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1.

ABSTRACT

This thesis presents a comprehensive illustrated review
of published literature on the effect of stress raisers in the form
of holes, notches and fillets in plane stress fields.

A theoreticel analysis is given of the effect of a cruciform
type 'crack’ in an infinite plate under uniform tension at infinity,
using the MUSKHELISHVILI method, the 'crack®! being simulated by two
machined slits at 90° to each other. The analysis is extended to
include a further range of discontimuities, in the forms of ‘square’,
'tr:i.angular’ and 'star® type openings, and in all, six theoretical
stress concentration factors are derived, corresponding tox the selected
discontimiities investigated experimentally. The selection of suitable
conformal transformetions was greatly simplified by the use of a
function generator built by the writer, together with a Minispace
Analogue Computer, this application being believed to be original. The
influence on basic shape and root radius of curvature, of the number o:E"
terms and their coefficients used in the series transformation forms
employed, is shown pictorially by oscilloscope patiern photographs. The
numerical evaluation of the stress concentration factors associated with
the chosen transformation forms, was facilitated by the use of a Deuce
Digital Computer, the programme for these calculations being given in the
Appendix,

The results of an extensive photoelastic investigation into the
stress concentration effects of a range of twenty-seven geometric forms of
edge and internal discontinmuities are reported, with examples of the stress

distributions/



2.
distributions along the axes of symmetry being shown in graphicsl form.
Streas concentration factors are quoted in all cases, and selected
fringe photographs are presented. The photoelastic work was
supplemented by the use of a Conducting Paper Analogy, devised and built
by the writer; for the rapid determination of the distribution of the
sum of the principel stresses along the axes of symmetry. Details
of this Analogue are given in the text, and the reliability check
results are displayed in graphical form partly in the text and partly
in the Appendix,

The experimental results are correlated graphically using
INGLIS theory for non-ellipticel holes, the experimental values being
related to an elliptic hole whose major axis is at 90° to the axis of
tension. As an extension to this, the thearetical stress concentration
factors for certain forms of holes, given by SAVIN and STEVENSON, are
correlated in a similar fashion. Using this as a basis, a design
chart for holes in tension plates has been drawn up, expressing stress
concentration factors as a function of the ratio of hole dimension to
minimm radius of curvature, and this chart is presented as a suitable
form for use in design preactice.

The appendix includes a report of an investigation into complex
potentials suggested by ROTHMAN, and the resilts (which were inconclusive)
are stated.

A Bibliography, containing references to sixty~three publications
consulted in the preparation of the.thesisg is presented together with a

related Author Index.



LIST OF SYMBOLS

THEORETICAL WORK

The theoretical presentation follows GOnFREY’S translation

of SAYMIN’S work, the notation used being as follows :-

f L}

o

Oy - Ox + 2ivxy

= CIp + 010= O

= 00 - Cp + Zivpe

Cartesian co-ordinstes

Curvilinear co-ordinates

Conjugate : complex variables

CoDoponents of stress in
cartesian co-ordinates*

Components of stress in
curvilinear co-ordinates.

Principal stresses at infinity.

Coznbinations of stress components,

It ft M I
ft tt « ft
It It tt tt

bhere a is the angle between the
normal to the curve p = constant
and the x - axis.
Complex potentials.

Modulus of Rigidity.

Poisson*s ratio.

Principal stresses in the plane of

the plate.

Uniform tension stress (corresponds

to Ob of theory).



4,
INTRODUOTION

The subject of stress concentration is of paramount
lnportence in the field of engineering design,

Nominal stress is no longer regarded as sufficient for design
purpcs es, since the form of the part consildered meay be such as to
produce local meximum stresses, the magnitude of which may be the
over=riding factor determining strength, It im partioulexly
dmportant where high strength to weight ratios are required, that
magnitude of stiress concentration should Le. sosegpabile) lnootider to
achieve maximum efficiency in tho utilisation of material,

The determination of the degreo of stress conventration
resents considerable diffioulty, since the avemies of approach require
8 good working knovledge either of advarnced mathematios, or of the
many available experimentd methods,

' Analytical methods vary, the form of the solution depending
to & large extent on the initial bamsic assumptions, and also upen

the limitations introduced by the mathematics involved. Henve; while
it may be possible theoretiocally to state a form of solution for

the assesament of stress conventration effect, it mey be extremely
Alffioult physically to arrive at a mumeriocal result. Thus it is
often necessary, in the anmalytical approach, to resort to an
approximate form of solution.

Theoretical methods are broadly divisible into two categories,
firstly those solutions which employ the oclassical Stress Function
technique, and secondly the more recently developed and more elegant

forny/



S,
form of solution in terms of Complex Potentials. Even within these
two main groups there are subdivisions., For example, in the Stress
Function Method, the stress function may be expressed in terms of
an infinite series or alternatively in terms of complex varisbles.
Within the Complex Potential group of solutions, either the
"tentative® method of S‘I'EVENSON(l) may be employed, in which case
the complex potentials are assumed and subsequently tested to satisfy
the boundary conditions, or alternatively the ’direct’ method of

MUSKEELIE&WILI(Q)E, in which the complex potentials are deduced

from the conditions imposed by the problem.

Generally, these analytical methods have been epplied to
simple forms of dissontimiities, in per“t‘i@uhr the circular hole in
the infinite plate, and only in comparatively recent years have
golutions for other geometrical forms been forthcoming, such as in the
work of COX\®) ana SAVIN'Y), Comparatively 1ittle anslytical work
has appeared on edge discontimuities, due to the difficulty involved
in the mathematical specification of the boundaries in a farm suitable
to be handled by the method of solution.

Experimental methods for determining stress concentration
effects in two dimensional stress flelds are mmerous. Brittle modds,
&@cu;ate extensometers and wire resistance or foll strain gauges are
wellélmswn techniques for stress analysis work. The brittle lacquer
method has been employed fairly widely in recent years for assessing the
magnitude of stress concentration effects by examining the lacquer crack
pattern sround discontimiities of various types. The photoelastic method
has been applied very extensively to stress distribution work, in both two-

and thres-dimensional stress analysis cases.

With/



6,

With experimental methods, the accuracy of assessment of stress
concentration effect is often limited by the technique employed, so that
different methodas applied to the same problem give variations in stress
concentration factor, Of all the available methods, the photoelastic
method stands out as being particularly suitable for the determination
of stress concentration effect, and for stress distribution in general;
provided that suitsble models can be made for the purpose.

From the design point of view, these theoretical and
experimental methods are not rapid methods of assessing values of stress
concentration effect, and empiréi@al formilae become desirable. Such
formulae require some degree of care in application, particularly in
non-gtanderd cases of stress concentration, otherwise inaccurate
assessments may occur, with obvious repercussions. Clearly; extreme
accuracy is not possible, nor is it necessary, since even an approximate
stress concentration factor is satisfactory for the designer's
requirements.

It is evident that the state of knowledge of stress concentration
effect, although extensively investigated theoretically and experimentally,
is by no means far advanced; except in particulsr cases of discontimuities.
Analytical methods are severely limited in their application by their
complexity, experimental methods by the skill and patience required; and
empirical rules by their scarcity. A review has shovn that there is a
need for some simplification of the method of assessment of stress
concentration, so that the available results may be more readily applied
to design.

1t/
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It is Justifiable therefore to endeavour to integrate the

available stress concentration information into a simple form which
will be suitable for use by thosge unfamiliar with either the

theoretical or the experimental methods of approach. Such authors

(8)

as coxl®, savie®, eeorrson'®) ana 1avwoon'®) have been pioneers

in this field, and in the cane of the last mentioned writer, much
has been done in the correlation of results from the collected published
works of other authors.
In this thesis, a review of published literature dealing with
stress concentrations in two-dimensional fields shows that there is a
relative lack of analytical and experimental work on 'crack! type
discontinuities, particularly of the cruciform type, together with
other geometrical forms of edge and internal openings in tension plates,
In the case of crack type discontinuities, an analytical
method of solution proposed by'ROTHMAN(7) for the stress distribution
around cruciform type cracks has been investigated by the author;, but
the resilts obtained have not been satisfactory. An alternative

approach, using the Complex Potential Method of MUSKHELISHVILI(Q), has

vielded a satisfactory solution.

The Photoelastic Method, in conjunction with the Conducting
Paper Analogy, has been used successfully by the author to obtain stress
concentration factors and stress distributions for a wide range of
discontinuities, both edge and internal, in tension plates, including the
case of the cruciform crack.

An attempt has been made also, to correlate in a simple mammer,
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the stress concentration factors for a wide variety of discontimiities
in thib plates in uni-axial tension, from both theoretical and
experimental results, and this correlation is presented in graphicsl

form for ease of application in design practice.
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The review presents a critical survey of theoretical and
experimental investigations of stress concentrations produced by
internal and external discontinuities of regular geometric'form in thin
plates of infinites gemi-infinite and finite widths subjected %o
uni-sxial and bi-axial tensions in the plane of the plate.. Single
discontimities are considered only, but it is of interest to note that
the effect of multiple discontinuities in closge pygxiﬁity is to reduce
the stress concentration, Figure .l shows this effect, in the case of

edge notches of gemi-circular form,
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I.1 THECRETTCAT, TNVESTIGATICNS

INTERNAL DISCONTINUITIESS

I.1 (a) Circular Hole

(i) Infinite Plate
(i1) TFinite Plate

(iii) Semi=infinite Plate.

I.1  (b) ZElliptical Hole in Infinite Flate

1.2 (¢) Internsl Crack in Infinite Plate

I.1 (d) Miscellaneous Intermal Discontimities

EXTERNAY, DISCONTINUITIESS

I.1 (&) External Cracks

I.1  (f) External Notches

I.1 (g) Miscellaneous External Discontimuities
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(1.1) ’

I.1(a) Circular Hole.
(1) Infinite Plate

In 1898, KTRSOH'®) published the first rigorous solution
for the stress distribution around a central circular hole in a thin
infinite plate under uni-axial tension in the plane of the plate,
the stresses being given by equations of the following form:w

o r 2 41"2 51:‘4
o-rs"gﬁ.g',_(l-';'g'_)'* (1-—2‘- +* IT)COS 20 uott.aacvo(l.l)

r 2 8r 4
o o 0o o
G.eu‘ﬁ"- (1 +-IE_)--§—(1 +—_IT)OOS 26 oo--onaoo-otcnlooooo(loz)

2:‘2 51“4-
ﬂ‘cre = T (l +T _E-)Sin 23 o..l!otn;i0'0..‘!0!!0..6..!(1'5)

where the notation is as shown in Fig.2.

Equation (1.2) gives the hoop stresg round the boundary of the hole when
r B To.

Thus og ® 0o (1 = 2 cos 20)

which has a maximum vdéue when & = 90°, Hence the stress concentration

factor is given by °'°/cr° = 5.0 for this case.
The distribution of principel stresses slong the verticel and

horizontal sentral lines of the plate are given in Figs. 3 and 4

respectively.
Strictly, this sclution is true only for a plate which is very

thin relative to the hole diameter. Where these dimensions are of the
same order, the stress concentration factor is somewhat greater than 5
at the mid=-plane of the plete and slightly less than 5 at the surface
of the plate since in this case the conditions of generalised plane stress
no longer hold.

The/
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The effect of ratio of plate thickness to hole diameter was
examined in 1949 by STERNBERG and SADOWSKY (9), who found that for design
purposes the stress concentration factor of 3 for a circular hole could
be assumed valid for plates of arbitrery thickness ratio, as the increase
in stress concentration factor at the mid plane of the plate was less
than &t end the decrease at the surface did not exceed 10%. For
example, with a ratio of plate thickness to hole diameter of 0,75, the
stress concentration factor at the mid plane was found to be 3.1 and
at the surface 2.8.

The findings of these authors were based on an approximate
three dimensional solution for the stress distribution in an infinite
prlate of arbitrary thickness, containing a circular hole. These
conclusions support the assertion that factors of stress concentration
based upon two dimensional analysis are applicable to plates of

arbitrary thickness ratio.

I.1(a) Circular Hole

(1ii) Finite Plate

The case of a transverse central circular hole in a plate of
finite width was treated by HOWLAID(1®) in 1929, The plate was assumed
to be bounded by two parallel edges and under conditions of generalised
plane stress.

The stress function method was adopted, using successive
approximations with infinite series, the hoop stress around the hole
boundary being given by

0'9=0'0(P0"P2°°s 26 - pgcos 46 vut) erenceneaneienainins .(1.4)
ANd Oy = TPB secreerceesorarannsoesss C et e ee ittt (1.5)

the/
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(I.1) 13,
the notation being as given in Fig. 2, and Ppgs P2, etc. vary with the
ratio of hole diasmeter/plate width as follows:-

0 — AN —a 0.5

1.0 ~m po—» 1,06

20 —» po—e 2,01
Hence as A increases, op increases as shown in Fig. 5.
For A = 0, equation (1.4) reduces to KIRSCH'S solution for an
infinite plate, namely op = oo(l - 2 cos 28).

A greph of the variation of stress concentration factor based
on the gross cross section of the plate is shown in Fig. 6, which
indicates the field of application of stress concentration factors
derived on the assumption of a plate being of infinite width.

In 1950, 5J0STROM\'L) presented the solution for the case of
a finite plate in tension, containing an eccentrically located hole,

the results as summarised by FPETERSON, being shown in Fig. 7.

I.1(a) Circulsr Hole

(iii) Semi-Infinite Plate

A paper by MTIDLINYZ)

in 1948 gave the stress distribution
produced by a circular hole located near one edge of a‘ plate in tension,
the other edge being at infinity, this set of conditions being regarded
as a semi-infinite plate. FPlane stress conditions were assumed and the
solution was obtained by the Stress Function Method, 8 conformal
transformation being employed to obtain the curvilinear co-ordinate
system used in the enalysis.

The stress variation along the straight edge of the plate near

the /
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I.1) 14,

the hole, also the hoop stress variation round the hole are shown in
Figs. 8 and 9 respectively, corresponding to various values of the
parameter @& . The relation between this paremeter and the proximity
of the hole to the edge of the plate is shown in Fig. 10,

From Fig., 8 it is evident that as the thickness of the section
between the hole and the free edge of the plate decreases, the stress
at the section of symmetry on the face edge tends to gzero. This
effect has been substantiated by photoelastic tests.

Referring to Fig. 11, the stress concentration factors based
on the gross section at points p, m and n are shown for various values
of C/ Rg . The special case corresponding to the SJBS’I'R('I;M solution is
in sgreement. This greph clesrly shows that for S/ Ro » 4, the plate
containing the eccentric circular hole can be regarded as infinite for

design purposes.




Elliptical Coordinates. Point M is
defined by (a, 3;)

B
2b
B

Stresses Around an Elliptical Hole in a Plate Subjected
to Two Perpendicular Uniformly Distributed Loads



(L.1) 15.
T.1(b) Elliptical Hole in Infimite Flate

The solution of the problem of a wide plate containing a centrslly
located elliptical hole was given by }{DIDSOE’F‘(15) in 1909, using for the
first time in this work the theory of Complex Variasbles., His methods
were later extended by I_NI_’J—_L_I_§(14), COKER and __FIM(ls) » and _13_9§_C_H_L_(16)°
The method examined the stresses scting on the surface of an element
which was defined by curvilinesar co~ordinates. Since the stress
components were stated in terms of infinite series, very lengthy
expressions were produced. The combined works of the &bove authors
cover completely the stress analysis for tension plates. containing an
elliptical hole, under uni=axial or bi-axial tensions applied at an angle
to the major axis of the ellipse. DURELLI and _MUR_EA;_I_'_(I‘?) have supplied
a useful sumery of these works, a brief resumé of which is now given.

The hoop stress round the boundary of the ho%e is given by
oo = (oo + Op) sinh 2a, + (0o = 0p) [cos 2 = e°“* cos 2(¢ -Bj .o (1.6)
' cosh 2ap = cos 28

when 0y = Tng = O, the notation being shown in Fig. 12, and
ao = the elliptical parameter defining the hole bourdary
¢ = the angle between the major axis 2a of the ellipse and the
direction of oj.
When the directions of op and op coincide with the axes of

2b and 2a respectively, $ = % and equation (1.6) reduces to

_{op + o) simh 2a0 + (%0 ~op) (e c0s 2 =1) (10

% = cosh 2ao - cos 2B

and for the case of uni-axial tension when say op =0,

equation/




(I.1) 16,

equation (1.7) becomes

G‘e = 0-0 eim +e cosgﬁnl"..‘..‘....-.'.......(1.8)
cosh 2ag = cos 28

This has a maximum value when B = O or w, corresponding to points A
at each end of the major axis of the elliptic hole, giving the

maximum hoop stress as

sinh 2ag + ezo‘on]_ Lo
G'A = O'o COSh 2%_1 occoono-accc.oo.--o--a--ooo( ° )

Using the relationships ezsc'.‘o = sinh 20, + cosh 2ap

sinh 200

autarimintiives *A coth
cosh 2ae-1 = ®o

the maximum hoop stress can be shown to be

28
GA =‘ 0_0 (1 +—-5-) ecc0oootctoo--ono.eocoooccoo.19-000-00009(1010)

or Stress. Concentration Factor °& = 1 428 .oo0eeesonconassnsn(loll)
T b

In a similar msnner, the hoop stress at the ends B of the minor
axis of the elliptic hole is determined using f = % in equation
(1.8), giving og = =0p at points B, or

Stress Concentration Factor %32 PO, 1 B .(1.12)
O

For oo = 0, op becomes the unl-axial tension.

Putting B = 0 or a gives the hoop stress at the end of the major

(NTE ]

axis as op = -0 andwith B = +
the hoop stress at the ends of the minor axis becames
or = O (l+2h) (1,13)
B - a Q@ & 0 0 000 B S PO S 8L A RO E B DO R OGPPSR B O T SSEENNRIPES -4

These/
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These results apply for cases of uni-axial tension normal and
parallel to the major axis respectively. For any combination of
bi-gxial tensions o, and op perallel to the respective axis, the
hoop stress at points A and B is given using the principle of
superposition,

2 .
by O-A - O-Q (1"‘ %)-% .o-uo.ooo-ooooqca.-oo.-oooo.oootoo--(lol4)

and O‘B = O-P (1+2§)-°‘° .....0.'.0'DQOO.I.'..Q...O0..‘.....'(1.15)

(14)

These two equations are usually attributed to INGLIS It is of

interest to note the special case that for constant or uniform hoop

round the boundery of the ellipticel hole, then % -E , this
relationship being obtained by emating (1.14) and (1.15).
Referring to equation (1.8) for uni-axial tension ¢, applied at
angle ¢ to the major axis of the ellipse, INGLIS showed that for
¢ = R 4 (thet is with the axis of the ellipse inclined at 45° to the
axis of tension), the point of maximum hoop stress lies between points

A and F as shown in Fig, 13. If the ratio v/, 8 1is fairly small a

good approximetion to this meximum stress value is given by

/252 + 9b2

& o8s F 408
o - 0—0 2‘b 1+ &-'b tloeoccocact10--ccoc----v.-coo..(l.lS)

and the stresses at A, P and Q are given respectively by

3]
-

a b
oy = Ooui op = co (L+5+7) 3 og=-00

The relationship between the semi-axes a and b of the ellipse
and the radius of curvature r at the ends of the major axes is given
by b = Yap

Hence/
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Hence equations (1.10) and (1.16) may be reduced to

U'A = dp (1+2{a’/P) .nt--..oucn.c.-ucoonvooooloqoooc.o01(1.17)
O
o = T VE(LLFBRER) i (118)

The first of these equations gives the maximum hoop stress on the
boundary of an elliptical hope in a thin plate under uni-axial (or
simple) tension, the major axis normal to the applied tension, and the
second for the major axis at 45° to the applied temsion. From these
equations, INGLIS determined approximete solutions for the maximm
stress concentration factor produced by internal discontimiities of
square and star forms in wide plates in simple tension. The a and
p velues used were respectively the length of the major axis of the

2
equivalent ellipse and the corner radius, as in Fig. 14. At that

time, INGLIS' solution was the only treatment available for these forms
of discontimity. The complete stress distributions along the
horizontal and vertical axes for a plate in simple tension containing
an elliptical hole, are given in Figs. 15 and 186 respectively.

An interesting extension to INGLIS' work on elliptical forms
was published by _D_OE\_;_’]_:]_I_@_(J'B) in 1941, This paper gives the stress
distribution in an infinite plate, under uniform edge stress, containing
an elliptical region filled with a material whose stiffness is K times
that of the plate. Thus as K increases from zero through unity to
infinity, the discontinuity takes the form of a hole, part of the
homogenious plate, and finaslly a very stiff reinforcement.

For a plate of varying thickness, this theory gives a reasongd le

indication/
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indication of the general effect produced by a change in section if K

is taken as the ratio of thickness =~ times ~ modulus inside to thickness -
times - modulus outside the region. The theoreticsl spproach to this
case was a generalisation of INGLIS® work, and for the particuler

caSe of a tensile load, the stresses at the boundary of the

discontimiity are given as:-

6 = o’ o‘r = 5K(1 - K)(!.'z had I‘)N uoooooooocuaoooooooucoooooonogo,,o.(lolg)
op = [(8 + 2K = K2)F2 + (4 + 13K + E)r + 9K]N vo0oocacos(Lo20)

B=X o =5K[5(K +r2) + (1 + 5K)r] N cocvoococooocosacascsecolde2l)
O‘e = -(1 - K) [5K + (4‘ + 5K)r] N ooooooooooooaooaoooounaao(1o22)

Jo
where N = O9K(r2 + 1) + 2(2 = K = 8K2)r

a

b

]
i

B = eccentric angle of the ellipse as defined in Fig. 12.
and 03 = the applied tension, parallel to the axis 2b of the ellipse.
This solution agrees with INGLIS' solution for an elliptical
hole, when X & 0O giving
B=0, op=0, 0‘{)2(1+2r)60
p=% or=0, op= -
When K = 1, the discontimiity in the plate disappears

and =0, 0n,=0, 0g=0p
B:-:g, Op = 0g» 99 =0
For X = 09, representing a very stiff reinforcement, o iz always the-
critical value as o = %crr
and  B=0, op = Sx(1 = B)oy ciiiiieeiiiieiiiieiiriiiaeennos (1,25)

T % - b
622’ Ur:‘. '3’3'55"“55)0‘0 eaocoobuooooooooooaeuoncecootao(lazé)
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The conditions corresponding to equations (1.23) and (1.24) respectively
are shown in Figs. 17c and 17b and for the case of a circular hole in
Fg. 17a.

