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Su m m a r y

The attenuated cell-lines of Leishmania mexicana Wild Type (Z. mexicana WT) and 

Leishmania major Wild Type (Z. major WT) known as Z. mexicana Hamid's line (H- 

line) and Z. major H-line, respectively have been established under the pressure of 

gentamicin which was routinely added to the medium to prevent bacterial 

contamination of promastigote culture. The mechanism by which gentamicin, an 

aminoglycoside, attenuates Z. mexicana WT is unknown.

Following culture of promastigotes of Z. mexicana WT (20 passages) and Z. major 

WT (11 passages) in HOMEM medium supplemented with 10% (v/v) FCS and 

gentamicin at 20 pg/ml, promastigotes of the two strains formed attenuated lines. Z. 

mexicana H-line was developed on four separate occasions with the same procedure 

and was stable in gentamicin-free medium for 23 weeks. There was no significant 

difference between the growth rate of promastigotes of Z. mexicana H-line and Z. 

mexicana WT in vitro. 12% of stationary phase promastigotes of Z. mexicana H-line 

were longer than that of promastigotes of Z. mexicana WT.

Total lysate protein of stationary or log phase promastigotes of Z. mexicana H-line and 

WT, on 10-20% SDS-PAGE gradient gel, showed some differences between protein 

expression o f the attenuated cell line and Z. mexicana WT. Two bands were detected 

around 66 kDa with stationary or log phase promastigotes o f Z. mexicana WT, 

whereas one (possibly two) line is absent with stationary and log phase promastigotes 

of Z. mexicana H-line. The optical density o f proteins in lysates of stationary phase 

promastigotes of two lines of Z. mexicana separated using SDS-PAGE was displayed 

with a Lane profile graph using Lab Works Image Acquisition and Analysis Software 

(UVP Laboratory products). The optical density o f protein of lysate o f L. mexicana H- 

line showed just one peak of protein with high concentration, whereas three peaks of 

protein are found in the same position o f graph o f Z. mexicana WT.

The comparative proteome analysis of the two lines of Z. mexicana using high- 

resolution techniques has been done using 2-dimentional electrophoresis (2-DE). Both 

lines o f Leishmania comprise patterns with a high density of spots in the gel with pH 

range pH 4-7. The results of proteome analysis of promastigotes of the two lines of Z. 

mexicana suggest that adaptation o f Z. mexicana H-line to grow in the presence of 

gentamicin has involved change in protein expression. The proteome analysis of
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patterns of two lines of L. mexicana reveals high similarity and significant differences 

between attenuated line of Z. mexicana and Z. mexicana WT pattern have been found. 

One spot of pattern of Z. mexicana WT was shifted to less acidic position in the 

pattern of Z. mexicana H-line and one spot was absent from the pattern of Z. mexicana 

H-line. Two spots were found in the Z. mexicana WT gel, whereas the expression of 

these proteins by promastigotes o f Z. mexicana H-line decreased.

The ability of promastigotes o f Z. mexicana H-line to infect BMMs was similar to that 

of promastigotes of Z. mexicana WT. In contrast, however, to the continued 

intracellular growth of Z. mexicana WT, only a small population of amastigotes of Z. 

mexicana H-line survived within the infected macrophages at 72-96 h post infection. 

Macrophages infected with stationary phase promastigotes of either Z. mexicana WT 

or Z. mexicana H-line, however, led no significant difference in nitric oxide 

production.

Z. mexicana WT disseminated rapidly to the draining lymph node (LN) and visceral 

organs of BALB/c mice, whereas Z. mexicana H-line remained localized in the skin, at 

the site where the promastigotes were injected, and in the draining LN of BALB/c 

mice. The mice did not normally develop any lesions.

Following injection stationary phase promastigotes of Z. mexicana H-line at week 12, 

the epidermal cells from the site where the promastigoted were injected were 

transferred in to HOMEM medium. Amastigotes derived promastigote, were 

designated Z. mexicana HAD-line, grew very poorly in medium, with or vdthout 

gentamicin and morphology of 83% cells were amastigote forms in which some of 

them had a small size flagellum.

The levels of IFN-y, IL-2, IL-4, and IL-10 in the supernatant o f cultured splenocytes 

from the mice infected v\4th Z. mexicana H-line or Z. mexicana WT were measured at 

12 weeks post infection. It was found that the levels of IFN-y and IL-2 in the 

supernatant of cultured Ag-stimulated-splenocytes of mice infected with Z. mexicana 

H-line were significantly higher than those of mice infected with Z. mexicana WT. In 

contrast to the mice infected with Z. mexicana WT, IL-4 and IL-10 production by Ag- 

stimulated-splenocytes from mice infected with Z. mexicana H-line was significantly 

decreased.

All non-vaccinated mice infected with Z. mexicana WT developed large size, non­

healing lesions, whereas the vaccinated mice challenged with Z. mexicana WT
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developed small and some cases healing lesions over 22 weeks post infection. There 

was no protection against L. major in the mice vaccinated with L. mexicana H-line. 

The levels of IFN-y and IL-4 in the supernatant of cultured splenocytes from the mice 

immunized with L. mexicana H-line and challenged and infected mice with L. 

mexicana WT were measured. The level o f IFN-y in the supernatant of cultured Ag- 

stimulated-splenocytes of challenged mice was significantly greater than that of non- 

vaccinated mice infected with L. mexicana WT (P<0.005). In contrast to vaccinated 

mice, the amount o f IL-4 production by non-vaccinated mice infected with L. 

mexicana WT was higher than that of vaccinated mice challenged with L. mexicana 

WT at the same time.

In this study it has been demonstrated that in the presence of the attenuated cell line, 

L. mexicana WT were eliminated from the draining LN, skin and visceral organs. In 

contrast, L. mexicana WT disseminated and survived in the visceral organs of 

challenged mice in the absence of the attenuated cell line.

The preliminary results of interaction between stationary phase promastigotes of L. 

major H-line and macrophages showed the percentage of macrophages infected with 

promastigotes o f L. major H-line was 41% at 8 h and decreased to 10.5% at 96 h post 

infection. In contrast to L. major H-line, the percentage of infected macrophages with 

L. major WT was 46.5% and increased to 65% at 96 h post infection. The number of 

amastigotes of Z. major H-line within infected macrophages after 9 h incubation was 

94 amastigotes /ICO macrophages which rapidly decreased to 14 amastigotes / 100 

macrophages at 96 h post infection.

It was found BALB/c mice infected with Z. major H-line failed to develop cutaneous 

lesions during 12 weeks post infection. In contrast to Z. major H-line, all mice infected 

with Z. major WT went to grow non-healing lesions are the same period.

The dissemination of Z. major H-line and Z, major WT from the skin where the 

promastigotes were injected to visceral organs of BALB/c mice was investigated at 12 

weeks post infection. It was found that Z. major WT spread to BM, spleen, lung, 

popliteal LN, and skin. In contrast, Z. major H-line remained localized in the ECs and 

draining LN of (two up tree) mice.

The preliminary initially result showed that Z. major H-line induced protection in mice 

against infection with Z. major WT, All non-vaccinated mice developed progressive 

non-healing lesions that peaked in size at about 12 weeks post infection. In contrast to 

non-vaccinated mice the lesions developed slowly in vaccinated mice.
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1.1. Introduction

Leishmania spp. are obligatory intracellular protozoan parasites, which are 

responsible for a wide spectrum of diseases ranging from local, self-healing skin 

ulcers [cutaneous leishmaniasis (CL)] to a severe and life threatening systemic disease 

[visceral leishmanisis (VL)] (Pearson and Sousa, 1996).

The World Health Organisation (WHO) has identified leishmaniasis as a major target 

for eradication (Ivens and Smith, 1997). This disease affects approximately 12 million 

people, mostly children and young adults, with two million new cases occurring 

annually, and 350 million people at risk of infection in 88 countries, 82% of which are 

developing countries (WHO report, http://www.who.int/ctd/htmi/leish.html. 2000). 

Leishmania I Human immunodeficiency virus (HIV) co-infection is regarded as an 

emerging problem in 33 countries worldwide, especially in southern European 

countries, where up to 9% of all HIV cases suffer from either newly acquired or 

reactivated leishmaniasis (Desjeux, 1998; http://www.who.int/inf-fs/en/factll6.html.. 

2000). This combination of diseases produces a cumulative deficiency of the immune 

response since Leishmania parasites and HIV destroy the same cells, exponentially 

increasing disease severity and its consequences. It is expected that the number of 

Leishmania / HIV co-infections will continue to rise in the coming years and there are 

indications that cases are no longer restricted to endemic areas (Wolday et a l, 1999). 

There has been much recent interest in attempts to vaccinate against Leishmania 

infection because leishmanicidal drugs frequently have unpleasant side effects, are 

relatively ineffective against cutaneous leishmaniasis, and drug resistance exists in 

various endemic regions of the world (Jackson et al, 1990). In addition, many 

countries, where the. disease is endemic, are economically poor. As a result, major 

pharmaceutical companies have historically had little interest in anti-leishmanial drug 

development.

Vaccination with live Leishmania to produce self-healing lesion at an inconspicuous 

site has been practised for a long time in the Middle East (Liew and Donnell, 1993). 

This method induced resistance in at least 70% of the individuals treated, but serious 

clinical complications associated with the live vaccine emphasises the need for an 

attenuated or a defined vaccine against cutaneous leishmaniasis (Liew and Donnell, 

1993).

http://www.who.int/ctd/htmi/leish.html
http://www.who.int/inf-fs/en/factll6.html


Some detailed knowledge of the parasite, the relationship of the parasite with its 

mammalian host cells and the mechanism by which this relationship determines the 

development of the ensuing immune response, are important for vaccination strategies 

against leishmaniasis.

1.2. Parasite

1.2.1. Classification

The genus Leishmania belongs to the Family Trypanosomatidea in the Class 

Kinetoplastidea (Cox, 1998). The parasite occurs as zoonotic infections of stray and 

domestic dogs, rodents, hyraxes, or sloths with variable penetration to man. At least 

30 species of Leishmania have been recognised (Lainson and Shaw, 1987), of which 

15 species of Leishmania with different geographical distributions and clinical 

features are pathogenic for humans (Bryceson, 1996). L. major is a distinct species 

but the L. mexicana complex includes five species (Cox, 1998):

i) L. amazonensis

ii) L. mexicana

iii) L. pifanoi

iv) L, gamhami

v) L. venezuelensis

1.2.2. Clinical manifestation

The two most important species in the L. mexicana complex and L, amazonensis 

which cause New World CL and New World diffuse CL (Cox, 1998).

L. mexicana causes cutaneous leishmaniasis in Central and South America. The 

disease is known as Chiclero’s ulcer and has been characterised by two forms: 

localised and disseminated lesions. Local cutaneous leishmaniasis is similar to 

lepromatous leprosy and is typically confined to a single, indolent, ulcerative lesion 

that remains for about 1 year, leaving a characteristic depressed circular scar. If the 

lesion involves the rim of the pinna it destroys the underlying cartilage. The pinna is



swollen, ulcerated or crested usually with a cartilage-attacking infection without 

ulceration and with few parasites (Walton, 1987).

L. major causes Old World CL. The lesions are described as ‘rural wet sores’ (Cox, 

1998).

1.2.3. Morphology

The parasite exists in two principal morphological forms:

Promastigote, a motile form with an anterior flagellum (1.5-3 x 10-20 pm) which 

resides in the midgut of the sandfly and can be grown in culture (Bryceson, 1996). 

Amastigote, a non-motile, oval form with only a very short flagellum with a 

maximum diameter of 2.5 x 6.8 pm which multiplies intracellularly in mononuclear 

phagocytes of the mammalian host (Bryceson, 1996).

Multiplication of each form is by binary fission (Bryceson, 1996).

1.2.4. Diagnosis

Infection is diagnosed by direct demonstration of the parasites (microscopy, culture, 

DNA or RNA analysis). Cutaneous leishmaniasis is diagnosed from lesion, while 

visceral leishmaniasis from biopsies of spleen, bone marrow, and other suspected sites 

of infection (Bryceson, 1996). Examination for cellular immune response to 

Leishmania can be made using leshmanin (a suspension of killed promastigotes 

derived from culture) inoculated into the dermis (ID) of the forearm. The area of 

inflammation is measured 48-72 hours later. Leishmaniasis can be diagnosed 

serologically by ELISA, immunofluorescence or agglutination assays (Berman,

1997).



1.2.5. Treatment

Local CL ulcers usually heal spontaneously and do not require treatment, but if 

visceral organs are involved chemotherapy is required, and drugs include pentavalent 

antimonials, pentamidine, liposomal amphotericin B, paromomycin, inteiferon-y 

(IFN-y), and others (reviewed by Berman, 1997).

1.2.6. Life Cycle

Leishmania species cycle between sandfly vectors and several mammalian hosts 

including humans. They are transmitted between long-lived mammalian hosts by 

short-lived sandflies.

1.2.6.1, In the sandfly

Development of Leishmania spp. in the digestive tract of sandflies involves several 

morphological transformations from the intracellular amastigote form via a succession 

of free and gut wall-attached promastigote stages to the infective promastigote forms 

(Stierhof et a l, 1999). The parasite multiplies in the midgut of female phlebotomine 

sandflies {Phlebotomus spp. and Lutzomyia spp.). In the Old Word, sandflies of the 

genus Phlebotomus transmit the disease, while in the Americas it is transmitted 

primarily by Lutzomyia species. Leishmania exist in three distinct forms in the 

digestive tract of the sandfly during their life cycle:

i) Amastigote forms, following ingestion of infected macrophages.

ii) Free and gut wall-attached promastigote forms.

iii) Infective promastigote forms, which occur in the mouthpart of the sandfly.

The life cycle in the sandfly can be divided into four stages: ingestion, transformation, 

colonisation, and transmission (Molyneux and Killick Kendrick, 1987).



I.2.6.I.I. Ingestion stage

Following ingestion of a blood meal from an infected host amastigotes are released 

from the parasitised macrophages and enveloped in the peritrophic membrane, which 

is secreted by the midgut cells (Molyneux and Killick Kendrick, 1987).

1.2.6.1.2. Transformation

Following differentiation o f the amastigotes, which were enclosed in the peritrophic 

membrane, into the promastigotes, an increasingly dense coat of a glycocalyx is 

formed on the surface of the promastigotes. The glycocalyx is composed o f a variety 

o f glycoconjugates that are bound to the surface of the promastigote by a 

glycophosphatidylinositol (GPI) anchor (Turco and Descoteaux, 1992; McConville 

and Ralton, 1997) and is thought to have barrier functions (Solbach and Laskay, 

2000).

It has been reported that glycoconjugates play crucial roles in the survival, 

development, and virulence in both developmental stages of the parasite (Ilg et al.,

1998). The major cell surface glycoconjugate is lipophosphoglycan (LPG) which is 

found over the entire surface of the parasite, including the flagellum (Mosser and 

Brittingham, 1997), LPG serves as a ligand for the attachment of non-infectious 

procyclic promastigotes to the midgut wall lining and may protect the parasites 

against the hydrolytic environment of the insect's digestive tract (Ilg et ah, 1998). 

Following rupture of the peritrophic membrane, after about 3 days, free-swimming 

promastigotes are released into the midgut (Stierhof et aL, 1999).

1.2 6.1.3. Colonization

The free promastigotes establish a colony o f parasites in the sand fly gut. They 

attach to a gel-like plug, which is formed mainly by parasite-derived mucin-like 

filamentous proteophosphoglycan (fPPG) (Stierhof et al,, 1999). Promastigotes 

differentiate into non-dividing metacyclic promastigotes, which have a structurally 

altered LPG (Sacks et al, 1995).



This modification is necessary to allow the infective form of the promastigotes to be 

released from the midgut and move toward the foregut (Pimenta et a l,  1992).

Three other important alterations occur as promastigotes progress from the procyclic 

to the metacyclic form. Metacyclic promastigotes have been shown to increase in the 

expression of:

I) The major surface glycoprotein 63 (gp63) (Kweider et aL, 1989).

n) Surface-associated acid phosphate activity (Gottlieb and Dwyer, 1981).

ni) Cysteine proteinases (Robertson and Coombs, 1992).

It has been reported that the metacyclic promastigote has individual distinct 

biochemical properties that separate it from the non-infective promastigote (Mottram 

et al., 1997). Metacyclic promastigotes are generally more elongated and thinner than 

procyclic forms (Mosser and Brittingham, 1997) showing increased motility in culture 

(Sacks et al., 1985).

1.2.6.1.4. Transmission

Metacyclic promastigotes migrate to the foregut and oesophagus of the sandfly, are 

suspended in the sandfly’s saliva and are ready to be inoculated during the blood 

meal. In the sandfly’s gut, the saliva probably promotes survival and development of 

the promastigotes, since feeding of Phlebotomus argentipes with L. donovani 

suspended in serum containing anti-saliva antibodies led to the death of a significant 

number of promastigotes and inhibited the promastigotes development in the foregut 

(Ghosh and Mukhopadhyay, 1998).



The life cycle of Leishmania in the sandfly

Ingestion stage 
(ingestion of infected host macrophages during blood meal)

Transmission stage 
(Metacyclic promastigotes migrate to the foregut and oesophagus)

Transformation stage 
(Differentiation of amastigotes into the promastigotes)

Colonization stage 
(The free promastigotes generate a colony of promastigotes in the 

midgut and then differentiate into metacyclic promastigotes)

1.2.6.2. In the mammalian host

I.2.6.2.I. Inoculation

Metacyclic promastigotes are inoculated into the skin of the vertebrate by an infected 

female sandfly’s bite. It was shown that about 75% of P. papatasi sandflies infected 

with L. major are able to transfer disease with less than 100 promastigotes (Warburg 

and Schlein, 1986). In the presence of saliva, promastigotes establish a successful 

infection. It was found that injection of both saliva and promastigotes of L. major or 

L. braziliensis into various strains of mice resulted in exacerbation of both the size of 

the lesion and the number of recoverable parasites even when a low inoculation (10^- 

10"̂  promastigotes) was used for infection (Lima and Titus, 1996; Belkaid et aL,

1998). Under natural conditions, sandflies transmit very low numbers of 

promastigotes. Under experimental conditions, when promastigotes are usually



suspended in saline and inoculated by syringe into the skin of inbred mouse strains, 

the same low number of parasites will rarely cause disease, even in mouse strains, like 

BALB/c, which are extremely susceptible to L. major infection.

I.2.6.2.2. Binding of promastigotes to mononuclear phagocytes

Following transmission but before entry into their host cells, the surviving 

promastigotes are exposed to serum components, including factors of the complement 

system, for a relatively short time. The majority of non-metacyclic promastigotes are 

rapidly destroyed by complement factors (Mosser and Brittingham, 1997). The 

surviving promastigotes, which are relatively resistant to complement-mediated lysis, 

rapidly bind to resident or recruited cells of the monocyte / macrophage lineage 

including dendritic cells and Langerhans cells (Blank et al., 1993; Moll et al., 1995). 

Phagocytosis of promastigotes by macrophages requires the preliminary attachment of 

the promastigotes to a macrophage through either serum-dependent adhesions or 

serum-independent adhesions (Antoine et al., 1998).

i) Serum-dependent adhesion

The two most abundant surface structures on metacyclic promastigotes, gp63 and 

LPG, have both been identified as C3 (Russell, 1987), C3b (Puentes at al., 1988), and 

iC3b (Mosser et al., 1985) acceptor sites. Other receptors may promote binding of 

promastigotes to the macrophage, including receptors CRl, CD35, the receptor for 

C3b and C4b, and CR3, GDI lb  / CD18 the receptor for iC3b (Sutterwala et al.,

1996). It has been reported that iC3b functions as an opsonin for Leishmania via 

binding to CR3, the predominant receptor for the uptake of metacyclic promastigotes 

(Rosenthal et al, 1996).

ii) Serum-independent adhesion

Several receptors that may take part in the interaction between parasite and 

macrophage include the mannose-fucose receptor, the fibronectin receptor, and C- 

reactive protein receptor (Bogdan and Rollingoff, 1998). In addition, macrophage



CR3 is able to bind directly to promastigotes (Mosser et al., 1985). These receptors 

link directly to the parasite through LPG and gp63 (Bogdan and Rollingoff, 1998).

1.2.6.2.3, Invasion

Following binding of metacyclic promastigotes to the surface of a macrophage, the 

parasite is surrounded by “coiling phagocytosis” (i.e., by wrapping with multiple 

layers of unilateral pseudopods of the phagocytic cells) (Rittig et al., 1998b) or by 

conventional “zipperlike” interactions (Rittig et al., 1998a).

Initially the parasite is located in a phagosomal compartment that is limited by a 

membrane originating from the host cell plasmalemma. This phagosome then 

undergoes remodelling via maturation and fusion with an endocytic organelle and 

forms a parasitophorous vacuole (PV) containing lysosomal hydrolases, and 

cathepsins (Russell and Talamas-Rohana, 1989; Lang et al., 1994). PVs in the 

infected macrophages are formed 1 to 14 days after ingestion of promastigotes or 

amastigotes (Antoine et al., 1998). Much less is known about early events before PV 

formation. However, PVs containing amastigotes are rapidly acidified and reach pH 5 

in < 30 min (Sturgill-Koszycki et al., 1994).

1.2.6 2.4. Transformation

Promastigotes require 2-5 days to transform into the amastigotes, depending on the 

Leishmania species (Antoine et al., 1998). Although all Leishmania PV have many 

common features, they are not identical morphologically. For example, macrophages 

that contain L. donovani or L. major have many individual small PV with only one or 

two amastigotes inside each, whereas macrophages that are infected with L. 

amazonensis or L. mexicana harbour numerous parasites within one large vacuole 

(Antoine et al., 1998). Ilg and colleagues (1995) suggested that amastigotes of L. 

mexicana WT secret PPG which is one of the factors involved in the formation of 

large PVs in the infected macrophage. The PVs that harbour amastigotes of L. 

amazonensis or L. mexicana are rapidly acidified and reach pH 5 in less than 30 min
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(Sturgill-Koszycki et a l, 1994). Several groups have proposed that surface gp63 and 

LPG expression are down-regulated in the amastigote stage (McConville and 

Blackwell, 1991).

Following division of amastigotes within the PV, the latter ruptures and the cell 

releases the amastigotes, which are then taken up by neighbouring macrophages. 

Alternatively, it is possible that amastigotes can be released by fusion of the PV with 

the plasma membrane, thus leaving the host cell intact. Evidence for the latter 

mechanism is that infection with L. donovani inhibits apoptosis of macrophages 

(Moore and Matlashewski, 1994).

The life cycle of Leishmania in the mammalian host

Binding of promastigotes to the mononuclear phagocyte 
(Attachment of the promastigotes to the macrophages requires two mechanisms: 

serum-dependent and serum-independent adhesion)

Transformation stage 
(Promastigote transforms into amastigote)

Inoculation stage 
(Metacyciic promastigotes are inoculated into the skin of mammal)

Invasion stage
(promastigotes located in the PV containing lysosomal hydrolases, cathepsins and

beta-glyconidase)
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1.3. The host immune response to leishmaniasis

The pathogenicity of Leishmania depends to a large extent on their degree of 

susceptibility or resistance to various innate and adaptive immune mechanisms of the 

mammalian host (Reiner and Locksley, 1995).

1.3.1. The hosts’ innate response

When the infective promastigotes enter the host’s body they initially encounter 

elements of the innate response which consists of a variety of molecules and cells, 

distributed throughout the body (Roitt et al., 1996).

The innate immunity has several effects but the three most important are:

i) Killing the non-infective promastigote by the complement system.

ii) Initiation of inflammation

iii) Avoiding dissemination of amastigotes to the visceral organs of host, by the 

natural killer cells (NK cells).

1.3.1.1. Complement system

The complement system can be activated by all Leishmania spp. via the alternative 

pathway, a process that proceeds in the absence of antibody (Mosser and Brittingham,

1997). Fixation of C3 on the surface membrane of promastigotes is a crucial step in 

the interaction of the promastigote with the innate inunune system (Mosser and 

Brittingham, 1997). As mentioned previously, the majority of non-infective 

promastigotes are rapidly destroyed before entry into host magrophages. Immediately 

following injection, promastigotes are exposed for a short while to potentially toxic 

serum components, including elements of the complement system (Mosser and 

Brittingham, 1997), even in the absence of mii-Leishmania antibodies. Promastigotes 

can shed C5b-C9 complexes from the parasite surface (Puentes et al., 1990), which 

might be causally linked to the phosphoglycan chain of the surface LPG (Puentes et 

al., 1988; Sacks et al., 1995). A correlation between gp63 expression and resistance to 

complement-mediated lysis has been demonstrated (Brittingham et al., 1999) and this

12



mechanism is dependent on the proteolytic activity of gp63 (Brittingham et aL, 1997). 

Gp63 is a surface acid proteinase and not only binds to considerable amounts of the 

terminal complement components but also rapidly converts C3b to iC3b, thus 

facilitating the uptake of the parasites by cells expressing the iC3b-receptor CR3 (CD 

11b / CD 18) (Brittingham et al., 1995; Mosser and Brittingham, 1997). In addition, 

leishmanial protein kinases (LPKs) (Puentes et al., 1990) and serine threonine protein 

kinase (Li et al., 1996), which are increasingly expressed on the surface of infective 

stage promastigotes, have been shown to inactivate C3, C5, and C9 by 

phosphorylation, thus avoiding complement mediated lysis.

In addition to opsonization and lysis, activation of complement also leads to the 

generation of the chemotactic peptides C3a and C5a. These peptides have been shown 

not only to be potent inducers of leukocyte migration, but they also up-regulate the 

expression of complement receptors on mononuclear phagocytes (Yancey et al., 

1985). Macrophages were found not to move toward promastigotes themselves, but 

following the activation of complement by Leishmania, macrophages showed a 

directional migration toward the products of complement activation (Bray, 1983).

1.3,1.2. Initiation of inflammation

Inflammation is the body’s reaction to the invasion by an infectious agent (Roitt, 

1996) such as Leishmania. Immediately after the inoculation of promastigotes by a 

sandfly, a local inflammatory process is started, which involves local accumulation of 

cells to clear damaged tissue and to initiate wound healing, and this may limit 

dissemination of Leishmania. Moore and Matlashewski (1994) reported that 

macrophages are a major source of inflammatory and growth cytokines in the 

leishmaniasis. Initially, leukocytes, particularly neutrophils and eosinophils, followed 

by a wave of inflammatory macrophages, migrate out of the capillaries into the site 

sun'ounding the promastigotes inoculated by infective sandfly. Lymphocytes are 

hardy detected at this early stage of infection (Sunderkotter et al, 1993) but there is 

an accumulation of NK cells (Solbach and Laskay, 2000). By the time invading 

macrophages appear, extracellular promastigotes are mostly dead while others have 

invaded resident cells which they may use as a “safe haven” (Greil et a l, 1988).
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The migration of inflammatory cells towards the site of infection is orchestrated by 

the chemotactic peptides C3a and C5a. Frankenberg and colleagues (1990) reported 

that LPG down-regulated chemotaxis of macrophages and IL-1 production.

I.3.I.3. Avoiding dissemination of amastigotes into the visceral organs of host

The prevention of dissemination of amastigotes is not fully understood. After 

transformation of promastigote to amastigote within infected macrophage, 

amastigotes start to divide and continue until the PV ruptures. Irrespective of the way 

in which amastigotes infect neighbouring competent host cells, there is a striking 

difference between the kinetics of parasite dissemination into the visceral organs of 

susceptible and resistant mice. Interestingly, microscopical analysis of thoracic duct 

lymph obtained from BALB/c mice 3 hours after infection showed that most of the 

parasites disseminated as intracellular forms (largely amastigote-like), but 

occasionally extracellular promastigotes were also observed (lonac et al., 1997).

When BALB/c mice, which are susceptible to L. major were subcutaneously infected 

with L. major promastigotes, after 2-5 hours the parasites were found in the draining 

lymph node and within 10-24 hours could be detected in other organs such as the 

para-aortic lymph nodes, the spleen, the liver, the bone marrow, and occasionally the 

kidney (Laskay et al., 1995). In other mouse strains which are resistant to Leishmania, 

like C57BL/6, CBA/J, and C3H/Hej, the parasites remained localised in the site where 

the parasite was injected and in the draining popliteal lymph node for 5 days or more 

without evidence of dissemination into other organs (Laskay et al., 1995).

It was thought that local restriction of parasites in the pre-T cell phase of the infection 

is mediated by the innate immune system and this plays an important role in the 

development of a protective T cell response (Laskay et al., 1995), and is dependent on 

several factors including the size of the infectious dose and species of Leishmania. 

Menon and Bretscher (1998) reported that low numbers (2 x 10^) of L. major 

promastigotes were localized in the skin and draining lymph nodes of BALB/c mice, 

whereas high numbers (5 xlO^) of the parasite disseminated into skin and visceral 

organs of this strain of mice and led to overt disease.
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Laskay et a l  (1993) showed that NK cells participated in the non-specific phase of 

anti-leishmania activity in the control of early multiplication of parasite in the course 

of leishmaniasis in resistant C57BL/6 mice. Indeed, depletion of NK cells by antibody 

led to rapid parasite dissemination. NK cells play a crucial role in infection processes 

since, unlike naive T cells, they respond very rapidly to stimuli and do not require 

priming (Scott and Trinchieri, 1995; Lanier, 1997). NK cells can produce a wide 

range of cytokines such as IFN-y and tumour necrosis factor-a (TNF-a), which 

inhibit the growth of microorganisms during the initial stage of infection, thus 

allowing the host to develop an efficient adaptive immune response (Louis et a l,

1998). NK cells can also play a crucial role in shaping the adaptive immune response, 

particularly by influencing the pathway of differentiation of CD4'*’ T cells. The 

effector function of NK cells and their role in the generation of a CD4'*' Thl response 

during infection with L. major has shown that depletion of NK cells in resistant mice 

led to an increase in the number of parasites and enhanced the lesions (Sharton and 

Scott, 1993). Moreover, this treatment also decreased the IFN-y production and 

increased the IL-4 derived response. It was found that administration of IL-12 with 

Leishmania antigens induces CD4^ Thl cell development and resistance (Afonso and 

Scott, 1994). Scott and Trinchieri (1995) reported that NK cells appear to function as 

a source of IFN-y that was critical for CD4^ Thl cell development. It was also shown 

that NK cells rapidly produced IFN-y after activation by both parasite antigens and 

IL-12, which in turn led to parasite containment (Laskay et a l, 1995). Scharton- 

Kersten and Scott (1995) reported that NK cells are not required for the development 

of CD4^ Thl cells following infection of C3H mice with L. major.

Associated with the healing process, the cured mice showed a strong, long-lasting 

cellular immunity to the parasites. In spite of the clinical healing, however, L. major 

persists in various organs, possibly life-long. Parasites could be detected by both PCR 

and culture in the draining LN, spleen, and bone marrow as long as 1 year after 

healing (Aebischer et a l, 1993).

In addition to the role of IL-12, NK cells, and IFN-y in regulating parasite 

dissemination and containment, more recent data pointed to a critical role for IFN-0(/p 

and inducible nitric oxide synthase (iNOS) (Diefenbach et a l, 1998). Mice genetically 

deficient for the iNOS gene were shown to control the activity of NK cells and the 

early cytokine response [IFN-y, IL-12 and transforming growth factor (TGF)] during
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the first 24 hours of infection with L. major, thereby playing a critical regulatory role 

in the innate response to this parasite (Diefenbach et al., 1998). NOS2 gene knockout 

(NOS2' '̂) mice or C57BL/6 mice treated with anti-fFN-y antibody or mice with a 

disrupted IFN-y gene, permitted rapid spreading of the parasites and developed 

disease, even with a low inoculation of 500-2000 parasites (Diefenbach et al., 1998; 

Laskay et al., 1995). As the early production of IFN-y in L. mq/or-infected mice is 

predominantly due to NK cells (Laskay et al., 1993; Reiner et al., 1994b; Scharton 

and Scott, 1993), Diefenbach and colleagues (1998) suggested that the early 

containment is orchestrated by the co-ordinated action of IFN-ot/p, IFN-y, IL-12, 

NOS2, and NK cells, which are activated at the site of infection and the draining 

lymph node. In vivo depletion of NK cells using the NK cell-specific anti-NKl.l 

monoclonal antibody further underlined the importance of NK cells in the early 

defence against L. major. The enhanced disease, as measured by parasite number and 

lesion development, was observed in NK cell-depleted mice (Laskay et at., 1993).

