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ABSTRACT

Previous work in our laboratory has reported degeneration of the testes following 

left unilateral vasectomy in the Albino Swiss rat. This degeneration can be ipsilateral 

to the side of vasectomy or bilateral. We paid particular attention to the 

ultrastructure of the seminiferous tubules nine months or more following vasectomy 

in an attempt to elucidate the aetiology of the degeneration. There were marked 

differences between degenerated tubules following vasectomy and healthy tubules 

Ifom sham operated controls or following vasectomy. The seminiferous epithelium in 

degenerated tubules rarely contained any recognisable sperm preeursors. It consisted 

of Sertoli cells with few vacuoli and nuclei with deep intranuclear clefts displaying 

peripheral clumps of heterochromatin which were often found more central in the 

tubule than those fi'om controls. The boundary zones fi’om degenerated tubules were 

also greatly different fi’om controls. The Sertoli cell basal laminae were thrown into 

marked folds as were those of the myoepithelial cell. The latter often had nuclei with 

triangular profiles as did the outer lymphatic endothelium. The basal lamina of these 

cells also appeared detached in places fi’om the soma. There was no ultrastructural 

difference observed between unilateral and bilateral degeneration. The degenerated 

tubules were found to be smaller, often containing more Sertoli cells than controls. 

The similarity of these findings to those reported following other insults suggested 

that the findings may not be specific for vasectomy. The similarity observed between 

degeneration following vasectomy and that following maternal in utero flutamide 

administration supported the notion of these changes being due to shrinkage of the 

tubule. The only difference being the presence of immunocompetent cells in the 

boundary zone of degenerated tubules following vasectomy.

Despite the gross change in Sertoli cell appearance, we were able to demonstrate 

that both healthy and degenerated tubules following vasectomy retained typical 

Sertoli-SertoU cell tight junctions as were found in sham operated controls. We used 

lanthanum as an intercellular tracer to test the fimction of these junctions. Both 

healthy and degenerated tubules following vasectomy were able to exclude 

lanthanum from the lumen as in controls. It would appear that the blood-testis 

barrier remains intact in rats nine to fifteen months following vasectomy or sham



procedure, even in degenerated tubules. There was no difference demonstrated 

between bilateral and ipsilateral degeneration,

Immunohistochemical investigation of testis three weeks, three months, six months 

and one year following vasectomy compared with sham operated controls revealed 

the presence of low numbers of immunocompetent cells in the testis of healthy 

control testes. We were also able to described the pattern of MHCI and II 

distribution in healthy testis. Degenerated testes following vasectomy contained focal 

areas of immunocompetent cells which expressed T-suppressor, T-Helper and 

macrophage markers. Such accumulations could be centred on degenerated tubules 

or on blood vessels. They were also found in the grossly healthy right testis of one 

animal with unilateral degeneration. There also appeared to be an increased number 

of immunocompetent cells in sections from degenerated testis, however, this may be 

partly accounted for by slirinkage of the testis.

MHC I expression was markedly different in degenerated testis following vasectomy 

compared with healthy tubules from sham operated controls or following vasectomy. 

In degenerated tubules the intratubular and interstitial cells were labelled where as 

healthy tubules had only limited staining of intratubular late spermatids as well as in 

the interstitium. This suggests that degenerated tubules contained Sertoli cells which 

expressed MHC I and may therefore play a role in the activation of the immune 

response demonstrated by the focal accumulations of immunocompetent cells. In 

contrast, there was no observed change in MHC II bearing cells. Taken together, our 

results suggest that the morphological changes to the boundary zone and SertoH cells 

following unilateral vasectomy are the same for unilateral and bilateral degeneration 

and probably represent a non specific effect from tubal shrinkage. The aetiology of 

these degenerations remains unclear but the biood-testes bairier remains intact.

There may be a role for the immune system as evidenced by the appearance of focal 

accumulations of immunocompetent cells and expression of MHC I by Sertoli cells 

in degenerated testis. The role of these MHC I bearing Sertoli cells unclear but they 

are capable of phagocytosis and possibly therefore antigen presentation.
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GENERAL INTRODUCTION

Vasectomy is a very popular method of birth control in many countries (1). Surveys 

m countries such as New Zealand suggest that it is the single most popular method 

of birth control (2). In the United States, figures fiom 1991 suggest that there were 

10.3 vasectomies per 1000 men aged 25-49 (3) whilst in 1995 there were 

approximately 494000 procedures carried out (4). In China alone, over 30 million 

individuals have undergone this procedure (5). The vast numbers of individuals 

undergoing this procedure mean that even small risks of complications are likely to 

materialise as large numbers of cases. These large numbers make it of the utmost 

importance to ensure the safety of the procedure particularly in the long term. In this 

work we investigate the long term consequences of vasectomy in an experimental rat 

model.

Vasectomy is performed on essentially healthy individuals (6). The procedure is not 

designed to benefit the patient’s health directly, although, some epidemiological 

studies have suggested that vasectomy is associated with a lower over all mortality 

rate compared with controls (7). This may be via maintenance or improvement of 

economic conditions of the individual or may reflect patient selection (8). From a 

practical point of view, in the increasingly litigious environment of clinical practice, 

any complications arising fi'om this procedure could have severe medico-legal 

repercussions (9). In reaching a decision to undergo this voluntary operation the 

equation becomes, in health terms, no proven direct health benefit against the risk of 

any complications. An investigation in to how this decision was reached concluded 

that both partners were involved, using their knowledge of other peoples’ experience

(10). Complications should be identified so that patients can be allowed to make an 

informed choice as to their method of contraception and to allow for the 

development of measures to reduce their occurrence.
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Complications of Vasectomy in Man

Approximately 10 per cent of men who have had vasectomy develop some form of 

complication (11, 12). This may be slightly reduced with modem minimally invasive 

no scalpel techniques requiring less exposure (13). The complications can be divided 

into early, occurring within five years after procedure and late, occurring after that 

time. The former have been extensively studied and have been divided into 12 

categories (table 1) (12).

Table 1. Complications of vasectomy up to five years with incidence per 100 cases 
( 12).

A/ General 
1 
2 
3

Failure of Procedure Early (0.25) 
Late (0)
Technical (0.49)

4 Haemorrhage
5

Minor (0.33) 
Major (0)

6 Infection
7

Minor (3.8) 
Major (0.16)

8 Regret (0.9)

B/ Confined to GU Tract
9 Epididymitis ( 1.9)
10 Orchitis (0.16)
11 Sperm Granuloma (1.3)

12 Miscellaneous (1.5) Intra-scrotal pain 
Others
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Early Complications of Vasectomy (table 1).

Early complications following vasectomy can be divided into two groups. The first 

general group consists of those which have features in common with any surgical 

intervention including the failure of the procedure, haemorrhage and infection. The 

second relates to the site of the procedure, the male reproductive tract in the case of 

vasectomy.

A: General Complications: Vasectomy is a procedure aimed at reducing fertility.

In this sense the most important complication is the failure rate. It can be divided 

into three types (table 1), the first consisting of early failure. This would usually be 

measured in terms of motile sperm as the finding of immotile sperm present in the 

semen is a common finding early after vasectomy (14). The early failure rate varies 

with surgical technique but usually lies between 0.2% (12) and 7.8% (15). With 

increasing experience and careful technique, the failure rate should be nearer 0.2%

(11), The pregnancy rate following vasectomy is likely to be considerably lower still 

but enough to cause considerable medico-legal trouble (9). The results can be 

considerably improved if correct seminal monitoring procedures are carried out 

following the operation. Patient compliance remains a problem with this (11,16).

Other failures of vasectomy occur after an apparently successful operation and 

constitute late failures (table 1). This is thought to result from recanalation of the vas 

as part of healing or else to failure to find the vas deferens (11) and has lead to 

fatherhood m a small number of cases (11, 17). In some individuals, sperm are 

detected in the ejaculate three months or more following vasectomy but the sperm 

are immotile. This constitutes the group of technical failures (table 1) in which the 

operation may have resulted in incomplete blockage to the vas but, the practical 

consequences are the desired ones of infertility due, for example, to immotile sperm.

Wound haemorrhage and infection (table 1) are complications of any form of surgery 

(18). They usually arise early and resolve with nftnimal intervention (12). Their 

incidence can be minimised by experienced surgical technique and sterile procedures.
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The use of antibiotics allows resolution of minor infections whilst more than one 

course is required to resolve a major one.

There is an emerging trend for some individuals who have been vasectomized to 

request reversal of the procedure (19). The reason for this change of mind frequently 

involves a change in the relationship and is often the partner’s initiative (20). The 

success of microsurgical reversal of vasectomy in one study of 1,247 first time 

procedures was 86% in terms of sperm presence in the semen (21). This figure 

presupposes the presence of a patent ductus deference and the production of sperm 

in the testes and decreases to 71% 15 years and more following vasectomy. The 

subsequent pregnancy rate was only 30% at this interval after vasectomy. Clearly, 

the chances of a successful vasectomy reversal decreases considerably with time after 

the initial procedure. The incomplete reversibility of the procedure has lead some to 

conclude that vasectomy is not an ideal form of contraception (1). It also suggests 

the possibility of factors other than tubal blockage in infertility foUowing vasectomy 

reversal. In one study of reasons for donor insemination, irreversible vasectomy 

represented 10.5% o f200 cases (22). This provides a further reason for studying 

vasectomy to determine the cause of this.

B: Complications of Vasectomy in the Male reproductive tract: Infections 

localised to the male reproductive tract are found foUowing vasectomy (table 1). 

Epididymitis which presents as inflammation locaUsed to the epididymis is rarely 

thought to be infective in origin and is treated conservatively usuaUy leading to rapid 

resolution (12) although, there may be recurrences (23). Orchitis can also foUow 

vasectomy, is assumed to be infective in nature and usuaUy settles with antibiotics

(12). This contrast with the possible autoimmune nature of sperm granulomata which 

are found foUowing vasectomy in some animal models (24). They consist of sperm, 

epitheleoid ceUs and lymphocytes (25). Granulomata are thought to be frequent 

findings after vasectomy (26) being more common after open ended techniques (27) 

although, they rarely cause the patient to return to the clinic for treatment. They 

often resolving with simple anti-inflammatory analgesia (12).
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Other recognised problems following vasectomy include intra-scrotal pain and 

haematuria. These were classified as miscellaneous abnormalities as they tend to 

resolve spontaneously requiring minimal or no treatment. They occur in around 1.5 

per cent of patients following vasectomy (12) although this may be a considerable 

under estimate. Other questionnaire based studies have put the number of patients 

suffering from Chronic Testicular pain as high as 33 per cent of those vasectomized 

(28) although, only 15 per cent found this troublesome and only a third sought 

medical advice. Another study foimd that 108 of 396 men surveyed had experienced 

pain following vasectomy but this had settled either spontaneously or with simple 

analgesia (29). They identified a residuum of 17 patients who had pain for more than 

3 months requiring surgical deinnervation to relieve the pain. In both symptomatic 

and asymptomatic patients, epididymal cysts were a common finding on ultrasound 

examination (30). This might go along with the possibility that the pain is due to 

increased pressure proximal to the sight of ligation with subsequent rupture and 

granuloma or cyst formation (31).

Late Complications of Vasectomy (table 2).

Recently, interest has focused on the long term consequences of vasectomy, as larger 

numbers of vasectomized men are reaching 30 or more years following operation 

and various epidemiological studies have suggested that vasectomy is a risk factor 

for heart disease and some forms of cancer. Despite these concerns, vasectomy 

seems to remain a popular form of fertility control (32).
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Table 2. Complications of vasectomy in the long term.

13 Late Post Vasectomy Syndrome

14 Irreversibility

15 Associated ConditionsProstate Cancer
16 Testicular Cancer
17 Cardiovascular Disease
18 Other Cancers
19 Renal stones

Osteoporosis

21 Immunological Abnormalities Anti sperm antibodies
22 Others

22 Histological Abnormalities

The late post vasectomy syndrome consists of chronic epidydimal pain lasting 

typically five to seven years following vasectomy (33). It often requires surgical 

intervention, being cured by unilateral or bilateral epidydimectomy which constitutes 

its major difference from post vasectomy orchalgia (26), congestive epididymitis 

(34), post vasectomy pain syndrome (31) and chronic testicular pain (28). All of the 

later also either resolve or are cured earlier than the five to seven year period of late 

post-vasectomy syndrome. They do, however, share many features in common 

leading some to suggest a common identity (28). In the prolonged cases of late post

vasectomy syndrome, the pathology is that of obstruction which is also thought to 

contribute in the other forms of intrascrotal pain (31). Congestive epididymitis is 

three times more frequent in closed as opposed to open ended vasectomy (35) which 

possibly supports the role of obstruction and pressure build up in the aetiology of the 

various forms of intrascrotal pain.

The apparent irreversibility of some vasectomies is an increasing problem 

encountered in a proportion of men who wish to start a new family (21). This can be 

considered to be the late development of the regret phenomenon (table 1). As 

discussed above, reversal, even using microsurgical techniques, has a worse 

prognosis as the time span following vasectomy increases. The fertility rate shows a
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particularly marked decliue ten years or more following vasectomy (36). The best 

achievable pregnancy rate following vasectomy reversal has been estimated to be 67 

per cent (37). This does not allow for an estimated 12 per cent due to partner 

infertility (37). Clearly, in a large proportion of men, vasectomy is not a readily 

reversible procedure. This is becoming a major problem as the numbers of men 

requesting reversal increases (38).

There is ongoing controversy over the relationship, if any, between vasectomy and 

prostate cancer. The potential mechanism of this is unclear although, there have been 

reports of elevated levels of dihydrotestosterone in men vasectomized for 10-19 

years compared with age matched controls (39). This could possibly be due to a 

decreased level of sex hormone binding globulin (40) although, the evidence is not 

overwhelming. Several groups have found vasectomy to be a risk factor for prostate 

cancer (41, 42, 43, 44, 45). Other workers have found vasectomy not to increase the 

risk of prostate cancer (8, 40, 46, 47, 48). Some authors have reversed previous 

findings (41) producing new results that provide little support for vasectomy as a 

risk factor for prostate cancer (49). This emphasises the need for careful statistical 

analysis to rule out confounding variables (41). Such factors might include diet 

which has been suggested to play a role in the development of prostate cancer 

(50,51). On balance, more recent evidence (52) suggests that there is no increased 

risk of prostate cancer following vasectomy (53). Vasectomy does not appear to 

effect pro static volume or the occurrence of benign pro static hyperplasia (54).

Vasectomy has also been linked with testicular cancer (55, 56). In one study, recent 

vasectomy was one of a number of risk factors identified for testicular cancer (55).

In another, an excess of observed over predicted cases in those having had 

vasectomy was found (56). Since then several large epidemiological studies have 

found no association between vasectomy and testicular cancer (46, 57, 58). The 

balance of evidence therefore seems to suggest that there is probably no increase in 

risk of testicular cancer following vasectomy except possibly, in certain discreet 

areas, Ireland and Scotland. This may have an underlying genetic basis as an 

unidentified confounding variable. This debate has lead some, including ourselves, to 

investigate just what the long term effects of vasectomy are on the testis.
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Concerns that vasectomy may lead to an increased risk of cardiovascular disease 

stemmed largely from the experimental models of vasectomy in the Rhesus Monkey 

(59). Large epidemiological surveys in man, however, have largely not identified this 

increased risk (60, 61) indeed, and have often found vasectomized individuals 

healthier or of lower mortality than controls (7, 46, 62). Additionally, there has been 

no independent confirmation of the results in experimental animals (63, 64).

Some workers have suggested that there is link between vasectomy and mortality 

from cancer in those having had the operation more than twenty years earlier and 

was primarily due to lung cancer (7) although, this has not been detected elsewhere 

(8). Some authors have suggested a link between vasectomy and urolithiasis (65, 66) 

although, this has not been widely found and specifically not identified in terms of 

hospital admissions by others (46). Other groups have expressed concern over a 

possible increased risk of osteoporosis but this appears not to be the case (67).

Vasectomy has been known to have immunological consequences for some time.

The most well recognised is the formation of antibodies to sperm antigens which 

occurs in around 55 per cent of patients following vasectomy (68, 69). Such 

antibodies do occur in a proportion of men before vasectomy (68) but their 

significance is uncertain. They also occur in around eight per cent of infertile men

(69). The antibodies formed have been linked to infertility following vasectomy by 

numerous possible mechanisms including, decreasing the number of motile sperm

(70) and interference with pre implantation embryos in experimental models (71). 

Conversely, some reports have suggested no link with infertility following 

vasovasostomy (72). These apparent discrepancies may be resolved once the 

specificity of the antisperm antibodies are known. It is not diBBcult to imagine that 

some of these antibodies to sperm will bind to sites which are not essential for 

fertility whilst others may effect sperm motility or ovum binding. Thus, the titre of 

antibody may be less important than the nature of the target antigen (69). The 

antigenic proteins are now being identified which should shed more light on this 

problem and on the initiation of such autoimmune responses (73).
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The formation of antisperm antibodies has lead some investigators to suggest that 

vasectomized men may be exposed to a variety of autoimmune hypersensitivity 

reactions including immune complex formation and delayed type hypersensitivity 

(74). Despite the theoretical concern there is little evidence for this in man in the 

short term (6). Testicular biopsies in man have failed to identify immune complex 

deposition in the basement membrane of the seminiferous tubules following 

vasectomy (75) although, they have been reported in some other species, notably, 

the rabbit (24).

The antibodies are interesting as they are directed towards self antigens and 

represent a breakdown of the normal immune privilege in the testis (76). Such a 

breakdown and concomitant immune response, taking the form of sperm specific 

antibodies and local granuloma, are common features after vasectomy in man (26, 

77). Both humoral (78) and cell mediated immunity (79) to human sperm have been 

shown to increase with time after operation. Thus, autoimmune orchitis might be 

expected to follow vasectomy as foreign antigens are recognised in the testis. There 

is, however, little evidence to support the occurrence of autoimmune orchitis in man 

following vasectomy, despite the great theoretical concern (80). Immune complex 

deposition does occur in the testes in a proportion of patients with infertility (81). 

Such deposition has been associated with variable degrees of tubular degeneration 

(82). The inference being that an immune complex mediated orchitis can lead to 

tubular degeneration similar to glomerulonephritis (83). With the possible exception 

of the testis and epididymis, however, there is little evidence for immune mediated 

disease in man following vasectomy (8) and no differences in circulating immune 

complexes between vasectomized and control subjects have been found by 

investigators (78).

There is some evidence for the occurrence of infiltrative autoimmune orchitis in 

infertile men (84). Focal mononuclear infiltration of seminiferous tubules being the 

characteristic finding on histology of biopsy specimens (77). Interestingly, 

normalisation of sperm counts can be achieved using oral prednisolone over six
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months (77). Lymphocyte infiltration has also been found in oligospermie and 

azoospermie infertile men (85). This provides evidence for involvement of the 

immune system in the pathology of infertility although, it does not confirm self 

antigens to be the only target. The focal nature of the orchitis has been invoked by 

some as a possible explanation as to why orchitis has not been reported previously in 

infertile or in vasectomized men (80).

There are reports that spermatids showed degenerative features and that there was 

increased vacuolation of Sertoli cells following vasectomy in man (86, 87). Other 

workers have suggested even more severe alterations to the seminiferous tubules in a 

proportion of cases, including the finding of minimal spermatogenesis and 

aspermatogenesis on follow up (88). The changes were largely confined to the 

tubules of the testis with a largely normal interstitium. The seminiferous tubules have 

been described as hypoceUular (89) with an increased thickness of the boundary 

zone (88). Other workers have reported spermatogenic arrest, boundary zone 

thickening and interstitial fibrosis (90). Alterations in the histological appearances 

were not associated with high titres of antisperm antibodies (91). The finding of 

altered boundary zones alone after vasectomy may have significance for fertility 

following vasovasostomy. The majority view, however, seems to be that 

spermatogenesis continues after vasectomy (64, 75, 87) with some minor impairment 

(92, 93), in the majority of cases. This is consistent with the ability to obtain normal 

sperm counts following vasovasostomy in a percentage of men (21). Alterations to 

the boundary zone of the seminiferous tubules are a common feature in infertile 

patients (83, 94, 95), although they may be of many different causes (82). The 

inability to obtain sperm in the ejaculate of all men following vasovasostomy leaves 

open the possibility of a more detrimental effect in a small percentage of cases.
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The Effects of Experimental Vasectomy on the Testis in Animal Models

The difficulty of obtaining specimens of human material requiring an invasive 

procedure, combined with the poor fixation of cadaveric material for use in 

ultrastructural analysis, has lead to the development of animal models of vasectomy. 

The work which has been done on vasectomy in the human, using biopsies, only 

gives a limited picture of what is happening in the organs as a whole. This is of 

particular concern when considering conditions which are known to be focal in 

nature as appears to be the case with certain forms of orchitis (80).

The principle problem with animal models is that there is considerable variation in 

the effects of vasectomy on the male reproductive tract in different species (96). This 

may reflect different morphological features some of which may be significant for 

their response to vasectomy. Disrupted spermatogenic activity has been reported in 

the guinea pig (97), hamster (98), mouse (99), rabbit (100) and rat (101, 102). 

Apparently conflicting reports of normal spermatogenesis following vasectomy have 

been made in the gerbil (103), monkey (104), mouse (105), rabbit (106) and rat 

(107). These contradictions may be partially resolved by allowing for variation 

between different strains of the same species. Thus in the case of the rat, Albino rats 

may undergo spermatogenic arrest (101) whilst Wistar rats may not (107). Other 

factors such as time after vasectomy may play a role in this variation (96), for 

example, Flickinger (102) examined rat material seven months following operation, 

whilst the others waited approximately one month (101, 107). In some species the 

differing effects of vasectomy with time after operation suggest that initial inhibition 

of spermatogenesis is followed by a return to normal. Such effects are well 

documented in the dog (108) and Rhesus monkey (109) but have also been found in 

some strains of mice (110) and Albino rats (111). This stresses further the 

importance of observing long term consequences of the procedure as is the intention 

of this work.

Orchitis has been found following vasectomy in a number of animal models but is 

best documented in the rabbit (24, 112, 113) although, monocytic infiltration has
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also been found in the Guinea pig (97, 114). There is good evidence in the rabbit that 

an autoimmune process is occurring as circulating antibody can be detected in the 

blood and immune complexes can be demonstrated in the boundary zone of the 

seminiferous tubule (24). In the Guinea pig, direct comparison of the effects of 

vasectomy with experimentally induced allergic orchitis found some difference 

between the two suggesting other possible aetiologies (115). Monocytic orchitis has 

been documented in the rhesus macaque following vasectomy, although, some 

controls were also affected which raises the possibility of infection as an underlying 

aetiology (116). Frank orchitis has not been found to follow vasectomy in the rat 

although, sperm autoantibodies have been documented in vasectomized Lewis rats 

(117) and in pre-pubertal rats with experimental vasal obstruction (118). There have 

also been reports of anti-sperm antibodies associated with histological abnormality in 

Lewis rats (119) although, it is not certain that this link is causal.

