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Abstract 

Elastic-plastic crack tip constraint has been estimated for the common planar crack 
geometries. These include single edge cracked bars in tension and bending, centre 
cracked panels, and double edge cracked bars. The description of the stress field has 
been modified from a one parameter characterisation, based on K or J, to include 
a second term. The second parameter is a non-singular term, described either in 
terms of an elastic T-stress or aQ field. 

The limits of one and two parameter characterisation are discussed for single 
edge bars in tension and bending and for centre cracked panels. For the single 
edge geometries the two parameter characterisation was found to extend the 
characterisation well beyond the one parameter approach. For the centre cracked 
panels the two parameter characterisation in terms of a J-Q approach was found to 
be more accurate than a J-T approach at high levels of deformation. 

For the single edge cracked bending and tension geometries the second parameter 
Q is divided into two components named QT and Q P. QT is an elastic term which 
depends of the elastic T stress and is independent of the distance from the crack tip. 
The second component, Q p, arises from global bending on the uncracked ligament. 
This is a distance dependent term which depends on the level of deformation and 
can either be expressed as a function of the load normalised by the limit load or as 
a function of the plastic component of the J-integral. 

For single edge bend bars the constraint estimation provides basis for a method of 
predicting fracture toughness using local failure approach, where the failure criterion 
is expressed in terms of the stress level ahead of the crack tip. Finally the constraint 
of mixed mode problem has been analysed and compared with that of pure Mode I 
problems. 
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CHAPTER 1 

Introduction to Constraint Based 
Fracture Mechanics 

The behaviour of real structures does not always correspond to predictions based on 
the behaviour of perfect materials because of the presence of defects and flaws. 
Structures respond to extreme loading by either large deformation or fracture. 
Fracture which originates from defects and flaws is particularly important as it may 
occur at very low stress levels. The Liberty Ships built during World War II are 
the best known examples of such catastrophic low stress failures. That experience 
launched research into fracture mechanics. The main events in the history of fracture 

mechanics have been chronicled by Sumpter (1993b). 

Three important variables are involved in the application of fracture mechanics to 
a cracked structure: the flaw size, the fracture toughness, and the applied stress. 
Fracture mechanics quantifies the critical combinations of these three variables. 

However the earliest work was not sophisticated, and in the beginning of the 
twentieth century Charpy (1912) developed a pendulum test that measured the 
energy of separation in notched metallic specimens. Such tests are now known as 
impact tests. Impact tests were used to investigate the Liberty ship failures. It 

was concluded that fracture was much more likely to occur in structures with a low 
Charpy energy. 
In the 1920s Griffith (1921) developed the first quantitative energy-based fracture 
theory. However it was not until the introduction of the stress intensity factor K by 
Irwin (1960), as a key parameter for characterising the stress field around a crack tip, 
that fracture mechanics became a practical engineering tool. The essential aim is to 
correlate crack extension in two different cracked bodies; for example, a laboratory 

specimen and an engineering structure. The transferability of fracture toughness 
is based on the similarity of the near crack tip stress and deformation fields. The 

similarity is most commonly described using one parameter which describes the 
strength of a singular crack tip field. In the middle sixties the use of the stress 
intensity factor was extended by applying the critical value Ki, as a measure of 
plane strain fracture toughness. The use of tough materials however meant that valid 
measurements of the elastic stress intensity factor could not be made on realistically 
sized specimens. The problems were resolved by the development of non-linear 
fracture mechanics based on the J-integral proposed by Rice (1968b). 

A typical fracture toughness is obtained from a deeply cracked bend bar which in 
fully plasticity develops a high level of constraint. The state of constraint controls 
the triaxiality at the crack tip, and a high level of constraint implies a highly triaxial 

stress field. The triaxiality controls the fracture process, and for specimens with a 
high triaxiality the fracture toughness is known to be low. The standard fracture 

17 



18 1 INTRODUCTION TO CONSTRAINT BASED FRACTURE MECHANICS 

toughness test therefore provides a lower bound estimation which ensure a safe but 

often conservative value of the fracture toughness. 

Elastic-plastic crack tip fields do not uniquely exhibit high levels of constraint, and 
there has been increasing interest in analysing structures and testing specimens 
with low crack tip constraint. Low values of constraint are associated with enhanced 
toughness. A primary goal has been to develop a two-parameter description of crack 
tip fields in order to use constraint enhanced toughness. 

This thesis reviews the fundamentals of two parameter fracture mechanics. The first 

parameter scales the asymptotic singularity at the crack tip measured by K or J, 

while the second parameter indicates the level of stress triaxiality at the crack tip 
field. The limits of one and two-parameter characterisation of crack tip fields are 
then discussed and a theoretical framework for characterising crack tip constraint in 
terms of the higher order terms in a series expansions of the crack tip stress field is 
developed. The development of crack tip constraint is systematically examined for 

a wide range of plane strain geometries and strain hardening rates. Finally mixed 
mode fields are shown to belong to a similar family as the Mode I fields and the 
loss of constraint in mixed mode loading can be compared with that of Mode I. It 
is finally shown that it is possible to map the constraint based Mode I failure loci 
into mixed mode data. 



CHAPTER 2 

Single Parameter Fracture Mechanics 

This Chapter introduces single parameter fracture mechanics. It is divided into two 
major sections. The first section is an overview of linear elastic fracture mechanics 
(LEFM), based on a description of the elastic stress and displacement fields of 
a sharp crack. The concept of a stress intensity factor and the Griffiths failure 
criterion are introduced. In the second section the fundamental parameters of elastic- 
plastic fracture mechanics (EPFM) are described, including the introduction of the 
J integral and slip line fields. 

2.1 Linear Elastic Fracture Mechanics 

Inglis (1913) was the first to develop a mathematical solution to quantify the stress 
field in a centre cracked plate subjected to uniaxial tension. He analysed a linear 
elastic infinite plate with a central crack subjected to uniform tension as shown in 
Figure 2.1. Later Westergaard (1939) developed stress function methods for two- 
dimensional crack problems. 

ow 

----------- ---------- 

e 
x 

cop 

Figure 2.1: A crack of length 2a subject to a remote stress app. 

Several authors (e. g. Broek (1991) and Hellan (1985)) have reviewed the analysis of 
crack tip stress fields by appropriate Airy stress functions. Solutions are found by 

satisfying a biharmonic equation and the appropriate boundary conditions. 

19 
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The Westergaard stress field is given in cylindrical coordinates (r, O) centred at the 
crack tip, the co-ordinate system is defined in Figure 2.1. 

xa 
os 

o= 
Zxr 

cos 
2 

(1 
- sin 

Z 
sin 

2e ) 

o xa 
ay =2 7rr cos 10+ sin 2 sin ) (r y a) (2.1) 

rry = °zý*sinzcoszcos30 

These equations describe the stress field in a region close to the crack tip where the 
radial distance r is very much less than the crack length a. 

The corresponding Cartesian displacements (u, v) can be derived from the stress 
field through the stress-strain relationship. The stress-strain relationship depends 

on whether plane strain or plane stress conditions apply. The isotropic stress-strain 
relationship in its general form is : 

ý_=E°_-ý(°v+i)J 

£v=E+os)1 

(2.2) 
Cs =E [°_ - V(c + av)j 

Try = laL yy: = ý4' Y:: = 

where v is Poisson's ratio, E is Young's modulus and G is the shear modulus. For 
two dimensional problems the strain-displacement equations for the three in-plane 
strain components are 

öu 
£r = vx 

e� _ av (2.3) 

7=v= Rý 49 

Compatibility is ensured by differential equations of the form 

O2 
+ 

82c 
= 

O2 (2.4) 
aye Oz2 axay 

A complete statement of the compatibility equations is given by McClintock and 
Argon (1966). 

In plane stress the in-plane load is assumed to be distributed uniformly over the 
thickness of a thin plate or membrane and the stress os, r=, and r,, and their 
gradients in the z direction are zero. 

a_ = r=y=T=s=U 
(2.5) 
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The state of stress is specified by o,.,, ay and Txy. The corresponding strains are 
determined by reduced stress-strain relations. 

6x = 
r(Qx 

- Wiry) 

(2.6) 
Ey = (Qy - vv,. ) 

The relation between the shear strain and shear stress is defined as 

2(1 + v) 
7xy =E Txy (2.7) 

Near the centre of thicker plates where plane strain conditions are satisfied, it is 
assumed that 

ýz='Ixz=^%yz=0 
(2.8) 

aE ary za zZ 

When those conditions are substituted into the general stress-strain relationship 
(2.2), the out of plane normal stress a2 can be found in terms of a and ay as: 

QZ = V(Q. + oy) (2.9) 

The displacement fields for plane strain and plane stress conditions in a Mode I are 
found to be of the form: 

u= 2(1 + v)° "a 2 cos 2 
(ýc 

-1+ 2sine 2 

(2.10) 

v= 2(1 -}- sin 2n+1-2 cost 2) 

where r. is defined as: 

rc = 3-4v plane strain 

3-Lo plane stress 
(2.11) 

Williams (1957) expressed the elastic stress and displacement field near a crack as 
a series expansion. The stress field can be expressed by an asymptotic expansion of 
the form: 

a, (r, O) = A2(O)f4 + B=i(O)r° + C12(e)r, + ... (2.12) 

where (r, 9) are polar co-ordinates centred at the crack tip, and Q; j are the Cartesian 
components of the stress tensor. 

In classic linear elastic fracture mechanics the stress field is described by the first 
term in the expansion, which corresponds to Westergaard's stress field given in 
Equation (2.1). 
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Mode I Mode II Mode III 
Opening mode Sliding mode Tearing mode 

Figure 2.2: The three modes of loading. 

2.1.1 The Stress Intensity Factor 

When a load is applied to a cracked body, the crack surfaces move relative to each 
other. The response may be divided into three modes, which are illustrated in Figure 
2.2. Discussion wil largely be centred on Mode I. 

It is now convenient to introduce the stress intensity factor K, in Equation (2.1) 

to describe the magnitude of the elastic crack tip stress field. The stress intensity 
factor was first described by Irwin (1957) and for a Mode I type crack 1t is denoted 
K, and defined 

K, =1öo, ý Zar (8=0) (2.13) 

For a Griffith crack K1 =o aa. The stress intensity factor characterises the crack 
tip field when the body is largely elastic. K is a function of the remote stress, and 
the crack length and characterises the strength of the crack tip singularity. Equation 
(2.13) allows the stress field in Equation (2.1) to be written using the stress intensity 
factor K, and universal functions of angle ft (B): 

fij(0) (2.14) °12(r, e) = 
h'i 
21 

A dimensional argument shows that KI is proportional to the applied load and the 
square root of a characteristic dimension such as the crack length, and is a function 

of the geometry of the cracked structure. Various methods can be used to determine 
K, and these are reviewed in literature of fracture mechanics; Broek (1991) and 
Andersen (1995), while K for many common crack problems are given by Rooke 

and Cartwright (1976) and Murakami (1987). 

The critical value of the stress intensity factor K is used as a measure of fracture 
toughness in small scale yielding (SSY), where the toughness in plane strain differs 
from the toughness in plane stress. When the thickness is small compared to the 
size of the plastic zone, the state of stress is normally plane stress, as explained by 
Andersen (1995). The fracture toughness decreases with thickness until a plateau is 

reached, where a further decrease in thickness has little or no effect on toughness, 
as shown in Figure 2.3. The fracture toughness is the critical value of K at which 
the crack extends and for a Mode I plane strain crack is denoted by K, C. 
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Figure 2.3: Effect of specimen thickness on Mode I fracture toughness. 

2.1.2 The Griffith Criterion 
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Griffith (1921) considered the energetic of crack advance in brittle materials. Glass 
for example is brittle and fails in a largely linear elastic manner with low energy 
absorption. Griffith (1921) introduced the concept that the work required to extend 
a crack is a balance between the released strain energy and the surface energy 
developed during crack growth. In a centre cracked panel, such as that shown 
in Figure 2.1 the surface energy is given by: 

Uaur/ace =2.2atia (2.15) 

where ry, is the surface energy per unit area and t is the thickness of the plate. The 
total surface energy will increase as the crack grows because the surfaces of solids 
exhibit a surface tension in a similar manner to liquids. 

The potential energy of an elastic body, II is defined as 

H= Ustrain - . 77 (2.16) 

where Ustrain is the strain energy and F is the work done by external forces. For 

a cracked plate with a fixed displacement, the work done by external forces is zero 
and II = Ustrain, as illustrated in Figure 2.4. 

For a cracked plate with fixed load, the work from the external forces can be 

calculated as: 

.F= 
PA (2.17) 

where P is the external force and Ut,. a;,, 
is determined from 

Ustrain =J Pd =2 PA (2.18) 
0 

and therefore the potential energy is II = -Ustrain for a fixed load. 
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Fixed lo: 
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Fixed displacement (A) 
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Figure 2.4: Cracked plate at a fixed displacement and fixed load. 

Griffith expressed Ustrain in terms of the stress, using expressions developed by Inglis 
(1913) for a plate with a crack of length a, with U, t, ai� defined as: 

xo2a2t (2.19) Uatrain = El 

where E' is Young's modulus for plane stress ands for plane strain. Crack growth 
requires an increase of surface energy balanced by reduction in strain energy: 

dU. rr at_ = 
dU r .n ý 

(2.20) 
2re2al 

rrý = 4t-y, 

The critical stress a, at a crack extension can now be estimated as: 

try. E" 
aC, = (2.21) 

If U, eratn is the strain energy in a plate of unit thickness, the amount of strain energy 
released to propagate a crack a distance da is 

g= (dU. i,. i�) _ 
2roza (2.22) 

da E' 
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Through Equation (2.22) it is possible to relate the critical value of the stress 
intensity factor (the fracture toughness) to a critical value of the strain energy release 
rate Q,: 

/? 
C 

KI 
(2.23) `J= 

E, 

In this case G has been defined when the applied displacements are constant under 
fixed grips conditions so that the external load cannot provide work. It can be 
shown (e. g. Broek (1991)) that G is always the derivative of the elastic strain energy 
independent of whether the load is constant or not. 

2.1.3 Crack Tip Plasticity 

When metals are loaded beyond their elastic limit they yield and deform in a plastic 
manner. The yield criterion defines the limit of elastic behaviour under any possible 
combination of stresses. The yield criteria used in engineering is attributable to 
Tresca (1864) and von Mises (1913). The Tresca criterion predicts yield if the 
maximum shear r,,, ax exceeds the yield stress in shear k: 

al - 0'3 = 2k (al > a2 > 0'3) (2.24) 

von Mises suggested that yield occurred when 

(al - a2)2 + (or, - Q3)2 + (0'2 - Q3)2 = 2y2 (2.25) 

where ol, 02 and 0'3 are principal stresses. Yield occurs when the equivalent stress 
reaches the uniaxial yield stress Qo : 

y> oo (2.26) 

The stress field singularity predicted theoretically in LEFM cannot exist in real 
materials, as the material must start to deform plastically. In order to estimate the 
extent of crack tip plasticity it is convenient to express the stresses in terms of the 
principal stresses used in Equations (2.24) and (2.25). 

The principal stresses in the plane (al and (72) at any point can be found from the 
Mohr's circle construction: 

Q1, Q2 = 
(fix c) (°x 

2 

ay 1 
+T2 

1\ J xy (2.27) 

Substitution of Equation (2.14) and (2.1) into (2.27) gives the principal stresses close 
to the crack tip: 

01 = 2, 
rr cos 2 

(1 + sin 2) 

02 = 
znrcos2 (1-sin 2) 

(2.28) 

Q3 =0 plane stress 

03 = 
2ý 

COS 
B plane strain 

2nr 2 
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A first simple approximation of the size of the plastic zone can be obtained from 
(2.14) by applying the Tresca yield criterion to the elastic stress field. This provides 
an estimate of the radius ry over which the material is yielding ahead of the crack: 

s 
rv =i 

(pal 
f(9) (2.29) 

o/ 

The development of the plastic zone depends on whether the crack tip is under plane 
strain or plane stress. The radius of the plastic zone can be estimated on the basis of 
von Mises yielding criteria by applying the principal stress field as given in Equation 
(2.28) into (2.25). The extent of the plastic zone as a function of 0 for plane strain 
is given by: 

ry(B) =+ (1 - 2v)2(1 + cos 9)l (2.30) 
4 r00 

(s1n2e 32I 

and the plastic zone for plane stress is 

4ý0 
1+2 sing 0+ cos O (2.31) rp(e) 

k 

o\3 

The Tresca criterion changes the shape of the plastic zone in comparison to the 
von Mises yield criterion. The zones for Tresca are slightly larger and of a slightly 
different shape to the von Mises zones. The Tresca yield zone is found in a similar 
way, the maximum shear stress in plane strain is the larger of I (al - a2) and 

2 
(0l - v3), and for plane stress rm, r = ! a,. By applying the principal stresses 

from Equation (2.28) the Tresca yield zone for plane stress is given as: 

rß(9) = 
%12 (COS e 

(2.32) 
20 ý (I + sin ))2 

In plane strain, it is the larger of : 

rp(9) =z cosy z ((1 
- 2v + sin 9))z 

(2.33) 
r (9) _ö Cost 

0 

In Figure 2.5 the boundary of the plastic zone estimated by both the Tresca and 
Mises criteria are shown. 

The effect of crack tip plasticity was initially discussed by Irwin (1948) and Dugdale 
(1960). Irwin suggested that the crack length is enhanced by plasticity. The effective 
crack length can be regarded as the length of the crack plus a correction due to the 
plastic zone size. 

Dugdale (1960) considered an effective crack length in plane stress by considering 
a strip of uniform closing stress equal to the yield stress. By requiring equilibrium 
between the strip of yield and the applied load, the correction can be calculated. 
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Figure 2.5: Plastic zone shapes for Mises and Tresca yield criteria. 

2.1.4 Validity of Linear-Elastic Fracture Mechanics 

Linear elastic fracture mechanics can be applied when crack tip plasticity is regarded 
as a minor perturbation of the elastic field and the material can largely be regarded as 
linear elastic. When the material fails in a macroscopically elastic manner the critical 
value of the stress intensity factor is a measure of fracture toughness. Standard test 

methods for KI, are given in ASTM (E 339-83 1983) and British Standard (BS- 

744819916) 

Valid LEFM is ensured if the specimen dimensions are large compared to the size 
of the plastic zone. Bend specimens for KI, tests normally have a width, W, equal 
to twice the thickness, B, and are fatigue pre-cracked so the crack length/width 

ratio (a/W) is between 0.45 and 0.55. The specimens are designed such that all the 

critical dimensions, a, B and W-a, are approximately equal, and when tested each 
dimension must be large compared to the size of the plastic zone in order to obtain 
a valid result for Kic. The size of the plastic zone may be compared with either the 

crack length a, the ligament (W - a) or the thickness B. 

When the specimen is fatigue pre-cracked ASTM E339 requires that the peak value 
of the stress intensity in a single cycle, K�lax should be no larger than 0.8KI.. When 
the crack approaches the final length, Kmax should be no larger than 0.6 KID. The 

requirement is more strict in the final stages of pre-cracking to prevent damage 

to the material at the crack tip. When the pre-cracked test specimen is loaded 

to failure the load-displacement response is monitored. The critical value of stress 
intensity factor is calculated from the critical applied load, PQ. The standards give 
the requirements for the determination of PQ, while the corresponding provisional 
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stress intensity factor KQ can be calculated from an expression of the form: 

KQ = BPQ 
f(all't') (2.34) 

where f(a/W) is a dimensionless function of a/W. The provisional stress intensity 
factor KQ value computed from (2.34) and is a valid K1, results if the requirements 
for validity are met. 

The requirements given in ASTM (E 339-83 1983) are: 

a>2.5 ý 12 

)2 (2.35) 
00 

B>2.5 ( EI- 

W>5.01 - 00 

If these requirements are satisfied then Aq =K IC which is a valid plane strain 
toughness. 

2.2 Single Parameter Elastic-Plastic Fracture 
Mechanics 

When the plastic zone around the crack tip field becomes comparable in size with the 
dimension of the structural component, or if the criteria given in Equation (2.35) 
are exceeded, the LEFM approach is no longer valid and elastic-plastic fracture 
mechanics (EPFM) is required. This is illustrated schematically in Figure 2.6, where 
FPFM means fully plastic fracture mechanics. 
Elastic plastic fracture mechanics is applied to materials that exhibit non-linear 
behaviour (i. e. plastic deformation). The two different fracture parameters 
commonly used to characterise crack tip conditions in an elastic plastic material 
are the crack tip opening displacement (CTOD) introduced by Wells (1961) and 
the J-integral introduced independently by Cherepanov (1967), Eshelby (1968) and 
Rice (1968b). 

2.2.1 Crack Tip Opening Displacement 

The critical value of the crack tip opening displacement (CTOD) was introduced 
by Wells (1961) as a measure of fracture toughness for steel specimens which were 
too tough to be characterised by LEFM. An initially sharp crack blunts with plastic 
deformation, resulting in a finite displacement (6) at the crack tip. This is denoted 
the crack tip opening displacement or CTOD. Experimentally, the CTOD or CMOD 
(crack mouth opening displacement) is determined from measurements of the surface 
displacement across the crack from which crack extension has occurred, as shown in 
Figure 2.7. Shih (1981) has suggested that the CTOD should be defined by a 90° 
line intercept construction at the crack tip, as illustrated in figure 2.7. 
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Figure 2.6: Validation of LEFM and EPFM. 

Fracture is considered to occur at a critical value of CTOD, 6, A relationship 
between CTOD and the applied stress has been developed through the Bilby, Cottrell 

and Swindon (1963) non hardening strip yield analysis 

giE 
In sec 

(t'r 0' 
oo/ (2.36) 

From a series expansion of the In sec term at low values of o, 
Equation (2.36) can 

be reduced to: 

6_ Qoira 
-E 

KIs 
_9 o0 Eao 

(Q « Qo) 

CMOD CTOD 
(b) 

(2.37) 

Figure 2.7: Estimation of (CTOD) from 90° intercept construction. 
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Failure at a critical CTOD is thus identical with failure at KIC or ( ), although 
the relationship depends on strain hardening. Within contained yielding this 0,0 

relationship can be expressed of the form 

lE (2.38) 
mo0 

where m is a dimensionless constant that is approximately 1.0 for plane stress and 
2.0 for plane strain, as discussed by Andersen (1995). 

2.2.2 J Characterised Crack Tip Fields 

The J-integral has proved to be a key concept in the analysis of fracture involving 
elastic as well as plastic deformation. The J-integral is a line integral describing the 
amount of energy released during the development of a crack, and is directly related 
to the crack tip opening displacement (CTOD), as described by Wells (1961). Path 
independent integrals were developed independently by Cherepanov (1967), Eshelby 
(1968) and Rice (1968b) although their application to fracture mechanics is largely 
due to Rice. Rice (1968b) developed the J-integral for crack problems and expressed 
the concept in the form 

J=Wdx2-Pau ds (2.39) 
r 8x1 

where IF is the length of the path, as shown in Figure 2.8. The first term in the J- 
integral is the strain energy density or work of deformation per unit volume, where 
W is defined as the strain energy density 

W=Jfc del, i, j=1,2,3 (2.40) 
0 

The second term in (2.39) is the work done by the external forces, in which P is the 
force vector applied to the body bounded by I', and u is the displacement vector. 

r 

Figure 2.8: Arbitrary contour around a crack tip. 
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The constitutive law for linear elastic material behaviour in uniaxial tension was 
given by Hooke (1678) 

a=eE (2.41) 

In the non-linear regime the stress-strain relationship is the power law given in 
uniaxial tension by 

EP 
=a1ý 

)n 
(2.42) 

Eo ao 

where ao is a reference stress and Eo is a reference strain. E is Young's modulus. 
ep is plastic strain, a is a proportionality constant and n is the strain hardening 

exponent. 

The total strain for elastic-plastic material behaviour can then be written 

E°Qn (2.43) a 
eo ao 01o 

Which is known as the Ramberg-Osgood relation. 

Hutchinson (1968b), and Rice and Rosengren (1968) independently argued that the 
crack tip field in a material exhibiting power law behaviour under Mode I loading 

can be expressed as an asymptotic series. The leading terms of the stress and strain 
fields have the form: 

1 
ate = Qo 

j 1+", ä13(0, n) (2.44) 
Foooal�r 

and 

oroci e; " = e; "(B, n) (2.45) 
E 

[eoaoaI�r 

Here & (O, n) and E; 3(9, n) are tabulated functions of their arguments as in Shih 
(1983), and In is an integration constant which is a function of the strain hardening 

exponent n. 

J can be regarded as the amplitude of the crack tip singularity field, in a similar 
manner to the way in which the elastic stress intensity factor K is the amplitude of 
the elastic singular field. 

The deformation fields given by Equations (2.44) and (2.45) are known as the HRR 
fields, and are essentially small geometry change solutions, where the crack tip is 

assumed to remain sharp. As the crack tip undergoes large geometry changes during 
blunting, the HRR field is a valid description of the deformation field at distances 

greater than one or two crack tip openings (typically r> Qö ). McMeeking (1977) 

analysed the stress field during crack tip blunting, and suggested that the HRR 
field does not apply at distances less than 2-3 crack-tip opening displacements. 
This region around the crack tip where the HRR field is invalid is called the large 
deformation or blunting zone, as illustrated in Figure 2.9. In this region the J 
integral is no longer path-independent, as shown by McMeeking (1977). 
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Figure 2.9: Various zones surrounding a crack tip. 

For linear elastic materials, n and a are equal to 1 in the Ramberg-Osgood Equation 
(2.43), and the HRR field is equivalent to the Westergaard field described in Equation 
(2.1). 

Griffiths' analysis of the energetic aspects of fracture mechanics was based on 
experiments in glass where fracture occurs in a largely elastic manner. Irwin 
(1948) and Orowan (1955) pointed out that for a crack to propagate, the energy to 
create this new surface is much larger in ductile materials than in brittle materials. 
Plastic deformation occurs at the crack tip, and plastic energy is the major term 
in the energy balance. When crack growth and fracture is associated with plastic 
deformation, J should be applied rather than 9 for describing the fracture toughness. 

In the linear elastic case J is identical to 9 
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(2.46) 

Here E' is identified as E'=E for plane stress and E'= for plane strain 
conditions. Although the identity J=G applies only to LEFM, J retains its energetic 
meaning for a non-linear elastic material. Controversy has arisen about its energetic 
significance for incremental plasticity, as opposed to deformation plasticity, (Turner 
(1973)). However this problem can be avoided by regarding J as a characterising 
parameter through its role in the HRR field. 

2.2.3 Slip Line Fields 

In regions in which the yield criterion is satisfied for a non hardening material under 
plane strain conditions, there are two orthogonal sets of curvilinear curves on which 
the maximum shear stress k occurs. These sets of curves are called slip lines or 
shear lines. The yield stress in shear, k, is equal to y/2 for the Tresca criterion and 
y/ f3 for the von Mises criterion. Since the material is non-hardening, k is constant 
throughout the plastic region. Under plane strain conditions the stress system is 
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dictated by the maximum shear stress and a hydrostatic stress whose value is equal 
to the out of plane stress, a,. The orthogonal slip lines or shear lines are denoted a 
and ß lines and is defined in Figure 2.10. 

o is given by 

orz =1 (Qi + Q2) =2 (ax + °v) (2.47) 

where o and 0'2 are the in plane principal stresses. Equation (2.47) can be compared 
with the incompressible elastic plane strain condition given in Equation (2.9) for the 

case v=0.5. The hydrostatic stress is defined as: 

Qm =1 (a1 + 0'2 + 0'3) = Qz = a3 (2.48) 

A non-dimensional stress parameter combining the hydrostatic stress and the von 
Mises stress is called the triaxiality and is defined as . Triaxiality is used as a 
measure of constraint, and can be calculated from slip line field theory. 

Mohr's circle can be used to describe the stress state, as illustrated in Figure 2.11. 

y 

x 

Figure 2.10: The stress state in a slip line field region. 

k 

a 
k 

Figure 2.11: Mohr's circle. 
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The stress field is of the form: 

v= = v,,, -k sin 2t 

cy = am +k sin 2d (2.49) 

Try =k cos 2,0 

The principal stresses al and 172 in the plane can be found by applying Equation 
(2.49) into Equation (2.27), or simply by reading off the principal stresses on the 
Mohr's circle in Figure 2.11. 

al 
(2.50) 

a2 =amfk 

C3=vm (2.51) 

Valid slip line fields must satisfy equilibrium conditions. It is convenient to use polar 
co-ordinates in which the equilibrium equations are of the form 

Or 0 
(2.52) 

räf+aä; A+2'g=0 

Within a centred fan the stress in cylindrical coordinates take a particularly simple 
form: 

ar = aB = Om (2.53) 
T. e=fk 

Now from equations (2.53) and (2.52) 

av 0 
(2.54) 

ret2r0 

and from the last Equation in (2.54) 

o,,, = 2k9+ f(r) (2.55) 

As 0 has to be satisfied, f(r) has to be a constant C and this leads to the 
Hencky equations, which are a statement of the equilibrium conditions in curvilinear 
co-ordinates: 

2k9+C alongaaline 
(2.56) 

am = 2k9 -C along a ,0 line 
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2.2.4 Slip Line Fields around a Crack Tip 

McClintock (1971) used a slip line field analysis to discuss the stress fields of sharp 
and blunting cracks in Mode I loading. By analysing different geometries and 
different modes of loading McClintock demonstrated that no unique slip line field 
exists in full plasticity. However if plasticity surrounds the tip the full Prandtl (1920) 
field shown in Figure 2.12 is developed. This is a unique field in which the degree 
of triaxiality is independent of the type of loading. 

