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Some Aspects of Gyroscope Stability and Dynamic Response

Summary

The thesis describes the results of some investigations into the
causes of instability in free gimbal-mounted gyroscopes. Considerable use
has been made of analogue and digital computation to isolate the effects of
various types of reaction forces which may oceur in the spin axis béarings,
and the effect of rotor asymmetry is also considered.

Rotor asymmetry and variation of radial stiffness in the spin axis
bearings were both found to give rise to linear differential equations with
periodic coefficients, and an analytical procedure of general applicability
has been developed for obtaining the widih of the unstable zones and the
degree of instability at the parametric resonances.  This proced;Jre
gives excellent agreement with the results of direct computer solution of
the equations of motion.

Slackness in the spin axis bearings of a gyroscope did not appear, per
se, to produce instability. It may do so, however, as a secondary efrect
since forces which ofhe.rwise would be negligible become significant when
other restraints on shaft displacement are removed.

Tangential forces in the spin axis bearings in either direction were



found to produce instability but different modes of vibration were excited
according to the direction of the forces.

The effect of cage accelerations in the spin axis bearings has been
considered and has been shown to be small. Likewise, transverse couples
which arise due to non uniformi.fy of the motor magnetic field when the
rofor tilts relative to the stator, have been shown to be negligible..

Shaft and bearing compliance has also been considered, mainly from
the point of view of natural frequency and frequency response to externally
applied torques.

Bearing eccentricity has been shown to cause a forced nutation af
the frequency of rotation of the ball cage, giving rise to a simple resonance
if this frequency should coincide with a natural frequency of i’hé gyro.

Experimental work has been carried out with a view to establishing
the nature of the dynamic forces and deflections in the spin axis bearings.
Because these are of such small omplifudg and of such a complex waveform,
analysis of the experimental results has proved difficult. Sinusoidal
forcing of a casing containing a gyro rofor in order o obtain the frequency
response of the shaft and bearing deflections was moderarely successful
while the rotor was stationary but no readings were possible with the rotor

running because of a seemingly random variation in the response.
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CHAPTER T, |

INTRODUCTION,

1.1. Description of the Problem

This work was initiated following the publication of a paper by

(1)

Quartley' ' in which is described a series of experiments on a model
gyroscope with the effective gimbal ineriia arfificially increased.

This model work was carried out because of the occurrence of self
sustained nutation in a gyro forming part of a radar device. For security
reasons no details of this gyro could be released but the self sustained
nutation af, or very near fo, the ﬁc:i*umi frequency is said to have appeared
after modification of a previously satisfactory gyroscope. The
modifications consisted of the addition of torque motors and pick offs to the
gimbals, lowering the natural frequency of the gyro by a factor of two to
three. The instability was also associated with slackness :in the spin axis
bearings, but even with the bearings tight the damping of a nutational
oscillation was less than would be expected from measurements of friction
at the gimbal bearings.

The existence of such a problem was confirméd during discussions

between the writer and members of staff at Messrs. Ferranti Lid., Edinburgh

where similar trouble had been experienced during the "Anglicisation" of



a Kearfott gyro of American design.

[n this case the natural frequency of-nutation was considerably lower
than expected, by some 25%. During the discussion this gyro was referred
to several times as having an angular momentum of 5 million c.g.s. units at
400 rev/sec. but calculation of the polar moment of inertia of the rotor gave
this result only if the recess for the stator coils waos neglected. The reduction
in inertia due to the recess was of the order of 25%. Since the nutation
frequency is proportional to rotor angular momentum it seems possible (but
scarcely credible) that the discrepancy in natural frequency was due fo an
error in calculating the polar moment of inertia of the motor. |

On the basis of these interesting, but rather vague, descriptions of «
problem it was decided to study the behaviour of the gimbal mounted gyroscope
under a variety of conditions. |

1.2. General Approach

" The first approach to the problem was to build simulations of the
problem, of various degrees of complexity, on an analogue computer.
Although this work was restricted by lack of computing equipment it gave
invaluable help in visualising the behaviour of the system and illusirating the
interaction of the different varicbles involved.

Once an appreciation of the behaviour cg*f’l a given sysiem had been

obtained more detailed work was usually done by digital computation. This




proved rather time consuming but gave more reliable results.

In the analysis of the problem the equations of motion of the
system could be simplified considerably since the vibrations to be studied
were of small amplitude - (% degree was quoted as a bad case for the
Kearfott~Ferranti Mk VI gyro). Hence moments of inertia could be regarded
as constants, and the equations linearised by the usual small angle
c:pprm.(imations sin § =8 .and cos ©=1. A further simplificarion was
made by assuming the oscillations fo take place about a zero position in
which the spin axis and gimbal axes were mutually at right angles. The
rotor centre of gravity and that of the inner gimbal were assumed to be at -
the intersection of the gimbal axes, and products of inertia were assumed fo
be zero.

1.3 Definition of axes and basic equations.

Allowance is made in the analysis for displacement of the rotor
axis relative to its equilibrium position in the inner gimbal. 1t is
assumed, however, that fh.is displacement consists of rotation only with
no translation of the rotor centre of gravity from the intersection of the
gimbal axes. This introduces fwo more degrees of freedom into the
usual simple equations describing nutation and permits the introduction
of various non linearities and disturbances in the interaction beiween

rotor and inner gimbal. Fig. 1. shows the configuration
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of the gyro and the axes OX, OY, OZ which are fixed in space. Axis OX
is the outer gimbal axis and in the zero displacement condition OY and OZ
coincide with the inner gimbal, axis and spin axis respectively. 9}( and
@y are displacements of the gimbals about OX and OY respectively,

while ('0 « and ('0)' are displacements of the rotor spin axis relative to the
gimbals. The absolute displacements of the rotor spin axis are therefore
ex+ (’Ox, end @y + (}Dy.

The equations of motion in a general form are:-

l[‘éx i (Px] R ['@)’ ¥ (p)’-‘l " Tbc(f' qpx' (ﬁx’ (P)" (25}’) " T2x(i') =0

1[9)/ . (,Oy] -IRLO, 4] T 0L G )Ty () =0
' (1.1)
M 9 x Tlx(f' (pr (lax'(loy' l;)y) - T3x(?’ Qx' éx) =0

MO =Ty i §)+Ty (18, 8)=0

where | = transverse moment of inertia of the rotor
J = polar moment of inertia of the rotor
Mx = moment of inertia of inner and outer gimbal about OX
My = moment of inertia of inner gimbal about OY
JU = angular velocity of spin of the rotor (assumed constant)
Tlx,y= torques about Oz‘(, oY z‘rdnsmiﬂ“ed‘ from rotor to éimbals

via the spin axis bearings and magneti ¢ field of motor.



"T2x,y = out of balance torque on rotor about OX, OY

T3x,y = forques at gimbal bearings and external forcing torques.
The symbols in round brackets indicate the variables on which T}, T2, TS
may depend.

All the subsequent analyses relate to particular cases of the equations

set down above, except for the cases in which the rotor is unsymmetrical.

1.4 Review of literature.

There is very litile literature directly concerned with the particular
problem of self sustained oscillations in gyroscopes.

(M (2)

Only the papers of Quartley'’ and Prentis'™ deal with the influence
of the spin axis bearings on stability, while that of Magnus(S) deals with
instability due to an unsymmetrical rotor.  An interesting paper by
th:rlamov(4) discusses the effects of different forms of rotor drive in an
astatic three gimbal gyroscope, but the question of stability is not considered.
However, if the gimbal suspension of the gyroscope is disregarded and
attention is focussed on the vibration of a rotating body in bearings there is a
vast amount of |iterature avoilable, some concerned with whirling due fo shaft
eiqsficvify, and some concerned with the inFluenc? of bearing reactions on

shaft vibration.

[n this latter group the majority of the work has been done on journdal



bearings, both oil and gas lubricated, but a certain amount of literature
exists concerned with the effect of ball bearings on shaft vibration.

Since this thesis is concerned primarily with ball bearing gyroscopes,
discussion will be limited o those popers concerned with ball beqringé,
or the vibrations of shafts supported by ball bearings.

The author who has made the largest contribution in this field is
probably Yamo:mofo(5' 6)

In his 1954 pc}per(s) he deals mainly with the vibration of a simple.
vertical shaft carrying a single large diameter rofor and supported in double
row se|~F aligning bearings.

Five main topics are discussed, viz.

(1) Synchronous backward whirl.

(2) Forward whirl at the ball cage frequency.

(3} Backward whirl due to radial stiffness variation in the bearings.

(4) Various small amplitude vibrations due to manufacturing errors in
the bearings. ‘

(5) The effect of bearing clearance in producing jump phenomena.

Yamamoto showed that synchronous backward precession, or reverse
whirl at the rotational speed of the shaft,occurred only when the rotor was
offset axially from midspan and the bearing pedestals had different stiffnesses
in two directions c‘ﬁ' right angles.

Forward precession at the ball cage frequency was caused by bearing



eccentricity due to difference in ball diameters, this being similar fo the
case discussed in Sec.6.6. of this thesis,

The backward precession due to radial stiffness variation in the
bearings occurred af the frequency 26«}! -8 where LD1 is the ball cage
speed and SU the shaft speed. This difference frequency occurred because
of the presence of out of balance forces and couples, but in the dbsence of
these the system is analogous to that dealt with in Chapter 7 of this thesis.

Whereas the previous three types of vibration were of large
amplitude (0.020 in. approx. of resonance), smaller amplitude vibrarions
were also noted, particularly af Frgquencies of 3&)] and 4@3] _JSe , and
these were shown to be due fo ovality of the ball races, combined with
unequal ball diameters.

Yamamoto's final chapter shows the effects of bearing siackness in
producing jump phenomena. The "hard spring” characteristic of the ;!c:ck
bearing produced the usual form of resonance curve, having a downward jump
with increasing frequency.

In his 1957 paper Yamc:mofo(é) deals with o shaft carrying a single
rotor and supported in single row radial bearings in place of the self aligning
bearings used in his previous (1954) work. These bearings placed restraint
~on shaft deflection, converting the shaft in very approximate terms from the

simply supported to the fixed end condition. Due to clearance and compliance



in the bearing the restraining moment/shaft slope characteristic is
approximately bi-linear as in Fig.2. Due to misalignment of the bearing
housing bores, the undeflected shaft centre line may not lie in the cenire
of the clearance cone and Yamamoto lists no fewer than 25 possible forms
of the combined stiffness characteristics of a pair of bearings. Since the
rofor was offset from mid=-span, the system had four degrees of freedom
corresponding to lateral deflection and tilt of the rotor, each in two planes
at right angles. There were therefore four natural frequencies, speed
dependent because of the gyroscopic couples.

