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SUMMARY 

Plasmodium chabaudi has been shown to undergo antigenic variation during the course 

of infection in mice. The importance of this model is the similarity and applicability of 

its features to infection of humans with P. Jalciparum. This thesis presents work 

performed using P. chabaudi to study various aspects of antigenic variation in asexual 

erythrocytic malaria parasites. 

The course of infection of P. chabaudi in NIH mice shows an initial acute 

parasitaemia which clears to subpatency. This is usually followed, after a period of 

days, by a second, and occasionally a third, recrudescent parasitaemia of lesser 

magnitude and duration. A cloned parent parasite population and cloned parasite 

populations derived from a recrudescence of the parent were tested in an indirect 

fluorescent antibody test on live, schizont-infected RBC (live IFAT) using a panel of 

hyperimmune sera raised against these populations and against one of the recrudescent 

clones after mosquito transmission. This test can detect antigens on the surface of 

parasitised RBC. The results of this analysis indicated that all the recrudescent clones 

were antigenic ally different from the parent and some were different from each other. 

In total, including the parent, six variant antigen types (VATs) were identified. Some 

of these also appeared to vary in immunogenicity. 

The effects of mosquito transmission on expression of variant antibodies was also 

examined using the panel of hyperimmune sera in the live IF AT. Mosquito 

transmission of two antigenic ally distinct recrudescent clone populations resulted in a 

change in antigenicity of both types to an apparently similar VAT, which had the same 

apparent identity as that of the original, post mosquito transmission but pre-cloning, 

parent population. 

Comparison of the courses of infection of the parent and four of the recrudescent 

clone populations showed some differences in terms of the levels of peak primary 

parasitaemia, the preference for invasion of reticulocytes early in infection, and the 

timing of recrudescences. Analysis by live IFAT of recrudescences from these 

infections indicated further antigenic variation of these variant populations. 

The rates of switching on of three minor V A Ts was measured during the 

exponential growth phase of the ascending primary parasitaemia, when immune

mediated killing is essentially absent. This showed that switching rates for individual 

VATs in vivo could be high, with rates varying depending on the V AT being switched 

on. By summation of rates, an overall minimum estimate of antigenic variation of 1.6% 

per asexual parasite generation was obtained. 

The parent parasite population and four variant recrudescent clone populations 

were all found to sequester in vivo. Cytoadherence in vitro was also examined, by 

binding to 3T3 and B 10D2 mouse fibroblast-like cell lines. Although overall binding 
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levels were low, specific binding of parasitised RBC was observed for all of the parasite 

populations tested, with the specificity of binding greater for some populations than for 

others. 

Molecular karyotyping by pulsed field gel electrophoresis showed all the 

antigenic ally variant populations to have the same number of chromosomes and to have 

individual chromosomes of an identical size. This therefore demonstrated that they all 

of the VATs examined were originally derived from the same parasite isolate, and 

confirmed that the observed phenomenon referred to as antigenic variation is true 

phenotypic variation. 

Production of monoclonal antibodies against parasitised RBC surface variant 

antigens was problematic, but did yield one monoclonal antibody of IgGl isotype. This 

monoclonal antibody reacted specifically by live !FAT with the VAT against which it 

was raised. It did not, however, detect any variant-specific bands by Western blotting. 

The value of P. chabaudi in mice as a model system in which to study antigenic 

variation is confirmed herein by its application to a variety of studies involving the use 

of antigenic ally variant cloned parasite populations. The complementary aspects of 

antigenic variation examined include the dynamics of infection, sequestration in vivo, 

cytoadherence in vitro, modulation of antigenic phenotype by mosquito transmission, 

and the rate of switching of antigenic phenotype. The work presented in this thesis thus 

provides novel information on, and thereby extends our knowledge of, antigenic 

variation in malaria parasites. 
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1.1 Historical perspective and nature of the disease 

The causative agent of malaria was discovered little more than a century ago, but 

references to the disease can be found in Egyptian hieroglyphics and in the Hindi vedic 

literature. The disease has long been associated with marshes, the breeding ground for 

the mosquito vector, and certain names for the disease reflect this, such as marsh fever 

or paludism (from the French for marsh). The term malaria is taken from the Italian 

'mal aria' meaning 'bad air', and reflects a traditional view that the noxious gases 

emanating from marshlands contained the agents responsible for the disease. 

Malaria transmission once occurred throughout most of the inhabited world, 

affecting most civilisations, causing incalculable morbidity and mortality. The disease 

has repeatedly affected the course of world history, especially during times of war 

(documented for Europe by Bruce-Chwatt & de Zulueta 1980). In World War II, the 

U.S. Army suffered more losses from malaria on the Pacific front than from battle 

injuries. This was to be repeated in Vietnam. 

Large-scale spraying with the insecticides dichloro diphenyl trichloroethane 

(DDT) and hexachlorocyclohexane during the 1950s contributed to an estimated 400 

million people no longer exposed to malaria, and eradication of the disease from most 

temperate regions (Nogeur et al. 1978). Despite this early success, malaria is still 

widespread throughout South and Central America, Africa and much of Asia. The rapid 

spread of resistance amongst both mosquito vectors and parasites to control measures 

has led to a resurgence of malaria, with the incidence of the disease increasing in many 

countries. Today, malaria is still the most important infectious disease in the world, 

endemic in 102 countries, with over half the population of the world at risk (Tropical 

Diseases Report 1995). Estimates suggest that over 400 million cases of malaria occur 

each year, with?: 2.5 million people dying from the disease, the majority being children 

< 5 years of age (Sturchler 1989). 

In 1847, the first step towards identifying the causative agent of malaria was made 

by Heinrich Meckel, who described black pigment (now known to be haemozoin, a 

waste product of malarial metabolism) in the blood, spleen and liver of people who had 

died of malaria (Harrison 1978). In 1880, Laveran observed malaria parasites in the 

blood of infected individuals, describing crescent-shaped bodies now known to be 

gametocytes of P. jalciparum. This was subsequently confirmed by Marchiafava & 

Celli (1883). Mosquito transmission (MT) of bird malaria was first demonstrated by 

Ross (Manson 1898), and confirmed for human malaria by Grassi in the same year 

(reviewed by Harrison 1978). 

Malaria parasites are protozoa of the genus Plasmodium, which are classified in 

the phylum Apicomplexa. More than a hundred species of Plasmodium have been 

described, infecting reptiles, birds and mammals. Four species are commonly infective 

to humans: P. jalciparum, P. viv([x, P. malariae and P. ovale. Of these, P. jalciparum 
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is the major cause of mortality. 

The clinical disease associated with malaria infection covers a broad range of 

symptoms and pathology. Paroxysmal fever is the classical symptom, but other 

symptoms such as headaches, drowsiness, anaemia, hypoglycaemia, splenomegaly and 

hepatomegaly may occur (Ellis 1989; Molyneux 1989). The majority of severe disease 

is due to acute infections with P. jaiciparum, the most important manifestation being 

cerebral malaria, but other defining criteria include severe anaemia, renal failure, 

pulmonary oedema, circulatory collapse, spontaneous bleeding, repeated generalised 

convulsions, acidosis and haemoglobinuria (WHO 1990). 

1.2 Life cycle 

Figure 1.1 illustrates the life cycle of a mammalian malaria parasite. 

1.2.1 Exoerythrocytic cycle 

Malaria parasites enter the vertebrate host via the bite of an infected female mosquito. 

Sporozoites are injected via the proboscis from the salivary glands as the mosquito 

takes a blood meal. The inoculum is small, with one study showing an average of 15 

sporozoites (Rosenberg et al. 1990). Other studies showed that> 98% of naturally 

infected mosquitoes transmitted < 25 sporozoites (Beier et al. 1991a) and> 80% of 

experimentally infective mosquitoes transmitted from 1-10 sporozoites (Beier et al. 

1991b). The sporozoites circulate in the bloodstream for 15-60 min (Fairley 1947; 

Sinden & Smith 1982) before either invading liver hepatocytes directly (Shortt 1948; 

Shin et al. 1982) or indirectly after uptake by Kupffer cells (Smith et al. 1981). Within 

the hepatocyte, the parasites develop into exoerythrocytic schizonts (Garnham et al. 

1966) by asexual multiplication. Mammalian malaria parasites are thought to undergo 

only one cycle of exoerythrocytic multiplication, this taking between 5.5-15 d for 

human malarias, depending on the species. With P. jalciparUln and P. malariae 

infections, this tissue schizogony follows sporozoite invasion directly, whereas for P. 

vivax and P. ovale infections, a proportion of the sporozoites first develop into latent 

hypnozoite forms which are responsible for producing relapses (Krotoski et al. 1982 a 

& b). The mature schizont contains around 30000 merozoites in the case of P. 

jaiciparum. These are released into the bloodstream upon rupture of the schizont and 

the host hepatocyte and invade RBC, where they commence a cycle of asexual 

multiplication responsible for the characteristic pathology of malaria. 

1.2.2 Erythrocytic cycle 

Invasion of RBC by merozoites is a complex process, commencing by attachment and 

orientation of the merozoite so that the apical complex is in contact with the RBC 

membrane, probably via a species-specific receptor. For P. vivax and P. jaiciparum, 
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these receptors are associated with the Duffy blood group Ags (Miller et al. 1975b) and 

glycophorin (Miller et al. 1977; Perkins 1984), respectively. A junction is formed 

between the RBC membrane and the merozoite plasma membrane (Aikawa et al. 1978). 

The parasite releases material from the rhoptries and micro nemes, causing invagination 

of the RBC membrane, and the junction moves over the parasite which enters the 

invagination until it lies completely enclosed within the parasitophorous vacuole 

(Dvorak et al. 1975; Aikawa et al. 1978). During this entry process (reviewed by 

Mitchell & Bannister 1988; Bannister & Dluzewski 1990), the merozoite surface coat is 

sloughed off (Bannister et al. 1975; Miller et al. 1975a). 

Upon entering a RBC, the parasite develops a vacuole and becomes a ring stage. 

It is called this due to the signet ring-like appearance upon examination of Giemsa's 

stained bloodsmears. This ring stage grows, feeding mostly on haemoglobin in the host 

cell, and producing malarious pigment, the vacuole disappears, and the ring stage 

becomes a trophozoite. Asexual multiplication (schizogony) ensues by repeated 

division of the parasite nucleus, the parasite segments to form a schizont containing 

merozoites, the number of which varies depending on the species, which regain their 

surface coat (Bannister et al. 1977). The erythrocytic schizont ruptures to release 

merozoites which can then invade further RBC. The timing of the erythrocytic cycle 

depends on the species of malaria parasite. This is 24 h for P. chabaudi, 48 h for P. 

Jalciparum, P. vivax and P. ovale, and 72 h for P. malariae. It is relatively 

synchronous, and it is the synchronous release of merozoites from the RBC, with 

destruction of the RBC membrane, which is responsible for the clinical manifestations 

of periodic fever and chills characteristic of malaria. 

Following invasion of RBC, some merozoites develop into the sexual stages, 

gametocytes, within the RBC. Gametocytogenesis (reviewed by Mons 1985; Alano & 

Carter 1990) is poorly understood, but both micro and macrogametocytes can be found 

in an infection initiated with a single parasite (Carter & Walliker 1975). It is these 

gametocytes which are infective to the mosquito vector when ingested during a blood 

meal. 

1.2.3 Development in the mosquito vector 

When mature gametocytes are taken into the midgut of the mosquito vector, the RBC 

membrane is lost and gametogenesis occurs, to form micro and macrogametes. The 

microgametocyte divides mitotically 3x (Sinden 1981) and exflagellates, releasing 8 

flagellated microgametes. These fertilise the macro gametes, forming diploid zygotes. 

These transform into motile ookinetes which cross the gut wall within 24 h, undergoing 

meiosis to form haploid oocysts, situated between the the gut epithelium and the basal 

lamina of the mosquito mid gut wall (Sinden & Strong 1978). The oocyst divides many 

time over a period of 10-16 d, depending on external environmental conditions, to form 
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sporozoites, which are released into the haemocoel when the oocyst ruptures. The 

number of sporozoites produced is estimated to vary from 1000-10000 (Garnham 

1966). Pringle (1965) counted 9555 sporozoites in an individual P. Jalciparum oocyst, 

and Rosenberg & Rungsiwongse (1991) counted a mean of 3688 sporozoites per P. 

vivax oocyst, a mean of 3386 sporozoites per P. Jalciparum oocyst, and 7521 

sporozoites in an individual P. cynomolgi oocyst. These motile sporozoites migrate and 

penetrate into the lumen of the mosquito salivary glands, becoming infective to the 

vertebrate host (Vanderberg 1975). 

1.2.4 Longevity of infections in humans 

Infections in humans can be of considerable longevity (Phillips 1983). The lifespan of 

P. malariae can be decades, the parasites seeming able to evade complete elimination 

by the host's immune system. P. vivax is estimated to have a lifespan of 3-4 years. P. 

Jalciparum is considered to have a lifespan of about 12 months, but the duration of 

infections tends to become shorter as the host's immunity increases. The longevity of 

infection is therefore a balance between the protective responses of the host and the 

ability of the parasites to evade such responses. 

1.3 Laboratory models 

The development of a method for in vitro culture of P. Jalciparum (Trager & Jensen 

1976) has provided material for the biochemical and molecular analysis of this parasite, 

and certain species of Aotus and Sabniri monkeys have been examined as hosts for P. 

Jalciparum and P. vivax for vaccine and other studies (Collins et al. 1983; Gysin & 

Fandeur 1983). A Plasmodium parasite able to infect the common marmoset, Callithrix 

jacchus may represent the successful adaptation of a human malaria parasite to a 

commonly available primate. This was initially thought to be P. vivax (Mitchell et aI. 

1988), but is now believed to be P. malariae (Mons & Sinden 1990). However, human 

malarias in monkeys can give unpredictable results, and for practical and ethical reasons 

the use of such models can be hard to justify. Various species of rodent, avian and non

human primate plasmodia are therefore used for laboratory study of the biology of 

malaria parasites. 

Of the non-human primate malarias, P. knowlesi and P. cynomolgi have been 

widely used in the rhesus monkey Macaca mulatta. P. brasilianum and P. simium have 

also been used in the New World monkeys Aotus trivirgatus and Saimiri sciureus, 

respectively (reviewed by WHO 1987). The laboratory use of primates is, however, 

severely restricted. 

Much early laboratory work was performed using avian species of malaria 

parasites. P. cathemerium and P. relictum were used in canaries, and P. gallinaceum 

and P. lophurae in chickens and ducks. The discovery of malaria parasites in rodents 
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by Vincke & Lips (1948) in Katanga provided a major breakthrough in the laboratory 

study of malaria. P. berghei was transmitted successfully from naturally infected tree 

rats (Thamnomys surdaster ) to laboratory mice and rats by blood inoculation. Several 

other rodent species have subsequently been isolated, and the availability of all these 

rodent species has enabled genetic, chemotherapy and immunity studies to be 

performed. Four rodent species are recognised: P. berg/wi, P. chabaudi, P. vinckei and 

P. yoelii. All except P. berghei contain two or more subspecies. Precise identification 

of particular parasite strains has been achieved by the behaviour and structure of blood 

stage parasites, serology, isoenzyme types and patterns of cross protection (Carter & 

Diggs 1977). These studies have provided defined rodent models, but care must be 

taken in extrapolating results from these models to human malarias. 

1.4 Host resistance to malaria infection 

The dynamic interactions of the host-parasite relationship plays a major part in the 

eventual outcome of infection. Host resistance to the parasite is a major element in this 

interaction. The ability of the host to control malaria infection may take two forms, 

innate and acquired resistance. Innate resistance is expressed regardless of previous 

exposure, and has no immunological specificity, but can be parasite-specific. Acquired 

resistance requires previous exposure and is immunological in nature. Between these 

two is non-specific resistance, which is immunologically mediated, but requiring 

exposure to an organism or substance unrelated to malaria parasites which stimulates 

the host to kill parasites. 

1.4.1 Innate resistance 

Certain innate characteristics of the host can either protect completely or lessen the 

severity of malaria in individuals. In populations exposed to high rates of malaria 

infection, genetic alterations resulting in such characteristics would increase an 

individual's chance of survival and reproduction, and would therefore spread through a 

population (Haldane 1949). A number of conditions have been associated with 

protection from malaria, mostly associated with host RBC and affecting the asexual 

erythrocytic stages of the parasite. 

There are certain RBC phenotypes which affect the ability of parasites to invade 

RBC. The Duffy Ag has been shown to be necessary for invasion of human RBC by P. 

knowlesi in vitro (Miller et al. 1975 a & b) and is involved in RBC invasion by P. vivax 

, as individuals who are -ve for the Duffy blood group Ag are resistant to infection with 

P. vivax (Miller et at. 1976, 1977; Spencer et al. 1978). This explains the long

standing observation of an association between the high frequency of the Duffy -ve 

genotype and resistance to P. vivax in Africa (Boyd & Stratman-Thomas 1933; Bray 

1958). RBC lacking glycophorin A show reduced invasion by P. Jalciparum 
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merozoites (reviewed by Pasvol & Jungery 1983), though very low numbers of 

individuals carrying this phenotype have been described worldwide. It is therefore 

unlikely that there is a selective advantage of this trait for malaria resistance. RBC 

deficient for glycophorin B also show reduced invasion by P. Jalciparum, and 

individuals carrying this phenotype reach frequencies in malarious areas characteristic 

of a balanced polymorphism. Therefore, there may be a selective advantage of this trait 

for malaria. Ovalocytosis, a morphological RBC variant phenotype, occurs in up to 

20% of Melanesians in malarious areas of Papua New Guinea. Such individuals have 

lower parasitaemias than normal when infected with P. Jalciparum, P. vivax, and P. 

malariae (Seljeantson et ai. 1977). These RBC are resistant to invasion by parasites 

due to an altered cytoskeletal structure (Kidson et ai. 1981). A recent study has 

compared the prevalence of the deletion in the band 3 (AE1) gene that causes 

ovalocytosis in populations with different clinical status of malaria in Papua New 

Guinea (Genton et ai. 1995). There was a clear decrease in prevalence of band 3 

deletion with increasing disease severity, with no heterozygous individuals among the 

cerebral malaria cases. 

RBC age may also affect their susceptibility to invasion by malaria parasites 

(reviewed by Bray & Garnham 1982). P. vivax and P. ovaie predominantly invade 

reticulocytes or slightly older normocytes. P. Jaiciparum seems to show a preference 

for metabolically young RBC (Phillips 1983). Preferences for RBC of different ages 

are also observed in rodent malarias (Cox 1988). 

Other RBC abnormalities may affect the intraerythrocytic development of malaria 

parasites (reviewed by Nagel 1990), thus resulting in less severe disease. Sickle cell 

anaemia has long been associated with resistance to falciparum malaria in areas of 

hyperendemicity (Allison 1954). Sickle haemoglobin results from a single amino acid 

substitution, valine for glutamic acid at position 6 in the ~-globin chain. A similar 

incidence of infection is observed in individuals with the sickle cell trait, both 

homozygous (HbSS) and heterozygous (HbAS), as in individuals with normal 

haemoglobin (HbAA), but less severe disease tends to occur in those with sickle cell 

trait (Gilles et ai. 1967). One mechanism by which HbS is thought to protect is through 

the accelerated destruction of pRBC, as a rapid sickling of infected RBC is observed at 

low 02 tensions (Friedman 1979). Parasites are also unable to develop normally in 

sickled cells at low 02 tensions (Friedman 1978), possibly due to low intracellular 

potassium levels (Friedman et al. 1979a), and invasion of HbS-containing cells at low 

02 is inhibited (Pasvol et ai. 1978). Thus, both invasion and development are inhibited 

under low 02 conditions to which pRBC are exposed, particularly in the spleen 

(Friedman & Trager 1981) and also during deep vascular sequestration. 

Other haemoglobinopathies which are associated with malaria include HbC and 

HbE, and ~-thalassaemia, the frequencies of which are increased in areas of malaria 
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endemicity and which protect against severe, non-severe and mild infections (Siniscalo 

et al. 1966; Bodmer & Cavalli-Sforza 1976; Flatz 1967). It has long been assumed that 

the high gene frequency of a-thalassaemia, the most common of known human genetic 

disorders (affecting up to 80% of some malaria-endemic populations), likewise reflects 

selection by, and protection from, malaria; indeed a detailed study in Melanesia (Flint et 

al. 1986) which showed a+-thalassaemia gene frequencies of 68% and 10% in areas of 

intense transmission and no transmission, respectively, corroborates this view. A recent 

study in Vanuatu, however, surprisingly found an increased incidence of malaria in a+

thalassaemic children, the effect being most marked for those < 4 years of age and for 

P. vivax (Williams et al. 1996). Paradoxically, this has been interpreted as evidence for 

a protective effect of a-thalassaemia against P. Jaiciparum, early infection by the non

lethal P. vivax acting as a natural vaccine through induction of limited cross-species 

protection to prevent or attenuate subsequent severe P. Jaiciparum infections. 

Glucose-6-phosphate dehydrogenase deficiency is another genetically-determined 

RBC abnormality associated with protection against malaria, the distribution of which 

occurs frequently in malarious areas of Africa (Allison 1960; Luzzatto 1979). The 

mechanisms of protection may be via reduced parasite growth (Pasvol et al. 1977; 

Friedman et al. 1979b; Nagel et al. 1981; Roth et al. 1983), or an increased 

susceptibility to mononuclear phagocytes and oxidative damage (reviewed by 

Yuthavong et al. 1990). 

The genetic background of the host and environmental factors may also affect the 

susceptibility to malaria and the severity of disease. Inbred strains of mice may differ in 

their susceptibility to malaria infections (reviewed by Stevenson 1990). Genetic factors 

have been implicated in the pathogenesis of human cerebral malaria and hyperreactive 

malarial splenomegaly, and there is evidence of genetic control of immune responses to 

synthetic P. Jalciparum sporozoite vaccines (reviewed by Stevenson 1990). Hill et al. 

(1991) have observed an association between certain HLA class I and class II 

haplotypes and protection from severe malaria in West Africa. 

The nutritional status of the host may also influence malaria infections. In rodent 

malaria models, diet changes have been shown to be a variable in the host-parasite 

system (Gilks et al. 1989), and rodents maintained solely on milk suffer less severe 

infection (Maegraith et al. 1952). The inhibitory effects of a milk-only diet may 

explain the lower than expected malaria infection rate in infants < 1 year in endemic 

areas (Phillips 1983). Feeding malnourished children during famine relief can result in 

outbreaks of malaria soon after, so called 'feeding malaria' (Murray et al. 1981). 

1.4.2 Acquired resistance 

Immune responses to malaria can be complex, involving different mechanisms and 

directed against different parasite stages. Acquired immunity is a general feature of the 
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host immune response, which can be manifest both as anti-parasite and anti-disease 

immunity, and has been studied extensively. It is generally species-specific and parasite 

stage-specific, with immunity largely directed against the asexual erythrocytic stages 

which are responsible for the symptoms of disease. 

1.4.2 a The immune responses to pre-erythrocytic stages 

Natural immune responses to sporozoites can be detected in humans, though 

sporozoites persist in the bloodstream for only a very short time. There is conflicting 

evidence regarding the role of Ab in anti-sporozoite immunity; however, it does appear 

that Ab must play some part (reviewed by Taylor 1990). Abs against sporozoites have 

been identified in sera from populations living in endemic areas (Nardin et al. 1979; 

Tapchaisri et al. 1983; Hoffman et al. 1986; Del Giudice et al. 1987 a & b). Sterile 

immunity can be obtained against challenge with rodent malaria viable sporozoites after 

vaccination of mice with irradiated sporozoites (Nussenzweig et al. 1967; Beaudoin et 

al. 1976), and a correlation between protection and prechallenge Ab titres has been 

reported (Hansen et ai. 1979). Antisporozoite Ab in humans, however, appears to be 

poorly developed under natural conditions, does not appear to be boosted by 

reinfection, and does not correlate with protection against malaria infection (Webster et 

al. 1988). Passive transfer of Ab at the time of sporozoite challenge in mice leads to an 

increase in the rate of sporozoite clearance and a reduction in the number of 

exoerythrocytic stages in the liver (Nussenzweig et ai. 1972), but unlike vaccination 

studies, rarely results in complete protection against sporozoite challenge (Verhave et 

al. 1978). Chen et ai. (1977) found that immunisation of B cell-deficient mice with 

irradiated P. berghei sporozoites protected most animals against challenge with 

homologous viable sporozoites, therefore suggesting that resistance to this stage could 

be mediated by Ab-independent mechanisms. There is now compelling evidence that 

cell-mediated immune responses play an essential role in immunity to sporozoites 

(Chen et ai. 1977; Spitalny et ai. 1977; Egan et al. 1987; Schofield et al. 1987a; Weiss 

et al. 1988; reviewed by Schofield 1989). 

As outlined, it is likely that Ab and T cells playa role in controlling the survival 

of sporozoites, but once the parasites are within hepatocytes, it appears that Ab

independent mechanisms alone are relevant in controlling liver stage infection 

(Schofield et ai. 1987a). IFN-y inhibits the development of liver stage parasites in vitro 

(Ferreira et aI. 1986; Maheshwari et al. 1986; Schofield et al. 1987b), and in vivo it 

appears that CD8+ cells are involved in IFN-y-mediated protection, as immunised mice 

depleted of these cells lose their immunity (Schofield et al. 1987a). CD8+ cells may 

also be directly cytotoxic to liver stage parasites (Schofield 1989). However, it now 

appears probable that the main mechanism for intrahepatic killing of parasites is the 

production of NO by hepatocytes, stimulated by IFN-y or TNF-a (Green et al. 1990; 
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Ntissler et al. 1991). 

1.4.2 b Immune responses to sexual stages 

Abs against gametes suppress infectivity of malaria parasites to mosquitoes, and Abs 

against zygotes and ookinetes can also suppress development of parasites in the 

mosquito. It is clear that such Abs present in sera mediate transmission-blocking 

immunity within mosquitoes (Gwadz 1976; Kaushal et al. 1983; Rener et al. 1983; 

Vermeulen et al. 1985, 1986; Munesinghe et al. 1986). The effects of these Abs in the 

mosquito appear to be mediated by agglutination, preventing fertilisation, by 

complement-mediated lysis, and possibly by preventing penetration of the midgut wall 

(Kaushal et al. 1983; Rener et al. 1983; Grotendorst et al. 1984; Vermeulen et al. 1985; 

reviewed by Carter 1988). Transmission-blocking Abs have been shown to occur 

naturally during P. vivax infection (Mendis et al. 1987), though such Ab is known to 

both inhibit and enhance infectivity to mosquitoes at different concentrations (Peiris et 

al. 1988). 

Abs do not appear to be effective against gametocytes in the vertebrate host 

(Cohen et al. 1961), though immunity has been demonstrated against circulating 

intracellular gametocytes (Harte et al. 1985). This immunity thus appears to be T cell

dependent, Ab-independent and mediated by cytokines (Naotunne et al. 1990). Crisis 

serum inhibits the ability of gametocytes of P. cynomolgi to infect mosquitoes, and this 

inhibitory effect of crisis serum is blocked by Abs against IFN-y and TNF-a (Naotunne 

et al. 1991). However, gametocyte killing appears to require additional and as yet 

undefined complementary factors in crisis serum (N aotunne et al. 1991; Karunaweera et 

al. 1992). 

1.4.2 c Immune responses to asexual erythrocytic stages 

1. The antibody response 

Malaria infection stimulates a rapid increase in both malaria-specific and non-specific 

Ig synthesis (McGregor et at. 1956; Cohen et at. 1961). Specific Ab production may 

contribute to the clearance of some species of malaria parasites from the infected host 

(Freeman et at. 1980), but most of the Abs formed appear to have no protective effect, 

and in general, there is little correlation between total anti-malarial Ab and protective 

immunity, though specific Ab levels do appear to correlate positively with exposure to 

P. Jalciparum (Thelu et al. 1991). Most of the total Ig synthesised has no apparent 

reactivity with plasmodial Ags (Abele et al. 1965; Targett & Voller 1965; Cohen & 

Butcher 1969). Such Abs have been shown to react with a variety of host Ags (Deans 

& Cohen 1983; Ternynck et al. 1991), probably contributing to the immunopathology 

of malaria, though some may also have a protective effect (Schetters et al. 1989). 

Evidence supporting a protective role of Ab against asexual erythrocytic stage 
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malaria parasites includes results of the passive transfer of immune sera and mAbs. IgG 

from protected adults has been shown to reduce parasitaemia in children (Cohen et ai. 

1961; McGregor 1964; Sabchareon et ai. 1991), and IgG-mediated protection has also 

been demonstrated in various animal models (Diggs & Osler 1969; Diggs et ai. 1972; 

Phillips & Jones 1972; Green & Kreier 1978; Reese & Motyl 1979). Passive transfer 

experiments show considerable variation, especially in rodents. This variation appears 

to be due to the timing of serum collection and the amounts of serum transferred. The 

protective activity of transferred sera was shown to increase with time during a primary 

infection (McDonald & Phillips 1980), with highest activity at the time of parasite 

elimination (Phillips & Jones 1972; Murphy 1979), and protective activity diminishing 

rapidly after parasite clearance (Hamburger & Kreier 1976; Murphy 1979). Transfer of 

sera will include other serum components, but a mAb has been shown to be protective 

against P. yoeiii (Majarian et ai. 1984), indicating that Ab alone can be sufficient for 

conferring protection. 

A role for specific Ab in immunity is also indicated from adoptive transfer 

experiments, where transfer of B cell-enriched popUlations of immune spleen cells gives 

protection (Gravely & Kreier 1976; McDonald & Phillips 1978; Ferraroni & Speer 

1982) and transfer of B cells with T cells gives increased protection compared to T cells 

alone (Brown et ai. 1976 a & b). B cells have also been shown to be necessary for the 

transfer of protective immunity to P. chabaudi in SCID mice and lethally irradiated 

mice, and clearance of parasites correlated with specific Ab in the serum (Meding & 

Langhorne 1991; Taylor-Robinson & Phillips 1993a). 

There are several possible roles for anti-malarial Ab in protection (reviewed by 

Cohen 1979; Taylor & Siddiqui 1982; Taylor 1990), the relative importance of which is 

unclear. Abs have been shown to interfere with invasion of RBC by merozoites in vivo 

(Quinn & Wyler 1979a) and in vitro (Cohen et ai. 1969; Cohen & Butcher 1970), but 

there is little evidence that Abs have any effect on the intraerythrocytic development of 

parasites (Cohen et ai. 1969; Cohen & Butcher 1970, 1971; Mitchell et ai. 1976). Abs 

may be important in preventing sequestration (David et ai. 1983; Udeinya et ai. 1983), 

and Ab titres to neo-Ags on the surface of schizont-infected RBC of P. jaiciparum, 

which are linked to cytoadherence and sequestration of parasites (see 1.5.3), have been 

shown to correlate with protection (Marsh et ai. 1989). Abs also mediate phagocytosis 

of parasites (Hunter et ai. 1979; Langreth & Reese 1979; Shear et ai. 1979; Jain & 

Vianyak 1986). The appearance of Abs mediating phagocytosis of merozoites is 

thought to correlate with protective immunity (Druilhe & Khusmith 1987). Studies 

have also implicated Ab-dependent cellular cytotoxicity (ADCC) (Brown & Smalley 

1980; Lunel & Druilhe 1989). and Ab-dependent cellular inhibition (ADCI) 

(Bouharoun-Tayoun et ai. 1990, 1995) in limiting parasite growth and invasion in vitro, 

lending support for an anti-malarial role of Ab. 

11 



2. The cell-mediated response 

Whilst Ab-mediated mechanisms clearly playa part in immunity to blood stage malarial 

parasites, cell-mediated responses are also necessary. Ag-specific T cells appear to play 

an essential role, providing both help for specific Ab production and initiating and 

modifying non-Ab cell-mediated effector mechanisms. 

The role of CMI has been examined most closely in murine models. Evidence for 

the involvement of T cells in immunity to blood stage malarial parasites includes 

studies of B cell-deficient and T cell-deficient animals and adoptive transfer 

experiments. 

Mice rendered B cell-deficient by anti-~ treatment suffer increased severity of 

acute P. yoelii infection (Weinbaum et al. 1976a), but when infected and drug-cured, 

they subsequently develop a prolonged low-level parasitaemia and are resistant to 

homologous parasite challenge (Roberts & Weidanz 1979). However, B cell-deficient 

mice infected with P. chabaudi adami spontaneously resolve acute infections (Grun & 

Weidanz 1981). These results indicate that non-Ab, T cell-dependent mechanisms can 

function both in resistance to reinfection and in suppressing acute disease, but that 

different mechanisms of immunity may operate, depending on the species of malaria 

parasites studied. 

When infected with a variety of murine malarias, animals rendered T cell

deficient by thymectomy suffer more severe and prolonged parasitaemia and increased 

mortality (Brown et al. 1968a; Stechschulte 1969; Chapman & Hanson 1971; 

Jayawardena et al. 1977; Cottrell et al. 1978; McDonald & Phillips 1978; Cavacini et 

al. 1986). Likewise, nude (nu/nu) mice, which are congenically athymic and therefore 

T cell-deficient, suffer exacerbated and often fatal malarial infections (Clark & Allison 

1974; Weinbaum et al. 1976b; Roberts et al. 1977; Eugui & Allison 1980; Grun & 

Weidanz 1981; Brinkmann et al. 1985; Brake et al. 1986, 1988; Cavacini et al. 1986, 

1990; Mogil et al. 1987; Vinetz et al. 1990; Meding & Langhorne 1991; Watier et al. 

1992). Such results demonstrate the role of an intact thymus, and therefore T cells, in 

immunity to malaria, but give no indication of the mechanisms involved. 

Adoptive transfer experiments using rodent models show that immune T cell

enriched cell populations can confer some protection against malarial infection (Brown 

et al. 1976 a & b; Gravely & Kreier 1976; McDonald & Phillips 1978, 1980; 

Jayawardena et al. 1982; Brinkmann et al. 1985; Cavacini et al. 1986; Fahey & Spitalny 

1986). In addition, a synergistic effect of enhanced protection can be obtained with the 

transfer of T and B cells together (Brown et at. 1976b; Gravely & Kreier 1976; 

Jayawardena et al. 1982), indicating a role for T cells in immunity to malaria by 

functioning as T helper (Th) cells for the production of specific Ab. 

It is apparent that the mechanisms by which T cells mediate protection are 

multifaceted and may vary in importance in different rodent models. However, the 
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consensus from adoptive transfer experiments is that in rodents, T cells mediating 

protection against asexual erythrocytic malaria parasites are of the helperlinducer 

phenotype (L3T4+; Ly-4+; CD4+) and possess o:~ T cell receptors (Jayawardena et al. 

