VL

Universit
s of Glasgowy

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.qgla.ac.uk/
research-enlighten@glasgow.ac.uk



http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

A disgertotion subnitted for the degree of

Mester Of Science in the Univeraily of Glasgow,

GROUP ALGEIRAS OF INPINTIE

ROUPS  OVER  ARBITRARY TIRLDS,

by

LILIAW M, DUNLOP
The University of Gleogow

1966,



ProQuest Number: 10646059

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uesL

ProQuest 10646059

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLO.

ProQuest LLO.

789 East Eisenhower Parkway
P.Q. Box 1346

Ann Arbor, M 48106- 1346



SUMMARY of o dissertation entitled “Croup algebras of infinite groups
over avbitrary fields" submitted for the degree of Yaster of Secionce
of the University of Glasgow by [ilisn M, Dunlop, 1966,

In this dissertation, we give an account of gome recent worl
velating to group elgebras,

In © 2, we define the lower and upper nil radicels end the
Jacobson vadical for the group algebra of any group oveyr an arbhitrary
field end note that for o finite group these radicals coincide, In
fact the vradical of the group algebra of a finite group over o field
is the gzewo idepl if (,3.) the field has dheracteristic zero or (ii) the
field hes characteristic p (# 0) end the group contains ne p-clemente.

In & 3, vwe shov that for any algebra with an identity clement,
over o field vhose cardinal number exceeds the dimenslion of the algebra
over the field, the Jacobson and upper nil vedicals coincide (1).

These two wadicals again coincide for any finitely generated algebra
satisfying o polynomiol identity (3). These vesults are used in
conjunction with results on the upper nil radical of a group algebra in
& 5, Passman (6) has proved that the upper nil radical of the group
elgebra of any group over o field of characteristic zero is the zero
ideal end that if the field has characteristic p ,l 0, then the group
algebra is gemi-gimple provided that the group contains no p-elements.

The main aim of the disgertetion is $o find conditions on the
group or the field under which the Jacobson radical of a group algebrs
is the gero idesl, In 39 4, we examine the beheviour of the Jacobzon
radical of an algebra over a field under extension of the field and
egtablish two theorems by Amiteur on this subjeet (2).

Finplly in & 6, using the resulis esteblished in 55 3-5, we
egtablish that if the field over vhich the group algebra is formed is
e non-glgebraic oxtension of Q, the fleld of rational numbers, then the
group algebra is semi~-simple, whatever the group (4 and 6), Ve plso
mrove two theorems by Passman (6) on group algebras over fields of
choracteristic py in which he shows that if the field io o separably
generoted , non-algebreic extension of some subfield, or if it is none
denumerable, then the group algebwa of any gronp with no p~elements is
senl=gimplo,

Coaneld (5) has studied the slightly different problem of Finding
grouns valch give rize {0 seni-simple group algebras over arbiteary fields,
If the group has no p=slements when the fileld has non~zero characterisitic
p then loecally finite groups, ordered groups and abelian groups.are such
gronps . Turther, it con be showm that if two groups have scmi-ginple
group alpgebras over o particular {ield, then the group algebra of the
direct product of the groups over the same field is semi-gimple, and
the=group=olgcbro—ef-a—gronp-over—a—fleld-ic—semi-simple, thot the group
algebra of the direct product of Wy group with the infinite cyelic group
over 1de field is also semi-simple”}m\r %Qol ‘ot ig ‘Al {31' d hug newn -xero
chovaceterishe F3 thewn the 81‘0\}’; muﬁ—l”\&%( he ])w elevment s .
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Introduetlon,

Tn this thesis we shall give pn account of some vecent work
valating to group algebras of infinite groups over avbitrery {ields,
At present, resesrch 1s progressing in two apparéently independent
divectionsy both attempting to carey over to the case of infinite
geoups some of the featuves of the finibte case,

Tiret, there ig the attenpt to define a suliable radieal for
o geneval ring and then 0 find the conditions under which this
vadical is the soro ddenl for a group algebra over g ficldy and
Secondly there iz the luvestigation of group elgebras with
repregsentations of bounded degree.

Ve shall, in thig discussion, deal with the former only,

n 8§ 2y we doline several vadicsls end indicate the relationship
between them, Cur mein concern will be with the Jacobson vadical
of @ group algebra bub we shell also conslder some properiies of
the upper nil redical, which will subseguently be uged in proofs
of theovems velating to the Jacobson radical.

Por oxemple, in § 3 we show that in ceritein cases, the
Jacobson and upper nil radisals of a group algebrs coincide and in
§ 5. ve establish two vesults fivst proved by Passmen (16) giving
conditions undeyr which the upper nll redical ls the zero ideal,
Pagsmen has in fact proved that the upper nil vadical of the group
algebre of any group over eny field of chevaecteristic zero is zero
(Theoren 5.2) =2nd that if the group has no poloments (i.e. elewents of
order ﬁn, n a positive integer), vhore p is the charscteristic of the

field/
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£101d, then the upper nil radicel is egoin the wero ideal. (Theorem 5t

In §’4, We‘exam&n@ the behaviour of the Jacocbson radical of an

results
algebra over a leld vhen the field is exitended and prove Amiﬁsur'snﬁé)
in Theovems 4.1 and 4,2,

Wot all guesitions relating 1o the Jacobson radical have been
anpwered yet. TP is an vuselved yproblem whethey the group algebrsa
of any grounp aveé any field of characteristic zZero is semi~simple.

% has been proved by Rickexd (17), velng the methods of Banach
algobrag, that if the field ies the field of wyeal numbers oy the field
of complex numbersy; then the resulting group elgsbro is seni-simple,
HMorve vecent wvork has given a mere general class of fields of
characteristic zero for vwinich the group algebre of any group is
semi~gimple, Tn Theovem 6.1, Auwiteux (6) mas proved that if the
fleld i3 o non-algebraie exteonsion of Qx the field of rational
b Ers o %hen.the group algebra is semi-gimple,

Por n field K of chevacteristic p # O and a group G with no
p-clementa, the group algsbra is known to be semi-simple (16) vhen
K is a separably generated, non-slgebrale extension of some sub-
field K@ or vhen ¥ is & non~demumerable field (Theorems 6,2 and 6.3).

These vesults vefer to group algebras in which the group is
avrbitrary except that when the charsctexisitie of the field is the
nonwzero prime p, the groud hes no p-elements,

We can repgard group algebras from a alishily diffevent point
of viev end lduvestigale Loy which groups the group algebra over an

arbitrayy field ia semiwsimple, As before, we have no p-olements
in the group if the field hos characteristic p. It it known that

provided/



provided this condition ig impozsed, the following classes of SToups
glve vise 40 semi-sinple algebwas over esuy fields (i) loeolly finite
seoups | Corollavy 6.5 (6)}J (i1) ovdered groups {.Th@orem.é,? (9))
and (334) ebelian groups { Corollary 6,6 (9)}
Ag dn Conmellls papew "On the group ving" (9) we lot © denote
the class of all gvoupsGwith the propertys
If X ig & ficld of chavecteristic p (5#0) and 2f G has no
p-clements i1f p % 0, then the group algebra of G over ¥ is semi-siuple,
The above three clesses of geoups then belong to ‘{b « Other
groups belonging to fé con be consbructed ueing Proposition 12. of (9)
(i) If each finitely gonevated aubgrﬁup.of G is iﬂ.{é y then @45{%
(Theovem Ged).
(3i) e ¢, He G, then 6 x Me & (Theorem 6,8),
(24i) Ir @ is amy group end Go ig the infinite gvelic group, then
¢ x C}Qe‘@ (Thoovem 6.8).
(Note thet in (iii) if the field has cheracteristic p # 0, then by
the definition of Q} ¢ G moy have no p-clements and so is not

completely avbitrary).

The radical of o group 210eb10..

Before defining the radical of o general ving, we mood
introduce the following concepts and delinitions,  Thronghout,
unless otherwise sitntedy we shall assume A to be an erbitrary ring.

