

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Enlighten: Theses <u>https://theses.gla.ac.uk/</u> research-enlighten@glasgow.ac.uk

"STUDIES ON THE REACTIVITY OF DEPOSITED CARBON"

A thesis submitted to the University of Glasgow in accordance with the regulations governing the award of the degree of Doctor of philosophy.

by

MUHAMMED RAHMAT ULLAH

Department of Pure and Applied Chemistry, Chemical Technology Section, Fuel Science Laboratories, University of Strathclyde, Glasgov, C.1. ProQuest Number: 10645972

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10645972

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

SUMMARY

۶,

The purpose of this work was to study the reactivity to carbon dioxide of carbon deposited by the thermal cracking of methane on metallic iron powder, with a view to evolving a process for the production of synthesis gas from natural gas.

The various methods of carbon-reactivity measurement and type of carbon available for gasification processes are discussed. Existing processes which utilize natural gas fo the production of synthesis gas are criticised and the benefits of a process in which separate streams of hydrogen and of carbon monoxide are produced continuously from natural gas are indicated. Consideration is given to the state of knowledge on the thermodynamics and kinetics of the thermal decomposition of methane and of Boudouard reaction, and to the published evidence for the enhanced reactivity of deposited carbon as compared with β -graphite.

As a basis for comparison a number of preliminary experimental studies have been made of the reactivity to carbon dioxide of powdered metallurgical coke in both fixed and fluidized beds and the effects of reactor temperature, gas flowrate, and the disposition of the bed. The results obtained were found to agree well with published data.

A large scale laboratory fluidized bod gasifier has been developed together with a system of two katharometers to give continuously a complete analysis of a gas containing carbon dioxide, carbon monoxide and nitrogen. This reactor was supplied with powdered haemative iron ore which was reduced to metallic iron in the fluidized state with hvdrogen. The iron powder was fluidized with a mixture of mitrogen and methane at about 1300°F, to deposit carbon on the iron. The iron-carbon mixture was then fluidized with a mixture of carbon dioxide and nitrogen to gasify the The exit gas analysis and the rate of gasification carbon. of the carbon and the rate of oxygen absorption by the iron were all studied under a veriety of conditions of temperature and inlet carbon dioxide partial pressure.

It was found that for gasification temperatures in the range of 1000 to 1300°F, the concentration of carbon monoxide in the exit gas was much in excess of that predicted by the Boudouard equilibrium over graphite. The values obtained corresponded to excess free emergics for deposited carbon of the order of 1300 to 3000 calor's per gram mole. The exit gas analysis was dependent on the partial pressure of the inlet carbon dioxide, the highest value of the equilibrium ratio being obtained with a low concentration.

The rate of gasification of the carbon was found to be a constant for large ranges of carbon-iron ratio on the bed.

na a c

It was also shown that the weachinky of the carbon to carbon dioxido was dependent on the temperature at which the iron substrate had been reduced with hydrogen.

When air was used in place of carbon dioxido the exit gas showed negligible exygen content indicating that couple utilization of the exygen had taken place.

The rate of uptake of exygen by the bed was studied and calculations unde of the proportion of the input carbon dioxide which gasified the carbon and the proportion which exidised the iron. It was suggested that if the gasificati temperature was increased to 1400°F, the absorption of exygen by the iron became a small fraction of the exygen leaving the gasifier as carbon monoxide.

The high concentration of carbon monoxide produced at a relatively low temporature suggest that this process may well be worthy of industrial exploitation for synthesis gas production.

ACKNOVLEDGEMENTS

The author is indebted to Professor P.D. Ritchie, "Young" Professor of Chemical Technology, for providing the opportunity and necessary facilities, and to Dr. William Gibb for initiating and supervising the work.

Thanks are due also to Dr. B.B. MacDonald for help in proparing the Sirius Computor programme and for processing the data, to Mr. Porter and his workshop staff for assistance in fabricating the plant, to Miss H. Campbell for help with chemical analysis, and to the Pakistan Council of Scientific and Industrial Research for awarding the study leave to carry out this work and financial assistance during its tenure.

စ စံ ပံ စ ပ

CONTENTS

summ	iary		1
list	OF SYD	ABOLS AND ABBREVIATIONS	1v
1.	INTRODU	ICTION	
	1.1.	Carbon reactivity	7
	1.2.	Methods of measurements of	
		reactivity	2
		1,2,1. Fuel Research method	2
		l.2.2. Müller and Jandl rapid method	3
		l.2.3. Critical air blast (C.A.B.)	
		method	Rg.
		L.2.4. Modified ignition method	lş.
	1.3.	Physical properties influencing	
		carbon reactivity	Lş.
	1.4.	Types of carbon available for	
		gasification	6
	1.5.	Synthesis gas production and its	
		value	7
	1.6.	The potential of natural gas	9
	1.7.	The manufacture of synthesis gas from	
		natural gas	11
		1.7.1. Catalytic steam-reforming	ll.
		1.7.2. Partial oxidation process	12
		1.7.3. Limitations of the above processes	12
		1.7.4. Requirements of an ideal process	
		and the reactions involved	13

	1.8.	Purpose of research	<u>1 la</u>		
	1.9.	Theory of methane decomposition	16		
		1.9.1, Thermodynamics	16		
		1.9.2. Kinstics and catalysts	16		
	1.10.	Theory of Boudouard reaction	19		
		1.10.1. Thermodynamics	19		
		1.10.2. Kingtics and catalysts	20		
	1.1.	Quasi-equilibria and free energy	24		
2.	Prelim	ninary fixed-bod studies.			
	2.1. Preparation of coke powder and fron				
		catalyst	27		
	3 20 Aro 20	Fixed-bed gasification apparatus	29		
		2,2,1, Furnace	30		
		2,2,2, Reaction tube	30		
		2.2.3. Gas motoring	30		
		2,2,4. Gas analysis apparatus	31		
	2.3.	Exporimental procedure			
	2.4.	Evaluation of "equilibrium ratio"			
	2.5.	Calculation of residence time			
	2.6.	Exporimental regults	34		
		2.6.1. Horizontal reaction tube	34		
		2.6.2. Vortical reaction tube	37		
		2.6.3. Samplo calculations	ls 1		
		2.6.4. Reaction with carbon deposited			
		On iron ,	43		
		2.6.5. Graphical presentation of			
		experimental results	4 6		
	2.7.	Discussion of results	lq 7		

3. Fluid-bod studies in a mild stoel bonch

scale reactor.

	3.1.	The development of fluidization	
		and its utility	53
	3.2.	The mechanism of fluidization	55
	3.3.	Bench scale apparatus	56
		3.3.1. Reactor	56
		3.3.2. Gas preheater	56
		3.3.3. Furnace	57
		3.3.4. Gas metering	57
		3.3.5. Gas cleaning	57
		3.3.6. Gas analysis	57
		3.3.7. Temperature measurement	58
	3.4.	Pressure-drop-flow diagram for	
		fluidized bed	58
	3.5.	Experimental procedure	58
	3.6.	Discussion of results	59
lą "	Fluid-	-bod gasification studies in stainless steel	
	reactor.		
	的。上。	Apparatus requirements	66
	4.2.	Gasification apparatus and ancillary	
		oguipmonte	
		4.2.1. Stainless steel reactor	68
		4.2.2. Heat supply system	70
		4,2.3. Gas supply system	71
		4.2.4. Gas motoring instruments	72

	4.2.5.	Exit-gas cleaning system	72		
	4.2.6.	Exit-gas sampling system	73		
	4.2.7.	Gas analysing system	73		
	4.2.8.	Fluid-bod pressure measuring .			
		@Quipmont	7 h		
4.3.	Expansi	on charactoristics of fluid-bod	75		
故。梅。	Tempera	ture distribution in the reactor	76		
4.5.	Pressur	e-drop-flow disgrams for fluidized			
	oos bod	δ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	76		
4.6.	Calcula	tion of off-gas analysis	78		
	4.6.1.	Arrangements of Katharometers	78		
	4.6.2.	Principles of Katharometer			
		measurement	78		
	4.6.3.	Principles of gas composition			
		calculation	79		
4.7.	Experimental results				
	4.7.1.	Attempts to gasify coke carbon	84		
	4.7.2.	Reduction of a fluidized bed of			
		1 ron ore	84		
	4.7.3:	Reaction of carbon dioxide with			
		reduced iron in the fluidized bed	85		
	4.7.4.	Preliminary attempts to deposit			
		carbon on reduced iron and its			
		removal with carbon dioxide	90		
	4.7.5.	Systematic carbon deposition and			
		subsequent gasification	93		

,

4.7.6.	Principles of	carbon	deposition	
	calculation	, , , , , , , , , , , , , , , , , , ,	000000000000000000000000000000000000000	94

- 4.7.9. Calculation of oxygen taken up by the bed 106
- 5. General discussion.
 - 5.1. Boudouard equilibrium 133
 - 5.2. Rate of carbon gasification 136

 - 5.4. Composition of bad at the end of run 140

 - 5.6. Suggestions for further work 143

REFERENCES.

SUMMARY

The purpose of this work was to study the reactivity to carbon dioxide of carbon deposited by the thermal cracking of methane on metallic iron powder, with a view to evolving a process for the production of synthesis gas from natural gas.

The various methods of carbon-reactivity measurement and type of carbon available for gasification processes are discussed. Existing processes which utilise natural gas for the production of synthesis gas are criticised and the benefits of a process in which separate streams of hydrogen and of carbon monoxide are produced continuously from natural gas are indicated. Consideration is given to the state of knowledge on the thermodynamics and kinetics of the thermal decomposition of methane and of Boudouard reaction, and to the published evidence for the enhanced reactivity of deposited carbon as compared with β -graphite.

As a basis for comparison a number of preliminary experimental studies have been made of the reactivity to carbon dioxide of powdered metallurgical coke in both fixed and fluidized beds and the effects of reactor temperature, gas flowrate, and the disposition of the bed. The results obtained were found to agree well with published data.

A large scale laboratory fluidized bod gasifier has been developed together with a system of two katharometers to give continuously a complete analysis of a gas containing carbon dioxide, carbon monomide and nitrogen. This reactor was supplied with powdered haematite iron ore which was reduced to metallic iron in the fluidized state with hydrogen. The iron powder was fluidized with a mixture of nitrogen and methane at about 1300°F, to deposit carbon on the iron. The iron-carbon mixture was then fluidized with a mixture of carbon dioxide and nitrogen to gasify the carbon. The exit gas analysis and the rate of gasification of the carbon and the rate of oxygen absorption by the iron were all studied under a variety of conditions of temperature and inlet carbon dioxide partial pressure.

It was found that for gasification temperatures in the range of 1000 to 1300°F, the concentration of carbon monoxide in the exit gas was much in excess of that predicted by the Boudouard equilibrium over graphite. The values obtained corresponded to excess free energies for deposited carbon of the order of 1300 to 3000 calorles per gram mole. The exit gas analysis was dependent on the partial pressure of the inlet carbon dioxide, the highest value of the equilibrium ratio being obtained with a low concentration.

The rate of gasification of the carbon was found to be a constant for large ranges of carbon-iron ratio on the bed.

źź.

It was also shown that the reactivity of the carbon to carbon dioxide was dependent on the temperature at which the iron substrate had been reduced with hydrogen.

When air was used in place of carbon dioxide the exit gas showed negligible oxygen content indicating that complete utilization of the oxygen had taken place.

The rate of uptake of oxygen by the bed was studied and calculations made of the proportion of the input carbon dioxide which gasified the carbon and the proportion which oxidized the iron. It was suggested that if the gasification temperature was increased to 1400°F, the absorption of oxygen by the iron became a small fraction of the oxygen leaving the gasifier as carbon monoxide.

The high concentration of carbon monoxide produced at a relatively low temperature suggest that this process may well be worthy of industrial exploitation for synthesis gas production.

LIST OF SYMBOLS AND ABBREVIATIONS

b = moles of methane decomposed.

c = moles of carbon dioxide reacted.

AC = lb-atoms of carbon removed in time t minutes.

"CO₂ * = per cent carbon dioxide in outlet gas.

"CO" = per cent carbon monoxide in outlet gas.

and
$$d_2$$
 = recorder deflection.

кł

- D = total dilatation.
- AF = free energy change, cal/gu.mole.
- G = total weight of carbon deposited in t minutes time, 1b.

G/t a rate of carbon deposition, 1b/min,

I, = percentage of iron content in the bed before run.

I₂ = percentage of iron content in the bed after run.

K = Boudouard equilibrium constant.

L = longth, ft. or inches.

m = number of moles of impure methane fed to the reactor.

n = molec of mitrogen fed to the reactor.

 $\Delta 0 = 1b$ -atoms of oxygen absorbed in time t, minutes.

" O_1 " = weight of oxygen absorbed by the bed in time

intorval, gms.

- "O₂" = weight of oxygen absorbed by the bed up to the ond of total time of a cycle, gms.
 - p₁ = avorage prossure for inlet gas during carbon deposition, inches of water gauge.
 - p₂ = avorage pressure for inlot gas during gasification, inches of water gauge.
- PCO, = partial pressure of carbon dioxide.
- PCO = " " " monoxido.
 - q = uncorrected equivalent per cent carbon dioxide (Katharometer recorder reading).

- t and t, a duration of a cycle, minutes.
 - T = room tomperature °C.
 - T₁ = absolute temperature, ^oK.
 - V = flowrate, ft³/min.
 - V. = inlet flowrate of methane, ft³/min.
 - $V_2 = 1$ mlet flowrate of mitrogen, ft³/min.
 - V_{α} = total inlet flow during deposition, ft³.
 - V_{L} = inlet flowrate of gasification minture, ft³/min.
 - V_5 = total outlet flow in a time interval, ft³.
 - W s weight of materials, gms. or 1b.
 - x = moles of carbom dioxide in inlet gas.
 - y = moles of carbon dioxide decomposed.
 - "T" = per cont inlet carbon dioxide decomposed.
 - Z = corrected equivalent per cent carbon dioxide

(Katharomoter recordor reading).

c, β and γ = constants. ρ = true density, gms/cm³ or 1b/ft³.

1.1. Carbon Reactivity

The gasification of coke at elevated temperature with steam to form blue water gas is frequently the first step in the production of so-called "synthesis gas". While the composition of this gas depends on the nature of the gasifying fluid, e.g. steam alone, or steam and oxygen, and on the temperature and pressure in the gasifier, the rate at which it is produced at a given required composition depends on the "reactivity" of the coke.

The reactivity of coke or carbon is simply the extent to which it reacts with the gas under consideration, in a given time and at a given temperature.

A considerable amount of study has been devoted to carbon reactivity. While it is obvious that any reacting gas may be employed for measurements, most workers reserve the term "reactivity", as applied to carbon, for studies of its reaction with carbon dioxide¹⁻¹³.

Chou: and Orning¹⁴ report that a higher precision of reactivity measurement is possible when using carbon dioxide. This is due to the better adiabatic control possible with an endothermic reaction. Thring and his co-workers¹⁵ prefer carbon dioxide for fuel reactivity measurement to methods based on ignition limits, because carbon dioxide conversion at 950°C is a direct measure of rate of reaction. At this temperature the reaction is chemically controlled and therefore it gives a direct measure of the apparent "activation emergy" of the carbon.

The reactivity of carbon has been defined by the Fuel Research Board¹³ as "the number of millilitres of carbon monoxide formed from 100 ml of carbon dioxide" under certain definitely specified conditions.

1,2, Methods of measurement of reactivity.

There are several methods for the measurement of the . reactivity of carbon, of which the following are widely used.

1.2.1. <u>Fuel Research method</u>.¹³ This method measures the reactivity of carbon in terms of the extent of completion of the reaction

$C + CO_{p} = 2 CO$

when the equilibrium concentration of carbon monoxide is 97.4%. A standard volume of graded carbon (7 ml of 10 - 20 I.M.M. test sieve size) is maintained at 950°C and a current of pure carbon dioxide is passed through at the rate of 5 ml per minute. The carbon monoxide formed is then measured.

Three values are recognised from this experiment as given below:

R.I. is the number of millilitres of carbon monoxide formed per 100 ml of carbon dioxide. It is therefore the initial

de o

reactivity and has a limit at the Boudouard equilibrium concentration of 197.4 ml.

R.II. is an apparently constant value which is reached after the expulsion of the volatile matter. R.III. 19 a lower constant value reached after the continued action of the carbon dioxide on the sample of carbon.

1.2.2. <u>Muller and Jandl rapid method</u>.¹⁶ In this method, a constant stream of pure carbon dioxide, at the rate of 2 litres per hour, is fed to the reactor, a quartz tube, heated by a furnace. The flow of carbon dioxide is metered through a flowmeter. A quartz boat inside the reactor tube holds the sample of carbon. The temperature of the reaction is kept at $900 \pm 5^{\circ}$ C. The product gases are cooled in a water-cooled coil and metered through another flowmeter before going to the exhaust. The flowmeters make it possible to have a continuous reading of the gas composition. The reactivity of the carbon is given by the formula

$$R = 100 \frac{Q_1}{Q_2}$$

whore.

It is found that the calculated R values increased rapidly to a maximum within one or two minutes from the start, and begin to decrease rapidly after 10 minutes to a constant value which remains almost unchanged. This value is taken as the reactivity of the carbon under test.

1.2.3. <u>Critical air blast (C.A.B.) mothod</u>.¹⁷ This mothod uses an apparatus developed by the Northern Coke Research Committee in which is kept a bed of closely graded coke (14 - 25 B.S.S.) which is 25 mm deep and 40 mm in diameter. A measured rate of air ($ft^3/min.$) is then passed through the bed from the top to keep the bed in combustion state. The minimum rate of air which will keep the bed in that state is measured as the C.A.B. value. The lower the C.A.B. value, the higher the reactivity of the coke or coal. This method has been widely used in Britain for industrial purposes.

1.2.4. <u>Modified ignition method</u>.¹⁸ This method is based on the gasification of a coke with air or exygen. The rate of evolution of heat is the measure of the reactivity of the coke.

This method was developed by the Coal Research Laboratory, Pittsburg, U.S.A.

1.3. Physical properties influencing carbon reactivity.

Factors such as particle size and surface area, porosity, particle strength and crystalline structure are all known to have marked effects on the reactivity of carbon

as it is found in coke. It is well realised that uniformity of size of fuel in a gas producer, since it promotes uniform gas flow across the fuel bed, will ensure high volumetric efficiency and constancy of outlet gas composition. The principal regions in which reactions occur in gasification processes are at the coky surface and in the interstices botween the coke pieces constituting the bed, and thus the nature and availability of coke surface as well as the chemical reactions and their rates at this surface will determine the overall reaction rate. The overall surface area of the coke or char is, of course, dependent on the size and shape of the pores contained in the solid particles. The narrower pores react faster as they provide larger surface area per unit volume.¹⁹ Porosity, reactivity, and strength of coke are not independent factors but interdependent.

The physical structure of different types of carbon depends both on the method of preparation and on the carbom containing raw material. Thus great differences in reactivity are possible. The proportion of crystallographically disorganized material may influence the reactivity by providing "active" or reaction sites. These active centres may be identified with the unsaturated edge atoms of the exposed graphite crystallites of carbon⁷⁹ or with the disordered

carbon atoms associated with the structure²⁰ and exist only at moderate temperatures. They are eliminated by thermal annealing at high temperatures.²¹ Amorphous carbons prepared at low temperatures are highly reactive due to the presence of these active contros which exist to a lesser extent in graphitic carbons due to the high temperature involved in their preparation. Hence the reactivity of graphite carbons decreases with increase in degree of graphitization.

An extremely reactive type is carbon that is deposited on a porous carrier. Such carbon deposits often form on catalysts that are exposed to hydrocarbons or carbon monoxide. This has been demonstrated by Gilliland and his co-workers, 24 who deposited carbon at low temperatures (700 - 1100°F) on a reduced Nickel catalyst by the thermal cracking of hydrocarbons and studied the carbon reactivity. It was found that the carbon deposited from butane and carbon monoxide at 900°F was 10 times more reactive than that obtained from methane. The reactivity of carbon deposited from methane at 1400°F was found to be 10 times greater in reaction with carbon dioxide than with hydrogen.

1.4. Types of carbon available in gasification.

For a long time, coke was the sole raw material for gasification. However, capital, maintenance and labour costs for carbonising plant have increased together with the increase in price of carbonising coal. Thus low grade coal has assumed an importance as a source of carbon for gasification. As the best types of coking coals are being preserved for metallurgical purposes, lower and lower grades of solid fuels are now being considered for gasification. These include, anthracite or anthracite fines or breezes, deep-mined or open-cast low grade bituminous coals, high ash and high moisture content brown coals, lignites and peat, high moisture content wood or cellulosic material, heavy fuel oil with high sulphur content, light petroleum distillate and natural gas.

1.5. Synthesis gas production and its value.

"Synthesis gas" is essentially a mixture of hydrogen and carbon monoxide and now usually manufactured on an industrial scale either by gasification of a solid carbonaceous fuel, by the gasification of a liquid hydrocarbon fuel, or by the reforming of gaseous hydrocarbons such as natural gas. Some carbon dioxide is generally also present in the gas and the ratio of hydrogen to carbon monoxide can be varied by re-converting some of the carbon monoxide by reaction with steam.

 $CO + H_2O = CO_2 + H_2$

Development of synthesis gas processes, as of any other manufacturing process, are closely related to economic trends. As a result the orientation of research in gasification has differed from country to country according to the nature of the indigenous fuel resources and national requirements.

One reason for its production which is applicable to all countries, is the utilisation of the low-grade fuels to produce cheaply synthetic liquid fuel or other vital chemicals. By nature all countries are not equally endowed with enough fuel resources. The world's petroleum, coal or gas fields are not systematically distributed to all the countries but situated within the borders of a few countries. Others have to depend on them for their day to day supply. There is no sure guarantee of their flow. It can stop at any time for political or other reasons, as happened to Germany during the last world war. Thus countries having only solid fuel resources will necessarily develop methods to utilise their indigenous fuel to produce liquid or gaseous fuels. For the countries rich in liquid fuel, other reasons apply. Although the present reserves of petroleum are guite high and should continue for another half-a-century, it must be recognised that the actual reserves are finite and will evontually be exhausted. Even if the day of declining production is still far away, there can be no doubt that the cost of production will inevitably show a general upward trend. The major factors in this cost trend will be the exploitation of relatively deep producing formations and off-shore drillings. This inevitable rise in the cost of recovering petroleum will in the end justify the production of synthetic fuel from synthesis gas utilising other low grade fuel.

There are many chemicals in the market today which were carlier costly, but are now produced cheaply from synthesis gas. Hence attempts are being made to devise ways to make as cheap a gas as possible which will not only open the field to more chemical manufacture from synthesis gas but to synthetic liquid fuel also.

Synthesis gas can be used as a starting material for the production of various liquid and gaseous hydrocarbons, chemicals and hydrogen for hydrogenation industries. The various processes that can utilize synthesis gas include production of:

- (a) liquid hydrocarbons by Fischer-Tropsch synthesis,
- (b) methane or synthetic high-Btu pipeline gas by methanation,
- (c) mothanol and higher alcohols directly,
- (d) higher alcohols by reduction with clefims in OKO synthesis,
- (c) hydrogen for use in the hydrogenation of coal to produce either liquid fuels and by-products or gaseous hydrocarbons and for use in the synthesis of ammonia,
- (f) hydrogen or hydrogen-rich gas mixtures for the direct reduction of iron ore.

1.6. The potential of natural gas.

Natural gas is found in large reservoirs under the surface of the earth in a "dry" condition, and also with petroleum in oil-welle in a "wet" condition. Gas associated with petroleum may be recovered in the oil-refinery by suitable separation plant. Almost all the oil-producing countries have vast reserves of natural gas. A small portion of these gases are recycled to the oil-well for pressurisation, but a considerable proportion is burned due to lack of economic outlets. It is reported that in middle eastern countries about 1,000 million ft³ of gas is daily vasted in this way.²²

Natural gas also exists in some coal pits. This presents a basard and modern drainage schemes are employed to recover quite a large amount of the gas. It is burned at the pit-head to raise steam or piped to local gas undertakings for enriching towns gas or for reforming.

Dry deposits of natural gas exist in several countries; U.S.A., U.S.S.R., Canada, Algeria, Netherland, and Pakistan have large reserves of dry gases. Smaller reserves have also been found in France and Italy. The total reserves of natural gas, both dry and wet (including the latest estimate for Netherland and Canada^{23,24}), are estimated to be 790 trillion cubic feet.²⁵

The vast reserve of Slochteren in Netherland is so close to the North Sea that it has brought a spate of activity by the big oil companies of the world to find gas in this sea-bod.²³

1.7. The manufacture of synthesis gas from matural gas.

There are two commonly used methods for synthesis gas manufacture from matural gas. These are:-

- (a) a catalytic stoam-roforming process developed by the standard oil company of New Jersey.
- (b) a partial oxidation process developed by the Texaco Oil Co.