The Effects of Experimental Vasectomy on the Testis in the Rat

The effects of vasectomy on the testis of the rat are still controversial (120). Several 

authors have reported that the testes remain unchanged following vasectomy (121, 

122, 123). Other authors have reported a variety of structural changes in the testis 

ranging from gross degeneration (124, 125) to impaired spermatogenesis (126) and 

ultrastructural changes in the boundary zone (102, 127). The changes reported 

following vasectomy in the rat reflect, to an extent, the mode of investigation 

chosen. Some have performed only gross observation or mass measurement (123, 

124) whilst, others report accompanying histological degeneration of the 

seminiferous tubules (128, 129). The majority of reports now suggest that some 

degree of structural alteration of the testis occurs in at least a proportion of certain 

strains of vasectomized rat.

The explanation for the variability in the presence or absence of post vasectomy 

degeneration of the testis in the rat is unknown although, several suggestions have 

been made. It may be because of the difference in the strain of rat used (96, 130). 

Different strains of rats might have differing susceptibility to degeneration which
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might be due to differing immune responses. The number of rats with circulating 

antisperm antibodies following vasectomy has been shown to vary with the strain 

(131). Even amongst responders, some strains of rat seem to produce a bigger 

response than others (132). The latter presupposes an autoimmune aetiology of the 

degeneration. This is by no means certain although, higher titres of antibody to 

sperm have been linked with more severe degeneration of the testis (133). The 

pattern of antigen recognition as manifested by the antibody immune response in 

vasectomy is similar to that of immunisation with spermatozoa (134), giving further 

support to the notion of vasectomy producing an autoimmune response. This cannot 

provide the entire explanation as not all animals of a given strain will develop 

degeneration and when unilateral vasectomy is performed only a fraction of animals 

develop bilateral degeneration (135). Differences in the procedure have also being 

suggested as a cause for this variability (96). Open and closed vasectomy have been 

compared with both groups having grossly normal testes (123). Efferent duct 

ligation has been compared with partial epididymectomy with both producing some 

tubular degeneration which was more severe in the case of the latter (136). Non- 

sterile technique has also been implicated as a cause of altered testicular morphology 

following vasectomy in the rat (137).

This study was intended to further investigate both the ipsüateral and bilateral 

degeneration of the testis observed following unilateral vasectomy in the Albino 

Swiss rat (138). In previous studies (139), ipsilateral degeneration of the testis was 

found in only two out of sixty-three rats sacrificed up to six months following 

procedure and not in controls from these time spans. Bilateral degeneration was not 

observed before six months following vasectomy. In contrast, six months or more 

following vasectomy, seventeen out of fifty-eight demonstrated ipsilateral 

degeneration whilst eleven out of fifty-eight demonstrated bilateral degeneration of 

the testis. Of controls sacrificed six months or more following vasectomy, two out of 

sixty showed bilateral degeneration. These animals were eighteen months after the 

operation having reached an age of twenty-one months. Ipsilateral degeneration of 

the testis following vasectomy in the Albino Swiss rat in our experience seems to be 

linked with the formation of granuloma in the caput epididymis on the vasectomized 

side and is likely to result from pressure phenomena (139). The cause of the bilateral
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degeneration remains unclear but it does not appear to result from vascular 

compression (139). Autoimmune phenomena have been suggested (140) but no 

concrete evidence for this exists at present.

This study intended to further investigate the model of degeneration of the testis 

following vasectomy along three main avenues. The first was to look for 

ultrastructural changes in the testis of rats six months and more following vasectomy 

to see if any subtle electron microscopic changes could be observed in both the 

grossly normal testes where ipsilateral degeneration had occurred and in those where 

both sides appeared normal. Light microscopic examination of the apparently healthy 

testes of rats six months following vasectomy had previously detected no 

abnormality (141). The second avenue of investigation was to examine the integrity 

of the blood testis barrier both morphologically and ftmctionally, using lanthanum as 

a junction permeability marker. The final avenue of exploration was to look for 

evidence of immunocompetent cells in the testis following unilateral vasectomy using 

immunohistochemical techniques.
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ELECTRON AND LIGHT MICROSCOPIC OBSERVATIONS ON THE 

BOUNDARY ZONE OF THE SEMINIFEROUS EPITHELIUM AND 

SERTOLI CELLS FOLLOWING VASECTOMY IN THE RAT 

INTRODUCTION

Previous work in this laboratory has examined the effect of vasectomy on the gross 

and light microscopal appearances of the testis in the Albino Swiss rat and in 

particular on the germ cells (135, 139, 140). In this first chapter, we focused 

particularly on two areas not previously examined by our group. These areas would 

be examined and compared in healthy sham operated control testes, healthy testes 

following vasectomy and those undergoing both unilateral and bilateral degeneration. 

In addition, we would compare the ultrastructure of degenerated testes following 

vasectomy with those following maternal in utero flutamide administration.

The &st area of interest was the boundary zone of the seminiferous tubule which, 

forms the interface between the seminiferous epithelium and the interstitium. It 

consists of the Sertoli cell basal lamina, the myoepithelial cell and its surroundmg 

basal laminae (142, 143, 144). The later lies on either side of the single layer of 

myoepithelial cells. Lymphatic spaces, lined by endothelium, frequently lie adjacent 

to this (142). Lymphocytes are never found beyond the myoepithelial cell in health 

but can rarely be found immediately on its interstitial aspect (145). The basal lamina 

of the Sertoli cell is produced by both the Sertoli cell and the myoepithelial cell in 

vitro (146) and is now thought to play a role in the development and expression of 

Sertoli cell structure and function (147). Any structural alterations in this region may 

have a deleterious result on the function of the entire seminiferous epithelium. 

Previous work suggests that up to eight weeks following vasectomy there is no 

alteration in Sertoli cell function as assessed by the level of androgen binding protein 

in Sprague-Dawley rats (148). In this chapter we look at the long term effects of 

vasectomy on boundary zone structure.
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The second area of particular interest was the Sertoli cell which forms part of the 

seminiferous epithelium. This is a complex highly specialised, stratified epithelium 

(149) that lines the seminiferous tubules of the testis. It normally has two 

populations of cells; a non dividing supporting portion consisting of Sertoli cells and 

a proliferative population of germ cells which mature and migrate towards the centre 

of the lumen. The nuclei of these cells can be readily identified at light microscopy by 

their ii regular shaped nucleus found in the peripheral regions of the seminiferous 

epithelium (150). The ceU is thought to support the developing sperm precursors and 

produces a wide variety of proteins including those destined to be part of the 

boundary zone (151). It also divides the epithelium into distinct physiological 

compartments via special junction complexes (152).

Altered morphology of Sertoli cells has been associated with degeneration of the 

testis resulting ifom a variety of insults in a number of species (153). In man, the 

morphology of the Sertoli cell nucleus has been used to provide information on both 

aetiology and prognosis for return of fertility (154). Cytoplasmic involvement usually 

takes the form of an increased number of cytoplasmic vacuoles often containing lipid 

as in man (86), the monkey (109) rabbit (100) and rat (102). Lysosomes have also 

been described as increasing following vasectomy in man (88), the rabbit (112) and 

rat (102). In the case of experimental cryptorchidism, the Sertoli cell nuclear 

morphology was also modified (155). In this chapter, we examine for such changes 

in a model of degeneration of the testes following vasectomy.

Degeneration of the seminiferous epithelium of the rat can follow numerous insults 

including vasectomy (128, 133, 138) and the use of anti-androgenic drugs (156). 

Following vasectomy, detailed studies have suggested that changes can occur in the 

boundary zones of the serniniferous tubules as well as in Sertoli cell cytoplasm. In 

particular, thickening of the Sertoli cell basement membrane has been reported 

fo Ho wing vasectomy (157) associated on occasion with increased vacuo lation of 

Sertoli cell cytoplasm (129). Anti-androgenic drugs, which include flutamide, cause 

maldescent and degeneration of the testis when administered in utero (158, 159). We 

intend to examine all the layers of the boundary zones of seminiferous epithelium
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from healthy tubules following vasectomy and sham procedure and compare them 

with degenerated tubules following vasectomy and with those following flutamide 

administration in utero.

MATERIALS AND METHODS

Animals: Fifteen Albino Swiss rats from a departmental inbred colony, maintained 

at the Laboratory of Human Anatomy at the University of Glasgow, were divided 

into two groups at three months of age. Twelve underwent unilateral left sided 

vasectomy. Surgery was carried out by trained technicians, to avoid training time 

and learning curve problems, under sterile conditions with pentobarbitone sodium 

anaesthesia supplemented with halothane by face mask. The ductus deferens was 

occluded by two silk ligatures, approximately 4mm apart, placed within 2cm of the 

origin of the ductus deferens from the epididymis. The portion of the ductus between 

the ligatures was then excised. A further three animals underwent a similar left sided 

sham procedure using the same anaesthetic. Two silk ligatures were only loosely tied 

around the ductus which was not transected. The animals were then maintained 

under standard conditions until sacrificed at between nine and fifteen months post 

operation. A greater number of vasectomized animals were included because the 

effect of vasectomy on the testis is unpredictable with only about thirty percent of 

testes from long-term vasectomized rats undergo degeneration (134). It has not 

proved possible to predict which animals would undergo degeneration and those that 

would retain healthy testis. Nor was it possible to predict which would undergo 

unilateral rather than bilateral degeneration. The animals were kept in standard 

conditions and sacrificed between nine and fifteen months following operation and 

prepared for light and electron microscopy.

Flutamide: Three Albino Swiss rats whose mothers had been treated with lOmg per 

day of flutamide in 0.1ml propylene glycol by subcutaneous injection from day ten 

following time mating until birth were sacrificed at twelve months of age. Flutamide, 

an anti-androgenic agent, can produce both maldescent and degeneration of the testis
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(158, 159). In this study, only grossly degenerated testes were collected to provide a 

comparison with degenerated testes following vasectomy. The resin embedded 

blocks were donated by Professor A.P. Payne. They had undergone the same 

preparation as for the material in this study but the testicular weights were not 

available. All three testes were from animals with unilateral degeneration, one left 

and two right.

Electron Microscopy: Twelve unilateral vasectomized and three sham operated 

control animals were sacrificed between nine and fifteen months after operation. 

Each rat was anaesthetised with an overdose of sodium pentobarbitone and its 

abdomen was opened by a midline incision. This was extended first into the thorax 

which gave access to the heart. The right atrium was opened and a cannula was 

inserted into the left ventricle and immediately perfused with 200ml of Ringer’s 

solution containing one percent lignocaine over five minutes at a pressure of 130cm 

of water. This was to remove blood from the vasculature and the lignocaine was to 

help maintain patency of the vessels. The incision was then carried down into the 

scrotum and the testes visualised. During this, perfusion continued with 200 mis of 

fixative consisting of 1% paraformaldehyde and 3% glutaraldehyde in cacodylate 

buffer (ph 7.8) for twenty minutes at 130cm of water pentobarbitone anaesthesia.

Fixation was continued overnight by immersion in lOOmls of 1% paraformaldehyde 

and 3% glutaraldehyde m cacodylate buffer. After rinsing in three changes of 

cacodylate buffer, the testes were weighed and divided into eight according to the 

reference diagram (Fig. 1) with a razor blade and placed into labelled bottles. The 

contents of each bottle was further divided in two to allow for easier handling. The 

specimens were then osmicated and embedded in araldite resin (Table 3) (160). 

Sections were taken from 4 blocks of each testis at 6 micrometers thickness using 

glass knives and an ultramicrotome (Porter Blum MT-2). They were stained with 

toluidine blue (Table 4) and examined under light microscopy (Wild. Heerbrugg 

Switzerland).
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Table 3. Protocol for osmication and embedding of specimens for electron 

microscopy.

1. Rinse in phosphate buffer twice.

2. Immerse in 0. IM Osmium Tetroxide for one and a half hours.

3. Rinse in Phosphate buffer for twenty minutes three times.

4. Immerse in 70 per cent alcohol overnight.

5. Immerse in 90 per cent alcohol for one hour.

6. Immerse in 100 per cent alcohol for one hour.

7. Immerse in pure alcohol for one and a half hours three times.

8. Immerse in propylene oxide for one hour twice.

9. Immerse in propylene oxide and araldite resin 1:1 overnight.

10. Immerse in propylene oxide and araldite resin 1:2 for eight hours.

11. Immerse in pure araldite resin overnight.

12. Immerse in pure araldite resin overnight*.

13. Embed m pure araldite resin until fully polymerised (forty-eight hours) at 60 

degrees Centigrade.

* Steps 1-12 were carried out at room temperature with the use of shakers between 

steps.

Table 4. Protocol for staining resin sections with toluidme blue.

1. Place section on drop of distilled water on clean microscope slide.

2. Dry on hot plate for five minutes at 60 degrees Centigrade.

3. Cover specimen with toluidine blue and place on hot plate for two minutes at 60 

degrees Centigrade.

4. Wash in running distilled water to remove excess stain.

5. Allow to dry for at least one hour.

6. Place in Xylene for five minutes.

7. Cover with glass cover slip using Histomount as adhesive.
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Areas containing circular profiles of tubules were identified at light microscopy and 

the resin blocks were trimmed to include these before being hardened overnight in an 

oven at 60 degrees Centigrade. Sections were then cut at 60-90 nanometres using an 

ultramicrotome (Porter-Blum MT-2) and glass knives . These sections were placed 

on copper grids and stained with standard lead citrate and uranyl acetate (Table 5) to 

further enhance contrast. They were then examined under the electron microscope 

(Jeol; JEM 100s).

Table 5. Protocol for contrast staining for electron microscopy.

1. Place grid specimen side down onto drop of a saturated solution of uranyl acetate 

in 40 percent ethanol for two minutes on dental wax in a covered petri dish.

2. Immerse in covered petri dish of distilled water for two minutes.

3. Dry on filter paper in covered petri dish for two minutes, specimen side up.

4. Place grid specimen side down onto drop of a saturated solution of lead citrate for 

two minutes on dental wax in a covered petri dish.

5. Immerse in covered petri dish of distilled water for two minutes.

6. Dry on filter paper in covered petri dish for two minutes, specimen side up.

SERTOLI CELL NUMBERS AND SEMINIFEROUS TUBULAR AREAS

Sertoli cell nuclei have characteristic features which allow them to be readily 

identified at light microscopic level (150). The mean number of Sertoli cell nuclei per 

seminiferous tubular profile was obtained as follows. One toluidine blue section Ifom 

each testis of three sham operated animals were selected at random from a collection 

of masked slides. Similarly, one section from each testis of three animals with 

bilateral degeneration of the testes and three animals with healthy testis following 

vasectomy were selected.

Each of the sections had their labels masked and were drawn using a camera lucida 

(Fig 2). Starting at either the top or bottom of the specimen, decided on the toss of a
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coin and left or right, decided in the same manner, tubules were selected. For each, 

the form factor (161) was ascertained by drawing around the profile on the camera 

lucida map using a Kontron MOP-AM02. The form factor is a measure of circularity 

and is equivalent to four Pi multiplied by the area of the tubule divided by the square 

of the perimeter. If the form factor was greater than 0.8, the tubule was included in 

the count as the closer this figure is to unity then the more circular the profile. Ten 

tubules were thus identified Ifom each section fi'om control and healthy testis 

following vasectomy. In the case of degenerated testis, ten degenerated tubules 

were selected in the same fashion. Circular profiles of tubules were preferentially 

examined to avoid the complications of oblique sections effecting the shape of the 

components of the boundary zone and Sertoli cell nuclear number.

For each tubule thus identified, the perimeter and surface area were also measured 

(using a Kontron MOP-AM02). The number of Sertoli nuclei was then counted for 

each section of sham operated and healthy tubule following vasectomy and its 

location noted on a second camera lucida drawing (Wild. Heerbrugg Switzerland) 

(Fig. 3). Each tubule was then re-examined and the number of leukocytes and their 

relative location, if determinable, in the boundary zone was noted onto the camera 

lucida drawing. During the count, the sections were not identified to avoid this as a 

source of observer bias. In the case of degenerated tubules, all nuclei present in the 

tubule were noted onto a camera lucida drawing. Such tubules were readily 

identified as being from vasectomized individuals because of their appearance and 

would thus present an unavoidable source of bias. The relative position of any 

leukocytes in the boundary zone was also marked onto the camera lucida drawing 

and counted.

RESULTS

Gross Observations The gross appearance of the testis following sacrifice could be 

divided into three groups by their naked eye appearance and the procedure 

undergone (table 6) (139). The first consisted of healthy testis fi'om sham operated 

controls. These were pink in colour with the epididymis retaining a healthy glistening 

appearance although, the site of sham ligation could be identified on the vas. The
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second group were grossly healthy testes following vasectomy which had a similar 

appearance to those of the sham operated control group. They had a similar mass to 

those of controls and came from either animals with both sides healthy or from the 

contralateral side in animals with ipsilateral atrophy (Table 7). The only difference 

lay in the epididymis in which some showed creamy granulomatous masses in the 

cauda in addition to that found at the site of ligation.

Table 6. The appearance of testis with time after vasectomy.
NUMBER WITH APPEARANCE

TIME POST OP NORMAL ATROPHY UNI ATROPHY BI
(months) (L=Left, R^Right)

V 9 5 IL 3
A
S 15 2 IL 0

S 9 1 0 0
H
A 14 2 0 0

F
L 12 0 2R+1L 0
U

Vas =: Vasectomy Sham = Sham Flu = Flutamide

Table 7. Mass of testis with time following vasectomy.

SPECIMEN TIME (months) MASS(g) APPEARANCE
Left Right

VTl 9 1.01 1.61 I
VT5 12 1.44 1.44 H
VT14 12 1.34 1.44 H
VT20 15 0.65 1.37 I
VT24 15 1.36 1.30 H
V30 9 0.72 0.54 B
V32 9 0.53 0.48 B
V35 9 1.36 1.32 H
V36 9 1.16 1.26 H
V37 9 1.11 1.30 H
V38 9 1.20 1.20 H
V39 9 0.60 0.57 B
STl 9 1.65 1.69 H
S22 14 1.21 1.26 H
S23 12 1.36 1.34 H
S = Sham V = Vasectomized H = Healthy I = Ipsilaterally Atrophied B

Bilaterally Atrophied



Chapter 2 40

The third group consisted of those testes which were darker, often visibly smaller 

and appearing like a watery bag. These were termed degenerated testis. One or both 

sides could be affect, being termed unilateral or bilateral degeneration, respectively. 

Unilateral degeneration was only observed on the same side as the vasectomy, 

leading to the use of ipsilateral to describe them. The contralateral testis and 

epididymis had a healthy gross appearance. The mass of degenerated testes was 

considerably lighter compared with either controls or healthy specimens after 

vasectomy (Table 7). The epididymis often had a similar appearance to those of 

healthy testes following vasectomy but sometimes, additional granulomas in the 

caput of the epididymis were found.

Light Microscopy

Healthy testes from sham operated controls: Both the left and right testes from 

the three sham unilaterally operated control animals had similar healthy gross and 

microscopic appearances. Typical sections contained both seminiferous tubules and 

interstitial spaces (Fig. 4). In the latter, islands of Leydig cells could be found often 

in relation to blood vessels. Frequent lymphatic spaces could be identified separating 

tubules and are typically lined by squamous endothelial cells. Leukocytes were 

frequently observed in these vessels.

The boundary zone of the seminiferous tubules separates the interstitial spaces from 

the seminiferous epithelium. In the rat it consists of a single layer of contractile, 

squamous myoepithelial cells which circumferentiate the tubule. These cells have 

flattened nuclei with long cytoplasmic processes extending part way around the 

perimeter of the tubule. These cells could be clearly resolved from the lymphatic 

endothelium where the elongated nuclei of the latter were stained with toluidine blue 

(Fig. 5). In such cases, a pale band constituting the outer layer of the basement 

membrane of the myoepithelial cell, could be seen to separate the myoepithelial and 

endothelial cells. Infrequently, leukocytes could be seen in relation to this outer 

layer of basement membrane (Fig. 6). The inner layer of the myoepithelial cell basal 

lamina, lying on its luminal aspect, is indistinct with toluidine blue as it apparently
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merges with the Sertoli cell basement membrane. The later is very difficult to resolve 

with toluidine blue but is best seen as a pale region lying between the Sertoli cell 

nuclei and the outer myoepithelial ceU (Fig. 7).

The seminiferous tubules contained a diverse compliment of spermatogenic 

precursors as well as Sertoli cells. These cells could be readily identified, near the 

periphery of seminiferous tubules, by their pale staining irregular nucleus frequently 

displaying slight intranuclear clefts and a prominent nucleolus (Figs 5, 6 and 7). In 

typical circular profiles, most of these nuclei were orientated with their long axis 

parallel to the perimeter although, occasional nuclei could be seen arranged 

perpendicular to the perimeter (Fig. 6).

A variety of spermatogenic precursors could be identified in the seminiferous 

epithelium (Figs 6 and 7). In the basal regions adjacent to the boundary zone, 

spermatogonia could be identified by their round or oval nuclei and characteristic 

pattern of nucleoplasm staining; fine granular for the type A peripheral 

heterochromatin for the type B (Fig. 6). Pachytene primary spermatocytes could also 

be identified further into the tubular lumen by their intense chromatin staining (Fig. 

6). Early and late spermatids were also identified, the later by their elongated nuclei 

the former by pale staining round nuclear profiles.

Healthy testes following vasectomy: The seven animals whose testes remained 

grossly healthy after vasectomy had both left and right testes with histological 

appearances similar to those of the control group (Figs 8, 9 and 10). Interstitial 

spaces contained Leydig cells frequently in relation to blood vessels. Endothelial 

lined lymphatic spaces containing occasional leukocytes were also found. The 

boundary zone was characterised by flattened myoepithelial cells but contained 

occasional leukocytes adjacent to the outer layer of the basement membrane (Fig. 8). 

The Sertoli and myoepithelial cell basement membranes were not undulated. The 

seminiferous epithelium retained the typical complement of spermatogenic 

precursors and contained Sertoli cells with typical morphology.
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The two animals undergoing ipsilateral degeneration had contralateral (right) testes 

with appearances like those of controls (Fig. 11). Interstitial spaces contained Leydig 

cells and blood vessels. The boundary zone maintained its flattened layer of 

myoepithelial cells. Sertoli ceU nuclei could be readily identified, retaining their 

typical features, in the periphery of the seminiferous epithelium which contained a 

wide variety of sperm precursors (Fig, 11).

