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Abstract

Systemic lupus eiythematosus (SLE), is a prototypic systemic autoimmune 

disease characterised by multi-system involvement, female preference, activation of 

T-cells, B-cell hyper-activity, autoantibody production and immune complex 

deposition. The origin of the defects leading to pathogenicity in systemic lupus 

erythematosus, is still controversial. The therapeutic strategies today for treatment of 

lupus disease are mainly based on a general suppression of the immune system with 

uncertainty about their long-term effects. The underlying mechanism for the 

development of the disease is yet to be clarified. Cytokines play a critical role in 

regulating the quantitative and qualitative responses of T cells, B cells, macrophages, 

and other cell types. Many cytokine disorders have been reported in both SLE 

patients and the animal models but findings are often difficult to reconcile especially 

differences between data from the in vitro and in vivo studies. In the murine model, 

it was suggested that the balance of Thl/Th2 cytokines related to the pathogenesis of 

SLE. Recent evidence cleaiiy demonstrates that Thl cytokines are involved in the 

immuno-pathogenesis of SLE. Several factors are required for optimal induction of 

Thl activity, chief among them are IL-12 and IL-18. XL-12 promoted IFN-y 

dependent renal injury in MRL/lpr mice, which develop spontaneous lupus-like 

autoimmune disease. In order to understand the mechanism of immune regulation in 

SLE, I carried out detailed analysis of the nature and pathological relevance of Thl 

and Th2 cytokines, IL-12 and IL-18 in paiticulai', in the pathogenesis of SLE.

I found that serum from patients with SLE contained significantly higher 

concentrations of IL-18 than normal individuals. To investigate the potential role of 

IL-18 in SLE, I studied the effect of recombinant-IL-18 on MRL/^r mice, which 

develop spontaneous lupus-like autoimmune disease. MRL/^r mice produced 

significantly more IL-18 as disease progressed compared with the wild-type MRL/++ 

mice. MKL/lpr mice injected daily with IL-18 or IL-18 + IL-12 resulted in 

accelerated proteinuria, glomerulonephritis, and vasculitis. In contrast, the treatment



had no effect on the control MRL/++ mice. IL-18 and IL-18 + EL-12-treated 

MKLUpr mice produced more inflammatory cytokines (IFN-y, TNF-a and EL-6) 

compared with untreated MRL/ÿ>r mice. IL-18-treated MRLHpr mice also exhibited 

the butterfly facial rashes characteristic of clinical SLE. In contrast, MKLHpr mice 

treated with a combination of IL-18 and EL-12, while showing more severe vasculitis 

than those treated with IL-18 alone, did not present any facial rash. Histological 

analysis of the facial lesion revealed extensive epidermal thickening with intense 

inflammatory cell infiltrate and immunoglobulin deposition accompanied by 

extensive apoptosis in the IL-18-treated mice compared with control or IL-12 + EL-18 

treated mice. IE^18 may thus be a novel target for therapeutic intervention of 

spontaneous autoimmune diseases.

Elevated levels of IL-12 (p40/p70) have been reported in MRL/lpr serum and have 

been linked to increased nitric oxide production and disease activity. Therefore, 

studies were also performed to determine whether EL-12 and nitric oxide (NO) play a 

significant role (similar to MRLHpr mice) in induction of the disease in NZB/W mice 

a lupus-like model with different genetic backgrounds fi’om MRL/^r mice and with 

intact Fas. The results demonstrate that serum of NZB/W FI mice contains higher 

level of total IL-12 (p40/p70) than control mice and EL-12 is increased in correlation 

with disease of this lupus-like strain. In humans, the serum level of total IL-12 is 

significantly higher in SLE patients than control individuals. Whole blood culture 

from SLE patients also showed higher EL-12 production, when cultured with LPS and

IFN-y, compared with control individuals. Results presented in this thesis

demonstrate that IL-18 and IL-12 play important roles in the induction of SLE 

through the activation of Thl cells.
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1.1 Introduction to Autoimmune Diseases

Autoimmune diseases are characterised by the failure of the immune system to 

distinguish between self and non-self. The normal response of an adaptive immune system 

against foreign antigens is the clearance of antigens from the body. Immunological tolerance, 

or unresponsiveness, to self antigens is induced either by the encounter of immature 

lymphocytes with self antigens in the generative lymphoid organs, i.e. the bone marrow and 

thymus (central toWance), or by exposure of mature lymphocytes to self antigens under 

particular conditions in peripheral tissues (peripheral tolerance) (Male et al., 1987; Miller et 

al., 1993). The breakdown of tolerance to self antigens that are often not encountered in the 

thymus, can result in autoimmune diseases in human. This breakdown in tolerance leads to 

undesirable clinical consequences, often including a series of pathological effects and organ 

destruction. Autoimmune diseases may also be characterised by the presence of either organ- 

specific autoantibodies, e.g. autoantibody to thyroid tissue in Graves disease, or by the 

presence of autoantibodies to different organs without organ specificity, in systemic lupus 

eiythematosus (SLE).

1.1.1 Tolerance

The mechanism of self-tolerance is crucial in establishing a normal immune system, 

and central to which is clonal deletion of self-reactive lymphocytes. The original hypothesis 

of Bumet and Fenner (1949) dealing with unresponsiveness to self antigen, stated that all 

anti-self lymphocytes were eliminated before maturity. Tolerance to self antigens in healthy 

individuals can largely be explained by clonal deletion of self-reactive T cells in the thymus 

(McFarland 1996). However, in vitro studies on antigen reactivity as well as immune 

manipulations (Sakaguchi et al., 1985; Mason et al., 1992) that result in the development of 

autoimmune diseases have demonstrated that autoreactive T cells are still present in normal 

hosts. The observation that autoreactive T cells can be found in normal individuals indicates

18



that negative selection in the thymus is not absolute and suggests that other mechanisms 

operate in the periphery to actively maintain tolerance to self, or at least to inhibit the 

autoaggressive potential of T cells. Peripheral tolerance to self proteins is induced because 

these antigens are presented to T lymphocyes under conditions that do not allow effective 

immune responses to develop, or because the responses of these specific T cells aie tightly 

regulated. Mechanisms of tolerance induction and maintenance in the periphery have 

evolved to avoid reactivity to self antigen (Ohashi et al., 1991; Oldstone et al., 1991).

1,1.2 Peripheral Tolerance

Peripheral tolerance is the mechanism which maintains unresponsiveness to antigens 

that are present only in peripheral tissues and not in the generative lymphoid organs. 

Peripheral mechanisms may also inactivate or kill lymphocytes that are specific for 

ubiquitous self antigens but escape central tolerance. The consequence of antigen 

recognition, i.e. activation or tolerance, depends mainly on two factors: how the antigen is 

presented to lymphocytes (its concentration, tissue location and persistence, and the nature of 

the cells that present the antigen), and how the response of specific lymphocytes to that 

antigen are regulated. The principal mechanisms of peripheral tolerance are activation- 

induced cells death (AICD), energy and T suppressor cell activity regulatory T cells 

(Shevach, 2000).

Activation-induced cell death Activation-induced cell death (AICD) is a process of 

apoptosis induced by repeated activation of T lymphocytes by their cognate antigen but

without certain co-stimulation, necessary for full development of activation. In CD4^ T cells 

the principal mechanism of AICD is the co-expression of Fas (CD95) and Fas ligand (FasL, 

CD90), followed by engagement of Fas and deliveiy of a death-inducing signals (Nagata et 

al., 1994). The importance of this mechanism is illustrated by the fatal lupus-like systemic

19



autoimmune disease that develops in mice homozygous for mutations in either Fas or FasL, 

and by the similar disease seen in humans with mutations in Fas (Lenardo, 1996). From 

experiments on MRL-Mp-lpr-lpr (MRL/Zpr) mice, which is extensively used as a lupus-like 

model, it is concluded that Fas does not play a significant role in central tolerance, but is 

crucial for deletion of mature T cells (van Parijs et al., 1998). The major pathway of AICD-

dependent self-tolerance in mature CD4+ T cells appears to involve Fas-FasL interactions. 

The main physiological role of Fas-mediated AICD is to eliminate T cells that are repeatedly 

stimulated by high concentrations of persistent antigens, e.g. self-antigens (Singer & Abbas, 

1994; Singer et al., 1994; van Parijis et al., 1998). It has also been suggested that tumour 

necrosis factor (TNF), which is homologous to FasL, may participate in AICD in a mature

CD4^ T cells (Sytwu et al., 1996).

Anergy The second mechanism of peripheral T cell tolerance is anergy in which T cells 

become unresponsive to antigen. This was first described in mouse T cell clones, and shown 

to be due to a block in antigen receptor-generated signals as a results of antigen recognition in 

the absence of co-stimulation and IL-2 (Schwartz, 1990, 1997). Functional responses to 

antigen (signal 1) require additional signals, provided by co-stimulators and/or growth 

factors, and signal 1 alone leads to functional anergy. If T cells from TCR transgenic mice 

are exposed to their cognate peptide antigen in the absence of co-stimulation or growth 

factors, they undergo passive ceU death (van Parijs et al., 1996, 1998). Exposure to 

tolerogenic peptide (high dose without adjuvant) leads to an initial expansion of peptide- 

specific T cell clones, but these T cells then become unresponsive to subsequent re

stimulation with antigen in vivo or in vitro (Perez et al., 1997).

Co-stimulators of the B7 family play critical roles in regulating the choices between T cell

survival, proliferation and differentiation on one hand, and anergy or apoptosis on the other.
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If antigen is presented by antigen-presenting cells (APCs) in the presence of B7 antagonists, 

the antigen is effectively ignored by specific T cells. This results in passive cell death (non- 

Fas mediated AICD). If, however, T cells use the CTLA-4 receptor to interact with B7 

molecules at the time of antigen recognition, the result is T cell anergy, whereas CD28-B7 

mteractions trigger fimctional T cell activation. What determines the choice between CTLA- 

4 or CD28 recognition of B7 is not established (van Parijs et al., 1997; Perez et al., 1997; 

Waterhouse et al., 1995).

The elucidation of T cell death and pathways and mechanisms of anergy has provided 

important clues about how peripheral tolerance to self-antigen is maintained. These concepts 

have been strongly reinforced by the identification of genetic mutations that lead to 

autoimmunity. Thus, the available evidence indicates that mutations in Fas/FasL and IL- 

2/IL-2Ra and DL-2RB interfere with AICD, and this may lead to autoimmunity. There is a 

possibility that AICD is responsible for tolerance to abundant and widely disseminated 

protein antigens, which may be presented by competent APCs and trigger the Fas pathway. 

In contrast, tissue antigens may be presented by resting APCs ^  the absence of inflammatory 

cytokines, leading to CTLA-4-mediated anergy (van Parijs et al., 1998).

Regulatory T cells Convincing evidence now exists demonstrating that self tolerance, at least 

to tissue-specific antigens, is not a passive process but instead is an active dynamic state in 

which potentially pathogenic autoreactive T cells are prevented from causing disease by other 

T cells called regulatory T cells (Nishizuka & Sakakura, 1969; Fowell et al., 1993; Powrie et

al., 1995). The evidence that CD4^ T cells are fimctionally heterogeneous, as a result of their

different cytokine profiles (Mosmarm et al., 1986; 1989), has offered an explanation for the

ability of certain T cells to produce immrmopathology (i.e. autoimmunity) and others to

regulate these autoreactive T cells (Liblau et al., 1995; O'Gaira et al., 1993; Powrie et al.,
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1996). In vivo and in vitro studies suggest that the CD4+ CD25'^ population represents a 

unique lineage of suppressor T cells and play a critical role in regulating autoimmune disease 

in a large number of animal models (Taguchi & Takashi, 1996; reviewed by: Shevach 2000).

1.1.3 B-cell tolerance

The mechanisms of B-cell tolerance aie not understood as well as those of T-cell 

tolerance. Tolerance in B cells may reflect an absence of B-cell reactivity (deletion or 

anergy), failure of T-helper cell function, T-cell mediated suppression or control of specific 

antibody production by B cells. B-cell development and tolerance also take place at the 

central and peripheral level. At the central level, a “pre-immune” repertoire of B-cell clones 

is generated by the diversity of variable joining regions of immunoglobulin due to gene 

recombinations that occur in the developing bone marrow or liver B-cell populations. This 

gives rise to a vast heterogenous B-cell population that produces low-affinity antibodies 

(Male et al., 1987). At the peripheral level, contact of these pre-immune B cells with specific 

antigen in the presence of helper T cells results in clonal expansion of B cells that produce 

high affinity antibody through somatic mutation. Since most pre-immune B-cell clones 

express “antibodies” with low affinity, it is unlikely that self-reactive antigens are present in 

very high levels (Gutierrez-Ramos et al., 1990; Moller et al., 1987; Martinez et al., 1988). 

Clonal deletion may occur if pre-immune low-affinity B cells encounter large amounts of 

antigens early in their development in the bone marrow or liver (high dose tolerance). Clonal 

anergy or functional inactivation may be induced in mature high-affinity peripheral B cells by 

contact with low amounts of antigen (low dose tolerance).

1.1.4 Cytokines in autoimmunity

CD4+ T helper (Th) cells include at least two subsets called Thl and Th2 in mice and 

humans based on the profile of cytokines they secrete on activation. Thl cells produce IL-2,
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IFN-y, lymphotoxin and are involved in cell-mediated immune responses directed at mainly 

intracellular infections. Th2 cells produce IL-4, IL-5, IL-10 and IL-13 and are involved in 

helping B cells to produce IgM, IgA, IgGl and mainly IgE which is a strictly Th2-dependent 

antibody isotype (Mosmann et al., 1987; Powrie & Coffman 1993; Fowell et al., 1991; 

Romagnani et al., 1994).

The cytokines that are present in the vicinity of the CD4+ T cell at the time it comes into 

contact with a peptide antigen are crucial. IL-12 is a dominant cytokine directing Thl 

development and is produced by activated macrophages and dendritic cells (Hesieh et al., 

1993; Tiinchieri et al., 1995; Macatonia et al., 1995). IFN-y, produced by Natural Killer 

(NK) cells under the influence of IL-12 and TNF-a, and IL-18 are also required for IL-12- 

driven Thl development. By contrast, IL-4 is the cytokine that plays a key role in the 

differentiation of the precursor CD4+ T cell towards a Th2 phenotype, accompanied by the 

production of IL-4, IL-5, IL-13 and IL-10 (Hsieh et al., 1992; Abbas et al., 1994). The two 

subsets are reciprocally regulated by the cytokines they produce. IFN-y inhibits the 

proliferation of Th2 cells and antagonises some of the effects of IL-4 on B cell such as the 

increase in MHC class II and CD23 expression and isotype switching to IgE and IgGl 

(D'Andrea et al., 1995). IL-10, IL-13 and IL-4 inhibit Thl development by acting on 

macrophages.

The innate immune response and the accompanying Thl-réponse are thought to have evolved 

for the eradication of microbial pathogens (Sher et al., 1992); however, it has been proposed 

that if inflammatory Thl responses are inappropriately directed against self-antigens this may 

lead to tissue destruction and pathology (Liblau et al., 1995; Powrie et al., 1993; O'Garra et 

al., 1997). Most destructive organ-specific autoimmune diseases are probably initiated by 

Thl cells (O'Gaixa et al., 1997). The differentiation of T-helper lymphocytes into Thl or Th2
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cells is crucial in terms of susceptibility or resistance to infectious diseases such as 

Leishmania major infection in mice (Liew, 1989) and probably also play an important role in 

terms of susceptibility or resistance to the development of numerous autoimmime diseases

1.1.5 Classification of autoimmune diseases

Autoimmune disease can be classified according to the mechanism by which hnmune- 

mediated tissue damage is induced. (1) Humoral-mediated autoimmune diseases. Examples 

of these are myasthenia gravis and immune thrombocytopenia purpura (ITP). (2) Cell- 

mediated autoimmune diseases. Examples of these are, insulin-dependent diabetes mellitus, 

Hashimoto's thyroiditis, and rheumatoid arthritis. The division between the two is not clear 

cut, and evidence for the involvement of T-cells in pathology of antibody-mediated disease 

and vice versa has been documented.

Diseases associated with autoimmime phenomena tend to distribute in a spectrum of the 

number of organs afflicted. Thus, there are organ-specific diseases and multi-system 

diseases. At one pole, there is Hashimoto’s disease, in which antibodies react against thyroid 

gland. At the other end of the spectrum, there is systemic lupus erythematosus (SLE) which 

is a systemic disease with multi-organ involvement (Roitt et al., 1996).

1.2 Systemic Lupus Erythematosus

Systemic Lupus Eiythematosus (SLE) is a non-organ specific autoimmune disease 

with unknown aetiology. It affects the joints, skin, serous membranes (pleura, pericardium, 

and the peritoneum), the kidneys, gastrointestinal tract, cardiovascular system, the brain, the 

bones and the clotting system. The clinical manifestations vary depending largely on which 

organ system, or systems, is affected and ranges fi'om the mildest form of skin rash to life- 

threatening internal organ involvement.
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1.2.1 History

Lupus, a term attributed to the 13th century physician Rogeriou, is Latin for "wolf. 

Rogeriou used it to describe the erosive facial lesions that were reminiscent of a "wolfs bite" 

(Blotzer, 1983). The term Lupus Erythematosus was first applied by the Frenchman 

Cazenava in 1851 (Potter, 1993). In 1845 von Hebra, a Viennese physician, used “butterfly” 

to describe the distribution of the malar rash of the disease. Kaposi recognised the visceral 

involvement of the disease in 1872 which then came to be known as "acute disseminated 

lupus erythematosus" (Benedek, 1997). In the 1920s and 1930s SLE was identified as a 

distinct clinical entity, largely because of the work of pathologists who had described the 

morbid anatomic changes that were characteristic of SLE. An example of this was the 

atypical nonbacterial endocarditis described by Emmanuel Libman and Benjamin Sacks in 

1924 (Blotzer, 1983, Smith, 1988).

1.2.2 Epidemiology and aetiology

SLE is recognised worldwide. Its prevalence has ranged from 12/100,000 in Britain 

to 39/100,000 in Sweden (Hochberg, 1990). SLE is more prevalent in women, particularly in 

their reproductive years. In most studies, 90% of patients are women. For the 14-64 year age 

group, the ratio of age-specific and sex-specific incidence rates show 6-10 fold female excess 

(Lathia et al., 1981). This effect of age and sex probably indicates a role for hormonal factors 

in its pathogenesis. This proposal is supported by the abnormalities of sex hormone 

metabolism, causing elevated 16-a-hydroxyestrone and prolactin levels in SLE (Talal et al., 

1987; Lavalle et al., 1987). The most likely role of these sex hormones in predisposing to 

SLE relates to their immuno-stimulatory effect on humoral immune function. Ostrogen binds 

directly to receptors on T-cytotoxic cells, inhibiting their activity and resulting in increased 

antibody production (Ansar Ahmed et al., 1985).
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Genetic contribution The predisposition to SLE has been studied in twins. Dizygotic pairs 

have a concordance rate that is similar to that for other family members but is still six to eight 

times greater than that for unrelated individuals. On the other hand, the concordance rate in 

monozygotic twins is between 30 and 50 percent. These findings provide strong evidence of 

genetic factors influencing disease, they also suggest that environmental factors are of 

additional importance (Block et al., 1976; Amett et al., 1976).

Of the genetic loci implicated in SLE, one of the most important for the manipulation of the 

autoreactive immune response is class H region of the major histocompatibility complex 

(MHC). Multiple MHC and non-MHC genes appear to predispose to the pathogenesis of 

SLE. Several studies have found that HLA-DR7 was associated with more severe disease 

(Welch et al., 1988). There is an increased incidence of HLA-DR2 and/or HLA-DR3, as well 

as inherited deficiencies of complement due to alleles for complement C4 loci. The 

frequency of certain autoantibodies is related to HLA-B8 and DR3, for anti-La (SSB), and 

HLA-DR4 for anti-RNP(Sm) (Hartung et al., 1989). The class III region of MHC contains the 

C4A and C2 genes of the complement system. Heterozygous or homozygous deletions of the 

C4A are common among SLE patients (Kemp et al., 1987), and C2 deficiencies are 

associated with the development of SLE (Roberts et al., 1978).

Environment Contribution The role of environmental factors in SLE has attracted much 

attention, but there is no clear etiologic agent yet identified. Some drugs (diphenylhydantoin, 

isoniazid, hydralazin, and procainamide) have been shown to cause symptoms similar to SLE 

(SLE-like syndrome). Exacerbation of SLE skin rash, occur after viral or bacterial infections, 

and changes in disease activity occur after administration of exogenous hormones. It seems 

that an abnormal humoral antibody response to an infection may lead to formation of 

antibodies that cross-react with a wide variety of human tissues in individuals who are
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genetically predisposed to produce these autoantibodies (Strand and August, 1974; Panem et 

al, 1976).

1.2.3 Clinical features of SLE

SLE is characterised clinically by a mullet-system involvement affecting a variety of 

tissues and organs. 80% of patients v/ith SLE will present with involvement of the skin or 

joints. A common presenting complaint is a photosensitive rash often with alopecia. 

Alternatively, patients may present with arthralgia or frank arthritis. However, patients may 

present with fever accompanied by single organ involvement, such as inflammatory serositis, 

glomerulonephritis, neuropsychiatrie disturbance or haematological disorder (i.e. 

autoimmune haemolytic anaemia or thrombocytopenia). Patients can present rarely with 

severe, generalised acute lupus crisis with multi-organ involvement.

The wide clinical manifestations of SLE can make the diagnosis difficult. The patient's 

condition is often misdiagnosed as rheumatoid arthritis, fever of unknown origin, 

fibromyalgia, or even a psychsomatic disorder (Hoffman, 1978; Wilke, 1995; Perry & Miller,

1992).

Systemic Effects

Constitutional 90% of patients with SLE experience fatigue. Arthralgia and myalgia often 

accompany complaints of malaise. A less common but more problematic constitutional 

featme of SLE is persistent fever and weight loss. The fever of lupus is of a low grade and 

rarely exceeds 39°C (Stahl et al., 1979).

Musculoskeletal Approximately 90% of patients with SLE have musculoskeletal symptoms. 

One of the most common presenting symptoms of lupus is arthritis. The typical clinical
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manifestation is arthralgia. The joints most commonly involved are the proximal 

interphalangeal, metacarpophalangeal, wrist, and knees. In contrast to rheumatoid arthritis, 

however, lupus is rarely accompanied by frank articular erosions. When arthritis occurs in 

SLE it usually is the consequence of periarticular inflammation with involvement or tendons. 

This can lead to Jaccoud's arthropathy, which is notable for reducible deformities. Myalgias 

are another common featuie of SLE. Less common is frank inflammatoiy myositis which 

occurs occasionally during the course of SLE (Feldman et al., 1992; Isenberg, 1982).

Muco-cutaneous Approximately 80% of patients with SLE have dermatological 

manifestations during the course of their illness. The acute cutaneous eruption is manifest as 

a photosensitive rash, which often has a butterfly appearance by virtue of involving the 

bridge of the nose and malar ar eas of the face. A characteristic feature of this rash is sparing 

of the nasolabial folds. Photosensitivity is less common in black patients but occurs in 40- 

50% of all patients with SLE. The malar rash is acute in onset and usually heals without 

scarring. The "lupus-band test", which measures immunoglobulin and complement 

deposition at the dermal-epidermal junction in non-lesional skin is positive in more than 60% 

percent of patients. The rash of subacute cutaneous lupus is observed in anti-Ro antibody 

positive patients. This eruption is intermediately photosensitive and can either have an 

annular, polycyclic appearance or a more papulosquamous, pityriasiform, or psoriasiform 

appearance. 25% of patients with SLE have discoid skin lesions. These lesions are often on 

the face with a predilection for the inner pinna of the ear but are not photosensitive. These 

lesions are characterised clinically by follicular plugging, skin atrophy, scaling, telangectasia 

and skin erythema. Mucosal ulcers and raynauds phenomenons are frequent complication of 

lupus, occurring in 30% of patients.
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Renal system Although the majority of patients with SLE may have glomerulopathy 

clinically relevant kidney disease occurs in about 50% of patients. This is usually the 

consequence of the deposition of immune complexes containing anti-DNA in the kidney 

(Appel et al., 1978; Estes et al., 1971; Kelley et al., 1997). Renal biopsy evidence of immune 

complex deposition is found in the kidney of all patients with SLE (Mahajan et al., 1977). 

Urine protein is a useful measure of renal lupus activity. Incremental changes of 500 mg of 

protein excretion is significant to renal pathology. Serum antibodies to DNA are a marker for 

the development of renal disease. Hypocomplementemia is often a harbinger of active renal 

disease. Mesangial lupus nephropathy is generally associated with an excellent prognosis. 

Proliferative lupus nephropathy, especially diffuse proliferative, often has a nephritic picture 

with hypertension, urinary red cell casts and can be accompanied by significant deterioration 

in renal function. Nephrotic syndrome in the absence of hypertension, active urinary 

sediment, or significant hypocomplementemia suggests membranous lupus nephropathy 

(Golbus & McCune, 1994; Gladman et aL, 1989; Kelley et al., 1997).

Serositis Inflammatory serositis of the pleura, pericardium and peritoneum occur s in 50% of 

patients with SLE. This may produce pleuritis, pericarditis and medical peritonitis. These 

may occur in the absence of any significant effusion and represent a non-effusive serositis. 

Alternatively, patients can develop large pleural effusions, pericardial efiusions or ascites. 

These effusions are typically inflammatory and exudative (Wang et al., 2000).

Hematological Anaemia of chronic inflammation is a common feature of SLE. Coombs 

positive hemolytic anemia with an acute declining hematocrit and reticulocytosis is a 

characteristic but not especially common occurrence in SLE. Autoimmune 

thrombocytopenia purpura can be a presentmg feature of SLE or occur at any time in the 

course of the illness. Thrombocytopenia as a consequence of the antiphophsolipid antibody
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syndrome has also been described in SLE. Leukopenia with lymphopenia is also a 

characteristic feature of SLE. Interestingly, when this occurs in the absence of cytotoxic drug 

therapy of the illness, it is not a significant risk for infection (Isenberg et al.,1982).

Central Nervous System (CNS) Neuropsychiatrie complications can occur in up to 66% of 

SLE patients, and include acute and chronic, as well as focal and diffuse manifestations 

(McCune & Golbus, 1988). CNS manifestations include seizures, psychiatric illness, and 

disorder of cranial nerves. Cerebral vascular accidents are the consequence of either 

inflammatoiy or non-inflammatory, thrombotic vasculopathy in the central nervous system. 

Seizures complicate the course in 10-20% of patients with lupus (Sergent et al., 1975; Kohen 

et al., 1993). Diffuse cerebral dysfunction is manifest as an organic effective disorders, 

personality disorder, psychosis, or coma. Vascular or migraine headaches occur in 10% of 

lupus patients. Recurrent involvement of the central nervous system may result in an organic 

brain syndrome and dementia (Femglass et al., 1976; Kelley et al., 1997).

Gastrointestinal Medical peritonitis with or without ascites is a manifestation of lupus 

serositis involving the peritoneum. Less common manifestations of lupus involving the 

gastrointestinal tract include mesenteric ischemia from mesenteric vasculitis and pancreatitis. 

The latter can be a manifestation of disease activity, or less commonly, a consequence of 

disease treatment as with steroids. Non-specific inflammatory liver disease has been 

described in lupus (Hallegua et al., 2000).

Ocular . Patients with lupus may develop anterior uveitis or iridocyclitis. Frank retinal 

vasculitis has been described, as well as central retinal artery occlusion, central retinal vein 

occlusion and ischemic optic neuropathy. Xerostomia with keratoconjunctivitis sicca is seen 

in 10% of patients (Wong et al., 1981).
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1.2.4 Serological abnormalities in SLE

There are many serological abnormalities found in SLE, the most notable and widely 

recognised aie serum autoantobodies, circulating immune complexes and 

hypocomplementaemia.

i) Anti-DNA autoantibodies in SLE

The common denominator among SLE patients is immunoglobulin G (IgG) autoantibody 

production, and the halhnark of this disease is elevated serum levels of antibodies to nuclear 

constituents (i.e., anti-nuclear antibodies).

Anti-nuclear antibodies (ANA) were first identified in the serum of patients with SLE over 40 

years ago in four different laboratories (Isenberg et al., 1997). Among the myriad of 

autoantibodies produced in SLE, principal targets include certain protein-nucleic acid 

complexes, chromatin, the U1 and Sm small nuclear ribonucleoprotein (snRNP) particles, and 

the Ro/SSA and La/SSB RNP complexes, phospholipids, cytoplasmic and cell surface 

components, and even IgG rheumatoid factor (Tan, 1989; Kotzin and O'Dell, 1995).

Anti-dsDNA antibodies IgG autoantibodies to double-stranded DNA appear to play a 

prominent role in the immune complex glomerulonephritis of SLE (Kotzin and O'Dell, 1995). 

The likely involvement of these antibodies in the pathogenesis of human SLE, and in animal 

models of SLE, is indicated by

(1) the close links between disease activity and serum levels of anti-dsDNA antibodies 

(Spronk, et al. 1995);

(2) the elution (removal and collection) of these antibodies fi'om the kidneys of patients with 

SLE and lupus-prone mice;
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(3) direct evidence of these antibodies being associated with pathogenicity in isolated rat 

perfusion systems (in which kidneys are dissected from the rat and their function is 

maintained artificially for a few hours) and mice with severe combined immunodeficiency 

(SCID); and

(4) the fact that although antibodies to single-stranded DNA (ssDNA) are frequently found in 

healthy relatives of patients with SLE, those that bind to dsDNA are virtually never detected 

(Andi’zejewski et al. 1981).

Clinical anti-dsDNA antibody studies Many studies have concluded that levels of anti- 

dsDNA antibodies, quantified by enzyme-linked immunosorbent assay (ELISAs) or 

radioimmunoassay (RIA), generally reflect clinical disease activity (Spronk et al. 1995). This 

observation appears to be particularly true of renal disease, and most of the evidence that 

anti-dsDNA antibodies are pathogenic has been derived from studies of the kidney.

High levels of high affinity anti-dsDNA antibodies, and low values of functional complement 

CH50 were found predominantly in lupus patients (Swaak et al., 1979; Lioyd and Schur,

1981). In contrast, antibodies to ssDNA are not specific for patients with SLE, being present, 

for example, in many individuals with infectious diseases. A prospective study of 72 patients 

showed that active lupus nephritis was usually associated with high titres of anti-dsDNA 

antibodies (ter Borg et al., 1990). More recently, a close relationship was seen between renal 

disease activity (assessed by biopsy) and the ds-DNA antibody isotype (Okamura et al.,

1993). Disease activity correlated with IgG against dsDNA but not with IgG against ssDNA 

or with IgM reactive against either dsDNA or ssDNA. Bootsma and colleagues (1995), using 

the concept of a rise in levels of anti-dsDNA antibodies as a means of predicting a clinical 

relapse, showed that treating such patients with high levels of prednisolone (30 mg/day)
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reduced the relapse rate, compared with a control group who were treated with either lower 

doses of prednisolone or no steroids.

ii) Circulatory Immune Complexes

Immune complexes (IC) are commonly observed in both SLE patients and lupus mouse 

models. ICs have been shown to consist of nucleic acid and serum antibodies of 

corresponding specificity. Three types of ICs identified are ds-DNA-anti-dsDNA, ssDNA- 

anti-ssDNA and ssDNA-anti-dsDNA (Brentjens and Andres, 1982). It is believed that 

deposition of immune complexes in tissues, such as skin, kidneys, blood vessels and brain, 

may initiate some inflammation. DNA antigens and associated antibodies have been 

demonstrated in the immune complexes deposited in kidneys showing proliferative and 

membranous lupus nephritis (Angelo et al., 1976; Andres et al., 1975). Antibody avidity and 

class, antigen/antibody ratio and size of DNA have been shown to be important in 

determining the deposition of these immune complexes (Morrow et al., 1982, 1983).

1.2.5 SLE diagnostic Criteria

For a disease with such protean manifestations and variable course as SLE, the need 

for classification criteria, which would allow comparison of patients, is quite clear. To assist 

in the diagnosis of SLE the American Rheumatism Association has define a list of 11 criteria 

and if a patient has 4 more of these over a period of time, they may have Lupus (Tan et al.,

1982). The 1982 revised ACR criteria for SLE are listed in Table 1.1.