1982; Brinkmann et al. 1985; Brake et al. 1986, 1988; Cavacini et al. 1986; Taylor

Robinson & Phillips 1993a, 1994a; Taylor-Robinson et al. 1993). In vivo depletion 

studies also implicate CD4+ T cells in protective immunity (Suss et al. 1988; Kumar et 

al. 1989; Langhorne et al. 1990; Vinetz et al. 1990; Taylor-Robinson et al. 1993; 

Taylor-Robinson & Phillips 1994a). CD4+ Th cells in mice, and probably in humans, 

can be further subdivided into Th1 and Th2 subsets, defined according to the pattern of 

cytokines produced (Mosmann et al. 1986; Mosmann & Coffman 1987). In its simplest 

form, this paradigm indicates that Th 1 cells secrete IL-2 and IFN -y and Th2 cells 

secrete IL-4 and provide help for specific Ab production. In P. chabaudi infections, 

these two subsets appear to be important at different times, with Th1 cells 

predominating early in infection, and Th2 cells predominating later (Langhorne 1989; 

Langhorne et al. 1989 a & b, 1990; Taylor-Robinson & Phillips 1992). Ag-specific T 

cell lines and clones of either subset can confer protection upon adoptive transfer to 

immunocompromised mice (Taylor-Robinson & Phillips 1993a, 1994a; Taylor

Robinson et al. 1993). Serum cytokine profiles of patients with P. Jalciparum and in 

vitro stimulation of peripheral blood lymphocytes from malarious individuals have 

indicated that both Th1 and Th2 cells are also activated during human infection (Tl·oye

Blomberg & Perlmann 1988; Troye-Blomberg et al. 1990; Mshana et al. 1991). 

The possible mechanisms by which CD4+ T cells mediate protection against 

asexual erythrocytic malaria parasites appear to be by providing help for specific Ab 

production, direct killing by T cells, or by activation of other effector cells by the 

secretion of cytokines. It appears likely that all three mechanisms play some part, 

depending on the time during infection and the model being studied. The CD4 + T cells 

involved in providing help for specific Ab production are likely to be exclusively of the 

Th2 subset, and adoptive transfer of Th2 cells against P. chabaudi has been shown to 

induce high levels of IgGl (Taylor-Robinson et al. 1993). Direct killing of parasites by 

CD4+ T cells could possibly occur by production of toxic factors. Th1 cells have 

recently been shown to produce NO (Taylor-Robinson et al. 1994), which has been 

shown to be toxic to malaria parasites in vitro (Rockett et at. 1991). It is likely that this 

production of NO by Th1 cells contributes to the peak of NO shown to occur at peak 

parasitaemia in mice infected with P. chabaudi and protected by adoptive transfer of 

malaria-specific Th1 cells (Taylor-Robinson 1995). As well as possible direct killing 

mechanisms, Th1 cells, by the production of cytokines, mediate other non-Ab effector 

mechanisms due to other activated effector cells. Such mechanisms may include 

phagocytosis by macrophages, Ab-independent cellular cytotoxicity, and the production 

of RNI and ROI. 
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T cells that express y'6 T cell receptors constitute only a small minority of 

peripheral T cells in mice and humans but have become associated with a variety of 

infectious and parasitic diseases, including malaria (Haas et aI. 1993). An increase in 

the number and proportion of peripheral blood y'6 T cells has been observed during 

acute P. jaIciparUln infections (Ho et aI. 1990; Roussilhon et aI. 1990) and during fever 

paroxysm associated with P. vivax infection (Perera et al. 1994). An expansion of y'6 T 

cells was also reported for peripheral blood from non-immune individuals in response 

to P. jaIciparum pRBC in vitro, with significant production of IFN-y and TNF-a (Behr 

& Dubois 1992; Goodier et al. 1992), leading to the consensus that y'6 T cells may be 

involved in malaria pathogenesis (Langhorne et al. 1992). Experiments in murine 

models to determine a possible protector function of y'6 T cells in blood stage malaria 

indicate a minor role, as y'6 T cell-deficient mice clear infections with P. yoelii (Tsuji et 

aI. 1994) and P. chabaudi AS (Langhorne et aI. 1995; Taylor-Robinson 1995), while in 

each case a~ T cell-deficient mice fail to control parasitaemia. It appears that y'6 T cells 

are not effective alone in providing help for generation of malaria-specific Abs, but they 

may influence the quality and quantity of Ig secreted (Langhorne et aI. 1995). As y'6 T 

cells can be cytolytic (Haas et al. 1993), it is possible that any anti-parasitic effects they 

may exhibit is through acting as non-MHC-restricted cytotoxic cells (Ho et al. 1990). 

In this regard, it has been shown that human y'6 T cells can inhibit the growth of P. 

jaIciparum in vitro, with activity directed primarily against the extracellular merozoite 

(Elloso et aI. 1994). 

3. The reticulo-endothelial system 

Macrophages are thought to be important in controlling blood stage malaria infections 

through phagocytosis and/or the release of extracellular mediators. For many years, 

phagocytosis (Taliaferro 1929) was considered the principle mechanism by which 

macrophages effected immunity. A sharp increase in blood monocytes and an 

accumulation of macrophages in the spleen and liver has since been identified in 

experimental malaria infections (Jayawardena et aI. 1977, Lee et aI. 1986), as has 

increased phagocytosis (Lucia & Nussenzweig 1969; Sheagren et al. 1970; Criswell et 

aI. 1971; Loose & DiLuzio 1976). The ingestion process is thought to be mediated by 

disease-associated Igs which bind to the surface of pRBC (Lustig et aI. 1977). 

Activated macrophages may also mediate pRBC destruction by the release of 

factors toxic to the intracellular parasite (Clark et al. 1981; Allison & Eugui 1982). The 

mechanisms by which macrophage secretion products destroy blood stage parasites are 

discussed in 'cytokines' (see 1.4.2.c 4, below). The recruitment and activation of 

macrophages and monocytes is mediated by such cytokines as IFN-y, IL-2, IL-6 and 

macrophage chemotactic factor (Liew & Cox 1991), secreted by T cells, which are 
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themselves activated by exposure to plasmodial mitogens as well as specific parasite 

Ags (Wyler & Gallin 1977; Ockenhouse & Shear 1983). 

In human malaria infections, both pRBC and nRBC have been observed within 

splenic macrophages in vivo (Pongponratn et al. 1987). The part played by immune 

phagocytosis in the clearance of P. Jalciparum is controversial. In Thai patients with 

falcipamm malaria, the activity of monocytes from cases of uncomplicated malaria was 

significantly increased compared to healthy controls (Ward et al. 1984). In contrast, the 

activity of monocytes from cerebral malaria sufferers was within normal limits. In 

another study, the clearance in vivo of IgG-coated RBC was accelerated in some but not 

all patients (Ro & Webster 1990) with a significant +ve correlation between the half

time for clearance of sensitised RBC from the circulation and the level of parasitaemia. 

The apparently normal rate of parasite clearance seen in patients with high 

parasitaemias suggests a failure to augment splenic Fc receptor function and consequent 

phagocytic activity in the face of a considerable antigenic challenge. Together, these 

studies indicate that immune clearance through phagocytosis is important in reducing 

parasitaemia to subpatency, thereby controlling the acute phase of infection. The failure 

of immune clearance in some instances may be related to the development of severe 

clinical illness, including cerebral manifestations. 

4. Cytokines 

The first direct support for cytokine production in response to malarial Ags was 

provided by Wyler & Gallin (1977), who identified a mononuclear cell chemotactic 

factor in spleen cell extracts from malarious mice and monkeys. Since spleen extracts 

of P. berghei -infected nude mice lacked significant activity, it was concluded that the 

chemotactic activity was secreted by, or dependent upon, T cells and their precursors. 

Lelchuk et al. (1984) showed that the ability of spleen cells from mice infected with P. 

berghei or P. yoelii to produce IL-2 following concanavalin A stimulation was greater 

early in both infections, a finding also shown with P. chabaudi (Langhorne et al. 1989 a 

& b; Taylor-Robinson & Phillips 1994 b). Langhorne (1989) attributed IL-2 secretion 

to the Thl subset of CD4+ cells which predominate during the clearance of the primary 

parasitaemia to subpatent levels. 

Interferons are increasingly being considered important in acquired immunity to 

asexual erythrocytic malaria parasites. Administration of exogenous IFN inducers or 

IFN-containing semm delayed the progress of P. berghei infection in mice (Jahiel et ai. 

1968, 1970), while treatment with anti-mouse IFN globulin accelerated infection 

(SauvageI' & Fauconnier 1978). The presence of IFN-y in the sera of infected humans 

and mice has been reported (Eugui & Allison 1982, Rhodes-Feuillette et al. 1985). T 

cells from malarious patients and immune individuals in endemic areas can secrete IFN

yand IL-2 upon stimulation with homologous Ag (Sinigaglia & Pink 1985, Troye-
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Blomberg et al. 1985, 1987; Riley et al. 1988). 

IFN-y has by itself no effect on erythrocytic malaria parasites (Ferreira et al. 

1986). However, as IFN-y is capable of activating macrophages with enhanced 

microbicidal activity, its production is considered central to CMI to intracellular 

microorganisms (Murray 1988). Experimental evidence from in vitro and in vivo 

studies implicates IFN-y in acquired immunity to blood stage malaria. Ockenhouse & 

Shear (1984) demonstrated that macrophages recovered from normal mice could be 

activated in vitro to destroy P. yoelii pRBC after incubation in IFN-containing SIN 

obtained from Ag-stimulated spleen cells from P. yoelii-immune mice. In further 

studies, these investigators showed that the addition of anti-IFN-y Ab to crude 

lymphokine SIN blocked macrophage-mediated parasite destruction, and demonstrated 

that recombinant IFN-y activated human macrophages to induce the appearance of crisis 

forms of P. Jaiciparum in cultures of human pRBC (Ockenhouse et al. 1984). 

Treatment of mice with exogenous IFN-y has a protective effect during blood 

stage infection with various rodent malarias (Clark et ai. 1987; Bienzle et al. 1988; 

Shear et al. 1989), and can also enhance antimalarial chemotherapy to P. vinckei 

(Kremsner et ai. 1991). In P. chabaudi AS-infected mice, the peak of endogenous IFN

y production occurred just before peak parasitaemia, and correlated directly with a 

relatively high frequency of IFN-y-secreting T cells in the spleen (Slade & Langhorne 

1989, Stevenson et al. 1990; Taylor-Robinson & Phillips 1994b). In vivo depletion of 

IFN-y by treatment with mAbs exacerbated infection (Slade & Langhorne 1989, 

Stevenson et al. 1990). Furthermore, in mice depleted of CD4+ T cells, and thus unable 

to produce IFN-y, treatment impaired host resistance to P. chabaudi AS infection 

(Meding et al. 1990). Administration of IFN-y in combination with chloroquine during 

the late stage of P. vinckei malaria, however, did not prevent a lethal outcome, despite 

effective parasite clearance (Kremsner et al. 1992). This suggests that IFN-y has a 

pivotal role in host immunity to malaria, but that factors in addition to this pluripotent 

cytokine may be important in parasite clearance. 

Inflammatory mediators such as TNF can be induced in macrophages activated by 

IFN-y (Mosmann & Coffman 1987) in response to malarial parasite stimulation (Bate et 

al. 1988). TNF may contribute to protective CMI but is also linked to the pathology of 

cerebral malaria (Grau et al. 1987). The direct parasiticidal effect of TNF is 

controversial, as the toxicity of recombinant TNF-a towards pRBC has yet to be 

demonstrated in vitro. However, TNF is present in very high amounts in human serum 

taken from malaria-infected individuals (Scuderi et al. 1986). Furthermore, TNF

containing serum and partially purified TNF can kill murine (Taverne et al. 1981) and 

human (Haidaris et al. 1983, Carlin et al. 1985) blood stage parasites in vitro. There is 

good evidence that serum-extracted TNF inhibits the in vivo growth of P. vinckei (Clark 

et al. 1981) and P. yoelii (Taverne et al. 1982), and that administration of recombinant 
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TNF-a in vivo reduces parasitaemia in mice infected with P. chabaudi (Clark et ai. 

1987) and both lethal and non-lethal strains of P. yoeiii (Taverne et ai. 1987). The 

mechanism by which TNF exerts its deleterious effects on pRBC remains to be 

elucidated, but as it is toxic to the host animal, whether or not it exerts a beneficial 

effect or is pathogenic may depend on the sensitivity of the individual to TNF and its 

level in the serum. 

Kumaratilake et ai. (1991) have demonstrated an enhanced neutrophil-mediated 

killing of P. Jalciparum by IFN-y and TNF-~ (lymphotoxin). This supports a role for 

both Thl and Th2 CD4+ T cells in immunity to malaria, as IFN-y and TNF-~ are Th1-

derived cytokines and killing of P. Jaiciparum and P. berghei parasites by neutrophils is 

Ab-dependent (Kumaratilake et ai. 1991, 1992; Waki 1994). 

IL-4 can depress the macrophage-mediated killing of P. Jalciparum (Kumaratilake 

& Ferrante 1992). This finding may be explained by results from studies of other 

parasitic diseases in which the ability of IL-4 to inhibit the microbicidal functions of 

IFN-y-activated macrophages in vitro has been demonstrated (Liew et al. 1991; Oswald 

et al. 1992). However, P. chabaudi infection of mice in which the IL-4 gene has been 

inactivated by gene targetting is cleared with kinetics similar to wild-type littermates 

(von der Weid et ai. 1994). At present, therefore, the role of IL-4 in host protection 

against malaria is unresolved. 

Another cytokine attracting attention as a determinant of development of acquired 

immunity is IL-12, originally identified as NK cell stimulating factor. Produced most 

notably by monocyte-macrophages and B cells, in response to infectious agents, IL-12 

induces NK and T cells to produce IFN-yand TNF-a, thereby enhancing their cytotoxic 

activity and stimulating their proliferation in combination with other activators, such as 

IL-2 (Trinchieri 1993). With regard to malaria, IL-12 has been shown to regulate the 

development in vivo of protective CMI to P. chabaudi via a Th1 CD4+ T cell response, 

which involves IFN-yand TNF-a (Stevenson et al. 1995), and is in part NO-dependent 

(Taylor-Robinson et al. 1993; Stevenson et al. 1995). 

5. Reactive oxygen intermediates 
The release of IFN-y and other cytokines from CD4+ T cells stimulates cells of the 

mononuclear phagocytic cell lineage to exert anti-parasitic effects, either directly by 

phagocytosis, or more often through the release of ROI which, in turn, may generate 

more stable parasiticidal components (Allison & Eugui 1983; Clark et ai. 1987; 

Golenser et al. 1992). 

Injection of agents known to generate ROI, including t-butylhydroperoxide 

(Wood & Clark 1982; Clark et al. 1983) and alloxan (Clark & Hunt 1983) suppressed 

parasitaemias in P. vinckei-infected mice. The chemical generation of ROI, such as 

H20 2, superoxide anions (02-) and hydroxyl radicals (OH-) may mimic this mechanism 
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of CMI against blood stage malaria. Indeed, not only have ROI been shown to be toxic 

to asexual stages of a variety of different Plasmodium species, both in vitro and in vivo 

(Dockrell & Playfair 1983), free radical scavengers have exacerbated P. c. adami 

infections (Clark et al. 1987). Moreover, in strains of mice susceptible to P. chabaudi, 

the oxidative capacity of macrophages was shown to be significantly reduced compared 

to that of macrophages from resistant mouse strains (Stevenson et al. 1992). 

Since ROI are extremely short-lived molecules, it is assumed that they exert their 

activity locally within the liver and spleen, through lipid peroxidation leading to the 

generation of toxic aldehydes (Allison & Eugui 1983; Clark et al. 1987; Rockett et al. 

1988). These may then circulate in the blood and effect parasite (and tissue) damage at 

more distant sites. 

6. Reactive nitrogen intermediates 

Nitric oxide (NO), a highly diffusible cellular mediator involved in a wide range of 

biological effects, has been indicated as a cytotoxic agent released by leucocytes in 

response to malaria infection. The first suggestion that an oxygen-independent 

mechanism for parasite killing existed came from cases of chronic granulamatous 

disease, in which oxidative metabolism is impaired, macrophages (Ockenhouse et al. 

1984) and PMN cells (Kharazmi et al. 1984) were capable of inhibiting the growth of 

pRBC. Cavacini et al. (1989) also reported proficiency of killing in hosts possessing 

cells deficient in the respiratory burst. This mechanism was shown to involve the 

cytokine-induced synthesis of RNI from L-arginine by macrophages, neutrophils, 

hepatocytes and endothelial cells (Green et al. 1990). NO inhibits iron sulphur

dependent enzymes involved in cellular respiration and energy production and may 

react with a ROI to yield the highly reactive OR- and the more stable NO· (James & 

Hibbs 1990; Liew & Cox 1991). 

Serum levels of cytokines known to induce NO synthesis, such as TNF and IL-l, 

are increased in acute P. Jalciparum infections (Clark et al. 1992) and killing of asexual 

P. Jalciparum parasites in vitro correlates with detection of increased levels of RNI 

derivatives, following incubation with high concentrations of RNI generators (Rockett 

et al. 1991) or human monocytes (Gyan et al. 1994). Concentrations of NO known to 

be physiologically relevant, such as those produced by activated macrophages, are 

usually cytostatic rather than cytotoxic to P. Jalciparum in vitro (Balmer et al. 1995; 

Taylor-Robinson 1997). The role of NO in protection against P. chabaudi AS has been 

demonstrated in vivo (Taylor-Robinson et al. 1993, 1996). A sharp peak of NO 

production, measured as serum nitrate, consistently paralleled peak parasitaemia. 

Treatment with an inhibitor of NOS abolished completely NO production and mice 

suffered extended primary parasitaemias. However, blockade of NO production later in 

infection had no observable effect on the level or duration of recrudescent 
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parasitaemias. Treatment of infected CD4-depleted mice, protected by the adoptive 

transfer of a Th1 clone, with the NOS inhibitor resulted in severe infection with 

significantly increased parasitaemia and 90% mortality within 20 d p.i.. This suggests 

that NO plays a crucial role in protection against blood stage malaria but at present its 

exact involvement is not clear. On the one hand, Th1 cell secretion of IFN-y may 

activate macrophages to produce large amounts of NO (Marletta et aI. 1988; Stuehr & 

Nathan 1989) to kill the parasites directly. Alternatively, NO may have an indirect 

effect by causing blood vessel vasodilation (Knowles & Moncada 1992), leading to less 

efficient parasite sequestration in deep tissue capillaries, allowing removal of parasites 

by macrophages (Taylor-Robinson et al. 1993). 

A link between NO production and cerebral malaria has also been suggested 

(Clark et aI. 1991; Clark & Rockett 1994). During infection, NO produced in excess by 

TNF-stimulated vascular cells, or directly by P. Jaiciparum pRBC (Ghigo et al. 1995), 

could diffuse to local neurons, causing a disruption of the regulation of glutamate

induced neural NO, thereby interfering with neurotransmission and causing coma 

(Clark et ai. 1991, 1992). Several studies have, however, demonstrated an inability of 

NO inhibitors to influence the development of cerebral malaria in the mouse model, P. 

berghei ANKA, even upon intracranial administration (Senaldi et al. 1992; Asensio et 

al. 1993; Kremsner et al. 1993), implying that NO blockade in vivo is not able to protect 

against pathology. While these reports may appear to conflict, Grau & de Kossodo 

(1994) proposed that NO may mediate early changes in cerebral malaria, such as 

neurotransmission disturbances, when the neurological syndrome is still reversible, but 

that NO is unlikely to be involved in the actual processes causing neurovascular damage 

at the advanced stages of the condition. 

7. The involvement of the spleen 

As an organ of prime importance to host defence against blood pathogens and that 

responsible for removing damaged and effete RBC from the circulation, the spleen is 

thought necessary for resolution of malaria infection. Taliaferro & Cannon (1936) first 

reported that during a primary infection, the spleen becomes massively enlarged, 

splenomegaly, which is a hallmark of malaria, and observed increased numbers of 

differentiated macrophages phagocytosing parasites in the spleens of P. brasilianum

infected Panamanian monkeys. More recently, the total number of splenic macrophages 

has been shown to increase greatly during P. berghei and P. yoelii infections (Wyler & 

Gallin 1977; Lelchuk et al. 1979). 

Non-lethal challenges may become lethal and latent infections may relapse 

following splenectomy (Taliaferro 1929; reviewed by Wyler et al. 1979). However, 

splenectomy does not always worsen infection. One study reported that splenectomy 

did not affect the outcome of infection with P. yoeiii (Dockrell et al. 1980). These 
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contradictory reports may be explained by the finding that the spleen is beneficial for 

the host early in infection, but later promotes chronicity of infection with some 

plasmodia (Wyler et al. 1979). Splenectomy removes a large population of effector 

cells (Brown et al. 1976a). However, this is probably not as important as the loss of the 

normal splenic architecture and filtering ability of the spleen. Phillips (1970) and Oster 

et al. (1980) showed, using several rodent malarias, that mice reconstituted with spleen 

cell suspensions after splenectomy exhibited infections similar to those in 

splenectomised controls. 

The reason for the spleen being so vital in malaria infections appears to be a 

physical role in trapping pRBC, enabling localised elimination of parasites (Conrad & 

Dennis 1968; Schnitzer et al. 1972; Wyler et al. 1981). P. berghei-infected RBC are 

removed more rapidly than are nRBC from the circulation into the spleen (Quinn & 

Wyler 1979b; Wyler et al. 1981). The site where filtration occurs is thought to be the 

red pulp (Weiss 1979), a unique structure of the spleen not present in other lymphoid 

organs. The intermediate circulation in the red pulp consists of arterioles opening into 

cords that are connected to sinuses. This structure brings pRBC in close apposition to 

macrophages, which appear to be selectively held in the filtration beds of the reticular 

meshwork (Weiss 1983 a & b). pRBC can then be eliminated by direct phagocytosis or 

by the cytotoxic effects of monokines and other macrophage-derived factors. 

Phagocytosis of P. knowles i-infected RBC by cordal macrophages has been observed in 

rhesus monkeys (Schnitzer et al. 1972). 

Another filter system of the red pulp exists where blood leaves the cord and enters 

the lumen of the vascular sinus by passing between endothelial cells (Weiss 1979). 

RBC passing through must be pliant. When RBC deformability is reduced, as has been 

shown for pRBC (Miller et al. 1971b), passage is delayed. Such a concentration of 

pRBC was first reported for P. brasilianum infection (Taliaferro & Cannon 1936). 

The capacity of the spleen to clear parasites from the blood varies considerably 

during the course of infection. After a brief initial phase of activity, splenic clearance 

falls to subnormal levels until crisis, when active clearance is restored (Quinn & Wyler 

1979b; Wyler et al. 1981). There is also a switch in P. berghei infection from an open 

blood flow through the locules of filtration beds, during normal or heightened 

clearance, to a closed blood flow, away from the locules, during depressed clearance 

(Quinn & Wyler 1979b; Wyler et al. 1981). Evidence for such a change in the flow of 

pRBC through the spleen during the transition to an immune state during infection with 

another murine model, P. c. adami, is, however, lacking (Yadava et al. 1996), 

suggesting that some alteration in immune effector function, rather than 

microcirculatory changes, may be crucial to parasite killing. 

The phenomenon of crisis is perhaps the most striking instance of splenic control 

of malaria, when pRBC spontaneously and rapidly disappear from the blood (Taliaferro 
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& Cannon 1936; Taliaferro & Mulligan 1937; Taliaferro & Taliaferro 1944; Quinn & 

Wyler 1979b, 1980; Wyler et al. 1979, 1981; Wyler 1983). Crisis fails to occur in the 

absence of the spleen. The disappearance of circulating pRBC in crisis is due to their 

removal on the filtration beds of the red pulp and their destruction by macrophages held 

there (Taliaferro & Cannon 1936; Taliaferro & Mulligan 1937; Yadava et al. 1996). 

Early in P. yoelii infections, a rapid activation of reticular cells provides a 

competent blood-spleen barrier (Weiss et al. 1986; Weiss 1989, 1990). This appears to 

protect proliferating and differentiating populations of erythroblasts, lymphocytes and 

macrophages by ecluding pRBC from filtration beds. This barrier permits the 

development of a rising parasitaemia and anaemia (McGhee 1960; Zuckerman 1960). 

At crisis, the barrier relaxes, resulting in pRBC entering the fitration beds of the spleen, 

where they are destroyed, and reticulocyte stores being released into the circulation 

(Weiss et al. 1986). Filtration capacities of the spleen, blood flow alterations and 

control of malaria seem to be intrinsically related. These depend on the formation of 

the reticular cell blood-spleen barrier, and indeed, it has been speculated that the very 

nature of the spleen may have been driven by malaria (Weiss 1990). 

In addition to the role of the spleen in host resistance, there is another spleen

parasite interaction which may affect the outcome of infection. Expression of surface 

variant Ags is dependent on the presence of the spleen in some species of malaria 

parasites, including P. falciparum (Hommel et al. 1983), P. knowlesi (Barnwell et al. 

1983 a & b), P. fragile (Handunnetti et al. 1987) and P. chabaudi (Gilks et al. 1990). 

Sequestration, whereby pRBC cease circulating and remain in the blood vessels of 

various organs, and which is linked to the expression of such surface variant Ags (see 

1.5.2), has also been shown to be dependent on the presence of the spleen (David et al. 

1983; Gilks et al. 1990). These observations suggest that the expression of such Ags on 

pRBC and sequestration by parasites may be adaptations for survival in the presence of 

a potentially destructive spleen. 

1.5 Immune evasion 

The persistence of malaria blood stage infections has been well documented (Cohen 

1980; Terry 1988). Such observations imply that either there is an incomplete immune 

response by the host, or that immune evasion strategies are being successfully employed 

by the parasites. The balance between the immune response mounted by the host and 

evasion of this response by the parasites will ultimately determine the survival of 

parasites both in the infected host and in the population. 

1.5.1 Antigenic diversity 

Malaria parasites present a diverse array of Ags to the host immune system. This 

diversity is multifaceted, with different Ags occurring at different life cycle stages of 

21 



the parasite, different forms of a particular Ag in different parasite strains or isolates 

and within a strain or parasite clone. Such antigenic diversity may account for the slow 

development of immunity in natural malaria infections in humans, and the survival of 

parasites despite specific immune responses (see 1.4.2). 

Many apparently stage-specific Ags have been described (reviewed by Newbold 

1985; Kemp et al. 1990), some of which are considered of importance in eliciting 

immune responses against the parasites. These stage-specific Ags are therefore targets 

for the development of vaccines against malaria (see 1.6). 

The expression of different forms of a particular Ag by different strainslisolates of 

a malaria parasite is well-documented (reviewed by Newbold 1985; Kemp et al. 1990; 

Anders 1991) and is the usual definition of antigenic diversity. The means by which 

isolates have been defined and antigenic diversity recognised include isoenzyme typing 

(Sanderson et al. 1981), in vitro drug sensitivity (reviewed by Peters 1985), two

dimensional electrophoresis (Tait 1981; Fenton et al. 1985), serotyping of S-Ags 

(Wilson 1980) and studies using mAbs (McBride et al. 1982). Such methods have 

indicated that there is a considerable degree of antigenic diversity in malaria parasites. 

Isolates exhibiting antigenic diversity may be derived from different geographical 

locations, different individuals at the same location and different malaria bouts from the 

same individual. Antigenic diversity may also be seen in pRBC taken at various times 

from an isolate in vitro or during an infection in vivo. 

Mechanisms by which antigenic diversity arises (reviewed by Kemp et al. 1990; 

Anders 1991) include failure to express Ags, probably more common in vitro than in 

vivo, simple mutational events and major polymorphisms such as expression of 

different repeat sequences and intragenic recombination. Using PFGE, considerable 

variation in chromosome sizes between different parasite cloned isolates has been 

observed, which is associated with antigenic diversity (reviewed by Kemp et al. 1990). 

Antigenic diversity within an infection or in vitro may also arise due to antigenic 

variation (see 1.5.2), which may be considered a subset of antigenic diversity. 

Moreover, the variant Ags are themselves highly diverse between different parasite 

isolates and strains (Hommel et al. 1983; Aley et al. 1984; Leech et al. 1984; Marsh & 

Howard 1986; Magowan et al. 1988; Forsyth et at. 1989; Newbold et at. 1992; Iqbal et 

al. 1993). 

1.5.2 Antigenic variation 

Antigenic variation is defined as variation within a clone of a particular organism, as 

opposed to antigenic diversity, which denotes variation between clones, strains, lines 

etc. Antigenic variation is now recognised to be an immune evasion strategy utilised by 

many parasitic organisms, including malaria parasites. By periodically changing their 

antigenic profile to avoid elimination by the host's immune system, infectious 
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organisms undergoing antigenic variation thus gain a selective advantage. Parasitic 

organisms shown to utilise antigenic variation as an immune evasion strategy include 

bacteria, for example, Mycoplasma hyorhinis (Rosengarten & Wise 1990, 1991), 

Neisseria gonorrhoeae (Hagblom et al. 1985) and Borrelia (reviewed by Barbour 1990; 

Wilske et al. 1992), and protozoa (reviewed by Turner 1992). Among the protozoa, 

antigenic variation has been the most extensively studied and is best understood in 

African trypanosomes (reviewed by Vickerman 1978, 1989; Borst & Cross 1982; Cross 

1990; Barry & Turner 1991; Turner 1992). Other parasitic protozoa which undergo 

antigenic variation include Trichomonas vaginalis (Alderete et al. 1985, 1986 a & b, 

1987; Alderete 1987), Giardia lamblia (reviewed by Nash 1989), Babesia (Phillips 

1971; Allred et al. 1994), and malaria parasites (reviewed by Howard 1984; Hommel 

1985). 

The first indication of antigenic variation occurring in malaria parasites came 

from studies of relapsing infections of P. berg/wi in mice (Cox 1959, 1962). These 

studies showed that acute infections drug treated subcuratively produced a latent 

infection with periodic recrudescences. Mice infected with a parent population and 

given a latency-inducing treatment were shown to be more susceptible to heterologous 

challenge with recrudescent parasites than to homologous challenge with the parent 

parasites, indicating that the populations were antigenic ally distinct (Cox 1959). Upon 

infection of naive mice, it was also suggested that there were differences in virulence 

and development of immunity between these recrudescences and the parent population 

(Cox 1962). P. berg/wi parasites surviving in mice following passive immunisation 

with immune serum from P. berghei-infected rats (Briggs et al. 1968) or mice (Wellde 

& Diggs 1978) were resistant to the same serum in subsequent experiments, again 

indicative of antigenic variation having occurred. Whether the immune serum (Ab) 

played an inductive or selective role in the emergence of an antigenic ally variant 

population cannot be ascertained from these experiments. The work described above, 

though strong evidence for the occurrence of antigenic variation in P. berghei, was all 

performed using uncloned parasite lines. Wery et al. (1979), however, using cloned 

lines of P. berghei ANKA strain, isolated several parasite populations from successive 

recrudescences of chronic infections induced by multiple infection and drug cure. 

Cross challenge experiments with these recrudescent populations showed that mice 

immunised with one recrudes<:ent population were more resistant to homologous 

challenge that\to challenge with recrudescent popUlations taken from the same mouse at 

different times (Wery & Timperman 1979). This, therefore, was strongly suggestive of 

antigenic variation occurring during the course of P. berghei infection, confirming the 

results of earlier work, but with cloned parasites. 

Another murine malaria parasite shown to undergo antigenic variation is P. 

chabaudi. The first indication of this came from passive transfer studies using cloned 
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lines of P. c. chabaudi AS in NIH mice (McLean et al. 1982b). Immune serum was 

collected from mice following resolution of the acute infection before any 

recrudescence had occurred. This immune serum significantly delayed the homologous 

parasite population reaching 2% parasitaemia compared to NMS upon passive transfer. 

Six out of 7 recrudescent populations were found to be less sensitive than the original 

infecting population to this immune serum, therefore indicating these recrudescences 

were antigenic ally different from the infecting population from which they were 

derived; antigenic variation had occurred. Similar experiments in CBA/Ca mice also 

demonstrated antigenic variation in breakthrough populations from passively protected 

mice (Jarra et al. 1986). Heterogeneity in sensitivity/resistance to immune serum of 

clones from a recrudescence in the NIH system have also been observed (McLean et al. 

1986a), indicating a mix of antigenic types. This same passive tranier system also 

indicated a reversion of an antigenic variant to a basic 'parental' type after transmission 

through mosquitoes (McLean et al. 1987) and that antigenic variants could be detected 

as early as d 13 p.i., a time when the primary parasitaemia is still patent but in remission 

(McLean et al. 1990). 

An indirect fluorescent antibody test (IF AT) which detects Ags on the surface of 

live, schizont-infected RBC (Hommel & David 1981, Hommel et al. 1982) has been 

adapted to P. chabaudi and used to recognise antigenic variants of this parasite 

(McLean et al. 1986b; Gilks et al. 1990). This has shown cloned recrudescent 

populations to be both different from the initial infecting parental cloned population and 

from each other, using both immune sera, collected upon resolution of the acute 

parasitaemia, and hyperimmune sera (Brannan et al. 1993; see chapter 3). These results 

and others presented in this thesis further demonstrate the occurrence of antigenic 

variation in P. chabaudi. 

Until recently, the parasite most studied in investigations of antigenic variation 

and variant Ags in malaria parasites was P. knowlesi. Eaton (1938) showed that 

schizont-infected RBC can be agglutinated by immune serum. Using this schizont

infected cell agglutination (SICA) test, antigenic variation during chronic infections of 

P. knmvIesi in rhesus monkeys was first described (Brown & Brown 1965, 1966; Brown 

et al. 1968b). Chronic infections were induced by subcurative drug treatment, resulting 

in a series of distinct recrudecent parasitaemia peaks. Parasites collected from different 

recrudescences were shown to be antigenic ally different using the SICA test. Serum 

from monkeys immunised with different populations reacted only with the homologous 

population and serum collected during chronic infections reacted only with parasite 

populations collected before the serum sample and not with parasite populations 

collected afterwards. These results indicated that each wave of parasitaemia expressed 

different SICA Ags on the surface of RBC. Serum reactivity to variant parasites in the 

SICA test was also shown to be species- and strain-specific (Brown et al. 1968b). 
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Voller & Rossan (1969b) also showed that parasites isolated from different 

recrudescences of chronic P. knowlesi infection were antigenic ally distinct. The SICA 

test has also indicated that P. knowlesi appears to undergo antigenic variation upon 

transmission through mosquitoes (Draper & Voller 1972). 

Expression of the SICA Ag(s) is dependent on the presence of an intact spleen 

(Barnwell et al. 1982) and the ability of P. knowlesi to vary the SICA Ag during 

infection is apparently dependent on the presence of appropriate variant-specific Ab. A 

study by Brown (1973) strongly implies that this variation is Ab-induced rather than 

immunoselective. Variant-specific Ab levels determined by the SICA test do not 

correlate with protective immunity (Brown et al. 1970 a & b; Butcher & Cohen 1972). 

However, either variant-specific opsonising Ab (Brown et al. 1970b; Brown 1971) or 

specific inhibitory Ab assayed by in vitro culture (Butcher & Cohen 1972) consistently 

correlated with immune status and such Ab was predominantly variant-specific. Brown 

& Hills (1974) proposed that SICA Abs induce antigenic variation and opsonising Abs 

are parasiticidal. Both types of variant-specific Abs can be detected during P. knowlesi 

infection in rhesus monkeys, SICA Abs appearing much earlier than opsonising Abs 

(Brown & Hills 1974). As the host develops immunity during chronic infection, both 

Ab types appear much more quickly and simultaneously. 