M is a (right) A-medule if
(i) ¥ iz on additive abelian group
(i1) theve is a mapping from Mx A to M, the image of (m,s) being
denotad by mo,

The /



The mapping has the following propertiess

(a%) 1&1&,131;a e My & ¢ A =2 (mz 3 mﬂ o w mi& + L
(b) m e Mg 8,90,6 A = m(a& & &a) = me, + na,

{(c)me Wy a .0 ch = {(ng do. = mla. e ).
AT H TR ‘ L8

e shall desl with right A-medules only and so in general we omib
L 3o ¥ I Y 3 A, 14
the adjective “pight

A subges MY of M do called an A-submodule

if (3) M d8 en additive mubgrounp of M,
(i) m' e« W', ac A=p ma e ll',

If the wing A has an :i.c‘ie-m‘.:lxi;jr 1 ond ¥ is agu A-mocdule such that

ml =@ fowr wll me 1,

then ¥ iz undiory or unital as in (13). Ve will eveniuelly be
soncerned only with vings wiith an dentity sud we pssume all moduies
unitavy in that case.

The ideal of a module dg clogsely linked with that of a
representation,

A powegentation of e ring A ig o homomorphism of A into the

ving of endomorphisms of a commutative gwoup M,
A representation is fpithiul if and only if it is one~to-one,
If there 18 & veopresentation of A dn terms of the endomorphisms
of & commrtative group M, then M mpy be vegyrded gs an A-module,
On the other hand, any A~module M gives zise to a vepwesentation of
A (13, Chapter I).
Phe kernel of the representation definmed by ¥ io denoted by A(M)
and is Tthe set { & 6 A ma = 0 VmeN g so that the reyresentation

18 foithful if end onily if A(M) = {0).
An/
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An A-modvle M is irreduelble if and only if

(D= {mesmel, ac Ag 4 {07 (thie 4o alvays so if M
is waltary aod M # {07 ).

(:m.) ¥ bas no proper submedules apart from {()3 and 1,

e now define & subdirect sums: {.& g i¢ .‘S_(I is & possibly

kA
infinite set of vings, not necegsarily distincet, We foom the
Cavtesion produed H Ay
e
defined fm—H— Ay by

of the set, Additlion end multiplication aw

(e + b)ﬁ. = 6, + by (ab)i @ a,b,

where a,beW Ai’ E"i’bi gbes. € A (the “components! of

4*
ﬁ,.b etcy in A“i).

The complete divect sum of the vivgs .,e.li ig the yproduct set with

adddilon and multiplicavion ae above, and 18 denoted by é@ A,z_
G «

A subring B of @4
¢

the homomovrphism from B to A 3 (b =>b :3.) ig suvrjective for each ie S,

q is celled o subdiveet sum if and only 4if

Then B is dencted by @ Ay
5]

Ve giate the following result as Theorem 2.1, {13) ‘The ving B

con be remresented as the subdirect sum 2@ A, if sand only if

B
there iz a sed {Bﬁ 2 i 6 SS of ideals in B such that n By = (o)
an a5 & P, ieS

The Wedderbura vedical of a ring A is defined to be the sum of

all the nilpotent idesls of Ay However it is not always teue that

W) = (o).



For on ardinien ring (1.e. one with descending chalu condition on
right ldeals), W(A) is the meximel nilpotent ideal of A and
?‘J’{A/‘%‘J(A)) = (0), These properiies of the Wedderburn wadical of an
artinion ving give us some idea of the propsriies which must be
possessed by the radical of an exbitrery wiung,.

If () g o pwoperty which mey be pegsessed by any ldesl of a

ring Ay wo call f & padical properbty 18 it satisfies the following
condivionas |
(1) If +he idesl T is nilpoterd, then I has P
{ii) There is o unlque moximel ideal with property P Ve call
thig ddeal the redical of A v Red A, |
(112) Red (AfRod A) = (0), |
(iv) I A 4 avbinlen, Red & = W(a),
(v) @€ T has lﬁ s then 80 does every homomerphic image of £,
(&f, mitsus!s defivition of o n redical in (2)).
As we heve slready nentioned, the Wedderburn radicsl doesg nov
in gonevel savisfy properdy (4i1),

For awy ving & we define gnl radical (a2 rodicnl ideal according

to Paer (7)), to be an idesl W' such theb
i) ¥ is nid
il) A/V contains no non-zero nilpotent idesls.
We defive two nil radicals -« the upper and lower nil vadicels -~
for goy »ing A.

The lowey nil predical of A, denoted by TN(A)J moy be defined using

trensfinite induction in terms of the Wedderburn vedical (7) .

af



A simpler definldlon ige ' [
N(a) = ﬂ { Nl i@ an ddeal of A such that A/N has no non-zero
gzr‘i.lpss'b&m; idoals ?’ R

W(A) i sometimes called the prime redical, & term which le devived
from the Paot that
W{a) = (\ % PP o peime ddeal of A j « (Pis o pripe idenl of
A if a;:z& only 1f
UT G FyU,V idenls of A =» UEP ov VEP),
The eguivalence of these characterdsations of W (A) ig proved in
Jocobson (13). Fveey nil vadical of A does in foot conbtain W(A)
Justifyving the use of the tewm "lowerV,

Twom Theorem 2.1, we heve that a ving A is isomorphic $0 a
subdirect sum of prime vings if and only i¥ B(A) = {0), o rwine

ring being ove in vhich (0) is o prine ideal,

1§ W(A) = (0) ve say that 4 is gemi-prime.

The upper nil radical, g{a), of a ving A is the sum of ell the
nil idesis of A end 49 the mamimal nil ddeal of A. U(A/U(A)) = (0)
and so U (A) g indesd a nil vedical, The property of being nil is o
radicel property.

In our dnitial definitlon ef & radicel, we made mentiom of g
vadical propevhy p of ideals., The two vadicals glrveady dealt with
are both nil radicals. Jacobson in (12) made the following
ohservation, Several investigations of wnil ideals in avbitvary rings
have been made veocently but none of these has led to o struoture theor;
for goversl semi-siaple wings, This s one of the indicobtions thotb
in oeder to develop o satisfactory structuve theory for avbitrory

vings/



rings it is necessary to gbandon the concept of & nil ideal in
defining the radlcal”,

Accovdingly, the Jasobson vadicel of A is defined teo be the

gum of all guasivegular right ideals of A and is denoted by J (a),

A wight idenl R iz quesirveguley, if for every r ¢ R, there is
on ' e A guch thet v + »' + ' « 0, Then »' i3 a right
guasi-iaverse of v. It may be yroved that ' ic also a lefd
guagieinverse 1,0, ¥ + et + vy =« 0, Iu fact v'e¢ R also .

J(A) ip the maxinal guasiregular ideal of A and J(4/3(4)) =(0),
J{a) conbeins all nil idecls of A end we have the follouing inclusion
relationships
wa) en) eu(a) eaa),
éciuality ocowrwing when 4 in sxtinian,

Guesirvegularity is cleayly a radical yroperity, glving rise o
the corvesponding radical J(A).

fhe following definitions ave necessary for the stabewnent of
equivelent choracterisetions of J(A).

A wight ddeal B of A is modular 1 there is an element T & A
such thet o ~ a¢ R for all a e A, Tor any ving with an ldentity |
all vight idesls ave modular,

A ving B s ppimitive i€ end cnly if it hes o falthiful
irreduciblo module,

An ideal P of A is prdmidive 1f end only if A/P is o primitive
ving

Then J{A) = ﬂ % A(M)sM an irroducible A maﬂu&a} .

& ﬂ { ReRre maxivel vight ideal of A, vhich ig moﬂuiar})

H

ﬂ {i’s?:a, yedmitive ideal of A } v



If A hes an idontity,
S(h) = [\ { Rele maximal pight id@al} .
Mso z g J(A) e (1 - az) " existe for all o & A
e (1 « 22)”" existe fe oll o 6 A,
Jocobson proves the equivalence of these characierisatlions in (13).
By Theorem 2.1, J(A) = (0) if and only if A is o subdireot cuwm
of peinitive rings.
It appears to be common practice to ssy that a ving A is

gemimsimple 18 J(A) = (0), but dn view of tho use of the terms jwime

and semi~prime given above, 1t would be more consistens o use the
term semlppimitive as Connell does (9). Connell defives a wing to
be genmil-simple 1f the intevsection of its meximal ideels is the zewo
ideal, and in that case, the ring is a subdivect sum of simple rivgs.
A ig a simple riﬁg if A% ¢ (0) and A has no ldeals other than (0)
and A,

Hovever, as we shall from wnow on wake vrefevence to the upper nil
and Jacobson radicels only, whenever the term seni-simple is uvsed it
will mean that the Jacobson radlcal of the ving in question iz the

zero ideal,

Oue objeet is to study group algebras, bul occasionelly we shall
have to vefewr 1o the group ving of a group over o ring, 0 we define
this more geuneral concept firsd,

The group ving of the group G over the ring A, denoted by R(G,A)

consists of all fimite sums of the form = alg)s vhere g € G, alg) €4,

i.¢. only a finite mmber of the a(g) 21'e NON~%ero,

R(e,0)/



10

R(G,A} in o ving if the operetions of mliviplicetlion and addition
are defined in the wetuwal vy, ’ev%
Z— -
( < &z(g)g) ( S wlnh ) o Z alg)v(n)en
gel he g ¢ G
I€ ¥ is o field then R(G,K) io an algebra over K, with su

identity. Ve denote the group algebrs of the group & over the

fi01d ¥ by A(G,K). The definitions for generel wings given in the
eovliaer part of the section may be applicd to the specinl cazse of &
erouy algobra A(C ,K)J over o field, noting that in this case, since
the slgebre hes an ldentity, "ving 1deal" woy be veplaced by
“algobre ideal”.