A summary of critical stress concentrations is given
graphically in Fig. 18, where only stresses which may be critical under
certain conditions are shown. |

The problem of an elliptical hole in an infinite plate in
simple tension, at an angle and alternatively under bi-axial tension,

1
hes also been investigated by MUSKHEIISHVIIIY®) ami STEVENSON" both

of whom used the complex potential form of solution.

SAVIN(4) » in an extension of the work of VUSKHELISHVILI,

referring to the case of simple tension, investigated the variation in
stress concentration factor with the orientation of the ellipse, the

results being shown in Fig. 19.
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I.1{¢c) Internsl Crack in Infinite Plate.

The internal crack in an infinite plate under simple tension

was considered also by INGLIS (1915)(14)

» using the Airy stress
function method, the crack being considered as the limiting form of an
elliptical hole, the minor axis of which tenmds to zero. Plane strain
corditions were assumed and the hoop stresses produced at the ends of
the major axis (Fig. 20) are

(1) for the applied stress normal to the major axis 2a

O-A = 0-0(1-}2%) .°......coooa-o.ccoocn.0-00..00000.-..(1.25)

Thus with an 2 ratio of 1000, op = 2001 o, eand the ellipse
would appear as a fine straight orack. Hence a very small pull across
the crack would set ﬁp stresses at the ends, sufficient to tear the
meterial. Thel increase in length due to- the tear would increase the
stress still further and rapid crack propagation would result.

(i1) for the applied stress parallel to the major exis

O‘A="°- ] O‘Bsd‘ (1"‘2:3') ocooool'tﬁiocwooo‘.ocl.ll.t(lozﬁ)

Thus with an = ratio of 1000, of = 1,002 ¢  and hence a crack
ruming in the direction of the applied tension would not produce a great
local stress effect.

G-RIFFITH( 20)

in 1920, employing INGLIS' solution of the two-

dimensional equations of elastic equilibrium in the space bounded by

two concentric ellipses, determined the effect of the presence of a crack

on the energy of an elastic body under the influence of a tensile stress.
From this analysis were presented criteria of rupture for cases

of plane stress and plane strain in the farm of critical vdues of applied

stress./
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It has been shown, however, by _§:‘_@]20§( 21);‘, that in general these
criteria do not apply, since the high concentrations of stress at the
 ends of a crack will induce local plastic flow, thus departing from the
elastic conditions assumed by GRIFFITH.

A numericelly different criterion was developed in 1954 ‘oy.
OROWAN( 22) from assunptions similar to those employed by GRIFFITH.

WEST}‘RGAARD(%) in 1934 produced a rather lengthy solution for

the crack problem using stress functions in terms of infinite series.

(24)

In a later peper, WESTERGAARD gave solutions for stress

distribution as influenced by bearing pressures and cracks, under various
conditions, and in this work the Airy stress function was represented by
functions of & complex varigble, assuming plane strain conditions to
apply. In all cases, the sheaxr stress along the axis of propagation
was zero, Stress functions are given for an interndl crack in an
infinite plate under uni~-axial tension, also for an internal crack
subjected to limid pressure, this latter case being equivaleﬁ'b to equal
bi=-axial tensions.

The GRIFFITH theory of rupture was extended in 1946 by _Sé%(%)
to include three-dimensional problems, by considering the corditions for
rupture in the case of a disc-shaped crack when one of the principal
stresses acts normal to the plane of the crack, thus leading to another
criterion for crack propagation.

(20)

In the same year SNEDDON ,» using WESTERGAARD'S stress

function, derived equations for the stress distribution in the interior
of an infinite 'two-dimensi onal' elastic medium, produced by the opening
of an internal crack subject to uniform hydrostatic pressure. This

analysis/
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analysis is more simple than INGLIS' and employs Cartesian co-ordinates
throughout. The principal shear stress distribution graph is
illustrated in Fig. 21, and from this the isochromatics of Fig., 22
were constructed. The GRIFFITH criterion for rupture in the case of a
stress free crack in a body under the influence of a uniform tensile
stress is given as an extension to the first solution. The disc-shaped
crack is also considered by SNEDDON, the crack surface being subjected
to uniform hydrostatic pressure. It is shown that the crack, assumed
to be initially a thin dise-shaped cevity,' takes the form of a flat
ellipsolid of revolution under the action of.hyﬂrostatic pressure. The
isochrometic lines for this case are shown in Fig. 23.

For stresses due to stralght, nerrow cracks spreading at high
velocities in a uniform tensile field under plane strain conditions,
;QEEE(QG) in 1981, employed stress wave equations, and assumed that the
crack while not itself extending, moved across the material in a
direction normal to the maximum tensile stress. The stresses thus
computed are dependent on the wave velocity. Thus for zero velocity,
these equations agree exactly with those of INGLIS.

Tn 1054, PoST'%7) adjusted the plene strain solutions of INGLIS,
WESTERGAARD and YOFFE for the case of a crack in en infinite plate under
simple tension, to represent the conditions of generalised plane stress
encountered in thin walled members, and computed velues for the stress
system, as shown in Fig. 24.

The solution for the class of plane problems in elasticity

correspording to a distribution of radial cracks, equal and finite in

length/
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length; originating at the boundary of a circular hole in an infinite
plate; has been given by .'IESOWIE(zB)o The complex variable method of

MUSKHELISHVILI is employed ani depends upon the representation of the

Airy stress function in terms of two analytical functions of a complex
variable, Criteria far rupture based on the GRIFFITH hypothesis are
formuilated, and rmumericel results obtained for the cases of a single
crack and two cracks. Tt is shown that one solution is consis‘befrb
with the well-known result that a single crack in an infinite plate is
unaffected by tension in the direction of the crack. For cracks longer
than the hole radius, it is shown that the effect of the stress field
caused by the hole is negligible so far as the critical load for rupture
is concerned. On the other hand, it is stated that for very small
crack lengths, the critical Toad appears to be governed primarily by the
locel stress field of the hole.

In 1950, 00X\2) investigated the effect of hair cracks on the
stress concentration produced by an internal elliptical hole. The
analysis was restricted to the elliptical farm since stress concentrations
due to certein forms of holes quite different from elliptical do not
differ considerably from the stress concentration due to "equivalent
elliptical ’ holes. The genersl method of solution is similar to that of
INGLIS, but the analysis is more direct and more elegant, by the use of
complex variables. The conclusion is reached that the presence of small
hair cracks on the boundary of a hole, reduces the stress concentration
factor, and renders it less sensitive to changes in the ratio a/ Py in
comparison with the approximete formila X = 1 + 2 vV®/p .

Using the complex potentisl method, ROTHMAN and ROSS(2°) in 1955

reproduced/
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reproduced SNEDDON'S equationa for an interior crack subject to uniform

pressurs on its bourdaery. - The casés of all round tension, simple tension
and diametrically opposite forces applied to the "minor axis® of tha
crack, were analysed also. Graphs, similer to those of SNEDDON, were
used to illustrate the veriation in maximm shesr stress, and firom theae
the isochromatic lines were constructed for the gﬁmple tension case, a8
shown in Figs., 25, 26, 27 and 28.

It may be noted, referring to Figs. 22 and 28 that all the
iscchromatios’ par ' ‘through the end of the orack, showing that the
principal shear stress is infinite.

Thus, even for small loads, plastic flow mist ocour at the
ends of the crack to relieve this infinite stress. Therefors, there
is no purely ‘elastic® solution of the problem. If however, the
applied tension is not too great, the region of plastic flow will be
smpll and will not appreciably affect the distribution of stress at

points in the material at e distarnce from the ends of the crack.
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I.1(d) Miscellanecus Internsl Discontimities

It has been shown by _I_BE}_]:.:_I_§(14) in his psper on the elliptical
hole in an infinite plate that
(1) the stresses at the ends of a discontinuity depend almost entirely

on its length and on the form of the ends.

(ii) if the ends of a discontinuity are approximately elliptical in
form, it is legitimate, in calculating the stresses at these points,
to replace the discontimity by an 'equivalent ellipse’ having the
same overall length and end formetion.

By application of these ideas, the determination of the stress
concentration effects produced by internal discontimities of various
forms becomes possible (using equations 1,17 ard 1.18) as has been
indicated for operings of square and 'star® forms,

In addition to these approximate formulae, direct theoretical
solutions for certain problems are also available.

The work of S‘J.‘EVENSON( 50)

in 1943 developed an approach to
two=dimensional isotropic elastic theory (pleane strasin end generalised
plane stress), using the complex variable technique. Thi;-;; resulted in
elegant solutions having a considerable economy of effort in the
investigation of problems formerly examined by meens of the Airy stress
function and the allied displecement function. The power of the complex
potential method is demonstrated by f‘:l.nding appropriate complex potentials
for a mﬁniber of problems such as 'a curvilinear regular polygon of 'nt

. sides and ‘'n' rounded vertices, such that
n=1 or 0O corresporﬂs to a circular hole.

N2 .i0eososo i elliptical
NzJ cossncos " " triangular "
NS4 coeanne " " square.

ete.




(iii)

. i/ .1 " 1/ 1 1 1
(i) »=3, A=1-(<-2-). (ii) n=4, A=§(<§). (iid) 7:=l2, A= 16 <ﬁ .

Examples of curvilinear polygonal boundary curve of hole.

Fig. 29.
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The forms of the boundary for n“= 3, 4 and 12 are shown in Fig. 29.

By the complex potentiala for such boundaries, the stress distribution

in sn infinite plate containing the appropriate hole may be determined.
The stress concentration factors at the vertices of the hole

are obviously important, and when the plate is under simple tension oo,

this factor is given by

2 cos 26[1 + t\(n-.ﬂl_

0‘6 - 1
'OTO" m {1 +h(n‘=‘1)"‘ l_i‘&(n_s) ]eocuoco(logv)
and in this“;@ase n = 3 (Ref, 31, STEVENSON)
where A= a form factor, @ € A(n-1) = 1
B = angle between the applied tension op and the horizontal

direction (x = axis) with reference to Fig. 29.
The stress concentration factor at the other vertices may be deduced
by replacing B by B _2—?;-3-‘7 Where T =1, 2, cevevse..(n = 1). For
B = % , that is with the plate under simple tension in the vertical
direction (y axis), with reference to Fig. 29, equation (1.27) reduces

to

% o __12 a1 « )\(nws)]_:]
0‘0 1""hin“1; [l*k(nml) + 1= AZ(DF'S) Ocoooooooooooooao(ioze)

AS D e 0@ (and thus A — 0), the stress concentration

factor tends to the exact theoretical velue of 5.0 for the circular
hole, while for the three boundary shapes shown in Fig. 29, the
appropriate factors are 7, 5.375 and 15,764.

For all round tension o,  the stress concentration factor for

2ll vertices is given by

o 1+ (n=1)X
-6;; = 2[1n n—l.?\ onooooocooouaooooaoooooooooo-onnencno(lozg)
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whilst at the mid point of the sides of the bourndaries it has the
reciprocal wvalue. If N e (and thus - O as before), equation
(1.29) gives the exact theoretical velue of 2.0 for the circular hole.
For the other boundaries of Fig. 29, the appropriate factors are 6,

4 and 10.8.

A paper by SEN'92) in 1048 on similer lines to that of
STEVENSON ) gives solutions for the case of s hole in an infimite
plate urder all-round uniform tension, the form of the hole being either
(1) the inverse of an ellipse, (ii) the loop of a lemiscate (iii) an
elliptic limacon or (iv) an approximate square. In the latter case,

which is of special interest, by assuming the transformation

Z=e§‘+ 0@“55 where Z = X + iy and § = § + in

and putting § = O, an approximate square is obtained, and employing
the usual notation for conformal representation, the stress concentration

factor is given by

2
o _ _2 (1 = 9¢°)
d—d :-1“6G eos 2n+902 oﬂoooocooooan‘uﬂﬂob.u...090.00000500(1050)

where ¢ is a form factor similar to A\ in STEVENSON'’S solution,

The method used by SEN consists of:yrepresenting stress components
explicitly in terms of certain haymonic functions in such a way that a
proper choice of one of these functions leads at once to the solution
of the problem. This method appears to be useful in many simple prcblans.;f
of plates with curvilinear bourdaries,

The subject of thin, isotropic flat plates of infinite width

under plane strain or generalised plane stress conditions, containing holes

of/
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of verious shapes was treated in 1051 by SAVIN'Y), This work stems from
the original work on complex potentials by XOLOSOFF'Y®) and later by
MUSKHELTSHIVILI(19). Selected charts of particuler interest are given

in Figs. 30, 51, 32 and 38. The conversion charts relating the parameter
0 with the physical angle ¢ for these discontimiities are given in

Figs. 54 and 35,
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00x'®) in 1950, compubed the stress distribution in the |
neighbourhood of holes of the general polynomial type in infinite plates
under simple tension. The stregs concentration factors obtained are
compared with the approximate INGLIS :solution;-‘} asishown in Figs. 36 and
57. TFig. 5 shows that the INGLIS form is a reasonable approximation.
Nevertheless the error in-this fam Ki =1 + 2®/p may
be considerapie in some cases, particularly for holes in which the
radius of curvature varies rapldly round the contour near the point of
meximum stress, This spoint is illustrated by Fig. 37, at low values

of &/ p 3 but it is brought out most clearly in the case of a simple
polygonal hole with an infinite muber of sides. As expected this

hole form is indistinguisheble from a true circle and the stress
concentration factor takes the value"of 5.0, but in fact the radius
of curvature of the contour oscillates indefinitely and repidly between
a/2 and infinity, so thet the value of 1 + V®/p oscillates between
1.0 and 1 4+ V2.

A recent peper by HELLER, FROCK and BART(SS) mublished in 1956,

re=-examined the problem of a rectanguler opening with rounded corners

in a uniformly loaded plate, unier bi-axial or uni-sxial tension, and

in this solution, the aspect ratio (length to width) and the radius of
curvature et the corners were genersl. This solution overceme the obvious
shortcomings of the work of INGLIS and SAVIN, and also of GREH&‘NSPAN( 54)9
whose solution by another :ﬁe‘bhod, for the square with rounded corners,

failed to include a sufficient number of terms.

The solution by HELLER, BROCK and BART is an extension of the

earlier work of BROCK( 35) on a general solution for the entire family of

squeres with rediused corners.
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In the paper on rectangular openings, the solution is obtained

by the complex variable method associated with MUSKHELISHVILI. The

shape of rectangular opening is determined by the rnumber of terms
retained in the series for the mapping function, and for a reasonable
degree of fit for practical openings, six coefficients were used. The
solution of the nine simmltaneous transcendental equations required the
use of an electronic computer, and it was also necessary to use an
approximation based on NEWTON'S method. Thus the work involved was
considerable,

The solution was shown to asgree with the solutions of GREENSPAN
for an ovaloid, INGLIS for an ellipse, KIRSCH for a circle, and BROCK
for a square with rounded corners.

NMumerical results for uni-axial tension were calculated for
the family of rectangles with aspect ratio 1 % 2, and the results are

illustrated in Figs. 358, 39, 40 and 41.
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External Discontinuities

Since the work of INGLIS also includes the treatment of a wide
range of external discontimmities, it is convenient to preface this.
section on external discontimities by reference to his work.

If one half of the tension plate shown in Fig, 15 is considered,
the notched plate of Fig., 42a is the result., The reasoning advarnced
for this case is as follows. As the totel force action on the edge
Q'Q amounts to zero, the stresses on Q'Q have a negligible effect on the
maximum stress produced at A. Accordingly the stress at A for the
elliintic notch of depth 'a' is given by the expression for the stress at
A on the equivalent internal discontimity, that is an elliptic hole
of semi-axis 'a' as shown in Fig. 15.

Thus oA = 0o (1 + Na/p) es000e00ecceossssosccoocoses(Lledl)
Carrying this form of reasoning further, it is proposed by INGLIS +that
other external discontimities; not elliptical in form, mey be treated in
a similar manner, and that by using &n 'equivalent ellipse’, stress
concentration factors for such/discontimiities as vee, triangular,
rectangular notches, etc. may thus be determined (Figs. 42b,c).

A similar consideration was made by COX into the application of
INGLIS® approximate form of K = 1 + 2V®/p, and as in his previoul work
on internal discontimities, the analysis was considerably simplified by
the adoption of complex variables. Values of stress concentration factor
for the notch forms showm in Fig. 45 were calculated and compared with
those obtained from the approximate formmlae;, and Fig. 44 shows that the
latter gives very close aprroximetions to the theoretical values.

The/
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The approximate form for the determiration of the stress

concentration factor is especially valuable where a rapid estimate
of the stress concentration factor is required and where there is no

known theoretical solution.,




Fig.45.
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I.1(e) External Cracks

Fhotoelastic work by POST'27) in 1054 confirms INGLIS' theory
that the highly stressed zone at the head of a crack is unaffected by
the shape of the structural part at some distance from it. It is
reasonable therefore to refer the solution for an edge crack to that
for the equivalent internal crack having a total length equal to
twice the depth of penetration of the edge crack.

There is however an exact solution for the external crack
problem; produced in 1957 by WI.LI.IAMS( 56) who examined the stress
distribution in the region of a stationary edge crack in a thin,
semi-infinite plate. The plane stress distributions near the vertex
of an infinite sector of included angle o for various boundary
conditions were considered. Thus when the two radial edges of the
plate ‘are unloaded, and the wedge angle approaches 2m, the conditions
pertaining to the edge crack are reproduced. Using the Airy stress
function method, expressions for the sum and difference of the
principal stresses were cobtained, and hence the isochromstic lines
around the end of the crack, as shovm in Fig. 45. It should be

noted that the shear stress is zero along the line of propagation

_of the crack, Also there is a tendency for a state of two-dimensional
or hydrostatiq tension which consequently may permit the elastic
analysis to apply more closely to the end of the crack than was
rreviously supposed. From this it ;i.s evident that an isotropic point
mey exist at the end of the crack. Furthermore as the distance from
the crack increases, the stress becomes non~hydrostatic and the
suggestion is that there msy be a yielded region ahead of the crack.

There/
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There is also a distinet possibility of more highly yielded regions at
4 70° from the line of the crack, and the meximum tensile stress is
found to occur at + 60° from the line of the crack.

These fiﬁdings are corroborated by the photoelastic analysis
by POST, the results of which are reported in paragraph I.2(e)

The complex potemtial method was used by ROTHMAN'’) in 1957
to investigate the edge crack problem.

For the case of a crack in a plate of semi-infinite width,

with reference to Fig. 48, the transfom{iog

1 =
s D 2\2
Z - '%%%E Or m - [l'+ (égz ) ;l— 060900.-.00-0000toc(losz)

is used to transf‘orm the 'cracked! boundsry of the z=plane into the
straight line of the w-plane, and the further transformation

i+ w

i_w Q'Oooonooocﬂooocoutlo.n-tolto-tc(1.55)

g =

'bransaf;:oxms the upper half oi“ the w-plane on to the outside of the
unit circle in the o-plane.  Stress equations are developed for the
crack under var:’gous forms of boundary loading such as fluld pressure
and wedge forces.

These solutions are also extended to the case of a craeck in
a plate of finite width, and it is stated fhat the stress solution for
the edge crack case shown in Fig. 47 can be obtained using this method
of analysis.
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I.1(f) External Nokches

The work of INGLIS giving an approximate solution for the
stress concentration effects of notches of varying depth has been
supplemented by direct thearetical approaches for the complete stress
distribution around a notch, MAUNSEIL'®") in 1956 applied the stress
function method, and investigated the stress distribution around a
semi=circular notch at the boundary of a thin platepof semi-infinite
width, pnaer generalised plane stress conditions. Due to the form
of the boundary being composed of two intersecting perts, the mathematical
treatment 'is repdered difficult, and thus the solution for the stress
distribution shovm in Fig. 48 may contain very slight errors.

In 1947, LIG(°®) investigated the case of a bar of finite
width containing symmetrical semie-circular notches, using the Airy
stress function technique. Later, in 1957, m(w) repeated this
solution but this time used the 'promotion of rank® process to diminish
the labour involved in solving a problem of this type. The stress
concentration factor based on the net section, for a semi=circular
notoh was computed by NEUBER'0): in 1957, & comparison with IING'S
solution( 38) being shown in Fig. 49, Slight disagreement is evident
(see Page 55 also) snd ATSIMI(HL) claims that LING'S results(®®) are
unreliable. Alsoco shown in Fig, 49 is a solution by WEIl\&}E:L(42) for this
same problem, and in this case a new theoretical approach was presented,
in which the tension plate was divided into three longitudinal. strips,
a central strip of uniform width and two boundary strips equal in width

to the notch depth, the boundary conditions being re-established on the

central strip. The stress concentration factors thus found compare

favourably with those of NEUBER.



g~

(1.2) | 8,
The complete field of shallow and deep notches was included
in NEUBER'S original investigation, the semi-circular notch being a
rartiocrlaxr case. The general solution invélved an interpolation
tetween the two limiting cases of a shallow elliptic notch in an
infinite plate and deep hyperbolic notches in a finite plate. NEUBER
sbﬁgh‘!: a function in the intermediate region which would interpolate
between these two boundary cases, and which would give the proper

limiting values at these two extremes. He found the function to be

K, = 1 + %%’_%gi(;all ]j} oeseenseosecnrosssnsscoss(leBd)

where Ky = the stress concentration factor for the limiting case

of a shallow elliptic notch in an infinite plate.
= 1 + 2\[&/ P

and K3 the stress concentration factor for the limiting case

of deep hyperbolic notches in a finite plate.
d d
2( T 1) vV 50

3 R |
(55 + 1)ten ‘f"ép““’gp

where o .= depth of elliptic notch.

radius of curvature of notch.

.

d = width of the net section,
This form gives the stress concentration factor based on the net section
for a plate with notches of varying depth.
For semi~circular notches, the notch depth equals the notch

radius and K = 3.0, In this case, equation (1.34) becomes

1 2Ky = 1) 2 (1.35)
Kt = + %*(Kd-l)} S Q000000 OO & &80 09 ¢ &8 02 PSP OeBDe O L]

From/
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From this equation the curve of Fig. 49 was obtained.
The complete range of solutions for symmetrical notches,

based on NEUBER'S theory is given in Fig. 50,
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I.lgg) Miscellaneous External Discomtimities

The problem of a semi-=infinite plate bounded by a cubic curve

45) 41 1945, the boundary taking the form

was considered by STEVENSON(
of a single smooth notch of the form shown in Fig. 51, corresponding
to A= %3 This curve has the polar equation
r = csec@ = Ac cos ©

where the depth of the notch is given by Ac . Hence N €1
restricts the form to a notched bourdary for which tﬁe depth is less
than or equal to c. For A =1 the cubic has a cusp. For A> 1,
the point 0' in Fig. 51 becames a double point and theycurve has a loop,
hence this case is excluded for consideration.

