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THE 80 LUTTON OF LINEAR HYPERBOLIC PARTIAY DIWFERENTTAL EQUATIONS

CIARTHR Tt Introduetion

The purpose of this Dissertation is to give a detailed sccount
of Martin's method for the solution of linear second order partisl
differential squations of hyperbolic types. For a thovoush understanding
of this method, the use of characteyistics as coroxdinate axes, as well
as Riemenn's method of whioh Martin's method is an exbension, are fully
investigated.

In Chapter TI, all the relevant facts sbout characteristics ag
co~ordinate axes in spaces of two and throe dimensions are discusseds
In the case of two dimensions, the method of classifying any linear
parbial differentinl equation by redueing it %o canonicel form dg
oxplalned and illustrated by examples, Also, basic principles relating
to the Cauchy problem are developed for hyperbolic partisl differential
equations in normal form, for systems of simulbaneous partial differential
equations and for hyperbolic partial differentisl squations with weak
discontinuities. Once the detalls and results of characteristics in the
space of three dimensions are well understood, the appliecstion of
charaoteristios in spaces of higber dimension is easily undersitood and
appracianted. In particular, the use of charscteristlic Ysurfaces® in the
solution of the Cauchy problem in the space of n dimensions beocomes a

simple exXercisos



In Chapter TIT, Ricmamm's method of solution is presented in a form
in which it is eamsy 1o extend the results to Martin's method and vice-versa.
The supporting examples illustrate in some detail how the Riemann function
is obtained. MNost of these exsmples are also discussed in Chapter IV and
their results suggest a connection between the Riemann and Martin functionse.
Chapter IV is a detailed account of Martin's method, with appliocations
to the solution of the Cauchy problem for the wave equation in spaces of
two, three and n dimensions. Two other examples are also discussed:
a porticular example whose Martin function is obtoined by the method of
solution in series, and the Euler~Darboux equation which Martin originally
considerede
Chapter V contains an importent genéral formula which connects the
Riemann and Martin functions of any hyperbolic partial differential equation.
The formulae obtained by Professor A.G. Mackie in the case of the EBuler-~Poissm
equation [14]* is shown to be a particuler case of this general formula. The
supporting examples illustrate how each function can Lo dervived from the othe:
Professor E«T. Copson [13] hes made a survey of all the known methods
of deriving Riemann funetions of various equations of hyperbolic type, and
80 we can gssume that Martin functions of these eqguations are also knowne
Apart from o particular generalisation of Martin's method [12], which
enables us to solve parsbolic and elliptic equations as well as hyperbolio
equations not necesgarily in normal form, this Dissertation is an account,

supported by various examples, of all that is known gbout Martin's method.
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This gersvolisation of Mavtin's method has no spenial morit for
&

byperbolic equations and I have theprefore omitbed its discusaion.

#Nombors in vectengular brackets refer to References at the end of

the Disesertabion,



CHAFTER ITs 'The Characteristics of Linecar I"’arti@}_ Differential Equations

2ele Second Order Partial Differential Ecuations With Verinble Coefficients.

In this Section we investigate the properties of the second order portic

dif'ferential equation of the type

Re + 8+ 26 + £(x, ¥, 2, P, @) = 0, (24141)

9z dz 92z a2z d%g
where P=3R s ‘1"""5} s TEFEE a==5§%; and ‘h-'é—y-g « Ve shell

restriet ourselves to the case in which the variable coefficients R, S
and T are functions of x and y only. Ve shall also assume that these
coefficients are continuous functions of x and y and possess continuous
partial derivatives of the orders we want in the region under consideration.
With these restrictions equation (2.1.1) is said to be lincare.

Let us change the independent variables from x, y to &, w« By

clementary partisl differentiation we find that

2 Ry 9 62
r = Ex '5'{;"5’ + %xﬂx"@% + n§ = mz *
., 02 . ik 92
8= &xéy‘-ﬂ;:"g‘ + (Exny + Eynx) 5‘@%’ + 71:?):"3"1!’3%‘
a2 2&2
t = gfag,a + 2Byny SET aﬁd'r) "17‘3""!’11

Equation (2.1.1) 38 then transfommed into the equation

8%z . 92 g% .
A(Ex, Eg) TEE * 2 B(Ex, nx3 Eys ﬂr-)'g’gﬁ% + C(nyx, "}v)";}"“{g = ¥E, n, 2 T Z),

(2.1.2)



where Alu, v) = Bu® + Suv + TP

Blug, up; ve, va) = Bugue + £8(usve + vawy) + Twyve

Glu, v) = alu, v)
and E, 11, B B zn) is the funetion which #{x, y, 2, Ps (1)
takes in the new varisbles.

The problem now is to choose the new variables & and 7n so that
equation 2.1.2) reduces to the simples form. This problem is solved by
considering the sign of the discriminant A(x, y) defined by Afx, y)
= §% - 400, ‘his is because the sign of this function remains invariant

under the above transformation, for it can be shown that
A2 = 400 = (8% = 4RT)(Exny = Eynx)?.

We shall, however, use other elementary considerations ingtead of
this identity in obtaining our main results.
Cnse (i). Suppose that A(x, y) is positive for all points (x, y) in
region D. Then the equation Ru® + 8 + T'= 0 has two distinct real
roots aq(x, y) and az(x, y)s If we chooze E =&(x, y), 7 =n(x, y)

such that Ex = a4y, 1x = agny then

AlEx, Ey) = &i(m,* + 8t +7T) =0
_ Clnxs 733‘) = ﬁ%fmzz + 80 +T) =0



Sinee the equation %fu® + £ + T = O has two unequal roots a4 » Q2 we

must have R& 0, a4 +op vﬁ,/g and o4qup = 'T/Ra Hence
B(Ex, nxi Eys ny) = EynylBaras + £8(aqtaz) + 9

= g%?a(&ﬂ'f - $%)

¥ 0, sinoe E, n are functions of both = and .

Henee equation (2.1.2) reduees to the simplost fom

ra

(%F&‘Q G'(g, Ny &, ZE, g, )a (2.1;3)
Case (14). Suppose A{x, y) is negative for all points (x, y) in o
rogion D. Then the equation Ra? + 8u + T = 0 has two complex roots

e, Gae As in Case (1), equation (Z2.1.2) reduces %o

9% _ .
I = 6(8, n, 2, By ﬂ.q) where now E, 1 are complex conjugate

variebles. We thersfore introduce new real variables a,B given by

”33"(% +1, = gl(?"i d g). It then follows that

maa . "P” - 3 - §
agaﬁn = %( ';;‘Z{%* ); Hence in this case, equation (2.142)

reduces to the simplest foxm

2y o2y . v
Gt + GFE = 6las By 2y T 7) (201.4)



Case (3ii). Suppose A(x, y) = O for all points (x, y) in a region .
Then the equation HRa® + Sz + T = 0 has a repeated root « = aq. Ve can
therefore choose & = &(x, y) s0 that Ey = a4fy. Further, we let n(x, y)
be any other function of x and y which is independent of E. The

equation (2.1.2) then roduces to

33
2 3(@33: Mx3 Eys 'f!r) @Eﬂi‘l * ﬁ(f‘;*za *&r)"é}'{““ PE, 1, 2, . “"i)’ (2.1.5)

Since equation Mu® + Sa + T =0 has two equal roots, we must have
Re 0, 20q = -S/R and so
B(Ex, xs Epy Ny) = RuuEynz + 48{oiyny + Eynx) + Eeng
= 45 (4R2 - 5% )Eyny
=0 .
Since n(x, y) is independent of E(x, y) we can choose m = n(x, y)

such that Clnx, ny) * 0 in the vegion H. Hence (2.1.5) reduces to
the simplest form

2%y
("37%2 = (&(Eot T}y &y %3 23}) (2-1963

I£ the eguation (2.1.1) is such that A(x, y) > 0 at all points
(x, y) in a region %, it is said to be hypexbolie in that region, and
the egquation {2.1e3) is called its cenonical forme If Alx, y) < 0, it
is said to be elliptic and equation (2.1.4) is its canonical form, If,
however, A(x, y) = 0, it is said to be parebolic and equation (2.1.6)

ia its canonical form.



The cuvves B{x, y) = a, 7{x, y) = b where a, b are constonts are
called characteristics of the eguation (24141)e Hence thyough avery point
of a vegion in which equation (2.1.1) is hyperbolic thers pess two distinet
characteriatios,; in which it is parabolic only one charscteristic, and in
which 1t iz elliptic there are no real characteristics.

The variables & and 1 arve called canonical, or characteristis,
variobles. From the equation E(x, y) = a we find that Epdy + Lpdy = 0

ieCe %g% = % = =4e Similorly from nlx, y) = b we have %1% = =ime The
. e
differential equation; of the characteristics UGH therefore Aby

1. ] .
R (L) ~s™ar=o

(24167)
i.e. R -832+72 =0
where § = %ﬁ)— and T 1is a parvameter of a charscteristic.
the

An equation of type (2.1s1) can be hyperbolic in one part of { xy=plane,
elliptic in o second and parsbolic in a third. When this situation arises,
the eguation is said %o be of mixed type,

We now apply the foregoing theory to two equations of mixed type,
nemely, ¥ % = y°t and the Tricomi's equation yr + t = Q.

Since A(xz, y) = 4%°y°, 1:11&22:3}39.%10:1 is hyperbolic in the whole

xy= plane excepting the axes x = 0, y = 0 which we col lines of parabolic

degeneracys Nauations of the characteristics are given by the differential



equations x® ( ) @e %J% :'.";% = 0 whose solubions ave xy =

‘;‘é = b, whore a, b ore constantis. Some of the characteristies of this
two purameter family are shown in Fige. Q@ on page 9.
Using characteristic variasbles as coordimates we let & = xy,

) ::é% vhen x4 0, y#* O, Then

2 42 2 2 2
2 %2 _ 2 %2 2 08 9%z X 0z
R T W i R Yy
'(agfwz'::?aa" yz Yﬁ

e 3?? t e &qz .

2,
flenge the equation reduces to 0%’5% = 2%{_; i ;’";
> ]

Integrating along the characteristic & = constant partially with respeed

to n we get

gg E ;}a g+ “fw AlE) where A{E) is an evbitrery function of £.

Integrating along the characteristic v = congtant partially with respect
to & wo get |

a(E, n) = V& 2(B) + VE 6(n) + ¢ where ¥, G ave arbitrary functions
of £E end m and ¢ is a cnnstant.
Hence, in the xy-plane the solution is

a(x, y) = 5y F(xy) + Vx5 6(%/y) + ¢

where ¥, G are arbitrary functions of zxy and y/x respactively.






io

2

£

In the case of Tricomi's equation “*;”5 G, bhe discriminant

L]

Alx, ¥) is given by Alx, ¥} = =4y. The equa‘f;mn is therefore hyperbolie
in the lower half-plane y < O, elliptic in the upper half-plane y > O,
and the zmwaxis ls & curve of pawabolio depgeneracy. These facts are dis-

played in Fige. 2hon page 16 G-

tg ‘83.
dxm

with solubtions = + is;("y)a ® oy X o= ~@~(-y)3 = be In the region in which

The differsnbial cﬂqufatmna of characteristics are (-y) 1=0

the equation is hyperbolic, we let & = x + -%(”y)%, nEx -5 (wy}%
The equation is then reduced o

&Q Jg

&0 "'("“‘“"‘5‘( ) .

2220 The Relation of Charactoristics to the Cauchy FProblem.

M,s&.ﬂ Loen ot

Phe Cauchy problem for the equation (2.1.1) asks us to find e solution
(%, y) of this equation which satisfies the condition thet it and its

. . an .
noxmal derivative T talke on prescribed values

= tﬂ(T)

= mie), 52

on a curve 1 in the xy=plane speeified by the parvametric eguations

= x(s), v = y(z)e This condition is egquivalent to the condition that

z and Lts first partiel derivaetives take on prescribed values

g 2(2)y p=wle), q=al) (2.2.1)



N O T«wA\ cL (ArQAlk VKiV es
laU'c

A*)

(C*m2-b



on the curve Pe %he Puncbions se{t), pele) and qs) ave ot

independent, they ars velated by the compatibility condition

Ba(z) = pals) 2(z) + qlw) $(=) (2.2.2)
where 2{z) = %} 5 @tos

On the cuxrve I'y pyi{x) = pix(e), y(e}} and q(s) = gix{z), y(=)}.

Henoe
B1(z) = v (z) 2(5) + v1(a) $(v) {2.2.5)
g lz) = selz) &(v) + v (v) F(x) (2204}

From equation (2e1.1} we have a third relation
~£4(t) = B} re(x) + 84(x) 84(x) + Ty(x) tals)  (2.2.5)
" whore Relz) = R(x{%), y(z)), eto.
From equations (2.243), (2.2+4) and {2.2.5) we conelude that
mz), sz} end t1(z) ave uniquely determined if ond only if the

determinant

%(t) (=) 0
A = 0 £(x) (=) does not vanish.
. Rafe)  8ie) ()

From r{t) = »lx(s), y{e} and si(r) = s(xlz), y{z) we get

i) = oy 2(z) + 8x Fx), (2.2.6)
B8e(x) = ax (s} + tx F(z), (2.2.7)



S L

Also differentisting equotion (2.2.5) with respect to x we got

“Repy (v) = Spoals) = Tuta(z) = £ = Balvdys + S4(v)ax + Ty (v)txe
(242.48)
The quantities on the lef't of these equationé are assumed knovn and so the

functions iy, Sx, tx are uniquely determined on the curve 1I' provided that

$:) ) o
A = 0 . fz) 3I(=) does not vonish,
Beft)  Sile) Ti(e)

By repeated appliaétian of the above procedure, all the higher
derivatives of 2  ocan be uniquely obtained at each point of the curve I
provided that the determinant A is not 'zem, We thervefore conclude
that i€ A # O at each point of the curve ' and the functions g1(t),
p1{s), galv), Re{s), etc. are analytic at ea,caﬁ point of this curve, then
the Cauchy problem has a unigque solution in the neighbourhood of the curve

I obtained by expanding z(x, y) in a Teylor's serics.

If, however, A = 0 then the values of m(x), s1(x) and % (x)
as well as higher order derivatives of 2z on the curve I may exist
but cannot be uniquely determined. Phe vanishing of the determinant on

the curve I implies that
B2 = S4fF + TR = 0 (2620 )

Comparing equations (2.1.7) and (2.2. ) we conclude that if A =0



on the cuxve I' thon I iz o chamcteristie of the equation (2.1.1).
It therefore follows that the Cauchy problem does nol have a unique
solution if the curve slong which the date are preseribed is a charac—
teristic of the partial differentisl cquation.
Tn the case when the determinant venishes, equations (2.2.3),

(2e264) ond (2.2.5) will have a solublon, in fact, o multiplicity

of solutions, provided that these equations are consistents From the
theory of linear algebraic equations, this pondition is seatisfied when

the rank of the auvgmented mebrix

(=) §(%) 0 P ()
0 &(=) ¥{z) & (v)

Re(w) Se(x) T (z) ~fq (v)

18 twoes ‘This condition will be satisfied if all the 3 x 3 deteminants

vanish and each of at least two of them containg one non-vanishing 2 x 2
(=) ;;;?n; #s) 0 ‘
0 2e) | @ | o #(z)

and both ecannot vanish and so in addition to A = 0 we must have, if the

doterninante But the determinant A contsins

Couchy problem for the data glven on the chavecteristic I ds to have a
solution, the additional condition

pi(e)  §(e) 0
wlz) &) 3(=)
[=£4(z)  S4(z) Tals)

oy the additional condition

it
<

(2+2.9)



i &) Da () o
0 sy $lk)yi=o0, {2420 10)
lm(@ -1 () To(x)

oy the additionsl condition

) 3w) Pafw) }
0 (=) o ()
R4 (%) See) =4 (x)

= 0, (2.2.11)

taking that 3 »x & debterminant which contains o non=zero 2 x 2 deteminant:.
Vo have therefore proved that when the initial dﬂ‘t.a, ara given along

a characberistic, o solution of the Couchy problem exists only if a further

relation of the type (2+2.9 ), (2e2e10) or (2.2.11) holds along the

characteristics We may therefore define a charvagteristic of the equation

(24141) as & curve in the xy=-plane along which the specification of consistent

data is -mt sufficient to ensure o unigue solution to the CGouchy problem.