For any x € A(G,K) and A € K Az (Xe)x and so if z e I,
o wing ideol of A(G,K), A = £ I, showing that T is an algebra
ideal,
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We denote the upper pll and Jocobson radieals of A(G,K) by
T(GyK) and J(C,K) respectively.

If6G is o f:ini{:e group, the group algebra of G over any field
K is an algobra of finite dimension |G|, the order of €, over K,

Magchke's theovem (15) stabtes thet if ¢ is a finite group and
K is a ficld of chevacteristic p320, then A(G,K) is semi~simple
1f and only if p > 0 and p + [¢],or p = O,

If A ig & semi-gimple ardinian ring, then

A]ﬁ&@ﬁ? T oee @ }331

where for 1 g1 g n, B} is an ideal of A vhich is a simple artinien
ring,

The Artin-Vedderburn theovem sitates thet for any simple artvinian
ving B, there exist a positive integer n(unique) =md & division ving
D (unique up to isomorphism) such thet

B X r&n(D)

vhexre B‘In(lt)) ig the ring of n x n metrices with ccefficients from D,
We then have that for any zemiw-simple sriinien ring

A Mn.l@:.) @ Mna(na) © o @Mﬂt(%)

vhere 1}3’, esgl, ove division vings,

t
Por any division ring D and positive integer nj‘n'in(l)) i8

isomorphic to the ring of linear trensformations of an n-dimensional

vector space over D, showing that any of the mappings A -> Mn (Di) is

i
a representation of A in the seunse defined earliew,

By/
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By Magchkels Theovem if
(1) the charactevistic of the field K is zevo ond ¢ is eny finite group
or {i1) the chavacteristic of K 48 the non-zero prime p aend p*‘ lG¢l, then
A(G,K) may be rvepresented es a diveot sum of a findte number of simple
algebras over ¥ of the farm Mﬁ(?ﬂ) vhere D ig a division algebra over K of
Finite dimension.

§ 3. The comecbion between the upper nil and Jacobson radicals,

As hes alveady been pointed out, in a findte dimensional slgebra,
the upper nil and Jacobson radicals colnecide. In certain other cases,
these vadicals coiunclde, |

Ve commence by considering the gpectrum S(a) (or SK(a)) of an
element a ¢ A, on algebra over the field K,

8(a) = % AeR: = A "3‘@ is not quasi-regular in AE
88 in Amitouw's paper (4)5 or altornatively, for an algebra A with an
identity clement,

8(a) = .{‘Ae Ksae~ A 1as no inverse in A 'S.o

Thic is the definition given by Jacobson in (13). Theorem 3.1,
vhich we will oventuelly prove, is proved by Jacobson in (13) for an
algebra with en identity snd Jacobson then shows how the result my be
extended 0 on algebra without an identity by adjoining en identity in
the usual way.

The proof given by Jacobson is vether simpler than the original
proof by Amitsur (4) emd so we give the former here, omitting the
extension of the result to algebras without an identity since we will
only require to apply it to algebras with an identity,

Lot ¢(a) be the complement of 8(a) in K,

ig/
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If g is an algebrai.q olement of A, then the subalgebra over K,
generated by o is finite dimensional over K and there is a minimal
}gzolyxiomial £{(%) over K, of which g is a gero.
Lenmo, 3.1 If g is algebraic with mininzl polynomisl £(X), then
8(a) = i/\e xs #(A) = 0 ?
Proof:  Leb ;,\i,.., A n}] - gf\az;{s L) = Qj .

Then for 1 & 4 g n, there oxists a polynomial g (X) over X such thet

ond (X « A Je (x) = 200,

T /\i t s(a), them o = A 41 b an dnverse in A and so gi(a) = 0,
But the degree of gi(}{) is less then the degree of £(X) which is the
miniwal polyncmial of g, Thus we heve o conbradiction and so
2/\ QPeeey A nS ES(&)*
Talkeo A(,“ S(E‘l)g /\ &gj\&’olp )ﬂg .

Then £( )\ ) # 0 and £(A )™ existe in K,

1= £(A )73 e )

b g

end gla) € By

Since ¥ = A is o factor of 1 = £{A )7 #(X)s Wow glo) is an iuverse
of (& =~ M1)s Tubt A € 8(a) and again we have a contradiction.

S0 S(a.) _ng A g ¥ees A n§ .

Combining the two vesults we have thet S(a) = {le Ki: £X) =0 §
Lomma, 3.2 Lot Jgreees by, be distinet elements of C(a) and
(g = M 11)“3',.,..,.(&. - /l/tr‘i)“ﬂ‘ the corresponding inverses, Then
either the elements, (o « M, ) tyeeesln = //"r‘l )™* are linesrly

independent or g is algebralc over K,

Peoofs /
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Proof: Ve assume that (e = //Lli) reres{a = 1) ave linearly
dopendent end prove that g dis then algebraic over K,

By our essumpblon, there ave G 9see0fl, & Ky not 2ll zero, such that

-l '”2. o
al(a, /UL&‘i) F oee b cx,x;(a. //&3?1) =0
we malbivly by T1 (e - /Ai‘i) obtoining
i= -

&lg:&(a) .%- G’vgé‘,’a(a) 'g* ae 4 &m‘gﬁ?(a) =] 0

where gi(j{) o™ Tz; (X - /V\:j) for o fixed ﬁ,, 1 5..‘1 ﬁ_l’c
+ j_ i R

r
Let g{X) = = czigi(}{) . g(X) is not the zero polynomial, for
1=

if i% were we would have
g(Mi) =0 (1 <

and. heinee &igi(/ﬂi) = 0 aince gd(/(/\/i) = 0

)

fnta

when 1 9‘ Je

Pud this o dmpossible mince the /l/» ¥s are distinet and not all the
als are 9ero.

Thue we have & non~zero polynomisl over ¥, g(X), and gla) = 0,
go that g ie algebraiec,
Lemme, 343, If A is an algebro over a ficld K and a ¢ J(4), then
o is either nilpotent or transcendental.
Proofs  Any element of J {A) must be either algebraic or trenscendentel,
et a ¢ {5‘(.&) be algebralc, Then the algebra A% gonevated by g is
finite dimensional over K and A% ¢ J(A).

Now ak,ﬁﬁf‘ 2 ak”!ﬁ for Ko 0ylguee o Since A¥ has {inite

dimension ovey K, therve existe an inbtegey m, such theb

o1 A% a ghps
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a & % and 80 there exists an olement b of AF such that

R
h e A% C ;}'(A) and 80 ~b (%J(A) md has a gquagi-dnverse wb“ such
that =b=b*+ vu? = 0,.

Then 0 = {2 = a'b) = (&P = a™)bt

za &,m 4 am( -0 v‘bf“' + ‘a‘bf)
m
= 8

and g dg wilpotent,

We aye wnow able 4o yrove
Thogrem 3.1, Let A be s algebva (with an identity clement) over em
infinite fleld X vhose cardinal nunber excecds (A:K)) the dimension of
A over X, Then J{A) ie a nil ideal di.0. J(8) = U(A),
Broofs Teke any eloment & e J(A). fThen (1 = Aa)™ exists for
eveyy A¢ K.  Hence /\"1& c(a) ffr;* every nonezero clement A of X,
By lemme 3,2, if @ is not algebraic, the set

{(a - AT Aex, A 40 ?_1

ig lineavly independent over K,

Dut the cardinal number of the elements in this set is greater
then (A3K), Thus we have o contradiction showing thet g is elgebraic end
a0 nilpotent by lemme 3.3._ ‘

Since every element of J(A) is nilpotent, J(A) is a nil ideel.