Yamamoto describes subharmonic oscillations of order 3 and

MSummed and differential harmonic oscillations™.  These are parametric
resonances which occur at speeds satisfying the relation pi & pj = Jt
where pi and pj are any two of the natural frequencies and JSU is the
shaft speed. The vibrations of order % occur when 1 = j.

These resonances did not occur in his earlier work with self
aligning bearings and were therefore due to the restraint imposed on shaft
deflection by the single row radial bearings. It was found that the speeds
at which the resonances occurred were different after dismantling and
reassembly, indicating that misalignment was a relevant factor.

In a theoretical discussion of the vibrations Yomamoto assumes a

non~linear restoring action at the bearings to be preseni in the x direciion of
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deflection, but not in the y direction, and later shows that the non-linear
action must contain periodic ferms at shaft rotation frequency in order fo
excite sub~harmonic resonance.

The jump phenomenon was aiso found to be present in the
subharmonic resonances, and was again of the "hard spring" type - i.e. a
downward jump in amplitude for increasing frequency.

Synchronous backward whirl was also noted at two speeds, and the
amplitude was found to be influenced by

(@) type of bearing.

(b) directional non uniformity of pedestal stiffness.

(c) bearing fit.

Wifh tightly fitted, self aligning bearings, and uniformly stiff pedestals,

this type of whirl was almost entirely suppressed but Wos always present with
single row radial bearings, irrespective of the tightness of the bearing fit or
the rigidity of the pedestals.

The stiffness variation which causes the parametric resonance may
arise in the bearing or in the pedestal. In the bearing, the stiffness variation
may be due to variation in clearance, and this variation is reduced fo zero
if the fit of the outer ring in the housing is so tight that clearance is zero in ol
directions. Bearing stiffness variation may aiso be due to misalignment of

the bearing housings, unless self aligning bearings are used.



To return to the literature which is more specifically related fo
gyroscopes, the paper by Magnus(B) takes account of inclination of the
inner gimbal from the orthogonal position and in fact takes this
inclination as the principal independent variable in considering stability.
Since increasing the inner gimbal inclination reduces the natural
frequency of nutation, and the instability is a paramefric resonance occurring
when the nutation frequency is neai to the spin frequency, this type of
instability can only arise when the gimbals are light and the rotor is short
axially in comparison with its diameter.

The papers of Quartley and Prentis are based on assumptions of spin
axis bearing reactions more appropriate to hydrodynamic bearings than to ball
bearings and indeed practically all of the work described by Quartley was
carried out on a model in which a small gyroscope was coupled via a plain
bearing to a large gimbal mounted mass representing the effect of added
- gimbal inertia. While Prentis shows that these assumptions result in a behaviour
resembling that of the original troublesome ball bearing gyro it is not yet clear
how tangential forces of the requisite magnitude and direction occur in a ball
bearing.

The literature concerning ball bearings is almost exclusively devoted
fo questions of fatigue, lubrication and wear. With particular reference to

7 . . .
gyroscopes Sfx'cn‘fon( ) describes improved methods of bearing test and selection

8
which have greatly improved bearing reliobility. Holmes * describes



instability in cage motion which seems to be due to defective lubrication.

(9)

Kharlamov' " develops theoretical expressions for the forces and
moments acting on the inner race of an angular contact ball bearing. These

- expressions indicate that the radial forces are affected by the filt of the

inner race, and that the moments are affected by the radial displacement.
When the equations of motion of a rotor supported in a preloaded pair of
bearings are obfained, taking account of these interactions, the cross~coupling
terms are found to disappear and the effect is simply equivalent to an increase
of stiffness.

Theoretical approaches fo the problem of parametric resonance in

systems described by linear differential equations with periodic coefficients

(13 (14)

date from Floquet but it is only in comparatively recent years that Malkin
has developed reasonably straightforward methods of obtaining the character-
istic exponenis which define the .;.fcsbil‘ii-y of a system close fo a parameiric

resonance., Malkin's work is discussed more fully in Chapter 8 of this thesis,

(15) (16)

but the work of Lowis cjuo%d by Parks could perhaps be meniioned here.
Lowis follows the classical theory more closely in that he obtains the constant
mairix C which relates the state vecior of the system ai time. t, X(i) to the state
vector one period later, X(i + T). The latent roots of the matrix C where

Xt + T) = C.X(t) musi lie within the unit circle if the system is to be stable,

The matrix C is obtained by using a simple first order finite difference



approximation to the differential equations of the system and involves a number
of matrix multiplications approximately equal fo the chosen number of
subdivisions of the period, generally about 30.

A re{’inem;eni', due to Parks and James, has been described in a
private communication. This refinement involves using a Runge-Kuita method
of finding the transition matrix and permits the use of a smaller number of
subdivisions of the period, cbout 10 fo 20.

The advantage of this method seems fo be that it can deal with cases
where the amplitude of parameter fluctuation is large compared with the mean
value of the parameter. Malkin's method is limited in iis straightforward

application to the region where/Li as defined in equations (8.1.) is small.



CHAPTER 2.

THE EFFECT OF ROTOR ASYMMETRY

®)

This analysis stems from a paper by Magnus In this paper
Magnus considers the effects.of rotor asymmetry on the stability of o

gimbal mounted gyro and develops a stability criterion in terms of a function
F(B) where ﬁ is the inclination of the inner gimbal from the orthogonal
position. The function F also contains the various moments of inertia of

gimbals and rotor and if its value should lie between the two ratios

max. or min. fransverse rofor inerfidg

Solar inerfia of rofor the system is unstable.

2.1 Analogue solution of Magnus' equations.

In the work described here, the following equations, derived from
those numbered (24) in the above paper, were chosen as being suitable for
simulation on the limited analogue computer available af the time.

b~ all =E'+J in20 - - 2

U, "¢ Uyr g (Uyr 2U>§|') sin 20 (uXr JZuyr) cos (P:\

(2.1

ce[(oxr ~R Jsin 29 + (6 + Ry ) cos 2]

It

v +hbhQu
yr

where v, Uyr are angular velocities of the rotor about the axes Oxr,. Oyr.
X

X

These axes are fixed to the rotor and are the axes of maximum and minirum
transverse moment of inertia (See Fig. 3).
SV is the angular velocity of spin of the rotor and a, b, ¢, € are

certain functions of the rotor and gimbal inertias.
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&

taken as SLt.

is the displacement of the rotor about the z_ axis and can be

For the purpose of the computer investigation the following

assumptions were made:=

XV

— Y -
3 = 0.6 N 0.5

"Transverse" inertia of edach gimbal

] -9

"Polar" inertia of inner gimbal

J = 29

This leads fo the following values for the coefficients:~

m

I

c&

In

(29 - 0.5)/(2g + 0.6)

i

= (2g - 0.4)/(2g + 0.5)
g/(2g + 0.6)

a/(2g + 0.5)

]

the computer diagram Fig.4 the velocities U wr and Uyr are

abbreviated to x and y respectively. Switches are provided fo allow for

changes in sign and scale in o and b, Servo multipliers My and M, are

connected o a 3 amplifier oscillator loop fo give the sin 280t and cos 24t ¢

ferms.

2.2. Results of Simulation

A series of 1uns was taken for increasing values of the gimbal
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inertia parameter g and Figs.5a - 5¢ show three resulis in which u yr is
plotted against v . Forg = 0 a circular plot is obtained as would
be expected since & and c¢ & both become zero and a simple harmonic
nutation of F;equencyﬂ» Jab s obtained.

As g is increased 'r!'xe‘ plot becomes hysotrochoidal in nature,
the x and y wave forms containing a main low frequency component of
frequency o' with a superimposed ripple of frequency 2+l
addition the amplitude ratio  x/y of the main components becomes steadily
smalier, the plot becoming more and more elongated horizontally. The
ellipse is traversed in an anticlockwise direction.

For 0.21 <« g << 0.28 the plots have an unsiable saddie point form,
and as g increases across the unstable region the separairices befween -i'he
four possible modes of motion change from a =< configuration fo }{

In the unstable region the ripple frequency is 2J1.

For g > 0.28 the plofs are epitrochoidal in nature, with the low
frequency ellipse being iraversed clockwise. The ellipse is elongated
vertically at first and as g increases from 0.28 the amplitude ratio x/y of
the main component increcses from zero. For h?gh values of gimbal inertia

the plots lose their well defined "ellipse + ripple" shape and become o

series of interlacing, non repetitive trajectories. The low frequency ¢!
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can be regarded as negative for g3 0.28 and the ripple frequency can
. . Q &3’1 .
then still be written as 2 ¢ + .

2.3. Analysis of results ~ Stable Region.

To obtain a physical picture of the motion of the gyroscope an
axis fransformation is required fo convert from the xr, yr axes, whichare
fixed fo the rotor, to a fixed set of axes. In effect this superimposes an
angular velocity +JSlon the radius vecior of the U UW_ plots. Inspection
of plois in the stable region suggest solutions in the following form:-

UX)":X césagi‘ - x cos (23 + 03})%(3 + acos 2 W ] t)

.2. 1 .{ (2.2)
uyr=Ys'int’-O t+ysin(2L + @) i(T+acos2 W 1)

X, Y are the amplitudes of the main oscillation, while x, y are the mean
amplitudes of the ripple. The quantity a is the amplitude of the modulation
in the ripple which is noticeable only near the unstable region.

