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Abstract 
 

Pseudomonas aeruginosa inhibitor of cysteine peptidases (PA-ICP) is a potent protein 

inhibitor of papain-like cysteine peptidases (CPs) identified in Pseudomonas aeruginosa, an 

opportunistic pathogenic bacteria that can cause severe infections in human. It belongs to 

the newly characterized natural CP inhibitors of the I42 family, designated the ICP family. 

The members of this family are present in some protozoa and bacterial pathogens. They can 

inhibit both parasite and mammalian CPs with high affinity and specificity. Whether the 

main biological function of the proteins in the pathogens is to regulate the hydrolytic 

activity of the organisms’ endogenous CPs or exogenous CPs so as to facilitate the 

pathogens’ invasion or survival is still under investigation. Although Pseudomonas 

aeruginosa contains a CP inhibitor, no CP genes are found in its genome, suggesting that 

the targets of PA-ICP may be exogenous. This hypothesis is supported by the presence of a 

putative secretion signal peptide at the N-terminus of PA-ICP which may be involved in 

exporting the protein to target exogenous CPs.  

 

In order to shed light on the biological function and inhibitory specificity of PA-ICP, the 

structure and backbone dynamics of this protein were characterised using NMR 

spectroscopy. In this project, the inhibitory activity of PA-ICP to a range of mammalian 

model CPs was also studied. Like its previously studied homologs, PA-ICP adopts an 

immunoglobulin fold comprised of seven β-strands. Three highly conserved sequence 

motifs located in mobile loop regions form the CP binding site. The inhibitor exhibits higher 

affinity toward the mammalian CP cathepsin L than cathepsins H and B. Homology 

modelling of the PA-ICP-cathspin L interaction based on the crystal structure of the 

chgasin-cathpsin L complex  shows that PA-ICP may inhibit the peptidases by blocking 

the enzyme’s active site and that the interactions between chagasin and CPs may be 

conserved in PA-ICP-peptidase complexes. The specificity of the inhibitors may be 

determined by the relative flexibility of the loops bearing the binding site motifs and the 

electrostatic properties of certain residues near the binding sites.     
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CHAPTER 1 

 

 

INTRODUCTION PART 1: ICP PROTEINS AND CYSTEINE PEPTIDASES 



1                        

1.1 Overview 
This thesis presents my work on the structure and functional studies of PA-ICP, a clan 

CA family C1 cysteine peptidase (CP) inhibitor of the ICP family present in the 

pathogenic bacteria Pseudomonas aeruginosa. In this chapter, I will briefly review the 

biological and structural characteristics of cysteine peptidases and their inhibitors of ICP 

family.  

 

Pseudomonas aeruginosa is a gram-negative bacterium resident mainly in aquatic 

environments. It is an opportunistic pathogen infecting individuals suffering from 

immune deficiency (Mesaros et al., 2007). The bacteria can infect any part of the body 

including the respiratory tract, bones and joints, ears and eyes. The most serious 

infections include malignant external otitis, endophthalmitis, endocarditis, meningitis, 

pneumonia, and septicemia. The infections can be fatal because the bacterium resists 

many of today’s antibiotics. New approaches to therapy for these infections are under 

investigation (Mesaros et al., 2007).  

 

When infected by a pathogen, the first line of immune defense of the host is established 

by phagocytosis. The microorganism is taken up by the phagocytes and phagosomes are 

formed. The phagosomes are then converted into lysosomes which contain different 

types of digestive enzymes including a high concentration of peptidases that serve to 

degrade foreign proteins into peptides to break down the microorganism. In order to 

survive in this highly hydrolytic environment, pathogens have developed various skills 

to resist the host immune defense system. Synthesis of the peptidase inhibitors to 

regulate the host peptidases and so protect its own proteins from degradation is one of 

the approaches that are adopted by some pathogens. A good example is the protozoan 

parasite Leishmania major (Eschenlauer et al., 2009). It does not contain family S1A 

serine peptidases but it produces ecotin-like inhibitors to target host family S1A serine 

peptidases at the early stage of the infection (Eschenlauer et al., 2009). Likewise, 

Pseudomonas aeruginosa contains an ICP protein but has no clan CA family C1 

cysteine peptidase present in its genome (http://merops.sanger.ac.uk/). This finding 

supports the hypothesis that one role of ICPs in the parasites might be to manipulate host 

CP activity so as to facilitate parasite invasion or survival. Given the versatility of the 

living environments of Pseudomonas aeruginosa, PA-ICP may be not an adaptation for 

inhibition of mammalian hosts, but of plants or other microorganisms that may be 

encountered by the bacteria. Additionally, comparison of the sequence of P. aeruginosa 
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ICP with other members of this family showed that it possesses an unusual N-terminal 

extension containing a hydrophobic region preceded by a positively charged arginine 

residue which has the potential to be a secretion signal peptide. Although it is unknown 

whether the N-terminus is involved in translocation of ICP in vivo and if it is, where the 

protein will be targeted to, it raises the possibility that the protein may be able to be 

exported from the bacterium to target the exogenous CPs. Therefore, understanding the 

binding specificity of PA-ICP to different CPs on a molecular structure basis will 

provide more details of the ICP-peptidase interaction and the physiological role of ICPs. 

 

1.2 Cysteine peptidases of clan CA family C1  
 

1.2.1 Classification of cysteine peptidases  
Peptidases, also termed as proteinases or proteases, are enzymes that catalyses the 

proteolysis of peptide bonds. They have been found in eukaryotes, prokaryotes, fungi, 

and bacteria and have many physiological mechanisms. They play important roles in 

protein turnover, regulating protein degradation. The enzymes can be divided into two 

different types according to the location of the substrate cleavage site (Barrett, 1994). 

Endopeptidases cleave polypeptide chains at internal sites away from the termini, and 

exopeptidases act near the end of polypeptide chains. The enzymes can also be classified 

into six groups in terms of the nucleophilic residues in their catalytic center (Barrett, 

1994). There are serine, cysteine, aspartic, threonine, glutamic and metallo peptidases 

(http://merops.sanger.ac.uk). As the name implies, cysteine peptidases utilize a cysteine 

residue as a nucleophile. Nine clans of CPs, designated clan CA, CD, CE, CF, CH, CL, 

CM, CN and CO, have been recognized so far, comprising nearly 60 families 

(http://merops.sanger.ac.uk). The best-investigated one is that of clan CA family C1, also 

termed the papain family. The members of this family can be described as “papain-like” 

(Rawlings and Barrett, 1994).  

 

1.2.2 General structural features of cathepsin L, H and B and their principal 
catalytic mechanisms 
Mammalian papain-like CPs are also known as thiol-dependant cathepsins (Lecaille et 

al., 2002). My project focuses on cathepsin L, H and B as they were chosen to be used as 

model target CPs for PA-ICP because of likelihood of PA-ICP encountering them upon 

infection a mammalian host (Lecaille et al., 2002). In general, the proteins are 

synthesized with an N-terminal signal sequence (10–20 amino acids) followed by the 



3                        

zymogen which consists a pro-region (of between 38 and 250 amino acids) and the 

mature proteolytically active enzyme, generally 220–260 amino acids long (Lecaille et 

al., 2002). The mature forms of the CPs are mostly monomeric, with molecular weights 

in the range from 20 to 30 kDa (McGrath, 1999). The mature enzymes consist of two 

adjacent domains of roughly equal size (Turk et al., 2000) (fig 1.2). The N-terminal 

domain is dominated by three helical regions while the C-terminal domain is composed 

of a barrel of five to six strands. For many enzymes in this group, disulphide bonds form 

which stabilizes both domains. The catalytic traid of these enzymes is contributed by 

residues C25e, H163e and N187e (cathepsin L numbering and e for enzyme) that sit in 

the middle and at the bottom of the active site cleft located between the two domains of 

cathepsins (Turk et al., 2000). Seven possible substrate-binding sites bracketing the 

catalytic cysteine and histidine residues were first proposed by Schechte (Schechte.I and 

Berger, 1967), as illustrated in figure 1.1. The substrate orients to place its N-terminal 

(P) residues to interact with the S sites of the enzyme while its C-terminal (P’) residues 

make contact with the S’ subsites so that the carbonyl carbon of P1 and amide nitrogen 

of P1’ of the substrate are readily accessible to the catalytic thiolate-imidazolium ion 

pair. The S1 and S1’ sites bear the essential catalytic cysteine and histidine residues and  

interact directly with the scissile bond of the substrates while the shape and size of the 

sidechains of the variants in the S2 subsite of different cysteine peptidases dominates the 

substrate specificity in these enzymes.  

  



4                        

 

 
 

Fig 1.1  Illustration of two possible modes of interaction of papain with a 
hexapeptide. Seven possible substrate-binding site S and S’ are located on 
both site of the catalytic cysteine residue forming a 25 Å-long active site. 
The S and S’ sites interact with the N-terminal P sites and C-terminal P’ 
sites of the peptide, respectively. (Schechte.I and Berger, 1967) 

 

The active site clefts of these enzymes are similar and most of the enzymes are 

endopeptidases. Cathepsin H and B can also function as exopeptidases because the 

active site cleft in both peptidases is partially obstructed,  restricting access to the 

substrate binding site so as to accommodate only the terminal residues of the substrates 

(Nagler et al., 1997, Vasiljeva et al., 2003). When functioning as an exopeptidase, an 

eight-residue mini chain occupies the S2 site of cathepsin H in a substrate-like mode 

held in place through a disulphide linkage between residue C205e in the mature enzyme 

and C80Pe in the mini chain (Guncar et al., 1998, Vasiljeva et al., 2003). Thus, only the 

N-terminal residues of the substrates are able to be attacked by the S1 site of the enzyme. 

In cathepsin B, an occluding loop covers the S2’ subsite of the active site cleft and 

therefore allows just the C-terminal residues of the substrates to interact with the enzyme 

(Illy et al., 1997, Nagler et al., 1997).  

 

The mechanism of the reaction is illustrated in figure 1.3 (Storer and Menard, 1994). 

The central catalytic cysteine residue is collocated in the vicinity of the active site 

histidine residue so as to form a thiolate-imidazolium ion pair (Cys-S-/His-Im+) via 

proton transfer at optimal pH and the nucleophile is activated. Proteolysis begins with 

the attack on the carbonyl carbon of the scissile peptide bond of the substrate by the 

nucleophilic cysteine thiolate. The cleaved C-terminal fragment of amine R’-NH2 is 

released, resulting in the formation of a covalent intermediate: the acyl-enzyme. The 

subsequent steps involve the reaction of the acyl-enzyme with a water molecule to 
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release the N-terminal fragment and recovery of the free enzyme to continue a new 

catalytic cycle.  
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Fig 1.2 A superimposition of the cartoon representations of cathepsin L (green) 

(PDB 3BC3 (Chowdhury et al., 2008)), H (gray) (PDB 8PCH (Guncar et 
al., 1998)) and B (yellow) (PDB 2IPP). The active site C, H and N 
residues are highlighted with sticks. The mini chain in cathepsin H and 
the occluding loop in cathepsin B are coloured in blue and red 
respectively. The substrate binding sites S1’, S1, S2 and S3 are also 
indicated. Pictures were produced using PYMOL. 
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Fig 1.3  The mechanism of the cleavage of substrate by cysteine peptidase.  
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1.3 ICP proteins 
 

1.3.1 ICP family 
Natural cysteine peptidase inhibitors of the I42 family, designated the ICP or chagasin 

family, have been recently identified (Lo Conte et al., 2000, Rawlings et al., 2004). The 

members of this family are found in parasitic bacteria, achaea and protozoa 

(http://merops.sanger.ac.uk/). The proteins bind tightly to papain-like CPs with Ki values 

in the picomolar to nanomolar range (Sanderson et al., 2003a). The inhibition is 

competitive and reversible, specific to clan CA family C1 CPs, with a higher affinity to 

cathepsin-L like CPs than cathepsin-B like (Sanderson et al., 2003a). They have no 

significant sequence similarity to any other previously characterized cysteine peptidase 

inhibitors, nor do they share common fold (Rigden et al., 2002). Previous structural 

studies of these proteins nevertheless suggested convergent evolution of inhibitor 

function from an immunoglobulin fold (Smith et al., 2006, Salmon et al., 2006). 

 

Although it has been shown that their targets in vivo are clan CA family C1 CPs, the 

question whether the inhibitors’ major function is to regulate the activity of the 

endogenous or the exogenous CPs remains open. Chagasin, the first discovered ICP 

protein that occurs in Trypanosome cruzi, has been characterized as functioning as an 

endogenous cysteine peptidase inhibitor regulating the activity of the parasite’s 

lysozomal cysteine peptidase, cruzipain (Santos et al., 2005). However, it has also been 

suggested that the ICP protein in Leishmania mexicana may inhibit the CPs of the host 

(Besteiro et al., 2004).  

 

1.3.2 The overall fold and dynamics of chagasin and L. mexicana ICP  
The structures of two homologs of PA-ICP, chagasin and Leishmania mexicana (L. 

mexicana) ICP, have been extensively studied (Smith et al., 2006, da Silva et al., 2007, 

Salmon et al., 2006). Both chagasin and L. mexicana ICP adopt an immunoglobulin fold 

consisting seven or eight β-strands (fig 1.4). The strands assemble into two β-sheets to 

form a “Greek-key” β sandwich. The protein sequence alignment (appendix E) of the 

ICP family reveals a number of conserved hydrophobic residues and three highly 

conserved sequence motifs. The conserved hydrophobic residues appear alternately 

along the β strands contributing the majority of the hydrophobic core of the proteins. 

The three highly conserved motifs are located in three loop regions on the same end of 

the proteins, namely L2, L4 and L6 in chagasin and the BC, DE, FG loops in L. 
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mexicana ICP. The NMR solution structures of chagasin and L. mexicana ICP show that 

the L4 loop in chagasin and DE loop in L. mexicana ICP are poorly defined in both 

proteins. Chagasin and L. mexicana ICP fold in a similar way, although in the solution 

structure of chagasin an additional N-terminal β-strand is identified while it is not 

resolved in the L. mexicana ICP NMR structure. This may be due to the N-terminal 

truncation of L. mexicana ICP at residue S6 during protein sample preparation (Smith et 

al., 2006) . The BC loop of L. mexicana ICP contains a 310 helix which is not defined in 

the NMR structure of chagasin but is identified in its crystal structure (da Silva et al., 

2007).    

 

Backbone dynamics studies of the 15N relaxation rates of chagasin and L. mexicana ICP 

indicate that the majority of the residues in chagasin and L. mexicana ICP display 

dynamic properties as expected in folded globular proteins except for the L4 and DE 

loop which undergo internal motion in both proteins reflecting backbone flexibility in 

these regions (Salmon et al., 2006, Smith et al., 2006).    
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Fig 1.4 Cartoon representation 
of the tertiary structures of L. 
mexicana ICP (grey, PDB 2C34) 
(a) and chagasin (b). The 
proteins are mainly β stranded 
and adopt an immunoglublin 
fold. The DE, BC, FG loops in 
L. mexicana ICP and loop 2, 4, 6 
in chagasin form the inhibitory 
site. A 310 helix is observed for 
loop 2 in the crystal structure of 
chagasin (yellow, PDB 2H7W) 
and BC loop in L. mexicana ICP 
while in the solution structure of 
chagasin (blue, PDB 2FO8), it 
does not adopt a regular 310 
structure. The DE loop and loop 
4 are highly mobile.  
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1.3.3 ICP-peptidase interactions 

Site-directed mutagenesis studies of chagasin and L. mexicana ICP have revealed that 

the three highly conserved motifs NPTTGY/F, GXGG and RPW/F in loops L2, L4 and 

L6 respectively are responsible for peptidase inhibition (dos Reis et al., 2008, Smith et 

al., 2006). The crystal structures of chagasin and Trypanosoma brucei ICP with 

presumed target or model cysteine peptidases, from both host and parasites, have also 

been reported and provided detailed information on the inhibitor-peptidase interactions 

(Alphey and Hunter, 2006, Ljunggren et al., 2007, Redzynia et al., 2008, Wang et al., 

2007, Redzynia et al., 2009). The overall architecture of the complex and mode of the 

interactions are similar in all cases. The highly conserved motifs protrude from one end 

of the protein and together comprise the binding site that interacts with the enzymes (fig 

1.5). The short central loop L2 interacts directly with the catalytic triad of the peptidases 

while the other two loops fill the active site cleft to prevent substrate binding with loop 4 

filling the S subsites and loop 6 occupying the S’ subsites. The interaction of loop 2 with 

the peptidases is achieved by direct insertion of the highly conserved NPTTGY/F motif 

into the active site cleft, mainly through residue T31, whose main chain carbonyl is 

hydrogen bonded to the peptidase active site cysteine via a mediating water molecule 

(dos Reis et al., 2008). The backbone conformation of this residue protects the carbonyl 

carbon from being attacked by the active site cysteine. This may explain why the 

inhibitor is not cleaved when in complex with the active enzyme. The conformation of 

the loop is defined by the proline through hydrophobic interaction with Y57 of chagasin. 

The importance of this loop in peptidase binding is confirmed by a synthesized 

heptapeptide GNPTTGF which is able to inhibit the activity of papain with a Ki value of 

1.5 μM (Riekenberg et al., 2005). The interaction of the RPW/F motif in loop 6 plays an 

important role in the recognition of crucial residues in the catalytic cleft. The aromatic 

residue packs on top of a hydrophobic cluster. Together with the aromatic residue of the 

NPTTGY/F in loop 2, it serves to anchor the side chain of the arginine residue in an 

extended conformation. This allows the guanidium group of the arginine to be hydrogen 

bonded to the side chain carbonyl group of the enzyme’s N18e of papain, cathepsin L, 

cathepsin B, falcipain and cruzipain (Alphey and Hunter, 2006, dos Reis et al., 2008, 

Ljunggren et al., 2007, Redzynia et al., 2009). This component of the interaction appears 

to be stronger for parasites’ CPs and cathepsin B, as the asparagine residue in cathepsin 

L and papain is replaced by an aspartate which forms a salt bridge with the arginine. The 

proline helps maintain the optimal conformation of the loop.  
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Fig 1.5  a: Cartoon representation of the crystal structure of chagasin in complex 
with cathepsin L (PDB 2NQD), revealing that the binding of the inhibitor 
to the peptidase is performed by a tripartite binding motif blocking the 
enzyme’s active site. b: Loops 2, 4 and 6 (yellow) form the chagasin 
inhibitory wedge. The intermolecular interactions are dominated by 
hydrogen bonding and hydrophobic interactions. The interactions are 
likely conserved in other ICP-CP interactions 
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The interaction of loop 4 of chagasin with peptidases is based on crucial hydrophobic 

contacts with the enzyme’s S2 subsite. The importance of this interaction is highlighted 

by the finding that the replacement of the hydrophobic residues with hydrophilic ones 

diminished the inhibitory activity of L. Mexicana ICP toward its endogenous clan CA 

family C1 cysteine peptidase CPB.  

 

In addition to the abovementioned interactions, additional intermolecular contacts are 

present in the chagasin-cathepsin B complex. The conformation of region H190e-G198e 

of the enzyme is shaped by a few direct or water mediated hydrogen bonds with residues 

N55-Y57 in loop 4 of chagasin. A strong hydrogen bonding interaction is seen between 

residue Y57 of chagasin and E194e of cathepsin B. These contacts are not observed in 

the chagasin-cathepsin L, chagasin-papain and chagasin-falcipain 2 complexes. This 

may be because the disulphide bonds C156e-C209e in cathepsin L, C153e-C200e in 

papain and C151e-C212e in falcipain serve to hold the equivalent loops in distinct 

conformations.  

 

The occluding loop of cathepsin B is pushed out of the catalytic cleft by loop 6 of 

chagasin. This process would require additional energy and may explain why chagasin 

binds better to cathepsin L-like than cathepsin B-like enzymes.   

 

 

 



CHAPTER 2 

 

 

INTRODUCTION PART 2: PROTEIN NMR TECHNIQUE 
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2.1 Overview 
Some nuclei possess the property of aligning themselves with respect to an applied 

magnetic field in such a way that they can have several states, each with a different 

energy level. The nuclei that have this property are termed spins. Excitation of these 

spins with a radio frequency matching the difference between these energy levels causes 

absorption of energy and can give rise to NMR signals. This is the fundamental principal 

of NMR spectroscopy. NMR techniques have long been considered useful tools for 

structural characterisation of biomacromolecules complementary to X-ray 

crystallography with the ability to probe the dynamics of the molecules (Kay, 2005, 

Wuthrich, 1990). This chapter reviews the basic theoretical background of the methods 

that were applied to investigation of the PA-ICP protein structure and dynamics using 

NMR.   

 
2.2 Multi-dimensional triple resonance experiments for chemical shift 
assignment 
Conventional NMR experiments carried out on protein samples from natural sources are 

restricted to utilizing magnetization transfer based solely on protons because hydrogen is 

the only nucleus that has a naturally abundant isotope with a nuclear spin of ½ 

(Wüthrich, 1986). With more advanced isotopic labelling techniques, additional 

magnetization transfer pathways can be generated by replacing the naturally abundant 
12C and 14N with the spin ½ nuclei of 13C and 15N and spin 1 nucleus of 2H in biological 

macromolecules (Gardner and Kay, 1998). This allows the application of 

multidimensional triple resonance NMR experiments to protein structure and dynamics 

studies (Sattler et al., 1999). Triple resonance experiments rely exclusively on 

heteronuclear 1J/2J coupling to achieve magnetization coherence transfer. The 

magnetization of a spin can be transferred through bonds to another spin and then 

transferred back the same way (out-and-back), or the magnetization is transferred to 

another spin where it stays for acquisition (out-and-stay). Typically, the name of each 

experiment is composed of the nuclei involved in the magnetization transfer according to 

its transfer pathway with the spins whose chemical shifts are not evolved are put in 

parentheses.  

 

The chemical shift of each observed spin has to be assigned to a specific atom in order to 

interpret the NMR data for structure calculations and dynamics studies. Assignment 

strategies have been established to fulfill this purpose with the aid of multiple 
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dimensional triple resonance experiments. The experiments are able to correlate 1H, 15N 

and 13C spin frequencies sequentially along the polypeptide chain through backbone 

amide linkages as well as within specific spin systems. Resonance assignment 

commonly starts from the protein backbone by sequentially connecting the backbone 

atoms to their related chemical shifts. The assignments are then extended from the 

backbone atoms to associated side chain carbons and protons. This technique has two 

advantages.  One is that multi-dimensional triple resonance experiments utilize relatively 

large heteronuclear 1J/2J coupling constants (fig 2.1) to perform coherence transfers 

faster than experiments that rely on relatively small homonuclear 1H 3J couplings to 

achieve magnetization transfer. It minimizes the loss of magnetization due to relaxation 

during the pulse sequences (Sattler et al., 1999). Another is that, each crosspeak has 

higher information content, which reduces signal overlap and simplifies data 

interpretation (fig 2.2). 

 

2.3 Structure studies 
 

2.3.1 NMR restraints  
NMR restraints used for protein structure determination have been extensively reviewed 

by Guntert (Guntert, 1998). Despite the increasing availability of other types of 

restraints, distance restraints, which provide distance information between two spins 

close in space, remain the most useful and abundant type of  restraint that can be 

incorporated in the structure calculation of a protein using NMR. Distance restraints are 

usually derived from NOE experiments and as proton are the most enriched spins in 

proteins, the interproton contacts are most easily obtained. The majority of NOE 

crosspeaks arise from spins in the same residue or between near neighbours in the 

primary sequence, while the most important ones for structure determination are the 

NOE restraints obtained from spins that are far apart in the primary structure but close to 

each other in the tertiary structure. 