1.7.1. <u>Catalytic steam-reforming</u>.^{26,27} In this process, a mixture of gas and steam is introduced into a reforming furnace kept at 1300 - 1500°F, and in which is suspended a multiplicity of heat resisting steel tubes of varying diameters and wall thickness. These contain uniformly sized particles of a highly active mickel catalyst. The reforming of the gas proceeds according to the following reaction

 $CH_{h} + H_{2}O = CO + 3 H_{2}.$

This reaction is endethermic and hence greatly favoured by high temperature and low-pressure. To overcome, however, the compression cost of the product gases, the process is operated at elevated pressures which shifts the equilibrium towards methane formation. To counteract this a high temperature is maintained inside the furnace. This has been possible by improved furnace design and improved heat transfer through the packed bed. This process is now widely used for the provision of gas for ammonia and methanol synthesis. 1.7.2. <u>Partial oxidation process</u>.²⁸ In this process, mothene is burnt non-catalytically in a specially designed burner with a limited supply of exygen under pressure. The first reaction of methane with exygen is

$$CH_{k} \div SO^{5} = CO^{5} \div SH^{5}O$$

and then a series of reactions follow between the product gases and methane

$$CH_{4} + CO_{2} = 2 CO + 2 H_{2}$$

$$CH_{4} + H_{2}O = CO + 3 H_{2}$$

$$CO + H_{2}O = CO_{2} + H_{2}$$

$$2 CO = CO_{2} + C$$

But the overall reaction may be depicted as

$$CH_{\mu} + \frac{1}{2}O_2 = CO + 2H_2$$

The outlet gas is obtained under pressure thus saving the cost of compression. This process is also increasingly used for ammonia synthesis.

1.7.3. <u>Limitations of the above processes</u>. It is wellknown that water-gas formation is favoured by high temperature and low-pressure and that methane formation is favoured by low-temperature and elevated pressure. Thus the steamreforming process carried out at elevated pressure to save compression costs is limited by temperature. Due to the presence of substantial amount of unreformed methane in the product gas, a second reformer is necessary. The process is moreover limited by the steam : methane ratio. A steam : methane ratio of 2 mol/mol is considered to be the minimum to avoid carbon deposition on the catalyst.²⁷ The partial exidation process is also limited by the exygen : hydrocarbon ratio. This is considered to be very critical and hence accurate control is necessary to provide steady reaction conditions.²⁸ The cost of production of synthesis gas by these processes prevents them from being suitable for synthetic liquid fuel production.

1.7.4. <u>Requirements of an ideal process and the</u> reactions involved.

An ideal process for the manufacture of synthesis gas should be flamible in terms of product gas composition. The hydrogen : carbon monoxide ratios required by various processes are different, and a process for synthesis gas might be called upon to meet the requirements of several such processes. As the processes for synthetic chemicals have distinct boundaries for their needs for efficient operation, so also a synthesis gas process has its own fixed process conditions which cannot be changed without incurring loss in efficiency. A specific example of the varied requirements of a process is the Fischer-Tropach synthesis process whose synthesis gas requirement varies in volume and composition according to the catalyst and the pressure, temperature and time of contact selected to yield

a primary product with desired amount of caturated to uncaturated hydrocarbons. Synthesis gas made in a single stop will have difficulty in meeting such varied requirements, and can only be met by employing several production stops.

With such a situation, it seems that a process which can manufacture the two synthesis gas components, viz. carbon monoxide and hydrogen, separately from a single feed material such as matural gas is worthy of consideration. Such a process could well utilize the two reactions:-

(a) decomposition of methane into its elements carbon and hydrogen.

 $CH_{h} = C + 2 H_{2}$

(b) gasification of the deposited carbon to produce carbon monoxide,

 $C + CO_{0} = 2 CO$

It is envisaged that the process would be a cyclic one in which a reactor produced alternately hydrogen and carbon monoxide. By the use of two such reactors in parallel and suitable gas valve arrangements it might be possible to obtain virtually continuous flows of both product gases.

1.8. Purpose of research.

The evolution of a suitable process for the manufacture of synthesis gas by the above scheme requires a detailed study of both reactions and the influence of catalysts on their rates. As will be described later, substantial methane

decomposition can be achieved at moderate temperatures over freshly reduced iron powder. A considerable amount of work has been carried out on this reaction by Van Vermer³⁶ and it was not proposed to continue this study here. Nevers, in the course of burning off carbon deposited on the iron powder, isolated measurements of the analysis of the gas coming from Van Vermer's reactor showed exceptionally high values for carbon menezide. This point was later noted and studied further by Gibb et al²⁹ who in fact showed that the concentration of carbon menezide coming from such a unit appeared to exceed that predicted by the Boudeward equilibrium. It appeared therefore verthyhile to make a systematic study of the reaction

$C + CO_{2} = 2 CO$

under conditions that would apply to such a process of mamufacturing hydrogen and carbon monoxide separately for better mixing as synthesis gas. With a suitable and cheap catalyst such as iron and a moderate temperature of operation, i.e. 1000 - 1300°F, such a two-staged process could well have commercial attraction in the event of large amounts of cheap methane becoming available in the United Kingdom.

It was hoped also to make calculations of free energy for the seemingly very reactive carbon and to determine how the reactivity was related to the iron substrate. To ensure constant temperature conditions, it was hoped to carry out most of the experiments in a fluidized bod reactor.

1.9. Theory of mothane decomposition.

1.9.1. Thermodynamics. Mothano is a stable gas and complete decomposition into its elements takes place at well above 1000°C^{15,30,31}. It is an endothermic process and hence tomporaturo dopondent. The degree of decomposition increases vith increasing temperature and its rate is strongly affected by the surface area of porous materials 31-33 and catalysts which accolorate it considerably 3^{4-37} . The thermodynamic equilibrium of the system $(C - H_p - CH_h)$ has been studied outonsively by several authors 32, 37-43 at high temporature and high prossure, 42-43 at high tomporature and lov pressure (atmospheric)^{32,37-40} and at low temperature and low pressure^{39,41}. The general conclusions drawn from these studies was that low tomperature and high pressure favour mothane formation and high temperature and low pressure favours its decomposition. The effect of temperature on the thermodynamic equilibrium of the system, $(C - H_2 - CH_b)$ io ohown in Figure 1.1. These data were taken from the "Thermodynamics of gasification and gas-synthesis reactions" by Lavrov, Korovov, and Piliphova in preference to that of Rossini ot al^{48,50} because the former compilation is the most modern one and is based on spectroscopic data.

1.9.2. <u>Kinotics and catalysts</u>. The decomposition of mothene was first investigated comprehensively by Berthelot⁴⁵ while studying the decomposition of hydrocarbons at high temperatures. He maintained that mothene is not directly

decomposed into its elements, carbon and hydrogen, but produces intermediate compounds, like acetylene or sthane, which subsequently decomposes into carbon and hydrogen. The possible reactions for this explanation are

$$2 \operatorname{CH}_{h} = \operatorname{C}_{2}\operatorname{H}_{2} + 3 \operatorname{H}_{2}$$
$$2 \operatorname{CH}_{h} = \operatorname{C}_{2}\operatorname{H}_{2} + 3 \operatorname{H}_{2}$$

This view was strongly refuted by Bone and Coward.³¹ Working in the temperature range of 1150 - 1160°C, they found no evidence of acetylene formation and concluded that mothane was directly decomposed into its elements. They showed that mothane decomposition is a first order reaction and that the rate of decomposition is greatly influenced by temperature and the presence of porcus materials.

Novever, the true mechanism of methane decomposition still remains debatable. The modern process of acetylene manufacture from methane lends support to the Berthelet theory to some extent. The present process employs a fast quenching step for the product gases of methane decomposition where the acetylene fraction ranges from 8% to 20%. The thermal conversion of methane may well be represented by the following reactions

 $2 CH_{l_1} = C_2H_{l_1} + 2 H_2$ $2 CH_{l_2} = C_2H_2 + 3 H_2$

It has been found that the percentage of acetylene increases in the product gases as the temporature at which the methane

is decomposed increases (from 6,8% at 100°C to 18,2% at 1200°C).46 The most significant studies of methane decomposition were carried out by Gilliland and Harriet³⁴, Boynton³⁵ and Van Wormer.³⁶ Gilliland and his co-workers, in order to study the reactivity of deposited coke, decomposed methane over reduced nickel in a fluidized bed within a temperature range of 700 - 1100°F and studied the rate of carbon deposition (which is indirectly the rate of methane decomposition) and found that the rate decreases linearly with increasing carbon on the bed, due to the coverage of the more active sites of the catalyst by carbon. They calculated the apparent activation energy of methane decomposition to be 23 Kcal perg.mole. Boynton³⁰ and Van Vormer³¹ while studying the reduction of iron ore with methane in a fluidized bed found that the increasing methane disappearance with increasing metallic iron in the bed was due to the catalytic decomposition of methane by reduced iron. Based on their experimental findings they proposed the following rate equation for methane decomposition.

$$R_{m} = k_{Fe} p_{m} W_{Fe}$$

 $R_{m} = rate of methane decomposition$
 $k_{Fe} = specific reaction rate constants$

where

constant for

mothanc partial pressure in the gas \mathbf{p}_{m} 9750 8463 phase

W Fo total weight of metallic iron in 177 the bed.
They showed that hydrogen-reduced iron has high activity which decreases rapidly to an asymptotic value with increasing time of exposure to mothane and accompanying carbon accumulation. Iron containing substantial carbon conforms to the conventional Arrheneous equation confirming the conclusions that reaction rate is controlling and methane deposited carbon has negligible diffusional resistance.

1.10. Theory of Boudouard reaction.

1.10.1, <u>Thermodynamics</u>. This reaction which occurs in the roducing zone of a gas producer is represented by the equation to

$C + CO_{9} = 2 CO$

It is an endothermic reaction and hence thermodynamically carbon monoxide formation is favoured by high temperature and low pressure. The effect of temperature on the thermodynamic equilibrium of this reaction was first studied by Boudouard⁴⁷, after whom the reaction is named, and subsequently by Rhead and Wheeler⁴⁸ at various temperatures. The first comprehensive compilation of the equilibrium constants at different temperatures for this reaction was made by Ressini and his co-workers⁴⁹. They calculated the equilibrium constants based on the thermodynamic data of the gases. Gumz⁵⁰ developed an equation for the equilibrium constant of this reaction based on the calculated values of Ressini et al. By this equation, equilibrium constant for any temperature from 700°K to 1500°K

could be calculated. The values calculated by Ressini and co-workers were later recalculated using up-to-date physical constants but this incurred no significant modification of their earlier values for the equilibrium constants.^{51,52} A recent compilation of these thermodynamic constants based on spectroscopic data of gases has been made by Lavrov, Korolov and Piliphova⁴⁴ which are claimed to be much more reliable than Ressini's. These latest equilibrium data were used throughout this work. The effect of temperature on the equilibrium of the Boudouard reaction is shown in Figure 1.1.

1.10.2. <u>Kinetics and catalysts</u>. Extensive studies 1-14,41,42,53-86 have been made of this reaction by a number of authors both to determine the reactivity of different carbon species and to understand the mechanism of the reaction. This is a hoterogeneous reaction and very complex in nature. Many routes have been proposed for the most probable mechanism but no one route has met with general approval. There is, however, agreement that the reaction proceeds through the formation of a surface onide and the rate of decomposition of this surface oxide is the rate controlling factor. Two possible mechanisms⁷⁵ are discussed below:-

<u>Mochanism A</u>: This mechanism which is supported by most of the authors^{55,59,61,68,70,73,74} on the basis of radioactive tracer and kinetic studies consists of two steps: The first step is a reversible onygen surface reaction as shown by the equation

$$C_{g} \div CO_{2} = C(0) \div CO$$

where C_f denotes an active carbon free - site capable of reaction and C(0) represents chemisorbod atomic oxygen.

The second stop is a unidirectional decomposition or gasification as follows :-

$$C(0) = C0 + mC_{p}$$

where nc_f denotes that on average n active centres must be produced for each carbon atom gasified.

<u>Mechanism B</u>: This mechanism was proposed by Gadsby and co-workers⁵⁷ based on their experimental findings. The following stops comprise the mechanism.

Firstly, a unidirectional oxygen exchange at the surface

 $C_{p} + CO_{2} = C(0) + CO$

then a reversible chemisorption of carbon monoxide upon free-sites

 $C_{f} \div CO = (CO)$ adsorbed

followed by a unidirection gasification of surface oxide

$$C(0) = C0 + nC_{e}$$

and in the presence of thermal annealing

$$C_{f} = C (inactivo)$$

Gadsby and co-workers proposed this mechanism based on the results of charcoal chemisorption at 750°C and at Earo to 400 mm Hg total pressure which indicated that wide variation in carbon dioxide partial pressures corresponded more closely to variation in carbon monoxide partial pressure than to changes in amount of oxygen complex absorbed. In addition, the quantity of oxygen complex remained relatively constant with variation in carbon monoxide partial pressure at constant carbon dioxide partial pressure. This was taken as evidence that the rate inhibition must have been due to carbon monoxide chemisorption and not to the reverse oxygen exchange as postulated in the first step of mechanism A.

The above proposition of Gadaby and co-workers was strongly refuted by Reif^{61} on the basis of kinetic studies. It was argued that the activation energy of the first step of mechanism A as calculated by Gadaby and co-workers was in error due to the negative sign (- 16.8 kcal) which was not in accord with the positive values of other studies which support the thermodynamic feasibility of the first step in mechanism A.

There is, however, general agreement ^{57,58,61} that the rate of carbon gasification by carbon dioxide fits a Langmuir type of equation as

where k, a and b are functions of one or more of the rate constants and p_{CO} and p_{CO} are the partial pressures of carbon dioxide and carbon monaxide. This equation is consistent with the proposed mechanism A. It states that the kinetics of the reaction will be first order with respect to carbon dioxide if ap_{CO} <<1 and $bp_{CO_{3}}$ <<1, i.e. at low carbon dioxide concentration and low temperature. Zoro order kinetics is indicated if $ap_{CO} <<1$ and $bp_{CO} >>1$, which is fulfilled at low temperature and high carbon dioxide partial pressure. It has been demonstrated that the constants a and b docrease with temperature, 57,58 therefore at high temperatures and high pressures, the inequalities apco >>1 and bpco, >>1 atill hold, resulting in a first order reaction. Thus orders of reaction varying from zero to unity are possible. This has been confirmed by several authors. 66,68,71

Blakeley⁶⁶, Vulis and Vitman⁷², and Savai and co-workers⁷⁶ confirmed that the over-all reaction rate of the carbon - carbon dioxide reaction is controlled by chemical reaction at the carbon surface up to about 1100°C. Above 1500°C it is controlled by diffusion. At low temperature, the reaction between carbon and a gasifying modium is controlled by the chemical resistance of the carbon surface and the gas velocity has no effect on the reaction rate. As temperature is increased, the chemical resistence at the surface decreases and the effect of diffusional resistance increases and at higher temperatures, the chemical resistance is overshadowed by diffusional resistance. The reaction rate is then controlled by gas velocity and the partial pressure of the gasifying medium.

The activation energy of this reaction has been variously reported.^{2,65,74,77-80}. The wide range in values given may be ascribed to :-

(a) varying degree in mass-transport,

(b) the influence of impurities, and

(c) the percentage carbon burn-off. 15

The production of carbon monowide has been shown to be 29.36.54,81-86 greatly accelerated by the presence of a catalyst. Catalysts found to be active are Nickel,⁸¹ Na₂CO₃,^{54,81-85} and Fe.^{29,36,86}. They appear to help in the faster removal of the surface oxide formed on the carbon.

The evidence of carbon monoxide poisoning of the reaction came from Hinshelwood and his associates⁵⁶ and is supported by Gilliland and his associates.⁵⁸ Hinshelwood found that the gasification rate was greatly retarded when carbon monoxide was introduced along with carbon dioxide in a carbon gasification experiment.

1.11. Quasi-equilibria and carbon free energy.

If chomical reactants are left in adequate contact for an infinite length of time the extent to which reaction takes place is limited by the chemical thermodynamic equilibrium of the system. In a flow system, if equilibrium is reached before the gases leave the reactor, the outlet composition of these gases will be calculable from the known thermodynamic data. The equilibrium constant for a reaction is related to the free emergy change by the equation

AF = - RT₁ ln K where the symbols have the usual significance and the standard state for reference has been defined.

Recent consideration of gas analyses from fluid bed gasifiers by Squires⁴³ appear to indicate that in certain cases equilibria may be exceeded. The outlet gas composition would appear to suggest that the extent of reaction has gone beyond that which should be thermodynamically possible. Thus he shows that reactive chars in fluidized - beds may yield methane concentration Bubstantially in excess of that predicted by the β -graphite-hydrogen equilibrium for the reaction

$$C \div 2 H_2 = CH_h$$

It may be said, of course, that such data represent a quasi-equilibrium over very active forms of carbon and as such should not be compared directly with β -graphite. Using the later equilibrium as a yardstick, however, one is able to calculate the seemingly excess of free emergy for such chars over that of β -graphite and thus obtain a scale of

carbon activity. The data reviewed by Squires indicates a possible entoss of free emergy for such forms of carbon at 1700°F ranging from 1800 cal/g.mole to 4800 cal/g.mole. Such excessive free energies must be associated with the difference between the thermal properties of the bulk solids and finely divided solids of high surface area por unit voight. It is extremely difficult also to allow adequately for the activating offects of adsorbed hydrogen on such carbon surfaces. Moreover, when the carbon 19 deposited as a thin film on an active catalyst surface, the apparent carbon reactivity may be expected to differ considerably from that of bulk graphite. This was in fact shown to be the case for carbon deposited on Nickel by Gilliland and Harriot³⁴. The data furnished by Gibb et al²⁹ suggest that iron has the same influence.

2. PRELIMINARY FIXED-BED STUDIES

The ultimate object, as stated in the introduction was to study the Boudouard equilibrium in a fluidized bod for carbon deposited on a catalyst. As a basis for comparison and in order to become familiar with the experimental results to be expected, a number of experiments were carried out on a fixed bod of metallurgical coke. The effects of temperature, coke particle size, gas flowrate and general arrangement of the bod on the outlet gas analysis were all studied.

Experiments were carried out also on carbon deposited in a fixed bed of reduced iron particles.

2.1. Preparation of coke powder and iron catalyst.

A consignment of 3/4 inch screened metallurgical coke Was obtained from the coke evens associated with a local iron works. It had been prepared by the carbonization of a blend of Scottish coking coals. The swelling index of the blend as determined by B.S.1016: part 12, 1959, was 5.5. A representative sample of the coke was ground to pass 72 mesh B.S.S. The proximate analysis of the powder was then determined by the methods set out in B.S.1016: part 4, 1957. The results were as indicated in Table 2.1 below.

TABLE 2.1

Moisture	1.20
Ach	11,20
Volatilo mattor	0.62
Fixed carbon	86.98
	100.00

The main bulk of the coke was then passed through a series of laboratory crushing and grinding units, viz. jav-crusher, roll-mill and hammer-mill. The fine powder was then graded into a number of suitable sieve-size ranges by means of British Standard sieves and a mechanical (Rotap) sieve shaking machine. The size ranges selected for gasification studies were

•		16	÷	18	mesh	en en	60	÷	72	mc	sh
÷		22	÷	25	89	613	72	÷	100	` (67
	73	lą lą	÷	60	63	cub.	100) -	· 1	30	67

A supply of iron ore was obtained also from a local iron works. The ore was a Cerro Bolivar haematite from South America. The iron content of this ore was reported to be 56% (i.e. 80% Fe₂O₃) and 20% silica and other gangue constituents. As supplied, the ore was in the form of 1 to 4 inch lumps. The larger pieces were broken in the laboratory jaw-crusher and them all the ore was crushed in the laboratory roll and hammer mill. The powdered ore was then graded into a number of size ranges by B.S. Sieves.

The size ranges- 16 + 18 mesh and - 50 + 100 mesh vere retained for use in the gasification studies. The former vas used in fixed bed studies and the latter for fluidization experiments.

Screen analysis of the - $52 \div 100$ mesh fraction was determined by the method laid down in B.S. 1796 : 1952. The results were as given in Table 2.2.

TABLE 2.2

wy. per cent

Through	52	mesh	B.S.S.	and	on 60	mesh B.S.	5. 18.94
80	60		63	69	72	50	21.95
19	72		17	\$?	100	63	48.75
8 0	100		(7	63	1.20	65	9.47
53	120		4 8	0 9	150	63	1.36
80	150		ព	65			.0.13
							1.00 . 00

2.2. Fixed-Bod Gasification Apparatus.

This part of the work was undertaken on a simple apparatus consisting of the following parts,

(a) Furnace

(b) Reaction tube

(c) Gas motoring instrumont, and

(d) Gas analysis apparatus.

A flow-shoot of the general arrangement is shown in Figure 2.1.

2.2.1. Furnace. This was an electrical high temperature tube furnace capable of operating up to 1400° C. It could accommodate a $1^{1}/4$ inch O.D. refractory furnace tube and heat a length of 13.5 inches. Heating was by direct radiation from carbon resistance rode which were grouped around the furnace tube. Furnace temperature control was provided and the furnace temperature was measured by a Chromel-Alumel thermocouple placed near to the outer surface of the furnace tube at the mid-point of its length, and indicated by a temperature calibrated millivoltmeter. The furnace could be arranged so that the furnace tube axis was horizontal or vertical.

2.2.2. <u>Reaction tube</u>. This was a Mullite tube 30 inches long and with an internal diameter of 0.9 inch. Two neoprene rubber stoppers held the inlet and outlet gas-lines im place. They were protected from direct radiation from the reactor bed of the furnace by 1/4 inch thick discs of soft asbestos sheet placed in the tube before them.

2.2.3. <u>Gas metering</u>. This was achieved by manometric flowmeters filled with concentrated sulphuric acid and proviously calibrated against a standard wet gas-meter for each individual gas in use. Two such flowmeters were used in these experiments, one for nitrogen and another for carbon dioxide.

2.2.4. <u>Gas analysis apparatus</u>. This was a British Standard Orsat apparatus permitting analysis for carbon dioxide, oxygen and carbon monoxide. Nitrogen was determined by difference.

2.3. Experimental Procedure.

A weighed amount of coke of a particular particle-size range was taken which would give a packed bed length in the tube of 12 cms. The coke was held in place inside the reaction tube by 1 inch thick plugs of asbestos wool at each Initially the furnace was used with the reaction tube end. lying in a horizontal position in it. Nitrogen was continuously passed through the tube, and the temperature raised to the desired value by adjustment of the electrical controls. When the desired temperature had been reached, carbon dioxide was introduced into the reactor at the required rate with the nitrogen. The exit gases were then analysed by Orsat at suitable time intervals. This experiment was repeated at different temperatures, flowrates and coke particle sizes. A new series of experiments was then carried out with the reaction tube vertical.

(a) With reaction tube horizontal:

(1)	offect	oſ	temperature,	
(11)	effect	oſ	flowrate,	
(111)	effect	of	particle size	range .

(b) With reaction tube vertical and gas flowing upward:

(i) effect of flowrate,
(ii) effect of particle size range.

In the case of the later experiments, the bed was supported by a perforated stainless steel disc which was in turn supported by a steel spiral pushed inside the reactor from below.

2.4. Evaluation of "Equilibrium Ratio".

Although it was realised that the time of contact of carbon dioxide with coke in the reaction tube was very likely to be insufficient for chemical equilibrium to be reached, it was decided to evaluate an "equilibrium ratio" for the exit gases in the manner mormally used to calculate an equilibrium constant. The value obtained when compared with the constant at the same temperature for the Boudouard equilibrium would give a measure of the proximity to equilibrium.

The most convenient way of representing the equation for the calculation of equilibrium constant it in terms of partial pressures. For the Boudouard equilibrium, this is as follows :-

$$K = \frac{p_{c0}^2}{p_{c0}^2}$$

where p_{CO} and p_{CO_2} are partial pressures of carbon monoxide and carbon dioxide. This equation can also be written in terms of fractional volumes of each gas

$$\frac{p^{c}c_{0}}{p_{c_{0}}} = \frac{(v_{c_{0}})^{2}p^{2}}{(v_{c_{0}})p} = \frac{(v_{c_{0}})^{2}p}{v_{c_{0}}}$$

9

For reaction at atmospheric pressure (p = 1), the equation becomes

$$\mathbb{K} = \frac{(\mathbb{v}_{CO})^2}{\mathbb{v}_{CO_2}}$$

This equation was used to calculate the equilibrium ratios in the above experiments.

2.5. Calculation of residence time.

The residence time of a flowing fluid in passing through an empty vessel largely depends on the flowrate of the fluid and the dimensions of the vessel. The calculation of residence time becomes a little more complicated if the vessel is packed with granular material. The velocity of the fluid within the vessel will depend on the available flow channels or bed veidage. A relationship to enable residence time to be calculated for a gas flowing through a bed of solid particles involves such parameters as gas flowrate, bed length and diameter, weight of the solid in the bed and the true density of the solid particles.

Hence, if

V = flowrate of the fluid, ft³/min. D₁ = diameter of the tube, ft. L = length of the bod, ft. V = weight of the solid bod, gms. p = true density of the solid particles in the bed, gms/em³ or lbs/ft³.

Then overall volume of the bod

Regidence time

 $= \frac{2}{4} \frac{p^2 L}{1}, \quad \text{ft}^3$ Volume of the solid $= \frac{V}{\rho} \text{ft}^3$.
Volume of the free space in the bed

$$= \frac{\pi}{4} \frac{D_1^2 L}{p} - \frac{V}{p} \frac{r t^3}{r t^3},$$
$$= \frac{1}{4V} \left(\pi D_1^2 L - \frac{L W}{p}\right) \text{ wing.}$$

This equation was used to calculate the residence time of the flowing fluid inside the reactor.

2.6. Exportmontal Regulta.

i

2.6.1. <u>Horizontal reaction tube</u>. The results of the various experiments are tabulated below in Tables 2.3 to 2.5, and plotted in Figures 2.2 to 2.5.