This can be rewritten:=

i){' - X cos (240~ 631)1"

u =X cos LDi\‘mxcos (258 + Qi)i‘ .,.%’i cos (23L+ 3 & 5

X
i

u = Ysin @}f—#ysi’n (2 + QT)? ~ L sin @+ 30 )+ Lsin (2&-‘&3?)?

yr 2 2
| (2.3)
or, _ 1 e 3 SR SN
U n iuxr:._ Aelca f + Be"‘l“) 'i'.,_ Cel(zﬁ""‘b )i + De"]@&n‘@ﬁ )t . E@](ZS?.T 3& )t

H B i (A H 'i x - &y "g X
¢ R i@+ 3R o (29 =00 He-;'(ZAQ,-— ¥



(=Y
where A+B=X A-B=Y A:%ﬂ B~=>2
—x+ =y
C+D=-x C-D=y c=ZY D=2
~ax e a(~xty) _ —axty)
E+F =25 E-F =ay/2 E=%3 F="00
G=E H=F

The axis transformation can be expressed as follows,

s)e"sé ' (2.4)

u + ju=(u +ju
X y ' oxr y

where U N and v y e the angular velocity components of the rotor relative

fo fixed axes.

i.e. u +ju =Ae
X

e pl®REOE | -j(@e3al) o ER-aT L s - oy,

(S + aly +Be;(.§a,_@'f),n » il De._;(xa+es1)-;-

(2.5)

Since the ripple amplitudes are about 5 ~ 10% of the main amplitudes, C, E

and G will be negligible, leaving
1 a 3 -1 £ ] 2 4 - ’i s _ '[ .
v + iuyz Ael(ﬂ.-{- )i + De ($L+at) + Bei(JZ & )i‘+ He (St - ol

N SO (2.6)

u = (A + D)cos e:)ni“ + (B + H)cos <6)n- - oo )i + F cos (€0n + 200);

. . : (2.7}
uy = (A - D)si’ncbni' + (B - ’rl)sin(fbn ~ 28 ) = F sin (&3'n + 20 )

* L3 g E
where & s the nutation frequency, $L +

or, since H=F



1S

U =(A+D+F cos 2c;)ii')cos¢c>“3‘+ Bcos(ad ~2 &Jg)i'
X n i (207)

Uy: (A~D ~F cos 2&3?)(:05:10“;?‘*- B sin (Lan -2 LD])?

In terms of the nutation frequency " and rofor spin 'Frequencyﬂ these

become

u, = % [_X + Y = (x+y)(1+a cos 2(&)n -ﬁ){*ﬂ cos & t + H(X=Y)cos(2 - 63;})? 0.9

il

u

%[X + Y + (x+y)(1+a cos 2(53h "&)i'ﬁ sin 6-3ni‘ + F(X=Y)sin{28 = idn)i“

The major component of this motion is the oscillation with frequency o
with unequal amplitudes in x and y directions, and modulated at @

. / S‘z‘ [ T L\:} ‘f:»)
frequency 200 0 ). In addition a component at frequency 2 W& = .

is present but with a smalier amplitude (X - Y)/2.

2.4, Analysis of solutions of Magnus' equations by curve=fitting.

Earlier in this work, before the pattern of the solution had become
apparent an aifempt was made to analyse the resulis by a curve fitting
procedure, using a digital computer. First a Deuce Alphacode programme
was written to solve Magnus' equations, and obtain the solutions in a form

H bi £ {‘ [ FU ool Y f.h ° Cimemimct 105 PR S .
suitable for further processing. Since the various frequency components are
non-commensurate, normal Fourier harmonic analysis is not possible and a
1 1 (1 0) cfe T s

least squares' method due to Prony was utifised. The sum of the squares
of the errors between actual and *fitted' values of the ordinates is minimised

and the smallness of the minimum is a measure of the success of the procedure.



The results of this analysis were not completely satisfactory,
probably due to a non-optimum choice of step length in the solution of the
equations, but were sufficient fo show good agreement between fhe
frequencies obtained by this method and those shown in equations 2.3.

For example the equation obtained by cuive fitting for g = 0.1 was

as follows:—

_ =0.0066¢
&

Xr

(1.0595 cos 3.3861 - 0.0644 sin 3.3861)

+ e_O'QWOi‘(OA. 0007 cos 16.46t - 0.0008 sin 16.46%)

+ e“o'mzo*(o.ooos cos 23.39¢ + 0.0052 sin 23.39%)

e A8 0.0008 cos 31.42t - 0.0004 sin 31,420

where JU has the arbitrary value 10, Taking & 7 as 3.38%, frequencies of
approximately 230 + o }, 230 - Lbi and 251 + 3 i are seen fo be
present.

2.5. Andalysis of results ~ unstable region.

The empirical solutions qbi‘oined in Sec.2.3 are concerned with the
stable region of the problem.

The unsiable regioh occurred where the value of the low frequency
> " inthe v w' Yy waveforms passed through zero. This corresponds
in fixed axes o ?h»e condition that the nuiation frequency is equal to the spin

frequency of the rofor, i.e. @ 0 = SL. Fig.6. shows the nutation frequency
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L . plofted to a base of gimbal inertia g and indicates a step af the
unstable region.

The saddle point form of the u Y yr plots in the unstable region
indicates the presence of two exponentials, one with a positive index and

one with a negative index. In addition there is o ripple af frequency 2 JL

The solutions would therefore appear o be of the form:~

A O 2 s 2S00 4 b oD s B e oty
Vo Axe (?-:Axcos..“z.t) on (1 Bxcos.?ﬁ.i)

{2.11)
L at _ay . R —-b‘{‘.‘_i?_)_{_. 5
u oo Aye (a Ay sin 28Lf) + Bye (1 Gy sin 25L%)
giving v = er+ ju yr
ot i 23 - § 285 |
- A riA) + el P a2
. (2.12)
bt U L PAIR I AR
+ e };(Bx_i_ ] By) + bie ; bze ?&
where ay + a,=d_ ay "o, = - ay‘
b1+b2:bx bi-b2=-by
Relafive to fixed axes,
u=uU_ +ju =ei‘ﬂi.,u
X y r
i.e (o +180)¢ L , i3 = o
U e . (AX g iAy) T a.ie + Cj:zk..
L - . 2 n ’ . . (2.?3)
+ e( D.i-i'g?“)‘(i%x%- iB)+ b1e! 3 + b2e it



i.e.
u, = euf EA cosSit + ] A sinfls
X X

X . T .
e -
__Lae]?)alh!_desz.f

- A sinflt + ! A cosid ;% e 2
Y Y -
wbt ' . 14
“r eb‘i i;B cosdli + } B sindly (2.14)
X vy
A . L1 3Ry - Wt
~B sindlt + iB cosﬁ.ij " Py b2e
Y vy
i.e. ot b | o X
v = ¢ (A cosSli =~ A sindit) +e (B cosfii~B sindL 1) + (o +b.)cosdli
X X % X y 272
+ (Oi + b,l) cos 33L+ |
. . (X ' = ""bi‘ (2.;';5)
v = em(A sindlt + A cositi) +e (B sindlt + B cosfii) '
Y X Y X 4
+ (02 + b2) sindl i+ (c:.E + b3> sin 348t
a - Ciy a + Q\/
but Qp = ay =%
b){ - by b}\ +b
= —_ < Y
by = 72 by =
a_ _andb  are small compared with A and B and hence a, + b, .
XY X7y XY Xy E i

will be negligible, i.e. the 3rd harmonic will have a very small amplitude.
Hence

X = edi‘(A cossi - A sindlp) + e“bi‘ (B cosdli - B sin b )
X y X y

+ {;(ax + qy + bx + by)cosS?.i- .
(2.16)



y = & (A sin&t + A cosdbt) + embT (B sindlt+B cosJit)
X Y X Y

- Ha, * o
X

+b +b )sindlt
X

)4 Y

Depending on the initial conditions, it will be possible to have
° n - L [ « | fo . - e _ [ ” N Oi‘ .
transient oscillations which diverge immediaiely due to the e term, or
-bi
transients which converge at first due fo the e~ term being dominant but

. . . ar
which finally diverge cs the ¢ term becomes large.

2.6, Values of the exponents a and b

These were obtained from the analogue computer by feeding either
. a a . 1 W2l @ & o . 7 © 1) .. .
the U OF the Uy signal into a logarithmic amplifier and recording the output,
! Ll h WA, dar. The i’ e .[,,.a n =~ a J.h_
og u_, on astrip chart recorder.  The mean siope of the trace gave the
i3 ‘ d b "h P S g IO L - £l 2 . [< .
exponents a and b.  The initial condition of the computer run was faken nea
the extremity of one of the separatrices of the 'saddle~point' diagram (Fig.5b)
so that o long run was available with a decreasing signal, giving the negative
exponent, followed after an intermédiate stage by a portion where the
bR 2 P ' 2 - ~ - o .o-'-i ¥
positive exponent was dominani. A typical output from the logarithmic
amplifier is shown in Fig.7.

The values obtained for the exponents are shown in Table 1 for various

values of the gimbal inertia parameter g.

Table 1/
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Table 1

-1

Exponents (sec )

negative positive
0.363 0.380
0.504 0.475
0.475 0.445

0.276 0.317
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2.7 Frequency Response Analysis

Consideration of the form of the transient response (Eqn. 2.9) suggests
that the response of the unsymmeirical gyro to sinusoidal forcing torques on
the gimbals will exhibit beating corresponding to the modulation of the
transient and may also show a subsidiary resonance at the frequency 2 S2 - W
In order to obtain the frequency response from a simulation of the unsymmet-
trical gyro it is necessary to rewrite Magnus' equations in terms of fixed axes.
This can either be done by substituting the axis fransformation:-
- "'
= G cosSly + B sinS
S Y

U =
Xr

=w D sinb?ii‘ + 0 cosflt
x Y

U == am
yr
in Magnus' equations, or by derivation from first principles as follows.
Referring to fig. 3, in which the xr, yr, zr, axes are fixed to the rotor, the
angular momenta of the rotor about these axes are:-

(évcosﬁ.? + O sindly)

h = |
Xr Y

h = | (=8 sindbr + & cosdly)
yr X Y

! = )

nZi‘ .] \.52,

where | and | are the moments of inerfia of the rotor about the X and y
1

axes respectively.

About the fixed axes OXYZ (fig. 1) the momenta are:-

h = h cosNi = h sindi
CX XT yr
h = h sinRt +h cosdt
y Xr oy
h = h = JJ2

Z zr



if we let

. ° ) v

h = 1 (Q cos Rt + O sindlt cosNi)

X X X ., y

- ....{f in 1 = 5 H . AR

Iy ( Qx sin J2 9, sinJl 1 cosd(i)
=1 +1 A + -l A - ST
Xy b X Y (Qx cosQJLr—’r\‘;’Vsm 2487

2 2 ’

lx' i\/ = and x"[y = 7
2 2

| is the mean fransverse inertia of the rofor and r is a measure of the

asymmetry,

similarly

Hence
h = Eé + 1l | é cos 28t + O sin 2 38%)
X Pad X y
h = 160 + ol (9 sin 280t - 8 cos 234)
Y Y : X Y

The rafes of change of momentum are:=

=3 _ G e + ‘10 2\3 l‘+y90 R 2\‘“"
hx I@x rl(@xcos 2 @ysm 51 4)

+ 28 = Qx sin 238 ¢ + @y cos 2 §Lt)

l: =18 =+ rl(é sin 280t - O cos 250 1)
Y Y e Y )
+ 2ri~5?.(@xc032~521‘ +@y.sin 2884
h =0
z

Hence the torques on the rotor are

where ©
z

X X y ~z z Yy
@ @ o
T =h = h O + h©
y y zZ X X~z
T =h -~ ho + h &
2 z x>y y X

is the z component of the angular velocity of the axes = 0.