Criteria for disease activity in SLE  Over sixty systems to assess clinical disease activity in 

SLE have been devised, but there have been only a few which have been validated (Klipple et 

al., 1998). Three of these, the SLE Disease Activity Index (SLEDAI), the British Isles Lupus
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Assessment Group (BILAG) and the SLE Activity Measure (SLAM) distinguished among 

patients, and correlate highly with each other (Gladman et al., 1994).
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Table 1.1 The 1982 revised criteria for classification o f systemic lupus erythematosus.

Criterion Definition

1. Malar Rash Fixed erythema, flat or raised. Over the malar
eminences, tending to spare the nasolabial folds

2. Discoid rash Erythematous raised patches with adherent keratonic
scaling and follicular plugging.

3. Photosensitivity Skin rash as a result of unusual reaction to sunlight.

4. Or-al ulcers Oral or nasophaiyngial ulceration, usually painless,
observed by a physician.

5. Arthritis Nonerosive arthritis involving two or more peripheral
joints, characterised by tendem^s, swelling or effusion.

6. Serositis (a) Pleuritis, convincing history of pleuritic pain or rub
heard by a physician or evidence of pleural effusion.

(b) Pericarditis, documented by EGG or rub or evidence 
of pericardial effusion.

7. Renal disorders (a) Persistent proteinuria greater than 0.5 grams per day
or greater than 3+ if  quantitation not performed.

(b) Cellular casts, may be red cell, hemoglobin, 
granular, tubular or mixed.

8. Neurological disorder (a) Seizures, in the absence o f offending drugs or
known metabolic disorders: e.g Uremia, ketoacidosis, 
or electrolyte imbalance.

(b) Psycosis, in the absence of offending drugs or
known metabolic disorders: e.g Uremia, ketoacidosis, 
or electrolyte imbalance.

9. Hematologic disorder (a) Hemolytic anemia, with reticulocytosis
(b) Leukopenia, less than 4000 mm  ̂total on two or 

more occasions.
(c) Lymphopenia, less than 1500 mm  ̂on 2 or more 

occasions
(d) Thrombocytopenia, less than 100,000/mm^ in the 

absence of offending drugs.

10. Immunologic disorder
(a) positive LE cell preparation.
(b) Anti-DNA antibody to native DNA in abnormal titre
(c) Anti-Sm:presence of antibody to Sm nuclear antigen 
Ù) False positive serologic test for syphilis known to be

positive for at least 6 months and confirmed by 
Treponema pallidum immobilization or florescent 
Trqponemal antibody absorption test.

11. Antinuclear antibody an abnormal titre o f antinuclear antibody by
immunofluoresence or an equivalent assay and in the 
absence of drugs known to be associated witli "drug- 
induced lupus" syndrome.

For the purpose of identifying patients in clinical studies, a person shall be said to have systemic lupus 
erythematosus if  any of 4 or more of the 11 criteria are present, serially or simultaneously, during any interval of 
observation.
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1.2.6 Treatment

Although SLE is a chronic rheumatic syndrome, its clinical course is typically one of 

relapse and remission. Since the cause of the disease is still unknown, clinical treatment for 

SLE have been mainly based upon achieving symptomatic relief. Management includes 

interventions directed at acute flares of the disease, that occasionally may be life-threatening, 

maintenance therapies and close monitoring of chronic progressive disease, and minimal or 

no treatment during periods of remission. There are four main groups of drugs including the 

non-steroid anti-inflammatory drugs (NSAID), anti-malaria and cytotoxic drugs (Klipple,

1998) and corticosteroids (Kimberly, 1992). The therapeutic strategies are usually designed 

for a general suppression of the immune system

The prognosis for patients with SLE has greatly improved over the last few decades with at 

least 80-90% of all patients surviving ten years. Thereafter life expectancy approximates to 

that of age matched healthy controls. This improvement reflects the general advancements in 

health care (i.e. dialysis, antibiotics, antihypertensives, newer immunosuppressives with more 

favourable efficacy to toxicity ratio) and also the specialised care available for patients with 

SLE (Strand, 2000).

1.3 Murine models of Systemic Lupus Erythematosus

The pathogenesis of autoimmune diseases cannot easily be studied and manipulated 

without appropriate animal models. Inbred mice that develop a lupus-like disease similar to 

human systemic lupus erythematosus (SLE) have been used extensively to elucidate the 

etiopathogenesis of SLE. The main clinical and immunological abnormalities, which are 

related to the human disease, also appear in these mouse models.
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Most studies on SLE have been on three different genetic background strains of mice, FI 

hybrids of New Zealand Black (NZB) and New Zealand White (NZW) mice (NZBxNZW)Fl, 

MRL, and BXSB mice.

1.3.1 Lupus models

(NZBxNZW) FI hybrids were the first described experimental model, which 

spontaneously develop lupus-like autoimmune disease (Howie and Heyler, 1965, 1968). The 

NZB strain which inherits haemolytic anaemia by mating with the phenotypically

normal NZW changed to the hybrids (NZBxNZW)F 1 that underwent changes

remarkably similar to human lupus nephritis (Howie and Helyer, 1965). The NZB/W {HI 

strain has been used as one of the best models of human SLE studies.

Two other mice strains, MRL and BXSB, were developed in 1976 by Murphy and Roths at 

the Jackson Laboratory (Murphy and Roths, 1979). The MRL strain originated by a series of 

crosses involving mbred strains AKR/J, C57BL/6J, C3H/Di and LG/J. In the 12th. 

generation of mbreeding, some of the offspring developed massive general 

lymphodenopathy. These were termed MRL/n and the other offspring, which did not develop 

lymphodenopathy, were termed MRL/1. Breeding tests and reciprocal backcross between 

MRL/1 and MRL/n mice indicated that the massive lymphoproliferation was controlled by a 

single autosomal recessive gene, termed Ipr (lymphoproliferation). The original substrain 

MRL/n was redesigned MRL/Mp-+/+ at F28. By 1980, the Ipr gene had been tiansferred by 

10 cycles of cross-intercross mating to MRL/Mp-+-+ with an estimated residual difference of 

less than 0.1% (Theofilopoulos and Dixon, 1985). Mice homozygous for Ipr develop 

autoimmune syndromes characterised by the formation of autoantibodies to nuclear antigens 

and the marked accumulation of an abnormal double negative (DN) CD47CD8' T cell 

population in the lymph node and spleen (Cohen and Eisenberg. 1991). The Ipr mutation
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interferes with Fas transcription and prevents expression of Fas on the cell surface, 

(Watanabe-Fukunaga et al., 1992).

The BXSB strain {H2^\ a recombinant inbred strain derived from a cross between C57BL/6 

(B6) females and SB/Le males, spontaneously develops an autoimmune syndrome with 

features of SLE that affects male animals much earlier than females (Murphy & Roths 1978; 

Andrews et al., 1978). Yaa gene (Y chromosome-linked autoimmune acceleration) present in 

the Y chromosome of the BXSB mouse is responsible for the accelerated autoimmune 

abnormalities and immunopathological lesions (Murphy & Roths 1978; Hang et al., 1981; 

Izui et al., 1984). A unique cellular abnormality associated with the Yaa gene is monocytosis 

(Wofsy et al., 1984; Izui et al., 1995).

Esterogens accelerate disease in (NZBAV Fl)mice, slightly accelerate disease in MRL//jt?r 

mice and they have no effect on BXSB mice (Stoll & Gavalchin 2000).

1.3.2 Glomerulonephritis in the lupus mice

The (NZB X NZW)F1, MRL-lpr/lpr, and BXSB mice all develop a progressive 

severe glomerulonephritis and are primarily models of diffuse proliferative lupus nephritis. 

As in human SLE, all these mice develop high levels of IgG autoantibodies to nuclear 

antigens, including dsDNA. These autoantibodies mediate nephritis, probably as a result of 

in situ immune complex foimation in the glomerulus. Lupus-prone strains produce antibodies 

to another self-antigen, the endogenous xenotropic viral glycoprotein, gp70, and these 

autoantibodies have also been implicated in the pathogenesis of murine lupus nephritis. 

Extra-renal disease manifestations variably occm' in these models and include 

lymphoproliferation with both splenomegaly and lymphadenopathy, haemolytic anaemia, 

autoimmune thrombocytopenia, vasculitis, thrombosis, and arthritis (in MRL/^r). All of
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these lupus-prone strains also exhibit premature thymic atrophy, the significance of which, 

however, is unknown (Vyse and Kotzin 1998; Theofilopoulos & Dixon 1985; Izui et al.,

1995).

The major cause of death in NZB/W, MRL!Ipr and BXSB mice is glomerulonephritis. This is 

an exudative and proliferative acute form in the BXSB mice, a subacute proliferative form in 

the MRL!Ipr mice and a chronic obliterative form in the NZB/W mice. Glomemlar lesions in 

the MRLllpr mice consist of the accumulation of monocytes and the proliferation of both 

endothelial and mesangial cells, with occasional crescent formation and basement membrane 

thickening. The obliterative lesion in NZB/W female mice is mesangial with occasionally 

intravascular proteinaceous deposits, moderate proliferation of all glomerular cells elements 

and crescent foimation (Theofilopoulos & Dixon 1985; Andrews 1978).

1.3.3 Other histological changes in the lupus-like models

A severe cortical thymic atrophy is a feature of SLE pathology in all strains of lupus 

mice (Andrew et al., 1978; Theofilopoulos and Dixon, 1981). In female NZB/W mice the 

thymic atrophy is appeared by the fourth month of age, but by 6-7 months of age they lose 

60-70% of their cortexes. In BXBS and MRL/Ipr mice, the thymic atrophy and cystic 

necrosis appears by 2 months of age and a complete loss of cortex is occurred by 4.5 and 3.5 

months of age, respectively (Theofilopoulos and Dixon, 1985).

Marked splenic and lymph node hyperplasia exists in all murine lupus strains, and lymphoid 

infiltrates may also occur in the lungs, kidneys, liver, saliva glands, and bone marrow 

(Theofilopoulos and Dixon, 1985). Lymph node size can be up to 2-3 times normal in older 

NZB/W mice; 10 to 20 times more than normal in older BXSB males; and up to 100 times 

normal in 4-5 months old MRL!Ipr mice (Andrew et al., 1978; Murphy, 1981; Theofilopoulos
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and Dixon, 1981). There is an approximate 7-fold enlargement in the spleen of older 

MRL/Ipr mice. A similar 8-fold splenomegaly is observed in older male BXSB mice 

(Theofilopoulos and Dixon, 1985).

1.3.4 Serological changes in lupus-like models

Elevated serum Immunoglobulin (Ig) concentrations, anti-nuclear antibodies (ANA), 

anti-ds and anti-ssDNA antibodies, anti-retroviral envelop gp70 antibodies, immune 

complexes and reduced complement levels are common in all SLE strains.

Antibodies against nuclear constituents are characteristic of SLE in humans and mice 

(Tan, 1982). Among lupus-like models ANA titres are highest in MRL//^r, then NZB/W 

females, and then BXBS males (Andrews et al., 1978). In all strains a peripheral or rim 

pattern of nuclear fluorescence is always at the highest positive serum dilution, whereas the 

homogeneous pattern is sometimes seen at lower dilutions. Anti-DNA antibodies are 

classified into four groups (reviewed by Tan, 1982):

(1) Antibodies reactive with double-strand DNA recognise mainly the deoxyribose 

phosphate backbone and are reactive with both double and single-strand DNA. Therefore, 

antibodies against dsDNA are usually cross-reactive with ssDNA.

(2) Antibodies reactive only with ssDNA. It appears that this clone of antibody is directed 

against purine or pyrimidine bases and does not react with dsDNA because the bases are 

buried within the double heHx. These antibodies appear in several different diseases 

including, SLE, drug-induced lupus, chronic active hepatitis, infectious mononucleosis, 

and rheumatoid arthritis.

(3) Antibodies which recognise the sugar-phosphate backbone and therefore recognise both 

dsDNA and ssDNA. Some of these antibodies also react with polynucleotides and 

phospholipids, including cardiolipin.

40



(4) Antibodies against "left-handed" or Z-DNA.

Because of differences in epitope and disease association, anti-DNA assays must clearly 

distinguish between ssDNA and dsDNA substrates. Two methods are available; (1) digestion 

with SI nuclease, which removes overhanging ssDNA, and (2) chromatography on a 

hydi'oxyapatite column, which separate large single-stranded segments from dsDNA. 

However, native DNA may spontaneously denature, especially when bound to plastic ELISA 

plates. Two other additional assays offer greater assurance for anti-dsDNA testing. (1) The 

Farr radioimmunoassay, which resembles immunopercipitation assays, involves the binding 

of autoantibodies to radiolabelled dsDNA in solution. (2) Crithidia Luciliae 

immunofluorescence test that provides an inherently reliable dsDNA analysis. Farr and 

Crithidia Luciliae immunofluorescence tests thus provide effective, complementary 

mechanisms to distinguish anti-ssDNA from anti-dsDNA activities (Kelley et al., 1997).

1.4 Immunopathogenesis of SLE

Numerous immunological disorders featuring functional abnormalities of lymphoid 

cells are related to SLE (Tsokos, 1992). These include hyperactivity of B cells and T cells, 

and the failure of immunoregulatory mechanisms to down-regulate these responses. The 

consequence of this unregulated lymphocyte activation are production of pathogenic 

autoantibodies, formation of immune complexes, and T cell dysfunction.

1.4.1 B cells in SLE

B-cell hyperactivity is one of the immunological markers of lupus disease. B cells 

fr om the blood of SLE patients spontaneously secrete large amounts of immunoglobulins 

including antibodies to self-antigens (Jasin and Ziff, 1975; Budman et al., 1977). Upon B- 

cell mitogen stimulation, these cells also secrete higher levels of immunoglobulin than cells 

from normal subjects (Delfraissy et al., 1986; Flescher et al., 1990). B cells are abnormal in
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both human and murine SLE (Reininger et al., 1996; Clark et al., 1996). In people with SLE, 

there is a marked increase in the number of plasma cells in the peripheral blood that are 

secreting immunoglobulin, as well as B cells at all stages of activation. Pathogenic IgG 

autoantibody production in SLE is selective for only certain self-antigens and the autoreactive 

B cells are stimulated by self-antigens. In SLE and lupus mice, a subset of anti-DNA 

antibody-producing B cells are clonally expanded and their immunoglobulin genes are 

modified by somatic mutation (reviewed by Radie et al., 1994). This process indicates a 

normal T cell-dependent response to foreign antigen, involving common mechanisms of 

somatic mutation, affinity matur ation, and IgM to IgG class switching (Kotzin, 1996).

1.4.2 T-cells in SLE

Studies on peripheral and thymic T-cells have revealed that cellular and functional 

abnormalities of T-cells exist in SLE patients as well as in lupus animal models. The main 

evidence for defects in the T-cell compartment is the abnormal activities of these cells. T-cell 

lymphopenia is characteristic of patients with lupus and its severity correlates with disease 

activity (Steinberg et al., 1991). The association of SLE with particular class II major 

histocompatibility complex (MHC) alleles and the affinity maturation of IgG autoantibody 

production in this disease also strongly suggest that CD4 T cells are important in the 

pathogenesis of SLE (Kotzin, 1996).

T-cells fi'om lupus patients and several mouse models display severely impaired abilities to 

proliferate and to produce cytokines in response to T-cell mitogens (Kioemer and Wick, 

1989; Kroemer and Martinez-A, 1991). Decreased autologous mixed lymphocyte reaction 

(AMLR), and reduced activities of cytotoxic T-cells and NK cells have been common 

findings both in human lupus and lupus-like models (Kuntz et al., 1979; Theofilopoulos, 

1992). Furthermore, in all of the major murine models, treatment with anti-CD4 antibodies
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can ameliorate IgG autoantibody production and disease (Steinberg et al., 1980; Peng et al., 

1996; Singh and Hahn, 1998). Additional studies indicate that blocking T cell activation or T 

cell-B cell interactions will also prevent autoantibody production and disease (Finck et al., 

1994; Mohan et al., 1995). T-cells that lack both CD4 and CD8 molecules in SLE patients 

(Steinberg et al., 1991) and in lupus mice models (Datta, 1989) which are not MHC 

restricted, may provide clues to the regulation of the pathogenic autoantibody secreting B-

cells. In addition, CD4^DR^ and CDS^DR^ T-cells isolated from SLE patients were also 

reported to support polyclonal IgG production and autoantibody synthesis (Linker-Israeli et 

al., 1990). Therefore, the B-cell hyper-responsiveness may be largely attributed to lack of, or 

abnormal, T-cell regulation.

1.4.3 Cytokines in SLE

In normal individuals the expression and production of cytokines are under tight 

regulatory control. The presence or absence and the concentration of a particular cytokine 

can have profound effects on the regulation of the hnmune system. In recent years, the role 

of cytokine regulation in autoimmune diseases has been widely investigated. In vitro and in 

vivo evidence to date indicates the involvement of cytokine dysregulation in the development 

of autoimmunity. Abnormal cytokine production and defective responsiveness of 

lymphocytes to various cytokines have been demonstrated in many of the autoimmune 

disorders including SLE.

The structure, expression and functional status of cytokines in SLE have been investigated 

regarding the possible utility of their agonists and antagonists as therapeutic agents. In fact, 

mouse strains predisposed to lupus (MRL/^r, NZBxW, BXSB) are the primary source of 

information in the role of cytokines in autoimmunity.
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Thl lymphocytes secrete IFN-y and are considered to mediate cell mediated immunity (CMI) 

and it has been hypothesised that induce organ specific autoimmune diseases such as IDDM. 

Th2 cytokines are considered to mediate humoral immunity and antibody mediated 

autoimmune diseases such as lupus. Such a paradigm seems to be too simplistic in lupus 

because both Thl and Th2 cytokines have been found to exert profound effects on 

spontaneous mouse models of this disease.

Thl cytokines

IL-2 The earliest cytokine defect identified in all lupus mouse strains was a reduced 

production of, and response to, IL-2 (Altman et al., 1981; Dauphinee et al., 1981). This 

defect appears at 4-6 weeks of age in MRL/lpr and BXSB mice, and somewhat later in the 

(NZBxNZW)Fi mice. Thereafter, this defect becomes more pronounced with disease 

advancement. The cause of this defect is unknown, but several possibilities have been 

considered. These include impaired T cell receptor (TCR) signal transduction, IL-2R 

structural defects, abnormalities in IL-2 or IL-2R gene transcription factors, and exhaustion 

of IL-2 production subsequent to excessive and repetitive activation in vivo (Tanaka et al., 

1993; Liang et al., 1998).

When peripheral mononuclear cells (PBMCs) from patients with SLE are stimulated with 

LPS and PHA in culture, basal and induced levels of supernatant IL-2 are significantly 

correlated with the clinical SLAM index (Segal et al., 1997). High IL-2 levels were detected 

in the sera of 50% of patients with active disease. However, there are also increased levels of 

the soluble receptor for IL-2 (CD25) found in the sera of patients with active disease which 

may antagonise IL-2 deficiency (Huang et al., 1988).
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The relation of the EL-2 defect to the disease process remains unclear. Several reports have 

shown con ection of the in vitro Ipr T cell defective proliferation and apoptosis by exogenous 

IL-2 (Clements et al., 1994; Radvanyi et al., 1998). In a recent study (Huggins et al., 1999) 

MRL/ÿ?r mice infected orally by gavage with an attenuated strain of Salmonella typhimurium 

transfected with the EL-2 gene (administered at 6 weeks of age and repeated every three 

weeks to 15 weeks of age) were shown to have reduced double negative T cells, autoantibody 

levels, glomerulonephritis (GN) and vasculitis. In contrast, intiamuscular injections of an IL- 

2 encoding cDNA expression vector in M RL/^r mice were reported to increase autoantibody 

production and disease (Raz et al., 1995). Another study (Owen et al., 1989) reported no 

effect on disease progression and severity in (NZBxNZW)Fi mice treated with low or high 

doses of human recombinant EL-2, while others found suppression of nephritis in 

(NZBxNZW)Fi mice treated with anti-EL-2R mAb (Bocchieri et al., 1984).

IFN-y  Among the many cytokine abnormalities found in lupus mice, the most consistent has 

been high expression of IFN-y (1995; Davidson et al., 1991; Shiraie et al., 1995). The 

production of IFN-y by PBMCs from patients with SLE is significantly correlated with the 

Systemic Lupus Activity Measure (SLAM) (Viallard et al., 1999; Sturfelt et al., 1997). In 

vitro production of IgG by PBMCs from patients with SLE was decreased by exogenous 

IFN-y (Braude et al., 1988). Funauchi and colleagues suggested that IFN-y might be one of 

the factors that promote polyclonal B cell activation in SLE (1991).

The importance of this cytokine in murine lupus pathogenesis was initially suggested by the 

demonstration that (NZBxNZW)Fj mice treated with IFN-y showed accelerated disease.

Conversely, treatment with anti-EFNy antibody (Jacob et al., 1987) or soluble IFNy-R (Ozmen 

et al., 1995) early in life significantly delayed disease progression. A study on a long-lived
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subslxain of MRL/Ipr mice also showed reduced IFN-y levels compared with the parental 

strain. The reduced IFN-y is concomitant with a shift of Ig isotype from the complement- 

fixing IgG2a and the cryogenic-nephritogenic IgG3 to the less pathogenic IgGl isotype 

(Takahashi et al., 1996). Moreover, MRL/lpr mice crossed with an IFN-y gene deleted 

mouse (Peng et al., 1997), MRL/lpr mice rendered congenic for deletions in either the IFN-y 

(Balomenos et al., 1998) or the IFNy-R (Hass et al., 1997; Balomenos et al., 1997), and 

(NZBxNZW)Fi mice congenic for the IFNy-R deletion (Haas et al., 1998) all showed 

significant reduction in humoral and histological characteristics of the disease.

In one of these studies (Balomenos et al., 1998), the following observations were made: 

Hypergammaglobulinaemia was maintained in EFN-/- mice with a switch from IgG2a to IgGl 

predominance. Along with this, there was a highly significant decrease in levels of the 

dominant IgG2a anti-dsDNA autoantibodies but there was no increase IgGl subclasses. This 

finding suggested that therapeutic interventions to reduce IFN-y levels in lupus may 

selectively affect certain pathogenic autoimmune responses without significantly 

compromising the person's capacity to respond to exogenous antigens.

IL-12 IL-12 production by PBMCs is lower in SLE patients than in healthy controls and this 

seems to be due to decreased IL-12 production from monocytes (Liu et al., 1998). IL-12 

production is also lower in-patients with active disease when compared with those with 

inactive disease (Liu et al., 1998). Treatment with recombinant anti-IL-10 antibody reversed 

the appaient deficiency in IL-12 production by PBMCs from patients with SLE but had no 

effect on PBMCs from healthy controls. This finding suggests that the low IL-12 production 

seen in patients with SLE may be attributable to the excessive IL-10 production that is known 

to occur in the disease.
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The role of IL-12 in murine lupus has also been investigated. An intrinsic defect in the 

production of IL-12 in vitro by endotoxin activated macrophages from MRL-+/+ and 

(NZBxNZW)Fi mice has been reported (Alieva et al., 1998). Other studies, however, found 

that peritoneal macrophages of MRLHpr mice hyperproduce IL-12 after stimulation with 

IFN-y and/or LPS, and exhibit high concentrations of IL-12 iu the serum (Huang et al., 1996) 

as well as kidney (Fan et al., 1997). Moreover, daily injections of recombiuant IL-12 led to 

increased serum levels of IFN-y and nitric oxide (NO) metabolites, and accelerated GN in this 

model (Huang et al., 1996). These findings, together with previous reports that NO synthase 

inhibitors can ameliorate autoimmune disease in MBl^Hpr mice (Weinberg et al., 1994), 

suggest that the high production and response to IL-12 by these mice may be important in 

disease pathogenesis. Treatment of (NZBxNZW)F% mice with anti-IL-12, however, was 

ineffective in preventing the onset or severity of glomerulonephritis (Nakajima et al., 1997).

Th2 cytokines

IL-4 Reduced levels of EL-4 have been found in MRLHpr and (NZBxNZW)F % mice, 

resulting in an increased IFN-y to EL-4 ratio (Shiiai et al., 1995). Interestingly, in contrast 

with the expected paradigm of systemic autoimmunity being causally related to Th2 

response, glomerulonephiitis development was completely abrogated in 

(NZWxC57BL/6.Yaa) Fj mice rendered transgenic for the IL-4 gene under the control of the 

IgH enhancer (Santiago et al., 1997). This protection was retention of IgG anti-DNA 

autoantibodies, but there was a significant reduction in the nephritogenic IgG3 and IgG2a 

isotype. Other studies, in contrast, found that transfer of IL-4 stimulated splenocytes from 5 

month old (NZBxNZW)Fi mice into syngeneic recipients increased the production of IgG 

anti-dsDNA antibodies, and administration of anti-IL-4 before disease onset inhibited this 

production (Nakajima et al., 1997). Moreover, anti-EL-4 treatment alone prevented
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glomerulonephiitis, while anti-IL-12 alone was ineffectual. It is noteworthy that combined 

treatment with both antibodies abrogated the beneficial effect of anti-IL-4 (Nakajima et al., 

1997). Finally, IL-4 gene deletion (Peng et al., 1998) as well as recombinant mouse IL-4R or 

anti-IL-4 mAb treatments (Schorlemmer et al., 1995) led to significantly reduced 

lymphadenopathy and end organ disease in M RL/^r mice.

IL-10 Seinm IL-10 levels are higher in patients with SLE when compared with controls 

(Lacki et al., 1997). This increase is mainly attributable to an increase in IL-10 production by 

monocytes, a subset of B cells and possibly CD4+CD45 RO+ memory T cells. Serum litres 

of IL-10 are positively correlated with anti-ds DNA antibody titres and the SLED AI score 

and negatively correlated with complement C3 levels (Lacki et al., 1997; Houssiau et al., 

1995; Park et al., 1998). IL-10 increases IgG production by PBMCs from patients with SLE 

(Llorente et al., 1994). In healthy conüols, II^IO stimulates B cell proliferation and IgG 

synthesis and this is increased when the cells are activated through CD-40 before stimulation 

(de-Waal-Malefyt et al., 1992).

Reduced autoantibody levels and kidney disease was observed in (NZBxNZW)Fi mice 

treated with an IL-10 inhibiting immuno-modulator (AS 101) (Kalechman et al., 1997), and 

conversely increased Ig and autoantibody production was observed in IL-10 treated 

peripheral blood lymphocytes SLE patients. The inference has been also made that IL-10 

promotes systemic autoimmunity by increasing Fas/FasL mediated apoptosis (Georgescu et 

al., 1997).

IL-6 patients with lupus nephritis were shown to have increased plasma concentrations of 

EL-6 and sEL-6R as compared with normal controls (Tezar et al., 1998). The ratio of IL- 

6/sIL-6R is increased in lupus nephritis, suggesting a raised effective level of IL-6 in SLE
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patients with lupus nephritis. In addition, both IL-6 protein and mRNA have been found in 

52% of kidney biopsy specimens taken from 19 patients with lupus nephritis (Herrera- 

Esparza et al., 1998). IL-6 is detectable in the urine of patients with lupus nephritis and may 

constitute a useful diagnostic marker (Horii et al., 1993).

TNF-ql Several studies have also shown that human lupus is characterised by high serum 

levels of TNF-a and soluble TNF-R that parallel disease activity (Aderka et al., 1993; 

Studnicka-Benke et al., 1996).

Relatively low levels of TNF-a production have been described in some patients with SLE 

(Jacob et al., 1990). Stimulated PBMCs or enriched monocyte populations taken from 

patients with SLE or healthy controls who are DQwl and DR2 positive, produce lower levels 

of TNF-a than DR3 or DR4 positive subjects. There is a strong association between the 

MHC class n  DR2, DQw-1 and/or DR3 alleles and SLE. However, this association may be 

because of linkage disequilibrium with TNF-a alleles as the TNF-a gene lies within the class 

n i region of the major histocompatibility complex. It therefore seems possible that a strong 

TNF-a response is protective against lupus nephritis.

Further supportive evidence for a protective role of TNF-a in SLE was given by 

measurement of increased plasma levels of TNF-a and its soluble receptor TNF-sR2 in 

patients with active lupus nephritis compared with controls (Tezar et al., 1998). The ratio of 

TNF-a to its soluble receptor was decreased in patients compared with healthy controls 

suggesting a lower effective level of TNF-a despite the higher titre.

49



Despite this apparent protective role of TNF-a, 52% of renal biopsy samples from patients 

with lupus nephritis had TNF-a protein deposited along the glomeinli and tubules as 

demonstrated by immunofluorescence (Herrera-Esparza et al., 1998). In situ hybridisation 

and RT-PCR amplification showed local expression of these cytokines in the biopsy 

specimens indicating that they are synthesised in the kidneys of patients with nephritis. This 

finding impficates TNF-a in the pathology of lupus nephritis but in the absence of 

measurements of the level of TNFa-sR it is not possible to determine whether TNF-a exerts 

a proiufiammatory effect.

Transfbrmin Growth Factor-beta (TGF-^) is produced by T cells and NK cells and 

has a powerful inhibitory effect on the in vitro production of 11^6, IL-1 and TNF-a by 

macrophages (Kitamura et al., 1996). TGF-/ also suppresses B lymphocyte secretion of IgG 

(Horwitz et al., 1997; Ohtsuka et al., 1999). Constitutive and stimulated levels of TGF-/ aie 

lower in patients with SLE and this is probably a consequence of the high levels of IL-10 

known to suppress TGF;^ production by NK cells. Addition of TGF-^ and IL-2 to PBMCs 

from SLE patients reverses the upregulated IgG production (Lacki et al., 1997; Ohtsuka et al.,

1999). It therefore seems that the high IgG production seen in patients with SLE is 

attiibutable, in part, to low levels of TGF-^ and inadequate suppression of IgG production.

Male BXSB and MRL/(pr mice show increased levels of TGF-^ (Prud'homme et al., 1995). 

This was shown in MRL/ÿ?r mice to adversely affect host defence against both Gram 

negative and positive bacterial infections (Lowrance et al., 1994). Such findings provide an 

explanation for the increased risk of such infections in SLE patients. Nevertheless, direct 

injections of a TGF-/ cDNA expression vector into the skeletal muscle was reported to 

reduce autoantibody levels in MRL/^r mice (Raz et al., 1995), while infection with a non-
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pathogenic strain of Salmonella typhimurium carrying the TGF-^ gene was without effect 

(Huggins et al., 1999).

From the data discussed the imbalance in the levels of cytokines and their receptors found in 

SLE is clearly crucial to the development of the pathology of the disease. These molecules 

would be expected to exert inhibitory or promoting effects on the initiation and perpetuation 

of systemic lupus erythematosus (SLE). The balance of Thl/Th2 cytokines is related to the 

pathogenesis of SLE (Takhashi et al., 1996; Yoshii et al., 1995). Despite the popular notion 

that a predominant Th2 phenotype is essential for SLE, recent evidence suggests that CD4+ T 

cells involved in SLE might also induce a Thl subset (Takahashi et al., 1996; Reminger et al.,

1996). Thl-derived cytokines are regulated mainly by EL-12 (Heinzel et al., 1993). Previous 

studies in professor Liew's group have shown that 11^12 and nitric oxide (NO) play a role in 

disease pathogenesis in lupus-prone MKLilpr mice (Huang et al., 1996). Studies were thus 

performed to deteimine if IL-12 involved in the pathogenesis of human SLE and lupus-hke 

models with different genetic background from MRh/lpr mice.

IL-18 is a novel cytokine with potent IFN-y inducing activities and plays an important role in 

the Thl-mediated immune response in synergy with IL-12. There is, however, no convincing 

data to show a role of EL-18 in SLE pathogenesis. Therefore, I studied in details the role of 

Thl related cytokines in SLE and in particular to determine if IL-18 plays a significant role in 

the pathogenesis of SLE.
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1.5 Interleukin 18 (IL-18)

Interleukin-18 (EL-18), previously named Interferon-gamma-inducing factor (IGIF), 

was purified and cloned in 1995 from the liver of mice inoculated with Propionibacterium 

acnes and challenged with lipopolysaccharide to induce toxic shock (Okamura et al., 1995; 

Okamura et al., 1998; Dinarello et al., 1997). EL-18 is mainly produced and released by APC 

activated macrophages, Kupffer cells, dendritic cells, Langerhans cells and B cells. This may 

imply that EL-18 acts at the early steps of the immune response and accounts for polarization 

of the immune response. Investigations have revealed that EL-18 mRNA is expressed in a 

wide range of cells including Kupffer cells, macrophages, T cells, B cells, osteoblasts, 

kératinocytes, dendritic cells, astrocytes and microglia (Udagawa, et al., 1997; Stoll et al., 

1997; Okamura et al., 1998).