TABLE 2.3 Effect of furnace temperature

Longth of the bed of coke particles = 12 cms Weight of coke bed = 22.8 gms. Particle size range = - 16 + 18 mesh B.S.S. Inlet gas flowrate = 1320 c.c/mim. et 20°C Inlet gas composition = 50.75% carbon dioxide 49.25% nitrogen

\$1000000000000000000000000000000000000	2 Million States in a state of the state of the state		•	-		
, Rufi No	Samplo takon at(min)	Temp. °C	Por cent CO ₂	in off-gas CO	K .calcu	Log K lated
Я.	0 10 30 60 90	900	50.1 50.2 50.2 50.3	1.60 1.50 1.50 1.50 1.50	0.51x10 ⁻³ 0.447x10 ⁻³ 0.447x10 ⁻³ 0.446x10 ⁻³	-3.29243 -3.34969 -3.34969 -3.35069
N	0 10 30 60 90	1100	40.0 40.6 41.2 41.8	17.2 16.0 15.0 14.0	7.39x10 ⁻² 6.305x10 ² 5.461x10 ² 4.688x10 ²	-1.13101 -1.20012 -1.26273 -1.32901
3	0 10 30 60 90	1300	16.6 20.0 26.2 33.0	46.4 44.0 34.8 25.0	1.2969 0.9680 0.4622 0.1894	0.11263 -0.01412 -0.33517 -0.72261

TABLE 2.4 Effect of carbom dioxide flowrate

Length of the bod of coke particles	8	12 cm8.
Veight of the coke bed	52	22.8 gms.
Particle size range	52	- 16 + 18 meah B.S.S.
Temperature of gasification		1100°C

Rum No .	Samplo takon at(min)	Flow c.c./i ^N 2	rato min. ^{CO} 2	Por c off-g CO ₂	ent as CO	K Log K calculated	
1	0 5 30 60 90	605 (49,&%)	620 (50.6%)	42.0 42.4 43.4 44.0	10.0 9.6 8.6 8.0	2.3809x10 ² 2.1735x10 ² 1.7041x10 ² 1.4545x10 ²	-1.6234 -1.66294 -1.7685 -1.83745
R	0 5 30 60 90 120	300 (49.4%)	308 (50,6%)	27.6 31.2 32.2 33.2 33.4	25.8 19.6 19.0 18.0 17.4	24.1173x10 ² 12.3028x10 ² 11.2111x10 ² 9.7590x10 ² 9.0646x10 ²	-0.61780 -0.91009 -0.95036 -1.01060 -1.04248
3	0 5 30 60 90	197 (48.4%)	210 (51.6%)	29.4 30.6 33.0 34.0	30.6 26.4 25.0 24.0	$31.4889x10^{-2}$ 22.7764x10^{-2} 18.9393x10^{-2} 16:94117x10^{-2}	-0.49702 -0.64262 -0.72285 -P.77107
L3	0 5 30 60 90 120	101. (50.0%)	5 101.5 (50.0%)	18.4 22.4 26.0 27.4 28.0	43.6 37.6 34.0 31.6 29.0	103.3130x10 ² 63.4461x10 ² 44.4615x10 ² 36.4437x10 ² 30.0357x10 ²	0.01411 -0.19764 -0.35203 -0.43842 -0.52245

35

TABLE 2.5 Effect of particlo size range

Longth of the bod of coke particles 12 cms. 23 Temperature of gasification 1100°C 6 297 c.c./min. at 20°C Inlet gas flowrate 23 50.0% carbon dioxide and Inlet gas composition 61-75 (box 50.0% nitrogen Noight of the bed for -22+25 mesh range B.S.S. = 28.5 gms. -60+72 " 69 52 63 ល 69 a 33.0 -72+100 " 50 67 87 68 69 = 39.5

Run	Sample	Particle	Por	cent	Υ ΔΙΑΝΙΛΙΚΑ ΦΟΙ Α ΤΟΝΑ ΙΟ ΟΙ ΑΝΤΙΟ ΟΙ ΝΟΙ ΟΙ ΑΝΤΙΟΝΟ ΑΠΟΙΟΝΟΝΟ 	-E
No.	takon at(min)	size range mesh B.S.S.	OTT- CO-	gas I CO	K calculate	Log K ad
untora contrar			2			
	O		69			
	5	-22:.25	27.4	31.6	36.3708x10 ⁻⁶	-0.43926
1	30		27.6	30.6	33.9260x10 ⁻²	-0.46954
	60		28.0	29.0	30.0357x10 ⁻²	-0.52245
	90		28.0	28.0	28,0000x10 ⁻²	-0.55284
	150		28.0	28.0	28,0000x10 ⁻²	-0.55284
	and an		activities and and and and and a		an and a marked block and a structure of the product of the open static product of	ana ana amin'ny faritr'i Manazara a Kandulana a Manazara.
	ο		ca v	67		
2	5		29.0	30.4	31,8675x10 ⁻²	-0.49674
	30	-60+72	27.6	31.4	35.7231x10 ⁻²	-0.44709
	60		27.2	31.4	36.2485x10 ⁻²	-0.44081
	90		26.8	31.6	37.2597x10 ⁻²	-0.42888
	120		26.2	31.8	38.5969x10 ⁻²	-0.41352
	0		టు	67		
	5		26.6	32.4	39.4646x10 ⁻²	-0.40274
3	30	-72+100	23.4	37.6	60.4170x10 ⁻²	-0.21889
	60		22.8	37.6	62,0070x10 ⁻²	-0.20761
	90		22.6	37.8	63.2230x10 ⁻²	-0.19908
	120		21,0	38.0	68.7619x10 ⁻²	-0.16266
				-		

TABLE 2.6 Effect of using carbon dioxide only

Longth of the bod of coke	particles =	12 cms.
Weight of the bed of coke	-	38.5 gms.
Particlo sizo rango	£33	-72+100 mesh B.S.S.
Tomperature of gasificati	on B	1100°C
Inlot flowrate of carbon	dioxido =	148.5 c.c/min. at 20°C

Run No 2	Samplo takon at(min)	Per cont CO ₂	o££~gas CO-	K calcu	Log K Latod
	0	Ð	Ē		
	5	42.04	58.6	82.9458x10 ⁻²	-0.08124
لمار ا	30	36.0	64 o O	113.7777x10 ⁻²	∻0₀ 05 578
	60	31.4	68.6	149.8713x10 ⁻²	+0.17555
	90	30₀0	70.0	163.3333x10 ⁻²	∻0 ∘21299
	120	29.0	72.0	173.8275x10 ^{°2}	∻0₀2 4006

2.6.2. <u>Vortical Roaction Tube</u>. With the tube vertical, the inlet gas was passed through the bod of coke in an upward direction.

TABLE 2.7 Effect of carbon dioxide flowrate

Longth of the bed of coke particles = 12 oms. Weight of the bed of coke = 22.8 gms. Particle size range = -16+18 moch B.S.S. Temperature of gasification = 1100°C

Run No .	Samplo takon at(min)	Flovy c.c/m N ₂	ete in. CO ₂	Por co off-ge CO ₂	ont IS CO	X calculate	Log K nd
<u>)</u>	0 5 30 60 90 120 150	99.25 (50.0%	99。25) (50.0%)	25.4 25.6 25.8 26.8 27.0 26.4		$48.5043\pi10^{-2}$ $47.0515\pi10^{-2}$ $45.3348\pi10^{-2}$ $38.6880\pi10^{-2}$ $37.9259\pi10^{-2}$ $35.4681\pi10^{-2}$	-0.31426 -0.32010 -0.34361 -0.41251 -0.42113 -0.45017
2	0 5 30 60 90	148.5 (50.0%)	148.5 (50.0%)	- 30.2 32.4 34.0 35.0	_ 26.8 22.6 22.0 21.0	23.7827×10^{-2} 15.7641×10^{-2} 14.2352×10^{-2} 12.6000×10^{-2}	-0.62177 -0.80245 -0.84680 -0.89963
3	0 5 30 60 90 120 150	204 (49.04%)	212 (50.96%)	- 29.0 30.6 31.0 31.6 32.0 32.6	21.0 20.7 20.4 20.0 19.6 19.0	$15 \cdot 2068 \times 10^{-2}$ $14 \cdot 2068 \times 10^{-2}$ $13 \cdot 4245 \times 10^{-2}$ $12 \cdot 6582 \times 10^{-2}$ $12 \cdot 0050 \times 10^{-2}$ $11 \cdot 0736 \times 10^{-2}$	-0.81816 -0.84771 -0.87224 -0.89793 -0.92082 -0.95591

Longth of the bod of coke particles = 12 cms. 1100°C Temperature of gasification **C**3 Inlot geo flowrate 297 c.c/min. at 20°C. 23 Inlet ges composition = 50.0% carbon dioxide 50.0% nitrogen Weight of the bod of coke for -22+25 particle range, B. S. S. - 28.5 gms. 99 = 33.0 gms. 88 65 -60+72 92 99 88 = 39.5 gns. 69 -72+100 89

Rua No 5	Sample taken at(min)	Particle size range mesh,BSS	Per cer CO ₂	nt off⇔gas CO	K calculs	Log R 1 ted
1	0 5 30 60 90	-22+25	- 26.4 29.6 29.2 28.0	32。6 29。4 29。0 28。0	40.2598x10 ⁻² 29.2013x10 ⁻² 28.8013x10 ⁻² 28.0000x10 ⁻²	-0.39522 -0.53462 -U.54061 -0.55284
2	0 5 30 60 90	60 +72	- 20.0 18.0 17.6 17.0	- 34.0 44.0 44.4 45.0	57.8000x10 ⁻² 107.5555x10 ⁻² 112.0090x10 ⁻² 119.1176x10 ⁻²	-0.23807 +0.03140 +0.0492 +0.07592
3	0 5 30 60 90 120 150	∞72 +100	- 22.0 20.2 18.4 18.0 17.4 17.0	39 ° 0 40 ° 8 42 ° 6 43 ° 0 44 ° 6 45 ° 0	69.1363x10 ⁻² 82.4079x10 ⁻² 98.6282x10 ⁻² 102.7222x10 ⁻² 114.3195x10 ⁻² 119.1176x10 ⁻²	-0.16033 -0.08407 -0.00603 +0.01157 +0.05806 +0.07592

TABLE 2.9 Effect of using carbon dioxide only on

the eautlibrium

Length of the bod of coke particles = 12 ems. Temperature of gasification = 1100°C Inlet gas flowrate = 148.5 c.c/min.at 20°C

Weight of bod of coke particle size range -60+72 mosh B.S.S. = 33 gms. Weight of bod of coke particle size range -72+100 mesh B.S.S. = 39.5 gms.

Run No.	Semplo taken at(min)	Particlo sizo rango mosh.BSS	Por co: CO ₂	nt off-gas CO	K celcule	Log K 130d
	0		анны (<u></u> с		net y three first to conside a gran such y some southe ends and the first of the souther of the souther of the	a na Gandaran (ganda ang ang ang ang ang ang ang ang ang an
1	5	- 60 +72	40.2	59.8	68.9562x10 ⁻²	-0.05085
	30		26.2	73.8	207.8793x10 ⁻²	+0.31767
	60		24.6	75.4	231.1040x10 ⁻²	≁0 .36380
	90		23.0	77.0	257.7826x10 ⁻²	+0.41120
	0	a Sta Starf (Star America Starford Starford Starford Starford Starford Starford Starford Starford Starford Sta	<u>a</u>	en e	ana an	22 - 22 - 22 - 22 - 22 - 22 - 22 - 22
	5		40.0	60.0	90.0000x10 ⁻²	-0:04576
. 2	30	-72+1.00	26.0	74.0	210.6154x10 ⁻²	<i>4</i> 0.32342
	60		23.2	76.8	254.2344x 10 ⁻²	+0.40517
	90		20.6	79.4	306.0368x10 ⁻²	+0.48572
			1		1	

2.6.3. <u>Sample calculations</u>. The calculation of the equilibrium ratio for an outlet gas composition of

carbon dioxide = 40% carbon monoxide = 17%

was as follows:

$$K = \frac{\left(v_{C0}\right)^2}{v_{C0}_2} = \frac{\left(\frac{17}{100}\right)^2}{\frac{40}{100}} = \frac{289}{4000} = 7.225 \times 10^{-2}$$

 $\log K = 2.85884 = -1.14116$

Calculation of Residence Time

Residence times were calculated for the particle size range - 16 + 18 B.S.S. as this was the only sample which had provided sufficient readings in both horizontal and vertical reaction tubes.

The true density of the particles was determined by the method of B.S.1016, part 13, 1963, and was found to be 2.26 gms/c.c. The residence times for various flowrates along with the log K values both for horizontal and vertical tubes are given in Table 2.10.

Flowrato c.c/min.	Rosidonco timo (min.)	Calculated Log Horizontal tube	K values for Vertical tube
198.5	0,1970	G	~0∘310
203	0.1927	⇔=0.01	ප
297	0`. 1317	· @	⊳0 ∘755
407	0.0961	-0.50	C 3
416	0.0941	æ	-0.820
608	0.0643	00.72	æ.
1225	0.0319 .	-1.61	⇒

TABLE 2.10 Residence time with respect to flowrete

The calculation of residence time for flowrate, 1320 c.c/min. and the particle size range, -16+18 mesh was made as follows:-

$$\frac{1}{4V} \left(\pi D_1^2 L - \frac{4N}{\rho} \right) = Residence time$$

$$= \frac{1}{4(0.04664)} \left[(3.14) \left(\frac{0.9}{12} \right)^2 \frac{12}{2.54(12)} - \frac{4(22.8)}{2.26(2.54)^3(12)^3} \right]$$

= 5.36 x 0.005529 = 0.02964 mino.

2.6.4. Reaction with carbon deposited on iron

Three experimental runs were carried out in which carbon deposited on freshly reduced iron was gasified with carbon dioxide. In each case 100 gms of the haematite ore (-16+18 mesh B.S.S.) size range) was placed in the furnace tube with its axis in a vertical direction. The ore powder was kept in position by means of a stainless steel disc perforated with a number of 1.0 mm diameter holes and supported by a steel spiral. The gas flow was arranged to be downwards from the top of the reactor and a glass condenser was included in the outlet line to collect the condensed water produced during the reduction of the ore. The duration of each reduction was 10 hours with an inlet flowrate of hydrogen of 0.013 ft³/min. at 20°C. Since it was difficult to estimate the end of water evolution, the extent of reduction of the iron ore was tested from time to time by passing a little methane through the bed and analysing the off-gas for carbon monoxide. The nonappearance of carbon monoxide was taken as an indication of the completion of reduction of the ore to metallic iron. As soon as the reduction was seen to be complete, hydrogen flow was stopped and methane was introduced into the reactor at a rate of 0.017 ft³/min at 20°C. After a fixed time of carbon deposition (two hours in each case), a measured flow of carbon dioxide and of nitrogen were introduced into the reactor.

The outlet gases were analysed every twenty minutes with the help of an Orsat apparatus⁸⁷ connected to the outlet line by a T-piece. TABLE 2.11 Gaeification of carbon deposited on iron

Longth of the bod of iron powder = 17.4 cms. Woight 10 \$9 99 🗢 100.0 gms. ∞ -16+18 mosh B.S.S.
 a 0.013 ft³/min.
 a 0.017 ft³/min. Particle size range Inlet flowrate at 20°C of hydrogen 89 69 11 methane 68 89 11 carbon dioxide and nitrogen_mixture = 0.026 ft²/min. = 54% carbon dioxido Inlet gas composition = 46% nitrogen Temperature of reduction and carbon deposition = 800°C 69 = 800°C and 850°C QQ gasification

Run No.	Temp. C	Samplo takon at(min)	Per cent CO ₂	off-gas CO	K calc	Log K sulated
		0	çi	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
1	800	20	22 <u>,</u> 8	38.2	0.64	-0.19382
		40	26.0	32.0	0 .394	-0.40450
		60	29.8	28,2	0.267	-0.57349
		80	31.4	26.6	0.226	-0.64589
	<u></u>	0		an 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 19		
2	800	20	12.6	47.4	1.780	+0°22045
		40	17.8	42.2	1.00	∻0₀000 0
		60	24.0	37.0	0.571	-0.24336
		80	24.6	3504	0.508	-0 .29414
		0	annan a na sa	and in by the second		
3	850	20	2.2	63.0	18.0400	+1.25622
		40	2.2	62 . 8	17.9230	+1°25334
		60	3.0	59.0	11.6033	+1.06646
		80	3.5	56.4	9.0880	+0 .9 5847
4						

TABLE 2.12The values of log K for differenttemperatures were taken by linearextrapolation to zero time and shownin the table below, along with thetheoretical value of log K.

Tomp. °C	rog K		
	Experimente)	Theorotical	
800	0°08	. 0 007	
800	+ 0.32	~ 0.82)	
850	+ 1.30	+ 1.20	

٦,

2.6.5. <u>Graphical presentation of the experimental</u> <u>results</u>. The experimental and calculated results tabulated earlier are presented in graphic form in this section. In Fig. 2.2 is shown a plot of log K vs time for different temperatures for a horizontal reaction tube and the difference between the experimental and theoretical log K is shown in Figure 2.3.

The final experimental log K values in this section, for a particular experiment were obtained by extrapolating the log K vs time line linearly to zero time.

Other log K vs time plots are shown in Figures 2.4, 2.6, 2.8 and 2.9 for different flowrates and different particle size range for both horizontal and vertical reaction tubes and difference between the ultimate log K for these experiments and the corresponding theoretical log K is shown in Figures 2.5 and 2.7 respectively. The effect of residence time of the reacting gas on the equilibrium ratios is shown in Figure 2.10.

The log K vs time plots for experiments done on reduced iron with deposited carbon are shown in Figure 2.11 and the ultimate log K values for these experiments and the difference between them and theoretical values are shown in Table 2.12.

Ê

2.7 Discussion of the results.

In a flow method of operation like the one described on previous pages, a representative equilibrium ratio cannot be taken by averaging the ratios obtained at different times in an experimental run. Although theoretically the amount of carbon available for reaction should have no effect on the equilibrium, and does not in fact enter into the calculation of an equilibrium constant, the progressive burn-off of carbon opens channels in the bed through which gas can by-pass and exposure of ash constituents may have a blanketing effect on the surface reaction between carbon and carbon dioxide. It can be seen from the results that in most cases the equilibrium ratio decreases with time of contact. However, in some experiments particularly with smaller carbon particles, the equilibrium ratio increased with time of contact. This might be due to slower rate of carbon burn-off. Moreover, with increase in time increasing amount of carbon surface may be coming into contact with the reacting gas. As is generally known, the smaller the particle sizes the bigger the surface they present. It is possible that a longer experimental time would have shown a decreasing tendency after a sufficient fraction of carbon had been burnt-off.

Owing to the tendency of the equilibrium ratios to decrease with time, an appropriate equilibrium ratio was obtained by extrapolating the log K vs time plot to zero time. It may be seen that in some cases the plotted lines approach the equilibrium ratio axis linearly and a zero time value is easily obtained. In other cases, however, the first sample drawn appears to give a result not in a straight line with later points. It is difficult to know in these cases whether these first points should be included in the extrapolation or excluded. In Figures 2.6, 2.8 and 2.9 in particular, the results for -72+100 mesh size ranges respectively appear to be out of line.

It was found that the coke carbon had little reaction to carbon dioxide at 700° C and very low reaction at 900° C. The equilibrium ratios for other temperatures were very low compared with the theoretical ones (Figure 2.3).

Three experiments were carried out using 100% carbon dioxide (Figures 2.6 and 2.9) and the equilibrium ratios were found to be higher than those obtained in experiments carried out with the same amount of carbon dioxide but diluted with an equal amount of nitrogen (Table 2.5 run No.3, and Table 2.8 run Nos. 2 and 3). Perhaps the equilibrium ratios would not have been so high, had it been possible to use the same flowrate in all cases. As it was shown in other experiments (Figures 2.4 and 2.8) that increase in flowrates decreased the equilibrium ratio by decreasing the residence time of the reacting gas in the reactor, the same argument could well be applied to the case of 100% CO_2 flow where the residence time was double that of the mixture.

The extent of the reaction was also influenced by the increase in particle sizes used. Higher equilibrium ratios were obtained with the smaller particle size ranges than with the larger ones, with the same flowrate of gas and at the same temperature. The smaller particles offer a larger amount of reaction surface per unit volume and also cause higher gas velocities between the particles than do the larger particles. Two anomalies, however, were observed with the -22+25 mesh particles in horizontal reaction tube. In both cases, the equilibrium ratios obtained were higher than those obtained with smaller particles such as -60+72 mesh in the second case. No explanation could be offered for these anomalies as the conditions of reaction were the same in all cases.

The percentage of carbon removal with time from the bed was also calculated for several runs for both horizontal and vertical positions. It may be seen from Figure 2.12 that the percentage removal of carbon from the bed has a linear relationship to duration of run.

The percentage carbon removal was calculated by a nitrogen balance for three cases (Run No.4 of Table 2.4), Run No.1 and 2 of Table 2.7). For Run No.1 of Table 2.6 where no nitrogen was used, the calculation was carried out by correlating the percentages of carbon monoxide and carbon dioxide of the exit gases with the inlet flowrate. A typical nitrogen balance calculation is shown below, e.g. for Run No. 4 of Table 2.4.

Flowrate of nitrogen = 101.5 c.c/min at 20° C. Exit gas percentages = 18.4% carbon dioxide, and 43.6% carbon monoxide. Inlet gas composition = 50% nitrogen, and 50% carbon dioxide.

Calculation

Moles of carbon dioxide entering the reactor per hundred moles of nitrogen $= \frac{50(100)}{50} = 100$

gm. atoms of carbon entering per hundred moles of nitrogen = 100

Total amount of carbon dioxide and carbon monoxide in the cxit gas = 62% Nitrogen in the exit gas = 38%

gm. atoms of carbon in the exit gas per hundred moles of nitrogen $= \frac{62(100)}{38} = 163$ Excess gm. atoms of carbon going out per hundred moles of nitrogen = 163-100 = 63 or 0.63 gm. atoms of carbon per mole of mitrogen. Weight of coke in the bed = 22.8 gms. Ash content of the coke = 11.2%

Therefore if we make the assumption that coke contains only "carbon" and "ash", total gm. atoms of carbon in the bed $= \frac{(22.8)(0.888)}{12}$

, gm. atoms of carbon gasified per
, minute = <math>(0.63) 101.5 (273) (1000) 203 (22k)

= 0.157%

° For five minutes = 0.157 x 5 = 0.785%

The rate of carbon gasification may be calculated alternatively by a carbon balance and the stoichiometry of the equation

It was found that the results obtained by such a calculation checked well with those of the mitrogen balance as calculated above. The experiments that were carried out with the reduced iron and deposited carbon in the fixed bed were beset with difficulties, due to the carbon partially blocking available passages through iron-packed bed. This caused a significant back-pressure to develop thus causing leaks and putting the results given by the flowmeter into error. However, the analysis of the off-gas showed the sought for augmented reaction on iron. Theoretical equilibrium had been approached at 800°C and seemed to be surpassed at 850°C (Figure 2.11 and Table 2.12).

It has been stated in the introduction that both Van Wormer³⁶ and Gibb²⁹ found that the Boudouard equilibrium could be exceeded when the reaction was carried out over reduced iron in a fluidized bed. An indication in support of this prediction has been obtained for a fixed-bed (850°C).

It appeared worthwhile to continue these experiments in a fluidized bed where reaction conditions could be better controlled and results would be more reproducible.

3. FLUID-BED STUDIES IN A MILD STEEL BENCH-SCALE REACTOR.

The preliminary fixed-bed studies had shown that in spite of the large excess of carbon in the bed, steadystate reaction conditions could not be obtained. The extent of reaction decreased with time even after only a small amount of the coke had been gasified. It was therefore impossible to decide which value of equilibrium ratio one should accept as being unique for any given set of reaction conditions.

Moreover, due to the inevitable temperature gradients associated with a fixed-bod, the exact reaction temperature was not known. Even if it had been possible to introduce a thermocouple into the coke bod, a variation in temperature would have been obtained between the ends and the middle of the bod. For these reasons all later studies were made on fluidized beds of particles.

3.1. The development of fluidization and its utility.

The fluidized-bed technique is one of the most interesting chemical engineering developments of the past twenty-five years. With the lapse of time, it has proved to be an extraordinary versatile tool to the chemical engineering profession. From its start in the late thirties and forties, this technique has had wide application in the

petroleum and chemical process industries. Though first utilized in the Winkler gas generator in Germany in the late twenties⁸⁸, the modern concept was actually developed in the chemical engineering laboratory of the Massachusetts Institute of Technology by Professors V.K. Lewis and E.R. Gilliland. Their basic studies of the flow properties of solids suspended in gases, coupled with the ingenious concept of the stand-pipe for catalyst feed to a fluidized bed resulted within two years in the completion of a fullscale commercial plant for the catalytic cracking of petroleum feed-stock.⁸⁹

The inherent qualities of a fluidized-bod are :--

- (a) a high degree of mixing and intimate contact between solid and gases,
- (b) uniform distribution of the solids throughout the bed,
- (c) high heat transfer between gas and solids, and from point to point in the bed and between bed and the reactor walls, and
- (d) easy removal and withdrawal of products. Its main disadvantages are:-
- (a) frequent erosion of the reactor vessel, and
- (b) carry-over of fines formed due to attrition of the particles.

It may be said, however, that for many purposes the advantages far outweigh the disadvantages. The agitated state of the particles in a fluidizedbed helps in exposing greater surface area to the reacting gases, thus ensuring a high reaction rate. Moreover, due to the low temperature gradients throughout the bod, the temperature of the bed can be maintained within narrow known limits. This is of great value in kinetic and equilibrium studies of gas-solid reactions.