The Prandtl field consists of two diamond-shaped regions connected by centred fans. 
The stress fields in the diamond-shaped regions are constant, but in the centre fan 
regions the stress fields changes as a function of the angle B. 

Figure 2.12: Prandtl slip line field in a region around a crack tip. 

Equation (2.61) reveals that the slip line field is consistent with the HRR field for 
non-hardening material (n=oo), as described by Hutchinson (1968b). The stresses 
can be solved starting from the free crack surface, denoted I in Figure 2.12. At the 
free surface the stresses are 

vl = 2k 

02 =0 (2.57) 

a3 = am=k 

It is convenient to work in cylindrical coordinates (r, 0) centred at the crack tip. 
When the boundary conditions are applied in Equation (2.57) the stress field in 
region I can be written as : 

oT = k(1 + cos28) 

oe = k(1 - cos20) 
(2.58) 

Tre = ksin(20) 

om =k 
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The stress field in the centre fan, region II can be calculated from the Hencky 
Equations Hill (1950). This gives the stress state as: 

QB = Orr = Q: = om = k(1+ 3ir/2 - 28) 

ore=k 

Finally in the diamond ahead of the crack, denoted III, the stresses are: 

Qe = k(r +I+ cos20) 

Qr = k(, r 'i- 
1- cos28) 

o: = am = k(1 + r) 

T. B = ksin20 

The stress ay ahead of the crack tip reaches a value of: 

(2.59) 

(2.60) 

ymas 
2ý 

= 2.9700 (2.61) - 

Slip line models show that triaxial stresses build up along curves from a free 
boundary, when the slip lines are straight the triaxiality is constant. This can be seen 
from the Hencky Equations (2.56), as the hydrostatic stress is linearly dependent on 
the rotation of the slip lines. The level of triaxiality in the full Prandtl field is due 
to the rotation of the slip lines from the crack flanks. 

2.2.5 Crack Tip Constraint in Large Scale Yielding 

In small scale yielding the crack tip field can be characterised with a single parameter 
(K, J or CTOD) which can be used as a geometry independent fracture criterion. 
For small scale yielding the maximum stress is approximately Soo in a non hardening 
material. 

Green (1953) analysed deeply cracked bend bars and demonstrated that if the crack 
is sufficiently deep the slip line fields depend only on local notch shape near its root, 
and loading conditions. 

Ewing (1968) used Green's solution and estimated the minimum width for which 
the deep-notch solution applies. The slip line fields for deep and shallow cracked 
bend bars are shown in Figure 2.13. Ewing analysed v notches of different angles 
in pure bending rather than cracked geometries and found that the deeply cracked 
solution can only be applied when a/W > 0.3 for an notch angle 3.21°. He also 
suggested that for shallow cracks the plasticity initiates at the cracked face as well 
as at the crack tip, and the slip fine field develops differently from the deeply cracked 
geometries. 
McClintock (1971) showed with slip line analysis that centre cracked panels are 
incapable of maintaining significant triaxiality under fully plastic conditions. The 

slip line field for center cracked panels is shown in Figure 2.14. For the centre cracked 
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Figure 2.13: Slip line fields for deep and shallow cracked bars in bending after 
Ewing(1968) and Green(1953). 

panels the maximum stress is approximately 3Qo" A deeply edge cracked plate in 
bending exhibits maximum principal stresses at the crack tip of approximately 2.5vo. 

Figure 2.15 shows the slip line field for double edge cracked specimens. Shallow 
double edge cracked bars exhibit unconstrained flow fields, while for the deeply 

cracked bars the fully constrained Prandtl field is developed. 

McClintock (1971) demonstrated that in large scale yielding the flow field is geometry 
dependent, and the plane strain crack tip stress fields depends on crack geometry 
and type of loading. The dependency of geometry and loading mode indicates there 
is no single parameter which uniquely characterises the crack tip fields beyond small 
scale yielding. 

Figure 2.14: Slip line fields for a centre cracked panel. 
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CRA 

Figure 2.15: Slip line fields for double edge cracked bare. 



CHAPTER 3 

Two Parameter Fracture Mechanics 

In this Chapter the fundamentals of two parameter fracture mechanics are reviewed. 
Firstly the limits of J dominated crack tip fields are discussed, then the significance 
of the elastic second parameter in the Williams expansion, the T-stress, is described. 
Under elastic-plastic conditions the level of constraint is quantified by Q. 

3.1 J Dominated Crack Tip Fields 

The introduction of the J-integral (Rice (1968b)) and the ability to characterise 
crack tip stress fields though the HRR field provides the foundation for single 
parameter fracture mechanics. Fracture criteria based on J assume that the crack 
tip stresses can be described by the HRR fields as characterised by the J-integral. 
J-characterisation is valid as long as the region over which the HRR singularity 
dominates, completely encompasses the zone of large strains. The region of large 
strains immediately ahead of the crack tip is defined as the process zone in Figure 
2.9. At level of large scale yielding, J no longer uniquely characterises the fields. 
The conditions under which fields are characterised by J are referred to as conditions 
for J dominance. 

McMeeking and Parks (1979) suggested that fields characterised by J are identical 
to those observed in small scale yielding when single parameter characterisation 
is valid. The HRR fields are uniquely characterised by J, but McClintock (1971) 
demonstrated that fully plastic flow fields in non-hardening materials depend on 
geometry and the mode of loading. 

To investigate this problem, McMeeking and Parks (1979) and Shih and German 
(1981) examined the levels of stresses ahead of a crack tip, using finite element anal- 
ysis of deeply cracked bend bars and centre cracked panels. They aimed to develop 

size requirements for specimens to obtain the level of crack tip triaxiality stress 
corresponding to small scale yielding. McMeeking and Parks (1979) suggested that 
for deeply cracked geometries single parameter characterisation can be maintained 
under condition which depend on the size of the ligament c as long as the plasticity 
is restricted to the ligament, which is the case for deeply edge cracked bars: 

J< Colo (3.1) 
µ 

where µ is a dimensionless factor depending on geometry and loading. Shih (1985) 

analysed single edge cracked bars in tension and bending, and suggested µ- 25 for 
bending and u ;: z 200 for tension in agreement with the calculations of McMeeking 

and Parks. 

39 
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Al-Ani and Hancock (1991) analysed short cracks in tension and bending, where 
a short crack in tension is a/W < 0.5 and in bending a/W < 0.3. They showed 
that J-dominance is lost at much higher values of µ than given by Shih (1985) 
leading to extreme size requirements. They also suggested that for short cracks the 
J dominance is controlled by the crack length rather than the ligament. 

3.2 Elastic Two Parameter Fracture Mechanics 

The validity for single parameter fracture mechanics characterised by J through 
the HRR field or the small scale yielding field has been discussed in Chapter 2. J 

provides a single parameter characterisation of the crack tip stress field for a very 
limited range of highly constrained loading configurations and deformation levels. 
Several suggestions to extend the characterisation of the stress field beyond single 
parameter characterisation have been discussed and the approaches are all classified 
as two parameter fracture mechanics. Two parameter characterisation of crack tip 
fields begins with the elastic T-stress which arises from the second term in the 
Williams expansion. 

3.2.1 T-stress 

A two parameter approach developed by Bilby et al. (1986) and more recently by 
Betegön and Hancock (1991), Al-Ani and Hancock (1991), and Du and Hancock 
(1991) is based on the elastic T-stress. T is the second term in the Williams 

expansion described by Rice (1974a). Neglecting higher order terms, the elastic 
stress field can thus be expressed in the form: 

°ii(T, 0) = 
hhf jr., (B) +TblJbiI (3.2) 
iAT 

Here (x, y) are Cartesian co-ordinates, where x coincides with the crack. The T- 

term in (3.2) is a uniform stress all=T, acting parallel to the crack flanks. T is 
independent of the distance, r, and becomes significant compared to h" at finite 
distances from the tip. The T-stress has now been tabulated for a wide range of 
geometries, in which the results are either expressed in terms of a stress concentration 
factor 1 or as a bi-axiality parameter 0 following Leevers and Radon (1983): 

ß=T/ a (3.3) 
K 

Results for some important through crack geometries have been given by Sham 
(1991), Leevers and Radon (1983), and Kfouri (1986), while Wang and Park (1992) 
have given results for surface cracked panels. Sham (1991)'s results for a range of 
a/W ratios of single edge cracked bars under tension and bending are summarised in 
Tables 3.1) - (3.2. Values of A for centre cracked panels (Nekkal (1991)) and double 

edge cracked panels (Leevers and Radon (1983)) are given in Table 3.3. 



3.2 ELASTIC TWO PARAMETER FRACTURE MECHANICS 

a, vv 
K 

a era 
T era Q= 

0.1 0.11877E1 -0.46436E0 
0.2 0.13650E1 -0.43362E0 
0.3 0.16570E1 -0.37070E0 
0.4 0.21083E1 -0.27762E0 
0.5 0.28210E1 -0.15293E0 
0.6 0.40254E1 0.69027E-2 
0.7 0.63457E1 0.21010E0 
0.8 0.11926E2 0.50105E0 
0.9 0.34485E2 0.10306E1 

Table 3.1: Values of KI and 0 for single edge notched bars in tension. 

Pure Bending Three Point Bending 
a1 VV 

K 
_ TN/ira Q K era Q= 

o era o Ira 
0.1 0.10458E1 -0.36263E0 0.10234E1 -0.36062E0 
0.2 0.10534E1 -0.22852E0 0.10272E1 -0.23295E0 
0.3 0.11220E1 -0.73444E-1 0.10937E1 -0.90071E-1 
0.4 0.12586E1 0.92115E-1 0.12290E1 0.60928E0 
0.5 0.14951E1 0.26160E0 0.14647E1 0.21685E0 
0.6 0.19100E1 0.43325E0 0.18787E1 0.37921E0 
0.7 0.27210E1 0.61041E0 0.26880E1 0.55311E0 
0.8 0.46642E1 0.83862E0 0.46270E1 0.78585E0 
0.9 0.12406E2 0.12675E1 0.12358E2 0.12273E1 
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Table 3.2: Values of KI and /3 for single edge notched bars in pure bending and 
three-point bending. 

Centre Cracked Panels Double Edge Cracked Bars 
a/ W K TN/ja- K Q_ as 

o ýa o as 

0.1 0.1006E1 -0.1017E1 0.12130E1 -0.436E0 
0.2 0.1025E1 -0.1034E1 0.12123E1 -0.445E0 
0.3 0.1058E1 -0.1051E1 0.12175E1 -0.458E0 
0.4 0.1109E1 -0.1068E01 0.12322E1 -0.463E0 
0.5 0.1187E1 -0.1085E1 0.12659E1 -0.471E0 
0.6 0.1303E1 -0.1102E1 0.13342E1 -0.441E0 
0.7 0.1488E1 -0.1261E1 0.14588E1 -0.411E0 
0.8 0.1816E1 -0.1460E1 0.16671E1 -0.330E0 
0.9 0.2312E1 -0.1930E1 0.19927E1 -0.196E0 

Table 3.3: Values of KI and ß for centre cracked panels and double edge cracked 
bars. 
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3.2.2 The Effect of T on the Plastic Zone 

The introduction of two parameter fracture mechanics originates from the work 
of Larsson and Carlsson (1973), who demonstrated that the second term in the 
Williams expansion (2.12) has a significant effect on the shape and size of the plastic 
zone which develops at the crack tip. The change of shape is illustrated in Figure 
3.1. Compressive T stresses both enlarge the maximum radius of the plastic zone 
and cause the plastic lobes to swing forward. In contrast, tensile (i. e. positive T) 
stresses cause the plastic zone to decrease in size and to rotate backwards. With the 
benefit of hindsight it now seems clear that if non-singular stresses affect the size 
and shape of the plastic zone then they are likely to affect the local stresses within 
the plastic zone. 

Al A_ 

U1 

T7 
sQ 

öI of 02 
(1 1 

4 

Figure 3.1: The Effect of the T stress on the plastic zone shape in small scale 
yielding. 

Du and Hancock (1991) also described the variation in the size and shape of the 
plastic zone as a function of the T-stress and explained how the slip line field in 

non-hardening materials changes with changing T-stress. They showed that the full 
Prandtl field is obtained only in very constrained geometries when T is positive. In 

small scale yielding when T is zero an elastic wedge exists on the cracked flank the 
slip line field is reduced to a diamond ahead of the crack and a centred fan with an 
angular span of 130°. As T becomes more compressive, the elastic wedge extends 
and the angular span of the centred fan is reduced. For T= -0.7 the centre fan 

00 
stops at 78°. The effect of T on the slip line field is shown in Figure 3.2 for different 

values of T. 

3.2.3 Determination of the T stress 

The T-stress depends on the geometry and the applied load. Although a range 
of analytical and numerical techniques have been used to calculate T, increased 

computing power has enabled finite element analysis to become popular numerical 
tools to address this class of problem. 

ý' 

l11 
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Figure 3.2: The Effect of the T stress on the plastic zone shape in small scale 
yielding, after Du and Hancock (1991). 

Direct Methods 

In the direct method the T-stress is determined directly from the stress or the 
displacement fields in a plane strain finite element analysis. In the Williams 
expansion (2.12), as r tends to zero, third and higher order terms approach zero 
while the first term is singular and the second term is finite. T can then be calculated 
from: 

T= lim (Q, 3 2ýrrfij(B)) 
5Ij&i (3.4) 

r-o \ 

The simplest way to calculate T using the direct method is to examine the stress 
field in the crack flanks. The K term is zero for 0= it because f (ir) = 0, and the 
T-stress is consequently identical to ax. However, the use of numerical methods in 
conjunction with a singular stress field requires that the mesh be highly refined if 
accurate results are to be obtained. 

Weight Function Methods 

The weight function method has recently been applied by Sham (1991). The 
fundamental concept was introduced by Bueckner (1973) and Rice (1972), to 
evaluate stress intensity factors, and will not be described here in detail. For some 
simple crack geometries the method is extremely accurate, as it is largely analytic, 
but for more complex geometries numerical procedures have to be used to determine 
the weight function; however, accurate results are still obtainable. 
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Eshelby's Method 

Eshelby's method of determining T has been used by several authors, notably Kfouri 
(1986). The method is based on the evaluation of J contour integrals along paths 
remote from the crack tip for several independent load cases using finite element 
analysis under linear elastic conditions. J(F) is the value of J when an external 
force F is applied on the specimen; J(f, t) is the value of J when a point force f is 
applied at the crack tip and equilibrating the tractions t act on the outer boundary 
of the specimen, as illustrated in Figure 3.3. The tractions which correspond to a 
point force f acting at the tip of a semi-infinite crack in an infinite body are denoted 
to. 

ammomY 

C 

Figure 3.3; Model used to determine T from Eshelby's method, after Kfouri 
(1986). 

The first form of Eshelby's theorem states that: 

�(F, f, to) = �(F) + 
Tf (3.5) 

J(F, f, to) denotes the superposition of J(F) and J(f, to). If the point force is resisted 
by other tractions, t, which equilibrate f, the second form of Eshelby's theorem gives: 

J(F, f, t) = J(F)+J(f, t)+ 
Ef 

+ 
2K1 (3.6) 

where Kt is the stress intensity factor when the load F is acting on the specimen, and 
Kf is the stress intensity factor corresponding to the traction (t-to). Determination 
of J(F) and J(F, f, to) allows T to be determined from Equation (3.5). Alternatively 
a knowledge of J(F, f, t), J(f) and J(f, t) allows T to be determined from (3.6). 
Figure 3.4 shows some values of the bi-axiality parameter p obtained from Eshelby's 
method by Kfouri (1986). The relation between T and /3 is given by Equation (3.3). 

High accuracy can be obtained applying Eshelby's method, but the method needs 
solutions for two load cases which increase the necessary modelling and analysis. 
Furthermore, this method is only applicable for two dimensional plane strain 
problems, while some finite element programs do not allow a point load in the 
crack tip to be used in conjunction with J determination by virtual crack extension. 
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Figure 3.4: Values of the non-dimensional bi-axiality parameter ß for SEN and 
DEN specimens as function of a/W, data after Kfouri (1986). 

Line Spring Method 

T can be determined for part-through cracks using the line spring method introduced 
by Rice and Levy (1972). This method was primarily intended to determine the 
stress intensity factor for plates and shells containing part-through surfaces cracks 
loaded in tension and bending. Figure 3.5 (a) shows the cross section of a plate with 
a part-through crack of length 2c, and of varying depth a(x). The plate is subject 
to a membrane force NO° and a bending moment M°°, illustrated in Figure 3.5 (b). 

The idea is to divide the plate up into sections on which a local moment and 
membrane force act. Each section is regarded as an edge cracked bar subjected 
to both tension and bending, as shown in Figure 3.5 (c). In the linear elastic case 
the displacement (6) and rotation (0) of the cracked specimen corresponding to the 
local loads N(x) and moments M(x) can be expressed in the form of a generalised 
elastic spring: 

S(x) Cii(x) C12(x) J[ N(x) 
(3.7) 

9(x) C21(x) C22(x) M(x) 
J 

J[ 
Equilibrium and compatibility consistent with defined boundary conditions can then 
be satisfied by finite element procedures. By superimposing a tension component 
and a moment T is defined as: 

6 
T OTAT( 1) + ßeaa(t2 )S22 (3.8) 

where the suffices T and B denote tension and bending respectively. ß is the bi- 

axiality parameter and ) is the calibration constant for the stress intensity factor 
K. K depends on the method of loading and geometry. S11 is the tensile force 

gradient acting on each section and S22 is the moment gradient, while t is the 

plate thickness. Solutions for semi-elliptical surface cracks in plates have been given 
by Wang and Park (1992) and Al-Ani (1988). More recently MacLennan, Al-Ani 

and Hancock (1992) and Nekkal and Hancock (1995) have given solutions for semi- 

elliptical cracks in the chord-brace intersection of a tubular joint. 



46 3 Two PARAMETER FRACTURE MECHANICS 

t"1 
r 

r r' 
ir 

(b) 

r 

sý 

r 

" 

(1* 

Figure 3.5: Illustration of the components of the line spring model. 

3.3 Two Parameter Elastic-Plastic Crack Tip Fields 

3.3.1 Modified Boundary Layer Formulations 

The boundary layer formulation was introduced by Rice and Tracey (1974) to analyse 
crack tip plasticity in small scale yielding. Displacements or tractions corresponding 
to the K-field are applied on the outer boundary of a semi-circular mesh with a 
semi infinite crack. Small scale yielding condition is satisfied by insuring an elastic 
surrounding of the plastic zone. By modifying the boundary constraints on the 
outer boundary by the addition of the non-singular T-stress to the K-field the 
modified boundary layer formulation, (MBLF) are developed; the principle is shown 
schematically in Figure 3.6. 

By varying the T-stress in the modified boundary layer formulation, Betegbn and 
Hancock (1991) established the relation between the T-stress and the stress field 

ahead of the crack for hardening rates n=13 and n=oo. Betegbn and Hancock (1991) 

also showed that for geometries with negative T-stresses the stress field decreases, 

and causes the stresses to fall below the HRR field and lose single parameter 
characterisation. This corresponds to the introduction of a second order term which 
Betegön and Hancock (1991) gave as a function of T. Their calculations were based 

on a non-linear stress-strain response represented by a Ramberg-Osgood power law, 

with co = 0.002, a= 3/7 and to = 0.3 

The small scale yielding field (T=0) was used as a reference field for the modified 
boundary layer formulation, and is here denoted ogsy. The stress field ahead of the 
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Arbitrary crack length 
: +T fields 

Figure 3.6: Model for boundary layer formulation. 

crack tip for 0=0 was fitted to a second order polynomial: 

aoLF 
= 

ýýoY 
+ a1( öý + a2( ö)2 

Betegön and Hancock (1991) suggested the curve fit to (3.9) of the form 

aMALF 
= )(rT_o)+0.64(°p) 

-0.4(ä) 
'aO 2 

13, -L <0 

°E(r, T) = 
() 0.6 ý) - 0.75 (? ) 

(Oro a 

n=oo, GU 
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(3.9) 

(3.10) 

(3.11) 

Wang (1993) used a similar approach when he investigated the near-crack-tip stress 
field in a modified boundary layer formulation. However, Wang did not use a 
Ramberg-Osgood stress-strain relationship, he instead applied a power law of the 
tensile stress/strain relation 

° for a< Up 
)n for O> Co, 1<n< oo £p( 

Co 

(3.12) 

where so and the following material constants were used eo = 0.0025, n=10 
and v=0.3. Wang suggested a three-term polynomial fit in the range 1<<6: 

QM BLF 
= 

CSSY 
+ al( 

T) 
+ a2( 

T)2+ 
a3( 

T 
)3 (3.13) 

Qo ao Qo CO Co 

The fitting parameters for r=2 were a1=0.6168, a2=-0.5646 and a3=0.1231. 
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3.4 Higher-Order Asymptotic for Non-Linear Crack 
Tip Fields 

Crack tip deformation fields have been extensively studied in terms of asymptotic 
expansions. In the case of linear elasticity this results in the well known Williams 

expansion given in Equation (2.12). More recently this technique has been used to 
examine non-linear crack tip fields. Without loss of generality the expansions can 
be expressed in the form: 

Qtj = Aýýr'ýý1ý(9, n) f Bºýrtöýýý(9, n) + G'; ýr°öý3>(B, n) + .... 
(3.14) 

3<t<u 

The strength of the singularity is determined by the exponents of the radial distance, 

r. The dimensionless amplitudes of each term are denoted by A, 3, B;, .... while 
ä(1)(B, n) (1=1,2... ) are angular functions which depend upon the strain hardening 

exponent, n in a Ramberg-Osgood stress-strain relation. In the case of linear 

elasticity s=-1/2, t=0 , u=1/2 ....., while the universal angular functions are 
tabulated in standard literatures such as Broek (1991). 

In non-linear deformation the leading term in the series is identified with the HRR 
field so that higher order solutions are sought in the form: 

oo(c, n)+Býýýý1(8, n)+C; 1rt&(3)(9, 
( 

n)-ý J (3.15) 
s= 

n+l 
3< <u 

Li and Wang (1986), and Sharma and Aravas (1991) have examined two term 
expansions of this form. The amplitude B;, of the second term is formally arbitrary, 
and can be considered as a second independent parameter describing the crack tip 
stress field. B;, is thus dependent on loading, material response and deformation 
level. In contrast the exponent t is simply a function of the strain hardening 
exponent, n given in Table 3.4 after Sharma and Aravas (1991). 

In contrast Yang, Chao and Sutton (1993a, b) and Xia et at. (1993) have sought three 
and four term expansions. Sutton and co-workers express their results in the form: 

C (aco 
on} 

((Z)az 
i(1 (B) 

(3.16} 

+A2(L)'°9e (e) + (As)2(1: of 8)1 

The exponents of the second and third order terms are again functions of n given in 
Table 3.5. 

3.4.1 The Q Approach 

As a simplification of the general expansion in Equation (3.15) O'Dowd and Shih 
(1991a, b) have introduced a widely accepted notation in which the amplitude of the 
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n t n t 

11 0.068 
2 -0.102 12 0.066 
3 -0.013 13 0.065 
4 0.033 14 0.063 
5 0.55 15 0.061 
6 0.065 16 0.059 
7 0.069 17 0.057 
8 0.071 18 0.056 
9 0.071 19 0.054 
10 0.070 1 

1 
20 0.053 
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Table 3.4: Relations between strain hardening exponent, n, and the second order 
exponent t, after Sharma and Aravas (1991). 

n si= -1/(n+1) 
(HRR values) 

s2 s3 

3 -0.25 -0.01284 0.2243 
4 -0.2 0.03282 0.2656 
5 -0.1666 0.05456 0.2758 
10 -0.0909 0.06977 0.2304 
13 -0.07143 0.06468 0.2008 

Table 3.5: Stress exponents of higher order terms, Mode I, plane strain, from 
Chao and Ji (1994). 

second term in the expansion is denoted Q. 
1t 

Qij Jl CI n+l &(8, n) -F Q ä(6, n) ý- ..... (3.17) 
Co aFOQOI�r ao 

On this basis Q may formally be defined as: 

Q= lim C`j - CXRR (3.18) 
r-+o (ö) 

&(9, n) 

However in practise Q is determined in a simpler way. It is argued that the exponent 
t can be approximated to zero, leading to a distance independent second order term. 
This simplification allows the crack tip fields to be written in the form: 

Qij = orii(Q = 0) + QQobi3 (3.19) 

This approach does however require that the strength of the second order term 

should be very much less than the leading HRR term. For weakly hardening 

materials the second order term is non-singular, and the calculations of Sharma 

and Aravas (1991) and Sutton and co-workers support this idea. 
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3.5 The Effect of Constraint on Experimental Tough- 
ness Data 

3.5.1 Constraint Effect on Cleavage Failure 

The relationship between the constraint parameter T and cleavage fracture tough- 
ness has been discussed by Betegön and Hancock (1990), and Sumpter and Forbes 
(1992). Both examined the critical value of J for geometries with different levels of 
constraint. Specimens with the most negative T values were found to be tougher 
than deeply cracked geometries with positive T values. The experimental results 
were expressed as a J-T fracture locus as illustrated in Figure 3.7. Figure 3.7 shows 
Betegön's experimental data plotted as J versus ö. 

Bend geometries with a/W < 0.3 give negative T values, corresponding to the 

shallowest cracks. For the deeply cracked geometries (a/W > 0.3), which is know to 
have positive T-stress, the toughness was found experimentally to be independent 

of geometry. The J value at fracture was found to be nearly constant, in accordance 
with predictions based on modified boundary layer formulation. 

1200 

J kNJm 
loon 

goo 

400 

200 

"1.0 -o. e o. b "0.4 "0.2 0.0 0.2 
T/oo 

Figure 3.7: Toughness of edge cracked bend bars after Betegön (1990), and 
Betegeln and Hancock (1990) as a function of . 0 

Toughness tests on a low-grade mild steel at -50°C have recently been reported by 
Sumpter and Forbes (1992), Sumpter (1993b) and Sumpter and Hancock (1994). 

Three point bend specimens (3PB) with a/W ratios between 0.15 and 0.7 were 
tested along with centre cracked panels (CCP) with a/W ratios between 0.65 and 0.8. 
Figure 3.8 shows the critical value of J versus Z at cleavage. A comparison between 
the two types of specimen shows that the highly unconstrained CCT specimens gave 

. slightly higher values of Je than 3PB specimen, at the same value of 00 
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Figure 3.9 shows the same data re-analysed in terms of Q. Q is defined in Equation 
(3.18) and indicates that a rather better correlation of CCT and 3PB specimens 
can be achieved, although the effect is masked by scatter. The best two parameter 
characterisation is obtained by applying the elastic-plastic term Q to describe the 
level of constraint in a J. -Q locus, though the elastic T stress remains the simplest 
engineering parameter to index constraint. 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

0.00- 
-1.5 

" 3PB specimens 0.05 < a/W < 0.78 
CCT specimens 0.63 < a/W < 0.77 

a 

.ýýý. 
   r% '" 

S 

-1 -0.5 0 0.5 
T Stress / Yield strength 

Figure 3.8: Critical value of J as a function of ö for 3PB and CCT specimens, 
low-grade mild steel at -50°C, Sumpter (1993). 
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Figure 3.9: Critical value of J as a function of Q for , SPB and CCT specimens, 

low-grade mild steel at -50°C, after Sumpter and Hancock (1994). 
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Sumpter and Hancock (1994) also showed data from test specimens in a high strength 
weld metal with a yield stress about 700 MPa, at a test temperature of -30°C. Figure 
3.10 shows the critical value of J as a function of ö, while Figure 3.11 shows the 

same data as a J, -Q locus. Constraint enhanced toughness was found to be even 
more significant for this material than for the mild steel, however both J/Q and 
J/T analyses describe the data well. 
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Figure 3.10: Critical value of J as a function of T- for 3PB and CCT specimens, 
high strength weld steel at -80'C, Sumpter (1999). 
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Figure 3.11: Critical value of J as a function of Q for , APB and CCT specimens, 
high strength weld steel at -SO °C, after Sumpter and Hancock 
(1994). 
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Kirk et al. (1993), have presented cleavage toughness data for an A515 steel at room 
temperature, using edge cracked bend bars with different a/W ratios and various 
thickness. The results show J at fracture as a function of ö in Figure 3.12, and 
versus Q in Figure 3.13. Comparing Figure 3.12 with Figure 3.13 the data shows 
geometries with positive values of T presented in terms of Q give negative values 
of Q; however, the loss of constraint shown by Kirk is due to global bending in the 
ligament where T-Q fields are not applicable. 
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Figure 3.12: Fracture toughness versus ö for ASTM A515 Grade 70 steels at 
20° C from edge cracked bend bars for three thicknesses, after Kirk 
et at. (1993). 
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Figure 3.13: Fracture toughness versus Q for ASTM A515 Grade 70 steels at 20° 
C from edge cracked bend bars for three thicknesses, after Kirk et 
al. (1993) 
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3.5.2 Ductile Fracture 

Hancock, Reuter and Parks (1993) tested samples of an American pressure vessel 
steel denoted A710 using both cracked geometries and surface cracked plates. Crack 
extension occurred by stable ductile tearing enabling both J and CTOD be measured 
as a function of crack extension Aa. ASTM (1983) suggest JJ at an extension of 
200 µm to define initiation toughness, and Figure 3.14 shows J for crack extensions 
Aa=O, Da=200 µm and Da= 400 µm. Figure 3.15 shows the corresponding crack 
tip opening displacement 6 as a function of Da. 
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Figure 3.14: The toughness of a range of through and part through crack geome- 
tries parameterised by T, after Hancock, Reuter and Parks (1993). 
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Figure 3.15: The CTOD as a function of T at crock extensions of 0,200 and 
400 µm, after Hancock, Reuter and Parks (199$). 
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The results show a marked effect of constraint on toughness after small amounts of 
crack growth. JJ values for centre cracked panels were approximately 4 times greater 
than that of highly constrained deeply cracked bend bars and CTS specimens at a 
crack extension of 200 µm. For higher crack extensions (Da) the constraint effect is 
even more pronounced as J,, for the CCP specimen is more than 5 times the values 
for the deeply cracked bend bars. 