1.5,1 Biology of IL-18

Pro-IL-18 is cleaved by EL-1 P-converting enzyme (ICE; Caspase 1) to yield an active 

18 kDa glycoprotein (Ghayur et al., 1997), alternate processing by caspase 3 or 4, or 

proteinase 3, is also postulated (Fantuzzi et al., 1999).

EL-18 shares biological properties with IL-12 such as stimulation of IFN-y production, 

enhancement of natural killer (NK) cell cytotoxicity, and stimulation of Thl cell 

differentiation. Despite their functional similarity, IL-18 is not structuially related to IL-12. 

Bazan and colleagues (1996) predicted that murine IGEF would show similarities to IL-1 in 

its three-dimensional structure of P-pleated sheets forming a barrel configuration. Therefore, 

the name of IL-1 y was proposed but, as IGIF does not bind to the type I IL-1-receptor (EL

IRE) or signal through it, the name of IL-18 was adopted.
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Like IL-1, IL-18 is synthesised as an inactive precursor lacking a typical signal peptide and 

pro-IL-18 requires cleavage by IL-IB converting enzyme (ICE, caspase 1) to release an active

18 kDa glycoprotein (Ghayur et al., 1997). ICE-deficient (ICE"/") mice lacking both mature 

IL-18 and IL-IB aie protected against lethal endotoxemia (Fantuzzi et al., 1997). Pro-IL-18 

is produced iu a wide range of cells including Kupffer cells and macrophages. As it has been 

shown that LPS activates ICE (Schuamann et al., 1998). LPS-dependent ICE activation 

might contribute to LPS induction of IL-18 secretion. It shares some of the biological 

activities with IL-12, but without significant structural homology, and serves as a 

costimulatoiy factors in the activation of Thl cells (Takeda et al., 1998). IL-18 has other 

functions in addition to those it shares with IL-12. Treatment of athymic nude mice 

sensitised to P. acnes with anti-IL-18 antibody can prevent LPS-induced hver injury, 

indicating that IL-18 is involved in the pathogenesis of endotoxin-induced liver injury 

(Okamura et al., 1995; Tsutsui et al., 1997). IL-18 up-regulates Fas ligand (FasL) expression 

on NK cells (Tsutsui et al., 1996). These results suggest that hepatic NK cells participate in 

EL-18-induced liver injury as effector cells through the Fas-FasL system. The role of EL-18 m 

LPS-induced liver injury and endotoxic shock in mice primed with P. acnes was examined 

using the IL-18-deficient mice (Sakao et al., 1999). IL-18-deficient mice primed with P. 

acnes showed resistance to LPS-induced liver injury, as expected from the results of the 

experiment with anti-EL-18.

It is noteworthy that 11^12 and EL-18 promptly and synergistically induce naive T cells to

develop into IFN-y producing cells without engaging their antigen receptors (Yoshimoto et

al., 1998). Compared with Thl cells after stimulation with anti-CD3 plus EL-2, in which EL-

18R mRNA was induced transiently, IL-12-sthnulated T cells strongly and continuously

expressed IL-18R mRNA. T cells stimulated with EL-12 plus EL-18 without anti-CD3

produce strikingly IFN-y. The physiological relevance of these IFN-y producing T cells is
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uncertain. As they promptly and strikiugly produce IFN-y in response to IL-12 plus IL-18 

without developing into memory cells, they might play an important role in the innate 

immune response. IFN-y was thought to be produced solely by activated T cells and NK 

cells. Although either IL-12 and IL-18 alone induce low levels of IFN- y mRNA transcripts, 

the combined stimulation of murine bone-marrow-derived macrophages with both cytokines 

leads to the efficient production of IFN-y protein, suggesting a novel pathway of autocrine 

macrophage activation (Munder et al., 1998).

Although IL-18 is involved in Thl cell development, a recent study revealed a strong 

induction of the Th2 cytokine, IL-13 by IL-18 in NK and T cells in synergy with IL-2 

(Hoshino et al., 1999). EL-12 did not enhance the IL-13 production induced by IL-2 alone; 

moreover, in the absence of IFN-y (i.e. IFNy-/- mice), IL-2 plus EL-18-induced IL-13 

expression in purified NK and T cells were greater than that seen in purified cells from 

noimal controls. These results suggest that IFN-y levels may endogenously regulate EL-13 

expression induced by IL-2 plus EL-18 in vivo. When IFN-y is suppressed, EL-18 can be a 

cofactor in the development of the humoral immune response by inducing IL-13. Depending 

upon the cell type, IL-18 might act as strong co-inducer of Thl or Th2 cytokines (Xu et al.,

2000).

1.5.2 IL-18 receptor

IL-18 recognises a heterodimer receptor (IL-18R) comprising unique a ligand- 

binding subunit (EL-lRrp) and non-binding p (ACPL) signalling chains (Akira, 2000). This 

receptor is widely expressed on cells implicated in both innate and specific immune 

responses, and signals through a pathway that involves my8 8 (myeloid differentiation 88),
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IRAK (IL-1 receptor-associated kinase), TRAF6 (Tumor necrosis factor receptor-associated 

factor 6) and NF-k;B (nuclear factor kappa B).

The IL-1 receptor system is composed of two subunits: the IL-IRI and the IL-1 receptor 

accessory protein (IL-lRAcP). Although IL-lRAcP does not bind IL-1 directly, it is 

involved in the formation of a high affinity receptor complex as well as in IL-1 signalling. 

As EL-lRAcP mRNA is constitutively expressed in a variety of cell types, the IL-1 

responsiveness of a given cell is mainly determined by the expression of IL-1 RI (Hoshino et 

al., 1999).

IL-lRrp is essential for IL-18 binding as well as IL-18-mediated functions administration of 

IL-18BP to mice abrogated circulating IFN-y following treatment with LPS. Thus, EL-18BP 

functions as an inhibitor of the early Thl cytokine response (Dinarello's et al., 1997, 2000). 

IL-18-binding protein (IL-18BP), which are distinct from IL-18R, may be present in high 

concentrations in the extiacellular milieu where they can bind to IL-18 with high affinity and 

neutralize its effector function (Kim et al., 2000).

1.5.3 IL-18 expression and function in inflammatory diseases

IL-18 acts in synergy with IL-12 to promote development of T helper 1 (Thl) 

responses. IL-18-deficient mice exhibit impaired Thl responses to intracellular bacteria, 

including Propionibacterium acnes, Mycobacterium bovis and Staphylococcus aureus, as 

well as parasites such as Leishmania major (Wei et al., 1999; Takeda et al., 1998). Such 

responses are further impaired in IL-12/IL-18 double-knockout mice. Similarly, 

neutralization of IL-18 impairs host defence against several infectious species, including 

Cryptococcus, Salmonella and Yersinia (Kawakami et al., 1997, 2000; Bohn et al., 1998). 

The situation in autoimmune models has been less-well characterised. IL-18 mRNA is up-
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regulated in the pancreas of non-obese diabetic (NOD) mice and the murine gene encoding 

IL-18 maps to the IddZ susceptibility locus, suggesting a potential role in Thl-mediated 

autoimmunity. However, IL-18 supplementation in NOD mice retards the clinical onset of 

hyperglycaemia and modifies the transition from Th2 to Thl cytokme mRNA expression in 

pancreatic islets (Rothe et al., 1999). Moreover, IL-18 has also been shown to enhance Th2 

cytokine production, eosinophilia and allergic sensitisation in a ragweed-antigen-induced 

allergy model (Wild et al., 2000)

IL-18 has recently been detected in the synovial compartment of patients with rheumatoid 

arthritis (RA) (Gracie et al., 1999). Whereas IL-18 mRNA was found in both RA and 

osteoarthritis (OA) synovial membranes, IL-18 protein was reproducibly detected by 

histology and ELISA only in RA-derived tissues. IL-18 also induced nitric oxide (NO) 

release by RA synovial membranes in vitro. DBA/1 mice injected with type n  collagen (CEQ 

in incomplete Freund's adjuvant (FA) normally develop only low-grade arthritis. Co- 

administration of recombinant IL-18 induced development of severe, inflammatory, erosive 

arthritis (Leung et al., 2000), and IL-18 deficient DBA mice show less arthritis (Wei et al.,

2001)

Elevated IL-18 expression has also been reported in inflammatory bowel disease, particularly 

Crohn's disease (Pizarro et al., 1999). IL-18 mRNA and protein have been detected in 

mucosal biopsies by RT-PCR, immunochemistry, western blotting and bioactivity assays 

(Monteleone et al., 1999).
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1. 6 Interleukin-12 (IL-12)

Interleukin-12 (EL-12) is a pivotal cytokine in driving the immune system towards a T 

helper (Th)l type response and preventing a Th2 type immune profile. Therefore, IL-12 is 

indispensable in the defence against certain, mainly intracellular pathogens, but 

overproduction of this cytokine is crucially involved in the etiology of several inflammatory 

and autoimmune diseases.

1.6.1 Biology of IL-12

EL-12 was originally identified in the culture supernatants of Epstein-Barr virus 

(EBV)-transformed human B cell lines due to its ability to activate NK cells to produce EFN- 

y, and was initially known as NK cell stimulatory factor (NKSF; Kobayashi et al., 1989; 

Stem et al., 1996). However, it was subsequently found to be produced mainly by phagocytic 

cells (monocytes, macrophages and neutrophils) in response to both Gram negative and 

positive bacteria, bacterial products such as lipopolysaccharide (LPS) and lipoteichoic acid 

(LTA), viruses and intracellular parasites (D'Andiea et al., 1992; Cleveland et al., 1996; 

Kanangat et al., 1996). Bacterial DNA has also been shown to be a potent inducer of IL-12 

(Halpem et al., 1996). Dendritic cells, polymorphonuclear cells and mast cells also produce 

IL-12 (Smith et al., 1994; Cassatella et al., 1995; Celia et al., 1996; Heufler et al., 1996; Kang 

et al., 1996; Koch et al., 1996).

Bioactive IL-12 is a heterodimeric 70 kDa glycoprotein consisting of a 40 kDa subunit and a 

35 kDa subunit linked by disulphide bonds that are essential for the biological activity of EL- 

12. p35 is ubiquitously and constitutively expressed in a variety of cell types, whereas p40 

expression is more restricted and highly inducible. The two subunits of IEv-12 are not related 

to any other known proteins. p40 shows some homology with the extracellular domain of the

57



receptor for IL-6 (Gearing and Cosman, 1991), and p35 appears to be a homologue of IL-6 

(Merberg et al., 1992).

The gene encoding the p40 subunit of IL-12 maps to human chromosome 5q31-q33 iu the 

same region that also harbors other cytokine genes. The gene encoding the p35 subunit of 

IL-12 maps to human chromosome 3pl2-ql3.2. The expression of the two genes is regulated 

independently of each other (Sieburth et al., 1992). The production of p40 exceeds the 

production of p70 by from 10 fold to more than 500 fold depending on the experimental 

system (Wysocka et al., 1995; Snijders et al., 1996; Haskô et al., 1998). Five to forty per cent 

of this is secreted as a homodhner called p(40)2. The p(40)2 homodimer has been shown to 

exert antagonistic activity on the IL-12 receptor in both in vitro (Gilessen et al., 1995; Ling et 

al., 1995) and in vivo (Heinzel et al., 1997; Mattner et al., 1997; Rothe et al., 1997) systems. 

On the other hand, the p(40)2 homodimer stimulates the differentiation of CD8+ T cells with 

type 1 cytokine profile demonstrating agonistic properties (Gateley et al., 1998). The p35 

subunit lacks any biological activity.

The in vivo induction of IL-12 can be either T cell-independent or -dependent. Infection with 

bacteria or intracellular parasites results in rapid IL-12 production by direct stimulation of 

phagocytes; indeed, T cell-deficient SCED mice produce bioactive IL-12 upon infection 

(Gazzinelli et al., 1994; Tripp et al., 1994). However, T cell-dependent mechanisms have 

also been demonstrated IL-12 production occurred in response to presentation of T cell- 

dependent antigens such as OVA via triggering of CD40 molecules on antigen presenting 

cells and was dependent on TCR ligation (DeKruyff et al., 1997; Maïuo et al., 1997). CD40- 

CD40L interaction plays a critical role in bioactive IL-12 production by regulating p40 but 

not p35 mRNA accumulation (Kato et al., 1996).
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IL-12 is a key mediator of innate immunity and is also involved in the establishment of 

adaptive immune responses (reviewed by Trinchieri, 1995). It directs the differentiation of 

helper T cells towards a type 1 phenotype, which is characterised by the production of IFN- y 

and down-regulation of IL-4. IL-12 also stimulates IFN-y production by NK cells, and thus 

establishes a positive feedback loop resulting in enhanced activation of macrophages, 

including stimulation of NO production. This is especially important for the effective 

removal of intracellular pathogens such as Leishmania major (reviewed by Ma et al., 1996). 

Animals treated with neutralising doses of monoclonal antibodies against IL-12 p40, or 

lacking either the IL-12 p40 or p35 gene are highly susceptible to such intracellular 

pathogens (Biron and Gazzinelli, 1995; Trinchieri and Scott, 1995).

IL-12 is involved probably also in the selection of immunoglobulin isotypes. At picomolar 

concentrations IL-12 markedly inhibits the synthesis of IgE by peripheral blood mononuclear 

cells stimulated with IL-4 also in the presence of antibodies directed against IFN-gamma.

Both subunits must be co-expressed in the same cell to generate bioactive heterodimer and 

since p35 is constitutively-expressed in a variety of cell types, it was originally assumed that 

p70 generation was mainly controlled at the level of p40 transcription. However, there is 

now much evidence of regulation of p35 transcripts (Hayes et al., 1995; Snijders et al., 1996; 

Aste-Amezaga et al., 1998; Kincy-Cain and Bost, 1997), and it is therefore more likely that 

p35 is the limiting subunit. Indeed, the formation of antagonistic p402 may predominate 

even under optimal conditions (Hayes et al., 1995; Snijders et al., 1996) and it has therefore 

been suggested that a temporal balance between p402 and bioactive p70 determines the IL-12 

response (Schultze et al., 1999).
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Several cytokines have activatory or suppressive effects on the stimulation of IL-12 

production by phagocytic cells. While IFN-y and GM-CSF enhance IL-12 (Cassatella et al., 

1995; Kubin et al., 1994; D’Andrea et al., 1993), IL-10, IL-4, IL-13 and TGF- P inhibit IL-12 

production by suppressing both p40 and p35 accumulation (Kubin et al., 1994; D'Andrea et 

al., 1995).

1.6.2 IL-12 receptor

IL-12 exerts its effects by binding to specific cell surface receptors on its target cells. 

The high affinity IL-12 receptor is formed by the co-expression of two sub-units, the IL- 

12RB1 (Chua et al., 1994) and IL-12RB2 (Presky et al., 1996). While both the IL-12RB1 and 

EL-12Ri52 are responsible for providing the binding energy, the IL-12RB2 is essential for 

signal transduction (Gately et al., 1998). The expression of IL-12RB2 appears to be confined 

to Thl cells (Rogge et al., 1997; Szabo et al., 1997), which may provide a selective 

therapeutic target for altering the Thl/Th2 balance in immuno-pathological conditions. 

Similar to the production of IL-12, the expression of both IL-12RB1 and IL-12RB2 is 

regulated by cytokines. While IL-2, IL-7, IL-15 and IFN-y enhance IL-12 receptor 

expression, IL-4, IL-10 and TGF-B down-regulate IL-12 receptors and IL-12 responsiveness 

(Gollob et al., 1997; Rogge et al., 1997; Szabo et al., 1997; Wu et al., 1997; Himmelreich et 

al., 1998).

1.6.3 Clinical function of IL-12

IL-12 has been shown to be directly and prominently involved in the induction of the 

pathophysiology of several autoimmune diseases including multiple sclerosis (Leonard et al.,

1995), inflammatory bowel disease (Neurath et al., 1995), insulin dependent diabetes mellitus 

(Trembleau et al., 1995), glomerulonephritis (Kitching et al., 1999), systemic lupus 

erythematosus (Huang et al., 1996), and rheumatoid aithritis (Germann et al., 1995). The
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overproduction of IL-12 is also an important pathogenetic factor in inflammatoiy states such 

as septic shock (Wysocka et al., 1995) and the generalized Shwartzman reaction (Ozmen et 

al., 1994). Furthermore, a potential role for IL-12 was suggested in the promotion and 

maintenance of inflammation in atherosclerotic or psoriatic lesions (Uyemura et al., 1996; 

Yawalkar et al., 1998).

In contrast to the immunopathological role of over-expression of IL-12 in Thl driven 

responses, EL-12 deficiency can contribute to an overactive Th2 type immune phenotype. 

This was best shown by the fact that IL-12 treatment reversed the airway hyper

responsiveness and decreased IL-4 and IL-5 expression in a murine model of asthma, a

disease associated with a hyperreactive Th2 immune response (Gavett et al., 1995). EL-12
»

deficiency has been associated with tumour growth, while this cytokine has been successfully 

administered in-patients with cancer (Lotze et al., 1996). Finally, treatment with IL-12 has 

been proposed for controlling viral infections such as chronic hepatitis or AIDS (Gately, 

1997).
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1.7 Aims of the thesis

The aim of the study was to investigate the mechanisms of immune regulation, particularly 

the roles of cytokine disorders, in the development of lupus disease. The study included both 

in vitro (Chapter 3 and Chapter 4) and in vivo (Chapter 5 and 6) approaches based on two 

muiine models of SLE and human SLE samples.

The immunopathological processes in SLE resemble an ongoing immune response. 

Components of humoral and cell mediated arms of the immune system are represented in the 

immunopathological process in SLE although their relative contributions remain 

controversial. Regardless of whether these process are primary, or secondary to an 

unidentified insult, evidence firom animal and human studies indicates that Thl and Th2 

regulatory cytokines play prominent role in pathogenicity of SLE. Thl regulatory cytokines 

are of particular" interest to the author and the main aims of study were:

1) To investigate IL-12 and NO production in (NZB/W)F1 lupus-like mice and their

levels in human SLE Blood samples and to determine their relation with disease

development.

2) In vitro study to investigate whether there was any association between IL-18 and

SLE in human and lupus-like models.

3) In vivo studies to examine the role of IL-18 in the development of systemic

autoimmune disease in MRL//pr mice.
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Chapter 2 

Material and Methods
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2.1 Patients and samples

Samples were collected from SLE patients attending the Centre for Rheumatic 

Diseases, Glasgow Royal Infumary, the Rheumatology Department, Gartnavel 

General Hospital, the Connective Tissue Diseases Clinic, Glasgow Royal Infirmary 

and the Department of Rheumatology, Nottingham Hospital. Kidney and skin 

pathology sections for immrmohistochemical studies were obtained fi"om Dr. George 

Lindop (the Pathology Department, Glasgow Western Infirmary).

SLE patients satisfied the American College of Rheumatology diagnostic criteria 

(Arnett et al., 1988; Tan et al., 1982). Clinical data were obtained from the case 

record and included age, gender, family history, medical past history, disease 

dur ation, laboratory tests, drug therapy and concurrent disease.

2.2 Ethical consideration

Blood samples were collected only when clinically indicated, and informed 

consent was obtained from patients prior to research commencing. All animal 

experiments were performed under project licences provided following UK Home 

Office review and were used only to address questions not amenable to in vitro study 

of human diseases. Experimentation was performed under Project Licence 60/12045, 

procedure 1 and Project Licence 60/1311, procedure 5.

2.3 Reagents / buffers

The source of reagents either purchased or donated is given in the text and 

tables. Details of preparation of buffers and reagents, where appropriate, are 

contained in Appendix I.
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2.4 Plasma and serum samples

2.4.1 Human plasma and serum

SLE plasma and sera were obtained from blood samples taken from diagnosed 

SLE patients. Normal human plasma and sera were collected from healthy donors 

through provided by the Blood Transfusion Unit, Western Infirmaiy, Glasgow.

2.4.2 Mouse sera

Blood samples were taken from all experimental mouse models including 

lupus strains, MRL/lpr-lpr, NZB/NZW mice and MRL/++ with BALB/c mice as 

controls. Mice were bled by aorta artery puncture, or tail bleeding before removing 

the spleen.

All seium and plasma samples were kept at -70°C before assaying. Plasma samples 

were supplied in the presence of anticoagulant either Potassium EDTA (BS 4851 

sample container) or heparin (101.U./ml).

2.5 Tissue sections

Freshly isolated mouse kidneys, livers, joints, skin, lymph nodes and spleen 

were sliced and processed as follow for histological and hnmunocytochemical 

examinations:

2.5.1 Frozen section

Blocks of tissue were snap-frozen in liquid nitrogen and kept at -70 °C. 

Before each assay, 5 pm sections were cut from the frozen tissue, mounted on 

washed plain glass slides, and kept at -70 °C.
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2.5.2 Paraffin-embedded tissue

Blocks of tissues were fixed in neutral buffered formalin. After being 

embedded in paraffin wax, 4 pm sections were cut and mounted on washed plain 

glass slides.

2.6 Cell culture

All culture media and supplements were supplied from Gibco BRL (Paisley, 

Scotland, UK). RPMI was supplemented with 100 I.U./ml penicillin, 100 pg/ml 

stieptomycin, 2 mM L-glutamine (complete RPMI) and heat inactivated foetal bovine 

serum (FBS 10%). Dulbecco's modified Eagle medium was supplemented with 

penicillin, stieptomycin, L-glutamine and FBS as above. Iscove's modified 

Dulbecco’s medium was supplemented with L-glutamin, penicillin and streptomycin 

and was used for whole blood culture. FBS was mycoplasma fi”ee and heat 

inactivated at 56°C for 30 minutes in a water bath and then stored in 50 ml aliquots at 

-20°C. Cell viability was deteimined by Trypan-blue exclusion assay, using, 0.1% 

Trypan-blue (Sigma) and 0.1% acetic acid (BDH Lab. supplies, Leicestershire, UK). 

Cells were counted directly using a Neubauer haemocytometer (Weber Scientific 

International Ltd, UK) on a Nikon Labphot microscope. Cell cultures were 

performed at 37°C in a humidified incubator with 5% C02.

2.6.1 Peripheral blood mononuclear cell preparation (PBMC)

Mononuclear cell populations were obtained by density gradient 

centrifugation. Venous blood was collected into heparinised sterilised universals (10 

I.U./ml preservative jfree heparin, Leo laboratories Ltd, Bucks, UK) and was diluted 

1:2 in complete Dulbecco’s MEM. The diluted blood (5 ml) was layered over an 

equal volume of Lymphoprep (Nycomed Pharma, Oslo, Norway) in a 13 ml conical 

tube and spun at 500 x g for 30 minutes at 22 °C. The mononuclear layer was 

collected and washed three times in PBS before adjustment to the required cell
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concentiation. Cellular percentage in PBMC was assessed by FACS analysis (section 

2 .10).

2.6.2 Whole blood cell culture

Blood was withdrawn, heparinised (10 I.U./ml) and immediately diluted 1:5 

in complete Iscove’s medium. After the addition of phytohaemagglutinin (PHA, 1 

fxg/ml), LPS (3 pg/ml), recombinant human-IFNy (10 ng/ml), rh-IL-12 (10 ng/ml), or 

rh-IL-18 (20 ng/ml) to the diluted blood, duplicate cultures (500 pi each) were set up 

in 24-well culture plates and incubated for 24, 48 and 72 hours. Supernatants were 

collected and stored at -20 °C until assayed for cytokine and nitric oxide 

concentration.

2.6.3 Proliferation and cytokine production by human cells

Proliferation assays were performed in triplicate in complete RPMI and 10% 

FBS. PBMC (1x10^ in 100 pi) were incubated in U-bottom 96 well culture plates

(Nunclon micro well, Nunc, Denmark) for 24, 48 and 72 hours. Stimulatory reagents 

or medium alone were added in a further 100 pi at twice the desired final 

concentration, 30 minutes after seeding the cells to culture plates. ^H-thymidine 

(Amersham Life Science, LHK), 1 pCi in 25 pi complete RPMI containing 10% FBS 

was added to each well during the final 8 hours of culture before harvesting onto a 

glass fibre filter (Packard, CT, USA) using a Micromate 196 Haivester (Packard). 

Proliferation was expressed as a stimulation index derived as follows: SI= (mean 

counts per minute test culture) / (mean counts per minute medium alone).

Parallel cultures were performed in 24 well plates for analysis of the PBMC and 

whole blood cytokine production following stimulation. Culture supernatants were 

fr ozen at -70 °C for cytokine concentration by ELISA. Reagents used for stimulation 

included phytohaemagglutinin (PHA, Mmex, Diagnostics Ltd, UK), human 

recombinant interleukin-gamma (IFNy, a gift from Dr. Adolf, Vienna),
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lipopolysaccaiide (LPS, Salmonella enteritidis. Sigma, LFK), and recombinant 

interleukin-12 (Lnmunex, USA), recombinant interleukin-18 (rh-IL-18, PeproTech, 

UK).

2.6.4 Murine spleen cell and peritoneal cell preparation

Mouse spleens were aseptically removed and immersed in 20 ml serum-free 

RPMI, then weighed, cut into fragments in 10-cm Petri dish (Sterlin, Middlesex, UK) 

and then forced thiough a sterile tea stiainer, using a rubber plunge of a 10 ml 

syringe. The cell suspension was washed three times in complete RPMI medium, 

passed through Nytex membrane to remove cell debris and clumps. After one more 

wash, the cell pellet was re-suspended in 10 ml RPMI-1640 containing 10% FBS. 

Cell viability was determined by the Trypan-blue exclusion assay (Section 2.6).

To prepare peritoneal cells, mice were injected into the peritoneum with 5 ml RPMI 

medium supplemented with penicillin and stieptomycin, and cells removed by 

peritoneum washing. The ceU suspension was washed two times m complete RPMI 

medium, passed through a Nytex membrane to remove debris and clumps and washed 

once more before re-suspending in 10 ml RPMI-1640 containing 10% FBS. Cell 

viability and counting was deteimined as previously mentioned (Section 2.6). The 

normal peritoneal cell population is composed of about 50% macrophages. To pmify 

the macrophages further, the cell suspension was placed into a 75 cm^ flask (Costar) 

and incubated for 1.5 hours at 37 “C. Non-adherent cells were discarded and the 

adherent cells were detached with cold PBS. After washing once with complete 

RPMI the pellet was re-suspended in 10 ml RPMI-1640 containing 10% FBS and 

used in the required concentration after counting and determining their viability.

2.6.5 Murine spleen cell and peritoneal cell activation

Proliferation assays for spleen cells were performed in triplicate in U-bottom 

96 well culture plates (Nunclon) at 1x10^ cells/ml in 100 \il complete RPMI with

68



10% FBS. Stimuli were added in 100 \xl giving a final culture volume of 200 gl. 

Stimuli included 0.1 to 10 gg/ml concanavalin A (Sigma) as positive control. 1 irCi 

of ^H-thymidine was added during the final 6 hours of culture and plates were 

harvested as described in section 2.6.3. Cytokine production by spleen cells was 

measured by incubating 4x10^ cells in 1 ml of complete RPMI, and 10% FBS for 

various times in 48-well culture plates, in the presence or absence of stimuli. 

Supernatants were frozen at -20'’C before being assayed for cytokine production. 

Stimuli included lipoplysaccharide (LPS, 100 ng/ml) and recombinant IFNy (50 

U/ml) for peritoneal macrophages or concanavalin A (ConA, 2.5 gg/ml) for T-cell 

activation.

To measm e cytokine production by spleen cells in some of the experiments, anti-CD3 

pre-coated plates were used. Mouse anti-CD3 (150 jal, 4 gg/ml, Pharmingen), in 

phosphate buffer saline (PBS, pH 7.3) was applied to 24-well plates (Nunc) and 

incubated at 37°C for 2 hours. These were washed twice with cold PBS and then 

dried rmder sterile conditions. Spleen cells (2x10^ cell/ml in 1 ml complete RPMI 

with 10% FBS) were added to each well and after 30 minutes were stimulated with 

rm-IL-18, or rm-IL-12. Supernatant were collected after 24, 48, 72 hours and frozen 

at -20°C before being assayed for cytokine concentr ation.

2.7 Immunohistochemistry

Tissue from SLE patients rmdergoing renal biopsy and renal transplant 

rejected was collected from Pathology Department of Glasgow Western hrfkmary. 

Kidneys from lupus-like mice and the normal controls were dissected immediately 

after sacrificing, placed in mormting medium (Cryo-M-Bed, Bright Instrument 

Company Ltd, Cambs) and snap frozen in liquid nitrogen. Samples were then stored 

at -70“C rmtil required.
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Glass microscope slides were soaked overnight in 2% (v/v) Decon 90 (Decon Labs 

Ltd, UK), then rinsed in tap water for 3 horns before air drying. Slides were dipped 

in 2% (v/v) silane (3-aminopropyltriethoxysilane, Sigma) in acetone for 4 minutes, 

rinsed in mnning tap water for 6 minutes and then ah' dried. 4-6 |im frozen sections 

of tissues were cut onto the silane coated slides at -20 °C using either a Bright 5030 

Microtome or a Leica CM1800 cryostat and immediately fixed by immersion in 

acetone (BDH Lab Supplies, Poole, UK) at 4°C for 15 minutes. Sections were then 

air dried for 10 minutes and stored at -20 °C in an air / moisture tight container until 

required.

The primary, secondary and negative control antibodies used are detailed in tables 2.1 

(page 84).

2.7.1 Peroxidase staining

Both formalin-fixed and frozen sections were used for immunohistochemical 

examination. Details of the panel of antibodies used are given in Table 2.1. 

Formalin-fixed sections were passed through graded concentration of alcohol to PBS, 

whilst frozen sections were re-hydrated in PBS for 10 minutes. Endogenous 

peroxidase activity was blocked by incubation with hydrogen peroxidase 0.5% (v/v) 

in 50% (v/v) methanol for 30 minutes [formalin-fixed sections were then either 

microwaved in citrate buffer (pH 6.0, 10 mM) for 9 minutes (with a 650 W 

microwave), or incubated with 0.1% (w/v) trypsin solution pH 7.8 for 30 minutes] to 

enhance antigen retrieval. Both frozen and formalin-fixed sections were then 

incubated for 30 minutes with 5% (v/v) rabbit or goat serum (depending on 

secondary antibody) to reduce non-specific background binding. The sections were 

then incubated sequentially with primary antibody, secondai’y antibody, and (for 

biotynilated secondary antibodies) streptavidin-biotin horseradish peroxidase 

complexes (StreptABC, DAKO, UK) were then perfoimed. All incubations were 

made at room temperature for 1 hour, except for monoclonal antibodies (ovei'night at
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4°C) and SfreptABC (30 minutes at room temperature). Sections were then washed 

thiee times in PBS between each incubation stage. All dilutions were made in PBS, 

and primary and secondaiy antibodies (with the exception of those specific for the 

immunoglobulin classes) were pre-incubated by appropriate dilutions of 5 % (v/v) 

goat serum. Binding was visualised by the addition of 3,3’-diamhiobenzidme 

tetrahydrochloiide 0.05% (w/v) and hydi’ogen peroxidase 0.01% (v/v) in PBS and 

sections were counter-stained with Mayer's haematoxylin.

2.7.2 immunofluorescence staining

Frozen sections or dewaxed paraffin sections were rinsed in PBS for 10 

minutes, and treated with pontamine sky blue 0.5% (w/v) in PBS (pH 7.4) for 20 

minutes which stains the elastic tissue red and diminishes background. This was 

washed off by flooding with PBS. To reduce non-specific reaction, sections were 

blocked with 2% (w/v) BSA in PBS. Excess BSA was drained off, and the sections 

were incubated with detecting antibodies at a 1:50 dilution in 2% BS A/PBS, for 30 

minutes for firozen sections, or 1 hour for paraffin sections, in a full humidity 

environment at room temperature. To detect immune complexes, a FITC-conjugated 

goat anti-mouse IgG (Vector Lab.) was used to detect autoantibody binding. To 

assess autofluorescene and non-specific staining, sections which were incubated with 

diluent alone or with normal goat serum were included as negative controls. Sections 

were washed in PBS after each antibody incubation.

2.7.3 Tunel staining

DNA jfragmentation of skin biopsy specimens m paraffin section were 

examined by TUNEL staining according to manufacture’s instruction (TdT-

FragEL™, Oncogene). In this assay terminal deoxynucleotidyl transferase (TdT) 

binds to exposed 3’-OH ends of DNA fragments generated in response to apoptotic 

signals and catalyses the addition of biotin-labelled and unlabeled deoxynucleotides. 

