VL

Universit
s of Glasgowy

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.qgla.ac.uk/
research-enlighten@glasgow.ac.uk



http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

CONGRUENCES ON REGULAR SEMIGROUPS

The dissertation presented to the University of

Glasgow for the degree of M.Sc. in Mathematics

by
VIJAYKAR PACHAURY

1967



SUMMARY

it is well known that the set of congruences on o semigroup (or indeed
on eny Algebra) forms a latiice if ordered by set-theoretic inclusion.
In this thesis cortain results ave presented sboul congruences on
regular semigeoups with particular emphasis on lattice~theoretic propere

tieg of the labttice of congruencos.

thapter T is of an introductory neture, in which we gsumnarise some

basic results in the theory of semigroups.

In Chapter 1T, certain speclel congruences on & regular semigroup
are consldered, such as the minimum group, band and semilattice cone-
sruences and the maximun idempotent-seperating congruences. Intere
relations among thase congruences and tholr mutual intersections sud
Joins are also exeamined. The special case of inverse semigroup is
congidered at the end of the chapter. Host of the material presecnted

in this chepter is due to HOWIE [11] and MOWIE and LALUEMENT [12].

Chapter IIT is devolted to an account of the recent work of NMUNN
[22], ABILLY [15] and MUNN end REBILLY [21] on congruences on bisimple

WwseMigroups,

In Chapter IV an account is given of TANMURA's [18] characterization
of congruences on completely O-simple semlgroups. This characterizas-
tlon is used to give a new proof of the samiemodularity of the lattice
of congruences in a completely O-sfuple semigroup, & vesult due in the

Piret instance o LALLMMENT | 6].
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INTRODUCTION

It is well known that the set of congruences on a semigroup (or indeed
on any Algebra) forms a lattice if ordered by set-theoretic inclusion.
In this thesis certain results are presented about congruences on
regular semigroups with particular emphasis on lattice-theoretic proper-

ties bf the latitice of congruences,

Chapter I is of an introductory nature, in which we summarise some

basic results in the theory of semigroups.

In Chapter 1I, certain special congruences on a regular semigroup
are considered, such as the minimum group, band and semilattice con-
gruences and the maximum idempotent-separating congruences. Inter-
relations among these congruences and their mutual intersections and
Jjoins are also examined. The special case of inverse semigroup is
considered at the end of the chapter. Most of the material presented

in this chapter is due to HOWIE [11] and HOWIE and LALLEMENT [12].

Chapter II1 is devoted to an account of the recent work of MUNN
[22], REILLY [15] and MUNN and REILLY [21] on congruences on bisimple

W-semigroups.

In Chapter IV an account is given of TAMURA's [18] characterization
of congruences on completely O-simple semigroups. This characteriza-
tion is used to give a new proof of the semi-modularity of the lattice

of congruences in a completely G-simple semigroup, a result due in the

first instance to LALLEMENT [6].



CHAPTER T

QL Let 8 be a non-empty set. A relation P on a set S is defined to
be a set of ordered pairs (a, b); a, b € S where (a, b) € p, The
relation p can also be considered as a subset of the product set 8 x S,
We shall denote the identity relation{(a, a) e S x S}by Lo The

inverse relation p_1 of the relation p on S is defined by the set

*{(b, a) e x5 : (a, b) € p}. The composition of two relations

p and 0 on S is defined as follows ¢ Peo O ={(a, c) € 8 x 8, there

exist b € S such that (a, b)e ¢ and (b, ¢) & of.

DEFINITION 1.1 The relation P on the set S is said to be an equivalence

on 3 if and only if
I (a, a) € ¢ for every a in S. (Refiexivity)
II (a, b)e p=y (b, a) € P (where a, b € S) (Symmetzy)
III (a2, b) e p and (b, c)e p =2 (a, c) & O (Qhere a, b, c € 8)

(Transitivity)

We note that if ¥ is a mapping from the set S into the set T, then
the relation p = %o’wét'l on S defined by the rule (a, b)e @ if and only

if a %= b ¥, is an equivalence on the set S.

It is easily seen that the intersection of an arbitrary collection
of equivalences on S is an equivalence on S, We define pva® 1o be
the intersection of all equivalences on S which contain p and 0.,

Then pv o is called the join of the equivalences P and ¢ on S, It

is easily seen that if Pe 0 = COe¢pP then PVvT = P20



DEFINITION 1.2 A semigroup is a set S5 that is closed under an associative

binaxry operation.
Let S be a semigroup and P be an equivalence on 3. We shall
denote by x p (x € 8), the equivalence class under p containing the

element x and by S/p, the set of all p-classes.

DEFINITION 1.3 An equivalence p on a semigroup S is said to be congruence

if and only if it is left compatible and right compatible

i.e. if and only if

(a, )e p=y ((xa, xb) € p (left compatibility)
for every x € S

(ax, bx) € p (right compatibility

Let p be a congruence on the semigroup 3. Let (a, b) € p and
(cy @) € pu By left and right compatibility of ¢ 1t follows that
(ac, bc) € P and (be, bd) € p. The transitivity of @ implies that
(ac, bd) € po Thus (ap)?(cP) < (ac)P. Hence we can define an
operation (o) in S/p by the rule 3

(ap)o(bp)={(ab)p for every a, b € S

Let us define a map s;t from 3 onto Sé) by the rule a(§t= a p for every
a in S. Clearly p}t is a homomorphism of S onto 8/p . Since S is
a semigroup, it follows that S/b is a semigroup. Conversely it can be
shown that if § is a homomorphism from the semigroup S ontoc the semi-
group T, then p = 3971 is a congruence on S and that ap-»>a % (a € 8)

defines an isomorphism from S/b onto T.

It can be easily deduced that the intersection of an arbitrary



collection of congruences on a semigroup S5 l1ls itself a congruence on 5,
The join of two congruences p and o on the semlgroup S is defined as

the intersection of all congruences on S containing p and o.

Let S be a semigroup. An element 1 € S is called an identity
of 8 if and only if x.1 = x = 1l.x., for every x € S. An element 0 € 3
is called a zero of S if and only if x.0 = Q = Q.,x for every x € 3.
In a semigroup S, either or both of them may be absent., But it is
easy to show that if either exists then it is unique. We define

S if S has the identity 1

S U §13 if S does not have an identity

and
-5 if § has a zero
0 {
3 U 10y if S does not have a zero.
PROPOSITION 1.4 Let ® be an equivalence on the semigroup S. We _de-~
fine a, ¢« S x 8 by the rule that

b
(x,y) € «, & (sxt,syt)e a ¥V s, t¢ s'. . Then ap is the

largest congruence on 5 contained in the equivalence a.

Proof It is easy to check that «,

is an equivalence on S, 1Let

z € S and (%, y) € ®,, It follows that (s x t, 8 y t) € a for every

s, t € Sl. In particular((s‘z) xt, (82) yt) € a for every s, t € st

and hence (zx, zy) & « Similarly (xz, yz) € rxb. Thus “, is a

b.
congruence.  Further if (x, y) e @, then (1. x. 1, 1. y. 1) e o i.e.

(x, y) 8 @ and hence @, < @, On the other hand let P be a congruence

on $ such that pea, ILet (x, y) € P then we can deduce by the com-



patibility of P that (s x ty, 8y t) € p¢ « for every s, t € S:L and

hence (x, y) € « Thus p<a,.

b.
Proved

If poe o £ ovp, where P and O are equivalences then Pe ¢ may
fail to be an equivalence; specifically it is reflexive sessewsspwaessumie: .
S}'Mmet‘rm/ and
but may fail to be ’cransitlve. For an arbitrary reflexive relation

£ we define &"inductively by «‘;1 =£, & %L £ . Then

£ e Ez_% 55 ---, since & is reflexive.
. hd n
THEOREM 1.5 If p and ¢ are equivalences on a set S, then pv O “n":”l (peo)
o Ti ! . .
Proof Let us put » =ng1 (poo)’s We first note that % is an equi-

valence. It is reflexive, since

¢ Po O < K P e
S p p L

First we show that (x,y) € poo implies that (y,x) ¢ (poo)® €learly (x,y) € pdg “
means that there exists z in S such that (x,2) € p and (z,y) € 0. Since p and
o are equivalences it follows that (z,x) € p ¢ poo and that (y,z) € ¢ & poa.

It follows that (y,x) € (poo) o (poo) = (poo)®. Now since (x,y) € implies
that (x,y) € (poo)n for some n > 1. It follows that (y,x) ¢ (poo)en_q_:ﬁ (poc)n =
.Thus M is symmetric. | ' D=1

st Smlossae ¢ lgasmleger . Suppose now that (%, y) € »,

(y, 2) € % Then (x, y) e (peo) and (y, z) & (poa)” for some

my, n > 1. Thus there exist Zys ==y 2o g0 Upy <y un‘_l such that
(205 29) € peoy == (2p 15 ¥) e peo, (yyu)e peao, == (0, _;5¥)
e poo . Hence (x, y) & (peco)™™e x,

Also by reflexivity of p and o, we have that p< pe 0 & ¥,
6 ¢ ped & ¥ If ¥ is an equivalence on S such that p£&, 0 € &
then peoc Eel = E. Hence we see that

(p&g)z = (peo)e(pe o) ¢« E«&= & ; and in general (pac)n < &

(h == 1, 2’ “"")- Thu{S n g—‘: g and S0 o= pVG.
Proved



PROPOSITION 1.6 If S is a semigroup and p, o are congruences on S,
o0
then »x = U (pe o)n is a congruence on S and so is the smallest con-

gruence containing p and o.

Proof We know that w is an equivalence. Suppose that (x, y) €
and that z is an arbitrary element of S. Then (x, y) € (peo)” for

somg n. and so there exist u s U € S such that

1’ n-1
(x, u1)9 (ul,uz), " (un-l’ y) € pea.

Now (a, b) € p oo implﬁ-that (ca, ¢cb) ¢ poo for every ¢ in S; for
there exiéts)d € S such that (a, d) € p and (d, b)e p and so, by left
compatibility of p and o, (ca, cd) e p, (cd, cb) ¢ ¢ from which it
follows that (ca, cb) € poo. Thus (zx, Zul) € P o0 (zul, zu2) £
PoGy = = (zunnl’ zy) € peo and so (zx, zy) ¢ (pec)’e n. Simil-
arly right compatibility of % can be established and so is;)congzuenceo

Obviously it is the smallest congruence containing ¢ and o,

Proved

PROPOSITION 1.7 Ifp and p”* are congruences on the semigroup S such

that p < p’, then the relationp’/p on Sé defined by p"/p ={(Xp, yp) 3

(x, y) ¢ p"}is a congruence on S/p » Moreover S/p; “="(Sé )/ (p'/p).

Conversely if & is a congruence on S/p s then there exists a congruence

P* on S such that ¢ <« ¢ and & = pyp.

Proof Clearly p’/p is an equivalence since p” 1is a congruence. Wext
let (xp, yp) ¢ p'/p . It follows that (x, y) € p”e Let zp e S/p
(z € S). Now we observe that (xp) (z0) = (xz) p and (y) (zp) = (yz)p.

Compatibility of o implies that (xz, yz) € p’. It follows that



( (xp) (m), (yp) (2zp) ) = F)'/p . Similarly the left compatibility
of p’/p can be established. Thus p’/p is a congruence on 5/, .
Clearly the mapping ¢ s S/p'a—»—h/ (S/p) / (D’/p) defined by the rule,

(xp)9% = (xp) (p'/p) is an isomorphism,

Conversely suppose 0 is a congruence on S/p . Let us define p”
on $bye” =§5(x, ) ¢ (xp, yp) ¢ 6}. Then p’is easily verified to
be a congruence on the semigroup S. Further let (x, y) ¢ p. It
follows that xp = yp and hence (xp, yp) € 8. Hence we have that
(xy y) ¢ p’. Thus pecp’s Obviously &6 =p"/p.

Proved

NOTE 1.8
It is easily seen that if y and & are congruences on the semi-

group S, containing p , then y1 § is a congruence containing ¢ , and

(vné) /o = (v/p) OV (&/p)

Let P be a non-empty set. A partial order relation in P is a

relation £ in P which is assumed to have the following properties
(a) xg x, ¥V x € P (Reflexivity)

(b) x ¢ yand y & x =% x=y, X,y € P (Anti-symmetry)
(¢) x ¢yandy & 2 = Xe&2, X,¥,2 € P (Transitivity,

A non-empty set P, in which there is defined a partial order relation

is called a partially ordered set.




Let P be a partially ordered sect. An element x in P 1is said to
be maximal if y » x = y =x di.e. if no element other than x
itself is greater or equal to x. Similarly an element x in P is

called minimal if y <& x =5 ¥y = X. Let A be a non-empty subset of

P. An element x in P is called a lower bound of A if x & a for

each a ¢ A; and a lower bound of A is called a greatest lower bound
;

of A, if it is greater than or equal to every lower bound of A, Sim-

ilarly an element y in P is said to be an upper bound of 4 if a &£ y

for every a € A, and a least upper bound of A is an upper bound of A

which is less than or equal to every upper bound of A,

DEFINITION 1.9 A lattice is a partially ordered set L in which each pair

of elements has a greatest lower bound and a least upper bound.
If x and y are any two elements in a lattice L we denote their
least upper bound and greatest lower bound by xwv y and x Ay re-
spectively. We shall call xvy and x Ay, the join and meet of
X, y Trespectively. A partially ordered set P is called an upper Elower]

semilattice if every pair x, y in P has a join [meet] in P. We

shall use the term semilattice to mean lower semilattice unless the con-
trary is specified.
A lattice L is called modular if and only if its elements satisfy the
following condition
(1) x£ 2 = xViyaz)=(xvy)rnz (x,9, 2¢ L)

There is an alternative characterization for the modularity which we

shall use frequently.
A lattice L is modular if and only if

(2) [x ¢y, x¥v2z=yVviz, xAz2=yAz] = x=3 (x,y, 2 €L)



Let x, y be two arbitrary clements of a lattice L. We say that
x covers y (and write x % y) if and only if (I) x is strictly
greater than y i.e, x > y and (II) there does not exist 2z € L
such that x> z 2> y.

Let L be a lattice, We say that lattice L is semimodular if and

only if
(3) [x > xAy and y > xAy]l = [xvy » x and x vy » ¥

where x, ¥y £ L.

PROPOSITION 1.10. EBvery modular lattice is semimodular.

Proof Suppose that x » xAy and y > X A Y, and suppose by way
of contradiction, that there exists 2z & L such that x 8¢ 2 ¢ xv y.
Then we have that xA Yy & 2 Ay < (xvylAay=y

Now we observe that

ZAY=XAY 25 XxX=%x V(yax)=xv{yaz)=(xvy)an z (by mod-

= z (since 2z < x vy) ularity)
which is a contradiction.
Further
ZAYy =3 = xvy=3xvi(yaz) =(xvy)az (by modularity) = gz

a contradiction again. Hence xA Yy & 2 A Y <& ¥, a contradiction to

the assumption that ¥y >- X Ay. We conclude that x v y > x; sim-
ilarly we can show that x vy » ¥y.
Proved
NOT
On the other handlevery semimpdular lattice need be modular. To

show this we construct the following example. Let us consider the
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lattice L ={0, 1, a b, ¢, d, e} represented by the lattlce-diagrem

The lattice L is clearly semimodular, but it is not modular, since
a < ¢, but

a v (bac) avoO = a

it

]
O

1

and (a vb) A ¢ 1A C

G, BIRKHOFF [5] has shown that the equivalences on a semigroup S

form a semimodular lattice.

$2 Let S be a semigroup and let A and B be non~empty subsets of the
semigroup S. Then we define
AB:{xE S: x=ab for some a EAemdbE:B}

A subset A of the semigroup S is said to be a subsemigroup of S if

A.A € A. A subset A of the semigroup S is said to be left idgeal



[right ideal) of S if SA < A [AS < A]. A subset A of the semigroup

S is sald to be an ideal of S if SAS ¢« A. A Principal left ideal is

a left ideal which is gencerated by a single element. Principal right
ideal and Principal ideal are defined similarly. Let a be an arbit-
rary element of the semigroup S. Then the following expressions are

easily obtained.

The Principal left ideal of S generated by a is 81 .
1" " I’lg‘h‘t L1 " H n 1n 1] " a, Sl .
11} " ideal " . " H it tt 1] ! Sl a Sl.

Now we describe some relations on S which arise from the notion
of [left, right] ideals. These relations were introduced by J. A.
GREEN [9].

Let S by a semigroup and let a, b € S, Then we define
1 1

(a, b) € & iff STa = S b

(a, b) € &R iff a st - 138J

(a, b) € 4 iff stast - stvst

(a, b) e Y  iff ste = s*b enda a8t = bt

Evidently J/ =& &R . Also if S is commutative then J =N .
All these relations are easily verified to be equivalences on the semi-

group S.

We call an equivalence p on a semigroup S, a left congruence

if and only if it is left compatible and p will be called right con-
gruence if it is right compatible.

Clearly o is a right congruence and ® is a left congruence on



PROPOSITION 2.1 Let S be a semigroup. Let A be a left congruence on

S such that A ¢ (@ and p be a right congruence on S such that

P el -

Proof

peh <

b € 5

Then Aep = pol; in particular Jo@R =R <L .

In view of the symmetry, it is sufficient to show that
ANep « Let (ay ¢) € peA . It follows that there exists

such that (a, b) € p and (b, c) € A, Sincep S ,

it follows that there exists T € S1 such that a = ub. Further

A s R

implies that there exists v € Sl such that c¢ = bv, Now

we observe that

av = (ub) v = u(bv) = uc. Let d = av = uc.

Since A 1is a left congruence, we deduce that (ub, uc) € A, i.,e.

that (a, d) € A . PFurther since p is a right congruence, it follows

that (av, bv) € p i.e., that (dy, ¢) & p. It follows that (a, c) =

Xop .

by symmetyy
Thus peX & Aep . Conversely Aep < ph?\iand the re-

guired result follows.

Proved

We define & =J(® . Then it is clear that B =X Vv R =

Lo R .

Since c‘l'z“f and JQ_@Q , we have that @géf‘ .

Each & -class of the semigroup S can be expressed as the union of

@ -classes of S and s -classes of ‘the semigroup S,

Further if L and R are & - and R -classes of the semigroup 8, then

LOR

of S.

# 9 if and only if L and R are contained in the same & -class

We shall denote the Y , & , R , &, J{ -classes of S containing ar
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element a € S by Ha’ La, Ha’ Da, and Ja respectively. Opviously
H <« L €D <« J and H « R &« D < J .
a a a a a a 8 a

DEFINITIOR 2,2 A semigroup S is said to be bigimple if it consists of

a single % -class,

LEMMA 2.3 (J.A. GREEN) Let a and b be R -equivalent elements

of the semigroup S and let s, t € S:L be such that as = b and

Lb — La defined

bt = a. Then the maps o @ L&L — Lb and T

il

by the rules xo = xs (x € L) and y° yt (y e L) are

mutually inverse @ -clasg preserving bijections,

Proof Let x & L,. Then (x, a) € o and since «&£ is a right
congruence we have that (xs, as) E“Z' ; i.e. xs € L. Similarly
yt & L, for every y & L. Now (x, a) € & implies that there
exist an element u € Sl such that x = ua. Now we can deduce that

x(9T) = x8t = uast = ubt = ua = x
Hence o7 ig the identity mapping of the set La' Similarly ¢
is the identity mapping of the set Lb' Thus ¢ and T are mutually
inverse bijections. Further sincet X8t = x and x 8 = x 8, it
follows that (x, xa) € (R for any x € L,. Thus o is @ -class

preserving. Similarly T is & -class preserving.

Proved

The dual of the above lemma can be proved similarly. The follow-

ing two corollaries are immediate consequences of the lemma.



COROLLARY 2.4  Let a, ¢, s be elements of S such that (a, as) € (€

and (a, ¢c) € o .+ Then the mapping o’ : H, —> H,, defined by

the rule xo° = xs (x € Hc) is @ bijection and so H § = H__ ;
in particular H S5 = H_ .
g as

We omit the proof,

COROLﬁARY 2.5 If a, ¢ are & ~gquivalent elements of S then Ha and

Hc have the same cardinal.

We omit the proof.

THEOREM 2,6 Let H be an H -class of the semigroup S, such that

rs € § for some r, 8 € H, Then H is a group.

Proof It is sufficient to show that alH = H = Ha for every
s € H. Let r, s € H such that rs € H, Hence (r, rs) e ¢ &R
It follows by the Corollary 2.4 that Hr S = Hrs that is Hs = H.
Now let @& € Ho Then as € H and so (a, as) € H e L .

H.

il

Hence aHS = Has by the dual of the Corollary 2.4. Thus aH

Similarly H = Ha.

Proved

The following corollaries are immediate.

COROLLARY 2,7 If e be an idempotent of the semigroup S, then He is

the unigque maximal subgroup of 8 with the identity e.

COROLLARY 2.8 An Jf  —-class conteins atmost one idempotent.,




Finally we prove a useful lemma.