Degenerated testes following vasectomy: The five ipsilaterally and three 

contralaterally degenerated testes had markedly different histology firom that of the 

healthy testes (compare Figs 10 and 12). The degenerated tubules appeared smaller 

whilst the lymphatic spaces seemed much enlarged. The sernimferous epithelium was 

reduced to a population of cells whose nuclei were mainly found in the periphery. 

Their nuclei had features of those of Sertoli cells but in an exaggerated form. They 

exhibited large intranuclear clefts and many had prominent nucleoli whilst some had 

peripheral clumps of hetero chromatin (Figs 14 and 15). The cytoplasm showed areas 

containing large vacuoles. Leydig cells were still present fi*equently in association 

with blood vessels. In places, the endothelial nuclei were no longer elongated but 

adopted a more oval appearance, occasionally appearing almost triangular in section 

(Fig. 14).

The myoepithelial cells remained a single layer but had a triangular profile in may 

sections (Fig. 15). Thin cytoplasmic processes could be seen to extend part way 

around the perimeter of the tubule as in the controls. Occasionally, leukocytes were 

seen in this zone adjacent to myoepithelial nuclei (Figs 14 and 15). The myoepithelial 

and endothelial cells could be seen to be separated by a much thickened paler zone 

representing the outer layer of the myoepithelial basement membrane (Figs 14 and 

15). On the luminal aspect of the myoepithelial cell, the pale layer representing the 

inner layer of the myoepithelial cell basement membrane and that of the Sertoli cell 

appeared thickened compared to controls. It was also thrown into folds which 

projected into the lumen (Fig. 14).
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Flutamide administration: The three grossly degenerated testes following in utero 

flutamide administration showed an appearance similar to the vasectomy induced 

degenerated group but only very occasional immunocompetent cells could be seen 

(Fig. 16).

Electron Microscopy

Healthy testes from sham operated controls: Both left and right testes from the 

three sham operated animals had seminiferous tubules containing a wide variety of 

sperm precursors. The boundary zones were of similar appearance to that described 

in the literature (Figs 17 and 18) (143). Flattened lymphatic endothelium was 

frequently found to separate the interstitial regions from the tubules. 

Immunocompetent cells were rarely found adjacent to the lymphatic endothelium 

lumen (Fig. 17) but never closer to the tubular lumen.

The outer component of the myoepithelial basal lamina could be found adjacent to 

the luminal aspect of endothelium. It consisted of an amorphous electron dense 

region immediately in relation to the myoepithelial cytoplasm and a sparse fibrillar 

layer outside (Fig. 17). A single layer of electron dense myoepithelial cells with 

elongated nuclei could be seen (Fig 18). Inside this were two electron dense layers 

separated by a layer containing fibrils. The outer layer forms part of the 

myoepithehal cell basal lamina which surrounds the cell on both aspects. The inner 

electron dense layer is the Sertoli cell basal lamina which was, occasionally, throvm 

into slight undulations towards the lumen (Fig. 17), Beneath these undulations the 

fibrils were more numerous but the dense layers apparently retained a similar 

thickness throughout the circumference of the tubule. Most fibrils were cut in 

transverse sections when examining circular tubules suggesting that their main 

orientation was parallel to the longitudinal axis of the tubule. The seminiferous 

epithelium consisted of a wide range of spermatogenic precursors as well as Sertoli 

cells. The irregular nuclei of the latter could be readily identified by their basal
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position adjacent to their basal lamina. When sectioned appropriately, prominent 

nucleoli and intra nuclear clefts could also be observed (Fig. 17).

Healthy testes following vasectomy: The seven animals with testes which were 

grossly normal following vasectomy had seminiferous tubules and boundary zones 

with similar appearances to the control group (compare Figs. 17 and 19). Sertoli cells 

retained their typical basal position, marked nucleolus and intranuclear clefts. The 

boundary zone consisted of an inner layer constituting the Sertoli cell basal lamina 

adjacent to which was the myoepithelial cell basal lamina (Fig 20). The elongated 

myoepithelial cell lay on its outer basal lamina outside of which, the endothelial cell 

cytoplasm could be identified (Fig. 19). The two contralateral grossly healthy testes 

fi'om the ipsilaterally degenerated animals also had seminiferous tubules and 

boundary zones with similar appearances to controls (compare Figs 18 and 21).

Degenerated testes following vasectomy: The five ipsilaterally and three 

contralaterally degenerated testes had similar appearances which were very different 

fi'om control or healthy testes following vasectomy. The boundary zones were 

markedly dififerent fi'om those of controls (compare Figs 17 and 22). The inner 

electron dense layer of the Sertoli cell basal lamina projected towards the germ cells 

giving a undulated appearance in some areas producing the appearances of multiple 

layers (Figs. 21 and 23). The myoepithelial cells still consisted of a single layer but in 

many tubules appeared triangular rather than elongated in outline (Fig. 22). The apex 

of which, fi'equently projected into the tubules as a fine cytoplasmic extension (Fig. 

24). The luminal layer of the myoepithelial basal lamina had become folded as well 

and was, in places, clearly separated fi'om the cytoplasm (Fig. 22). The fibrils 

appeared more numerous and more random in arrangement, with many no longer 

parallel to the longitudinal axis of the tubule when compared with healthy tubules 

(Fig. 22). The outer layer of the myoepithelial cell basal lamina was, in some tubules, 

much thicker than in the controls although, this may have been due to extensive 

folding (Figs 22 and 23).
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The lymphatic spaces were greatly enlarged but were still lined by a squamous layer 

of endothelium. Pseudopodia of leukocytes were frequently observed on the 

interstitial aspect of the endothelium (Fig 22). Occasional lymphocytes and 

macrophages were seen adjacent to the myoepithelial cell layer (Fig. 25). They were 

most numerous immediately deep to the outer part of the myoepithelial cell basal 

lamina and were more common in degenerated testes following vasectomy than in 

those after flutamide administration. They were also occasionally found on the 

tubular aspect of the myoepithelial cell (Fig 26). These cells were readily found in 

seminiferous tubules from both bilaterally and ipsilaterally degenerated testes 

following vasectomy (Figs 26 and 27).

The Sertoli cells from degenerated tubules were also markedly different from 

controls (compare Figs 17, 25 and 28). Their nuclei had deep intranuclear clefts with 

peripheral clumps of heterochromatin. The cytoplasm did not contain many vacuoles 

nor visible remnants of sperm precursors.

Flutamide administration: In the three testes which were grossly degenerated 

following in utero flutamide administration, the appearance of the boundary zones of 

seminiferous tubules was similar to that following vasectomy induced degeneration 

(compare Figs 22 and 29). Extensive folding of the Sertoli cell basal lamina and the 

adoption of triangular profiles by the myoepithelial cells were seen (Fig. 29). The 

only difference being that immunocompetent cells seemed to be confined to the 

extratubular aspect of the lymphatic endothelium. The seminiferous epithelium again 

demonstrated an absence of sperm precursors with Sertoli cell nuclei displaying large 

intranuclear clefts and peripheral clumps of hetero chromatin (Fig 29).

Analysis of Counts: The mean number of Sertoli cells per tubule for each testis was 

calculated (Table 8) and subjected to a one way analysis of variance and multiple 

range test via Statgraphics program to compare side, histology and procedure. These 

indicated that there were significantly more (p < 0.0005, confidence interval 95 per 

cent) Sertoli cells in degenerated tubules following vasectomy than in control 

animals or in healthy tubules following vasectomy. No significant difference was
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detected between the sides or between control and healthy testes following 

vasectomy.

Table 8. The mean area, perimeter, Sertoli cell count and leukocyte count for each 
group in the study per tubule in 1/360 mm squared, 1/360mm, number of cells per 
tubule and number of cells per tubule.

Group Area Perimeter Sertoli Leukocyte
Sham Left 
1 724.7 100.1 19.9 0.1
2 751.5 103.3 20.3 0.0
3 697.2 96.5 19.8 0.1
Mean 724.5 100.0 20.0 0.07
Sham Right
1 858.8 108.3 20.3 0.1
2 959.3 114.2 20.8 0.2
3 770.1 102.3 20.4 0.2
Mean 862.7 108.2 20.5 0.17
H Vas Left
1 636.2 94.2 20.4 0.2
2 821.3 107.0 19.2 0.4
3 657.7 94.0 19.3 0.4
Mean 705.1 98.4 19.6 0.33
H Vas Right
1 737.2 100.0 20.4 0.6
2 616.4 91.7 18.8 0.4
3 682.4 97.3 19.4 0.7
Mean 678.6 96.3 19.5 0.57
D Vas Left
1 193.2 50.5 21.8 1.0
2 243.2 56.6 22.6 1.1
3 292.2 63.9 21.4 0.8
Mean 242.9 57.0 21.9 0.97
D Vas Right
1 241.7 57.0 24.1 0.9
2 179.2 49.2 22.6 1.2
3 189.0 49.8 22 0.4
Mean 203.3 52.0 22.9 0.83

Significance for Degenerated versus Healthy:

p<0.0005 p<0.0005 p<0.0005 p<0.0005

H=Healthy D=Degenerated
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The mean number of leukocytes in the boundary zone per tubule for each testis was 

calculated (Table 8). A one way analysis of variance and multiple range test was then 

performed using Statgraphics program to compare side, histology and procedure. 

This indicated that there were significantly more (p < 0.0005, confidence interval 95 

per cent) leukocytes detected in the boundary zone of the degenerated tubules than 

in controls. No difference was detected between the sides. Healthy tubules from the 

right testes following vasectomy had significantly more cells in the boundary zone 

than controls but not more than the corresponding healthy left side following 

vasectomy.

The mean perimeter of the ten tubules from each testis was calculated (Table 8). A 

one way analysis of variance and multiple range test was performed using the 

Statgraphics program to compare side, histology and procedure. The results 

indicated that the degenerated tubules had significantly smaller perimeters (p <

0.0005, confidence interval 95 per cent) than either healthy tubules following 

vasectomy or controls. No significant difference was detected between the sides or 

between healthy tubules following vasectomy and controls.

The mean area of the ten tubules from each testis was calculated (Table 8). A one 

way analysis of variance and multiple range test was performed using the 

Statgraphics program to compared side, histology and procedure. The results 

indicated that the degenerated tubules had significantly smaller areas ( p < 0.0005, 

confidence interval 95 per cent) than either healthy tubules following vasectomy or 

in controls. The right testis from controls had tubules with significantly greater areas 

than those from healthy tubules following vasectomy. There was no significant 

difference between the tubular areas from the sides alone or between control and 

healthy testes following vasectomy.
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DISCUSSION

Degenerated tubules from atrophic testes following vasectomy were significantly 

smaller in cross-sectional area than those from either healthy testes following 

vasectomy or healthy sham operated testes (Appendix 1), They contained 

significantly more Sertoli cells per cross-sectional profile than healthy counterparts. 

There was no evidence, on morphological grounds for this increase in number of 

cells to have been due to the presence of additional cells, such as migratory 

lymphocytes, within the epithelium as all the cells had similar appearances. It seemed 

more likely to be due to a shrinkage in both length and width of the tubules. There 

also appeared to be an increase in the absolute numbers of leukocytes in the 

boundary zone following vasectomy although, the numbers of testes assessed was 

relatively small and may have been influenced by shrinkage of the tubule.

Our observations at both light and electron microscopy suggest that there is 

considerable morphological difference between the boundary zone of healthy tubules 

following vasectomy or sham procedure and degenerated tubules following 

vasectomy in the Albino Swiss rat (Appendix 2). Healthy tubules from sham 

operated controls or following vasectomy had a boundary zone structure as 

described in the literature (143). The Sertoli cell basal lamina was extensively folded 

with thickening of the fibres forming part of the basement membrane. These fibres 

also appeared increased in number with a more irregular orientation. There was no 

gross evidence of deposition of immune complexes but rather, the findings suggested 

a simple geometric explanation for the appearances of the basal laminae consistent 

with loss of tubular diameter and perhaps length.

The myoepithelial cells remained a single layer with the cytoplasm of many adopting 

a triangular profile around their respective nuclei. The myoepithelial basal lamina 

was also folded with its inner aspect becoming clearly separated from the cell body in 

places. Leukocytes, often lymphocytes with some macrophages, were also readily 

observed adjacent to the outer aspect of the myoepithelial basal lamina. Some of 

these cells were seen to send pseudopodia around the outer aspect of the
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endothelium. A few leukocytes were observed to have penetrated beyond the 

myoepithelial cells. Leukocytes are thought not to be present beyond the 

myoepithelial cell in healthy testis (145). The changes in the boundary zone of 

degenerated tubules following vasectomy are not limited just to the Sertoli cell basal 

lamina as has been reported in Lewis rats (129) but involve all layers of the boundary 

zone. The finding of some immuno-competent cells in the boundary zone raised the 

possibility of a role for the cell mediated immune system in the mechanism 

underlying degeneration following vasectomy and lead us to the 

immunohistochemical study performed in Chapter 4 (page 60).

We were unable to demonstrate any structural differences between the boundary 

zones fi'om ipsilateral or bilaterally degenerated testes following vasectomy. We 

found no evidence for alterations of the boundary zone preceding degeneration and 

altered boundary zones were only found in degenerated tubules. We directly 

compared degenerated tubules fi'om rats following anti-androgen treatment 

(flutamide) in utero and those foUowmg vasectomy (Appendix 3). Both showed very 

similar changes in both the seminiferous epithelium and in the boundary zones. This 

supports the notion that the changes in the boundary zone of degenerated tubules 

following vasectomy are not specific to the mechanism of insult. This is further 

strengthened by the striking similarity of the boundary zone changes reported here to 

those reported following X-ray irradiation in the rat (142).

The seminiferous epithelium of degenerated tubules was also markedly different fi'om 

that of healthy tubules following vasectomy or sham procedure. The epithelium was 

reduced to Sertoli cells only which themselves had altered morphology (Appendix 

4). Many adopted a more central position within the tubule. Most had developed one 

or more deep intranuclear clefts. Peripheral clumps of heterochromatin were readily 

identified in many nuclei (Appendix 5). The almost complete absence of vacuoles in 

the Sertoli cell cytoplasm of severely degenerated tubules probably reflects the 

complete absence of sperm precursors in such tubules. The changes to Sertoli cells 

described here are very similar to those previously reported by some groups 

following experimental cryptorchidism (155). Attempts have been made to specify
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the changes in a range of conditions with some authors suggesting that they are 

non-specific (162) and others suggesting the pattern may be used to give clues as to 

the under lying aetiology (154). Our finding of similar changes between ipsilateral 

and bilateral atrophy following vasectomy and flutamide administration in utero 

again support the notion of non specific affects.

It seems possible that the boundary zone changes reported here occurred in 

association with decreased tubular diameter. Our observations, along with those of 

several others, associate decreased tubular diameters with some boundary zone 

changes (129, 136, 163). Some authors, however, have associated thickening of the 

Sertoh cell basement membrane with increased tubular diameter in man (90). This 

difference may be due to species variability in complexity of the boundary zone 

(143).
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EXAMINATION OF THE BLOOD-TESTIS BARRIER FOLLOWING 

VASECTOMY

INTRODUCTION

The testes are separated from the other body compartments by a barrier termed, 

although not universally, the blood-testis barrier (164). The anatomical site of this 

barrier probably lies within the seminiferous epithehum at the level of Sertoli-Sertoli 

cell tight junctions (152) although, a partial barrier is thought to exist at the level of 

the myoepithelial cells (152, 165) and possibly at the lymphatic endothelium (166). 

Several functions have been attributed to this barrier including the maintenance of a 

selective hormonal and ionic environment within the tubules and sequestration of the 

immunogenic spermatozoa (167). This barrier seems to be very important for the 

function of the testis as its integrity may well be required for normal 

spermatogenesis. Disruption of the blood testes with chemical toxins (168) and 

vitamin A deficiency (169) has been linked with degeneration of the seminiferous 

epithelium.

Previous work in this laboratory has shown that degeneration of the testis occurs in 

combination with granulomas of the caput epididymis (139) in a proportion of 

Albino Swiss rats six months or more following unilateral vasectomy. Other animals 

retain histologically normal testis. The degeneration can be ipsilateral, occurring only 

on the side of vasectomy, or bilateral. The mechanisms underlying both forms of 

degeneration are unknown although, disruption of the blood-testis barrier could play 

a role in either or both. It has been previously demonstrated that severely 

degenerated tubules three months after bilateral vasectomy, in the Lewis rat, had an 

increased permeability to lanthanum (128). Our study investigates the integrity of the 

blood-testis barrier following unilateral vasectomy by examining the morphological 

appearance of Sertoli-Sertoli tight junctions and their permeability to lanthanum used 

as an electron dense tracer.
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MATERIALS AND METHODS

Animals: Twenty-six Albino Swiss rats from a departmental inbred colony were 

assigned to one of two groups at three months of age. The first, consisting of 

nineteen animals, underwent left sided unilateral vasectomy as described in the first 

chapter (Page 34 ). Seven controls underwent a similar unilateral sham operation. 

The animals were kept in standard conditions, sacrificed between nine and fifteen 

months following operation and perfiision fixed via the heart as detailed below.

Pilot Study: In order to obtain optimum fixation of the testis and perfiision of 

lanthanum, a series of trial procedures were attempted using varying concentrations 

of fixatives and lanthanum based on the experience of previous workers (152, 169, 

170). Fourteen animals, ten vasectomized and four sham, were used in this part of 

the study at the end of which, a standardised protocol was used for the remaining 

study. The specimens were processed for light and electron microscopy as detailed 

below. Tracer presence and fixation were then assessed. The buffer was chosen to 

allow for dissolution of the lanthanum. Attempts were made to introduce lanthanum 

after the initial Ringer's perfusion but these tended to reduce perfusion to such an 

extent that fixation of the testis was grossly impaired. The explanation for this is 

unclear, however lanthanum is thought to bind to various calcium binding sites 

including inside cardiac muscle cells (171). It is possible that a similar event is 

occurring in vascular smooth muscle causing contraction and reducing perfusion 

considerably. All solutions of lanthanum were maintained at room temperature, to 

reduce precipitation and were filtered before use. The final concentration of 

lanthanum in the fixative was two per cent. The procedure and concentrations which 

gave optimum results is detailed in table 9.
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Table 9. Pilot study for lanthanum perfusion.

ÎDURETIME APPEARANCE LANTHANUM FIXATION
V 9 I 1% 2%G
V 10 H 1% 2%G
s 9 H 1% 2%G
V 10 H 1% 2%G
V 15 B 1% 3%G
s 9 H 1% 2%G
V 12 H 1% Pr2%G
s 9 H 1% 2%G
V 13 H 1% Pr3%G
V 12 H 1% Prl%P3%G
s 11 H 1% Pr2%G
V 12 H 2% Prl%P3%G
V 12 H 2% Pr3%G
V 13 B 2% Prl%P3%G

Key:
S = Sham operated V = Vasectomized H = Healthy 
I = Ipsilateral Degeneration B = Bilateral Degeneration 
G = Glutar aldehyde P = Paraformaldehyde Pr = Prefixed
Time was in months following procedure

Lanthanum Perfusion: Lanthanum is an electron dense heavy metal with an atomic 

size of 0.114nm which can be used to assess the permeability of the blood testis 

barrier following vasectomy (171). We used a technique which was modified fi'om 

that used by Dym and Fawcett (153) and Cavicchia (170) on nine vasectomized and 

thiee sham operated control rat. Each animal was terminally anaesthetised with an 

over dose of sodium pentabarbitone and its abdomen was opened by a midline 

incision. This was extended first into the thorax which gave access to the heart. The 

right atrium was opened and a cannula was inserted into the left ventricle and 

immediately perfiised with 200ml of Ringer's solution containing 1% lignocaine over 

five minutes at a pressure of 130cm of water. This was to remove blood fi:om the 

vasculature and to maintain patency of the vessels. The incision was then carried 

down into the scrotum and the testes were visualised. During this, perfusion 

continued with 200 mis of the fixative consisting of 1% paraformaldehyde and 3% 

glutaraldehyde in cacodylate bufièr (pH 7.8) for five minutes at 130cm of water to 

prevent lanthanum fi'om penetrating cells as opposed to the extracellular space (165).
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Lanthanum was then introduced at a final concentration of 2% into 400ml of the 

same initial fixative, filtered and perfused for 30-40 minutes at 130cm of water 

(Table 10)

Table 10. Protocol for lanthanum perfusion via the heart.

1. Perfuse 200ml Ringer’s solution containing 1 per cent lignocaine over five minutes 

at 130cm water pressure.

2. Perfiise 200ml fixative containing 1 per cent parafoimaldehyde and 3 per cent 

glutaraldehyde in cacodylate buffer at pH 7.8, room temperature and 130 cm of 

water for five minutes.

3. Perfuse 400ml of filtered 2 per cent lanthanum solution in fixative (as above) and 

same conditions over 30-40 minutes.

4. Remove tissue and store overnight in fixative (1 per cent paraformaldehyde and 3 

per cent glutaraldehyde in cacodylate buffer at pH 7.8) without lanthanum.

The progress of fixation was monitored initially by observation of tissue blanching as 

blood was purged from the vessels and later by the development of a waxy 

coloration of the organs. Handling of the testes was kept to a minimum with the 

firmness of other tissues, such as the liver, as a gauge to the completeness of 

fixation. Each testis and epididymis was removed en bloc and placed in a labelled 

container of fixative excluding lanthanum overnight. The lanthanum was also 

excluded fi'om all subsequent stages of preparation

Preparation for Electron Microscopy: The testes were then rinsed in cacodylate 

buffer and placed in buffer for four hours to remove fixative for handling. Each testis 

was divided into eight and each piece labelled according to a standard reference (Fig 

1). The testis was divided using a razor blade and placed m separate labelled 

containers. Further preparation involved osmication and embedding in araldite resin 

(Table 3). Osmication fixes and enhances contrast whilst araldite provides sufficient
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support to allow sectioning for electron microscopy. Random sections were taken 

from four of the blocks of each testis at 1 micrometer using an ultramicrotome 

(Porter Blum MT-2) and stained with toluidine blue (Table 4) and examined with 

light microscopy. Areas containing circular profiles of tubules were identified and the 

blocks were trimmed to include these and hardened overnight in the oven at 60 

degrees Centigrade. Sections were then cut at 60-90 nanometres using an 

ultramicrotome (Porter-BlumMT-2) and glass knives. These sections were placed 

on copper grids and stained with lead citrate and uranyl acetate (Table 5) to further 

enhance contrast. They were then examined under the electron microscope (Jeol; 

JEMlOOs). Sections from the eight vasectomized and three sham operated control 

animals used in the previous study were also examined under electron microscopy.