Geometries with positive T stresses (deeply crack bend bars and CTS specimen) 
showed no or only little geometry dependent toughness. For these geometries the 
near crack tip field is dominated by J, and single parameter characterisation can 
be applied up to the usual limit of J-dominance. Geometries which are known to 
have negative values of T showed geometry dependent toughness, which supports the 
theory that crack tip constraint and the associated toughness are well characterised 
by T. 

The authors noted that the main effect of constraint sensitivity of toughness arises 
from the effect of constraint on the slope of the resistance curves, as illustrated in 
Figure 3.16 and 3.17. This data may be compared with the numerical solutions of 
Varias and Shih (1993) on stable crack growth. 
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Figure 3.16: The initial slope of CTOD-Da resistance curve as a function of ö 

after Hancock, Reuter and Parks (1993). 
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Figure 3.17: The initial slope of J-La resistance curve as a function of ö, after 
Hancock, Reuter and Parks (1993). 

3.6 Engineering Application 

The conventional accepted approach to ensure structural integrity is based on a 
single parameter, such as the critical value of J or K. Experimental data are 
obtained from highly constrained deeply cracked bend specimens. This approach 
is safe because it provides a lower bound toughness, but is also conservative and 
may lead to unnecessary repairs to and outage of engineering structures. 

3.6.1 Failure Assessment 

A common engineering approach to failure assessment in the United Kingdom is 

codified in R6 (1986) and PD6493 (1991). Proximity to failure is judged in relation 
to plastic collapse or LEFM failure. In practise the proximity to collapse is measured 
byF mýý which is the abscissa of the Failure Assessment Diagram (FAD). Proximity 

to LEFM failure is judged by which is the ordinate. The proximity to fracture 
under LEFM is described by tie 

ratio of the stress intensity factor K1 to an 
experimentally measured material toughness, Kmat. 

K, (3.20) K* 
Kmat 

K�, at corresponds to Kjc as defined in British Standard (BS-7448 1991 b) and ASTM 
(E 339-83 1983), or alternatively to a small amount of crack growth (0.2 mm). In 
plane stress the critical plane stress toughness is used rather than KIC. 

The first proposed form of a failure assessment diagram was a simple square box. 
This was proposed by Dowling and Townley (1975). The abscissa is the load non 
dimensionalised by the limit load, denoted L, and the ordinate is the stress intensity 
factor normalised by the critical value of the stress intensity factor, denoted K� 
Figure 3.18. 
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Figure 3.18: Failure assessment lines as given by R6 Rev 3 and the original form. 

Failure Assessment Diagrams are truncated at an abscissa value of L; `ax defined as 

LmOX = 
Qo + QUTS (3.21) 

2ao 

R6 gives three options for failure assessment: a general curve, which can be used 
for materials which do not exhibit a yield discontinuity. A material specific curve, 
which is suitable for all metals regardless of the stress-stain behaviour, and a Failure 
Assessment line based on J-integral Analysis, which can be used for all purposes. 

The failure locus for the general curve is described by the relationship 

Kr = (1 - 0.14L2, )(0.3+0.7exp(-0.65L6)) for Lr < L'ý? (3.22) 

The material specific curve is described by the equation: 

_ 
Eetrue 

+ 
LTcTo (3.23) Kr 

Lrc0 2Ebtrue 

The third option is J-Integral analysis, for a specified material and geometry. This 

method is based on a elastic value of J (JE) and the total value of J. The abscissa 
of the failure assessment diagram is given by L, while the ordinate is defined: 

i ýE (3.24) Kr= 
Klo 2110 

This curve is based on calculations of Kumar, German and Shih (1981). J is divided 
into an elastic component J (JE) and plastic component J (JP), JE is proportional 
to (')2, and Jp is proportional to ( ice, st )1+1. Failure at a critical value of i 

can then be expressed as a single failure assessment line as a function of iý- .,. 
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3.6.2 Constraint Based Failure Assessment Diagrams 

Conventional failure assessment is based on a single parameter approach defined 
by the critical value of J or K. MacLennan and Hancock (1995) and Ainsworth 
and O'Dowd (1995) have introduced the effect of constraint into failure assessment. 
MacLennan and Hancock (1995) analysed a range of single edge bend bars and 
centre cracked panels. The centre cracked panels are known to lose constraint for 
all geometries, while the shallow single edge bend bars lose constraint. 
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Figure 3.19: Geometry specific failure assessment diagram, single edge bend bars, 
n=13. 

The effect of constraint quantified on the fracture toughness JC(T) was described 
by MacLennan and Hancock (1995) in terms of T: 

Jc T1mT 
<0 

c= 
(exp ) 

°p 
(3.25) 

=co-1 
Co 0 

The exponent m in Equation (3.25) defines the constraint sensitivity of fracture. 
m is zero for materials which are constraint insensitive, and non zero values of m 
correspond to increasing levels of constraint sensitivity. MacLennan and Hancock 
modified the FAD, so that the elastic component of the J integral is normalised by 
the constraint matched fracture toughness (T or Q# 0). The abscissa in the FAD is 
still the normalised load, but the abscissa is a modified value of Kr denoted K; Od 
and defined as: 

KMOd - 
JE (3.26) 

J(T ) 

MacLennan and Hancock (1995) analysed a range of a/W ratios in bending and 
drew failure assessment lines (PAL). 
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This method of failure assessment can now be applied to experimental data, and the 
experimental data of Sumpter (1993b) and Sumpter and Forbes (1992) are shown. 

The material was a grade 43A normalised plain carbon steel tested at a temperature 
of -30° under cleavage failure. The yield stress at this temperature was 700 MPa 
and the material hardening characteristics were described by n= 10 and a=0.95. 
The chemical composition is given in Table 3.6. 

C Si Mn p S Cr 

0.19 0.04 0.59 0.01 0.032 0.09 

Table 3.6: Chemical composition Wt% of 43A. 

The modified FAD proposed by MacLennan and Hancock measures the toughness 
of shallow and deeply cracked bend bars as a function of T or Q, and the failure 

assessment diagram is then constructed using the constraint matched toughness 
given in (3.26). By applying this method the advantage of enhanced toughness 
for specimens with low levels of constraint can be taken into account for defect 
assessment. 
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Figure 3.20: Failure assessment diagram expressed as conventional and modified 
FAD on the same axis, Sumpter Weld Data, single edge cracked bend 
bars, n=10. 
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CHAPTER 4 

Numerical Methods 

Two parameter fracture mechanics has been reviewed in Chapter 3. The review 
has identified that a major problem with constraint based fracture mechanics arises 
from an inability to determine Q from far field parameters. One of the objective of 
this Thesis is to find a systematic way to describe levels of crack tip constraint for 
fundamental geometries. The method for determining stress and deformation field 
in this thesis has been finite element analysis. The numerical details of the models 
are described in this chapter. The chapter also describes the material response in 
a elastic-plastic regime in terms of a Ramberg-Osgood stress-strain relationship. A 

computer software package has been developed for the purpose of analysing finite 

element results and calculating various fracture parameters. The structure of this 
program is discussed. 

4.1 Numerical Analysis 

Finite element analysis was used to determine crack tip stress and deformation fields. 
The finite element package used throughout the present work was ABAQUS v. 5.3 
(1992) on a UNIX Sun Sparc station 10 running the Solaris 2.4 operating system. 
The meshes were created using PATRAN v. 2.4.5 (1988) mounted on a IBM RS/6000 
with Aix. The elements were 8 nodes biquadratic isoparametric plane strain 
elements, using reduced integration and linear pressure interpolation (ABAQUS 

element type CPE8RH). Analysis was based on small-strain theory using incremental 

plasticity. Two different type of analysis have been performed. Firstly modified 
boundary layer formulations have been used to obtain reference fields at different 
levels of known constraint. Secondly full field solutions of real cracked geometries 
subject to specific loading have been analysed. 

4.1.1 Modified Boundary Layer Formulations 

The boundary layer formulation comprises of a semi circular model containing a 
radial crack where the crack tip is located at the centre and the crack mouth is at 
the boundary of the model as illustrated in Figure 4.1. 

A plane strain displacement field calculated through the singular K-field and the 

non-singular T-field was applied on the outer boundary of the model. 

u= zý cos(h) [K 
-1+2 sin2(f )1 + 

(4.1) 

v= Zý s1Aý Z) [K +1-2 Cos2(2 )J - rT 1-vý sinO 
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This configuration is referred to as a modified boundary layer formulation (MI3LF) 

and can be regarded as simulating near tip conditions in an arbitrary geometry under 
contained yielding. The boundary layer formulation may be thought of as being 

equivalent to cutting out a region around the crack tip and constructing a separate 
body. The MBLF analysis has to he understood as way of obtaining reference fields 
for various levels of constraint. 

The mesh used for the MBLF had 360 elements and was heavily focused so that 
the size of the first element was approximately one millionth of the outer radius as 
shown in Figure 4.1. The crack tip was modelled by a focused mesh of collapsed 
elements which allowed the 25 crack tip nodes to he coincident but independent. 

Figure 4.1: The mesh for boundary layer formulation analysis. 

Boundary conditions were applied in two steps. Initially the displacements corre- 
sponding to the T stress were applied, and then in the second step displacements 
corresponding to an increasing stress intensity factor were applied at a constant value 
of T. The two step method ensured that T stress was constant during deformation. 
The small scale yielding field corresponds to (T=O) in Equation 4.1. 

4.1.2 Full Field Solutions 

Numerical solutions were obtained for a range of plane strain cracked geometries 
as illustrated schematically in Figure 4.2. The geometries included single edge 
cracked bars in bending (SECB) and tension (SECT), centre cracked panels (CCP) 

and double edge cracked bars (DEC). For the single edge cracked bars, symmetry 
allowed half the bar to be modelled, while for centre crack panels and the double 

edge cracked bars only a quarter was modelled. The single edge bars were loaded by 

applying force loading at the remote boundary corresponding to either pure tension 

or pure bending. The centre cracked panels and the double edge cracked bars were 
displacement loaded in tension. For CCPs the total crack length in denoted 2a, as 
shown in Figure 4.2, while for the DEC the crack on each side of the specimen has 

the same length a. 
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2H 

Single Edge Bars Bending / Tension Centre Cracked Panels Double Edge Cracked Bars 

Figure 4.2: The four geometries analysed. 

Figure 4.3 shows a typical mesh of a full field solution. The mesh shown corresponds 
to an (a/W) ratio of 0.5 and has 624 elements. For the single edge geometries 
the width to height was 1/3 and for the CCPs and DECs the width to height 

was 2/3. The same mesh can be used for all the 4 different type of full field 
geometries (SECT, SECB, CCP and DEC). For the single edge geometries the load 
on the model was either tension or bending. For the CCP and DEC symmetry 
boundary conditions were applied along one of the vertical boundaries as well as 
on the ligaments. Similarly, one mesh can be used for two different crack lengths. 
Consider for example a SECT (a/W=0.4). By changing the boundary condition on 
the ligament and the crack flanks the same mesh can be analysed as (a/W=0.6). The 

crack tip was modelled using the same principles as in the MBLF, using a focused 

mesh of collapsed elements which allowed the 33 crack tip nodes to be coincident 
but independent. 

4.1.3 Material Response 

In uniaxial tension the material response can be described by Hooke's law at stresses 
less than the yield stress o0 

a= Ee (a < ao) (4.2) 

where E is Young's modulus. Poisson's ratio, v, was 0.3. Yield and associated 
plastic flow was modelled by incremental plasticity under the Prandtl-Reuss flow 

rules. The plastic response was approximated to a Ramberg-Osgood stress-strain 
relation which in uniaxial tension can be described by 

Ea 
+a 

?) ( (4.3) 
CO a0 QO 
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Figure 4.3: Mesh of a full field solution, with a/W . O. . 5. 

Numerical calculations were performed with strain hardening exponents of 3,6,13 
and non-hardening material response, which can be regarded as corresponding to a 
hardening exponent of infinity. Unless otherwise stated co was 0.001 and a=ý 
These stress-strain relationships are shown graphically in Figure 4.4. 

4.1.4 Determination of J 

J was determined by the virtual crack extension method of Parks (1977), as modified 
by Li, Shih and Needlemann (1985), and implemented in ARAQUS. 'I'he J-integral is 

given by the decrease in total potential energy of the loaded structure caused by an 
increase in the crack opening area. In terms of a discretised finite element solution 
the potential energy of a body is given by: 

I [u)TEKj[u] - [u)T[F) (4.4) 
2 

[u] is a vector with the nodal displacement, [K] is the stiffness matrix and [F] is a 
vector with the applied nodal force. The energy release rate, or change in potential 
energy under fixed load is: 

C� 
_- \ää/toad (4.5) 

-e-. -((K)Iu1- [FI) - I[u]Tjfu) + Mr4P 
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Figure 4.4: The stress-strain relationship based on Ramberg-Osgood power law, 
for various hardening rates. 

The basic equation in linear finite element analysis is the relation between force and 
displacement, which can be written in matrix notation as: 

CF) = [K)Lu) (4.6) 

The consequence of (4.6) in (4.5) is that the first term must be zero and since there 
is no load on the free crack face the third term must also vanish allowing the energy 
release rate to be reduced to: 

=E (1 - v2) _ -2[u]Taaä, ful (4.7) 

The energy release rate is proportional to the derivative of the stiffness matrix with 
respect to crack length. 

The principle of the calculation of the J integral for a crack extension from a to 
a+ ba is to consider only the change in energy of the elements surrounding the crack 
tip. Each element around the crack tip is distorted so that its stiffness changes. The 
energy release rate is related to this change in element stiffness: 

g=2 [uT 
N 

Bat, 
[u] (4.8) 

t-i 

[k; ] are the elemental stiffness matrices and N is the number of elements surrounding 
the crack tip. Parks (1974) showed that Equation (4.8) is equivalent to the J integral. 
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4.2 Software for Constraint Analysis 

The results of finite element analyses were written to a *. FIL file in compressed 
ASCII format. The advantage of ASCII format is the ease with which data can be 
transferred between computer systems without having to translate the data. 

A range of computer programs were written to convert numerical results from the 

FIL file into a file which could be read by Matlab V. 4. (1991). Matlab is a tool for 

numerical computation and visualisation. Using programs written within Matlab 

the results obtained from the finite element analysis could be processed into relevant 
fracture parameters which could not be obtained directly from AHAQus. Another 

advantage of using Matlab is that the results could easily be displayed graphically. 
Post processing of the finite element analysis results have been divided into 3 steps. 
The programs have been included on a nos format 31/2" floppy disc at the back of 
this thesis. The Matlab programs were written and run on Matlab version 4.2a for 

UNIX workstations. 

Step 1: The program "abamat" is written using UNIX shell commands. It is a 
package using Make with a Makefile, and a lex program. The lex program removes 
the line breaks from the FIL file to create a continuous data stream readable by 
Matlab. The Makefile applies the lex program and makes the old FIL file into a new 
F[t, file with a continuous data stream. 
Step 2: is the main program written and executed in a language implemented in 
Matlab. This main program is called "ABAQustoMatlab". In this step the FEA 
results are read into Matlab and saved in a Matlab format. 

Step 3: is another Matlab program written and executed within Matlab. The 
programs use the result from the FEA now in a Matlab format, to calculate the 
relevant fracture mechanics parameters. This program is called "constraint". 

4.2.1 Program: "ABAQUs to Mattab" 

The main feature when transferring FEA data from ABAQUS to Matlab is the way the 
FIL file is built up. The eßt, file is built on the principle that all words are of the same 
length, whether they contain integers, floating point numbers, or character strings. 
The results are written as a sequence of records. Table 4.1 shows how each record 
is built up. At the beginning of each record is the number of items in the record. 
With a knowledge of the number of items in a record, the program can identify the 
end of a record and then stop reading this particular record. The second item in a 
record is a label, and the rest of the record is data - either node/element numbers 
or results (e. g. stress or strain). 
The record label identifies the type of data, for example when the program reads 
the label 1901, ABAQUStoMatlab recognises the label as a record containing nodal 
definition, as shown in Figure 4.5. When the label is recognised by the program the 
data are read into the Matlab file and can be used for calculations. The program 
recognises 18 different labels as given in Table 4.2. If the label is not recognised the 

program skips to the end of the record and reads the next record. 

The beginning of each record is indicated by a ", followed by the character D, A or I 
indicating the type of data. Each floating point number in a result file record begins 
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Location Length Description 
11 Record length (items) 
21 Record type key (label) 

3,4 (items-2) Attributes (stresses, strain etc. ) 

Table 4.1: Record format in FIL file. 

Label Variable 
2000 Increment start 
2001 Increment end 
1921 Date, Version etc. 
1901 Coordinates in the full model 
1931 Nodes numbers in node sets 
1932 Continuation of 1931 
1933 Element numbers in element sets 
1934 Continuation of 1933 
1991 J-integral 
1999 Total energy 

1 Element header (element or node numbers) 
11 Stresses 
12 Stress invariant 
21 Strains 
22 Plastic strains 

101 Nodal displacements 
104 Reaction forces 
107 Coordinates for specified node set 

Table 4.2: Variables to be read into Mattlab. 

with the character D, followed by the number in double precision. Each character 
string begins with the character A, followed by eight characters. Each integer begins 
with the character i, followed by a two digit integer giving the number of decimal 
digits in the integer, followed by the integer itself, an example of a record is given in 
Figure 4.5. The program "ABAQvstoMatlab" is built up of a series of subroutines. 
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" file-reader 
- From the file name, the type of geometry (SECT, SECB, CCP or DEC) 

is known as well as the strain hardening rate, and the crack length. 
For example a single edge cracked bar in tension, n=13 and a/W=0.4 
would be called SEC0413. If the analysis is a modified boundary layer 
formulation the file is named MBLF. 

" read-header 
- Reads the number of items and the label. The label is a number which 

identifies the type of record (stress, strain etc. ) 

" read-integer 
- Reads an integer from the input stream. 

" read-text 
- Reads a text string from the input. 

" read-float 
- Reads a floating number from the input. 

" skip-to-end 
- Skip to the end of a record 

Number of items --5 Node number 31 

*I 151419011231D 7.488055230000000D-OI D 2.716140510000000D+00 

Record number 1901 

Node definition : 
1. - Node number 
2. - First coordinate 
3. - Second coordinate 

First coordinate II Second coordi 

Figure 4.5: Examples of a record in a Fit file. 

The variables obtained from the FEA analysis and read into Matlab are shown in 
Table 4.3, the directions 1,2 and 3 correspond to those defined on Figure 4.3 and 
refer to global axes in the model. 

4.2.2 Program: Constraint 

The constraint program is a series of sub-programs each of which is used to determine 
different parameters. Within this program there are various routines for filtering 

nodes in the ligament, matching with the coordinates and calculating the radius 
from the coordinates. The more important functions will be described in detail. 
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Variable Description 
stress 11 First stress component 
stress22 Second stress component 
stress33 Third stress component 
stressl2 Shear stress 
miss von Mises stress 
tres Tresca stress 
hydr Hydrostatic pressure 
princl First principal stress 
princ2 Second principal stress 
princ3 Third principal stress 
inv3 Third invariant 
strainll First total strain component 
strain22 Second total strain component 
strain33 Third total strain component 
strain12 Fourth total strain component 
pstrainll First plastic strain component 
pstrain22 Second plastic strain component 
pstrain33 Third plastic strain component 
pstrainl2 Fourth plastic strain component 
pequst Equivalent plastic strain 
reac set 1 First component of reaction force 
reac-set2 Second component of reaction force 
Tese Total elastic strain energy 
Tew Total external work 
Tpd Total plastic dissipation 
J The J integral 
coord Node coordinates in 1 and 2 direction 

Table 4.3: Variables from ABAQUS into Matlab. 
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In fracture mechanics the stresses for different levels of deformation are often 
compared at a non dimensional distance from the crack tip, the most common 
distance at which the stress level are compared is r= öö 

.? is a dynamic distance 
moving away from the crack tip as the deformation level increases. It may be 
compared with the crack tip opening, as the crack tip opening can be approximated 

is then 2 crack tip openings. The program for calculating the stresses to 
ö and 2 

0,0 
at a constant distance is called "Snd_dis": (Stress non dimensionalised with the 
yield stress for a specific distance) and uses a linear interpolation method for 
calculating the stress at the required distance, which is often er=2. 

The stress intensity factor Kj can be calculated from the applied load through: 

KI = aapp a'Ff(W) (4.9) 
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The form functions f(w) depend on the mode of loading as well as the crack length; 
the form functions are given in Tada et al. (1973). For single edge bending f(w) was 
calculated from: 

fI(W) = 1.122 - 1.40(w) + 7.33(W )2 - 13.08(W )3 + 14 . O(W )9 (4.10) 

For the single edge tension bars the form function is expressed by: 

f (a/W) = 1.12 - 0.23(a) + 10.55(a )2 - 21.72(a )3 + 30.39(a )4 (4.11) 

The form function for centre crack panels as a function of a/W is given in Table 4.4. 

a/W f(a) 
0.0 1.0000 
0.1 1.0060 
0.2 1.0246 
0.3 1.0577 
0.4 1.1094 
0.5 1.1867 
0.6 1.3033 
0.7 1.4882 
0.8 1.8160 
0.9 2.5776 

Table 4.4: Numerical values of f(W) for centre crack panels. 

The K calibration for the double edge crack was calculated from 

f (a/W) = 1.122 - 0.561(W) - 0.205(w )2 + 0.407(W )3 - 0.190(w )4 (4.12) 

Equation (4.10), (4.11) and (4.12) and the numerical values given for CCP are shown 
graphically in Figure 4.6 

The total value of the J integral was obtained directly from ABAQUS, J is then 
divided into two terms -a elastic part calculated from the stress intensity factor 
KI and a plastic part calculated as the difference between the JTota1 and JE. The 

program used to calculate Jp, JE and KI was called "JK_calc". The elastic part of 
the J integral JE is calculated from the stress intensity factor: 

L2 
JE = 

E-(1 
- u2) (4.13) 

The T stress is calculated in a program called "T-stress". T is calculates from 
the applied load, the stress intensity factor form function (K-calibration) and the 
biaxiality parameter. 
T is defined through a bi-axiality parameter , 0: 

T= '3K, (4.14) 
a7r 
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Figure 4.6: Form functions for single edge bend, single edge tension, centre crack 
panels and double edge cracked bars. 

The bi-axiality parameters as given by Sham (1991) are given in Table 3.1 for single 
edge tension, and in Table 3.2 for single edge bending, the centre crack panels and 
double edge cracked bars are given in Table 3.3. The bi-axiality parameters for 
SECB, SECT, CCP and DEC are shown graphically in Figure 4.7. 

By combining (4.9) with (4.14) the T stress was calculated more directly from the 
relation: 

T= QaPPf (a )N (4.15) 

Q and QMBLF were calculated from a program called "Q-stress". Q was calculated 
as the difference between the stresses at a distance ''j¢ from the crack tip and the 
small scale yielding field at the same distance. UMBLF was determined from T 
and the boundary layer formulation. Another fracture parameter calculated in this 
function is the hoop stress at a constant distance 1-7 non dimensionalised by the 
stress in the modified boundary layer formulation for the same distance from the 
crack tip. 

Results are often presented in terms of the applied load non dimensionalised by 
the limit load. Limit loads have been determined numerically from non hardening 

plane strain solutions for the single edge geometries and for the double edge cracked 
bars. For the centre cracked panels the limit loads were obtained analytically from 
expressions given by Miller (1987). The limit load for each geometry whether they 
are calculated analytically or obtained from numerical solutions are determined 
in a program named "limit-load". The numerical results compare well with the 
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Figure 4.7: Bi-axiality ratio for single edge bend, single edge tension, centre 
cracked tension and double edge cracked bars geometries. 

expressions given by Miller (1987) for edge cracked bars in bending with a/W <0.295: 

1.15WZQ ( \2 
MLimit =401.261 - 2.72(0.31 a )2) l 1- WJ (4.16) 

For a/W>0.295 

1.15W2Q al MLimit =4 
(1.261(l 

-W }2 J (4.17) 

Figure 4.8 compares the results from the non hardening numerical solution with 
Miller (1987). 

For edge cracked bars in force loaded tension the limit load was curve fitted from 
the non-hardening solution to: 

PLimit = 
(3.6566(a 

)3 -6.126 1( a )2 + 1.4353(a) + 1.0922 J cQO (4.18) 

Figure 4.9 shows a comparison of the numerical results with those expression given 
by the curve fit in Equation (4.18). 

The limit load for the centre cracked panels were calculated from: 

PLimit = 2.3094op (W - a) (4.19) 
2 

The limit load for the double edge cracked bars was optained from the non-hardening 
solution. 
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Figure 4.8: Numerical results for the non-dimensionalised limit load of SECB 
bars compared with Miller's (1987) formula. 
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Figure 4.9: Numerical results for the non-dimensionalised limit load of SECT 
bars compared with a curve fit formula. 
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CHAPTER 5 

Limits to the Characterisation of 
Crack Tip Fields by One and Two 
Parameters 

In Chapter 3 discussion centred on the characterisation of J dominated crack tip 
fields. However, McClintock (1971) has argued that single parameter fracture 

mechanics breaks down for weakly hardening materials in full plasticity due to the 
lack of uniqueness of the fully plastic flow field. Fracture toughness and the crack tip 
conditions depend on the size, geometry and loading mode. In this chapter original 
work is presented using modified boundary formulations to investigate the loss of 
crack tip constraint. Small scale yielding solutions (T=0) are compared with full field 

solutions and used to define the limits of single parameter fracture mechanics. The 
limits of two parameter characterisation are defined by comparing full field solutions 
with modified boundary layer solution. The geometries which have been analysed 
are single edge crack bars in tension and bending, and centre cracked panels. 

5.1 Modified Boundary Layer Formulation Results 

Modified boundary layer formulations are now used as a tool to investigate the limits 

of J dominance and the limits of applicability of J-T characterisation. The model 
used for the analysis is shown in Figure 4.1, and the applied boundary displacements 

are given in Equation (4.1). The value of ö applied on the model ranged from -0.9 
to 0.9. Numerical calculations were performed with strain hardening exponents 
3,6,13 and non-hardening material response in the Ramberg-Osgood stress-strain 
relation given in Equation (4.3). 

Figure 5.1 shows the tangential stress o directly ahead of the crack (9 = 0), for 

a hardening exponent n=6 and ö= 
-0.7. The stresses are normalised by the 

yield stress oo , while the radial distance r is non-dimensionalised by ö. The stress 
profiles are shown for a range of different deformation levels as an example of self 
similarity. The data are self similar in the sense that the data obtained for a given 
value of J falls on the same curve as that for a different value of J. However the 

stresses fall below the HRR field determined from the tabulated constants of Shih 
(1983). 

Negative values of the T stress reduced the stress level ahead of the crack by 

an amount independent of the distance E59, but dependent on T, following the 

observations of Betegön and Hancock (1991). For each hardening rate this gives rise 
to a family of curves parameterised by T, as shown for the four hardening rates in 

75 
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Figures 5.2-5.5. Figure 5.2 shows the profile of the tangential stress directly ahead 
of the crack tip (0=0) for a range of ö values for a hardening rate n=3. The solid 
line is the HRR field. Similar results are shown for hardening rates n=6,13 and non 
hardening in Figures 5.3,5.4 and 5.5. 

6 

GOB 5 
6° 

4 

3 

2 

0 

MBLF n=61 

05 10 15 20 

rßa 
J 

Figure 5.1: The tangential stress directly ahead of the crack in a boundary layer 
formulation, 

ö= -0.7, (n=6). 

For positive values of T, the stress profile approaches the HRR field and can be 

characterised by J alone. In contrast negative values of T cause the stresses to fall 
below the HRR field, requiring a two parameter characterisation. This effect is most 
significant for materials with a low hardening rate, and weak for strongly hardening 
materials (n=3). 

In Figures 5.6 - 5.9 the tangential stress directly ahead of the crack tip has been 
plotted as a function of T non-dimensionalised by the yield stress for distances 
1 <9 <6 ahead of the crack tip. The stress profiles for the various distances 

are broadly parallel, which indicates that crack tip constraint (described by T) is 
independent of distance. 

The results in this analysis are compared with results of similar analyses by Wang 

and Parks (1993) denoted (YW&DP), and by Betegön and Hancock (1991) denoted 
(CB&JWH). In Figure 5.10 data are given at a distance = 2; the non- 
dimensionalised stress (ZOO) for 0=0 is plotted against the T-stress normalised 
by the yield stress. The results from the present analysis are denoted (ADK) and 
compare favourably with analyses from other sources. 



5.1 MODIFIED BOUNDARY LAYER FORMULATION RESULTS 77 

10.00 

8.00 

6.00 

Om 
a0 

4.00 

2.00 

HRR 

T= 0.9 

-"- T- 0.3 

T. 0.0 

---ý-- Ts-0.3 

-ý-- T=-0.5 

-'} - T=-0.7 

-a- TT-0.9 

0.00 
0.00 5.00 10.00 15.00 20.00 

r0) 
J 

Figure 5.2: The tangential stress normalised by the yield stress directly ahead 
of the crack in a modified boundary layer formulation for different 

values of ö, n=3. 
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Figure 5.3: The tangential stress normalised by the yield stress directly ahead 
of the crack in a modified boundary layer formulation for different 

values of ö, n=6. 

