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A b s t r a c t

In this thesis, a new classification for a large set of interconnection networks, 

refeiTed to as “Vertex Product Networks” (VPN), is provided and a number of 

related issues are discussed including the design and evaluation o f efficient structural 

outlooks for algorithm development on this class of networks. The importance of 

studying the VPN can be attributed to the following two main reasons; first an 

unlimited number of new networks can be defined under the umbrella of the VPN, 

and second some known networks can be studied and analysed more deeply. 

Examples of the VPN include the newly proposed arrangement-star and the existing 

Optical Transpose Interconnection Systems (OTIS-networks).

Over the past two decades many interconnection networks have been proposed in the 

literature, including the star, hyperstar, hypercube, arrangement, and OTIS-networks. 

M ost existing research on these networks has focused on analysing their topological 

properties. Consequently, there has been relatively little work devoted to designing 

efficient parallel algorithms for im portant parallel applications. In an attempt to fill 

this gap, this research aims to propose efficient structural outlooks for algorithm 

development. These structural outlooks are based on grid and pipeline views as 

popular structures that support a vast body of applications that are encountered in 

many areas o f science and engineering, including matrix computation, divide-and- 

conquer type of algorithms, sorting, and Fourier transforms. The proposed structural 

outlooks are applied to the VPN, notably the arrangement-star and OTIS-networks.

In this research, we argue that the proposed arrangement-star is a viable candidate as 

an underlying topology for future high-speed parallel computers. Not only does the 

arrangement-star bring a solution to the scalability limitations from which the



Abstract

existing star graph suffers, but it also enables the development of parallel algorithms 

based on the proposed structural outlooks, such as matrix computation, linear 

algebra, divide-and-conquer algorithms, sorting, and Fourier transforms. Results 

from a perfoim ance study conducted in this thesis reveal that the proposed 

arrangement-star supports efficiently applications based on the grid or pipeline 

structural outlooks.

OTIS-networks are another example o f the VPN. This type o f networks has the 

important advantage o f combining both optical and electronic interconnect 

technology. A number o f studies have recently explored the topological properties of 

OTIS-networks. Although there has been some work on designing parallel 

algorithms for image processing and sorting, hardly any work has considered the 

suitability o f these networks for an important class of scientific problems such as 

matrix computation, sorting, and Fourier transforms. In this study, we present and 

evaluate two structural outlooks for algorithm development on OTIS-networks. The 

proposed structural outlooks are general in the sense that no specific factor network 

or problem domain is assumed. Timing models for measuring the performance of the 

proposed structural outlooks are provided. Through these models, the performance of 

various algorithms on OTIS-networks are evaluated and compared with their 

counterparts on conventional electronic interconnection systems. The obtained 

results reveal that OTIS-networks are an attractive candidate for future parallel 

computers due to their superior performance characteristics over networks using 

traditional electronic interconnects.

Ill
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Chapter 1

Introduction

1.1 Introduction

The solution of many large-scale problems that require enormous computational 

power is now possible due to the availability of high-speed parallel computers 

employing hundreds or thousands o f processors. W hen these machines were first 

proposed, two observations were made [23]. First, it was observed that in order to get 

the maximum possible benefit from working with multiple processors as opposed to 

a single processor, it was important to partition a task as evenly as possible among 

the processors. This was important for preventing the parallel com puter from being 

dependent on one single processor. Second, it was observed that in order to complete 

a given computation, a processor could require access to the result of com putation of 

other processors. This is particularly the case with multiple-instruction-multiple-data 

streams (MIMD) parallel computers, where different processors execute different 

sequence of tasks [39]. In fact, a significant amount of the time required for a parallel 

com puter to solve a given problem is spent by one or more processors
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communicating the results of their computations to other processors. These 

processors are physically interconnected by an interconnection network, and co

ordinate their activities to solve a common problem by exchanging information, 

depending on the way communication is achieved between the processors. Figure 1.1 

shows set of processors connected to each other through an interconnection network.

A major design issue involved in the construction of a paiallel computer is the 

topology of the network interconnecting the processors as this has great impact on 

system performance. M any interconnection networks have been proposed over the 

past two decades [3, 8, 25, 27, 28]. The most populai* examples include the 

hypercube [2], star [3], arrangement [28], Optical transpose Interconnection Systems 

(OTIS-networks) [20, 34], and many others [5, 26, 27].

1.2 Design Parameters for Interconnection Networks

The topology of most existing networks can be modelled as unidirectional graphs, 

where each processor corresponds to a vertex and each communication link to an 

edge. These networks are sometimes referred to as direct networks because the 

interconnection models between the processors are direct. The proposed design of 

the interconnection network determines many of the architectural features of a 

parallel computer and affects the overall system performance. Although the actual 

performance of a network depends on many technological and implementation 

factors [56, 57] several metrics have been extensively used in the literature to 

evaluate and compare different topologies including degree, diameter, scalability, 

number of links, implementation cost and ability for efficient algorithm development 

[3, 4, 11, 21, 28]. The most im portant of these considerations are listed below with 

brief descriptions. A comprehensive evaluation of a candidate topology must take 

into account all these characteristics and the choice of an appropriate topology
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depends on various trade-offs between them [2, 4, 7, 22, 25, 28, 32, 33].

Interconnection Network

Figure 1.1: Set of processors connected through an interconnection network. 

Degree:

The degree of a network is the number of neighbours of a processor, also called a 

node, (these two terms will be used interchangeably throughout the thesis). The 

degree relates to the port capacity of the processors and hence to the hardware cost of 

the network [3]. If each node is connected to a fixed number of neighbours, then the 

network topology is a regular graph.

Diameter:

The maximum distance between a pair of nodes in a network is referred to as the 

diameter of the network [28]. The diameter provides a rough estimate of the 

communication delay experienced by a message when crossing from source to 

destination.

Symmetry:

The simplest notion of symmetry relates to the vertex and edge symmetry. A vertex 

symmetric graph looks the same when viewed through any vertex. In graph-theoretic
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terms, a network is node-symmetric if, for every pair of nodes a and b, an 

automorphism of the network can be found that maps a into b. Also a network is 

edge-symmetric if, for every two edges a and b, an automoiphism o f the network can 

be found that maps a into b [3].

One important consequence of the vertex symmetry is that a guest structure 

embedded in one region o f the host network can be readily translated into another 

region without affecting the quality o f the original embedding [30, 42]. Symmetry in 

a network also allows nodes to use the same routing algorithm and simplifies the task 

of path selection [43]. Furthermore, common data movement operations, such as 

broadcast, can be implemented easily and efficiently on symmetric topologies.

Expandability/scalability:

Expandability relates to the possibility of building networks based on the same 

topology for different size requirements. An expandable network allows expansion of 

a parallel computer without having to replace the existing hardware [25]. A network 

is scalable if it continues to yield the same performance per processor as the number 

of processors increases.

H ierarchical structure:

This relates to the ability to build large networks from smaller sub-networks [25]. 

Recursively-defined networks naturally possess certain symmetries that are often 

exploited in the design o f routing algorithms and in the evaluation of fault tolerance 

[43].

Node disjoint paths:

The existence and characterisation o f parallel paths is crucial to the design of routing 

algorithms [52]. Furthermore, the existence of parallel paths is necessary to speed up
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transfer of large amounts of data and provide alternative routes in situations of 

processor failure [43].

Optim al algorithms fo r  various modes o f  communication:

Algorithm designers have identified the need for different modes for parallel 

communication in a network, such as broadcasting communication [13]. It is 

important that the underlying network embeds adequate communication graphs 

leading to optimal algorithms for the various modes of communication. For example, 

the broadcast mode o f communication often requires the use o f the grid structural 

outlook where the network nodes are decomposed into subgraphs arranged as rows 

and columns of a grid in order to facilitate the broadcasting operation [53].

Cost/performance criteria:

A  widely accepted criterion for cost-performance trade-off assessment is the 

cost/performance criteria [6]. This metric is defined as product o f the number of links 

with another metric such as the degree or diameter of the network. The area o f the 

VLSI layout needed to im plement a network can also be used to estimate cost o f an 

interconnection network.

Connectivity:

The connectivity of a network provides a measure of a number o f independent paths 

connecting a pair of nodes [14]. The term node connectivity is defined as the 

minimum number of nodes that need to be removed to disconnect the network, and 

link connectivity is defined as the minimum number o f links that has to be removed 

to disconnect the network.
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Flexibility:

The flexibility of a network topology should be rich enough to allow frequently used 

topologies to be embedded so that algorithms designed for other architectures can be 

simulated.

Embedding:

The problem of assigning processes to processors in a paiallel computer is also 

known as the mapping problem. A parallel algorithm could be represented as a guest 

network G, where the nodes in the guest network express processes and links express 

communication between processes. A host network H, where nodes express 

processors and links express communication between processors, represents a 

parallel computer. The mapping problem  could be formed as a network embedding 

problem, mapping statically known networks, or guest network, into a network with 

fixed number of nodes [25, 30].

The need for embedding stems from the fact that if a network G can be embedded in 

a network H, then all the algorithms developed for one type of parallel systems with 

network G can be easily transported onto another systems based on the network H  

without any extra cost [12].

Dilation:

The dilation  of an embedding is the length o f the maximum path in the host network 

H  that is associated with a link in the guest network G.

Expansion:

The expansion  of an embedding is defined as the ratio | Vh | / |  Vg I  where | Vh I  
and I  V g  I  represent the number of node in the networks H and G, respectively.
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1.3 The Star Graph

During the last decade a large variety of interconnection networks for parallel 

computers have been investigated [1, 4, 6, 26, 27]. One of the well-known 

interconnection networks is the hypercube, also known as the binary n-cube. Figure

1.2 presents an example of a 4-dimensional hypercube [8]. The star graph [3] is 

another example, which has been proposed as an attractive alternative to the 

hypercube. This network has attracted a lot of research efforts. For instance, several 

properties of this network have been studied including its basic topological properties

[2], parallel path characterisation [2], and embedding [29]. Akers and Krishnamurthy

[3] have shown that the star graph has several advantages over the hypercube 

including a smaller diameter, smaller average diameter and lower degree for a fixed 

network size. The star graph is also edge and vertex symmetric and is maximally 

fault tolerant [3]. Furthermore, a limited number of parallel algorithms for some 

well-known problems have been reported in the literature including computing fast 

Fourier transforms [44], broadcasting [45, 46, 47], selection and sorting [48].

1000 1010

001004NN)
1110

1100

0110
0100

(NN)1

0011

0101
0111 1011

1001

1101

Figure 1.2: 4 -Dimensional hypercube.

Definition 1.1: The /i-star graph, denoted by S„, has n\ nodes each labelled with a 

unique permutation on {n) = {1,...,«}. Any two nodes are connected if, and only if.
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their corresponding permutations differ exactly in the first and any other position.

Figure 1.3 shows the 4-star graph with 4 groups each containing 6 vertices (i.e. four 

copies of 3-star graphs). The diameter, 6, and the degree, a , of the star graph are as 

follows [3]:

5, o f /i-star graph = L y(/i-l)J

a , of the /i-star graph = /i-l, where n>\.

4231
1234

3214 2134 24313241

23413124 )34212314

1324 4321

3412 2413

4312 4213 14231432

4132 12431342 4123

3142 2143

Figure 1.3: The 4-star graph, 5 4 .

The structural outlook can be issued by decomposing the nodes of the graph into 

subgraphs, this will facilitate data broadcasting between the different nodes of the 

network. As an instance of the structural outlooks are the well known grid and 

pipeline structures, where the obtained subgraphs are assigned on the rows and 

columns of the grid respectively, while for the pipeline structure these subgraphs will
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form the different stages of the structure. Actually there are two structural outlooks 

for the star graph, [10, 46], Menn and Somani [10] have shown in their paper that 

the star graph can be viewed as n x  («-1)!, where the rows and the columns in this 

grid are (w-l)-star and an M-linear array respectively. Furthermore, Ferreria and 

Berthome [46] have shown that the star graph can be viewed as a rectangular grid Rx  

C (Rows by Columns) where the rows are substar-5;j_2 and the columns are n{nA)  

nodes on each column. However, these structural outlooks are insufficient for 

developing efficient algorithms on the stai* graph. For the stai’ graph, the grid 

structural outlooks are unbalanced because they resemble column processing rather 

than grid processing. For instance, the 10-star can be viewed as 10x362880 or 

90x40320 grid. Compared to the optimal square grid structure of the hypercube, this 

grid is inefficient because it generates unbalanced message dimension between the 

rows and columns; it follows that the communication cost between the rows and 

columns of the grid are not unifoiTO.

The pipeline structure is another well-known structural outlook that is suitable for 

real applications. In the pipeline structure the issued stages from the decomposition 

o f the nodes into different n stages is represented by 'Sn-\ for each different stage, 

where \<i<n. We know from the literature [18, 19] that the star graph can be viewed 

as a pipelined structure, where the stai' pipelined outlook arrange the n-star as a 

sequence o f «x(«-l)-stars forming an n-stage pipeline. The authors in [18, 19] have 

shown that when the nodes of an /i-star are ranked using the pipeline structured 

outlook then there exists a path from any node in 'S^.i to its peer node in or ''

^SnA, where l<i<n. The length o f this path is either one or at most three. However, 

the structural outlook based on the pipeline view for the «-star graph is also 

insufficient because it generates unbalanced stage with the number of nodes in each 

stage. For example, the number o f nodes for each stage in the 11-stage pipeline is 

3628800, which is highly unbalanced and this results in a non-desirable network.



Chapter 1 ; Introduction

In an attempt to address the problems o f the star graph, Day and Tripathi [28] have 

proposed the arrangement graph as a generalisation of the star graph. The (m,/:)- 

arrangement graph, denoted by A„î k where 1< k< m-1, has m\/{m-k)\ nodes. Each 

node is labelled with a unique arrangement of k symbols chosen from (m>. The 

network has a diameter L i a n d  the node degree is k{m-k) [28]. Two nodes are 

connected if, and only if, they differ in exactly one of their k symbols. Figure 1.4 

shows the topology o ï  n where the nodes 41,42 and 43 are neighbours.

42

43

Figure 1.4: The arrangement graph

1.4 Vertex Product Networks

In this thesis a new classification for a large set of interconnection networks is 

provided. These networks are termed '"‘'Vertex Product Networks"' (VPN). The VPN 

provides means for unification by which the studies on topological properties for 

these networks can be done at the same time. Studying the VPN is important because 

they enable us to define unlimited number of new networks and further study and 

analyse existing networks. As an example of the VPN is the existing Cross Product

10
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Networks (CPN), which are constructed from the graph product of two factor 

networks [4, 33]. Another example of the VPN is the Optical Transpose 

Interconnection Systems (OTIS), which provides the best o f both the “electronic” 

and “optics” worlds by using free-space optical interconnects to connect distant 

processors and electronic interconnect for processors that are in the same group [34, 

35]. A formal definition for the vertex product network is given below.

Definition 1.2: Given any two undirected graphs Gi = (Vi, E\)  and G2 -  (V2, E2), 

where Vi and V2 are the sets of vertices, E\ and E2 are the sets of edges in G\ and G2, 

respectively.

The Vertex Product Network ( G v p n )  = (Gi<8 )G2) of two undirected graphs Gi = (Vi, 

E[) and G2 = (V2, E2) is represented by an undirected graph ( G v p n )  -  ( V v p n , E v p n )  

where V v p n  and E’vp/v are defined as follows.

1- y  VPN -  {(wi ,V]>|  u\eW i  and vie  V2 }= V i^ V i  ( ^  is the Cartesian product)

2 - For any u = (uy, uz) and v = <vi, V2> in V v p n , (n, v) is an edge in E v p n  defined 

by the function / s u c h  that Evpn = {(«, v) | / ( w ,  v) =1}. The fu n c tio n /is  defined as 

follows; -

f 1 i f  {{U2 , V2) e E 2 and w,= vi) or (u[= V2 and U2= Vi) “OTIS”

“i l  i f  {{{U2=V2) and {[(ui^vi) and {U2,V2) eEz}} “CPN”
f { u ,  v) = i

[ 0 otherwise

From the above definition, we observe that the set of vertices in both the CPN and 

OTIS are composed from the Cartesian product of their constituents’ vertex sets. The 

original definition for the CPN covers also the OTIS set of vertices. Simply the set of 

vertices in the VPN, Vyp^ = Vi ® V2 (where ® is Cartesian product on sets), that can

11
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be generated from Gy = ( V i ,  Ey)  and G2 = (V2, E 2).

The set o f edges of the CPN is defined in a mutual exclusive form while the OTIS 

defines edges in a transpose form. The above definition creates the linkage that is 

controlled by a "binary" function (/) whose domain is V v p n  and its range is {0,1). 

Given any pair of vertices from Vvpn, f  VQtums 1 if the two vertices are connected and 

0 otherwise. Hence the set o f edges is given by Evpn = l(w, v) | / ( w ,  v) =1}. In the 

following subsections the CPN and OTIS are discussed in more detail.

1.4.1 Cross Product Networks (CPN)

The CPN were proposed by Day and Al-Ayyoub [4] as a theoretical framework and a 

tool for generating and defining new interconnection networks and further studying 

and analysing some of the known interconnection networks. The CPN are basically 

constructed by "multiplying" two known topologies of the same or different kinds. 