In the L. major infection model a delicate balance between stimulatory and inhibitory 

lymphokines appears to regulate the early activation of NK cells. Rapid Thl cell 

development and resistance to infection in mice that develop an early NK cell 

response after infection was reported (Scharton-Kersten and Scott, 1995). IL-12 is 

likely to play a key role in NK cell activation, since in vivo neutralisation of IL-12 

eliminated the early NK cell response in L. major infected resistant C3H/HeN mice 

(Scharton-Kersten et al., 1995). In susceptible BALB/c mice the simultaneous early 

production of IL-12 and cytokines that inhibit IL-12 function, such as TGF-P, EL-4 

and IL-10, was observed. Even though NK cells play a major role in the early control 

of parasites, NK cells alone could not sustain control of L. major in the absence of 

CD4+ T cell-derived EFN-y, and Thl development was unaffected by the presence or 

absence of EFN-y from non-T-cells (Wakil et al., 1998). The role of NK cell-derived 

EFN-y remains to be clarified. However, several groups of researchers reported that 

the contribution from NK cells in the early stage of infection is independent EFN-y.
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1.3.2. The host’s adaptive immune response

1.3.2.1. Antigen presentation

Several microorganisms including Leishmania are able to replicate within resting 

macrophages of the mammalian host. Upon activation, infected cells mobilize potent 

microbicidal mechanisms that eliminate the intracellular pathogen. This transition 

from a resting to an activated state is mediated by the interaction with specific T cells 

that recognize pathogen-derived peptides complexed with major histocompatibility 

complex (MHC) molecules at the surface of host cells (Lang et al., 1994). Antigen 

presentation by macrophages, dendritic cells and B cells to primed T lymphocytes and 

their cytokine productions following exposure to immunostimulating complexes are 

important for generation of a CD4’*' Thl response (Villacres-Eriksson, 1995).

The establishment of a protective mti-Leishmania immune response requires the 

presentation of appropriate antigens by antigen presenting cells (APCs), the induction 

and expansion of CD4^ Thl and the activation of macrophages for efficient killing of 

the parasites. There are different kind of APCs in the body, the best studied are 

macrophages and dendritic cells (DCs) (Roitt et al., 1996).

1.3.2.1.1. Macrophage

In leishmaniasis, for induction of the primary immune response, the macrophage is 

inefficient in the presentation of parasite to the naive T cell (Moll and Flohe, 1997). In 

addition, in contrast to other macrophages resident in the other organs, the quality of 

the respiratory burst of dermal macrophages following ingestion of promastigotes is 

poor (Locksley et al., 1988). Three states of infected mouse macrophages in vitro 

have been reported:

1) Resting macrophages, which were deficient in the synthesis of MHC class II 

molecules and unable to present any parasite peptides (Overath and Aebischer,

1999).

2) Macrophages primed with IFN-y, which were able to synthesise MHC molecules 

but the viability of the amastigotes was not affected (Antoine et al., 1991; 

Wolfram et al., 1995). Primed macrophages were able to present leishmanial 

antigens but were restricted to those proteins that were accessible to host cell
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proteases, ie. proteins secreted into the parasitophorous vacuole or located at the 

parasite surface. Intracellular proteins o f the parasites were not available to the 

antigen-processing machinery as long as the parasites remained intact (Overath 

and Aebischer, 1999).

3) Activated macrophages [which in the presence of IFN-y and a second signal, 

TNF-a, produce nitric oxide (NO)] kill the parasite (Bogdan et ah, 1990; Liew et 

a l,  1990).

Interaction of primed macrophages from resistant mice, which express a highly 

selective group o f peptides, with T cells leads to the production o f IFN-y and TNF-a. 

The infected macrophages will in turn also start to produce TNF-a, thus establishing 

an autocrine / paracrine TNF-a loop that drives the macrophage to full activation. It is 

important to point out that macrophages harbouring live parasites in lesion-derived 

tissue express a low level o f MHC class II molecules (Overath and Aebischer, 1999). 

It has been reported that after in vitro infection with L  major, macrophages had a 

greatly reduced capacity to present both L. major-dQnved and unrelated antigens such 

as OVA or p-galactosidase (Fruth et al, 1993). Therefore, Leishmania infection 

interferes with the intracellular loading of MHC-II molecules with antigenic peptides. 

Similar conclusions can be drawn from experiments with murine macrophages 

infected with L. amazonensis amastigotes (Prina et al., 1993).

Several groups of researchers have suggested that amastigotes of several Leishmania 

species within PV lead to internalization and degradation of MHC class II molecules 

(De Souza et a l, 1995), suppression o f MHC class II synthesis (Reiner et a l, 1987), 

down-regulation o f CD80 expression (Kaye et al., 1994), and /or partial inhibition of 

antigen processing / peptide loading in the host cell (Fruth et a l,  1993; Prina et a l, 

1993). In contrast, macrophages infected with promastigotes present endogenous 

parasite molecules to CD4^ T cells, although only for a limited time, with maximal 

presentation occurring within 24 h and decreasing to minimal antigen presentation at 

72 h post infection (Kima et a l, 1996). Thereby, Leishmania interferes with antigen 

presentation, and thus might impair recognition of infected macrophages by T cells.
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13.2.1.2. Dendritic cells

Dendritic cells (DCs) belong to a family of bone marrow derived APCs and have an 

exquisite capacity to interact with T cells and modulate their responses. DCs are 

found in most non-lymphoid organs, including the epidermis and mucosa, where they 

are called Langerhans cells (LCs) and are present in the T cell areas of all lymphoid 

organs, where they are called interdigitating DCs (Roitt et al., 1996). The relationship 

between DC populations was partly unravelled by the observation that LCs from skin 

can migrate to secondary lymphoid organs, via the blood or lymph, bringing antigens 

to naive T cells from peripheral sites from which the latter are excluded (Moll et al., 

1995).

Following inoculation of metacyclic promastigotes by an infectious sandfly bite, the 

local inflammatory response leads to migration of LCs through the epidermal-dermal 

layer and to phagocytosis of the parasite in the dermis (Blank et al., 1993). The 

parasite will be captured by the attachment of LPG on the surface of the parasite to 

the LCs’ complement receptor (CR3). It has been reported that mannose receptors of 

DCs may be involved in the antigen capturing (Sallusto et al., 1995) but this receptor 

appears not contribute to uptake of parasites by LCs (Moll and Flohe, 1997).

Infected LCs transport parasites from the skin to the draining LNs, which can be 

detected as early as 24-48 hours after infection (Moll et al., 1993). They acquire a 

heightened ability to present antigenic peptides to T-cells (Xu et al., 1995). This is 

accompanied by drastic changes in cell morphology, motility, and expression of high 

levels of MHC class II molecules and rapid up-regulation of the expression of co­

stimulatory molecules (B7-1 and B7-2) (Inaba et al., 1994; Larsen et al., 1994), which 

results in a marked increase in the ability of DCs to activate T cells. This process is 

variously termed maturation or activation.

LCs play a crucial role in the induction of the immune response in early L. major 

infection because only infected LCs are able to carry parasites from the infected skin 

to the draining LN for primary antigen presentation to T cells (Moll et al., 1993). 

After healing of the lesion, DCs of the lymph node have the capacity to present very 

low amounts of Leishmania antigen to specific T cells (Moll et al., 1995). LCs take up 

small numbers of promastigotes which do not differentiate into amastigotes but be 

degraded whereas macrophages internalize large numbers of promastigotes into the 

PV where they differentiate into amastigotes (Konecny et al., 1999). In contrast to 

macrophages, the Leishmania infected LC is unable to release NO, an important
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molecule for killing the parasite and cannot be induced to express the cytokine-iNOS 

(Blank et al., 1996).

LCs infected with promastigotes up-regulate production of EL-12 p40 in both resistant 

and susceptible mice whereas infected macrophages are unable to produce EL-12 

(Konecny et al., 1999). Thereby, LCs play a crucial role in the regulation of the 

immune response of mice infected with L. major in both early and later phase of 

infection and after cure of skin lesion in genetically resistant mice (Moll and Flohe, 

1997; Flohe et a l, 1998). Dendritic cells produce IL-12 and direct the development of 

Thl immune responses in resistant mice (Macatonia et a l, 1995; Konecny et a l,

1999).

I.3.2.2. Co-stimulatory molecules

The role of co-stimulatory signals in the nature and the amplitude of an antigen- 

specific T cell response is essential (Saha et a l, 1998). Analysis of macrophages from 

BALB/c mice infected with L. donovani revealed that the co-stimulatory molecule 

B7-1 (CD80) was decreased, but there was no change in C57BL/6 mice, which are 

resistant to Leishmania infection (Murphy et a l,  1997). After elimination of the 

parasites, however, CD80 was re-expressed, which paralleled the induction of a 

protective T cell-mediated immune response (Saha et a l, 1995).

CD86 (B70/B7-2) is an antigen of the immunoglobulin superfamily constitutively 

expressed on professional antigen-presenting cells such as monocytes, dendritic cells 

and activated B, T, and natural killer cells, while CD80 is inducible on those cells 

through CD40 ligation (Azuma et a l, 1993; Caux et a l, 1994; Larsen et a l, 1994). 

Thus, there is also a possibility that CD80 may not be sufficiently induced on APCs of 

the infected CD40-deficient mice, and may partly contribute to the induction of 

polarized CD4^Th2 responses (Larsen et a l, 1994). CD86 was recently identified as a 

second ligand for the T cell antigens CD28 and Cytotoxic T lymphocyte antigen-4 

(CTLA-4) (CD 152), and plays an important role in the co-stimulation of T cells in a 

primary immune response (Femandez-Ruiz et a l, 1995). CD86 provides signals for 

preferential induction of EL-4-secreting CD4^Th2 cells and the differences between 

usage of CD80 or CD86 relevant for the development of CD4^ Thl or CD4^ Th2 

response, respectively (Freeman et a l, 1995; Kuchroo et a l, 1995). Prolonged
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treatment of both C57BL/6 and BALB/c mice with antibody to CD86 but not to 

CD80, decreased parasite burden and decreased the production of CD4^ Th2 

cytokines (Brown et al., 1996b). Anti-CD86 mAb did not interfere with the early T 

cell activation, since the treatment on day 3 post-infection was as effective as 

beginning it on the day of infection (Muiphy et ah, 1997). Both CD80 and CD86 

interact with CD28 and CD 152 which are expressed on T cells. The binding affinity 

of CD 152 to CD80 and CD86 molecules, however, is significantly higher than that of 

the CD28 molecule. In contrast to CD28, CD 152 plays a role in the negative 

regulation of cell activation (Krummel and Allison, 1995; Walunas et al., 1994). 

Experiments using knockout mice indicated that co-stimulation through CD28 plays 

only a limited role in the development of CD4^ Thl or CD4^Th2 response to 

Leishmania. CD28-deficient and Wild Type BALB/c mice litter mates were equally 

susceptible to L. major infection. Similarly CD28-deficient C57BL/6 mice retained 

their resistance to the infection (Saha et al., 1995; Brown et al., 1996a). Treatment of 

mice with anti-CD 152 Fab-fragments ameliorated the disease in BALB/c animals but 

had no effect on the course of infection in C57BL/6 mice, suggesting that CD 152 

plays a significant role in the modulation of the immune response, mainly in 

susceptible mice. Since the same effect was also observed in CD28-deficient mice, it 

is likely that the effect of CD 152 on the course of infection is not dependent on 

CD28-mediated pre-activation. The observed amelioration of the disease was found to 

be associated with an increase in the number of cells secreting EFN-y as well as 

increased parasite-specific responses (Corry et al., 1994; Saha et al., 1998). A single 

dose of anti-CD 152 mAb injected on day 1 of infection significantly decreased the 

parasite burden in infected BALB/c mice (Murphy et al., 1998).

I.2.2.3. Cytokine determinants that shape the development of Th cells

T helper lymphocytes (CD4^ Th cells) can be divided into two distinct subsets of 

effector cells based on their functional capabilities and the profile of cytokines they 

produce. The CD4^Thl secretes cytokines usually associated with inflammation, such 

as EnSl-y and TNF-a and induces cell-mediated immune responses. The CD4^ Th2 

subset produces cytokines such as EL-4 and is associated with humoral-type immune
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responses (Abbas et a l, 1996; Constant and Bottomly, 1997). It is possible that CD4^ 

Th cells are involved in eliminating many pathogens, where a balance of both 

regulated cell-mediated immunity and an appropriate humoral response will eradicate 

an invading pathogen with minimum immunopathology (Sher and Coffman, 1992; 

Romagnani, 1994; Kelso, 1995). Most naive T cells have potential to mature into 

either CD4^ Thl or CD4^ Th2 subset and that critical role of cytokines to which the T 

cells are exposed at the time of priming mediate this differentiation (Mosmann and 

Coffman, 1989). Seder and colleagues (1992) reported that IL-4 has an important role 

for mediating Th2 development, while IL-12 (Trichieri, 1995; Romani et al., 1997) 

and EFN-y were described to have a critical role for Thl development and that both 

sets of cytokines are reciprocally active (Tanaka et al., 1993; Hsieh et al., 1995). With 

respect to the role of IL-4 in mediating both susceptibility and Th2 cell differentiation, 

it was shown that, in contrast to resistant C57BL/6 animals, BALB/c mice exhibited a 

burst of IL-4 mRNA in CD4^ T cells in the draining lymph node as early as 16 hours 

after subcutaneous infection with L. major promastigotes (Launois et al.,1995). The 

precursor CD4^ Th cell differentiates to a CD4^ Th2 cell in the presence of EL-4 at the 

initiation of an immune response (Swain et al., 1990; Seder and Paul, 1994). The 

effects of EL-4 in inducing CD4^ Th2 cell development are dominant over CD4^Thl 

polarizing cytokines (Hsieh et al., 1993; Seder and Paul, 1994). Therefore, in the 

presence of EL-4 at the beginning of an immune response, Th2 cells differentiate, 

progressively leading to increasing level of EL-4.

Several candidates that may be responsible for EL-4 production early in CD4^ Th2 

differentiation include:

i) Major histocompatibility complex (MHC) class Il-restricted CD4+ T cells 

(Constant et al., 1995; Hosken et al., 1995).

ii) NKl T cells that have the unique potential to very rapidly secrete large 

amounts of cytokines, providing early help for effector cells and regulating the 

Thl or Th2 differentiation of some immune responses (Bendelac et al,, 1997).

iii) Leishmania homologue of receptors for activated C kinase (LACK) specific 

CD4-f T cells expressing VB4, VB8 TCR (Julia et al., 1996).

iv) Non-T cell sources, such as mast cells, basophils, and eosinophils (Paul et al.,

1993).
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Several groups of researchers reported that the requirement for IL-4 in mediating both 

Th2 differentiation and susceptibility of mice to L. major was directed toward the 

early IL-4 produced in vivo (Sadick et al., 1990; Locksley and Scott, 1991; Scott et 

al, 1996).

It was suggested a critical role is played by NK1+ T cells in Th2 differentiation as a 

result of their ability to produce large amounts of IL-4 rapidly upon activation both in 

vitro and in vivo with anti-CD 1 antibody (Bendelac et a l, 1997). However, Smiley 

and colleagues (1997) reported that EL-4-secreting NK-like T cells are not required for 

Th2 responses. Thus, the precise role of NK1+ T cells in the development of Th2 

responses remains unclear.

The role of LACK-specific T cells in the development of a dominant Th2 response to 

L, major infection in BALB/c mice was demonstrated when mice were rendered 

unresponsive to LACK (Julia et a l, 1996). Due to expression of LACK as a 

transgene, BALB/c mice were made tolerant to this antigen and developed a reduced 

Th2 response and developed a protective Thl response when infected with L. major 

(Julia et a l, 1996).

Julia and Glaichenhaus, (1999) reported that in both the genetically susceptible and 

resistant mice to L. major, T cells, which react to the LACK antigen, produce EL-4 

rapidly and the production in resistant mice did not confer susceptibility but resulted 

in increased parasite burdens. Malherbe and colleagues (2000) reported that the T 

cells activated by LACK antigen from susceptible and resistant mice expressed low- 

and high-affinity TCR, respectively. Therefore, it has been suggested that differences 

in TCR usage between MHC in susceptible and resistant mice may influence the 

development of the antiparasite immune response (Malherbe et a l, 2000).

Non-T cells may also play a role in the initiation of Th2 responses against some 

pathogens in specific tissues, since mast cells, basophils, and eosinophils can produce 

cytokines such as EL-4 (Paul et a l, 1993).

1.3.2.4. Development o f CD4^ T helper cell subsets

The essential event that leads to Thl differentiation in mice infected with Leishmania 

spp. is the production of EL-12 within 24 hours of infection and this constitutes the 

most effective form of innate immunity (Coffman and von der Weid, 1997). The
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specific immune response of naive T cells to the parasite is initiated by EFN-y and EL- 

12 production. Thus, the effector functions of the innate response that are most 

important for the control of the pathogens are conserved in the subsequent antigen 

specific T cell response.

Although, the source of production of the initial EL-4, which is essential for CD4"  ̂Th2 

differentiation, is not so clearly defined, T cells themselves can be the source of EL-4 

that leads to their own Th2 development, and EL-6 is a potent inducer of this EL-4 

(Rincon et al., 1997). Studies with LACK showed that L. major infected BALB/c 

mice make a strong early (6 days) Th2 response to LACK, although the response of 

the same mice to several other L. major antigens was predominately Thl-like 

(Mougneau et al., 1995; Julia et a l, 1996). Analysis of mRNA transcription for 

various cytokines showed draining lymph node cells from BALB/c mice infected with 

L. major contained elevated transcripts for EL-4, but not for EFN-y. In contrast, 

resistant C57BE76 mice expressed transcripts for EFN-y, but not transiently for EL-4 

(Locksley et al., 1987). In BALB/c mice, the expression of EL-4 mRNA remained 

elevated over time, whereas in C57BL/6 mice the IL-4 response returned to 

background levels after the initial phase of the infection (Henizel et at., 1989). These 

and other studies (Reiner and Locksley, 1995) emphasised the ability of CD4^ T cells 

to shape the immune response and the phenotype of the murine disease.

The ability of cytokines to stimulate different effector mechanisms and thus 

differential immune responses, is also reinforced by the production of cytokines by 

each subset, which cross-regulate each other’s function as well as development. For 

example, EFN-y production by Thl cells inhibits the development of Th2 cells (Fitch 

et al., 1993) as well as humoral responses, whereas the production of EL-4 and EL-10 

by Th2 cells inhibits Thl development and activation, as well as macrophage 

activation and bacteriacidal activity (Sher and Coffman, 1992; Moore et al., 1993).

In resistant mice Leishmania stimulaties active APCs and subsequently NK cells of 

the innate immune response to produce IL-12 and IFN-y (Hsieh et al., 1993; 

Trinchieri, 1995), which then drive the development of CD4^ Thl cells from naive 

antigen-specific CD4^ Th cells. This type of innate immune response is appropriate 

for the eradication of microbial pathogens (Sher and Coffman, 1992; Trinchieri,

1995).
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Several groups of researchers demonstrated that ligation of CD40 by the CD40 ligand 

{Celia et al., 1996; Koch et al., 1996) and / or MHC class II (Koch et ah, 1996) on 

dendritic cells can induce the production of high levels of IL-12. Both IL-4 and EL-10 

have the ability to inhibit both dendritic cell (Macatonia et al., 1995; Koch et al.,

1996) and macrophage (D’Andrea et al., 1993; Hsieh et al., 1993; Murphy et al.,

1994) EL-12 production and thus inhibit the development of Thl cells. IL-12 directs 

Thl development from antigen-stimulated naive CD4+ T cells (Hsieh et al., 1993; 

Manetti et al., 1993; Trinchieri, 1995).

I.3.2.4.I. Cytokine-induced CD4^ T h l development

Recovery from cutaneous lesions that was seen in mice following local inoculation 

with L. mexicana (Stamm et al., 1998) or L. major (Heinzel et al., 1991; Scott et al., 

1988) in genetically resistant mice such as C3H/HeN and C57BIV6 strains was 

associated with the expansion of the CD4^ Thl subset and production of cytokines 

such as EL-12, IFN-y, and EL-2. On the other hand, genetically resistant mice lacking 

EL-12 (Mattner et al., 1996; Mattner et a l, 1997) or IFN-y (Wang et ah, 1994) 

defaulted to a Th2-like response and were highly susceptible to cutaneous L. major 

infection. Interestingly, EFN-R-deficient 129/Sv/Ev mice were also susceptible to L. 

major, but did not develop a CD4^Th2-like response (Swihart et al., 1995). The 

susceptible mice lacking EFN-R defaulted towards a CD4^Thl-like response implying 

that IFN-y, although important in resistance to L. major, was not necessary for a 

CD4Urh 1-like response and that IL-12, instead, may be the critical cytokine 

responsible for CD4^ Thl cell development. Previous studies have clearly 

demonstrated that protective immunity against the L. mexicana complex, which 

includes L. mexicana and L. amazonensis, is ultimately dependent upon generation of 

a CD4^ Thl-like response and EFN-y production (Satoskar et al., 1995; Afonso and 

Scott, 1993; Guevara-Mendozaera/., 1997).

Non-infective promastigotes taken from the logarithmic phase of the promastigote 

cultures were good inducers of IL-12, IFN-y, TNF-a, and EL-10 production, whereas 

infective parasites from the metacyclic phase were poor inducers of EL-12 (Sartori et 

al., 1997). Both stages of parasites were inhibitory for IL-12 production induced by
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Staphylococcus aureus (Sartori et al, 1997) or IFN-y / LPS (Carrera et al., 1996). EL- 

12 secretion was suppressed by infected macrophages with amastigotes of L. 

mexicana', the parasites also inhibited XL-12 secretion inducible by phagocytosis of 

latex beads, CD40 cross-linking or cognate interaction with Thl cells (Weinheber et 

al., 1998). However, treatment with recombinant IFN-y failed to promote Thl cell 

expansion and cure L. major infection in susceptible BALB/c mice (Sadick et al.,

1990).

IL-12 plays a critical role for the development of Thl-like CD4^T cell responses 

following L. major infection in resistant mice (Mattner et al., 1996) and treatment of 

susceptible BALB/c mice with rIL-12 cures cutaneous L, major infection (Heinzel et 

al., 1993). Furthermore anti-EFN-y Ab had no effect on EL-12-induced CD4^Thl cell 

differentiation in vitro (McKnight et a i, 1994), whereas addition of rEL-12 during 

specific priming of CD4^ Th cells from transgenic mice expressing an Ag-specific 

TCR-resulted in the development of the CD4^ Thl-like phenotype (Seder et a l,

1993). Previous studies using the L. major model have indicated that genetic 

susceptibility of BALB/c mice to L. major is due to a loss of the ability to generate an 

IL-12-induced CD4^ Thl-like response (Launois et al., 1997).

Nonetheless, EL-4-deficient C57BL/6 x 129/Sv mice develop a CD4^ Thl-like 

response, as measured by an increase in EFN-y production, and cured L. mexicana 

infection (Satoskar et at., 1995). The role of EFN-y in the development of a CD4^Thl- 

like response and resistance to L. major are based upon observations that impaired 

CD4^ Thl-like responses followed treatment of genetically resistant C3H/HeN mice 

with anti-EFN-y antibody (Belosevic et al., 1989). In addition to its ability to down- 

regulate XL-12 and IFN-y production, IL-4 has been shown to inhibit also the 

production of the inflammatory cytokines IL-1 and TNF-a from macrophages (Hart et 

at., 1989). TNF-a plays a protective role in immunity against L. major infection 

(Liew and O'Donnell, 1993). For example, lymph node cells from mice resistant to L. 

major produce high level of TNF-a when stimulated in vitro, whereas cells from 

susceptible strains under the same conditions induce macrophages in the presence of 

EFN-y to increase nitric oxide production (Liew et al., 1990). Nashleanas and 

colleagues (1998) showed that mice deficient in both TNF-a receptors, p55 and p75, 

were able to control L. major infection, but failed to resolve lesions. Although a low 

level of TNF-a led to parasite killing (Titus et al., 1989), the role of the p75 TNF-a
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receptor was not found to be essential in L, major infection. Therefore, the p55 

receptor may be required for optimal macrophage activation (Nashleanas et al., 1998). 

In addition, IL-4-deficient mice infected with L. major displayed similar levels of 

TNF-a transcripts to wild-type mice (Kopf et al., 1996; Noben-Trauth et al., 1996). 

Although IL-2 production has often been associated with a CD4^ Thl phenotype, the 

production of this cytokine cannot be classified as a hallmark of CD4'*’Thl cells, since 

naive CD4'*' T cells as well as ThO cells (described below) also produce IL-2 in 

response to antigenic stimulation (Sher and Coffman, 1992; Romagnani, 1994; Abbas 

etal., 1996).

I.3.2.4.2. Cytokine-induced CD4^ Th2 development

Non-healing responses in susceptible BALB/c mice have been related to the 

expansion of the CD4^ Th2 cell subset and the production of cytokines such as IL-4 

and EL-10 (Heinzel et al., 1991; Scott et al., 1988). The disease-exacerbating role of 

EL-4 has been shown to be due to its ability to inhibit macrophage leishmanicidal 

activity and down-regulate the development of a C D 4^hl-like response (Sher and 

Coffman,1992; Oswald et al., 1992). It was found that genetically susceptible mice 

lacking EL-4 are protected from cutaneous infection with L. major (Kopf et al., 1996) 

as well as L. mexicana (Satoskar et al., 1995; Satoskar et al., 1997). However, other 

studies suggest that the inability of the host to generate an EL-12-initiated CD4^ Thl- 

like response and produce IFN-y rather than the induction of a Th2-like response and 

IL-4 production may be the crucial factor in determining susceptibility to L. major 

(Güler et al., 1996), L. amazonensis (Afonso and Scott, 1993), and L. mexicana 

(Guevara-Mendoza et al,, 1997).

The proposed mechanisms underlying the development of non-healing lesions in 

genetically susceptible mice following L. major infection have included the presence 

of an EL-4-driven Th2-like response suppressing Thl cell development (Chatelain et 

al., 1992; I^al et al., 1993) and a failure to produce EL-12 (Carrera et al., 1996; 

Reiner et al., 1994) and thereby mount an EL-12-induced CD4^ Thl-like response 

(Güler et al., 1996). Tanaka and colleagues (1993) reported that the production of EL- 

2 and EFN-y by CD4+ T cells and EFN-y production by CD8+ T cells were strikingly
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inhibited by culture in the presence of IL-4. Studies in EL-4-deficient BALB/c mice 

have shown that the lymph node cells produced little or no EFN-y and low levels of 

IL-4 following L. amazonensis (Afonso and Scott, 1993) and L. mexicana infection 

(Guevara-Mendoza et al., 1997; Satoskar et al., 1995). EL-10 is important for 

inhibition of monocyte-macrophage activation, and inhibits production of TNF- a, IL- 

1 and also EFN-y from lymphocytes acting at the level of accessory cells (D Andrea et 

al., 1993). IgGl production has also been shown to be regulated by, although not 

completely dependent upon, IL-4 and EL-4 signalling (Snapper and Paul, 1987). It has 

been reported that EL-4 signalling is also important in antibody class switching to 

IgGl following L. mexicana infection, whereas the IgE and IgGl isotypes are 

associated with the development of a Th2-like response, switching to the IgG2a 

isotype has been shown to be increased during Thl-like responses (Snapper and Paul,

1987).

L. major infection together with salivary gland lysates from P. papatasi showed an 

up-regulation of the Th2-like response and down-regulation of the Thl-like response 

in BALB/c mice. Interestingly, the saliva contents are able to inhibit oxidative 

metabolic processes and antigen presentation by macrophages in vitro (Theodos et al.,

1991).

I.3.2.5. Intracellular killing mechanisms:

It has been reported that less than 30 minutes after phagocytosis of promastigotes of 

L. mexicana or L. donovani, the PVs are acidified and reached pH 5 (Sturgill- 

Koszycki et al., 1994). In addition, the PVs acquire the lysosomal glycoproteins 

enzymes, macrosialin, and lysosomal-associated membrane proteins LAMP I and 

LAMP II within 2 hours post infection (Solbach and Laskay, 2000), Within 5-24 

hours post infection, acidic hydrolases and MHC class II molecules are acquired 

(Lang et al., 1994).

Leishmania spp. are exposed to two major effector mechanisms within PV of 

macrophages, reactive oxygen intermediates (ROI) and reactive nitrogen 

intermediates (RNI) (Murray and Nathan, 1999). Both neutrophils and macrophages 

produce superoxide (O2) using the NADPH oxidase pathway. Although superoxide
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production is the major anti-leishmanial effector mechanism o f neutrophils, this 

pathway may not be necessary for the killing o f the parasite within infected 

macrophages (Assreuy et al., 1994). Leishmania have developed mechanisms to avoid 

killing by O2 since the capacity of infected macrophages to produce oxygen radicals 

was significantly decreased after stimulation with phorbol esters (Passwell et al.,

1994). It is possible that LPG on the membrane o f Leishmania mediates this activity 

by inhibiting the activation of protein kinase C. NO is formed through the oxidation 

of the terminal guanidino nitrogen atom(s) of L-arginine by an NADPH-dependent 

enzyme (Assreuy et al., 1994).

In a study o f mice with the inducible nitric oxide synthase (lNOS) gene knockout, it 

was found that iNOS was required for the Thl-dependent healing of infections with 

intracellular microorganisms including Leishmania. At day 1 of infection, genetic 

deletion or functional inactivation of iNOS abolished the IFN-y and NK response, 

increased the expression of TGF-B, and facilitated the spread of the parasite from the 

skin and lymph node to the spleen, liver, bone marrow, and lung. Induction of type 2 

nitric oxide synthase (NOS2), also known as iNOS was dependent on IFN-a/B 

(Diefenbach et al., 1998).

The role o f TNF-a and its receptors for control of L. major infection is less clear. 

Undoubtedly, TNF-a participates in the induction of macrophage activation leading to 

parasite elimination (Nacy et al., 1991). IFN-y activation of macrophages from TNFR 

p75'^' animals resulted in NO production and parasite killing (Vieira et a l, 1996; 

Nashleanas et al., 1998). These results show that the TNFR p75 plays no essential 

role in murine L. major infection and that a mechanism exists by which macrophages 

can be primed in vivo to produce NO and kill L. major in the absence of signalling 

through either of the TNF-a receptors.

The killing of L. major by IFN-y-treated murine macrophages is attributable to NO 

and the enzyme producing it (Ding et al., 1988; Green et al., 1990). The molecular 

mechanism o f the action o f NO on Leishmania is unknown so far, early data 

suggested that NO is directly cytotoxic to L. major (Liew et al., 1990). In mice, 

resistance to Leishmania was clearly associated with the expression of iNOS and 

required the continuous presence of iNOS activity (Stenger et al., 1994). The NO- 

pathway appears to be a common mechanism o f Leishmania killing since not only 

murine but also human monocytes / macrophages were able to control L. major in a
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in a NO-dependent manner (Vouldoukis et ah, 1995). Murray and Nathan (1999) 

suggested that ROI and RNI probably act together especially in the early stage of 

leishmaniasis.

