https://theses.gla.ac.uk/

Theses Digitisation:
https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

TOPICS IN AICHBRATC GEOMERER

by
T. Bo Romazo

A 4 scroxtation gabne tea to the

the zequironents for the Dogroo ors
Raster of Somonco.

SHMEYy

 yome chavion.

 Thenama $2 n$ a thes cangene.

 aggowedo sumax

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10646286
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

mandGe

The firet chaptor or thas dicsorbathon loys the

 ontablahod in Choptor IT, wo then give nov proote of gone oonsegrences for algebndo vexieties.

Tn the second ohapter we discuss the dinowstoas theory or
 Proparty 2 on 33 2s giver.
 on an abstract a gebrojo vardety ($[4]$ we merexences), wo aroge
 the seperaible case.

My thande axo due to Dx. A. Beddes of the dopervitent, who guporvesed the worls.

GOMTEN 24

Chafbar it - achmanio Vanturms

OHAERER IT \rightarrow DRMBELON

CR. Hoaght and Dopth of a Prine Edeni o. 13
B3. Rante and Duension in a Pixnto Rntegral Dorain. 18

镸. Notation 22
B2. The Hoonl Vector Space .. o. .. .0 .. 23
33. Sample Points and Subvariotios. 28
fu. Regular Rags o. .. .0 .. 30
55. The space of Locel Dicerenthals of oo oo34
66. The Jocobinn Critemion Sors Mane Polnta

CMAFTERET

ALCEBPATO VARTWREES

© 1. Notation.
We woxk with a firsed Richat, canled the grownd fiod d

 a vector space ovex k (wids usual componentwise addition and scalaremuthplication)。 Δ vertor $\alpha=\left(\alpha_{p}, \ldots, \alpha_{n}\right): \alpha_{2} \in \mathrm{~s}^{k}$

 to this ring undeas othozrise stated. By the Hilloext Basis Theorem, any ideal in $k[x]$ han a rinmte basis.

62．The Algebraic Variety
Led $\left\{x_{\lambda}: \lambda \in \Lambda\right\}$ be a set of polynombada ins $k[x]$ ．The points in s_{n} which axe zeros of is λ Bors all $\lambda \in \Lambda$ constitute the variety define by $\left\{s_{\lambda}\right\}$ 。
 Olen x that the variety defamed by $\{P: \& \in A\}$ is the sue as that
 and so the variety $V(A)$ is just the get of points when are
 variety is the various of and aden，and as such is dominoble by a finite number of polynomials．

Suppose M is a variety，then we writ o I（M）rom the set of all polynomials vending at every point of ts：

$$
I(n)=\{s: x \in L[x]: x(n)=0\}
$$

It is easy to chook that $I(f)$ is an ideal containing A_{0} where $13=V(A)$ ．$T \hat{1}$ we now consider the variety $V(I(M))$ defined by this tidal thess wo get
mineral 2.0

$$
V(X(M))=\mathbb{B}=V(A)
$$

Pros．Let $x \in$ Ho H．S．then is is a zero on all polynomials which vanish on ant zeros of A ；in particular ar is a zero of A。 Thus $x \in \mathbb{R}_{0} \mathbb{R}_{0} \mathrm{~S}_{0}$ 。

Rowever the parallel result $I(V(A))=A$ is not always values
in the next section we shall see when this holds. Before doing this we introduce the Lea of treecursibizity.
 union os two smaller varieties V_{1} and V_{2}.
 $\pi(V)$ is prate.
 Thea $V_{q} \subset V$ implies that $T(V) \subset I\left(V_{p}\right) \operatorname{Sos} 2 \pi N(V)=I\left(V_{1}\right)$ than $V(T(V))=V\left(T\left(V_{f}\right)\right)$ see. $V=V$ by Thaceren 2.1, cosscradiction. Choose $R_{f} \in \mathbb{I}\left(V_{1}\right)$ bunt $\notin I(V)_{B}$ summand there exists $8_{2} \in I\left(V_{2}\right)-I(V)$. How $\mathbb{E}_{1} P_{2} \in I(V)$ showing that $I(V)$ is not prince.

Conversely let $I(V)$ be wot prone we show $V=V(A)$ is reducible There axe g_{1} and R_{2} such that $x_{4} \mathscr{R}_{2} \in I(V), R_{1} \notin I(V), R_{2} \notin I(V)$ 。 Ext $V_{V}=V\left(A+\left(\varepsilon_{1}\right)\right)$ and $V_{2}=V\left(A+\left(s_{2}\right)\right)$. Then we have $V_{1} \subset V$ and $V_{2} \subset V_{8}$ Som suppose, for example, tho .t $V_{1}=V_{2}$ then $I\left(V_{p}\right)=T(V)$ brit $s_{f} \in I\left(V_{f}\right)$: andiradiction.
$x x^{2} x \in V_{1} \cup V_{2} w_{0} 0_{0} x \in V_{1}$ bey, then $x \in V_{0}$ On the other hand

 ixyedrable varieties s
Expos. We suppose the contrary, that at least on c variety exists which does not admit the above representations. The set it of all there vortothes is nommarby, and the comerponding sot \sum or dens given by $\sum=\{I(V): V \in T\}$ has a maximal accel $I(V)$ by the noethervan property of $I[\mathrm{X}]$ 。 see [5] I.p199. By Theorem 2.1 the

 thot V_{1} and V_{2} botha are dintibe untons of imoducible verietioc: hance $V^{*}=V_{1} \cup V_{2}$ is too-a contradhotiono
 the union containas nothers.

 representations axie unique to within ordermag of the components.
63. The Midbext Muabatellonsats.

Tha question ambes whan dons an ideal have an algebraio zerob We give the answex in the Sollowing theoren enlled the wear rown or

 25 not the whole xexg $15[y]$.

 $\xi_{2}=X_{2}+p_{0}$ is therefore a sheld, which we danoto by F_{0}.

We require to nhow $\xi_{1}, \ldots 00 \xi_{33}$ are algebrato over ts Gow
 and tit wo rake the induction assumption 8 ors 0 - 1 , then $\xi_{2}, \ldots 0, \xi_{n}$ are algebrede over $\operatorname{ld}\left(\xi_{1}\right)$. It reminiss wo prove ξ_{1} ajgebreic over mo

Now there extists a podynomeal $p\left(x_{1}\right)$ with $p\left(\xi_{1}\right) \neq 0$ such that
 sox any edenend $n\left(\xi_{1}, \ldots 0 \xi_{n}\right)$ or $\xi_{i}\left[p\left(\xi_{1}\right)\right]^{\rho} f\left(\xi_{1}, \ldots 0, \xi_{n}\right)$ is intagral ovor $k\left[\xi_{A}\right]$ (ρ a posithve integes) 。 ymparticulaz any

 gives us that any element of $k\left(\xi_{g}\right)$ cans be expressed as a quotiant $g_{(}\left(\xi_{i}\right)$ $\left[p\left(\xi_{q}\right)\right]^{\rho}$, a contradictiona the proox is sew comzeto.

By usiang a devioe due to Rabinowitscha (sce[5] Vol II, pages 164-165), Ox alturnotway see[2] p33), we can doduce

$\left.\operatorname{COROTARE} \mathrm{I}_{0} \quad \operatorname{TV}(A)\right)=\operatorname{mad} A$

 of A Ampies, by tho theorem, that $f^{2} \in A$, ox $\in \in E a d A$

GOROLSANE 30 $V(A)=V(\sec A)$.

Gonomint 5. The coryespondenze $V \leftrightarrow I(V)$ is a one-one mapriag beberean proper ixreducible variotiee and propac quate ideeils.