The cross product network of two interconnection networks given by two undirected 

graphs Gi=(Vi, Ey) and G2=(V2 , £'2), where Viand V2 are the set o f vertices of G | and 

Ga and £ iand  £ 2  are the set of edges of G y  and G2, respectively. The formal definition 

of the cross product o f the two graphs is defined as follows:

Definition 1,3: The cross product G=Gy®Gz of two undirected connected graphs 

Gi=(Vi, £ |)  and G2=(V2, £ 2) is the undirected Graph G=(V, £ ), where V  and £  are 

given by:

V - {( x y ,  y) I X] eVi and yeVzJ and

E={{{xy,y),  (yi,y)) |  ( x i , y i )  e E y j u  { ( ( x , X 2 > , < x , y 2 > )  I  ( - ^ 2 . ^ 2 )  ^EzJ.

So for any u =<xi, xa) and v ={y\, yz) in V, (u, v) is an edge in £  if, and only, if  either 

(xi, yi) is an edge in £ 1  and xa = yz, or (xa, yz) is an edge in £a and X] = yi. The edge 

{u, v) is called a G red g e  if (xi, yi) is an edge in E y ,  and it is called Ga-edge if (xa, ya)
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Chapter I ; Introduction

is an edge in E 2  [4]. The size, degree, diameter and number of links of the cross 

product o f two networks are defined next.

Definition 1.4: If G\ and G2 are two undirected connected graphs of respective size 

and and have respective diameters ôi and Ô2, then [4, 33]:

1) Gi®G 2 is connected.

2) The size s of G i®  G2 is s = Sj.s^.

3) The diameter ô o f Gi® G2 is ô = Ô1+Ô2.

4) The degree of a node 11 ={x\, X2} in G ,®G 2 is equal to the sum of the

degrees o f vertices x\ and %2 in G\ and G2, respectively.

5) The number of links for the product network, is (size-degree)/2.

The star-cube, which was proposed in [43], is an example o f the CPN. It is defined 

as the cross product of the star graph and hypercube. The {n, A)-star-cube, SQn,h 

where M, A >1, is undirected graph whose set o f nodes is the set o f pairs ,

. .Of) such that x^x^.. .x,, is a node o f S„ and « j«2 - • is a node of Qh. A node u = 

(x^X2"'^,7 ’ is connected to a node y  =  (yiy2--->'/n b f > 2 " - ^ h )  if, and only, if

XjX2-..x,j  is connected to yjy2 -*-3 «̂ in (in this case u and v are said star-connected) 

or a \a 2...aij is connected to b \b 2...b\\ in Qh (in this case u and v are said cube- 

connected) but not both [43].

W hen u and v are star-connected (respectively cube-connected) the edge (m, v ) is 

called the star-edge (respectively cube-edge). Figure 1.5 shows the cross product of a

3-star graph and 2-cube. One of the major problems with the star-cube network is 

that, it does not have any proposed algorithmic structural outlooks in the literature to 

support parallel algorithms such as matrix computation £43}.

13
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Figure 1.5: The star-cube network, SQ„j,.

Another example of the CPN that has been investigated includes the hyper-Petersen 

network, which is a product of the binary hypercube and the well-known Petersen 

graphs [26]. As we will be discussing later, our proposed arrangement-star network 

is another example of the CPN as it is constructed from the product of the star and 

arrangement graphs [7, 37].

1.4.2 Transpose Networks

The Optical Transpose Interconnection Systems is a transpose network, first 

proposed by Marsden [34]; the abbreviation OTIS will be used to refer to the 

interconnection network build from transpose product. An OTIS-based computer 

contains N~ processors partitioned into N  groups with N  processors each. A processor 

is indexed by a pair (x, y), 0<jc,y<dV where x  is the group index and y  is the processor 

index. Processors within a group are connected by a certain interconnecting 

topology, while transposing group and processor indexes achieve inter-group links. 

Figure 1.6 shows a 16 processor OTIS connection where the bold arrows represent
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an optical links between two processors o f two different groups. For instance, the 

intra group connects may be mesh-based, hence the term OTIS-mesh is used to 

denote this network. The terms OTIS-computer and OTIS-networks refer to parallel 

architecture based on transpose networks and will be used interchangeably in the rest 

of the thesis.

OTIS-networks are basically constructed by "multiplying" a known topology by 

itself. The set of vertices is equal to the Cartesian product on the set of vertices in the 

factor network. The set of edges consists of edges from the factor network and new 

edges called the transpose edges. The formal definition of OTIS-networks is given 

below.

group 0 group

(0,0) (0,l>

4<0,2> <0,3>X^

(2 ,2> (2,3)

. ^ ( L 2 >  < 1 ,3 )^

*A<3.0> <3,1 > y

group 2 group 3

Figure 1.6: An OTIS connection with 4 groups of 4 processors each.

15



Chapter 1 ; Introduction

D efinition 1.5: Let Go = (Vo, Eq) be an undirected graph representing a factor 

network. The OTIS-Go = (V, E) network is represented by an undirected graph 

obtained from Go as follows V = {(%, y) | %, y E Vo) and E  = {((%, y>, (%, z)) | if  (y, 

z)E,Go} u  { « X ,  y), <y, x>) | x, y e  Vq}.

The set of edges E  in the above definition consists of two subsets, one is from Go, 

called Go-type edges, and the other subset contains the transpose edges. The OTIS 

approach suggests implementing Go-type edges by electronic links since they involve 

intra-chip short links and implementing transpose edges by free space optics. 

Throughout this thesis the terms ''electronic move'" and the "O TIS move'’' (or "optical 

move") will be used to refer to data transmission based on electronic and optical 

technologies, respectively.

Definition 1.5 covers a wide class o f OTIS-networks. In fact, for any known factor 

network Go, a new OTIS-network can be obtained by the above definition. The 

OTIS-mesh [38], OTIS-hypercube [41] are only few instances o f such networks that 

have been investigated in the literature.

1.5 Motivations

Recently, there has been an increasing interest in a class of interconnection networks 

called product networks [4, 7, 25, 27, 49]. In this thesis, the VPN is provided as a 

new classification for the set o f product networks, and a number o f related issues are 

discussed, including the design and evaluation o f efficient structural outlooks for 

algorithm development on this class o f networks. The importance of studying the 

VPN stems from the fact that it allows us to define unlimited number o f new 

networks and further study and analyse more deeply some known networks such as 

star [3], hypercube [8], and arrangement networks [28].
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A  widely studied interconnection network is the star graph  [3]. The star graph has 

been proposed as an attractive alternative to the hypercube due to its superior 

characteristics. The star graph has three significant advantages over the hypercube: a 

lower degree, a smaller diameter and a smaller average diameter for a comparable 

number o f nodes. The star graph, however, suffers from some drawbacks [25]. One 

major problem with the star graph is related to its poor scalability. Despite its 

attractive topological properties, the star graph has not been used in practical systems 

yet. One reason for this may be attributed to the difficulty in developing parallel 

algorithms on this network for common parallel applications. Mapping of data and 

tasks on the star graph is not as obvious as it is the case for the hypercube and mesh 

[32].

The arrangement graph  as a generalisation of the star graph was proposed by Day 

and Tripathi [28], in an attempt to address the scalability problem in the star graph. 

The arrangement graph slightly improves the scalability problem of the star graph 

and preserves the desirable properties of this graph. However, since its introduction 

there has been little work done on the development o f new algorithms for this 

network. In fact, the arrangement graph inherits the major difficulties in developing 

efficient algorithms that could take advantage of the attractive topological properties 

of this network.

In this thesis, we propose a new VPN, referred to here as the arrangement-star. This 

network is constructed from the graph product of the arrangement and star networks. 

We prove the viability o f the proposed arrangement-star as an underlying topology 

for parallel computers. The arrangem ent-star network not only brings a solution to 

the scalability problem from which the star and arrangement graph suffer, but also it 

preserves all the attractive features o f these two networks.

Furthermore, we show that the arrangement-star network allows the development of
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efficient algorithmic structural outlooks that support a wide class of parallel 

applications, e.g. matrix computation problems, based on the grid and pipeline 

structures. Results from a performance comparison, based on the proposed gird and 

pipeline structural outlooks, reveal that the new anangem ent-star network 

outperforms the existing star and hypercube networks in terms o f communication 

cost.

Optical Transpose Interconnection Systems (OTIS) networks are another example of 

the VPN. These networks are basically constructed by “multiplying” a known 

topology by it self and are implemented using both free-space optical and electronic 

interconnect technologies. Recently there has been a growing interest in the study of 

parallel algorithms for optoelectronic networks in general and for OTIS-networks in 

particular [15, 20, 24, 36, 38, 41]. For instance, Sahni and W ang [38] have presented 

and evaluated various algorithms on the OTIS-mesh (a special case of OTIS- 

networks), including basic data rearrangements, routing, selection and sorting. They 

have also developed algorithms for various matrix multiplication operations [62] and 

image processing [24].

Aside from the above-mentioned works, there has been little research work devoted 

to the study of algorithms on OTIS-networks. In an effort to fill this gap, this thesis 

proposes two new structural outlooks for developing algorithms on these networks. 

These structural outlooks are based on grids and pipelines as popular structures that 

support vast body of applications ranging from linear algebra to divide-and-conquer 

type o f algorithms, sorting, and Fourier transforms. The proposed structural outlooks 

are general in the sense that no specific factor network or problem domain is 

assumed. This study shows that for some factor networks, such as the mesh and 

hypercube, the performance of the proposed stmctural outlooks outperforms the best- 

known results for these factor networks. Also we show how the proposed structural
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outlooks can be used to design new parallel algorithms on OTIS-networks for 

solving systems of linear equations, an important problem that is encountered in 

valions fields of science and engineering [9, 11, 12, 16].

1.6 Outline of the Thesis

Chapter 2 proposes the arrangement -star network, as a case study on the VPN. This 

network is constructed from the graph product of the star and anangem ent graphs. 

Many of its topological properties are derived including degree, diameter, size, 

degree of accuracy, number o f links and all-port one-to-all-broadcast. A comparative 

analysis of the star, arrangement and anangem ent-star networks are conducted and 

the results reveal that the proposed network has superior topological properties over 

its constituents; the star and arrangement graphs.

Chapter 3 develops two efficient structural outlooks, namely the grid and pipeline 

stnictures, for algorithm development on the new arrangement-star network. The 

proposed structural outlooks are then used to conduct a performance comparison 

between the arrangement-star, star and hypercube.

Chapter 4 introduces the Optical Transpose Interconnection Systems (OTIS) 

networks as another case study on the VPN. Some of the basic topological properties 

o f OTIS-networks are derived, including size, degree, diameter, number of links, 

routing and broadcasting. These properties are used in the subsequent two chapters.

Chapter 5 develops and evaluates two general structural outlooks for algorithm 

development on OTIS-networks. The proposed structural outlooks allow efficient 

mapping of a wide class of algorithms into OTIS-networks. Timing models for 

measuring the performance of the proposed structural outlooks are also provided. 

Through these models, the performance of various algorithms on OTIS-networks are
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evaluated and compared with their counterparts on conventional electronic 

interconnection systems.

Chapter 6 uses the proposed grid structural outlook, discussed in Chapter 5, to 

introduce parallel algorithms for solving systems o f linear equations on OTIS- 

networks.

Chapter 7 summarises the results presented in the thesis and discusses some possible 

directions for future research work.
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Chapter 2

A Case Study on Vertex Product Networks: 
The Arrangement-star Network

2.1 Introduction

Network topology defines the way nodes are connected. Graph theory is a useful tool 

in the description o f network topologies, where each processor corresponds to a 

vertex and each communication link to an edge [11]. It is often conventional to refer 

to a network and its corresponding graph as if they were identical. Among the key 

features o f a given topology are the degree, diameter, vertex symmetry, connectivity, 

and hierarchical stmcture.

A number of interconnection network topologies have been suggested in the 

literature, which address one or more of the above features [25, 27, 28, 36, 51]. The 

proposed topologies range from simple graph, such as cycles and complete graphs to 

more sophisticated graphs such as stars [3] hypercubes [2, 22], shuffle-exchanges 

[73], and mesh connected trees [49].
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In this chapter a new interconnection network is proposed, referred to as the 

arrangement-star network as a case of study on vertex product networks. The 

arrangement-star is constm cted from the cross product of the star and arrangement 

graphs. Our analysis reveals that the proposed topology has superior topological 

properties over its factors: the stai' and arrangement graphs. Besides having a smaller 

diameter, node degree, and number of links, it has a lower broadcasting cost and 

more flexibility in choosing the desired network size. Furthermore this chapter 

introduces a new measure called the degree o f  accuracy, which is used to compare 

the three topologies: star, arrangement, and arrangement-star.

The remainder of this chapter is organised as follows. Section 2 discusses the 

background and motivation behind the proposal of the arrangement-star network. 

Section 3 provides the necessary notation and definitions that will be useful in our 

study, and then formally presents the arrangement-star network. Section 4 discusses 

some general topological properties of the arrangement-star graph. Section 5 

conducts a comparison o f some o f basic properties of the star, arrangement and 

arrangement-star graphs. Finally, Section 6 summarises this chapter.

2.2 Background

During the last decade a large variety of interconnection networks for high-speed 

parallel systems have been proposed [3, 8, 15, 25, 26, 28, 49]. The star graph  [3] is 

one such example that has been widely studied in the literature [2, 3], it has been 

proposed as an attractive alternative to the hypercube. Several properties of this 

network have been investigated including its basic topological properties [3], parallel 

path characterization [2], and embedding [29, 50]. Akers and Kiishnamurthy [1 ,3 ]  

have shown that the star graph has several advantages over the hypercube including a 

smaller diameter, smaller average diameter and lower degree for a fixed network
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size. The star graph has also been shown to be edge and vertex symmetric [3] and is 

maximally fault tolerant [2]. Furthermore, a limited number of parallel algorithms for 

solving some well-known problems on the star graph have been reported in the 

literature, including computing fast Fourier transforms [44], matrix decomposition 

[32], broadcasting [45], and sorting [48].

The star graph, however, has a few drawbacks [25]. One o f the major problems of 

the star graph is related to its scalability. The size of the star graph increases 

according to a factorial function, and thus grows widely very rapidly; for example, 

the value of 7! is equal to 5040 while the value o f I I ! is about forty million. Despite 

its attractive topological properties, the star graph has not been used in practical 

systems yet.

In an attempt to address the scalability problem in the star graph. Day and Tripathi 

[28] have proposed the arrangement graph as a generalisation of the star graph. The 

arrangement graph is a family o f undirected graphs that contains the star graph 

family. It slightly brings a solution to the problem of the scalability, which the star 

graph suffers from (i.e. the problem of growth o f the number n\ o f nodes in the n- 

star). It also preserves all the nice qualities of the star graph topology including, 

hierarchical structure, vertex and edge symmetric, simple shortest path routing and 

many fault tolerance properties [28]. Still a common drawback of the star and 

anangem ent graphs is the restriction on the number o f nodes: n\ for the star graph 

and mM{m-k)\ for the arrangement graph. The set of values of n\ (or m\/{m-k)\ ) is 

spread widely over the set of integers; so, one will be faced with the choice of too 

few or too many available nodes.

The graph product has recently been investigated in [4, 22, 33] as a graph-theoretical 

framework for generating and analysing interconnection networks topologies. Day

23



Chapter 2 ; A Case Study on Vertex Product Networks: The Arrangement-star Network

and Al-Ayyoub [4] have used this framework to investigate properties of existing 

networks such as scalability, vertex symmetry, routing, broadcasting, embedding, 

recursive structure, and the existence of maximum-size families of node-disjoint 

paths along with some results on node-connectivity and an upper bound for the fault- 

diameter [4, 25]. Several other researchers have investigated the graph product on 

existing networks. For instance. Das [53] has studied the graph product of the 

hypercube and Peterson networks. Al-Ayyoub and Day [25] have shown that the 

hyperstar (a product of star graphs) outperforms other product networks on various 

aspects, including a lower degree and diameter. Other examples of product networks 

that have been studied in the literature include the hyper-Debmijn [27], the star- 

hypercube [43], and mesh connected trees [49].

This chapter considers the graph product of the arrangement and star graphs with the 

aim to enhance the topological characteristics of these two graphs with the elegant 

capabilities o f product networks [7, 37]. As we shall see below, our study reveals that 

the new arrangement-star network has superior topological properties over both the 

star and arrangement graphs and it brings a solution for the common problem, which 

these two networks suffer from (i.e. the scalability problem). The arrangement-star 

network also preserves all the nice qualities of the star and arrangement graphs 

topologies including, hierarchical structure, vertex and edge symmetric, simple 

shortest path routing and many fault tolerance properties.

2.3 Notations and Definitions

The «-star graph, denoted by 5',,, has n\ nodes each labelled with a unique 

permutation on («)={ 1,...,«}. Any two nodes are connected if, and only if, their 

corresponding permutations differ exactly in the first position and any other position.
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D efinition 2.1: An «-star graph, denoted S,}, is an undirected graph consisting of «! 

vertices labelled with the « ! permutations of « symbols (we use the symbols 1,2, ... , 

«). There is an edge between any two vertices if, and only if, their labels differ in the 

first and any other position [3].

An arrangement graph is specified by two parameters m and k, satisfying I < k < m. 

For simplicity let <«z> = {1,2,...,«z) and < k> = {1,2,.