For simple tension, under genereslised plane stress conditions,

using the,method of complex potentials, STEVENSON expressed the stress

concentration factor -;"at the root of this notch form as

2+ A
K'b = ﬁ:m:-h) oco.oooo--ono.--ooooco.a.oo-cn.oo-'oooao(1056)

Using various values of A s the graph of Fig. 52 was obtained, showing

the variation in stress concentration factor with depth of notch.
ROTHMAN and ROSS(2®) in 1055 re-exsmined this form of notch

and obtained expressions ensbling the maximum shear stress at any point

on the boundary to be computed.
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I.2(a) Circular Holes

In experimental work, infinitely wide plates are simulated
by means of finite plates, in which the ratio of plate width to hole
width is greater than 4.0, as this has been shown by various
experimenters to give stress distributions which approximate closely
to the infinite plate stress distribution.

(1) Central circular hole

The results of several photoelastic investigetions of the
stress concentration effects produced by a central circular hole

in a thin plate in simple tension, are summrised as shown in Fig. 53.

(10)

HOWLAND'S mathematical results for values of the ratio

plate width/hole diameter greater than 0.5 sre plotted, as a basis

(6)

of comperison, together with an empirical solution by HEYWOOD‘ /,

'b,v
O:f‘ the form K‘t = 2 + (’ﬁ)o 000000500900000900n-aoaoccnoooootu(luav)

This problem was apparently first tackled experimentally in
1912 by QQ§§§F44) who, using a celluloid model, determined the stresses
in the plate around the discontinuity with the aid of a tungsten filament
lamp pelariscope.

Due to difficulties in experimental techniques, however,
accurate determination of the stressesg at the edge of the hole was not
possible, the main trouble lying in the use of a compensator method,
which tends to give the average fringe value at points of localised

stress concentration, rather than the maxirum value. In comparison

5
with HOWLAND'S figures, COKER'S results are low, MNore recently, HENEIG(4 )

published results from specimens of optical quality glass, and these

results/
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results are alsc slightly different from the mathematical results. In

1034 WAHL and EEEUWBES(%) » using a monochromatic light source

polariscope, together with bakelite specimens, succeeded in producing
the first results of high accuracy. It was at that time currently
believed that the photoelastic method obscured the true boundary of
the specimen and hence could not be used for accurate determination of
the boundary stresses.

In overcoming this difficulty, WAHL and BEEUWKES engraved
reference lines on the model and measured the distances between the
lines and from them to the true boundaries of the model. Measurement
of the dlstance between these reference lines on the stress pattern
pioture enabled a magnification factor to be used, and hence the positions
of the true boundaries relative to the stress pattern were determined,
followed by the boundery stresses., Anvempirical formula quoted by the
authors gives results in approximate agreement with their experimental
figures, thus:-

d

K = 5"'5015‘54’5076(’%)2"'10“71(%)5 aucoooooooouooooooonoo(léSB)

t
the notation being as shown in Fig. 58&.
In s discussion of this paper, EROGHT(47)

O

refuted the necessity

of using engraved lines as a detum for determining the true boundaries

and claimed that these boundaries could be clearly shown on the stress
pattern picture. As'evidence of this, a stress pattern photograph (Fig. 54)
was given, on which were visible two lines, one a fine scratch at 0.0025"
from the edge, and the other of 0,006" width:.at 0,004" from the edge.

VAHL and BEEUWKES disputed this olaim, but in 1955 FRocHT'48)

produced

results/
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results as shown in Fig. 55, comparable with those of HOWLAND and of
WAHL and BEEUWKES, from a photoelastic investigation of a tension
specimen with a central circular hole; the boundaries and boundary
stress values being obtained directly from the stress pattern without
the use of engraved lines. Thus the work of FROCHT gave results

of high accuracy with a mich easier technique than that of WAHL and
BEEUWKES. This method for determining the boundary stresses directly
from the fringe pattern is now generally used in photoelastie ‘
investigations. With the great improvements in photoelastic materials
has come 1‘",further confirmation of the degree of accuracy obtainsble
from FROCHT'S method of boundery determinstion. 1In 1955, FROCHT, in

(49)

association with GUERNSEY and ILANDSBERG » published the results

of a photoelastic investigation of a tension member containing a
central circular hole;, the results varying from HOWLAND'S classical
solution by only 1.8%.

In examining the extreme case of hole diameter tending to

plate width, WAHL and BEEUWEES, in their original investigation

obtained the single point in Fig. 53 for a value of 6‘/D = 0,97, from

a test on a steel model, using an'extensometer. The model was

4,1/8% wide and contained s 4" diameter central hole. The 0.3"

geauge length of the extensometer was large compared with the hole

diameter; and the experimental results tend to be a few per cent low.
The stress distribution for a thin‘section is known to be

linear, and this evidently applies to the two thin sections at the hole

in this case.  As the load is trensmitted assymmetrically to the

sections, they tend to collapse inwerds with the result that as the

thickness/



LD
(#-9) T,

238
DISTRIBUTION OF STRESS DIFFERENCE ACROSS SECTION A'S
&3 IN TERMS OF MEAN TENSION ACROSS SECTION
218 §
2
20

y \ﬁ{m

H3in rnt
1o -
Yaun mont —
Yain nore .\H\_‘—“———-——-—-—w_
Fig.57. o3
‘ By hg [ 8
° X Yo s Ye Vg Y6 0 Hein
HOLE BOUMDARY
STRESS CONCENTRATION FACTORS
To = MEAN STRESS 1N UNDRILLED BAR
To s - " OVER SECTION THROUGH MOLE CENTRE
SCF Tm e MaL 3TRESS AT EDGE OF HOLE. P24
. L
. 4 ’_/'
. ——
Tm‘/ —
_/ To bt r
3 emmmmmmsmgpemn .
N - m/_1
Fig.58. - ik
—— "_"""d)"-—s—-—__é_
2 ‘ —
1
'/9 ‘/4 3/5 Y2

DIAMETER OF HOLE : IN.




(Z-2) - 45.
thickness tends to gero, no stress whatsoever is produced at the cuter
edges, As the stress at the outer edge tends to zero, the stress at
the hole boundary tends to twice the average stress in the thin section
as shown in Fig.56. Hence as a'/D tends to 1.0, the stress concentration
fector based on the net section tends to 2.0, as shown in Fig. 53.
This shows an error in HENNIG'S results, which indicate that the stress
concentration factor based on the net section tends to 1.0 as d/D terds
to 1.0,

In 1965 JESSQOP and SNELL(ﬁo) conducted a systematic

| investigation of the effect upon the stress distribution at the oroass-
section through the hole centre, of variation of the ratio of hole
diemeter to width of bar. The variations in the stress difference
and in the separate stresses were determined from a 1" wide strip of
Araldite resin, the central hole being progressively increaszsed in
diemeter for each test. Their comperison of the distribution of stress
difference under loads which produced the same mean tension acrosa the
section through the hole centre is shown in Fig. 57. The values
obtained for the'stress concentration factor based on the net section
at the edge of the hole, as shown in Fig.58, compare favourably with
those obtained previously by WAHL and EEEUWKES, and also FROCHT.

(11) Eccentric Circular Hole

Using the model shown in Big. 59, M[NDI;IN(Q) in 1948
investigated the stress distribution along the straight edge of the
plate and around the boundaryofthe hole. The stress variation along
the: straight edge was found to vary as shomm in Fig. 60 with a minimum
value at the minimum cross-section. Thus the stress at the minimum

section/
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section tends to zero, as the ratio c/fg tends to unity, which is in
agreement with WAHL and BEEUWKES. The variation in the hoop stress
round the hole boundary is shown in Fig. 61, Quantitative agreement
was observed between these results and MINDLIN'S theoretical results
for a semi-infinite plste. Comparison of the experimental and
theoretical stress concentration factors at the minimum section of the
hole boundaery and plate edge are given in Fig. 11, for comparison

with the theoreticel results,
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I.2§'b) Elliptical Hole

In 1920, COKER and KTMRATL'SY) investigated the stress

concentration round the boundary of an ellipticel hole of axes ratio -
3/2 in a field of pure tension, with the major axis perpendicular to
the line of pull., The experimental results for the boundary stresses
are compared in Fig. 62 with the INGLIS solution for a plate of
infinite width, given by equation (1.8). The same authors
investigated the case of an elllipse with the major axis at an angle
of 49° to the axis of tension, and the results for this case are
compared in Fig. 65 with the INGLIS soil‘xt-iong as found from equation
(1.8) with o, = 0. Experimental and theoretical results exre in
good agreement in both cases, and thus indicate that, provided the
width of a test specimen is large relative to the width of the
discontinuity, the stress distribution closely approximates to that
of ‘an infinite plate.
DURELLT and MUERAY(7) 4n 1045 gave results for an elliptical

hole of axis:.ratio 2/1 in a wide plate under bi-axisl tensions o and
T The parameter X = GO/UP was varied from a negative to a
positive value, A graph of the stress concentration factor as a
function of K is given in Fig. 64, together with the corresponding
graph for a circular hole, This graph verifies the validity of the
statement made in the theoretical treatment of elliptic holes that far
uniform atress round the hole boundary, that is for minimum stress
concentration factor, K = g’% = .3; ( = 0.5 for this case). This
ocriterion alsc applies to the circular hole, which is a special form of

an ellipse, in which case K = b/a = 1,0 gives a stress concentration

factor of 2.0 a8 the minimm value.
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I.2(c) Inkternal Cracks

The major difficulty experienced in the experimsntal investigations
of straight internal cracks lies in preducing the crack in a specimen
test plate. One method commonly employed is to drill two small holes
at the ends of the ‘crack' ani machine a slot between these two holes.

In photoslastic wark, drilled holes are best avoided, due to the danger

of machining stresses, hence a narrow machined slit gives an approximetion
to a crack in the plate. The latter technique was used by ROTHMAN and
3@(29) in an iwvestigation of the stress distribution along the axis

of symmetry lying in the direction of the erack in a 4" wide tension
plate. The machined slit was 0.015" wide and O0.5% long and the stress
distribution obtained is shown in Pig. 65. The isochromatic fringe
pattern (Pig. 66) shows excellent agreement with the theorstical fringe
pattern shown in Fig. 28.

It is also interesting to compare the theoretical pattern with
the experimental isochromatic frings pattern obbained by PosT27) for an
edge crack as shown in Fig. 67. For the region at the end of the cracik,
the fringe distributions are seen to be identical, and it is only on the
parallel sides of the crack that the secondery effects of location in the
plate make themselves apparent.

Unpublished sxperimsntal wark by DIXON' 2) in 1956 examined th
stress distribution due to a central 'crack'! in a flat tension plate.

The form of the ‘crack' was simlated by connecting two drilled holes of
.055" diamster with a slit of .042" width. The effects of plate width/
plate length and crack length/plate width were exsmined, and indicated

firstly that the method of loading affected the stress concentration

factor/
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factor and seconily that an inerease in the crack length/plate width
value produced an increase in the stress concentration factor, if this
were based on the mean stress at the minimum oross-section, or
alternatively a decrease if based on the mean stress at the gross cross~
section. Since the plate width/orack length ratios used were 5.76,
5.64, 2.44, 1.87 and 1.5 it is evident that infinite plate conditions
are not satisfied, and that some deviation from infinite plate theory
must be expected, as suggested by DIXON to the writer: This work also
examined the effect of 'streln barriers’ on the stress distribution
around these similated cracks, and indicated that the barriers had
very little effect on the stress concentration factor, unless it were

placed 'very near' to the end of the crack.
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I.2(d) Miscellaneous Irmternsl Discomtinuities

The results of a photoelastic test by FROCHT and LEVEII\I(55) on

a slotted bar in tension, were published in 1951, The stress
concentration factor based on the net section is shown in Fig. 68, for
the cases considered. For the ratio t/r = 1, the results are in good
agreement with HOWLAND®S classical solution for a circular hole in a

finite tension member.

CORER and FILON( 15) investigated the stress distribution caused

by a variety of internal forms of opening. One most interesting

example was a thin plate under uniform uni-axial compression with a

central square hole of width equal to half the plate width and with corner

radii equal to one twelfth the plate width. Their stress distribution
results are shown in Fig. 60. Points worthy of note are as followsse

(1) the maximm hoop stress occurs at a point on the corner radii
Just immediately away from the stralght vertical sides.

(ii) across the central harizontal section, the longitudinal stress
is almost linearly veriable, rising to its maximum values at the
hole boundary.

(iii) along the outer vertical edges of the plate, the edge stress
is a minimum at the horizontal axis of symmetry and rises to a
maximm value at some distance away from the discontimiity.

These findings have been seen to be applicable to the casze of

a c¢irculer hole in a plate of limited width.

A photoelastic investigation on internal discontinmuities in
wide plates was carried out by the writer(>%) in 1958, and the

experimental solutions for stress comcentration factors for a range of

geometric/
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geometric forms, as indicated in Fig. 70, are compared with those for
INGLIS' equivelent elliptic forms. The detsiled experimentel results
are given in Chapter III of this thesis. It should be noted that this
corresponds with the work of COX who investigated the accuracy of using
the equivalent elliptic form by comparing theoretical solutions for
stress concentration factors for polygonal holes ard for deep edge
notches with the INGLIS approximate solutions,

The writer suggests that the INGLIS' theory tends to over—
estimate the stress concentration factor for cases where the squivalent
elliptic form is enclosed by the actual discontinuity, whereas if the
discontinuity is enclosed by the equivalent elliptic form, the INGLIS

value is in agreement with the experimental value.
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I,2(e) External Cracks

The stress distribution around an edge crack was found
experimentelly by m(zr?) in 1954, by indeperdent determination of the
sums (isopachic pattern) and differences (isochromatic pattern) of the
principal stresses. The isopachic pattern indicates mimite changes
in the model thickness through a simple two beem interference effect,
which produces a fringe pattern whose fringe order is proportional to
change of thickness.

In certain respects this method is preferable to other
photoelastic techniques which may involve grephicsl work and/or
arithnetical computation, and may often be derived from vaguely defined
isoclinic lines. However, since distinet interference fringe patterns
reqiire a unique velocity of light through the model;, the model material
mist not be permsnently or ertificlally birefrigent. Thus the isopachic=-
isochromatic fringe method requires two models of identicel shape to be
subjected to identical loading.  Another argument ageinst the method is
that a change of thickness in a model is a measure of a principal stress
sum only where a two dimensional stress system is realised. Where the
radius of curvature of the discontiruity is small compared to the thickness
of the model, lateral stresses develop in the interior of the model near
the discontinuity, and mey influence the experimental results. The work

of STERNEERG and SADOWSEY'?) for a circular hole would, however, indicate

that this effect is of negligible magnitude.
The specimen dimensions and method of loading used by POST are
shown in Fig. 71, the model thickness and eccentricity of loading being

varied. Real cracks were produced by the wedging action of a steel razor

blade/
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blade inserted in a small machined groove, so that the ecrack was initisted
from the root of the groove and propegated shead of the blade. The
estimated radius of cwurvature at the root of the crack was 10‘”4 to 10”5:111&
The stress distribution round the crack is shown graphicslly in Fig. 72.
Changes of model thickness from 1/32" to 1/8" produced no visible change
in the ffinge rattern, indicating as sxpected that the tri-axial stress
system which must exist immediately adjacent to the crack does not
seriously affect the isochromatic pattern over a very short distance from
the crack. The eccentricity of the loeding or degree of non-uniformity
of the tensile field appeared to have no effect on the orientation and
shape of the inner loops of the isochromatic pattern, though the outer
loops were slightly affected. One interesting feature is that, contrary

to common concepts, the maximum normal stress at a given distance firom the

root of the crack does not occcur directly ahead of the crack but rather

at a large angle away firom this direction. Also, the stress distribution
at ~t.‘;1e root of the edge crack was found to be very similar to that for an
«equivalent internal crack (see Page 48). Therefore, POST'S work
indicates that the stress gradients around the root of the ¢rack are so
severe that the shape and location of the crack, the stress gradients
round the root of the erack, and the non-uniformity of the tensile 1oa.ding9
have little effect on the stress distribution at the head of the crack.
The stress distribution along the axis of symmetry through an

edge ‘crack! was imvestigated experimentally by ROTHMAN and ROSS(%) in

1955, The ‘crack® was mimuloted by a machined slit of 0,020% width and
0.300" depth in a sheet of Columbie Resin 1/8" thick. The stress

distribution, as shown in Fig. 73 shows general agreement with POST'S

solution for @ = 90°,
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T.2(f) FExternsl Notches

00ktR(*4) published in 1912 the results of the first
photoelastic investigation of the stress concemtration effects produced
by semi=circuler notches in a thin finite plate under simple tension,

A comparison of these results with those obtained by WAHL and
BEEUW!Q?S(ée) in 1934 is given in Fig. 74, indlcating that, as in the
case of the circular hole, CORKER'S results are low, probably due to the
use of the compensation method for determining the boundary fringe
orders, and perhaps also partly due to the use of the relatively
ingensitive (and theiw the only suitgble) celluloid materisl for specimens.

(48)

In 1936 FROCHT s using the improved experimental light-field

technique mentioned earlier, produced results for semi-circular notches,

which are compared with those of WAHL and BEEUWEKES in Fig. 56. FROCHT

also exterded the field of investigation of deep and shallow grooves
56)

commenced by COKER and }mmms(55) in 1812, In 1951 FROCHT and IAMSBERG(

published the results shorn in Fig. 75 for notdhes. This graph clearly
shows thet the stress concentration factor for notches of varying depth

increases with increase of notch depth and with decrease in notch root

radius,

(67)

In a discussion on this paper, DURELLI and JACOBSON compiled

all the available information from theoretical and experimental sources in
the graxhical forms shown in Figs. 76, 77 and 78. The thecretical results
of NEUEBER show closest agreement with FROCHL'S experimental results(ss) o
indicating the reliability for design purposes of NEUBER'S curve for deep
and shallow notches.

The/
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(27) in 1964, gavé algo the results of an

"The papar by POST
investigation of the case of a single edge notch of root radius of curvature
0,0356" and depth 0.319%, This was for comparison of his edge crack case,
and the general model dimensions and method of loading were identical
to that case (see Pig. 71).

The resulting stress distribution is shown in Fig. 79, showing
that as is logically assumed, the largest stress ocours at the intersection
of the free boundary with the axis of symmetry. It 483 notable that for
the larger radii there is a tendency for the maximum stress to occur off
the axis of symmetry. Hence the moximum principsl stress at a given
distance from the stress raiser iz shovn to be largest at a considerable
angle away from the axis of symmetry. This resembled the distribution of
stress around a erack.

Tn 1958, FROCHT, GUERNSEY and TANDSEERG\ZS) published a paper

comparing the theoreticsl solutions of NEUBER and LING(56) for a semi- .

cironlar notch with the latest photoelastic results. In the discussion
on this paper, DURELLI(58) also included in the comparison the results of

WAHL and BEEUWKES (see Fig. 80)9-which.3h@w remarkeble agreement with the

results obtained from modern tests using the latest techniques and the

newest and more sensitive photoelastic materials. The variation between
the curves from the theoretical treatments of NEUBER and LING is seen to
be too large to be ascribed solely to gecondsry errors, though NRUBER'S

curve ggain shows the best agresment with the results firom photoelastic

tests.

HEYWOOD, in his book, analysed the results of the aforementioned

photoelastic/
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photoelastic investigations, and deduced the following empiricsl formula,

which is applicable to shallow, semi-circular and deep notches:-

A -1 aln
K_b = 1 + 2‘(1.55 -71.5) R ooo...oooooao-06000-0-0(1059)

where k = maximum stress at base of notch
t = average stress across minimum section.

= D/d

Lo a1y s 0.5 Wi
= (A1) «V-Yr

the notation being as shown in Fig. 81.
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I.2(g) Fxtermal Fillets

Stress concentration faectors for tension members of the form
shown in Fig. 82 were determined photoelasticelly by TMOSEENKO and

prETz(59)

in 1925. Using celluloid models, and the compensation method
for stress determination, the results of I;igo 83 were obtained, the stress
concentration factor being based on the stress at the minimum section.
The graph shows that for a fixed p/D ratio, the stress concentration
factor increases with the D/d ratio until = certain limit is reached,
~whersupon variation in the width D no longer materially affects the
-maximun stress conscentration factor at the fillet,

T}z.‘:"i:s work extended the original investigation of guf)I_,_CE_IR;(GO) in
1921, who used the same sxperimental methods. E_E;_;Ilﬂgbm(el) in 1934 sought
rasults of higher accuracy by using Bakelite ani Fhenolite models, with
the mn@@hr@mi’ti@ fringe~photograph method. A comparison of his results

with those of COKER, TIMOSHENKO and DIETZ is given in Fig, 84, WEIBEL'S

results show negligible variation in stress concentration factor with the
ratio D/d for the ranges considersd, which is in contrast with the findings

of TIMOSHENKO and DIETZ. 1In the ensuing discussion on WEIBLL'S Paper,

howsver, criticism by FRCOCHT, WAHL and BEEUWKES produced admission from

* WEIBEL that, due to the short length of the wide portion of his test

specimens, the results might be low for the ratio D/d = 3.

(48)

FROCHT published in 1936 the results shown in Fig. 85 and

la:tei“ in 1951(56) the results shown in Fig. 86, for a smaller range of r/d
ratios. These results show agreement with those of TIMOSHENKD and DIEYZ

in that the stress concentration factor increases with decreasze in the

ratio r/d and with imoreass in the ratio of D/d. However, the range of

/d./
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D/d used (1.1 = 4.0) was too. small to verify the conclusions of
TIMOSHENKD and DIETZ with regard to the non-variance of the stress
concentration factor with the width D above a certain value, as indicated
by Fig. 85.