 

In addition to restraints based on NOE enhancements, hydrogen bond restraints can also 

supply structural information between hydrogen bonded atoms. Residual dipolar 

coupling restraints measured in weakly aligned media have emerged as a useful tool to 

define long-range order of biomolecules (Bax and Grishaev, 2005). Torsion angle 

restraints provide conformational information of the protein backbone or side chains. 

They can be used for structure refinement and validation. 
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Fig 2.1 The 1J and 2J coupling constants that are used for magnetization transfer 

in 13C-, 15N-labelled proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.2  A representation of a 3D experiment extended from a 2D experiment. 
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2.3.1.1 Distance from NOEs 

The intensity of nuclear Overhauser effect (Iij) due to dipolar interactions between 

neighboring protons i and j is dependent on the inverse sixth power of the internuclear 

distance (rij
-6) (NEUHAUS and WILLIAMSON, 2000) and a correlation function 

 

6( ) ( )ij ij cI r f τ−∝ ×  (2.1) 

 

where τc refers to the correlation time. Under the simple circumstances where the system 

under investigation is rigid and tumbles isotropically, τc remains constant for all 

interproton pairs, the relative intensity is solely proportional to rij
-6. Therefore, if a 

reference distance rref can be set with known NOE intensity Iref, the unknown distance rij 

between two protons giving rise to an NOE can be determined as follows 

 

1
6( )ref

ij ref
ij

r r
I
I

= ×
 (2.2) 

 

2.3.1.2 Residual dipolar coupling 
Nuclear spins possessing a magnetic moment can interact through space via dipole-

dipole interactions. A spin ½ nucleus A can be considered a magnetic dipole generating 

a local magnetic field that affects the magnetic field of the neighbouring spin B, 

resulting in a frequency shift of spin B dependent on the distance of the two nuclei and 

the angle between the internuclear vector and the applied magnetic field B0 (Bax et al., 

2001). The dipolar coupling is given by 

 

0
3 3

(3cos 2 1)
16

A B

AB

AB h
r

D μ γ γ θ
π

−= −  (2.3) 

 

where rAB is the internuclear distance and θ the angle between the internuclear vector 

and B0, μ0, the magnetic permeability of vacuum, h, Planck’s constant, γx, gyromagnetic 

ratio of nucleus x. For a given rAB, the maximum dipolar coupling DAB
max is obtained 

when θ=00 while the dipolar coupling becomes zero when θ=54.70.  
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As the dipolar coupling is dependent on the orientation of the internuclear vector with 
respect to the applied magnetic field B0, the dipole-dipole interactions in spin ½ enriched 
biomacromolecule contain valuable orientation information. In solution NMR the 
relative positions of the two spins in space alter due to fast isotropic molecular tumbling 
and consequently, the angle θ alters. If the molecule tumbles faster than the dipolar 
coupling (typically 0-10-5 Hz), the dipolar coupling averages and a narrow signal is 
observed. The useful orientational information contained by dipolar interaction is lost. 
To extract this information for structure calculation, the motion of the molecule needs to 
be restricted so as to align the molecule with respect to the applied magnetic field. 
However, if the molecular motion is restricted entirely, the dipolar interactions occurring 
over large networks of spins together with chemical shift anisotropy will make data 
interpretation difficult. Also, solid state is not physiological for soluble proteins. 
Practically, the molecule is partially aligned to a small degree leading to an incomplete 
averaging of the spatially anisotropic dipolar interaction without sacrificing the spectral 
resolution too much and the residual dipolar coupling between two neighbour nuclei can 
be measured (Bax, 2003). The measured RDC refers to the orientation of the 
internuclear vector in an axis system defined by the global molecular frame, which is in 
turn partially oriented with respect to the static magnetic field. The alignment can be 
defined by an alignment tensor A, a real valued, symmetric, traceless 3X3 matrix with 5 
degrees of freedom. The principal components Axx, Ayy and Azz of A reflect the tendency 
of the x, y and z axes to be parallel to B0 with |Azz|≥|Ayy|≥|Axx| and Axx+Ayy+Azz=0. The 
dipolar coupling between nuclei A and B is determined as 

 

( ) ( ) 2 23,     3cos -1 sin  cos22
AB

a
AB DD Rθ ϕ θ θ ϕ⎡ ⎤

⎢ ⎥
⎣ ⎦

= +  (2.4) 

  

where 0
3 316

AB A B
a

AB

hSD
r

μ γ γ
π

= −  is referred to the magnitude of the dipolar coupling 

tensor.
AB

r
AB

a

DR
D

= is the rhombicity and 
)1[ ]

3 2

AB AB
xx yyAB AB

a zz

D D
D D

+
= − , 

1 [ ]
3

AB AB AB
r xx yyD D D= − .  and φ are the spherical coordinates describing the orientation 

of the AB vector in the principal axis system of the alignment tensor. S is the general 

order parameter describing the effect of the internal motion and <rAB> is the vibrational 

averaged internuclear distance (Ottiger and Bax, 1998). 
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2.3.2 Restrained molecular dynamics, a method for protein NMR structure 
calculation  
The most popular method used to calculate protein structures from NMR data is 

restrained molecular dynamics (rMD) (NEUHAUS and WILLIAMSON, 2000). 

Restrained molecular dynamics calculates the molecular structure by monitoring the 

changes in the potential energy of the molecule under the influence of terms describing 

our knowledge of its covalent structure and the experimental data during a molecular 

dynamics simulation. A force field representing the potential energy of the molecular 

system is applied to each atom. In general, the following force field is used to calculate 

the potential energies imposed on an atom, 

 

Etotal = Ecovalent + Enon-covalent +Eexperimental (2.5) 

 

The covalent and non-covalent potential energies can be defined by   

 

Ecovalent = Ebond + Eangle + Edihedral + Eimproper   (2.6) 

& 

Enoncovalent = Evan der Waals (2.7) 

 

with Eimproper representing terms which enforce the chirality of chiral centers and 

planarity of aromatic rings and peptide groups. The covalent and non-covalent terms 

model energy penalties for deviations of the structure from the ideal values of the 

molecular geometry. The force field parallhdg 5.3 designed by Linge et al. (Linge et al., 

2003b) was used for structure calculation of PA-ICP. The details of this force field have 

been extensively described in the literature and will not be further discussed here. The 

experimental term is to restrain the simulated molecular motion such that the structures 

satisfy the experimental observations. The simulation process gives some kinetic energy 

to each atom in the molecule with its initial position determined by a chosen starting 

molecular conformation. The kinetic energy is defined by an initial velocity of the atom 

in a randomly chosen direction, which is in turn calculated from a given temperature for 

all atoms in the molecule as a whole according to a Maxwellian distribution. As the atom 

moves, the velocity and the molecular geometry change (i.e., its kinetic energy and 

potential energy change) according to the Newton’s laws of motion. The movement of 

the atoms can be simulated over time by repeatedly calculating their positions, kinetic 

and potential energies at time intervals ∆t shorter than the highest frequency of motion in 
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the system. The kinetic energy is properly adjusted after each ∆t step to ensure the given 

temperature is kept constant during simulation. The purpose of this simulation is to find 

the sets of coordinates that satisfy the experimental data as well as possible so that the 

calculated structures have the lowest potential energy.  

 

2.3.3 Simulated annealing as a method for target function optimization 
Simulated annealing (Kirkpatrick et al., 1983) is a powerful optimization tool for 

locating the minima of complex functions. Annealing is simulated by a high-temperature 

search phase followed by a slow cooling phase. An initial velocity is assigned to each 

atom corresponding to the initial simulated annealing temperature. At this stage, the 

restraining forces are set to be negligible so that the kinetic energy will dominate the 

molecular system to allow the atoms to move about freely to be able to pass any folding 

barriers. The system is then cooled down slowly, reducing the kinetic energy, while the 

weight on the potential energy terms is increased gradually until their functions are fully 

restored. To avoid the atoms being trapped in local energy minima, the cooling should in 

theory be infinitely slow, although this cannot be achieved in practice. Therefore, the 

system is kept in pseudo-equilibrium throughout the cooling phase. The increases in the 

forces can be considered to have the same effect as decreasing the temperature as they 

both decrease the freedom of the atomic movements. Varying the forces has other 

advantages in that different forces can be introduced at different stages of the calculation 

and that the weight of the different forces in the calculation can be tuned by allocating 

user-defined force constants. The size of the atoms and the repulsion between them are 

varied at different calculation stages to determine how easily they can pass by each 

other. In addition, for non-bonded interactions, a simplified molecular system is used at 

the early stages of the calculation to improve efficiency with the consideration of the 

interaction of all atoms re-established at the later calculation stages. As the atoms move, 

the forces applied to them at each step are calculated based on the gradient of the target 

function. In theory, the atoms settle down gradually to positions with lowest potential 

energy and the global potential energy minimum of the structure will be achieved if 

there is a unique solution. To find the energy minimum, a set of structures are calculated 

from molecular systems with randomly chosen starting positions for each atom. During 

simulated annealing, the randomized initial coordinates are driven by the experimental 

restraints to minimize the potential energy of the molecular system. With appropriately 

chosen simulated annealing parameters, a good fraction of calculated structures will end 

up with similar molecular conformations and minimal potential energy at the end of the 
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simulation. Because the experimental data only cover a small proportion of the geometry 

information for a protein molecule and they are restricted in certain ranges instead of 

being absolute values, the calculated structures represent the possible conformations of 

the molecule compatible with the experimental restraints and theoretical values. 

Therefore, it is appropriate to characterize the protein structure calculated from NMR 

data by an ensemble of the calculated structures rather than by a single one. 

 

2.3.4 Potential energy of the distance restraints Enoe 
The principal experimental terms of the force used in structure calculation come from 

NOE distance restraints. The potential energy Enoe of a single distance restraint I is 

defined by a flat-bottem-hamonic-wall (FBHW) potential (Nilges et al., 1988) stated as 

follows: 

 

 

               Enoe=                             (2.8) 

            

 

 

 

where knoe refers to the force constant, while Li and Ui are the lower and upper bounds of 

NOE-derived distance, and iD  the calculated distance or summed r-6 distance in current 

structure. When iD  > Ui + n, the potential switches from harmonic to asymptotic by 

 
1( ) ( )   if i iA B D n C D n Di n−+ − + − >  (2.9) 

                                                                                                               

where A determines the asymptotic gradient, B and C are the coefficients to make the 

potential continuous and differentiable.  

 

It is obvious that the larger the deviation of the calculated value from the allowed 

experimental distance range, the larger the potential energy Enoe that will be seen. 

Therefore, the degree of the inconsistence in the calculated structures caused by violated 

distance restraints can be easily spotted from the calculated distance potential energy 

term.  

 

2( )        if inoe i i i
i

k L D D L− <∑

0                               if  i i iL D U≤ ≤

2( )        if  inoe i i
i

k D U Ui D n− < <∑
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2.4 Dynamics analysis 
 

2.4.1 From relaxation to dynamics 
In NMR, after the application of a radio frequency pulse, the disturbed spins have the 

tendency to come back to their thermal equilibrium. This phenomenon is called 

relaxation and can be characterized by the longitudinal relaxation time T1 and transverse 

relaxation time T2 (Hore, 1995). The relaxation mainly results from two types of 

interactions for spin ½ nuclei caused by randomly fluctuating internal magnetic fields 

due to molecular motion, leading to spreading of frequency. The dipolar interaction, the 

effect of one nuclear magnetic field on another, is the dominant relaxation mechanism 

between the magnetic moments of the spins and typically lies in the range 0~105 Hz 

(Derome, 1987). Chemical shift anisotropy is another source of relaxation which is 

caused by different orientations of the molecule giving rise to different electron 

shielding. This effect also typically lies in the range 0~105 Hz. The rates of relaxation 

are related to overall rotational correlation time and internal motions. 

  

For a spherical protein, the overall molecular tumbling would be isotropic and the 

correlation times similar throughout the protein backbone. A rod-like molecule, 

however, gives rise to anisotropy of the overall rotational motion leading to different 

rates of reorientations about the various molecular axes according to the anisotropy of 

the diffusion tensor. The rotation about the longest axis will be more rapid than the 

rotation about other axes.  

 

The relaxation rates of individual spins in a molecule are by no means the same. The 

relaxation properties of each spin are also affected by the internal motions of the spin 

relative to the overall rotational molecular motion. The internal motions of protein and 

peptide cover a wide range of time scales from picoseconds to milliseconds and longer. 

Dynamics occurring in the picosecond and nanosecond time range are considered fast 

internal motion. It arises from local motion of individual bonds or small groups of atoms 

faster than the overall molecular tumbling and can be detected by measuring T1, T2 

relaxation times and heteronuclear NOE. Internal motions involving large groups of 

atoms such as domain motions usually happen on the nanosecond to millisecond range, 

whereas protein folding and unfolding process and enzyme catalysis take microseconds 

to milliseconds and even longer. Slow conformational or chemical exchange processes 

occur on the millisecond to microsecond time scale. The transverse relaxation rate is 
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very sensitive to this type of motion, leading to a decrease in T2 relaxation time.   

 

2.4.2 Lipari-Szabo model free analysis of relaxation data 
Dynamics studies of protein backbones are carried out by measuring backbone amide 
15N T1, T2 relaxation times and heteronuclear {1H, 15N} steady NOE. The relaxation 

constants R1 (=1/T1), R2 (=1/T2) and heteronuclear NOE are determined by the spectral 

density functions, J(ω) as follows (Osborne et al., 2001),  
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where 
3

NHrd
−

0 Η Ν
2

μ γ γ < >
8π

= h , c=∆σωN, 0μ is the permeability of free space; h is 

Planck’s constant; Hγ  and Nγ  are the gyromagnetic ratio of 1H and 15N respectively, 

NHr  is the N-H bond length; ∆σ is the axially symmetric CSA tensor of 15N with the 

symmetry axis collinear with the H-N bond vector; Hω  and Nω  are the Larmor 

frequencies of 1H and 15N. Because they are related to the external magnetic field used 

for measurement, the relaxation experiments are primarily sensitive to motions on 

picosecond to nanosecond range as the typical magnetic field available at present are 

from 50 MHz to 900 MHz for 1H and 15N (Lipari and Szabo, 1982a). eR x  is used to 

account for chemical exchange processes that contribute to the decay of transverse 

magnetization, implying motions on the microsecond to millisecond time scale.  

 

A comprehensive knowledge of the internal motions of proteins helps the understanding 

of their biological function. The relaxation data obtained above are influenced by both 

overall molecular tumbling and internal motions. Therefore, it is important to distinguish 

the influence of the overall rotational motion in order to better study the internal motions. 

In addition, a good estimation of the rate and the degree of the internal motion together 

with the identification of the chemical and/or conformational exchange processes in the 

molecule will be very informative. This can be achieved by analysis of the relaxation 
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data using a Lipari-Szabo model-free formalism (Lipari and Szabo, 1982a, Lipari and 

Szabo, 1982b). For molecules tumbling isotropically in solution, the amplitude and rate 

of the motions can be deduced from the spectral density function ( )J ω  

 
2 2

2 2

2 (1 )[ ]
5 1 ( ) 1 ( )

( ) m

m

S SJ τ − τ
+

+ ωτ + ωτ
ω =   (2.13) 

                                                                                                               

where 1 1
m e

−1 − −+τ = τ τ , mτ  is the isotropic rotational correlation time of the 

molecule, eτ is the effective correlation time for internal motions, S2 is the square of the 

general order parameter characterizing the amplitude of the internal motions, defined by 

value between 1.0 (absolute restriction) and 0.0 (free rotation). If the molecule 

experiences a high degree of rotational anisotropy, its impact on the spectral density 

function needs to be further considered (Bruschweiler et al., 1995).  

 

 



CHAPTER 3 

 

 

SAMPLE PREPARATION AND BIOLOGICAL CHARACTERISATION  

OF PA-ICP 

 



25                      

3.1 Overview 

Isotopic labelling is now routinely used for NMR study of proteins in excess of 10 kDa. 

Due to the cost of the isotopic labelling, obtaining high yields of soluble protein from 

minimal supply of the labelling medium is desired. In addition, because the acquisition 

of the NMR experiments for structure and dynamics studies can take weeks at typical 

temperature of 15-400C, the stability of the protein sample has to be taken into account. 

Thus, to meet the requirements for NMR sample production, the PA-ICP protein had to 

be overexpressed to good yield and purified to homogeneity. The first part of this 

chapter describes the optimization of the sample preparation of PA-ICP for NMR study.   

 

The second part of this chapter investigates the translocation and inhibitory activity of 

PA-ICP. This information, together with the structural knowledge of PA-ICP, helps shed 

light on its biological functions. 

 

3.2 Protein sample preparation  
 
3.2.1 Optimization of protein expression 
E.coli. BL21 (DE3) strain was transformed with a pET28a-derived plasmid (pBP 109) 

containing the PA-ICP gene encoding the full-length of the protein with a molecular 

weight of approximately 17 kDa including an N-terminal His tag. The amino acid 

sequence of the protein is characterized in appendix F. The recombinant PA-ICP protein 

was expressed as described in section 8.2.1. The expression level was insufficient and a 

large proportion of the target protein remained insoluble (fig 3.1 a). Many efforts were 

pursued to increase the amount of soluble protein and to improve the expression level. 

The insolubility may be due to formation of inclusion bodies, which happens when a 

heterologous protein expressed in E.coli using a strong promoter fails to fold to its native 

conformation (Rudolph and Lilie, 1996). To increase the solubility of the protein, the 

expression was tested under low temperature and reduced IPTG concentration for 

induction to decelerate translation. Nevertheless, reduction in temperature to 20 (fig 3.1 

b) and 18 0C following the IPTG induction (data not shown) made no significant 

improvement in solubilization of PA-ICP protein and adjustment of IPTG concentration 

to 0.05 mM did not help either (data not shown). Examining the DNA sequence of PA-

ICP reveals that 3 prolines (CCC) in PA-ICP use a codon that is infrequently used by 

E.coli and codon bias may cause low expression level. Thus, the protein was also 

expressed in BL21 codon plus (DE3)-RIPL strain that supplies additional copies of 
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specific tRNA genes that are rare in E. coli. The expression was tested in LB medium 

with induction at 20 0C and assayed using SDS-PAGE. As can be seen in figure 3.2 a, 

the expression level was improved. However, after cell lysis, the majority of the protein 

remained insoluble (fig. 3.2 b).  

 

 

 

 

 

 

 

 

 

 

Fig 3.1 SDS-PAGE assay of the expression of PA-ICP in BL 21 (DE3) with 37 
0C (a) and 20 0C (b) induction. The expression level increased with lower 
temperature induction. However the majority of the protein remained 
insoluble after lysis. 

 

 

 

       

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3.2  a: SDS-PAGE assay of the expression of PA-ICP in BL21 codon plus 

(DE3)-RIPL strains. b: The majority of the protein remained insoluble 
after lysis using bugbuster.  
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a hydrophobic N-terminal extension composed of about 20 residues (fig 3.3). It has been 

recognized as a potential signal peptide with two possible cleavage sites by the SignalP 

3.0 server (http://www.cbs.dtu.dk/services/SignalP/) (Nielsen et al., 1997). The 

hydrophibicity of the putative secretion signal peptide may result in misfolding and 

aggregation if not recognized by E.coli secretion mechanism (Baneyx, 1999). On the 

basis of the sequence alignment, deletion of the N-terminal extension is unlikely to 

disrupt the tertiary structure of PA-ICP and its function. Hence, a new construct was 

engineered to produce a PA-ICP truncated at residue Q23, resulting a His-tagged protein 

with a molecular weight of about 14.5 kDa. The new plasmid was expressed in BL 21 

(DE3) cells and the cells were lysed. SDS-PAGE showed increases in expression level 

and solubility (fig 3.4). 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3.3 Amino acid sequence alignment of the ICP family. The N-terminal 

hydrophobic extension is coloured in red and the potential signal 
peptidase cleavage sites in blue. The arrow indicates to the N-terminal 
residue of the new construct. 

 
 

1

P. aeruginosa ICP  (1) P. aeruginosa ICP  (1) MSFSPSRLLLPLSIVVLAMSFSPSRLLLPLSIVVLAGCGCAGAGQQQQKPVVTLDDADDCSPLKLTQGQELVLT KPVVTLDDADDCSPLKLTQGQELVLT 

L.mexicana ICP  (1) L.mexicana ICP  (1) --------------------------------------------------MIAPLSVKDNDKWVDTHVGKTTEIHMIAPLSVKDNDKWVDTHVGKTTEIH

T. brucei ICP  (1) T. brucei ICP  (1) ------------------------------------------------MSHNLFTEEDNNKTIRMVIGETFTIEMSHNLFTEEDNNKTIRMVIGETFTIE

T. cruzi ICP  (1) T. cruzi ICP  (1) --------------------------------------------------MSHKVTKAHNGATLTVAVGELVEIQMSHKVTKAHNGATLTVAVGELVEIQ

51                                        51                                        100100

P. aeruginosa ICP (51) LPSNPTTGFRWELRNPAASVLKRP. aeruginosa ICP (51) LPSNPTTGFRWELRNPAASVLKR----LGPEVYSNSEEDSGLGPEVYSNSEEDSG----------------LVGLVG

L.mexicana ICP (26) LKGNPTTGYMWTRVGFVGKDVLSDEILEVVCKYTPTPSSL.mexicana ICP (26) LKGNPTTGYMWTRVGFVGKDVLSDEILEVVCKYTPTPSS------------TPMVGTPMVG

T. brucei ICP (27) LKSNPTTGYTWLRSGLAGTELSDCTFAIQSKFNNRAPHDNHT. brucei ICP (27) LKSNPTTGYTWLRSGLAGTELSDCTFAIQSKFNNRAPHDNHKNHRRLLVGKNHRRLLVG

T. cruzi ICP (26) LPSNPTTGFAWYFEGGTKESPNESMFTVENKYFPPDSKLT. cruzi ICP (26) LPSNPTTGFAWYFEGGTKESPNESMFTVENKYFPPDSKL------------------LGLG

101                                       101                                       145 145 

P. aeruginosa ICP (91) SGGESTWRFRVAASGDDRLELVYRRPWEKDAEPAESFSCAIP. aeruginosa ICP (91) SGGESTWRFRVAASGDDRLELVYRRPWEKDAEPAESFSCAIQVRQVR--

L.mexicana ICP (70) VGGIYVVLVKPRKRGHHTLELVYTRPFEGIKPENERYTLHLL.mexicana ICP (70) VGGIYVVLVKPRKRGHHTLELVYTRPFEGIKPENERYTLHLNVKNVK--

T. brucei ICP (77) AGGTMVLEVKALKXGKHTLSLAYGRPWVGFNAAAKRYNIHVT. brucei ICP (77) AGGTMVLEVKALKXGKHTLSLAYGRPWVGFNAAAKRYNIHVEATAEATA

T. cruzi ICP (67) AGGTEHFHVTVKAAGTHAVNLTYMRPWTGPSHDSERFTVYLT. cruzi ICP (67) AGGTEHFHVTVKAAGTHAVNLTYMRPWTGPSHDSERFTVYLKANKAN--

51

50

 100

  101 145
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Fig 3.4 SDS-PAGE assay of the expression and Ni2+ affinity chromatography of 

the new construct in BL21 (DE3). The expression and solubility of PA-
ICP were improved significantly. 