3.2. Mechanism of fluidization.

When a fluid is made to flow through a dense bod of granular solids, the fluid passes through the interstices between the particles and experiences frictional resistance. This resistance of the bed to the flow of the fluid causes a fluid pressure-drop to be developed across the bed. The prossure drop increases with the increase of fluid-flow until a maximum value is reached, when the bod offers a maximum resistance. At this point, the pressure-drop is approximately equivalent to the weight of the bed and the bed becomes airborne. With further increase of the flow. the resistance of the bed suddenly falls a little and the particles in the bed begin to move. This point is that of the onset of fluidization or minimum fluidization. With further increase of fluid flowrate, the pressure drop across the bed remains approximately constant but the bed expands and ultimately reaches a maximum expansion. The bed now is in violent motion and carry over of particles

is taking place. Ultimately the whole bed is entrained by the gas and passes out of the reactor. In Figure 3.1 a pressure-drop-flow diagram for a hypothetical idealized fluidization is given.⁹⁰

3.3. Bonch-scale apparatus.

This apparatus consisted of the following parts :-

- (a) Reactor and gas-preheater.
- (b) Furnaco.
- (c) Gas cleaning and metering equipment.
- (d) Gas analysis apparatus.

A flow-sheet is shown in Figure 3.2.

3.3.1. <u>Reactor</u>. The reactor consisted of two sections of 2 inch I.D. mild steel pipe with a wall thickness of 1/8 inch, each flanged at one end and the flanges bolted together, with a stainless steel sintered disc of approximately 2.76 thousandths of an inch pore size held between them. The outer ends of the assembled pipe reactor were screwed and fitted with suitable end pieces, having gas inlet and exit points. A pressure tapping was provided just below the sintered disc to enable the total pressure drop through the whole system to be measured. The assembled reactor was supported in a vertical position on a tubular steel framework.

3.3.2. <u>Gas-proheater</u>. This was a heating element, with a capacity of 750 watts as normally used in a bowl-type domestic electric radiator. It was mounted inside reactor tube below the sintered disc. It had an outside diameter of

υ

 $1^{5}/8$ inch and thus provided a clearance of 3/16 inch all around, between the reactor wall and itself. Insulation pleces were provided to separate the element from the ateel end-plece of the reactor tube. These were fabricated from Sindanyo. Electric power to the element was supplied through a "Variac" voltage regulator, with a c - 4 amp. ammeter in series.

3.3.3. <u>Furnace</u>. Heat was supplied to the reactor by a 3 Kw tubular (2³/4 inch I.D.) electric furnace operating at 270 V and giving a maximum temperature of 1200°C. The furnace was controlled by a "Variac" voltage regulator and series ammeter. When fitted over the reactor, the base of the furnace rested on the flanged joint. Figure 3.3. shows an assembled view of the reactor, furnace and pre-heater.

3.3.4. <u>Gas motoring</u>. The inlet gases, carbon dioxide and mitrogen, wore metered separately by calibrated manometric flowmeters using (oncontrated sulphuric acid as manometric fluid.

3.3.5. <u>Gas cloaning</u>. The exit gases from the reactor, before analysis, ware cleaned initially by a glass cyclone and then by passing through a trap packed with glass wool.

3.3.6. <u>Gas malysis</u>. This was a British Standard Orsat apparatus⁸⁷ which drew its sample from the gas exit line through a suivably placed T-piece. By means of this

:

BENCH-SCALE REACTOR. SYSTEM

F 1G . 3.3

apparatus it was possible to determine carbon dioxide, oxygen and carbon monoxide in the exit gas. The nitrogen content was estimated by difference.

3.3.7. <u>Temperature measurement</u>. The temperature of the bed was measured by a travelling Chromel-Alumel thermocouple linked to a temperature calibrated millivoltmeter. The thermocouple could be moved vertically within a 1/4 inch I.D. silica pocket which was clamped through a gas-tight seal on the reactor cover passed down through the fluidizedbed and rested on the centre of the sintered stainless steel disc.

3.4. Pressure-drop-flow diagram for fluidized-bed.

As it was intended to fluidize within the reactor finely divided coke, several prior experiments were carried out to determine the fluidization performance of the powdered coke with the particular particle size range to be used. The pressure-drop-flow diagrams constructed from experimental data are shown in Figure 3.4.

3.5. Experimental procedure.

The reactor was charged with powdered coke of a particular size range for each experiment and was fluidized with mitrogen while being heated to the required reaction temperature. The flow of mitrogen was then reduced simultaneously with the introduction of carbon dioxide so

leted Besed Bes	22 2	- 53731 91	6765L°C-	
п. 	207 x 2 & C ° T	207 207 220 6 2	4-07 XE 75 . E	
Average Co	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ne Transa Market Landenberger	Lei C C	
00 98 11	00000000 2000 200	ब द द द त त त 0 0 0 0 0 0 0	000 ศ.ศ.ศ.	
zae Amalys Average CO2	53. 23	દ્વ કર હતુ	£ 4° 22	
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 อ 0 ศ ฮ ศ ศ ศ ศ ศ ศ ศ ศ ศ พ พ พ พ พ พ พ พ	อรง - เง ค รู้ ม ค ค รู้ ม ม ม ม ม ม ม ม	2 2 2 2 2 6 2 2 2 2 0 2 2 0 2	
Semple taken at(ain.)	え む ち ち ち ち ち え む ち ち ち ち ち ち し ち ち ち ち ち ち ち ち ち ち ち ち ち	ま ゆ ひ ひ ひ ち ち ひ む む む	೫ ೫ ೫ ೪ ಫಿ	
°, ° ≈¢ 20°C C02	0 6 6 7	0 	0°1316 "	
Flouret St ³ /min N2	9 9 9 9 9 9 9 9 9 9 9 9 9	0°0°1999	° 0033	
0, E 0 0 0 E	0000	000	C C Ø Ø	
Coke particle size mesh		్ల 9 * శి శి		

۵

TABLE 3.1

59.

ø

provement on a second	teristinen eta anti-statistika eta antina eta	and the definition of the local states of the states of th	ĨĴĨĸĸĹĹŢĸĿĹĹijĸĬĹŊŎĿĨĸĿĬĸŢĸĿĬĸŢŔŎ	1709 8 110 124 04 34 64 4 5 67 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nteriority to an and a strange of the
K Log K . calculated Log K .	00 දී ස ස ි ි ස ම ම ම ම ම ම ම ම ම ම ම ම ම ම ම	-4 , 2 6090	93 * 6 * 8 9 * 6	0 1901° T -	-0,03433
	0°306510 ⁻⁴	10° 24 0° 26 0° 24 0° 24 0 00 0 00 0 0 00 0 00 0 0 00 0 00 0	6°00787	1 0.7827 2.10 1	
Average Co	ख ° •	0 84 89	67 04	16°775	e 8 0 0 1
off-gas Amalysis % co2 Average % co co2 co2	9000 434	00000 030NN	67 67 0 0 F 1 F	HONS NYYY Maith	м м м м ж т
	ร เก เก	్ ం శ	0°64	55.95 95	- 67
	ง ห.ส.ง ง ห.ส.ง	800464 800464 800464	89 00 6 7 7 8	5404 8000 8000	6 8 6 7 7
Sample takon at(min.)	99 29 49 29 99 29 49 29 99 29 49 29	ಬ ಬ ಬ ಬ ಬ ಬ ಬ ಬ ಬ ಬ	រក ភ ស	ち ち ち ち ち ち ち ち	17 13 (V
glovrate, ft/min.at 20°C N2 CO2	975 690° 0	0°0°833	0°06833	0°00'13 0°00	0°0758
	Свее 0	Савае ° С	0°03 °03	0.0633 0.0633	3 0300 3 0300 3 0300
Jemp.	0 0 9	- 200	0000	00 00	1000
Coke particle size mesh	0 20 21 2 2 2 2 0 0 0 0 0 1 1				

TABLE 3.2

that the total inlet gas flowrate was maintained constant. Within flve minutes from the start of introducing carbon dioxide the first exit gas sample was collected. Further samples were collected at 20 minute intervals for the remainder of the reaction period.

In all, eight experiments were carried out using two size ranges of the coke. The relevant data for the coke were as follows :-

-44+60 mosh B.S.S.:

weight taken = 320 gms. umexpanded bed depth = 9 inches

-100+150 mesh B.S.S.:

voight taken = 660 gas. unexpanded bed depth = 16.6 inches

The results obtained are set out in Tables 3.1 and 3.2. 3.6. <u>Discussion of the results</u>.

In the experiments described on the previous pages, only two types of particle size ranges were used. These were -44+60 and -100+150 mesh B.S.S. The majority of the experiments were carried out with the -100+150 mesh particle size range because it was found to have botter fluidization characteristics at the flowrates used.

In all, eight experiments were carried out. The -44.60 mesh material was tested at three different

temperatures and the -100+150 mesh at five different temperatures. The extent of reaction at 600°C, 700°C, and 800°C was found to be almost identical for both particle size ranges, minor differences in the equilibrium ratios obtained were perhaps due to the different flowrates mecoseary for adequate fluidization.

Quantitative comparison of these results could not be made easily with fixed bed ones because no reaction had been observed in fixed-bed below 900°C. As might have been expected, the extent of reaction at 900°C and 1000°C in the fluidized bed was higher than that obtained with a comparable size range (-72+100 mesh) in the fixed bed at 1100°C. This is no doubt due to the much higher gas velocities needed to keep the fluidized bed in suspension and the more efficient contact achieved between gas and solid in the fluidized state.

It may be seen from the results of Tables 3.1 and 3.2 that there was no obvious large trend in the equilibrium ratios with time of reaction and an average value could be taken. Thus if comparison is made with the fixed bed results this average value can only be compared with the zero-time-extrapolation value. In general it appears that the fluidized bed gives a better approach to theoretical equilibrium than does the fixed-bed.

ő...,

Gasification of coke with carbon dioxido has been carried out by Gorin and his associates⁹¹ using Disco char and by Gilliland and his co-workers⁵⁸ using a high temporature retort coke in a fluidized-bed. The former authors carried out the experiment only at one temperature (871°C) and used only carbon dioxide whereas the latter authors made a comprehensive study with different mixtures of mitrogen and carbon dioxide at different temperatures. The particle size ranges of carbon used in the above cases were -65+150 mesh (T.S.) for Gorin and -20+200 mesh (U.S.S.) for Gilliland. At 800°C the values of equilibrium ratio obtained by Gilliland check very well with the ones reported hero, though the solid particle sizes and ratios of inlet gases were somewhat different. The values obtained by Gilliland and Gorin have now been recalculated and incorporated in Figure 3.5, where our experimental values as well as the theoretical values have been compared.

A useful parameter for comparing the N.T.P. average linear velocities in fluidized bods is the 1b. moles of gas entering the reactor per minute per square inch of reactor cross-sectional area. We shall call this here the "molar velocity" of the inlet gas. The value may be calculated for Gilliland's results, in which he used approximately 30% carbon dioxide, to be 2.334 x 10^{-4} lb.moles/min.-in², and, for his results using approximately 90% carbon

dioxide, to be 2.339 x 10⁻⁴ lb.molos/min-in². Gorim on the other hand used 100% carbon dioxide at a molar velocity of 1,18 xm10⁻⁴ lb.moles/min-in². The results of Table 3.1 correspond to an average melar velocity of 2.065 x 10⁻⁴ 1b.moles/min-in² and for Table 3.2 to 1.185 x 10⁻⁴ 1b.mole/ min-in². The molar velocitles used in the experiments reported here thus fall between the velocities used by Gorin and Gilliland, and hence the results may be safely compared in spite of differences in reactor cross-section. It may be seen from Figure 3.5 that our results agree well with those of Gilliland even although his bed depth (equivalent to about 3.3 lbs fugl in a 1.78 inch I.D. reactor) was much greater than ours (0.7 - 1.45 lbs fuel in a 2 inch I.D. reactor). On the other hand, Gorin who used 1.0 1b fuel in a 1.5 inch I.D. reactor may be seen to have approached considerably nearer to theoretical equilibrium. This indicates that the inherent reactivity of the coke being fluidized, which would be higher for low temperature Disco char, influences the results obtained much more than do the apparatus variables.

It was not possible to operate with the mild steel reactor at higher temperatures than those already reported due both to the limitations of the winding of the electric furnace and to the poor heat resistance of the mild steel tube. After some time of working, the mild steel tube

began to scale severely and the wall became somewhat thin. Since it was hoped to carry out extended gasification studies, it was obvious that a heat resistant stainless steel tube would be required for the reactor. Due to possible contamination of the bed with iron oxide scale from the reactor wall, no gasification studies were made with this reactor in which a bed of carbon on reduced iron was fluidized.

L. FLUID-BED GASIFICATION STUDIES IN STAINLESS STEEL REACTOR

4.1. Apparatus requirements.

To achieve good fluidization in a bed of particles, several possible variables must be carefully controlled. These include reactor dimensions, particle size-distribution of solids in bed, gas velocity and height of bed in reactor.

Unsuitable values for any of the above factors may cause the development of "channeling" or "slugging" in the bed of particles or cause the reactor wall to have an appreciable effect on the process. The smaller the reactor size the greater the effects of these. Hence the ideal fluid-bed characteristics which may be obtained in a large commercial reactor cannot be easily anticipated in a small scale laboratory reactor.

"Channeling", "slugging" and "wall effect" are to a large extent related to the vessel diameter as well as to particle diameter. A large vessel diameter induces the channeling tendency but as one might expect reduces "wall effect". On the other hand, a small diameter tends to promote slugging and "wall effect". The choice of diameter to minimize all these factors must necessarily be a compromise. There are other factors, however, that must limit the diameter of a laboratory reactor. Ease of manhandling the reactor to and from its scaffolding for repair work, and the meed to limit the usage of fluidizing gas to a practical level both prevent large diameter vessels being used. The provision of adequate heating to maintain the reactor at working temperature may involve an excessive electrical load. The available heat must be able to meet the demands of strongly endothermic reactions as well as the normal heat losses from the unit.

Control of reactor temperature, therefore, in the face of the heat demand or evolution of a chemical reaction face of the heat demand or evolution of a chemical reaction heat to be available from the heating system which can be dissipated quickly to waste as necessary, together with the minimum of heat capacity in the reactor body and insulation.

Consideration of the above factors led to the choice of a reactor diameter of about 3 inches, and an electric furmace around the reactor which could be opened to allow rapid disspation of heat and ease of reactor dismantling.

4.2. Gasification apparatus and ancilliary equipment.

The experimental gasification plant consisted of the following parts: -

- (a) Reactor,
- (b) Heat supply system,
- (c) Gas supply system,
- (d) Gas motering devices,
- (c) Exit gas cloaning system,

- (f) Sampling system.
- (g) Gas analysing system,
- (h) Pressure measuring instruments.

A flow-sheet of the complete plant is given in Figure 4.1 and the plant is illustrated in Photograph No.1.

4.2.1. <u>Stainless steel reactor</u>. The reactor was constructed from two lengths of stainless steel tubing (AISI type 316). These were :-

(a) a 5 ft longth 3 inch O.D. (wall

thicknoss = 0.125 inch),

(b) a 15 inch longth of $2^{3}/4$ inch O.D. (wall thickness = 0.128 inch).

The larger length had a flange fitted to one end and 10 inches of the inner surface of the tube from this flange was lightly machined, as was the same length of the outer surface of the smaller diameter tube. The smaller tube was fitted with a flange 10 inches from its end (at the point where the machining stopped). The smaller diameter tube could then be slid into the larger until the two flanges met. The flanges were grooved to take an Ö-ring of meopreme rubber. The overall clearance between the tube was 0.04 inch for the first 5 inches from the flange and 0.4 thousandths of an inch for the remaining 5 inches. A disc of 1/8 inch thick porous stainless steel (2.76 thousandths of an inch mean pore size) was firmly seated

in a groove cut in the top end of the inner tube. In use the larger tube was clamped vertically in a tubular steel scaffolding framework with its flange at the lover end. The inner tube was then slid into it from the bottom and the two flanges bolted together. Removal of the inner tube, on loosening the bolts, was facilitated by a pair of steel handles welded to it below the flange. The arrangement of the tubes which form the reactor is shown in Figure 4.2.

Two cooling colls of 1/4 inch I.D. copper tubing were wound around and brazed to the larger tube just above the flange to protect the O-ring, and the other near the top of the tube which was itself closed by a meopreme rubber stopper. The underside of this stopper (facing the hot fluid-bed) was protected by a 1/4 inch thick asbestos sheat cut to the size of the marrow end of the stopper and acrewed to it by self-tapping screws. This stopper and asbestos protecting plate were pierced by five holes through which passed

- (a) a 5 ft longth of 1/4 inch T.D. silica tubing with a closed lower end which rested on the upper side of the sintered disc. This silica tube served as a thermocouple pocket,
- (b) a short length of 12 mm diameter glass tube closed at the top by a B19/26 ground joint glass stopper. This served as a feed port for solids,

69,

- (c) the exit gas line of 18 mm O.D. tubing with about 6 imches of its length extending into the reactor,
- (d) a 6 mm O.D. glass tube which extended 5 inches into the reactor. This tube was connected to the gas sampling system,
- (e) a 6 mm diameter glass tube connected to the manometer measuring the pressure drop across the porcus plate and the fluidized bod.

The interior of the smaller stainless steel tube was almost completely filled with $\frac{1}{2}$ inch diameter alundum balls. They were supported by a dome-shaped piece of stainless steel wire gauge and a rubber stopper which was fitted into the lower end of the tube. This stopper was pierced by two metal tubes. One was a copper tube of 1/4 inch I.D. which served as gas inlet point and the other was a 1/4 inch 0.D. (wall thickness = 0.036 inches) stainless steel tube which extended up close to the underside of the porous disc and served as a pressure tapping. The alundum balls were intended to aid in the preheating of the inlet gases. A Chromel-Alumel thermocouple connected to a Honeyvell-Brown electronic recorder was fitted into the silica pocket.

4.2.2. <u>Heat supply system</u>. Heat to the reactor was provided by a specially designed box furnace which fitted around it. The furnace was composed of two separate and completely independent halves which moved horizontally on

rails and rollers. The two halves could be closed together around the reactor or pulled apart easily to allow the reactor to cool quickly or to facilitate its removal from the scaffolding.

4.2.3. <u>Gas supply system</u>. The gases used were supplied from seven standard high pressure cylinders. Cylinders each of hydrogen, mitrogen and methane gas were joined in pairs by couplings to ensure a continuous gas supply over prolonged periods of operation. A cylinder providing liquid carbon dioxide was used and this was fitted with a suitable vaporisor.

۰,

Z;

Photograph No.2. View of half-furnace used

to heat stainless steel reactor

Photograph No.4. View of furnace in "closed"

position

The gas flows were doubly controlled before entering the reactor. First by the reducing values fitted to the tops of the cylinders and then by needle values. This system gave a wide range of control of the flowrates.

4,2,4. Gas motoring instruments, The individual flowrates were indicated on standard rotameters and an integral conventional dry gasmeter was used to indicate the overall gas flow. The temperature of the inlet gasstream was indicated by a thormometer inserted in the main line. Provision was also made to supply compressed air from the laboratory supply to the reactor. After cleaning and cooling the outlet gas flow was metered through a rotameter first and then through a dry test integral gasmeter. The benefit of the inclusion of the rotameter in the outlet line was that it gave an indication of leakage from the system and also a rapid vibration of the rotameter float was found to be a good indicator of the condition of fluidization in the reactor. Another thermomotor was inserted in the outlet gas stream after the condensers to indicate outlet gas temperature.

The rotameters in the feed lines were calibrated for each particular gas by use of dry test meters.

4.2.5. Exit gas cleaning system. The product gases from the reactor first passed through two cyclones placed in

series where any coarse particles carried over were separated. Then the stream entered the condensing system which comprised two columns each of three spiral glass condensors, each column being provided with a water receiver. The product gases then entered two dust filter tubes packed with glass wool. The cleaned cooled gas then passed to the gas meter and then to waste.

4.2.6. <u>Gas sampling system</u>. To enable map samples of the oxit gas to be collected at will, four B.S. 250 ml gas sampling bulbs provided with three-way stop-cocks at each end were connected to a manifold and mercury manemeter at one side and a manifold and vacuum pump at the other. The whole system could connect to the glass sampling line passing into the gas space of the reactor. Another stop-cock was provided on this line to allow the vacuum system to be isolated from the reactor. In use the vacuum pump was used to evacuate the sample bulbs to a pressure indicated on the mercury manemeter. When it was desired to collect a snap sample the cocks were turned to link an evacuated gas bottle to the reactor.

4.2.7. <u>Gas analysing system</u>. At the beginning of this part of the work gas analysis was done by conventional means, viz. absorption and combustion methods. It was soon found, however, that the analysis time limited the number of gas samples that could be collected during a run.

Later analysis was done on a Perkin Elmer (model 452) gas chromatograph using a silical gel column.

It was finally decided that "snap" gas samples could not give the required information about the gasification process and that a continuous record of the outlet gas composition should be obtained. This was achieved by means of two Katharometers supplied by the Cambridge Instrument Company.

These were as follows :-

- (a) a square block direct-acting katharometer previously calibrated to measure 0 - 100% carbon dioxide in nitrogen,
- (b) a differential carbon dioxide katharometer also calibrated with 0 100% carbon dioxide in nitrogen.
 In operation the inlet gas was passed through both (a) and
 (b) and the outlet gas from the reactor through (b) only.
 The signal from each katharometer was fed to a common recorder where two pens recorded the readings simultaneously.
 The principles of the arrangement and the means of calculating the exit-gas analysis from it are discussed in section 4.6 later.

4.2.8. <u>Fluid-bed pressure measuring equipment</u>. The pressure-drop across the bed of particles in the reactor was measured by a mercury manometer, one end of which was connected to the stainless steel pressure tapping under the porous disc in the reactor and the other end to the top of the reactor. In practice, the fluctuation of the mercury level in the manometer gave an excellent indication of the state of fluidization of the bed of particles.

A diaphragm type Arkon strip-chart pressure-recorder (model 1600) with a range of 0 - 60 inches water gauge, was connected to the stainless steel pressure tapping through a T-junction. The chart speed used was 12 inches per hour. The instrument really recorded the imlet pressure of the fluidizing gas and gave a valuable indication of any progressive development of trouble in the fluidized bed.

4.3. Expansion characteristics of fluid-bed.

Before assembling the reactor, it was decided to measure the expansion characteristics of the bed of iron ore when completely fluidized. This was studied by replacing the main body of the reactor by a 3ft length of glass tubing of $2^3/4$ inch I.D. This was fitted over the stainless steel inner tube and the joint between the steel tube and the glass tube was sealed with P.V.C. tape. Several beds of different weights of iron ore were fluidized in this glass-bodied reactor and the heights of the original as well as expanded beds above the porous disc were measured. The results are plotted in Figure 4.4.

These tests also furnished an opportunity for a visual observation of the possible future fluid-bed behaviour of the particulate material under consideration.

4.4. Temperature distribution in the reactor.

To determine temperature profile of the reactor, two experiments were carried out in which future experimental conditions were simulated. 1.76 lbs (800 gms) of iron ore were placed in the reactor on the porous plate and the bed was completely fluidized. The temperature of the reactor was brought to a predetermined value and held at this value during the whole operation. The thermocouple was set at different positions in its pocket along the length of the reactor and a temperature measurement taken after a ten minute interval. Average bed temperatures chosen for this purpose were 1200°F and 1400°F, with an unexpanded bed height of 5.2 inches and an expanded height of 6.1 inches. Figure 4.5 shows the temperature distribution along the length of the reactor and indicates that the temperature throughout the fluidized bod was virtually constant.

4.5. Pressure-drop-flow diagrams for fluidized bed.

As already stated, an excellent indication of the fluidization behaviour of a granular material may be obtained from the pressure-drop-flowrate relationships of the expanded bed. Measurements were accordingly made with several initial bed weights to determine the fluidization characteristics of

the -52+100 moch B.S.S. particle size range of iron ore. Pressure-drop-flow diagrams are given in Figure 4.6. The diagrams indicate that the beds were well fluidized, at a fluidizing gas flowrate of 0.8 ft³/min. This corresponded to a superficial linear velocity of 0.323 ft/sec. The measured pressure-drops were found to agree well with that calculated from the weight of material in the bed and reactor internal diameter. Table 4.1 compares the calculated pressure drops with the measured values.

TABLE 4.1 <u>Comparison of calculated with measured pressure</u>

Bod ve	oight	Pressure-drop,	AP, (cm of water)
lbs	gms	Calculated	Moasurod
1.32	600	16,25	15.90
1.76	800	20,80	20.00
2,20	1000	26.02	25.60

drops in fluidized-beds of iron ore.

4.6. Calculation of off-gas analysis.

4.6.1. <u>Arrangements of Katharometers</u>. It was earlier stated that the off-gases were analysed by means of two katharometers, viz. (a) direct acting, and (b) a differential one. The arrangement of these meters in the reactor system is shown in Figure 4.7.

They were connected to the inlet gas stream through a T-junction and a small fraction of the inlet gas was diverted to the katharometers by a screw clip on the main gas inlet line. A small calcium chloride trap was placed in the sample line before the katharometers to remove any moisture in this fraction of the inlat gas and the flowrete was controlled to 200 ~ 250 c.c/min by a miniature glycarine filled flowmeter placed in the line after the katharometers. The sample gas was then returned to the main inlet flow line at a point down-stream just prior to entry to the reactor. In the same way, a sampling line carried outlet gas from the condensers to the differential katharometer and returned it to the main exit stream just before the final integral gas metor. The sample line lengths were arranged so that as far as possible the differential katharometer was comparing inlet and outlet gases corresponding to the same point in time.