W4. Dinenstor of an Trredsazbio Varmoey.
Let y bo an mreducibie varietyo then $\mathbb{P}=T(V)$ is a pxame ideal and the integrad domains $k[x] / p$ we call the coosdinte zing $R[V]$ of Vo As we new this in equal to $\mathrm{k}\left[\xi_{1,000} \xi_{x}\right]$ whore ξ_{i} io the P-xesicue of x_{2}. The degree of teranseandence of $R[V]$ (strinaly apeaking of the
 when we derine to be the ginengion of V we pubtan $V=x$.

 we ther called a genamie point or V and has the properby: $x \in \mathrm{I}(\mathrm{V}) \Leftrightarrow \mathscr{2}(\xi)=0$.

The following theorens can be proved drectay hrom the dertnition of atmonstorio buty we andit make use of a result to be proved in the sext chayter.
 ghadg

$$
V_{0} \subset \ldots \subset V_{x^{0}}=V
$$

 ond Ghaptar IT Theorem 3.2.
 $V_{1} \subseteq V_{2} \stackrel{\text { thers }}{ } V_{1}=V_{2}$ is and onty $2 x \operatorname{din} V_{1}=\operatorname{dim} V_{2}{ }^{\circ}$

Prone. Obvious from the proposietiona.
 whole graces ${ }^{51}{ }^{2}$

 by the wroposixion.

 ixvelagsbe polynomaz.
Proose din $V=82-1$
\Leftrightarrow vis a manimal proper variony (moororas 4.2 and 4.3)
$\Leftrightarrow \mathrm{I}(V)$ is a minmal propes wime ddeal (Coroxlasy 5)
$\Leftrightarrow x(v)$ is gencteted by a singie itredasible pozyomaz.
 yage 149, examale 2).
 of poisiss.
 Rhan there are only a sinito number or poisate $\beta_{0} \gamma, \ldots$ in S_{n}
 shavis by inductions in tho caso $\mathrm{ga}=1$, the poinats $\alpha, \beta, \ldots 0$ are pust benjugatos. Wow thase points belong to V grom $16 t g \in A$

DIMENSTON

S1. The Length of a Primary Tdeal.

Luet Q be a P-primary ideal (in a ring R) and Q_{i} a soquence of primary ideals satisfiying

$$
\begin{equation*}
Q=Q_{1} \subset Q_{2} \subset \ldots \subset Q_{n-1} \subset Q_{n}=D_{0} \tag{1a}
\end{equation*}
$$

Such a sequense is called a (primary) ghain from Q to P_{n} A chain $Q_{1}^{\prime} \ldots . . Q_{1}^{\prime}$ iss said to be a refinement of the given chain $Q_{1}, \ldots Q_{n}$ if every Q_{i} appears among the Q_{j}^{\prime}. Moreover, the refinement is proper if $a>n$. When a chain from Q to P has no proper refinements wo cali it a composition series fox Q.

Oux aim in this section is to show that any chain from 0 to p may be refined to a composition series, the length 1 of this sexies depending only on Q. Hlaving established this result we aan then make the following definition:

The length of a primary ideal Q is the nurber of terms in any composition series for Q.

As we make use only of the case R an integral doman, we assume below that R_{s} is the usual local ring essooiated with a prime idoal: if R is not an integral domain then the generalised ring of quotionts can be used instead.

There is a onemone correspondence between P-primaxy ideals Q_{i} such thot $Q \subseteq Q_{i} \subseteq P$ and P^{\prime}-primary ideals Q in the locol ring R_{s}, where $s=R-P$, such that $Q^{\prime} \subseteq Q_{X}^{\prime} \subseteq P^{\prime}$ * Thus to any primary chain $Q_{1}^{\prime}, \ldots, Q_{n}^{\prime}$ corresponds a primary ohain Q_{1}, \ldots, Q_{n}
and a compostition sories for e^{\prime} Inkewise comresponds to a composition sexios for 8 . Now in the ring Bg_{g} the adoal P" is maximal, so our problem is reduced to the onse in which the chain terminates in a maximat prime ideal.

Assuming then that P is maxinal in R, any ideal Λ between Q and P witil be E-primaxy, for $P^{T} \subseteq Q \subseteq A \subseteq P$. Thus a composition semes for Q in now a maximat chain of ideals from Q to P.

A further simplification can be made by passing over to the reaidue x ing R / Q, where a ohain of ideals from (0) to X / Q corresponds to a chain from Q to P in R. Since P is maximal and a minimal prime ideal of $Q, P / Q$ is the only proper prime ideal in R/Q. A noetheritan ring having unique proper prime ideal is oalled a primary sing.

THown 1. There exists a maximal chain (of length 1 , say) fron (0) to P in a patmary ring R. No chain from (0) to phas Length greater than 1.

Eroof. (i) Suppose $P^{n+1}=A_{1} \subset \ldots \subset A_{x}=P^{n}$ is a ohain from p^{n+1} to P^{n}. We find a bound for the length of this ohain by noticing that the residue xing $\mathrm{P}^{n} / \mathrm{P}^{\mathrm{n}+1}$ may be regarded as a vector space over R / P if we put

$$
x+P \cdot v+P^{n+1}=x v+P^{n+1}, \quad\left(x \in R, v \in P^{n}\right)
$$

Nhiss vector space has finite dimension (α, aay) ainse p^{n} is finitely generated. Now the ideal restidues A_{i} / P^{n+1} form a sequence of subspaces of thoreasting dimension; hence $r \leq a+1$.

Io construct a maximel chain of ideals from $\mathrm{F}^{\mathrm{n}+4}$ to p^{n}, take vector subspaces of all dimensions $0,1, \ldots+0$ d and the comesponding ideals will do,

There being no other propers prime adeal than $P(\ln R)$,
the ideal (0) is Prprimaxy and so $\mathrm{p}^{\mathrm{k}}=(0)$ son mode integer k. The join of the maximal chains Prom P^{k} to p^{k-1}, from P^{k-1} to p^{k-2}, ...0 and from P^{2} to P aleaxiy gives a maximal chain Pron (o) to R.
(ii) Jet (0) $=A_{0} \subset \ldots \subset A_{2}=P$ bo a maximal chain. If $(0)=B_{C} \subset \ldots C B_{r}=P$ then wove $x \leqslant 1$.

For some integer $t(1 \leq t \leq x+1) \cdot A_{1} \leq B_{t+1}$ but $A_{1} \notin B_{i}$ and we deduce

$$
A_{1}+B_{0} \subset A_{1}+B_{1} \subset \ldots \subset A_{1}+B_{t}
$$

$\left[A n\right.$ clement $x \in B_{i+1}: \quad x \notin B_{2} \Rightarrow x \notin A_{1}+B_{i}$. Fox $x=a_{1}+b_{2}$ $\Rightarrow a_{1}=x-b_{i} \in A_{1} \cap B_{i+1}=0$ since $\left.A_{1} \operatorname{minimal}\right]$
The sequence (0), $A_{1}+B_{0}, A_{1}+B_{1}, \ldots, A_{1}+B_{x}$ must therefore contain a chain of length $2 r+1$, equality only being possible at $A_{1}+B_{t}, A_{1}+B_{t+1}$.

Consider now the sequence (0), $A_{2} / A_{1}, \ldots, A_{1} / A_{1}$ which is a maximal chain in R / A_{1}. Applying the above argument to this primary wing, we see that there exists a chain of length ats Least x from (0) to A_{1} / A_{1} beginning (0) , $A_{2} / A_{1}, \ldots \ldots$, It follows that there is a chain (0), A_{1}, A_{2}, \ldots, P in \mathbb{R} of length at least $r+1$. By considering the range $R / A_{2}, B / A_{3}$ eta, we get on chain $(0), A_{1}, \ldots, A_{1} ; \ldots, E$ in R of length at least $x+1 ;$ this can only be the maximal chain $(0) \subset A_{1} \subset \ldots \subset A_{y}$ and thus $x \leq 1$.

COROLTARY 1. Any two maximal chains have the same length. For neither can be longer then the other.

GOROLLARE 2. Any chain from (O) to P may be refined to a naximal ghain, which has fixed bounded length.