Biotinylated nucleotides are detected using a streptavidin-horseradish peroxidase
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(HRP) conjugate. Diaminobenzidine reacts with the labelled sample to generate an 

insoluble colouied substrate at the site of DNA fragmentation. Counter-staining with 

methyl green aids in the morphological evaluation and characterisation of noimal and 

apoptotic cells. Briefly, after deparaffinization and rehydration by xylene and 

ethanol, the slides were rinsed with 1 x TBS. The specimen was permeabilised with 

proteinase K and endogenous peroxidase was inactivated with 3% H2O2 in methanol 

at room temperature for 5 minutes. Slides were rinsed with 1 x TBS and covered

with 100 pi of 1 X TdT Equilibration Buffer at room temperature for 10 to 30

minutes. After blotting the IxTdT Equilibrqtion Buffer from specimen, 60 pi of TdT 

labelling reaction mixture was immediately applied onto each specimen and

incubated in a humidified chamber at 37°C for 1.5 hours. Slides were rinsed with 1 x 

TBS and labelling reaction stopped with 5 minutes incubation at room temperature 

with stop solution. After rinsing the slides the specimen was blocked with blocking

buffer for 10 minutes. Then 100 pi of conjugate applied for 30 minutes at room 

temperature. After rinsing with 1 x TBS the entire specimen was covered with 100 

pi of DAB solution for 10-15 minutes and then the slides were rinsed with (IH2O.

Immediately, the entire specimen was covered with methyl counterstain solution and 

incubated at room temperature for 3 minutes. Then slides were dipped 2-4 times into 

100% ethanol and after blotting on an absorbing towel, the slides were dipped 2-4 

times into xylene and then mounted. Tonsil stained with TdT-FragEL™ DNA 

Fragmentation Detection Kit was used as a positive control, and the negative control 

was fi'om IE-18 treated group skin lesion which was kept in Ix reaction buffer during 

the labelling step and other steps performed as described.
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2.8 The measurement of nitric oxide (NO)

The level of nitric oxide in the serum and culture supernatants was estimated

by the Griess reaction, which measures the level of nitrite (NO2") which is the 

oxidative products of NO (Archer, 1993).

2.8.1 Griess reaction

Griess reaction is an assay to measure the level of nitrite (Green et al., 1982; 

Ding et al., 1998). The Griess solution consists of; 0.1% naphtylene diamine 

dihydi’ochloride in distilled water (Solution A) and 1% sulphanilamide (Sigma) in 

5% (v/v) phosphoric acid (Sigma) (solution B). Both the stock solutions A and B

were stored in the dark at 4°C for up to 2 months. The Griess solution was prepared 

by mixing an equal volume of solution A and B immediately before use. A sodium 

nitrite stock solution (Sigma) was used as a standard to detennine nitrite 

concentration, which is equivalent to NO production. The assay was performed in 

triplicate. An equal volume of the Griess solution was added to the test samples or 

standard dilution of sodium nitrite in identical medium in a 96-well flat bottomed 

plate . The plate was incubated for 10 minutes at room temperature in the dark, and 

thereafter, the coloiimetric reaction was measured at 570 nm (reference filter at 630 

nm) in an MRX microplate reader (Dynex Technology, Chantilly, USA).

2.8.2 Nitrite / Nitrate level in the serum and fluid bodies 

2.8.2a Chemiluminescent assay

NO has a very short half-life in the serum or plasma and is rapidly converted 

to nitrate (NO3"). To measure serum NO levels, a conversion of nitrate to nitrite by

nitrate reductase was first caiiied out. However, the presence of high protein 

concentrations in serum and body fluids leads to the interference with colorimetric 

assessment. Therefore, a chemiluminescent assay for nitrite was also used (Aoki, 

1990; Palmer et al., 1987). To convert serum nitrate to nitrite 25 pi of the serum
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sample was incubated with an equal volume of reaction buffer containing 5 mg/ml 

NADPH (Sigma), 41.5 mg/ml FAD (Sigma), 0.5 M KH2PO4 and 35 mg/ml of

nitiate reductase (Sigma) which are prepared immediately before using. The 

conversion was carried out at 37 °C for 1 hour in a 96-well bottomed flat plate. 

Nitrate and nitrite standards were also run in the same time. A Disbi 

Chemiluminescence NO analyser (Model 2107) was used to measure NO 

concentration in the serum samples. A reflux reaction was created by continuously 

boiling 75 ml glacial acetic acid (BDH) with 25 ml 6 % (w/v) sodium iodide (BDH) 

in a 250 ml Pyrex reaction flask, through which was passed a low flow of nitrogen 

gas. Fifty or 75 pi of converted test samples, or standard nitrite solution prepared as 

above, was injected directly into the reaction flask using a Hamilton syringe (Sigma). 

NO2" in the sample is immediately reduced to NO", which is cairied in gaseous phase

thiough a condenser and a cold trap, created with a glass U-tube surrounded by “dry 

ice” to remove acetic acid vapour, and on to a chemiluminescence NO analyser 

(Disbi Environmental Corporation, Japan). NO reacts with ozone causing 

photoemission which may be detected and converted to a digital readout. The 

photomultiplier signal is proportional to the nitrite concentration in the original 

sample, allowing the generation of a standard curve and estimation of nitrite 

concentration in test samples. Standard curves for sodium nitrite and sodium nitrate 

were included in the reductase reaction to provide a control for the efficiency of the 

reduction. This was calculated for the conversion of 100 pM sodium nitrate to 

sodium nitrite as shown below and was routinely >75%.

% reduction nitrate = (ppb nitrite / ppb nitrate) x 100 

All standard and test samples were assayed in triplicate and calculated for the mean 

and standard deviation.

2.8.2b NO measurement in the serum by modified Griess reaction

To measure total NO in the biological fluids in an easier and faster way a 

modified Griess reaction was developed (Moshage et al., 1995). All serum samples
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were diluted in PBS (optimum dilution 1:4) and assayed m 96-well microplate. 

NaN02 and NaNOg standards were used (diluted 1:4 starting with 200 pM). The

conversion of nitrate to nitrite was carried out by the addition of NADPH (Sigma, N- 

7505), FAD (Sigma; F-6625) and nitrate reductase (Sigma, N-7265) to the serum 

samples and standards to yield final concentrations of 50 pM, 5 pM and 200 pM 

respectively. After one hour' incubation at 37 °C, Lactase dehydrogenase (final 

concentration of 10 mg/ml) from rabbit muscle (Boehringer Mannhiem) and sodium 

pyruvate (10 mM) were added and further incubated for 5 minutes at 37 °C to stop the 

conversion and to remove NADPH. Zinc sulphate (final concentration of 15 g/ml) 

was added to deproteinize the sei'um samples. After 20 minutes centrifugation at 600 

X g the supernatant from each (80 pi) was transferred into an hnmulon 2  plate 

(Dynatech) and equal volumes of Griess reagents were added. After 10 minutes of 

colour development at room temperature, the absorbance was measured at 570 nm.

2.9 Enzyme linked immunosorbent assay (ELISA)

2.9.1 General ELISA protocol

96-well ELISA plates (Immunol 4, Dynatech Laboratories, Chantilly, USA) were 

coated overnight at 4°C with capture antibody or recombinant protein at 2-4 pg/ml in 

0.1 M bicarbonate coating buffer (pH 8.3). Plates were then washed twice with 

PBS/0.05% (v/v) Tween 20 (PBS/Tween) and blocked by adding 200 pl/well 10% 

FBS/PBS for 2 hours at 37°C. The plates were then washed twice as before and 

standard and samples were added at graded dilution or concentrations. After 

incubation at 37°C for 2 hours, the plates were washed four times with PBS/Tween 

and then the detecting antibody was added at the appropriate dilution, either 

recommended by the manufacturer or determined experimentally. After incubation 

for 2 hours at room temperature, the plates were washed six times with PBS/Tween. 

For HRP-conjugated detecting antibodies, 50 pl/well TMB microwell peroxidase 

substrate (Kirkegaard & Perry Laboratories, MA, USA) was added and the optical 

density measured at 630 nm. For biotinylated detecting antibodies, 50 pl/well
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peroxidase-conjugated extravidin (1:2000 Sigma, USA) was added for 30 minutes at 

room temperature and the plate was then washed six times with PBS/Tween prior to 

adding TMB substrate. Where indicated, secondary detecting antibodies were used.

2.9.2 Cytokine ELISA

Murine TNFa, IFNy, IL-4, IL-6 , IL-5 and XL-10 were assayed using paired 

antibodies (Phai’Mingen, San Diego, CA) according to the manufacturer's 

instructions. Lower limits of detection were as follows: IL-4, IL-6 , and TNF a  

were all at 10 pg/ml; IL-10 was at 50 pg/ml; and EFNy was at 30 pg/ml. Briefly, 

capturing antibody (2-4 pg/ml) was diluted in carbonate-bicarbonate buffer (pH 8.2) 

and coated on a 96-well Dynatech micro-ELISA plate (Immunol 4) oveinight at 4 °C. 

After coating, the plates were washed three times with PBS containing 0.05% (v/v) 

Tween-20 (PBS-Tween) and blotted dry. Remaining binding sites on the plates were 

blocked by adding 200 pl/well of 1% BSA/PBS and 10% FBS- Tween and incubated 

at 37°C for 2 hour. Following two washes with PBS-Tween, a wide range of 

concentration standard and samples was added, and incubated for 3 hours. The plates 

were then rinsed three times followed by a 1 hour incubation at room temperature 

with detecting antibody (3-4 pg/ml). Bound total IgG was detected with HRP- 

conjugated goat anti-mouse IgG (Genzyme). IgGl and IgG2a were detected with 

biotin-conjugated anti-mouse IgGl and IgG2a (PharMingen) respectively, and 

developed as described above in section 2.9.1. Plates were read at 630 nm.

2.9.3 Antibodies against ds-DNA measurement by ELISA

This was carried out using a modification of previously described method 

(Luzuy et al., 1986). Briefly, Immunol 2 Flat-bottom plates (Dynatech, Alexandria, 

USA) were fiist coated with poly-L-lysine (sigma, 20 pg/ml in PBS), 1.5 hours at 

37°C. After washing with PBS/0.05% Tween 20 , plates were coated with 10 pg/ml 

of Calf thymus DNA (Sigma) in PBS and incubated over night at 4 C. Plates were 

then washed twice with PBS/0.05% (v/v) Tween 20 (PBS/Tween) and blocked by
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adding 200 pl/well 1%BSA/PBS for 1.5 hows at room temperatwe to block 

remaining binding sights on the plates. The plates were then washed twice as before 

and 100 pi of serum samples (started at 1/100  dilution) or culture supernatant were 

serially diluted and added to the plates and incubated for 1.5 hours at room 

temperature. After washing, total Immunoglobulin (Ig) bound was measured by 

adding HRP-conjugated goat anti-mouse Ig (Dako). IgG, IgGl and IgG2a isotypes 

were measured using HRP-conjugated goat anti-mouse IgG (Sigma) or anti-IgGl and 

anti-IgG2a (PharMingen). Secondary antibodies were used at a dilution of 1/3000 in 

0.5% BSA in PBS . After 1 how incubation at room temperatwe, the wells were 

washed and substrate solution added. Results are expressed in U/ml in reference to a 

standard curve obtained with human ds-DNA and a reference standard of pooled sera 

fi’om 20 weeks old MRL-^r mice. Although this method detected predominantly 

anti-dsDNA antibodies, it may also detect low levels of ss-DNA antibodies. ds-DNA 

for antigen coating was prepared by SI nuclease digestion and phenol extraction 

(Sambrook et al., 1989).

2.10 FACS analysis Human cell subset analysis

Double immunofluorescence staining of peripheral blood lymphocytes, was 

performed by FACS analysis. Samples blood (100 pi) placed in a 12 x 75 mm 

polyprolyne tube (Falcon 2052, Becton Dickinson, UK). Primary antibodies 

employed were as follows: CD3 (FITC and PE), CD16 (PE), CD20 (FITC), CD4 

(FITC), CD8 (PE) (all Becton Dickinson). Primary antibody (10 pi) were added to 

the cells for 30 minutes at 4“C. Negative control piimaiy antibodies (IgGl FITC, 

IgGl PE; DAKO) of appropriate isotype and conjugates were added to parallel tubes 

and were similarly processed. FACS^ Brand Lysmg Solution (2 ml) was added (1:10 

dilution of commercial stock contained 5% diethylene glycol, 1.5% (v/v) 

formaldehyde; Becton Dickinson, UK), the tubes were vortexed for 5 seconds and 

then the cells were incubated for 10 minutes at room temperatwe in the dark to 

facilitate erythrocyte lysis. Leukocytes were recovered by spinning at 300 x g for 5
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minutes, then washed with 5 ml FACS Flow (Becton Dickinson, UK) at 200 x g for 5 

minutes. Cells were re-suspended in 200 pi FACSFlow and analysed on a FACScan 

(Becton Dickinson). Gates were set for lymphocytes and monocytes using fomard 

and side light scatter parameters. The percentage of FITC or PE positive cells, or of 

double labelled cells, were generated for lymphocytes within this region using Lysis 

n  software (Becton Dickinson, UK).

2.11 RT-PCR for mRNA expression in spleen cells and PBMC

Mouse spleen cells were prepared as described previously (2.6.4). Spleen 

cells and kidney cells from each of the treated groups of mice were pooled and 

immediately re-suspended in 800 pi RNAzoB^ (Biogenesis, Bournemouth, UK) 

before being stored at -70 °C. PMBC and whole blood cells from SLE patients and 

from normal control were immediately, after receiving, re-sespunded in 800 pi 

RNAzol prior to storage at -70 °C.

2,11.1 RNA extraction

Total mRNA was extracted using RNAzoB^ (Biogenesis) as described 

(Chomczynski & Sacchi, 1987). The cell pellet was re-suspended in RNAzol. To 

each tube 1/10 volume of chloroform (Sigma) was added and the sample vortexed 

vigorously for 15 seconds before being incubated on ice for 5 minutes. This was 

followed by centriftigation at 12,000 x g for 15 minutes at 4 °C. The colourless upper 

aqueous phase was added to an equal volume of isopropanol (Sigma) and incubated 

at 4°C for 15 minutes. After centrifugation at 12,000 x g for 20 minutes at 4 °C, RNA 

precipitates formed a pellet at the bottom of the tube. The supernatant was removed 

and the pellet was re-suspended in 800 pi ice-cold 75% ethanol, centrifuged at 12,000 

X g for 8 minutes, dried under vacuum for 10 minutes and then re-suspended in 20 pi 

of ice-cold TE buffer (10 mM Tris.Hcl, 1 mM EDTA, pH 7). RNA concentiation 

was determined by its optical density at 260 nm and 280 nm (Sambrook et al., 1989) 

and calculated as follow:
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RNA (pg/ml) = [(62 x OD260) “ (36 x OD2go)] x dilution factor

2.11.2 mRNA reverse transcription

cDNA was synthesised by reverse transcription. RNA (2 pg) in 8.5 pi was 

heated to 90°C for 5 minutes and quickly chilled on ice to break up secondaiy 

stiuctures and added to the following mixture: 0.5 pi 40 I.U./pl RNasinR RNase 

inhibitor (Promega), 2 pi containing 0.5 pg random primers (Promega), 4 pi 5 x RT 

buffer (375 mM KCl, 15 mM MgCl2, 250 mM Tris-HCl, pH 8.3), 2 pi 10 mM dNTP

(Promega), 2 pi 10 mM DTT (Promega) and 1 pi containing 200 units Moloney 

mmine leukaemia virus reverse transcriptase (Gibco BRL). Samples were then 

mixed and centrifuged for 1 minute at 7500 x g before incubation at room 

temperature for 5-10 minutes. The samples were incubated at 37 °C for 1 hour, and 

the reaction stopped by heating at 75 "C for 10 minutes then cooled quickly on ice.

2.11.3 cDNA Polymerase Chain Reaction (PCR)

cDNA (2 pi) was amplified in a 0.5 ml microtube in a reaction mix containing 

0.2-0.3 pM of upstream and downstream specific primers, 10 pi 10 x reaction buffer 

(500 mM KCl, 15 mM MgCl2, 0.01% gelatine, 100 mM Tris-HCl pH 8.3), 4 pi

containing 40 pM dNTP (Promega), and made up to 99.5 pi with water. This mixture 

was heated to 95*’C for 5 minutes, cooled on ice before addition of 0.5 pi Taq DNA 

polymerase (Promega) and overlaid with 50 pi mineral oil (Sigma) to prevent 

evaporation during thermal cycling. PCR was performed in a DNA thermal cycler 

(Techne PHC-3 Dri-Block Cycler) which was programmed for 30-35 cycles : (1) 

denaturing for 1 minute at 94 °C; (2) primer annealing for 2 minutes at 56 °C; (3) 

primer extension for 3 minutes at 72 °C. At the end of the programme, the primer 

extension was continued for a further 8 minutes at 72 °C.
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2.11,4 Analysis of PCR products

After the PCR, the mineral oil was removed and 20 pi of the reaction product 

was visualised by electrophoresis on 1% (w/v) agaiose gel in 0.5 x tri-borate EDTA 

(TBE, appendix I) containing 0.5 pg/ml ethidium bromide (Sigma) at 80 mA for 45 

minutes. 1 pg of DNA 1 kb ladder (Gibco BRL, UK) was run in parallel as 

molecular weight standard. Negative control included amplification of a sham 

reverse transcription without reverse transcriptase to assess any contribution of 

contaminating genomic DNA in RNA samples; and amplification of a reaction mix 

with no added cDNA to assess contamination by DNA from other sources.

2.12 Recombinant IL-18 purification

2.12 .1 Rapid screening for recombinant IL-18 protein expression

To produce recombinant protein the E. coli strain Ml 5 was transformed with 

the pQE30 expression vector carrying an insert encoding IL-18 (Collaboration with 

Dr. Wei, Depaitment of Immunology, Glasgow University). Single bacterial 

colonies were obtained by plating transformed bacteria on LB-agar (Gibco BRL) 

containing 100 pg/ml ampicillm. Twelve single colonies were picked and cultured in 

2 ml LB medium containing 100 pg/ml ampicillin with shaking at 37 °C overnight. 

Each culture was then duplicated by adding 500 pi into 2 x 1.5 ml of fresh, pre

warmed LB (containing ampicillin). The cultures were shaken for another 30 

minutes until the OD was between 0.7 and 0.9 when compared to fresh medium 

alone. 20 pi of 200 mM IPTG (final concentration of 1-2 mM) were added to one set 

of cultures, the other half serving as non-induced controls. Incubation was continued 

at 37°C for 3-5 hours after which time cultures were transferred to fresh 2  ml 

Eppendorf tubes. After centrifugation at 3,000 x g the supernatant was aspirated and 

the bacterial pellet re-suspended in 200 pi of buffer B. The re-suspended bacterial 

suspension was then frozen at -~70“C for 20 minutes, thawed at room temperature 

whilst inverting several times to allow complete bacterial lysis. The samples were 

then centrifuged at 15,000 x g for 10 minutes and the supernatant transferred to a
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fresh tube. Forty pi of 50% slurry nickel-agarose (Ni-NTA, Qiagen) were added and 

the samples mixed at room temperature for 30 minutes. The nickel-agarose was then 

spin-washed 3 times with buffer C at 13,000x g before adding 20 pi of buffer C 

containing 100 mM EDTA. The samples were mixed carefully and spun at 13,000 x 

g to recover the supernatant. Twenty pi supernatant from IPTG-induced and the non

induced samples were mixed with an equal volume of 2 x SDS-loading buffer and 

heated to 95°C for 10 minutes before analysis via SDS-PAGE. Induced and non

induced samples of the same bacterial clones were loaded next to each other on the 

gel for comparison.

2.12.2 Large scale purification of IL-18

LB-broth medium (100 ml containing 100 pg/ml ampicillin) was inoculated 

with a single colony of E. coli~M\S transformed with the pQE30 vector carrying an 

insert encoding IL-18. The culture was incubated with shaking at 37 °C overnight and 

added to 900 ml of fresh LB (Gibco BRL), containing antibiotic, pre-waimed to 

37°C. The culture was further incubated with shaking for approximately 2 hours 

until OD600 reaches 0.7-0.9. IPTG (10 ml of 200 mM final concentration of 1-2

mM) was added and incubation with shaking was continued at 37°C for 5 hours. The 

bacterial suspension was then pelleted by centrifugation in a JAIO rotor (Beckman, 

USA) at 4000 x g, 4"C for 20 minutes. The supernatant was removed and the pellet 

re-suspended in 20 ml of buffer B (or stored at -70 “C). The suspension was 

incubated with stirring at room temperature for two hours (overnight) followed by 

centrifugation at 14000 x g in a JA17 rotor (Beckman, USA). The supernatant was 

recovered and 1 ml (for 10 mg protein about 1 ml Ni-NTA is enough) of 50% slurry 

nickel agarose (Ni-NTA, Qiagen) was added. Recombinant protein carrying a 6 x 

His tag was allowed to bind to Ni-NTA for one hour by gently shaking the samples at 

room temperature. The Ni-NTA was then spm-washed 3 times with buffer B before 

loading onto a filter column (Qiagen). The Ni-NTA was allowed to settle by gravity 

and was washed by applying buffer B until the ODggo of the flow-through was below
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0.001. The Ni-NTA was then washed with buffer C until < 0.001. It was then 

washed with 80% buffer C and 1 x PBS then 50% buffer C plus IxPBS and 10% 

glycerol and finally 20% buffer C in 1 x PBS and 10% glycerol. One column volume 

(approximately 10 ml) of buffer C containing 20 mM imidazole and 10% glycerol 

was added to elute non-specific protein bound to Ni-NTA. Recombinant IL-18 

bound to Ni-NTA was eluted by adding 2-3 ml buffer C containing 400 mM 

imidazole and dialysed in 2000 ml PBS containing 50 mM 2-ME overnight.

2.12.3 Measurement of protein concentration

The concentration of protein samples was measured using the Coomassie blue 

Method. Reagents were purchased firom Pierce, Illinois, following the protocol 

provided by the manufacturer.

2.12.4 Sodium Dodecyl Sulphate-Polyacrylamide gel electrophoresis (SDS-

PAGE)

SDS-PAGE ranging fi'om 10-15% acrylamide was performed accordmg to the 

moleculai' weight of the protein sampled. The Acrylamide solution was made as a 

mixtme of acrylamide and bis-acrylamide in a ratio of 29:1. Resolving (lower) gels 

ranging fi'om 10% to 15% were made in resolving gel buffer containing 1% (w/v) 

ammonium persulphate (BDH) and 0.1% (v/v) TEMED (Sigma). The mixed gels 

were then poured between glass plates in a SDS-PAGE gel chamber (BDH) and 

allowed to polymer'ise. Stacking (upper) gels were prepared in a similar way using 

stacking gel buffer containing ammonium persulfate and TEMED. Electrophoresis 

was performed in SDS-PAGE buffer. Protein samples were mixed in equal volumes

with 2 X concentrated SDS-sample buffer and heated to 100 °C for 10 minutes prior to 

loading on gels. Protein molecular weight markers (Rainbow marker, range 14-200 

kD, Amersham) were loaded on the gel to compare molecular weight of specific 

proteins within the samples. Electrophoresis was carried out at 5 mA/cm-gel length
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and allowed to continue until that the bromophenol blue dye of the SDS sample 

buffer reached the bottom end of the gel.

2.12.5 Coomassie Blue staining of SDS-PAGE gels

SDS-PAGE gels were stained in 0.5% (w/v) Coomassie brilliant blue R250 

(Sigma) containing 40% methanol and 10% glacial acetic acid for 1 hour at room 

temperature. The gels were then destained in 50% methanol and 10% glacial acetic 

acid for 4-5 houis, changing the destaining solution several times during this period 

until the gel-background was clear and protein bands were clearly visible. The

stained gels were transferred to filter paper (Whatman 3MM) and dried at 80 °C under 

vacuum.

2.13 Evaluation proteinuria in murine lupus-like models

Proteinuria was assessed using a commercially available kit (Multistix, Bayer, 

Cambridge, UK) and graded according to the manufacturers instructions. A scoring 

system of 0 to + 4 was used as follows: 0/trace, --<30 mg/dl; 1 +, ~30 mg/ml; + 2, 

~100 mg/ml; + 3, ~300 mg/ml; and + 4, ~>500 mg/ml. A score of 2 + or greater was 

considered indicative of severe proteinuria, and mice exhibiting severe proteinuria on 

three or more successive occasions or at the final evaluation before sacrificing were 

considered positive for renal disease.

2.14 Statistical Analysis

Data were collected and statistical analysis performed using Minitab software 

for Macintosh. Cytokine and NO measurements are displayed as means and standard 

error of triplicate samples unless otheiwise indicated. Parametric and non-parametric 

statistical tests were then used as appropriate including general linear models 

procedures, paired and non-paired T tests, Mann-Whitney U tests as well as Fisher 

test, Pearson correlation coefficients and Kaplan-Meier suiwival curve. Significance 

was accepted at p<0.05.
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T able 2.1 Antibodies for immunohistochemistry

Antibody Specificity Host (Dilution) Soui'ce

Polyclonal Mouse Ig Rabbit (1:200) DAKO

Polyclonal Rabbit IgG Goat (1:500) DAKO

Polyclonal Human-IL-18 Mouse 10 M-g/ml R&D

Polyclonal
(FITC)

Mouse IgG Rabbit (1:100) DAKO
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Chapter 3

Role of IL-12 and Nitric Oxide in the pathogenesis of 

Systemic Lupus Erythematosus
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Introduction

There are now data suggesting that NO plays an important role in 

autoimmune pathology. Inducible NOS expression and increased NO production 

have been implicated in experimental allergic encephalomyelitis and rheumatoid 

arthritis (reviewed by Zhao et al., 1999; Kolb & Kolb-Bachofen 1992; Mclnnes et al.,

1996). It has been shown that MRL/lpr mice excrete significantly higher 

concentrations of urinary nitrate/nitrite than age-matched normal C3H mice 

(Weinberger et al., 1994). Furthermore, MRL/lpr mice showed markedly reduced 

proteinuria and minimal glomerular proliferation when treated orally with l-N^ 

monomethyl argininie (l- NMMA), an inhibitor of nitric oxide synthase (NOS) 

(Weinberger et al., 1994). Oral administration of the nitric oxide synthase inhibitor 

(NMMA) before the onset of clinical disease significantly decreases renal and joint 

pathology in MRL-^r mice. After the onset of the disease oral NMMA and 

restricted dietary arginine reduce joint pathology scores in MRL-lpr mice and 

reduced renal pathology scores in NZB/W mice (Weinberger et al., 1994).

Serum fi'om MRL/lpr mice contains more nitrite/nitrate than serum firom age- 

matched control MRL/MP-++ (MRL/+), BALB/c or CBA/6J mice. Spleen and

peritoneal cells fi'om MRL/lpr mice, when cultured with IFN-y and LPS, also 

produce significantly more NO than those from control mice (Huang et al., 1996). 

Furthermore, peritoneal cells fiom MRL/lpr mice produce markedly higher 

concentrations of IL-12 than control mice and cells fi'om MRL/lpr produce high 

concentrations of NO when cultured with IL-12 and LPS (Huang et al., 1996). These 

findings were supported by the observation that daily injection of recombinant IL-12

increased sei'um levels of IFN-y and NO metabolites, and accelerated 

glomerulonephritis in young MRL/lpr mice but not in MRL/+ (Huang et al., 1996). 

In SLE patients iNOS expression is increased in renal biopsy specimens from patients
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with immune complex deposition (Oates et al., 1997) and elevated NO serum levels 

have also been reported (Levrtowsky et al., 1995; Gilkeson et al., 1995).

Studies were thus perfoimed to determine whether the same mechanism was involved 

in the pathogenesis of other lupus-like models with different genetic backgrounds and 

intact Fas. New Zealand black/white (NZB/W) FI hybrid mice display a variety of 

autoimmune SLE-like phenotypes, characterised by hyper-responsive B cells, 

autoantibody production, cytokine dysregulation and glomerulonephritis (Jongstra- 

Bilen et al., 1997); they carry no Fas mutation and have a different genetic 

background from MRLHpr mice. This strain of mice seemed to be a suitable model 

to extend the search for the role of IL-12 and NO in the pathogenesis of SLE. 

Finally, because the aim of animal experiments was to elucidate the mechanism of 

human disease, the experiments described in the present chapter set out to establish 

whether SLE patients indeed produced more NO and IL-12 than normal individuals.

3,1 Detection of IL-12 (p40/p70) and IL-12 (p70) in mouse and human

Interleukin 12 p40/p70 (total IL-12) concentrations in the serum and 

peripheral blood culture supernatants were measured with a standard sandwich 

ELISA. A monoclonal anti-IL12 ( p40/p70) (PharMingen) as capture antibody and 

biotin anti-mouse IL-12 (p40) (PharMingen) as detecting antibody were used and all 

plate standards were prepared with recombinant murine IL-12 (Genetic Institute). To 

detect murine IL-12 (p70) a monoclonal anti-IL12 (p35/p70) antibody (PharMingen) 

was used as capture antibody and the rest of reagents were the same as used for the 

total IL-12 assay. Figures 3.1a and 3. lb show the murine total IL-12 and IL-12 (p70) 

ELISA standard curve.

Concentrations of IL-12 (p70) in the seimn and culture supernatant from SLE 

patients and normal control individuals were measured by commercially available
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ELISA kit (R&D). Total IL-12 (p40/p70) was also measured by ELISA. Figure 3.2a 

and Figure 3.2b show buman IL-12 (p70) and total human-IL12 standard curves.

(a) (b)
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Figure 3.1 Standard curve for murine IL-12 ELISA, (a) Sensitivity for IL-12 

(p70) ELISA was 25 pg/ml. (b) Sensitivity for IL-12 (40/p70) assay was 40 pg/ml.
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Figure 3.2 Standard curve for human IL-12 ELISA, (a) Concentrations of 

bioactive IL-12 (p70) in the serum and culture supernatant from SLE patients and 

normal control individuals were measured by an ELISA kit purchased from R&D. 