LEMMA 2,9 Iet p be a congruence on the semigroup S and let x, y ¢ S.

Then (x, y) & of implies that (xp, yp) € 2 in s/p « Dually

v =g

(x, y) ¢ ® implies that (xp, yp) e ® in S/E .

Proof Let (x, y) € .« It follows that there exist s, t e st

such that x = sy and y = tx. Hence we deduce that (xp) = (sp) (yo)

and (yp) = (tp) (xp)s It follows that (xp, yo) € in Sé .

Dual statement is similarly established.

Proved

The following Corollary is easily deduced.

COROLLARY 2,10 Let p be a congruence on the semigroup S. Then

(1) (@ y)ed = (x0, ) ¥ ins/ (x, 7 ¢8)
(II) (X, y) 8} =3 (xp, yp) anx in S/p (X’ y € S)

We omit the proof.

83 Now we introduce the concept of regularity in semigroups.

DEFINITION 35,1 An element a in a semigroup 5 is called regular if

there exists an element b in S such that .aba = a. We

say that semigroup S is regular if all its elements are

regular,

ety ok o oy



An element e 1in a semigroup S is called an idempotent
iff 92 = 2. € = e,
Clesarly if aba = a , them ab and ba- are idempotents in S. It
is easily shown that an element & in the semigroup S is regular if and
only if there exists an idempotent e in S such that (a, e) ¢ R ;

dually & 1is a regular element if and only if there exists an idempotent

f in S such that (a, f) e .

PROPOSITION %.2 Let D be a & -class of the semigroup S and let D

contain a regular element of 3. Then every element of D is regular.

Moreover every (R -~class and every A-class in D contain idempotents.

Proof Let a be a regular element of D, and let (a, b) & .
It follows that there existe ¢ e S such that (a, ¢) £ &R and
(cy ®) e & « PFurther since a is regular, there exists an idem-
potent e in S such that (a, e) e ® . It follows that (e, c) e &
and hence ¢ 1is a regular element. Hence there exists an idempotent
f in S such that (¢, £) el + Thus (b, f) e/ and hence b
is regular. Finally it follows that there exists an idempotent g

in 8 such that (b, g) e R .

Proved

DEFINITION 3.3 Two elements a and b of a semigroup S are said to be

inverses of each other if

aba = a and bab = b
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PROPOSITION 3.4 An element & din the semigroup 8 has an inverse if and

only if & 1is regular.

Proof Suppose a has an inverse a” in 8. Then clearly aa’a = a
rd r ” . + 3
and & a & = & and hence a 1is regular, Conversely suppose a is

regular. It follows that there existsan element b such that aba = a.

Let us write a” = Dbab. Then we observe that
aaa = ababa = aba = a and
a’aa” =babababd = babab = bab =a’

Hence a has an inverse a’ in S,

Proved

PROPOSITION 3.5 If e and f are idempotents in a,%egular semigroup

8, then ef has an idempotent inverse g in S such that ge = fg = g.

Proof Since 8 is regular, ef has an inverse x (say) in S, that
is ef x ef = ef and x e £ x = x. We further note that (f x e)° =
f (xe. fx) ¢ =f x e and hence f x e 1is an idempotent in S, Further
we observe that ef, fxe, ef = ef., x, ef = ef and
fxe., ef, fxe = f (xefx) e = fxe

Hence f x e 1is an inverse of ef with the required properties, that is

g=fxec

Proved

The next theorem helps us in locating the posgition of an inverse.



THEOREM 3.6 Let a be a regular element of 5.

(1) 1If &’ is an inverse of a, then (a, a’) e & o+ Moreover

the Y -clauses R% 0 LH, and R”u N L& contain idempotents.

(II) Let e, £ be idempotents such that (a, e) e (@ and
(ay £) el .+ Then R, N L, contain exactly one inverse a’
of a, Also @a” = e and a’ a = f,

We omit the proof.

$4 Now we introduce the concept of an inverse semigroup.

DEFINITION 4.1 A semigroup S is called an inverse semigroup provided

each element in S has a unique inverse in S,
The following theorem due to VAGNER [1952b] and MUNN and PENROSE
[1955] characterizes an inverse semigroup.

THEQREM 4.2 The following conditions on 8 semigroup S are equivalent

(1) S is regular and its idempotents commute
(11) each (R -class and each L-class in S contains exactly one
idempotent

(III) 8 is an inverse semigroup.

We omit the proof.



It is clear that the product ef of two idempotents e and F

in an inverse semigroup S is itself an idempotent.

PROPOSITION 4.3 Let S be an inverse semigroup and let e, £ be idem~

potents in S. Then Se N Sf = 8ef = §8fe
Proof Gbviously Sef = Sfe ¢ Se () Sf. Conversely let
a’e 8e (1 Sf. Hence there exist x, y ¢ S such that a = xe and
a = yf. Next we observe that
ae = xee = xe =a and af =y ff =y f = a.

Now we can deduce that aef = af = a, Hence a £ Sef, Thus

Se ()} 8f = Sef.
Proved
PROPOSITION 4.4 Suppose e is an idempotent in an inverse semigroup S,

~1 -1 . .
Then X e x and x e X are ldempotents in 8 for every element x

in S,

Proof Meking use of commutativity of idempotents in the inverse semi-

group S we easily deduce that

(xflex 2 . 5l (xxnl) ex
- xt (xxhl) eex v xx* is idempotent
- x b ex

Similarly we observe that

(x e xml)2= X e (x“l. x) ex™

= XX X e x‘""l X x~1 is idempotent.

]
= X € X
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Next we construct an example of an inverse semigroup.

LXAMPLE 4.5 Let N denote the set of non-negative integers and let

B =N xN. We define multiplication in B as follows :
(my n) (py q) = (m+p-1r, n+gq-rx)
where r = min { n, 1)}. Associativity is easily verified and we

call the semigroup B, the Bicyclic semigroup. The elements of B can

be expressed in an array of rows and columns as follows

(0, 0) (0, 1) (0, 2) (0, 3) v v v v v v e e
(1, 0) (1, 1) (1, 2) (Ly 3) ¢ v ¢ v o o o o o s
(2, 0) (2, 1) (2, 2) (2, 3) v v v v e e e e e
(3, 0) (3, 1) (3, 2) (3, 3) @ v v v e

* L[] - . - L] L] L] - * . * . L] . L] L] L] L] L] * L] * L] L] - - L] L] L] * L]

All elements in the same row are OQ.-equivalent and all elements in
the same column are Z-equivalent. Moreover since R /1 L % o
for each R -class R and JL-class L, it follows that B consists of
a single 4 -class, i.e. B is bisimple. Element (0, 0) is the id-
entity of the semigroup B. Let (m, n) € B. Then (n, m) is the
unique inverse of (m, n) in B. Thus B is an inverse semigroup with
identity. The elements (m, m) for every m & N are idempotents of

the semigroup B.

Let S be an inverse semigroup. A subsemigroup T of S is said to

be an inverse subsemigroup provided each a € T has its unique in-

-1 .
verse & in T.

Let a, b be two arbitrary elements of an inverse semigroup S.



(4)

(5)

[
b

We define a partial ordering & by the rule

a & b iff there exists an idempotent e such that a = ¢ b
It can be shown that the above condition is equiﬁalent to any one of
the following conditions

1 1

oo 5 -1 -1 -1

b or a‘a=bla or as- =ba or aa =2ab
This ordering was introduced by VAGNER [19] and we shall call it the

natural partial ordering in the elements of an inverse semigroup. If

we restrict this ordering to the set B of idempotents of an inverse
semigroup S, then an alternative characterization is
= fe (e, £ ¢ E)

f
Further if a < b them a 1 < bﬂl. Also if e 1is an idempotent

e ¢ £ iff e = e

in S then ea ¢ a, ae ¢ a, aeb g ab for arbitrary elements

a, b ¢ BS.

We call a semigroup S a band if all its elements are idempotents.
Since idempotents in an inverse semigroup commute, the set E of idem-
potents of an inverse semigroup S is a commutative band. It can be
easily proved that a commutative band is a semilattice with respect to
the natural partial ordering < of S. The e A f of two elements
in E is just their producet e. f. Conversely a éemilattice is a com-
mutative band with respect to the meet operation. Let H be an arbit-
rary subset of S. Then we define Hyw =3 a € S5 ; a » hfor
some h ¢ I{}. Then Hew is called the closure of H under the order

relation 2 . A set H will be said to be closed if H = Huw. An in-

verse subsemigroup H of an inverse semigroup S will be called self-



conjugate if x ¢ H implies that 2z x s te H for every element

Z OB S

PROPOSITION 4. 6 Let K be a closed, self-conjugate, inverse gubsemigroup

of an inverse semigroup S and let K 2 E where E is the set of idem~

potents of S. Then the relation Py defined by the rule that

;o (x, ¥) ¢ Y A Kk for every x, y € S

is a congruence on S.

Proof Since x x—l e E ¢ K, reflexivity is obvious., Further, since
K 1s an inverse subsemigroup, x y_l € K implies y x—l e K. Thus
P, is symmetric. Next let (x, y)e p. end (y, 2) € pp. It

follows that x y_l e K and y zle K. Tt follows that x y_l vy 2

e K., But x ynl y 2l x z-l; hence x z % & K, since K is

—

-1

closed. Hence (x, z) € Py Thus Py is an equivalence, Next
let (x, ¥) € P and hence x y_l e K. Let =z € S. Then we ob-
serve that =z (x yml) 2t = 2 x (z y)—l e K, since K is self-conjug-
ate, Thus (z x, 2 y) € P - On the other hand we observe that

-1 -1 =1 -1 -1 -1
(x z) (y 2) = %22 Y = X222 Yy Y%y

-1 -1 -1
= xy yzz y

-1 -1 -1 )
= (xy ) (yzz "y ) e K.Eg K
and hence (x 2z, y z) ¢ py. Thus p_ is congruence on S.

Proved

By a decomposition of a semigroup S, we mean & partition of S into

the union of disjoint subsemigroups § (d £ ©)., Suppose that

s =U f;Sa P a € 523 is a decomposition of 5 such that, for every pair
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of elements a, B of the index set Q , there is an element y of @

such that Scx‘ S[3 < S _ . If we define a product in Q@ by af = ¥y

”
if Sa . SB < SY s then Q becomes thereby a band. We say that S is the

union of the band 0 of semigroups S . (ae @ ). The mapping ¢

defined by a¢ = a if a ¢ Sa is a homomorphiam of 5 upon Q and
the S, are the congruence-classes of the congruence qwcp..l. Con-
v;arsely, if ¢ dis a homomorphism of a semigroup S upon a band @ ,

then the inverse image Sa = a "l of each element a of @ is a sub-
gsemigroup of S and S is the union of the band Q of semigroups

5, (¢ € Q). If Q@ is commutative we say that S is the union of the

semilattice Q@ of semigroups S (e e Q). Generally we shall use

the abbreviated expression, S is band [semilattice] of semigroups of
the type & , to mean that S is the union of a band [semilattice] Q
of semigroups 5, (a & Q) where S, 1is a semigroup of type C . Ve

shall very often make use of the following theorem (§4.2 [l].}

THEOREM 4,7 The following assertions concerning a semigroup S are mut-

ually equivalent :

(1) S is a union of groups.

(11) Every J{ -class of 8§ is a group.

(III) 8 is a semilattice Y of completely simple semigroups Sq (o € Y),

where Y is the semilattice of principal ideals of S, and each Scx is a

4 -class of S.

We omit the proof.

. . . . : -1
If 8 an inverse semigroup is a union of groups, then x x = = x = X
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for every x g S. I e is an idempotent and & an arbitrary element

of S then we see that (e a) (e a)"l = (ea)nl (e a) 3 d.e.
-1 -1 . -1 -1
Thus a e = a (aul a‘e) = a (a ™t e) = a alea = ¢ aata

= € a,

H@nce each idempotent e 18 in the centre of S. Conversely if the

idempotents are in the centre, then for any a € S, we have that
-1 -1 -1 -1 -1 -1 -1 -1

a a = 8 & a a = 8 a a a = 4 a & a = & a

Thus S is a union of groups. Thus we have proved the following

PROPOSITION 4.8 Let S be an inverse semigroup. Then S is a union of

groups if and only if every idempotent of 5 is in the centre of S.




CHAPTER II

Let p be a congruence defined on a regular semigroup S. Then
we know that the set of all p -classes in 5, with the operation defined

by the rule

(xp ) o (yp ) = (xy) p for every x, y in S
ié a regular semigroup and we denote it by &/p . If e is an idem-
potent element in S, then we observe that
(a0 )% = (ep) e (ep) = (F)o= op
Hence ep , the p-class containing the element e, is an idempotent
element in S/E.
Conversely, for an idempotent element ap in S/p , (a e 8)

the existence of an idempotent element of 8§ in ap is guaranteed by

the following

LEMMA 1.1 (G. LALLEMENT) Let p be a congruence from a regular semi-

group S and let ap be an idempotent element of Sé (a 8 8). Then

ap contains an idempotent of S.

Proof Since S is regular and a € 3, it follows that a has an in-

verse a’ (say) in S,

Let us write f = aa' and g = ala (f, & & S).
Then we note that ag = aa’a = a and
that fa = aa’a = a. Further, since gf € 8, it has an inverse

z (say) in S.
Let us write e = fuzg (e & 8).

Then we note that

e’ = ee = (fzg) (fzg) = f(zgfz) g = fzg

It
@



Thus e is an idempotent element in S. It remains to show that
(a, ) & po
Now we deduce that
aea = (ag) (fzg) (fa) = a (gfzef) a
= a(gf)a = (ag) (fa) = aa = 8’

We further observe that

e = fzg = aa’za’a
= au where uw = a’za’a g S
= Va where v = aa’za” & 8

Hence we have that
e = e = ee = (au) (va) = auva
and it follows that

2 2 2
a° = aea = a (auva) a = a“uva“.

Now, by hypothesis, we have that ap = (ap )2 = a2p R

i.ee (2, 32) € p. 1t follows by the compatibility of p that

(auv, azuv) € p. ©Since p is a congruence it follows that

(auva, a?uﬁaz) e p  deee (e, a2) € Pp. Finally, the transitivity

of p implies that (e, a)e p.

Proved

NOTE 1.2

In the proof of the foregoing lemma, we see that the idempotent

element e also has the property : e € aS [} Sa.
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Now we proceed to introduce the concept of an idempotent-separating

congruence,

DEFINITION 1,53 A congruence P on & semigroup S is said to be idempotent-

separating if each p-class contains at most one idem-

potent.

Next we proceed to obtain necessary and sufficient condition for

a congruence on a regular semigroup to be idempotent-separating.

PROPOSITION 1.4 If p is a congruence on an arbitrary semigroup S, such

that p< Y , then p 1is an idempotent-separating congruence on S,

Proof  Let e, f be idempotent elements in S and let (e, f) e p.
Then it follows that (e, f£) e M .
But an M -class contains at most one idempotent, hence e = £,
Thus p is idempotent-separating.

Proved.

For a regular semigroup, the converse situation is specified by the

following

PROPOSITION 1.5 Let p be an idempotent-separating congruence on a reg-

ular semigroup S. Then p& XN .

Proof Let (%, ¥) e @. Sinee S is regular, x has an inverse x~
(say). It follows by the compatibility of p that (xx”, yx")e¢ o,

ice. (xx")p = (¥x7) p. But xx” is an idempotent; hence the
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o -class (yx') p is an idempotent in 843. Then by the lemms 1.1 and
the note 1.2, it follows that there exists an idempotent e in S such
that (yx“, e) € p and that e ¢ yx” S {1 8 yx”. Transitivity of

p implies that (xx", €) ¢ p. But p is eam idempotent-separating
and hence e = xx"s It follows that xx"e¢ yx 8 & y S. Thus we
have that x = xx"x € y 8. Similarly we can show that y & x S.
It follows that (x, y) ¢ R . In the same way we can show that

(x, ) el « Thus (x,y)e R NXL =H . It follows that

ps H.

Proved

The foregoing proposition helps us to guarantee the existence of
a maximum-idempotent-separating congruence, i.e. an idempotent-separat-
ing congruence which contains every other idempotent-separating congruence

on a regular semigroupe.

COROLLARY 1.6 A regulsr semigroup S admits a maximum idempotent-separat-

ing congruence .

Proof We define the relation u on S by the rule
(%, ¥) & v & (sxt, syt) e H for every s, t € st,
Then by the proposition I.l.4 it follows that p is the largest con-
gruence contained in H . |
Then the proposition l.4 and proposition 1.5 imply that ¢ is the max-

imum idempotent-separating congruence on 3.

Proved



29

Next we proceed to eustablish a finmdamental theorem which leads to
the result that idempotent-separating congruences form a modular sub-

lattice of the lattice of all congruences, .
I

THEOREM 1.7 (G. LALLEMENT). The set Lo of all congruences p on an

arbitrary semigroup S, such that p ¢« H , forms a modular sublattice

of A , the lattice of all congruences on S.

Proof By the proposition l.l.4 we know that X 3 has a maximal element
defined by the rule

(%, ¥) © %, & (oxt,syt)e H ¥ s, te s

which is the maximum congruence contained in H . Further, if p and
A are congruences on S such that p <« ) and A ¢ )M , then it is
obvious that pNAec Y andpwviA < 9 . Thus E-?i is a sub-
lattice of A

To show that I % is modular, it is sufficient to prove that

pet = o v (AnY 2 vi)Nt et g

Now let p, A, T € 23'_ be such that p < 7

Then since p is right congruence contained in az’ and A is left con-

gruence contained in (R it follows by the proposition I.2.1 that

It follows that p v (A N 1) po(An ).

i

Let (x,5)e (pvA) O t, ie. (x,¥5)€ P and (x,y)e <.

It follows that there exists z e S such that

(x, 2) ¢ p and (£, y) e A. Since p ¢ 7T , we have that (x, z) € T,
It follows that (z, y) € 1. Hence we have that (x, y) € pe (A A7),
ies (X, %) e pv (Ant)r Thus wé have that

p v {iini) o (pvr)N x.

T~

Proved
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COROLLARY 1,8 The idempotent-separating congruences on a regular semi-

group 8 form a modular sublattice of A ,

Proof By propositions 1.4 and l.5, X % is precilsely the set of all
idempotent-separating congruences on S.

Proved

COROLLARY 1.9 The lattice of congruences, & on a group S is modular.

Proof If 8 is a group, then 9 = S x S, the universal congruence on
S and so 231 = A,
Proved

It is interesting to note that the lattice of congruences need not
be modular on an inverse semigroupe. To show this we construct the
following example,

EXAMPLE 1.10 Let 8 = { e, f, ay, b} Dbe the semigroup whose multi-

plication table is

e b a b
e e £ a b
f f f b b
a a b e f
b b b f f

Then it is easily verified that S is an inverse semigroup and is & union



of the two groups (e, a} and }f, b} . The congruences on S
are as follows:

c = f(e, ‘3), (8«; 8»)7 (fa f); (bv b)s (e, f), (fa e)’ (a’ b)’ (ba a)i'

o= {(e, e), (a, a), (£, £), (b, b), (e, a), (a, ), (f, b}, (b, f)}
p = 'E(ea e), (a, a), (f, £), (b, b), (f, b), ib! f)}
% = '?(es e), (a, a), (£, ), (b, b)k <SS
W = -t S x S}
F -
The lattice diagram of A is
¢
and clearly p < p, but L

(pvolnup=w and p v (cnp) = p

e p v (onp)

Thus (pvo*)mp, >

and so A is not modular.
Finally, we prove a useful lemma.

LEMMA 1.11 let S be an arbitrary regular semigroup., If (a, b) ¢ H ,
then for every inverse a’ of a there exists an inverse b of Db

such that a’a = b’b.

Proof Let (a, b) e H4 and let a” be an inverse of a , By the

dual of GREEN'S lemma, x —p a’x and y —> ay are mutually inverse

one-to-one mappingsof Ha onto Ha’a and Haﬂa onto Ha respectively.

In particular ba’ e H, ., and so (a’ay, 2a'd) ¢ M« By a theorem of

MILLER and CLIFFORD (Theorem 2.18 (11), [1] ) there exists an inverse

b’ of b such that (a’, b") € ¥ . Again from GREEN's lemma we de-

duce that (a’b, b™b) & 9. It follows that (a’a, b’d) ¢ 3 . Since
M is idempotent-separating, we obtain that a2”a = bbb as required.

Proved
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Now we proceed to introduce some special classes of congruences on
a semigroup S, whose minimal elements carry the most importance. Foll-
owiné-HOWIE and LALLEMUENT (1966), we find it convenient to use the
abbreviated expressions for regular semigroups with pérticular con-
ditions imposed. Throughout this section we shall denote by E the set
of idempotents of the semigroup S. We shall call a semigroup S an

RIS~semigroup if S is regular and its idempotents form a subsemigroup

of S. Equivalently, we can say that a regular semigroup S is an RIS-
semigroup 1f and only if

[ = x ¥ 1= () = (w) X, ¥ ¢ S.

DEFINITION 2.1 A congruence p on a semigroup 5 is said to be an

RIS-congruence if 34) is an RIS-semigroup.