LPG and glycoinositolphospholipids (GIPLs) (glycolipids related to LPG) from L. 

major as well as intact L. major promastigotes strongly suppressed iNOS-activity 

when the interaction between the macrophages and Leishmania preceded the 

stimulation of macrophages by EFN-y (Proudfoot et ah, 1996). When, however, 

Leishmania and IFN-y were added simultaneously to macrophages, GIPLs and LPS 

synergized with IFN-y resulting in an increased production of NO (Proudfoot et al.,

1995). Therefore, Leishmania inhibits iNOS activity in the early stages of infection 

(i.e., when the parasites enter macrophages before the production of T-cell-derived 

macrophage-activating cytokines, such as IFN-y). In later stages of infection, 

however, Leishmania cause an increased iNOS production. In accordance with this 

presumption, high iNOS RNA levels were found in chronic, nonhealing lesions of 

mice infected with L. major (Nabors et a l, 1995). Therefore, local production of NO 

is a crucial mechanism for the elimination and control of parasites, but only if it 

occurs before the parasite burden becomes too high. From then on, elevated 

production of NO aggravates the inflammatory process (Giorgio et al., 1998).

1.3.2.6. Mechanisms of survival of Leishmania

I.3.2.6.I. Contribution of surface membrane molecules to survival o f the parasite 

within the PV

There are a number of surface membrane molecules that protect Leishmania spp. from 

the host immune response and increase their activity. The two most important 

molecules are LPG and gp63 (Alexander and Russell, 1992).

LPG is an abundant molecule, which is expressed much more on the surface of the 

promastigote than the amastigotes (Bogdan, 1997). LPG inhibits the phagosome- 

endosome fusion in the macrophage after invasion of the promastigotes (Desjardins 

and Descoteaux, 1997) and reduces endothelial adhesion and transendothelial 

migration of monocytes (Ho et al., 1996; Lo et al., 1998). This temporary inhibition
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of filsion of phagosome-endosome allows time for the promastigotes of L. major to 

begin to differentiate into the amastigote stage (Bogdan, 1997) which is better adapted 

to the enzymes and the acidic pH of the PV (Antoine et al., 1990).

The LPG plays an essential role in the attachment of promastigotes to host cells 

(Handman and Goding, 1985), and protection from digestion within the 

phagolysosome (Eilam et al., 1985; Handman et al., 1986). Studies with LPG showed 

that this molecule binds to the complement fragments and protects the parasite from 

complement-mediated lysis (Beverley and Turco, 1998). LPG aids the parasite entry 

into the host macrophage and protects the parasite from attack by reactive oxygen 

intermediates (ROIs) (Turco and Descoteaux, 1992; Beverley and Turco, 1998). 

Although a crucial role of LPG for the promastigote stages of Leishmania has been 

reported, its importance for the disease-causing amastigote stage in the mammalian 

host is less clear. Amastigotes of L. donovani and L. mexicana do not express LPG 

(McConville and Ralton, 1997).

Interestingly, although several groups of researchers emphasised that LPG is 

commonly regarded as a multifunctional Leishmania virulence factor required for 

survival and development of this parasite in macrophage. Ilg (2000) demonstrated that 

LPG, at least in L. mexicana, is not a virulence factor in the mammalian host.

Another important surface molecule that has been found abundant on the surface o f 

promastigotes is gp63. Several groups of researchers has been reported that gp63 

protects parasites within the PV of macrophages at acidic pH (Alexander and Russell, 

1992; Ilg et al., 1993; Seay et al., 1996), and is required for in vivo virulence 

(McMaster et al., 1997). Bogdan and Rollinghoff (1998) showed that gp63 has 

protease activity and inhibits the activity o f lysosomal enzymes. As mentioned before, 

gp63 has the ability to bind to complement receptors on the surface of macrophages 

(in the absence or presence o f complement fragments) and aids entry of the parasite 

into the host macrophages (Alexander and Russell, 1992; Bogdan and Rollinghoff,

1998). In amastigotes, gp63 was found within the flagellas pocket, whereas the 

expression of gp63 on the surface membrane was very weak (Bogdan and 

Rollinghoff, 1998). The proteolytic activity of gp63 is in the highest at acidic pH, and 

protects the parasite from intra-phagolysosomal degradation (Ilg et al., 1993; Seay et 

al., 1996).

Other outer membrane molecules have been identified but poorly described. These 

molecules may contribute to survival of parasites within PV and include GIPLs, non­
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inositol containing glycosphingolipids (GSLs), and protein kinase C (PKC) (Bogdan 

and Rollinghoff, 1998).

1.3.2 7. Suppression of the synthesis of anti-leishmanial molecules:

The two main antimicrobial effector mechanisms active against Leishmania include: 

ROI and RNI.

ROIs are highly toxic molecules and are thought to constitute an essential part of the 

defence mechanisms used by phagocytes to destroy invading parasites (Hughes,

1988). Ingestion of parasites by phagocytes usually activates the respiratory burst, 

which is characterized by increased oxygen uptake. NADPH oxidase in the 

phagosome membrane adds electrons to oxygen molecules. Thus, oxygen molecules 

are changed into reactive toxic molecules including superoxide (O2'), hydrogen 

peroxide (H2O2), hydroxyl radical (HO), and singlet oxygen (O2) (Robinson and 

Badway, 1994; Rosen et al., 1995). Murray (1982) demonstrated that the active 

generation of toxic oxygen intermediates including O2 and H2O2 play a crucial role in 

the eradication of the majority of ingested promastigotes.

LPG may protect the invading promastigotes against macrophage phagolysosome 

hydrolases (Turco and Descoteaux, 1992). The LPG down regulates protein kinase C 

(PKC) activity by inhibition o f the translocation o f the enzyme from the cytosol to the 

inner layer of the plasma membrane, which is a key requirement for the oxidative 

burst (Desjardins and Descoteaux, 1997).

Although ROIs are involved in intracellular killing, NO plays a crucial role in 

eradication o f Leishmania (Liew et al., 1990). NO is formed by at least three different 

iso forms of NOS, which convert L-arginine and molecular oxygen to L-citrulline and 

NO or NO metabolites (NO2 or NO3). LPG has a strong effect on the survival of 

amastigote of Leishmania by down-regulating the expression of iNOS in macrophages 

(Proudfoot et al, 1996).

Proudfoot and colleagues (1995) reported that GIPLs of L. major inhibit the 

induction of iNOS in macrophages in the presence of IFN-y and reduce leishmanicidal 

activity in murine macrophages. However, LPG and gp63 could be important for 

promastigote survival in the sandfly, there were no apparent correlation between LPG,
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at least in L. mexicana (Ilg, 2000), and gp63 (Camara et al., 1995) expression and 

promastigote survival in the macrophage. Therefore, in spite of the fact that LPG, 

gp63 and GIPLs are the most abundant molecules expressed on the surface of 

Leishmania, they are probably not the only modulators of the host defence machinery 

(Bogdam and Rollinghoff, 1998) which could influence the survival o f the parasite.

1.4. Vaccines

Vaccination is the induction or modulation of an antigen-specific immune response to 

prevent or cure the target disease. The term “antigen-specific” is essential for 

distinguishing vaccination from non-specific immune modulation. Most attempts to 

develop a vaccine against a parasite, either on pragmatic grounds or by identifying 

protective antigens have been unsuccessful, because parasites induce a complicated 

immunological processes (Cox, 1997). However, as individuals recovered from 

clinical leishmaniasis develop strong immunity against reinfection, it suggested that 

vaccination against leishmaniasis is feasible in principle (Liew and O'Donnell, 1993).

1.4.1. Summary of the history of vaccination

Vaccination was bom more than 200 years ago at a time when immunology was 

unknown and the concept of disease caused by transmission of microbes was not 

generally accepted. On June 21, 1798, Edward Jenner reported successful vaccination 

against smallpox using cowpox material (Hilleman, 1999). Before Jenner, the 

(ancient) Chinese inoculated pus from smallpox patinas in order to prevent severe 

natural smallpox. This knowledge was introduced into Europe in the early eighteenth 

century and during the nineteenth century, cowpox vaccination became a worldwide 

practice. Louis Pasteur, who set about attenuating microbes in the laboratory, further 

pursued this strategy of using attenuated viable microbes as vaccines. He successfully 

attenuated anthrax bacilli by means o f in vitro passages. It was Pasteur who, in honour
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of Jenner, generalized the term “vaccination” from the use of cowpox (vaccinia) to 

include similar strategies for controlling other infectious diseases (Hilleman, 1999). 

Pasteur’s emphasis was on the microbial agents, with less attention paid to the host’s 

immune response.

Louis Pasteur and Emil Von Behring clearly considered the therapy of infection an 

important aspect of vaccination. The rabies vaccine o f Louis Pasteur, as well as the 

tetanus and diphtheria vaccines of Behring, were aimed at preventing the disease in 

individuals who were already infected. However, in later times the concept of 

therapeutic vaccination became less attractive, and vaccination was considered to be 

primarily preventive, i.e., vaccination was used to induce a primary immune response 

in naive individuals.

1.4.2. Immunology of vaccination

As mentioned before, protective immunity in leishmaniasis depends on a cell- 

mediated immune response and not on antibodies. Moreover, whether resolution or 

progression of the disease ensues in humans and animal models depend on which 

subtypes of T lymphocytes are stimulated. CD4^ Thl and CD8^ T cells, through their 

secretion o f IL-2 and IFN-y, lead the response towards cell-mediated immunity 

involving macrophage activation, whereas CD4"  ̂Th2 cells, through their products, IL- 

4 and IL-10, lead to antibody production. The two poles are counter-regulatory in that 

IFN-y inhibits antibody formation and IL-4 and IL-10 inhibit macrophage activation 

(Cox, 1997).

Therefore, it is reasonable to accept that vaccination against Leishmania should be 

through the activation of CD4^ Thl as effectors of vaccine-induced protection. It was 

previously described that T cells do not act directly and recognise antigen only after 

processing. This means that the parasite has already infected host cells, typically 

APCs, which serve as their major habitat. Consequently, whether certain antigens 

functions as preferred targets for T lymphocytes remains to be established. In the 

following, we will consider T cells as major mediator of vaccinations against 

Leishmania and follow the concept that full protection is best achieved by a
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combination o f different T cell populations that interact in a tightly controlled 

network. Moreover, it is important to consider the different T cell combinations to be 

activated by pre-infection vaccine.

1.4.3. Progress toward Leishmania vaccines

The current studies and the future prospects for a Leishmania vaccine are focused on 

the five types of vaccine including: live promastigotes Wild Type, attenuated 

promastigotes. Killed promastigotes, subunit vaccines based on Leishmania specific 

molecules, and DNA vaccines. Each o f these types of vaccine has some advantages 

and disadvantages.

1.4.3.1. Live virulent promastigotes

Vaccination with live Leishmania parasites to produce self-healing lesions at an 

inconspicuous site has been practised for a long time in the Middle East. This method 

induces resistance in at least 70% of the individuals treated, but serious clinical 

complications associated with the live vaccine emphasise the need for an attenuated or 

defined vaccine against cutaneous leishmaniasis (Liew et al,, 1993). The isolation of 

virulent Leishmania that protectively vaccinated mice against infection showed that 

an attenuated vaccine was possible (Handman et al., 1990), although, increased 

knowledge of the real hazards of the live organisms, such as persistence in the 

immune host, led to the cessation o f using o f the live virulent parasite (Modabber, 

1990). The advantage of the viable vaccine is that parasites can exist intracellularly in 

the macrophages and evade the consequences of host’s immune attacks. The result is 

that the parasite can survive in the mammalian host for a long time and causes a 

chronic disease, with unsuccessful immunological response (Liew, 1989). There are 

some disadvantages that made this approach unacceptable (Handman et. al., 1990).
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1.4.3.2. Live attenuated promastigotes

The generation of attenuated viable vaccine strains of Leishmania using genetic 

manipulation has made it possible to produce stable avirulent mutants that still induce 

an immune response but which have lost the capacity to cause disease in an immuno­

competent host.

The successful production of an attenuated line of L. mexicana mutants lacking 

cysteine proteinase (CP) genes cpa and cpb {IScpa/cpb) but which could limit lesion 

and parasite growth in BALB/c and C57BL/6 mice has been designed (Mottram et al., 

1997). L. mexicana txcpa/cpb are candidates for attenuated live vaccines (Alexander 

et aL, 1998). The vaccine potential o f L. major dihydrofolate reductase / thymidylate 

synthetase knock out (DHFR/TS“), which is avirulent in mice, has recently been 

studied in mice (Titus et aL, 1995).

One of the advantages of attenuated lines of Leishmania is that the parasite can 

survive in the mammalian host for a long time, without any pathogenicity and induces 

an immunological response. The parasite persisting for a long time induces long term 

memory in the process known as concomitant immunity (Aebischer et aL, 1993). An 

unfortunate feature o f this persistence is the possibility o f reactivating of disease in 

the immunocompromised individual. A vaccine should be molecularly defined and 

induce long term memory in the absence o f persistent live organisms. (Handman, 

1997).

Other disadvantages include the complicated and high price o f production and 

logistics o f delivery for large-scale vaccination (Handman, 1997). Attenuated 

Leishmania vaccine strains retain the inherent risk of causing disease in severely 

immunodeficient individuals, underlining the mutual impact of pathogen and host 

immune response on virulence.

I.4.3.3. Killed promastigotes

Unlike many other parasites, Leishmania can be easily grown in cell-free media. This 

simple cultivation and the use of killed parasites as skin-test antigen (leishmanin) for
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diagnosis in humans during the past decades has prompted scientists to try using the 

killed parasites, with or without adjuvant, as vaccines or for immunotherapy 

(Modabber, 1995). There are many studies from Iran, Israel, and Soviet Union that 

indicate that controlled infection led to significant protection from re-infection.

Clinical trails of prophylactic immunization with killed promastigotes of L  major 

began in early 1940, and have shown variable rates of protection, ranging from 82% 

to no effect at all. It has been reported that immunzation with killed leishmanial 

promastigotes plus BCG induced CD4+ T cells (Castes et aL, 1994). Cabrera et aL 

(2000) found that vaccination with BCG give a strong immunity against a virulent 

strain o f L. mexicana amazonensis. It has been reported that a single dose of killed 

autoclaved L. major promastigotes (ATM) plus BCG reduced the incidence of 

cutaneous leishmaniasis among schoolchildren compared with a group receiving BCG 

alone (Sharifi et. aL, 1998).

The killed parasites are unable to invade the reticuloendothelial cells but the viable 

parasite can exist intracellularly in macrophages and evade the consequences of host’s 

immune attacks.

1.4.3.4. Subunit vaccines

Subunit vaccines have focused primarily on protein antigens, because they can be 

easily identified, isolated genes cloned and studied. There has been significant 

progress towards the identification of molecular defined vaccine candidates, specially 

the surface protease gp63, the surface antigen gp46/M2 and a related parasite surface 

antigen 2 (PSA-2) (Xu, 1995), An interesting approach with gp63, which has 

provided promising results, has been the use of live vectors. It has been possible to 

induce protection in mice against the challenge with L. mexicana by immunising with 

attenuated S. typhimurium expressing gp63 (Gonzalez et aL, 1998). Abdelhak and 

colleagues (1995) reported that recombinant BCG expressing the Leishmania surface 

antigen gp63 induces protective immunity against L. major infection in BALB/c mice. 

It has been reported that recombinant vaccina virus carrying the gp46/M-2 gene of L. 

amazonensis is able to induce a protective immunity in mice against this parasite 

(McMahon-Pratt e/a/., 1993).
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One of disadvantages o f subunit vaccines is that T-cells do not recognise non- protein 

antigen and another is the possible existence o f non-responders to single antigens in 

the genetically diverse human population (Handman, 1997).

I.4.3.5. DNA vaccines

The protective responses induced with DNA vaccines against several pathogens have 

provided the genetic vaccination as a new approach for vaccination (reviewed by 

Thighe et al., 1998). The first Leishmania vaccine delivered as plasmid DNA has 

been gp63 (Xu and Liew, 1995). It was shown that 30% of the BALB/c mice 

recovered from L. major infection, when they were vaccinated intradermally with 

plasmid DNA expressing gp63 and that dendritic cells from immunised mice were 

able to transfer protection (Walker et al., 1998).

Vaccination studies, using a DNA construct encoding the surface antigen gp46/M2 

and related PSA-2 showed that it causes reduction in lesion size and promotes healing 

in both genetically resistance C3H/He mice and susceptible BALB/c mice (Handman 

et ah, 2000). PSA-2 DNA induced a protective immunity by inducing a defined 

population of CD4^ T cells to secrete Thl-like cytokines in susceptible mice 

(Sjolander et ah, 1998).

The only other example o f DNA-induced protection in leishmaniasis is the LACK Ag. 

Generation of long-term protective immunity against leishmaniasis must induce 

memory T cells, which upon encounter with the parasite are stimulated to secrete 

protective Thl-like response cytokines (Sjolander, 1998). It has been reported that 

using a construction of a cDNA library obtained from L. major promastigotes and 

expression in E.coli, a 24 kDa protein (p24) was identified sharing homology with 

intracellular receptors for activated protein C kinase (RACK) and was designated 

LACK (Mougneau et ah, 1995),

DNA vaccines have many advantages; no adjuvant required, easy and low cost of 

production, and with long term stability. The disadvantages of DNA vaccines are 

induction of autoimmune disorders, immune complex diseases or the down-regulation 

of immune response through the induction of tolerance (Wahren, 1996).
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L e is h m a n ia  m a j o r
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2.1. Introduction

2.1.1. Leishmania
Protozoan parasites of the genus Leishmania are the causative agents o f a spectrum of 

human diseases. Leishmania has a digenetic life cycle that encompasses the 

extracellular promastigotes in the digestive tract of the parasite-transmitting insect 

vector, the sandfly, and the disease-causing intracellular amastigotes living in 

parasitophorous vacuoles (PV) of mammalian macrophages.

Some o f the components, which are very important in the pathogenesis by the 

parasite are cysteine proteinases (CPs). It was demonstrated that L. mexicana complex 

has CP activities, particularly in the amastigote stage (Coombs and Mottram, 1997), 

which contains multiple CPs of apparent size 22-28 kDa that are readily detectable 

using gelatin-SDS-PAGE (Robertson and Coombs, 1992). In addition, the stationary 

phase promastigotes which contain CPs, the majority of the CPs in the various 

Leishmania species are to a group of homologous cathepsin-L-like enzymes knows as 

CPA and CPB (Robertson and Coombs 1993). L. mexicana Acpa was generated by 

disrupting sequentially both alleles o f Imcpa using gene-targeting o f promastigotes 

with hygromycin- and phleomycin-resistance markers (Souza et al,, 1994). L. 

mexicana mutants deficient in cysteine proteinase genes cpa (Acpa) and cpb (Acpb) or 

both cpa and cpb (Acpa/cpb) have been created by targeted gene disruption (Mottram 

et ah, 1996; Frame et a l,  2000). Alexander and colleagues (1998) reported that they 

have vaccine protection.

2.1.2. Gentamicin

Gentamicin belongs to the aminoglycoside group, which was discovered by Wenistein 

in 1963 and isolated, purified, and characterized by Russell in 1964 (Chambers and 

Sande, 1996). Aminoglycosides were originally obtained fi*om various Streptomyces 

species and have similar chemical and toxic activities to commercial gentamicin 

(Chambers et a l,  1998). Gentamicin was isolated fi-om Micromonospora purpurea
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and has been used as a very effective bactericidal agent against both gram-positive 

and gram-negative bacteria (Chambers et al., 1998).

2.1.2.1, Chemical properties:

Gentamicin consists of a hexose ring, 2-deoxystreptamine, which is joined to two 

amino sugars by glycosidic linkages (Chambers and Sande, 1996) and is composed of 

three loosely related fractions: gentamicins Ci, C2 , and Cia- All fractions have similar 

molecular weights and the commercial preparation contains varying mixtures o f the 

three fractions (Figure 2.1).

HC— NH— R2 NHz

OH

/  CH, 

NH— CHjHO

R i R 2 Ra

Gentamicin C% CH3 CH3 H

Gentamicin C2 CH3 H H

Gentamicin Cia H H H

Figure 2.1, Structure of gentamicin

2.I.2.2. Mechanism of action

Gentamicin interacts with RNA molecules and any biological function involving 

RNA is a potential target of the compound. Walter and colleagues (1999) reported 

that aminoglycosides are very active towards RNA because RNA molecules are 

highly negative charged. However, the precise mechanism o f bactericidal activity of 

aminoglycosides is not yet fully understood. Some of the proposed actions (see Figure 

2.2) are follows:
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synthesis by fixing the 30-50 S ribosomal complex at the start codon (AUG) 

of mRNA (Chambers and Sande, 1996). 

ii) Misreading of mRNA during protein synthesis, resulting in either

(a) Premature termination of translation with detachment of the ribosomal 

complex and an incompletely synthesised protein.

Or

(b) Abnormal or non-functional proteins (Chambers and Sande, 1996).

mature protein

growing polypeptide ■
/ À  A 'io s

direction of

A

B

AUG,

5-

AUGi

5 -

AUG

mRNA translation +  aminoglycoside e 5

 ̂ blocks initiation 
of protein synthesis

blocks further
 3* translation and elicits

premature termination

incorporation of 
incorrect amino acid

Figure 2.2. Effects o f aminoglycosides on protein synthesis (Chambers and 

Sande, 1996).
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2.2. Methods and materials

2.2.1. Parasites

L  mexicana wild type (WT) strain, designation MNYC/BZ/62/M379 and L. major 

(WT) strain, designation LV39 kindly provided by Prof. Coombs, Division of 

Infection and Immunity, Glasgow University and Prof. Liew, Department of 

Immunology, Glasgow University, respectively. The parasites were cultivated in 

HOMEM medium (GIBCO-BRL) with 10% (v/v) heat-inactivated foetal calf serum 

(HI-FCS) (Labtech International) (designated complete HOMEM medium). 

Promastigotes were grown in 25 cm  ̂flat bottomed culture flasks at 25^C with air as the 

gas phase. The mid to late log-phase promastigotes were transferred routinely into fresh 

medium with a starting density of 10̂  cells / ml and reached the infective promastigote- 

stage (stationary phase containing metacyclic promastigotes) with a density o f  1-2 x 10̂  

cells/ml after 8-9 days incubation.

2.2.2. Preparation of JL. mexicana and L, mayor Hamid’s lines (H-lines)

L. mexicana H-line was generated in complete HOMEM medium supplemented with 

gentamicin (Sigma) at 20 pg/ml. The mid to late log-phase promastigotes of L  

mexicana WT were transferred into medium with gentamicin and incubated at 25'^C 

(for more details see section 2.2.1). L. mexicana was attenuated after some passages 

(for example 20).

The development of attenuated lines o f L. mexicana WT by this methodology was 

carried out on 4 separate occasions. On each occasion, amastigotes of L. mexicana 

WT from a BALB/c mouse lesion were transferred into complete HOMEM medium 

and incubated at 25°C. The amastigotes differentiated to promastigotes over 72 hours, 

which were then transferred into complete HOMEM supplemented with or without 

gentamicin and incubated at 25^C. The mid to late log-phase promastigotes were 

passaged into medium with gentamicin or gentamicin-free and this process continued 

for at least 20 passages.
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The development o f the attenuated line o f L  major WT used the same methodology 

except that only 11 passages with gentamicin were used just on one occasion.

2.2.3. Prepareation of promastigotes of L, mexicana H-Iine amastigote-derived 

through of BALB/c mice (Z. mexicana HAD-line).

Twelve weeks after inoculation of 5 x 10  ̂ (cell / ml) stationary phase promastigotes 

of L. mexicana H-line into the shaven rump mice were killed and rinsed with 70% 

alcohol. The skin from the rump at the site, where the promastigotes were injected, 

was removed and the epidermal sheet carefully separated from the dermis. The skin 

was cut into 0.75 cm strips, floated dermal side down on RPMI medium 

supplemented with 1% trypsin in plastic dishes and incubated at 37”C for 90 min. The 

sheets were then shaken to release the cells. The cells were sedimented at 280 x g for 

10 min and washed twice in RPMI. The epidermal cells were resuspended in 

HOMEM medium supplemented with 10% FCS, plated in the 24-well plates and then 

incubated at 25°C. The cultures were examined daily for the presence of 

promastigotes.

2.2.4. Measuring the size of lesions induced by the two lines ofZ. mexicana
The stationary phase promastigotes of L. mexicana WT or L. mexicana H-line or L  

major WT or L  major H-line were harvested from a stationary culture (1-2 x 10  ̂

cells/ml) after 6-7 days growth. Cells were washed 3 times in ice-cold PBS, the 

number of promastigotes adjusted to 2.5 x 10  ̂ cells/ml in PBS, and 200 pi of this 

suspension was subcutaneously (s.c.) injected into the shaven rump of BALB/c mice. 

The lesion volume was measured weekly using a capillary micrometer (Royal) 

(Mottram gf. aL, 1996).
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2.2.5. Determination of parasite density by Formaldehyde fixation

Promastigotes were mixed with phosphate buffer saline (PBS) [NaCl 171.1 

mM/1, KCl 33.5 mM/1, Na2HP0 4  101.2 mM/1, and KH2PO4 18.3 mM/1 (all from 

Sigma)] supplemented with formaldehyde 4% (v/v) and incubated for 5 min at 

room temperature. The fixed promastigotes were counted using an improved 

Neubauer Haemocytometer. The number of promastigotes per ml was 

calculated.

2.2.6. The growth rate of L. mexicana H-line and Z. major H-line

Promastigotes o f Z. mexicana H-line or Z. major H-line were individually grown in 

complete HOMEM medium supplemented with 20 pg/ml gentamicin or without 

gentamicin. The mid to late log-phase promastigotes of each line were transferred into 

the medium to starting density of 1 x 10  ̂ cell / ml and the numbers of promastigotes 

were counted using an improved Neubauer Haemocytometer daily. The pH o f the 

culture media was measured using a pH meter (Philips PW 9420).

2.2.7. Comparing the growth rate o f Z. mexicana H-line with Z. mexicana 

txcpa/cpb in vitro

Promastigotes of Z. mexicana H-line or Z. mexicana t^cpa/cpb or Z. mexicana WT 

were individually grown from a starting density of 5 x 10"̂  cell / ml in complete 

HOMEM medium supplemented with 4 kinds of selective antibiotics or free of 

antibiotics. The mid to late log-phase promastigotes of each line were transferred into 

the medium with nourseothricin hydrosulfate (SAT) at 25 pg/ml (w/v) or puromycin 

(Pur) at 10 pg/ml (w/v) or zeocin (Ble) at 10 pg/ml (w/v) or hygromycin B (Hyg) at 

50 pg/ml (w/v) or a combination of these antibiotics, SAT 6.25 pg/ml, Pur 2.5 pg/ml.
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Ble 2.5 pg/ml, and Hyg 6.25 pg/ml (all antibiotics a gift from J, C. Mottram, 

Wellcome Centre of Molecular Parasitology, University o f Glasgow). The numbers of 

promastigotes were counted using an improved Neubauer Haemocytometer daily.

2.2.8. Staining parasites

Aliquots of cultures of stationary phase promastigotes (0.5 ml) were spread onto 

slides using a cytospin (Shandon centrifuge) at 1600 g for 5 minutes. The slides were 

quickly air dried, fixed in absolute methanol, and stained in 10% (v/v) Giemsa’s stain 

(Merck) in PBS (pH 7,2) for 10 minutes.

2.2.9. Cryopreservation of promastigotes

Parasites were cryopreserved in liquid nitrogen. 95 pi o f culture of mid to late log 

phase of promastigotes were mixed with 5 pi of dimethylsulfoxide (DMSO) in a 

cryotube (Bio Plas, Inc). The tube was wrapped in cotton wool, put inside a 

polystyrene box and placed in a -70° C freezer for overnight. The following day the 

cells were transferred into liquid nitrogen.

2.2.10. Sodium dodecyl sulphate-poly aery la mide gel electrophoresis (SDS- 

PAGE)

2.2.10.1. SDS-PAGE (mini gel)

2.2.10.1.1. Harvesting of promastigotes ofZ. mexicana.

When the promastigotes reached stationary phase, the cell density o f the culture was 

determined using an improved Neubauer Haemocytometer. The promastigotes were 

harvested by centrifugation at 750 g for 15 minutes at 4°C. The pellets were
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resuspended in 10 ml of 0.25 M sucrose solution. Centrifugation and resuspension 

were repeated twice. The pellets were finally resuspended to 2 x 10  ̂ cell / ml. The 

suspension was aliquoted 20 pi per eppendorf tube, centrifuged, the supernatants 

discarded and the pellets stored at - 70° C.

2.2.10.1.2. Preparation of promastigote lysates

Extracts were prepared by addition of 0.25% (v/v) Triton X-100 in 0.25% M sucrose 

to frozen cell pellets. The cells were subsequently mixed by gentle aspirated with a 

Gilson pipette tip and then centrifuged at 1600 g for 10 minutes in a microfuge, and 

the supernatants collected. The samples were kept on ice before using.

2.2.10.1.3. Preparation of gel

SDS-PAGE was used for protein fractionation by vertical slab electrophoresis. The 

composition of separating and stacking gels are detailed in (Appendix, Tables 1-4). 

The separating gel was loaded and a little water added to the top of the gel to level it. 

Following setting o f the gel, the water was removed and the stacking gel was added, 

loaded, and setting allowed.

2.2.10.1.4. Total protein analysis (mini gel)

The samples from section 2.2.10.1.2 were mixed with an equal volume of sample 

buffer (see Appendix, Table 5), boiled for 10 min, and then centrifuged at 8500 g for 

1 min. The supernatants of promastigote lysates of two lines of L  mexicana were 

separated using SDS-PAGE with a 10% (w/v) acrylamide gel at 150 V for about 1 

hour. Subsequently, the gel was stamed overnight in Coomassie Blue.
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2.2.10.2. Proteinase detection using substrate SDS-PAGE

Cysteine proteinase activity o f stationary phase promastigotes o f two lines o f L. 

mexicana was analysed using SDS-PAGE gels (10% acrylamide) containing gelatin at 

0.2% (w/v) (Robertson and Coombs, 1990). The samples (see section 2.2.10.1.2) (10 

pi) were mixed with equal volume of sample buffer (see Appendix, Table 5) and 

centrifuged at 8500 g for 1 minute in a micro centrifuge. The samples were separated 

on the gel (as described in the section 2.2.10.1.4) and subsequently the gels were 

incubated in 2.5% Triton X-100 on a shaking table at 37°C for 30 minutes to remove 

SDS and reactivate the enzymes. The gels were then incubated at 37°C in 0.1 M 

sodium acetate, pH 5.5, with 1 mM DTT for 2 hours to allow hydrolysis o f the 

gelatin. Subsequently the gels were incubated overnight in Coomassie Blue Staining 

and destained in destaining buffer (see section 2.2.10.1.4)

2.2.10.3. 10-20% polyacrylamide gradient SDS-PAGE

2.2.10.3.1. Preparation of gel

To compare the protein levels of stationary and log phase promastigotes o f two lines 

of L  mexicana, the sample lysates were run on a SDS-PAGE gradient gel (10%-20% 

acrylamide (Hames, 1983). The cassettes were inserted into the slab gel casting 

apparatus (SGC) (Pharmacia) for casting 180 mm wide. The stock solutions (see 

Appendix, Tables 6 and 7) were prepared and at this stage were not mixed. The valve 

between the reservoirs was closed and a 20% (v/v in distilled water) methanol 

solution was poured in the chamber nearest the outlet o f the gradient mixer and 

allowed to run down into the SGC, leaving the connecting tube filled with liquid and 

free of air bubbles. Acrylamide 10% was poured into the lower chamber of the 

Gradient Mixer and the valve connecting the two reservoirs was opened just to 

remove air bubbles and then closed. Subsequently, acrylamide 20% was poured into 

the empty chamber and the requisite amounts of Tetramethylethylenediamine
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(TEMED) and Ammonium persulphate (APS) were added, mixed briefly, the stirrer 

placed into the lower chamber, and the paddle turned on. The connecting valve 

between the two reservoirs was opened. When the polymerizing solution had run 

through, the glycerol / water solution, with a little bromophenol blue, was 

immediately added to the lower chamber. The flow of glycerol /  water solution was 

stopped when the top of the polymerising mixture just reached the upper edge of the 

gel cassette. The gels were allowed to polymerized for at least one hour, the gel 

cassettes removed from the SGC, and the slabs stored in a humid atmosphere at 4- 

8°C.

