 

sampled from the field boundary furthest from the River Clyde as the 

original control was found to have a very different soil texture to that 

of the sludged area.

Thirty-two top soil cores, to a depth of 20cm, were collected from each
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TABLE 4.2 TOTAL HEAVY METAL CONTENT (mg/kg AIR-<DRY 
SOIL) OF CARBARNS, ALLANTON AND MAUDSLIE 
SOILS.

HEAVY METAL CONCENTRATION

CARBARNS

SLUDGED
CONTROL

Cd

1.15
0.90

Cr

109
104

Cu Ni

63
41

24
31

Pb

121
114

Zn

196
159

ALLANTON

SLUDGED
CONTROL

0.37
0.47

55
88

27
23

58
37

66
56

MAUDSLIE

SLUDGED 1.07 107 30 31 8 8 96
CONTROL (1 ) 0 . 6 6 92 27 33 53 73
CONTROL (1 1 ) 0.30 73 14 19 55 6 8

MAUDSLIE CONTROL (1) = used in biomass experiment. 

MAUDSLIE CONTROL (11) = used in nitrification experiment
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site (using the soil corer described in Section 3.2.2.4), Sample 

handling was kept to a minimum. Soils required for determination of 

soil biomass were fumigated on the day of sampling, whereas soils 

destined for the nitrification work were sampled 24 hrs before the start 

of the experiment during which time they were stored at 4-6°C. All the 

soils used during the course of this work were 'fresh as sampled', that 

is, none of the soil samples were air-dried as this results in a severe 

disruption of the native soil microbial population (Birch, 1959; McLaren 

and Skujins, 1967). The only treatment afforded to these soils was 

sieving through a 6 mm sieve to remove any stones and plant material.

4.2.2 EXPERIMENT I: SOIL BIOMASS DETERMINATION BY FUMIGATION.

Microbial biomass C was measured by the chloroform fumigation-incubation 

procedure (Jenkinson and Powlson, 1976). Eight replicate 25g moist soil 

samples were placed in 50ml glass beakers. Four portions were

fumigated with chloroform and four left unfumigated. The fumigations 

were done in a large dessicator lined with moist paper and containing a 

beaker with 50ml alcohol-free chloroform and a few anti-bumping 

granules. To obtain a near total microbial kill, two consecutive 

fumigations were carried out on the soil samples, permitting the entry 

of air into the dessicator after the first fumigation ensured a thorough 

penetration of the chloroform into the soil samples. The dessicator 

was evacuated until the chloroform boiled vigorously, and after the 

second fumigation the tap was closed and the dessicator placed in a dark 

25°C incubator for 18 hours. The beaker of chloroform and the moist
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paper were then removed and the chloroform vapour was removed from the

soil by repeated 3min evacuations using a high vacuum pump. Eight

evacuations were usually sufficient to remove all traces of chloroform

from the soil. Each portion of fumigated soil was then inoculated with

0.5g of fresh unfumigated soil derived from the same bulk soil samples

as those originally fumigated. These soils were then transferred into

separate 31 pyrex flasks sealed by means of a rubber bung fitted with

two taps. After inoculation, sufficient distilled water was added to

each soil sample to bring it to 55% water-holding capacity (WHC). The
o

fumigated soils were then incubated at 25 C for 10 days, after which

time the CO concentration in the flask was measured. The taps fitted 
2

to the bungs served in creating a closed system for measuring CO
2

production using a gas analyser, preventing a drop in internal gas 

pressure, within the incubation flasks, which could have led to 

erroneous readings.

o
The four 'unfumigated' soil samples were kept at 25 C in a dessicator

lined with moist paper for the time taken between fumigation and

inoculation of the 'fumigated' samples. These unfumigated portions of

soil were not inoculated prior to their transfer into the 31 flasks.

After adjusting the WHC to 55%, the CO production of these samples was
2

o
measured after a 20 day incubation at 25 C which included aeration of 

the flasks after 1 0  days.

The amount of CO evolved was determined using a URAS 3G infra-red gas 
2

analyser.
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4.2.3 EXPERIMENT II: NITRIFICATION POTENTIAL OF CARBARNS,
ALLANTON AND MAUDSLIE SOILS.

A 36 channel continuous cyclic percolation system (Plate 4.1) was used 

in this study. Such a system allows the study of chemical processes 

in soil, producing soluble intermediates or end products, without 

disturbance of the soil, by sampling the leachate over time.

Six replicate columns, each containing 38g fresh soil and 0.8g of medium 

grade perlite (to facilitate drainage and aeration) were set up for each 

of the six soils, that is Carbarns sludged (OS), Carbarns control (CC), 

Allanton sludged (AS), Allanton control (AC), Maudslie sludged (MS) and 

Maudslie control (MC). Each column was percolated with 150ml (initial 

volume) NH^Cl solution (125mg N/1) from individual reservoirs at a

delivery rate of Iml/min. The system was kept at room temperature 

(20°C). A Watson-Marlow peristaltic pump fitted with a 510Z 40 channel 

pumphead was used to circulate the percolating solutions. 1 ,0 mm (i.d.) 

silicone tubing was used on the pumphead.

All the columns were aerated with NH^-free air (scrubbed through 0.5M 

H 2 S0 ^) to provide aerobic conditions, necessary for nitrification, 

within each column.

Samples of percolating solution (3ml) were collected every 2 days from 

each of the 36 reservoirs. To each sample, 2 drops of chloroform were 

immediately added to prevent any further microbial activity. The

samples were stored at 2°C in a refrigerator for subsequent NH^-N and 

NOg-N determinations.
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PLATE 4,1 DIAGRAM ILLUSTRATING ONE OF 36 PERCOLATING SYSTEMS 
USED FOR MEASURING SOIL NITRIFICATION POTENTIAL

SCRUBBED 
AIR -

k.
PERFUSION COLUMN

SOIL

GLASS WOOL

AJR VENT

RESERVOIR

PERISTALTIC
PUMPPERCOLATING

SOLUTION
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Unfortunately, after 20 days of operation, most of the 1mm (i.d.) 

silicon tubing used on the pumphead snapped^ forcing an abrupt end to the 

experiment.

4.2.4 EXPERIMENT III: EFFECTS OF SOIL pH ON THE NITRIFICATION
POTENTIAL OF SLUDGED SOIL.

The soil used in this work was collected entirely from individual plots 

at the Carbarns site (described in detail in Chapter 3). The sampled 

plots were those which had either been limed or unlimed but which had 

remained uncultivated and had received no fertiliser-N. Each sample 

consisted of 5 cores, taken from the 0 20cm depth of the eight plots. 

Of the 8  samples collected, five were chosen to give the widest range of 

pH values (Table 4.3). In addition, a control soil from Carbarns which 

had never been sludged (taken from the same site as detailed in Section

3.2.1) was also used.

The same procedure as given in Section 4.2.3 was used to measure the 

nitrification potential of these six soils. To prolong"the life of the 

pumphead delivery tubes, 2 mm (i.d.) silicon tubing was used.

The percolating solution was sampled every 2 days up to day 28 and a 

final sample was collected on day 32, These samples were treated and 

stored as described in Section 4.2.3.
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TABLE 4.3 MEAN pH OF MOIST CARBARNS SOIL SAMPLES USED 
IN EXPERIMENT III. EACH READING IS AN 
AVERAGE OF 7 REPLICATE MEASUREMENTS.

pH

SOIL MEAN S.E.

CONTROL 6.54 0.008

1 5.47 0.003

2 5.69 0.003

3 5.76 0.009

4 6.28 0.004

5 6.37 0 . 0 0 2
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4.2.5 DETERMINATION OF NH^-N AND NO3 -N IN LEACHATES

The NH^-N and NO 3 -N concentrations in the leachates was determined using 

a Chemlab Instrument Ltd Continuous Flow Analyser.

NH^-N determination involves its reaction with salicylate (2- 

hydroxybenzoate) and dichloroisocyanurate (DIG), nitroprusside being 

added as a catalyst to the reaction (Chemlab, 1981). The resulting 

'substituted indophenol' is measured colorimetrically at 650nm.

For the determination of NO 3 -N, this is first reduced to NOg via a Cd 

- Cu reduction column. This method of reduction overcomes any possible 

interference arising from the presence of Ca^^ and Mg^^ in the samples 

were they to be read using the Cu-hydrazine reduction method (Ananth and 

Moraghan, 1987), The nitrite so produced is reacted with

sulphanilamide to form a diazonium salt which, in turn, couples with 

naphthylethylenediamine to give an azo dye which can be measured 

colorimetrically at 540nm (Chemlab, 1984).

In adopting the Cd column reduction method care was taken to ensure the 

absence of air bubbles and dislodged metallic particles from within the 

reduction column as these could adversely affect the precision of this 

method (Best, 1975).
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4.3 RESULTS

4.3.1 EXPERIMENT I: EFFECTS OF SEWAGE SLUDGE APPLICATIONS ON
SOIL MICROBIAL BIOMASS.

The equation used to convert the measured CO 2  concentrations in the 

incubation flasks into soil microbial biomass C , was that proposed by 

Jenkinson (1966):

B = F/K^

where

B ~ soil biomass carbon (mg C/lOOg soil)

F — C0 2 'C fumigated ' ^^2 ^ unfumigated
i.e. CO 2 -C (mg C/lOOg) evolved by the fumigated soil less that

evolved by the unfumigated soil, incubated for the same time under

the same conditions.

= 0.45 at 25°C (Jenkinson and Powlson, 1976; Jenkinson and

Ladd, 1981).

i.e. = the fraction of biomass C mineralized to CO 2  during 

incubation which followed fumigation.

A single value of may be applied to different soils without serious 

errors for the following reasons:

i) the values of for different organisms, although by no

means all the same, do not span a very wide range (Anderson 

and Domsch, 1978), 

ii) for soils developed under natural conditions, there are 

similarities in the pattern of distribution of different 

types of organisms, although the population size may differ 

widely (Jenkinson et al., 1976).
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The mean soil microbial biomass at each of the three sites (Carbarns,

Allanton and Maudslie), for both sludged and control samples, are

reported in Table 4.4, the full set of results being shown in Appendix 

J.

To enable an analysis of variance of biomass C between sludged and

control samples to be carried out, the 4 replicate fumigated and 

unfumigated CO 2  - C readings for each individual soil were pooled.

This resulted in 16 individual values (i.e. 4 x 4) for biomass Ĉ  

instead of just one single measure for which a statistical analysis 

would have been impossible.

It was found that for all three sites, there was a significant 

difference (P < 0.05) between the sludged and control samples^ with the 

sludged Carbarns and Allanton soils exhibiting an 18% and 24% lower 

soil microbial biomass C than their respective controls. In contrast, 

the sludged Maudslie soil showed a 27% higher soil microbial biomass C 

than that found in its control.

It is interesting to note that although there were significant (P <

0.05) differences in microbial biomass C between the sludged and

control soils for both the Carbarns and Allanton sites, there was no

significant difference in the 'base respiration rate' (the CO 2  produced 

by the unfumigated samples) of the sludged and control soils (Table

4.5). For the Maudslie sludged soil, however, a significantly (P < 

0,05) higher 'base respiration rate' was shown over its control (Table

4.5).
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TABLE 4.4 MICROBIAL BIOMASS (mg C/lOOg) IN SLUDGED 
AND CONTROL SOILS FROM CARBARNS, ALLANTON 
AND MAUDSLIE, EACH READING IS AN AVERAGE 
OF 4 REPLICATES,

BIOMASS C

SLUDGED CONTROL POOLED
S.E.

ALLANTON 26.38 34.71 0.86

MAUDSLIE 26.67 10.67 0.34

CARBARNS 33.39 40.73 1.46
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TABLE 4.5 BASE RESPIRATION RATE, i.e. CO^-GCmg G/100g 
FRESH SOIL) EVOLVED BY UNFUMIGATED SAMPLES 
OVER 10-20 DAY PERIOD. EACH READING IS AN 
AVERAGE OF 4 REPLICATES.

MEAN S.E.

CARBARNS

CONTROL 19.81 0.73

SLUDGED 17.42 0.88

ALLANTON

CONTROL 19.37 0. 71

SLUDGED 18.17 0.51

MAUDSLIE

CONTROL 13.22 0.30

SLUDGED 11.72 0.25
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4.3.2 EXPERIMENT II: EFFECTS OF SEWAGE SLUDGE APPLICATION ON SOIL
NITRIFICATION POTENTIAL,

The rate of NOg-N production in the sludged and control soils from 

Carbarns, Allanton and Maudslie was measured. For each of the six 

(3x2) soils, the mean NOg-N concentration on each of the ten sampling 

days is reported in Table 4.6 and represented graphically in Figure 4.1. 

The full set of results are given in Appendix D.

There was a near linear increase in NOg-N concentration with time for 

all the soils (Table 4.7) which on linear regression (Approach 1 - see

below) was shown to be significantly greater (P<0.01) than zero.

Three approaches can be adopted to quantify the rate of NOg-N 
production :

Approach 1: A different nitrification potential for each soil

is assumed;

Approach 2; An identical nitrification potential for each soil 

is assumed in which a single relationship between 

NOg-N and time is used;

Approach 3: An identical nitrification potential is assumed 

but soils differ in the NOg-N concentration at 

time (t) = 0 .

By using each of the three approaches it was found that the least 

residual mean square (RMS) was generated by Approach 1 (Table 4.8) and, 

therefore^ this proved to be the most appropriate method for quantifying
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TABLE 4.6 CHANGES IN NOg-N CONCENTRATION (mg NOg-N/kg AIR- 
DRIED SOIL) WITH TIME (DAYS) FOR THE SLUDGED AND 
CONTROL SOILS FROM CARBARNS, ALLANTON, AND MAUDSLIE. 
EACH READING IS AN AVERAGE OF BETWEEN 2-6 TREATMENT 
REPLICATES. A POOLED S.E. FOR EACH DAY IS GIVEN.

MEAN NOg-N
CARBARNS ALLANTON MAUDSLIE

DAY SLUDGED CONTROL SLUDGED CONTROL SLUDGED CONTROL S.E.

2 24.9 91.0 25.8 7.9 7.9 5.2 4.4

4 46.7 115.0 34.9 11.7 14.7 14.9 2.9

6 17.3 169.2 52.3 12.5 15.7 1 1 . 1 8 . 0

8 106.5 213.6 62.5 1 2 . 2 2 0 . 1 27.8 7.4

1 0 115.8 252.7 73.1 13.6 25.6 41.8 9.1

1 2 119.3 276.8 93.9 17.6 33 .1 57.6 1 2 . 6

14 145.4 298.5 108.9 2 1 . 0 42.2 57.8 14.2

16 173.2 253.4 127.4 28.5 57.0 87.4 17.3

18 195.8 348.3 133.7 31.9 62.8 99.0 14.5

2 0 251.3 433.4 158.0 43.1 82.5 94.0 14.3
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TABLE 4.7 RELATIONSHIP BETWEEN NOg-N CONCENTRATION (mg NOg-N/kg 
AIR-DRY SOIL) AND TIME (DAYS) FOR THE SOILS USED IN 
EXPERIMENT II.

GRADIENT

S.E.

CARBARNS 
SLUDGED CONTROL

12.06 

1.17

16.41

1.81

ALLANTON 
SLUDGED CONTROL

7.33

0.23

1.72

0.24

MAUDSLIE 
SLUDGED CONTROL

3.90

0.37

5.68

0.44

INTERCEPT -13.07

S.E. 14.48

64.49 6.39 1.02 -6.79 -12.84

22.51 2.86 2.93 4.54 5.45

21.20

0.92

32.94

0.90

4.19

0.99

4.28

0.85

6.65

0.93

7.98

0.95
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TABLE 4.8 COMPARISON OF RESIDUAL MEAN SQUARES (RMS) 
FOR THE THREE APPROACHES USED TO ESTIMATE 
THE STRAIGHT-LINE EQUATIONS FOR THE CHANGES 
IN NOg-k AND 
TIME IN EXPERIMENT II.

NH4-N CONCENTRATIONS WITH

APPROACH

2

NOg-N 781 6114 1430

NH^-N 1070 5156 1089

APPROACH 1 - Separate slopes and intercepts.

APPROACH 2 - Common slope and intercept.

APPROACH 3 - Separate intercepts but common slopes.
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N O g - N  production of each of the six soils with time.

The gradient ranged between l,7-16.Amg NOg-N/kg air-dried soil/day in 

the order^ Allanton control < Maudslie sludged = Maudslie control < 

Allanton sludged < Carbarns sludged < Carbarns control (where

represents a significant difference at P < 0.05). The nitrification 

rates of soils from each site varied significantly in the order shown, 

but as far as sludge treatment was concerned there was no general trend 

in its effect on nitrification rate. A significantly (P < 0.05) higher 

rate of nitrification was shown in the control soil from Carbarns but 

the opposite was the case for the Allanton site. There was no

significant difference between the sludge-treated and control soils from 

Mauds lie.

The straight-line equation relating N O g - N  production and time^ predicted 

an initial N O g - N  concentration not significantly different from zero

although, in actual fact^ some N O g - N  was present in each of the six soils 

(see Table 4.1). Moreover, the control Carbarns soil had an intercept 

o f  64.7mg N O g - N / k g  air dry soil which was significantly different 

(P<0.05) from zero.

Table 4.9 reports the mean NH^-N concentration on all ten sampling days 

for each of the six soils, and this data is represented graphically in 

Figure 4.2. The full set of results are shown in Appendix K.

NH^-N concentration appeared to decrease linearly over time. Using the

same statistical methods (i.e. Approaches 1, 2 and 3) as previously

described for the analysis of the NOg-N data, Approach 1 provided the
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TABLE 4.9 CHANGES IN THE NH^-N CONCENTRATION (rag NH^-N/kg AIR- 
DRY SOIL) WITH TIME (DAYS) FOR THE SLUDGED AND 
CONTROL SOILS FROM CARBARNS, ALLANTON AND MAUDSLIE. 
EACH READING IS AN AVERAGE OF BETWEEN 2-6 TREATMENT 
REPLICATES. A POOLED S.E. FOR EACH DAY IS GIVEN.

CARBARNS ALLANTON MAUDSLIE
DAY SLUDGED CONTROL SLUDGED CONTROL SLUDGED CONTROL S.E.

2 425.1 392.9 546.6 520.4 463.7 480.7 10.3

4 416.0 336.3 537.5 494.3 491.9 484.1 7.5

6 421.7 336.0 552.8 520.9 452.5 444.0 11.3

8 416.7 305.0 519.9 540.9 495.1 486.6 7.9

1 0 418.2 281.7 510.8 485.8 460.4 422.9 14.7

1 2 396.3 271.9 490.0 480.8 439.9 406.6 9.7

14 359.5 258.6 471.5 462,7 425.4 400.3 8 . 6

16 377.2 344.8 472.0 470.6 411.8 380.6 23.5

18 384.6 275.5 450.1 464.5 412.6 386.0 6.4

2 0 356.6 239.1 510.3 442.2 414.0 376.5 9.7
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lowest residual mean square (Table 4.8). The best-fit straight-line 

equations were then obtained by linear regression for each of the six 

soils (Table 4.10). In each case^ a negative gradient was obtained. 

The rate of NH^-N depletion ranged between 3.88-6.71mg NH^-N/kg air-dry 

soil/day in the order Maudslie control < Carbarns control < Allanton 

sludged < Maudslie sludged < Allanton control < Carbarns sludged.

However, the only significant difference, at the 95% confidence

interval, was that between the rates of NH^-N depletion exhibited by 

the Maudslie control and Carbarns sludged soils.

When absolute rates of N O g - N  production and NH^-N depletion within a

given soil were compared, no significant difference was observed for the 

Maudslie soils. However, significantly different (P < 0.05) rates were 

seen for both the sludged and control soils from Carbarns and Allanton. 

More specifically, in the Carbarns soils the absolute rate was in the 

order :

G R A D I E N T j ^ q 3  _ ̂  > G R A D I E N T ^ H ^  _ %  

whereas in the Allanton soils the converse was true.

Using the measured concentrations of N O g - N  and NH^-N in each of the 36 

percolating columns, the net change in mineral-N (i.e.AN) (Table 4.11) 

was calculated:

A n  =  ( [ N H ^ - N ] ^  + [ N O g - N ]  t) - [ N H ^ - N ] q

where :

[NH^-N]q = initial NH^-N concentration i.e. 125mg/l at time t = 0.
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TABLE 4.10 RELATIONSHIP BETWEEN NH^-N CONCENTRATION (mg NH^-N 
/kg AIR-DRY SOIL) AND TIME (DAYS) FOR THE SOIL USED 
IN EXPERIMENT II .

C A R B A R N S  A L L A N T O N  M A U D S L I E
S L U D G E D  C O N T R O L  S L U D G E D  C O N T R O L  S L U D G E D  C O N T R O L

G R A D I E N T

S . E .

-3.88

0.85

-5.80 

1 .86

-4.57

1.21

-4.26

1.00

4.34

0.99

-6.71

1.00

INTERCEPT 437.14 368.03 556.45 535.13

S.E. 10.61 23.10 15.06 12.44

494.46 500.67

12.34 12.37

R

15.53

0.68

33.81

0.49

22.05

0.59

18.21

0.65

18.07

0.67

18.11

0.83
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TABLE 4.11 CHANGES IN A  N (mg N/kg AIR-DRY SOIL) WITH TIME 
(DAYS), FOR THE SLUDGED AND CONTROL SOILS FROM
CARBARNS, ALLANTON AND MAUDSLIE. EACH READING IS 
AN AVERAGE OF BETWEEN 2-6 TREATMENT REPLICATES. 
A POOLED S.E. FOR EACH DAY IS GIVEN.

C A R B A R N S  A L L A N T O N  M A U D S L I E
D A Y S L U D G E D C O N T R O L S L U D G E D C O N T R O L S L U D G E D C O N T R O L S . E .

2 -285.3 -227.9 -1 0 2 . 8 -188.2 -253.5 -134.4 10.9

4 -157.9 -216.3 - 89.4 -196.2 -203.9 -108,8 8 . 0

6 -266.9 -178.1 - 43.1 -154.4 -228.2 -140.4 14.1

8 -167.9 -150.6 - 52.6 -120.3 -166.4 - 68.7 6.3

1 0 -142.5 -120.5 - 37.3 -159.7 -181.1 -106.0 1 1 . 2

1 2 -173.2 - 92.1 - 23.7 -146.4 -179.5 - 94.1 7.9

14 -142.2 - 69.4 - 13.8 -146.8 -170.5 -87.7 8 . 6

16 - 82.0 - 14.0 - 18.7 -117.1 -154,7 - 65.4 15.3

18 - 37.3 25.8 16.6 -105.4 -133.6 -36.1 1 1 . 8

2 0 4.9 88.7 114.7 -1 0 2 . 2 - 98.1 - 38,1 14.4
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= NH^-N concentration (mg/1 ) at time t.

[ N O g - N ] ^  =  N O g - N  concentration (mg/1) at time t.

On linear regression of this data (Table 4.12)^ it was shown that there 

was a significant (P<0.05) rate of N mineralization which ranged between 

4.6 and 17.1mg N/kg air dry soil/day in the order Carbarns control >

Carbarns sludged > Allanton sludged > Maudslie sludged > Maudslie

control > Allanton Control. There were no significant differences

between the sludged and control soils from both Carbarns and Maudslie.

However, there was a significant difference (P<0.05) between the sludged 

and control Allanton soil (Table 4.12). Over the first two days , for 

all the soils, there was a decrease in the NH^-N concentration which 

could not be accounted for by nitrification, implying N immobilization 

(Figure 4.3). However, this proved to be very transitory because after 

day 2  net mineralization occurred but the rate differed between the 

soils.

4.3.3 EXPERIMENT III: EFFECTS OF SOIL pH ON NITRIFICATIOIN
POTENTIAL IN A SLUDGED SOIL.

The rates of nitrification observed in the sludged and unsludged soils 

from Carbarns, Allanton and Maudslie (Experiment I I )  showed no definite 

relation to the concentrations of heavy metals in the soils. However, 

the rate of nitrification did appear to be closely associated with soil 

pH. It was consequently decided to conduct a second experiment to 

investigate the effects of soil pH on the nitrification potential of 

sludged soils.

200



TABLE 4.12 RELATIONSHIP BETWEEN A N  CONCENTRATION (mg/kg AIR-DRY 
SOIL) AND TIME (DAYS) FOR THE SOILS USED IN 
EXPERIMENT II.

CARBARNS ALLANTON MAUDSLIE
SLUDGED CONTROL SLUDGED CONTROL SLUDGED CONTROL

GRADIENT 15.54^ 17.08^ 9.51^ 4.63% 6.81% 5.17%^

S.E. 1.51 0.93 1.34 0.97 1.01 1.06

INTERCEPT -325.92 -283.36 -125.84 -194.64 -251.89 -144.82

S.E. 18.71 11.59 16.61 12.00 12.49 13.10

Sy 27.39 16.97 24.31 17.57 18.28 19.17

R^ 0.92 0.97 0.85 0.71 0.83 0.72

FOOTNOTE; Values followed by the same superscript are not 
significantly different at the 95% confidence 
interval.
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The concentrations of NH^-N and NOg-N in the leachates from each of 36 

soil columns on each sampling day are given in Appendix L.

When mean N O g - N  concentration (Table 4 . 1 3 )  was plotted against time for 

each pH treatment and the no sludge control treatment (Figure 4.4), a 

sigmoidal relationship was shown, unlike the linear relationships 

observed in Experiment II. These sigmoidal curves are typified by a 

'delay phase', a 'maximal rate phase' and a 'retarded rate', as 

described by Sabey et al. (1959).

The N O g - N  data (Table 4 . 1 3 )  was then fitted to a model proposed by Hadas 

et al. (1986) which describes soil nitrification in terms of a sigmoidal 

relationship between soil N O g - N  production and time.

i.e. NOg =  a [1]

l+(a/[NOg]Q-1) exp(-aK[t-tQ])

where ;

a = asymptotic value of N O g - N

[NOg]o = initial value of N O g - N  (i.e. at time (t) = 0)

K = constant

tQ = initial time (0 ).

This equation was derived by Hadas et al. (1986) from the Verhulst 

equation:

i.e. dN/dt = KN(a-N) [2]

The parameters a, K and [NOg]Q in equation [1] were calculated by least

203



TABLE 4.13 CHANGES IN NOg-N CONCENTRATIONS (mg NOg-N/kg AIR-DRY 
SOIL) WITH TIME (DAYS) FOR EACH OF THE SIX SOILS 
USED IN EXPERIMENT III. EACH READING IS AN AVERAGE 
OF BETWEEN 5-6 TREATMENT REPLICATES. POOLED S.E. 
FOR EACH DAY IS GIVEN.

pH

DAY 5.47 5.69 5.76 6.28 6.37 CONTROL S.E.

2 14. 3 24. 0 28. 2 34. 2 43. 9 50. 8 2 .0

4 23. 4 37. 2 49. 7 72. 2 96. 0 89. 6 2 .9

6 33. 3 60. 1 82. 9 1 1 1 .2 150. 8 138. 2 5. 4

8 42. 5 78. 7 135. 0 179. 0 323. 9 258. 7 1 2 .8

1 0 6 6 .3 99. 8 203 .5 284. 3 416. 2 339. 4 16. 2

1 2 77., 0 119.,4 2 1 2 .,4 251.,5 424. 7 309. 8 25. 0

14 93,, 2 130., 1 259., 8 283., 2 354.,9 313. 6 14., 0

16 117..9 158..4 318.. 1 332.. 2 435.,7 364., 8 9..3

18 134 . 0 166,.4 344,. 2 343.. 0 440.,3 388,.4 9 .5

2 0 163 . 2 188 .4 382 . 2 378 .3 474 . 0 427,.7 1 2 . 0

2 2 189 . 1 206 .7 421 . 0 414 . 8 497 . 6 462 .4 1 2 .3

24 205 . 1 213 . 8 437 .5 430 .3 538 .3 480 .9 17 . 0

26 223 .4 223 . 0 454 ,9 450 , 2 537 .9 504 .3 16 .9

28 237 . 2 232 .9 457 . 8 462 .9 521 .3 527 . 8 16 . 2

32 277 .3 250 . 2 457 . 1 478 .3 520 .9 539 . 6 19 . 6
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squares fît of NO^-N vs. time (Table 4.13) using the Genstat Statistical 

Package (Rothamsted Experimental Station, 1980) and are listed in Table 

4.14

The maximal rate was derived as described by Hadas et al. (1986)

where :

[3]

i.e. is the maximum slope of equation [1 ] at the inflection point

(where [NO^-N] = a/2). At the same time an estimate for the delay

phase ( f )  was obtained from:

t ’
In

aK (N0 3 )q
-1

+ [NO3 3 Q - a / 2

[4]
K,max

Equation [4] is given by Hadas et al. (1986) who base it upon the 

definition given by Sabey et al. (1959)^ that the delay period is the 

value of t at which the extrapolated maximum slope intercepts the 

projected initial value of NO 3 -N (see Figure 4.5).

It would appear (Figure 4.4)^ that two distinct 'groups' of soils can be 

discerned on the basis of their nitrification characteristics. Soils 

at the higher pH (i.e. pH 5.76 and pH 6.28) including the control (pH 

6.54) exhibited a maximal nitrification rate (K^^x^ which was twice as 

great as that of the more acid soils (i.e. pH 5.47 and 5.69). 

Moreover, the for the sludged soil at pH 6.37 was 4 times as great

as that recorded for the most acid soils. In addition, significantly
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FIGURE 4.5 GENERAL NITRIFICATION CURVE SHOWING THE DELAY 
PERIOD (f) AND THE POINT OF MAXIMUM SLOPE (K) 
(Sabey et al,, 1959)

MAXIMUM 
SLOPE (K)Ict:Q_

s

t'
INCUBATION TIME (t)
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higher (P<0.05) asymptotic NOg-N concentrations characterised soils 

having a pH > 5.76 compared to the more acid soil. Similarly,

differences were also apparent in the delay period ( f )  which was 

inversely related to pH and ranged from 7.7 days at pH 5.47 to 2.6 days 

at pH 6,37 for the sludged soils (Table 4.4). The delay period for the 

control soil was even shorter at 2.3 days.

For the soil at pH 6.3^ there appears to be a stray data point on day

14. If this value is excluded from the curve fitting equation a 

better fit is achieved, the RMS dropping from 2215 to 1249 (Table 4.14). 

This results in an associated increase in from 45.33 to 58.05 , but

also in an increase in the delay period from 2.6 to 3.2 days.

When considering the residual mean squares (Table 4.14) of the other

curves,it is apparent that for those soils with the relatively lower pH

values a better curve fit was obtained. The fact that the

leachates from the more acid soils required less dilution prior to

analysis could account for this situation. In fact, these more acid 

soils exhibited a lower S.D. about the mean.

The mean NH^-N concentrations in each of the six soils over time is

given in Table 4.15 and represented graphically in Figure 4.6. The 

graph clearly shows that, whereas there was a sigmoidal relationship 

between NO^-N and time, this was not the case for NH^-N. Instead, 

between t — 0 and t = 4-6 days there was a rapid decrease in the NH^-N 

concentrations in the percolating solutions corresponding to 290- 

380mg/kg air-dried soil, which was directly proportional to soil pH. 

The greatest decrease occurred in the control soil which could be
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TABLE 4.14 ESTIMATES AND STANDARD ERROR FOR ASYMPTOTES,INITIAL 
VALUES AND RATE CONSTANTS FOR THE SIGMOIDAL 
RELATIONSHIPS DESCRIBING THE CHANGE IN NO 3 -N 
CONCENTRATION WITH TIME (DAYS) FOR THE SOILS USED 
IN EXPERIMENT II.