Since every homomorphic image of a regular semigroup is a regular semi-
group, it is clear that a congruence p on & regular semigroup S is a

RIS-congruence if and only if

(1) [ ) e pr 1 3) e pl = (% Gw))e p Xy &8

PROPOSITION 2.2 A regular semigroup S>a&mits g minimum RIS-congruence A .

Proof Let A, + 1 ¢ I 1 denote the family of all RIS-congruences

on S where I is an index set. It is non-empty since S x 8 obviously

is an RIS-congruence, Let A = QI A i Since the intersection

of congruences is a congruence, it is clear that A is a congruence on

S, and obviously 34_ is regular. Since A, is an RIS-congruence

for every i e I, it follows that condition (1) holds for every



P
=

A, (i e I). Hence conditions (1) certainly holds for A i?I Ay

Thus A 18 an RIS-congruence, and obviously A is contained in every

3l

;..-

RiIS~congruence on S.

Proved

PROPOSITION 2,5 A homomorphic image of an RIS-semigroup is an RIS-semi-

gXroupe.

Proof Let S be an RIS-semigroup and T = 59, where § is a.: hoﬁo—
morphism of S onto Ts Obviously T is regular,
Now let % = x° and y o= yzl (xy, y € T).
Then it follows by the lemma 1.1 that there exist idempotents a, b ¢ S
such that x = ad% and y = Dbd.
Now we deduce that
()% = [ (a9) (09) I¥ = [ (ab) 0 1° = (ab)® o
= (ap)% = [(a) » (b) ] = xy

Hence T is an RIS-semigroup.

Proved
The following definition is due to DUBREIL (1941).
DEFINITION 2.4 A subset U of semigroup S is called left [right]

unitary if and only if mse U [sue U] and u e U
imply that s ¢ U. U is called unitary if it is both
left and right unitary.

We shall call a semigroup S an RU-semigroup if S is regular and




its idempotents form a unitary subsemigroup of S. We stop to prove

two useful lemmas on RU-semigroups.

LEMMA 2,5 ~ If a, b are elements of an RU-semigroup S, then ab e E

if and omly if ba € H.

Proof Let ab € E and let b” be an inverse of b.
Now we deduce that
(ba,bb')2 = ba bb” ba bb” = ba babb” = babb’,
It folléws that ba bb"e B, But bbb € E and since E is unitary
we have that ba & K, The converse follows by symmefry.

Proved

LEMMA 2.6 A regular semigroup S is an RU-semigroup if and only if E is

a left unitary set.

Proof If 8 is an RU-semigroup, then it is trivial that E is left
uni'tary.

Conversely we assume that E is left unitary,

Let e ¢ E and let xe = f € K,
Then we note that (efx)2 - efx.efx = efffx = ef’x = ef°x = efx.

Thus efx € E.
It follows that fx e B, since E is left unitary, and hence x ¢ &K,
Thus we have that E is right unitary. Thus E is unitary.

Further, let x, y ¢ E and let f be an inverse of xy.

Then it follows that xyf ¢ E and hence yf ¢ B since x ¢ kL,
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Further, since y e E, it follows that f ¢ E, Finally (xy) f g K

and f e B imply that =xy ¢ E; 1.e. B is a subsemigroup of S. Thus

S is an RU-semigroup.

Proved

Next we proceed to introduce RU-congruences.

DEFINITION 2,7 A congruence p on a semigroup S is called an RU-con-

gruence if 84) is an RU-semigroup.
From the foregoing lemma it is clear that a congruence p on a
regular semigroup 8 1s an RU-~-congruence if and only if
() [GExe oo () mlepl=s G0 ep (mye 9
A parallel argument to the one used in the proof of the proposition

2.2 establishes the following

PROPOSITION 2.8 A regular semigroup S admits a minimum RU-congruence w.

We omit the proof.

It is interesting to note that a homomorphism does not necessaxrily
preserve the property of being an RU-semigroup. To show this we con-

sider the following example.

EXAMPLE 2.9 Let S be the semigroup of the type described in the theorem

which is the disjoint union of two non~trivial isomorphic groups G, and

1

G,. Then G, is a 2~-sided ideal of S and S/G2 is the Rees factor semi-

group of S modulo G2. Obviously S/G2 is not an RU-semigroup since it

contains zero, although S is an RU-semigroup.



Next we present the concept of group congruences, These were irst

studied by VAGNER [19] and MUNN [20].

DEFINITION 2,10 A congruence p on a semigroup 5 is called a group

congruence if S/p‘ is a group.

THEOREM 2,11 A regular semigroup § admits a minimum group congruence vy.

Proof Let $y; ¢+ ie I 1 be the family of all group congruen-
ces on S, where I is an index set. Obviously I is not empty since
5 x 8 is a group congruence, Let v =i€& Yy Clearly ¥ ié a
congruence on S,
Next let e, £ be idempotents in the semigroup S. Then clearly ey;
and  fy; are idempotents in S/%i for every i e I. But S/Yi is
a group for every i e I and since a group contains only one idem-
potent, namely its identity, it follows that eyil = fyi for every
ie I, i.es (e, f) € y; for every i e I, Thus (e, )€ ;23:y Rt
Thus all the idempotents of 5 belong to the same Y -class in 84,.
Let us denote it by.i.
Now for any x ¢ S, we have that !
o (xy) = (xx7)y o(xy) = (xx"x)y = xv
(xv) e ¥ = (x)y o (x'x)y = (x'x)v = xv
Thus I is the (unique) 2-sided identity of S/Y' Further if for every
x € S, x” denotes an inverse of x , then we have that
() o (x¥) = (o) y = 1 = (xm)y = (xx) o (x),
i.ee x"y is the (unigue) 2~sided group inverse for every xy in 84,.
Thus 34, is a group and y is & group congruence, Obviously it is con-

tained in every other group congruence on S.

Proved



Pinally we discuss the concept of band congruence and semilattice

congruence on an arbitrary semigroup.

DEFINITIGN 2612 A congruence p on a semigroup 3 is called a band

congruence if S/p is a band.

It is clear that a congruence p 1is a band congruence if and only
if

(3) (x, xz) £ P for every x e 8.

PROPOSITION 2.1% Fvery semigroup S has a minimum band congruence B.

We omit the proof,

DEFINITION 2,14 A congruence p on a semigroup S is said to be a

semilattice congruence if S/p is a semilattice.
It follows that a congruence p on a semigroup S is a semilattice
congruence if and only if
(4) {"(x, xz) e P for every x ¢ ; and

(xy, ¥yx) € »p for every X, ¥y & S.

PROPOSITION 2.15 Every semigroup admits a minimum semilattice con-

gruence me

We omit the proof.
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Before proceeding to introduce some more new congruences on a
regular semlgroup S, we stob by to prove two important results which
egtablish a useful link between the minimum band congruence B and the
minimum semilattice congruence 7N on the one hand, #nd Green's relations
on the other, These results were jointly discovered by HOWIE and
LALLEMENT (1966). Following their notation, we shall denote the con-

*
gruence generated by an equivalence p on a semigroup S, by € .

THEOREM 3.1 If g dis the minimum band congruence on a regular semi-

w—

group S, then
H e p ¢ R* OV L¥,

Proof Let (%, y)e §H for some x, y e S.
Since B 1is a congruence on S, it follows by the corollary I.2.10
that (xg, yp) e N in S/‘3 . But an 9% -class can contain at most
one idempotent; hence xg = yg, i.e. (%, y) e B8 . Thus 3 <
By definition 31* is the smallest congruence or; S containing ¥ ;
hence 94* c B .
Next let x be an arbitrary element of the semigroup 5 and let x—l
denote an inverse of x in 3, Then we know that
(x, xx—l) e R < CQ*.
By compatibility of @{*, it follows that (xx, xx_lx) £ @,*;
i.e. (xz, X) € {R* for every x e S. It follows that S/@* is
a band. Since g is the minimum band congruence on 8, it follows
that 8 ¢ (ﬁ{* Similarly we can show that g < .;(’,*, It

* *
follows that B < R () L . Thus 5)1*5:' B < @*ﬂ f_,*.

Proved
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COROLLARY 3.2 In & regular scemigroup 5 we have that p < §.

C{. 1 r.»tl A Y )
Proof It follows immediately from the lemma L.& that

L3 oo $eB

Proved

THEOREM 3.% If wm _is the minimum semilattice congruence on a regular

semigroup's, then

Proof It is sufficient to show that
x

n e & < (}la::n

By the foregoing theorem 3,1, we know that S/@l* is a band since

* * *
B « & ; hence S/‘ﬁ* is a band since & ¢ B, To prove

commutativity in S/@*, we need the following

LEMMA 3.4 - If e and f are idempotents of a regular semigroup S, then

(ef, fe) ¢ & -

Proof By proposition I.3.5, we know that ef has an inverse g in i
S such that ge = fg = g Then we have that (ef, ef.g) e @2 ’

K
and similarly (ef.g, &) e o o 1t follows that (ef, g) c ReZ =B ¢ H .
| * , '
By compatibility of &, it follows that
*

(f.ef.e, fogee) ¢ Q}* iee. ( (fe)z, g)e K.

*
Since S/* is a band, we have that ( (fe)2, fe) € & . Hence the
- 13 . *
transitivity of & implies that (fe, g) ¢ gg?. It follows that
*
(ef, fe) e & .

Proved



ALY
o+

Continuing with the proof of the theorem, we consider two arbit-
rary elements a, b of 5 and let a° and b" be arbitrarily chosen
inverses of a, b respectively. Then we know that aa” and bb" are
idempotents and it follows by the lemma 3.4 that

(aa” bb”, bb7aa”) ¢ o@*.
Aiso,clearly we have that
(a, aa”) e R < @«*, and (b, bb") € R & 8",
Hence it follows that (ab, 2a’bb”) ¢ géf and (ba, bb’aa’) e a7,

4 *
It follows that (ab, ba)e &  for every a, b € S, and hence S/g*

is a commutative band, i.e., a semilattice. But n is the minimum semi-
¥
lattice congruence on S, and hence it follows that M ¢ £ .
Next, we know that & ¢ J; for an arbitrary semigroup S. Hence
. * * re
obviously & < 3, . Next let (x, y) e d‘ where %, y & Sa
Since 1 is a congruence on 5, it follows by the corollary I.2,10 that
(xmy yn) e J: in S/n. By the commutativity of S/n , it is clear
that Y = (ﬁ = is/h 3 hence XN = yn 1.0 (x, y) € 7.
Thus we have that 3 < b Since 11 1s a congruence on S containing

*
it follows that ‘f C M. Thus we finally get that

* ¥*

Proved
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So far we have introduced some special congruences in the lattice
of congruences on a regular semigroup S. Operations of join and meet
applied to these congruences give rise to some further congruences,
This section is devoted to determining the nature of such congruences,
We recall that the join of two arbitrary congruences p and T in A ,
the lattice of congruences on a semigroup S, is the smallest congruence
on S containing p and < , and will be denoted by p v 7T. The meet

of p and t is just their intersection p {} T.

It is convenient to refer to a band of groups (in the sense of

Chapter I, $§4) as a BG-semigroup and to call a congruence p on an

arbitrary semigroup S a BG-congruence if Sé is a BG-semigroup.

THEOREM 4.1 A regular semigroup S admits a minimum BG-congruence.

Proof Let B denote the minimum band congruence on the regular semi-
group S and let E be the set of idempotents of S, We define
*

@« = B () (EXE) and let ® = & ; i.,e. ™ is the smallest con-

gruence on S containing a« . We intend to show that = is the required

minimum BG-congruence on S, Obviously B € = .

e

Let [345 = { (xmy ym) = (%, y) & B }; then it follows by the
proposition I.1l.7 that S/% o (S4J/(B49 and hence B 4 is a band
congruence on S4t . Further, if p is any other band congruence on
S/1t, then by proposition I.1l.7 there exists a congruence ¢ on S such
that p = o/; o Clearly o is a band congruence on S and hence

c 2 B. It is immediate then that oo B /n and hence f /n is the
minimum band congruence on the semigroup S/n « Now suppose emn and fm

are any two idempotents in S/ﬁ « Then without any loss of generality
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we can assume that e, £ ¢ E (by lemma 1.1

Let {(em, fn) & g/;. Then (e, f)e B and also (e, £f) ¢ E x I

hence (e, f)e B () (EXE) = a¢ ne Thus en = fn, and

hence B 4 is idempotent separating in S/ﬁ. Hence B 4: < H in Sét.
21, x

But by the theorem| M ¢ X = B/, it follows that B/n = H in 8/;.

It follows that 9t is a congruence in S/, and each 3 -class in S/, is

an idempotent and hence (by the lemma 1.1) contains an idempotent ele-

ment of SAI. Consequently each 9 -class is a group.

Thus S/.lr is a band of groups. To show the minimality, let us
assume that ¢~ is a BG-congruence on 3. Thus S/&Z is a band of
groups., Let g; be the minimum band congruence on S/ﬁ,; then it
follows that B~ = y /“, where vy 1is a band congruence on 5 such
that y » «'. By definition of B, we have that g <« y. Also
since S/n’ is a band of groups, we have that B~ = % in S/%,.

Now it is sufficient to show that « < m~ (since =m° is a congruence

*
and w = & ). Let (%, y)ecx . Then (x, y)e B and X, y ¢ BE.
Now (x, y)e B « y and hence (xn’, yn') e Y4t' = B = Y .
But xn” and yn~ are idempotents since x, ¥y ¢ B; hence xq = yw,'!

i.e. (x,¥) en’s Thus ac ® . Thus 7 is the minimum BG-congruence

on the regular semigroup S.

Proved

THEOREM 4,2 Every homomorphic image of a BG-semigroup is a BG-semigroup.

Proof First of all we need to establish the following lemma due to

CLIFFORD [3].
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LEMMA 4.5 A subgroup S is a BG-semigroup if and only if
(a) a e Sa° "\ a”s for every a g 9
)
(B) Sba = Sba®, abS = a’bS for every a, b € S
Proof We assume that S is a BG-semigroup. Then a and a2 both

belong to the same subgroup G of S, so that a € ca’ A a%¢ = 88° () a’s,
Next let a, b & 8. From the fact that a and a2 belong to the
same subgroup of S, and the assumption that S is a band of groups, we
conclude that ba and ba2 belong to the same subgroup of S and hence
Sba = Sba®. Similarly abS = aZbs.

Suppose conversely that conditions (a) and (B) hold in S. Condition
(a) clearly implies that (a, a2) e and (a, a2) e @ , that is

(a, az) e 3 . By Green's theorem 2.16 ([1]) it follows that the
Hf-class Ha containing a is a group. Since .- classes are dis-
Joint it follows that S is a disjoint union of groups. To show that

S is a band of groups, it is sufficient to show that ¢ 1is a congruence.
Let (a, a”) € 3 and let b e S. It follows that a and a’ be-
long to the séme subgroup G, (say) of S. Let ey, be the identity

of G, and a~* be the group inverse of a in Gy. Replacing b

by 2 b in the second part of (B), we get that e,bS = abS. Sim-
ilarly esbS = a’bS., Thus abS = a’bS and hence (ab, a’b)e R .
Similarly (ab, a’d) €& . Thus (ab, a’b) e} . Similarly left

compatibility can be verified and hence } is a congruence,

Proved

Now it is trivial that any homomorphic image of a BG-semigroup &
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also inherits the properties (a) and (B) and hence is a BG-semigroup.

Proved

We shall call a semigroup S an SG-semigroup if it is & semilattice

of groups in the sense of Chapter I, §4. Further a congruence p on

a semigroup S is called an SG-congruence if Sé) is an SG-semigroup.
We recall from proposition I.4.8 that a regular semigroup S is a semi-
lattice of groups if and only if its idempotents are in the centre of 5,
It follows that a congruence p on a semigroup S is an BG-congruence
if and only if

(x, ) e p = (xy, yx)e p vV x, ¥ & S,
An argument similar to the one used in the proof of the proposition 2.2

now establishes the following

PROPOSITION 4.4 A regular semigroup S admits a minimum SG-congruence E.

We omit the proof.

By virtue of LALLEMENT's lemma 1,1, it is easily seen that the property
that idempotents are central is inherited by the homomorphic images.
Hence we have that every homomorphic image of an SG-semigroup is an
SG~-semigroup.

Next we introduce the concept of an IS8BG-congruence on a semigroup. A
BG~-semigroup S in which idempotents form a subsemigroup will be called

an I3BG-semigroup. Further a congruence p on a semigroup S will be

called an 1SBG-congruence if S/p is an ISBG-semigroup.




THEOREM 4.5 A regular semigroup S admits a minimum ISBG-congruence C .

Proof By the proposition 2.2 and the theorem 4,1, we know that a reg-
ular semigroup S has a minimum RIS-congruence A and a minimum BG-con-
gruence n . Let us write T = k vy 7, which is the smallest con-
gruence on $ containing A and T, Since S is an RIS-semigroup, it
follows by the proposition 2.3 that S/(k v o) is an RIS-semigroup.
Further, since a homomorphic image of a BG-semigroup is a BG-semigroup
(Theorem 4.2), we have that S/( Av) is a BG-semigroup. Thus
S/k NRVAR is an ISBG-semigroup. Further, if p is an I8BG-congruence
on the semigroup S, then obviously p is also an RiS-congruence and a
BG-congruence on S, It follows that A < p and © < p 3 and hence
(Avmn) ¢p. Thus & = AV is the minimum ISBG-congruence on

the semigroup S.

Proved

NOTE 4,6
(a) From the foregoing proof it is clear that every homomorphic

image of an ISBG-semigroup is an ISBG~semigroup.

(b) For any congruence p on a regular semigroup S, we have that

P2 L &> o is an ISBG-congruence on S,

By a special case of Fantham's Theorem as described by PETRICH ([14]
an ISBG-semigroup S can be described in terms of a band B with maximur

semilattice homomorphic image B/ﬁ = Y and m-classes B/ (¢ & Yj,
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a collection of groups Ga indexed by Y, and a system of homomorphisms

CPOC,B : Ga 3 G‘3 for all «, B in Y such that cPct,B q;B’Y = (pa,y

if « Y, B > v- (The homomorphism Py o is the identity automorphism
»

of the group Ga for every « in Y.) The semigroup S is the disjoint

union of the "rectangular groups" E  x G , thé product in the semigroup

5 of (e , a,) and (fB, bﬂ) being (eafB’ (admafy) (bﬁws,Y)) where Y = aB

in Y. The product ib is evaluated in the band B, while the product

e
o
(aa ma’Y) (bB @B’Y) is evaluated in the group Gy'
We shall call a BG-semigroup S a UBG-semigroup if and only if its

idempotents form a unitary subsemigroup of S,

THEOREM 4.7 An I8BG-semigroup is a UBG-semigroup if and only if all its

structure homomorphisms are one-to-one.

Proof Suppose S = U élEa x Gy; « € Y 1} is the given ISBG-semigroup
and P, B: Ga - G'3 are its structure homomorphisms. We assume
’

that S is a UBG-semigroup. Let Ia denote the identity of the group

Ga for each a in Y. Then obviously the set of idempotents of S is

E = $(epl): & E, xeYlL

Now if a ¢ ¢ = Ig (¢ B8 ). Then
(eB';IB) (fa‘na'a) = (erC(’ IB(aa (PG!B)) = (er(X,I ) £ E'

Since E is unitary it follows that (%x,aa) e E. Thus a, = I

and hence @ 8 is one~to-one,
&y

Conversely we assume that the structure homomorphisms Py 8 are one-to-
y

(egr Tg) (£, a) ¢ B d.e. (egfy, (I3 95 J) (8,0, ) € E

= i€, e 3 £ B
where vy af i.e. that (eﬁfa’ IY (aa’wa,y )) € E; hence

where y = of i.e. that (era, IY (aa,wa,Y )) € E; hence

aq Yo,y = Iy But since P,y is one-to-one, we have that a_, = I
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and thus (: o - . . ,
thus (fo ag) € E. Thus E is left unitary. By Lemma 2.6 it

is immeckate that S s & UrB-Gq--g»Sc:m'ajrcuf.

Proved

Suppose 5 1s a regular semigroup. Since a group has only one
idempotent, namely its identity, it is clear that v v B = S5 x 8§
and y v n = 8 x 38 where the symbols have their usual meaning.

Next we proceed to consider the intersection of the minimum group con-
gruence y and the minimum band congruence B on a regular semigroup S.

First we prove the following useful lemma.

LEMMA 4,8 If S is an RU-semigroup, then E, the set of idempotents of

S5, is a v -class,

Proof Let x, y Dbe two arbitrary elements of &. Suppose xey € b
for some idempotent e in G. Then by the lemma 2.5 and the fact that
E is unitary, we deduce that eyx € B and yx € E, Since E is
a subsemigroup, yxf & E for every idempotent £ € S and hence
xfy ¢ E. Thus we have seen that the condition

xEyNE $9 = xEy<E
holds for any x, ¥y in S. Then by the theorem Dg]it follows that
there exists a congruence p on S such that E is a p-~class. By
lemma 1.1, every idempotent of Sé contains an idempotent of S and
it follows that S/; has exactly one idempotent, namely E. Since
S/; is regular it follows that S/b is a group. Thus y & p
where Y denotes the minimum group congruence on S, But obviously the

identity of S/Y containg E and hence it follows that & is a y-class,

Proved
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THEOREM 4.9 Suppose y and B8 denote the minimum group congruence ana

minimum band congruence on a regular semigroup S respectively, then

y Vg = Ly if and only if S is a UBG-semigroup.