, It should be noted that, as ia logically expected, the stress
raising efflect of grooves is considerably greater than that of fillets
of the same parameters. This :.i.s. clearly shown in Fig. 87 which is a
-comparison of the results for -~ %: 2,0 from Figs. 75 and 86,

A correlation by HEYWOOD of the. above thotoelastic results for
deep, semi-circular and shallow fillets in tension bars yielded the |

following empiricasl formilat

0.65
QA =1
1+ [ a] oo.goo-ooosoaooooootoeooco(114*0)

- s &
Ky = 2(2.84A <2) R
where k. = maximum stress in fillet of shoulder

t mean stress in minimim section
and A = D/A
the notation being as shown in Pig. 88.
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I.2(h) Miscellaneous External Discontinuities

(i) Vee grooves

Vee grooves of the form shown in Fig. 89 should obviously be
expected to have lower stress concentration factors than the
corresponding parallel=sided notches, as in the former case there is
a greater tendency to streamline the lines of principal stress. An
analysis by HEYWOOD of the conditions obtaining in the vee groove, led
to an empirical estimate of the correction necessary to allow for the
effect of the groove angle B on the stress concentration factor,

If k0 = Stress concentration factor for a notched plate of
the form shown in Fig. 81.
and kB = Stress concentration factor for the corresponding

grooved plate conforming to the series shown in Fig. 89,

and the notation for d; D etc. is as shown in Fig. 81, then for the cases

(a) and (b) of Fig. 89

1+ 2,4 *fR/h:\

ky = 1+ (k, =1) [1- (-1%5) erereccaosss(L1ed4l)

and for case (c) where the ratio R/h is greater than unity,

kg = 1+ (k= 1) [1 - sy
These results are applicable to any type of plate loading for which the
stress concentration factor ko is avdal lable. A pictarial re-
presentation of the stress concentration factors for all shapes of vee

groove is given in Fig. 90.

For the particular case of a relatively small groove with

ko = 1+2v h/ T (Il‘JG-]_‘J_I_S_ approximate form), the stress

concentration/
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concentration factor k‘3 is given directly in terms of R/h ard angle
B, and veries as shown in Fig. ©1l.

Figs., 90 and 91 indicate that the stress concentration factor

k., is especially sensitive to the approach of the inclined sides of the

B
groove to the highly stressed region at the root radius on the section
of symmetry.

(11) Inclined shoulder fillets

For inclined shoulders of the form shown in Fig. 92, the
stress concentration factor is again reduced due to the more gradusl
change in profile. HEYWOOD determined an empirical relationship with

the stress concentration factor for standard fillets, as follows:-

14+ 2.4 fR/h]

Case a kB = 14 (ko - 1) [ 1 - (gs) | vevevena(la42)

1+ 2.474"R/£]

Cese b ky = 1+ (k -1) [1-(.8-0—'_-_-3) veens(1048)

B

where ko is the stress concentration factor for the standard shoulder,
and kB is the stress concentration factor for the ineclined shoulder.

(4i1i) Streamline shoulder fillet.

Circular fillet radii at shoulders a2lways produce stress
concentration effects, but the ideal condition would be an optimum fillet

(62)

profile giving constant stress along its boundary.  LANSARD in 1955

tested progressive curvature fillets which gave a close approximation
to the optimum condition. The profile was obtained from an analogy
with two dimensionsl flow through a slot of constant width (Fig. 93), the

equivalent plate in tension being as shown. - The profile co-ordinates

are/
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are given by

s 2
% = o & |  Ltoos® 1.l 1+V7742V1 cos ©
= ———— —————— - 'v‘ I ; ]
- aw 1=cos® 2'V1 1) 1+V79=2V1 cos 6 coee(1044)

o
i

_ .7l - -1, 2V sin @
a o G = Va) [2 tanlvl-tanlvl...%_vl‘z] vooenne(1.45)

where L

1]

Naperian Logarithm,

a plate width.

i

vy = ratio of initial velocity to velocity in section EF.

@ = angle of profile tangent at point (x, y).
Thus, use of this form of blending curve decreases the danger of failure
by fatigue. Elliptical fillets reduce the stress concentration factor
and CHAEMAN(65) gave an illustration of achieving an increase of 30%
in the 'bursting' speed of a high speed compressor wheel on changing

from a circular to an elliptical fille? profile.




CHAPTER I, 3,

_CRITICAT, SUMMARY

62,




(LsB) 65.
I8 Criticel Summary
The review of published literature on two dimensional cases

of stress concentration has shown that a considerable amount of work,
both theoretical and experimentsl, has been carried out regarding the
stress concentration effects of discontimuities of various geometric
forms.

There is however, a very marked lack of analytical work
on discontimiities in the form of edge or internsl cracks, and in
particular, cracks of the cruciform type. Regarding the last mentioned
the work of ROTHMAN, who used the tentative :methoa of solution by
complex potentials is the only one known to the writer.

' The different theoretical methods have their own advantages
and limitations, but it is apparent that the method of compiex
potentials is mathematically the most elegent;

With reference to the experimental results reviewed; these
in general are seen to be in agreement with their respective analytical
solutions. However; while much has been accomplished in the
verification of these analytical solutions for certain forms of
discontinuities, such as circular and elliptic holes, etc., there is an
evident lack of experimental corroboration of the results for other ;
geometric forms of discontimuities, Few experimental results have been

published far rectangular forms and none at all have appeared for triangular,

 and barrel-shaped discontinuities, or for "star’ and ‘cruciform' type cracks.
Dealing with the question of the application of the theoreticsl

and experimental results to design, the only significant attempts at an

integrated/
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integrated approach have been made by COX, PETERSON and HEYWOOD, and

these are not all-embracing in their scope.

The theoretical and experimental work of this thesis was
planned with the foregoing deficiencies in viewn, and consequently

it was arranged to cover the followings-

(1) Theoretical analysis of the stresses around a cruciform type crack
in a tension plate.

(2) Theoretical evaluation of the stress concentrstion factors for
selected forms of discontinmuities such as square and triangular
openings, and for star-type cracks, in plates in uniform tension.

(8) Experimental investigation of the cruciform crack type discontimiity.

(4) Experimental determination of the stress corcentration factors for
& variety of discontimities, including those exsmined theoreticsl ly.

(8) Preparation of a semi-empirical 'Design Chart® giving carrelation of
the theoretically and experimentally determined stress concentration
factors, in a form which may rapidly give these factors without

recourse to lengthy ealculations.




CHAFTER II - THEORETICAL ANALYSIS

PART 1. THE METHOD OF COMPLEX POTENTIALS.

(Note: The subject matter presented in the
text is a Summary form of the more detailed
ftreatment given in Appendix Chapter VII.I1.)

65.
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OTATION

The theoretical presentation follows GODFREY'S translation

of SAVIN'S work, the notation used being as follows:-

x, y *® O 9 @ " ® B 20 LT e s A 2o .
p’ & ® 8 @ B 4 ¢ 8 P B PP e LGN P e
2 = X +1iy

Z = x"‘iy ) G0 6 EETOHEOO D
§ = g-i-in )

§ = § =iy )

G. € ® 9 2 2 8% A B eI e
x? o-y’ "xy

O.P’ 0‘6, :Exy O 8 & & &0 3P e aFaweloe
0‘0, 0‘ * 9 & & 4 0 B P A RS s RO
@ : o‘x+c-y O & & ¢ 8 @ % 4 ¥ " 0 " e

E O = 0. .21 T . wveeoso -
§ o™ O f&'xy FEE 80

¥
&

@ 50‘9“‘0-0 = ® cCevesovso

' .
§ = G‘e 0-94‘21“96 cecea
321u§

- LA B AL L B B R B B Y

#(2)s t{:(z)

p (B0 B BE R B L B R N B BN BN I N B N B BE BN R N AN )

”' CIE SCEY IR -2 B R S I R AT BRI S RN I I I -]

Cartesian co=ordinateés

Curvilinesr co=-ordinates

Conjugate complex variables

1] n "

Components of stress in cartesian
co=ordirates.

Components of stress in curvilinesr
co=ordinates.

Principal stresses at infinity.,

Combinations of stress components.

" n n
" " n

it n L]

Vhere e« 3is the angle between the
normal to the curve p = constant
and the x - axis,

Complex potentials.
Modulus of Rigidity.

Poisson'’s ratio.
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BASIC EQUATTONS IN COMPLEX POTENTIAL FORM.

(1) Conformel Transformations

The SCHWARTZ~-CHRISTOFFEL transformastion is(4) used to map

the region exterior to a hole in a plate on to the region

inside the unit circle and is of the form
Z=w(8) =R 2+ms +me? §n (2.1)
. =W = §' 1111 m2 + sees mn R XEXE) .

where o, M, etc. are mumericelly less than unity, and
diminish as the power of S increases.

(11) Stress - Complex Potential Equations:

Conditions of equilibrium are satisfied if

A8 9
W b _a% = O ‘OODI.I..'.'OIIOl‘llIl‘.l.ol...il..'(zlz)
and the conditions of compatebility are satisfied if
2
O
az.az - 0 S 000000 COdVODOLOODOF¥O®E&OSB SALILESECESIEOSES 0-00-000(2-5)

Thus @ which is real, may be expressed in the fcrm

@ = 2[¢%z) + 6W§ﬂ.“.”,“.“.“0“..".”.n(&4)

where the dashes denote differentistion with respect
to the bracketed varieble, and the bars denote +the
conjugate complex quantity. Also, substitution for @

in (2.2) and integrating gives

§==2[§¢Mm + ¢Wm]o“.“”“““.“““.”4&m

Thus the stress components at any point in the plane may
be determined from two complex potentials ¢(Z) and
LP(Z) in terms of which all other quantities may be

obtained.
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(i13) Boundery Condition and Resultent Force en the Boundary.
The boundary condition mey be shown to be

£y

+ if, + constant = $(2) + Z3'(Z) + P (2) ...........(2.6)
If (X, Y) are the components of the resultant force on

the hole boundary L, and Ry.f(Z) is the change in £(2)
where Z makesiitne. éircuit of L, then the boundary condition
is satisfied when

X +3iY = -%:LRy [¢§Z) + 2.8(Z) + (IJ‘(E)].“.......-.....(‘9.6&)

(iv) The Displacement:

If D=u+ iv is the complex displacement in the x, y
plene, then the streas conbinations dand @ may be written

ab
as § = '-‘4!-'5—2' 06000000.00000000000.0.'.."."!'0’0’(2‘7)

2 ab:
@ = T:S;(%% + ‘5%) eeooooooooooooocoooe-noo(zoe)

and from these it can be shown ‘that an integral far D
is given by
2D = K3(Z) = ZBY(ZE) = PUZ) ccovvvrnonnoncncenssaced(2:.9)
where K = (8=4v) for plare strain
= (5 =9)/(1 +v) for generalised plane stress.

(v) Form of the complex potentisl s:

The complex potentials take the form

#(2) = = { +'-I)(‘) log Z + (B + iC)Z + qsl(z) cesosevevos(2.10)

b(z) = SE=I 10g 74 (B + 107 4 P1(2) veennnn (220)

where B, Bl and 01 are constants to be determined from the

stresses/
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stresses at infinity, and € corresponds to a rigid body
displacement, taken herein to be Zeroy For principel
stresses Ty and crp at infinity with A at an angle
a to the x - axis, then

1
B = 4(cra-:-u'p)

1
B = fé(apaqo) cos 2a

1 > 1%
01’ E(ano-p) Slnz“ -ooaoooo.a-o.a00.00.000.}(2.12)

and for uni=axial tension To O'P is taken as zero in

these equations.

(vi) Application of Confermal Transformation:

When the point $ is on the unit circle ¥, it is denoted
by o, and the complex potentials are expressed in terms
of o using the conféormal transformation

#(2) = ¢ [0@)] = #()

so that the boundary condition (2.6) becomes

A

(o) + olc’ m: g_+ P(a)= f, + if, + constant on ¥ ....(2.15)

2

Also, using curvilinear co-ordinates, stress combimtiong
can be written for @' end §' thus:-

0 = 2[7((5) N i(g)] RPN ¢ %% 7Y

5: 232 ["'(" X v(s ]
= m w 5).1(1:.) + q) ) ..‘......('2.15)
Where X($ ) = (S

w'(S.

Using the transformation Z = w(§), the complex
potentials become

¢($) =_’§(;_—%¥‘© logd + %E + q6°(§) ceeceesses(2.16)

L |
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P(§) = - gwxl"fg logd + ?ifﬁfviglg +Pe($) . euen. (2227)

oo 2d

where ¢ (§) =3 o 8", Y (§)=2.,b 8" .........(2.18)
1l o)

being two functions of 3 which are analytic inside

the unit circle \S\ = 1, and are to be determined.
The MUSKHELISHVILT method is used for this determination

in the menner now aesozvibéao The complex potentials

are substituted into the boundery emqation (2.13), which

is then integrated round the unit circle boundary ¥ ,
applying HARNACK'S theorem; the various terms being evaluated
using CAUGHY'S Tmtegrel formile,  Hence ¢ (3) and

LP o($ ) are determined, when the form of the transformation
is given and, therefore, the complex potentials ¢($ ) and
(3 ) can be found.

The stress combinations in Cartesian components of stress

at any point in the Z ~ region are given by

(3 =g, +0, = 2[{»: g; + ;: §:}...............(2.19)

] ='a.'y - Oy + 2luyy

H(3)87(3) w w"(3).0'(3)]
=2[z{“’ o (] A 1——-&;].......(2.20)

At ernatively the equations for ® ' and §* giving the stress

combinations in curvilinear stress components may be employed.
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SECBCTIOR OF THE roftW3PCBMATION KBM 3
As stated In egiation (2.1) the general fern of the

tr& nsfariDation tised is given by the powver series
Z=1u)J) » R(y ¢ A

lIAere Ris s scsLe factor.

By selectios of appropriate tewms in this series»
boundaries of various geometric farms can be represented» the
number of terms used deteonninirg the degree of approximation
to any desired shape of opening. The co-efficients may also
be varied to give variations in the ihape of openixg» including
the degree of sharpness cf re-entrant ocrners.

As an exemple ef the tecimicpxe involved» following the
method of SAVIN, the 9C3IWa(IZ-CHRI8TG#M, transformation is
used to trainsfcrm the Z-region exterior to a square hole boundary
on to the ”-region exterior to the unit circle» the sides of the

hole being taken parallel to the I and Y axes. (Fig. 94).

Z=0(") msif (1-*) (1-17) (1—2)A (1% 7) A .dy *o(S«21)
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In this case & = & = Q = @, = 5/2 and for symmetry

about both axes
o = ey ) = A L

N i /4 _ ~iw/g _ =
3.5 = =g / 3 8.4 = e / = 8.1
Substituting for 8, 8, &, and a 4 in the right hand side
of eqmtion1(2020) and g:{ouping terms gives
I 85, %5 a12
L e o - — - 2
(I g ( s = (1 T‘Z‘) -...o-n.n.“....e.-.(2.22)
and
=l =1
a9, %o 00, % ap”, =
lu-—o— . lna—— Co= o =— 2 € CHBOORP TR IIAEEPORIOIIY e ] *
@-P 2 a=Ht a5 (2.28)

and multiplying these equations together gives

2 =‘21 1 1
(1 —_2‘) (1 - 32)2 = (1 + "'.Z’)g ecoaetoooobooo-o--..---(2-24)

Binomial expansion leads to

1
1= 1 1
(1 "'-5_4)2 - (1 *E;z L —8’%8 '.'lsrlz ) 00..00.-000:---.0(2.25)

therefore the transformation becomes

$
1 1 1
2 sw(S) 33[1 (1 'f“fé'f@"é}”g""iw ""‘-’-)dg ooooooooea-ooco(2026)

=R ($ - +-5-5-§., i'*?:fls'?ﬂ"‘“‘"‘"“) cereerrnenrenes(2.27)

and this expression transforms the Z - region exterior to the
square hole boundary on to the §-region exterior to the unit circle,
Replacing § by %: gives

Z=0(d) = c(% -%§5+%-6-§7 176511 ----- ) eerrrennnneo(2.28)

which transforms the Z - region exterior to the square hole bourdary

on to the §- Tegion inmide the unit circle,

—
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The mathematical working is reduced if the latter form (2.28)

of transformation is employed.
In GODFREY'S translation of SAVIN'S work, the general

transformation form for polygonel holes in given ass—
m-:l 2n-1

’“’”’“’“"[s =y R =

o (=2)(one2) § 5 (02 (9m-2) (5m2) 84T
Sn5(8n-1 12nd(4n-1 ete. |...(2.52)

for n=35 for triangular hole

n = 4& for square hole, etc.

From this expression are cbtained the following
transformation formss-

(a) Squsre hele (with diagonals along axes)
511

zea($) =0G+28° e B8 ot ) i (a29)

where all the terms are now positive, this corresponiing to a 45°
rotation of the hols.

[
(b) Equilatersal Triangular Hole (with ons median along the axis)

z2=w($) ac(lﬁ.%fz-t- § "'1625. + 58 3'11----) veeee (20 80)

(¢) Elliptic Hole z,w(g).c(%mg) ceereerninrneneeenss(2,51)

which represents the Z' = region exterior to an elliptio hole on the
ingide of a unit circle, In order that fhe tre;i;;;formtion is
conformal et points inside |3| = I it is necessary that
w'($ ) is nonegero so that [m| & 1.

It may be shown that the L bounlaries represented by these
transformations in the Z-plane are not geometrically identical to the

depired/
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desired form, e.g. the square is 'sway-backed' and has rounded corners.
The closeness of the approximetion depernds upon the number of terme

used in the series, but by using fewer terms and varying the co-efficients,
a sufficiently accurate fit may be obtained. This is a necessary
procedure, otherwise the numerdical working would be so voluminous as

to make the obtaining of a stress solution in any particular case
extremely laborious.

The determination of the degree of fit is a lengthy task, if
attempted by the usual method of calculation of co-ordimates for
graphical plotting. For this reason, the writer devised the analogue
computer application described in Chapter III, a_nd this gives a rapid
method of selecting the mumber of terms (up to five in the equipment
used) and the values of the coefficients required for any desired degree
of fit. Transformation forms for shapes other than quoted by GODFREY,

a8 given by this process, are stated in Chapter III.




CHAPTER II (CONTD.)

PART 2. STRESS CONDITIONS DUE TO THE FRESENCE

OF A CRUCIFORM CRACK IN A TENSION PLATE.

75.
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TRANSFORVATION FORM K3R CRiiCIFORM (RACK

The région exterior to the cruciform *crack’ shown in

Pig. 95 is mapped on to the region exterior to the unit circle

by the transformation Z » A \é22 + Il)g-) 2 (2.35)
* s
which on binomial expansion gives
” 1 fl 1¢5 1.7 X >11 1
A= 75 IT 2' - 8 A 4+ 16 A " e J (2.54)
/

I11.0% 2LLLL(c

Z - region E- region

Fig# 95

The use of this exact transformation in the MiSKHPWTSHVIT.T
method presents certain difficulties in the determination of residues,
and it was decided to use a modified form of this transformation which
gave an approximation to the cruciform crack outline correspending to
the shape of opening used for the experimental specimen, in particular
with respect to root radii at points A, C, E and G

The form used, taking the first two terms of the series of
(2.54) with an arbitrary coefficient m for the second term was

Z» (") =R 4 M ) eeereeseseeesesesssssssens (2.55)
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ivhich is a general farm for *square* holes, with R as a scale factor
and $§ mpeio. Using n» Sand 0 " m * L gives a range of
'square* holes. If mis positive, the diagonals of the “square* are
parallel to the X and T axes, and if mis negative, the sides of the
'square* are parallel to these axes.

By judicious selection of the coefficient musing the analogue
computer method given in Chapter XII, it was found possible to obtain
a shape of opening giving end radii of the same order as used in the
e3g>erimental specimen, the sides of the 'square* being curved insards

towards the centre. (Fig. 96)

i @

This approximation is justifiable since the four re-entrant comers

B, D, F and Hof Fig.96must be stress ffee, and the approximation used is
tantamount to removing some of iAis stress free material. From the
analogue computer technique mentioned later, the required value of m

was found to be m» » 0.194.
0.15
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If.4 Derived complex potentials:

The general transformation form is
Z = w( g)
and the notation is w'($ ) ete. where the dash represents differentiation

L

RE + my"

with respect to the bracketed varisble. On the boundary of the unit

circle |P| =1, then as before, when the point § is on the boundery

¥ of the unit circle, it will be denoted by o.

Thus (o) = R(%-t—m‘s) R €~ 28 )
5(3) = RE+15°) =R(o +26) cerrnnerniiininiineninn (2.57)
0'(0) = R(=Zp + 80%) eeveniiniiiiiiiiiiiiiniiinean el (2.58)
&'(3) = R(-F2 + 505%) = R(o® = F) tooivniinnneiinniini(2.59)

Derivation of Stress Combimtion @' = T _-|_-__g_-P

In the following the derivation of the stress conbimtion

. .
(23] = o*&-c-o‘p is given.

We) | Gemd) e (2.40)
23 (2B -

which after some reduction gives

2
%%’%)g - mr [:u. + BG4 ™ oo™ ---)] serrsencenianes(2.41)
The derived boumlary condition {See Appendix Chapter VII.1)

for ¢°(§) and P (3) takes the form

£°+12,° = =20 [w(cr) - He 63(5?)]

00 | =) -24
fl” - j_f2° = - Ec-’-[w(o') I w(cr)]

and/




(1T.4) 79,

and substituting (2.36) and (2.57) in these equations gives
21 »
o) o} ooR| 1  &“*%nm 3 2ia :
fl +if2 = -‘fz"‘"‘['&— -5-!-!!!3' - @ U.)]a........ao(zoé-E)

and

- ~2ia -
fGQifo = "'C‘!:‘O':'R[E “'ec_ +0‘we2mw5] 000000090(2-45)

From eqmtmn (2. 42')
+ if o R .
1 2&0" o 1  %ie c2ie T
2“1_/ c‘ag —mmfx[dﬂe §5+m ]Z()

which by the theorem of residues gives

o R mr R 2ia

o) 3 23, : o) 2 .
gy c mi(m3” = e®NY) = = (37 -

e ]
Similarly
o R m2ia 0o
=21 1
ﬁrri[ zao-g=_2_/[°6_e +°__62am5-];oz‘(%)r
8 .

which by the theorem of residues gives

oR =2iq, 5 nr R
¢ omi(S-e “mg = “Cov 1 =2ie
“Znl ° : s (G- 338

From the equation for the bourdary condition for ¢ o( $) and IPO(S )
(See Appendix VII.I) and using ¢_(o) = Zu

-theref'ore s> [ %%)30°(§)i‘%§ f m[l L0148m0™ s0m0° )]
8 . (o L)
[G.l-b—-f?'- + + _.,,.] Z(-s-)
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which, by the theorem of residues, gives

=

= (@3 +2m,) = -mpy - 2mip

Hence from
.7+ if
95(3)"‘2“1[ ¢“(0‘)aﬁ's+ﬁ = 2:’_1[ 10,_$2 - 3o
¥
8o that

@3 %»‘mzsz%"t%gsa- ceo =Mn3 = 2!!!12-!-(30 m'oR $7k 5 GOR 21“5 secoo(8s44)

Equating coefficients

2ic
e - - _ oy =  OpoRe
ﬁguﬂgaz-(),aza(), asm-—-%,clwml-___._.

