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- CHAPTER 1

INTRODUCTION

At the elevated temperatures at which an increasing
nunber of struetures are now required to operate their
materials exhibit significant creep. In conseguence, an
undarstanding of the effeect of cresp on the stresses
and strains occurring within these structures is important,
if their safe, economiec design is to be achieved,

The creep deformation of most materisla is affected
not only by the prevailing temperature and stress system,
but also by strain and thermal history. The influence of
these factors on deformation is extremely complex, and it
has not proved possible to represent adequately materlial
behaviour under arbitrary variations of stress and temper-
ature. However, some important structures, e.g. pressure

vessels, are subjeet to almost constant loading and tem—
perature during their working lives. Under these condi=-
tions creep behaviour can be fairly well described, and
it 1s to problems of this type that the present work is
directed.

Fig. 141 shows the strain-time dependence typical
of many structural materials subject to constant tensile
stress at a fixed temperature. In the absence of any

initial plastic deformation the strain path can be con-



Primary‘//?/’(/,,f//’//:Tertiary
ereep greep

Seeondary or
steady state

eraap
Flastic
s%raiﬂA -
t
igs Tel

ventently dlvided into four seetiohé:

a) An initial elastic response governed by Hooke's law.

- b) A primary c¢reep region of deereasing strain rate.

¢} A secondary or "steady state" region of minimum creep
rate.

d) A tertiary region of increasing strain rate preceding
fracture,

Many relationships have been proposed to describe cereep

behaviour during tensile and other more complex constant

stress tests (see, for axamplé, referencos(1)and(2)).

However, the most comprehensive experimental work in this

field has been carried out by Johnson and his eco-workers,

They have shown‘3? that at practical stress levels the

- strain réte of a wide-raﬁge of materials is well repre-

‘sented during primary creep by the equation

[ 5

ot



The corresponding equation for steady state creep is

- il ,

the transition from primary to steady state creep heing

at time

(Representation of tertiary creep is less important for
stress analysis since the design 1ife of a structure is
unlikely to extend into this region.) In the above

equations the stress deviator

. 1
= %43 " ?“kk%m

- where %ij is the Kronecker delta, and the second invariant .

of the deviatoric stress tensor
T a o
Ia 3 51351

Materials described by equations (1.1) and (1.2) are

=

isotropic and deform during ereep without change of
volume. | , :

If the stress system 1s wvarled edntinuauslylduring
creep the pattern of Fig.1.1 is obscured. Several 'mech-
anieal theories of creep! have been proposed to describe
material behaviour under varying stress conditions. The
most common are the time hardening law, corresponding to

equation (1:1), and the strain hardening law, viz.
: - /2 (meq/2)1 1/ (a+1) ., :
8,y = [a@nifFra By

, « 1 fa 4 o . _
where I, = 3 Eiéiij is the second strain invariant.
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Under conditions of constant stress equation (1:3) re=-
dﬁces to (1+1). Iﬁ'extenslve vests involving periodic
inereases of load, Johnson et 3l(h) have shown that
neither of these laws adequately predicts material be~
haviour. The investigations of Marrioti and Leakie(s),
however, encourage the use of equations (1.1) and (1.3)
in the analysis of structures subject to constant loading,
where the only stress changes are those required to make
the stress distribution, initially elastic, consistent
with the equations of creep. These writers analysed a
number of simple structures under constant loading using
the time hardening and strain hardening equations, and
obtained results with both laws wﬁich were remarkably
similar, This similarity, they suggest, is produced by
the existence in the structures of regions where the .
stress remains almost constant during stress redistribe
ution. If this hypothesis is correct it would be reasons
able to expeot that the actual strain and stress distribe
utions would not differ greatly from those predicted by
the two hardening laws.

Of the two constitutive eguations the time'hardenw
ing law (1.1) is the simpler, and it has been widely used
in struetural analysis‘g)’cé)’(7). During stress redisge
tribution the total strain rate is assumed to have separ-

ate elastic and c¢reep components:
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Q&
o+ . tlJ
The elastic strain E?; = (”D) :L.j - %}'Boukkgij (1.5)
and the ereep strain rate
y¢C - m q .
3513 2 ijt (1.6)

On iloading the structure responds elastically governed

by (1.5), and then areeps in accordance with equ&tioﬁs
(1el)={1.6)« The stresses tend asymptotically to steady
state values determined by the cereep equatlon (1.6}, as
has been formally proved by Leckie and Martin (8). In

a structure with no non-zero displacement boundary cond=
itions and & stress system of at least two dlmensions,

two factors determine the amount of stress redistribution:
the elastlce Polsson's ratio », and the creep stress ex-~
ponent . The value of m c¢ontrols the final, steady
state stress distribution, while the initial, elastic
distribution 1s governed by v. As mentioned previously, ©
the form of the creep equation (1.6) implies that creep
deformation oecurs without inereafe of volume ise. the
equlvalent of Poisgson's ratlo equals a half. Consequently,
when the elastlic ratio lJT - stress redistribution. takes
place even when n=0, because of the change in time of the
effective Polgson's ratios. This statement is,of course,

not applicable to a simple structure in which the stress



system is oné«dimensional, and » in consequence disape=
-pears from the constitutive equations.

The most general method of solving structural prob=-
lems governed by constitutive equations such as (1.4) is
that described by Mendelson, Hirschberg and Mansan(9).

The method employs the integrated form of equation (1.4),
which may be wrlitten

. - 1 Ry
Eij = (B2 3 - = k%ij + Eij (1.7)
where the creep strain E g tq dt (1.8)

From the initial elastic stresses and equations (1.8) the
creep strain occurring in a small time interval is estimated.
Fquations (1.7) ecan then be solved numerically with those
of equilibrium and compatibllity for total strains and a
new set of stresses. With these stresses a further set of
creep strains is obtalned from (1.8), and the process re-
peated until satisfactory convergence is achieved. In a
similar way the solution can be extended through further
time intervals.

With this method the complete solution of the creep
problem is obtained. The strains occurring during primary
ereep and the steady state stresses are.determined from
the analysis directly, while the steady state strain rates
are calculated from equation (1.2), or obtained from a

se%?fahe analysis with the time exponent q=0. Mendelson
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et al applied the method to plate and rotating disec probe
1em$, and thelr procedure has been followad by Pcritsky(10)
and others, who aeacribe»how shells of revolution magﬁbe
analysed, To the author's knowledge, however, there are
‘no results of such shell analyses recorded in the litera=
ture.

An alterﬁétive abproach to the investigation of
structures under constant loading ignores the elastic
and primary regions, and uses the steady state law (1.,2)
with the field. equations to obtain steady state creep rates
and stresses. Such.an analysis is independent of time,
and, as pointed out by Hoff(11), is anal%gmus to that of a

structure with constitutive equation
- il
Ty = BigSyy (1.9)

The stress distribution in a structure governed by equation
(1,2) 1s identiecal with that in a structure governed by
(149), while strain rates in the former emfraspond to
strains in the latter,

: Steady state analysis' requlres considerably less

- effort than the incremental method of Mendelson, and results
féom it should be adequate when the steady state creep
strains are much greater than the elastic and primary

afeep components. Further, the inveatigations of wahl(122
Gubéer, Sldebotton and Shammamy<13), and Marriott and



(5)

Leokie'”", show that in some cases at least, the stress
redistribution has little influence on the deformations,
_ anﬁ the steady state solution can be used to give good
approximations to the total strains cecurring at any time.
Primary creap strains are oaleulated from equation (1.1)‘
with the steady state stresses, and total strains estim~
ated by adding the ¢reep strain o the initial elastic
strains

The first steady state analysis was carried out on
thick walled tubes by Bailey(1h), and since then solutions
have been obtained analytically and numerically to a wide

range of prablems(1)’(15)’(16)i

However, when the method

is applied to shell structures, axisymmetrie in geometry

and loading, non~linear difforential equations containing
definite integrals in the thickness co~ordinate are obtainw
ed, While it should be possible to solve these equations

by some numerical technique, the eomputations would be
preatly vompliested by @h& presence of the integrals. The
analysis ean be simplified by working with approximate re-
lations between stréss resultants and middle surface deform-
ations. Several forms of approximate relations have been
used by Bieniek and Freudenthal‘l??, onat and vukse1‘19),
Galladina(19) and Gemma(29)¢_ A more genaral set has been
(21)

derived by Rozenblium and Mackenzie(aa) from an approx=

imate expression for an energy function based on the two



dimensional form of the steady state equation (1.2).

In this thesis the oreep behaviour of a simple
shell structure, a eylindrieal shell with fixed ends, subw
ject to uniform axial and radial loading, is iﬁvéstiéated
. dn two distinet ways: with the "exact® constitutive equa~
tions (1.4)=(1.4), and with the approximate relatiéns bew
twoen stress resultants and middle surface deforiations
proposed in referenees(21) and (32)4 |

A closed form solution is obtained using the exact
equations (1.4)=(1.6) with the stress exponent m=0, and
numerilcal solutions are computed with non-zero values of m.
The' solutions are examined to determine the influence of
the material parameters, particularly the stress exponent
m and Poisson's ratio v, on structural behaviour, The ef-
fect of the stress redistribution is investigated, and the
aéauraﬁy, with whieh total strains ean be estimated nsing
 steady state stresses, assessed.

- Steady state solutions obtained from the exact anal-
yels and with the approximate relaﬁimns are nompafed, and
the usefulness of the latteb discussed. The approximate
relations are then used in the analysis of a more practical
problemn, a ecylindrical ghell with an abrupt change of wall
thickness.

Reports of creep experiments on shell structures are

almost non~existent; the only test of which the author is



10
aware i3 one on a lead ceylinder mentioned very briefly

(7). as part of this research a small series

in reference
of short term creep tests on pressurised polypropylene
cylindrical shells'was carried out, PFolypropylene was
chosen as the test materlal from an examination of the ten=-
sile oreep behaviour of several commercially available
plasties. In this thas;s the design of a tensile testing
machine and apparatus for measuring the deformation of pres-
surlised cylindrical shells 13 described. Tensile c¢reep data
from polypropylene, perspex, FPVC snd nylon are discussed,
and the measurad deformation patterns of the pmlypropylene
shells presented.

In all the theoretical analyses sco far mentioned the
usual assumptions of small deflection shell theory (see,
for example, Flﬁgge(gg?) are made; in particular, the equil~
ibrium equations are set up with regard to the geometry of
the undeformed shell. It emerges that this simplification
is too severe to allow the experimental measurements to be
adequately predicted. The equilibrium equations are modi=
flied to take some account of the "finilteneszs" of the shell
deformations, and satisfactory agreement with experiment is

obtainad.



CHAPTER 2

OOME BASIC BEQUATIONS AND THEIR NON-DIMENSIONALIZATION

2.1 lBiguabtions of Gylindrical Shell

Fig. 2.1 shows a thin cylindrical shell of length 1
and defines the co~ordinate systém. Movement of a point
on the mid-surface from S in the undeformed shell to S
after deformation defines the pésiﬁive gxial énd radisl
diéplacem¢nts ﬁ and w regpectively.

Fig. 2.2 shows an element of the shell at X and

defines the'pcsitive'stresé regultants

h h .
pa 2 .
Nx = g . dz , Mx = go*x z dz, ete. (2.1)
o Yy - .
2 : ' 2

acting on the element. Forcestx, Ng, Qx and mouments Mx’
M, as defined are per unit lemngth of mid-surfacé.  Radisl
loading P is per unitlarea'of mid—surfgcé.

In consbructing the equations governing the
behaviour df the loaded shell the usual assumptions:pf
small deflectlion shell theory - see, for example;(23) -
are made. The governing eqguations are formmlated in
terms of the stress resultants, the mid-surface stralns

€ .5 &

% and the mid-surface curvature change X

me X

| ()Qe = 0). The strainsiﬂgand ﬁsét distance z from the



thﬁl__ ax

Lo

Fifle 247

mid-surface are sssumed to be

X

%o

prarani

€

nx

Che

+

z ¥

X

(2.2)

It is convenient in the theoreticel analyses of this

thesis to work with dimensionless variasbles.

defined as follows:

These are



X,© KO
n = wveadene ¢ m = -—J—g *
4. = QxJah . p = Pa
x 0-'2 ? _ Ch ?
ol : 0
- = o,
Xy © = _ X ®
e ES 1 TreT BT
4 o ? ’” 0
R - (2.3)
e mx,ge ; kﬁ O ;
Xy© €, | EO ‘
ETY = u » W = -—-ivu-&
- X v = LN . _ B, &
* = mmE=ER)a F Ty
T o= &
0

(For brevity, a comma betweenfsuffices is used %o.indicate_
_ that one equation is formed with the first.suffixwiﬁ each
teﬁm, and a Second‘equation with the second suffix.,) In
these definitions (2‘3) % is an arbltrary reference- stress'
g and T are obtained from.the constltutlve equatlons of
the material. B | | |

With these variables equations (2.1) and (2.2)

become, :
n, = F; L4z omy = g ? z dz , etc‘;,A | (2.4)
~3 - .



X X X
(2.5)
Ee = €
Force equilibrium of the shell element -~ Fig, 2.2 -
requires that
oy = 0 ;
Qe =g = =D (2.6)

' —
mx-i—qx = 0

In these eguations, and those that follow, a prime denotes
differentiation with respect to X. IHquations (2.6) may

be rewritten as

n. = n_
" & (2.7)
my + g = 0P

where n,y an integration constant, is the axial stress
resultant applied to the ends of the shell,
The mid-surface deformations are expressed in terms

of the displacements by

= ot

ex 1 _

ee = .Efv: ' - (2¢8)
— w" ’

kx W

With the fundamental equations of the eylindrical
shell (2.4) - (2.8) and the constitutive equations of +the
material, a complete ma$hématica1 description of

gtructural behaviour is obtained.



2.2 Congtitutive Iguations

The elastic-time hardening equations (l.4) -~ (1.6)
may be written, in terms of the stralns and stresses

oceurring in the shell, thus:

JE m 2m g
Sxe _ 13 (o o 2" % (o o & E).a
St T ESE ( x,6” o, x) T4 3(3) 0% %0~ 5~ )4 “(2-9)
where the "effective stress?
¥ 2 2%
=Ty -0,0, +0°7) - (2.10)

(Note: The shear stress assoeiated with Qy is assumed to
have no influence on the strain components.) In none

dimensgional form equations (2.9) and (2.10) become

—

dE Y = = ~ 5 M= Y, x T q
-fﬁ Xy =t é{ (WX,Q «l)o'e’x) + O (O‘X,e - "“'"’"""2 )t (2.11)
= (32 - 5,5, +35)* (2.12)

where the reference strain and time hsve been chosen such

that

. 1
S T (2.3

Equations (2.11) may be simplifiéé by chenging the
time varioble. If a new variable T is defined by

X . - - g+l
1;* = gtq LAt = "’qﬂ (2.14)




equations (2.11) become
. : , a AU ,
gx,e = Ty 0%, x ¥ ol (Ty o = 55 (2.15)
where a dot indicates differentiation with respect to
T".  The modified constitutive equations (2.15) do not
involve the time exponent q.. Solutions obtaiﬁed with
these equatlions can be converted to solutions for any value
of q by a simple alteration of the time scale in .
ance with equation (2.14).

| (It should be noted that the reduction of thé
‘elastic-time hardening equations (2‘11)f@3(2'15) is no%
dependent on the time function being of the form .
‘Whatever the time function, a change of variable similar

t0 (2.14) produces equatioms (2.15), and results obtained
with the latter can, therefore, be more generally applied.)
Integrated with respect to'%*'equations (2.15)

may be written

= —_ . _ (o | - =¢
&x,@ ‘ Gx,e » 8, X * Ex,e (2.16)
=C % ofly 2 | Eé X * |
.. " - g - T
where Ek,e g& (0§$9 _-§h—) at (2.17)

The steady state equations (1.2) can be adapted

to sult shell analysié and written in the non-dimensional

form
) ’ = % 2m = T . o |
£ - 6.»* m(cr - ..n....:.}_{) o (2.18)
Ky ® r o '

Xy© 2



£ . m 2m-l
Here, -—3 =<, = B %(%’) Y% (2.19)

Rates of deformation resulting from differemt stress
: systems can be usefully compared by assoeciating an effective
strain rate with the effective stress. The effective

atrain rate is defined ss

1 B > |
4 [ 3 (38

or, in non-dimensional form

21 %
] (2.20)

- .
—— S——

pe 3 = = = = kN
< ::'é%(si * 5% + %5) ° (2.21)

 From the definitions (2.12) and (2.21), and the constite-
utive equatioms (2.18), or, under constant stress, (2.15),
it can be shown that V

~ _

2.3 Cholce of Reference Stress

The arbitrary stress O  can be chosen such that,
fox any combination of the loading parameters p end n,
the radial Velocityfﬁ in the membrane region of the shell
is iﬁdependent of the stress exponent m. (The word
membrane is used to denote uniformly stresséd sections
of the shell.) In the membrane region the stresses are
indépendent of +time amnd position, and can be determined
from equilibrium considerations alone. Equations (2.4)

emd (2.7) simplify to yield



|
=
|

o = = n_ -
x x @ (2.23)
O’G

S ='n_ = P

From the time derivatives of equations (2.5) and (2.8)

L] *
—te . . -

W o= E% _

ahd”hence, eqﬁatiQns (2,15) or (2.18) yield

X 2m
T

o

w .= Qq

(

)

wa- OQ%

%Q

— X -
if T =1,

Equations (2.12) and (2.23)‘combine to glve
5% = (n ~uyp +pA)?
T g " Ngf * P

and therefore W is independent of m provided that
2 2
m, - np+Dp° =1 . (2.24)
In this study three types of loading are considered,
uniform radial loadihg, axisl loading and internsl press-
ure. In these cases the parameters p, né take the

following valués:

(a) Uniform radiasl loading n

(b) Axial loading p =0 " n n =1
(¢) Internal pressure on, = %. r i P‘zf%{
(2.25)

Tor any real loads-P'and ﬁ‘ (—-Eﬂb) and n (**EEL)

- J | a? P S 5h a '~ ah’
can be given the desired values by appropriate cholce of
0-‘e.gQ in case (c) above

0
o :P&" — \/3

v3 Pa
o ph T 2 ' Th
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CHAPTER 3

LINEAR CREEP OF A CYLINDRICAL SHELL

3.1 Entroﬂucfory'ﬂemarks
The linear foxrm of the constitutive equations(2.15)

is — | [ N b

| ?L,G = '3}:,9 = Ua&e,x + —&x,e ~ & E’e,x (3.1)
(With a constant stress system these equations provide a
-géOd”descxiptibn.Qf_thé behaviour of certain.alloys(24).)

| On loading, thé she11'is agsumed to respond elast-
ically in accordance with Hooke's Law i.e.

| | x,0 = %6 "PY%,x (3.2)
‘and then to creep governed by equations (3.1). The
giresses tend to;éfeady state values, which, with these
simplified creep equations, can be obtained from the
elastic solution, by putting Poisson's ratio » equal to
a half, The extent of the stress redistribution during
creep is determined,itherefore, by the amount that
differs from a half.