The early P. knowlesi studies described above were all performed using uncloned 

parasite lines but subsequent studies with cloned parasites have confirmed many of the 

earlier results and the OCCUlTence of antigenic variation in P. knowlesi (Barnwell et al. 

1983 a & b) The SICA Ag(s) has been identified from parasite clones as a high MW 

protein of between 180-225 kD by immunoprecipitation only with the homologous anti

variant Ab (Howard et al. 1983). These Ags are soluble in SDS but not Triton X-lOO 

(Howard & Barnwell 1984), are malarial proteins, quantitatively minor, present at the 

cell surface and susceptible to trypsin (Howard et al. 1983, 1984). Howard & Barnwell 

(1985) detected at least 10 different variant Ag phenotypes by immunochemical 

analysis and showed that in SICA-negative pRBC obtained by passage in 

splenectomised monkeys, there is a lack of expression of the variant Ag rather than 

expression of different non-functioning variants. 

Other simian malaria parasites have been shown to undergo antigenic variation 

but have not been studied as extensively as P. knowlesi. Voller & Rossan (1969a) 

found evidence of antigenic variation occurring in P. cynomolgi bastianellii and 

Handunnetti et al. (1987) showed antigenic variation in P. fragile. In the latter study, 

the parasites were studied in their natural host, Macaca sinica, the toque monkey. 

Antigenic variation in this natural host-parasite combination was shown to occur during 

the spontaneous evolution of infection and there was a sequential order of appearance of 

variant antigenic types. 

Evidence of antigenic variation occurring in human malaria parasites is confined 
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to P. Jalciparum. The first indications came from studies on P. Jalciparum infections in 

the squirrel monkey, Saimiri sciureus (Hommel et al. 1983). Immune monkey serum 

was used in IFATs on live, schizont-infected RBC to detect Ags on the surface of the 

RBC, and using this method, parasites isolated during recrudescent peaks were shown 

to be antigenic ally different from the original parasite population. In total, 7 variants 

were derived from the Indochina-1 strain of P. Jalciparum in this study. This work was 

performed with an uncloned isolate of P. Jalciparum and therefore cannot be taken as 

conclusive of antigenic variation occurring in P. Jalciparum. However, cloned isolates 

were also studied and shown to undergo modulation of surface Ags upon transfer from 

splenectomised to intact monkeys, indicating the occurrence of antigenic variation in 

clonal P. Jalciparum. DNA fingerprinting studies with variant populations of the 

Indochina-1 strain of P. Jalciparum showed that phenotypic variation, detected by 

variant-specific sera and IGSS, was not accompanied by major genomic reorganisation 

(Hommel et al. 1991). In another study, resistant parasites emerged from a Palo Alto 

strain P. Jalciparum infection in Saimiri monkeys after passive transfer of specific Abs. 

Monkeys primed against the original parasites were susceptible to challenge with the 

resistant ones, and vice versa (Fandeur et al. 1995). The resistant parasites were found 

to be antigenically distinct from the original infecting parasites but molecular typing 

indicated them to be isogenic. 

Cloned P. Jalciparum has also been shown to undergo antigenic variation in vitro , 

using agglutination, cytoadherence inhibition and immunoprecipitation (Biggs et al. 

1991), or a 'mixed agglutination assay' (Roberts et al. 1992). The latter study 

demonstrated that antigenic variation may occur in vitro at a rate as high as 2% per 

generation in the absence of immune pressure. 

The parasite protein involved in antigenic variation in P. Jalciparum is known as 

PfEMPl (P. Jalciparum erythrocyte membrane protein 1) (Biggs et al. 1991; Robelts et 

al. 1992). As with the SICA Ag of P. knowlesi, this molecule was identified as a strain

specific malarial Ag exposed on the surface of infected RBC by immunoprecipitation 

using strain-specific sera, with different parasite strains possessing proteins of varying 

MW (Leech et al. 1984; Howard et al. 1988). PfEMPl is a high MW protein of 

between 200000-350000 D, quantitatively minor, soluble in SDS but not in Triton X-

100, suggestive of a close association with the RBC cytoskeleton (Howard et al. 1988), 

and susceptible to trypsin (Leech et al. 1984). It therefore shares several properties 

with the SICA Ag of P. knowlesi (reviewed by Howard & Barnwell 1983; Howard 

1984). Generally, sera which react positively by live IFAT with, or which agglutinate 

with, P. Jalciparum-infected RBC are the only sera to immunoprecipitate 125I-Iabelled 

PfEMPl from any particular strain (Howard et al. 1988; van Schravendijk et al. 1991; 

Biggs et al. 1992). 

PfEMPl exhibits a high degree of antigenic diversity between different parasite 
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isolates (Hommel et al. 1983; Aley et al. 1984; Leech et al. 1984; Marsh & Howard 

1986; Magowan et al. 1988; Forsyth et al. 1989; Newbold et al. 1992; Iqbal et al. 

1993). Such studies also show that individuals respond to P. Jalciparum infection by 

producing isolate-specific Abs against PfEMPI. Levels of these Abs have been shown 

to correlate with protection against disease (Marsh et al. 1989), indicating that variant 

Ags may be important targets for protective immune responses against P. Jalciparum 

(Mendis et al. 1991). 

The molecular basis of antigenic variation in Plasmodium remains to be fully 

elucidated. However, a family of 50-150 genes shown to encode PfEMPI has recently 

been identified (Baruch et al. 1995; Su et al. 1995), which should open the way to a 

fuller understanding of the genetic mechanisms underlying antigenic variation. 

Members of the var gene family are expressed differentially in different parasite lines 

(Baruch et al. 1995; Smith et al. 1995; Su et al. 1995), with transcription of distinct var 

genes corresponding to expression of distinct variant Ags on the surface of pRBC 

(Smith et al. 1995). These genes are scattered over multiple malaria chromosomes (Su 

et al. 1995; Peterson et al. 1995), with some in clusters (Su et al. 1995) and are located 

in the subtelomeric regions (Rubio et al. 1996). It is estimated that they constitute 6% 

of the malaria genome, and, as they appear to be evolving at a very high rate, a 

substantial proportion may be non-functional (Borst et al. 1995). 

The strain-specific sera initially used to identify PfEMPI (Leech et al. 1984) were 

shown to be strain-specific by their ability to inhibit cytoadherence of pRBC in vitro 

(Udeinya et al. 1983). This was in itself suggestive of a link between expression of 

variant Ags and cytoadherence properties of P. Jalciparum pRBC. These cytoadherence 

properties are described in 1.5.3. Both characteristics arise at a similar time, during the 

later stages of the erythrocytic cycle and a link between the adherent and antigenic 

components of the surface of pRBC was proposed as early as 1981, by Udeinya et al., 

on the basis of both occurring at knobs. Antigenic variation in P. Jalciparum is 

modulated by the spleen (Hommel et al. 1983), as is sequestration and the ability of 

pRBC to cytoadhere in vitro (David et al. 1983). Expression of P. Jalciparum variant 

Ags detected by live IF AT is sensitive to trypsin (Hommel et al. 1983), as is PfEMPI 

(Leech et al. 1984), and cytoadherence (David et al. 1983). Such observations 

reinforced the concept of a linkage between variant Ags and cytoadherence (David et al. 

1983; Hommel 1985), whilst at the time evidence for this was only circumstantial. 

Further evidence arose when expression of variant Ags was shown to correlate with 

different cytoadherence phenotypes in vitro (Magowan et al. 1988). A link between 

antigenic variation and sequestration in P. chabaudi was demonstrated (Gilks et al. 

1990), and antigenic variation of P. Jalciparum in vitro is associated with size changes 

in PfEMPl and changes in adhesive phenotype (Biggs et al. 1992; Roberts et al. 1992). 

In the published work describing the cloning of the gene for PfEMPl, Abs generated 
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against recombinant fusion proteins recognised PfEMP1, reacted by live IFAT with the 

surface of pRBC in a strain-specific manner and blocked adherence to CD36 (Baruch et 

aI. 1995). Switches in expression of val' genes also result in changes in antigenic and 

cytoadherent phenotypes (Smith et aI. 1995). Finally, PfEMP1 has recently been shown 

directly to bind to CD36, ICAM-1 and TSP (Baruch et al. 1996). These two immune 

evasion mechanisms employed by pRBC, antigenic variation and cytoadherence, are 

thus due to the same parasite molecule, and therefore inextricably linked. The 

identification of the val' gene family will hopefully lead to an increased understanding 

of both the molecular basis of antigenic variation and cytoadherence, which may guide 

vaccine development and therapeutic approaches to decreasing the pathology of malaria 

due to sequestration in vivo. 

1.5.3 Sequestration and Cytoadherence 

Some species of malaria parasites show withdrawal from the peripheral circulation 

(sequestration) of late trophozoite- and schizont-containing pRBC (Garnham 1966). In 

P. faIciparum infections in humans, sequestration of schizonts is almost complete, and 

occurs in post-capillary venules of a variety of organs including the placenta (Jilly 

1969; McGregor 1978; Bray & Sinden 1979) and heart (Merkel 1946), but most notably 

the brain (Rigdon 1942; Spitz 1946; Clark & Tomlinson 1949; MacPherson et aI. 1985; 

00 et aI. 1987). This appears to be the major contributing factor in the development of 

cerebral malaria (MacPherson et al. 1985; 00 et aI. 1987; Warrell 1987; Aikawa 1988). 

Sequestration is also seen to a similar extent in P. faIciparum infections in Aotus 

monkeys, though the major sites are the heart, adipose tissue and spleen (Miller 1969; 

Voller et aI. 1969; Gutierrez et aI. 1976), without major cerebral involvement. In 

Saimiri monkeys, P. faIciparum also sequesters, but this is not as marked as in humans 

(David et al. 1983). It is apparent, therefore, that host factors contribute to the extent 

and site of sequestration, at least in P. faiciparum infections. Sequestration does not 

occur in any of the other human malarias (Howard 1988). 

Some other primate malarias exhibit sequestration to a degree. This is most 

marked with P. coatneyi and P. fragile in both natural and unnatural hosts (Desowitz et 

aI. 1969; Fremount & Miller 1975), with parasites localising mostly to cardiac muscle, 

but also to adipose tissue and small bowel mucosa. P. knowIesi shows only slight 

sequestration at low parasitaemias in rhesus monkeys, with parasites localising to the 

liver and small intestine (Miller et ai. 1971a). At higher parasitaemias, schizonts are 

seen in peripheral blood (Miller et al. 1971a). 

Sequestration also occurs in some murine malarias. In P. berg/lei, the major sites 

are bone marrow, liver and spleen (Alger 1963; Miller & Fremount 1969). Cerebral 

involvement has also been observed in the ANKA strain of P. berghei, with 

accumulation of pRBC, nRBC and macrophages in cerebral blood vessels in mice 
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(Mackey et aI. 1980; Rest 1982). This has been used as a model for human cerebral 

malaria (e.g. Grau et aI. 1987). In P. chabaudi infection, sequestration occurs 

(McDonald & Phillips 1978; Cox et al. 1987; Gilks et al. 1990), with the liver as the 

major site of pRBC accumulation (Cox et aI. 1987) but with no cerebral sequestration. 

However, in mixed experimental infections of P. berghei and P. chabaudi, cerebral 

sequestration of P. chabaudi can be observed (Dennison & Hommel 1993; Hommel 

1993). 

Sequestration is clearly a parasite-induced process (Chulay & Ockenhouse 1990). 

Hypotheses proposed to account for this (reviewed by Howard 1988) include the 

requirement for a relatively anoxic environment, and avoidance of splenic filtration. P. 

jaIciparum asexual stage parasites, particularly the mature forms, grow best in vitro 

under conditions of relatively low oxygen tension (Scheibel et aI. 1979), conditions 

similar to those encountered in the sites of sequestration in vivo. Mature P. jaIciparum

infected RBC contain a large parasite inclusion and have greatly impaired deformability 

compared to nRBC and to RBC containing early asexual stage parasites (Cranston et aI. 

1984). By sequestering and thereby not passing through the spleen, the splenic 

mechanisms for removal of such 'damaged' RBC (Quinn & Wyler 1979b; Wyler et aI. 

1981) are avoided. There are also parasite-derived neo-Ags expressed on the surface of 

pRBC containing mature asexual stage parasites (see 1.5.2). Sequestration allows 

immune recognition and clearance in the spleen (reviewed by Kreier & Green 1980; see 

1.4.2 c, section 7) to be avoided. Further evidence for the hypothesis of splenic 

avoidance comes from work showing that sequestration ceases in splenectomised 

animals (David et aI. 1983). Such hypotheses may account for the greater virulence of 

P. jaIciparUln over the other human malarias, which do not sequester. 

Sequestration is due to cytoadherence of mature pRBC to endothelial cells lining 

post-capillary blood vessels (Miller 1969; Luse & Miller 1971; MacPherson et aI. 1985; 

00 et al. 1987; Aikawa 1988). Mature P. jaIciparum pRBC also cytoadhere to human 

platelets (Ockenhouse et al. 1989), monocytes (Barnwell et al. 1985; Goldring et al. 

1992), lymphocytes, neutrophils, plasma cells (Ruangjirachuporn et aI. 1992), 

uninfected RBC (known as 'rosetting') (David et al. 1988; Handunnetti et aI. 1989; 

Udomsangpetch et aI. 1989b; Wahlgren et al. 1989), and also other pRBC (Roberts et 

al. 1992). Mostly, these observations have been made in vitro, although rosetting has 

been demonstrated in vivo (David et aI. 1988). It is likely that all of these cell-cell 

interactions occur in vivo, but to what extent is uncertain (Berendt et aI. 1990, 1994; 

Howard et aI. 1990). 

In vitro cytoadherence of P. jaIciparum pRBC to a variety of cell lines or 

transfected cells expressing human endothelial cell surface proteins has also been 

observed (reviewed by Hommel 1990; Pasloske & Howard 1994a). Reports of this 

phenomenon include binding to human umbilical vein endothelial cells (HUVEC) 
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(Udeinya et al. 1981), C32 amelanotic melanoma cells (Schmidt et al. 1982), SK-MEL-

23 melanoma cells (Panton et al. 1987), CD36-deficient C32 cells (Ockenhouse et al. 

1991a), human dermal microvasculature endothelial cells (Johnson et al. 1993), 

myelomonocytic U937 cells (Goldring et al. 1992), human brain capillary endothelial 

cells (Smith et al. 1992), and Chinese hamster OValY cells stably transfected with genes 

for human CD36 or intercellular adhesion molecule 1 (ICAM-l) (Hasler et al. 1993). 

Binding studies using many of these cell lines have been critical to identifying the 

human molecules likely to act as receptors on endothelial cells for pRBC. The 

molecules shown to mediate binding in vitro include TSP (Roberts et al. 1985), CD36 

(Barnwell et al. 1985), ICAM-1 (Berendt et aI. 1989), vascular cell adhesion molecule 1 

(VCAM-1), E-selectin (Ockenhouse et ai. 1992b) and chondroitin-4-sulphate (Rogerson 

et al. 1995). In vitro cytoadherence of P. chabaudi pRBC to some mouse cell lines has 

also been observed (Cox et al. 1987), but the host molecules acting as receptors have 

not been identified. 

TSP is a secreted glycoprotein expressed in a number of cell types including 

endothelial cells, epithelial cells, smooth muscle, fibroblasts and macrophages (Lawler 

1986). It is present in vivo at low levels throughout the microvasculature (Turner et al. 

1994). TSP is a multifunctional, multidomain protein which can bind to many different 

ligands, and is thought to be involved in a number of pathogenic events requiring 

immobilisation in blood vessels, including adhesion of sickled reticulocytes (Sugihara 

et ai. 1992) and of Babesia bovis-infected RBC (Parrodi et al. 1989) to endothelium. P. 

Jaiciparum-pRBC were found to bind to purified TSP immobilised to plastic (Roberts et 

al. 1985); this binding is calcium-dependent and is inhibited by both anti-TSP Ab and 

soluble TSP (Roberts et ai. 1985; Barnwell et al. 1989). Anti-TSP Ab and soluble TSP 

also inhibited pRBC binding to rat microvessels in an ex vivo model (Rock et al. 1988) 

and were initially reported to inhibit pRBC binding to C32 amelanotic melanoma cells 

(Roberts et aI. 1985); this finding has since been challenged (Barnwell et al. 1989; 

Sherwood et ai. 1990), implying that TSP is unnecessary for binding to these cells. 

Nearly all wild isolates of P. Jalciparum examined bind to immobilised TSP (Sherwood 

et ai. 1987; Hasler et al. 1990). This property of pRBC seems to be invariant, with no 

alterations in levels of binding to TSP observed with antigenic switching in vitro and 

concomitant changes in binding to CD36 and ICAM-1 (Gardner et al. 1996). 

CD36 is an integral membrane glycoprotein found on a variety of cell types 

including endothelial cells, platelets, monocytes, macrophages, elythroid precursors and 

melanoma cells (Ta1le et al. 1983; Knowles et al. 1984; Barnwell et al. 1985; Edelman 

et al. 1986; Greenwalt et ai. 1992). The biological function(s) of CD36 are unclear, but 

it has been reported to bind to TSP (Asch et al. 1987) and collagen (Tandon et al. 1989) 

and to act in signal transduction (Greenwalt et al. 1992). The first evidence of CD36 

acting as an adhesive receptor for P. JaIciparum pRBC came from studies using mAb 

30 



OKM5, which was found to block binding of pRBC to C32 melanoma cells, monocytes 

and endothelial cells (Barnwell et al. 1985). The Ag recognised by this mAb has 

subsequently been identified as CD36 (Asch et al. 1987). pRBC also bind to purified 

CD36 immobilised on plastic (Barnwell et al. 1989; Ockenhouse et al. 1989; Hasler et 

al. 1990) and to COS cells and CHO cells transfected with genes encoding CD36 

(Oquendo et al. 1989; Hasler et al. 1993). Anti-CD36 mAbs have been shown to block 

binding of pRBC to purified CD36, HUVEC, C32 melanoma cells and CD36-

transfected cells (Barnwell et al. 1989; Berendt et al. 1989; Ockenhouse et al. 1989; 

Oquendo et al. 1989). CD36 in solution binds directly to pRBC and has been shown 

also to inhibit pRBC binding to the purified receptor, to C32 melanoma cells and to 

HUVEC (Barnwell et al. 1989; Ockenhouse et al. 1989). Studies examining wild 

isolates binding to purified CD36 either found little variation in binding ability (Hasler 

et al. 1990) or a wide degree of variation (Ockenhouse et al. 1991a). Binding studies 

using C32 melanoma cells, binding to which is predominantly CD36-dependent 

(Barnwell et al. 1989; Ockenhouse et al. 1991a), also found a wide variation in binding 

of wild isolates (Marsh et al. 1988; Ho et al. 1991). Binding to CD36 also changes with 

antigenic switching in vitro, indicating that adherence to CD36 is a variable property of 

pRBC (Gardner et al. 1996). 

CD36 may also be involved in rosette formation, as it is found at low densities on 

RBC (van Schravendijk et al. 1992) and anti-CD36 mAbs and soluble CD36 can 

reverse ro'setting (Handunnetti et al. 1992), although Wahlgren et al. (1994) claim that 

rosetting is dependent on CD36 in only a relatively small number of parasite lines. 

ICAM-1 is an integral membrane glycoprotein expressed on the surface of 

lymphocytes, monocytes, macrophages, fibroblasts, epithelial cells and endothelial cells 

(Dustin et al. 1986). ICAM-1 is the ligand for the leucocyte function associated 

molecule 1 (LFA-1) (Marlin & Springer 1987) and is critically involved in leucocyte

leucocyte adhesion and leucocyte-endothelial adhesion (reviewed by Carlos & Harlan 

1994). It is also the receptor for human rhinoviruses (Staunton et al. 1989). Expression 

of ICAM-1 can be induced on endothelial cells by inflammatory cytokines such as 

TNF, IL-1 and IFN-y (Pober et al. 1986). ICAM-1 was identified as an adhesive 

receptor for P. jalciparum when pRBC of a parasite line that was repeatedly selected for 

high levels of binding to HUVEC were found to bind to ICAM-1-transfected COS cells 

(Berendt et al. 1989). Anti-ICAM-1 mAbs inhibit binding to both HUVEC- and 

ICAM-1-transfected COS cells, while pRBC bind to purified ICAM-1 immobilised on 

plastic, which can be blocked by anti-ICAM-1 mAbs (Berendt et al. 1992; Ockenhouse 

et al. 1992a). Binding to ICAM-1 is highly variable between parasite isolates 

(Ockenhouse et al. 1991a) and changes with antigenic switching in vitro (Gardner et al. 

1996). 

VCAM-1 and E-selectin are two leucocyte adhesion molecules expressed on 
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activated but not on un activated endothelial cells. Expression of these molecules can be 

induced by a number of stimuli, including TNF, IL-1, lipopolysaccharide (reviewed by 

Pigott & Power 1993) and pRBC (Udeinya & Akogyeram 1993). VCAM-1 and E

selectin immobilised on plastic were both found to bind pRBC of a particular wild 

isolate at low levels and anti-E-selectin Abs blocked adhesion of this wild isolate to 

TNF-activated HUVEC. A cloned parasite line derived from this isolate, which was 

obtained after selection for binding, showed increased binding to E-selectin and 

VCAM-l. Binding of this parasite clone to E-selectin was inhibited by anti-E-selectin 

Abs and to VCAM-1 by an anti-VCAM-1 mAb (Ockenhouse etai. 1992b). 

Chondroitin-4-sulphate is a glycosaminoglycan expressed by various cell types 

and can be detected on resting human cerebral endothelium (Aikawa et al. 1990). P. 

Jaiciparum pRBC selected for high binding to CHO cells were found to adhere to CHO 

cells expressing chondroitin sulphate but not to CHO cell mutants not expressing 

chondroitin sulphate (Rogerson et ai. 1995). This binding was inhibited by pre-treating 

the CHO cells with chondroitinase. pRBC also bound to immobilised chondroitin-4-

sulphate, which, as well as the binding to CHO cells, was inhibited by soluble 

chondroitin-4-sulphate. This adhesive phenotype may occur fairly frequently, and 

although binding is at low densities, it may be clinically relevant for some wild isolates 

of P. Jaiciparum (Chaiyaroj et ai. 1996). 

Several studies have investigated the relationship between cytoadherence and 

disease in P. Jalciparum infections. No correlation between disease severity and 

binding to TSP was noted in two separate studies (Sherwood et al. 1987; Hasler et al. 

1990), with TSP binding being high in all isolates examined. Cytoadherence either to 

purified CD36 or to C32 melanoma cells does not differ significantly in isolates from 

cerebral malaria compared to isolates from non-severe cases (Marsh et ai. 1988; Ho et 

ai. 1991; Ockenhouse et al. 1991a; Treutiger et al. 1992). Also, no correlation between 

disease severity and binding to ICAM-1 or HUVEC was observed in three studies 

(Ockenhouse et ai. 1991a; Cooke et ai. 1993; Ringwald et al. 1993), although in cases 

of fatal malaria expression of ICAM -1 is markedly raised in vascular endothelium 

(Turner et ai. 1994). Parasite isolates may also show high levels of cytoadherence in 

one assay but not in another (Goldring et ai. 1992). All these binding studies, whilst 

indicating cytoadherence phenotypes of parasite isolates, do not reflect the actual 

receptor profiles of the original hosts, which may vary both quantitatively and 

qualitively between hosts, between different sites in individual hosts and at different 

times during infection, due to differential stimulation by various factors including 

cytokines. One study which examined both together, using the patient's own peripheral 

blood monocytes taken during acute infection and during convalescence, showed a 

correlation between binding of pRBC to 'acute' monocytes and disease severity 

(Goldring & Hommel 1992). A correlation between disease severity and rosetting has 
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also been observed for P. jaiciparum in some studies (Carlson et al. 1990; Ho et al. 

1991; Treutiger et al. 1992; Ringwald et al. 1993; Rowe et al. 1995) Rosette formation 

may augment sequestration (Kaul et al. 1991; Nash et al. 1992), suggesting a role in the 

onset of severe disease. Another study, however, did not corroborate these findings 

(Al-Yaman et al. 1995), while rosetting has been observed among several isolates of P. 

vivax (Udomsangpetch et al. 1995), a species which does not cause cerebral malaria. 

Uninfected RBC and ring-stage pRBC show none of the adherence characteristics 

displayed by late stage pRBC (Udeinya 1990). The acquisition of these adherence 

properties must reflect changes in the pRBC membrane, and occurs concurrently with 

the development of knobs and the expression of variant Ags on the surface of pRBC. 

Knobs can be seen by both scanning and transmission electron microscopy to be 100nm 

submembranous protusions on the pRBC surface, each underlaid by electron dense 

material thought to be the structural component of the knob (Trager et al. 1966; Luse & 

Miller 1971). This includes the knob-associated histidine-rich protein (KAHRP or 

PfHRPl) (Kilejian 1979) which is associated with the cytoskeleton. The number of 

knobs increases with parasite maturation, whilst the size of each knob decreases 

(Gruenberg et al. 1983). Knobs are usually the points of contact for cytoadherence 

(Luse & Miller 1971; Udeinya et al. 1981; MacPherson et al. 1985) and are the location 

of parasite adhesins (Nakamura et al. 1992; Baruch et al. 1995), but their function is 

unknown. 

For many years, knobs were thought necessary for P. jaiciparum cytoadherence, 

but this is now known not to be the case. It is well established that knob formation is 

insufficient for cytoadherence (David et al. 1983; Udeinya et al. 1983) and 

cytoadherence of knobless strains has been observed upon repeated selection for 

binding to melanoma cells in vitro (Biggs et al. 1989; Udomsangpetch et al. 1989a). 

Other malaria species, including P. knowiesi (Miller et al. 1971a), P. berghei (Alger 

1963) and P. chabaudi (Cox et al. 1987), as well as immature gametocytes of P. 

jaiciparum, sequester but do not possess knobs. However, it is likely that knobs are 

advantageous in vivo, as they have been present on all wild isolates examined 

(Sherwood et al. 1987, 1989; Marsh et al. 1988; Ruangjirachuporn et al. 1992). Knobs 

may play a role in aiding pRBC cytoadherence by either projecting adherence 

molecules out from the pRBC surface, in a similar, if less marked manner, to microvilli 

on leucocytes, thought to potentiate adhesion to endothelium (Picker et al. 1991; Berlin 

et al. 1995; Scholander et al. 1996), or by clustering adherence molecules (Nakamura et 

al. 1992), thereby increasing binding avidity by ensuring multiple bonds have to be 

broken at anyone time in order to prevent or suspend pRBC cytoadherence. 

Several molecules have been proposed as candidate adherence ligands on the 

surface of pRBC (reviewed by Hommel & Semoff 1988; Howard 1988). These 

include: HRP 1 (Kilejian 1979); PfEMPl (Leech et al. 1984); PfEMP2, also called 

33 



mature parasite-infected erythrocyte surface Ag (MESA) (Coppel et al. 1986; Howard 

et al. 1987); an Ag called sequestrin (Ockenhouse et al. 1991b), which is probably 

PfEMPl (Pasloske & Howard 1994a); Ag 332 (Mattei & Scherf 1992); and modified 

(Crandall et al. 1993) or truncated (Sherman et al. 1995) band 3. Molecules thought to 

be involved in rosetting, including blood group Ags, have also been identified (Carlson 

& Wahlgren 1992; Udomsangpetch et al. 1993; Rowe et al. 1994). 

PfEMP1 has been identified as the parasite molecule involved in antigenic 

variation and involved in cytoadherence (see 1.5.2) and has now been shown directly to 

bind to CD36, ICAM-1 and TSP (Baruch et al. 1996). The general consensus is that 

PfEMP1 is the major parasite molecule involved in cytoadherence, although this does 

not exclude the possibility of other molecules being involved. 

HRP1 is an 80-120kDa parasite protein exported to the RBC membrane during 

the later stages of the erythrocytic cycle (Kilejian 1979). It is associated with knobs but 

is not surface-exposed (Taylor et al. 1987) and is therefore unlikely to act as an 

adherence ligand. However, HRP1 may promote cytoadherence, possibly by aiding 

knob formation, a notion consistent with the observation that deletion of the HRP1 gene 

results in loss of knobs (Pologe & Ravetch 1986; Biggs et al. 1989). 

PfEMP2 shows variation in MW and is associated with knobs, but is not exposed 

on the surface of pRBC (Coppel et al. 1986; Howard et al. 1987) and expression of this 

molecule is not required for cytoadherence (Petersen et al. 1989). It now seems 

unlikely that PfEMP2 is involved in cytoadherence. 

Ag332, also called Pf332, is a giant protein of 2.5 MDa, identified by a human 

mAb, 33G2. This mAb inhibits cytoadherence of some parasite lines to melanoma cells 

(Udomsangpetch et al. 1989a), although not completely. Abs affinity purified on a 

Pf332 repeat peptide do not inhibit cytoadherence and it is likely that mAb 33G2 cross

reacts with another, as yet unidentified, molecule (Iqbal et al. 1993). 

Band 3 is a transmembrane protein of 95kDa and is the major anion transporter in 

RBC. Two proteins which could not be labelled metabolically and were identified as 

cleavage products of band 3 were immunoprecipitated by mAbs which reacted with the 

surface of pRBC and blocked in vitro cytoadherence to C32 melanoma cells (Winograd 

& Sherman 1989; Crandall & Sherman 1991). Peptides representing regions of band 3 

also block cytadherence in vitro and prevent sequestration in vivo in P. falciparum

infected monkeys (Crandall et al. 1993). Initially, it was thought that a modification of 

a host sequence resulted in the adherence properties of band 3. It is now suggested, 

however, that the conformation and topography of band 3 peptides is of importance, 

with extensive deformation of the protein structure in truncated forms on mature P. 

falciparum pRBC exposing a previously cryptic adhesin, pfalhesin (Guthrie et al. 1995; 

Sherman et al. 1995). The host receptor identified for this adherence is CD36 (Crandall 

et al. 1994). The role of truncated forms of band 3 in cytoadherence and sequestration 
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is as yet unclear, but it is possible that interaction with PfEMPl is needed for efficient 

CD36-mediated binding. Pfalhesin may participate in rosetting as well as in 

cytoadherence, and in the absence of pRBC surface knobs, it is thought that rosetting 

may be the favoured of the two cell-cell interactions (Crandall et al. 1994; Sherman et 

al. 1995). 

1.6 Vaccine development 

The need for effective vaccines against malaria has become increasingly apparent due to 

the limited effectiveness of currently available control measures. The life cycle of 

Plasmodium, offers several possible vaccine strategies. Many Ags are presented to the 

immune system, but most are not suitable as vaccine candidates as they show 

considerable antigenic diversity or are poorly immunogenic, or elicit an inappropriate 

immune response (Miller et aL 1986). Immunity to malaria parasites appears to be 

largely stage-specific. Therefore, an effective vaccine may need to be multicomponent, 

providing protective immunity by generating the appropriate immune response (Ab, 

CD4 + or CD8+ T cell) against more than one, and perhaps all, stages of the malaria life 

cycle (Nussenzweig & Long 1994). In theory, this could be achieved with synthetic 

peptide constructs, DNA vaccines, purified recombinant proteins, or through live viral, 

fungal or bacterial expression, and each of these approaches is being actively 

investigated. 

1.6.1 Pre-erythrocytic stage targets 

Sporozoites attenuated by irradiation have long been known to give excellent protection 

against subsequent viable challenge in animals, including humans (reviewed by Jones & 

Hoffman 1994), though many infective bites from irradiated mosquitoes are needed to 

confer resistance. Most attempts to reproduce this immunity have focussed on 

recombinant or synthetic expression of part of the circumsporozoite protein (CSP), and 

in particular, the region of the molecule that comprises tandem repeats of short 

sequences of amino acids. In P. jalciparum, a four amino acid sequence, asparagine

alanine-asparagine-proline (NANP), is repeated, but perhaps because it is 

immunodominant during natural infections, the many small-scale clinical trials with 

candidate vaccines based on this structure have disappointed in terms of protection 

achieved (reviewed by Phillips 1992; Jones & Hoffman 1994). It may not be possible 

to reproduce the strong immunity induced by attenuated sporozoites in this way, as 

some of the long-lived protection elicited is thought to be a consequence of their ability 

to invade hepatocytes and thereby induce a variety of immune effector mechanisms 

targetting Ags other than CSP (Good et al. 1993). Nevertheless, further experimental 

and early clinical studies designed to enhance sporozoite-directed immunisation are 

continuing: these include use of multiple Ag peptides containing the NANP repeat as a 
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B cell epitope and T cell epitopes from tetanus toxin (Wang et al. 1995); immunisation 

with vaccinia and influenza virus constructs expressing B cell or CD8+ T cell epitopes 

of CSP (Hoffman et al. 1994; Rodrigues et al. 1994); NANP repeats plus the C 

terminus of CSP co-expressed in yeast with hepatitis B surface Ag (Gordon et al. 1995); 

and oral immunisation with P. Jalciparum CSP expressed in Salmonella typhi 

(Gonzalez et al. 1994). A novel recent approach has been the injection of naked DNA 

encoding the CSP, which induced CTL and Ab responses and gave good protection 

against P. yoelii challenge in mice (Sedegah et al. 1994). 

A different approach to induction of protective cytotoxic T lymphocyte (CTL) 

responses by vaccination has been pursued by Hill and colleagues. They showed that 

possession of the Bw53 class I HLA conferred protection against cerebral malaria and 

severe malarial anaemia (Hill et al. 1991). Reverse immunogenetics was then used in a 

search of pre-erythrocytic stage Ags for potential HLA-Bw53 epitopes. One epitope 

within the liver stage Ag (LSA-l), when expressed with HLA-Bw53, was recognised by 

CTLs from Gambians with the same class I Ag (Hill et al. 1992). Following extension 

of this study to include six HLA class I haplotypes common among both African and 

Caucasian populations, epitopes were found in four pre-erythrocytic stage Ags - CSP, 

LSA-l, TRAP (thrombospondin-related anonymous protein) and STARP (sporozoite 

threonine and asparagine rich protein). Screening cells from children and adults 

revealed CTLs in some individuals (Aidoo et al. 1995). The protective effect is 

presumed to be CTL destruction of infected hepatocytes, and the aim is that a subunit or 

recombinant vaccine based on the identified epitopes would induce significant CTL 

activity. 

1.6.2 Transmission-blocking targets 

The purpose of a vaccine against the sexual stages of the parasite would not be to 

protect the vaccinee from becoming infected, but instead the mosquito, thereby 

reducing the rate of transmission. In addition to a direct effect on the parasite 

inoculation rate, it would serve also to reduce the spread of genes responsible for drug 

or vaccine resistance, preserving the efficacy of other control measures. Effective, 

predominantly Ab-mediated, transmission-blocking immunity has been achieved 

experimentally and target Ags identified (reviewed by Kaslow 1993; Carter 1994). 

Immune responses directed against gamete Ags, such as Pfs230 and Pfs48/45 of P. 