Putting amszx*iys %ﬂs-.x-iy

o]
gives x+iyam+miy=—f%3(cos%.+iain2a)

(1 = m)zx = %ﬁ cos 2& Or X = U;R %zsf;)
(T +m)y = '%& sin2&x or y= O.ER sg.-n*zg
aml oy = Ot [3%:?;% + i ;J‘ijl“]
Thus
8,(3) = &3 +a5§5 + ooe @GOR{[S%E_E% %} %351“9(2045)

But as shown in Appendix Chapter VII.1
#(S$) = %o-@m(s ) + ¢5(3 ) which on substituting for w($) and

$,(3) gives
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() o3 o o m) con| [ - 5Bl -85

. 3
cos 2a :Ls’ln&t m ‘
ao‘@R[ (m 21 )5 w4$ ] R ¢ T))

For tension alorng the XX axis, o« = 0°

5
so that ¢(3) = crﬁ[i's + 2%@ § =23 _] voe000css0osasss(2ed?)
2
and ! = R L 1 &
#(3) % [gw * 20@m) 7 zﬂf ]
Thus 5m2
(3y  Sol-3 " Ay - |
x(s) = ' ($ B

which reduces to

xX(3) = I [a&ngl@m) 3%, 23 2. (1=m)l

am(1-m)(38* = 2)

% [ =5m(1-m)E* + 2?3 = @.mml]

=nd X3) = 4m(J=m) (5?4 - %’)
Then '
@ = To* T = 2[3‘.(5') +i(§)Jooo”o”o””oo”(za-dﬁ)
For 3 = pet?, §= pet® a3 6 = 90°
then
a“ava-o“p = o eovec00000000000(2049)
Sinﬁ.iarly for. ® = 0°

2 4.
_ 20" = (1=m)(Bmp "+ 1) :
U’s*ﬂﬂp = O'@ [_ﬂ‘(i;ﬁlﬁl g 61) ooooooooooooooooo(?‘om)

and/




IZ.4) 82.

and from these the distribution of c:"G + crp along the X and Y axes

way be determimed.

For the hoop stress on the hole boundary, p =1

an&orpgog‘ with =o', 3 = e

Hence equation (2.48) gives the stress concertration factar on the

hole boundaxy as
fg _ A 95(1%)@3“43.,&3_@2@@(1%) . wm( I=m) e“im-rzcﬂlzaa-lmm (2.51)
o, ~ 2m(3=m) S ide 1 &miée 1 ohee

The maximum hoop stress occurs on the axis YY perpendicular to the axis
XX which is the axis of tensiony that is, © = 90° giving the stress

concentration fastor as

o

Ge] g[&ncl‘:m) mgm(lﬁxﬂ)]_ °°°°°°°°°°°°°°°°°°°°°0°°°oooooooo(2:52)
Clyy

T n{1em)(5 - 3)

W

s . t = =
Derivation of Stress Combination ¢° = Oy =Ty + 27 o

In the :E'oll@;'ning the derivation of the stress combination

g = Ty = o‘p + Ein;p@ is given.

m ot
5@ = M) = Mu0onanuooooaooooaoooooooao90000(2655)
w? (o) (Apomo®) O (smoo1)

Therefoare

¥ o Z
'é‘f’afff%% 9&@"(6)&652%1&/“33*1)[%"% et LU
Y Y

) o=3 o(Emo® < 1)(o = § )

Poles/
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Poles ocour when {(a) o=0, (b)) oc=3.
(2) When o = 0, and using only the first two relevant terms in the series,

to limit the mthemtmﬂ warking,

m{m + 1)(o; + 5o 0‘2)
Ik

(Smcrﬁv = 1);(@ mf) leg

R@S‘id‘u@ .3 ""1 '53 =] ““g"; ooooooooooooooooooooaoooonoacoo'(zo‘ss)

(v) When ¢ =3,

m(m + 1)(01 + 5@0‘2)
),

oloned = 1) do
(oc=8)

m(i» + 1)(ay + 5,37 (5.56)
(&ﬁ l) 0000000 DOOACOCQ0OCROOOROOS OO o

Rezidue =

The residue on integration is therefore

oy (5F + m) ey + Bags®)

5 ¢ S(5m34m1) 5600000000000000a000sscascoas(DeDT)
and applyirg the equation
1 [ %' a3 [f =i 4
$.(3) + 53| S o= = ﬁmf T
gives

i (¥*+m) (o +80g3")
P l3) == -=-=($ 2:‘@5)@%'%[ gzsmlealg’s };m”mo(zass)

ggw(g =2ia 5)

G‘@ mecos 20 i szn 23,) [L m)(‘mijfv i sin Qa) ‘=5m§23€(5' -un}
S‘(Smk -1)

= ( Ism

which/

.
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which af'ter some reduction results in

(5m34 D .. (2.59)

Hence from

o w2ig,
wis) g—-agf o(3) + P (3)
4, (s) - o "‘gﬁ.ﬂ. il.. %3-25.&:5 + GSR -2163_5

i G‘R[(Sm +1)[§5(0052a i si:ia) x]
2. (mp* - 1)

I - (Bn +1)[§ 5(c052u i sin2m) {, |

v (8) == "o [ 5F * o TE - 1) coaoese(2460)

Thus equations (2.46) and (2.60) give the complex potentials for
tension at angle o to the XX axis.

For tension along the YY axis, o = 0: these potentials became

5
¢(S) = G'R[—‘f '—(%:Eys - PZS"‘-] oo.aootovou-'celocu'ou.(2061)

5 2
W) #,,0‘03[5; (%355‘;)"”1] cevsseoet (2062)

i

The stress combination

=

' mo, =0 + Bix =
0P RS BB

[a(f)x'(r) + YUY veee(2.68)

can now be formed.
The following are required in the formation of §°.
w(g) = R(%’+m$5) = ‘?(mr'é-fvl) ocoowsoooaooe.oooooooooq?o(2064)




0 (3) = R(m}*gq-i’)mgz) = -?ﬂiﬁms4wl) Gevocecosaracsareone (2465)
o®($) = R(s5+6m§‘) = %%(mx4+1) ...................... (2.66)
(T)(?) = }:R';(m?é-"'l) 9008000000606 0 Gocstaesesssosnosnererecase (2 67)
= R T4

o (Y) = %?:%2-(5m$‘ 1 .(2.68)

Equation (2.62) may be writtens=

9 Y

P(s) = - O‘OR[%? +,(25§(nl_:91) { i(‘gm; 213-218 ] ................ (2.69)

. r[ 1 o1} {5 3 2(3m 3 %1 )m(1om) (5 § 4o
gy =-% [" 212 * 55(1-;;)'){;;1533'6 +1%2é15 42£fm) l)_} . (2.70)
(Bm3$% = 1)

Mso X(3) = w: §

s x0(3) = @GN =g hed) e (2.71)
[0 ($)]

or X(3) = g(3) | o (Sde(3) ceasecossenon (2.72)

0 (3)  [or(3)]?

From equations (2.61) and (2.64) to (2.68) etc. the component parts

of equation (2.72) are. as follows:=

1 5m § 2

¢0(§) 5 (TOR [" 4.‘1“'3 + 2(1"'111) 4 ] ooooooooooooooooooooo (2 75)
o R

$7(3) = "'R[E%? - 5;‘3] = =72s-§-,’-=5(5m3'4=1) ............ (2.74)

- g
and (.Oq gg = =§% oooooooooo ¢Gooe0000D0B 0 CeeO0s e O eT OO OITBRODGEEOESN (2 75)
2
Also [m“(S )1 ? = % (;’SmS4 - 1)2 oooooooooooooo coooessesnaeao (2.76)
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Hence after some reduction

¢ (Nw"() . °‘o(5mt4.+ (-1 +m + 232 - 5m¥" .4 5m2$4). ceerea(2.77)
for(5)] 2 23(5m5" - 1)2. (1-m)

Then from (2.75) and (2.77)

() = - % [1 . (omy? + 1) (3% - st 4 242 4w - 1)] ceenn.(2.78)

2% (1 - m)(omi® - 1)

Equations (2.67), (2.68) and (2.78) give

27 GHXE) = - Eqﬁ_ﬂ!ﬁi_‘*ﬂl[ (omt%1) (5 i baot Zame)

P25 (F) o2 (emi4-1) (1-m) (5m3™ = 1)2
eeea£2,79)

and from (2.68) and (2.70)

282 , I i, (a4 1) X
(@) == p2(5m'§4-1) "2t Ty (emt - 1)2

PZee (F)

X { 83 2( By 1) +(1~m) (th4+1)-12m1'6] v o+ (2.80)

Equations (2.79) and (2.80) define the right hend side of equation
(2.63).

It is easily shown that the boundary values at infinity are
satisfied, by substituting for p = 0 and © = 90° and 0° respectively.

For & = 90°, equation (2.79) is zero and equation (2.80)
gives 40, Hence from equation (2.63), g = 0, since o‘P and 1 08
are both zero at infinity, -paréllel to the axis of tension. Therefore
thig gives uniform tension alorng the edé;e of the plate to inflinity,
pardlel to the axis of tension. For 8 = 0°, equation (2.79) is

agein zero and equation (2.80) gives = o, Hence equation (2.63)
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gifves o‘P = g, since S and ¢ 00 are zero and this carresponds to uniform
tension at infinity along the ends of the plate.

An expression for the hoop stress on the hole bourdary
corresponding to that obtained from equation (2.51) is given when
$= peie s 31 = pe'“:ie and p = 1.0, the maximum hoop stress occurrirg
when 6 = 90° from the direction of tension.

Thus the right hand side of equation (2,79) becomes

T 1 i 2.. - |
0(m+ )[1+(51n+1)(5m 2m 5)] 00..0.99900.0...#00..9.(2‘81)

Z5m='lj (1 nm)cm,ﬂl)g
and the right hand side of equation (2.80) becomes

, 2 A
- 5;21 [‘1 + lfﬁ +§m-1 {- 5( ~m)+(1=m) (9m+1) +12m g] eee.(2.82)

and as befare the sum of these e;qutions (2.81) and (2.82) gives
the maximum hoop stress on the bourndary of the hole, hence the stress
concentration factor can be found.

In order to facilitate calculation of the stress distribution
along the axes of symmetry, the general expressions for (2.79) and

(2.80) were written as follows:—

ooy & 4 24 . 4 2
Right hand side of (2.79) = = 72 2 1+w”d3ﬁ§%§$.%*mw

voe0{2.88)
Right band side of '(2.80) =

gv .
“OgP . (5m2+1-2§'=§gz§ m‘;'nl!ﬂ 1-=m“9_£1_g4+1)+12_n_196} (2.84)

4 2 4 2
(smp=-1) p (Lem) (Bmp™ = 1)
Using equations (2.48) and (2.65), the sum and difference of

% and o‘P can be determined, and also the separate stresses, together

with the shear stress distribution Tpﬂ at any point in the plate.
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DISTRIBUTION OF ERINCIPAL STRESSES ALONG THE AXTS OF

SYMMETRY PERPENDICULAR TO THE AXTS OF UNIFCRM TENSION

Lo 7 a, Og . T
The distributions of (-i’—"'—-E) and (_§___B) are

Oo Oo
'shown in Fig. 97.

The rumerical evaluation of equations (2.46), (2.79) and
(2.80) for varying values of p was facilitated using the Deuce
Digital Computer at Glasgow University Computing Laboratory. The
Alphacode Mark II system waes employed. The programme and details
ere given in Appendix Chapter VII.2. |

From the computer results, the distributions oi"de/mo
and P/, were obtained, using a hend celculating machine; these
distributions are shown in Fig. 98,

These graphs show that the effect of & 'cruciform' hole
in an infinite plate under uniform uniaxial tension at infinity, is
a ioeal ong, and that the disturbance of stress diminishes rapidly a

short distance away from the hole.




PART 35,

CHAPTER IT (comtd).

STRESS CONCENTRATION FACTORS

89.




TRANSFORMATION FORMS _FOR A SELECTION
QF POLYGONAL DISCONTINUITIES IN THE
INTERIOR OF A TENSION PLATE,

TRANSFORMATION _FORM

Z = (t) =R (-é—*rs—',-ga)

]

3
2 <0 @ =R (3+45)

»Dm50¢

Pig, 99,
3
a. z =0 & -R (-2
L1462
5. Z = W (f) =R ('g-s_-fg)
| 2
6. z -w @ -~ (F+33%)
THEORETICAL STRESS CONCENTRATION FACTORS
FOR A SELECTION OF POLYGONAL DISCONTINUITIES
IN _THE INTERIOR OF A TENSION PLATE
S.C.E
L 9.73
2. <> ' 8.8
Fig.100.
. ]
4. 6.0
5. & 7.58
6. 7-93
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STRESS CONCENTRATION FACTORS FOR A SELFCTION OF

POLYGONAT, DISCONTINUITIES IN THE INTERTICR OF A TENSION FIATE.

Stress concentration factors for holes of different shapes
were determined from genersl solutioms for §'/o, for each polygonal
form urder consideration. A typical derivation and calculation
is given in Appendix Chapter VII.S. The maximum stress concentration
factor was ascertained by interpolation, using imcremental charges
in the angle © which located the points on the hole boundary
relative to the axis of tension, thus giving incremental variation
in the stress concentration factor round the hole boundary. The
transformation forms are given in Fig. 99,

A summary of the calculated values of the stress oonéentra‘tion

factors found by this method is given in Fig. 100.
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The experimental work presented embraces

(a) an ad;jum*i: to the thearetical work, using the analogue computer
for the determination of suiteble conformal transformations to
give discontimnuity forms similar to those used for the experimental
specimens,

(b) the determination of the principel stresses and stress concentration
factors for the forms of discontimrities considered. In this
work, the sums and the differemces of the principal stresses at
points in the tension plate were determined, and then combined to
give their separate values.

Relaxation solutions, using SOUTHWELL®'S method, for the

determination of the sum of the principel stresses in the tension

vlate, were fully irmvestigated by the writer, but were later replaced

by a more repid technique wuwtilising the Conducting Paper Anslogy.
Brief details of these methods are given at the beginning

of each of the relevant subsections which follow.
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DETERMINATION OF THE TRANSFORMATION FORM

BY THE ANATOGUE- COMFUTER.

As stated in psregraph IT.3, this application of the Minispece
Analogue Computer was devised by the writer to facilitate the
determination of suitable conformal transformations, using an analogue
computer,
THEORY: The general form of the power series is given in equation

(2.52) and for say a *square' hole is of the farm given by (2.27),

ie. Ze=afd) = C[g'-+m5§5+m7§7+m11§11+....J

o o2 S R
where mg = -F, Wy =+ Egs Iyy = = g5

The complex mumber § = pe:m gives a circle on the Argand
disgram for constant p and varying 8. Also S = p(cos 8 + i sin @)
and for p = 1(unit circle), § = (cos 8 + 1 =in 8).

Hence from (2.28)

Z =0(cos & + m,CO8 0 + m,,COB 70 + m, 4COS 1le + )
+iC(sin 6 + m.8in 30 + m,sin 70 + m,,sin 110 + .“) coowssos(B.1)
and this complex number gives a conformel transformation of the unit
circle in the form of a ‘*square’, on the Argend diagram.
The analogue computer can be used to continuously plot this

transformation and display the result on an oscilloscope screen. Fof

this application, using © = wt in equation (8.1) results in
2= G(cos wt + g COS Swt + mvcos 7wt + Im, 1608 Llwt + . .o)

+iG(«=sin wt + masin 5wt + mVSin 7wt + mllsin llwt .o ) cosveess(53.2)
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COMPUTER ARRANGEMENT ¢

The furc tion generator shown in Fig. 101 was built, using
four sine-cosine potentiometers of the rectangular card type, motor
driven at releated speeds via change wheels, so that different speed
ratios were available. \

For the transformation of equation (3.2), the potentiometer
speeds were w, 5w, and 7w and 1llw radians/sec. The wiring diagram
is shown in Fig. 102. The potentiometers were fed from a common + 100
volt supply, and the phasing adjusted to produce voltages of 100 cos Wi,
=100 sin wt, 100 cos Swt etc. Each voltage was then passed through
& sign-reversing amplifier to reduce loading errors in the sine=-
cosine potentiometers, and thence to an adjustable 10 turn helical
rotentiometer,

Bach potentiometer could be set to give the required
coefficients mg, m,s mWyys etc. to an accuracy of 0:1% of its full scale
travel, using a bridge circuit to allow for loading effects. The
resulting cosine and sine voltages were added in separate summing
a.ﬁp‘liﬁersg the sums being the X and Y component of 2 = w(S ). These
were fed to the X and Y plates of an oscilloscope;, and as the
potentiomsters generated their respective waveform components, the
resultant transformation farm was traced out continuously on the
oscilloscope screen. The computer is shown in Fig: 105 and the
resulting transformations in Figs. 104 a, b, ¢, 4, etc.’




Pig.105.



941,
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CHOICE OF TRANSFORMATION FORM.

From the results illustrated, it is evident that the basic
shaps produced by the transformation is mainly determined by the
first two terms in the series, while the higher terms, having smaller
coefficients, have a minor effect on the basic shape; but obviocusly
affect the corner radii.

The method was therefore spplied in two stages, firstly to
determine the changes in shape due to the use of the first two
terms in the series; with variation of the coefficient of the second
term, and secondly to examine the changes in shape due to the addition
of successive terms in the series. It is shown by the results (see
Fig. 104) that it is possible to reduce the corner radii at the expense
of loss of straightness of the sides of the transformed openings.

It was possible using the first method of application, to
determine suitable two=term transformations to give a reasonable degree
of correspondence to the forms of discontimuities considered in the
theoretical analysis given in Chapfer II.

It was noted that the number of sides of a transformation outline

was ore greater than the highest power in the § - series.

In the case of the rectangular form, the terms %’ + m$ j
are combined to give an ellipse of axes (1 + m) and (1 = m) then terms
/
in §5 and & 5 are added to give rectangular outlines.

That is Z = o(§ ) §%+m§ +m5§5+m555+ _____

= [(1 + m)cos wt + m;cos Swt + mn]

*1[9(1 Ll m)Sin wt + mSSin Swt ‘_f'.“‘”""’] ceseo ao(505)
This application of a Minispace analogue computer is to the writer's

knowledge original, and is a rapid technique for the determinati:on of

[P < } -l A 40 Py
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DETERMINATION OF THE SUM OF THE FRINCIPAL STRESSES USING

THE CONDUCTING PATER ANALOGY AS AN ADJUNCT TO THE PHOTOELASTIC ANALYSIS

THEORYs  The distribution of steady state potential V in a thin
conducting sheet of constant thickness and uniform resistivity is governed
by the LAPIACE differential equation
v oy

+ p) =

Bxg dy

0 ..00-‘.000...0099.000UUQ'.'ODII(5.4)

where x and ¥ are co-ordinates in the plane of the sheet.  Also, the
distribution of the sum of the principal stresses (0‘1 + 0'2) in a

tension field are governed by a similar equation

2 : 2
d (c‘l + 0‘2) d (0‘1 + 0‘2)
2 + 2 = O qoooucooocowotnoe(S-ﬁ)
ax oy

and this farms the basis of the analogy.

NOTE: Additionally tc¢ the above; equations of the POISSON type

+ g = conﬁtant IODDCO{'QOQCOD‘)”QE.D‘ﬂ'°l°(506)

can be {transformed into the LAPLACE form, and hence the analogy can
be extended to include such cases. In particular, for cases of torsion,

the distribution of the modified stress function lP in plane sectkions

urder pure torsion, is governed by the equation

. 2 2 -
X oy

OQQDDOOPQDOGOOGOOOUl00560000°0(5ﬂ7)

b+ 224

2

sheatr stress furction

£

0

where LP =
¢
il
T

madulus of rigidity
co=-ordirmtes of points in the plane of the section,
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In this application, the use of the symbols ¢, tf and @ are

confined strictly to the case of torsion, which was used as an accuracy

check on the conducting paper method, and they bear no relation to the

symbols used in the theoretical treatment for complex potentials.

AFPPARATUS AND TECHNIQUE:

The equipment is shown in Fig. 105 and the circuit diagram
in Mg, 106.

The arrangement provided means ofrsupplying bourdary voltages
f‘rorq & potentiometer, to the conducting paper specimen, the bourdary
voltages (in volts/fringe) carresponding to the known bourdary stresses
determined from the stress specimen. Boundary voltage wires were
soldered to office staples which pierced the conducting paper at the
selected points, which were then spotted with.siilver solution. The
conducting paper specimens were cut f‘roxln 21 wid;e rolls of Teledeltos
. recording paper of resistance appm:xima;bely 2500 ohms per square. The
cutline was an enlarged version of the photoelastic model, wit'l-u the
exception that dimensions taken across the paper were modified by
miltiplying these measurements by PV /p,; where Py and p_ are the
registivities along and across the roll res;pecti"vely., This allowed for
non=uniform resistivit:);' “of the material available.