That is, the nodes of A,„̂ k labelled with a unique arrangements o f k elements out of m 

symbols («i), and the edges of A,n,k connect arrangements which differ in exactly one 

of their k  positions An edge of A,,,,* connecting two arrangements, which differ only 

in position i called an /-edge. In this case, p  and q are /-adjacent and q is called (/, q\)~ 

neighbour o f p  [28]. The («z,k)-arrangement graph Am̂ k is regular of degree k{m-k) 

and of size mM{m~k)\, and diameter [3^/2j. The (m, m -l)-arrangem ent graph A , i s  

isomoi-phic to S„ graph [28], and the («z, 1 )-arrangement graph is isomorphic to the 

complete graph with m nodes.

D efinition 2.2: The («z,k)-arrangement graph A,„,a.- = {V\, E\), 1 < k < m -l is defined 

as follows [28]:

V i-  {p\P2 • •. A-1 Pi E (m) and pi ^  pj for / ^  j  ] = P f , and

E\ = lfp ,q ) I  p  and q in Vi and for some / in {k) , pi ^  q, and pj = qj for ;  ^  / }.

The graph product is an elegant mathematical representation for studying 

interconnection networks; see Definition 1.3 in Chapter 1 for a formal definition of 

the graph product. It has been used as a tool for generating new attractive 

interconnection networks [7, 22, 25, 26, 27, 43]. The graph product of the 

arrangement and star graphs is applied to propose a new network, the arrangement-
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star, with the aim o f enhancing the topological characteristics of the factor networks 

[7, 37, 71]. Below, a formal definition of the arrangement-star graph is given.

t
D efinition  2.3; The arrangem ent-star graph is the cross product of the «-star graph 

and the (m, A)-arrangement graph, and is given by ASn,„a -  ^m.k such that n>\ 

and 1 <k <m.

Note that if G\ and G2 are two undirected graphs then for any node X  = {x\, X2) in the 

cross product graph, G = G \0 G2, has an address consisting of two parts, one coming 

from Gi and the other com ing from G2. We will denote the earlier part by lp{X)=x\ 

and the later part by rp(X)=X2 .

Figure 2.1 shows the topology of A S 2^,i that is obtained from the graph product of S2 

and A3 2 networks. A node X  = {u, v> in A S 2,3,2 consisting of two parts, left part 

coming from the star graph and the right part coming from the arrangement graph. 

Two nodes X = (u, v> and Y = (u , v' > are connected if, lp{X) = lp(Y) and rp(X) is 

connected rp{Y) in A,„jt (in this case X  and Y are said arrangement-connected) or 

rp{X)= rp(Y) and lp(X) is connected lp(Y) in S„ (in this case X  and Y are said star- 

connected). For instance in Figure 2.1 the node ah l3  is connected to the node ah\2 , 

and the node ab23 is connected to the node ba23.

ab l3 ab l2

ab32

ab31ab21

ba2I ba31

ba23

bal3 bal2

Figure 2.1: Arrangement-star graph, A52,3,2*
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2.4 General Topological Properties

This section discusses and derives some of the basic topological properties of the 

arrangement-star network including size, degree, diameter, parallel paths, average 

diameter, optimal broadcasting, optimal routing, fault diameter and connectivity. 

Table 2.1 summarises the topological properties of the star and arrangement graphs 

along with those of the arrangement-star for comparison purposes. These topological 

properties have been derived using the theoretical framework for analysing product 

graphs, proposed by Al-Ayyoub and Day [4] as well as Youssef [33]. For instance, if 

G I and G^ are two undirected graphs of respective sizes and and of respective 

diameters S[ and Sz then the size 5 and the diameter S of the graph product Gi ® G2 is 

equal to .s = S  = âi + âz- The degree o f a node in G\ 0  Gz is the sum of the

degrees of Gi and G2 [4, 33]. It therefore follows that the size, degree and diameter 

of the arrangement-star network are equal ml.nl /  {m-k)\, n+k{m-k)-\ and Lf (n-l)J + 

respectively. Similarly, it can be easily shown that the average diameter of the 

arrangement-star network is n-\-2ln+Hn-A+Hk+k{k-2)lm where n+2ln+Hn-4r and 

Hk+k(k-2)/m are the average diameters of the n-star graph and (m, A)-arrangement 

graph, where //„, are the Harmonic number of star and arrangement graphs, i.e., 

H„= Z"., lA and % =  Zj.i 1A [3,51].

The existence of node-disjoint (parallel) paths between any pair of nodes is an 

important feature of any interconnection network. For instance, these paths are useful 

for speeding up transfer of large amounts of data and for offering alternative paths in 

the cases of node or link failure [4]. Tripathi and Day [52] have shown that there are 

k (m~k) parallel paths between any two nodes of (m,^:)-arrangement network, and the 

length o f each parallel path is at most the minimum path between the two nodes plus 

four. Also, there are n -l parallel paths between any given two nodes in the n-star; the 

length o f each of these paths is at most the minimum distance between any two nodes
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plus four [2]. As shown in Table 2.1, the arrangement-star network has complete 

parallel paths with maximum length equal to the minimum path between the two 

nodes plus 4. Note that we have used the abbreviation CPP/MLI-4 to refer to the 

graph that has complete parallel paths with maximum length increase 4. The length 

of each of these paths is at most the minimum distance between any two nodes plus 

four [2, 4].

Property Star Arrangement Arrangement-star

Size 14, 33] nl fn\/(fn-k)\ m\'n\/(m-k)\

Degree [4, 33] M-l k{m-k) n+k (m-k)-\

Diameter [4, 33] L f («-1) J L f i J L |(n -1 ) J + L p J

Parallel paths [2, 
4, 52]

CPP/4-
MLI

CPPM-MU CPP/4-MLI

Average diameter 
[3,33,51] M-+-2/n+H,j-

4
Hk+k(k-2)/m n+2tn+H,j-4-\-Hf;+k{k~2Y tti

Optimal
broadcasting [45]

B2 Apply B\ then or B2 then B\

Optimal routing 
[4]

91, k9/(% |j,),y2 > if xi^yi 

91«A-,,X2),<yi,y2>) =i

I <xi, 9l2(x2,y2) > if

Fault diameter [2, 
4]

L f (n-l) J
+ 4

l ^ k i + 4 L f ( m- 1 )  i  + \_j k ] + 4

Connectivity [4, 
52]

M-l k{m-k) n + k (m-k) -1

Table 2.1: The topological properties for the three graphs, and ASn,inj(

Another important measure of an interconnection network is its fault diameter, i.e. 

the maximum diameter of any graph obtained from the original graph by removing at 

m o s t/n o d e s , w h e re / is  the number of nodes to be removed and the graph remains
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connected [2, 4]. The fault diameter of the arrangement and star graphs are L f  ^ J + 4 

and L y  ( n - l )  J +4 [25, 28], respectively. The fault diameter o f the arrangement-star 

graph is L f  (n -l) J - l - L f A : J  + 4. Furthermore, the connectivity of the star and 

anangem ent graphs are n -l  and k {m-k), we conclude that the connectivity of the 

arrangement-star graph is equal to n + k (m -k)-l, which is equal to the degree .a, 

so the proposed arrangement-star has the most-node connectivity [4, 25].

Let B[ and Bz be two optimal broadcasting algorithms for n-star and (m,k)- 

arrangement networks in sequential. The optimal broadcasting algorithm for the 

arrangement-star network is obtained by applying the broadcasting algorithm B\ for 

M-star then by applying the broadcasting algorithm Bz for (m,/:)-arrangement network 

or by applying Bz then B\ [4, 33]. Another important measure for an interconnection 

network is related to its routing. In table 2.1 the symbols 911 and 91% stands for the 

optimal routing algorithms for the star and arrangement networks while 91 stands the 

optimal routing algorithms for the arrangement-star network. In the routing in the 

arrangement-star network the message routes in Gi-edges, where G, can be the star 

(or arrangement graph), until the message reaches its destination in G\. Once this is 

achieved the routing continues along Gi-edges, where Gz can be the arrangement (or 

star graph) [4].

2.5 Comparative Results on the Topological Properties

This section conducts a comparative study between the three graphs star, 

arrangement, and arrangement-star. We base our comparison on the most widely 

used criteria such as degree, diameter, scalability, number o f links and broadcasting 

cost [4, 6, 25, 45]. For most of these criteria, the results confirm the superiority of the 

arrangement-star graph, making it an attractive alternative to the star and 

arrangement graphs. Furthermore, a new criterion referred to as, the degree o f
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accuracy, will be used in our present comparative analysis to provide further 

evidence on the superior characteristics o f the proposed arrangement-star graph.

In what follows, we compare the three static parameters: size, degree and diameter o f 

the star graph, Sn, arrangement graph, A,n,h and arrangement-star graph, ASn,m,h We 

plot in Figure 2.2 the network size against the matching probability of the desired 

size for the three graphs when the network size is in the range of [2^°-2^^]. All the 

possible sizes for the star, arrangement and anangem ent-star graphs were generated, 

and then arranged in decreasing order. The probability o f the number of network 

sizes was issued by dividing the number o f the actual network sizes over the desired 

network size. The results reveal in Figure 2.2 that the number of the topologies with 

different sizes that can be issued in the arrangement-star graph is larger than that in 

either star or arrangement graphs. This finding demonstrates that the ASn,m,k brings a 

solution to the scalability problem of the star graph and thus overcomes the limitation 

that makes the star graph a less desirable topology [25].

Figure 2.3 plots the degree of the three graphs against the network sizes as an integer 

number ranging from [2^°-2^^]. The results show the superiority of the arrangement- 

star network in terms of node degree as it has a smaller degree than the arrangement 

graph and the same degree of the star graph for the same number o f nodes. In term of 

the diameter, on the other hand, Figure 2.4 reveals that the arrangement-star graph 

has a smaller diameter than the star graph for the same number o f nodes.

The number of links that is required by a given network topology is an important 

factor that affects its feasibility of implementation and therefore its adoption in 

practical systems [6]. This is because the number of links can provide a rough 

estimate of the cost for implementing a topology [6]. Figure 2.5 plots the obtained
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number of links against network size (in Logarithmic scale) for the three networks. 

The result shows that the arrangement-star graph has more flexibility than the star 

and arrangement graphs in choosing the number of required links for a given graph 

size. This indication gives another evidence on the superiority of the arrangement- 

star graph over the star and arrangement graphs. This is a motivation for future 

considerations for the arrangement-star graph to be studied much more deeply and to 

give more effort for this graph.
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S  0.05 A rrangem ent

A rrangem ent-star

?  0.03

% 0.02

0.01

0
10 11 12 13 15 16 1714 18

Net work size ( Logarithmic )

Figure 2.2: The matching prohability for the three graphs, S„, * and ASn,m,k>
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One of the most widely used criteria to evaluate a given interconnection network is the cost 

of performing broadcast communication as this is an important communication operation 

required by many parallel applications [45J. Table 2.2 shows the lower hound expressions 

for obtaining latency to perform one-to-all broadcasting in the three graphs. These

32



Chapter 2: A Case Study on Vertex Product Networks: The Arrangement-star Network

expressions have been derived using the results of [45]. According to [45], the cost of a 

multiple-port one-to-all broadcasting in a network of degree A and diameter S  is given by 

• aI{f3 • A) -h -Js — (3 , where M  is the message length, (3is the message latency and

a is the unit transmission cost [13]. This model determines the lower bound on the 

broadcasting cost in any vertex transitive network.

For the sake of the present discussion M, (3 and a have been set to 1024 byte, 1000 /us 

and 1/^, as suggested in similar previous studies [32, 45]. Figure 2.6 depicts 

broadcasting latency in the three graphs as a function o f the network size by using 

the expressions of Table 2.2. The figure shows that the ASn,m,k outperforms the S,,. 

However, it has a lower performance than the This is because the former 

topology has a larger diameter.

Network
All-port broadcasting cost

Arrangement, A,,̂ - M  • a
(3 • k{m  -  k)

Star, Sn M  • a
( n - l )

Arrangement-star, M • a
{3\{n - 1 )  + k{jm -  &)]

+  - ^ L | - ( n  —  1 ) J  + - 1  Ÿ  (3

Table 2.2: The broadcasting cost for the three graphs, S,„ and ASn,m,k̂
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The degree o f  accuracy

This section introduces a new measure called the degree o f  accuracy, which is used 

to compare the three topologies. As mentioned above, the star graph does not scale 

easily to different sizes; all sizes have a problem related to the number of nodes: n\ 

for the /i-dimensional star graph. This measure will assess whether the arrangement- 

star graph suffers from the same limitation. The degree of accuracy on the issued 

topology size (0 )  measures how far is the issued size, 0 ,  from the desired size, N. In 

this measure we will consider only those issued network sizes which they are 10 

percent of the desired size N  such that (0.10*N-AO < 0  < (0 .10*A^+A0. This measure 

is important because it affects the cost o f the topology in direct way, and hence the 

decision of designing a new topology. For the sake of illustration, let us assume that 

the desired size is in the range of [2'” - 2^^] nodes.
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In this measure, we find the required issued size (0.10*N-A0 < 0  < (0 .10*A^+AO of 

the three graphs then we divide this result by the desired size (AO multiplying the 

result by 100. Figure 2.7 summarises the obtained values for the three graphs. For the 

arrangement-star graph 100% of the issued sizes are within 10% of the desired size. 

While for the arrangement graph 59% of the issued sizes are within 10% of the 

desired size, for the star graph the figure shows that 0% from the issued values are 

within 10% of the desired size. The figure gives a clear indication on the superiority 

of the arrangement-star graph over the graphs star and arrangement.
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2.6 Conclusions

This chapter has proposed a new interconnection network, called the arrangement- 

star, as the cross product of two existing networks the arrangement and star 

networks. Some general topological properties of the arrangement-star network have 

been discussed and proved. A comparative analysis has revealed that the proposed 

network possesses superior topological properties over its arrangement and star 

counteiparts in terms of degree, diameter and more flexibility in choosing the desired 

network size and it has a smaller number of links and lower broadcasting cost.

The analysis presented above has also shown that 100% of different size topologies 

of the arrangement star are within 10% of the required size. This study has shown 

that the arrangement-star overcomes the scalability that both the star and 

arrangement networks suffer from.

The next chapter will propose new structural outlooks for developing efficient 

algorithms on the arrangement-star for an important class of applications based on 

grid and pipeline structures, demonstrating the ability of this new network to 

overcome the limitations of the star and arrangement at the algorithmic front

36



Chapter 3

Efficient Structural Outlooks for the 
Arrangement-star Network

3.1 Introduction

Having an effective structural outlook for an interconnection network greatly 

facilitates the design o f efficient parallel algorithms on the network [10, 18, 19, 42]. 

Through the stmctural outlook o f the network topology, the possible communication 

patterns are anticipated more easily when developing algorithms on the network. In 

this chapter, two different structural outlooks will be introduced namely; the grid 

structure and the pipeline structure for algorithm development on the arrangement- 

star network. The ability of the proposed structural outlooks for the arrangement-star 

network in handling broadcast communication using the proposed structural outlooks 

will be examined. The results presented in this chapter will add further evidence to
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the viability of the arrangement-star network as a potential high-performance 

interconnection network for future parallel computers.

The present study shows that the proposed structural outlooks enable the new 

network to provide efficient support for an important class of algorithms. This class 

of algorithms is based on grid and pipeline structures, and includes matrix 

decomposition [32], computing fast Fourier transforms [44], broadcasting [13], and 

sorting [10].

A desirable property when developing parallel algorithms for any interconnection 

network is the vertex symmetry, which allows the network topology to look the same 

from any o f its vertices. This property facilitates the development of parallel 

algorithms on networks, such as our proposed arrangement-star, because it allows all 

the processors to be treated identically. W e will show in this chapter that the 

arrangement-star network is vertex symmetric. Furthermore, the hierarchical 

structure of the arrangement-star topology, which is another important property that 

affects the design of routing algorithms for this network, will be also discussed and 

proved.

3.2 Background

The star graph has been a subject of a lot of studies in the past [10, 18, 19, 32, 44, 

46]. This interest can be attributed to the desirable properties of this network [2, 3] 

over the existing and well-know topologies such as the hypercube. A number of 

issues related to the star graph have been investigated including its topological 

properties [3], broadcasting [45, 47], fault tolerance, [2], routing [48], sorting [48], 

and embedding [29, 50]. Furthermore, algorithms have already been reported in the 

literature for performing Fourier transforms [44], matrix decomposition [32], prefix

like operations [46], and ascend /descend type of divide-and-conquer problems [18,
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19] on the star graph.

However, the study o f algorithms for the stai' graph from the mentioned 

investigations is yet to mature [25]. The difficulty in developing efficient parallel 

algorithms on this network can be attributed to two main reasons: the first reason is 

the proposed static embedding o f some popular topologies such as meshes [54] and 

hypercubes [55] into the star graph does not allow efficient simulation and mapping 

of known algorithms. The other reason is related to the fact that the structural 

outlooks for the star graph are very limited and unbalanced [53], and as a result they 

do not allow efficient algorithm development.

The grid structural outlook for the star graph is unbalanced because it generates 

column processing rather than grid processing [18,19]. For instance, the 10-star can 

viewed as 10x362880 or 90x40320 grid. Comparing this grid to the optimal square 

grid view of the hypercube, this grid is inefficient because it generates unbalanced 

message dimension between the rows and the columns o f the obtained grid. This 

results in non-regular communication cost across the rows and the columns o f the 

grid. Moreover, the structural outlook based on the pipeline structure for the star 

graph is also insufficient because it generates an excessive number of nodes in each 

stage of the pipeline. For instance, the number of nodes for each stage in the 10-stage 

pipeline is 362880, which can lead to high communication cost in each stage.