2.00 



78 5 LIMITS FOR ONE AND Two PARAMETER CHARACTERISATION 

6.00 

4.00 

ao 

2.00 

1R 

-"- T. 0.5 

0 T. 0.0 

T--0.3 

-fl--- T. -0. S 

-ý- T. -0.7 

°ý-- T. -0.9 

0.00 
0.00 2.00 4.00 8.00 8.00 10.00 

ra. 
J 

Figure 5.4: The tangential stress normalised by the yield stress directly ahead 
of the crack in a modified boundary layer formulation for different 
values of ö, n=13. 
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Figure 5.5: The tangential stress normalised by the yield stress directly ahead 
of the crack in a modified boundary layer formulation for different 
values of ö, non-hardening. 
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Figure 5.6: The tangential stress normalised by the yield stress at different 
distances ahead of the crack tip (R=r j°-) in a modified boundary layer 
formulation with different values of aTa , n=3. 
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Figure 5.7: The tangential stress normalised by the yield stress at different 
distances ahead of the crack tip (R='°ý) in a modified boundary layer 
formulation with different values of Quo' , n=6. 
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Figure 5.8: The tangential stress normalised by the yield stress at different 
distances ahead of the crack tip (R=! a) in a modified boundary layer 
formulation with different values of ýTo, n=13. 
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Figure 5.10: The modified boundary layer formulation compared for different 
strain hardening rates, as the tangential stress normalised by the 
yield stress directly ahead of the crack tip at a distance r Ml as a 
function of T 
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In general the stress field in a MBLF can be expressed in the form: 

MBLF T ro m (', J, ) °SSY 00 (ý")+Ai(1')t (5.1) wee 
_ 

oo 

Co C0 i_1 Qo 

where A; are constants which depend on the strain hardening exponent n. A three- 
term polynomial fit was suggested by Wang (1993) as a modification of the two- 
term polynomial initially used by Betegön and Hancock (1991). Wang's three-term 

polynomial fit covered both positive and negative values of T, whereas Betegön and 
Hancock's two-term polynomial fit was only valid for negative values of T. However 

a good approximation can be obtained by using a two-term polynomial fit over the 

whole range of T, positive and negative. 

For analysing the limits of J dominance the small scale yielding field (assy) has 
been chosen as a reference field rather than the HRR field. This field is obtained by 

applying a pure K field as the boundary conditions (T=0). The stress profile has 
been curve fitted using a least-squares fit as implemented in Matlab V. 4. (1991) to 

an equation of the form: 

5.2 ý 

T)t 
) Sao 

=A(0 

Agreement between the small scale yielding field and the HRR field corresponds to 
t equal to 

, 1. For the four different values of n (3,6,13, oo) the results for A and t 

are given in Table 5.1. 

it A t 
3 8.06 0.32 
6 5.28 0.21 

13 3.83 0.10 
00 2.86 0.02 

Table 5.1: Curve fitting constants for the small scale yielding field. 

The MBLF fields were expressed by two-term polynomials of the form: 

QMBLF 
_ 

asst' 
+ al(T + a2(T )2 (5.3) 

010 QO a0 QO 

Values for al and a2 in (5.3) for distances 1< L59- <5 are given in Table 5.2, for 
in the range from -1 to 1. 

The modified boundary layer formulation for the 4 different hardening rates can be 

expressed by the equations: 

n=3 . 

(7MýBLF(r, T)=8.06(J °32+0.21j 
0.08 

(T)2 )2 (5.4) 
0 \rao) Op 0 

n=6 : 

a 
aoLF(r, 

T)=5.28(rv)o. 
zi 

+0.48{ 
o0.25\ of2 

(5.5) 
0 
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n al a2 
3 0.21 -0.08 
6 0.48 -0.25 

13 0.64 -0.4 
00 0.83 -0.88 
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Table 5.2: Curve fitting constants for the modified boundary layer formulation. 

n=13 : 

\2 QMBLF(r, 
T)=3.83(- 1 0.10 

+0.64(ao) 
T-0.40 (T)(5.6) 

ap rap Op 

Non-hardening material : 

QMBLF(r, 
T)=2.86(J 

) 0.02+0.83 (T) 
-0.88(T)2 (5.7) 

QO \raoJ QO00 

Equations (5.4)-(5.7) are valid for the range -1 <ö<0. For positive values of T 
the small scale yielding field is applied. The results indicate that the second term 
in the elastic-plastic expansion is a function of T, which is also the second term in 
the elastic expansion. In both the elastic and elastic-plastic problems the strength 
of the second term is much weaker than the first term, and is independent of the 
distance . 

5.2 T-stress in Full Field Solutions 

A series of full field solutions has been analysed. The T stress for single edge bars in 
tension and bending and centre cracked panels have been calculated and the stress 
fields have been compared with the modified boundary layer formulations at the 
same value of ö. The methods of the numerical analysis were described in Chapter 
4. 

The crack tip opening stresses directly ahead of the crack at a distance 'Q =2 were 
determined at each load increment and are shown as a function of ö in Figures 5.11- 
5.22. T is defined through a biaxiality parameter p and from the stress intensity 
factor, K: 

OK 
(5.8) 

Some results of p for the important crack geometries have been given by Sham 
(1991), Leevers and Radon (1983), Kfouri (1986) and Nekkal (1991). Figures 5.11- 
5.14 show data for the single edge bend bars for hardening rates n=3,6 , 13 and 
non-hardening. Figures 5.15-5.18 show, results for single edge tension bars, while 
Figures 5.19-5.22 show the data for centre crack panels. The solid lines indicates 
the modified boundary layer formulation with ± 10 % lines. T is proportional to 
the remote load level, and the curves start at ö=0 corresponding to small scale 
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yielding. However at very low levels of deformation the distance '-? =2 is very close 
to the crack tip and the stress gradient is too high to show sensible results. The stress 
values in Figures 5.11-5.22 are shown for deformation levels from contained yielding 
to large scale plasticity. At low loads the full field solutions follow the modified 
boundary layer formulation. As the load increases the full field solutions gradually 
deviate from the MBL solutions. This is particularly significant for the centre crack 
panels where even at low level of deformations the stress fields deviate from MBLF 

solutions as the T-stress for moderate load levels exhibit negative values well beyond 
T= 

-1 where the boundary layer formulation is valid. The results shown in Figures 
5.11- 5.22 establish a basis for the analysis of limits for J dominance and the limits 
for J-T characterisation which will now be examined. 
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ö directly ahead of the crack tip at a distance = 2, Single edge 
cracked bend bars, n=3. 
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Figure 5.12: The tangential stress normalised by the yield stress as a function of 
ö directly ahead of the crack tip at a distance = 2. Single edge 
cracked bend bars, n=6. 
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Figure 5.19: The tangential stress normalised by the yield stress as a function 
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Figure 5.21: The tangential stress normalised by the yield stress as a function 
of ö directly ahead of the crack tip at a distance = 2. Centre 
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5.3 Limits for One Parameter Characterisation 

Shih and German (1981) suggested a J-dominance criterion which requires that the 

stress field is within 10 % of the HRR field at a distance 'R-2 ahead of the crack 
tip. In the current work the small scale yielding field has been used as a reference 
field, rather than the HRR field. However the Shih and German 10% principle for 
the limits of J-dominance has been maintained. Figure 5.23 shows the stresses for 

single edge bend bars at a distance? =2 ahead of the crack; in Figure 5.24 the 

results for single edge tension bars are shown, while Figure 5.25 shows results for 

centre cracked panels. Results for each geometry are shown at 4 different hardening 

rates. 

The stresses non-dimensionalised by the small scale yielding field are plotted as a 
function of the deformation level given in terms of , where c is the width of 
the ligament (W-a). The graphs also show the small scale yielding field ±10%. 
The breakdown of single parameter characterisation, is defined as the level of 
deformation, although the stress field is no longer described as the small scale 
yielding field ±10%. The values of under which single parameter characterisation 
breaks down are given in Table 5.3 for the SECB, in Table 5.4 for the SECT and 
for the CCP in Table 5.5. Those data are shown graphically in Figure 5.26, where 
51- are plotted as a function of the a/W ratio for hardening rates n=3,6,13 and 
non-hardening. 

Deeply cracked edge geometries, a/W > 0.3 for bending and a/W > 0.5 for 

tension, exhibit deformation fields in which the plasticity is confined to the uncracked 
ligament where the deformation field consists of a plastic hinge which is independent 

of the a/W ratio. As the deformation for deeply cracked bars is independent of a/W 
the stress fields all break down at the same level of deformation independent of the 

a/W ratio as shown in Figures 5.23 and 5.24. For the shallow cracked bars, plasticity 

extends to the cracked face and the stress field breaks down at a deformation level 

which is dependent on the a/W ratio. 

Linear elastic fracture mechanics (LEFM) can be applied when crack tip plasticity is 

a minor perturbation of the elastic (T=O) field. Under these conditions the material 

can largely be regarded as linear elastic given that the well contained plastic zone 
is dominated by a surrounding linear elastic field. Valid LEFM is ensured if the 

specimen dimensions are large compared to the size of the plastic zone ry. The 

plastic zone maybe compared with either the crack length a, the ligament (W - a) 

or the thickness B. The requirements given by ASTM (1983) are: 

a, (W-a), B>2.5(ö`) (5.9) 

KI, is the critical plane strain value of the stress intensity factor. For plane strain 
LEFM the relation between J and K is 

s 
J-E (1 - v2) (5.10) 
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Inserting the J-K relationship into the ASTM size requirement 

a, c) 
2.5JE (5.11) 

(1 - v2)oö 

for = 1-2.10-3 the ASTM requirement for small scale yielding conditions at 
fracture, and valid LEFM is then given as (v = 0.3) 

Qi0 coo > 1000 - 2000 (5.12) 
J'j 

Under small scale yielding conditions, a single parameter (e. g. K, J or CTOD) 

characterises the crack tip conditions and can be used as a geometry-independent 
fracture criterion. To identify the limits for one parameter characterisation of the 

crack tip stress field, the hoop stress at a distance Qö ahead of the crack has been 

compared with the small scale yielding fields. 

A valid KI, result is a material property that does not depend on the size or 
geometry of the cracked body. However geometries such as centre cracked panels and 
shallow edge cracked bars are incapable of maintaining significant triaxiality even 
within contained yielding in material with very weak strain hardening. Shallow 

cracked edge bars which exhibit a compressive T stress lose J dominance at low 
levels of deformation. For the shallow single edge cracked bars in bending and 
tension, single parameter characterisation seems to be lost for very low level of 
deformation characterised by `?. This indicates that the crack length is the 

controlling dimension rather than the ligament. For a single edge crack bar in 

tension and bending a/W =0.1, non-hardening and n=13 the breakdown of a K- 

characterisation occurs at ° P-3200, the limit calculated in terms of the crack length 

extend the single parameter characterisation to 9 =360. For a SECB a/W=0.2, 
n=13 the breakdown occurs at =500. The deeply edge crack bars do not break the 
±10% line until a typical value of S 3P-25, independent of a/W ratio and hardening 

rate. 

The J-integral extends single parameter characterisation beyond the limits of LEFM, 
however single parameter characterisation by J eventually breaks down too. In non- 
hardening for an a/W=0.2 bend bar single parameter characterisation breaks down 

at 50- = 1200. However strain hardening extends single parameter characterisation, 
for example for n=6 the SECB a/W = 0.2 breakdown is at ! E? - = 100. Specimens 

with positive T stress maintain J dominance until the crack tip opening becomes a 
significant fraction of the ligament and J dominance is lost at 25J/ao, due to the 

compressive part of the bending field approaching the crack tip field. 
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a/ W n=3 n=6 n=13 n=oo 
co 1 co 1 co co 

0.1 160 1600 3200 5000 
0.2 60 100 500 1200 
0.3 40 40 40 50 
0.4 20 20 20 30 
0.5 20 20 20 30 
0.6 20 20 20 30 
0.7 20 20 20 30 
0.8 20 20 20 30 
0.9 20 20 20 30 

91 

Table 5.3: Limits for one parameter characterisation of single edge cracked bend 
bars. 

a/W n=3 n=6 n=13 n=oo 
co ) co ) ca cv 

0.1 280 3000 5000 5000 
0.2 60 1000 2000 3500 
0.3 40 500 1000 1000 
0.4 25 120 300 450 
0.5 20 45 60 100 
0.6 20 20 20 25 
0.7 20 20 20 25 
0.8 20 20 20 25 
0.9 20 20 20 25 

Table 5.4: Limits for one parameter characterisation for single edge cracked 
tension bars. 

a/W n=3 n=6 n=13 n=oo 
E Cal 

0.1 3000 5000 5000 --5000 
0.2 1200 4800 5000 5000 
0.3 800 3200 4600 5000 
0.4 550 2000 2800 --5000 
0.5 400 1300 1800 5000 
0.6 350 950 1600 4000 
0.7 280 800 1200 2800 
0.8 250 750 1100 2000 
0.9 250 600 900 1800 

Table 5.5: Limits for one parameter characterisation for centre cracked panels. 
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5.4 Limits for Two Parameter Characterisation 

5.4.1 Limits for J-T Characterisation 

The modified boundary layer formulation defined by J and T characterises a family 

of plane strain crack-tip fields parameterised by constraint. MBLF's have been used 
as reference fields to compare with full field solutions of edge cracked bars under 
either bending or tension. 

The limits of two parameter characterisation are to be defined in a similar manner 
to the limits of one parameter characterisation. Two parameter characterisation is 

considered to be valid as long the stresses are within 10% of the stress field defined 

by the modified boundary layer formulation at the same value of T. This stress is 

denoted as oMBLF. 

The results are shown in terms of the stress at a distance =2 non-dimensionalised 
by QMBLF as a function of the level of deformation `. Perfect agreement between 
MBLFs and full field solutions correspond to 

o 
5°j = 1. Figure 5.27 shows results 

for single edge bend bars. Figure 5.28 MBLF 
gives data for single edge tension bars, while 

the centre cracked panels are shown in Figure 5.29. Results for each geometry are 
shown for four different hardening rates. 

The use of a two parameter J-T characterisation extends the limits of characterisa- 
tion beyond those of J-dominance. Using the T-stress based MBLF as a reference 
field rather than comparing the stresses with the small scale yielding is very effective 
for the shallow edge cracked bars because they are the geometries which display loss 

of constraint due to negative T stresses. Tables 5.6-5.8 give the values of `5Q- at which 
the J-T characterisation is no longer valid, the data are also shown graphically in 
Figure 5.30. 

Betegön and Hancock (1991) suggested the definition of the J dominance criterion 
could be of the form: 

(5.13) < -0.2 Co 

This criterion was based on the assumption that the stress field should be within 
10% of the HRR field at a distance 154=2. 

In the case of deeply cracked bars (a/W> 0.35 in bending and a/W >_ 0.55 in tension) 
the T stress is positive allowing single parameter characterisation to be maintained 
until LO- independent of the material hardening. This limit is consistent with 2Qö 

proposed by McMeeking and Parks (1979) and Shih and German (1981). For the 
deeply cracked bars in bend and tension, this limit is not extended by two parameter 
characterisation, as T is positive. 

The centre cracked panels have a negative ß value for all the a/W ratios, ranging 
from ,3= -1 for a/W=0.1 to Q= -1.9 for a/W = 0.9. The negative values of /3 

and negative values of T cause the stresses to fall significantly in comparison to the 
small scale yielding field, and single parameter characterisation to break down even 
for very low levels of deformation. 

Two parameter J-T characterisation extends the characterisation of the stress 
field for the centre cracked panels, but this depends on the way the modified 
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boundary layer formulation is extended beyond ö =- 1 as some of the shallow cracked 
geometries result in values of ö of -3. In these cases extrapolated MBLF solutions 
were used for values beyond ö= 

-1. 

For some of the centre cracked panels the two parameter characterisation did 
not fall outside the ±10 % lines within the analysed deformations level; this was 
observed for strain hardening materials only. For the weak material hardening J-T 
characterisation breaks down around L59- = 400 where a/W < 0.5, while for high 
hardening (n=3) J-T does not break down until L 5P- = 80. 

a/W n=3 n=6 n=13 n=oo 
o co ca 7 co 

0.1 35 50 65 30 
0.2 35 40 40 30 
0.3 35 40 30 30 
0.4 20 20 20 30 
0.5 20 20 20 30 
0.6 20 20 20 30 
0.7 20 20 20 30 
0.8 20 20 20 30 
0.9 20 20 20 30 

Table 5.6: Limits of J-T characterisation single edge cracked bend bars. 

a/W n=3 n=6 n=13 n=oo 
co co 1 co co 

0.1 30 100 180 1000 
0.2 20 25 120 160 
0.3 20 20 20 50 
0.4 20 20 20 25 
0.5 20 20 20 25 
0.6 20 20 20 25 

0.7 20 20 20 25 
0.8 20 20 20 25 
0.9 20 20 20 25 

Table 5.7: Limits of J-T characterisation for single edge cracked tension bars. 
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a/W n=3 n=6 n=13 n=oo 
co ý ca ý ca > ca ý 

0.1 - 75 200 %r 5000 
0.2 - 25 50 3200 
0.3 - - - 2000 
0.4 - - - 280 
0.5 - - 300 420 
0.6 - 260 350 500 
0.7 80 280 400 400 
0.8 80 250 400 450 
0.9 80 300 500 450 

Table 5.8: Limits of J-T characterisation for centre cracked panels. 

5.4.2 Limits for J-Q Characterisation 

In loading modes which involve opening bending moments on the ligament J-Q 

characterisation also breaks down. Shih and O'Dowd (1992) have discussed criteria 
for the limits of J-Q characterisation. At low levels of deformation Q is independent 

of distance and is identical to the constraint characterisation based on T. However 

at high deformation levels Q varies with distance for the edge cracked bars and the 
criterion suggested by Shih and O'Dowd (1992) is a limit on the Q gradient term 
Q': 

Q' . dQ 
(5.14) 

In practise Shih and O'Dowd (1992) have used the mean gradient of Q over the 
interval 1 <9 <5 from the crack tip. 

Q'= 
Wi? =5)-Q( = 1) (5.15) 

4 
Shih and O'Dowd (1992) have suggested JQ'j < 0.03 as the limit for J-Q charac- 
terisation. In the context of J-Q characterisation only the shallow cracked bars in 
bending and tension are considered, as the deeply cracked bars are within the lim- 
its of single parameter characterisation to high levels of deformation. These limits 

are not extended by J-Q characterisation. For example for all the deeply cracked 
tension and bending bars with moderate hardening the limit for single parameter 
characterisation is 25P- > 20. 

Neither a J-T nor a J-Q characterisation extends the characterisation because the 
deeply cracked single edge geometries break down due to global bending which is 

not described through the J-T or a genuine J-Q characterisation. Figure 5.31 shows 
an example of Q' as a function of deformation level 11. The geometries are single 
edge bend bars a/W=0.1,0.2,0.3 and 0.7 at a strain hardening rate, n=13. Figure 
5.32 shows Q' as a function of 9$L for CCP (a/W=0.1,0.3,0.5,0.7) and SECB 
(a/W=0.2) for strain hardening exponent n=13. It can be seen that JQ'I < 0.03 is 

only satisfied for deformation levels > 100. 
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An alternative requirement for the single edge bend geometries can be developed 
by adopting relations between Q' and the level of deformation expressed as ö 

anticipating a result which will be discussed in Chapter 6. 

Qý = ki(n)(ýao) (5.16) 

ki(n) is a calibrated function of strain hardening rate given in Chapter 6, kl(13) = 
-5.12. With this relationship the ASTM requirement for d dominance of deeply 

cracked bars corresponds to Q' <_ -0.20. With this approach the criteria for deep 

and shallow cracked bars become identical at: 

Ca0 > 25 and Q' > -0.2 (5.17) 

J-T characterisation is valid when the stress field differs from the reference field by 

less than 10%. J-Q characterisation is valid as long as the distance dependency of 
the stress field compared to the reference field is small. Table 5.9 gives the values 

of S50- for single edge bend bars for hardening rates n=3,6,13 and non-hardening 

at which the J-Q characterisation breaks down under the criterion that Q' < -0.2. 
The distance dependency is measured by the constraint gradient Q'. Both J-Q 

and J-T characterisation break down simultaneously due to global bending on the 
ligament which causes the stress profile to become distance dependent. 

n kl(n) `a 
3 -13.4 67 
6 -8.01 40 
13 -5.12 26 

00 -6.12 31 

Table 5.9: Limits for J-Q characterisation for single edge cracked bars in tension 

and bending 

In Figure 5.32 Q' vs. 99- is shown for a range of centre cracked panel geometries 

compared with a single edge cracked bend bar. It is significant to note that all the 
CCP fall on the same curve and initially have a small positive value of Q', while the 

SECB have negative values. This indicates that the moment on the ligament for the 

CCP is a closing moment and for the SECB it is an opening moment. The values of 
Q' are much lower for CCP because the moment is small. Q' for CCPs never exceed 
0.03 indicating that the J-Q characterisation is a better measure of constraint than 

the J-T characterisation. 
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5.5 Conclusion 

The limits of one and two parameter characterisation for single edge bars in bending 

and tension and centre cracked panels have been analysed. Single parameter 
characterisation is dictated by the stress intensity factor K, and the two parameter 
approach is characterised either in terms of J-T or J-Q. 

For single parameter characterisation the hoop stress ahead of the crack tip was 
compared with the small scale yielding field and the values of for which the 
two fields differ by more than ±10% have been given as the limitation for single 
parameter characterisation. The values of E59- were then compared with ASTM size 
requirements for valid fracture toughness test (Kic or Jic). 

For the edge cracked bars it was found that the limitation of single parameter 
characterisation for shallow cracks (a/W=0.1) was controlled by the crack length 

rather than the ligament in both tension and bending. Deeply cracked single 
edge specimens were well described with single parameter characterisation. Centre 

cracked panels are all known to develop unconstrained flow fields and negative 
values of T, and CCPs are therefore not well characterised by a single parameter 
description. 

The J-T limits were found by comparing the tangential hoop stress with the 
corresponding stress obtained in the modified boundary layer formulation at the 
same value of T. Two parameter characterisation was found to extend the limits of 
characterisation beyond J-dominance for the shallow cracked single edge geometries. 
For single edge geometries the extend of J-T characterisation is comparable with 
the J-Q characterisation. The limits of J-Q characterisation were defined though 
the gradient Q'= dQ which defines the distance dependency of the constraint term. 

The breakdown of the characterisation occurs when Q' exceed a critical value, 
corresponding to the ASTM requirement for J dominance (Q' 

_< -0.2). There 
was no significant difference between the limits for J-T characterisation and J-Q 
characterisation. The limits of two parameter characterisation of centre cracked 
panels can be extended compared to single parameter characterisation. However 
in terms of a J-T characterisation the level of lost constraint exceeds the range of 
constraint which can be modelled by the modified boundary layer formulations. At 
all levels of deformation CCP fields are well described by J-Q. 
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CHAPTER 6 

Constraint Estimation Schemes for 
Edge Cracked Bars in Bending and 
Tension 

Crack tip constraint is relaxed for geometries which exhibit a compressive elastic 
T-stress. In this Chapter crack tip constraint is expressed by the introduction of a 
second term, Q, in addition to the small scale yielding field. Q is decomposed into 
two terms, the first term depends on T and is distance independent. This term is 
named QT. The second term, Qp arises from the global bending on the uncracked 
ligament, and this term is dependent on distance from the crack tip. 

6.1 J-Q Crack Tip Fields 

Betegön and Hancock (1991) argued that all geometries which develop constrained 
flow fields feature positive values of T stress, while geometries which exhibit 
unconstrained flow field feature negative values of T. In single edge cracked bend 
bars geometries with a/W> 0.3 exhibit positive values of T and fully constrained 
fields, as do single edge cracked bars in tension with a/W > 0.5. 

To predict the level of crack tip constraint in fully plastic specimens Betegön and 
Hancock (1991) suggested that the full field solutions can be related to the modified 
boundary layer formulation at the same value of T. This technique was used in 
Chapter 5 where the limits for a two parameter characterisation in a J-T locus were 
investigated. 

O'Dowd and Shih (1991b) have used both the small scale yielding field and the HRR 
field as reference fields. The small scale yielding field can be expressed as the HRR 
field plus a collection of minor higher order terms. In the present work the small 
scale yielding field is used as a reference field so that the stress fields are expressed 
in the form : 

!! - OssY + Gl (6.1) 
01o 01o 

Q has been obtained from small strain solutions as the difference between full field 

solutions and the small scale yielding field: 

Q_Dij'QSSY (6.2) 
Qo 

Full field solutions have been obtained for a range of geometries and material 
response as described in Chapter 5. In this chapter edge cracked bars are estimated 
in bending and tension. 

107 
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Figure 6.1 shows numerical results for a shallow edge cracked bar (a/W=0.2, n=13). 
The hoop stress directly ahead of the crack is given as a function of -for several 
levels of deformation. The stress profiles are compared with the small scale yielding 
field which applies at very small levels of deformation when plasticity is limited to 
a small contained area around the crack tip. The small scale yielding field (T=O) 
occurs at very low levels of deformation where the load is close to zero. 
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0245a 10 
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1.0 

nQn 

I 

Figure 6.1: The hoop stress directly ahead of a crack SECB, a/W=0.2, n=13 at 
several levels of deformation. 

At the lowest levels of deformation the crack tip field can be expressed as the small 
scale yielding field plus a distance independent term. This can be seen in Figure 
6.1 where the lowest level of deformation 251 = 733. The difference between the 
small scale yielding field and the full field solution is independent of distance until 
5- = 10. At greater distances this difference term becomes distant dependent as 
the global bending field is encountered. Since the bar is subjected to a bending 
moment the ligament remote from the tip is in compression. The global bending 
field thus causes the difference between the small scale yielding solution and the full 
field solution to become distance dependent. Therefore Q has been decomposed into 
two components QT and Qp 

Q=QT+QP (6.3) 

QT is obtained from the modified boundary layer formulation as a function of T. It 
is independent of the distance tF but dependent on the strain hardening rate. 
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QT is related to T and calculated from the elastic component of J as described in 
Chapter 5. The expression for QT is equal to the stress field denoted °E, which Oro has the form : 

QT = f( pT n) = al( 
p)+a2( 

)2 (6.4) 

Values of al and a2 are given in Table 5.2. The decomposition of Q can be understood 

as paralleling to the way in which the J-integral is decomposed into an elastic and 

a plastic part: 

.I= 
JE+JP (6.5) 

Here Jp is the plastic component of the J and JE is the elastic part. 

6.2 Constraint Estimation for Single Edge Crack Bars 
in Bending 

In the full field solutions the stress at a distance !=2 were examined and compared 

with those in modified boundary layer formulations, using the scheme suggested 
by Betegön and Hancock (1991). In this case a notional value of T is calculated 
from K or the elastic component of J using the biaxiality data given by Sham 

(1991). The results, for four strain hardening rates, are shown in Figures 6.2-6.5. In 

these figures, the stresses in the full field solutions are normalised by those in the 

modified boundary layer formulation, CMBLF, at the same value of T. The level of 
deformation is assessed in terms of the applied load normalised by the limit load. 

The limit loads were determined numerically from the non-hardening analyses, but 

agree closely with the expression given by Miller (1987). For the non-hardening 

analyses the expression given by Miller (1987) is used as the limit load. 

The distance dependency of Qp is shown in the example in Figure 6.6, by plotting 
Qp as a function of level of deformation given as Lfý . The Figure shows results for 

single edge bend bars for all the geometries for a strain hardening exponent n=13, 
at distances r-7=1,2 and 5 from the tip of the crack. It is significant to note that 
the results for all the a/W ratios fall on a common curve which depends on the 
distance from the crack tip. The shape of the curve is simply a function of n. The 
relationship between Qp and can be fitted to the general form 

L. m11 

Qp = f(ro n)( pt mP tt 
)1+ý (6.6) 

Curve fitting functions f (-5g-, n) for Qp distances F=1,2 and 5 are shown for the 
hardening rates 3,6 and 13 in Tables 6.1-6.3. The curve fitting constants cannot 
be obtained for non-hardening materials, as n=oo, however results for n=100 as an 
approximation are given in Table 6.4. Qp vs. Lls 

at a distance =2 from the 
crack tip for all the hardening rates is shown in Figures 6.7 - 6.10. 
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Figure 6.4: The hoop stress in SECB, normalised by the stress from a modified 
boundary layer formulation at the same value of T, as a function of 
load normalised by the limit load, n=13. 
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Figure 6.6: Qp as a function of L 
for Single edge bend bars at distances 

1=1,2 and 5 from the crack tip. 
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2 from the crack tip, for all a/W ratios and n=8. 
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Figure 6.8: Qp as a function ofL ,t for single edge bend bars at a distance 

=2 from the crack tip, for all a/W ratios and n=6. 
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for single edge bend bars at a distance 
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Figure 6.10: Qp as a function of p for single edge cracked bend bars at a 
distance L 

-ý =2 from the crack tip, for all a/W ratios, n=oo. 

a/W '° =1 =2 '° =5 
0.1 
0.2 -0.0123 -0.0133 -0.022 0.3 -0.0113 -0.0143 -0.0278 0.4 -0.008 -0.0133 -0.0379 0.5 -0.0121 -0.0105 -0.0364 0.6 -0.0055 -0.0118 -0.0356 0.7 -0.0064 -0.0143 -0.0286 0.8 -0.0063 -0.0177 -0.0417 09 -0.007 -0.0136 -0.0331 

Table 6.1: Curve fittings results for the proportionality constant k2(n) which 
relates Qp and 

L 
for Single Edge Cracked Bend bars, n=3. 