 

3.2.2 Optimization of protein purification 
The protein was first purified using the strategy as follows. After expression, the cells 

were harvested and lysed as described in section 8.2. With the aid of the His tag, the 

protein was first purified using immobilized metal ion affinity chromatography (fig 3.4), 

after which, the His tag was selectively cleaved using thrombin (fig 3.5), resulting in a 

protein of approximately 12.4 kDa. Thrombin and the cleaved His tag were then 

removed using ion-exchange chromatography (fig 3.6). Under reducing conditions, the 

protein appeared to be pure in SDS-PAGE and the quantity was sufficient for NMR 

study. However, the sample degraded after a few days, which did not meet the 

requirement of stability for NMR study. A 2D 15N HSQC spectrum acquired on a 15N 

uniformly-labelled sample at 308 K showed that many crosspeaks were nicely dispersed 

in the 1H dimension, covering the frequency range from 6 to 11 ppm. it  indicates these 

crosspeaks arise from amide groups in properly folded molecules. However, a cluster of 

broad signals were also observed in the region between 8 to 8.6 ppm in the 1H dimension 

which is typical for the random coil chemical shifts, suggesting that a proportion of the 

protein molecules in the sample are in a denatured state (fig 3.8 a). The broadening of 

the signals may result from slow conformational change or/and an unexpected increase 

in the overall correlation time due to oligomerization. A more sophisticated purification 

strategy had to be investigated. Since the presence of the His tag does not interfere with 

the inhibition of CPs to PA-ICP (Sanderson et al., 2003b), the removal of the His tag 
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was skipped to avoid unexpected hydrolysis by thrombin. Also, ion exchange 

chromatography was replaced by size exclusion chromatography after Ni2+ affinity 

chromatography.  

 

 

 

 

 

 

 

 

 

 

Fig 3.5 SDS-PAGE of His tag cleavage of PA-ICP by thrombin. After 
immobilized metal ion affinity chromatography, the protein sample were 
subject to thrombin treatment to remove the His tag.  

 

The elution profile of gel filtration was monitored by absorbance at 280 nm and showed 

two peaks (fig 3.7). The elution volumes of the two peaks allowed the estimation of the 

protein molecular weight to be about 28 and 14 kDa respectively, which were close to 

the dimeric and monomeric size of the PA-ICP protein. Protein sequence revealed PA-

ICP has two cysteines, C13 and C106. Examining the protein samples using SDS-PAGE 

revealed that the main protein band showing up at 28 kDa under non-reducing 

conditions was shifted to 14 kDa when the sample was reduced, indicating that the 28 

kDa protein peak was an intermolecular disulphide bonded dimer of PA-ICP (fig 3.7). 

Also, there are two protein bands that show up in non-reducing SDS-PAGE both with 

molecular weights close to 14 kDa and the lower band merged into the upper one under 

reducing conditions. This implied that the two protein bands represented two redox 

states of PA-ICP monomers, an intra molecular disulphide bonded monomer migrating 

as the lower band and a reduced monomer as the upper band. The eluent containing the 

dimeric PA-ICP was examined using 15N HSQC spectra (fig 3.8 b). The very broad 

peaks in the 15N HSQC spectrum indicate that the dimer undergoes slow conformational 

exchange. The signals are clustered in the typical random coil chemical shift region, 

implying the dimer is unstructured, presumably due to the formation of the 

intermolecular disulphide bond. 
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The monomeric sample was chosen for structural study as there is no evidence showing 

that the ICP proteins have to be dimerized to function and the intermolecular disulphide 

bonded dimer is considered to be a side-effect of over expression. The majority of the 

crosspeaks in the 15N HSQC spectra acquired on the intramolecular disulphide bonded 

and reduced monomers showed no significant changes in peak positions, indicating the 

redox states of the two cysteines do not have significant impact on the protein structure 

(fig 3.9). For structural studies, the protein sample is required to be homogenous. 

However, the disulphide bonded monomer did not convert to the reduced form at low 

pH at an appreciable rate even with 10 mM DTT present. Moreover, the degradation still 

occurred and could only be decelerated by the addition of 1 mM EDTA which, on the 

other hand, prevented the formation of the disulphide bonds. Hence, to make a stable 

homogenous sample for structure determination, the purified monomeric protein was left 

for over a week at 4 0C to allow sufficient oxidation of the protein and EDTA was added 

at this point to prevent degradation. The line width and dispersion of the crosspeaks in 

the 15N HSQC spectrum collected on a 15N uniformly labelled sample suggested that the 

optimized expression and purification protocols were sufficient to produce a 

homogenous PA-ICP sample stable for weeks for NMR study (fig 3.8 c).  
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Fig 3.8 The 15N HSQC spectra acquired 
on 15N uniformly labelled PA-ICP protein 
samples purified using ion exchange 
chromatography (a) and size exclusive 
chromatography (b and c). The gel 
filtration eluent containing the dimeric 
PA-ICP gave rise to spectrum b while 
spectrum c was recorded on the sample 
concentrated from the eluent containing 
the monomeric protein a week after gel 
filtration.  All spectra were collected at 
308 K, pH 6.0   

1H (ppm) 

15
N

 (p
pm

) 

a 

c 
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Fig 3.9 A comparison of the 
15N HSQC spectra of reduced 
(black and green), oxidized 
(red and orange) monomeric 
PA-ICP at pH 6.8 and 7.2 
respectively and a mixture of 
both (blue and brown) at pH 
5.0. The samples were 
purified using the optimized 
protocol. Despite the pH 
difference, the reduced and 
disulphide bonded monomers 
show no significant 
differences in the 15N HSQC 
spectra for the majority of the 
crosspeaks.  a: The 15N-
HSQC spectra of reduced in 
comparison with that of 
oxidised PA-ICP. b and c: the 
15N HSQC spectra of reduced 
(b) and oxidised PA-ICP (c) 
in comparison with that of the
mixture of both.  
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3.3 Redox studies of PA-ICP 

As stated above, it was difficult to reduce the protein with 10 mM DTT at pH 7.2. 

Nevertheless, the protein could be reduced at pH 8.0. This is not surprising because DTT 

works more effectively under alkaline conditions. This is because the pKa of the thiol 

groups is typically 8.3 and only the negatively charged thiolate form -S– is reactive in 

DTT. The formation of disulphide bonds in vitro can be extremely slow even in the 

presence of oxygen or other strong oxidants due to the lack of enzymatic systems 

essential for formation of the disulphide bonds in vivo (Bardwell, 1994). Different 

methods were applied to make a stable, homogenously disulphide bonded monomer. An 

attempt to rearrange the disulphide bonds using the glutathione disulphide shuffling 

method (Clark, 1998) was not successful because the protein degraded after being 

oxidized (fig 3.10 a). The experiment also failed with the presence of 1 mM EDTA to 

prevent the degradation because the redox state remained unchanged (fig 3.10 b). This 

may be due to the chelation of the metal ion (copper in this case) needed for metal 

catalyzed disulphide bond formation by EDTA. 
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Fig 3.10 SDS-PAGE assays of a: Glutathione disulphide shuffling of the 

disulphide bond in PA-ICP. b: Glutathione disulphide shuffling of the 
disulphide bond in PA-ICP with addition of 1mM EDTA. 1-5: PA-ICP 
was treated with 5 different ratios of reduced and oxidized glutathione. 
Ratios of 10:1, 8:1, 6:1, 4:1, 2:1 were used with the concentration of 
oxidized glutathione kept to 1 mM.      
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3.4 Secretion of PA-ICP from Pseudomonas aeruginosa PAO1 
The N-terminal hydrophobic region on PA-ICP was predicted to be a potential secretion 

signal peptide. The protein is thus likely to be exported by a general secretion system of 

Pseudomonas aeruginosa by which the protein is first targeted across the inner 

membrane into the periplasmic space before crossing the outer membrane (Kerr, 2000, 

Filloux et al., 1998). Therefore, the protein is expected to be detectable in the periplasm 

or the culture supernatant. The release of periplasmic material from Pseudomonas 

aeruginosa PAO1 was carried out using osmotic shock (Jensch and Fricke, 1997, Nossal 

and Heppel, 1966). Pseudomonas aeruginosa bacteria were first subject to a high 

concentration of sucrose, followed by a rapid reduction in the osmotic strength. The 

sudden change in osmotic stress of the cells could lead to the liberation of the 

periplasmic material without penetrating the cells. Assessment of the osmotic shock 

products and the overnight culture supernatant using western blot revealed that the 

majority of PA-ICP protein remained in the cells after the osmotic shock treatment and 

no detectable PA-ICP was found in the growth culture (fig 3.11). The efficiency of the 

release of periplasmic material by osmotic shock was assessed using acid phosphatase as 

a periplasmic marker protein. The enzyme assay showed acid phosphate exhibited higher 

activity towards the chromogenic phosphatase substrate in lysed cells after osmotic 

shock than released material, indicating that the release of the periplasmic material from 

Pseudomonas aeruginosa using osmotic shock was inefficient (fig 3.12).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3.11  Detection of PA-ICP in osmotic shock products and growth medium 

using western blot.  

M- protein molecular weight markers 
SC- soluble lysate of the bacterial lysed after 

osmotic shock 
PC-  pellet of the bacterial lysed after osmotic 

shock 
R-  released periplasmic material from osmotic 

shock 
OM- overnight growth medium 
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Fig 3.12  a: The measurement of the activity of acid phosphatase towards npdh in 

released material. An activity of 0.00510± 2.175e-04 units was observed. 
b: The activity of acid phosphatase towards npdh in lysed cells after 
osmotic shock was also measured with the activity reading of 
0.02594±4.451e-04 units. The lysate was diluted to the same volume as 
the released material before measurement. 

 

a 

b 
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3.5 Inhibitory activity of PA-ICP against target CPs 
Pseudomonas aeruginosa can infect the pulmonary tract, urinary tract, burns, wounds, 

and also causes other blood infections (Lyczak et al., 2000). At least 7 clan CA family 

C1 cysteine peptidases are identified in the lysosomes of the human lung (Buhling et al., 

2004) which might be encountered by PA-ICP during Pseudomonas aeruginosa 

infection. They are cathepsins L, B, H, S, W and X, among which cathepsin H, L, B and 

S are commercially available. To assess the inhibitory specificity of PA-ICP against 

these cysteine peptidases, a series of enzyme assays were carried out.  

 

A chromogenic substrate was used for the determination of the initial reaction velocities. 

A substrate peptide is synthetically attached to a chemical group which, when released 

after the enzyme cleavage, gives rise to colour. This gives excellent readings on the 

spectrophotometer for the measurement of the residual activity of the enzymes. 

However, in measurement of the dissociation constants which requires the detection of 

the functional activity of an enzyme at very low concentration, a fluorogenic substrate 

should be used. When interacting with the peptidase, the fluorescent AMC group of the 

substrate is cleaved and the fluorescence emission detected by a spectrofluorometer is 

typically several orders of magnitude more sensitive than the chromogenic substrate. 

 

3.5.1 Determination of the functional concentration of CPs and PA-ICP 
The PA-ICP protein was expressed as described above and then purified using 

immobilized metal ion affinity chromatography, followed by buffer exchange into lysis 

buffer using a PD10 column for storage.  

 

The irreversible inhibitor E64 was used as a reference in the measurement of the 

functional concentrations of cathepsins and papain. The low molecular weight inhibitor 

E64 inhibits papain-like cysteine peptidases such as papain, cathepsin L, H and B, 

specifically and irreversibly at 1:1 ratio (Barrett et al., 1982). The crystal structure of 

E64 in complex with papain identified a covalent bond formed between the C2 carbon 

atom of the E64-c oxirane ring and the Sγ atom of the papain active site’s C25 (fig 3.13), 

occupying the S subsites of the enzyme (Varughese et al., 1989). Other low molecular 

weight thiol compounds or thiol dependant enzymes have little or no effect on the 

inhibition activity of E64, making it a good titrant for active site titration of papain-like 

cysteine peptidases (Barrett et al., 1982). 
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Fig 3.13 S-alkylation of the active site C25 of papain with opening of the epoxide 

ring of E64 (Matsumoto et al., 1989) 
 

The functional concentrations of cathepsin L, B and papain could be determined using 

the chromogenic substrate. On the other hand, because of the small turnover number of 

cathepsin S for the substrate, the initial velocity of the reaction was not detectable with 

the chromogenic substrate unless the enzyme was used at very high concentration. 

Instead, the fluorogenic substrate z-FR-AMC was used. 

 

Due to the cost of the reagents, assay points were limited to 4 or 5 to roughly estimate 

the active concentration of each enzyme. For irreversible inhibition, the activity should 

decline linearly with the increasing amount of inhibitor. For cathepsin L, B and S, it was 

easy to fit a straight line through the experimental points (fig 3.14). However, as 

reported in the literature (Barrett et al., 1982), a linear relationship between the activity 

and the residual molarity of cathepsin H was not observed due to the incompleteness of 

the reaction of the enzyme with E64 at low concentration of both reactants. Therefore, 

the active concentration of cathepsin H was not measured and was estimated according 

to the protein concentration provided by the manufacturer.  
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The functional concentration of papain was also measured by active site titration with 

E64 (fig 3.15 a). The enzyme was completely inhibited with 0.1 μM E64, indicating that 

its functional molarity was no higher than 0.1 μM. Having determined the functional 

molarity of papain, the concentration of active PA-ICP was determined using papain at 

known concentration in a pseudo-irreversible manner, assuming that the ratio of the 

reaction between PA-ICP and target CPs is 1:1 (Sanderson et al., 2003b) (fig 3.15 b). 

The concentrations of the enzyme and PA-ICP in the reaction are sufficiently high that 

the dissociation of the peptidase-inhibitor complex is negligible and the reaction can be 

considered practically irreversible. As 0.1 μM papain was completely inhibited by 1.07 

μM PA-ICP (concentration measured by Bradford assay), there was 0.1 μM active PA-

ICP in 1.07 μM protein sample. This could be due to the presence of the unfolded PA-

ICP in the sample used for the assay contributing to the measurement of the total 

concentration of the protein because the protein sample was purified using only 

immobilized metal affinity chromatography.  
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Fig 3.14  Active site titrations of cathepsin B (a), L (b) and S (c) with E64. The 

fitting functions are listed in the legend boxes with the fitting correlation 
coefficients C.  
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Fig 3.15  a: Active site titration of papain with E64. Two sets of independent sets 

of measurements are shown. b: Measurement of active concentration of 
PA-ICP with known concentration of papain. The fitting functions are 
listed in the legend boxes with the fitting correlation coefficients C.  

 

b 

a 
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3.5.2 Determination of dissociation constants Ki 
With known active concentrations of PA-ICP and cathepsins, the dissociation constant 

of inhibition of PA-ICP to each cathepsin, Ki, can be determined as described in section  

8.3.5.2 (Sanderson et al., 2003b). During pre-incubation of PA-ICP with CPs, the 

inhibitory activity of PA-ICP declined rapidly due to the enzymes’ high proteolytic 

activities. Therefore, long time incubation of cathepsins with PA-ICP was avoided to 

minimize the hydrolysis of the inhibitor. Each experiment was performed in duplicate to 

allow error estimation except for cathepsin B (fig 3.16). The Ki values were calculated 

by fitting the experimental points to the following equation:  

 

max

[ ]1 (1 )[ ]
M

i

VV K I
S K

=
+ +

 (3.1) 

 

The Vmax of each reaction was calculated when [I] =0, thus, 

 

max 0(1 )[ ]
MKV V S= +  (3.2) 

 

where V0 refers to the initial velocity of the reaction with no inhibitor present. The KM 

values of the enzymes to the specific substrates were taken from literature and [S] was 

kept constant for each experiment (table 3.1).  

 

cathepsin B  L  H  S  
substrate z-FR-AMC z-FR-AMC H-R-AMC z-FR-AMC 

KM  μM 51 2.4 150 18.2 

Kcat s-1 364 17 2.5 1.6 

 

Table 3.1 The KM and Kcat values of cathepsin B, L, H and S toward fluorogenic 
substrates z-FR-AMC and H-R-AMC. (Buttle et al., 1988) 
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Fig 3.16  Ki determination of PA-ICP to cathepsin B (a), L (b) and H (c). Two sets 

of independent sets of measurements are shown for PA-ICP to cathepsin 
L and H. The fitting functions are listed in the legend boxes with the 
fitting correlation coefficients C.  

 

a 

b 

c 



46                      

The Ki values of PA-ICP toward cathepsin L, B and H fell into range of nM to pM (table 

3.2). Like its homologs, chagasin and L. mexicana ICP, PA-ICP appeared to be more 

competent against cathepsin L-like enzymes than cathepsin B.  

 

 Cathepsin L Cathepsin H Cathepsin B 

PA-ICP 6.527 ± 0.517 pM 10.43 ± 1.3 nM 138 nM 

 

Table 3.2  The Ki values of PA-ICP toward cathepsin L, B and H 
 

The Ki determination for cathepsin S was less satisfactory (fig 3.17). The experimental 

points were more likely to fit to a straight line, indicating that under the assay 

conditions, PA-ICP interacts with cathepsin S pseudo-irreversibly.  

 

 
Fig 3.17 Ki determination of PA-ICP to cathepsin S. The fitting functions are 

listed in the legend boxes with the fitting correlation coefficients C. 
 

3.6 Conclusion  
The N-terminal hydrophobic extension of PA-ICP has been predicted to be a potential 

signal peptide. It is possible that the protein is synthesized as a proprotein and the signal 

peptide directs the export of the protein from Pseudomonas. This possibility, together 

with the finding that Pseudomonas aeruginosa appears to lack clan CA family C1 

cysteine peptidase genes, supports the hypothesis that the real targets of PA-ICP, rather 

than being endogenous, are exogenous peptidases. Although PA-ICP was not detected in 
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the over night growth culture supernatant implies the protein is not secreted from 

bacteria into its surrounding environment, this discovery is limited by the sensitivity of 

the experiment as the concentration of the released protein in the medium may be too 

low to be detected. Nevertheless, since osmotic shock did not successfully liberate the 

periplasmic material from Pseudomonas aeruginosa, whether the protein is transported 

into periplasm remains unknown.  

 

The redox states of the two cysteines in native PA-ICP are not yet determined. 3 forms 

of PA-ICP with different redox properties were present in the purified recombinant 

protein sample— the intermolecular disulphide bonded dimer, the reduced and the 

intramolecular disulphide bonded monomers. The intramolecular disulphide bonded 

monomer was chosen for structure determination because since the protein is believed to 

be translocated across the cytoplasmic membrane in vivo, it is more likely to end up in 

the periplasmic space and/or outside the bacteria, so, the functional protein is more 

likely to be disulphide bonded. Further more, the intramolecular disulphide bond is 

rather stable and cannot be dissociated with 10 mM DTT and the 15N HSQC spectra of 

the intramolecular disulphide bonded and reduced monomers showed no significant 

changes in protein folding, suggesting the protein structure is not disturbed by the redox 

states of the two cysteines. The intermolecular dimer is believed to be a side-effect of 

over expression 

 

The Ki values of PA-ICP to potential target cysteine peptidases fall into the pM to nM 

range. A more detailed comparison of the interaction of PA-ICP with different cysteine 

peptidases will be described in section 7.3. The Ki value of PA-ICP toward cathepsin L 

is very different from that determined by Sanderson, et al. (Sanderson et al., 2003b), 

which is 500 times greater than that determined in this project. This could be due to the 

different lengths in the enzyme-inhibitor incubation time (15 mins in Sanderson’s 

experiments and 1 min in this project). As spotted for PA-ICP-cathepsin L interaction, 

the inhibitory activity of PA-ICP declined with increasing length of the incubation time. 

This may result from the hydrolysis process of the inhibitor and gives rise to a greater 

value in Ki determination. The Ki determination of cathepsin S failed because the small 

catalytic constant of the enzyme towards the substrate used in the assay. This can be 

improved by using a substrate towards which cathepsin S has a greater turnover number 

that can give rise to sensitive readings when working at low enzyme’s concentrations.  



CHAPTER 4 
 
 

CHEMICAL SHIFT ASSIGNMENT OF PA-ICP 
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4.1 Overview 
With the aid of advanced isotopic labelling techniques (uniform or fractional isotopic 

labelling with 13C, 15N and 2H, selective labelling of amino acid types) and modern 

NMR instruments (powerful superconducting magnets and cryogenic probes), structure 

and dynamics investigations of a protein of less than 25 kDa is now more or less routine 

using standard NMR methods. NMR studies of PA-ICP were conducted in an effort to 

determine how the structure and dynamics of PA-ICP related to its inhibitory function 

toward different papain-like cystene peptidases. The work described in this chapter 

shows how the chemical shifts of the resonances of PA-ICP were assigned as a first step 

in this process. Triple resonance experiments were particularly advantageous in 

improving chemical shift resolution by exploiting 13C and 15N stable isotope labelling. A 

near complete assignment of PA-ICP has been obtained using this type of experiment 

and other heteronuclear NMR methods. The resonance assignments were subsequently 

used to derive interproton distances from NOESY spectra and these distance restraints 

were used to calculate the structure of PA-ICP (Chapters 5). The resonance assignments 

of the backbone amides were also used for dynamics studies (Chapter 6).   

 

4.2 Optimization of the experimental conditions for NMR studies of PA-ICP 
The protein samples for NMR studies were expressed as described in section 3.2 using 

labelled medium. After cell lysis, the protein was purified using a Ni2+ column followed 

by gel filtration chromatography. The samples were buffer exchanged into suitable NMR 

buffer and concentration to obtain a final volume of 570 μl. 30 μl D2O was added to give 

a final concentration of 5% used for field frequency locking. NMR spectroscopy is a 

relatively insensitive technique. The protein sample needs to be very concentrated to 

obtain high-quality spectra in a practical length of time. For structural studies of PA-

ICP, a sample concentration of 1 mM was used. Temperature is another important factor. 

A higher temperature results in faster molecular tumbling in solution and better 

sensitivity. Also, to avoid signal broadening caused by amide proton-water exchange, a 

low pH condition is preferable. The use of a cryogenic probe to increase the signal to 

noise ratio is subject to the condition that the sample under study has very low electrical 

conductivity and thus a low ionic strength is required. Having satisfied all the 

abovementioned conditions, a good NMR sample should be soluble and stable during 

NMR data acquisition which can typically take weeks. Therefore, different experimental 

temperatures and buffer conditions have to be tested beforehand. This can be done 

conveniently using 15N-labelled sample. A series of 15N HSQC experiments recorded 
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under different conditions were monitored to determine which conditions gave the best 

signal sensitivity without disturbing the protein structure. For PA-ICP, eleven different 

temperatures varying from 288 to 310K (15-37 0C) were investigated. The pH of 4.5, 6, 

6.8, 7.2 and 8 and NaCl concentrations of 50, 100, 150 and 200 mM were also tested. 