2.8 Propapation of

EETENTES

We consider again the equation (2.1.1) in which By, 8 and T axe

.. comtinuous functions of x and ¥y only snd £ is o continuwous function

of Xy ¥y 2y p and ge

Definition. A solution of the equation (2.1.1) whose first ovder partial
derivatives are continuous bubt nobt all of whose second order derivatives

ave continuous ls salild to have o weak discontinuity.



Buppose a fanction glx, y) is vniguely defined ot all points

{2, ¥y} of a vegion @ except on a gurve I dun @ w*ii;h rerauetrlo
equations x =x(s), y = ylz), sce Fig. PC .

Ip

O

At o point Plx(s), y(z)}) on I, define

ge(zlz), y(x)) = Lim  alx, y),  g(xlc), v(s)) »  in

xq%(% Ko™K ,5%
J12y Yoyt
(21 451 )oD4 - (xaye Jedz

and [glz)] = g2(x(z), 7(z)) - &1 (x(z), y(v)) vwhere we suppose that both

the limits gy and g existe [z(t)] is called the salius of the function

g and is the jump in the function g as we cross $he curve T CLrom the

side 1 o the side 2. If {gle)] = 0 then g is continuous on T
Suppose a solution 2{x, ¥y} of the equation (2.1.1) hes a weak dis=

continuity on the curve T, then [z] =0, [p] =0, [q] =0 (24501)



These equations can be written in the alternative forms

21 (x(7) y3(2)) = 22(x(z), y(=)), (2e542)
p1(x(7),5(2)) = palx(s), y()), (24543)
a1 (x(z),5(+)) = aa(x(s), y(s)). (2+5.4)

Differentinting both sides of equation (3.3.5) with respect to ¥ we geb

e {x(e), yle)IR(r) + malxle), y{e))i(s) = malxle),y(c))t(z) + s2(x(z),y(z))F

vhich may be written in the form

[ 2(z) + [s] §(x) = 0O | (20545)

Similarly from the equation (2e344) we find that
[8] #(z) » [4] 3(z) =0 (25,6}

Since the functions R, 8, T and £ as woll a8 2, p and ¢ axre con-

tinuous, equation (2e1.1) gives rise to the relation

Blr] + 8[s] « ] =0 (26347)
The solubion of the equations (2.3.5) and (2.3.8) is
[x] = 23%, [e] = A8, [6] = 222, (2.5.8)
where A iz o non=zero comstant, For this solution to satisfy eguation
(2,847} we must bave equation
R§? - SRy + TP = 0 (26549)
satisfied on the curve I, Comparing equations (2.59) and (2.1.7)

we eonclude that, as far as equations of type (2.1.1) are concorned



if weal discontinuivies cccur at all they must cccur along the characteristics.
3F weal disconbimuiliesiutions of ellipiic equatiouns of type (2elel) cannot
have weals discontinuities.

If we now essume that equation (2.1.1) is hyperbolic we can reduce
it to the canonical foram

22y
53'5'5’:3'} = g(x, ¥5 25 Dy @) (2.5420)

Let vs take I to be the chavacteristic x(t) =%, y(1) = o
where a is o constant. Then from equations (2.3.8) we have
[x] =0, [8] = 0, [4] = Ne Differentiating both sides of ecquation (2.5.10)
with vespect 40 ¥y we geb
9% _ 96, 28 ., 98 . 95
= bqu.gé?‘taqn

Hence . [ ]

f

ez, 0} [l where X(x,e) = < Qﬁi)
y=e }

dq
) F4
y=a = A exp ( /;, k:(u, o) fm) .

From this result we deduce the following results:

e
=
i

and so

(1) 4r [%] is non=zerc at one point of the chawacteristic I' it is
non=zexro at every point of I
(i1) 4ir [+] 48 zevo at one point of the characteristic ¥ it is zero at

all points of e



2e4e Systems of Vinear Fipsy Order gimultencous Fguabions.

2ede Sysbtems of Tineer Fiprst Order simultencous Bouabions.
TEITRD T N T T T T T Ty L s R Sy A T S S YT T BRI T T e e s X I P e S T T S TR r *

1)

5 (Pigps + Quggy)

i

fi(X, T 24, ga,naaaﬁﬁn}, (i = 1, 2,..:.,31) (2.401)
I

where pg = %3:3 s O§ = %%’;3 and Ppz, Qi3 are functions of % and ¥

only.
The Gouchy problem for this system of equations is to
determine g = {m(x, y), 22(x, ¥y)seesszn(x, y)} sgiven the value of g
on o curve L with parametric equations x = xft), vy = ;v('x).
Suppose on U, z3{x(z), y(r)) = &3(s). Then Aifferentiating both sides

of this equation with vespect to © we obtain

Py + y'qy = &y (24442)

whore y' =% and %' =8} .  Substituting from (2.4.2) into (24441}

we find that on the curve ¥,

4 £y
!
(Qig = y"P13)ay = £1 = > Pig 43 (2e443)
ezl A
e d=t

Henge the Couchy problem will have a unigque solution i det (Q33 - ;y"}?gg)

deas not vanish at any point of the curve I»



£ det (Qg; o y‘ng} does wvanish, then the Geuchy problem will
not heve & unique sclution. IT% follows Ffrom dhis that the Cauchy problem
will not have o unigue selution if the initial data are given on 2 curve T
such that ¥° = % where A i3 a root of the equation det (Qyy = N Piy) = O
The corves I satisfying these ponditions are called characteristics of
the system (2.441).

Tor the set of eguabtions (2.4.3) 1o be consistent on a characteristic

T +the auvgnented materix muet be of rank n=l. lence the matrix

- n e

Qee = N Pyq Q12 A P12 o o 0 Qap ~ A Pyp Hadx -*;ﬁﬁ"’u dog
j=t

Qa1 = ™ Pou lze = A Poz o o o GQop =N Ppp fpdx ‘*"3 Pay dzy
o

e e+ o ® 8 a @& o @& 8 w &« o e e o
£

Gat =% Pat Qna =D Pz o o o Qm1~hfan:%mc*> Pag dsy
hﬁl P

must be of rank n~l.

It us denobe deb (Qug ~ A Piy) by A end the doterminant obiained
from A by veplacing the 1 th column by the last column of the above matrix
by Az. Then along a charecteristic the functions =z {x, y),

g2(xy ¥)sesesznlx; y) are connected by the (n+l) equationss
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A=0, Ay =0, Ap = Oyecopliy = 0 (2e404}

These relations ave not independent since, from the theory of

Lineay algebreic equations, they can be veplaced by the two eguations

A=0, b =0 (2.448)
where the doterminant Ay ocontains a nonezero {(n=1) x {(n=1) determinant
and k  is one of the nuabers 1, Pyeesy Mo
The equatien A = 0 i3 called the equation of the direption of the
chavacteristics and Ap = 0 the differentisl expression of the charaeteristies
Por ressons which are explained in [ 1 2 ], let us, for example,

consider the simulbavneous equations

2% R )
3041‘;6

Q ;Ci;g ol :Q;:E s v

v dxe K &

whers p, U, P1y Ty ¥, ¢ are funcvions of 3 and X only and p, pi

do not vanish in the region undeyr considevaticne

Then 35’11 L ‘5”12 u Qeg © 2K I Qag = U

i
&

Pagr=0, Fop=op Q1 = 0, Uap



Therefore the characterislics arve given by

oy = heDq O = Ae(

L]
o

0 e« nre0 G = hep

dee A mEb op A=
P4

T

Hence the differentinl equations of the charvactewisbics are % = %

dxs 9y

and T T e

Herice characiteristies ave given by the equations pxpe = OX
= gongtant and peXe ~ Oxe = constant,

Ied B = pxp =04, N = piXp = Gy%e. Then

a& i}.aeb o ! mo &
Oy CBE © (=} + (=1 )
du _ fu gy,

T ST Ot Gy e

Ju du an o
e.so P‘l ‘23”3;'."1 0 :g{'ﬂg = (W‘ - P E‘?E:’: (-ﬂ“&‘&;fr)
9w av ( 8)
similarly p ge +0 Fo % = {op1 = poy o Sl

IT the vank of the matrix [ D1 g! —] is 2, then pgo =~ poy * O and

equations (2.4.6) reduce to

au £

E = oon p1o (2.4.9)

Gy = -

-umgﬂm
&‘1 PO PG



el

Ay

?3&. g;},, [V

Mo rih



It 38 shown dn [ 12 ly that if the vank of bthe metrix

is 2, then two simvltaneous hyperbolic equations

c’;

= ztj whmnu:m i vé}m.%ia iy o 3 5 aw
u) = a e ) o + ou s O (is § = 4, 8}
2
a'smmgm o & t{zgk?': o BN “ & "

where oll = agi, vl %rgg,; a”, b ave funchions of Rea Rp . CEN
be veduced to & pair of firvst order simultanecus equation of the type

(2.4.8) which can be solved by inbegrating along the characheristics.

249, Lharsoteristic Surfsces of Boausbtion In fhree Independent Varisbleg

In this section we shall consider the lineary equation

g[}

N 22y du .

\p ’ 813 Feiomy * + by Ta, tOUE 0 (20541)
1, =t

whare f13, B3 and s ave functions of Wy Xp, Hze

The Cauchy problen for this eguation would ask us fo find a solution
: . Ju
u = wlmg, T2, %) sueh thal it end its nowmal derivative Sy 0Fe prescribed

onl a surface 8 whose equation is given by

(e, Moy ¥5) = Ou {2e542)



Suppose the freedom eguations of 8 ave x4

Then the boundary conditions on §

= 3?&{‘3‘1: Tnls

mey be writben as

iow 1, 2, 5@
- a‘m
u= Mte, vals = = Gty T2) (2,565}
On the surfoee 9, equation (2.5.2) zives rise %o
&
el 28 Gxg .28 Bxy A &
IR Lot Yt _F”‘ A ETSLETR = Ag CL ; t Erd e ] ”.f_) a J. "
>J ( @xg 954 dq o Jxs f,?q;a ave 0} B0 saNGe e Ty AYe b trary
i=l
wie must bhave
8 Oma, 9L Byp | 0% Oxg =
3:5?.1 8’51 d&i‘.gm @‘i‘;; 3,’:6‘.;3 ‘B q =0 (2“).4')
of Oxy Of Oxp | Of Oxg _ 5.5
dx4 Op N Tty 5'1:3 Oxs OTn 0 (245.5)
Q 3 a€ 2 o g
Solving for f-:ég;a > =1, 2, 9 wo getb
TS S
x4, 0% eOX3, .. p (2.5.6)
A 4 Ap FI
where p ¥ 0, wsince othexwise 32 =0 (i =1, 2, 3}
* 2(xpy %a) .,.(‘Km ,‘% Mgy %
ond Ay = m% o e =T, 3Tey T

eannodt a2ll be Zerd.



Algo on §,

)

- '/ om 0wy L 00 Ox
d.‘:'-'\ R OZRL ap, o 28 SEL 4e
N / \ 0= %y T Txy Bug 02

=]
.:éx, - -.,Eé L]
Hence Z 2u c?ﬁa = «?;133 ‘ gﬁw 3 gﬁ:
dug Oug  Bue? dig dEg | O%p
d=l, :'?“:-'1

From equation {2.5.2) we have

o o af o Oxy  Oxp A
ped dxq + Tt datp + Ty 0 Bot 5 ® In gudil Yan  are

direotion=cosines of the noyrmal to the surface S5 at any of its points

) of Oxo ar ax. af
f o : 4. R b4 Ll L ) hreonid o~ -
(x-._, Ep g }3) and so i A4 B ? o A1 a%s and gﬁi LY xs
Therefore
fu v dm  du Dxp  Gu O
dn = 8mq dn  Oxp dn dxy On

e, O Qv o, 08 9w . 20 Ju
! dxy O%4 1 %o Oxg T 3?%:;:3 % ?



() () () T

¥4 Collows that the given conditions on the surface
$0 +the following three conditions

9]

-

S are equlvalent

e ﬂg& &}gﬁ _ ﬁ N
>, axy Oty O (2.5.7)
=1
N
) 2%y Brn o dTa (245.8)
et
=l
5"\ - 5 [~ :L
\ "du 9% _ . N/ NP .
>m’a§§i @Ki - G‘ { } ‘( 63’_‘1) } (20009)
i=1 =3,
Now a8 ﬁg gg
dx4 ixe d3g
dx dxe ax If af ag
mﬁs&:’ﬂ o 3 F— L [t e e 8 flu
%4 T4 J% I3y ML d%s Az i e Ay
2%q 9% O3
Ao 3%% dgn

= p(A12 o Aga & &32}

.0, since p % O
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and Aq, Bz, Ay are nob 2ll sero. It therefore follows from equations

(2.5.7); (2:58) and (2.,5.9) +that %;%g, i=1, 2, 5 are uniquely

determined by the Cauchy data (2.5.5) when preseribed on the surface S

We now atvtempt to determine second paxtisl derivatives of u at

D e
all points of B. Yo do this we apply the above procedure to gﬁ}f "y %ﬁz

and *g;ﬁ’ in sucgcession as wo have Just applied {o e Applying the method

.
w =

. du
specifically to %, we geb

& 5 )
"""" CB du "\ 9% 8 [/ du
t:’:‘?tmt:‘.‘} e(:i‘.‘-?.‘l TR e = IR RS
| Gup \ O ) d%q T A \ dite
=l
8 -
ZJ ey e ) 9%n T (\ dxy
=1

‘3& j/ a‘“ £y - ot < ey o o

. °u Oxy . °u %o 9%u  Oxs g du \

" upﬂm g -iu- e 32‘!-:&:':1 ‘%’::’-—’ﬂ ta: AT E A ﬁtn‘ﬁ a L osdat ] oy 2 5 p O

haCo dx4® Juq Omalmg 94 IXOxg OTa - O0Te | Uxe ) (2.5,10)
2%% @ 0% dxe  0%n  Oxx _ 0 [ dn
uTmmsss gﬁm.%-’a oo R Ay mm:%a e sremmenEn s:ﬂv:ér.* o mmEwen Ptk (2 ° 5 ® 3_1)
d1042 914 dx4 s 0%p Gxq0xz O0Te =~ 0% \  ding

o - : . s 2%u

These two equations are not sufficient for the determination of Tae2?

a%n 925

11 ) .
B A0 e Wo therefore introduce mamerical constants ¢, Gz, G
Jxq 0%y dx49%3° ot d a 1y 02y Q3

such that



@Q‘E {33& aﬁu
e, ry  STRRCRATIG L e 2 .
% dx4q 2 + %2 83?:1 dxg o 5;‘{1 (',73{3 Y ( 9l 312)

wheye vy is & parvemeter depending on wqy ap and oy and in such a vay

that the detemiinont

e Lty &5y

3 i, = z
L4, §$$% e does no+t vanish
374 854 %4

9, Oxp  Oxa

e dy 8%y

on the surfage S. Solving equations (2.5.10), (2.5.,11) and (2.5.12)

we geb
#a Py, 2%,
] a o {x Deira i . .
wmg%ipwmw - <:§%ﬁx;§u%ﬁ = m‘;?.wggz& fﬂ;«é&% o~ p 4 (z ® 5 ° 11)

o L]

du jar) ‘
Similavly applying bhe procedurs to Eﬁg and §§5 separately we get

a2y 9%y 9%
a'z:c‘?&?m‘; r—] mgm -t m ] pr; s ' (2050:‘2)
A Ay Y -
9®a  _a%n_ 3%y
de 4 mm;-grmm“x ax - "’mx (;jx &2 93 (2«501:5)