Proof We assume that S is a UBG-semigroup and let 8 = UE x G : a € Yo
Let ( (ea_)aa), (eﬁ*bﬁ) )y & Y\ B.
Now it is easily seen that in a UBG-semigroup, N is a congruence and
Y =8, and hence ( (ea, ay)s (eB , bﬁ) ) € M . Purther since each
Ji -class is the maximal subgroup containing the idempotent (ea, Ia)
for each @« in Y it follows that o = B and hence e, = eg.  Further

since Y is compatible, we have that

(((egyay) (eg, 20 )y (earby) (earagt) ) e ys

where aa':L denotes the group inverse of ayg in the group Ga. Thus
1
)

we have that ( (ey ,Iy), (eq,be8q ) ) & y. But by the foregoing

lemma 4.8, the idempotents in S form a y -class; hence we have

b a pE. I , which implies that a = b , Thus we have shown that
a o o o o
YN g = L.

3

Conversely we assume that vy 1 B = ;.  Suppose that e, f are
idempotents in S such that (e, f) € B. Also (e, f) & Y always
holds and hence (e, f) € Y N B = lg. Thus e = f.  Thus B is
idempotent~separating in S. It follows that 8 & H which together
with theorem 3.1 implies that B = H. Now it follows that each
M -class is an idempotent and hence by the lemma 1.1 contains an idem-
potent of 8 and so is a group. Thus S is a union of groups. Also

since M is a congruence, it follows that S is a band of groups. To

show that the idempotents of S form a unitary subsemigroup of S, in view
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of the lemma 4.8 it is sufficient to show that I, the set of idempotentea
of 8, is a y-class, Clearly E ¢ E°, where E’ is the identity of
S/;. Conversely if x e B, thol-mleesaxi , then x ¢ He for some

e in E; hence (x, e) e YNy =B8Ny = tg which means

»

X = e g B. Thus we have E = E~.

Proved

The next proposition guarantees the existence of a minimum UBG-

congruence on a regular semigroup S.

PROPOSITION 4,10 If vy and B are the minimum group congruence and the

minimum band congruence respectively on a regular semigroup S, then

Yy 1 8 is the minimum UBG-congruence on the semigroup S.

Proof It is easily checked that the minimum group congruence and the min-

imum band congruence on Sé,(w B) are y(? A B)and Bé& r‘B)J:'espec:‘tively.

Moreover we obhserve that

(Y/(Y ne) NV ChGag) =COByAe = ymas)
Hence by the theorem 4.9, it follows that S{% n 8) is a UBG-semigroup;
i.es. y n B 1is a UBG-congruence on S.

If p is any UBG-congruence on S, then 543 is a UBG-semigroup.
Now if <’ and ¢” are the minimum group congruence and the minimum band
congruence on 84), then by the proposition I.1.7, 1t~ = 11é and
¢’ = 04) where < is a group congruence on S containing p and o is a
band congruence on S containing p. Also clearly © 2 vy and o 2 B.

It follows that vy B ¢ T N o. Also, since Sé, is a UBG-semigroup,wehave
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that o, e’ = (/)N (o/) = (v o)/ . Hence we
b= p p p

have ©t N o = p . Phus p > v ¢} 8 and we conclude that v 71 B

is the minimum UBG-conrgruence on S,

Proved

Analogous results hold when we consider SG-semigroups. We shall
call an SG-semigroup S a USG-semigroup if the set of idempotents of S

is a unitary subsemigroup of S.

THEOREM 4,11 An SG-semigroup S is a USG-semigroup if and only if its

structure homomorphisms are one-to-one.

This follows trivially from the theorem 4.7.

THEOREM 4,12 If y and n denote the minimum group congruence and the

minimum semilattice congruence respectively on a regular semigroup S,

then vy Ao n = L% 1f and only if S is a USG-semigroup.

Proof If S8 is a USG-semigroup, then obviously B = n and hence by

the theorem 4.9, we have that vy An = v NP = Lg
Conversely assume Y (31 N = LS holds in S. Since B &€ m clearly
Yy B = lg and hence S is a UBG-semigroup by the theorem 4.9. If
e, £ are arbitrary idempotents of 5, then certainly ef and fe are

idempotents and thus (ef, fe) € Y. Also since S/n is commutative

we have (ef, fe) € m, Thus we have (ef, fe) € Y N N = LS

and hence ef = fe, Thus 5 is a USG-semigroup.

P roved



A congruence p on a semigroup S will be called a USG-congruence if
S/p is an USG~-semigroup.
An argumenti exactly parallel to the one used in the proof of the

proposition 4,10, establishes the following

PROPOSITION 4,13 If' Y and M are the minimum group congruence and the

minimum semilattice congruence respectively on a regular semigroup S,

then vy A n  is the minimum USG-congruence on S.

We omit the proof.

We recall that by the example 2.9, it was shown that the homo-
morphic image of an RU-semigroup need not be an RU-~semigroup. How-

ever,

THEOREM 4.14 If § is sn RU-semigroup and & is the minimum SG-congruence

on 8, then 5/ is a USG-semigroup.

Proof Let us define ¥ = { (ea, ae); e e B, K‘ & S}where E is
the set of idempotents of S. Let 3&* denote the congruence generated by
% on S. First we show that ¥ = & on S. Let (ea, ae) & & . ;
Since S/E_, is an SG-semigroup, its idempotents are central by the |
proposition I.4.8. Hence (ef) (&) = (af) (ef) for arbitrary e
in E and a in 8. Thus (ea, @e) ¢ & di.e. X ¢ &. It is immed-
iate that ‘35* < &. On the other hand by the lemma 1.1, every idem-
potent of b/JE’* is of the form e 35)‘ for some e in E, Obviously
(e¥)(ax) =(a¥)(e ¥) forevery e in Eand a € S. Thus

idempotents of S/-%* are central in S/ﬁﬁ and by the proposition 1.4.8,
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S/aév is an SG-semigroup i.e. £ g:?%é#- Thus gﬁm¥= & . Now we
Xnow by the theorem 1.8 [1] that (a, b) € %~ (a, b € §8) if

and only if b can be obtained from a by a finitesequence of element-
ary ¥ -transitions. Suppose f, an idempotent of S is transformed
by an elementary ¥ -transition : i.e. f = peaq —% paeq where

P, ¢ € S. (Other possibilities while either or both p and q may
be absent can be dealt with similarly.) Making use of the lemma 2.5
and the fact thét E is unitary, from peaq € E we easily deduce that
eagp € By, agp e E and qpa € E, Also B is & subsemigroup, hence
qrae &€ E and paeq € L, Thus we have established that an element
obtained by means of an elementary "X -transition from an idempotent
of § 18 itself an idempotent of 8. Repetition of this argument a
finite number of times finally gives the result that any element

a € S such that (a, f) € §¥'* for some idempotent f is itself an
idempotent.

Now since Sé obviously is an SG-semigroup, by lemma 2.6 it is suf-
ficient to show that the set of idempotents of the semigroup S5¢ is
left unitary. Suppose that (ef) () = (f&) for some a € S

and where e and ff denote the arbitrary idempotents of 3é for
some e, £ in E. Since ¥ - £, it is clear that (ea, f) = e
and since f is an idempotent in S it follows that ea is an idem-
potént in S. But 8 is an RU-semigroup and hence a 1is idempotent

in 8 i.e. that (a¥) is idempotent in S/§ . Thus Sé. is a
USG~semigroup.

Proved
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A parallel result holds for UBG-semigroups.

THEOREM 4,15 If € denotes the minimum ISBG-congruence on a regular

semigroup S, then Sé is a UBG-semigroup.

Proof Without any loss of generality we can take two arbitrary idem-
potents of 84; as {(ef) and (f) for some e, f in E, Also let
(ec) (a) = (fC) for some a € S. Obviously for the RU-semigroup
S, £ ¢ £ and hence (ea, £) € &  As in the proof of the theorem
4.14, this implies that ea is idempotent and consequently a is an
idempotent since E is unitary. Thus (af) is idempotent in &é .
Thus the set of idempotents in Sé is left unitary and so by the

lemma 2.6, it follows that S/& is a UBG-semigroup.

Proved

The last two theorems help us to determine the nature of C v %

and & v w,

THEQREM 4.16 Let S be a regular semigroup and € and * _denote the

minimum ISBG-congruence and the minimum RU-congruence respectively on

8. Then T VvV % is the minimum UBG-congruence on S,

Proof  From Note 4.6, any congruence containing ¢ is an ISBG-congruence
on S8, hence §{ v % 1is an ISBG-congruence on 3, i.e. Sé;v %) is an
ISBG-semigroup. Now by the proposition 1.1.7, we have that

56 vy 2 (54)7 (& v ) /)
it follows that(ﬁ \% ?%: is an ISBG-congruence on Sé s Since any

homomorphic image of an ISBG-semigroup is an ISBG-semigroup. Suppose



p” is some ISBG-congruence on S/u . Then by the proposition I.1.7,

it follows that o~ = p/n where P 1is some ISBG-congruence on S5 con-
taining %. Also p 2 C and hence P2 C v %, Thus (PV @%& e e’
i.e,. (P'v M%& is the minimum ISBG-congruence on SAL + By the

theorem 4.15, it follows that (.S/%)/((C vauy/ n) is a UBG-semigroup, and

obviously ¢ Vv n 1is the minimum UBG-congruence on S,

Proved

An exactly parallel argument based on the theorem 4.14, proves the

analogous result for USG~semigroups.

THEOREM 4,17

Let S be a regular semigroup and let & and « denote the

minimum SG-congruence and the minimum RU-congruence respectively on 3,

Then & v x 1is the minimum USG-congruence on S.

We omit the proof,

PROPOSITION 4.18 On a regular semigroup S

YN B = vr and YO W EV u

Il

where the symbols have their usual meaning.

Proof Comparing the results of the theorem 4.10 and the theorem 4.16, we
immediately obtain that Y (W B =0 v ® ., Similarly the theorem 4.17
and the proposition 4.13% together give vy N n = & V u,

Proved

By the formula (2) and the Note 4.6, it is easily verified that

an intersection of arbitrary UBG-congruences on a semigroup S is a
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UBG-congruence., Also clearly an arbitrary group congruence p and an
arbitrary band congruence 1 are UBG-congruences. Hence p Nt is a
UBG-congruence on S. The converse situation is gpecified by the fol-

lowing.

THEOREM 4419 Any UBG-congruence £ on a regular semigroup S can be

unigquely expressed as the intersection T N o of a group congruence

T and a band congruence O on S,

Proof Suppose 17 and ¢ are the minimum group congruence and the min-
imum band congruence on the regular semigroup Sé). Then by the propos-
itionX .17 it follows that 17 = Té and ¢ = G/p where T is a
group congruence on S5, containing ¢ and ¢ is a band congruence on S

containing p . Since S/p is a UBG-semigroup, it follows by the

theorem 4.9 that by = 1N o’ = (ﬂ.:/ ) N (0/) = (7 4] 0)/ .
/o P P o

Hence t N o = p. To see the uniqueness, let T, A S, = T N o

where 'cl and T, Aare group Congruences and 0'1 and © o are band con-

gruences on S respectively, Obviously cl N o i8 a band congruence

2

on S.
Let (a, b) € o Now by the lemma 1.1, it follows that there

exist idempotents e, £ in S such that (a, e) € 9 N 9, and

(b, £) ¢ AP By the transitivity of © we have that

1
(e, ) ¢ o;-  Also (e, f) ¢ T, and so it follows that
Transitivity of ¢, implies that (a, b) € d,. Thus o, g o,.
By symmetry it is immediate that o,¢ ;. Thus o, = 0, =0 (say).

Next let (a, b)e T By compatibility of =T 1 ve have

(a.a ba, a.b.ba) e T |



Also since s/cj is a band, it follows that
(ac) (ao) (bo) (ac) = (ao) (bo) (ac) = (ac) (bo) (bo; (av)

Hence we have (aaba, abba) £ t]‘r\ O = T, 06 < % Suppose

2

a” and (ba)’ denote arbitrarily chosen inverses of a and ba

20

respectively in the regular semigroup S. Then by the compatibility

of t,, we have that (a’.aaba (ba)’, a’.abba.(ba)’) & =

o But

since =T o is a group congruence, we have that

(a’a) T, = ( (va) (ba)” Yy T, = didentity of 8/12. Therefore we
have a1, = ( (a’a) T,) (atz) ( (ba) (va)’ T, ) = (a’aaba (ba)’) T,
< (a%uebba (ba)" )7, = ( (a%8) %) (b5,) ( (ba (b2)7%,) = (%)
Thus we have that (a, b) e T, 1.e. T, & T,. 3By symmetry it is

immediate that v, ¢ 7. Thus T, = 7T, = T (say)

Proved

A similar line of argument establishes the following.

THEOREM 4.20 Any USG-congruence p on & regular semigroup S can be

uniquely expressed as the intersection T N & of a group congruence

T and a semilattice congruence & on S,

We omit the proof.

Finally we restrict our attention to a regular semigroup S, in
which the set of idempotents of S forms a unitary subsemigroup of S,
(what we are calling an RU-semigroup. Many results of the preceding

sections are strikingly simplified in this case.
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PROPOSITION 4.21 Let & be an RU-semigroup. Then the following holds s

I) The minimum RU-congruence % on S is the identity congruence U

o
)

11) The minimum SG--congruence & on 8 is equal to ¥ N n.

IIT) The minimum ISBG-congruence & on 8 is egual to v N B.

Iv) ENH = O % =y0p = ENp =CNp = tg

Proof Part (I) is trivial. Part (II) and Part (III) are immediately
obtained by substituting ®n = Lg in the proposition 4.18.
Since it is clear that § ¢ E < ¥y and p ¢ H , to prove
Part (IV), it is sufficient to show that vy N 9% = bs
First we observe that if (x, ¢) € YN 9 for some x € S
and e & E where E is the set of idempotents of S, them x € E,
since B is ¥ -class in RU-semigroup S. Further since 4 -class cannot
contain more than one idempotent, it follows that x = e, Now let
{(a; D) e v O N (a, b € S). Suppose that a” denotes an inverse
of a in S, Then we know that (a, aa”) e (R . It follows by Green's
lemme I.2.3, that x — xa” and y-—» ya are mutually inverse one-to-
one maps of Ha —p Haa’ and Haa' —3 Ha respectively. In par-
ticular (aa”, ba’) e 3. Also by the compatibility of Y it follows

(aa”y ba”) € Y. Thus we have (aa”, ba’)e YN 3 . But aa” is

an idempotent; hence we have aa” = ba’. Also by Lemma 1.11 there

exists an inverse b of b such that a’a = b b. Hence we have
a = aa’a = ba'a = Pb’d = Db, Thus we conclude that
Q
¥ S
Y 0H 5

Proved,



85 The nature of many 6f the congruences introduced in the preceding
sections is more specifically determined in the case of an inverse semi-~
gToup. By E we shall mean the semilattice of idempotentsof the in-
verse semigroup S. The unique inverses of an element a in the
inverse semigroup S will be denoted by aﬁl. Clearly 1f e is an

idempotent then et = e; also (ab)_l - plal,

PROPOSITION H.1 A homomorphic image of an inverse semigroup is itself

an inverse semigroup.

Proof Suppose that ¢ 1is a homomorphism of an inverse semigroup S onto

a semigroup T i.e. T S9. Obviously T dis regular. Suppose

i

that x2 = x and y2 = ¥ where x, y € T. Then by the lemma
1.1 there exist e, £ €& S such that 62 = 8, f2 = f and e¥%= x,
f% = y. Now we have xy = (&%) () = (ef)?® = (fe) ¥ = yx.

Thus idempotents commute in T i.e. T is an inverse semigroup.

Proved

PROPOSITION 5,2 Let p be a congruence on an inverse semigroup S. Then

(x, ¥y) ¢ p Aif and only if (x—l, y"l) € P, where x, y ¢ S,

Proof Let (x, y)€ p and hence xp = yp. Also we observe that
-1 -1
(xe) (x p) (xp) = (xx"x)p = xp
and  (xp) (x0) (x %) = (xtaxt)e = xle.

It follows that (Jq:p)_1 = (x—lp ) since inverse is unique in S.

Hence we deduce that (x-lpj = (xp)_l = (yp).l (yulp ), which

implies that (xhl, y—{) € P Converse follows by the symmetry.

Provegd
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-':o\_ LOWING

HOWIE (1Y64) has provideqjtwo characterizations for the maximum

idempotent~separating congruence u on an inverse semigroup S.

THEOREM 5,3 Let S be en inverse semigroup. The relation p defined

on 3 by the rule

(6) (%, ¥) e p &5 x "ex = y ey for every e in E

is the maximum idempotent-separating congruence on S.

Proof Obviously p is an equivalence on S. Let (x, y)& H; equi~
valently xnlex = ymley for every idempotent e in S. Let = & ©S.
Premultiplying by z”1 and postmultiplying by 2z on both sides, we

1

have that z Tx Texz = 7 y_leyz for every e in B, and for every

z € S. Thus (xz)al e (xz) = (yz)_l eyz for every e ¢ B, and
hence (xz, yz) € W for every 2z in S. On the other hand we know
by Proposition I.4.4 that z-lez is an idempotent for every e € E
and 2z g S. Hence 1tz teny = yﬁlz_lezy holds for every =z 1in S,
i.e. (zx)_l e (zx) = (zy)_l e (zy) and hence (zx, zy) € M. Thus
we have established that p is a congruence, Suppose e, f are idem-
potents in S such that (e, f) € Q. Then we observe that

e tee = rler and e 'fe = f£IFf i.e. that e = ef, ef =1f

and hence e = £, Hence B is an idempotent-separating congruence

on S, Next let p be an idempotent-separating congruence on S, and

let (x, y) € P where x, y € S. By the proposition 5.2, it follows

that (xrl, y_l) € P and hence (x_le, y"le) e p for every idem-

potent € 1in S, since p is compatible. It follows that

(x"lex, y_ley) £ p. But since p is idempotent-separating we have

that x‘lex = Yy ey, where e 1is an arbitrary idempotent in S. Thus

(xy, y) € 4 and we have p < R,

Proved
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THEOREM 5.4 Let p be the maximum idempotent-separating congruence on

an inverse semigroup £, Then

(X, ¥)e w & x'x = y7y end i e EC

where Rt 1is the centralizer of K in S. Dually

-1 -1 -1 \
(7)) ——— (x, ¥y) e B &5 xx = yy and x y & BC
-1 -1 .
Proof Suppose (%X, ¥) € d. Then (x , ¥y ") € H by the proposi-
tion 5.2 and hence by (6) it follows that xex_l = yeyﬁl for every

e in E, where E is the semilattice of idempotents in 5. Now since

the idempotents commute we easily deduce that

% = xtwe xtxe x Yk - x"lyxhlxy-lx = y—lyx-lxy_ly = x“lx.y_ly
Similarly we can deduce that yuly = x”lx.y_ly. Thus we have that
X x = y_ly. On the other hand from xlex = y“ley, we easily
deduce that xx_lexyﬂl = xy;leyy_l and hence since idempotents com-
mute exxnlxy- = xy—lyyﬁle and hence exy =~ = Xy ~e. This holds
for every e & E. Hence xy-l e EC,

Conversely we assume X X = ynly and xy-1 e EU for some

. X, ¥y in S. Then for an arbitrary idempotent e in B we have

xy“le = ex,y_1 and it follows that x - (xyule) y

]

x (exy™)

hence y-lyy"ley = x exx_lx, which gives y—ley = xtex, This

s

holds for any arbitrary idempotent e . Hence by (6) we have that

(xy y) e 1. The dual statement is immediate by 5.2 and the fact

that (xhl)_i x and (yul)ml

= Yo

Proved
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THEOREM 5.5 Let p be 1he maximum idempotent-separating congruence on an

inverse semigroup S. Then S{L ™~ B if and only if E is central in

S.

Proof We assume that B is central in 8. 1Let us consider the map
93 e -3 ep from E into 84;' Since p is idempotent-separating,
it follows that ¥ is one-one. We further observe that for any x in
5, xtx = (xﬁlx)-l xYx  and  x (X_lx)_l - xx o= x o€ EC,
since E{ = S. Hence by (7) it follows that (x, x“lx) £ .
Thus each p-class xp (x € S) contains an idempotent- x Tx.  Thus
$ is . ONTO. Finally ¢ is a homomorphism since for any e, f in E,
we observe that (ef)9® = (ef)p = (ew) (fu) = (e9 (£9). Thus
we conclude that Sél = &

Conversely we assume that 9 is an isomorphism of E onto S/#.