Jalciparum, may be boosted further by infection as they are also expressed in circulating 

gametocytes. Although both have been sequenced and expressed in recombinant form, 

expression products that induce transmission-blocking Abs have not yet been made, 

probably due to difficulty in creating the tertiary structural conformation essential to the 

B cell epitopes (Carter et al. 1995). A second approach is to induce immune responses 

to ookinete surface Ags, such as Pfs25, expressed only in the mosquito. A yeast 
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recombinant form of Pfs25 has induced strong transmission-blocking immunity in 

rodents and monkeys (Kaslow et al. 1994) and has been approved for phase I clinical 

trials. 

1.6.3 Asexual erythrocytic stage targets 

The last decade has seen the identification, gene sequencing and expression, and 

experimental testing of several blood stage proteins as putative vaccine candidates 

(reviewed by Howard & Pasloske 1993; Jones & Hoffman 1994; Pasloske & Howard 

1994b). As yet, none of these Ags appears to be especially potent in inducing 

protection alone, and it is therefore likely that an effective vaccine will combine a 

number of Ags. The most interesting approaches have been those that have tried to 

identify and then block functions vital to parasite development. Thus, the C-terminal 19 

kDa portion of the merozoite surface Ag MSA-1 remains on the surface of merozoites 

while the rest of the molecule is cleaved and released at RBC invasion (Ling et al. 

1994). Natural Ab responses to this fragment correlate with resistance, and vaccination 

with a recombinant form is highly effective in mice (Ling et al. 1994), although this 

success has yet to be repeated in primates. To optimise the outcome of vaccinations, 

highly conserved regions of immunogenic molecules rather than those that are variable 

are best selected. When this was done with MSA-2, immunity effective against 

heterologous as well as homologous challenge was achieved (Saul et al. 1992). The 

ectodomain of apical membrane Ag 1 (AMA-1) (Crewther et al. 1990) expressed in E. 

coli and refolded in vitro gave good but strain-specific protection against P. chabaudi 

adami in mice and a highly antigenic form of P. Jalciparum AMA-1 from E. coli has 

been prepared for clinical trials (Targett 1995). 

1.6.4 SPf66 

The vaccine developed by Patarroyo and colleagues is a synthetic peptide polymer. The 

monomeric form consists of the N terminal sequences from three asexual blood stage 

Ags, Pf83 (part of MSA-l), Pf35 and Pf55, hybridised with two NANP repeat 

sequences from the CSP of P. Jalciparum. The early trials of efficacy in South America 

involved many thousands of people and established its acute safety and immunogenicity 

but attracted criticism of the methodology employed (reviewed by Tanner et al. 1995). 

Subsequent trials reported from Colombia (Valero et al. 1993), Tanzania (Alonso et al. 

1994), The Gambia (D'Alessandro et al. 1995; Leach et al. 1995) and Thailand (Nosten 

et al. 1996), and, when completed, the current further trials in The Gambia, Tanzania 

and Colombia, have been the subject of careful consideration. In Colombia, an overall 

protective efficacy of 33.6% against clinical malaria was achieved in an area of low 

transmission. In Tanzania, where malaria transmission is perennial and more intense, 

children 1-4 years of age were vaccinated and a level of protection of 31 % was 
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reported. By contrast, in the Gambian trial, in which infants 6-11 months old were 

recruited, SPf66 did not protect against a first clinical bout of malaria, overall incidence 

of malaria attacks, or infection. It is thought that the young age of the Gambian 

children may have precluded acquisition of a level of immunological competence to be 

able to respond adequately to vaccination, probably linked to a prior lack of clinical 

malaria, whereas the Tanzanian children would have experienced one or more attacks, 

and perhaps had developing immunity as a consequence (D'Alessandro et al. 1995; 

Targett 1995). A further two year surveillance in The Gambia is in progress and it is 

possible that some protection may be seen in subsequent transmission seasons. The 

disappointing results of the recently published Thai trial, which showed an efficacy of 

-9% over a 15 month period among children aged 2-15 years living in an area of low 

and seasonal P. Jalciparum and P. vivax transmission (Nosten et al. 1996), suggests, 

however, that the initial optimism with which SPf66 was received may not be 

warranted. 

The results of the SPf66 trials conducted in South America give an apparently 

reproducible, if relatively modest, level of protection. The true efficacy in trials 

elsewhere, with their much greater parasite challenge, may fall somewhere between the 

published results from Tanzania and those from The Gambia and Thailand, or the 

reported differences may be real, reflecting differences in age, exposure and parasite 

diversity. In order to establish precisely how the vaccine works, and whether it can 

lessen debilitation and severe morbidity as well as impacting on mortality, particularly 

in Africa, further field studies are required. However, the borderline efficacy reported 

against clinical malaria in the last two published trials, in The Gambia (D'Alessandro et 

al. 1995) and Thailand (Nosten et al. 1996), questions the justification for further 

evaluation of the vaccine potential of SPf66. 

1. 7 History and biology of Plasmodium chabaudi chabaudi 

Plasmodium chabaudi chabaudi (hereafter referred to as P. chabaudi ) was first isolated 

from the blood of thicket rats, Thamnomys rutilans, caught in the Central African 

Republic by Landau in 1965. The parasites infect mainly mature RBC (Landau 1965), 

although they can invade reticulocytes later in infection (Carter & Walliker 1975; Jarra 

& Brown 1989). Multiple infection of RBC with P. chabaudi can also occur (Carter & 

Walliker 1975). 

P. chabaudi provides a good and accessible model for many aspects of malaria 

research. It has some important similarities to P. Jalciparum and is recognised as an 

animal model for the human parasite (Long 1988; Mons & Sinden 1990; Gilks et al. 

1990). It forms a chronic, recrudescing, bloodstream infection which, in the natural 

host, can last for at least 2-3 years (Landau & Boulard 1978). Bloodstream infections 

are synchronous, although the asexual erythrocytic cycle is completed in only 24 h. 
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Peripheral withdrawal of schizonts to deep tissue capillaries also occurs (McDonald 

1977; McDonald & Phillips 1978; Gilks et al. 1990) and antigenic variation of pRBC 

surface Ags is a feature of infection (McLean et al. 1982b). 

Cloned, well-characterised lines of P. chabaudi were established by Carter & 

Walliker (1975) in laboratory mice from wild-caught isolates without any need for 

adaptation. These clones have been passaged cyclically in Anopheles stephensi and are 

free from contamination with other rodent malaria species and from pathogens such as 

Eperythrozoon cocco ides and Haemobartonella muris (Cox 1978, 1988). Isoenzyme 

patterns have been established, which have well-defined provenances and remain close 

to those of the original isolate (Beale et al. 1978; Walliker, personal communication). 

The AS strain of P. chabaudi in inbred NIH mice has a low rate of mortality and 

had been extensively used previously for various biological and immunological studies 

and in work examining antigenic variation in malaria parasites. This was therefore the 

parasite-host combination of choice in this study. NIH mice show a genetically

determined resistance to P. chabaudi AS (Stevenson et al. 1982), with infections lasting 

up to two months. The course of infection typically shows an acute primary 

parasitaemia followed by a period of subpatency and one or sometimes two short lasting 

recrudescences of low parasitaemia (McLean et al. 1982a). 

1.8 Experimental Rationale 

Antigenic variation is now an accepted feature of most, if not all, malaria parasites. It is 

a phenomenon that may be of importance in the severity and duration of malarial 

infection and disease (e.g. reviewed by Miller et al. 1994), but which is, however, still 

not fully understood. 

The host-parasite relationship of P. chabaudi in NIH mice has been studied for 

several years in Professor Phillips' laboratory, in terms of both host immunity to 

infection and immune evasion by parasites. P. chabaudi has been shown to undergo 

antigenic variation during the course of infection using a passive transfer system 

(McLean et al. 1982b). By this method, analysis of recrudescent populations indicated 

a mix of antigenic types (McLean et al. 1986a), and changes in antigenic type after MT 

(McLean et al. 1987). Antigenic variants could also be detected as early as d 13 p.i. 

(McLean et al. 1990). An indirect fluorescent antibody test which detect Ags on the 

surface of live, P. chabaudi schizont-infected RBC (live IFAT) has been developed 

(McLean et al. 1986b). A cloned parent parasite population and parasite clones derived 

from a recrudecence of the parent infection were examined in this test using a panel of 

immune sera collected on d 16 & 17 p.i.. From the recrudescent parasites, a mix of 

antigenic ally variant popUlations were detected, different from the parent population. 

However, the immune sera reacted homologously at low titres with only some of the 

parasite populations (Brannan et al. 1993). 
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These observations represented the starting point for the work presented in this 

thesis. These same cloned P. chabaudi populations were studied in a series of 

experiments, with the aim of increasing our knowledge and understanding of antigenic 

variation in asexual erythrocytic malaria parasites. 

As a result of the low or absent reactivity with the immune sera, a panel of 

hyperimmune sera was raised against the parasite populations, which was then used in 

the live IF AT to detect the antigenic ally variant populations. This confirmed the results 

attained with the immune sera, and demonstrated that some, but not all, the 

hyperimmune sera could react homologously to a high titre with the surface of pRBC. 

These sera were then also used to examine the effect of MT on the expression of variant 

Ags. 

The live IF A T analysis showed possible differences in the immunogenicity 

between different variant parasite populations. Therefore, the behaviour of some 

populations was studied in vivo, in terms of the overall pattern of infection, reticulocyte 

invasion, and whether recrudescences were again antigenic ally variant from the 

infecting population. 

Antigenic variation has been shown to occur at very high rates, up to 2% per 

generation, in P. Jalciparum in vitro (Roberts et al. 1992). Determination of the rate of 

antigenic variation is important as it pertains directly to the nature of the host-parasite 

relationship. Such a determination for P. chabaudi in vivo was deemed feasible with 

the availability of sera specific for some antigenic variants, and the use of a detection 

method similar to the live IFAT, IGSS (Hommel et al. 1991), which results in 

permanent preparations of pRBC detected by sera. Analysis of very large numbers of 

pRBC of individual variant Ag types (VATs) was possible, enabling the measurement 

of switching rates of individual V A Ts, and thereby providing estimates of overall rates 

of variation of P. chabaudi in vivo. 

Expression of surface variant Ags has been correlated with cytoadherence of P. 

Jalciparum in vitro (Magowan et al. 1988), while antigenic variation in P. Jalciparum is 

associated with changes in cytoadherence phenotypes (Biggs et al. 1992; Roberts et al. 

1992). A link has also been reported between sequestration and expression of variant 

Ags in P. chabaudi (Gilks et al. 1990). It was therefore considered of interest to 

examine the P. chabaudi variant populations in terms of both sequestration in vivo and 

cytoadherence in vitro. Given the link between loss of cytadherence and subtelomeric 

deletions in P. Jalciparum (Biggs et al. 1989), the chromosomes of the P. chabaudi 

variant populations were also examined by PFGE. 

MAbs are considered powerful tools for applying to immunochemical and 

molecular studies. In the context of the project, mAbs specific for surface variant Ags 

may be used to examine the relationship between antigenic variation, sequestration and 

cytoadherence of malaria-infected RBC. To this end, mAb production against variant 
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parasite populations of P. chabaudi was undertaken. 

The implications of the results presented, possibilities for future research and the 

role of murine models in the study of antigenic variation in malaria parasites are 

discussed. 
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Figure 1.1 The life cycle of Plasmodium spp. in mammals (adapted from Vickerman & Cox 1967) 
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2.1 Mice 

Inbred male NIH mice were used for most animal experiments. These were either bred 

in the WLEP animal house breeding facility or supplied by Interfauna (Huntingdon). 

Inbred BALB/C mice were also bred inhouse. All mice were kept at 220 C ± 2°C with 12 

h normal light (NL) from either 0800 to 2000 h or a reverse light (RL) cycle from 2000 

to 0800 h. They were fed on pelleted Labsure CRM breeder diet (Special Diet Services) 

and given both food and water ad libitum. For all experimental procedures, mice aged 

8-16 weeks were used. Mice in RL were kept in this light cycle for a minimum of one 

week before use. 

2.2 Parasites 

The AS strain of P. chabaudi chabaudi had been isolated originally from thicket rats 

(Thamnomys rutilans) for Professor David Walliker (University of Edinburgh) in March 

1969. The parasites were provided as a cloned mosquito-transmitted line by Professor 

Walliker to the University of Glasgow in 1973. The line has since been cloned twice by 

limiting dilution (Walliker et al. 1971). This cloned line is referred to as the parent 

population and all parasites have been derived from this. The history of the parent 

population is detailed in Fig. 2.1. 

A recrudescence was collected from a mouse initially infected with the parent 

population when the parasitaemia was 1.54%. This and the infecting parent population 

were then cloned by limiting dilution as above. Cloning of the recrudescence yielded 

10 clones. The derivation of these clones is described by McLean et al. (1986a). 

Herein, these recrudescent clones are referred to as recrudescent clone (RC) 1-10. The 

derivation and history of these recrudescent populations is detailed in Fig. 2.2. 

All parasites were maintained in the laboratory by cryopreservation and serial 

subpassage of infected blood in mice (see 2.3 and 2.4). 

2.3 Maintenance of parasites 

For longterm preservation, parasite stabilates were stored in liquid N2 (-196°C) (BOC). 

When required, infected blood was recovered from stabilate by the method of Mutetwa 

& James (1984 a & b). Each stabilate was defrosted by immersion of the cryotube 

(Nunc, Gibco) in water at 37°C, and then diluted with an equal volume of 15% w/v 

glucose in PBS (pH 7.2) (see Appendix A). This was then immediately injected i.v., via 

the lateral tail vein, into one or two naive mice. 

Parasites were maintained by blood passage in mice every 3-4 d. Mice were bled 

by cardiac puncture, under ether anaethesia, into sodium heparin (1000 i.u./ml, Evans 

Medical Ltd.) in PBS at 10 i.u./ml blood. The infected blood was injected i.v. either 

immediately into recipient mice, or diluted to the required concentration of parasites in 

RPMI 1640 (Gibco) (see Appendix B) containing 5% FCS (Gibco), the parasites being 
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stored on ice until inoculation. 

All parasite populations used experimentally were no more than 2-3 blood 

passages out of stabilate. 

2.4 Cryopreservation of parasites 

Parasites were cryopreserved as stabilates using the method of Phillips & Wilson 

(1978). Infected mice were bled by cardiac puncture when the majority of parasites 

were early ring stages (before 1000 h NL mice; after 1600 h RL mice) and the 

heparinised blood diluted 1: 1 with sorbitol-glycerol (see Appendix C) added dropwise 

with frequent mixing (Gray & Phillips 1981). This was aliquoted into cryotubes (0.2-

0.3 ml/tube) and snap frozen in liquid N2 . Each batch of stabilate was allocated a 

Wellcome Experimental Parasitology (WEP) number for reference. 

2.5 Determination of parasitaemia 

Parasitaemias were evaluated by examination of thin blood smears made from tail blood 

of infected mice. For NL mice, bloodsmears monitoring the course of infection were 

taken daily before 1200 h, and for RL mice, before 0900 h, in both cases before any 

peripheral withdrawal had occurred. In some experiments, on one day of infection only, 

hourly bloodsmears were taken either throughout the night (NL) or throughout the day 

(RL), over the period of time when peripheral withdrawal during schizogony occurs. 

The blood smears were air-dried, fixed in 100% methanol (Analar, BDH Ltd.) for 

1-2 min and stained in 10% Giemsa's stain (Gurr, BDH Ltd.) in phosphate buffer (pH 

7.4) (see Appendix A) for 30 min. They were then rinsed in tap water and air-dried 

before examination under oil immersion using x100 objective and x10 eyepiece lenses 

on a Leitz S.M. Lux binocular optical microscope. 

Parasitaemias were obtained by counting the % of RBC that were parasitised 

(pRBC). Parasitaemias were considered to be subpatent when no parasites were 

observed in 50 fields of view (approximately 10000 RBC). If the parasitaemia was ~ 2-

3% (> 3-4 parasites in a field of view), counts were made of 1-3 fields (at least 500 

RBC). Lower parasitaemias were evaluated by counting numbers of parasites in 30 

fields of view. 

2.6 Presentation of parasitaemic data 

For each course of infection, the day of infection was termed d O. The course of 

infection in a group of mice is represented graphically by plotting the geometric mean 

of the parasitaemia (mean 10glO of the number of pRBC/l05 RBC) against time 

(expressed in days). Where parasitaemias were followed by hourly bloodsmears over 

one day of infection, these are presented graphically as mean % parasitaemia. 

Peak parasitaemia data are presented graphically as median values ± interquartile 
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ranges, and where parasitaemic data are presented graphically in conjunction with 

reticulocyte data, median values are used. 

2.7 Cloning of parasites 

Parasites were cloned by limiting dilution in mice following the method of Walliker et 

al. (1971). Parasitised blood was collected from a P. chabaudi-infected mouse early in 

infection when the parasitaemia was < 2%, in order to minimise the risk of there being 

multiply-infected RBC. The parasitaemia was determined (see 2.5) (at least 2000 RBC 

were counted to ensured accuracy), and an accurate RBC count performed using a 

haemocytometer (improved Neubauer) in order to calculate the concentration of 

parasites in the blood. The blood was diluted accordingly in RPMI 1640 with 5% FCS 

and 1 % normal mouse blood. Mice were infected i.v. with 0.2 ml of a suspension of 

infected blood containing 1 pRBC/ml medium. The mice were checked for parasites 8-

15 d later, and where present, were preserved as stabilate. 

2.8 Culture of parasites 

Withdrawal from the peripheral circulation and sequestration in deep vascular tissue has 

been shown to occur in some strains of P. chabaudi (Shungu & Arnold 1972). 

Therefore, in order to obtain schizont/late trophozoite stage parasites of P. chabaudi , it 

is necessary to collect earlier stages by cardiac puncture from mice before sequestration 

occurs and to grow the parasites in short term in vitro culture. 

Infected blood was collected before 0900 h by cardiac puncture into sodium 

heparin (see 2.3) from mice kept in RL. The blood was washed once in RPMI 1640 and 

the RBC resuspended to a 10% haematocrit in medium with 5% FCS. This was 

dispensed into 33 mm diameter plastic Petri dishes (Cel-Cult, Sterilin) (1.5 ml/dish) and 

cultured in a candle jar at 370 C by the method of Trager & Jensen (1976). Development 

was monitored by examination of Giemsa's stained bloodsmears from the cultures and 

the RBC collected from culture when schizonts were beginning to appear (usually after 

approximately 2 h), or later when most parasites observed were schizonts (3-4 h). 

2.9 Raising hyperimmune sera 

Hyperimmune sera were raised as described by Brannan et al. (1993) by infecting mice 

repeatedly with cloned populations of P. chabaudi, according to a method suggested by 

Gilks & Newbold (personal communication), thereby maximising the immune response 

to a particular variant type. 

Mice were infected initially with 5 x 104 pRBC of a particular cloned population. 

This primary infection was allowed to clear completely before subsequent challenge. 

The secondary boost was of 1 x 107 pRBC given 81 d p.i., with subsequent boosts of 2.5 

x 108 , 1.5 X 108 ,3 X 108 and 2.5 x 109 pRBC given at monthly intervals following the 
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secondary boost. After the final boost, mice were killed and bled for serum by cardiac 

puncture 7-9 d later. 

2.10 Collection of serum 

Larger volumes of serum were collected from immunised mice by exsanguination by 

cardiac puncture under ether anaethesia. The blood was collected into hard glass 2 ml 

tubes (BDH) and allowed to clot at 37°C for 30 min. The clot was then loosened from 

the edge of the container with a glass Pasteur pipette (Bilbate), and incubated oln at 4°C 

for the clot to contract fully. The serum was then pipetted off into a microcentrifuge 

tube (Treff, Scotlab), any contaminating RBC removed by centrifugation (300 g for 5 

min) (MSE Microcentaur, Fisons), and the serum pooled, where appropriate, then 

aliquoted and stored frozen at -20°e. 

Smaller volumes (up to 100 ~l) were collected by bleeding mice from the tail into 

hard glass 2 ml tubes. Mice were prewarmed under a heat lamp and then 1-2 mm was 

snipped off the end of the tail using clean, sharp scissors. Tubes were filled to 

approximately 1 em depth with blood, and the blood allowed to clot and the serum 

collected and stored as described above. 

2.11 Mosquito transmission of parasites 

This was performed as described by McLean et al. (1987) and Brannan et al. (1993) in 

collaboration with Professor David Walliker (University of Edinburgh). Mice were 

infected with 106 pRBC of a particular parasite population. When gametocytes could be 

observed in the blood, previously starved Anopheles stephensi mosquitoes were allowed 

to feed on the infected mice. The day on which this was performed varied with different 

experiments, but was between 5-9 d p.i.. If mature oocysts were observed in the 

mosquitoes, they were then fed on an uninfected mouse 15 d after the infecting blood 

meal. Recipient mice were monitored for patent parasitaemia by daily bloodsmears, and 

stabilate made as appropriate. 

2.12 Statistical analysis 

Peak parasitaemia data were compared using the non-parametric Kruskal-Wallis one

way analysis of variance by ranks. Using this method of analysis, it is possible to 

perform multiple comparisons between different groups. This analysis was performed 

using the Minitab software program, followed by manual calculations to determine 

exactly if and where any significant differences were occurring. 

Infected reticulocyte data were analysed using the Wilcoxin signed rank test, 

again using Minitab. 
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2.13 Indirect fluorescent antibody test on live, schizont-infected RBC 

The 'live IFAT' method used was essentially that described by McLean et at. (1986b). 

Parasites collected at a parasitaemia of 20-30% from mice kept in RL were harvested 

from short term culture when just entering schizogony. After one wash in PBS/5% FCS 

(250 g for 5 min), 6-8 1-11 of packed RBC were added with mixing to 100 1-11 of 

appropriate dilutions of test antisera in micro centrifuge tubes and incubated at 37°C for 

30 min. RBC were pelleted and washed x2 in 1 ml PBS/5% FCS by 

microcentrifugation at 300 g for 1 min, before addition of 100 1-11 biotinylated anti

mouse IgG (Sigma) (1 :50 in PBS/5% FCS) to each tube with mixing. After a further 30 

min incubation, washing was repeated as above, and 100 1-11 of phycoerythrin

streptavidin (Sera-Lab) (1: 100 in PBS/5% FCS) added to each tube with mixing. The 

tubes were then incubated for 30 min at 37°C, washed as above and the RBC 

resuspended in 30 1-11 PBS/5% FCS. These were kept at 4°C until examined under a 

Leitz Ortholux optical microscope with UV light source using a rhodamine filter. 

2.14 Preparation of monoclonal antibodies 

The methodologies followed for growing hybridomas and screening for mAb 

production were adapted largely from those described by Harlow & Lane (1988). 

2.14.1 Immunisation of mice 

Parasites of each variant type were recovered from stabilate (see 2.3) and subsequently 

passaged into BALB/c mice, from which stabilates were prepared. All immunisations 

were perfOlmed using this BALB/c parasite material. Groups of 2-3 BALB/c mice were 

infected initially with 5 x 104 pRBC of a particular parasite population. The infection 

was allowed to clear completely before further challenge. Mice were then inoculated 

another 3-4 times with increasing numbers of pRBC (1 x 107 - 3 x 108 pRBC i.v.), 1-3 

months apart. 

2.14.2 Growing myeloma cells 

Myeloma cell line X63Ag8.653 was used. Approximately 5-7 d before fusion, cells 

were recovered from stabilate in liquid N2 by defrosting an ampoule in a waterbath at 

37°C. The cells were resuspended using a Pasteur pipette and transferred to a sterile 

universal, the ampoule being washed out with prewarmed RPMI 1640. After washing 

by centrifugation (250 g for 5 min) x2 in 10 ml medium at RT, the cells were 

resuspended in 5 ml complete medium (15% FCS; Flow) (screened for growth of 

myeloma cell line X63Ag8.653), and incubated in a 25 ml tissue culture flask (Greiner) 

at 37°C, 5% C02. The flask was examined for cell growth using an optical microscope 

with inverted light source (Leitz). Usually, 1 day after initiating the culture, 5 ml fresh, 

prewarmed complete medium was added. On d 2, 5 ml was removed and replaced with 
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5 ml fresh complete medium. By d 3, the cells were usually confluent. If so, they were 

resuspended using a Pasteur pipette and transferred to 30-40 ml complete medium in a 

75 ml flask, retaining a small amount of cells in the original flask in fresh complete 

medium. Cells were thus kept in log phase growth by subculture as necessary until used 

for fusions or frozen as stabilate in liquid N2. 

2.14.3 Preparation of spleen cells for fusions 

Mice were sacrificed 3-4 d after receiving the final boost of pRBC. The spleen was 

removed using aseptic techniques and dissociated in a sterile 9 cm diameter plastic Petri 

dish containing RPMI 1640 medium by pushing through a stainless steel sieve (mesh 

size 0.025 mm2) using the plunger of a 5 ml sterile plastic syringe (Becton Dickinson). 

The cells were dis aggregated further by passing up and down the 5 ml syringe and 

transferred to a sterile universal, leaving behind any connective tissue debris and large 

clumps of cells. The spleen cells were washed x2 in 25 ml of medium (250 g for 5 

min), resuspended in 5 ml medium and cell count/viability determined by 

haemocytometry (see 2.14.5). 

2.14.4 Preparation of myeloma cells for fusion 

Myeloma cells growing in log phase were harvested from culture (at least one 75 ml 

flask) and washed x2 in RPMI 1640 medium (250 g for 5 min), pooling cells into one 

universal after the first spin. The myeloma cells were resuspended in 10 ml medium 

and the cell count/viability determined. 

2.14.5 Determination of cell viability and cell counts 

Viabilities of cells were determined using the trypan blue exclusion test (Naysmith & 

James 1968). An appropriate dilution of cells was made in RPMI 1640 or in PBS and 

then further diluted 1: 1 in a solution of cold, 0.2% w/v trypan blue (Gurr, BDH Ltd.) in 

PBS. This suspension was then examined in a haemocytometer under phase contrast on 

an optical microscope (x40 objective, xlO eyepiece) to ascertain the cell concentration 

and viability. Dead cells were recognised by morphology and uptake of trypan blue. 

2.14.6 Cell fusion 

108 viable spleen cells were mixed with 107 viable myeloma cells in a sterile plastic 

universal and centrifuged (250 g for 5 min). All the medium was discarded and the 

cells resuspended gently by flicking the tube. 1 ml of the fusogen polyethylene glycol 

(PEG) 1500 solution in HEPES buffer (Boeringer-Mannheim) (prewarmed to 37°C) was 

added dropwise, rotating the universal gently, followed by the dropwise addition of 20 

ml of complete RPMI 1640 (15% PCS) (prewarmed to 37°C). The cells were washed, 

resuspended gently in 5 ml of warm complete medium, and incubated at 37°C, 5% C02 
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for 2 h. 

After incubation, the fused cells were centrifuged (250 g for 5 min). The SIN was 

discarded and the cells resuspended in 95 ml complete medium containing HAT (see 

Appendix B) and peritoneal wash cells (PWC) (see 2.14.7). The cells were then plated 

out into 5 sterile, flat-bottomed 96 well microtitre plates (Sterilin), 200 /-1l/well, with the 

first two rows of the first plate containing myeloma cells and PWC in HAT medium as a 

negative control. The plates were then transferred to a 5% CO2, 37°C incubator. Wells 

were screened for hybridoma growth 8-10 d later. 

2.14.7 Preparation of peritoneal wash cells (PWC) 

PWC were added routinely to hybridoma cultures as feeder cells. These were collected 

from BALB/c mice by peritoneal lavage with 5 ml ice-cold RPMI 1640, followed by 

aseptic aspiration of the cells into a 5 ml syringe with a 21 G needle. The cells were 

washed in 20 m1 ice-cold medium (250 g for 5 min at 40 C) and resuspended in ice-cold 

complete medium (15% FCS) at appropriate dilutions (see Appendix B). 

2.14.8 Growing hybridoma cells 

In wells where hybridomas were observed to be growing, medium was collected for 

screening for specific Ab production in the live IF AT. 50-100 /-1l/well of medium were 

replaced every 2-3 d with fresh HAT medium plus OPI (see Appendix B). When the 

hybridoma colonies were nearing confluency, they were transferred to 0.5 ml pre

conditioned medium (see Appendix B) in 24 well plates, with 200 /-11 being transferred 

back to the original well in the 96 well microtitre plate. The cultures in the 24 well 

plates were given fresh HT medium (see Appendix B) (0.2-0.4 ml) every 2-3 d, 

depending on growth. When confluent, the cells were transferred to 1-1.5 ml pre

conditioned medium in 6 well plates, by which time all fresh medium added was free of 

any HAT or HT. When confluent, the cultures were transferred to 25 ml culture flasks 

in 5 ml complete medium, which was replenished as necessary. Cells were frozen as 

stabilate from 24 well plates, 6 well plates and flasks, and on occasion, complete 96 

well microtitre plates were frozen (see 2.14.10). SIN were collected from plates and 

flasks throughout. 

2.14.9 Cloning of hybridomas 

Hybridomas were cloned, usually from cultures at the 24 well stage, but on occasion, 

earlier or later than this, by limiting dilution in 96 well microtitre plates at a dilution of 

1 cell/well or 0.5 cell/well. Complete medium plus OPI and PWC was used and 50 /-11 

medium was replaced every 2-3 d. Plates were screened for growth of clones 8-9 dafter 

cloning, and SIN from wells with hybridomas growing were screened for Ab by live 

IFAT. Positive clones were grown up as described above (see 2.14.8). 
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2.14.10 Cryopreservation of myelomas and hybridomas 

Myeloma and hybridoma cells were cryopreserved as stabilate in liquid N2. Cells were 

collected from culture and centrifuged (250 g for 5 min). SIN were removed and the 

cells resuspended in DMSO/lO% FCS at 1-3 x 106 cells/ml, if possible (sometimes 

where hybridoma cultures did not contain this many cells, they were frozen at lower 

concentrations). 1 ml aliquots were dispensed into cryotubes and frozen by controlled 

cooling at a rate of approximately 1°C/min in the vapour phase of liquid N2, using a 

freezing tray (Taylor-Wharton). After a minimum of 4 h, the cryotubes were transferred 

to the liquid phase for long term storage. 

On occasion, 96 well microtitre plates were frozen at -70°C following the method 

of Wells & Price (1983). When growth in the wells could be seen macroscopically by 

eye, SIN were collected (100 /-ll/well) for testing and replaced with fresh medium. 24 h 

later, SIN were aspirated and 50 /-ll of DMSOIlO % FCS added to each well. Each plate 

was wrapped in clingfilm (Clingo-Rap), placed in an insulator bag (Jiffy Packaging Co.) 

and frozen by transfer to a -70°C freezer. 

Hybridoma cells cryopreserved in liquid N2 were recovered from frozen in the 

same manner as for myeloma cells (see 2.14.2) and cultured in an appropriate volume of 

medium. 96 well microtitre plates cryopreserved at -70°C were recovered from frozen 

by the addition of 150 /-ll prewarmed complete medium, followed by incubation at 37°C, 

5% CO2 for 5 min. The freezing medium was aspirated and 200 /-ll fresh complete 

medium plus OPI added to each well. These hybridoma cultures were then grown as 

described in 2.14.8. 

2.14.11 Ascites production 

Ascitic fluid was raised in BALB/C mice primed with pristane (Sigma) (0.5 ml, i.p.) 1 

week prior to injection with hybridoma cells. Between 5 x 105-5 X 106 cells were 

injected i.p. and mice monitored for ascites after 1-2 weeks. Ascites were drained 

aseptically from the peritoneal cavity using a 19 G needle, clarified by centrifugation 

(300 g for 5 min), aliquoted and stored at -20°C, with repeated freeze-thawing avoided. 

Mice were drained of ascitic fluid as necessary up to 4 times. Mice were then 

exsanguinated by cardiac puncture under terminal ether anaethesia (see 2.10), and the 

serum pooled, aliquoted and stored at -20°C. 

2.14.12 Antibody isotyping 

MAbs were isotyped by Ouchterlony double diffusion. A solution of 2% agar In 

barbitone buffer (see Appendix A) was melted in a waterbath at lOooC, and poured onto 

pre-coated slides (see Appendix C) on a levelling table. When set, wells were formed 

using a 7 -well gel punch, followed by extraction of the gel plugs with a Pasteur pipette 

connected to a vacuum pump. Appropriate dilutions of mAbs raised against mouse 
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isotypes IgG 1, 2a, 2b, 3, IgA and IgM (Sigma) were placed in the peripheral wells, and 

of the test mAb (ascitic fluid) in the centre well. The plates were incubated at 4°C for 

24 h, then washed in excess PBS for 24 h to remove free protein, covered with filter 

paper, and dried oln at 37°C. Precipitation was visualised by staining in 0.1 % 

Coomassie Brilliant Blue R-250 solution (Sigma) (see Appendix C) followed by 

immersion in 0.3% vlv glacial acetic acid de stain solution until lines were clearly 

visible. A line of precipitate between the centre well and one of the outer wells 

indicated the isotype of the test mAb. 

2.15 In vitro cytoadherence 

2.15.1 Maintenance of adherent cell lines 

(a) B10 D2 cell line 

This cell line was kindly supplied by the Department of Cell Biology, University of 

Glasgow, as a growing culture. It is a mouse lung endothelial cell line which has been 

maintained in long term in vitro culture for > 20 years. Cells were incubated in 25 m1 

tissue culture flasks in 5 m1 of Ham's F-lO medium (Gibco) (see Appendix B), with 5% 

FCS and a medium supplement of ITS (Sigma) at 37°C. Medium was changed every 3-

4 d as required. When cultures were confluent, cells were trypsinised using 10% 

Trypsin (Sigma) in PBS to detach them from the bottom of the flask. The culture 

medium was removed and the cultures washed with 5 ml PBS. 1 ml of 10% Trypsin 

was added for 30 s with rocking. Excess trypsin was removed, leaving only residual 

amounts in the flask, and the flask placed at 37°C for 5-15 min, until the cells were 

observed to be detached from the flask. They were then resuspended in fresh medium 

and split as appropriate into 2-3 flasks, 5 mllflask. The cells were maintained in culture 

until used in binding assays or frozen as stabilate using the same method as for 

myeloma cells (see 2.14.10). 

(b) 3T3 and 3T3 A31 cell line 

The 3T3 cell line and the 3T3 clone A31 line were acquired from the European 

Collection of Animal Cell Cultures, Porton Down, as frozen stabilates. Both these cell 

lines were cultured in DMEM medium (Gibco) (see Appendix B), containing 10% FCS. 

They were defrosted by immersion of the cryotube in a 37°C water bath and the cells 

washed in 10 ml of warm medium (100 g for 5 min), before being resuspended in 5 or 

10 m1 of complete medium and cultured in 25 ml tissue culture flasks at 37°C, 5% C02. 

When confluent the cultures were split as appropriate into 3-5 flasks as for the B 10 D2 

cell line, but using 10% TlypsinlEDT A (Sigma) in PBS. The cells were maintained in 

culture until used in binding assays or frozen as stabilate (as for 2.14.10). 

For binding assays, cells were transferred to 33 mm 1.5 ml Petri dishes, 5 x 104 

cells Iml, and cultured for 48 h before use in binding assays. 
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2.15.2 Binding assay 

Binding assays were performed according to the method of Cox et al. (1987). Adherent 

cell lines were transferred to 33 mm 1. S ml Petri dishes, S x 104 cells/ml for the B 10 D2 

line, and 1 x 104/ml for the 3T3 line, and cultured for 48 h prior to the binding assay. 