4.6.2. <u>Principles of Katharometer measurement</u>. The measurement of the composition of a gas mixture by a katharometer is based on gas thermal conductivity. The katharometer contains four platinum wires with identical thermal and electrical characteristics which are enclosed

3 5 .

in separate cells in a solid metal block. Each wire forms one arm of a Wheatstone bridge. A constant current is fed into the bridge thereby raising the temperature of the wires which then lose heat to their surroundings. If two gases having different thermal conductivity are introduced each into a pair of cells, there will be a difference in the extent of cooling of the wires and, therefore, a difference in the electrical resistance. This will throw the bridge out of balance causing a deflection on a suitably arranged galvanemeter. This deflection becomes a measure of the difference in composition of the gases being compared.

The instrument may be calibrated by the use of pure gases or mixture of known composition.

4.6.3. <u>Principles of gas composition calculation</u>. The inlet gas for the gasification of carbon in the reactor was a mixture of carbon dioxide and nitrogen. The method of calculating the exit gas analyses (i.e. percentages of carbon dioxide, carbon monoxide and nitrogen) from the katharometer readings was as follows :...

Basis 100 moles of inlet gas.

Let moles of carbon dioxide in inlet gas = x then moles of nitrogen = 100 - x Let moles of carbon dioxide converted to carbon monoxide in reaction = y Thus in the outlet gas there will be :-

		The second state of the second state in the second state
Total	27	100 ÷ y
		Carrowers managers and a D
Nitrogom	5 27	100 - x moles
Carbon momoulde	E	2 y moles
Carbon dioxide	513 613	(x - y) moles

The equation for the reaction is :-

 $x = CO_2 + (100 - x) N_2 = (x - y) = CO_2 + 2y = CO_3 + (100 - x) N_2$ One side of the differential katharometer is exposed to the inlet gas which will contain <u>100 x</u>%, i.e. x per cent 100 carbon dioxide, and the other to :-

 $\frac{100(x - y)}{(100 + y)} \text{ per cent carbon dioxide plus } \frac{200 y}{100 + y} \text{ per cent carbon monoxide.}$

The motor reading is then the difference between these two gas mixtures when the second has been converted to an equivalent reading of carbon dioxide in nitrogen. This equivalent is :-

 $Z = \frac{100(x-y)}{(100 + y)} \div k_1 \frac{(200 y)}{(100+y)} \cdot$

The introduction of the factor k_iis necessary since the meter has a different sensitivity to carbon monoxide to that of carbon dioxide, e.g. if a gas consisting of one per cent carbon dioxide in nitrogen gives a deflection of one unit on the meter, a gas consisting of one per cent carbon monoxide in nitrogen would only give a reading of about 0.15 units.

The value of the factor $k_{\rm l}$ depends on the carbon dioxide concentration and increases from about 0.11 to 0.15. The overall relationship⁹³ for $k_{\rm l}$ is as follows :-

 $k_1 = 0.113 + 0.06 (\frac{(x - y)}{100 + y})$

A further correction must be made for the curvature of the recorder scale, since the reading given by 20% carbon dioxide against mitrogen is not quite the same as that for 100% carbon dioxide against 80% carbon dioxide. Data for the preparation of a scale shape curve were provided by the Cambridge Instrument Company Limited and this curve has been drawn in Figure 4.8.

If the differential katharometer is used with gas "before reaction" on one side and the gas "after reaction" on the other side, the cutput from this katharometer is the difference between the cutputs due to $x \not \in CO_2$ and $2 \ " \not \in CO_2$ ". Let the reading given by this katharometer be $q \ " \not \in CO_2$ ". To find Z the necessary correction must be obtained from the "scale shape" curve provided. <u>Example</u>: From the scale shape curve, find the deflection that corresponds to $x(= d_1)$ and that due to $q(= d_2)$. Find the CO_2 percentage equivalent to $(d_1 - d_2)$. This gives Z. e.g. From the direct acting katharometer, $x = 20 \not \in CO$

x = 70% CO_2 .°. $d_1 = 67.5$ From the differential katharometer, $q = 40\% CO_2$.°. $d_2 = 37.2$

$$d_1 - d_2 = 67.5 - 37.2 = 30.3$$

and this, from the scale shape warve, corresponds to 32.8% carbon dioxide = Z, To evaluate y from these values of x and Z, one employs the equation:-

$$Z = \frac{100(x - y)}{(100 + y)} + [0.113 + 0.06 \frac{(x - y)}{(100 + y)}] \frac{200 y}{100 + y}$$

$$= \frac{100(x - y)}{100 + y} \div 200y \left(\frac{113 \div 0.06x \div 0.053y}{(100 \div y)^2}\right) .$$

The solution of this equation for a given value of x and Z will be most time consuming. Perhaps the best approach was found to be the selection of values of y at a suitable value of x and the evaluation of Z.

> Say, that in a test run, $x = 54.5\% CO_2$ Let $y = 10, 20, 30, \dots$ etc. c.g. for y = 10,

$$\frac{100(x - y)}{(100 + y)} = \frac{100(h4.5)}{110} = 40.4$$

$$\frac{200 \text{ y}}{100 \text{ }\text{y}} = \frac{2000}{110} = 18.18$$

From the scale shape curve, this value of Z corresponds to d₁ - d₂ = 43.8 and again from the scale shape curve when

$$x = 54.5\% CO_2$$
, $d_1 = 51.5$
, $d_2 = 51.5 - 43.8 = 7.7$

Then, from curve, q = 8.5% CO2.

If this technique is repeated for other selected values of y, a curve may be drawn. Such curves were drawn in Figure 4.9 for x = 20, 30, 40, 50, 60, 80 and 100 per cent carbon dioxide as recorded by the direct-acting katharemeter. From these ourves, the values of q ("per cent of carbon dioxide" given on the chart by the pen on the recorder related to the signal from the differential katharemeter) may be related to y and the gas analysis calculated therefrom.

Sample calculation of gas analysis using Figure 4.9. Say inlet gas = $40\% CO_2$; $60\% N_2$ Direct acting katharometer reads, x = 40and say differential katharometer reads, q = 5

Then y from Figure 4.9 = 4.3

•	3 10	Outlet	C0 ₂	2	X - Y	翻	35.7	nolog	= 34.2%
			CO	83	2y		8.6	moles	e 8,3%
			N ₂	8	300-33	8	60.0	moles	= 57.5%
		Te	otal	(3) (3)	100÷y	್ಷಾಬ ಟೆಬೆ	1.04 . 3	mo108	100.0%

4.7. <u>Experimental results</u>.

4.7.1. <u>Attempts to gasify coke carbon</u>. Two attempts were made to gasify powdered high temperature coke at 1200°F and 1300°F in the stainless steel fluidized bed reactor using an inlet gas of 30% carbon dioxide and 70% nitrogen. The particle size range taken for this purpose was -60+100 mesh B.S.S. In noither case was there any indication on the katharometer recorder chart of the formation of a measurable amount of carbon monoxide. This was confirmed by the similarity of the inlet and outlet gas flowrate. No attempt was made to gasify coke at a higher temperature in this reactor.

4.7.2. <u>Reduction of a fluidized-bed of iron ore</u>. The reduction of the powdered iron ore in the stainless steel fluidized bed reactor was carried out by means of hydrogen supplied in high pressure cylinders. The iron ore (particle size range -52×100 mesh B.S.S.) was previously dried for some time at 230°F. A weighed amount was fed into the reactor and the bed fluidized with air while the reactor temperature was raised to a steady value of 1300°F. The air was then gradually replaced by mitrogen from high pressure cylinders. When the air had been suitably displaced, hydrogen was introduced into the reactor together with mitrogen at a total measured flowrate required

to maintain the bed in a suitable state of fluidization. The reduction of the ore was continued until sufficient water had been collected to ensure that the reduction was complete. Complete reduction was confirmed by a check run in which the reactor was opened at the end of the reduction time and the powder from the bed analysed for iron content.

4.7.3. <u>Reaction of carbon dioxide with reduced iron</u> <u>in the fluidized bed</u>. It is well known that reduced iron reacts with carbon dioxide to form iron oxide presumably through the reaction

 $P_{\Theta} \div CO_{\phi} = P_{\Theta}O \div CO$

Hence one mole of carbon monoxide is formed for every mole of carbon dioxide in the reaction.

Two experimental runs were undertaken to determine the composition of the exit gas from a bed of freshly reduced iron fluidized with a carbon dioxide; nitrogen mixture at 1200°F and 1300°F. The values obtained were used to calculate equilibrium ratios which were compared with the theoretical equilibrium constant of the reaction between carbon dioxide and iron.

The experimental results are reproduced below in Tables 4.2 and 4.3 and Figure 4.10.

As the reduction and gasification conditions for both cases were identical they are given below before the Tables for results.

Reduction conditions

Weight of iron ore bed = 600 gms. Particle size range 22 Flowrate of inlet gas Composition of inlet gas Temperature of reduction Volume of water collected 23 Gasification conditions Flowrate of inlet gas -Percentage composition of inlet gas Inlot and outlet gas

- temperature
- Pressure under the porous

disc

- (-52 + 100) mosh B.S.S.
- $= 0.38 \text{ ft}^3/\text{min at } 20^{\circ}\text{C}.$
- 63% hydrogen and 37% nitrogen.
- = 1300°F.
- 155 c.c.

= 30% carbon dioxide and 70% mitrogen.

21°C. 67125 844-7

> = 25.9 inches of water at 1200° F, and 29.8 inches of water at 1300°!

At (mims)	CI K.	y	% CO ₂	% CO	% N ₂	K calcu	Log K lated
5	10	10	18.2	18.2	63.6	1,00	0.0000
10	7.5	7.0	22.1	13.4	64.5	0,6063	-0,2131
15	6.0	5.3	23.45	10.05	66.5	0.4285	-0.36805
20	6.0	5.3	23.45	10.05	66.5	0.4285	-0.36805

TABLE 4.2 Equilibrium ratios of carbon dioxide and

carbon monoxide over reduced iron at 1200°F.

The run was continued for a total of 60 minutes during which there was not further change in the outlet gas composition. The outlet flow rate corrected to the temperature and pressure of the inlet flow was found to be identical with it. This is to be expected from the stoichiometry of the reaction.

TABLE 4.3 Equilibrius ratio of carbon dioxide and

At (mins)	G K	57. 17. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	% C0 ₂	% CO	% N ₂	K calc	Log K ulated
5	11.0	10.8	17.30	19.50	63.20	1.1.27	÷0.05192
10	9.4	9.00	19.25	16.55	64.20	0.8597	-0.06565
15	8.8	8.20	20.10	15.10	64.80	0.7512	-0.12424
20	8.1	7.80	20,60	14.50	64.90	0.7039	-0.15248
25	7.8	7.10	21.40	13.26	65.34	0.6196	-0.20788
30	7.5	7.00	21,50	19.10	65.40	0.6093	- 0. 21516
35	7.4	6.90	21.60	12.90	65.50	0.5972	-0.22388
фО	7.4	6.90	21.60	12.90	65.50	0.5972	-0.22388
45	7.2	6.60	21.90	12.40	65.70	0.5662	-0.24703
50	7.0	6.50	22.00	12.20	65,80	0.5545	-0.25610
55	7.4	6.90	21.60	12.90	65.50	0.5972	-0.22403
60	7.7	7.05	21.45	13.15	65.40	0.6127	-0.21990
65	7.8	7.10	21.40	13.26	65.44	0.6129	-0.21261
70	8.0	7.50	20.95	13.95	65.10	0.6658	-0.17666
75	8.0	7.50	20.95	13.95	65.10	0.6658	-0.17666
80	8.0	7.50	20.95	13.95	65.10	0.6658	-0.17666

monoxide over reduced iron at 1300°F.

It could be seen from the results that the gas composition was very consitive to slight changes in reactor temperature to be expected while working at high temperature. Theoretical calculation of the equilibrium comstants of carbon dioxide and carbon monoxido over reduced iron at 1200°F and 1300°F.

The equilibrium constant of a reaction is related to the free emergy change by the following relationship

The free energy changes of most of the common reactions are known. The free energy change of a reaction under consideration may be calculated by addition and subtraction of the known values of the free energies of formation of the reactants and products. The calculation of the free energy changes in the reaction of carbon dioxide with iron at 1200°7 and 1300°F are shown below :-

			<u>Free energy of</u> (<u>AF, calori</u>	<u>f formation</u> 92 les) at
			1200°F	1300°F
С + } О ₂	53	CO	-46,200	-47,400
C + 0 ₂	S 3	co ₂	-94,575	-94,590
(Subtracting) CO ₂		co +	+48,375	+47,190
re + ½02	8	<i>Fe</i> 0	-48,600	_&7,700
co ₂	8	co + 30 ^s	+48,375	+47,190
(Adding) Fo + CO ₂	2-7	F@O + CO	- 225	- 510

The required values of free energy may now be inserted into the equation

AF = - RT₁ ln K. The following values of log K were calculated :-<u>At 1200°F</u>

> $(-225) = (-1.987) 922 (2.303) \log K$ log K = 0.0531

At 1300°F

 $(-510) = (-1.987) 977 (2.303) \log K$

 $\log K = 0.1140$

The experimental values for these two temperatures were found to be -0.368 and -0.190 respectively. This may be seen in Figure 4.10. It is evident from these results that in the fluidised bed the reactants had insufficient time of contact to reach equilibrium, but approached quite near to it. The values of off-gas analyses were preserved for comparison with those obtained when carbon dioxide was brought in contact with carbon on iron.

4.7.4. <u>Preliminary attempts to deposit carbon on</u> <u>reduced iron and its removal with carbon dioxide</u>. A number of preliminary experimental rune were carried out with the stainless steel reactor aimed at finding the best reaction conditions for trouble-free running. It was necessary to determine the flowrates of the inlet gases and a suitable inlet gas composition to obtain optimum fluidization in the bed while the gas expansion due to reaction took place. Owing to the tendency of the particles of freshly reduced iron in the bed to stick together and to the appearance of pyrophoric character, the temperature of the reaction had to be carefully controlled.

The sticking tendency of a reduced iron powder is known to be at a minimum in the temperature range of 1200° -1400°F but very severe at temperatures above 1400°F.⁹⁴ The factors which influence the degree of coherence are

- (a) the surface temperature of the particles and the wall temperature of the reactor,
- (b) the size of the iron particles, (finer particles have a greater tendency to stick together and to the reactor wall than do particles of larger size),
- (c) the extent of reduction (sticking is most severe when the particles of oxide have been metallized to the outent of 20 - 50%), and

the degree or extent of fluidization, (violent

(d)

fluidization may prevent agglomeration of the bed). In the preliminary experiments, the iron oxide reduction, carbon deposition and its subsequent removal were all attempted at 1400°F. It was found that to prevent sticking during reduction the inlet flowrate for hydrogen and nitrogen mixture required to be at least 0.38 ft³/min at 20°C (i.e. superficial linear velocity at 20°C = 0.153 ft/sec) However if such a high flowrate was adhered to, during the carbon deposition, it was found that the carbon deposited on the smallest iron particles caused a lowering of their overall density and these were quickly blown out of the bod. Thus a lower flowrate (0.30 ft³/min at 20°C = superficial linearvelocity 0,121 ft/sec) was used for the mixture of methane and nitrogen fed during the carbon deposition. A flowrate of the same order was necessary during the carbon removal by carbon dioxide and nitrogen minture. The optimum temperature range in which carbon could be deposited om iron without sticking troubles making their appearance was found to be $1300 - 1350^{\circ}$ F. When the reduction of iron oxide with hydrogen takes place at temperatures at or below 1100°F, the reduced iron particles burn on contact with air. For this reason all reduction runs except when otherwise stated were carried out at 1300°F.

On one occasion when the thermocouple in the bed developed a fault and the bed temperature was in fact in the pyrophoric region without this being apparent from the thermocouple recorder, when the bed was later opened up, a fire resulted. This underlined the importance of accurate bed temperature measurement.

92,

4.7.5. <u>Systematic carbon deposition and subsequent</u> <u>gasification</u>. After overcoming initial difficulties as discussed in the proceeding section and selecting the most suitable conditions for operating the unit, systematic studies of the extent of carbon deposition on the iron in the fluidized bed were undertaken and measurements were made of the rate of this carbon gasification by carbon dioxide.

600 gms (1.32 lbs) of iron ore (- $52 \div 100 \text{ mesh B.S.S.})$ previously dried at 230° F for 3 hours were charged to the reactor and fluidized with air till a steady bed temperature was obtained. The air was then replaced with nitrogen, and hydrogen later introduced with nitrogen while keeping degree of fluidization constant. After the iron ore particles had been reduced completely, the flow of hydrogen was replaced with nitrogen to maintain the degree of fluidization. Methane from high pressure cylinders was then introduced to the bed together with nitrogen and fluidization continued for a sufficient time to obtain the required amount of carbon on the bed.

The methane used was supplied in cylinders under pressure from a sewage works⁹⁵ and was found on analysis to have the composition :~

97.0% mothane

3.0% carbon dioxide

While the mitrogen continued to flow into the reactor the flow of methane was stopped at a convenient point and
carbon dickide from a cylinder introduced to the bed. The gasification of carbon on the bed was followed from the readings on the katharometer recorder, under-bed pressure recorder, and off-gas flowmeters. After gasification had continued for a reasonable time, the carbon dioxide entering the bed was replaced by methane and further carbon deposited on the bed. Deposition and gasification cycles were continued until sufficient information had been obtained.

4.7.6. <u>Principles of carbon deposition calculation</u>. The methane, fed to the reactor for carbon deposition, contained 3% carbon dioxide whose presence initially complicated the calculation of carbon deposition. It was realized that it would have been possible to attempt to remove this carbon dioxide prior to introducing the gas to the reactor, but this was not done due to possible difficulty associated with absorption traps, the back pressure they would develop, and the continued need to check for complete removal of carbon dioxide. It was felt that separation of the carbon dioxide could be made unnecessary by a suitable calculation procedure.

In the reactor due to the presence of the carbon dioxide the following reactions take place.

> $CH_4 \rightarrow C + 2H_2$ $CO_2 + C \rightarrow 2CO$

These reactions cause a dilatation in gas volume so that the N.T.P. flowrate of the gas leaving the reactor is greater than that of the gas entering.

In essence, the "cracking" of methane deposits carbon on the catalyst, and some of this carbon is subsequently removed as carbon monoxide by the carbon dioxide contained in the feed gas. It is required to determine the net deposition of carbon on the catalyst during a run of t minutes.

Basis 100 moles of impure methane

moles of methane fed	22	97.0
moles of carbox dioxide fed	23	3.0
Let moles of Nitrogen fed	a	m
and moles of methane decomposed		
over the catalyst	50	ď

- Moles of methane left = 97 b moles of hydrogen formed = 2 b
- * Volume of gas leaving reactor

after cracking of the methane = 97-b+2b+n = 97+b+nThus expansion due to cracking = (97 + b + n) - (100 + n)

Percentage decomposition of methane

$$= \frac{100 \text{ b}}{97} = 1.03 \text{ b}$$

But in the presence of carbom dioxide the reaction

$$CO_{n} + C \longrightarrow 2 CO$$

will take place to some extent.

Thus to a basis of 3.0 moles carbon dioxide fed,

Let moles carbon dioxide reacting with deposited carbon = c

° moles carbon dioxids loft = 3 - c ° carbon monoxide formed = 2c

volume of gas leaving reactor after

reaction of carbon dioxide = 3 - c + 2c = 3 + cThus expansion due to reaction = 3 - c + 2c - 3

C

57

Them expansion due to methane decomposition \approx total measured diletation-expansion due to carbon monoxide formation, i.e. b - 3 = D - c

where D is the total dilatation per 100 moles of impure methane

· b = b = c + 3

Now, one mole of methane deposits one atom carbon, and, as well as contributing to the expansion, the production of 2c moles of carbon monoxide results in the removal of c atoms of carbon from the fluidized bed. Thus the net deposition of carbon per 100 moles of impure methane is given by

D-c+3-c = D-2c+3

Thus if G 1s the weight of carbon deposited in a run of t minutes,

 $G = \frac{M}{100} (D - 2c + 3) 12 t$ lb

where M is the number of moles of impure methane fed to the reactor per minute. <u>Calculation of c</u>. Assume that the reaction of carbon dioxide with deposited carbom in the fluidized bed of catalyst goes to equilibrium at the reaction temperature. The case with which equilibrium was reached in later experiments suggests that this is a valid assumption.

The reaction

 $CH_{h} + CO_{2} = 2 CO + 2H_{2}$

is assumed to be covered in this analysis as its effect is really the summation of the deposition of carbon from thermally cracked methane and the reaction of this carbon with carbon dioxide, i.e.

(adding)
$$C + CO_2 \rightarrow 2 CO$$

(adding) $CH_{\lambda} + CO_2 \rightarrow 2CO + 2H_2$

The value of c may be obtained from equilibrium data, where the equilibrium comstant K is given by the equation"

$$\mathbb{K}$$
 = (PCO)² (PCO₂)⁻¹

 $CH_{L} \rightarrow C + 2 H_{a}$

Now
$$p_{CO} = \frac{2c}{(97 + b + n) + (3 + c)} = \frac{2c}{100 + b + n + c}$$

and
$$p_{CO_2} = \frac{3 - c}{100 + b + m + c}$$

$$K = \frac{kc^2}{(100 + b + m + c)^2} \cdot \frac{(100 + b + m + c)}{3 - c}$$

$$= \frac{kc^2}{(100 + b + m + c)(3 - c)}$$

i.e.
$$\frac{4e^2}{K} \approx (100 \div b \div n \div c)(3 - c)$$

Substituting for $b = D - c \div 3$
$$\frac{4e^2}{K} = (100 \div D - c \div 3 \div n \div c)(3 - c)$$
$$= (100 \div 3 \div n)(3 - c)$$
$$\therefore \quad \frac{4e^2}{K} \div (103 \div D \div n)c - (103 \div D \div n)3 = 0$$

The roots of this quadratic equation are given by
 $c = \frac{-(103 \div D \div n) \div [(103 \div D \div n)^2 \div \frac{4}{K}(\frac{4}{K})3(100 \div D \div n)]^{\frac{1}{2}}}{K}$

Since only the positive root applies here $c = \frac{-(103+D+n) + [(103+D+n)(103+D+n+\frac{48}{K})]^{\frac{5}{2}}}{\frac{8}{K}}$

<u>Calculation of D</u>. Let $V_1 =$ inlet flowrate (ft³/min) impure methane at $T_1^{\circ}C$ and p_1 inches of water gauge,

- $V_2 \approx inlet flowrate (ft³/min) of N₂ at T₁°C and p₁$ inches water gauge,
- V_3 = integral outlet flow at $T_2^{\circ}C$ and atmospheric pressure, assumed to be 406.8 inches water gauge.

... Total inlet moles after t minutes
$$\frac{(V_1 + V_2) t}{359} \frac{(273)}{(273 + T)} \frac{(p_1 + 406.8)}{406.8}$$

Total outlet flow in the same period

$$= \frac{V_3}{359} \cdot \frac{273}{(273 + T_2)}$$
 moles.

Assuming that $T_1 = T_2 = T$, i.e. room temperature, then total dilatation over t minutes

$$= \frac{273}{359(273+T)} \left[\frac{v_3 - (v_1 + v_2) \pm (p_1 + 406.8)}{406.8} \right]$$

but impure methane passing in t minutes = M t
where M =
$$\frac{V_1}{359} \cdot \frac{273}{(273+T)} \cdot \frac{(p_1 + 406.8)}{406.8}$$

 $\therefore D = \frac{273(100)}{359(273+T)(Mt)} [V_3 - \frac{(V_1 + V_2) t (p_1 + 406.8)}{406.8}]$

Sample calculation.

Run 19:

Carbon deposition temperature	53	1325°F
Flowrato of impure mothane, V _l	673 123	0.16 Tt ³ /min
" "nitrogen V ₂	8	O.I.4 "
Total quantity of outlet gas	67) 849	15.15 ft ³
Temperature of inlet and outlet gas	裔	22°C
Averege pressure, p _l	3	44.8 inches of water gauge

Total deposition time = 40 minutes Assume that K, at a reaction temperature of $1325^{\circ}C$ = 1.4 This value of K is taken from Lavrov's data⁴⁴. It may be argued, perhaps, that this choice of value is unjustified in that chemical equilibrium may not be reached in the reactor, Moreover, as it is shown later that the classical graphite/carbon dioxids equilibrium is "exceeded" by the

1

reactants in this system, a highor value of K might well have been used. Since, however, the methane only contained a small amount of carbon dioxide, the calculated amount of deposited carbon was not very sensitive to the value of K.

$$M = \frac{0.16}{359} \cdot \frac{(273)}{(295)} \cdot \frac{451.6}{406.8} = 0.000458 \text{ moles/min.}$$

Moles of mitrogen per minute = $\frac{0.14}{359} \cdot \left(\frac{273}{295}\right) \cdot \frac{451.6}{406.8} = 0.000405$ Thus mitrogen per 100 moles of impure methane $n = \frac{0.000405(100)}{0.000458} = 87.4$ moles.

 $D = \frac{273(100)}{359(295)0.000458(40)} [15.15 - \frac{0.30(40)}{406.8} \frac{451.6}{1}]$ = 14.05 [1.85] = 26.0 $c = \frac{-(103+26.0+87.4) + [(103+26.0+87.4)(103+26.0+87.4+\frac{48}{1.4})]^{\frac{1}{2}}}{\frac{8}{1.4}}$ = $\frac{-216.4 + [216.4 (250.7)]^{\frac{1}{2}}}{5.71}$ = 2.975 5.71 % methane decomposition = 1.031 (26.0 - 2.975 + 3) = 26.9

$$G = \frac{0.00458(23.05)12(40)}{100} = 0.0507 \text{ lbg.}$$

The weight of carbon deposited in Run 18 (see Table 4.24) was calculated for a range of selected values of K. The values obtained were as follows :-

100.