RESULTS

Gross appearance and Light Microscopy: As previously observed, the gross 

appearance of the testis following sacrifice could be divided into three groups by 

their naked eye appearance and the procedure undergone (page 38) (139). The first 

consisted of six healthy testes from three sham operated controls. The second, of ten 

healthy testes from six animals following vasectomy. Four of these animals had 

healthy testes on both sides, whilst two had undergone ipsilateral degeneration with 

grossly healthy right testes. Both of these groups had similar gross appearances and 

contained a wide variety of sperm precursors on light microscopy. The third group, 

consisting of eight degenerated testes following vasectomy, were markedly different 

from healthy testes both in gross appearance and in their paucity of sperm precursors 

on light microscopy. The eight degenerated testes were from five animals, three with 

bilateral degeneration and two with ipsilateral (left sided) degeneration.
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Electron microscopy

Healthy testes from sham operated controls: The testes from sham operated 

control animals contained seminiferous tubules containing a wide variety of sperm 

precursors as well as Sertoli cells. The Sertoli cells were inter-connected in their 

basal portions by typical tight junctional complexes (Figs 30 and 31), These have 

been well described in the literature and consist of areas of Sertoli cell membrane 

fusion with subjacent electron dense fibrillar deposits often in approximation to 

endoplasmic reticulum (152, 166, 167).

Healthy testes following vasectomy: The grossly healthy testes from animals 

following vasectomy shared similar appearances to those of the sham animals. 

Typical Sertoli-Sertoli tight junctional complexes consisting of areas of apparent 

Sertoli cell membrane fusion with subjacent electron dense deposits and endoplasmic 

reticulum (Figs 32 and 33). They were readily seen in the basal portions of the 

tubules. They were also seen in healthy right testes of animals with ipsilateral 

degeneration (Fig. 34).

Degenerated testes following vasectomy: The grossly degenerated testes following 

vasectomy shared a common appearance regardless of whether they belonged to the 

ipsilateral (Fig 35) or bilateral group and in the later instance, whether they were 

from the left or right side (Figs 36 and 37). Most tubules contained only Sertoli cells 

with no recognisable sperm precursors as has been previously described. Typical 

Sertoli-Sertoli junctional complexes were identified in the basal regions of the tubule 

consisting of areas of Sertoli cell membrane fusion with subjacent electron dense 

fibrillar deposits often in approximation to endoplasmic reticulum (Fig. 36).

Permeability to Lanthanum

Healthy testes from sham operated controls: Lanthanum was not found beyond 

the basal compartment of the seminiferous tubules in any section examined and no
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tracer was identified in the lumen of the seminiferous tubule. The tracer was seen to 

stop at or before the level of the Sertoh-Sertoli ceh tight junctions (Figs 38). In some 

cases it seemed not to have travelled far beyond the vasculature (Fig. 39).

Healthy testes following vasectomy: animals with healthy testes following 

vasectomy were seen to exclude lanthanum from their lumenal aspects (Fig. 40). It 

was rarely seen as far as the Sertoh-Sertoh cell junctional complexes (Fig. 41). It did 

not penetrate far into these in agreement with reports by others (152) (Fig. 42). Even 

in grossly healthy testes from animals with ipsilateral atrophy, no lanthanum was 

identified in the lumen (Fig. 43).

Degenerated testes following vasectomy: animals with ipsilateral degeneration of 

the testes fo ho wing vasectomy showed no evidence of lanthanum in the lumen. The 

tracer was seen to stop in the basal portions of the seminiferous tubules (Fig. 44). A 

similar picture was observed in both left and right testes following bilateral 

degeneration. Tracer was confined to the basal portions of the seminiferous tubule 

(Figs 45 and 46) with no lanthanum seen in the lumen.

DISCUSSION

Our results suggested that Sertoli-Sertoli tight junctions remain morphologically 

intact nine to fifteen months following vasectomy in the rat (Appendix 6). We were 

able to identify typical Sertoli-Sertoli cell tight junctional complexes in healthy testes 

from sham operated controls and those following vasectomy. This was even true of 

healthy testes from animals with ipsilateral degeneration. Degenerated testes 

themselves, whether from animals bilateral or ipsilateral degeneration, also contained 

typical junctional complexes as described in the literature (167).

The results of the Lanthanum permeability have to be interpreted in the light of an 

understanding of the nature of the blood-testes barrier. It includes more than just the 

Sertoli-Sertoli cell tight junction in the rat but also varying contributions fr om the
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lymphatic endothelium (166) and the myoepithelial cell (152, 172) in maintaining a 

gradient of material at low concentration in the seminiferous tubule (166). It is 

therefore not surprising that we were rarely able to clearly identify lanthanum 

stopped discretely by a junctional complex as described by some (152) (Fig. 42).

This is probably due to a combination of factors including the presence of partial 

barriers to the passage of tracers into the seminiferous epithelium at several levels 

prior to the junctional complex itself. This is supported by the findings of others who 

have noted Lanthanum only rarely to reach as far as the Sertoli-Sertoli ceU junctional 

complexes in the rat (173). The important finding as far as the blood-testes barrier 

permeability is concerned is that lanthanum was not found beyond the basal 

compartment of the seminiferous tubules in any section examined regardless of the 

histology of the testis and no lanthanum was seen in the tubular lumen.

The results suggest that the morphologically intact Sertoli-Sertoli cell junctions also 

appeared to retain their ability to exclude lanthanum Ifom all but the very basal 

portions of the seminiferous tubule. This applied in healthy testis following 

vasectomy and sham operation as well as in ipsUateraUy and bilaterally degenerated 

testes. Previous work on the permeability of the blood testis barrier following 

vasectomy is limited. Vasoligation has been shown to produce no change in 

permeability to lanthanum up to one month following the procedure, where as, 

efferent duct ligation produces an increased permeability over the same time span 

(172). Other workers in the mouse (174) and rat (173) have found no increased 

permeability to lanthanum following efferent duct ligation. This is possibly because 

the later were exarnining effects in the short term, only up to two days. Bilateral 

vasectomy has been shown to produce increased permeability to lanthanum after 

three months in the Lewis rat (128) but only in degenerated tubules.

The permeability of the seminiferous tubules to lanthanum has been investigated in 

several other causes of degeneration of the testis, including vitamin A deficiency 

(175) and cryptorchidism in the rat (176), post-pubertal pituitary failure in man (177) 

and experimental allergic orchitis or vasectomy in the Guinea pig (178). All of these 

suggest that the blood-testis barrier remains intact following the respective insult in 

agreement with our findings after vasectomy in the rat. Other methods of



Chapter 3 59

investigation including dye penetration and fluid sampling have also generally shown 

that the blood-testis barrier remains intact following a variety of insults in several 

species (166). In short term studies of vitamin A deficiency in the rat, however, the 

barrier had increased permeability to lanthanum at ten days (169). This raises the 

possibility that the barrier had recovered by seven weeks accounting for the findings 

of other workers (175).

Most of the previously published literature support our findings. It has been shown 

that up to four months following vasoligation, in the Holtzman rat, grossly normal 

tubules retain their impermeability to lanthanum (172). The same author examined 

degenerated tubules of Lewis rats three months following vasectomy and concluded 

that in the most severely degenerated tubules, lanthanum was able to penetrate 

through the Sertoli-Sertoli cell tight junctions (128). Our findings on Albino Swiss 

rats are that the barrier is impermeable to lanthanum between nine and fifteen months 

after vasectomy. This raise the possibility that the blood-testis barrier remains 

initially intact following vasectomy followed by a transient leaky phase around three 

months before regaining its integrity by nine months. Other explanations may be 

sought in the fact that different strains of rat were used, it being possible that these 

strains respond differently to vasectomy. It should be remembered, however, that 

both Lewis (129) and Albino Swiss (139) rats have been shown to undergo a similar 

response to vasectomy. It therefore seem unlikely that strain variability provides the 

explanation for this. A similar rationale may explain the findings following efferent 

duct ligation and vitamin A deficiency discussed above.
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IMMUNOHISTOCHEMISTRY OF THE TESTIS FOLLOWING 

VASECTOMY IN THE ALBINO SWISS RAT 

INTRODUCTION

Previous work in this laboratory (135, 139) (Appendix 1) has investigated testicular 

degeneration in the rat following left unilateral vasectomy. This degeneration seemed 

to occur in combination with granulomas of the caput epididymis. It was found to be 

both ipsilateral to the side of vasectomy but also, frequently bilateral (139). The 

latter form of degeneration was of particular interest to us as it raised the possibility 

of the action of systemic factors because, the right side was untouched at operation. 

Both vascular and autoimmune causes have been postulated as the underlying 

aetiology of the bilateral degeneration although, the former seemed not to be the 

cause (139). During our electron microscopic investigations, we more frequently 

observed leukocytes in the boundary zone of degenerated testis following vasectomy 

when compared with healthy testes following vasectomy or sham operated controls 

(page 48). This apparent increase in leukocytes numbers in degenerated tubules may 

also be true of other areas of the testis as, the simple histology performed could not 

reliably exclude small numbers of white cells within the tubules. These observations 

raised the possibility of an autoimmune mechanism for the bilateral degeneration of 

testes following vasectomy being comparable to experimentally induced autoimmune 

orchitis (179). A mechanical obstructive mechanism may stiU apply to the ipsilateral 

side (139).

There is little literature looking specifically for a cell mediated response to 

vasectomy in the testis of rats although, there is good evidence for orchitis 

following vasectomy in the rabbit (24, 112, 113) and of monocytic infiltration of 

seminiferous tubules in the Guinea pig (97, 114). Monocytic orchitis has been 

documented in the rhesus macaque following vasectomy, although, some controls 

were also affected which raises the possibility of infection as an underlying aetiology 

(116). Frank orchitis has not been found to follow vasectomy in the rat although, 

sperm autoantibodies have been documented in vasectomized Lewis rats (117) and 

in pre-pubertal rats with experimental vasal obstruction (118). There have also been
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reports of anti-sperm antibodies associated with histological abnormality in Lewis 

rats (119) although, it is not certain that this link is causal. T-lymphocytes and 

macrophages have been identified in the interstitial space surrounding the rete testes 

of healthy human testes by immunohistochemistry (180).

In this chapter, we intended to identify the sub-populations of leukocytes present in 

healthy testes from sham operated control rats as well as in healthy and degenerated 

testes following vasectomy. It was also hoped to explore a temporal relationship 

between the lymphocyte subpopulations and the degeneration and in particular to 

examine the possibility that leukocyte infiltration may precede degeneration. Four 

time periods were chosen based on the previous work which suggested that gross 

degeneration did not occur prior to six months following vasectomy. The time 

periods chosen were three weeks, three months, six months and one year following 

operation. Age matched sham operated rats would be used as controls. The testes of 

all of these animals would be collected, sectioned and frozen with the application of 

immunohistochemical techniques to display lymphocyte sub-populations and 

macrophages.

MATERIALS AND METHODS

Animals and Procedures: Twenty-seven Albino Swiss rats were assigned to one of 

two groups at three months of age. The first, consisting of fifteen animals, 

underwent unilateral left sided vasectomy as described earlier (page 34). The second, 

consisting of twelve animals, had a similar unilateral sham procedure (page 34). The 

procedural groups were then assigned to time intervals after which sacrifice would 

occur. These intervals were three weeks, three months, six months and one year each 

consisting of three animals except the one year vasectomized group which had nine 

animals. This was to allow us to find some healthy and some degenerated testes as 

we have been unable to detect a reliable method of predicting which animals would 

undergo degeneration.
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Collection and Freezing of Material: Each animal was sacrificed using a gas 

chamber into which carbon dioxide was pumped. They were weighed and the 

scrotum shaved using savalon and then washed in copious warm water. The animals 

were pinned out on a cork board and the scrotum opened via a midline incision.

Each testis and epididymis was exposed and mobilized en block. The spermatic cord 

was cut and with great care, the testis was separated fi’om the epididymis. The 

epididymis was then divided into three and placed on dry ice to be used in future 

work. The testis was weighed and placed on dry ice until Jfrozen. Several of the sham 

animals also had their spleens removed to provide control material. The spleen was 

approached via a midline incision, identified, removed and placed on dry ice. The 

fi-ozen tissue was then wrapped in Nescofilm, labelled and stored at -20 degrees 

centigrade until cut. This storage was always under 48 hours but varied due to 

availability of time on the cryostat.

Frozen Sectioning: The proximal 5mm of each firozen testis was removed with a 

sharp scalpel and stored whilst the remainder was mounted on a chuck in the 

cryostat (Reichert-Jung 2800 Frigocut E) using OCT compound (Tissue Tek). The 

testis was then covered in OCT compound and lowered into liquid nitrogen so that 

only the chuck was in contact with the liquid nitrogen. This prevented cracking of 

the block due to rapid cooling and also excessive melting of the block due to room 

temperature OCT compound. Once mounted, the block was cut to fiiU face and 

sections were then taken sequentially at a thickness of 7 micrometers and mounted 

on labelled gelatinised slides. The spleen specimens were sectioned in a similar 

manner to the testes. One section was placed on either end of the slide and allowed 

to dry in air for ten minutes. The gelatine improved adherence of the section to the 

slide as did the drying. One section from each testis was labelled with each primary.

Fixation and Storage: After drying, the slides were immersed in acetone for ten 

minutes and then allowed to dry in air for a further ten minutes. Two slides were 

then placed back to back and wrapped in cling film. A total of two such packages 

were then placed in a labelled sealed plastic bag with a small quantity of dehydrated 

silica gel. They were then placed in a freezer at -40'C until required. Material stored
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by this method has been successfully stained by immunocytochemistry after storage 

for periods in excess of two years.

Antibodies: The primary antibodies were all mouse monoclonal anti-rat in nature 

and were obtained Jftom Seralab. W3/25 has been shown to label most thymocytes, 

T-helper lymphocytes and some macrophages (181). 0X8 has been shown to label 

most thymocytes, T-suppresser/cytotoxic lymphocytes and some natural killer cells 

(181). 0X19 has been shown to label all thymocytes and most peripheral mature T 

lymphocytes (181). These three antibodies were used to identify and subtype T 

lymphocytes. 0X33 is directed to a subfiraction of the leukocyte common antigen 

expressed on B lymphocytes (182) and was used in this study to identify these cells. 

0X42 has been shown to label the iC3b receptor which exists on a sub-population of 

macrophages, dendritic cells and granulocytes (183). It therefore has some use, all be 

limited, as a marker for macrophages in tissues for which purpose it was used in this 

study (183). 0X6 has been shown to bind to class IIMHC antigens of all strains of 

rat tested as well as some loci of the mouse MHC la. It has been used to characterise 

the immune response genes of various strains of rodent (184). 0X18 detects a 

monomorphic determinant of rat RTIA MHC class I antigen (185). 0X6 and 0X18 

were used in this study to determine the distribution of MHC antigens in the testis of 

the rat after vasectomy.

Immunohistochemical staining: A standard protocol involving the use of the 

Avidin Biotin Peroxidase Complex (ABC) (Elite Kit, Vector Laboratories) was used 

throughout the study for all of the antibodies (Table 11). It is a very sensitive 

technique which would allow identification of small numbers of leukocytes as 

anticipated in the controls. The concentrations of primary and secondary antibody as 

well as of the blocking serum were determined in the pilot study and by previous 

experience (24) (Table 12). Specimens were then counter stained using Mayer's 

haematoxylin and covered using glass coverslips (Table 13).
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Table 11. Protocol for Immunohistochemical staining.

1. Rehydrate specimen from freezer in phosphate buffered saline (PBS) for five 

minutes in glass trough.

2. Block endogenous peroxidase vyith lOOmls PBS containing 0.3 per cent hydrogen 

peroxide for twenty minutes in glass trough.

3. Wash in PBS for five minutes three times.

4. Block with 60 microlitres of goat serum (dilutes 1:20 with PBS) for twenty 

minutes.

5. Drain excess serum.

6. Apply 60 microlitres of primary antibody (Table 2).

7. Incubate overnight at 4 degrees Centigrade in humidified chamber.

8. Rinse in PBS for five minutes three times.

9. Apply 60 microlitres of biotinylated antimouse secondary antibody (Vector) 

dUuted 1:200 in PBS with 10 per cent rat serum.

10. Incubate for sixty minutes at room temperature in a humidified chamber.

11. Make streptavidin/ biotin/ horseradish peroxidase complex (Vector). Allow to 

incubate for thirty minutes before use.

12. Wash slides in PBS for five minutes three times.

13. Apply 60 micro litres of preformed complex and incubate for thirty minutes at 

room temperature in a humidified chamber.

14. Add diaminobenzidine developer to 100 mis of PBS and filter in special area 

(diaminobenzidine has carcinogenic properties).

15. Wash slides in PBS for five minutes three times.

16. Add 0.03 per cent hydrogen peroxide to diaminobenzidine solution and develop 

slides for fifteen minutes.

17. Wash slides in PBS for five minutes.

18. Wash in distilled water three times.
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Table 12. Primary antibody dilutions and specificities.
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Antibody Dilution Solvent Specificity

0X19 1:20 PBS with 1% goat serum T-Lymphocytes

0X33 1:20 PBS with 1% goat serum B-Lymphocytes

0X8 1:20 PBS with 1% goat serum T-Suppresser

W3/25 1:500 PBS with 1% goat and 2% T-Helper

rat serum

0X6 1:20 PBS with 1% goat serum Class II MHC

0X42 1:20 PBS with 1% goat serum Macrophages

0X18 1:20 PBS with 1% goat serum Class I MHC

Table 13. Procedure for counterstaining with Mayer's haematoxylin and covering 

slides.

1. Immerse slide in Mayer's haematoxylin solution at room temperature for two 

minutes.

2. Decolourise in running cold water for ten minutes.

3. Immerse in 30 percent ethanol for five minutes.

4. Immerse in 70 percent ethanol for five minutes.

5. Immerse in 90 percent ethanol for five minutes.

6. Immerse in 100_percent ethanol for five minutes.

7. Immerse in pure ethanol for five minutes.

8. Immerse in xylene for five minutes.

9. Immerse in xylene for five minutes.

10. Mount slide using histomount clear and a glass cover slip drying overnight.

Pilot study: The aims of this were to determine the optimum dilutions of the 

primary antibodies as well as to determine the effects, if any, of long term storage. 

We also hoped to reduce background staining to a miriimum and to identify any
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difficulties specific to the staining of testis and to test the suitability of counting 

methods.

Each antibody was prepared in of dilutions of 1/20, 1/50, 1/100, 1/200, 1/500 and 

1/800 and was then used to label sections fi'om a spleen prepared by the above 

procedure and stored for two years. The dilutions giving the most cell specific 

staining and least background were noted. This was repeated for spleen stored for 

two months to give an indication if the storage procedure significantly affected the 

labelling process. The distribution of staining was then compared with known cell 

distribution of the spleen as well as previous work on the antibody staimng patterns 

(178, 181, 182). W3/25 caused particular problems with background staining which 

was reduced by the mtroduction of two percent rat serum into the solution.

The same dilutions were then tried on sections of control and degenerated 

vasectomized testes and the dilutions giving the most cell specific and least 

background were noted. Some of the antibodies appeared to stain relatively few cells 

although in a highly specific fashion. It was therefore determined to always include 

positive controls in the form of specimens of spleen in each labelling batch. The 

identification of cells predominantly in the interstitium with very occasional 

intratubular cells was of significance for the method of cell counting. 0X18 seemed 

likely to present a particular problem of analysis as it stained extensively in the 

interstitium (Fig. 47) with only a slight intratubular component (Fig. 48) in healthy 

testes but had a marked intratubular component in degenerated tubules (Fig. 49).

Experimental Design: In order to spread the work load of this study, it became 

necessary to store the material once collected. We have demonstrated that long term 

storage appears not to significantly interfere with the labelling process in this study 

and in other work (25). The design deviated fi'om a more ideal one in not having all 

specimens stored for the same time because of practical constraints on the 

availability of machine time and logistics of staining the large number of specimens 

involved. Similarly, it was not possible to label all specimens with one primary at a 

given time.
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Testes were stained in batches of three which proved, logistically, to be the greatest 

number that could be reliably managed at one sitting. The testis were selected by 

withdrawal of a chit from a box with the operator blinded as to their identity. This 

was designed to reduce any bias resulting from the necessity of staining in batches. 

The specimens were stored at -40 degrees celcius for between six and twelve 

months before use, the precise period being determined by withdrawal of 

unidentified chits from a box. For each testis, two controls were included consisting 

of no primary antibody (replaced with normal solvent) (Fig. 50) and no secondary 

using a primary chosen at random such that in each experiment, six of the seven 

primaries would be used. Along with the six testes, eight sections of spleen would be 

included and would be labelled with the seven primaries and one no primary. This 

fimctioned as the positive control as the staining characteristics of spleen with many 

of these antibodies has already been determined in this laboratory and others (183, 

186, 187). All of the sections were examined using an Olympus CGI 1 microscope at 

a linear magnification of up to approximately 400 times.

Pilot study comparing the numbers of immunolabelled cells between different 

testes: Testes were segregated by primary so that all sections stained with a given 

primary were analysed together. The identity of the primary remained secret as was 

the identity of the testis except where severe degenerative changes unavoidably 

implied vasectomy. Complete sections of labelled testis were analysed one at a time 

at a magnification o f400 times using an Olympus COl 1. The slide was placed in a 

standard manner on a calibrated stage and the overall dimensions of the section were 

measured. A grid was then prepared on a piece of A4 paper to represent each section 

by rounding to the nearest mm and marking each vertical and horizontal 1mm 

division. Each high power field of this grid which was completely filled with tissue 

was then examined and the number of cells were counted and recorded on the grid 

(Fig. 51). An eye piece grid (EPM 6) was employed to measure the area of staining 

and to assist in the counts by allowing for subdivision of the field. The area of the 

grid was determined using a Graduate S8 stage micrometer which divides 1mm into 

100 divisions.
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The high powered field measure 0.43mm in diameter and so would not overlap with 

its surrounding fields provided that reasonable care was taken at arriving at each grid 

reference. Initial observations in the pilot study had alerted us to the possibility of 

intratubular as well as interstitial labelling of cells further complicating the process. 

The recognition of areas of staining as cells would present a further problem because 

nuclear profiles were not readily identifiable in some cells because of obscurément by 

diaminobenzidine. Additionally, the number of cells per complete section was 

expected to be low for some of the primaries. It was therefore decided to count 

positively stained cell like areas greater than two divisions in maximum diameter on 

the eye piece grid as cells for the purposes of counts. Cells clearly inside vessels 

were excluded firom the counts. Counts were expressed as the number of labelled 

cells divided by the number of high powered fields in an attempt to take account of 

variation in the size of the testes. Cells were described as either being intersitial or 

intratubular. The background haematoxylin staimng did not allow for clear 

visualisation of the boundary zones and so cells could not be ascribed to this site. 

Only cells which were clearly surrounded by seminiferous epithelium with no 

sectional damage due to cutting were included as intratubulai*. Other cells were 

classed as interstitial.

It was originally intended to count the number of labelled cells within each section of 

testis and to compare them for side, vasectomy or sham and time post vasectomy. 