Parasitised blood was collected from infected mice kept in RL, diluted with normal 

blood to 7% parasitaemia, and cultured short term as described (see 2.8), but in RPMI 

1640/10% FCS. The medium was removed from the adherent cell cultures and the cell 

monolayer washed x2 in RPMI 1640. The parasite cultures were then transferred to the 

adherent cell Petri dishes when the parasites were just entering schizogony. These were 

then incubated at 37°C for 1 h, with gentle rocking every 10 min. The RBC were then 

removed by washing several times with medium, and the cell monolayer fixed with 2 % 

glutaraldehyde in PBS for 30 min. Excess glutaraldehyde was removed and the cells 

stained with Giemsa's (10% in phosphate buffer) for 10 min. Binding was assessed by 

counting the number of pRBC bound to SOO cells. 

2.16 Immunogold silver staining (IGSS) 

The technique of immunogold staining of pRBC followed by silver enhancement 

(Hommel & Semoff 1988; Chadwick et al. 1989) was used in order to evaluate the % of 

pRBC expressing variant Ags during the course of P. chabaudi infection. Infected 

blood was collected from mice kept in RL and cultured short term as described (see 

2.8). Parasites were harvested from culture and washed in PBS/S% FCS. 6-8 1-11 of 

infected blood was incubated successively for 30 min at 37°C with 100 1-11 of 

appropriate dilutions of hyperimmune sera in PBS, then 100 1-11 rabbit anti-mouse IgG 

(1:20 in PBS) (Sera-Lab), and finally 100 1-11 Protein-A gold conjugate (S nm particle 

size, 1: 10 in PBS) (Auroprobe EM, Amersham). After each incubation, RBC were 

pelleted and washed x2 in 1 ml PBS/S% FCS. The RBC were then diluted to 

approximately 107/ml in PBS and thin blood films prepared using a cytospin centrifuge 

(106 RBC/well, ISO g for 10 min) in order to maintain the integrity of individual RBC. 

The slides were air-dried and the immunogold staining visualised by silver 

enhancement. The slides were fixed in 100% methanol for 2 min and air-dried, 

followed by washing x3 for S min in ddH20. Excess water was removed from each 

slide and 2-4 drops of silver stain solution (l: 1 enhancer:initiator) (IntenSETM M, 

Amersham) applied to each blood smear preparation for IS-18 min. The slides were 

then washed x3 in excess ddH20 and air-dried before staining in Giemsa's (10% in 

phosphate buffer) and examination by optical microscopy under oil-immersion. 

2.17 Preparation of parasite lysates 

'One-step ghosts' and total parasite lysates were made following the method of Newbold 

et al. (1982). Infected blood was collected by cardiac puncture from RL mice at 
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parasitaemias of:2 30%, and a RBC count performed by haemocytometry. The blood 

was passed through a sterile Whatman CFll powdered cellulose column (3ml CF 11 to 

Im1 whole blood), prewetted with RPMI 1640 at 37°C, to remove leucocytes from the 

sample (Beutler et al. 1976), washing through with prewarmed RPMI 1640, and the 

filtrate washed. The pRBC were then cultured short term until schizonts developed (see 

2.8). The pRBC were harvested from culture and washed x3 in PBS at 4°C. For one

step ghost preparations, approximately 5 x 108 RBC were mixed rapidly with 1 ml 5mM 

sodium phosphate (pH 8.0) containing 2mM PMSF (Sigma) and 20 ~g/ml DNase (Type 

1, Sigma). This was incubated for 5 min at 20°C and the membranes collected by 

microcentrifugation (300 g for 2 min). The SIN was discarded and the pellet stored at 

-70°C. For cell lysate preparations, the washed cells were resuspended to 

approximately 1-2 x 109 RBC/ml in PBS containing 2mM PMSF and 20 ~g/ml DNase, 

kept on ice. Cells were lysed by 2 x 5 s pulses of an MSE sonicator (Fisons) on 

maximum power. The lysates were aliquoted and stored at -70°C. 

2.18 Determination of total protein concentration 

Protein concentrations of samples for analysis were determined by spectrophotometric 

measurement at 595 nm using the Coomassie blue G-250 Pierce protein assay reagent 

(Pierce Chemical Co.), based on the method of Bradford (1976). The microassay 

procedure was used, whereby protein concentrations in the range of 1-25 ~g/ml can be 

determined. A known protein concentration series between 1-25 ~g/ml was prepared by 

diluting a 2 mg/ml stock BSA standard (Pierce) in PBS. 1 ml of protein assay reagent 

was added with mixing to 1 ml of each of the dilute standards and the unknown protein 

sample (diluted as appropriate) in clean test tubes. PBS was used as a blank. 

Absorbance was read at 595 nm on a UV spectrophotometer (Pye Unicam PU 8600) 

against the blank, the value of which was then subtracted from each protein absorbance 

to give the net absorbance for each sample tested. 

2.19 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

2.19.1 Electrophoresis 

Separation of proteins was carried out by the method of Laemmli (1970), using the gel 

electrophoresis apparatus GE 2/4 LS (Pharmacia). 0.7 mm thick 5-25% gradient gels, 

consisting of 120 mm separating gel and 10 mm stacking gel, were prepared (see 

Appendix C) using a gradient former (Pharmacia) and peristaltic pump (LKB). Samples 

were mixed with SDS-PAGE sample buffer (see Appendix A) and boiled for 10 min 

prior to loading onto gel. Sample buffer contained 5% ME or 1 mg/ml iodoacetamide 

(Sigma) for reducing and non-reducing conditions, respectively. Usually, 20 ~l sample 

buffer was added to 20 ~l protein sample diluted in PBS for each well, loading 60 ~g 

protein sample/well. The MW of parasite proteins were estimated by reference to MW 
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marker proteins (Pharmacia 17-0446-01) (MW range 14-94 kDa). 

Electrophoresis was carried out for 4 h at a constant current of 40 rnA/gel, or for 

16 h o/n at 8 rnA/gel, using SDS-PAGE running buffer (see Appendix A). Gel tanks 

were cooled by circulating water at 4°C to minimise any gel distortion due to heating 

during electrophoresis. 

2.19.2 Staining polyacrylamide gels for protein 

Proteins were visualised following electrophoresis by incubating gels for 2h in 0.1 % 

Coomassie Brilliant Blue R-250 in a solvent solution of 25% methanol, 10% acetic acid 

and 1 % glycerol, followed by destaining in the solvent until a clt1ar background was 

obtained. Stained gels were dried onto filter paper (Whatman) using a gel slab drier 

(Bio-Rad, 1125B) at 80°C. 

2.20 Western blotting 

2.20.1 Transfer to nitrocellulose 

Immunoblotting was performed by the method of Towbin et al. (1979). 5-25% SDS 

gels were run as described (see 2.19), using gels with a single large well (10x standard 

size) for samples and, on either side, standard wells for MW markers. Proteins were 

electrophoretic ally transferred onto nitrocellulose (Hybond C-extra, 0.45 !-lm) 

(Amersham), using a Tris-glycine/SDS transfer buffer, pH 7.0 (see Appendix A) in a 

Trans-blot cell (Bio-Rad) at a constant current of 100 rnA for 16 h at 4°C. 

2.20.2 Enzyme-linked antibody detection system 

Following transfer, the nitrocellulose membrane was air-dried and cut into 1 cm wide 

strips. One sample strip and the strips for MW markers were stained in 0.1 % amido 

black (BDH) in 45% methanol, 10% acetic acid for approximately 15 min to visualise 

proteins, then de stained in the solvent. The remaining strips were incubated for 1 h in 4 

ml 20% soya milklO.5% Tween-20 (Sigma) in wash buffer (see Appendix A) to block 

non-specific binding of anti-serum to the nitrocellulose. After this, and for all 

subsequent steps, the membrane was washed x3 for 5 min in wash buffer. The 

nitrocellulose strips were then incubated for 90 min with primary Ab (immune mouse 

sera) (4 ml/strip), diluted 1:500 in wash buffer, followed by incubation for 1 h with a 

secondary layer of anti-mouse IgG conjugated to alkaline phosphatase (1 :500 dilution in 

PBS, 4 ml/strip). All incubations and washes were carried out on a rocking table at RT. 

Specific binding was visualised by incubating the strips in a solution of the 

substrate, NBTIBCIP (see Appendix C) at a final concentration of 0.1 % AP buffer (see 

Appendix A), allowing 2 ml/strip. The reaction was terminated when bands could be 

seen clearly, before non-specific background staining occurred, by removing the 

substrate solution and adding EDTA (10 mM in PBS), 2 ml/strip. The strips were then 
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air-dried and stored away from direct light. 

2.21 Pulsed field gel electrophoresis (PFGE) 

2.21.1 Preparation of DNA samples 

Infected blood was collected under sterile conditions by cardiac puncture from 2 RL 

mice (> 1 ml/mouse) for each variant type at a parasitaemia of ~ 30%, and a RBC count 

performed by haemocytometry. The blood was passed through a prewetted 10 ml sterile 

Whatman CF11 powdered cellulose column to remove leucocytes (Beutler et at. 1976), 

washing through with prewarmed RPMI 1640 medium, and the filtrate washed. The 

pRBC were then cultured short term until schizonts developed (see 2.8). The pRBC 

were harvested from culture and washed x2 in PBS. The packed RBC were 

resuspended to 1ml in PBS and lysed by the addition of an equal volume of 0.15% 

saponin in PBS. The parasites were then washed x3 in excess PBS (200g for 10 min) 

and resuspended in PBS to the required concentration (final concentration in agarose of 

5 x 108 or 2.5 x 109). An equal volume of 2% low melting point agarose (Sigma) in 

PBS at 42°C was added with gentle mixing, and the mixture pipetted quickly into 

moulds (Bio-Rad) prewarmed to 42°C. These were incubated for 20 min at 40 C to 

allow the agarose blocks to set. The blocks were gently removed from the moulds into 

PFGE lysis solution (see Appendix C) and incubated for 48 h at 420 C, with one change 

of solution, then stored at 40 C in lysis solution without proteinase K. Blocks thus made 

and stored may be kept for several years without noticeable degradation of DNA. 

2.21.2 Electrophoresis 

PFGE was performed using a contour-clamped homogeneous electric fields (CHEF) 

apparatus (CHEF-DR II system, Bio-Rad) (Chu et al. 1986; Vollrath & Davis 1987). 

DNA samples (approximately 0.25 of a 100 III block) were loaded into the wells of a 

100 ml agarose gel (IBI) (l % in 0.5x TBE) (see Appendix C). For 7 d electrophoresis, 

chromosomal grade agarose was used (Bio-Rad). The wells were topped up with low 

melting point agarose (l % in 0.5x TBE). Electrophoresis was carried out in 0.5x TBE 

at 12°C, either for a total of 72 h, with the first 24 h at 140V, 120 s switch time, then 24 

hat l30V, 300 s switch time, and the final 24 h at 140V, 180 s switch time, or for a total 

of 168 h at 80V with switch time increasing from 180 s to 1000 s. DNA size markers of 

chromosomes of Saccharomyces cerevisiae , ranging in size from 0.2-2.5 Mb, and of 

Hansenula wingei, ranging in size from 1.05-3.13 Mb, were used. Bands were 

visualised by ethidium bromide staining for 15-20 min and examined on a UV 

transilluminator. 

56 



Fig. 2.1 History of Plasmodium chabaudi chabaudi AS strain parent 

populations. Derived from Thamn01nys rutilans number 339 caught 

in the Central African Republic, March 1969. 
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Fig. 2.2 Derivation and stabilate history of recrudescent populations 

of P. c. chabaudi AS. 
Cloned parent population Day 30 pj. 
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CHAPTER 3 

ANTIGENIC VARIANTS OF Plasmodium chabaudi AS AND THE EFFECTS 

OF MOSQUITO TRANSMISSION: ANALYSIS BY LIVE IFAT 
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3.1 Introduction 

Antigenic variation has been shown to occur in several species of malaria parasite. The 

size and nature of the possible repertoire of variant Ags available to the parasites has, 

however, only been appreciated very recently with the identification of the large and 

diverse var gene family for P. Jalciparum PfEMP1 (Baruch et al. 1995; Smith et al. 

1995; Su et al. 1995), and is still not fully defined. In particular, little is known about 

the role that cyclical transmission through mosquitoes may play in determining the 

expression of these surface variant Ags. 

The first indication of antigenic variation occurring in Plasmodium was reported 

by Cox (1959, 1962) in P. berghei infections. Antigenic variation is now considered to 

be a feature of most, if not all, malaria infections. Early studies were performed using 

uncloned parasites. In order to eliminate the possibility of minor populations of 

antigenic ally diverse parasites being present in the initial infecting population, however, 

it is now considered necessary to use clonal parasites, with which antigenic variation 

during malarial infection may be demonstrated unequivocally. 

Different methods have been used to study the occurrence of antigenic variation 

during malarial infection. Some early studies compared resistance of animals to 

reinfection with parasites of the initial infecting parent population and with parasites 

from following recrudescences (Cox 1959; Voller & Rossan 1969 a & b). Antigenic 

variation in P. knowlesi was first identified using a schizont agglutination (SICA) test 

(Brown & Brown 1965). Later, an indirect fluorescence antibody test (IFAT) was used 

to identify variant populations of P. knowlesi (Hommel & David 1981; Barnwell et al. 

1983b) and of P. Jalciparum (Hommel et al. 1983). More recently, modifications of 

previously utilised techniques have also been developed and used to study variant 

populations of P. Jalciparum : these include an immunogold-silver enhancement 

method (Hommel et al. 1991) and a mixed agglutination assay (Newbold et al. 1992; 

Roberts et al. 1992). 

P. chabaudi was initially shown to undergo antigenic variation during the course 

of infection in NIH mice using a passive transfer system for analysis of variant 

populations (McLean et al. 1982 a & b). This distinguishes variant populations by the 

level of passive protection conferred by immune sera raised against homologous and 

heterologous parasite populations. Using this system, McLean et al. (1986a) examined 

parasite populations cloned from a recrudescence. The results of this, using immune 

sera raised against the infecting parent population, indicated that not only are 

recrudescences antigenic ally different from the infecting parent population, but also 

contain a mix of variant types. Subsequently, a method was developed for in vitro 

analysis of antigenic ally variant parasites of P. chabaudi using a triple layered IFAT on 

live pRBC (live IFAT) (McLean et aI. 1986b). This method detects variant-specific 

Ags on the surface of late trophozoite/schizont-infected RBC. Immune sera [collected 
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on d 16117 p.i., when passive protection was found to be optimal (McLean 1985)] were 

raised against the cloned parent and recrudescent parasite populations described in the 

passive transfer study (experiment 1) (McLean et al. 1986a). Using these sera and 

parasite populations in the live IFAT, four different variants could be detected from the 

recrudescence, all different from each other and from the parent. However, a +ve Ab 

titre of only 1:50-1:80 was observed using these sera, and six of the clones showed no 

reactivity with any of the immune (d 16117) sera (Brannan et al. 1993). 

In order to analyse further these variant parasite populations, hyperimmune serum 

was raised against each of the recrudescent clones, the cloned parent population and one 

of the recrudescent clones after mosquito transmission (MTRC 1). The first part of this 

chapter presents the results of testing this panel of hyperimmune sera against the parent 

and recrudescent clones in the live IFAT. 

The sexual process which Plasmodium undergoes during transmission through 

mosquitoes can generate parasite diversity (Walliker et al. 1975, 1987). The effects of 

such processes on expression of antigenic variants seen in asexual erythrocytic forms 

are not clear, but merit investigation as an understanding of the role of MT in 

influencing such variation may be important both in terms of parasite biology and 

vaccine development. Voller & Rossan (1969a) described an apparent change in 

antigenic type of P. cynomolgi bastianelli upon cyclical transmission through 

mosquitoes. An alteration in antigenic type after MT of P. knowlesi has also been 

observed (Draper & Voller 1972). These early studies were, however, performed using 

uncloned parasite populations. McLean et al. (1987) reported the effects of MT of both 

uncloned and cloned antigenic variants collected from recrudescences of a previously 

cloned 'parental' type population of P. chabaudi, again using the passive transfer system 

to analyse variant populations. These experiments indicated a reversion to the parental 

type upon transmission through mosquitoes. It was suggested that antigenic variants of 

P. chabaudi AS strain may revert to a basic type after MT. 

The second part of this chapter describes the results of MT of recrudescent cloned 

variant populations. Analysis by live IFAT using the panel of hyperimmune sera was 

performed on the cloned recrudescent population isolated following MT described 

previously by McLean et al. (1987) (MTRC 1), on another recrudescent population (RC 

7) which had been transmitted successfully through mosquitoes (MTRC 7), and on the 

original parental parasite line obtained from Edinburgh post-MT but before any 

subsequent cloning (MT Par). 

3.2 Live IF AT analysis of the parent and recrudescent clones using 

hyperimmune sera 

The derivation of the P. chabaudi cloned parasite populations was described by 

McLean et al. (1986a) and is outlined in chapter 2. The parent clone and the 10 
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recrudescent clones (RC 1-10) were examined in the live IF AT (see 2.13) using 

hyperimmune sera raised against each of the populations and against MTRC 1 (see 2.9). 

Each parasite population was recovered from stabilate (see 2.3) and inoculated i.v. into 

mice kept in a RL cycle. In all cases, parasites examined in the live IF AT were no more 

than 2-3 blood passages from stabilate. For each combination of sera and parasites, the 

test was performed at least twice, and sera titred out to a +ve end point. The test was 

scored qualitatively on a +ve/-ve basis. Samples were scored -ve when no +ve 

fluorescence was observed on ;.::: 3000 pRBC. Results were marked as very few +ve 

pRBC where approximately::; 5% +ve pRBC were observed as compared to the 

homologous serum results. The results of this analysis are shown in Table 3.1. 

Hyperimmune sera were more successful in detecting variant Ags on the surface 

of pRBC compared to immune (d 16/17) sera, in so far as a homologous +ve result was 

obtained with all the hyperimmune sera (Table 3.1). In some cases this was to a very 

high titre, with no apparent decrease in the number of +ve pRBC with increasing serum 

dilutions. A certain level of cross reactivity between heterologous sera and 

recrudescent populations was, however, apparent. The hyperimmune serum raised 

against the parent population, however, was totally specific, and did not react with any 

of the recrudescent populations, though it was +ve only to a titre of 1 :200. The 

hyperimmune sera raised against RC 4, 7 and 10 all gave a very high +ve serum titre 

against the homologous parasite populations of 1: 10000; there was, however, some 

degree of cross reactivity at lower titres. With anti-RC 10 hyperimmune serum, this 

cross reactivity was minimal, with a very low titre of 1: 10 +ve fluorescence against only 

three other cloned parasite populations. None of the hyperimmune sera raised against 

any of the other recrudescent clones showed any reactivity with RC 10. With anti-RC 7 

hyperimmune serum, there was a +ve fluorescence against several other cloned 

populations, but in each case not to such a high titre as against the homologous 

parasites. There was no reactivity against RC 10, 8 and the parent. Hyperimmune sera 

raised against some of the other recrudescent clones did show a low level of reactivity 

with RC 7, but +ve fluorescence was never obtained with serum titres of> 1: 100 in all 

instances. With hyperimmune serum raised against RC 4, there was a slightly greater 

degree of cross reactivity with some of the other recrudescent clones, but on no 

occasion did the serum give a +ve fluorescence to as high a titre as with the 

homologous parasite population. RC 4 did also show some cross reactivity with 

hyperimmune sera raised against other recrudescent clones, but again, not to as high a 

titre as with the homologous serum. Hyperimmune serum raised against RC 8 was 

specific for RC 8, but only to a +ve serum titre of 1:50 except for a very few pRBC of 

RC 5 showing +ve fluorescence at a titre of 1: 10 with this serum. 

From Table 3.1, it can be seen also that the other recrudescent populations, RC 1, 

2, 3, 5, 6 & 9, to which hyperimmune sera were raised and tested in the live IFAT, all 
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showed similar levels of reactivity and cross reactivity with homologous populations 

and with each other, respectively. The effects of considering these as one variant type 

and therefore merging the results for these is shown in Table 3.2, along with the results 

for RC 4, 7, 8 and 10, and the hyperimmune sera raised against these. This condensed 

presentation helps to clarify the results of this analysis. 

It can be noted from Table 3.1 that the hyperimmune serum raised against MTRC 

1 reacted with all the cloned populations, though at a low serum titre. The parent, RC 1, 

8 and 10 showed only a very few pRBC giving +ve fluorescence with this serum. 

3.3 Mosquito transmission of recrudescent clones and analysis by live IF AT of 

parasite populations after mosquito transmission 

In total, MT was attempted once each for RC 4 and RC 7, and twice each for RC 8 and 

RC 10. Of these, only RC 7 was transmitted successfully through mosquitoes and 

parasites collected from a mouse on which the infected mosquitoes had fed. In all other 

cases, oocysts were observed to develop, but either these failed to mature properly, or 

seemed to mature normally, but no sporozoites were seen in the mosquito salivary 

glands and mice failed to become infected when mosquitoes were fed onto them. The 

parasites collected from RC 7 transmitted through mosquitoes (MTRC 7), as well as 

MTRC1 and the original parental line post-MT but pre-cloning (MT Par) (see Figs. 2.1 

& 2.2) were each tested in the live IFAT using the panel of hyperimmune sera. The 

results of this can be seen in Table 3.3. For both RC 1 and RC 7, the pattern of 

reactivity had altered significantly following transmission through mosquitoes. Both 

MTRC 1 and MTRC 7 showed a higher +ve serum titre (1: 1000) with the hyperimmune 

serum raised against MTRC 1 than with any other hyperimmune sera. This was also the 

case for the uncloned parental parasite population, MT Par. Only hyperimmune sera 

raised against the parental clone and RC 8 showed no reactivity with any of the MT 

populations. RC 7 hyperimmune serum was +ve only to a titre of 1:100 against MTRC 

7 and to a titre of 1:500 against MTRC 1. All other hyperimmune sera showed differing 

degrees of +ve fluorescence against the MT populations. With the exception of MTRC 

1 hyperimmune serum, however, there were noticeably fewer +ve pRBC with all 

hyperimmune sera giving +ve fluorescence in the live IF AT against both MTRC 1 and 

7, and also against MT Par. 

3.4 Discussion 

The results of the live IF AT using the hyperimmune sera indicate that cloned parasites 

derived from a recrudescence vary antigenic ally from the parent and from each other. 

This confirmed the results obtained with immune (d 16/17) sera previously reported 

(Brannan et al. 1993) and demonstrated the effectiveness of using the live IFAT method 

to detect antigenic variants of P. chabaudi. When the immune (d 16/17) sera were 

63 



used to analyse the recrudescent clones, four variant clones were identified by +ve 

fluorescence with homologous sera, all different from each other and from the parent. 

Testing with the hyperimmune sera confirmed this, showing these four recrudescent 

clones to be distinct from each other and from the parent. The other six clones also 

showed +ve fluorescence, unlike the case with the immune sera, where these all gave 

-ve results in the live IF AT. These six all appeared to be of a similar antigenic type. 

From this, a possible five antigenic types have been identified in the recrudescence, all 

distinct from the parent. This mix of antigenic types, determined using the live IF AT 

on clones of a recrudescence, confirms the results of McLean et al. (l986a), though 

with the passive transfer system, only three variant types could be identified definitely 

by their sensitivity to immune sera. The six antigenic types identified here probably do 

not represent the total repertoire of variants available to the parasite. In P. knowlesi, 

uncloned populations may consist of at least ten variants (Howard & Barnwell 1985) 

and in P. Jalciparum, ten variants were identified from the Indochina-1 strain (Hommel 

et al. 1991) and multiple variants have been shown to arise from a cloned population in 

vitro (Roberts et al. 1992). It is also apparent from the results of MT of P. chabaudi 

presented herein that other variants can appear. As a family of 50-150 var genes 

encodes the surface variant Ag PfEMPl of P. Jalciparum (Baruch et al. 1995, Su et al. 

1995), it may be that the number of antigenic types identified in the above studies is a 

conservative estimate of the true potential for antigenic diversity of variant Ags 

expressed on the surface of malaria-infected RBC. 

Of the four most distinct recrudescent clones of P. chabaudi examined herein, 

hyperimmune sera to three, RC 4, 7 & 10, were of high homologous titres, though there 

was a certain degree of cross reactivity observed with different clones at low titres. RC 

8 was distinct in that even with hyperimmune sera from mice infected six times, a titre 

of no higher than 1:50 could be obtained. It is possible that the variant Ag(s) on this 

parasite clone may be either poorly expressed or of low immunogenicity. 

The cross reactivity observed between different clones with the hyperimmune sera 

may be due to the immunised mice being exposed to other variant types during the 

course of primary infection, which is allowed to clear completely before further 

reinfections. Recrudescences have, therefore, arisen which will contain parasites 

antigenic ally different from the immunising population. Subsequent reinfections, 

though cleared rapidly in the immune mice, may persist long enough for variants to 

arise, and increasing levels of specific Ab to the immunising popUlation may possibly 

induce increased rates of antigenic variation by the challenge parasites. The induction 

of antigenic variation by Ab has been indicated by experiments with P. knowlesi 

(Brown 1973; Barnwell et al. 1983a). It is not known whether antigenic variation in P. 

chabaudi infections in mice is induced by Ab. The data presented in this chapter, 

whilst demonstrating that variation of Ags expressed at the surface of pRBC occurs 
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during the course of infection, give no indication of how these variants arise. However, 

intrinsic antigenic variation has been shown to occur spontaneously and at high rates 

early during the ascending primary parasitaemia in P. chabaudi infections (Brannan et 

al. 1994; chapter 6), and antigenic variants have been shown to be present during 

remission of the primary patent parasitaemia in mice infected with a cloned population 

of P. chabaudi (McLean et al. 1990), though not to the same extent as in the 

recmdescent populations. Whether these are all the same as the variants present in the 

recmdescence has not been determined. Variant parasites, having persisted through 

subpatency, may recrudesce due to the decline in the effector arm of the immune 

response observed to be associated with the appearance of a recmdescence (McLean et 

al. 1982b). It is clear, though, that immunised mice will have experienced to some 

degree, different parasite variants during the course of infection and reinfection. 

It is also possible that these variant Ags belong to a family of Ags, similar in 

structure and perhaps possessing shared epitopes, in which case some level of cross 

reactivity could be expected to be observed in hyperimmunised mice. The case for a P. 

chabaudi variant Ag family is strengthened by results showing that P Jalciparum 

variant Ags are encoded by a large multi-gene family (Su et al. 1995). 

The initial lack of success in transmitting recrudescent populations through 

mosquitoes was probably due, at least in part, to the time of year the experiments were 

undertaken. This was in June/July, when on some particularly hot days the extraneous 

temperature affected the regulation of the temperature in the insectary, causing it to rise 

to levels too high for parasite development in the mosquitoes (Walliker, personal 

communication). The optimal temperature for sporogony of P. chabaudi is 260 C 

(Killick-Kendrick 1971), and much above this will result in an absence of infective 

sporozoites present in the mosquito salivary glands. Success was finally achieved 

during the winter months. It is also possible that the failure of some recrudescent 

popUlations to be transmitted through mosquitoes is due to syringe passage of the 

parasites, albeit limited to the absolute minimum necessary. Repeated syringe passage 

can have a deleterious effect on infectivity of Plasmodium to mosquitoes (Landau & 

Boulard 1978). However, MT is a difficult procedure which is not guaranteed success 

simply by the very nature of working with the combination of live parasites, animals 

and insects. 

Successful MT of recrudescent clones resulted in parasites which gave a different 

pattern of reactivity against the panel of hyperimmune sera in the live IFAT, indicating 

an alteration in antigenic type. This did not appear to be to the antigenic type of the 

cloned parental population used in this analysis. However, when the original parental 

population, obtained upon MT but prior to any subsequent cloning (MT Par), was tested 

against the panel of hyperimmune sera in the live IF AT , a similar pattern of reactivity to 

that seen with MTRC 1 & 7 was observed. Earlier studies (McLean et al. 1987) 
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comparing one of the same recrudescent parasite populations and its MT counterpart, 

using the passive protection assay, had indicated reversion to parental type. The 

apparent difference in results may be due to the different methods of analysis used. The 

passive protection assay used by McLean et al. measured the sensitivity of MT parasite 

populations to immune sera raised against the parent population. MT populations were 

found to be similar in sensitivity to the parental type, whereas the recrudescent 

population prior to transmission through mosquitoes was insensitive to the protective 

effect of the immune serum. This therefore implied an apparent reversion to parental 

type. The live IFAT analysis reported in this chapter detects expression of variant Ags 

on the surface of pRBC. These may not be the only Ags affected by MT, and indeed, 

there is no evidence as yet to equate the antigenic changes detected by the two assays, 

or even that the Ags concerned are located at the same site inion the pRBC. It is, 

however, possible that MT may effect a reversion to a 'wild' or 'parental' type parasite, 

the properties of which are retained to some extent by clones derived from this. Indeed, 

the fact that the original MT parental population prior to cloning, and from which all 

parent populations are directly derived by cloning, shows a similar pattern of reactivity 

as the two MTRC populations is supportive of this notion. It is probable that these 

populations all show sensitivity to anti-parent sera using the passive transfer system. 

Subsequent cloning of this parental population, however, has resulted in the parental 

clone used in this analysis being of a different surface antigenic type, even though 

McLean et al. (1986a) had observed all clones of the parent to be sensitive to anti

parent sera. Cloning the parasites is performed by limiting dilution in mice, a process 

which takes 10-15 d, during which time it is possible that switching of surface variant 

Ags, as detected by live IFAT, could occur. 

Previously, Voller & Rossan (1969a) reported a change in antigenic type after 

cyclical transmission of P. cynomolgi bastianelli. This was not to the parent type. It 

may, however, have been to a variant type occurring earlier in the infection of the 

monkey from which the parasites were obtained prior to transmission. Draper & Voller 

(1972) also noted an alteration in antigenic type of P. knowlesi after MT. The results 

described herein confirm these earlier findings. 

Parasite populations obtained upon passage through mosquitoes, though not 

identical, appear to contain a mix of antigenic types. Although there is reactivity with 

hyperimmune sera against recrudescent populations, the higher titre reactivity seen with 

both MTRC popUlations against hyperimmune serum raised against MTRC 1 suggests 

the occurrence of a new antigenic type upon MT. This appears to be the predominant 

antigenic type present in the MT populations. 

The apparent mix of antigenic types of P. chabaudi in the MT populations is 

perhaps analogous to Trypanosoma brucei infections, where tsetse-transmitted 

populations are found to contain a mix of antigenic types (Hajduk et al. 1981). For T. 
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brucei, this is due to a very high switching rate in fly-transmitted populations (Turner & 

Barry 1989). It may be that in P. chabaudi, a similar phenomenon caused by cyclical 

transmission accounts for the mix of antigenic types seen in mosquito-transmitted 

populations (Turner, personal communication). 

Antigenic variation in malaria parasites is now an accepted phenomenon, and the 

use of P. chabaudi infections in mice as a model provides a means of studying this as it 

occurs in vivo. Whilst it is possible to study in vivo antigenic variation of P. Jalciparum 

in squirrel monkeys (Hommel et al. 1983), mosquito infection from this host remains 

difficult practically and is not routinely performed. Therefore, for determining the role 

of MT in influencing the expression of variant Ags, at present P. chabaudi provides the 

most suitable model. 
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Table 3.1 Titres of hyperimmune sera against cloned populations of P. c. chabaudi positive in the live IFAT. 

POPULATION HYPERIMMUNE SERA RAISED AGAINST 

TESTED 
parent MTRC1 RC 1 RC2 RC3 RC4 RC5 RC6 RC7 RC8 RC9 RC 10 

parent 200 *100 

RC 1 *100 1000 100 100 100 100 100 100 1000 10 

RC2 100 1000 1000 100 100 1000 1000 100 1000 10 

RC3 100 1000 1000 1000 1000 1000 1000 1000 1000 

0\ RC4 100 500 100 100 10000 100 500 100 100 00 

RC5 100 1000 100 100 100 500 500 100 *10 500 

RC6 100 1000 100 100 1000 500 1000 100 1000 

RC7 10 100 100 10 10 100 100 10000 100 

RC8 *50 50 

RC9 100 500 500 100 500 100 100 500 1000 

RC 10 *100 10000 

All values show reciprocal serum titres. *indicates very few positive pRBC. 
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Table 3.2 Titres of hyperimmune sera against cloned populations of P. c. chabaudi 

positive in the live IFAT, grouping together those which show a similar 

pattern of reactivity. 

POPULATION HYPERIMMUNE SERA RAISED AGAINST 

TESTED 
parent MTRC1 RC4 RC7 RC8 RC 10 Rest 

parent 200 *100 

RC4 100 10000 100 100 

RC7 10 10 10000 100 

RC8 *50 50 

RC 10 *100 10000 

Rest 100 500 100 10 1000 

All values show reciprocal serum titres. *indicates very few positive pRBC. 
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Table 3.3 Positive titres in live IF A T of hyperimmune sera against cloned populations of P. c. chabaudi, and against 

these same populations and the original uncloned parent population after mosquito transmission. 

POPULATION 

TESTED 

HYPERIMMUNE SERA RAISED AGAINST 

parent MTRC 1 RC 1 RC2 RC3 RC4 RCS RC6 

RC 1 *100 1000 100 100 100 100 100 

MTRC 1 1000 100 100 10 500 500 100 

RC7 10 100 100 10 10 100 100 

MTRC 7 1000 100 10 500 100 100 100 

MTPar 1000 100 10 100 100 100 100 

(uncloned) 

All values show reciprocal serum titres. *indicates very few positive pRBC. 

RC7 RC8 RC9 RC 10 

100 1000 10 

500 500 100 

10000 100 

100 100 500 

100 100 100 



CHAPTER 4 

THE BEHAVIOUR OF CLONED ANTIGENIC VARIANTS OF 

Plasmodium chabaudi AS in vivo 
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4.1 Introduction 

Antigenic variation may be an important means by which malaria parasites evade the 

host's immune response, thereby allowing persistence of the asexual erythrocytic stages 

in the bloodstream of the semi-immune host. Little is known about whether expression 

of different variant Ags causes any differences in the biology or behaviour of the 

parasites in vivo. P. chabaudi AS in NIH mice provides an accessible model in which 

to study antigenic variation in malaria parasites in vivo. In this system, P. chabaudi 

displays a course of infection showing an acute primary patent parasitaemia followed by 

one, or sometimes two, patent recrudescences. Some parasite clones derived from a 

recrudescence have been shown to be antigenic ally different from the cloned infecting 

population and from each other (McLean et al. 1986a; Brannan et al. 1993; chapter 3). 

A distinguishing character of P. chabaudi is the reported predilection for mature 

RBC (Landau & Boulard 1978). Carter & Walliker (1975) reported that in mice, 

normocytes were predominantly invaded, though during acute parasitaemia, when 

considerable reticulocytosis results, reticulocytes are also invaded (Carter & Walliker 

1975; McDonald 1977; Jarra & Brown 1989). However, in chronic infections in CD4+ 

T cell-depleted mice, a preference for reticulocytes has been observed (Taylor

Robinson & Phillips 1994c), and McNally et al. (1992) reported that in vitro, P. c. 

chabaudi displays a preference for reticulocytes. 