Sensitivity for the ELISA was 3 pg/ml. (b) Total IL-12 (p40/p70) was measured by 

ELISA kit (Donovet, Genzyme). Sensitivity for the ELISA was 20 pg/ml.
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3.2 Total IL-12 serum levels in different ages of NZB/W mice

Sera from 30 NZB/W mice and 20 BALB/c mice (as a control group) of 

vaiious ages were analysed for the levels of IL-12 (p40/p70). MKLHpr sera were 

used as a positive conhol (Figme 3.3). Figure 3.4a shows that the concentration of 

total IL-12 in the serum of NZB/W mice increased markedly at the age of 7-9 

months, with the onset of proteinuria and glomerulonephritis. However, in the sex- 

and age-matched BALB/c mice, no changes in IL-12 levels were detected. The mean 

concentration of IL-12 (p40/p70) measured from 7-9 months old NZB/W mice was

3100 ± 500 pg/mg, significantly higher (p<0.02) than 1-3 month old mice 1250 ± 220

pg/ml (mean ± SEM, Mann-Whitney, Figure 3.5a). There was a significant

correlation between proteinuria and the level of IL-12 in 7-9 month old mice 

(1-0.689, p<0.05) compared with younger mice (Figure 3.5b). The serum level of 

IL-12 between the two age groups from BALB/c mice did not differ (p<0.376, Figure 

3.4a). IL-12 levels in NZB/W mice at 10-12 month old (with severe

glomerulonephritis) were lower; it is possible that severe kidney disease leads to 

excretion of IL-12 through altered glomerular permeability. These data taken together 

indicate that the increase in serum levels of EL-12 (p40/p70) in NZB/W mice 

correlated with age and disease.
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Figure 3.3 Elevated serum IL-12 levels in MRLUpr mice. IL-12 (p40/70) 

levels were measured by ELISA in pooled sera from different ages of MRL//pr lupus 

strain and MRL/++ controls (15 mice in each group of ages). Serum IL-12 levels 

were markedly higher in Ipr mice, especially in older mice with clinical disease 

compared with controls (**p<0.001). Serum IL-12 levels increased with age in 

MRL//pr mice.
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Figure 3.4 Enhanced EL-12 levels in the serum of NZBAV mice, (a) Senim 

IL-12 (p40/p70) levels in (NZB/W) FI lupus strain (n=30) and BALB/c strain control 

group (n=20) of mice at different ages. Total IL-12 concentrations in serum were 

determined by ELISA. Serum IL-12 levels were markedly higher in the NZB/W 

mice, especially in the 7-9 month compared with contiol groups (**P<0.001, 

*P<0.05). (b) IL-12 (p40/p70) serum levels in NZB/W mice were higher than 

BALB/c control group (p<0.003, Mann-Whitney). IL-12 (p70) sei'um levels were 

under sensitivity level of ELISA.
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Figure 3.5 Total IL-12 was elevated in NZBAV lupus strain, (a) Total IL-12 

serum levels in NZBAV mice were increased with age. The highest level of IL-12 was 

at 7-9 month old (about 3-fold more than 1-3 month old), (b) IL-12 (p40/p70) 

increased was correlated with proteinuria (as a surrogate for glomerolunephritis, 

p<0.003).
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3.3 Cytokine production by spleen cells from NZBAV lupus-like mice

Spleen cells from NZB/W mice 2.5 or 7 months old, and age- and sex-

matched BALB/c mice were cultured with ConA (5 pg/ml) or LPS (100 ng/ml) and

IFNy (50 U/ml). Culture supernatants were collected after 48 hours incubation, and 

IL-12 levels were measured. Spleen cells from 7-month-old NZB/W mice produced 

approximately 2-3 times more total IL-12 than 2.5 month old NZB/W mice (Figure 

3.6b). There was no significant difference between BALB/c mice aged 7 months or 3 

months. There were also no significant differences between 2.5 month old NZB/W 

mice and 2 month old BALB/c mice (Figure 3.6a). IL-12 (p70) was not detectable in 

the supernatants.
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Figure 3.6 Spleen cells from NZBAV mice produced higher concentrations of 

IL-12 in response to IFN-y and LPS. Pooled spleen cells from NZBAV mice (n=5, 

2.5 and 7 month old), and BALB/c mice (n=5, 3 and 7 month old) were stimulated in 

96-well culture plates with or without fixed doses of ConA (5 pg/ml) or LPS (100 

ng/ml) and IFN-y (50 U/ml) or only with culture medium (CM). Culture supernatants 

were collected after 48 hours and IL-12 levels measured by ELISA, (a) Spleen cells 

from NZB/W mice produced more total IL-12 than spleen cells from control group 

(*p<0.05, **p<0.001). (b) IL-12 production by NZB/W spleen cells was age-

dependent (*p<0.05).
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3.4 IL-12 (p70) and IL-12 (p40/p70) in the serum of SLE patients

Finally, because the aim of animal experiments is to elucidate mechanisms of 

human disease, I set out to establish whether SLE patients indeed produced more IL- 

12 than normal individuals.

Serum samples were collected from 50 patients who attended the Connective Tissue 

Diseases Clinic at Glasgow Royal Infirmary, Rheumatology Clinic in Nottingham 

and Rheumatology Clinic in Glasgow Gartnaval Hospital. All fulfilled at least four 

of the ARA criteria for the classification of SLE (Tan et al., 1982) [Table 1.1]. In 

particular data concerning disease activity, selected organ involvement, presence of 

infection, and therapy were collected. The SLE Disease Activity Index (SLEDAI) 

[Bombardier et al., 1992] or SLAM (Liang et al., 1989) was calculated for all 

patients. Serum samples from 30 healthy blood donors of comparable age and 

gender, were also studied.

The levels of IL-12 (p40/p70) in the sera of SLE patients were significantly higher 

than in control groups p<0.006 (Figuie 3.7). The level of total-IL-12 in the samples 

from different clinics was analysed separately. SLE patients in all three clinics had 

significantly higher levels of total IL-12 compared with normal controls. Because the 

level of IL-12 (p70) generally fell below the limit of sensitivity of the ELISA, it was 

not possible to correlate expression of this with SLE activity (Figure 3.8).
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Figure 3.7 IL-12 (p40/p70) concentrations in sera obtained from SLE

patients. Total IL-12 serum levels were assayed using a commercial ELISA kit. IL- 

12 levels in serum from SLE patients (n=50) and normal human serum (NHS, n=34) 

were compared. Significant increments of total IL-12 levels were observed in SLE 

patients (p<0.006, Mann-Whitney). Although patients with rheumatoid arthritis had 

less IL-12 than SLE patients, IL-12 levels were higher in the serum of RA patients 

than normal controls (p<0.022, Mann-Whitney U-test)
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Figure 3.8 IL-12 (p70) concentration in serum from SLE patients.

There was no difference between IL-12 (p70) in the serum of SLE patients (n=27) 

and healthy controls (n=19). IL-12 (p70) levels in most of the patients were less than 

sensitivity of the kit assay (<3pg/ml).
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3.5 Correlation between IL-12 levels in the SLE patients and clinical profile

To investigate the correlation between total EL-12 levels and disease, clinical 

details of SLE patients were collected at the time of sample taking. Disease activity 

(SLAM or SLEDAI), organ involvement, anti-DNA antibodies, C-reactive protein, 

ESR (erythrocyte sedimentation rate), and drugs were analysed (Table 3.1). There 

was no significant correlation between IL-12 levels in the serum and the SLE Disease 

Activity Index (r=0.265, Figure 3.9). Autoantibodies, ESR and CRP did not show 

any correlation with total IL-12 serum levels.
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Figure 3,9 Correlation between IL-12 serum levels and SLEDAI. Clinical 

data fiom 30 SLE patients was compared with their IL-12 (p40/p70) serum levels. 

There was no correlation between total IL-12 serum levels and SLEDAI (n=30, 

r=0.265, Pearson test).
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3.6 IL-12 production by PBMC and whole blood cells from SLE patients

Twelve follow-up patients were included in this study. All were diagnosed as 

SLE by the revised American Rheumatism Association Criteria (Tan et al., 1982) in 

Glasgow Royal Infirmary Connective Tissue Diseases Clinic. Patients did not 

receive any steroid or cytotoxic drugs within 1 month of sampling. Seven healthy 

conti’ols matched for age and sex were also studied. PBMC were prepared from 

patients with different disease activity (SLE Disease Activity Index). Cultures were 

stimulated by EPS (3 |Lig/ml), Staphylococcal enterotoxin B (SEB, 2 tig/ml) and IFN- 

y (100 U/m) or PHA (1 pg/ml). Culture supernatants were collected after 48 hours 

and stored at -20°C until assay for IL-12.

Results in Figure 3.10a showed that IL-12 production by PBMC in SLE patients was 

significantly lower than normal controls (p<0.05). These data were apparently 

contradictory with serum data. Therefore, ftrrther in vitro experiments were 

performed on whole blood cells. Blood was withdrawn, hepaiinised (10 I.U/ml) after 

differential WBC count, immediately diluted 1:5 in complete Iscove's medium. After 

addition, EPS, SEB and IFN-y, duplicate cultures (1 ml each) in 24-well culture 

plates were established, and culture supernatants were collected after 48 hours 

incubation and stored at -20°C until assay for IL-12. Unstimulated, diluted blood 

was withheld as "time 0 " negative control, and after centrifugation supernatant was 

stored at -20°C prior to IL-12 estimation by ELISA. Total IL-12 levels in the SLE 

supernatant were significantly higher than controls (p<0.05. Figure 3.11b). Figure

3.1 lb also shows that EPS (3 pg/ml) and IFN-y (100 u/ml) were the best stimulators.

The experiments on NZB/W FI mice, a lupus-like model with intact Fas, and results 

from SLE patients were consistent with those previously observed in MRL/lpr mice 

(Huang et al., 1996) in which higher levels of IL-12 were correlated with disease. 

The following experiments were canied out to investigate whether high capacity IL-
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12 production in NZB/W FI and SLE patients led to higher output of NO (Huang et 

al, 1996).
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Figure 3.10 IL-12 (p40/p70) production by PBMC and peripheral whole blood
cells from SLE patients, (a) Peripheral blood mononuclear cells (PBMC) from

normal control (n=7), when cultured with LPS (3 pg/ml) and IFN-y (100 U/ml), 
produced more IL-12 than lupus patient (n=15) peripheral blood cells ( p<0.02, 
Mann-Whitney), (b) Peripheral whole blood cells from SLE patients and normal 
controls after differential WBC count were diluted (1:5) in Iscove’s medium and

cultured with LPS (3 pg/ml) and IFN-y (100 U/ml). Supernatants from lupus patients 
contained significantly more IL-12 (p40/p70) than normal controls (p<0.05, Mann- 
Whimey).
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Figure 3.11 IL-12 levels in culture supernatants from peripheral whole blood

cells of SLE patients. Hepaiinised whole blood cells from 12 SLE patients were 

cultured in Iscove's medium (1:5 dilution) and stimulated with LPS, SEB, IFN-y, 

PHA or only culture medium (CM). Culture supernatants were collected after 48 

hours. LPS ( 3 pg/ml) and IFN-y (100 U/ml) were the best stimulants for IL-12 

production.
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3.7 Assay for nitrite in biological fluids

In culture supernatants and serum samples, nitric oxide production was 

estimated by the concentration of its oxidative products nitrite and nitrate ions. NO 

concentration in peritoneal and spleen cell culture supernatants was measured by the

Griess reaction, with typical sensitivity of 2 pM (Figure 3.12a).

Total serum or plasma nitrite levels were estimated by two methods.

(a) The Griess reaction develops at acid pH raising the possibility of protein 

precipitation in test samples. Total serum nitrite levels were therefore measured by 

chemiluminescence, after reduction of nitrate to nitrite using nitrate reductase. 

NaN02 and NaNOg standard curves are shown in Figure 3.12b, demonstrating

sensitivity of 2 pM.

(b) Modified Griess reaction was developed to measur e total NO in biological fluids 

(Chapter 2.8). To all serum samples after reduction of nitrate to nitrite and 

deproteinization, equal amounts of Griess reagents were added. The standard curve of 

modified Griess reaction is compared with chemiluminescence assay in Figure 3.12.
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Figure 3.12 (a) The standard curves for N02 measurement by Griess reaction with

2 |liM  sensitivity, (b) Standard curve for Nitrite / Nitrate measurement in the serum 
by chemiluminescence assay, (c) Standard curve to measure Nitrite / Nitrate in the 
serum by modified Griess reaction.
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3.8 Nitrite / Nitrate in the serum from different ages of NZB/W mice

Serum from NZB/W (n=30) mice and BALB/c mice (n=20, as control group) 

of various age was analysed for NO metabolites by converting nitrate to nitrite and 

determining the total nitrite by Griess reaction. Figure 3.13a shows that serum from 

BALB/c mice contained significantly higher concentrations of nitrate and nitrite than 

those from age- and sex-matched NZB/W mice (p<0.02; Mann-Whitney). Serum NO 

levels in NZB/W mice did not correlate with age or glomerulonephritis (Figure 3.13). 

These data showed that the level of NO in the serum of NZB/W mice, was not higher 

than normal controls and there was no significant change in NO serum level with age 

or disease development.
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Figure 3.13 Level of nitric oxide (nitrite/nitrate) in the serum of different ages 

of NZB/W and BALB/c mice, (a) NO was generally higher in the serum of different 

ages of BALB/c mice compared with NZB/W mice. There was no significant 

correlation between NO serum levels with the age or disease in NZB/W mice, (b) 

NO level in the serum of BALB/c mice (normal control) is significantly higher than 

NZB/W mice (p<0.001, Mann-Whitney).
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3.9 Peritoneal and spleen cell culture in lupus-like mice

Peritoneal and spleen cells pooled from five NZB/W or BALB/c mice, all 7

months old, were cultured with LPS (100 ng/ml), IFN-y (50 U/ml) or IL-12 (10 

ng/ml) for up to 72 hours. Concentration of NO in the culture supernatants was 

measured by the Griess method. Cells from NZB/W showed no significant

differences in NO production from BALB/c mice when cultured with LPS and IFN- y 

(Figure 3.14a). There were also no significant differences when peritoneal cells were 

cultured with LPS and IL-12 (Figure 3.14a). NZB/W mice at age 7 months or 3 

months did not differ in NO production (Figure 3.14b). Spleen and peritoneal cells 

from MKL/lpr mice were used as a positive control in these experiments.

Taken together these results were contradictory to these obtained from MRL//pr 

mice. There was no disease related NO enhancement in NZB/W mice and it was 

demonstrated that IL-12 did not induce more NO production spleen and peritoneal 

cells from NZB/W mice with established disease compared with young and disease 

fiee NZB/W mice.
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Figure 3.14 NO production by peritoneal and spleen cells from NZB/W mice 

did not correlate with the age or disease. Peritoneal (a) and spleen (b) cells from 

different ages of NZB/W mice were stimulated in 96-well culture plates with or 

without r-IL-12 (10 ng/ml) and LPS (100 ng/ml). Culture supernatants were collected 

after 72 hours and nitrite level measured by the Griess method. There were no 

differences in NO production between 7 month old and 3 month old NZB/W mice. 

MRL/lpr mice were used as positive control group.
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3.10 Nitric oxide level in the serum of SLE patients

Serum samples were collected from SLE patients with various disease

activities. The samples were stored at -70 prior assay for nitrite / nitrate 

concentration using two methods (a) chemiluminescence and (b) modified Griess 

reaction. Figures 3.15a and 3.15b show that the mean concentration of nitrite / 

nitrate, representing total NO level, did not differ from age- and gender-matched 

controls by either method.
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Figure 3.15 (a) Nitric oxide (nitiite / nitrate) levels in the serum of SLE patients

by chemiluminescence assay. NO level in the serum from 35 SLE patients did not 

differ from normal controls (Mann-Whitney U-test). (b) NO level was measured by 

modified Griess reaction and there was no significant difference between two 

groups.
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3.11 NO production by PBMC and whole blood cells from SLE patients

Twelve SLE patients were included in this study. Seven health controls 

matched for age and sex were also studied. PBMC were prepared from patients with 

different disease activity (SLE Disease Activity Index, SLEDAI) and stimulated by

LPS (3 |ig/ml), SEB (2 pg/ml) and IFN-y (100 U/m) or IL-12 (10 ng/ml) for NO

production. Culture supernatants were collected after 72 hours and stored in -20 °C 

until assay for NO. NO production by PBMC in the SLE patients and normal 

controls were about or less than the sensitivity level of the assay (2 p.M). IL-12 did 

not induce NO production in PBMC from SLE patients or normal controls.

Whole blood culture was also used to investigate whether the changes shown in the 

level of inducible IL-12 could be observed for NO production (section 3.6). 

However, as Figure 3.16 shows there were no significant changes between SLE 

patients and control individuals in NO production.
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Figure 3.16 IL-12 did not induce NO production by peripheral blood from

SLE patients. Heparinised whole blood cells from 15 SLE patients and 7 healthy 

controls were cultured in 24-well culture plates and stimulated with LPS (3 pg/ml) and 

IL-12 (10 ng/ml), LPS (3 pg/ml) and IFN-y (100 U/ml) or only culture medium (CM). 

Culture supernatants were collected after 72 hours. There were no significant 

changes in NO production in the supernatants from SLE patients and controls 

(Student's t-test).
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Discussion

Elevated levels of IL-12 (p40/p70) have been reported in MRL/lpr serum and 

have been linked to increased nitric oxide production (Huang et al., 1996). 

Amelioration of disease by administering inhibitors of the NO pathway (Weinberger 

et al., 1994), and exacerbation by recombinant IL-12 injections indicate a role for 

both of these molecules in the pathogenesis of SLE (Huang et al., 1996). The aim of 

this study was to investigate whether IL-12 and NO have the same effect in a lupus

like model with intact Fas (NZB/W) FI mice and in human SLE. The results 

demonstrate that in NZB/W FI mice total IL-12 (40/p70) serum levels are higher 

than in control mice. IL-12 is increased in conelation with disease of this lupus-like 

strain. Increase in IL-12 coincides well with the time of renal disease onset at around 

7-month age (Theofilopoulos et al., 1986). The data are supported by the results 

from MRL/lpr micQ (Huang et al., 1996).

The human data show that the serum level of total IL-12 is significantly higher in 

SLE patients than control individuals. However, PBMC fi"om SLE patients produced 

less IL-12 (p70/p40) than control PBMC in contrast with the serum data. However, 

whole blood culture from SLE patients showed higher IL-12 production, when

cultured with LPS and IFN-y, compared with control individuals, consistent with the 

serum data. The reason for different results in PBMC and whole blood cell cultur e 

might be because of the role of granulocytes (especially neutrophils), which are 

deleted in PBMC, or possibly because of other factors such as different proteins or 

cytokines which are found in the plasma of patients and washed away during PBMC 

purification. The important role of cell contacts in immunological reaction is another 

possible explanation for different results obtained from PBMC and whole blood cell 

cultures. Macrophages from young disease free NZB/W mice show an enhanced 

capacity for IL-10 production (Alluvia et al., 1997)_ and higher level of IL-10 in 

younger NZB/W (Kalechman et al., 1997). Several papers reported higher level of
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EL-10 in the serum of lupus patients and it's relation with disease activity (Houssiau et 

al., 1995; Lacki et al., 1997). EL-10 is closely associated with Th2 type immune 

responses and being produced by various non-T cells, only ThO and Th2 cells secrete 

EL-10 in mice, whereas Thl cells can also secrete EL-10 in humans (Del Prete et al., 

1993; Street et al., 1991). In the peripheral blood of lupus patients, monocytes and B 

cells appear to be the main source of IL-10 (Llorente et al., 1994). On the other hand 

IL-12 is a strong IL-10 inducer (Meyaard et al., 1996; Jeannin et al., 1996) and it 

seems that an EL-10 / IL-12 immunoregulatory circuit controls susceptibility to 

autoimmune disease (Segal et al., 1997).

IL-12 is a disulphide-lmked heterodimeric glycoprotein, which is composed of a 

heavy chain 40 kDa and a light chain of 35 kDa. The two chains, encoded by 

separate genes, become covalently linked to form the active p70 (p35/p40) 

heterodimer (Wolf et al., 1991). The p40 chain is overproduced relatively to the p35 

chain. The p40 (p40/p40) chain then foims homodhners that bind to the IL-12 

receptor and compete with the bioactive p70 hetero dimer for receptor occupancy, 

thus sei*vmg as a competitive receptor inhibitor (Gilessen et al., 1995). In MRLHpr 

mice both total EL-12 and IL-12 p70 are increased disease related, but in NZB/W FI 

mice and human SLE we detected just total IL-12 enhancement and IL-12 p70 was 

undetectable. IL-12 p70 in concentration 100-500 times less than p40 homodimer 

can show bioactivity. Therefore, undetectable p70 (under sensitivity level of ELISA 

assay) may still be bioactive. Another possibility is that in the patients and lupus like 

models there are high level of p40 homodimer which act as antagonists to bioactive 

IL-12 (p70) and inhibit Thl cytokines to reduce the inflammatory response in SLE. 

However , to elucidate the precise role of EL-12 in SLE, further investigation should 

be focused on the bioactive IL-12 p70 itself and the potential pathogenic role it may 

play.
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We should note that there were wide deviations in the levels of IL-12 among the 

patients. However, there was no correlation between IL-12 serum level and activity 

of the disease and despite a coiTelation between level of IL-12 and proteinuria and 

kidney involvement in lupus-like models (NZB/W FI and MRL/lpr mice), in human 

SLE patients no significant correlation between IL-12 level and kidney involvement 

or C3, C4 level was found. However, about six patients with high levels of IL-12 

had the highest scores for disease activity.

It is demonstrated that corticosteroids inhibit IL-12 production in human monocytes 

(Vieira et al., 1998), therefore, the effect of corticosteroids in the management of 

lupus patients might be in part because of their inhibitory roles on IL-12 production.

The serum level of Nitric oxide in MRL/lpr mice appeared to be in correlated with 

age and disease (Huang et al., 1996). However, the level of NO in the serum of SLE 

patients and NZB/W mice were measured by two different methods and they showed 

no significant differences from normal controls. In vitro studies did not show any

significant changes for NO production when stimulated with LPS and IFN-y or IL-12

in both human SLE patients and NZB/W mice. Therefore, the data could not show 

the same phenomenon observed in MRL/lpr mice.

To investigate the possible role of Ipr in IL-12 and NO production, we measured the 

level of IL-12 and NO m different Ipr transgenic mice from different backgrounds, 

this showed no significant role for Fas deficiency in NO or IL-12 production(data 

was not shown). Taken together our studies shows similar senun NO level in SLE 

patients and healthy controls which is supported by other reported studies (Gonzalez- 

Crespo et al., 1998; Wigan et al., 1997). However, NO must play a role in the 

disease development as shown by the fact that NOS II inhibitors reduced renal 

pathology (Oates et al., 1997). There aie a few reports that the serum levels of NO 

were significantly higher than the normal individuals and that the increase was
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disease related (Levrtowsky et al., 1995; Gilkeson et al., 1996). This is in contrary to 

the results we obtained. The difficulties in techniques to measure NO in the body 

fluids specially in the serum and plasma with high level of proteins, and the effect of 

nutrients on the level of NO in the serum might be possible reasons for disparity. 

Another possible explanation why no increase in serum NO level was detected 

particularly among 7-9 months old NZB/W mice could be that at the time of 

sacrificing the mice NO level had returned to normal. However, that is unlikely since 

this would imply that NO was only important during disease onset and not dming the 

chionic stage of the disease. This would be in contrast to findings that the 

modulation of NO production after disease onset could significantly reduce renal 

pathology (Oates et al., 1997). Urinary nitrite and nitrate excretion which is noticed 

with disease progression (Gilkeson et al., 1996) might be an explanation for 

unchanging serum level of NO during kidney involvement. We postulate that local 

tissue specific NO production might be important, especially for the development of 

renal pathology. Cells most likely to contribute to local NO production in the kidney 

are vascular endothelial cells and mesangial cells (Weinberger et al., 1998; Furusu et 

al., 1998) which were not examined in this experiment.
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Chapter 4 

Association of IL-18 with SLE

119



Introduction

A number of studies have described Thl or Th2 cytokine abnormalities, such 

as IFN-y,IL-10, IL-4, IL-12, TNF-a, in systemic lupus erythematosus (Huang et al., 

1988; Linker-Israeli et al., 1991; Al-Janadi et al., 1993; Llorente et al., 1994; 

Houssiau et al., 1995; Klinman et al., 1995; Huang et al., 1996; Peng et al., 1997). 

In the lupus mice model, it was suggested that the balance of Thl/Th2 cytokines 

related to the pathogenesis of SLE (Takashi et al., 1996; Yoshii et al., 1995). Thl- 

derived cytokine synthesis is regulated mainly by IL-12 (Heinzel et al., 1993) and IL- 

12 is a pivotal cytokine in determining the nature and efficacy of immune responses. 

It plays a critical role in the promotion of IFN-y synthesis, generation of Thl cells 

and suppression of Th2 lymphocytes development. IL-12 is a major trigger for IFN- 

y-dependent renal injury in MRL/lpr mice (Huang et al., 1996; Schwarting et al., 

1999). In chapter 3 it was shown that levels of IL-12 were increased in the serum of 

SLE patients and in the serum of the NZB/W lupus-like mouse model compared with 

normal controls. Therefore, it is also possible that an abnormality of other T-cell 

regulatory cytokines, which modulate Thl lymphocyte development, contributed to 

SLE pathogenesis.

Like IL-12, IL-18 is a member of the Thl-inducing family of cytokines. IL-18 is an 

IL-l-like cytokine, which was first identified by its ability to induce high levels of 

IFN-y secretion by both NK and T cells (Okamura et al., 1995). IL-18 mediates other 

important functions, including enhancement of NK cell activity and stimulation of 

proliferation of activated T-cells (Okamura et al., 1995). IL-18 affects the

development of cellular immunity (Thl response) following antigen presentation 

(Robinson et al., 1997). It also potentiates EL-12 driven Thl development in BALB/c 

mice and, synergistically with EL-12, promotes IFN-y production from Thl cells. 

Unlike EL-12, IL-18 alone does not drive Thl development. Studies of IL-18 

deficient mice support the notion that IL-18 plays an important supportive role in 

Thl development (Takeda et al., 1998; Wei et al., 1998). IL-18 expression also has
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been reported in several human diseases, including rheumatoid arthritis (Gracie et al., 

1999; Leung et al., 2000) and inflammatory bowel disease (Pizarro et al., 1999).

The aim of this chapter was to investigate whether there was any association between 

IL-18 and SLE. To achieve this we determined:

a) IL-18 serum levels in a cross-section study of lupus patients and in the MRLflpr 

lupus-like mouse model.

b) relations between IL-18 levels and clinical profile.

c) EL-18 production by spleen and peritoneal cells from lupus-like model.

d) the in vitro effects of IL-18 on different stages of disease development in MRL/lpr 

mice.

4.1 Detection of IL-18 in mouse and human serum

Human IL-18 in senim was measured by sandwich enzyme immunoassay (ELISA) 

using paired antibodies (R&D, Oxon, UK). The assay was performed according to 

the manufacture's instruction. A typical standard curve shows the lower detection 

limit at around 40 pg/ml (Figure 4.1a).

Concentrations of EL-18 in the serum and culture supernatant from MRL/lpr mice and 

MRL/++ mice were similaily measured by ELISA. Murine IL-18 was assayed with 

paired antibodies (R&D, Oxon, UK). The assay was performed according to 

manufacturer's instruction. A typical standard curve shows the lower detection limit 

for murine IL-18 at 30 pg/ml (Figure 4. lb).
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Figure 4.1 Standard curve for IL-18 ELISA, (a) Sensitivity for human IL-18 
ELISA was 40 (pg/ml). (b) Sensitivity for murine IL-18 was 30 (pg/m).
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4.2 IL-18 in the serum of SLE patients

Serum samples were collected from 30 patients who attended the Connective 

Tissue Diseases Clinic at Glasgow Royal Infirmary, all fiilfilled at least four of the 

ARA criteria for the classification of SLE. Special attention was paid to disease 

activity, selected organ involvement, presence of infection, and therapy. The SLE 

Disease Activity Index (SLEDAI) was applied to all patients. Serum samples from 

20  healthy blood donors of comparable age and gender, were also studied.

As shown in Figure 4.2a, IL-18 serum levels in lupus patients were significantly 

higher than normal controls (mean ± SEM, patients 325 ± 65 pg/ml, and controls 43.2 

± 7.4, p<0.02).

The relationship between IL-18 serum levels and clinical profile in SLE patients was 

examined. There was no significant relation to SLEDAI (Figure 4.2b) and there was 

no correlation with nephropathy, musculoskeletal dysfimction nor anti-dsDNA 

antibodies, CRP or ESR levels.

IL-18 acts in synergy with IL-12 to promote development of Thl responses. The 

levels of both IL-12 (shown in Chapter3) and IL-18 in the serum of SLE patients 

were higher than normal controls. Therefore, IFN-y, EL-4 and IL-5 levels were 

measured in the serum of SLE patients to investigate whether high levels of IL-12 

and IL-18 had any effects on the serum levels of other Thl or Th2 cytokines. There 

were no significant differences in serum IFN-y levels and seimn IL-5 levels between 

SLE patients and normal controls (Figure 4.3). IL-4 was undetectable in the serum 

of the both groups.

123



(a)
1500

1000  -

&
&
001—4
JiH  500 -

P<0.022

NHS SLE

(b)

1400 —

S
Oba

700 -00

3 4 6 7 9 102 5 8

SLEADI

Figure 4.2 (a) Serum level of IL-18 in SLE patients (n=30) and healthy controls
(n=20, p<0.022). The line shows the mean value in each population, (b) There was 
no significant correlation between serum IL-18 level and SLE disease activity 
(SLEDAI score) (n= 30, r = 0.215).
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Figure 4.3 Serum IFN-y (a) and IL-5 (b) levels in SLE patients and controls. 
Serum samples from SLE patients and healthy controls were collected and the levels 

of IL-5 and IFN-y were measured by ELISA (Mann-Whitney).
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4.3 IL-18 level in MBluflpr mice with clinical disease

Murine SLE is a good model of human SLE as most of the immunological 

abnormalities apparently fundamental to the human disease also appear to be 

operative in the mouse (Theofilopoulos and Dixon, 1985). Among the SLE mice, the 

MRL/^r strain has been extensively used as a lupus-like model. MRL/^r mice are 

early-life lupus model and the major cause of death, like aU lupus-like models and 

human SLE, is glomerulonephritis. These mice after 3 month of age start showing an 

obvious proteinuria, which is the onset of glomerulonephritis.

To determine the potential pathogenic role of IL-18 in SLE, we investigated IL-18 

production in MKL/lpr mice. The serum of female MRLllpr mice at 4-6 month age, 

with obvious proteinuria and kidney involvement, contained significantly more IL-18 

than those of age- and sex-matched wild-type MRL/++ mice (Figme 4.4). Mean ± 

SEM, 462.5 ±106 vs. 183.4 ± 49 respectively, p<0.022.
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Figure 4.4 Serum levels of IL-18 in MRL/lpr and MRL/++ mice. The level of 
IL-18 in the serum of MRL/lpr mice (n=10) at age of 4-6 months (with obvious 
kidney involvement) was significantly higher than MRL/++ control mice (n=ll, 
p<0.02, Mann-Whimey). (b) The proteinuria was measured, semi-quntitatively, by 
dipstick. The MRL/lpr mice had significant proteinuria (mean grade 3.3 ± 0.5), but 
MRL/++ control mice did not have any proteinuria (normal or trace).
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4.4 IL-18 production by spleen and peritoneal cells from MRLHpr mice

IL-18 production by spleen and peritoneal cells from MRL/lpr (n=5) or 

MRL/-H- (n=5) mice at 14-15 weeks was measuied. Cells were cultured with or 

without LPS (10 ng/ml) and IFN-y (50 U/ml) in 96-well plates for up to 48 hours. 

The concentrations of IL-18 in the culture supernatants were determined.

As Figure 4.5a shows, the peritoneal macrophages and spleen cells from MRL/lpr 

mice spontaneously produced more IL-18 than MRL/++ control mice (p<0.001, 

Student's t-test). Exogenous LPS and IFN-y down-regulated the IL-18 production by 

spleen or peritoneal cells.

Spleen cells spontaneously produced more IL-18 than peritoneal cells. This 

suggested several possibilities including cells other than macrophages may be the 

main source of IL-18 production and that contact between macrophages and other 

cells in spleen is required to secrete more IL-18.
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Figure 4.5 IL-18 production by cultured spleen (a) and peritoneal (b) cells from

MRL/++ and MRLHpr mice. Spleen or peritoneal cells from MRL///?r mice and 

MRL/++ control mice were stimulated in 96-well culture plates with or without LPS

(100 ng/ml) and recombinant IFN-y (50 U/ml). Culture supernatants were collected

after 48 hours and IL-18 levels were measured by ELISA. Unstimulated cells from 

MRL///?r mice produced spontaneously more IL-18 than MRL/++ control mice 

(**p<o 0 0 1 , *p<0.05. Student’s t-test)
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4.5 In vitro effects of IL-18 on different ages oiMSJLUpr mice

It has been shown that serum IL-18 levels in MKL/lpr mice were higher than 

MRL/++ control mice, and that spleen cells from MRLllpr mice spontaneously 

produced more IL-18 than controls. To further investigate the role of IL-18 in the 

pathogenesis of SLE, in vitro studies was taken on the MBLilpr spleen cells at 

different stages of disease development. Spleen cells from MRLllpr mice (n=5) were 

pooled and cultured in 24-well plates coated with anti-CD3 antibody (4 pg/ml) in the 

presence of different doses of recombinant IL-18.

Firstly, the effect of recombinant murine IL-18 together with immobilised anti-CD3 

antibody was analysed on the spleen cells from 6 -week old MRL/^r mice. Cultme 

supernatant were collected up to 48 hours and analysed for IL-4, IL-5, EL-10, IL-13 

and IFN-y by ELISA. Cells cultured with anti-CD3 alone produced significant levels 

of these cytokines. As expected the levels of IFN-y was significantly increased by 

IL-18 in a dose-dependent manner (p<0.001). IL-18 and anti-CD3 were able also to 

induce spleen cells from MRL//y?r 6 week old (without any evidence of 

glomerulonephritis) to produce IL-5, IL-10, IL-13 in a dose-dependent manner 

(Figure 4.6).