To illustrate fhls susceptlbllity to Y, the
greatest bendlng moment 1n a c¢ylindrical shell with

fixed ends (at X 0) is plotted ageinsat L for three

%
loading conditions in Pig. 3.l. As can be seen the

* Pigures not included in the text appear at the end of
~the relevent chapter.



20
influence of x:an'thé bending moment 1a”ama11 for radial
loading (pgl,ﬁago) and internal preasure (pm-g,x%f?%ﬁh
but substantial when axial loading (puﬁ,nagl) alone is
gpplied. (In this and subsequent figures involving m,
and‘k at X=0, the values for éxial loading, thnugh»negb
ative, are shawn on ‘the poaitlve scale for ﬁireet compar-—
ison with those of the other laading syatems. ) A creep
analysis with axial loading and a low value of » should
clearly demonstrate the effect of the stress redistrib-
ution. |
s L ._3'_.- ;
I ANVWA- . | [ -

1¥§

af

(With nanmdimenaienal stress and strain the spring and
dashpot constanta are unity. )

Fig. 3.2 Maxwell model

For simple tensmion equation (3.1) deseribes the
Maxwell model of viscoelastic theory — Fig. 3.2, The
neatest method of solving linear visooelastic problems
is through use of the Laplace transform; a trensformed
get of field and constitutive equaﬁiogs,aanalagouﬂ to
the set governing the corresponding elastic groblem,
ig obtained, and hence a transformed golution. Un-
fortunately with many~prablems, guch as those provided by

ghell structures, the transformed solution cannot be



LA

- esgily inverted to give the true gqluﬁion.\ Sﬁinozuka
and S@illerﬁ(gs):nave'pxq&ueed a few results by
expanding a transformed splution as an'infinite serlies
and invertiﬁg t@rm_by tarmt This pxccaaé; however,
| oﬁscux'as 'ﬁh&‘f}@l’lﬂ‘gi;?ﬂgl form of the true solution, from
~which the influeﬁqevaf material and,gecmétric'paramet@rs
can often bé aése&s&é;.

An altern&tiéé‘ﬁﬂthod, and that employed here forx
. a cyiin&rical‘snall wifhgfixed,eﬂda, is to smolve the
' gﬂverning-ﬁiffe?ential”ﬁqﬁatioﬁa directly.

L3;2 Method of Selutian' ‘

Eguations (3.1) may be rearranged and Writteﬁ in

the form,

L el

Py(D) Ty T (D41) Cx, 0 Oy X
where F](D) =_(13+1)2 - (uD*%)g, D being the operator
/¥TX, and-the—submoripbe—sy—e—reslacel, 2, (In this

analysis it is couvenient to use both a dot sbove a

e
+* (ODa%) €

(3.2)

variable and D toiindicéte differentiation with respect
to E*.) |

| The stress resultants mey be expressed in terms
of the displacements using equaetlons (2.4), (3.3) and
the time derivatives of (2.5), (2.8)s

{



PL(D)n, = (D+l) W' + (wDad) W

(Dal) ¥ 4 (wDed) B (3.4)

FI(D )ne
Py (D)my = (Da1) 2
Loaél:j.ng applied suddenly is usually represented
by the Heavyside step function.
| H(T*) =0 , F*<o0
=1 , T>0
Since this ;t‘uﬁetion has non-zero time derivatives at
T¥=0, and zero derivatives for T* > 0, it is convenient
in this analysis to assocliate the initial values of the
dependent variables with T*¥= 0, and to obtain solutions
for T Y 0 |
When the relations (3.4) are substituted into the

equilibrium equations (2.7) there results:

(D+1) W' + (oD+%) W = Po(D).n, = § n (3.5)
{'Wuu . 5 - )
(D+1) g5 (D+1) W+ (vDad) W' = 1‘“1(D)p = £p
- - -+

since p end n_ are independent of time for T > 0.
Equations (3.%) may be combined by the elimination of
W to give the partial differential equation,

Po(D) W' 4+ 128 (D) w = 9 (p~¥n,) (3.6)

where E‘Q(D) = (D-\-l).?‘ér" Equation (3.6), governing

the radial velocity W ~('§E‘,‘1'5*), is of the fourth order

T,

in X end of the second order in Solutions are
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;scught whiéh cén:sgtiéfy the éonditipﬁé at the fixed ends,
iee. WO,E%) WO, TN =F (T,FM =W(I, T =0
and can,ﬂeacribe-thefinitial velocity and accéleration
functioné, W (% 0) and Tw?’ (%, 0'), the latter functions
being 3peeified thréugh’the initial elastic stress
distribution.

As equation (3.6) is inhomogeneous, the familiar
method of solvingvpaxtiél diffegghtial equatidns by
separatidn of wvariables cannot be directly applied. If,
howevenr, the solution is assumed to have the form

w (SE; -'E*) = :&1 (;E, Tb.*) -+ %2 (E‘E) (3.7)
equation (3.6) can be divided into two equations, one
hoﬁogeneous and the other independéntAof time:

F(D) W' 4+ 12 B (D)W, = 0 (3.8)

- 3]

Vi + 9 W =9 (p *'"“) (3.9)
Eguation (3.9) is the same as that deseribing a purely
viscous shell. Ite time-independent (l.e. steady state)
solution and tpe initial elastic solution are given in
Appendix 2.1; Steady state variables are denoted by
- subscript ' oo, end those associated with initial
conditions by subscript 'o'. Hence,

WoE) = Wef ) (3.10)

Equation (3.8) can be solved by assuming a :

velocity funection of the form



%'1(3:','1':'*) = TH).XF) (3.11)

Subgtitution of this expression in equation (3.8) yields

X"".FQ(D)T +"12X.F1(D)T = 0
- which becomes, wher the veriables are separated,
12F. (D)T
xnn 1 . 4
T = - ~ror -8 (3.12)

The positive sign with the constant %4 is chosen as it
leads to a non-trivial solution. |
The resulting equation in X,
xne - gt = o (3.13)

has the solution | 1 :
X = alcogh§§ +,aesinh§§'¢_a3008§§ +‘a4sin§§' (3.14)
where iy see 8y are‘eoﬂétaﬁts to be found from the
ﬁouﬁdary eonditions.4 'For a shell with fixed ends these
- are x(0) =x'(0) = KI) =x(T) = 0
and therefore

0 = & = ay

0 = a, * a8y

0 = alcosh§T_+‘azsinh§T + a3cos§T + a4sinQi' (3.15)
0 = a,sinhfl +ia2coshﬁl - aBSinGl - a4cos§1
This set of homogeneous equations has a non-trivial
solution only if,
Qosh@f..cos§f = 1 ' (3.16)

The roots %i of this characteristie equation are given in



“Pable 3.1. TFrom equation (3.15) ay, aj, &, can be
expressed in terms of a, and Qs al can be set equal fc
unity without loss, and from equation (3.14) the
solutions X; associated with each §,; obtained:
X; = coshf,X - cosf X + f(@i)(sinh@ix - sin@ix) (3.17)

where T e T
cosf;l ~ coshf,

sinh§,T - sinp,T

£(5,) =

These functions Xi’ which also occur in beam vibration
problems, form an orthogonal set i.e.

1 . : ‘ '
gfi Xy dx =0 , i # 3 (3.18).

 Proof of this property and other useful relationships

can be found in texts on vibrations, for example,

Timoshenko(26);
B, 1 4.730
8T 7f853
sgi 10,996
34“;{ 14.137
Bgi 17.279

Higher roots cen be obtained with sufficiemt
accuracy from the formula

Byl = 17.279 + m(4~5)

Table 3.1



The time equation (3.12) is
rat i |
F(D)T 4 25T, (D)2 =0

-which may be expandeda asg

4,.
(1 _332 ot SQ)T “ (2 - +'?r)T + (3 +'E-)T-~O (3.19)
The . solutlon of this equation is
% %
‘T;:ﬁl e )/:Lt + B, € th ‘ (3.20)

vhere 5., 82 are cons'i;émts and

‘”’"2(1-m+ )_.

As is reac"i:l_l'y con:f:l_rmed by exam:.zllng equa‘tian (3.21) for

- the range O <~be 4 2,‘ wh:i ch embraces all material valves,

X‘.L and YE are real s_,nd positive. Hence m(tf"), and»

therefore 'i%l(':icf',"'f;'*) — 0 88 T%> 0.

There exists a function Ty of ‘the form of equation

(3. 20) for eaeh root @l, and from equation (3.11) the

general expressn.eu for WIL may be written,

(%4

1l

ZT o Xy

_ o~Y1i%* ~¥oyT¥
Z( s + 8y, | )xi

Trom equations (3.7) and (3.10) the total radial

velocity function then becomes

PI PR Y Tx R
WE T = W (F) « B80T 1 sy 0720 )y

The constants 5,, and S,, are evaluated from the initial

(3.22)
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veloeity ond scceleration functions, w (X) and wolx).

, %
From equation (3.22)

LI B OO o |
w (%, o) =W (X) = Weo(X) + Z(SM + Bog )Xy
B & 'i'-:‘ " ’

”e

—

i

oy

o0
it - e f : ") -
(£07) = 5p(X) = = 2a(¥yyByy + ¥pylpy )%y
When each of the$$ @qna$iQns is maltiplied byij and
integrated from 0 to T, the orthogonality property (3.18)

pllows the congtents to e obtained:

5 ‘ = c 1 :::' o~ y - .
Sy By < e [S(‘-‘Q - W) Xy d.:x:] |
i 0 ,
o 1 | (3.23)
% f&d . &1 .| ) ",,.,_
Yl:i.i‘\fli +»X2r1.“‘2‘i R AP l' g W, X, dx
T - g:ﬁ‘-g dx - fa )

. O :
With the function Vv‘(%f.“ﬁ %) known the ptress

resultants at __a__i_}y time'_aw} be obtained by lntegrating the
differentinl eqﬁa‘tic}m (3.4). These solutions are glven
©din Appendix 2.4, |

3,3 Determination of Initial Functions

Imniedintely after loading i.e. at TX = Oy the
elanbic mmas'&iatribﬁmen exists throughout the. structure.
The stresses in the constitutive relatioms (3.1) ave |
therefore known, #nd the latlter can be solved ':{:'m:* stresy

rabess
*

That en arbitrary function can be represented by an

infinite seritgg of orthogonal functions is demonstrated
by Rhayleigh )



- ¥ <= . s [ i L
%qe“:%ma(%ge+§g, )‘ _g?wt"mw,e h’°ﬂ%,J

With the time derivatives of equations:(2.4), (2:5),

(2.8) the initial stress resultant rates can then be

- obtained:
n = s (T . (l-“%) +( ~E)n,,
Sxo T T2 Vo T el T 2L “xo =
= =iy (W + oY) - =y | (deimgy + =ny | (3.24)
. 1%

o™ TRy " T O i

In the last equatipu thé relation m ~:=mmkohas also beén

e 0

used. | ‘
. The eqalllbrium equations (2 7) can be differ-

entiated thh resPect to time and wrmtben

O | N (3.25)

Dyo * Bgo =0 S

When the relations (3.24) are introduced into equations

(3.25) there results:

:a" = (1—“%:‘15)11& “* (n_%)ngo - ﬁﬁo . (3.26)
Wnu . 13(1,..\3 )W = 12{:(1_134-132) "O + (1-—)32)(1190 - %I’la):l (3-27) o
Thevrlgnt hand gpide of equation (3.27) consists of known

functions, so that the solution can be readily



found. Details of this solution are given in
 Appendix 2.2.
| The differential equation controlling the initial
radial acceleration is obtained from equation (3.27) by
differentiating with respect to time:

T 12(1‘,.:?)'%}"0 = 12 [(1-»+m2)x§1§5 - (1-»2‘){1%] - (3,28)‘
Again, the right hand side consists of known funections,
obtained from equations (3.24), (3.26) snd the solution
of (3.27) Details of the solution of equation (3.28)
also appear in Appendix 2.2. -

When the initial velocity and acceleration

- functions ere found, the series comstants S,,, Sy, cen

be calculated from équatiqns (3.23). This process is

described in Appendix 2. 3.

3.4 Results and Discussion .

" he large number ofcariﬁhmetic~oaicu1ations
inyvolved in the evaluéfion bf tﬁe;arbitrary congstants of
" both the‘series aﬁd the timeiindependent‘functidhé

(Appendices 2.1, 2.2, 2?4),'made the use of a’computer
essential. ~ An Bnglish Flectric Leo KDF9 computer wes
used to calculate these constants, snd to provide the
desired solutions. | | |
It was found that a fairly 1&rgé number of terms
was rTequired to produce satisfactory convergence of the.

series represanting'% (X, T*) - equation (3.22)., The



velocity and acceleration fﬁnctioﬁé obtained from this
equation at T* = 0, W(X,O), W(X,O), were compared with

» -u"-

with their prescribed valueg,fﬁo,'ﬁo,ianq good agreement
achieved when the first forty.nonwzeroaﬁepms of the
series were included, |

In Figs. 3.3 - 3.8 the redistribution in time of
the functions'ﬁ, ngy M. are shown for a shell with fixed
~ends, T =15 units (a length sufficiently great to avoid
. interaction of the end effects), » =0.,1, snd subject to
‘the loadings p =.%%, ﬂa=='%§ (internal pressure) and |
p = 0, n, =1 (axial 1dading).

FFrOm Figse 3.5 - 3.8 it can bé geen thaflthe
stress distribution changes little during creep for
internal pressure loading, but alters considersbly when
axial loading alone is applied. However, in ﬁeither
case is there signlfloanb change in the raﬂlal velocity
w - Elgs. 3.3 and 3. 4.

Thisg insensitivity of the deformablon rate to
stress changes is alsO'shown by'Flgs.”3a9“and 3.10,
where the greatest bending moment and curvature change
(gm X = 0) are plotted against T* for several values of
1)'éﬂd loading conditions. Despite the changes in the
momeﬂts wmth tlme, partlcvlarly for axial loadlng, the

curvature rame is almost aonstant.

It is useful to study. the. functional form of the
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geries sélution, and-in<pai£iaular the dependence of the.
,l,time oeafficientsiyi{é on § and v - equation (3.21). |
The variations of 3/1’2 with § for = 0.1, 0.3 are
shown in Fig., 3.11. 48 can be seen ¥ and ¥, lie
above and below the line Y=1, to which they tend
asymptotically as ? ihgreasea. This suggests that the
time dependence of the dependent variables may be
approximately predicted by setting ¥y = ¥, = 1, and
sssuming, e.g. for the bending. moments ‘
mx('fi,ff*) = (m:’xé - Ty, e"'%'* +“mxw- | _(3.'29:

This function, at X =-O,Qis shown as a dashed line for
several 1aa&img(conditiéﬁs and values of v in Fig. 3.9}
in all easea»it is séén'%c agree reasonably well with
- the exact ﬁunetien. | |

| Equatidﬁ (3.29) may also be used to estimate the'A
time in which sﬁress redistribution occurs. If it is-
assumed to be eomplete when mx(§;§*) - mxoo<:§, then

redistribution time

“ M = M o
"':' . :?».Cﬁ woo
T K log, [. € ].

Yrom the definitiom of 3%, T and t_ ~ equations

.(2.14), (243) and (2.13) - the real redistribution

time may be written

T

»

o ¥



T'or real materiagls the time exponent g lies in the range
-1 < q < 0, so that t, is inversely related to E and A,
As B increases the elastic streins diminish, and -
equations (2.9) - as A inbreases the creep strain rates
increase. Thus, the smaller the elastic strains and
the larger the creep strain rates, the shorter is the
redistribution timey & result which might be expected
intuitively. The influen%i_of g on tr is more complex
and depends on the ratio ﬁ%‘.

This analysis, though restricted to materials with
a linear stress dependence, has shown that considerable
stress redistribution can take place within a shell
structure without the deformation rates deviating
significantly from their steady state values.