This chapter describes some aspects of the behaviour of antigenic ally variant 

cloned populations of P. chabaudi examined in vivo. The courses of infection in NIH 

mice of the parent population and of four variant populations were examined in terms of 

the overall pattern, levels of peak parasitaemia and types of RBC invaded during the 

ascending parasitaemia. Further antigenic variation of these variant parasites was 

examined by live IF AT analysis of recrudescent populations collected during infections 

initiated by the variant parasite populations. 

4.2 The course of infection of variant populations in mice 

Groups of 6-7 mice were each infected i.v. with 1 x 105 pRBC/mouse of different 

antigenic types. These were the cloned parent population, RC 4, 7, 8 & 10. The course 

of infection of each of these is shown in Fig. 4.1. Parasitaemias of individual mice were 

monitored by examination of daily bloodsmears by optical microscopy and are 

expressed as the log of the geometric mean of each group. In all five cases, the course 

of infection of the primary patent parasitaemia followed an overall similar pattern and 

the rate of parasite growth early during the ascending parasitaemia was similar for those 

variant populations so analysed (see chapter 5). 

Fig. 4.2 shows the peak primary parasitaemias observed in each of the groups. 

These are expressed as the median ± interquartile range of each group and statistical 

analysis was performed using the Kruskal-Wallis one-way analysis of variance. RC 10 

72 



peaked at a significantly lower parasitaemia (P < 0.05) of just less than 20%, compared 

to approximately 40% in the other groups. In mice infected with the parent or RC 10 

parasites, peak parasitaemias occurred on d 9-10 pj., and in mice infected with RC 4, 7 

or 8, parasitaemias peaked on d 8-9 pj. (Fig. 4.1). Parasitaemias of mice in all groups 

went subpatent around d 20 pj., and in the parent, RC 4, 7 & 10 groups, the subpatent 

period was of a similar duration, with reclUdescences appearing between d 25-30 p.i .. 

However, in the RC 8-infected group, reclUdescences were not observed until after d 40 

pj., and then in only 3 of 6 mice in the group up to d 62 pj., when the experiment was 

terminated. 

The peak parasitaemias observed in the reclUdescences are illustrated in Fig. 4.3. 

The peak reclUdescence parasitaemias observed in the parent group were significantly 

greater (P < 0.05) than the peaks observed in the RC 4 & 7 groups. The peak 

reclUdescences observed in the RC 10 group were higher than in the RC 4 & 7 groups, 

but lower than in the parent group, and were not significantly different from any of 

them (P > 0.05). RC 8 peak reclUdescences could not be compared statistically due to 

the small sample size. 

4.3 Reticulocytes during the early stages of infection 

Reticulocytes were examined from d 7-11 pj. on the Giemsa's stained thin blood smears 

used for monitoring the overall parasitaemias (see 4.2). This study was performed to 

assess the extent of reticulocytosis and parasite invasion of these cells and whether 

reticulocyte invasion had any bearing on the courses of infection of the variant parasite 

populations. The % of reticulocytes present and the % of reticulocytes infected were 

monitored for individual mice. Statistical analysis was performed using the Wilcoxin 

signed rank test to assess preference of invasion for each group, and reticulocyte % 

were compared on each day between groups using the Kruskal-Wallis one-way analysis 

of variance. The results of these analyses are presented in Figs. 4.4 - 4.6. 

In all groups, the proportion of RBC comprising reticulocytes increased as the 

parasitaemia increased and then continued to increase, over the period examined, after 

the parasitaemia had peaked (Fig. 4.4). When comparisons were made between groups 

on each day (Fig. 4.5), all groups showed < 10% reticulocytes on d 7, but with the RC 7 

group significantly lower than the parent group on this day (P < 0.05). On d 8, all 

groups still showed < 10% reticulocytes, but with the RC 10 group significantly lower 

than the RC 8 group (P < 0.05). By d 9, all groups showed an increase in reticulocytes 

to> 10%, with the RC 4 & 8 groups showing an increase to > 20% reticulocytes. The 

parent and RC 10 groups showed a reticulocyte % significantly lower than these groups 

(P < 0.05). Reticulocyte % in the RC 7 group was not significantly different from any 

of the other groups. Again, on d 10, reticulocyte % in the parent and RC 10 groups 

were significantly less than in the RC 4 & 8 groups, with the parent and RC 10 groups 
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showing around 20% reticulocytes, and RC 4 & 8 > 40%. By d 11, the % of 

reticulocytes in the RC 4, 7 & 8 groups had risen to » 60%, with the RC 10 group 

slightly less but not significantly so. The parent group, however, still showed a 

significantly lower % of reticulocytes than the RC 7 & 8 groups (P < 0.05), but this was 

nevertheless > 40%. 

From Fig. 4.4, it can be seen that as the % parasitaemia increases to a peak and 

then decreases, the % of reticulocytes infected follows a similar pattern, but at a lower 

% in all but the RC 10 group. In this group, the % of reticulocytes infected was greater 

than the % parasitaemia on d 7 & 8. By comparing the data for % parasitaemia and for 

% reticulocytes infected, no significant preference could be observed in the parent 

group, but in the RC 4, 7 & 8 groups, parasites showed a significant preference for 

mature RBC throughout the days examined (P < 0.05). For RC 10, a significant 

preference for reticulocytes was observed on d 8 (P < 0.05), but on d 9, 10 & 11, this 

was reversed, with a significant preference observed for mature RBC (P < 0.05). 

In all groups, the % of parasites observed in reticulocytes increased over the 

period examined as the % of reticulocytes present increased (see Fig. 4.4). However, 

from Fig. 4.6, it can be seen that on d 7 pj., > 5% of RC 10 parasites were within 

reticulocytes compared to around 1 % of parasites in reticulocytes in all other groups. 

This was statistically significant (P < 0.05). On d 8, the % of RC 10 parasites in 

reticulocytes was significantly greater (P < 0.05) than for RC 4 & 8, but not any others. 

Through d 9-10, the % of RC 10 and parent parasites in reticulocytes increased more 

slowly than for the other groups, with significant differences being observed between 

the parent group and the RC 8 group on d 9, and between the RC 4 group and both the 

parent and RC 10 groups on d 10. By d 11, all groups showed approximately 30-40% 

of parasites in reticulocytes, with no significant differences observed between any of the 

groups. 

4.4 Live IF AT analysis of recrudescences 

Recrudescences were collected during the course of infection of each variant. These 

were then tested using the panel of hyperimmune sera in the live IFAT. The pattern of 

reactivity is shown in Table 4.1, with the reactivity of the cloned populations which had 

initiated the infections shown above for comparison (from Brannan et al. 1993; see also 

chapter 3). The parasite populations had all altered from the pattern observed in the 

cloned variant types which had initiated the infections. From these results, all the 

recrudescences appear to contain a mix of variant types, but recrudescences from 

infections with different variant types all showed very similar patterns of reactivity 

against the panel of sera. 
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4.5 Discussion 

The results of this study show that the course of infection of P. chabaudi AS in NIH 

mice can differ for different cloned antigenic ally variant populations. The parasite 

clones used were all derived from a previously cloned parent popUlation, which had 

undergone phenotypic antigenic variation during the course of infection (McLean et al. 

1986a; Brannan et al. 1993). The differences observed in vivo between some of these 

antigenic ally variant populations possibly may reflect alterations in immunogenicity 

and/or functional characteristics associated with expression of antigenic ally variant 

molecules on the surface of pRBC. Indeed, expression of variant Ags has already been 

associated with cytoadherence of P. falciparum-infected RBC in vitro (Magowan et al. 

1988), with sequestration of P. c. chabaudi and of P. fragile in vivo (Gilks et al. 1990; 

Handunnetti et al. 1987) and with virulence of P. knowlesi (Barnwell et al. 1983b). 

Antigenic variation of P. falciparum in vitro has also been shown to be associated with 

alterations in adhesive phenotypes (Roberts et al. 1992). 

The most striking differences in the courses of infection are the consistent and 

significantly lower peak parasitaemia observed in RC lO-infected mice, and the 

later/lack of recrudescence in RC 8-infected mice. Although this chapter describes the 

courses of infection followed only once, the group sizes were all sufficiently large to 

ensure the validity of the statistical analysis and the main differences observed between 

the courses of infection were also observed during other experiments. The lower peak 

primary parasitaemia in the RC 10 group was not due to an intrinsically lower rate of 

growth (see chapter 5) and was observed, without exception, in other experiments. This 

may be due to this variant being significantly more immunogenic than the other 

variants. This has not been demonstrated to be the case in terms of provoking a specific 

Ab response in hyperimmunised mice, where the same serum titre is attained against 

RC 4, 7 & 10 in the live IFAT (Brannan et al. 1993; chapter 3). However, RC 10 may 

provoke a greater level of non-specific, non-Ab responses compared to other variants, 

or RC 10 parasites may be more susceptible to immune effector mechanisms such as the 

production of NO, known to occur around the peak of the primary parasitaemia and to 

contribute to the control of this phase of P. chabaudi infections (Taylor-Robinson et al. 

1993, 1996). 

The preference for reticulocytes exhibited by RC 10 early in infection could 

possibly impose a limitation on the growth of these parasites, but this preference is 

transitory and by peak parasitaemia the preference is for normocytes, similar to that for 

the other groups. However, the differences in reticulocyte invasion of RC 10 compared 

to the other parasite clones may possibly play some role in the lower peak parasitaemias 

observed in mice infected with RC 10. P. berg/wi, P. yoelii and P. c. chabaudi

infected reticulocytes are reported to be more immunogenic than similarly infected 

normocytes (Poels et al. 1977; Jarra & Brown 1980; Jayawardena et al. 1983; Schetters 
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et al. 1986). Therefore, the increased level of reticulocyte invasion by RC 10 parasites 

early in infection, small as it may appear, may induce an increased or more rapid 

immune response which prevents the parasitaemia in these mice from reaching the 

levels observed in infections with other variants. 

The difference in the onset of a recrudescence in RC 8-infected mice compared to 

the other groups is of interest, especially in light of the results of Gilks et al. (1990), 

where the apparent loss of expression of variant surface Ags, and therefore the loss of 

ability of the parasite to undergo antigenic variation, resulted in a lack of recrudescence. 

Herein, it was possible to raise hyperimmune serum to a titre of only 1 :50 against RC 8 

surface Ags in a live IF AT following identical immunisation procedures, which, for 

other variants, achieved much higher titres (Brannan et al. 1993). Therefore, either the 

variant Ags expressed by RC 8 are of much lower immunogenicity or are expressed at 

much lower levels. The results of the live IFAT analysis of the recrudescences show 

clearly, however, that antigenic variation can still occur in the RC 8 population. The 

reasons for the latellack of recrudescence in RC 8-infected mice are thus not clearcut. It 

may be that there is a lack of expression of variant Ags, and thus an inability to undergo 

antigenic variation, in all but a few of RC 8 parasites. Recrudescences, if appearing at 

all, would therefore occur considerably later because the longer time taken for the few 

surviving variants to multiply to detectable levels. If those parasites in the popUlation 

able to undergo antigenic variation are indeed present at a low frequency, some mice 

may have either received an inoculum containing no such parasites, resulting in no 

recrudescence, or an inoculum containing so few parasites that recrudescences develop 

even later, beyond the timescale of the experiment. Alternatively, where no 

recrudescences were observed, it is possible that recrudescences were present at very 

low levels, below the limit of detection by examination of Giemsa's stained thin blood 

smears by optical microscopy (sensitivity approximately 1 pRBC in 10000 RBC). 

Other means of analysis would need to be used to ascertain whether parasites were still 

present in the mice. Sub-inoculation of blood from the infected mice into naive mice 

and monitoring these for patent parasitaemia would be a sensitive if rather laborious 

method, which could determine the presence of pRBC not detected by examination of 

bloodsmears from the initial infections. This has been used to detect the final clearance 

of pRBC from the bloodstream of infected mice (eg. Gilks et al. 1990). Amplification 

of parasite genomic DNA by the polymerase chain reaction (PCR) is a recent molecular 

technique for detecting very low numbers of parasites in the bloodstream of infected 

animals (Snounou et al. 1992; Tirasophon et al. 1994), and which could be applied to 

such investigations. 

Recrudescences in mice infected with the parent population showed a higher peak 

parasitaemia than in the other infections, significantly so compared to RC 7 & 8. This 

may be due to the fact that in the parent infections, there is no cross reactivity between 
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the infecting population and the recrudescent parasites in terms of surface Ags, as 

determined by the live IFAT analysis, thereby allowing the recrudescent parasitaemia to 

reach a higher level before immune mechanisms effect remission to subpatency. In 

infections with the other recrudescent populations, there is a certain level of cross 

reactivity between the infecting population and the recrudescent populations, as 

determined by live IF A T analysis. Therefore, the immune response, having been 

primed to these common surface Ags, may be able to react more rapidly to the 

recrudescent parasites, effecting a lower recrudescent peak than in the parent infections. 

The fact that the variant populations, derived as antigenic variants of the parent 

population, can undergo further antigenic variation indicates that this process is not a 

single event in the course of infection of P. chabaudi, and that in a natural host-parasite 

combination, subsequent recrudescences will consist of further antigenic variants, as has 

been observed to occur in P. fragile infections in toque monkeys (Handunnetti et al. 

1987). 

Reticulocytes were examined during the ascending parasitaemia to investigate any 

involvement in the different peak parasitaemias observed. Assessment of reticulocyte 

numbers was by examination of Giemsa's stained thin bloodsmears. Slides were not 

coated with brilliant cresyl blue to stain residual nucleic acid in reticulocytes, due to the 

slides being prepared without the intention of examining reticulocytes, which was 

subsequently decided upon. However, identifying reticulocytes without this 

counterstaining is straightforward, and comparable results are obtained both with or 

without brilliant cresyl blue (Taylor-Robinson, personal communication). Indeed, the 

type of Giemsa's stain used is more important and can affect such results considerably 

(Taylor-Robinson & Phillips 1993b). The results obtained here for reticulocyte % in 

the RBC population during P. chabaudi infection appear to correspond to those of Jarra 

& Brown (1989) and Taylor-Robinson & Phillips (1993b) using similar Giemsa's 

staining. However, in neither of these ~tudies did they report a % of infected 

reticulocytes > the % parasitaemia, as has been observed for RC 10 early during 

infection. This preference for reticulocytes seen in RC 10 infections, be it only 

transitory, indicates that the preference for mature RBC in vivo reported for P. 

chabaudi (Carter & Walliker 1975; Landau & Boulard 1978) may not always be 

uniform, as demonstrated by the results of Taylor-Robinson & Phillips (1994c) and may 

explain the preference for reticulocytes observed in vitro by McNally et al. (1992). 

That cloned variant populations of P. chabaudi, derived from a previously cloned 

population, can differ significantly and consistently in the course of infection is of 

importance in interpreting, comparing and extrapolating results obtained from murine 

malaria models. The particular surface variant Ags expressed by malaria parasites may 

influence the outcome and severity of infection, and thereby emphasises the complexity 

of the host-parasite relationship. 
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Figure 4.1 The course of infection in groups of mice infected with 

antigenic ally variant populations of P. chabaudi AS. 

1 x 105 pRBC/mouse i.v. on dO. a. parent; b. RC 4; c. RC 7; d. RC 8; e. RC 10. 
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Figure 4.2 Primary peak parasitaemias in groups of mice infected with 

antigenically variant populations of P. chabaudi AS. 

1 x 105 pRBC/mouse i.v. on d O. Median peaks ± interquartile ranges. 
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Figure 4.3 Recrudescent peak parasitaemias in groups of mice infected with 

antigenic ally variant populations of P. chabaudi AS. 

1 x 105 pRBC/mouse i.v. on d O. Median peaks ± interquartile ranges. 
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Figure 4.4 RBC invasion in groups of mice infected with 

variant populations of P. chabaudi AS . 

1 x 105 pRBC/mouse i.v. on d O. a. Parent; b. RC 4; c. RC 7; d. RC 8; e. RC 10. 

Lines represent median % for parasitised erythrocytes ( • ), parasitised 

reticulocytes (--0--), reticulocytes ( • ) and parasitised reticulocytes as a % of 

total parasitised erythrocytes (--0--). 
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Figure 4.5 Comparison of reticulocytosis on d 7-11 p.i. in groups of mice 

infected with antigenically variant populations of P. chabaudi AS. 

1 x 105 pRBC/mouse i.v. on d O. Parent (D), RC 4 (D), RC 7 (D), RC 8 (m) and 

RC 10 (tzl). Median % ± interquartile ranges. 
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Figure 4.6 Comparison of parasitised reticulocytes as a % of total pRBC 

on d 7-11 p.i. in groups of mice infected with antigenically variant 

populations of P. chabaudi AS . 

1 x 105 pRBC/mouse i.v. on d O. Parent (D), RC 4 (D), RC 7 (D), RC 8 (EJ) and 

RC 10 (Ed). Median % ± interquartile ranges. 
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Table 4.1 Live IF AT analysis of recrudescences of infections with antigenically variant populations of 

P. chabaudi compared with the reactivity of the infecting population. 

POPULATION HYPERIMMUNE SERA RAISED AGAINST 

TESTED 
parent MTRC 1 RC 1 RC2 RC3 RC4 RC5 RC6 RC7 RC8 RC9 RC 10 

parent 200 *100 

parent d31 100 500 100 1000 100 500 500 100 *10 500 *10 

RC4 100 500 100 100 10000 100 500 100 100 

RC 4 d3l 500 500 100 1000 500 100 500 100 *10 500 *10 
00 
.j:::.. 

RC7 10 100 100 10 10 100 100 10000 100 

RC 7 d33 500 500 100 1000 100 500 500 100 *10 500 *10 

Re8 *50 50 

RC 8 d47 500 500 100 1000 100 500 500 100 *10 500 *10 

RC 10 *100 10000 

RC 10 d31 500 500 100 1000 100 500 500 100 *10 500 *1000 

All values show reciprocal serum titres. *indicates very few +ve pRBC. 
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5.1 Introduction 

Chronicity of infection is an important contributor to malarial pathogenesis (reviewed 

by Howard 1988; Terry 1988) and is due, at least in part, to antigenic variation, an 

immune evasion mechanism which is also a feature of several other parasitic protozoa 

and bacteria (see 1.5.2). As described previously (1.5.2), malaria parasites have been 

shown to undergo antigenic variation in several host-parasite combinations and it is 

now accepted to be a feature of most, if not all, malaria parasites. 

A determination of the rate of antigenic variation is of interest because it pertains 

directly to the nature of the host-parasite interaction. Parasite populations undergoing 

antigenic variation interact with the immune system such that individual variant Ag 

types (VATs), and VAT-specific Ab, are detected in linear sequence in an infection 

(e.g. Handunnetti et al. 1987). This pattern has been observed in a wide variety of 

systems that undergo antigenic variation (reviewed by Borst 1991; Turner 1992). If 

switching occurs at a low rate, then a straightforward relationship can be envisaged 

involving 'pacing' of the parasite switching rate with development of V AT -specific 

immune responses of the host. If antigenic variation occurs at a high rate, however, this 

view cannot be correct and a more complex functional strategy for immune evasion has 

to be envisaged. The rate of antigenic variation of P. Jalciparum in in vitro culture has 

been reported to be very high, at up to 2% per generation (Roberts et al. 1992). 

A possible explanation for a more complex strategy for antigenic variation may 

lie in the association between the cytoadherence/sequestration phenotype, which allows 

avoidance of immune clearance in the spleen of infected hosts (see 1.5.2), and antigenic 

variation (Roberts et al. 1993). An association between these two evasion mechanisms 

has been demonstrated in P. Jalciparum (Biggs et al. 1992; Roberts et al. 1992) and in 

P. chabaudi (Gilks et al. 1990). It may be necessary to consider the functions of both 

mechanisms in combination. As sequestration of P. Jalciparum in the brain is 

associated with the pathology of human cerebral malaria (MacPherson et al. 1985), the 

rate of antigenic switching may also be important because of its potential effect on the 

severity of disease, not only in terms of parasitaemia and chronicity of infection, but 

also in terms of the cerebral pathology that may be induced. 

Experiments with P. Jalciparum are essentially restricted to in vitro models, as 

there is a lack of suitable and available laboratOlY hosts for in vivo studies. P. chabaudi 

infection in mice, therefore, has become a recognised model in which to study host

parasite processes of malarial infection in vivo (Long 1988) and antigenic variation has 

been shown to occur during P. chabaudi infections (McLean et al. 1982 a & b, 1986; 

Gilks et al. 1990; Brannan et al. 1993). The characteristic infection (see 1.7), a 

synchronous asexual erythrocytic cycle with schizonts sequestering to deep tissue 

capillaries and with VATs expressed on late-trophozoite/schizonts, likens P. chabaudi 

to P. Jalciparum in several key aspects of its biology. This model has been used, 
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therefore, to measure in vivo rates of antigenic switching for individual VATs. These 

V AT -specific rates were then summed to derive a minimum estimate for the overall rate 

of antigenic variation. The results of these studies are presented in this chapter. 

5.2 Estimation of the rate of switching 

To determine the rates of switching on of 3 minor VATs in the first wave of 

parasitaemia, in each of two experiments, groups of 30 mice were infected i.v. with 1 x 

105 pRBC/mouse of the parent population. The courses of infection were followed by 

examination of Giemsa's stained thin blood smears by optical microscopy to determine 

the size of the parasite populations and to indicate when they were growing 

exponentially. When exponential growth was observed, this showed that on successive 

days the popUlations differed by one erythrocytic cycle (the duration of the cycle being 

24 h for P. chabaudi ) and immune-mediated killing was essentially absent. At each of 

two time points, tA and tB, during the phase of exponential growth (d 5 & 6 pj.), 6 mice 

were selected randomly from each group. Although only 6 mice were used at each of 

the time points, the large size of the initial groups was necessary to ensure and confirm 

that growth rates were representative in the randomly selected mice. RBC were 

collected by cardiac puncture for immunogold labelling and silver staining (IGSS) 

analysis (see 2.16) as described for P. Jalciparum pRBC (Hommel et at. 1991). By this 

method, the prevalences of VATs were determined using hyperimmune sera at dilutions 

specific for individual V A Ts (Brannan et at. 1993; see chapter 3). Preliminary 

experiments, the results of which have not been included in this chapter, suggested that 

during this phase of exponential growth, the parasite population consists of a 'parent' 

VAT and several 'minor' VATs. The prevalence of each VAT, P, was based on counts, 

n, of 25000-30000 pRBC/group of 6 mice/day, with approximately equal numbers of 

pRBC counted for each mouse. 95% confidence limits, L, of these prevalence values 

were estimated from L = 2~(pq/n), where q = 1-p (Snedecor & Cochran 1967). 

The data for the sizes of the parasite populations and prevalences of each V A T at 

time points t A and tB were used to calculate VAT-specific switching rates for several 

minor V A Ts simultaneously. For each V AT, the size of the parasite population 

expressing a minor VAT was calculated at tA and tB as HA and HB, respectively, from 

the mean total parasitaemia (N) and the prevalence (P) of that VAT. The size of HB 

was assumed to be dependent on two components: growth of HA and switching to that 

VAT by parasites expressing other VATs (N-H) during the time period tCA-B)- As the 

popUlation was growing exponentially between the two timepoints (Fig. 1), it was 

possible to estimate a theoretical population size of HB, ilB that could be attributed 

exclusively to growth of HA. The number of parasites that have switched to expression 

of the minor VAT at tB, S, is therefore given by HB-ilB. The rate of switching per 

schizogonous event, (J, is given by S/(NA-HA). 
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These values of (J' are, formally, the sum of the rate at which a VAT is switched 

on minus the rate at which the subpopulation expressing that VAT is switched off. 

Switching rates, however, have been measured in V A Ts at low prevalence and therefore 

this second rate is presumed to be negligible. 

A minimum estimate of the overall switching rate was obtained by summation of 

the individual rates for the minor V A Ts examined. 

5.3 Courses of infection and growth rates 

The course of infection for the primary patent parasitaemia observed in each experiment 

is shown in Fig. 5.1. These are similar to each other and similar to the courses of 

infection observed in other experiments (e.g. see chapter 4). In both experiments, 

parasites grew exponentially over the time period examined for switching rates (Fig. 

5.2). Growth rates of these exponentially increasing parasite populations were 

determined by least squares regression analysis on the data for d 4-6 in each experiment 

and is also shown in Fig. 5.2. The R2 values indicate a good straight line fit for the data 

on these days and the slope values are similar for each experiment. However, as can be 

seen from Fig. 5.2, by d 7 p.i. in both experiments, parasite growth was slowing down. 

These growth rates are within the usual range observed for growth of P. chabaudi AS in 

NIH mice, examples of which are shown in Fig. 5.3, and which are from an experiment 

outlined in chapter 4. From these, it can be seen that the growth rates for different 

VATs are similar when each is used as the infecting population and that all grew 

exponentially over the time period examined. 

5.4 IGSS 

The +ve staining obtained using VAT-specific antisera and the IGSS technique to detect 

minor VATs in a P. chabaudi infection is shown in Fig. 5.4. Parasites were visualised 

in RBC by Giemsa's staining. pRBC recognised by a variant-specific antiserum were 

visualised by black silver granules covering the surface of the RBC. pRBC not 

recognised by an antiserum showed no such silver staining, suggesting that each of the 

3 antisera that were used labelled in a V AT -specific manner. 

5.5 Switching rates 

In experiment 1, the switching rates for 3 minor V A Ts were estimated and in 

experiment 2 the switching rates for 2 of these minor VATs were again estimated. 

Prevalence values for specific minor V A Ts and parasitaemia data are shown in Table 

5.1, with the estimates of V AT -specific switching rates calculated from these 

parameters. In both experiments, the prevalences of the minor VATs were < 1 % and 

increased from t A to t:B. Such increases have been detected only because very large 
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numbers of pRBC were counted. A comparison of the minor VAT population size, HB 

and theoretical populations size, i4B , due only to growth of H A, indicated that a 

substantial proportion of the increase in size was not due to growth alone, but due to 

switching. The number of switches, S, accounts for between 9-47% of the increase in 

population size, depending on the particular V AT. 

The data in Table 5.1 show that switching rates to individual VATs can be high. 

RC 4, for example, is switched on approximately 1 in every 100 times that a parasite 

undergoes schizogony. The estimates of V AT -specific switching rates were 

reproducible, as demonstrated by comparisons of the results of the two experiments, 

where there is a less than twofold difference between the values for RC 4 and RC 10. 

This indicates that the parasitaemia and prevalence values have been measured with 

sufficient accuracy to give confidence in the results. Switching rates may vary 

depending on the V AT being switched on: in both experiments, RC4 was switched on at 

a threefold higher rate than RCIO, and in experiment 1, RC 7 was switched on at a 

sixfold lower rate than RC 10. These rates are represented graphically in Fig. 5.5. 

Estimates for the overall minimum rate of antigenic variation are shown in Table 

5.2. These are obtained by summation of the VAT-specific switching rates shown in 

Table 5.1 for each of the two experiments. Oiven that other unidentified minor VATs 

will have been present, but for which switching rates have not been determined in these 

experiments, the overall rate will be higher than these estimates. The results in Table 

5.2 show that antigenic switching occurred at a high overall minimum rate and at least 1 

in 80 malaria parasites underwent antigenic variation at each round of schizogony. 

5.6 Discussion 

The results of the experiments described in this chapter show that antigenic variation 

occurs at high rates during P. chabaudi infection. This is the first study to measure 

switching rates for malaria parasites in vivo and the first to measure rates for individual 

VATs. These values were measured directly as rates of switching on of minor VATs. 

During the phase of exponential growth of the first wave of parasitaemia, at least 

4 different VATs were present; the parent, and 3 minor VATs. These minor VATs 

were detected using the ross method with hyperimmune sera specific for each VAT. 

This method has been found to be as sensitive as the phycoerythrin-based staining 

method used in the live IFAT (Brannan et al. 1993; chapter 2; unpublished 

observations). The lOSS method, however, has two advantages which enabled such a 

study of antigenic switching to be performed. Firstly, unlabelled late 

trophozoites/schizonts can be more readily detected, and secondly, the preparation of 

permanent slides allowed large numbers of pRBC to be counted. A large sample size 

was necessary to ensure prevalence values of acceptable accuracy for estimating 

switching rates. The method used to determine the rate of antigenic switching is similar 
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to that previously used to measure switching rates in Trypanosoma brucei (Turner & 

Barry 1989). However, there are differences between the two methods of analysis 

which are due to the differences in biology between the two parasites. In malaria 

parasites, variable Ags are expressed on the surface of late trophozoite/schizonts 

(reviewed by Hommel & Semoff 1988) and therefore the switch rate is expressed as a 

rate per schizont. Also, schizogony is synchronous and occurs in P. chabaudi every 24 

h; therefore, difference rather than differential equations have been used. 

One underlying assumption for the method used herein to calculate switching 

rates is that the rate of growth is the same for all VATs. The fact that the VATs 

detected as minor V ATs in this study were all found to grow at similar rates when 

injected into mice at a standard infection inoculum of 105 pRBC/mouse (Fig. 5.3) 

supports this assumption. These results also confirm that the differences observed in 

the increase in prevalence of these minor VATs were not due to differential growth 

rates, but rather were due to differential rates of switching on of these V A Ts. 

A second underlying assumption is that specific immune effector mechanisms 

will not have significantly affected the population growth during the period of analysis. 

The regression analyses show a good straight line fit over the period of the experiments 

and therefore support this assumption. Other supporting evidence that this is the case 

comes from the observation that at this stage of infection, fluorescent Ab titres are not 

significantly above background levels and that serum taken from mice at this stage of 

infection could not passively transfer protection (McLean et al. 1982a). However, there 

is likely to have been some activation of non-specific immune mechanisms. 

The minimum estimates obtained for overall switching rates of 1.2-1.6% are of a 

similar order to the 2% switching rate reported for P. falciparum in vitro (Roberts et al. 

1992). This is confirmation, therefore, that the high rate seen in vitro can occur in vivo. 

In both cases, it is the spontaneous rate of antigenic variation which has been measured. 

It has been reported that variant-specific Ab to P. knowlesi can induce antigenic 

variation (Brown 1973; Barnwell et al. 1983 a & b). If induction occurs in other 

species, then there is the potential for these rates to be modified as an infection 

progresses. There is as yet, however, no evidence for Ab induction of antigenic 

variation in any species other than P. knowlesi. Antigenic variation has been shown to 

occur spontaneously in P. falciparum in vitro (Biggs et al. 1991; Roberts et al. 1992) 

and in P. fragile in the absence of immune pressure in vivo (Handunnetti et al. 1987). 

The switching rates measured in malaria parasites are consistent with rates of 

antigenic variation measured in other organisms, for example, tsetse fly-transmitted T. 

brucei (Turner & Barry 1989) and Borrelia hermsii (Stoenner et al. 1982), where 

switching rates of up to 10-2 and 10-3 respectively, have been reported. High rates of 

switching, considerably in excess of commonly observed rates of spontaneous gene 
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rearrangements, appear to be a standard feature of systems of antigenic variation 

(Turner 1992). 

The results for individual V ATs show that switching on of different VATs occurs 

at different rates. Conceptually, the rates of switching between VATs may be 

determined by the VAT which is being switched off, the V A T which is being switched 

on, by both or by neither. Since the results of this study demonstrate that different 

V ATs are switched on at different rates, this last possibility cannot apply and, at least in 

part, the V AT being switched on regulates the rate of switching. Whether the V AT 

being switched off also influences the switching rate has not yet been investigated and 

is outwith the scope of this study. Investigation of this would be complicated, however, 

by the difficulty of distingushing between switching off of a V AT and immune 

clearance of the same VAT. 

Differential rates of switching between VATs as observed here can lead to 

hierarchical expression of V A Ts in an infection. This is a feature of systems of 

antigenic variation (B orst 1991; Turner 1992) and has been shown in P. fragile 

infections in toque monkeys (Handunnetti et al. 1987). A hierarchy of expression of 

VATs is necessary for antigenic variation to function in immune evasion, such that 

different VATs are presented to the immune system at different times (Turner 1992). 

However, the high rates of antigenic variation observed here for P. chabaudi result in 

more than one V AT being presented to the immune system at anyone time. Therefore, 

the interaction with the host's immune sytem may be more complex than evasion of an 

individual V AT -specific Ab response. However, due to the hierarchical switching, 

there will be quantitative differences in the VATs present at anyone time, and it may be 

that a threshold level of a particular V AT is necessary for an effective V AT-specific Ab 

response to be generated, as has been demonstrated in T. brucei (Seed & Sechelski 

1988). Alternatively, such rapid rates of antigenic variation may hinder the maturation 

of V AT -specific immune responses. Either way, antigenic variation will increase the 

longevity of infection and should therefore facilitate transmission of the parasites from 

mammal to mosquito. 

Antigenic variation has been shown to be linked to a second immune evasion 

mechanism of malaria parasites, that of cytoadherence/sequestration. This has been 

demonstrated in both P. faiciparum (Magowan et ai. 1988; Roberts et al. 1992; Biggs 

et ai. 1992) and P. chabaudi (Gilks et ai. 1990). This has so far not been demonstrated 

with the VATs used in this study (see chapter 6) but it is likely that alternative means of 

studying cytoadherence/sequestration would detect some link as it is the same parasite 

strain used by Gilks et ai. (1990). By mediating sequestration, expression of variant 

Ags allows schizont-infected RBC to avoid passage through, and thereby immune 

clearance in, the spleen of infected hosts. Sequestration can also cause considerable 

pathology, such as cerebral malaria (MacPherson et ai. 1985). The hierarchical 
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expression of VATs implies that there may be an equivalent hierarchical expression of 

cytoadherence phenotypes. Given the importance of sequestration in causing cerebral 

pathology in P. Jalciparum infection, this study suggests that determining the rate of 

change of cytoadherence phenotypes and the linkage in rates for antigenic variation and 

cytoadherence requires investigation. 
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Figure 5.1 Courses of infection of P. chabaudi in mice for experiments to 

estimate switching rates of antigenically variant parasites. 

1 x 105 pRBC/mouse i.v. on dO. a. experiment 1; b. experiment 2. 
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Figure 5.2 Growth curves for P. chabaudi population from d 4-7 p.i. in 

mice in each of two experiments: regression analysis for d 4-6. 

a. experiment 1; b. experiment 2. 
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Figure 5.3 
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Figure 5.4 P. chabaudi -infected blood showing immunogold-silver staining 

for schizont-infected RBC recognised by VAT -specific 

hyperimmune sera. 

a. RC 4; b. RC 7; c. RC 10. The surface variant Ags recognised by the antisera are 

detected by darkly stippled cells within which a late trophozoite/schizont may be visible 

(arrow), compared with pRBC not expressing the VAT recognised by the antisera 

(arrowhead) . 
a.rl------~~--~~--~~~~-=~~~~~~~~~ 

b.1 . 1 

-" 
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Table 5.1 Results of experiments to determine the rates of switching to individual VATs. 

The mean parasitaemia, N, is given as log number of 100000 RBC and the prevalence, P, is expressed as mean ± 95% 

confidence limits. 