<

i.e. T = h + JR
\'Qy

3 X

T = h - JRS
Y Y X
oo

Z

Tx and T are provided by inertia couples from the gimbals and damping

torques at the gimbal bearings so that the equations of motion of the system

become:~

I+MIE + 308 + RO + (O cos2Rt +9 sin281) (2.17)
x 7 x y g x X y

+ 2i'§\31(~éxs?n 23 ¢+ éy cos 23t} =0
I+ M )@ “ IR+ RO+ (& sin2R+ ~ & cos 29%)
4 Y X g v X b4

2rf SU( éo)x cos 298¢ _+éy sin23L 1) =0
For the purpose of frequency response analysis, forcing torques Tx and T can be
included on the right hand sides of these equations.

In fig. 8, which shows the arrangement of the analogue computer to simulate
these equations, the three amplifier oscillator loop A8, A9, Al10 generates the
signals cos 24U + and sin 2 J2 t and these drive the servo multiplier shafis Ml ‘and
M2. A small amount of feedback, (ihrough two pofentiometers in series fo give
fine control) was applied across amplifier A? to give constani amplitude signals,
although this is not shown in the diagram.

Since 31 was taken as 10 rad/sec, scaling the velocities éx’ é , OS

o o
(20 Q;{) volis and (20 @y) volts allowed the periodic terms, derived from the
multiplier cups IA = ID and Z2A - 2D, to be summed a unity gain in the

amplifiers All and AlZ.
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The asymmeiry coefficient r could be then set using only the two
potentiometers P11 and P12, and the system could be rapidly switched from
the symmeirical to the unsymmetrical condition by the switch S1.

The forcing "torque" Tx was applied to the simulation by a Solartron
transfer function analyser, via the poteniiomeier Q12 at the input to
amplifier 3.

Frequency response curves of é o Tx are shown in figures 9 and 10,
both responses being for g = 0. 15.

Fig. 9 shows the effect of an asymmetry coefficient r = 0.0909, while
fig. 10 shows the response for a larger value, r =0.2.

The full lines give the average response of the unsymmeirical gyro,
while the dotted lines give the response in the symmeirical case.

The chain dotted lines show the extent of the beating indicaied by the
"in~phase" me'i'er.o’r" the transfer function analyser, the quadrature meter being
nulled at the cenire of its swing using the reference resolver of the T.F. A.
The reading of the reference resolver was faken as the average phase shifi

| a
between the torque T and velocity &

As the forcing frequency recedes from the spin frequency the indicared
beat amplitude is attenuaied by the meters of the T. F. A., so that the beating
is actually more extensive than indicated in figs. 9 and 10.

The main effect of rotor asymmeiry is seen to be an increase in the height

of the main resonance peak, coupled with a displacement of the peak towards
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. ) - .
the spin frequency J{ . At the frequency 2 3 ~ & " where {Qn is the
H

natural frequency of the symmetrical gyro, the amplitude response is reduced
by asymmeiry. A "hump" appears .in the amplitude response at a frequency
just less than & but this effect is obscured by the large beat amplitudes.

In the phase response (Fig. 10) the main effect, apart from the shift
towards 3L, is the large positive phase shiff produced at aboui 55%3“? =0.55.
Since the resonance peak occurs at about i‘}/&.: 1.15, the peak positive phase
shift seems to occur at 2 3L - ‘); where b)r: is the resonant frequency of the

unsymmeirical gyro.

2.8 Response o a constant torogue T
i t 5

For a symmetrical gyro, without damping, a constant torque Tx sirnply
@

. : . ke - 3
produces a consfant angular velociiy & v =T / JRand & =0.
N

4

As is shown later, in section 6.3.1, the iniroduction of damping torques

Lo

R & andR @y gives O = Rg and @\/ =

Z 2 .
Y - 5 D
T (JdL) +Rg ix (Jo}) -rs\g

Since Rg will generally be small compared with J %, the effect of
damping is to give a small velociiy in the x direction, and a small reduction in
(=3
the velocity o .
y w
When the effect of asymmetry is faken into account, it is found that @x

hd

and @y have oscillations at frequency 2 §1 superimposed on their steady values.

Fig. 11 shows transienfs obtained from the computer by aoslving a conziant
9 P Y Go; g
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voliage at the input to amplifier 3, to represent a constant torque T><

[t is possible to calculate the amplitude of the steady state oscillation by

substituting the following expressions in equations 2. 17:~

@X = - 28xsin 25 ¢

© = X+xcos2Rt,
P
& = Y+ysin 21, Qy = 2y cos 2

4
X and Y can be taken as the response of the symmeirical gyro to constant T

The expressions obtained for x and y are rather cumbersome, but the following

expression:=-
21 T
X

J&.\/J2+4(l+M)(I+M-J)

is obtained when i is assumed i-hdf'MX = My =M, y=x, Rg =0



2.9 Energy Analysis

Assessment of the relative stability of the simulated gyro under
various conditions is not always easy, particularly if the fransient wave-
forms are distorted by beaiing, as in Fig. 12. In addition, the analysis
of pen recordings is fime consuming and tedious.

in order to study the effect of varying gimbal inertia on the stability
of the unsymmetrical gyro, the circuits shown in Fig. 13 were added to
the simulation in order fo show the time variation of the kinetic energy
E of the nutational oscillation, and the energy dissipated by damping, W.

The kinetic energy E is obtained from the expression:-

. A 2 a2 2
-Q(MXQX + My &+ | ug * iy UYR)

Co
.

U . are expressed in terms of ©
xR” “yR P x y

B
this becomes, for small displacements @x, @y,

and when the velocities u

e

2 )cos 21 +28 & sn'12~.f2:22
Y x 7

P

=g:[ 1)@ +(M+l) +rlz( -

(o

The kinetic energy of spin, %Jﬁ. is assumed constant and is not included in E.
The energy W dissipated by damping is given by
2 2 ¢ 2
dW =R (&7 +0))
T g X b4
i
When the symmetrical gyro oscillates in the presence of damping the

energy E falls exponentially to zero, while the energy dissipated in damping,

W, rises exponentially to a final value WF equal to the initial kinetic energy, 1. E.
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When the gyro is unsymmetirical, however, energy may be fed into the

nutation or removed from if, and in the real gyro, as distinct from the simulation,
this energy would reduce or increase the spin kinetic energy of the rotor.
Ultimately this energy would be replaced by the driving motor, or dissipated
by the various resistances to spin. In the simulation this would be indicated
by a value of W]D/EE different from unity. Iif W‘n/iE >» 1, then more energy has
been absorbed by damning than was originally present in the oscillation and the
rotor asymmetry has reduced the stability of the gyro by feeding energy into the
nutation.

The main advantage of this approach is that all the information from a

compuier run is contained in a single reading of W, at the end of the run and no

f
pen recordings are necessary. Also, the simulation may be damped sufficiently

fo obfain stable transients throughout.

2.9.1 Effect of gimbal inertia

Fig. 14 shows curves of WP/IE plotted fo a base of gimbal inertia g.
It appears that the destabilising effect of rotor asymmetry extends beyond the
unstable zone into the region of higher gimbal inertia for the case of zero
initial condition on & v Conversely if there is a zero initial condition on
[-3
Q ! the destabilising effect extends into the region of lower gimbal inertias,
being balanced by a stabilising effect ai high gimbal inertias.

These curves are unaltered by changing the sign of the initial conditions
b4 ging g ’

or by interchanging gimbal inertias.
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2.9.2 Effect of initial rotor position

The curves of fig. 14 are obtained by assuming that the fransient starts
when the rotor is lying with its axis of maximum transverse inerfia in the
OX direction. Fig. 15 shows the effect of varying this initial rotor position,
for the two cases of initial gimbal vel_ocii'y, e 'pdﬂ"iCU!Gi‘ value of gimbatl
inertia.  This shows that the effect of rotor asymmetry can be stabilising or
destabilising according o the initial rotor position, bui.' for this value of gimbal
inertia, the average effect over a large number of transients starting ai random

rotor positions would be destabilising.

2.9.3 Variation of energy of vibration

Another convenient measur~é of the relative stability of a vibrating system
under vc:rioug conditions is the raie of change of vibraiion energy, which comprises
both kine'?‘ic and sfrain energy.

The energy function is a particular case of the Lyapunov V funciion since
it is positive definite for all values of the state variables but has the advantage
over an arbifrary V funciion that negcn"ivé dE/dt is a sufficient and a necessary
condition of stability whereas negative dV/dt is only a sufficient condition, in
general. The quantity E also has the virtue of possessing physicalsignificance
but on the other hand may not lend iiself 1o danyi:ical treatment. Indeed, it may
not always be possible 1o express the energy quantities analytically.

The variation of E is used more extensively in later chapiers of this

thesis.
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2.10 Characteristic exponent

The question of characteristic exponents is dealt with fully in
Chapter 8 of this thesis, but as a check on the resulis obtained in Sec.2.6 and
summarised in Table 1, computer runs were taken using the set up shown in
Figs. 8 and 12b. The damping was setf io zero, and for g = 0.24, r = 0.0909
it was found that the positive exponent had the value 0.506.  This was obtained
by logarithmic plotiing of the peak amplitudes in the éx' éy waveforms, and
checked by logarithmic ploiting of the energy quaniity E. Sincev Eisa
quadratic function of the angular velocities éx’ éy' the slope of the log £/t

graph is double the value of the characteristic exponent.

2.11 Damping required to stabilise the system

With the same seftings as in the previous séction the damping was
adjusted using potentiometers P 9 and P 10 (Fig. 8) until the transient was
a constant amplitude sine wave. At this limit of stabiliry Rg / J was found io

be 0.5.
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CHAPTER 3.

THE EFFECT OF SLACKNESS AND TANGENTIAL FORCES

) IN THE ROTOR BEARINGS

M.

The papér by Quartiey ' 7 indicates that rofor bearing slackness was
a contribuiory cause of the instability he described. Also he suggests the
existence of tangential forces of the type which are known fo cause “oil
whip" in hydrodynamic bearings.

3.1. Assumpiions and eguations of motion

It was decided in the preseni work fo investigate the effect of rofor
bearings slackness assuming o rather different set of bearing reaciion forces.
in the radial direction the bearings are assumed to be elastic outside the
¢learance with the result that the restoring couple applied by the bearings
to the rofor is as shown in Fig.16.