In terms of pximary chains in a noethemian ring A these corollavies show

THEOREM 1': There in a cormosition series for Q end a, 11 composition serten have the same length. Any ohain from Q to P may be refined to a composition series fox Q.

G2. Height and Depth of a Prime Ideal.
Definition. A proper prime tad P in an integral domain R is said to have height h if there exists a chain

$$
(0) \subset P_{1} \subset \ldots \subset P_{h}=P
$$

of prime ideals, but no such Longer chain. Similaxily pas depth dit

$$
R \supset P_{0} \supset \ldots \supset P_{a}=P
$$

and no prime chain from R to P is longer.

Nreorma 2.1. Let p be a minimal prime deal of a principal ideal (a), a; O, in a nootherian domain H. Them P^{p} has height unity.
Proof. Use will be made of the nth symbolic powers $p^{(s)}$ of a prime decal p_{j} those are defined $p^{(s)}=\left\{x: x \in R: r x \in P^{\text {ta }}\right.$ for some $x \notin T\}$ and are P-primaxy ideals, If for some integer i_{s} $p^{(i)}=p^{(i+1)}$ then it is easy to check that $p^{(i n)}=p^{(i+2)}=p^{(2+3)}$ otc. (${ }^{1}$) Also, given a Pmprinary ideal 0 , then some symbolic power $p^{(n)}$ is contained in 0 . Fox R nootherian $\Rightarrow p^{v} \subseteq 0$ (scr ab integer v), then $x \in \mathbb{P}^{(V)} \Rightarrow x x \in \mathbb{P}^{V}(x \notin P) \Rightarrow x x \in Q \Rightarrow x \in Q$,

The problem can be reduced by consideration of the local
 a unique maximal ideal M. To simplify notation suppose these properties hold for (a) and $P^{i s}$ in R. Then any ideal between (a) and $p^{\text {ta }}$ is $\mathrm{F}^{\text {" }}$-primary; in particular (a) + $\mathrm{p}^{(\mathrm{i})}$ for any proper prime ideal $P \subset P^{*}$ 。

In view of Theorem 1^{\prime} the chain

$$
(a)+p^{(1)} \supseteq(a)+p^{(2)} \supseteq(a)+p^{(3)} \supseteq
$$

La bounded by the length of (a)* Therefore (a) $+\mathrm{p}^{(a)}=(\mathrm{a})+\mathrm{P}^{(\mathrm{a}+4)}$ for sone integer $s \geqslant 1$. If' now $x \in P^{(s)}$, then $x=z e+y$ $\left(a \in R, y \in p^{(s m)}\right.$ so that $z a=x-y \in p^{(s)}$ and hence $z \in p^{(a)}$ as $2 \notin$ P since P^{*} is a minimal prime ideal of (a) and $P \subset P^{*}$. Consequently $p \subseteq e^{(a)}+p^{(a+4)}$ and the reverse inclusion is obvious, In other words, $p^{(\beta)}=(a) p^{(s)}$ (mod $\left.p^{(s, 4)}\right)$ 。 By the Lemme which usually precedes Kraal's Intersection Theorem [5] Vol I.p215 there expats $x \in \mathbb{R}$ such that $(1-r a) p^{(s)}=0($ rod $p(A+1)$; but $x^{r}, \in 3^{*}, 1-x a$ has an inverse and so $\mathrm{p}^{(\mathrm{s})}=\mathrm{p}^{(\mathrm{s}+1)}\left(^{2}\right)$.

On the other hand $F \subseteq P^{2} \Rightarrow p^{(s)} \subseteq P^{*(s)}$. Now for a maximal prime ideal, the symbolic prime powers are just the powers of the ideal, and we know $\bigcap_{\{=1}^{\infty} p^{* i}=0$. Hence $\bigcap_{i=1}^{\infty} p^{(i)}=0$, which together with $\left(^{1}\right)$ and $\left(^{2}\right)$ shows that $p^{(a)=1}=(0)$. But $\mathrm{F}^{(\mathrm{s})}$ is $P-$ primary and so $P=(0)$, a contradiction. Thus there is no proper prince ideal P stridently between (0) and \sum^{*}.

Before generalising the result we require the

 which contains P_{0} If (0) $\subset P_{1} \subset \ldots \subset P_{r}=P$ is a chain of prime ideals from (0) to P, then there is a similar chain
 Proof. Firstly consider $P_{r-2} \subset P_{r-1} \subset P_{r}=P$. We can choose $a \in P: \quad a \notin M_{i}(1 \leq i \leq m)$. Taking P_{x-1}^{\prime} to be a minimal primo ideal of $P_{r-2}+(a)$ so that $P_{r-1} \subseteq P$, we can replace P_{r-1} by P_{r-1}^{*} if $P_{X_{-1}}^{\prime} \neq P_{\text {. }}$ Suppose then $P_{r-1}^{*}=P_{0}$ By Theorem 2.1 thais implies that $1 \mathrm{P} / \mathrm{P}_{\mathrm{rma}}$ (a minimal prime ideal of P_{yw} ($+(\mathrm{a}) / \mathrm{P}_{\mathrm{r}-2}$)
has hotght one, contradioting the chain (0) $\subset P_{x-1} / P_{x-2} \subset P_{x} / P_{x-2}$ So prochucs the required chain each of the p_{3} is replaced step by step, fron might to left.

THEOm 2.2. Let P be a minimal prime ideal of the tacal $A=\left(a_{1}, \ldots, a_{x}\right)$ in a noetherian domain 1 . Then the height of ${ }^{3}$ gennot exceod r.

Eroot. Noting that the case $x=1$ is the previcus theoremg we make the induction hypothesis that the result holde for Ldeals genexted by \bar{n} olements: in paxticular the minamal prime ideals $P_{1}^{\prime}, \ldots, P_{k}^{\prime}$ of (a_{2}, \ldots, A_{2}) have height not greater than $x-1$. If $P \subseteq P$ for some $i \in(1, \ldots+k)$ then trivielly P has height lens than x so assume $P \notin P!(1 \leq i \leq k)$. Then by the Jemmany ohain (0) $\subset P_{1} \subset \ldots \subset P_{p}=P$ naxy be supposed to have $P_{1} \nsubseteq P_{i}^{\prime}(1 \leqslant i \leqslant k)$. Let $b \in P_{1} ; b \notin P_{i}(1 \leqslant i \leqslant k)$, then we choose P^{*} from the minimal prime ideals of (b, a_{2}, \ldots, a_{r}) to be contained in P. Fow some $\mathcal{L} \in(1, \ldots, k), P_{i} \subseteq P^{n}$ $\left(\left(a_{2}, \ldots, a_{x}\right) \subseteq P^{*}\right)$, but by choice or $b_{1} P_{i}^{\prime} \neq P^{*}$ and thus $P_{i}^{\prime} \subset P^{*}$. If we had $P \supset p^{*} \supset P P_{1}$ then $P /\left(a_{2}, \ldots, a_{r}\right)$ would heve height at least two in $B /\left(a_{2}, \ldots, A_{r}\right)$, contradioting the minimainty of $B /\left(a_{2}, \ldots, a_{r}\right)$ as a prime idcal belonging to the prinoiphl ideol. ($\left.a_{q}, \ldots, e_{n}\right) /\left(a_{2}, \ldots, a_{r}\right)$

Necossumily then $P:=P^{*}$, which means P must bo a minimal prime adeal of $\left(b_{2} a_{2}, \ldots, a_{z}\right)$, and therefore $D /(b)$ is a minimal prime ideal of $\left(b, a_{2}, \ldots, a_{n}\right) /(b)=\left(a_{2}, \ldots, a_{n}\right) /(b)$, an ideal generated by $x-1$ elements.

By induction hypothesis the residue ohain

$$
0 \subseteq p /(b) \subset \ldots \subset p_{B} /(b)
$$

cannot have more than r terms, whence the height of P is at most x.