[NOgjo

K

RMS

Asymptotic value (mg N/kg air-dry soil).

Initial NO 3 -N concentration (mg N/kg air-dry soil).

Rate constant. ^ a x

Residual mean square. t '

= Maximal rate.

= Delay period (days)

pH

5.47 5.69 5.76 6.28 6.37 Control

a 311 255 472 473 495 535

S.E. 10.25 6.72 10.10 23.90 21.88 36.05

[ R G 3  ] Q 15.14 25.48 29.16 50.51 31.11 72.76

S.E. 1.33 2.40 4.09 11.79 23.75 18.49

K 4.9xlO"4 6.4xlO"4 4.5xlO"4 4.0xl0"4 7.4xlO"4 3.2x10'^

S.E. 4.0x10-5 5.0x10-5 4.0x10-5 7.0x10-5 2.7x10“̂ 8.0x10'5

^ a x 11.85 10.40 25.06 22.37 45.33 22.90

t' 7.66 3.73 4.56 2.91 2.60 2.30

RMS 22 35 187 800 2215 1495
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TABLE 4.15 CHANGES IN NH^-N CONCENTRATION (mg NH^-N/kg AIR-DRY 
SOIL) WITH TIME (DAYS) FOR EACH OF THE SIX SOILS 
USED IN EXPERIMENT III. EACH READING IS AN AVERAGE 
OF BETWEEN 5-6 TREATMENT REPLICATES. A POOLED S.E. 
FOR EACH DAY IS GIVEN.

pH

DAY 5.47 5.69 5.76 6.28 6.37 CONTROL S.E.

2 428. 7 407. 9 443. 1 406. 5 406. 3 344. 6 5. 5

4 306. 3 264. 9 310. 3 291. 2 268. 8 245. 8 17. 1

6 282. 1 320. 2 295, 9 311. 8 263. 6 232. 8 46. 9
8 375. 4 353. 4 367. 9 327.,9 292. 8 264, 1 8. 5

10 412.,3 384..2 387.,3 330.,0 284.,9 264. 5 14. 2

12 386.,3 354.,2 327. 7 294.,0 236.,4 243. 3 12. 2

14 374..4 337.,8 319.,2 257,,7 184. 4 211,,5 8. 0

16 366,.7 333,.3 285.,0 236,.2 170,,6 187.,6 8,.0

18 280,.5 285,.9 261,.4 236,.0 215,.0 145,.0 29,.4

20 349,.0 320,.7 234,.8 185 .9 121 .7 140,.0 5,.8

22 344 . 1 310,. 1 224,.6 177 .7 123 .8 105,.4 11 .0

24 321 .9 283 .9 201 .8 152 .4 86 .8 94 .1 10 .0

26 296 .4 274 .8 177 .9 131 .2 76 .9 87 .4 10 .1

28 250 .4 267 .1 173 .8 123 .2 63 .1 49 .2 15 .2

32 256 .4 226 .2 139 . 6 81 .2 38 .2 30 .4 9 .3
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attributed to either the fact that it had the highest pH and/or the 

lowest available heavy metal concentration. However, over the 6-10 day 

period, there was a slight recovery in the NH^-N concentration, the 

extent of this recovery again depending on soil pH. At this stage, the 

NH^-N concentration in the soils at pH 5.47, 5.69 and 5.76 returned to 

levels close to those monitored on day 2. However, for the soils at pH 

6.28 and 6.37, and in particular for the control soil, the recovery was 

less marked.

After day 10 and for the remainder of the sampling period, a gradual 

linear decrease in the NH^-N concentrations was observed. Straight- 

line equations generated by linear regression (Table 4.16) indicated 

that two groups of lines could be distinguished. Soils at pH 5.47 and 

5.69 exhibited a significantly (P<0.05) lower rate of NH^-N depletion 

than those at a higher pH including the control.

As can be seen from Table 4.16^ a high RMS was associated with the 

equation for the soil at pH 6.37. This could, in part, be due to a 

stray data point on day 18. However, this high RMS could also reflect 

a non-linear relationship which might have been better described as 

quasi - sigmoidal from day 8  onwards (Figure 4.6).

A  N (Table 4.17) was calculated, as described previously (Section

4.3.2), and represented in Figure 4.7. Over the first four days the 

decrease in A N  was linked to the immobilisation of NH^-N (Figure 4.5) 

which was not accounted for by an increase in NO^-N concentration. 

Thereafter, and relative to the value of A  N on day 4̂  there was net N
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TABLE 4.16 RELATIONSHIP BETWEEN NH^-N CONCENTRATION (mg NH^-Zkg 
AIR-DRY SOIL) AND (DAYS) TIME FOR ALL SIX SOILS USED 
IN EXPERIMENT III (ONLY DATA AFTER DAY 10 
CONSIDERED).

pH

5.47 5.69 5.76 6.28 6.37 CONTROL

G R A D I E N T

S.E.

-7.18 -6.31 -10.76 -10.91 -10.59 -11.09

0.68 0.41 0.68 0.53 0.92 0.51

I N T E R C E P T

S . E .

482.30 437.90 466.70 419.50 354,60 367.60

14.63 8.82 14.75 11.37 19.87 11.05

R M S 220 80 224 133 406 126

R

14.85

0.93

8.96

0.96

14.98

0.97

11.54

0.98

20.17

0.94

11.22

0.98
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TABLE 4.17 CHANGES IN A N  (mg N/kg AIR DRY SOIL) WITH TIME 
(DAYS) FOR ALL THE SIX SOILS. EACH READING IS 
AN AVERAGE OF BETWEEN 5-6 TREATMENT REPLICATES. A 
POOLED S.E, FOR EACH DAY IS GIVEN.

pH

DAY 5.47 5.69 5.76 6.28 6.37 CONTROL S.E

2 -273. 5 -278. 8 -274. 5 -279. 0 -273. 9 -329. 7 5. 4

4 -372. 5 -394. 5 -370. 9 -342. 0 -345. 0 -375. 4 18. 3

6 -372. 4 -302. 0 -337, 1 -268. 1 -280. 8 -325. 1 45. 3

8 -255. 6 -236., 1 -198. 2 -169. 7 - 64. 0 -158. 8 1 2 .7

1 0 -180. 6 -169.,9 - 95.,3 - 47.,9 34. 8 - 63. 1 19. 4

1 2 -181.,5 -166., 1 -131., 2 -1 0 2 .,3 9. 3 - 99. 6 24. 8

14 -162..9 -157.,5 - 77.,3 - 92,, 6 - 98,, 1 -1 1 2 .,9 15.. 6

16 -131,, 6 -119,. 6 - 38..3 - 50,. 6 - 16,, 6 - 71,, 2 8 ,. 2

18 -187.,3 -144,. 8 - 2 0 ,.9 - 25..5 46,,9 - 75,, 6 30,. 0

2 0 - 75 .3 - 73,.7 5,.5 - 26 . 0 1 ,. 8 - 26 .9 13 .5

2 2 - 39 .9 - 51 . 8 48 .9 16 . 6 42 . 1 - 1 2 .3 1 2 .3

24 - 31 . 8 - 56 .7 57 .5 2 1 .3 60 . 2 9 .4 14 , 8

26 - 24 . 8 - 42 .5 6 6 . 0 34 .4 64 .4 40 .7 14 . 2

28 - 42 . 6 - 25 .9 79 .7 53 .5 48 .5 40 .4 23 . 1

32 15 .7 - 35 .3 59 .7 41 . 2 37 .7 48 . 0 17 .3
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mineralisation which showed a sigmoidal relationship with time.

Sigmoid curves were then fitted to the data points for each pH treatment 

and the control over the 4 - 32 day period, using the Genstat

Statistical Package (Rothamsted Experimental Station, 1980). The

curves fitted to these data sets were based on the following general 

sigmoid equation:

[5]
A

( 1  + exp[u - k.t])

where

A = asymptotic value of A N

u = initial value (at time 0) of A N

k = Rate constant

t = day number.

The parameters for these curves are listed in Table 4.18. No 

significant differences appear between the N mineralisation rates of the 

six soils. The asymptotic, rate constant and initial A  N values were 

similar for each of the six soils. However, none of the asymptotic 

values (A) obtained were significantly different (P<0.05) from 0, and^ 

hence over the 32 day experimental period there was no net N 

mineralisation relative to day 0 .

The high RMS (Table 4.18) obtained for all six soils indicated a poor 

fit to the equation, but general trends could still be detected.
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TABLE 4.18 ESTIMATES FOR ASYMPTOTE, INITIAL VALUE AND RATE 
CONSTANT OBTAINED FROM CURVE FITTING TO DATA FOR 
A  N WITH TIME (DAYS) FROM EXPERIMENT III.

A = asymptotic value (mg N/kg air dry soil)

k = Rate constant

u = Initial N concentration (mg N/kg air dry soil)

RMS = Residual mean squares.

5.47 5.69 5.76 6.28 6.37 CONTROL

A

S.E.

-41 61 24 22

40.27 21.97 21,99 24.99 13.17 40.05

k

S.E.

0.19

0.05

0.23

0.06

0.26

0.05

0.26

0.08

1.06

0.40

0.29

0.17

u

S.E.

-398

0.48

-398

0.47

-397

0.47

-397

0.60

-393

2.78

398

1.22

RMS 1804 1064 1409 1542 2140 2741
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4.4 DISCUSSION

The chloroform fumigation method is based on a number of assumptions

(Jenkinson, 1966, 1976):

i) the C in dead organisms is mineralized to COg more rapidly 

than that in living organisms i.e. the protected substrate

that is a living cell becomes available to others on its death;

ii) the kill is substantially complete (see Section 4.1);

iii) the biomass dying in the unfumigated control - soil during

incubation is negligible compared to that killed by 

fumigation ;

iv) the fraction of the killed biomass C mineralized (K^) is the 

same in different soils (see Section 4.2.1), and

v) fumigation has no effect on the soil other than the killing of 

biomass.

The validity of these assumptions are discussed elsewhere (Brookes and 

McGrath, 1986; Jenkinson and Ladd, 1981), and are outside the scope of 

this work. When applying the fumigation method to investigate whether 

or not sewage sludge application results in any changes in soil 

microbial biomass, possibly as a result of enhanced soil metal levels, 

it is essential that higher soil metal concentrations do not, in any way^ 

alter the validity of this technique. Comparative work involving ATP 

determination and chloroform fumigation, led Brookes and McGrath (1986) 

to conclude that "the fumigation method does provide a valid estimate of 

soil biomass in high-metal and low-metal soils alike".
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significant differences in microbial biomass C between sludged and 

unsludged soils at Carbarns, Allanton and Maudslie were recorded. 

However^ no uniform effect was evident. Whereas at both Carbarns and 

Allanton microbial biomass C was lower in the sludged soil than that 

present in the unsludged (control) soil, the converse was true for the 

Maudslie soils. In other words^ the microbial population seems to have 

been stimulated by sludging at Maudslie, whereas it was depressed in the 

sludged soils of Carbarns and Allanton. Nevertheless^ at the latter

sites there was no evidence that the smaller microbial populations in 

the sludged soils were any less effective in decomposing plant or animal 

residues as no root mat was present.

The positive relationship between soil microbial biomass and soil 

organic matter content is well known and documented. Application of 

sludge with the resultant introduction of organic matter to the soil, 

on the basis of decomposable substrate alone, would^ therefore^ be 

expected to increase the soil's microbial biomass, not only in the short 

term (as the more easily decomposable fractions of the sludge solids

become available to the soil microflora) , but also in the longer term 

(as the soil organic matter content increases). The higher organic 

matter of the unsludged Allanton soil over that present in the sludged 

soil could thus account for the lower biomass C recorded in the latter 

soil (Table 4.4). This, however, does not exclude the possibility

that some fraction of the sludge applied, could have also contributed to

the reduction in the microbial population.
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At Maudslie the sludged soil contained an organic matter content equal 

to that found in the unsludged control soil (Table 4.1). Nonetheless, 

the higher metal content of the sludged soil could have inhibited 

microbial activities to some extent, as could any organic pollutants 

introduced into the soil via sludge. However^ microbial biomass C in 

the sludged Maudslie soil was 27% greater than that determined in the 

unsludged control soil (Table 4.4). Stimulation of the microbial

population, evidently not coming from an increased total organic 

matter content, could,nevertheless^have resulted from organic matter in 

the sludged soil being of a more decomposable nature. As 

decomposition progresses^ the proportion of aromatic compounds, such as 

lignin and polyphenols in the organic matter fraction, increases. This 

is coupled with a gradual humification of soil organic matter. Both 

humified organic matter and aromatic compounds are relatively more 

resistant to microbial breakdown (Jenkinson, 1988).

A different situation prevailed at Carbarns. The sludged soil 

contained more organic matter than did the unsludged control but 

contained smaller biomass C as also reported by Brookes and McGrath 

(1984) using the Woburn Market Garden soil. Brookes and McGrath 

blamed this reduction in microbial biomass C on the toxic effects of 

metal concentrations in the sludged soil which was very badly 

contaminated with C d , Cu, Ni and Zn, with concentrations of 8 .6 , 102, 27 

and 289mg/kg air dry soil respectively (Brookes et al., 1986). At 

Carbarns the sludged soil contained higher Cd, Cr, Cu, Pb and Zn 

concentrations than those present in the unsludged soil (Table 4,2^ 

although these concentrations, i.e. 1.1, 63, 24 and 196mg/kg air dry

soil respectively, were much lower than those recorded at Woburn.
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Attributing the effect to one particular metal or group of metals or 

separating the individual effects is difficult as all these metals were 

added together in sludge. Trying to separate possible individual 

metal effects by, for example, adding heavy metal salts to 

uncontaminated soils and monitoring possible changes in biomass or

microbial activity could only be speculative as metal form might not 

match the chemical forms found in other recently applied sludge or 

sludge-derived metals which have been in the soil for a number of years. 

Some insight into this problem was offered by the results of the work 

carried out by Brookes and McGrath (1986) using metal enriched sludges 

which showed that whereas Cu and Ni in sludges depressed soil biomass, 

Zn and Cr did not. Moreover, Damyanova (1983) found Cd to be more toxic 

to microbial respiration than Cu. Horsfall (1956) proposed the

following order of toxicity of metals for a variety of fungal species:

Ag > Hg > Cu > Cr > Ni > Pb > Co > Zn > Ca.

However, the observed depression of microbial biomass in the sludged

Carbarns soil may also be attributed to persistent toxic organic 

compounds. No chemical tests for any such organic pollutants were 

carried out. However, Brookes and McGrath (1984, 1986) rejected this 

possibility in favour of microbial inhibition due to increased soil 

metal concentrations in view of the fact that depression in microbial

activity was evident 2 0  years after the last application of sludge.

The mode of action by which metals may inhibit and/or suppress 

microbial populations is not known. In all probability more than one 

factor is involved. Some metallic ions are known to destroy the
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integrity of semipermeable membranes, thus allowing metabolites to 

leak out (Rich and Horsfall, 1963). The synthesis and function of 

proteins, including enzymes, is essential for active and proper growth 

of organisms. Heavy metals may act in reducing microbial populations 

by inhibiting the action of proteins thus reducing their metabolic 

efficiency. For instance, Pb is known to inhibit the production and 

action of several enzymes (Doelman and Haanstra, 1979). In general, 

inhibition by metals may be due to:

i) their ability to compete with essential elements (eg. M n , Fe, Mg) 

for active (eg. -SH, -NH2 , =NH) or structural sites of the 

protein (Bhuiya and Cornfield, 1972).

ii) their masking of catalytically active groups (Tyler, 1981), 

and/or

iii) protein dénaturation (Tyler, 1981).

Enzymes whose activities depend on the presence of free amino and 

sulfhydryl groups are inhibited by heavy metals which form stable 

complexes by ligand-binding with these groups. Metals, such as Cu^ 

which form very sparingly soluble sulphides from sulfhydryl groups are 

the strongest inhibitors (Katz and Cowans, 1965; Hughes et al., 1969). 

On the other hand, Cu and Fe métallo-enzymes are less readily inhibited

by metals due to the high stability of the enzymes' metal complexes

(Owens, 1953; Malkin and Malmstrom, 1970).

Reference to Tables 4.4 and 4.5 suggests that more of the energy

generated by respiration is required to maintain the microbial cells in
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the sludged Allanton and Carbarns soils than is needed in the unsludged 

soils. Consequently, proportionately less of the energy generated 

during microbial respiration is available for growth in the sludged 

soils, hence the reduced biomass C. Enzyme - protein inhibition and/or 

inactivation by heavy metals in sludged soils could help explain the 

hypothesis put forward by Brookes and McGrath (1984)^ that lower 

microbial biomass C in high metal sludged soils is a result of reduced 

microbial longevity.

Part of this increase in maintenance energy may be required not only to 

compensate for any enzyme/protein inhibition by the metals, but may also 

be required to support some resistance mechanisms which the microbes may 

use to overcome problems of metal toxicity. Many species of bacteria 

have genes that control resistances to specific toxic heavy metals. 

These genes are often coded on extrachromosomal DNA (plasmids) (Foster,

1983). The occurrence of these plasmids in a variety of bacteria 

isolated from polluted and unpolluted natural environments is well 

documented (Hada and Sizemore, 1981; McNicol et al., 1982). 

Impermeability of the plasma membrane (Kondo et al., 1974) or 

accumulation in the cell-wall constituents (Mitra et al., 1975) have 

been reported to offer two tolerance mechanisms for metals such as Cd 

by certain species. Commonly, resistance to heavy metal involves the 

production of compounds which render the metal less available for 

microbial metabolism. One such detoxifying mechanism is based on a 

high rate of H 2 S production (Ashida, 1965) where, for instance, Cu-

tolerant Saccharomyces cells deposit CuS at the cell periphery. The 

production of volatile compounds involving metals such as H g , a 

potentially more toxic metal than Cu, reduces the metal's availability
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to the micro-organisms (Komura and Izaki, 1971). Other mechanisms 

known to occur involve energy driven efflux pumps that rapidly 

excrete Cd^^ and AsO^^’ (Silver, 1984), thus keeping intracellular 

concentrations low. Alternatively, micro-organisms may synthesise

intracellular polymers which trap the toxic metals (Doelman, 1986), 

Each of these mechanisms require the expenditure of energy. A

comprehensive outline of resistance mechanisms is given by Silver 

(1984).

Work by Thornton et al. (1985) offered some proof that bacterial 

populations rapidly adapt to increasing metal concentrations in sludge- 

amended soils. If the active microbial flora develops metal tolerance, 

its susceptibility to metal toxicity may be circumvented. Bacterial 

or fungal metal tolerant populations have been identified in a number of 

metal-polluted environments, but Brookes et al. (1984) report that as 

yet no such populations have been found in sludge treated soils.

The observed reduction in biomass C in the sludged Carbans soil may be a 

result of a decrease in all microbial species, but it may equally be 

due to a decrease of particular, more sensitive species. The

emergence of species more tolerant and/or resistant to metal toxicity 

may be favoured in metal — stressed environments even though the 

necessity for resistance mechanisms increases energy expenditure, hence 

reducing growth rate. A similar argument would likewise apply to the 

selection within a single species since the sensitivities within a given 

population follow a statistical distribution and under continuing 

selection pressure, tolerant and/or resistant organisms will emerge.
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Bacteria have been found to be more sensitive to Cd (Gupta and 

Stadelmann, 1983) and Pb (Doelmnan and Haanstra, 1979) than hyphal 

fungi. In contrast, Brookes et al. (1984) reported that bacteria and 

protozoa are unaffected by metal enrichment in sludged soils and that 

an observed reduction in microbial biomass is probably due to a

depression of the fungal population. It has also been reported that in 

metal— stressed environments there appears to be selection in favour of 

gram-negative bacteria (Barkay et al., 1985; Bramryd, 1983). The 

general lack of agreement in determining which group(s) of micro

organism is most sensitive to metal pollution is probably a reflection 

of the wide variety of micro-niches exploited by soil micro-organisms 

and the particular metal availability within each niche. For

instance, Hattori and Hattori (1976) reported that the proportion of 

gram-negative bacteria to the total number of bacteria, under field 

conditions, was usually smaller than 1 0 % in the outer part of soil 

aggregates. However, in the inner part of the aggregates this ratio 

was much higher and frequently exceeded 30%. In contrast, coryneform 

bacteria are rather drought resistant and are likely to occur in the 

outer part of the soil aggregate (Doelman and Haanstra, 1979). 

Therefore, a shift in the composition of the microflora in high metal- 

sludged soils does not necessarily have to be solely ascribed to the 

selection of tolerant population^ but may also be of an indirect nature 

where, for instance, micro-organisms within soil aggregates are less 

exposed to metal pollutants.

Bacteria involved in the oxidation of nitrogen compounds in the soil, 

the soil nitrifiers, are an integral part of the soil microbial
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population. Nitrification, which is the conversion of ammonium to

nitrate, is carried out entirely by micro-organisms. Nitrosomonas 

converts ammonium to nitrite and Ni trobacte r converts nitrite to 

nitrate. There are reports of various other genera eg. Nitrosocystis 

and Nitrosococcus performing these functions in the sea. The organisms 

are obligate aerobes and chemoautotrophs^ although some Nitrobacter 

strains have been shown to use acetate as a C and energy source (Stanier 

et al., 1981). However, these strains grow much more slowly with 

acetate than with nitrite (Stanier et al., 1981). The population of 

Nitrosomonas and Nitrobacter is frequently quite small and many soils, 

particularly those which are acid, have fewer than 1 0 0  viable cells of 

one or both genera per gram and,as a rule, populations in excess of 1 0  ̂

per gram are rare in unfertilised soils (Alexander, 1965). However, 

in fertilised soils the numbers rise and may reach values in excess of 

10^ cells per gram (Alexander, 1965).

The conversion of ammonium (oxidation state -3) to nitrite (+3) yields 

65 - 6 6  Kcals/mole, and nitrite (+3) to nitrate (+5) about 17 - 18 

Kcals/mole (Campbell, 1977), which is a low level of energy yield when 

compared with respiration ( 6 8 6  Kcals per mole of glucose) or deamination 

(176 Kcals per mole of ammonium). Molar growth yields are thus low, 

approximately 0-7g dry weight Nitrosomonas cell per mole ammonium 

oxidized and 0-3g dry weight Nitrobacter cell per mole nitrite oxidized 

(Knowles et al., 1965).

The chemistry of nitrification is not clear; some of the enzymes have 

not been isolated and some of the postulated intermediates cannot be
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detected. The first step probably involves the oxidation of ammonium 

to hydroxylamine using molecular oxygen. Hydroxylamine is toxic but 

the concentration is usually low, the equilibriumn is towards ammonium 

and the reaction proceeds only as hydroxylamine is oxidized to

nitrite. There are intermediates, possibly the nitroxyl radicle and 

nitrohydroxylamine, though whether these exist in a free state is not 

known. Parts of the flavoprotein and cytochrome system are required

for the oxidation of hydroxylamine. Nitrobacter then oxidizes the

nitrite to nitrate in a single step with molecular oxygen as the 

terminal electron acceptor mediated by a cytochrome system. An in- 

depth study of nitrification processes is given by Jones (1982). In 

soil, ammonium and nitrite oxidation occurs concurrently, but the 

latter is more rapid, so nitrite rarely accumulates (Rodgers, 1984).

Details of the heavy metal requirements of nitrifying bacteria are 

unknown. Winogradsky and Omeliansky (1899) first demonstrated the need 

of Fe for nitrifiers. This has since been confirmed for Nitrosomonas 

in liquid culture (Lees and Meiklejohn, 1948) and for cell-free 

nitrification in Nitrobacter (Aleem and Alexander, 1958). Low 

concentrations of various metal salts have been reported to stimulate

nitrite formation in pure cultures of Nitrosomonas (Khare et al., 1966). 

Copper is probably an essential element for Nitrosomonas (Lees and 

Meiklejohn, 1948), being involved in an oxidase system (Nicholas et al., 

1962). Although Cu has also been found to inhibit nitrification 

(Liang and Tabatabai, 1978), the requirement for Zn and Co is more

doubtful and these metals can, in fact, inhibit nitrite formation 

(Loveless and Painter, 1968). Silver, H g , Cd and Cr have also been 

reported to inhibit the growth of nitrifying bacteria (Meyerhof, 1916;
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Fargo and Fleming, 1977; Liang and Tabatabai, 1978).

The presence of metals in the soil environment can cause a variety of

effects, from stimulation to inhibition. Nitrifiers, being obligate 

aerobes, occur primarily on the surface of soil aggregates in 

preference to the more anaerobic centre. As such, they are more likely 

to be susceptible to metal pollution. McGrath and Brookes (1986) 

reported a reduction in the rate of oxidation of added ammonium and

nitrite in sludge treated soil. This reduction was ascribed to a lower

activity or fewer nitrifying organisms arising as a result of high 

metal concentrations in the sludge - treated soils (Brookes et al.,

1984). However, Yamamoto et al. (1983, cited by McGrath and Brookes, 

1986) pointed out that metals can inhibit the activity of nitrifying 

organisms without reducing their numbers.

Comparing the nitrification rates of added ammonium in sludged and 

unsludged soil samples from Maudslie, Carbarns and Allanton (Figure 4.1) 

resulted in no clear-cut conclusion as to the effects of sewage sludge 

or sludge metals on soil nitrification. Notwithstanding the fact that 

the sludged soil from all three sites had higher metal concentrations, 

it was only the Carbarns sludged soil that exhibited a nitrification 

rate which was slower than that of the unsludged sample (Table 4.7). 

In contrast, at Allanton a higher nitrification rate was evident in the 

sludged soil, whereas at Maudslie the sludged and unsludged soils 

exhibited similar rates of nitrification (Table 4.7).

Inhibition in soils of nitrification by heavy metals derived from sludge
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is difficult to interpret partly because much of the work has been 

done using metal salts, generally at unnaturally high concentrations, 

and partly because of variations in soil properties which may modify 

or alter the relative and absolute toxicity of metals. In particular 

an increase in the pH of acid soils results in decreased Cd, Cu and Zn 

toxicity to nitrifiers. However, an excessive increase in soil pH may 

likewise decrease nitrification rates (Bhuiya and Cornfield, 1972) due 

to resolubilisation of metals such as Zn. Soil properties such as pĤ  

may themselves influence the activity of the nitrifying population. 

Nitrification occurs rapidly near neutral pH, but it is not certain how 

quickly it proceeds under acid conditions, such as in many moorland and 

forest soils, since Nitrosomonas and Nitrobacter strains that have so 

far been isolated do not carry out nitrification much below pH 6  

(Campbell, 1977). The optimum for most Nitrosomonas strains tends to 

fall in the range between pH 7 and 9, and activity is found in even more 

alkaline solutions (Alexander, 1965). On the other hand, in even 

slightly acid conditions proliferation of the bacteria is markedly 

reduced. For Nitrobacter strains, the optimum is often in the neutral 

to slightly alkaline range and activity is often detectable from about 

pH 5 to 10 (Alexander, 1965), although above pH 8  Nitrobacter does not 

convert much nitrite to nitrate (Campbell, 1977). However,

generalisations concerning a specific optimum hydrogen ion concentration 

are of little value. Ulyanova (1961, 1962) found that the optimum pH 

for activity of ammonium oxidizers was often similar to that of the 

environment from which they were isolated; frequently however, the pH 

optimum was far removed from that of the original habitat. In

addition, the bacteria may occupy microecological sites having acidities 

far different from that suggested by pH determinations of bulked soil.
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With reference to either Table 4.7 or Figure 4.1, there appears to be a 

positive relationship between nitrification rate and pH, in that the 

nitrification rate was slowest for the most acid soil (Allanton

unsludged) and quickest for the soil at the highest pH (Carbarns 

unsludged). However, the exception to this trend was the unsludged 

Maudslie soil with a pH of 6.0

When soil pH was studied in detail, it was found to have a very 

significant influence on nitrification in the sludged Carbarns soil 

(Table 4.13). Increasing the pH of the high metal sludge treated soil 

over even a narrow range (i.e. pH 5.47 - 6.37) led to significant

decreases in the delay period and increases in (Table 4.14). In

the most acid soil (pH 5.47) the delay period was of 7.66 days and 

was 11.85 mg NO^/kg air-dry soil/day. In contrast, in the least acid

soil (pH 6.37) the delay period was only 2.60 days and increased

to 45.33mg NO^/kg air-dry soil/day. In other words, as pH rose by 0.9 

units the delay period decreased by 5.06 days while increased by

33.48mg NO^/kg air— dry soil/day. The rate of nitrification in the 

sludge-treated soil of pH >5.76 was, in fact, similar to that recorded in 

the unsludged soil. This suggests that whereas prolonged sludge

application leads to a reduction in biomass C (see Table 4.4) possibly 

due to the accumulation of heavy metals in the soil, provided soil pH 

is adjusted^ no such reduction in the nitrifying microbial population 

occurs. Any decrease in the rate of nitrification following the 

disposal of sludge may be attributed to the resultant decrease in pH of 

the treated soil.
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These results seem to contradict that stated by Harris (1988): "In

general over the pH range of 5.5 to 8.0 there is usually little effect

of pH and there is evidence that nitrifiers in soils of low pH are

adapted to those conditions". This may hold true for the oxidation of

indigenous ammonium (that produced by organic matter decomposition)

where ammonification can occur sufficiently slowly for the populations 

of nitrifying organisms to adjust to the supply of ammonium under both 

high and low pH, but when presented with a large input of added ammonium 

the existing nitrifying organisms in high pH soils are more active (or 

numerous) than in low pH soils. In addition, Harris's comments take 

no account of the relationship between pH, metal availability and 

nitrification given that metals are capable of inhibiting autotrophic 

activity.

In nitrifying bacteria the oxidation of nitrogen compounds is a 

growth-linked process. As such, it is expected that the concentration 

of products of this oxidation, such as nitrate, follow closely the 

growth curve of the bacterial population, thus exhibiting a sigmoid 

relationship when fresh substrate is supplied. Growth curves can be 

divided into four phases;

i) lag phase: a period of no growth and growth acceleration;

ii) log phase: a period of logarithmic growth;

iii) maximum stationery phase: i.e. when the specific growth

rate ( u) is equal to the death rate; and

iv) death phase: when the death rate is greater than the

specific growth rate.

During the lag phase the nitrifying population multiplies and increases
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in size in response to the introduction of substrate into the system. 

The smaller the initial population size, the longer the delay period 

(Sabey et al., 1959). Therefore the increased delay period as pH 

decreases (Table 4.14) may have resulted from a smaller initial 

nitrifying population in the acid soils. An increase in the delay 

period, i.e. the time between introduction of ammonium and exponential 

growth of the nitrifying population in acid soils, may stem from 

specific inhibition of enzymes, not necessarily those solely linked 

directly to nitrification. In response, the nitrifying bacteria,

before being able to take full advantage of the increased substrate, 

need first to synthesise more of the suppressed enzymes. The time 

required for ammonium to be oxidised to nitrite by Nitrosomonas, is 

the rate limiting step to nitrate formation. As Nitrosomonas requires a 

higher ambient pH than does Nitrobacter (as discussed previously), it 

might be the case that the increase in the delay period as pH 

decreases is primarily due to the inhibition of Nitrosomonas rather 

than Nitrobacter, However, as no separate measure of N 0 2 ‘N production 

was estimated this statement cannot be verified.