2.2.10.3.2. Preparation of promastigote lysate

The stationary or log phase promastigotes were harvested (see section 2.2.10,1.1) and 

washed 4 times with ice-cold PBS at 4°C. The suspension of cells with a density of 2 

X 10  ̂cells / ml was aliquoted (100 pi per each eppendorf tube), centrifuged, and the 

supernatant removed. The pellets were stored at -70°C until needed. Promastigote 

lysate was prepared by adding 50 pi sample buffer to the pellet, boiled at 100°C for 10 

minutes and centrifuged at 750 g for 5 minutes. 30 pi of supernatant was loaded to the 

SDS-PAGE gradient slab gel. The gel was run at a constant 230 voltage for 4 hours, 

stained with Coomassie blue stain, and destained (as previously described).

2. 2 .11 . Two Dimensional Electrophoresis (2-DE)

2.2.11.1. Sample preparation

In order to obtain optimal results in 2-DE, a high concentration of soluble 

promastigote proteins was required. Two methods for preparation of the soluble lysate 

promastigote proteins were initially used. The preliminary results showed that the 

number o f spots using the lysate from method 2 was higher than that from method 1. 

So method 2 was selected for remaining experiments.
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Method 1

Stationary phase promastigotes with a density o f 2 x 10  ̂cells / ml were harvested (see 

section 2.2.10.3.2). The pellets were stored at -70°C until needed. Promastigote 

lysates were prepared by adding 40 pi lysate solution (see Appendix, Table 8) to the 

pellets which were the frozen and thawed 3 times using liquid nitrogen and then 

sonicated in a water bath for 5 minutes. 310 pi rehydration buffer stock (see 

Appendix, Table 10), DDT (Sigma) (10 mg/ml) and (immobilized pH gradient) IPG 

buffer (Pharmacia) (5pi / ml) [(IPGphor buffer 4-7 L) for IPGphor strip 4-7 and 

(IPGphor buffer 3-10 L) for IPGphor strip 3-10 were used] mixed (before using) and 

then added to the samples.

The promastigote lysates were mixed with a vortex for 4 minutes and then centrifuged 

at 1800 g at 4°C for 3 minutes. The supernatants were used.

Method 2

Promastigote lysates were prepared by adding 40 pi lysate solution (see Appendix, 

Table 9) to the pellets (see section 2.2.10.3.2) which were the frozen and thawed 3 

times using liquid nitrogen, sonicated in a water bath for 5 minutes, and then heated at 

95°C for 5 minutes. 310 pi rehydration buffer stock, DDT (10 mg / ml) and IPG 

buffer 4-7 L (5pl / ml) or IPGphor buffer 3-10 L were used mixed (before using) 

added to the samples. The promastigote lysates were mixed with a vortex for 4 

minutes, and then centrifuged at 1800 g at 4°C for 3 minutes. The supernatants were 

used.

2.2,11.2. First dimension isoelectric focusing (IFF)

2.2.11.2.1. Immobilised pH gradient (IPG) strip

Two kinds of ready-made IPG strips, Immobiline Drytrip gels, with the pH gradients 

3-10 L (linear) and 4-7 L (linear) were used. The pH 3-10 L IPG strips are analysed
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wide range of proteins on a single 2-DE gel and the pH 4-7 L IPG strips were used for 

higher resolution separations in the narrower pH range.

Following sample preparation (as described in method 2 from section 2.2.11.1), the 

protective film from the IPG Dry Strip gel was removed. The sample was placed in 

the IPGphor strip holder and the entire length of IPG strip soaked with sample by 

placing IPG strip in the strip holder (gel facing down). The IPG strip was 

subsequently put in the strip holder, placing the end o f the IPG strip over the cathode 

(electrode), and IPG cover fluid (Pharmacia) was added in the IPG strip holder length. 

The cover of the strip holder was placed on the strip holder and the strip holder 

assembled on the IPGphor platform.

2.2.11.2.2. IPGphor

This system is for the isoelectric focusing (lEF) dimension of 2-DE. The programme 

was designed for 13 cm pH 3-10 or 4-7 IPG Dry Strip gel with a sample buffer that 

was prepared as described before (section 2.2.11.2.1). The timetable and voltage used 

is shown in Table 2.1.

Table 2.1. The programme of IPGphor

Step Time Voltage (V)

1 15 hours 30

2 1 hour 500

3 Until reach to 1000 V 1000

4 30 minutes 8000

5 4 hours 8000

Total 35000
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2.2.11.2.3. Equilibration step

After completion o f the first dimension, the strip was washed and equilibrated. The 

equilibration buffers I and II were prepared according to the recipe in (see Appendix, 

Table 12). The IPG strip was placed in individual strip holders with the support film 

towards the strip holder wall. The equilibration buffer I was added to the strip holder 

and shaken for 15 minutes. Subsequently, the equilibration buffer I was removed and 

the strip was placed in the strip holder with equilibration II buffer for 15 minutes and 

then washed dd H2O.

2.2.11.3. Second dimension SDS-PAGE

2.2.11.3.1. Preparation SDS slab gel vertical system

Gels with a final concentration o f 10% acrylamide and with a 1.0 mm thick spacer 

were prepared for the second dimensional 2 DE-gel. Subsequent to pouring the gel 

(see Appendix, Table 14) the gel cassettes were filled with displaying solution (see 

Appendix, Table 15) until 3 to 10 mm below the top (no stacking gel layer is 

required). Immediately, the storage solution (see Appendix, Table 16) overlay was 

added to each gel to create a fiat surface. After allowing overnight polymerization, the 

overlay was removed and the gels were stored at 4°C for up to two weeks.

2.2.11.3.2. Placing the IPG strip on the gel.

The IPG strip (from section 2.2.10.3.3) was washed with the SDS electrophoresis 

buffer (see Appendix, Table 17) and placed between the plates on the surface o f the 

SDS gel. The strip was gently pushed down, with a thin plastic ruler, until contact was 

made before with the surface o f the gel and the lower edge o f the IPG strip. 

Immediately, the strip was sealed by agarose (see Appendix, Table 18) to prevent it 

from moving or floating during electrophoresis. The agarose was heated at lOO^C, 

allowed to cool to 50^C and the amount required for sealing the IPG strip slowly 

pipetted.
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2.2.11.3.3. Electrophoresis

The electrophoresis was performed at a constant current of 100 volts overnight at 4°C. 

After electrophoresis, the gel was removed fi-om its gel cassette in preparation for 

staining.

2,2.11.3.4. Silver staining

The gels were stained with the silver staining Kit (Pharmacia Biotech). 375 ml of the 

solutions detailed in Table 2.2 were needed per gel cassette (12.5 x 26 cm). These 

solutions were freshly made.

Table 2.2. Silver staining protocol for proteins for two gels (Pharmacia Biotech)

Step Solutions Amount Time

Fixation Ethanol
Acetic acid glacial
Make up to 750 ml with dd water

300 ml 
75 ml

30 min

Sensitising Ethanol
Sodium thio sulphate (5% w/v) 
Sodium acetate (17 g) 
Glutaradialdehyde (25% w/v)* 
Make up to 750 ml with dd water

225 ml 
30 ml 
3 packets 
1.75 ml/ gel

30 min

Washing dd water 3x5 min

Silver reaction Silver nitrate solution (2.5% w/v) 
Formaldehyde (37% w/v)*
Make up to 500 ml with dd water

75 ml
0.14 ml/ gel

20 min

Washing dd water 2x1 min

Developing Sodium carbonate (6.25 g) 
Formaldehyde (37% w/v)*
Make up to 750 ml with dd water

3 packets 
0.07 ml/ gel

2-5 min

Stopping EDTA-Na 2H2O (3.65 g)
Make up to 750 ml with dd water

3 packets 10 min

Washing dd water 3x5 min

Preserving gels Glycerol (87% w/w)
Make up to 750 ml with dd water

75 ml 30 min

Add components marked* immediately before use.
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2.3. Results

2.3.1. Establishing L. mexicana H-line and L. major H-line

The attenuated lines of L. mexicana (H-line) and L, major (H-line) were established 

by passaging in the presence of gentamicin. To prevent bacterial contamination 

gentamicin was routinely used in the culture medium. It was observed after culturing 

of promastigotes of L  mexicana in the presence of gentamicin, the length of some of 

promastigotes had been increased. This prompted the analysis of the line (detailed 

below).

In the following experiments, L  mexicana H-line had been generated from L. 

mexicana WT by more than 20 passages in complete HOMEM medium supplemented 

with gentamicin at 20 pg/ml. The generation o f the attenuated line of L. mexicana H- 

line was repeated on four occasions. There was not any restriction to do experiment 

with just one of them.

2.3.2. The size of lesions induced by the two lines of Z,. mexicana
Sub-cutaneous inoculation of L  mexicana WT in mice results in the development of a 

progressive non-healing lesion. To examine the ability of L. mexicana H-line to 

induce lesions, mice were injected (s.c.) with 5 x 1 0 ^  stationary phase promastigotes 

of L  mexicana H-line or WT. The mice which were injected with L  mexicana WT 

developed progressive non-healing lesions (Figure 2.3). In contrast, mice infected 

with L. mexicana H-line developed either no lesion during the period of study or a 

small lesion that was completely healed by 12 weeks post infection.
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Figure 2.3. The mean course of infection of two lines of L. mexicana in 2 

groups of BALB/c mice (5 mice / group). 5x 10̂  stationary phase 

promastigotes of L. mexicana WT (35 passages) or L  mexicana H-line (32 

passages) were inoculated in the right side shaved rump of the mice. Lesion 

development was monitored by measuring the size of swelling and lesion 

diameter weekly. Each data point represents the mean group lesion size ± 

SEM.
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2.3.3. The size of lesions induced by the two lines of L. major
Sub-cutaneous inoculation of L. major WT in mice results in the development of a 

progressive non-healing lesion. Five BALB/c mice were infected with 5 x 10̂  

stationary phase promastigotes of L  major H-line or WT as described in section 2.3.2. 

The mice that were injected with L. major WT developed progressive non-healing 

lesions (Figure 2.4). In contrast, mice infected with L. major H-line developed no 

lesion during 12 weeks post infection.
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Figure 2.4. The mean course of infection o f L  major WT and L  major 

H-line in 2 groups (5 mice per group) of BALB/c mice. The mice were 

subcutaneously injected with stationary phase promastigotes of the two 

lines of and the lesion development was monitored weekly. The values 

represent the mean + SEM.
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2.3.4. Growth rate of X. mexicana H-line

In order to compare thé growth rate of the two lines of promastigotes, L  mexicana H- 

line and L. mexicana WT were grown in complete HOMEM medium with a starting 

density 10  ̂ cells / ml. As demonstrated in Figure 2.3, the number of promastigotes of 

the two lines rapidly increased and there was no significant difference (P>0.2) 

between the growth rates of promastigotes of the two lines of L. mexicana. There 

were no significant differences at any day between the growth rates of promastigotes 

of both lines. Promastigotes of the two lines reached stationary phase after 8-9 days. It 

has been reported that approximately 90% of promastigotes were considered to have 

reached stationary phase, usually after 8-9 days fi'om initiation of culture (Mallinson 

and Coombs, 1989).

2.3.5. Growth rate of L. major H-line

In order to compare the growth rate of the two lines of promastigotes, L  major H-line 

and L. major WT were grown in complete HOMEM medium with a starting density 

10  ̂cells / ml. As demonstrated in Figuie 2.6, the number of promastigotes of the two 

lines rapidly increased and there was no significant difference in growth between 

them (P>0.5) on all days. Promastigotes o f the two lines reached stationary phase 

after 8-9 days. The pH of the stationary phase medium of the culturel of 

promastigotes of L  major H-line was 6.9, whereas that of the culturel of the 

stationary phase of promastigotes of L  major WT was more acidic (pH 6.3). The 

measuring of pH of media were repeated individually in three occasions.
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Figure 2.5. Example of in vitro growth of promastigotes of L  mexicana H- 

line and L. mexicana WT. Comparison of the growth rate of the two lines of L  

mexicana of the same age and culture history was made in parallel cultures. 

Cultures of promastigotes of the two lines of Z. mexicana were initiated at 10̂  

cells / ml and counts made daily using an improved Neubauer 

Haemocytometer. The results are means ± SD from 3 independent cultures for 

each line.
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Figure 2.6. Example of in vitro growth rate of promastigotes of L. major IT- 

line and L. major WT. Comparison of the growth rate of the two lines o f L. 

major of the same age and culture history was made in parallel cultures. 

Cultures of promastigotes of the two lines of L  major initiated at 10̂  cells / ml 

and counts made daily using an improved Neubauer Haemocytometer. 

Promastigotes of L. major H-line and L. major WT were grown on parallel 

cultures of the same age and culture history.
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2.3.6. Comparing the growth rate of L, mexicana H-line with L, mexicana 

Acpa/cpb,

To confirm that L. mexicana H-line has not been mixed up with the attenuated L. 

mexicana Acpa/cpb^ the promastigotes of these lines and L  mexicana WT were 

individually grown in the presence of 4 kinds o f selective antibiotics, SAT, Pur, Ble, 

and Hyg. Promastigotes of Leishmania mexicana Acpa/cpb have the ability to grow in 

the presence o f selective antibiotics because, L, mexicana Acpa was generated by 

disrupting sequentially both alleles of Imcpa using gene-targeting of promastigotes 

with hygromycin- and phleomycin-resistance markers (Souza et al., 1994). 

Promastigotes of the three lines of L. mexicana, with a starting density 5 x lO \ were 

passaged and incubated at 25^C. As Figure 2.5 shows, the grov^h rate of 

promastigotes of L. mexicana H-line in the presence of the selective antibiotics, SAT, 

Pur, Ble, and Hyg (individually or combined together) sharply decreased, but the 

number of promastigotes in the antibiotic-free medium increased and during 7 days 

incubation reached 10  ̂ cells / ml. The log cell density of promastigotes of L. 

mexicana H-line in the media supplemented with hygromycin or puromycin at day 2 

and with other antibiotics after 3 or 4 days incubation was zero. These results 

indicated that promastigotes of L. mexicana H-line are sensitive to these antibiotics. 

Promastigotes of L. mexicana WT were grown in the media with antibiotics or 

antibiotics-ftee medium. As shown in Figure 2.8, the number of promastigotes in the 

media supplemented with hygromycin or puromycin rapidly decreased whereas in the 

antibiotic-fi*ee medium the number of promastigotes increased and during 7 days 

incubation reached 10  ̂ cells / ml. Therefore X. mexicana WT was sensitive to these 

selective antibiotics.

To compare the growth of X. mexicana H-line or X. mexicana WT with X. mexicana 

àcpa/cpb, the same density of promastigotes o f X. mexicana Acpa/cpb were 

transferred to the media with or without antibiotics. In contrast to X. mexicana H-line 

or X. mexicana WT, the number of promastigotes in the media with antibiotics 

increased and there was no significant difference between the growth rates of 

promastigotes of X. mexicana cpa/cpb double knockout in the media, with or without 

antibiotics (Figure 2.9) (P>0.2).
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It was concluded that promastigotes of L. mexicana H-line and L mexicana WT are 

sensitive to four kinds of selective antibiotics, nourseothricin hydrosulphate, 

puromycin, zeocin, and hygromycin B (individually or combined together), whereas 

promastigotes of the L. mexicana cpa/cpb double knockout were resistant to these 

antibiotics, and that L. mexicana H-line was not contaminated with L. mexicana 

Acpa/cpb and which could contribute to its attenuated state.
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—X--Ble
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Figure 2.7. The growth rate of promastigotes of L mexicana H-line in media 

with or without selective antibiotics. Mid-log phase promastigotes of L. 

mexicana H-line were transferred into HOMEM medium supplemented with 

10% (v/v) PCS and SAT (25 pg/ml) or Pur (10 pg/ml) or Ble (lOpg/ml) or 

Hyg (50 pg/ml) or in a combination of these antibiotics (SAT 6.25 pg/ml. Pur 

2.5 pg/ml, Ble 2.5 pg/ml, and Hyg 6.25 pg/ml) or antibiotic-free. The results 

are means ± SD from 3 independent cultures for each line.
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Figure 2.8. The growth rate of promastigotes of L  mexicana WT in media 

with or without selective antibiotics. Mid-log phase promastigotes of L. 

mexicana WT were transferred into HOMEM medium supplemented with 

10% (v/v) PCS and SAT (25 pg/ml) or Pur (10 pg/ml) or Ble (lOpg/ml) or 

Hyg (50 pg/ml) or in combination of these antibiotics (6.25 pg/ml SAT, 2.5 p 

g/ml Pur, 2.5 pg/ml Ble, and 6.25 pg/ml Hyg) or antibiotic-free. The results 

are means ± SD from 3 independent cultures for each line.
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Figure 2.9. The growth rate of promastigotes of L  mexicana Acpa/cpb in media 

with or without selective antibiotics. Typical growth curves of promastigotes of L. 

mexicana Acpa/cpb in HOMEM medium supplemented with 4 kinds of selective 

antibiotics or in combination of antibiotics or antibiotic-free. The culture was 

initiated at 5 x I O'* cell / ml. Promastigotes in the mid-log phase of growth and cell 

density was determined daily using a Neubauer Haemocytometer. The results are 

means ± SD from 3 independent cultures for each line.
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2.3.7. Proteinase activity of L. mexicana H-line compared with L. mexicana WT

To confirm that the L. mexicana H-line was generated in the presence of gentamicin 

and was not derived through contamination with another attenuated line, L. mexicana 

Acpa/cpb, the proteinases of L  mexicana H-line and L mexicana WT were examined. 

The proteinases of stationary phase promastigotes of L. mexicana H-line and L  

mexicana WT were investigated by loading soluble lysates of the two lines of L. 

mexicana on the SDS-PAGE gel (10%) containing gelatin 0.2% (w/v). The result 

showed that multiple proteinases, the most active of which were between 22-24 kDa 

molecular mass (Figure 2.10). Several lower mobility bands ranging from 24-60 kDa 

were also active. The proteinase activities of the two lines were remarkably similar.

—  36

-  20

Figure 2.10. Comparison of proteinase activities of stationary phase 

promastigotes of two lines of L  mexicana. The lysate proteins were prepared 

from 2 x 1 0 ^  stationary phase promastigotes of L  mexicana H-line (lane 1) or 

L. mexicana WT (lane 2) and analysed on the gelatin-SDS-PAGE gel. The gel 

was subsequently washed and then incubated with 0.1 M sodium acetate, pH

5.5, with 1 mM DTT for 2 hours. It was then stained with Coomassie blue
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2.3.8. Morphology

2.3.8.I. Promastigotes o f f .  mexicana H-Iine

To compare the morphology of promastigotes of L. mexicana H-line with L. mexicana 

WT, the cells were fixed in methanol and stained with Giemsa's stain. As shown in 

Table 2.2, four categories of morphology (M) of promastigotes based on width and 

length were classified for the two lines of L. mexicana. Promastigotes with round cell 

bodies (morphology 1) and a small flagellum appeared in the stained smears of both 

lines. 12% of stationary phase promastigotes of L. mexicana H-line were longer than 

the promastigotes of L. mexicana WT at this stage. The percentage of different sizes 

of promastigotes o f the two lines o ff . mexicana is shown in Figure 2.11.

Table 2.3. The classification of stationary phase 

promastigotes according their sizes.

Morphology width length

Ml 2 < width < 3 jim 10 -12 pm

M2 1.5 -2 pm 10 -12 pm

M3 1.5 -2 pm 13 -18 pm

M4 1.5 -2 pm 19 -23 pm

2.3.8.2. Morphology of promastigotes o f L, mexicana H-line amastigote-derived 

from BALB/c mice ( f . mexicana HAD-line)

In order to compare the morphology of the two lines, the promastigotes of L. 

mexicana HAD-line or L. mexicana WT were grown in gentamicin-fi-ee medium. It 

was observed that L. mexicana HAD-line grew poorly in vitro and poor ability to 

transform. Smears of stationary phase promastigotes were prepared, fixed in methanol 

and stained with Giemsa's stain.
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□  H -line
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Figure 2.11. The percentage according to cell lengths of stationary phase 

promastigotes of L  mexicana H-line and L. mexicana WT. Each 

promastigote was measured for body length and breadth measurements in 

Giemsa's stained smears. At least 300 promastigotes were examined from 

each culture. The results are means ± SD from 3 independent cultures for 

each line.
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In the smear of L  mexicana H-line, 17% of cells were promastigote which some of 

them had a small size flagellum and 83% of them were amastigote form (Figures 

2.12), whereas the promastigotes of L. mexicana WT were slender forms with an 

anterior flagellum (Figure 2.13). The restriction of time prevents to do same analyses 

for both lines.

Figure 2.12. Light micrographs of cells from cultures of L. 

mexicana H-line 2. Cell culture of L. mexicana HAD-line was fixed 

in methanol and stained in 10% Giemsa’s stain. In L. mexicana H- 

line about 17% and 83% of cells were promastigote and 

amastigotes forms, respectively, and some of them had a small 

flagellum.
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Figure 2.13. Light micrographs of ceils from cultures of L  

mexicana WT. Cell culture of L. mexicana WT was fixed in 

methanol and stained in 10% Giemsa’s stain. The stationary 

phase promastigotes of L. mexicana WT were slender forms 

with a long flagellum.
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2.3.9. Protein analysis

To determine whether the adaptation o f L. mexicana H-line to grow in the 

presence of gentamicin involved changes in protein expression, lysates of 

promastigotes of L. mexicana H-line and WT were compared on a SDS-PAGE 

gel. Total lysate proteins of stationary or log phase promastigotes of L. mexicana 

H-line and WT were separately run on 10-20% SDS-PAGE gradient gels . As 

shown in Figure 2.14, a number o f differences in protein expression were 

observed. Two bands were detected around 66 kDa with stationary or log phase 

promastigotes of L  mexicana WT, whereas one (possible two) o f the bands was 

absent from stationary and log phase promastigotes of the L. mexicana H-line.

The stationary or log phase promastigotes o f the two lines of L. mexicana were 

adjusted to 2 x 10  ̂cells / ml, pelleted and stored at -70°C. Promastigotes lysates 

were prepared by mixing pellet with 50 pi sample buffer and boiled at 100“C for 

10 min. 30 pi o f samples were loaded to the SDS-PAGE gradient slab gel. To 

compare the protein density of lysates of stationary phase promastigotes of two lines 

of L. mexicana, the samples were loaded in gel and stained with Coomassie blue 

stain.

The Lane profile graphs which are representative of protein concentrations of the 

lysates of stationary phase promastigotes o f the two lines o f L  mexicana are 

shown in Figures 2.15 and 2.16. The optical density o f protein on the SDS-PAGE 

gradient slab gel (Figure 2.14) was displayed with Lane profile graph using Lab 

Works image Acquisition and Analysis Software (UVP Laboratory products). The 

bands correspond to the numbered peaks in each line on the graph. Each peak 

represents a protein concentration for that band. To compare with L, mexicana WT, 

in the optical density of protein of promastigotes of L. mexicana H-line, three peaks 

were deleted (Figure 2.15) and there are just 5 peaks.
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Figure 2.14. Lysates of promastigotes of L. mexicana H-line (44 

passages) and WT (49 passages) compared on a 10-20% SDS-PAGE 

gradient gel. Markers (lane A) and 15 pi of lysate of stationary phase 

(lane B), log phase (lane C) promastigotes of L  mexicana H-line and 

stationary phase (lane D), log phase (lane E) promastigotes of L. 

mexicana WT were separately loaded on gel. Seven bands labelled on 

the gel between lane B and C are also shown in Figures 2.13 and 2.14. 

One (possibly two) of the bands absents from stationary phase 

promastigotes of L  mexicana H-line were shown with arrows.
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Figure 2.15. The Lane profile graph is representative of protein 

concentration in the lysate of stationary phase promastigotes of L. 

mexicana H-line. The samples were loaded in gradient-SDS-PAGE gel 

(10-20% acrylamide). The bands correspond to the numbered peaks in 

each line on the graph. Each peak represents a protein concentration for 

that band. The area under the peaks, surrounded by the small vertical 

marks in each valley, is the area used to calculate the volume of each 

band. In graph displays bands on the x (horizontal) axis that are 

representative of protein concentration, and the optical density on the y 

(vertical) axis.
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Figure 2.16. The Lane profile graph is representative of protein 

concentration in the lysate of stationary phase promastigotes of L. 

mexicana WT. The sample was loaded in gradient-SDS-PAGE gel 

(10-20% acrylamide). The bands in correspond to the numbered 

peaks on the graph. Each peak represents a protein concentration for 

that band. The area under the peaks, surrounded by the small 

vertical marks in each valley, is the area used to calculate the 

volume of each band. In graph displays bands on the x (horizontal) 

axis that are representative o f protein concentration, and the optical 

density on the y (vertical) axis.
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2.3.10. Two-dimensional electrophoresis (2-DE) used to diDerentiate two lines of 

L, mexicana

The protein analysis o f promastigotes on the SDS-PAGE gradient gel showed 

differences in protein expression between stationary and log phase of promastigotes 

of the two lines of L. mexicana. To investigate further differences between these lines, 

the protein of lysates of stationary phase promastigotes of two lines was analysed 

using 2-DE.

Whole cell preparation o f the two lines of L. mexicana was initially separated 

according to pH ranges 4-7 or 3-10 and then in the large-sized SDS PAGE gels (at 

least 20cm x 30cm). The proteins of L. mexicana H-line and L. mexicana WT were 

resolved on the large 2-DE gels (Figures 2.17 and 2.18 respectively) pi range 4-7, but 

the quality of gels pi 3-10 were poor (not shown). Approximately 160 spots were 

detected depending on silver-staining conditions. The comparison o f the two patterns 

reveals high similarity, with several main spots are being similarly positioned. The 

majority o f spots were numbered (Figures 2.19 and 2.20). The significant differences 

between attenuated line o f L. mexicana and L. mexicana WT pattern have been found. 

Spot 101 of pattern of L. mexicana WT (Figure 2.21b) was shifted to a less acidic 

position in the pattern of L. mexicana H-line (Figure 2.21a). As Figure 2.22 (a) shows 

spot 105 was absent from the pattern o f L. mexicana H-line. Two spots have been 

found in the spot in the pattern o f L  mexicana WT (Figure 2.23b), whereas the 

expression of these proteins by promastigotes of L. mexicana H-line decreased 

(Figure 2.23a). Therefore, in the total proteins o f L. mexicana H-line at least one 

protein was absent and the expression some of them decreased. However, this result is 

agreement with that o f gradient SDS-PAGE gel. This data is insufficient to conclude 

that these proteins are similar to the bands, which were absent from gradient SDS- 

PAGE gel. The restriction of time prevented to repeat this test and analyse the gels.
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Figure 2.17. Two-DE gel o f total protein o f lysate o f stationary phase promastigotes o f
L. mexicana H-line .
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Figure 2.18. Two-DE gel o f total protein o f lysate o f stationary phase promastigotes o f

L mexicana WT.
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Figure 2.19. Two-DE gel o f total protein o f lysate o f stationary phase promastigotes of
L. mexicana H-line and the majority o f spots were numbered.
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Figure 2.20. Two-DE gel o f total protein o f lysate o f stationary phase promastigotes
o f A. mexicana WT and the majority o f spots were numbered.

77



(a) (b)

99
102

100 m  103

#  • •
. jk i

107 107

Figure 2.21. Pattern sectors showing a difference between total proteins of lysates of 

promastigotes of L. mexicana H-line (a) and L. mexicana WT (b). Spot 101 of 

protein expression of promastigotes of L. mexicana WT was shifted to right side (less 

acidic position) in the protein expression of promastigotes of L. mexicana H-line.
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Figure 2.22. Pattern sectors showing another difference between total 

proteins of lysates of promastigotes of L. mexicana H-line (a) and L  

mexicana WT (b). Spot 105 from lysate of stationary phase promastigotes 

of L  mexicana H-line was absent.
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Figure 2.23. Pattern sectors showing other differences 

between total proteins of lysates of promastigotes of L. 

mexicana H-line (a) and L. mexicana WT (b). The region 

shown in (a) and (b) reveals two differences: the expression 

of two proteins (spots 109 and 110) decreased in the 

attenuated cell line.
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2.4. Discussion

It is generally accepted that the protection induced by using attenuated forms of 

microorganisms as vaccines against some diseases is more effective than that from 

using other forms o f vaccines (Hess et al., 2000). Recently several methods have been 

developed to attenuate Leishmania, such as disruption of a gene controlling virulence 

from the genome o f the wild type microorganism. For example, an attenuated line of 

L. mexicana t^cpaJcph (Mottram et ah, 1996) and an attenuated L. major lacking 

DHFR/TS gene (Titus et al., 1995) have been created. I have now produced an 

attenuated cell line o f L. mexicana by growing of L. mexicana WT in the presence of 

an antibiotic in vitro and an attenuated cell line o f L. major using the same technique. 

This suggests that this method can be used for attenuating other species of Leishmania 

and maybe other microorganisms.

The attenuated line of L. mexicana Wild Type known as L. mexicana H-line has been 

established under pressure of gentamicin which was routinely added to the medium to 

prevent bacterial contamination. The mechanism by which gentamicin, an 

aminoglycoside, attenuates L. mexicana WT is unknown. Disruption of ribosomal 

activity by breaking up polysomes or misreading o f mRNA during protein synthesis, 

resulting in incomplete protein synthesis, are possible mechanisms.

However there is not any evidence to show when the attenuated line L. mexicana 

formed. Attenuation required at least 20 passages in HOMEM medium supplemented 

with 10% (v/v) FCS and gentamicin at 20 pg/ml.

In the present study some experimental work has early been carried out with L. 

mexicana Acpa/cpb. It was, therefore, necessary to demonstrate that promastigotes of 

L. mexicana H-line were not contaminated with promastigotes of L. mexicana 

Acpa/cpb. Two different tests were set up:

i) Examination o f proteinase activity of L. mexicana H-line.

ii) Culturing o f L  mexicana H-line in the presence of 4 kinds of selective 

antibiotics, SAT or Pur or Ble or Hyg separately or in combination.

Robertson and Coombs (1992) reported that a high mobility band of cysteine 

proteinase (CP) activity can be detected in stationary phase promastigotes of L. 

mexicana using gelatin-SDS-PAGE. The proteinase activity o f stationary phase
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promastigotes of L. mexicana H-line and L  mexicana WT was investigated by 

loading lysates on gelatin-SDS-PAGE gels. Three bands were detected of which the 

molecular mass of the highest mobility band o f proteolytic activities was 20 kDa 

(Figure 2.11). These proteinases are cysteine proteinase is supported by the report that 

the analysis o f CPB isoenzymes expressed by stationary phase promastigotes of L. 

mexicana WT using Western blotting with anti-CPB antiserum detected two major 

proteins (25 and 29 kDa) (Mottram et al., 1997). This study therefore, demonstrated 

that promastigotes of L. mexicana H-line, at least, are not deficient in CPs.