The following result is a corollery of Theorem 3,1, but becavse of
its importance, we state it a8 o theovem,
| Theorem 342, If 4 :’i.s= o finitely generated algebrs over an uncountable
Field then J(4) = U(A).

Hewe the dimeunsion of A over the field is counteble ond so is

strictly/



pteictly less than the cardinel number of the field,

Amitour dn (8) genevalises Hilbert's Wullstellensatz and as an
application yroves that for finltely generated slgebras of a pardicular
type, the Jacobson radieal is a nll ldeal,

The classicol form of the Mullstellensatz deals with the
polynomial »ing ¥ix v eeek, _3 = Tlx] vhere P is o field and Xypeesd,
ere commbetive lndeterminetes. ¢ is @ eubset of Plx]. If i‘(xl,...:s:ﬂ)
£(x) ¢ P{x] venishes at 21l the meros of G, then the Wmllstellensatz
atates thet there is o positive integer m such that £ (x) belonge to the
idesl genersied by the set G l.e. I(G).

Notes (,\J_,.., /\H) (A 3 &) ds o zewo of ¢ 1f and only if
gl A &,...,,\n) = 0 for 211 g{x) € 6,

The Nullstellensatz is extended as follows, uwging Amitsur's owm

notation,.

Flxle Pz EXIEN 1 is the free algebra generated by the finite

set of nmﬂconnmtative indeterminates over the field ¥,

Fy is the set of all k x k matrices over ¥, the algebraic closure of T,

3
m& is the seb of 2ll polynomisls £(x ,..,:Kﬂ) ¢ Plxl for which
L(A 20wk, ) = 0 holde identically in :; . A ds an 1desl i Flx]

R is an alg&bra ovey I, (:c:“w,..,r“ ) (:??_. e R) ig soid {o be & zevo
in R of the set of polynoniels ¢(€ ®le]) ir e,(“?*i,....t ) = 0 for 211
elx) ¢ G,
Yo soy thet f(x)e T (x| satisfies (Zk) 5 f(&i?}..,ﬁn) vanishes for gll

dnaxy
seros of € which lie in Ys‘k,

and/



and £f(x) ¢ P(x] satisfies (3@) if :E‘(:zc&,...ﬁca) vanishes for all
zovos of G which 1o in primitive rings.

Then the following tvo extensions of the Fullstellensats ove
esteblished,
T If £(x) satisfies (%k) then #%(x) belongs 4o the unlon of the

ideals T(¢) end {mlf’ for some integer m.

T If (x) satiefies (Zoo) then £(x) ¢ 3(¢) for some integer m.
Amitauy also peoves thet the dacobson redical of Flxl /@&éswher@
I TN . a ¢ 41 1 X

Q, = KI(C).Q.’ME) is o nil ideal,
Those remldis, clong with Theccem 3.2 and earlier resulis poved

by fmitsue in (1) ave used %o prove

Theovem 3,3.(5) The Jacobson radicel of a finitely genersted slgebra

vaich sabisfies an identity is o nil ideal,

§ 4, The Jocobson radicel under field extonsiond.

Pafore pwoceeding to exemine the heheviocur of the rvadicel of an
alpebra vnder extenslion of the field, we give a short swmary of
definitions avd wesultse from the thewwy of fields which will be used
in this and subsequent sections.

e congider extensions of o feld C of avbitrary chavacteris t:i.e;,

¢ is glgebraic over C if ¢ is the voot. of & non~triviel

polynomial eguation with coafficients in C, otherwise ¢ is transcendentsl.,

An extension ¥ of € is glgebrelc 1€ every element of K is algebraic over O,
K is a finlte (algobvaic) exbension of ¢ if ¥ I8 a vector space of finite
dinmension over O,

We shall have occasion to connlder some special types of algebraic

extengaion of C,

¥/
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¥ is o normel extension of € if every ivrveducible polynomial over
¢ vhich hag at least one voot in H, has a1l ite vooss in XK., K is &
finite norpal extension of € if end only if ¥ is the root field of some
polynomial over C,

K is o sepereble extension of € I¥ every element in K is the voot
of o separeble polynomial over € l,e. one with distinct wcots,

I ¢ I8 o finite field ar o field of charvacteristic zero, then
any algebrale extension of € Is & seperable extension of C,

&

K is & pure bravgcendental extension of € if X is formed by the

adjunetion of elements, trenscendental over O, A transcendence bese
{x /ujj (poseibly infinite) may be chosen so that X = O(x /A). The numbey
of elements 1n a transcendence base ip unigue « the degree of
tronsoendencs of the exteneion, iy g)( /M; is a set of commubtabive
indoterminates of the same cardinality as § :cfu'{ s Tthen X is idsonorphic
Lo the $ield of rabtionsl functions C(X /V).

)

g o tvanscendentel (or non aslgebeaic) extension of ¢, then

S

e
theve is a irenscendence base {x,7Y such that ¥ = C(xu) is o mure
sranscendental extension of € and K is an algebraic extensiocn of ¥,

Let H be o normal sepawrable exbengion of ¢ and € an automorphism
of H, leaving eloments of ¢ invariant,

Let R be an algebre over C with { ey Sa&a a base ef R over ¢, Fvery

_ - ) _
element of R H = EH moy be expresged wniguely ian the form & -ihi (h,5 ¢l

i
Ve define a nopping 0 Lrom R'E-I t0 Rﬁ by

' : ' <
i i
' di9 an subomorphism of RH and leaves all elements of W invarient,
' ip an extension of © Yo Rﬂﬁ o It is the only ewiension leaving clemoent:

of B inveriant and we denote\ii’c by 6 in future,



L
"he get of all auvbtomoephisms of H over ¢ is o group. If € ds

8 subgroup of this group, the set of elements of H left duveriant by G is o
subfield ¥{> €) of N, If we extend the antonorphisms in ¢ +o Hyr then

we obtain the group of all smbomorphisms of RH leavivg the elements of

}’1

L dnvariant,.

For every element h € H, we shell denote by tr(h), the teace of
h vhich ig defined %o be = h0 vheve the sum is over all subomcrphisns
of W over 0y = hO io cleawly duveriewnt voder any asutomerphism of H
over G ond 90 22 hO ¢ € for 211 he H, Alternative, and more common,
definitlons ave as follows: (1) Suppose thet g(x) i the minimel
ivvoducible polynomial ovey C of which h is & vooi, fThen if n = (11:2),
the degwroe of g{x) divides n and so there is an integer v such thot
6(x) = {g(x)) is of degree un.

8lx) o 2 - gaxnﬁ

tout (1 )ngn where 8s€ G, The trace of b i %’3 ’
the sun of the roots of G(x).  (41) Suppose that (A sees A ) 18 &
basis of H, ‘then

A A T op e

Thus we hove a meiteix [(:ij(h)] of type n x n aud define tvage of h

o be

n
= Oy ).

MEY |

Ve note that any awtomorphism of H over ¢ meps h into o conjugaie
of iteelf i.e. o oot of glx).
Ve form the matwix [ﬁ (A A J) :\ of type n x n, hen
des [Jrr {A s /\é)] ip non-zero if end only if U is geparable ovew C,
These results ave sbated and proved by vander Vaerden (18) and

Jacobson (14).
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Lompe, a1 A euy wing, T for some b ¢ J(A), and o ¢ A,

a+ ba = 0, then a = 0,
Peoof: Since b e J{&), there exists e A such that b + b + b'h = 0,

Then ba + b'a 4+ blha = O,
Since ba = =g, we have

=0 -+ bla = hiag o 0 d,c. 0= 0
Lommo, 4.2. ‘The gquasi~inverse of be J(4) is unique,
Proofy be d{a).  Then theve ds b'c J(A) such thet b+ B! 4+ b = 0,
9% o a .ﬂ, L] ) ? K T F ) 1] [
Suppose that there exists b e J(A) such that b" ¢ b and
b+ b+ B = 0,

Then {bY = ") + b(b' =~ ") = O and, by lemma 4,1, it follows thet

3]

bt « " @ 0, a coniradiction
Taen b' is the only guasl-inverse,
Lemms, 4,3. Ieb be d (A) ond let B be its quesi-inverse, "Li?hen the
cenbraliser of b in A iz the centralisey of b in A,
Proofs R L 1 L R
Let a2 ¢ l, tuch that ab = ba,
Then O = (b + b + bb? )o = alb + bt + bb?)
= ba = ab+ (bla = ab’) + b{bta - ab')
1e2e (bla = ab') + b{bla =~ ab?) = 0,

By Lemmadd, bia = ab! « Q,

We now consider any algebra A with an identity over o field €,
Iet O denote the ring of n x v mabrices over C.