The best of the buffer and temperature conditions tested for NMR studies of PA-ICP 

were 25 mM NaH2PO4, 100mM NaCl, pH 7.2 at 298 K (25 0C) for the His-tagged PA-

ICP protein used for structural investigation and pH 6 at 308 K (35 0C) for the non-His-

tagged protein used for backbone dynamics characterization. After determination of the 

optimal buffer and temperature conditions, a uniformly 15N-13C labelled sample was 

produced for the structural and dynamics studies of PA-ICP using NMR. A 1D 1H 

spectrum acquired on an unlabelled, His-tagged sample is displayed in figure 4.1. The 
1H linewidths and the overall dispersion of chemical shifts suggest that the sample 

contains folded protein.  
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4.3 Sequence specific assignment 
 
4.3.1 Chemical shift assignment of the backbone resonances  
The sequence specific resonance assignment of PA-ICP was achieved relying mainly on a 

pair of 3D NMR triple resonance experiments, HNCACB (Wittekind and Mueller, 1993)and 

CBCA(CO)NH  (Grzesiek and Bax, 1993)acquired using a nonlinear sampling scheme (see 

section 4.3.2). The experiments are designed to transfer the magnetisation through the 

backbone and Cβ atoms of adjacent residues. In the HNCACB, the magnetization starts from 

amide proton, is transferred to amide nitrogen and 13Cα/β and then transferred back to the 

amide proton for acquisition (fig 4.2). For CBCA(CO)NH, the magnetization starts at 
1Hα/Hβ and transferred to 13Cα/β before transferred to the amide proton where the signal is 

recorded (fig 4.2). As can be seen in fig 2.1, the scalar coupling constants between amide 

nitrogen and the 13Cα nuclei of the i and of the i-1 amino acid are close (11 Hz and 7 Hz 

respectively). Therefore, in the HNCACB experiment, the magnetization can be transferred 

from the nitrogen to 13Cα/β of the same and of the preceding amino acid, making it useful for 

providing intra and interresidue connectivities (fig 4.3). However, it is still difficult to 

distinguish the intra and interresidue 13Cα/β chemical shifts with only the HNCACB 

experiment. Hence, a CBCA(CO)NH spectrum giving the correlations between only the 
13Cα/β of the preceding amino acid and the amide moiety, was also recorded (fig 4.3). By 

comparison of the two spectra, the 13Cα/β signals from residue i and i-1 were distinguishable 

and a unique assignment along the backbone of the protein could be completed. With this 

method, the resonances of the side chain 13Cβ nuclei are also assigned, from which the 

assignments can be extended to other side chain carbons and protons. An advantage of this 

method is that the backbone amide 15N and 1H atoms are correlated to the 13Cα and 13Cβ 

pairs which assists residue type assignment because the amino acid type of certain residues 

can be determined by the chemical shifts of the 13Cα/β pairs (Grzesiek and Bax, 1993), 

allowing the spin system to be located in the primary structure of the protein. Another pair 

of 3D triple resonance experiments, HNCO (Clubb et al., 1992) and HN(CA)CO that  

correlates the amide NHs and backbone carbonyls, provides an alternative route for 

backbone assignment. They were also acquired in case of overlaps of the crosspeaks of 13Cα 

and 13Cβ pairs in the HNCACB and CBCA(CO)NH spectra. Using this method, a total of 

94% of backbone amide resonances of the PA-ICP sequence (appendix A) were assigned, 

excluding the proline residues and His tag (fig 4.4).  
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Fig 4.2  Magnetization transfer schemes of HNCACB (solid lines), CBCA(CO)NH 

(dashed lines) in figure a and HN(CA)CO (solid lines), HNCO (dashed lines) 
in figure b. The experiments correlate the backbone amide NH with related 
carbonyls and side chain Cα and Cβ of the intra and proceeding residues and 
the signals were acquired on amide 1H. 

 

i -1 i 

ii -1
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Fig 4.3 Backbone 13Cα/β chemical shift assignment of residues P15-L18 of PA-ICP 

(25 mM Na2HPO4, 75 mM NaCl, pH 7.2, 298K) using 3D HNCACB (black 
and brown) and CBCA(CO)NH (green) spectra with 1H in x, 13C in y and 15N 
in z dimension . The connectivity was made by matching the 13Cα/β chemical 
shifts in the HNCACB which correlate to the HN chemical shifts of residue i 
with 13Cα/β chemical shifts in CBCA(CO)NH which correlate to the HN 
chemical shifts of residue i-1. 
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Fig 4.4 A 15N HSQC spectrum of a 15N labeled PA-ICP sample (25 mM 

Na2HPO4, 75 mM NaCl, pH 7.2, 298K) annotated into the residue 

specific assignment. 
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4.3.2 Nonlinear sampling 
Multidimensional NMR experiments have been widely used for structural study of proteins 

in solution. In order to overcome the inherent spectral overlap problems that rise, the digital 

resolution along each dimension should be maximized to establish unambiguous data. This 

can result in a long experimental time of weeks to obtain all the multidimensional 

experiments required for protein structure determination. In particular, in the case of 

studying unstable or partially unfolded proteins, a significant reduction in experimental time 

is desired. Many efforts have been focused on accelerating the acquisition of the 

experiments to shorten the experimental time and/or to afford a greater number of scans for 

better sensitivity (Freeman and Kupce, 2003). Unlike conventional triple resonance 

experiments which utilize uniform time intervals for sampling chemical shift evolution, the 

nonlinear sampling scheme relies on the fact that the actual determinant of resolution is the 

longest sampling interval, and therefore the desired resolution can be achieved by sampling 

a selection of data points provided that the longest sampling interval is extended to retain 

the required resolution (Marion, 2005, Schmeider et al., 1994, Schmieder et al., 1993, 

Rovnyak et al., 2004). This results in the same length of required sampling period but with a 

reduced number of time-domain data points. As the time to acquire the spectra is mainly 

dictated by the desired number of sampling points in the indirectly detected dimensions, the 

nonuniform sampling scheme is only applied along 13C and 15N dimensions of the 3D triple 

resonance experiments. The sampling schedule needs to be designed with an awareness of 

the different properties between constant time and non-constant time experiments. In a non-

constant time experiment, the intensity of the signal decays exponentially due to relaxation 

during chemical shift evolution. Therefore the effective signal to noise ratio is higher for the 

initial data points than for the last ones. Hence, in this type of experiments, fast and slow 

sampling rates are used to record the early data points and the later ones respectively to 

obtain the maximum signal to noise ratio. However, in a constant time experiment, the 

chemical shift evolution occurs in a fixed delay and the signal to noise ratio remains the 

same for all points. Therefore, the sampling points can be selected arbitrarily, provided that 

the last point is included to satisfy the longest sampling interval allowed by the constant 

time period (Schmeider et al., 1994). 

 

The pulse programs of nonlinear sampling versions of HNCACB and CBCA(CO)NH were 

modified by Dr. B Smith (Division of Biochemistry and Molecular Biology, University of 
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Glasgow) based on the standard protocols described by Wittekind (1993) and Grzesiek 

(1993). The HNCACB experiment uses constant time in the 15N dimension and non-

constant time in the 13C dimension whereas the CBCA(CO)NH experiment uses constant 

time in both dimensions. To favour both cases, the nonlinearly sampled HNCACB and 

CBCA(CO)NH experiments were recorded with 16 complex points (0, 1, 2, 3, 4, 5, 6, 7, 9, 

11, 13, 15, 19, 23, 27, 30), selected out of 31 complex points in the nitrogen dimension and 

27 complex points (0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 

59, 63, 67, 71, 75) selected out of 76 complex points in the carbon dimension (fig 4.5). 

Sweep widths were 1265 Hz in the 15N and 11312 Hz in the 13C dimension and maximum 

acquisition times of 11.8 and 3.3 ms respectively. A comparison of the non-linear and linear 

sampled HNCACB spectra is displayed in figure 4.6. 

 

The nonlinear sampling method resulted 5-fold reduction in acquisition time which was 

partially invested in better signal to noise by doubling the number of scans while both 

indirect dimensions had effectively twice the digital resolution compared with standard 

practice. The proton dimension of the spectra was processed with the standard Fourier 

transform method while both indirect dimensions were reconstructed using Maximum 

Entropy (MaxEnt) to generate 256 points in the 13C and 64 points in the 15N dimension.  
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Fig 4.5  A representation of linear (a) and non-linear (b) sampling schemes employed 

in the HNCACB and CBCA(CO)NH experiments as a pattern of dots falling 
the 13C and 15N evolution periods, each of which represents four 1D spectra 
phase cycled for quadrature detection.  
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Fig 4.6  Comparison of the non-linear (left) and linear sampled HNCACB spectra 

(right). The strips illustrate the chemical shift assignment of side chain 
carbons of L88 and E87, extended from the amide HN crosspeaks of L88 on 
the HN planes of the two HNCACB spectra. 
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4.4 Side chain assignment 
 
4.4.1 Chemical shift assignment of the aliphatic side chains 
The aliphatic side chain carbons of PA-ICP were assigned using 3D CC(CO)NH-TOCSY 

(Montelione et al., 1992), which correlates the backbone NH chemical shifts with the 

preceding side chain 13C chemical shifts (fig 4.7). Because the backbone NHs and the side 

chain 13Cα/βs had been assigned using HNCACB and CBCA(CO)NH, it was easy to 

navigate from the assigned amide of residue i to the correlated side chain carbons of residue 

i-1 and complete the assignment. On the basis of the side chain carbon assignments, the side 

chain protons were assigned using 3D HCCH-TOCSY (Kay et al., 1993), an experiment 

correlating each side chain 13C with all 1Hs in a spin system (fig 4.8).  

 

For residues which do not have backbone amide chemical shift assignment (e.g., proline 

residues and whose backbone amide HNs were unable to be observed in the 15N HSQC 

spectrum), their side chain 13C chemical shifts could still be assigned from the assigned 

amides of the adjacent residues using 3D CBCA(CO)NH and CC(CO)NH experiments and 

the assignment can be extended to side chain 1H using 3D HCCH-TOCSY. This allowed the 

side chain 13C and 1H chemical shift assignment of residue Q1, N31, T33, N58 and all 

prolines. 

 

At this stage, the methyl groups of leucine, valine and isoleucine were assigned non-

stereospecifically.  

 

4.4.2 Chemical shift assignment of the aromatic side chains  
The aromatic side chain 13C and 1H of PA-ICP were assigned using 2D and 3D 13C-NOESY 

spectra with the aid of 2D (HB)CB(CGCD)HD and 2D (HB)CB(CGCDCE)HE (Yamazaki 

et al., 1993) which correlate the side chain Cβ chemical shifts with the ring 1Hδ / 1Hε 

resonances of the aromatic residues (fig 4.9).  
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Fig 4.7 Strips taken from the 3D CC(CO)NH of PA-ICP, illustrating the side chain 

carbon chemical shift assignment of residues R41, Q20, L40, K17, I108, 
E102 and P100. 
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Fig 4.8  Strips taken from 3D HCCH-TOCSY spectrum of PA-ICP, demonstrating 
side chain 1H and 13C chemical shift assignment of residue V47.  
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Fig 4.9 Illustration of aromatic side chain assignment of PA-ICP. The 2D 

(HB)CB(CGCDCE)HE is coloured in red, 2D (HB)CB(CGCD)HD in blue 
and 2D 13C-NOESY in green.  
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4.5 Secondary structure prediction 
Having finished the chemical shift assignment, the secondary structure of PA-ICP could be 

predicted from Hα, Cα and Cβ chemical shifts using CSI - Chemical Shift Index, a program 

for determining secondary structure in proteins from the chemical shift indices of 1H and 
13C nuclei (http://www.bionmr.ualberta.ca/bds/software/csi/latest/csi.html). The secondary 

structure elements of PA-ICP were predicted based on the deviations of Hα, Cα and Cβ 

chemical shifts of PA-ICP from database random coil values. The random coil chemical 

shifts are collected from peptides too short to possess any structural features and thus are 

chemical -environmentally independent. As the amino acids in folded protein experience 

different structural patterns, so do their chemical shifts. It is known that Hαs and Cβs 

experience a downfield shift in helices and an upfield shift in β-strands, whereas Cαs shift 

the opposite way. The protocol and analytical rules are described by D. Wishart et al 

(Wishart and Sykes, 1994) (fig 4.10). It can be seen that the PA-ICP protein, like its 

homologs, is mainly composed of β strands.  
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Fig 4.10 Secondary shift analysis of PA-ICP resonance assignments. Chemical shifts 
were analyzed using CSI. A value of +1 for the CSI consensus indicates β 
strand conformation.  
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4.6 Redox states of the cysteines 
Statistical analysis has revealed that the Cβ chemical shifts of cysteines are highly sensitive 

to whether the residue is involved in disulphide bond (Sharma and Rajarathnam, 2000). This 

is because the chemical environment of the Cβ atom of the cysteine is profoundly affected 

by the redox state of the neighbouring Sγ. Therefore, by measuring the Cβ chemical shifts, 

the redox states of cysteines in a protein sample can be determined using the rule suggested 

by D. Sharma et al, 2000 (Sharma and Rajarathnam, 2000). The Cβ chemical shifts of the 

two cysteines in PA-ICP, C13 and C106, were assigned to 44.865 and 48.460 ppm 

respectively. Both values are greater than 35 ppm, suggesting that they are in oxidized form. 

Examining the NMR sample using SDS-PAGE under non-reducing conditions showed the 

major protein band at about 14 kDa which corresponded to the molecular weight of the 

monomeric PA-ICP (section 3.2.2). Therefore, it was inferred that the sample under study 

was an intramolecular disulphide bonded monomer.  

 

4.7 Conclusion 
With the exception of the His tag, there were seven residues whose backbone amide HNs 

were unable to be observed in the 15N HSQC spectrum. They are Q1, N31, T33, E54, V55, 

S57 and N58. Considering the pH of the sample under investigation (pH 7.2), this is 

probably because these residues are located in unstructured loop regions that are more 

accessible to water and thus, the amide protons of these residues undergo rapid exchange 

with water resulting in an intermediate exchange phenomenon such that the linewidth of the 

peaks would be broad and the signals decay too fast to be detected.  

 

The nonlinear sampling scheme used in 3D HNCACB and CBCA(CO)NH significantly 

reduced the acquisition time required to record these experiments. It will be extremely 

useful when dealing with unstable samples to shorten the time of acquisition and samples 

that have to be studied at low concentrations to provide higher sensitivity. The Maximum 

Entropy algorithm has proved to be a good way of reconstruction of incomplete data for 

chemical shift assignment as the backbone assignment can be completed unambiguously 

with the use of the nonlinear sampled spectra and the data agreed well with the uniformly 

sampled CCCONH and HCCH-TOCSY for assignment of the side chain 13Cs and 1Hs. 

 

The chemical shift index showed that the protein is composed mainly of β strands. As the 
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sequence alignment indicated, PA-ICP adopts the same fold as its homologs, suggesting that 

PA-ICP may inhibit target CPs in a similar manner (fig 4.11).  

 

 
 
 
Fig 4.11 Likely secondary structure elements predicted by CSI (solid lines) and 

inferred from amino acid sequence alignment of ICP family from the known 
structures of Chagasin and L. mexicana ICP (dashed lines). The location of 
the β -strands is represented by arrows.   

 

 



CHAPTER 5 
 
 

STRUCTURE CALCULATION AND VALIDATION OF PA-ICP 
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5.1 Overview 
The solution structure of PA-ICP was calculated from NMR data using the restrained 

molecular dynamics (rMD) protocol (section 2.3.2). Simulated annealing was used in the 

calculation to overcome local minima traps in potential energy and to ensure the calculation 

samples conformational space adequately (section 2.3.3). The experimental restraints used 

in this work included ambiguous distance restraints and hydrogen bond restraints. The 

calculation started from a set of random starting coordinates and incorporated ambiguous 

NOE data. The structures were calculated iteratively and the ambiguity of the NOE 

restraints was decreased based on the calculated structures. The iteration ended at the point 

where a good fraction of calculated structures achieved good agreement with both the 

experimental data and the theoretical covalent and non-covalent restraints. The hydrogen 

bond restraints were included at the later stages of the calculation. RDC restraints and χ1 

torsion angle restraints were used for structure validation and assessment of the quality of 

the stereospecific assignment made by the prochiral swapping protocol. 

  

5.2 Structural restraints from NMR experiments 
 
5.2.1 NOE restraints 
 
5.2.1.1 NOESY spectra 
The NOE restraints can be collected from a 3D 13C-NOESY-HSQC and 3D 15N-NOESY-

HSQC  (Sklenar et al., 1993) spectra. These experiments are a combination of 1H 

homonuclear NOESY and HSQC experiments. The NOESY experiment detects the nuclear 

Overhauser effect between neighbouring spins (protons in this case). This part of the pulse 

sequence consists of 3 steps: preparation, evolution and mixing (fig 5.1) (Jeener et al., 

1979). After preparation the spins are tilted to the transverse plane and chemical shift 

evolves during time t1 followed by being returned to the z-axis for a mixing time τm during 

which the NOE builds up. The intensities of the crosspeaks in the spectra are used for 

derivation of distance information using equation 2.1. However, this derivation is made 

based on the isolated spin-pair approximation with the assumption that the cross relaxation 

occurs only in isolated spin pairs and that the NOEs buildup linearly with increasing mixing 

time. In practice, indirect NOE magnetization transfer can often occur. The NOE 

enhancement through direct cross relaxation of spin i to spin j can be transferred to spin k 
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that is also close to spin j, resulting in mixing-time dependent attenuation in NOE intensity 

of the crosspeak between spin i and j and increase in NOE intensity of the crosspeak 

between i and k. This effect is called spin diffusion. It can give rise to potential error in 

structure calculation if not interpreted properly. In theory, the intensity of the NOE reflects 

the genuine interproton distances only when τm=0, i.e., at the initial NOE build up. One way 

of correcting the spin diffusion effect is by measuring NOEs with a series of increasing 

mixing time (e.g. at 50, 100, 200, 300 ms) and the mixing time is calculated from the initial 

slope of the curve fitted against the experimental points. This method gives very reliable 

results. However, it is rather time-consuming. Alternatively, spin diffusion can be tolerated 

when a short τm is used, assuming that the intensities of the NOE crosspeaks are 

proportional to the cross relaxation rate constant within this period. For the same reason, the 

mixing time cannot be made arbitrarily short, otherwise the intensities of the crosspeaks will 

be too low to detect. A mixing time between 50 to 150 ms is recommended to provide 

sensitive crosspeak intensities with tolerable spin diffusion (Cavanagh, 1996). The actual 

value for each individual molecule is dependent on its rotational correlation time. In 

general, large molecules need shorter mixing times to limit spin diffusion as the cross-

relaxation is more efficient in large systems (Cavanagh, 1996). 

 

 

 

 

 

 

 

  

Fig 5.1 Anatomy of the 1H homonuclear NOESY part of the 3D NOESY-HSQC 
experiment. The cross relaxation that arises from dipolar couplings occurs 
during the mixing time for NOE buildup, after which the spectra is extended 
to a third dimension of 13C or 15N by attaching a standard HSQC pulse 
sequence before detection.  

 

For PA-ICP, 100 ms was used as mixing time for both 13C and 15N NOESY-HSQC 

experiments as this value has been used successfully to obtain NOE restraints from chagasin 

and L. mexicana ICP that have a molecular weight similar to PA-ICP.  

Acquisition Mixing timeEvolution Preparation
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5.2.1.2 Crosspeak picking 
The structure calculation was carried out using the ARIA method (Ambiguous Restraints for 

Iterative Assignment) (Linge et al., 2003a). This method can handle ambiguous NOE 

restraints and does not require assignment of the chemical shifts of the NOE crosspeaks to 

specific atoms for input restraint lists. One would assume that the restraint lists can be 

generated by simply picking all peaks in the spectra. However, the real case is more 

complicated as there are many artifacts that should be taken into account. t1 noise, for 

instance, caused by incomplete recovery of the longitudinal relaxation of spins before 

starting the succeeding scan due to their long T1 relaxation time, is a typical source of 

artifacts in the NOESY spectra. It usually appears as stripes of peaks along the indirect 

proton dimension that can be mistaken as genuine crosspeaks. Although these artifacts may 

be identified later as violations during iterative structure calculation, they can introduce 

large errors at the initial stage of the structure calculation, making the interpretation of the 

calculated structures for further iterations rather difficult. For this reason, it is recommended 

to pick crosspeaks manually with care taken to look for symmetry-related crosspeaks. 

Because cross relaxation occurs between a pair of protons, the NOE enhancement of one 

spin results from its cross relaxation partner and vice versa. As a result, a pair of crosspeaks 

is expected to appear reflecting about the diagonal of a 2D NOESY spectrum, i.e., if there is 

a NOE crosspeak spotted at position (Fi, Fj), there will be a symmetrically related NOE 

crosspeak showing at (Fj, Fi) (fig 5.2). The symmetry of the NOE enhancement also holds 

for multi-dimensional heteronuclear NOESY spectra and for two protons i and j with 

chemical shifts FHi and FHj covalently connected to two heteronuclear spins I that resonance 

at the frequency FIj and FIi respectively, two symmetry-related crosspeaks (FHi, FHj, FIj) and 

(FHj, FHi, FIi) are expected to be seen if the two protons are close in space. As the noise 

peaks do not possess this symmetry property, they can be filtered out manually if they have 

no symmetry-related counterparts (fig 5.3). However, this method has to be used with 

caution as some artifacts can still survive if the noise peaks are too many and some of them 

happen to be symmetrical. Some processing errors may also generate artifacts that are 

symmetry-related.  

 

There are also artifacts that result from incompletely suppressed water signals and from 

some water exchanging amide protons. Therefore, the crosspeaks close to the water 

frequency were not selected. Overlapped crosspeaks were not picked because the centers of 
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the peaks may be placed incorrectly, resulting in a failure to match the correct chemical shift 

assignment possibilities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.2 An illustration of symmetry-related peaks. The pair of peaks are reflected 
about the diagonal, indicating that proton A resonating at frequency F1 is 
relaxed by dipolar coupling to its neighbour proton F2 resonating at 
frequency b and vice versa. 

(F1, F2) 

(F2, F1) 
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5.2.1.3 Classification of distance restraints  
The measured NOE intensities were calibrated to generate meaningful interproton distances 

for structure calculation. The equations 2.1 and 2.2 are valid provided that the molecule is 

tumbling isotropically and holding a single rigid conformation. The presence of internal 

motion and possibly, chemical exchange will lead to a diminution of the NOE intensity and 

the calculated distances will be longer than the real distances. Therefore, rather than giving 

them specific values, the NOE-derived distances were restricted to allowed distance ranges. 

The upper bound of a distance restraint range was set according to the NOE intensity and 

the lower bound set to zero. Further approximation was made by grouping the distances into 

different classes, i.e., strong, medium, weak and very weak. To do this, the intensity of each 

NOE crosspeak was normalized against the average intensity of all NOE crosspeaks and the 

relative ratios were grouped into different distance classes with the upper bounds defined 

empirically and no reference distance was required. For proteins, this approximation is 

acceptable as the quality of the final structure is dependent on the number and distribution 

of the restraint sets rather than the precision of the distances. The NOE distance classes used 

for PA-ICP are listed below. 

 

Min. normalized NOE Intensity Max Distance 

3.00000 2.00000 

1.00000 2.50000 

0.25000 3.10000 

0.10000 4.00000 

0 6.00000 

 

Table 5.1  NOE bins for structure calculation.  

 

5.2.1.4 Treatment of the averaging groups and ambiguous assignment using 
r-6 summation 
When more than one assignment possibilities contribute to a NOE restraint and we cannot 

rule out any one contributor to the restraint, the ambiguous distance restraints is used to 

calculate an effective distance, Deff, involving all the nuclei by r-6 summation, assuming that 
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the r-6 summed distances should not exceed the upper distance bounds according to the 

measured NOE intensities of the ambiguous crosspeaks. 

  
6 6

,
ijeff

i j
D D− −=∑  (5.1) 

 

This method can also be used to treat groups of protons that undergo rapid conformational 

exchange. Good examples are methyl groups and symmetrical related pairs of aromatic 

protons on fast-flipping rings. The resonances of these spins are not able to be resolved as 

distinct peaks. Instead, a single averaged signal is observed.  

 

5.2.2 Hydrogen bond restraints 
The backbone amide protons engaged in hydrogen bonds can be identified by dissolving a 
15N labelled sample into D2O. The experiment relies on the fact that the solvent accessible 

protons can be readily replaced by deuterons while the ones donated to hydrogen bonds or 

buried in hydrophobic core are more difficult to substitute. As the 15N HSQC experiment 

does not detect the deuterium signals from 15N-2H groups, the exchange rate can be 

measured using a series of 15N HSQC experiments recorded at a series of time intervals to 

follow the decrease in intensities of the amide proton peaks. For PA-ICP, the experiments 

were recorded over 24 hours immediately after a lyophilised sample was dissolved in D2O. 