Figures 6.2-6.4 also show an important structural cut off used in the assessment of 
structural integrity by Failure Assessment Diagrams (Chell (1979)), and which is 
usually denoted Lm° 

Lmax _ 
QO + CUTS /6.7) 

2C0 l1 

SECS 

x e . o" t  .o ýo e 

CF 2.83 n=<. rai=2 

Numerical values of L° '°x for the constitutive relations used in this work are given 
in Table 6.5. Engineering structures are not operated at loads greater than L, t 
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a/W TO =1 TO =2 T° 
-5 

0.1 -0.0034 -0.004 -0.0074 
0.2 -0.0044 -0.0064 -0.0189 
0.3 -0.0039 -0.0070 -0.0192 
0.4 -0.0033 -0.0065 -0.0196 
0.5 -0.0031 -0.0065 -0.0190 
0.6 -0.0034 -0.0066 -0.0188 
0.7 -0.0031 -0.0064 -0.0206 
0.8 -0.0033 -0.0065 -0.0191 
0.9 -0.0035 -0.0064 -0.0175 
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Table 6.2: Curve fittings results for the proportionality constant k2 (n) which 
relates Qp and LP 

for Single Edge Cracked Bend bars, n=6. 

a/W ''o =1 'o =2 r5 =5 
0.1 -0.0045 -0.0064 -0.0086 
0.2 -0.0033 -0.0058 -0.0152 
0.3 -0.0029 -0.0053 -0.0148 
0.4 -0.0027 -0.0052 -0.0153 
0.5 -0.0029 -0.0057 -0.0145 
0.6 -0.0028 -0.0056 -0.0148 
0.7 -0.0026 -0.0057 -0.0145 
0.8 -0.0029 -0.0051 -0.0142 
0.9 -0.0024 -0.0053 -0.0139 

Table 6.3: Curve fittings results for the proportionality constant k2 (n) which 
relates Qp and LAP t 

for Single Edge Cracked Bend bars, n=13. 

times the limit load. In this context the important result is that the J-T constraint 
estimation scheme provides acceptable predictions of constraint up to Lax for 

all but the highest hardening rate (n=3) when characterisation breaks down at 
approximately 2.5 times the limit load. It would be very unusual for a structure to 
operate at such load levels even under serious overload conditions, and even under 
these circumstances for all hardening rates, the J-T approach gives an overestimate 
of the stress and thus provides a conservative estimate of toughness and ensures 
structural integrity. 

When Qp is plotted as a function of T LP 
it is noteworthy that the data for all 

the geometries falls on the same curve as shown in Figures 6.7-6.10. The shape 
of the curve only depends on the strain hardening rate n, and the distance ' at 
which Q is measured. Whereas the level of deformation expressed as P where Limit 

Qp becomes significant depends on the distance ' in a linear manner as shown in 
Tables 6.1-6.4. The relation between Qp and the applied load can be described by 
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a/W TO =1 r° =2 '° =5 
0.1 -0.206 -0.1741 -0.3975 
0.2 -0.079 -0.0779 -0.1804 
0.3 -0.0458 -0.0861 -0.3143 
0.4 -0.0451 -0.0923 -0.2729 
0.5 -0.0395 -0.0756 -0.237 
0.6 -0.0329 -0.0544 -0.1704 0.7 -0.0099 -0.0162 -0.0567 0.8 -0.0239 -0.0418 -0.131 
0.9 -0.0162 -0.0396 -0.1183 

Table 6.4: Curve fittings results for the proportionality constant k2 (n) which 
relates Qp and 

LF-, 
for Single Edge Cracked Bend bars, non- 

hardening, n=100 is used for the fit. 

n Lmax 
r 

3 3.8 
16 1.6 
113 1.2 

00 1.0 

Table 6.5: Lm° for different values of strain hardening exponent. 

a relation of the form: 

p }1 
Qp = k2(n) (! ) ( 

)n (6.8) 
PLi mit 

where k2(n) is a proportionality constant which depends on the strain hardening 
rate but is independent of the geometry (a/W ratio or the ligament size c). Values 
of k2(n) for hardening rates n=3,6 and 13 are given in Table 6.10. The values are 
given as the averages for all a/W ratios. 
Kumar et al. (1981) expressed the relation between the plastic component of the J 
integral Jp and the load as 

JP = aQOeochl (a, n)( 
P 

)n+i (6.9) 
W PLimif 

where hl is a function of the by ratio and the strain hardening exponent, also 
tabulated by Kumar et al. (1981). 

Equations (6.8) and (6.9) suggest that Qp is linearly dependent on Jp. Figure 6.11 
shows Qp as a function of for n=13 and for different distances '! =1,2 and 5 

coo from the tip of the complete range of edge cracked bars (a/W=0.1 to 0.9). It can be 
seen that Qp is insensitive to the geometry (a/W), as all the curves fall on the same 
straight line. Similar data for the complete range of (a/W) and the other hardening 
rates n=3,6,13 and oo are given in figures 6.12 - 6.15 at a distance -P=2 from the 
crack tip. 
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Figure 6.11: Qp as a function of for single edge cracked bars in bending for 
Cao 

all a/W at distances !_-1,2,5 _1,2,5 from the crack tip. 
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Figure 6.12: Qp as a function of - for single edge cracked bars in bending for 
all a/W at a distance 'Q=2 from the crack tip, n=3. 
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Figure 6.13: Qp as a function of P for single edge cracked bars in bending for 
all a/W at a distances =2 from the crack tip, n=6. 
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Figure 6.14: Qp as a function of - for single edge cracked bars in bending for 

all a/W at a distance- fL=2 from the crack tip, n=13. 

SECS 

x 

x 
".. x 

)ý)x 

" 
CT 4.59 n=6, L 

j 
°=2 nR 

0 

afca 

x xP o 
Q 

=3.57 , n13, ºýý-=y 
X X 

P P"" 
x 



6.2 CONSTRAINT ESTIMATION FOR SECB 

0.50 

0.00 

Q, 

. 0.50 

-1.00 

  . moo, 
o yý 

o yyyraý 

" wwot 

c yyyrpý 

X yNFO, 

cur"m 

119 

. 1.30 X 
0.00 0.02 0.04 0.06 0.04 0.10 0.12 

J[ 

CO, 

Figure 6.15: Qp as a function of IP- for single edge cracked bars in bending 
for all a/W at a distance=2 from the crack tip, non-hardening 
material. 

Curve fitting Qp as a function of Jp demonstrates that Qp increases with the 
distance from the crack tip in a systematic manner. For low and moderate 
hardening rates the distance dependence of Qp can be approximated by the relation 

Qp ki(n) 
( 

-T) (c ) ki(n)(-r) 
(LP) 

(6.10) 

Values of the constant kl are given in Tables 6.6-6.9 for the range of strain hardening 
exponents. 

a/W 7O =1 1° =2 TO =5 
0.1 
0.2 -25.0 -27.4 -48.3 
0.3 -24.0 -31.3 -60.2 
0.4 -16.9 -27.4 -77.8 
0.5 -14.8 -35.5 -81.9 
0.6 -10.8 -24.8 -77.8 
0.7 -11.5 -29.8 -83.4 
0.8 -7.9 -20.6 -64.7 
0.9 -10.33 -17.7 60.9 

Table 6.6: Curve fittings results for the proportionality constant ki (n) which 
relates Qp and for Single Edge Bend bars, n=3. 

Complete expressions for the stress field may now be assembled. 
Firstly the results are assembled in a form which enables the stress field to be 
determined from the applied load. 

secs 

e% 

5 - 
.°" 

. 
2( 

x 

l 
e 

l$ ", 

0 

a"=2.83 
,n=m, 

rvL 
=2 

"" a 
ö° J x 

0100 
__ 

QssY +f( 
T, 

n) + k2(n) 
(roo) (p )n+1 

(6.11) 
C0 ao CO J PLimit 
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a/W L_1 ro _2 ro = r5 

0.1 -32.5 -26.6 -26.2 
0.2 -15.0 -11.6 -12.5 
0.3 -5.81 -6.32 -15.2 
0.4 -5.29 -7.01 -18.1 
0.5 -7.34 -8.86 -26.99 
0.6 -8.13 -12.6 -27.27 
0.7 -10.04 -12.94 -36.41 
0.8 -8.47 -13.68 -29.59 
0.9 -7.35 -16.88 -38.24 

Table 6.7: Curve fittings results for the proportionality constant kl (n) which 
relates Qp and for Single Edge Bend bars, n=6. C&O 

a/W r° =1 *° =2 *° =5 
0.1 -11.29 -14.87 -19.87 
0.2 -6.08 -10.34 -23.33 
0.3 -6.62 -11.54 -30.55 0.4 -6.94 -12.61 -30.46 
0.5 -7.34 -13.52 -31.68 
0.6 -7.01 -13.73 -33.72 
0.7 -6.82 -11.71 -32.45 
0.8 -6.87 -11.70 -31.11 
0.9 -5.69 -12.15 -28.86 

Table 6.8: Curve fittings results for the proportionality constant ki(n) which 
relates Qp and for Single Edge Bend bars, n=13. cao 

(6.12) Tp Q(!? ý - al( 
o) 

+ a2( 
0)2 

+ k2 (Loo) CF'Limit! nß-1 

Secondly the results are expressed in a form which enables the stress field to be 
determined from the elastic and plastic components of J. 

wee 
_ 

ýssY l (JP 6.13 
ao i ao 

+f 
ao E', ra' n -I- ki (n) ( Tao 

J/\ coo 
) 

+ Q rs -f (ßrifl k1 o(JP (6.14) ýýý ; 
() (! 

T) `coo) 

In Table 6.10 data for kl and k2 are given, as both kl and k2 are insensitive to the 

a/W ratio for the SECB. The data has been averaged over the range of a/W for the 
distances T=1,2 and 5. 
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a/W TO =1 ''O =2 ''O =5 
0.1 -8.89 -9.40 -23.31 
0.2 -8.96 -9.78 -24.02 
0.3 -5.06 -10.08 -37.86 
0.4 -5.90 -13.43 -40.98 
0.5 -6.06 -12.59 -39.68 
0.6 -7.36 -12.57 -40.33 
0.7 -6.44 -11.18 -40.07 
0.8 -6.70 -12.69 -40.67 
0.9 -5.36 -12.69 -39.72 
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Table 6.9: Curve fittings results for the proportionality constant ki(n) which 
relates Qp and for Single Edge Bend bars, non-hardening. coo 

n kl k2 
3 -13.4 -0.0072 
6 -8.01 -0.0051 

13 -5.12 -0.0038 
co -6.12 - 

Table 6.10: kl and k2 constants for Single Edge Cracked Bend Bars. 
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6.3 Constraint Estimation for Single Edge Cracked 
Bars in Tension 

A similar approach to that adopted for edge cracked bend bars (SECB) has been 

used for the edge cracked tension bars (SECT). In figures 6.16 - 6.19 a comparison 

of the full field solution at a distance ' jQ =2 is normalised by that in a modified 
boundary layer formulation at the same value of T and plotted as a function of 

P 
PL-. 

Q p('- ) at a distance 134=2 from the crack tip as a function of L, 
is shown in 

imy 
Figures 6.20-6.23. 

The data has a load dependency of the form (Pl n+l 
and the proportionality L) 

constant k2 which is similar to that for bending, a function of the strain hardening 

exponent, n, and independent of the a/W ratio, are given in Table 6.11 for n=6 and 
in Table 6.12 for n=13. As in the case of the SECB data Qp is linearly dependent on 
JP- as shown in Figures 6.24-6.27. However the proportionality constant kl depends 
cao 
on the a/W ratio as well as the strain hardening exponent, as shown in Table 6.13 
for n=6 and Table 6.14 for n=13. 
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Figure 6.16: The hoop stress normalised by the stress from a modified boundary 
layer formulation for a distance =2 at the same value of T, as 
a function of load normalised by the limit load, n=5. 
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Figure 6.17: The hoop stress normalised by the stress from a modified boundary 
layer formulation for a distance -=2 at the same value of T, as 
a function of load normalised by the limit load, n=6. 
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Figure 6.18: The hoop stress normalised by the stress from a modified boundary 
layer formulation for a distance ! F=2 at the same value of T, as 
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Figure 6.19: The hoop stress normalised by the stress from a modified boundary 
layer formulation for a distance=2 at the same value of T, as 
a function of load normalised by the limit load, non-hardening. 
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Figure 8.20: Qp as a function of P for single edge cracked bars in tension 
for all a/W at a distaance'-? =2 from the crack tip, n=3. Curve 
fitting value for k2 (n)=-0.0087 
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L 
for single edge cracked bars in tension pp- Figure 6.21: Qp as a function of 

mit for all a/W at a distance '=2 from the crack tip, n=6. Curve 
fitting value for k2(n)=-0.0072 
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Figure 6.22: Qp as a function of L .ý 
for single edge cracked bars in tension 

for all a/W at a distance E!; 1=2 from the crack tip, n=13. Curve 
fitting value for k2(n)=-0.0041 
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Figure 6.23: Qp as a function of LP? 
for single edge cracked bars in tension 

for all a/W at a distance-=2 from the crack tip, non-hardening. 
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Figure 6.25: Qp as a function of for single edge cracked bars for all a/W at 
a distance=2 from the crack tip, n=6. 
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Figure 6.27: Qp as a function of IE- for single edge cracked bars for all a/W at 
a distance ' _2 from the crack tip, non-hardening. 

aýW ra -1 T T° =2 T° =5 

0.1 -0.0137 -0.0113 -0.0111 0.2 -0.0118 -0.0092 -0.0010 0.3 -0.0057 -0.0063 -0.0152 0.4 -0.0056 -0.0074 -0.0192 0.5 -0.0079 -0.0096 -0.0295 0.6 -0.0082 -0.0129 -0.0284 0.7 -0.0090 -0.0117 -0.0332 0.8 -0.0095 -0.0174 -0.0374 0.9 -0.0073 -0.0126 -0.0292 

Table 6.11: Curve fittings results for proportionality constants k2 (n) which relates 
Qp and L--- for Single Edge Cracked Tension bars, n=6. 
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a/W 15 =1 T° =2 PO =5 
0.1 -0.0082 -0.0095 -0.0117 
0.2 -0.0032 -0.0040 -0.0064 
0.3 -0.0046 -0.0059 -0.0098 
0.4 -0.0033 -0.0050 -0.0122 
0.5 -0.0032 -0.0065 -0.0166 
0.6 -0.0038 -0.0084 
0.7 -0.0041 -0.0089 -0.0246 
0.8 -0.0093 -0.0161 -0.0560 
0.9 -0.0061 -0.0136 -0.0376 
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Table 6.12: Curve fittings results for proportionality constant k2(n) which relates 
Qp and for Single Edge Tension bars, n=13. L. 1t 

a/W ''° =1 ''° =2 '? =5 
0.1 -30.51 -23.57 -28.15 
0.2 -13.99 -10.51 -14.52 
0.3 -6.01 -7.33 -15.52 
0.4 -5.29 -6.51 -20.08 
0.5 -8.34 -8.86 -30.00 
0.6 -7.93 -12.63 -29.26 
0.7 -12.14 -15.94 -38.41 
0.8 -7.99 -13.68 -30.79 
0.9 -7.98 -13.59 -28.92 

Table 6.13: Curve fittings results for proportionality constant ki(n) which relates 
Qp and - for Single Edge Cracked Tension bars, n=6. 

a/W TO =1 i° =2 =5 
0.1 -14.98 -17.15 -20.85 
0.2 -4.21 -5.25 -8.33 
0.3 -4.63 -5.92 -9.77 
0.4 -3.50 -5.28 -12.44 
0.5 -3.38 -7.14 -16.23 
0.6 -4.06 -8.88 
0.7 -5.50 -11.45 -24.32 
0.8 -6.22 -10.64 -36.83 
0.9 -5.96 -14.28 -39.56 

Table 6.14: Curve fittings results for proportionately constant kl (n) which relates 
Qp and ö for Single Edge Cracked Tension bars, n-13. 
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6.4 Discussion 

The stresses in a series of full field solutions of edge cracked bars in bending and 
tension have been compared with the stresses predicted from a modified boundary 
layer formulation at the same value of T. The results are shown in Figures 6.2-6.5 
for SECT and Figures 6.16-6.19 for SECT. It is firstly significant to note that the 

stress normalised by that obtained from the modified boundary layer formulation 
has the same dependence on the load normalised by the limit load for all the deep 

and shallow cracked bend bars. The cause of the loss of constraint in deeply cracked 
bars has been clearly identified with the global bending field impinging on the local 

crack tip field (McMeeking and Parks (1979), Shih and German (1981)). 

Using the criterion that the stresses should be within 10% of the HRR field leads to 
the well known criterion for J dominance or single parameter characterisation, that 
the ligament should exceed a ASTM (E 339-83 1983). The observation that the 
stress field deviates from that of the modified boundary layer formulation for deeply 

cracked and shallow cracked bars in exactly the same manner is strong evidence that 
the deviation from J-T characterisation is entirely due to the global bending field. 

In Chapter 5 it has been shown that the deviation from J-T characterisation for 
both deep and shallow cracked bend bars breaks down at the same criterion for 
ligaments less than 2QÖ 

. There can be little doubt therefore that both J-T and J-Q 

characterisation of the crack tip fields of edge cracked bend bars breaks down at the 
same deformation level due to the global bending field. Defect assessment schemes 
based on failure assessment diagrams, require that structures operates at loads less 
than L"'. Except for the highest strain hardening rate (n= 3) the stress levels can 
be predicted to within 10% by estimates based on T without the need for full field 
numerical solutions with crack tip resolution. 
The difference between the prediction based on T and the crack tip field in full 
field solutions has been denoted Qp through Equation (6.3). The existence of a 
valid Q field beyond the predictions based on T requires the existence of a distance 
independent term. Figures 6.6 and 6.11 all clearly show that at levels of deformation 
at which significant deviations occur from the modified boundary layer formulation, 
Qp increases with distance from the tip. The necessary conclusion is that in the case 
of edge cracked bars, the distance independent Q term is entirely accounted for by 
T, and that the deviation from J-T characterisation arises from the global bending 
field. This difference cannot be described by a valid distance independent term, 
and it is therefore necessary to conclude that Q does not extend the two parameter 
characterisation of force loaded edge cracked bars in tension and bending beyond 
the limits of J-T characterisation. 
Having established the physical reasons for the simultaneous breakdown of J-T and 
J-Q characterisation in tension and bending, it is appropriate to turn to attempts to 
describe Qp quantitatively. Firstly we note the almost linear dependence of Qp on 
the plastic component of J shown by Figures 6.12- 6.15 and 6.24-6.27. This implies 
that Qp is dependent on 

(Pp ) 
supported by the data shown in Figures 6.7- 

L irrst 6.10 and 6.20-6.23. The Qp-Jp relation has been fitted by a linear relation, and 
the proportionality constant, ki, is given in Table 6.10 as a function of the strain 
hardening exponent n. In bending the relationship is almost completely insensitive 
to the a/W ratio. 
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Similarly the Qp-P relation has been independently fitted by a relation of the form 
(LU)"+i. The proportionality constant k2 is given in Table 6.10, as a function of 
n, but it is again noteworthy that the relation is closely similar for all a/W ratios. 
Given that the Jp-P relation is of the form proposed by Kumar Shih and German 
(1981) in Equation (6.9), there is a relation between the proportionality constants 
kl and k2 such that 

k2 = k1&FOh1 (6.15) 

In bending both kl and k2 are relatively insensitive to the a/W ratio. This in part 
arises from the strength of the (-)"+1 term, such that curve fitting with terms 
of this order is necessarily insensitive to the value of the proportionality constant 
k2. The Qp -Jp and Qp-P relations have been fitted independently. Consistency 
checks through Equation 6.15 have not been pursued, in view of controversy of 
independent consistency checks on hl itself. However it is worth noting that in 
bending the hl term is not strongly sensitive to the a/W ratio, whereas in tension 
it changes by almost a factor of ten. This leads to the result that in bending kl and 
k2 are insensitive to a/W. In tension only k2 is insensitive to a/W as both ki and 
hl depend strongly on a/W. In Table 6.15 ki(n) and k2(n) are given for bending, 
and k2(n) are given for tension. 

Bending Tension 
n kl k2 k2 
3 -13.4 -0.0072 -0.0087 
6 -8.01 -0.0051 -0.0072 

13 -5.12 -0.0038 -0.0041 
00 -6.12 - - 

Table 6.15: kl and k2 constants for Single Edge Cracked Bars. 

Equation (6.11) provides a convenient way of determining Q from the applied load 
in a form which parallels the J estimation schemes advanced by Kumar et al. (1981). 
Like the J-estimation scheme itself, it suffers from being very sensitive to the exact 
form of the stress-strain relation and is very sensitive to the exact value of the 
applied load. An alternative route which is necessarily less sensitive to the exact 
form of the stress- strain relation is given by Equation (6.13) and requires the ability 
to determine J. 

It is convenient to focus initially on the deeply cracked bend geometries (a/W > 
0.3) in which T is positive. For these geometries the fully plastic field initially 
develops high constraint, and is well described by J through the HRR field, within 
the limitations of J dominance. Further deformation leads to a loss of crack tip 
constraint and a loss of J-dominance which has been clearly identified to arise from 
the global bending field. 

Deviations from the fully constrained field thus arise only from the distance 
dependent term Qp. A knowledge of J and k2 thus characterises the crack tip 
field. This provides a two parameter characterisation of deeply cracked geometries 
in which loss of constraint arises from the global bending field, and extends crack 
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tip characterisation beyond the limits of J-dominance. At small load levels, 
deeply cracked bars develop a highly constrained small scale yielding field which 
is maintained into full plasticity. This degenerates as the global bending field 
impinges on the local crack tip field producing an additional term which increases 

with distance from the crack tip in an initially linear manner, 

Qp = ki(n)( c) 
(Lt) 

(6.16) 

At large levels of plasticity in which Jp is very much greater than JE, and Jp is 
approximately equal to J, this produces a limiting form of crack tip field. 

Qp = ki(n)() (r < 4) (6.17) 

eraa QssY ý1(n)(r) (QT = O, T > 0, r <) (6.18) 
Gro 01o 4 

The field which is approached at high levels of plastic deformation thus comprises 
the small scale yielding field plus a term which increases linearly with distance across 
the ligament accounting for the influence of the global bending. There are of course 
limits on the distance over which such a description is adequate. Very close to the 
crack tip the stress directly ahead of the crack is close to the small scale yielding 
field, but at finite distances from the tip the stress decays through the global bending 
field. However, the stress level eventually drops to such a level that plasticity does 
not occur. That is to say directly ahead of the crack there is an elastic enclave 
bounded by the formation of plastic hinges which develop through the ligament. At 
greater distances from the tip the stress field becomes sufficiently compressive to 
induce plastic flow in compression. The effect of the central elastic enclave can be 
seen in Figure 6.1 at the largest levels of plastic deformation when the stress drops 
abruptly at distances from the crack tip of the order of 14 

It is finally worth recalling that the object of characterising crack tip fields is to be 
able to describe the crack tip stress distribution, as this leads naturally to associated 
fracture criteria. In order to test the way in which the proposed schemes describe 
crack tip deformation, four representative geometries have been chosen. These are a 
shallow cracked bend bar, a/W = 0.2 for which T is negative and a deeply cracked 
bend bar for which T is positive, a/W = 0.7. Similar shallow and deeply cracked 
bars have been considered in tension, a/W = 0.2 and a/W = 0.7. In both cases 
results are given for a hardening exponent, n= 13. 

In Figures 6.28 and 6.29 the stress field ahead of the shallow and deeply cracked bend 
bars is predicted from Equations (6.11) and (6.13) using load and J as the inputs 
and compared with the full field solution at four different levels of deformation. 
A similar comparison is given in Figures 6.30 and 6.31 for edge cracked tension 
bars. There is demonstrably good agreement between the predictions and the field 
through conditions in which constraint loss occurs both by the formation of genuine 
Q/T fields and through conditions in which constraint loss occurs by global bending. 
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The development of crack tip constraint has been systematically examined for edge 
cracked bars subject to tension and bending. The initial loss of crack tip constraint 
is controlled by the sign of the non-singular T stress which is associated with fields 
which can be described by the small scale yielding field plus a distance independent 
term (Q). 

Within contained yielding crack tip characterisation can rigorously be achieved by T 
or equivalently Q. J-T characterisation does however extend in practice well beyond 
the formal limits of contained yielding if a notional value of T is calculated from the 
elastic component of J. At high levels of deformation this characterisation breaks 
down due to the global bending field impinging on the crack tip. This results in a 
distance dependent Q term. In this context Q has been decomposed into a distance 
independent term QT which is formally related to T and a distance dependent 
term which is related to the global bending field has been expressed in terms of far 
field parameters such as the applied load and J. This constitutes a two parameter 
characterisation, and associated fracture criterion for deeply cracked bend bars, 
beyond the limits of J-dominance. 

Shallow cracked bars show a very limited region of single parameter characterisation, 
as constraint loss originates from the compressive T stress associated with the elastic 
field. Characterisation can be extended by the use of a two parameter approach using 
J and T( or equivalently J-Q). These fields eventually break down simultaneously 
due to the global bending field. At these deformation levels characterisation has been 

achieved by the use of three parameters, J? QT and Qp, this provides a complete 
crack tip constraint estimation scheme for edge cracked bars in tension and bending. 
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Figure 6.28: The hoop stress at a distance ' =2 directly ahead of a SECS, 
a/W=0.2, n=13 at several levels of deformation. 
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Figure 6.29: The hoop stress at a distance ! F=2 directly ahead of a SECS, 
a/W=0.7, n=11 at several levels of deformation. 
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Figure 6.30: The hoop stress at a distance ? =2 directly ahead of a SECT, 
a/W=0.2, n=13 at several levels of deformation. 
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Figure 6.31: The hoop stress at a distance=2 directly ahead of a SECT, 
a/W=0.7, n=13 at several levels of deformation. 
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CHAPTER 7 

Constraint Estimation Schemes for 
Centre Cracked Panels and Double 
Edge Cracked Bars 

The development of crack tip constraint for centre crack panels and double edge 
cracked bars has been systematically examined for a range of geometries which 
have important displacement controlled symmetry boundary conditions. Crack tip 
constraint is expressed by the introduction of a second term, Q, in addition to the 
small scale yielding field. 

7.1 Numerical Analysis 

The numerical models of the centre crack panels and double edge cracked bars are 
described in Chapter 4. The geometries range from a/W=0.1 to a/W=0.9 with an 
interval of 0.1. The mesh comprises 8 biquadratic nodes isoparametric plane strain 
elements, with reduced integration and linear pressure interpolation, (ABAQUS 
element type CPE8RH). The boundary conditions on the centre crack panels and 
double edge cracked bars were displacement loading on the top boundary. Due to 
symmetry only a quarter of the structure was analysed, and analyses were performed 
at four different strain hardening rates (n=3,6,13 and non-hardening). 

7.2 Stress Fields of Centre Cracked Panels 

Single parameter characterisation of fully plastic crack tip fields occurs under 
restricted circumstances, as the flow fields of weakly strain hardening materials 
depend on geometry and loading (McClintock (1971)). Centre cracked panels 
develop unconstrained crack tip fields in full plasticity and a form of flow field which 
is radically different to the constrained fields developed by deeply cracked bend bars. 
In full plasticity, centre crack panels develop shear bands inclined at ±45° to the 
crack plane as shown schematically in Figure 7.1. 

The loss of crack tip constraint associated with the field is illustrated by the 
numerical results in Figure 7.2. This Figure shows profiles of the hoop stress directly 

ahead of the crack as a function of '3 for a CCP (n=13 a/W=0.3), at different levels 

of deformation. The stress profiles are compared with the small scale yielding field 

which occurs when T=O. Even at very low levels of deformation within contained 
yielding the loss of constraint is significant. However even for the highest level of 
deformation %r10 the stress profiles remain broadly parallel to the small scale 

139 



140 7 CONSTRAINT ESTIMATION SCHEMES FOR CCPS AND DECs 

Figure 7.1: Development of plastic flow fields in centre cracked panels. 
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Figure 7.2: The hoop stress directly ahead of a crack in a centre crack panel, 
a/W=O. 3, n=13 at several levels of deformations. 

yielding field. The stress field can be simply expressed by a reference field being the 
small scale yielding field plus a difference term Q at all levels of deformation. 

coo 
_ 

asst +Q (7.1) 
U0 Oro 

7.3 Numerical Results for Centre Cracked Panels 

7.3.1 Numerical Results for Centre Cracked Panels 

The stresses have been compared with modified boundary layer formulations at the 
same value of T and plotted as a function of applied load normalised by the limit 
load at a distance =2 from the crack tip. T was calculated from the applied load 

or equivalently the stress intensity factor K. The bi-axiality values used were as 
given by Nekkal (1991) and displayed in Table 3.3 Chapter 3. 
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The results for four strain hardening rates are shown in Figures 7.3-7.6. The modified 
boundary layer formulation is only valid for ö< 

-1, and since some of the higher 
hardening rates give values for as low as -3 it has been necessary to extrapolate 
the modified boundary layer formulation, and the values of OMBLF are necessarily 
sensitive to the way the extrapolation is done. Agreement between the MBLF and 
full field solutions corresponds too 00 =1. To assess the extent of these correlations MBLF 
±10% lines are also given in these figures. 
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Figure 7.3: The stress directly ahead of a crack in a CCP, normalised by the 
MBLF stress field at a distance-=2, as function of the load 

normalised by the limit load, n=3. 
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Figure 7.7 shows the difference term, Q, as defined in Equation (7.1) for all the 
geometries (full range of a/W ratios) at a strain hardening rate n=13. Q is plotted 
as a function of load normalised by the limit load at distances 1,2 and 5 from 
the crack tip. 
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Figure 7.7: Q as a function of Lp- « 
for CCP for distances =1,2 and 5, n=18. 