Some of the feafuras of the enalytical sepproach
should be useful for the analysise of cylindrical shells
governed by more complex linear‘viscoelastic laws,
though dirvect extension of ‘the method is not possible
because the initial functions are not readily oblained
when higher order differential operators appear in the

comnstitutive equations,
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CHAPTER 4
NON-LINEAR CHEEP OF A CYLINDRICAL SHELL

NON-LINBAR CHEER OF A CYLINDEICAL SHELL

4,1 Toxmulation of Problem snd Method of Solution

With the generalﬁformﬁcf the eonstitﬁﬁiﬁe equation
(2.15) there in no prcapéet'ci‘obtaining a closed.form'.
solwtion to*the-cylindr1931 $he11 problem, énd éome;
_numerioal method of analysis ié‘required. The method
prapenbed here is in ednenne the same as that of
Mendelson et al (9) | B
| The total strain e@uatiéﬁs (2.16) may bhe solved

for stresses to yield.

u-«- V ) 1 - 0 . .

When, theae,equatlona are combined with (2+4) and (2.5)

the stress resultants become,

. , _ .
nxﬂ9 Laaf (e i x)ee’x). #x'e: ‘ E
_ (4s2) :
- o o
m = . k — .
X lE(l-x@) "
} 2
here ¢ _ -1 =C
ny o :L-.n? gf k’e)-i-é-')iz ») 4% R
; | 4 (4.3)
. ' =0 :
m; ==*~ljg %( *’¥£%5 ) z dz
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With equations (4.2), the equilibrium equations (2.7)
and the deformation-displacement equations (2.8), two

differential equations in?tptai displacements are

obtaineds
R = (Zl..-‘ng)(na f.ﬁ;z)-- ~2W (4.4)
W0+ 1215707 = 12(3) [panend '+ ng - wng] - (45)

These eqaations“in disﬁlacementé and creép strain
iﬁtegrals mist be satisfied at all tiﬁe§. The creep
strain terms ngﬁs, mgn_in é@uations (4;4) and (4.:5)
have the form of additional loads, and the equations
themselves are equivalent to those governing a purely
elastic shell (c.f+ equation (A2.2)) subject ﬁoAnon—
uniform loading. |

From equation (2+17) the creep strain increments
occurring in a short time interval $%* may be expressed

approximately as

—c __ —_ 2 = ~ — i
SEX,@ =o* Xy® %O'e,x) Y (4.6)

The total creep strains at time T* A5T* can then be
written

(€5 o) = (g5 )

+ 19 EC (4.7)
TR 19T i ~

TH Xy ®
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If total diéplacementé*ané creep strains are known
- at any time,- oorresponding stresses mnay be calculated from

‘equations (4.1), (2.5), (2. 8), the latter may be combined

to yield
o -~ -Cy
oo (Y 4 2 W 4 '\-:u‘E
X __02 , 1 _.n e)
(458)“
T o= (W + U 4 VZ W") --—'—'-E(& -i-l.')E)
© gy 1S

With equations (4.5) and (4.&) and the appropriste
boundary conditions expressed in finite differenée'form,
the solution at time T* may be extended 1x3 - F* 4 BE
by the following 1teraiive technlque~ |

(1) Ausume a set of stiresses to’ act &uring the
interval %%, end estimate the- creep strains ocourrlng |
ﬁherein Trom equations (4.6). - For the fixst interval
the initial elastic values of the:streSSeslare usea;
thereafter, the stieSses agsumed are those of the
preceding time interval.

(2) Obtain the total creep strains at T L TN
from equatlonq (4.7).

(3) Calculate ngae, mg-by the numerical integration.
of equations (4.3).

(4) sSolve equation (4.5) for W and obtain u’
from (4.4). |

(5) With these total displacements and the creep
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strains galcula%é another set of stresses from
| :éqaationq(4 8). |
w(6) Use %hese stlesges in equations (4.6) to
T emestlmate the oreep strain increments.

| {(7) Repeat-steps (2) = (6) until successive -
 va1ues of W avre satisfactarily close.
‘When eoavergenee has been obtalned the total creep
~ strains at F* + $T* can be caleulated from
;x’iségﬁalfﬁg+§%*  | (ggﬁa);¥* *f%Eg,
Fﬁand the entzre iteratlen procedure applied to the next
ltlme iﬂterval.‘ ,. ; -

i The- finite differenoe form of equations (4 5)

tana (4 8) and the fixed end “boundary eondltlona, together

| with the integratmon fommula for equations (4 3) and

other detalla of the calculatlons are glven in Appendly e

4;2 Accuracy and Range 0f Iteration Process
A computer programme was written to earry out the

Squence of 0peratlmns of the'preceding section and

’} prov;de the varlation in: time and Spﬂce of the dlsplace-

- nment@, stress resultamts, etc. The programme proved

-Zto be xathor large oocmpying almost all of the storage
 ﬁcapac1ty‘of the Kﬁ@gfcomputér, andlhad}ajtypica;;
‘running time of thirty minutes.

Some crlterlon was requlred to measure the



o |

convexgence of the 1teration proeess at each time
interval. Convergence at the nth itoratlon was assumed -

if | ' Wﬂ f;wn~l ¢ tfi

WI?..

It was found that with §W=059002itﬁe efror-fromyfhis
source was negligible. | | |
As in the analysis of Chapter 3 solutlons were

obtamned with a shell of 1ength 1= 15 unitsey and,
because of the 1ongltudinal symmetxy, 1ntegration
periormed over the range O - z‘T To etpress equatlons
;(4 5.) and . (4 8) in finite diffarence form “the shell was
divided into equal intervals b near the fmxea @nd, while

p0|nts away from the end, whera the Varlables change
1ess rapidly, the interval wes daubleﬂ to 2b and then to
4he It was found thet Wlth b 0.05 threa flgures of"
~ agreement were obtained between the initial elastic
solutlon as obtained numerlcally (1.@. With € Xy = O)
and theaolosed form solution - equatxon (a2, 3) in
-addltlon, numerlcal solutlans With the stxesa @Kponént
| = 0 agreed well with the: close& form 11near solutlons

of Ohapter 3.; As integration advanced in the the

.fnumerlcal solations tended to drlft slightly from the

"Aexacb forms, though this dlvergence ald not beeom@

51gn1flcan$ untll the stresg redlstvlbution Was complete,

and the steady state solublon clearly establlshe&.



However, when non-zero values of the stress
expéneﬁt'm:were‘usad the-&rifﬁ“in.timefincreased
éonside?ably. It was most pronouneéd at the Tixed end
of.the.shell wheré the stresses are highest. This
deviation was not affected by reductions in the time
inﬁefval 5% or the éonwefgenee*parameter <, but
was influenced by thé size of the space interval Y.

Migs. 4.1 and 4.2 show fox internal-pfessure 1oading_and'
m - 2, the wvariation with fime*of the ﬁoment Ty and
curvature k., at.X =0, as obtained with b = 0.05 end 0.02. .
wlth the former value m. decveases contlnuously and the
xaLe oE 1ncrease of k never becomes- congtant. When

b =.0.02, on the other hend, the steady state values of
m. and k ére fairly Well established, With higher
yvalues of m the Arifv agaln bocome& signlflcant even
with this smaller intexval. The storage 'capacity of

the computer prevented a still swaller value of b from
being used, and, indeed, with b ==C.02_the shell length
was limited to 7.6 units, This re&ucti0n in length
causes some interaction of the end effects, but it does
now. alter-significantly the values of the stresses and
strains at fhe fixed ends, »

This type of instaﬁiliﬁy is to be found in results
from similar methods of analysis applied to other

structures (7), (29). - The most obvious source of
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cumulative error is the calculation of stresses from the
difference of total and creep strains - equations (4.8).
As these strains increase the accuracy with which their
difference can be computed diminishes. The stresses
are raised effectively to the power 2m+l for the re
calculation of creep strains -~ equation (4.6), and the

- error consequently enlarged.

4.3 Results and Discussion

Solutiéns'w&re-obtaineﬁ*with m velues up to 2
and several valuésfof L for %he cylindrical.shell
gubject to iﬂtérnal_pressuré, axial loading, and radial
loading, th@;valqeé ofAthe parameters p, n, being chosen
as described in Section 2,3. The results are
presented>fdr the,shell‘of‘length 15 units, although the
naximum values of @X‘and kX‘Wére actually calculated with
T =7.6 units, i

The¥inf1ﬁéﬁce_of m on the stress distribution
depends very much on'the loading system. This
dependence ié”illustraiea%in Tige 4.3 where the steady
state values of mﬁ 66 X = O are plotted against m. The

influence of m on mK(Oﬁm) increases with the axial load

N, e When na==,0 the moment at m = 2 is 88% of the
value at m = 03 while, with D, =-%3 end 1, this ratio

is 80% and 59%'respeetive1y.‘

In Fig. 4.4 the steady state curvature rate at



‘ §-2§bfist1otted againstjmifér the three;ipading:sjstemé; P
In.each case K L 0y00) jnéféé%es with. m, thé increase beingi‘”
breamest for axial loading cand. 1east “Por internal presqur@?
‘Ehe curveg shown were determmned bV caleulablon only as
far as m = 1. W1th m~==2, k (Ocﬂ@ Iar each 1odd1ng
.obLalned a constant value &urmng the iteratlon process:
as reported in the last secﬁlon' but for- T&di&l 1oadlng
and 1nterna1 pressure these Values (marked X in-Fig. 4. 4)
were below thoaeloalcqlatedgwith-m =1. It was
'cénsiaered very unlikely that the.shell Woﬁ1d ‘behave in
this way, and the result Was attrlbuted to the: ‘dritt of -
the 1terat10n.process.”4 The caleulated value with m~=‘2~
for axial 1oad1ng was alsc judged unreliable, anﬁ 81l the
'1.curves were exfended to m .2 by extrapolation.

- The oharacterlstle influenee of the stresé

' exponent m on. the steady state distrlbution along the
shell of W, mi and ng s shown in El&ﬁ. 4.5 - 4,7 for
iﬂtefnal press&re 16ading. : As m increases, the

‘max1mum ‘velues of the- etress xesultants are re&ucea and - -
the stresa distrlbutinn becomes more uniform. éhe | |
”~decay 1@ngbh, or” the dlstanee from the fixed end at which |
the radlal velogity becomes v1rtually Gonstant, increases
B w¢Lh m, bk the maximum value of: W is insen31t1ve to

varlatlons of M,



Shéll‘behaviour &ﬁring the trensition from initisl
elastic to stéady state distribution is cillustrated in
Figs. 4.8 - 4,11, where the variatidnsiwith'time of n ,
M.y € k. at several values of X are shown for p = 0,
"na $“1, m =1, and v=%, With thsse parameter values the

‘rgdistribufion‘of the stress resyltants, particularly M.
is congiderable. Despite this,‘howevéﬁ, the total
| deformaticné’ee and k. are alméét linear functions of
time, theiw rates of increase &@ringgétress redistribution
differing iittle from thé gteady state values.,

. This Teature of the results is also shown in
Pigs. 4.12 and 4.1.3 where the greatest values of effective
stress o* and eff.éetiﬁfe strain €% (=SE* aT* ) oceurring in |
the Shéll.(é$'§ = 0, and, déﬁendingpon %he 1oéding$
:system;*§‘=:~% or % =4%5'agé plottéﬁlaéﬁinst time. for
two loading cénditions,'=$=%-and<aeveral values of m.
" The decrease in"'ﬁgax with time is mgeh.gﬁeater'than the
‘decreasé in the gfeatest’beﬁding‘moment, because the
distribution of the bendingistregses through the thick-
ness of the shell chenges with time in & mamner which
reduceé~the gregtest values, Nevertheless, ‘the higher
stresses which exist during the early stages-of creep.
" do not affect substantially the growth of total strains.
The total strain can be faiﬁly‘We;1 estimated ab any time

by assuming e simple rela@ionéh}p w%$h-the initial elaStiéfh



atrain and the sbeady stete sireln rate:
=% . o ‘ — =X
E —_ E ; '&‘ e * E . . ] ("
total initisl elastic v steady otate (449)

Approximabions a%t&in&d‘with equation (4.9j for easch
loading system with m = 1,2 are represented by dotted
lines in @ig. delle The aeaﬁracy of the numerical
caloeulations is suech thet the steady state sitrain rates
%i%n'm =1 and 2 ave virtually bhe aome, and congequently
“the approximatet-lines for esch loading systen ave
indistinguishable, Unéat&ati&&t&&-af the totel strein
are provided by equation (4;9) in all cases, ~ The
apgrmxim&tian ie poorest for dnternsl pra%g&y&,ldaﬁing
with n = &, whore ﬁmrimg4ﬁtxe$$.rﬁdimtribﬁ%iﬁn the
estinate cen be 20% below the true value. This diow
crepency diminishes rayiﬂly,~haw@var, and when the
total strain i%'fﬁmwﬂﬁimaa ﬁh@ initiel elastic strain
She error is ley'ﬁﬁ.\ | |

The r&laiiv& iﬁmﬁnﬁi%ivity of totel sirains %a
stress varlatlon may be'qmaiit&tivgly‘@xplaim@&'ma
follows,  The siress redia%ribuﬁianﬂiﬂ‘aeagmpliéh@&
- Tadrly quickly - when gyig;\4.13) the oreep atrains are
ghoul twice the initial ¢lagtio strains - so that the
high atmeﬁ$aﬁ,‘éna'th@yef@xe high creep rates, present
at the onset of creep act for only a short time. In

addition, the elasbic strein components decrease with the
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stresses, and the net reéﬁiﬁﬁisﬁgimean total strain rate
during redistribut;én whiéhzaoés ndﬁldiffer.very greatly
from the steady state strain*rategi Whén,the steady state
stresses exceed the initial elastié~valués (Qs in Fige 3.9),
creep strain rates are low duiing_strésé redistribution,
elastic stfains'inérease, éﬁd,the net~resuitvagain is_a
mean total strain rate (Fig. 3.10) similar to the steady
state rate. |

| The dominating influence of the steady state stress
distribution on the growth of total strains has been

observed in analyses of spinning diacs(lg)

undex torsion(13), pressurise& thinvGylinders(S). It

s pIrismetie bars

would appear, therefore, to be~a'genera1 feature of
structural behaviour, and one‘which”iﬁcféases the value
of anélyses bésed on-the-eimplex steady state-equation (1.2)..

In all the figures so far présented in this chapter
which show the time depandenaé of stresses and strains,
Poisson's ratio » has egualled a h&lf.' The value of »
\deﬁermineﬁ the initial eiasticfstresses, and consequently,
with m, ‘the. amount ef'streséﬁredistribution during creep.
In Fig. 4.14 the'variationfwith‘time of the greaﬁesﬁ
bandinghmomgnt is shown for the three loading cases and
several - values of_ﬁ and . For\internal pressure
loading the effect of < 4 is fo increase the

elastic moment (see Fig. 3.1);9aﬁ&-henoe the change



.duriﬁg?creep;, Wibh the other JOading systems M (O,t*)
"dimlnlshes with © as well as m 80 that for certain
’ comblnatlons of these parameters m, (O,t ) is almost
independent of time. |

The numerical solutlons do not, of céurse, provide
the fpnetional'relationship betweenldependent and
independent variables, However, from an exemination
~of the numexricsl results, approximate relationships éan
“be cdnstructed._ .For exaﬁéle, the linear analyg%s of
Chapter 3 suggests - equatioﬁ.(B;Eg) - an exPonéﬁtial
relationship between the moment. at any time and its
initial elastie and steady state values. In the non-
1inear case it is found fhai mx(ﬁ{?*) is well represented
by the formula, |

n&_(?,mﬁ*) (m,‘(;(3 - mxm)e"E ﬁﬂ'-{?*-h My oo (4.10)
In Fig, 4.1% this expression is shown to agree closely
with the actual moment/time dependence at X = 0 for the
three loading systems, m = 1 and 2;

As in Chapter 3, equation (4.10) may be used o
estimate the period during which stress redistribution
oeours. If the latter is considered Qom@lete when

m (x, *) - Do < ¥ , then the redistribution time
‘ Myo.. ™ Pxoo
s
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CHAPTER 5

APPROXIMATE STEADY STATE ANALYSIS
OF A CYLINDRICAL SHELL

5.1 Formulation of Problcm and Nethod ar SalutiOH

| As indicated in Gha?ter 1 the steady stato oreep
analysis of shell structuras raquires the use of simpli-
fied material equations ‘if lengthy caleulations are to be
avoided. The authors of ‘2Vanda(?2) pave sugested a set
af‘approiimate relations between stress resultants and mid-
surface deformation rates., These relations contain a feat-
ure of the exact expressions connecting resultants and de-
formation rates (obtained from equations (2.4),(2.5),(2.18)),
which is not found in the linear form of the expressions -
coupling between mid-surface stretching and bending actions.
In non-dimensional form the approximate relations are

Y

n, = = G(“§%$?) (b, + 8 )
x 3 *Vx T 27e

n, = ga(' ’"‘T)‘(a + 38

(5.1)
(2m+1)
where .
&[éz * 88, 82 4 (2m+1 (S 1 ]
3 bm+3 3 ok

Substitution of equations (9.1) and the time deriv-

atives of the deformation~displacement equations (2.8) into
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the equilibrium equations (2.7), yields the non~linear

differential equations

(fﬂ""‘l .

h‘(n) 231"*“ q§(ut ‘%ﬁ) v n& |

: ‘ . . (5.2)
1 Bt (28L1, TR

( 1y 2m+1 &r%:% m+1 [¢€I"] ﬂ* &Q)(w + %&i}} = p

wvhere

%‘ 3, ' (53}
| ¢ DHCu’g v 35§ + Ly m+1) 3 a]( ST 5e3

m+ 3
and n,, as before, is the applled axial stress resultant.
From the fimsn of equations (5.2), .

sz“ »
i o= g . B (W)

¢

»
and, when u' is eliminated from the second of (%.2),

3] " + (5. 5)

N
B

k3 (dxij‘) (amﬂ) 1
where k, = 3(*m+1) y and k, = ky(3) (p = 50,

The governing equation (5.5) is evidently too com=
plex to allow elmséd form solution, and some iteration
procedure is required. With equations (5.3),(5.5) and
the boundary conditions expressed in finite difference form,
a possible iteration scheme 1z ag f@ilow$=

(1) Introduce approximate Valuas‘of the function q»
into equation (5.5).
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(2) Solve (5+5) with the boundary conditions for %.
(3) Calculate 5y from squation (5.4).
(4) dbtaia~a1naw set of values for & from eguation
(5.3) |

' ’{3) Repeat steps (1)*(%) until saaagsﬁive valuea:of
% are satisfactarily close. . j'
Detaxls of the numeriaal ealculaﬁians are given in Appenu
dix %, 1~

It 18 not possibls to deternine at the duﬁset
whether an iteration procadure gnch as that outlined will
cCoONVerge. d@ﬁVerancevin this case will depend on the
sensitivity of the funstion & to variations inA%, and this
cannot be dlscovered until solution is attamptad.