[n addition a fangential force equal to #* times the radial force is
included in the analysis and in the following equations the signs are such
that posifive it corresponds fo the action of dry friction while negaﬁve/%

[y

corresponds fo the direction of an "oil whip" force.

The equations of motion of the system are then:~

kF F)

< {px “/i,s.k iy “0
;
¢ o

" . . . . kF f;?y /&kF@x
l(@y + CPy) . J&(@K +€29X) + Rbép , + © + 7

(O + P )+ ».L)e.(é:?y +§ay) tRGY +

=0
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3.2. Analogue Simulation

Initially, when these equations were simulated on an analogue
computer, the tangential force /LL kF was not taken info consideration and
the computer set up shown in Fig. 17 was used to simulate bearing siackness.

At first the analogue vesulis indicated that bearing stackness gave
rise to instability in the system buf the instability was eventually traced to
dynamic errors in the servo muliipiiers. With the "clearance" or dead space
adjusted to zero, the voltage representing tne restoring coup!e —-:———— WS
plotted against {P 5 on an oscilloscope os the transient took place, An
elliptical trace resulted, indicating o phase shift where none should have:
oceurred, since when the dead space o is zero F = {]{) . This could
pernaps have been overcome by slowing down the solution time, or adding a
proportion of i:i' 5 and {',:P y o €§9 ,, and %{) y respectively to provide phase-
advanced signals to drive the multiplies M T and M 2. "Quarter squares"”
or time division muitipliers with o higher frequency' response were not
available.  Af this stage , however, it was decided to discontinue the

analogue investigation of this case.



FROM GYRO SIMULATION.

SIMULATION OF BEARING SLACKNESS.

FIG, I7.



3.3. Digital solution of "dead space” eguations.

:
pw H

FThe equations were then programimed for solution on « Sirius

digital machine, using Sirius autocode. The programme uses a tibrary sub-
routine based on a 4th oider Runge~Kutta method.  As with all step-by=step
numerical infegration procec;ures , the accuracy increases as the step length
is reduced, and some experiment with the step iength wes required to obtaln

sufficient resolution of the high frequency componenis in the relative

- T ! a7 $+ : h o N i § s 4 d TL]"* ST E T ic & g
S}/Snel‘ﬂ Me 1ord enulgy dr edc S}\.p Was Ccaicuiaied, s \.nuigy s \.-qUQn O

the sum of the kinetic energies of the moving masses and the sirain energy due
o deformation of the elastic bearings, i.e.:~

=] é2+ @2+' ) + 241. g+ )2 +f§~‘:J 3.2
E=3[ M © 7 eM O 2er(g + ¢ )7 (o p)f e @
Also , af each step the rate of dissipation of energy by damping in the

bearings was calculated from the expression:=

dw ‘ N2, 9 2

M Rb(‘?f* o y2> #Rg( O ) (3.3)

This rate was integrated along with the other derivatives by the
Runge~Kuita process, fo give the quantity W representing the total energy
dissipated by damping since the beginning of the transient., The quantify

§ G

W + E was then compared with the initial energy in the system af the start



o0

. :
of the transient. The guantities E/1E and{W + E,/ii: appear in the tables

of computer results, of which a sample is shown in table 2. It can be seen
that{W + EVIE does not depart significantly from unity, and it did not do so
under any of the conditions of dead space or gimbal inertia. This is taken

to mean that all the energy quantities have been cccounted for, both in
storage and dissipation, and the quan’r'fi‘yf'.W + B/IE therefore aefs as o valucble
check on the accuracy of the computaiion,

The rate of change of E/IE is used as a measure of the relative

stability of the system under varying conditions of gimbal inertia, dead space,

Since ihe Sirius was exiremely slow, and was a "self~drive" machine,
the process of experimenting with step lengih fo maintain accuracy became
very time consuming. A compuiing service became available in Manchester,
using a much larger and fasier Aflas machine, so the problem was re~programmed
for solution on Ailas, using the Kuita=-Merson method for integrating the
equations. Af the same fime the programme was extended fo take account
of the tangential forces in the bearings, described in secifon 3.1.

The Kuita-Merson method automaticaily adjusis the step length to
maintain the fruncation error within a value e chosen by the programmer.

If the error exceeds this value the machine halves the step length chosen by

the programmer and repeats the integration. If after three successive
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reductions of the step lfength the accuracy is not achieved, e is replaced
by twice the smallest error in the foregoing trials.  On the other hand, if
the error is less than ¢/100 the step length is doubled. A print of the
programme and some typical resulis are shown in Appendix 1.

3.4. Results of digital solution.

Fig.18. shows a typical plot of log E/IE against time for
P
My = !\/\y = 1.5 gm.cm.sec” curves being drawn for e positive, negative
7
and zero, both with and without dead space.  Similar plofs were obfained
for a range of values of gimbal inertia.

Throughout this series of computaiions the damping was held constant,

the initial velocity of the gimbals was 0.5 rad/sec in the @ | divection
e
and the initial relative displacement or rotor and gimbals was 10 7 radians,
i.e. half the dead space radius.  The rotor was assumed to be af res:
o
initially so that the initial relative velocity ¢ o Wes - 0.5 rod/sec.
These plois show that for the parameters chosen the introduciion of

tead space makes i e @ stable or las reble . rresoec ive of
dead space makes the system more stable or less unstable, irrespec-ive of

the value oF/"L .

3.5, Effect of tangential forces

In Fig.17. the value of log (E/IE) at 20 millisec. from the start or
f‘he Lom nC‘.' N ° § "'"""—d o n o L\ ‘% & o oe M F . 3 “p 0 - e -
rransient s piotted against gimoai mertia o] /k posifive, negative

and zero, both with and without dead space. Damping is held constant
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throughout.,
Where no dead space is present, the introduction of tangential

forces in either direction makes the system less steble than before.

This is also tru.. - ‘he cose where dead space is present provided

M>»2.5. For M« 2.5 and M negative, the system is less stable than for

zero tangeniial force, but the curve m‘/t posifive crosses the curve for

/u zero several fimes in the range 0.2 M =2,5,

Al the curves appear fo show o reduction in stability with increasing

I3

M but as indicated in the next section some reduciion is fo be expected.

3.6, Effect of gimbal inertia

oo

Consideration of a simple one degree of freedom system of mass M,
elasticity K and viscous damping R, executing a transient vibration
.

x=Ae cos{mi+ (0), indicates that the total energy {(strain + kinetic) is

given by the expression:-

_ ] 2 -'26?:& i - ; rc-wu-um”*,l" m; ~
F=% KA e T+ d co=2(mr +HP) + d}i ~d st(sm ix (3.4)
where o
K R R
A= ROM, m=d M =~ 2 d = ——
L= R2M, m = M ST TTRM
Hence, omiitl  he sinusoidal teims

fog (E/iE) == 24 ¢ ' (3.5)



Co
~

A plot of log {E/17" against time would ther:’ore be a straight line of siope
- 2 A\ with asinusoidal variation of frequency 2m superimgosed. Since
A = R/2M, if R is kept constant and M increased the log (E/IE) plots will
become less steep.

By analogy in Fig.19 the value of log E/IE atf 20 ms. will approach
zero as M becomes large.

3.7. Effect of initial conditions

Since curves 1 = & in Fig. 19. are drawn with constant initial velocity

in the fransient, as M increases the initial kinetic energy in the vibration

~

increases. The amzlitude of the resuliing fransient is therefore fncreased

and the dead space becomes smaller in relation o the fotal excursion of the

°

rotor shaft across the bearing. Hence, each curve in the set for "siack”

[ 30

bearings (4 - 6) approaches the corresponding curve in the set for “right"
g PP e g

bearings (1 = 3) ¢s M is increased.
Also shown on Fig.19. is curve 7 which shows the variation of

log (E/IE) ai 20 ms. with M fo&'ji,i positive, zero initial velocity, but an

" -h'_} a o
initial value of ¢© =3x10 7 vedions, i.e. 10

2N radians outside the dead
'a

space. All the vibrations therefore start with the same energy E = Fx2x 10" x

*

(10~ ) i gm.cm, This curve lies below curve 4 for all values of M>0.35.
For curve 4 the initial energy is ¥ M x {0.5)" = 5 and poinfs on curves 4

and 7 will represent the same initicl energy when M = 0.8,



A further series of runs was contemplated, in which the initial
impulse or momentum M (:'f) » would have been held constant, but it was felt
to be of doubtful value.

The effect of varying the initial gimbal velocity was also studied,
the resulis for o constant gimbal inertia M, = My - 1 gm.cm.sec2 being shown
in Fig.20. This shows again that the system with dead space is- always more
stable than that without dead space and shows also that os the initial velocity
increases the effect of dead space decrecses, since the dead space then becomes
small in comparison with the amplitude of the relative motion between shaft
and bearing.

3.8. Modes of vibration

Figs. 21 = 25 show some sample plois of the relative displacemenf
between rotor and gimbal, obtained by digital computation. The various
motions can be regarded as lying between the following limiting coses.

(a) Rotor "free" This mode appears in Fig. 21. where the transient has
decayed inside the clearance circle or dead zone. In the absence of damping
the motion would be a forward precession at frequency JS1/T =284 ¢/s for

the parameters used.

(b) Gimbals fixed - no dead zone

]

Putting & , = & _ =0 the equations of motion become:-

Y
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1 +10 +k ¢ =0
X vy box

(3.96)

-G k@ =0

By assuming (;9 o = X cos pty (;9 y =y sin pt it can be shown that thé fwo

natural frequencies are 364 ¢/s and 649 ¢/s, the higher frequency giving

" forward precession and the lower frequency a backward precession. Fig.24

shows transients for this case with values of /LL of 0.1, - 0.1 and zero.
For /4'1- = 0.1 the lower frequency mode with backward precession

is excited and the other mode inhibited while the reverse is the case for

/L-L ==~ 0.1. For ff{-= 0 both frequencies are present in the waveform.

Fig.25 shows the effect of introducing dead zone which lowers the

frequencies because of the reduction in effective stiffness but the inhibition

of one mode and accentuation of the other is still evident. for /LL =% 0.1,



CHAPTER 4.

THE EFFECT OF "OIL-WHIP" FORCES

4.1. Assumptions and equations of motion

(2)

Fig. 26 shows the bearing reaction forces assumed by Prentis™™ * in
his work on the problem put forward by Quarﬂey(]). These forces are
of a type appropriate fo a hydrodynamic bearing, and are known to cause
"oif~whip" vibration in certain circumstances.