This proved not to be possible due to the very low numbers of labelled cells on 

sections with some of the primaries and the inability to reliably identify either the 

nuclei or the precise cell boundaries of individual cells in regions where focal 

accumulation with large numbers of labelled cells had occurred. This was further 

compounded by the change in overall size of the testis in degenerated testes 

following vasectomy.

RESULTS

Gross appearance: The gross appearance and mass of the testes used in this study 

can be seen in table 14.
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Table 14. Gross appearance prior to immunohistochemistry.

SPECIMEN TIME ANIMAL MASS(g) APPEARAN<
Left Right

SE7/94 3W 324 1.55 1.54 H
SE8/94 3W 306 1.62 1.49 H
SE9/94 3W 282 1.40 1.34 H
SElO/93 3M 387 1.58 1.60 H
SEll/93 3M 374 1.55 1.51 H
SE12/93 3M 364 1.53 1.47 H
SE7/93 6M 396 1.53 1.53 H
SE8/93 6M 366 1.42 1.42 H
SE9/93 6M 372 1.48 1.46 H
SEl/93 lY 392 1.55 1.49 H
SE2/93 lY 394 1.57 1.57 H
SE3/93 lY 426 1.58 1.59 H
El 9/93 3W 312 1.51 1.47 H
E20/93 3W 340 1.49 1.48 H
E21/93 3W 364 1.51 1.54 H
E13/93 3M 368 1.55 1.53 H
El 4/93 3M 384 1.47 1.49 H
El 6/93 3M 336 1.48 1.45 H
E4/93 6M 396 1.40 1.34 H
E5/93 6M 344 1.39 1.42 H
E6/93 6M 358 1.43 1.39 H
E22/93 lY 337 1.38 1.33 H
E23/93 lY 347 1.44 1.43 H
E27/93 lY 310 1.35 1.31 H
E25/93 lY 297 0.71 0.62 B
E33/93 lY 320 1.08 1.59 I
E34/93 lY 305 1.18 1.57 I

SE = Sham E = Vasectomized
H = Healthy I = IpsüateraUy Degenerated B = Bilaterally Degenerated

On gross examination, all of the testes from sham operated controls appeared healthy 

regardless of the interval following the procedure. They had a mass ranging between 

1.32g and 1.62g. The testes from animals three weeks to nine months following 

vasectomy all appeared healthy having a mass ranging between 1.34g and 1.58g. The 

testes from animals twelve months following vasectomy could be divided into two 

groups, the first consisting of those that were grossly healthy having a mass between 

1.31 g and 1.59g. The second, degenerated group, had a mass between 0.62g and 

1.18g appearing smaller and darker than the rest.
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Immunohistochemistry

Immunohistochemistry of control spleen: Sections of spleen used in the pilot 

study and as controls within each labelling batch showed similar patterns of staining. 

0X19 labelling was found extensively throughout the perlarteriolar lymphatic sheath 

(PALS) and also scattered thinly through the red pulp (Fig. 52). W3/25 was found in 

a similar distribution to 0X19 but more labelling was found in red pulp areas (Fig. 

53). OX 8 was scattered throughout the PALS with relatively few cells in the red 

pulp (Fig. 54). The labelling pattern of 0X19, W3/25 and 0X8 observed conformed 

to that found in other studies (186). 0X33 was found to label cells in follicular areas 

largely sparing the PALS. Some scattered staining was observed in the red pulp (Fig. 

55). This is consistent with the pattern of labelling for immunoglobulin which is 

found particularly although not exclusively on B lymphocytes as observed by others 

(186). 0X18 labelled extensively throughout both the red and white pulp (Fig. 56), 

The labelling was clearly cellular although some cells were clearly more heavily 

stained than others (Fig. 57). 0X6 labelling was found largely in the mantle of the 

white pulp and scattered in the red pulp (Fig. 58). This is compatible with the pattern 

of la expression in the spleen suggested by other authors (187). 0X42 was found 

scattered throughout red and white pulp (Fig. 59).

Immunohistochemistry of sham operated control testes: The distribution of 

labelling for each primary antibody in testis sections at all time periods from both 

sides of the sham operated animals was noted. 0X33 labelled cells were found 

sparsely in the interstitium of the sham operated testes (Fig. 60). No positively 

labelled cells were observed inside the seminiferous tubules. OX 19 labelled cells 

were found confined to the interstitial areas of testes from sham operated animals 

(Fig. 61). OX 8 Labelled cells were found only in the interstitial areas of testes from 

sham operated animals (Fig. 62). W3/25 labelled ceUs were found mostly in the 

interstitial areas of the testis (Fig. 63) although, one example of an intratubular 

labelled W3/25 cell was found in the left testis of a sham animal (Fig. 64). 0X42 

Labelled cells were foimd mostly in the interstitial areas of the testis (Fig. 65)
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although, occasional intratubular labelled 0X42 cells were found in the left testis of 

sham animals. 0X6 Labelled cells were found mostly in the interstitial areas of the 

testis (Fig. 66) although, one example of an intratubular labelled 0X6 cell was found 

in the right testis of a sham animal. 0X18 intense labelling was largely confined to 

the interstitium (Fig. 47) although, some weak staining of spermatids (Fig. 48) was 

observed along with the occasional labelled intratubular cell (Fig. 67). Overall, no 

differences were observed between the sides or with time post sham operation. No 

focal collections of labelled cells were identified for any of the primary antibodies.

Immunohistochemistry of healthy testes following vasectomy: The distribution 

of labelling for each primary antibody in testis sections fi'om healthy testes of both 

sides following vasectomy at all time periods was noted. 0X33 labelled cells were 

found sparsely in the interstitium of the healthy testes folio vmig vasectomy (Fig. 68) 

and occasionally within the tubules themselves (Fig. 69). OX 19 labelled cells were 

found sparsely in both the interstitial and less commonly in intratubular areas of 

healthy testes following vasectomy (Fig. 70). OX 8 Labelled cells were found in the 

interstitial and less commonly in intratubular areas of healthy testes following 

vasectomy (Fig. 71). W3/25 Labelled cells were found in both the interstitial and 

infrequently in intratubular areas of the testis in healthy testes following vasectomy 

(Fig. 72). 0X42 Labelled cells were found mostly in the interstitial areas of the testis 

although, occasional intratubular labelled 0X42 cells were found in the tubules of 

healthy testes following vasectomy (Fig. 73). 0X6 Labelled cells were found mostly 

in the interstitial areas of the testis (Fig. 74) with occasional examples within the 

seminiferous tubules. There were occasional focal accumulations of labelled cells in 

the interstitium in the grossly healthy testis of one of the two animals with ipsilateral 

degeneration of the testis (Fig. 75). 0X18 intense labelling was largely confined to 

the interstitium (Fig. 76) although, some weak staining of spermatids was observed 

along with the occasional labelled intratubular cell. The appearances were similar to 

those observed in healthy testes from animals following sham procedure. Overall, no 

differences were observed between the sides or with time post sham operation.
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Immunohistochemistry of degenerated testes from rats twelve months following 

vasectomy: The distribution of labelling for each primary antibody in testis sections 

from degenerated testis of animals following vasectomy at all time periods were 

noted. 0X33 labelled cells were found sparsely in the interstitium of degenerated 

testes following vasectomy (Fig. 77) and occasionally within the tubules themselves. 

OX 19 labelled cells were foimd sparsely in both the interstitial and in intratubular 

areas of degenerated testes following vasectomy (Fig. 78). OX 8 Labelled cells were 

found in both the interstitial and intratubular areas of degenerated testes following 

vasectomy (Fig. 79). W3/25 Labelled cells were found in both the interstitial and 

intratubular areas of degenerated testes following vasectomy (Fig. 80). 0X42 

Labelled cells were found in the interstitial and intratubular areas of degenerated 

testes following vasectomy (Fig. 81). 0X6 Labelled cells were found mostly in the 

interstitial areas of the testis (Fig. 82) with occasional examples within the 

degenerated serniniferous tubules. 0X18 labelled cells in severely degenerated 

tubules included intratubular and interstitial cells (Fig. 83). The intratubular cells 

appeared to be more frequent in degenerated tubules following vasectomy than in 

either sham operated controls or healthy testis following vasectomy. The staining of 

these cells was specific to degenerated tubules as can be seen in the rare cases where 

degenerated tubules are found close to more healthy ones (Fig. 49).

The testes from animals with degeneration 12 months following vasectomy exhibited 

areas of focal infiltration with immunoreactive cells. Few OX 33 cells were identified 

within them (Fig. 84). OX 42, 0X8, 0X6, 0X18 and W3/25 labelled cells could be 

identified in these collections (Figs. 85, 86 and 87). They were present in the 

degenerated left testes of animals with both bilateral (Fig. 87) and ipsilateral (Fig.

88) degeneration of the testes twelve months following vasectomy. They were also 

found in the right testis of the animal exhibiting bilateral degeneration (Fig. 89). 

Many appeared to be centred on tubules (Fig. 85) while others appeared more 

interstitial in position (Fig. 88) or to be centred on blood vessels and (Fig. 89).

The pattern of MHC I expression in degenerated tubules following vasectomy as 

demonstrated with 0X18 was markedly different from healthy ones following 

vasectomy or sham procedure. All intratubular cells were labelled in degenerated
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tubules (Figs 49 and 83) as opposed to only late spermatids in healthy tubules (Figs 

48, 67 and 76). The interstitial cells were labelled in aU testes. The pattern of MHC 

II expression as demonstrated by OX 6 appeared no different in degenerated tubules 

following vasectomy from controls or healthy testes following vasectomy. There was 

possibly an increased number of labelled immunocompetent cells in degenerated 

tubules following vasectomy compared with healthy testes. To what extent this 

apparent increase was due to the reduced size of degenerated testes was unclear. 

There appeared to be many times more cells in the sections from degenerated tubules 

making simple shrinkage in volume of the testis an unlikely explanation. No 

differences were observed between the sides in the one animal with bilateral 

degeneration nor between testes from ipsilateral or bilateral degeneration.

DISCUSSION

This study confirms that there are sporadic immunocompetent cells in the 

interstitium of healthy rat testes following sham operation. In this study, cells 

staining with immimo-markers of B lymphocytes (OX 33), T-Helper (W3/25) and T- 

suppresser lymphocytes (OX 8), macrophages (OX 42) and class II MHC (OX 6) 

bearing cells have been demonstrated in the interstitial areas of healthy testes 

following sham operation. The presence of lymphocytes has been previously 

observed by others using light and electron microscopy in the testis of rats and 

Rhesus monkeys (145). They found only a few cells in the boundary zone itself and 

none beyond the myoepitheloid cell layer (145). We have, in addition, foimd a few 

labelled cells within the seminiferous epithelium of healthy rats following sham 

operation. These cells occurred at a very low incidence and only with certain primary 

antibodies. When observed, they were recorded in only in the absence of any 

adjacent tissue distortion which was found in some sections particularly near the 

edge of the specimen. It is therefore unlikely that such cells were an artefact created 

by the cutting mechanism and brought to their intratubular position by the motion of 

the knife. A single example of W3/25 and OX 6 labelled intratubular cell was 

identified. In the case of 0X42, three labelled intratubular cells were identified.

0X42 had been previously shown to react with only a small number of interstitial
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cells in the normal testis (183). Our results suggest that there are a few T-helper, 

MHCII bearing cells and macrophages in the interstitium of the healthy testis and 

also within the seminiferous epithelium of the rat. This may reflect the increased 

ability of immunohistochemistry over conventional histology to identify small 

numbers of immunocompetent cells. T-lymphocytes and macrophages have been 

identified in the interstitial space surrounding the rete testes of healthy human testes 

by immunohisto chemistry (180).

The healthy testes following vasectomy show a similar distribution of B cells, T- 

helper and T-suppressor cells, macrophages and class II MHC bearing cells in the 

interstitial areas as found in testes fi*om the healthy sham operated rats. The 

differences being a suggestion of an increase in number which we were unable to 

quantify and the presence of occasional focal clusters of immunocompetent cells in 

the grossly healthy right testis of one of the two animals showing ipsilateral 

degeneration. A further study possibly using computer assisted counting would help 

to clarify any change in absolute numbers. The number of intratubular cells also 

appeared to be increased in healthy testes following vasectomy compared with testes 

of sham operated controls but again, further study is needed to clarify. Examples of 

intratubular cells were found to include B lymphocytes, T-helper and T-suppressor 

lymphocytes, macrophages and class II MHC bearing cells.

Degenerated tubules following vasectomy have a similar distribution of B cells, T- 

helper and T-suppressor cells, macrophages and class II MHC bearing cells in the 

interstitial areas. However, there appeared to be an increase m number of these cells 

in degenerated testes when compared with healthy testes following sham operation 

or vasectomy. This apparent increase may have been related to the reduction in size 

of the testis. Quantitation proved not possible due to difficulty in distinguishing 

individual cells and their nuclei which would benefit firom further study. The 

distribution appeared to be the same in aU four degenerated testes (two ipsilateral 

and a bilateral pair). The presence of focal accumulations of immunocompetent cells 

in sections from degenerated testes which were often centred on tubules themselves 

raises the possibility that the immune system plays some role in the degeneration. 

Our observations are similar to those of Experimental Allergic Orchitis (EAO) adult
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Wistar rats in which 1.5-2 fold increase in the number of W3/25, 0X8 and 0X6 

labelled cells eighty days following immunisation was demonstrated (179). No 

labelled cells were observed within the tubules by this group although they have 

documented a reduced CD4/CD8 antigen ratio in the lymph nodes of rats with 

severe EAO (188). This raises the possibility of a role for the cell mediated immune 

system in the degeneration foUowing vasectomy.

The pattern of MHC I expression as assessed by OX 18 labelling within healthy 

seminiferous tubules of the rat was confined to extensive labelling throughout the 

interstitium with weak labelling of late spermatids which is consistent v^th the 

pattern in the human testis (189, 190, 191). MHC class II was largely confined to the 

interstitial areas of the testis and absent fi*om the intratubular areas. The only 

exception to this was a single labelled cell which may represent a macrophage given 

the overall morphology. In degenerated tubules following vasectomy, there was a 

marked change in MHC I distribution compared with healthy tubules fi'om controls 

or following vasectomy (Appendix 7). All of the remaining intratubular cells were 

labelled. As discussed earlier (page 48), these cells were thought to be Sertoli cells 

on morphological grounds and so it would appear that degenerated tubules contain 

Sertoli cells that express MHC I.
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CONCLUSIONS

This study represents the latest in a series of works from the Laboratory of Human 

Anatomy at the University of Glasgow investigating the effects of vasectomy on the 

Albino Swiss rat (140) (Appendix 1). The model used involved unilateral (left sided) 

vasectomy which provided an internal control for the effects of operation in that, one 

side remains untouched. More importantly, it should allow for the separation of local 

from systemic factors in that, problems with the untouched right side can not be due 

to simple mechanical interference. A similar left sided sham procedure provided a 

further control to examine the effects of simple exposure of the vas on the testis. The 

right side of the sham procedure providing the ultimate control in that neither 

exposure nor possible systemic effects of vasectomy should be present.

The observation that bilateral degeneration of the testes occurred in some rats, six 

months or more, following unilateral vasectomy seemed very intriguing to us (139).

It seemed possible to explain the ipsilateral degeneration of the testes following 

vasectomy as a consequence of raised intraluminal pressure (139) but not the 

bilateral degeneration. There was also no evidence to suggest that granulomas 

formed in the genital tract following unilateral vasectomy were able to interfere with 

testicular blood supply (139). One possible explanation for this bilateral degeneration 

was that it involved an autoimmune reaction to sperm antigens which, would 

normally be sequestered within the blood testis barrier but because of its breakdown 

on the vasectomized side, possibly due to pressure effects (139), were now exposed 

to the immune system. This would not, however, explain how some animals 

remained with unilateral degeneration unless, the activation of the immune system 

occurred late in the process. This work was aimed at looking for evidence of 

immune system activity in the long term following vasectomy.

The second chapter (page 32) examines our model of degeneration of the testes 

following vasectomy for ultrastructural changes and in particular, for evidence of 

activation of the immune system. This could take the form of the presence of 

immunocompetent cells in relation to degenerated tubules or the presence of 

thickened basal laminae due to the deposition of immunoglobulin, as occurs in the
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rabbit with autoimmune orchitis (24). Others have associated the amount of IgG 

deposition in the basement membrane with the degree of severity of degeneration in 

the rat (192). We extended our previous work on the model to look at the 

ultrastructural level for subtle changes in grossly healthy testes following vasectomy 

and to further examine the changes in degenerated tubules. We were particularly 

interested in the boundary zone of the seminiferous tubule which includes the basal 

laminae of Sertoli and myoepithelial cells (143). Thickening of the former had 

already been reported in Levns rats (129). Our previous work in the laboratory had 

focused on the germ cells (139) and so in this chapter we looked at the morphology 

of the Sertoli cells. Altered morphology of Sertoli cells had been associated with 

degeneration of the testis resulting from a variety of insults in a number of species 

(153). Hence changes in either of these components may have given us clues as to 

the underlying aetiology of the degeneration.

There appeared to be no observed morphological difference between the boundary 

zones or Sertoli cells from healthy tubules from either testis of sham operated 

controls and those testes that were grossly normal following vasectomy. This was 

even true of those right testes from animal with ipsilateral degeneration. In sharp 

contrast, degenerated testis following vasectomy contained seminiferous tubules with 

boundary zones and epithelium which differed greatly in appearance from those 

tubules found in healthy tubules foUowing either sham operation or vasectomy 

(Appendix 2). There were no recognisable germ ceUs but a population of Sertoli ceUs 

with exaggerated features.

At the light microscopic level, the boundary zone of degenerated seminiferous 

tubules appeared thicker than their healthy compatriots. On high powered 

examination, Sertoli ceU basal laminae appeared thicker with undulations towards the 

tubular lumen. On electron microscopy, it appeared that this thickening was more 

related to the excessive undulations. A similar appearance was foimd for the 

myoepithelial ceU basal laminae while the ceU bodies and nuclei often adopted a 

triangular profile (Appendices 4 and 5). We found no evidence of immune complex 

deposition in the boundary zones of any of the sections examined. We did find smaU 

numbers of leukocytes in the layers of the boundary zone in degenerated tubules.
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These were often beyond the myoepithelial layer (Fig. 26) which was not seen in the 

healthy tubules following vasectomy or in sham operated controls. Attempts to 

count these cells (Chapter 2 page 45) suggested that they were more numerous, 

although the number of tubules assessed was small.

The seminiferous epithelium fi'om degenerated tubules following vasectomy were 

markedly different firom those of healthy testis following vasectomy or sham 

operated controls. No recognisable germ cells were identified. The epithelium 

appeared to consist of a population of cells with exaggerated features of Sertoli cells. 

Their nuclei contained deep intranuclear clefts with many clumps of peripheral 

heterochromatin. The nuclei were often placed more centrally within the tubule. The 

cytoplasm showed a sparsity of vacuoles. These features suggest a low turnover and 

relatively few organelles consistent with low cellular activity. There numbers 

appeared increased compared with healthy tubules although, this may have been to 

reduction in the diameter and possibly length of the tubules. A number of studies 

have noted changes in Sertoli cell morphology in a variety of circumstances such as 

cryptorchidism (155, 193), oestrogen treatment (162) and Sertoli cell only syndrome 

(194). Many of the changes documented are non-specific and not unique for any 

particular condition and may reflect germ cell loss.

We directly compared degenerated tubules from rats following anti-androgen 

treatment (flutamide) m utero and those foUowmg vasectomy (Appendix 3). Both 

showed very similar changes in both the seminiferous epithelium and m the boundary 

zones. Additionally, following vasectomy, grossly degenerated testes had similar 

boundary zones regardless of whether they were from bilaterally or ipsilaterally 

degenerated animals. The only possible difference being that immunocompetent cells 

were, perhaps, more frequent in degenerated tubules following vasectomy. A variety 

of other insults including chemical poisoning (195, 196), experimental allergic 

orchitis (188) and vitamin deficiencies (175) are capable of producing degeneration 

of the testes in the rat. Some of these including doxorubicin treatment (197) and zinc 

toxicity (163) also produce changes in some parts of the boundary zone. Others, 

although not commenting on boundary zone changes, produce photographic 

evidence of it (198, 199). Many conditions which lead to disturbed spermatogenesis
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in man also produce altered boundary zones (200) including post-pubertal pituitary 

failure (177) and following vasectomy (88, 90, 95). Given the similarity of the 

changes we have demonstrated following both bilateral and ipsilateral degeneration 

post vasectomy to those following maternal in utero flutamide administration and 

those reported in the literature for a variety of insults, it seems likely that these 

changes are non-specific. They may represent a common pathway foUowing a variety 

of insults which lead to germ cell loss and shrinkage of the seminiferous tubules.

In the third chapter (page 51), the marked changes observed in Sertoli ceUs and basal 

laminae of degenerated tubules foUowing vasectomy compared with healthy ones 

foUowing vasectomy or after sham procedure lead us to look, in detail, at the 

structure and function of the blood-testis barrier. Disruption of this barrier has been 

linked to germ ceU loss in chemical poisoning (168) and vitamin A deficiency (169) 

in rats. It is also thought to play a role along with chemical factors in the 

maintenance of tolerance to sperm antigens (167). Given the marked change in the 

seminiferous epitheUum we had observed in degenerated tubules foUowing 

vasectomy along with the occasional report of increased permeabiUty to lanthanum 

foUowing short term vasectomy (128), we were particularly interested to note if 

there was any difference in permeability of the blood-testes barrier foUowing bUateral 

and ipsUateral degeneration.

Typical SertoU-Sertoli tight junctions, as described in the Uterature (167), were 

readUy identified in the basal portions of the seminiferous epithelium in healthy testes 

from sham operated controls, foUowing vasectomy and in the contralateral testis 

from animals with ipsUateral atrophy nine to fifteen months foUowing. They were 

also seen in testes with both ipsUateral and bUateral degeneration following 

vasectomy. These junctions also retained their abUity to exclude lanthanum fi'om the 

lumen even in degenerated tubules foUowmg vasectomy. No difference was observed 

between the junctions firom testes with ipsUateral or bUateral degeneration. It would 

appear that the blood-testis barrier is intact in rats nine to fifteen months foUowing 

vasectomy or sham procedure, even in degenerated tubules. This is broadly in 

agreement with the findings of others (166). The notable exception being the finding 

of increased permeability to lanthanum of degenerated testes firom Lewis rats three
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months foUowing vasectomy (128). It is possible that the blood-testis barrier has a 

transient leaky phase around three months foUowed by a return to impermeabUity by 

nine months. Our findings suggest that disruption of the blood-testes barrier is not a 

feature of either ipsUateral or bUateral degeneration of the testis foUowing vasectomy 

m the long term.