Let x be an arbitrary element of 5. Since ¥ is ONTO, there exists
an idempotent e in E such that (x, e) & p. It follows by (7) that
xtx = ele = e and xe ' = xe € EL Then we can deduce that
X = xXx x = xe £ E{L Thug S & EC  Hence we have that El =
i.e. E is central in S.

Proved

The next theorem provides a necessary and sufficient condition for

i to be an identity relation.

THREOREM 5.6 Let P be the maximum idempotent-separating congruence on

an_inverse semigroup Se. Then H = LS if and only if EC = E,

where E{ is the centralizer of FE in S.




Proof

o
o

First we assume that py = g in S. Obviocusly in the inverse

semigroup 8, E < EC. On the other hand let x be an arbitrary

eleme

nt of E. Clearly lx = (x”lx)“1 x'x  and

x x—lx)'l - xx*x = x e EC; hence by (7) it follows that
(x, x-lx) € B and we have x = lx e B, since # = ', Thus
E¢ < E. TFinally we conclude that B = &C,

Conversely let us assume that BE{ = B and let (x, y)€ W,
where x, y are in S. By (7) it follows that xlx = yhly and
xyul e Bl = B, Since xy*l is idempotent we have

-1 ~1,=-1 -1 . e
(x 7y) = (xy ) = yx 3 also from the proposition 5.2 and (6),
it is immediate that Xex*l = yeynl holds for every idempotent e
in S, Now we easily deduce that
- -1 -1 -1 -1 “1-1 -1 -1
XX = XX = XX = yx = Xy = (xy 7) = xy = Xy .
Hence we have that X = xx °x = xyglx = yxnlx = yy-ly = y.
Thus # = l’S .
Proved
NOTE 5.7
Any idempotent-separating congruence V on S/# is equal to the
identity relation.
For if v i %;/u , then the congruence V' on § defined by the rule

(xy y) e v' &> (xu, yp) € v 1is clearly idempotent-separating

such that ¥V > u  which is a contradiction to the maximality of M.
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The next theorem provides a useful characterization of the minimum

group congruence on an inverse semigroup.

THEOREM 5.8 (MUNN) Let S be an inverse semigroup. The relation

on S defined by the rule

(8) (x, ¥) € ¥ < ex = ey for some idempotent e in S

is the minimum group congruence on S.

Dually ¥ can be defined as follows :

(x, ¥y) € Y& xf = yf for some idempotent f in S.

Proof It is sufficient to show the first of the two dual statements.
Obviéusly Y defined by (8) is reflexive and symmetric. Next let
(x, y) ¢ Y and (y, z)& y. Then there exist idempotents e, f
in S such that ex = ey and fy = fz, Since S is an inverse semi-
group, it follows that ef € E, fe e E and ef = fe,

Now we can deduce that

efx = fex = fey = efy = efz, and hence we have that (x, 2) e v.
Thus Y is transitive. PFurther if (%, y)e v, then it is immediate
from (8) that exz = eyz for any 2z in S and thus (xz, yz) € v
for every =z . On.the other hand, for any =z , we also have that
Zex = @ey or uZ 2zeXx = zz—lzey which gives (zez—l) zZX = (zeznl) Zy
since idempotentis commute. But we know that zezul is idempotent in S
and hence it follows that (2zx, zy) € Y. Thus we have established
that vy is a congruence on 8. Also for any two idempotents e, f in
S, it is clear that efe = eff; that is (e, f) € Y. Thus all
the idempotents in 8 belong to the same Y-class, Then as in the proof

of the theorem 2.11, it can be easily shown that Y is a group congruence

on 3, Further let p be a group congruence on S and let (x, y)E Yo
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It follows that ex = ey for some e & L, Hence we deduce that
(ep) (xp) = (ep) (yo), but since S/E is a group, ep is the
identity of S/; and hence we have that xp = yp , which means

(xy ¥) ¢ p. Thus vy < p.

Proved

HOWIE (1964) has given another very useful characterization of the
minimum group congruence on an inverse semigroup S. In the notation
of Chapter I, $§4, we shall denote by Bw, the closure of E, under the
natural order relation defined by 1.(4) where E is the semilattice of

idempotents in the inverse semigroup S.

THEOREM 5.9 Let vy denote the minimum group congruence on an inverse

semigroup Se Then

(9) e (xy) e Y & xhoe E w

Proof Let (x, y) € Y where x, y are in S, By (8), it follows that

ex = ey for some idempotent e in S. It is immediate that

exy = = eyynl €. E. But we have that exy-l ' xy"l. Hence we

e

have that xy-l e Bw. Conversely let xy ~ & Buw, Then there

exists an idempotent f such that xy-l

fxy"l = ff = f, Iet us put e = fxyﬂlyxul. Then clearly

2 -1 =1 -1 1 1
e” = (fxy “yx ) (fxy )

1

f , i.e. such that

7

= ffxy-lyxnlxy—lyx“
-1
yxT = e

1 - - -
X 1f = fxy 1}")( 1 = e,

yx

1

= fxxﬁlxy-lyy- yx-l = fxy

and so e & &, Also ef = fxy~

since idempotents commute in S.
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Now we can deduce that
ex = eex = efxy_lyx-]‘x - efxx tayTly = erxyly = efy = ey
Then it is immediate by (8) that (x, y) ¢ +v.

Proved

Now we turn our attention to the intersection and the join of these
two congruences, namely y 4 p and v v U The next theorem pro-
vides a necessary and sufficient condition for vy n p to be equal to

the identity relation.

THEOREM 5,11 On an inverse semigroup S

YN B =LS iff EC N Ew = B

where the symbels have their usual meaning.

Proof We assume that EC(\ BEw = BE and let (x, y)€ YO B for some

X, ¥ in S. By (7) and (9), it follows that % = y'ly; also

xyﬁl e EC and xy’l e EBw i,e, xy"1'€ EC Ew = E, Hence

(xy_l)"l = yx"l = xy-l since xy_l is an idempotent. Now it is
easily deduced that b = xx“l.#x—l = yxulxy" = (xynl)_lxy_l = Xy
Hence we have that X = xx +x = xyhlx = yxnlx = yy_ly = Y

Thus y N p = by ¢ Conversely let us assume that vy N p = %.
Obviously E <« EZ N Euw. On the other hand, let x € ECNEwW,

Now since X *x = (xulx)_l x*x  and x (x_lx)ﬁl e xxtx = x £ EC
it follows by (7) that (x, x_lx) e up, Also since

x (x—‘lx)-l - xx'x = xe B w, hence we have that (x, xﬁlx) € Yo

Thus (x, Xulx) £ Yyn » = 4 and it follows that x = x”lx € B,
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Thus we conclude that B = EZ Y Ew

Proved

Next we proceed (o investigate vy v 1» . First we prove the

following very useful proposition.

PROPOSITION 5.12 Let v denote the minimum group-congruence and let

g be an arbitrary congruence on an inverse semigroup S. Then

E VY = Yooy

Proof Obviously Ye&oy & & VvV Y . On the other hand Y+& .Y > Y
and Yo&oy 2 &. Thus all we need to show is that Ye&eY is
a congruence on S, Clearly it is reflexive and symmetric. Next let
(x, y) ¢ YeEoy and (y, 2) € YaEcY. It follows that there
exist elements a, b, ¢, & in S such that (x, a) € v, (a, b) € &,
(b, y) e v and (y,c)e v, (c,d)e &, and (8, )€ Y.
By the transitivity of Y we have that (b, ¢) & Y. Hence by (8),
there exists an idempotent e such that eb = ec., Also by the
compatibility of & , we have (ea, ed) € &, Again by (8) and
since ea = eea we have that (ea, a) € Y. Hence by transitivity
of v, we have (x, ea}) € Y. Similarly (ed, z) € Y. Hence we
conclude that (x, z) € YoE oY . Thus Y« & oY is transitive.
The compatibility of Ye goY is immediate from the compatibility of

Y and g .

Proved
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THEOREM 5,13 Iet a relation p on an inverse semigroup 3 bhe defined

by the rule

-1

(10) (x, y) e p & xy e (BL)w

where the symbols have their usual meaning. Then P is eqgual to

Y v 4 on 8.

Proof Suppose x, y € EL ; then it follows that for any e in E,

xye = xey = exy and hence xy € B , Also if xe = ex, then

taking inverses we have ex =~ = x—le. Thus x-l e EC, Further

let x € BE{ and 2z Dbe an arbitrary element of S, then by the com-

mutativity of the idempotents on 3, we deduce that

-1 -1 -1 -1 -1 -1 -1
zxz e = zxz 2z e = (zxz ) (e) zz =  ezXz 2% =  ezxz
Hence we have that zxz—l € EC . Thus we conclude that EC is a
self-conjugate inverse subsemigroup of S. Then hi-Reopowition

e dily

itIfollows that (BC) w is a self-conjugate inverse subsemigroup of S.
Further clearly E & (EC) w . Now by Proposition I.4.6 we conclude
that the relation p defined by (10) is a congruence on inverse semi-
group S Now let (x, y) & v . Then by (9), xy-la Ew < (B2) w
and hence (x, y) € p o Also if (x, y) € u then by (7) we have
xy-'l e EC ¢ (BC)w and hence (x, y)e p . Thus p is a congruence
containing y and p ; 1t follows that vy v B « po. In view of the

proposition 5.12, it is sufficient to show that P ¢ Yekeay .

Let (x, y) € P+ Then xy_ltt (BC)w  and hence there exists

an element 2z € E. such that xy'l 2 2 Let us write u = a2y

and v = z-lzy. Clearly wl o= xynlz"l. But xy-lz"1 P T

Hence xu‘l € Bw. It follows that (x, u) € Y . Now it is easily
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1 -1 -1 -1
z 2z 2y

deduced that v v = ¥y y“lzglz -1

Yy = uu, Also,

since 2 e BZ , we have that for any idempotent e in S that

-1 -1 -1 -1 -1
uv e = zyy z 2ze = zZeyy 2 2 = eznyy

- -1
% 7z = euv »*
It follows that uv © e EC¢ and hence by (7) we conclude that (u, v) €
Also it is clear that vy"l = z~lzyy—1 € E < Ew and hence

(u, v) € y . Thus we conclude that (%, ¥) € Ya LoY &

Proved

PROPOSITION 5,14 Let S be an inverse semigroup and suppose its idem-

potents form a unitary subsemigroup of S, Then

YNR =7yl = 1YaOdH =g

Propes vtiow o2t

Proof It is clear by the theoxrem that vy 3 4 = LS . In view of

the dual argument it is sufficient to show that v N R =

S.
Let (x,y) ¢ YyOR , where x, y € S. Then we know that
(x, xxfl) e R and (y, yynl) e &8 . By the transitivity of &

it follows that (xx %, yy ') e ® . But by Tweomem L. 4.7,

each GE{ -class in S contains a unique idempotent and hence we have

that xx-l = yy—l. Further, by compatibility of v , it is immed-
iate that (x_lx, x_ly) E Y Since B is a v -class in S (Rropes-
L"h . - ’

itien SJ) we have that x ly e E. It follows that

-1 -1 (-1 -1
x 'y = (x"y) =y x

Now we can easily deduce that

- — -

-1 -1 -1 Sl -1 -1
X X = X XoX X = X y.y x = {x"y){(x"y) = X Y.

It follows that x XX X = xx-ly = yy'ly = y. Thus

Yy DR =

3

It

Proved.

B
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However it should be noted that equality of the theorem 4,14 necd
not necessarily hold in an arbitrary RU-semigroup. For example,we

consider a rectangular band B = X x ¥, where X and Y are non-empty

sets having more than one element, The operation in B is defined by
(xls yl) ¢ (th «Y2) = (xl, yZ)

It is easily seen that ( (xl, yl), (xz, y?))e (R if ana only if

X = X Thus if Yy0 Yo are two distinct elements in ¥, we have

( (% y7)s (x5 9,0 ) ¢ RO Y, since ¥ = B xB. Similarly

Yy 02 + g in B.



70
CHAPTER I1I

1 Thig chapter will be devoted to the study of congruences on a

particular class of regular semigroups, namely bisimple w -semigroups,

We recall that the set B of idempotents of a semigroup S is part-
ially ordered under the natural ordering <  defined by the rule :
e & f iff ef = fe = e;3
where e, f are arbitrary idempotents of the semigroup S. 1In an in-
verse semigroup, the set of idempotents forms a commutative semilattice

under this ordering.

DEFINITION 1.1 A semigroup S is said to be an w -semigroup if its idem-

potents form a simple descending chain
e ¥ & Y & » - - -

PROPOSITION 1.2 A regular p-semigroup S is an inverse semigroup with

an identity.

Proof Suppose E = i e, i = 0,1, 2 -- } s 18 the set of idempot-

ents in the regular w-semigroup 5, where &y 7 e » & Yy -
linearly ordered, it follows that either ei & e, or e, & ei;

. oS 9 L. Tl i
T T TR T 5 J 5
linearly ordered, it follows that either ei < ej or ej & ei;
that is, either e,e, e.e. = e, or e.,e. = e.,e, = @e.. Thus
173 Ji i i7] Jji J

idempotents in S commute, and hence by the theorem L1.4.2 it follows
that S is an inverse semigroup. Next we consider an arbitrary element
a 1in S and let 2™’ be its inverse in S. Then we have that aa ' = e,
for some 1 in N, where N is the set of non-negative integers. Now

1

we can deduce that e.a = e_aa = = = imi
0 0 a €ne; 8 e.a a. Similarly
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it can be verified that aey = & Thus q ig the identity element

in the semigroup S.

o bt i

We recall that a semigroup S is called bisimple if it has only one
5@} ~-class, ©Since a bisimple semigroup having an idempotent is regular
( Theorem 2,11 [i]) it follows that a bisimple w-~semigroup is an inverse
semigroup with an identity. The bicyclic semigroup B described in
Example I.4.5 is clearly a bisimple w - semigroup.

A more general exesmple of a bisimple w~semigroup can be construct-

ed as follows.,

BXAMPLE 1.3 Let G be a group and ¢ an endomorphism of G. Let

S = ¢(myg n): myne N, g e @G }
where N is the set of non-negative integers. Multiplication in S is
defined by the rule:

(1) (m, g, n) (Pr By, 0) = (m+p-rz, g nd"

s N 4+ q -T)

where m, n, p, g €N, g, he G r = min (n, p) and by £ e
mean the identity automorphism of the group G. The semigroup 5 is said
to be generated by the group G and endomorphism a and will be denoted
by S (G, a). REILLY [15) has shown that S (G, @) is a bisimple

w -semigroup. Further, two elements (m, g, n) and {p, h, q) in

S (Gya ) are GQ-equivalent if and only if m = p. Similarly they

are éf—equivalent if and only if n = q. Thus it follows that

(2) ((my gyn), (pyh,q) ) eH ¢& m = p and n = q

The set of idempotent elements of S is given by E = %(nh 1, m) :tm~- XN

7
§

P.T. C



where 1 1is the identity of the group G. Obviously the 94 -class
containing % is given by ¢ U = { 0, g,0) s ge G } . The

unique inverse of an element (m, g, n) in S is given by (n, gul, )

where g"l denotes the group-inverse of g in G. REILLY {15] has

further shown that if 8 is an arbitrary bisimple w -semigroup and G is
the group of units of S, then there exists an endomorphism a of G
such that S is isomorphic to S (G,a ). TFor an example in the case
of the bicyclic semigroup B, we have that G = fﬁ[} and & is the

identity automorphisme.

Suppose that S, = S (G,a ) and 8, = S (G,,B) are two bi-
1 1 2 2’“
[
simple w-semigroups where o ,f are endomorphisms oflgroupsGl and G2

respectively. Then REILLY [15] has shown that there exists an iso=-
morphism ¢ of Sl onto 82 if and only if there exists an isomorphism ©
of Gl onto &, such that a% = 4IBA , where A, is an inmer auto-

morphism of G2 for some element 2z in G2.

In the rest of this chapter, all the symbols attached to semigroup
S = S (G, ) will continue to carry the meaning prescribed to them

in this section.

Now we proceed to consider A , the lattice of congruences on a

bisimple ew -semigroup S = S (G,® ). Let us denote by Arg and Ao

the set of all idempotent-separating congruences on S and the set of
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all group=~-congruences on 5 respectively. Clearly AIS N AG— = P
MUNN and REILLY (21] rave shown that A is the disjoint union of Ay
and AG'

THEOREM 2,1 A congruence p on the semigroup S = S (G,®) is either

a group-congruence or an idempotent-separating congruence,

Proof Let us assume that p is not idempotent-separating. In order to
show that p is a group-congruence it is sufficient to show that all
the idempotents of S lie in the same p-class of S (Theorem II.2.11).
Since p 1is not idempotent-separating, it follows that (em, em+k) £ p

for some m € N and k > O, Let us put x = (0, 1, m), Then we

have that
xemx_l = (0, 1, m) (my 1, m) (my 1, 0) = (@, 1, 0) = ey
and

-1
xe X (0, 1, m) (m +¢, 1y m + k) (m, 1, 0) = (k, 1, k) = e,
Also clearly €81 = € and eke1 = Q. Now from the compatibility
of p it follows that (eo, ek) € p and also that (el, ek) E P.
Hence it follows that (eo, el) € p. Now we make use of the law of
induction and let us assume that (ee, en) e p for some n € N.

-1 -

Let y = (n, 1, 0). Then we have that. yey = e ., and yey = =e .

By compatibility of p , it follows that (eh, e ) € p and transitivity

n+1
of p implies that (eo, en+1) € p. Thus by induction (eo, em) £ p
for ell m in N, and hence all idempotents of 8 lie in the same p -class.

Proved
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Many properties o a congruence A on the semigroup S = 8 (G,q)
can be conveniently exyressed in terms of the subset Ay of the group

G, defined as follows :
by ={g e 6: ((0,8 0),e)e A§

PROPOSITION 2.2 For any congruence A on a semigroup S =S (G, a),

the subset Ah is an oa-admissible normal subgroup of the group G.

Proof Let us define A = AN(Ux U) where U is the H-class of S,

0

containing €o* Clearly }‘O is a congruence on U. Also e is the
identity element of the subgroup U and hence eOAO’ the Ko—class
containing ey is a normal subgroup of TU. The mapping ¢ defined by
the rule g9 = (0, g, 0) 1is clearly an isomorphism from G onto U and
obviously AK¢ = eoho. It follows that AK is a normal subgroup of G.

Next suppose that g e A, : that is (x, eo) € A where
x = (0, g0 0). Let z = (0, 1, 1). Then we deduce that

sxzr = (0y 1, 1) (0, & 0) (1, 1, 0) = (0, &a, O).
Also we have that zeoz_l = e,- By compatibility of A it follows

that ( (0, ga 0), eo) € A and hence ga € A Thus A, 1is

K.
« ~admissible.

Proved

We shall denote by A the set of all o -admissible normal subgroups

of the group G.

PROPOSITION 2.3 Let A, A" be two arbitrary congruences on the semigroup

S = S (&, o) such that A & X', Then A, < A, .
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Proof Let g ¢ A,. It follows that ( (0, g, 0),

ey e A , and

hence that {( (0, g, 0), e Ye A", since A <« A°. Then it is

immediate that g € A Thus A, < A .

A" A A

Pirstly, we restrict our attention to the con

Proved

sideration of idem-

potent-seperating congruences on the semigroup S = S (G, o).

PROPOSITION 3,1 Let A be an idempotent-separating

congruernce on the

semigroup S =S (G, «). Then
( (m, g n), (py b, @) ) € A iff m=p, n=gq
Proof Let us put x = (my g, n) and y = (p, h

idempotent-separating, we have by the proposition

Now (x, y) ¢ H and by (2) it follows that m =

Let & = (0,1, m) and b = (n, 1, 0). Then
axb = (09 1, m) (m, (Y] n) (n’ 1, O) = (O’ gy O
ayb = (01 1, m) (pa h, Q) (ha 1, 0) = (05 h, O

compatibility of A we have that ( (0, g, 0), (0,
Let h-l denote the group-inverse of h in G.
ibility of A it follows that
( (0, g ©0) (0, ™%, 0), (0, h, 0) (0, n°
and hence { (0, ghnl, 0), e, ) € A. Hence we h
Conversely we assume that m = p, n = q and
-1

gh = e A, implies that ( (o, gh“l, 0) eo) € A

patibility of A, it follows that

( (m, 1, O) (O, gh_]'; O) (O: h, O) (O’ 1, n)s (P, 1, 0) (Ot 1, O> (O: h,

and gh-l € A,

» 9). Since A is
I1.1.5 that A ¢ H.
p and n = Q.

we have that

) and that

). Hence by the
hy 0) Je \.