With these assumptions regarding the forces in the spin axis bearings,

the equations of motion of the gyroscope become:=

l(('fsx+ éx)+2"\) ﬁzféjxm4&((;9y+ é}y)— \)2_25269y=o

[ (0 + 0 )Y+29 &2£§9 + JR(Y +@)+9&2ﬂ§5’ =0
Y Y Y ' X X X
(X} . o ] . A
ME +f8 —2:32,2(?) + 9 E,,ZJQCP =0 “.1)
X X b x Y
Y 470 -29 120 -9 LZRQ -
MO +£fQ -2V W - JLO =0
Y y % X
where N s a spin axis bearing parameter,
{ is half the axial pitch of the spin axis bearings,
f is a damping coefficient representing friction at the gimbal bearings.
These are the equations given by Prentis in his paper except that the
signs of the Y 2.,2'52 {!O terms in the 3vd and 4th equations have been corrected.
[t should also be noted that Prentis has used o left handed set of axes, which

affects the signs of the gyroscopic couples.
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4.2, Analogue simulation

Fig.27 shows the computer set up used to solve the above equations.

In addition fo checking a few sdmp!e points in Prentis' stability
chart, the computer was used to simulate a gyro with parameters similar to

. . L. 2
those used in other sections of this thesis viz., J=1.525 gm.cm.sec”™ ;
2 , 2 2
T=2,15gm.c,m.sec” ; M_=1.4gm.sm.sec” ; M =5.6 gm.cm.sec” ;
. / x / i Y
S1= 2514 rad/sec.

The stability limit was obtained from the computer and the results
are shown in Fig.-28. This shows the amount of gimbal damping required to
give a simple harmonic transient for a given value of the spin axis bearing

_§ 12 . .
parameter /t/k where /‘A = /ISt . The gimbal damping is also
non dimensional i.e. & = §/J8L .

Since the parameter /eL varies inversely with clearance, it can
be seen that the gyro is least stable when the bearings are slack, at least
for /LL = 0.1,

Also shown in Fig.28 is a curve of nutation frequency, showing a

considerable reduction in frequency as the bearings become slacker.

Fig.29 shows a sef of fransients for the conditions /M =0.1

¥t

& =0.5. The shaft trajectory in the bearing, represented by the (f !
i
(}0 y plot shows a high frequency oscillation superimposed on the main
trajectory, and this frequency was found to be the nutation frequency of the

free rotor, viz. JSU/I.



COMPUTER SET uUP FOR PRENTIS'S EQUATIONS

FIG. 9
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CHAPTER 5.

POSSIBLE SOURCES OF TANGENTIAL FORCES ON THE ROTOR

5.1. Effect of magnetic field of the driving motor

Fig. 30 relates to a rofor tilted af an angle (70 to the magneftic
axis of the stator. Af the instant being considered it is assumed that the
displacement (19 is in the plane of the magnetic field set up in the rotor
by the three phasé stator.  The fangential force intensity due to the
magnetic field will vary along the length of the rotor due to the variation
in air gap g caused by the displacement <;0 . This variation will be
non~linear, and may be represented as follows:-

9 .
dF A doF

F(g)=F0+ Aga—é‘{‘—j—g -—63-2-—2 - - - = (5.])
g

where F(g) is the tangential force per unit length along one edge of the
rofor, Fg is the value of F af the mean gap, g, and Ag=g- Jo = 0ix.
Fig.30 shows the variaiion of these three components of F along the length
of the rotor, at both upper and lower edges. The arrows indicate the

direction of the force componentis as they would appear in a plan view of

the rotor.
Ag® doF
[t can be seen that while Fj and 5 —5 simply produce driving
dg
dF

forque about the rotor spin axis the Ag ferm produces a forque T,

dg

about a vertical transverse axis, where:= .

-
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_ AP dE g (5.2)

The guantity dF can be related to the variation in total motor torque with
dg
air gap under conditions where the air gap is uniform along the length of the

motor.

The torque about the spin axis

l
T, = 2R f Falx
-1

and faking F as constani,

T=41IRF
o dT dF
S - 41REE .
and 3 ! Rdg | (5.3)
'3‘!? can be measured from forque/air gap curves of the mofor and typical

values, taken from a paper by 'l'ecn’e(1 R give (_c% about 30 gm. cm/thou at

0.025 in. air gap.

40
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Using this value in the expression

- !2 dT
= e [, Ii
im 3R dg ('O (5.4)

gives

! e .
Tm_‘ 10 LP gm.cm. for1=R=1 in,

5.2. Direction of T
m
"For any configuration of gyioscope, whether the rotor surrounds
the stator or vice versa the sense of Tm is the same as that of the torque
produced by "oil whip" forces in the spin axis bearings.

5.3. Variation of T with rotation of rotor.

The above analysis holds for the instant when the rotating magnetic
field is in the same plane os the displacement L‘Q . When the magnetic

field is at right angles to the plane of (39 ; Tra will be zero, so that Ty may

- 10tw
be represented approximately by T, = 5 T+ cos(28Ur = o )

-1y

(‘9 X .
(Iﬂx, and 0 1 is the angle between the plane of ithe rotating field and the

Where ¢l = tan is the angle between the planes of 90 and

plane of (f_. Resolving T_ into torques about the OX, OY axes gives
[ 4 . m i 4

4
- 10"
]mx 2

[T + cos 2(Lf - & )} sin &

(5.5)

T = —M Y]-PCOSZ(Q?—DQ)“‘ cos &
m)/ 2 E- wad



5.4 Effect of type of motor

The above analysis will apply to synchronous hysteresis motors and also to
asynchronous inducion motors. In a D, C. motor the magnetic field does not
rotate and the transverse magnetic torques me and Tm\/ will not be periodic with
time, depending only on the orientation of the displacement (§ relative o the
magnetic field.

5.5 Kinematic analysis of angular contact ball bearing

This investigates the possibility of the existence in ball bearings of forces
ol . ol e . 2

of the type which produce "oil whip" in journal bearings. Prentis in his
analysis assumes that the bearing reaction force has a radial component proportional
to the radial relative velocity and a tangential component proportional to relative
radial displacement, (see Fig. 28). The following approximate analysis investigates
possible effects due o angular acceleration of the ball cage about the axis of
shaft rotation.  Angular velocities and accelerations of the cage about other axes
are not considered.

In an angular contact ball bearing, the angular velocity 6'? the cage about

the spin axis of the shaft, assuming pure rolling, is a funciion of the contact angle,

1. e.

)

ﬂc =\Q.m (I ~d cos®) , (5.0)
2

where ﬂc is the cage speed, I is the shafr speed, d is the ball diameter,

D the pitch circle diameter of the balls and & is the angle of contact.



[¥ the onjgle of contact O varies due to angular displacements of the rotor about
axes fransverse to the spin axis, this will tend o produce changes in the angular.
velocity of the cage, Sl.. The following cmdl);sis seeks to establish a relationship
between the angular acceleration xﬁ . and the cmgulcﬁ‘ velocity of the spin axis

o

relative to the inner gimbal, 40 .

Fig. 31 (a) shows a cross section of a ball in contact with the races, the
difference between ball and race curvatures being exaggerated. Ci and Co are
the cenfres of curvature of inner and outer races respectively. If rofor spin is
ignored one possible kinematic model of the rotor=inner gimbal assembly is shown
in fig. 31 (b). As shown, no relative angular displacement (§ transverse fo the
spin axis is possible, but it can take place if the outer races are free to move axially,
due for instance to elastic deflection of preload springs or the inner gimbal iiself.

Fig. 32 shows one quarter of fig. 31 (b), in its original and deflected poéi’rions.
O is a point on the spin axis, midway between the bearings, and the displacement @

. 1 . . ]

moves the point C‘i to C - As a result the point Co moves axially to Co and the
distance COC; represents the axial deflection of the bearing outer race away from
O. Af the opposite side of the same bearing, clearance will appear, and the
cage speed will be mainly determined by conditions at the loaded side.  The

angular acceleration of the cage is obtained by differentiating egn. 5.6, giving

e

sin 9, 0

d
C 'ﬁ VD“ (5.7)

where & is the angle of contact at the loaded side of the bearing.” Referring to
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1
fig. 32 dgc:tin,Ci Ci = 1('0, and the projection of Ci Ci] perpendicular to the

e 1
spin axis is approximately C. Ci cos o
i
Also,
1 , )
Cici cos % = a(cos© ~cos & )
o
where @o is the angle of contact in the unloaded condition.
H ‘l:-
i.e. 'z.(pcos R = a(cos & - cos 0 )
o
= o
and 2,(,') cos X = ~qsin &.80

Taking the axial pitch of the bearings as L =2 1 cos o& ,

(‘O = - 2q sin & . &
L
and substituting in egn. 5.7 gives

Ne=- . d . L g (5.8)
v 2 D Za !
for Barden 34 ~ 5B bearings, axially pitched at 2.25 ins, and a shaft speed

of 400 rev/sec.

Lo

= -2514 . 0125 . 225 (0
T2 0.3¢88 2x0.01

= - 45,700@0(&/5@(:2 \
[t will be seen that this effect depends sirongly on the conformity of the race
curvatures with the ball curvafure‘, i.e. the distance a = Ci Co. Conformity is
specififed by giving the radius of curvature of the race as a percentage of the ball
radius so that a change of radius of race curvature from 52% io 54% ball radius

makes 100% change in the value of a. The value of a used in the numerical

work above assumes that the conformity is 54%.



5.6 Effect of cage acceleration

Fig. 33 shows the directions of the forces and couples acting on the cage
and balls, and Fig: 33 shows a linear system equivalent to shaft, cage and gimbal.

Mc and Mb are the masses of cage and balls respectively and Ib is the
total moment of ineriia of those balls considered to be subject to the angular
acceleration & b’ rp is the pitch circle radius of the balls and n is the
rolling radius = ball radius r. cos & .

Rs and Rg are the reactions exerted on the balls by 'i'he'shqfi' and gimbal

respectively.  Taking momenis about the unknown reactions,

_ T N L
Ro= 1 MM S e o(b]

s m— L
2r - :
° B (5.9
R, :2}:-“"' E(MC+MQ ﬂcrp - 1 X b]
b
v / _
and since X b \QC . rp
b
- . r - B [ M,‘
=3l LMC v M, ‘m{i_j (5.10)
2 b
Assuming that 3 balls out of the total of 6 are in contact and subject
to the angular acceleration €< b and putting {b = Mbkbz where
ka _ 2_1‘2
= .
: |
R = r f MO+ M (1 + ] ):\ (5.11)
s -~——~—~——~& - P Loe b 500?%@7“

e Nt
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Substituting values appropriate to the Barden~34 5B bearing gives

. /0 " - - B
R - 45,700 /. 0.194 0,002 + 0.00063(1 + 1 )
4 ' TS L
2 >(;386. . - 5 C05225O o
fe. R = 0.032 Qlb. and Ry = 0.0285 @ 1.