We denote the tensor product of two vector spaces T and ¥, both

over & fdeld ¥y by U® V. U ® V conaists of all finite formal sumg

of/
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of elements of the form
U QW (v ety v V)
For convenience we denote uw ®v by uv and note that the product

wy satiafles the lavs

(1) (L v u v =Uv+av (w,u €Uy vedV)
v S % 2 A
(i1) u(v% + va) = U, bW, (ne Uy VgV, & V)
(231) (Aulv) e u(lv) = X (uv) (neUy ve Ty e K).

lomme 4.4, Let 8 be a subalgebra of G:a and 5% the centyaliser of 8 in
C,» Then the cenbtraliger of 8 in A ® ¢, is A B%,

Vo denote A Gn by A:n“
Prooft ILetb {en % be o basis for A over O, Then any eleoment of

AQ €, is of the form % 246y, vhere o, ¢ C.

Take ey 8¢ 54 Then
8( faici) - (2aiei)s & = Ei.i(ﬁﬁi - :?;s)
e 0 if and only if %fcf-i - &% = 0,
ieGe if and omly 4if e, £ g%,
Time eny element of A‘n commuting with sll elements of 8 is in A ® 8%,

Lenme 445, If P is o finite exbension of € of degree n, then I cen

be considered a3 a svbiield of Cn and the centralisep of Fnin Gn is
¥ iteeld,
Proofs ¥ is an algebra of dimension n over C, and so it has &
vepresentetion in €. (¥ 16 an Femodule )
Moveovrery this representablon is cleaxly faithful and so we may
conalder T as a subfield of Cn'

Lot ¥ dencbe the cgamraliﬂer of Ts‘mt}n.

¢/
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ﬁn i8 o central gluple plgebrs over G, ond I is o simple subalgebre
containing & 1.  Then (11, Chopt. V, Thm 19)

(¢ 3 ¢) = (F3¢) (¥% 2 ¢)s Dut (C 2 C) = n” end (F 3 €) = 0 o
that (T 3 ¢) = n,
We then have IM* 21T and

(W e ¢) = (F 1 €)

Thug P = 1,

Theorem 4.1,

If T i & seporable extengion of €, of finite or infinite degree,
then
HRry) = J(R)p,

Where R is on slgebra with an identity over € and R, = R CF etc,

I

Proofs We oplit the proof into several sections,

(1) I ¥ is o finite slgebraic extension of ¢, then J(RF) 2 I(R)p.
Suppose that (F @ ¢) = n., Ag in lemms 4,5, we regard F ag o

subfield of C . Jacobson proves in (13) thet

I®) = [I®)] .
since T €, J(R), € I(R)B ¢_ = (3R)] .

M1 elemenis of J (R)F are quasiregular in [J(R)]n._
Tlements of J(R )]3‘ commte with elements of F and so by lemme 4.3,
the quasi-~inverses of the elements o£~J(R).F, in [ J(R)]n elso coomute with
eleoments of P, By Lemmas 4.4 and 4.5 ;.E:ai- the quasi~inverses of J(R)Fg:n
(J(R )]ﬂ, in fact belong to Ry, So J’(R)F is a quasiregular ideal of Ry,
and J(R), & J(BF).
Vie /
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We intend to prove thet vhen ¥ is & finlte separable extension

Gy J(RF) & J(R)F, thus peoving the theorem in 'thc';. £inite coze,

Q
5

We asoume that all extensions eve sepevable throughout the remeinder
of the proof.
(11) TLet H be o finlbe normal extonsion of € and let J(R) = (0).

Then J(Rﬁ) = (0),

Let » € R ad (P"H)' Then theve exists »' ¢ J(RH) such thes
v+ pt o+ pet =0,
Let © be on antonowphiom of H over C, Then 0 mey “ma) rogorded as an
autonorphism of RH over R, Henoe
(p + 2t +vp?')0 =0
ie@e 204 210 + (20)(2'0) = ©

ot € N and so »0 = »,

Then » 4 V0 + 2,00 = 0 and »'0 is oleo o quesi-inverse of v in
J (RH), But by Lemmgn 4.2 the quasi-~iovorse is uwnique ond s0 »10 = !,
Sea, ! iz idnvariant under all antomorphioms of RH over R and by
earlice observations »!' ¢ R,

Thus thoe guagi-inverse of every clement of B d (RH) is in R
and 50 Rnd (RH) is o quasivegulsr idesl of R,

te, RnI(R,) € 3(r) = (0)
and se, Ra J(RH) = (0),

et A Qpeey A " be a basis for H over Oy then any element v ¢ J (RH)
can be expressed in the form

i /\ -:- ol % s
r = 11. 3 seat fn) n (J?i(. R).

J (RH) is en ideel of Ry and is inveviewt undev any ewtomorphlsm of Ry,

Agein/
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Agaln ve consider any aunbomorpyhiem 6 of I over €, 0 is also

an aubomoyrphign of R)‘-i over Ry Then
wagde = »,(A, )\3)6 o n ot :z»n()\n/\j)@ & 3(Ry).
Ve sum this velationship for all subtomorphismg 8 of H over C,
obtaining
rlﬁ@()\ &Aja) £ ma'&;x-(/\ ) :]) P et 1=m1:x’(,\ 31/\3) & ts(RH),
whove for any h ¢ Hy 3 h 18 es defined wreviously,
Since H is, by essumpltion, a separable extension of ¢, the matrix
[ e ( /\j A J)] 1s non-gingulaw,

$2( /\:i /\j) ¢ € and ©0
E‘&'&i’?( ,\a/\j) Teewd :en%z*( ’\n’\;]) en for’] 2§ «n.
Hamee » w(4 _1,\3) Fevwt T w()\_n,\j) ¢ Rnd(rg) = (0).

Thus we have e set of n homogeneous lineay eguations in TR
Since de*’c[ te( A i’\ j)] is non=-ginguler, these equations bave only the
tyilvial solution

3?&=I'a=”.¢.*rn#0o

Thus 7 = v, A T /\:a = 0 and ¥ was any clement of J(RF),

Henga. J(Rﬂ) = (0).
Prom (ii) ve deduce
(143) I W ds & £inite norwal exbtension of ¢, then
I(my) ¢ IRy
Lot R¥# B/,:‘r(z:.). Then J(R¥*) = (0),

. _ RE i X
Rty ® ‘*/.3'(3)?li and by (id) J(R‘““ﬁ) = 0.

i.es (R )H ie en ideal such that R/ (» )H is semi-gimple, This implies
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that
b T
J(H)ﬂ ‘J(Rﬂ)f

since J(R) s the minival ideal Q such that R/ 40 oemi-simple.
From (1) and (iii) ve heve that if ¥ ds o Cinite normel (end
seporable) extension of ¢ then

I(ay) = (@), ~ {a).

(iv) If P 48 a finite separeble extension of ¢, then J(RF) = J(R)F.

Ve consider ¥ to be a finite normal exbension of ¢ conteining T,

R, may be comsidered as a field extension of R, ond by (a)

3(1y) = I )ge
Prom this we deduce thai
Jry) € ()
and it follows immedistely that
J’(RF) c J(BH) n Rye
et v ¢ J(RH) ARy, Then v hes a quesi-inverse »! & J(RH).
We consider any antomorphism 6 of Tfin over RF. Then v'0 is olso a
guasi=inverse of v, since v0 = r, Tut r has a unique quasi-inverse
and 80 ¥'0 = ¥',  Thus »' ¢ Ry and J(RE).
J‘(Rﬂ) A Ry is then e quasiregular ideal of Ry

Wow J(RF) = J(,‘fi)}I 0 Ry

= J(EI)F.

Thus J(R)F =2 J(RF)

Thus we have proved the theoren for separable extensions of finite

degree,
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(v) Let ¥ be an infinite separable extension of ¢ and K ¥ a subfield
of ¥ of {inite degree over Oy

then J(RF) nBy € J(RK).