Then by the compat-

l, 0) )e A
ave that gh_l e A
ghfl € %Y Now

Hence by the com-

(0, 1, Q))E A
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that is ((ma 1, O) (O’ 2 0) (O’ 1, n), (Pv 1, O) (67 h, O)a (05 1, Q))E A
and hence ( (m,g, n), (p, hy @) ) € A

P roved

COROLLARY %.,2  Let A, A" be idempotent-separating congruences on the

semigroup S = S (G,a ), such that Ay e A, . Then M <& A,

Proof Let us assume that ( (m, g, n), (p, hy @))€ A, where
m, n, p, ¢ € N and g, h € G. Since A 1is idempotent- separating, it
follows by the proposition 3.1 that m = p, n =q and gh-l € AA}

It follows that gh-l e A

A\ since Akg; AK’ o Again by the propos-
ition %.1, it follows that ({(m, g, n), (p, h, q)) & A7, since N
is idempotent-separating. Thus A < A’ .

Proved

PROPOSITION 3.3 Let A be an oa-admissible normal subgroup of the

group G. Then there exigts an idempotent-separating congruence A

on S =8 (G, o), such that A = 4.
Proof Let us define a relation A on the semigroup S = S (G,a ) by

the rule

-1
( (my g&yn), (P, hyq) )& A &>y m=p,n=q and gh € A

where m, h, p, q ¢ N and g, h e G. Obviously A is reflexive and
symmetric. Let ( (m, g, n), (my hy n) )& N where ,g:h'"1 e A.

Also let ( (m, h, n), (my X, n) ) € A where k € G. Clearly

nkt e A.  Since A is a subgroup, it follows that

-1 - - _
g™ = gl.kt oo oanl, mele g
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and hence ( (m, gy, nj, (m, X, n) ) ¢ A. Thus X is transitive.
Next we assume that ( (m, g, n), (m, hy n) ) ¢ A, where ghnl e A,
Let us choose an arbitrary element (p, k, q) din the semigroup S. Now
we have that
(m, &, n) (py kyq) = (m+p-r, g ¥ ka' %, h+gq-r)
where r = min (n, p). Similarly we have that
(m, by n) (p, k, a) = (m+p-=2, ha" P ka" %, n + q - x).
We further deduce that
(6P ka™™) (nd P k)7t
(6d®) (™) (k™) 7 (ndP)7

(g"P) (nd Pyt o (gn7l) &P

i

it

But since ghfls A and A is o~admissible, it follows that
(gh—l) @ P ¢ A, Hence it follows that
( (m, g n) (py kX, q), (my by, n) (P, ky, q) ) & X
Similarly the left compatibility of A can be verified, Thus A is
a congruence on S = S (G, a). Obviously M & 94 and hence it is
idempotent-separating. Obviously for any g € A, we have
((0, g5 ©)y (0, 1, 0)) &€ A and hence g € A,. On the other hand if
g ¢ 4, , then ( (0, &y 0), eG) € A and hence g € A, Thus
A= AA?

Proved

PROPOSITION 3.4 Let u be the maximum idempotent-separating congruence

on the semigroup S = S (G,a ). Then v =9 and S/y = B, where

B is the bicyclic semigroup described in the example
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Proof Let us consider the mapping ¥ from S onto B defined by the rule :
(my, g, n)9% = (my n), where myne N and g €& G. Obviously ¥
is a homomorphism. Also we know that ((m, g, n), (ps hy, @)) e N
if and only if m =p and n = g, that is (m, g; n) & = (ﬁ, h, q) 9
It follows that % « ot - i.e. that H 1is a coﬁgruence° But lu
is the largest congruence contained in 3t , hence we have that p=H .
Further, by the fundamental theorem of homomorphisms, it is immediate

that S/y3 2 B.

Proved

Let A be an @ -admissible normal subgroup of the group G. We
define the mapping @ /A : G/A —7? G/A by the rule : (Ag) « = A (ga)
for every g € Go Clearly (I/A is an endomorphism of the quo@?nt

group G/A. Similarly we can define ak/A and it is easily checked

that ak/A = (oz/A)k.

THEOREM 3.5 Let A be an idempotent-separating congruence on the semi-

group S = S (G,a ). Then S/N ¢ 8 (G/A)\,a/A?c).

Proof We define a mapping ¥ from the semigroup S into the semigroup
S (G/hl’ a/%x) by the rule : (m, gy n) ¥ = (m, Ag, n), Clearly 9
is an ONTO mapping. Further, since A is an « -admissible normal

subgroup and (Akg) ar/AK = A (ga"), we easily deduce that
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[ (my gy n) (p, By q) IR

p-x

= [ (@+p=-r, g™ n"

s, n+q-1)]% r = min (n, p)

= (m+p-1, A (a® T nd™ ), n+q -1

= (m+p-z, [A (&) 1A (™)), n+q-rx)

- (mep-z, [ (48 P T/A0 0 (4R« T/AL, nsa- )
= (mep-z, (A8) (@A) (A0) @807, nia-i)

= (m A& 1) (p, Ayb, a)
= (m, g, n)'é (p, h, Q> <
Hence it follows that ¥ is a homomorphism.

Also we have that {(m, g, n) ¥ = (p, h, q) ¥, that is,
(m, A&y n) = (P, Ay, g) if and only if m =p, n =g and A,g=Ah
i.e., if and only if gh-l e A, since A, is a normal subgroup.
Making use of the proposition 3.1, we conclude that (m, g, n)$% = (p, hy, Q)
if and only if ( (m, g, n), (py h, @) ) & A and hence 9:877 = A
By the fundamental theorem of homomorphism, it is immediate that

34' = 5 (/A a/mk)

Proved

Now we consider the group~-congruences on the semigroup S = S (G,ax ).
Let A be an «a-admissible normal subgroup of the group G.

DEFINITION 4,1 The radical of A is defined to be the set of those elements

of the group G for which gctn belongs to A for some integ-

er n; that is

rad A=7geG: gd € A forsome n € N §
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The concept of radical of A plays an important part in the invest-
igation of group congruences on S = S (G,a ). Some bagic facts
about the radical of an a-admissible normal subgroup & (A &€ A ) are

expressed in the following

PROPOSITION 4.2 Let A, A" ¢ ol . Then the following hold:
(I) rad & egf

(II) 4 ¢« rad A

(I1I) A ¢ A" = red A & rad A7
(IV) rad rad A = rad A
(V) Aradl < rad A

(VI) rad A = rad (A rad I)

Proof(r) Let g ¢ rad A and hence gan e A for some integer n,

equivalently (go) M te A and hence we have that ga € rad A,

Thus rad A is a-admissible., Further let g, h & 1rgd & . It
follows that gocn e A and ho e A for some integers n, m and

@ let n > m such that n =m+ k. Since A is a subgroup and o is

an endomorphism, we have that (ham\)-l - n'® ¢ A and further

-1 mk -1 n
«

h ¢ a = h ¢ A 8ince A is «a~admissible. I+ follows that

(g;ocn) (h_locn = (ghhl) « ¢ A. Thus gh-l e rad A and hence
rad A 1is a subgroup of the group G.

Finally let g € rad A and h be an arbitrary element of the
group G. Let h—1 denote the inverse of h on G. Now we obgerve

that

-1 n -1 n}

(h""gh) ¢ = (h~ a ggan) (ha™) € A; since gad* & A and A is

normal. It follows that hnlgh € rad A and hence we conclude that

vl
f )
'ﬂ‘"ﬂ\‘c"-f‘%o "kv‘-ds \uf k= (.. then ma=i Y INTE b&o I3 a\ l‘da.nlﬁlj CLLLL\'-’MW,D‘\}J']’W “J,
N group g,
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(I1)

(I11)

(1v)

(V)

(v1)
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rad A is normal in G. Thus rad A e phH
Since A is «a-admissiktle, it is obvious that A ¢ rad A,
Let A < A° and suppose that g e rad A. It follows that go" & A
for some integer n and hence gan e A7, vhich immediately gives that
g € rad A Thus rad A ¢ rad A,
By the part (I) and part (II), it is clear that rad A ¢ rad (rad 4).
On the other hand let g ¢ rad (rad A). It follows that gu' €' rad A
for some =n e N, and hence (gan) am = gap+m e A for some integers
n, me. Hence we have fhat g e rad A, Thus rad (rad A) ¢ rad A
and hence rad A = rad rad A.
Clearly zrad I = 73 ker uk where 1 is the identity of the group G.
Let g ¢ A rad I, that is g = hg@ for some he A and J € rad I.
It follows that jﬂpz;* I for some integer n, Now we observe that
gt = (b)) & = (hd) (G") = hdI = hae A
since A is a-admissible, Thus g € rad A and we have that
A rad I € rad A,
From parts (III) (IV) and (V), it is clear that

rad (A rad I} ¢ rad rad A - rad A
On the other hand since A and rad 1 are normal subgroups, we have that
A c Arad I and hence rad A < rad (A rad I). Thus we conclude

that rad A = rad (A rad I).

Proved

*
We shall denote by /4 the set of all  -admissible noxrmal sub-

groups A (A £of ) for which rad A = A holds.
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PROPOSITION 4.3 Let T be a group-congruence on the semigroup S = S (G, a).

Then
(1) (x, v) ¢ 1 iff Xy T e eyt (xy y & 8)

(11)  A_e ofl *

Proof (I) We assume that (x, y) € 7t. Let y_l be an inverse of ¥y

in the semigroup S = S (G, @), By compatibility of T, we have that

....]_)

-1 . .
(xy y YY € T, Also since T is a group congruence, we have that

(yy~ 1, eg) € T. By trensitivity of T, it is immediate that

1

(xy"l, eo) e T, Conversely let us assume that xy & e.%  Then

0
by compatibility of T, we have that (xyuly, eoy) e T. Also since
(eo, y_ly) € 1T, it follows that (x, xy—ly) € 1t. Then the trans-
itivity of © dimplies that (x, y)e <>

(II) We know by the proposition 2.2, that A  is «a-admissible
normal subgroup of G. Clearly Ar < rad A_€ Thus all we need to

show is that rad AT - A?p Let g € rad Av’ It follows that

ga e A_ for some integer n , that is ( (0, ga', 0) eo) e . Now

we observe that (m, 1, 0) (0, ga’, 0) (0, 1, n) = (n, ga, n) =nd
(n, 2, 0) (0, 1,0) (0, 1, n) = (n, 1, n) = e . It follows by the
compatibility of 1, that ( (n, & °, n), en) e t. Also since 1 is

a group congruence, we have that (en, eO) e t. Again by compatibility
of v, we have that

. n
( (ns 1, n) (O’ £ O), eO (O’ s O) ) E T, l.€. ((n, g n),(@,g,O)) 2
By transitivity of T, we immediately get that ( (0, g, O), eo) e T and
hence g € A, Thus rad A < A

Proved
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Qur next task is to determine the structure of the maximum group
homomorphic image of the semigroup S = S (Gya).

Let us consider the Cartesian product G x N, where N is the set
of non-negative integers, We define a relation p on G x N by the
rule that

( (ay i)y (by J) ) e p iff ad™V = patT
for some r 2 i, ] (and hence for all sufficiently large ). It
is clear that
(a, i)p = (ad, i+n) p .
for every integer n. Obviously the relation p is reflexive and

symmetric. Next let ( (a, i), (b, j) ) & ¢ and ((b, j), (c, k)) €

Thus we have that ad ba™"d for > i, j and that
b® = ¢&F for some s 3 jy ke Let t = max$r, s}. Then
clearly a P=1 | pat"d - co®® ang hence it follows that

( (a, 1)y (cy k) ) € p. Thus P is an equivalence on the set G x N,
Let us consider the Quotient set (& x N) /o , and we define the

multiplication in (G x N) /o by the rule :

(a, i)p (b, 3) p = adt, bam”j, m) p
where m = max (i, j)s Associativity of the operation is easily
checked., Also (a, i) p (I, O)p = (a, i)p and
(1,0)p (ay, i)p = (a, i)p and hence (I, 0) P is the two-sided

identity of (G x N) /p o et (a, i) P e (G x N) /p and a”t
denote the group-inverse of a in G, Then we notice that
(a, 1)p (2%, i) p = (1,4) P = (I, 8) ©

by virtue of (%). Similarly (a-l, i)p(ay, i)p = (I, ) p. Thus
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(¢ x N) /Q is a group; we call it the direct a-limit of the group G

and denote it by ka Next we define a mapping & ¢ (}a —7 G, by
the rule that {(a, i) p 1 & = (a0, 1) p »
It should be noted here that for any p € N, we have that
[ (ay i) p ] & = (ad® 1) o
It is easily seen that the mepping ¢ : G, -—» G, defined by the rule:

L(@ i) p Jo = (a,1+1)p

. . . - : ~ =1
is a two-sided inverse of the map & that is ¢ = « and hence
& 1is & one-one onto map.

Next we observe that

r~

(ay.i)pla L Dpla =L (euwi)p ]l (bey §) o]
((a) ™ (bd) ™Y, m) o

[ ((aa™™h) (™) ,m) 0] &

(L (a,i)p JL(o,3)p))a

Thue @ is an automorphism.

i

Also by (4) it is clear that for any integer q
L (ay 1) p | % = (a, i + q) and we can deduce that

for any integers p, q
[ (a, 1) p ] &% = (ad®, i+ q)
We shall denote the set of integers by 2. Let H Dbe an arbitrary
group and f an automorphism of the group H. We define a multiplica-
tion in the set Z x H by the rule (i, a) (J, ) = (i + 3, aﬁ‘j b)
where i, j € 2 and a, b ¢ H. Associativity of this multiplication
is immediate from the associativity of addition of integers, and the

fact that 8 is an automorphism of the group H. Let I denote the

identity of the group H. Then for any element (i, a) ¢ % x H, we
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have that

(L, a) (0, 1) = (i, a) and (0, 1) (i, &) = (i, a)
Thus (0, 1) is the identity of 2 x H. Also let aml denote the in-
verse of the element & in G, and let i3"1 denote the inverse map of
automorphism 8. Then we deduce that

(i, 8) (-, aF FY) = (0, afT 2 gH = (9, 1)

S'imilarly (-i, &~ g"l) (i, a) = (o, 1). It follows that {-i, a‘lg"l)
is a two-sided inverse of the element (i, a) in Z x H, and thus 2 x H is

a group. We denote it by H 4 8.

THEOREM 4.4 Let y be the minimum group congruence on the semigroup

S = 8 (Gya)s Then SA, > G, % where the symbols have their

usual meanings.

Proof We define amap § ¢ S — G, 4 & by the rule
(my gy n) & = (w-n, (g n) o ).
Suppose (i, (&, 3) p ) is an arbitrary element of the group G, 1+ & .
If i 3 o, then we note that (i, (g, J)p ) = (1 + j, & 3) %,
and on the other hand if i £ o, then we see that
(i, (& Do) = (&, (ga™y 1) o) by (3)

= (3, ga’i, j-i) & . It follows that $ is an onto mapping from S
onto the group Gu P €.

Next let (m, g, n) end (p, h, q) be two arbitrary elements of
the semigroup S = S (G, ). Then we can deduce that
(my g n) 3 (py b, @) o

(m-n, (g, n) p ) (p-aq, (h, q) p )

]

(m-n + p-q, (g, n) p &% (n, q) 0 )

]

(men + p-q, (g n+ q)p (hy @) p ) by virtue of (5)
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n
« (m-n+tp-gq, (e’ ha', n+q)p)

L Al U=
=Ty

(m«n+p - a, (&g« @ y N4+ Qq - P)P ) by (3)

!

r = ming¢n, p}
p-r . n-r

= (m+p-r1r, ga ha "y, n+q=-1) %

i

[ (m, g n) {ps by, q) ls

Thus ¥ is a homomorphism.

Clearly {}oan-l is a group congruence on 3 and hence vy ¢ 9o %flo
On the other hand let ( ( m, g, n), (p, h, q))s. 9091, This means

that (m-n, (g, n)p ) = (p-q, (h, q)p ) and hence we have that

m-n = p-q and (g n)p = (h, q)p. It follows that
k-n k~g . '
a = ha for some integer k 7 N, q. Now we can deduce that
k-n
(m, g, n) € = (m + Xk - n, gu , k)
K=
= (p+Xk-gq,nha 5 k) = (p, by q) e

Then by the theorem II.5.8 it follows that ((m, g, n) (p, h, q)) & ¥
Thus 2 o %-1 & Y. Now by the fundamental theorem of the homomorph-
isms, it is immediate that s/Y 2 G 4 .

Proved

DEFINITION 4.5 The mapping & of the group G into itself is called stable

provided the following hold

(1) “Gdk = Gak+1 for some integer k.
I1) a4§dk is an automorphism of the group Gﬁzk'

The smallest integer k for which these conditioné hold is called the

index of stability of the map a.

NOTE 4,6

(I) o is stable if it is an automorphism of the group G.
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II) o is stable if it is nilpotent, i.e. a = € for some n,
where § 1is the zero map.
111) « " is stable if the group G is finite.

The structure of the group S/Y takes a simpler form if a is stable.

THEOREM 4,7 Let the endomorphism « of the group G be stable with the

index of stability k, and let B = a{mk. Then G 1 & =2 ed1p.

WE owmitT ThE PROGE

§5 Now we proceed to consider the congruences arising by the opera-
tions of join and intersection of the group-congruences and idempotent-
separating congruences on the bisimple w-semigroup S = 8 (&, «a)

generated by the group G and an endomorphism « of the group G.

PROPOSITION 5.1 Let y be the minimum group congruence on the semigroup

S = 8 (G,a) and I denote the identity of the group G. Then |
OO k }
A = A = UL ker « = rad I '
Y O 9t Y k=1
Proof We know that AY = «E g € Gz ( (o, g 0), eo) € Yk. Now

since the ${ -class of S containing e is given by

U = {(o,g,O)s 83 QEG}

it is clear that AY A A«(’ Also it is clear by the definition
‘.l
4.1 that rad I = @_lker cxb. Thus all we need to show is that
QO
Ay = kﬁ_)i]ker ak . Suppose g is an element of the group G. Now

we deduce that g ¢ AY & ( (0, g, ©) eO) £ Y &

P-7. ¢
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leee &= € (0, gy 0) = e @, for some m, by Theorem I[.5.&

. m
ieee &= (m, ga, m) = e for some m

. m ‘
ie€e = ga = 1 for some m
c-t}) k k

'o . pa— €

1l.€ < = 8 K21 er a

_ o2 k

Hence we conclude that A = U, ker a

Proved

_ . e k
COROLLARY 5.2 Iet 8 = S (G,a) and let XK = Yy ker o

. ) 6/, a
Thexn S{Vnsel 2 S (/K’ aé&
Proof Since YN 9% < 4 » it follows that' vy N9y is an idempotent-

separating congruence on §S. Alsoc by the proposition 5.1, we have that

ﬁy A 91 = K. Now making use of the theorem 3.5, we immediately
get that

Proved

PROPOSITION 5.3 Tet Y be the minimum group congruence on the semigroup

S == S5 (Gya). Then

((m,g,n)(p,h,q))g Y Vv 9% iff m-n = p=-g

Proof Let == (my g, n) and y = (p, hy q)s We assume that
(x, ¥y) ¢ YV 9 « By Proposition II.5.12, we know that Yv Si=Yo M oY-
It follows that there exist two elements a = (m”, g”y n”) and
b = (p’y "y q°) in the semigroup S, such that (x, a) € v,

(a, ) e ¥ and (b, y) € Y. DNow since (a, b) € % , it follows
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by (2) that m” = p”° and n” =q°. Next since (x, a)e vy, it

follows by the theorem 1I1.5.8 that ex = ea for some integer k

?

and hence for any integer greater than k, since S is a  w-semigroup.

Thus we can assume that k % m, m’. Now we see that

ex = (k+m-1, g& ", k+n=-m1)=(k+ m - r;, g'ak"r’, kK +n -17)
= ¢a

where r = minyk, m% and r’ =1Mn{mlfy Then we have that

(k, gw%mm, k+n-m = (k, g'ak-m’, k +n” - m”), This implies

that k+n-m = k+n° -m’ andhence m-n = m -n’. Also

since (b, y) € vy, we can likewise deduce that p” - q° = p - q.

Now it is immediate that m -n = m" - n” = p”" -qg” = p - q.

Conversely we assume that m -n P = do Let us suppose that

|

m ¢ p. Now we note that e X .= (py g™, p+n-m = (p, g 5g)
Hence it follows that (ep;, y) € H. Also since ex = epepx,
it follows that (x, epx) € Y.- Thus we conclude that
(%, ) € Ye 1 < YV IH.
A similar argument holds for the case when m > p.
Proved

PROPOSITION 5.4 Let S = 8 (G,a). Then s/Y y

¢ where &

iit

H

is the infinite cyclic semigroup.

Proof We take (; to be the group Z of integers with addition. Let
us define a mapping 9 from the semigroup S onto the group & by the

rule (m, g, n)$ = m - n., Now we note that
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[ (m, gy n)s Jp» by a)9] = (m-n)+(p-4q) = (m+7p)- (o + q)
= m+p-r)-(n+q~1r), where r = mingn, p}k
On the other hand we see that | (m, g, n).(p, h, q) ]9

= [(m+p-1, 8" " ha ©

,n4qg=~1) 18 = (m+p-1)«(n+gq-r1).
It follows that [ (m, gy n)s ) [ (p, hyq)s ] = [ (m, &g n) (p, h, q)] 5
Hence & 1is a homomorphism., Further,by the proposition 5.3, it is clear
that 9 o 51 = YV 5 . Now by the fundamental theorem of homomor-

phisms, it is immediate that 54\, o = G .