After the initial delay period, an exponential increase in nitrate 

concentration was recorded during which time the nitrifying population 

grew logarithmically. At this stage^ K is equivalent to u. During 

this phase, substrate is not limiting and the nitrifying bacteria 

divide rapidly by binary fission. Whereas is unaffected by the

initial (at time t = 0 ) population size of the nitrifying bacteria 

(Sabey et al., 1939) it is influenced significantly by pH. Enzymes are 

amphoteric molecules and as such their overall charge is influenced by
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pH. A change in the ionization of particular amino acids can lead to 

significant changes in the structural configuration of enzymes and 

proteins. Moreover, the catalytic efficiency of enzymes could be

significantly curtailed were such changes to occur at active sites, and 

would, consequently, decrease Some form of feedback control may

also be involved. The overall nitrification reaction can be 

represented simply as:

NH 4 + + 2 O 2  — » NOg" + HgO + 2H'*'

The decrease in soil pH due to nitrification is well documented 

(Alexander, 1965; Lance and Whisler, 1972). Hydrogen ions, being a by

product of nitrification coul^ theoretically, exert some control on the 

enzymes involved in the oxidation of ammonium. Likewise, feedback 

control could originate from the build-up of nitrate and has been

shown to be dependent upon the initial substrate concentration (Sabey et 

al., 1959). The greater the substrate concentration, the greater 

up to a point where can increase no further.

As the population size increases, the ammonium concentration decreases 

(given that bacteria are being grown in batch culture, i.e. with a 

fixed initial mass of nutrient), at a time when the demand for 

oxidizable substrate increases. Consequently, a point is reached 

where the remaining substrate can no longer sustain the needs of the 

growing nitrifying population, which, thus, ceases to expand. At this

point, the rate of ammonium consumption decreases and is maintained at a 

constant level throughout the duration of the maximum stationary phase. 

This could in part explain the linear decrease in ammonium
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concentrations after day 1 0 , i.e. after the bacteria had experienced 

log growth and sufficient time had elapsed for the system to 

equilibrate (Table 4.6). As the ammonium was used up, the sustainable 

population size decreased and the death phase set in.

When all the substrate has been utilized the concentration of nitrate 

increases no further, reaching its asymptote. The magnitude of the 

asymptotic nitrate concentration is a function of the initial ammoniumn 

concentration. All six pH treatments were initially supplied with 

equal amounts of ammonium and were, thus, expected to attain similar 

asymptotes. This^ however, was not the case with the more acid soils 

which apparently exhibited a lower asymptotic values. Lowering the pH 

lengthens the delay period and reduces Thus, a longer time-period

would have been necessary for the more acid soils to attain asymptotes. 

Moreover, for the acid soils, relatively high ammonium concentrations 

(i.e. 58mg/ml) (Table 4.15) were still present in solution at the end 

of the sampling period and, consequently, true asymptote could not have 

been achieved. In addition, the observed rate of nitrate production 

was also a product of ammonification, i.e. the production of ammonium 

as a result of organic matter decomposition by the soil's heterotrophic 

population. Were ammonification to be greater in the soils at high pH 

this may have contributed to the higher nitrification rates recorded for 

these soils. Ammonification proceeds even after the exhaustion of

added ammonium and^hence^a true asmptote is never reached. After the 

32 day experimental period ammonium was still present in the 

percolating solution and^ as such, still available for nitrification 

(Table 4.15). This unutilized fraction of ammonium was greater in the 

more acid soils further underlining the inhibition of nitrification at

234



low pH.

As stated above, nitrification is a growth-linked process and as such a 

sigmoid relationship between nitrate concentration and time is to be 

expected. Where the influence of pH on soil nitrification potential 

was studied (Experiment III) a sigmoid response of nitrate concentration 

with time was, in fact, observed. However, where the effect of sludge

application on nitrification potential was investigated (Experiment II) 

a linear rate of nitrate production was evident. Soil conditions, 

especially pH, affect the rate of nitrification. As verified in

Experiment III^ soil pH has a very significant influence on soil 

nitrification, where a decrease in pH decreases while increasing

the delay period. For instance, whereas a soil of pH 6.37 exhibited a 

delay period of 2.60 days and a of 45.33mg NO^/kg air-dry soil/day,

a soil of pH 5.47 exhibited a delay period of 7.66 days and a of

11.85mg NO^/kg air-dry soil/day. Of the six soils used in Experiment 

II four, i.e. Allanton sludged, Allanton control, Maudslie sludged

and Carbarns sludged, were quite acidic with a pH of 5.36, 5.00, 5.29

and 5.49 respectively. Therefore, due to the acidic nature of these 

soils, it is possible that all that was measured over the 2 0 — day

experimental period was the delay phase and the initial stages of the 

log phase and, thus, resulted in an apparent linear response of nitrate 

concentration with time. A small initial nitrifying population would 

have also contributed to increased delay periods^ as would enzyme 

inhibition which also results in a decreased ^ similar

explanation may account for the linear relationship observed for the

Maudslie control soil. However, in this case, factors other than pH
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were responsible for a long delay period and a low as the soil pH

was >6,0. As for the Carbarns unsludged soil, which was used in

both Experiments II and III, the production of nitrate in both

experiments was generally similar, although in Experiment II a much 

greater variation was present between replicates.

The absolute rate of ammonium depletion, given that no other process 

other than that of nitrification led to a change in NH^-N concentration 

in the percolating solution, would be expected to be equal to the

absolute rate of nitrate production (assuming that NO^-N was conserved). 

However, over days 0-2 in Experiment II and days 0-4 in Experimnent III, 

the marked decrease in the concentration of NH^-N in the percolating 

solution was not reflected in a comparable increase in the concentration 

of NO^-N. Immobilisation of ammonium can either be chemical,

biological or both. When a soil is flushed with a cationic solution, 

the cation can be adsorbed onto exchange sites on the soil particles 

and, provided it is present in sufficient concentrations, may also 

replace other cations held on such sites. Adsorption onto exchange 

sites has been used to explain such initial decreases in ammonium 

concentration (Hadas et al., 1986). Chemical fixation, as opposed to 

sorption on exchange sites was also possible, although not likely to be 

very significant or probable in topsoils. Substitution of ammonium

within the clay lattice is a slow process which in topsoils is 

restricted by organic matter shielding interlammelar sites. In

addition, immobilisation of NH^-N in this manner is dependent upon clay 

type with illite and to a lesser extent verraiculite showing specificity 

to NH^-N (Wild, 1988). Alternatively, assimilation of NO^-N into the 

microbial biomass or denitrification may have masked the true rate of
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NO^'N production and thus led to the observed situation where NH^-N 

depletion was greater than NOg-N production. However, microorganisms 

utilize ammonium in preference to nitrate as their source of N. The 

concentration of ammonium in the percolating solution was relatively 

high and it is^ thus^ improbable that any significant NO^-N assimilation 

occured.

In Experiment II, after day two, the rate of ammonium depletion and 

nitrate production in both Maudslie soils was similar (Figures 4.2 and

4.1). However, a different situation was observed in the soils from 

Allanton and Carbarns. Both the sludged and unsludged Carbarns soils 

exhibited a rate of nitrification greater than the observed rate of 

ammonium depletion. In contrast, the converse was true for both 

Allanton soils. A production of nitrate not mirrored by an 

equivalent decrease in ammonium indicates the presence of a mechanism 

which buffers ammonium. In soils, ammonium concentrations in solution 

could be buffered either by the rate of decomposition of organic matter 

liberating sufficient ammonium to mask the rate at which it was being 

nitrified, or alternatively by the desorption of intrinsic soil reserves 

of exchangeable ammonium. However, the available N recorded for the 

Carbarns soil was no greater than that for the Allanton soils (Table

4.1). At Allanton, the rate of ammonium depletion was greater than 

nitrate production, consequently ammonium must have been utilised for 

purposes other than nitrification or else NO^-N was 'lost' from the 

system. Although every effort was done to ensure adequate aeration of 

the systems^ it is possible that some anaerobic pockets developed in the 

soils. Aanaerobic conditions promote denitrification and^hence^ loss
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of NOg-N from the system as N 2  or N^O.

Microbial immobilisation of ammonium, not only by nitrifying bacteria, 

but also by the whole microbial population, particularly the 

heterotrophic fraction, could have also contributed to the removal of 

ammonium from the percolating solution. On sampling, soil

disturbance may have resulted in improved aeration and opened new 

surfaces for decomposition. Ammonium immobilisation by the

heterotrophic microbial population is determined by the C : N ratio of 

the decomposable substrate. High C : N ratio plant residues such as 

cereal straw^ can limit the availability of N as the micro-organisms draw 

on soil reserves to satisfy their own nutritional needs. Generally, 

organic residues with C : N ratios less than 30 : 1 are unlikely to 

make demands on soil N during the course of decomposition (Harris, 

1988) . The C : N ratio of both sludged and unsludged soils from

Allanton and Carbarns were well below this value (30 : 1) (see Table

4.1), and, therefore, microbial immobilisation appears to be ruled out. 

However, laboratory determinations of soil C : N ratios yield only a

gross measure of the proportion of C and N in the organic matter. 

Within organic matter, there are fractions which will decompose more 

easily than others (i.e. they will have a higher C : N ratio and/or be 

relatively more easily decomposed) and majr thus, contribute in reducing 

available soil N reserves.

Ammonium can also be lost as ammonia gas. However, at pH 7 only 1 per 

cent of the ammonium present in solution is present as ammonia and this 

decreases with decreasing pH (Wild, 1988). Therefore, due to the 

acidic nature of the Allanton soils^ this route of ammonium loss is
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highly improbable.

In both Experiments II and III over the first 2-4 days a sharp decrease 

in the total concentration of (NH^ + NOg)-N in the percolating solutions 

( A n ) was observed (Figures 4.3 and 4.7). Thereafter, A  N increased 

markedly. However, whereas in Experiment II a linear increase in A  N 

was recorded, a sigmoidal increase of A  N over this same period was 

observed in Experiment III and in particular for those soils of pH > 

5.76. In these soils, ammonium, which had initially been adsorbed 

onto exchange sites, was desorbed due to the diffusion gradient generated 

by the activity of the nitrifying bacteria, thus increasing the 

overall A  N in solution. The rate of supply of NH^-N reflects the 

rate of nitrification. Ammonification could have also itself

contributed to this increase in A  N . However, after day 10, by which 

time nitrate concentrations had attained an asymptote, the rate at which 

A  N increased slowed down markedly, suggesting that nitrification and 

not ammonification was the primary agent in bringing about N 

remobilisation an^ hence, an increase in A N .

After day 10̂  the decomposition of dead nitrifying bacteria could have 

also contributed to the remobilisation of N which had previously been 

immobilised in the expanding nitrifying population. However, a net 

gain in (NH^ + NOg)-N in the percolating solution, over and above that 

present initially (i.e. at time t= 0 ) , was entirely due to 

ammonification.

The accumulation of metals in sludged soils, even when metal
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concentrations are within maximum recommended levels (EEC, 1986), can 

result in a significant reduction of soil microbial biomass C . 

However, the interpretation of any such situation needs to take into 

consideration various soil parameters and, in particular, organic matter 

content. Provided the pH of the soil is maintained close to 

neutrality, soil nitrification may be stimulated by long term sludge 

disposal, despite the accumulation of metals. However, a reduction in 

soil pH results in increased delay-periods coupled with decreased 

Sludge application can lead to changes in the pH of the receiving soil 

(see Section 1.3.1) and this itself may affect nitrification.
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CHAPTER 5

FACTORS AFFECTING THE ADHERENCE AND 'WASH-OFF' OF SLUDGE DERIVED METALS 
FROM LEAF SURFACES

5.1 INTRODUCTION

Sewage sludge contamination of leaf surfaces is an inherent problem with 

conventional methods of sewage sludge application to agricultural land, 

which generally involve spray guns or surface spreading by 

tanker. This adherence of sludge to the leaf has raised 

considerable concern in relation to human and animal health, due to the 

wide array of pathogenic organisms which can be present in sludge. In 

U.K. sludges, four main groups of potentially infectious pathogens have 

been identified (DoE, 1981): 

i) Bacteria

ii) Eggs of parasitic worms

iii) Viruses

iv) Protozoan cysts.

The risk associated with potential infection of man or grazing animals 

from these pathogens in adhering sludge led to the adoption of a three- 

week 'no-grazing' period (DoE, 1981) after sludge application. The 

sludges to which this limitation applied included those produced by 

anaerobic digestion (> 40% reduction in organic matter), lagooning 

(>2 yrs) or drying or de-watering, followed by stacking (>lyr overall 

age). Where unpasteurised milk was produced from cows grazing 

contaminated herbage, a 5-week no-grazing period was implemented (DoE,
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1981). The adoption of this no-grazing safety period was principally a 

precaution against Salmonella infection (DoE, 1981). Where other forms 

of sewage sludges, which did not conform to the prerequisites of a 3- 

week no-grazing period, were applied to grazing land, the no-grazing 

period was enforced for 6  months to prevent any infection by the eggs of 

parasitic worms, particularly Taenia saginata (DoE, 1981).

In the recent E.E.C. Directive (E.E.C., 1986) which regulates sewage

sludge disposal on agricultural land in Member States, a 3-week 

minimum no-grazing period has been adopted where sludge is applied to 

grazing land or to forage crops before harvest. Furthermore, the 

application of raw untreated sludge is prohibited except where this is 

injected or worked into the soil, provided that there is no associated 

risk to human or animal health (E.E.C., 1986).

The most common causitive organisms of clinical salmonellosis in cattle 

are Salmonella dublin and S. typbimurium (Bell, 1976). The former is 

considered to be host — specific, while the latter, which is widely 

distributed, is a common cause of salmonellosis in man and can therefore 

be expected to be present in sludge (Bell, 1976). However, in the U.K., 

there is no clear association between sludge disposal and salmonellosis 

in grazing animals (Davis, 1980). It appears that the overall numbers 

of Salmonella in sludge applied to grassland are low in relation to the 

known infective doses for cattle (Davis, 1980), which for S. dublin are 

around 10^ to 10^ per gram of grass (Bell, 1976). Mesophilic anaerobic 

digestion of sludge is particularly effective in reducing Salmonella 

numbers to levels which are not infective (Healey, 1984), with up to 90- 

99% reduction in numbers of enterobacteria being possible (Pederson,
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1981). Moreover, the die-off rate of Salmonella in the field is very 

high particularly during sunny periods (Healey, 1984) and can reach 

undetectable levels within 42 days of application (Jones and Watkins, 

1985). However, some instances of salmonellosis in cattle have been 

linked to the disposal of sludge to grazing land (Bicknell, 1972; Hess, 

1981; Reilly et al, 1981). The possibility of infection is greatest 

when animals are subjected to extreme conditions of prolonged exposure 

to heavy contamination or when the susceptibility of cattle might be 

unusually high (Hall and Jones, 1978). In practice, the danger to human 

and animal health are minimal if proper operating practices and 

guidelines are followed (Jones et al, 1983).

There is no epidemological evidence to link the use of digested sludge 

on grassland with infection of man or animals by other pathogenic 

organisms such as T. saginata (Davis, 1980; Block, 1983; Healey, 1984). 

This is probably due to the effectiveness of sludge-treatment processes 

and, in particular, mesophilic anaerobic digestion, in killing or 

inactivating pathogenic organisms within the sludge (Silverman and 

Guiver, 1960; Healey, 1984; Evans et al, 1986). The presence of T. 

saginata in sludge is of particular interest as its life cycle involves 

both man and cattle. The primary host is man in whom the tapeworm 

develops and sheds ova which find their way into the sewage sludge. If 

the secondary host (cattle) ingests the ova, infection in the form of 

cysticerci (Cysticercus bovis) develops in the muscle and the cycle will 

be repeated if humans consume infected and inadequately cooked beef. 

The cycle is broken by meat inspection to detect infected carcasses and 

by cooking which destroys the cysticerci, although some infected
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carcasses may slip undetected through inspection and cause infection in 

humans. However, this disease is uncommon in the U.K. and although it 

is not a notifiable disease, usually less than 1 0 0  cases per annum come 

to light, two-thirds being accounted for by foreign visitors (DoE, 

1981). In some cases, Brucella abortus can be of importance (Bell et al, 

1978), where sludge-fertilized grass is grazed by brucellosis - free 

attested herds. However, the presence of these bacteria in sewage 

sludge is unlikely and their survival in sludge is limited (Bell et al, 

1978; Lewin et al, 1981).

As regards viruses, these are extremely host-specific (Hudson and 

Fennell, 1980) and, consequently^ it is very unlikely that human 

enteroviruses present in sewage sludges would present any hazard to 

animals or vice-versa. Also, the viruses which are of economic 

importance to the farmer, such as foot and mouth disease and swine 

vesicular disease, are so rigidly controlled by inspection that the 

chance of contamination of sewage sludge is extremely unlikely (Hudson 

and Fennell, 1980).

Unlike pathogenic organisms, heavy metal ingestion from contaminated 

leaf surfaces has received very little attention. The DoE (1981) 

guidelines laid down restrictions on the maximum Pb (i.e. 2 0 0 0 mg/kg) and 

F (i.e. 3500mg/kg) content of sewage sludge applied to land as a

precaution against possible ingestion of sludge or sludged soil by 

children and grazing animals. However, very little work has been 

directed at studying the contribution of this adhering sludge to the net 

metal content of herbage. Even less attention has been paid to 

investigating the behaviour of these 'adhering' metals or the factors
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influencing their rate of removal. With this in mind, field and pot 

experiments were undertaken.
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AIMS AND OBJECTIVES

The aims and objectives of the experimental work were:

(a) To investigate the importance of sludge-dry matter content

and application rate on

(i) the adherence of sludge metals to leaf surfaces

(ii) the loss of adhered sludge from leaf surfaces

with time.

(b) To assess the importance of the grass canopy height on (i) and 

(ii) as outlined above.

(c) To relate the dilution of adhering sludge to

(i) rainfall

(ii) plant growth.
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5.2 MATERIALS AND METHODS

5.2.1 FACTORS INFLUENCING SLUDGE METALS ADHERING TO LEAF 
SURFACES IN A FIELD SITUATION.

A trial was carried out at Temple Field (Nat. Grid Ref. NS 381 

237)^ which is part of the West of Scotland College farm estate. The 

soil in this field is an imperfectly drained loam on a reddish brown 

clay-till of the Bargour series. The sward consisted of perennial 

ryegrass (Lolium perenne) Cv. Springfield, which had been sown in the 

spring of 1986.

An 11.5m x 6 m area was pegged out and divided into 3 blocks, each 

consisting of 6  sub-blocks of 1.5m x 1.5m on which 6  treatments were 

randomized (see Section 5.2.1.1). Each sub-block was, in turn, divided 

into 9 mini-plots of 0.5m x 0.5m each providing an area from which one 

of 9 sequential herbage cuts were taken over the duration of the 

experiment (see Section 5.2.1.1). A 0.5m discard strip separated each 

mini-plot.

5 . 2.1.1 TREATMENTS

Six treatments were devised:

Treatment 1 (Tl): uncut grass, no sludge applied;

Treatment 2 (T2): cut grass, no sludge applied;

Treatment 3 (T3): uncut grass, 'normal' (2% D.S.) sludge

applied at 67.5m /ha;

Treatment 4 (T4): cut grass, 'normal' (2% D.S.) sludge
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Tapplied at 67.5m /ha;

Treatment 5 (T5); uncut grass, 'normal' (2% D.S.) sludge

applied at 25m /ha;

Treatment 6  (T6 ) : uncut grass, 'thickened' (12% D.S.) sludge
oapplied at 67.5m /ha.

Sewage sludge from the Maudslie Sewage Works, which contains treated

sewage of predominantly domestic origin (Table 5.1), was applied on the

24th March 1987. A watering can fitted with a spoon at the tip of the

spout (to act as a splash plate) was used to apply the appropriate 

volume of sludge to each mini-plot. 'Normal' sludge containing 2% dry 

solids consisted of anaerobically digested sewage sludge taken directly 

from the digester. 'Thickened' sludge containing 12% dry solids was

anaerobically digested sludge which had been stored in lagoons for about 

3 months.

On the 2nd March 1987, 3 weeks prior to sludge application, treatments 

T2 and T 4 , i.e. the cut grass treatments, were mown to within 4cm of 

ground level using a motorised 'Agria' grass cutter. The whole 

experimental area then received a base dressing of 50kg N/ha, 25kg 

F^O^/ha and 25kg K 2 Ü/ha as a 20:10:10 NPK fertilizer.

A total of 9 herbage cuts were harvested weekly between 31st March - 

19th May 1988 (inclusive) by random selection from each sub-block. The 

first cut was taken just 3hrs after sludge application. Each sample 

consisted of all the herbage growing in an individual mini-plot cut at a 

height of 2 cm above ground level using hand shears to minimise soil
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TABLE 5.1 MEAN (±S.D.) HEAVY METAL CONCENTRATION 
(mg/kg DRY SOLIDS) AND DRY SOLIDS CONTENT 
(%) OF SEWAGE SLUDGES ('NORMAL' AND 
'THICKENED') USED IN THE TEMPLE FIELD TRIAL.

NORMAL THICKENED

Cd 2 . 7(±0 .2 ) 3.7(±0.7)

Cr 69.3(±3.1) 72.0(±0.0)

Cu 341.0(±15.8) 346.5(±9.2)

Fe 18365.0(±441.0) 19270.0(±410.0)

Mn 951.3(±44.8) 899.0(±0.0)

Ni 39.5(±1.9) 40.8(±0.0)

Ti 2548.5(±326.0) 2849.5(±208.0)

Pb 258.5(±14.4) 312.5 (±6.4)

Zn 687.7(±40.8) 753.5(±47.4)

%D.S. 2 .1 (±0 .1 ) 12.4(±6.1)
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for the need to obtain sufficient herbage for heavy metal analysis.

Herbage samples were weighed, dried and analysed for their heavy metal 

content as described in Section 2.2. During the experiment, 

meteriological data (precipitation, wind speed and air and soil 

temperature) were recorded. This information was obtained from the 

meteriological station at the West of Scotland College, except for 

rainfall intensity which was obtained from Prestwick Airport around 2km 

from the site.

5.2.2 THE INFLUENCE OF 'RAINFALL' AND DRYING ON 'WASH-OFF 
OF ADHERING SLUDGE.

Perennial ryegrass (L. perenne) was grown in 20cm diameter pots 

containing medium grade perlite in a growth room (25°C). To prevent any 

perlite from contaminating the herbage, the grass was sown and grown on 

nylon netting lying over each pot. Pots stood in gravel trays filled 

with a low-N (CF 20) nutrient solution (see Appendix B).

A 0.354g/pot seeding rate, equivalent to 112,5kg/ha , was used.

However, this resulted in a very thin sward. To promote tillering and, 

hence, a thicker sward, the grass was cut on three occasions prior to 

sludge application.

Sludge from the Carbarns Sewage Works (Table 5.2) was applied on the 

14th March 1988, at which time the grass had attained a height of around 

12cm. Apart from the four replicate control pots which received no
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TABLE 5.2 MEAN (±S.D.) HEAVY METAL CONCENTRATION
(mg/kg D.M.) AND DRY SOLIDS CONTENT (%) OF
SEWAGE SLUDGE USED IN THE POT TRIAL.

Cd 2.9(±0.1)

Cr 120.3(±12.0)

Cu 472.0(±8.3)

Fe 26350.0(±420.0)

Mn 1016.0(±13.5)

Ni 47.2(+1.8)

Pb 748.8(±67.8)

Zn 776.3(±10.4)

%D.S. 2.8(±0.1)
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sludge, sewage sludge was applied to all the other pots using a 

measuring cylinder fitted with a spoon (to act as a splash-plate), at a 

rate of 200ml/pot (equivalent to 63.7m^/ha). Following sludge 

application four replicate pots, chosen at random from a pool of 44, 

were subjected to different simulated rainfalls as follows;

i) Control - no sludge. 2 .0 mm 'rain';

ii) Sludged, 0 .0 mm 'rain'

iii) Sludged, 0.7mm 'rain'

iv) Sludged, 1.3mm 'rain'

v) Sludged, 2 .0 mm 'rain

vi) Sludged, 2 .7mm 'rain

vii) Sludged, 3,3mm 'rain

viii) Sludged, 2 .1 mm 'rain applied as 3

ix) Sludged, 2.0mm 'rain' applied after a 24h drying period.

Thirty minutes after sludge was applied, during which time the pots were 

kept in an atmosphere of 1 0 0 % humidity, each pot received simulated 

'rain'. The only exception to this was the 'dried sludge' treatment 

(i.e. Treatment ix) for which pots were kept for 24hrs in an atmosphere 

of 51% humidity prior to 'rain' application.

'Rain' was provided via a pail fitted with a plastic hose at its base 

(Plate 5.1). To ensure constant 'rainfall' intensity, the water 

level within the pail was maintained at a fixed level by means of a 

series of outlet holes drilled at a given height along its side and a 

constant rate of water supply to the pail. This set-up was suspended 

at a height of about 70cm. The pots were introduced at a fixed spot

252



PLATE 5.1 P H O T O G R A P H  S H O W I N G  'RAIN' A P P L I C A T O R  FOR 
POT E X P E R I M E N T  IN V E S T I G A T I N G  TH E  INFLUENCE  
OF 'RAINFALL' ON 'WASH-OFF' OF A D H E R I N G  
S L U D G E  METALS.

253



underneath the rainfall simulator and kept there for an appropriate 

period of time, during which they were rotated to ensure a uniform 

distribution of 'rain' over all of the pot area. A very high rainfall 

intensity of 6 .3mm/min was used.

The entire herbage on each pot to the nylon netting surface was cut 

within lOmins of the 'rain' event. The fresh and dry weight yields, as 

well as the total Cd, Cr, Cu, F e , Mn, Ni, Pb and Zn concentrations of 

these samples were determined as described in Section 2.2.
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5.3 RESULTS.

5.3.1 FACTORS INFLUENCING SLUDGE METALS ADHERING TO LEAF 
SURFACES IN A FIELD SITUATION.

The concentration of total Cd, Cr, Cu, Fe , Mn, Ni, Pb and Zn (i.e. the 

sum of metal within the plant and metal from any contaminating source 

adhering to leaf surfaces) is reported in Table 5.3. The full sets of 

data are given in Appendix M. The high Fe concentrations present in

the control treatments, i.e. 884 and 3398mg/kg for the uncut (Tl) and 

cut (T2) respectively, on day 0 (i.e. the day of sludge application)

indicate a high degree of contamination, probably from soil. The Fe 

content of plant tissue varies according to species but is usually 

within the range 50-250rag/kg, (Davies and Jones, 1988), much lower than 

the concentrations measured for the controls . In practice, the extent 

of any suspected soil contamination can be ascertained by titanium (Ti) 

determination of plant material. Titanium is prevalent in soil but is 

not taken up by plants and > 2mg Ti/kg dry matter in plant material 

indicates significant soil contamination (Scott et al, 1971). However, 

analysis of the sludge showed in excess of 7000mg Ti/kg dry matter (see 

Table 5.1), which ruled out the use of Ti as an indicator of soil 

contamination. The 'cut' control probably exhibited a greater degree 

of soil contamination compared to the ' u n c u t d u e  to its more open 

canopy, resulting in greater 'soil splash' during periods of rainfall. 

Moreover, cutting could have contributed to soil contamination by 

disturbing the surface soil through the effects of traffic.

During the experiment, metal uptake by the treated grass sward could
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TABLE 5.3 TOTAL METAL CONCENTRATION (ma(DAYS) FOR TREATMENTS 1-6 (TEMPLE IS AN AVERAGE FOR 3 REPLICATES.
DRY-MATTER) OVER TIME FIELD). EACH READING

DAY Cd Cr Cu Fe Mn Ni Pb Zn

UNCUT CONTROL (Tl)
0 0.471 4.68 8.20 884 125.3 1.76 4.88 32.007 0.446 3.74 9.21 601 143.7 2.22 4.93 34.6714 0.429 5.20 9.47 1167 157.7 2.08 6.29 34.3321 0.375 3.74 8.58 651 141.0 1.70 5.04 32.3328 0.327 2.86 7.94 526 151.7 1.42 4.71 30.6735 0.258 1.79 6.02 291 120.3 1.38 2.30 23.0042 0.246 1.39 5.57 211 112.7 1.25 2.07 21.6749 0.296 0.87 5.81 116 77.1 1.16 1.61 23.6756 0.204 0.42 4.42 62 88.3 1.13 1.14 18.33

CUT CONTROL (T2)
0 0.706 15.81 10.30 3398 170.7 3.13 9.51 40.677 0.500 10.71 11.15 2140 156.0 2.47 7.99 37.0014 • 0.521 11.13 12.04 2485 181.3 2.80 10.37 40.6721 0.317 6.19 9.68 1216 126.0 1.98 5.29 34.3328 0.275 3.48 9.10 646 120.7 1.23 3.97 29.6735 0.263 2.63 6.97 507 92.9 1.09 2.65 23.0042 0.252 2.07 4.92 286 100.5 0.92 2.01 17.3349 0.275 1.21 5.77 189 97.9 0.99 3.38 23.0056 0.146 0.41 3.78 79 85.6 0.73 1.02 15.67

UNCUT, FULL RATE, 2% D.S. SLUDGE (T3)
0 0.842 35.08 35.17 8151 239.7 7.55 35.27 90.677 0.806 15.99 40.00 3175 224.0 3.96 30.78 94.3314 0.717 15.27 38.13 3303 252.3 4.14 29.81 92.3321 0.479 10.78 27.43 2116 191.0 3.05 23.07 73.3328 0.506 9.85 26.63 1921 184.0 3.57 18.24 67.0035 0.452 7.72 20.03 1412 164.0 2.33 13.28 54.3342 0.348 4.23 12.27 700 115.3 1.46 8.17 34.0049 0.308 1.22 7.12 181 79.9 1.25 3.16 30.3356 0.252 0.58 5.12 87 80.8 1.12 1.48 19.00

CUT, FULL RATE, 2% D .S . SLUDGE (T4)
0 0.813 35.84 35.03 8646 263.3 7.90 34.95 93.337 0,706 21.61 32.60 4507 241.7 4.74 24.62 83.6714 0.621 17.29 31.17 4094 237.0 4.67 24.78 80.3321 0.477 10.18 21.83 1970 150.7 2.81 15.22 59.6728 0.319 4.92 13.40 934 124.7 1.97 5.50 46.0035 0.290 3.31 9.36 561 88.5 1.31 3.67 30.6742 0.306 1.95 7.89 278 97.1 1.15 3.17 26.3349 0.315 1.34 6.01 192 79.4 1.17 2.59 22.0056 0.250 0.53 4.73 82 69.7 0.94 1.07 17.33

UNCUT, HALF RATE, 2% D.S. SLUDGE (T5)
0 0.702 23.00 26.10 5203 218.3 5.05 24.88 74.007 0.546 10.95 26.47 2085 223,7 3.43 20.15 67.3314 0.519 8.01 18.99 1726 170.0 2.67 15.61 55.6721 0.438 8.05 18.27 1243 168.7 2.65 14.14 48.6728 0.379 5.48 15.98 986 170.3 1.92 10.15 46.0035 0.333 3.38 9.87 498 133.7 2.99 5.21 32.0042 0.327 2.44 7.94 325 125.0 1.37 4.59 25.6749 0.273 1.43 6.09 190 106.2 1.48 2.82 22.0056 0.244 0.83 5.14 97 98.9 1.25 1.76 20.00

UNCUT, FULL RATE, 12% D.S. SLUDGE (T6)
0 1.896 62.82 131.67 14720 517.0 16.95 143.46 305.337 2.196 63.37 177.33 13845 575.0 17.90 173.63 389.0014 1.967 49.86 161.00 12704 559.3 15,96 164.25 359.6721 1.704 45.52 131.67 9994 480.7 14.13 142.44 306.3328 1.488 41.44 126.30 10031 443.0 11.22 117.31 279.6735 1.248 35.27 100.60 7536 384.0 9.09 92.42 223.3342 0.533 10.54 29.84 1894 205.3 3.10 24.28 76.0049 0.319 2.14 8.75 352 90.9 1.29 5.60 28.3356 0.350 5.19 17.12 1095 126.6 1.88 13.97 45.00

S.E. 0.058 1.96 4.10 504 17.9 0.52 3.51 8.25

256



have been enhanced, but such a response would have been small given the 

cold weather conditions in March/April, poor growth— rates and the 

relatively short duration of the experiment. To provide control

herbage which had received comparable rates and types of metal sources 

as those provided to the treated plots would have been unrealistic. 