Day and Tripathi [28] have proposed the arrangement graph as a generalisation of the 

star graph in an attempt to solve the star graph scalability problem. However, since 

the introduction of the arrangement graph, there has been little work on the 

development of new algorithms for this network. This is due to the fact that the 

arrangement graph inherits the major difficulties from which the star graph suffers 

due to the lack o f efficient structural outlooks that can take advantage of its attractive
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topological properties.

This chapter addresses the problem of developing algorithms that the star and 

aiTangement networks suffer from by proposing efficient structural outlooks for 

algorithm development on the new aiTangement-star network [7, 37]. This study will 

reveal that the algorithmic structural outlooks enable the new network to provide 

efficient support for an important class of parallel applications that are based on grid 

and pipeline structures.

The rest of the Chapter is organised as follows. Section 3 proves that the aiTangement 

graph is vertex symmetric. Section 4 discusses and proves the hierarchical structure 

of the arrangement-star network. Section 5 develops algorithmic structural outlooks 

that allow the proposed network to support important class of parallel applications 

that are based on the grid and pipeline structures. Section 6  shows that the 

algorithmic structural outlooks enable the arrangement-star graph to outperform both 

the star graph and hypercube in terms o f communication cost. Finally, Section 7 

concludes this chapter.

3.3 Vertex Symmetry

Symmetry in graphs is a desirable property that makes the graph suitable for real 

applications such as solving matrix computations [32], Fourier transform [44], and 

ascend/descend type of divide-and-conquer algorithms [18, 19]. A graph is vertex 

symmetric if  it looks the same from any of its vertices. A graph also is said to be 

edge symmetric if it looks the same from any of its edges. Vertex symmetry is a 

useful property that can ease the development and implementation o f algorithm s for 

a given graph topology. Akers and Krishnamurthy [1] have shown that the star graph 

is vertex symmetric. Moreover, Day and Tripathi £281 have proved that the 

arrangement graph is vertex symmetric. Since Al-Ayyoub and Day [4] have not

4 0



Chapter 3; Efficient structural Outlooks for the Arrangement-star Network

addressed, when proposing their theoretical framework for product graphs, the issue 

o f “vertex symmetry” , we will show that the product of graphs preserves the vertex 

symmetry property. To do so, let us provide the following definitions that will be 

helpful in proving that the arrangement-star graph is vertex symmetric. Note that X is 

an address of a node in i//n,n-k.

Definition 3.1 \ Let p n  be the set of all permutations on <«>. And y/n,k be the set of all 

permutations o f k  symbols out of ( n ) symbols.

Definition 3.2: Let r: (n) x  (k) be a ranking function given by r(x,,X) = y, such that

yi^(k) corresponds to the rank of in X.

Definition 3.3: Let 0: y/n,k —> p k  be a function that maps an arrangement of the form X=x-, 

X2...Xk into an permutations of the form Y  =  yiyz-.-Vk such that r { X i , X ) =  y,-.

Proposition 3.1: The set o f vertices in AS„.k,n,k is isomorphic to the set o f vertices in 

S„.

Proof: Recall that the set of vertices ASn-k,n.k are V {A S „ .k ,n ,k  ) = {( y,z) l y e p n  and 

z e y / n , k ) , and the set of vertices in S „  are V { S , j )  ~  { X  \ X G p „  } .

L e t / :  V i A S n . k , n , k )  be a function that maps vertices from V { S n )  to V(ASn^k.n,k)^

The function /  is given by f(X )~  X2 ...Xn^k)x,2-k+i..Xn). Given any two distinct

vertices X= (xi X2 ...Xn-k Xn.k+i...Xn) and W= <wi W2. . . w „ . ^ - w „ >  in their

images in V { A S „ .k ,n .k )  are/(X ) = (0 ( (xi x„> a n d  f(W ) =  < 0(w i W 2 . . . w „ .

&), w„4 +i...w„). Next we will prove that this function is one-to-one. To do so, the 

following three cases need to be considered:

Case 1: If X/,.yt+i...x„ = then 0 (x i X2...x„.^-) and 0 (w i W2 ...w„.jt) would be
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equal only if X - W, which contradicts the assumption.

Case 2: If (D(xi X2 ...Xn-k) -  0 (w i W2 ...w„.k) and the set o f symbols xi X2 ...Xn-k is 

different than the set of symbols in w\ W2 ...w„.t then x„.fc+i...x„^  ̂ w„.k+h..Wn and 

therefore/(2Q ^ /(W ) .

Case 3: If 0 (x t X2 .-.x,i-k) = 0 (w i W2 ...w„_jt) and the set of symbols in xi X2 ...x,j-kis the 

same as set of symbols in w\ W2 •••w„.*then X=W  which contradicts the assumptions.

Also, since I V ( S , i )  I =  n l =  ( n - k ) \ x  n \  /  { n - k ) \  -  1 V { A S n - k , n . k  ) I and / i s  one-to-one, the 

claimed result follows.

Proposition 3.2: Given two vertex symmetric graphs Gi and G2, Gj (x) G2 is also 

vertex symmetric.

Proof: Let G\ and G2 be two graphs such that G\ = E\)  and G2 = {V2 , £ 2). If /

and /2  are two functions defined as follow s/ :  V \ - f V \  a n d /2 : V2~> V2.  The graph G = 

Gi (8) G2 is the cross product of the two graphs Gi and G2, where G= (V, E), V={(u, v) 

I ugVi  and v e y 2 }  and  E = { « X |,  y>, <yi, y>) | (xi, yi) gEi } or {((x, X2>,(x, y2>) | (X2, yz) e 

El}  [4]. The fu n c tio n /is  defined a s /: V - ^ V  such that f (u,  v ) =  (fi(u),f2(v)),  where (u, 

v) eL.

Firstly, we will prove that / i s  one-to-one. Let u = <xi, yi> and v=<X2, y2> such that u, v 

e V  and u ^  v, wq need to show that f (u )  ^ f ( v ) , f { u )  = /<(xi, yO) = </i(xi),_/(yi)) and 

/(v )  =  /((x 2, y2»  =  i f i i x i ) ,  f i i y i ) ) -  W e know from the above assumption that 

f \ M = f i ( x 2) only if X]= X2. Similarly, only if  yi= y2. Hence, fo r/i((x i),

f i i y ô )  to be equal to _/((x2), f i i y i ) )  then we should have xi= X2 and yi= y2, which 

contradicts our initial assumption (11 #v).
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Secondly, we need to prove that for any two nodes u and v in V such that (u, v) eE  

then their images are also neighbours, i.e. </(«),/(v)) e E. Let u -  {xu yi> and v= (%2, y2 

> such that (w, v) e  E. Now consider/(m )=/«xi, yi))= </‘i(x i) ,/2(yi)>=/(v)=/«X 2, y2>) = 

{fi{x2 ), f i i y i ) } ,  here we have two cases:

Case 1 : xi= X2 and (yi,y2) e  E 2 . S in ce /i(x i)= /i(x 2), ( f i iyO , f i i y i ) )  e E 2 . Hence {u, v) 

gE.

Case 2: yi= y2 and (xi,X2) e Eu  here we have_/(yi)=^(y2) and {(f\{x\), f\{xi))  e E |. 

Hence (u, v) gE.  Hence Gi (g) G2 is also vertex symmetry as claimed.

Both the star and arrangement graphs are vertex symmetric [1, 28]. By the above 

Proposition 3.2 we have shown that the cross product of two vertex symmetric 

graphs is also vertex symmetric. It follows that the arrangement-star graph is vertex 

symmetric.

3.4 Hierarchical Structure for the Arrangement-star Network

The hierarchical structure of a graph relates to the ability to build large graphs from 

smaller graphs of the same nature. Hierarchical graphs have attractive symmetry 

properties that aie important in the design o f routing algorithms and in constructing 

grid and pipeline structures [18, 42]. In this section, the hierarchical structure of the 

arrangement-star graph is discussed. The properties of a new decomposition method 

for this network are presented and proved. These properties are then used in the 

following sections to develop grids and pipelines as methods for developing various 

algorithms on the arrangement-star graph.

Proposition 3.3: The AS„  ̂can be decom posed into — ——  — — — disjoint copies
( n - q ) \  O n - p ) \

of ASn-q,m-p,k-p.
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Proof: Recall that [53] Sn can be decomposed into
{ n -q Y

disjoint copies of Sr,.q

while A,n̂ k can be decomposed into
m\

[53] disjoint copies of A„,.,y_k-p- Let X  be
(m -  pY

a node in ASn,m.k and let q and p  be two integers such that \<q<n and 1< p<k. Pick 

any q symbols out of (n) and fix them in the last q positions of lp(X).

Similarly, pick any p  symbols from {m) and fix them in the last p  positions of rp{X).

Now, varying the remaining symbols in lp(X) and the remaining symbols in rp{X)

will produce a new copy o f ASn-q,m-p,k-p subgraph. For each new (n-^)-permutations 

there are M j  different ways of choosing the q symbols from {n) and there are <7 !

ways of fixing these symbols in lp{X). Also, for each new (/:-p)-arrangement there is
m different ways of choosing p  symbols from (m) and there is p\ ways of fixing

these symbols in rp{X). Hence, the number of disjoint copies that made is equal to
n\ j m\q\- p\ n\ ml

q \ (n -q Y  p\(m -  pY (n -  qY (ni -  pY  

consisting of two parts lp(X) and rp{X).

. Figure 3.1 Shows a node in ASn-q.m-p,k-p

//;(%)

4—k-p— — p—►

4 4 . .1..........

rp{X)

Figure 3.1: A node address in AS„.ĝ ,„.p̂ k-p where 5, S 2 .... S„ g  and Si S2  ^  g  y/„_t

n\ ml
Corollary 3.1: The ASn m k can be decomposed into —

q\ (m -  k + p)\
disjoint copies of

q,m-k+p,p.

From Proposition 3.3 and Corollary 3.1 it can be concluded that ASn,m,k can be
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decomposed into....................... .— non-disjoint copies o f ASn-q,m-p.ii-P' The

decomposing process here is similar to that in proposition 3.3, except there is an

additional free parameter which it is the set of positions in lp(X) and rp(X). W e can 

change all the positions in lp(K) except the first one. So, we will have

different ways of setting the positions. Furthermore, we can change all the positions 

in rp(X), hence we will have different ways of set positions. Hence, the ASn,m.k

can be decomposed into ( — ——  — ——  | ^ | non-disjoint copies of ASn-am -
( m~p) \  Vp J ^

p. k-p.

3.5 Developing Efficient Algorithms for the Arrangement-star Network

Among the well studied structural outlooks that provide a structural view of a given 

network are the grid and pipeline structures as they allow efficient simulation and 

mapping of a wide class o f parallel algorithms [19, 32, 44]. In an attempt to address 

the problem of designing algorithms for the star and arrangement networks we 

proposed the arrangement-star network. In this section we develop efficient stmctural 

outlooks for algorithm design on the proposed network. These structural outlooks 

can be used to design a wide class of parallel algorithms on the arrangement-star 

network such as matrix computation problems, Fourier transforms and broadcasting. 

Moreover, well-known topologies, such as meshes and tori, can be embedded in the 

arrangement-star network using these outlooks. Two structural outlooks, grid and 

pipeline, are developed in the following 2 subsections. Timing models for measuring 

the performance of the proposed structural outlooks are also provided. Through these 

models, the performance o f various algorithms on the proposed network based on 

grid and pipeline structures are evaluated and compared with their counteiparts such 

as star and hypercube networks. In this comparison, we have excluded the 

arrangement network due to the extreme difficulty in proposing algorithmic
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Structural o u tlo o k s for th is netw ork .

3.5.1 The Grid Structural Outlook

For any network G that can be factored into two sub-networks G\ and G2, we can 

obtain a 2-dimensional grid structure from  G, where rows and columns in this 

structure are respectively G rconnected  and G2-connected or vice versa. A few 

structural outlooks have been proposed for the star graph, and the most well studied 

outlooks have been introduced in [10, 46]. Menn and Somani [10] have shown that 

the star graph can be viewed as nx(n-l)!, where the rows and the columns in this grid 

are (n -1 )-star and an n-linear array, respectively. Furthermore, Ferreria and Berthome 

[46] have shown that the star graph can be viewed as a rectangular grid R x C  (Rows 

by Columns) where the rows are substar-5’rt-2 and the columns are n(n-\)  nodes on 

each column. However, these structural outlooks are insufficient for developing 

efficient algorithms on the star graph. For the star graph, the grid structural outlook is 

unbalanced because it resembles column processing rather than grid processing. For 

instance, the 10-star can be viewed as 10x362880 or 90x40320 grid. Compared to 

the optimal square grid view of the hypercube, this grid is inefficient as it generates 

unbalanced message dimension between the rows and columns of the grid structural 

outlook. Consequently, the communication cost between the rows and columns o f the 

grid is not regular.

The decomposition o f the arrangement-star graph as a two-dimensional grid structure 

can be achieved by aiTanging the nodes o f ASn.q,m-p.k-p on the rows and columns of the 

grid where ASn-q,m-p.k-p embeds R x  C  grid where R is iS'^.^-subgraph and C is A,„.p,k-p -  

subgraph. In this grid each columns has {m-p)\l{in-k)\ nodes and the number of nodes 

assigned on each row is {n-q)\. Another way of viewing ASqqn-k+p,p as grid structure 

can be achieved since ASq^n-k+p.p embeds R x  C grid where R  equal to <7 ! and C equal
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to {m-k-yp)\l{m-k)\. In this grid Columns are ^^^-connected and rows are 

connected.

As a particular case embeds n\-m\l{m-k)\ grid where columns are connected

and rows are A,„,A:-connected. It is clear that ASn,m.k can be viewed as two orthogonal 

pai'titioning, where, = n!-subgraphs ^i, l:^ < n !  and = m\/{m-k)\-

subgraphs A ij. 1<F< m\/{m-k)\ [4]. This partition is a particular case of ASn,m,k when 

the value of q and p  are equal to n-\  and k respectively. The important issue of the 

above two orthogonal partitioning is that the vertices of each subgraph in the first 

partitioning are contained in the second subgraph, one vertex per subgraph. In 

addition, the vertices of each subgraph in the second partitioning are contained in the 

first subgraph one vertex per subgraph. This decomposition will facilitate the 

broadcasting o f data from one node to another in different rows and columns of the 

graph. The above decomposition o f ASn,m,k can be the basis for developing algorithms 

on the arrangement-star specially the algorithms, which they need the matrices form. 

The rows of the matrix can be distributed on the n\ subgraphs S\ where each of these 

sub-graphs has a vertex in each m!/{m-k)\ subgraphs A ij one vertex per each 

subgraph. This will yield broadcasting on rows and columns of the arrangement-star 

graph.

3.5.2 The Pipeline Structural Outlook

The pipeline structure is another well-known structural outlook that is suitable for 

real applications [18, 19]. It is know from the literature that the star graph can be 

structured according to a pipelined view [18, 19] where the n-star can be arranged as 

a sequence o f (n-l)-stars forming an n-stage pipeline. The authors in [18, 19] have 

shown that when the nodes of an n-star are ranked using the pipeline structured 

ranking then there exists a path from any node in ‘Sn.\ to its peer node in or
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where l<i<n. The length of this path is either one move or at most three moves 

[18, 19]. However, the structural outlook based on the pipeline view for the star 

graph is insufficient as it generates a large number of nodes in each pipeline stage.

The arrangement-star graph possesses a structural outlook that provides a pipelined 

structure in a more balanced manner. From the literature [31, 50], we know that both 

the arrangement and star graphs are Hamiltonian. Therefore, the pipeline structure 

can be issued for the arrangement-star graph in two different ways: by the graph A,,,,/, 

and the Hamiltonian path 5"̂  or vice versa [4]. We can have full control over the 

number of stages and the size of each stage by tuning the parameters n, in, k.

3.6 Performance Comparison Using the Proposed Structural Outlooks

This section conducts a comparative study between the three graphs star, hypercube 

and arrangement-star. The comparison uses the cost of broadcasting across the row 

and the column for the grid structural outlook as a performance measure. Moreover, 

it uses the broadcasting cost in one stage plus the cost of shifting the data to the next 

stage for the pipeline structure as a performance measure. The results will be 

reported for different network sizes and a fixed message of length M  =1024 byte 

[45].

For the grid structure, we estimate the communication cost o f broadcasting across a 

row plus the communication cost across a column [32, 45]. To estimate the 

broadcasting in both directions. W e use the lower bound formula that has been 

extensively used in existing similar studies [25, 32, 42, 45, 53]:

\M.a
+ P-I PA

The parameters A and S  are the degree and diameter of the graph, respectively and 

the symbols M, a, and are the message length, unit transmission cost and the
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message latency cost. The values of these parameters are set to 1024 byte, 1 ps and 

1000 ps, respectively [45]. Figure 3.2 plots the obtained communication cost against 

the network size (in Logarithmic scale) for the three graphs: star, hypercube and 

arrangement-star; recall that we excluded the arrangement graph in this comparison 

because there is no any algorithmic framework for this graph. Figure 3.2 shows 

clearly that the proposed arrangement-star network outperforms both the star and 

hypercube in terms of communication cost.
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Figure 3.2: The communication cost based on grid view.