£

af
Henoce f% = &1* = “%ﬁiﬂ by (2.548)
OXa
ag afL s .
., P1o=p ,g;?‘ s Pp o= ?23“3? where |4 48 now a constent of propor

tionality. Similarly ps = %;; s It dmmediately follows from these

equations and (2.5.6) that

2%y 98 g [ 2ENE _ LS BE VP
Towe®E 1 Ar = by x4 P (6:;;4) = x4

where A\ = %; o Similaxly

2
% “.Ac?f af

da
(‘).}m 3"‘{:-:1 9304 @3{:2 » B0

Substitubting from these equations into the equation (2.5.1) we get

S D
Siidead ] ("}‘33” a’g: ik r.
Y a, srima ey - B ) Zn S § 4
8 > 213 daq fﬁ?ﬁ“j S h’ﬁ. Pe 2} Qs (93-).13)
Load b Frmsamd
iy = fe=id

We can thevefore debermine the value of A fron ecouation (2e5.14)

provided that the Lunction

5
N af  af (245.15)
&(f) = > , 823 Txy Oxg

iyd=l



does net venish on the suxface S, IF this condition is setisfied then
the second partial derivatives of % on & can be uniquely detemnineds
By a repeated spplicetion of this procedure it can be shown thet all the
higher partiel derdvatives of W can be found provided +the funetion
(£} does not venishe Then by a Taylor's serics expavsion of
u = ulm: s Xos ws}  there existe in a neighbourhood of the surface &
a unigue selution of the equation (2e8.1) subject to the Couchy data
(2e5e5}e

1#, however, the surface (2.5.2) is such that &(F) = 0, then M
cannot be found and so second end higher partisl dexivatives of a on

the surface cannot be determined. It follows From this that the Cauchy

4 J

problem csunot be unigquely determined on the surface (2.5.2) 4f @(£)=0.

The oguation €(Ff) = 0 is called the equation of eharscteristie suvface

and any surface satisfylng this equation is a chevaoberistic surface of

Tl

the linear partial differential equation (2.5.1)s

5]

Jacobi's auxilliary esgquations of the first order partial differential

aquation &(£) = 0 aws



The integrals of these equations sotisfying corrveet initial
conditions at a glven point define lines called the bicharacteristios of
the eguation {2.50.1)¢ These lines generate o surfece called a conicoid,

which reduces to a chavacteristic cone when the a13's are constants.
Let us, for aun exsmple, consider the wave equation
Ugg = Ugx = Uyy = Ugzp = 0 (2.5‘;3;6)
The condltion for charseteristic surface @(x, y, 5) = 0 is
o(£) = ge® = Px” = ¢p® = ¢ =0 (265417)

This is o first oxder partial differential equation. dJacobi's

auxilliary equations are

Lo dy 43 by | dby _ Oy _ G
~2py =By =2 0 "0 0

0

o”n ﬁg{)gg = 0’ aﬁ? = 09 &‘#3 = OD &ffit

Hlenge wg = oy Ug = Qey Uy = GUpy Uz = 63 where g, Gy Uas O3
are constants

]

o e G = gpdy * by 4+ Gady + Gady
and 86 @ = Gog + 04X 4 Cp¥ + 03z + B (2e5e18)

where the condition (2.5.17) shows that



2 2 2

Qg = O + Qg @

‘9‘“3 ®

The planes vepresented by the complete integral (2.5.18) thevefore

depend only on four parvameters dag, Gp, o3 and f. These planes are the

choracteristic surfoces and so also must be the enve’_! ope of the family of

om )

these planes and since they pass through a fixedj say the poiat

(xg, Voo Zos to) in the three~dimensional space~ting, we have

¢ omagh agx + 0y + azz v P = apbe + aqXe *+ Gayo *+ CzRo + Be

Hence ao(t=to) + a1 {x=x9) + aaly=vo) + azg(z=m) = 0.

LeBe

Yog 2 ek + 0z (b=to) + o4 (mmxe) + aaly=yo) + azla=zp) =

Differentiating with respect to o4, 02, 0z  in sucoession we get

%&’(t‘%}-&xmm =0, %(%«%} tymyo=0 and

%% (*t:w*{sa} 7= 50 = O, Henoce

(t=to)?

H#

{x~x0)? + (y=y0)}? + (z=z0)? (2.5419)

This shows that (2.5.19) 4is the eguation of the surface of the
characteristic cone through the point (%o, Yos %Zo) ot bime 4o of the

thres-dimensionsl wave equation (2.5.16)
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The results we have just obtained above for the wave equation in
three dimensions can easily be extended for the wave equation in spaces

cof higher dimension.

IiT. Riemann's Method of Selution for Bquation with Two Independent
Yoricbles.

Lo A deserdiption of Riemann's Method

Riemann's method was first used by Bernhard Riemarn to solve the
Couchy problem for a second order lineay partial differential eguation
of the hyperbolic type wh:iéh, as shown in Seetion 11, can be transformed

into the equation

%y du Jdu ;
P S P + b a5 + ou = § (Betel)

where a, bycand £ are given functions of x and y only. The
Couchy problem is to find a solution u = u(x, y), when the velues of
u and of its first derivatives are prescribed on o curve € which hag
the property that no characteristic cuts it in more than one point.
Define operstors L and M by
7%y du du

Is(u)mmy +am+h§?*cu

g® 8 3
u(w)} = 5’;&'3%' - (av) - Iy (bv) + ov

Then M{v) = O is called the adjoint equation of (Belsl)s



8%y zxﬁ fday du Sby
v K{u) = ui(v) = i’ax&y uge es(avax+u )+(b y+u )

du gy . 2. ¢ 2,
ax (v 5 41 m( 2{) + 5= (amr? e (buv).
- a2y L, L g,
Also v I{uw) = u M(v) = = (v x) - ém(u QV} + aﬂ(auv) + ay(buv). Henge

- iy, 2 U W " SN (P
v i}(u) u M(v) = aax{ &y - u Iy + Za uv} @{Ti 7= VI 2 bav| (Bele
The characteristics of the equation (Z.l.1) are given by dx dy = O
1.0 by the straight lines =x = constant, y = constant. Suppose we wish
to find a solution u of the equoetion (Z.1.1) at the point P(E,n) iu
the xy=plane given a curve € sotisfyling the stated condition above on

which wu, ‘2% and % are prescribed., (See Tigure Ja.)

9/

7

Fi& e OB



Then PA, P8 arve portions of the chavacteristics through P cutting
the cu:r:ve G din the points A and B, Lot T' be the boundary of the
vegion 2 enclosed by the linmes PA, PB and the curve C. Iet us
gasume that u sabisfies the conditions of Green's theorsm inside the

region (. Thon by (5.1.2) we have

o &Y Oy u
[ f v I{u) - v M{v)lax ﬁy [ [ 3“ g+ Sonv} dy + {u -é'x&' - v 3% = 2buv}
[¥]

where the integration eround the contour I' is taken in the anti=clockwise

divestions If in the vegion 0, M(v) = 0 +then we must have

1 &u |, %% v _  du
¥ f{ v Ty n Ty + Eauv} dy + {u el e %uv}dx = [/ fvdxdy. (mlw)

Along FA, dy = 0 and / {"111 ay v W puy }dx = - ES'I%!L& + E@mg Rl

27 ax ax
PA

dy

[ u(m a» b‘f}ﬂ?ﬂa

Pp Iz

Along BP, dx = 0 and /(w 2 29 4 wue) dy = m@ w(0)e(p)

- nwu é}y

)
f u(% ~ ov) .
np



- o

Now, following Riemann, we choose v to satisfy the equationss

w(v) =0 (5e1e5)
dy 4

Fo= by oon y =, {3e148)

dyv ;

"§§i = oy on X =g, _ (501-7)
v o=l at o (50103)

It follows from these equations thet v is independent of the curve €

carrying the (avchy date and that

u(P):“‘AJ) ?@)QEM LiE % ((v%éu%i—%uv)dx-(v%-u%¢

S&auv)ély] & f fm ax dye (3e142)
0

Bauation (3.,21.9) is therefore the integral x*e?mmn‘b&‘tiun of the solution
of the equation (3.1.1) appropriate to the Cauchy date on the curve €
provided that the function v, called the Riemann fungtion, which satisfies
conditions (Beleb), (3eleB), (Be1a7) and (5e1.8), exists and is unique.

This is in fact the case.



2o Proof of the Bristence of the Riemsym®s Solubions

B IRFTRENT A ST

Suppose that w i3 o solution of

92 ) ow ‘
I{w) émgi 32 + b 5?;‘5 +ow=0 (5.241)

vhere w is defined in the rectaongle PA DB vhose sides DA, DB
(MY RaN
are the charvacteristics through D(xg s Yo) into which ‘the (AB of

j A A ?@}p)

tbcxv)"o) B

. " Y
o “x
I?igo 5&5 ®

the previous sestion degenerates. Riemenn's representation

Pormla (3.1.9) Shen becomes

- 5% + Rawv)dy

- »«-f (W o L. v 5 &w « 2bwv)dx
pB



3
v (§§ + aw)dy
AD

A} 4oy ; b - 28
= wia) wla) ; w(R) v{B) " %UW]A - 'E:“LW'}Q - f

+ f v(fg% + bw)dx
B

toge w(P) = w(D) (D) - j -s- aw)dy 'cwf v -@‘3 + bur)dx (Ba2e2)

DB
Iet w be the Riemann function of the adjoint equation M{v) =

with respsct to the point D{xg, yo! and so

woe w(X, 3 Fos ;y‘a)
IA(W) = 0

avr
Ty + aw= 0

.2

du 0
T + by =

w0, o3 Xos Yo) = 1

Tt follows from these equations ant (3.2.2) that
w(E, 13 o, yo) = v{%o, yo3 E, ) and so v considered as a function

of E, 11 satisfies

8&&1{" ﬁ(g! Ti) OE + b(%s ﬂ) &ﬁ +ov= 0 (0.2.2‘5)



To prove the existence of a selution of the equation (1‘3.1.1)
subject to the Cauchy dats it is sufficient +0 esteblish the existence
of a solution of the equation (Jelel) under the conditions that on the
curve y = plx),|u’ (x)] < 1, there exists a function w such that
w bogether with its fivst-order derivatives vanish on the eurve C.

This is atbained By the relation

\

wau-olx)[y=p{=)]¥(x) sbere u = ¢{x) and

%% = §{x) ave the given values on the curve C,

Hence wulx, y) = wl(z, y) + ¢lx) + E; - p(}:}} ¥(x) would be
the solution of the equation (3.1.1) satisfying the above conditionse

g g . . .
In the case when 1w, '§§ » 'a-% vanish on the curve €, Riemann's
cal

representation formula (B.1.9) reduces te

wlg, v) = /f v£(x, y) ax dy
0

o
= j (f v(x, y3 &, 1) £z, y)ﬂar)‘ﬂx

= () BP

ay, o e o
& . f v(&, y3 & 1) £, y)iy + fj 2 2(x, y) ax oy (54200)
L Q
Sinilavly %’f = fw vz, m3 &, 1) £(x, nldx + f f %;r’f Pz, y) dx dy (Be2eE
0



vhen {£, n) is & point on the curve €, N = 0, B and P coineides
own
and A and P coincide end softhe curve €,

wE, n) =0
ow

7 = 0
2u

n o= O

Also by (Be2e4),

7}2 - F) a '
5% = V(s 5 &5 0) £(E, n) +f v £, y)ay ~ﬂ~f 7 £z, )ax
BR AP
f f 5%m Lk, y)dw dye
H@ﬂeﬂg

%.,, a(g, n) '+ b(g, 1) 'gf'{ + o(g, nlw

= £, q) # / { g} + av(g, n)} £z, y)dy M{ 'gfg + bv(x, 'ﬂ)}f{:&, y)dx
°pEr

/02 ay
+ f Kggﬁ!* alg, n) 77 + vlg, n) m + mr)ti‘(x, y)ax ay
oy

= (B, n)e



Hence a solution w(E, ) = [ lx, y3 &, n) £(x, y) ax dy of
oquation (Belel) satisfying the Chuchy data

w(g, 1) = Q, %g gTW = 0 on the curve y = u(x) exists., It

therelore follows that

w(E, 1) = &) + [q - pE)WE) + [/ W, y3 By n) £z, y) dx dy is
Q

a solution of

2%y L gu
§€oq T b3y i T R T £(Z, 1)
satisfying on the given cuive y = p(rx) the gonditions
n du an .
= ¢(8)s 52 = ¥(B)s 3¢ = ¢ (B) - u' (&) v(&).
In oE
This proves the asserbion thet a solution of equation (S.Ll.1)

satisfying the given Cauchy dets exists and 1ls unique.

ds  Byaluation of the Rlemsrm TFunchtion
mw = A Y N S T N N0 S o LR e i s o]

As a Tivst example, let us consider the equation

3" 3u _‘?__% - 2
Gy TRt 9 5y 0 (ZeBal)

Characteristics arve given by =x = conste, ¥ = const. The Riemann

fungtion v satisfles, see Figure 36,



)
9"-'- .,u ?(10)%0) |
a8
] ¥ é)v "3‘?
Gy *% T2y ay = =0
X=X @V
¢ ¥ =3 v 0N ¥ = Yo,
¢ ) - ?
s X %mdv O X = Ho
t\"gs :%C
W0y Jo3 Xos Yo) = 1s
It therefore follows that v = 9§<K—x0) ony=yo and W =~a"(yﬁy&)

an X = Xge We mey therefoxe bty ¢ = eef’(m'x”) - (y”y")’ﬁ(aa) where
8 = (d~zo J{y=yo)s Then from the above adjoint cquation, F{s) satisfies
the dirfferential equation

a*r aar 2.
ol EN&? + = Ms) = 0,

Let &= %%, Then F(%) satisfies the differential cquation

;;;}_; + %S5+ 88(t) = 0,

This is Bessel's differentlal equation of order O with solution PF(t)

= Jo{2V2 ¢)s Hence the Riemann funetion is given by

2 g Yo ‘ .
v(sts ¥3 %05 yo) = o2 K H)=(IYo )y (0 BTTYGTT) (3.5.2)
As a second example, let us {take the equabtion of damped waves

8%y - .
Gy WS 0 (3.543)



The Riswamn function v sztisfies

3%y 4
dxdy v =0,

«g%a Oony = Yo,

dy
gmﬂcn};mxg,

w{Xoy Yo} Xos Jo) = Le

It therefore follows that v = 1L on % = ¥ and G0 ¥ = Foe
Vo may thevefore txy v = F{s) where g = (z=xo){y=va)s Then W(s)

satisfies the differential eguation

S P
ﬁ‘mé‘a ;;.m%gg;acgﬁl”? tr Og

gg? s ds 8

et 5 = t%. Then P(4) satisfies the differential equation

& 148 _
P e T dk 4F = O

This is Bessel's differential equation of opxier O of imaginax
3

L)
a 4 4.)20
orgument with solution T(t) = To(2t) whers Io(t) => éﬁg_ .

.....