Voltages at points on the paper were measured by a probe,
using an oscilloscope as a mull reading indicator, the balancing voltages
then being read by an Avometer. The pantograrh arrangement (Pig. 105)
facilitated the plotting and recarding of voltage contours and voltage

values at hole bourﬁa;ﬁ.es.
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ESTAEBLTSHMENT OF RELEABILITY:

The reliability of the method was established in three ways,
the first two of which are described here, the third being a tarsion
case which is given in Appendix Chapter VIL.S.
(i) A comparison was made between the exact thearetical and conducting
paper distribuﬁom for the sum of the principal stresses
(crl + 0‘2) aloné an axis of symmetry through the major axis of
an elliptical ‘discontinuity in a tension plate, corresponding to
thecretical boundary values. The direction of tension was taken
verperdicular to the major axis of the ellipse. The results
are shown.in Fig, 107 and it is evident that excellent agreement
was obtained. It should be noted that this ellipse is the
‘equivalent' ellipse for the horizontal arm of the cruciform 'crack’,
0‘1 + 0"2

%

approypriate exact thearetical solution for this form of opening

and that the distribution of was calculated using the
as quoted by COKER and FILON in their 'Treatise on FPhotoelasticity!'.
(i1) A comparison was made between COKER'S experimental (0'1 + 0'2)

distribution and the conducting paper distribution, for an

elliptical hole as in (i), using COKER'S experimental boundary
values. The results obtained for axes through the major and minor
axes of the ellipse are given in Fig. iOSa and 108b. It is seen
that the conducting paper method provides a relatively more
consistent variation than that given by CORKER, while remaining

in close agreement with same.

The maximum deviation in both of the foregoing tests wae .only 2.1/2%.

[
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APPLICATION?
The sums of the principsl stresses (c‘l + 0'2) along the horizontal

centre lines of plates in uniaxial tension containing different shapes
of discontinuities, were determined by the conducting paper analogy.
The types of discontimities considered were a 'crack' in the form of
& narrow &lit, a crucifarm type ‘crack' and a square discontimiity with
diagonalé parallel and altermﬁvdy verpendicular to the axig of the
applied tension.

The boundary values spplied to the conducting peper specimen
were related to the stress values obtained from the photoelastic tests
described in peragraph IIT.S.

The '('0‘1 + 0‘2)/0'0 distributions obtained are shown in Figs. 109,

110, and 111, and also together with the photoelastic results of the
next section (III.5). These distributions are superimposed for
comparison in Fig. 112,
(NOTE:  The third test for reliability of the conducting veper technique
was made on specimens of rectanguler cross-section, together with a shaft
section containing a British Standerd keyway, all subjected to torsion.
The results are given in Appendix 7.5)

In all of the faregoing, it has been corblusively established

that the conducting paper analogy is a relisble and accurate method

for the determimmtion of the sum of the principal stresses in tension

fields,
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DETERMINATION OF THE DIFFERENCE OF THE PRINCIPAL

STRESSES BY PHOTOELASTICITY

BASTS:

The photoelastic method is so well-known that only a brief
outline of its basic concepts is introduced here. The method is used
primarily for the determination of the difference of the principel
stresses (c‘l - 2) in plane stress fields. The model material has
.tbhe characteristic property of birefringence when subjected to stress.
The stressed; transparent plastic model is viewed in a besm of plane
or circularly polerised light, the relative retardation of the
appropriate light wave components beirg directly related to the
principal stress difference (o'l - 0'2) at the particular point viewed.
This relative‘ retardation is measured by optical interference fringes,
which can be stress-scaled by means of a calibration specimen.

In the determination of stress concentration factors amd
stress distributions, there is usually no need to calculate the actual
stress velues, since the stress values may be expressed in terms of
photoelastic fringe values, relative to the bourdary fringe velue Oy
This method has been adopted in the photoelastic work described

herein.

Specimen Material
The materiel used for the tests was Columbia Resin (C.R.39).

This rd&sin, Mng cast-polymerised between glass plates is highly

transperent, hard, strong and has opticel clerity equal to that of plate

glass. The stress-optical sensitivity of Columbia Resin is high, and

comperes well with Bekelite B.T.8l - €99,
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The streas-retardation curve is linear up to epproximately
3000 1b/in2. Optical creep is not pronounced at stresses well below this
figure, but at the higher end of the linearity range, cen prove troublesome.

'in!ne-edge. stress effects and machining stress edge effects

mgy elso be evident; but can be avoided by careful machining followed by
immsdiate testing of the specimen.

From a typical calibration specimen of 0:.105 i.n2 CTross=
sectional area, loaded in tension to 267 1b. the third order frirge

appeared, and from this the

P 267 2
Model Fringe Value = 3= = TonE = 866 1b/in®/fringe ténsion.

SEFECIMEN SIZE:

-

Each specimen was 6.1/4" long x 4" wide % 1/16" thick, and
the maximum width of discontimuity was 1/2". This gave a
discontinuity width/plate width ratio of 1/8, and as has been shown

by the writer in previously published work, (29, 54) a minimum ratio

of 1/6 gives, for practical p&poses, infinite plate conditions.

SPECIMEN FREPARATION:

The épecimena were cut from the main sheet by a pantograph
engraving machine, using enlarged templates for the profiles of the
discontinuities., The out“t.;er diemeter was 0307, and fine cuts at
high speeds and light feeds were employed, with a copious supply of
cu;t'ting compound. This produced specimens with clean cut edges;
free from machining stress fringes. The actual dimensions of the

varicus discontimuities cut in the plates were measured using an

Engineers® microscope.
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APPARATUS AND EXPERTMENTAL TECHNIQUE:

The photoelastic polariscope used, which ﬁs designed and
built by the writer, is shown in Fig. 115 and consisted of 5 inch
aperture collimating and collecting lenses of 12 inch focal length,
together with remotely conmtrolled, rotatable 5" dismeter polaroids
and mica quarter-wave~plates, The light sources were a 10 volt,

240 watt compact source tungsten-filament prefocus lamp, and a 250 volt,
500 watt compact source mercury vapour pre-~focus lamp, together with

& rear perabolic reflector. Wratten 77 and 58 filters were employed
to isolate the mercury green line when required.

Fhotography of the overall fringe patterns was carried out
using a 5% x 4" technical plate camera, and for regions of high stress,
where the fringes were closely spaced, a microscope and microscope camera
were employed. In every ;test, light and dark field photographs were
taken, as a standard routine. For measuring the relative positions
of these closely spaced fringes, a travelling microscope was used to
directly view and measure the fringe pattern spacing. Loading of the
specimens was carried out via friection grips, by a lever system employing
a water loading tank, giving variable loading rates., The calitration
graph for the water tank is shown in Fig. 114, |

For the determination of unifarm tension fringe orders, and '
for fractional fringe orders in the specimen, the fringe patterns were
projected on to a 3 £4. square white frojection screen carrying a photo-f

maltiplier which was coupled to & moving coil galvanometer. The
Sénarmont method of compensation was employed to establish the fringe

values fecpirea.




Fig.115,
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Boundary frirnge values in regions of high stress were found by plotting

the fringe arder distribution along selected axes, and extrapolating

to meet the boundary (Fig. 115).




Pig.116a,

Fig. 116b.



(TIL. 5 104,
EXPERTMENTAL, RESULTS

A total of twenty-seven different types of discontimuities
were investigated experimentally. In addition to light and dark
field photographs of the area around the discontimuity, similar
photographs were also taken through the microscope, of the area in
the region of the highest stress. To demonstrate the clarity of the
fringe patterns produced for these highly stressed regions, Fig. 115
shows the light field photograph of the region at the end of the
horizontal arm of a cruciform type ‘erack’ opening in a tension plate,
the magnification being about 80X, as photographed by the microscope
camera and subsequently enlarged by & 35 mm. enlarger. A selection
of typical light field photographs are shown in Figs. 116a, b, ¢, d, etc.
the boundaries of the specimens being clearly visible.

The distributions of the differences of the principal stresses
along selected axes were Qetemnined for a representative range of
eleven of these specimens. In the case of three of these the complete
stress analysis ;proceaure was carried out, the (0"‘1 e 2) graphs
obtained from the photoelastic fringe patterns being combined with the
corresponding (crl + 0'2) graphs obtained by the condueting paper method,
all values being expressed in terms of the uniform tension fringe value
o‘g., The distributions of the separate principal stresses, expressed
in terms of the uniform tension fringe value are shown in Figs. 117 to
125,

For the remaining sixteen specimens, values of maximum stress

concentration were determined, from the ratio of the maximum fringe order

at the discontimiity to the uniform tension fringe order, and these stress




Fig.116c. Fig.ll6d.

Pig.ll6e. Fig.ll6f.
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stress concentration factors are shown together with the stress
concentration factors for the rest of the specimens, in the comprehensive
table of Fig. 126.

For the range of square and 'barrel* shaped discontinuities
investigated experimentally, the Adpge orders round the openings were
determined, and these values, expressed in terms of the uniform tension
fringe order o”, give the variation in stress concentration factor

round the boundary of the discontinuities. These results are shown

in Fig. 127.

Fig.llBg. Pig.lIBh.
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CHAPTER IV ANAT.YSTS AND DISCUSSION OF RESULTS
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(IV.1) The Cruciform Crack

In Figs, 128 and 129 the experimental results for the
distributions of the sum and difference of the principsl stresses along
an axis at 90° “to the direction of the applied tension are shown together
with the separate values of these stresses along the same axis. Figs.
130 and 13l compere these results with the theoretical a.istributionl
obtained by the method given in Chapter II. It is seen that there is
good agreement between the theoretical and experimental result sol The
slight divergence observable is regarded as a meagure of the degree of
approximation involved in using two terms only in the transformation
series. It is considered that in view of the negligible order of
deviation, the use of two terms only is both rational and acceptable.

It is also clear from the comparison of . these results that |
for the discontimuity width to plate width ratio used, infinite plate
conditions have been realised in the expeﬁmnfal specimens used.

It 45 observable that in the graph of (c‘l - 2) for the axis at 90°

to the applied tension, that there is a decrease in (o‘l - 0‘2)/0‘0'
immediately 'PI"iOI‘ to the final high increase at the point of maximum
stress concentration. This is a feature which was shown to exist by
JESSOP and SNELL in their expériﬁental work on tension bars containing
a circular hole. It shouldla'lsb be recal‘led' that the theoretical
solution for the circular hole given by KIRSCH shows a similar decrease
in the (o‘l - 0‘2) distribution,

Another feature of interest is that the stress concentration
factor for a cruciform crack is effectively the same as that for a slit

of similar orientation, that is when the £1it (in this case the arm of
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of the cruciform crack) is at 90° to the direction of +the applied
tension, From this it may be inferred that a slit whose axis lies in
the direction of the applied tension has no effect on the maximum stress
concentration, The stress coneentration factor would obviously be

reduced as the number of 'arms® of the crack was increased;, until the

circular hole case was reached.
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Comparison of Theoretical and Experimentsl Stress Concentration Factors
for a variety of Discontimiities. ,

The stress concentration factors for the forms of
discontimuities imvestigated fheoretically by. the fnethod given in
Chapter II have been compared with the corresponding factors obtained
by the photoelastic analysis, and the values are- shown in Fig. 132.

It can be seen that this comparison is a favourable one, the highest
deviation between theory and experiment -being 6.8%. It is of interest
to note that the two highest deviations occur for the forms of
discontinuities derived from the 'square hole' transformation form,
when the diagonals of the holes lie along and &t 90° to the axis of
tension. As is shown later, the experimental velue for the cruciform
crack is in sgreement with the value obtainea by INGLIS'S elliptic
formula K = 1 + 2V®/p.  The writer is therefore of the opinion that
the value obtained by the method given in Chapter IT is slightly high,
and that this may be due to the shortened transformstion series which
was used.

In the case of the secon.d 'square hole'; the value for the
theoretical stress concentration factor mey be slightly high for the
same reason. In addition, the corresponding INGLIS value is higher
than that given in Chapter II. For this perticular type of discontinuity
however, it is suggested later by the writer that the INGLIS method
tends to over-estimate the stress concentration factor, and therefore
it is claimed that the expez;imental figure is nearer to the true value.

Selected values of stress concentration factors calculated by
INGLIS' formula (1.6) from the dimensions of the experimental

discontimrities shown in Fig. 138 are given in Fig. 134.
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Examination of these results suggests that in general the

ANGEIS theory over-estimates the stress concentration factor for cases
where the equivalent elliptic form is enclosed by the actual |
discontimuity (for exeample, the square hole with its diagonal parallel
to the direction of tension), whereas if the discontimiity is enclosed
by the equivalent elliptic form the theoreticsl stress concentration
factor is in agreement with the experimental value, (such as for the

horigzomtal slit and the crueciform).
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(W;S) Correlation of Stress Concentration Factors for Design Purposes

As a further check on the reliability of using an equivalent
elliptic farm in place of a non-elliptic form, the graphs of Figs. 135
and 156 were plotted. The conduecting paper method was employed to
determine the (0‘1 + 0‘2) /o-=0 distribution along the axis through the
discontinmuity at 90° to the direction of tension, for both the none
elliptic and its equivalent elliptic form. The boundasry fringe values
used in the conducting paper analogy for the non-elliptic opening were
determined by the photoelastic method. These same boundary values
were used for the equivalent elliptic opening. Their approximate
positions on the boundary of the equivelent elliptic discontimiity were
determined by projection »f‘rom the non-elliptic boundery point to that
on the equivalent ellipse, in a direction parallel to the spplied
tension. The (0'1 + 0'2)7’0‘0 distributions were then compared.

From the graphs of Figs. 135 and 136 it can be seen that the
concept of using an ecip:‘i.valerrt elliptic discontimuity in -place of a
non-elliptic one, is wvalid as far as the distribution of the sum of the
principal stresses is concerned.

From all the work done, and as illustrated perticularxly by the
cruciform approximation, it appears that the mejor factor of influence
in stress concentration is the characteristic shape ratic P/a, where
P is the smallest roct radius of curvature and a is helf the width of

the discontinuity, related to this radius.
It was considered that a semi-empirical equation, if it could

.be esta.blished, purely for design purposes, would be of value., Therefore,

an attempt has been made, based on INGLIS' theory, to relate the

experimentally determined stress concentration factors for non=elliptic
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elliptic and inclined elliptic holes to the theoretical stress
concentration factors for equivalent elliptic holes whose major axes
are perpendiculer to the direction of tension applied to the plate.

The theoretical stress concentration factor for the non-elliptic hole
was calculated from the specimen dimension, using INGLIS equation (1.11)
and equated to the theoretical stress concentration factor for an
elliptic hole whose major axis is horizontal, giving’

Theoretical Stress Concentration Factor for _ 1+08 (4 .1)
Nonwelliptic hole o 'b oeo0eB®0dO0O °

From this equation, an equivalent® % ratio was determined,
against which the experimental stress concentration factor was plotted.
Since b = Vap for an ellipse, the ‘equivalent’ -E- ratio takes account
of the size of the hole and its minimum radius of curvature.

The graph of 1 + 2—% is shown in Fig. 157 with the experimentsl
stress concentration factors plotted against their 'equivalent %
ratios;' and it can be seen that in most cases this gives a reasonsble
approximation from the viewpoint of design. This form of correlation
is & baplz for a chart sulteble for design purposes.

This method of plotting has. been tried with the theoretical
stress concentration factors of two of the authors quoted in the review,
that is SAVIN and STEVENSON, the resulting graph being shown in Fig. 138.
This graph shows that the INGLIS method would give higher stress
concentration factors, for certain shapes of holes, than either SAVIN
or STEVENSON, but this would in all cases be 'safe'’ for design purposes.

A suitable semi-empiricel equation which approximatesto the
foregoing graphical forms has been fourd to bes-

p 0-69
K=2+(F) 00.....9."0‘09..‘05..'0..000!0...0(402)
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where K is the stress concentration factor,

f is the minimum radius of curvature of the ‘equivalent® ellipse,

a 1is the semi-major axis of the ‘equivalent'! ellipse.
From this equation, the design chart shown in Fig. 139 has been devised,
the method of use being as indicated by the arrowed linéso Thus for any
non-elliptic opening in a tension plate, an equivalent ellipse iz 'fitted’
to the opening and it§’% value determined, then from the design chert

the approximate stress concentration factor may be foumd.
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V.l The Cruciform Crack

(1) Theoretical Analysis

The method of complex potentials applied to the stress
analysis problem of a tension plate containing a cruciform crack has
been shown to be completely satisfactory in all respects, even although
the conformal transformation series form used to transform the cruciform
boundary on to the unit circle was an abbreviated series.

It must be stated however, that this method of stress
anelysis, although mathematically more ‘elegant’, is a time consuming
process, and that in order to obtain mmerical results in a reasonsble
time it must be supplemented by the use of an electronic computer.

(ii) Experimental Work.

The reliability of the results depends on the accurate
determination of the photoelastic fringe patterns in regions of high
stress. The use of a travelling microscope, together with a microscope
camera, has been shown to give results of a high order of accuracy,
even in regions of high stress and high stress gradient such as are
encountered at the ends of two of the arms of the cruciform crack case
investigated.

(iii) Stress Concentration Factor

The theoreticel analysis has been verified by the experimental
work. It has been shown that the stress concentration factor for a
cruciform ‘crack’ simulated in the experiments, whose axes are parsllel
and perpendicular to the direction of tension is sensibly the same as
that for a slif{ of similar dimengions to one arm of the crack, lying at
90° to the axis of the ‘tension. The: arm of the ‘crack' whose exis lies
along the direction of the tension appears to have no effect upon the

stress/
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stress concentration at the end of the other arm. This has been shown
also by comparison with INGLIS' theory, which for this form of
discontinuity and orientation used gives an accurste stress concentration
factor.

Stress Distribution

The theoretical stress distribution along the axis of the
cruciform at 90° to the direction of tension, has been verified by the
experimental work. In particulaxr; it has been definitely established
that in the distribution of the difference of the principal stresses
(0‘1 - 0'2) along this axis, a decrease occurs below the uniform tension
value, before the final increase to the maximum value at the end of the

‘arm! of the crack.

V.2 The Analogue Technique

(1) The Function Generator and Analogue Computer

It has been shown that by the use of an analogue computer it
is possible to determine in an extremely rapid manner, conformal
tfans;f’orm‘bions in series form, conbaining numericsal coefficients, for
an infinite number of geometric bourdaries.

For any particular form of transformation, the effect of
variations in the numbér of transformation terms, or in their coefficients,
is readily determinable. The method may be employed to obtain a suitable
transformation form wh::.ch will 'fit' a chosen boundary, as was done for
the case of the cruciform 'crack' bourdary investigated.

It is concluded that this technique could be extended to cater

for many transformation forms other than the type used in the work reported.
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(11) The Condugting Paper Analogue

This analogue has been proved to be a very accurate and repid
method for the determination of the distribution of the sum of the
rrincipal stresses in tension fields, and for cases of torsion, for
the distribution of shear stress. The experimental techniques used by
the writer for applying boundary voltages to conducting paper specimens

and for measuring voltage distributions, have been most setisfactory.

Vo B Stress Concentration Factors

A representative range of geometric forms of discontinuities
in tension plates has been investigated. In general, it has been shown
that the experimental stress concentration factors are in agreement with
those obtained theoretically. It has been shown thet the stress
concentration factor for any discontinmuity, whether edge or internsl,
is dependent largely upon the size of the discontinuity and the minimm
radius of curvature, that is upon a 'shape factor’ &/ P It also
‘ depends in the case of uniform tension on the orientation of the
discontinuity relative to the direction of applied tension, as
illustrated by the five elliptic openings investigated photoelastically.

The INGLIS theory gives reasonsable stress concentration factors
for discontinuities where the equivalent elliptic form encloses the
discontimiity being examined, but overestimetes the stress concentration
factors for discontinuities wﬁich enclose the equivalent elliptic form.

The "barrel’ shaped discontimuity suggested by HEYWOOD gives a
relatively lower stress concentration factor tMn those for square

bourdaries of approximately similar dimensions.
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The stress concentration factors for square and certain triangular
discontinuities given by SAVIN are generally lower than those obtained for
gsimilar types of discontimities by the experimental- work of the writer,
while the theoretical results of STEVENSCN. for-gquare, triangular and
polygonal boundaries are generally in agreement with the experimentail

results obtained by the writer,
The method of plotting the experimental stress concentration

factor against:an 'equivalent 2 ratio! for sn elliptic discontinuity with
major sxis at 90° to the direction of the tension, provides a suitable means

of comparing-stress concentration factors for discontinuities of different

bagic shapes, This has also.led to the drawing up of a design chart for
discontinuities in plates in uniform tension,

V.4 Design Chart for Stress Concentration Factors -

A design chart of the form presented is considered to be of value
for the rapid assessment of stress concentration effect for any geometric
shape of discontinuity for which a shape factor ®%p can be estimated, The
gtress concentration factors determined i‘rom"this chart will be suffigiently
accurate for design purposes, It must be stated clearly that this chart
applies only to discontingities of geometric form in thin plates under
uniform tengion, @ The ratio of discontinuity, width to plate width is not
greater than 1 ¢ 8, to allow the plates to be considered as infinite relative
to the size of the discontinuity. _

For the values -t?f--g greater than 25 (that is, for ;g- values less
than 0,2), the chart may over-estimate the stress concentration effect,
Since discontinuities within this range have extremely small radii of .
‘curvature, it is considered that for design purpeses a !self-containgd
over-estimate in the chart is of practical value; As an example of this,
for an 2 ratio of 100 (that'is a2 ratio of' 0,1], the over—estimate in

p

comparison with the INGLIS value is 24%; For -%’values between 25 and 100,

the percentage over-estimate diminishes,
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APPENDIX VIIT,1, THEORY OF COMPLEX POTENTIALS
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Theory of Complex Potentials in Two=Dinmensionsl Flastieity

A thin plate in the X0Y plane is considered, loasded in such
a way as to produce conditions of plane strain or generalised plans
stress.

If body forces are absent, the conditions of equilibrium

are satisfied when

ao; ot ot oo
X £ A —ZL N A,
ax + a.y 09 ax + ay o= O ® & 8 5 %8 8RN * 9 ® R0 (‘7! ja)

and the conditions of compatability are satisfied when

& 6 v e
o +m 6 +G =0 QOQOOOOQGGOIOOG.....Iblv.ealoQ000(702)
x> oy’ x o y

Chenging to complex co-ordinates givenby Z =x + iy, Z = x - iy,

noting that - _,3_-,(;@__ _ ie
Z " 2'ex dy

and introducing the stress combinations

® = Cfx + O'y
oﬂDQGD@O.QOQ"'OU"QG(?GS}

§= G’ywa'x+2i"l:xy

equations (7.1) and (7.2) become

;a‘g"“ - %% = Oencoosooooao-oa ooooo 0000095000(7-4)
07

2

-é-:-@mu = 0 oa-ow-ooaoouo-coooaoooeotaowvoos(705)
3Z.02

It is seen that @ is real, and as is shown later,

@ = 2[4 + &(2)] e (7.8)
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where the dashes denote differentiation with respect to the bracketed
variabley and the bars denote the conjugate coiiiple’o quantity.