The broadcasting cost based on the pipeline structure can be estimated in two 

different ways; by shifting the data through the Hamiltonian cycle o f A,„_k or by 

shifting the data through the Hamiltonian cycle of S„. The lower bound of the 

broadcasting cost in the pipelined structure is equal to the lower bound of the 

broadcasting cost in the arrangement graph across one stage plus the cost of shifting 

the data to the next stage or vice versa [53]. The cost of shifting the data to the next 

stage is equal to ^  +Md), where the parameters M, f3 and a are as defined above

[32].
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Figure 3.3: The communication cost based on pipeline view.

Figure 3.3 plots the estimated communication cost for the graphs star, hypercube and 

arrangement-star against the network size in a Logarithmic scale. The figure reveals 

that the communication cost based on the pipeline structure in the arrangement-star 

graph is lower than that in the star and hypercube.

From the results shown in both Figures 3.2 and 3.3 it can be concluded that the 

proposed graph is more suitable than the star and hypercube for real parallel 

applications as it exhibits the lowest communication cost.

3.7 Conclusions

In this chapter, we have proved that the new arrangement-star network is vertex 

symmetric and possess a hierarchical structure. These are desirable properties that 

make the proposed network suitable for real applications. We have also shown that 

the arrangement-star network overcomes the major limitations of both the star and
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arrangement networks on the algorithmic front by proposing two different stmctural 

outlooks for developing parallel algorithms on the new network, based on the well- 

known grid and pipeline structures.

A comparative study against the star and hypercube networks has been conducted. 

Performance results based on the cost of broadcast communication using the 

structural outlooks have revealed that the proposed network has a lower 

communication cost than both the star and hypercube, and therefore is more suitable 

for supporting real-time applications. This finding demonstrates the suitability of the 

arrangement-star network as a high-performance network for future parallel 

computers.
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Chapter 4

A Case Study on Vertex Product Networks: 
OTIS-Networks

4.1 Introduction

The choice of the network topology for a high-speed parallel computer is an 

important design decision that involves inherent trade-offs in terms of efficient 

algorithm support and network implementation cost. For instance, networks with 

large bisection width allow fast and reliable communication. However, such 

networks are difficult to implement using today’s electronic technologies that are two 

dimensional in nature [57]. In principle, free-space optical technologies offer several 

fronts to improve this trade-off. The improved transmission rate, power consumption, 

and signal interference are few examples on these fronts [20, 57, 58, 59].

Optoelectronic and optical networking will become the key enabling technologies 

of the future communications infrastructure through the elimination of the difficult
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limitation of bandwidth and bit-error rate inherent in traditional electromagnetic 

signal-based communications [34, 35]. Electromagnetic signals carried over copper 

(or coaxial) wires suffer from loss of strength and are subject to errors due to noise 

and hence such systems have limited data rates [60]. W hen copper or coax is 

replaced by fiber technology the achievable bandwidth is in excess of 50 

terabits/second with an almost zero bit-error rate [60]. The full implications of 

essentially huge bandwidth and extremely low loss rates are only beginning to be 

recognised and will radically reshape the future network technologies. W hile in the 

past the communication link was the bottleneck, this link now holds the potential to 

become the enabler of new modes of computing far beyond those existing today [60].

4.2 Optical Transpose Interconnection Systems (OTIS)

This study focuses on a specific optical interconnect, namely the Optical Transpose 

Interconnection Systems (OTIS), as a case of study on vertex product networks. 

Marsden et al were the first to propose the OTIS [34]. A number o f computer 

architectures have subsequently been proposed in which the OTIS were used to 

connect different processors [34]. Krishnamoorthy et al [59] have shown that the 

power consumption is minimised and the bandwidth rate is maximised when the 

OTIS computer is partitioned into N  groups of N  processors each. Zane et al [36] 

have limited their study to this type o f the OTIS. In our present study, we will focus 

on OTIS-networks where the number o f processors in each group is equal to the 

number of groups; the terms OTIS-computer and OTIS-network refer to parallel 

architectures based on the OTIS and will be used interchangeably in the rest o f the 

thesis.

OTIS-networks are implemented using free-space optoelectronic technology [34]. In 

this model, processors are partitioned into groups, where each group is realised on a 

separate chip with electronic inter-processor connects. Processors on separate chips
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are interconnected through free space interconnects. The philosophy behind this 

separation is to utilise the benefits o f both the optical and electronic technologies.

The advantage of using the OTIS as an optoelectronic architecture lies in its ability to 

manoeuvre the fact that free space optical communication is superior in terms of 

speed and power consumption when the connection distance is more than few 

millimetres [59]. In the OTIS, shorter (intra-chip) communication is realised by 

electronic interconnects while longer (inter-chip) communication is realised by free 

space interconnects.

Extensive modelling results for the OTIS have been reported in [20]. The achievable 

terabit throughput at a reasonable cost makes the OTIS a strong com petitor to the 

electronic alternatives [34, 59]. These encouraging findings prompt the need for 

further testing of the suitability o f the OTIS for real-world parallel applications. A 

number of recent studies have been conducted in this direction [15, 24, 38, 41, 61, 

62]. Sahni and W ang [38, 41] have presented and evaluated various algorithms on 

the OTIS-mesh and OTIS-hypercube including basic data rearrangements, routing, 

selection and sorting. They have also developed algorithms for various matrix 

multiplication operations [62, 72] and image processing [24]. Zane et al [36] have 

shown that the OTIS-mesh (which will be discussed below) efficiently embeds four

dimensional meshes.

By using different electronic topologies, we arrive at different classes of OTIS- 

n et works. For Instance, the OTIS-mesh and OTIS-hypercube are two different 

classes of the OTIS-networks where the mesh and hypercube topologies are used to 

realise the electronic interconnect. In this thesis, two well-studied OTIS-networks 

will be used in our performance comparison along with their electronic counteipart 

networks, the mesh and hypercube. A brief description of the OTIS-mesh and OTIS-
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hypercube along with some of their topological properties is discussed in the 

following two sections.

4.3 The OTIS-mesh and OTIS-hypercube

The OTIS-mesh consists of an processor; there are N  groups and each group 

forming ypN x V/V mesh. In the OTIS-mesh, processors in the same group are 

connected as two-dimensional mesh [15, 34, 36]. Figure 4.1 shows a 16 processor 

OTIS-mesh, the notation <g, p) is used to refer to the group and processor addresses, 

respectively. Two nodes {g^, p^) and (g.,, pf)  are connected if, and only if, g, = and 

(p,, pf)&Eo (such that Eo is the set o f edges in factor network) or = p^ and p, = g., 

and in this case the tow nodes are connected by transpose edges.

group 0 group

(00,00) (00,01) 
o----

Q .

(01,00) (01,01) 
► O  Q

j D .C l r :
(oo,io)A mo.i . ^ ( 0 1 , 10) ^ 0 1 , 11)1

Nf

kio.oo^V no.on^*
O  O

A  (1 1 ,0 0 )  T o  1.01)

O - ^  H • wmm • ■* ;« ^  ^ ^
( 10, 10) ( 10 , 11)

group 2 group 3

Figure 4.1: The OTIS-mesh with 16 processors.
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The distance in the OTIS-mesh is defined as the shortest path between any two 

processors, p ^  and {g^, p^), and involves one of the following forms [15]:

1- When g^= gj then the path involves only one electronic moves. . . fa )

2- When ^  8 2  if the number o f optical moves is an even number o f moves 

and more than two, then the paths can be compressed into shorter path o f the form:

(grPl'> —^  <<?]’ ^ 2> —^  <>2’ ^ 1) —^  (Pv ^  (&2  ̂Pl> ■

W here the symbols O and E  stand for optical and electronic moves respectively.

3- When ^  the path involves an odd number of OTIS moves. In this case the

paths can be compressed into a shorter path of the form:

gg) —̂  (̂ 2' ^  (SrPi'>-

Theorem 4 .1 1 The length o f the shortest path between any two processors {g^, p^) 

and <^2, Eg) OTIS-mesh is J(p j, pf)  when g, = and mm{d{p^, p f)  + J (g ,, g^) +2, 

J(Pj, g ^  + d{g^^ p ^  -y 1 } when gj 9  ̂g^, where d{p, g) stands for the shortest distance

between the two processors p  and g using any path a, b and c [15].

It is obvious from the above theorem that when g^ = then the length of the path 

between the two processors <gj, p ^  and (g^, pf}  is d(j?^, pf). From the path 

construction methods in {b) and (c) above, it can be easily verified that the length of 

the path equal min [d p f ) d { g ^ ,  gf) +2 , d{p^, g^) + 6f(g, 1 when g, ^^g^].

Since each group in the OTIS-mesh is an Va^ x V/V mesh, all the distances d(p^, p ^ ,  

< (̂̂ 2’ ^ 2) gg) ^  2(VÏV -1). It follows that any two processors in the

OTIS-mesh are at a distance at most A(s[n  -1) +1 (= A ^fN  -3), which is the diameter 

o f the OTIS-mesh [63].
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The OTIS-hypercube is another example of OTIS-networks. In this class of networks 

the electronic interconnect follows the hypercube topology. The OTIS-hypercube 

consists of N~ processors and N  groups, each group is a hypercube of dimension 

log^A  ̂ and of size equal N=2^ (where h is the degree of the hypercube). Figure 4.2 

shows the topology of the OTIS-hypercube with 4 groups where each group consists 

of 4 processors. Two nodes (g , p^) and (g p^) are connected if, and only if, g^-  g, 

and (/ î p^)^Eq  (such that Eo is the set of edges in the factor network) or = p^ and 

= g^ and in this case the tow nodes are connected by transpose edges [41].

The length of the shortest path from processor i to the processor j  in the hypercube is 

defined as d(i, j). If (g^, p^) and <g,, p^) are any two processors of the OTIS- 

hypercube, then the shortest path between these two processors follow the same path 

construction method as described above, i.e paths of type a, h or c.

Theorem 4.2: The diameter of the OTIS-hypercube is 2 /74-1 where h is the dimension 

of the hypercube [41].

<00, 10)<10, 00%

<00, 00)< 10, 10),
<11, 0 1 ) <0 1 , 11)

<00 , 11)<10, 0 1 )

oo

o
o

<00 , 01 )

Figure 4.2: The OTIS-hypercube with 16 processors.
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4.4 The Topological Properties of the OTIS-networks

This section discusses and derives some o f the basic topological properties of the 

OTIS-networks including size, degree, diameter, number of links, broadcasting, and 

routing. Table 4.1 summarises the topological properties of the OTIS-star, OTIS- 

hypercube and OTIS-mesh along with their electronic counterparts star, hypercube 

and mesh. The symbols g and p  in the table stands for the group and processor 

addresses respectively. Let us now discuss and derive the properties that are itemised 

in Table 4.1.

Size: If Go is the factor network of size N, then the size o f the OTIS-Gq is N^.

Degree: Let <g, p)  be any node in OTIS-Gq. Then the degree (or deg) of the OTIS-Gq 

is as follows:

y de g ̂ ^{p) 4-1 l ï g ^ p

N um ber o f  L inks -. Let N q be the number of links in the factor network and let M  be 

the number of nodes in the Go- The number o f links in the OTIS-Gq = 

(Af ^ - M ) / 2  + * M  . For instance, the number of links in the OTIS-mesh 

consisting of 16 processors is (4^ - 4 ) / 2  + 4 *4=  12/24-16 = 22.

Diameter: Let (g^, p^) and (g^, p ^  be two different processors in the OTIS-Gq. To 

transmit data originated in the source node <gj, p ^  to the destination node (g^, p ^  

there are 3 possible paths to follow: a, b and c. These paths are in the following 

forms:

1- W hen g = g , then the path employs only electronic moves.
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P a th  a\ (g, Pj> <g, /?2>

2- W hen g, ^  ^ 2  A e path employs 2 electronic moves and 2 optical moves. 

P a th  b: <g,, p^> _ ^  <gj, ^  (Pj. <?,> —^  (Pg, ^  P^-

3“ Or when gj ^  g^ then the path employs 2 electronic moves and one optical 

move.

P a th  c: <gj, (g,, gg> —^  <g2, gj> —^  (gg, /^2>*

To send a message M from the source node <gp p^) to the destination node (g^, P 2) it 

must follow a route along one of the three possible paths a, b, and c. The length of 

the shortest path between the nodes <g[, P j) and (g^, p^) is one of the forms:

\d (p^ ,p^)  if g, = g2 

Length = “j ...(I)
I mini d(p^, g^) + f̂Cgp P 2) + 1 , d(p^,p^) + dig^, g^) + 2 ) c.w.

W here d{p^,pf) is the length of the shortest path between any two processors <gj, p^) 

and <gp p 2>. If Ô0 is the diameter o f the factor network. Go then from ( 1) it follows 

that the diameter of the OTIS-Go is 2 Sq + 1 .

Theorem 4.3: The diameter of OTIS-Gq is the Max  ( ^ ,  I ôq + 1) which is equal to

2(%  -t- 1.

The proof of the above theorem is a direct result from (I).

Routing:  is another important issue when considering a new interconnection network

[281. We assume that a routing algorithm in the factor network. Go, is known and 

given with a function NextQ^ip^, pf)\ this function returns the forwarding node after

Pj in routing towards p^. Also a function Dist. (7q(p,, Pg) returns the minimum

distance between the two processors p^and p^ in The message (M) is originated at
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the source node PÙ t»e transmitted to the destination node (g^, p^). Figure

4.3 summarises the routing algorithm in the OTIS-Gq.

In Figure 4.3 the param eter M, stand for the message to be transmitted from the

source node, while the parameters gi, gi, and g3 are the source group, current group,

and the destination group, respectively. Furthermore the parameters p ,,  p%, and ps

stand for the source processor, current processor and the destination processor. The 

node <gj, Pj> is defined to be the source node, (g^, p^), is the current node where the

message has am ved and (gy  p^> is the destination node.

Network Size Degree Diameter Number o f links
Star, S„ n\ n-\ \_ \{n-l)  J n \‘{nA)!2

Hypercube, Q„ r N N iX-n)l2

Mesh(m,«) mm 4 2 {-Jn.m - 1 ) {2 mn - m - n)

OTIS-star ( n l f n- \  g = p  

n g # p
2 L | ( n - l ) J + l {n\-{n-l)/2 ).n\+

{ in l f -n l ) / 2

OTIS-hypercube N  g = p  
n+ l g ^ p

2 n+l n r - n ) / 2 ) . r  + 
{ { T f  -  2 " ) / 2

OTIS-mesh (m-nŸ 4 g = p

5 g
4 V n.m -3 2 - (  m-nŸ  

+{(m-nŸ- m-n)l2

Table 4.1: The topological properties of the star, cube and mesh and their OTIS counterparts.

W hen routing between the source node (g^, p^) and destination node (g^, p^>, the 

distance between the source and destination nodes is in one of the forms: -

,  If gj=  g,̂  then minimum distance between the source node and the destination 

node is d~Oistg^ip^^ Pf), and the source node will call the function 

Routeçy^^^_^^ (M, <g ,̂ pj>, (gg, P2>, {gy P 3>, a) to route the message.
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If ^3  then d^ = (Pv P 3) + (g,, g3> + 2  or J 2 = Dist^^ (p,, g^) +

distc, ( g r P 3^ +  I-

If d  ̂ < then the source node will call the function 

(M, ( g , ,p , \ { g ^ ,  p^y, (gy  p ,), h) else 

/?oufeoTis.c„ ( ^ ’ <S,.P,>’ (Sr  Pi>' <Sy P,), c).

Function ^  (A/, (g ,,p ,) . (g ,. {gyP^)< path type)

Begin {function}

if (gg, P2) <̂ 3' P3) then

{where (g.,, p,,) is the current node and <g ,̂ p^> is the destination node) 

if path = a then send (M, <g,, p,>, NextQ^Q?^, p^), <g ,̂ p^), a) 

else if path = h then

{path b: <g,,p,> —^  <g,,P2> —^  il’y  g,> —^  (Pg' g2> —^  (g]' P])* 

i f g 2 = g | then

if P 2 ^  P 3 send (M, <g,, p,>, NextQ^Q?^, P 3), (g,, P 3), 6 ) 

else .send (M, <g,, p,>, (Py (gy  p^>, b) 

else

if g 2 g 3 then 5end (M, <g,, p,>, NextQ^ (g^, g 3), <g3, P 3>, b) 

else send (M, <g,, p,>, (g^, p^), <g ,̂ p^>, b) 

else if path = c then {path c: <g,, p,> —^  <g,, g^) <g2, g,> —^  (ggt P2»

i f g 2 = g, then

if P2 ^  g3 then send (M, <g,, p,>, NextQ^Q?.^, g^), <p ,̂ g^>, c)

else send (M, <g,,p,>, <g,, g^), (gyPr). c) else

if g 2 ^  /A then send (M, <g,, p,>, Next(j^{g^, p^), (g^, p^), c) else

stop, destination reached 

End {function}.

Figure 4.3: The routing algorithm in the OTIS-Go using one of the paths a , b o r c
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Broadcasting: Data broadcasting is one of the most important operations required by 

many parallel applications [28]. Assume that the data is initially in the source node 

{gu P\) where gi is the group index and p\  is the processor index, and is to be 

broadcasted to all of the nodes in the OTIS-Gq. The data can be transm itted to all 

processors in the different groups using the following algorithm steps:

Step 1: The source processor <gi, p \)  broadcasts the data to all the processors in its 

group using electronic moves.

Step 2: Each processor in the group then broadcasts the data to one processor in each 

group in the network using one OTIS move.

Step 3: Each processor in the group broadcasts the data again to the remaining 

processors using electronic moves.