Hence the Riemenn function of the equation (5.%.3) is

'@r(xg vi %os yo) = To(2/(x=xs){y=yo) (BeBed)



It is interesting to compare this elementary method with the transform
method applied by Titchmarsh [13] +to the same equation.

Iet Xex =X, ¥ =y=~ye +then the equation {3.543) becomes
8%q
5oy T u = O, and the Riemann function v now setisiies

éﬁ%-'vwc} and v =1 on X=0 and on ¥ = 0,
et (35 ‘{) = \fm&m‘fV(X’ g}ﬁ G‘d’
vhere & =& + in and 1 » Os Then

mg..” g A8 e 1 peo 32 ‘ i?ﬁ_;?-:
ke o

av = Yoxn . d;‘{ Yox : ax

Put -ﬁzaa on £ =0 and s06.

1 5 00 P
PRI J‘;’":{ '1 -
L T - i ? 3 e mzEoQp
a¥ izven j & S
()]

Hence ¥(g, ¥) = ﬁ("‘)a T4 Pollows from this that

PRl

a(8) = %, 0) = \fé“;,’; j (0, 1)e™®

gl I 1
- frm-m] o éﬁ}{ s ow emaploenn
van o



“ T

ax

T Z;

Henoe (g, ¥) = = szm e

. iy
. iYL .
Thevefore viX, ¥) = = E;,‘E‘-z oo ik % = To{2VAY)
dy=oo

lece vy ¥3 Xo, Yo = To(2V{ze=xo)(y~yol})e

We shall in the remainder of this seotion evaluate by three

different methods the Riemmun function of the Tuler-Polsson eguation

2 } 2
2, .n (2,08 .0 (845.5)
dxdy © xby \ déx - dy

where n is a constants

YMethod 1+ The chavacterdstios. of the equation (34845) through the point
P(g, 1) are those shown in Fige 3

The Riemgmn Funobion wi(x; y3 8, w) satisfies

{)?iét pres r:f?ﬂ: W};},,?,,a< m::éa}n dﬁyw - ’ .
3x€?y ax <?}i‘§*;§?> 6y< Xy ) =0 LaCe

%y n_dv _.n 9y  _2Zny .

aﬁﬁay 1 :{*g‘y s‘f)x » X;E'?S; ay 4 i:i{%’&” EE = Q (élﬂhﬁ&’)
%.,"{ = 'iig;‘?:i‘{}‘ on ¥y = (54546b)
Telloon x=g (545460)

v(B, mz E,0) = 1 (545e6L)



Dy (Be3s0b) integrating along the Characteristic y =1 we

getb %?* = i‘}: from which it follows that

v = Mg, n)(z + )0
Similerly v = A, n)(E€ + y)® Then by (5.8.6d) we get

AEyn) = ‘t‘é‘%_ﬁm Wo therefore write

3}'(5}{, y}g & 7}) = t&;"% n T‘(X, V3 &, 'ii) Q&sgo?)

where ¥ s to be deteimined. Substitubing from (;%E‘Se‘?) into

(Be3e6a) we £ind, afber simplification, that (3’-«-;;*)"

;}"
tet F(e, y3 B, 1) = Fu) whore = = (ﬁ%i}«(m) Then (54548
(." A (b‘{‘f})
becones
2 ) 2 dy AN
Geey)? 3 28 8 o eyl T G5+ n(a-w)7 = 0,

Ql?;‘,- -y v-gm?‘ %-J;)
Y 2
Yow g2 = = o)y + Ty )2 (Ean

oy (xey)(Bn)  (xryEm)

oo (ury) = - fa e

. X~
(xvy) ‘5’; SR o)

It follows from this that

(xay)? ﬁ‘gfg‘; = pt -

+ n{i=n) P =0 (5.3
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Similevly -
oye Of
() §§% = Zuwd,

The equation then veduces to
3 2 an
plu=1) £5 + (2=1) £ + n(-0)v = 0, (50549)
2

This is the hypergeometric eguation whose solution is given by
) = 2T (1=n, ny i3 u)e Hence the Riemann funotion of the equation
is given by

vz, ¥5 &, ) =< %:;,% } afll=n, n3 15 ), (545410)

7
whe:m Mos e %}; 4_5;-}{%”%“%

Farther, 1f n 1is o positive integer and we let x = 1~8p

then it follows from (Be5.8) that

2 T
(1) §F ~ 22 & 4 (uea)ur = 0

This ie the Legendre differvential equabtion of order (nﬂl) with solution
P(x) = Ppea(x) = Py (1247,
The Riemann function, for integral velues of n, then becones
, n
'!F(}ﬁ'., S"; E;';: Ti) = (,%,?«i) ‘f}ﬁ“*“l {i"‘gﬂ) (;5:3'3.1)

where Pgeq iz the legendre polynomial of degrees n=l.



The second method we shall study for the construction of the
Riemann function applies only to those equations which can be solved
by the method of separation of varisbles. We shall describe the method
and apply it egein to the equation (Be3e5).

Suppose that we are given the equation

9%y iﬁa du
G- -om il Grduso

The method of separation of variables then gives

2

%mx% +* Q&Q{: o {p&ﬁa)w =0 (5»5012)
and -53;% + 3\3-1» + (g2)p = (BeBe15)

where A2 dis the separation constante DLet Ue(x, A) and ¥alx, M)

be linearly independent solutions of (5.3.12) and lek

Yalx)  galx)
‘&1(25) ﬁfg(x)

where dots denote differentiotion with respect to x.

s the Wronskian of the two solutions, and

Iet $1(y, 2} and ¢aly, N} be linearly independent solutions of
(543.15) ond lot
p(y)  ¢2(y)
&1 (y ) ‘;’2 (v )

be thelr Wronskians




Let us congider the integral equation

ufa, ) W‘/‘ {£4 (h)‘?if(ﬁf-a A) + fz(?\’) ‘1’2(5‘: W)}@(;‘i‘a 2) (505414)
L

whexre the range of integration I will bé determined by the nature of the
problen. The problem of Couchy which we shall solve is to determine (3.5.14)
suoch that

' du

u =0, 5= = Py) when x = xo. Homco |

[ (21 (A4 G0y &) + £2(AW2(xo, AN (y, A)an
L

i
o

]

f (20 (X001 (20 1) + 202 (m05 WI1ea (s MM = B()

5
Yet us, apart from en arbitrary constant, suppose that

¥y) = f £(0) ¢4 (y, A)ar | (5050415)
i _

Hence we may assume thatb
Lo(nda(xos A) # D2(A2(x0, 1) = 0 (545416)

@ 4 ® A )
a1 (w05 1) + £2(MW2(xa, 2} = £(0) (B45a17)
where £{\) 48 the integral solution of the cquation (BeB.15) which

we may write apart from an arbitrary conztant os

£(0\) = A[y}v(y) 5, {y, Ny (568418)



Solving equations (5.5.16) and (B.3.17) we got

£4020.) £2(2) 1
0 olxe, 2) | = | talxe 2} O w (20, A)

£(0) F2(x0, 1) Falxo 2} £()

3ece P3{0) m = ZQQ;MM’ £2(0) = £ 0, M)

w (%o, M) w (X0, A)

Tt Pollows from (Be3e14) and (5.5.18) that

f (9 - {w:- Yolza, M) V(X M) + Yalxo, ?%) YalX, 7\)}61 (¥, A)an

U(X, K , w (Xa, AJ

R

L

[( ] 69 o, ) [ omnbd ol ) = e 20 405 Dy
s

i w (x0, M)

=f £ (o Grad) {g;,(xg, A) UalX, n) = ¥alxo, A) Ve (X, ?\.)}d;v
e .

w! (E{g P ?‘«)
(5.5019)

But from o result similor to (Be1.92) we £ind that
i V4K - X0
u(x, ¥) =4 f F(y)vino, ¥5 X, Y)iye
V=X + xo
Gompaxing these two resulis we geb

(ks y3 Xy ¥) = 2.2 f %ﬁﬁ%ﬁ% {»zu(x, ) Ya(X, A) - Mx.h)xzu(x,‘h)} a
,I! W 3{’ A

(505420)



HC

This result holds wvhen ¥ = X ¢+ 2o s y 8 ¥ + X = xos The positive
sige is token if X » x ond the vegotive sign if X <« xs If y is outside
this intervaly, the inbegral vanishes.

Iat us consider again the equation (5.5.5) whose Riemgnn function has
been derived in the form (Bede1l)s Jlotbing x =¥ + 7, y = & = this

equation reduces to

2°u _ 2% nin
T E

2 c)") = 0.

?a

Tnstead of (B.5¢5) we shall consider the transformed equation

2 2
‘g’”ﬁ - %{r% & %ﬁ‘i%}; =0 wheve n = 2a. (5e3421)

ket u=y(x) (y)e Then associated equations of (5.3.21) are

Ty anty=0, §+2%=0
where 22 is the separation constant.

:I.b. * g :‘... - 2
Iet ¢ = %#%p(x). Then R satisfics B + v:;% R+ (A\%- (2'-;-{-1'—2 R=0
i

This shows that we can feke as a fivet pair-of fundamental solutions

4 . 3
Yelx, ) = x‘*’-’“%%_‘% (ax), Yolx, A} = x?;”’%%mm(m), Honce

() k]
G Freall
K"f %3 & 1= 4
w(x, \) =
' 1
nwmﬂ: .} amﬁl» I o ) ’é (LJ a}‘ .; ’E:é“mmcj-q
( Q&) (}f Ax J@m =3 (é )} ; il ?’:?:‘-&



2L

Loy 'ﬁs‘mgz !‘-i& Chawtiy

3

P L ;
amﬂ. 2‘»«“’( Jﬁ{ 4 O "'J*i in)

" ?‘mmﬂ-% =% ﬁ.‘i.;: jga..-*gz o 2c§§um T

It us assume that o - 35 19 not an integer or zevo. Then

2 9
w{z, ) = mﬁﬂ%‘:‘ == does not vanishi
%

Fyom the second eguoticu we hove

iNy e"i?‘y
bo(yy 1) = 6, By, n) = Y, Wiy, ) s | i —iny| = %
e e
If dn (3.5.15) we bake
ol ; N Lo
¥y) = y3x L . £0) % (g, 1) an= = fm £(n)e™an,

then by Pfourder inversion theorom we have that
| '1. o -
£(0) =z f #(yye My
) e (37}
14 follows from (5.3420) that
ﬁmd}{&m’m ;m "

Wy 33 X 1) = g B [ I 3’3’{ 10) 3, O) - a res:
¥ VOREOSAR dwoe ,

Bt
foai ]
L
=
3
b =7]



We shall content ourselves with this perticular solution; for other
solutions and the evaluvation of the integrel sccurring in the solution

one may eonsult [13].

Iet us consider again the equation (Be548)e¢ The Riemenn funotion

‘v(x, ¥; %o, Yo) satisfies, according to (5.2.5), the equation

ﬁg“:m, 2 _% ‘E)“E = -3
0%o 0¥0 | Xo*yo (\&xg* @yo) = 0. (505.253)

We notice that wi = (2 = %) ™(z + yo)™®, where 2z is o complex number,
is a particular solution of (B.2.85)s We fucther notice that
wo = (x + g}z = x)"(z + y)®' is a porticuler solution of the adjoint

squation (3.3.6a)s We may therefore teke as the Riemann funotion, the

funetion

) g g Y ey Y
vz, ¥5 %o, yo) = Fmh [ AEEL (85 (2)as

i aeven (BeBe24)
Pt e (2mxe)® (zye)®

where f£(z) has to be determined by the bowndary conditions (B.5.6b),

(5eB46d) ieee as we hove already shown by

n
+ w0
V(Ko, V& o, yﬁ) = %ﬁg’i’yé‘jnn {aﬁaﬁagﬁa)
(x4 g i® .
v(x, Y05 Xos yo) = %;; s (Be5425h)



22

Tor pon-integral values of n, the integrend in (B.2.24)} has branch points
at My ey “¥s =Yes Lot us assume that =, Xoy ¥y Vo are all positive.
Join the points =y and =yo by a cut and = and xo by ancthor cut.
Then if £(z) is anelytic in the vhole s=-plane, the integrand is analytic
in the g-plane cut in this waye Let the conbour Gy  surround the ocub on

the vight and €z +the cul on the left of the Figure S Iet us also

asgume that Gy and G are in opposite directions.

2~

Figure 5éie



Tedng the contouy Gi1, we hove faom  (S3085.34) thad

N o ( ;c';}’ &, E‘”’ﬁ
V(H@' g ¥  Hos :}fo} ey ‘j»:?:%f :ﬁ;ﬁ?ﬁé{; }'ﬂ € )
de
2

To satisfy (De8.285a), Plus) = 1 and so we must teke P{z) = & and

: oy grenz O { g Y00 .
’ﬁf{ﬁﬂ 5 oo ;S’{?«} = %&% ﬁ%}g}ﬂ gzhfﬁjﬁ as ﬁfﬁﬁﬁﬁ#&i&} :
Gy '

To satinfy (Se0.25b) we replace Us by Ba. This 1s Justificd beesuse the

dwbogrant in {8.5,26) is of oxder e fow lugge lfe’;é and o o result esch

grrve can be deformed dnde the othop.

. w a&w};‘ & 1
{nlouls tion shows that if wo out 2 =X + yf c;?* i, (o= LS in (Ba0e26)
we gek
ﬁ) ] J ’
" . Ihi‘ff} .5..‘ J_ﬁ:awq o sy o % rpee g o
\?E}!:Q yﬁ ﬁ@ﬁ y&) ﬂ(}%yv}}i}ﬂ a?{:i, j{} [0 (‘%:l u-.{n} {:31- e&t} {é‘t
o

whore p = {ﬁzijyg ;t:y and Gz is a closed covnbour enclosing the points

£ and 3 bub nod the pdiut 'é:-*a I thersfore follows dhat
vz, ¥5 %o, Voo {%ﬁ%};% oFs (4mn, 03 13 ple This 45 the rpesull (B.5.10)
we derived by elemsntary ﬁifmﬁqhﬁ@i at1ong.