Experiment VAT Time Mean Prevalence of Minor VAT Theoretical size Number of Rate of 

point parasitaemia, minor VAT, population of minor V A T switches, S switching/ 

N(%) P(%) size, H population due schizont! 

only to growth, II day, (j 

1 RC4 A 2.35 0.464 ± 0.085 1.09 xlO-2 2.2 x10-2 9.2 x10-3 

B 7.93 0.737 ± 0.100 5.84 xlO-2 3.68 x10-2 

\0 
-.J 

1 RC7 A 2.35 0.128 ± 0.047 3.01 xlO-3 1.0 x10-3 4.3 x10-4 

B 7.93 0.142 ± 0.042 1.12 x10-2 1.02 xlO-2 

1 RC 10 A 2.35 0.121 ±0.043 2.86 xlO-3 6.8 xlO-3 2.9 xlO-3 

B 7.93 0.207 ± 0.052 1.64 x 10-2 9.65 xlO-3 

2 RC4 A 2.73 0.367 ± 0.073 1.00 x10-2 3.4 xlO-2 1.3 xlO-2 

B 10.37 0.697 ± 0.096 7.22 x10-2 3.80 x10-2 

2 RC 10 A 2.73 0.130 ± 0.042 3.53 x10-3 1.1 x10-2 4.0 x10-3 

B 10.37 0.233 ± 0.056 2.42 x10-2 1.34 x10-2 



Figure 5.5 Rates of switching on of variant parasites of P. chabaudi calculated 

from d 5 and d 6 p.i. prevalence counts. 

a. experiment 1; b. experiment 2. 
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Table 5.2 Minimum estimates of the overall rate of antigenic variation in 

two experiments. 

Experiment Number of V AT Summed values of (j' 

combinations 

1 3 1.25 xlO-2 

\0 
\0 

2 2 1.65 xlO-2 



CHAPTER 6 

SEQUESTRATION in vivo, CYTOADHERENCE in vitro AND MOLECULAR 

KARYOTYPING: A COMPARISON OF ANTIGENICALLY VARIANT 

POPULATIONS OF Plasmodium chabaudi AS 
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6.1 Introduction 

P. c. chabaudi in mice and in thicket rats exhibits a synchronous, 24 h asexual 

erythrocytic cycle, usually undergoing schizogony at around midnight (Landau & 

Boulard 1978). Normally, shortly before schizogony, most RBC infected with late 

stage P. chabaudi parasites undergo withdrawal from the peripheral circulation, 

although some schizonts do remain circulating. Sequestration occurs mostly in the liver 

in murine infections (Cox et al. 1987; Gilks et al. 1990). Sequestration of late stage 

parasites also occurs in P. Jalciparum infections, though the major sites of sequestration 

differ from those of P. chabaudi and peripheral withdrawal of schizonts is usually 

complete (see 1.5.3). 

Sequestration of malaria parasites in vivo occurs as a result of cytoadherence of 

pRBC to vascular endothelial cells in various tissues. In P. Jalciparum infections in 

humans, this can include cytoadherence to endothelial cells lining post capillary venules 

in the brain, and is causally linked to cerebral malaria (MacPherson et al. 1985). 

Several model systems have been used to study cytoadherence of P. Jalciparum-infected 

RBC, including primary cultures of human umbilical vein endothelial cells (Udeinya et 

al. 1981) and a variety of human cell lines expressing receptors for adherence (Schmidt 

et al. 1982; Panton et al. 1987; Ockenhouse & Chulay 1988). Cells transfected with 

genes for adherence receptors have also been used for adherence studies (Berendt et al. 

1989; Oquendo et al. 1989; Hasler et al. 1993), as have purified proteins (Roberts et al. 

1985; Barnwell et al. 1989; Ockenhouse et al. 1989; Hasler et al. 1990; Ockenhouse et 

al. 1992a). An in vitro model for P. chabaudi cytoadherence using mouse cell lines has 

also been described (Cox et al. 1987). 

Gilks et al. (1990) reported a link between sequestration and expression of variant 

Ags in P. chabaudi, having isolated a parasite clone which did not apparently express 

surface variant Ags, did not recrudesce and did not sequester over the period of 

schizogony. In vitro cytoadherence has been correlated with expression of surface 

variant Ags in P. Jalciparum (Magowan et al. 1988; reviewed by Howard et al. 1990), 

and antigenic variation of P. Jalciparum has been shown to be associated with changes 

in cytoadherence phenotypes of parasites in vitro (Roberts et al. 1992; Biggs et al. 

1992). 

Given such evidence linking antigenic variation/variant Ags with parasite 

sequestration and cytoadherence, it was considered of interest to examine the variant 

parasite populations used in this study in terms of their sequestration in vivo and their 

cytoadherence in vitro. The results of these studies are presented in this chapter. 

Until very recently (and at the time the work described herein was performed), 

little was known about antigenic variation in Plasmodium at the chromosomal level. 

However, with the identification of the val' gene family encoding variant Ags involved 

in alterations of antigenic and cytoadherent phenotypes of P. Jalciparum pRBC (Baruch 
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et al. 1995; Smith et al. 1995; Su et al. 1995), our knowledge of this area is set to 

expand. This progress in our understanding of antigenic variation in malaria parasites 

has been aided by advances in methods of studying biological events at the molecular 

level. One such technique, that of pulsed field gel electrophoresis (PFGE) (Schwartz & 

Cantor 1984), revolutionised the study of Plasmodium chromosomes, finally enabling 

the separation of fourteen chromosomes of P. Jalciparum (Kemp et al. 1987; Wellems 

et al. 1987; Gu et al. 1990), which is consistent with electron microscope observations 

of fourteen kinetochores (Prensier & Slomianny 1986). In P. Jalciparum, homologous 

chromosomes in independently collected isolates can vary in size (Kemp et al. 1985; 

Van del' Ploeg et al. 1985). Such size polymorphisms occur frequently in natural 

malarial infections, and can involve deletions (Corcoran et al. 1986). Size variations can 

also occur in vitro, usually due to deletions, as has been shown in a study of 

chromosomes of a cloned P. Jalciparum line (Corcoran et al. 1988). Subtelomeric 

deletions have been shown to be responsible for the loss of expression of several P. 

Jalciparum Ags including knob-associated histi dine-rich protein (KAHRP) (Corcoran 

et al. 1986; Culvenor et al. 1986; Ellis et al. 1987) and ring-infected erythrocyte surface 

Ag (RES A) (Cappai et al. 1989) and a correlation has been noted between subtelomeric 

deletions and loss of cytoadherence in vitro of P. Jalciparum (Biggs et al. 1989). The 

var genes of P. Jalciparum have also been newly located by PFGE to the subtelomeric 

region at the end of most malarial chromosomes (Rubio et al. 1996). 

The chromosomes of P. chabaudi have been less intensively studied, but also 

number fourteen (Sheppard et al. 1989). As in P. Jalciparum, chromosomal size 

variations have been found in different isolates of P. chabaudi (Langsley et al. 1987; 

Sharkey et al. 1988). The variant parasite popUlations used in this study were found to 

display differences in the course of infection (see chapter 5) and preliminary 

investigations of in vitro cytoadherence suggested a possible difference between the 

variant popUlations in their cytoadherence properties in vitro. As there is a correlation 

between loss of cytoadherence and subtelomeric deletions in P. Jalciparum (Biggs et al. 

1989), and given the link between antigenic variation and differences in cytoadherence 

(Roberts et at. 1992; Biggs et aI. 1992), it was considered of interest to examine the 

chromosomes of the variant P. chabaudi populations by PFGE. The results of this 

molecular karyotyping are also presented in this chapter. 

6.2 Sequestration in vivo of antigenic ally variant populations 

Groups of 5 mice were each infected with a parasite popUlation (l05 pRBC/mouse). 

Parent, RC 1, 4, 7, 8 and 10 parasite populations were included in this study. Mice 

were kept either in NL or RL, with examination of sequestration in parent and RC 8 

parasites repeated in mice kept in both light cycles. There were no differences in the 

course of infection observed between NL and RL infections. Sequestration was 
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examined when parasitaemias before schizogony were between 10-20%, except in one 

case (parent RL), where the mean parasitaemia was slightly> 20%. Peripheral 

withdrawal over the period of schizogony of variant populations was examined by 

taking hourly blood smears from usually 3 h before schizogony was expected to occur 

and continuing for 6-8 h in total. Differential parasitaemia counts in ;:;: 1000 RBC were 

recorded from these. Blood smears were taken starting at least 2 h before schizogony 

was expected to occur. Parasites were identified as ring stages, trophozoites or 

schizonts, with parasites counted as schizonts when at least two separate nuclei could be 

distinguished clearly. The total parasitaemia at each time point constitutes the sum of 

the parasitaemias for each parasite stage. These parasitaemias are shown in Figs. 6.1-

6.6. 

In all cases, peripheral withdrawal during schizogony was associated with a 

transient fall in the total parasitaemia. Trophozoites numbered 100% of parasites 

initially, decreasing as the % of parasites constituting ring stages increased over the 

period of schizogony, until ring stages numbered approximately 100% of parasites 6-8 h 

later. Numbers of schizonts seen in the peripheral circulation remained low, though 

these parasite stages were never completely absent, over the period of schizogony. 

Differential parasitaemia counts were not performed at 1000 hand 1100 h in RC 7 

infections, but from the subsequent counts, it is apparent that the pattern is the same 

with this parasite population as for the other infections. 

For the parent parasite population, in NL (Fig. 6.la), a drop in total parasitaemia 

was observed at 2000 h which was of approximately 30% of the stalting parasitaemia 

that day. Similarly, in RL (Fig. 6.1 b), a fall of approximately 30% in total parasitaemia 

was observed at 1200 h. With RC 1 parasites in NL (Fig. 6.2), a drop in total 

parasitaemia of approximately 30% was observed at 2000 h. With RC 4 parasites in RL 

(Fig. 6.3), the drop in total parasitaemia was> 50%, the lowest total parasitaemia being 

observed at 1300 h. RC 7 in RL (Fig. 6.4) exhibited a drop in total parasitaemia of 

approximately 30%, observed at 1100 h. With RC 8 in NL (Fig. 6.5a), only a 25% drop 

in total parasitaemia was observed, occurring at 2000 h. However, in RL (Fig. 6.5b), a 

drop of approximately 50% in total parasitaemia was observed, occurring at 1200 h. 

RC 10 parasites in RL (Fig. 6.6) exhibited a drop in total parasitaemia of > 50%, 

observed at 1200 h. There was no correlation between the decrease in total 

parasitaemia and the number of schizonts present in the peripheral circulation in mice, 

and similar levels of circulating schizonts were observed in all the variant parasite 

infections examined. 

6.3 Cytoadherence in vitro of antigenically variant populations 

Cytoadherence in vitro of variant parasite populations was compared by performing 

binding assays as described by Cox et ai. (1987), initially using a mouse lung 
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endothelial cell line, B 10 D2, and subsequently also with other fibroblast-like cell lines, 

3T3 and 3T3 A31 (see 2.15). Statistical analysis was performed using Student's t test to 

compare initial and final parasitaemias, and analysis of variance for comparison of 

results between parasite populations and between cell types. In the initial experiments 

using B 10 D2 cells (Table 6.1 and Fig. 6.7), the % of bound RBC parasitised was 

significantly different from the initial parasitaemia of blood infected with parent, RC 1, 

RC 4 and RC 7 parasites. With RC 8-infected blood, there was no significant difference 

between the % of bound RBC parasitised and the initial parasitaemia. However, in 

these binding assays, no significant differences were observed between any of the 

parasite populations tested in the increase from the initial parasitaemia (Fig. 6.7). The 

overall level of binding of pRBC in all these tests was low, ranging from the highest of 

64 pRBC/500 cells to the lowest of 1 pRBC/500 cells. There was a background level of 

binding of nRBC in all test assays which was not significantly different from the level 

of nRBC binding in unparasitised blood control assays. 

In the follow-up set of binding assays using the three different cell types the 

starting parasitaemia was adjusted to 7% with nRBC. The results of these are shown in 

Table 6.2. For all the parasite populations tested, parent, RC 4, 7, 8 and 10, with each 

of the cell types the % of bound RBC parasitised was significantly greater than the 

initial parasitaemia. There were no significant differences between the three cell types 

used with regard to the final % of bound RBC parasitised and the cell types did not 

affect the % binding of the different parasite populations. The % of bound cells 

parasitised differed significantly between RC 4 and all other parasite populations tested 

and between RC 7 and all other parasite populations tested. There were no significant 

differences between parent, RC 8 and RC 10 in this respect. The absolute levels of 

binding of both pRBC and nRBC were variable, but there was overall a strong positive 

correlation between the number of pRBC/500 cells and the number of nRBC/500 cells. 

The numbers of pRBC/500 cells in each test were compared and there was no 

significant difference overall between the cell types used. There were significant 

differences between the parasite populations, with the number of pRBC/500 cells 

differing significantly between each of the parasite populations except between the 

parent and RC 4 and between the parent and RC 7. There was also significant 

interaction between the parasite populations and the cell types, indicating that the 

binding levels of pRBC/500 cells to different cell types differed for different parasite 

populations. This is illustrated in Fig. 6.8. For the levels of binding of unparasitised 

RBC/500 cells, there was no difference between the cell types and no significant 

interaction between the cell types and the parasite populations. There were, however, 

significant differences between each of the parasite populations tested except between 

RC 4 and RC 10 and between RC 4 and RC 8. 
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6.4 Molecular karyotyping of antigenically variant populations 

Chromosomes of variant parasite populations were compared by PFGE using a CHEF 

apparatus. DNA was prepared from parent, RC 4, 7, 8 and 10 parasite populations as 

described (see 2.21). Two different sets of running conditions were used to display 

optimal separation of the chromosomes. Firstly, a 3 d run, allowing better separation of 

the smaller chromosomes (Fig. 6.9) and secondly a 7 d run, allowing better separation 

of the larger chromosomes (Fig. 6.10). Yeast chromosomes were used as size markers 

as indicated, and in addition, DNA prepared from P. chabaudi AS independently in 

Edinburgh was used as a control (3CQ). In Fig. 6.9, in all tracks loaded with parasite 

DNA, ten bands are clearly visible, ranging in size from over 2200 Kb to less than 700 

Kb. There appear to be no differences in chromosome sizes between any of the variant 

parasite populations analysed and these all appeared to have a similar chromosome 

banding pattern to the control parasite 3CQ. In Fig. 6.10, the larger chromosomes have 

been separated out more and eleven bands are clearly visible in all tracks loaded with 

parasite DNA. These range in size from greater than 3500 Kb to less than 850 Kb. 

Again, there are no apparent differences between any of the variant parasite populations 

analysed and these all appear to have a similar banding pattern to that of the control 

parasite 3CQ. 

6.5 Discussion 

The results of the detailed study of differential parasitaemias indicate that all the 

recrudescent parasite populations studied exhibited withdrawal of late stage parasites 

from the peripheral circulation during schizogony. However, this was never complete, 

with low numbers of schizonts present in the peripheral circulation of infected mice 

over the time when schizogony occurred. In RL infections, the transient drop in 

parasitaemia associated with sequestration during schizogony occurred around midday, 

the slightly different times (± 1 h) considered to be due to differences in the time of 

recovery from stabilate. In NL infections, this drop in parasitaemia was observed 

earlier than expected, at 2000 h. This was probably in part due to the time of recovery 

from stabilate, which was approximately 4-5 h earlier than the corresponding time for 

RL parasites. This could have been avoided by recovering the stabilate later, but the 

timing of schizogony around midnight was not necessary for the aims of the 

experiments. External daylight may also have been a factor, as, although artificial 

lighting was controlled to have NL and RL as exact opposites, mice kept in NL were 

also exposed to natural light and therefore affected by longer days. This was not ideal, 

as at the time of year the NL infections were studied (April), day length was longer than 

12 h. The animal house windows were subsequently blacked out to eliminate external 

light. However, the sequestration studies were not all repeated as the main objectives of 

the experiments were not affected by this uncontrolled variable. 
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In all infections studied, the pattern of overall and differential parasitaemias over 

the period of schizogony were similar to those observed for P. chabaudi by Cox et al. 

(1987) and Gilks et al. (1990) for sequestering parasites. There were some differences 

between variant populations in the mean level of decrease observed in total 

parasitaemia, but the decreases were not consistent between groups of mice infected 

with the same variant population. A possible explanation for this may be differences 

between the time at which the maximum decreases occurred and the time at which 

parasitaemias were recorded in some groups. These variations in the level of decrease 

in total parasitaemia may also have been due to differences between groups of mice, 

experiments having been performed at different times. The particular variant Ags 

expressed and the differences in the level of expressionlimmunogenicity of these 

antigens, as measured by Ab titres in the live IFAT (see chapter 3), did not seem to 

affect sequestration. The total % parasitaemia of RC 8 (low titre) dropped just as much 

as those of RC 4, 7 and 10 (high titre); levels of circulating schizonts were also similar. 

The results of the in vitro binding assays comparing variant parasite populations 

demonstrated that binding was preferential for pRBC compared to nRBC for all variant 

types studied. However, in the initial experiments with B 10 D2 cells, preferential 

binding of pRBC was observed with blood infected with parent, RC 1,4 and 7. No 

preferential binding of pRBC from blood infected with RC 8 was observed. The 

follow-up experiments with the three different cell types did show preferential binding 

of all the populations studied, including RC 8, with no difference between the cell 

types. The reason for this discrepancy between the two sets of experiments is not 

entirely clear. In the first set of experiments using the B 10 D2 cell line, however, initial 

parasitaemias were not adjusted with nRBC to a uniform parasitaemia; therefore, 

comparisons between the parasite populations in terms of the % bound cells parasitised 

and the numbers of pRBC/SOO cells could not be made. The different starting 

parasitaemias may also have affected the results. For these reasons, further repeats of 

binding assays performed exactly as in the first set of binding assays were not 

performed, which would have been necessary for final conclusions to be drawn from the 

results obtained. However, initial results with the B 10 D2 cells did appear to indicate 

that RC 8 pRBC did not show preferential binding and other parasite populations did, in 

that the % of bound RBC parasitised was significantly different from the starting 

parasitaemia. When these results were examined by comparing the increases in 

parasitaemia after binding, however, no significance difference could be found between 

the parasite populations. These results were, therefore, difficult to interpret. 

In the subsequent set of experiments, appropriate modifications were made. The 

starting parasitaemia was adjusted to 7% in all cases and a greater number of binding 

assays was performed with each parasite population, thereby allowing a more 

satisfactory analysis of the results. In this set of experiments, using the three different 
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cell lines, binding was specific for pRBC with all parasite populations studied. The 

differences between the parasite populations in the % of bound cells parasitised is 

difficult to interpret separately from the absolute levels of binding of pRBC. 

Nevertheless, there appears to be a higher specificity of binding of pRBC of the parent, 

RC 8 and 10 compared to RC 7 and 4 and of RC 7 compared to RC 4. This is not 

affected by the different cell types. However, the level of binding is different for 

different parasite populations. These differences do not seem to relate to the specificity 

of binding, but there is a strong correlation between the level of binding of pRBC and 

the level of binding of nRBC. This may well reflect the thoroughness of washing to 

remove unbound RBC or a difference in the binding capacity of the cell lines from 

assay to assay, perhaps dependent on how rapidly the cells are dividing, the stage of 

division of the cells, or the cell density. Such reasons may account also for the different 

patterns of binding of parasite populations with different cell types. 

Comparing cytoadherence in vitro of variant populations was, overall, not very 

satisfactory. Levels of binding were usually low, especially compared to the levels 

observed with P. Jalciparum in similar binding assays with C32 melanoma cells 

(Schmidt et al. 1982), and there was often a high level of variability between individual 

binding assays using the same parasite popUlation, even where these were performed at 

the same time. For practical reasons, binding assays could not all be performed at once, 

and although every effort was made to standardise the assays, differences between the 

parasite stages used in the assays, in the thoroughness of washing and in the density of 

the adherent cell lines on the Petri dishes may all have contributed to this variability. 

Further investigations would be necessary to ascertain the receptors on the cells 

responsible for the specific binding. Differences in expression of these between the 

cells types, whether the levels of expression are affected by cell division etc. would all 

be of interest in the interpretation of such binding assays. Alternatively, purified host 

cell receptors could be used in binding assays. Whether or not there are real differences 

between the variant parasite populations in terms of their cytoadherence could then 

perhaps be elucidated. 

In vivo, it appears that sequestration of P. chabaudi is due to cytoadherence 

mainly to endothelial cell lining the liver sinusoids (Cox et al. 1987), though binding to 

Kuppfer cells in the liver has also been reported (Gilks et al. 1990) but this is more 

likely to be an immune clearance mechanism than sequestration. It would therefore be 

preferable to perform binding assays using liver endothelial cells. The specificity and 

capacity of binding of pRBC to these cells may be greater than to the cell lines used in 

this study, and the receptors responsible for the binding may be different. Furthermore, 

the capacity of sera raised against variant antigens to inhibit specific binding would be 

of considerable interest. It is, however, outwith the scope of this study to investigate 

these possibilities. 
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Molecular karyotyping of the antigenic ally variant populations by PFGE 

separated 10 or 11 chromosomal sized bands. The results were similar to those 

previously observed for P. chabaudi chromosomes with the running conditions used (J. 

Carlton, personal communication). Some of the bands represent more than one 

chromosome; the intensity of staining is increased due to the greater amount of DNA 

present in these bands. In Fig. 6.9, counting the chromosomes from the smallest up, 1 + 

2 = 1 band, 3-7 are each represented by one band, 8 + 9 = 1 band, 10 = 1 band, 11 + 12 = 
1 band and 13 + 14 = 1 band. With both of the running conditions used, the variant 

popUlations all appeared to have the same number and sizes of chromosomes. It was of 

interest to compare the molecular karyotypes of the variant populations as chromosome 

polymorphisms have been detected between different isolates of P. chabaudi (Sharkey 

et al. 1988), probably representing antigenic diversity between isolates. All the variants 

examined herein have the same karyotype, demonstrating that they are from the same 

original parasite population and confirming that the differences in variant Ags are due 

to true phenotypic antigenic variation. 

The variant parasite populations included in this study do apparently show some 

differences in their cytoadherence properties in vitro, but all exhibit cytoadherence in 

vitro and sequestration during schizogony in vivo. No chromosomal size variations 

could be observed between them by PFGE. From these observations, it appears that 

chromosomal rearrangements such as deletions, as described for P. Jalciparum (Biggs et 

al. 1989), have not occurred in any of the parasite populations leading to loss of 

cytoadherence or lack of sequestration. From initial results with RC 8, which reacted 

with homologous hyperimmune serum to a titre of only 1:50 in the live IFAT, and 

infections of which showed a lack or late onset of recrudescence, it appeared that this 

variant population bore similarities to a parasite population identified by Gilks et al. 

(1990). However, the results presented in this chapter demonstrate that RC 8 does 

sequester in vivo and also exhibits cytoadherence in vitro. This parasite population is 

not, therefore, similar to that described by Gilks et al. in this respect. It is likely that 

antigenic variation in P. chabaudi leads to differences in cytoadherence phenotypes as 

in P. JalciparUln (Roberts et al. 1992), but an improved method of studying 

cytoadherence in vitro for P. chabaudi would be necessary before this could be 

demonstrated conclusively. 
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Figure 6.1 Peripheral withdrawal during schizogony of parent parasite 
population: differential parasitaemias from tail-blood 
smears taken from mice in (a) NL and (b) RL. 
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Figure 6.2 Peripheral withdrawal during schizogony of RC 1 parasite 
population: differential parasitaemias from tail-blood smears 
taken from mice in NL. 
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Figure 6.3 Peripheral withdrawal during schizogony of RC 4 parasite 
population: differential parasitaemias from tail-blood smears 
taken from mice in RL. 
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Figure 6.4 Peripheral withdrawal during schizogony of RC 7 parasite 
population: differential parasitaemias from tail-blood smears 
taken from mice in RL. 
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Figure 6.5 Peripheral withdrawal during schizogony of RC 8 parasite 
population: differential parasitaemias from tail-blood smears 
taken from mice in (a) NL and (b) RL. 
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Figure 6.6 Peripheral withdrawal during schizogony of RC 10 parasite 
population: differential parasitaemias from tail-blood smears 
taken from mice in NL. 
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Table 6.1 A comparison of in vitro cytoadherence of variant parasite populations using BI0 D2 cell line. 

Parasite n initial parasitaernia % boundRBC no. pRBC/500 cells no. nRBC/500 cells 

population (% ± S.D.) parasitised (mean ± S.D.) (mean ± S.D.) (mean ± S.D.) 

parent 4 9.70± 1.77 *29.90 ± 12.19 28.02 ± 26.22 52.30 ± 30.71 

RC 1 4 21.65 ± 11.37 *56.58 ± 15.16 22.75 ± 14.68 14.50 ± 3.00 

RC4 4 18.00± 6.28 *37.24 ± 12.12 16.52 ± 8.93 25.81 ± 7.04 ,..... ,..... 
VI 

RC7 3 13.91 ± 4.68 *30.50 ± 7.09 14.95 ± 11.45 30.25 ± 16.16 

RC8 3 11.97 ± 2.45 16.99 ± 12.79 5.31 ± 4.01 30.82 ± 31.74 

nRBC control 14 26.52 ± 26.55 

n = number of binding assays, 500 B 10 D2 cells counted/assay. 

* indicates significant difference in % bound RBC parasitised compared to initial parasitaernia, p < 0.05. 
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Figure 6.7 A comparison of in vitro cytoadherence to BI0 D2 cell line 
of variant parasite populations: increase from initial 
parasitaemia in % bound cells parasitised 
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Table 6.2 A comparison of in vitro cytoadherence of variant parasite populations using different cell lines. 

Parasite Cell line n % boundRBC no. pRBC/500 cells no. nRBC/500 cells 

population parasitised (mean ± S.D.) (mean± S.D.) (mean± S.D.) 

Parent B10D2 4 *74.64 ± 13.97 22.00± 8.41 9.00± 6.32 

3T3 A31 8 *63.17 ± 9.06 14.00 ± 10.53 7.50± 4.99 

3T3 7 *76.14 ± 13.77 18.71 ± 12.12 8.00± 8.33 

RC4 B10D2 4 *51.12± 8.47 9.00± 8.04 10.50 ± 12.39 

3T3 A31 7 *45.99 ± 8.96 64.29 ± 58.13 76.43 ± 71.90 

3T3 8 *4261 ± 8.01 50.00± 32.11 65.50 ± 39.61 

RC7 B10D2 4 *54.76 ± 7.24 13.50 ± 6.76 10.50 ± 3.00 

3T3 A31 7 *57.83 ± 8.99 25.82 ± 12.78 21.52 ± 16.91 

3T3 8 *48.67 ± 13.89 1O.50± 8.09 13.50 ± 12.21 

RC8 B10D2 4 *90.28 ± 2.26 113.50 ± 3.42 12.25 ± 2.99 

3T3 A31 8 *74.26 ± 12.02 94.50± 22.95 32.63 ± 16.23 

3T3 8 *59.73 ± 19.92 42.50± 33.21 20.63 ± 6.52 

RC 10 B10D2 8 *78.66 ± 17.37 96.5 ± 74.81 75.25 ± 122.98 

3T3 A31 12 *69.96 ± 20.21 211.58 ± 145.42 84.58 ± 76.39 

3T3 12 *71.lO± 10.42 152.83 ± 77.46 69.42 ± 64.54 

.. 
n = number ofbmdmg assays performed, ~ 500 cells counted/assay. * mdicates sIgmficant dIfference m % bound RBC 
parasitised when compared to initial parasitaemia of 7 %. 
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Figure 6.8 A comparison of in vitro cytoadherence of variant parasite 
populations using different cell lines: the difference between 
cell types in the number of bound pRBC/500 cells is 
different for each variant parasite population. 

350 

300 

250 • parent 

II RC4 I 200 
[J RC7 

150 i ~I JI n [] RC 8 

T [J RC 10 
100 

50 

0 

BI0D2 3T3 A31 3T3 

cell types 
Each bar represdents the arithmetic mean number of pRBC/500 cells, error bars == S.D. 

118 



Figure 6.9 Fractionation of P. chabaudi AS variant parasite chromosomes by 

pulsed field gel electrophoresis. 

Chromosomes separated in a CHEF apparatus, 3d run (see 2.21). Track Y =Yeast 

chromosomesS. cerevisiae, with approximate sizes (Kb) indicated on left. Other tracks 

are chromosomes of P. chabaudi variant populations as indicated. 3CQ= chromosomes 

of P. chabaudi AS population as used and prepared in Edinburgh. 
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Figure 6.10 Fractionation of P. chabaudi AS variant parasite chromosomes by 

pulsed field gel electrophoresis. 

Chromosomes separated using a CHEF apparatus, 7d run (see 2.21). Track Y left hand 

side = Yeast chromosomes S. cerevisiae, with approximate sizes (Kb) indicated on left. 

Track Y on right hand side = Yeast chromosomes S. pombe, with approximate sizes 

(Kb) indicated on right. Other tracks are chromosomes of P. chabaudi variant 

populations as indicated. 3CQ = chromosomes of P. chabaudi AS population as used 

and prepared in Edinburgh. 
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CHAPTER 7 

PRODUCTION OF MONOCLONAL ANTIBODIES AGAINST SURFACE 

V ARIA NT ANTIGENS OF Plasmodium chabaudi AS 
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7.1 Introduction. 

The production of monoclonal antibodies (mAbs) was first described by Kohler & 

Milstein in 1975, since when mAbs have become a powerful tool in many areas of 

biological research. 

In malaria research, as in other areas of parasite immunology, mAbs have proved 

extremely useful in the preparation of purified reagents, (e.g. cytokines, specific 

antisera and adhesion molecules) and in the identification of antigenic determinants 

involved in anti-parasite reactions. Such uses of mAbs have led to improved sero

diagnosis and have facilitated sero-epidemiological studies, the elucidation of 

mechanisms of resistance and disease and the identification and preparation of Ags for 

use in potential vaccines. MAbs have been developed against a range of malarial Ags 

from all stages of the parasite life cycle (reviewed by Phillips & Zodda 1984). For 

instance, mAbs have been described which inhibit growth in vitro of P. jalciparum 

(Perrin et al. 1981; Schofield et al. 1982; Myler et al. 1982) and of P. knowlesi (Epstein 

et al. 1981; Deans et al. 1982) and mAbs have been found to be protective in vivo 

against P. yoelii (Freeman et al. 1980; Holder & Freeman 1981), P. berghei (Potocnjak 

et al. 1980) and P. chabaudi (Boyle et al. 1982). MAbs have been used to identify, for 

example, epitopes shared between different parasite stages of P. jaIciparum (Hope et al. 

1984; Szarfman et al. 1988), repeated epitopes of the CS proteins of P. jalciparum and 

of P. vivax common to different isolates within each species (Zavala et aI. 1985), cross

reactive bloodstage Ags between P. chabaudi, P. jaIciparum, P. vivax and P. 

cynol1wIgi (Wanidworanun et al. 1989), the P. cynomolgi complex (Kamboj et al. 1988) 

and both cross-reactive and species-specific Ags of P. chabaudi and P. yoelii 

(Holmquist et aI. 1986). MAbs have also been used to demonstrate considerable Ag 

diversity in P. jalciparum (McBride et al. 1982). Such findings have important 

implications for vaccine design and development, and serve to illustrate the usefulness, 

versatility and potential of mAbs in malaria research. 

In the P. chabaudi-mouse model used herein to study antigenic variation in 

malaria parasites, the production of mAbs against surface variant Ags of P. chabaudi 

could potentially facilitate immunochemical characterisation of any given variant Ag 

and identification of the gene(s) encoding such Ags. These genes would likely be the P. 

chabaudi homologue of the newly described multigene family, var, encoding PfEMP1 

of P. jaIciparum (Baruch et al. 1995; Smith et al. 1995; Su et al. 1995). Variant 

populations of parasites could be purified more easily, allowing studies of variant 

parasite populations in vivo and in vitro to be performed without the initial presence of 

minor populations possibly affecting the results. Cross-reactivity of hyperimmune sera 

with other Ags and with each other, demonstrated in chapter 3, could be overcome, and 

the limited availability of such hyperimmune sera would cease to be a problem if mAbs 

against variant Ags were to become available. With such possibilities, it was 
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considered worthwhile to prepare mAbs against variant parasite populations. This 

chapter describes the results of this work and the use of a mAb in the live IFAT and in 

Western blot analysis of variant populations. 

7.2 Fusions and hybridoma growth 

In all, eight fusions were performed as described in chapter 2. Four were with spleen 

cells from mice immunised with parent population parasites, and two each with spleen 

cells from mice immunised with RC 7 parasites or RC 10 parasites. The outcome of 

these is shown in Table 7.1 and the end point of hybridoma culture following the 

fusions is detailed in Table 7.2. All fusions resulted in hybridomas growing, with 

usually a high % of wells +ve for hybridoma growth. Medium was taken from these 

wells and tested in the live IF AT with homologous parasites for Ab against Ags on the 

surface of pRBC. However, the % of hybridoma-containing wells +ve in the live IF AT 

was low. The exception was in fusion 3, where> 10% of hybridoma wells gave a +ve 

result in the live IF AT. In fusion 2, where a low % of wells was +ve for hybridoma 

growth, no wells gave a +ve result in the live IF A T. Where a well was found to contain 

Ab giving a positive result in the live IFAT, the hybridoma cells were cultured with the 

aim of expanding and cloning the cells to produce a mAb (see chapter 2). 

Unfortunately, although the initial fusions met with a degree of success, the continued 

propagation of the hybridomas proved problematic. With hybridomas from fusions 1 

and 3, the cells did not grow very much from the numbers originally observed and did 

not survive for more than a few days in the original 96 well plates. The hybridomas 

from fusions 4 and 5 were moved up to 24 well plates more quickly in an attempt to 

avoid the accumulation of debris from dead cells in the 96 well plates. However, the 

medium soon became -ve in the live IFAT and the cells ceased growing and died. 

With hybridomas from fusion 6, the cells were again moved up quickly to 24 well 

plates. There were additional problems with fungal contamination at this time, mostly 

in the 96 well plates. Seven of the hybridoma cultures remained +ve in the live IFAT 

both in 24 well plates and in 6 well plates and were cloned by limiting dilution. When 

possible, these hybridoma cultures were frozen in liquid N2 as stabilates. The success 

of cloning hybridoma cells is detailed in Table 7.3. A reasonable % of wells were +ve 

for hybridoma growth after these clonings, given a dilution of 0.5 cells/well, but all 

were -ve in the live IFAT. The cultures of the uncloned hybridoma cells from all but 

three of the wells originally +ve in the live IFAT had subsequently become -ve in the 

live IF AT and were terminated. The remaining three were cloned again, but two were 

lost to fungal contamination. The remaining positive, hybridoma 1, 9B was cloned a 

second time from a 25 ml flask, yielding a good % of wells +ve for hybridoma growth 

but all-ve in the live IFAT. A third cloning, from hybridomas recovered from stabilate 

and cloned as soon as possible from a 24 well plate, again yielded a good % of 
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hybridoma wells. Live IFAT screening revealed one +ve well. This was expanded and 

also re-cloned directly from the 96 well plate. From this, a very low % of wells were 

+ve for hybridomas, but all were +ve in the live IFAT. These were expanded, frozen in 

liquid N2 as stabilate and also injected into pristane-primed mice for production of 

ascites (see chapter 2). Tissue culture SIN was also collected for mAb and frozen at 

-20°C. 