In the fourth chapter (page 60), we looked for an autoimmune aetiology to 

degeneration following unUateral vasectomy simUar to that occurring in the rabbit 

(24) and guinea pig (97). We had previously found Uttle direct evidence for this in 

the first three chapters with the possible exception of the presence of leukocytes in 

the boundary zone. This may reflect the almost complete nature of the degeneration 

of the testis at the time post insult at which they are examined. Alternatively, it may 

reflect the time required to initiate the immune response as in autoimmune orchitis, 

the active phase typicaUy taking some time to develop (188). Others have found 

some evidence for the humoral immune response being involved in testicular damage 

in the linking of antibody titres with degree of testicular degeneration in the rat 

(133). In our model, ipsUateral degeneration of the testes foUowing vasectomy may 

have a different aetiology to the bUateral, perhaps involving mechanical pressure 

phenomena (135) or the production of fi-ee radicals (201). We were, however, 

unable to detect any differences in morphology between degenerated tubules fi'om 

the ipsUateral and bUateral group in this study.

The distribution of immunocompetent ceUs in healthy testis foUowmg vasectomy 

appeared to show no difference fi'om those in healthy controls at the same interval 

foUowing procedure. The only exception was in one section fi'om the contralateral 

healthy testes fi'om an animal with ipsUateral degeneration (Fig. 75). It is difficult to 

draw any firm conclusions fi'om this single example and further study is required. 

There also appeared to be no difference with time foUowing vasectomy in terms of 

distribution of immunocompetent ceUs in the interstitium. There is no clear evidence 

fi'om this study to demonstrate immune ceU involvement prior to degeneration.

Degeneration of the testis was not seen earUer than one year foUowing the procedure 

in this part of the study, nor in sham operated controls. There was no observed
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difference between bilateral and unilateral degeneration. The small number of animals 

with degeneration of the testes following vasectomy in this part of the study was 

small but is a reflection of the fact that we remain unable to predict which animals 

win undergo degeneration or whether it will be unilateral or bilateral. The 

distribution of labelled cells appeared similar to healthy testes following vasectomy 

or sham operation but there often appeared to be more numerous immunocompetent 

cells in and around degenerated tubules. We were unable to decide to what degree 

this was due to a reduction in overall size of the testis. The degenerated testis 

following vasectomy showed evidence of focal accumulations of immuno competent 

cells often in and around atrophic tubules. We were unable to determine whether 

these accumulations preceded the degeneration or were a consequence of it. Further 

investigation of testes from vasectomized animals around the time that degeneration 

appears to occur (around six months post procedure) may help to resolve this. Our 

observations that degenerated tubules retained their ability to exclude lanthanum 

suggests that they were unlikely to have simply leaked antigen provoking an immune 

response. Given the presence of focal accumulations of immunocompetent cells 

around and within degenerated tubules there is clearly a role for the immune system 

in the process but it is possible that it follows rather than precedes the degeneration.

There was a marked change in MHC I expression in degenerated tubules compared 

with healthy tubules in that all intratubular cells were labelled (Appendix 7). These 

cells were morphologically identified as Sertoli cells implying that these cells 

expressed MHC I in degenerated tubules. There was no evidence of increased 

expression of MHC I prior to degeneration. This may be because this represents a 

sequelae rather than a cause of the degeneration. Sertoli cells are capable of 

phagocytosis (202) and may therefore be able to initiate an immune response 

although, experimental work in the mouse has found them not able to initiate certain 

T-cell responses (203). In our model, animals with high sperm counts and therefore 

antigen load may overwhelm the clearance mechanisms of the epididymis resulting in 

a cell mediated immune response as evidenced by the epididymal head granulomas. 

In high immune responders this may lead to removal of sperm precursors fi'om the 

ipsilateral testis resulting in unilateral degeneration. Animals with a persisting 

immune response may develop bilateral degeneration.
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Figure 1. Diagram illustrating the division of the testis into 8 blocks for processing.

Figure 2. An example of part of an initial camera lucida drawing from a healthy left 
testis following vasectomy. Letters A, B, etc, are used to identify tubules included in 
the count. Numerical values in the selected tubule represent form factor, area in 
l/360mm squaied and perimeter in 1/360 mm, I = rejected on die roll.
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Figure 3. An example of a high powered camera lucida drawing of a section through 
a single seminiferous tubule from a healthy left testis following vasectomy identified 
as G on Fig, 2. The position of Sertoli cell nuclei and any leukocyte nuclei identified 
in the boundary zone are identified.

Figure 4. The typical appearance of a seminiferous tubule from a healthy left testis 
of a sham operated animal stained with toluidine blue (*400 linear magnification). 
Seminiferous tubules containing a variety of sperm precursors (S) can be seen to be 
sepai'ated by an interstitium containing Leydig cells, blood vessels (b) and lymphatic 
space (L).



84

cP .O



Figure 5. The typical appearance of a seminiferous tubule from a healthy right testis 
of a sham operated animal stained with toluidine blue (*800 linear magnification). 
The seminiferous tubule containing a variety of sperm precursors as well as Sertoli 
cells (S) with their large pale staining nuclei and prominent nucleolus which lie on a 
boundary zone consisting of two thin blue staining bands. The inner one corresponds 
to the myoepithelial cell layer (M) and the outer to lymphatic endothelium (L).

Figure 6. An example of the presence of a leukocyte (W) in the boundary zone of a 
tubule fiom a healthy right testis of a sham operated animal stained with toluidine 
blue (*800 linear magnification). Sertoli cell nuclei (S) can also be identified one of 
which is nearer the lumen. Pachytene primary spermatocytes (?) and type B 
spermatagonia can also be seen (B).
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Figure 7. The typical appearance of a tubule fiom a healthy right testis of a sham 
operated animal stained with toluidine blue (*800 linear magnification). The Sertoli 
cell nuclei (S) identified by their large, pale, irregular nuclei, often with prominent 
nucleoli, are separated fiom the dark staining myoepithelial cells (M) by their pale 
staining basement membrane.

Figure 8. The typical appearance of a healthy tubule fiom a left testis following 
vasectomy stained with toluidine blue (*400 linear magnification). Sertoli cells (s) 
and a vaiiety of sperm precursors (?) can be identified along with a typical boundary 
zone (b).
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Figure 9. The typical appearance of a serniniferous tubule from a healthy right testis 
following vasectomy stained with toluidine blue (*400 linear magnification). The 
Sertoli cells (S) and a variety of sperm precursors can be identified along with a 
typical boundary zone consisting of two alternate dark and light blue bands. The 
former correspond to an inner myoepithelial (M) and outer endothelial layer (L). The 
latter representing basement membranes of Sertoli and myoepithelial cells.

Figure 10. The typical appearance of a healthy right testis from an animal with 
ipsilateral (left sided) degeneration following vasectomy stained with toluidine blue 
(*50 linear magnification). Several tubules (t) can be seen with minimal interstitial 
space occupied by blood vessels and lymphatic space (1).
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Figure 11. The typical appearance of a tubule in a healthy right testis from an animal 
with ipsilateral (left sided) degeneration following vasectomy stained with toluidine 
blue (*400 linear magnification). The Sertoli cells (S) and a variety of sperm 
precursors can be identified along with a typical boundary zone (B).

Figure 12. The typical appearance of an ipsilaterally degenerated left testis stained 
with toluidine blue (*50 linear magnification). The seminiferous tubules (t) have 
reduced in size with no apparent lumen and are separated by grossly enlarged 
lymphatic spaces (1) containing blood vessels (b).
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Figure 13. The typical appearance of a seminiferous tubule from a degenerated left 
testis of an animal with bilateral degeneration following vasectomy stained with 
toluidine blue (*400 linear magnification). Few sperm precursors remain although, 
there are several Sertoli cells identifiable by their characteristic nuclear morphology 
(n) which has become exaggerated. The boundary zone is thickened with some 
myoepithelioid (m) cells having a triangular profile. Leukocytes can be seen adherent 
to the outer lymphatic endothelium and in the boundary zone (w).

Figure 14. The typical appearance of a degenerated tubule from a right testis of an 
animal with bilateral degeneration following vasectomy stained with toluidine blue 
(*800 linear magnification). Few sperm precursors remain although, there are several 
Sertoli cells (s) identifiable by their characteristic nuclear morphology which has 
become exaggerated. The boundary zone is thickened (B) an a lymphocyte (w) can 
be seen adjacent to two triangular nuclei of myoepithelial cells. The cytoplasm of the 
lymphatic endothelium also appears almost triangular in profile (E).
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Figure 15. The typical appearance of a degenerated seminiferous tubule from a right 
testis of an animal with bilateral degeneration following vasectomy stained with 
toluidine blue (*1000 linear magnification). Sertoli cells exhibit exaggerated clefts (c) 
and appear close to the lumen. The boundary zone is thickened with some 
myoepithelioid (m) cells having triangular nuclei. A leukocyte (w) can be seen within 
the boundary zone adjacent to two myoepithelial cells with triangular nuclei.

Figure 16. An electron micrograph demonstrating the appearance of a grossly 
degenerated testis from a Swiss Albino rat following in utero maternal flutamide 
administration (*400 linear magnification). Note the enlarged lymphatic (L) spaces 
and seminiferous tubules (T) containing few sperm precursors.
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Figure 17. An electron micrograph (*27000 linear magnification) showing a Sertoli 
cell nucleus fiom a healthy sham operated left testis. Note the prominent nucleolus 
(N) and two folds (F) in the nucleolemma. The nucleus lies close to the boundary 
zone consisting of an inner moderately electron dense layer associated with fibres 
constituting the Sertoli cell basement membrane. A thin strand of electron dense 
cytoplasm of the myoepithelial (M) cell is surrounded by a moderately electron dense 
basement membrane. A thin strand of cytoplasm fiom the endothelial cell (E) 
adjacent to which there is a ceU,

Figure 18. An electron micrograph (*7500 linear magnification) showing typical 
boundary zones lying between two adjacent seminiferous tubules fiom a healthy 
sham operated right testis. Each boundary zone consisting of an inner moderately 
electron dense layer associated with fibres constituting the Sertoli ceU basement 
membrane (B). An elongated myoepithelial cell nucleus (N) is surrounded by a 
moderately electron dense basement membrane. A thin strand of cytoplasm (C)fiom 
the endothelial cell lines the lymphatic space.
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Figure 19. An electron micrograph (*7500 Unear magnification) showing a Sertoli 
ceU nucleus and two adjacent boundary zones from seminiferous tubules of a healthy 
right testis following vasectomy. The nucleus (s) lies close to the boundary zone 
consisting of an inner moderately electron dense layer associated with fibres 
constituting the Sertoli cell basement membrane, A thin strand of electron dense 
cytoplasm of the myoepithelial cell (m) is surrounded by a moderately electron dense 
basement membrane. A thin strand of cytoplasm from the endothelial cell with its 
elongated nucleus (1) lines a collapsed lymphatic space.

Figure 20. An electron micrograph (*9400 linear magnification) showing a typical 
Sertoli cell nucleus from a left testis following vasectomy. Note the prominent 
nucleolus (n) and intranuclear cleft (c). The nucleus lies close to a typical boundary 
zone consisting of an inner moderately electron dense layer constituting the Sertoli 
cell basement membrane. A thin strand of electron dense cytoplasm of the 
myoepithelial cell (m) is surrounded by a moderately electron dense basement 
membrane outside which lies the lymphatic endothelium.
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Figure 21. An electron micrograph (*48000 linear magnification) showing typical 
boundary zones lying between two adjacent seminiferous tubules fi*om a healthy right 
testis of an animal with ipsilateral degeneration following vasectomy. Each boundary 
zone consisting of an inner moderately electron dense layer associated with fibres 
constituting the Sertoli cell basement membrane (s). An elongated strand of 
myoepithelial cell cytoplasm (m) is surrounded by a moderately electron dense 
basement membrane. A thin strand of cytoplasm Jfiom the endothelial cell (c)lines the 
lymphatic space (L).

Figure 22. An electron micrograph (*9400 linear magnification) showing the 
boundary zone of a seminiferous tubule fi*om a left testis of an animal exhibiting 
bilateral degeneration following vasectomy. The inner moderately electron dense 
layer is folded and associated with clumps of fibres constituting the Sertoli cell 
basement membrane (black triangles). The myoepithelial cell and nucleus (open 
arrowhead) is now triangular in profile surrounded by a folded moderately electron 
dense basement membrane. Similarly, the endothelial cell and nucleus is triangular 
with a podocyte (closed arrowhead) of a leukocyte adherent to the outer wall.
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Figure 23. An electron micrograph (*14000 linear magnification) showing the 
typical boundary zone of a seminiferous tubule fiom a right testis of an animal with 
bilateral degeneration following vasectomy. The boundary zone consists of a folded 
inner moderately electron dense layer associated with clumps of fibres constituting 
the Sertoli cell basement membrane (black triangle). An elongated strand of 
myoepithelial cell cytoplasm (m) is surrounded by a moderately electron dense 
convoluted basement membrane. A thin strand of cytoplasm fiom the endothelial cell 
lines the lymphatic space along which podocytes of leukocytes (P) could be 
identified. Part of a Sertoli cell nucleus is visible with deep intranuclear clefts (C) and 
peripheral clumps of heterochromatin.

Figure 24. An electron micrograph (*12000 linear magnification) showing typical 
boundary zones of two adjacent seminiferous tubules fiom a left testis of an animal 
with ipsilateral degeneration following vasectomy. Each boundary zone consists of a 
folded inner moderately electron dense layer associated with clumps of fibres 
constituting the Sertoli cell basement membrane (black triangle). Several 
myoepithelial cells and nuclei can be seen to be triangular in section (T) and 
surrounded by a moderately electron dense convoluted basement membrane with fine 
cytoplasmic strands (open arrowhead). A thin strand of cytoplasm from the 
endothelial cells (black arrowhead) line the lymphatic space along which podocytes 
of leukocytes can be identified.
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Figure 25. An electron micrograph (*5000 linear magnification) showing the 
boundary zone of a seminiferous tubule from a left testis fiom an animal exhibiting 
bilateral degeneration following vasectomy. The inner moderately electron dense 
layer is folded appearing to have a double layer constituting the Sertoli cell basement 
membrane (black triangle). Adjacent to the myoepithelial cell cytoplasm is a small 
lymphocyte (W) with its large nucleus. A Sertoli ceU nucleus is visible with deep 
intranuclear clefts (C) and peripheral clumps of heterochromatin.

Figure 26. An electron micrograph (*17000 linear magnification) showing a small 
lymphocyte (W) in the boundary zone of a seminiferous tubule from a right testis of 
an animal with bilateral degeneration of the testis following vasectomy. The cell lies 
adjacent to a myoepithelial cell which has a triangular profile (T).
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Figure 27. An electron micrograph (*27000 linear magnification) showing a small 
lymphocyte (W) in the boundary zone of a seminiferous tubule fiom a left testis of an 
animal with ipsilateral degeneration of the testis ft) Ho wing vasectomy. The cell lies 
adjacent to a myoepithelial cell which has a triangular profile (T). The Sertoli cell 
basement membrane (A) can be seen to be extensively folded.

Figure 28. An electron micrograph (*9800 linear magnification) showing the 
seminiferous epithelium fiom a left testis of an animal exhibiting bilateral 
degeneration following vasectomy. The nuclei of several Sertoli cells (S) lie towards 
the centre of the lumen (E) and exhibit deep intranuclear clefts and peripheral clumps 
of heterochromatin. No sperm precursors can be identified. The boundary zone 
shows undulations.
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Figure 29. An electron micrograph (*21000 hnear magnification) showing the 
typical appearance of the boundary zone fi*om seminiferous tubules fi*om a 
degenerated right testis of an animal exposed to fiutamide in utero. The boundary 
zone consists of a folded inner moderately electron dense layer associated with 
clumps of fibres constituting the Sertoli cell basement membrane (black triangles). A 
myoepithelial cell and nucleus can be seen to be triangular in section (T) surrounded 
by moderately electron dense convoluted basement membrane. A thin strand of 
cytoplasm (C) from the endothelial cells line the lymphatic space along which 
podocytes of leukocytes can be identified. Part of a Sertoli cell nucleus (S) is visible 
with deep intranuclear clefts and peripheral clumps of heterochromatin.

Figure 30. An electron micrograph (*53000 linear magnification) showing a Sertoli- 
Sertoli cell junctional complex from a healthy sham operated left testis. The tight 
junction component consists of areas of apparent membrane fusion (open 
arrowhead) with adjacent electron dense deposits. Dilated sacs of endoplasmic 
reticulum (black arrowhead) are seen adjacent to these junctions.
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Figure 31. An electron micrograph (*53000 linear magnification) showing a typical 
healthy Sertoli-Sertoli cell junctional complex firom a healthy sham operated right 
testis. The junction complex consists of areas of apparent membrane fusion (open 
anowhead) with adjacent electron dense deposits. Dilated sacs of endoplasmic 
reticulum (black arrowhead) are seen adjacent to these junctions.

Figure 32. An electron micrograph (*46000 linear magnification) showing a Sertoli- 
Sertoli cell junctional complex fiom a healthy left testis following vasectomy. The 
junctional complex consists of areas of apparent membrane fusion (open arrowhead) 
with adjacent electron dense deposits. Sacs of endoplasmic reticulum (black 
arrowhead) are seen adjacent to these junctions.



98

W É «

*

t

i



Figure 33. An electron micrograph (*71000 linear magnification) showing a typical 
Sertoli-Sertoli cell junctional complex firom a healthy right testis following 
vasectomy. The junctional complex consists of areas of apparent membrane fusion 
(open aiTowhead) with adjacent electron dense deposits. Sacs of endoplasmic 
reticulum (black arrowheads) are seen adjacent to these junctions.

Figure 34. An electron micrograph (*53000 linear magnification) showing a Sertoli- 
Sertoli cell junctional complex the healthy right testis of a rat exhibiting ipsilateral 
degeneration following vasectomy. The junctional complex consists of areas of 
apparent membrane fusion (open arrowhead) vdth adjacent electron dense deposits. 
Sacs of endoplasmic reticulum (black arrowhead) are seen adjacent to these 
junctions
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Figure 35. An electron micrograph (*53000 linear magnification) showing a Sertoli- 
Sertoli ceU junctional complex fi om an degenerated left testis of a rat exhibiting 
ipsilateral degeneration following vasectomy. The junctional complex consists of 
areas of apparent membrane fusion (open arrowhead) with adjacent electron dense 
deposits. Sacs of endoplasmic reticulum (black arrowhead) are seen adjacent to these 
junctions.

Figure 36. An electron micrograph (*46000 linear magnification) showing a typical 
Sertoli-Sertoli ceU junctional complex firom an degenerated left testis of a rat 
exhibiting bilateral degeneration following vasectomy. The junctional complex 
consists of areas of apparent membrane fusion (open arrowhead) with adjacent 
electron dense deposits. Sacs of endoplasmic reticulum (black arrowhead) are seen 
adjacent to these junctions. The Sertoli cell basement membrane (B) can also be seen 
with adjacent fibrils.
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Figure 37. An electron micrograph (*46000 Hnear magnification) showing a Sertoli- 
Sertoli ceU junctional complex fi*om an degenerated right testis of a rat exhibiting 
bilateral degeneration following vasectomy. The junctional complex consists of areas 
of apparent membrane fusion (open arrowhead) with adjacent electron dense 
deposits. Düated sacs of endoplasmic reticulum (black arrowheads) are seen adjacent 
to these junctions. A mitochondrion (D) can be seen within the Sertoli cell 
cytoplasm.

Figure 38. An electron micrograph (*14000 Hnear magnification) showing 
lanthanum confined to the outer compartment of the seminiferous tubule firom a 
healthy sham operated left testis. The lanthanum does not reach the SertoH-SertoH 
junctional complex (R) but stops before (black arrowheads). Lanthanum deposits can 
be seen widely throughout the boundary zone (open arrowheads).
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Figure 39. An electron micrograph (*14000 linear magnification) from a healthy 
sham operated right testis. The lanthanum does not extend into the tubule but can be 
seen on the vascular endothelium (black aiTOwheads).

Figure 40. An electron micrograph (*7500 linear magnification) from a healthy left 
testis following vasectomy. A typical Sertoli cell nucleus (s) can be seen. Lanthanum 
does not extend beyond the vascular space (black arrowheads).
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Figure 41. An electron micrograph (*14000 linear magnification) showing 
lanthanum confined to the outer compartment of the seminiferous tubule fi-om 
healthy right testis following vasectomy. The lanthanum surrounds a 
spermatagonium (G) but is stopped at the Sertoli-Sertoli junctional complex (black 
arrowhead).

Figure 42. A high powered electron micrograph (*46000 linear magnification) of 
Figui'e 41. The lanthanum stopped at the Sertoli-Sertoli junctional complex (Black 
arrowhead) consisting of areas of apparent membrane fusion with adjacent electron 
dense deposits and dilated sacs of endoplasmic reticulum.
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Figure 43. An electron micrograph (* linear magnification) showing the lumenal 
aspect of the seminiferous tubule fi*om a healthy right testis of an animal with 
ipsilateral degeneration following vasectomy. The lumen (O) can be identified with 
several sperm precursors present. No lanthanum is identified.

Figure 44. An electron micrograph (*14000 linear magnification) shovmg 
lanthanum (black arrowhead) confined to the outer compartment of the seminiferous 
tubule hom an ipsilateral degenerated left testis following vasectomy. A typically 
convoluted Sertoli cell basal lamina (H) can be seen along with the triangular profile 
(T) of a myoepithelial cell.
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Figure 45. An electron micrograph (*22000 linear magnification) firom the left testis 
of an animal with bilateral degeneration following vasectomy. The lanthanum has 
stopped (black arrowhead) at the Sertoli-Sertoli junctional complex whose structure 
is only just resolvable at this magnification. The lanthanum can be seen to surround 
part of a Sertoli cell (P) in the basal part of the seminiferous tubule.

Figure 46. An electron micrograph (*36000 linear magnification) from the right 
testis of an animal with bilateral degeneration following vasectomy. The lanthanum 
has stopped (black arrowhead) at the Sertoli-Sertoli junetional complex Avith areas of 
membrane fusion (open arrowheads). The convoluted Sertoli cell basal lamina can 
also be identified (H).
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Figure 47. The appearance of 0X18 labelling of the seminiferous tubules of a 
healthy left testis from a sham operated animal 12 months after the procedure (linear 
magnification *50). The labeUing is largely confined within the interstitium between 
the tubules (open arrowhead) with very slight labelling on mature spermatids nearer 
the lumen (black arrowhead).