Proved

PROPOSITION 5.5 Let t,t ¢ Lys s vyl- [Then the following hold.

(1) eo'c=%(m,g,m)es= gEAT,mEN}

(II) If A ¢ A _. then we have that T & 7,

Proof (I) Let us put x = (m, g, n) and suppose that x ¢ INE

By hypothesis © < 9% vy ; hence (x, eo) € Y vY. By Proposi-
tion 9.3 it follows that m = n. Further, by the compatibility of ¢,
we deduce that ( (0, 1, m) ey (my 1, 0), (0, 1, m) x (my 1, 0) e <3
equivalently (eo, (0, g, @) ) € T and hence g ¢ A_. Conversely
let x = (my, g, m), where g ¢ A It follows that ((Q, g, 0) eQ) £ T,
Again using the compatibility of T, we deduce that

( (my 1, ©) (0O, g, 0) (0O, 1, m), (m, 1L, O) °q (@, 1, m) ) e 7T;
equivalently ( (m, g, m), em) € T S‘i.nce (em, eo) e T, it is
immediate that (x, eo) £ Y.

(II) Suppose Ao e A.. By part (1), it is obvious that

1

eg T € & T, Let (x, y) e 7T, where x, y £ S.  Suppose that y

is the inverse of the element y in the semigroup S = g (G,a). Then
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by the compatibility of t , we have that (xy”l, yy-l) € T. Also

. . -1
since 1 is a group ccngruence we have that {yy

follows that xy—l € eO T ggeo‘tﬁ Now from the proposition 4.3%, it

follows that (x, y) ¢ t°« Thus T < 17

y QO) E To it

Proved

COROLLARY 5.6 Let t© € ly, vy ) 2nd let x =(m, g, n) and

y = (p, b, q) be elements in the semigroup S =S (G, a). Then

(%, ¥) € = iff m-n = p-gq and (gat =) (hflan*r) e A
where r = min ¢n, q¥i.
Proof Let (%, y)e t. Sincet < 5 vy, we have that (x, y) € %1 vvy.
It is immediate by the proposition 5.3, that m - n = p -~ q. We
further observe that xy-l = (m, g, n) (q, hﬂl, P)
= (m+q-1, g F . h_l(xn_r, n+p-r), Now since 1 is a
group congruence, it follows by the proposition 4.3, that xyﬁl £ eOT.

Making use of the part (I) of the proposition 5.5, we obtain that

o, hfl a™ T e 7

g AT’
Conversely suppose m -n = p - q and (gal ™) (h"1 ™) A
It follows that m+ g - r = n+ p - r and hence by part (I) of the
proposition 5.5, we get that xy_l € ey T. Again by the proposition
4.%, we finally get that (x, y) € .
Proved

PROPOSITION 5.7 Let A be an «-admissible normal subgroup of the group

G, such that rad A = A. Then there exists a congruence T € [Y, % VY]

such that A = AL



92

Proof Let us define K = f (my gy m) ¢ S; g8¢ A, me N § and

let X = {(m, g, m), y = {(n, h, n) Dbe two arbitrary elements of X,
where g, h ¢ A and m, n & N, We observe that

-I m-r

xy = (m+n-r, ga . ha , M+ n~r) where r = min.fng rx},

Now since g, h € A and A is o ~admissible subgroup, it follows that
(g ) (hdF) € A and hence xy e K. We know that the inverse of
the element x in the semigroup S =8 (G,a ) is given by x-la(m,g"l,m)
and it clearly belongs to X since g_l g A. Thus K is an inverse sub-

semigroup of the semigroup S.

Next let x = (my, g, m) ¢ K and y = (p, h, q) be an arbitrary

element of the semigroup S. Now if q » m, then we observe that

yxy b = (p, b, ) (m, g m) (a, b7, p)
- (o, b (ed™) a) (a, b7, )
= (p, b (go¥™) 17t p)
and if q £ m, then we have that
vyt = (py b, q) (m, g m) (g, b, p)
- (p+m-aq, (0" g m) (g, b7, p)

e -1 me
(p+m=-q, (hg  3) g(h "), p+m-gq)

#

Since g £ A and A is o-admissible, we have that gat © € A. Fur-
ther since A is normal in G, it follows that h (ga* ) nle A on
the other hand we see that

(1) % g ("1™ = (nd™Y) g (b e 2
since A is normal in G. Thus we conclude that yxy~1 £ K for every

X ¢ K and ye S, i.e. K is a self-conjugate subsemigroup of 5.

Next suppose epx e K for some idempotent ep in S. We know that
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epx = (p+m-r, gap‘r, p+n-r)vwhere r = min m, p . It
follows that p+m-~»r = p+n-r i, m=n and gap"r £ A,
which means that g & rad A. But we have that rad A = A; hence
g £ A, Thus x € A. Hence we conclude that K is & closed subsemi-
group in the sense of Chapter I, §4. Clearly XK contains the set E of
idempotents of the semigroup S.

Let us define a relation T on the semigroup S, by the rule

(xy y) & = iff xyul e K.

Since K is a closed, self-conjugate, inverse subsemigroup of the inverse
semigroup S =S (G,a ) and K 2 E it follows by the proposition I.4.6
that t is a congruence on S. Obviously all the idempotents -{em: m € jN%

belong to the same ¢ -~ class of © and hence by the same argument employed

in the proof of the theorem 1I1.2,11, we can deduce that T is a group

congruence on S+ Thus * 5 vy . Let x = (m, g, n) and

y = {(p, h, g) and suppose that (x, y) € = . It follows that

7t = (maqg-1 (6T W™ ), nep-1)e K

where r = min T 1 qy. Hence m+ q ~r = n+ p - r which gives |

m-n = p=-q. By the proposition 5.3, it followa that (x, y) & % vy
and hence v ¢ 9% v y. Finally we observe that (x, %))e T iff xe K

Hence K = qgr. 8ince 1t 1is a group congruence, it follows from the

part (I) of the proposition 5.5 and from the definition of the subset K

that A = A
T

Proved

PROPOSITION 5.8 Let A and T be congruences on the semigroup S = S(G,x),

such that M € [v, )] and T € [Y, 5 vy]. [Then the following
i T T
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hold
(I) Avo-<te ¥y vyl and oy ¢ = Tad (MA)
(II) A T ¢ Lv, 91 ] and_ Akn . = A O A

Proof It 18 clear that

Ye T ¢ AV T < A V(‘}{V‘{)gm v Y

and hence we have that A vt € [y, dvyY]. We know by the propos-
ition 4.2 that rad (A}\AT) is an a-admissible normal subgroup of the
group G. Also since rad rad (AKA'C) = rad (A?\A'r) (by proposition 4.2)
it follows that vad (A A_) € f . Now by the proposition 5.7 it
follows that there exists a congruence & on the semigroup S such that
E e [y, vy vH] and that Ag = rad (A4, 4 ). TNow let us pub
x = (my gon) and y = (p, h, q) and suppose that (x, y)e A,

1

It follows by the proposition %.1, that m = p, n = q and gh- £ A?\.
1

Obviously gh "¢ A, & 44 ¢ rad (A?\A-r:) = Ag’ since A, and A _ are

normal subgroups in G. Further we observe that xy*l = (m, gh_1

, m).
It follows by the part (I) of the proposition 5.3 that xy ' € eg & and
hence by the proposition 4.3, we have that (x, y) € & Thus A & &,
Also it is clear that A'r - A}\AT < Ag and hence by the proposition 5.5
(1I) that we have that T & E&. Combining these we get that A v T ¢ &
and hence by proposition 2.%, that A)\ vt S A £ Qbviously

AEC AVT and t € Mv T, It follows by proposition 2.3 that

A and At < A A v T and hence we have that A A _ < Ay o o

?\;;‘AK v T

since A)\ and A'c are normal subgroups. It follows by the proposition 4.2

that rad (HAp) < rad (Ay ,, o) = & v t+ Thus we have established

that 4 ¢ = rad (A\A;) « Ay , ¢ < Ay and hence Ay  ; = rad (MAqg).
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(IL) Obviously A At < A e I, 3t]. Next let x = (0, g, 0) ¢ S.

Then we observe that 2 e A, if and only if (x, eo) e N and
(x, ee) e v that is, if and only if g e 4 N A o+ Hence we con-
clude that A?\ A = A}\ N AT
Proved
COROLLARY 5.9
A?»vY = rad Ay, for amny M & [t, N ]
Proof It is shown in the foregoing proposition that A A vy = rad (A)\AY Y.

But AY = rad I (Proposition 5.1) and further by the proposition 4.2,
rad (A)\ rad I) = rad A, Hence we conclude that 4, y = rad A,.

Proved

We recall from the proposition 2.1 that A , the lattice of con-
gruences on the bisimple w-semigroup S = S (G, @) can be expressed

as the disjoint union .of A y the sublattice of idempotent-separating

I8
congruences on S and AG, the sublattice of group-congruences on S.
It is clear from the corollary that AI& is modular, Next let

A denote the lattice of congruences on the group S/Y’ where Y 1is
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the minimum group congruence on the semigroup S, Suppose p is a
group congruence on S 1l.es 0 2 Y. Then we know from the proposition
I.1.7 that there exists a congruence p 4, on the group 34, defined
by the rule : (x, y) € p iff (xv, yy)e p,Q . Let us define a
mapping ¢ ¢+ p > p /% from the lattice ‘AG to the lattice A,
We also know that for any congruence o on the group 84,, the relation
p defined by the rule : (x, y) e p iff (xy, yy)& o for every
X, ¥y € 5 1is a congruence on S such that p 2 v , i.e. 0 € AG' It
follows that ¢ is a one-one onto mapping. Further let o, p” € IE
such that p <« p% Then we see that (xv, yY) ¢ p,§ implies
(x, y) € p and hence (x, y) € p’ which gives (x7Y, yY) € p’/%
and so pb < PP . Similarly it can be verified that ¢_l is order-

preserving. Then it follows that ¢ is a lattice-isomorphism, Now

since by the corollary II.1l.9, A is modular, it follows that A

a is
a modular sublattice of A,
LEMMA 6.1 On the semigroup S = 5 (G,x), the following hold.
. i k
N €Y & G = Uker «
k=1
where the symbols have their nsual meanings.
e k
Proof First we assume that 9 <« ¥, and let us put K = éél ker a ',

Obviously K < G. Now let g e G, Then we have that
((©@,8 0)ey) ¢ % ¢ v
and hence g ¢ AY. It follows by the proposition 5.1, that g ¢ .AY = K.
Thus we have that G = K.
Conversely suppose that G = K holds and let (x, y) €% , where
x = (my gyn) and y = (m, h, n), Obviously ghm1 E G =K and

hence there exists an integer k such that (ghml} % I. It
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follows that (gak) (h'1 ak) = (gak) (hak)"l = 1 and hence we
have that gak = h(%. Now we observe that

. k k
e i F = (m +k, gy n + k) = (m+ %k, ha 'y n+ k) = e Y

1t follows by the proposition I1.5.8, that (x, y)e vy . Hence 94 < v.

Proved

The next theorem provides necessary and sufficient conditions for
the lattice of congruences on the semigroup S = S (G,a) to be mod-

ular,

THEOREM 6.2  (MUNN) On the semigroup S =8 (G,x), the following con-

ditions are eguivalent.

(1) rad A = A radl for every A ¢ QA

(xzz) v, vyl forms a modular sublattice of A, the lattice of

congruences on S,

(I11) A_, the lattice of congruences on the semigroup S, is modular,

Proof [a] First we show that condition (I) implies the condition (II).
We assume that rad A = A for every a-admissible normal subgroup A of
the group G, and we shall show that

(6)

[(AerA, A vt = Myt , A 0y zk’nt]:}?\=)\’

where A, A, T are arbitrary congruences in the sublattice [t, o4 v vl
From the proposition 2,1, it is clear that
[vs mvy)l = [vw wl ULy, vyl
where [vy, 1] O\ [vs savyl)] =¢ . Since the sublattice of idem-

potent-separating congruences on S, and the sublattice of the group
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congruences on S are shown to be modular, it follows that when
A, M, 1t e [w, 9] orwhem A, A, T £ [Y, 94 v Y], then (6) cer-
tainly holds. Next we consider the case when A, v e [t, 3 ] and
A e [y, WvY)J]. Then we note that %+ 2 A v 7= A v 12y
i.ee 9% 2 Y, which is impossible.

Similarly in the case when A€ [t,%] and A\, T € | %, 94 v Y]
we deduce that % » A M1 = AT sy i.ea 9 2 Y. Now

we are left with only the two following possibilities.

CASE I. Let A,A" ¢ [uvy,m] and T ¢ [y, S5 vy e

It is clear by the hypothesis that rad (ATAK) = A A, radl,

Since T is a group congruence, it follows by the proposition 4.3 (II)
that A _ = rad A_ = rad I (by Proposition 4.2 (III). It follows
that A)\AT rad I « A)\A,c. Hence we have that

AA < rad (B 4) = AA rad I & AAg
Thus we have that A,A_ = rad (%\AT). It follows by the proposition

5.8 that A)\AT = o Similarly we can obtain that A?\’A'c = A,

A?\‘v"t: A

Since A v Tt = A“ v 1, it follows by Proposition 2.3, that

A and hence we have that A?\A-r A

i}

AN v ot S A)\fv . X‘A'c' Further

since A N1t = ANt , it follows that A A

AT AN o1t

Now it follows by the proposition 5.8, that A N\ 4 _ = A,. N A_ .
Also since A ¢ A, it is clear that A)\ < A+ Now from the mod-
ularity of the lattice of normal subgroups on the group G, it follows

»

that 4, = A -. It is immediate by the corollary 3.2 that A=A,

CASE II. Let A,A ¢ [y, Avy] and t € [t, 91]. Since M is

a group congruence, we have by Proposition 4.% that
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AA = rad A A 2 rad (. Hence we have that
A Ay < rad (ATAA)- = ATAA rad I « A A,

which gives us A A = rad (ATA}\). Now by the proposition 5.8, we
have that A =, = rad (ATA?\); hence we have that A A = A_ .
Similarly we can deduce that A A, = A e But A vt = ANwvorT,

- T A T v A

. AHame
it follows by the proposition 2.3 that AKAt = A)ﬁAT' By theargu-~
ment employed in Case I, we can deduce that 4, /N AL = A~ AN

and A?\ < A}\,. Now by the modularity of the lattice of normal sub-
groups in the group G, it follows that A}\ = A?\" Now it is immed-
iate from the proposition 5.5 that A = A7, Thus we conclude that

(6) holds and hence the sublattice [v, 9% v A] is modular.

[b] ©Now we proceed to show that condition (II) implies condition
(III). We assume that the sublattice [i, 9 vy ] is modular and we
will show that for arbitrary congruences A, A", T in A, the lattice
of congruences on S

(Aery Ave =2 v , Aot = AN n 1] A= AL
In view of the argument employed in part [a], it is clearly sufficient
to consider only the following two cases,
CASE T, Let AN ¢ A €« % and vy ¢ T
Now we deduce that
(v al(uvy) = (Mv(yvi)a (dvy) since y ¢

(v y) ve) (s vy)

Il

it

(M vy) v (vn( % vy)); since A, is modular

1

Aviita{nvy)) Yetr O (95 vvy)



Similarly we can deduce that

(W) (srvy) = Myv(talsgvy))
Now since A vt = A" v 71, it follows that

(Nve) A ovy) = (M Vo) n(mvy).

Hence we have that

Av (xa(vy)) = A v(tonlwvy))
Further since A Nt = A Oz, it follows that
Aot n(uvy)) =AM (1o (nmvy) ).

Clearly A ,A" and (v A ( 9% v yY) ) belong to [+, 9% vY], hence

by the modularity of [L, 9t v v], it follows that A = A’

CASE I1I. Let ¢ ¢ 9 and Y ¢ A ¢ A, Now we deduce that

(o) vy = (o ((smavy)a t)) vy since T ¢ M o SivY

= ((xn(%xvv))(‘\ T ) (VAR

(A ol vy) ) o (tvy) since [V, 9 VY] is modulaxr

AO((mvy)O (vt vy))

il

= anlt vy) since T ¢ N
Similarly we can show that (A" n 1) v v = A o (1 v v). But |
Aot = AN+t eandhence (Mat) vy = (An 1) vy

It follows that A O\ (T wvy) = 2" & (v v y). Also since
AV Tt = A va, it is clear that A v(Tt vy) =X v (v v vy).

Clearly A , A", and © v y are group congruences and since A, 1is

G
modular, it follows that A = A" . Thus we have established that (6)
holds for arbitrary congruences in the lattice of congruences on S5, i.e.

A is modular.
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[c] Finally we proceed to show that condition (III) implies con~
dition (I)., We assume that A is modular and suppose that & is an
a -admissible normal subgroup in the group G. Let us put B = rad A
and C = A rad I. It is clear from the proposition 4.2 that B and C
are a-admissible normal subgroups of G such that rad B = B and
rad C = C, Now it follows by the proposition %.3% that there exist two
congruences A , A~ in [tv, M ] such that B = Ay, and C = Ay It

A
is clear from the proposition 4.2 that C < B and hence Ak’ 2 A

Now from the corollary 3.2, we infer that A £ A" , Now we deduce that

A

AN voy
= rad Ah by Corollary 5.9
= rad (& rad I)
= rad A | by Proposition 4.2
= rad (rad A)
= rad B = rad A,-
= Ay, v by Corollary 5.9
It follows by the proposition 5.5, that A vy = A vy .

we further deduce that

A Ay Ay N AY by Proposition 5.8
= (Arad I) N (rad 1)
= rad I
= (rad A) N\ (rad I)
= A, , N A = A_, by Proposition 5.8

A Y NMevy 0P ?

It follows by the corollary 3.2 that A Ny = A" N y. Now since
A'G is modular, we conclude that A = A" and hence by the proposition
2.3, we have that Ah = Ay e Thus rad A = A rad I,

Proved
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COROLLARY 6.3 If rad 1 = G, then A is modular.

f

Proof Clearly then racd A rad (A rad 1)

rad (A. G) = rad (G) = G

i

for every A & oM, and hence A is modular by the foregoing theorem.

Proved

COROLLARY 6.4 If G has no proper o -admissible normal subgroup, then A

is modular; in particular this holds if G is simple.

Proof Obviously rad A = A rad I holds for A =G and A =31}

Proved

COROLLARY 6.5 If o is an inner automorphism of the group G, then A

is modular.

< k

Proof Since ¢ is one-one onto, it is clear that rad I = U ker a =1

k=]
Further since A is a normal subgwroup, it follows immediately from
(h-l)n g (h)n e A forsomene N and some he G, that g € A,
and hence 1rad A = A, Thus we have rad A = A rad I and hence A

is modular.

Proved
k k1l |
COROLLARY 6.6 If ¢ = « for some k > O and 1 y» O them A

is modular.

Proof Let A be an q-admissible normal subgroup of the group G and let

g ¢ rad A, It follows that gan e A, Let us choose an integer m

such that 1Im 3 n. Now we have that h = ga™ € A since A is
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o -admissible. But w2 observe that

-1 k -1 k k
(hg)a = (b~ a) (ga)
-1  Im+k k )
= (g «a ) (ga™) = I
. lm+k k
since ga = g .

Hence we have that h™'g e rad I. It follows that g =h (h™'g) ¢ A rad I.
Thus rad A A rad I. But by the proposition 4.2, we have that
rad A 2 A rad I, Thug rad A = A rad I and hence A is modular,
Proved
k dk+l

In particular we note that if G is finite then « = for

some k 7 0 and 1 % © and hence A is modular.
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CHAPTER IV

In this chapter we propose %o study the form of the congruences

on completely O-simple semigroups.

DEFINITION 1.1 A semigroup S is said to be O-simple if

(1) S has a zero O
(1I1) 5% 4 TO%

(III) the only ideals of S are S and 20§

DEFINITION 1.2 Let S be a semigroup with zero 0. A [left, right]

ideal M of S is said to be Q-minimal in S if and only if
(I) M #7301}
(II) the only {left, right] ideals of S contained in

M are M and S0Y%.

DEFINITION 1.3 A completely O-simple semigroup is a O-simple semigroup

which contains a O-minimal left ideal and a O-~minimal

right ideal.