The converse of this theorem is also trus:

THENROM 2.3. Given P a prime ided on height hy when eloments
 proof $\quad P=(0)$ is tativan.

Assume P every minimal prime ideal of $\left(a_{1}\right)$ hes height ons. Asumbe, fon indution puxposos, that elenents $a_{1}, * * a_{s}$ of $P(x<h)$ have beon foond such thot evory minimal prime ideal E_{j} of $\left(a_{1}, \ldots, a_{3}\right)$ hens hoight of

Now clearly no P_{i} can contain P, and so there is an element $a_{g+1} \in P: A_{p+1} \notin P_{i}$ for all mintimal primes of ($a_{1}, \ldots \ldots, a_{s}$) Then any minimal prime ideal P_{j}^{\prime} of ($a_{1}, \ldots * y a_{s, 1}$) contains striatily one of the P_{i} and so has helght not less than $s+1$. That this height is exactiy $s+1$ follows from the last thenrem.

By induction, there exist elements a_{1}, \ldots, a_{h} of p such that every minimal prime ideal P_{i}^{*} of $\left(a_{1}, \ldots, g_{h}\right)$ has hoight h_{0} Anong these minimal primes P_{j}^{*} occuns P, for P contains some P_{i}, but having same height h must in fact oqual this P_{i}.

For latex use we state the

COROLTARX. From a given basis (u_{1}, \ldots, u_{s}) of the unique maximal ideal or in a local xing Q we may sel.eat u_{1}, \ldots, v_{h} to geneavite an or primary iden , where h is the height oi \quad or Proof. It is easily seen in the above proof that the a_{i} can be taken from a given basis of P. In accord with the theorem lot (u_{1}, \ldots, u_{s}) have M as a minimal prine ideal: M is maximal. and so ($u_{1}, \ldots \ldots, u_{h}$) is M-primary.

As a special case of Iheorom 2.2 we note that every prime ideal in a noetherian ring B has findte height. On the other hand a prime ideal may well have infinite depth, and there is no
relation between the two in the general case. Oux bim in the next seation is to show that for finite integral domains height and depth are determined ome by the other, and that ronk and dimension are the equivelents of height and depth respeotively.

E3. Mank and Dinension in a Pinito Tategral Domain.
Let $\vec{R}=k\left[\xi_{1}, * *, \xi_{n}\right]$, a finite integral domain, have degree of transcendence r over k, and let ξ_{1}, \ldots, ξ_{r} constitute a transcendence base for $k\left(\xi_{1}, \ldots, \xi_{n}\right)$ over $k_{\text {. }}$ If P is a prime ideal striotily contained in R then K / P is an interral domain with k as a subfiold. We clerine the dimonsion of P din P to be the transcendence degree of this domatn over k : the complement $(x-$ dim $P)$ we call the rank of \mathbb{P}.

Consequences of the definition arot**

1. A prime ideal of dimension 0 Is maximal.

For K / P is a mield in this case.
2. If $P \subset P^{\prime}$ then dim $P^{\prime}<$ dim P.

Exoof, Considex the k-homomorphism ϕ of R / P onto $\mathrm{R} / \mathrm{P}^{\prime}$ given by $\phi(x+P)=x+p_{1} \quad$ Tf we let $\eta_{\eta}+P, \ldots, \eta_{t}+p$ be a transcendence base for R / P over k ; then any nonwzero element of R / P, in partionlar $y+P$, whexe $y \in P^{\prime}, y \notin P$, satisites a relation $g\left(\eta_{1}, \ldots, \eta_{t}, y\right) \in P \quad$ (g has coefficients in k ond $\mathrm{E} \neq 0)$. It may happen that every texm in g contains some power of y; if so write $g=g^{\prime} y^{m}$ (m is the minimum of these powers). then $g^{\prime \prime}$ hass at least one term not involving $y\left({ }^{1}\right)$. Also $y \notin P$, P prime implies that $g^{\prime} \in P$.

We have $g^{\prime}\left(\eta_{1}, * * \eta_{t}, y\right) \in R, \mathbf{i}, 0 \cdot g^{\prime}+P=0$, hence $\phi\left(g^{\prime}+P\right)=0$, i.e. $g^{*} \in P^{\prime}$ where $g^{*}\left(\eta_{1}, \ldots, \eta_{t}\right\rangle_{m f_{j}^{\prime}}\left(\eta_{1}, \ldots \ldots, \eta_{t}, y\right) y$: and $\mathscr{G}^{\text {为 }}$ is nonmero by $\left({ }^{1}\right)$ 。

Olearly $\eta_{1}+P_{p} \ldots . \eta_{t}+P$ is a transcendence set for B / p° and we have ghown that it is not an elgebxaically independent set. Q.E.D.
3. Every proper prime ideal hass dimension less than $t=$ dim (0).
4. A prime saeal on dimension -1 iss minimal (that is, there is no prime ideal striatiy smaller exoopt (0)).

These last two follow from 2

Whe converse of Property 4 is given in

Proof, The general proof depenas upon the normalisation theorem[5] I.p. 26 and we treat only the case $x=n$, i.e. $k\left[\xi_{1}, \ldots, \xi_{n}\right]=k\left[y_{1}, \ldots, X_{n}\right]$

Thus f is a unique factorisation domain, in which a minimal prime ideal p is easily sem to be genexated by a single irroducible element $r\left(X_{1}, \ldots, X_{n}\right)$ say.

Let X_{1} oceux in $f(f \neq 0)$ then every polynomial in F contains X_{1}. Therefore X_{2}, \ldots, X_{n} are algobraically independemb nod P (over k), which shows that diva $P \geqslant n-1$ and the result follows by Property 2 .

At thas juncture we reoall that $P \subset P^{\prime} \Rightarrow \operatorname{dim} P>$ dirn P^{\prime}; $h(P)<h\left(P^{\prime}\right) ; \quad d(P)>d\left(P^{\prime}\right)$ 。 From Theoven 3.1 we can now prove the math theorem of dimension theory in finite integral domains.
 integrel domain E of transcendence r, then the height $h(P)$ and the depth $O(P)$ of P satisfy:
(i) $\quad h(E)=$ rank of $P=x-s$.
(ii) $d(P)=d i m p=s$.

Proor. (i), In the case $s=r(P=(0))$ the result is trivid.

We assume the theoren for ideala of dimension +1 and deduce its validity for dimensions.

Let $(0)=P_{0} \subset P_{1} \subset \ldots \subset P_{h}=P$ be a chain or length $h(P)=h$, By our rellazks above is $=\operatorname{dim} P<\operatorname{dim} P_{h-1}<\ldots<$ dim $P_{0}=x$ and hence $h \leqslant x-s\left(^{2}\right)$.

Bince h has an upper bound (R being noetherian), there exists a prime ideal $\rho^{\prime \prime}$ such that $p^{\prime \prime} \subset P$ and no prime ideals lie strictly betweon P^{\prime} and P. Thus P / x^{\prime} is mianmal prime in R / P^{\prime} and has (Theorem 3.1) dimension $=$ transc $R / P^{\prime}-1$. But dim $P^{\prime} P^{\prime}=$ traxasc $R / P^{\prime} / R / P^{\prime}=\operatorname{transe} R^{\prime} / P^{\prime}:$ dim P_{3} and transe $R / R^{\prime}=$ dim P^{\prime} by definition; therefore dim $\mathbb{E}^{\prime \prime}=s+1$. Prom our induction hypothesis $h\left(P^{v}\right)=x-(s+1) \Rightarrow h(P) \geqslant x-s$, which togother with (1) is the requixed resul. $\%$
(iii) We use induction on s. Here $s=0$, which by Eroperty 1 implies that P is maximal and so $d(P)=0$, is the trivial case.
 which ahow $d(P) \leqslant s\left(^{2}\right)$.