Moreover, within the 8 -week experimental period the metal concentrations 

of the sludged herbage reverted to values no different from those 

present in the controls. In other words, although metal availability 

for uptake may have increased in the sludged plots, this was irrelevant 

to the overall metal load of the herbage.

To minimize the effect of increased nutrient availability following 

sludge application, all plots including the controls received a base 

dressing of fertilizer NPK at the start of the experiment (see Section 

5.2.1.1.) thus ensuring an adequate supply of nutrients for all plots. 

In the abscence of a uniform dressing of fertilizer N-P-K to all plots 

growth of the sludge-treated sward might have been favoured over that of 

the controls. On the other hand, sludge adhering to the leaf surfaces 

of the treated herbage (i.e. T 3 , T 4 , T5 and T 6 ) could, theoretically, 

have led to reduced light assimilation by the chloroplasts and 

consequently^ the overall effect of sludge spreading on plant growth. 

However, there was no evidence that either metal availability, N-P-K 

availability or smothering led to differences in dry - matter yield 

between the control and treated plots.

A measure of the contribution of adhering sludge to the total metal 

concentration of the herbage was obtained by:
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[Adhering metal] = [Total metal] - [Total control metal]

where

[Adhering metal] ~ The concentration of sludge metal adhering to

herbage (i.e. 'net' concentration)

[Total metal] = The total metal concentration recorded in

herbage

[Total control metal] = The total concentration of metal present in the

control herbage.

The mean adhering metal concentration for each of the 4 treatments on 

each of the 9 sampling days is reported in Table 5.4. The time taken 

for 'adhering metals' derived from sludge to reach concentrations which 

were not significantly different from zero was dependent upon the rate 

and type of sludge applied and the grass canopy, in the order : 2% D.S. 

sludge, uncut, half rate (T5) < 2% D.S. sludge, cut, full rate (T4) < 2% 

D.S. sludge, uncut, full rate (T3) < 12% D.S. sludge, uncut, full rate 

(T6 ) . Depending on the metal, between 1-4 weeks were necessary to 

attain these background concentrations in the 2% D.S. sludge, uncut, 

half-rate treatment (T5); 2-4 weeks for the 2% D.S. sludge, cut, full

rate treatment (T4) and 3-7 weeks for the 2% D.S. sludge, uncut, full 

rate treatment (T3) (Table 5.5). In contrast, all the 'adhering

metals' in the 12% D.S. sludge, uncut, full-rate treatment (T6 ) required 

a full 7 weeks to reach concentrations which were not significantly 

different from zero.

The changes in adhering metal concentration with time are illustrated in 

Figures 5.1 - 5.8. Over the first 14 days following 12% D.S. sludge
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TABLE 5.4 ADHERING METAL CONCENTRATION (mg/kg DRY MATTER) OVER 
TIME (DAYS) IN TREATMENTS 3 , 4 , 5  AND 6  (TEMPLE 
FIELD). EACH READING IS AN AVERAGE FOR 3 REPLICATES.

DAY Cd Cr Cu Ffl Mn Ni Pb Zn

UNCUT. FULL RATE, 2% O.S. SLUDGE (T3)

0 0.371 30.40 26.97 7267 114.30 5.80 30.40 58.67
7 0.360 12.25 30.79 2574 80.33 1.74 25.85 59.67

14 0.288 10.07 28.66 2136 94.67 2. 06 23.52 58.00
21 0. 104 7. 04 18.86 1465 50.00 1.36 18.03 41.00
28 0. 179 6.99 18.69 1395 32.33 2.15 13.53 36.33
35 0. 194 5.94 14.01 1120 43.67 0.94 10.98 31.33
42 0. 102 0.56 6.70 488 2.63 0.21 6.10 12.33
49 0. 012 0.34 1 .31 65 2.83 0. 09 1.55 6.67
56 0. 048 0.16 0.70 26 -7.43 -0.02 0.34 0.67

CUT. FULL RATE, 2% D.S. SLUDGE (T4)

0 0. 107 20. 02 24.73 5248 92.67 4.77 25.44 52.67
7 0.206 10.90 21.45 2368 85.67 2.27 16.62 46.67

14 0. 100 6.17 19.13 1609 55.67 1 .87 14.41 39.67
21 0. 160 3.99 12.16 754 24.67 0.82 9.93 25.33
28 0. 044 1.43 4.30 288 4.00 0.73 1 .54 16.35
35 0. 027 0.68 2.39 55 -4.43 0.21 1 . 01 7.67
42 0.054 -0.12 2.97 -8 -3.37 0.23 1.16 9.00
49 0. 040 0.13 0.24 2 -18.47 0.18 -0.78 -1.00
56 0.104 0.12 0.95 4 -15.87 0.22 0.04 1 .67

UNCUT'. HALF RATE. 2% O.S. SLUDGE (T5)
0 0.231 18.32 17.900 4319 92.96 3.29 20.01 42.00
7 0. 100 7.21 17.257 1484 80.00 1.21 15.22 32.67

14 0. 090 2.81 9.514 558 12.33 0. 59 9.31 21 .33
21 0.063 4.31 9.690 592 27.67 0.95 9.1 0 16.33
28 0. 052 2.62 8.037 460 18.67 0.49 5.43 15.33
35 0. 075 1 . 59 3.847 207 13.34 1.61 2.91 9. 00
42 0.081 1 ,05 2.370 114 12.30 0.13 2.52 4. 00
49 -0.023 0.55 0.283 73 29.13 0.31 1 .20 -1 .67
56 0. 040 0.41 0.720 36 10.63 0.12 0.62 1 .67

UNCUT. FULL RATE. 12% D.S. SLUDGE (T6)

0 1 .895 58.14 123.47 13836 391 .6 15.19 138.58 273.3
7 1.750 59.64 168.12 13244 431 .3 15.68 168.70 354.3

14 1.538 44.67 151 .53 11537 401 .7 13.88 157.96 325.3
21 1.329 41 .77 123.09 9342 339.7 12.43 137.40 274.0
28 1 .161 38.58 118.36 9505 291 .3 9.79 112.60 249.0
35 0.990 33.48 94.58 7244 263.7 7.71 90.11 200.3
42 0.287 9.15 24.27 1683 92.6 1 .85 22.21 54.3
49 0.023 1 .27 2.94 236 13.8 0.13 3.99 4.7
56 0. 146 4.78 12.70 1033 38.3 0.75 12.83 26.7

S.E. 0. 058 1 .96 4.10 505 17.9 0.52 3.51 8.2
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TABLE 5.5 TIME (DAYS) REQUIRED FOR MEAN ADHERING 
SLUDGE METAL CONCENTRATION TO REACH VALUES 
NOT SIGNIFICANTLY (P < 0.03) DIFFERENT FROM 
ZERO (i.e. CONTROL CONCENTRATIONS).

TREATMENT

2% D.S. SLUDGE 12% D.S. SLUDGE
UNCUT, 

FULL RATE
CUT, 

FULL RATE
UNCUT, 

HALF RATE
UNCUT, 

FULL RATE

Cd 42 14 7 49

Cr 49 28 28 49

Cu 49 28 35 49

Fe 28 2 1 14 49

Mn 2 1 2 1 14 49

Ni 2 1 2 1 7 49

Pb 42 28 14 49

Zn 42 28 14 49
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application (T6 ) , there was little change in the concentration of 

adhering metals. Maximum values were observed either on day of

application or on day 7 which reflected heterogeneity and/or sampling 

error.

In all four treatments, the decrease in adhering metal concentrations 

could broadly be described as being linear with time (Table 5.6), the 

rates of which were significantly (P < 0.05) greater than zero for 

all metals^ with the exception of Cd in the 2% D.S. sludge, cut, full- 

rate treatment (T4). Adhering Cd concentration in this latter 

treatment reached a value not significantly different to background 

levels by day 14 (Table 5.5). The rates of dilution of Cd, Cr, Cu, Ni, 

Mn, Fe, Pb and Zn adhering to herbage in the 12% D.S. sludge, uncut, 

full rate treatment (T 6 ) were significantly greater than their 

respective rates in any of the other three treatments in the order 1 2 %

D.S. sludge, uncut, full rate (T6 ) > 2% D.S. sludge, uncut, full rate

(T3) > 2% D.S. sludge, cut, full rate (T4) > 2% D.S. sludge, uncut, half

rate (T5) (Table 5.6).

To enable comparisons to be made between the behaviour of adhering 

metals, concentrations were expressed as a percentage of adhering metal

concentration on day 0  (taken as 1 0 0 %), which is referred to in the text

as '% adhering metal'. Table 5.7 reports the mean % adhering metals and

is represented graphically in Figures 5.9 - 5.16.

When % adhering metal was related to time there was an inflection point 

at day 7 for all metals, in their rate of change (Figures 5.9 - 5.16). 

Between days 7-49 there was a linear decrease in % adhering metal, which
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TABLE 5.6 RELATIONSHIPS OBTAINED BY LINEAR REGRESSION BETWEEN 
ADHERING METAL CONCENTRATION (mg/kg D.M.) AND TIME 
(DAYS) (TEMPLE FIELD).

Cd Cr Cu Fe Mn Hi Pb Zn

UNCUT, FULL RATE, 2% D.S. SLUDGE (T3)

GRADIENT
S.E.

■0.006
0,001

-0.42
0.09

-0.58
0.06

95.55
24.51

-2.17
0.24

-0.08
0.02

-0.56
0.02

-1.17
0.10

INTERCEPT
S.E.

0.36 
0. OA

19.98
3.15

32.45
2.02

4513
817

107.58
8.13

3.75
0.66

30.14
0.61

66.65
3.27

0.80 0.70 0.92 0.64 0.91 0.64 0.99 0.95

0.06 5.13 3.29 1329 13.22 1 .07 0.99 5.32

CUT. FULL RATE, 2%, D.S. SLUDGE (T4)

GRADIENT
S.E.

-0.002
0.001

-0.30 
0. 07

-0.48 
0. 06

•76.21
19.07

-2.13
0.27

-0.07
0.02

-0.45
0.07

-1 . 01 
0.10

INTERCEPT
S.E.

0.1A 
0. 03

13.33
2.27

23.20
2.08

3280
636

84.09
9.17

3.15
0.53

20.32
2.36

50.40
3.26

r 2 0.22 0.70 0.88 0.65 0.88 0.68 0.83 0.93

0.05 3.69 3.39 1034 14.91 0.86 3.85 5.30

UNCUT, HALF RATE, 2% D.S.SLUDGE (T5)

GRADIENT
S.E.

-0.003 
0.001

-0.23 
0. 07

-0.33
0.03

-53.90
17.66

-1.18
0.42

-0.04
0.01

-0.33
0.04

-0.73
0.08

INTERCEPT
S.E.

0.15 
0. 03

10.84
2.29

17.05
1.14

2381
588

66.09
14.11

2. 01 
0.46

1 6. 66 
1.38

36. 05 
2.63

r 2 0.53 0.57 0. 92 0.51 0.46 0.44 0.89 0.91

0. 05 3.73 1 .86 957 22.96 0.76 2.24 4.28

UNCUT, FULL RATE, 12% D.S..SLUDGE (T6)

GRADIENT
S.E.

-0.036
0.003

-1.11
0.12

-2.91
0.54

-267
28

-8.00
1.06

-0.32
0.03

-3.13
0.49

-6.31
1.10

INTERCEPT
S.E.

2.01
0.11

63.58
4.07

172.00 
17.88

14987
933

476.00
35.29

17.48 
1 . 08

181.00
16.24

372.50
36.64

r 2 0.9A 0.91 0.78 0.92 0.88 0.92 0.84 0.80

:y 0.18 6.62 29. 08 1517 57.42 1 .75 26.42 59.62
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TABLE 5.7 ADHERING SLUDGE METAL (%) (TEMPLE FIELD). 
EACH READING IS AN AVERAGE OF 3 REPLICATES.

DAY Cd Cr Cu Fe Mn Ni Pb Zn

UNCUT, FULL RATE, 2% D.S. SLUDGE (T3)
0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 ,. 0 1 0 0 ,. 0 1 0 0 ,. 0 1 0 0 ,. 07 109.4 42.3 116.6 36.9 67,.3 31,.4 87,. 0 104,. 114 8 8 . 8 35.4 108.8 30.8 82,.4 39,. 1 78,,3 1 0 2  ,.4

2 1 33.7 24.2 72.4 2 1 . 0 41,.4 24,.7 61,.4 74 ,.328 46.4 24.3 6 8 . 6 2 0 . 2 25,.7 40,. 6 43,.7 61,, 235 60.3 2 1 . 1 52.6 16.4 37,. 0 16,. 6 37,, 0 55 ,, 042 31.4 9.9 24.6 7.2 2 ,.5 3.. 6 19,,9 2 1  ,,449 2 . 8 1 . 2 4.6 1 . 0 1 ,.7 0 ,.5 5,. 0 13 ,, 156 14.7 0.5 2 . 6 0.4 -9,. 1 -1 ,. 8 1 ,. 0 1 ,. 8

CUT, FULL RATE, 2% D,.S. SLUDGE (T4)
0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 ,. 0 1 0 0 ,. 0 1 0 0 ,. 0 1 0 0 ,. 07 255.6 61.6 86.3 52.5 92 .5 49,. 8 6 6 ,. 0 89,. 014 94.9 35.5 77.4 36.8 60,.4 45 .5 57,. 6 75,.4

2 1 152.6 19.5 50.5 14.2 26,.7 15 . 6 38,.5 50 .428 23.0 5.4 17.8 3.3 4,. 2 16,. 0 5,. 8 32 . 035 24.2 2 . 8 1 0 . 0 -1 . 1 -4.. 6 4.. 2 3,.9 16 . 242 58.8 0 . 2 1 1 . 8 0.3 - 2 . 6 6 . 2 4,. 8 17 .949 36.4 -1.3 1 . 1 -1.5 -2 0 ,. 2 3 . 0 -3,. 1 - 0 .956 75.8 1 . 1 3.9 0 . 1 -16 .9 5 . 0 0 . 2 4 . 1

UNCUT, HALF RATE, 2% D.S. SLUDGE (T5)
0 1 0 0 .. 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 ,. 0 1 0 0 ,. 0 1 0 0 ,. 0 1 0 0 ,. 07 49,. 2 43 . 8 94.9 39.0 82,. 8 35,. 0 79., 0 77.,314 44.. 1 2 0 . 6 50.4 18.9 13,. 2 19,.4 53,,3 50,. 1

2 1 31,.7 25 .9 52.7 17.3 16..5 27,. 0 46.. 6 39,, 028 29,.4 16 .7 43.6 13.3 19,. 6 17,.3 28,.7 36.,435 40,.3 1 1 . 2 21.3 6 .6 24.. 8 42,,7 15,.9 23,.042 39,.7 7 . 2 12.4 3.6 13,. 6 5,.4 1 2 6 1 0 ,, 949 -8 ,.7 3 .9 1 .1 2.3 2 2 ,.7 6 ,.9 6 ,. 6 - 2 ., 556 2 1 ,. 2 2 .7 4.0 1.4 7,. 6 1 ,, 8 3,. 6 4,.5

UNCUT FULL RATE , :12% D.S. SLUDGE (T6 )
0 1 0 0 ,. 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 ,. 0 1 0 0 ,. 0 1 0 0 ,. 0 1 0 0 ,. 07 125 .5 1 0 2 . 6 139.7 96.1 1 1 0 ,. 2 103,.5 1 2 1 ,.9 131,.914 1 1 1 ,. 8 77 . 0 128.0 83.8 1 0 2 ,. 8 92,. 2 114,.5 1 2 1 ,. 8

2 1 94,.7 71 . 8 1 0 2 . 1 67.5 87,. 1 81,.7 99,.9 1 0 1 .. 828 81..4 6 6 .3 96.3 68,4 73,. 6 64,.3 81,. 2 91,.335 70..7 57 . 8 79.2 52.6 67,.4 51,. 0 65,.4 74,.942 2 2 ,. 1 16 . 2 23.0 12.4 24,.7 1 2 ,.9 17,. 2 2 2 ,. 649 1 ,. 2 2 ,. 1 1 . 8 1.7 2 ,. 8 0 ,. 6 2 ,. 6 1 .. 256 9,. 1 8 . 1 9.7 7.4 8 .9 4,. 6 9,. 0 9 .3

S.E. 31,.7 5 . 1 9.9 4.7 1 2 .4 1 0 . 1 8 .9 9 . 6

POOLED S.E. FOR COMPARISON BETWEEN METALS= 14.32
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on linear regression was shown to be significantly (P < 0.05) greater 

than zero (Table 5.8). However, slopes were not significantly

different from zero for % adhering Mn and Ni in the 2% D.S. sludge, 

uncut, half-rate treatment (T5) and for % adhering Cd in the 2% D.S. 

sludge, cut, full rate treatment (T4).

Where 12% D.S. sludge was applied (T6 ) , the % adhering metals on day 7 

were generally greater than that recorded on day 0. In the case of % 

adhering Cd, a peak on day 7 of 256% was observed in the 2% D.S. sludge, 

cut, full-rate treatment (T4), and probably reflects the fact that Cd 

concentrations were very close to the detection limit of the atomic 

absorption (see Table 2.1). In the treatments which received 2% D.S. 

sludge (i.e. T 3 , T4 and T5), the % adhering Cr, Fe and Ni showed a very 

marked decrease over the initial 7 day period compared to the other 

metals. Moreover, after day 7 the % adhering Fe, Cr and Ni exhibited a 

significantly (P < 0.05) smaller rate of change than any of the other 

metals (Table 5.8). This distinct behaviour of Cr, Fe and Ni was not 

evident^however in the 12% D.S. sludge, uncut, full-rate treatment (T6 ) , 

where the dilution rate of all eight metals was similar but at the same 

time significantly (P < 0.05) greater than their respective rates in any 

of the other three sludge treatments (T3, T4 and T5).

Although linear regression gives an overall picture of the dilution 

behaviour of adhering metals, in certain cases it does not provide an 

accurate description of change. For example, the change in % adhering 

metals in the 12% D.S. sludge, uncut, full rate treatment (T6 ) was
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TABLE 5,8 RELATIONSHIPS OBTAINED BY LINEAR REGRESSION BETWEEN 
% ADHERING METAL AND TIME (DAYS),(TEMPLE FIELD).

Cd Cr Cu Fe Mn Ni Pb Zn

UNCUT. FULL RATE, 2% D.S. SLUDGE (T3)

GRADIENT
S.E.

-1.85 
0.42

-0.86
0.09

-2.45
0.18

-0.73
0.05

-1.71
0.28

-0.78
0.18

-1 .83 
0. 08

-2.20
0.15

INTERCEPT
S.E.

106.60
14.90

44.90
3.30

132.70
6.20

39. 10 
1 .80

87. 50 
9-80

43.10
6.20

98.70
2.70

121.90
5.30

0.72 0.92 0.97 0.97 0.84 0.73 0.99 0.97

S 19.14 4.24 7.96 2.32 12.58 8.01 3.50 6.80

CUT, FULL RATE, 2% D.S. SLUDGE (T4)

GRADIENT
S.E.

-3.11 
1 .40

-1 .01 
0.22

-1 .84 
0.32

-0.88
0.19

-1 .75 
0.44

-0.90
0.18

-1.37
0.29

-1.84
0.23

INTERCEPT
S.E.

188.30 
49. 50

46.30
7.70

90.10
11.30

39.70 
6. 80

78.20
15.40

45.30
6.50

63.30
10.40

92.80
8.20

0.36 0.75 0.82 0.74 0.69 0.77 0.75 0.90

63.59 9.86 14.46 8.73 19.75 8.30 13.30 10.54

UNCUT. HALF RATE. 2% D.S. SLUDGE (T5)

GRADIENT
S.E.

-0.72
0.32

-0.65
0.14

-1 .79 
0.24

-0.56
0.13

-0.90
0.51

-0.54
0.32

-1.40
0.19

-1 .49 
0.17

INTERCEPT
S.E.

55.70
11.30

34.40
4.80

92.40
8.50

27.90
4.50

54. 00 
18.00

37.50
11.30

73.1 0 
6.60

76.70
6.10

r 2 0.37 0.76 0.89 0.72 0.23 0.21 0.89 0.91

14.51 6.19 10.93 5.81 23.14 14.51 8.44 0.77

UNCUT, FULL RATE., 12% D.S . SLUDGE (T6)

GRADIENT
S.E.

-2.71
0.27

-2.09
0.25

-2-96
0.33

-2.06
0.24

-2.37
0.25

-2.32
0.21

-2.74
0.28

-2.86
0.31

INTERCEPT
S.E.

150.00
9.50

116.50 
8.90

163.80
11.70

113.30
8.60

134.40
8.80

124.20
7.60

149.80
10.10

158.30
11.10

r 2 0.94 0.91 0.92 0.91 0.93 0. 94 0.93 0.92

Sv 12.93 11 .46 15.03 11.03 11.30 9.73 12.91 14.22
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gradual over days 7-35 but^ thereafter showed a sharp decrease. In 

addition, the dilution pattern for the adhering metals in the 2% D.S. 

sludge, cut, full-rate treatment (T4) , led to them reaching 0% (see 

Table 5.7) within 35 days. For example in the case of Mn, over the 

initial 28 days the true dilution rate was relatively high ( 4.5% day ^) 

compared to the computed value of 1.75% day  ̂ by linear regression 

during days 7 - 5 6 .

Over the experimental period, the dry-matter yield of each treatment was 

recorded each week (Table 5.9). The pattern of dry-matter yield of the 

no-sludge controls, over the 8 -week period, can be broadly divided into 

two groups^in which the yields obtained over weeks 4-8 was greater than 

those obtained over weeks 1-4, although this difference was not 

significant. This could, in part, be explained by the small size (0.5m 

x 0.5m) of the mini-plots i.e. the smaller the plot the greater the dry- 

matter coefficient of variation for treatment replicates. Randomizing 

the nine mini-plots per replicate treatment within the whole replicate 

block could have produced a more precise estimate of yield, but such an 

approach would have been impractical.

The yield of L. perenne Cv. Ferma, growing over the same period of time, 

in an adjacent site to Temple Field, was kindly provided by the Botany 

Department of the West of Scotland College (Figure 5.17). There was a 

large increase in dry-yield production between 14/04/87 and 28/04/87 

which corresponded to weeks 3-5 of the experiment. This lends evidence 

to the characterization of yield data into a latent growth period, i.e. 

weeks 1-4, and an active growth period, i.e. weeks 4-8, as previously 

suggested. As shown in Figure 5.17 over the first 3 weeks there was
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TABLE 5.9 DRY MATTER (g) PRODUCTION (±S.D.) OF GRASS (TEMPLE FIELD) 
EACH READING IS AN AVERAGE OF 3 REPLICATES.

WEEK
4

UNCUT CONTROL (T1 )

32.73 24.53 30.40 24.83 40.77 37.93 41.30 33.93 41.40
(±11.09) (+5.95) (±8.70) (±3.87) (±16.38) (±0.65) (±2.43) (±4.68) (±3.15)

CUT CONTROL (T2)

22.83 14.97 27.77 50.67 25.57 35.37 40.50 34.37 40.96
(± 6.77) (± 2.15) (± 0.67) (±39.33) (± 4.01) (± 2.40) (± 1.71) (± 2.53) (± 1.93)

UNCUT. FULL RATE, 2% O.S. SLUDGE (T3)

50.20 32.47 41.83 31.27 43.83 35.77 39.10 31.60 36.30
(±24.71) (± 6.33) (± 5.85) (±11.66) (± 1.89) (± 2.80) (± 1.35) (± 2.71) (± 1.47)

CUT, FULL RATE, 2% O.S. SLUDGE (T4)

27.47 12.33 16.03 34.30 17.83 31.83 36.37 32.17 38.73
(±4.11) (±2.29) (±5.64) (±12.98) (±2.48) (±1.78) (±2.77) (±2.74) (±5.10)

UNCUT, HALF RATE, 2% D.S. SLUDGE (T5)

33.03 25.97 35.07 46.50 40.97 34.30 41.23 36.90 39.23
(±21.88) (±6.85) (±13.49) (±22.40) (±16,09) (±4.97) (±3.56) (±3.10) (±3.46)

UNCUT, FULL RATE, 12% D.S. SLUDGE (T6)

71.47 56.40 68.00 30.03 68.03 48.93 36.70 32.50 42.43
(±12.96) (±18.54) (±13.45) (±16.00) (±10.44) (±1.42) (±5.41) (+1.40) (±1.58)
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FIGURE 5.17 THE SEASONAL DISTRIBUTION OF DRY-MATTER PRODUCTION 
BY SWARDS OF L. perenne Cv. PERMA AT AUCHINCRUIVE 
IN 1987

900. ,

700._

3
>-

500..

300..

100..

17/03 31 /0 3 14 /04 28/04

DATE OF HARVESTING
12/05 26/05
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little or no growth. This was followed by a sharp increase in dry 

yield production over the next 2  weeks, which was maintained, all be it 

to a lesser degree , over the remaining 3 weeks of the experimental 

period.

The meterological data collected during the experimental period is 

reported in Appendix N. Figure 5.18 is a graphical representation of 

the rainfall over this time. There was high precipitation during the 

first 7 days of the experiment. In fact, the total rainfall over this 

time was approximately equal to the total rainfall over the remaining 7 

weeks. The driest period occurred between days 28-35 with only 0.3mm 

rain.

An 'Adherence Index’, i.e. the sludge metal adhering to the herbage on 

day of application expressed as a percentage of the total sludge metal 

applied, was determined for each sludged treatment (Table 5.10), where:

Adherence Index = weight of metal adhering
......   X 100
weight of metal applied

Where 2% D.S. sludge was applied (i.e. T 3 , T4 and T5) , Cr and Fe 

exhibited a significantly (P < 0.05) greater Adherence Index than did 

any of the other six metals. Moreover, application of 2% D.S. sludge 

at full rate to a cut sward resulted in a significant (P < 0.05)

reduction in all the Adherence Indices compared to those recorded,where 

2% D.S. sludge was spread on to an uncut canopy (T3 and T5) . This 

distinctive behaviour of Cr and Fe was not observed where 12% D.S. 

sludge had been applied (T6 ). In this instance, all eight metals
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TABLE 5.10 ADHERENCE INDICES FOR SLUDGE METALS ON THE DAY OF 
APPLICATION (TEMPLE FIELD). EACH READING IS AN 
AVERAGE OF 3 REPLICATES.

UNCUT, 
FULL RATE

TREATMENT

2% D.S. SLUDGE
CUT, 

FULL RATE
UNCUT, 

HALF RATE

12% D.S. SLUDGE 
UNCUT,

FULL RATE
S.E

Cd

Cr

Cu

Fe

Mn

Ni

Pb

Zn

21.67

66.97

11.43

59.87

17.70

23.23

17.57

12.10

3.07

23.83

5.63

23.67

7.60

9.80

7.73

5.83

19.63 

54.97

12.63

47.37 

21.13 

18.70 

17.47

14.37

13.07 

27.70 

11.93

24.73

14.73

12.73

15.07 

12.17

4.82

16.22

2.65

14.51

5.45

6.19

4.11

3.12

Pooled S.E. for comparison between means = 8.50
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exhibited a similar Adherence Index which was not significantly 

different to that of Cd, Cu, Mn, Ni, Pb and Zn in Treatments 3 and 5 

(i.e. 2% D.S. sludge, uncut, full-rate and 2% D.S. sludge, uncut, half

rate respectively). Application of 12% D.S. sludge resulted in a 

significantly (P < 0.05) lower Adherence Index of both Cr and Fe than 

that obtained where 2% D.S. sludge was applied to an uncut sward.

5.3.2. THE INFLUENCE OF RAINFALL AND DRYING ON 'WASH-OFF' OF 
ADHERING SLUDGE.

Table 5.11 reports the total heavy metal concentrations of herbage (the 

full set of data are shown in Appendix 0). It is very evident that 

drying prior to rainfall resulted in no reduction in the concentration 

of metals adhering to herbage. In contrast, where rain was applied to 

wet adhering sludge, a near total wash-off of Zn, Ni, Cu, Cr and Cd was 

achieved when only 0.7mm rain was given. Iron and Pb required 1.3mm 

rain for total wash-off, whereas Mn required 2.0mm rain. A split 3 x 

0.7mm rain event resulted in a significantly (P < 0.05) lower wash-off 

of Zn, Ni and Cu compared to a single 2.0mm application.

An Adherence Index was also computed for the sludged control (i.e. 0mm 

rainfall) (Table 5.12), following the procedure described in Section 

5.3.1. A very low Adherence Index (0.2 - 3.9%) was recorded for all 

eight metals in the order Fe < Cr < Pb < Cd < Ni < Cu < Zn < Mn.
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TABLE 5.11 TOTAL METAL CONCENTRATION (mg/kg DRY MATTER) IN HERBAGE 
FROM POT TRIAL. EACH READING IS AN AVERAGE OF 4 
REPLICATES.

RAINFALL
TREATMENT

/mm
Cd Cr Cu Fe Mn Ni Pb Zn

0 . 0 0.83 9.10 85.27 3861.6 520.9 4.41 47.62 206.1

0.7 0.59 3.77 44.97 1441.6 466.6 1.39 12.47 138.4

1.3 0.42 3.09 36.37 802.9 491.4 0.49 7.06 145.2

2 . 0 0.48 4.07 27.59 474.5 347.4 0.55 6.04 94.6

NO SLUDGE 
(CONTROL) 0.65 2.43 30.80 393.5 294.9 0 . 6 6 4.24 88.4

DRIED
SLUDGE 1 . 1 2 11.58 104.42 4828.4 534.2 5.33 56.34 239.9

2.7 0.41 2.41 38.23 1101.7 436.2 0.53 5.12 136.8

3.3 0.41 3.53 36.47 918.5 387.9 0.75 4.80 1 2 1 . 2

3x0.7 , 0 . 8 6 4.61 54.79 854.7 433.0 3.21 6.40 152.6

S.E. 0.08 0 . 6 6 4.58 182.0 43.0 0.28 1.65 13.2
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TABLE 5.12 ADHERENCE INDEX RECORDED FOR SLUDGE METALS 
IN THE CONTROL (NO RAIN) TREATMENT 
(POT TRIAL). EACH READING IS AN AVERAGE 
OF 3 REPLICATES.