For a linaar material (m=0), <¥~1 for all X, and,
for materials with low m values, unity may be taken as a
firat approximation foribﬁ Where solutions are roguired
for & range of m, ¢ funetions from solutions with low m
values may ba\uséd a9 initial appraximations in iteraﬁian
cycles with highef m values. o - |

5.2 Results of Apﬁraximaﬁa Analysia and Comparison

with "Exact! Solutions

Solutions wére computed, a8 before, for a oylindrie-
al shell with fixed ends, of length 1=15, and subject to

the three loading systems: internal pressure, axial load-
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ing and radial loading. The loading parameters pyh, Were
¢hosen in aaﬁﬁ case as desoribed in Section 2,3.

The accuracy of the finite difference apprmx;mation
to the differential ¢quation was estimated as before by
cmmpariné; for the linear case (n=0), tﬁe values of é b=
tained from the analytical seolution with those from the
finite difference equations: Three figures of agreenment
were obtained at all stations: With this estinate of ae-
éuraayg the iteratlion process was continued until the first
three figures of % from several successive oycles were the
same.,

For low values of m; it was found that increasing
nimbers of iterations produced greater and greater converw
gence, but about m=2 the convergence of the solution reach-
ed a limit, and further iterations produced divergence.
For' m=3 with internal pressure and axial loading, and m=2
with radial loading, three {igures of agreeément of sudces=
sive eyecles were reached befors divergende occurred, and
that % was selectad which produced the least sum of the
sguares of the residues of the difference egquations (Appenu
dix %.2), TFor values of m greater than those presented,
guffielent sonvergence was not obtalned hefore instability
developed far‘the'salﬁﬁians to be'@£ mueh value. |

The extent of the agreement between the apgruximate

solutions and the "exagt" 301uﬁi@ns of Chapter % is most
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easily judged from Figs. 5.1 and 5.2, where, for the three
loading systems, the approximate and exact steady state
values of m, and k,_ at %=0 are plotted against m. The com-
parison is seen to depend very much on the loadlng system,
the appraximatiens deteriorating as the axial loading n,
becomes more dominant, Agreement is good for radial load-
ing p=1,n,=0, the deviation nowhere exceeding 2.5%, but
poor for axial loading p=0§n3m1, the approximate moment
when m=2 being 90% greater than the exact value. The ap~
proximate moment and curvature rate change relatively little
as m inereases, and in most cases their dapehdence onm is
less than that of the exact functions,

The effect of the approximate relations on the dis~
tribution aleong the shell of the resultants and deformation
rates is illustrated in Pigs. 5.3+5.5 where the exact and

approximate forms of m yn_  and ¥ are plotted against X for

C)
internal pressure loading, m=%1 and 2. The functions n,

and % are quite well estimated, the approximate decay length
being slightly greater than the exact value. The greatest
deviation occurs in the moment distribution, the approximate
funetion lying for the most part above the exact eurve.
These features also appear with the other loading systems,
although the comparison is better under radial loading, and
worse under axial loading.

While the approximate solutions can be considerably



in error, thay do indlieate in all the cases investigated
the general influence of the stress exponent m on shell be-
haviour: the greatest stresses diminish as m inoreases; the
greatest strains and the decay length increase with ms In
addition, they give conservative estimates of the highest
streases, though not neeessarily of the highest strains.

It would appear, tharefore, that the appréximate constitu-
tive equations (9.1) are of some use for the lavestigation
of the creep behaviour of other more complex shell struce
tures, but the results they provide must clearly be used

with caution.

5.3 Discussion of Approximate Solutions as m — oo

As mentioned previously, instability of the iteration
process prevented solutions being obtained for large m values
and the interesting limiting case of m--c0 could not be ap=
proached. A8 m—cothe stress-strain rate relations (5.1)
are replaced by a yleld eriterion and flow law which approx-
imate to those for a shell of rigid-perfeetly plastic mater-
ial obeylng the von Mises yleld condition and associated
flow rule. Complete solutions of rigid«perfectly plastic
shell problems involving non-linear yield eriteri& are in
most cases difficult to @btain(aa); however, useful infor-
mation on shell behaviour ean be extraeted from an examin-

ation of the governing equations,
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The energy dissipation rate per unit surface ares
is A
. .
’}p = gxéx b, v kom (5.6)
If the relations (5.1) are sclved for deformations, and the

resulting expressions introduced into (5.6), the latter be-

cones
1
2 - m+1)2"‘*‘
VY o= [o - g+ 02+ 3G T n2)

A31n—~eoﬂyean have a non-zero or non-infinite value only
if

ni -nn, + n§ + 12m§ = 1 (5.7)

This equation defines the yield eriterion in (nx,ne,mx)
space.

In 1imit analysis (see Hodga(sg)) the deformation of
a structure is assumed to be such that the strain rate vec-
~ tor q(éx,ée,ﬁx) is always normal to the ylield surface.

Thus, the components of q in the direectlions of the resul-

tants are
&, = A = Aﬁ; (n -n.n +n2+1?m = k(anxmna)

i} = XWB.. (n nxna*‘ne*'l&mg) = X(*ﬁ +2n ) (5.8)
k W = A (nfé 1, 0 9+n;+12m2) = \.2lm_

where A is a positive parameter.
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The eylindrical shell being considered has nx(ﬁ)una
[ .
and w(0)=0; hence, from the second of equations (5;&)*,

_ 1 | . 5
ne({)) = “é‘ﬂa {(5.9)

and from the yield eriterion (5.7),

n,(0) = ¥ ghe fod n (5.10)

. The values of tﬁh loading parameiers Pyl which
cause the shell with fixad ends to collapse depend on its
length I hdwever,'aa { inereases the critical values of
T tend rapidly towards those which produce collapse when
the shell has unrestrained boundaries, as is shown on page
63 of reference32), For a shell with free edges n_=n

x a?
n=p,m =0 for all X and from the yield eriterion (5.7),

2 a
Hy = ngp +p° = 1

This equation is the same as (2.24%) -the condition that the
loading parameters must satisfy for % to be independent of
m. Henes, the numerieal values of p and o, used for the
three types of loading (a),(b) and {e¢) -equations (2.25)-
are collapse loads for the unrestrained shell. Furthermore,
these values are extremely elose to those eausing the col-
lapse of a 1ong shell with fixed ends, and they may be usad

to caleulate the edge moment., Thus, from equations (2.25)

* The possibdllity of having A(0)=0, and hence all the de-
formation rates at ¥=0 zero, is diaceunted since for all
finite values of m, w(0)=0 implies tha result (5:9)
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and (5.10),

(a) n, = 0; ne(0) = 573

(B n, = 1; m, (0) = ~ry (5.11)
(&) n, mv%¥ mx(Q) = %

The sign of mx(@) is chosen to be the same as that expected
of 5“ vhen the shell moves radially outwards in cases (a)
and (e), and inwards in ecase (b). (It should be noted that
in case (a), since there is no axial load, m(0) is indepen-
dent of the shell length.) The values (5.11) are shown in
Pig. 5.1, and in each loading case they put a close lower
bound on the approximate moment funetion.

It ean be shown by examination of the exact steady
state stress resultant/deformation rate equations (obtained
from egquations (2.,4),(2.18) and (2.5)) that, when n,=0, the
exact edge moment is the same as that glven above.

The equations governing problems of limit analysis
do not, in general, restrict all the dependent variables to
. being continuous funetions ~Section 1.7, referenee@32).

For example, in the c¢ylindrical shell a discontinuity in %'
(implying infinite é“) is permissible. However, all the
variables in the problem under consideration ean be shown
to be eontinuous by the following somewhat intuitive argu-
ment.

Equilibrium considerations require that the stress
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resultants m,,q, be continuous functions -page 4, refer-
enee(Ba)3 and from the yleld eriterion (5.7), ng must also
be continuous. From the loading systems applied to the shell
there is no reason to expect an abrupt change In the sign
of n,, which must therefore be a continuous function.
The flow law (5.8) then requires that all the deformations
alse be continuous.

That it is finite, is all that can be inferred about
Qx(e) from exauination of the governing equations. However,
an interesting result of the computed solutions is that the
energy dissipation rate per unit area, Y, at X=0 devlates
very little from unity for all loadings and values of m in-
vestigated. (It can be shown -Appendix 4.3~ that when m=0
and the shell is very lang,“¢(9):1 for any ratlo p/na,)
In addition, the value of &, at #=0 is found to remain al-
most constant at its linear (m=0) value as m increases.
These computed values of Y(0) and 8,(0) are shown in Table
5.1. Trom consideration of the probable accuracy of these
nunerical values it can be concluded that Y(0) and &, (0)
are elther independent of, or very insensitive to, m.

If 'W(0) and &,(0) are assumed independent of m, and
YV is expressed in terms of the deformations, ﬁxéa) can he

caloulated. TFrom equations (5.1) and (5.6),

.2 (82 2, 12
Y= B2+ a, v 82 4 Lidyh



p=1, n =0 \4? as/R p=0, n =1
mo[WC0) [0 [Y(0) | F(0) (o) | E!(0)
0 1 0 1 0.433 | 1 0.730
Gt?ﬁf}" 0-999 Q Ql999 Qwh’BB 0.999 0i75®
1 0.996 | 0 0,995 | 0,432 | 0.999 | 0.750
2 0.995 | O 0.997 | 0,432 | 0,996 | 0748
| 3 - Q 0,991 | 0.1430 | 04991 | 0745
Table 541
as m—os, AL iﬁO, & =0,y=1 and therefore,

% (82(0) + 5200

(5.12)

With the linear wvalue of éx(O) eorresponding to the load-

.
ing system, kx(G) can be obtained from equation (5.12):

(a)

(b)

(e)

¢lose upper bounds on the approximate curvature rate

2

p"..‘;\/"g ¥ nam

funetions.

p=1yn0,%04

p=0,yn,=13

1

ey

V3!

éx(ﬁ)?G,

&, (0)=g,

8, (0)=g2,

In Fig, 5.2 it ¢an be seen that these values of kx(Q) put

"k (0)

'~kx(0)

L ]

= 2/3

= /3

Sk Q) = 3

x

(5.13)



p=1, n_=0
I~ 0
_ p=2//3y nl=1//3
1 . T
\ m—“? oo
mx(ov‘x’) L\.
0.2
——— =l — — —
Exact :
- — —— Approximate
0 1 2
m

Fig.5.1 Comparison of approximate and exact steady state values

of greatest bending moment
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CHAPTER 6

APPROYIMATE STEADY STATE ANALYSIS OF A CYLINDRICAL
SHELL WITH AN ABRUPT THIGKNESS CHANGE

-6.1 Formulation of Pioblem and Method of c‘wlv.‘c:i.o'zn

Sinae the ap@raximate aonstitutive equatmons used
in the praviaus ehapter provide aoluxiona whiah ara
qualitatively similar to thosge obtained with the exaat |
econstitutive equations, i% was eonsidered warthuhlle to
extend the simpler steady state analysis to the p;oblem of
a‘éylindrieal ahe;l with a'ﬁhiakﬁegp discontinuity;subjact,

ag before, to uniform axlial and radial loadinguFig, 6.1,

e Ty G
n, !?n lh n,
T R N s s R R R B A
¢ a B N
P
. ! __l &hﬁ s j | | { b
D, o d‘na

B and C denote the thin and thick partions of the
shell, respectively.

Fig. 64

If all the variables are non-dimensionalized (as in

Chapter 2) with the thickness h of shell B, the equations
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governing the latter are (5.1),(5.3),(5.4),(5.5), and the

corrasponding equations for shell C may be written

n__ = &G("22+1) R(&__+& )
ex ~ 3a € Y ex Tee
2
Ll‘-‘(ﬁ'ﬂl‘j}l—wm} , X
0o = §Ge 2m+ 1 ‘R(éee*fpx)
2
‘ 2m=1y . (641)
e Lolosimr) o3 2mbly (S5 »
Moy = ch 2m+17 R (q&+3) m+¥’ .k,
where, .
. b2 : 2 2, 2ud (SRR v
Ge 3l§cx * &cx&ee + éca * & (Em+3J*FFf1 kcx]
L) s A » , .2m+1 & ("‘“,"""‘!I‘L“‘)
d£ = R[F(uég + ﬁéwc + wg) +‘R?(%ﬁ$%)(nv+1)wga] e+ (6.2)
s (“"’*ﬁl‘*) L -
e R (6+3)
o 2
e
-, & ] - - '
[ ewg] * kc1¢hwc = Kgp (641)
whore k., = F1, and k_, = X2
Ré R

In the above equations the subseript 'é' denotes variables

of shell C, and the thickness ratio R = Eg,
' h

To ensure that the two shells remain attached during
deformation and that the junetion strain rates are finite,
the radial velocities must be such that

§0) = W 0 5 #(0) = ¥L(0) (6.5)
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In addition, equilibrium considerations require that
m (0) = m  (0) 3 4, (0) = q,,(0) S (6.6

These junction forces may be expressed in terms of veloci=

ties by means of equations (2.6),(2.8),(5.1) and (6.1):

mx(G) = (l)(2m+1) ¢£~) w“(O)

) = - b GurT 3 [ @0y + deorin (o)
6.7)

]

el

1, (0) = (10‘2m+1) ¢;(°) (0

14 (0) = = b G L MIOCIOREXOLTT)

To avoid the aaditional'computation which would be
necessary if conditions different from those at the junetion
are specified at the far ends of the shell, the latter is
assumedlto be syﬁmeﬁrical ahéut the lines dd and ea:«Fié.6.1.

The method of solution 1s similar to that of Chapter
5, the 1teration sequence being as follows:

(1) Introduce values of the fundtions ¢ and &, into
equations (5.5)and (6.4) respectively.
.(2) Solve equations (5.5) and (6.4) with the junction
equations (5.5)~(6.7) for % and %G.
() Caleulate &‘ and %é from equations (5.4) and (6.3)
respectively.

(4) Obtain new estimates of ¢ and ¢% from equations
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(5.3) and (6.2) respectlively.

{5) Repeat stages (1)~(4) until successive values of

w and W, are satisfactorily close.

6.2 Results and Discussion

 The lines of symuotry dd and ee were set at 8 units
fréﬁ-the Junetion - a distance sufficient to alleow regions
of uniform strain %o exist in both halves of the shell,
and solutions were obtained for internal pressure loading
and several values of R. Here, the values of the loading
parameters p,n, (Section 2.3) were chosen to make the rad-
ial veloeity of the membrane region of shell B independent
of m.

The divaergence of the iteration process whieh iinit-
ed the analysis of the shell with fixed ends (Chapter 5),
alse occurred in this problem. However, the value of m at
which instability developed increased as the thickness ratio
R decreased, so that when R=2 useful solutions were obtained
with m values up to k.

The variations of %,ne,mx with X for internal pres-
sure, R=2 and several values of m are shown in Migs, 6.2=-
6.y and in Figs. 6.5 and 6.6 the greatest values of m, and
%x oscurring in the thinner shell are plotted against m for
R=2,3,4 and R—e. (A8 R--ec the problem becomes that of a
eylindrical shell with fixed ends; solutions shown for R— «
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in this chapter were obtained from the analyses of Chapter
5e)

| The most striking feature of these solutions, con-
trasting with the behaviour at a clamped edge (where the
aporoximate sclutions are fairly insensitive to m), is
the considerable change with m of the radial veloecity and
stress resultant distributions. This result could, of
coﬁrse, have been predicted, sinee the membrane veloelty
of the thinner shell is independent of m, ﬁhile that of
the thicker shell - proportional to (%)2m+1* diminishes
rapldly as m inoereases. The influence of m on the solu-

tions ean be further explained by considering the rigid-

perfectly plastic (m—<) response of the shell.

m . (0)  m (0)

1 1Dcx<0> g;ou 1

D p

(a) Forces on shells at junction.,

(b) Collapse mode for large (e) Collapse mode for small
thickness ratios. thickness ratios.

Fig. 6& 7
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Fig. 6.7(a) shows the bending moments and shear

stress resultants acting on the shells at the junction.
When R is large the rigid~perfectly plastic behaviour of
the thinner shell is the same as that of a shell with a
clamped (R-+~) edge. This mode of deformation - Fig.
A.7(b) = will prevail as long as the thicker shell re-
mains rigid under the action of internal pressure, and. of
junetion forces equal to those at a eclamped edge. At some
small value of R the thicker shell will be unable to sup-
port this combined loading; yielding will occur in the
region of the junection, and the deformation mode on col-
lapse will be as shown in Fig. 6.7(e). 1In thié second
collapse mode the Junction bending moment énd the curva-
ture rate of the thinner shell at the junetion will be
less than those at a eclamped edge.