In order to describe the structure of a completely O-simple semi-
group, we need the concept of a "Rees matrix semigroup over a group with
zero", Let G be a group and let GQ = G ©%207%, the semigroup ob-
tained from G by adjoining a zero O. Let I and A be non-empty sets.
Let P = (pki> be a fixed A x I matrix over G'. Let us consider the
set ¢%°xIx A of triplets (a, i, A) where a € GO, ie I, Mg A
and define the multiplication by the rule

(ay i, A) (by 3y W) = (ap)\j;b, i,4)

The associativity can be easily checked., Now the set 0 xI x A is
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an ideal and we take the Rees factor semigroup of GO x I x A modulos
0 x I xAe We call the factor semigroup the Rees I x A matrix semi-
group over ¢® and denote it by W(G, I,A, P). The semigroup
'mﬂf(G, I,A, P) is regular if and only if there exists a non-zero
element of GO in each row and column of P, For this reason we shall

say that the matrix P 1is regular if and only if each row and column

0 .
of P contains a non-zero element of G. Rees has proved the following

structure theorem for completely O-simple semigroups (Theorem 3.5 [I])

THEQOREM 1.4 A semigroup 5 is completely O-simple if and only if it is

isomorphic with & regular Rees matrix semigroup over a group with zero.

we omit the proof.

Let 5 = (N\°(6, I, A, P) be an arbitrary completely O-simple
Semigroup.
We define a relation éiI on the set I by the rule
(i, 3) e t:I iff kai = 0 iff Prj = 0] where A

£

Obviously 61 is an equivalence on the set 1. Similarly the relation

£, on the set A defined by the rule

(A, pn) € éA iff [p?\i = 0 iff p, = 0] where i €

is an equivalence on the set A . We shall denote the quotient set

. * * * *
I/aI by I and the quotient set A/g, by A . Clearly I x A

I

£,

O

A.
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* * * *
is a partition of the set I x A+, Let (i 42 ) € I x A, Thus
. * -
it easily follows that either p , = O for every (1,2 ) & (4,2 )
#* ¥*
or that pli-qk 0 forevery (i, M) & (i , A ). In the latter case
3 *
we shall say that the equivalence class (i , A ) is non-zero. From
the regularity of the matrix P it is easily deduced that for each
* X * * EaE N
A e A, there exists an i € I such that (i , M) is non-zero,

and vice-versa.

DEFINITION 2,1 The sandwich matrix P is said to be normal if

% *
(I) TForevery A & A , there exists an i e I,

.x.

such that Py = © for every A € A,
* *
(II) For every i e I , there exists a A & A
*
such that gﬁi = e for every i £ i

THEQREM 2.2 Every completely O-simple semigroup S is isomorphic to a

regular Rees matrix semigroup whose sandwich matrix is normal.

Proof Let S be a given completely O-simple semigroup. It follows by
Rees theorem 1.4 that S is isomorphic to a regular Rees matrix semi-
group Y (G, I, A, P) (say). Suppose that i¥ and N are equiv~-
alence classes of 1 and A respectively as described in the previous
paragraph. By the axiom of cholce we can choose a set of representat-
ives one from each equivalence class i* in I* and one from each
equivalence class X% in A*. We shall denote the chosen representat-
ive element of i* by io and the representative element of K* by
AO- |

* * * 0
For each A € A, let us define a (M ) = i, where i is
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._x_ X . . * * . . * - O
such that (i , A ) y O. Foreach i e I, wedefine B (i ) = A7,
* * Q * :
where A is such that o (A ) = i  if such a A  exists; otherwise
K ) * N
we take B (i ) = p~ where pu is such that (i , u ) # O.
Next we define
v. = pt * for every A ¢ A
AT R, « () J
and o "
e if i° = a (M) for some A
-1 Q *
* %, x % ifd
B, 1 G, a(pG) N ML # )
for any A
and Pri T VaPua Yy

Now we make use of the following lemma (Lemma 3.6 [I]) whose proof we

omit.,

LEMMA 2.3 Two Rees I x A matrix semigroups ﬂﬂ? (G, I,A, P) and

. . G . .
5719 (G, I, Ay P*) over a group with zero G , are isomorphic if there

exists a mapping i — ug of 1 dinto G and a mapping k<—%'wa. of

A into G such that p, . =V, p,. u, forall i € I and A € A,
Ai AL T I

where P = (Pxi) and P° = (p’hi)'
It follows from the lemma 2.3% that
S m@ (G, I,A, P7) where P° = (p7,;). Now it remains
to show that the sandwich matrix P” is normal.
Let h% £ A* and let A be an arbitfary element of K%. Then

we observe that

’ "'l
* - * * =
P o (3) Paoa(d) Py an’y € ©

* * *
Next let 1 ¢ I and let i be an arbitrary element of i . Now

*
if i0 # o (A ) for any A, then we see that

Pa(s), 1 T BGEY), « (B )P a1 P (1% 4 B (™), o (i)

= €
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* *
On the other hand if 9 . a (A ) for some A , then we note that
* 0
B (i) = A and hence
‘ = d - s Ny e
Pg (ix), i Pa0,i . P30, a (A%

1t follows that the sandwich matrix P is normal.

Proved

NOTE 2.4
The foregoing theorem enables us to represent an arbitrary com-

pletely O-simple semigroup a8 a Rees matrix semigroup over a group with

zero whose sandwich matrix is normal.

We shall say a congruence p on a semigroup S is non-trivial pro-

vided p <= b the identity relation and p =z S x 5, the universal

relation.

PROPOSITION 2.5 ILet S = 1. (6, I,A, P) be a completely O-simple

semigroup where P is normal and let p be a non-trivial congruence

on 8. If ( (a, i,1), (b, §, u))e p then (i, j) ¢ £, znd

(Ayp) € &iA and hence there exist k € I and v e A such that

Pyy = p\g = e ang phk = ﬁlk = €.

Proof First we show that (i, j)e éiI' Let us assume on the contrary
that there exists B e A such that pBi % 0O and ij = 0, Let
(¢, 1, ) be an arbitrary non-zero element of the semigroup S. Now
there exists an m £ I such that Rln:% 0, since P is regular.

Now we see that

( (a_l Pé-i s Ly B) (a’ iy}\) (P):rltis m, Ti) = (C9 1, n) and
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- -1 ) -
( (8™ o5y 1, 8) (b, 3y w) (opps my 1) = O

It follows by the compatibility of p that ( (i, 1, n), 0)e p . Hence

transitivity of p implies that p =S x 8§ which is a contradiction.

Hence (i, j) € éi' Similarly (A, u) e ELA‘ The remaining part of

the proposition is immediate since P is normal.

(1)

(11)

Proved

Next we define the following relations :
pG on group G by the rule that
(xy ¥) & Py if and only if there exist i, j € I and
A € A such that ( (Xp i,0), (¥s dsu) ) € p;
pI on the set 1 by the rule that .
(x, y) € Py if end only if there exist x, y € G and A, n e A

such that ( (x, 1,2 ), (y, Jo#))e P ;

(I11) p, on the set A by the rule that
(Ay n) € p, if end only if there exist x, y € G and i, j & I
such that ( (x, i,A ), (y, Jou) ) ¢ P
PROPOSITION 2.6 Let p be a non~trivial congruence on a completely O-simple
gemigroup S = mn? (G, I,A, P) wWhere the matrix P is normal. Then

the relation Pa is a congruence on G and P

T and P, are equivalences

on the sets I and A respectively.

Proof Bince p 1is a congruence on the semigroup S, the reflexivity and
symmetry of all the relations is obvious by (I), (II) and (I1I)., First
we verify the transitivity of p. Let (x, y) ¢ P, @and (y, z) € 0qe

It follows that there exist i, j, k, 1 in I and A, p, v, ®* in A
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such that

((xv is?\)v (-Y! jﬁ}l))ﬁ p and ((.Yv ks\’)’ (Zv 19“)) £ P.
It follows by the proposition 2.5 that there exist me I and ¢ & A

such that By = ppm = @ = pqﬂ = H¢§' Next we observe that

(e, kyo) (%, 1, &) (e, my V) = (x, K,V ) and that

(es ky,0) (5 3y 1) (e, mv ) = (¥, k,v)
It follows by the compatibility of p that ( (x, k, v), (y, k,v) ) € p,
and hence transitivity of p implies that ( (x, k,v ), (z, 1,7) & p,

Thus (x, z) € pg+ Hence p, is an equivalence.

Next let (x, y) e It follows that there exist i, j € I

pG‘
and A, u e A such that ( (x, i, N\), (y, Jo% ) ) & e. Further by

the proposition 2.5, there exist & € A such that Pey = Pey = e.
Let 2z ¢ G and k ¢ I. Then we note that
(Z" k, E;) (x9 i, 7\) = (Zx, kﬂ\) and (Za k, 5) (}'1 Js U) = (Zyakyl)’>

Hence by the compatibility of p we have that ({zx, k, A), (zy, k, w)) € p.
Hence (zx, zy) € Pge Similarly we can show that (xz, yz) € P

Thus is & congruence on the group G.

Pa

Next we prove the transitivity of »p Let (i, j)e p and

I° I

(3, k) « pr+ It follows that there exist elements x, y, z, t in G
and A, g, v, ® in A such that ( (x, i, A), (y, jou) ) € P and

( (zy jy v), (ty kym) ) € p. By proposition 2.5 there exists an

m ¢ I such that Prpm = le = €, Now since p is compatible, it
follows that

( (% 1,0 ) (5Y2, myv ), (s 3y 8) (3702, m, V) ) E P
i.e. ( (xy'_lz, i, v), (2, 3, V) ) & p.

It follows that ( (xy—lz, i,v ), (t, Xk, ™) ) € P, and hence (i, k) € Pr.
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Thus Py is an equivalence. Similarly we can show that P is an

equivalence.
Proved
NOTE 2.7

It is clear by the proposition 2.5, that Py < é:I and Pp & E

A

for any non-trivial congruence p on the semigroup S.
Let N, a normal subgroup of the group G, be the pG~class contain-

ing the identity e of G. Thus (x, y) e if and only if xy - € N

Pa

DEFINITION 2.8 A triplet {Bh Py pA‘g consisting of a normal subgroup
N of the group G, an equivalence Py on the set I such
that p, < Eq and an equivalence p, on the set A

such that p, < EiA is called a linked triplet provided

the following hold;

. .. -1
(1) [(i, 3) e py and py; ¢ 0] =5 p, Py €N

(i1) [(A ) € py and D, 0] =y Dy P e N

i

THEOREM 2.9 Let S8 = ma (G, I, A, P) be a completely O-simple semi-

group, where the sandwich matrix P is normal. Then every non-trivial

congruence p on S determines a linked triplet .{ N, P, pA_'} in the

manner described above, Conversely if é N, p oA % is a linked

I,
triplet, then the relation p defined by the rule

. . . -1 o
C (x5 3,0 ), (s Gym))e p iff xy e N, (i, ) e oy and (A B) e oy

is a congruence on S.
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Proof Suppose p 1is a non-trivial congruence on the semigroup S. We
have already seen tha% N, being the pG—class containing the identity

e of G is a normal subgroup of G, and P and are equivelencesn

Pa
on the sets I and A respectively. Also Pre € 8nd py ¢ E'A.
by the note 2.7.

Next suppose that (i, j) ¢ p; and A e A be such that
Py + 0. Then p?\j—.f- 0 since P& SI' Also there exist
X,y € G and p, v € A such that ( (x, 1,0 ), (¥, Jov) ) & p.

It follows that (x, y) e P, and so ;y'x—l € N. Since
(p.y v) € Py € 81\ and P 1is normal, there exists k e I, such that

p'uk = pV k = Q.

By compatibility of p , we have that
. . -1 . . ~1
( (ey i9n) (x, i, ) (x 7y k, 1), (e, i, M) (yy 3 v) (x 7, k, bu) ) E P

X . -1
that is ( (P;\i$ 1y B)y (p7\j yx T, 1,u) ) e p

Hence p}\i

-1 -1 -1
. . B £ . . £ N,
(p}\J yz ) e N ut  yx N and so Py, P j N

. -1 ~1.-1 o
Thus Pyi Ppj = [p7\i (pki p}\j) P; ] € N as required.

Similarly we can show that

, -1
[ (wv)e pys and p. s 0] =5 p,, p, " &N

Thus EN, Py pAWS is a linked triplet.

Conversely since N is a normal subgroup of G and p T and P
are equivalences on the sets I and A respectively, it is obvious
that p is an equivalénce on S. ILet ( (x, i, A), (¥, j, ) ) € P
and let (z, k, v ) be an arbitrary element of the semigroup S. Now
we observe that

(zy kyv ) (x, 40 ) = (vai Xy ky,A) = 0 if and only if

P,y = O if and only if P,y = O (since (i, j) e Py & &

I/

i.e. if and only if (z, k, V) (y, jy u) = O
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Hence if both products are zero, then the result is trivial. It

P s # 0, then we have that p . p

vi B € N by the linking property.

Also xy-l e N by definition of p. Hence

_ -1 -1 -1 -1
(wpy; x) (28,5 9) 7 = =z, %y Py; %
- Foo=1 -1q =1 .
= 2z [pvi Py Py (xy 7) P,; 127 N and so since {(A,p) € °s

we have that

( (vai Xy, ky M), (vaj Yy Ky 1) ) € P
Hence p is left compatible, Similarly the right compatibility of p
can be established, Thus p 1s a congruence on S,

P roved

Now we consider the lattice of congruences on the completely

O-gimple semigroup 8 = mO (G, I, A, P), where the sandwich matrix

P is normal.

We shall represent a congruence p on the semigroup S by means of
the linked triplet [N,p 1°Ps ] where N, Py P, are determined in

accordance with the theorem

The following proposition is immediate from the definition .

PROPOSITION 3.1 (I) Let N, Pys Py *ts be a linked triplet. Then

the triplet ?‘M, pI, pA?f is linked if N < M
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(11) Let {N, Py pA'ﬁ be a linked triplet. Then the triplet

e N oy S\ % is linked if op ¢ pp and o, .

<

Pa

Next we prove the following

PROPOSITION 3,2 Let p = [M, pp, p,] End o = {w, oy 0,7 De

congruences on the semigroup S = mO (G, I, A, P) where P is

normal. Then

(I) pco & M SN pg o o 0

il

(111) p v o

fl

LMN! va 019 pA \4 GA}
Proof (I) It can be easily verified.

(II) Let us consider the triplet § M N N, Py N 0L, Py ATy E
Clearly M A N 1is a normal subgroup of G and pI s GI and P, O Ty
are equivalences on the sets I and A respectively. Since PI > (C"I
and oy < (E’I’ it follows that pI a GI < 81' Similarly pAn OA < E‘A'
Wext let (i, j) e o1 N o end let Py # 0. It follows that

(i, 3) € P (i, 3) € op and p,, % 0. Now since p and o are
congruences on 5, it follows that Pyy p?\gl e N eand that Py s p}\sl € Mﬂ
Thus p}\i phgl e N {\ M. Similarly the second condition of the link- |
ing property can be established. Thus ¢ M (\ N, oy N Trs Py e GA'i'

is a linked triplet and hence a congruence & (say) on S. It is clear

by part (I) that & ¢ p and & ¢ o. Hence & < p (V6. On the
other hand let 7m = [Q, Ny nA'] be a congruence on S such that

n g p and n e o, Then it follows by part (I) that N S P

= GI’ Ny € pA, ) & Sy and Q &« M, @ < N. It foilows that

Q <« MAQAN, n € ppoy and my e pp 9, . Thus < &,



Hence ¢ = p N o-.

(II1) Let us consider the triplet ~ZM]\I, Py V GI,pA v o, fg .

Clearly MN is a normal subgroup of G, and Pp V Oqs pAv O'A

equivalences on the sets I and A respectively. Since pI € EI

are

and op ¢ ‘_51’ it follows that p, M op ¢ €. Similarly py¥o, < Ty

Next let (i, j)e v o

P - RE i‘t\ I . l ¢ 5
L HWQE;QW‘? ; that there exist Ky k

and let Py; + 0. It follows from the

59 = kn € I such that
(i) k) e ppy (kg k) e o5,y (k,, k3) e Py === 5 (K, J) €0

. -1 -1
and p,; ¥ 0. It follows that p,, p)\k1 e M, p’\kl pkkz e N, -
Pax p}‘“j“1 e N. Now since N and M are normel subgroups, we have that
1
-1 _ -1 R
B R Pag Pk, 7T Paygy By oo MU andhence by o € M.

Similarly the second condition of the linking property can be established.

Thus {l\'ﬂ\f, Pr ' o1y Py V Sy f& is a linked triplet and hence a con-
gruence f (say) on the semigroup S. It is clear by part (I) that

p <t and c €« £ and hence p V ¢ =&  On the other hand, suppose
that 1n = [Q s nJ;I is a congruence on S such that N =2 p and

n =2 o. It follows by part (I) that Q 2 M, Q 2 N; Ny 2 p
Ny 2 Py and My 2 G, It follows that Q = MN,

I’
(s)

I 271

=3
W

PV 0.y My 2 Py v Oy and hence by part (1) we infer that

n= & It follows that &€ = p v o,

Proved

NOTE 3.3
It is clear from part (I) of the theorem 3.3 that if p strictly
contains O, then at least one of the inclusions M <€ N, Pr < Ors

Pp = 9y should be strict,
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Let A denote the lattice of all congruences on the completely
O-simple semigroup S = d‘ﬂ,@ (G, I, A, P) where P is normal. We
proceed to show that A 1is semimodular. First we need to establish

the following.

LEMMA 3,4 Let & = [L, %;I,F,A] and TN = [M,nI, Ny] be congruences

on the completely O-simple semigroup S = mO (G, I,A, P) where P

is normal. Then £ covers M (i.eo & p m) if and only if any one of

the following conditions hold ¢

(1) LM, Ep = N £, = M,
(111) L= M , %;I = Sy My

Proof Ve assume that & % n. It follows from part (I} of the proposi-

tion 3.2, that
(1) — L2z2M, £, 2 n , and & 2 My
Purther by definition of cover ( ») since £ = n , it follows from
the note %,% that at least one of the inequalities in the expression
(1) should be strict.
First let us assume that L = M, It follows by the proposition

3.1, that EL, Nps nA'g is a linked triplet and hence a congruence
¢ (say) on 8. PFurther by the proposition 3.2, we infer that
ne L &, Since & covers 7, it follows that & = § and hence
gI =M1 and EA = Mg FPurther if N is a normal subgroup of G such
that L D N > M, them 7T = fN, 'QI, nA] is a congruence by the

proposition 3.1, such that &€ @ T o 10, This is a contradiction:
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and hence L » M. Conversely it is clear that if condition (I) hoids

then & covers n.

Next we assume that &; D m;. It follows that L =M (since if
L D M, then & =Tk). Further ¢ L, §I Ny § is clearly a linked
triplet by the proposition 3.1 and further we infer from the proposition
3.2 that the congruence (L, iI, m,] = & (say) is such that
£ 2C 2 n. Since & 7 M, it follows that & = & and hence &, = 7,°
Further if there exist an equivalence Ty on the set I such that
E7 © Ty D np then ¢ = [L, To nA] is a congruence on S, such
that & 5 © - n , which is a contradiction, Hence EI )-T1I.
Conversely if the condition (II) holds then obviously & covers .

A similar argument establishes condition (III).

Proved

THEQREM 3,5 The lattice of all congruences on a completely O-gimple

semigroup S5 is semimodular,

Proof In accordance with the theorem 1o‘¥, we can assume that
S 2 Jﬂ? (Gy I,A, P) where P is normal, Fow let & = [L, EI’ éA ]
and n = [M,11I, nAJ be two congruences on the semigroup S such that

E>X&0M and mny» EQN N . By virtue of the proposition 3.2 we
know that & 1 n

i

(L O M, EI (\711, gy O n,J and that

i

E v (1M, E.,I V Mg, Ep v Myl

In view of the dual arguments, it will be sufficient to consider
only the four following distinct possibilities arising in accordance

with the lemma 3040
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(I) L }LnM ’ E"I = @I(\ﬂI ’ EA :EA nnA

(II) L >~ LM, E’I = 51(\n1 9 Z;A “5A(\ﬂ

A

and M = L OM , ny & Ny > N, = E’A 0y
(III) L = LM ’ E_vI )'ET_(\HI ’ gA = E’AnnA
and M = LOM , . »E 00 5 My = § 0N
(IV) L = LM , F’I )-'C:IOUI ’ E’A = iAﬂ“A

and M

it

LOAM , 0y =800 5 M %5 Amy
Let us denote IM by N, g vy by Tp and ¥, v T by

C,»  Thus Ev on = [N,CI, o

CASE I. It is obvious that CI = F’I =M aﬁd Cp= &y =

Further, since the lattice of normal subgroups is modular
and hence semimodulsxr (Theorem V.i [4]) it follows that N = IM » L
and N = IM % M., It follows by the lemma 5.4 that & v n &

and £V My ne ’

CASE II, Clearly in this case N = IM = Lj CI v & 1 and CA = F’A
and hence we have that £ v n % &, Further N 7 M,

{p =np and g, = m, and hence £ v n p» n.

CASE III. In this case we see that N =L =M and §, = &, = 0.
X
Further since the lattice of equivalences is semimodular (§16 |5

it follows that CI ‘?-F’I and CI ba TlI and hence & v 1 }'?; and

Evan pm.
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CASE IVe Clearly in this case N = L, CI = gx and CA o gA . Hence
we have that g V‘Ti Y& . Further we observe that N = L =M,
o I > n; and £, = M, and hence we have that & v n %mn . Thus

the lattice A is semimodular,

Proved
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