Cd 1.34^2

Cr 0  9 yab

Cu Z.Ol^d

Fe 0.23%

Mn 3.94^

Ni 1.38^2

Pb l.Ol^b

Zn 2 .6 6 ^

Pooled S.E. = 0.25

F O O T N O T E  = Different superscripts denote significant 
difference at 95% confidence interval.
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5.4 DISCUSSION.

The surface spreading of sludges and slurries to grass swards results 

in the retention of solids by either adherence to leaf surfaces, or 

settlement on to the soil surface and, as such, the metals they contain 

may become directly available to animals which consume the contaminated 

forage and soil. For example, Price and Suttle (1975) state that the 

main risk in applying Cu- rich slurries to pastures lies in the 

ingestion of Cu as a foliar contaminant by grazing sheep.

A black colouration of herbage was noted immediately after the 

application of sludge to the plots of perennial ryegrass and this hue 

was darkest where sludge with 12% D.S. content was spread. 

Examination of the grass revealed a thin film of sludge adhering to the 

forage. This black colour, which is generally ascribed to FeS in 

anaerobic sludges, remained apparent for two days. Thereafter, even

though the herbage reverted to its normal green colour, close inspection 

showed sludge-solids still adhering to the leaf surfaces.

The application of sludge containing 2% D.S. at 67.5m^/ha (T3) (i.e.

1150kg D.S./ha) which is slightly above the recommended maximum 

permissible rate of 55ra^/ha (SAC, 1986) led to as much as 61% of the 

applied sludge — dry solids remaining on the herbage four hours after 

application. In terms of herbage dry-matter yield, sludge contributed 

35% of the total harvested weight on the day of sludge application. 

The proportion of sludge - dry solids contributing to the total dry 

matter yield of herbage was markedly reduced by applying the sludge to a 

mowed sward (T4) or reducing the rate of sludge application to 25m /ha
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(T5) . When sludge is sprayed on to a mowed field, it adheres to less 

grass than when an intact, uncut canopy is sprayed. In fact, on day of 

application the cut control (T2) yielded, on average, 30% less dry 

matter than the uncut control (Tl). Similarly, the application of 

2% D.S. sludge at 67.5m^/ha to a ryegrass sward which had been either 

cut prior to sludge application (T4) or left uncut (T3)^ resulted in 

herbage containing 17% compared to 35% sludge-dry solids^ respectively. 

Reducing the rate of application led to sludge-dry solids accounting for 

27% of the total herbage dry-matter yield. Thus, by either applying 

sludge to a mowed sward or reducing the application rate, a decrease 

in the proportion of sludge solids contained in the total herbage dry- 

matter yield can be obtained and can thus minimize the risk of adherinng 

sludge entering the food chain. Chaney and Lloyd (1979) arrived at 

similar conclusions regarding the effects of application rate from their 

work involving the spreading of anaerobic digested sludge (5.9% D.S.) to 

a tall fescue (Festuca dinacea Schreb.) sward, where reducing the 

application rate from 103m /ha to 51m /ha led to a corresponding 

decrease of sludge solids in herbage from 32% to 24%. However, they 

observed no significant decrease in adhering sludge solids following the 

mowing of the grass sward prior to sludge application.

Whereas only 13% of the total sludge-dry solids applied adhered to the 

leaf surfaces where the 2% D.S. sludge was spread on the cut sward (T4), 

a total recovery (99.8%) of sludge solids was recorded, where 2% D.S. 

sludge was applied to an uncut sward at a rate of 25m /ha (T5). In the 

case of both the uncut treatments to which 2% D.S. sludge was applied 

(i.e. T3 and T5), the grass canopies were similar and thus afforded the
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same leaf area for sludge adherence. Although the results from Temple 

Field are neither exhaustive nor conclusive they indicate what could be 

termed a 'threshold' effect of sludge solids adhering to the leaves 

(Figure 5.19). As the rate of sludge application increases up to a 

threshold value, at which point the herbage is saturated with sludge-dry 

solids, all the sludge solids are retained on the leaves. The 99.8% 

recovery for the half-'rate treatment (T5), equivalent to 499kg dry 

solids/ha, implies that at this rate of application the sludge solids 

had not reached saturation point. However, applying 2% D.S. sludge to 

an uncut canopy at 67.5m^/ha (T3) resulted in a recovery of only 61% of 

the sludge-dry solids applied, equivalent to 700kg dry solids/ha. 

Consequently, assuming this threshold hypothesis to hold, 100% 

saturation of the leaves (i.e. the threshold) would be attained when 

35m /ha of 2% D.S. sludge were to be applied to this canopy. The cut 

grass with its reduced leaf area and, hence, its reduced threshold^ would 

thus explain the observed lower recovery of sludge solids recorded for 

the cut treatment (T4).

The application of sludge containing 12% D.S. reduced the threshold 

application rate at which runoff from leaf surf^ga took place. 

Application of 12% D.S. sludge to an uncut sward at a rate of 67.5m /ha 

(T6 ) , i.e. 8370kg D.S./ha, resulted in 18.5% of the total dry solids 

applied remaining on leaf surfaces four hours after application, which 

was equivalent to 1548kg/ha. Hence, whereas the threshold application 

rate for 2% D.S. sludge was 35m^/ha, 100% saturation of the leaf

surfaces by sludge solids would result from the application of only 

12:5m /ha of 12% D.S. sludge. However, owing to its much greater dry-

solid content than the 2% D.S. sludge, this low-solids recovery
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FIGURE 5.19 'THRESHOLD' ADHERENCE OF APPLIED 
SEWAGE SLUDGE SOLIDS

SLUDGE APPLIED
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translated to as much as 54% of the total herbage dry — matter yield on 

the day of application being attributable to sludge solids.

The adherence of sludge metals to the grass sward led to elevated metal 

concentrations in/on the treated herbage. This increase in metal

concentrations in the treated herbage over that found in the control 

plant material could not, in the first instance (i.e. on the day of 

application), be attributable to root uptake. The extent by which 

herbage metal load is increased following the spreading of sludge was 

seen to be influenced by:

i) the rate of sludge application, 

ii) the dry solid content of the sludge applied, 

iii) the height and/or leaf area of the receiving 

canopy, and

iv) the concentration of metal in the sludge.

The percentage recovery of applied sludge metals on the herbage, i.e. 

their Adherence Index, was lower and unrelated to those factors 

influencing adhered sludge-dry solids. The Adherence Index of Cd, Cu, 

Mn, Ni, Pb and Zn where sludge was applied to an uncut canopy, 

irrespective of sludge dry solid content (i.e. T 3 , T5 and T 6 ) was 

similar and ranged between 11-23%. In contrast, Cr and Fe exhibited an 

Adherence Index much greater than that of the other metals. This 

greater adherence of Cr and Fe was only true in the case where 2% D.S. 

sludge was spread (T3, T4 and T5). When 2% D.S. sludge was applied to 

a cut sward (T4)^ the Adherence Index of all eight metals was lower than 

that recorded in the uncut treatments (T3 and T5) , probably reflecting

295



the reduced leaf area available for sludge adherence. In contrast, 

when the thicker 12% D.S. sludge was applied to an unmowed sward 

the Adherence Index for Cr and Fe was no different to that of 

Cu, Cd, Mn, Ni, Pb and Zn.

Metal spéciation in the sludge and^ hence^ its chemical and physical 

behaviour, may be of importance in helping to explain the observed 

Adherence Indices. However, information in this field of work is very 

limited. As described in Section 1.1.3, metals are associated 

predominantly with the solid fraction of the sludge and are generally 

present as inorganic precipitates, although there is now mounting 

evidence to suggest that organic matter adsorption of metals and metal- 

organic interactions or absorption by the biomass are important removal 

mechanisms (Lester et al., 1983). The fact that the percentage

recovery of metals was lower than that for the solids implies that the 

sludge metals were bound to a fraction of the sludge solids which were 

preferentially lost from the leaf on sludge application. Sludge solids 

may be divided into two fractions, depending on size, i.e.:

i) particulate fraction consisting of larger size solids and

ii) colloidal fraction consisting of smaller size solids.

Following sludge application and considering only physical forces, the 

smaller colloidal fraction of the sludge solids would be lost more 

easily from the leaf surface than the particulate fraction which, being 

larger and heavier, would require a greater force to be dislodged and 

removed from the leaf surface. Hence, were the sludge metals to be 

primarily associated with the colloidal fraction of the sludge solids or
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on the smaller sized particles of the particulate fraction, this could 

account for the lower percentage recovery exhibited by the metals as 

opposed to the sludge-dry solids. In fact, on a weight to weight 

basis, the smaller the particle the greater its ability to adsorb 

metals, since the surface area to weight ratio increases as particles 

size decreases.

Sludge metals need not necessarily be associated with a single fraction 

of the sludge solids. A higher Adherence Index would indicate

association with larger sized particles. It is possible that Cr and 

Fe, in the 2% D.S. sludge, were held by particles which were larger than 

those retaining Cd, Cu, Mn, Ni, Pb and Zn. The 2% D.S. sludge was 

collected directly from the digestion tanks, whereas the 12% D.S. 

sludge was sampled from storage lagoons in which the digested sludge 

had been stored for several months, during which time it underwent 

further oxidation. This might have resulted in the breakdown of that 

sludge-solid component to which Cr and Fe was held. This breakdown 

could thus have resulted in Cr and Fe being associated with a solid 

fraction of comparable physical size/properties as that to which the 

other metals were held leading to similar adhering properties.

The failure of these marked differences in the Adherence Index of Cr and 

Fe on the one hand and Cd, Cu, Mn, Ni, Pb and Zn on the other to show 

up in the pot trial could have arisen from the fact that this trial was 

carried out at 100% humidity. Such a high humidity precludes the 

drying out of the applied sludge which, therefore, remained in a very 

fluid state, favouring the enhanced wash-off of sludge solids and their 

associated metals. In fact, the Adherence Indices exhibited by all the
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metals were very low (0.2 - 3.9%), indicating a general lack of metal 

retention by the leaf surfaces.

Sludge adhering to the forage crops carries all of its constituents,

such as heavy metals, pathogens and organic compounds. Adhering sludge

metals, having by-passed the soil-plant barrier (Logan and Chaney, 1983)

which normally limits plant uptake of many metals to concentrations

substantially below those which would be toxic to animals (Dean and

Suess, 1985), could adversely affect grazing animals. Studies have

been conducted to investigate the effects of sludge metal residues added

to diets of cattle (Kienholz et al., 1977) or sheep (Smith et al.,

1977). Depending on the metal contents of sludges and its percentage

of an animal's diet, increases in the metal content of animal tissue

have been found. At Temple Field, application of anaerobically

digested sludge to a ryegrass sward led to a situation where on the day

of application (when the metal concentrations were at their highest) and

for a number of weeks thereafter, herbage metal concentrations, with the

exception of Cr, Mn and Ni, were above those values known to give rise

to toxic problems in grazing animals. In the case of Cr, Mn and Ni,

not even the most contaminated herbage (that receiving 12% D.S. sludge 
3at 67.5m /ha (T6 )), provided concentrations which were above 50mg 

Cr/kg D.M. (Davis, 1980), lOOOmg Mn/kg D.M. (Webber et al., 1983) and 

50mg Ni/kg D.M. (MacNicol and Beckett, 1985), known to be toxic to 

sheep and cattle.

Zinc is considered to be relatively non-toxic. Diets supplying ten 

times the recommended dietary allowances (i.e. 400mg Zn/kg D.M.) are
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not considered to cause any health problems to animals (MAFF, 1984).

Excess Zn, like Ni, is rapidly excreted in faeces (MAFF, 1984) thus 

maintaining body levels within safe limits. Adopting the value of 

400mg Zn/kg D.M. for all ruminants would, therefore^ place Zn in the same 

group as Cr, Mn and Ni as being unlikely to cause animal health problems 

to ruminants grazing the most heavily contaminated sward in the Temple 

Field study. However, if a lower tolerance of 300mg Zn/kg D.M. is 

assumed for sheep (Webber et al., 1983), then herbage concentrations of 

Zn remained above this safe dietary load for 3 weeks following the 

application of 12% D.S. sludge at 67.5m /ha to an uncut sward (T6 ) .

The toxicity of an element is influenced by various factors including 

the quantity of the element the animal ingests, the balance of other 

elements in its diet and its general state of health (Davis and Carlton- 

Smith, 1980). It is particularly difficult to assign threshold figures 

for Cd and Pb which are cumulative poisons (Bowen, 1966). It is

arguable that any increase in Pb and Cd concentrations above 

background levels is unacceptable for plant components of the human and 

animal diet, although in the latter case, due to the relatively short 

life of farm animals, the concentrations of Pb and Cd in the plant 

component of the diet may be less critical (Davis and Coker, 1980).

Lead poisoning is characterised by stiffness of gait, fractures, 

osteoporosis and hydronephrosis (CAB, 1980). Lead poisoning

associated with pastures whose Pb content ranged between 160-760mg/kg 

D.M. has been described in Derbyshire, the northern Pennines and the 

Scottish Borders (Clegg and Rylands, 1966; Stewart and Allcroft, 1956; 

Butler et al., 1957; all cited by CAB, 1980). Increases in the levels
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of Pb in the bones and livers of grazing animals following direct 

ingestion of sludge have also been reported (Dean and Suess, 1985). The 

definition of a threshold zootoxic Pb concentration is subject to much 

discussion and has ranged from 60 lOOmg Pb/kg D.M. (CAB, 1980), to 30mg 

Pb/kg D.M. (Webber et al., 1983) and 15mg Pb/kg D.M, (Davis, 1980).

When 12% D.S. sludge was applied at a rate of 7.5m /ha to an uncut 

ryegrass sward (T6 ) the herbage was highly contaminated with Pb. In 

fact, over the initial 35 days, Pb concentrations were well in excess of 

the most liberal maximum dietary tolerable concentration of 60- 

lOOmg Pb/kg D.M. suggested by CAB (1980). Thereafter, over the next 

seven days, the Pb concentrations fell markedly and attained 

concentrations of less than 30mg/kg D.M., dropping to values below 

15mg/kg D.M, by week 7. In none of the three treatments which received 

2% D,S. sludge (i.e. T3 , T4 and T5) was the Pb contamination problem 

anything as pronounced as that resulting from the spreading of 1 2 % 

D.S. sludge. It was only over the first seven days of the trial that 

total Pb herbage concentrations remained in excess of 30mg/kg D.M., where 

2% D.S. sludge was applied at 7,5m^/ha to both a cut and uncut sward. 

Concentrations then decreased to below 15mg Pb/kg D.M, by day 21 for the 

cut swards and by day 35 for the uncut sward. Reducing the rate of 

application to 25m /ha (T5) resulted in total Pb concentrations not 

exceeding 30mg/kg D.M. and which required only 14 days to decrease to 

concentrations lower than 15mg/kg D.M,, the most conservative estimate 

of maximum tolerable Pb dietary concentration proposed by Davis (1980).

The acute toxicity of Cd came to the forefront of world attention when
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Cd was linked to the notorious Itai-Itai disease which was first 

reported in Toyama, Japan^ shortly after World War II. A number of

toxic effects due to Cd have since been encountered and acute toxicity 

conditions can be created in a variety of laboratory animals fed on 

diets containing Cd in the range 60 400mg/kg D.M. (Purves, 1985). For 

instance, 10 40mg Cd/kg in drinking water supplied to pregnant mice 

has led to various degrees of fetal growth retardation (Webster, 1978).

Davis and Coker (1980) report that for farm animals to suffer toxic 

effects the Cd concentration in their diet needs to be substantially in 

excess of 3mg Cd/kg. Cattle fed on diets containing 7.3mg Cd/kg D.M. 

exhibited no ill-effects on body weight, milk yield or health 

(Rosenberger et al., 1976; and Nelmes et al., 1974). On the other

hand, lambs are particularly sensitive to Cd and Davis and Coker (1980) 

recommended that their maximum tolerable dietary intake should not 

exceed 1.0-1.5mg Cd/kg, A more conservative threshold limit of 0.5mg 

Cd/kg D.M. has been suggested by Webber et al. (1983) who do not 

distinguish any differences in susceptibility to Cd between cattle and 

sheep.

Application of sludge containing 2% D.S. at either 67,5ra^/ha or 

25m /ha to both a mowed or unmowed sward did not result in a total 

herbage Cd concentration in excess of the l.Omg Cd/kg D.M. safety limit 

recommended by Davis and Coker (1980), However, were the more

conservative threshold value of 0.5mg Cd/kg D.M. to be adopted than the 

total herbage Cd concentration remained above this limit for 4 weeks 

where 2% D.S. sludge was applied to an uncut sward at a rate of 

67.5m /ha (T3) . This unsafe period was reduced to 14 days where 2%
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oD.S. sludge was applied to either a cut sward at 67.5m /ha (T4) or to an 

uncut sward at a rate of 25m /ha (T5) . In contrast, application of 

sludge with a dry solid content of 12% at a rate of 67.5m /ha to an 

uncut sward (T6 ) resulted in a total Cd herbage concentration in excess 

of 1. 5rag/kg D.M. for 3 weeks following the spreading of sludge. In 

this instance, it was only after day 42 that the Cd concentration 

dropped to concentrations below 0.5mg/kg D.M.

Interest in Fe requirements of ruminants centers primarily on the needs 

of young animals maintained on milk or milk substitutes, particularly 

housed lambs and young calves. Adequate dietary Fe is essential for 

the synthesis of haemoglobin and myoglobin and for incorporation into 

various enzymes. When Fe is deficient, haemoglobin production is first 

affected and an important consequence of developing anaemia is a 

reduction in appetite^contributing to a state of poor growth. However, 

excessive dietary intakes of Fe can lead to metabolic upsets within the 

animal. Diets supplying > 500mg Fe/kg have been reported to result in 

high blood haemoglobin concentrations and decreased food intake and 

weight gain by cattle (Standish et al., 1969, 1971; Koong et al., 1970; 

both cited by CAB, 1980). Higher rates of Fe dietary intake (> 

lOOOrag/kg) lead to increased Fe contents of the liver, spleen, kidney 

and heart whereas P and Cu liver and plasma contents decrease (Standish 

et al., 1969, 1971; cited by CAB, 1980). Therefore, a maximum dietary 

intake of 500mg Fe/kg D.M. is generally recommended (CAB, 1980; MAFF,

1984).

Total Fe concentrations of herbage were greatly increased by sewage 

sludge application and the consequent adherence of sludge solids.
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Grass swards, irrespective of whether cut or uncut, which had been

treated with 67.5m^/ha of 2% D.S. sludge (i.e. T3 and T4) contained >

8000mg Fe/kg D.M. on day of application. In fact^ Fe concentrations

persisted above the recommended maximum tolerable value of 500mg/kg D.M.

for 5 weeks following the application of sludge. Although a

reduction in the degree of Fe contamination of the herbage was achieved
3by decreasing the application rate to 25m /ha (T5) , total Fe

concentration nevertheless remained well in excess of 500mg/kg D.M. for

between 28-35 days after sludging. A much more serious Fe

contamination problem of the herbage was encountered when sludge 

containing 12% D.S. was applied at 67.5m^/ha to an uncut sward (T6) . 

Not only did the total herbage Fe concentration persist above the 

recommended maximum tolerable level of 500mg/kg D.M. over all eight 

weeks of the experiment, but moreover, for the first 28 days following 

sludge disposal, Fe concentrations of the herbage were above lOOOOmg/kg 

D.M. i.e above 1% of total dry-matter yield.

Of particular interest to ruminants is the Cu content of herbage. 

Sheep are more susceptible than cattle to Cu poisoning (Klessa et al., 

1985). Cattle, once weaned, are relatively resistant to Cu toxicity 

(Hill, 1975) although calves have been seen to develop Cu toxicosis 

when given milk substitutes containing 50-100mg Cu/kg (Shand and Lewis, 

1957; Weiss and Baur, 1968 both cited by Hill, 1975). The occurrence 

of chronic Cu toxicity is normally only a major problem in the intensive 

rearing of sheep and primarily in lambs being fattened. The

proportion of lambs affected is usually small (5-10%), but the financial 

loss can be substantial because death quickly follows the haemolytic
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crisis, and this occurs towards the end of an expensive fattening peiod 

(Hill, 1975). There is usually no clinical evidence of the impending 

danger in a group of lambs before the first death occurs, as although a 

gradual Cu accumulation in the liver can take place (Klessa et al., 

1985) , reflected in increases in the plasma concentration of a number of 

tissue enzymes, no obvious adverse effects on growth rates, food intake 

or disease incidence may be manifested. Thereafter, death quickly 

follows as blood Cu concentration increases with its associated 

implications to haemolysis followed by methaemoglobinaemia and 

haemoglobinuria (Klessa et al., 1985).

The concentration of Cu in the diet of sheep above which toxicity sets 

in^ is highly influenced by breed, age, stress and in particular 

composition of the diet (Klessa et al., 1985). Buck (1970; cited by 

CAB, 1980) reported Cu poisoning of sheep fed on diets containing only 

8 mg Cu/kg, However, this is apparently quite an extreme incident and 

20-25mg Cu/kg D.M. has been recommended as the maximum tolerable dietary 

concentration for sheep (Luke and Macquering, 1972, cited by Hill, 1975; 

Dalgarno and Mills, 1975; Bremner, 1981).

Sludge adhering to leaf surfaces following the spreading of 2% D.S. 

sludge at a rate of 67.5m /ha to an uncut ryegrass sward (T3) resulted 

in total herbage Cu concentrations in access of the suggested upper 

dietary limit for sheep (20mg/kg D.M.). This degree of contamination 

persisted for 4 weeks following the spreading of sludge. A reduction 

in the amount of herbage Cu contamination as a result of sludge 

adherence was achieved by applying the sludge to a cut sward, and more 

so by applying the sludge at a reduced rate of 25m /ha. In the former
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case, Cu concentrations remained above the maximum recommended for 3

weeks after sludge application, whereas in the latter instance this

unsafe period was reduced to only 2 weeks. Hemingway and McPherson

(1967, cited by CAB, 1980) estimated that a daily intake of 38mg Cu for

16-20 weeks would be necessary to increase liver concentrations to

lOOOmg Cu/kg D.M. and, thus, place the animal at risk. On average,

sheep have a daily dry-matter intake of 1.5 kg (McPherson, personal

communication). Therefore, a daily intake of 38mg Cu would require a

Cu concentration of 25mg/kg D.M. in the diet. Although Cu

concentrations were not maintained at these levels (> 25mg/kg D.M.) for

such prolonged periods (i.e. 16-20 weeks) total Cu concentrations of

herbage which had received the thickened sludge (i.e. 12% D.S.) at a 
3

rate of 67.5m /ha (T6 ) remained at levels > lOOmg/kg D.M. for 5 weeks, 

and only reached values < 20mg/kg D.M. by the seventh week. 

Consequently, over these initial 5 weeks, sheep grazing this treated 

herbage would have ingested in excess of SOOmg Cu, the intake of which 

is greater than the total Cu intake of sheep fed 38mg Cu per day for 

16-20 weeks.

Ingestion of sludge adhering to forage can supply the animal with not 

only potentially toxic elements, but also with a variety of other 

elements which may alter the toxicant's availability and, hence, its 

toxicity. Dietary composition is particularly important when assessing 

Cu toxicity. Copper metabolism is complicated by the antagonistic 

effects of Mo, S, Fe, Cu and Zn (Hill, 1975; Mills, 1975; 

COSAC/SARI, 1982), which reduce Cu retention by the animal. Molybdenum 

is thought to be of greatest importance and Lamand (1981) suggested that 

a ceiling of 20mg Cu/kg in the diet of sheep be maintained when Mo is
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above 0.2mg/kg and when the Mo content is low (< 0.2mg/kg), a lower 

limit of 15mg Cu/kg be applied. It has been suggested, that where liver 

damage is occuring as a result of Cu toxicity in sheep, their diet

should be supplemented with daily rations of Mo and S (Lamand, 1981).

However, Hill (1975), in view of the very complex relationship between

Cu, Mo and S, suggested that the use of Zn, a relatively non-toxic

element, may be more appropriate in safeguarding sheep and in

particular lambs against any possible Cu toxicity. A very substantial

control of the haemolytic crisis due to Cu poisoning in sheep-fed diets,

containing 20-25mg Cu/kg D.M., was achieved when the Zn concentration of

the diet was raised to 200mg/kg D.M. (Mills, 1975). However, a higher 

dietary Zn content (> 400mg/kg) may result in complicatory problems of 

reduced Fe availability (Mills, 1975). Copper accumulation in the

liver, as well as that of Zn, is also affected by the Cd content of

the diet, and it has been suggested that in order to prevent a marked 

depletion of tissue Cu reserves the dietary Cd : Cu ratio should not

exceed 0.7 (Mills, 1974). On the other hand, Powel et al. (1964)

reported that when the diet of calves contained > lOOmg Zn/kg, there was 

no adverse effects on health even when the diet contained 40mg Cd/kg. 

Many other interactions are known (Mills, 1974), but existing 

knowledge on the nature and extent of these interactions is far from 

complete.

A reduction in the total metal concentration of the herbage may be 

brought about by either, or a combination of, two ways:

i) plant growth, or

ii) adhering sludge metal particles being physically 

removed from the herbage by an external factor.
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The concentration of adhering metals is expressed as the weight of 

metal present per unit weight of dry plant material. Provided the total 

weight of adhering metal is constant, (i.e. there is no input or output 

of metal), with an increase in plant dry-matter yield, as a consequence 

of plant growth , the adhering metal concentration will decrease 

proportionately:

Adhering metal concentration a 1

plant dry matter yield

This relationship holds true^ irrespective of the element involved.

However, results obtained from the field trial revealed that the 

dilution rate of a particular metal (when expressed as the change in the 

initial herbage metal concentration, with time) differed between 

treatments. In addition, where 2% D.S. sludge had been applied (i.e. 

T 3 , T4 and T5), differences in the dilution rates of the eight metals 

within a single treatment were also observed. Similar dilution rates 

for all eight metals within a single treatment were, however, recorded 

in the herbage treated with the thicker 12% D.S. sludge (T6 ) . Taken in 

isolation, this latter treatment (i.e. T 6 ) may lead one to conclude

that plant growth is the predominant factor bringing about a dilution of 

adhering sludge metals. Such a conclusion was drawn by Chaney and 

Llyod (1979) from their work involving the application of 5% D.S. sludge 

to a fescue sward. However, plant growth per se cannot explain the 

differences observed in the treatments receiving 2% D.S. sludge, nor 

for that matter, the inter-treatment differences in the dilution rates 

of individual metals.

307



In addition plant growth fails to explain the observed decrease in 

adhering sludge metal concentration in all four sludge treatments over 

the initial 3 weeks of the experiment^ during which time no significant 

increase in herbage dry-matter yield was recorded. In contrast,

between day 35 and day 42, a marked reduction in adhering metal 

concentrations was observed in herbage treated with 12% D . S. sludge at 

67.5m^/ha (T6 ) , this reduction coincided with a large increase in dry 

matter production (Figure 5.17).

Hence^ the inability to explain dilution rates of adhering metals^ solely 

on the basis of plant growth^ indicates the presence of another 

factor(s) which influences adhering metal concentration and foremost 

amongst these is rainfall.

The power of rain to dislodge, suspend and/or dissolve adhering metals,

and^thereafter^ to remove these metals from the plants, depends on the

intensity and duration of the rain. An attempt was made to

statistically relate the characteristics of the rainfall events at 

Auchincruive (i.e. intensity, duration, etc.) to the observed dilution 

of sludge metals. Unfortunately, this proved to be futile due to the 

limited number of rainfall events. Nonetheless, general trends in the 

data may still be observed. Chaney and Lloyd (1979) stated that 

rainfall had little effect on the dilution of adhering metals except 

when it fell immediately after the application of sludge. The

importance of this statement is clearly illustrated by the results

obtained from the pot experiment. Permitting the applied sludge to 

dry out (the sludged herbage being kept at 50% humidity for 24 hrs)
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prior to 'rain', resulted in no adhering sludge metals being removed 

even with the unnaturally high intensity of the rain applied. In 

contrast, in the field trial, the first rain fell only a short time 

after the sludge had been applied. This allowed no time for the 

sludge to dry out and a marked reduction in adhering metal 

concentrations was observed over the first week, when precipitation 

totalled 5 5 mm - slightly less than the total precipitation recorded over 

the following seven weeks! This period of high rainfall was

particularly effective in bringing about a marked reduction in the 

concentration of Cr, Fe and Ni adhering to herbage treated with 2% D.S. 

sludge, where a decrease of around 55% was registered over the 

concentrations recorded on the day of sludge application. On the other 

hand, over this intial seven day period, the reduction in the 

concentration of C d , Cu, M n , Pb and Zn adhering to the herbage was not 

as pronounced, ranging between 0 - 30% of the concentration present on 

day of application. Moreover, where herbage had received 12% D.S. 

sludge (T6 )̂  there was no recorded reduction in metal concentration as 

a result of the week's high rainfall, not even in the case of Cr, Fe 

and Ni, once again suggesting that in the thickened 12% D.S. sludge Cr 

and Fe are present in forms similar to those of the other metals. The 

increased breakdown of solids in the thickened sludge may have also 

contributed to the higher overall dilution rates observed for the metals 

derived from the 12% D.S. sludge (T6 ) .

The distinctive behaviour of Cr and Fe originating from 2% D.S. sludge, 

vis-a-vis their Adherence Indices (and, together with Ni, their dilution 

over the first 7 days of the experiment) , was further illustrated by
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their dilution rate over the rest of the experimental period (i.e. day 7 

56), which was lower than that of the other metals. A proper 

explanation for these observed differences in the dilution pattern of 

the metals requires an in-depth knowledge and understanding of the 

chemical and physical forms of these metals in the sludge and their 

interactions with the leaf surface following sludge application. There 

is a lack of such information and one can only hypothesise as to the 

reasons behind their distinctive behaviours, but the possible uneven 

distribution of metals between the solid size fractions (as 

postulated earlier) could explain the differences in dilution rates.

For a particle to be dislodged and, thereafter, removed from the 

herbage, rain drops need have enough initial momentum to overcome the 

inertia of the sludge particles and, subsequently, sufficient energy to 

completely remove the dislodged particle from the leaf surface. The

larger the particle, the greater its weight and thus its inertia, hence

the greater the energy required by the raindrop. The important 

influence of rain intensity and, consequently, its energy, is very 

evident from the results of the pot trial, in which a total 

precipitation of only 0.7mm, but at a high intensity, was sufficient to 

achieve a near total wash-off of the adhering Zn, Ni, Cu, Cr and Cd.

Adhering Fe, Pb and Mn were somewhat more resistant and required 1.3

2.0mm of 'rain' for total wash-off at this high intensity. Over the 

first week of the field trial, total rainfall was well in excess of 

2 .0 mm, although its intensity was much less than that used in the pot 

work. However, the rainfall profile with time was shown to be very 

important and had a marked effect on the degree of metal wash-off.
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Whereas 2.0mm rain applied as a one-off event led to the total wash-off 

of all eight metals in the pot experiment, where 2 .1 mm was applied over 

three separate doses (0.7 x 3), a significant reduction in the wash-off 

of Zn, Ni and Cu was noted. Sufficient rain intensity is required to 

dislodge the adhering metals, but equally important is the duration of 

the rainfall event which determines the extent of removal of the 

dislodged particles. Incomplete removal results in reduced dilution. 