In Figs. 6.5 and 6.6 the moment and curvature rate
funetions when R=3 and 4 increase with m from fairly small
linear (m=Q) values, and rapidly approach the larger rigild-
perfectly plastic values of the clamped (R—voe) edged shell.
This suggests that these plastic limits are eommon to
shells with thickness ratios of the order of three and
above. When R=2 the behaviour as m-roo is less certain,

At m=h, m, (Q) is 83% of the clomped edge plastic value,
but-&x(o) is only 28% of the corresponding curvature rate.

(The large peak values of m_, in Fig. 6.4 oeccur in the thicke

X
er shell, and are assoclated with stresses which are always
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less than the greatest stress in the thinner shell.) To

deternine whether mx(O) and RK(Q) in this case tend to the
clamped edge values, or to some lower limits would require
nunerical solutions with higher m values, or a full analysis
of the rigid-perfectly plastic problem. It seéms probablie
that 1t is in the region of the thickness ratio two that
the change in the collapse mode occurs.

The manner in which &x(o) increases with R and m direct-
ly affects the behaviour of the greatest effective strain rate,
£i, at the discontinuity (l.e. %=0,%=}). (This quantity may
be regarded as a strain rate concentration,‘ﬁince the effec~
tive strain rate in the membraane region of the shell is uaity,
with the loading parameters chosen as in Seotion 2.3) ig.
6.3 shows the variation with m of %5 for internal pressure
and several values of R. For all K>3, previous discussion
suggests that é& tendsyas ni—>ocoy to the same rigid-perfectly
plastic Limit; aéleulatad from equations (5.13) tols value
is J3+%. There 1s a pronounced difference betwsen the
strain rate ciurve. for R=2 and those obtained with higher R
values., Wnen R=2, gﬁ al m=0 is less than unity, and it
diminishes as m inereases until about m=3. From the rate
ot increase of 23 beyond ‘this value, it seems unlikely
that, if'the strain rate does eventﬁally exceed unity and
a concentration develop, it will do so until m dis very

-

large. With R >3, on the other hand, §§ axaceds
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unity when m=0, and it inereases monotonically towards
the plastic linit,. :

The spread of the effective atrain rate curves conw
trasts with the fairly rapid convergence of the correspond-
ing effective stress functions ~Fig: 6.9. \The affective -
stress S* is eatimated from equation (2.22) i.e.

! *
Sx = THIpEd

When w=2, Sg is within 16% of the rigldwperfectly plastic
value, unity, for all 3$R<o$. '

- Lt would appear probable that the absence of ;traih
rate concentrations over a large range of m values observed
at the junction of the ¢ylindrieal shells for amall, though
in practice important, thickness ratios, will also be a
feature, under certaln conditions, of other shell inter-
sections e.g: a oylindrical shell with a hemispherical end
closure,. In any partieuwlar case the junction strain rates
will depend on the degreéee of mismatch of the membrane veloei-
ties of the mating shells, and the resistance of the latter
to edge forces and moments. A rule of thuwb suggested by
Pig. 6.8 is that a strain rate concentration will not de-
velop until m is very large, if one does not exist when m=0,
or, by analdgy, if a stralin concentration does not exist in

the elastie case (withaaﬁé).
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CHAPTER 7

SCOPE OF EXPERIMENTAL WORK AND
DESCRIPTION -OF APPARATUS

7.1  General Remarks

Information on the actual behaviour of structures
~during creep is scarce, and to the author's knowledge
there are no reports in the literature of oreep experi-
ments on shell structures with whieh theoretical analyses
might be éompared@ Part of the reason for this lack is
the expensive and time consuming nature of creep testing.
Tests on struetural materials at stress and temperature
levels similar to those met in practice are especially
deranding, requiring the continuous use of equlpment over
very long periods, While such long term tests are necess-~
ary, knowledge of struetural behaviour can be obtained
with comparative ease and speed from axpériments on struc-
tures of materials which can be made to creep rapidly at
moderate temperatures. The results from such tests will
be useful for predieting the behaviour of practical struc-
tures (elther by direct analogy, or through substantiation
of theoretical analyses) provided the constitutive equations
of the "model" material are similar to those of the siruc-

tural materials A number of materials, mostly soft metals,
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have been used in this réle. Dises of lead (at 309C)
nave been»tested ﬁy wahl(12), thick walled tubes, of
lend (at 33°C) and wagnesiuw (at 120°¢) by fmitn?d),
and of aluminlus (at 250°0) by King(3u). Polymeric mate-
eprlals have received legs attentlion, although Gubser et

a1(13) report torsion tests on bars of polyethylene.

7.2 Bxperimental Frogramme
‘» Because of the lnek of experimental data 1t ﬁaﬁfdécideq

to indtinte a prograpue of oreen tests on eylindrical
shells with eclamped ends and thickness discontiaulties,
and subjeet to internal pressure loading. uUne of the
aius of the present project was to design and commission
sultable apparatus, and to conduet a swall exnloratory
gseries of shorit tern creep tests on ovlindrieal shells un-
der conditions of constant temperature and loading.

0f the metals wentioned above, lead with its high
density is cleorly an unsuitable material from which to
make thin shells. Magnesiun and aluminius alloys are more
promising; thelr ereep behnviour has been investigated by
Johngon of al(B}g and is sdwilar to that of steels In the
event, 1t was decided to design apparatus switable for
testing both soft metais and nlasties, but to concentrate
lunitially on plastic materlals. These have several very

practical aﬁvantagas over metals; they oreep rapidly at
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low stresses at temperatures around 100°C, and several

types can be obtained fairly cheaply in a large tube form
suitable for making eylindrical shells. The creep prop-
erties of polyethylene, polypropylene, FPVC and nylon have
been investigated by Turner et al(35)1(36),(37)g(33), and
thelr strain rates show a non-linear stress and time de-
pendence not unlike that of structural metals. The selecw
tion of tha plastic most sﬁited to the work envisaged, how-
ever, rqqﬁifed more inf&rmatidn than is available in the
literature, and 1t was aonsidgiedtthat ﬁhié cbuld‘be most
simply obtaiﬁed from tensile creép tests. As suitable ap~
paratus vas not available in the department it was decided

to design a tensile crdep machine to perform these tests.

7.3 Tensile Testing Machine

The general arrangement‘of this machine is shown
in Plates 7.1 and 7.2+ The load is applied to the spec=-
imen through the lever arm A which has a mechanlieal advan-
tage of 10:1. At pivotal points on the lever systen,
knife edges are incorporated to make the inherent friction
forees very small. To prevent any extraneous bending or
twisting moments being transmitted along the loading col-~
umn, a univergal knife edged joint B and a thrust race C
are fitted above the specimen, (Initially, a knife edged

Joint was also fitted below the specimen; however, the ex~
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treme flexibillty of the plastic specimens at test tem-
peratures made it desirable to have the lower clamp firm-
1y secured.) Though it was not possible with the measure-
ment system used to detect any bending, axamination'of-ﬁhe
specimens after testing produced no evidence of non;unifarm
straining. In additicn, the tensile results (Chapter 8)
showed good reproduelbility, suggesting a lack of any ran-
dom bending effects. - '

a) Glamping Arrangement

The test material was obtained in the form of eylin-
drical tubes of about 3/8in thick from which only flat ten-
sile specimens could be conveniently eut. The geometry
of thé#e speclmens and the elanping system are shown in
Pige 7.1. The gpeeimen is positioned in the eclamp by two
pins A1 which pass fhreugh the elasg fitting holes B1.

When the threaded collar 01; which supports the conical
blaek'D1,-is ratated;clockwise, the serrated Jaws E1 are
pressed into the speoimen. The'slide and spring attachment
¥y ensures that the.jawa are pushed apart when the collar
1s loosened,

b) Strain Measurement

The gommon, commercially available means of measur-
ing strains on metals e.g. extensometers and strain gauges,

apre unsuited for‘appliaatiqn't@ thin plastics beecause they
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disturb unduly the deformation of these comparatively
weak materials.

AlL interference with free extension in this design
is avoided by measuring with the horizontal arm D (Plate
7+1) and micrometer head E~calibrated in 0.0001in-the up=
ward movement of the loading colwmn, Contact between the
micrometer spindle and the arm is indicated through the
eclosing of an eleetric circuit containing a small bulb,
Sueh a measurement, of course, contains the extension of
the non~uniform sections of the specinmen, and any relative
movement between speeimen and clamps: IHowever, the desir-
ed strain ean be obtained by testing two .specimens, identic-
al, but for a known differance in the length of their uni-
form sections.: OSubtraction of mlarometer readings from the
two specimens and division by the difference in length
gives the strain in the uniform section.

‘¢) Constant Stress Device

The apparatus was constructed with the intention of .
-measuring strains up to about 5%. (In short term tests it
1s often necessary to produce total strains of this mag-
nitude ln order to obtain a dominance of creep strain over
elastic strain.) A tensile strain of the order of §% pro-
duces o similar increase in stress in constant load tests
because of the reduction in the cross-sectional area of

the specimen. This amount was considered too large to be
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ignored, bhut noi largeténmugh to Justify constant atross
equipment as elaborate as that described by &ully(39).

if L and 1, are the inltial eross-sectional area
and "effective" length of the speécimen, the reduction in
area following an elongation % is, to a first approximation,
A B/L_, provided deformation oecurs without inerease of
volume. It follows that to maintain congtant stress, the
initial Speaimen.laad.PO must bé reduced by POE/lG. This
reduction can be approximnately cbtéined with a simple de-
vice based on the faet that a beam resting on a sharp edge
hag .only one equlilibrium position unless wvery carefully
balanced, Tig. 7.2 shows a schematic drawing of a beam on.
a fulerum A; the masses W,w of the portions of the beam on

- W

) |
b [ ?[ﬁ g LI —

—_ ‘
B J_L.[A o l} .

Fig, 7.2

either side of the fulerum are located at their respective
eentres of masa. If the beam is in equilibrium in the

horizontal position W = nwe. To hold the beam in any other
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position & moment
Moo= w(e=bn)sino

ig required; this moment is wero for all @ only 1f ¢ = bhn.

If Figs 7.2 is considered to represent the loading
lever of a tensile maghine, with the specinmen at end B
and the applied welghts at C, ¥ 48 provided by a change
in the- specimen load. If the lever is unbalsnged such that
e > bn the specimen lead 1s reduced, and when o is-small
(sino®: o® % )this reduetlon is approxinately a linear fung-
tion of the specimen extension %, Thus, by constructing
a beam such that  the unbalance, and hence the mowment ¥,
can be varied, the reduction in specimen load can be made
equal to P¢$/10,

Iin Plate 7.2 the loading lever arrangenent is shown.
The mass F 48 mounted on a serewed rod, and mass G attached .
to a rod which gan be inelined at any angle to the lever A,
The positions of thess masses aan be adjusted ﬁuch that
fqr any PD the reduction in load with elongation ig Pg%/lo.
With the loading eolunn replaced.b& gnown welghts this
gystem was calibrated for g range of loads, The masses F
and G were adjusted by trial and error to glve the desired
load/deflection relationship, I being used to keep the
balanee position of the beam horizontal. A seale‘indicaﬁw‘
ing the posltion of G for several values of P, was marked

off on a perspex sheet H. Calibration values are shown in
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Table 7.1 where the reduction in load accompanying any

deflection is seen to be always within 10j of that desired.
This acouracy was considered sufficient to waintain the

stress to within about =1% of the initial value.

_%/1 20,0213 | /1 20,0425 5/1,%0,0638 ;
P =Lb T °P,5/L,~1b | ]
Desired| Aectual | Desired | Actual | Desired|Actual
%o 0.85 | 0.9 147 1,7 2,55 | 2.5
50 1.06 | 1.1§ 2.13 | 2.2 3.19 | 3.1
60 | 1428 | 1.3 | 2455 | 2.65 | 3.83 | 3.8
70 1.4%9 | 1.5 2,98 | 3.0 b7 | W,5
80 1.7 | 1.7 3k 345 5.4 | 5.0
Table 7;1

d) Heating System

The creep deformation of ﬁaterials is often very
sensitive to temperature, and muech of the scatter of ex-
périmental results is due to témﬁerature fluatuations.

To m;nimige temperature varlation the specimen and elanmps
-are totéiiy immeréed in liquid paraffin contained in the
‘heating tank J (Plate 7.1; where it is shown in the lower-
a@ position), and the temper&furé eontrolled by a propor=
tional controller,

Liquid paraffin has the proﬁerties which are neces~

sary or desirable for the heating medium: that it should
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be a good thermal and poor electrical conductor, non-inflam-
mable and chemically inaetive under test conditions. This
speeification is also met by methyl phenol siliecone which

(hG). The silicone can be used at'2SO°G,

was used by Finnie
“but the paraffin with a flash point @f\19500,'is restricted
to lower temperatures. For testing plasties, however,
temperatures near 195°C are not required, and the mueh
chéaper liquid paraffin ié adequate, '

| The tank is heated by an "Eleatrothermal®™ heating
tape'wound'aroun&'the outside, and a uniform temperature
distribution obtained inside the tank by continuous stir-
ring of the paraffin. Automatie econtrol of temperature is
achieved with a "Sireet" proportional controller, whieh con-
tinuously varies the eurrent being sent to the heating ele-
ment in relatlon to changes in the resistance of a platinum
thermoneter X (Plate 7.1) placed eclose to the specimen.
With this lnstrument temperature stability of i0.2500 vas
achleved.

Temperatures were measured by thermocouples. Nine
base metal couples, having a high een.fa /20 output, were
made from nickel chromium and nickel aluminium wire., They
were calibrated against a platinun/nlatinue-13% rhodium
couple which had itself been calibrated on the Internation-
al Temperature Scale at the National Physical Laboratories.

The calibration was ecarrled out by placing the hot june~
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tioné of all the couples in a narrow glagss tube and immerw

sing it to & depth of 10in in the liquid paraffin. The
cold junctions were placed in crushed ice made From disw-
tilled water, and the voltage measured to within 2%10"6
volts with a Cambridge Slidewire Potentiometer and spot
ga1VQnometar¢ Two sets of readings were made at ten mine
ute intervals at each temperature, and the measurements
only acceéteﬁ if they agreed. A typieal ealibration curve
for the souples is shown in Filg. 7.3.

Thermocouples were attached to the apecinen at three
points along its lengith (Plate 7.1). The temperature dif-
ference indicated by these couples during the tests never

exceeded 0.15°C,

7.4  Shell Teéting Apparatus

Apparatus was builﬁ to test eylindriéal shells with
clamped ends subject ﬁc internal pressdﬁe loading. The
equipment was désigned to sult shell specimens of 4in nom-
inal diameter. This dimension enabled a thickness/radius
ratio of less than 0.1 (an arbitrary Ythin" shell limit)
to be employed without inecurring the disadvantages associ~
ated with the use of very thin plastic sections., A spee-
imen length of 17in (ineluding a 1in ¢lamping zone at each
end) was chosen, since the theoretical analyses suggested,
that, even with a central thickness discontinuity, this
length would be sufficient to prevent interaction of edge
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disturbances. A typical speecimen is shown in Pig., 7.U.

- a) -Maunting of Specimens

In the design of the specimen fixture cars was take
en-to ensure firm clamping of the ends, axial alignnent of
the clamps, and the free axial expansion of the specimen.

A close~up view of the specimen fixture is shown in Plate
7.3, and a .general view of thé_apparatus with a specimen in
position in Plate 7.4, The elamps A,B have central spigots
over which the specimen fits closely, and on to whieh it is
presged by twelve aircumfereontial bloeks formed to sult the
outside of the specimen. The bloocks are controlled indepen~
dently by bolts nounted in solid supporting rings.. The .
alamps are integral with hollow shafts which are supported
in bearings C,D; the latter are mounted on a rigid table,
end have welded to them the large end plates which carry
the heating‘tanki Within the nlamﬁﬁahaft A runs a eentral
core E, which passes through the specimen aﬁd loocates in
clamp B, thus ensuring good axial alignment. Linear ball
bearing races support the eore in elamp-shaft B and the
latter in bearing D, A4n oil seal between this clamp-shaft
.and its bearing is provided by the axpansiﬁle"ﬂbélloﬁs" F,
which were made from a siliconme rubber solution. With the
bellows and linear bearings, the,forces resisting tﬁé mavéu

ment of the right hand olamp assembly aralnegligible.



h) Measurement of Deformation

The radial deformation of the gpecimen is measured
by means of the vertical probe G mounted in the horizontal
"rod H; this can be moved along the length of the specimen
by the screw and anti-backlash nut arrangement J. A gradu-
ated ring attached to the handle XK enables the probe to be
positioned with an aceuracy of 0.001in. The displacement
of the probe is measured to 0,0001in by a mierometer head,
contact, as with the tensile machine, lighting a small bulb.

It was not intended in the exploratory tests to at-
tempt to measure local stralns, for example, at the clamped
edge, althaﬁgh in an extended programme such measurements
would be desirable.
e¢) Heating System

The heating system is similar to that of the tensile
machine, A.liquid paraffin heating medium, continuocusly
stirred, is again used with the proportional temperature
eontroller. Readings of six of the ecalibrated thermoeouples
distributed about the specimen varied by only fO.SQO during
the tests,

i

d) Loading System

The specimen is fllled with liquld paraffin by tubes
passing through the core E. Prassure is provided by the
dead weight piston*cylindar combination shown in Plate 7.5.