Let $P^{*} \supset P$ such that P^{\prime} / P is minimel prime in R / P; then by Theorem 3.1 dim $P^{\prime} / P=s-1$. Now dim $P^{\prime} / P=$ dira P^{\prime} and making the induction hypothesta for $s-1$, din $\mathbb{P}^{\prime \prime}=0-1=\alpha\left(P^{\prime}\right)$. Then oleariy $a(P) \geqslant$ o which along with $\left(^{2}\right)$ completos the proof.
ooroniary 1. Let P pe and $s s^{\prime}$ be theiry rompective dinensions. Then there ts a chain

$$
F \subset p_{1} \subset \ldots \subset P_{s-s^{\prime}-1} \subset p
$$

and no such ohain 1 le longer.
Proof. In $R / P, P 1 / P$ has dimension s^{\prime} and therefore height $s-s^{\circ}$.

COROLARX 2. A finite integral domain R of transcenderoe degree x has prime doeals of all dimensions $0,1, \ldots, x^{\prime}-1$.

Proof, $p=(0)$ in the theorem implies $a(p)=r$, and a chain of length $x+1$ dewoonding to P will contain ideals of the above dimensions*

COROLLART 3. Theorem 3.1. of Chapter I. Eroof, Let $P \neq(1)$ then $R=k\left[\xi_{1}, \ldots, \xi_{n}\right]=k[x] / p$ contains the fiseld k. By Coroliary 2, R has a pmime ideal of dimension 0 , say p1/P. Wherefore $k[X] / P=k\left[\eta_{1}, \ldots, \eta_{n}\right]$ has traxscendence degree $0, i, e, \eta_{j, \ldots}, \eta_{n}$ axe algebralo ovex k. Also $f(x) \in B$

The theorems on height in the previous section can be expressed. In terms of dimension in view of the identities proved in theorem 3.2.

HFBOREM 3.3. In a Pinite integral domain 1 of transoendence degree x every minimal prime ideal of a proper principal faca (a) hag dimension $x-1 . \quad($ of Theorem 2.1).

THEOREM 3.4. Bvery minimal prime ideal of $A=\left(a_{1}, \ldots, a_{N}\right)$ in the finite intogral domain A of transoendence degree in has dimension at Jeast $x-$. (cr theorem 2.2).

CHARMER TI

Bin Notation.

Throughout this chapter W will be a ρ-dimensional imaducible subveruoty of the wadinensional irreducible variety V, these having $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right)$ and $\xi=\left(\xi_{1}, \ldots \xi_{n}\right)$ as generic points respectively.

In the coordinate ring $R[V]$ we have $T(V) \subset I(W)$ and $T(W) / I(V)$
is a prime ideal which we watt $P(W / V)$.
The quotient wing $R[V] p(W / V)=\left\{\frac{g(\xi)}{g(\xi)} \mathrm{g}(\eta) \neq 0\right\}$
(A and \& will always be polynomials wi th coefficients in the ground field k) is a Local. ring [1] o which we shall denote by $Q(V / V) ;$ with unique maximal ideal $\neq(V / V)=\left\{\begin{array}{l}\frac{f(\xi)}{g(\xi)}: f(\eta)=0,\end{array}\right.$ $E(\eta) \neq 0\}$.
82. The Local Vector Space.
2.1. Let us write $\overline{\mathrm{u}}$ for the $\boldsymbol{r r}^{2}$ - residue of $u \in M$, and \tilde{a} for the M-residue of $a \in Q=Q(W / V)$. When \tilde{d} is an element of the field Q / m which may be identified with the field $f(W)$ consisting or all quotients $\frac{f(\eta)}{g(\eta)}: g(\eta) \neq 0$, ie. the field $k\left(\eta_{1}, \ldots . \eta_{n}\right)$ 。

Xe we now define the product $\tilde{d} 12$ to be the M^{2}-residue of du, then M / M^{2} becomes a vector space over $\mathcal{F}(W)$. That $\tilde{d} \bar{u}$ is welldefined follows from noting that if $a \equiv d^{\prime}(\bmod M)$ and $u \equiv u^{\prime}\left(\bmod m^{2}\right)$ then

$$
d u-d^{\prime} u^{\prime}=\left(d-d^{\prime}\right) u-a^{\prime}\left(u^{\prime}-u\right) \in m^{2}
$$

so that $\overline{d_{0} u}=\overline{a^{\prime} \cdot u^{\prime}}$.
We denote this vector space by $M(W / V)$ and call it that local vector space of V at W .

The elements u_{1}, \ldots, u_{p} form a basis for of if and only if t the jr m^{2} residues $\bar{u}_{1}, \ldots, \bar{u}_{p}$ span the space. For suppose that u_{1}, \ldots, u_{p} form a basis and let $\bar{u} \in M / M^{2}$; then it os has M^{2} residue \bar{u}, we have

$$
u=\sum_{i=1}^{p} \lambda_{i} u_{i} \quad\left(\lambda_{i} \in Q\right)
$$

which implies

$$
\bar{u}=\sum_{i=1}^{\rho} \tilde{\lambda}_{i} \bar{u}_{i}
$$

On the other hand, suppose that $\bar{u}_{1}, \ldots, \bar{u}_{p}$ span $M(W / V)$. and consider the ideal \mathcal{U} generated in $\theta(w / v)$ by u_{1}, \ldots, u_{p}. Now $m / m^{2}=U / m^{2} i_{\infty} e_{0} m=U+m^{2} ;$ hence $m^{2}=U m+m^{3} \leq U+m^{3}$ and so $M=U+M^{3}$, In fact we find that $M=U+m^{i}$ for any positive integer i. But $\bigcap_{i=1}^{\infty}\left(U+M^{i}\right)=U(\operatorname{see}[3]$ p65)
so that $M=U$, which shows that u_{1}, \ldots, u_{p} formal a basis of or.
Let us call a basis (u_{1}, \ldots, u_{s}) of m minimal it no proper subset of these elements constitutes a basis. It follows from the above that (u_{1}, \ldots, u_{s}) will be a minimal basis if and only if $\bar{u}_{1}, \ldots, \bar{u}_{s}$ form a basis e of the vector space $M(W / V)$.

All minimal bases of th have thowerone the sane number of elements, namely the ataension of $M(W / V)$; this number is finite by the Hilbert Basis Theorem.
 $u_{i} \in \mathbb{R}[V]$, for if $u_{i}=\frac{f_{i}(\xi)}{\varepsilon_{i}(\xi)}$ then $\sum_{i}(\xi)$ also form a boris. Oleaxily $P(W / V)$ is a minimal prime idea] of $R[V]$. (u_{1}, \ldots, u_{s}) and so by Theorem 3.4 of Chapter II the dimension
 and we deduce

$$
\begin{equation*}
\operatorname{den} \mathrm{N}(\mathrm{~W} / \mathrm{V}) \geqslant \operatorname{din} \mathrm{V}-\mathrm{din} V \tag{2a}
\end{equation*}
$$

or: in the case in which $W=\alpha=\left(\alpha_{1} \ldots \ldots, \alpha_{n}\right)$ a point of V_{0}

$$
\operatorname{din} M(\alpha / V) \geqslant \operatorname{din} V
$$

The following two lemmas are used later in the chanter.