The results shown in Figure 7.7 demonstrate that Q is independent of distance since 
the data for the three distances fall on approximately the same curve. 
Q as a function of L m<< 

is shown for four different hardening rates (n=3,6,13 and 
non-hardening) at a distance '! =2 from the crack tip, in Figures 7.8 - 7.11. 
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7.3.2 Force to Moment Ratios on the Ligaments of Centre Cracked 
Panels 

Centre cracked panels are loaded with displacement boundary conditions and with 
displacement controlled symmetry conditions as shown schematically in Figure 7.12. 
A crack closing moment develops on the ligament as a reaction of the boundary 
condition along the symmetry line normal to the crack. The ligament is thus loaded 
with a combination of a crack opening force and a crack closing moment, as shown 
schematically in Figure 7.12. 

Symmetry line 

Reaction force 

force 

Symmetry line 

Symmetry line 

Reaction force Crack Tip Conditions 

Figure 7.12: Boundary condition and reaction force and moment on the ligament 
for centre crack panels. 

As the extent of plasticity increases, the ratio between force and moment changes, 
leading to a change in the crack tip conditions. The moment to force ratio g can 
be regarded as a physical distance from the line where the moment is calculated to 
the line of action of the net force P. The line of action is shown schematically in 
Figure 7.13. e is the distance from the crack tip to the line of action, and e' is the 
distance from the centre line of the panel to the line of action. 

If the force was applied in the line of action it would equilibrate the moment. The 
distance e from the crack tip to the line of action has been calculated numerically, 

and non-dimensionalised by the ligament c. The eccentricity (1) is shown as a 
function of L mý 

in Figures 7.14 and 7.15 for all the geometries, for the hardening 

rate n=13 and for non hardening material. The moment about the centre line of 
the panel is calculated from the reaction forces on the ligament. This ensures that 

Applied displacement 
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Model centre line 

Symmetry line 

Crack 

Line of action 

Symmetry line 

Figure 7.13: Force eccentricity. 

there is no contribution to the moment from the applied load on the top boundary 
where the force is almost uniformly distributed. 

The distance from the crack tip to the line of action as a fraction of the ligament 

was calculated as: 

(e) = (1) 
En 

1 Pi(xI - W/2) 
- (a - W/2) (7.2) 

E" tPi 

where n is the number of nodes on the ligament, P; is the reaction force for the i'th 
node and x; is the x co-ordinate for the node with origin at the left hand side of the 
model. 

In full plasticity the force to moment ratio approaches a steady state, and the 
eccentricity -) falls on the same curve for all a /W ratios for P >_ 1.2 for n=13. (C 
For the non-hardening case the steady state is reached as the applied load reaches 
the limit load. At this level of deformation the crack tip condition approaches the 
same level of constraint for all the geometries. The fact that the crack tip condition 
approaches a steady state can also be seen in Figures 7.8-7.11, where the levels of 
constraint were described by Q as a function of ý--. As (`-) approaches the same 
curve for all the geometries the crack tip conditions are the same and Q can be 
described uniquely for all geometries. 
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7.4 Constraint Estimation for Centre Cracked Panels 

7.4.1 Crack Tip Constraint Estimated by T 

The hoop stress at a distance =2 from the crack tip normalised by the stresses 
in a modified boundary layer formulation at an equivalent value of T, are shown in 
Figures 7.3 - 7.6. Under largely elastic conditions the stress fields for centre cracked 
panels are described by the contained yielding field, characterised by K, plus the 
T field. Under those conditions the force to moment ratio acting on the ligament 

of each geometry can be obtained. At low levels of deformation the stress field for 

centre cracked panels is well defined by the modified boundary layer formulation. 
As the deformation level exceeds linear elastic characterisation, the force to moment 
ratios on the ligament changes and the associated bi-axiality obtained from for a 
linear elastic characterisation is no longer valid. 

In full plasticity, centre crack tension panels in strain hardening materials can 
exhibit values of T beyond those that can be achieved in modified boundary layer 
formulations. It is therefore necessary to find a different way to characterise the 
constraint when T becomes very negative. Wang and Parks (1994) argued that the 
modified boundary layer formulation does not extend the characterisation compared 
with the one-parameter approach for CCP geometries. This contrasts with the data 
shown in Chapter 5 where single parameter characterisation is shown to breakdown 
long before ° =200. 

By comparing the T stress obtained from the crack flanks with the T-stress 
calculated by the applied load they showed that the effective bi-axiality p changed 
as the load level increased. They suggested a weight function method to correct 
P. and defined a plastically-corrected T-stress. Wang and Parks (1994) analysed 
the a/W=0.1 geometry; while the results of analysis for a/W=0.9 are given in this 
thesis. These results are shown in Figure 7.16 where the tangential stress non- 
dimensionalised by the stresses in the modified boundary layer formulation at the 
same value of T is shown as a function of bf. The dimension b is defined to be the 
smaller of either the crack length a or the ligament c. The results for the a/W=0.9 
are obtained by applying force loading on the boundaries corresponding to a given 
level of elastic-plastic deformation. The load case is then analysed as a linear elastic 
case, and the T stress is calculated from K rather than from the applied load as is the 
case in the elastic-plastic analyses. Three different load cases have been analysed, 
as shown in Figure 7.16. 

Further, centre cracked panels with a high strain hardening material, the levels of 
T stress get beyond the validity of the modified boundary layer formulation. The 
validity domain for the modified boundary layer formulation is 0 >_ ö >_ -1, for 

the case when ö< -1 the modified boundary layer formulation stress needs to be 

extrapolated. For positive values of T the small scale yielding value is applied. 
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Figure 7.16: Comparison of hoop stress and MBLF solutions at T =2. MBLF 
solutions were obtained using the elastic T-stress and the plastic 
corrected T-stress. Data for a/W=0.1 after Wang and Park (1994). 

7.4.2 Crack Tip Constraint Estimated by Q 

In Figures 7.8-7.11 the level of constraint given by Q was shown for hardening rates 
n=3,6,13 and non hardening. At low levels of deformation the scatter over the 
range of a/W is more significant than at higher levels of deformation. Q depends 

on the force to moment ratio, and as the force to moment ratio approaches a steady 
state the crack tip condition reaches a steady state for all the geometries and Q can 
be described by a single function of Lp 

mýý 
. 

The simplest way to estimate Q as a function of L. over the full deformation 
range is by a bi-linear approximation assuming that is proportional to applied 
load. The slope of the lines depends on the hardening rate 

Q=a, (n)( 
y' y mý< 

< Lmns 

P_ Lmas (7.3) 

_C f( _ Lmax + Q(L P> Lmas Q 2ý r masý yr 

Values for al(n), a2(n) and Q(Lma: ) are given in Table 7.1 for hardening rates n=3, 
6,13 and non-hardening. Values of LT'°`x are given in Table 6.5, however for n=3 
the line break is better described as being at LAP ýý =2 rather than at L %GX which is 
3.8. 

An example of the estimation schemes is shown in Figure 7.17 where Q is given as 
a function of i« using the bi-linear expression, for a hardening rate of n=6. 
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II CY1 GYZ QLmas 

3 -0.6 -0.2 -1.2 
6 -0.9 -0.8 -1.4 
13 -0.9 -1.7 -1 
00 -0.9 - - 

Table 7.1: Values of the Q estimation schemes for centre cracked panels for 
hardening rates n=3,6,13 and non-hardening. 
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Figure 7.17: Q as a function of 
Lp-P 

for centre cracked panel, n=6. 

7.4.3 Discussion of Constraint Estimation for Centre Cracked 
Panels 

A series of full field solutions of centre cracked panels have been analysed. The 
stresses at a distance '9P =2 from the crack tip non-dimensionalised by the stresses 
in modified boundary layer formulations are shown in Figures 7.3-7.6 as a function 
of iý-m« 

, 
for the hardening rates n=3,6,13 and non-hardening materials. These 

results show that for the low levels of deformation the stress fields are well defined 
by the stresses obtained in a modified boundary layer formulation, but as Lp 

m,, 

increases the profiles start to diverge. The way the stresses differ from the small 
scale yielding field can be explained by the moment on the ligament changing due 
to the displacement boundary conditions. The conditions on the ligament due to 
the displacement boundary correspond to a crack closing moment. At low levels of 
deformation the force to moment ratio depends on the deformation level. At higher 
levels of deformation the force to moment ratio approaches a steady state and Q is 

well described by one relationship for all a/W ratios. This is because centre cracked 
panels all develop the same type of flow fields as shown in Figure 7.1. 

Stress fields for crack geometries with low levels of constraint such as centre cracked 

°` =4 59 n=6 22 
. , , =2 Qo J 

CCP 

Lmu 
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panels can be described by a reference field assy plus a second term characterising 
the level of constraint. It was demonstrated that for low levels of deformation the 
J-T characterisation works well for centre cracked panels, and the stress field under 
those conditions are characterised by the stresses obtained from a modified boundary 
layer formulation, as shown in Figures 7.3-7.6. However, as the load level increases 
the J-T characterisation breaks down and T is no longer a good description for the 
crack tip constraint, and therefore Q is proposed as the simplest way to complete 
the constraint estimation schemes for centre cracked panels. 

n (a/W) Q (Equ. 7.6) Q (Equ. 7.5) 

00 0.2 -0.97"" -0.83 
00 0.5 -1.57 -1.08 
6 0.3 -1.11&L -0.53f; 

L 

Table 7.2: Values of Q calculated using two different approaches. 

The level of constraint in the modified boundary layer formulation can be expressed 
as: 

QT = ül( - a2( öT )2 (7.4) 
010 

where constants al and a2 are given as a function of the hardening rate in Table 

5.2. The T-stress is proportional to the load and for low levels of deformation, when 
ö<1 the second term is very small and can be neglected. T can then be expressed 
in terms of the load as T= o0Ppß(a/W) f (a/W) and QT can now be written as 

QT = a1A(a/W)f(a/W)(O'aöp) (7.5) 

OQpy is the applied stress, f (a/W) is the K-calibration and Q(a/W) is the biaxiality 

parameter. 
This term can be compared with the empirical expression for Q given by Equation 

(7.3), where ,<L, 
`x. The limit loads for centre cracked panels given by Miller 

(1987) are PLimit = 73-a), and the load P= oappW, where both the load and 

the limit load are given per unit thickness. 

_ 
C11(71) Qapp P-L 

max Q21- (a/w) 
ýý 

0,0 PLimit ' (7.6) 

Equations (7.5) and (7.6) can be compared using a centre cracked panel a/W=0.2 
in non-hardening material. The calculation shows that when Q is calculated from 

Equation (7.6) Q= -0.97°, while Q calculated from Equation (7.5) gives 
Q= -0.83°; "". Examples of other geometries and hardening rates are given in 

Table 7.2. 

The data in Table 7.2 are only applied to low levels of deformation because that was 
the assumption which allowed QT to be reduced from a two term expression to a 

. linear expression proportional to T. 
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A comparison between the modified boundary layer formulation and the difference 
field Q is shown in Figure 7.18. Q is given as a function of LP 

for a hardening 

rate n=13, and QT as a function of Lip 
is shown for the two extremes a/W=0.1 

and a/W=0.9. 
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Figure 7.18: Q as a function of load normalised by limit load for n=13, with QT 
for a/W=0.1 and a/W=0.9. 

7.5 Stress Field of Double Edge Cracked Bars 

The slip line field for deeply and shallow double edge cracked bars in tension is shown 
in Figure 7.19. For deeply cracked double edge crack bars, plasticity is restricted 
to the ligament and leads to the Prandtl field. Plasticity in shallow cracked bars 
extends to the shoulder of the specimen as discussed by Ewing and Hill (1967). 
Shallow double edge cracked bars exhibit unconstrained flow fields and in this range 
of geometries T is negative. The bi-axiality parameter as a function of the a/W 
ratio is given in Table 3.3, after Leevers and Radon (1983). 

Figures 7.20 and 7.21 show the stress profiles for two different a/W ratios of double 
edge cracked bar at increasing levels of deformation. The stress profile shows 
the hoop stress directly ahead of the crack as a function of L? The geometry 
in Figure 7.20 is a shallow crack configuration (a/W=0.3) and in Figure 7.21 
a deeply cracked configuration (a/W=0.9). At the lowest level of deformation 
(`? = 1013) for a/W=0.3, the crack tip field can be expressed as the small scale 
yielding field, however as the load level increases an additional term is needed to 
describe the stress field. The fact that the stress field remains parallel indicates 
that the second parameter is distance independent. It also suggests that there is 

no significant opening moment on the ligament. For a/W=0.9 the stress field is 

slightly unconstrained at low levels of deformation. As plasticity develops, the fully 

constrained Prandtl field forms around the crack tip, as shown in Figure 7.19 and 
the stress fields approach the small scale yielding field. 

, 
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CRACK RACk 

Figure 7.19: Slip line fields for double edge cracked bars. 

7.6 Numerical Results for Double Edge Cracked Bars 

The hoop stress directly ahead of the crack for the full field solutions of double 

edge cracked bar has been examined at a distance-ý =2 and compared with 
the modified boundary layer formulation at equivalent values of ö, as shown in 

Figure 7.22 for four different hardening rates. The stresses normalised by modified 
boundary layer formulation are plotted as a function of applied load normalised by 

the limit load. The limit loads for the double edge crack bars were calculated from 

numerical results as described in Chapter 4. 

For the single edge crack bars in both tension and bending the level of constraint 
Q was expressed as a two term expression involving a distance dependent term and 
a distance independent term. Since the stress fields show no distance dependence 

the level of constraint will be expressed as a general Q term which is the difference 
between the stress field at a distance U TL from the crack tip and the small scale 
yielding field at the same distance. Values of Q at a distance '=2 from the crack 
tip as a function of Lýý are shown for the four different hardening rates in Figure 
7.23. 

The moment on the ligament was calculated for one quarter of the whole geometry 
and the eccentricity e/c calculated in the same manner as the centre cracked panels, 
given in Equation (7.2). The non-dimensionalised eccentricity e/c is shown in Figure 
7.25 as a function of r. 

P., for all a/W ratios. 
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Figure 7.20: Hoop stress normalised by yield stress directly ahead of a crack in a 
double edge cracked bar at several levels of deformation, a/W=0.3 
and n=13. 

7.7 Constraint Estimation for Double Edge Cracked 
Bars 

Constraint is expressed in terms of Q and given in Figure 7.23 as a function of 
p The deeply cracked geometry a/W=0.9 behaves differently from the shallow 

Lt 

cracked configurations. At very low levels of deformation there is a loss of constraint 
as T is slightly negative. As the load level increases the constraint rises again as 
the full Prandtl field appears around the crack tip. For a/W=0.9, n=13, Q reaches 
a positive value for 1.2; this occurs because for a/W> 0.9 the plastic flow 
field is restricted to the ligament, as shown in Figure 7.19. 

Constraint has been estimated by Q as a function of LPL . 
For n=3 the simplest 

expression is a straight line, but for the lower hardening rates (n=6,13 and non- 
hardening) Q as been estimated by a second order function: 

Q=-0.3 
mio n=3 

Q--28 2-0.21 tp--- n_6 
(a/W < 0.8) (7.7) 

Q --0.58lL t2-0.17 tom-- n-13 

Q. -2.13 
L, 2+0.93 P non - hardening materials 

DEC, (n=13 aIW=0.3) 

An example of Q estimated as a function of tg' using a second order curve fit is 

shown in Figure 7.24, for a hardening rate n=6. 
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Figure 7.21: Hoop stress normalised by yield stress directly ahead of a crack in a 
double edge cracked bar at several levels of deformation, a/W=0.9 
and' n=13. 

When the eccentricity normalised by the ligament was calculated from the force to 
moment ratio, it was also found that the deeply cracked geometry changes most. 
This can be seen in Figure 7.25 where the eccentricity normalised by the ligament is 
shown as a function of -T- for a/W=0.9. (e/c) begins in the linear elastic case at 
0.365 and at the highest level of deformation (e/c) becomes equal to 0.482. This may 
be compared with a/W=0.4 where for the lowest level of deformation (e/c)=0.39 

and for the highest level of deformation (e/c) becomes 0.45. This explains why the 
constraint initially falls, but finally rises. 

7.8 Conclusion 

Crack tip constraint has been analysed for centre cracked panels and double edge 
cracked bars. Common to both geometries are important displacement boundary 
conditions and applied symmetry conditions. Because of the boundary conditions 
the ligament is loaded with a combination of a crack opening force and a crack 
closing moment. The evolution of the force/moment ratio as plasticity develops 
creates problems for constraint estimation schemes. For the centre cracked panels 
the crack tip conditions approach a steady state for all the a/W ratios, but for the 
double edge cracked bars this was not the case. The reason for this is the nature of 
the fully plastic flow fields. Centre cracked panels develop same type of the flow field 
for all a/W ratios. For deeply cracked double edge crack bars plasticity is restricted 
to the ligament and a full Prandtl field is developed around the crack tip, whereas 
for the shallow double edge cracked bars plasticity extends to the shoulder and 
results in a significant loss of constraint. Empirical constraint estimation formulas 
for centre cracked panels and double edge cracked bars have been given, and Q has 
been expressed as a function of the load non-dimensionalised by the limit load. 
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Figure 7.22: The hoop stress directly ahead of the crack at a distance =2 
normalised by the modified boundary layer formulation as a function 

of the load normalised by limit load, strain hardening rates n=3,6,13 
and non-hardening. 
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Figure 7.23: Q at a distance 2 as a function of the load normalised by 
limit load, strain hardening rates n=3,6,13 and non-hardening. 
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CHAPTER $ 

Constraint Effects Modelled by Local 
Failure Criteria 

8.1 Approach to a Local Failure Criteria in Cleavage 

Temperature transitions in fracture toughness are important to the integrity of 
engineering structures. Three principal forms of fracture can be identified in plain 
carbon steels, of which the most dangerous is cleavage. Cleavage fracture is a low 
energy mode of fracture which occurs at low temperatures, by the direct separation 
of low index crystallographic planes. 

critical 

Lower-Shelf Region 
, 

Transition Region 
, 

Upper-shelf Region 

Temperature 

Figure 8.1: Schematic J-temperature curve for ductile-brittle transition. 

As the temperature rises, the failure mode may pass through a transition region 
in which a ductile crack extension by void growth and coalescence from second 
phase particles followed by cleavage failure. At higher temperatures the toughness 
reaches the upper shelf, where the fracture process is completely ductile. The 
fracture process in the transition zone can be regarded as a competition between 
cleavage failure and ductile tearing. This competition has particular significance for 
structures operating near the transition temperature. 
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At the lowest temperatures the toughness and the associated plastic zone may be 
small enough to be described by linear elastic fracture mechanics LEFM. However as 
the temperature increases the amount of plasticity invalidates LEFM and requires 
the use of elastic plastic fracture mechanics EPFM, which introduces constraint 
effects. 

8.1.1 The Scaling Approach 

Anderson and Dodds (1991), Dodds et al. (1991) quantified the size requirement for 
single parameter characterisation of cleavage initiation under plastic deformation 
exceeding the KID limits given in ASTM E339-83. The relation between different 
specimen geometries and fracture toughness is shown schematically in Figure 8.2. 

critical 
SEB (shallow crack) 

P 

SEB (deep crack) 
i 

Pq 

CCP 

SEC (shallow crack) 

High Constraint Low Constraint 
Figure 8.2: Fracture toughness for specimens with various levels of crack tip 

constraint. 

Shallow cracked geometries where T<0 exhibit increased toughness compared to 
deeply cracked bars when tested in the transition region. The increased toughness is 
caused by loss of constraint due to the decrease in crack-tip triaxiality. It was argued 
that the geometry dependence of toughness could be correlated with constraint. 
Consequently, cleavage fracture toughness in the transition region exhibits a strong 
geometry dependence. 

The effect of constraint on toughness can be determined by testing different 
geometries. Deeply edge cracked bend bars are the most constrained, while centre 
cracked panels exhibit the lowest levels of constraint. This result indicates a strong 
geometry dependence of fracture toughness for cleavage in the transition zone, in 
which shallow cracked bend bars were much tougher than the deeply cracked at 
identical temperatures. 
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By comparing critical J-values for single edge cracked bend (SEB) bars with the 
value obtained in small scale yielding model, Dodds et al. (1991) proposed the 
use of a scaling factor, to correlate the fracture toughness between SEB and SSY. 
The scaling factor defined as Jseb/Jass relates the stress fields in bend bars in 
full plasticity and in small scale yielding at a fixed distance 4 crack tip opening 
displacements (b) ahead of the crack. Dodds et al. (1991) suggest that the constraint 
scaling factor is applicable over a length-scale of 4-55. Figure 8.3 shows the effects of 
a/W on J9eb/Jssy for a material with strain hardening n=10. For a given specimen 
size and material hardening the equivalent toughness (J�y) can be estimated from 
Figure 8.3. 
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Figure 8.3: Relationship between the normalised J-integral values in SEB speci- 
mens with those of SSY conditions which generate equivalent opening 
mode stresses at r=4ö (COD) ahead of the crack tip for hardening 

exponent n=10. Dodds, Anderson and Kirk (1991). 

8.1.2 The Local Approach 

The local approach attempts to apply mechanistic failure criteria to crack tip stress 
and strain fields to determine fracture toughness. The fracture criterion is thus based 

on the local stress and stain fields acting over a critical micro structural distance 

which allows the operation of the failure mechanism. 

Rice and Johnson (1970) argued that to propagate the crack, a critical fracture stress 
has to be exceeded over a micro structurally determined characteristic distance. This 
failure criteria was adopted by Ritchie, Knott and Rice (1973) to determine the 
fracture toughness for cleavage initiation in mild steel on the lower shelf. Cleavage 
fracture in mild steel initiates as microcracks are formed at the grain boundary 

carbides, and the microcracks propagate when the stress normal to the micro crack 
is sufficiently high. 

Ritchie, Knott and Rice (1973) argued that unstable cleavage fracture can occur 
only if the tensile stress is high enough to initiate a crack at the first grain boundary 
directly ahead of the crack and maintain the stress level over the next grain. 
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They concluded therefore that the crack opening stress must exceed the fracture 

stress at a characteristic fixed distance of approximately two grain diameters from 
the crack tip, as shown in Figure 8.4. 

aYYla, 
s 

Of 

0 

x/(K/q )2 

Figure 8.4: Schematic illustration of the Ritchie, Knott and Rice model for stress- 
controlled cleavage fracture directly ahead of a sharp crack. 

Recall the nature of the HRR field and assume that fracture initiates when the 
maximum principal stress reaches a critical value af at a distance ahead of the 
crack tip r=r, for 0=0. The HRR field can then be written as: 

J` 

11}siQoo(0i n) (8.1) 
Oro Ur aoIneo 

The fracture toughness can be determined by re-arranging (8.1) to expose J,: 

Uf Jc =f ar, QOIneo (8.2) 
[a(Q)] 

This approach was developed by Ritchie, Knott and Rice (1973), to predict the 
temperature dependence for cleavage on the assumption that the local fracture stress 
af is independent of the temperature as proposed by Orowan (1948), Knott (1966) 

and Oates (1969). At very low temperatures, the fracture stress was reached in the 
stress field just behind the plastic-elastic interface and the crack propagates even at 
low load levels because of the high yield stress. 
However at increased temperatures, when the size of the plastic zone increases, the 
fracture stress is only reached within the plastic zone, close to the crack tip. Because 

of the nature of the singular stress field at the crack tip the fracture stress is exceeded 
even at low loads without developing fracture. In order to apply this technique it is 

necessary to determine the local fracture stress or. This is usually achieved using 
notched bend or tension bars. 

0.01 0.02 0.03 0.04 
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RKR (after Ritchie, Knott and Rice (1973)) determined the fracture stress using 
plane strain slip line field solutions for notched bars. The failure stress was 
determined using 

of = 2k(1 + 27r - 2B) (8.3) 

where k is the yield stress in shear, given as 1/vao for a Mises material, while 9 is 
the notch angle. 

Figure 8.5 shows Ritchie, Knott and Rice (1973)'s experimental results with notched 
bars loaded in pure bending (4 point-bending), which support the conclusion that 
the characteristic distance is two grain diameters. 

K 

Temperature 

Figure 8.5: Comparison of the variation of fracture toughness with temperature 
between experimental values (ItQ and KI, ) for characteristic dis- 
tance of one and two grain diameters. H. S. W analysis : Heald, 
Spink and Worthington (1972)., diagram from Ritchie, Knott and 
Rice (1973). 

8.1.3 Statistical Approach to Local Cleavage Failure 

Following RKR local criteria for brittle cleavage, fracture based on Weibull statistics 
have been developed, Curry and Knott (1979), Beremin (1983), Lin et al. (1986) and 
Wang and Park (1992). 

Cleavage fracture is essentially a weakest link process which involves several 
independent variables. The distribution of particle sizes gives a distribution of 
critical fracture strength of, where the largest carbides have the lowest strength. 
The crystallographic orientation of the particles also influences the fracture process. 
The probability of failure below a stress a,,, can be given as a Weibull distribution 

of the form: 

Qu m PR =1- exP 
(-(Qu) 

(8.4) 
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where or,, is a temperature independent material constant (Beremin (1983)), and a,,, 
is the Weibull stress, defined as: 

ow =. r (all )m 
Yý (8.5) 

o 

The stressed volume is divided into sub-volumes Vo. The sub-volumes have to be of 
a size such that there is a finite probability of containing an existing microcrack with 
a reasonable length. It is assumed that the volumes are statistically independent of 
their neighbours. 

In the Beremin analysis (1983), Vo was chosen as a cube of 50 x 50 x 50µm containing 
about 8 grains. Vj is the volume and of is the maximum principal stress in the 
j'th volume. The material constant m contains information about the material's 
reliability. High reliability is represented by a high value of m. Beremin (1983) 
found m to be 22 by curve fitting experimental results, on conventional tensile 
specimen and axis-symmetric notched tensile bars with different radii (20,10,4 and 
2 mm), as shown in Figure 8.6. 

p. 

9, 

pool 0.., r 

Figure 8.6: Plot of the experimental results as a function of the Weibull stress a.. 
Each vertical segment corresponds to one experiment. Comparison is 
made with the theoretical prediction of the cumulative probability of 
failure. Ferritic grain, test temperature 77K, after Beremin (1983). 

Wang and Parks (1992) also used a statistical approach to estimate the effect of 
constraint on cleavage failure, by incorporating the T stress into the weakest link 
model to examine the effect of the T stress on the cleavage toughness. 

If the particle strength is S, g(S) defines the particle strength distribution, described 
by a Weibull three-parameter distribution. The particle strength distribution g(S) 
gives the number of particles per unit volume having the strength S as: 

1 
9(S)dS = 

(o_au)tm fN (8.6) 
ýý 

N is the number of particles per unit volume, a is the crack opening stress ahead of 
the crack, and So is a scaling parameter with the dimension of stress. The fraction 

of the particles N which can cleave is denoted f. The total failure probability 0 is 
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then given in the form of a weakest link statistic as: 

ln(1 -') = -fNb (So)m JA (c 
ýö 

") mdA 
(8.7) 

Where A is the area ahead of the crack in which a> au and o, > a0. f, N, b, Q0, So, m 
and a� are material constants. 

The stress fields for different T values were calculated from a modified boundary 
layer formulation. For each level of T, there is a different value of the probability 
for failure calculated by Equation (8.7). Based on a dimensional analysis of (8.7), 
Wang and Parks (1992) expressed the ratio of the cleavage fracture toughness for 

any ö to the cleavage toughness for ö=0 in the form: 

J. 1110 _ 
fAa-au ýmdAI T-= 

ýO ° `0 (8.8) 

JET 0f A( )m dA Iö 

Figure 8.7 shows Wang and Parks prediction of cleavage fracture toughness, which 
was compared with experimental results of Betegön (1990), shown in the lower graph 
in Figure 8.7. 
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Figure 8.7: Variation of cleavage fracture toughness vs. r at various values of 
o.. od is the fracture stress and r=ö. The lower graph shows 
the analysis compared with the experimental data of Betegdn (1990), 

after Wang and Parks (1992). 
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Shih and O'Dowd (1992) applied the RKR fracture criteria to J-Q fields. The 
criterion is expressed as a critical stress al, at a micro structurally significant 
distance r, and Equation (8.1) can be expressed in the form: 

_J '+" f_e_ 
&99(O, n) +Q (8.9) 

010 orcOpIn-'o 

The fracture toughness can be expressed as a function of Q. The toughness value 
at Q=0 is denoted JI, and the fracture toughness is now given as: 

( 
Jc=JIcI1-2U0 

n+l 

(8.10) 

0f This approach may be compared with that of Dodds, Anderson and Kirk (1991). The 
Dodds-Anderson approach implies that unconstrained flow fields can be expressed 
as the HRR field multiplied by a scaling factor. As a result, the ratio ( -) is 
independent of a1. 

In contrast J-Q and J-T description of crack tip fields create the field in the form 

of the HRR field plus a higher order term (Q) which is distance independent. This 
leads to relations as (8.10) in which the ratio (f) is strongly dependent on af. 
The probability of cleavage fracture is related to the contoured area in which the 
maximum principal stress is greater than a given value S'. The area depends on the 
level of deformation in a low constraint geometry. The loss of constraint becomes 
more significant as the deformation level increases, as shown in Figure 8.8. 