Consider » ¢ J(}iﬁ.) o Rye  When » bas o quesi-inverse v ¢ J(RF).

e 1?.5. gnd in facdt »* ¢ R,, for some finite algebraic extension

K
K* of G, K'C T,

e let H be the minimael normal field containivg KXK' and B the
minimal field containing H and ¥, (A:¢) < oo axd I is normal over C,
So ¥ is novmel over T and (¥ T) < oo. Again by (4)

J(Rye) = I(Rp)ypse

and ¥yr' & J(Ryyde

We congider 6, any sutomorphism of H over K, Then »'¢ is a quasi-inverse
of PO = v, T € J(RH‘*‘) and g0 has a uniguve guasi-inverse in J‘(Rﬁ%).

Both »', v'0 ¢ J(RH-::-)' Then r' = v'0, by Lemma 4,2, This implies

thet »'e Ry and that 3(33,) n By is o quesivegular idesl in Ry,

ices J(Ry) AR & I(R)
Yo are now able to complete the proof of the theorem:
(vi) If ¥ is an infinite sepsrable extension éf ¢, then J(RF) - J(R)F.
(This proof applies to F, o finite separable extension of Cy, tut we have
olready proved the result in thet case).
If v € J‘(TRF), then v ¢ Ry for some finite algebraic oxtension KA
of C, By (v) v ¢ J(‘BK) end by (iv)
I(Ry) = J(R)y
1.6e T 6 J(R)K e J(R)F
Yinece K&ET,

s /
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Thee  I(R,) © I(R)pe
If v e J(R).ﬁ,9 then v ¢ J(R )'E for some finite algebraic exbension
of ¢, K ig a sepavable exbtonsion snd so J(T{%)K e J(ﬁK) by (3v).
Thig implies thet ¥ ¢ J (RK) and g0 r bas a quasi-ioverse in J (K?K).
Yhue every element of J(R )3? hes e quesi-inverse in R,
Then J(R )F is a quasiveguler ideal of R,

i
Combining the two resulits we bave that J(R) = J(Y?. ) if T 48 an infinite

Thevefore J(R)?, c J(Ri)a

(or finite) aepér&ble extension of (I,

It i eosy to extond the proof to cover slgpebras R over ¢, withous
oan identity element, We omit this siuce we will only requive to apply
the theorem to algebras with an identity.

We novw congilder F) a puvre transcendental exiension of ¢, F c(x)
for some set of commbative indeterminaves | Xy lJ ~ poggibly infinite,

10t Cluves pese] = C [x] , the ring of all polynomials over C
in %he set {:{l}

C(poogﬁip..) = ((x), the field of all vationsl Functions over € in
the set {x,1 .
Then R (%] = B ® ¢ (21, R(x) =R @cc(x))

vheve R(x) = %r(m) v(x) ¢ B [xJ,
n(x) ° wlx) ¢ C[x]

In order to deal with pure tvranscendental extensions, we consideyr
R(x) as defined above, where R is an algebra with en identity over C,
e fivet prove
Lomma 4,6 If J(R(x)) # (0), then J(R(x)) A R # (0),
Proof: Ve suppose that n(x) el(x)  J((x)). end thet hlx) “e(x) # 0,
JRr(x)) is sn ideal of B(x) 2 C(xw).

Henece/
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gence h{x) blx)™™ »(x) ¢ d®{x)).

fee. v{x) e.J(R(x)) and v(x) # 0O,
Among all the polynomials »(x) ¢ J(®(x)) we choose the element of
lowest degree and denote it by »(x).
Ve aspume thed »(x) @ R, ‘Then it is of degree & ¥ 1y for at
lepst one indeterminate, Xy B8
Ve define G'[};] and C'(x) +0 be the »ing of oll polynomizl
functions snd the field of all ralional functious over the se%ﬁixi s i
Then R'[ %] = R® (€' (xTand
R'(x) =R (x).
We note thet »{x) ¢ 8[x] con be expressed in the form
w(x) = 2o ¥ BX, T ee b rkxig vhere 1y ¥ 0
and vy ¢ RPCx] (0 g1 gk),
We now define an &utomarphism 0 of C(x) thus

Qs x ~»xw <+ 1

4 S
05 X, =» %, (1 41),

9 has o vnique extgension Lo R(x), denoted by €, such that all elements
of R ave lnvarlent under O, |
J(Rr(x)) is inverient under all auvtomorphisms of R(x) snd so
v(x) 0 ¢ J(R(x)),
J(r(x)) is on ideal and so the polynomial
s(x) = (x(x))6 = v(x) ¢ J(®R(x)).

We now have to consider the charvacteristic of €,

(1) C_hos cheracieristic zero

k
‘ T i i
S(x) = = x*i[(xl‘%‘i) - x, T1.

Lt

1=0
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ig of lower degree in %, then v(x) and so 8(x) is of lower totel
degree then v(x).

Since k » 1 and chavacteristic of C = 0, S(x) # 0 and r(z) is not
the eclement of J(R(x)) of lovest total degree, a contradiction,

Henes »(x) ¢ R
and  J(&{z)) n R # (0),

(31) ¢ _bos cherscterisbic p £ 0O

ﬁgu.n S{x) is of lower total degree then w(x), but there is a
poseibility thas 8(x) = 0,
1f 8(x) # 0 we have o contradiction ss above.
We suppose thet S(x) = 0,
lece (%) 8 = w(x),
1.0, g(zcl + 1) = g(}c:&) vhere g i8 e polynomiel with
coefficients dn R* (x §.
Ve will show thab g»;(s: ) & gt (EE ¥ . %, ) wheve g' is o polynomisl
in s ih - x, with coefficients in B'[x],
We suppose that the degree of g » Iy is less than p.
ale, + 1) = glx,) = glx, + n) = glx)n e g,

Lad

g(i{l +m) o glm) + 8 g () 4 eee + “gk(m)

&y
= ro “h z*lzzzgj PR b oae T ?I{?‘.‘El = g\fxl
Hence glm) = v, for all integers m,
GF{plE R %] and so
glm) - ¥, vanishes for ell p-elements of GFlpl, Bub g(sg&) s degvee <

Therefore g(ﬁz )sx.c w (x|,

)
Pake any polynomial G‘(qc ) of degree k » p such that g(as + 1) w g(“ )

Buppose that the vesult ls true for any polynomizl of degveo <k,

P
alx,) = n(igy Mz, = ®,) ¢ k(x, )



wheye K:z(x@), 35.(3?:,&) have ecefficients in B'(x]and the degree of k in
:"::a., ig <4 _
glx, + 1) = glx.)
Henee

z «; P i % B 3 & P o 3n r
h(”{:& & ‘i)(.ﬁzm : "Em) § MK:&. 1) e hl‘x?&)(xt_& 3*:3!) ! R(:,.L)
2
T4 follove that(hx, + 1) = nlx, )k, = %) = k(x,) ~ Kx, + 1),

Degree of vight hand side i8 < p.
Degreo of lefd hand side is 2 p a O,

For consistency, h(zci

o

1) = bix,)
1) = 1{(313),

o5
(3

ke(ar,
Then k(xg @k, RU[x]
and by induction,

h(ﬁ?.l) a h‘{z;:f - 3{3)9 vaere h' has coefficients in W xT.

P P
Then g(xa) = u(x, - ;;3;)(;@1 - x&) + I,
Le0e 2(x) = E”(?ﬁg " Kz,.) with seefficlents dn R'[x [,

We now denote by C [x7] 4 03‘(;!;), ”, (=], B, () the vings obiained

&

W replacing %, int ;{:3.11 [ z;ﬁ - X,
Then ﬁ(z@) is & finite oxtension of degeee p over C . (). 0 iz en
entbomorphisn of crder p and leaves clements of Ca.(?';) invariant, C(x)
is o sepavaeble extension of ﬂﬁ'(x)g
By (iv) Theovem 4,1,
J(R1<3§)) = J(r(z)) A Rl(:sc)
and so v(x) € J(R&(K))u
¢ &(x} 1g daomovphic to G(x) under the mappings 2, =»x, for 4 % 1
and xf - x, *>x,



This mapping mey be extended o an isomorphiem between ﬁl(x)
end R(x) end so it induces an Iisoncrphisn betveon J(Rm(:c)) and J(r(x)).
Under this isomnorphisn,
r(x) = :e'(x - =%, ) = 2t (s 1)

and 80 r'(:sm) £ J(nlz)).