The experimental time for each HSQC was limited to 17 mins so that the spectra could be 

acquired rapidly before the majority of the amide protons were exchanged with D2O. 20 

peaks that survived 2 h after dissolution in D2O were considered to come from slowly 

exchanging amide protons. Care should be taken to distinguish whether these protons are 

hydrogen bonded or lie in the hydrophobic core of the protein where they are inaccessible to 

the deuterons. The purpose of this experiment is to identify the presence of hydrogen bonds 

while there is no need of measuring the precise hydrogen exchange rate. The hydrogen bond 

restraints were included at the later stage of structure calculation and the hydrogen acceptors 

were determined by inspection of the structures calculated using just NOE restraints. 
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1H (ppm) 

 

Fig 5.4 The superimposition of the HSQC spectra acquired on a 15N-labelled PA-ICP 
before (orange and red for positive and negative crosspeaks respectively) and 
2 hours after (green and black for positive and negative crosspeaks 
respectively) deuterium substitution. The protons giving rise to NH 
crosspeaks 2 hours after the protein was buffer exchanged into D2O were 
considered to come from candidate hydrogen bond donor amide protons. 
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N
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5.2.3 Residual dipolar coupling restraints 
 
5.2.3.1 Weak alignment 
RDC restraints were gathered on a uniformly 13C, 15N labelled PA-ICP sample which was 

weakly aligned with respect to the applied magnetic field. The partial alignment is induced 

by dissolution of the protein sample into a diluted aqueous medium that is strongly oriented 

with respect to the external magnetic field but interacts weakly with the protein. Many 

alignment media that can fulfill this mission have been identified, including dilute liquid 

crystals and anisotropically strained gels (Fleming and Matthews, 2004), each one of which 

has its own properties and optimal application conditions. The highly magnetically 

susceptible liquid crystal elements interact weakly with the biomolecule, resulting in a 

partial orientation of the molecule relative to the static magnetic field (Gabriel et al., 2001, 

Prosser et al., 1998). Unlike liquid crystals whose alignments are induced by the external 

magnetic field, the alignment of the compressed gels is dictated by compressing or 

stretching the gel away from an initial isotropic state (Tycko et al., 2000). In this project, a 

liquid crystal formed by the negatively charged filamentous bacteriophage pf1 (pI~4) was 

used as the alignment medium to resolve RDCs from backbone HN, HnCO and NCO 

interactions in PA-ICP. The medium can be used in the temperature range of 5~300C, with 

pH from 6 to 8 and at salt concentration up to 100mM NaCl. One advantage of using pf1 

phage is that the degree of the alignment of the D2O, reflecting the degree of the alignment 

of the pf1 phage, can be tuned by simply adjusting pf1 phage concentration (Hansen et al., 

1998). This is because not only the biomacromolecule is aligned by the phage, but also the 

D2O added for locking. The quadropolar coupling of deuterium is no longer averaged to 

zero and the deuterium signal appears as a doublet and the amplitude of the splitting is 

dependent on the degree of alignment. The resultant quadropolar deuterium splitting in the 

1D deuterium spectra is approximately linearly correlated to the phage concentration and 

therefore the alignment can be easily optimized (Hansen et al., 1998). A separation of 10 Hz 

in the 2H doublet was observed with 20 mg/ml pf1 phage present in the PA-ICP sample (fig 

5.5). This allowed accurate measurement of RDCs in a range of 0~ 30 Hz for dipolar 

couplings between backbone HN, HnCO and NCO on high-resolution spectra using in-

phase, anti-phase (IPAP) experiments.  

 

 



76                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Fig 5.5 The quadropolar deuterium splitting of 10 Hz in the 1D 2H spectrum 

collected on a 13C-15N double labeled PA-ICP sample weakly aligned in 20 
mg/ml pf1 phage at 298K. 

 

 
5.2.3.2 Measurement of RDC restraints using in-phase anti-phase (IPAP) 
experiments   
RDCs from backbone HN, NCO and HnCO interactions of PA-ICP were measured from 

simplified 15N HSQC type spectra (Ottiger et al., 1998, Wang et al., 1998, Permi et al., 

1999). The desired residual dipolar and scalar couplings were resolved in the 15N frequency 

domain for HN and NCO interactions and 1H frequency domain for HnCO interactions. 
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Resulting spectra crowding could be reduced using IPAP method. Two separate spectra 

were recorded for each experiment to produce in-phase and anti-phase crosspeaks. By 

adding or subtracting one from the other, spin-state separated crosspeaks were generated 

and the splittings could be accurately measured (Fig 5.6). One set of spectra was collected 

on a sample dissolved in isotropic solution to allow the measurement of the scalar couplings 

and another set was collected on a sample in aligned pf1 phage to resolve scalar couplings 

and residual dipolar couplings (see Fig 5.7). RDC values are commonly normalized to the 

HN dipolar couplings and when dealing with dipolar couplings from NCO and HnCO, they 

can be easily scaled with scaling factors -3.0 and 8.3 respectively (Wang et al., 1998). 

 

 

 

 

                         

 

 

 

 

 

 
 
Fig 5.6 Schematic representation of calculating the RDCs from the IPAP experiment. 

The experiments are designed to record the in-phase and anti-phase patterns 
of the scalar splittings. The two doublet components can be separated into 
different spectra by adding or subtracting the anti-phase on the in-phase 
crosspeaks.  

In-phase Anti-Phase 
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Fig 5.7 The overlay of amide HN crosspeaks of residue L88 in the IPAP 15N HSQC 

spectra acquired on a uniformly 13C –15N enriched PA-ICP sample in pf1 
phage (red) and in water (green). The standard 15N HSQC spectrum is in 
black. 

 
 

5.2.4 χ1 angle determination and stereospecific assignment 
It has long been appreciated that three-bond J coupling constants can be used to extract local 

backbone and side chain conformations in proteins. The side chain χ1 angles of valine, 

isoleucine and threonine residues can be obtained by the measurement of 3JCγCO and 3JCγN 

coupling constants. With the use of 2D spin-echo difference 13C constant time heteronuclear 

single quantum (13C CT-HSQC) experiments (Vuister et al., 1993, Grzesiek et al., 1993), 

the measurements quantify the coupling constants from the intensity ratio of the crosspeaks 

on the spectra recorded when the J coupling is either eliminated or activated during the 
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N
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carbon chemical shift evolution using equation 5.2.  

 

( ) ( )2
 

- 1-cos  2   2sin    a b
x x

a

S S J T J TS π π= =  (5.2) 

 

where Sa and Sb refers to the crosspeak intensities with and without J coupling elimination, 

respectively, Jx, the corresponding three-bond coupling constants between side chain carbon 

and carbonyl or amide nitrogen and T, half of the duration of the constant time evolution 

period defined by 1/1JCC (27.5 ms). In general the 3JCγCO values are less than 4 Hz. Large 

values (> 3 Hz) indicate trans orientation while small values (< 1.5 Hz) indicate gauche 

orientation of CO-Cα-Cβ-Cγ. Similarly, large (> 1.7 Hz) and small (< 1 Hz) values of 3JCγN 

imply trans and gauche conformation of N-Cα-Cβ-Cγ. With this knowledge, Cγ1 and Cγ2 of 

the valine residues was then designated stereospecifically and the χ1 angles of valine and 

threonine side chains determined according to the recommendations of IUPAC-IUB Joint 

Commission on Biochemical Nomenclature (JCBN) (Markley et al., 1998) (fig 5.8). This 

allowed determination of the χ1 angle of 4 out of a total of 10 valine, all 6 threonine and 

isoleucine residues in PA-ICP. The χ1 angles of some valines were not determined due to 

crosspeak overlap.   
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Table 5.2  The χ1 angles of valine, threonine and isoleucine residues in PA-ICP 

determined by 3JCγCO and 3JCγN 
 

RESIDUE 
TYPE 

RESIDUE 
NUMBER 

CΓX
3JCΓCO CONFORMATION 3JCΓN CONFORMATION Χ1 

Cγ1 1.17 Gauche 2.07 Trans 5 
Cγ2 3.58 Trans Small Gauche 

1800

Cγ1 3.81 Trans Small Gauche 47 
Cγ2 0.96 Gauche 0.05 Gauche 

-600

Cγ1 Small Gauche 2.40 Trans 78 
Cγ2 3.87 Trans 0.78 Gauche 

1800

Cγ1 3.58 Trans 0.75 Gauche 

Valine 

89 
Cγ2 1.17 Gauche 0.38 Gauche 

-600

6 Cγ2 2.02 Rotamer averaging Small Gauche n/a 
19 Cγ2 2.15 Rotamer averaging 0.59 Gauche n/a 
27 Cγ2 Small Gauche 1.89 Trans -600

33 Cγ2 2.23 Rotamer averaging 0.24 Gauche n/a 
34 Cγ2 2.87 Rotamer averaging 1.85 Trans n/a 

Threonine 

73 Cγ2 1.02 Gauche 0.31 Gauche 1800

Isoleucine 108 Cγ2 1.25 Gauche 1.65 Trans -600

Small- the difference between Sa and Sb is too small to be measured 
n/a- can not be estimated due to rotamer averaging 
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Fig 5.8 Definition of side chain χ1 angle in residue isoleucine, threonine, valine and 

residues with Hβ2 and Hβ3 (Markley et al., 1998). 
 

5.3 Structure calculation of PA-ICP  
 
5.3.1 Calculation strategy  
The calculation strategy used for calculation of PA-ICP structures was based on simulated 

annealing using highly ambiguous NOE-derived distance restraints. It consisted of three 

steps: randomize, regularize and refine, as suggested by Nilges (Nilges, 1995). Prochiral 

swapping took into account the stereo specificity of the prochiral centers in the molecule 

during the regularize and the refine phases without actually performing explicit 

stereospecific assignment. The algorithm of the calculation is stated in the following outline.  
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Input: random initial coordinates, ambiguous NOE restraints, force field 
 
Randomize 

1. Initial energy minimization 
- selected atoms (Cα and single atoms representing the side chains) 
- large soft atoms (selected) 
- NOE, covalent and non-bonded forces weak 

2. Simulated annealing at 2000 K 
- selected atoms as above 
- 2000 K constant temperature 
- bond and angle force constants increased 
- other force kept weak 

3. Simulated annealing at 1500 K  
- all atoms 
- 1500 K constant temperature 
- bond, angle and VdW forces increased 
- NOE force strong 
- atoms medium-sized and soft 

 
Regularize 

1. create local ideal geometry by template fitting and topology mirror image generated  
2. energy minimization 

- all atoms 
- atoms soft and small 
- non-bonded forces strong 
- bonds, VdWs and NOEs minimized before minimizing angles 

3. simulated annealing at 2000 K 
- 2000 K constant temperature 
- very small and soft atoms  
- dihedral angle and improper force introduced gradually 
- covalent weights increased while non-covalent weights decreased 

4. correct the handedness of the structure by rejection of the mirror image with higher potential energy 
5. prochiral swapping 
6. simulated annealing 2000 K – 100 K 

- increased VdW interaction and NOE forces 
- temperature decreased gradually from 2000 K to 100 K 

7. energy minimization 
 
Refine 

1. simulated annealing at 2000 K 
- selected atoms small and hard 
- other forces increased 
- 2000 K constant temperature 
- NOE forces strong 

2. simulated annealing 2000 K – 1000 K 
- temperature decreased slowly from 2000 K to 1000 K 
- atoms small and hard 
- other forces increases to final values 

3. simulated annealing 1000 K – 100 K 
- temperature decreases from 1000 K to 100 K slowly 
- forces kept unchanged  

4. energy minimization 
 
output final structure 
 
 
Fig 5.9  Outline of the protocol used for calculating PA-ICP structures.
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5.3.2 Prochiral swapping 

Prochiral groups in a protein have carbon centers with two different and two identical 

substitutes, for example, β-methylene protons and the methyl groups of leucines and 

valines. Identical substitutents with non–degenerate chemical shifts are typically arbitrarily 

stereospecifically assigned during chemical shift assignment. The arbitrary assignment may 

result in the wrong orientation of the prochiral pair being chosen. To overcome this 

problem, a floating chirality assignment routine was introduced. This allows the two non-

degenerate chemical shifts to be assigned to either member of the prochiral pair by 

swapping their stereospecific assignments during the calculation with the lower energy 

conformer being chosen for each prochiral center. An adaptation of this method that swaps 

the prochiral centers in a random order and that accepts or rejects the swap with a 

metropolis style criterion related to the temperature was used in this study (Folmer et al., 

1997).    

 

5.3.3 Iterative structure calculation with automated assignment of ambiguous 
distance restraints    
The structure of PA-ICP was calculated preliminarily based on ambiguous NOE restraints 

using the program CNS (Crystallography & NMR System) (Brunger et al., 1998) in the 

ARIA manner. Once a good consistent ensemble of structures was achieved based solely on 

NOE restraints, the resulting structures were then subjected to further refinement by 

introducing hydrogen bond restraints.  

 

5.3.3.1 ARIA method 
As NOE restraints yield the major distance information for structure calculation, the 

NOESY crosspeaks have to be assigned in order to extract distance restraints from the 

spectra. The knowledge of the assignment is derived from known chemical shift values 

determined by chemical shift assignment, in which several protons may share the same 

chemical shift due to the large number of protons in biological macro molecules and the 

limited chemical shift range. Furthermore, overlapping NOESY crosspeaks often occur and 

the assignment of NOESY crosspeaks is therefore inherently ambiguous. Hence, manual 

NOESY assignment can be time-consuming and mis-assignment may lead to the failure of 

the structure calculation.  
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Alternatively, the structure can be calculated using ambiguous NOE restraints and the 

ambiguity of the chemical shift assignment of the NOE crosspeaks can be reduced indirectly 

by eliminating unlikely assignment possibilities using ARIA method (Linge et al., 2001, 

Nilges and O'Donoghue, 1998, Nilges, 1995).  

 

1219 and 872 NOE crosspeaks were collected from the 13C and 15N NOESY-HSQC 

experiments respectively. The restraints were supplied as a list of these selected crosspeaks 

with intensity related internuclear distances calculated using the method as described in 

section 5.2.1.3 and the superposition of the possibilities of chemical shift assignments. It 

was exported from CCPN analysis to ARIA format for structure calculation. 

 

The initial input distance restraints files contain lists of NOE crosspeaks grouped into 

different distance classes with all possible chemical shift assignments. The frequency ranges 

in which chemical shifts can be potentially assigned to a given NOE crosspeak are defined 

by the chemical shift tolerances ∆. In a 3D NOESY spectrum, if a NOE crosspeak 

resonances at frequency {F1, F2, F3}, the chemical shifts between F-∆ and F+∆ are all 

assigned to the given peak. If the tolerances are set too tight, the assignment may be 

incomplete. On the other hand, a large tolerance will lead to degeneration of the initial 

assignment and make the calculated structures less likely to converge. For PA-ICP, the 

tolerances for the direct, the indirect proton and the heteronuclear dimensions were set to 

0.05, 0.05 and 0.4 ppm respectively. 

 

At the end of each iteration, incorrect assignments and noise peaks are identified by 

violation analysis of the restraints used to calculate the structure, the assignment 

possibilities are reduced by filtering the chemical shift assignment, the filtered distance 

restraints are calibrated at the later stages of structure calculation, all based on the analysis 

of the ensemble of the calculated structures with the lowest potential energies. 

 

In most cases, the initial structure ensembles do not exactly agree with all the input 

experimental restraints used for structure calculation due to assignment errors, the presence 

of the mis-picked noise peaks or as a result of improper calibration of the NOE restraints. 

The violated restraints can be identified by comparison of the distance bounds determined 

by the experimental data with the corresponding distances measured in the calculated 
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structure ensemble or their r-6 summed distances. If a distance found in a calculated structure 

lies outside the distance bounds by more than a user-defined violation threshold t (0.3Å for 

structure calculation of PA-ICP), the restraint is considered violated. For structure 

calculation of PA-ICP, all structures calculated after each calculation cycle were analyzed to 

identify the restraints that were systematically violated. The violated restraints appearing in 

more than 50% of the total calculated structures were then manually inspected with respect 

to the original NOESY spectra so as to classify the origins of the violations. Noise peaks 

were removed from the restraint lists. The wrongly assigned NOE crosspeaks were either 

corrected or removed from the restraint lists. The distance bounds may be adjusted for the 

next calculation iteration. The rest of the violated restraints were still used in the further 

structure calculation without any change although it may be reported as problem.  

 

After all the violations in the current structures had been properly treated, the ambiguity of 

the NOE assignment could be reduced by discarding the possible chemical shift assignments 

if their corresponding internuclear distances in the minimal potential energy structures 

contribute less to the total peak intensity than a given fraction. The assignments were then 

re-evaluated before another structure calculation round started using the ambiguity-reduced 

restraints. The filtered data were used to calculate a new set of structures. At the end of the 

assignment/structure calculation cycle, a well defined biomacromolecule structure could be 

obtained as well as a comprehensive set of NOE assignments provided that a sufficient 

number of distance restraints are available. 

 

 

In the later stages of the structure calculation when a good convergence of the calculated 

structures was achieved, an additional distance restraint calibration step was introduced 

based on the distance calculated from the structure ensemble. A calibration factor was 

employed to calibrate all experimental NOEs with corresponding internuclear distances 

smaller than a cutoff of 6Å, 

 
6

NOEs

DC
I

−

= ∑  (5.3) 

 

where I was the observed NOE intensity. D was the arithmetic average of the internuclear 
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distance dij in the ensemble of n calculated lowest energy structure, which was defined by, 

 

  ,
1

1 n

ij n
n

D dn =
= ∑  (5.4) 

 

The calibrated NOE-derived distance dcal was calculated as 

 
1
6( )cald C I −

= ×  (5.5) 

 

During the next round of structure calculation, the distance was allowed to deviate from 

target distance dcal by no more than εd2
cal (ε=0.125 Å-1). This calibration was applied only at 

the later stage of the structure calculation because in the early iterations, the ensemble may 

be poorly defined and the average calculation would be biased towards the shortest distance 

in the ensemble.  

 

At the end of each round, a total of 50 structures were calculated and a subset of the lowest 

NOE potential energy structures were selected (typically 30 out of 50) for violation analysis, 

assignment filtration and distance calibration to prepare modified restraint lists for the next 

round. 

 

5.3.3.2 Inclusion of hydrogen bond restraints  
The 20 slowly exchanging amide protons resolved by hydrogen-deuterium exchange 

experiment described in section 5.2.2 were examined against the NOE-based structures for 

hydrogen-bonding possibilities based on the property of the secondary structure of the 

protein calculated using the NOE restraints only. The potential hydrogen bond acceptors 

OCO were selected by assuming that the hydrogen bonds are formed between them and the 

HN groups in the adjacent β strand. 19 OCO atoms were found to be in the position favorable 

for hydrogen bonding with 19 out of 20 observed slowly exchanging amide protons (Fig 

5.10). The hydrogen bonding information were supplied as an additional distance restraint 

list by assuming that the distance between the H and the O atoms in a hydrogen bond are 

1.7~ 2.2 Å. To ensure the bond angle to be between 1200~ 1800, the distance between the N 

and O atoms are set to 2.7~ 3.2 Å (Roberts, 1993).  
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Residue 

Fig 5.10  The location of the 19 potentially hydrogen bonded amide protons 
determined by D2O exchange in PA-ICP sequence. 

 

5.3.3.3 Iterative calculation 

The iterative calculation strategy used for the PA-ICP structure calculation is set out in table 
5.3 
 
The structure was first calculated based only on NOE-derived distance restraints. The 

hydrogen bond restraints were not incorporated until the very late stages of the calculation. 

Clearly, the total and experimental NOE potential energies of the calculated structures 

experienced noticeable decreases at the end of round 5 with the addition of the calibration 

step while they did not have distinguishable differences between the NOE-based and 

hydrogen bond refined structures (fig 5.11 b).   
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Iteration Restraints Analysis Filter 
proportion Calibration Check Hbonds 

1 Original restraints Original 
restraints 0.99 n/a Filtered 

restraints n/a 

2 
 Original restraints Original 

restraints 0.99 n/a Filtered 
restraints n/a 

3 Checked restraints 
from round 2 

Checked 
restraints from 

round 2 
0.98 n/a Filtered 

restraints n/a 

4 Checked restraints 
from round 3 

Checked 
restraints from 

round 3 
0.95 n/a Filtered 

restraints n/a 

5 Checked restraints 
from round 4 

Checked 
restraints from 

round 4 
0.95 Filtered 

restraints 
Calibrated 
restraints n/a 

6 Checked restraints 
from round 5 

Checked 
restraints from 

round 5 
0.95 Filtered 

restraints 
Calibrated 
restraints n/a 

7 Checked restraints 
from round 6 

Checked 
restraints from 

round 6 
0.95   Introduced

 

Table 5.3 The calculation of PA-ICP structure using CNS in an ARIA manner. The 
filter step filters the original experimental restraints against currently 
calculated structures. 
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Structure 

 
Fig 5.11 The convergence of the calculated structures from different iterations. a: 

NOE energy. b: total potential energy. The filter level decreased from 0.99 to 
0.95. Calibration was carried out from round 5 onwards. Hydrogen bond 
restraints were introduced in iteration 7. 
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5.4 Validation of calculated structures  
 
5.4.1 The precision of the ensemble of PA-ICP NMR structures 
The precision of the determined structures is directly related to the number of experimental 

restraints used in the structure calculation. The more restraints are included, the higher 

resolution can be obtained (Nabuurs et al., 2004). The statistics of the experimental 

restraints is summarized in table 5.4 

 

Structural Statistics 

Violations (mean and s.d.) 

   Distance constraints (Å)                                      0.0385±0.002 

Deviations from idealized geometry 

   Bond lengths (Å)                                                 1.56e-3 ±8.68e-5 

   Bond angles (0)                                                    0.294±8.626e-3 

   Impropers (0)                                                        0.156±1.11e-2 

 

 

Table 5.4  NMR structural statistics for PA-ICP 

 

When using solution NMR to calculate molecular structures, the spatial arrangement of the 

atoms in the molecule is restrained in allowed ranges defined by the experimental data. As a 

result, the three-dimensional structure of a molecule cannot be defined uniquely. Thus, it is 

NMR restraints 

Total NOE                                                           1703 

   Ambiguous                                                       502 

   Unambiguous                                                   1201 

      Intra-residue                                                   635 

      Inter-residue 

         Sequential (i-j=1)                                         245 

         Medium-range (i-j<4)                                  56 

         Long-range (i-j>5)                                       265 

Hydrogen bonds                                                    19 
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difficult to represent the actual structure using a single model obtained using solution NMR 

method. This is particularly true for less-defined regions that undergo a high level of 

dynamics. A meaningful representation of the NMR solution structure of a protein can be 

produced using a structural ensemble consisting of a set of calculated structures that are 

each consistent with the experimental data. The structures with the lowest total energies and 

no more than 2 NOE restraint violations were included in the ensemble. The final ensemble 

(fig 5.13) of PA-ICP comprising 25 out of 50 structures was superimposed using THESEUS 

(Theobald and Wuttke, 2006) which makes use of a maximum likehood algorithm. 