As a last expmple, led ue eonsider the Buler-Darbour oguation

7 n . 8 .
&;’&3 - ( xé.,x!} {}?‘3 = (33 cg’mﬁnu?}



where m is a constent. The adjoint equation is

2y w_ @y ;. Ov _ Dy o
3’955‘33?' " X“V d"{ 2y 63? (xmv)‘” = O (8+5428)

The boundery conditions axe

Ay BY o oeom oy
dx Xy ¥ = Jos
ay my

mOCD 5 we oD Gl 3 s ncu,
(}3’-, .

vlxo, Jos Xo, Yo) = le
Tt follows Prom these conditiouns thet

JRRY I

Tomyg 482 ?(33 yﬁ) i

w0, 3) = £l

Let us weite v{x, y3 Xos Yo ¢ (égjgg F(u) where in this case we take

P (3{""53{1)(?"3[& ] i . > o ; .Y R a '
M@ Gimy ) Cromye) * Then from (3.5.28), ¥(u) satisfies the differential
aquation

21 i
uli-p) %;ﬂ% * Qi*ﬁg}a% + {m=23m P(u) = 0,
This is the hyyargeomehrie eguatlon with solution
F(m) = pFy{u=ly, mg 15 u)o
It follows fvom this that the Riemsnn function of the equetion (543.27) in
" U 5. ) LR K "
v(x, ¥y %o, ;}"0) = Txo=y0 15 2Py (m=i, ms 13 proves XG";Y'O Je (5e5.20)

If m is a positive integer and if we leb + = 1-2g th@n #(¢) satisfies



,,{

the diffevential equation

2 3] . ,
(1-4*) &5 - 26 & « (wer)u = 0

This is Legendre's differential egustion with solution ¥F(&) = Preq(t)e
&

The Riempun function of the given equation is then

in
(x=y)® .
TE, ¥ X 7} = P =0
(x, Vi Xos Yo {xamyg 2 Pt { M}s
aio 1y )
whersa e R 25
B = Txmy Y o~ye)
Apart from miner veriations, we have therefove shown that the Buler—
Poiasson equation (B.5.5) and the Buler-Darbour equation (3.3,87) may be

solved by the ssme methode
v



de Hotivotion For Hertin's Method

The main feetures of Riemenn's mothod which form the hasis of the
5 @ AANE Rk, WEA A-RNT 0L ‘M%régmmﬁ:&%éé;&WAuu

The main feetuves of Riememn's mothod which form the hasis of the
Hartin's solution of the Cauehy problem for o hyperbelic sccond order

linenr partial differential equation of the type

I,s(u) = Uny * alg * ‘5)123; + ou = (g ("?n'ej«-al)
where a, b and o are functions of z and y only, ave as followsi~
(3‘1) The introduction of characteristios as coordinate liness

(31) A properly chosen solution ¥ = v(x, y)} of the adjoint equation
?ﬂ(v) = Vgy ™ (&"J‘)g ot (3317)3: o = O

(ii1) The identity vI(u) - wi{v) = i‘f’%’c A +~%:§3 which ensures that the

line integral
I= [ (B dx ~ A dy)
:i:i

vanishes around any closed path ¥  in the interior of a domain within
which u and v are regular solutions of IL(u) = 0, M(v) = 0 respectively.
(4v) The funotions A(x, y) ond B(x, y) are bilinear foms in u, ug,
ug and v, V¥x, Vye

Mol Mortin took differvent bilinear fomms for A and B, and the
adjoint eguation of the Ricmann's method is veplaced by a different but

similar equotion, called the ggssociaste equation. A solution of the assoeciate



equation, now called Martin's function, is the analogue of Riomarnn's

funetione One of the merits of Martin's method ig that each solution ¢
of the originsl equation I{u) = 0 gives rise 4o an associnte equation.
The other is that, unlike Riemann's method, it can be used to solve the

Goanehy problem in spaces of higher dimension.

2. Mertin's Solution of The

For simplicity we shall take the equation (4e1.1) in the form

I(u) = ugy = auyg ~ buy = 0 (2.241)

where & and b are functions of x and y. We shall, using Martin's
method, £ind the solution of this equation which sotisPies the Cauchy
data that wu, ux and uwy are given functicns of x aend y on a non=
charvacteriatic curve C.

The poscciato equation to (4elel} 43 taken in the form

M{v) = vxy = avx ~ Pvy = O
whers G, [ ave functions of x and ¥y which we shall debermine.
Phe bilinear forms A and B in the line integral f (B ax - & dy)
are taken as

A= *-?éf“'uyvh B = -—gz""’ugv,g (4e243)

where A and p are noawzero diffeventieble fungtions of % and ¥y

whieh ave alse o bs determined. Motivated by the ddentity vi{u) - wilv) =



AR
[T
N

98 @E

7% * 3y of the Ricmann's method, wa simplify M(?\,"‘u;v;g) - --m( Tugvg)e

We then find thab
2 (e - ,f;!.
Al tugve) = o (U gy Y= (N Vv = ey Bu) + (0 ug M “y) M&)

)

+ N Vugrn(e + o -% Ag) + ugvy (= % .

¢

+ VgV ( % gﬁ’ )+ Mw‘ﬂyif;‘r("’b’ﬁ + ﬁf P-X)e

We ave therefors led to require that the boundaxy functions a, By by My
ghould satisfy the four equations

ah =~ P = 0 Ay

#

(o + al,
(4e204)
ol = by = O, pr = (b + Blus
Bliminating o and P we get hy = al + b = yge This shows that the
expression Ndx + pdy s an evect diffevential d.ee +there oxists a

function ¢f{x, y} such that Adx + pdy = Padx + Pydy d.c.

A= Py, o g’ga We also notice bhal

P = ~ly e WPy mhg =N = b= 0 by (4eled)

Phus is o solution of (4elsl)s We take only that solution of

(4e141) which satisfion Py % O, 9"? # 0 dn the veglon b under considerati
Prom (4e1ed) we find that a = Pyup, pa® S1n,

With this chodce of a, By Ay p we £ind thot



‘@‘%‘D (B ') = 5 (b5 uyug) = (@2~ vady ™ vp) Lu) + (™ uamy™ uy JU(v)

(4e245)

where (v} = wxy = bpx 'Pyvx ~ apxdy vy = O (442.06)
is the associste equation which arises from a non~zero solution u = ¢(x, y)
of I{u) = 0.

Just as in the Riemann method we apply the method of characteristics
to the equation (4.lel)s. The characteristics ave given by x = constant
y = constant. For a point P(X, ¥) in the xy-plano and a non-characteristic

curve C ocarrying the Cauchy data we construct Pige. 4s s shown

34\ \ P ?(ﬁ') g)
X \
iy
/\
T~
o e

lﬁ’ig. 4z



Then if I(u) = 0, M(v) = 0 inside and on the boundary I of

a regiondd, equation {4.1.5) yields

X 'y ¥
fﬁbxm‘ﬂx'l?gag '9'.[ @ywiuy\?ﬁy "9"[ {‘j’xm‘ux‘imﬁ_;; + ¢’3-“'u31ryég} = 0,
P ¥ X
The boundory conditions for v on the characheristics through P
ave different from those of the Riemann's method. Here we require v to
satiofy?

vg =dx on y=§, vy=e=by on x=X . (442.7)
From this it follows that ‘ .

X P " Y Ed
f ugdly - f + Ugpdy+ f (P ux vade qSy‘“‘uyv@-(’lj}-. 0 and so
P T X

i - |31 X K e &
u(:&, ;y‘) = 5 L % -.g,:f (¢g ’ux‘%;ax @ ‘ﬁy 1\33,‘9‘39&?)-. (4‘02,8)
X

Apart from an arbitrary constent which does not affect the
solution (4.2,8), v is uniquely dotermined by the equations (4.2.6)
and {(4e2.7) ard the solution of the Carchy problem is piven in the

intogral form - (442e8)e

-

5o Martin's Solution of the Wave Bauetion in two dimensions.

e shall use Martin's method to solve the wave equation

Ugg & Ugy = Upg = 0 (4:-5;»1)

subject to the Cauchy data wu(x, y, 0) = £(x, ¥y), us(x, y, 0) = gz, ¥)



S B

where £ and g ave functions of x and y Oniye

Dy (2.5¢19), o point P(x, F, E) of the (x, y, t)=space is vertox
of the characteristic tone
(= %)2 + (y-5)? = (x - ¥)
The vegion PEY of the Riemann's method in Chapter IIL is now
raplaced by the points of the lower sheet of the chavacteristic cone with
vertex at P(X, ¥, £} defined by
G: Osts® (x=82+ (y =5 < (¢ =52 (4.5.2)

as shown in Filgure 4b.

Fige e



Gurvilinear coordinates o, By © are now introduced in order
to £ix the position of a point y(xg ¥, ) in C. Here o and B
determine tv\;;i points A and B on the axis D po 55.%;51'1 by
b bR, 5, 8)s B =B T, p)e Tho lower sheet of the chaveoteristic
cone with vertex at A iIntersects the upée;:c sheet of the chavacteristic
cone with vertex at B in a eircle through Ps The position of P on
this éﬁ.mle ds then fixed by the angle ¢  ag shown in Figs 4b.

It then follows that

-, - - O - . ot B

= == . (44568)

The goordinates a, B, ¢ of the point P are therefore charvacteristiec
coordinates. 'The equotion (448¢1) in the (x, y, t)=space is then trans-

formed into an equivalent one in the (a, B, ¢)=space. We then £ind that
Ugx = Uggotx® + QUuBecsBx + Ugpeaxx * VppePs” + UgpeBxex
& UpepoligPa & U oy ¥ u‘p«;}“?ﬁg .
But o +B = 2% andso ax +Px =0 end oxx + Pxx = O.
ote ax = (W « g + Uap Jog2 * 2(wy = ugy Juzpx + Vg e9xs + (v, ~ug Joxz
* W@ o

Similorly

uyy = (e = 2 + ugplay® + 2(ugg=ugylayey + wop ¢y® + (yy~ uglaug.+ u, 9yy o



&4

G‘G pg ¢ Upy = (uﬁﬁx - guﬁ, + 2 )(0{,32 % &32) + 2(% ~ Hn, )(C&gt{)s'&'- Oy ({Jy)
B g 1

* %(9(;95;24- oye ) + (ug= u@)(@xx + aygy) + 1%9(%3““ Pyy)e

o = f’) 3 o= X ,
et p= """’"‘?é‘“’g“ s Then ag « iz = -r% =2 m“é-m s agx + PBe =2 0 and so
£ d N
‘3{’2:‘. i ms:af-; ¥ %3, - i‘z.,-w.:w‘;uv;x s

2 -2
‘\‘Q‘ ﬁ‘ﬁa * @3’ = 'g'x ) p%“‘g‘y y) = 1 and Gy + i&yy 3‘%’ "
Also from ten ¢ = M we get

Wy &?ﬁ, Py = &gﬁ « Hence

1 ~ '
ox° + oy° = mg;g s and. axex + Gypy = G
It then follows that

Ugx + Qyy = m--*?u&ﬁ + uzaga 3 &1’-%&% + Pﬁ%; *
Also Uy = “ﬂ, * ui-'.)," By = Uy, + g%‘(j -+ uﬁﬁ‘
The equation (4e3.1) then becomes

n) = uyp = m (ug~ug) - mﬁ Uy = C (4eBed)s

The above transformation carries the conical region (4:.3.2) of

the (®, y, t)=space into the wedge defined by

Ws O0sas® =wx<Pso, 0soxomn (4e545)



of the (o, P, ¢)~spoce as shown in the Figure 4o balow.

Figae 40

Prom & = g”‘mgm@ wo conclude that the base of the cone (4.3.2),
the carvier of the Cauchy data, is transformed into the vertical face
B = -, (AOED) which now becomes the earrier of the Cauchy data in

(¢, By ¢)=space. The axis PPy is transformed into the vertical plane



B = a{0BCE}. The conical sheett' is trensfoxmed inte the vertical
plane o = § (ABCD). The boundary of the base of the come is transformed
into the edge o =%, P = ~t (AD). The horizontal faces ¢ =0, o = 2%
are the transform of the plane through D(E, ¥, ¥) parallel to the base
of the cone,

The scolution of the cquation (4.3.1) subject o the Cauchy data
u(x, y, 0) = £(x, ¥}, uslx, y, 0) = g(x, y) now becomes the solution of
the equation (4.8.4) subject to the Ceuchy date (which we proceed to

obtain) on the carvier o + B = 0a From (4.3,3) we heve

X=X+ p eos g, y=5+p sin g, ‘bmg)mg—&’ P“%; »

i

Wy, upo % - ut’ ‘gf - C), u@ = up.(a-%) + utn%. + O

Therefore on the carvier £ = =a wa have

v = &%ﬁ , ug = - ﬁ&%ﬁg v v = [ugly (4.5.6)

The problem of computing the valne of u(X, ¥, ) at the vertex
P of the characteristio cona (4.8.2) from a knowledge of the Cauchy
dats given over the clrcular reglon intercepted by the gharvacteristic
cone on the plane 4t = @ (see ¥igure 45) now becomes the problem of
computing the value of & solution u = ule, B, v) of the equation
(4e5.4) along the edge BC, the transform of B, of Figure 4c, when

the Couchy data (4+3.6) are prescribed on the face B = =u



2

To an attempt o {ind o suxface integral which vardishes when
taken over closed surfaces we proceed an followst Lot
Keugyp, L=-uv, vhere u=u(o, 8 ¢) is o solution of (4e8.4)

and v = vlo, B} is o solution of the associate equation
Mw) = Vop ém(vm V) = 0, (4e347)
Then K, + Iy = "%ga(va. - vg) = Tuply, - u@)

= Cavp) | = sy ) |+ g | by Crae) |+ Cumv) | by e

R

v
-~ - MQ“@‘?Q
(o = p)?

Y, * Y,
It therefore follows that if we let M = Tm—u-%? wy then
o= B

K, + 113 * M@ # O+ Henece by Green's Theorvenm,

f j (zf + By o+ I )

] % cos {a, 4) + & oos (@, n) + M oeos (¢, )} 4o
]

whore 4o d1s the element of avea on the suxface 8 of the wedge W and

where do is always teken positive and n is the outward drawn normal



1o the surfaces

We therefore integrate the surface integral

I =/f X conls, n) + L cos(B, 3}) + 1 confg, -E';)i do* (4e548)

g’:s

over the surface of the wedge We Ve then obigin

T + I + I + I % I =0 (2e3:9)
o=t P B=a, p=0 P=ER

Now wup bhas pexiod 2m in ¢ and Wy, vg ave independent of

© and so % =0 * I ¢, since these integrals ave egual and in

4 psom =
opposite directions.

On « = ‘t', do. = 0, the sign of cos {a, n) is positive amd {that of
cos(B, 1) is also positive while cos(y, n) = 0, It follows from these and

(4.5.8) that

e [ = ) ]

ABOD ABGD

Choose v such that ’Vp =1 on o= %. Then

I_=

2R 2
a=th o o

% ) 2‘3:}; - [ R S -
éls;:f | uﬁé@ -:f u(t, s (?)ﬂip —-[ u(t, -ty ;p)d;p.
-l o



Wow (Ti;, :i;, ¢) is the edge BOC of Fige 4¢, the transfors of
B(x, ¥, £), and so ul%, T, ¢) = u(®, ¥, T)e Hence
> 25K

= zsm(:?%,g%,%) - ./ w(E, =%, q?}d@

I
= ey

ast
On p = o, cosle, n) is negative, cos{B, n} is positive and cos(p,n)=

Tt follows from these and (4e5.8) +thotb

i{’ = .[/ (“ufﬁvﬁdgfﬁﬁ - u%v%%gii‘y +0) =0 if we let
ORBCHE

p

v@a

EL

'v@ia@ on 3 = te

The Mertin funotion wv{v, P) wust therefore satisfy equation (4e3.7)

subject to the boundary conditions

wgmloon amt, v o=y =0 on f=a, (443.10)
where o = 1, £ =0 ave the characteristic planes intewssobting in G,
the trensform of B{¥, ¥, t)e

On B = =u, cosla, n) is negative, cos(B, n) 4s negative

while cos(y, n) = O. Tt therefore follows

gai-{;, = f f (*u@v@ + v )ade eimce L= -uv, ond Idﬁqﬁgﬂ = agdg
| AOBD



S S
= l e f (u%v@ - uﬂv@}@& o
: ¥

Q

Bguation (4:5:9) thervefore reduces to

. es 2w
onii(x, y, t) - [ nlt; =t, pldy + (u,v, = ugvﬁ)dg( =0 deee
o

o _ 7
P s mﬂl "i_ gﬁ - e ‘i 2’&: .‘3-';
ul®; ¥, ) = g f a%, =T, ©ldo = e do f (uy v, = u@vﬁ)am. (44841
‘ ) "0 "0

We now pyocead to find the solution of the associate equation
{44347} subject to the boundary conditions (4:3.10)e We notice thatb
T =04+ P is o solution of (4e547)s The boundary conditions suggest

that we buy

vea P+ AT = a)(Ewp)® whore m>0 and A is o constents

Then

'ii"‘{;; w ] - Am(;’; s cj;)m (’%; i p)ﬂ”‘

when £ = o, v = 1 = st = a)?™Y 2 0 Poroll o and A$ O

¢*s mel = 0, bda=21,

»

Hence M=%, A= 2.