Souza and colleagues (1994) reported L. mexicana Acpa was generated by disrupting 

sequentially both alleles of Imcpa using gene-targeting of promastigotes with 

hygromycin- and phleomycin-resistance markers. It has been shown that L. mexicana 

cysteine proteinase-deficient mutants are resistant to the selective antibiotics such as 

puromycin, zeocin, and hygromycin B (Souza et al., 1994). Therefore promastigotes 

of L. mexicana H-line, L. mexicana Acpa/cpb (positive control), and L. mexicana WT 

(negative control) were individually grown in the media with 4 kinds of selective 

antibiotics (separately or combinations o f them). As the graphs show (Figures 2.3 and 

2.4) promastigotes of both L. mexicana H-line and L. mexicana WT were unable to 

grow in the presence these antibiotics. In contrast, there were no significant 

differences among the growth rates of promastigotes of L. mexicana Acpa/cpb in the 

media with or without antibiotic. These results suggest that promastigotes of L. 

mexicana H-line are neither deficient in CPs, nor is this line mixed with L. mexicana 

cpa/cpb double knockout.

The length of 12% of stationary phase promastigotes of L. mexicana H-line was larger 

than promastigotes o f L. mexicana WT promastigotes. As Table 2.2 shows, the size of 

stationary phase of promastigotes of L. mexicana WT was 1.5-3 x 10-18 pm, whereas 

the size of 12% promastigotes ofL. mexicana H-line was 1.5-2 x 19-23 pm.

The ability o f the attenuated line of L. mexicana to survive in vivo for 3 months, was 

investigated by studying the epidermal cells fi'om where the parasite was injected. The 

cells were transferred into medium supplemented with or without gentamicin. In the 

epidermal cell some of the infected mice, amastigotes differentiated to promastigotes 

and this cell line was designed L. mexicana HAD-line. It was observed that 

promastigotes of L. mexicana HAD-line grew poorly in the medium with or without 

gentamicin. This suggests that the attenuated cell line maybe unable to survive in the
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midgut of sandfly and if so, this would reduce the risk of virulent reversion and spread 

of disease by infected sandflies.

The light micrographs of cells from cultures of L. mexicana HAD-line (Figure 2.11) 

showed that 17% of the cells were promastigotes and 83% o f them were amastigote- 

like although some of them had just a small flagellum. The morphology of 

promastigotes o f L  mexicana HAD-line were compared with promastigotes of L  

mexicana WT which were derived from amastigotes within epidermal cell o f infected 

mice at 3 months post infection (Figure 2.12). As the Figures 2.11 and 2.12 show, 

there are remarkable differences between the morphology of L. mexicana HAD-line 

and L. mexicana WT.

There was no significant difference between the growth rate of promastigotes of L. 

mexicana H-line and L. mexicana WT in vitro.

In the present study, it was demonstrated that the adaptation of L. mexicana H-line to 

grow in the presence of gentamicin involved changes o f protein expression. Total 

lysate protein o f stationary or log phase promastigotes of Z. mexicana H-line and WT 

were individually loaded on the 10-20% SDS-PAGE gradient gel. The result shows 

that a number of differences in protein expression observed. Two bands were 

detected around 66 kDa with stationary or log phase promastigotes o f Z. mexicana 

WT, whereas one (possible two) bands were absent with stationary and log phase 

promastigotes of Z. mexicana H-line.

The optical density o f protein expression o f the two lines of Z. mexicana in 10-20% 

SDS-PAGE gradient gel was displayed in a Lane profile graph, using Lab Works 

Image Acquisition and Analysis Software (UVP Laboratory products). The Lane 

profile graph indicates protein concentration in the lysates of stationary phase 

promastigotes of Z. mexicana H-line and Z. mexicana WT. The bands correspond to 

the numbered peaks on the graph. Each peak represents a protein concentration for 

that band. The graph of protein o f lysate of stationary phase promastigotes of Z. 

mexicana H-line showed two peaks to be present in Z. mexicana WT (3 and 4) which 

were absent inZ. mexicana H-line (Figures 13 and 14).

The results o f protein analysis of promastigotes of Z. mexicana H-line and Z. 

mexicana WT on the SDS-PAGE gradient gel have elicited a number of differences in 

protein expression. To confirm whether the differences between Z. mexicana 

attenuated line and WT, the protein from lysates o f stationary phase promastigotes of 

the two lines were analysed using immobilized pH gradients. The comparative
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proteome analysis of two lines o f L. mexicana using high-resolution techniques has 

been done using isoelectric focusing (lEF), which separate proteins according to their 

isoelectric points (pi) and SDS-PAGE, which separates proteins according to their 

molecular weights (MW). Both techniques were modified as high-resolution methods 

(Jungblut et ah, 1999).

The sample preparation is absolutely crucial for good 2-DE results; the samples were 

initially prepared using two methods and the number of spots on the gels were 

increased using method number 2. The protein lysates of 2 x 10® cell / ml stationary 

phase promastigotes o f L. mexicana H-line and L  mexicana WT were initially 

separated according to pH ranges 4-7 or 3-10 and then in the large-sized SDS PAGE 

gels (at least 20 cm x 30cm). Both lines of Leishmania comprise patterns with a high 

density o f spots in the range pH 4-7 of the gel. The position of spots in the gels of the 

two lines of L, mexicana revealed high similarity, and the main spots were compared 

easily. One hundred and fifty nine, that is the majority of spots, were labelled 

(Figures 2.19 and 2.20) and some differences between the patterns of the attenuated 

line ofZ. mexicana and L. mexicana WT were detected. Spot 101 in Z. mexicana WT 

gel (Figure 2.21 b) was shifted to a less acidic position in Z. mexicana H-line (Figure 

2.21a). As Figure 2.22 (a) shows spot 105 is absent in Z. mexicana H-line. Two spots 

(109 and 110) were found in the Z. mexicana WT gel (Figure 2.23 b), whereas the 

expression o f these proteins by promastigotes of Z. mexicana H-line decreased 

(Figure 2.23a).

The comparative proteome analysis of the two lines of Z. mexicana in the pH ranges 

3-10 (data not shown) and 4-7 indicates that further runs in the pH 4-7 range are 

required. To identifying proteins in the lysate of stationary phase promastigotes of Z. 

mexicana H-line, which were lost or reduced compared with Z. mexicana WT, mass 

spectrometry with database searching has been suggested (Beavis and Fenyo, 2000). 

Although, the data of 2DE of the two lines have been supported with the results of 

gradient SDS-PAGE gel. There are insufficient replicates to draw firm conclusions 

about the absence or decreased expression of the proteins in 2-DE.

An attenuated cell line of Z. major was developed using pressure of gentamicin by the 

same method that was described for attenuation o f Z. mexicana WT. The attenuated Z. 

major was generated by culturing of promastigotes of Z. major WT in the medium 

supplemented with 10% (v/v) HI-FCS and 20 pg / ml gentamicin after 11 passages.
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There was no significant difference (p>0.5) between the growth rates o f promastigotes 

of the two lines of L  major. The culture medium of stationary phase promastigotes of 

L  major WT (pH 6.3) was more acidic than that of L  major H-line (pH 6.9).
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C h a p t e r  T h r e e

Im m u n e  R e s p o n s e  t o  L e is h m a n ia  m e x ic a n a  H -L in e  a n d  

P r e l i m i n a r y  O b s e r v a t i o n s  o n  L e is h m a n ia  m a j o r  H -L in e
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3,1. Introduction

The leishmaniases comprise a group of diseases caused by the intracellular protozoan 

parasite Leishmania. In humans, the localized cutaneous infection caused by L. 

mexicana is often associated with chronic infection of the ear on the pinna (Peters et 

al., 1987).

It is generally accepted that immunity to Leishmania depends on the effective 

generation of cell-mediated immunity (CMI). This CMI has been associated with 

increasing leishmanicidal activity o f macrophages, the expansion of the CD4^ Thl 

cell subset in resistant mice, and the production of cytokines such as IL-12 and IFN-y 

(Heinzel et ah, 1991). On the other hand, non-healing responses in susceptible 

BALB/c mice have been related to the expansion of the CD4^ Th2 cell subset and the 

production of cytokines such as IL-4 and IL-10 (Scott et al., 1988). The role of IL-4 

was shown to be due to its ability to inhibit macrophage leishmanicidal activity and 

down-regulate the development of a Thl-like response (Oswald et al., 1992). It was 

demonstrated that normally genetically susceptible mice lacking IL-4 were protected 

from cutaneous infection with L. major (Kopf et al., 1996) as well as L. mexicana 

(Satoskar et a l, 1995; Satoskar et a l, 1997). However, other studies suggest that the 

inability of the host to generate an IL-12-initiated Thl-like response and produce IFN- 

y rather than the induction of a Th2-like response and IL-4 production may be the 

crucial factor in determining susceptibility to L. mexicana (Guevara-Mendoza et al, 

1997). C57BL/6 and 129Sv/Ev mice which are susceptible to L. mexicana (Alexander 

et a l, 1998) and produce a Th2-response, whereas IL-4-defîcient C57BL/6 and 

129Sv/Ev mice developed a Thl-like response, as measured by an increase in IFN-y 

production, and cure L. mexicana infection (Satoskar et a l, 1995).

It has been reported that both IFN-y and IL-2, only in combination, induce TNF-a- 

specific mRNA and secretion of TNF-a by macrophages. Development of 

intracellular killing activity by activated macrophages also requires the autocrine 

effects of TNF-a (Nacy et a l,  1991). Two consecutive signals are required to activate 

fully the nitric oxide synthase (NOS), which appears to be toxic for Leishmania (Liew 

et ah, 1990; James, 1995). The first signal is IFN-y and TNF-a is a common second 

signal that mediates microbicidal functions as was shown in IFN-y-primed 

macrophages exposed to microbial products (James, 1995). Neutralization o f either 

TNF-a or IFN-y, or inhibition of nitric oxide production, leads to the exacerbation of
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disease (Liew et al., 1990; Evans et. al., 1993). Proteophosphoglycan (PPG) which is 

present on the surface of amastigotes of several Leishmania species, inhibits the 

production of TNF-a and thus reduces nitric oxide by macrophages generation (Piani 

et al., 1999).

The effects of IFN-y on Thl development may be mediated via action on the 

macrophages thus up-regulating IL-12 production or by direct effects on T cells 

(Trinchieri, 1995). Susceptible BALB/c mice infected with L. mexicana WT, produce 

a substantial amount of IL-4 and IL-10 (Guler et al., 1996).

Laskay and colleagues (1993) showed that NK cells play a crucial role in the early 

control of leishmaniasis in resistant mice. The local restriction of the parasite in the 

early phase of the infection is mediated by the innate immune system and this 

function is important in the subsequent development of a protective T cell response 

(Laskay et al., 1995). Moreover, Diefenbach and colleagues (1998) found that in the 

presence of INOS and IFN-a/p, L. major was localized in the skin and the draining 

LN o f susceptible mice. In contrast, in NOS2'^' mice or Wild Type resistant mice 

treated with the N0S2 inhibitor, the parasite disseminated in the spleen, bone marrow, 

lungs, and liver from day one of infection.

In other studies it has been reported that the production of the IgGl antibody isotype, 

although not completely dependent on IL-4 and IL-4 signalling (Snapper and Paul, 

1987) is associated with the development of a Th2-like response. Generation of IgG2a 

is dependent on IFN-y, whereas IL-4 is important for the production o f high level o f 

IgGl in BALB/c mice infected with the Leishmania (Kuchroo et al., 1995).

In summary, several groups o f researchers have clearly demonstrated that protective 

immunity against the L. mexicana complex, is ultimately dependent upon generation 

of a Thl-like response and IFN-y production (Satoskar et al., 1995; Guevara-Mendoza 

et al., 1997)..
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3.2. Materials and Methods

3.2.1. Mice

Female BALB/c mice age 4-6 weeks, were purchased from HARLAN/OLAC and 

maintained at the Joint Animal Facility o f Glasgow University. The mice were 

approximately 12 weeks old at the start of each experiment.

3.2.2. Parasite

Promastigotes of L. mexicana WT or L  major WT were grown in HOMEM medium 

supplemented with 10% FCS (see section 2.2.1). Promastigotes of L. mexicana H-line 

or L  major H-line, which were established in the presence of gentamicin, grown in 

the same medium supplemented with 20 pg/ml gentamicin and incubated at 25°C (see 

section 2.2.2).

3.2.3. Stability of L, mexicana H-line in medium free of gentamicin

To determine whether the L  mexicana H-line is stable in gentamicin-free medium in 

vitro, promastigotes of the L. mexicana H-line were on two occasions transferred into 

HOMEM with or without gentamicin and incubated at 25®C. The mid to late log- 

phase promastigotes of L. mexicana H-line, after 58 passages in the presence of 

gentamicin, were transferred into medium with or without gentamicin (for more detail 

see section 2.2.1). The ability of promastigotes to infect macrophages and their 

survival within macrophages was examined after 37 and 40 passages in the medium 

with or without gentamicin.
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3.2.4. Preparation of bone marrow-derived macrophages (BMM)

BMM were obtained from a culture of bone marrow cells collected from the femurs 

and tibias of naive mice. The bones were removed from BALB/c mice and the 

proximal end of the femur and the distal end o f the tibia were cut, leaving the opposite 

ends intact. A 26 gauge needle was inserted into the intact ends and the bone marrow 

flushed out through the cut end with 5 ml ice-cold Dulbecco's modified Eagle's 

medium (DMEM) (Gibco). The cells were collected and centrifuged (600 g for 10 

min at 4°C). The pellets were resuspended in DMEM supplemented with 20% FCS, 

penicillin (100 U/ml), streptomycin (100 jug/ml) (Life Technologies, Grand Island, 

NY), 2-P-mercaptoethanol (2ME) (50 pM) (Life Technologies, Grand Island, NY), 

supernatant from L-929 cell cultured (30%), L-glutamine (2 pM), and pyruvate (1 

pM) (Sigma). The cells were transferred to a 100 mm tissue culture dish (Greiner) and 

incubated at 37”C in 5% CO2 in air for 7 days. Following removal of the non-adherent 

cells, the adherent cells were collected by rinsing the dish with ice-cold PBS for 10 

min. The adherent cells were centrifuged at 600 g for 10 min, resuspended in 

completed DMEM, and transferred into the individual wells o f a chamber slide (Nalge 

Nunc, Lab Tek) (2-3 x 10  ̂ cells /  well). Following incubation overnight, the non­

adherent cells were removed and the supernatant was refreshed with complete DMEM 

without the L-929 cell supernatant supplement.

3.2.5. L-929 ceB fibroblast medium

L-929 cells (European collection of animal cultures, No: 85011425) were grown in 

DMEM supplemented with 2 mM L-glutamine, 100 pg/ml streptomycin, 100 U/ml 

penicillin, and 10% FCS, and incubated at 37°C in 5% CO2 in air. Supernatant from 

the cultured L-929 cells was collected after 2-3 days and the floating cells were 

discarded. The bottom of the flask was covered with 2 ml ice cold 10% trypsin for 30 

sec. The excess trypsin was removed and the flask incubated for 5-15 min. Following 

two washes, the pellets were resuspended in the medium and incubated at 37°C in 5% 

CO2 in air. The supernatant of L-929 cell line was added to bone marrow cultures as 

described above to enhance maturation of BMM (Wolfram et al., 1996).
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3.2.6. Preparation of IFN-y-primed BMM

Following preparation of BMM (see section 3.2.5) the number o f viable cells was 

estimated by trypan blue exclusion using a Neubauer Haemocytometer, which were 

transferred to the wells of chamber slides (2-3 x 10  ̂ cells per well), and incubated 

overnight at 37°C in 5% CO2 in air. The supernatants were replaced with 100 pi / well 

of DMEM supplemented with 10% FCS and 10 U/ml of Recombinant cytokine (rlFN- 

y) (PharMingen) and incubated at 37°C in 5% CO2 in air for 6 h. The supernatants 

were discarded and the IFN-y-primed BMMs were exposed to stationary phase 

promastigotes of the two lines of L. mexicana.

3.2.7. Interaction between promastigotes of L, mexicana and BMM

Stationary phase promastigotes of L. mexicana WT or L. mexicana H-line were 

harvested and washed 3 times with PBS. The cells were resuspended in complete 

DMEM at a concentration o f 5 x 10  ̂promastigotes / ml and transferred into wells o f 

chamber slides containing BMM (400 pFwell). The infection ratio of macrophage / 

promastigote was 1:1. The culture slides were incubated at 32°C in 5% CO2 in air for 

3 h. Following removal of non-adherent promastigotes by replacing the overlying 

medium with fresh complete DMEM the cells were incubated for the appropriate time 

at 32°C in 5% CO2 in air. At the end of the incubation period the supernatant was 

collected and stored at -70°C. The macrophages were stained with Giemsa's stain and 

the percentage of infected macrophages determined by microscopy.

3.2.8. Nitric oxide activity measured by nitrite assay

Nitrite concentration in the tissue culture supernatants was measured by the Greiss 

reaction. Supernatant from BMM culture was collected and centrifiiged (Beckman 

Microfuge TJ6-R) at 600 g. The Greiss reagent consist of 1 part 0.1% 

naphthylethylene diaminedihydrochloride (Merck) in distilled water plus 1 part 1% 

sulfanilamide (Merck) in 14% concentrated HCl, the 2 parts being mixed together
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within 12 h o f using and kept chilled. Each part may be stored refrigerated for up to 2 

months. 50 or 100 pi aliquots were removed from conditioned medium and incubated 

with an equal volume of Greiss reaction at room temperature for 10 min. The 

absorbance at 550 nm was measured in an ELISA reader (Dynatech Laboratories). 

Nitrite concentration was calculated from a standard curve, which was normally linear 

between 0 and 100 pM sodium nitrite.

3.2.9. T cell proliferation assay

T cell proliferation assays were performed as described by Satoskar and colleagues 

(1997). Briefly, the infected mice were killed at 12 weeks post infection and their 

spleens removed aseptically. Single cell suspensions were prepared from each spleen 

by gently teasing them in DMEM supplemented with 10% FCS, 100 U/ml penicillm, 

100 pg/ml streptomycin, and 2-p-mercaptoethanol (2ME) (50 pM) (Life 

Technologies). The cell suspension was centrifuged at 600 g for 10 min at 4°C, and 

resuspended in 3 ml o f Boyle's solution (0.17 M Tris-HCl, pH 7.2 and 0.16 M 

ammonium chloride) to lyse the erythrocytes. After 3 min incubation at 3TC  the 

spleen cells were centriftiged at 200 g for 10 min at 4^C, washed three times with 

PBS, and the pellets resuspended in 3 ml o f complete DMEM. The number o f viable 

splenocytes was estimated by trypan blue exclusion using a Neubauer 

Haemocytometer and the cell concentration adjusted to 5 x 10  ̂viable cells / ml. The 

cell suspension (100 pi / well) was transferred into triplicate wells of sterile 96-well 

flat-bottom tissue cultuie plates (Falcon). An equal volume of stationary phase 

promastigotes at a concentration of 5 x 10  ̂ cells / ml was added, the ratio of 

promastigote / splenocyte was 1:10. Con A (5 pg / ml) (Sigma) was used as a positive 

control for cell proliferation, while complete DMEM alone was used as a negative 

control. The cells were initially incubated at 32°C for 4 hr and then transferred to 

3TC  for 56 h in 5 % CO2 in air. After 56 h [^H] thymidine (1 pCi / well) (Amersham) 

was added to each well and the plate incubated at 37°C for a further 12 h. The cells 

were harvested onto filter paper (Tomtec, Hamden, CT), and [^H]-uptake was 

measured by liquid scintillation in a beta-scintillation counter. Supernatants were
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collected from parallel cultures after 72 hr o f incubation for ELISA quantification of 

cytokine production.

3.2.10. Cytokine ELISA

Supernatants collected from spleen cell cultures were assayed for the presence of IL- 

2, IL-4, IL-10, and IFN-y using ELISA, as previously described (Satoskar et aL, 

1995). In brief, wells of a 96-well flat-bottom microplate (Nunc) were coated with 50 

pi of the appropriate capture mAb (purified rat anti-mouse IL-2, IL-4, IL-10, and 

IFN-y) (all from PharMingen) at a concentration of 2 pg / ml in coating buffer (0.1 M 

of Na2HP0 4 , pH 9.0) and incubated at 4°C overnight. Following 3 washes with 

washing buffer (PBS / 0.05% Tween-20), the wells were blocked with 200 pi of 

blocking buffer (10% FCS in PBS, pH 7.4) and incubated at 37°C for 1 h. The culture 

supernatants and serial dilutions o f Recombinant cytokine standards (rIL-2, rIL-4, 

rILlO, and rIFN-y) (PharMingen) were added to the wells in 50 pi volumes in 

triplicate. The cells were incubated at 37®C for 3h and the wells were washed 4 times 

in washing buffer. Biotinylated rat anti-mouse cytokine (IL-2, IL-4, IL-10, and IFN-y 

) (2 pg / well) (all from PharMingen) antibodies were added and incubated for 1 h at 

37°C. 100 pi streptavidin-linked peroxidase (1/1000 dilution in 10 % FCS-PBS) 

(Diagnostics Scotland) were added and the cells incubated at 37°C for 1 h. After the 

final washing with washing buffer, 100 pi o f tetramethylbenzidine (TMB) substrate 

(Dynatech labs) were added to each well. The OD of the wells was read at 630 nm on 

an ELISA reader. The concentration of cytokines in the samples was calculated by 

reference to the standard curve.

3.2.11. Preparation of Leishmania lysate antigen (LLA)

LLA was prepared by a freeze-thaw method as described by Reed and colleagues 

(1986). In brief, the stationary phase promastigotes of two lines of X. mexicana were 

washed with ice-cold PBS 3 times. The promastigotes were disrupted by freezing at 

-70°C and thawing at 37°C for 3 times. They were centrifuged for 30 min at 200 g at
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4°C for 10 min. The supernatant was aliquoted and stored at -20°C until just prior to 

use.

3.2.12. Protein concentration

The protein concentration of lysate was determined using Coomassie plus Reagent 

(Sedmark and Grossberg, 1977). 150 pi of albumin standard (Pierce U.S.A.) or 

sample was added to the micro well plate and 150 pi o f PBS for blank wells. 

Coomassie Plus Reagent (150 pi) was added to each well and the plate mixed on the 

plate shaker for 30 sec. The absorbence was measured at 595 nm on a plate reader.

3.2.13. Determination of specific antibodies (Abs) in the serum

The Leishmania-sçQciîic levels o f the Th2-assoclated IgGl Ab and the Thl-associated 

IgG2a Ab (Snapper and Paul, 1987) were measured by ELISA as described by 

Satoskar and colleagues (1995). Peripheral blood was obtained from mice infected 

with two lines of L. mexicana by tail bleeding into Eppendorf tubes and then 

centrifuged at 200 g. The sera were collected and stored at -70°C until just prior to 

use. Each well o f a flat-bottom microtitle plate (Nunc, Roskilde, Denmark) was 

coated vrith 1 pg of LLA (from section 3.2.12) in 0.1 M carbonate buffer pH 9.6 and 

incubated at 4°C overnight. Following washing 3 times with PBS and 0.05% Tween 

20 (Sigma, St Louis, MO), the plates were blocked with 200 pi in blocking buffer 

(PBS / FCS 10%), and incubated at 37°C for 1 h. After 3 washes, 50 pi o f serially 

diluted serum samples (1/100 in PBS / 10% FCS) were added to wells, incubated for 2 

h at 37°C, and washed 4 times. Bound Abs were detected by 50pl / well of 

biotinylated anti-mouse either IgGl or IgG2a (PharMingen, San Diego, CA) (2 

pg/ml), incubated at 3TC  for Ih and washed 6 times. 100 pi streptavidin-linked 

peroxidase (1/1000 dilution in 10 % FCS-PBS) (Diagnostics Scotland) were added 

and incubated at 37°C for 1 h. After the final washing with washing buffer, 100 pi of 

tetramethylbenzidine (TMB) substrate (Dynatech labs) were added to each well. The
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OD of the wells was read on an ELISA reader at 630 nm with a reference filter at 405 

nm.

3.2.14. Preparation of murine rump epidermal cells (ECs) to investigate the 

presence of the parasite

Twelve weeks after inoculation of 5 x 10  ̂ (cell / ml) stationary phase promastigotes 

of L. mexicana H-line or L. mexicana WT into the shaven rump mice were killed and 

the Ecs prerared as described in section 2.2.7. The number of viable ECs was 

estimated by trypan blue exclusion using a Neubauer Haemocytometer, the cell 

concentration adjusted to 5 x 10  ̂viable cells / ml in DMEM medium supplemented 

with 10% (v/v) HI-FCS, and incubated at 25®C,

3.2.15. Preparation of murine ear ECs

ECs suspensions were prepared from mouse ear skin by trypsinization. BALB/c mice 

were killed, the whole ears rinsed with 70% ethanol for 5 min, and dried. The ears 

were cut off and the skin sheet was then carefrilly separated. The skin, dermal side 

down, was floated on 1% trypsin (90 min) for processing thick ventral ear halves and 

0.6% trypsin (45 min) for thin dorsal ear halves. The epidermis was separated from 

the dermis and the exposed basal layer of the loosened epidermis was covered with 

RPMI 1640 medium. Single EC suspensions were prepared with the aid of a cell 

scraper. The cells were washed twice in RPMI and the number o f viable ECs was 

estimated by trypan blue exclusion using a Neubauer Haemocytometer. The cell 

concentration was adjusted to 5 x IQ̂  viable cells / ml of DMEM supplemented with 

10 % (v/v) HI-FCS, penicillin (100 U / ml) and streptomycin (100 pg/ml) (Life 

Technologies, Grand Island, NY), 2ME (50 pM) (Life Technologies, Grand Island, 

NY), supernatant L-929 cells (30%), L-glutamine (2 pM), and pyruvate (1 pM) 

(Sigma). The suspension was transferred into the individual wells of a chamber slide 

(Nalge Nunc, Lab Tek) at 5 x 10  ̂cells /well and incubated at 25°C.
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3.2.16. Interaction between ECs and promastigotes of two lines of Z. mexicana

Stationary phase promastigotes of L  mexicana WT or L. mexicana H-line were 

harvested and washed 3 times with PBS. The cells were resuspended in complete 

DMEM at a concentration of 5 x 10  ̂promastigotes / ml and transferred into wells of 

chamber slides containing ECs (100 pi / well). The infection ratio of epiderma cell / 

promastigote was 10:1. The culture slides were incubated at 32°C in 5% CO2 in air 

for 24 h. For depletion of extracellular parasites, the cultures of parasites and adherent 

macrophages were washed. The cells were stained with acridine orange / ethidium 

bromide (3.2.18) and the chamber slides were quickly air dried, fixed in absolute 

methanol, and stained in 10% (v/v) Giemsa’s stain (Merck) in Giemsa’s buffer (pH

7.2) for 10 min. The number of infected macrophages was determined by microscopy.

3.2.17. Staining with acridine orange and ethidium bromide

The supernatants of cultures (from section 3.2.17) were collected and centrifuged at 

600 g for 10 min. The cells were resuspended in a mixture of acridine orange (5 

pg/ml) (Michrome, Edward Gurr, Ltd) and ethidium bromide (50 pg/ml) (Sigma) and 

incubated for 10 min at room temperature. Following washing with PBS, the cells 

were resuspended in para-formaldehyde (1%) (Sigma) and incubated for 15 min at 

room temperature. Aliquots of suspension (0.5 ml) were centrifuged on the Cytospin 

(Shandon) at 1600 g for 5 minutes. The smears were analysed by fluorescence 

microscopy.

3.2.18. Preparation of tissues, and culture in vitro of L. mexicana isolated from 

infected mice.

Following injection of 5 x 10  ̂ stationary phase of promastigotes of L  mexicana WT 

or L. mexicana H-line, the parasite loads in the mice were determined by limiting
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dilution analysis. Briefly, visceral organs o f the mice infected with the two lines of L. 

mexicana were removed aseptically and single cell suspensions prepared. For each 

mouse the liver, draining lymph node, lung and spleen were homogenized separately 

in HOMEM medium supplemented with 10% FCS. Bone marrow cells were collected 

from the femurs and tibias of infected mice (see section 3.2.5.) A limiting dilution 

(LD) of the cell suspensions in vitro culture was used to determine the number of 

viable parasites in these organs (Laskay et a/., 1995). The serial twofold dilutions of 

the cell suspensions from the organs were plated in the 24-well plates. The cells were 

then incubated at 25°C for 14 days. The cultures were examined daily for the presence 

of promastigotes.

3.2.19. Statistical analysis

Data are expressed as the mean ±  standard error mean (SEM) for each group. 

Statistical analysis was performed using Student t test (for the final deterrnination o f  

significance testing the effects of treatments).
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3.3. Results

3.3.1. Preparation of bone marrow derived macrophages

In this study, bone marrow macrophages were obtained from adherent mononuclear 

cells in the bone marrow (1.8 x 10  ̂cells per mouse). In the presence o f granulocyte- 

macrophage-colony stimulating factor (GM-CSF), non-adherent precursor cells 

differentiate into adherent mononuclear phagocytes. Mononuclear phagocytes at 

various stages of differentiation represent approximately 4% of all nucleated bone 

marrow cells (Guilbert et al., 1980 and Byrne et al., 1981).

3.3.2. Interactions between stationary phase promastigotes of L. mexicana H-line 

or Z. mexicana WT with BMM

To determine whether L. mexicana H-line has the ability to infect macrophages, an in 

vitro culture system was used. Stationary phase promastigotes of L. mexicana H-line 

or L  mexicana WT were incubated with BMM for 3 h, after which non-attached 

promastigotes were washed off. The macrophage culture was incubated for up to 96 h 

and the rate of infection o f macrophages was determined. As shown in Figure 3.1, 

53% of BMM were infected with L. mexicana H-line at 9 h post infection. The 

percentage of infected cells decreased over time to 0.4% at 96 h post infection (Figure

3.1). The initial infection of macrophages with Z. mexicana WT was similar to that 

with Z. mexicana H-line (50%), but in contrast to the Z. mexicana H-line, the 

percentage of infected macrophages increased to 72% at 96 h post infection. As 

regards the numbers of amastigotes surviving and growing within the macrophage, 

after 9 h. these were 98 amastigotes /100 macrophage for Z. mexicana H-line. This 

rapidly decreased to 2 amastigotes/100 macrophages at 96 h post infection (Figure

3.2). This was in direct contrast to the observed increase in number of amastigotes of 

Z. mexicana WT.
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Figure 3.1. Infection of BMM with stationary phase promastigotes of L. 

mexicana H-line or L  mexicana WT. The promastigotes of the two lines 

were grown on parallel cultures with the same ages. Macrophages were 

exposed to promastigotes at 32°C for 3 h and subsequently infected 

macrophages incubated at 32°C for appropriate times. The initial infection 

ratio of macrophage / promastigote was 1:1 and the percentage of infected 

macrophages was detected after Giemsa's staining of the culture slide. The 

infected cells were detected among at least 300 cells for each line.
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Figure 3.2. The number of amastigotes within infected macrophages 

with two lines of L. mexicana. BMM were infected with stationary phase 

promastigotes of L. mexicana H-line or L. mexicana WT. Macrophages 

were exposed to promastigotes at 32®C for 3 h and subsequently infected 

macrophages incubated at 32®C for appropriate times. The initial 

infection ratio of macrophage / promastigote was 1:1 and the percentage 

of infected macrophages was detected after Giemsa's staining of the 

culture slide. The infected cells were detected among at least 300 cells 

for each line.
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3,3.3. Interactions between stationary phase promastigotes o f L, major H-line or 

L. major WT with BMM

To determine whether L. major H-line has the ability to infect macrophages, an in 

vitro culture system was used. Stationary phase promastigotes of T. major H-line or L  

major WT were incubated with BMM for 3 h, after which non-attached promastigotes 

were washed off The macrophage culture was incubated for up to 96 h and the 

percentage of infected macrophages was determined. As shown in Figure 3.3, 41% of 

BMM were infected with L. major H-line at 8 h post infection. The percentage of 

infected ceils decreased over time to 10.5% at 96 h post infection (Figure 3.3). The 

initial infection o f macrophages with L. major WT was 46.5%, but in contrast to the 

L. major H-line, the percentage of infected macrophages increased to 65% at 96 h 

post infection. The number of amastigotes of L. major H-line within infected 

macrophages after 9 h incubation was 94 amastigotes / ICO macrophages. This rapidly 

decreased to 14 amastigotes/100 macrophages at 96 h post infection (Figure 3.4). This 

was in direct contrast to the observed increase in the number of amastigotes of L. 

major WT. BMMs were exposed to promastigotes o f each line in two chamber slides 

individually on just one occasion. The restriction of time did not permit this 

experiment to be repeated.
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Figure 3.3. Macrophages were infected with stationary phase promastigotes 

of L. major H-line or L. major WT. The promastigotes of the two lines were 

grown on parallel cultures with the same ages. Macrophages were exposed 

to promastigotes at 32°C for 3 h and infected macrophages incubated at 

32°C for appropriate times. The initial infection ratio of parasite/ 

macrophage was 1:1 and the percentage of infected macrophages was 

detected after Giemsa's staining of the culture slide.
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Figure 3.4. The number of amastigotes within infected macrophages 

with two lines of L  major. BMM were infected with stationary phase 

promastigotes of L. major H-line or L. major WT. Macrophages were 

exposed to promastigotes at 32°C for 3 h and subsequently infected 

macrophages incubated at 32°C for appropriate times. The initial 

infection ratio of macrophage / pro mast igote was 1:1 and the 

percentage of infected macrophages was detected after Giemsa's 

staining of the culture slide. The infected cells were detected among at 

least 300 cells for each line.
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3.3.4, Parasite burden per macrophage following interactions between stationary 

phase promastigotes ofL. mexicana H-line o r f .  mexicana WT with BMM

To determine the number of parasite within infected macrophages, in vitro culture 

system was used. BMM of BALB/c mice were infected with stationary phase 

promastigotes of L  mexicana H-line or L  mexicana WT as previously described (see 

section 3.3.2). The distribution o f amastigotes of L  mexicana H-line within infected 

BMM was similar to that of L  mexicana WT at 9 h post infection as also shown in 

Figure 3.1 and 3.2. 22% of BMM were infected with one amastigote of L. mexicana 

H-line at 9 h post infection. The percentage of infected cells decreased over time to 

0.4% at 96 h post infection. The initial infection of macrophages with L. mexicana 

WT was similar to that with H-line (21%), but in contrast to the L. mexicana H-line, 

the percentage of infected macrophages with a burden of more than 5 amastigotes 

increased to 18% at 96 h post infection. The number of amastigotes of L. mexicana H- 

line within infected macrophages after 9 h post incubation was 100 amastigotes / 100 

macrophages and rapidly decreased to 2 amastigotes / 100 macrophages at 96 h post 

infection (Figure 3.5). In contrast to that, the number of amastigotes of L. mexicana 

WT within infected macrophages increased to more than 250 amastigotes/100 

macrophages (Figure 3.6).