We then investigated whether the effect of IL-18 in the present system could be 

affected by the age and disease development. Spleen cells from 13-14 week MRL/lpr 

mice, with obvious proteinuria and the onset of the disease, were cultured with 

immobilised anti-CD3 antibody in the presence of different doses of IL-18. The 

results in Figure 4.7 show that IL-18 in combination with anti-CD3 antibody induced 

significant IFN-y production (p<0.001. Student's t-test), but suppressed IL-4, IL-10 

and IL-13 production in the mice with the onset of glomerulonephritis.
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Figure 4.6 In vitro production of Thl (IFN-y) and Th2 (IL-5, IL-10, and IL-13) 
cytokine production by spleen cells from 6-week-old MRL/lpr mice. Pooled spleen 
cells from MRL/lpr, 6 weeks old, cultured with anti-CD3 and different doses of 
recombinant murine IL-18 and culture supernatants were collected at 48 hours.

There was marked enhancement of IFNy, IL-5, IL-13 and IL-10 production by IL-18 
stimulation in a dose-dependent manner (*p<0.05, **p<0.001. Student’s t-test).
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Figure 4.7 In vitro production of Thl (IFN-y) and Th2 (IL-4, IL-5, IL-10, IL-13) 
cytokine production by spleen cells from 13-14 week old MRL/lpr mice. Pooled 
spleen cells from 14-15 week old MRL/lpr mice cultured with anti-CD3 and IL-18.

IL-18 induced a dose-dependent enhanced IFN-y production (**p<0.001) and 
suppressed IL-4, IL-10 and IL-13 production (*p<0.05).
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Discussion

IL-18 is an important cytokine in promoting Thl-mediated immune response 

in collaboration with IL-12. Imbalance towards Thl predominance is associated with 

an acceleration of lupus-like autoimmune syndrome in MRLHpr mice (Takashi et al., 

1996). However, a functional role of IL-18 in clinical or murine SLE is unknown. 

To determine the potential pathogenic role of IL-18 in SLE, we investigated IL-18 

production in SLE patients and m MRL/lpr mice, which develop spontaneous lupus- 

like autoimmune disease.

Data presented in this chapter exhibited significantly elevated IL-18 serum levels 

compared with controls. This result therefore suggests that the production of IL-18 

may be associated with the pathogenesis of SLE.

Next we examined the relation between IL-18 serum levels and clinical 

manifestation. There was no significant relation between IL-18 levels and disease 

activity indices (SLEDAI). IL-18 did not have a significant correlation with 

nephropathy, C4 and C3 levels, and anti-dsDNA antibody levels. Clinical 

manifestations of SLE are extremely diverse and variable. Therefore, the number of 

patients was not enough to analyse relation between each clinical index with IL-18 

serum levels. The change of each cytokine varied among the SLE patients, possibly 

because of the diversity in the disease and effect of drug treatments (Huang et al., 

1988; Linker-Israeli et al., 1991). Thus, the serum levels of cytokines in SLE are not 

ever simple. Another possibility is that the IL-18, which was detected in the serum of 

SLE patients, was mainly pro-IL-18. Therefore, they need to be cleaved by IL-lfi- 

converting enzyme (ICE, caspase 1) to yield an active IL-18 (Gu et al., 1999). 

Therefore, environmental or unknown effects may activate this process and trigger an 

active disease.

Animal models have contributed to understanding the immunological aspects of 

immunology and autoimmune diseases. Lupus-like models are a good reflection of
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human SLE because the main immunological abnormalities, which are related to the 

human disease also, appeal’ in these mouse models. Therefore, to determine the 

potential pathogenic role of IL-18 in SLE, we investigated EL-18 production in 

MRLUpr mice, which develop spontaneous lupus-like autoimmune disease.

Seinm of MRLllpr mice at the age of 4-6 months (with obvious glomerolunephiitis) 

contained significantly higher concentration of EL-18 compared with those of control 

MRL/++ mice. In addition, spleen and peritoneal cells from MRLUpr mice produced 

spontaneously higher concentration of IL-18 than cells from MRL/++ mice. These 

results are therefore consistent with that of clinical SLE and re-enforced a major role 

for IL-18 in spontaneous autoimmune disease. Then, we investigated the in vitro 

effects of IL-18 on Thl type and Th2 type cytokine regulation from MKLHpr mouse 

spleen cells at different stages of the disease development. In vitro studies showed 

that IL-18 and anti-CD3 were able to induce spleen cells to produce IFN-y (Thl) and 

IL-5, IL-13, IL-10 (Th2 cytokines) m a dose-dependent-manner in young animals 

with no SLE. However, after the disease was establishmed in older MRLHpr mice, 

IL-18 induced only IFN-y production and down-regulated Th2 cytokine production 

by spleen cells. Several recent reports show that IL-18-mediated effects on T cells, in 

the absence of IL-12 may extend beyond Thl differentiation to include type 2 

cytokine production (Yoshimoto et al., 2000; Wild et al., 2000; Hoshino et al., 2000).

We speculate here those different effects of IL-18 on spleen cells from different age 

and disease of MRLUpr mice is because of endogenous level of IL-12. As it was 

shown previously in Chapter 3, IL-12 is increased with age in MRL/lpr mice. 

Therefore at the early stages of disease, when there was low level of IL-12, IL-18 

induced both Thl and Th2 cytokines. The level of EL-12 was increased when the 

mice getting older, therefore synergistic effect of IL-18 and IL-12 induced higher 

amounts of IFN-y that inhibits Th2 cytokines production. These data taken together 

strongly suggested that production of IL-18 might be associated with the 

pathogenesis of SLE.
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Chapter 5

IL-18 accelerates autoimmune disease in MRIv^r mice
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Introduction

The foregoing data in Chapter 4 clearly indicated an association between IL- 

18 and SLE, and suggested a potential role for this cytokine in the pathogenesis of this 

disease. This potential role was next investigated in vivo using appropriate animal 

models. Several experimental models, which closely resemble human SLE, have 

been characterised as a means to understanding the pathophysiology and identifying 

new strategies for treatment.

Murine SLE is a model of human SLE because most of the immunological 

abnormalities fundamental to the human disease also appear to be operative in the 

mouse (Theofilopoulos and Dixon, 1985). There are many advantages in using lupus 

mice to study the disease development.

Firstly, lupus mice start to develop clinical disease at well-defined ages. This offers 

opportunities to study any existing defects in the mice, not only during but also before 

development of the clinical disease.

Secondly, variations in clinical presentation, diagnosis and treatment, as well as the 

effects of drug therapy may complicate the pathogenesis of human SLE. These are 

avoided in the mouse model.

Thirdly, some lupus mouse models like MRL/lpr are inbred mutant strains. These 

mice are genetically identical however, there may be some minor individual variation 

due to environmental influences or the stochastic process of mouse generation.

In addition, although most of the serological and histopathological abnormalities are 

common to all SLE mouse models, the onset of the disease differs considerably 

between strains. These strain-dependent differences in the onset of disease allow
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analysis of the relationship between disease kinetics and those immunological or 

physiopathological changes identified experimentally.

Thus, understanding the pathogenesis and aetiology of murine lupus should lead to a 

better comprehension of the human disease and of autoimmunity and immuno- 

regulation in general.

The aim of this chapter was to investigate the role of IL-18 in the evolution of the 

disease process of SLE in MRL/lpr mice. To generate sufficient EL-18, a recombinant 

murine IL-18 was produced and after analysing the bioactivity, it was used for in vivo 

studies. The aims of these in vivo studies were to examine the role of EL-18 in:

a) disease development including kidney pathology, vasculitis and skin lesion.

b) serum autoantibody profiles.

c) immune-complex deposition in the kidney.

d) Thl & Th2 cytokine production.

5.1 Production and bioactivity of recombinant murine EL-18

Recombinant murine EL-18 (rmEL-18) was produced by Escherichia coli Ml 5 

(Qiagen) transfected with a pQE-30 expression vector (Qiagen, Dorking, UK) 

carrying an insert encoding IL-18. This was generated in collaboration with Dr. Xiao 

qing Wei (Dept, of Immunology, University of Glasgow). The primer set pairs 

(Genosys, Cambs, UK) used to clone EL-18 from the cDNA of J774 cells was;

Sense GACACCATGGGCCGACTTCACTGTACAACCGC 

Antisense CCTAAGATCTATGTAAGTTAGTGAGAGTGA
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The protein was extracted under native conditions following induction with isopropyl- 

D-thiogalactoside (Bioline, London, UK) and purified as a 6 x histidine tagged fusion 

protein using a nickel agarose purification system (Qiagen). It was purified according 

to the manufacturer’s recommendation with some modification. Purity was assessed 

by SDS-PAGE electrophoresis and Coomassie blue protein staining which showed a 

single band at 19 kDa (Figure 5.1).

Recombinant IL-18 bioactivity was analysed by its abihty to induce IFN-y production. 

Murine spleen cells were cultured in micro-plates pre-coated with anti-CD3 antibody 

(2 ng/ml) and with rmIL-18 at different concentrations. The supernatant was 

collected after 48 hours and the level of IFN-y was measured by ELISA (Figure 5.2). 

Recombinant IL-18 induced significant IFN-y production in a dose-dependent 

manner. IL-18 used for in vivo studies were endotoxin fi'ee as showed by the limulus 

amoebocyte assay (Sigma). In some experiments, murine IL-18 purchased firom 

Pepro Tech EC Ltd (London, UK) was used.
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Figure 5.1 The purity of recombinant IL-18. The purified rIL-18 was assessed 
by SDS-PAGE electrophoresis and stained with Coomassie blue, which showed a 
single band at 19 kDa (arrow).
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Figure 5.2 Bioactivity of recombinant murine IL-18. Murine spleen cells from 

6-week-old BALB/c mice were cultured in 96-well plate pre-coated with anti-CD3 

antibody. The cells were stimulated with increasing concentrations of rmIL-18 (10- 

100 ng/ml). Recombinant IL-18 induced IFN-y production in a dose-dependent 

manner. Data are mean ± SEM (n=3, *p<0.05, **p<0.001 compared with control no 

IL-18).
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5.2 Recombinant IL-18 accelerates autoimmune disease in MRLUpr mice

To investigate the role of IL-18 in the induction and development of autoimmune

disease, this cytokine was administered to lupus M RL/^r mice and the onset of disease 

monitored. Numerous experimental models, which closely imitate human SLE, have been 

characterised as a means to understanding disease pathophysiology and identify new 

treatment strategies. The three animal models that have been studied in greatest detail are 

MRLUpr mice, NZB/W FI mice and BXSB mice. MRLUpr mice were used in this study 

because: 1) MRLUpr mice develop a spontaneous autoimmune disease and have been used 

extensively as a model for clinical SLE. 2) It has already been shown by oui' group that rm- 

IL-12 accelerated disease m MRLUpr mice (Huang et al., 1996). 3) At the time I planned to 

stait rmIL-18 treatment, MRL/^pr mice were the only available mmine lupus strain that could 

be obtained commercially.

Preliminary experiments were performed to define the appropriate doses for in vivo studies. 

The initial doses of cytokines in one preliminary experiment were chosen according to our in 

vitro experiments and the experience of our group (Huang et al., 1996). Preliminary 

expeihnent was performed on four groups of mice (n=5). The IL-18 group was treated with 

500 ng/mouse/day of rmIL-18 intraperitonealy (i.p), the IL-12 group was treated with 250 

ng/mouse/day i.p of IL-12, while the third group was treated with a combination of IL-18 

(500 ng/mouse/day) and IL-12 (250 ng/mouse/day). Finally, the control group was treated 

with the same volume of PBS alone. After 5 days, all the mice in the IL-12 + IL-18 group 

showed weight loss, diarrhoea and muscle wasting and one of the mice died. High 

concentration of IFN-y was detected in the serum of these mice. The rest of these mice 

recovered in thiee days after stopping the treatment the surviving mice. Therefore, the dose of 

IL-12 was reduced to 100 ng/mouse/day and it was well tolerated.
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The final protocol was as follows (Figme 5.3): 30 young (4 week old) MRLUpr mice were 

divided randomly into three groups. One group was given daily intraperitoneal injections of 

recombinant IL-18 (500 ng/mouse/day) for 60 days. The second group of mice was injected 

with the same volume (100 pl/mouse/daily) of PBS diluent. A third group received a 

combination of rmIL-18 (500 ng/mouse) and nnIL-12 (100 ng/mouse/day), because IL-12 is 

a major trigger for IFNy-dependent renal injury in MRLUpr mice (Huang et al., 1996; 

Schwarting et al., 1999). Moreover, IL-18 synergies with IL-12 in IFN-y production 

(Robinson et al., 1997).

The same protocol was used with wild-type MRL/-H- as control group (5 mice in each group).

Glomerulonephritis is a severe complication of the renal involvement which is the major 

cause of pathology and death in SLE (Theofilopoulos, 1992; Conien et al., 1985). The onset 

and progression of SLE was assessed by renal fimction as measured by grade of proteinuria. 

Proteinuria were monitored daily using commercial dipsticks and graded semi-quantitatively 

(0, trace, +1, +2, +3, +4). Mice were sacrificed when they were 12-13 week old and the 

histopathology of the kidney was examined.

A score of 2 + or greater was considered indicative of severe proteinuria, and mice exhibiting 

severe proteinuria on three or more successive occasions or at the final evaluation before 

sacrificing were considered positive for renal disease.

The effect of treatment on development of SLE is shown on Figure 5.4. Control MRLUpr 

mice injected with PBS developed the expected spontaneous disease; proteinuria appeared at 

around 9 weeks and progressed steadily throughout the study period. MRLUpr mice treated
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with nnIL-18 developed accelerated proteinuria compared with the PBS group. Significant 

divergence occurred as early as 32 days after treatment compar ed with the PBS and the IL-18 

+ IL-12 groups (Figure 5.4a).

The mice treated with a combination of rm-IL-18 and rmIL-12 developed proteinuria, which 

was indistinguishable from that of the PBS gr oup until day 43 after treatment. Thereafter, the 

level increased rapidly at a similar rate to the IL-18 treated group (Figure 5.4 a).

At the end of treatment, day 60, the rmIL-18 group and the IL-18 + IL-12 group had 

significantly greater proteinuria (renal disease) than the PBS control group (p<G.Q08, Log 

rank test, Kaplan-Meier survival analysis). There were no significant differences between IL- 

18 and IL-18 + IL-12 group. None of these cytokine treatments affected the renal function of 

wild-type MRL/++ mice (Figure 5.4b).
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Figure 5.3 The protocol used to assess the role of rmIL-18 in the development of 

lupus disease in MRL/(pr mice.

143



a)

c)

MRL/lpr
4

PBS
IL18
IL12+IL18

3

2

1

0

b) MRL/+ +

PBS
IL-18
IL18+IL12

^    1   1   1-
0 10 20 30 40 50 0 10 20 30 40 50

Days of treatment

N=
^  100 

S
% 80

ec
>
t
3C/3

60

40

20

0.0

Survival Functions (Kaplan-Meier) 

WÊmmÊÊÊÊîÈââàéktÉÉn-irirr>
OCDOODOO

nm  +

-O— PBS group 

A IL-18 group 
#  IL-18+ IL-1'2 group

+

0 5 10 15 20 25 30 35 40 45 50 55 60

Days of treatment

Figure 5.4 The onset and progression of SLE was assessed by renal 

function: grade of proteinuria. Proteinuria was measured daily in MRL/lpr mice 

and MRL/-H- control mice treated with daily i.p. injections of PBS (controls) or rmEL- 

18 or combination of rmIL-18 and rmIL-12.

(a) At the end of experiment both IL-18-treated mice and IL-12 plus IL-18-treated 

mice had significantly higher proteinuria than the PBS controls (*p<0.05, 

ANOVA).
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(—► Figure 5.4 legend continued);

(b) Recombinant IL-18 or a combination of rIL-12 and rIL-18 had no effect on renal 

function of MRL/++ mice.

A score of greater than 2 + was considered indicative of severe proteinuria, and 

development of severe proteinuria in treated mice followed for 56 days. Mice 

exhibiting severe proteinuria on three or more successive occasions or at the final 

evaluation before sacrificing were considered positive for renal disease. The 

differences in disease frequency are statistically significant (Kaplan-Meier, Log- 

Rank: **p<0.008).
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5.3 Histological analysis of the kidney after administration of rmHj-18

After 60 days treatment (12-13 weeks of age) mice from different groups were 

sacrificed and the kidneys resected. Kidneys were bisected then fixed in neutral buffered 

formalin and embedded in paraffin wax. Haematoxylin and eosin (H & E) stained sections 

were coded and the severity of glomerulonephritis was graded on an arbitrary five-point 

scale by an experienced histopathologist (Dr. GBM Lindop, Department of Pathology, 

Glasgow University), on two different occasions. Kidney damage was assayed by the “ 

kidney pathology index” (KPI). Sections from both halves of the kidney were also screened 

for vasculitis and rated positive or negative. All sections were assessed blind, without the 

knowledge of the experimental group to which the animals belonged.

All mice at different stages of the disease showed typical lupus nephritis including 

segmental and global mesangial hypercellularity increased mesangial matrix, some 

capillary inflammatory cells, apoptotic bodies and tuft-to-capsule adhesions. The 

most severely damaged tissue also contained fibrin deposits, focal and segmental 

necrosis and crescents. Typical examples are shown in Figure 5.5.

The group of MRLUpr mice treated with rmIL-18 showed significantly more severe 

glomerulonephritis compared with the PBS control group (mean ± SEM, 3.9 ± 0.27 vs. 2.9 ± 

0.23, p<0.03, Figure 5.6a). Figure 5.6a also shows that the rmIL-18 + rmIL-12 group had 

more severe kidney involvement than the PBS group (4 ± 0.33, p<0.02, Mann-Whitney U- 

test). Theie were no significant differences between the IL-18 and the IL-18 + IL-12 groups. 

The histopathology results were compatible with the proteinuria levels in the different groups 

of the mice. The cytokine treatment had no pathological effects on the kidney of wild-type 

MRL/++ mice (Figure 5.6b).

146



I lf "a
A <• a ? »  , -  v.tSr-v*:̂ -

Figure 5.5 Photomicrograph of kidney sections from different treated groups of 

MRLHpr mice. Haematoxylin and eosin stained section representing:

(a) kidney involvement in PBS treated control group. This shows an enlarged glomeruli with 

global mesangial hypercellularity and containing a few inflammatory cells (grade 3 

glomerulonephritis).

(b) representing the rmIL-18 treated group showing global mesangial hypercellularity, more 

inflammatory cells, increased mesangial matrix and tuft-to-capsule adhesions 

(glomerolunephritis grade +4).

(c) representing the rmIL-12/rmIL-18 treated group showing a large glomerulus with addition 

focal necrosis, apoptotic bodies and a large crescent (grade 5 glomerulonephritis).

(d) representing MRL/++ control mice which were treated with IL-12/IL-18 and at the end of 

experiment showing a grade 1 of glomerulonephritis.
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Figure 5.6 A quantitative estimate of kidney histopathology in different 

treated groups of (a) MRLUpr mice and (b) MRL/++ mice. At the end of

experiment (day 60), kidneys were removed, foimalin-fixed and H & E sections were 

prepared. Histologic appearances in kidney were blindly scored (0-5) by an 

experienced pathologist on two different occasions. The mean of each group is 

presented by a line, (p value calculated by Mann-Whitney U-test). (b) There was no 

pathological effect on the kidney of wild-type MRL/++ mice.
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5.4 Vasculitis after administration of rmIL-18
One of the clinical manifestations of human SLE and lupus mouse models is

vasculitis. Vasculitis in MRL//pr mice involvmg mostly medium-sized arteries of the 

kidney, genital organs and heart (Andrews et al., 1978). Sections from both halves of 

the kidney were assessed for vasculitis and rated positive or negative

Figure 5.7a shows that all the mice treated with a combination of rmIL-18 and rmlL- 

12 had vasculitis; 6 out of 10 of the mice treated with EL-18 had vasculitis. In the 

control PBS group just 4 of 10 mice had vasculitis (Figure 5.7a). The rmEL-18 + 

rmIL12 treated group had significantly more vasculitis than PBS (p<0.001, Fisher 

test). There was no significant difference between PBS and EL-18 treated groups.

Vasculitis predominantly affected the origins of the radial aiteries in the deep cortex. 

There was fibiinoid necrosis in the arterial media and prominent periarteritis (Figure 

5.7b). These changes occurred in a background of focal chronic pyelonephritis and 

lymphoproliferative disease that occurs spontaneously in this model. Figure 5.7c 

shows a positive immunofluorescent staining for IgG in similar kidney with severe 

vasculitis from a mouse treated with EL-12 plus IL-18 shown in the Figure 5.7b.
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Figure 5.7 Vasculitis in dilTerent groups of treated MRL///ir mice.

(a) All the mice treated with a combination of rmIL-18 and rmIL-12 had some vasculitis 

(**p<0.001,*p<0.05, non-parametric Fisher test), (b) This H & E stained section from a 

mouse treated with rmIL-12 plus rmIL-18 shows a large renal artery and a smaller radial 

artery (arrow) with vasculitis and florid periateritis (c) Positive immunofluorescent staining 

for IgG in similar kidney section in Figure 5.7b.
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5.5 IL-18 treated MRLUpr mice developed lupus-associated facial rash

About a third of patients with SLE have cutaneous involvement that commonly takes 

the form of a photosensitive erythematosus rash with malar distribution described as a 

butterfly rash. There are no reports of a similar facial skin lesion in MRL/lpr mice 

resembling the malar rash of human SLE.

The PBS control group did not show any skin lesion (Figure 5.8a). Six of 10 MBLilpr mice 

injected with rmIL-18 developed skin rashes, most prominently on the malar region of the 

whisker pad (Figure 5.8b). This occurred after 34 days treatment and with variable severity. 

MRL/lpr mice treated with the combination of rmIL-18 and rmIL-12 showed no facial 

lesions despite developing more severe glomerulonephritis and vasculitis (Figure 5.8c). The 

facial skin lesions in the IL-18 treated mice peaked around 9 weeks old and did not disappear 

by the time the mice were sacrificed. None of the treated wild-type MRL/++ mice developed 

skin lesions (pathology analysis in chapter 6).

There are other skin manifestations which spontaneously develop in MRL/lpr mice and these 

have been evaluated as a dermatological model of human systemic lupus erythematosus 

(Furukawa et al., 1982; Horiguchi et al., 1984). The skin lesions are mainly on the ears, back 

and abdominal skin of the mice, and do not appear before 14 week age (Furukawa et al., 

1984).

At the age of 12 weeks when the mice were sacrificed about 50% of the IL-18 treated 

MRL/lpr mice (5 of 10 mice) had lesions on the ears, back and abdominal skin, which was 

early for this age and some of them were very severe. However, they were the typical skin 

lesion of MRL/lpr mice (Figure 5.8d).
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Figure 5.8 Recombinant IL-18 treatment induced a facial rash in MRL//pr mice.

(a) In the PBS MRL/lpr control group there were no skin lesion.

(b) Six o f 10 MRL/lpr mice after 5 weeks treatment with rmIL-18, developed spontaneous 

skin rashes, most prominently at the malar region of the whisker pad.

(c) MRL/lpr mice treated with rmIL-18 + rmIL-12 showed no sign of facial skin lesions 

despite developing more severe glomerulonephritis and vasculitis.

(d) At 12 weeks when the mice were sacrificed, 5 o f 10 MRL/lpr mice in the IL-18 treated 

group developed skin lesions on the back, ears or abdomen.
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5.6 Immune complex deposition and development of glomerulonephritis

Glomerulonephritis in SLE is believed to be due to immune complex (IC) deposition 

and complement activation. It is the major cause of pathology and death therefore reflecting 

severity of the disease, hnmunofluoresence staining was performed on frozen sections of 

kidney from different groups of the mice to assess whether treatment with rmIL-18 and rmlL- 

12 had any effect on immune complex deposition.

To detect IgG deposits, the tissues were snap frozen in an isopentane bath cooled in liquid 

nitrogen. Frozen sections embedded in OCT (optimised cutting temperature) were cut at 5 

pm thickness. Sections were then incubated with FITC conjugated goat anti-mouse IgG 

(Dako). The section was read blind and intensity of positive staining assessed according the 

number of positively stained glomeruli.

Figure 5.9 shows that stronger fluorescent staining was observed in the sections which had a 

higher degree of glomerulonephritis. The more severe glomerulonephritis in each group 

showed stronger staining for IgG deposition.
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Figure 5.9 Immune complex deposition in the kidney of MRL//pr mice in different 

treated groups. Immunofluoresence staining was performed on frozen sections of kidney in 

the different groups of mice.

(a) kidney with grade 2 of glomerolunephritis.

(b) kidney with grade 4 glomerulonephritis had stronger fluorescent staining than grade 2.

(c) The strongest staining was observed with more severe kidney involvement (grade 5).
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5.7 Serum IgG anti-ds-DNA antibody isotypes in MRL/(pr mice

Measurement of anti-nuclear antibodies (ANA) has been a basic laboratory 

test for many years and the presence of these antibodies is a standard criterion for the 

diagnosis of SLE. Among the autoantibodies that are present in the serum of patients 

with SLE, those that bind to double-strand DNA (ds-DNA) remain of paramount 

interest. Many papers (Swaak et al., 1997; Spronk et al., 1995) have concluded that 

the levels of anti-dsDNA antibodies generally reflect clinical disease activity; though 

not in all patients (Gharavi et al., 1998). A pathological role for anti-ds-DNA 

antibodies appears to be particularly tine for renal disease, and most of the evidence 

that anti-ds-DNA antibodies are pathogenic has been collected from studies of the 

kidney. Okumora and colleagues (1993) have demonstrated that disease activity is 

correlated with IgG against ds-DNA but not IgG against (single strand) ss-DNA or 

IgM against either ds-DNA or ss-DNA. As in human lupus, the lupus-like mouse 

models produce elevated levels of total immunoglobulins and autoantibodies (such as 

anti-dsDNA) and are thought to develop nephritis and arteritis as a result of 

deposition of immune complexes involving autoantibodies in the kidney or arteries.

Sera from different tieatment groups of MRLUpr mice were assessed for levels of 

auto-antibodies against ds-DNA (Figure 5.10). The results showed no significant 

differences between the groups of treated mice for the total anti-dsDNA antibody 

production. However, as Figures 5.10 b and 5.10c show, rmIL-18 andrmIL-12/rmIL- 

18 treated mice produced significantly higher level of IgG2a anti-ds DNA antibodies 

(p<0.05), which are typically produced during a Thl response, compared with 

controls. Titres of anti-ds-DNA IgGl were also elevated in IL-18 recipients 

compared with IL-12/IL-18 treated group (Figure 5.10c, p<0.05).
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Figure 5.10 Anti-DNA antibody isotype in the serum of different treatment 

groups of MRL/(pr mice. Anti-DNA antibody isotypes, total IgG (a), Ig02a (b), 

IgGl (c), were measured at the end of treatment (day 60) by ELISA. Data are 

expressed as arbitrary units/ml (compared with standard serum from 5 month old 

MRL///?r mice, Mann-Whitney U-test).
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5.8 Serum cytokine levels in different treated group of mice

To study the influence of IL-18 and IL-18 plus IL-12 on cytokine profiles in 

MKLHpr mice, serum samples were analysed for the presence of IFNy, IL-10, IL-4, 

IL-5, TNF-a and Nitrite / Nitrate (NO) at various time points associated with the 

disease. Serum cytokine levels were measured by ELISA and NO2/NO3 serum levels 

were assayed by a modified Griess method (Chapter 2).

The levels of senim cytokines and NO in control PBS treated MRL/lpr mice and in 

mice treated with rmIL-18 or a combination of rmIL-18 and imIL-12 are shown on 

Figure 5.11. IFN-y was significantly increased in the EL-12 + IL-18 group (mean ± 

SEM, 121.3 pg/m ± 17.8, p<0.002) and the imIL-18 treated group (78.8 ± 11.3, 

p<0.04) compared with the PBS control group (45.8 ±9.6). Although the sera of the 

IL-12 plus EL-18-treated mice contained more IFN-y than the EL-18 group, the 

difference between them was not significant. Significant reductions of lE^lO were 

observed in the EL-18+IL12 group (59.6 ± 2.3, p<0.001) and in the EL-18 group (60.9 

± 3.2, p<0.001) compared with the PBS treated mice (217.2 ± 27.9). Serum IE^4 and 

EL-5 was undetectable in all groups of mice.

The level of TNF-a in the IL-18 plus EL-12-treated group was significantly higher 

than PBS group (263 ± 63.7 versus 103 ± 24.9, p<0.041) but the increment in TNF- a  

in the rmll^lS treated group was not significant (192.5 ± 74.9) compared with the 

PBS treated group. A similar enhancement of NO levels was observed in the IEv-12 + 

IL-18-treated group (93.4 ± 12.1 pM, p<0.003) compared with the PBS group (39.8 ± 

3) but there was no significant increase in NO in the EL-18-treated mice (73.2 ± 16.8, 

p<0.087).
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Figure 5.11 Serum cytokine and NO2/NO3 levels in MRL/lpr mice and the 

effect of IL-18 or rmIL-18 plus rmIL-12 treatment Serum cytokine levels from 

different groups of mice were collected at the end of treatment (day 60). Serum 

cytokine levels were measured by ELISA and NO2/NO3 serum levels were analysed 

by a modified Griess method (p value was calculated by Mann-Whitney U-test).
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5.9 Does in vivo rmIL-18 treatment result in a phenotypic shift of T-helper 

subsets.

We next determined whether the altered disease phenotype in rmIL-18 and 

imIL-18 plus nnIL-12 treated mice was due to the a shift of Thl or Th2 related

cytokines. Spleen cells (4xl0^/ml) were harvested fi'om mice (n=10) at the end of 

experiment (day 60) and stimulated with the mitogen concanavalin A (Con A). After 

48 hours supernatants were collected and cytokine levels measured by ELISA.

IFN-y Spleen cells from the XL-18-treated mice produced more IFN-y (mean ± SEM, 

2890 ± 98 pg/ml, p<0.05) than control mice (1627 ± 78 pg/ml) in response to Con A 

(Figure 5.12). Synergistic enhancement of IFN-y production by spleen cells was 

evident in IL-18/IL-12 treated mice (5720 ±390 pg/ml, p<0.001).

IL-10 Spleen cells from the IL-18-treated mice produced less IIv-10 (59 ± 16pg/ml, 

p<0.001) than conti'ol mice in response to Con A, indicating suppression of Th2 

responses (Figure 5.12). There were no significant differences between the rmIL-18 

treated group and the rmIL-12/imII^18 treated mice (71 ± 18 pg/ml) for IL-10.

IL-5 As Figure 5.12 shows, the IL-18 group was not significantly differ from the PBS 

group in 11̂ -5 production. IL-5 production was further and significantly inhibited by 

EL12/IL-18 treatment (mean ± SEM, 25 ± 2 pg/ml). IL-4 was undetectable in all 

treated groups.

TNF-a TNF-a production was significantly increased in IL-12/IL-18 treated mice 

(375 ± 30, p<0.05) but there were no significant differences between the levels in the 

IL-18 treated group (260 ±19 pg/ml) and control mice (185 ± 25).
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After sacrifice, peritoneal cells fi'om each MRLUpr cytokine treatment group were 

pooled and stimulated with LPS and IFN-y to assess NO2 and IL-18 production. As 

Figure 5.13a shows peritoneal cell from IL-18 (mean ± SEM, 62±10 pM, p<0.05) and 

IL12 plus IL-18 treated mice (79 ± llpM , p<0.05) produced significantly more NO 

than PBS group (34 ± 9 pM). IL-18 and IL-12 / IL-18 group spontaneously (without 

stimulation) produced more IL-18 than PBS treated mouse (Figme 5.13b, p<0.05).
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Figure 5.12 Thl & Th2 related cytokine production by spleen cells from MRL/lpr 

treated mice. Pooled spleen cells were harvested from different treated groups (5 mice in 

each group) and stimulated with concanavalin A (Con A) or culture medium (CM) control. 

Cytokine levels in the culture supernatants at 48 hours were measured by ELISA. IL-4 was 

not detected in any o f the supernatants.

Data are mean ± SEM of triplicate cultures (*p<0.05; **p<0.001, by Student's t-test).
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Figure 5.13 NO2 and IL-18 production by peritoneal cells from MRL/lpr treated 

groups Pooled peritoneal cells from different groups (5 mice in each group) were cultured 

with or without LPS and IFN-y. Culture supernatants were collected after 72 hours. IL-18 

was measured by ELISA and N02 measured by Griess reaction.

(Data expressed by mean ± SEM (*p<0.05, Student’s t-test).
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5.10 Cytokine levels in the serum and spleen culture supernatants from 

MRL/++ treated control groups

MRL/lpr mice differ from the MRL/++ mice in the impairment of 

transcription of the gene encoding Fas antigen. Therefore, MRL/++ mice is a very 

ideal control group for MRL/(prmice experiment.