Much effort has been expended on devices of this type‘ 1)
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(Hg)*(u3), which ean be made to produce or measure high
pressures very accourately. The main difficulty. in theiy
design is maintaining the clearance between the piston
and thgacylinder within tolerable limits as the pressure
18 inereased. However, this problem only.-arises at high
pr&ssure, while the requirement here was for a low pressure
~deviaea(6*2®01b/in3) with a fairly larga volumetrie capacity.
It was found that, with a radial elearance of 0.001in and .
the: piston continuously rataﬁe&;-na ¢change was produced in .
the reading of a pregsure gauge having an accuracy of
3 szﬁlb/ing, when. the plston travelled -its full range. )
The yvolume:displaced by the piston wasimadé:suffiaient*ta:
prevent the latter having to be raised during a test.
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CHAPTER 8

DETAILS OF EXPERIMENTS AND RESULTS

8.1 Seleetion of Material

Preliminary tensile tests were ecarried out to
select the plastiec whiceh would provide, from short-term °
tests, the most useful information on the behaviour of
cylin&rieél Qhell #truﬁtures during'creep‘ Among fegtures
of materialsbehaviour considered desirable were nonFlinear
strain rate-stress dependence, and a dominance of creep
strain dﬁer elastie strain.

Five polyﬁarie materials were obtained in sultable
tube form: polyethylene, perspex, PVC, nylon, and poly-
‘propylene. The polyethylene tubing was of the low density
type, and much too flexible for making shellss .The remain-
ing materials were tested, and polypropylene chosen as most
suitable. The tensile results from perspex, PVC and(nylon,
and the reasons for ﬁheir réjection are given‘in Appendix
5+ A more detailed investigétien of pelyprapyleﬁe, a duc~
tile polymer with a high degree of erystallinity, was then

ecarried out, and this is desoribed in succeeding sections.

3.2 Preparation of Polypropylene Specimens

Iwenty feet of commercial polypropylene tubing
hiﬁ;n outside dlameter and 0,370in wall thickness was obe
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ﬁained; the tubing was made from Gradelﬁpmi35 granules
supplie& by Iwmperial Chemical Industries. A length, suf-
fielent to make eight tensile specimens, was cut from!each
end of the ftube, and the reémainder divided into portions
from which shells of the dasired gize eould be turned.

All the tubing was plaeed-in:an oven and given a thirty
hour heat treatment at 1%0“6; After thirty hours the heat-
ing was switched off, and the material allowed to cool
slowly in the oven to room temperature, In consultation
with the Materials Group in the Department it was decided
that this treatmenﬁ would make the plastic sfable at test
tenperatures substantially below 140°%C, and over long
periods of time.

Difficulty was experlenced at first in machining
this,rather Plexible plastiﬂ”whi@h tended to be deflected
by the cutting tool. The problem was largely overcome by
providing substantial support for the material during
machining through thé use of speclal fixtures for milling
the teﬁsile specimens and large spigots for turning the
eylindrical shells. Nevertheless, dimensional acecuracy
was less than would normally be achleved with metals,

The oross-geéctional area of the uniform portion of the
tensile specimehs varied by up to 2% of the nominal size.
However, the variation in any one specimen was slight, and

actual dimensions were used to determine initial stress.
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With the shells the deviation from the desired size was

more serious. Typical micrometer measurements of thick-
negs and dismeter at a number of positions on the shell

arve given in Table 8.1, As is shown, the variation in

d (::::) b 1 2 3|n 5 6
X c
. . . : Qutside
Ciroumferential | —inkekness | Diameter
Position "a b e d ac . bd
| Axial \\\<; : o |
_Position - ~ _ : | e A
1+ 04104 | 04103 | 0,102 0,104 | 4,275 | k274
2 0.103 | 0,102 | 0,101(0.103 | k.272 | 4,277
L 0,200 | 0,200 ] 0,201 (0,200 | 4,372 | 4. 373
5 0.200 | 0,200 | 0,200 (0,201 4,372 | 4,375
6 04203 | 04202 | 0,202]0,203 | 4,371 | 4,378

All dimensions in inches.

Table 8.1

the thieknass of the thinner portion ean be as much as 3%,
and in some positions there is slight ovality' This degree
of dimensional variation had to be accepted, and it was con-~
sidered to be the cause of differences in defermation

maasurements from separate tests, as reported in Seetion 8.k,
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A test temperature of 60°C was adopted. At this
temperature a reéagsonsable creep strain/elastic strain ratic
18 abﬁained in éfperiod of several hours (the tests were
carried out over eight hours), and the strain rate is not

too. sensitive to temperature.

- 8.3 Tensile Test Results

o Tests on the "standard" specimens (Fig. 7.1) were
carried out for a range of loads, and measurements of de~
fiécﬁian are plotted against time in Fig. 8.1, Three
specimens were tested with initial stresses of 984lb/in?,
and two with initial stresses of 1320;b/in2 (one specimen
being_taken from each end plece cut from the original tube),
and, as can be seen in the flgure, the consistency of the
measurenents is good.

| Measurements were also obtained from specimens with
a uniform section one inch less than the standard size,
fand comparison with the graphs of Fig, 8.1 revealed that
the ¢lamping regians of the Specimen ‘were making a subs-
tantial eontribution to tmtal deflection during the early
stages of creep. Examination of the specimen» after test-
ipg suggested that‘this was caused bylthevﬁaeth of the

' Jaws in the olamps digging into the plastie, on, and for
a‘short time after, loading. . m

Hstimates of total strains were made by subtracting
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the deflections of the smaller from those of the larger
(standard) specimens. However, straln values from sevepr=
2l palvs of apecimens tested at the same gtress differed
considerably, as c¢an be seen in Mig. 9.2 where results
obtained Trom combinations of three standard and two small
speclimens at a gtress of ‘.éahlb/in2 are shown. 7The spread
of thege results is, of eourse, éauﬁed by subtracting |
fquantitieauof gsimilar magnitude caﬁtaining small errors,
ard eould be reduced by using specimens with a grester
léngth difference. However; though there is substantisl
.diségreemént in the total strain values, there is no de=
tectable difference in the steady state strain rates.
Further, it wes found (Fig. 9.2) that the steady state
rates could be well estimated by dividing the deflection
neasurements by an "effective" specimen length of 4,7in
(Fig. 7«1). In this first experimental programme most
interest lay in determining steady state strain rates,
and therefore the deflection rates of the graphs of Fig.
3.1 were aonverted to strain rates by the sinple expedient
of dividing by the effective length.

Pig. 8.3 shows a log~log plot of the steady state
satrain rate against stréss. (From the definitions (2.10)
and (2,20) a pure tensile stress iz equal to the effactive
stress o%, and, assuming flow to occur at constant volume,

the tensile strain rate equals the effectlive strain rate,
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3E*,) The experimental points lie on a fairly well defin-

23 curve, which shows the strain rate to increase rapidly
with stress, particularly at the higher stress levels, A
simple m-power relationship clearly does not exist between
strain rate and stress, and, consequently, the theoretical
analyses of previous chapters cannot be expected to pro-
vide very good predictions of the behaviour of shells of
this material.

8.4 Shell Test Results

8ix shells, each with a central discontinuity, were
tested. They all had a mean diameter of 4,175in and a
load carrying length of 15in; in two of the shells the
wall thiekﬁeéses wvere 0,1in/0.2in, and in the others, 0.1in/
0+251n, Q.1in/0,151n,.0‘1331n/0,2in and 0,067in/0,2in,

| - When the speciuens were %aated in the apparatus the

different coefficients of thermal expansion of the plastic
shells and the steel clampsy caused a thermal stress field
to be set up in the specimens. Readings from a specimen
left unloaded for a long time at test temperature showed
that these stresses produced extremely little oreep sitrain.
However, the thermal strain variation along the shell
length was of some significance, and had to be ineluded
in toﬁal disdplacement profiles;

The effective stresses and strains in small regions.

nidway between the discontinuity and the ends of the shell,
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were estimated by assuming behaviour there to be the same

ag in an unrestrained membrane l.e.

= Oy = LS O ken = 43 Pa
PRBCRl fien = 53 §

*3

;%{“ %.nggﬁg | E;E 0 (asguming flow to occur (8.1)

at constant volume)

Epam T -g Fﬁem
a

In Fig, 8.4 gk is p;oﬁted against time for several values
of effective stress. (The stress values shown, calculated
from the dimensions of the undeformed shell, are:Bﬁt nomin-
al, sinece, in these constant load tests, the stresses in-
erease as the expansion of the shell proceeds.) Réproduciv
bility of measurementa from the thicker sheil ‘sections was
good, but from the thinner sections, wh&ah ‘were subject to
the highest stresses, the results were not so consistent.
The data shown as having been obtained at a stress of
11101b/in2, came from teats on four similar shell halves.
(nominally O.tin thickness). A8 the pressure and temper=
ature during these tests were held within very c¢close lim-
1ts, the spread of the results had to be gscribed to the
small, though not insignificant, dimensieﬁal differences
between the specimens. This explanation became more like-
-1y when the gensltivity of the strain rate to stress at

the existing stress level was considered.

With the tensile measurements in Fig. 8.3 are shown
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steady state effective strain rate/stress data obtained |
from the ghell testss (For these results the stress values
were caloulated using estimates of the average shell thick-
ness and diameter during steady state ereep.) All the
points lie falrly close to one curve suggesting a unique
relationship beiween effective étraiu rate and'effeetive'»
stress, This relationship becomes inereasingly non-~linear

48 the stress is increased, and, if a power law of the form

ek i

ot

is fitted to small regions of the eurve, values of m range
frémiogz at low étreésas, to about 5 at the highestkStress
léﬁqlé. At the stresséa'prevailing in the four tests disg-
cussed above (abgut 13501b/in® in the stendy state) the
straiii rate/stress sensitivity is sueh that a 3% change in
stress can produce a 20 inerease in strain rate. Tais
sengitivity and the tolerance on the speaimen thicknesg
discussed in Section 8.2 are suffiéient to explain the in~
congigtency of these shell méasurements, |

Also shown in Fig. 8.3 are effestive strain rate/
stress data at time t = 50min, The determination of the
stregs and strain values at this time is less accurate

:than during steady state creep, but nevertheiess the

%f% - o* relationship is fairly well defined. The curve

is similar to tha£3governing steady state behaviour,
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though thé‘non*linaarity is not g0 great, values of m ’
inereasing with stress from about 0 to 2. -

Radial veloelty distributions along the length of
the specimen at time t = 50min and during steady state
cergep. are shown in Piga, 8.5 and 8,6 respectively, for
shells having wall thicknesses 0.1in/0,2in and .0,1in/0.25in,
and subject to.a pressure of 61,21b/1n", Algo shown with
these veloocity variations are contemporaneous radial dis-
placement profiles for the ahel;‘ﬁzth thicknesses O.1in/
Os2in, The most striking feature of these results is the
inerease in the decay length as oreep proceeds. Thé ax= -
tent'of the indrease can best be Judged by'ocmparing‘fhe
toﬁal displacement pattern at € = 50min (this beingiélmsest
to the initial, almost linear elastic, distribution), and
- the steady state veloeity profile. While the growth of the
docay length during oreep is predlcted by the analyses of
‘Chapters k-6, there 18 a substantial difference between
the measured veloaity distributions and those obtained from
theory.

The radial velocity profile for internal pressure
loading, R = 2 and m = 1.4 (¢aleulated as in Chapters 5 and
G)y is given in Fig. 8+6 for comparison with the steady
state measurements. In Fig. 8.7, the steady state veloeity
distribution of a shell of thickness ratio 0,133in/0.21in,
undey 61i21h/1n2 pressure,” is shown, and compared with a
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theoretical curve obtained with R = 1,95 and m = 0.7. In
both of these figures the values# of m have beer chosen to
make the theoretical and  experimental dlstributions agree
at the points x = Y%in and x = 11in (ise. in the regions of
almost uniform strain).. Over the range of giress.llkely
to exist in the shell of Figs 8.7 (values in the membrane
regiong of the thin and thick sections are 8301b/in2 and
Sﬁblb/ing respectively), the logarithmic steady state
strain rate/stréss graph (Fig. 8.3) is almost linear, and
with m = 0.7 the power law provides a reasonzble deserip-
tion of material behaviour. In the specimens of Fig. 8.6,
howevery, the elfective stress range extends over the whole
of the strain rate/stress éurve, which 18 poorly approxla-
ated by the line m = 1.,

In Fige 846 the difference. between the experimental
measurenents and the theoretlecal curve is very consider~
able, The measured velocities in the thin sectlon lie,
for the most part, well balow their predlcted values on a
somewhat parabolie curve, and there is no suggestion of the
osalllation which characterises the theoretiecal solutions,
At the fized end of the shell m = 3 provided a better des-
érlption of material behaviour at the prevalling stress
level. However, although the solution with this value is
closer to the experimental pointsy the disagreement is

8till very greats The difference in the distributions of
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Fig. 8.7 18 similar- though less pronounced: The eﬁperi~
‘maﬂﬁal profile. in this case ahags a "flat" region in agree-
.‘.ment with theory over the central portion of {the thin sec-
tion, hut iu the vicinityQaf the maximum turning values of
the theoretieal aurve the maésured veloeities are signifi«
gantly lower..
ij_ﬁ_ffVelamity profiles from the other spécimens tested
&iség:egélin.a siﬁilar‘mannﬁr with the theoretieal sclutions.
"Eha most probable cause of the difference between
the experimental and theoretical results appeared to be
ﬁherﬁize of the tetal defmrmatiénsfofwtheapla&tie shells. .
Duﬁiﬁg steady state creep the total ciroumferential strain
of ih@ shelle of Vig. 8,6 was about 6%, and that of Pig.
8.7 about 34%. This explanation was subgtantiated by the
reaémblance between the veloeity profile of Fig., 8.6 and
th@'&éformed shape of a shell whieh had undergone 304
sﬁraianlate 8.1, ‘(Thejshell ruptured locally, and the
shap&-réféﬁraé to 1s that opposite the bubbles) Plate 8.2
shows m~shgil %hieh~haa:expeﬁienaad 6% straing iﬂlthis'
ease, the substantial oreep re@evsfy vhlch the material
;exhibits»mﬂ unloadihgimbs&uxes the deformed profile.
- .QAll the analyse$'pnesenﬁéd~have been based on the
agsunptions of sméll deflection shell theory. BGome of these

agsunptions are evidently too severe to allow reasonable
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estinmates of the experimentally measured deformations to
be mades Some modification of the theory is necessary,

and thié is discussed in the next ahapter.
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CHAPTER ©

MODITICATION OF THEORY

9.1 Examination of Equilibrium Equations.

When the strains are at all lLarge the most probable
source of inacecuracy in the mathematical description of
“the loaded shell (Chapter 2) would appear to be the equili-
brium equations, which were obtaihed with the stress resul-
tants assumed to act on the undeformed shell geometry. If
this simplifiecation is discarded completely the resulting
equilibrium egquations are very intractable. However, a
useful compromise can.be schieved by considering the equil-
“dbrium of a shell el&meﬁt\in its deformed ﬁosition, while

ignoring changes in its dimensions.

a0, s. dN
| N X dx N+ “Txedx
r * ax ~ S
X
N, — M ax WD
Qx P ax
—] u '
Ax —
a
-

Pig. 9.1
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Tigs 9.1 shows sehematieally a shell element before
and after deformation;<£he deformned eiement is in equil~
Ibrium under the action of the stress resultants and ap=

plied load. Foree nquilibfium in the x direction requires

that
-N, casq) ade + (N, +d:q X.dx)eos ((I)—h-‘é dx)nd@
ax
+Q, 9infeade = (Qx+§%xadx)$in(¢+a&;dx)ad9
- ?sink¢+§§%%§)d“.ade 0

d is a small angle and to a first a?proximatiun eoscbz 1,
sin¢ = ¢, d)w-ww; with terms of opder dx.dx dropped, the
equation then bhecomes

an, . q a®y _ 40, dw _ pdu

" “Xt "',.,.zg
xdxa I% ax ;dk

P
i d

dzx
and on integratlien,
dw

N, = N, + Pw + Qa9 | (9.1)

A similar treatment of force components in the radial
directlion leads to

2
o, . N od%  an_.dw
9 + Tx + 'dx

= =P (9.2)
& A ax® %
The moment equilibrium equation is unchanged i.e.

Mx + 0, =0 | (943
e - |

The relative imﬁortance of the termns containing the

displacement w in equations (9.1) and (9.2) may be judged
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by estimating their ovders of magnitude from experimental
measurements and small deflaection solutions, Table 9.1
shows estimates of the maximum values of these terms ob=
tained from the experimental results of Fig. 3.6 and the
associated theoretical solution for small deflections at

the fixed end (m=3). Examination of these values and equa=-

MaxT value Value of x (Fig. 3.6)

Pw 0.14P 1b/in 12in
Q-du 0.,033P 1b/in 1h.3in

dx
Nxa d2W 2.‘*‘? .Lb/inz 1 53.11

dxg
de.dw -0 all x
dx ax

_Pa

Shell radiug a= Bin,N wj{ﬂP 1b/in

Table 9- 1

tions (9.1) and (9.2) indicates that the dominant term near

the fixed end 1s N _.d%w, If this displacement term alone

2
ax .
i3 retained the equilibrium eguations (9.1)-(9.3) may be

comblined asf

* This form of the equilibrium equations is used in the
(45)

analysis of buckling problems~see, for example,
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x " 'a
2 2

d My ¥ Ny - N%gwg = P

‘i;ﬁ Py ax

When the non~dimensional variables (2.3) are introduced
these equations become

n. = ng
mt +n, - 2. W= p (914
X o Y a

it

These linear equations can be used iﬁﬂplade of (27).in
anslyses such as those of Chapters 3-6, and their applic-
ation to the problem of the c¢ylindrieal shell governed by

the steady state relations (5.1) is now considered.