The degree of »'(x) in Xs0 1 ¢ 1, 18 not greater then the degrae
of »(x) in x, and the degree of :\e‘(x ) in x, io lowew than the degree
of =(x) in X o S0 the degree of T'(x:c.) is lover then the degrec of
»(x), a contradiction, since 33'(3{3.) £ 0 and r'(xi) ¢ J(r(x)).

Henoe »(x) ¢ R.

and J(R(x)) A R #(0).

Wo now pove the theorens

Theorem 4.2, I 1! i8 2 pure transcendontal extension of € 8 then
J(ry, )= N, wheve N = .J(R.m) A R is a ndl ddesl.
Proofs I = ¢(z). Thean R B, = R® ¢(x) = B(x).

Let W= J(r(x)) A R,
Thep N, = (%),
N C 3(0(x)) and so W(x)R(x) = TR(x) < I(R(x)).

T4 folious that N(xz) € J(B(x)).

e map R(x) onto R{x)/N(x).

Aso Rlz){x) ¥ (RANx) = B(z).

By (2), J@(xIM(x)) = J@(x))/M(x),
wow §((=))n ® o aB(x)) . (E_,.j sgig@}

W(x) Wx

= [3R(=)) A lR + D))/ w(a)
= [(3r(x)) 0 B) + W)/ W)
e (W4 W) /M(x) = W(x)/i(x) = 6.
Henee, since J(R(x)rR: = 0, by Lemma 4.6, J(R(x)) = 0 => J(R(x)) CN(x).



Lat
ne

Henee .J(R(:}x)) = §(x).

We must now prove N o nil ideal of R.

Lot » ¢ N JR(x)) (= W)

Then 2z ) € Jn(x)). Iet 8 e v° amd 1ot hix) elx) ¢ J(R(E))
be the quaai-inverse of é;:&t&, |

Thus 8%, + n{x) e (x) + h(:ﬁ;‘:)-&':;?(;‘x)ési}‘cl = 0

$eCe E_(:gz}.ei:sﬂm’ o o{x) + 3&*(:}:)%@3& @ 0 —®

Y. v | .

Tet w{x) = Tt PE, P oee PR E T A O, vy ¢ RY (%]
~ T K . - IV‘ 5 PR -
B(x) = By & ¥, 4 oee B oz b # Oy by ¢ R =T

Degree of h(zx:)’»:s’:{? in x, is Vi 1« By €0 the degres of
rx‘(sc)%‘-zcl inx ds w1

Put degree of r(ﬁ:)ﬁ‘x,\i £V o+ 1,
Hence & Voe

r; € I(R'(x)) since JI(R(x)) = W' (x )y

vhere W' = J(®(x)) n R'(x), & consequence of applying the fivab
port of the theorem to RY(x) and €*{x) instend of R and € and nobing
thet the expression for :e(::) ag a polynomial in x, with coefficients

in RY(x) is unique,

Vi

IP mo=mY 4 by considering the coefficlent of x , R E+p, 9w

v
Hemce & + h v, & @ 0 . ht%v ¢ J(R*(x)) and so Lemme 4.1 implies that

& = O vhere 8 v v

i La T ia ﬂi}. pﬁ%onh »

T - - - V.z' J‘V
iT M SN g By considering tho coofficients of Xy i,...,&:fz“‘, we

ohtain
r & a0 (i)

v

2ote 480 (44)

Y



é‘,d.')

fez ¥ ¥a 500
¥ W 2 p Sa 0
.ﬂ/u tal 0 4 &,/‘-"' o

Multiply (i) on akght by 8, Thewn by (i)
e -]
tultiply (341) on higt by 8%, Then vy (13)

5% = 0,

ki 8" = ,
v =2

Continve lu this way, obtaining

T 8 =0 L 2eeny v s

Vultiply last equetion on dight by & YT and on bty by h;f"
5\' Y lﬁ/’/\*ﬁ“? 4 11'”3‘ w §V¥IIM '}‘3 o Ge
Vak M .
ey, € @) Ty Tema 441,

S MmN Jgvm et

and ¥ is nilpotent,

Henoe W ig ndil,

Both these theorems will be used in later discussion, In (4), they are
nged to yrove the following theoren
Theorem 4.3, If A(G,0) is sewi-pimple, then A(G,F) i semi-sinple for
any {ieldFof cheracteristic zero.
Proofs Wote fivet that
4(6,K) = 4(G,9) ® g X vhere K iz an extension ficld of Q.
P may be regarded as an exbension £ield of @, There 1o g field K & ¥

sueh thet K 1g a pure transcendenial extension of Q and ¥ is an algebraic

extension,



exkonmion of K,

BP0 .

P ig sepaveble over K slunce the chavacteristle is

Jﬂhﬁ)wﬂé§&i1w§&mmmn4£,

vhere ¥ lo a nil ideal of A{¢.Q).

But 3{¢,Q) « (0)

and so ¥ = {0),

Then J{G,X) = {(0).

How J{G,F) = ﬁ&@@%ﬁ a (0), by Theprem 4.0,

Henee the weoulte

34.
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§ 5. The upper nil rodical,

Tn his paper "Nl ideals in group vings" (16), Pessomen is intcrested
in group rivgs of groups over commubative pivgs with vo non-zero nilpovent
elementy, but o8 ouw concern is with group vings over fields, we shall
in genevel give only these results rela'bimg to this special case. In
several ploces, ve ave as a vesult, able Yo simplify procfe of thewrens,

In the first place, a‘i;*i_;errtion ig diveoted to the uwpper nil radicel
of the group algebra. U(G,K) is found o be the mero ideal in the two
onsess (i) for any group €, if K has chavecheristic mero, (il) for ony
group € with no peslenmenits, if the chopseteristic of K i the non=zero
vwwine p.

These two wesults ave proved separvately, each reguiring several
lomnes .

For eny ving R wo deim'bg by Comn R the set of all finite sums of
elements of the form ab - ba, where a,b e R,

Lomme 5.1,  Tor eny wing Ry if Ik end n eve positive integers, and p a
'prime, then for every sews 2, ..“.rn of n elements of R,

3l WK Ie
)P t

= 113‘ R 'f:ﬂ KN e e i

Uvere © ¢ B and 2 ¢ Comm R.
Pl o Pt
Proof: (2, tewr ) =¥, deb® o+ viere t is o eum of

alements of R of the form

v, w. .
M *vta
kX B P

wheve ot least two of the subscripts ave different,
Gonglder two words w_, v, of the form

W=
a

aly

2,

Fs esn 2, 'Y
i, i ik
i 2 PL



o L 2 CE’-?, :E! XN ) 12
i, 74 .I.}?k 4 ”g‘j«‘i

1.0, they ave eycllc permutablons  of each other.

Then W = W
3' i g

5]

= oab = ba ¢ Conm B wheve a = Ty ees Py >
B J=1

o= 7, kS
:!.tu [ X X} i}?ig

Henee, w, & v, (modulo Comm B),

Thus all the eyclisc perputations of e vord sre congrusnt module

Comm B apd the number of such words is divisible by p. Hence the vesuli,

We now consider Comm R{C ,R))whem R{¢,R) is the group ving of the
group ¢ over the ring R which is commubetive . Comm R(G,R), by
definiti ony conslets of mume of elemends of the form sb -~ be vheve
asb € R{G,4R).

Suppese a = 53322& 3 R 0B

nd b m € h + e+ & h
KN O 0 n

B «

v-.rh@e Tio ;) 3 ¢ R and g:i"h;je Ca

ab =Jd ” /wlr-l.‘-j:gihj - é bjr'ihjgi
i’j * J :}".‘ -
<
® I‘.Q e, o~ h F .
1,3 i ,j(gh 3 j‘gl))

since R 1o commtative,
Thus Comm R(G,R) is spanned over ®” by ell clements of the form
gh = hg (gsie ©) ,
Any element of R(G,R) is of the form x ':2 r(g)e (r(g) & Ryg & @)
with/ ’



with only a Pinite nwiber of non~fero LOrng . Lot 8lx) dencte the
coefficient of the identity of G in the expession for X,

Lotk % & Comm R{G,R). The clements of & form & linearly independent
get over R, Thus if @(‘2_‘-) *7'5 Gy 1 = gh Tar some gy ¢ G, . Bot then
bg = 1 and so gh =~ hg = 0.  This cz'j.ea:;:’l_y lead: Lo a conbrediction, end
ve hove the reguld that if i: & Comm R(Qf»,'ﬁ) then 0{%&) = O,
Lemmo, 5e2. If m = A 3 /\aga Y eat A_ﬁgn & A(G,), vhere K 48 o
fi0ld of characteristic pl 55 O\m& no g, is o p-element, end x is
nilpotent, then

g('i&i) =) /\ B Q.