Therefore, the temporal distribution of rain in the field trial was 

important in determining the pattern of adhering metal wash-off over the 

first week. It might have been the case that most of the recorded 

reduction in adhering metal concentrations, particularly for Cr, Fe and 

Ni, occurred over the first 24 hours when total precipitation was 15.5mm 

(Figure 5.18). During the second day of the trial only 1.8mm rain was 

recorded, possibly permitting a limited drying-out of the sludge, 

resulting in increased sludge resistance to wash-off.

The fate of sewage sludge-borne metals applied to a ryegrass sward can 

be viewed as being a 3-stage process:

Stage 1 - their initial adherence to the leaf surfaces

following sludge application (the Adherence Index)

Stage 2 - the dilution of the adhering metals over the

first week following the application of sludge

Stage 3 - the dilution of those metals still adhering to the

leaf surfaces after Stage 2.

In stage 1, the initial adherence of applied sludge metals (the

Adhérence Inde x ) , d i f f e r e d  c o n s i d e r a b l y  b e tw e en  the  two s l u d g e s  a p p l i e d .
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Where 12% D.S. sludge was applied C d , Cr, Cu, F e , M n , Ni, Pb and Zn all 

exhibited similar Adherence Indices. In contrast, application of 2% 

D.S. sludge led to Cr and Fe exhibiting Adherence Indices much greater 

than those of the other six metals. To explain this latter situation,

it was proposed that a large proportion of sludge Cr and Fe was bound to

the particulate fraction of sludge solids^ whereas Cd, Cu, Mn, Ni, Pb

and Zn were preferentially held on the smaller colloidal fraction of

sludge solids (vide page 297). The smaller (lighter) the particle^ the 

easier its removal from the leaf surfaces by the liquid phase of the 

applied sludge whereby it is carried in suspension, and,consequently,the 

lower the Adherence Index of the associated metals. Following this 

initial stage, it is hypothesised that the metals which were left 

adhering to the leaf surfaces were those associated with the larger 

particulate fraction of sludge solids, the lighter colloidal fraction 

having been removed in stage 1. Over the next week (stage 2), in the 

treatments which had received 2% D.S. sludge, the greater dilution of 

adhering Cr, Fe and Ni over that shown by Cd, Cu, Mn, Pb and Zn could 

have arisen were Cr, Fe and Ni bound to adhering particulate solids of 

a smaller size than the particulate solids with which adhering C d , Cu, 

Mn, Pb and Zn were associated. Dilution of adhering metals during this 

period has been attributed principally to the action of rain (vide page 

309). The smaller (lighter) the adhering solid particle, the greater 

the facility with which it is dislodged and removed from the leaf 

surface by the action of rain, hence, the greater the dilution rate of 

the metal(s) associated to this fraction. At the end of stage 2 , 

what metal is left on the leaf^ was bound to the larger, more 

recalcitrant, fraction of the adhering sludge particulate solids.
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Consequently, over stage 3 the dilution of metal required a greater 

energy input on the part of rain for it to be dislodged and removed. 

Interestingly, during this third stage adhering Cr, Fe and Ni from the 

herbage which had received 2% D.S. sludge exhibited slower dilution 

rates than did the other metals. At this point in time, other factors 

may have come into play in determining the behaviour of adhering metals.

Chemical and/or electrostatic bonds between the negatively charged leaf 

surface and the sludge metals may have been involved. The smaller the 

size of the adhering solids^ the greater its charge per unit area and 

consequently, the stronger the bonds established between this fraction 

and the leaf surface. Direct uptake of adhering metals into the 

leaf tissue is also possible thus decreasing their availability for

wash-off. In fact, whereaq^^^te)r^et al. (1972) and Gracey et al. (1976) 

reported that swine manure adhering to leaf surfaces was easily removed 

by gentle washing with water, Chaney and Lloyd (1979) were unable to 

remove any adhering sludge metal by washing the contaminated herbage 

with a detergent, suggesting some sort of strong binding of the sludge 

metals by the leaf surfaces.

From this work, it appears that the behaviour of adhering metals

following the application of sewage sludge to a grass sward can be

predicted by monitoring one or two 'typical' metals. Where 12% D.S. 

sludge was applied, all eight metals (Cd, Cr, Cu, F e , Mn, Ni, Pb and Zn) 

exhibited similar initial adherence and subsequent dilution.

Consequently, any one of these metals could have been used to predict 

the response of the other metals. However, where 2% D.S. sludge was 

applied, the distinct response of Cr Fe and Ni on the one hand and C d ,
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applied, the distinct response of Cr Fe and Ni on the one hand and Cd, 

Cu, Mn, Pb and Zn on the other, means that two metals (one from each 

group) need be monitored to gauge and predict on the short term the 

degree of leaf contamination by these metals.

Plant growth and rainfall can together help explain much, but not all, 

of the observed responses of adhering sludge metals. Dilution of

adhering metal still occurred during periods of no-growth or little 

rainfall. Other factors, such as wind, could play some part in 

removing sludge metals from plant surfaces. Weather conditions, such 

as rainfall, ambient air/soil temperature, hours of sunshine, humidity 

etc. will influence plant growth and, thus, affect the rate of dilution 

of adhering metals. Any observation and conclusions derived from a 

particular experiment can only be confidently applied to plants of a 

similar species, i.e. with similar leaf morphology, and to sludge of 

similar composition.

Contamination of leaf surfaces associated with surface spreading of 

anaerobically digested sludge to grasslands can be minimized by:

i) applying sludge to recently mown fields,

ii) applying sludge at reduced rates, and

iii) reducing the sludge-dry solid content.

Cutting the grass prior to sludge application may be unacceptable to the

farmers as it results in a sward which is too short for grazing cattle, 

cattle preferring a longer sward. In practice, in March when sludge is 

applied to the best effect (SAC, 1986) a grazed grass sward in the West 

of Scotland is relatively very short and generally 2 - 3cm tall (Tiley,
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personal communication). Reducing the application rate of sludge by 

tanker essentially requires an increased tractor speed, but the 

sludging equipment's operating rate is relatively inflexible, and is, 

therefore,not a favoured option.

Economic considerations have led sewage plant operators to favour the 

thickening of sludge prior to its disposal to land. The reduction in 

the water content of thickened sludge makes its transport and spreading 

on land cheaper. However, the application of thickened sludge (i.e. 

higher dry—solid content) results in increased metal contamination of 

the herbage^ thus making the latter increasingly unacceptable for animal 

consumption. Limiting the sludge metal load to levels found to be safe 

in practice, by controlling metal discharges at source, may prove to be 

an alternative way of reducing food chain contamination associated with 

sludge disposal to land. Injection of sludge directly into soil, a 

recent innovation to the sludge disposal industry, does away with any 

possible leaf contamination by adhering sludge. However, the use of 

such a method for disposal is comparatively expensive and not widely 

used.

Further work in the field of sludge metal adherence to leaf surface is 

essential to understand and predict this important source of herbage and 

f o o d - c h a i n  contamination. Monitoring adhering sludge metal

concentrations will always remain an integral part of any management of 

sludge disposal.
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CHAPTER 6

GENERAL DISCUSSION

Each year a total of just under 7Mt sewage sludge dry solids are

produced by the 16 major European countries (Charnock, 1984). This is 

expected to rise to 11. 5Mt dry solids per year as the proportion of 

the population served by sewage treatment increases (Charnock, 1984). 

Based on 1977 estimates, 1.3 x 10^ tonnes sludge dry solids are produced 

annually in Britain (DoE, 1981). The safe disposal of these vast 

quantities of sludge is a matter of great concern.

In the past, sea dumping of sludge was a favoured option but it is now 

frowned upon by many nations. Most European countries and the

U.S.A., which in the past had practised disposal to sea in 

relatively small quantities, are now phasing this out, primarily as a 

result of international conventions which control dumping at sea. 

Britain is widely out of step with the rest of the world in its

adherence to the practice of dumping sludge at sea. Thirty per cent of

the sludge produced in Britain is taken out in ships and disposed at 13

designated dumping grounds (Pearce, 1982). In 1974, Britain signed

the Oslo convention which allows sea dumping only when no other

realistic option exists. The U.K is isolated amongst the EEC countries 

in using the sea for sludge disposal and consequently the environmental 

acceptability of this outlet is viewed with increasing scepticisim by 

its European partners. Britain is now under intense pressure to end 

its unique reliance on sea dumping.
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Some form of disposal to land is now the only real alternative for

large-scale dumping of sludge. The use of soil as a disposal medium

for sewage sludge has been increasingly emphasized in recent years. By 

far the most economical way of getting rid of sewage sludge is to put 

it to agricultural land. Within Europe, just under 40% of the sludge 

produced goes on farmland (Charnock, 1984). In Britain, based on 

1980/81 data, about 39% of all sewage sludge produced is utilized on 

agricultural land, of which 14% goes on grassland (Davis, 1984).

The EEC Directive (EEC, 1986) issued by the European Parliament is the 

first international legislation controlling the agricultural use of 

sewage sludge (see Section 1.5.3). By not later than June 1989, each 

of the twelve member states, including Britain, are required to "bring 

into force the laws, regulations and administrative provisions necessary 

to comply with this Directive" (EEC, 1986). The Directive is well- 

intentioned, and springs from a climate of increasing public concern 

about the need to protect the environment (Otter, 1986). However, 

international legislation is the result of scientific, technical and 

political compromise and this inevitably means that it is often 

criticized. The stated aim of the EEC Directive is "to prevent harmful

effects on soil, vegetation, animals and man, while encouraing its

(sewage sludge) correct use" (EEC, 1986). It lays down maximum 

permissible limits for heavy metal concentrations in sludge treated 

soils and loadings, the limits of which cannot be exceeded as a result 

of sludge disposal practices.
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The results from Lower Carbarns presented in this thesis are interpreted 

in the light of the EEC Directive. Even though

i) soil Cu, Pb and Zn concentrations (see Table 3.4) were greater

than the lower limits set out in the EEC guidelines (Table 1.7), 

and

ii) the soil at Carbarns had a pH of 5.3, (i.e. lower than the

EEC stipulated minimum of 6.0 for soil receiving sludge for which 

the above mentioned heavy metal limits apply),

herbage Cu, Ni, Pb and Zn concentrations (see Table 3.5) remained well

below those considered to be either phytotoxic or zootoxic (Table 6.1).

Therefore, the limits on soil Cu, Pb and Zn concentrations as set out in 

the 1986 EEC Directive seem to offer adequate protection to the food 

chain. Grassland management practices can have a significant effect on 

herbage metal concentrations (see Chapter 3), whereby soil cultivation 

and application of fertilzer N leads to increased metal uptake, but lime 

application has the opposite effect. However, even herbage from

cultivated, unlimed and high-N plots, Cu, Ni, Pb and Zn (Table 3.5)

contained concentrations within safe limits.

The Cd concentration in the Carbarns soil (1.21 mg/kg air dry soil) was 

well within the permissible limits for Cd concentrations in sludged

soils as defined in the EEC Directive, i.e. 1-3 mg Cd/kg air dry soil.

However, the concentration of Cd in the herbage (see Table 3.5)

approached and occasionally exceeded those values thought to be 

zootoxic (see Table 6.1), particularly in herbage from the unlimed, N 

fertilized plots. The potentially hazardous Cd concentrations which 

were recorded in the herbage, may partly be ascribed to the low soil pH

318



TABLE 6.1 ZOOTOXIC (WEBBER et al, 1986) AND PHYTOTOXIC 
(MACNICOL AND BECKETT, 1985) CONCENTRATIONS 
(rag/kg D.M.) OF Cd, Cr, Cu, Ni, Pb AND Zn IN 
HERBAGE.

ELEMENT CATTLE SHEEP RYEGRASS

Cd 0.5 0.5 30 - 35

Cr 3000 3000 1

Cu 1 0 0 25 30 - 40

Ni 50 50 1 2 0  - 150

Pb 30 30

Zn 500 300 370 - 560
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which, as previously stated, was below that recommended by the EEC, 

Cd availability being strongly influenced by soil pH (see Section 

1.2.2). In fact^ the Directive does include a proviso that "where 

sludge is used on soils of which pH is below 6 , Member States shall take 

into account the increased mobility and availability to the crop of 

heavy metals and shall, if necessary, reduce the limit values they 

have laid down ....". Whereas this provides some safeguard against 

the increased availability of metals such as Cd in soils presently at 

pH <6.0 it assumes the limit imposed to be satisfactory for soils 

presently at pH >6.0. There iŝ  however, no guarantee that sludged 

fields which are currently maintained at pH >6.0 will in future remain 

at this pH were land use priority to change. Consequently, whereas 

the EEC Directive offers adequate protection against excessive Cu, Pb 

and Zn uptake even in the eventuality of soil pH decreasing to values 

<6.0, this is not the case for Cd. There thus appears to be a case

for more stringent limits to be imposed, vis-a-vis permissible Cd 

concentrations in sludged soils.

The EEC Directive failed to fix any limits on the permissible Cr

concentrations in sludged soils. Toxic effects due to Cr in sewage 

sludge have not been observed in plants or in animals comsuming crops 

grown on sludged land (DoE, 1981). Chromium is usually quite tightly 

fixed in soils (Kloke et al., 1984) and^in addition very little of the 

Cr absorbed by plants is translocated to the above-ground (edible) parts 

(Baldi et al., 1984). Consequently, high soil concentrations >500mg 

Cr/kg air-dry soil are required to result in any phytotoxic effects 

(Chumbley, 1971). Moreover, although Cr (VI) is much more toxic to
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toxic to plants than Cr (III) it will be reduced to Cr (III) after 

addition to aerobic soils (Davies and Jones, 1988).

Herbage sampled from Lower Carbarns, where the soil Cr concentration 

totalled 109 mg/kg air-dry soil, contained between 0.55 - 2.19 mg

Cr/kg D.M. (see Table 3.5). Generally, background Cr concentrations 

in plants are reported to range between 0.1 - 1 mg/kg D.M.

(Richardson, 1980; Jell et al., 1983); lower than those recorded at 

Lower Carbarns. Determining what may be considered to be an acceptable 

soil Cr concentration depends on establishing a phytotoxic threshold 

concentration for Cr, it being much more toxic to plants than animals 

(Jell et al., 1983). Accepting what may be considered to be quite a 

liberal estimate of the Cr phytotoxic threshold, i.e. 20 mg Cr/kg D.M. 

proposed by Jell et al. (1983), and judging the situation observed at 

Lower Carbarns, suggests that soil Cr concentration of 109 mg/kg air-dry 

soil, even at pH 5.3, poses no risk to the health and productivity of 

a grass sward. Thus, the 150-250mg/kg tolerable soil Cr concentration 

limit recommended by Williams (1988), in his report to the Commission of 

the European Communities, offers a satisfactory safeguard against 

possible Cr phytotoxicity arising from sludge application on land. If, 

on the other hand, a much more conservative estimate of 1 mg Cr/kg D.M. 

is accepted as being the Cr phytotoxic threshold (Beckett and Macnicol,

1985), then at Lower Carbarns, Cr reached levels which may have led to 

reductions in herbage yield. However, the fact that the soil

chemistry of Cr is poorly understood and that phytotoxic effects may 

also occur when Cr concentrations are within normal levels, complicates 

the definition of what constitutes an acceptable Cr concentration in 

soil.
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Total soil metal concentrations alone is tackled in the EEC Directive 

and no mention is made of extractable metal levels. Several authors 

have argued the case for using a particular extractant to predict metal 

availability (see Section 2,1). In the U.K., the DoE guidelines 

(DoE, 1981), which remain in force in England and Wales up to the time 

when the U.K. formally adopts the EEC Directive, include the use of 

acetic acid and EDTA for estimating plant available Cu, Ni and Zn. 

The results from the Carbarns work clearly indicate that whereas acetic 

acid- and EDTA- extractable metal concentrations may reflect herbage 

metal concentrations, they are insensitive to soil management practices 

such as cultivation, liming and fertilizer N application which, in 

contrast, have a very significant affect on plant metal uptake. The 

use of weaker extractants, such as ammonium chloride, or water

extracts may well be found to respond to changes in metal availability 

following changes in soil management practices. However, ultimately, 

it is only by monitoring the total concentrations that future land use 

may be secured. Moreover, determination of total metal levels is 

less susceptible to local soil and laboratory conditions and thus 

offers a more uniform and internationally acceptable measure of soil 

metal status.

To achieve the condition set out in Article 5 paragraph 1 of the EEC 

Directive, i.e. maintaining soil heavy metal conce^rations within 

predetermined limits, the said article provides two options to Member 

States, either

a) upper limits can be set on the maximum quantity of sewage sludge
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which may be applied per unit area per year while observing the 

limits for metal concentrations in sludge selected from the 

ranges laid down in the Directive (see Table 1.7), or

b) the limits on metal addition per unit area per year, as laid 

down in the Directive^can be applied (see Table 1.7).

In formulating 'option a t h e r e  appears to have been no consideration 

given to the potentially hazardous levels of heavy metals which could be 

assimilated by grazing animals as a direct result of their ingesting 

sludge adhering to leaf surfaces. In a situation where 2% D.S. sludge, 

containing the maximun permissible metal concentrations (EEC, 1986), 

is applied to a sward during late March in the West of Scotland, and 

extrapolating from the Temple Field Study (see Chapter 5), the

resultant herbage concentrations of Cd, Pb and Cu (the maximum 

permissible Fe and Mn load of sludge not being specified) due to sludge 

adhering to the leaf surfaces, would remain above zootoxic levels (see 

Table 6.1 and Section 5.4 ) for between 6 - 7  weeks. The EEC

Directive does require Member States to set a minimum period of not 

less than three weeks after sludge has been spread^ before grazing or 

harvesting can take place. However, for the specified limit values of 

heavy metal concentrations in sludge, this period is inadequate to 

ensure the concentrations of potentially toxic elements associated with 

the treated herbage to decrease back to acceptable safe levels. 

Establishing a safe minimum no-grazing period applicable in all 12 EEC 

Member States is no easy task. The wash-off of adhering sludge metals 

is largely dependent on plant growth and rainfall patterns following the 

application of sludge (see Section 5.4). The EEC spans a number of 

climatic zones^ from the warm temperate mediterranean climate of Italy
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and Greece to the cool temperate western margin climate of Britain and 

Ireland. In Scotland, assuming the conditions of Temple Field to have 

been typical of those for the West of Scotland, a minimum no-grazing 

period of seven weeks should be imposed where sludge containing the 

maximum permissible metal load was applied. In dryer climates, longer 

no-grazing periods will be necessary. Alternatively, tighter limits 

could be imposed on the maximum permissible Cu, Cd and Pb 

concentrations in sludge for use on grassland so as to permit a no

grazing period of three weeks.

Consideration also needs to be given to the maximum permissible dry 

solid content of the applied sludge. The work described in this thesis 

highlighted the very significant increase in the concentration of 

adhering sludge metals on leaf surfaces where 12% D.S. sludge was 

applied. However, these results unless backed by further research

work do not permit the formulation of any firm conclusions as to the

relationships between metal adherence and sludge dry solid content. In 

addition, more work is required on the modelling of the wash-off of 

sludge particles and their metals from leaf surfaces.

A second equally important route of heavy metal entry into the food 

chain which by-passes plant uptake is via direct ingestion of sludge

contaminated surface soil by grazing animals. As discussed previously

(Section 3.4), soil ingestion may contribute as much as 25% of the total 

dry matter intake by grazing animals during unfavourable periods. 

More importanly, ingested soil constitutes a significant fraction of the 

total metal intake of grazing animals. For instance, as much as 40-90%
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of the Pb assimilated by cattle has been ascribed to soil ingestion 

(Russell et al, 1985). Hence, heavy metal enrichment of the surface 

soil by the application of sewage sludge may lead to undesirable health 

effects in grazing animals. Unfortunately, limiting permissible soil 

metal concentrations to samples taken over a depth of 25cm (EEC, 1986), 

or where the surface soil is shallower than 25cm^ to a smaller sampling 

depth, which in no case must be less than 10cm (EEC, 1986), does not 

provide adequate consideration of the potentially harmful ingestion of 

surface - contaminâted soils. Imposing limits on the maximum 

concentration of metals, such as Pb and H g , in soil to safeguard the 

health of plants, animals and man seems fruitless when such metals are 

known to be concentrated during uptake in shallow plant roots and,hence, 

not translocated to the edible plant parts, unless this is coupled with 

some control as to the maximum permissible metal concentrations in the 

ingested surface soil. A sampling depth of 25mm, in addition to the 

25cm depth specified in the Directive, thus appears to offer a more 

effective control on the uptake of these into the food chain under 

grazing. In addition, work needs be undertaken to right the evident 

lack of published information on the availability of ingested metals in 

the rumen of grazing animals; the risk of metal toxicity arising from 

soil ingestion ultimately depends on how much of the metals go into 

solution,once ingested.

In temperate grasslands, the distribution of grass roots in the soil 

profile is very uneven, with the highest root densities in the surface 1 0  

- 15cm, root density decreasing rapidily beyond this depth (Gregory, 

1988). Consequently, a soil sampling depth of 25cm (EEC, 1986) when 

applied to grassland soils is too generous a margin for determining
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whether soil metal concentrations are such as to potentially give rise 

to phytotoxic effects; more so when it is realised that applied sludge 

metals accumulate in the surface 15cm of receiving soil (see Section 

1.3.4 and Section 3.4 ), with little translocation of these metals to 

greater depths. Hence, sampling to a depth of 25cm would tend to 

underestimate the actual concentraton of heavy metals available to the 

grass sward as it includes the relatively less contaminated 15 - 25cm 

soil depth. A sampling depth of 15cm thus appears to be more in 

keeping with the conditions encountered in a grassland soil, offering a 

more representative measure of the total soil metal concentration 

potentially available for uptake into the foodchain. However, as the 

sampling depth is reduced^so toois the capacity of the soil to receive 

sludge^ as the difference in soil metal concentration and the maximum 

permissible soil metal concentration decreases. For instance, at 

Lower Carbarns, by reducing the sampling depth from 25cm to 10cm,results 

in a 7 - 24% increase in the recorded total metal concentrations. In 

this respect, soil cultivation, provided it is effected to a depth 

greater than that of sampling, may be used in reducing the total soil 

metal concentration in the sampled soil, thus increasing the capacity 

of the soil to receive sludge. However, in the short term, i.e. over 

a period of 4 - 6  months, soil cultivation may result in an increased 

uptake of Cu, Zn and Ni (see Section 3.4). In addition cultivation 

by reducing the metal load of the surface 25mm of soil, may also 

reduce the quantity of metal assimilated by grazing animals^ attributable 

to the involuntary ingestion of soil.

In the past it was thought that heavy metals had little effect on soil
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microbial activity. It was felt that metals were so tightly bound to 

soil particles that they would not interfere with the microbial biomass. 

The first clear alarm bells were sounded by researchers at Rothamsted 

(Brookes and McGrath, 1984) who found only half the expected amount of 

biomass in the metal contaminated Woburn Market Garden soil which had 

received sludge between 1942 and 1961. At Lower Carbarns a lower

soil microbial biomass was recorded in the sludged soil than in the 

unsludged control soil (Table 4.4), even though the metal concentrations 

in the sludged soil were well within the maximum permitted by the EEC 

(EEC, 1986). In contrast, soil nitrification was not apparently 

affected by the high metal concentration in the sludged soil, but was 

very influenced by soil pH. In fact, when the pH of the sludged metal 

contaminated soil was adjusted, the nitrification potential in this soil 

was greater than that recorded in the unsludged control soil. However, 

there is a very evident lack of comparable information on the effects of 

metals, at or below EEC permissible concentrations, on the soil 

microbial population. Furthermore, the results from Allanton and 

Maudslie (see Chapter 4) underline the very intricate relationships that 

exists between sludge application and soil microbial biomass. At these 

latter sites, notwithstanding a higher soil metal concetration in the 

sludged soil compared to that present in the unsludged control soils, a 

greater microbial population was recorded in the sludged soils (Table 

4.4) .

At this stage, until further, more extensive research programmes are 

conducted to elucidate the effects of sludge application and the 

resultant increase in soil heavy metal concentration on soil microbial 

biomass, advice on 'safe' soil metal concentrations is purely
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speculative. In fact, the EEC Directive steered well clear of this 

question and made no mention of potential toxic effects of sludge metals 

on the soil microbial population. Nonetheless^ the permissible metal 

concentrations as defined in the Directve do, on occasions, lead to a 

reduction in the soil microbial biomass. Soil metal contamination, 

being a relatively irreversible process, needs to be checked before 

causing irreparable damage to the ecologically important soil microbial 

population.

The EEC Directive is a much needed and long awaited piece of 

international legislation which brings into world focus the potentially 

very harmful effect of sludge application arising from heavy metal 

accumulation in the receiving soil,while at the same time promoting its 

safe use. It signifies an important step forward in international co

operation in the protection of the environment with twelve of the major 

western industrialised nations agreeing to a joint policy regulating the 

disposal of sludge.

The limits on the maximum permissible Cu, Ni, Pb and Zn concentrations 

in sludged soils as defined in the Directive (EEC, 1986) do represent 

realistic values which safeguard the health of plants, animals and man. 

However, there is a case for implementing more stringent limits on the 

maximum permissible Cd concentrations in sludged soil which as they 

stand at present^ may lead to zootoxic Cd concentrations in plants. 

Equally^ some consideration may also be given to the potentially 

significant ingestion of surface soil by grazing animals and the 

consequent need for control on metal concentrations in the surface soil.
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Urgent revision of the limit values for Cu, Pb and Cd concentrations in 

sludge for use in agriculture (EEC, 1986) or alternatively of the three- 

week minimum no-grazing period is called for, since at present, these 

pose a serious risk of metal toxicity in grazing animals arising from 

the ingestion of sludge adhering to leaf surfaces. Some consideration 

needs also to be given to the potentially toxic effects of metals on the 

soil microbial population in sludge soils even when these are within the 

maximum permissible metal concentrations as set in the Directive. 

Ultimately, soil metal contamination is relatively irreversible , it 

is thus better to err on the safe side.
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APPENDIX A

DETERMINATION OF METAL CONTAMINATION OF SOIL SAMPLES FOLLOWING SOIL 
MILLING.

Air-dried soil was milled using an electric mill based on that designed 

at the Rukuhia station (N.Z.D.S.I.R.) mill (Bascomb and Bullock, 1974).

A possible source of metal contamination of the soil samples, could be 

the mild steel drums used for milling. To investigate this possibility, 

'Analar' grade aluminium oxide (see Table A.l) was milled through each 

of the three milling drums used. The milled sample were then analysed 

for total metal content (see Table A.l).

The procedure followed to measure the total Cd, Cr, Cu, Ni, Pb and Zn

content of the AI 2 O 2  is that previously described for the determination 

of total soil heavy metal concentration (see Section 2.2.1.13.).

The results clearly indicate that sample comtamination is negligible, 

with the possible exceptions of Cu and Zn. However, the scale of Zn and 

Cu contamination observed was very small when compared to soil metal 

concentrations and amounted to only 0.4 mg Cu/kg and 0.65 mg Zn/kg,

Consequently this contamination of soil samples, was not considered

when measuring total metals in soil.
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TABLE A.l TOTAL METAL CONCENTRATIONS (mg/kg) ( ±  B.D.) IN ANALAR 
GRADE ALUMINIUM OXIDE (AlgOg) AND IN THE SAME OXIDE 
ONCE MILLED THROUGH THREE INDIVIDUAL DRUMS.

METAL ANALAR 
A12^3

DRUM
1

DRUM
2

DRUM
3

Cd N.D. N.D. N.D. N.D.

Cr N.D. N.D. N.D. N.D.

Cu 0.70
(0 .1 0 )

1 . 0 0

(0 .0 0 )
1.07

(0 .1 2 )
1.23

(0.40)

Ni N.D. N.D. N.D. N.D.

Pb N.D. N.D. N.D. N.D.

Zn 1.80
(0.17)

2.73
(0.55)

2.23
(0.59)

2.40
(0.27)

N.D. : - not detectable.
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APPENDIX B

COMPOSITION OF LIQUID FEEDS

STANDARD FEED

SOLUTION A

g/ 1

Ca(N03)2.4H20 90.9

SOLUTION B

K 2 SO4  55.4

KH 2 PO 4  17.7

NH 4 H 2 PO4  9.9

MgS04.7H20 46.2

FeNaEDTA 3.27

MnS04.4H20 0.82

H 3 BO3  0.172

(NH4)Mo 702.4H204 0,005

Equal volumes of solutions A and B are mixed and diluted 1 : 100 to give 

a cF value of 20.
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HIGH N SOLUTION

SOLUTION A

g/ 1

Ca(N03)2.4H20 59.0

SOLUTION B

KNO 3  79.0

NH 4 H 2 PO4  1 2 . 0

NH 4 NO 3  11.0

MgS04.7H20 25.0

FeNaEDTA 1.75

MnS04.4H20 0.40

H 3 BO3  0.17

(NH4)Mo 702.4H204 0,005

CUSO4 .5 H 2 O 0.04

ZnS04.7H20 0.04

Equal volumes of solutions A and B are mixed and diluted 1 ; 100 to give 

a cF value of 20. This diluted solution will contain approximately 225 

mg/1 N.
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LOW N SOLUTION

SOLUTION A

g/ 1

Ca(N03)2-4H20 59.0

SOLUTION B

K 2 SO4  46.0

NH 4 H 2 PO4  14.0

KNO 3  24.0

MgS04.7H20 25.0

FeNaEDTA 1.75

MnS04.4H20 0.40

H 3 BO3  0.17

(NH4 )0 MO 7 O 2 •4 H 2 O 4  0.005

CUSO4 .5 H 2 O 0.04

ZnS04.7H20 0.04

Equal volumes of solutions A and B are mixed and diluted 1 : 100 to give 

a cF value of 20. This diluted solution will contain approximately 120 

mg/1 N.
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APPENDIX C

CARBARNS FIELD EXPERIMENT.