2,2. Reduction to dimension zero.
wamatike re the k -homomorphism

$$
k\left[\xi_{1}, \ldots, \xi_{\nu}\right] \rightarrow k\left[\eta_{1}, \ldots \ldots, \eta_{\nu}\right], \xi_{i} \rightarrow \eta_{i}
$$

is an isomorphism then we may write $\xi_{i}=\eta_{i}(\dot{L}=1, \ldots, \nu)$ 。

Lima 1. Let V and W be varieties such that their generic points ξ and η have $\xi_{i}=\eta_{i}(i=1, \ldots, \nu)$. Then if V^{*} and W^{*} are the varieties over $k^{*}=k\left(\xi_{1}, \ldots, \xi_{\nu}\right)$ with generic points $\left(\xi_{\nu+1}, \ldots, \xi_{n}\right)$ and $\left(\eta_{\nu, A}, \ldots 4, \eta_{n}\right)$ we have

$$
Q\left(\dot{W}^{3} / \mathrm{V}^{2}\right)=Q(\mathrm{~W} / \mathrm{V})
$$

proof. Let $f\left(\xi_{,}, \ldots, \xi_{\nu}\right) \in k\left[\xi_{1} \ldots \ldots, \xi_{\nu}\right]_{\cap} p(\mathbb{W} / \mathrm{V})$ ide. $x\left(\eta_{1} \ldots \ldots \eta_{\nu}\right)=0 \Rightarrow r\left(\xi_{1} \ldots \ldots, \xi_{\nu}\right)=0$ as $\xi_{i}=\eta_{i}(i=1, \ldots, \nu)$. This shows that $\mathrm{k}^{\text {to }} \subseteq \mathrm{Q}(\mathrm{W} / \mathrm{V})$. Also $R\left[\mathrm{~V}^{*}\right]=\mathrm{k}^{*}$. 3 [V] and

$$
p\left(W^{*} / V^{w}\right)=k^{*} p(W / V) ; \text { so if } x^{* *}\left(\xi_{\nu+1}, \ldots \ldots \xi_{n}\right) \operatorname{los} \text { in } R\left[V^{*}\right]
$$

but not in $p\left(W^{*} / V^{*}\right)$ (ide. $f^{*}\left(\xi_{\nu+1}, \ldots, \xi_{n}\right) \neq 0$) then $a^{*}\left(\xi_{\nu+1}, \ldots \ldots, \xi_{n}\right)$ has an inverse in $\theta(W / v)$. Thus

$$
Q\left(W^{*} / V^{*}\right)=\frac{R\left[V^{*}\right]}{R\left[V^{*}\right]-p\left(W^{*} / V^{*}\right)} \subseteq Q(W / V)
$$

if $g^{*}\left(\eta_{\nu+1}, \ldots . \eta_{n}\right) \neq 0$ which 1 the case otherwise $g(\eta)=0$ contradiction.

Aprytcarcong as w hos dimension ρ we may assume that $\eta_{1}, \ldots, \eta_{\rho}$ are algebraically independent over k. So also are $\xi_{p} \ldots \ldots, \xi_{\rho}$, for $W \subset V$ means $f(\xi)=0$ implies $f(\eta)=0$. The mapping $r\left(\xi_{1}, \ldots, \xi_{\rho}\right) \rightarrow f\left(\eta_{1}, \ldots n \eta_{\rho}\right)$ is a k-isomorphism or $k\left[\xi_{1}, \ldots \ldots, \xi_{\rho}\right]$ onto $k\left[\eta_{1}, \ldots, \eta_{\rho}\right]$ and by our remark wo nay write $\xi_{i}=\eta_{i}(i=1, \ldots, \rho)$. Then applying the leman to y^{*} which has dimension $x-\rho$, and to W^{*} which is now a point α^{*}
 we see that

$$
Q(v / v)=Q\left(\alpha^{*} / N^{*}\right)
$$

2.3. Insertion of a thine vaxioby

Let V be an 2 reducible variety between W and V_{0} Then
 Gino $V^{0} \subset V$, there is a k-homonomphism ϕ or $\mathbb{T}[V]$ onto $\mathbb{R}\left[\mathrm{V}^{\prime}\right]$ taking ξ_{i} to ξ_{i}^{\prime} (were $\xi^{\prime}=\left(\xi_{1}^{\prime}, \ldots, \xi_{n}^{\prime}\right)$ is the genexto point or $V)_{0}$ Noting that $f(\xi) \notin p(w / V)$ in plies $\phi \mathscr{f}(\xi) \notin p\left(W / V^{v}\right)$ wo can extend ϕ to a homomorphism ψ of $Q(W / V)$ onto $Q\left(W / V V^{\circ}\right)$ by downing

$$
\psi\left\{\frac{g(\xi)}{g(\xi)}\right\}=\frac{f(\xi)}{\left.g(\xi)^{\eta}\right)}
$$

Under this napping on $\rightarrow M$, and M is the full inverse image of M '. It now we denote by τ the napping

$$
u \rightarrow \bar{u} \quad\left(u \in m: \bar{u}=u+m^{2}\right)
$$

and aimilaxily

$$
\tau^{\prime}: u^{\prime} \rightarrow \overline{u^{0}} \quad\left(u^{\prime} \in M \quad ; \quad \overline{u^{\prime}}=u^{\prime}+M^{\prime 2}\right)
$$

thou the composition $\tau^{\prime} \psi \tau^{-1}$ iss a mapping from $M(W / v)$ to $M\left(T / V^{2}\right)$. To check tat it is singemvalued lot $\bar{u}_{1}=\bar{u}_{2}\left(u_{1}-u_{2} \in M^{2}\right)$; then $\psi\left(u_{1}-u_{2}\right) \in M^{\prime 2}$ which implies that $\tau^{\prime} \psi\left(u_{1}-u_{2}\right)=0_{3}$ whence result.

Lemma 2 . The mapping $\tau^{\prime} \psi \tau^{m 1}$ is a linear transformation os $M(W / V)$ onto $M\left(W / V^{\prime}\right)$. The nullspace is the subspace of $M(W / V)$ spanned by the vectors belonging to $\tau(Q(W / V) \cdot P(V / V))$.

Proof. We prove only the second part of the lemma, the proof of the first part being similar.

In $\mathbb{R}[V]$ the \pm deal $P\left(V^{\prime} / V\right)=\left\{f(\xi): f\left(\xi{ }^{\prime}\right)=0\right\}$ iss the kernel of the homomorphism ϕ. xis extension $Q(V / V) \cdot p(V / V)$ to $\varphi(W / V)$ is ci early the kernel. of ψ.

Suppose now that $\bar{u} \in \operatorname{Nullspaco~(~} \tau \cdot \psi \tau^{* 1}$) , i.e. that $\tau^{\prime} \psi \tau^{+1}(u)=0$. Then $\tau^{0} \psi(u)=0$, that is $\psi(u) \in M^{\prime 2}$, which
 Qos.D.

Q3. Simple points and subvarieties.
In view of (aa) and (aa') we make the following definitions:A point \propto ts simple (for V) if

$$
\operatorname{dim} M(\alpha / V)=\operatorname{dim} V
$$

A subvariety wis simple (for V) if

$$
\operatorname{dim} W(W / V)=\operatorname{dim} V-\operatorname{dim} W F_{0}
$$

With the holp of the lemmas we can derive some consequences of these definitions.