In the above algorithm, following Step 1 each processor of the group containing the 

source processor will receive a copy o f the data from the source processor using 

electronic move. After Step 2, one processor from each group in the network will 

receive a copy using OTIS move. In Step 3, each processor o f the OTIS-Gq will 

obtain a copy of the data using electronic moves. Step 1 and 3 will take one 

electronic move and Step 2 will take one OTIS move. We can also conclude that the 

cost o f broadcasting in the OTIS-Gq is 2  x -t- 1 {i.e. two electronic moves plus one 

optical move) where /3q  ̂ is the cost of broadcasting in Gq.

4.5 Conclusions

This chapter has presented OTIS-networks and their two well-studied versions, 

notably the OTIS-mesh and OTIS-hypercube. Some of the basic topological 

properties such as the degree and diameter of the OTIS-mesh and OTIS-hypercube
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have been discussed. Moreover, some of the general properties of OTIS-networks 

have been derived including the size, degree, diameter, and number of links. 

Algorithms for broadcasting and routing in these networks have also been presented.

Some of discussed and derived basic topological properties in this chapter will be 

used in the next two chapters for proposing efficient structural outlooks for algorithm 

development on OTIS-networks.
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Chapter 5

Efficient Structural Outlooks for 
Algorithm Development on OTIS- 

Networks

5.1 Introduction

A number of recent studies have revealed that Optical Transpose Interconnection 

Systems (OTIS) are promising candidates for future parallel computers. While 

existing studies have proposed algorithms for specific problems [38, 41, 62], this 

chapter presents two structural outlooks for algorithm development on the OTIS. The 

proposed outlooks are general in the sense that no specific factor network or problem 

domain is assumed. They also allow efficient mapping of a wide class of algorithms 

into the OTIS, and are based on grids and pipelines as popular structures that support 

vast body o f applications including linear algebra, divide-and-conquer algorithms, 

sorting, and Fourier transforms. Timing models for measuring the performance of the 

proposed outlooks are also provided. These models allow the performance of various 

algorithms on the OTIS to be evaluated and compared with their counteiparts on
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conventional electronic interconnection systems.

5.2 Notation and Definitions

The Optical Transpose Interconnection Systems (OTIS) are implemented using free- 

space optoelectronic technologies [34]. Processors are partitioned into groups where 

each group is realised on separate chip with electronic inter-processor connects, 

processors on separate chips are interconnected through free space interconnects. The 

philosophy behind this separation is to utilise the benefits of both the optical and the 

electronic technologies.

Recently there has been an increasing interest in the study o f parallel algorithms for 

optoelectronic networks in general and for OTIS-networks in paiticular [15, 24, 38, 41, 

61, 62]. Zane et al [36] have shown that the OTIS-mesh efficiently embeds four

dimensional meshes and hypercubes. Sahni and W ang [38, 41] have presented and 

evaluated various algorithms on specific OTIS-networks (OTIS-mesh) including basic 

data rearrangements, routing, selection and sorting. They have also developed 

algorithms for various matrix multiplication operations [62] and image processing [24].

Aside from the above-mentioned works, the study of algorithms on the OTIS has not yet 

fully matured. In this chapter, we contribute towards filling this gap by presenting two 

structural outlooks for developing algorithms on the OTIS. The structures are based on 

grids and pipelines, which support a large number of applications ranging from linear 

algebra to divide-and-conquer type of algorithms, sorting, and Fourier transforms. W e 

also show that for some factor networks, such as the mesh and hypercube, the 

performance of the proposed structural outlooks outperforms the best-known results for 

these factor networks. The proposed outlooks are discussed in the sequel, but first we 

give the necessary notation and definitions.
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An OTIS-based computer contains N'^ processors partitioned into N  groups with N  

processors each. A processor is indexed by a pair (x, y>, 0 ^ ,  y<N, where x  is the group 

index and y is the processor index. Processors within a group are connected by certain 

interconnecting topology while transposing group and processor indexes achieve inter

group links. For example a 16 processor OTIS-mesh, in this example, intra-group 

connects is mesh-based, hence the term OTIS-mesh is used to denote this network. In 

what follows, the terms OTIS-computer and OTIS-networks refer to parallel 

architectures based on OTIS and will be used interchangeably.

OTIS-networks are basically constructed by "multiplying" a known topology by itself. 

The vertices set is equal to the Cartesian product on the vertices set in the factor 

network. The edges set consists of edges from the factor network and new edges called 

the transpose edges. The formal definition o f OTIS-networks is given below.

Definition 5.1: Let Go = (Vo, Eo) be an undirected graph representing a factor network. 

The OTIS-Go = (V, E) network is represented by an undirected graph obtained from Go 

as follows V -  [ { x ,y ) \x ,  y G Vo } and E  = {(<x, y>, (x, z)) | if (y, z)eEo} u  {(<x, y>, <y, x>) 

|x , y e Vo).

The edges set E  in OTIS-networks consists o f two subsets, one is from Go, called Go- 

type edges, and the other subset contains the transpose edges. The OTIS approach 

suggests implementing Go-type edges by electronic links since they involve intra-chip 

short links and implementing transpose edges by free space optics.

Definition 5.1 covers a wide class of OTIS-networks. In fact, for any known factor 

network Go, a new OTIS-network can be obtained by the above definition. The OTIS- 

mesh [3], OTIS-hypercube [4] and OTIS-expander [10] are only few instances on such 

networks that have been investigated in the literature.
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The address of a node u = (x, y) from V  is composed of two components: the first, 

denoted by ){u)=x, designates the group address and the second, denoted by p(u)=y, 

designates the processor address within that group.

The network OTIS-Go can be decomposed into |Vo| disjoint copies o f Gq. Fixing the 

group address and varying the processor address can achieve this decomposition. 

A nother way o f decomposing the OTIS-Go is by fixing the processors address and 

varying the group address. These two decomposition methods are given below.

Definition 5.2: Let ÎG, for all /g  Vo, be the subgraph induced by the set o f nodes from V  

having the form </, x> for all x e  Vo-

Definition  5.3: Let 0j, for all y E Vo, be the subgraph induced by the set o f nodes from

V having the form { x j )  for all x e  Vq.

Figure 5.1 shows the decomposition of the OTIS-Go based on ÎG and 0 j  subgraphs.

Each node in this decomposition is represented by (O), and each row and column of this

decomposition has one node in common. In ÎG subgraph each processor is indexed by a 

pair (x, y), 0 ^ ,  y<N  where x is the group index and y  is the processor index. In this 

decomposition, the group address is fixed while the processor address is variable. On the 

other hand, for 0j  subgraph the group address is variable and the processor address is 

fixed. Each ÎG and 0 j  subgraphs represents a row or a column o f the grid structure, 

respectively.

Any two subsets 5i and S2 share perfect matching if there is a bijective function between 

them. Given a graph G, for simplicity we denote by Vg the set o f vertices. Eg the set of 

edges, dciu, v) the length of a shortest path connecting u and v, and Ôg the diameter of 

G.
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Vo I

i |Vq |

V()| |V„|

Figure 5.1: The grid structural outlook for OTIS-Networks.

Definition 5.4: Let Gy/= (Vcy/, £ ’g>) be the graph obtained from OTIS-Go by clustering 

each of into a single vertex labelled by / and having a link between i and j  if YÎ and 

Y; share a prefect matching, i.e. Vg ^  = Vo and Eg ^  = {( i, j)  I  for all i and j  such that Ŷ 

perfectly matches Yy}.

5.3 Hierarchical Decomposition for OTIS-Networks

In this section, the hierarchical structure of OTIS-networks is discussed. The properties 

of a new decomposition method for these networks are presented and proved. These 

properties are then used in the following sections to develop grids and pipelines as 

structural outlooks for developing various algorithms on OTIS-networks.
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Theorem 5.1: The two ÎF and 0  decomposition methods of the OTIS-Go have the 

following properties:

1. is  iso m o rp h ic  to G q.

2 . Vyi>.nV0j= { ( i j ) } .

3. Y/ and (A share perfect matching for all i values.

4. Y/ and Yy share perfect matching for all i and j  values and hence G y  is a

complete graph.

P roof : Property 1 is a direct consequence of the definition of the OTIS-G^. The function 

p  maps nodes from to Vo- hi fact, the set {p{u) | mg Ŷ } is equal to Vo for any i value. 

Since any two neighbouring nodes u and v in Y/ should have y{u)=]iv) and {p(u), p(v)) 

is an edge in Eq; hence YJ is isomorphic to Gq.

Property 2 states that for any two labels i and j  from Vo, the two subgraphs Y/ and 0 j 

have exactly one node in common. Since, V^.~  {(/, x) | x g Vq} and V^j = | x g

Vol, the intersection V ^ . n  V^. contains only the node { i j ) .

Let f :  Vŷ . ->  Vy. be a function that maps nodes form Y/ into 0j  for all i values defined 

as follows: f{{x ,  y)) = <y, x>. First we have |Vy/.| = | Vŷ .| for all / and j. For any two distinct 

nodes u and v in Vŷ  ̂ we have/;((Xw), p{u))) = </Xw), y{u)) ^fi{{y{v), p{v))) = <yc<v), K^)>; 

because p{u) ^  p{v). Hence, the function f ,  is one-to-one and onto. Thus property 3 

follows.

Let tif. Vŷ . ->  Vy/. be a function that maps nodes form Ŷ  into Yy, for any i and y, as 

follows: %((/, x))=(/, x>. For any two distinct nodes u and v from Vŷ . we have r,y«/, p{u))) 

= (J, p{u)) ^  tij{{i, p{v))) = { j ,  p(y)). Since |Vy/.| = |Vm̂ J it follows that Ŷ  and YJ- share 

perfect matching for all i and j  values and hence G y is a complete graph.
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Lem m a 5.1 : G y can be embedded into OTIS-Go with dilation Sgq + 2.

Proof'. Since G y is com plete graph, any two distinct nodes i and j  in Vg ^  are 

neighbours. The “virtual” path between </, x) and (/, x) in OTIS-Go that corresponds to 

the edge {iff)  in E g^ \ ^  constructed as follows: </, x) <x, i) || n c f f i f f )  || i ^ f f )  (j, x). 

An arrow represents an edge connecting the two nodes and the operation “||” means 

appending two paths (i.e. connecting the last node in the left path to first node in the 

right path). Notice that the choice of x  from Vo does not affect the construction of this 

path nor its length. The path segment tcgq (b j)  is an isomorphic copy to the optimal 

length path from i to J in G q . It can be easily verified that the above constructed path is 

of optimal length equal to d G ff f f )  + 2. Hence, the longest such path cannot exceed 5gq + 

2 .

5.4 Structural Outlooks for OTIS-Networks

The grids and pipelines are popular computation models that have been employed in 

various parallel applications. They have been employed in early generations of parallel 

computers and they also continue to exist as convenient structural views for developing 

parallel algorithms [64-69]. In this section, we develop a two-dimensional grid structure 

and a pipeline structure for OTIS-networks.

Theorem 5.2: OTIS-Go embeds a |Vo|x|Vo| grid with dilation Sqq + 2 , where rows and 

columns are Go-configured.

Proof: W e arrange the nodes in OTIS-Go in a two-dimensional grid as follows: Let h: 

Vo ^  {1, 2, ..., |Vq|} be a one-to-one and onto function that ranks the nodes of Go. The 

node {x, y) in OTIS-Go is located at row h(x) and column h(y) in the |Vo|x|Vo| grid. W ith 

this mapping, the set of nodes in for any x g  Vq are placed in the same row and the set 

of nodes in 0y  for any y g  Vo are placed in the same column. Since Ŷ  is isomorphic to
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Gq by property 1 in Theorem 5.1, then all rows in the grid are Go-connected. The 

column in the grid consists o f <x, E^(J)) | xeV o). Hence, all nodes in this set have the 

same processor address. By Lemma 5.1 any two nodes in this set are at a farthest 

distance of Ôqq + 2 .

The above result can be used in two ways to facilitate algorithm development on OTIS- 

Go. First, all algorithms that are known on Go can be ported to OTIS-Go at no additional 

cost. Second, the above |Vo|x|yo| grid can be used to adapt mesh-based algorithms in a 

more efficient way. Divide-and-conquer and linear algebra [69] are few examples of 

such algorithms. The primary requirement in these algorithms is to be able to have 

simultaneous row or simultaneous column communication. The rows in the above grid 

structure are distinct copies of Go and hence processors across each row can 

communicate without interference from processors in other rows. Also columns are 

distinct copies of y e  Vq. Processors in each column can simultaneously communicate 

as follows: First the data in 0y is simultaneously transferred to %  through separate 

transpose channels connecting matching pairs from 0y and (by virtue of property 3 

in Theorem 5.1). Then parallel communication is achieved in each row using the 

communication algorithms of Go, and finally the data in YJ. is transferred back to 0y.

The following result along with its constructive proof gives a procedure to build 

generalised pipelines structural outlook in OTIS-Go networks. In pipelined processing, 

interstage com munication should be order preserving in the sense that nodes with 

similar rank in successive stages should maintain a designated channel. In the ideal 

situation, these channels are node-disjoint so they don’t interfere with each other and 

involve minimum intermediate nodes for fast stage-to-stage data transfer.

Theorem 5.3: If Go is Hamiltonian, OTIS-Go embeds a pipeline consisting of |Vo| stages 

of size |Vo| nodes each. Stages are Go-configured and interstage distance is 3.
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Proof: OTIS-Go network can be decomposed into |Vo| disjoint copies of sub

networks. The %  subnetworks form the different pipeline stages. By Theorem 5.1 each 

of the Y '̂s is isomorphic to G q. W e arrange the pipeline stages (the Ŷ -'s) according the 

rank of x in a Hamiltonian cycle of Go. Let h: Vo {1, 2, . .., |Vo|} be a function that 

defines the node's rank in the Hamiltonian cycle of Go. So, the stage consists of the 

set of nodes [{h'^if), y) | yeVo). The node {h'^ij), y) in the stage is coupled with the 

node (h'^(f+l), y) in the 0+1/^ stage o f the pipeline. These two nodes are connected by 

the path (E^(f), y) <y, h'^(j)) ->  <y, h'^(j+\)) ->  {h'^(f+l), y>. Notice that h'^(j) and h~ 

^(f+l) are neighbours in G q.

Corollary 5.1: If Go is Hamiltonian, OTIS-Go can embed a two-dimensional wraparound 

mesh with dilation 3.

The above pipeline structural outlook exemplifies circular pipelines. Changing the 

number of stages or stage configuration (linear, circular, tree, etc.) in the above pipeline 

structure is straightforward. This can be done by characterising a path, cycle, or tree of 

size equal to the required number o f stages in the new pipeline. Stages in the new 

pipeline are then ordered according to the ranks of the nodes in the characterised path, 

cycle, or tree. The interstage distance is 3 in all these cases. In fact, the result in 

Theorem 5.3 can be extended so that we have control over the stage structure as well. 

The stage can be Go or any network em bedded in G q.

5.5 Performance Evaluation

In this section, we evaluate the performance of the proposed structural outlooks for 

developing algorithms on grids and pipelines for two known OTIS-networks, the OTIS- 

hypercube [41] and OTIS-mesh [38]. The comparison is based on two standard 

measures o f effectiveness: the network implementation cost and the network
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performance. In predicting the implementation cost we use the number of physical 

channels needed to achieve interconnects as a prim aiy cost estimate. M ore involved 

estimates such as the required silicon area, system volume, channel length, power 

consumption rate, as well as optoelectronic receivers and transmitters can be used to 

give wider and precise image on the system ’s cost. However, we focus on the number of 

physical channels to stay within the scope of the thesis. This measure captures both of 

the wiring cost (electrical and/or optical) and the total I/O ports required for realising a 

network. More discussion on the OTIS cost and performance modelling can be found in 

[22, 58].

The network performance can be measured in different ways; the network bisection 

width, personalised communication cost and multicasts cost. W e concentrate on a 

common form o f communication as a measure to evaluate the performance o f OTIS- 

networks. This form stems for the communication patterns in the proposed methods for 

developing algorithms on OTIS-networks, as explained below.

In the grid structural outlooks, the communication cost is measured by the amount of 

time needed to communicate a message across a row plus the time needed to 

communicate a message across a column. Usually, grid based applications emphasise 

simultaneous broadcast o f uniform messages across rows and across columns [64-68, 

69]. Hence, the communication time in a grid is estimated by the time required for a row 

broadcast followed by a column broadcast. A model used to estimate the cost of a 

multiple-port one-to-all broadcasting in a network of degree A and diameter S  is given 

by t{m,A,â) ~ { jm -  a/{j3 ■ A) + ^ | S f3 , where /? is the message latency, a is the unit 

transmission cost, and m  is the message length [13]. This model determines the lower 

bound on the broadcasting cost in any vertex transitive network. The value of the 

parameters m, a, and f f  are are set to 1024 byte, 1 ps and 1000 ps, respectively [45].
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In estimating the communication cost in the pipeline structural outlook, we consider a 

natural communication pattern in a pipeline processing system. This communication 

pattern involves a total message exchange at the stage level followed by a shifting phase 

to transfer data to peer nodes in the subsequent stage. The above model for multiple-port 

one-to-all broadcasting can be used to estimate the interstage communication time, 

however shifting the data between separate pairs of nodes in successive stages can be 

estimated by a simpler model. This model is given by jS+m-a [64, 6 8 ]. In this model we 

need J3 time units to set up the channel plus m -a  time units to shift the data.