MEAN SQUARES (MS) AND VARIANCE RATIOS (F) FROM ANALYSIS OF 
VARIANCE O F :

i) TOTAL METAL CONCENTRATIONS FROM FIRST AND
SECOND YEAR SAMPLES.

ii) TOTAL, ACETIC ACID- AND EDTA- EXTRACTABLE METAL
CONCENTRATIONS, PERCENTAGE ACETIC ACID- AND
EDTA- EXTRACTABLE METALS AND COPPER BOUND TO 
ORGANIC MATTER (O.M. Cu) FOR SECOND YEAR
SOIL SAMPLES.

iii) TOTAL, ACETIC ACID- AND EDTA- EXTRACTABLE METAL
CONCENTRATIONS FROM SECOND YEAR SOIL SAMPLES 
AND UNSLUDGED SOIL (UNSL.).
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TABLE C (i) (Gontd)

EDTA EDTA
SOURCE OF Cu Zn
DIFFERENCE df MS F MS F

LIME 1 7.73 0.09 224.00 0.82
CULT. 1 291.41 3.58 20.98 0.08
NITRO. 2 78.97 0.97 65.62 0.24
LIME.CULT. 1 343.87 4.23 1151.46 4.20
LIME.NITRO. 2 39.54 0.49 213.10 0.78
CULT.NITRO. 2 1.29 0 . 0 2 99.26 0.36
LIME.CULT.NITRO. 2 13.44 0.17 209.05 0.76
RESIDUAL 33 81.39 11.09 274.33 5.65

DEPTH 6 31.74 4.32 303.67 6.25
LIME.DEPTH 6 2.63 0.36 122,69 2.52
CULT.DEPTH 6 49.47 6-74 421.58 8 . 6 8

NITRTO .DEPTH 1 2 8 . 2 2 1 . 1 2 18.46 0.38
LIME.CULT.DEPTH 6 7.83 1.07 49.31 1 . 0 2

LIME.NITRO.DEPTH 1 2 6.43 0 . 8 8 57.44 1.18
CULT.NITRO.DEPTH 1 2 2 . 1 2 0.29 47.43 0.98
LIME.CULT.NTRO.DEPTH 1 2 7.31 1 . 0 0 16.54 0.34
RESIDUAL 216 7.34 48.60
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TABLE C (iii) (Gontd)

EDTA EDTA
SOURCE OF Cd Zn
DIFFERENCE df MS F MS F

UNSL. 1 11127.67 4805.44
UNSL..BLOCK 3 1599.04 12171.10
TOTAL 4 3981.20 462.30 10329.69 161.46

LIME 1 196.33 0.72 261.42 0.13
CULT. 1 633.99 2.32 1060.47 0.54
NITRO. 2 867.69 3.17 2944.34 1.49
LIME.CULT 1 46.91 0.17 388.13 0 . 2 0

LIME.NITRO. 2 599.17 2.19 2847.63 1.44
CULT.NITRO. 2 294.74 1.08 2085.02 1 .06
LIME.CULT.NITRO. 2 160.24 0.59 1891.15 0.96
RESIDUAL 37 273.59 31.77 1973.71 30.85
TOTAL 48 309.24 35.91 1964.04 30.70

DEPTH 1 2 868.56 1 0 0 . 8 6 5628.01 87.97
LIME.DEPTH 6 1 2 . 2 0 1.42 54.39 0.85
CULT.DEPTH 6 184.95 21.48 1966.93 30.75
NITRO.DEPTH 1 2 6.97 0.81 67.97 1.06
LIME.CULT.DEPTH 6 11.09 1.29 86.48 1.35
LIME,NITRO.DEPTH 1 2 9.38 1.09 65.63 1.03
CULT.NITRO.DEPTH 1 2 4.10 0.48 68.59 1.07
LIME.CULT.NITRO.DEPTH 1 2 8.75 1 . 0 2 30.72 0.48
RESIDUAL 240 8.61 63.98
TOTAL 318 44.31 309.22
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APPENDIX E

MEAN SQUARES (MS) AND VARIANCE (F) FROM ANALYSIS 
OF VARIANCE OF SOIL pH, OVER A DEPTH OF 100mm, 
AND CULTIVATION, LIME AND NITROGEN APPLICATION 
(CARBARNS FIELD EXPERIMENT).

SOURCE OF 
DIFFERENCE MS

LIME
CULT
NITROGEN
LIME.CULT
LIME.NITROGEN
CULT.NITROGEN
LIME.CULT.NITROGEN
RESIDUAL

14.493
0.017
0.936
0.094
0.068
0.424
0.066
0.283

51.14
0.06
3.30
0.33
0.24
1.50
0.23
3.89

DEPTH
LIME.DEPTH 
CULT.DEPTH 
NITROGEN.DEPTH 
LIME.CULT.DEPTH 
LIME.NITROGEN.DEPTH 
CULT.NITROGEN.DEPTH 
RESIDUAL

1.401
1.085
0.291
0.468
0.026
0.091
0.048
0.071

19.21
14.89
3.99
6.42
0.36
1.25
0.65
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APPENDIX F
BE8T-FIT REGRESSION EQUATIONS FOR HERBAGE Cd. Cr, Cu. N1. Pb 
AND Zn CONCENTRATIONS IN ALL FIVE CUTS (CARBARNS FIELD 
EXPERIMENT).

CADMIUM

PREDICTOR COEFFICIENT S.E. t-RATIO Sy
CUT 1 CONSTANT

O.M.
pH
LIME

-0.663 
0. 019 
0.185 

-0.163

0.369 
0. 009 
0. 064 
0. 058

-1 .80 
2.15 
2.90 

-2.80

0.160

CUT 2 CONSTANT
CD-TOT
pH
LIME
NITRO.

-0.230 
0. 093 
0.092 

-0.078 
0.026

0.141 
0.031 
0.024 
0. 022 
0.011

-1 .63 
3. 02 
3.77 

-3.56 
2.43

0.060

CUT 3 CONSTANT
pH
NITRO.

0.677
-0.053
0.088

0.134
0.023
0.013

5.06
-2.30
6.93

0. 071

CUT 4 CONSTANT
pH
NITRO.

0.528 
-0.032 
-0,023

0.105 
0. 018 
0.010

5.02 
-1 .78 
-2.33

0.056

CUT 5 CONSTANT
pH
NITRO.

0.674 
-0.044 
0.041

0.130
0.022
0.012

5.17
-1.99
3.32

0. 069

CHROMIUM

PREDICTOR COEFFICIENT S.E. t-RATIO Sy
CUT 1 CONSTANT

Cr-TOT
LIME
CULT.

0.005 
0. 006 
0. 098 
0.139

0.339 
0.003 
0.063 
0. 068

0.01
2.04 
1 . 56
2.04

0.216

CUT 2 CONSTANT
LIME

1 . 260 
-0.201

0.084
0.118

15.06 
-1 .70

0.410

CUT 3 CONSTANT
NITRO.

0.995
0.203

0. 059 
0 . 046

16.91
4.45

0.258

CUT 4 CONSTANT
pH
LIME

3.102
-0.392
0.317

0.861
0.157
0.143

3.60
-2.49
2.22

0.394

CUT S CONSTANT
O.M.

2.425 
-0.054

0. 663 
0.044

3.66 
-1 .23

0.817

COPPER

PREDICTOR COEFFICIENT S.E. t-RATIO Sy
CUT 1 CONSTANT 

C u “ % A c 
CULT.

4.929 
0.454 
1 . 045

0.974 
0. 097 
0.416

5.06 
4. 69 
2.51

1.356

CUT 2 CONSTANT
Cu-TOT
pH
NITRO.

16.040 
0.022 

-1.662 
1 . 752

1 . 861 
0. 008 
0. 296 
0. 168

8.62
2.66
-5.61
10.45

0.916

CUT 3 CONSTANT
pH
NITRO.

11.758
-1.151
3.660

1.837
0.314
0.174

6.40 
-3.67 
21 .00

0.972

CUT 4 CONSTANT
Cu-%Ac
pH
NITRO

7. 170 
0.145 

-0.772 
1.641

2.065
0.061
0.293
0.147

3.47
2.38
-2.64
11.14

0.819

CUT 5 CONSTANT
pH
NITRO

14.240 
-1.155 
2.725

2.006 
0.343 
0. 190

7.10
-3.37
14.32

1.062

R (adj.)

3. 9%

9,6V.

1 .1 9%

R (adj.)
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APPENDIX F (Gontd)

NICKEL

CUT 1

CUT 2

CUT 3

CUT 4

CUT 5

LEAD

CUT 1 

CUT 2

CUT 3 

CUT 4

CUT 5

ZINC 

CUT 1 

CUT 2

CUT 3 

CUT 4 

CUT 5

PREDICTOR COEFFICIENT S.E. t-RATIO R^(adj.)
CONSTANT 
Ni-TOT 
pH
LIME
CULT.

27.058 
-0.135 
-3.515 
1 .605 
1 .244

3.363 
0. 049 
0.578 
0.523 
0.430

8.05
-2.76
-6.09
3.07
2.85

1.439 56. 0%

CONSTANT
O.M.
pH

26.066 
-0.286 
-3.074

2.681 
0. 076 
0.446

9.72 
-3 76 
-6.89

1 . 394 58.4%

CONSTANT
O.M.
pH

27.561
-0.221
-3.508

2.276
0.065
0.379

12.11
-3.41
-9.26

1.184 68.8%

CONSTANT
O.M.
pH

28.558
-0.213
-3.675

2.470
0.070
0.411

11 .56 
-3.03 
-8.94

1 .285 66.7%

CONSTANT
O.M.
pH

24.173 
-0.177 
-3.160

2. 090 
0. 059 
0.348

11 .57 
-2. 98 
-9.08

1 . 087 67.3%

PREDICTOR COEFFICIENT S.E. t-RATIO S R^(adj
CONSTANT
PB-TOT

1 .361 
0.001

0.046
0.001

29.55
2.92

0. 126 13.8%

CONSTANT 
Pb-Ac 
LIME 
NITRO.

1 . 577 
0.032 

-0.226 
-0.104

0.113 
0.012 
0. 076 
0.047

13.96
2.73

-2.98
-2.19

0.263 26.2%

CONSTANT
NITRO.

1 .359 
0.263

0.047
0.037

28.64
7.15

0.208 51.6%

CONSTANT
Pb-TOT
NITRO.

1.377
-0.001
-0.107

0.117
0.001
0.055

11 .82 
-1 . 84
-1 .94

0 . 506 13.2%

CONSTANT
Pb-TOT
LIME
NITRO.

1.142 0.124 
0.002 0.001 

-0.172 0.089 
0.106 0.

9.19 
2.47 

-1 . 94 
056 1

0. 308 

. 89

21 .3%

PREDICTOR COEFFICIENT S.E. t-RATIO S R^(adJ
CONSTANT
pH
CULT.

190.800 
-21.519 

9.261
23.860
4.136
3.753

8.00
-5.20
2.47

13.000 40.3%

CONSTANT 
Zn-Ac 
O.M. 
pH
NITRO.

195.920
0.392

-2.451
-23.621
10.299

17.700
0.087
0.708
2.956
1.625

11.07
4.53
-3.46
-7.99
6.34

8.968 78. 1 %

CONSTANT
pH
NITRO.

177.390
-22.642
18.806

22.430
3.830
2.128

7.91
-5.91
8.84

11.870 73. 8%

CONSTANT
pH
NITRO.

201.440 
-27.357 
15.302

21.770 
3.717 
2.066

9.25
-7.36
7.41

11.520 73.3%

CONSTANT 
Zn-Ac 
O.M.
pH
NITRO.

262.530 
0.509 

-3.316 
-31.584 
12.467

24.700
0.121
0.988
4.126
2.269

10.63
4.21

-3.35
-7.66
5.50

12.520 75.2%
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A P P E N D I X  I

BEST—  FIT REGRESSION EQUATIONS FOR TOTAL AND 
EXTRACTABLE METAL CONCENTRATIONS. % EXTRACTABLE
METAL AND ORGANIC MATTER BOUND Cu. (2ND YEAR).

PREDICTOR COEFFICIENT S.E. t-RATIO Sy R (adj
Cd-ToT Constant

O.M.
0.239
0.077

0. 056 
0.004

4.28
18.88

0.261 51.5%

Cd-Ac Constant
Cd-ToT
O.M.

-0.137 
0.254 
0. 030

0.043 
0. 041 
0.004

-3.23
6.24
6.84

0.194 47,47.

Cd.%Ac Constant
O.M.

26.053 
1.482

3.698
0.272

7.05
5.44

17.340 7.9%

Cr-ToT Constant
O.M.

79.990
2.223

2. 184 
0.161

36.63 
13. 82

10.240 36.2%

Cu-ToT Const ant 
O.M.

19.826
3.834

2.857
0.210

6.94
18.22

13.390 49.7%

C u- Ac Constant
Cu-ToT
O.M.

3.364 
0. 149 

-0.469
0.364
0.007
0.035

9.24
22.83

-13.26
1 . 596 61 . 5%

Cu-EDTA Constant
Cu-ToT

0.274
0.497

0.709
0.010

0.39 
5. 98

3.372 88. 6%

Cu-0.M. Constant
Cu-ToT

-1.210
0.409

0.664 
0. 009

-1 .82 
44.78

3.162 85.7%

CU-V.AC Constant
O.M.
pH

26.481 
-0.428 
-1 .717

1 .392 
0.042 
0.235

19.03
-10.20
-7.31

1 .793 49.1%

Hi -ToT Constant
O.M.

12.055 
1 . 089

0. 806 
0.059

14.96
18.35

3.779 50.1%

N i - Ac Constant 
Ni-ToT 
O.M. 
pH

5.674 
0.223 
0.061 

-1.049

0.857 
0.017 
0.027 
0. 136

6.62
12.97
2.24

-7.74

1 . 061 63.4%

Ni-«Ac Constant
O.M.
pH

43.255
0.253

-3.892
2.974
0.082
0.503

14.55 
3.09 
-7. 74

3.946 22.5%

Pb-ToT Constant
O.M.

-51.380 
15.044

11.760 
0.866

-4.37
17.38

55.110 47.3%

Pb- Ac Constant
Pb-ToT

1 . 026 
0 . 044

0.225 
0. 001

4. 56 
32. 12

1.901 75. 5%

Zn-ToT Constant
O.M.

-2.310
17.390

12.750
0.939

-0.18
18.52

59.770 50.5%

Zn-Ac Cons tant 
Zn-ToT

-6.669 
0-307

1 . 327 
0.005

-5. 03 
55.86

8.550 90.3%

Zn-EDTA Constant
Zn-ToT

-6.617
0.276

1.575
0.007

-4.20
42.23

10.150 84.2%

Zn-%Ac Constant
O.M.
pH

36.640
0.400

-2.533
2.409
0.066
0.408

15.21
6.05

-6.22
3.197 23.1%

Zn-%EDTA Constant
O.M.
pH

36.504
0.649

-3.612
2.575
0.071
0.436

14.18
9.17

-8.29
3.416 38.4%
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APPENDIX J

CO 2  EVOLVED (mg COa-C/lOOg FRESH SOIL) BY 
FUMIGATED (0-10 DAY INCUBATION) AND 
UNFUMIGATED (10-20 DAY INCUBATION) SAMPLES 
USED FOR ESTIMATION OF SOIL MICROBIAL 
BIOMASS IN CARBARNS, ALLANTON AND 
MAUDSLIE SOILS.

FUMIGATED

CO 2  EVOLVED

UNFUMIGATED

C A R B A R N S

C O N T R O L 42.04 
34.84 
39.64
36.04

19.82
19.82 
18.00 
21.62

SLUDGED 31.26
33.64
32.44
32.44

19.22
16.22 
18.62 
15.62

ALLANTON 

CONTROL . 33.64
35.44
34.84
36.04

20.42
17.42
20.42 
19.22

SLUDGED 28.84
31.24
28.84
31.24

18.62
19.22
16.82
18.02

M A U D S L I E

C O N T R O L 16.82
16.82
19.22
19.22

13.22
13.22
13.22
13.22

SLUDGED 23.42
24.62
22.82
24.02

12.02
11.42
11.42 
12.02
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A P P E N D I X  K

EXPERIMENT II: EFFECTS OF SEWAGE SLUDGE APPLICATION ON SOIL NITRIFICATION 
POTENTIAL.

TABLE K ( U  CHANGES IN NH--N (mg N/Kg AIR DRY SOIL) WITH TIME (DAYS)
IN ALL 36 PERCOLATING SYSTEMS (6 COLUMNS X 6 SOILS)

DAY
10 12 14 16 18 20

CARBARNS UNSLUDGED

373.58 308.06 293.03 291.21 268.25 262.41 240.55 188.06 244.92 239.09
369.02 321.46 319.27 291.21 276.63 262.41 240.55 297.77 306.15 239.09
448.75 388.43 389.25 376.86 368.84 344.42 328.75 548.52
437.36 321.46 319,27 308.34 * * * * * *
396.36 339.32 349.89 305.13 276.63 276.77 * * * *
332.57 339.32 345.51 256.95 217.95 213.21 224.51 344.78

CARBARNS SLUDGED

423.53 434.66 393.04 421.34 * * * * * *
418.82 421.98 402.07 398.12 415.62 372.71 364.42 388.52 379.48 362.73
435.29 364.33 397.55 415.81 428.61 372.71 364.42 388.52 387.39 362.73
442.35 417.36 402.07 393.69 389.65 338.82 331.29 331.86 371.58 316.42
409.41 426.59 406.59 429.08 419.95 381.18 364.42 388.52 387.39 370.45
421.18 431.20 528.56 442.35 437.27 381.18 372.71 388.52 397.27 370.45

MAUDSLIE UNSLUDGED

472.38 473.63 453.48 470.16 325.03 375.12 387.75 358.45 360.12
464.44 480.44 442.05 477.62 467.46 418.00 408.71 382.35 393.46 377.59
476.35 487.24 461.10 500.01 452.85 435.86 426.17 396.OG 403.47 384.10
474.36 498.91 434.43 496.28 441.89 418.00 391.24 385.76 386.79 367.82
468.41 483.84 434.43 486.48 422.72 * * * * *
527.95 480.44 438.24 488.81 427.28 385.84 387.75 * * *

MAUDSLIE SLUDGED

396.75 504.78 445.48 501.62 448.26 438.52 441.02 * * *
482.60 496.82 441.02 488.54 448.26 438.52 424.69 415.03 420.97 426.17
468.68 496.82 454.39 497.26 443.99 430.16 420.60 415.03 409.28 410.95
477.96 500.23 454.39 497.26 448.26 455.22 436.94 415.03 428.77 414.76
473.32 493.41 449.93 488.54 435.45 430.16 408.35 407.05 389.79 391.93
482.60 459.30 467.75 497.26 537.91 446.87 420.60 407.05 414.15 426.17

ALLANTON UNSLUDGED

518.15 494.31 519.43 543.10 489.35 482.84 476.15 457.44
522.74 480.83 510.63 530.16 480.92 466.34 451.94 457.44 450.65 458.72
525.03 494.31 523.84 534.47 489.35 482.84 476.15 481.10 473.76 368.48
527.32 485.32 519.43 543.10 476.70 458.08 468.08 461.38 469.91 451.20
519.30 512.28 532.64 551.72 497.79 499.35 439.83 485.04 454.51 466.24
510.13 498.80 519.43 543.10 480.92 495.22 464.04 481.10 473.76 466.24

ALLANTON SLUDGED

546.63 550.52 551.73 528.05 524.77 490.03 486.74 460.81 457.36 503.16
548.79 525.11 585.96 519.93 510.85 490.03 471.53 * * *
544.47 539.94 551.73 511.80 516.82 482.25 463.93 460.81 442.84 503.16
542.31 529.35 555.88 519.93 524.77 490.03 471.53 490.54 450.10 517.34
548.79 542.05 551.73 519.93 477.06 497.80 463.93 475.68 450.10 517.34
548.79 537.82 519.58 * * * * * * *

* Denotes missing value.
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TABLE K (11) CHANGES IN NO,-N (mg N/Kg AIR DRY SOIL) WITH TIME (DAYS) 
IN ALL 36 PERCOLATING SYSTEMS (6 COLUMNS X 6 SOILS)

DAY
2 4 6 8 10 12 14 16 18 20

CARBARNS

143.05

UNSLUDGED 

150.01 196.37 216.69 233.04 308.34 336.77 308.74 361.26 445.30
76.54 131.26 184.56 208.98 253.16 305.06 333.56 310.31 335.23 421.39
89.29 141.98 192.44 196.99 197.83 185.33 183.62 141.05 * *
78.36 140.19 83.10 181.58 * * * * * *
78.36 142.87 148.70 213.48 252.74 276.77 * * * *
80.18 163.41 209.93 263.80 326.92 308.34 339.97 253.35 " *

CARBARNS 

21 .65

SLUDGED

39.66 20.33 106.50
26.59 55.34 16.49 107.93 131.61 132.14 159.02 192.64 210.30 280.25
23.29 38.74 27.56 97.32 109.53 98.26 124.24 150.55 169.19 233.84
32.00 67.33 14.00 166.77 154.99 191.44 225.28 254.16 283.03 330.32
23. 06 41.04 13.10 82. 72 92.65 89.79 112.64 139.22 154.96 213.01
23.06 37.82 12.54 77.85 90.05 84.71 106.01 129.51 161.28 199.12

MAUDSLIE

8.53

UNSLUDGED 

23.68 10.29 35.08 67.93 117.54 57.81 150.21 169.39
4.17 15.76 5.24 35.82 35.06 30.72 31 .44 27.99 29.68 31 .49
4.57 9.92 12.19 16.42 31 .41 42.16 65.67 86.71 99.70 128.25
5.36 12.25 15.24 24.63 35.79 47.52 63.58 84.66 97. 03 122.39
5.76 14.93 7.62 27.75 41 .77 * * * * *
2.98 13. 03 16.01 26.87 38.71 50.02 70. 56 * * *

MAUDSLIE

6.26

; SLUDGED 

11.82 11.58 16.58 17.93 25.06 32.67
7.42 13.87 12.47 18.32 21 .35 26.73 35.12 43.90 52.23 72.30
7. 08 13.19 11 .58 16.58 18.78 24.22 29.40 42.30 42.88 56.32
7.89 14.78 12.47 19.19 21 .35 26.73 35.94 45.49 53.79 69.25
9.51 18.99 24. 95 27.04 41 .84 57.63 75.14 95. 78 100.57 127.09
9.05 15.69 21 .38 22.68 32.45 38.42 44.92 57.47 64.71 87. 52

ALLANTON UNSLUDGED

7.80 10.78 12.33 12.07 12.66 15.68 19.37 25.24 * *
8.25 11.91 15.85 18.10 19.41 23.94 29.05 37.07 40.83 53.39
7.11 10.78 12.33 10.34 13.50 15.68 19.37 25.24 26.96 36.85
9.17 10.11 11.45 10.34 10.97 12.38 16.14 20.51 23.11 30.08
7,11 10.56 11.45 12.07 14.34 19.81 21 .79 35.49 39.29 54.52
7.80 15.84 11.45 10.34 10.97 18.16 20.18 27.60 29.27 40.61

ALLANTON SLUDGED

27.66 36.42 54.76 60.93 69.17 91 . 00 108.00 122.26 130.67 150.24
28.30 38.96 51 .80 62.15 73.05 93.92 108.85 * * *
26.36 36.42 52.27 69.05 80.31 105.01 122.45 142.70 148.82 183.55
23.98 31 .34 48.12 56.87 62.42 86.34 98.49 118.92 123.41 144.57
24.95 34.73 54.76 61 .74 80.31 93.34 106.47 125.61 131.76 153.78
23.55 31.34 51 .96 * * * * « * *

Denotes missing value.

356



APPENDIX L
EXPERIMENT III

TABLE L (i)

EFFECTS OF SOIL pH ON 
NITRIFICATION POTENTIAL IN 
A SLUDGED SOIL.
CHANGES IN NH.-N (mg N/Kg AIR 
DRY SOIL) WITH TIME (DAYS) IN
ALL 36 PERCOLATING 
( 6  COLUMNS * 6  SOILS). SYSTEMS

DAY REPLICATE3

UNSLUDGED SOIL
2 329,.47 364..27 352,,67 352,,67 334,. 1 1 334.. 1 14 295,.59 272.,85 241,. 0 2 2 2 2 ,,83 218..28 2 2 2 ..83
6 1 0 2 ,. 46 106.,91 269,.51 271..74 307..38 338,.56
8 216,.46 268.,81 272..08 268..81 282..44 275,.89

1 0 194,.78 270.. 0 2 256,.15 270,. 0 2 305,.78 290,.30
1 2 197..33 253 ,.71 253,.71 240,. 6 6 253..71 260,.5014 176,.61 225,,61 215,.41 215,.41 2 2 0 .51 215..4116 153,. 14 191,,55 191..55 182,.08 191 .55 215,.5018 1 2 1 .81 168,,58 149..58 149 .58 149 .58 131,.07
2 0 109,.40 146.. 0 2 146,. 0 2 127,.95 146.. 0 2 164,,57
2 2 53 .36 133.,64 80,.28 97,.91 124 .83 142,.4624 52 .03 130,,30 60,.63 78..27 113.. 1 1 130..3026 104..92 131.,81 42.,32 64.,36 70 .97 1 1 0 ., 2 128 41 . 2 1 63,,96 46,.36 34,.77 57 .52 51..0832 13 .78 35.,08 13,.78 27,. 15 35 .08 57..63
pH 5.47

2
4
68

10
12
1416
1820
22
24
26
28
32
pH 5
24
6
8

10
12
14
16
1820
22
24
26
28
32

417,,27 440,. 2 0 417..27 435..61 435,,61 426.,44355,, 0 0 337,.03 323,.55 274,. 1 2 278..61 269.,62145..27 151..87 158,.47 396,.18 409,,38 431. 39362..06 369 ,.07 376,.07 396,.55 344,,82 403..55381..25 381..25 394,.96 445,.59 441,.90 428,.71316,, 74 396,.18 402,. 8 8 402.. 8 8 396,. 18 402., 8 8377 ..79 387..37 368.. 2 1 358.. 1 2 358,. 1 2 396.,96359.,35 359,.35 369,. 2 1 364..28 378,.57 369., 2 1360,.62 351,.47 351,.47 249,.40 166,.59 203.. 18343,. 1 0 369,.89 343,. 1 0 343.. 1 0 343,. 1 0 352.,03343 ,.45 338,. 8 6 334,.73 343 .45 325,.56 378,,75317..42 300,.44 326..37 308..93 326,.37 351.,85287..07 293,.60 288..38 288,.38 272,.69 348.,06293..09 275,.27 298,.18 265,.52 279,.09 91.,19253,
69

.39 244..72 * 236,.06 236,.06 311..99

409..40 409..40 413,,95 423,.05 409,,40 382., 1 1320..97 314..28 271,.93 267 ,.48 267,.48 147., 1 1139,.74 301..32 329,.70 347.. 17 397,.39 406., 13342,.08 345,.28 345,.28 342 .08 379 .49 366,, 13368,.28 334,.80 378,. 2 2 396..53 415,.36 411,,70346,.97 360,.27 360 .27 343 .90 366,.93 346,.97336..25 336 .25 355 .27 307 .23 326,.75 365,,28347..19 328 .61 337,.90 310,.03 337,.90 337.,90330 .05 302,.82 311,.90 311 .90 2 1 1 .. 1 1 247 ,.41322,. 19 322,.19 331,.05 304..47 322,.19 322., 19332..07 314,.33 305,.69 262 . 0 2 332,.07 314,.33306.,47 289..62 247,.04 247 .04 289 .62 323,.77270,.52 280..46 279,.60 235,.52 283 .92 298,.61268,.03 277,.29 263,.40 217 .96 281 .08 294,.96251,.37 246 .87 236 .63 207 .57 2 0 2 .65 2 1 2 ,.07
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TABLE L.(i) (Contd)

pH 5.76
2 429,.59 453 .46 453..46 467,.78 434..37 420,,054 392,.94 343 ,.82 294..70 285.,35 285,.35 259,,62
6 155..80 146,.63 355,.13 284,. 1 1 380,.33 453 ,.65
8 358..95 344,.37 387,.55 384,.19 394,.84 337,,64

1 0 354..61 344,.18 386..44 404.. 0 1 412,.79 421,,58
1 2 219,.63 336..69 357.,64 357,.64 336..69 357,,6414 312 .41 302,.43 342,. 8 6 312,.41 332,.89 312,,41
16 276..06 276,.06 276,.06 290,,43 295,.56 295,.56
18 259,.62 269,. 64 240,.57 259,.62 346,.32 192,,46
2 0 234 .84 234,.84 253,.44 234,.84 234,.84 216,.25
2 2 229,. 1 2 229,. 1 2 183,.29 2 1 0 ,.98 229,. 1 2 265,.8724 2 0 1 ,.05 196,.40 178..71 196,.40 205,.70 232,.2326 178,. 6 6 164,.61 148,.74 164,.61 180,.93 229,.9028 195,. 16 162,.04 130,.69 154,.98 181,.47 218,.5632 171 .41 127,.16 1 0 2 .24 124,.58 1 2 0 .29 192,.03
pH (3.28
2 396,. 16 386,.95 416,.89 414,.59 419,.19 405,.374 320,,52 302..46 291,.18 252,.81 248,.29 331,.81
6 141,.51 289,. 6 6 300,.71 355..99 391,.37 391,.37
8 318,.81 318,.81 318,.81 332,.34 346,.41 332..34

1 0 325,.27 261 .17 318 .91 345,.93 359 .17 369 .77
1 2 285,.03 291,.77 298,.50 285,.03 311..98 291,.7714 281..74 262,.48 243.. 2 2 243,, 2 2 262,.48 252,.8516 218.. 8 8 247.. 1 1 228,.29 237 ,.70 266,.42 218,. 8 818 213 ..79 2 2 2 ,.98 204,. 1 2 357,.44 167,.36 250,.55
2 0 199..26 163,.37 163,.37 181,.31 199..26 208,.70
2 2 194,.40 176..89 159..39 176,.89 199.. 0 0 159,.3924 155,,40 155..40 137 ,. 8 8 137,. 8 8 172 .47 155,,4026 118,.60 136,. 1 0 1 1 1 ..59 133..47 151 .42 136,. 1 028 123.. 14 126,. 13 106,. 1 0 115..47 142,.32 126,. 1332 71.. 72 82,.50 63..85 81,.26 98 .67 89,. 14
pH 5.63

2 407,. 8 8 398.,61 407,. 8 8 417,.15 417,,15 389,,344 308,. 8 8 295,,25 254,,37 254,,37 249.,83 249,,83
6 124..59 1 0 2 ,,34 287,, 0 0 347,,07 347.,07 373,,77
8 282 . 1 1 261,,41 275,.57 320,,78 320,,78 296,.27

1 0 269,.71 228,,67 259,.05 320,, 8 8 310., 2 2 320,. 8 8
1 2 240,.38 197,, 1 0 226,.83 253,.42 260,, 2 0 240,.3814 176,.41 166,, 2 1 176,.41 2 2 0 ,.25 146..84 2 2 0 ,.2516 162,.43 124,,57 143,,50 2 1 0 ,.27 2 1 0 .,27 172,,4018 130 .92 1 2 1 ,,67 1 0 2 ,.69 364,.52 205,.38 364,.52
2 0 118,.77 1 0 0 ,.24 127 .80 127,.80 127,.80 127,.80
2 2 177,.98 97,.80 80,.19 142.,29 1 2 0 ,.05 124,. 6 824 78 . 18 60,.56 60 .56 1 1 2 ,.98 95,.35 1 1 2 .9826 57 . 6 8 76,.18 52 .40 8 6 ,.30 78,.82 1 1 0 .0828 6 6 ..03 48..45 48 .45 71,.60 60,. 8 8 83 .1732 32 . 1 2 44,.63 17,.52 40 .05 40,.05 54,.65
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TABLE L (ii) CHANGES IN NOo-N (mg N/Kg AIR DRY 
SOIL) WITH TIME (DAYS) IN ALL 36 
PERCOLATING SYSTEMS ( 6  COLUMNS * 
6  SOILS).