 

The similarity of the structures in the ensemble was assessed by calculation of the root mean 

square deviation (RMSD) of the atomic coordinates of each structure to an unbiased mean 

structure generated from the ensemble. The mean structure was calculated using an 

unweighted mean program (UWMN) written by M. Hartshorn and L. Caves, the University 

of York, UK. A matrix, M, was constructed containing the average distance Mij between 

atoms i and j in the ensemble of the structures. The internal inconsistency of the mean 

distances made it impossible to directly project the matrix into three-dimensional space to 

reconstruct the structure. Alternatively, the matrix was projected into a multiple-

dimensional space which was then oriented so that the matrix can be projected back into 

three dimension to give the mean structure with the least loss of structural information. The 

results are summarized in table 5.5.   

 

RMSD to the unbiased mean structure (Å) 

Heavy   1.29+/-0.23 

Backbone  0.80+/-0.20 

 

Table 5.5 RMSD of the structures in the ensemble to an unbiased mean structure. This 
was calculated over residues 16-44, 74-95 and 101-111 among 25 refined 
structures. 

 

5.4.2 Geometric quality of the ensemble of PA-ICP NMR structures 
The geometric quality of the calculated structures can be evaluated by the distribution of the 

backbone (φ and ψ) and side chain (χ1) torsion angles of residues in a protein (Morris et al., 

1992). This information for the ensemble of structures of PA-ICP was plotted using 
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Procheck-NMR (Laskowski et al., 1996) (fig 5.12), as shown in appendix B. The 

Ramachandran statistics for the residues (excluding all prolines and glycine residues and 

residues at the N-terminus) of the ensemble of PA-ICP structures is summarised in table 4.6. 

More than 90% of the residues fall within the range of most and additionally allowed 

regions. This is consistent with high quality structures with good covalent geometry. Most 

residues located in the well-structured β strands lie within (or close to) the favourable 

regions of the Ramachandran plot for the β sheet across the ensemble. The residues in less 

well defined regions, such as the N-terminus and the loop region between residue 51 and 70, 

show a greater scatter of φ and ψ angles than other residues. This is due to the lack of 

restraints to define these regions of the protein. Residue D8, K17, L18, Q20, G21, E23, T34, 

G35, R37, V47, P43, A44, A79, S81, D84, R85 and A101-S105 are clustered in 

unfavourable regions. Most of these residues are located in the flexible loop regions of the 

molecule except for residues D84-R85, A101-S105, which reside on two adjacent β strands. 

The unfavorable main chain conformation of these residues may result from being distorted 

by nearby large side chains. 

 
Regions of Ramachandran plot                     % residues  
Residues in most favoured regions                   62.5% 
Residues in additional allowed regions             33.2% 
Residues in generously allowed regions            3.4% 
Residues in disallowed regions                          0.9% 

 
Table 5.6  A summary of the Ramachandran statistics for the ensemble of PA-ICP 

structures as determined by Procheck-NMR. 
 

 

The distribution of side chain torsion angles χ1 are another good indicator of the geometric 

quality of a calculated structure. χ1 is the torsion angle of N-Cα-Cβ-Xγ1 about Cα-Cβ bond. 

The distribution of χ1 for a residue across the ensemble of the structures indicates how well 

defined the position of the side chain is. The positions of the majority of the side chains in 

PA-ICP are relatively well defined. No residue in PA-ICP displays a χ1 distribution in 

unfavourable regions.  
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Fig 5.12 Graphical summary of Ramachandran statistics the final ensemble of 25 PA-

ICP structures. Structures were analysed using Procheck-NMR. 
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5.4.3 Stereospecific assignment of valine, threonine and isoleucine residues 
As mentioned in section 5.3.2, the stereospecific assignment of the prochiral groups in the 

protein was achieved using prochiral swapping during structure calculation. To assess 

whether this method was appropriate for this purpose, the calculated χ1 angles of valine and 

isoleucine residues derived from the ensemble of the structures were compared with the χ1 

angles of five residues determined by the experimental data (section 5.2.4). The determined 

χ1 angles of V5, V47, V78, V89 and I108 are consistent with the calculated values, 

suggesting that the prochiral groups in PA-ICP can be stereospecifically assigned using 

prochiral swapping during structure calculation without explicit assignment.  

 

5.4.4 Violated restraints 
None of the NOE restraints used in the final structure calculation were consistently violated 

by more than 0.5 Å. NOE restraints violated by more than 0.3 Å in more than 10% of the 

ensemble structures are listed in table 5.7 with possible assignments. All these violated 

restraints involve the flexible N-terminal residues, implying a calibration error resulting 

from the assumption that the flexible and rigid parts of the protein have the same correlation 

time τc.   

No. of violations   Atom i   Atom j  
14     3 PRO HD2                     3 PRO HB2 
14     3 PRO HA          4 VAL H 
13              23 GLU H          2 LYS HA 
11     3 PRO HB3                     3 PRO HD2 
7            103 SER H      102 GLU HG2, HG3 
5     4 VAL H          4 VAL HG21, HG22, HG23 
5              20 GLN HE22                 110 VAL HG11, HG12, HG13 
3     1 GLN HA                     1 GLN HG2, HG3 
3     2 LYS HA          2 LYS HD2, HD3 
3     2 LYS HA          3 PRO HG2, HG3 
    37 ARG HA                   93 PRO HG2 
3    16 LEU HG                     4 VAL HG21, HG22, HG23 
    24 LEU HG                   110 VAL HG11, HG12, HG13 
    79 ALA HB1, HB2. HB3    
 

 

Table 5.7 Violated NOE restraints in the final ensemble of 25 PA-ICP structures. 
Restraints violated by more than 0.3 Å in 3 or more structures are displayed. 
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5.4.5 Validation of PA-ICP with RDC restraints 
The accuracy of the calculated PA-ICP structure was assessed using RDC restraints. The 

RDCs measured from the flexible regions were excluded since these would be averaged and 

inconsistent with any individual structure. Overlapped crosspeaks in the IPAP spectra were 

also excluded. 42 HN RDC restraints, 43 NCO RDC restraints and 43 HnCO RDC restraints 

representing the residual dipolar coupling among the backbone amide 1H, 15N nuclei from 

residue i and the carbonyl 13C from residue i-1 were collected as described in chapter. The 

restraints were fitted to the structure with the lowest RMSD to the unbiased mean structure 

of the ensemble using the program of module 2 (Dosset et al., 2001). The fitted data display 

a reasonable fit between the measured and back-calculated RDC values (fig 4.13), even 

without refinement with the RDC restraints, validating the structures calculated based solely 

on NOE and hydrogen bond restraints.  
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Fig 5.13 Plot of the back-calculated RDC restraints against experimental RDC 

restraints. The distribution of data points are scattered along the diagonal.    
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Fig 5.14 A stereo-view of the ensemble of the final 25 PA-ICP solution structures 
superposed on backbone Cα of residues in well-defined regions (residue 16-
44, 74-95 and 101-111). The three less convergent inter-strand loops are 
coloured in blue (BC), magenta (DE) and green (FG) respectively. The 
disulphide bond was highlighted in yellow.    
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5.5 Conclusion 
The PA-ICP structures were already reasonably well converged at the early iterations of the 

calculation, owing to the careful NOE crosspeak picking strategy. Inclusion of hydrogen 

bond restraints did not have appreciable impact on the potential energy of the calculated 

structures, implying that the NOE restraints on their own were already able to provide a well 

refined PA-ICP structure although the RDC restraints may help the further refinement of the 

overall quality of the ensemble.   



CHAPTER 6 
 
 

DYNAMICS STUDY OF PA-ICP 
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6.1 Overview 
Having assigned the chemical shifts of the backbone amide 1H and 15N atoms, dynamics 

information of the backbone NH vectors can be extracted by studying the 15N relaxation 

rates. In this thesis, the longitudinal and transverse relaxation time T1 and T2 and steady 

state {1H, 15N} heteronuclear NOE were measured. The internal motions of the backbone 

HN vectors were modelled using Lipari-Szabo model free formalism. 

 

6.2 Measurement of T1, T2 relaxation rate and heteronuclear NOE  
T1 and T2 spectra were based on the 15N HSQC experiment collected as a pseudo 3D 15N 

HSQC fashion with the time points selected on an extra dimension for T1 and T2 

measurements (Kay et al., 1989, Farrow et al., 1994, Farrow et al., 1995). Both experiments 

utilize a refocused INEPT sequence to achieve an in-phase amide 15N magnetization along 

the x axis transferred from the 1H spin. An additional 900 pulse is applied in the T1 

relaxation experiment to flip the magnetization along the z axis before the relaxation period. 

In the T2 relaxation experiment, the relaxation modulates 15N coherence stored in the 

transverse plane by incorporation of a CPMG pulse train. For PA-ICP, the heights of 78 

backbone amide cross peaks could be reliably quantified out of 96 assigned backbone HN 

cross peaks. For T1 relaxation, the delays were set to 51, 301, 601, 901, 1201 ms with a 

duplicate spectrum at 301 ms for error estimation. For T2 relaxation, the delays were set to 

16, 32, 84, 80, 96 and 128 ms with duplicates at 16 and 48 ms. Highly overlapped signals 

were omitted from relaxation analysis.  
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Fig 6.1  The 15N T1, T2 and {1H-15N} heteronuclear NOE values for each resolved 

backbone amide in PA-ICP detected at 60.8 MHz (15N) and 308K. 
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6.3 Estimation of overall correlation time and rotational diffusion tensor  
As mentioned in section 2.4, the overall molecular tumbling can be either isotropic or 

anisotropic depending on the shape of the molecule. How the molecule tumbles needs to be 

estimated before extracting the internal dynamics information because underestimation of 

the anisotropy of the overall rotational motion may result in an overestimation of eR x . The 

correlation time of the molecule can be extracted from the T1/T2 ratio (Kay et al., 1989). A 

plot of T1 against T2 allows a preliminary approximation of the rotational correlation time 

(fig 6.2).  

 

 
T2 (s) 

 
 
Fig 6.2 A plot of 15N T1 against T2 for PA-ICP recorded at 60.8 MHz on a uniformly 

13C, 15N labelled sample. Each data point corresponds to an individual 
residue of the protein. The residues of the His- tag and the residues giving 
rise to overlapped amide cross peaks were omitted. The solid line represents 
simulated S2 of 0.8 and dashed line 1.0 with estimated correlation time for 
isotropic tumbling corresponding to expected T1/T2 values.  

 

T1 (s) 
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For most residues, the implied correlation times fall into a tight range between 6.3 to 9.0 ns, 

indicating that PA-ICP does not exhibit highly anisotropic rotational diffusion. The majority 

of the points are clustered between the two lines, corresponding to residues in relatively 

well-defined regions in the 3D structure. In the T1/T2 plot, there are several points lying at 

S2<0.8 and S2>1.0. The points with a general order parameter less than 0.8 are primarily 

contributed by residues 59-70 and 95-98, the highly disordered regions as suggested by the 

heteronuclear NOE data (fig 6.1). In theory, no residue should appear outside the S2=1.0 

boundary. However, the presence of slow conformational or chemical exchange Rex will 

result in an increase in R2 and therefore a shorter T2. It consequently moves the associated 

T1/T2 points further to the left such that they lie outside the S2=1.0 boundary. The residues 

occurring on the left of S2= 1.0 in figure 6.2 are mainly located on three β strands forming 

one of the β sheets with residue L7 and Y56 having the biggest deviation from S2=1.0 

together with residue S72, L26 and D8 lined up across one face of the β sheet formed by 

strands (fig 6.3). The co-localization of the residues undergoing slow exchange may be due 

to the conformational exchange experienced by N-terminal residue L7 and the movement is 

propagated among the above residues aligned across the same β sheet, while residue Y56 is 

water-exposed and therefore undergoes conformational exchange.  
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Fig 6.3  A stereo-view of the structure closest to the mean structure of the 25 

calculated structures. The location of the residues in PA-ICP experiencing 
slow-exchange residues (red) as indicated by T1/T2 plot (fig 6.2). Their co-
localization suggests a possible presence of propagated conformational 
change.  
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On the basis of the spins in PA-ICP with fast and limited internal motions, the average τm 

value was estimated to be 7.62±0.5 ns. This value is similar to that determined for 

monomeric L. mexicana ICP (7.4 ns). With the availability of the PA-ICP solution structure, 

the rotational diffusion tensor of the molecule was estimated from the T1/T2 ratio of the 45 

backbone 15N spins in PA-ICP that do not experience chemical exchange and undergo 

restricted internal motions.  The analysis carried out using a program provided by Palmer 

(1991) indicated that the majority of the residues showed similar correlation times close to 

the average value with a weakly anisotropic axially symmetrical diffusion tensor of 

Dpar/Dperp=1.21. The anisotropy is small enough to treat the motion of PA-ICP as isotropic 

(Hall and Fushman, 2003).  

 

6.4 Internal motions of PA-ICP backbone HN vector 
The internal motion of the PA-ICP backbone was modelled from the three relaxation 

parameters of T1, T2 and heteronuclear NOE by 5 possible models with no more than 3 

model-free parameters. The analysis was carried out using the program ModelFree4.20 

(Mandel et al., 1995, Palmer et al., 1991). The 5 models were model 1 (S2), 2 (S2, τe), 3 (S2, 

Rex), 4 (S2, τe, Rex) and 5 (S2, τe, S2
f). For model 1-4, S2

f= 1.0 and S2= S2
s. The selection of 

the models was performed based on Mandel’s protocol (1995) with small modifications 

suggested by Chen (Chen et al., 2003). The flowchart of the protocol used for modelling 

dynamics of PA-ICP backbone is shown in figure 6.4. Having selected the best-fit 

dynamical model for each nuclear spin, the overall rotational diffusion of PA-ICP and the 

internal motion parameters were further optimised. The final optimisation gives rise to a 

global τm of 7.725 ns. Among the analysed 79 residues, 17, 16, 7, 2 and 19 residues were 

sufficiently fitted by model 1, 2, 3, 4 and 5 respectively. The dynamics of residues L7, D12, 

L16, L18, L28, T34, A44, S46, L51, T73, A80, D84, V89, D97, F104, I108 and V110 could 

not be adequately fitted by any model (see the flowchart for SSE criterion) . The optimised 

modelfree parameters of S2, τe, Rex and S2
f for the backbone HN vector of each residue are 

listed in appendix C together with its sum square error (SSE) and F-statistic value.  

 

The square of order parameter S2 is typically between 0.75–1 for most fitted residues, 

except for residues 54-70 whose S2s are between 0.25-0.5 and residues 96-101 whose S2 

between 0.55-0.78, suggesting that these two regions are flexible in solution with the first 

region experiencing more flexibility (smaller S2 values). The residues in these two loops are 
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best modelled with two order parameters, S2 and S2
f, with distinct timescales faster than τm 

and internal correlation time of order of a nanosecond. The only exception is residue Y56, 

which is best modelled by an S2 of 0.9, internal correlation time of 0.5 ns and a millisecond 

timescale chemical exchange term. The residues in the N-terminal region (residue 6-13) are 

best fitted by S2 and Rex parameters, indicating the presence of a slow motion in an order of 

milliseconds. Most residues in the other loops are best fitted with 2 or 3 modelfree 

parameters, whereas the residues in the well-structured strands are best modelled with one 

(S2) or two (S2 and τe) parameters. Residues D8, A10, Y56 and S72 can be modeled by 2 or 

3 model free parameters each including a chemical exchange term, which is consistent with 

the qualitative analysis of the T1/T2 plot (fig 6.2) in the last section.  

 

For PA-ICP, certain residues can not be fitted with any one of the five models. These 

residues primarily reside at the junctions between the β strands and the loops. Given the 

location of these residues, the combination of the different dynamic properties of the well 

structured and the highly disordered regions are likely to influence their dynamics and result 

in complex motions which can not be sufficiently modeled by the limited number of model 

free parameters. Therefore, acquiring extra experimental data points at different fields or 

sampling different slow exchange time scales may be useful for fitting the relaxation data to 

models.      

 

 

 



106                          

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.4 The flowchart of model selection strategy based on Mandel’s method with 
small modifications made by Chen.  
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Fig 6.5 15N backbone dynamics of PA-ICP. Model free parameters are plotted as a 

function of residue number. The location of the β strands are indicated by 
arrows. 
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Fig6.6 A stereo-view of the structure closest to the mean structure of the 25 
calculated structures. The residues which can not be fitted by any model are 
highlighted with red sticks.  
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6.5 Conclusion 

The relatively longer T2s and smaller NOEs implied a highly flexible region around residues 

60-75. Another less flexible region from residue 96 to 108 was also identified (fig 6.1). The 

motion of the residues in these regions were modelled with three model free parameters S2, 

S2
f and τm. The backbone dynamics study of PA-ICP revealed that two loop regions have 

higher degree of mobility than the rest of the protein. The molecule undergoes isotropic 

rotational diffusion with a good proportion of the residues whose motions can be modelled 

by 5 model free models. However, 23% of the analysed HN vectors can not be adequately 

fitted by any models. This inadequate fit phenomenon has also been reported (Katahira et al., 

2001, Pang et al., 2002) although there are less unfitted residues. These residues in PA-ICP 

are primarily located at the junctions connecting the β strands and the loops and may 

experience complicated dynamics. This may be improved by acquiring additional 

experimental data points.  



CHAPTER 7 
 
 

SOLUTION STRUCTURE OF PA-ICP 
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7.1 Overview 
In chapter 5, the structure of PA-ICP was calculated using NOE and hydrogen bond 

restraints. This chapter presents the structural features of PA-ICP and compared them with 

its homologs, chagasin and L. mexicana ICP. A homology model of the PA-ICP-cathepsin L 

complex was also built using the crystal structure of chagasin and cathepsin L complex as a 

template on the basis of the calculated PA-ICP structures.  

 

7.2 The structure of PA-ICP 
PA-ICP adopts an immunoglobulin-like beta-sandwich fold. The protein consists of seven β 

strands forming two β sheets. The first β sheet is formed by a very short strand A (residue 

L16 and K17) parallel to C (residue R37 to N42), which is in turn anti-parallel to strand F 

(residue D85 to R91) with anti-parallel orientation to strand G (residue S101 to Q109).  In 

the other β-sheet, strand B (residue E23 to L 28) contacts strand E (residue S72 to V78) in 

anti-parallel orientation with strand D (residue L48 to R50) anti-parallel to strand E. The 

two β sheets are well-packed enclosing a hydrophobic core comprising residues L24, L26, 

L28 on strand B; W38, L40 on strand C; W74, F76 on strand E, L86, L88 on strand F and 

F104, I108 on strand G. These residues are principally hydrophobic residues conserved 

along the strands in an alternating manner (fig 7.1). The conformation of the N-terminal 

loop region is maintained via hydrophobic interactions among residues L7, A10 and L26, 

F104 together with the disulphide bridge between residues C13 and C106. There are five 

inter-strand loop regions in PA-ICP. The DE loop was poorly defined by the NMR data and 

had the least structural convergence. This is usually circumstantial evidence of high 

mobility and the dynamics of this loop was confirmed by 15N relaxation experiments. This 

loop region together with other two less flexible loops lie on one end of the protein bearing 

three highly conserved groups of residues reported for all members in ICP family (Rigden et 

al., 2002). The NPTTG motif is located in the loop BC flanked by the GXGG motif lying in 

the highly flexible loop DE and the RPW/F motif on loop FG. The studies of PA-ICP 

homologs have identified them as forming the CP-binding site.  
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Fig 7.1 a. Cartoon representations of PA-ICP structure. The residues forming the 

hydrophobic core are shown as gray lines and the conserved BC, DE and FG 
loop regions are colored in blue, green and red respectively. b. Topological 
representation of PA-ICP. 
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7.3 Comparison of the global fold of PA-ICP with those of chagasin and L. 

mexicana ICP 
Sequence alignment of the ICP family indicates that all ICP proteins adopt a similar 

immunoglobulin like fold. The solution structures of PA-ICP, chagasin and L. mexicana 

ICP confirm that this is the case as these three proteins consist of two β-sheets formed by 7 

to 8 β–strands folded to a β sandwich. In general, these proteins fold in a similar way. The 

SCOP database has classed the proteins to a ICP-like family with similarity to the 

Cupredoxin-like fold (http://scop.mrc-lmb.cam.ac.uk/scop/). However, the first two β–

strands and the 310 helix observed in chagasin solution structure are less well defined in PA-

ICP. Comparison of the structures of these ICP proteins also reveals that strand C in PA-ICP 

is longer than the corresponding strands of 4 in chagasin and C in L. mexicana ICP. This is 

because the following loop region in PA-ICP is shorter than the equivalent loop regions in 

chagasin (loop 3) and L. mexicana ICP (the CD loop) which are pinned back to the outer 

face of one β-sheet. The neutral residues that serve to pin the loops, M35, T37 and T93 in 

chagasin and A35, Y37 and M90 in L. mexicana ICP, are replaced by charged residues in 

PA-ICP (R37, E39 and R91). In contrast, strand D of PA-ICP is shorter than the 

corresponding strands 5 in chagasin and D in L. mexicana ICP while the following loop DE 

is significantly longer than the equivalent loop regions in chagasin (loop 4) and L. mexicana 

ICP (DE loop). The extension of the strand is disrupted by the large side chain of R50, 

which appears to displace the side chain of L51 to the surface of the protein in PA-ICP. 

What is more, the signals from the backbone amide groups of residue E54, V55, S57 and 

N58 were absent from the 15N HSQC spectra, indicating fast backbone amide proton 

exchange with water for these residues at pH 7.2. This suggests that this region is more 

accessible to the solvent than other parts of the protein, as a consequence of being less well 

structured. 

 

Despite the structural differences between PA-ICP and chagasin and L. mexicana ICP, its 

global fold still places the three highly conserved motifs on one end of the molecule to form 

the binding site to interact with target cysteine peptidases. The dynamic data indicates that 

the DE loop of PA-ICP experiences the greatest degree of mobility as can be seen for the 

equivalent loop 4 in chagasin and loop DE in L. mexicana ICP. In addition, a depressed S2 

value was modelled for the FG loop of PA-ICP which was not observed from the dynamics 

data for the corresponding loops in chagasin (loop 6) and L. mexicana ICP (FG loop), 
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suggesting that this loop is more dynamic in PA-ICP than in chagasin and L. mexicana ICP. 

The differences in the specificity of ICPs to different cysteine peptidases may be influenced 

by the flexibility of these two loops.  

 

7.4 Inhibitory activity of PA-ICP to cathepsin L, H and B, compared to 
Chagasin  
The dissociation constants Ki for chagasin binding to cathepsins have been determined by 

dos Reis (A) (dos Reis et al., 2008), Wang (B) (Wang et al., 2007)and Redzynia (C) 

(Redzynia et al., 2009). The results along with Ki values determined for PA-ICP are listed in 

table 7.1. The Ki values for chagasin to the same peptidases are considerably different. The 

possible cause of the inconsistency may be variations in assay protocols and conditions. The 

protocols for A and B differ from C in that the result A and B were determined with an 

additional pre-equilibration of the inhibitor and the enzyme prior to the addition of the 

substrate for assay. The dissociation constant measures the ratio of the free enzyme and 

inhibitor concentrations to the enzyme–inhibitor complex concentration at steady state and 

the equilibrium is not established instantaneously after mixing the inhibitor with the 

enzyme. Failure to reach the steady state before the enzyme assay may lead to an 

underestimation of the inhibitory activity. Therefore, an optimal length of pre-incubation 

procedure is essential for accurate measurement. This is especially true for cathepsin B, 

which, when assayed with PA-ICP, took 15 mins to reach the equilibrium (data not shown). 