Substitutirg for ® in (7.6) and integrating gives
s o= 202M"(z) + f7(z)d e, (7.7)

Thus the stress components at any point in the Z region
may be determined from two complex potentials 0(Z) and 1v(z) in

terms of which all the other quantities may be obtained.

Boundary Condition
RrttLng n and jBas unit veotors normal and tangential to the
boundary L of the opening in the Z plane® and a as the angle of
inclination of n to the positive Xaxis as shown in Fig. 140 the
direction cosines of n being (1, m o) and those of * being (- m 1, o),
then the stress over an element of L can be represented by the vector
Rn i*1idh is related to the cartesian stress vectors Rboand by
Rn = Rx +
If Xn and Yn are the components of Rn then
Xjj » ler, +m

iT)}X’ +mx'j
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Taking X, and Y, to be known quantities, they may be
related to the complex potentials, thus

1l =ig
¢

ia
xn"‘iYn = %e O-Ee oaa...-.o..........-...0(7.8)

which on substitution for @ and §, gives

K+ 1T =[9(2) 7@ Jéto - (@ + g |eie L re0)

ig.x ia

Sincez-x+1y, 34" = =m+ il = ie

therefore

i(X + 1Y )= [¢ (z) + ¢* (z)] [zgw(z) . W&)]az
[sﬁ(z) + 23 (Z) + q;(’a')] O 2% 1)

Assuming the boﬁndary to be a closed curve, and integrating

rourd the bourdary gives

if (.'a{n + iYn)dS = ¢(2) + ZB(7) + q_J(E) + constant,

This integral is now written as fl + :"Lf2 so that the bourdary
condition becomes

¢(2) + z3'(Z) +q:(z) £ + 1f, + constant scecococeroicriioono(7:11)

Resultant Force on the Boundary

The change in f(Z) when Z makes one circuit of the bourdaxry L
is denoted by C f(z), e.go Gylogz = 0 if L does not contain the

origin and C logz 2ni if I does contain the origin.

Also, if (X, Y) are the components of the resultant force on

the bounds.ry, then it mey be shown that
(X“":LY) =”Zi Cy [¢(A.l 4'@ (2) ‘#q)(Z)] co00esULEEcer c o ..(7.12)

Displecement/
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Displscement

Writing the complex displacement in the (x, y) plane as
D = u + iv, then the stress combinations § and @ exyressed in terms

of the complex displacement are

b
5:‘:_4"5-2. L R - I I I A N - R A A A A ) * s 000 v e ran (7315)
2. (o D
@“”‘1_21’ az*aﬁ 00“0.'0.0'0'-...00.Q.ll’l--'.o.l'ﬁ(?.lé‘)

(Notes these expressions may be proved by substituting for D and
expanding the right hand sides).
Substituting equations (7.15) and (7.14) in equation (7.4) leads to

2 2=
K.Q-..:Q._: + a_D = 0
8Z.0Z 3

ODGOIDOII‘..O..".I.O.'....'..(?.ls)

where K = 3 = 4y = bulk modulus for plane strain

i : :; " " " generslised plane stressp

Integration with respect to Z gives

3D D . . .
K3z + 5 ° Cp'(Z) and its conjugate
ab M | =
K-—a.z + 35 = Cf (Z)

which when combined, reduce to

-8 - o [ - 5@

: X2 o
Putting C = o
aD

2“325 K¢Q(Z) ﬂg“(z) O’COCOOOO'OD.COOOUDI-0090‘.".(7016)

gives

which on integration with respect to Z may be shown to lead to

2uD = Kp(Z) = Z3°(Z) = P(Z) ocvrcvcvoonocnonnrconnsss(7.17)
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Writing (7.18) as

= %T-E [K¢°(z) - E.';“(E)] and its conjugate

33- [Kgb (Z) = ¢° (Z)] adding and substituting in equation

('7.,14) gives an expression for @ as

T 1e2v° 2u

ox‘ @ l-gv [¢ (Z) +¢(Z)] 0“008000.0000.@00000.0.‘.0‘000(7 18)

Since K = 8 = 4v for plane strain

K=1=2(1 = 2v), and hence (7.18) reduces to fermula (7.6), which

is applicable also to generalised plane stress when K =3 = v/1 + v,




(VIiI,1) 158,

Form of the Complex Potentials

The resultant boundsry force condition stated in equation

(7.12) is satisfied by complex potentials of the form

+ oo
~ 00 n

#(2) = -~ ST
0..0.0.6...6.00.'.(7019)
k(X = 1Y) Eff /0
- t
‘P(Z) - 2\ L+k log z + oo b n
+ 00 +00 n
The series Z a"nzn and > ‘b“nZ must not contain terms in n » 2,
-0 -~ 00

if the stresses are to remain finite as |Z|— ©° the plate being

assumed to be large. These series may be written

a?
Ao
+ 2
sosesco(7.20)

a?

(o)

3

400 o °
? . f [ = ? 9
Zanz ualz-r-ZanZn_.amzapao»%

-0 _w

o'

+00 o
R ¢ S ] - 0 9 vl b"z C e
;%;t»n; =7 + Eéalalgflu,b ZAD + L 2R

li

o
Now put ¢1(Z) 7 oa 7% and
-0 n

-]
- g ol
lpl(Z) = é b nZ
with a'l = B+ iC
and “b":L = Bl + 1C1 where B, Bl and (Jl are constants to be

determined from the stresses at infinity, whilst C corresponds to a rigid
body displacement, taken as zero.

Then the complex potentials become

"JX “Y 2
#(2) = -éT—T-(i_-%')-)log Z+ (B +4C)Z + ¢1(Z) oossvcsevcoscoas(7e2L)

4’(2) = ICEJT]{' ;-l-lifY log Z + (Bl + icl)z + ¢1(Z) 0000000-906310(7-22)
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TP the principal stresses at infinity are o, and o‘p with
the direction of %y making an angle a with the x~axis, then

$'(Z) = B + iC

OQOQDOB990'0000056000606000"...".I‘O(?lzs)

$'(Z) = B ~iC
and from
@ =0, 1o, =2[p(2) 3(%)]
then o, * o‘y = 4B. At infinity,
O +0 =0_+ 0 =4B
X y o) P
OOO B = ;J::’(G- “*‘G) o 0o o® 000 'lﬂt\‘('? 24)
4- o P L] cooe o L J ] .

Also, from equation (7.21), at infinity ¢"(Z) = 0 and

equation (7.7) gives

4]

2P (z)

o =0 + 247
N x

= 2(B1 + 1C;)

#

Since (o = o)

v = % (o‘P - c‘o)cos 2 q

and %xy = m(O‘,p - a’o)sin 2 a

therefore (cry - o'x) = 2B, = (o‘_.p - G'O)COS 2 o
2yy = 20, = -(o‘p - ¢ )sin 2 a

giving By = % (c'p - o‘o)oos 2 a

000.0000eolloﬁu°°°°(7025)

=)
1)

1 .
5 (G‘o - O’P)sn.n 2 a

Application of Conformal Transformation

The region external to the boundary curve L of the actual

hole is now mapped into the S —repion inside a unid Atvala ¥ he dha




(VII.1) 140,
transformation Z = w(§), and when the point 3 lies on the bourdery of
the unit circle it is denoted by oo  The complex potentisls are now

expressible in terms of o in the form

#(z) = ¢ [w(a)] = ¢(o)s

so that the equation for the boundary condition (7.11) now becomes

¢(o) + w(d‘; + ¢lo) = £, + if, + constant on ¥ cieeeee..(7.268)

8

Ir §= pel s combinations of the curvilinear stress components can

be written in the form
@V = o, +0 =@
. c00000'}05.0'0000060.0(7.2‘7)
2ia
. - s =
) = 0y o‘p+2m; e g
where o 1is the angle which the normal to the curve p = constant

mekes with the X-axis.
Then in terms of the complex potentials, using equations (7.3),

® =2 [x@3) +52(§‘)] oasccocessasrenscaansanseanss(7.28)
N a—»sz [E&(?)ox"(S) + tp‘(!)] bosecscossscsesl(7.20)
0% (§)

7
Wher’ex(S) = wu ;% ooooooeooocoooooooooooooooooouoso-coo(?oﬁO)

Using the transformation form

1 2 n
Z=w(5) 50[?'3‘111]-; +1nzr + aoomnr ] noooocc-ocooooooo('?-SI)
Now, using equations (7.21) and (7.22) and substituting for Z,

gives the complex potentials as

¢(S) = %10g§ +'§"B.+ ¢@(S) o\‘ooooocoonoouooooooeo(7.52)
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Y@ = %hg; +-§’-¥(Bl + iCl) + tPO(S) R (2 1))

o0 oo
where 950(5) = Zlanyn and \PO(S) = g.'bnsn are two functions

of § which are analytic inside the unit circle =~ |3| =
The Theorem of HARNACK (see SOKOLNIKOFF!S !Theory of

Elasticity', page 160)(643.5 now applied., This in effect states that if
two expression in § are to be equal at all points on the boundary of
the unit circle, it is possible to miltiply both sides by mep -g-_"i-}-

and integrate round the boundary, this resulting in equality of the
two functions. Therefore, substituting the complex potentials (7.52)

and (7.55) into the boundary condition (7.26),

x—*’%—i)lo o‘+——'+¢ (o) + "g(l)[%o"'amz +3o'(3)1
l;rX;ig 1080""00'(31 - i0 ) + ‘P (o) = fl +if2 ceseeeen(7.34)

By reforming, this equation becomes

£ + if, [¢ (o) + =§-(—)7 3 o*(&)f x;;y log o

L B o_ :»%c(r;) [;%LK) o - 350?] # 8o(B) = 30,)  coserereans.(7.55)

The boundery condition for ¢o(§ ) and Y O(';) is now written as

o

8,(0) + 23 0(3) 4 GE) = £° 4 18° cernniiniaeeeenen.(7.56)

@' ()

Applying HARNACK'S thecrem, esch term is miltiplied by 3%51' %fz and

integrated round the boundsry ¥ of the unit circle, giving
o o
3 (c‘)do‘ ( | foo+if, do
wm ) c‘) 1 ™o
omi f ' (3) 8" (G q’ ani o=

3 X ¥
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Using CAUCHY'S integral formula, the first integral iu

Em'i ¢0(o-)g-fg = 950(5)
¥

and the third integral is

Bni.[g%%_ (Zbcnlo-; M/(E +'BG'+...)B::—

f(‘B + "'“')E—f'

W

ll

O
thus giving
)= p Ot
8, (3)+ 793&-]%’,“6 Po Bz, 5 = Lo fl ™ *fzig-f? vierennns(7,57)
¥

Taking the conjugate of equation (7.36)
- my . 0(3) _ o
¢°(0') + w' os ¢°' (G) + wo(c) - fl - if2 o--.-'o--.--.....(".ss)

and performing the same integral process leads to

- 0
Y. *'?9"11%1‘[*3'6« ¢°'(¢)éi%=jg%ﬁfﬁfl '”2?%—‘_’? ceverensend(7.50)

If the function w($) is rational, equations (7.57) and
(7.59) lead to the values of ¢°($) and q)o(:), and theréfore
(7.852) and (7.53) give the complex potentials, from whioh the
stresses and the dlsplacement may be found,
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Application to a Hole in a Tension Plate

Take the stress components crxo, . yo, 'cxy_o to correspond

to & plate without a hole under a given state of stress, and consider

these components to be related to complex potentials ¢.°(2) and
LI}O(Z). Also take the stress complnents c‘x*, o‘y*, T xy* to be
the additional emounts introduced by the presence of the hole, related
to complex potentials ¢*(Z) and t}!*(z). The final state of stress

*
Oys Oy and Txy is then g:i.ven’ by o, = o'xo + O,y ete,
Since the effect of the hole will tend to be zero as Z tends

to infinity, the functions ¢*(z) and ql*(z) will be of the type
Zanzn ard D bnzn and also  ¢,(2) = ¢7(2) + s (2) ete.
-0 -0

The notation used on transformation to the S =plane isf-

a o®)] = o p, (o] = g®

#° [w(®)] = #G) P [w®)] = ')

¢ [w(5)] = 4,4) v (0] = ¢85
Then  9(3) = ¢ (X) + 8(3) Y = @Ie) + 9

oo 0o
where ¢ (3) = > &3, Y. (3) = ;an;“ vervraeeensansss(7.40)

These are the complex potentials which must be found and which must
satisfy the necessary boundary corditions,

From (7.57) and (7.59) these conditions give

I S T (7.41)

¢(§)+21n °© oy th Tod o=-3
X ¥
s (8]
1 [5(5) ¢ (o) 1 [ =ify
wo(g) ”‘m‘[(g'dc- ¢o (on)o-'_y &mr o_-s""'do- .o-ono.-.-co(’7042)
X

Where :E‘lo + i:f'2° is the derived boundery condition for q‘;o(f ) and
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and Y (5) and s of the type

fif + if2° = fy +if, = [@(oj +-§§%%5 ¢t (a) + @(5)] beeennes (7.4%)

Plate Under Unifarm Stress

For uniform stress T, at an angle o to the x-axis, and
the boundary of the hole in the plate unlosded, thenX + iY = 0 and
£, + if, = 0.  Hence from equations (7.24) and (7.25)

1
B = z 0'0
B, = =% 3

1
C, = S0osin2a

This stress state can be obtained from complex potentials ¢°( 7) = '}f c,.%

‘Po (2) & = % o-oe"zi“z which, using equations (7.5) give the above

stress components.

Then ¢(}) = au() + ¢.(3)

Q
00600000005600050'0(704'4‘)

P(s) =g o PO u() + g (3)

o
The boundary condition (7.43) now lsads to

o
f1° + :|.f2° = -'é-g- [w(o‘) + e2ic w(o‘)]
.'0..0.6.....00&000(’7045)

o
f1° - if2° = - -22 [63(5') - oa &}(0')]

Usirg equations (7.41) end (7.42) the complex potentials ¢o(5) and

P, () can now be determined if the form of the transformation is given
The stress combinations at any point in the 2 region mey be

oaloulated using equations (7.5), for certesian co-ordinates, thus
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o‘+o‘-2[£%%+i¥g-] (7.48)
x 3r—-- w, g w. ef OO E B OOV EIR L NEOE e [ ]

$ = G‘y-ﬁ'x-i-ZlT

thus
®

xy

_ ozl (5)¢"(5) - w"(5)g'(3) Wr(§
= z[z{“’ o ] ‘g }-;- = S;J coeeesrvass(7.47)

or for curvilinear co-ordimates, equations (7.28) and (7.29) mey

be employed.,
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APPENDIX VIT, 2 DIGITAL CQVPUTER FROGRAMME

FOR THECRETICAL STRESS DISTRTBUTION FOR

CRUCIIORM CRACK CASE.
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VII.2 Digital Computer Programme. for Theoretical Stress Distribution

for Crueciform Crack Case.

For the computation of values of (o‘e + crp) and (cre—crp+ Zirpe)
it was eventually decided to compute values along the axis through the
point of maximum stress at 90° to the applied tension. The programme
however wes written and prepared for calculations for the axis at
right angles to this. Since many of the cards were common, it was
found possible to utilise these cards for both programmes, ani for
this reason the card nunbering code is not consecutive in the (t::re + c'p)
programme, since certain cards had to be omitted from the
(c‘e - O'P + Zifcpa) programme to give the programme for (cre + o'p).

(Note: It is possible to utilise the computer to cealculate values
over the whole field of stress, and a programme was commenced with

this in view. It was later sbandoned however in favour of the more

direct and shorter programmes given, )

| - - L ]
Programe foar ' = Oy = T * 2it 08

For convenience in programming, expressions (2.79) and (2.80)
were used to calculate the values of Ty = _ij + 2it 0@’ the sum of these
equations giving the stress combimation quoted, and on the axis of
symmetry, < 08 = 0. Therefore this progremme gives the difference of

the principel stresses along the axis at 90° to the applied tensions.

Programme for &' = op + 0p

For this programme, equation (2.50) was used. Cards common
to the previous programme were employed where possible, and additional

cards as required were added.
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Note: It would have been possible to have corbined both progremmes

s0 that the computer gave the result of the separate stresses in
addition to the stress combimations, but it was considered easier to
use a hand calculating machine to perform this functions

The results obtained from the computer, as remoduced from
the punched card results on the tebulator, are shown immediately

after each programme.
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®r 1, DEUCE DIGITAL COMPUTER FROGRAMME WRE IT . ALPHA - CODE

FOR CRUCIFORM TYPE ‘CRACK' IN AN INFINITE FLATE.,

Calculation of o, -~ o+ ‘2.’5.'1-“e distribution along sxee of symmetry for m = 1/5,5

8 v Rl

r{fR| A | B FUNCTION C D [PS| NoTes
1 DATA pul 1,0 in X1
T + x1 1.0 in T1
1 DATA pal 2.0 in X1
i) |+ X1 2.0 in T2
1 DATA x1 5.0 in X1
s + pal . 3.0 in T3
1 DATA xa m in X1
T4 + X1 m in T4
Rl 1 DATA el 0 [pinxi
T5 + X1 p in T5
X1 + T5 p in X1
0 1 RESULTS bal 1 p value printed.
X1 + 0 0 X1 made zero. “
X1 | T + T4 1+m in X1
pal T1 ~ X1 1/1+m in X1
X2 T1 —_ 5 1/p in X2
X3 T5 X 75 p¢ in X5
X4 X5 % 75 p% in X4
X4 X4 X T4 mp® in X4
X2 X2 + X4 1/p + mp® in X2
x1 x1 X X2 1/14m(1/p + mpS)inXl
0 1 RESULTS X1 1 Value of Zew($ )
X1 X4 x 5 0 |mptinx
X2 X1 + Tl mp4"+1 in X2
X1 xa X T3 ‘ mp4d in X1
X4 x1 - 1 . smpd-1 in X4
X2 X2 - X4 mpd41/3mpd-1 in X2
X2 - X2 | -( ™ ") in X2
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SHEET 2. MARK II ALPHA - CODE
CRUGCTTORM' CRACK! " : | -
2 |r |R A B FUNCTION C D IPS NOTES
18 b x1 + il smp? in X5
9 % | x X T4 sm2p? in X6
0 X6 | x6 - x1 smep%-smp?® in X6
1 X7 X3 X T2 2p2 in X7
2 X6 | xo - X7 s pt-smpt-2p2 in X6
3 X6 X6 + T4 " " +m in X6
L X6 X6 - Tl nom w1 in X6
3 X5 X5 X X6 28 x 34 in X5
; X6 T1 - T4 (1-m) in X6
' X7 | X4 X X4 (5mp*~1)2in X7
X7 X6 X X7 (1~m) (5mp%-1)2in X7
X5 X5 . X7 85 = 58 in X5
X5 X5 + ™ 1l 439 in X5
X X2 X X5 Equetion@.79) in X2
1 1 RESULTS X2 1 Print result of 41
X5 - X3 0 |-p% in X5
X8 X5 . X4 4% wt= 95 in X8
X9 T1 — X3 1/p2 in X9
X10 | T4 % T4 m 4n XI0
X10 | T3 x X10 5 in X10
X10 | XI0 + T B 4 1 in X10
X7 X10 | — ) 4 48 -— 38 in X7
X0 | X5 M T8 —5p2Lin X10
X10 { X10 x X4 50 x 25 in X10
x11 | x1 x T omp* in X11
x11 | x1 N i Smpal in X131
X1l | xé x X11 56 x 55 in X1
x12 | T2 x T2 4,0 in X12




[eTal I A ggs)

CRUCIFURM 'CRACK!

MARK IT ALPHA - CODE_‘?' .

NOTES -

riR | A | B FUNCTION D IPS
x12 | @ x X12 12mp?* in X12
xae | xe x X5 1omp® in x12
X10 X10 + X1l 51 + 54 in X10
X10 X1 xXi2 57 + 58 in X10
X10 X7 X X10 49 x 59 in X10
X9 X9 + X10 45 + 60 in X9
X8 X8 X X9 Equation(z.gq' in X8
1 1 RESULTS X8 1 Print result of 62
X9 X2 + X8 oy - Op + Bitpg 3
2 1 RESULTS X9 1 Print result of 64
JUMP Rl Pick up new p value
FINISH
o For talculation of|the stress combination ogl- ap *+ zifrpp elong’ the 6=0%xi.
the [’ollowiﬁng changes mist be made in|the prégrammel:
Replages 32,and| cards |5la,b57a,and6la areladded.
X6 X6 + X7
Xio - x10
X9 - X9




with 6 = 90°.

pu —

p

u

CGOVPUIER RESULTS PGR ou-<r. +

p
= w(S).

100000000+
999999999 +

—

[\l

42 — = Equation(2.79),

1027061

00

(q\l

112441922+ = Equation(2.80).

001
0

<T* 2l-r

p

= O'._

973578024+

01

po

(0]

899999999 +

104897922 +

205942136 -
223252274+

e

S O

223101380 +

001

850000000 +
108503228 +

+

IT

—

116163171 -

1 001

IT

—

130687342+

1

0

145241708+

2001

800000000 +
1 130000 00 +

714592037 -

001
001

823381623 +

103789587 +

0 01

750000000 +
113 512 872+

467567123 -

001
001

I
1

553201846 +

906347223+

001

7000 00000 +

125205575+

320009802 -

001
00

401578303 +

815685019 +

001



Jj-"0¢€.