Recent studies [20, 34] have revealed that free-space optical interconnects offer a speed 

advantage over electrical interconnect. Compared with the fastest off-chip electronically 

interconnects and for lengths up to a few centimetres electronically interconnects are 

faster than optical interconnects, optical interconnects provide as much as a twice better 

speed performance [58]. To simplify the analysis, there is no distinction between 

electronic and optical channels in the subsequent expressions. W ith this assumption we 

will still have a suitably accurate estimate on the system performance and a rough idea 

about the system cost.

Table 5.1 summarises the parameters needed to estimate the communication time and 

the implementation cost for the four networks: the hypercube, the mesh, the OTIS- 

hypercube, and the OTIS-mesh as functions on the network size {N). The third and 

fourth columns show the degree and the diameter, respectively for the sub-network 

given in the second column, which is connecting the set of nodes in a row (or a stage) of 

the grid structure (or the pipeline structure). Similarly, the sixth and seventh columns 

respectively show the degree and the diameter for the sub-network given in the fifth 

column, which is connecting the set of nodes in a column o f the grid structure. The 

eighth column shows the inter-stage distance in the pipeline structure. The last column 

shows the number o f links.
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Applying the above models for estimating the communication time using the 

information in table 5.1, we obtain the expressions shown in table 5.2. Figure 5.2 shows 

the estimated communication cost based on the proposed grid structure. The figure 

shows that the communication cost in the OTIS-mesh is lower than its conventional 

counterpart, and the communication cost in the OTIS-hypercube is comparable to the 

hypercube performance. A similar performance for the pipeline structure can be 

observed in Figure 5.3. For the grid structure the communication cost is obtained by 

using Seidel formula [45]. Furthermore for the pipeline structure we used Seidel formula 

to calculate the communication cost within the stage plus the time needed to shift the 

data to the next stage.

A more balanced comparison should give an idea about the cost associated with a 

performance gain. Figures 5.4 and 5.5 depict these facts. These figures show that the 

proposed methods for algorithm development on OTIS-networks achieve better-cost 

performance ratio, which means the gain in performance comes at a lower cost. By 

noticing that an additional channel squares the size of OTIS-networks, its superiority in 

terms of implementation cost over the electronic alternatives becomes more evident. In 

this measure we multiplied the communication cost based on grid and pipeline 

structures by the number o f the links o f OTIS-networks and their counteiparts [45].

Today’s VLSI technology has serious limitations in terms o f chip pin-out. For instance, 

the decreasing interest in the hypercube and similar logarithmic degree networks is 

attributed to the hardware limitations to support higher dimensionality. As the size of 

the system increases, it becomes exceedingly difficult to pack the required processing 

units within a single chip. The OTIS tackles these serious design concerns by utilising 

the combined strengths of 3-D chip packaging and optoelectronic interconnect 

technologies to bring a low-power ultra-compact hardware solution to systems requiring 

fast processing. The goal is to approach single chip performance using multi-chip

75



Chapter 5 ;  Efficient Structural Outlooks for Algorithm Development on OTIS-Networks

devices. The figures demonstrate that OTIS-networks provides new horizons to 

implement large-scale systems that are not possible with today’s conventional electronic 

technology, and yet perform efficiently in terms of supporting real applications.

Row/stage parameters

^i Degree Diameter

Column parameters

0 1  Degree Diameter

Inter

stage

distance

Number 

of links

Hypercube Qfiog N)/2 ■k log  N  -L log  N Q(iog NV2 j logN J  log  N N  tog  N

Mesh{m, n) m m -  I n-\
(2m.n - m -  

n)

OTIS-
hypercube

{(log  N}/2 \ l o g N j logN ÿ  log  N  J log  N  +2 f fN -y fN
N l o g N )

OTIS-mesh
M ( V n . m  

i j n . m )
in

{n.mf -
n.m)l2-\-2(tT
.m')

Table 5.1: Cost and performance parameters in the hypercube, mesh and their OTIS counterparts.

Grid Pipeline

Hypercube 2 X T(m, ^ log N, j  log N) x(m, \  log N, ^  log N) -V (P-t-m <x)

Mesh 2 X x(m, 2 , J n  ) x(m, 2 , -s/iv ) + (p-t-m <x)

OTIS-Hypercube 2 X {x(m, Ÿ log N, \  log AO+(P+m <x) } x(m, Ÿ logN, ÿ log A0+3x(P+m <x)

OTIS-Mesh 2 X { x(m, 4, Viv ) + (P+m<x) } x(m, 4, Vn ) + 3 X (P+m<x)

Table 5.2: Communication time in the grid and the pipeline structures.
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Figure 5.2: The communication cost in the grid structure.
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Figure 5.3: The communication cost in the pipeline structure.
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Figure 5.4: The cost-performance in the grid structure.
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Figure 5.5: The cost-performance in the pipeline structure.
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5.6 Conclusions

This chapter has proposed and evaluated two structural outlooks that allow the 

development of efficient algorithms for a wide class of problems on OTIS-networks. 

These outlooks are based on grids and pipelines as popular structures that support a 

large number of applications including linear algebra, divide-and-conquer algorithms, 

sorting, and Fourier transforms. Timing models for measuring the performance of the 

proposed outlooks have also been provided. These models have been used to evaluate 

and compare the performance of various algorithms on the OTIS-networks against their 

counterparts on conventional electronic interconnection systems. The results presented 

have revealed that the OTIS-mesh and OTIS-hypercube provide better cost-performance 

characteristics than the traditional mesh and hypercube. These obtained results indicate 

that OTIS-networks have the potential to be efficient candidates for future large-scale 

computers. The next chapter will show how the structural outlook based on the grid 

view is used to design efficient parallel algorithms for solving linear algebra problems, 

e.g. systems of linear equations, on OTIS-networks.
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Chapter 6

Solving Systems of Linear Equations on 
OTIS-Networks

6.1 Introduction

In OTIS-networks, shorter (intra-chip) communication is realised by electronic 

interconnects while longer (inter-chip) communication is realised by free space 

interconnects. A number of recent studies have been conducted in this direction [24, 

38, 41, 61-63]. Zane et al [36] have shown that the OTIS-mesh efficiently embeds 4- 

dimensional meshes and hypercubes. Sahni and W ang [38, 41] have presented and 

evaluated various algorithms on OTIS-networks, such as basic data rearrangements, 

routing, selection and sorting. They have also developed algorithms for various 

matrix multiplication operations [62] and image processing [24].

A side from the above research studies, there has been hardly any work that has 

proposed efficient parallel algorithms for other well-known problems on OTIS- 

networks. In an effort to address this imbalance we apply the grid structural outlook

80



Chapter 6: Solving Systems o f Linear Equations on OTIS-Networks

proposed in Chapter 5 to tackle a im portant problem from linear algebra that arises in 

many areas o f science and engineering [70, 74]. In this chapter, we develop parallel 

algorithms for solving systems of linear equations, A x  = b , on OTIS-networks. This 

study will demonstrate that OTIS-networks are potential candidates for high- 

performance parallel computers.

An OTIS-network contains processors partitioned into N  groups containing N  

processors each. Processors in the same group are connected to each other through a 

certain topology using electronic interconnects, while transposing group and 

processor indexes attains the links in processors in different groups using optical 

interconnects. The address of any node u -  (x, y) from V (set of vertices) is consists 

o f two parts; the first, denoted by y{u)=x, designates the group address and the 

second, denoted by p{u)=-y, designates the processor address within that group; see 

Definition 5.1 in Chapter 5 for a formal definition of OTIS-networks.

It has been shown in the previous chapter that the network, OTIS-Gq, for a factor 

network, G^, can be decomposed into |V |̂ disjoint copies of Gq [70]. Fixing the group 

address and varying the processor address can achieve this decomposition [70, 74]. 

Another way o f decomposing the OTIS-G q is achieved by fixing the processor 

address and varying the group address.

Two ranking for the nodes of rows and columns are hix) and hiy) are defined as 

follows;

Let h\ Vo ^  {1 , 2 , ..., |Vo|} be a one-to-one and onto function that ranks the nodes of 

Gq. The node (x , y) in OTIS-Go is located at row h{x) and column /t(3b in the |Vo|x|Vo| 

grid structural outlook.
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The properties of the decomposition method for OTIS-networks have been presented 

in Chapter 5. These properties will be used in the subsequent section to develop 

various parallel algorithms on OTIS-networks for solving system of linear equations 

based on grid structural outlook. The two and 0  decomposition methods of the 

OTIS-Gq have the following properties

1. ÎA is iso m o rp h ic  to G q.

2. =

3. ÎA and 0 , share perfect matching for all i values.

4. and share perfect matching for all i and j  values and hence Gy/ is a 

complete graph.

The formal Proofs of these properties have been presented in [70]. It has also been 

shown in [70] that G ^ ca n  be embedded into OTIS-Go with dilation Scg + 2 .

The grids are popular computation models that have been employed in various 

parallel applications in linear algebra, divide-and-conquer algorithms, sorting, and 

Fourier transforms, among others [32, 44]. They have been employed in early 

generations o f parallel computers and they also continue to exist as convenient 

structural views for developing parallel algorithms [64-69].

OTIS-Gq embeds a 1Vq|x|Vq| grid with dilation Sgq+2 [70], where rows and columns 

are GQ-configured. This result can be used in two ways to facilitate algorithm 

development on OTIS- Gq. First, all algorithms that are known on Gq can be ported 

to OTIS- G q  at no additional cost. Second, the |V q |x |V q |  grid can be used to adapt 

mesh-based algorithms in a more efficient way. Divide-and-conquer and linear
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algebra [69] are a few examples o f such algorithms. The primary requirement in

these algorithms is to be able to have simultaneous row or simultaneous column 

communication. The rows in the grid structural outlook are distinct copies of Vq and

hence processors across each row can communicate without interference from

processors in other rows [70]. Also columns are distinct copies o f cPy, yeVo-

Processors in each column can simultaneously communicate as follows: First the

data in cPy is simultaneously transferred to !fy through separate transpose channels

connecting matching pairs from 0y  and Yy . Then parallel communication is 

achieved in each row using the com munication algorithms of Gq, and finally the data

in Yy is transferred back to 0y.

6.2 A x  =  b  with a Method of Solution

In this section, we apply the proposed grid structural outlook for solving systems of 

linear equations, A x - b  , a problem that arises in many areas of science and 

engineering [17, 64, 65, 6 8 , 69]. A direct method of solution transforms the system 

A x  = b into U x  = c ,  where U is an upper triangular matrix. The solution vector x  is 

then obtained by back substitution. The standard procedure to cany  out LU 

decomposition of A is Gaussian elimination (GE). The GE procedure generates a 

sequence of nxn  matrices ..., Â "̂  where A '̂  ̂ is the initial matrix. A, and Â "̂

is the desired triangular matrix, Ü. The matrix Â ^̂  {k=2, ..., n) represents the 

equivalent linear system for which the variable has just been eliminated.

In this implementation of matrix triangulation, we use the standard 2-D matrix 

distribution method that is characterized by "combining" two functions; the first 

partitions the augmented matrix A x  \ b into sets of elements and the second assigns
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these parts to the processors [11, 16]. In the sequel, we present a practical version of 

this distribution method.

In the proposed |Vo|x|Vo| grid structure, rows are the disjoint Ŷ -’s and columns are 

the disjoint Following the notation of Theorem 5.2, presented in Chapter 5, the 

processor at the row and the c*'’ column o f the grid (denoted by p,c) is laid down at 

the intersection o f Ŷ  and 0y, where r = h(x) and c = h(y). Recall that h is a function 

that ranks nodes of Vq.

For any positive integer i, we denote by (i) the set o f integer numbers from 1 to i. Let 

9: (|Vo|> ->  2̂ "̂  be a surjective function that maps processor row indexes into subsets 

o f matrix row indexes. Similarly, let X: (|Vo|) 2̂ "̂ '̂  be a surjective function that

maps processor column indexes into subsets o f matrix column indexes. Our matrix 

distribution method is characterized by the function ^ = 9 x X. The function ^ maps 

ordered pairs from <|Vo|> x (|Vo|> into sets o f ordered pairs from 2̂ "̂  The set ^(r, 

c) induces the set of elements from A \ b  to be assigned to p,c-

The function ^ covers the class o f matrix distribution methods that map elements of 

the same row (respectively column) to a processor in Ŷ  for some x (resp. 0y  for 

some y). These are called block-distribution methods. In what follows, we consider 

only those instances o f ^ that are based on block-distribution and map the matrix 

evenly to the set of processors. Furthermore, we assume 9 ( r i ) n 9 (r2)=(|) for r \^ i '2 and 

X(ci)nX(c2)=cj) for c\^C2 , where r\ and r2 are any two different rows and c\ and C2 are 

any two different columns. Figure 6.1 shows example of block matrix distribution 

and the relationship between rows and columns in a 16-node OTIS-mesh.
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The broadcast-based parallel GE algorithm for OTIS-Go, abbreviated P_OTIS, 

reduces a matrix A  of order n  to triangular form requires { n - l )  steps. At any step, k, 

the following tasks have to be performed by prc in the order given below.

Task Tip = { p ivo ting  } transform the system so that

\ükk\ = max{ \oik\ for k<i<n]  -  p a r t ia l  p ivo ting

\aicfc\ =  max{ \a{j\ for k < i j< n }  -  com ple te  p ivo ting

Task 7T = { com pute m ultip liers  } a,a- = «/a / <taa for all ie 9 (r )  such that k + l< i< n

Task 7t {;"' = { eliminate ] aij = aij -  a,A for all i e ^ ( r )  and yeX(c) such that A:-t-l</,

j< n .

Let 7t ^  denote the task of broadcasting a pivot subrow o f M elements in 0y, and let 

71 f  denote the task of broadcasting a multiplier subcolumn of M  elements in Ŷ . 

Notice that broadcasting incPy use the usual communication algorithms of Go except 

that two data shift operations have to “bracket” communication algorithms to transfer 

data from 0y  to Ŷ  and back by using the disjoint transpose edges.

The algorithm P_OTIS executed by each node prc in the | V q 1 x | V o |  grid is shown in 

Figure 6.2. The steps of b_QTlS  can be summarised as follows: If p,c holds a pivot, it 

performs Tip followed by . Otherwise it waits until it receives a pivot. Next, if

Prc holds a multiplier, it performs 7t{j, and then otherwise it waits until it

receives a multiplier. Finally, p,-c performs and enters the next iteration.

For partial pivoting, the k̂ ^̂  pivot row is determined by processors in (Pa-1{c), where 

keX (c} .  These processors perform an “exchange-max” operation. At the end of this
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operation each processor will have a copy of the index of the pivot row, say /. If both 

/ and k are in @(/) then locally swap the two subrows k and /; otherwise interchange 

the two subrows k and / between all pairs o f corresponding processors in ^h-hr) and 

y%-i(r) for /eô (v ). The algorithm for task Tip with partial pivoting is given in Figure 

6.3.

To carry our complete pivoting all processors in the grid perform exchange-max 

operation to find / and m such that \ a i ,„ \  =  m a x { \ a i j \  for k<ij<n}. Then, the k̂  ̂ pivot 

row is located by swapping/interchanging the rows k and I and 

swapping/interchanging the columns k and m. A  complete pivoting algorithm for 

h_OT\S  is given in Figure 6.4.

<0 ,0 ) <0 . 1) <1,0 ) < 1 . 1 )

«42

«24

(2.2) (2.3) (3.2) (3.3)

(a) Each row is in separate network.

Figure 6.1: matrix distribution over 16 node OTIS-mesh.
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(0.0) <0 , 1) ( 1.0 ) (I. I)

(3.0)

« 1! «12

«32

«21 « 2 2

«42

<2 .2> <2.3> <3.2> (3.3)

(b) Each column is in separate network.

Figure 6.1: A4^4 matrix distribution over 16 node OTIS-mesh.

Algorithm h_OT\S

{ executed by each node p,c in the |Vo|x|Vo| grid } 

for k=\  to n -  1 do 

execute Up

if k e^ { r )  execute to broadcast a pivot subrow in 0 h-Hc)

else participate in the broadcast initiated in 0h-hc)

if k e X ( c )  execute then to broadcast a multiplier subcolumn in 'E'h'Hr)

else participate in the broadcast initiated in */̂ ,-i(,) 

execute n 

end for 

end /2_0 TIS

Figure 6.2: The algorithm 6  0T1S.
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Algorithm Task %p\ Partial pivoting 

if keX{c)

find I such that \an\-max{\ai^k\ for all i e 8 (r) such that k<i<n ] 

perform exchange-max operation to determine at,k on all processors in 0 h-Hc) 

broadcast I in Wh-\{r) 

else participate in the broadcast initiated in %-'(/) 

if / g 0 (/-) and A:e8 (r) swap subrows k and I 

else interchange subrows k and I between for /e ô (v )

end Task Tip

Figure 6.3: Partial pivoting algorithm for 6_OTIS.

Algorithm Task Upi Complete pivoting

find I and m  such that \akm\=max[\aij\ for all ie&(r)  and j&X{c)  such that k < i q ^ ]  

perform exchange-max operation to exchange cqm with all processors in the grid 

if /e ô ( r )  and k ^ ^ { r )  swap subrows / and k

else interchange subrows / and k between and for /e ^ (v )

if mGX(c) and keX(c)  swap subcolumns m  and k

else interchange subcolumns m and k between CP/ri(c) and 0 /ri(v) for mGX(v) 

end Task 71̂;

Figure 6.4: Complete pivoting algorithm for 6_OTIS.