This may explain why in the assay of chagasin activity toward cathepsin B, it appeared to 

have a Ki 100 times lower in result C than in B. The assay condition of pH could also have 

an impact on the Ki determination, as it affects the electrostatic potential on the protein 

surfaces, which could be particularly important at the molecular interface. The active site 

cleft of cathepsin L has a large negative potential and accommodates several acidic residues 

that make contacts with the inhibitor (fig 7.2). In the complex, residue E141e, for instance, 

is in close proximity to K43 of the inhibitor. It seems to interact with K43 competing with 

E71 of chagasin. A lower pH will make the carboxyl group of this residue more likely to be 

protonated and weakens the interaction with the positively charged residue. Therefore, the 

Ki determined at pH 6.5 may be less than determined at pH 5.5, as seen in results A and B.    
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Ki (nM) Enzyme 
Chagasin (A) Chagasin (B) Chagasin (C) PA-ICP 

Cathepsin L 0.007±0.0012 0.35±0.1 0.039 0.0065±0.0005 
Cathepsin H N/A 15±4.8 N/A 10.43±1.3 
Cathepsin B N/A 100±9.5 0.93 138 

 
 
Table 7.1  Dissociation constants of chagasin and PA-ICP to cathepsin L, H and B 

determined using different protocol and experimental conditions. 
 

 

A sensible evaluation of inhibitory activity of chagasin and PA-ICP to cathepsin L is 

assessed by comparison with the Ki value determined by dos Reis because the protocols and 

pH conditions used for the determination were identical. While for cathepsin B, the 

dissociation constant of PA-ICP is compared with that of chagasin determined by Wang as 

the pH was adjusted to 6.0 for assaying the chagasin-cathepsin B complex. The result 

indicates PA-ICP inhibits cathepsin L, H and B to a degree highly comparable to chagasin. 

The inhibitory activities are nearly indistinguishable against cathepsin L. When interacting 

with cathepsin B, PA-ICP shows a slightly lower inhibitory activity than chagasin wherase, 

it inhibits cathepsin H slightly better than chagasin. 
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Fig 7.2  A cartoon representation of the predicted binding of PA-ICP (gray) to the 

active site cleft of cathepsin L (blue). The surface of the enzyme is modelled 
according to its electrostatic potential from red (negative) to blue (positive) 
using PYMOL. The enzyme’s active site is highly negatively charged and 
contains several Glu and Asp residues (highlighted with fatter sticks) that 
interact with chagasin (grey). For example, E141e is in close proximity to 
K43 of chagasin, which is also close to residue E71. 

 

E141e 

K43
E71 
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7.5 Predicted PA-ICP-Peptidases Interactions 
Given the similarity of the structure and inhibitory activity between PA-ICP and chagasin, 

PA-ICP is expected to interact with model CPs in an analogous fashion. In order to shed 

light on its inhibitory function, models of the PA-ICP-cathepsin L (fig 7.3-6) complex were 

created using modeller 9.5 based on the coordinates of the chagasin-cathepsin L complex 

(Sali and Blundell, 1993). The intermolecular contacts discovered in chagasin in complex 

with cathepsin L may be imitated by PA-ICP (Ljunggren et al., 2007). The important 

hydrogen bond between the side chains of R92 (PA-ICP numbering) and N18e is conserved 

(fig 7.4). The interaction is supported by the recognition of the hydrophobic cluster close to 

the enzyme active site by W94 through packing against W189e, W193e and F143e. The 

shape of loop FG is maintained by P93 via hydrophobic interaction with the side chains of 

F145e and L144e. Loop DE, that experiences the greatest degree of dynamics, contains the 

GXGG motif. The conformational flexibility of glycine residues is proposed to be crucial in 

this interaction as a mutated L. mexicana ICP with these glycines replaced by more rigid 

proline residues diminished the inhibition of L. mexicana ICP to the parasite CP CPB 

(Smith et al., 2006). The measured backbone dynamics revealed that loop DE in PA-ICP 

experiences a greater degree of mobility than the equivalent loop in chagasin. This may help 

the loop of PA-ICP more readily adopt the optimal binding conformation but, on the other 

hand, would be subject to a greater loss of entropy upon binding. The hydrophobic contacts 

between L65 and Y72e and between V66 and L69e are conserved (fig 7.5), while the polar 

contact of K63 and Y72e in chagasin-cathepsin L complex is not present in the PA-ICP-

cathepsin L interaction because the lysine residue is replaced by a glycine at the equivalent 

position. The NPTTG motif directly blocks the catalytic triads of the enzyme, with the 

residue T33 making contact with C25e. The backbone conformation of T33 places the 

backbone carbonyl oxygen instead of the carbon atom facing the side chain of the enzyme 

active site cysteine so as to protect the loop from being cleaved by the peptidase (fig 7.6 a). 

Intriguingly, the hydrophobic interaction between Y57 and P30 in chagasin that serves to 

define the conformation of loop 2 no longer exits in PA-ICP as the equivalent tyrosine Y56 

in PA-ICP is instead highly mobile. In the chagasin-cathepsin L interaction, mutation of the 

proline residue to an alanine resulted in weaker binding due to the increase in the mobility 

of this loop (dos Reis et al., 2008) causing looser packing. The dynamics of the tyrosine 

residue may have a similar impact on the packing quality of the BC loop. This effect may be 

counteracted by additional possible interactions between the side chains of E42e and R37 
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(fig 7.6 b) which is replaced by hydrophobic residues of alanine in chagasin and methionine 

in L. mexicana ICP at equivalent positions. Although it is not obvious in the modeled 

complex’s structure, given the proximity of these two residues, they could form either a salt 

bridge between the guanidinium group of R37 and the carboxyl group of E42e or two 

hydrogen bonds between part of the guanidinium group of R37 and part of the carboxyl 

group of E42e and between the other part of the carboxyl group and Hε of R37. This 

interaction was not modeled using modeller’s structure based alignment algorithm because 

the default algorithm did not take into account the electrostatic interactions. 

 

Chagasin binds cathepsin L more tightly than cathepsin H and B. This is also true for PA-

ICP due to the steric hindrance of the occluding loop in cathepsin B and the mini chain in 

cathepsin H which restrict access to the active site clefts of the enzymes. The crystal 

structures of chagasin in complex with cathespin B demonstrate that the inhibitor interacts 

with the enzyme in a mode similar to interacting with cathepsin L with loop 4 affording 

additional interactions with cathespin B by forming direct or water-mediated hydrogen 

bonds involving residues N55-Y57 in strand 5 of chagasin (Redzynia, 20008). The 

structure-based sequence alignment suggests that these interactions may be mimicked in the 

PA-ICP-cathepsin B complex. The exceptions are residues E54-Y56 (equivalent to residues 

N55-Y57 in chagasin) which experience highly mobility in PA-ICP while in chagasin their 

conformations are rather fixed by the well defined secondary structure. The flexibility of 

loop region E54-Y56 in PA-ICP would be expected to introduce a greater entropic penalty 

in becoming rigid when binding to the enzyme and this may consequently give rise to a 

somewhat lower inhibitory activity for PA-ICP than for chagasin.    
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Fig 7.3 Model of PA-ICP in complex with cathepsin L. the model was built based on 
the crystal structure of the chagasin-cathepsin L complex. The loops bearing 
the highly conserved sequences NPTTG, GSGG and RPW compose the 
inhibitory epitope binding to the active site cleft of cathepsin L in a manner 
similar to chagasin. 
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Fig 7.4  PA-ICP-cathepsin L interactions of the RPW motif. The side chain of R92 is 
anchored by the aromatic side chains of Y90 and W94 and forms an 
important hydrogen bond with the carbonyl side chain of N18e. W94 
recognizes the enzyme’s hydrophobic cluster via π interactions with W189e, 
W193e and F143e. The conformation of the FG loop is maintained by P93 
packing against F145e and L144e. 
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Fig 7.5  Interaction of the highly dynamic DE loop of PA-ICP with cathepsin L. 

Hydrophobic interactions are seen between the side chains of V66 and L69e 
and between L65 and Y72e. 
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Fig 7.6 Interaction 
of the BC loop of 
PA-ICP with 
cathepsin L. a: The 
BC loop interacts 
directly with the 
active site residues 
with T33 making 
contact with the 
active site cysteine 
(mutated to an 
alanine). The main 
chain conformation 
of T33 places the 
carbonyl oxygen 
atom instead of the 
carbon atom toward 
the nucleophilic 
cysteine thiolate so 
as to protect the 
protein from being 
cleaved. b: A 
possible 
interactions 
between side chains 
of R37 and E142e 
may be present to 
compensate for the 
looser packing of 
the BC loop to 
achieve high 
affinity binding. 
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7.6 Conclusion 
PA-ICP adopts an immunoglobulin fold placing the three mobile loops containing the 

highly conserved motifs on one end of the protein to interact with the peptidases. The 

interactions of PA-ICP with CPs were investigated by homology modeling. The interactions 

were predicted to be similar to those between chagasin and cathepsins. The dynamics of the 

DE and FG loops and the electrostatic properties of certain residues near the binding site 

may contribute to the specificity of the ICP proteins. 

 



CHAPTER 8 
 
 

MATERIALS AND METHODS 
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8.1 Molecular biology 
 

8.1.1 Purification of plasmid DNA 
Plasmid DNA was purified using QIAprep spin miniprep kit (Qiagen, Cat No. 27104) 

according to the manufacturer's instructions. 

 

8.1.2 Agarose electrophoresis of DNA  
130ml of TBE buffer containing 1% multiple purpose agarose (Roche, Cat No. 1388991) 

was microwaved at 900 W until the agarose was completely melted. The gel was pre-stained 

with 3 μl of ethidium bromide (10 mg/ml in ethanol). After cooling the solution to about 60 
0C, it was poured into the casting tray of the electrophoresis apparatus (BioRad, Cat No. 

164-0310) containing a sample comb and allowed to solidify at room temperature. The 

comb was removed carefully and the rest of the gel tank was filled with TBE buffer until the 

gel was covered. The samples containing DNA mixed with loading buffer were pipetted into 

the wells alongside 2-log DNA markers (BioLabs, Cat No. N3200S). Electrophoresis was 

carried out under conditions of constant voltage at 110V for over half an hour. The 

migration of the DNA in the gel was detected by ethidium bromide fluorescence upon 

exposure to UV light. 

 

8.1.3 Transformation of recombinant DNA into E.coli strains 
Tranformation competent cells BL21(DE3) (Novagen, Cat No. 69450), BL21(DE3) 

codonplus (Stratagene, Cat No. 230240), DH5α (Invitrogen, SKU NO. 11319-019), were 

transformed according to the manufacturers’ instructions. Briefly, 50 μl of competent E. coli 

cells from -80 0C storage were defrosted on ice briefly prior to addition of 1 μl plasmid 

DNA. The transformation reaction was mixed by gentle flicking of the tube. The tube was 

kept on ice for 5 min followed by heat-shocking at 42 0C for exactly 20 seconds. The tube 

was returned immediately to ice for a further 2 min. 250 μl of pre-warmed SOC medium 

was added and the reaction was incubated at 37 0C for 1 h with vigorous shaking at 200 

rpm. The recovered cells were plated onto LB-agar containing appropriate selection 

antibiotics and incubated at 37 0C overnight. The colonies formed were used to inoculate 

suitable medium for protein expression or DNA extraction. 
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8.2 Protein expression and purification 
Unless stated elsewhere, any protein solution was kept on ice or stored at 4 0C. The 

plasmids for expression of PA-ICP protein were kindly provided by Prof. G. Coombs, 

division of infection and immunity, Institute of Biomedical and Life Science, University of 

Glasgow. The genes were inserted into the Nde1 and Xho1 sites of pET 28 (a)+ vector, 

giving rise to a N-terminal (His) 6-tag to facilitate the purification step. 

 

8.2.1 Cultivation of E. coli cells containing target protein 
LB Medium  1% (w/v) tryptone, 0.5%(w/v) yeast extract, 1% NaCl (w/v)  

5XM9 stock 3.4% (w/v) Na2HPO4, 1.5% KH2PO4, 0.25% (w/v) NaCl, autoclaved 

prior to use 

Salt Mixture 4 mM ZnSO4, 1 mM MnSO4, 0.7 mM H3BO3, 0.7 mM CuSO4, 

filtered prior to use 

M9 minimal medium 100 ml 5XM9, 500 μl salt mixture, 2 mM MgSO4, 0.1 mM CaCl2, 

0.3% D-glucose (w/v), 8 mM (NH4)2SO4, 0.004% thiamine 

Labeled medium for 13C labelling, replace 0.3% glucose with 0.2% D-glucose (U13C6, 

99%) (Cambridge Isotope laboratories, Inc, Cas 110187-42-3), for 15N 

labelling, replace 8 mM (NH4)2SO4 with 16 mM 15NH4Cl (Isotec, 

11186AE). Appropriate selection antibiotics were added in all media 

prior to use. 

 

A single colony of freshly transformed E. coli cells was transferred from a selective agar 

plate into appropriate medium. The culture was incubated on a rotatory shaker (200 rpm) at 

37 0C overnight, which was used to inoculate fresh medium at 15:500 (v/v) ratio. The 

culture was then grown in the shaker at 37 0C and 200 rpm until the optimal logarithmic 

growth phase (OD600=0.6~0.8) was reached. The cells were induced with 1 mM IPTG for a 

further 4 h at the chosen temperature before harvest by centrifugation (4300 g) at 10 0C for 

20 min and the cell pellet was stored at -20 0C.  

 

To examine the protein expression level, culture samples were taken before and after IPTG 

induction for subsequent analysis. The cell density (OD600) of the samples were measured 

and the sample volumes were determined using the formula,  
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600

0.6 500(μl)
OD

×  

The cells were isolated by microcentrifugation and resuspended with 30 μl lysis buffer 

together with 10X bugbuster (Novagen, Cat No. 70921-4) and 1 μl Benzonaze (Novagen, 

Cat No. 70746-3). The samples were assayed using SDS-PAGE under denaturing 

conditions. 

   

8.2.2 Lysis of E. coli cells 
lysis buffer   50mM NaH2PO4, 300mM NaCl, 0.01% NaN3, pH 8.0 

 

The defrosted cells were resuspended thoroughly into lysis buffer (5 ml buffer/1 g wet cell 

paste) by pipetting. The cells were lysed with 10X Bugbuster protein extraction reagent. 

Benzonase Nuclease was added (1:3000 v/v) at this point to reduce the viscosity of the 

extract by digestion of chromosomal DNA. 1 mg/ml of lysozyme (Novagen, Cat No. L-

6876) was added to enhance the extraction efficiency for the hosts which did not express T7 

lysozyme. A protease inhibitor cocktail (Roche, Cat. No. 11836170001) was also added at a 

concentration of 1 tablet / 30 ml lysis buffer to prevent unwanted proteolysis of PA-ICP. 

Following incubation at room temperature for over 30 min to allow complete lysis, the 

insoluble cell debris was removed by centrifugation at 10 0C 19872 g for 20 min. The 

supernatant was taken on to the next purification step immediately. 

 

8.2.3 Immobilized metal affinity chromatography 
binding/wash buffer  50 mM NaH2PO4, 300 mM NaCl, 0.01% NaN3, pH 8.0 

elution buffer   50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole, 0.01% NaN3, 

pH 8.0 

 

Ni-NTA resin was packed into a disposable column (BioRad, Cat No. 195-6586) and 

equilibrated with 20 bed volumes of binding buffer prior to applying the cell lysate onto the 

column. The lysate was passed through by gravity flow and the flow-through was collected 

using a clean tube. The unbound proteins were washed off with 20 bed volumes of wash 

buffer. The bound proteins were eluted with elution buffer until no further protein appeared 

in the eluate, which was determined by examination of the eluate with Bradford reagent. In 

case of saturation of the resin, the procedure was repeated with the flow through, until no 
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protein of interest was found in the eluate. Samples were taken from each step for SDS-

PAGE. 

8.2.4 Cleavage of His-tag 

The protein concentration of the eluate was determined using Bradford assay. The eluate 

and thrombin (Novagen, Cat No. 69671-3) were combined at a ratio of 0.8 unit thrombin per 

1 mg protein. The reaction was incubated at 15 0C overnight. To assess the efficiency of the 

cleavage, samples for SDS-PAGE were removed before and at various points after adding 

thrombin. Once the cleavage was complete, the residual thrombin was removed by passage 

through benzamidine sepharose.  

 

8.2.5 Ion exchange chromatography 
low salt buffer   50 mM NaH2PO4, 0.01% NaN3, pH 8.0 

high salt buffer  50 mM NaH2PO4, 1 M NaCl, 0.01% NaN3, pH 8.0 

 

The salt concentration of the protein solution was adjusted to be less than 30 mM using low 

salt buffer. The protein solution was past through a 0.2 μm cellulose nitrate membrane filter 

(Whatman International Ltd, Cat No. 7182-004) to filter out any precipitate to avoid the 

damage to the column. Both buffers were filtered with the membrane filter and dissolved air 

removed by degassing.  Fast flow anion exchange (-CH2N+(CH3)3) Q sepharose (Sigma, Cat 

No. Q1126 ) was packed into a column, resulting in a bed volume of 18.85 ml. After 

assembly of the anion column onto an AKTA chromatography system (Amersham) at 4 0C, 

The column was pre-equilibrated with 30 ml of low salt buffer. The protein sample was 

loaded through a pump inlet and the column was washed with 3 column volumes of low salt 

buffer. The bound protein was eluted off the column with a linear 0 to 1M salt gradient over 

10 column volumes. The flow rate and the pressure limit were set to 5 ml/min and 0.8 MPa 

respectively throughout the whole experiment. The elution profile was monitored by UV 

absorbance at wavelengths 280 nm and 220 nm. 5 ml of eluate was collected for each 

fraction.  

 

8.2.6 Size exclusion chromatography 
running buffer  25mM Na2HPO4, 75mM NaCl, pH 7.2, 0.01% azide, filtered and 

degassed before use 
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The protein sample was concentrated to 500 μl using a Vivaspin20 concentrator, molecular 

weight cutoff 5,000 kDa (VIVASCIENCE, Product No. VS2012). Any precipitate was 

removed by microcentrifugation. A pre-packed Superdex 75 10/300 GL (GE healthcare, 

Product code. 17-5174-01) gel filtration column was connected to the AKTA 

chromatography system housed in a coldroom. After equilibration with 30 ml of running 

buffer, the protein sample was loaded onto the column through the injection valve. The flow 

rate was set to 0.5 ml/min to ensure the pressure of the system was below 1.8                  

MPa during the experiment. The UV absorbance at 280 nm was used to monitor the 

experiment. The protein was eluted with 1.5 column volumes (35.343 ml) of the running 

buffer with 0.5 ml of eluate collected in each fraction. The eluate samples were examined 

using SDS-PAGE. The molecular weights of proteins in the eluate were estimated by 

comparison of the UV trace with a reference created by calibration of the column using 

LMW gel filtration calibration kit (Amersham biosciences, Product No. 17-0442-01). The 

calibration procedure was as stated on the manufacturer’s instructions. 

 

8.2.7 Buffer exchange and concentration 
A  buffer exchange using PD10 desalting column 

A PD10 desalting column (Amersham biosciences, Product No. 52-1308-00) was pre-

equilibrated with 10 ml of the desired elution buffer. 2.5 ml of protein solution was loaded 

onto the column and then eluted off with 3.5 ml elution buffer. 

 

B buffer exchange using Vivaspin concentrator 

The protein sample buffer was exchanged to desired buffer in a 20 ml Vivaspin centrifugal 

concentrator (Sartorius, Product No. VS15RH11) with an appropriate molecular weight cut-

off at 3056 g and 10 0C. The sample in original buffer was concentrated to about 500 μl by 

centrifugation. 19.5 ml desired buffer was added and the cycle repeated 3 times to complete 

buffer exchange. The protein solution was then concentrated to the required volume. 

 

8.2.8 Disulphide bond formation 
A  glutathione disulphide shuffling 

The protein solution was incubated with different ratios (1:2, 1:4, 1:6, 1:8, 1:10) of reduced 

glutathione and oxidized glutathione at 4 0C for 2 days. 1 μM of CuSO4 was added to the 

solution to catalyse the oxidation of the two cysteines. The pH of the solution was adjusted 
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to 8.5.  

 

B  peroxide oxidation 

The protein was oxidized in the presence of 1 M H2O2 at 4 0C for 2 days. 

 

8.3 Protein assays 
 

8.3.1 SDS-PAGE 
Coomassie Stain 45% methanol, 45% dH2O, 10% acetic acid, 0.25% (w/v) coomassie 

R250  

Destain Buffer 5% methanol, 10% acetic acid, 85% dH2O  

 

The samples were mixed with 4X NuPAGE LDS sample buffer (Invitrogen, Cat No. 

NP0007) prior to being loaded into pre-cast NuPAGE 4~12% bis-tris gels (Invitrogen, Cat 

No. NP0321BOX). The reduced samples were heated to 85 0C for 10 min with 90 mM β-

Mercaptoethanol before loading. Protein markers (BioRad, Cat No. 161-0373) were diluted 

with two volumes of water and one volume of NuPAGE LDS sample buffer and 10 μl was 

loaded. The gel was run at 200 V constant voltage for 45 minutes. The protein bands were 

visualized after staining the gel with approximately 100 ml of coomassie stain for 5 to15 

min followed by destaining in 100 ml of destaining buffer overnight at room temperature. 

 

8.3.2 Antibody purification 
Coupling buffer 0.1 M Na2HPO4, 0.05% NaN3, pH 7.0 

Wash buffer  1 M NaCl, 0.05% NaN3 

 

PA-ICP was expressed and purified as stated before. 2 mg of purified protein was 

immobilized covalently to AminoLink coupling gel (Pierce, No. 20381) as bait for 

purification of PA-ICP antibody from polyclonal antisera produced. 1 ml of coupling gel 

was washed with 10 ml coupling buffer 3 times. The gel was centrifuged at 173 g for 5 min 

and the supernatant removed after each wash. 1 ml of protein solution was diluted to 3 ml 

with coupling buffer. The diluted protein solution was mixed with coupling gel and the 

coupling procedure was performed according to the manufacturer’s instructions. To bind 

antibody, PA-ICP coupled gel was pre-equilibrated with 10ml IgG binding buffer (Pierce, 
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Product No. 21001). 5 ml of PA-ICP rabbit antisera (final bleed) was mixed with 2.5 ml IgG 

binding buffer and incubated with the coupling gel overnight at 4 0C. The gel and the sera 

were transferred into a disposable column. After washing with 20 ml of IgG binding buffer, 

the bound antibody was then eluted with 5 ml of IgG elution buffer (Pierce, Product No. 

21004). 10 fractions were collected with each fraction containing 500 μl eluate plus 25 μl of 

1 M tris (pH 9.0) to neutralize the eluate. The concentration of the purified antibody in each 

fraction was measured at 280 nm using 5 μl sample plus 95 μl H2O on biophotometer. 

Fractions 2-4 were buffer exchanged using a PD10 column into PBS, pH 7.55 and 

concentrated to 350 μl. The antibody solution was mixed with an equal volume of 2 mg/ml 

BSA and stored at -20 0C in 50% glycerol. The column was washed with 20 ml wash buffer 

and stored at 4 0C.  

 

8.3.3 Western immunoblotting 

Transfer Buffer 5% 20X NuPAGE transfer buffer (Invitrogen, Cat No. 1222517), 

20% methanol, 75% dH2O 

Ponceau S Solution 0.5% (w/v) Ponceau S, 1% glacial acetic acid, 99% dH2O 

10X TBST Buffer 1.21% tris, 4% NaCl, 1% Tween 20, pH7.6 

Block Buffer  1X TBST, 5% (w/v) nonfat milk 

Wash Buffer    1X TBST, 1% (w/v) nonfat milk 

 

The proteins of interest were electrophoretically separated using SDS-PAGE. After 

electrophoresis, the pre-soaked nitrocellulose transfer membrane (Anderman & co. ltd., 

Conv No. 7001623) was placed on the surface of the gel. The membrane and the gel were 

sandwiched in between the filter papers (BioRad, Cat No. 1703932) and blotting pads. The 

whole assembly was then carefully put into the Xcell II blot module (Invitrogen, Cat No. 