Fiffes

ey A g ’
oty vemon +B (%~ af(t . B) is the appropriate solubtion of the
associate equation (£.8.7)e This le juctified by a direet verificatiop.

K & 2 AT
Hence when P = -u; we have v =1 = %ﬁ.%) s Vg = i *( t ¢+ c&) . He



- 2&5 aﬁ
“(32,2?;“%) = %‘K u(*t;, 1Y (&))ﬁ,{; o J&f d(p %[ (’ﬁ 5 CL)]

o h

fv{""‘

- u@[‘i —( = } de. (4.5.12)

This formula expresses the value of u(x, y, t) of the wolution
of the equation (445.4) in terms of the Cauchy data prescribed on the
garrier plane P = =a. We have therefore solved the Cauchy problem in
((3'-*: Bs ‘P)"spaee.
We note thet (T, =t, ¢) s the transform of the boundary of the base

of the cone of Fige 4b and zo by the mean value theorem

1 ex | 1
on f u(t, ~-t, (?)ﬂ’{’ = 2’“[ u(x, v, 0)ds
Q ) T

= u(ﬁz: 5?3 0)

= ;{“(3";_, 5’)0

B R fp = 8
Also by (4.3’).6), Wy =g, u@a— o) 2 P = on

B = - and. dp = do o Hence

- &
ne -y - un( St 2+uﬁ(f”’“>a
t~-a ‘ t+
ki
e 'é)j: -
_f_fp'*B(‘:”s'?’ ”ﬁ‘p (t 5’)
= 2 t-p 2 t 4P



[ &t

1 27 % 1 2% 4 2%
Also f [ folple = S £{%, ¢)do - o £(0, ¢)ag
a Q ] &

R 2%
= £(xz, ¥) = ;.%2 = f £(p, @)do
4]

= f(ﬁ, g"} - f(;;s 5;)
= Go

In the (xs ¥, t)m%mce, 3t followe from (4.5.32) that

hé’S ‘t;
u(®, ¥ t) (%, ¥) d- f % fp b gn dpdep , (£3.18)
where fp = 5(2- £(% + P oS, ¥y+p 8in gle

$

We now show thot the solution (4e3.13) is equivalent to the classical

solution given by Posson's formula

. an
-~ = = s(xtp cosy, :V"’P sing) a2
ulx t) = B i
(x, ¥, ) f ) % pdpdyp 27\; 5%
998 o P
f m;mmw_? pdpdp (443014)
0 o (t - pe e .

Eu, , -

Let Fplf) = f f £(%4p cosg, Jip s80¢) Lapde . Ve cemnot
(x2 - p2 )z

differentiste thm wi%*h raspect m r as it stands beoause the integrand

has a az.ngulmrity at p=1re Let p = rv. Then



2:*-

‘7‘3‘ 2{% + 1T cosq, ‘é} + rt_sing)
53 (1 bt 'ﬁ)

tdvdyp

Fol€) = = f

2]

agfz‘/\‘mfi £ mﬁwd&p«&r[‘g‘i %ﬁ' ard
¥ o Jo (1 ~a° W ¢

2R o1 a
eanm '{f é& f
L et e

Iy + Zp vhore

3]

‘ p OF 29t
1

=& ri.’ﬂﬁd@“"f j Zoeh, spapa
"'./; p=0 (x® - p?)

xr 1 '
» [ -t 2o a0
G

o opas ,
=2ﬂf(§,§)'£~f rzmmdg)d@ - Iz .

Bauation (4e5.14) therefore reduces to

alx, 3, 8) = £(z, 3) + f “mf = 45, 2.

This shows that the solution (443.13) of the Cauchy problem obtained

by Martin's method is equivalent to the classical Foisson solution (4.3.14).



4o Moxtinls Solution of the Wave Baquot

In thia section we sholl extend Martin's method to the solution

of the wave equation
I{u) = wpy + Uyy + Ugy =~ W =0, T >0 (44del)

subjeet to i;he Cauohy data w(x, y, 2, 0) = £(x, y, 5), welx, ¥y, 2, ) =
ey ¥y, ) where £ and g arve given funchions of X, ¥, %e

The problem consists in the determinotion of the value of u at any
point (X, ¥, 2, €©), T > 0, in terms of the assigned Cauchy data.
In (x, yy 2 t)=space we shall employ the eylindrical eoordinates
(r, 6, 9, t) where O dis the latitude =nd © 1s the longitude. The
transformation equations are therefore

X=X r sind coBYy ¥ = ;3; + 3 pind sing &= % + 7 cost.

Bouation (4e441) thon becomes

l’,;(u) £ Upp * ?mg» 4 (am@ ue) ( L . u@) -ugg = 0 (Lol

e sma ° 8in®0 o

Az in the case of the wave equation in two dimensions we let

M(v) = Vpp = "?; Ve » Vgy = O (4.13.-,5)

be the associate equation. Then



|

v,p.&(zz) = Wplpp & ?Im‘i?r & ""é""ﬁ‘m""“' . 8ind u@); + Vp ( - %) - ¥rugt
¥ 5ind 6 ¥ ain®o ©

wel{v) = vpvpp = % Up¥p = WpVog o

This suggests that we add rathor than subtracte Then

vpl{n) + wlM(v) = (voupr + Upvep) = Vougy = UpVip + *g@mm sin e'u9>é %
¥ aind

1
Ve —
< #* ain®0 tp) ©

Now Wpipp + UpVrr = Velsg = Ur¥oe = (upve)o~ (veus + upve )‘%* Ug¥re + UrgVe

L]

(urve + wowe) = (veus + upve), o

We therefore take as a genervalisagbion of the lagrange~identity, the

identity
veI{u) + uli(v) = (upve + weve) ) = (Uovr + Upvy)y + e Sﬁm“e) +
P PR
¥* pind ©
1
i ( s )) ‘ (4’04‘04:)
¥ sin®o “

P
Ag in the case of the two~dimensional wave equation, we denote the
four-dimensional cone with vertex at P(x, vy, %, %) by

C: 0sts3 (2=-%2+(y=y® 4+ (a~-2)?s(%~-1)? (40005)

and we transfoimm this dnto a four-dimensional wedge



WO0«hsm, Of@e=s9n, Osrstet, OSE8%., (4e4e6)
The base of the cone ¢ is then

B {x =%)2 ¢« (v -~ 7% « (2 = 2)° 5 3°, (40447)

Tt then follows from the identity (4e4.4) that

5 2% B b - . \ ™ :
2
. ¥
3

= 0° =0 £=0 " r=0

= / j f [‘uwr % zang gin0dndedt - f f ' [
0=0 " 0=0 " 4=0 =0 6=0 " ¢=0"t=0" =0
{ugwp + uwg}#ff:i; sin0dsds dr + O | §4,4.8)
g E - H- -
But [ [-ug‘?p * ‘ﬂm?’u] ad = f Upip + Up 'irg',] dt - f !:I.m'ﬂ’r > ugmj at
0 r=0 o ety 0 - ()

2 :‘:1 - iz’ 26V e

Also by changing the order of integration,
G =t i v
f at f {ugve + vpvy )? dp = f dr f (ugvp + aﬁg)ﬁd‘&
$=0 r=0 r=0 t=0

Hh

% 5
= f Juzvr- + ux-*v{i - f !w gvp + umv{l dy
r=0"

ey =0 1=0

r-ff:g““:f.};g



[ 7

If I(w) = 0 and M{v) = O then it readily follows from (4.4.8)

that
PN
f [‘&:&*‘V‘a o uzv'ifg:] dt = f [ f [:’(I{g,'iﬁ‘r < Wy dy (4.41;9)_
Tyl

f 18
=0 0=0 =0

We now solve the associate equabtion @.4.3) subject to the boundary

o= 't

conditions determined by [uyve + upve] pmp 800 [ugve + upvgl gepe  Since

we have to use the bterms in the fivst brackets to find uw we let

vp =0 when r =0 and vy be a function .of + alone. iet

vy = t=4% when =0, We could let v; = 1 bub the solubion we

then obtain will not be the seme as the one we require involving te From
thx torms in the second bragketds we led v = v, 1wy = %t when +t = Qs

These latter boundary conditions are motivated by the solubtion (4e3.13) of ¢

lost Section.

Pry v = Ar® ¢ Be + G + Db ¢ B
v = 2Ar + 3, - yp = 208+ D
when % =0, wp =B =0
when +$=0, wg =D = %
when =0, vy = L = &= 20k + D

Hence =L =44 + t6 + B and this satisfies equation (4e4.3) for any
ma .
constant B, Taking B = ...%}. we have ¥ =42° o MHE - 4)® as the



appropriate solution of the associnte equotion (4e4.3). IHonce

luﬁvﬂ’ & uﬂ"v&jtﬂa = (!’uE * %’“B‘]’ba@

[acve + vovel, = [(b=tlue + puel o = (B =t)wel,_ o

It then follows from oquation (4e4.9) thatb

% 27 pt e + i ®oop2U -
[ f [ I:@ﬁ?-m& r° oind @0 dr = f f f [(t—-t)m gindaod
6 : - t=0 =0

=0 " =0 " r=0 0=0 " ¢=0 " t=0

+
[¢]

Differentiating each side with respect to t we have

t - - , - ,
%[ i 5, 5, b)as =%[[f(_wé%m))&@dg
e
B

ieGe
T en «a e - o weny . 3 A %
a(E, 5> % ) = £(F, 7, B) ¢ g=ap f f f (ﬁiﬁ%hﬁl » —»f-’ﬂ-%g&i‘l)ax dy age (4ede:
B

This is the solution to our Cauchy problem. It can also be shown, as
in Section 5 of this Chapter, that this solution is equivalent to the

classical solution as given by Polsson formulas
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hJ

Be lMartin's Soluiion of the Wove Fousbion in Speges of Highew Dimension

Tn this Bection we atudy the extension of Martin's Method to the
dolution of the wave equation in N dimensions. We shall solve the

wave equation

ux131 + ees ¥ uﬁ-nﬁﬁn = Ugg = Q (4:’501)
subjeoct to the Cauchy data

u(mﬁ, X2y sae 3 Kny Q) = f(lﬁh, Koy eve xn),
| (44542)
uE(X*I’ Eng voe p Ep, 0) = g(ﬁ‘l, X2y woos 9 Xpnja
This generalised method heolds for nez & and the method of

Seotion 4 dis merely o simplified vexsion of it. In three dimensions
we transformed variables from Cartesian rectengulay coordimtes to
polar coordinates by the cquations = = v cos ¢ s8in ¢, ¥y = » sin ¢ sin 8,
g=1rcos 0 where 0S¢ $2r 0<€£060<%, r2 0, Inapace of n

dinensions the generalisation of this is the transformation

X3

5

¥ eos ¢ 8in 0q 8in Oy 8in 03 ece &dn Oges

Xe = ¥ 8in ¢ 8in 64 8in 02 8in 03 see 8inlpes

¥z =2 003 04 8In 02 8003 o o 0o s 8in Open
X4 5 P 005 Op 3INn 03 o 0 ¢ o ¢ o o ¢ 8in Open
&
L]
L)
Hpeq = 1 008 Opws 83N Opws

Fn = T 008 Opma



R AT

whore 0 €¢ $8my, 0563 €% (J =1, 25 eoe s n=2), 23z 0,

Tobt ug write y1 = @, Y2 = 044000y Yot = Op-n, ¥n = ve Then,

using o vesult of elementsyy vector analysis,

2 . A% 2
: u&u.—.n;
(B (B (B

i . - "' a
= 12 8i0%g 810201 sease 8i0%6p-n + ¥P 00870801000 eeninOpmg

o' By = v 3in0483000eceeoeSindpeze

Simi .I.arly ho = r ,Si!ﬁgﬂiﬂ@sowcuwﬁimmg

hpe2 = © sindp-z

__a.,o h‘hﬁl@#twhﬂ = rm13iﬂ915132925iﬁ363up epaﬁ’iﬂmaﬁsgmg = By HBYs

Then by the transformation rule,
n

1 o ‘a i h"m.seo h ‘ﬁu
uxig, 2 sseupnp T uxnxn =V a2u = 1lgh200n-hn } ?ﬁ%v hgg 2ol mm dyi:]
ot -
i=l
35 (e 22)
il

=2

(ﬁﬁg ) SL ZJ dez( Fra? u“)} g or <th ,ur> )

J=i




But "é' 5%,({%’%) = Upp + %;; ur [(n-l)r“’"gsinef ainzeg....sin“”aen-aj

n-i
= Upp b “""x':"'u:' *

Lot us sot ?a% = P*3pi.4. Then
n-2

s 2 (£ z""" 2L £ n=i
VM = P 3(9(?0 mp) ? @ea(#uea*um"' r Or
=1

Now --i_.-‘ = 5in0q 8in%02eesees8in™ R 0pun = fpa = £, sy
o

Therefore

n=2

wed[A(Bw)) (L))o
j=1

Also by elementary vector analysis the (nw~l)=dimensional
es.-lemn% of suxface ares on the unit sphere r=1 is given by

Wn h'l hz »o .hndtpaﬁq 30206 «d9 e

= £ 9pd0y AOpeee Abpe2, since g= £ when »r = 1.

Hence the (n-1)=dimensional area of the unit sphers is given by

TpR ® p AR
Wn ﬁf f e.eoe'[ [ f(l(pd@gu..ﬁ(ﬁnma .
PR o Y0 ‘

Sinee £ is independent of ¢ ,

® v
m - ?jﬂf fteoo[ T a@ﬁi@a eneo a&n«-a
o 99 o



&

i
s - 2%
ns g, Wy = 2’3‘2[ 810460y = 4x = —g
o r{(2)

'R/g . ﬁ/2
n=4 wy = SNede f eind 4404 y [ ain®e /g LY
@ 0

&
ar* =8 =
I‘ég)
Suppose W = 2% « Then '
(<)

B ="
Wt & "“‘%%“ ) 2[ 3 8in"™ 104 40150 q
Y ) 0o

Iet m= 2r, then

92 apf {r
Vindq = -'wﬁ:)ﬂ o 2!’)
1
= 92F oF @) 4
227 (red)
= 2 m!{.?u;um
(=)

. . 258
Hence by induetion, wh = -f@;)- .

Iet us mpke a further transfoxmation a =t + 3y, =t ~2 80
that we have o transformation from (¢, G4, 0zsevesOnez)~space to

(@ By 95 04, 0Ozjeee,0n~2)=spaces



w2

Then Uy = Uy + U, ux‘-ﬁ%"u@s
um=um+2%§,~s-u§§, upraumnzu@@ $ uﬂ.}.