The sense of the corresponding force acting on the shaft is the same as that due jo
the wedge action in a hydrodynamic bearing.

On the other hand the force acting on the gimbal due to cage acceleration
is in the same sense as that on the rotor whereas in the case of the hydrodynamic
bearing the forces on shaft and bearing are in opposite senses.

The resultant of reactions S., S, S, at the three balls in contact can be
3

1 T2

. . 3 . .
shown to be ZS] acting at a radius of. 5 T where r, is the radius of the paih of
i i

contact on the inner race, and similarly the resuliant of G] 9 3 is QG} acting af
=17

. . . 1 S
the radius 50 - SinceS, = = Rs the total torque on the rotor about the spin axis

is 281 X ]-‘gri = 3 STI‘ . ds would be expected. More importani, however is the

torque about the fransverse axis which will be ZS] x L =§- Rs L where L is the axial

distance between the bearings. I can be shown thai if 2 balls are assumed in

contact the adbove moment will be 3 Rs
2

ignoring the minor variation in lc due to the different number of balls subject 1o

L and for 1 ball in contact will be RSL,

angular acceleration.
A check on the direciion of the momeni R L shows that it acts on the
s
rotor in the same direction as the gyroscopic couple produced by the angular

Q
velocity {0, so that in the case of a fixed casing or gimbals, the effect of cage
1Y

acceleration is the same as an increase in polar moment of inertia of the rotor.



For an axial pitch L =2.25 in, polar moment of inertia J =1.525 gm.
cm.sec  and rotor speed 400 rev/sec,

R, L = 0.0721 & ib.in.

©
o~ .

and the gyroscopic couple Jol D =3.33 { Ib. in,

The effect of cage acceleration is therefore of the order of 2% of the
gyroscopic couple. When the gimbals are free, the gyroscopic couple is
-] o
proportional to & + C;Q while the effect of cage acceleration remains

propottional to (}0 :

5.7 Effect of bearing slackness

Another possible cause of cage acceleration is the reduction in radial
load and friction as the shaft passes across the clearance in a slack bearing.
it will be particularly significant in the upper bearing of a vertical shaft gyro
where the radial load will reduce to zero when the shaft is in the cenire of the
clearance and the thrust load will be small, or zero.

)

fects are possible depending on the construction of the

Two opposite ef
bearing.

I the bearing is made with the inner race separable, the cage and balls
will be retained by the outer race and will slow down as the shafi and inner race
pass across the clearance.

However, if the bearing is made with the outer race separable the cage

will tend to speed up during the passage of the shaft across the clearance.  On

subsequent contact the cage will impart impulses to shaft and gimbals as it regains



its "epicyclic" speed.

Tne effect is not readily analysed since the magnitude of the effect depends

on the time of passage across the clearance and the friction torques acting on the
'

cage which will vary with the posiiion of the shafi. The effect will be generally

similar jo that described in section 3.1 and formulated in equations 3. 1.

The bearing with inner race separable will give an effect similar to
/

positive in equations 3. 1. and with the outer race separable 4 will be negarive.
p i / g

Q

A
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CHAPTER 6.

THE EFFECT OF SHAFT AND BEARING COMPLIANCE

In this analysis it is assumed that the rotor bearings and/or shaft are
elastic.  Only those modes of vibration are considered in which the rotor
centie f aravit - e, ~k ,-.h ) actl !‘.v.h,:. 3 b E b_{: H o

enire of gravity remains at the intersection of the gimbal bearing axes.
The rofor spin axis is assumed to rotate through angles §  and ()

Pos o . . e . e . (12)
refative to the inner gimbal. This is the cose dealt with by Maunder

from the point of view of natural frequency.

6.1. Frequency response analysis

In this section the frequency response of the gyro to applied forcing
torques on the gimbals will be considered.

The equations of motion are:-

(O + 0 )+ IO + W )+R Y +k® =0
X y fy b+ x §x

b x
G+ )-InD + 0 ) skl =
LS+ @) =0 + PI+R Gk =0

: -+ é} - éf} - 4 = T
MXC‘X Rg N Rb . k &éfpx

ME + RE ~R UG -k =71
Yoy g vy bly y oy

where &L = angular velocity of spin.
T, = applied forcing torque about the outer gimbal axis.

applied forcing torque about the inner gimbal axis.



If Tx and 'ly are sinusoidal, of frequency ¢) redians/sec, the customaiy

substitution of d/df = | can be made. The equations can then be

written in matrix form as:-

e

o Rjed - D7 Jfye (D1 JA 1];0: " —é

“JSMQ k + Rb'fc:)-c:)z! - 13 il {{‘;D}/ 0 %

-~k = Rb 1ed 0 Ry + A M, 0 ‘}< ;T/%

0 -k =R jd 0 R +idM (] & T

- > Y AU LY
(6.2)

For Ty = 0, the fourth equation gives

0 - iy g
‘Jy KEFRGTS 7

and the third,

T Ry ¥ o M
i’f) — N o /
o k+ R

bid) ‘ k-i-RbidS

Substifuting these in the first and second equations and multiplying throughout

by k + Rbic;‘s gives

(a0

=
i 39§(E<+Rb§t§)+(k+RbiQm"ebzi)(Rg-i-iaDl\/xx) wé‘k-!-Rbican—;cJ\Q +] M )“3

LJzﬁk k+R b ;C)(l\ '1'](:}}\/\ ) jerl ld-Rb;c) +(5<+R ;i)—- & )(R +]eM )
Qx-} §k+Rb|& ¥ % | 6.3
X .2
R X .o,
L«.UYJ L - JS&}& wi



Using the abbreviations:~-

-

la b Q; ipc:ﬂ"
[ "x y X { E
X = T t |
: x b
b a [S bod
< Y Py P
- - - 4
the transfer functions are:-
i C b
. Y
i ‘
{’}>’ b d a c.a - d!b
— - Y —
I x b b aa -bb
1] X y
b a
% v
and : (6.4)
c a i
X
“@ d b d.a ~c.b
Sy e B X X
T a b aga -bb
X X y X'y Xy
b a
x Y

Similarly it can be shown thai:-

9 _ ~q.0y~c.b

T aa = bb
y Xy Xy

and

5 I.b +c.

())/ _ ¢ b}\ c.a

T aa -bb
Y Xy Xy

131
If the damping is assumed to be zevo these transfer funciions can be non-

dimensionalised" s foliows. Fiist the reguisite power of J is exirtacted so

that all other inertias appear divided by J and the following inertia ratios



are defined :~ i = I/J, X = NT‘X/J, y = M)//J

-

o~

™ o - \“ - . 3 I3 b
Then the recuisite power of /L is exiracted so that all frequencies are

" R A o ~ “ 2 2
referred to Ji f.e. W/VL =fand /I = o

The transfer funcrions then reduce for=

. r 2 3 2 - 2 -
‘ i+ 7 . R
J»Qu 'i‘ {‘/X i i2 ‘} P Si \/) {-——‘\ -’?- - fz) + 2o i
_ Lo G Yy R { y s
T 7 2 5 IR 7y
S N N K s (o N G
L ! }( = )—'l Z‘ l(““_,,,' F‘F‘ i
b X ix & iy wd o

- 2 2 =2 b e
TUR 2007 20 217 (i b
8, i@ -AE A AR 2

- 2 Z r2 22, “ye
E AR AR i) 2 (i) 24
X Y Loix s 3% o ad
JSZ'.T-:% 4
}(: _ p
T s 2 2 r 2, a2 e
7 r<£)_ : )(E _ _,:2) l2{2u§p (I+X) g ;}ép (H-y) _ ;.__f_’,t ‘
X Y Loix G0 iy 3
[l . 2 ] 2 ? =y
5 b2 DpT(ie 24 7 2 - 2
Jbiuy iy i pﬂi\ﬂ)m{‘g_g’? —F‘}+p -
= = L X o . X
b 2 2 ~ 2 SN2, 9=
y (2 AR - APAER (09 2ap () _ 2 |
L% Y {, ix RERY Gt



6.2. General form of frequency response curves

6.2.1. Amplitude:
2 2 2. N A
A Ll %gp (v ) =0

The equation (—; - i) LA AN

£

L.-..
&
4
e,

H

gives the poles of the transfer functions, i.e. the natural Frequencies of the

Z ~ 2 : ) e 2/ 9? iﬁ 240
£ 7 AL % £ + . .
gyro. Since (;% - f*)(% - f2)—~§ 7 ég-——g; x) - i:{’ 3*-?—-{(;——2—) - 'rm;{“is a cubic

&

function of f there Wi§§ be three natural frequencies. The bracketed paris
]

O oy s 2

222 and - are guadratics in ¥ and give two zeros
i
é X H y

of the numeraiors of

Because of the facior {f outside the brackets there is another zero ai

zero frequency. ‘ .
I8 8
At zero frequency —x aind -wi«-\-— are both unity as would be
X )4
expected.

At very high :"requency, only the hzgho:n powers of { need be considered.

J8

E : ﬁ
Under these conditions —e— - o d the high frequency asympiote on a bode
3 il'X i R !
X _ﬂ@\ .
. e . i .
plot has aslope of = 1. Similarly —=% « —— | In the case of
} 4
o /
A :’31 4
——L  and ; both tend to the value ——EE—-—-Z,;- bui with opposite signs
X y Uy (jf)

indicating that the asymptote siope is = 6.

6.2.2, Phose:

T e
ALYy AV ! o
For —" and - 5 . the phase shift fends fo zero ot low
P y

frequency and on passing through each natural frequency there is a phase shifi

of ~ 1809, so that at very high frequency the total phase tag is 540 degrees.