The level of IFN-y in the IL-12 + IL-18 treated group was higher than PBS contiol 

group (165 ± 21 versus 82 ± 28, p<0.05). There were no significant differences 

between the IL-18 group (110 ± 16) and the PBS group (Figure 5.14a). The level of 

IL-10 in the IL-12 + IL-18 group was significant decrease (p<0.002), (mean ± SEM,

32 ± 5 versus 108 ± 14) compared with PBS treated mice. IFN-y was not 

significantly different between the PBS and the IL-18 group (Figure 5.14a). IL-4 

and IL-5 levels were undetectable in the serum of the MRL/++ mice.

Pooled spleen cells from each group of treated MRL/++ mice (5 in each group) were 

cultured with or without Con A (5 pg/ml). Culture supernatants were collected after 

48 hours to assess cytokine production by ELISA. Cells from the IL-12/IL-18 treated 

mice produced more IFN-y than the PBS control mice (mean ± SEM: 890 ± 46 vs. 

310 ± 15 ng/ml). There was no significant difference between the IL-18 group and 

the PBS group. IL-12 / IL-18 treatment significantly suppressed IL-10 production by 

MRL/-H- spleen cells (p<0.001. Figure 5.14b).
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Figure 5.14 Cytokine levels in the serum and culture supernatants of MRL/++ mice, 

(a) Pooled sera (n=5) were collected at the end of treatment (day 60) and cytokines analysed 

by ELISA. Data are mean ± SEM (*p<0.05 and, Mann-Whitney), (b) Spleen cells were 

collected and pooled (n=5) from different treated groups and cultured with Con A for up to 48 

hours. Cytokines were measured by ELISA. IL-4 and IL-5 were undetectable in culture 

supernatants. Data are expressed as mean ± SEM (**p<0.001, Student's t-test).
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Discussion

The role of IL-18 in systemic autoimmnnity was investigated here by studying the 

effects of a recombinant IL-18 on the development of autoimmune disease in the (MRL//pr) 

murine model of SLE, We tried to stimulate constitutive IL-18 levels by daily intraperitoneal 

injection of imIL-18, intraperitoneally, into young MRL/lpr mice. Our data suggest that 

imIL-18 promotes the spontaneous development of lupus-like glomerulonephritis, vasculitis 

and skin lesions. Recombinant IL-18 also induced a facial rash, resembling malar rash in 

human SLE, at the early stage of the disease. This acceleration of the disease occurred in 

association with marked changes in the Thl and Th2 cytokines and changes in the IgG 

subclasses rather than in the total levels of anti-DNA antibodies. This was accompanied by a 

similar modulation of the IgG subclass of T cell-dependent antibody responses, but not T 

cell-independent antibody responses, suggesting a causal link between IFN-y, up-regulation 

of Thl autoimmune responses, and acceleration of SLE disease.

Although polarised T helper 1 (Thl) responses have been implicated m the pathogenesis of 

organ-specific autoimmune diseases, little is known about the role of cytokines produced by 

Th-cell subsets in the development of auto-antibody mediated disease. Because Th2 

cytokines are associated with B-cell help, the pathogenic effect of auto antibodies in SLE 

favours the theory that a humoral Th2 response is responsible for the disease rather than a 

cell-mediated Thl response (Horwitz et al., 1998; Funauchi et al., 1998). However, despite 

the popular notion that a predominant Th2 phenotype is essential for such disease, recent 

evidence suggests that CD4+ T cells involved in SLE might also induce a Thl subset 

(Takahashi et al., 1996; Reininger et al., 1996).
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IL-18 has been identified as a critical regulatoiy factor in the evolution of Thl immune 

responses, usually acting in synergy with IL-12 (Takeda et al., 1998). At the end of 

experiment, in the serum of IL-18 treated mice IFN-y increment and IL-10 decreasing were 

noticed. IL-18 had a synergistic effect with IL-12 when injected i.p. in IFN-y production. 

Despite higher level of IFN-y by IL-12/ IL-18 group, they did not show significantly more 

severe glomerulonephritis than the groups treated only with IL-18. It shows that the 

mechanism by which SLE disease prompted is unlikely to be just due to Thl response. 

Proteinuria in IL-18 treated group began earlier than the IL-12 / IL-18 group, and at the early 

stages of treatment IL-12/ IL-18 group shows less proteinuria even less than PBS control 

group. The isotype, of anti-DNA antibody response in IL-18 recipients was not restricted to 

IgG2a, suggesting effects beyond Thl-mediated B cell help. These data suggest in vivo 

effects for IL-18 in the development of glomerolunephritis in the lupus-like model that 

extend beyond T cell differentiation.

From these data it might be speculated that at the early stages of the disease a strong Thl 

response could delay proteinuria in IL-12 / IL-18 treated mice. Possibly because a strong 

Thl response caused more Th2 suppression and it seems that Th2 cytokines are necessary 

mainly at the early stages of the disease to help auto-reactive B cells to produce autoantibody. 

However, the amount of IFN-y induced by combination of rmIL-12 and imIL-18 was not 

enough to suppress Th2 response completely. Therefore, they still produced anti-DNA 

antibodies but less than the two other groups. However, when autoantibodies reached to a 

threshold level, a stronger Thl response, which is necessary for destruction of the target 

tissues, accelerated the disease.
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The isotype, of anti-DNA antibody response in 11^18 recipients was not restricted to IgG2a, 

suggesting effects beyond Thl-mediated B cell help. The reason that why in IL-18 treated 

mice the proteinuria appeared earlier than IL12/IL-18 group might be explaiued by the 

hypothesis that IL-18 can induce Th2 cytokines in the absence of endogenous IL-12 at the 

early stages of the disease (Figure 3.1). Therefore, IgG anti-DNA antibodies were produced 

in larger amounts at the earlier stage of disease in IL-18 treated mice, and when the level of 

endogenous IL-12 rose in an synergistic effect, it was switched to more Thl (IFN- y) response 

which is necessary for organ destruction. This theory is consistent with the data showing 

both Thl (IFN-y) and Th2 (IL-4) cytokines are necessary in the pathogenesis of SLE (Peng 

et al., 1997).

Another possible mechanism for the involvement of EL-18 in SLE is due to IFN- y production. 

IL-18 induces IFN-y production that up-regulates MHC class II on antigen presenting cells, 

leading to effective presentation of T-cell epitopes and the activation of T-cells (Halloran et 

al., 1992). The results from IFN-y -/- MRL/lpr and mercury-treated IFNy -/- mice show that 

this cytokine is required for auto-antibody generation of either Thl or Th2 associated 

isotypes, probably by enhancing autoantigen presentation (Balmenos et al., 1998; Haas et al., 

1998).

Both Thl and Th2 cytokines activate B cells to secrete antibodies, one possible answer to 

why Thl pathway is essential for the development of SLE, is through differential effects on 

the CD27-CD27L costimulatory pathway during cognate T and B-cell interaction (Hintzen et 

al., 1994). This pathway plays a crucial role in the humoral immune response. CD27 is a 

disulphide-linked 120 kDa tiansmembrane glycoprotein expressed on the T and B cells that 

has homology to the tumour necrosis factor (TNF) family of molecules (Goodwin et al.,
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1993). CD27-CD27L costimulaioii leads to B-cell activation and differentiation of B cells 

into Ig-producing plasma cells (Jacqout et al., 1997; Kobata et al., 1995). An interesting 

recent study showed that the Thl cytokine IFN-y up-regulates, whereas IL-4 down-regulates 

the expression of CD27L on B cells, thereby differentially modulating the CD27-CD27L 

costimulation pathway (Hartwig et al., 1997). Overexpression of IL-4 transgene by B cells 

completely prevented the development of lethal lupus-like glomerulonephritis by reducing 

the Thl-predominant IgG2a and IgG3 Antibodies in a murine model of systemic lupus 

erythematosus (Santiago et al., 1997). The differential regulation of CD27L on B cells by 

Thl (IFN-y) and Th2 (IL-4) cytokines might represent the point at which the Thl and Th2 

cytokine responses differentially modulate the pathogenic humoral immune response.

It is significant that a relatively enhanced activation of Thl vs. Th2 type cells, leads to 

increased production of IgG2a and IgG3, but to a diminished production of IgGl. It is 

associated with acceleration of lupus nephritis in MRL mice bearing the Ipr or Yaa gene. 

This is highly relevant to the immunopathogenesis of lupus nephritis. Since murine IgG2a, 

but not IgGl, antibodies activate for better the complement system, the complement 

activating IgG2a autoantibodies can be more nephritogenic than IgGl autoantibodies 

(Takahashi et al. 1996; Bemey et al., 1992; Takahashi et al., 1991). Therefore, IL-18 alone 

or in synergistic effects with EL-12 enhance glomerolunephritis in lupus mice might be due 

to IgG2a anti-DNA Antibodies increment.

The promotional effect of imEL-18 treatment is thus likely to be a result of a up-regulation of 

Thl responses involved in autoantibody production in this murine SLE model. This notion is 

supported by a recent observation that the progression of lupus nephritis in MRL mice 

bearing the Yaa or Ipr (Fas) mutation correlates with an increased production of IgG2a and
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IgG3 versus IgGl antibodies in parallel to an enhanced expression of IFN-y versus IL-4 

mRNA by CD4+ T cells (Takahashi et al., 1996). In addition, it has been shown that 

repeated injections of recombinant IFNy can accelerate the development of SLE, and 

treatment with anti-IFN-y monoclonal antibody (mAb) or soluble IFN-y receptors can inhibit 

the progression of SLE in (NZB x NSW)F1 mice (Jacob et al., 1987; Ozmen et al., 1995). In 

addition, the complement activating IgG2a antibodies may be more nephritogenic than IgGl 

antibodies.

It should not be assumed that autoimmune manifestations of the SLE disease are based solely 

on a Thl type autoimmune response, since Th2 type cytokines such as IL-6 and IL-10 are 

apparently involved (Finck et al., 1994; Ishida et al., 1994), perhaps in relation to cytokines' 

ability to augment the overall production of pathogenic autoantibodies by promoting the 

terminal differentiation of activated B cell (Hakomota et al., 1986; Kishimoto, 1989; Rousset 

et al., 1992). In fact, many immune responses do not reflect an absolute Thl or Th2 pattern, 

but seem to be functionally dominated either by Thl (IFN-y) or Th2 (IL-4) cytokines (Paul et 

al., 1994), and therefore, as suggested by a study of Klinman and Steinberg (Klinman et al., 

1995), an altered ratio of IFN-y / IL-4 producing T-cells could determine the nature, strength, 

and duration of systemic autoimmune responses. It should also be noted that the spontaneous 

production of IgG anti-DNA autoantibodies in lupus-prone (NZB x NSW)F1 mice was 

shown to reflect the intrinsic abnormality of B cells, as well as their hyperactivity to normal 

levels of immunostimulatoiy cytokines such as IL-5 (Herron et al., 1988; Reininger et al., 

1992).

Among the non-immunologic mechanisms, enhanced monocyte activation and phagocytosis, 

oxidative stress and nitiic oxide (NO) productions aie likely candidates. With regard to NO, it
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has been shown increased production in MRL/lpr mice (Huang et al., 1996; Weinberg et al.,

1994), and prevention of glomerulonephritis upon oral administration of a nitiic oxide 

synthase (NOS) inhibitor (Weinberg et al., 1994). Our studies show a significant NO 

increment in the serum of IL-12 / IL-18 treated mice, but not in IL-18 treated group. 

However, peritoneal cells from EL-18 treated mice produce significantly more NO than PBS 

control. Serum NO level in IL-12 / EL-18 treated group had a significant correlation with 

vasculitis (i^0.438) but not with glomerulonephritis (i=0.194). Our results are consistent 

with the study that shows reduction in vasculitis in iNOS -/- mice (Güeson et al., 1997). 

However, We postulate that local tissue specific NO production might be important, 

especially for the development of renal pathology. Cells most likely to contribute to local 

NO production in the kidney are vascular endothelial cefis and mesangial cells (Lincoln et al., 

1997).

In conclusion, in conjunction with previous investigations (Jacob et al., 1987; Ozmen et al., 

1995; Takahashi et al., 1996; Huang et al., 1996 and Balomenos et al., 1998) this study 

strongly points to the significant contribution of heightened IFN-y production in the 

pathogenesis of murine lupus. Other cytokines such as TNF-a (Jacob et al., 1988), IL-12 

(Huang et al., 1996) and NO (Weinberger et al., 1997) have also been experimentally 

manipulated to affect serologic and histologic manifestation of murine lupus. In this regard, 

EL-18 as a cytokine that can regulate NO and pro-inflammatory cytokines might be important 

candidate in SLE pathogenesis.
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Chapter 6

Recombinant IL-18 induces a facial rash on MRL/^r 

mice resembling Malar rash in human SLE
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Introduction

The most characteristic skin manifestation of SLE is a "butterfly" rash on the 

face (Figure 6.1), which is an erythematous or maculopapular eruption, which 

appears over the malar regions and the bridge of the nose giving a butterfly shape. It 

is usually aggravated by exposure to sunlight or to ultraviolet light. Pathology of the 

skin demonstrates immunoglobulin and complement deposits along the dermal- 

epidermal junction (Petri, 1996). It is most likely because of interactions of nuclear 

proteins, autoantibodies to nuclear proteins, and complement. The antigen-antibody 

interactions at the derma-epidermal junction may also involve autoantibodies to other 

skin elements such as the epidermal basement membrane and to the kératinocytes 

(Aiba et al., 1989).

Figure 6.1 Malar rash in systemic lupus erythematosus.

The pathogenesis of the skin lesion is unknown. One possible contributing factor is 

exposure to sunlight and ultraviolet light which may enhance epidermal cell death 

and apoptosis, in particular in an SLE background where apoptotic regulatory defects 

are evident (Cascicol-Rosen and Rosen, 1997). One mechanism proposed for this 

disease process involves the formation of UV induced apoptotic blebs containing 

DNA released in the skin might act as autoantigens, and become a target 

autoantibody production with the development of a local, or systemic, inflammatory
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response. This hypothesis is supported by the observation that ultraviolet B light 

increases the binding of autoantibody pro to Ro(SS-A) and La(SS-B) nucleo-protein 

antigens on kératinocytes in a dose-dependent manner (Emeiit & Michels on, 1984; 

Furukawa et al., 1990).

MRL/Mp-(pr mice are known to have many clinical characteristics similar to human 

SLE. Their skin lesions develop spontaneously and this has been used as a 

dermatological model of human systemic lupus erythematosus (Furukawa et al., 

1982; Furukawa et al., 1984; Horiguchi et al., 1984; Furukawa et al., 1984). The skin 

lesions are mainly on the ears, back and abdominal skin, and rarely appears before 14 

week age (Furukawa et al., 1984). The lesions consist of hair loss, scab formation, 

and bleeding.

The immunofluorescent lupus band pattern produced on the skin of MRL/lpr mice is 

different from that produced on human SLE skin. Lupus band test is seen beneath 

the acanthotic epideimis of the lesional skin and they are a continuous granulai' 

reaction. The basal membrane zone (BMZ) shows a relatively weak reaction minimal 

deposition of complement components in the skin (Horiguchi et al., 1986).

Facial skin lesions in MKL/lpr mice resembling the human malar rash have not been 

reported. However, observations reported in this thesis (Chapter 5) demonstrate that 

sixty percent of MRL/lpr mice injected with IL-18 developed skin rashes, most 

prominently at the malar region, about 34 days after starting the treatment (9 week- 

old, Figure 5.13). MRL/lpr mice treated with a combination of IL-18 and IL-12 

showed no sign of skin rash. This suggested that the balance of function of IL-18 and 

IL-12 might have an important role in the immunopathogenesis of the facial skin rash 

and perhaps other clinical aspects of SLE.
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To further investigate the role of IL-18 in the lupus skm lesion, we repeated the 

protocol outlined in Chapter 5 (Figure 6.2). The mice were sacrificed just after the 

appearance of the lesions to assess:

i) Whether a commercial IL-18 causes facial skin lesion in MKLHpr mice.

ii) the histology of the lesions immediately after appearance the facial lesions.

ii) Immune-complex depositions in the skin by immunofluorescence or 

Lnmunocytochemistry

iii) the role of apoptosis in the skin lesions.

iv) the effect of IL-18 treatment on in vivo cytokine profiles and anti-DNA 

antibodies.

6.1 Recombinant IL-18 induces a facial rash in M SLilpr mice

Forty-five young (4-week-old) MRLUpr mice were divided randomly into 

three groups. Recombinant murine IL-18 (IL-18) was purchased from PerproTech 

(UK). One group of the mice was injected daily with IL-18 (500 ng/mouse/day, i.p.). 

Control mice were injected with the same volume (100 ul/mouse/daily) of PBS. The 

third group received the combination of EL-18 (500 ng/mouse) and rmIL-12 (100 

ng/mouse/day).

The IL-18 treated mice developed skin rashes, most prominently on the malar region 

of whisker pad (Figure 6.3 & 6.4). This occurred 40 days after treatment in 4 of 5 

mice with different severity. The facial skin was maximum at 10-11 weeks of age 

and the mice were sacrificed at that time to assess the pathology changes in the skin 

lesions. Control MRLHpr mice treated with PBS or IL-18+EL-12 showed no facial 

skin lesions (Figure 6.3 & 6.4).
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IL-18 and skin lesion in Ipr mice

BS control 
group

PBS injection

f  IL-18 A  
I group J

rm-IL-18 
(500 n^mouse/daily)

i.p. injection

IL-18 IL-12 
group

nn-IL-18(500 ng/mouw/daily)
+

nn-IL-12 (100 ng/mouse/daily)

Sacrifice the mice after appearance of skin lesion, 
2 weeks and 4 weeks treatment

I
Thl and Thlcytoldnes IgGl, IgG2a#ii^M^bodies

Figure 6.2 Protocol used to assess the role of rmIL-18 in the development of 

facial skin lesion in MRL/Zpr mice resembling malar rash in human SLE.
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6.2 Skin histopathology

After 42 days ti’eatment, at 11 weeks, the mice were sacrificed. Skin tissue 

was fixed in neutral buffered formalin and embedded in paraffin wax. Sections were 

stained with haematoxylin and eosin and periodic acid schiff. The sections were 

analysed by two experienced pathologists.

The skin lesions showed thickened epidermis with acanthosis and hyperkeratosis. In 

occasional animals the skin was excoriated; however apart from those areas, the basal 

layers of the epidermis was intact. The dermis contained an intense mflammatoiy 

cell infiltrate consisting mainly of a lympho-histocytic population. Polymorphs were 

also present even in cases where the skin was not broken. In contrast, untreated mice 

had a minimal increase in chronic inflammatory cells mainly small lymphocyts 

(Figure 6.3 and 6.4). In the IL-18 plus IL-12 treated group there were some 

infiltering lymphocytes and these tended to form loose aggregates associated with the 

skin appendages and more hyperkeratosis than the PBS control group (Figure 6.3b 

and 6.4b). Vasculitis was only identified in the skin of one animal in the EL-12 / IL- 

18 group.
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Legend for Figure 6.3 and 6.4:

Recombinant IL-18 induces a facial rash in MSLHpr mice.

(a) Upper panel shows the characteristic red "butterfly" symmetrical skin rash in 

mice treated with IL-18 (centre) and none of the untreated mice (left) or those 

treated with IL-12+EL-18 (right). Mice injected with IL-18 developed 

spontaneous skin rashes, most prominently at malar region of the whisker pad 

with total disappearance of hair in the affected area.

(b) The lower panel shows representative histological sections (Fig. 6.3: 

magnification x 100 ; Fig. 6.4: magnification x 200). The IL-18-treated mice showed 

thickened epidermis with acanthosis and hyperkeratosis. The dermis contained an 

intense lympho-histocytic inflammatory. Control mice showed no inflammatory 

changes (left) whereas in the IL-12+IL-18 group there was inflammatory infiltrate 

and a slight thickening of the epidermis.
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6.3 In vitro cytokine production after in vivo IL-18 treatment

Spleen cells from each group were pooled and cultured as a single-cell 

suspension (2x10^ viable cells/ml) in 24-well plates pre-coated with anti-CD3 

antibody (2 pg/ml) in standard culture conditions. After 48 hours, supernatant was 

collected to assess the production of the cytokines IL-4, IL-5, IL-6 , IL-10, IFN- y and 

TGF-3 by ELISA (Figuie 6.5).

Spleen cells fi*om IL-18-treated mice produced more IFN-y than control mice (mean 

± SEM, 890 ± 40 pg/ml vs. 470 ± 1 0  pg/ml, p<0.05) in response to anti-CD3 

antibody. Synergistic enhancement of IFN-y production by spleen cells was evident 

in IL-18/IL-12 treated mice (1450 ± 60 pg/ml, p<0.001).

Spleen cells from the IE-18-treated mice produced significantly less IL-10 (36 ± 6 

pg/ml, p<0.05) than control mice in response to anti-CD3, indicating suppression of 

Th2 responses. The suppression of IL-10 production was more pronounced m spleen 

cells fi'om IL-12/IL-18 tieated mice.

IL-5 and IL-4 production was detectable only in the conti'ol PBS-treated group 

(respectively, 27 ± 3 and 12 ± 3 pg/ml) and this was abrogated by IL-18 and IL- 

18/IL-12 treatment in. In contrast, IL-6  production was significantly increased in the 

IL-18 (350 ± 5 pg/ml, p<0.05) and IL-12/IL-18-treated animals (730 ± 40, p<0.001) 

compared to controls (180 ± 15). TGF-B was undetectable in any of the groups. 

These data suggest that IL-18 may shift the balance of T helper-cells toward Thl 

activity.
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Figure 6.5 Thl and Th2 cytokines production by spleen cells from MRL/Zpr

mice after facial rash appearance (10-11 weeks old).

Pooled spleen cells were harvested from the different treatment groups (5 mice in each 

group) and stimulated with anti-CD3 antibody or culture medium Cytokine levels in 

the culture supernatants at 48 hours were measured by ELISA. Data are mean ± SEM 

of triplicate cultures (*p<0.05, **p<0.001 compared with control group, student's t- 

test).
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6.4 Serum cytokine and auto-antibody levels after IL-18 treatment

To study the influence of IL-18 and IL-18 plus IL-12 treatment on cytokine 

profiles, serum samples were analysed for the presence of IFN-y, IL-10, IL-4, IL-5, 

and autoantibodies to DNA (Figure 6 .6). There were no detectable levels of IL-4 and 

IL-5 in any group.

IFN-y was significantly increased in the IL-12/IL-18 mice (mean ± SEM, 139.3 ± 

15.6 pg/m, p<0.002) and the IL-18 mice (67.2 ± 11.3, p<0.05) compared with the 

PBS control group (41.2 ± 9.6). Significant reduction of IL-10 was observed in the 

IL-18/IL-12 group (61.6 ± 4.3) and the IL-18 group (71 ± 3.2) compared with the 

PBS treated mice (187.2 ± 17.9).

Figures 6 .6b demonstrates that IL-18 and IL-12/IL-18 treated mice produced 

significantly higher levels of IgG2a anti-dsDNA antibodies (p<0.05), compared with 

control group. IgG2a antibody is typical of Thl type response and IgGl antibody is 

typical of a Th2 response. The titres of anti-dsDNA IgGl antibody were unaffected 

by IL-18 treatment but was significantly reduced by IL-12/IL-18 treatment (p<0.05).
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Figure 6.6 Effect of IL-18 or IL-18 plus IL-12 treatment on the serum 

cytokine and anti-DNA antibody levels, (a) Serum from different groups of mice 

collected at the end of treatment (6  week treatment) were measured by ELISA (b) 

anti-DNA antibody isotype distribution in the serum of different treated groups of 

mice were measure by ELISA Data are mean ± SEM, *p<0.05, **p<0.005 

compared to PBS control group, Mann-Whitney U-test.
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6,5 Serum cytokine profiles and autoantifoody level after two week treatment 

with rmIL-18

To investigate in vivo effect of IL-18 in the early stages of the pathogenesis of 

the facial skin lesion, 4 mice in each treatment group were treated for two weeks then 

sacrificed at the age of 6 weeks.

Seium samples were collected and levels of IL-4, IL-5, IFN- y and autoantibodies 

were measured (Figure 6.7). IFN-y was detected only in the serum of IL-12 plus IL- 

18 group (mean ± SD, 510 ±105 pg/ml) and IL-5 was detected only in the group of 

mice which were treated with IL-18 (145 ± 48 pg/ml). EL-4 was undetectable in the 

serum of any of the mice.

The serum level of autoantibody to ds-DNA is shown on Figure 6.7b. The level of 

IgG2a anti-dsDNA antibodies measured in the serum of the IL-18 group (50 U/ml) 

was significantly higher (p<0.05) than both PBS group and EL-12 plus EL-18 treated 

group. IgGl anti-DNA antibodies was detected only in the serum of IL-18 treated 

mice.

Single cell suspensions of spleen cells fi'om mice fi'om each treatment group were 

cultured (2x10^ viable cells/ml) in 24-well plates pre-coated with anti-CD3 antibody 

(2 pg/ml) in standai'd culture condition. After 48 hours the supernatant was taken to 

assess in vitro cytokine production by ELISA (Figure 6 .8).

Spleen cells from EL-18-treated mice produced more IFN-y (4020 ± 520 pg/ml, mean 

± SD, p<0.05 ) than control mice (1370 ± 110 pg/ml) in response to anti-CD3. 

Synergistic enhancement of IFN-y production by spleen cells was evident in EL- 

18/EL-12 treated mice (8450 ±1060 pg/ml, p<0.001).
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Spleen cells from the rmIL-18-treated mice produced more IL-10 (136 ± 36 pg/ml, 

p>0.05) than control mice in response to anti-CD3 antibody (Figure 6 .8). IL-10 

production by spleen cells was suppressed in the IL-12/IL-18 treated mice compared 

with the tr eated PBS mice.

These data show that IL-18 in the yormger mice after two weeks treatment increased 

Th2 cytokines and induce IgGl and IgG2a anti-DNA antibodies in this model of 

lupus disease.
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Figure 6.7 Serum IFN-y, IL-5 and anti-DNA antibody (IgG2a and IgGl 

isotypes) in MRL/lpr mice after two weeks cytokine treatment with IL-18, IL-12 

plus IL-18 or PBS control.

IFN-y was detected at significantly high levels in the IL-12+IL-18 group. In contrast, 

IL-5 was detected only in the group treated with IL-18. IL-4 was undetectable in any 

of the mice. The levels of Ig02a anti-dsDNA antibodies in the IL-18 group were 

significantly higher than both the PBS and IL-12+IL-18 groups (**p<0.001). IgGl 

anti-DNA antibodies were detected only in the serum of IL-18 treated mice 

(*p<0.05).
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Figure 6.8 In vitro cytokine production by spleen cells from MRL/lpr mice 

after 2-week cytokine treatment. Cytokine levels were measured by ELISA. IL-4 

was not detected in any of the groups. *p<0.05, **p<0.001.
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6,6 Cytokine profiles and autoantibody level after four weeks treatment with 

IL-18

Four mice in each treatment group aged 4 weeks and were treated for 4 weeks 

were sacrificed at the age 8 weeks. Serum was collected and IFN-y and IL-10 were 

measured (Figure 6.9a).

The serum levels of IFN-y were significantly higher in the IL-18 treated group than 

the PBS group (p<0.05), IL-12 in synergy with IL-18 induced significantly more 

IFN-y than the IL-18 group (p<0.05). However, IL-10 was significantly higher in the 

serum of IL-18 treated group than both the PBS control and the IL-12/IL-18 groups. 

IL-4 and IL-5 were undetectable in of any of the groups.

Spleen cells from each group were cultured with anti-CD3 antibody (2 pg/ml). After 

48 horns supernatant was taken to assess in vitro cytokine production by ELISA 

(Figure 6.9b).

Spleen cells from IL-18 plus IL-12 treated mice produced more IFN-y (mean ± SD 

16020 ± 1420, p<0.05 ) than control mice (7370 ± 410 pg/ml). Spleen cells from the 

EL-18 treated group also produced more IFN-y (10,050 ± 1200) than the PBS control 

group (p<0.068). Spleen cells from the IL-18 and the PBS heated mice produced 

more EL-10 (for both p<0.05) than the EL-12/IL-18 treated group.

IL-5 production was increased by EL-18 treatment, and IL-12 plus EL-18 treatment 

significantly suppressed EL-5 production compared with control or IL-18 treatment. 

EL-12 in synergy with EL-18 suppressed EL-4 production compared with control 

group.

The serum autoantibody are shown on Figure 6.10. Serum levels of IgG2a anti-DNA 

antibodies were significantly higher in both the IL-12+ EL-18 and IL-18 groups than
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in the PBS-treated group. There was a significant increase in serum levels of IgGl 

anti-DNA in the IL-18 group than in both the PBS and the IL-12/IL-18.

IgG2a anti-DNA antibodies produced by spleen cells from IL-18 and IL-12 plus IL- 

18 groups were significantly higher than the PBS group and spleen cells from the IL- 

18 group produced more IgGl anti-DNA antibody than other groups (Figure 6.10b).
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MRL/lpr mice after 4-week cytokine treatment. Cytokine levels were measured by 

ELISA. Data are mean ± SEM of triplicate cultures (*p<0.05; **p<0 001, by 

Student's t-test).
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Figure 6.10 Anti-DNA antibody isotype distribution in the serum (a) and 

culture supernatant (b) of MRL/lpr mice after 4 weeks treatment. Anti-DNA 

antibody isotypes, total, IgG2a, IgGl, were measured after by ELISA. Data are 

expressed as arbitrary units/ml (compared with standard serum from 5 month old 

MRL/lpr mice (*p<0.05, **p<0.001 Student’s t-test).
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6.7 Assessment of IgG deposition in the skin of different group of mice

The presence of a malar rash is associated with SLE and is commonly accompanied 

by other inflammatoiy manifestations of the disease. Pathologically, the skin lesion shows 

non-specific inflammation, although by immunofluorescence the classic deposits of 

immunoglobulin and complement at the dermal-epideimal junction may be seen. The 

presence of theses immune deposits may also be seen in un-involved skin.

Immunofluorescence staining was performed on frozen sections of skin biopsies from the 

different treatment groups of mice to assess whether IL-18 affected immune complex 

deposition. The tissues were snap frozen in an isopentane bath cooled in liquid nitrogen. 

Frozen sections embedded in OCT were cut at 5 pm thickness. Sections were then incubated 

with FITC conjugated goat anti-mouse IgG. After thoroughly washing in PBS, stained 

sections were mounted. No fluorescent staining was detected in any of the treated groups.

Immune complex deposition in the skin was assessed also by immuno-histochemistry of 

paraffin section of skin. Immunoglobulin (Ig) deposition was increased in the whole skin 

fi'om the IL-18 and IL-18/IL-12 treated mice (**p<0.001, *p<0.05) compared with the PBS 

conti'ol mice (Figure 6.11). The skin lesions from the IL-18 treated mice contained more Ig 

deposition in deimo-epidermal junction (DEI) than the IL-12/IL-18 and the PBS treated mice 

(p<0.001). Samples were examined with a Leitz DRMB microscope linked to a Panasonic 

F I5 CCD video camera. Images first transferred to an IBM-compatible computer by means 

of Neotech Image Grabber software (version 1.21; Neotech Ltd., Eastleigh, UK) and cell 

counts were made with computer image analysis software (Count Gem; ME Electronics, Ltd, 

Reading, UK).
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Figure 6.11 IgG deposition in the skin of different treated groups of mice after 

4 weeks treatment. Arrows indicate Ig deposition in the Dermo-epidermal junction of 

mice treated with IL-18. This is largely absent in the other two groups. Ig deposition 

was quantified by Image analysis and presented as number of granular IgG deposition 

in 10 nm  ̂of tissue. Vertical bars are SD o f mean, n=4, **p<0.001, *p<0.05.
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6.8 Apoptosis in the skin lesion in the IL-18 treated mice

Apoptosis is of fundamental biomedical interest and is of particular 

importance in the pathogenesis of systemic autoimmune diseases. Apoptosis is an 

active process that leads to the ordered destruction of cells, avoiding the release of 

intracellular contents into the extracellular microenvironment, where they may have a 

powerful inflammatory effect. Apoptotic cells undergo a series of changes of the 

surface lipid membrane, cytoskeletal disruption, cell shrinkage and a characteristic 

pattern of DNA fragmentation. It has been long recognised that DNA and histones 

are major auto-antigens in SLE, but only more recently it was recognised that the 

DNA-histone complex, i.e., nucleosomes, are the preferred targets of autoantibodies 

(Mohan et al., 1993).