EROPOSTATON 1. Any point α is simple for s_{n} Props: In Lem ? take $V^{\prime \prime}=\alpha, V^{\prime}=$ the variety having $\left(\alpha_{1}, x_{2}\right.$, was $\left.x_{n}\right)$ na gonexio point, and $V=s_{n}$. Here $\left(v^{0} / v\right)^{2}=\left\{x(X): f\left(\alpha_{1}, x_{2}, \ldots, x_{n}\right)=0\right\}=\left(n\left(x_{1}\right)\right)$, h hoing the irreducible polynomial in $k\left(x_{2}, \ldots, x_{n}\right)\left[x_{1}\right]$ such that $b\left(\alpha_{1}\right)=0_{0}$ The h^{2}. residue of this polynomial clearly generator the null apace of $\tau^{\prime} \psi \tau^{-1}$, when cannot therefore have dimension greater than one. Nonce din $u\left(\alpha / \theta_{n}\right) \leq 1+d i m u\left(\alpha / V^{\prime}\right)$. Rove by Lemma 1, dim $\mathbb{M}\left(\alpha / s_{n}\right)=\operatorname{din} u\left(\alpha^{*} / E_{n-1}^{k^{*}}\right) ; \alpha^{n}=\left(\alpha_{2}, \ldots, \alpha_{n}\right)$ and $k e^{k}=k\left(\alpha_{1}\right)$. In we make the induction assumption that the proposition is ore for n - 1 , it follows that dim $m\left(\alpha / n_{n}\right) \leqslant 1+(n-1)=n$; but certainly $d \min \left(\alpha / \rho_{n}\right) \geqslant d \sin \varepsilon_{n}$ adm $\alpha=n_{2}$ so in foot $\operatorname{din} M\left(\alpha / S_{n}\right)=n_{0} \quad$ The case $n=1$ is triviolly true and the proposition is proved.
coronitary. W is simple $\operatorname{son} S_{n}$.
 and α^{*} is a point of ${ }^{5} \mathrm{k}^{*}{ }^{*} \rho$. The above proposition shows that
$M\left(\alpha^{*} / \sin _{n-\rho}^{*}\right)$ has dimension $n-\rho$, thue so aiso has $M\left(v / s_{n}\right)$.
moposirwor 2. α is gimple for V if and only if the idead

$$
\begin{aligned}
& p\left(v / s_{n}\right) \text { contains } n-x \text { olements } u_{1}, \ldots, u_{n-x} \text { such that } \\
& \tau_{11}, \ldots u_{n-x} \text { are linearly independent in } A\left(\alpha / v_{n}\right) \text {. }
\end{aligned}
$$

Proof. $\alpha \subset V \subset g_{n}$ and din $M\left(\alpha / g_{n}\right)=n_{0}$. Constdering the transformation of Themme. 2,

$$
n=\operatorname{dim} \tau\left(p\left(V / s_{n}\right)\right)+\operatorname{din} M(\alpha / V)
$$

How α is shmple for if and only if dim $m(\alpha / V)=x_{0}$ ine if and only $\operatorname{li} \operatorname{din} \tau\left(p\left(V / S_{n}\right)\right)=n-x_{0}$

64. Regulay Rings.

A Jocol ring Q is said to be regular 10 , for (u_{1}, \ldots, u_{g}) a minimal basis of on a honogeneous relation

$$
\begin{equation*}
\phi_{\nu}\left(u_{1}, \ldots, u_{s}\right)=0 \tag{4a}
\end{equation*}
$$

Whis type of local sing was introbued and stuaded by Morvale [1] .

An equivalent condition for regulamty is: Let ϕ_{ν} be a somn op dogree ν, with coefficlents in 0 ; then

$$
\begin{equation*}
\phi_{\nu}\left(u_{1}, \ldots, u_{s}\right) \in M^{\nu+1} \tag{4b}
\end{equation*}
$$

inplies that all coefficienta of ϕ_{ν} ara in $\begin{gathered}\text { co }\end{gathered}$ Eroof. That (4b) imples (4a) is trivial.

Acsume that (ha) holds. Let $\phi_{\nu}\left(u_{1}, \ldots, u_{k}\right) \in M^{\nu / \hat{\beta} ;}$ then is a homogenoous polynomital of degree $\nu+1$, say $\psi_{\nu+1}$. Take the typical term of ϕ_{ν}.

$$
x u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}} \cdots u_{s}^{\alpha_{s}}, \alpha_{1}+\alpha_{2}+\ldots o+\alpha_{s}=\nu_{0} x \in 0
$$

and in $\psi_{\nu+1}$ choose the teral

$$
\operatorname{sus}_{1}^{\alpha_{1}+1} u_{2}^{\alpha_{2}} \ldots u_{s}^{\alpha_{8}}, \quad s \in Q
$$

then the toxm $\sin _{1} u_{1}^{\alpha_{1}} \ldots u_{s}^{\alpha_{s}}$ of $\phi_{\nu}-\psi_{\nu+1}$ has cocertanent $r-s u_{f}$, waioh by (4a) belongs to or, But $E u_{f} \in M$; henoer $x \in M$ and wa have (4b).

The concepta of almple point and regulax local xing are related ina
more 4.1. The point \propto fe simple fox V if and only is $Q(\alpha / v)$ is regular.
Proof. Recall that α is simple if and only is
$\mathrm{r}=\mathrm{atim} \mathrm{V}=\mathrm{dan} \mathrm{H}(\alpha / \mathrm{V})=\mathrm{st}$
Lets $s>$ wis wow that Q is not regulars thereby establishing the 'if' part of the theorem.

From the corollary to Theorem 2.3, and theorem 3.2 of Chapter II, we an choose u_{1}, \ldots, u_{x} from a minimal basis of on so that they genceato the en primary ideal of, say, or dimension 0 .

Consider the elcraent $u_{s} \notin o f$. Now singe of is on -primary $u_{3}^{h_{3}} \in O \quad$ for some power h.

Also them exists a positive integer ν such that $u_{\varepsilon}^{h} \in o r^{\nu}$ butt $u_{G}^{h} \notin q r^{\nu \cdot 1}$, otherwise $x_{B}^{h} \in q r^{\nu}$
 contradicting $a_{s} \notin q$.

$$
\text { The general element of o } m^{\nu} \text { is }
$$

 and ψ_{ν} is dromogeneots of degree ν in u_{1}, \ldots, x_{5} in paxtanar ham bear represented in this way. We have

$$
\begin{equation*}
u_{b}^{k}-\sum \phi_{1}\left(u_{1} p=0 n, u_{r}\right) \psi_{\nu}\left(u_{1}, \ldots \infty s u_{m}\right)=0 \tag{i}
\end{equation*}
$$

 (4, B) show that Q is not regular.
base 2. $\quad h_{m}=\nu_{m} t$, then (i) is a form of degree bin in u_{p}, \ldots, u_{s}. Now olenaly the products $\phi_{1} \psi_{\nu}$ do not contain a term in u_{s} alone
 in (i) is unity. Hence Q cannot bo regular for $1 \notin M$.

and ψ_{ν} cannot all belong to M. However $\sum \phi_{1} \psi_{\nu}=u_{8}^{h} \in r^{h} \subseteq m^{\nu+2}$ and $\sum \phi_{1} \psi_{\nu}$ is honogencons of degree $\nu+1$. Thus condition (4b) is not sukasfled.

Wo now prove the 'only $2 e^{\prime}$ part of the theorem. Once 1. Let $f(\alpha)=k(\alpha)$ be infinite.

Comesponding to a given form $P_{\nu}\left(x_{1}, \ldots, x_{B}\right)$ of degree ν with coerciaionts in Q_{0} whet e $\tilde{p}_{\nu}\left(x_{1}, \ldots \ldots, x_{g}\right)$ when these ocentiozents are sephecod by their or residues. To establish the
 $\widetilde{p}\left(x_{p}, \ldots \ldots x_{s}\right)=0$.