3.3.5. Interaction between IFN-y- primed BMM with L. mexicana H-line or L, 

mexicana WT

The results of interaction between stationary phase promastiotes of L. mexicana H-line 

with BMM suggest that L. mexicana H-line does not survive within murine macrophages 

beyond 96 h, whereas the number of amastigotes of L. mexicana WT within infected 

macrophages increased. To consider the ability of amastigotes of the two lines of L. 

mexicana to survive within IFN-y-primed BMM, macrophages were incubated in the 

presence of IFN-y (10 U / ml) for 6 h and then exposed to stationary phase of 

promastigotes L  mexicana H-line or L. mexicana WT for 3 h. The cells were then 

incubated for up to 96 h and the rate of infection of macrophages was determined. As 

shown in Figure 3.7, at 8 h incubation the percentage of macrophages infected with
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Figure 3.5. The percentage of infected BMM with different numbers 

of amastigotes of L. mexicana H-line. BMM were infected with 

stationary phase promastigotes of L. mexicana H-line. Macrophages 

were exposed to promastigotes at 32°C for 3 h and infected 

macrophages incubated at 32°C for appropriate times. The initial 

infection ratio of macrophage / promastigote was 1:1 and the 

percentage of infected macrophages was detected after Giemsa's 

staining of the culture slide. The infected cells were detected among at 

least 300 cells for each line.
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* A / M: The number of amastigotes within an infected macrophage.

Figure 3.6. The percentage of infected BMM with different numbers of 

amastigotes of L. mexicana WT. BMM were infected with stationary phase 

promastigotes of L. mexicana WT. Macrophages were exposed to 

promastigotes at 32°C for 3 h and infected macrophages incubated at 32“C for 

appropriate times. The initial infection ratio of macrophage / promastigote 

was 1:1 and the percentage of infected macrophages was detected after 

Giemsa's staining of the culture slide. The infected cells were detected among 

at least 300 cells for each line.
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promastigote of L. mexicana WT was 49% and decreased to 47% after 30 h 

incubation. In contrast, the percentage of IFN-y-primed macrophages infected with L. 

mexicana WT at 8 h incubation was 51% decreased over time to 35% at 30 h post 

infection. The percentage o f IFN-y-primed macrophages and unprimed macrophages 

infected with L. mexicana H-Iine rapidly reduced with time.

The initial number of amastigotes o f H-line within infected macrophages in the 

presence or absence of IFN-y was 90 amastigotes / 100 macrophages at 8 h post 

infection decreasing to 4 amastigotes / 100 macrophages at 72 h post infection. The 

number of amastigotes of L. mexicana WT within infected IFN-y-primed 

macrophages decreased to 37 amastigotes / 100 macrophages at 24 h post infection, 

whereas it was 67 amastigotes /  100 macrophages in the unprimed macrophages at the 

same time. In contrast to L  mexicana H-Iine, the number of amastigotes of L. 

mexicana WT within infected macrophages in the presence or absence of IFN-y 

increased over time to more than 250 amastigotes / 100 macrophages at 72 h post 

infection (Figure 3.8).

3.3.6. Investigation of the stability of Z. mexicana H-line in gentamicin-free 

medium

To determine whether L. mexicana H-line is stable in medium lacking gentamicin in 

vitro, promastigotes o f L  mexicana H-Iine were transferred into HOMEM medium 

with or without gentamicin. The stationary phase promastigotes were harvested after 

40 passages and incubated with macrophages for 3 h. Non-attached promastigotes 

were removed and the macrophage culture was incubated for 9, 24, 48, and 96 h and 

the rate of infected macrophages was determined. As shown in Figure 3.9 the 

percentage of infected macrophages with L  mexicana H-line grown in medium with 

or without gentamicin decreased over time to 2 or 4% at 96 h post infection. In 

contrast to the L  mexicana H-line, the percentage of macrophages with L. mexicana 

WT increased to 89.5%.
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Figure 3.7. BMM or IFN-y-primed BMM (*) infected with stationary 

phase promastigotes of L. mexicana H-line or L. mexicana WT. BMM 

were incubated in the presence of IFN-y (10 U/ml) for 6 h. The IFN-y- 

primed BMM or unprimed-BMM were exposed to stationary phase 

promastigotes of L. mexicana H-line or L. mexicana WT at 32°C for 3 

h and infected macrophages incubated at 32®C for appropriate times. 

The initial infection ratio of macrophage / promastigote was 1:1 and 

the percentage of infected macrophages was detected after Giemsa's 

staining of the culture slide. The infected cells were detected among at 

least 300 cells for each line.
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Figure 3.8. The number of amastigotes within 100 BMM or unprimed 

IFN-y-primed BMM (*) infected with stationary phase promastigotes of L. 

mexicana H-line or L. mexicana WT. BMM were incubated in the 

presence of IFN-y (10 U/ml) for 6 h. The IFN-y-primed BMM or BMM 

were exposed to stationary phase promastigotes of L. mexicana H-line or 

L. mexicana WT at 32°C for 3 h and infected macrophages incubated at 

32”C for appropriate times. The initial infection ratio of macrophage / 

promastigote was 1:1 and the percentage of infected macrophages was 

detected after Giemsa's staining of the culture slide. The infected cells 

were detected among at least 300 cells for each line.
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Figure 3.9. BMM infected with stationary phase promastigotes of L  

mexicana H-line which were grown in gentamicin-ffee medium for 

40 passages (H-line*). Stationary phase promastigotes of L  

mexicana WT were grown in gentamicin-free medium. Macrophages 

were exposed to promastigotes at 32°C for 3 h and infected 

macrophages incubated at 37”C for appropriate times. The infection 

ratio of macrophage / promastigote was 1:1 and the percentage of 

infected macrophages was detected after Giemsa's stain of the 

culture slide. The infected cells were detected among at least 300 

cells for each line.
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3.3.7. Analysis of NOS induced by the two lines of X. mexicana
In order to determine whether the two lines of L. mexicana are able to induce NOS, BMM 

were infected with stationary phase promastigotes of L. mexicana H-line or L. mexicana 

WT. An investigation of NOS over the first 48 h of infection showed an increased level 

of nitrite in the supernatants o f infected macrophages with the two lines of L  

mexicana. As Figure 3.10 shows unstimulated macrophages were used as a negative 

control and a small but detectable level o f nitrite was present in their supernatants. 

Macrophages stimulated with IFN-y (100 U/ml) plus LPS (10 ng/ml) were used as a 

positive control and demonstrated that the activation of cells led to an increase in the 

amount o f nitric oxide production.

Comparison o f the amount o f nitrite in the supernatants of different cultures 

demonstrated that there was no significant difference between the amount produced in 

various infections over 48 h post infection (P< 0.7). These results show that L. 

mexicana H-line gave rise to similar levels o f nitric oxide production by the host cells 

as L. mexicana WT.

This suggests that the death of L. mexicana H-line within the infected macrophages in 

vitro is not due to change in the capacity o f L. mexicana H-line to induce NO 

production.
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Figure 3.10. The concentration of nitric oxide measured as nitrite in the 

supernatant of BMM infected with stationary phase promastigotes of L. 

mexicana over 48 h post infection. Macrophages were stimulated with IFN-y 

(100 U/ml) plus LPS (10 ng/ml) as positive control. Unstimulated macrophages 

were used as a negative control. The macrophages were incubated with 

promastigotes of L. mexicana H-line or L. mexicana WT at 32”C. The infection 

ratio of macrophages / promastigote was 1:1. Bars represent the standard error 

mean (SEM) (n = 3).
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3.3.8. Investigation of dissemination of the two lines of X. mexicana in the 

peripheral and visceral organs of infected BALB/c mice

The in vitro results suggest that X. mexicana H-line does not survive within murine 

macrophages beyond 96 h. To consider the in vivo survival and possible dispersion of 

the L  major H-line beyond the site o f inoculation, the mice were injected with L. 

major WT or X. major H-line into right side rump and then examined for the presence 

of parasites in the peripheral and visceral organs. Stationary phase promastigotes of 

the two lines o f X. mexicana were subcutanously injected in the BALB/c mice, and 

visceral organs including the liver, spleen, lung, bone marrow (BM), draining right 

popliteal lymph node (LN), and ECs from the site of injection were removed 

aseptically at appropriate times and cell suspensions prepared. The cell suspensions 

were cultured in HOMEM medium and incubated at 25°C over 14 days. The cultures 

were examined daily for the presence of live promastigotes (Table 3.1). X. mexicana 

WT was detected in cultures originating from ECs at each time point post infection 

indicating that these organisms are able to survive within resident macrophages for 

long periods. In addition, the draining LN contained parasites within one day of 

infection, and these remained infected throughout the period of study (12 weeks). 

Over the course of the study X. mexicana WT spread to BM, spleen and lung and it 

was observed that infection of visceral organs correlated with an increase in skin 

lesion size. In comparison, X. mexicana H-line remained localized in the skin and 

draining LN for up to 12 weeks post infection without evidence of dissemination into 

other visceral organs of BALB/c mice.

These results suggest that X. mexicana WT disseminated into the visceral organs o f 

susceptible mice and the number of parasites increased post infection. In contrast to X. 

mexicana WT, the attenuated line o f X. mexicana was restricted with a decreased 

number of amastigotes in the draining LN and skin.
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Table 3.1. Comparative distribution o f L. mexicana WT and L. mexicana H-line in 
various organs of BALB/c mice. The promastigotes of the two lines were grown on 
parallel cultures with the same ages. The presence of viable parasites in the tissues of 
infected mice was determined by culturing in vitro.

Organ
1 d 14 d 21 d 28 d 90 d

WT H WT H WT H WT H WT H

EC +4-4- +-H- +-H- +4-+ ++ -H-+ + 4-++ ++

Right

popliteal LN

+-}-+ +++ -H"+ — -H-+ ++ +++ ++ -H-+ +

Left

popliteal LN
— — — — — - - - - -

Right 

femur LN

+-H- — ++ 4-++ - +++ - +4H- -

Spleen + — — — + - -H- — 4-++ -

Bone

marrow

++ — + — - - ++ - -H-+ —

Liver — — - - - - - - -

Lung — — — — - - + - -H-+ -

(d): Days since infection of mice.

(-H-+): Represents high number o f promastigotes.

(+): Represents low number of promastigotes.

(-): Represents no promastigote growth in the tissue culture.
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3.3.9. Investigation o f disemination o f the two lines o f X. major in the peripheral 

and visceral organs o f infected BALB/c mice

Experiments were carried out to determine whether stationary phase promastigotes of 

L. major H-line are able to disseminate into visceral organs of susceptible mice and 

how long they can survive within epidermal cells and infected organs. To examine the 

in vivo survival and possible dispersion of the L  major H-line beyond the site of 

inoculation, two groups of BALB/c mice (3 mice per group) were injected with L. 

major WT or L. major H-line and then examined for the presence of parasites in the 

peripheral and visceral organs at 12 weeks post infection. The cell suspensions from 

liver, spleen, lung, BM, draining popliteal LN, and ECs from the site of injection were 

prepared and cultured (as described in section 3.3.8). The cultures were examined 

daily for the presence of live promastigotes. As Table 3.2 shows X. major WT spread 

to BM, spleen, lung, popliteal LN, and skin. In contrast, X. major H-line remained 

localized in the ECs and draining LN o f two mice and promastigotes grew in the 

spleen culture of mouse No 2 after 8 days incubation.

These results suggest that X. major WT disseminated into the visceral organs o f 

susceptible mice and the number o f parasites increased post infection. In contrast to X. 

major WT, the attenuated line of X. major H-line was restricted with a decreased 

number of amastigotes in the draining LN and skin of two mice. Promastigotes grew 

in the skin and draining LN culture from third mice infected with X. major H-line. In 

addition, in the spleen cell culture o f this mouse a low number of promastigotes was 

observed after 8 days incubation.
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Table 3.2. Comparative distribution o f L. major WT and L  major H-line in various 

organs of BALB/c mice at 12 weeks post infection. The presence o f viable parasites 

in the tissues of infected mice was determined by culturing in vitro.

EC

Right side 

popliteal LN Spleen BM Lung Liver

H-line (1) + -f - - — -

WT(1) +++ -H-+ +++ +++ ++ -

H-line (2) ++ ++ + - - -

WT(2) + + + +-f—f- + + + + + ++ -

H-line (3) + + + - - - —

WT(3) + + + + + + + + + —

+++: Represents a high number o f promastigotes in tissue culture. 

+: Represents a low number o f promastigotes in tissue culture. 

Represents no promastigote growth in tissue culture.

3.3.10. Anû-Leishmania immunoglobulins induced in mice infected with L. 

mexicana WT or X. mexicana H-line

To examine whether L. mexicana H-line and X. mexicana WT induced similar levels 

of subclasses of anti-Xew/zmuf«fl-specific Ab, BALB/c mice were infected with either 

of the two lines of X. mexicana by sub-cutaneous injection of stationary phase 

promastigotes. Blood was obtained from the mice at 12 weeks post infection. An 

investigation of anti-Xew/ïw^zwa-specific IgGl and IgG2a production in the mice 

infected with X. mexicana WT showed the level o f IgGl Ab was significantly higher 

than the level of JgG2 Ab (p < 0.03). As Figure 3.11 shows the amounts o f IgGl and 

IgG2a Abs in the serum o f mice infected with X. mexicana H-line were lower than 

those in the serum of mice infected with X. mexicana WT. In addition the amount of 

IgGl Ab produced in the mice infected with X. mexicana H-line is significantly lower 

than that in the mice infected with X. mexicana WT (p < 0.05). There was no
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significant difference between the amount of IgGl and IgG2a Ab in the serum of mice 

infected with L. mexicana H-line (p < 0.3).

Figure 3.11. IgGl and IgG2a production by BALB/c mice infected 

with the two lines of L. mexicana. Two groups of mice (5 mice per 

group) were injected with 5 x 1 0 ^  stationary phase of L  mexicana 

WT or L. mexicana H-line into the shaved rumps as described 

before. Mice were bled at 12 weeks post infection. Their sera were 

pooled and analysed by ELISA for the presence of IgGl and IgG2a. 

Note the sera were diluted 1/100 for IgGl and IgG2a assay.
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3.3.11. Interaction of promastigotes o f the two lines o f X. mexicana with 

epidermal cells in vitro

Experiments were carried out to determine whether stationary phase promastigotes of 

L  mexicana WT or L. mexicana H-line are able to infect epidermal cells and if so, the 

immune response of epidermal cells infected with the two lines of X. mexicana. 

Epidermal cells were prepared from the skin o f the ears o f BALB/c mice by a 

trypsinization procedure (see section 3.2.15). These preparations contained 

Langerhans cells (LCs) that constitutively express MHC class II as well as MHC class 

Il-negative kératinocytes, a source of GM-CSF that is essential for LC differentiation, 

and were absolutely devoid of macrophages (Black et a/., 1996). Epidermal cells were 

exposed to stationary phase promastigotes of the two lines of X. mexicana and 

incubated at 32^C in CO2 5% in air for 24 h. The infection ratio of epidermal cell / 

promastigote was 10:1. The supernatants o f cultures were collected, stored at -70°C, 

and the cells were centrifuged on the cytospin. These slides and the chamber slides 

were stained with Giemsa’s stain or acridine orange and ethidium bromide. The 

infected ECs, which were stained with acridine orange determined by fluorescence 

microscopy.

The results showed that no epidermal cells were infected with stationary phase 

promastigotes of X. mexicana H-line or X. mexicana WT, whereas adherent 

macrophages on the chamber slides were infected with stationary phase promastigotes 

of X. mexicana WT at 24 h post infection.

3.3.12. T-cell proliferation of splenocytes from BALB/c mice infected with the 

two lines o f X. mexicana
Studies were carried out to determine whether the splenocytes of BALB/c mice 

infected with X. mexicana H-line or X. mexicana WT at 12 weeks post infection were 

sensitized to stationary phase promastigotes of X. mexicana WT. The splenocytes 

were exposed to promastigotes, at 32°C for 4h and then incubated at 37°C for 68 h. 

The cell: parasite ratio was 10/1 .  The splenocytes were exposed with promastigotes, 

as this in an attempt to simulate the situation when immune mice are exposed to a
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normal challenge. The proliferation of the T cells was confirmed with Con-A (5 

pg/ml) as a stimulation control and unstimulated cells as negative controls. As Figure 

3.12 shows the splenocytes from mice infected with L  mexicana WT displayed Con- 

A-stimulated proliferative responses higher than those of splenocytes from mice 

infected with L  mexicana H-line. Splenocytes from mice infected with either L. 

mexicana H-line or L. mexicana WT both proliferated when exposed to promastigotes 

of L  mexicana WT or promastigotes of L. mexicana H-line (not shown) but this was 

markedly below that of the Con A- stimulated splenocytes.
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Figure 3.12. T-cell proliferation responses of splenocyte from the 

mice infected with the two lines of L. mexicana. BALB/c mice 

were infected with L. mexicana H-line (6 mice) or L  mexicana WT 

(4 mice) at week 12 post infection, induced by Con A (5 pg/ml) 

and stationary phase promastigotes of L. mexicana WT (the ratio of 

splenocyte: promastigote was 10 / 1). The stimulation index was 

calculated as the count per minute (CPM) of stimulated cells / CPM 

of unstimulated cells and error bars are represented the means 

stimulation index ± standard error mean.
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3.3.13. IFN-y, ÎL-2, IL-4, and IL-10 production by splenocytes o f mice infected 

with the two lines of X. mexicana
To examine whether the L. mexicana H-line and L. mexicana WT induced a similar 

cytokine response, mice were infected with either of the two lines by sub-cutaneous 

injection of parasites. Spleens were harvested at 12 weeks post infection and cells re­

stimulated in vitro with stationary phase promastigotes of L. mexicana WT. Cell 

culture supernatants were collected and assayed for the presence o f the Thl type 

cytokines, IFN-y and IL-2.

Spleen cells taken from mice infected with L. mexicana WT secreted a low level of 

IFN-y when restimulated with stationary phase promastigotes. In comparison, cells 

taken from mice infected with L  mexicana H-line secreted a higher amount o f IFN-y 

(P<0.05). In both cases, the level o f IFN-y was detected from cells cultured in medium 

alone (Figure 3.13).

The IL-2 production by these cells presented a similar profile. Spleen cells from L. 

mexicana WT infected mice did not increase IL-2 production when cultured in the 

presence o f stationary phase promastigotes. However, cells taken from mice infected 

with L  mexicana H-line secreted IL-2 when cultured with promastigotes of X. 

mexicana WT. This level o f IL-2 production was significantly higher than the level 

produced by spleen cells fromX. mexicana WT infected mice (P<0.05) (Figure 3.14). 

Supernatants harvested from in vitro cultures of spleen cells taken from infected mice 

and restimulated with stationary phase X. mexicana WT promastigotes were also 

assayed for cytokines characteristic of Th-2 type responses. As shown in Figure 7, 

spleen cells taken from X. mexicana WT infected mice responded to culture with 

parasite antigen. The production o f IL-4 in the supernatant o f Ag-stimulated 

splenocytes from the mice infected with X. mexicana WT was significantly higher 

than that of mice infected with X. mexicana H-line (P<0.05). In comparison, spleen 

cells recovered from mice infected with X. mexicana H-line did not produce IL-4 in 

response to Leishmania (Figure 3.15)

Spleen cells from the mice infected with X. mexicana WT also produced increased 

levels o f IL-10 when cultured with parasite antigen compared with mice infected with 

X. mexicana H-line (P<0.02). No such increase was observed in cells taken from mice 

infected with X. mexicana H-line (Figure 3.16).
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Figure 3.13. The level of IFN-y in the supernatants of cultured 

splenocytes from mice infected with stationary phase promastigotes 

of L  mexicana H-line or L  mexicana WT. The comparison between 

the two lines was made on parallel cultures with the same ages. The 

splenocytes were taken from the infected mice at 12 week post 

infection and stimulated with stationary phase promastigotes of L. 

mexicana WT at a ratio of 1 parasite / 10 splenocytes. Bar represent 

SEM (n = 4).
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Figure 3.14. The level of IL-2 in the supernatants of cultured 

splenocytes from mice infected with stationary phase 

promastigotes of L. mexicana H-line or L. mexicana WT. The 

comparison between the two lines was made on parallel cultures 

with the same ages. The splenocytes were taken from the 

infected mice at 12 weeks post infection and stimulated with 

stationary phase promastigotes of L. mexicana WT at a ratio of 1 

parasite / 10 splenocytes. Bar represent SEM (n = 4).
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□ Cell

Figure 3.15. The level o f IL-4 in the supernatants of cultured 

splenocytes from mice infected with stationary phase promastigotes 

of L  mexicana H-line or L  mexicana WT. The comparison between 

the two lines was made on parallel cultures with the same ages. The 

splenocytes were taken from the infected mice at 12 week post 

infection and stimulated with stationary phase promastigotes of L. 

mexicana WT at a ratio of 1 parasite / 10 splenocytes. Bar represent 

SEM (n = 4).
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Figure 3.16. The level of IL-10 in the supernatants of cultured 

splenocytes from mice infected with stationary phase promastigotes 

of L  mexicana H-line or L. mexicana WT. The comparison between 

the two lines was made on parallel cultures with the same ages. The 

splenocytes were taken from the infected mice at 12 week post 

infection and stimulated with stationary phase promastigotes of L  

mexicana WT at a ratio of 1 parasite / 10 splenocytes. Bar represent 

SEM (n = 4).
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3.4. Discussion

The attenuated cell line of Leishmania was generated by culturing L. mexicana WT 

under pressure of gentamicin and the preliminary results showed that L. major could 

be attenuated using to the same protocol (see Chapter 1).

The ability o f L. mexicana to infect macrophages was investigated through exposure 

of stationary phase promastigotes of L. mexicana H-line to bone marrow derived 

macrophages from BALB/c mice. The results showed that the percentage of 

macrophages infected with L. mexicana H-line was similar to that of L. mexicana WT 

at 9 h post infection but decreased to 0.4% at 96 h post infection. In contrast, the 

percentage of infected macrophages infected with L  mexicana WT increased to 72% 

at 96 h post infection. Only a small population of amastigotes of L. mexicana H-line 

survived within infected macrophages after 96 h post infection in vitro. It has been 

purposed that the ability o f amastigotes of Leishmania to survive within macrophages 

is a primary mechanism for evading parasite the immune responses of their vertebrate 

host (Alexander and Russell, 1992).

In this study, it was shown that 21% macrophages were infected with one amastigote 

of L. mexicana WT at 9 h post infection and this percentage over time decreased to 

10% at 72 h post infection. As Figure 3.6 shows, 18% of macrophages carried more 

than 5 amastigotes at 72 h post infection. This indicates that following interaction of 

L. mexicana WT promastigotes with macrophages, some of them, probably not in 

stationary phase, were unable to survive within infected macrophage. This suggestion 

is agreement with the reports that stationary phase promastigotes of L. major (Sacks et 

al., 1985) or L. mexicana (Robertson and Coombs 1992) were able to establish 

intracellular infections whereas some o f them appeared to be transformed into 

infective-stage promastigotes, as determined by their ability to survive within normal 

resident mouse peritoneal macrophages in vitro. Therefore, the percentage o f 

macrophage infected with one amastigote sharply decreased, whereas the percentage 

of macrophages with more then one amastigote present increased over the 96 h. In 

contrast to L. mexicana WT, after interaction of promastigotes of L. mexicana H-line, 

the vast majority of promastigotes were unable to survive within the parasitophorous 

vacuole (PV) of infected macrophages (Figure 3.5).
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The mechanism of the microbicidal activity of gentamicin, which has been added to 

the culture medium, to attenuate L. mexicana, in particular, killing amastigotes and 

the regulation of immune response against these parasites has yet to be elucidated.

The mechanism which leads to activation and killing of the parasites within the PV 

could be important evidence not only for Leishmania, but also all intracellular 

microorganisms for which the macrophage is one of the critical components of the 

defence (Bogdan ct a/., 1996).

L. mexicana H-line was developed on four separate occasions with the same 

procedure and the stability o f this attenuated cell line in the antibiotic-free medium 

was investigated through culturing promastigotes in the antibiotic-free medium for an 

extended period (40 passages). Stationary phase promastigotes o f L. mexicana H-line 

were grown in the medium without gentamicin and exposed to macrophages. The 

result showed that that attenuated line o f L  mexicana H-line remained unaltered and 

is therefore stable for a long time in vitro in medium free of the antibiotic.

The activation state of macrophages and T cells is dependent on the availability o f 

stimulatory and inhibitory cytokines, the production of which can be altered by the 

parasite (Bogdan et aL, 1999). The survival o f amastigotes within the macrophage is 

prevented when the macrophages are stimulated by specific T-cell-derived 

lymphokines and IFN-y is the most important component among these macrophage- 

activating mediators (Nathan et aL, 1983). IFN-y plays a crucial role in the 

lymphokine response leading to the elimination of Leishmania from the macrophage. 

IFN-y-production is associated with the expansion of CD4^ T cells. Here it has been 

shown that L. mexicana H-line is eliminated by macrophages, whereas amastigotes of 

L  mexicana WT are able to survive for prolonged periods within macrophages.

The levels o f IFN-y, IL-2, IL-4, and IL-10 in the supernatants of cultured splenocytes 

from the mice infected with L. mexicana WT or L  mexicana WT were measured. The 

splenocytes from infected mice at 12 weeks post infection were aseptically removed 

and restimulated with stationary phase promastigotes of L  mexicana WT. It was 

found that the levels o f IFN-y and IL-2 in the supernatant of cultured Ag-stimulated- 

splenocytes of mice infected with L. mexicana H-line were significantly higher than 

those o f mice infected with L. mexicana WT (P<0.05). In contrast the level of IL-4 in 

the supernatant of splenocytes from the mice infected with L. mexicana H-line was 

significantly lower than that of mice infected with L. mexicana WT (P<0.05).
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The high levels of IL-2, IFN-y and low amount of IL-4 in the supernatant of 

splenocytes from mice infected with L  mexicana H-line is agreement with the report 

that low levels o f IL-4 have been associated with IL-2 and IFN-y productions (Tanaka 

et aL, 1993). Several groups o f researchers reported that induction of protective 

immunity against the L. mexicana is ultimately dependent on generation of a Thl-like 

response and IFN-y production (Satoskar et aL, 1995 and Guevara-Mendoza et aL, 

1997). In contrast IL-4 is important for the suppression of the Thl-like responses that 

are required for control of cutaneous lesions after L. mexicana WT infection (Oswald 

et aL, 1992). Satoskar et aL (1997) showed that genetically susceptible mice lacking 

IL-4 are protected from cutaneous infection with L. mexicana WT.

The amount of IL-10 in the supernatant of cultured Ag-stimulated-splenocytes from 

the mice infected with L. mexicana WT or X. mexicana H-line were measured. The 

level of IL-10 production by splenocytes from mice infected with L  mexicana WT 

was significantly higher than that of mice infected with L  mexicana H-line (P<0.02). 

IL-10, which is typically induced by L  major counteracts the development of a 

protective Thl immune response by acting on antigen presenting cells (Bogdan et aL, 

1993). This is characterized by the down-regulation of the expression of MHC class II 

molecules or the suppression o f the production o f parasiticidal metabolites and 

various inflammatory mediators (Howard et. aL, 1992). In addition IL-10 is important 

in inhibiting monocyte-macrophage activation and the production of TNF- a , IL-1 

and IFN-y (D'Andrea et aL, 1993).

In another study, was shown that L. mexicana H-line has the ability to induce IFN-y 

and TNF-a production by macrophages, whereas activation of IFN-y-primed 

macrophages was prevented by L. mexicana WT. The percentage of infected IFN-y- 

primed or unstimulated macrophages and the number o f amastigotes per 100 

unstimulated or IFN-y-primed macrophages infected with L  mexicana H-line or L  

mexicana WT were investigated. The percentage o f infected unsthnulated 

macrophages was 46.6%, whereas 33% o f IFN-y-primed macrophages were infected 

with L  mexicana WT at 24 h post infection with 67 amastigotes per 100 unstimulated 

macrophages decreasing to 33 amastigotes per 100 IFN-y-primed macrophages. This 

was due to activation of macrophages with IFN-y, which was prevented by L. 

mexicana WT.
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Previously, it was shown that stimulated splenocytes from mice infected with L. 

mexicana WT produced high levels o f  IL-4 and IL-10. This suggests that IL-4 or IL- 

10 alone or in combination may interact with activated macrophages, and is supported 

by the report that IL-4 and IL-10 are ability to reduce IFN-y production and therefore 

leishmanicidal activity (Oswald et aL, 1992; Bogdan et aL, 1993).

In the present study it has been shown that L  mexicana H-line is equally susceptible 

to killing by unprimed and IFN-y activated macrophages. This suggests that TNF-a 

induces L. mexicana H-line killing by macrophages in the presence of IFN-y and is 

supported by reports that for activation of macrophages two consecutive signals are 

required, the first signal is IFN-y whereas TNF-a is second signal that mediates 

microbicidal functions exhibited by IFN-y primed macrophages exposed to microbial 

products (James, 1995; Liew et aL, 1990). Bogdan and colleagues (1990) found that 

TNF-a induced rapid Leishmania degradation by the macrophage in the presence of 

very low dosages o f IFN-y, whereas TNF-a in combination with IL-4 supported 

intracellular parasite survival.