In the present study the contoured area ahead of a deeply cracked bend bar has been 
examined, as shown in Figure 8.8. The variation of stresses along rays of constant 
9 in a single edge bar in bending has been analysed, a/W=0.5 and n=13. Figure 
8.8 compares non-dimensional contours of principal stresses for different levels of 
deformation. A single edge bend bar with a/W=0.5 has a positive bi-axiality value, 
and loss of constraint cannot be due to a negative T-stress, but must appear because 
of global bending. The contours maintain a self-similar shape but the size decrease 
for increasing load and extent of global bending. The actual size of the contour 
increases with J, but the contour in Figure 8.8 is normalised by J. The decrease 
in area indicates that a scaling factor must be applied to relate the SSY with the 
SECB. 

8.1.4 Thickness effect 

The constraint model used to predict fracture toughness in a local failure criteria 
only considers the stressed area in front of the crack tip; however Nevalainen and 
Dodds (1995), Koppenhoefer et al. (1995) and Wallin (1993) have argued that the 
volume of the material ahead of the crack tip controls the cleavage fracture. Wallin 
(1993) used a weakest link method to obtain the following statistical correction for 
fracture toughness data of specimens with two different thickness, B and Bo. The 

method was used for experiments which failed in cleavage, and consequently he 
developed the following series-empirical expression: 

B 1/4 
KID = Kmin + (KIýi - Kminý 

(Bp) (8.11 
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Single Edge Bend a/W=0.5, n=13 
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Figure 8.8: Comparison of shapes for contours of principal stresses, for in- 
creasing levels of applied loading for hardening exponent, n=13 and 
a/W=0.5. The levels of deformation is given in terms of S 5X. 

where Kmjn denotes the threshold toughness of the material for an infinitely long 
crack front. This equation can also be expressed in terms of J: 

Jc2 = Jc, B2 (8.12) 

The J equivalent of Kmin has been neglected as a small term. The correction in 
Equation (8.12) relates different volumes of material to the fracture toughness. The 

cleavage failure is controlled by the weak metallurgical defects, and therefore the 
fracture toughness decreases with increasing probability of finding a defect. The 
increasing probability scales with increasing thickness. 

The volume of material along the crack front over which the principal stress exceeds 
o is given by : 

B/2 
V(cC) =f 

B`2 
A(s, o, )ds (8.13) 

where A(s, oc) is the area enclosed by the contour which lies on s. The maximum 
value of A, A,,,, x=A(s, ººax, oý)" Nevalainen and Dodds (1995) suggest that the 
effective thickness as Be ff= VIA,,,..,, and replaced the effective thickness with 
the actual specimen thickness in Equation (8.12). They also suggest to replacing 
J,, with the critical value of J in a small scale yielding test Jc�,. A measured 
toughness value obtained from a specimen which has lost constraint, for example a 
shallow crack bend bar, can now be related to the value of the small scale yielding 
toughness using a modified form of Equation (8.12): 

Jý�y = JC Baff /B*ef (8.14) 
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Bre f is the reference thickness related to the small scale yielding. 
Figure 8.9 shows the Beff/B as a function of increasing levels of deformation 
JQ�g/bco. The data is obtained from a 3-D finite element analysis of single edge 
bend bars by Navalainen and Dodds, the material strain hardening is n=10, and 
E/QO=500, v=0.3. They investigated the thickness effect for various W/B ratios 
and a range of principal stress ratios. The principal stress ratio shown in Figure 8.9 
is vl/00=3. 
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Figure 8.9: Effective thicknesses for a single edge bend bar a/W=0.5, ö =3. Data 
after Nevalainen and Dodds (1995), n=10 and E/oo=500. 

8.2 Local Fracture Criteria for Cleavage 

Crack tip constraint for single edge bend bars were discussed in Chapter 6. The 
level of constraint is defined by Q as defined in Equation (6.2). Q is decomposed 
into a two term expression in Equation (6.3). The first term is related to T and is a 
distance independent term in Equation (6.4). The second term is distance dependent 
and is related to the global bending field on the ligament. The distance dependent 
term is denoted Qp and can be determined either from the load as given in Equation 
(6.8) or from the plastic component of J expressed in Equation (6.10). 

In the present work the Ritchie, Knott and Rice fracture criteria is applied to the 
stress fields expressed by Equation (6.13). Cleavage fracture is assured when the 
stress directly ahead of the crack coo reaches a critical local fracture stress Q1 at a 
significant micro structural distance r= r*. The fracture criterion is now given by: 

Qö 
= 

6SSY + QT + k1(n) *) 
( 

J) c 
(8.15) 

UO 
( 

A reference value for the fracture toughness JJ can be found from the small scale 
yielding field, in which QT = 0, and ''1 = 0. This value is denoted J,,,,, and depends 

on the strain hardening exponent and the critical local fracture stress. Jc,,,, is then 

given by 

Olf (8.16) 4say =r Oro 
( 

Aao 
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At low levels of deformation there is no effect from the global bending field, as the 
plastic zone is very small and unaffected by the global bending field. The fracture 
criterion in Equation (8.15) is then reduced to a two term expression of the form as 
originally developed by O'Dowd and Shih (1991a, b): 

of 
=A(ct+Q (8.17) 

010 r*oo 

Q represents the level of constraint, and in Figure 8.10, are shown for different 
values of QT. This corresponds to a graphical presentation of Equation (8.17) for 
two different strain hardening exponents, n=6 and n=13. The critical local fracture 
stress is taken to be 3QO. 
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Figure 8.10: The local failure criteria applied on a stress field described by a two 
parameter characterisation. 

For deeply cracked bend bars a/W > 0.35, QT ?0 and the loss of constraint arises 
only from the global bending field as quantified by Qp. The fracture criterion can 
then be written in the form: 

ýf 
=A( +ki(n)( 

ao r"ao 

Figure 8.11 shows as a function of following Equation (8.18) at a strain 
hardening n=13 and local fracture stresses of= 30o and af=2.500. Since r' is a 
fixed micro structural distance the ratio indicates different sizes of test specimen. 

For shallow cracked bend bars, a/W < 0.35, the loss of constraint can arise from 
a combination of a negative T stress and the global bending field. In this case the 
failure criterion is given by: 

cro 
A (r*o. 

o 
f QT F ki(p) {c 

(8.19) 
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Figure 8.11: Local cleavage criteria for deeply crack bend bars; QT = 0, n=13. 

This is shown graphically in Figures 8.12 and 8.13. Figure 8.12 shows as a c339 

function of QT for different values of I. The hardening exponent is n=13 and the 
fracture stress is aj= 30o for both Figures. 

Finally it is appropriate to relax the requirement that Jp » JE and show results 
for the case in which JE is a significant proportion of J. For QT and n=13: 

Oö 
'7ssy + kl(n) (!::. ) (LP), 

- 
J 

(8.20) 

In Figure 8.14 results are given for a local fracture stress c7 = 3o0 and n=13 as a 
function of where the values of vary from =0 to =1 of increments 0.1. 
At very high deformations levels f=1 and for small scale yielding =0. 

8.3 Discussion 

The increase in toughness of single edge cracked bars due to loss of constraint 
has been demonstrated for unstable cleavage fracture. There are two different 

reasons both for the loss of constraint and for the corresponding increase in fracture 
toughness. For shallow cracked specimens loaded to moderate levels of deformation 
the increase in fracture toughness is due to loss of constraint caused by a compressive 
T stress. As the level of deformation increases the bending field in the uncracked 
ligament increases and causes the crack tip stress field to lose constraint due to 

global bending. 

Betegön and Hancock (1991) argued that J dominance is maintained for T stresses 
greater than -0.2oo for n=13 when they compared the stress field in shallow cracked 
bend bars with the HRR field at a distance d=2. The corresponding value of QT 

can be calculated from the modified boundary layer formulation as given by Betegön 

and Hancock (1991): 
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Figure 8.12: /- as a function ofK! with increments of 0.01 for different values 
of QT. n=13 and af= 3oo. 

QT=0.64«T )-0.4(Tý , n=13, T<O (8.21) 
moo\ /\ 7o 

Using Betegön and Hancock's argument that T >-0.2, the value of QT may 
be calculated to be QT=-0.14. Assuming the fracture stress is af= 3a0, the 

requirement in terms of a JI, /J,,,, is that J-dominance is maintained for values 
of JI, /J, 

�� 
< 1.6. For other values of the fracture stress the results are given in 

Table 8.1. 

n ö 
v QT 

J o C8011 
13 3.0 -0.2 -0.14 1.6 
13 2.5 -0.2 -0.14 1.7 

Table 8.1: Data of the fracture toughness for maintaining J-dominance for T 

-0.2ao n=13, Qp=O. 

When Jp is a significant fraction of J the increase of toughness is only due to global 
bending. Assuming the same level of constraint, Q=-0.14 but for deeply edge cracked 
bars T >0 and therefore QT=O. With Qp=-0.14 the requirement can be expressed 
in terms of a size requirement for . For n=13 this result gives > 0.03, and 
consequently the size requirement for applying a local failure criterion to a single 
parameter characterisation of the stress and strain fields is now c>33r*. 
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Figure 8.13: j as a function of QT for different values of . n=13 and 
of=3vo. 

8.4 Conclusion 

An important feature in this scheme of estimation of constraint effect on fracture 
toughness is that it is now possible to obtain the value of a valid JIc, from a test 
which does not satisfy the J-dominance conditions. For example, if the fracture 
toughness is obtained from shallow crack bend bars which show enhanced toughness 
due to negative T, it is now possible to determine the corresponding valid J1, = JJ�,, 
which is the fracture toughness independent of the geometry. 
Further, is it also possible to test a sample which does not satisfy the size 
requirements and then transfer the fracture toughness to a valid JIB. 4�s, can 
be determined from an invalid test for example by reading of Figure 8.12. r* is a 
material parameter which can be obtained from metallographic observations. 
To obtain the fracture toughness for other shallow cracked geometries with negative 
values of QT it is necessary to make use of an iterative process to estimate under 
which load the critical value of J will occur. 
Prediction of fracture toughness by constraint estimation in local failure in cleavage 
may also be used to transfer fracture toughness data from a test specimen to a real 
structure. When the geometry and the load conditions are known on the structure, 
a standard test fracture toughness can be used to estimate the toughness of the 
structure containing the crack. From a standard bend test with a/W =0.5 geometry 
T=O, it is now possible to estimate the fracture toughness even if the structure 
exceeds the limits for single parameter characterisation. 
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CHAPTER 9 

Mixed Mode and Mode I Crack Tip 
Fields Unified by Constraint 

Plane strain boundary layer formulations have been widely used to study the nature 
of Mode I and Mode II crack tip fields in contained yielding. In Mode I, constraint 
loss has been correlated with T which is the second term in the Williams expansion. 
This leads to a family of fields which are deviatoricaily similar but differ mainly 
hydrostatic. In the present work mixed mode fields are shown to belong to the same 
family. At the angle of maximum hoop stress, the constraint of mixed mode fields 

can be related to Mode I J-Q/T fields. Mode I constraint based failure loci have 
then been used to infer mixed mode failure. 

9.1 Non-hardening Mode I Fields 

Non-hardening plasticity has been widely used to describe the structure of plane 
strain crack tip plasticity. Such studies notably include the work of McClintock 
(1971) in the use of slip line fields to study crack tip plasticity under both fully 

plastic conditions and contained yielding. In contained yielding, crack tip plasticity 
is encompassed by an elastic field. If, in plane strain Mode I deformation, it is 

assumed that plasticity surrounds the crack tip, then the slip lines must leave the 
traction free surfaces of the crack flanks at 4 and approach the plane of symmetry 
ahead of the crack at 4 having rotated through an angle of Z. This leads to a field, 

which consists of constant stress sectors in which the slip lines are straight, and a 
centred fan with an angular span of 1, as illustrated in Figure 9.1. This field, which 
was originally discussed by Prandtl (1920), is also recognised as a limiting case of the 
HRR field, after Hutchinson 1968b, Rice and R. osengren (1968), for non-hardening 
plasticity. The HRR field can be regarded as the first term of an asymptotic series 
describing the non linear crack tip field as discussed by Sharma and Aravas (1991) 

and Xia et al. (1993). 

Single parameter fracture mechanics is based on the premise that crack tip fields can 
be accurately described by a parameter, such as J, which describes the amplitude 
of the dominant singularity to the neglect of higher order terms. There is now 
considerable evidence that higher order terms are significant in many geometries 
and loading modes (Betegön and Hancock (1991), O'Dowd and Shih (1991a, b)). 

In the case of contained yielding the structure of the crack tip fields can be elucidated 
by boundary layer formulations (Rice and Tracey 1974) in which the displacements 
corresponding to the first two terms of the Williams expansion are applied as 
boundary conditions to an arbitrary region surrounding the crack tip. With the 
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limitation that plasticity is restricted to a small fraction of the radius of the outer 
boundary, the structure of the fields within the plastic zone can be investigated. 
This technique has been used by Bilby et al (1986), Betegön and Hancock (1991) 

and Du and Hancock (1991) to examine the effect of higher order terms such as 
T on the crack tip field. Du and Hancock (1991) examined the structure of non- 
hardening Mode I crack tip fields and constructed plane strain slip line fields for 
different levels of T. The Prandtl field is a limiting example of this family of fields 
which is recovered only for positive values of T. 

As T is proportional to the applied load, the T=O field is significant in the sense 
that it is the field which applies in all geometries at very small load levels, and is 
thus identified as the small scale yielding field. In this case, (T=O), plasticity was 
not observed to completely surround the crack tip, and elastic wedges were left on 
the crack flanks, as shown in Figure 9.2. This accounts for the small but consistent 
difference found in numerical solutions between the HRR (Prandtl) field and the 
small scale yielding (T=O) field. 

For increasingly negative values of T the angular span of the centred fan decreased, 
paralleling the forward rotation of the lobes of the plastic zone. In non-hardening 
plasticity, changes of the stress state in the leading sector ahead of the crack can 
only arise from changes in the mean stress. Following O'Dowd and Shih (1991a, b) 
this can be described by the introduction of a second parameter, Q: 

wes = asst' + Qao (9.1) 

In the case of contained yielding there is a unique relation between Q and T, which 
in general depends on the strain hardening rate. For non-hardening plasticity, 
Karstensen, Nekkal and Hancock (1995) give: 

QT = 0.83( ö) 
- 0.88(oä )2 (9.2) 

Figure 9.1: Prandtl slip stress field in a region around a crack tip. 
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Figure 9.2: The Effect of the T stress on the plastic zone shape in small scale 
yielding, after Du and Hancock (1991). 

The stress state ahead of the crack can be deduced from the Hencky Equations (Hill 
1950), which express the equilibrium requirements in terms of the rotation of the 
slip lines. In the Prandtl field the rotation of the slip lines can be followed from the 
flank into the constant stress diamond ahead of the crack. However, for the fields in 
which plasticity does not surround the tip, this is not possible. In this case, the fields 
can instead be expressed in terms of the maximum hydrostatic stress directly ahead 
of the crack, a�,. The hydrostatic stress ahead of the fully constrained Prandtl field 
can thus be written in terms of the yield stress in shear as: 

am = k(1 + 7r) (9.3) 

The corresponding hydrostatic stress in the unconstrained fields is thus 

Cm=k(1+ir)+vkQ (9.4) 

Here it is convenient to define Q using the Prandtl field as the reference state. Using 
cylindrical co-ordinates (r, 8) centred at the crack tip, the stress field in the diamond 
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Figure 9.3: A mixed mode field with a stress discontinuity (Shih 1974). 

ahead of the crack, can be written: 

009 = Qm+/kQ+kcos 28 

a,. r = am +/kQkCos 2B (9.5) 
Qzz = am+/kQ= fkQ+k(1+w) 

Tro = ksin29 

In the centred fans the field becomes: 

SBB = Or, = Ozz = Qm +/ kQ + k(2 - 28) (9.6) 
Trrg =k 

A constant stress sector only exists on the crack flanks for the Prandtl field (Q=O, 
T>O), where the stress is: 

Qee = k(1- cos 28) 
Q,. r = k(1 + cos 2B) (9.7) 
'rre =k sin 20 
Q, n =k 

9.2 Non-hardening Mixed Mode Fields 

In the case of non-hardening plasticity it is of course only possible for crack tip fields 
to differ by a hydrostatic term. However O'Dowd and Shih (1991a, b) have argued 
that even in the presence of hardening, Q is largely hydrostatic in nature. The family 

of Mode I fields are thus claimed to be deviatorically similar, but hydrostatically 
different. The nature of the dominant singularity in mixed mode fields were identified 
by Shih (1974) as belonging to the HRR family. Under contained yielding the nature 

of loading can be loading defined by an elastic mixity M` 

Me= 
2 

tan-' 
fKr1 (9.8) 

rr 
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Starting from the Prandtl field, in Mode I( Me = 1), Shih sought mixed mode fields 
in which the number of constant stress and centred fan sectors was constant but each 
was distorted. Although this procedure led to inadmissible stress fields, the problem 
was resolved by postulating a stress discontinuity along a radial line emanating from 
the crack tip. Equilibrium demands that the hoop and shear stresses (o and -r,, ) 
are continuous across the discontinuity, but the equilibrium equations allow a jump 
in the radial stress, arr. Fields of this type are illustrated in Figure 9.3. In both 
the limiting case of pure Mode I and Mode II deformation, it was not necessary 
to postulate a stress discontinuity. For pure Mode I the Prandtl field illustrated in 
Figure 9.1 arises and in pure Mode II the field shown in Figure 9.4 was identified. 

nm -,. VK JE U'I rUt 
s *i r ri!; SwrI 

1ýý".. 
} 

: e; 

Figure 9.4: The Mode II field after Shih (1974). 

In the present work the structure of the slip line fields for mixed mode problems 
under small scale yielding conditions have been re-examined using a boundary 
layer formulation approach. This is used as a precursor to examining the effect 
of hardening. The present work has attempted to demonstrate that mixed mode 
fields can be related to Mode I two parameter field described by J and a second 
constraint parameter (Q/T), and that Mixed Mode loading can be simply regarded 
as a mechanism leading to the loss of in-plane constraint. 

9.3 Numerical Model 

Crack tip fields have been examined by the finite element method using the mesh 
shown in Figure 9.5. The mesh comprised 360 first order quadrilateral elements 
implemented in ABAQUS (1992). The crack tip was represented by twelve collapsed 
quadrilaterals such that the crack tip comprised 25 coincident but independent 

nodes. The mesh was highly focused such that the size of the crack tip elements 
were approximately one millionth of the radius of the outer boundary. 

Remote from the tip displacement boundary conditions associated with the displace- 
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ments (u, v) were calculated from the Westergaard Equations 2.10, for a plane strain 
mixed mode problem characterised by the Mode I stress intensity factor KI and the 
Mode II stress intensity factor Ii II. Mixed Mode problems with the mixities given 
in Table 9.1, have been examined numerically. 

uý R7 
[icicos(ý)(rc 

-12 sin2(2 )) + Kllsin(2)(K +1+2 cos2(2 )] 

v= zý2-ý [lilcos(2)( +1-2cos2(ý))-Kijcos(2)(rc+1+2cos2(Z)} 

Crack 

L 

Figure 9.5: The mesh for the mixed mode problems. 

me 

Kt 1.00 
Kt = 4Ktt 0.84 
Kt = 2Ktt 0.71 
Kt = Ktt 0.50 

Kt = 0.5Kt, 0.30 
Ktt O. 00 

Table 9.1: Elastic mixity for range of plane strain mixed mode fields. 

(9.9) 

Calculations were performed under the restriction that the plastic zone was a very 
small fraction of the radius of the outer boundary. In uniaxial tension the material 
response was described by an isotropic elasticity with a value of Poisson's ratio as 
0.3. Yield was governed by the von Mises yield criterion and subsequent plastic 
flow occurred under incremental plasticity using the Prandtl-Reuss flow rules. Data 
were written to a file which was subsequently interrogated with the post-processing 
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programme described in Chapter 4. The stress field at the crack tip was determined 
by extrapolating the stress to the tip (r=0) along radial lines such that the tip was 
approached asymptotically from different angles. 

9.4 Results 

9.4.1 Slip line Fields 

During plastic deformation, the plastic strains at the crack tip were assumed to 
dominate the elastic components, such that deformation was almost incompressible. 
Under these circumstances the stress field is determined by the hydrostatic or mean 
stress am (o�j=akk/3) and the yield criterion. The hydrostatic stress at the tip 
(r=0) is illustrated as a function of angle 6 in Figure 9.6 for five levels of mixity, 
while the angular span of the Mises stress is shown in Figure 9.7. 
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Figure 9.8: Mean stress non-dimensionalised by yield stress as a function of angle 
for a range of mixities, non-hardening material. 

The structure of the plastic sectors of the field can be identified from the hydrostatic 

component. Rice (1968a) has shown that for incompressible plane strain deforma- 
tion, combination of the yield criterion, the plane strain condition and the necessity 
for the crack tip stresses to be bounded allows the equilibrium equations to be 
written in the form: 

OCrr+OB X Tre o (9.10) 00 80 
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Figure 9.7: Equivalent stress non-dimensionalised by the yield stress as a function 

of angle for range of mixities, non-hardening material. 

This leads to two possible forms for the plastic sectors, either 

acrrr + a90 aUm 
=o (9.11) 

ae -50 
or 

äe =0 (9.12) 
The first condition corresponds to regions in which the mean stress does not change 
with angle around the tip, and thus comprises constant stress sectors in which the 
slip lines are straight. The second condition corresponds to the situation in which 
the shear stress in cylindrical co-ordinates does not change with angle. As the slip 
lines are trajectories of constant shear stress, this corresponds to centred fans, in 

which the hydrostatic stress varies linearly with angle. 
In association with the yield criterion these observations enable the angular span of 
the elastic and plastic sectors to be identified and allows the field to be assembled. 
In all the numerical examples shown in Figure 9.6 the region of constant stress has 

an angular span of 7r/2, however the orientation of the constant stress diamond 

rotates with mixity. The angular span of the centred fans are determined from the 

span over the region in which the mean stress varies linearly with angle. Finally the 
fields are completed by noting the span over which the yield criterion is not satisfied, 
corresponding to elastic wedges. The complete family of fields is assembled in Figure 

9.8, where the angles given to the left of the slip line fields in Figure 9.8 are the 

elastic displacement vectors on the crack flanks and the angle to the right are the 

orientation of the maximum hoop stress. 
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Figure 9.8: Slip Line field for the family of mixed mode problems. 
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The Mode I field is that discussed by Du and Hancock (1991). The main point of 
difference between the Mode I field and the Prandtl field is the presence of elastic 
sectors on the crack flanks. This corresponds to the small but consistent difference 
which has been found between the small scale yielding field and the HRR field in 
both non-hardening and hardening calculations. 
The mixed mode fields are simple distortions of the Mode I field corresponding to 
a rotation of the main constant stress diamond. This allows the field to extend to 
the crack flanks with a uniform stress triangle on the tensile side, while the elastic 
wedge on the compressive flank increases its angular span. Figure 9.9 shows the 
distortion of a mixed mode field (KI = KII) in an exaggerated form. 

This process continues with increase mixity until the pure Mode II field is recovered. 
This field is identical to that discovered by Shih (1974) as plasticity now fully 
surrounds the crack tip. 

The Mode I and mixed mode fields differ from those discussed by Shih (1974) in 
that the necessity for a stress discontinuity is resolved by the formation of an elastic 
wedge on the crack flanks. The angle of maximum hoop stress given in Figure 9.8 
is however very close to that given by Shih. The angle of maximum principal stress 
and also the maximum hydrostatic stress is the direction from the tip radial out 
through the constant stress diamond. This angle is of particular interest in terms 
of stress controlled brittle fracture. It is frequently argued that such failure occurs 
at the orientation at which the propagating crack extends in Mode I (Erdogan and 
Sih (1963), Williams and Ewing (1972), Budden (1987)). 

Lt 
Figure 9.9: The displaced model of a mixed mode problem for KI = KII. 

In the case of non-hardening plasticity the crack tip stress at this angle may be 
compared with the stress in an unconstrained Mode I field. In non-hardening 
plasticity it is convenient to focus attention at the tip, where mixed mode fields 
can be correlated with Mode I fields which have the same level of constraint. Recall, 
of course, that in the pure Mode I field the direction of interest is directly ahead 
of the crack, whereas in the mixed mode problem it is inclined at angle which is a 



9.4 RESULTS 185 

function of mixity. On this basis the constraint of Mode I fields parameterised by 
Q or T can be identified with the constraint of mixed mode fields parameterised by 
elastic mixity, as shown in Figures 9.13 and 9.14. 

9.4.2 Strain Hardening 

It is now appropriate to turn attention to the effect of strain hardening. The material 
response is described in Chapter 4. In uniaxial tension the material has an isotropic 
elastic response for stresses less than the uniaxial yield stress oo Yield is determined 
by the von Mises yield criterion and the associated flow rule. At stresses greater than 
the yield stress the material follows a law which approximates to a Ramberg-Osgood 
stress-strain relation. 

Numerical calculations were performed for the elastic mixities given in Table 9.1 
with strain hardening exponents, n=13 and 6. Attention has been focused on the 
plane on which the maximum principal stress and minimum shear stress occur. In 
Mode I this is directly ahead of the crack but in the mixed mode loading the angle is 
weakly dependent on the hardening rate over the range of interest (Shih 1974) and 
the numerical data have been taken from the radial node set closest to this angle. 
The stresses are non-dimensionalised with respect to the uniaxial yield stress, oo, 
while the radial distance from the crack tip is non-dimensionalised by J/ao. 

Figures 9.10 and 9.11 show numerical results for a range of mixities ranging between 
0 and 1 for strain hardening rates n=13 and n=6. The important point is that 
the stress profiles for all the mixities are parallel. At this orientation, they can 
therefore be regarded as a family of fields which differ by a second order term which 
is independent of distance. 
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Figure 9.10: The maximum hoop stress as a function of the non-dimensionalised 
distance from the crack tip, n=13. 

Figure 9.12 shows numerical results for Mode I modified boundary layer formula- 
tions, in which constraint loss is associated with T. Again the central observation is 
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Figure 9.11: The maximum hoop stress as a function of the non-dimensionalised 
distance from the crack tip, n=6. 

that for a given hardening rate all these stress profiles are parallel. That is to say, 
the stress level associated with a mixed mode problem can be identified with the loss 
of constraint in a Mode I loading. This relationship between mixity and Q and T is 
shown in Figures 9.13 and 9.14. O'Dowd and Shih (1991a, b) have argued that Mode 
I fields are deviatorically similar but differ hydrostatically through a parameter Q. 
In this context the maximum stress deviator, seei directly ahead of the Mode I fields 
is given in Figure 9.15 for a hardening exponents n=13 and n=6. 
Although the fields are not deviatorically identical, they are deviatorically very 
similar and differ mainly by a hydrostatic term, as discussed by O'Dowd and Shih 
(1991a, b). In the same spirit the maximum stress deviator, 399, has been determined 
for the mixed mode fields at the angle of maximum hoop stress, as shown in Figure 
9.16. Comparison of Figures 9.15 and 9.16 indicates that the mixed mode fields are 
deviatorically similar to equivalent accuracy as the Mode I J-Q/T fields. 

9.5 Fracture Criteria 

The constraint dependent fracture toughness which is observed in Mode I can be 
expressed as a fracture locus in which the toughness is given as a function of a 
constraint parameter Q/T. The first example of this was given by Betegön and 
Hancock (1990) whose data on a series of shallow edge cracked bend bars, which 
failed by cleavage, is shown in Figure 3.7 as a function of T. Extensive data have 
been presented by Sumpter (1993b), Sumpter and Hancock (1994), Sumpter and 
Forbes (1992)) and by Kirk et al (1993). 

In Mode I, cleavage is often interpreted on the basis of local criteria which involve the 
attainment of a critical stress over a micro structurally significant distance directly 

ahead of the crack as proposed by Ritchie 
, Knott and Rice (1973). In mixed mode 
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Figure 9.12: The hoop stress directly ahead of a crack in Mode I as a function of 
the non-dimensionalised distance from the crack tip for a range of 
T values, n=1S. 00 

loading, the direction of crack propagation has also been identified with the plane 
of maximum hoop stress (Erdogan and Sih (1963), Williams and Ewing (1972) and 
Budden (1987)) which occurs at an inclined angle, such that the propagating crack 
grows locally in Mode I. 

The constraint of Mode I and mixed mode fields have been correlated in Figures 
9.12,9.13 and 9.14 for perfect plasticity and hardening exponents n=13 and n=6. 
It is thus now possible to map the constraint based Mode I failure loci into mixed 
mode data. As an illustration the experimental data of Betegön (1990) is considered. 
Betegön (1990) performed a range of experiments on deep and shallow edge cracked 
bend bars, in an experimental plain carbon steel with a strain hardening exponent 
n=14. Failure occurred in full plasticity by cleavage. The Mode I data are shown 
in Figure 9.17 as a J-Q locus. Using the relationship between mixity and Q given 
in Figure 9.14 for n=13, this data may be mapped into a J-mixity locus, which is 

shown in Figure 9.18. 

9.6 Conclusions 

In Mode I, constraint loss may give rise to a family of elastic-plastic crack tip fields 

which can be described by J and a second parameter which determines the level of 
crack tip constraint (Q). This family of fields differs in a largely hydrostatic manner. 
Mixed mode field can be interpreted as belonging to the same family such that 
constraint loss by mixed mode loading results in a family of fields which differ largely 
hydrostatically on the plane of maximum hoop stress. For stress controlled brittle 
fracture this allows the constraint enhanced toughness observed in unconstrained 
Mode I fields to be correlated with the constraint enhanced toughness in mixed 
mode loading. 
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Figure 9.17: Experimental data in a J-Q locus for 3PB test from Betegön (1991), 
n=14. 
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CHAPTER 10 

Conclusion 

Two parameter fracture mechanics has been shown to extend the range of applicabil- 
ity of defect assessment schemes. In particular it provides a framework for utilising 
the enhanced toughness associated with cracks which develop unconstrained flow 
fields. 