Figure 48. The appearance of 0X18 labelling of the seminiferous tubules of a 
healthy left testis 3 months following vasectomy (linear magnifieation *200). The 
labelHng is largely confined within the interstitium between the tubules (open 
arrowhead) with very slight labelling on mature spermatids nearer the lumen (black 
triangle).
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Figure 49. The appearance of 0X18 labelling of the seminiferous tubules of a 
degenerated right testis from an animal with bilateral degeneration 12 months 
following vaseetomy (Hnear magnification *200). The labelling is largely confined 
witliin the interstitium between tubules (open arrowhead) with very slight labeUing 
on matiue spermatids nearer the lumen on healthy tubules (black arrow head). In 
degenerated tubules, however, labeUing extends throughout the remaining epitheUum 
(black triangle).

Figure 50. The appearance of testes labeUed no primary antibody as a control 
(Unear magnification *100). Only very faint background staining can be seen partly 
due to the Mayer's haematoxylin.
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Figure 51. An example of a table recording the number of cells counted on a 
section. The X and Y co-ordinates refer to the overall dimensions of the section. 
Each number represents the number of labeUed cells identified in the high powered 
field. Any identified to the right by "/" are within the tubule. The “V” refers to 
potential photographic opportunities. The identification of the specimen and primary 
antibody were added after the count to facilitate data collection.
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Figure 52. The appearance of 0X19 labelling of the spleen from a sham operated 
animal 12 months after the procedure (linear magnification *100). The labelling is 
largely confined to eeUs in the periarterial lymphatic sheath (p) with its central artery 
(a). Scattered labelled cells could also be seen within the red pulp. The appearances 
ar e consistent with the distribution of T-lymphocytes in the spleen.

Figure 53. The appearance of W3/25 labelling of the spleen from a sham operated 
animal 12 months following the procedure (linear magnification *100). The labelling 
is largely confined to cells in the periarterial lymphatic sheath (p) with its central 
artery (a). Numerous scattered labelled cells could also be seen within the red pulp 
(r). The appearances are consistent with the distribution of helper T-lymphocytes in 
the spleen.
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Figure 54. The appearance of 0X8 labelling of the spleen from a sham operated 
animal 12 months after the procedure (linear magnification *100). The labelling is 
scattered throughout the periarterial lymphatic sheath (p) with its central artery (a). 
A few labelled cells can be seen in the red pulp. The appearances are consistent with 
the distribution of cytotoxic T-lymphocytes in the spleen.

Figure 55. The appearance of 0X33 labelling of the spleen from a sham operated 
animal 12 months following the procedure (linear magnification *100). The labelling 
is largely confined to follicular areas (f) with few cells in the periarterial lymphatic 
sheath with its central artery (a). A few scattered cells are labelled within the red 
pulp. The appearances are consistent with the distribution of B-lymphocytes in the 
spleen.
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Figure 56. The appearance of 0X18 labelling of the spleen from a sham operated 
animal 12 months after the procedure (linear magnifieation *100). The labelling is 
extensive throughout red (r) and white pulp. A central artery (a) with its surrounding 
periarterial lymphatic sheath (p) can be seen. The distribution is consistent with 
known Major Histocompatability Complex class I expression.

Figure 57. The appearance of 0X18 labelling of the spleen from a sham operated 
animal 12 months after the procedure (linear magnification *400). The labelling is 
extensive but clearly cellular lining the extracellular space/plasma membrane. A 
central artery (a) is visible.
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Figure 58. The appearance of 0X6 labelling of the spleen from a sham operated 
animal 12 months after the procedure (linear magnification *100). The labelling is 
extensive throughout the periarterial lymphatic sheath (p) Avith its central artery (a) 
as well as more sparsely in the red pulp (r). The appearances are consistent with the 
distribution of Major Histocompatability Complex class II expression in the spleen.

Figure 59. The appearance of 0X42 labelling of the spleen from a sham operated 
animal 12 months following the procedure (linear magnification *100). The labelled 
cells (black triangle) are scattered throughout the red and white pulps. The 
appearances are consistent with the distribution of macrophages in the spleen.
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Figure 60. The appearance of 0X33 labelling of a healthy left testis from a sham 
operated animal 6 months following the operation (linear magnification *500). A 
labelled cell could be identified in the interstitium between two adjacent seminiferous 
tubules (black triangle).

Figure 61. The appearance of 0X19 labelling of a healthy left testis from a sham 
operated animal 6 months following the procedure (linear magnification *500). 
Labelled cells could be identified in the interstitium between two adjacent 
seminiferous tubules (black triangle) and around a blood vessel (open triangle).
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Figure 62. The appearance of 0X8 labelling of a healthy left testis from a sham
operated animal 12 months following the procedure (linear magnification *300).
Labelled cells could be identified in the interstitium (black triangle).

Figure 63. The appearance of W3/25 labelling of a healthy right testis of a sham 
operated animal 3 weeks following the procedure (Hnear magnification *300). 
Labelled cells could be identified in the interstitium between adjacent seminiferous 
tubules (black triangle).
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Figure 64. The appearance of W3/25 labelling of a healthy left testis of a sham 
operated animal 6 months following the procedure (linear magnification *800). A 
labelled cell could be identified in the seminiferous epithelium (black triangle). Note 
also the artefact produced by an air bubble in the mounting medium (open triangle).

Figure 65. The appearance of 0X42 labelling of a healthy right testis of a sham 
operated animal 6 months following the procedure (linear magnification *100). 
Labelled ceUs could be identified in the interstitium between adjacent seminiferous 
tubules (blaek triangles).
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Figure 66. The appearance of OX 6 labelling of a healthy left testis fi’om a sham
operated animal 6 months following the procedure (linear magnification *100).
Labelled cells could be seen scattered through the interstitium (black triangles).

Figure 67. The appearance of 0X18 labelling of a healthy right testis from a sham 
operated animal 6 months following the procedure (linear magnification *800). 
Labelled cells could be identified in the interstitium (black triangles) along with a 
single cell in the tubule (open triangle).
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Figure 68. The appearance of OX 33 labelling of a healthy left testis 3 months
following vasectomy (linear magnification *50). Occasional Labelled cells could be
seen in the interstitium (black triangle).

Figure 69. The appearance of OX 33 labelling of a healthy right testis 12 months 
following vasectomy (linear magnification *300). A labelled cell can be seen in the 
seminiferous tubule (black triangle).
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Figure 70. The appearance of OX 19 labelling of a healthy left testis 3 months
following vasectomy (linear magnification *50). Labelled cells could be seen
scattered sparsely through the interstitium (black triangle).

Figure 71. The appearance of OX 8 labelling of a healthy right testis 12 months 
following vasectomy (linear magnification *200). Labelled cells could be seen 
scattered through the interstitium (black triangle).
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Figure 72. The appearance of W3/25 labelling of a healthy right testis 12 months
following vasectomy (linear magnification *100). Labelled cells could be seen
scattered sparsely through the interstitium (black triangle).

Figure 73. The appearance of OX 42 labelling of a healthy left testis 3 months 
following vasectomy (linear magnification *200). Labelled cells could be seen 
scattered sparsely through the interstitium (black triangle).

%



119

•XI.

K

■T
 ̂ i

. V "

4
- X

#

• #
"A.

rv -

%'

# '

/ '

5

*4*c. M 'VS'.-' yû  1
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Figure 74. The appearance of OX 6 labelling of a healthy left testis 3 months
following vasectomy (linear magnification *100). Labelled cells could be seen
scattered sparsely through the interstitium (black triangles).

Figure 75. The appearance of OX 6 labelling of a healthy right testis from an animal 
with ipsilateral degeneration 12 months following vasectomy (linear magnification 
*200). Labelled ceUs could be seen scattered sparsely through the interstitium (black 
triangle). A focal accumulation of labelled cells (black arrowhead) could be seen in 
relation to a blood vessel (b).
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Figure 76. The appearance of OX 18 labelling of a healthy right testis 12 months 
following vasectomy (linear magnification *200). Labelled cells could be seen in the 
interstitium (open arrowhead) with some weak staining of late spermatids (black 
triangle).

Figure 77. The appearance of OX 33 labelling of a degenerated left testis from an 
animal with bilateral degeneration 12 months following vasectomy (linear 
magnification * 100). A labelled cell could be seen in the interstitium (black triangle). 
Note the grossly abnormal seminiferous tubules (t) and dilated lymphatic spaces (1).
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Figure 78. The appearance of OX 19 labelling of a degenerated left testis from an 
animal with ipsilateral degeneration 12 months following vasectomy (linear 
magnification *300). Labelled cells could be seen in the interstitium (black triangle) 
with a labelled cell in the degenerated tubule (black arrowhead).

Figure 79. The appearance of OX 8 labelling of a degenerated left testis fi*om an 
animal with bilateral degeneration 12 months following vasectomy (linear 
magnification * 100). Labelled cells could be seen in the interstitium (black triangles).



122

X

mr- '""ST



Figure 80. The appearance of W3/25 labelling of a degenerated left testis fi*om an 
animal with ipsilateral degeneration 12 months following vasectomy (linear 
magnification *400). Labelled cells could be seen in the interstitium with a labelled 
cells in the degenerated tubule.

Figure 81. The appearance of OX 42 labelling of a seminiferous tubule fi*om a 
degenerated right testis from an animal with bilateral degeneration 12 months 
following vasectomy (linear magnification *400). Labelled cells could be seen in the 
interstitium (black triangle) but also in the tubule (open arrowhead).
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Figure 82. The appearance of OX 6 labelling of a degenerated right testis from an 
animal with bilateral degeneration 12 months following vasectomy (linear 
magnification *100). Labelled cells could be seen in the interstitium (black triangles).

Figure 83, The appearance of OX 18 labelling of a seminiferous tubule from a 
degenerated left testis from an animal with bilateral degeneration 12 months 
following vasectomy (linear magnification *400). Cells both in the interstitium (black 
triangle) and within the tubule (open arrowhead) are labelled.
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Figure 84, The appearance of OX 33 labelling of a degenerated left testis from an 
animal with bilateral degeneration 12 months following vasectomy (linear 
magnification *300). A collection of cells could be seen around a degenerated tubule 
(t). No labelled cells could be seen.

Figure 85, The appearance of OX 42 labelling of a seminiferous tubule firom a 
degenerated left testis fi*om an animal with bilateral degeneration 12 months 
following vasectomy (linear magnification *300). A collection of labelled cells (C) 
could be seen around an degenerated tubule. A few labelled cells could be seen 
within it (open arrowhead).
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Figure 86. The appearance of OX 6 labelling of a degenerated left testis from an 
animal with bilateral degeneration 12 months following vasectomy (linear 
magnification *200). A collection of labelled cells (C) could be seen around an 
degenerated tubule. A few labelled cells can be seen within it (open arrowhead).

Figure 87. The appearance of W3/25 labelling of a seminiferous tubule from a 
degenerated left testis from an animal with bilateral degeneration 12 months 
following vasectomy (linear magnification *300). A collection of labelled cells (C) 
could be seen around an degenerated tubule. A few labelled cells can be seen within 
it (open arrowhead).
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Fig 88. The appearance of OX 42 labelling of a degenerated left testis from an 
animal with ipsilateral degeneration 12 months following vasectomy (linear 
magnification *100). A collection of labelled cells (black arrowhead) could be seen 
with some scattered cells in the interstitium (black triangles).

Figure 89. The appearance of W3/25 labelling in a degenerated right testis from an 
animal with bilateral degeneration 12 months following vasectomy (linear 
magnification *400). A collection of labelled cells could be seen around a blood 
vessel (b).
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Appendix 1

The effect of vasectomy on the seminiferous tubule boundary zone in the 
Albino Swiss rat. Clinical Anatomy in press.

C. C. DOBSON, O. REID, N. K. BENNETT AND S. W. McDONALD

Laboratory of Human Anatomy, University of Glasgow, Glasgow, Scotland. 

ABSTRACT

The boundary zone of a seminiferous tubule consists of the basement membrane of 

the seminiferous epithelium, its myoid cells and their basal laminae. This study 

examines the boundary zones of seminiferous tubules in healthy and degenerated 

testes following longterm left-sided vasectomy in the rat and compares them to those 

of sham-operated controls and adult rats exposed in utero to the anti-androgen, 

flutamide. Degenerated tubular profiles showed similar changes, irrespective of 

whether the degeneration was ipsilateral or bilateral. In transverse tubular profiles, 

the basal laminae of the seminiferous epithelium and the myoid cells became more 

undulating, that of seminiferous epithelium showing complex folding. The collagen 

layer of the boundary zone, which lies between the basal laminae of the serniniferous 

epithelium and the myoid cells, thickened and its fibres became irregularly orientated. 

Rather than being flattened as in controls, the region of the myoid cell near the 

nucleus and the nucleus itself developed triangular profiles in the transversely 

sectioned tubules. Similar features were also seen in the degenerated tubules of rats 

exposed to flutamide. The changes in the boundary zone are not specific for 

vasectomy and probably reflect reduction in the cross-seetional area of tubular 

profiles and possibly in their length. We also noted occasional leukocytes infiltrating 

the boundary zone; they may have increased in number in those tubules that showed 

degeneration following vasectomy.
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INTRODUCTION

The eflfect of vasectomy on the human testis is incompletely understood and the 

significance of reports of structural changes is unclear (reviewed by McDonald, 

1990). Our group has been studying the Albino Swiss rat with the aim of gaining a 

thorough understanding of the sequelae of vasectomy in this species and insight into 

possible effects in patients. We have previously reported that ipsilateral testicular 

degeneration following unilateral vasectomy in the rat is frequently associated with 

sperm granuloma formation in the epididymal head (McDonald et a l, 1996), an 

observation also reported in other species (Bedford, 1976). We also documented 

that bilateral testicular atrophy is common in the long-term after unilateral 

vasectomy. This seems unrelated to the site of sperm granuloma formation and its 

mechanism is unknown. The present study investigates the effect of vasectomy on 

the boundary zone of the seminiferous epithelium in the Albino Swiss rat. The 

boundary zone consists of the basement membrane of the seminiferous epithelium 

with the surrounding myoid cells and their associated basal laminae (Hadley and 

Dym, 1987; Christl, 1990). In the vasectomized rabbit, this region is reported to 

exhibit deposition of immune complexes (Alexander and Tung, 1979; Bigazzi, 1979).
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MATERIALS AND METHODS

Vasectomy and sham operation

Eight young adult Albino Swiss rats from the inbred colony maintained in the 

Laboratory of Human Anatomy which had undergone left unilateral vasectomy were 

available for study. Surgery was carried out with pentobarbitone sodium anaesthesia 

supplemented with halothane via a facemask and with sterile precautions. The ductus 

deferens was occluded by two sftk ligatures, about 4 mm apart, within 2 cm of the 

origin of the ductus deferens from the epididymis. The portion of ductus between the 

two ligatui'es was then excised. A further three rats had undergone a left-sided 

control sham operation, identical to the vasectomy procedure except that the two 

ligatures were only loosely tied around the ductus deferens which was not 

transected. A greater number of rats underwent vasectomy than sham operation 

because testicular atrophy occurs in only about 50 percent of long-term 

vasectomized rats (McDonald et a l, 1996). The vasectomized and sham-operated 

rats were saerificed between 9 and 15 months after operation and tissue harvested 

for resin histology and electron microscopy.

Preparation of material

Rats were sacrificed by intraperitoneal injection of pentobarbitone sodium. 

Immediately after death, the tissues were fixed by intracardiac perfusion with 200 ml 

Ringer’s solution containing 1% lignocaine for 5 minutes at a pressure of 130 cm 

water followed by 200 ml fixative (1% paraformaldehyde + 3% glutaraldehyde in 

cacodylate buffer at pH 7.8) for 20 minutes. The testes were excised and immersed 

in the fixative for a further 24 hours. They were then rinsed in 3 changes of 

cacodylate buffer, weighed and divided into portions. The tissue was postfixed in 

1% osmium tetroxide in O.IM buffer and processed for resin histology using
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standard techniques. Sections 1 jum thick were cut on glass knives, mounted on 

slides and stained with Azur II.

Image analysis

Image analysis was carried out on the bilaterally healthy and degenerated 

testes following unilateral vasectomy and on the control testes. The testes of the rats 

showing unilateral atrophy were not included in this part of the study; there were 

only two animals in this category, insufficient for statistical analysis.

One seetion of a block from the equator of eaeh testis was selected for image 

analysis and had its label masked. A drawing of one corner of the section, decided on 

the toss of a coin, was made at a magnification of X 360 using a camera lucida 

drawing tube. Measurements of the tubular profiles drawn were then made using a 

Kontron M0P-AM02 image analysis system. The 10 tubular profiles with form 

factors greater than 0.80 nearest the selected corner of the specimen were identified. 

The form factor is a measure of the roundness of a profile: a perfect circle would 

have a value of 1.00. Other shapes would have values ranging from 0 to 1.00. The 

cross-sectional area of each of these ten tubular profiles was obtained for each testis 

section. The numbers of Sertoli cell nuclei and of any leukocytes in each tubular 

profile were counted and their positions recorded on the drawing.

Transmission electron microscopy

Sections for electron microscopy, 80 nm thick, were obtained on a Reichert- 

Jung Ultracut E microtome using a glass knife. Sections were mounted on uncoated 

copper mesh grids and double-stained with uranyl acetate and lead citrate. They 

were examined on a Philips EM301 transmission electron microscope.
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Flutamide administration

Ultrastructural studies were also made of the degenerated testes of a further 

three male rats whose mothers had been treated prenatally with flutamide, an anti- 

androgenic agent which can produce degeneration of the testis (Husmann et a l, 

1994; Kassim et al, 1997). The mothers had received daily subcutaneous injections 

of 10 mg flutamide in 0.1 ml propylene glycol from Day 10 following timed mating 

until birth. The three male offspring were sacrificed at 12 months of age. Resin- 

embedded blocks were kindly donated by Professsor A. P. Payne. Testicular weights 

were not available but on gross examination all three rats had shown unilateral 

testicular atrophy. The left testis was affected in one rat and the right in two. 

RESULTS

Gross appearance and weights

At sacrifice all three control rats showed testes of healthy size and shape. 

After fixation, they weighed between 1.21 g and 1.69 g. Three of the rats subjected 

to unilateral vasectomy showed healthy testes at dissection. These ranged in weight 

from 1.11 g to 1.61 g. Of the other five animals, three showed bilateral testicular 

atrophy and two showed ipsilateral degeneration. The affected testes were markedly 

shi'unken and, before fixation, were of flaccid consistency. Their weights ranged 

from 0.48 g to 1.01 g, considerably lighter than the controls.

Light microscopy 

Controls:

Both testes of all three sham-operated eontrol rats showed healthy 

seminiferous tubules and interstitium.

The boundary zone of the testicular tubules which separates the seminiferous 

epithelium from the interstitium could be recognised in the resin sections. A single



133

layer of flattened myoid cells surrounded each tubular profile. These cells showed 

elongated dai'kly stained nuclear profiles. A narrow pale zone could be discerned 

between the myoid cells and the seminiferous epithelial cells. A similar but more 

readily identified pale zone separated the myoid cells fi-om the interstitium. 

Infrequently, leukocytes were related to this outer layer of basement membrane. 

Healthy testes following vasectomy:

The two healthy testes from each of three unilaterally vasectomized rats (Fig. 

1), and the contralateral testes of the two rats with ipsilateral atrophy, resembled the 

control material in every way.

Atrophic testes following vasectomy:

All the atrophic testes had markedly different histology from the controls 

(Figs 2 - 4). There were many degenerated tubules whose cross-sectional profiles 

were smaller than those of the control tubules. Few spermatogenic cells were 

present. Most remaining cells had the general features of Sertoli cells but there were 

differences from those of controls. Their nuclei were more dispersed within the 

diminished epithelium and seemed more variable in orientation. They exhibited large 

intranuclear clefts. Many retained their prominent nucleoli but some had scattered 

clumps of heterochromatin. Regions of the cytoplasm contained large vacuoles.

In the interstitium Leydig cells were associated with blood vessels as m 

control material but lymphatics were enlarged.

In the boundary zone, the myoid cells remained as a single layer around the 

perimeter of the tubular cross-sections but thefr nuclei frequently appeared triangular 

in profile. On the luminal aspect of the myoid cell, the pale layer representing the 

basement membranes of the Sertoli and myoid cells appeared thicker than in 

controls. It was also throvra into folds which projected into the Sertoli cell layer.
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Occasionally, leukocytes were seen adjacent to the myoid cells in this zone. The pale 

zone between the myoid cells and the interstitium, representing the outer layer of the 

myoid cell basement membrane, was also thicker than in control specimens.

Image analysis

Table 1 shows the values obtained by image analysis.

One-way analysis of variance and multiple range tests indicated a significant 

reduction in the cross-sectional areas of the tubular profiles in the grossly atrophic 

testes (p < 0.01; F = 50.47; df = 12).

One-way analysis of variance and multiple range tests indicated that the 

Sertoli cell nuclei were significantly more numerous in atrophic tubular profiles (p < 

0.01; F = 12.14; df = 5) suggesting that atrophic seminiferous tubules were reduced 

both in length and m cross-sectional area.

For each testis, the number of leukocytes counted m the boundary zone was 

totalled. Analysis of variance and multiple range tests indicated that whüe the 

degenerated testes showed significantly higher numbers than controls, the number of 

leukocytes in the boundary zones of healthy tubules was not different from that in 

either the controls or the atrophic testes (p < 0.01; F = 10.32; df = 5)..

For each testis, the total number of leukocytes was divided by the total 

number of Sertoli eells and a ratio obtained. The calculation allows for the possibility 

that the number of leukocytes in atrophic tubular profiles might increase because of 

a reduction in tubular length. One-way analysis of variance, however, indicated a 

significant difference between the groups (p < 0.01; F = 9.55; df = 5). Multiple range 

tests again suggested that numbers were higher in the atrophic testes but that values 

for healthy testes were not significantly different from the controls or from the 

atrophic testes.
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Electron microscopy of the boundary zone 

Controls and healthy testes following vasectomy

In the basal regions of the seminiferous epithelium of healthy testes following 

vasectomy or sham operation, Sertoli cell nuclei were readily recognised by their 

euchromatic character. When sectioned appropriately, prominent nucleoli and 

intranuclear clefts were observed. Their cytoplasm contained numerous vesicles and 

scattered mitochondria.

Electron microscopy resolved the components of the boundary zone (Fig. 5). 

External to the Sertoli cells was a relatively electron-lucent amorphous layer, the 

basal lamina of the seminiferous epithelium. This was of uniform thickness but was 

occasionally thrown into slight undulations towards the lumen. External to this basal 

lamina was a layer of fine collagen fibrils. Most were cut in transverse section in 

transversely sectioned tubules, indicating that their predominant orientation was 

parallel to the long axis of the tubule. The fibrillar layer was thicker where there was 

an inward undulation of the basal lamina of the seminiferous epithelium.