From fusion 8, for practical reasons, only two plates were screened initially for 

Ab. Two of the other plates were frozen at -70oC (see chapter 2), whilst the third plate 

was lost to fungal contamination. Hybridomas from the two plates screened, which 

were found to be +ve in the live IFAT, were cloned directly from 96 well plates in an 

attempt to avoid fungal contamination and overgrowth of the Ab-secreting cells desired 

by other hybridomas. From the cloning, the % of wells +ve for hybridomas was 

moderate in three and low in two, given a dilution of 0.5 cells/well. However, all the 

wells were -ve in the live IFAT and were terminated. The uncloned hybridoma cells 

which were moved up to 24 well plates were unfortunately lost to fungal contamination. 

The remaining two 96 well plates were recovered from frozen but fungal contamination 

continued to be a problem and the cultures were terminated before any further screening 

could be performed. 

7.3 Antibody isotyping by Ouchterlony double diffusion 

Ascitic fluid of mAb 1, 9B was used for isotyping by Ouchterlony double diffusion as 

described in chapter 2. The results of this are shown in Fig. 7.1. When the ascitic fluid 

was used neat, Abs of isotypes IgM and IgA, present at low concentrations in the ascitic 

fluid, were detected. This is indicated by the precipitation lines between the wells 

containing the anti-f.l and anti-IgA Abs and the centre well, with the position of the lines 

very close to the centre well indicative of the low concentration of these Abs. These 

were not observed when the ascitic fluid was diluted, even just to 1110. The mAb in the 

neat ascitic fluid was present at too high a concentration to be precipitated by the 

corresponding anti-Ig, but at dilutions of 1110, 11100 and 111000, a precipitation line 

could be seen between the centre well and the well containing anti-IgG}. The mAb was 

therefore determined to be of the IgG} isotype. 

7.4 Live IF AT analysis of mAB 1, 9B 

Ascitic fluid from a mouse injected with hybridoma 1, 9B, secreting a mAb against a 

surface Ag of parent-infected RBC, and semm from this mouse and also from two other 

similarly treated mice, were tested in the live IF AT against parent parasites and against 

RC 10. The results of this are shown in Table 7.4. The ascitic fluid and all three sera 

gave a +ve fluorescence against the parent in the live IFAT and were all -ve against 

RC 10 at all dilutions tested. 

124 



7.5 Western blot analysis of parent parasite population 

Crude Ag preparations were made from the parent parasite and RC 10 populations and 

SDS-PAGE performed, followed by transfer onto nitrocellulose and western blotting 

(chapter 2). The nitrocellulose strips were probed with anti-parent and anti-RC 10 

hyperimmune sera and also with mAb 1, 9B both as hybridoma cell culture SIN (neat) 

and as ascitic fluid (1/100). NMS was used as a negative control. The results of this 

Western blotting are not shown. However, to summarise, the hyperimmune sera 

identified many bands in the Ag preparations, but with no readily identifiable, 

consistent differences between the bands detected by the anti-parent hyperimmune 

serum and the bands detected by the anti-RC 10 hyperimmune serum with either of the 

Ag preparations. The cell culture SIN did not identify any bands at all from either the 

parent Ag preparation or the RC 10 Ag preparation. The ascitic fluid revealed two 

bands, from both the Ag preparations, but these were also the only bands revealed by 

the NMS controls. No other bands were visible in the strips probed with the ascitic 

fluid. 

7.6 Discussion 

Within the last year or so, Baruch et al. (1995) have described the specificity of antisera 

generated against recombinant protein fragments of two related val' genes for the 

PfEMP1 molecule of the particular P. Jalciparum strain to which the sera were raised. 

To date, however, no published report has described mAbs against surface variant Ags 

of Plasmodium., raised either against recombinant fusion proteins or whole molecule 

native Ags. The successful production of one such mAb against P. chabaudi, described 

herein, is therefore novel. 

The fusions performed in order to generate P. chabaudi-specific mAbs were of 

varying success. In terms of hybridoma formation, they were viewed as successful, but 

in the majority of cases, the number of hybridoma wells identified as producing an Ab 

of interest was low. There are a number of possible reasons for this: the frequency of B 

cells in the spleens of immunised mice producing Ab against surface variant Ags may 

have been low; hybridomas producing other Abs rapidly outgrew hybridomas 

producing Abs of interest; B cells secreting Abs of interest produced unstable 

hybridomas which either stop growing or stop secreting Ab; a combination of Abs 

against more than one epitope of variant Ags may sometimes be necessary to give a 

positive fluorescence; the conditions used for cell fusions in some way selected against 

successful fusions with B cells secreting the Abs of interest. A combination of some or 

all of these factors is likely to account for the low number of wells found to be 

producing Abs against surface variant Ags. Hyperimmune sera produced a high titre of 

Ab against some of the variant Ags, but these sera also contained Ab of unknown titres 

against many other malarial Ags, and the variant Ags, although seemingly 
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immunodominant, constitute only a very small proportion of parasite Ags presented to 

the mouse immune system. It is, therefore, more than likely that the B cells secreting 

Ab against the variant Ags are of low frequency. The progressive loss of Abs giving 

positive fluorescence from the medium of hybridoma cultures which were apparently 

growing well may indicate the presence of other faster growing hybridomas or that Ab 

secretion andlor cell multiplication may stop in some hybridomas (Harlow & Lane 

1988). It may well be that such hybridomas producing Abs against variant Ags are 

often inheritantly unstable. Screening of hybridomas for Abs against variant Ags was 

performed by live IFAT, and was very labour intensive. By this method, there was no 

practical means by which combinations of Ab could be screened, unless several wells 

were pooled and screened together instead of individually. The pooling of culture SIN, 

however, may have had the effect of diluting out the desired Abs, resulting in none of 

the wells being identified as positive for Abs against variant Ags, which, when screened 

separately, may have been. An alternative screening method which would be less 

labour intensive and therefore more versatile for screening combinations of wells would 

greatly facilitate preparation of mAbs against variant Ags. There is no way of knowing 

if the procedure used for cell fusions may result in some B cells being selected against 

or if some B cells (those of interest?) are resistant to fusion with myeloma cells (Goding 

1996). 

The difficulties encountered in subsequent propagation of hybridomas can also be 

explained by the above reasons. With increasing experience, cloning was performed as 

early as possible to circumvent overgrowth with other hybridomas. Unfortunately, as 

the actual fusions became more successful, with greater numbers of hybridomas being 

produced and with more than one colony per well, this in itself became problematic. 

The hybridomas which screened positive for Ab against variant Ags tended to be fairly 

slow-growing, which increased the need for immediate cloning. Fungal contamination 

was, at times, an overwhelming problem, even with amphotericin B added routinely to 

the culture medium and with nystatin added in attempts to arrest fungal growth. 

Bacterial contamination never occurred in any of the myeloma or hybridoma cultures; it 

is difficult to know what additional measures could have been taken to prevent such 

fungal contamination. 

Despite the problems encountered, the methodology followed ultimately did 

prove successful, if to a limited extent, in that a mAb was produced. This was against a 

surface Ag of the parent parasite popUlation, was of the IgG} Ab isotype and is believed 

to be variant-specific. When tested against RC 10 in the live IFAT, no positive 

fluorescence was observed. It is not known if there is any reactivity against other 

variant types. This would require testing in order to clarify the variant specifity of the 

mAb. In preliminary attempts to characterise the variant Ag recognised by the mAb, 

Western blotting was performed using the mAb both as hybridoma cell culture SIN and 
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as ascitic fluid (results not shown). In neither case were any bands detected specifically 

by the mAb. The transfer of Ags was successful, as judged by probing strips with 

hyperimmune sera, and by staining the gels post-tranfer. It can therefore be concluded 

that the Ag was not present on the nitrocellulose in a form recognised by the mAb. 

SDS-PAGE, whilst separating proteins in relation to their MW, destroys the 3-

dimensional structure of proteins (Fenton 1993). The ionic detergent SDS eliminates 

both the native charge and structure of proteins, and when used in conjunction with a 

reducing agent, such as 2-mercaptoethanol, proteins become -vely charged linear 

molecules. It is likely that this is why no bands were detected by Western blotting with 

the variant-specific mAb, which is most probably against a conformational epitope. 

The potential of mAb production against native variant Ags of P. chabaudi has 

not been fully realised in the work outlined in this chapter. This approach to the study 

of malarial variant Ags does, however, still hold possibilities and, as there is no 

apparent reason for it not proving successful, is both valid and of relevance to the 

comparable P. Jalciparum studies currently undertaken. The fact that hybridomas 

producing Abs giving positive fluorescence in the live IFAT can be identified and a 

mAb can be produced is testament to the potential value of the approach. However, as 

there are as yet no published reports of mAbs being produced against these surface 

variant Ags of late-stage malaria parasites, it is possible that these Ags and the nature of 

the Ab response to such Ags in some way precludes the routine applicability of this 

approach and the ready availability of mAbs so generated. 

Future studies using the P. chabaudi-specific mAb generated by the protocol 

described in this chapter may provide information on the relationship between antigenic 

variation, sequestration and cytoadherence of malaria-infected RBC. Notably, it would 

be of interest to examine the effect of the mAb on the binding of parent population 

pRBC to different cytoadherence receptors known to mediate adherence to endothelial 

cells. By comparison, it is known that the antisera recently raised to recombinant 

peptides of PfEMP1 block the binding of P. Jalciparum to CD36 but not to TSP 

(Baruch et al. 1995). 
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Table 7.1 Success of fusions performed using spleen cells from mice immunised with variant parasite populations. 

Fusion Parasite population no. of wells +ve for % of wells +ve for no. of wells +ve % of hybridoma wells 

raised against hybridoma growth hybridoma growth in LIFAT +ve in LIFAT 

1 parent 202/472 42.8 6 3.0 

2 RC7 56/464 12.1 0 0 

3 RC 10 68/288 23.6 7 10.3 

4 RC7 283/464 61.0 5 1.8 

5 parent 116/224 51.8 5 4.3 

6 parent 464/464 100 11 2.4 

7 parent n.d. - - -

8 RC 10 464/464 100 5 from 2 plates 2.7 



Table 7.2 

Fusion 

1 

2 

3 

4 

5 

6 

7 

8 

End point of hybridoma culttU:es from fusions for 

production of mAb against variant surface antigens 

Parasite population End point of culture 

raised against 

parent 96 well plates: cells failed to grow 

RC7 24 well plate: all-ve in LIFAT; 

cultures terminated 

RC 10 96 well plates: cells failed to grow 

RC7 24 well plate: cells failed to grow 

parent 24 well plate: cells failed to grow 

parent 2nd cloning and ascites production 

from 1 clone 

parent overwhelming fungal contamination 

before screening commenced 

RC 10 1st cloning: cells failed to grow 
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Table 7.3 Success of cloning by limiting dilution of hybridoma cells (0.5 cells/well). 

Fusion Parasite population hybridoma Stage of culture at which no. of wells +ve for % of wells +ve for LIP A T results 

raised against I.D. cloning performed hybridoma growth hybridoma growth (% +ve) 

6 parent 1,3C 6 well plate 24/96 25.0 all-ve 

6 " 1,4D " 26/96 27.1 " 

6 " 1,9B " 34/96 35.4 " 

6 " 2, lIB " 32/96 33.3 " 

6 " 3,3F " 36/96 37.5 " 

6 " 3,7D " 14/96 14.6 " 

6 " 3,12D " 28/96 29.2 " 

6 " 1,9B 25m! flask 307/576 53.3 " 

6 " 1,9B 24 well plate 104/192 54.2 1 +ve 2, 3G (0.96%) 

6 " 3,3F " n.d. - -

6 " 3,12D " n.d. - -

6 " 1, 9B cL2, 3G 1st cloning, 96 well plate 7/192 3.6 717 +ve (100%) 

8 RC 10 1,3F 96 well plate 26/96 27.1 7/26 +ve (26.9%) 

8 " 1,6A " 23/96 24.0 all-ve 

8 " 1,7G " 30/96 31.3 " 

8 " 1,8H " 11/96 11.5 " 

8 " 2,3D " 5/96 5.2 " 



Fig. 7.1 Antibody isotyping of anti-parent mAb 1, 9B 
by Ouchterlony double diffusion 

a. Pattern of anti-Ig Ab in wells 

anti-IgA 0 

anti-fl 
o 

o anti-IgG 1 

n ... mAb (=Ag for test) 

anti-IgG30 

o 
anti-IgG2b 

b. Results using mAb ascitic fluid 

o anti-IgG2a 
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Dilutions 

neat 

1110 

11100 

1/1000 



Table 7.4 

dilution 

1110 

1/50 

11100 

111000 

Reactivity of mAb 1, 9B in the live IF AT against parent and RC 10 

parasite populations using ascitic fluid and serum from mice 

injected with 1, 9B hybridoma cells. 

ascitic fluid serum I serum 2 serum 3 

parent RC 10 parent RC 10 parent RC 10 parent RC 10 

+ - + - + - + -

+ - + - + - + -

+ - + - + - + -

+ - + - + - + -
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The use of P. chabaudi in mice as a model in which to study host-parasite interactions 

of malaria infections is already well established. The similarities of P. chabaudi to P. 

Jaiciparum mentioned previously (see 1.7) and its accessibility in a laboratory situation 

makes it the model of choice for many studies. The P. chabaudi-mouse model has been 

used extensively in studies on immune responses to malaria infection (reviewed by 

Taylor-Robinson 1995). It has also been used, to a lesser degree, in studies on 

antigenic variation (McLean et al. 1982b, 1986a, 1987, 1990; Gilks et al. 1990), 

sequestration (Cox et al. 1987; Gilks et al. 1990; Dennison & Hommel 1993) and 

cytoadherence (Cox et al. 1987). Although due care must be taken in extrapolating 

results from the P. chabaudi-mouse model to P. Jaiciparum infections in humans 

(Butcher 1996), as a tool for gaining knowledge of basic mechanisms of immunity and 

immune evasion in malaria infections, it is of immense value. 

The need for a fuller understanding of the host-parasite relationship in malaria is 

still apparent. Malaria continues to be a highly prevalent disease causing much 

morbidity and mortality (see 1.1), despite implementation of various control measures 

(reviewed by Institute of Medicine 1991; Targett 1991). This is, in part, due to the 

inadequacy of resources available in malarious countries for treatment and control of 

malaria, but the development of drug resistance, and immune evasion strategies 

employed by the parasites, are also contributing factors. The need for more effective 

control measures, most importantly an effective vaccine, is therefore paramount. 

Rational approaches to therapeutics and to vaccine design and development may be 

facilitated by the identification and understanding of interactions between malaria 

parasites and immune mechanisms, including immune evasion by the parasites. 

One such immune evasion strategy is antigenic variation. The aim of the work 

described in this thesis was to increase the knowledge and understanding of antigenic 

variation in malaria parasites, specifically P. chabaudi, but with the possible 

applicability of results to, and validation of findings from, other plasmodia, especially 

P. Jaiciparum. 

Initial experiments were performed as a continuation of previous work in 

Professor Phillips' laboratory (McLean et al. 1986 a & b; Brannan et al. 1993). The 

results of these experiments, which identified P. chabaudi cloned variant popUlations 

derived from a recrudescence and variant-specific hyperimmune sera, formed the basis, 

and provided the tools required, for subsequent studies. The biological properties of 

different VATs could thus be compared in vivo and in vitro, and the hyperimmune sera 

used to examine the expression of V ATs after MT and during infection. 

All the recrudescent clones were different from the parent, and some were 

different from each other. In total, six V ATs, including the parent, were identified by 

the live IFAT analysis using a panel of hyperimmune sera (see chapter 3). This 

confirmed and extended previous analyses of these populations using a passive transfer 
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system (McLean et al. 1986a) and using immune sera collected on d 16 & 17 pj. in the 

live IFAT (Brannan et al. 1993). It is likely that these VATs represent members of a 

family of Ags encoded by a super gene family, as has been shown for the variant Ag 

molecule in P. Jalciparum, PfEMP1 (Baruch et al. 1995; Su et al. 1995). 

Analysis of two of the cloned recrudescent populations after MT using the 

hyperimune sera in the live IF A T indicated an alteration in V AT from the original RC 

populations (see chapter 3). There was a change in the predominant VAT to a new 

type, but also an apparent mix of VATs. This mix of VATs may be due to a very high 

switching rate in mosquito-transmitted populations, as has been indicated for tsetse

transmitted trypanosomes (Turner & Barry 1989). A change in V A Ts after MT is not 

surprising, especially if the genes for variant Ags are distributed throughout the 

genome, as has been found for the var genes in P. Jalciparum (Su et al. 1995; Peterson 

et al. 1995). The repertoire would be reshuffled by reassortment and recombination 

during meiosis. Such rearrangements may in some way prime the parasites for rapid 

switching. The reversion to a basic or parental type upon cyclical transmission, which 

is possibly indicated by there being the same new predominant VAT in all three MT 

popUlations examined, may effect this, by this VAT being one which switches off at a 

high rate. This rapid switching and mix of V A Ts would be advantageous to the 

parasites, especially upon tranfer to a semi-immune host, likely in endemic areas, by 

allowing the survival of some parasites and rapid switching to other VATs possibly not 

already experienced by the host. It would thus be of interest to measure switching rates 

and parasite survival of MT populations in both naive and semi-immune mice. At 

present, this type of study is really only feasible in the P. chabaudi-mouse model. 

The observed differences between the courses of infection of different variant 

populations (see chapter 4) may reflect functional differences among the parasites 

and/or, possibly related to this, differences in the immune responses that they elicit. 

Measurement of some indices of the immune response during infections of different 

variant populations, such as VAT-specific Ab levels and isotypes, and NO production, 

would be of interest and may give an indication of the latter. The results presented in 

chapter 4 are of importance in demonstrating that infections with different VATs may 

exhibit differences in the severity and duration of disease, possibly unrelated to 

differences in cytoadherence phenotype observed for different VATs in P. JaIciparUln 

(Roberts et al. 1992). 

Antigenic variation in P. chabaudi is shown to occur at high rates, 

1. 6%/schizontlday , in vivo (Brannan et al. 1994; see chapter 5). This is in line with 

rates of antigenic variation of 2% per generation reported for P. Jalciparum in vitro 

(Roberts et al. 1992). The results in chapter 5 showing differential rates of switching 

on of individual VATs provide experimental support for an explanation as to why 

switching rates should be so high. Antigenic variation functions to facilitate 
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transmission of parasites from mammal to mosquito by enabling evasion of the host 

immune response by parasites and thereby increasing the longevity of infection. To do 

this, V A Ts are expressed in a hierarchical sequence which is achieved by regulating the 

rates of switching between individual VATs. As differential switching rates must occur 

at rates higher than those for background recombinational events (typical per capita 

rate values are approximately 10-6), the inevitable consequence of the requirement for 

differential switching rates between VATs is that the overall rate of switching is high. 

Differential switching rates in malaria parasites have not as yet been demonstrated 

in any other study. Differences in the frequency of appearance of some VATs in cloned 

cultures of P. falciparum may reflect differential rates of switching for these VATs 

(Smith et al. 1995), while the sequential appearance of VATs in P. fragile infections 

(Handunnetti et al. 1987) may be reasonably expected to reflect differential switching 

rates, with those VATs appearing earlier likely to have higher switching rates than 

those appearing later. A mechanism enabling differential switching rates, as shown for 

P. chabaudi in chapter 5, is the primary candidate for causing hierarchical expression of 

VATs, which is a diagnostic feature of systems of antigenic variation (Borst 1991; 

Turner 1992), and thus probably occurs in all plasmodia in which antigenic variation 

occurs. 

The rate of switching may be determined, if only theoretically, by the V AT being 

switched off, the V AT being switched on, by both or by neither. The latter possibility 

cannot apply, as this work has shown that, at least in part, the VAT being switched on 

regulates the rate of switching. What was not examined, and what could perhaps prove 

more difficult to determine, is whether the VAT being switched off also influences 

switching rates. One possible way of examining this would be to measure rates of 

switching on of minor VATs during infections initiated by different V AT populations. 

It can be assumed that the main direction of switching between V A Ts is from the major 

V AT to the minor VATs, and therefore a comparison of rates of switching on of minor 

VATs in different infections may indicate whether the major VAT being switched off 

plays a part in determining switching rates. This would give only indirect evidence, but 

to measure rates of switching off of VATs directly would be very difficult due to 

problems of distinguishing between switching and immune clearance. 

A high rate of antigenic variation (Roberts et al. 1992; Brannan et al. 1994; see 

chapter 5) pertains directly to the nature of the host-parasite relationship. A complex 

functional relationship must exist, as opposed to a straightforward pacing of the 

switching rate with the immune response if rates were low. One explanation for a more 

complex strategy may lie in the association between antigenic variation and 

cytoadherence/sequestration of pRBC. A clear association between these two evasion 

mechanisms has been shown in P. falciparum (Biggs et al. 1992; Roberts et al. 1992) 
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and in P. chabaudi (Gilks et aI. 1990), and therefore it may be necessary to consider the 

functions of both mechanisms in combination. 

The P. chabaudi-mouse model has the potential to be used for studies examining 

antigenic variation and cytoadherence/sequestration in combination, and interactions 

with the host immune system. Chapter 6 describes work performed to examine the 

sequestration in vivo and cytoadherence in vitro of different variant populations. The 

results presented show that peripheral withdrawal during schizogony occurs, as other 

studies have shown (McDonald & Phillips 1978; Cox et aI. 1987; Gilks et aI. 1990), but 

also show no differences in the extent of withdrawal between different variant 

populations. However, no investigation of the sites of sequestration of these 

populations was undertaken. This would be of interest, as would whether the extent 

and site of sequestration of different variant populations differs during infection, or in 

response to the artificial induction/introduction/blockade of immune stimuli , such as 

Abs and/or cytokines. Immune serum can reverse sequestration of P. Jaiciparum in 

Sain1iri monkeys and cytokines such as TNF, IL-1 and IFN-y can induce ICAM-1 

expression on endothelium in vitro and in vivo (Pober et ai. 1986; Munro et aI. 1989; 

Petzelbauer et ai. 1993). Expression of V CAM -1 and E-selectin is also induced by 

TNF and IL-1 (reviewed by Pigott & Power 1993). P. chabaudi pRBC can also be 

induced to sequester in the brains of mice during mixed infections with P. berghei 

(Dennison & Hommel 1993; Hommel 1993), indicating that induction of receptor 

expression and alterations in sequestration patterns of P. chabaudi can be achieved, and 

is worthy of investigation. 

Sequestration and expression of variant Ags during crisis in P. chabaudi 

infections would be another possible avenue of research. Is the rapid clearance of 

pRBC due to the breakdown of such evasion strategies? A peak of NO production 

occurs around the time of crisis in P. chabaudi infections (Taylor-Robinson et ai. 1993, 

1996). Physiological levels of NO have a cytostatic effect on mature P. Jaiciparum 

pRBC in vitro (Balmer et ai. 1995; Taylor-Robinson 1997). If this then halts 

transportation to the pRBC surface and expression of variant Ags, then sequestration 

may be prevented, allowing clearance of pRBC in the spleen. In a parental infection, 

during crisis and remission of the parasitaemia, expression of the major V AT could not 

be detected by rGSS with anti-parent hyperimmune sera and only low levels of any 

VAT could be detected (L.R. Brannan, unpublished observations). Alternatively, does 

the disappearance and non-reappearance of the major V AT represent selective 

clearance of this VAT during crisis, and/or its selective clearance during the re

emergence of parasites after crisis and remission? If clearance of pRBC during crisis 

and remission is non-specific, then all VATs present (major and minor) will be cleared 

indiscriminately. Preliminary results indicate that this may not be the case. Low levels 

of minor VATs could still be detected during crisis and remission. However, there was 

136 



no increase in the number of pRBC detected expressing minor V A Ts commensurate 

with the loss of detectable expression of the major V AT at crisis (L.R. Brannan, 

unpublished observations). A further possibility is that switching mechanisms may be 

interfered with during crisis, with the major VAT being switched off but with no 

switching on of other VATs. There may also be an inability to switch on the parent 

V AT again after crisis and remission, leading to its non-reappearance. The detection of 

V ATs in such studies is limited by the lack of availability of a full range of V AT

specific reagents. However, even with those reagents presently available, some of the 

possibilities raised here could be investigated. The host-parasite interactions that take 

place during crisis with regard to antigenic variation and sequestration certainly warrant 

further study, and the P. chabaudi-mouse model provides a vehicle for such 

investigations. 

The results of the in vitro cytoadherence assays presented in chapter 6 showed 

preferential binding of pRBC in all variant populations studied, with some differences 

in the specificity of binding between different variant populations. The levels of 

binding in these assays are similar to those reported by Cox et al. (1987), but are low 

compared to the levels of binding to C32 melanoma cells reported for P. faiciparum in 

similar binding assays (Schmidt et al. 1982). The development of an improved in vitro 

cytoadherence assay, perhaps using a different cell type, may facilitate further study of 

the link between different VATs and cytoadherence. As the liver is the major site of 

sequestration of P. chabaudi (Cox et al. 1987), the possibility of an assay based on liver 

sinusoidal cells should be considered. Experiments to determine the effects of V AT -

specific immune or hyperimmune sera or of mAbs on cytoadherence in vitro would be 

of interest, perhaps giving additional indications of the involvement of variant Ags in 

cytoadherence of pRBC. The identification of the host receptors mediating 

cytoadherence and sequestration of P. chabaudi would be beneficial, and the use of 

purified host receptors in cytoadherence assays may allow further comparisons of 

VATs in their ability to cytoadhere. Expression of such receptors could be investigated 

in different sites and at different times during infections in mice, and compared between 

infections with different variant populations, in parallel with studies of parasite 

sequestration. The possible rosetting properties of the different VATs also await 

examination. 

Recent technological advances have enabled the manipulation of the immune 

system in mice, thereby allowing detailed dissections of immune responses to various 

pathogens, including malaria parasites (reviewed by Taylor-Robinson 1995). Such an 

inductive approach is obviously not possible in humans, for which malaria field studies 

are purely deductive in nature. The ability to artificially knock out or induce 

components of the immune system can be employed to investigate the effects of such 

immune factors on antigenic variation and the expression of variant Ags by malaria 

137 



parasites. In experiments in which mice were depleted of B cells or Th2 cells and 

infected with P. chabaudi, a chronic bloodstream infection was observed, in which the 

predominant VAT remained unchanged (Taylor-Robinson & Phillips 1996). A change 

in the major V AT was observed only when B cells and Th2 cells were present together. 

As Th2-derived cytokines regulate B cell differentiation and hence Ab production, Th2 

cells may play a role in influencing the major V AT present during bloodstream 

infection. These results also indicate that V AT -specific Ab has a role in influencing 

antigenic variation in malaria parasites. It is probably via a selective process, rather 

than the induction of antigenic variation indicated for P. knowlesi (Brown 1973), as 

intrinsic antigenic variation occurs during the ascending parasitaemia, when immune

mediated killing is essentially absent (Brannan et al. 1994; see chapter 5). Increases in 

rates of antigenic variation due to extrinsic factors, such as Ab, however, cannot be 

ruled out. 

The biochemical and genetic basis of antigenic variation in P. chabaudi remains 

to be elucidated. In P. Jalciparwn, the variant molecule, PfEMP1, and the var gene 

family encoding this molecule, have now been identified (Leech et al. 1984; Baruch et 

al. 1995; Su et al. 1995). An open transfer of information and the availability of 

molecular probes could facilitate identification of the homologous P. chabaudi variant 

molecule and gene(s) encoding this molecule. Obviously, the resources available for 

research into antigenic variation in P. Jalciparum are significantly greater than those 

available for the equivalent research into antigenic variation in P. chabaudi. This is as 

it should be, but given the potential for host immune responses to influence variant Ag 

expression, antigenic variation, and sequestration, research on P. chabaudi should 

continue to be considered worthy of support. 
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APPENDIX A 

Buffers 

Phosphate-buffered saline (PBS) 

Stock 

Buffer 

Giemsa's phosphate buffer 

Barbitone buffer 

SDS-PAGE sample buffer 

SDS-P AGE running buffer 

Tris-glycine/SDS transfer buffer 

60.0 g Na2HP04. 12H20 

13.6 g NaH2P04. 2H20 

8.5 g NaCl 

Made up to 11 with ddH20 

40 ml stock, made up to 11 with 0.9% saline and 

adjusted to pH 7.2 

3.0 g Na2HP04 

0.6 g KH2P04 

Made up to 11 with ddH20 and adjusted to pH 7.4 

12.0 g barbital sodium (5'5 sodium diethylbarbiturate) 

4.4 g barbital (5'5 diethylbarbituric acid) 

0.15 g merthiolate 

Made up to 11 with ddH20 and adjusted to pH 8.2 

400 III 10% w/v SDS 

200 III 1M Tris HCI pH 6.8 

200 III 2-mercaptoethanol 

100 III glycerol 

100 III 0.1 % w/v bromophenol blue 

1 ml ddH20 

25 mM Tris base 

192 mM glycine 

0.1% w/v SDS 

43.26 g glycine 

9.09 g Tris 

3.0 g SDS 

600 ml methanol 

Made up to 3 1 with ddH20, adjusted to pH 7.4 and 

stored at 4°C 
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Wash buffer 

lOx stock 

For use 

AP buffer 

90.0 g NaCl 

12.11 g Tris 

Made up to 11 with ddH20 and adjusted to pH 7.2 

100 m1 stock 

900 m1 ddH20 

O.S m1 (O.OS%) Tween-20 

100 mM NaCl 

SmMMgCh 

100 mM Tris 

Made up to 11 with ddH20 and adjusted to pH 9.S 
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APPENDIXB 

Media 

RPMI1640 

Stock 

Malaria Incomplete RPMI 

Cell Culture Incomplete RPMI 

Complete RPMI 

10.39 g RPMI 1640 powdered medium 

(with L-glutamine) (Gibco) 

5.94 g HEPES (Sigma) 

Made up to 960 ml with ddH20, filter-sterilised 

and adjusted to pH 7.2 

100 ml stock RPMI 

4.2 ml 5% w/v NaHC03 (filter-sterilised) 

0.25 ml gentamycin sulphate (Sigma) 

85 ml stock RPMI 

11 ml L-glutamine (Gibco) 

5.5 ml 3.5% w/v NaHC03 (filter-sterilised) 

0.55 ml 0.1 M 2-mercaptoethanol 

22 ml fungizone (Gibco) 

2.2 ml gentamycin sulphate (Sigma) 

Both complete media contained 5-10% FCS (Gibco), unless otherwise stated. 

Sterile FCS was heat-inactivated at 56°C for 30 min and stored at -70°C until use. 

HT 

100x Stock 

HAT 

50x Stock 

OPI 

0.l36 g hypoxanthine 

0.039 g thymidine 

Made up to 100 ml with ddH20 at 70-80oC, filter

sterilised and stored at -20°C 

100 ml HT stock 

10 ml 1000x aminopterin stock 

(17.6 mg aminopterin in 80 ml ddH20) 

90 ml ddH20, filter-sterilised and stored at -20°C 
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100x Stock 

Ham's F-lO 

Stock 

Incomplete Ham's F-10 

Complete Ham's F-10 

1.5 g oxaloacetate 

0.5 g sodium pyruvate 

2000 i.u. bovine insulin (Sigma) 

Made up to 100ml with ddH20, filter-sterilised and 

stored at -20DC 

9.8 g Ham's F-lO powdered medium (Gibco) 

5.96 g HEPES (Sigma) 

1.20 g NaHC03 
Made up to 1 1 with ddH20, filter-sterilised and 

adjusted to pH 7.4 

100 ml Ham's F-lO 

1.0 mg (100,000 i.u.) penicillin-G (Sigma) 

2.0 mg (200,000 i.u.) streptomycin sulphate (Sigma) 

95 ml Incomplete Ham's F-10 

5 ml FCS (Gibco) 

Dulbecco's Modified Eagle's Medium (DMEM) 

Stock 

Incomplete DMEM 

Complete DMEM 

9.70 g DMEM powdered medium (with Earle's salts, 

amino acids & L-glutamine) (Gibco) 

5.94 g HEPES (Sigma) 

2.20 g NaHC03 

Made up to 11 with ddH20, filter-sterilised and 

adjusted to pH 7.2 

100 ml DMEM 

1.0 mg (100,000 i.u.) penicillin-G (Sigma) 

2.0 mg (200,000 i.u.) streptomycin sulphate (Sigma) 

90 ml Incomplete DMEM 

10 ml FCS (Gibco) 
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APPENDIXC 

Miscellaneous Reagents 

Sorbitol-glycerol 

Ouchterlony slides 

380 g glycerol (Sigma) 

39 g sorbitol (BDH) 

6.3 g NaCI 

0.5 g agar (Difco) dissolved in 100 ml dH20 

(lOOoC waterbath). 

Agar solution pipetted onto clean, dry slides. 

Slides dried and stored at RT until required. 

N.B. Pre-coating slides with a weak agar solution enables the final agar gel to be held in 

place during the Ouchterlony double diffusion washing procedure (see 2.14.12). 

Coomassie Brilliant Blue stain 

SDS-PAGE 

Solution A 

Solution B 

Solution C 

Separating gels (x2) 

5% w/v acrylarnide 

0.1 % w/v Coomassie Brilliant Blue R-250 (Sigma) 

25% v/v methanol 

10% v/v glacial acetic acid 

1 % v/v glycerol 

0.5 MHCI 

3 M Tris base 

15mMTEMED 

0.5 M HCI 

0.5 M Tris base 

30 mMTEMED 

Protogel™ (30% acrylarnide, 0.8% bisacrylamide) 

(Bio-Rad) 

5.0 m1 solution A 

3.0 m1 solution C 

18.0 m1 dH20 

0.2 m1 SDS 

0.2 m1 ammonium persulfate 
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25 % w /v acry lamide 

Stacking gels (x2) 

3 % w /v acry lamide 

NBTIBCIP 

NBT Stock 

BCIP Stock (kept in the dark) 

For use 

PFGE lysis solution 

TBE 

lOx Stock 

For use (0.5x TBE) 

5.0 ml solution A 

15.0 ml solution C 

6.0 ml dH20 

0.2 ml SDS 

0.2 ml ammonium persulfate 

1.9 ml solution A 

2.5 ml solution C 

10 ml dH20 

0.15 ml SDS 

0.15 ml ammonium persulfate 

0.5 g NBT (Sigma) 

10 ml 70% dimethylformamide 

0.5 g BCIP (Sigma) 

10 ml 100% dimethy lformamide 

66 fll NBT stock 

33 fll BCIP stock 

9.901 ml AP buffer 

0.5 M EDT A (BDH) 

1 % N-Iauryl sodium sarcosinate (Sarkosyl) (Sigma) 

5 mg/ml proteinase K (Sigma) 

Made up to 10 ml with dH20 and adjusted to pH 8.0 

108 g Tris base 

54 g boric acid 

8.35 g dis odium EDTA 

Made up to 1 I with dH20 and adjusted to pH 8.5 

50 ml lOx stock 

950 ml dH20 
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