71	G (1bø)
0.05	0.1003
0.10	0.0978
0.50	0.0933
1.0	0.0925
5.0	0.0917
10.0	0.0914

It may be seen that G becomes increasingly sensitive to K as the value of the letter is reduced. In all later carbon deposition calculations the value of K used was the appropriate average value found for that temperature for the gasification of deposited carbon in our apparatus. The values selected are shown in Table 4.26. A value of K = 8.5 was used for all calculated depositions for carbon at $1325^{\circ}F$.

101.

4.7.7. Comparison of actual carbon deposition

with theory. After the carbon deposition had been completed and the reactor cooled to room temperature with nitrogen still fluidizing the bed, the reactor was opened and the mixture of reduced iron and deposited carbon were taken out and bottled. The iron content of a representative sample of the mixture was determined by the following procedure :-

A voighed sample (0.279 gms) of the iron-carbon mixture was treated with 30 ml hydrochloric acid (S.G. = 1.16) and the iron dissolved with heat. The residue of carbon and gangue constituents was filtered off and the filtrate diluted to 100 ml with hot water. The solution was boiled while adding dropwiss sufficient 20% stannous chloride solution to dispel the yellow coloration. Cold water was then added to bring the total volume to about 200 ml, the solution cooled rapidly to about 30°C and 10 ml of saturated mercuric chloride solution added. When the solution was cooled to room temperature a further 200 ml water was added followed by 50 ml of phosphoric-sulphuric acid mixture (50 ml of syrupy phosphoric acid and 200 ml of concentrated sulphuric acid diluted to l litre with water), and a few drops of diphenylamine indicator. This was then titrated with $N/_{20}$ potassium dichromate solution to a bluish-violet end point.

The carbon content of the sample was calculated from a comparison of the iron content of the reduced ore before

deposition of the carbon and that of the final iron-carbon mixture taken from the reactor. It was felt that owing to possible lesses of material in opening the reactor, this would give a more accurate estimate of the carbon deposited than a simple measurement of weight increase.

i.e. if $W = total weight of material taken from the reactor at the end of the run, and <math>I_1$ and I_2 are percentage iron contents of the bed before and after the run, then weight of carbon deposited $= W(1 - \frac{I_2}{I_1})$.

Bour such experiments were carried out to verify the carbon deposition formula. In Table 4.4 a comparison is made between the weights of carbon calculated from the deposition formula and that given by the weight of material removed from the bed and the ratio of the "before" and "after" iron contents. It may be seen that a good measure of agreement exists between them and that the deposition formula may be used with a certain amount of confidence in spite of the uncertainty of the value of the equilibrium constant for the Boudouard equilibrium. TABLE & .4

Weight of iron ore before r	oduction s	1,32 lbs (600 gm)
Temperature of reaction	573 573	1325°F
Flowrate of impure mothane,	V., 23	0.16 ft ³ /min.at 20°C
" " mitrogon ,	Va =	0.14 ¹¹ ¹¹
K at reaction temperature	ित इ.च	8.5

Run No.	Room Temp.	Duration of expt.	p ₁ , Average pressure	Total outlet	Carbon deposited (1bs)		
C-MC	T°C	(t.mins)	(inches water gauge).	flow, (v ₃ .ft ³)	Calculated	Found	
194	22	40	44.80	15.15	0.0501	0.0485	
19B	22	42	57.08	15.45	0.0265	0.0316	
19C	24	φO	47.72	15.85	0.0691	0.0810	
19D	24	40	61,20	15.05	0.0316	0.0313	

These results are plotted in Fig. 4.11

4.7.8. <u>Principles of carbon removal calculation</u>. The calculation of the removal of carbon from the bed by the introduction of a mixture of carbon dioxide and nitrogen was based on a carbon balance. In the following discussion x and y have the same significance as earlier and were derived from the katharometer recorder chart.

104.

Let
$$V_{ij}$$
 = inlet flowrate (ft²/min) of carbon dioxide and
nitrogen mixture, at $T_1^{\circ}C$ and p_2 inches of
water gauge.

$$V_5 = integral outlet flow at T_2°C and atmosphericpressure (assumed to be 406.8 inches of watergauge).$$

Thus at time t minutes from start of inlet flow V_{ij} , moles of carbon dioxide admitted to the bod

$$= \frac{x}{100} \cdot \frac{(V_{h}t_{1})}{359} \cdot \frac{273}{273+T_{1}} \cdot \frac{(p_{2} + 406.8)}{406.8}$$

s atoms carbon in.

Total moles of carbon dioxide plus carbon monoxide that have left the bod after t, minutes

$$= \left(\frac{x \div y}{100 \div y}\right) \cdot \frac{\sqrt{5}}{359} \cdot \frac{(273)}{(273 \div T_{2})}$$

= atoms carbon out.

Then total carbon removed from the bed during t_1 minutes

= atoms carbon (out - in) = ΔC = $\left(\frac{x + y}{100 + y}\right) \cdot \frac{V_5}{359} \cdot \frac{(273)}{(273 + T_2)} - \frac{x}{100} \cdot \frac{(V_k t_1)}{(359) \cdot 273 + T_1} \cdot \frac{(p_2 + 406.8)}{(406.8)}$ Assuming that $T_1 = T_2 = T$

$$\Delta C = \frac{(273)}{(273+T)} \cdot \frac{1}{359} \cdot \left[\frac{V_5(x + y)}{100 + y} - \frac{V_{h}t_{1}x}{100} \cdot \frac{(p_2 + 406.8)}{406.8} \right]$$

atoms carbon removed from the bed during t_l minutes of run.

4.7.9. Calculation of oxygen taken up by the bed.

It was realised that, during the admission of a mixture of carbon dioxide and nitrogen to the bed of carbon and iron, it was quite likely that the carbon dioxide would react to some extent with the iron as well as with the carbon. To evaluate the extent to which the iron was exidized in the presence of the carbon, a formula was derived based on an exygen balance between inlet and outlet gases. The carbon dioxide content of the methane which came in contact with iron during the deposition of carbon might have a slight effect on the results, but from a consideration of the facts, it was decided to neglect it.

The bed during the passage of carbon dioxide should absorb oxygen by the reaction

 $Po + CO_{2} = CO + PoO$

or other similar reaction. During the passage of carbon diexide,

moles of oxygon admitted = atoms of carbon admitted; and moles of oxygen leaving the bod = moles of carbon

diomide out $\div \frac{1}{2}$ moles of carbon monoxide out. $\% CO_2 \div \frac{1}{2}\% CO = \frac{(x - y)100}{(100 \div y)} \div \frac{100 \ y}{100 \div y} = \frac{100 \ x}{100 \div y}$. Then if $\land O$ = atoms of oxygen absorbed by the bed in t_1 minutes. $\therefore \land O = \frac{2x}{100} \cdot \frac{(v_3 t_1)}{(359)} \cdot \frac{273}{273 \div T} \cdot \frac{(p_2 \div 406.8)}{406.8} - \frac{2x}{100 \div y} \cdot \frac{v_5}{(359)} \cdot \frac{273}{(273 \div T)}$

$$=\frac{273}{(273+T)}\cdot\frac{2\pi}{359}\left[\frac{v_{4}\cdot t_{1}}{100}\cdot\frac{(p_{2}+406.8)}{406.8}-\frac{v_{5}}{100+y}\right]$$

4.7.10 Gaalfication runs and results obtained.

With the fluid-bed gasification apparatus and the associated recording analytical instruments, it was relatively easy to carry out a large number of experimental gasification runs in a relatively short time and to obtain thereby a considerable quantity of data. A number of these runs have been selected for presentation here and the experimental conditions under which they were carried out are listed in Table 4.5.

Runs 16 to 20 were carried out at four different gasification temperatures. During each run at a particular temperature, the carbon deposition and gasification cycle was repeated several times to determine the trend in the Boudouard equilibrium ratio with gasification time (i.e. amount of carbon on the bed) and with life of catalyst (i.e. age and exygen content of iron in bed).

Run 22 was carried out to study the effect of partial pressure of carbon dioxide on the equilibrium ratio and on the rate of gasification of carbon.

In Run 23 the effect of reducing the iron with hydrogen at a temperature which confers pyrophoric character on the reduced iron was considered.

In Run 33 air was used in place of carbon dioxide.

In all the experiments, the amount of iron ore put in the reactor was 1.32 lbs (600 gms).

The experimental data for Run 16 in which ten depositiom: gasification cycles were carried out is given

sas composition %co2 %02	90	06	30	30		60 16	20	0 N	JO	30		00	30	30	0	06	30	Q
lon . Inlet & Ng	02	02	02	0 F		50	0 M	00	06	0		Ç	20	02	20	02	04	on P-
Carbon gastaficati t Tlowrate, 223/min. (total)	0.134	0°289	0.340	0,303		0.291	0°290	0°290	0 . 288	0.333		0, 274	0.27%	0.25	0.340	0,303	0.27%	0°87 8
0 I N I I																		
dee Jee J	1200	1100	1000	006 T		JIO	8	8	e	8		oott	63	1200	1000	1300	1100	1100
osition 9t žiovrete, 2t ³ /min. CR ₆	0.16	0°16	0°76	0° 7 <i>6</i> 0		0.46	0°76	0.30	carried over from C	0°30		0,30	0°30	0,30	0°30	0,16	0.30	0° 16
Carbon depo inle N ₂	0°, 1 ^k	0.14	0.14	0。14		0.34	0 . 14	0°0	Cardon	0°0		0°0	0°0	0°0	0°0	0.14	0°0	0° 18
19 19 19 19 19 19 19 19 19 19 19 19 19 1	17 18 17	1 1 1 1 1 1	5 84 7	81 (V (*) (*)		87 63 67	87 64 67	87 67 71	50 1 1 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1		1100	1100	1200	1200	5 64 67	1200	50 50 50 50 50 50 50 50 50 50 50 50 50 5
No.of Tepeti- tion	(8-K) (8-K)	(A ² H)	1	а (д-Д)	A L B L B	8	Ю	0	G	fe)	(A - F)	¥	р	v	A	e)	fes;	,1
Run No.	10 71	5	00 1	80 80	CV RV						ମ ୧୪							6°?) 6°?)

TABLE 4.5

in detail below in Tables 4,6 - 4,15.

It may be soon that for each gasification run the value"q"% carbon dioxide, the reading of the differential katharometer, has been tabulated at five minute intervals together with the total exit gas volume up to each instant of measurement.

As explained earlier, the exit-gas analysis may be determined from x% carbon dioxide in the inlet gas and "q" % in the outlet gas by the use of curves, Figure 4.8 and Figure 4.9. In order to handle quickly and more accurately the large amount of data coming from the gasification unit, it was decided to evaluate the exit-gas analysis, and, from this, the equilibrium ratio by means of a Ferranti Sirius computor. At the same time the computor was asked to calculate the progressive removal of carbon from the bed by means of the carbon balance technique described above, and also the uptake of oxygen by the iron through the oxygen balance. The data provided for the scale shape curve (Figure 4.8) enabled a cubic equation to be set up of the form

$$Z = \alpha(x - q) + \beta(x^2 - q^2) + \delta(x^3 - q^3)$$

and the constants α , β and δ were evaluated by a least-squares procedure.

The relation between x, y and Z may be written in the lorm $\frac{100(x-y)}{(100+y)} \xrightarrow{200 y(11.3 \div 0.06x \div 0.053y)}{(100+y)^2} - Z$

103.

0

It was decided to solve for y by an iterative method. The iterative equation adopted was that discussed by Lapidus⁹⁶ and in principle is used as follows :

Let F(y) be the value of the left hand side of the equation above, when a trial value of y is substituted.

Successive values of y are determined from $y_{n+1} = \frac{y_{n-1} F(y_n) - y_n F(y_{n-1})}{F(y_n) - F(y_{n-1})}$

A Sirius Autocode programme was prepared in which

- (i) Z was evaluated from the cubic equation in x and q. using the constants a, β and 5.
- (ii) two trial values of y (i.e. y_0 , y_1) were specified and the computer was instructed to solve for y_2 and subsequent values of y until two successive values agreed to five significant figures. The last value of y was rounded off and taken as the value which satisfied the equation.

The computor was asked to tabulate for each gazification run the following, under the headings shown below :

Time in run (t _l mins.)	••• ⁹ Ties ^k
Percentage of inlet carbon dioxide decomposed (y)	رون بر برون برون برون برون
Percentage carbon dioxide in outlet gas.	••• ⁿ CO ₂ "
Porcentage carbon monoxide in outlet gas	••• ^{••} CO ^{••}
Boudouard equilibrium ratio	о о 11 К 19
Veight of carbon deposited in time interval (gm.)	••• "C ⁷ "
Total weight of carbon deposited up to the	he "C2"

The weight unit of the gramme was preferred here to that of the pound due to the small amount of material involved and the greater convenience that this gave in the computer print-out.

> Thus $C_1 = \Delta C (12) 453.6$ and $O_1 = \Delta O (16) 453.6$

The computor print-out shoots for Runs 16B to 16K are paged in front of each appropriate table of experimental data,

From the computed results for carbon deposition and removal at each stage in the run, it was possible to calculate the approximate carbon content of the bed at the end of the run, and to compare this with the value obtained by direct chemical analysis of the bed. In such cases where the bed contained not only iron, carbon and gangue constituents, but also exidised material, the chemical analysis involved solution of the iron in acid and its subsequent determination as described in page 102, together with the weighing of the undissolved residue (containing carbon and gangue) and the calculation of the carbon content from the known gangue content. It was found in all cases that good agreement was

110.

obtained between calculated and determined carbon content of the bod. This is illustrated by the figures given below for Run 23.

Calculated total weight of carbon deposited = 0.6882 lb " " gasified = 0.3189 lb " veight of carbon on bed at end = 0.3693 lb of run

Weight of bod at end of run = 0.736 lb Composition of bod :- Fe = 67.65% C = 15.55% Gangue = 4.85% Oxygen = 11.95%

100.00% by weight

Vaight of carbon on bod
Weight of solids in cycloms at
and of run
Composition of cyclome solids: - Fa = 43.85%
C = 53.05%
Gangua = 3.15%
Oxygen = Nil

100.00% by weight

Weight of carbon in cyclone solids 0.2345Total weight of carbon found $\overline{0.3462}$ For Run 17, only the carbon deposition results and the computer print-out sheats for the gasification parts of each cycle are given in Tables 4.16 to 4.23. For the remaining runs (except for Run 33) whose reaction conditions are given in Table 4.5, in order to reduce the bulk of this work only the results derived from the computer sheats are included in Tables 4.24. Run 33 results are tabulated in Table 4.25. The material in the reactor at the start of the carbon deposition part of the cycle for 16B was reduced iron which had been through a number of deposition and gasification cycles in a previous unreported run.

(For all the other runs reported, the material in in the bed at the start of the first carbon deposition was freshly reduced iron ore).

The following variables were held constant during this series of cycles :-

DEPOSITION OF CARBON

Composition of the inlet gas s-

Methane $(V_1) =$	0.16 ft ⁹ /min.
Nitrogen (V ₂)=	0.14 ft ³ /min.

Reaction temperature = 1325°F

CARBON REMOVAL

Gasification mixture = 30% carbon dioxide and 70% nitrogen.

Total inlet flowrate of gasification mixture = 0.254 ft³/min. (V_b) Reaction temperature = 1200°F The other reaction variables which differed from experiment to experiment are given under the appropriate heading.

TIME	¥.	CO_{2}	CO
	I7.72	IC.37	JO-I9
	17020 17020	10.jj	2)•35
ب ر د.	27020	20000 20000 20000	29 × 35 29 × 35
33	-707	IC=37	30.19
ن ت ت آ س د	- 70 :	IC437	30° I) 30° I)
ju jj	27.73	9°°2 I0°37	31.04 30.19
ے د 5 ک	7020 7020	10092 10092	29 • 35 29 • 35
70	27020	10.92	29 - 35

,

•

-

2

۰

•

÷

e

RUN 16B

CARBON DEPOSITION

= 39°2 tt³ Total outlet gas flow (V_3) 20°C Room temperature (T) 510 Total reaction time (t) 100 minutes Average pressure of inlet gas $(p_1) = 48.48$ inches of water gauge Average decomposition of methane = 32.4% Calculated weight of carbon deposited in t minutes (G) - 0.1588 lb Average rate of carbon deposition $(G_{/+}) \simeq 1.588 \times 10^{-3}$ lb/min CARBON REMOVAL Total gasification time (t₁) - 70 minutes Average pressure for inlet gas $(p_2) = 50.08$ inches of wator gaugo ^v5 ۲°³ t_l Q % (mins) 5 15.0 1.3 10 15.0 2.9 15 14.5 4.5 14.5 20 6.05 25 7.60 14.5 30 15.0 9.16 35 40 15.0 10.73 15.0 12.30 45 15.0 13.80 50 15.5 15.30 55 60 15.0 16.9 14.5 18.5 65 14.5 20.0 7014.5 21.5 Weight of carbon removed = 0.084 lb, Rate of carbon removal $= 1.20 \times 10^{-3}$ lb/min Weight of oxygen absorbed - 0.0417 lb Rate of oxygen absorption - 0.595 x 10-3 lb/min

<u>RUN 160</u>

CARBON DEPOSITION

Total outlet gas flow (V_x)	ED	12.6 ft ³
Room temperature (T)	53	20 ⁸ 0
Total reaction time (t)	E20	30 minutos
Average pressure of inlet gas (p	J) =	51.2 inches of water gauge
Average decomposition of methane	112	47.1%
Calculated weight of carbon deposited in t minutes (G)	113	0.0719 16
Average rate of carbon deposition (G/t)	UJ	2.396 x 10 ⁻³ lb/min
CARBON REMOVAL		
Total gasification time (t _l) fF3	70 minutes
Avorago inlot gas pressuro (p ₂)	\$ 3	50.8 inchos of water gauge
¢1 Q		¥5
(mino) %		<u></u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.65 3.15 4.65 6.22 7.80 9.27 10.75 12.34 13.94 15.44 16.95 18.54 20.14 21.60
Woight of carbon removed	ra C	0.0860 16

Note in the second second is a second in the second in the second is a second in the second in the second in the second is a second in the second

TIME	Y	COp	CO
ہ۔ ر	17073	IC.37	30.
20	17073	20037	300
د ÷	17070	ICo j7	30.
20	I7073	20037	30.
25	17073	IO-37	30.
30	17.78	IO. 37	300
35	17.73	IO.37	၂၀န
40 r	r7.70	I O o 37	300
45	17070	IO\$37	၂၀.
50	= 7 . 78	IO.37	30 s
55	17078	IO037	300
60	17.78	10°37	300
55	17079	I0.37	ၟ၀ႜ
70	17.7°	IO037	30.

TABLE & 3

<u>RAN 160</u>

С												
TIME	Ý	co2	00	Х	Οı	C2	$\mathcal{O}_{\overline{z}}$) ₄				
сс, сс, с, с, и и и с, с, с, с, и и и с, с, с, с, с, с, о с, с, с, с, с, с, с, с, с,	N H H H H H H H H H H H H H H H H H H H	0.73 9.27 9.77 9.27 9.77 9.77 9.77 9.77 9.77 9.77 9.77 9.77 9.77 9.77 9.77	32. 32. 32. 32. 30. 30. 30. 30. 30. 30. 30. 30	1.220 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	3.20I 2.2033 2.2033 2.2033 2.2033 2.2033 2.2033 2.2033 2.2033 2.2033 2.2033 2.2033	5.25 5.25 7.25 1.4.0 7.50 1.4.70 7.50 2.50 2.50 2.50 2.12 3.12 2.12 3.12 2.12	2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77	7 4 H 4 H 0 4 4 H 0 5 2 5 5 0 0 5 5 7 7 7 7 5 0 0 1 7 H 4 4 0 7 7 7 7 0 7 0 0 1 7 H 4 4 0 7 7 0 7 0 0 1 7 H 4 4 0 0 7 4 4 0 0 7				
	А. <u>С А</u>	erago : <u>RBON R</u> E	ion	= 2.045	x 10 ⁻³	lb /mlm.						
	Ţo	tel ges	ificati	ion time	ə (t,)		= 55 minutes					
Average inlet gas pressure (p2))	= 52.7 gaugo	inchos (dî water			
		(m.i	1 ns)		Q %	·	^V 5 24 ³					
		5	i i		16.5			1.60				
		10	•		16.0		3 • 15					
		15	Ļ	*	16.0		4.70					
		20	i i i i i i i i i i i i i i i i i i i		15.5		6.25					
		25			15.0		7.60					
		30	ł		15.0		9.37					
		35			14.8		10.95					
		40			14.6		12.42					
		45			14.5		13.90					
		50	i	-	14.6		15.47					
		13 IS			14.6		17.05					

Weight of carbon removed	-	0.0686	16
Rate of carbon removal	13	1.247	1b/min
Weight of oxygen absorbed	斑	0.0331	1.6
Rate of oxygen absorption	22	0.602	1.b/min

TABLE 4.9

3

Ţ., Ţ.Ţ.Ţ

. ج ر

لی ل ل ل

<u>RUN 16E</u>

CARBON DEPOSITION

Tot Roc Tot Avc Cal	tal out) om tempe tal reac orage de loulated deposit	lot gas praturo stion to rossuro composi l voight tod in t tod in t	flow ((T) Lmg (t) of inl ition of t of ca: t mimut carbon (V3) ot gas(r f motham rbon ss (G) dopositi	8 8 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	17.95 f 21°C 45 min: 49.45 f 35.9% 0.0798	^{`t} 3 3 Lns.water gaug 1b	0
				(G/ _t)	B '	1.774 2	s 10 ⁻³ 16/min	
CAR	BON REM	IOVAL						
Tot	al gasi	ficatio	on time	(t ₁)	10B	80 mine	3 .	
Ave	rage in	ılet gaı	s press	ure (p ₂)	33	51.5 1r	19. wator gaugo	
	tı (min.) .		Q K		V 5 £t ³		
	5 10			16.5 16.0		1.65 3.16		
			RUI	N 16E				
N.	COp	CO	X	Cr	Co	Or	$\mathcal{O}_{\mathfrak{L}}$	
	9.70 7.07 7.07 7.07 7.07 7.07 7.07 7.77	33.73 31.00 30.10 30.10 30.10 30.10 30.10 30.10 30.10 30.10 30.10 30.10 30.10 30.10 30.10 30.10 30.10	1.22 1.000 0.070 0.08700 0.08700 0.08700 0.08700 0.08700 0.08700 0.08700 0.087	3.500 2.717 2.755 2.705	3.50 5.32 9.95 11.057 14.007 19.57 20.07 25.07 25.81 31.07 25.81 31.07 35.51 45.44	I • I 47 3 • I 47 3 • I 73 2 • 0 73 2 • 0 73 3 • 0 73 5 • 0 77 5 •	1 · 7 / 3 · 2 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1	

TABLE 4,10

.

RUN 16F

CARBON DEPOSITION

Total outlet ga	s flow (V ₃)	3	20.4 ft ³
Room temperatur Total reaction Average pressur Average decompo Calculated weight	e (T) time (t) e of inlet gas (p ₁) sition of methane ht of carbon denosi	ස ස ස ස t ed	21°C 50 mins 52.4 ins.vater gaug 35%
in t min	.(G)	5942 53	0.0994 16
Average rate of $(G/_t)$	carbon deposition	1	1.989 x 10 ⁻³ 1b/min
CARBON REMOVAL			
Total gasificat	ion time (t _l)	53	75 min
Average pressur	ø of inlet gas (p ₂)	ಕ್ಷಾರ್. ಹ್ಯಾಗ್	52.3 ins.water gaug
t 1	ଦ୍ୟ		Vs
(mins)	96 		rt. ³
5	16.5		1.60
10	15.0		3.09
20	15 O		4.00 6.1k
25	15.0		7,70
30	15.0		9.25
35	15.0		1.0.80
40	15.0		12.34
45	14.8 24.8		1.3.88
JU Se			15.44
55	Luo D The S		
65			20 02
70	14.5		21.61
75	14.5		23, 20
Madake at assis	ata mamarcad		0 001b0 3b
Rate of perbon	yar t.ghava j	33	$v_0 v_2 v_4 v_2 v_3 v_4 v_2 v_3 v_4 v_2 v_3 v_3 v_1 v_2 v_3 v_1 v_2 v_3 v_1 v_2 v_3 v_3 v_3 v_3 v_3 v_3 v_3 v_3 v_3 v_3$
Hoight of arve	am absorbed	53 53	0.0440 1b
Rate of oxygen	absorption		0.587 x 10 ⁻³ 1b/min

,

	5
	Q
	3
4 . •4	0
 +-≁	5
3	0
5	5
	0
- î	5
5	Э
5	5
5	0
3	5
7	С
7	

TIME

Ţ	2	Ų	ہے۔ ان	7
 	7	9	7	3
~ .⊥	7	0	5	5
Ξ	7	é	7	3
~	7	ų	7	3
Ĩ	7	a	7	2
	7	Ŷ	7	8
ì	7	¢	7	8
I	7	9	5	5
7* 44	7	9	3	0
** ~	7	Û	à	С
~~ ~~	7	0	â	0
7	7	ø	2	0
1	7	0	2	0
I	7	ų,	2	С

Y

	3	Ð	7	2
ĭ	0	63	3	7
1	С	ů	ŗ	2
ĩ	0	3	3	7
i i	С	¢	:	4
ጉ -ት	0	12	Ĵ	7
•;* •	0	۵	3	7
Ĩ,	0	G	3	7
I	0	ø	5	9
I	0	φ	9	2
]]	0	6	9	3
I	0	ø	9	2
ĩ	0	Ġ	9	2
I	С	φ	9	2
I	C	ŭ	9	2

 CO_2

3207 30° I 29°8' 30.19 30 . I : 30019 30.1 30019 29 . 81 2903 29 . 3. 29 . 3. 2903 2903. 29 4 3

CO

TABLE 4,11

^.