The algorithm b_OTlS  transforms the linear system A x ~ b  into an upper triangular 

system Ux=c  . Next we develop a broadcast-based backward substitution algorithm, 

abbreviated bs_OTlS, to obtain the final solution. In bs_OTlS  we assume that 

elements of the reduced upper triangular matrix U \ c are still in their respective 

processors. A processor p,c in the algorithm performs n steps. A step, k, consists of
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the following simple tasks: ( 1) solve and broadcast Xk and (2 ) update and broadcast 

c . To simplify the algorithm design we introduce the following two new tasks:

Task Tis = { solve ] Xk = Ckl Ukk

Task -k [ = { update c } Cj = c, -  Uik Xk for all iGÔ(r) such that l<i<k

At the beginning of the backward substitution algorithm, a processor prc in that 

holds the set o f elements {c, | i E 8 ( r ) } from c (denote this set by Cr) should 

broadcast these elements in %-hd- Notice that initially the known vector c is stored 

in 0 f r \ ( c )  where u+1eX(c).

The backward substitution algorithm then proceeds by performing the n substitution 

steps. At the step, the processor p,c holding Ukk performs tIs and then broadeast Xk 

in 0fi-i(c)- All other peers of p,c in <P/ri(c) update their portion of c vector and 

broadcast it in their respective Figure 6.5 outlines this algorithm.

Algorithm bs_OTlS  { executed by the node p,c in the |Vo|x|Vo| grid }
i}/\Vo\

if n+1 eX(c) execute n x to broadcast Cr in 

else participate in the broadcast initiated in 

for k = n downto 1 do

i f  kGX{c) and /:E 0 (r )  e x e c u te  tZs  and then e x ecu te  to broadcast Xk in 0 h - ^ ( c )  

e ls e  i f  keX(c)

participate in the broadcast in itiated  in 0 i C ç c )  

ex e c u te  7t

execute to broadcast Cr in

else participate in the broadcast initiated in !Arh/)

end for 

end 6 .y_OTIS

Figure 6.5: The algorithm 6 &^_OTIS.
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6.3 Conclusions

The advantage of using OTIS-network as optoelectronic architectures lies in their 

ability to manoeuvre the fact that free space optical links are superior in terms of 

speed and power consumption when the connect distance is more than few 

millimetres. Except from the research work of W ang and Sahni [24, 38, 62], there 

has been hardly any study that has proposed parallel algorithms on OTIS-networks. 

In this chapter, we have contributed towards filling this gap by designing parallel 

algorithms to solve systems o f linear equations, A x - h  , on these networks. The 

proposed algorithms are based on the grid struetural outlook developed in Chapter 5. 

By presenting such parallel algorithms, this study has highlighted the suitability of 

OTIS-networks for solving one o f the most important problems in Linear Algebra, 

and which arises in various research and practical areas.
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Chapter 7

Conclusions and Future Directions

Over the past two decades many interconnection networks have been proposed in the 

literature, including the star, hypercube, anangem ent and OTIS-networks. Most of 

the existing research on these networks has focused on analysing their topological 

properties. As a result, there has been relatively little aetivity committed to 

developing effieient algorithmic structural outlooks for important parallel 

applications. In an attempt to fill this gap, this research work has introduced two 

general structural outlooks for developing efficient algorithmic frameworks on vertex 

product networks, namely the arrangement-star network and OTIS-networks. These 

structural outlooks are based on grids and pipelines as popular structures that support 

a vast body of real-world parallel applications such as matrix computation, linear 

algebra, divide-and-conquer type o f algorithms, sorting, and Fourier transforms.
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7.1 Outline of the Results

The performance of various algorithms on the arrangement-star network and OTIS- 

networks can be evaluated and compared with their counterparts using the proposed 

structural outlooks. This study has provided new means for further testing the 

viability of the arrangement-star and OTIS-networks as attractive alternatives for 

future high-performance parallel computers. The main contributions in the thesis are 

itemised as follows:

□ First, a new topology has been proposed, referred to as the arrangement-star 

network, which is constructed from the product o f the star and anangem ent 

graphs. A comparative analysis has revealed that the proposed network has 

superior topological properties over its factors: the star and arrangement graphs. 

Besides possessing a smaller diameter, node degree, and number o f links, the 

arrangement-star has a lower broadcasting cost and more flexibility in choosing 

the desired network size. A new measure, called the degree o f  accuracy, has been 

used to compare the three networks. The arrangement-star maintains a higher 

degree of accuracy in terms o f fitness to the desired network size, which is a great 

improvement over the star and arrangement networks. Furthermore, the proposed 

arrangement-star has been shown to be vertex symmetric. Such a property enables 

this network to support important applications such as matrix computations and 

divide-and-conquer algorithms.

□ Second, a comparative study of the arrangement-star against the star and 

hypercube has been conducted. The comparison used the proposed struetural 

outlooks, based on the grid and pipeline structures, and considered different 

network sizes and fixed message length. The results have shown that the new 

network outperforms both the star and hypercube due to its lower communication
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cost. These results add another evidence on the viability on the proposed 

arrangement-star network.

□ Third, vertex product networks have been proposed as a unified groundwork 

eovering a wide class of interconnection networks including important sub-classes 

such as the Optical Transpose Interconnection Systems (OTIS). This unification 

allows the development o f generie algorithms whieh makes it possible to save lots 

o f efforts that would be needed to study each network in this class individually.

□ Fourth, two general struetural outlooks for algorithm development on OTIS- 

networks have been proposed and evaluated. These structures are based on grids 

and pipelines as common outlooks often used in the design of parallel algorithms.

□ Fifth, timing models for measuring the performanee of the proposed outlooks on 

OTIS-networks have been provided. The results presented in this thesis have 

shown that the performanee o f algorithms on OTIS-networks, based on the grid 

and pipeline outlooks, outperform their counterparts on eonventional electronic 

interconnection systems in terms of the communication cost and cost/ 

performance criteria. For instanee, the OTIS-mesh and OTIS-hypercube have 

been shown to provide better communication cost and cost-performance 

characteristics over the traditional mesh and hypercube.

□ Sixth, the structural outlooks for algorithm development proposed for OTIS- 

networks have been used to new parallel algorithms for solving systems of linear 

equations, which is one of the important problems in Linear A lgebra that arises in 

many fields of science and engineering.
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7.2 Future Research Directions

There are several interesting issues that require further investigation. These are

summarised below.

□ A natural follow-up for this work would be to develop a complete theory that 

supports ready-made results for the “comprehensive” elass o f vertex product 

networks. W ith this theory the various topological properties o f any vertex 

product networks can be derived in straightforward manner. In addition to 

enabling meaningful comparative studies o f vertex product networks, this would 

significantly reduce the efforts that would be undertaken to study these networks 

individually.

□ Another extension of the work presented in this thesis could be the generalisation 

of structural outlooks for the class of vertex product networks. Again using this 

generalisation several real algorithms can be ported into arbitrary vertex product 

networks and also the resulting algorithms can be compared with each other and 

with the original versions in the constitute networks from whieh the vertex 

product networks are built.

□ hregular networks have recently received a lot of attention from the research 

community due to the emergence o f “cluster of workstations” as a cost-effective 

method for achieving parallel processing. A new direction of research along the 

broad lines of this thesis would be to investigate the design of efficient parallel 

algorithms on these networks.
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Appendix A

The following program is written in Pascal Language. It will find the performance 

evaluation o f broadcasting cost, for three graphs arrangement-star ASn,m,k = 

arrangement A , = stai'5,,.

Note that any eomments in the program are written between the two parenthesis { }

{$N+}

Program Plottings;

Uses WinCrt;

{ This program will find the broadcasting cost for the three graphs based on Seidel 

formula }

Const

e = 0.1; { This is the allowed error ratio which it is 10 percent of the required size } 

inerement = 1 ;

M ax_nmk = 1 6 ;

MaxSize = 100000000.0; { M axim um possible size }

var

NN, n, m, k, error ; Double;

OutFile : Text;

Function f  (n : double) : double;
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Begin { The following function will find the factorial of any real number }

f  := sqrt(2*pi*n) * exp( n*ln( n /exp(l) ) ) * ( l-i-l/(12*n)+l/(288*n*n)+l/(n*n*n) );

End;

Function Cost(Size, Degree, Diam eter : Double) ; Double;

Const { The assumption of the Seidel formula parameters where M, a, and b are 

defined as the message length, unit transmission cost and message latency }

M =  1024;

a =  1;

b = 1000;

var t : double;

Begin

t := sqrt(a*M /(b*degree))+sqrt(diam eter-l);

Cost := trunc(t*t*b) { The Seidel formula }

End;

Function Star(NN : Double; var n : Double) ; Double;

Var Size : Double;

Begin 

n := 1;

Repeat
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n := n + increment;

Size := f(n)

Until Size >= NN - error;

Star := Cost(Size, n-1, tm nc(1.5*(n-l))){ The broadcasting cost for the star graph } 

End;

Function AiTangement(NN : Double; Var m, k : Double) : Double;

Var

C, Size, min, minm, mink ; Double;

Begin 

min := f(Max_nmk); 

m := 1;

Repeat 

m := m + increment; 

k := 0;

Repeat

Size := f(m) / f(m-k); { Size o f the anangem ent graph }

If Size >= NN - error Then 

Begin

C;=Cost(Size, k*(m-k), Trunc(1.5*k) );
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If C < min then 

Begin 

min := C; 

minm := m; 

mink ;= k;

End

End;

k := k + increment 

Until k>=m 

Until m>Max_nmk; 

m:=minm; 

k:=mink;

Arran gement:=min 

End;

Function StarArrangement(NN : Double; Var n, m, k : Double) : Double; 

Var

C, Size, min, minn, minm, mink : Double;

Begin 

min := f(Max_nmk);
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n := 1;

Repeat 

n := n + increment; 

m ;= 1;

Repeat 

m := m + increment; 

k := 0;

Repeat

Size := f(n) * f(m) / f(m-k); { Size of the arrangement-star network}

If Size >= NN - error Then { Issued size should be greater than or equal to the

required size minus 10 percent o f the required 

size}

Begin

C:=Cost(Size, (n-1) + k*(m-k), Trunc(I.5*n) + Trune(1.5*k) );

If C < min then 

Begin 

min := C; 

minn := n; 

minm := m; 

mink := k
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End

End;

k := k + increment 

Until k>=m 

Until m>M ax_nmk 

Until n>Max_nmk; 

n;=minn; 

m:=minm; 

k:=mink;

StarArrangement:=min

End;

Function Log2(x:double);double;

Begin { The above function convert the size to logarithmic form }

Log2 ;= ln(x)/ln(2.0);

End;

Begin {main}

Assign(OutFile, 'c:\all.dat'); Rewrite(OutFile); { The output will be assigned to the 

file c:\all.dat }

NN := 1024 {1048576}; { The first size assumed to be 1024, then the next sizes will

be increased by double of the previous size }
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W hile NN<=M axSize do { The maximum size is 100000000 nodes } 

Begin 

error ;= e * NN;

W riteln(OutFile, Log2(NN): 10:0, Star (NN, n ):15:0, 

Arrangement (NN, m, k ):15:0, 

StarAnangem ent(NN, n, m, k):15:0);

NN:=NN*2;

End;

The parameters n, m, and k can be used to find other measures for the three 

networks (star, arrangement, and arrangement-star). For example, you can use 

them to find the network size, broadcasting cost, cost/performance ratio, 

number o f links, etc.

This program generates a text file named ALL.DAT on the root directory of 

your hard disk. Open this file using Excel (give the exact name e:\all.dat of 

the file name box) and try to generate the eharts you desire.

Close(OutFile);

End.
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The following program is written in Pascal language. It will find the matehing 

probability, for three graphs arrangement-star ASn,m,k = arrangement = star Sn 

for a network o f exactly NN nodes to exist in the star, arrangement, and 

aiTangement-star.

Hints to understand the program :

All possible sizes for the star, arrangement, and arrangement-star are generated

and stored in the 3 lists L I, L2 and L3, respectively. The procedure PUT inserts

a given size into a give list only if it is not previously in the given list.

The procedure SORT arranges the sizes in the given list in a decreasing order.

The procedure PROBABILITY receives a list (L o f length N) and a network size 

(NN).

It then finds the number o f all sizes in L that are below NN (note that finding 

this number is easier when L is sorted). Dividing this number by NN will give us 

the required probability. }

{$N-h}

Program Sealability_Plottings;

Const

M axnmk = 1 2 ;

M axSize = 40e6;
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Type List = A iray [1..100] of real;

Var

NN : real;

OutFile : Text;

f  : Array[L.M axnm k] o f real;

i, N l, N2, N3 ; Integer;

L I, L2, L3 : List;

Procedure SortList(Var L:List; N:Integer);

Var i, j : Integer;

t : real;

Begin

For i:= l to N-1 do 

For j:= i+ l to n do 

IfL[j]<L[i] Then 

Begin

t:= L [i];L [i]:=L [j];L [j]:= t 

End

End;

Procedure Put(Var L:List; Var N:Integer; Element:real);
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Var i : Integer;

InList : Boolean; 

begin

InList := False;

for i ;= 1 to N do if L[i]=Element Then InList := True; 

If Not InList Then 

Begin 

N := N + 1;

L[N] := Element;

End;

End;

Procedure Star;

Var n : Integer;

Begin

for n := 1 to M axnmk do 

Put(L l,N l,f[n]);

SortL ist(L l, N l)

End;

Procedure Arrangement;

113



Appendix B

Var m, k : Integer;

Begin

for m := 1 to M axnmk do 

for k:=0 to m-1 do

Put(L2,N2,f[m]/f[m-k]);

SortList(L2, N2)

End;

Procedure A rrangem ents tar;

Var n , m, k : Integer;

Begin

for n := 1 to M axnmk do 

for m := l to M axnmk do 

for k:=0 to m-1 do

Put(L3, N3, f[n]*f[m]/f[m-k]);

SortList(L3, N3)

End;

Function Propability(L:List; N:Integer; NN:Real):Real; 

Var i : Integer;

Begin
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i:=0;

Repeat

i:= i+ l;

Until L[i] >= NN;

Propability : =i/NN 

End;

Begin {main}

Assign(OutPile, 'c:\all.dat'); Rewrite(OutFile);

N1:=0; N2:=0; N3:=0;

f [ l] := l; for i:=2 to M axnmk do f[i] := f[i-I] * i;

Star;

Anangem ent;

Arrangem ents tar;

NN:=1024; { This loop goes from 2*10 until 2*25 }

{ In the figure we plotted only from 2*8 to 2*18 } 

W hile NN < M axSize do 

Begin

W riteln(OutFile,ln(NN)/ln(2):20:0, Propability(L l,N l,N N ):20;10, 

Propability(L2,N2,NN):20:10,
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Propability (L3,N3,NN):20:10);

NN:=NN*2;

End;

Close(OutFile);

End.

116



Publications During Work:

1- A. M. Awwad, A. Al-Ayyoub, and M. Ould-Khaoua, “On the Topological 

Properties o f the Arrangement-star Network,” Proceedings o f  the 1999 

International Conference on Parallel and Distributed Processing Techniques and  

Applications (PDPTA' 99), pp. 2165-2170.

2- A. M. Awwad, A. Al-Ayyoub, K. Day, and M. Ould-Khaoua, “Generalised 

Methods for Algorithm Development on Optical Systems,” Proceedings o f  the 

2000 Arab Conference on Information Technology {ACIT' 2000), Zarka Private 

University, Jordan, October 31st - November 2"^, 2000, pp. 111-118.

3- A. M. Awwad, A. Al-Ayyoub, M. Ould-Khaoua, and K. Day, “Solving Linear 

Systems Equations Using the Grid Structural Outlook,” Proceeding o f  the I f ’̂ 

lASTED  Parallel and Distributed Computing and Systems (PD CS' 2001), August 

21-24, Anaheim, USA, 2001, pp. 365-369.

4- A. M. Awwad, A. Al-Ayyoub, and M. Ould-Khaoua, “On the Topological 

Properties of the Arrangement-star Network,” under review. Journal o f  Systems 

Architecture, 2000.

5- A. Al-Ayyoub, A. M. Awwad, M. Ould-Khaoua, and K. Day, “Generalised 

Methods for Algorithm Development on Optical Systems,” under review, Journal 

o f Parallel and Distributed Computing, 2000.

6- A. M. Awwad, A. Al-Ayyoub, and M. Ould-Khaoua, “On the Algorithmic Issues 

of the A nangem ent-Star Network,” accepted. The 2001 Arab Conference on 

Information Technology (AC IT’2001), Jordan University of Science and 

Technology, Nov. 13-15, 2001, pp. 9-14.

117



Publications During Work

1- A. M. Awwad, A. Al-Ayyoub, and M. Ould-Khaoua, “The Topological and 

Performance M erits o f Arrangement-star Networks,” Technical Report TR-2001 - 

93, Department of Computing Science, University of Glasgow, June 2001.

8- A. Al-Ayyoub, A. M. Awwad, M. Ould-Khaoua, and K. Day, “Efficient Methods 

for Algorithm Development of Optoelectronic Networks,” Technical Report TR- 

2001-95, Departm ent of Computing Science, University of Glasgow, August 

2001 .

9" A. M. Awwad, A. Al-Ayyoub, and M. Ould-Khaoua, “Routing in OTIS- 

Networks,” in preparation, 2002.

UNIVERS

118