9.2 Re~formulation of Steady State Creep Problem

In a shell undergoing creep and governed by the
equilibrium equations (9.4) no steady state, i.e. time in-
dependent, solution can exlist, since the solution at any
time depends on the prevailing deformation, However, the
steady state analyses of Chapters § and 6 may be adapted
to show, approximately, the influence of the deformation
term in (9.4), if a simple proportionality 1s assumed be-
tween the radial displacement and velocity funetions i.e.

F(x) = sw(xn) (9+5)
Equations (9.%) may then be written
| n_=n

R S0P (9+5)
n . - il =
my + ng 1, oW D
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where A= s_%iog (9.7)

For any particular shell s ean be taken as the ratio. of
the displacement and velocity of the uniformly strained
menbrane region. BEquation (9.7) then becomes

mein

* “ﬁem

h

%

sl

memn

»

y <" "a-‘--w-ﬁn w
slnce by definition w = aéso- Yoem

is determined by the
values assigned to the loading parameters pyn,~Section 2.3

e«g+« for internal pressure loading

3 V3
Yem © 2

v e )

and therefore, A = J%’ ¥mem (9.8)
h

In the manner deseribed in Chapter 5, the egquili-
brium equations (9.6) are combined with the ccnétitutive
equations (5.1) and the time derivatives of the deformation-
displacement equations (2.8) to form the governing differen~-

tial equation:
[O30]" + xd¥ - ki =k, (9:9)
$skqyk, are as previously defined, and
ky = 3(2“‘““”.1;.1»)\%

With equation (9.9) in place of (5.5) a new set of
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‘golutions for the eylindrical shell with fixed ends can
be obtained by the iterative method of Chapter 5. When
m=0, equation (9.9) reduces to the linear equation
"E:}"\“ + 9%:? - 9>\¢na€'f" = 9(p=n,)
- 2
The form of the solution of this equation depends on the
magnitude of An,s ~For a shell with a clamped edge at
¥=0 and of semimilnfinité lengthy the solution is

¥ = (puln )I}-e C1x(cosd1XP§1sind1§ﬂ:, kna<%
1 )
. _ , | .
W =.(p~%n )[1~e J3x(1%/3x{l )na:§ {9.10)
PR S PR DU AR e X | 2
w = (p*‘éﬂa) [1*02*da(329 a dge 2 )] 3 /\na>3
In these equations
' _al- AV
¢, = /3008 \tbaq |2V} ?r)‘na
1 2 o
L q
>/ 2.2
d, = 3sin %taﬁ" 2/1=¥n2 E
L 3 (9.11)

¢, = / a+3 )%?\2 3*1

2 V/akn -3 Q)gn el

The analysis of Chapter 6 can be similarly adapted

H

ad

to give the corresponding solutions for a cylindrieal shell

with an abrupt thickness change.
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9.3 Comparison of Solutlons with Experimental Results

The steady étate velocity measurements of Figs. 3.6
and 8.7 sre reproducad in Figs. 9.2 and 9.3 and compared
with distributions obtained from the modified analysis.

The values of A are calculated in each case from equation
(9:8)y W, belng taken as the average membrane displace-
ment in the thinner shell during steady state creep.

In Plg. 9.3 the measured and predicted velocity
profiles agree within the limits of the accuracy of the .
oxperimental measurements. In this case, as praviously
ﬁentioned, the power law with m=0,7 1s a fairly good re-
presentation of material behaviour. In the shell of
Fig. 9.2 the stress exponent m varies considerably; the
theoretical distribution with m=1.4 i1s shown at the discon-
tinuity-with this value of m, measured and theoretical re-
sults agree in the membrane region of both halves of the
gshell~while at the fixed end m=3, giving a better descrip-~
tion of material behaviour; is used, These theoretical
eurves are much aloséi than the original solutlons-Fig. 846=
to the measured values, ‘The difference that does exist can
reasonably be attributed to the material equations not
being of simple power type, to the assumption that the
radial displacement is proportional to the radial velocity-
equation (9.5), and perhaps to the effects produced by the

changes in shell geometry which have been neglected.



In Migs., 9.4-9.4 steady state veloeity profiles
from the other shells t@sted are shown together with ap-
proprlate theoretical distributions.

Trom the comparisons of Figs. 9.2=9.6 1t 1s alear
that ﬁhe major eause of the disagreements observed In
Chapter 8,18 the omission, in the original analysis, of the
radial force component produced by the axial load acting
on the deformed shell. The importance of this force is
determined by the magnitude of the parameter A\, or-equation
(9.8) by the ratio of the radial displacement and shell
thickness. The larger this ratlo the greater is the in-
fluence of the defefmation dependent force., The value of
A at which the effect of the additional foree becomes negw
ligible may be judged from examination of the linear (m=0)
solution, When A=0, equations (9,11) yield

3

oy = 4y = 3 |
and the solution (9.10) becomes that of small deflection
shell theory, This solution will give a good approximation
to shell behaviour provided that the ecoefficlients ¢,,d, dif-
fer 1ittle from j?. From equations (9.10) this restriction
requires | |
A <K 3%; (9.12)

Tor internal presgsure- Loading ﬂa=J%, and equations (9.12)

and (9.8) combine to produce the requirement:



W .
S (9.13)

When this condition is fulfillled small deflection anmlysis
is adequate. |

It should be noted that the strain components need
not be large for the inequality (9.13) to be violated. If
the shell is very thin, elastic deformation alone may be
'auffiaient to make the ratio Jmm signiricantq

If radial loading alone i3 applied to the shell the
additional force disappears from the equilibrium equations
(9.%), and the solution for any value of A is that of
snall deflection theory. }xperiménts‘en shells subjeet to
radial loading alone, therefore, will provide a gritiecal
test of the modified theory.

9.4 Influence of X on Deformations and Stresses

The nature of the influence of A on the solutions
for a shell with fixed ends is shown in Figs. 9.7 and 9.8,
_ Where % and m, are plotted against X for internal pressure
Loading, m=1 and several v#luea of A\ As X inereases the
oseillation of the veloeity function diminishes and even-
tually disgppears, and % tends asymptotically to its mem=-
brane value. This change in the form of the solution is
similar to that of the linear (m=0) problem-equations
(9.10), The deeay length increases with )\, the effect of

97
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the edgé élamping extending further and further along the
shell .

An interesting result emerges from the linear solu-
tion of the problem. TFrom eguations (9.10) and (9.11) it

-gan be shown that for any value of Xna
| wwcm 3<p--n )

Thus, the greatest eurvahure rate k (@)[ﬁw“(@i}, and hence
"mequatian (5&1) with mw0~ the greatest bending mement m, (0),
are ind&pendent of N\« The nuwerical values af these quanti«
vhiea far nonmzero m ehange vewy little with X(peints representing
- m, (0) in Fig. 9.8 for three values of \ are indistinguishw
able), suggesting that the invariance might extend to all
values of m.

The maximum shear forde (not an important quantity
when the deformations are small), however, increases con=
- giderably with >\as i3 shown in Tig.%.9 wheére qﬁ{a)‘ia plot-
ted against A for w=0 and . The linear (u=0) curve tends
asymptotieally to the function qx(G)m ghidﬁq

The important’ effect of A on a shell with a thickn
ness change 1s to diminish the greatest strain-at the dis-
continuity, as is shown in Fig, 9.10 where 3% is plotted
- against A for 1nternai pressure, m=%, R=2 and 4. . This
‘deerease in‘ég4ﬁith:)\(as with m, for small values of Re
Chapter &) can be aétributed to the growth of the deecay
length. |
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CHAPTER 10

CONCLUSIONS

1) Conslderable stress redistribution can take place in
¢ylindrieal shell structures during ereep, the extent of
the redistribution being determined by Polsson's ratio
and the stress exponent oi the creep strain rate law, 1In
all the cases investigated the stress changes do not have
much influence on the growth of total strains, and the
latter can he estimated with satisfactory accuraesy from
the initial elastie strains and the steady state creep
strain rates.

2) The approximate relations proposed for steady state

(21)and(22) are useful for indic-

analysis in references
ating the general influence of the stress exponent on shell
behaviour, but they cannot in general be relied on to pro-
vide more detailed information accurately.

3) Solutions obtained for a cylindrieal shell with aﬁ abe
rupt thiekness change suggest that, if an elastic analysis
with Polsson's ratio equal tc a half ahows no strain con-
centration at the junetion of two shells, a concentration
will not develop during creep unless the stress exponent
is very large.

k) If the radial displacement and thickness of a eylind-
rical shell are of the same order of magnitude, the cone-

ditions for equilibrium are not obtained with sufficient
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accuracy by assuming the stress resultants to aet on tﬂe
undeformed shell geometry, and an additional force action,
dependent on the deformation and axial load, must be taken
into account.

ﬁ} When this additional foree was included in the theor-
gtical analyses satisfactor; agreenent was obtained with
the measured steady étate.velocity profiles of polypropy-
lene shells. '

6) Polypropylene is a suitable materiasl for short term
creep tests, thoﬁgh to obtain consistent results it is
necegsary to use fairly thick sections and moderate stress

levels.,
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APPRNDIX 2 ,106

2.1 iilastic and Viscous Holutions
From equations (2.4)4(2.9),(2.8) and the elasticity
equations (3.2), the initial stress resultants nay be ex-

pressed in term# of displacements:

w 1 0m
Tyo = {2{1=22) %o

- 1 - - .
ng, = qaoz (B +2%) (A2.1)
- 1 e C e
U0 T 1=v (wa +>)u5)

Wfhen these expressions are used with the equilibrium
aquationg (2.7) the differential equation go#arning the
inltial elastle response of the shell may be written

T e 12(1.07)F = 12(10%) (peun,) (A2.2)
The solution of this equation 1s
- '_' ] MG;: ' - "y
W, = pwn, + e 1 (A1¢asu1x*ﬁ1sinohx)

+ euix(c1ecsoh§+D1sinoH§) {82.3)

1

where A1,B1,G1,D‘ are canstants'and€x1 = 3(1#»2). The

‘assocliated resultants, from equations (A2.1) and (42.3), are
2 P '
- ol - ¥ o R e
By = EI?%E?S[G 1 (A1s£no‘x ﬁ1aah@ax)
’ o, X P ot
e 17(C, sinoy XwD, 008 xﬂ
1 0(1 1 O\I (&20“)

- -
i, % - ) -
: b= 4 & L4 020 ida 840
Dyn D e 1 (A1ems:&x Bjain0Hx)

+ éu1x(a1coso%§+m1sin9ﬁ§)
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The purely viscous solution is obtained from the
abové by setting vs}, and replacing displacements by
velocities. Thus
Woo = pﬂ%ﬂa + e %2 (A260305§+Bga1n X) B
E ex(ﬂgca30<x+9251nu-x)

1
m, = -g[e 2 (Aqslnobxwﬁieosu-x) |
- .8 zx(0231n0<anzcasazxﬂ (AR, 5)

n..= p + e a (A c0502x+Basinosx)

.
+ @ ° (. ccsvéx+Dzsin0§x)

where_ ,Bg,cq,ng are canstants, and<xg = %Q

2.2 Initial Veloclty and Accelepration Functions .
Bquation (3.27); which controls the initial radial

veloecity, may be rewritten, using the expressions for the

stress resultants (A2.4), as
GRS 12[(1~r?)(p~§na) * |
u(1*2n)[e”QHX(A1cosog§+B1sin0&§)
Q‘f‘;‘f L. o A2.5
+ e 1.(C1cosoﬁx+n1sinoﬁxiﬂ (A2.6)
To form the particular integral of this equation the

'functian

1 (P1+L) R
I, = e 1% Dy = 3=
1 D$+hu$ A B
is considered: If the rules of the D<operator method (see,

for axample,(aay) are followed tﬁis function on integration
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becomes
| If £ - 5&‘31+1)°ﬁx( 1e)
b 16&1 .
-i“i e . T
- Xg 31 [sinbﬁx.+ 003 oA + |
‘ 1oy i(sino&i I coao Kf] (A2,7)

From the real and imaginary parta of aquations (A2:7) the
particular integral of (A2.6) is obtained, and the complete

golution becomes

& 1 1) X *0‘
Wy = psn, + 33&;—539 [ x[(&1~B1)aosogx+(A1+B1)sinxﬁxﬂ

%
- %% [(¢ +D1)30305x~(61~n )smnofxﬂ
+ & 1x(A3casch+& $ino&x) + et (G G@sogx+ﬁ sineﬁx)
(42.8)
vhere . 3,53,03,93 are constanta.

The initial radilal acceleration is found in a Sim*
ilar menner., The stress resultant rates appearing in the
governing equation (3.28) can be expressed as functions of
X through aquations (3.24),(3.26),(A2,4),(A2.8). The
governing equation then becomes
- by »b( 1. .Bncwa»)[ws‘é o K
gt o Wy = 12»(1~ax9{~£;§——- e 1 {KA1\B1)amson+

(A,*B1)sin01xj— e ix[(ﬁ +D1)aosogxu
(C4wD )sinu1xﬂ X + e 1“L(A y=iq)cos ot X+
(B ~E1)sino%ﬁ]+ e * ’(P m01)cosu-x+

(DB--D,)ss.xm] | (42.9)

To solve this équatien the funetion
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+ T . -
- ‘ - (~1+i)0( x]
I, = —J—E Xe 1
? a%«%,[
is éaquired, By use of standard integration procedures

this'fﬁnatian may be ﬁritten -
4

Ii #‘”»e;jx [3—1-‘7{ ) cos &y x+x231n0 X+1 (*3-' gl)sin FwR2008 5'5:}:[

| | (42.10)
From the real and - 1maginary parts of the expreasmm (A2.7)
and (A2,10) the particular intagral of equation (A2.9) can

be canatruatad, and tltxe,-af.entire golution written

¥ = 1233(1*2&)533(22_9)

@ 1280

L %% [((Ar-B‘)%-q-aB.,xz) o@srﬁm((AﬁB )3«+2A1x3) sinoc‘f}-

[ 01+D1)%:w21)1x2) o8 cx‘x-t- ( (D1 -01 )1%201 2) s:i.ncxlxﬂ

EL?I- x[}AS«B3+%1MA1)cnscﬁx+CA3 3*A1*3 ninoaﬁ]

@s

. o> 1:]k03+m3~e1dbj)eosOﬁx+(D3*GB*b1~D )51n°ﬁéﬂ}

+a CXI (Aucos oﬁx-is]susin 0(‘::)-&90‘! (Gucoso&xﬂ}%sinocl X)
(1\&; 1 1)

where &,,B,,C,D) are.further integration constants, -

- 243 Determination,bquerias Ganstants

Before evaluating the integrals of equations (3«23)
~the behaviour of the orthogonal functions Xliw(B.‘l?)win the
range Ozx<l is cansideradgx

The funation
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. cosel « coshel
£8) = Sinnel - sinel *

may be rewrlitten in geveral forms when the characteristic

equation (3.16) is employed, Thus,

£(g) = tan&; = whanh™ g,_ (2ne1)n<pl<2nw (42.12)
L= -cct&; = wmeoth™~3 g, 2(nm1}n4§14(2nﬁ3)m | (A2.13)

n=1;2,3,... |
With £(3) as given by equations (A2.12) the function
X(X) = coshpX~cospX+f(¢) (sinh(X~sinpX)
at X=I~b may be written,
X(I=b) = cmsh@Ciwb)mtanhﬁisinh@(Iwb)ncaﬁ@(Iwh)ntanﬁﬂsin§(I~b)
- cosh&(zwb) ces?fmwb)
cmsh?% eoS?%;*

= éashQb#tanh$%sinhvbwcos@b*tan@%sin@b

= X(b), (2n=1)w<pIl<2nw (A2.14)
In a similar manner it can be shown that when £(y) is given
by equations (A2.13),
X(I=b) = ~X(b), 2(n=1)w <Rl <(2n=1)~ (A2.15)

The roots $i.gf equation (3.16) lie within the
ranges associated with equation: (A2,14) when 1=1,3,5,s04,
:and within those associated with (A2.15) wheﬁ 1=2,b, 8y 00
Thus, for 0<X<I the orthogonal functions X, are symmetric
about the line X=I/2 when i is odd, and are symmetric
through the point X¥=I/2 when 1 1is even.