The results showed that the L. mexicana H-line induced high levels of IFN-y and 

TNF-a. Schaible and colleagues (1998) reported that activation of macrophages by 

IFN-y and TNF-a leads to the maturation of the phagosome to an acidic 

phagolysosome (pH 5). It is possible that infection with L. mexicana H-line leads to 

the maturation o f the phagosome and increase the acidity o f the phagolysosome. Thus 

amastigotes are unable to survive in phagolysosome at this condition.

It was shown that the majority of the mice infected with L. mexicana H-line failed to 

develop cutaneous lesions and just 1 / 5  mice developed a small and healing lesion 

during the 12 weeks post infection. In contrast to L. mexicana H-line, all infected 

mice with L. mexicana WT went on to grow non-healing lesion at the same time. 

Possible mechanisms underlying the development of non-healing lesions in 

genetically susceptible mice are probably under the control of some kind of cytokines, 

including IL-12, IFN-y, IL-4, and IL-10 (Scharton-Kersten and Scott, 1995; Heinzel et 

aL, 1995). Each of these cytokines has positive effects on the production of the other 

(Gazzinelli et aL, 1993; Macatonia et aL, 1993).

Macrophages infected with stationary phase promastigotes of either L  mexicana WT 

or L. mexicana H-line, produced no significant difference in nitric oxide production. 

The fact that L  mexicana H-line gave rise to similar levels of nitric oxide production
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as L. mexicana WT indicates that the attenuation o f the H-line's virulence is not due to 

NO production. However the Greiss reaction measures the nitrite concentration in the 

supernatant o f infected cultures. In order to determine accurately the production o f 

NO at specific time points, it would be necessary to measure NOS with other 

methods. Vectors are available containing the inducible NOS genes (iNOS) which 

would allow application of the competitive reverse transcription polymerase chain 

reaction (CRT-PCR) (Reiner and Locksley, 1993), for determination mRNA 

expression for INOS within cells which would allow a more accurate measure o f 

NOS. Unfortunately, time limitation and prioritisation prevented further investigation 

by this method.

Dissemination of the parasite in the visceral organs of susceptible mice is result o f the 

development of Th2 response that is not protective (Liew and Donnell, 1993). The 

local restriction of the parasite prior to the development of T cell responses appears to 

be mediated by the innate immune system and this activity is considered to play an 

important role in the subsequent development of a protective T cell response (Laskay 

et aL, 1995). In this study it was found that L. mexicana H-Iine was localized in the 

skin where the promastigotes were injected and in the draining popliteal LN after 120 

days post infection, without any dissemination to the visceral organs. In contrast, 

infection with L  mexicana WT led to the parasite rapidly spreading to the bone 

marrow, spleen, draining popliteal LN and femur, and lungs. Our results indicate that 

L  mexicana H-line can survive in the skin for a long time and thus it could generate 

long term memory or concomitant immunity (Aebischer, et aL, 1993).

It was found that the amounts of both IgGl and IgG2a Abs in the serum o f mice 

infected with L  mexicana H-line were less than those of mice infected with L. 

mexicana WT. The level of IgGI was significantly increased compared with the level 

of IgG2a in the serum o f mice infected with L. mexicana WT (p<0.03). In contrast, 

there was no significant difference between the amounts of IgGl and IgG2a Abs in 

the serum of the mice infected with L  mexicana H-line (p<0.3). In fact, the level of 

IgGl in the serum of mice infected with X. mexicana WT was increased compared 

with that in the serum of infected mice with X. mexicana H-line. On the other hand, 

the production o f IgGl Abs that is promoted by Th2 cells was markedly suppressed in 

the mice infected with X. mexicana H-line, compared with that in X. mexicana WT 

treated mice, indicating possible inhibition o f Th2 function by X. mexicana H-line.
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This data is in agreement with the report that IgGl regulation is not completely 

dependent upon IL-4 signalling (Snapper and Scott, 1987).

Langerhans cells (LCs) play a crucial role in the induction of the immune response in 

the early Leishmania infection because only infected LCs are able to carry parasites 

from the infected skin to the draining LN for primary antigen presentation to T cells 

(Moll et aL, 1993) and produce IL-12 immediately following X. donovani infection 

(Gorak et aL, 1998). It was interesting to determine the immune response of LC 

infected with X. mexicana WT or X. mexicana H-line. The isolated epidermal cells 

were incubated with promastigotes o f the two lines o f X. mexicana in vitro. Blank and 

colleagues (1993) reported that only LC, but no other epidermal cells, are able to take 

up X. major. The presence of intracellular parasites was assessed by staining the cells 

with acridine orange / ethidium bromide (Channon et aL, 1984). It was found that no 

epidermal cells were infected with stationary phase promastigotes of X. mexicana H- 

line or X. mexicana WT in vitro, whereas macrophages stuck on the chamber slides 

were infected with stationary phase promastigotes of X. mexicana WT over 24 h post 

infection. This suggests that stationary phase promastigotes of X. mexicana WT or X. 

mexicana H-line were unable to infect Langerhans cells in vitro.

The present results indicate that the X. mexicana H-line has attenuated virulence for 

BALB/c mice and promotes a Thl cells response.

X. major H-line was stabilised in the presence of gentamicin after 11 passages using 

the same method described for generation o f the X, mexicana H-line. The results of 

the interaction between stationary phase promastigotes of X, major H-line and 

macrophages showed that the attenuated cell line of X. major was able to infect 

macrophages similar to that of X. major WT. In contrast to X. major WT, the 

percentage of macrophages infected by the attenuated line decreased from 41% at 8 h 

post infection to 10.5% at 96 h post infection. The initial infection of macrophages 

with X. major WT was 46.5%, but in contrast to the X. major H-line, the percentage of 

infected macrophages increased to 65% at 96 h post infection.

Comparison o f number of amastigotes of X. mexicana H-line or X. major H-line 

which survived within infected macrophages at 96 h shows that the capability of 

amastigotes of X. major H-line to survive within infected macrophage is greater than 

that of X. mexicana H-line. There are two possible reasons:

1- There are some differences between the resistance of each attenuated line to 

survive within the PV of macrophages.
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2- The promastigotes of L. major H-line after 11 passages were exposed to 

macrophages whereas L. mexicana H-line after 20 passages.

In this study it has been shown that five BALB/c mice infected with L  major H-line 

failed to develop cutaneous lesion during 12 weeks post infection. In contrast to L. 

major H-line, all mice infected with L. major WT went to grow non-healing lesion at 

the same time.

Unfortunately, prioritisation and time limitation prevented more work with the 

attenuated L. major. The preliminary results of interaction between stationary phase 

promastigotes of L. major H-line and macrophages (m vitro) and the failure of lesions 

to develop in the susceptible mice indicate that the attenuated cell line of L. major was 

generated in the presence o f gentamicin. L. major H-line is non-virulent for 

susceptible BALB/c mice, at least 12 weeks post infection.
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4.1. Introduction

Leishmania are responsible a wide spectrum diseases in humans and there has been 

much recent activity in the attempts to vaccine against Leishmania because of the 

problem of an increased incidence o f resistance following chemotherapy that is based 

on pentavalent antimony compounds. Unfortunately these drugs frequently have 

unpleasant side effects, and are not very effective against cutaneous leishmaniasis. 

Another problem of chemotherapy is the development of drug resistance in various 

endemic regions of the world (Jackson et aL, 1990; Rangel et aL, 1997).

The conventional approach to vaccine development has used five methods: live, 

killed, and attenuated promastigotes, subunit vaccines, and DNA vaccines. There is 

no safe and effective vaccine against any form of leishmaniasis (Piedrafita et aL, 

1999).

Killed parasites are unable to invade reticuloendothelial cells but the viable parasite 

can exist intracellularly in the macrophages, and evade the consequences of host’s 

immune attacks. The result is that the parasite can survive in the mammalian host for 

a long time and causes a chronic disease, with unsuccessful immunological response 

(Liew 1989). Persisting parasites offer a continual stimulus to the immune system and 

induce effective immunological memory in the process known as concomitant 

immunity (Aebischer et aL, 1993). An unfortunate feature of this persistence is that 

parasites may grow out o f control reactivating in immunocompromised people. 

Ideally a vaccine should be molecularly defined and induce long term memory in the 

absence of persistent live organisms (Handman, 1997), but this may not be readily 

achievable.

The current conventional approach to leishmanial vaccine development uses two 

methods: the first, attenuation of promastigotes by serial passages in vitro to obtain 

live-attenuated strains (to be used as vaccines), and second, subunit vaccines by 

identification of protective antigens (to be used as non-living vaccines) (Rappuoli, and 

Del Giudice, 1999).

The stable immunity following recovery from cutaneous leishmaniasis has prompted 

scientists during the past several decades to try using the live attenuated cell lines for 

development of prophylactic vaccines. This immunity is driven by the induction of T- 

cell responses involving the production of cytokines, which activate macrophages to 

kill the parasites (Liew and O’Donnell, 1993).
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Reiner and Locksley (1995) reported that resistance to Leishmania in various mouse 

strains strongly correlates with the development of a Thl-like cytokine secretion 

profile. Induction of an immune response with mixed Thl-like and Th2-like is unable 

to confer protection. A Thl response is sufficient to cause protection against disease 

in experimental cutaneous leishmaniasis, but this protection is abrogated if a Th2 

response is simultaneously induced (Sjolander, 1998). The importance o f IL-4 is 

supported by several other studies suggesting that susceptibility to leishmaniasis 

correlates with the production of IL-4 rather than the lack of IFN-y (Erb et aL, 1996; 

Morris et aL, 1993).

4.2. Materials and methods

4.2,1. Parasite

Promastigotes of L. mexicana WT or L major were grown in HOMEM medium 

supplemented with 10% (v/v) HI-FCS. Promastigotes of L. mexicana H-line or L  

major H-line were grown in the same medium supplemented with 20 pg/ml 

gentamicin and incubated at 25^C (see section 2.2.1). In this chapter, the comparisons 

of immune response o f mice induced by L. mexicana WT and X. mexicana H-line 

were made with same age parasites.

4. 2. 2. Immunization of mice with X. mexicana H-line

One group BALB/c mice (14 mice / group) was injected (s.c.) with 5 x 1 0 ^  stationary 

phase promastigotes o f X. mexicana H-line into their shaven right side rump and 

another group injected with PBS. After 12 weeks, the immunised mice and control

group were infected (s.c.) with 5 x 1 0 ^  stationary phase promastigotes o f X. mexicana 

WT into the opposite side rump. The same number of mice were injected with PBS as 

controls. The swelling or lesion growth was monitored weekly.
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4. 2. 3. Immunization of mice with X. major H-iine and challenged with X. major 

WT

Five mice immunized with 5 X1 0 ^  stationary phase promastigotes of X. major H-line 

and 5 non-vaccinated controls were infected with 5 x IQ̂  stationary phase 

promastigotes of X. major WT (as described in section 4.2.1). The swelling or lesion 

growth was monitored weekly.

4. 2. 4. Protection studies-immunization and challenge at the same time

The first group of mice (10 mice / group) was injected (s.c.) with 2.5 x IQ*̂  stationary 

phase promastigotes of X. mexicana H-line into their shaven left side rump and 2.5 x 

10̂  stationary phase promastigotes of X. mexicana WT in the opposite side. The 

second group of mice was injected (s.c.) with a mixture of 2.5 x IQ̂  stationary phase 

promastigotes of X. mexicana H-line and the same number o f stationary phase 

promastigotes of X. mexicana WT into their shaven right side rumps. The third group 

of control mice was infected with 2.5 x 10  ̂ stationary phase promastigotes of X. 

mexicana WT into their right side. The swelling or lesion growth at the site of X. 

mexicana WT inoculation was monitored weekly over a period of 13 weeks.

4. 2. 5. Lesion size

Suspension o f stationary phase promastigotes of X. mexicana H-line or X. mexicana 

WT or X. major WT or X. major H-line at concentration 2.5 x 10  ̂cells/ml in PBS was 

prepared, and 200 pi of these suspensions were injected (s.c.) into the shaven rump of 

BALB/c mice. The lesion volume was measured weekly (for full details see section 

3.2.10).
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4. 2. 6. T cell proliferation assay

T cell proliferation assays were performed as previously described in section 3.2.10. 

Briefly, the mice were vaccinated with stationary phase promastigotes of L. mexicana 

H-line and control mice injected PBS. Three months later the control and vaccinated 

mice were infected with stationary phase promastigotes of L  mexicana WT. The mice 

were killed at 12 weeks post infection and their spleens removed aseptically. Single 

cell suspensions were prepared (for more detail see section 3.2.11) and then exposed 

by adding an equal volume of stationary phase promastigotes at a concentration of 5 x 

10  ̂ cells / ml, giving a parasite: cell ratio of 1:10. Supernatants were collected from 

parallel cultures after 72 h of incubation for ELISA quantification o f cytokine 

production.

4. 2. 7. Cytokine ELISA

Supernatants collected from spleen cell cultures from mice immunized with L. 

mexicana H-line and challenged with L. mexicana WT and infected mice were 

assayed for the presence of IFN-y and IL-4 using ELISA, as previously described (see 

in section 3.2,13).

4. 2. 8. Preparation of tissues, and culture in vitro of L  mexicana isolated from 

infected mice.

Following injection o f 5 x 10  ̂ stationary phase o f promastigotes of L  mexicana WT, 

the parasite loads in the 6 mice were determined by limiting dilution to measure the 

number of viable promastigotes in the tissues o f challenged and infected mice (using 

the same methods described in section 3.2.20). Briefly, the livers, draining lymph 

nodes, lungs and spleens were homogenized in HOMEM medium supplemented with 

FCS 10% and bone marrow cells collected from the femurs and tibias o f infected 

mice. A limiting dilution (LD) cell suspensions in vitro culture assay was used to 

determine the number of viable parasites in these organs. The serial twofold dilutions 

of cell suspensions were plated in the 24-well plates. The cells were then incubated at
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25°C for 14 days. The cultures were examined for the presence of promastigote 

production every day.

4.3. R esu lts

4.3.1. Vaccine potential of X. mexicana H-line

The cytokine production results (see Chapter 3) indicated that infection of mice with 

X. mexicana H-line induced a Thl response, which is a protective response against X. 

mexicana infection (Satoskar et ah, 1995). Therefore, it was examined whether 

pretreatment of mice with the attenuated cell line could protect susceptible BALB/c 

mice from infection with X. mexicana WT. Mice were immunized with X. mexicana 

H-line and challenged with X. mexicana WT at 12 weeks post immunization. All non­

vaccinated mice developed progressive non-healing lesions and the mean lesion size 

at 14 weeks post infection this time was more than 2600 mm^. In contrast to non­

vaccinated mice, the lesion developed slowly in vaccinated mice and as Figure 4.1 

shows the mean of lesion size at 22 weeks post infection was only about 200 mm^.

4.3.2. Protection potential of X. mexicana H-line - immunization and challenge at 

the same time

The results indicated that the X. mexicana H-line induced protection in susceptible 

mice against X. mexicana WT. Next it was examined whether the attenuated cell line 

is able to induce protection when promastigotes of the two lines were injected (s.c.) at 

the same time (Figure 4.2).

The first group of mice was injected with 2.5 x 10  ̂stationary phase promastigotes of 

X. mexicana H-line in the left side rump and the same number of stationary phase of 

X. mexicana WT in the right side rump. The lesions that developed in the right side 

rumps were initially the same size as lesions that developed in the control mice, but 

after about 13 weeks the lesion growth slowed. No lesion or swelling was observed in 

the left side rump where promastigotes of X. mexicana H-line were injected.
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The second group of mice was injected with a mixture of 2.5 x 10  ̂stationary phase 

promastigotes of L. mexicana H-line and the same number of stationary phase
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Figure 4.1. The course of lesion size following L  mexicana WT infection 

in 2 groups of BALB/c mice (14 mice / group). One group had been 

vaccinated with 5x 1 0 ^  stationary phase promastigotes of L  mexicana H- 

line. 5 x 1 0 ^  stationary phase promastigotes of L  mexicana WT were 

inoculated in the shaven right side rump of the vaccinated or non­

vaccinated mice. Lesion development was monitored by measuring the 

lesions weekly. Each data point represents the mean lesion size ± SEM (n 

=14).
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promastigotes of L. mexicana WT both at the same side in the right side rump. The 

results showed that 2 out of the 10 mice developed very slowly growing lesions, 

whereas the other 8 mice had no lesions. The control group of mice was infected with 

2.5 X 10  ̂ stationary phase promastigotes of L  mexicana WT. All mice developed 

progressive non-healing lesions. These results shows that the L. mexicana H-line 

induced a protection that led to control of L. mexicana WT infecting at the same time.
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Figure 4.2. The course of infection of three groups in BALB/c mice (10 mice / group) 

infected with both L. mexicana WT and L. mexicana H-line or L. mexicana WT alone. Lesion 

development was monitored by measuring the lesions weekly. Each data point represents the 

mean lesion size ± SEM (n =10).
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4.3.3. Lesion development in mice vaccinated with L. mexicana H-line and 

infected with L. major WT

In order to determine whether L. mexicana H-line has the potential to protect BALB/c 

mice from L  major, the mice immunized with L  mexicana H-line were challenged at 

week 12 with stationary phase promastigotes of L  major WT. The lesion size in the 

vaccinated mice was compared with non-vaccinated mice. As the figure 4.3 shows, 

there is no significant difference between the two groups of mice. This result suggests 

that there was no protection in the mice vaccinated with L  mexicana H-line against L  

major.
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Figure 4.3. The course of lesion size following L  major WT infection in 2 groups 

of BALB/c mice (14 mice / group). One group had been vaccinated with 5 x 10̂  

stationary phase promastigotes of L. mexicana H-line. 5 x 10  ̂ stationary phase 

promastigotes of L. major WT were inoculated in the right side shaven rump of the 

vaccinated or non-vaccinated mice. Lesion development was monitored by 

measuring the lesions weekly. Each data point represents the mean lesion size ± 

SEM (n=  14).
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4.3.4. Vaccine potential of £. major H-line

To determine whether the L. major H-line has the ability to protect susceptible mice 

against infection with L  major WT, 5 BALB/c mice were immunized with L  major 

H-line. The mice were challenged at 12 weeks with L. major WT. All non-vaccinated 

mice developed progressive non-healing lesions up to 12 weeks post infection and the 

mean lesion size at this time was more than 2000 mm^. In contrast to non-vaccinated 

mice, lesions developed slowly in vaccinated mice and as Figure 4.4 shows the mean 

of lesion size at 12 weeks post infection was less than 1000 mm^.
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Figure 4.4. The course of lesion size following L  major WT infection in 2 

groups of BALB/c mice (5 mice / group). One group had been vaccinated 

with 5 X 10  ̂ stationary phase promastigotes of L  major H-line. 5 x lo^ 

stationary phase promastigotes of L. major WT were inoculated in the 

right side shaven rump of the vaccinated or non-vaccinated mice. Lesion 

development was monitored by measuring the lesions weekly. Each data 

point represents the mean lesion size ± SEM (n = 5).
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4.3.5. T-cell proliferation of splenocytes from vaccinated or non-vaccinated 

BALB/c mice infected with the two lines of L. mexicana

Studies were carried out to determine whether the splenocytes of vaccinated and non- 

vaccinated BALB/c mice infected with 5 x 1 0 ^  stationary phase promastigotes of L. 

mexicana WT 12 weeks post infection were stimulated with stationary phase 

promastigotes of L  mexicana WT. The splenocytes were exposed to promastigotes, at 

32®C for 4 h, and then incubated at 37°C for 68 h. The splenocyte: parasite ratio was 

1 0 / 1 .  The splenocytes were stimulated with promastigotes, because this simulated 

the situation when the immune mice are exposed to a normal challenge. The 

proliferation of the T cells was confirmed with Con-A (5 pg/ml) as a positive control 

and non-stimulated cells as negative controls. As Figure 4.5 shows the Con-A- 

stimulated proliferative response of splenocytes from non-vaccinated mice was 

significantly higher than that of promastigotes-stimulated (P<0.02). Promastigotes of 

L  mexicana WT induced proliferation o f splenocytes of the vaccinated mice 

significantly less that of the Con A-stimulated splenocytes (P<0.04).
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Figure 4.5. T-cell proliferation responses of splenocytes from non- 

vaccinated mice and mice vaccinated with L  mexicana H-line and 

infected with L. mexicana WT. The mice vaccinated with L. mexicana 

H-line and non-vaccinated mice were challenged with 5x10^ stationary 

promastigotes of L  mexicana WT at 12 weeks post immunization. T- 

cell proliferation responses o f spleen cells from mice at week 12 post 

infection were induced by Con A (5 pg/ml) and stationary phase 

promastigotes of L. mexicana WT (the ratio of splenocytes: 

promastigotes was 10 / 1). The stimulation index was calculated as 

count per minute (CPM) of stimulated cells / CPM of unstimulated 

cells. The bar represent SEM (n = 5).
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4.3.6. IFN-y and IL-4 production by splenocytes of challenged mice

To determine whether the vaccination with L. mexicana H-line had an effect on the 

cytokine production of mice vaccinated with L. mexicana H-line and at 12 weeks post 

immunization challenged with L. mexicana WT, splenocyte cultures were established 

from mice at 12 weeks post challenge. The splenocytes were restimulated with 

stationary phase promastigotes of L. mexicana WT and supernatants harvested after 

72 h culture. Spleen cells from mice which were injected with L  mexicana H-line and 

after 12 weeks were challenged with L. mexicana WT, produced levels of IFN-y 

which were significantly greater than these produced by mice which did not receive 

the vaccination (P<0.005) (Figure 4.6).

IL-4 levels were increased in supernatants harvested from Ag-stimulated spleen cells 

set up from mice receiving the single L  mexicana WT challenge. In contrast, no IL-4 

was produced by cells taken from the mice which had received the pre-treatment with 

L  mexicana H-line (Figure 4.7).

The relative production of these cytokines can thus be used as a marker for the 

induction of Thl-like and Th2-Iike immune responses, respectively. The spleen cells 

from mice immunized with L. mexicana H-line secreted high concentrations of IFN-y 

but no detectable IL-4. The stationary phase promastigotes o f L. mexicana WT 

induced spleen cells producing high concentrations of IL-4. Spleen cells were 

stimulated in vitro with stationary phase promastigotes of L  mexicana WT for 72 h. 

In contrast to the mice vaccinated with L. mexicana H-line and challenged with L. 

mexicana WT, the amount o f IL-4 in the supernatant of splenocyte cultures of non- 

vaccinated mice was significantly increased higher than that with challenged mice (P< 

0.005) (Figure 4.7).
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Figure 4.6. IFN-y production by cultured splenocytes taken 

from mice 12 weeks post infection with stationary phase 

promastigotes WT or mice vaccinated with L. mexicana H-line 

and at 12 weeks post immunization challenged with L. 

mexicana WT. The mice were immunized with L. mexicana H- 

line and at 12 weeks challenged with L. mexicana WT. The 

splenocytes were restimulated with stationary phase 

promastigotes of L. mexicana WT and supernatants harvested 

after 72 h culture. The infection ratio of parasite / splenocyte 

was 1:10. Bars represents SEM (n = 3).
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Figure 4.7. IL-4 production by cultured splenocytes taken from mice 12 

weeks post infection with stationary phase promastigotes WT or mice 

vaccinated with L. mexicana H-line and at 12 weeks post immunization 

challenged with L  mexicana WT. The mice were immunized with L  

mexicana H-line and at 12 weeks challenged with L  mexicana WT. The 

splenocytes were restimulated with stationary phase promastigotes of L. 

mexicana WT and supernatants harvested after 72 h culture. The 

infection ratio of parasite / splenocyte was 1: 10. Bars represent SEM 

(n = 3).
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4.3.7, Investigation of the spreading of X. mexicana to the visceral organs of mice 

vaccinated with X. mexicana H-line

The in vitro results suggest that the X. mexicana H-line may be capable of protecting 

susceptible mice against X. mexicana WT. To consider the in vivo survival and 

possible dispersion of the X. mexicana WT beyond site of inoculation, the vaccinated 

mice were injected with X. mexicana WT and then examined for the presence of 

parasites in the peripheral and visceral organs. Stationary phase promastigotes of X. 

mexicana WT were subcutanously injected and then the spreading of parasites in the 

skin and visceral organs of 6 challenged mice was investigated at 12 weeks post 

infection. The visceral organs were removed asceptically. These included liver, 

spleen, lung, bone marrow (BM), draining popliteal lymph node (LN), and ECs from 

the site o f injection at the appropriate times. The cell suspensions were cultured in 

HOMEM medium supplemented with 10% (v/v) FCS and incubated at 25°C over 14 

days. The cultures were examined daily for the presence of live promastigotes (Table

4.1). Promastigotes of X. mexicana H-line grew in cell cultures from LN and ECs, 

where X. mexicana H-line were injected, o f challenged mice numbers 1, 2, and 6, 

whereas no promastigotes of X. mexicana WT grew in the cell cultures obtained from 

visceral organs o f these mice. No promastigote of X. mexicana H-line grew in the cell 

culture derived from LN and ECs, where X. mexicana H-line were injected, of mice 

numbers 3, 4, and 5. In contrast, in the absence of X. mexicana H-line, promastigotes 

of X. mexicana WT were observed in the tissue cultured o f these mice to survive 

within resident macrophages for long periods.

In addition, throughout the period of study (24 weeks) no lesion developed in the right 

side of mice where the promastigotes of X. mexicana H-line were injected. Two mice 

(numbers 4 and 5), developed a lesion in the left side where promastigotes o f X. 

mexicana WT were injected and no lesions were observed in the rest of mice (Table

4.2). The draining LN contained parasites within one day o f infection, and remained 

infected throughout the period of study (12 weeks). It was shown that X. mexicana 

WT spread to BM, spleen and lung and it was observed that infection of visceral 

organs correlated with an increase in lesion size (see section 3.3.12).
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Table 4.1. Distribution of the two lines of L.mexicana in the skin and visceral 

organs o f challenged mice.

Mouse 1 2 3 4 5 6

Epidermal cell ” + + - - +

Epidermal cell ^ - - + + +

Spleen - - - + +

Lung - - + -t- +

(a); The site where stationary phase promastigotes of L. mexicana H-line were 

injected.

(b): The site where stationary phase promastigotes ofX. mexicana WT were injected. 

(+): Indicates that promastigotes were observed in the tissue culture.

(-): Indicates that no promastigotes were observed in the tissue culture.

Table 4.2. Cutaneous lesion development in the challenged mice 12 weeks post 

infection.

Mouse 1 2 3 4 5 6

Lesion (right side) ® N  ̂ N N N N N

Lesion (left side) N N N L̂ * L" N

(a): The site where stationary phase promastigotes of X. mexicana H-line were 

injected.

(b): The site where stationary phase promastigotes of X. mexicana WT were injected.

(c) : No lesion developed.

(d): Small size lesion developed.

(e): Large size lesion developed.
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4.4, Discussion

L  mexicana H-line is capable of inducing a CD4+ Thl response, which was 

demonstrated by elevated IFN-y and IL-2 production by cultured splenocytes of 

BALB/c mice infected with L  mexicana H-line (for more detail see Chapter 3). To 

determine whether the attenuated line could induce protection against L. mexicana 

WT, the mice vaccinated with stationary phase promastigotes of L  mexicana H-line 

were challenged at week 12 post immunization with L. mexicana WT. All non- 

vaccinated mice developed large size, non-healing lesions, whereas the vaccinated 

mice developed small and in some cases healing lesions over 22 weeks post infection. 

This result suggested that immunization with X. mexicana H-line induced a protective 

Thl response and immunized mice were significantly resistant to X. mexicana WT 

compared with non-immunized mice. In a fiirther study it was shown that IFN-y 

production was elevated in the supernatant of cultured splenocytes of mice challenged 

with X. mexicana H-line. The present results are supported by the reports that 

recovery from cutaneous lesions in mice resistant to X. mexicana was associated with 

the expansion o f the CD4^ Thl subset and production of cytokines such as IL-12, 

IFN-y, and IL-2 (Stamm et al, 1998). Resistance to X. major in various mouse strains 

strongly correlates with the development of a Thl-like cytokine secretion profile 

(Reiner and Locksley 1995). In contrast to X. mexicana H-line, injection of X. 

mexicana WT induced a Th2 immune response and an exacerbated disease. 

Therefore, the attenuated line o f X. mexicana holds considerable promise for 

vaccination against leishmaniasis in which Thl responses are desirable.

In addition, the present results indicated that a Thl response alone can protect 

against X. mexicana WT, in agreement with the report that induction of an immune 

response with mixed Thl-like and Th2-like elements is unable to confer protection 

and that a Thl response is sufficient to protect against disease in experimental 

cutaneous leishmaniasis and the induction of a simultaneous Th2 response abrogates 

the Thl effector function (Sjolander, 1998). Furthermore, there is considerable 

evidence that Th2-type responses and the production of IL-4 results in the inability to 

control disease, or results in disease exacerbation (Heinzel et aL, 1991). The severity 

o f disease in murine cutaneous leishmaniasis is better correlated with the presence of 

IL-4 than the lack of production of IFN-y (Erb et aL, 1996; Morris et al., 1993a). This 

observation shows that X. mexicana H-line preferentially induces a Thl-like immune
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response and down-regulate the Th2 response. In murine leishmaniasis, the 

genetically resistant mice display a Thl phenotype, whereas the susceptible BALB/c 

mice develop a clear Th2 cytokine phenotype (Heinzel et aL, 1989; Heinzel et al., 

1991).

Alexander and Phillips (1980) reported that mice infected with L. major were 

immune to subsequent infection with L. mexicana. To determine whether mice 

vaccinated with L. mexicana H-line were capable of protection mice against L. major, 

the mice vaccinated with L. mexicana H-line were challenged with L. major. The 

results showed that the attenuated line of L  mexicana generated no protection against 

L. major. In this case there is no cross immunity between L  mexicana and L. major.

The local restriction of the parasites prior to the development of T cell responses 

appears to be mediated by the innate immune system and this activity is considered to 

play an important role in the development of protective T cell responses (Laskay et 

aL, 1995). Dissemination of the parasite to the visceral organs in susceptible mice is 

result of the development of a non-protective Th2 response (Leiw et aL, 1993). In the 

present study it has been demonstrated that in the presence of the attenuated cell line 

of L  mexicana, L. mexicana WT was not found in the draining LN, skin and other 

organs. In contrast, L. mexicana WT disseminated into the visceral organs of 

challenged mice in the absence o f the attenuate cell line. Therefore the presence of L. 

mexicana H-line in the host led to the elimination L. mexicana WT.

In Chapter 3, it was shown that L. mexicana H-line remained localized in the EC of 

skin where the promastigotes were injected and in the draining popliteal LN, without 

evidence of dissemination to the visceral organs throughout the period o f study. In 

contrast, L  mexicana WT disseminated to the bone marrow, spleen, draining popliteal 

LN, and lungs. Therefore, it is very unlikely that the parasites, which were 

disseminated in the visceral organs of challenged mice, belong to attenuated cell line. 

The protection o f L. mexicana H-line against L. mexicana WT at the same time was 

investigated by following the result o f injecting of the same number of stationary 

phase promastigotes of the two lines of L, mexicana in the same side or the same 

number o f L. mexicana WT or L  mexicana H-line on separate sides in the same mice. 

The control mice which were infected with L. mexicana WT alone developed 

progressive non-healing lesions. In contrast, some of the mice that were infected with 

mixed L. mexicana H-line and L. mexicana WT developed very slowly growing 

lesions. In the mice, which were injected with the two lines of parasites on the
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separate sides, growth o f Z. mexicana WT growth eventually slowed. There was good 

evidence of control of L. mexicana WT.