_LCE‘ ;:\» J J:‘é !“\..r

o N

in the £ "X ~d hd e s hifs digaram s rore

1 7TNe Case © “‘:}'.. an "“:?‘_—' me i;‘a'ICE.:C shifs aiagram is More
X y

£ . ' [N N 0 : . ?
complex. At zero frequency the phase shift is + 907 and ot each natuici

frequency the phase shift changes by - 1807, At each zero of the transfer

. ; & .
function the phase changes by + 1807 so that the form of the phase shi
h ]

curve depends on the relative disposition of the poles and zeros. At high

op O
frequency the phase shift tends 1o = 907,

hrnd ] J 2 ¥ .
5.3. The effect of damping

Fomoi 1
C\,:L}CﬂC}/ °

In the absence of damping, as shown in the preceding section, the

gimbal to which torque is applied does not move in the direction of that torque

and the other gimbal moves ot a rate progortional to the forque. Tha steady

state behaviour in the presence of damping can be obtained by puiting

§ ’7‘“\ .
{{) =0 and & =0 in equations 6.1,

P

Hence

J8S + k® =9

v X
- LY o+ k \’Q = §
P Y
Rey {:} -k {1) = T
gwx i X X
~Rg® -k =7
Y Yy y



° A S -
1.2, Rg Wit = ol (j' = |
X Y bN
4 L
- Jols o+ Rg G
X Y Y
giving
@ 4 P'J Ll
A = Rgle~ Jodt Ty
“ x cyy 2 2
(3207 + Ry
<4
and

for T, =0, o= = : Rg o vy o J.Jz ;
YT (J)2+Rg © T (JJL)* + Rg*
o .. . (6.7}
. o x 48 Sy Rg
and for Sx = O; T \J\ﬁ.)é n L/"' i '\;' (.J ),_{ n RJ»C’
Y Y

6.3.2. At other frequencies

The effect of damping wi

—r

i be to limit amolitudes of ¢

: , : . e
frequencies and also prevent the amplitude resgonses of x  and
' T
% K
Y
JV:Z Q;} . - o .. .
7 dropping o zero. The phase shift graphs wit]l become continuous

Y
o ¥ - 4 Y O
instead of having step changes of = 1807,

6.4. Frequency response curves from analogue simulation

Fig.24. shows an analogue computer simuiation of a gy

eal
O Wihn

complianice between iotor and gimbal. The frequency response curves shown
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e

in Fig. 35 were obtained by forcing the simulation with a transfer funciion
analyser in a manner similar to that described in sec.2.7.
The three resonances can be clearly seen in the response of both

gimbal velocities fo applied torcue ai the outer gimbal, and the lower

JAaE
frequency zero is also apparent in the curves of b “x. The effect of il

~—T
]

upper zero is masked by its proximity to the third natural frequency.
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6.4.1 Alternative method of obtaining the frequency response

The frequency response can also be obtained numerically by inverting
the matrix on the left hand side of equation 6.2. The resulting 4 x 4 complex
matrix contains the response of each of the displacements (px, X, y’ 8. Qy

to each of the torques T, T ,T,T whereT , T are forcing torques
X x' 'y <’ vy

ry
applied to the rotor ~ assumed zero in equation 6.2,

Since the matrix to be inverted is complex, it is necessary to convert
it into a real matrix of double the size before inversion and select the
appropriate quarters of the inverted matrix to give the real and imaginary paris
of the result.

i.e. if A» + B is the original rﬁafrix and C + jD its inverse then
(A + iB)(C +D) =1 + iO.

i.e. AC-BD = 1; BC + AD = O
[t can easily be shown that if the matrix
A - B
B A

is inverted, the result is the matrix

Appendix 4 shows an Algol programme which carries out this process

for the case of the symmetrical gyro with compliant shaft or bearings. A



typical set of results is also shown. Use of the "time now" procedure has
indicated that the inversion process takes approximately 2 to 3 seconds for
this size of matrix.  Since the ICT 1905 computer used for this problem is
a time sharing machine, the actual computing time may be even less.

Bearing in mind that the process gives the amplitude and phase
relations between the torques and displacements plus a hard copy of the |
results it can be seen to compare very favourably with the analogue computer/
transfer function analyser approach, in which a single response of one
displacement o one torque may take 30 seconds or more to obtain. Agreement
between the digital results and the analogue resulis plotted in fig. 35 is
excellent.

6.4.2 Extension to the unsymmetrical case

By including the effect of shafi/bearing compliance in equations
2.17 and manipulating the resulting equations in a fashion similar to section
8.2, the equations for the forced unsyrpmefriccl gyro with a flexible shaft
can be expressed in the form

dy = ay+/ufy+T\
dt

where a is a complex frequency dependent matfrix = and f is a matrix
containing periodic terms at the frequency 241 . T is a column vector of

sinusoidal forcing torques frequency @ and M sa small constant, here

Nt



proportional to the asymmetry of the rotor. Expressing y in a series form:=

_ 2 2 |
Y =y, TAMYpt ATy A e

and putting A = 0 gives yo as the solution of

dy = ay + T
dt
i.e. :l_y_o = ay_ + T
df
and hencezg - [q _ i"‘)l] -1
' T
Now if /u2 and higher powers are neglected,
y =y, tM 73
dy - 0!yo o+ dy]-

- =
i gy = 0y, )t ) 4T
f
= ay  + T +/u(a Y + Fyo +/u.fy1)

Equating the two expressions for dy/dt, neglecting the last term, and
\

ccmcelling/u gives

dyl = c1y1 + f Yo
dr
and Y, = [(a-iu)l)]-}
o
i.e. fyo becomes the forcing for the second approximation Yy In block

diagram form:-

W

_...._..’..._....._..., [Q..jcéljl Yo

)

o [a. -] abgl AN




The matrix product fyo contains terms with frequencies @ + 25¢ and
@ =~ 23 and so at each step in the successive approximation process the
waveform y becomes more complicated. By restricting attention to the
case of a single forcing torque Tx or Ty the problem is much simplified anc?l
repeated use of the inyersio'n procedure with appropriate frequencies inserted
into the matrix (a - Q1) gives a reasonable method of obtaining the solution

Y.



6.5 Natural frequencies of the system

The introduction of bearing elasticity gives rise to natural frequencies
other than the normal nutation frequency of fhé gyro. The normal nutation
frequency is reduced due to bearing elasticity and two other frequencies
appear which are, for the parameters chosen, higher than the spin -Frequency
of the rotor.

The natural frequencies can be easily found by substituiion of
dpproprim‘e sinusoidal functions in the equations of motion, and eliminafi on
of the amplitudes, or from the iooies of ﬂ"xe transfer functions in equc:ﬁonls 6.5.

Shortly after this work was carried out, a paper by Maunder (12)
appeared describing this case in -considerable detail.

Fig. 36 shows for the case Mx = My = M, the variation of the three
calculated natural frequencies with gimbal inertia for two values of the
bearing stiffness k.  The value of k affects the two upper frequenc i‘es,
mainly, the iOWéSi‘ nutation frequency being only slightly altered by varying

7
k between 10" gm.em/radian and infinity.

6.6 The effect of bearing eccentricity

In this analysis the rotor bearings are assumed to be eccentric, in
such a way that the rotor C., G. is not displaced but the equilibrium
position of the shaft centre line generates a conical surface at an angular

velocity of & 1 the angular velocity of the ball cage, the semi angle of
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the cone being e (Fig. 37). For the angular contact bearings used in the
experimental work the ratio @ 1/JZ was about 0.37.
The bearings are also assumed to be elastic, giving an equivalent

angular stiffness k.
The equations of motion of this sytem are:-
l(é.).x+ éO'x)+JJZ( éy+ gby) + qu.)x + k (px - ke cosCJ]f =0
z(éy+ (ﬁy) IR (O, P+ RG + kP - ke sinddyr = 0
Mx§x + Rg éx - qu)x - k(Px + ke cos@]f = 0
My'éy * RO R G- kP ke sin@ =0
It can be seen that the moments ke cos® ]’r,qnd ke sind |} act on rotor and
gimbals and if the frequency o)] should coincide with a natural frequency of
the system, large amplitudes of oscillation could be expected.
This system was simulated on an analogue computer, the computer
diagram being shown in Fig. 38.
Fig. 39 shows the build up of a resonant oscillation, obtained by

plotting O y against Qx on an X=Y plotter. Also shown is the rotor

. motion, generated by two additional summing amplifiers, connected to sum

the X and Y components of 8 and (P .
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CHAPTER 7.

THE EFFECT OF VARIATION OF RADIAL STIFFNESS

IN THE SPIN AXIS BEARINGS

7.1. Assumptions and Equations of Motion

Variation of radial stiffness could arise due to the presence of an
oversize ball, causing the radial stiffness of the bearing to be greater in
the direction of the oversize ball and less in the direction at right angles
to it, The effect is represented diagrammatically in Fig.40 and it will be
seen that the axes of maximum and minimum stiffness rofate af the speed of

the ball cage D]. The equations of motion are as follows:~
(& +¢@)+ JJL(@Y - (,Dy) + ) +AK(O cos2 +( sin2Q1) =0
I(@y +(py) + J&( o, +90x) + k({)y + O k( (. sin 2 LD]i- - 90yc052a1f) =0
oo 7.1)
Mx @x - kclox - DK (cho§201f+¢ysin2 6311‘) =0

My@y - kfpy -§I<(((0xsin2 f')]f -&?ycosZ(D}f) =Q

7.2. Andlogue Simulation

Fig.41 shows the part of the computer set up concemed with the
effects of stiffness variation, the remainder of the simulation being the same
- os that shown in Fig.34. A three amplifier loop oscillates the two multiplier

shafts M 1 and M 2 in quadrature af the frequency 213] .
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Traces obtained from the computer indicated instability when the
gyro parameters were adjusted to make the nutation frequency equal fo the
ball cage frequency ) 1 Although the gimbal inertias were varied ove;"

" a wide range this was the only condition where instability was noticed.

7.3. Digital simulation

The previously existing Atlas programme (Appendix 1) was modified
to -Enclude the effect of bearing stiffness variation, giving the version shown
in Appendix 2.

As previously, the time variation of the total energy, (strain +
kinetic), in the motion was used as a measure of the relative stability of the .
system under various conditions, This is fqbﬁla?ed in the computer results
as log (E/IE) , where E is the total energy and IE is the initial energy. As
a rough measure of stability the average value of log (E/IE) was also
computed. L |

Three sef; of computer runs were taken, one with equal gimbal inertics,
one with the fotal moment of inertia of the gimbals about the outer gimbal
axis, Mx =4 My about the inner axis, and the third set with My = 4Mx.

The average log .(E/IE)over the first 40 mil’liseconds of the vibration is shown
plotted in Fig.42 to a base of equivalent gimbal inertia. In the case of
unequal gimbal inertics, the equivalent inertia is taken as that value of M

which would give the same nutation frequency.
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These results were sufficient to confirm that something significant
occurs when the first natural frequency of nutation Js the same as the