A eylindrieal shell with fixed eénds subject to uni=
form radial and axial loading has symmetry about the centre
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line x=1/2. All'displ&eémenﬁ funetions, therefore, must ;
‘have this symmetry, and the integrals over the range O-1
of their produets with the functions i, 4n equations (3.23)
'wili be zero when i is even i.e. when Ri has the property
(A2:15). Hence,

| I
ThThe integral Soxidx, whieh appears in the denominator

in equations (3.23) is evaluated on pages 339=6 of refer=

(26)

ence It may be written,

I .
(o208 = Ly igtig g = 1

With this value and equations (A2.5),(A2.8), (A2, 11), the
integrals (3.23) become, for odd i,

1
545y = rg §m<1~f<@i>)[3ﬁilﬂéﬁi
"

‘lé ('-'*?i"’* o4 )& [(A4+By) cos ogi"'c‘i- (Ay+By) 5130‘15"] =

Eigﬁi*oa)ﬁ[kG1+ﬁ1}CGSGH§ﬁ(G1mDi)sino%ﬁﬂ>j+

a(z$i*°3)g(ﬁ3¢mso%§$83§ino%§)'+
e(£$i+°%?§(6300303§+D333no%§) -

a(i§i* a)i(ﬁgcﬁsug§+ﬁ251n0§§) -
e(zFi+05)§(Ggaasm2§+ﬁgsina§§4 -

3n( 1 qi&‘:zb) e
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{"u'x[ﬁA1~B1)Gasdjxggg%lx+(ﬂ1+31)Slnocxggggix]

- & BG1+D1)G°SO‘1 sm%x-(c.‘«?,‘)sinwxgg?& :‘Eﬂ

QOS cos

+ o7 (hy00 20200, BB ysin B0RE, ) +

=208

le
1 (C. cosoc1xsm@1

x+D33:m co.'a? ix)'

- a” gx(A aeasoazxgggg\ixﬂis sinua xC08 nfy®) -

X o8 5 o
a 2 (Cg""a"‘gxsinﬂ”n sin%xggnQi H ax
(A2:16)

in (1-:€‘({3i))[ 2u(1=2v) [Mﬁ

’ﬁ;511+ %iPay * 1 .
[( $i"°( "'[ __31),3 .28, 2_]@0’30‘13c .
[a +B1‘)%*2A1i2__]sino< F -
(—‘31 [[(014'1) )3"**--2:’.1)1 z]cosoqx +
[(91*31)%20;‘52131110(1:::’] +
_;,;%? [e(tei“"% X [(A3*33f131 “1y) cosoy R +
(Ag¥By=y=By)stnoyR] T
( @im{.‘)x [(G {#D3=D, ~6,)cos 1;& .

A . .
e (= \gi" Di1 :'3"-(.,Agca\osw<1 i'c+£33sin0c1 X) +
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+ bt . ¥
e("ei*oa)x(63¢030H§+D33in0&E)

1 30( =)

1280:1
[ x[]}&1~3 )g§*2ﬁ1x%]cosoﬁxggn@ix +
EA1*B1)3“+2A1x2]sin0<xggi$1§] »

[[(c Dy )»5—-*29 % ]coso@lxgiggsia‘i +

RD1ﬂO )3«+7G 2Jsinu aas@ix“

1%sin
;’E ...0( % Qos -

=C08,

[ Cy+D gDy =Cy) cos ersgix +

oo pranyzszin ]|

cos cos
(ﬁkGOSUHXain@ix + BusinOnginplx) +

=C08

X
e 1 (Cy 1 COS O X By

X + D sinc, ggzgl ] d%
(A2.17)
The integrands of egquations (A2.,16),(A2.17) are made up
of two sets of terms, one formed from all the upper signs
and functions, and the other from all the lower signs and
funetions. The integrations ¢an be performed by standard
analyﬁical methods, and the constants 8,,,85,; determined.
A computer programme was written to evaluate the

arbitrary constants in the displacement, veloeity and
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accaleration funections-equations (42.3),(A2:5),(A2.8),

(A2, 11)=and to obtain 811,821 from the integraﬁad forms of
.eguations (A2.15),(A2.,17)¢ These latter constants were
_'chacked by comparing, nunerically, the radial velo&@ty

and acceleration funetions obtained from ﬁhe‘series;(3a22)‘
at §#=0, with the preseribed functions (42.8),(A2:11).
When the first forty non-zero terms of the series were
summed good agreement wag obtalned.

When the programmé was first written the integrals
(A2:16),(A2:17) were evaluated between the limits O and I.
This caleulation was found to involve substantial error
because, for a reasonably long shell (I=15 was chosen)
the constants G1,3,3,h’m1,2,3,h’ which determine the in-
fluence of the positive exponential terms in equations
(A2:3),(A2,5),(A2.8),(82,11), are of the same order of
magnl tude as the rounding srrors incurred in their com=
putation, Consequently, the dependent variables #nd
their integrals could not be caleulated ascurately in the
range 1/2<¥X<I. This computing difficulty was easily over-
come for the problem gonsidered, because the symmetry about
x=1/2 made calculation of the variableéibeyond this point
unmecessaryy and allowed the integrals to be obtained by
evaluating between the limits Q and I/2 and nultiplying
by two.



aﬁh Determination of Stress Resultants

With the radial veloelty W(X,L*) known, the stress
resultants mx(x,hu),ne(x,f*) can be obtained from the dif=
ferential equations (3.4}. For example, the equation conw

frolling mx(i,ﬁ*) is
(=?)iiy + (2e9)iy + g, = F(E) L (a2418)

and 1ts particular integral Pj(ﬁ,ﬁ*) gan be readily forme=
ed using equations (3.22) and (AQ.E):
o (1s R
Py=m, + 37 (1442858 1
2 5
-L"1 (1~'1J2)Y11u(2n)))y L}.

A ST
(1-¥,)8,” 24 X£ (42.19)
u-—va)x -czw)y ek |

The complete solution of equation (A2.18) then becomes

n (%, B = m (Be” 10" + myBe” 20" + p, (%80 (42,20)

where m,,m, are arbitrary functions to be found from initial
conditions, and Y}Q,YQO are_givem by equation (3421) with
f=0, since, with this value of {, the complementary funce
tion of (A2.18) is the same as that of equation (3+19).
Immediately after losding
mx(ﬁ,Q) =, = mi(ﬁ)ff mg(ﬁ) + Py(%,0)

¥0 (A2,21)

'&x(i,O) =y, = w8 oy (%) *'Yzoma<ﬁ> + §1(§,0)
where m,  is given by the first of ‘equations (42.4), and.

m,, can be obtalned from equations (3.24) and (A2.8):
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6(1m21F) ) hod |
[30*:1 [ x(131 oS8 o%x--A.; sineﬁx)é-e 1x(C ain os'mnD1 cos Os;x)]

. . (Aeen®) 1 312
mx0=#~(1—_m—§———mx0+ 5b( 9 x
0(‘1?35: [ “D( X [(A1-!31),aixw x-(A1 l~I‘1)c@3u1x] -
| e 13‘5 [(ﬁ1*¢1)995u1§*(c‘+n1)31!10\15;]]J +
N?[ 1 (A gin 15’:«1%330@5osiz?}fég1x(i)3¢asm1?:éa3ainoai't)]z

With equa"bimzs (A.?,-..19)‘,(A2a20),(&2,{. 21), mx‘(SE',"c'*) can be
“written in the form

e oma b/ T, ;,':‘. - T
mx(.k'é,t"‘) = 20 X‘Q[(X Omxu-!-mx@)e - ﬂ(}(_‘-amxo—rmxo)@ 20 J
' T ..X T
¥ ,«y Xoo
a0 10
T N O T
Z{{( 19 11); 20 nv( *331)6 10 - a"'i"x}itﬁ*]
1=1 20" 0 |
(1) ¥ = (2=, +
Tx b/ ‘ﬁ* .
[(510*3/1)“” 208 (e e . o 521‘1‘5*]
D S -
20" 10

w‘pb/'y'c‘
X 1" )0 , {x"
( 3-.._.1)2)3/3 4 (290) 21-&»& T2

In a similar manner the cireumferential resultant

ng (X, €%) can be obtained: .
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Arn(x,’ﬁ*) 7”2(3“3/10[( One@-t-nm)e ~% (}fmn%+neo)e ZOE*J
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APPENDIX 3

NUMBRICAL MEIHODS

The ereep strain integrals (4+.3) are evaluated by
dividing the shell thidkness into twenty-four equal inter-
vals and applying Weddle's Rule (see, for example, (39)).

The eoylindrieal shell with fixed ends subject to
uniforn radinl and axial loading has longitudinal sym-
metry about X=1/2, and it is therefore suffiocient to inte-
grate the eguations over half of the shell lengzth. If the
range O~-L/2 is divided into equal intervals b, and the
second space derivative reprasanted by a three point cen-
tral difference formula, at polnts ﬁi, W' in equations
(ke 8) becomes

W Ly () g=2y )
and equation (ﬁ«S) can be written as

i - j«\_,; . e i 2 ,u!- - o - _ .

wimgmhwiéﬂf6(1+a(1-v )b )Wi*uwi*1+wi+2 = ks | (A3e1)
- 2 2 (52 trennt ewn® an® Yan® won® am@ T

where k, = 12(1«2) b [b {p >0, “nxi*nail*mxiw1*3mxi+“xi+t}

The boundary eonditlions at X,=¥_ are
W, = Q
° (A3+2)

T ».l"' ﬂ"l-u " <‘1"“ ‘
i L b L A Rl

where, as the less accurate forward differences must be

used, the inltial slope is representsd by & four point
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formula. o ’

With the quantities k; known,, (A3.1) and (A3:2)
form a set of linear algebraic equations which can be
solved simultanecusly for ﬁis The most suitabie satan-~
dard methad for solving equations of this btype on a high
speed aomputer, is by the formation of a matrix équatien
which ¢an be solved by expressing the doefflcient matrix
as the product of upper and lowver triangular matriﬁeﬁ-
(goe, i‘or example, (3”}‘ ‘However, the réeurz;ing pat-
tersi pf soefficients in the difference equations (A3.1)
makas it passible to sonatruct a method of selution
which requires less computer storage than the standard
method, and ié probably faster.

 From the boundary squations (A3.2)

= Q

;ﬂi‘c

Y. l{; (A343)

With these expressions, equation (A3.1) at x; becomes
3[3 (1) 0] 5y - Ty = K,

from which

- .

where, with D, = 3[3+%(1~h2)b” ’ |
ke w9 K (A3
Ny & = 13 Ny pm 23 N -3
| 1,1 —ﬁ15 1,27 20,4 1,3 7 7,
Substitution of (A3.4) and the first of (A3.3) into
equation (A3.,1) at X yields
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5(1+2(1=22) b iy AT 3)w3 * Wy, = Eghiy

from whieh

where, with D, = 5c1+ac1xmsyb“>&&m )
1y (A347)

Nooq = £ PH,15 NQ,Q = 331;3 § My 5= D,
2 , ;

At x, and beyondy the boundary points ¥, and W, are abe
gent from equations (A3.1); displacements are eliminated
by substitutions of the form (A3.4) and (A3.+6), and a
regglﬁr pattern emerges from which the coeffieients at
Any Xy, Ni,1’mi,3*mi,3 can he ecalceulateds Thus

where, with Dy = il o oy g o¥lyp 3o 4 5
+§(q¢;(1m;§)h')

v ow | ~ |
Ni,t Bi(“Ni 2,3“1 1,1 Ni «2, 1M 1D (a3,9)
T ':L ‘

”i

If X, demotes the point #=1/2, from longitudimal sym-

metry,

21
i
1

¥

e sl .
Wort T Wyatd Ygea e

Hence,
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Mymz T Nyez,1 T Nyeg 2Mver T g, 3%y h
Womt = Nymt, 0 * Nyug, oy * Fonq, 3¥0ag (A3.10)
Wy =Nyt N 2ymt * Ny 3 v~?

These equations can be.solved-to yield

N - -
| B, 4t v, 2 -1, 1+N (1 v=2,2 vt =
’;V = s 1 1-1\Tv 1,3 93 V=2, 1 1""NV -1,3
1wl =y v‘a v 3 vng ‘2\
1HNV,3NVa2,3 NV*‘QQ( ’ 1"1; =-1y3

The coefficients in thislaquation are known, determined
through equations (A3.5),(A3.7) and (A3.9), and %v can
be calculateds W _4 and thg
and the remaining §if¢alaulated successively from eguations
(A3.8),(A346) and (A3.4),

Since W and the othey dapendent variables change

are then obtained from (43.10),

rapidly with X near the fixed end of the she‘l, while re-
mote from the end they tend towards constant values, it is
expedient to increase the integration interval b with X.
for computatlonal conveniance th@ intervalwas doubled at
points c’xd in the range o=1/2; typlcal values of" c,d v
were 20;35,609 respectively. The finite differende repre-
sentation of the differential equation is altered at points
in the vieinity of an interval change (for a discussion of
this see, for example, (30)), and, c¢onsequently, the coefw
ficients Niaj at these points had to be individually cal=

culated.
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When iteration at any time interval is complete

the stress resultants are calewlated from

' e
= —1—2( '*nu ) nel

m.”"*———-———-(* 2w+w )-mQ
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APPENDIX W

be1 Qutline of Numerieal Caleulations

The finiﬁe différenae représentation of the dif=-
ferential equation (5:%5), and the wethod of solving the
finite difference equations are similar to those deseribed
in A@péndix 3. At %i the difference form of eguation (5.5)
is _ k
= & By %

Bia1agm2 by g Vg o+ By g+ (e DGy, Wy
e ) _ o L
=20y 0y )V g g Wyeg = Kb

and’ the ceeffici&nts Ni,j becone

"‘45:1. 1 Wgan, alliar, Wy ep, 00200, 1*4%1)“1 1,1

Ni91 = Qi

o _ PV, 3ien, (d)i THOON L 3*2(¢1+¢1+1)
1,2 i
1,3 575

where ﬁi = ¢im~1_ (Niené_, gﬂi.ﬂ " g*Ni-ga, 3) ~2 (¢iv1+¢i)Ni*1 ' 2
)+
#Pyat ey B H Gy

" The coefficients Ni 4 are determined sepurately at tha

‘boundary and around pointn bf interval change, and wi

¢aleulated as in Appendix 3.
v » )
With W, known, i, is obtained from the discreet
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form of equation (5,4), and a'further ¢& from (5.3) with

the second derivative represented by a three point cen-
tral differenae formula. When the lteration process has
converged the stress resultants are determined from equa-

tions (5.1) and the time derivatives of equations (2.8).

4.2 Caleculation of Residue

Where the solutions eventually became unstable, the
*
Wy which made the sum of the squares of the residues a min-
imum was chosen as being closest to the true soclution.
th

Thé residue from the r eycle of the iteration is

ro. bop Ay r rir r b 'y v
RY = kb = W]+ g+ 8]V = [$] g+ Gy HOG+0] 4] v

A CA P PR PRV

where the supersceript r refers to quantities obtained from

th

the r*? eycle. That ﬁi was selected whioh gave

a3

its lowest value.

4,3 Caleulation of Y(0) when m=0

for m=0 the radial velocity is (Appendix 2.1),

:“ o3 ..‘Jmﬁ\ . i W: " i 0{% “ _ . hupod " -
W = pegh sz%9§ (Aacoso%x+ﬁgsinuéx)+e 2 (Lzeas°§x+naain0@x)

where uzmj%, For a eylindrical shell of semi-infinite

lenzth, and with %(0)=&‘(0)#0, this equation becomes
v o= (p*%na)[}ne“°§x(cosugi*sinué§i] (A4, 1)

Differentiating (Al.1) twice yields,



T s ...guz(pw Ye© 2 (ainuachosug X) | (A~‘+92)

and, from equation (5.4) with m=0,

L. 3 1A , |
ut o= &nawé*w | (Ak;3)

Wﬁen m=0 equations (5.,1) and (5.6) combine to give

W= 3(é“+é 8 +2e ) (Al k)
At %=0, wm(), and from equations (2.8), (A, 2), (A4 3) and
JOUR'S

V(o) = % [onetb padn )?

Now Olgr- 8- and therefore,

SO I 2
Y(0) = nl = np+p

= 1

since n, and p are chosen to satisfy equation (2e24).
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APPENDIX § f

ACCELERATED CREEP BEHAVIOUR OF SEVERAL POLYMERS

Each of the plastic tubes was given a suitable
 heat treatment to remove residual stresses, and tensile
te;ts‘wére‘aarriéﬁ‘out epyspée;mens'cut from the ldngi-,
tudinal dirvection. c

a) Perspex (Pdlymethyl Methaarylate)

“This is a fairly rigid, éi@fphaus polymer, and it
isiuéeﬁeéxtepsiVely for investigating the elastic be-
havidén_af atguﬁturan; ' To produce accelerated creep
téemperatures of around 1OOOG_are required, and Fige A5e1
Shgwsffhe reSulté'éflbénsile tests in this temperature.
région at a streSs of 12801b/132- Below 99°C the ¢reép -
stramns were small, and the specimens fractured after about
'5hrg. Above this temperature the: material became duetile,
but also very unatablé, tests under alnost the same cond-
itions producing greatly” diaiering strains.

For plastie matarials there are temperatures at
which pronounesd changes in molecular mobility take place
often accompanied by gonsiderable alteration o£~macroseopic
nroperties., bna of these temperatures for polymethyl meth-
acrylate is usually found in the region of - 1009 (M)
f'or the material tested such a transition point must occur
about 99°C; above this temperature the material acquired

the duétility‘néaessary for sgort term creep tgats, but
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the scconpanying instability wsde it quite unsuitable,

b) PVE (Polyvinylehloride)

At room temperature rigid PVC is a falrly tough
polymer with a émall degree of erystallinity. Its tough=
ness diminishes raplidly with temperature, and at 50°0 it
exhibits substantial ereep. Fig.A5.2 shows thévdeflection/
time response at several stress levels. Althaﬁgh fracture
ocours at about 3% strain the fairly large ereep strain/
elastie strain ratio made the material appear promising.
However, wh9ﬁ ¢ylindrinal shell speocimens were tested fail-
uré oceurred at about “ggaircumfarential strain through
longitudinal oracking. As the tenslle specimens were out
'&angitudinally, this sugpested a severe anigotropy in the

PVC tubing, and nade the latter ﬁérthléggﬁgﬁﬁtegt waterial.

e) Nylon

Hylon iS‘a’Ver tough , though duetlle, erystalline
poOlymer. Thé results of two tests at 13®°&~Figg A%, 3-were
sufficlent to reveal its basic creep characteristics and
its inferiority to polypropylene as a test material. It
hns a very laiga initial elastie-plastic deformation, but
thereafter it"straim hardens considerably and exhibits

little coreep.
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