Between the fibrillar layer and the myoid cells, and adjacent to them, was a 

second amorphous layer, the inner basal lamina of the myoid cells. This was thinner 

and less distinct than the basal lamina of the seminiferous epithelium but was of 

similar electron density. The myoid cell cytoplasm showed many fine filaments, a few 

vacuoles and occasional mitochondria. The markedly elongated nuclei were 

moderately electron-dense and were darker at their periphery. Between the myoid 

cells and the interstitium was a third basal lamina. It was similar to, but of more 

variable thickness than, that of the seminiferous epithelium and had the same 

amorphous quality and electron density. Sparse fibrils were often seen external to it
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but these may have belonged to the interstitium. Frequently, lymphatic endothelium 

lay adjacent to this layer.

Degenerated testes following vasectomy:

The degenerated testes, both unilateral (Fig. 6) and bilateral (Figs 7, 8), had 

similar appearances but were very different from control or healthy testes following 

vasectomy. The Sertoli cells from degenerated tubules had nuclei with deep 

intranuclear clefts and peripheral clumps of heterochromatin. The cytoplasm 

contained few organelles. As in the healthy tubules, however, no remnants of sperm 

precursors were recognised.

The basal lamina of the seminiferous epithelium was highly undulating 

towards the Sertoli cells. In some areas this was so marked that an impression of 

multiple layers was given. The myoid cells still consisted of a smgle layer but in many 

tubular cross-sections the regions containing the nucleus appeared triangular rather 

than elongated in profile. The nuclear profiles were also triangular. The apex of these 

triangular regions faced towards the seminiferous epithelium and often seemed to 

give a fine cytoplasmic extension towards it. The inner layer of the myoid ceU basal 

lamina was also folded and, in places, had clearly separated from the cell. The 

collagen fibrils between the seminiferous epithelial and inner myoid cell basal laminae 

were more numerous and random in arrangement than in healthy tubular profiles.

The outer layer of the myoid cell basal lamina was also highly undulating. In some 

tubules it appeared much thicker than in controls but this may have been due to 

extensive folding.

The lymphatics of the interstitium were greatly enlarged but were still lined 

by a layer of endothelium. Pseudopodia of leukocytes were frequently observed on 

the interstitial aspect of the endothelium. Occasional lymphocytes were seen in the
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boundary zone, usually between the myoid cells and their outer basal lamina (Fig. 9). 

They were also occasionally found on the tubular aspect of the myoid cells (Fig. 7), 

Flutamide treatment:

The three degenerated testes from the three rats which had been exposed to 

flutamide in utero showed boundary zones which were similar in every way in light 

and electron microscopical appearances to those of degenerated testes following 

vasectomy (Fig. 10). Although leukocytes were seen in lymphatics close to the 

seminiferous tubules, none was seen in the boundary zone.

DISCUSSION

This article is the most recent in a series investigating the effect of vasectomy 

in the Albino Swiss rat. McDonald and Scothorne (1988) examined the tubules of 

healthy testes in the longterm following vasectomy and found no alterations in their 

dimensions or in the structure and cycle of the seminiferous epithelium. McDonald et 

al. (1996) also reported ipsilateral testicular degeneration to be common more than 6 

months after unilateral vasectomy and associated with sperm granuloma formation in 

the epididymal head. Granulomas in this region may compress and obstruct adjacent 

delicate loops of the epididymal duct resulting in raised intraluminal pressure to 

which the seminiferous epithelium soon succumbs. Several instances of bilateral 

degeneration were also reported but its etiology remains unclear. It is curious that 

unilateral vasectomy can result in bilateral testicular degeneration, while flutamide 

treatment, which might be expected to affect both testes equally, frequently results in 

asymmetrieal changes. The present study shows that when seminiferous tubules 

degenerate in the vasectomized Albino Swiss rat, marked structural changes occur in 

their boundary zones.
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Cross-sectional tubular profiles of degenerated seniiniferous tubules were 

significantly reduced in area compared to the intact tubules of healthy testes 

following vasectomy and control sham operation. The degenerated tubules contained 

higher numbers of Sertoli cell nuclei per cross-sectional profile, suggesting that 

Sertoli ceUs persist after germ cells are lost and that the degenerated tubules had 

shrunk both in length and in cross-sectional area. Occasional leukocytes were 

identified in the boundary zone of tubules and may have shown a slight inerease in 

absolute numbers following vasectomy, particularly in degenerated tubules. The 

numbers of testes studied and tubules assessed, however, were relatively small.

The ultrastructural study showed marked changes in the boundary zones of 

the degenerated seminiferous tubules. While others have noted changes in this region 

in the vasectomized rat using light microscopy (Flickinger et a l, 1987), no 

ultrastructural study has been specifically devoted to it. Such work in vasectomized 

rabbits documented deposition of immune complexes (Alexander and Tung, 1979; 

Bigazzi, 1979). No such features were, however, observed in the present study.

Our investigation confirmed the work of others that, in the healthy rat testis, 

several layers are to be seen in the periphery of the seminiferous tubules: the basal 

lamina of the seminiferous epithelium, fine collagen fibers of the basement 

membrane, the inner basal lamina of the myoid cells, the myoid cells themselves and 

their outer basal lamina (Hadley and Dym, 1987; Christl, 1990). When testes 

degenerated following vasectomy, changes occurred in aU layers of the boundary 

zone. The myoid cells persisted as a single layer of cells but the nucleus and the 

region of the cell in which it lay assumed a triangular profile. All three basal laminae, 

that of the seminiferous epithelium and the two layers belonging to the myoid cells, 

became more undulating. This was particularly marked in the basal lamina of the
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seminiferous epithelium which became extensively folded. The myoid cell basal 

laminae were also folded and became separated from the cells in plaees. There was 

thickening of the layer of fine collagen fibers that forms part of the basement 

membrane between the Sertoli and myoid cells. The fibers seemed more numerous 

and irregular in their orientation. Occasional leukocytes, mostly lymphocytes, were 

observed among the layers of the boundary zone and seemed more numerous in 

degenerated tubules. This suggests possible immunological activity. Dym and 

Romrell (1975) did not find leukocytes internal to the myoid layer in healthy 

seminiferous tubules.

Interestingly, we were unable to detect any structural differences between the 

tubules of unilaterally and bilaterally degenerated testes and both groups had similar 

boundary zones. We also found no evidence for alterations of the boundary zone 

preceding degeneration. Altered boundary zones were only found in degenerated 

tubules. This suggests that the boundary zone changes were a result, rather than a 

cause, of degeneration of the seminiferous tubules. The striking similarity of the 

boundary zone changes reported here to those observed following X-ray irradiation 

in the rat (Lacy and Rotblat, 1960) led us to examine the possibility that the changes 

would be similar for all causes of degeneration.

A variety of other insults including chemical poisoning (Gaunt et a l, 1974; 

Lee and Gillies, 1984; Saxena et al., 1989; Kaido et al, 1992), experimental allergic 

orchitis (Doncel et a l, 1989) and vitamin deficiencies (Ismaü and Morales, 1992) 

ean produce degeneration of the testis in the rat. At least some of these, including 

doxorubicin treatment (Fuse et a l, 1992) and experimental allergic orchitis (Doncel 

et a l, 1989), produce changes in the boundary zone. Others, although not 

commenting on boundary zone changes, produce photographic evidence of them
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(Collins and Lacy, 1969). Disturbed spermatogenesis in man may be associated with 

altered boundary zones (Siew et a l, 1977). Specific causes include post-pubertal 

pituitary feilure (Furuya et a l, 1980) and possibly vasectomy (Jarow et a l, 1985; 

Mehrotrac/^ a/., 1985).

Comparison of the material fi'om our vasectomized rats with that If om 

flutamide-treated animals confirmed that the changes we saw were not specific for 

vasectomy. Both showed similar boundary zones except that leukocytes seemed 

absent in the flutamide-treated material. Perhaps the lack of leukocytes in the latter 

reflects impairment of sperm production throughout adult life in this group rather 

than the late impairment which occurs following vasectomy. The similarity of the 

boundary zone changes in degenerated tubules from both causes, along with 

evidence fi'om the literature, leads us to suggest that a variety of insults to the 

seminiferous tubules of the rat results in a common response in the boundary zone, 

probably related to a decrease in tubular cross-section.
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Table 1
Mean area Mean number Total no. No. leukocytes
of tubular of Sertoli cells leukocytes per Sertoli
image (mm )̂ per profile cell nucleus

Control left testes 724.7 19.9 1 0.005
751.5 20.3 0 0
697.2 19.8 1 0.005

Control right testes 858.8 20.3 1 0.005
959.3 20.8 2 0.010
770.1 20.4 2 0.010

Healthy left testes 636.2 20.4 2 0.010
after vasectomy 821.3 19.2 4 0.021

657.7 19.3 4 0.021

Healthy right testes 737.2 20.4 6 0.029
after vasectomy 616.4 18.8 4 0.021

682.4 19.4 7 0.036

Atrophic left testes 193.2 21.8 10 0.046
after vasectomy 243.2 22.6 11 0.049

292.2 21.4 8 0.037

Atrophic right testes1241.7 24.1 9 0.037
after vasectomy 179.2 22.6 12 0.053

189.0 22.0 4 0.017

LEGENDS

Figs, 1 - 9 are from rats subjected to left-sided vasectomy.

Fig. 1 Healthy left testis. Four profiles of seminiferous tubules show normal 

spermatogenesis. Myoid cell nuclei are elongated and flattened (arrows). A clear 

zone internal to the myoid layer (arrowheads) represents the basement membrane of 

the seminiferous epithelium. Lymphatics (L) and an artery (A) are seen. Interstitial 

(Leydig) cells (I) are clustered around capillaries. Resin; toluidine blue; X 312.

Fig. 2 Atrophic seminiferous tubule of left testis from rat showing ipsilateral 

testicular degeneration. The lumen is collapsed and the epithelium contains only 

Sertoli cells. Myoid cell nuclei (arrows) are irregular and many are triangular m
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profile. The thickened boundary zone (arrowheads) has indistinct components. A 

large lymphatic space (L) surrounds the tubule and three blood vessels. Resin; 

toluidine blue; X 500.

Fig. 3 Atrophic tubule of left testis from rat showing bilateral testicular 

degeneration. The lumen is small and the epithelium composed only of Sertoli cells. 

Several myoid cell nuclei have a triangular form (arrows). A clear zone (arrowheads) 

between the myoid cells and the endothelium of the surrounding lymphatic spaces 

(L) represents the outer myoid cell basal lamina. Resin; toluidine blue; X 312.

Fig. 4 Atrophic tubule of right testis from rat showing bilateral testicular 

degeneration. The lumen is small and the epithelium composed only of Sertoli cells. 

Several myoid cell nuclei are triangular in form (arrows). A clear zone (arrowheads) 

separating the myoid cells from the endothelium of the surrounding lymphatic spaces 

(L) represents the outer myoid cell basal lamina. Resin; toluidine blue; X 312.

Fig. 5 Transmission electron micrograph (EM) of Sertoli cell and boundary zone 

(BZ) from the left testis of a rat showing healthy testes. The euchromatic Sertoli cell 

nucleus (N) has a prominent nucleolus and deep indentation. The cytoplasm shows 

rough endoplasmic reticulum, mitochondria and vesicles. The Sertoli cell rests on the 

basal lamina of the seminiferous epithelium (s). A myoid cell (M) is surrounded by its 

inner and outer basal laminae (i & o). Fine collagen fibers (f) lie between the basal 

lamina of the seminiferous epithelium and the inner basal lamina of the myoid cell. 

Lymphatic endothelium (E) lies peripheral to the outer myoid cell basal lamina. Bar 

= 2pm.

Fig. 6 EM of boundary zones of two adjacent degenerated seminiferous tubules from 

a rat showing ipsilateral testicular degeneration. Sertoli cell cytoplasm (S) and nuclei 

(N) lie in the tubules. Regions of myoid cells containing nuclei (arrows) have



145

triangular profiles. In both tubules, the basal lamina of the seminiferous epithelium 

and the inner basal lamina of the myoid cells show complex folding (arrowheads). 

The outer basal lamina of the myoid cells (o) is also folded and separated fi'om the 

cells. Bar = 20pm.

Fig. 7 EM of boundary zone of a degenerated seminiferous tubule fi'om the left testis 

of a rat with bilateral testicular degeneration. Sertoli cells (S) in the tubule and a 

lymphatic space (L) in the interstitium are shown. The myoid cell nucleus (M) and 

surrounding cytoplasm present triangular profiles. The basal lamina of the 

seminiferous epithelium (s) and the inner (i) and outer (o) myoid cell basal laminae 

are extensively folded. Fine collagen fibers (f) separate the basal lamina of the 

seminiferous epithelium from the inner lamina of the myoid cells. Similar material (c) 

lies between the outer myoid cell basal lamina and the lymphatic endothelium (E). 

Bar = 5pm.

Fig. 8 EM of boundary zone of a degenerated seminiferous tubule fi'om the right 

testis of a rat showing bilateral testicular degeneration. The cytoplasm (S) of a 

Sertoli cell and the lumen (L) of an interstitial lymphatic space are shown. A myoid 

cell nucleus (M) and its surrounding cytoplasm present triangular profiles. The basal 

lamina of the seminiferous epithelium (s) and the inner basal lamina (i) of the myoid 

cells are folded and separated hy collagen fibrils (f). The outer basal lamina of the 

myoid cell (o) and lymphatic endothelium (E) are shown. A small lymphocyte (SL) 

lies between the myoid cell and its inner basal lamina. Bar = 5 pm.

Fig. 9 EM of boundary zone of left testis of a rat showing bilateral testicular 

degeneration. A Sertoli cell nucleus (N) is euchromatic and deeply indented. Its 

cytoplasm shows few organelles. The basal laminae of the seminiferous epithelium 

(s) and of the elongated myoid cell (M: i & o) are folded. Fine collagen fibers (f)
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separate the basal lamina of the seminiferous epithelium and the inner basal lamina of 

the myoid cell. Lymphatic endothelium (E) lies peripheral to the outer myoid cell 

basal lamina. A small lymphocyte (SL) lies between the myoid cell and its outer basal 

lamina. Bar = 10pm.

Fig. 10 EM of tubular boundary zone from the degenerated adult testis of a rat 

treated with flutamide in utero. The nucleus (N) of a Sertoli cell is euchromatic and 

deeply indented; its cytoplasm shows few organelles. The nucleus (M) and 

surrounding cytoplasm of a myoid cell present triangular profiles. The basal laminae 

of the seminiferous epithelium (s) and the myoid cell (i & o) are folded. Collagen 

fibrils (f) lie between the seminiferous epithelial and inner myoid cell basal laminae. 

Bar = 5 pm.
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Appendix 2

Boundary changes in the seminiferous tubules of the rat following vasectomy. 

CC Dobson and SW McDonald.

Several authors mention basement membrane thickening following vasectomy but 

few detailed investigations have been performed. Sixty young adult Albino Swiss rats 

underwent unilateral vasectomy or sham operation with pentobarbitone anaesthesia. 

Testes were collected between 6 and 18 months after operation. Thirteen of 31 

vasectomized rats showed testicular atrophy. The others and all controls, had healthy 

testes. On light microscopy, the boundary zones of degenerated seminiferous tubules 

were folded and thickened compared with healthy tubules. In addition, electron 

micrographs showed that many epithelial cells had triangular profiles and adjacent 

electron lucent regions. The layer separating the myoepithelial cells from the Sertoli 

cells was folded and contained numerous fibrils. The layer between myoepithelium 

and the more peripheral lymphatic endothelium contained occasional leukocytes. 

While changes similar to these we report follow irradiation and chemical poisoning, 

their significance remains to be defined.

Presented at the British Associations of Clinical Anatomy at York in December 

1993. Clinical Anatomy 1994; 7: 163.
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Appendix 3

Comparison of boundary zone changes in atrophic rat testes following 

vasectomy and flutamide administration. CC Dobson, N Kassim, O Reid and 

SW McDonald.

In atrophic testes of vasectomized rats, we have previously reported that Sertoli cell 

basement membrane is folded and myoepithelial cells show triangular profiles , 

occasionally associated with leukocytes. This material was compared with atrophic 

testes from rats, of similar age, to which flutamide had been administered in utero 

and with controls. Flutamide produces mal-descent of the testes. On electron 

microscopy, the features noted above were also found m the flutamide treated group 

but not in controls. Additionally, in both experimental groups, lymphatics adjacent to 

seminiferous tubules frequently showed leukocytes with prominent pseudopodia. 

These results suggest a common response in the boundary zone of seminiferous 

tubules following flutamide administration and vasectomy.

Presented at the British Associations of Clinical Anatomy at Northern General 

Hospital, Sheffield in July 1994. Clinical Anatomy 1995; 8: 149.
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Appendix 4

Structural alterations to Sertoli cells following vasectomy in the Albino Swiss 

rat. CC Dobson, O Reid and SW McDonald.

Sertoli cells create and maintain a hormonal and physiological environment essential 

for the production of spermatozoa. They also contribute to the basal lamina which, 

together with myoepithelial cells and their associated hasal laminae, form the 

boundary zone of the seminiferous tubule. We have previously shown that a 

proportion of rats 6 months or more following unilateral vasectomy exhibit bilateral 

degeneration of seminiferous tubules which show alterations in their boundary zones. 

This study compares the structure of Sertoli cells from degenerated tubules 

following vasectomy with those of sham operated controls. Nine Albino Swiss rats 

underwent left unilateral vasectomy under pentobarbitone anaesthesia and 3 control 

animals underwent sham operation. The animals were sacrificed between 9 and 15 

months following operation by overdose of pentobarbitone and perfusion-fixed using 

cacodylate buffer containing 3% glutaraldehyde and 1% paraformaldehyde. The 

testes were excised, weighed, divided into 8 portions, processed and embedded in 

araldite for light and electron microscopy. In controls, a typical Sertoli ceU showed a 

basal nucleus with one or two small nuclear clefts and a prominent nucleolus 

amongst homogeneous nucleoplasm. The cytoplasm contained numerous 

mitochondria, lysosomes, lipid droplets and profiles of endoplasmic reticulum, both 

rough and smooth. In sharp contrast, in degenerated tubules, Sertoli cell nuclei were 

distributed throughout the epithelium. Nuclei showed deep intranuclear clefts and 

clumps of heterochromatin adjacent to the nuclear envelope. The cytoplasm 

appeared reduced in quantity with few organelles. These changes were most marked 

in highly degenerated tubules. The findings make clear that degeneration of the testis 

following vasectomy is associated vrith changes to Sertoli cells as well as 

spermatozoal precursors.

Presented at the joint meeting of the Anatomical Society of Great Britain and Ireland 

and the Anatomische Gesellschaft in Southampton December 1994. Journal of 

Anatomy 1995; 187: 238.
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Appendix 5

Changes in Sertoli cells and seminiferous tubular boundary zone following 

vasectomy in the rat. CC Dobson and SW McDonald.

Structural changes are reported in the human testis following vasectomy. We have 

demonstrated that, in the vasectomized rat, mechanical damage to the seminiferous 

epithelium is associated with sperm granuloma formation in the epididymal head. 

Bilateral testicular degeneration frequently follows vasectomy on one side only and 

suggests the presence of autoimmune orchitis. This study compares Sertoli cells in 

Albino Swiss rats following unilateral vasectomy and sham operation. We found that 

6 months and more after vasectomy: 1) Sertoli cells of healthy testis are similar to 

controls; 2) atrophic tubules of degenerated testes show Sertoli cells with large 

nuclear clefts and peripheral clumps of heterochromatin; 3) in both healthy and 

atrophic tubules, junctional complexes between Sertoli cells persist; 4) around 

degenerated tubules, the myoid cells change shape and the basal lamina of the Sertoli 

cells becomes markedly folded; 5) leukocytes are occasionally seen adjacent to the 

tubular boundary zone. Early results using immunocytochemical markers are 

suggesting that macrophages are more frequently seen in the testes of vasectomized 

rats but, to date, there is little evidence to confirm antigen escape from seminiferous 

tubules and the occurrence of autoimmune orchitis in the rat.

Presented at the joint meeting of the American and British Associations of Clinical 

Anatomy in the Mayo Clinic U.S.A. July 1995.
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Appendix 6 

Morphological integrity of Sertoli-Sertoli cell tight junctions following 

vasectomy in the rat. CC Dobson, O Reid and SW McDonald.

Testicular atrophy may follow vasectomy in rats. The mechanism is unclear but may 

involve disruption of the blood-testis barrier. The Sertoli-Sertoli cell tight junctions 

consist of areas od opposing cell membranes with adjacent endoplasmic reticulum 

separated by intermittent regions containing filamentous material. Of 7 Albino Swiss 

rats, 6-15 months of after unilateral vasectomy, 3 showed bilateral and 1 ipsilateral 

testicular atrophy while 3 remained healthy. Three animals underwent unilateral sham 

operation and identical preparation to provide controls. The characteristic features of 

Sertoli-Sertoli cell tight junctions were identified following sham operation and 

vasectomy, even in severely degenerated tubules. This suggests that disruption of the 

blood-testis barrier is not associated with post-vasectomy degeneration.

Presented at the British Associations of Clinical Anatomy at Northern General 

Hospital, Sheffield in July 1994. Clinical Anatomy 1995; 8: 149.
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Appendix 7

Distribution of class I and II MHC antigens in the testis following vasectomy in 

the Albino Swiss rat. DOBSON CC., McDONALD SW, Laboratory of Human 

Anatomy, University of Glasgow, Glasgow, UK.

This study examines the distribution of class I and class II MHC antigens in the 

vasectomized rat testis using monoclonal antibodies 0X18 and 0X6 respectively 

(Seralab). Frozen sections v^ere taken from 3 animals with healthy testes and 3 

animals with degenerated testes following unilateral vasectomy and compared with 

material from 3 sham-operated controls. Animals were sacrificed 1 year following 

procedure using an overdose of pentobarbitone. In healthy experimental and control 

testes, 0X18 labelling showed a similar distribution being largely restricted to the 

interstitium and late spermatids, with no detectable staining of Sertoli cells or early 

sperm precursors. In degenerated testes, healthy tubular profiles showed the same 

pattern while atrophic tubules exhibited marked labelling of Sertoli cells. 0X6- 

positive cells lay scattered in the interstium in both healthy experimental and control 

testes; counts per high-powered field showed no significant difference betwwen 

these groups. In the degenerated testes, OX6-positive cells seemed more plentiful in 

the interstitium but this may have reflected tubular atrophy. In addition, occasional 

labelled cells were noted in the tubules. Foeal accumulations of 0X6 positive cells 

were observed in both testes of one animal with ipsilateral degeneration foUowing 

vasectomy. The expression of class I MHC by SertoM cells of degenerated tubules 

and the presence of occasional class II MHC invading the atrophic tubules suggests a 

role for the immune system in degeneration of the testes following vasectomy.

Presented at the British Neuroendocrine Group at the University of Oxford in 

December 1995. Journal of Reproduction and Fertility; abstract series 16: 31.
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