REPLICATEDAY 1 2  3 4

UNSLUDGED SOIL
2
4
68
10
12
14
16
1820
2224
2628
3 2

pH 5.47
2
4
68

10
12
14
16
18202224
26
28
32
pH 5.69

2
4
6
8

10
12
14
16
182022
24
26
28
32

69..61 48,.72 50,.93 46.,87 48,.72 40,, 1493,. 6 8 90,.72 93,.23 93,. 6 8 90,.04 76,.17180,.42 137,. 2 1 140,.32 132..31 127,.41 1 1 1 ,.37335,. 0 0 264,.33 277,.42 259,. 1 0 248,.63 167,.50434,.17 332,.99 343,.24 320..19 321,.47 284,.32504.,29 287,.33 292,.34 268.,96 263.. 1 1 242,.23404,.27 323,.42 330,.77 287.,89 287,.89 247,.46440.,58 368..74 385,.50 337..61 335,. 2 2 320..85460,,73 381.. 2 2 411,.62 360..17 366,. 0 1 350,.81490., 8 6 415,.52 473,.74 401.,82 399,.54 384,.70559,,07 432,. 1 1 516,.75 409.,84 441,. 0 2 415,.41588,,53 408,.28 560,.30 450.,63 445,. 2 0 432,. 17596,,71 418,.97 558,.63 490,.91 482,.45 478.. 2 2618,, 1 0 502,.72 576,.89 480,,06 490 .36 498,.60601, 
47

.39 573,.33 533,.23 475,. 1 0 521,. 2 1 533 .23

17,. 2 0 13,,99 13,.41 13,,07 13,.07 14.,903.3,.48 2 2 ,.36 2 1 ,.57 2 0 ,.67 2 1 ,.35 2 0 ,.6734,. 1 2 29,.71 28,.61 35,. 2 2 36,.32 35,. 8 850,. 0 0 40,.52 37,.93 43,.96 37,.93 44,.8375,.93 64,, 1 2 58,. 2 2 67,.50 69,.18 62,, 8 675,.93 77,.59 74,.28 77,.59 80,.89 75,.93
1 1 1 ,.37 94,.42 89,.58 89,.58 89,.58 84,.74134,.87 1 2 0 ,.67 118,.30 113,.57 106,.47 113,.57152,.53 134,.04 127 . 1 1 131,.73 129,.42 129,,42182,,74 182,,74 148,.90 157,,92 153,,41 153.,41217,,90 198,,09 161,.77 191,.49 189,,29 176,.08248,.93 228,,55 150,. 2 2 214,.60 2 1 0 ,.30 178,. 1 2265,.55 246,.73 230,. 0 0 217,.46 196,.55 184,. 0 0285,.03 258,,56 223 .95 244,.31 232,.09 179,. 16340,.71 305,.06 * 277,.33 265,.44 198,.09

26. 16 2 2 .06 2 1 .61 26 .16 2 1 .61 26,,6140., 1 2 34 .33 32 .99 41 .46 34 .33 39., 6 862., 8 8 57 .64 52 .40 70 .74 54 . 15 62,, 8 875.,26 65 .85 69 .27 94 .07 75 .26 92,,36107.,14 84.;54 93.-74 97.<53 97.;51 118,. 0 2114,.63 108 .08 1 1 2 .99 138 .38 Ill .36 131.. 0 1132,, 1 0 1 2 0 .09 1 2 0 .09 146 .51 115 .29 146,.51157,,26 143 .18 154 .92 183 .08 143 .18 169,. 0 0168,,51 144 .44 160 .49 183 .41 155 .90 185,.70192..47 183 .52 181 .28 203 . 6 6 172 .33 196,.95213,,98 205 .25 198 .70 216 .16 2 0 0 . 8 8 205,.25229,,92 215 . 0 2 183 .08 229 .92 2 1 0 .76 213,.95236,,47 2 2 1 .95 2 2 1 .95 238 .37 207 .43 2 1 1 ,.58242,,37 234 .29 250 .44 234 .29 230 .25 206,. 0 1275,. 1 2 259 .40 259 .40 243 . 6 8 253 .50 2 1 0 .27
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TABLE L.(ii) (Contd)

pH 5.76
2 33,.41 28,,40 29,.83 24,.58 25.,78 27.,45
4 64,.79 50,,99 46,.08 44,.67 44..67 46,,78
6 94,.40 96,.23 8 6 ,.15 62,.32 72,,40 8 6 ,.15
8 145,.37 142,.23 134..61 136,.40 129., 2 2 1 2 2 ,.04

1 0 272,.71 250,.31 176,.97 176 .97 170,.39 173,.90
1 2 161,.53 230,.26 223 .39 228,.54 213,.08 217,.37
14 279..75 282,.27 252,.03 259,.59 238.,17 246..9916 330,.04 336,, 2 0 317,.73 315,.26 311,.57 298,, 0 218 360,. 8 6 368,.08 344.. 0 2 322,.37 339,. 2 1 330,.79
2 0 403,.93 413,.33 385,.15 393,.37 385,.15 312,.34
2 2 433,.03 453,.65 421,.58 429 .59 414..70 373,.4624 428,.91 504,. 8 6 431,.14 457,.95 433,.37 368,.5926 439,. 6 8 522,.39 467,.97 478,.85 452,.74 367,.8528 411,.15 529,.83 462,. 0 1 487,.45 474,.73 381,.4832 379,.42 544,.38 461,.90 532,. 0 1 453,.65 371,.17
pH 6.28

2 33.. 8 6 29 .83 34,,32 34,,78 33,. 8 6 38,.814 71,. 1 0 67 .04 69,,52 77,,65 69,.97 78,, 1 0
6 114..09 97.:29 108,,79 118,.52 105..25 1 2 2 ,,94
8 162,.81 143 .76 163,, 6 8 173,, 2 1 160,. 2 1 270,. 2 0

1 0 302..59 163 .59 298,,78 312,,76 289,. 8 8 338,,19
1 2 255..39 228 . 0 2 255,,39 261,,19 238..80 270,.3114 311..33 267 .55 285,,79 272,.41 267,.55 294,.3016 349,.41 309 . 0 1 337,.53 326,.83 320,.89 349,.4118 369,.15 319 .23 359,. 8 6 315,,75 325,.04 369,, 15
2 0 414,.75 305 .97 396,.62 373,.96 381,.89 396,.62
2 2 445,.54 395 .79 422,,33 400,. 2 1 402,.43 422,.3324 487,. 2 2 413 .92 449,.50 409..61 407,.46 413,.9226 508,.34 432 .72 470,.53 432,.72 432,.72 424,.3228 521,.55 449 .97 486,.78 421,,33 439,.74 458,,1532 569,. 15 453 .72 493,.52 437,,80 453,.72 461,. 6 8

pH 6.37
2 47,.62 46 .81 48. 67 38..93 38,.24 43,.344 93,.80 1 1 1.74 lOEî. 1 1 84,.03 8 6 ,.53 91,,53
6 156,.63 162 . 8 6 167. 75 133,.49 137,.05 146,,84
8 324,. 15 352 .91 352. 91 287,.56 304,.55 321,.54

1 0 409,.36 445 .18 450. 30 376.. 1 0 394,. 0 1 422,.16
1 2 516,, 2 2 534 .99 522. 48 308,.69 325,.38 340.,3914 369,.54 406 .25 401. 35 336,.50 249,.62 365.,8716 449,,63 454 .41 422. 13 452,. 0 2 408,.97 426.,9118 446,.18 448 .52 446. 18 412,.31 433.,33 455.,53
2 0 474,.33 490 .29 478. 89 467,.49 453,.80 478..89
2 2 502,.80 498 .35 498. 35 511 .70 467,. 2 1 507.,2524 572,, 6 6 524 .94 524. 94 533,.62 540,, 13 533,,6226 604,.48 557 .98 511. 48 528,.39 500,.91 524,, 1628 559,.76 506 .25 502. 14 547 .41 506,.25 506,.2532 572,. 6 6 512 .59 484. 56 544 .63 510,.59 500,.58

360



APPENDIX M

EXPERIMENT 5.1 FACTORS INFLUENCING SLUDGE METALS ADHERING TO 
LEAF SURFACES IN A FIELD SITUATION. (TEMPLE 
FIELD TRIAL).

CHANGES IN THE TOTAL HERBAGE Cd, Cr, Cu, Fe, Mn, Ni, Pb AND Zn 
CONCENTRATIONS (mg/kg DRY MATTER) WITH TIME (DAYS) IN ALL 3 
REPLICATES PER TREATMENT.
DAY Cd Cr Cu Fe Mn Ni Pb Zn

UNCUT CONTROL (T1) 

(REPLICATE 1)
0 0.450 3.375 7.26 634-0 96.1 1.488 3.169 28.907 0.331 2.844 8.37 432.0 137.0 2.300 3.050 35.30U 0.331 2.875 8.16 636.0 133.0 1.719 3.963 33.8021 0.331 2.238 9.05 436.0 107.0 1 . 713 3.713 32.2028 0.213 1.381 5.72 202.0 123.0 1.081 2.038 24.3035 0.200 1.769 5.34 255.0 104.0 1.381 1 .800 23.0042 0.288 0.394 6.04 44.9 83.1 1.238 1 .050 23.9049 0.306 0.363 6.86 85.2 70.6 1 .425 1 .025 32.7056 0.200 0.431 4.53 55.2 88.6 1 .138 1 .250 17.90

(REPLICATE 2)
0 0.438 3.888 7.54 665.0 152.0 1.544 5. 019 28. 407 0.469 4.719 9.06 703.0 162.0 2.569 6.306 32.8014 0.469 5.556 9.56 1153.0 158.0 2.094 7.481 33.8021 0.256 4.319 6.95 697.0 144.0 1.450 5.131 25.6028 0.250 2.913 7.41 544.0 185. 0 1.325 5.875 27.8035 0.281 2.094 6.15 318.0 125.0 1.344 2.500 22.9042 0.200 2.369 4.71 392.2 106.0 1.081 2.713 17.7049 0.269 0.806 4.89 74.1 70.6 0.838 1 . 988 17.6056 0.163 0.344 3.66 66.9 88.7 1 . 138 1 .169 14.20
(REPLICATE 3)
0 0.525 6.781 9.80 1332.0 128, 0 2.238 6.444 40.207 0.538 3.650 10.20 668.0 132.0 1 .800 5.438 37. 0014 0.488 7.159 10.70 1713.0 182.0 2.431 7.431 37. 7021 0.538 4.675 9. 73 820.0 172.0 1.938 6.275 40.2028 0.519 4.281 10.70 833.0 147. 0 1 . 856 6. 225 41 .9035 0.294 1 .494 6.57 301 .0 132.0 1.419 2.600 24. 0042 0.250 1.406 5.95 196.9 149.0 1.419 2.450 25.6049 0.313 1 .450 5.68 189.0 90.1 1 .219 1 .825 22.2056 0.250 0.475 5. 07 63.4 87.5 1 .125 1 . 000 24.40

CUT CONTROL (T2)
(REPLICATE 1 )
0 0.550 11 .194 7.86 2419.0 211 .0 2.263 7. 103 32.707 0.538 9.369 8.86 1876,0 205.0 1 .850 7.675 32.9014 0.456 8.813 8.22 1887.0 180.0 2.281 7.938 31 .3021 0.369 3.988 7.92 696.0 105.0 1.356 4.413 27.7028 0.250 3. 013 6.06 490.0 116.0 0.894 2.381 21. 8035 0.263 2.519 5.93 361.0 89.6 0.719 1 . 788 19.5042 0.250 1.263 4.22 150.7 84.5 0.606 1.650 15.1049 0.225 0.644 4.25 126.7 79.3 0.769 1 .706 21 .9056 0.125 0. 588 3.31 76.1 85. 0 0.581 1 . 056 13.30

(REPLICATE 2)
0 0. 544 14.913 9.95 3017.0 148. 0 2.988 8. 856 36. 807 0.475 6.044 10.70 1164.0 144.0 1.850 6.850 35.7014 0.675 13.375 10.50 2878.0 172.0 3.063 9.675 39.9021 0.231 5.338 9.51 958.0 143. 0 2.075 4.613 34.4028 0.263 2.725 8.55 531 . 0 135.0 1.331 3.331 27.403 5 0.231 3.663 6.83 662.0 104.0 1.250 3.081 24.9042 0.269 1 .800 4.36 226.9 104.0 0.806 1.869 15.6049 0.294 0.950 4.56 122.5 103.3 0.919 3.031 20. 2056 0.119 0.300 3.70 64.9 70.8 0.650 0. 975 14.30

(REPLICATE 3)
0 1 ,.025 21 ..331 13, 10 4757. 0 153. 0 4..125 12..581 54.. 007 0 .488 16..706 13,.90 3379. 0 119. 0 3..713 9,.456 44 .. 8014 0..431 11 .200 17,.40 2690.. 0 192. 0 3..056 13. 494 52..3021 0,.350 9..244 11 ,.60 1993. 0 130. 0 2,.519 6,.844 42,,6028 0..313 4..706 12, 70 917.,0 Ill ., 0 1 ,.475 6..188 41 ,, 9035 0..294 1 ..700 8,.14 497. 0 85., 1 1 ,.313 3 .094 26,.2042 0..238 3,.156 6 .17 480. 6 113. 0 1 ..338 2 .500 22.. 5049 0,.306 2 . 025 8.,51 319..2 111, 0 1 294 5,.388 28..0056 0 .194 0..338 4..33 94..8 101 ,. 0 0 .956 1 ..031 20..50
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APPENDIX M (contd)

DAY Cd Cr Cu Fe Mn Ni Pb Zn

UNCUT. FULL RATE, 2% D.S. SLUDGE (T3) 
(REPLICATE 1)
0 0..700 31 ..013 31 ,.40 7344..0 233..0 6..113 28,.844 81 .,91
7 0,.825 16..413 39,.10 3300.,0 215.. 0 3,.650 29,.880 92,.40

14 0..763 14. 650 34,.80 3285. 0 258,.0 4..444 26,.825 91,.5021 0..525 11..769 29 .50 2266..0 180,.0 3 .325 24,.169 84,.10
28 0,.400 7..519 20,.40 1371 ..0 132,.0 1 ..975 13,.638 52,.4035 0..494 9,.194 19,.30 1622,.0 137,.0 2 .156 13,.138 52,.2042 0..356 3,.131 10,.80 486,.1 111 ,. 0 1,.275 6 . 569 31 ,.8049 0. 294 0..656 5..95 131, 6 71 ,.6 1 .050 2 ,669 36,.4056 0..250 0..556 4,.83 52..6 69,.0 0..875 1 ,.050 17,, 50
(REPLICATE 2)
0 0,,881 29.,906 41 .. 00 6911., 0 229. 0 6. 538 39,,694 106. 007 0,.888 16..200 40.,30 3181 ,0 176.,0 3,.975 30,.906 97., 0014 0,.694 17. 625 36, 60 3504,. 0 228., 0 3..988 29,.813 89,,3021 0..413 10.,006 25, 20 2055,,0 158., Q 2..506 21 ,.469 65,.2028 0. 606 12., 581 31 ..90 2530,. 0 185. 0 5. 713 22,.363 81 ,.5035 0..394 7,.888 21 ,.50 1440..0 158..0 2..181 13.,906 57.. 5042 0,.388 S. 531 14.,30 975, 6 121 ., D 1,.556 10.,156 39..3049 0..331 1 ..800 7..97 269,.4 75.,6 1 ,. 081 3 .969 28..3056 0,.306 0,.450 5.,18 84,.1 53. 5 0,.906 1 ..419 19,.30

(REPLICATE 
0 0.944

3)
44.319 33.10 10197.0 257. 0 10.006 37,281 85.107 0.706 15.356 40.60 3045.0 281. 0 4.263 31.550 94.1014 0.694 13.538 43.00 3120.0 271 .0 4.000 32.800 97. 1 021 0. 500 10.569 27.60 2027.0 235.0 3.338 23.556 71 .9028 0.513 9.450 27.60 1863.0 235. 0 3.013 18.731 68.3035 0.469 6. 081 19.30 1173.0 197. 0 2,638 12.800 54. 7042 0.300 4.025 11.70 638.2 114.0 1.544 7.794 32.1 049 0.300 1.194 7.43 143.0 92.6 1.631 2.844 27.4056 0.200 0.738 5.36 124.4 120.0 1 . 569 1.963 21 .30

CUT, FULL RATE, 27. D.S. SLUDGE (T4) 
(REPLICATE 1)
0 0.763 24.569 36.50 5354.0 257.0 5.281 34.325 96.307 0.794 16.769 35. 80 3326.0 233.0 3. 400 26.363 84. 9014 0.575 14.131 31.30 3215.0 238.0 3.981 23.781 79.3021 0.419 7.681 19.70 1428.0 151.0 2. 175 .13.044 56.2028 0.244 3.700 10.90 661 .0 120.0 1.294 4.000 34.2035 0.275 3. 013 8.34 383.0 94.1 1.119 3.156 26. 9042 0.306 2.131 7.99 269.6 123.0 1 . 025 3.669 28.4049 0.294 0.694 5.73 106.5 72.3 0.831 3.644 21.8056 0.138 0. 556 4. 09 80.6 73.5 0.769 1.050 14.50

(REPLICATE 2)
0 0.844 53.313 32.50 13733.0 267. 0 11.156 37.131 88. 507 0.619 27.631 28.50 6001.0 213. 0 5.538 21.844 81 . 6014 0.613 19.863 29.60 4852.0 194. 0 4.938 20.894 76.4021 0.631 13.750 26.60 2648.0 156.0 3.456 19.350 71 .9028 0.356 6.944 14.80 1448.0 109. 0 1.794 7.375 50. 5035 0.300 4.381 10.60 773.0 85.0 1.375 4.313 33.6042 0.325 1.431 6.79 182.7 64.4 0. 950 1.988 23.6049 0.331 2.188 6.46 334.5 56.9 1.013 2.463 22.4056 0.350 0.419 4.98 86.4 45.4 0.850 1.094 18.60

(REPLICATE 3)
0 0.831 29.625 36. 10 6851.0 266. 0 7.256 33.394 96.407 0.706 20.425 33.50 4194.0 279. 0 5.281 25.638 86.0014 0.675 17.888 32.60 4215.0 279.0 5.081 29.650 86.3021 0.381 9.119 19.20 1833.0 145.0 2.788 13.269 52. 9028 0.356 4.100 14.50 694.0 145.0 2.806 5.138 54.203 5 0.294 2. 525 9.14 527. 0 86.3 1.425 3.531 33.8042 0.288 2.300 8.88 382.7 104.0 1 .463 3.850 28.8049 0.319 1 . 125 5.85 133.9 109. 0 1.663 1 .669 23.4056 0.263 0.625 5.13 79.1 90.3 1.213 1 . 050 20.10
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APPENDIX M (contd)

DAY Cd Cr Cu Fe Mn Ni Pb Zn

UNCUT, HALF RATE. 2% D.S. SLUDGE (T5)

0 0.713 28.638 24.40 6856.0 244.0 5.594 26.769 71 . 007 0.413 8.875 18.70 1742.0 207.0 2.494 15.000 57.0014 0.388 3.269 7.46 652.0 152.0 1.456 3.531 30.50
21 0.369 7.800 13.40 821.0 143.0 2.875 9.406 39.4028 0.256 3.481 9.84 544.0 128. 0 1 . 094 5.394 30.7035 0.206 1. 806 6.10 241.0 93.0 0.806 2.363 23.4042 0.231 0.856 5.15 51.3 100.0 0.731 1.581 19.9049 0.238 0.694 4.53 82.3 90.3 0.894 1.206 21 .4056 0.131 0.481 4.24 41 .8 82.6 0.950 0.981 16.20
(REPLICATE 
0 0.650

2)
16.744 24.60 3620.0 169.0 3.638 20.338 69.007 0.650 11.294 28.20 2140.0 174,0 2.813 21 .400 65.9014 0.613 10.225 23.30 2226.0 163.0 2.656 24.263 68.1021 0.513 8.344 18.50 1513.0 126.0 2.038 14.175 51 .5028 0.506 5.900 18,10 1097.0 159.0 2.000 11.613 53.0035 0.469 4.544 12.70 672.0 148.0 1.831 6.813 40.7042 0.406 2.806 8.56 348.6 119.0 1.525 4.306 28. 8049 0.306 1 .794 6. 59 233.4 72.4 1.113 3.519 22.8056 0.325 0.944 5.79 185.5 85.1 1.044 2.406 21 .80

(REPLICATE 3)
0 0.744 23.606 29.30 5134.0 242.0 5.906 27.544 82.907 0.575 12.675 32. 50 2374.0 290.0 4.988 24.063 80.4014 0.556 10.531 26.20 2299.0 195. 0 3-900 19.025 69.2021 0.431 8. 006 22. 90 1395.0 237.0 3.050 18.831 56.2028 0.375 7.050 20.00 1318.0 224.0 2.650 13.431 55.3035 0.325 3.775 10.80 581 .0 160.0 6.325 6.456 33.3042 0.344 3.663 10.10 575.5 156.0 1.863 7.888 30.6049 0.275 1.788 7.16 253.3 156.0 2.419 3.725 23.8056 0.275 1 . 056 5.39 64.1 129. 0 1.756 1.881 23.10

UNCUT, FULL RATE. 12% D.S. SLUDGE (T6)
(REPLICATE 
0 1.638 1 )

58.556 105.00 13471.0 475.0 14.856 134.000 256.007 2.188 58.081 165.00 12860.0 531 .0 16.288 154.690 369.0014 2.163 48.975 169.00 12290.0 536.0 15.744 164.560 357.0021 1 . 569 41.244 114.00 8816.0 438.0 12.250 129.500 271.0028 1 .200 37.263 98.90 8133.0 365.0 9.513 96.438 227.0035 1 .181 35.356 94.80 7230.0 364.0 8.450 85.938 213.0042 0.694 17.375 47.90 3281.0 244.0 4,231 42.419 114.0049 0.313 0.800 5.30 99.4 72.4 0.738 3.513 20.4056 0.206 2.438 9.06 451 .3 86.8 1 .175 6.200 26.30
(REPLICATE 
0 2.181

2)
64.194 164.00 14592.0 573.0 17.975 162.880 365.007 2.269 69.744 192.00 14945.0 632.0 20.125 193.880 420.0014 1.906 52.159 161.00 13337.0 607.0 16.869 174.690 374.0021 1.769 46.694 137.00 10348.0 498.0 15.281 145.380 320.0028 1.650 45.025 149.00 10682.0 518.0 12.725 134.250 321.0035 1.288 35.294 101.00 7628.0 418.0 9.213 97.688 229.0042 0.375 1.413 8.22 121.4 169.0 1.725 1.694 30.3049 0,400 4.869 15.70 870.3 135.0 2.175 11.488 46.2056 0.519 8.506 24.80 1801.0 177.0 2.569 22.219 62.50

(REPLICATE 
0 1.869 3)

65.900 126.00 16098.0 503.0 18.019 133.500 295.007 2.131 62.294 175.00 13730.0 562.0 17.281 172.310 378.0014 1 .831 48.456 153.00 12485.0 535.0 15.269 153.510 348.0021 1.775 48.606 144.00 10817.0 506.0 14.844 152.440 328.0028 1 .613 42.031 131.00 11279.0 446.0 11.406 121.250 291.0035 1 .275 35.156 106.00 7749.0 370.0 9.606 93.620 228.0042 0.531 12.825 33.40 2280.0 203.0 3.344 28.720 84. 5049 0.244 0.750 5.25 87.3 65.2 0.956 1.810 19.3056 0.325 4.638 17. 50 1032.0 116.0 1.894 13.481 47.60
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APPENDIX N

EXPERIMENT 5.1 FACTORS INFLUENCING SLUDGE METALS ADHERING TO 
LEAF SURFACES IN A FIELD SITUATION. (TEMPLE 
FIELD EXPERIMENT).

METEOROLOGICAL DATA (PRECIPITATION, TEMPERATURE AND WIND) 
RECORDED AT AUCHINCRUIVE DURING THE 56 DAYS OF THE EXPERIMENT.

DAY PRECIPITAION 
DAILY TOTAL DURATION 

/mm /hrs.
AIR

TEMPERATURE ( C)
Max, Min.

SOIL (cm)
10 20

WIND
D RUN 

/Km

0
1
2345
67
8  9

10
11
121314
1516171819
20 
21
22232425262728
29303132333435
36373839404142
43444546474849
50515253545556
FOOTNOTE;

15.5 
1 .8 

14.3 
18.1 
0.0
1.3
4.5 
2.9
4.4 0.0 
0.0 
0.1 
1 . 1  
0.9
5.2

1 . 0
4.7
6.7 
0.0
2.2 
0.4 
0.0
0.0
0 . 0
0 . 0
0.3
7.1 
0.4 
0.0
0.3
0 . 0
0.0
0.0
0.0
0.0
0,0

0.5
5.3
3.2
2.6 
0.0 
0.0 
0.0

0.0
0 . 0
0.0
0.2
3.8
2.8 
1 .7
5.4 
0.5 
0.0 
6.9
2.4 
0.0 
0.0

■ 1

10.9 6.,6 0,, 0 1 .9 3.3 E 2901.1 7,8 3,8 4,4 4,2 W 41012.5 10,,4 2,, 1 4,0 4,1 WSW 4979.3 10,.2 4,, 0 7,2 5.5 ssw 729- 7,,6 2,,9 4,8 5., 0 NW 6211. 1 7.,4 1 ,,1 1 ,.9 3,6 NNW 4044.2 10,,3 3,,1 5,,6 5,. 0 sw 4235.0 11 ,,1 6,6 6.5 5,9 SE 325
15.6 9,7 2., 8 4,9 5,5 N 114- 6,,1 1 ,,6 4,. 5 5,, 0 NW 187- 8,.4 3.,0 4.0 4,,8 NE 4750.3 7,8 5,2 5,, 1 5,,3 NE 5895.6 6,, 1 5,,2 S., 0 5,2 NE 3730.3 9,4 4,.4 4,,5 5., 0 NE 29113.0 11 .,6 4.,9 5,,4 5,2 NE 283
2.6 8.,3 4,, 0 5,,4 5..9 NE 1913.8 10..4 3,,7 6,, 1 5,, 5 SE 3276. 5 9,2 2, 6 5,, 0 5,, 1 SE 579- 9,, 9 2,7 4.4 5,2 NW 2373.6 10,,4 -0,,8 3,, 1 4,.6 SW 527* 11 ,, 5 6.,9 7,7 6.6 SW 25312,,4 4,,0 6,,7 6,,1 SE 530
- 10,, 5 8.,4 8,,6 7,,9 S 201- 12,,8 5,,3 8..4 7.5 sw 146- 18,. 1 4,, 8 7,9 7.6 E 1640.3 14,9 10,,3 10,, 0 9,.1 S 47310.7 12,, 1 7,,6 8,.9 8,,9 S 5050.6 10,, 1 5,,6 7,9 8,.0 W 40112,.4 7., 3 9.1 8,5 SW 254
0.7 15,1 6,,2 9.2 8,3 E 214- IS,1 10,, 1 9.6 8,9 E 166- 17,,7 5.,4 8.8 8,.4 calm 138- 20,2 8.,3 9,9 93 E 154- 16,9 6,,4 10,3 9,. 6 calm 127- 17,2 7,, 1 10,7 9,, 9 w 119- 19.,8 8,.7 11 .,4 10,2 E 145
0.8 18,, 5 9,,3 11 ,, 5 10,, 6 E 2386.3 16,, 1 10., 7 11 ,,8 11 ,,2 SE 3771 .8 10,,8 5,,5 8,, 9 9,,9 W 5341.2 10,,8 2,,4 7,,9 8,,9 W 517- 10,,4 3,,2 7,. 0 7,7 NNW 298- 11 ,, 0 5,, 1 8,, 5 8,,3 W 38113.,3 8,, 0 9,2 8.9 W 325
- 14,,3 5,,6 10,,2 9,5 NW 164- 16,,6 3,, 0 10,,8 9,6 W 172- 15,,4 5,2 12,2 10,7 W 2660.2 11 ,,2 7,,4 11 ,2 11,1 WNW 3945.8 12,. 1 4,, 5 9,3 9,7 W 4965.3 12,,1 7,.2 10,. 4 10,2 W 4092.2 11 ,,7 6,2 9.2 9,,5 W 389
5.8 1 0 ,, 8 4,. 6 8,,4 8,6 w 3300.5 11 ., 1 5,,4 9,2 9,,3 N 208- 11 ,,6 0,,9 8,, 5 8,,2 N 2147.6 11 ,,9 0,9 8,4 8,,4 N 2141 . 9 11 ,,6 7,,2 9,, 7 10,,2 W 204- 13,, 1 4,,3 10,. 0 9,, 5 N 262- 15,,4 7,,4 11 ,,2 10,,1 W 153

WIND DIRECTION 
missing value
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APPENDIX 0 
EXPERIMENT 5.2 THE INFLUENCE OF RAINFALL AND DRYING ON 

’WASH-OFF’ OF ADHERENCE SLUDGE.
TOTAL HERBAGE Cd, Cr, Cu, Fe, Mn, Ni, Pb AND Zn CONCENTRATIONS 
(mg/kg D.M.) IN ALL 4 REPLICATES PER TREATMENT.

RAINFALL
TREATMENT

/mm
Cd Cr Cu Fe Mn Ni Pb Zn

0 . 0 0.47
1 . 0 1

0.87
0.96

11.85
9.15
8.32
7.08

85.74
89.80
78.86
8 6 . 6 8

3834.5 
4239.8 
3479.0
3893.5

454.0
530.6
540.8
558.3

4.96
4.41
3.84
4.44

47.95
51.71
42.06
48.77

204.2 
217,1
199.3 
203.7

0,7 0.74
0.63
0.54
0.45

3.52
6.25
3.22
2 . 1 0

44.27
43.47
42.82
49.31

1192.9
1803.2
1379.8
1390.7

430.1 
501.8
439.2 
495.1

1.58
1.04
1.29
1.65

12.43
11.92
11.75
13.79

138.2
147.5
124.4
143.1

1.3 0.45
0.39
0.36
0.50

2.79
3.02
2.87
3.70

34 . 55 
33.37 
39.24 
38.31

677.7
586.1
969.3
978.5

456.3
476.4
561.1
472.1

0.50
0.34
0.25
0.89

5.45
4.96
7.14

10.67

144.5
158.3
141.3
136.6

2 . 0 0.53
0.53
0,37
0.49

4.80
3.28
2 . 2 2

6 . 0 0

35.68
33.34
34.19
7.16

618.2
607.8
505.8 
166.2

430.7 
451.1
442.7 
65.0

0.50
0.59
0.23
0 . 8 8

5.36
5.45
5.82
7.52

128.4
108.1
118.8
22.9

NO SLUDGE 
(CONTROL)

0.80
0.91
0.70
0 . 2 0

2.49
2.28
1.73
3.21

45.36
40.13
35.33
2.39

161.3
361.3 

1034.6
16.7

425.7
391.2
342.3 
20,3

0.74
0.91
0.65
0.36

5.21
5.83
4.75
1.19

118.5
127.6 
99.8
7.6

DRIED
SLUDGE

0.99 
1.26 
1.23 
0.99

11.67
13.18
11.40
10.09

104.54
104.40
114.75
94.02

4285.9
5004.5
5715.5
4307.9

545.4
510.0
573.3
507.9

4.59
5.38
6.47
4.88

50.89
56.24
67.27
50.94

213.6
253.8
281.9 
210.3

2.7 0.36
0.41
0,43
0.47

2.35
1.24
1.19
4.86

35.37
34.19
36.17
47.18

752.2
867.8

1236.9
1549.9

421.6
463.6 
504.8 
355.1

0.41
0.72
0.38
0.61

5.56
4.04
5.45
5.42

122.5
143.8
137.7
143.2

3.3 0.37
0.51
0.48
0.28

3.59
3.19
2.72
4.64

38.20
35.57
37.28
34.83

1320.1
651.8
856.6
845.6

407.7
369.4 
404.0
370.4

0.89
0.54
0.51
1-05

4.41
4.75
5.00
5.02

127.7
108.6
129.2
119.4

3x0.7 0.93
0.98
0.75
0.79

5,56
5.64
3.14
4.09

70.07 
55.57 
50.42
43.08

588.4
553.2

1282.0
995.1

461.7 
497.4 
418.2
354.7

4.63
3.68
2 . 0 1

2.52

5.56
5.64
8.29
6.13

188.7
143.7
145.7 
132.1
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