E19051). The gel transfer tank was assembled. The blot apparatus was filled with transfer 

buffer until the gel/membrane sandwich was covered and the outer buffer chamber was 

filled with ~650 ml deionized water. The transfer was performed at 30 V constant for 1 h. 

To check the efficiency of the transfer, the membrane was stained in Ponceau S solution for 

2 min. After destained in deionized water, the membrane was blocked with 50 ml of block 

buffer for 2 h at room temperature and then incubated with primary antibody (1:10,000 

(v/v)) in 50 ml of wash buffer at 4 0C overnight. The unbound antibody was washed off in 

wash buffer for 4X 30 min at room temperature. The membrane was incubated with 50 ml 
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of wash buffer plus 1:5,000 (v/v) secondary antibody for 2 h at room temperature followed 

by another wash. The membrane was rinsed in 1X TBST buffer and incubated with ECL 

reagent for 3.5 min before detection. 

 

8.3.4 Bradford assay 
The protein concentration was measured using Bradford assay kit brought from Pierce 

(Product No. 23236). The measurement was performed according to the standard “test tube” 

protocol in the manufacturer's instructions. For samples in buffers containing imidazole, the 

concentration of the imidazole was adjusted to be lower than 200 mM.  

 

8.3.5 Enzyme assay 
Assay buffer A: 0.1 M sodium acetate, 2 mM EDTA, 10 mM DTT pH 5.5 

Assay buffer B: 0.1 M NaH2PO4, 2 mM EDTA, 10 mM DTT 

Chromogenic substrate stock: 0.1 M in ethanol 

Fluorogenic substrate stock: 10 mM in DMSO 

 

8.3.5.1 Active site titration of papain and cathepsins 
Papain  Active site titration of papain (Sigma, Product No. P4762) with irreversible 

inhibitor E64 was performed using z-PHE-ARG-pNA (Biochem, Cat No. L-1242) as 

chromogenic substrate. E64 was diluted serially to span the concentration from 0 to 0.2 µM. 

30 µl of diluted inhibitors was incubated with an equal volume of enzyme at 33 0C for 5 

min. 50 µl of reaction mixture was assayed with 500 µl of assay buffer A containing 300 

µM substrate at 33 0C on a spectrophotometer at 410nm, for 60 sec, with data recorded at 

0.5 sec intervals. The initial rate of each reaction was calculated and a plot was produced of 

velocity (y axis) versus concentration of inhibitor (x axis). The plot should be linear with the 

x intercept indicating the concentration of inhibitor required to completely inhibit the 

enzyme. The functional molarity of the enzyme can then be calculated. Papain was also 

titrated with PA-ICP in a similar pseudo-irreversible manner with a previously determined 

active enzyme concentration to estimate the active concentration of PA-ICP.  

 

Cathepsins L and B The assays of active site titration of cathepsin L (Calbiochem, Cat 

No. 219402) and cathepsin B (Calbiochem, Cat No. 219362) with E64 were performed as 

for papain.  
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Cathepsin S The active site titration for Cathepsin S (Calbiochem, Cat No. 219343) was 

performed using the fluorogenic substrate z-FR-AMC (Bachem Cat No. I-1160). The 

enzyme was diluted with assay buffer B, 50 µl of which was incubated with 50 µl of E64 

for 1 min on ice. The mixtures were then added in pre-warmed assay buffer B containing 

200 µM substrate. Fluorescence of the released amino-methylcoumarin was measured 

immediately in a fluorimeter with the exitation wavelength set to 380 nm and emission 

monitored at 465 nm. The measurements were carried out at 30 0C for 1 min, measuring 

interval 0.1 s. The initial rates of the reactions were calculated and a linear plot was created 

as described above.  

 

8.3.5.2 Ki determination 
Cathepsin L  The enzyme was diluted with assay buffer B to a concentration of 8 nM and 

activated on ice for 1 h. PA-ICP was also diluted with assay buffer B to a range between 0 

nM to 1.6 nM. 50 µl of each dilution was pre-incubated with 50 µl of diluted enzyme at 30 
0C for 1 min to allow the inhibitor binding to approach equilibrium. The mixture was 

assayed at 30 0C in 900 µl assay buffer B, pH 5.5 containing 15 µM fluorogenic substrate z-

FR-AMC. The measurements were carried out for 1 min in a fluorimeter. The initial 

velocity of the reaction with and without inhibitor were calculated and a plot of velocity (v) 

versus inhibitor concentration([I])was generated.  

 

Cathepsin B The assay was as for cathepsin L, except that the enzyme concentration was 

2 nM and PA-ICP concentration used was in a range of 0 to 32 µM. The incubation time for 

cathepsin B and PA-ICP was 15 min. 

 

Cathepsin S The assay was as for cathepsin L, except that the enzyme concentration was 

100 nM and pH was 6.0. The substrate concentration was 200 µM. 

 

Cathepsin H (Calbiochem, Cat No. 219404) The assay was as for cathepsin L, except that 

the enzyme concentration was equal or less than 200 nM. The substrate was H-ARG-AMC 

(Biomol, Cat No. P-135) and pH 6.8 
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8.3.6 Osmotic shock  
Wash buffer 10 mM tris-HCl, 30 mM NaCl (pH 7.1)  

 

P. aeruginosa PAO1 was cultivated in 1 L LB medium overnight (kindly provided by Prof. 

T. Evans, Institute of Biomedical and Life Science, University of Glasgow). After harvest at 

3500 g at 25 0C for 20 min, the cells were washed with 40 ml of wash buffer at 5311 g for 

30 min. The pellet was resuspended in 40 ml 33 mM tris-HCl (pH 7.1) and then incubated 

with 40 ml 40% (w/v) sucrose at 25 0C for 30 min, followed by centrifugation at 6200 g for 

20 min. The pellet was quickly resuspended in 40 ml 0.5 mM MgCl2 on ice. The sudden 

change in the osmolarity should lead to the release of periplasmic material. The location of 

PA-ICP was detected using western blot and the efficiency of the osmotic shock was 

assessed by assay of the activity of acid phosphatase as periplasmic marker protein using 4-

Nitrophenyl phosphate disodium salt hexahydrate（Sigma, Product Code: S 0942） 

 

8.4 NMR spectroscopy 
 

8.4.1 Sample preparation 
NMR buffer  25 mM Na2HPO4, 75 mM NaCl, 0.01% azide (w/v) 

 
15N labelled or 15N-13C double labelled samples were expressed as described above using 

labelled media. After purification, the sample buffer was exchanged for NMR buffer (pH 6 

for non-his-tagged samples and 7.2 for his-tagged samples) using a 20 ml Vivaspin 

concentrator with molecular weight cut-off of 5 kDa. The concentrated sample was then 

microcentrifuged at 13,000 g at 4 0C for 10 min to remove any fine particles prior to 

addition of 5% D2O. The sample was stored at 4 0C for a week to allow sufficient formation 

of the intra-molecular disulphide bond.  

 

8.4.2 NMR data acquisition  
All data were collected on Bruker Avance 600 MHz NMR spectrometer, equipped with a 

TCI 5 mm cryoprobe, at 298 K unless stated otherwise. 
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8.4.2.1 Resonance assignment 
Resonance assignments of PA-ICP have been achieved using 13C-15N double labelled 

samples and triple resonance heteronuclear 3D NMR spectroscopy methods. The chemical 

shifts of the protein backbone were assigned using two pairs of complementary 3D 

experiments, HNCO+HN(CA)CO and HNCACB+CBCA(CO)NH of which the HNCACB 

and CBCA(CO)NH were non-linear sampled on both indirect dimensions to reduce the 

acquisition time. On the basis of backbone assignment, the assignments were then expanded 

to the side chains using CCCONH, HCCONH and HCCH-TOCSY experiments for aliphatic 

residues. Aromatic side chains were assigned using HBCBCGCDHD and 

HBCBCGCDCEHE.  

 

8.4.2.2 Structure restraints gathering 
Distance Restraints  

NOE restraints were collected using 3D 15N-NOESY-HSQC and 13C-NOESY-HSQC 

experiments with a mixing time of 100 ms. After processing, the spectra were loaded into 

CCPN analysis and NOE peaks were picked manually and corroborated by looking for 

symmetry correlated peaks. The picked peaks were used to generate ambiguously assigned 

distance restraints for structure calculations. The detailed calculation method is set out in 

chapter 5. 

 

8.4.2.3 RDCs    
RDCs of the protein backbone were resolved by weak alignment of a double labeled sample 

with 20 mg/ml of Pf1 filamentous phage (Profos AG, cat No, 311059). 12 mg phage was 

buffer exchanged into alignment buffer and concentrated to 180 μl using a 20 ml Vivaspin 

concentrator (molecular weight cut-off 10 kDa) before the addition of 420 μl protein 

sample. 5% D2O was added and the sample was mixed carefully to avoid the formation of 

fine bubbles, resulting in a final phage concentration of 20 mg/ml. Due to the linear 

relationship between the quadrople splitting resulted from aligned deuterium and Pf1 phage 

concentration, the degree of the alignment was tuned by adjustment of the concentration of 

the Pf1 phage according to the magnitude of quadropolar deuterium splitting using 1D 

deuterium experiment. A splitting of 10 Hz in the quadropolar 2H peak pair was observed. 

RDC data were collected using modified IPAP J-coupled 15N HSQC experiments with the 

incorporation of spin-state selection. 1J (HN), 1J (NCO) and 2J (HnCO) splittings were 
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measured on both oriented and isotropic samples and dipolar couplings obtained from 

differences of the splittings.  

 

8.4.2.4 Hydrogen Bonds 
A 15N labelled PA-ICP sample was purified as stated above. After lyophilization the sample 

was redissolved in D2O. 1H-15N HSQC experiments were recorded immediately before and 

after sample preparation at several times. Cross peaks remained after 2 h were considered to 

represent the hydrogen bonded amide protons. 

 

8.4.2.5 15N relaxation experiments 
Relaxation experiments for protein dynamics study were performed on a non-his-tagged 15N 

labelled sample at pH 6 and 308K. 15N T1 and T2 relaxation rate were measured using non-

sensitivity enhanced pseudo 3D experiments with 6 T1 and 8 T2 relaxation points selected to 

cover the possible T1 and T2 durations for PA-ICP. 15N heteronuclear NOEs were measured 

by comparing the intensity of signal transferred from amide 15N to 1H in the absence and 

presence of 1H saturation. The CurveFit program 

(http://biochemistry.hs.columbia.edu/labs/palmer/software/curvefit.html) was used to fit the 

T1 and T2 relaxation data. 

 

8.4.2.6 NMR data processing and viewing 
All multi-dimensional NMR data were processed using the AZARA suite of programs 

(http://www.bio.cam.ac.uk/azara/, Wayne Boucher, unpublished). Window functions and 

zerofilling were routinely applied to optimize the signal resolution before the raw FID was 

Fourier transformed from time domain to frequency domain data. For those spectra with 

poor baseline and water suppression, baseline correction and convolution to remove the 

residual water signal were also employed. In particular, for all 3D experiments, a Maximum 

Entropy scheme was used for processing of the indirect dimensions.  

 

The processed data were assigned and analyzed manually using the CcpNmr suite of 

programs (http://www.ccpn.ac.uk/) (Fogh et al., 2006). 

 

 



135                          

 

Table 8.1  Acquisition parameters of NMR experiments used for resonance assignment, 
structural restraints collection and backbone dynamics investigation. Exp: 
experiment, Nuc: Nucleus, TD: time domain points (complex), SW: sweep 
width in Hz, AQ: acquisition time in ms, PL:900 high power pulse length in 
μs, QD: quadrature detection mode, RD: relaxation delay, NS: number of 
scans, WS: water suppression, ST: states-TPPI, E-Anti: Echo-antiEcho, WG: 
water gate, FB: flip-back, ∆: experiments run on an aligned sample.  

 

Dimension 1 (direct) Dimension 2 (indirect) Dimension 3 (indirect)
Exp 

Nuc TD SW AQ PL Nuc TD SW AQ QD Nuc TD SW AQ QD
RD NS WS

HNCO 1H 8968389 107 11.5 15N 24 126518.9 ST 13C 60 2717 22 ST 1 8 WG

HNCACO 1H 8968389 107 11.5 15N 24 126518.9 ST 13C 60 2717 22 ST 1  WG

HNCACB 1H 8968389 107 13.18 15N 16/31126511.8 ST 13C 28/8011312  ST 1 24 WG

CBCACONH 1H 8968389 118 13.23 15N 16/31126511.8 ST 13C 27/7611312 3.3 ST 1 24 WG

CCCONH-TOCSY 1H 8968389 107 12.75 15N 27 1265 21 E-
Anti

13C 55 11312 48 ST 1 32  

HCCCONH-TOCSY 1H 8968389 107 11.5 15N 18 126514.2 ST 1H 106 8403 13 ST 1 16 WG

HCCH-TOCSY 1H 896899399.713.38 13C 31 4753 6.5 ST 1H 70 5403 12.9 ST 1 24  

HBCBCGCDCEHE 1H 896899399.7 11.5 13C 40 6002 6.7 ST      1 640  

HBCBCGCDHD 1H 896899399.7 11.5 13C 40 6002 6.7 ST      1 768  
15N-NOESY-HSQC 
Mixing time 100 ms 

1H 896899399.713.38 15N 35 126527.6 ST 1H 75 7800 9.6 ST 1 24 WG

13C-NOESY-HSQC 
Mixing time 100 ms 

1H 8968389 107 13 13C 41 4753 8.6 E-
Anti

1H 101 7800 12.9 ST 1 24  

13C-NOESY 2D 
Projection 

1H 8968389 107 13.23 13C 128 4753 27 E-
Anti      1 24  

JCOCme 1H 896899399.712.75 13C 400 475384.1 E-
Anti      1 32  

JNCme 1H 896899399.712.75 13C 400 475384.1 E-
Anti      1 32  

IPAP 15N HSQC 1H 8968389 107 11.25 15N 152 1265 120 ST      1 64  

IPAP 15N HSQC� 1H 8968389 107 11.25 15N 80 1265 63 ST      1 240  

IPAP 15N HSQC 
_AB_CACO 

1H 8968389 107 11.25 15N 64 126550.6 ST      1 400  

IPAP 15N HSQC 
_AB_CACO∆ 

1H 8968389 107 11.25 15N 75 126559.2 ST      1 400  

IPAP 15N HSQC 
_AB_NCO 

1H 8968389 107 11.25 15N 80 1265 63 ST      1 240  

IPAP 15N HSQC 
_AB_NCO� 

1H 8968389 107 11.25 15N 80 1265 63 ST      1 240  

Hetero-nuclear NOE 1H 8968389 107 13.5 15N 86 126567.9 ST      2 80 FB

T1 relaxation 1H 8968389 107 13.5 15N 128 1265 101 ST      1.5 32 FB

T2 relaxation 1H 8968389 107 13 13C 86 1265 68 ST      2 32 FB
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8.5 Homology modeling 
The PA-ICP-cathepsin L complex was modeled using modeller 9.5 based on the coordinates 

of the chagasin-cathepsin L complex. The sequence alignment that directs the modeling was 

generated on the basis of a structural comparison, with loop region G52-G64 of PA-ICP not 

aligned to the template structures to allow for its flexibility.  



CHAPTER 9 
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Appendix B   Ramachandran plots and χ1 torsion angle distributions for the final 
ensemble of PA-ICP NMR structures 
 

 

 
 
Per-residue Ramachandran plots for structures in the final PA-ICP ensemble. Structures 
were analysed using Procheck-NMR.  Favourable φ, ψ dihedral angle combinations are 
indicated by a yellow box, unfavourable by a red box. 
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Per-residue Ramachandran plots for structures in the final PA-ICP ensemble. Structures 
were analysed using Procheck-NMR.  Favourable φ, ψ dihedral angle combinations are 
indicated by a yellow box, unfavourable by a red box. 
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Per-residue Ramachandran plots for structures in the final PA-ICP ensemble. Structures 
were analysed using Procheck-NMR.  Favourable φ, ψ dihedral angle combinations are 
indicated by a yellow box, unfavourable by a red box. 
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Per-residue Ramachandran plots for structures in the final PA-ICP ensemble. Structures 
were analysed using Procheck-NMR.  Favourable φ, ψ dihedral angle combinations are 
indicated by a yellow box, unfavourable by a red box. 
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Per-residue Ramachandran plots for structures in the final PA-ICP ensemble. Structures 
were analysed using Procheck-NMR.  Favourable φ, ψ dihedral angle combinations are 
indicated by a yellow box, unfavourable by a red box. 
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Per-residue Ramachandran plots for structures in the final PA-ICP ensemble. Structures 
were analysed using Procheck-NMR.  Favourable φ, ψ dihedral angle combinations are 
indicated by a yellow box, unfavourable by a red box. 
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Per-residue Ramachandran plots for structures in the final PA-ICP ensemble. Structures 
were analysed using Procheck-NMR.  Favourable φ, ψ dihedral angle combinations are 
indicated by a yellow box, unfavourable by a red box. 
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Per-residue χ1 sidechain torsion angle values for structures in the final PA-ICP ensemble. 
Structures were analysed using Procheck-NMR. Favourable χ1 torsion angle values are 
indicated in yellow, unfavourable in red.  
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Per-residue χ1 sidechain torsion angle values for structures in the final PA-ICP ensemble. 
Structures were analysed using Procheck-NMR. Favourable χ1 torsion angle values are 
indicated in yellow, unfavourable in red.  
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Per-residue χ1 sidechain torsion angle values for structures in the final PA-ICP ensemble. 
Structures were analysed using Procheck-NMR. Favourable χ1 torsion angle values are 
indicated in yellow, unfavourable in red.  
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Appendis C  The optimal modelfree parameters for backbone dynamics by 
residue 
 
 
Resi 2cn model S2 S2 err S2

f S2
f err τe (ps) τe err (ps) Rex Rex err SSE F-stat

6  3 0.834 0.022     2.556 0.379 1.34 39 

8  3 0.841 0.062     6.346 1.067 12.63 3.2 

10  3 0.75 0.058     10.202 1.09 1.45 58 

11  3 0.851 0.047     3.421 0.741 2.43 9.6 

13  3 0.79 0.034     3.071 0.503 10.61 3.9 

17  1 0.792 0.018       17.29  

21  1 0.903 0.023       3.22  

22  2 0.947 0.026   526.316 507.708   12.26 99 

25 β 1 0.953 0.027       8.86  

26 β 1 1 0.034       16.9  

27 β 1 0.887 0.022       2.92  

33  2 0.871 0.027   60.781 24.943   2.74 2.7 

36  2 0.904 0.014   47.95 16.902   4.31 3.9 

38 β 1 0.892 0.022       9.92  

39 β 1 0.89 0.024       20.31  

40 β 2 0.892 0.019   63.49 23.598   0.03 251 

41 β 5 0.755 0.039 0.876 0.024 1733.1 369.574   0  

42 β 1 0.848 0.019       5.56  

45  4 0.804 0.016   17.079 5.253 2.418 0.246 0  

47  3 0.849 0.034     1.58 0.498 2.75 4.5 

48 β 2 0.947 0.029   1052.63 591.02   13.32 36 

49 β 1 0.918 0.02       1.06  

54  5 0.69 0.027 0.868 0.019 1487.12 229.371   0  

56  4 0.891 0.086   540.326 774.594 8.435 1.078 0  

59  5 0.551 0.019 0.893 0.014 1075.57 57.296   0  

60  5 0.375 0.009 0.846 0.007 1221.34 14.704   0  

63  5 0.335 0.01 0.827 0.01 1144.38 24.28   0  

64  5 0.256 0.009 0.823 0.008 1227.71 11.902   0  

65  5 0.296 0.009 0.837 0.009 1166.45 19.407   0  

66  5 0.382 0.008 0.827 0.007 985.855 13.379   0  

67  5 0.334 0.01 0.84 0.01 1085.57 22.019   0  

68  5 0.308 0.01 0.823 0.01 1116.72 14.838   0  

69  5 0.342 0.01 0.827 0.009 1162.87 22.85   0  

70  5 0.504 0.016 0.928 0.012 1206.92 29.596   0  

71  5 0.776 0.025 0.921 0.017 2429.24 638.608   0  

72 β 3 1 0     1.838 0 2.97 4.7 

74 β 2 0.895 0.044   1578.95 538.656   5.92 106 

75 β 2 0.947 0.029   526.316 582.109   13.03 2.8 
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76 β 1 0.887 0.023       15.96  

77 β 1 0.897 0.02       6.88  

78 β 5 0.897 0.03 0.936 0.018 791.963 642.502   0  

79  1 0.903 0.024       3.2  

81  2 0.789 0.009   12.335 4.403   0.9 84 

82  5 0.837 0.032 0.895 0.019 528.791 468.614   0  

83 β 2 0.832 0.01   28.882 6.337   10.01 1.5 

85 β 1 0.865 0.014       3.39  

87 β 2 0.872 0.035   1266.39 305.45   3.41 328 

88 β 1 0.957 0.025       0.41  

90 β 2 0.893 0.037   1176.84 462.313   0.66 7.4 

92  2 0.947 0.027   1578.95 700.999   16.13 19 

94  2 0.849 0.02   49.982 13.813   0.64 88 

95  5 0.811 0.022 0.911 0.013 564.988 176.308   0  

96  5 0.647 0.018 0.84 0.012 715.641 72.495   0  

98  5 0.547 0.011 0.787 0.008 896.304 40.094   0  

101  5 0.782 0.019 0.909 0.012 1462.79 152.628   0  

103 β 2 0.844 0.013   42.107 9.284   3.65 12 

105 β 1 0.92 0.017       4.16  

106 β 2 0.928 0.031   602.349 412.074   5.71 10834

107 β 1 0.864 0.02       8.09  

109 β 1 0.975 0.021       5  

111  2 0.828 0.016   26.78 8.506   2.33 8.4 
Resi- residue number 
2cn- secondary structure  
model- fitted modelfree model 
S2 err, S2

f err, τe err, Rex err- errors for S2, S2
f, τe and  Rex respectively 

SSE- sum of squared-error 
F-stat- F-statistics 
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Appendix D   Structures of the side chains of the 20 amino acids 
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Appendix E   Alignment of amino acid sequence of PA-ICP 
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Appendix F  The amino acid sequence of PA-ICP. The His tag is coloured in red. 
 
 
             -10            1            10           20           30             
MGSSHHHHHH SSGLVPRGSH QKPVVTLDD ADDCSPLKLT QGQELVLTLP SNPTTGFRWE  
 
40           50           60            70            80           90     
LRNPAASVLK RLGPEVYSNS EEDSGLVGSG GESTWRFRVA ASGDDRLELV YRRPWEKDAE  
 
100         110  
PAESFSCAIQ VR 
 
    No H-tag  With H-tag 
Number of amino acids:   111  131 
Molecular weight:   12265.6  14428.9 
Theoretical isoelectric point:  4.72  5.94 
Amino acid composition: A   8  8    
   R   9  10    
   N   3  3    
   D   8  8    
   C   2  2    
   Q   5  5    
   E   10  10    
   G   8  11    
   H   0  7    
   I    1  1    
   L   12  13   
   K   4  4    
   M   0  1    
   F    3  3    
   P    8  9    
   S    11  16    
   T    6  6    
   W   3  3    
   Y    2  2    
   V    9  10    
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