0 6‘ : (=u, + Up)2<n“1)
b o® ugg""2“*%*2%@""uﬁﬁ"%'}g%ﬁku@@* Q’”p

n-2
- &l 25, R T |
(@) S d(w)]

J=1
2( ) S \
= 4_.- Uy, = % (n”‘_l - mm [W £ Z (f
u“g - 6 f(cﬁ*@)g ( GW) + @63 3%3/
J=1
[ B -X)
£ G - (g = u)(n - 1) l: (s
y) (uge u) rﬁe‘@ 2({& ey (ﬁ )2 o)
=2
5 363 (f‘;;uﬁx):l
J&
and so
(u) = Bl )¢ - —de | = Puag)
Mup T Blamd) ST Y (wp)e L D VW
3’!.‘::? _
+> 6 (f‘aue:>:l (44545)

J=a



The associate equation of (4.5.3) ds thorefore

M(V) = -Vq,g} 3 ﬁ“;—@%ﬁ) (V‘;‘ - Vﬁ;})n | ("1’0506)

We now lock for a surface integral which vanishes over closed

surfaces. Following the pracadum‘ for n=s 2, we let

Amfu@?ﬁ, B*"’f%‘rﬂ,’ éf—fa%&%ﬁu@-
s

Then Ay + Bﬁ + i}‘P - %ﬁvp *+ fu@?%@” %}37@ - %Va@ + To "?("—W.;)aw‘? .
A o

- n=2
= (o) | 2w) + iShy Coump)e + rdama | Fpleom) + ) genoy) |

J=1
- #lamup) | 103) - By (ramwp) |+ o T g
n=2
= (o)) + Flugra i) - BB ) 5 (c0s)s
n-2 J=1
It follows that if we let 33 = Z ﬁai‘aw § we get
=3, ’
 opep
(vpve ) L{u) + £(ug=vy M(v) = A+ Bg + ‘I’@ + Z@%; 9 (445.7)

J=1 o
This now plays the role of the lagrange i&en*bity.’ Hence if I{u) = O,

M(v) = 0 in an (n+1)-dimensional domain of the - (6 Pj @y OtseeeOpea)=

v T



space, we have by the generalised Green's theorem,

: Y e
Gg‘f (ﬂ“ +B{3 .@.@@ @Zs-gfg(@a )ﬁﬁﬁﬁ&({;d@iaaééaaﬁ)nﬂz
vﬁ‘;’r" 5:-;;'

(AGPEQAO1 00w au@Opmat BAAAPAOY 4ue @Opmp + BEAPAS1ass AOpmz
B

-/

X @‘1 dodfdgdisseese dpws Fensvost *‘@gwad&ﬂ.ﬁé R : P 1N

Hence

In m‘[ {av, + Dvg * By -+ @'”@1*“"*+(;wa”6ﬁme) a8p = O (£6548)
S
whore vq, VgessisVy, ., 8re the gomporents of the unit ouiward nomal
o 8y and 48y is o positive element of aves on the surface Spe We
nmte'%haﬁ cach of A, Byyeess, @nwa is a bilinesr form in the partial
devivatives v and v with respect to «, B, ©, O1500eey n=2 »

We axe now in a position to solve the wave equation (4+5.1) subject
to the Cauchy date (4.5.2)e Dot B(F1, Foseeeaskn, T) denote the point
(Fisa600sble We mow txy to solve the Cauchy problem by expressing
(X1, Rzpeeeees ) 90 on integral in torms of the initial detea £ end

g on the carrier hypezplane % = 0 contained within the lower mantle of



the characteristic holf=cone with vertex at P i.c. in terms of the
initial date prescribed on
(x_i %) teeenstlmn=Fa)? s B2 350, $= 00 {4.5.9)

CGonsider the (n-l-i)*d:imensicml conioal volune € bounded in space=
time by the chevecterdstic hypercone with vertex ab P and t =0, The
axis of C is the straight line PPp  traced out by P(F1, FoseeesFns t)
as % ranges from O to %. Let us introduce at each point P(x1, Xaseses
¥ns )y @8 in the case for n = 2, the polar coordinates g, ‘61 s B2,
coovay @Mr with pole at P. Then the conical volume € 4is described

by

0305(952%5 0593é?‘i(jtzi,E.un.,ﬁ"‘g)gOﬁrﬁg"'b,ag"bﬁ%
(465410)
Now take o, Py Py O4se0s0ey0pen, where O = t 4+, p=t~ry as
rectangular coordinates in an (n + L)=dimensional spaces Then € dis

transfomed into the wedge

W 0gagt usPsa, 05¢s8n, 086580 (J51,2,000,n°3)
As in the oamse for =n = 28, ‘the following also hold:

The conical mantle of £7 is transformed into « = § of W

The bas{e t=0 of O is transfomed into the face P = =a of W

The axis ig?g of C is transformed into the face P =a of W

The vertex » of € is transfommed into the edge o =B = t oof W

The perphexy of the base of C is transfommed into the edge o = =8 = & of W



The centre Py of the base of (¢ ds transformed into the edge « = =0 of W
The carvier ¢t = 0 of the Capuchy data in € is tronsformed into the

face P = .0, +the carrier of Cauchy date in W. Also
U, = ugogg e ug‘aé% = Mé’é’ﬁi

ug = up(=}) + upsd = ~Hwe-us ),
Therefore from the given Cauchy data on t =0 din C we get

u, = &%ﬁ »up = = Mﬁ . (4e50.12)

.....

b red

Binge o = f = % is the transform of P s wWa now txy to £ind a
solution u of (445.8) along the edge o &= p= b in terms of the initisl

date (2.5.12). Bouation (£.5.8) now bocomes

31"’2
Iy RER S In . .
b * poa * am% * poo (&*2’5 o350 * ogen ) = © (45418)
J=1

Az in the case for n=2 I + In = Qs
g=0  ¢Y=3%

>

Algo c,azc:h@g, d® 1, Byesey 02, ogontains sin 03 as a factor and so

In Iy
0 3=0 =0= 63=

Henge (4e5.13) reduces to



n o Ao o, | AR
poc * peeo, © ash = 0 (445.24)
whers Ip = f (v, + B»@ + By + Oqvggtenet @ngen_g JdSn.

Sn

Using the same reasoning as in the case for n = 2, we find that

Lﬂ = f f (=8 + “)f'"' Tdudwy + 0, sinoe the nomal to P =o is

Wy

perpendiouler o the remaining (n~l) diveotionss

Ix’i% »f Afwiﬂﬁde 4 O :af j !f""@@éwn” ﬁln@@ 3, = Q;
ﬂn .'(J

and. [szu = (=af~tapawy =~ B:F'"‘ dadwn) + o
g&’!

bl

2 4
= f f (& + B)F ' dodwy

G " Wa

llonce we have, since A = fugvg and B = ~fuav,,

[ [ [T, + el vt + f [ tugugl,u dpam +

Wn Wi
=

t
[ j [%ﬁvﬁ - uﬁ?ﬁ]@=maﬁﬁnaﬂ, [} O (4:’5.15)
Y @ W |



&s in the case for n = 2, the charvacterisiic hyperplanes through
@ =p =% over which the boundexry conditions which a solution of (4.5.6)
must sebisfy eve o = B and B = a. From the second integral on the
lefb of (4.5.16) we ave motivated to leb vy = 0 on a = B. Using the

procedure we adopbed itn the special simpler case for n= 5, we let

Yy, = *&g (% o ﬁ.)“’“"’ when £ = e This is becavse for n = §,
the éxppmpwa e v aatipfs_ea. Yy F (t = ) when £ = as But when
B=o, aunt, r=0, Weare thevefore led to solve equation (4.5.6)
subject to the houndery conditions »

Vg =0 on o= t, v, = Vg = (T=1)"2 on B=a | (4e5e16)
These conditions suggest that we try, following the case for n = 2,
= A% = a)%(% - p)®
Then

- M7
- mm(% " m)ﬂ!(% - p)m‘*i’ vi} - - W\A('f-”" 0() (’E B)

when B =0, vy = -nb(T =)™ = (T - a)?™? gfor fixed n.

Honce m = %‘%, As - ﬁ . . Tt follows that

1’1*1
¥ = «;;;-w (% = a) 7 (% ~ gs) (4050.17)

Tt is ensily verified that (4.5.17) setisfies the assoedate equation
(4e546) 4



Yo

NS o=, uod, ¥t

G S Lo o li‘t‘-ﬂ«‘.‘—"‘!‘

“’G*(%"%}z(%“ﬁ)g P Vg“(%”“) (t“ﬁ}g »

Therefors when B = oy then o = 4§ and

UV, * UV = (% = )2y, + 1’33@::& '

N CEE S L I
= (b~ €)™ ue]

2 (% = )% 2ug(Reye00y Zny bl

when P=w-, =20, ozr  andso
R

Uy ~ ¥glg = (T-r) e (Bap) 2 [ $(uymug) + z*(u@f,-s-u@}]@m -

n-*é’i
= c-a - 12) 2 [T£p + vg)

Bepation (@mﬁg’lﬁ)" therefore reduces to

f (B = B)% 2ug (%40 0epBn,t)dwadl zf (% - 2) (tfp + vg) dwndbe
W : oY Wi

Differentiating this werete £ (n=2) times we got

L m

t . - a2
(n=2)1 wy f ua(xa.,w.,xm’c)&%- j f (EPmp®) (tf'w-rg) dwpdte
0



JL

d.0Qs

w(P) = u(Po) + L 972 f / ( ) ( oo+ rg)dwndt (4.5.18)

C{n=2)lwp, oF™2

n

bl

2 2
where Wp = L —

(%)

The clossical solution for this problem is

- . aimi PSP g B
a(P) = 1 2:;«1 f f (t’-—x?) rf dwp dr

- ooy
g2 t - 2
g - 1 2 - f f ( ‘bz-rz ) rg de dr. (4:05519)
oV

(n=2)tw, 0t™?

It can also be proved, as in the cese for n =2, thet
(4.5.18) and (4.5.19) represent the seme solution of the given

problem. This also shows that the solution is unique.

Ge Some particular exemples

Ay o first example, let I{u) = ugy = ux + 2uy = 0 (4.6.1)



g = 8x + y ds an elementary scolution of the equation, Also

a=1l, b=2, ¢gx =8, ¢y = L. lHence Martin funetion v

satlsfies
M(v) = vgy + vz = vy = 0, (446.2a)
Ve =9z =2 on ¥y =y, (4.642b)
Yy =gy ==l on X = X (446.20)

For simplicity, let us first derive v at the point
;t = 0’ 3; = 0.

x° % %"
Lot v = ao(y) + as(y)x + az(y) CTE a3(y) N ’*'-w'*'&n(y);.“;'f‘ teve

Then wvx = as(y) + 2a2(y) ‘g-! S
Vk(xs Q) = &1(0) + az(O)‘gg * eavae
-2, by (4.6.2b),

oo &1(0) = 2, an(O) = 0, n= 2, 3’ ecnos
2
Alao vy = &(y) + &i(ylx + &2(y) %;T + eesoe
vp(0, ¥) = &o(y) = =1, by (4.6.30)

Henee a@o (.Y) = =y ¢+ o whera op is an arbitrexry constant.
Since in the Martin selutian(%ﬁ.&), 6o does not affect the sqluticn

of the Cauchy problem we may btake oo = Q.

o
- .
Singe v = S‘a,r %{ hag to satisfy the associnte equation (4«.6.2&)
A~
r=0

we nmust have



75

2 ey
), e ) e
r=l =l :
Hence a?,;p N4 gx* = 2&;»-1 rely 2y Oy oncess

When r=1 84 +aq = 280 = -2
g1a¥ + age¥ = -2e¥ ,
o e B16Y = ~2e¥ 4 04
g = =3 4 oqa ¥
21(0) = =2 + 01 =2, e =2
o'o a1{y) = ~2 4+ 4e™¥
Similarly a2(y) = -8ye™¥, as(y) = (-16y + 8y 2)o™7

aaly) = (=32y + 52y° = -%-3)5”?

as(y) (~84y + 96y°® ~ 52y + “)e‘”?’, ete.

‘ 3
Hence v = =y = 2x = 4¢" Y {-:x: + 2&%{ + {4y - 2y%) %i" + (8y - 8y° + %ya)g,%
8
+ (10y - 209° + 85° = %y") Lt evees (4465

Martin function is then obtained from (4.6.5) by replacing x and y

by % = x and y - ;'fr respectively.

It is possible in this case, and in some similar exemples, to obiain

an integral representation of the Martin function.



2 L« 3 4
et £ = -x + 3y oy + (4 4~§-,~)§, (ay-:u.a +8% ) &
' 3 4 xﬁ
+(16y 482“"‘4 !"16%"!')'{'.-;?'*‘;0@00

Tor fixed x, let us define the ILeplace transform of £ by

f:

It then follows that

£(r) = | & ¥e(ylay.

%,251 /48 _4\,x/8 _16.8
Le)= S+ St T sﬁnse’)*&!(s?-?’*s“)
5
X f16 48 48 16
+ 51 (33 8'5 o m— prr ‘g“b ) * saeae
- 2 o 1 [L,p 23 1 ‘2 )4 1
X A o % i, 3 X
m et g Awseme e 2 : (1s~m <+ X (1—.
x | 2xP 1 7y 8% ety . (28)% 142
g = 22! 2(5”1)3 1 8 25
2(a=1)? 2(s~1)2 % 8" o(gm1)? 2!
" A 1 ox(i=%)
R 2 5=, )2 2(s=1)?
X
. - 85
2 - o 1. g ., e °
s=1 2 : I



- X i 1
£ mzxeyﬂimmyey’

gel (s~1)3
mg& . )
8
P "'1?-&;32 = (d4y)e¥  and £.=.1< %ﬁ“) = Jo(2/3xy)
anl

It follows from the convolution theorem that
e

£ ( a_i),,_ e > :.-f (1 + y=t) Jo(VBxt)at .
Q

Hence £ =£™Y £(8)

, a2% J
= =xe¥ = dyo¥ 4 “f';‘m[ o % (1 + y=t) Jo(VBxt) at
o

Bquation (4.6.3) therefors hecomes

. ,. y
sey = 0x + 4x ¥ 2y = 2eP¥™Y f e (1 + y=t) Jo(VExt)at
o |
iecu

y
veEy 4 Qr -2 f e?X78 (1, ¢ gt} To{VBxE)dt
Q

Replocing x by x = 55, ¥y by ¥~ 5}, the-Martin function for the

equation (4.6.1) is

v(xy 73 %o 3) =y =5 + 3(x = )2 [ VYV a(x=%)"%(1 + gy ~ 4) Jo(VBEE)t)at

(4]
(4.644)

As o second example, let us consider the equation

L(u) = Ugxy - éﬁyy + Ux Uy = ¥ (éoaoﬁ)



Charaotoristics ave given by the equations y & 2x = const. lot

E=y+2x, 1 =y= 9% Then eguation (4.6.5) is transformed into

16 g, = Bug + w = 0 (406a8)a
We oan now apply the method of the first example to (4.6.6),

As a third and last example, let us agein consider the

Buler«Davboux equation (5.5.27), He.0. the equation

2%u _m /2w du\_,
xdy x-*y( 2 33');0’ where m is a constant. Since

© = x +y sebisfies (5.5;2’?}, the resolvent equation is given by

2%y, .m. (2y v,
axdy * Koy (E)x ey = : (4.6.7)

The boundary conditions which (4.6.7) must satisfy are

Yx =@z =1l ony = Yo
Vy = =@y = ~1 o ¥ = Xg
v(x, 3 %oy ¥ya) = Oe

It follows from these conditions that

¥(x, yo3 Xo, yo) = % = %o, (448482)

v(%os ¥3 Xos Yo) = Yo = Fe (4.6.6b)



The procedure we sdopted in the case of the Riemann function fails here, since
the boundary conditions do not dinvolve m. However, we find that

v = (x=a)®(a=y)® is a paritiouler solution of the equation (4.6.7) where &

is any fixed number.

Sinee ¥y = x 45 a line of singularity of the equation {4.6.7)
we shall solve this equation in the half~plane x > y. In this region
lot us flrst toke x> %o >0 Yy < yo and m= =k, 0 < < 1.