The limits of one and two parameter characterisation have been defined, and two 
parameter characterisation has been shown to extend the range of characterisation 
of elastic-plastic crack tip fields, most notably for short cracks in edge cracked bars 
in tension and bending. 

The development of crack tip constraint has been examined systematically;, firstly 
for edge cracked bars in tension and bending and secondly for centre cracked panels 
and double edge cracked bars. 

For single edge cracked bars it was shown that initial loss of constraint was controlled 
by the non-singular T stress. At high levels of deformation the J-T characterisation 
breaks down due to global bending on the ligament. This resulted in a distance 
dependent term Qp to estimate the constraint expressed either in terms of load 
normalised by limit load or in terms of J. QT, estimated through T together with 
Qp provides a complete crack tip constraint estimation scheme for edge cracked bars 
in tension and bending. 

The constraint estimation of the centre cracked panels proved to be more difficult, 
due to the effect of displacement boundary conditions which alternate the force to 
moment ratio on the ligament as the applied load increases. The behaviour of the 
stress field has been explained and the simplest estimation of Q as a function of 

P was suggested in term of a bi-linear expression. Li C 

Prediction of fracture toughness using constraint estimation scheme in a local failure 
criteria in cleavage has been applied. A method has been suggested to allow the 
transfer of fracture toughness data from a test specimen to a real structure or 
between test specimens of different sizes. 

The family of J-Q fields in a mode I problem differ mainly in a hydrostatic manner. 
Mixed mode field can be described in an equivalent way, and the loss of constraint 
in elastic-plastic crack tip fields in a Mode I problem has been matched with the 
loss of constraint in mixed mode problems. This also allows the constraint enhanced 
toughness for unconstrained fields in Mode I to be correlated with the constraint 
enhanced toughness in mixed mode loading. 

193 



Blank Page 



CHAPTER 11 

References 

ABAQUS V. 5.3 (1992). ABAQUS Manual. Hibbitt, Karisson and Sorenson Inc. Provi- 
dence, Rhode Island. 

Ainsworth, R. and O'Dowd, N. (1995). `Constraint in the failure assessment dia- 

gram approach for fracture assessment'. Transaction of the ASME, Journal of 
Pressure Vessel Technology 117,260-267. 

Al-Ani, A. (1988). J dominance of short cracks in bending and tension. Master's 

thesis. Deparment of Mechanical Engineering. University of Glasgow. 

Al-Ani, A. M. and Hancock, J. (1991). `J-dominance of short cracks in tension and 
bending'. Journal of Mechanics and Physics of Solids 39, No. 1,23-43. 

Andersen, T. (1995). Fracture Mechanics; Fundamentals and Applications. CRC 
Press, Inc.. Boca Raton, Florida. Second Edition. 

Anderson, T. and Dodds, R. (1991). `Specimen size requirements for fracture 

toughness testing in the ductile-brittle transition region'. Journal of Testing 

and Evaluation 19,123-134. 
ASTM (E 339-83 1983). Standard Method for Plane Strain Fracture Toughness Testing 

of Metallic Materials. Vol. 03 01. American Society for Testing and Materials. 
Philadelphia. pp. 487-511. Metals Test Methods and Analytical Procedures. 

ASTM (E813-81 1981). Standard Method for Jic Fracture Toughness. American 
Society for Testing and Materials. Metals Test Methods and Analytical 
Procedures. 

Beremin, F. M. (1983). `A local criterion for cleavage fracture of a nuclear pressure 
vessel steel'. Metallurgical Transactions A 14,2277-2287. 

Betegön, C. (1990). Two parameter elastic-plastic fracture mechanics (in Spanish) 
"Caracterization biparametrica de los compos tensionales en la mecania de la 
fracture elastoplastica". PhD thesis. Universedad de Ovido, Spain. 

Betegön, C. and Hancock, J. W. (1990). Two parameter characterisation of elastic- 
plastic crack tip fields and an associated failure criterion. In `Fracture Behavior 
and the Design of Materials and Structures, ECF 8'. Vol. 2. EMAS, UK. pp. 999- 
1002. 

Betegön, C. and Hancock, J. W. (1991). ̀ Two-parameter characterization of elastic- 
plastic crack-tip fields'. Journal of Applied Mechanics 58,104-110. 

Bilby, B. A., Cardew, B. A., Goldthorpe, M. R. and Howard, I. C. (1986). A finite 

element investigation of the effect of specimen geometry on the field of stress 
and strain at the tip of stationary cracks. In `Size Effect in Fracture'. Inst. Mech. 
Eng.. London, UK. pp. 37-46. 

Bilby, B. A., Cottrell, A. H. and Swindon, K. H. (1963). The spread of plastic yield 
from a notch. In `Proceedings, Royal Society of London'. Vol. A-272. pp. 304- 
314. 

195 



196 11 REFERENCES 

British Standard (BS-7448 1991 b). Method for determination of Kic, critical CTOD 

and critical J values of metallic materials. London. 
British Standard (PD6493 1991a). Guidance on Methods for Assessing the Suscepti- 

bility levels of flaws in Fusion Welded Structures. London. Welding Standards 
Policy Committee, Technical Committee WEE/37. 

Broek, D. (1991). Elementary Engineering Fracture Mechanics. 4 edn. Kluwer 
Academic Publisher. Dordrecht. 

Budden, P. J. (1987). `The stress field near a blunting crack tip under mixed modes 
i and II'. Journal of Mechanics and Physics of Solids 35(4), 457-478. 

Bueckner, H. F. (1973). Methods of analysis and solution of crack problems. In Sih, 
G. C. (Ed. ). `Mechanics of Fracture I'. Noordhoff, Leyden. pp. 239-314. 

Chao, Y. J. and Ji, W. (1994). Cleavage fracture quantified by J and A2. In `Constraint 
Effects in Fracture: Theory and Applications, ASTM STP 1244'. American 
Society for Testing Materials. Philadelphia. 

Charpy, M. (1912). In `Assoc. Intern. Essai Materiaux, 6th Congr. '. Vol. 4. New York. 

p. 5. 
Chell, G. G. (1979). A procedure for incorporating thermal and residual stresses 

into the concept of a failure assessment diagram. In J. D. Landes, Begley, J. and 
Clarke, G. (Eds. ). `Elastic Plastic Fracturer, ASTM STP 700'. American Society 
for Testing and Materials. Philadelphia, PA. pp. 581-605. 

Cherepanov, G. P. (1967). `Crack propagation in continuous media'. International 
Journal of Solid Structures 4,811-831. 

Curry, D. A. and Knott, J. F. (1979). `Effect of microstructure on cleavage fracture 
toughness of quenched and tempered steels'. Metal Science pp. 341-345. 

Dean, R. H. and Hutchinson, J. W. (1980). Quasi-static steady crack growth in small- 
scale yielding. In `Fracture Mechanics, ASTM STP 700'. American Society for 
Testing and Materials. Philadelphia, PA. pp. 383-405. Twelfth Conference. 

Dodds, R., Anderson, T. L. and Kirk, M. T. (1991). `A framework to correlate a/W 
ratio effects on elastic-plastic fracture toughness (Je)'. International Journal of 
Fracture 48,1-22. 

Dodds, R., Shih, C. F. and Anderson, T. L. (1993). `Continuum and micromechanics 
treatment of constraint in fracture'. International Journal of Fracture 64,101- 
133. 

Dowling, A. R. and Townley, C. H. A. (1975). `The effect of defects on structural 
failure: a two criteria approach'. International Journal of Pressure Vessels and 
Piping 3,77-137. 

Drugan, W. R., Rice, J. R. and Sham, T. L. (1982). `Asymptotic analysis of growing 
plane strain cracks in elastic ideally plastic solids'. Journal of Mechanics and 
Physics of Solids 30,447-473. 

Du, Z. Z. and Hancock, J. W. (1991). `The effect of non-singular stresses on crack tip 
constraint'. Journal of Mechanics and Physics of Solids 39,555-567. 

Dugdale, D. S. (1960). `Yielding of steel sheets containing slits'. Journal of Mechanics 

and Physics of Solids 8,100-104. 

Erdogan, F. and Sih, G. C. (1963). Journal of Basic Engineering 85,519. 
Eshelby, J. D. (1968). `Stress analysis of cracks'. Journal of the Iron and Steel 

Institution 121,13-48. 



11 REFERENCES 197 

Ewing, J. W. (1968). `The plastic yielding of V notched tension bars with circular 
roots'. Journal of Mechanics and Physics of Solids 16,305. 

Ewing, J. W. and Hill, R. (1967). `The plastic constraint of v-notched tension bars'. 
Journal of Mechanics and Physics of Solids 15,115. 

Gao, Y. -C. (1980). Elastic-plastic fields at crack tips in perfectly - plastic medium. 
In `Acta Mech. Sin. '. ICTAM. Toronto. 

Green, A. P. (1953). `The plastic yielding of notched bars due to bending'. Quart. 
Journal of Mech. and Applied Mathematic 6,223-239. 

Green, A. P. and Hundy, B. B. (1958). `Initial plastic yielding in notch bend tests'. 
Journal of Mechanics and Physics of Solids 4,128-144. 

Griffith, A. A. (1921). `The phenomena of rupture and flow in solids'. Phil. Trans. R. 
Soc. A221,163-198. 

Hancock, J. W., Reuter, W. G. and Parks, D. M. (1993). Constraint and toughness 

parameterized by T. In Hackett, E. M., Schwalbe, K. H. and Dodds, R. H. 
(Eds. ). `Constraint Effect in Fracture, ASTM STP 1171'. American Society for 
Testing and Materials. Philadelphia, PA. pp. 21-40. 

Heald, P. T., Spink, G. M. and Worthington, P. J. (1972). Material Science in 
Engineering 10,129. 

Hellan, K. (1985). Introduction to Fracture Mechanics. McGraw-Hill. Singapore. 
Hill, R. (1950). The Mathematical Theory of Plasticity. Clarendon Press. Oxford. 
Hooke, R. (1678). ̀ Ut tensio sic vis "ceiiinosssttuv"'. De Potientid Restitutiva. 
Hutchinson, J. W. (1968a). `Singular behavior at the end of a tensile crack in a 

hardening material'. Journal of Mechanics and Physics of Solids 16,13-31. 
Hutchinson, J. W. (1968b). `Plastic stress and strain fields at a crack tip'. Journal of 

Mechanics and Physics of Solids 16,337-347. 
Ilyushin, A. A. (1946). Prikadnia Matematika i Mekhanika, P. M. M. 10,347. 

Inglis, C. E. (1913). `Stresses in a plate due to the presence of cracks and sharp 
corners'. Trans. Inst. Nay. Archit. 55,219-241. 

Irwin, G. R. (1948). `Fracture dynamics'. Fracture of Metals pp. 147-166. American 
Society for Metals, Cleveland. 

Irwin, G. R. (1957). `Analysis of stresses and strains near the end of a crack traversing 

a plate'. Journal of Applied Mechanics 24,361-364. Trans. ASME. 

Irwin, G. R. (1960). Plastic zone near a crack tip and fracture toughness. In `Proc. 
7th Sagamore Ordnance Material Research Conference'. Vol. 5. pp. 63-78. 

Karstensen, A. D., Nekkal, A. and Hancock, J. W. (1995). `Constraint estimation 
scheme for edge crack bars in tension and bending'. Submitted for publication 
in Journal of Mechanics and Physics of Solids. 

Kfouri, A. P. (1986). `Some evaluations of the elastic T-term using Eshelby's methods'. 
International Journal of Fracture 30,301-315. 

Kirk, M. T. and Dodds, R. H. (1992). J and CTOD estimation equations for shallow 
cracks in single edge notch bend specimen. In Dawes, M. G. (Ed. ). `Shallow 
Crack Fracture Mechanics, Toughness Tests and Applications'. The Welding 
Institute. Publishing, Abington Cambridge, England. Paper 2. 

Kirk, M. T., Koppenhoefer, K. C. and Shih, C. F. (1993). Effect of constraint on 
specimen dimensions needed to obtain structurally relevant toughness measures. 
In Hackett, E. M., Schwalbe, K. H. and Dodds, R. H. (Eds. ). `Constraint Effect 



198 11 REFERENCES 

in Fracture, ASTM STP 1171'. American Society for Testing and Materials. 
Philadelphia, PA. pp. 79-103. 

Knott, J. (1966). `Some effects of hydrostatic tension on fracture behavior of mild 
steel. '. Journal of Iron Steel Institution 204,104-111. 

Koppenhoefer, K. C., Dodds, R. H. and Kirk, M. T. (1995). Size and deformation 
limits to maintain constraint in Ki and JJ testing of bend specimens. In 
Kirk, M. and Bakker, A. (Eds. ). `Constraint Effects in Fracture Theory and 
Application: Second Volume, ASTM STP 1244'. American Society for Testing 
and Materials. Philadelphia, PA. pp. 445-460. 

Kumar, V., German, M. D. and Shih, C. F. (1981). `An engineering approach for 
elastic-plastic fracture analysis'. Report to EPRI, (NP-1931), General Electric 
Company, Palo Alto, CA. 

Larsson, S. G. and Carlsson, A. J. (1973). `Influence of non-singular stress terms 
and specimen geometry on small-scalle yielding at crack tips in elastic plastic 
material'. International Journal of Fracture 19,263-278. 

Leevers, P. S. and Radon, J. C. (1983). `Inherent stress biaxiality in various fracture 
specimen geometries'. International Journal of Fracture 19,942-955. 

Leggatt, R. H. and Gordon, J. R. (1992). 3-D elastic-plastic finite element analysis 
for CTOD and J in SENB, SENAB and SENT specimen geometries. In 
Dawes, M. G. (Ed. ). `Shallow Crack Fracture Mechanics, Toughness Tests 
and Applications'. The Welding Institute. Publishing, Abington Cambridge, 
England. 

Li, F. Z., Shih, C. F. and Needleman, A. (1985). `A comparison of methods for 
calculating energy release rate'. Engineering Fracture Mechanics 21,405-421. 

Li, Y. and Wang, Z. (1986). `High-order asymptotic field of tensile plane-strain 
nonlinear crack problem'. Scientia Sinica (Series A) 29,941-955. 

Lin, T., Evans, A. G. and Ritchie, It. 0. (1986). ̀ A statistical model of brittle fracture 
by transgranular cleavage'. 34(5), 477-497. 

MacLennan, I., Al-Ani, A. M. and Hancock, J. W. (1992). Determination of T-stress 
for semi-elliptical crack. In `Proc. 7th ABAQUS Users' Groups Conference'. 
University of Cambridge, Cambridge. 

MacLennan, I. and Hancock, J. (1995). 'Constraint-based failure assessment dia- 
grams'. Proc. Royal Sociaty of London 45,1-21. 

MacLennan, I. and Hancock, J. W. (1992). The effect of constraint on the ductile- 
brittle transition. In Dawes, M. G. (Ed. ). `Shallow Crack Fracture Mechanics, 
Toughness Tests and Applications'. The Welding Institute. Publishing, Abington 
Cambridge, England. 

Matlab V. 4. (1991). Matlab Manual. The Math Works Inc. Version 4. 
McClintock, F. A. (1968). `A criterion for ductile fracture by the growth of holes'. 

Journal of Applied Mechanics 35,363-371. 
McClintock, F. A. (1971). Plasticity aspects of fracture. In Liebowitz, H. (Ed. ). 

`Fracture'. Vol. 3. Academic Press. London. pp. 47-225. 
McClintock, F. A. and Argon, A. S. (1966). Mechanical Behavior of Materials. 

Addison-Wesley Publishing Company, Inc.. Reading, Massachusetts. 
McMeeking, It. A. and Parks, D. M. (1979). On criteria for J-dominance of crack 

tip fields in large scale yielding. In Landes, J. (Ed. ). `Elastic-Plastic Fracture, 



11 REFERENCES 199 

ASTM STP 668'. American Society for Testing and Materials. Philedelphia. 

pp. 175-194. 
McMeeking, R. M. (1977). `Finite deformation analysis of crack-tip opening in elastic- 

plastic material and implications for fracture'. Journal of Mechanics and Physics 

of Solids 25,357-381. 
Miller, A. G. (1987). Review of limit loads of structures containing defects. Nuclear 

Electric Report. TPRD/B/0093/N82. 
Milne, I., Ainsworth, R., Dowling, A. and Stewart, A. (1986). Assessment of 

the integrity of structures containing defects (r6). Technical report. Central 
Electricity Generating Board, CA. Report, Revision 3. 

Mises, R. (1913). Göttinger Nachrichten Math. Phys. Klasse p. 582. 

Murakami, Y. (1987). Stress Intensity Factor Handbook, Vol I. Pergamom Press. New 
York. 

Nekkal, A. (1991). A two parameter approach to elastic-plastic fracture mechanics. 
Master's thesis. Department of Mechanical Engineering. University of Glasgow. 

Nevalainen, M. and Dodds, R. H. (1995). Numerical investigation of 3-D constraint 
effects on brittle fracture in SE(B) and C(T) specimens. Technical report. 
University of Illinois at Urbana-Champaign, Dept. of Civil Eng. Urbana, Illinois. 
Report no SRS 598. 

Oates, G. (1969). `Effect of temperature and strain rate on cleavage fracture in a 
mild steel and a low-carbon manganese steel'. Journal of the Iron and Steel 
Institution 207,353-357. 

O'Dowd, N. P. and Shih, C. F. (1991a). `Family of crack-tip fields characterized by 

a triaxiality parameter: Part I- structure of fields'. Journal of Mechanics and 
Physics of Solids 39,939-963. 

O'Dowd, N. P. and Shih, C. F. (1991b). `Family of crack-tip fields characterized by 
a triaxiality parameter: Part II - fracture applications'. Journal of Mechanics 
and Physics of Solids 40,989-1015. 

Orowan, E. (1948). `Fracture and strength of solids'. Report Program Physics 12,185- 
230. 

Orowan, E. (1955). `Energy criteria of fracture'. Welding Journal 34,157-160. 

Parks, D., Lam, P. and McMeekings, R. (1981). Some effects of inelastic constitutive 
models on crack tip fields in steady quasistatic growth.. In Francois, D. (Ed. ). 

`Advances in Fracture Research, 5th Int. Conf. on Fracture'. Vol. 5. pp. 2607- 
2614. 

Parks, D. M. (1974). `A toughness derivative finite element technique for determina- 

tion of crack tip stress intensity factors'. Internal Journal of Fracture 10,487- 
502. 

Parks, D. M. (1977). `The virtual crack extension method for non-linear material 
behavior'. Computer Methods in Applied Mechanics and Engineering 12., 353- 
364. 

Parks, D. M. (1991a). Engineering methodologies for assessing crack front constraint. 
In `Proc. Spring Meeting of the Soc. Experimental Mechanics'. Milwaukee, USA. 

Parks, D. M. (1991b). Advances in characterization of elastic-plastic crack-tip fields. 
In Argon, A. (Ed. ). `Topics in Fracture and Fatigue'. Springer Verlag. pp. 59-98. 

PATRAN v. 2.4.5 (1988). Patran User's Manual. PDA Engineering, California. 



200 11 REFERENCES 

Pineau, A. (1992). Global and local approaches of fracture - transferability of 
laboratory test results to components. In Argon, A. (Ed. ). `Topics in Fracture 

and Fatigue'. Springer Verlag. pp. 197-234. 
Prandtl, L. (1920). `über die härte plastischer körper'. Nachr. Ges. Wiss. pp. 74-85. 
Reid, C. R. and Drugan, W. J. (1992). `Asymptotic finite deformation fields of analysis 

of growing cracks in elastic - perfectly plastic materials'. Journal of Mechanics 
and Physics of Solids 39,989-1015. 

Rice, J. (1968a). Mathematical analysis in the mechanics of fracture. In Liebowitz, 
H. (Ed. ). `Fracture: An Advanced Treatise'. Vol. II. Academic Press. London. 
pp. 191-311. 

Rice, J. R. (1968b). `A path independent integral and the approximate analysis 
of strain concentration by notches and cracks'. ASME Journal of Applied 
Mechanics 35,379-386. 

Rice, J. R. (1972). International Journal of Solids and Structures 8,751-758. 
Rice, J. R. (1974a). `Limitations to the small scale yielding approximation for crack 

tip plasticity'. Journal of The Mechanics and Physics of Solids 22,17-26. 
Rice, J. R. (1974b). Elastic-plastic models for stable crack growth. In M. J. May (Ed. ). 

`Conf. Proc. Mechanics and Mechanisms of Crack Growth'. British Steel Corp.. 
Physical Metallurgy Centre Publication. Cambridge, U. K. 

Rice, J. R. and Johnson, M. A. (1970). The role of large crack tip geometry changes 
in plane strain fracture. In Kanninen, M., Adler, W., Rosenfields, A. and Jaffee, 
R. (Eds. ). `Inelastic Behavior of solids'. McGraw-Hill Series in Material Science 
and Engineering, New York. pp. 641-672. 

Rice, J. R. and Levy, N. (1972). `The part through surface crack in an elastic plate'. 
ASME Journal of Applied Mechanics 39,185-194. 

Rice, J. R. and Rosengren, G. F. (1968). `Plane strain deformation near a crack tip 
in a power law hardening material'. Journal of Mechanics and Physics of Solids 
16,1-12. 

Rice., J. R. and Sorensen, E. P. (1978). `Continuing crack tip deformation and fracture 
for plane strain crack growth in elastic-plastic solids'. Journal of Mechanics and 
Physics of Solids 26,163-186. 

Rice, J. R. and Tracey, D. M. (1974). `Computational fracture mechanics'. Journal 
of Mechanics and Physics of Solids 22,17-26. 

Rice., J. R., Paris, P. C. and Merkle, J. G. (1973). Some further results of J-integral 
analysis and estimates. In `ASTM STP 536'. pp. 231-245. 

Ritchie, R. 0., Knott, J. and Rice, J. R. (1973). ̀ On the relationship between critical 
tensile stress and fracture toughness in mild steel'. Journal of Mechanics and 
Physics of Solids 21,395-410. 

Rooke, D. P. and Cartwright, D. J. (1976). Compendium of stress intensity factors. 
Her Majesty's Stationary Office. London. 

Sham, T. L. (1991). `The determination of the elastic T-term using higher order 
weight functions'. International Journal of Fracture 48,81-102. 

Sharma, S. M. and Aravas, N. J. (1991). `Determination of higher order terms in 
asymptotic elastoplastic crack tip solutions'. Journal of Mechanics and Physics 

of Solids 39,1043-1072. 



11 REFERENCES 201 

Sharma, S. M., Aravas, N. J. and Zelman, M. G. (1994). Two-parameter characteriza- 
tion of crack tip fields in edge-cracked geometries: Plasticity and creep solutions. 
In Erdogan, F. and Hartranft, It. J. (Eds. ). `Fracture Mechanics, ASTM STP 
1220'. American Society for Testing and Materials. Philadelphia. 

Shih, C. F. (1974). Small-scale yielding analysis of mixed mode plane-strain crack 
problems. In `Fracture Analysis, ASTM STP 560'. American Society for Testing 
and Materials. Philadelphia, PA. pp. 187-210. 

Shih, C. F. (1981). `Relationship between the J-integral and the crack opening 
displacement for stationary and extending cracks'. Journal of Mechanics and 
Physics of Solids 29,305-326. 

Shih, C. F. (1983). Tables of Hutchinson-Rice-Rosengren singular field quantities. 
Technical report. Materials Research Laboratory, Brown University. Providence, 
RI. 

Shih, C. F. (1985). `J-dominance under plane strain fully plastic conditions: the 
edge bar subjected to combined tension and bending'. International Journal of 
Fracture Mechanics 29,73-83. 

Shih, C. F. and German, M. D. (1981). `Combined loading of a fully plastic ligament 
ahead of an edge crack. '. Journal of Applied Mechanics 53,27-43. 

Shih, C. F. and Hutchinson, J. W. (1986). Journal of Applied Mechanics 53,271-277. 
Shih, C. F. and O'Dowd, N. P. (1992). A fracture mechanics approach based on 

a toughness locus. In Dawes, M. G. (Ed. ). `Shallow Crack Fracture Mechanics, 
Toughness Tests and Applications'. The Welding Institute. Publishing, Abington 
Cambridge, England. 

Shih, C. F., O'Dowd, N. P. and Kirk (1993). A framework for quantifying crack 
tip constraint. In Hackett, E. M., Schwalbe, K. H. and Dodds, R. H. (Eds. ). 
`Constraint Effect in Fracture, ASTM STP 1171'. American Society for Testing 
and Materials. Philadelphia, PA. pp. 2-20. 

Slepyan, L. (1974). Izv. Nauk. SSSR. Mekhanika Tverdogo Tela 9,57. Translated 
from Russian. 

Sumpter, J. and Hancock, J. W. (1994). Status review of the J plus T stress fracture 
analysis method. In `10th Eur. Conf. on Fracture'. pp. 617-626. 

Sumpter, J. and Turner, J. W. (1976). Method for the laboratory determination of 
Jc. In `Cracks and Fracture, ASTM STP 601'. American Society for Testing 
and Materials. Philadelphia, PA. pp. 3-18. 

Sumpter, J. D. G. (1993a). An experimental investigation of the T stress approach. 
In Hackett, E. M., Schwalbe, K. H. and Dodds, It. H. (Eds. ). `Constraint Effect 
in Fracture, ASTM STP 1171'. American Society for Testing and Materials. 
Philadelphia, PA. pp. 492-502. 

Sumpter, J. D. G. (1993b). `Fracture avoidance in welded steel structures. Are recent 
test standards useful to industry ? '. Institution of Engineers and Shipbuilders 
in Scotland. 

Sumpter, J. D. G. and Forbes, A. T. (1992). Constraint based analysis of shallow 
cracks in mild steel. In Dawes, M. G. (Ed. ). `Shallow Crack Fracture Mechanics, 
Toughness Tests and Applications'. The Welding Institute. Publishing, Abington 
Cambridge, England. 

Tada, H., Paris, P. C. and Irwin, G. R. (1973). The stress analysis of cracks handbook. 
Technical report. Det Research Corporation. Hellertown, Pennsylvania. 



202 11 REFERENCES 

Tresca, H. (1864). Comptes Rendus Acad. Sci, Paris 59,754. 
Turner, J. W. (1973). Material Science in Engineering 11,275-282. 
Tvergaard, V. and Hutchinson, J. (1994). `Effects of T-stress on Mode I crack growth 

resistance in a ductile solid'. International Journal of Fracture 34,213-241. 
Varias, A. G. and Shih, C. F. (1993). `Quasi-static crack advance under a range of 

constraints - steady- state fields based on a characteristic length'. Journal of 
Mechanics and Physics of Solids 41(5), 835-861. 

Wallin, K. (1993). Statistical aspects of constraint with emphasis on testing and 
analysis of laboratory specimens in the transition region. In Hackett, E. M., 
Schwalbe, K. H. and Dodds, R. H. (Eds. ). `Constraint Effect in Fracture, 
ASTM STP 1171'. American Society for Testing and Materials. Philadelphia, 
PA. pp. 264-288. 

Wang, Y. Y. (1993). On the two-parameter characterization of elastic-plastic crack- 
front fields in surface cracked plates. In Hackett, E. M., Schwalbe, K. H. and 
Dodds, R. H. (Eds. ). `Constraint Effect in Fracture, ASTM STP 1171'. American 
Society for Testing and Materials. Philadelphia, PA. pp. 120-138. 

Wang, Y. Y. and Gordon, J. R. (1992). The limits of applicability of J and CTOD 

estimation procedures for shallow-cracked SENB specimens. In Dawes, M. G. 
(Ed. ). `Shallow Crack Fracture Mechanics, Toughness Tests and Applications'. 
The Welding Institute. Publishing, Abington Cambridge, England. 

Wang, Y. Y. and Park, D. M. (1992). `Evaluation of the T-stress in surface-cracked 
plates using line-spring method'. International Journal of Fracture 59,25-44. 

Wang, Y. Y. and Parks, D. M. (1994). Limits of J-T characterization of elastic-plastic 
crack-tip fields. In Kirk and Bakker (Eds. ). `Constraint Effects in Fracture: 
Theory and Applications, ASTM STP 1244. American Society for Testing and 
Materials. Philadelphia, PA. 

Wells, A. A. (1961). Unstable crack propagation in metals, cleavage and fast fracture. 
In `Proceedings of the Crack propagation Symposium'. Vol. 1. Cranfield, UK. 
pp. 210-230. Paper 48. 

Westergaard, H. M. (1939). `Bearing pressure and cracks'. Journal of Applied 
Mechanics 6,49-53. 

Williams, M. L. (1957). `On the stress distribution at the base of a stationary crack'. 
ASME Journal of Applied Mechanics 24,111-114. 

Williams, M. L. and Ewing, P. D. (1972). International Journal of Fracture 8,441. 
Xia, L., Wang, T. C. and Shih, C. F. (1993). `Higher-order analysis of crack-tip fields 

in elastic power-law hardening materials'. Journal of Mechanics and Physics of 
Solids 41,665-687. 

Yang, S., Chao, Y. J. and Sutton, M. A. (1993a). 'Higher order asymptotic crack 
tip fields in a power-law hardening material'. Engineering Fracture Mechanics 
45(1), 1-20. 

Yang, S., Chao, Y. J. and Sutton, M. A. (1993b). `Complete theoretical analysis for 
higher order asymptotic terms and the HRR zone at a crack tip for mode I and 
mode II loading of a hardening material'. Acta Mechanica 98,79-98. 

r ý.. ! ý' 