649999999+

133295966 +

+ +
v

N v
R N
<t <
o v
e ™~
on >~
o on
[@\IN=—]
AN on
v
=
==
e

774405427+

00/

600000000+
1430785091+

1

00

I 761915634

00

500000000+

169512195

392221445 -

01

167577588+

001

7b3554433+

1

00

400000000
210390244

4 864 19224-

1
1

0
0

132131179+

334392569

001

300000000 +
279571315+

2471661509 -

00t
00

114189032+

1

8904724160 +

001



2500006000 +

335213414+

I 6582967 8-
1089 11624+

923286559+

001

2006100000 +

1 §8292b38

4

103418723

0 0TI

105235797+

1

i o0

948939243+

175000000
473600501

783 785831-

001
00 j

e

103864 128+

e

960262692+

001

+ +

=~

S n
S <

= o

S n
S
ToloN
a0

— O

Y

-
(e —
=)

979188479+

00

100000000 +
8374 14634+

Ha T
[ ML
o\~
o0 O
oo \&@
Y <=
o —
v S
21

— p—
=)
He M @)

98G549 14 ]+

1

i o0
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" FOR CRUCIFORM TYPE 'CRACK' IN AN INFINITE FLATE.

h

Calculstion of og + 0, distribution along axes of symmetry for m = 1/5.5

2 |r [R | A B FUNCTION C D P8 NOTES
X | exaetly | as for] previoys programme. .
bo ' "
22 "
14 o
5] n
18 "
36 "
1 n
9 X7 , - X7 -2p2 in X7
0 x8 | x6 x X5 (1-m) (3mp%+1)in X8
il X8 - X8 - 70 4in X8
X7 -X'7 + X8 69 + 71 in X7
X9 X6 % X4 (1-m)(Bmp%-1) inxo
X7 X7 —— X9 72 wim 75 in X7
1 1 '~ RESULTS X7 1 Print result of 74
i, e.Equation(250).
JUMP Rl 0
FIVTSH
€  [For |celculgtion of the stress combingtion |og+0, |along the 0=0° axis,
card| 69 mist be removed,
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+ o
P

o(3).

—
-

1 00000000+
9999599999+
973578028+ =‘0‘e

001

COMPUTER RESULTS TOR % + cr‘p with 6 = 90°,

-+
AN
o o
oY)
o~
n D
o ©
o T
Y]
o

549129753+

0ot

+ +
oD
SN
<o N
o N
o 0O
< W0
O O
n o
0

445062637+
800000000 +

13000000+
371295361 +
750000000 +
118512872+
316347181+
273911202

49999999 +

33295966 +
240241158+

1

6
1

001
0ol
00t
00t
001

* +
O -
< R
S
< D
O~
oo
o N
o<
O -

12977693 +

2

001




148i.

+* T
oW
()

o N
D -
QW
>0
<0
Wy ~—

P 7194925 4+

00l

400000000+
210390244+

1 43339675+

00l

300000000 +
279571815 +

23391409+

1

00l

250000000 +
335213414+

16003561+

001

200000000 +
4 188292638+

10123554+

|

001

1

75000000 +
478600500+

!

107714387+

001

QVUODOO +

0457+

0
9

1 25
6 69

103907011 +

001

1 00000000 +
B37414634+*
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VII.3 Calculations for Theoretical Stress Concenmtration Factors

In order to determine suitsble coefficients for the two term
transformations used in the theoretical analysis, for a theoretical
form of opening with the same £/, ratio as was used in the experimental
specimens, the analogue computer was utilised to generate a family of
openings for each basic shape. Enlarged photographs of these were
used to determine (by measurement) their respective P/ ratios, then
these were plotted against their corresponding l/m values. By
interpolation on the resulting graph, it was possible to select suitable
values of l/m to give shapes which correspo;lded with the actual forms
of openings used in the experimental work,

The stress concentration factors foar the shapes other than
the cruciform, were calculated using the method of Chapter II. These

are indicated in the following section.

(i) Cruciform 'Crack' with one arm of crack along axis of tension

As given by the computer programme.

(ii) Square Holes with Diagonal along Axis of Tension

The gereral solution was re-written in a slightly different form,
in order to more easily determine the meximum stress concentration
factor.

Hence

x(3)

1 1 32 1,2
—0'0[-232 Y o(3em) 2: ]5'
1-m$?

% [.. Zm(1=m) § ‘. 24 Z (lwm)]
== 4(1em) (1-2m$%)

i

uécooo..oooneoooooo(?oég)

o, [- Zm( Lem) ?4 + 2 §2 - (1—m)]

4(1-m) (1-5mE ¢)

o'a i(g) = - aoutoo-othcc'a(?o49)




(VII, 3) 150,

then @' =0, + o, = 2 [('7.47) + ('7948)]

Putting ¢ = pelne = plcos 1 ® + 1 sinn 6), with p = 1, and
§ = (cosn®~1isinn 8)
in the above expressions, and collecting terms gives the stress

concentration factor as

A + iB A-iB]

Stress Concentration Factor = 2 | G D + T 1D

02+D2

CAC 4 BD}

where A = (1-m) = 2 cos 20 + 3m{1l-m) cos 4 ©
B = 5m(l-m) sin4 6 - 2 sin 2 ©
¢ = 4(1l-m) - 12m(1l=m) cos 4 8

D = = 12m(l-m) sin 4 ®

Note: When m is numerically positive, one diagonal of the square

lies along the axis of tension,

When m iz numerically negative, the sides of the square are
parallel to the axis of tension.

For this case, the point of maximum stress lies at the end of
the disgonsl which is at 90° to the axis of tension.

Therefore @ = 90°, cos 29 = =1, cos 4 ® = +1 and

Stress Concentration Factor = 4

Qb

For the selected value of m +to correspond with the experimental
specimen, m = < 0,182, giving 2m = ,546
1 - M = 0818

12m 2.134
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lem) + 2 + 5m(le
jYiﬁm)+s T;méﬂ;ﬁng

Theoretical Stress Concentration Factor =

. 372
= 8,8
Experimental Stress Concentration Factor = 8.2
Therefore % Difference = - 8.8 -8.2 100 = -=6,8%.

8.8

(iii) Square Hole with Sides Parallel to Axis of Tension

Equation (7.50) agein applies, with the value of mn
numerically negative with m = = 0,216 to correspond with experimental
specimen,

Then m = =216

1

1.216

lemn
12m = =2,592
and after interpolation the value of © for the maximum stress
corcentration factor was found to be about 48°, giving

A +2,197

H

i

B
C = 41,779
D = "Oo 656

leading to

" (2.197x1. 779+1, 825x. 656 )

Theoretical Stress Concentration Factor = 5 5
(1.779)° + (.856)

5.67
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Experimental Stress Concentration Factor = 5.53

Therefore % Difference = 5'62 5,75" 05 x 100 = =2.47%

(iv) Cruciform ‘crack® with arms of crack at 45° to axis of tension

For this case, using equation (7.50) and m = 0,222 to
correspond. with the experimental specimen, an angle 0 = 48° was
again found to give the maximum stress concentration factor, so

that m = =0,222

51!1 | = _‘Oo 666

l-m = 1,222
12 = 2,664
and )
A = 42,217
B = «1,820
C = +1,70%
D = =0,6877
giving

Theoretical Stress Concentration Faector 6.0

Experimental Stress Concentration Factor = 5,78

6 = 5078

3 x'100 = =5,67%

Therefore % Differerce =

(v) 'Triangular' hole with one Median along the Axis of tension

From the derivation given in Section VII.l, for triangular

holesg, the following formula apply:s=

8 2
x3) = Rlfm$_s23 -1) L eeeeeennnn (7.50)
4(2m$"° = 1)
. To(~2m £° + 2 §2 - 1)
x(!) = —— i—‘ oﬂoooooonol.tbn-oa-olctan-o(r?osz)

4(om §° - 1)
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and as before, using § = (cos n® + i sinn 8)

I = (cosnd~isinne)
on the hole bourdary, and substituting in the equation for Og * crp

with some reduction leads to

AC + BD

2 .2

Stress Concentration Factor = [
C™+D

] QD.ODI.DQ'D.O.B.OI.(‘?°52)

whei-e.A = =2mcog S0 +2cos208 -1

B sin28-2msind @

C 2mecos 530 = 1

i

D = 2msin 35 @
For a value of m = 40,317 to give correspondence with the
experimental specimen
A = =2,754

_Oo '7576

]

B

C = =0,570
D = =0.0695

and Theoretical Stress Concentration Factor = 7.58
Since Experimental Stress Concentration Factor = 7,75

Therefore % Differemce = + 7"7? ;870 58 x oo

+2 ° 2‘4’00

]

(vi) Triengular Ster 'Crack' with one arm along the axis of tension

The seme formulse as for (v) apply for this case, using
m = 0.525 to carrespond with the experimental specimen, and this gives

A ""20 764

fl

B -0, 761

L]
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C = «=0,354
D - "'Oo 068
and the o

Theoretical Stress Concentration Factor = 7,98

Since Experimental Stress Concentration Factor = 8,15

X 00
Therefore % Difference = 8"12 ;57°95 = 42.52%
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CHAPTER VIT.4 INVESTIGATION OF ROTHMAN'S

SUGGESTED COMPLEX POTENTIALS FOR CRUCTIFORM CRACK

AND DIGITAL. COMPUTER FROGRAMME FCR SAME

(Note: This investigation was carried out prior to adopting the
MUSEHELISHVILI method. In reporting this work it has
been cong dered essential to adhere to STEVENSON'S forms
of equations for @ and § , as the potentials suggested
by ROTHMAN are formed to suit these equations. As far as

possible, the same symbols have been used as were used in

the Muskhelishvili analysis).
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VII.4 Tmwvestigation of ROTHMAN'S Suggested Complex Potentiels for

the Cruciform Crack Case and Digital Computer Programme for same.

The potentials given by ROTIﬂEAN( 7) are of the form

¢($)=(o‘p+o‘o) N2 + A3 *2- conesrsaresanan cosanees{(7.54)
$+4ig
ql(3)=(o-P-o-o) §2/2 + Zc:v/sr I ¢ 2% 1)
where S and o‘p are the uniform tension stress parallel to the x and
y axes, and the conformal transformetion
2 1/ o
Z=w@) = ($° + /;2)2}42 ......... et ieaeneaas ..(7.586)

maps the Z-region exterior to the cruciform crack on to the
$ —region exterior to the unit circles

To Show that the Potentials Satisfy the Boundery Conditions

The external boundary conditions are reached as Z — &9,

Using STEVENSON'S form of equation,

1| go(s (¥
@"c‘x+o‘yg2 [%iﬁ %] °°°'°'lo...ooo-oooooeooooo(’?‘s?)

s =% [(cél: o‘p)/v"z . (o‘o ; o‘p)/wfz
7 A2 A2

Therefore (o <t o'y) = (cro + o‘P), and for unisxial tension in the x
direction, O, = Oge
The potentiels are thus satisfactory for this condition.

Again, using STEVENSON'S form of equation
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o(3) (3795 (®) - 3 ()
()] °

L eme@ - vl
[50(?)] 3 sesssocsoscolToB)

1
g = o'xmc‘yes-zim xy =<3

and ag Z —» ©O,
(cro = UE) (AAN?2)

tA2)®

1
O’xwo"y%;?iﬂzzxymag 0 +

Therefore o < O"y . zi‘rxy = (c‘o = o°p)

Since at infinity, with uniform tension o, parallel to

the direction of the x-axis, Txy is zero

then o =0 = o = 0
X y

© P

or o, = O, and this agein shows the potentials to be satisfactory

for the boundery conditicen at infinity,
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Determination of the Constents in the Complex Potentisls from the

Internal Boundary Conditions.
The normzl and shear stresses round the boundary of the

cruciform crack are zero, hence the equation for the boundary condition
must be satisfied.
Therefore

$(3) + w“)e%i%% & %%%%: = a constant K (or zero) round
SE = l oo('?o 59)

=

Round §§f =1, § =

torfi

The component parts of equation (7.59) are now formed.

5(5) = @) = 3—;5(s2+%2)%

i

1
o2y . L. (3 =35
"0 E L
?"2“2’
1 _
Then 33 = (5~ +7J2) = (§+']-=’5)(1+‘;=4+=1'~3+}-13+“..)
@' (¥) (3 - Q—;ﬁ) 5 s § ¥
$
1 va(s? o 3]"’2)%
Also 2y = (fm;;j;g)

1 1 1 , 1 1 i
= V(1 + 5E- B8tz ceo)(1 +54 +§8 + 12 0oo)

= v2(1 »&-fé%g + % + coa)
e =L (%o * 9 A + B}
¢(3) qu(“f-") = S § + 1 - 5)
= (9, + ) i1 1 i .1
= ‘7?%-5-‘2' +(A+B3)(1 +?w}‘2-‘s‘5 +}'4 ...)

b o B/32L+4F) - i(A + B )
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B
¢+ 0 T e
‘F{S) = -975-1) + = ¥2

- 52(Las 4+ 1)2

iB A . AiB
g - B -3

O'O-{-O’

il 2iB B 21 3 41 5
:-—7@-—24-(—?-2 +—§~5+~§°4)(1 o Al A coo)

202 40 4 )

¢ 5C
q,v(k) z(c‘pmo‘o)s +(=e£‘2¢-§-5..-}-§..-?5 ce

Substitution of these component parts into equation (7.59) followed

by the equating of like powsrs of § gives the following constants:-

1
A = 320, B = 75(0:.-301,)‘
Kg%(ﬁ’ao‘p) Cl=%(0'0=90'p)
¢, = :%»(19cb - 50.) 0, = %%»(IVcb - 55,)
C, = %(o‘ =-'7’0"P)

To satisfy the boundary condition (7.859), the constant K
is included in the first part of the complex potentisl ¢(}), thus

giving the boundary equation as
$(3) + (3 (F) + P'(8) = 0 round the internal boundery.

Inserting the values for the constants A, B, C, ete, into
the equations for the potentials (7.54) and (7.55), and putting
crp e 0, corresponding to simple tension o, parallel to the x-axis,

the complex potentials are found to bes=

3(3) = Zo(¥=1) + %o . veevo (7.60)
V2 v2(3 +:152)
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o 3 g a
YE) = = S 42 (F-Fa-f5 5 ) ceeeeeeee(7.60)

Application of Complex Potentials to Determine Iocii of

Constant Principal Stress Differsnce

The complex potentials were used; together with the conformal
transformation equation, in equation (7.58) for the determination of
lines of constant principel stress difference (0'1 - 2)/0‘0 in the
area in the Z-region around the cruciform crack, where o is greater
than 0‘2 and the convention is used that tension is positive, compression
is negative.

Recalling that

2 2
oy =0y =27 . = ‘F(o'x: -,?o‘y) + (2 mxy)
then °1°~ % _ 2 T e s v - o Y
O’O G‘O ( xo E)Z + ( Gﬂ)2
) o
% = . 1 1
and —*——L = = | - = Real part of the right hand side of (7.58)
© o
2
an:fﬂ = c]-aua om l Imgimry 1] " L] " " 0 00
T, o, 2

Multiplying the right hand side of equation (7.58) by 2~ gives
Q

o(3) [3(5).3°G) - a3 G)
| [&:(8)]°

@' (5). ¢=(3) = w"(¥), P (3)
[&@)] °

o
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The component parts of this expand as followss-

w(3)

' (%)

()

Since

1

i

I

1 (32+~]")% (7.62)
ﬁ r2 (] 0 8 se s B BO08e o

- 1
LG -5
Vg T Coesso0sscorcceostanercense cieceeee(7.63)
(39 + =5)2
)2
3 = 1 2
1 (1 +?4 (;"'?5)
V| =11 " 53 7, | oererreeeenoeneino(7.64)
(3 '*"?’2}‘2 (3 +}-"2) 2
1 (1 - 21 §)
1 - . o oouonooaoc-cooloooaov-e-c'o(7965)
V‘ﬁ[ (5 - 1 §9)2
1 23 2(1 - 23§)?
{2[ - -22'*' - -25 000000000G'ﬂOOCDGOO(V@Gs)
(5 - 1§%) (T =137
i o) 31 2
- § +[2§ + ?2"?5 - fﬁz -;:g o..] sosnseasseness(7.67)

-1 9 641 10
1*[‘? ?5 - 4 5 + o oo-] oeevooo-o-oooa(7068)

$ = P eie ; it is seen 'Bha:t by insertion of suitable

values of P and ® into these expressions, it is possible to obtain

the distribution of the differemce of the principal stresses throughout

the stress field.
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The Digital Compufer Programme
The programme was written for the calcenlation of values of

(Gi - 0-2)/03 in the Z-plane, corresponding to points in the $ - plane,

using four terms in the series Z% codtained in the w (3) potential,

In the Deuce Computer, complex operations (that is,
"Q-operations!) are carried out using pairs of YX'-stores, the real
part of the complex number being stored in the odd X-store, and the
imaginary part being carried in the even X-store. For any complex
operation, only the relevant odd X-stores need be specified,

Thus, multiplying (x + iy) by (u + iv) and getting the result as

(m + in) is written as

X5 = X'l Q=mult, XB

This is a shorthand method of writing,

x in Xy , ¥ in X, multiplied by
uin X4 5 v in X& gives the result

min X5 y n in Xg

Constants may be stored in the 5T“wstoress, of which there are eight.,
If a complex number is to be multiplied by a constant in.a T-gtore,

then the real and imaginary parts must be malbiplied separately. .

The programme was arranged so that points in the & «plane were

located by various radil and angular intervals. The computer selected

a radins value then proceeded through the saleulation for angles between

0° and 90°, using 10° increments, On completion of the calculations
for one radius, a new radiuns value was selected and the calculations

repeated,
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| The distributions of (oy - 0‘2) /o, along the X and Y axes
of the cruciform crack were drawn, using results obtained with one snd
with four terms in the series Zcr/or in the IP potential.
(Figs 140a,b). The locus of (o = 2)/0'0 = 2,0 was drawn
(Pigs 1408,d) using the same terms in the series.

Comparison of these results with the corresponding experimental

results indicated disagreement to such an extent that further investigation

of the potentials quoted by ROTHMAN was abandoned in favour of the

MUSKHELISHVILI technique .

LOCUS OF CONSTANT = 2.0 w THE Z pPLANE

FROM THE RESULT _ ubING ¢ TERM N TnE SFRILS S0 g%

CONTAINED th THE W(3) ~OT:ruiaL

Fig.140c.
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VII.S INVESTIGATION OF RELTABILITY AND

SUITABILITY OF THE CONDUCTING PAPER ANALOGY

FOR _CASES OF TENSION AND TORSION




(VII.5) 170,

VII.S Investigation of Reliability and Suitability of the Comducting

Paper Analogy for Cases of Tension and Torsion.

The results of' the imvestigation for the cases of tension
plates with internal discontimuities have been given in Chapter III.2.
The results of the investigation of the application to cases of torsion,
while not directly related to the main work of the thesis, are included
since the technique has been used for the determination of the stress
concentration effect of a British Staniard keyway in a shaft of circuler
cross=gection, subjected to torsion,

As stated in Chapter III.2;, the distribution of steady state
potential V in a thin conducting sheet of constant thickness and uniform

resistivity is governed by the LAFPLACE ermumation

&y &
2 Y T2

% ay

= 0 ooooooooooooooovaoo(’?oeg)

In the case of plane cross=sectionsg under pure torsion, the distribution

of the modified stress fumction LIJ is governed by a similar equation,

2
ag + ag b O 0000000"’°°"°‘°°°°°('7°(70)
ax ay

8

¢ -&%’l (%2 + T2) soeeoceononeess(7.71)

ghear gtress function

i

angle of twist at section

Modulus of rigidity

il

i@

W O D B -
W

Co=ordinates of points in the plane

of the section.
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From (7.71),

= _Eir% (x2 + yz) and ¢ may be a constent (or zero) on
the boundary.

Putting ¢ = O gives { = %’i = + 57

1l .2 2
Or "G% = E’(x +y) 009000000600&000‘0‘0.'.00‘0600000(70t72)

Writing Ey and ¥ for x and y, to represent co-ordinates of points
on the bourdary of the conducting paper specimen, the boundary voltags

values used in the analogy are proportional to the values of

2

iz‘:

1 2
Ge Z(Xb "Q"y-b) oonlal-ocoooaooonooaootn:oa;oaoo-0(‘70?5)

4

Contours of constant e may be obtained by probing over the area
within the bourdary. The shear stress contours, that is contours of

constant

g X L2, 2
G@ == G‘B 2 (IXT +y) 0000000..0000000000000(7.74>

can then be cbtained by calculation of the individual values over the

region and sketching in the contours of common value,

Religbility Check

The technique was spplied to the determination of the maxinmum
shear stress values arising on the boundaries of specimens of rectangular
cross-section subjected to torsion, for comparison with their known
theoretical values. FPour specimens were used, with breadth t¢ depth
ratios ranging from 1l 2 1 to 8 ¢ 1, the bourdary voltages being determined

b _ by caleulation using equation (7.73) and a suitable voltage ascale,

_—L
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Using the method described, the distributions of "(‘;%’ along
the axes of symmetry were determined from all four rectangular sections,
and in the cases of the square section and the 'thin' rectangular section,
the distributions of ¢/Ge were determined over the whole area. Also,
the distribution of the shear stress ¢ along these axes and along one
gide of the square were then found, Selected results are shown in
Pigs. 141 to 148,

The maximum shear stress values were determined from the
meximum slope at the boundary of the %6 distribution slong the
shortest axis of symmetry. This slope was found as accurately as possible,
using the method of least squares to obtein an equation for the BQGE
curve, the equation then being differentiated for the maximum shear
stress value.

These results are shown (Fig.149) plotted on the theoretical
curve for the maximum shear stress occurring on the boundary of a
rectangular cross-section unjer torsion.

It is seen that there is excellent agreement between the
theoretical and the conducting paper results.

The distribution of the shear stress 1 along the boundary

of the square shaft was found by detemining the é/GB distributions
along lines parallel to the axis of symmetry through the centre of the
square, a8 shown in Fig.1l60. The shear stress distribution is shown
in Fig.151,
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Fig.143,
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Application to Stress Concentration Determination

The analogue was applied to the case of a circular shafi
containing a British Stamdard keyway (Fig.152). In this problem the
difficulty of applying voltage connections along the short highly
stressed region at the fillet, was overcome by transforming the shaft
boundary to a more suitable form.

By the use of the transformation

x+dy = acoth353L . ....iiiiiieo...(7.75)

&t

the bourdary shown in Fig.153 was obtained, so that the fillet region
became enlarged. Lines of constant ‘*P/GB were obtained from a
conducting paper specimen of the transformed shape. These contours
were then re-transformed on to the original cross-section, on which the
lines of constant ¢/Ge were then construwted as shown in Fig,152.

The stress concentration factor for the keyway was determined
by obtaining the slope, at the bourdary, of the ¢/, GO curve along a
radial line dxmm through the fillet radius centre, at the position on
the boundary where the ?/60 lines were most closely spaced. This is
shown in Fig.154., This value; related to the maximum shear stress
value in a shaft of the same diameter but with no keyway, and subjected
to the same torque, gives a stress concentration factor for the keyway

considered, of 2.95.
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