7133

6161, 4, 6, 6, 5, 7, 11 61, 0, 63, 0, 6, 0, 64, 0, 64 RUN 1.6G

CARBON DEPOSITION

Total outlet ge	s flow	(v.)	<u>.</u>	20.4 ft	3	
Room tomporatur Total reaction Average pressur Average docompo Calculated weig deposited in Averago rate of deposition (e (T) time (t c of in sition ht of c t mins carbon G/ _t)) let gas of metha arbon (G)	(p ₁) = (p ₁) = me	21°C 50 mins 52.32 i: 39.4% 0.0803 1.607 x	ng. of wa 16 10 ⁻³ 16/	tor ga 'min
CARBON REMOVAL						
Total gasificat	lon tim	6 (t ₁)	1732	55 mins		
Avorage pressur	o of in	let gas	(p ₂) =	52.15 11	ns. Water	. Cun te
t. (1997 (1997)		er K		v ₅	3	
5 10 120 50 50 50 50 50 50 50 50 50 50 50 50 50		15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0		1,58 3,12 4,66 6,21 7,75 9,28 10,82 12,83 14,02 15,54		·
	RU	<u>N 16G</u>				
Y CO _d CO	2	Cr	C ₂	IC	D.≏	
17.78 10.37 30.19 17.78 10.37 30.19	0.37) 0.970 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870	2 • 0 7 5 2 • 7 4 4 2 • 7 4 4 3 • 7 4 4 3 • 7 4 4 3 • 6 3 0 2 • 5 3 6 2 • 5 1 6	20725 50745 11750748 117500548 117500548 10750 100548 1005548 100558 100568 100568 100568 100568 100568 100568 100568 100568 100568 100568 100568 100568 100568 100	9913 9913 9913 9913 9913 9919 9919 991 1991 1991 1991 1991	руур 5411 1000 2470 550 0 250 2470 550 0 250 250 0 250	

TABLE 4,12

RUN 16H

CARBON DEPOSITION

				RU	<u>N 16H</u>			
7100	ž	COp	CO	K	Cr	Ca) z	02
	20000000000000000000000000000000000000)•07 100037 1000037 1000000000000000000000000000000000000	31.3) 30.19 30.19 30.19 30.19 30.19 30.19 30.19 30.19 31.04 31.04	r	a. 7°5 a. 5775 a. 5775 a. 5775 a. 7757 a. 7757 a. 757	2 • 70 5 • 26 7 • 36 1 36 • 35 1 5 • 45 2 0 0 5 2 0 0 7 3 4 • 20 3 4 • 20	300 x 20 7 7 3 3 0 0 x 20 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 7 7	УСАН ОСАН () Н) Н () СОЛОСИИ () Н) Н () СОЛОСИИ () Н () СОЛОСИИ () Н () СОЛОСИИ () Н () СОЛОСИИ () Н () Н () Н () СОЛОСИИ () Н () СОЛОСИИ (
		5050505050505			16.00 15.000	• • •	L. 3. 4. 5. 7. 10. 12. 15. 15. 15. 12. 15. 10. 15. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	50 50 50 55 13 72 26 30 11 22 53 55 55 55 55 55 55 55 55 55
	velg Rate Velg Rate	drof car of car bt of o of oxy	arbon 1 bon rei xygen 1 gen abi	romovod soval sorptio:	<u>1</u> a	88 0. 83 1. 88 0. 89 0.	.0815 1b 254 x 10 0364 1b 561 x 10) ⁻³ lb/min) ⁻³ lb/min

119.

TABLE 4.13

.

ر بر بر ۲

RUN 16I

CARBON DEPOSITION

	Tota	l outle	t gas 1	flow (V.	")		26.16 ft	:3	
	Room Tota Aver Aver Calc Aver	temper .l react ago in.l ago dec ulated deposit ago rat deposit	rature (:1om t1: let gas :omposit voight :ed in t :e of cs :1on (G/	(T) prossum tion of of cart t mins. (hrbon t	» [,] methàne)on (G)	13 63 63 63 63 63 63 63	21°C 70 mins 46.7 in: 29.3% 0.074 1: 1.057 x	s.vator 5 10 ⁻³ 11	y/min
	CARB	ON REMO	DAVE'						
	Tota Aver	l gasif ago inl	let gas	n time (pressu:	(t1) re ¹ (p ₂)	83	65 mina 50,4 ina	3, Water	gauge
		(m1	(1. .ns)		%		*5 £*?		
					16.0 15.5 14.5 14.5 14.5 15.0 15.0 15.0		1.50 3.65 4.12 7.62 9.17 10.79 10.79 13.88 15.36		
				RU	<u>N 161</u>				
1.1	м. Х	co_{β}	00	K -	Cr	25	<u>ז</u> (02	
			30000000000000000000000000000000000000	x • 0 9 9 0 • 7 7 9 0 • 0 9 0 • 0 9 7 9 0 • 0 9 7 9 0 • 0 9 7 9 0 • 0 9 7 9 0 0 • 0 7 9 0 0 • 0 7 9 0 0 • 0 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		араааа 2000 жинин араар 2000 ж. 2000	 (1) (1)<td></td><td></td>		

<u>RUN 165</u>

CARBON DEPOSITION

3 2				RU	<u>IN 16J</u>			
T! []	×	CD <u>p</u>	Сh	<u> </u>	Cr	O_{2}	01	2
				1.0000 1.00000000	3.340 4.07 4.07 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5		2 5 5 5 2 5 7 7 2 5 7 7 2 5 7 7 2 5 7 7 2 5 7 7 4 5 7 7 7 5 2 5 7 7 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
		t. (md.118	a)		Q K		V. *** ³	
		5 10 15 20 25 30 35 40			17.0 16.0 16.0 16.0 16.0 16.0 16.0		1.60 3.15 4.70 6.25 7.85 9.45 10.91 12.38	
		45			13.0		.L	

Weight of carbon removed	13	0.0631 10 .	
Rate of carbon removal	113	1.403 x 10 ⁻³	lb/min
Weight of oxygen absorbed	B	0.0187 16 "	
Rate of exygen absorption	13	0.414 x 10 ⁻⁾	lb/min

•

· · ·

RUN 16K

|--|

	Tota:	l outle	t gas f	low (V ₃)	B	19.05 ft	3		
	Room temperature (T) Total reaction time (t) Average inlet gas pressure (p ₁) Average decomposition of methine Calculated weight of carbon deposited in t mins.(G) Average rate of decomposition					E E	21°C 50 mina			
						63	53.6 lns 23.6%	.water gau	go	
						E	0.0561 lb			
		(G/ _t)					1.123 x	10 ⁻³ 1.b/mi	92	
	CARE	<u>on remo</u> '	VAL							
	Total gasification time (t _l)						s 45 mi.ns			
	Avorago inlet gas prossure (p					53	55.8 ins	,water gau	go	
	^t Л.			્લ			V			
	(mins) 5 10 15			The second se		Ét l				
					7.5	1.550 3.175				
				L	7.0					
				1	6.5		4.800			
	20			l	6.0		6.300			
		19 kz		RU	<u>IN 16K</u>					
	×.	σh_2	CO	X	Οr	05	01	0 <u>b</u>		
			333730 400 400 400 400 400 400 400 400 400 4	I.554 I.579 I.223 I.223 I.223 I.223 I.233 I.2355 I.2355 I.23	5 • 0 7 5 3 • 4 5 2 3 • 5 9 5 2 • 5 9 3 2 • 5 2 4 2 • 5 2 4 2 • 5 2 4	с с с с с с с с с с с с с с с с с с с с	3.650 3.055 3.055 3.055 3.1555 3.1555 3.1555 3.1555 3.15555 3.155555 3.15555555555	3 • 5 4 5 • • 7 5 7 • • 7 5 8 • • 7 5 8 • • 7 5 8 • • 7 5 8 • • 0 5 9 • • 7 9 • • • • • • • • • • • • • • • • • • •		
) شان ت ((• ¥ ¥		20042 20035	0°37= 0°247	I . 429 I . 218	21.;0 22.58	40000 40108	240) 2007)		

RUN 17 (A - H)

The following reaction variables were held constant throughout this run.

din.

CARBON DEPOSITION

Inlet gas composition :-

Methane (V ₁)	53	0.16 ft ³ /min
Nitrogen (V ₂)	8	0,14 ft ³ /min
Neaction temperature	8	1925°F

CARBON REMOVAL

Gastfication mixture = 30% carbon dioxide and 70% nitrogen

Total inlet flowrate of Gasification minture (V₄) = 0.289 ft³/min Reaction temperature = 1100°F

The other reaction variables which differed from experiment to experiment are given under the appropriate heading.

CARBON DEPOSITION

RUN 17A									
I	Y	CO_{2}	CD	X	C_{Σ}	Ca	Or	0 <u>a</u>	
ن		= <u>[</u>	20.03	ంచికి	2°3333	2 - 3 2	-1.150	-I.IS	
20	IOTO?	10000	IC,32	0 o z 8 j	1.2,3	3.27	I . 733	0 a 5 7	
ڌ ÷	ICU3)	-7.73	10.03	0.200	I 6007	5007	0.753	I = 3 3	
2 Q	- I U & I) 		10.49	0.10	2° >)]	دري چي ت		\circ	
ز ر	10.00	1000	1 20 30	O G E P J A M O G	36170	10.53	-0.303		
<u>ري</u> ن	1040° 47.60		نىن مى ي	00175	19270	- 100 yo	-0.303	-0.0	
لې پ م	-0007		ندر <u>-</u>		_ <u>_ </u>		-0.303		
ۍ . د .				0 + 2 -	ورز <i>د چ</i> د معام	زر» ۲ مر مب		-0.14	
ر ب ر م ب					20170	10370	-02303		
20	10307	1000	* * *) *	VI1 / J	24.270	2001			
				-					
	CAR	HON RICH	OVAL	a. 46 y a	. .	ومرجعه فالمعام سيعر			•
	Total gasification time (t _l)					8	50 minø		
	Average pressure of inlet gas (p_2)) a	50.1 inc.water gauge			
	Total outlet flow of gas (V ₅) Weight of carbon removed Rate of carbon removal Weight of oxygen absorbed Rate of oxygen absorption					8	15.8 ft ³ 0.046 lb 0.920 x 10 ⁻³ lb/min 0 lb		
						8			
						55			
						8			
						a	0 lb/min	l.b/mi.n	
<u>TABLE 4,17</u>

± dD

<u>RUN 178</u>

CARBON DEPOSITION

Total outlot gas flow (V ₃)	3	22.4 ft ³
Room tomperature (T)	83	\$2°C
Total reaction time (t)	83	60 mine
Average pressure of inlet gas (p ₁)	1	51.0 inc.vator gauge
Average decomposition of methane	83	20.5%
Calculated woight of carbom deposited in t mins(G)	65.9 63/9	0.0565 1b
Avorage rate of carbon deposition (G/_)	83	0.941 x 10 ⁻³ 1b/min

<u>RUN 178</u>

	Ť L.C	Y	COB	CO	ĸ	CI	0.2	Or	0 2
	ب	zo, añ	19.09	I8.32	0.185	1.755	I.37	ISICS	Ĭaîî
	2.57	24 37	£0°04	ITOIS	0.153	ఎం ర్వె	3.40	-0.108	I O C
		دَ ـه (£ (*) 3	IG.S	0.152	2.025	5.43	-0.334	0.57
		1 * 5.	±3.07	=7.13	Osijj	2.20Î	7.73	-o.32r	
,		9021	10.75	I7030	o.r5o	I. 7.45	9.27	0.730	0.50
	j O) • 47	r?.75	17.30	0.250	I . 799	II.oĆ	0.217	0.32
	ت ن	1047	IS.75	17030	0.160	3.052	IJOID	-0.205	0. 77
	•••) = ; ;	z8.63	I7047	0.264	2.3I)	rgali	-0.795	-0.20
		آ د ز	r9∗9r	I7.98	0.175	3.373	r8.8r	-2.785	~~
	ت ز	- 14 - ¹⁷	= 0 = <u>0</u> = 0 = =	I7098	0.175	0.578	I9 + 39	20027	-0
	55	シー	2°°54	17064	0.138	20332	21.72	-0.77	-0.00
	1 U	. ، ، ر	≍ి _ల కెర్	I7•47	0°I54	I = 558	23.28	0.772	-0.2.
	<i>.</i> ,) = j :	10.65	I7047	ဝ⊾ၤ်∠္	20267	25045	~0	
	, °	ز قرر	=°=54	27054	0.203	2.536	28.03	−⊾ေင်ပီန	
	15	2000/	rC.og	r 8.32	0.295	I.IIO	29.14	ISSS	-c.z?
	<u> </u>	no;	=7•9°	18.49	0.190	26043	31.19	0.017	-0.20
	0 j	to.E)	=7•98	I 9.49	00100	2.090	33.08	°.323	0020
	المشاجر	-0-27	エフ。う ⁹	I 3 . 49	osijo	ະ.ິງ໐	34027	0.320	ost; C
	2.5	ていってり	ĭ7≈93	I 3. 49	0.290	<i>∴</i> ∈ Ξ 4 5	37°II	-0.186	0.50
	こくら	rower	I7007	18.66	0°1)2	I.545	38.76	0.845	Isių
,	ر بن 1	20009	I7.87	18.55	0.195	2°I 39	400)2	-0.171	0.57
	- 20	10.00	I7.87	18.55	0°192	2025r	43018	-0.374	0,50
	::j	20.03	rêçoş	I 9632	0.185	3•54I	45 - 72	-I.CIS	-0.42
	I S C	10,09	18.07	18.32	0°132	r.365	47.08	r • 325	0.9I
							••••••••••••••••••••••••••••••••••••••		
		· .	•	•		•			
					· .		,		

•

TABLE 4.18

<u>RUN 17C</u>

CARBON DEPOSITION

<u>RUN 17C</u>

I so di Ang na sa	V	0.0	20		a	~			
· · · · ·	•	() <u>(</u>	00		Cĭ	Ca	() <u>r</u>	22	
	00000000000000000000000000000000000000	N N N N N N N N N N N N N N N N N N N	<pre># * I I I I I I I I I I I I I I I I I I</pre>	аз407840200000000000 яз4078402000000000000000000000000000000000	нии и и и и и и и и и и и и и и и и и и	3999331111555000000000000000000000000000	000000190345507755 	0 5 3 7 4 5 9 7 9 7 9 7 7 4 1 1 0 1 1 2 4 1 1 0 1 1 2 4 1 1 2 4 1 1 2 4 1 1 1 1	
.0) - 37 Ave: Tot: Wei, Rat; Wei,	rage pr al outl Sht of e of ca Sht of sht of	27.23 easure et gas carbon rbon re oxygen ab	of inlet flow (V ₅ removed moval absorbed	i • 42) gas (p	2).02 2) = 52 = 24 = 0, = 0, = 0,	0.730 .25 ima. .90 ft ³ 0639 lb 798 x 10 0052 lb 065 x 10	-3 lb/min	_

.

TABLE 4,19 RUN 17D

CARBON DEPOSITION

Total outlet gas flow (V_3)	88	7.92 £t ³
Room temperature (T)	52	22°C
Total reaction time (t)	53	20 mi.mo
Average pressure of inlet gas (p_l)	6113 803	52,4 inc.water gauge
" decomposition of methane	89	32,80%
Calculated weight of carbon deposited in t mins (G)	ಷ್ಟಾತಿ ಆತ್	0.0322 15
Average rate of carbon deposition $(G/\frac{t}{t})$	63	1.61 x 10 ⁷³ 1b/min

CARBON REMOVAL

~

~				RUN	17D			
7 ÍNE	Y	<u>00</u>	CO	Т <u>с</u>	Ċ Ŧ	$C_{\mathcal{Q}}$	OI	0 g
۔ ر	10.0?	r∂.oj	I 8. 32	our 9g	2. j 2 j	I . 72	0.534	٥٠٦٦
10	9451	E 🖓 💩 รี รู	I7•47	00114	24200	3 • 9 2	-0.554	0.07
ΣĴ	2037	I9.53	I 7 + 47	0.254	20057	5479	-00257	-0.1)
22	9437	ICoSS	17047	0.s I 5.4	I = 703	7.4 27	00459	0027
î î	3-54	IC.54	27054	0.I58	1055 1055) • 3 5	00575	ဝန္ပိုင္
30	0-51	τ9.55	I7.47	C.IS4	3.057	II;I	-c.257	0.50
35	1	29.75	17°30	0.050	202.5	≚ 3 ≈ 5 5	-0。477	ಂಸೆ 🏾
.;O	7 د * ر	r 8.87	ITOIS	0.155	I.930	I 5 = 4 ⁸	-0.0 83	0.03
45	وَ ر. ب رَ	エジょうひ	エントウジ	0°I 23	I.463	25094	၀.၁၃၄	၀. ဗိုင်
50	960 <i>5</i>	IC.jC	r 5.95	o.zja	2:050	zosoz	-0.405	0 - 45
ز ز	j.05	I).20	⊼ ్⊽ స్ఎ	ငန္းနဲ့	I.095	20% I O	Iasií	I.)7
30	20II.	IÇ.OÇ	I6.70	0.1.48	24j07	22.00	~I •374	ంచిన
55	90IS	23003	I 5070	0.248	೨≈≍55	24075	-c.536	~0,00
70	1005	I9620	I C. Co	00144	0.835	25.50	2.030	a.°j

TABLE 4,20

_

RUN 17E

CARBON DEPOSITION

RUN	1	7	E
	_	_	

-								
	Ý	90°	00	K	Οr	Cç	Οr	€. C
, J	touod	:S.oj	z0.32	0.135	I.607	1051	0.075	0027
- 0	ر د در	I j o B O	rdado	OuI 44	2.035	3 6 5 9	-01300	0.75
- 5		エッックブ	IS≈76	0,120	2.058	5-73	ەركەت-	-0°35
20	<u> </u>	20.03	¥ 5°25	osris	I.539	7 = 30	0.034	
ز ش		I).83	I 5 ≥ 50	OSIDD	ĭoïjó	0.55	I. I 55	رَ زِي ٦
50	05	I).33	ĭj•59	Colda	조히포랑루	I0.70	~≎sprj	o o i
j.	0.35	エンマング	I 5 • 4 2	0°II)	rsSjr	I 2 . 59	-0,4I0	-0.j0
49	Calif.	ఎరి ఎం	ISacs	0.115	1.873	I 40 47	-00:405	-0.0p
یں : اب ا		30.05	ڙڻ ٿوڙ 1	0.IIS	I.3%0	tg.°g	our feig	
		2222	25445					12 m
22	ر سه سه	•• •• • • •	له از ایدینا اید ا	JUIIO	2 3 3 5 2	IGeIC		in the second

CARBON REMOVAL

Total gasification time (t _l)	<u>213</u>	55 mino
Average pressure of inlet gas (p_2)	53	54.5 ins,water gauge
Total outlet gas flow (v_5)	83	17.22 ft ³
Volght of carbon removed	57 17	0.0423 16
Rate of carbon removal	53	0.769 x 10 ⁻³ 1b/min
Weight of oxygen absorbed	83	010
Rate of oxygen absorption	£ 3	0 lb/min

concourses to a f

TABLE 4,21

<u>RUN 17F</u>

CARBON DEPOSITION

.

Total outlot gas flow (v_3)	8	11,25 ft ³
Room temperature (T)	55	21°C
Total reaction time (t)	5	30 mins
Average pressure of inlet gas (p _l)	8	59.8 ins.vater gauge
Average decomposition of methane	H	17.4%
Calculated weight of carbon deposited in t mins.(G)	е (0.0237 lb
Average rate of carbon deposition (G/ _t)	s (0.790 x 10 ⁻³ 16/min

CARBON REMOVAL

	T	'ntal øs	aificat	1 an tim	a (.t.).	53	55. milni	<u>ه</u>
				RUN	<u>17F</u>			
· · · · ·	N.	с.)."	00	Ž.	Ċ:	~	\circ_r	O 2

TABLE 4.22

RUN 17G

CARBON DEPOSITION

<u>RUN 17G</u>

:) 1112	~	002 1	C)	 QE.	Cla	0 <u>±</u>	
					н а с уулан и и и и и и и и и и и и и и и и и и и		

CARBON REMOVAL

- -----

Total gasification time (t _l)	80) 19	45 mins
Average pressure of inlet gas (p_2)	8	55.3 ins.vator gauge
Total outlet flow of gas (v_5)	8	14.05 ft ³
Walght of carbon removed	m	0.0358 lb
Rate of carbon removal	13	0.795 lb/mim
Wolght of oxygen absorbed	E	0.0030 1b
Rate of oxygen absorption	E	0.066 lb/min

				RUN	1711			
ana tagana ta tagana	×.	ترن	$C \supset$	· · ·	01	C g	Эт.	
					I B H U H U U U U U H U H U H U H U H U H			
		، ر ۱۰ <u>،</u> ب ر ۴ آ ۴	-20-7	0010) 0010)	ب ، ۲۰۰۰ م ر ، ۲۰۰۰ میک	زديېدې در مکې	ريم د د ون ريم د مور ريم د مور	20041 2074;

:78 PT.J

				RUN	<u>17H</u>			
بر سرو ه مر	Ÿ	CDa	00	2	Ce	$\mathbb{C}_{\mathcal{Z}}$	Οr	01
			EXTRUCTURANANANANANANANANANANANANANANANANANANAN	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	арно по	00 Fro 20 275750 28 0 174 27709 00 8888 92 FF30 779 27709 00 8888 92 FF30 779 27709 20 89 99 99 978 2870 90 97575750 28 0 174	20012012127772010127561375 3001270170170200301021725 2001270170200301021725 2001270170200301021725 20012701707030173075	

a and a second where a second a second and the second as a second second second second second second second sec

TABLE 4, 24

					مر. - **
	y Xorse Cov	0.0337	4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000 000000 000000 000000 000000 000000	р
ОЖ	16a0/t ₁	0.4396	0,000 2,230 2,230 0,250 2,230 0,250 0,250 0,200000000	н 0 0 0 0 8 8 8 8 8 9 8 9 8 9 8 8 9 8 8 9 9 8 9 8	000000 00000 000000 00000 00000 00000 0000
	1620 (126)	0 ° 04 596	0.0000 0.02 0.02 0.02 0.02 0.02 0.02 0.	00000 000000 000000 000000 000000 000000	000000 000000 000000 000000 000000 00000
gastftcat.	1.200/4_1	0.3489	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40000 0000 0000 00000 000000 0000000000	00-00 28-20 28-20 29-20 20 20-20 20 20-20 20 20 20-20 20 20 20 20 20 20 20 20 20 20 20 20 2
CAREON	12ac (16)	0°03489	00°1383 1300 13831 00°1383 13831 00°1383 1303 1303 1303 1303 1303 1303 1303	00000 00000 000000 0000000000000000000	00000 00000 00000 00000 00000 00000 0000
	las Las Vater	33. R	00000000000000000000000000000000000000		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	ti es	100 36,60	6000 8000 8000 8000 8000 8000 8000 8000	000000 00000 00000 0000 00000 00000 0000	00000 00000 00000 000
	16/4 16:/min x 10-3	308 1°308		8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	00000000 000000 0000000000000000000000
	(19.)	0.091(0000 0000 0000 0000 0000	o o o o o o o o o o o o o o	
	ск ^у ск _а decep.	23°0	8 8	004 N 004 N 040 N	0 7 0 8 7 0 1 0 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
CARBON DEPOSITION	d Laëo Vater	37.4	rs nr ° ° ° ° rrn a a a n	6 4 4 6 4 7 8 6 8 6 8 8 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	t (eine,	С Р	0000 0000 0000	8000 I 0 800 8 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	4 (De)	N N	4 4 4 4 N N N N	NNN N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	(E 2 2)	26. 23 2	80 80 80 80 80 80 80 80 80 80 80 80 80 8	4 19 1	носий. 9 ослан 9 сосан 9 слопи 9 слопи
	Run No	80 E	4 A U A 0 N	4 A U A A R R R	4 8 0 9 6 6 M N

...-

:

total certoon removed in t_l zins, lb . total oxygen absorbed in t_l mins, lb .

N 0

12ac 16ao

Notes

CARBON DEPOSITION

Composition of inlot gas :m 0.16 ft³/min Mothamo (V,) 0.14 ft³/min Nitrogen (V.) 13 Average inlet gas pressure (p_1) 24.8 ing.vater gauge 273 Room temperature (T) 21°C 572 1325°P Reaction temperature 123 Total reaction time (t) 178 mins **S**B 65.7 ft³ Total outlet gas flow (V_{γ}) 100 30.9 % Average decomposition of methane s Calculated weight of carbon deposited in t mine. (G) a 0.253 1b Average rate of carbon deposition $(G/_{2})$ = 1.42 x 10⁻³ lb/min

CARBON REMOVAL

In this run, with a reaction temperature of 1100°F, the carbon removal was achieved by admitting air to the bed in place of carbon dioxide. The sait gas was analysed by conventional absorption gas analysis techniques, and it may be seen from the Table that the oxygen content of the exit gas was almost regligible indicating almost complete utilization.

The carbon removal calculation and exygen abcorption by the bod calculation were done by hand for this run. The carbon removal could be calculated easily from the exit gas analysis and flow, and the exygen absorption from a combined mitrogen and exygen balance on the exit gas analysis. <u>T.ARL</u> <u>8.25</u>

.

.

5. GENERAL DISCUSSION

The most important points for consideration in the light of the data given in parts 2, 3 and 4 of this work are the following :-

- (a) the value of the Boudouard equilibrium ratio obtained for carbon gasified in fixed and fluidized bods.
- (b) the rates of carbon gasification, and
- (c) the rate of oxygen uptake by the bed of iron powder.