3ince a is a povameter,

v = f #{a) (x-a) %’(aﬂy) M da, where f£(a) is an arbitraxy function
of f%:,, is a solution 0f (4e6e7)s |

It follows from the above restrictions that y < yo < % <X, aond s0

V= ./Z: 0 £(a) (x=2) M (a=y) M aa + f ""Df (6)(xm0) Mamy) M + [:xf(a)(x_&)_%

/o o
(a"y)“hdao

Let us suppose that (o) = O whon yu € & € xoe Then

b4 : - yo - >
ve [t Mo e o[ Te@e Mo e, (2,6.10)

xe ¥
where f£{a) is to be determined from the integral equations

oy [ -\ “A
v(x, yo; Xo,yo) = f £(a)(x=a) “(a=yo) "da = x~xo, (4.64118)
ey

Hes



v{%0s ¥3 Xos Yo) = f £(a)(x=a) Ma=y) Ma = yo = ¥ye (446411b)
5
et ‘g'(%:s) =0, ¢{t) =0 when O S 4 % yo,
V(t) = £(8)(bmyo) ™™, ¢(t) = t=to when ¢ Xo.
T4 then follows from (4+6s1l1a) that

[ mam&(x), 0 << Le

()™

This is Abel's intogral equation with solution

V() = ﬁ.;anri?x % éi: i ﬁfﬂx) dx sigy?s, R é.i g gﬂd;:
’ o (t=z)™" ) xo ()™
- s;m N .Q;_., (!Aﬁ‘%ﬁ lh‘ﬂ- ) - gin A (‘t"'ﬁig )?L’
o at ?L("S. + 1) ey -
Hence £(t) = m (toxe Y (tmyo INs (4:6.12)

Fhe funckion £{t) defined by (446:12) also satisfies (4.6.11b).
It follows from (4.6.10) that v(x, y3 Xo, yo) = Ir + In where

1y = BELT D j (a=20 ) (ayo ) (tma) M(a~y) 0. Tt a = %o + (3-xo)t,
A
. Mo

then



-

i ! FEP%: N o - dt
Tow SEED [ PP e st nmmo- e N o~ 7 2
Q

g, Y ‘ .?\', - 4 L h "
- Hi Tk (m(,)[ ..:&..Lag..xa + (smxo)t] . dt
o (1=%) Lxo=y + (x=x0 ) £]"

| T
= m,l.(m l ?‘(1" )
i"(lﬁ)i"(l-‘n)(”"'y ) f o (=) (1~ ,.:_xaf)h&"b' sinee

L - = ﬂ’*(g) ]}(1«-5) =

I ERY 23."5:3.732
sinn z

r(2)
Re®t?7O)
How 8L ﬁa(‘\f"@);? 0, it can be proved that

LB - oY, o 3 o - - .
J[ 2L (gmp) 1(1mtx)*F(iaty)“p'at a“£%%%§§~gl Pias BeB's v5 % ¥)s

Q

; ' , E (@asa(®lnlp s 4 3

i, F » » = waWe &’

where Fylas B, B'S v x ¥) a('s’)ra.g-n(l)m(i) ] ¥ (2.6e1.3)
My N '

is Appel's hypergeometric function of twe varisbles, and

(a)r = ala+i)ess{atr=1)e It follows that if we let o=l = A,

el = mh, B o= =h, ‘@’ - "h, then v =2 and

F Spew m 3 g - ‘f; x;mg:nggl 2&:{‘&

A A = =
Similarly Ip = T(ﬁ"&o)( M By (140 =Ny 25 gﬁxgngm > xeyo )

Henco the Nartin function of the equation (B43427) subjeot to the



e N\ N

above restrictions is given by

vix, y5 x0s.30) = (=i0) ( ;3;‘3‘:@‘ Fe(1ng =h, 25 25 558, £ )

A
o [ 2 . m M > [

It vemains onxy t0 show that from (4.6.14) the Mardin function of

the equation (5.3.27) can be constructed throughout the region X > ¥y.

It can be shown that

Fr(as By B's v % ¥) = (dex)™ (wf) Bl trees s 005 v By 47 ). Hence

C .
~ M hmmnogu q-m 4t - > m nn-u-ugn
Iy = (x=x0) ( ey (1 ya%) (1 y_%) Feieng =hs M3 25 200 350
7\‘ dtﬁ’
= (x~xo) (,..mx y> Fe(1-np =\j Nj 93 &5 oy x_,y 4. ) (446415)
Similarly

= - 0¥ - ole Lo,
- (y‘”}f()) (x-'y -F“‘l(i N§ =hy N3 B3 Y”ﬁhﬂ ¥ x )q (‘3:;6.16)

Tt follows from (L.6415) and (4.6.16) that in addition to (4.8.14)

there are three othor possilie expressions for v 1.¢.



v = (x=x0) (m) Pe(1ns < Mg 25 350, 222 « (yy0) i:*ﬂs;f'“)

Ty (1an g,

My 2y g8 L2y,  (4.6.17)

v = (x*xu)( : ,_y) Ty (10 =Ny Ny 23%:% , ﬁ;ﬁ‘m}f{.‘?ﬁ- ) = (yey0) (x.wy)

B (amng ~h, My By e [ ITX0 ) '
By (1=03 =hy Ay B3 precrol Reere. )s (446418)
y;g ) P Syadt 4] :S{*XQ ‘A
v = (x-'x@)( g Py (1=hg ny Ay 2y Xmyo ¥ wey ) (y*;:sm) x,y
Fo(imng =\ Ay 94 Sl .‘z,.;m Y (4.6.19)

yxo *
The formula (4.6.13) is convergent for «i <x <1, =1 < y < A pmvmde&
that ¥ 48 not an integer and o, £, v are any real complex nwnbrars.
me these results, it can be shown by the principle of enalytic
continuation [ & 1 +that the solubtion (4.6414) can be continued

throughout the region x > y for all real values of .

CHAPTER Vi The Relation Between Riemsnn and Martin Functiong.

1. let us for the purpose of this Section consider the equation
{u) = ugy + olx, yi(ux + uy) = £(x, y)» (5e1e1)
where o(x, y), £{x, y) eve functions of x and y only. As ¢ = xvy

is a partioular solution of I{u) = 0, the associate equation of (Helel) is



Vxy = G:(ZXZ, y)('ﬂ“; + Vg) = Q. (501.2)

Talking the erbitraxy vonstant zeroy the Mavtin funekion v therefore

satisfics the additional conditions

vx = 9x =1 on ¥y = Yo, (5eLadn)
Yy = =gy = L On X = Xo, (54143b)
v(z, ¥; xos Yo) = O (5eleBee)

Hultiplying (Belei) by (vx + vy) and (5.1.2) by (ug + uvy) end

adding we get . -

8, . B -
Tyl vx) + 5z (o wp)EAURiE W) £ ) -

It follows from Green's theorem and figure 5a that

[r (=uzvzdy + uyvydy) = !J (vz + vy)elx, ylax dya (5e104)
¥ A Along PA dse. 0n y = ¥o; dy = 0 and
\ L Plxer2) ] i Vxly= -e-f uxdx = ~u(A) + ulxo, yo)e
A \ii\ u P PA
r ¢ Along BP f.ce OR X = Xoy, Gx = 0 and
or 2

[ Uyvydy = j ugdy = u(B) + ulxo, yo)e

G B G )
Fy P ap

Tt therefore follows From (Bele4) +hat

y g
u(opyo) = ALERE) 4 4 ]

(ugvydy = uyvydy) + %[ f (veivy)e{x,y)ax dye
AB 1

(5eled)



This is an extension of the Martin®s method which we have already

established for £(u,y) = Us Weo are now in a position %o compare the

solution (3.1.9) of the Riemann's method when & = b =a and (5.1.4)

of the Martin's method. TFor the x'ema,:irfzar d’? £ this chapter, we shall de=
wnchoin

note Riemann fungtion by R and Me},r“bi.nl(‘hy Me Then {(8,1.2) ‘and

(84144) may bo writben as

u(xe,ye) ey &A R . Z - B)R E "!" ‘%‘f {Rux - mﬁ + ﬁﬁlau‘ﬁ)ﬂx “"(Rﬁy b ﬁy*ﬂ@ﬂﬂ)@.}ﬂ

ABD

N f[ of ax dy, (54145)

u(}{:o,ya) = 9—(&2—%—2@2‘ e -;‘%[ (Qa’fﬁgax - ug-Mydy) + '{%‘f[ (M;;'%‘“M?)f dx ﬂ;y‘ (5&10:6)
4B &

Comparing the integrends in the double integrals in (5ele5) and (B.l.6),
lot us tentatively assums thet

R o= (g + Hyle (Bele7)

Then Rug=uRx+20uR = %;(mxmy}-gn (Bxztixy) + culllsdiy)

'%IE‘ {Mg*ﬂﬂy}"’% (Mgg*?ﬁxy}; uss:i.ng; (5«13?;)

Similarly Rug=uBy+2auR = %ﬁ (ptily) = %(MW*MW} »



Now "é‘j {= "g“ (Mgndy + Mxydy) + '% (Mxydx + Myydg )}
AB

B
. g Ugded
=§:[~%g§x+§m¥]A4%’/‘{Ex§%‘ui§;~M gua My}
AB

= -u(B}M; (33)4—11(?3 23&3‘ B 2;u$A ZM; !A E"&!A 2?&:“.&. Z + %:f {(“xmx"uxmx )dx-&-(u,M;-uyMg )ﬁg:
AB ﬂl‘

Also u(a) R(aA)+u(B) R(B) _ u(a)x(a)su(a)iy(a)+u(BiMx(B)+u(B)My(B)
2 - y o . él\. ) Y N

Now by (5eleBa) and (6e1.8b), Mx(A) = 1, Ny(B) = 1 and therefore

from (Be.1.5) we have

1

u(o o) = 284 - D) o 3 [ (2ux Mx dx = 2uy My dy)
AB,

= M%—le + 'a!"f (ﬁ;ﬁ My dg = Uy My ﬁy)o
B :

We have thus used (Be.1.7) to derive Martin's solution (Bal.6) from
the Riemann's solution (Se.le5)e The reverse process is also true. Tor,
from (5,1.7) and (5.1.2), we have Mgy = a(¥x + ly) = 2aR. Hence by

(5eteda)y (Seledb) and (BeleBc) we have

R LY
M(x, y3 %o, yo) = 2 f f oy, 7)R(u,v; Xo,y0)dudv + 3ty = Xo=yo (Be1.8)
Xo ¢ Jo

2+ Az a Pirst exemple, let us again consider the Bulen=Poisson

Equation



ﬂ;y v e x+,y (Ugg o+ ﬁy') = 0 (5.201)

We have already shown that the Riemann funotion of (5.2.1) for

positive integral values of n is

R(x, ¥3 %0, yoi = (%f) Pr-1(1=2p), @ = X4y ) %o +¥o

. ) i
when n.="1 R(X, i Yo, ;Srﬁ) & %’%’rg )

Henece the Martﬁn funetion of (5.2 o1) is glven by

X!’lﬁ?“:& -] b
%o 50 (M;,'i‘my) o

But Martin function M satisfies the associste equation
gy = =k= (Mg + Yy} = O

Hence lxy = wBeme , T4 follows from this end the boundary conditions

Xot¥Vo
that
M(x’ Vi %o, ya) = mtzz : ;{:’YQM , forne e (5.2‘2)
- 20x+
Vhen n=2, R= X0 + ¥o N

L

' XAV B8(x=x
Hence lxzy = (xo+yo)2 " (xo + yJa *

Integrating we Te te ¥



LO 6

oz ey 4;::‘»;.225% g )?
lig = Xotyole (%o *+ ¥o)° 7(x)
' 2(x + 2
when y = yo, My = 1 = FrleomBe o #(x)
~ gl + v)* | 4(xex o(x + 2
'0 t TLB% —-n&sr - . -'-(‘L-.% &
» Mg = X0 ty0 J2 %o + 3000 T+ " Txo + ¥o

Integrating sgein partially we s te X,

10)2 - Qix * y_gz‘a

From boundary conditions we get

& (;}') w !Xl} & yo;ﬁ 3 G(y) =y - 3 Jtu'-!«'ya 5 » Hence
#

M(x,y;-xa,;sre) = + -L-(@l—(r*%)- + X+ Voo
5(xo + yo)? *o + Jo

(5+248)

for m= 2a

If n 4is an integer greater than 2, or any other real number,
the determination of the Martin function fyrom the Riemann function
(343e11) becomes very involved. In this case we can use the ﬁ.ntegml
representation (3.5498) of the Riemerm function of the equation (5e2¢1)e
Trom (545.26) and (5ele8) it follows that

H=- Eﬁinji az,

ERY n
T gy vay lax0) (ayo)

where €1 and e¢2 are the contours defined in Fig, 545. When



Pt T AN A
o 1 P mm .
n » ¥ = Bl f (H"’xﬁ ""‘z +“'v“2y°’) Ze

L TR o 1
ot £(z) = zf;f ﬁ:yﬁ
Residue at 2 = %o of #£(z) = ;iﬁe ”’g‘“ﬂ;%& = W
Residue ot 8 = =yp of £(g) = == :f;c,ﬁ;m o 5 x;g + Yo )

Honeo, since 04 and Gz ave in opposite directlous,

_ _ 1 2RAL e{wexs )Xoty ) = (R4
W(xys %05 o) = = pow X0 5 Jo

,fﬁl"X AKX+ 4 L X -
= —— . . (5e204)

for n =1, which agrees with the vesult (5.2.2)-

As a second exemple, let us consider the Martin function (4.6.4)

of the equation (4.641) 1.0,

o y=yo
= 2lxto) + y = 3o = af |
¥ 3

agcmg‘f’)”t(uy-ya*w Jo (*Jafﬁ-xa 7’1:) at

For simplicity, - lot ug wits X = z#xo, ¥ = yoyo and N = V8xE o

Then Me2 K+ ¥ =8 f o2 b (141e1)T0 (M) at, and so
(4

T o | Y o
My =3 -4 f P b (1ay=t)d0 (1) 8t - 2 /' Y 1av-t)30r (1) « [ L at,
] o :

2t I ! ., |2k, and
singe ¢ %% = T ° It follows from e =



-l1lo0 9%

" % Jo(n) = VERE Jo’ (A) that

T ~
& [2-4{ X%, (n)at - H{J

Q

Y . Y -
=2 f b (-t)30(n)at + f F b0 () [ 4 e

¥ ax-1 23(a) 2x~¢") ¥
=2 / (¥=t)Jo {1 )at - [«e 1 (¥=t)e j

G L+

" m[ (¥-t) 3""‘&(13%)%.
‘0

- [ 25ty t){ ( M) + 200(A) at,

o

since %ﬁ p 22 o L1 R 500 = o,

Tt follows from + qu%l = VoIt Jo! (A) that

3
X

(t Qi%izs.l) N T—"-'J""-'f*‘" Fot (A) + 3 J6* ()
7k

2,
3% 2%t

.3 ( L 3ot (a) + ::gff(m))

= D JQ(?L) o



]

34
4[ e#¥ Y5, () at, and so
0

y=¥o e o
2 - %f eg(x x") b Jo (\’Blac-xaj'h) dts  Also
G

Hence MX

My

i

y yﬁl s -y 4 b "
My = 19 f o2 (=0 }=t5 (V‘SZ:{-‘M }t) gt - 2e2(F 0 )=(y=yo )5, (Ve(x-xo)(y-
‘ O

Henoe My ~ 9y = 4é 220 )=(y=y0) 4, (fé(x*xa)(y*yu) )

= 4 Ry by (5e5e2)s
Hence the relevant velation for the egugtian (4.641) §.§
Rox 2 (g - 20y). ‘ (54245)
Similaxly it oan be shown that in the case of the eguation
ugy * aug + Buy = 0, (54246)

the relation between Riemann and Mertin funotions is given by

B o= (%;& 95?-) {(5+247)

vhere v = ¢(x, y) is a particular solution of (5.246)s That (5e245)
con be deduced From (5.2.7) follows from taking ¢ = 2% + ye It is elso

evident thet (Bele?) 49 a particular case of (B.2.7) by taking ¢ = X=Ye
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