The preliminary results also showed that L. major H-line induced protection in 

susceptible mice against infection with L. major WT. All non-vaccinated mice 

developed progressive non-healing lesions that peaked in size at 12 weeks post 

infection and the mean lesion size at this time was 2000 mm^. In contrast to non­

vaccinated mice the lesion developed slowly in vaccinated mice and as Figure 4.4 

shows the mean of lesion size at 12 weeks post infection was about 1000 mm^. 

Unfortunately, time limitation and prioritisation prevented further investigation by 

other methods.
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The Leishmania species belong to the kinetoplastid protozoa, which are 

responsible for a wide spectrum of disease including cutaneous, mucocutaneous, and 

visceral leishmaniasis (Pearson and Sousa, 1996). The worldwide prevalence of 

leishmaniasis is approximately 12 million, mostly children and young adults (WHO 

report, http://www.who.int/ctd/htnn/leish.html. 2000). Although treatment with 

leishmanicidal drugs is available, chemotherapy has only a moderate effect and the 

available drugs frequently have unwanted side effects. Some are losing their 

effectiveness and drug resistance is becoming a significant problem in various 

endemic regions of the world (Jackson et al., 1990). Although there has been much 

recent interest in attempts to vaccinate against Leishmania infection, there is no 

effective and safe vaccine against any form of leishmaniasis (Piedrafita et al., 1999). 

Individuals who have recovered from clinical leishmaniasis develop strong immunity 

against reinfection, and therefore it has been suggested that vaccination against 

leishmaniasis is feasible in principle (Liew and O'Donnell, 1993). Conventional 

vaccine development against leishmaniasis is focused on five approaches: killed 

promastigotes, live promastigotes (wild type), live attenuated promastigotes, subunit 

vaccines, and DNA vaccines. Rappuoli and Giudice (1999) argued that leishmanial 

vaccine development is most likely to be successful through use o f attenuated 

promastigotes and subunit vaccines based on the identification of protective antigens. 

All subunit vaccines tested (for example gp63, gp46) however have given only partial 

protection and their efficacy has often required the use of clinically unacceptable 

adjuvants (Piedrafita et at., 1999).

In this study the development of an attenuated cell line of L. mexicana in the 

presence of an antibiotic is described. In a preliminary investigation, this technique 

was also extended to attenuate L. major. Therefore, this method for inducing 

attenuation might be applicable to other species of Leishmania and possibly other 

microorganisms. Aebischer and colleagues (1993) suggested that an attenuated cell 

line of L. major, which persisted for a prolonged period in vivo, stimulated clinically 

protective immunological memory in a process known as concomitant immunity. It is 

clear that while several kinds o f vaccine against leishmaniasis have been generated, 

the protection induced by the use of attenuated promastigotes has to date proved to be 

the most effective. These findings are consistent with reports that attenuated forms of 

many microorganisms can serve as highly effective vaccines (Hess et al., 2000).
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Attenuated lines of Leishmania species have been created using several methods, such 

as disruption of (controlling) virulence genes from the genome of wild type 

Leishmania. For example, L. mexicana tscpa/cpb is an attenuated line (Souza et al., 

1994) and is candidate for vaccines (Alexander et al., 1998). An attenuated L. major 

line lacking a DHFR/TS gene (Titus et al., 1995) has also been developed.

For the first time attenuated cell lines of L. mexicana WT and L. major WT have 

been generated in vitro in the presence of an antibiotic. The attenuated lines o f T. 

mexicana WT and L. major WT known as L. mexicana H-line and L. major H-line, 

respectively, have been established under antibiotic pressure (gentamicin), which was 

routinely added to the medium to prevent bacterial contamination. The attenuated 

parasites were characterised in vivo and in vitro. The ability of the L. mexicana H-line 

to survive within infected macrophages was examined by exposure o f stationary 

phase promastigotes from the L. mexicana H-line to bone marrow -derived 

macrophages (BMMs). The results showed that the percentage of macrophages 

infected with the L. mexicana H-line was similar to that of L. mexicana WT at 9 h 

post infection. In contrast to L. mexicana WT, only a small population of amastigotes 

of L. mexicana H-line survived within infected macrophages after 96 h post infection 

in vitro. The ability o f L. mexicana H-line to induce cutaneous leishmaniasis was 

examined by injection (subcutaneously) of stationary phase promastigotes of L. 

mexicana H-line. It was shown that the majority of BALB/c mice, which are 

susceptible to L. mexicana WT, when infected with L. mexicana H-line failed to 

develop cutaneous lesions. Over the whole study over 40 mice were infected with L. 

mexicana H-line and only one developed a healing lesion. In contrast to the L. 

mexicana H-line, all mice infected with L. mexicana WT, which was grown in parallel 

cultures of the same age as L. mexicana H-line in medium without gentamicin, 

developed non-healing lesions. Therefore, it was concluded that the L. mexicana H- 

line is an attenuated line, which has been generated in the pressure of gentamicin. The 

mechanism by which gentamicin, an aminoglycoside, attenuates L. mexicana WT is 

unknown. Several groups of researchers determined the sequence requirements of 

ribosomal RNA for aminoglycoside interaction with prokaryotes and eukaryotes 

(Werstuck and Green, 1998; Yoshizawa et al., 1998; Recht et ah, 1999). Disruption of 

ribosomal activity by breaking up of polysomes or inducing misreading of mRNA 

during protein synthesis resulting in incomplete protein synthesis, are possible
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mechanisms (Chambers and Sande, 1996). It was found that the adaptation of L  

mexicana H-line under pressure of gentamicin has involved an alteration in protein 

expression. Two bands were detected around 66 kDa in stationary or log phase 

promastigotes of L. mexicana WT, whereas one (possibly two) o f these bands were 

absent in the stationary and log phase promastigotes of L  mexicana H-line. In other 

experiments, the comparative proteome analysis of the two lines of L. mexicana using 

high-resolution techniques was carried out using isoelectric focusing and SDS-PAGE. 

It was demonstrated that both lines of Leishmania comprise patterns with a high 

density o f spots in the range pH 4-7 of the gel. The position of spots in the gels of the 

two lines of L. mexicana revealed high similarity, and the main spots were compared 

easily. One spot in the L. mexicana WT gel was shifted to a less acidic position in the 

L. mexicana H-line and one spot was absent in L. mexicana H-line. In addition, two 

spots were found in the L  mexicana WT gel, whereas the expression of these proteins 

by promastigotes of L. mexicana H-line decreased. Although, the data have shown 

significant differences between the two lines of L. mexicana, there are insufficient 

replicates to draw firm conclusions about the absence or decreased expression of the 

proteins in 2-DE. To identify proteins in the lysate of stationary phase promastigotes 

of L. mexicana H-line, which were lost or reduced compared with L. mexicana WT, 

mass spectrometry with database searching has been suggested (Beavis and Fenyo, 

2000). In conclusion, the results of protein analysis using SDS-PAGE gradient gels 

and proteome analysis using 2-DE of the two lines of L. mexicana demonstrate that 

the attenuation procedure under pressure of gentamicin affected protein expression in 

promastigotes of L. mexicana H-line (following growing the parasites in the presence 

of gentamicin).

On the basis o f these experiments, promastigotes of L. mexicana WT passaged at 

least 20 times in HOMEM medium supplemented with 10% (v/v) FCS and 

gentamicin at 20 pg/ml, were shown to become attenuated during this process. The 

precise timing of any changes induced in the parasite by gentamicin that led to 

parasite attenuation has yet to be determined. It was shown that L. mexicana H-line 

was stable in the absence of gentamicin. Promastigotes of L. mexicana H-line were 

grown in antibiotic-free medium for 40 passages and then exposed to bone marrow 

macrophages. The ability of the attenuated line to invade and survive within infected 

macrophages was examined over a 96 h incubation. The results showed that the 

attenuated line is stable in antibiotic-free medium in vitro for more than 23 weeks.
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Therefore, the differentiation of L. mexicana WT to the attenuated line of L. mexicana 

is stable in the absence of gentamicin in medium. It was demonstrated that the 

adaptation of L. mexicana H-line under pressure of gentamicin has not involved 

cysteine proteinase (CP) production by stationary phase promastigotes of L. mexicana 

H-line. The proteinase activity o f stationary phase promastigotes o f L  mexicana H- 

line and L. mexicana WT was investigated by loading lysates on gelatin-SDS-PAGE 

gel. Robertson and Coombs (1992) reported that a high mobility band o f CP activity 

can be detected in stationary phase promastigotes of L. mexicana using gelatin-SDS- 

PAGE. Three bands were detected of which the molecular mass of the highest 

mobility band of proteolytic activities was 20 kDa. That these proteinases are cysteine 

proteinase is supported by the report of an analysis of CPB isoenzymes expressed in 

of stationary phase promastigotes of L. mexicana WT. Using Western blotting, anti- 

CPB antiserum detected two major proteins (25 and 29 kDa) (Mottram et al., 1997). 

Therefore, the stationary phase promastigotes of L. mexicana H-line are not deficient 

in CP. During the present study some experimental work has been carried out with L. 

mexicana Acpa/cpb which had been created by targeted gene disruption (Mottram et 

al., 1997). It was therefore, necessary to demonstrate that promastigotes of L. 

mexicana H-Iine were not contaminated with L. mexicana Acpa/cpb. The 

promastigotes of L. mexicana H-Iine were grown in the presence of 4 kinds of 

selective antibiotics, nourseothricin hydrosulfate (Sat), puromycin (Pur), zeocin (Ble) 

or hygromycin B (Hyg) separately or in combination. The results demonstrated that 

promastigotes of L. mexicana H-line were sensitive to these selective antibiotics and 

did not grow in the media supplemented with these antibiotics. In contrast, 

promastigotes of L. mexicana Acpa/cpb grew in these media. This result was in 

agreement with the report that L. mexicana Acpa was generated by disrupting 

sequentially both alleles of Imcpa using gene-targeting of promastigotes with 

hygromycin- and phleomycin-resistance markers and promastigotes of L. mexicana 

Acpa/cpb are able to grow in the presence of these selective antibiotics (Souza et al., 

1994). Therefore promastigotes o f L. mexicana H-line were neither deficient in CPs, 

nor contaminated with promastigotes of L. mexicana Acpa/cpb. L. mexicana H-line 

has been generated on four separate occasions by the same procedure. On each 

occasion promastigotes were derived from amastigotes, and grown in parallel in 

media with or without gentamicin for at least 20 passages. It was demonstrated that 

the attenuation procedure did not effect on the growth rate of promastigotes of L.
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mexicana H-line. There was no significant difference between the growth rate of 

promastigotes of L. mexicana H-line and L. mexicana WT in vitro.

There are two observations show that L. mexicana H-line is non-infective. First, the 

attenuated line of L. mexicana H-line was unable to survive within BMM in vitro. 

Alexander and Russell (1992) reported that the ability o f amastigotes of Leishmania 

to survive within macrophages is a primary mechanism for evading the immune 

response of their vertebrate host. Secondly, over 40 mice infected with L. mexicana 

H-line failed to develop cutaneous lesions and only one developed a healing lesion 

during 12 weeks post infection. It is proposed that the mechanisms underlying the 

development of non-healing lesions, in genetically susceptible mice, is under control 

of specific cytokines, including IL-12, IFN-y, IL-4, and IL-10 (Heinzel et al., 1995; 

Scharton-Kersten and Scott, 1995). Satoskar and colleagues (1997) showed that 

genetically susceptible mice lacking IL-4 are protected from cutaneous infection with 

L. mexicana WT. IL-4 and IL-IO induce non-healing lesions, whereas in the presence 

of IFN-y and IL-12 cutaneous lesions fail to develop or heal lesions. The activation 

state of macrophages and T cells is dependent on the availability of stimulatory and 

inhibitory cytokines, the production of which can be altered by the parasite (Bogdan 

et al., 1999). The levels o f IFN-y, IL-2, IL-4, and IL-10 in the supernatant of cultured 

splenocytes from the mice infected with L. mexicana H-line or L. mexicana WT were 

measured. It was found that the levels of IFN-y IL-2 in the supernatant of cultured 

Ag-stimulated-splenocytes of mice infected with L. mexicana H-line were 

significantly higher than those of splenocytes of mice infected with L. mexicana WT 

(P<0.05). As a result L. mexicana H-line amastigotes were ehminated by 

macrophages, whereas amastigotes of L. mexicana WT are able to survive for 

prolonged periods within these cells. The survival of L. mexicana WT amastigotes 

within the macrophage is prevented when the macrophages are stimulated by specific 

T-cell-derived lymphokines and IFN-y is the most important component among these 

macrophage-activating mediators (Nathan et al., 1983). It was found that the level o f 

IL-4 in the supernatant of splenocytes from the mice infected with L. mexicana H-line 

was significantly lower than that of mice infected with L. mexicana WT (P<0.05). IL- 

4 plays a crucial role in inhibiting macrophage leishmanicidal activity and down- 

regulating the development of a Thl-like response (Oswald et al., 1992). The amount 

of IL-10 in the supernatant of cultured Ag-stimulated-splenocytes from the mice 

infected with L. mexicana WT or L. mexicana H-line was measured. The level of IL-
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10 production by splenocytes from mice infected with L. mexicana WT was 

significantly higher than that o f mice infected with L. mexicana H-line (P<0.02), IL- 

10, which is typically induced by the parasite, inhibits killing of Leishmania species 

and counteracts the development of a protective ThI immune response (Bogdan et al., 

1993) by its action on antigen presenting cells. The level of IL-2 in the supernatants of 

cultured splenocytes from BALB/c mice infected with stationary phase promastigotes 

o f L. mexicana H-line was significantly higher than that of promastigotes from L. 

mexicana WT (P<0.05). Nacy and colleagues (1991) reported both IFN-y and IL-2, 

induce TNF-a production and secretion of this cytokiue by macrophages. Thus L. 

mexicana WT induces IL-4 and IL-10 whereas L. mexicana H-line presumably has 

the capacity to induce IFN-y, TNF-a, and IL-2, in susceptible mice. This is consist 

with the proposition that IFN-y production by Thl cells inhibits the development of 

Th2 cells (Fitch et at., 1993), whereas the production of IL-4 and IL-10 by Th2 cells 

inhibits Thl development and activation, as well as macrophage activation and 

bactericidal activity (Sher and Coffrnan, 1992; Moore et al., 1993).

Following inoculation of 5 x 10  ̂stationary phase promastigotes of the two cell 

lines, dissemination and survival o f the two lines in the skin and visceral organs of 

BALB/c mice were investigated. Other studies have shown that dissemination of the 

parasite in the visceral organs of susceptible mice is the result of the development of a 

non-protective Th2 response (Liew and Donnell, 1993). The local restriction of the 

parasite prior to the development of T cell responses appears to be mediated by the 

innate immune system and this activity is considered to play an important role in the 

subsequent development of a protective T cell response (Laskay et al., 1995). In the 

present study it was found that L  mexicana H-line was localized in the skin at the site 

where the promastigotes were injected and the draining popliteal LN, after 120 days 

post infection without any dissemination to the visceral organs. In contrast, infection 

with L. mexicana WT led to rapid parasite spread to the bone marrow, spleen, drain 

popliteal LN, and lungs. The fact that L. mexicana H-line parasites can survive in the 

skin for an extended period would sustain long term memory. All these results show 

that L. mexicana H-line has reduced virulence for susceptible mice and induces a Thl- 

like immune response.

It was demonstrated that the attenuated L. mexicana H-line was capable o f protecting 

mice against L. mexicana WT. Mice were vaccinated with stationary phase 

promastigotes of L. mexicana H-line and 12 weeks post immunization were
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challenged with L. mexicana WT. All the non-vaccinated mice developed progressive, 

non-healing lesions, whereas the mice vaccinated with L  mexicana H-line developed 

small but in some cases healing lesions over 22 weeks post infection. Thus, the 

attenuated line of L  mexicana holds considerable promise for vaccination against 

leishmaniasis in which Thl responses are desirable. The levels of IFN-y and IL-4 in 

the supernatants of cultured splenocytes from the vaccinated mice and mice 

challenged with L. mexicana WT were measured. It was found that the level of IFN-y 

in the supernatant o f cultured Ag-stimulated-splenocytes of challenged mice at 12 

weeks post challenge was significantly greater than that of non-vaccinated mice 

infected with L. mexicana WT (P<0.005). In contrast to the vaccinated mice, the 

amount of IL-4 in the supernatant of Ag-stimulated-splenocytes cultured from non­

vaccinated mice infected with L  mexicana WT was higher than that of vaccinated 

mice challenged with L. mexicana WT at the same time. Therefore, it can be 

concluded that L. mexicana H-line preferentially induces Thl-like immune responses 

and down-regulates Th2 response in BALB/c mice. This result is in agreement with 

reports that a Thl response protects against cutaneous leishmaniasis, but the induction 

of a simultaneous Th2 response abrogates the protective Thl effector function 

(Sjolander, 1998; Reiner and Locksley, 1995). EarUer in the study, it was shown that 

L  mexicana WT disseminated in the skin and visceral organs, whereas L  mexicana 

H-line localized in the skin and draining LN. Dissemination o f L  mexicana WT in the 

skin and visceral organs of mice vaccinated with L, mexicana H-line was investigated. 

L  mexicana WT was disseminated in the skin or visceral organs of 3 vaccinated mice 

when L. mexicana H-line was apparently absent. In contrast, in the presence of L. 

mexicana H-line in the skin of 3 vaccinated mice, L  mexicana WT was unable to 

survive in the skin and visceral organs. Therefore, the presence of L. mexicana H-line 

in the host led to elimination o f L. mexicana WT in the skin and visceral organs of 

vaccinated mice. The protection induced by L  mexicana H-line when challenged 

simultaneously with L  mexicana WT, was investigated. The same number of 

stationary phase promastigotes of the two lines of L. mexicana were injected either 

together in the same side of the rump or the same number of L  mexicana WT or L  

mexicana H-line injected in opposites side of the rump of the mice. The control mice, 

which were infected with L. mexicana WT only developed progressive non-healing 

lesions. In contrast, some of the mice that were infected with a mixture of L  mexicana 

H-line and L. mexicana WT developed very slowly growing lesions. In the mice that
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were injected with the two lines o f parasites on the separate sides, growth of L. 

mexicana WT was slowed. This indicated that the presence of the attenuated cell line 

in the susceptible mice induced immune responses that led to the control of L. 

mexicana WT. These results showed that the attenuated L  mexicana H-line was able 

to control the immune system of the host even when it was inoculated with L. 

mexicana WT at the same time. In comparison with the control mice, the immune 

response of the mice that were injected two lines of L  mexicana in the same side were 

able to reduce the virulence o f X. mexicana WT. This suggests that L  mexicana H- 

line could be used in therapeutically.

From some o f the mice vaccinated with L  mexicana H-line, culturing the epidermal 

cells from the site where the parasite was injected, amastigotes differentiated to 

promastigotes and this cell line was designated L. mexicana HAD-line. It was 

observed that promastigotes of L. mexicana HAD-line grew poorly in medium with or 

without gentamicin. The morphology of cell cultures of L  mexicana HAD-line 

showed that 17% of the cells were promastigotes of which some o f them had a 

reduced flagellum and 83% of them were amastigote-like. This suggests that the 

attenuated cell line maybe be unable to survive in the midgut of sandfly and if so, this 

would reduce the risk of virulence reversion and spread of disease by infected 

sandflies.

Preliminary results showed that an attenuated cell line of L  major could be 

generated under antibiotic pressure of using the same technique as for the generation 

L. mexicana H-line. Comparisons between L  major WT and L. major H-line were 

made on parallel cultures o f the same age. It was found that the medium after 

culturing stationary phase promastigotes of L  major WT was more acidic (pH 6.3) 

than that of L  major H-line (pH 6.9). The results showed the percentage of 

macrophages infected with promastigotes of L. major H-line was 41% at 8 h and 

decreased to 10.5% at 96 h post infection. In contrast to L. major H-line, the initial 

infection of macrophages with L. major WT was 46.5% and increased to 65% at 96 h 

post infection. It was shown that L  major H-line failed to develop cutaneous lesions 

during 12 weeks post infection. In contrast to L  major H-line, all mice infected with 

L  major WT went on to grow non-healing lesions the over same period. The 

dissemination of L  major H-line and L  major WT from the skin where the 

promastigotes were injected to visceral organs of BALB/c mice was investigated at 12 

weeks post infection. It was found that L. major WT spread to BM, spleen, lung.
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popliteal LN, and skin. In contrast, L. major H-line was localized in the skin and 

draining LN of two mice. The initial result showed that L. major H-line induced 

protection in vaccinated mice against infection with L  major WT. All non-vaccinated 

mice developed progressive non-healing lesions that peaked in size at about 12 weeks 

post infection. In contrast to non-vaccinated mice the lesions developed slowly in 

vaccinated mice. In the present study, all biological and immunological data on the 

immune response o f L  mexicana H-line and the preliminary results on L. major H- 

line provide strong encouragement that X. mexicana H-line and X. major H-line 

induce a Thl type of immune response, control cutaneous leishmaniasis, and are 

candidate live attenuated vaccines.

While this work has given exciting results in terms o f the prospects for 

vaccination much remains to be done. Several aspects of the work need to be 

confirmed or extended. These are listed below:

1. Confirmation of the effect of the attenuation procedure on X. mexicana and X. 

major.

2. Extension o f the attenuation effect to other clinically important Leishmania species 

including X. infantum and X. donovani.

3. Identification o f the effect o f attenuation on Leishmania parasites by proteomics 

and mass spectrometry. It will be essential to determine the difference between the 

two lines. Identification of the molecule (or molecules) which was (were) absent or 

present in the attenuated lines of X, mexicana or X. major could be important for 

activation of macrophages.

4. Optimisation of the dose and number of attenuated vaccine boosts needed to induce 

complete protection against challenge infection.

5. Investigation of the ability o f animals immunised with attenuated Leishmania to 

resist challenge infections delivered by sandfly bites. The mice vaccinated with the 

attenuated line o f X. mexicana or X. major should be exposed to parasites, which are 

delivered by sandfly.

6. Investigation of the capacity o f attenuated, heat-killed parasites to induce 

protection. Determination of the ability o f killed promastigotes of X. mexicana H-line 

or X. major H-line to protect mice against wild type parasites will be important. If the 

killed promastigotes of the attenuated lines can induce protection, this kind of vaccine 

will be safer than live attenuated cell lines.
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7. Comparison o f the levels of protection induced by attenuated parasites with levels 

of protection obtained with other vaccine strategies.

8. Examination of the effectiveness of vaccination with attenuated parasites during 

ongoing infection. Confirmation that the attenuated line of L. mexicana is able to 

activate macrophages infected with L. mexicana WT. If so, the L  mexicana H-line 

can be used for therapeutic purposes.

9. Assessment of the ability of attenuated parasites to undergo sandfly passage. It has 

been shown that L. mexicana H-line was stable in the medium without gentamicin for 

a long time. Assessment o f the stability of the attenuated line o f L  mexicana H-line in 

the guts of sandflies can be important for spreading the disease.

10. Do sandfly passaged attenuated parasites induce protection against challenge 

infection? If  so, it should be a positive point for encouraging the use of L  mexicana 

H-line for vaccination.

11. Extension of the immunisation experiments to other species, including dogs.

12. Early isolation and attenuation of new clinical Leishmania isolates that could be 

attenuated under food and drug administration (FDA) approved guidelines for use as 

vaccines in humans.

13. Phase I clinical trials of attenuated Leishmania vaccines.

162



Appendix

163



Table 1. Recipe for separating gel

Reagents Amount

Bis / Acrylamide (30%) 3.0 ml

Resolving buffer (see Table 2) 1.25 ml

Sodium dodecyl sulphate (SDS) (10% w/v) 0.1ml

double distilled water (dd Water) 4.14 ml

Ammonium persulphate (APS) (1.5% w/v) 0.5 ml

TEMED 0.015 ml

Table 2. Resolving buffer*

Reagent Final Concentration Amount

Tris base 3M 36.3 g

ddHzO 60 ml

HCl (1 M) pH was adjusted to 8.8

ddHzO exactly to 100 ml final

* Store at 4^C

Table 3. Recipe for stacking gel

Reagents Amount

Bis / Acrylamide (30%) 0.665 ml

Stacking buffer (see Table 4) 1.25 ml

SDS (10% w/v) 0.05 ml

dd Water 2.780 ml

APS (1.5% w/v) 0.25 ml

TEMED 0.007 ml
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Table 4. Electrophoresis buffer*

Reagent Final Concentration Amount

Tris base 0.5 M 6 g

ddHzO 60 ml

HCl (1 M) pH was adjusted to 6.8

ddHzO exactly 100 ml

* Store at r̂c

Table 5, Sample buffer 2X

Reagents Amount

Stacking buffer (see Table 4) 2.0 ml

ddHaO 4.0 ml

Glycerol 1.6 ml

SDS (10%) 3.2 ml

Mercaptoethanol 0.8 ml

Bromophenol Blue a few grains

Total volume 11.6 ml

Table 6. Separating gel mixtures-10% acrylamide for gradient gel

Reagents Amount

Acrylamide (30%) 10.0 ml

Resolving buffer (see Table 2) 3.75 ml

SDS (10% w/v) 0.3 ml

dd Water 10.0 ml

APS (1.5% w/v) 0.7 ml

TEMED* 0.008 ml

* TEMED was added to each just before pouring the gel.
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Table 7. Separating gel mixtnres-20% acrylamide for gradient gel

Reagents Amount

Acrylamide (30%) 20.0 ml

Resolving buffer (see Table 2) 3.75 ml

SDS (10% w/v) 0.3 ml

dd Water 2.75 ml

Sucrose (equivalent to 2.5 ml volume) 4.5 g

APS (1.5% w/v) 0.7 ml

TEMED* 0.008 ml

* TEMED was added to each just before pouring the gel.

Table 8. Lysis Solution used for method 1 *

Reagent Final Concentration Amount

Urea (Pharmacia) 8M 9.6 g

Chaps (Pharmacia) 4% 0.8 g

Tris base (Sigma) 40 mM 0.097 g

ddHiO 100 ml 20 ml

* 100 ml was aliquoted and stored at -20"C.
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Table 9. Lysate solution used for method 2

Reagent Final Concentration Amount

Chaps 0.4% 0.2 g

DTT 200 mM 0.152 g

Tris base 40 mM 0.024 g

ddHzO 5 ml 5 ml

100 pi was aliquoted and stored at -20*^C.

Table 10. Rehydration stock solution without IPG Buffer*

Reagent Final Concentration Amount

Urea 8M 12 g

Chaps 2% (w/v) 0.5 g

Bromophenol blue trace a few grains

ddHzO To 25 ml to 25 ml

* 2.5 ml was aliquoted and stored at -20°C.

Table 11. Rehydration stock solution with IPG Buffer*

Reagent Final

Concentration

Amount

Urea 8M 12 g

Chaps 2% (w/v) 0.5 g

IPG Buffer

(same pH range as the IPG strip)

0.5% or 2% (v/v) 125 or 500 pi

Bromophenol blue trace a few grains

ddHzO to 25 ml to 25 ml

* 2.5 ml was aliquoted and stored at -20"C.
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Table 12. SDS equilibration Buffer^

Reagent Final Concentration Amount

4 X Resolving buffer ** 50 mM 3.35 ml

Urea 6M 36.04 g

Glycerol (87% v/v) 30% (v/v) 34.5 ml

SDS 2% (w/v) 2 g

Bromophenol blue trace a few grains

dd H20 100 ml 100 ml

* Aliquoted 10 ml and stored at -20“C.

* * See Table 2.15

For each gel 2 aliquots were used as follows:

Equilibration I: 100 mg DTT was added to 10 ml equilibration buffer. 

Equilibration II: 250 mg iodoacetamide was added to 10 ml equilibration buffer.

Table 13. 4X Resolving gel buffer

Reagent Final Concentration Amount

Tris base 1.5 M 181.5 g

dd HiO 750 ml 750 ml

HCl (5 M) pH was adjusted to 8.8 pH was adjusted to 8.8

ddHzO to 1000 ml to 1000 ml
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Table 14. SDS-PAGE with 10% acrylamide.

Reagent 11 gels 12 gels

Acrylamide 40% 176.8 g 192.8 g

N-N-methyl bis acrylamid 

2%

94.4 g 102.9 g

4 X Resolving buffer* 174.4 ml 190.2 ml

ddH 20 243.8 ml 265.9 ml

10% SDS 7.1 ml 7.7 ml

10% APS 7.1 ml 7.7 ml

10% TEMED 1.2 ml 1.3 ml

See Table 2

Table 15. Displaying solution

Reagent Final Concentration Amount

4X Resolving buffer* 0.37 M 50 ml

Glycerol (87%) 50% (v/v) 100 ml

Bromophenol blue a few grains a few grains

ddHzO to 100 ml to 200 ml

* See Table 2

Table 16. Storage solution

Reagent Final Concentration Amount

4X Resolving buffer* 0.37 M 50 ml

10% SDS 0.1% (v/v) 2 ml

ddHzO to 200 ml to 200 ml

* See Table 2
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Table 17. SDS electrophoresis buffer

Reagent Final Concentration Amount

Tris base 25 mM 60.5 g

Glycine 192 mM 288.2 g

SDS 0.1% 20 g

ddHsO 20 liter 20 liter

Table 18. Agarose sealing solution

Reagent Final Concentration Amount

SDS electrophoresis buffer (see Table 2.14) 100 ml

Agarose 0.5% 0.5 g

Bromophenol blue trace A few grains

All reagents were added into a 500 ml Erlenmeyer flask and heated in a microwave 

oven on low until the agarose was completely dissolved.

Phosphate buffered saline (pH 7.2)

60.0 g Na2HP0 4 .1 2 H2 0

13.6 g Na2HP04.2H20

8.5 g NaCl

Made up to 1 litre with de-ionised and distilled water.
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DMEM

15.44 g DEME powdered medium (Gibco)

0.85 g NazCO]

Made up to 1 litre with de-ionised and distilled water, filter sterilised 

(Millipore/Gelman filter 0.22 pm size) and pH adjusted to pH 7.2.

10.0 ml Penicillin / Streptomicine.

Giemsa's Buffer

3.0 g Na2HP04

0.6 g KH2PO4

The pH was adjusted to pH 7.4 and made up to 1 litre with de-ionised distilled water.

Giemsa' stain

Giemsa' stain (Gurr BDH Ltd) was diluted 1:10 in Giemsa's buffer.

Coomassie Blue Stain

250.0 ml Methanol

100.0 ml Acetic acid

10.0 ml Glycerol

1.0 g Coomasie Blue

Made up to 1 litre with de-ionised and distilled water.

Coomassie Blue Destain

250.0 ml Methanol

100.0 ml Acetic acid

10.0 ml Glycerol

Made up to 1 litre with de-ionised and distilled water.
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Brilliant Crystal Blue

5.0 g Brilliant Crystal Blue powder

100.0 ml Methanol

Store for a few days before using.

Trypan Blue (for viability test)

0.1 g Trypan Blue powder

5 ml PBS

Then filter.

Evans Blue (for Fluorescent Staining) (Stock)

0.1 g Evance Blue powdered

10 ml PBS (pH 7.2)

Take 1 ml in 100 ml PBS

Coating Buffer

1.59 g NazCOs

2.93 g NaHCOs

0.2 NaN]

The pH was adjusted to pH 9.6 with NaOH and made up to 1 litre with de-ionised 

distilled water.

Tris Buffered Saline (TBS)

9 g NaCl

1.6 g Tris HCl

The pH was adjusted to pH 7.6 with HCL and made up to 1 litre with de-ionised 

distilled water.
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Transfer Buffer

14.42 g Glycine

3.03 g Tris

1.0 g SDS

200 ml Methanol

Made up to 1 litre with de-ionised and distilled water
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