=y

wp . . |4
Proofs If 7 = 0, choose a positive inbeger k sudh that p zm. Then

o Ty

Iz
X ez (3,

o

2,

Using Lemma 541,

1z i I =k N k
P P PF P el -
0=x = A5 1e AT gl AL & v

Wheve y ¢ A(G,K) and ¥ ¢ Comm A(G,K), vy = O since the characterisbic
of K ig p.
I

Mo g, 18 B pclement end so go #1 (2 <3 < n)
o g is & prelement end 50 g <ian

o
Ths  6(x) = O

i
FeC e )\;;P + 0{z) = 0,

By the venarks preceding this J.emma)@(ﬁ) = 0 and 90

A , =0 (A, €¥, a tield),

13

ieee 0(x) = O,

Theorem 5.i. 1f K is o field of cheracteristic p (¥ 0) and € is a

gronp with no peclemente, then
v(G.&) = (0).

Proof/



Proofs Coneider avy x ¢ U(G,K), U(G,K) is 2 nil ideal, Then for eny
element & ¢ € C A(G,K),
xg © o U(G.K), and =0 is nilpotent,
By Lemme 5.2
o(xg ) = coefficient of g in %
= O,
Ih :fcallews thet X = 0 and

U(6,K) = (0),

Before pgoing on 1o prove the covvesponding vesulv for o field of
charactevistic zero, we make a fow remerks on algebraic number theory (‘20).
fet € be a finite field extension of @, the field of rationel numbers,
A algebralc dnbeger in K is an element of K which is a gero of o monlc
polynomial with eoeffici@nté in %, the zing of indegers,

et D be the set of all algebraic integers in ¥, Then D is a
gubring of X and eo is en Integrel domain, Further X is the guotient
field of D,

Since X 4 a finite oxtension of Q of dimencion (Kz@,), Disa
finitely genevated Z-module and (D:%) = (KsQ), TPurther, any Z-basis
for D is also a Q~bagis for K,

Taa 37 fu -, (1@ p basis Tor D es s Gencdnie. then
ey iF u_‘,.;.,u{,fj is @ basis for D ag & Z-module, then

"y

H— wu&@ sre (D Witie HE% N\ & B
2, P
A uim;}fﬂ [)ij( )u.j (1 g4 5,‘2;,{5'3._3( ) €q)

we/
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We donote by B{ A), the t x ¢ matrix [ f)i;j("\ V) with coefficlents
in Q. Then the porm of A , denoted N(A), is det R(A ).

o pevticular, if e Dy W(A)E 2. W( A) is independent of
the cholee of the ba,ssis{ ‘»13)---"“.;;\9 &w any A& K,

Por exy ap ¢ Ky W(op) = Ne)W(p).

For @ ¢ Ky g & Qy W(qa) = ;;_J’;I\I(m).

We use these vesults from the theory of algebralc numbers in Lemma 5,
If X is a finlte Tield ézxtwwi on of Q and ¢ is auy group, then

u(eyk) = (0)

(Wote thet X io neccesarily of chevacteristic zero).
Proof: D is, as obove, the set of all algebraic integers in X,

Suppose that |

xwdl+dg vt de ¢ U(Gy%)

end thot d, # 0, (d&,...,&ﬂ@ D). Such an element belonging 4o U(G,K)
nay be found since K is the quotient field of D, _

= AT & A £, Tewet A B € U(G,E) vhere A prevest € K, for
sach A 19 there exists m, ¢ & such that mi/\ q¢ D for 1 z4ie¢n,

Let m =mm, yes Mo  Then mz ¢ R(G,D). If z # 0, then A ; # 0 for som

g B Ae

) ::1. + A 3@1'3@8 T e+ A g Ve + A ng:‘f.ﬂgn
and the coeficient of 1 in gias‘s:: ig nonezZero,
Iieme-ngiq‘z ig of the game form a8 x and since U(G,K) is an
ideal, ¥ ¢ U(G4K). |
Vie choose & yrime p sabisfying the conditiong:
(1) » » Iﬁ(da)[
{ii) p » the order of overy g, vith finite arder,

then/



P 40
then g # 1 (1 <1 gn)

(311) p > the degree of nilpotence of x.

Then by lemna 5.1,

P P PP PP
an“‘*aal‘t-s»ﬁaga we-..«e»dngﬂ R Z

vhere y ¢ R{(G,D) amd % ¢ Comm R(G,D). By earlicr vemsrks, 6(2) = O,
. |
ofx") = O since %t = 0,
]")

"+ 0(py) = 0.
= ~p O0(y) = pd for some d ¢ D,

ileg, d

g 1

anel dhewmge @

N(czf) - N(dl):{? and ¥(pd) = p'bi\f(d).,

Lok

Ma, ), W(a) ¢ % since d,,d D N(af) pi(a) =» pl 13 ).

But p II@(%)!, T we have o contrediction end so x = 0,
For any % € U(Q,K), there is an x ¢ U(G,K) and x = mgiﬂ’z ¢ r{e,D).
Now x = O and i% is clear that € = 0,

Therefore T(G,K) = (0).

Theorem 5.2, For eny fieldKof charscteristic gero eud any group, G,

U(G4K) = (0).
Proofs: K can be regarded as an extension field of @,
e 2 . e - AN Y
let = A 8, *esd A o8 € U(@,K).

(Ngek gety 1gizn)

et R be the wing Q[/\ IETYRT: /\nl e If A T /\_.! are algebraic

< 1 g n) then

L]

ovey Q and /\44«1’"’ A pn SO trenscendental over € (O
Q\/\ Lseesy A 1] is a finite algebraic extension of € and is the
maximal subfield of R,

Lot x € U{¢,R) and lot M be any mawimal idesl of R, MThe netupsl

napping /



G4
mopping R{G,R) ~» A(G,R/ 1) maps x onto onm element of: ’U(G,R/ M). R/ M is
g field ond so R/ M is isomoephic to goiie subfileld of B i.e. to gome
subfield of Q [/\ I A :J o ‘Tims R/X’ﬁ is a finlte algebrale extension of
By Jemmg 5.3, B(G,R/ M) = (0) eownd so the image of x under the natural
mapping R{G,R) -::A(@,R/m) iz 0, Henee A geessA €M, W any
mexinal ideal of R, |

But J(R) = (\g MeW o moximel ideal of E«E?l . 8ince R ig commubative
end hag an identity., 8o A 3;,..../\3? & J(R).
R is o finitely g@n&z@‘aeﬂ commubtative algobra over Q. d.6. R iz 2
finitely genevated algebre which salisfies an identity and so J(R) is
a nil icléal by Theorem 3.3,

Therefore, fow every integer i, 1 £ 1 £ n there oxists & poaitive
integer m 4 such thet

mn
/\ o lm 0.
&

fhen x = 0 and U{(G,K) = (0).

Meschke's Theoven (§ 2) shows that if € is o finite group of

ordey divieible by p end K is o {ield of charecteristic p, then

U(G,x) # (0).  U(G,K) need not be the zevo ideal when K hes characherict:

p ond @ bhas peclements, oven vhen ¢ is en dufinlte growp, as can be seen
from this exanples

¢ = i x G,thedivect produet of H = i‘l,@gl‘ y the group of ovder 2
and C, the ianfinite cyclic gronp geversted by x. If we congider the

geoup/



group algebra of & over n field ¥ of chavacteristic 2,
(1-gf=1-g"e0

end 1 - g geneveltes o nilpotent ideal of A(G?,'JIC)9 wnioh -:i.a nON=%ero,

- As yeby necessery end sufficlent conditions for the existence
of non~zero nil ldesls heve not been fovud, m-é in the paﬁer (16) ot
present under discussion, Passnan has esiteblished necessary em'é
pufficient conditions for the existonce of non-gero nilpotent ideals
in group a