One possible explanation for antigen selection autoantibody mediated diseases is 

apoptosis. During apoptosis, the cell membrane forms cytoplasmic blebs, some of 

which are shed as apoptotic bodies. UV-induced apoptosis of kératinocytes leads to 

redistribution of several nuclear proteins and DNA to the apoptotic blebs where they 

can become auto-antigen (Cascicola-Rosen et al., 1994).

To test whether apoptotic cells can be a source of autoantigens and whether immune- 

complex deposition can be involved in the pathogenesis of the skin lesion observed in 

the IL-18 treatment group, DNA fragmentation in skin biopsy specimens was 

examined by TUNEL staining as previously explained in Chapter 2.

As Figure 6.12 shows skin lesions from IL-18 treated mice revealed apoptotic cell 

death in the epidermis, dermis and epidermo-dermis junction and marked leukocyte 

infiltration in the dermis (Figure 6 .12e).
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Legend for Figure 6.12 TUNEL staining of apoptosis in the facial skin lesion 

of IL-18 treated M RLllpr mice. Skin lesion from IL-18 treated mice revealed 

apoptotic cell death in the epideimis, dermis and epidermal-dermis junction, and 

marked leukocyte infiltration in the dermis (b and e). The negative control (d) from 

an IL-18-treated with reaction buffer containing no protein. DNA fragmentation was 

not detectable in the PBS-treated mice (a). Skin from IL-12+IL-18 treated group 

showed significantly less apoptotic cells in the epidermis and dermis than IL-18 

treated skin lesions.
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Discussion

The aetiology and pathogenesis of autoimmune diseases cannot be readily analysed 

without appropriate animal models. Skin lesions are one of the commonest 

manifestations of human lupus erythematosus. However, animal models rarely show 

these skin lesions (Fuinkawa et al., 1984). The MRL/^r mouse is model which 

spontaneous develop skin lesions in some aspects similar to those seen in human 

lupus eiythematosus (Fm*ukawa et al., 1984; Horiguchi et al., 1984; Provost et al., 

1993; Furukawa, 1997). Macroscopically, these skin lesions show alopecia and scab 

foimation on the upper dorsal region (Andrews et al., 1978). hnmuno-pathological 

studies have revealed hyperkeratosis, acanthosis, hypergranulosis, liquifiction-like 

changes in basal kératinocytes, deimal T-cell infiltration, mononuclear cell 

infiltration into the dermis and epidermis, and vasodilatation by the age of 5 month 

(Furukawa et al., 1984). Ultrastructural changes show similarity to those of human 

lupus eiythematosus skin lesions (Horiguchi et al., 1984, 1986). finmunohistological 

studies show immunoglobulin deposition at the deimal and dermal-epidermal 

junction (DEJ) to un-involved skin in MRL/^r mice over 5 month old (Furukawa et 

al., 1984). The malar rash of human SLE has not been described on any lupus-like 

experimental models. Furthermore, there are no reports of any cytokine inducing 

skin rashes in the lupus-like models. For the first time we report that IL-18 induces a 

skin lesion on the face of MKLllpr mice resembling human malar rashes. IL-18 also 

accelerates the development of the typical SLE skin lesions on the upper dorsal skin 

of MRLUpr mice.

Two separate experiments investigated the role of IL-18 in the induction of the skin 

lesions in MRL/^r mice. 60-80% of the Ipr mice injected with IL-18 showed facial 

skin lesions at age of 9-11 weeks. The Ipr mice treated with PBS or IL-18 + IL-12 

did not show any skin lesions. The skin lesions hi EL-18 tieated mice showed 

loosened hahs and scab formation. Light microscopy showed hyperkeratosis, 

acanthosis, and infiltration of mononuclear cells into the epidermis and the dermis.
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vasodilatation and some bleeding in the dermis. The MRL/-H- control mice did not 

show any skin lesions when treated with IL-18.

IL-18 also accelerated the glomerulonephritis in the MRLUpr mice. However the 

peak of skin lesions on the malar whisker pads occurred earlier than the appearance 

of the glomerulonephritis. The cytokine analysis after 11 weeks of age showed a 

sti'ong Thl response increased (IFN-y and IgG2a-antiDNA autoantibodies) and Th2 

cytokine suppression (reduced IL-10, IL-5) compared with control PBS treated mice. 

The cause of the skin lesions cannot be simply this pattern of cytokine profile 

changes, because the IL-18/IL-12 treated mice which showed a stionger Thl 

responses and more Th2 suppression (IL-10, IL-5 and IgGl anti-DNA antibodies) 

than IL-18 treated mice, did not show any skin lesions. However, IL-18/IL-12 

tieated mice showed an accelerated glomerulonephritis even more than tieated IL-18 

mice. Therefore, it can be concluded that the skin lesions in SLE have a different 

pathogenesis from the glomerolunephritis and vasculitis.

To investigate why the skin lesions appeared only in the IL-18 treated mice but not in 

the treated IL-18/IL-12 mice despite more severe glomerolunephritis, we iuvestigated 

the effect of IL-18 on the cytokine pattern and different sub-classes of anti-DNA 

antibodies after two weeks and four weeks treatment.

After two weeks treatment, serum from MKLHpr mice injected with IL-18 contained 

a significantly raised level of IL-5. This was undetectable in the serum of the PBS or 

IL-12 + IL-18 treated groups. In contrast, mice treated with EL-12 + EL-18 produced 

high levels of IFN-y, which was undetectable in the PBS or EL-18-treated mice. IL- 

18 treated groups also produced markedly higher levels of anti-DNA antibodies 

compared with the other two groups. Thus, it shows that EL-18 admiuistiation 

augmented the Th2 responses, whereas the combination of IL-12 and IL-18 induced a 

predominant Thl activity. However, after 8 weeks treatment, the cytokine profile
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changed. At the end of treatment (aged 11-12 weeks, Chapter 5), IL-18 ti eated group 

were the same as the IL-18 plus IL-12 treated group developed a predominant Thl 

type of response and produced more pro-inflammatory cytokines compared with the 

control mice.

These data indicates that IL-18 at the early stages of administration induced a strong 

Th2-type cytokine response in. This shifted to a more Thl dominant response over 

time. We speculate here that the effects of IL-18 on different age of MSJu/lpr mice 

vary because of endogenous level of IL-12. As shown previously in Chapter 3 and 

by Huang and colleagues (1996), IL-12 increases with age in MRL/lpr mice. 

Therefore at the early stages of the disease, when there was low levels of IL-12, EL- 

18 induced a Th2 dominant response. When the mice were older, because of higher 

level of endogenous IL-12 in a synergistic effect with IL-18, they induced higher 

amount of EFN-y. The results from the IL-18 plus IE,-12 treated mice support this 

hypothesis. The mice in this group at all stages of disease showed a Thl dominant 

response. Several recent reports now show that IL-18-mediated effects on T cells 

may extend beyond Thl differentiation to include induction of type 2 cytokine 

production (Yoshimoto et al., 2000; Wild et al., 2000; Hoshino et al., 2000; Xu et al., 

2000).

Patients with cutaneous manifestations of lupus are more likely to have mRNA for 

IL-2, IL-4 and EL-5 in skin biopsy specimens than healthy controls where mRNA for 

IL-5, IL-4 and EL-2 is undetectable (Sander et al., 1993; Nuremberg et al., 1995). 

IgGl subclass antibodies are believed to be important in the pathogenesis of skin 

lesions in SLE (Furukuwa et al., 1983; 1984). From these findings, we conclude that 

one reason why the skin lesion occurs only in the EL-18 group at this stage of the 

disease is because of induction Th2 type responses at an early stage of disease 

development. Since EL-18 induces significantly higher amounts of IgGl anti-DNA 

compared with the PBS and IL-12 + EL-18, the skin lesion is induced only in this IL-
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18 treated group. However, for glomemlonephritis IgG2a antibodies are more 

pathogenic than IgGl, therefore, this is accelerated in both the IL-18 treated and the 

IL-18/IL-12 group.

In immunohistochemical studies, there was more Ig deposition in the skin sections 

from the IL-18 and IL-18/IL-12 groups than the PBS group. One possible reason that 

despite Ig deposition in the EL-18/IL-12 group, the skin lesion was induced only in 

the IL-18 treated mice, is that the Ig subclasses in the EL-18 group were mainly IgGl 

sub-class but in the IL-18/IL-12 group more IgG2a. Therefore, because of the 

important role of IgGl in skin lesion the lesions were induced only in EL-18 tieated 

mice. It can also be inferred that the Ig deposition is a necessary factor in the skin 

lesion induction but it is not sufficient and other factors are also necessary to induce 

skin lesion in SLE.

Although early studies suggested that SLE was associated with defective apoptosis 

(Cohen & Eisenberg, 1991; ELkon, 1994), current evidence suggests the opposite 

(Mysler et al., 1994; Salmon & Gordon, 1999; Petri et al., 2000; Pickering et al., 

2001). It has been shown that the presence of large numbers of apoptotic cells can 

evoke an immune response. Mevorach and colleagues demonstrated that the 

intravenous injection of apoptotic thymocytes resulted in the production of 

autoantibodies to nuclear antigens in the majority of normal mice (Mevorach et al., 

1998). In addition, the consequences of a disturbance in the removal of apoptotic 

cells have been addressed m several studies. The important role that Clq plays in the 

removal of apoptotic cells was demonstrated in Clq knockout mice (Botto et al., 

1998). Clq-/- mice had higher titres of autoantibodies and higher mortality 

compaied with strain-matched controls. Similar' findings have been reported in SAP- 

deficient mice. In mice with a targeted deletion of the SAP gene an autoimmune 

disease developed, which characterised by the presence of autoantibodies to DNA 

and chromatin and severe glomerulonephritis (Bickerstaf et al., 1995). Further 

indications that the removal of apoptotic cells and their antigenic str'uctures is
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relevant to the pathogenesis of SLE are delivered by a recent study performed with 

Dnasel-deficient mice (Naprrei et al., 2000).

Kératinocyte apoptosis has been considered a potential mechanism for the induction 

of the skru lesions and autoantibody production in SLE (Casicola-Rosen and Rosen, 

1997). DNA-containing apoptotic blebs can be processed by ARC as foreign antigen 

and directed to class II MHC molecules and may then provide a substrate for 

autoantibody production with the development of a local, or systemic, inflammatory 

response. Skin lesions from IL-18-treated mice revealed apoptotic cell death in the 

epidermis, dermis and epidermo-demal junction. Skin from the IL-12 + IL-18 treated 

mice showed much less apoptotic cells than the IL-18 treated skru. Therefore, this is 

another possible reason why skin lesions appear only in the IL-18 treated mice. It is 

important to appreciate that the increase in apoptosis observed in Ipr mice, who are 

Fas deficient, may be due to IL-18 inducing apoptosis through pathways rather than 

Fas/FasL or more defect in the removal of apoptotic cells. These data are supported 

by Yamanaka and colleagues (2000) who showed that skin-specific caspace-1 

transgenic mice have cutaneous apoptosis, independent of Fas/FasL pathway, 

accompanied by a high serum level of IL-18.

Kératinocytes from SLE patients express more IL-18 than those from normal 

individuals and it is reported that kératinocytes constitutively produce pro-IL-18 

(Stoll et al., 1997). Therefore, one may speculate that a possible mechanism in the 

pathogenesis of skin lesions in lupus patients is higher production of pro-IL-18 by 

kératinocytes. Sun, ultraviolet light or other environmental factors may change pro- 

IL-18 to bioactive IL-18 ,which then induces apoptosis and thus activate skin lesion 

in lupus. Taken together, it seems that IL-18 is an important cytokine in the 

pathogenesis of lupus skin lesion and may be a novel therapeutic target.
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Chapter 7 

General discussion
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Introduction

Systemic lupus eiythematosus (SLE), the prototypic systemic spontaneous 

autoimmune disease, has the potential to involve multiple organ systems directly with 

extremely diverse and variable clinical manifestations (Kotzin and O’Dell, 1996). Some 

patients demonstrate predominantly skin rash and joint pain others suffer from severe and 

progressive glomerulonephritis, the common denominator being elevated serum antibodies to 

nuclear constituents. Studies using animal models have contributed greatly to the elucidation 

of SLE pathogenesis. MRL/MP-lpr-lpr (MRL/^r) mice develop a spontaneous autoimmune 

disease and have been used extensively as a model for clinical SLE. The disease is 

characterised by lymphadenopathy, autoantibody production, and inflammatory 

manifestations such as nephritis, vasculitis, and arthritis (Andrew et al., 1978; Cohen and 

Eisenberg, 1991). The cause of the disease is likely multifactorial, including a single gene 

mutation {Ipr) of the fas apoptosis gene on mouse chromosome 19 (Watanabe-Fukunaga et 

al., 1992; Watson et al., 1992) and background genes from the MRL strain (Andrew et al., 

1978; Watson et al,, 1992).

An impressive range of clinical and experimental evidence supports a critical role of T cells 

in disease manifestation of SLE. MKL/lpr mice deficient in T cells did not produce 

autoantibody and glomerulonephritis (Steinberg et al., 1980; Singh et al., 1998). Disruption 

of T cell activation by blocking CD28-B7 (Finck et al., 1994; Nakajima et al., 1995) or 

CD40-CD40L (Datta and Kalled, 1997; Diakh et al,, 1997) interactions prevented SLE in the 

mouse. Furtheimore, CD4+ T cells appeal* to be of paramount important as CD4-deficiency 

(Chesnutt et al., 1998) and anti-MHC class II-TCR antibody (Adelman et al., 1983; Santoro 

et al., 1988) blocked autoantibody production and ameliorated disease progression. However, 

the relative role of Thl and Th2 cell in the pathogenesis of SLE remains controversial. 

Although IL-4 has been implicated in disease pathogenesis (Shirai et al,, 1995; Santiago et 

al., 1997; Nakajima et al., 1997), elevated levels of IFNy have been consistently associated 

with SLE (Tsokos et al., 1986; Takahashi et al., 1996). IFNy and IFNyR knockout mice have
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significantly delayed onset and reduced severity in disease development (Balomenos et al., 

1998; Haas et al., 1998), whereas administration of nnlFNy accelerated the disease 

progression (Jacob et al., 1987). Nitric oxide (NO) (Weinberg et al., 1994; Huang et al.,

1996) and IL-12 have also been shown to play a pathological role in murine SLE. Thus IL-12 

induces the differentiation of Thl cells which produce IFNy that activates macrophages to 

produce high levels of NO which, at least in part, causes the pathology in SLE (Weinberg et 

al., 1994).

7.1 Role of IL-12 and NO in SLE

The aim of this study in chapter 3 was to investigate whether IL-12 and NO have the 

same effect in a lupus-like model with intact Fas (NZB/W) FI mice and in human SLE. The 

results demonstrate that in NZB/W FI mice total IL-12 (40/p70) serum levels are higher than 

in control mice. IL-12 is increased in correlation with disease of this lupus-like strain. 

Increase in IL-12 coincides well with the time of renal disease onset at around 7 months age 

(Theofilopoulos et al., 1986). The data are supported by the results from MRL/^r mice 

(Huang et al., 1996 ).

The human data show that the seinm level of total IL-12 is significantly higher in SLE 

patients than control individuals. However, PBMC from SLE patients produced less IL-12 

(p70/p40) than control PBMC in contrast with the serum data. However, whole blood culture 

from SLE patients showed higher IL-12 production, when cultured with LPS and IFN- y, 

compared with control individuals, consistent with the serum data . The reason for different 

results iu PBMC and whole blood cell culture might be because of (1) the role of 

granolucytes (specially neutrophils), which are deleted in PMBC, or (2) possibly because of 

other factors such as different proteins or cytokines which are found in the plasma of patients 

and washed away during PBMC purification, and (3) the important role of cell contacts in 

immunological reaction is another possible explanation for different results obtained from 

PBMC and whole blood cell cultures. In MKL/lpr mice both total IL-12 and IL-12 p70 

iucreased and disease related, but in NZB/W FI mice and human SLE we detected just total
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IL-12 enhancement and IL-12 p70 was undetectable. It might be because of very low level of 

p70 that can show its bioactivity even in concentration 100 times less than p40 homodimer. 

Another possibility is that in the patients and lupus like models there are high level of p40 

homodimer which act as antagonists to bioactive 11^12 (p70) and inhibit Thl cytokines to 

reduce the inflammatory response in SLE. However, to elucidate the precise role of IL-12 in 

SLE, further investigation should be focused on the bioactive 11^12 p70 itself and the 

potential pathogenic role it may play. We should note that there were wide deviations in the 

levels of IL-12 among patients. However, there was no correlation between IL-12 seram 

level and activity of the disease and despite a correlation between level of IL-12 and 

proteinuria and kidney involvement in lupus-like models (NZB/W FI and MBl^Hpr mice). In 

human SLE patients no significant coirelation between IL-12 level and kidney involvement 

or C3, C4 level was found. However, about six patients with high levels of IL-12 had the 

highest scores for disease activity.

The serum level of Nitric oxide in MRL/lpr mice appeared to be correlated with age and 

disease (Huang et al., 1996). However, the level of NO in the serum of SLE patients and 

NZB/W mice were measured by two different methods and they showed no significant 

differences from normal controls. In vitro studies did not show any significant changes for 

NO production when stimulated with LPS and IFN-y or IL-12 in both human SLE patients 

and NZB/W mice. Therefore, the data could not show the same phenomenon observed in 

MRLHpr mice. We postulate that local tissue specific NO production might be important, 

especially for the development of renal pathology. Cells most likely to contribute to local 

NO production in the kidney are vascular endothelial cells andmesangial cells (Lincoln et al.,

1997) which were not examined in this experiment.

Because of the diversity of the disease and effects of drug treatments, the interpretation of 

cytokine serum levels is not easy and it is difficult to relate directly the increase of IL-12 in 

this study to the pathogenesis of SLE. However, we should consider the indirect effect of
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higher levels of IL-12 and to investigate its relation with other Thl & Th2 cytokines 

abnormality in the pathogenesis of SLE.

7.2 Association of BL-18 and SLE

Like IL-12, IL-18 is a member of the Thl-inducing family of cytokines. Recent 

evidence clearly demonstrates diat several factors are required for optimal induction of Thl 

activity, chief among them are IL-12 and IL-18. IL-18 is a member of the IL-1 cytokine 

family (Kohno and Kurimoto et al., 1998). Pro-IL-18 is cleaved by IL-1 P-converting enzyme 

(ICE, caspase 1) to yield an active 18 kDa glycoprotein (Ghayur et al., 1997) that recognises 

a heterodimeric receptor, consisting of unique a  (DL-lRrp) and non-binding p (AcPL) 

signalling chains (Torigoe et al., 1997; Dinarell, 1999) that are widely expressed on cells 

implicated in both innate and adoptive immunity. IL-18 is expressed in various cell types, 

including macrophages, dentritic cells, kératinocytes, osteoblasts, pituitary gland cells, 

adrenal cortical cells, intestinal epithelial cells, skin cells and brain cells (Okamma et al., 

1995; Stoll et al., 1997, 1997; Udagawa et al., 1997; Olee et al., 1999; Conti et al., 1999). IL- 

18 is capable of promoting proliferation and IFNy production by Thl, CD8+ and NK cells in 

mice and in human (Okamura et al., 1995). It shares some of the biological activities with 

IL-12, but without significant structural homology, and serves as a costimulatory factor in the 

activation of Thl cells (Kohno et al., 1997). It does not drive Thl cell development but 

induces IL-12R expression (Xu et al., 1998) and thus synergies with EL-12 for IFNy 

production (Robinson et al., 1997).

IL-18 expression has been reported in several human diseases, including rheumatoid arthritis 

(Stoll et al., 1998; Grade et al., 1999) and inflammatory bowel disease (Pizarro et al., 1999; 

Monteleone et al., 1999). However, a functional role of IL-18 in clinical or murine SLE is
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unknown. The aim of studies in chapters 4,5 and 6 was to investigate whether there was any 

association between EL-18 and the pathogenesis of SLE.

To determine the potential pathogenic role of 11^18 in SLE, we investigated IL-18 production 

in SLE patients and in MRL/lpr mice, which develop spontaneous lupus-like autoimmune 

disease.

The presented data showed significantly elevated EL-18 serum levels in SLE patients 

compared with healthy conüols. However, there was no significant relation between EL-18 

levels and disease activity indices (SLEDAI) which can be because of; (1) Clinical 

manifestations of SLE are extremely diverse and variable. Therefore, the number of patients 

was not enough to analyse relation between each clinical indices with IEv-18 serum levels. (2) 

The change of each cytokine varied among the SLE patients, possibly because of the 

diversity in the disease and effect of drug treatments (Huang et al., 1988; Linker-Israeli et al., 

1991). (3) Another possibility is that the IL-18, which was detected in the serum of SLE 

patients, was mainly pro-IL-18. Therefore, it needs to be cleaved by BL-lB-converting 

enzyme (ICE, caspase 1) to yield an active EL-18 (Gu et al., 1999).

Animal models have contributed greatly to understanding of the immunological aspects of 

autoimmune diseases. Lupus-like models are a good reflection of human SLE because the 

main immunological abnormalities, which are related to the human disease also, appear in 

these mouse models. Therefore, to determine the potential pathogenic role of IL-18 in SLE, 

we investigated EL-18 production in MRL/lpr mice, which develop spontaneous lupus-like 

autoimmune disease.

In vitro study presented in this thesis shows that serum of MRJL/lpr mice at the age of 4-6 

months (with obvious glomerolunephritis) contained significantly higher concentration of IL- 

18 compared with those of control MRL/++ mice. In addition, spleen and peritoneal cells 

fi-om MRL/lpr mice produced spontaneously higher concentration of IL-18 than cells fi*om
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MRL/++ mice. These results are therefore consistent with that of human SLE and re

enforced a major role for IL-18 in spontaneous autoimmune disease.

Potential role of IL-18 in the pathogenesis of SLE was next investigated in vivo using 

MRL!Ipr lupus mice. A recombinant murine IL-18 was used for in vivo studies. My data 

suggest that rmIL-18 promotes spontaneous development of lupus-like glomerulonephritis, 

vasculitis and skin lesions. Recombinant IL-18 also induced a facial rash, resembling malar 

rash in human SLE, at the early stage of the disease. This acceleration of the disease 

occurred in association with marked changes in the Thl and Th2 cytokines and in the IgG 

subclasses of anti-DNA antibodies.

After two weeks treatment, serum from MRL/lpr mice injected with IL-18 contained 

significantly raised level of IL-5. This was undetectable in the serum of the PBS or IL-12 + 

IL-18 treated groups. In contrast, mice treated with IL-12 + IL-18 produced high levels of 

IFN-y, which was undetectable in the PBS or IL-18-treated mice. IL-18 treated groups also 

produced markedly higher levels of anti-DNA antibodies compared with the other two 

groups. Thus, it shows that EL-18 administration augmented the Th2 responses, whereas the 

combination of IE^12 and EL-18 induced a predominant Thl activity. However, after 8 weeks 

tieatment, the cytokine profile changed. Although IFN-y was higher than the control PBS 

group it showed a shift more towards Thl response, the level of IgGl anti-DNA antibodies in 

the serum of the IL-18 treated group was significantly higher than both the PBS and EL- 

12/IL-18 groups. IL-18, therefore has a synergistic effect with EL-12 when injected i.p. in 

EFN-y production.

These data indicates that EL-18 at the early stages of administration induced a strong Th2- 

type cytokine response in Ipr mice. This shifted to a more Thl dominant response over time. 

We speculate here that the effects of EL-18 on different age oïM RL/lpr mice vary because of 

endogenous level of IL-12. As shown previously in Chapter 3 and by Huang and colleagues
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(1996), IL-12 increases with age in MRLllpr mice. Therefore at the early stages of the 

disease, when there was low levels of IL-12, IL-18 induced a Th2 dominant response. When 

the mice were older, because of higher level of endogenous IL-12 in a synergistic effect with 

IL-18, they induced higher amount of IFN-y. The results from the IL-18 plus IL-12 treated 

mice support this hypothesis. Mice in this group at all stages of disease showed a Thl 

dominant response. Several recent reports now show that EL-18-mediated effects on T cells 

may extend beyond Thl differentiation to include induction of type 2 cytokine production 

(Yoshimoto et al., 2000; Wild et al., 2000; Hoshino et al., 2000).

It is significant that a relatively enhanced activation of Thl vs. Th2 type cells leads to 

increased production of IgG2a and IgG3, but to a diminished production of IgGl. It is 

associated with lupus nephritis in MRL mice bearing the Ipr or Yaa gene. This is highly 

relevant to the immunopathogenesis of lupus nephritis and vasculitis. Since murine IgG2a, 

but not IgGl, antibodies activate the complement system, the complement activating IgG2a 

autoantibodies can be more nephritogenic than IgGl autoantibodies (Takahashi et al., 1996; 

Bemey et al., 1992; Takahashi et al., 1991). Therefore, IB-18 alone or in synergism with IL- 

12 enhances glomerolunephritis in lupus mice by increasing IgG2a anti-DNA Antibodies. 

Another possible mechanism for the involvement of EL-18 in lupus nephritis and vasculitis is 

due to EFN-y production. lE^lS induces IFN-y production that up-regulates MHC class H on 

antigen presenting cells, leading to effective presentation of T-cell epitopes and the activation 

of T-cells (Halloran et al., 1992). The results from IFN-y -/- MRLdpr and mercury-treated 

IFNy (-/-) mice show that this cytokine is required for auto-antibody generation of either Thl 

or Th2 associated isotypes, probably by enhancing auto-antigen presentation (Bahnenos et 

al., 1998; Haas et al., 1998).

fri conclusion, in conjunction with previous investigations (Jacob et al., 1987; Ozmen et al., 

1995; Takahashi et al., 1996; Huang et al., 1996 and Balomenos et al., 1998) this study 

strongly points to the significant contribution of heightened IFN-y production in the 

pathogenesis of mmine lupus nephritis and vasculitis. Other cytokines such as TNF-a (Jacob
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et al. 1988), EL-12 (Huang et al., 1996) and NO (Weinberger et al., 1997) bave also been 

experimentally manipulated to affect serologic and histologic manifestation of murine lupus. 

In this regard, EL-18 as a cytokine that can regulate NO and pro-inflammatory cytokines 

might be important candidate in SLE pathogenesis.

MRL/lpr mice injected with IL-18 showed facial skin lesions at age of 9 weeks. The 

MRL/lpr mice tieated with PBS or IL-18 + IL-12 did not show any skin lesions. The EL

IS/EL-12 treated mice who showed a stronger Thl responses and more Th2 suppression (IL- 

10, IL-5 and IgGl anti-DNA antibodies) than IL-18 treated mice, did not show any skin 

lesions. However, IL-18/IL-12 treated mice showed an accelerated glomerulonephritis and 

vasculitis even more than treated IL-18 mice. Therefore, it can be concluded that the skin 

lesions in SLE have a different pathogenesis from the glomerolunephritis and vasculitis.

Patients with cutaneous manifestations of lupus are more likely to have mRNA for IB2, EL-4 

and IL-5 in skin biopsy specimens than healthy controls where mRNA for EL-5, EL-4 and IL- 

2 is undetectable (Sander et al., 1993; Nuremberg et al., 1995). IgGl subclass antibodies are 

believed to be important in the pathogenesis of skin lesions in SLE (Furukuwa et al., 1983; 

1984). From these findings, we conclude that one reason why the skin lesion occurs only in 

the IEy-18 group at this stage of the disease is because of induction Th2 type responses at an 

early stage of disease development. Since EL-18 induces significantly higher amounts of 

IgGl anti-DNA compared with the PBS and IL-12 + EL-18, the skin lesion is induced only in 

this EL-18 treated group. However, for glomerulonephritis EgG2a antibodies are more 

pathogenic than IgGl, therefore, this is accelerated in both the IEv-18 treated and the IL- 

18/EL-12 group.

In immunohistochemical studies, there was more Ig deposition in the skin sections from the 

EL-18 and EL-18/EL-12 groups than the PBS group. One possible reason that despite Ig 

deposition in the IL-18/EB12 group, the skin lesion was induced only in the EL-18 treated
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mice, is that the Ig subclasses in the IL-18 group were mainly IgGl sub-class but m the IL- 

18/IL-12 group more IgG2a. Therefore, because of the important role of IgGl in skin lesion 

the lesions were induced only in IL-18 treated mice. It can also be inferred that the Ig 

deposition is a necessary factor in the skin lesion induction but it is not sufficient and other 

factors are also necessaiy to induce skin lesion in SLE.

Despite the studies which consider SLE as a disease of defective apoptosis (Cohen & 

Eisenberg, 1991; Elkon, 1994), evidence suggests the opposite (Mysler et al., 1994; Salmon 

& Gordon, 1999). Keratinocyte apoptosis has been considered a potential mechanism for the 

induction of the skin lesions and autoantibody production in SLE (Casicola-Rosen and 

Rosen, 1997). Skin lesions fi*om IL-18-treated mice revealed apoptotic cell death in the 

epidermis, dermis and epidermo-demal junction. Skin fi*om the IL-12 + IL-18 treated mice 

showed less apoptotic cells than the IL-18 treated skin. Therefore, this is another possible 

reason why skin lesions appear only in the IL-18 treated mice. It is important to appreciate 

that the increase in apoptosis observed in Ipr mice, which are Fas deficient, may be due to 

IL-18 inducing apoptosis through pathways rather than Fas/FasL. These data aie supported 

by Yamanaka and colleagues (2000) who showed that skin-specific caspace-1 transgenic 

mice have cutaneous apoptosis, independent of Fas/FasL pathway, accompanied by a high 

seinim level of IL-18.

Kératinocytes fiom SLE patients express more IL-18 than those firom normal individuals and 

it is reported that kératinocytes constitutively produce pro-IL-18 (Stoll et al., 1997). 

Therefore, one may speculate that a possible mechanism in the pathogenesis of skin lesions in 

lupus patients is higher production of pro-IL-18 by kératinocytes. Sun, ultraviolet light or 

other environmental factors may change pro-IL-18 to bioactive IL-18, which then induces 

apoptosis, and thus activate skin lesion in lupus. Taken together, it seems that IL-18 is also 

an important cytokine in the pathogenesis of lupus skin lesion and may be a novel therapeutic 

target.
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Appendix I Preparation of buffers 
Buffers
1. PBS (x 10 stock)

80g NaCl
1 1 .6g NaH2P0 4

2g KCl
2 g KH2PO4

Make up to 1000 ml with dH2 0

2. PBS/Tween

0.5 ml Tween 20 
1000 ml PBS (xl)

3. Coating buffer (ELISA)

0 .1MNaHCO3,p H 8.2

4. Vector Kit buffer

0.1MTris-HCl,pH8.2

5. TBS (ICC Wash buffer)

900 ml 0.9% NaCl 
100 ml 50mM Tris-HCl, pH 3.6 

50mMTris-HCl
- Add cone HCl to 25 ml 0.2M tris-HCl to pH 7.36 

Make up to 100 ml with dH2 0

6 . Paraformaldehyde

IgPFA
100 ml PBS
100|rl2MNaOH
Heat to 60°C then gently mix until solution clears.
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7. Fast red solution

B

100 mg naphthol-AS-MX phosphate 
5 ml N.N.-dimethylformamide 
100 mlTBS,pH8.2 
O.IM levamisole in dIÎ2 0

8 . NSE stain phosphate buffers

A 9.08 g/1 KH2PO4 (0.067M)
B 11.9 g/1 Na2HP04, 2 H2O (0.067M)

Add 98.5 ml of A to 1.5 ml of B.

Griess Reaction

A 0.1% a-naphthyFamine in dH2 0

B 1 % sulfanilamide in 5% phosphoric acid
Mix equal volumes for Griess reagent 
Store away from light

10. Solution B

For 200 ml solution
10 M Urea (160 ml)
2M  Tris.Hcl pH=8.0 (2 ml)
2M NaH2P04 (10 ml)
Adjust pH to 8.0 with NaOH (2N)
Distilled water (28 ml)

11 Buffer C (200 ml)

lOM
2M
2M

Urea
NaH2P04 
Tris-Hcl Ph 8.0

Adjust Ph to 6.3 
Add distilled water

(160 ml) 
(10  ml) 
(2 ml)

(28 ml)

12. Elution Buffer
Buffer C plus 100 mM EDTA
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