5.1. Boudoward equilibrium ratio value.

It is apparent from the earlier parts of this work that even with the short residence time possible with a small laboratory fluidized bed, a good approach to equilibrium between carbon dioxide and small coke particles is possible. As had been predicted earlier, the values of equilibrium ratio obtained between deposited carbon and carbon dioxide in all cases exceeded the β-graphite, Boudoward equilibrium constants.

It may be seen from the data for Run 16 that when steady state conditions had been achieved during gasification of the carbon on the fluidized bed by carbon dioxide, a virtually constant value of outlet gas composition and therefore a constant value of equilibrium ratio was obtained.

The value of K tends to depart from constancy at the beginning of a gasification cycle due to the inevitable short lapse of time between the analysis by katharometers of inlet and outlet gas. Changes in the value of K during the gasification period were largely due to slight fluctuations in the temperature of the bed, and near the end of the gasification, if it was carried on long enough to remove excessive amounts of carbon from the bed. This constancy makes it possible to tabulate average values of K for steady state condition and these values are to be found in the data for each cycle of run. The average value for each overall run was then obtained and these are tabulated in Table 4.26.

It can be seen that the equilibrium ratios for Run 16 to 23 (in the temperature range 1000° - 1300° F) for carbon deposited on reduced iron (either stable or pyrophoric) are much higher than those which have been reported for β -graphite in the same temperature range. The difference between these two series of values can be seen much more precisely in Figure 4.12 and indicates that the deposited carbon has an excess value of free energy.

The excess free energy of the deposited carbon was calculated in the conventional manner from the values of K obtained here, and the results obtained are tabulated in Table 4.26. As may be seen, the values of excess free energy range from 1.07 Kcal/gm.mole to 3.08 Kcal/gm.mole according to the reaction temperature. These values compare very well with these reported by Squires^{4,3} for methane synthesis reactions. This excess free energy TABLE 4,26

....

Excess free energy . Cal/gm.mole 1946 1390 1486 3081 Experimentel N N N 20 C N A N N 20 N A N 20 isei-AF, Cal/gm.mole 3160 0295 n N N Theoretical 2200 ¢ 550 one Ne 6950 -100 066 16 16 16 8 8 8 Theoretical -0.600 -1.8200 -1.1900 -1。1900 " -1.1900 -0,6000 -1.1900 -1,8200 -0,0600 888 RQUILIBRIUM RAFIOS -0.80051 +0.71062 -1.47237 log X -0.0601 0.1533 0,8790 5.1363 0.0337 H 84 87 87 998 800 i i co 226 60 19 2 2 2 8 10 90 90 67 N 7 5 9 8 8 6 8 8 8 8 8 Temperature ja B 002T 1100 1000 2300 O O H s s s s H 0012 1100 64 0 No. a mogele R 4 M U A M N N Ram 80 80 60) 674

provides a convenient measure of the reactivity of this deposited carbon when compared with some standard substance such as β -graphite. The practical significance of this carbon reactivity is that it should be possible on an industrial scale to generate carbon monomide in high yield at a relatively low temperature.

In a cyclical process using a solid powder as catalyst one is always concorned to find the "life" of this catalyst. As explained the iron powder used in this work was simply derived from an iron ere. If this process was carried out industrially, a specially propared iron catalyst would probably be necessary, since it has been found that after about sixteen cycles of operation, breakdown of the iron particles had taken place to such an extent that excessive amounts of the bed were being blown out of the reactor. This breakdown of the iron particles does not appear to affect greatly the value of K obtained until it has proceeded to such an extent that the reduction of everall particle size in the bed increases the violence of fluidisation. This has the effect of increasing K further (e.g. Rum 16J and K).

In Run 22, the concentration of carbon dioxide was varied between 10% and 70% of the inlet gas. The values of K for the outlet gas corresponding to the inlet values are plotted in Figure 4.13. It may be seen that the values of K except in the case of 70% carbon dioxide inlet

135.

gas, are all greater than the value for β -graphite. As the initial concentration of carbon dioxide is increased the value of log K falls linearly indicating that at the temperature employed the residence time was insufficient to allow complete reaction of the carbon dioxide. This suggests that with a deeper bed and low concentration of inlet carbon dioxide much higher values of K would have been obtained indicating that the deposited carbon is even more reactive than is suggested by the values of "free energy" that have been quoted above.

5.2. Rate of carbon gasification.

The rate of gasification of the carbon deposited on the bed of iron powder will be dependent possibly on the following :-

- (a) reaction temperature,
- (b) concentration of carbon dioxide in the inlet gas,
- (c) extent of coverage of iron by carbon, and
- (d) state of oxidation of iron catalyst.

If one considered only the values of K obtained during a gasification run, it would be somewhat difficult to know the exact instant when all the carbon on the bed was gasified. Since the reaction

are taking place side by side, the removal of all the carbon would cause the value of K to move from the value for the Boudouard reaction to that for the reaction of iron and its oxides with carbon dioxide. The measurement of carbon removal by means of a carbon balance and the uptake of oxygen by the bod by means of an oxygen balance emable one to study these two reactions separately.

The data provided by the computer enabled us to plet the weight of carbon removed from the bed for any run against time. This has been done in Figure 4.14 for a number of runs selected at random. In cases where the removal was stopped while some carbon still remained on the bed, the rate of removal may be seen to be constant and thus independent of the amount of carbon on the bed. Since as will be seen later, the iron was exidising at the same time, it would appear that the rate of removal of carbon is independent of the state of exidation of the iron for the small amounts of exygen absorbed by the bed.

In Run 17H the carbon dioxide was passed through the bed for a considerable time in an attempt to remove all the carbon from the bed. It may be seen that after about 210 minutes of run the rate of removal departed from linearity and the computer data gave a number of negative results. The latter are possibly due to inlet flowrate fluctuations which are not immediately followed by the katharemeters. When a sories of negative values are obtained in this way, it must be taken as an indication that the carbon has all been removed.

137.

The average rates of carbon removal and exygen uptake for the various run cycles quoted carlier have been tabulated for convenience in Table 4.24. Average values for each of Runs 16, 17, 18 and 20 are plotted against reaction temperature in Figure 4.15 and Figure 4.16.

It may be seen that the rate of gasification is approximately proportional to the reaction temperature, up to about 1200°F and thereafter increases rapidly. In order to compare this reactor with a conventional gas producer, operated at a considerably higher temperature, the rate of gasification per square foot of reactor area was calculated and is included in Table 4.27. By normal producer standards these rates are low, but are in fact high when the reaction temperature is considered.

In Run 22 in which the inlet concentration of carbon dioxide was varied, the rate of gasification was also found to change to some extent. These results are plotted in Figure 4.17 and it is seen that the rate appears to pass through a maximum at about 40% carbon dioxide in the inlet gas. This is probably due to the retarding offect of carbon momoxide on the reaction between carbon and carbon dioxide which has been reported by Hinshelwood⁵⁶. If air it used to gasify the carbon in place of carbon dioxide, the maximum initial concentration of carbon dioxide at the base of the bod cannot rise above 21% and thus the retarding

offeet is of little importance. On the other hand, if the reactor is fed with oxygen-enviched air or pure exygen the possible initial carbon diexide content at the base of the reactor will be much higher and thus the use of exygen will be limited by the carbon momentide retarding offect.

5.3. Rate of exygen absorption by the bed.

In Figure 4.18 are plotted the weights of exygen absorbed by the bod against run time for sets of data solveted at random. Except in one case the plots show a linearity with time and thus it would appear that the rate of exygen uptake is unaffected by the amount of carbon on the bod. It is interesting to speculate on whether it is possible to cover the iron with carbon so that the carbon diexide cannot reach it. There has been no evidence of that here and some exidation has always been found to take place.

The exygen absorption in Runs 17 and 22 carried out at 1100°F 10 in general anomalous in that it is considerably lower than that for other temperatures and in the case of 22B is negative for a period. This is illustrated in Figure 4.18. No adequate explanation for this can be given at the moment. The rates of exygen absorption tabulated in Table 4.27 are all considerably smaller than the rates of carbon removal even when the difference between the atomic weights of carbon and exygen are taken into consideration.

•

÷ •

the second second second	ALCON LAND	323020A2424973-05276276	Contractor Contractor		alited Thursday South	I The set of the second	TE STATISTICS CONTRACTOR
oxygen Absorption Rate.	10° atom/min.x10 ⁻⁵		64 69 67	0° 33 0°	ି ପ ୁ ୍	00 00 ° 83	
	25/min.x10 ⁻³		0°2800	0°032	965 a°	0 ° k 38	
	10/5°2-br.	10000000000000000000000000000000000000	87 65 12 0 14	년 () () () ()	00 00 00 00 00	ଟମ ଟମ ଜ ଜ	
GASIFICATION RATE	lo.atom/min.zlo ⁵		0 0 1 1	(7) (8) (9)	s S S S S S S S S S S S S S S S S S S S	20 20 20 21	
	10/minilo ² 3		0 67 67 7	0 80 0	6 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	છ હ્ય હ્ય	
no. Meeno. Me	žj)		000871	00 T T	0000	0 7 7 0	
Run	• •		V9 r=l	r F	CO F=1	0 N	

TABLE 4,27

•

At the end of Runs 18 and 23 the bed was removed, thoroughly mixed and a representative sample taken for analysis by the methods given carlier.' The bed compositions are tabulated below :-

TABLE 4.28

Composition of fluidized bod at end of run (percentages by weight).

Ru	<u>un 18</u>	<u>Run 23</u>
Iron	81.90	67.65
Carbon	3。97	15.55
Ganguo	5,88	4.85
Oxygon	8.25	11.95
	100.00	100,00
		5

As has been shown, it was possible to estimate with a fair degree of accuracy the carbon content of the bod at any time. Owing, however, to the roduction of iron to an unknown extent by hydrogen liberated from methanc during the carbon deposition, i.e.

 $\begin{array}{rcl} CH_{4} & = & C + H_{2} \\ H_{2} + F \odot & = & H_{2} \odot + F \odot \\ H_{2} \odot + C & = & H_{2} + C \odot \\ C \odot + H_{2} \odot & = & C \odot_{2} + H_{2} \end{array}$

we were unable to calculate an exygen balance for the process. The extent of exidation of the iron residues in Table 4.28 correspond to the following empirical formulae

Run 18, Po0.352

Run 23, F00.62

This indicatos quito a small degree of exidation of the iron by carbon diexide.

5.5. Efficiency of carbom dioxide utilization.

In this gasification process it may be considered that carbon dioxide reacting with carbon is usefully employed and the carbon dioxide oxidibing from is vastefully employed. If one calculates the proportion of the total carbon dioxide used for each reaction one may derive an efficiency of utilization for the process, as follows :-

 $CO_{2} + C = 2CO$

Back atom of carbon gasified a 1 mole CO,

 $CO_{p} + Fo = FoO + CO$

Rach atom of oxygen absorbed = 1 mole CO₂

- [°] Rate of carbon dioxide = Rate of gasification [°] utilization (atoms C/min) (molos/min)
 - + Rate of oxygon absorption (atoms O/min)
- "

 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "

From the data givon in Table 4.27 the required values are easily obtained and are given below for Runs 16 - 20.

TABLE 4.29

<u>Rum No</u> .	<u>Robetion temporaturo</u> ®P	Bfflcioncy of carbon <u>dioxido utilization.</u> (%)
16	1200	74.0
17	1100	95.5
18	1000	50.2
20	1300	86.6

These values are plotted in Figure 4.19 against reaction temperature and it may be seen that except in the case of Rum 17 the officiency increases regularly with reaction temperature. This indicates that this gasification process would operate more efficiently at a high temperature, perhaps 1400°F or a little higher.

In conclusion the results illustrated in Figure 4.12 are of considerable interest since they indicate that carbon deposited on pyrophoric iron is more reactive than that deposited on iron reduced at a higher temperature. This suggests that the reaction scheme is linked in some way to the catalytic activity of the reduced iron.

5.6. Suggestions for further work.

In the light of the results obtained the following suggestions are made for further study.

- (a) Owing to the variability of the composition of the iron ore and to the fact that the iron particles-produced from it have been found to disintegrate after some hours in the gasification process, it is suggested that further work be carried out using a synthetic catalyst based on pure ferric oxide and a binding agent.
- (b) The effect of the depth of the fluidized bed of deposited carbon on the equilibrium ratio should be studied, in connection with inlet gases containing low partial pressure of carbon dioxide to determine the maximum value of K obtainable at a given temperature.
- (c) The classical studies of Hinshelwood at al on coconut charcoal could well be repeated using carbon deposited from the thermal cracking of methane,
- (d) Other industrial gases, i.e. Propane and Butane should be studied as sources of deposited carbon and the results obtained compared with those recorded here.
- (3) The influence of the temperature of reduction of the iron on the reactivity of the deposited carbon should be more fully investigated.

143.

- (f) By means of careful and, if possible, continuous analysis of the exit gases during the carbon deposition, the extent of which the iron is re-reduced by the methane may be determined and an overall oxygen balance can be obtained.
- (g) The gasification unit should be modified to allow samples of the bed to be withdrawn for analysis at any time during a run.
- (b) The arrangement of the exit cyclone should be changed so that solids blown from the bed could return to it continuously during a run. This would enable higher fluidizing velocities to be used and the effect of fluidizing velocity on the rate of gasification could them be studied.
- (i) An experimental twin-gasifier should be built to enable carbon deposition and carbon gasification to be carried out simultaneously, and a change-over valve system be provided to determine whether it is possible to produce virtually continuous streams of hydrogen-rich (and carbon monoxide-free) and carbon monoxide-rich (and hydrogen-free) gases for later blending in required proportions for synthesis gas.

REFERENCES

- 1. Clement, J.K., Univ. Illinois. Eng. Expt. Station Bull. 30, 47, (1909).
- 2. Clement, J.K., Adams, J.H., and Haskins, C.N., U.S. Bur. Mines Bull. <u>7</u>, 58 (1911).
- 3. Rhead, T.F.E., and Wheeler, R.V., Trans. Chem. Soc. <u>101</u>, 831 (1912).
- 4. Fischer, F., Breur, P.K., and Broche, H., Brennstoff Chem. <u>4</u>, 33-39 (1923).
- 5. Evans, E.C., Colliery Guardian, 130, 143-144 (1925).
- 6. Nettlembusch, L., Brennstoff Chem. 8, 37-47 (1927).
- 7. Dent, F.J., Gas J. 184, 199-200 (1928).
- 8. Oshima, Y., and Fukuda, Y., J.Soc.Chem.Ind.(Japan). 32, 208-210, 226-227 (1929).
- Broom, W.E.J., and Travers, M.W., Proc.Roy.Soc.
 <u>A.135</u>, 512-537 (1932).
- 10. Bolland, C.B., and Cobb, J.W., J.Soc.Chem.Ind. 52, 153-159 T (1933).
- 11. Müller, W.J., and Jandl, E., Brennstoff-Chem. 15. 347-351 (1934).
- 12. Petronko, I.G., Coke and Chem. (U.S.S.R.). 6 (10), 61-65 (1936).
- 13. Jones, J.H., King, J.G., and Sinnat, F.S., Fuel Res. Board Tech. paper, No.<u>18</u>, 32 (1927).

- 14. Chou, H.L., and Orning, A.A., Fuel, 22, 42 (1954).
- 15. Ilsley, J.M., Littlewood, K., and Thring, M.V. Proc. on the gasification processes, Inst. Gas Engra. and Inst. of Fuel, p.A-11 (1962).
- 16. Müller, W.J., and Jandl, E., Bronmstoff-Chem. 12, 45-48 (1938).
- 17. Bleydon, H.E., Noble, W., and Riley, H.L., J.Inst.F., Z. 139-149 (1934).
- 18. Sebastin, J.J.S., and Mayers, M.A., Ind.Eng.Chem. 29, 1118-24 (1937).
- 19. Mulcahy, M.F.R., Cameron, A., and Stacy, W.O., "Coke combustion and coke reactivity". Symposium of the Division of Coal Research on "The production, properties and utilisation of foundry coke". C.S.I.R.O. 2nd March (1960).
- 20. Blackwood, J.D., Roviews pure and applied chem. 4, 251 (1954).
- 21. Duval, X., J.Chim. Phys. 47, 339 (1950).
- 22. Lawrie, J., "Natural gas and mothane gases", p.89 (1961).
- 23. Sander, N.J., and Humphrey, W.E., Inst.Gas Engra.J. 5, 535. July (1965).
- 24. Kerr, J.N., Ibid. 5, 583, Aug. (1965).
- 25. Institute of petroleum review. 17, 37, Feb. (1963).
- 26. Milmer, G., "The continuous steam-hydrocarbon reforming process". Inst. of Gas Engrs. (North of England sect.) (1963).

- 27. Ter Harr, L.W., Proc. on the gasification processes. Inst. Gas Engrs. and Inst. of Fuel, p.D-I (1962).
- 28, Eastman Dubois, Ind.Eng.Chom., <u>48</u>, 1118 (1956).
- 29. Gibb, W., Private communication.
- 30. Hurd, C.D., "The purelysis of carbon compounds", p.32. The Chemical Catalog.Co., N.Y., 1929.
- 31. Bone, W.A., and Coward, H.F., J.Chem.Soc. 56, 1197 (1908).
- 32. Szabo, Z., J.Am. Chem. Soc. 72, 3497 (1950).
- 33. Pring, J.H., J.Chem.Soc. 97, 479 (1910).
- 34. Gilliland, E.R., and Harriot, P., Ind. Eng. Chom. 46, 2195 (1954).
- 35. Boynton, D.E., "Reactions of methane with iron ore in fluidized bed". Sc.D. Thesis, Dept.Chem.Eng., M.I.T. (1949).
- 36. Van Wormer (Jr.), K.A., "Reactions of methane with iron and iron oxides in fluidized bod". Sc.D. thesis, Dept.Chem.Eng., M.I.T. (1961).
- 37. Mayer, M., and Altmayer, V., Per. 40, 2134 (1907).
- 38. Coward, H.F., and Wilson, S.P., J.Chem.Soc. <u>115</u>, 1380 (1919).
- 39. Browning, L.C., and Emmett, P.H., J.Am, Chem. Soc. <u>72</u>, 4211 (1950), <u>73</u>, 581 (1951), <u>74</u>, 1680 (1952).
- 40. Travers, M.W., Trans.Faraday Soc. <u>34</u>, 580 (1938).
- 41. Troesch, A., J.Chim.Phys. 47, 274 (1950).

- 42. Dent, F.I., Blackburn, W.H., and Millet, H.C., Inst.Gas Engrs. Communication. <u>167</u>, 47 (1937); <u>190</u>, 69(1938).
- 43. Squires, A.M. Trans. Inst. Chem. Engrs. <u>39</u>, 3-9 (1961).
- 44. Lavrov, N.V., Korobov, V.V., and Philiphova, V.I., "Thermodynamics of gasification and gas synthesis reactions". p.84 and 86 Pergamon Press, N.Y. (1963).
- 45. Berthelot, Ann.Chim.Phys. <u>67</u>, 53 (1863); <u>9</u>, 413, 455 (1866); <u>12</u>, 5, 122 (1867); <u>16</u>, 143, 148, 153, 162 (1869).
- 46. Hardie, D.W., "Acetylene manufacture and uses", p.30. Oxford University Press (1965).
- 47. Boudouard, O., Ann.Chim.Phys. 7, 245 (1901).
- 48. Rhead, T.F.E., and Wheeler, R.V., J.Chem.Soc. 22, 1140 (1911).
- 49. Wagman, D.D., Kilpatric, J.E., Taylor, W.J., Pitzer, K.S., and Rossini, F.D. J.Res.Bur.Standards, <u>34</u>, 143-161 (1945).
- 50. Gumz, W., Gas producers and blast furmaces. p.22. John Wiley and Sons Inc., N.Y. (1950).
- 51. Rossini, F.D., Pitzer, K.S., Armett, R.L., Braum, R.M., and Pimental, G.C., "Selected values of physical and thermodynamic properties of hydrocarbons and related compounds", p.1050. Carmegie Press, Pittsburg, 1953.
- 52. Rossini, F.D., J.Am.Chem.Soc. <u>74</u>, 2699 (1952).
- 53. Langmuir, I. Ibid, 37, 1139 (1915).
- 54. Dent, F.J., and Cobb, J.W., J.Chem.Soc. 2, 1903-12 (1929).
- 55. Key, A., Gas Res. Board Communication No.40 (1948).
- 56. Gadaby, J., Hinshalwood, C.N., and Sykes, N.W., Proc.Roy.Soc. <u>1874</u>, 129 (1946).
- 57. Gadaby, J., Long, F.J., Sleightholm, P., and Sykes, K.W. Ibid, <u>193A</u>, 357 (1948).
- 58. Lowis, W.K., Gilliland, E.R., and McBridge, E.T., Ind.Eng.Chem. <u>41</u>, 1213 (1949).
- 59. Bonner, F., and Turkevitch, J., J.Am.Chem.Soc. 22, 566 (1951).
- 60. Marsh, J.D.F., Inst.Gas Engr. Communication No. 393 (1951).
- 61. Reif, A.F., J. Phys. Chem. <u>56</u>, 785 (1952).
- 62. Gulbransen, E.A., and Andrew, K.E., Ind.Eng.Chem. <u>44</u>, 1034, 1048 (1952).
- 63. Wynne-Jones, W.F.K., Blayden, H.E., and Marsh, H., Brennstoff-Chem. 33, 238 (1952).
- 64. Harker, H., Marsh, H., and Wynne-Jones, W.F.K., Industrial Carbon and Graphite, Soc. of Chem.Ind. p.291(1958)
- 65. Mayers, M.A., J.Am. Chem. Soc. <u>56</u>, 70 (1934); <u>61</u>, 2053 (1939).
- 66. Blakeley, T.H., Proc. of the Fourth Carbon Conference. p.95. Pergamon Press, N.Y. (1960).
- 67. Key, A., and Cobb, J.W., J.Soc.Chem.Ind. <u>49</u>, 439 (1930).
- 68. Strickland-Constable, R.F., Proc.Roy.Soc. <u>189</u>A, 1-10 (1947); Trans.Faraday Soc., <u>43</u>, 769-778 (1947), J.Chim.Phys., <u>47</u>, 356-360 (1950).
- 69. Semechkova, A.F., and Frank-Kamonotskii, D.A, Acta.Physico-Chim. (U.S.S.R.). <u>12</u>, 879-898 (1940).
- 70. Brown, F., Trans. Faraday Soc., <u>48</u>, 1005-1014 (1952).
- 71. Duval, X., J.Chim. Phys. <u>44</u>, 296-301 (1947).
- 72. Vulis, L.A., and Vitman, L.A., J.Toch.Phys. (U.S.S.R.). 11, 509-518 (1941).

- 73. Orning, A.A., and Storling, E., J.Phys.Chem. <u>58</u>, 1044-1047 (1954).
- 74. Ergun, S., J. Phys. Chem. <u>60</u>, 480-485 (1956).
- 75. Lowry, H.H., Chemistry of coal utilization (Supplementary volume). p.925-930, John Wiley and Sone Inc., N.Y. (1963).
- 76. Sawai, I., Kunugi, M., and Jinno, H., J.Chem.Soc. (Japan), Ind.Chem.Sect., <u>54</u>, 301 (1951).
- 77. Rossbarg, M., Z.Electrochem. <u>60</u>, 952 (1956).
- 78. Drakeley, T.J., J.Chem.Soc.Ind., <u>50</u>, 319 (1931).
- 79. Long, F.J., and Sykes, K.W., J.Chim. Phys. 47, 361 (1950).
- 80. Walker, (Jr.), P.L., Forresti, R.J., and Wright, C.C., Ind.Eng.Chem. <u>45</u>, 1703 (1953).
- 81. Taylor, H.S., and Novillo, H.A., J.Am.Chem.Soc. <u>92</u>, 2055 (1921).
- 82. Cobb, J.W., and Sutcliffe, B.A., Gas.J. <u>178</u>, 895 (1927).
- 83. Branson, W.R., and Cobb, J.W., Ibid. <u>178</u>, 898 (1927).
- 84. Fox, D.A., and White, A.H., Ind.Eng.Chom. 23, 259 (1931); 26, 83 (1934).
- 85. Neuman, B., Kroger, E., and Fingas, E., Z.Anorg.Chom. 197, 321 (1931).
- 86. Rakszawski, J.F., Rusinko, F., and Walker (Jr.), P.L., Proc. of the Fifth Carbon Conference. Vol.2, p.243. Pergamon Press (1963).
- 87. British Standard <u>1756</u>, 29-40 (1952).
- 88. Lova, M., Fluidization, p.5. McGraw-Hill Book Company, N.Y. (1959).

- 89. Othmer, D.F., Fluidization, p.102. Reinhold Publishing Corporation, N.Y. (1951).
- 90. Othmer, D.F., Ibid. p. 10.
- 91. Goring, G.E., Curran, G.P., Tarbox, R.P., and Gorin, E., Ind.Eng.Chem. <u>44</u>, 1051 (1952).
- 92. Wicks, C.E., and Black, F.Z., "Thermodynamic properties of 65 elements, their oxides, halides, carbides and mitrides". Bulletin No. 605, U.S. Bur.Mines (1963).
- 93. Private communication, Cambridge Instrument Co. Ltd.
- 94. Rogers, R.R., Iron Ore Reduction, p.174. Pergamon Press, N.Y. (1962).
- 95. Main Drainage Dept., Mogden Works, Isleworth, Middx. County Council.
- 96. Lapidus, L., Digital computation for Chem.Engineers, p. 297, McGraw-Hill Book Company, N.Y. (1962).

x