Suppose now $\tilde{p}\left(x, \ldots \ldots, s_{s}\right) \neq 0_{3}$ then in $\mathscr{F}(\alpha)$ we nay select a nommsingulax homogeneous trensionmation

$$
x_{2}^{\eta}=\sum_{j=1}^{0} \tilde{\varepsilon}_{i j} x_{j} \quad\left(\tilde{a}_{i j} \in \mathscr{f}(\alpha)\right)
$$

to make the coersocent of $x_{s}^{\prime{ }^{2}}$ in the resulting fora $\tilde{\pi}\left(x_{1}^{\prime}, \ldots, x_{s}^{\prime}\right)$ non-mex

Tr wo put

$$
u_{j}^{i}=\sum_{j=1}^{S} \theta_{i j}^{n_{j}} \quad\left(a_{i j} \in 0\right)
$$

then assuming $p\left(u_{1} \ldots \ldots, u_{s}\right)=0$ we get $\pi\left(u_{1}^{\prime}, \ldots o o u_{s}^{\prime}\right)=0$ and the coorfiloient of $u_{5}^{\prime \nu}$ is not in o K. The nonsingulerity of the trensiomn guarantees that (u_{p}^{\prime} pos u^{\prime}) is a new minimal basis

 has dimension 0 . This contradicts the fact that all minimal prime ideals of Q. (ufpeoo $\left.u_{s-1}^{\prime}\right)$ have dimension $x-(a m)=x+(x-1)=1$ (see Chapter πH_{0} Theorem 3.4).
CACBL 2. $\mathrm{Ef} k(\alpha)$ is finite take a now ground field $k=k(z)$ where a is an incotorminate. Let $\mathrm{V}^{\text {th }}$ bo tho variety over k " having
the same generic point ass V and let α^{*} have the same coordinsten as α 。

$$
\begin{align*}
\text { Gleaxy dim } V^{\prime \prime} & =\operatorname{din} V=x \cdot \quad \text { Also } \\
M^{*} & =0^{3} \cdot M \tag{a}\\
M & =M^{*} \cap Q \tag{b}
\end{align*}
$$

where $Q^{*}=Q\left(\alpha^{*} / v^{*}\right)$ anda $m^{*}=\operatorname{m}\left(\alpha^{*} / v^{*}\right)$ 。
 and nocessemily minaman as

$$
\operatorname{dim} V^{*}=r=s_{4}
$$

Now $\mathcal{F}\left(\alpha^{*}\right)$ is infint te and by Cass 1 wo have Q^{*} regular. Thus
 coofrtaiontes belong to M^{*} and so to M by (b). The proox ia now complete.

COROLAARX W is bimple for V in and only if $Q(W / V)$ is regular. Proare. By reduotion to dimension sero (q.v.) this follows from the theorem.

65. The Space of Local Differentials.

Let $u \in O\left(W / g_{n}\right)$, then $u=\frac{f(x)}{g(\underline{X})}: f(\eta)=0, g(\eta) \neq 0$ and the partial derivatives $\frac{\partial u}{\partial X}$ belong $g(X) Q\left(W / S_{n}\right)$ since $g^{2}(\eta) \neq 0$. The M-residues $\frac{\partial u}{\partial X_{i}} \quad X=\eta$ lie in the field $f(w)=k(\eta)$ 。
ll he ordered n-tuple of these residues

$$
\left(\frac{\partial u}{\partial x_{1}}, \cdots, \frac{\partial u}{\partial x_{n}}\right) x=\eta
$$

we call the local w-differential of u, and write $d_{w} u$, or du for short.
It is easily verified that $d u+d v=d(u+v), u$ and $v \in M$. Moreover if $\tilde{\lambda} \in \mathcal{H}(w)$ then $\tilde{\lambda}(d u)=\alpha(\lambda u)$ as $u \in M$ implies $\tilde{u} \lambda=0$. Consequently these ordered n-tuples forms a vector space (over \mathcal{F} (w)) which we denote by $D(W)$.

Given $\in \dot{M}\left(W / s_{n}\right)$ we can associate with τu, its M^{2}-residue in $M\left(W / S_{n}\right)$ the local W-differential of u viz.

$$
\begin{equation*}
\tau u \rightarrow d u \tag{Fa}
\end{equation*}
$$

This mapping is wrell-defined, for if $\tau u=\tau u^{\prime}$ ie. $u-u^{\prime} \in m^{2}$ then $d u-d u^{\prime}=d\left(u-u^{\prime}\right)=d\left(\sum p q\right)=\sum d(p q)=\sum p \cdot d q+\sum d p \cdot q=0$ ($p, q \in \mathcal{M}$). Also this mapping is a linear transformation of $M\left(W / g_{n}\right)$ onto $D(W)$ and so

LiMA 3. The dimension of $D(M)$ is at most $n-\rho$, and equals $n-\rho$ only if (Sa) is non-singular.
Proof. In the corollary to Proposition 1 we saw that diam $\left(W / s_{n}\right)=n-\rho$.

S6. The Jacobian criterion fox simple points in the separable
As a preliminary wo establish

WGMMA 4: The zero manifold $I(\alpha)$ of the point α can be generated by n polynomials $f_{i} \ldots, f_{n}$ such that f_{i} contains only $X_{1 \ldots \ldots,} X_{j}$ Proof. For $n=1$ the result is trivial.

Let $f_{1}\left(X_{p}\right)$ be the irreducible polynomial in $k\left[X_{1}\right]$ such that $r_{1}\left(\alpha_{1}\right)=0$, The residue class ring $k\left[X_{1} \ldots \ldots X_{n}\right] / f_{1}\left(X_{1}\right)$ is just the polynomial ring $k^{*}\left[X_{2}, \ldots, X_{n}\right]$ where $k^{* / 2}=k\left(\alpha_{1}\right)$, and $\mathrm{H}(\alpha) / \mathrm{f}_{\mathrm{f}}\left(\mathrm{X}_{1}\right)$ is the zero manifold of $\left(\alpha_{2}, 00, \alpha_{n}\right)$ over \mathcal{k}^{*}.

Assuming the result true for $n-1, I\left(\alpha_{2}, \cdots, \alpha_{n}\right)$ can be generated by $f_{2}^{*}, \ldots, f_{n}^{*}$ such that f_{1}^{*} involves only X_{2}, \ldots, X_{i}. Therefore $I(\alpha)$ is generated by $f_{1}\left(X_{1}\right), f_{2}\left(X_{1}, X_{2}\right), \ldots, f_{n}(X)$ if f_{i} has $x_{i}-$ residue f_{i}^{*}.

Using this particular basis we can nov prove

THEONEM 6.1. The space $D(\alpha)$ of local α-differentials has dimension in if and only if $\alpha_{1}, \ldots, \alpha_{n}$ are all separable over k. proof. The polynomials $f_{1} \ldots \ldots, f_{n}$ of lemma 4 form a minimal basis of $\quad \mathrm{M}\left(\alpha / s_{n}\right)$ (any basis must have at least n elements) and so $\tau f_{1} \ldots \ldots, \tau f_{n}$ are independent vectors in $M\left(\alpha / s_{n}\right)$. Thus by Tomb 3 dim $D(\alpha)=n$ if and only if $a_{f}, \ldots+, d f_{n}$ are independent, which is the case if and only if the Jacobian determinant

$$
\text { Since } f_{1}\left(\alpha_{f}\right)=0 \text { the first factor } \frac{\partial f_{1}}{\partial X_{1}}: X_{1}=\alpha_{1} i_{i=1}^{i s n o n-z e r o ~ i f} \text { and }
$$

only if α, is seperable over k. Similarly the second factor is non-zero if and only if α_{2} is seperable over $k\left(\alpha_{1}\right)$. Both factors are thus non-zero if and only if α_{1} and α_{2} are seperable over k. Continuing in this way we find the necessary and sufficient condition as stated.

We now come to the classical oxiterion for simple points (in the seperable case)

Thforim 6.2. Leet $I(v)$ have a basis of polynomials g_{i}. The
 Proof. By Proposition 2, α is simple for V if and only if $n-r$ of the vectors τg_{j} are independent.

Theorem 6.1 and Leman 3 show this holds if and only if $n-x$ of the local α-differentials dg_{i} aro linearily independent in $D(\alpha)$, which is the condition on rank given above.

GOROLLABX. When k has characteristic 0 , or is a perfect field, the classical criterion and the condition $\operatorname{dim} m(\alpha / v)=x$ coincide.

For any field k, and whether or not $\alpha_{1}, \ldots, \alpha_{n}$ are seperable, we have that renk $\left[\frac{\partial g_{j}}{\partial X_{j}}\right]_{X=\alpha}=n-r$ implies that α is a simple point of V. To see this we need only remark that if $n-r$ of the ∂g_{i} are independent then the corresponding $n \propto r$ vectors τg_{i} are independent.

These results may be extended to simple subvaxietios e.g. the Jacobian oriterion becomos: Provided $k\left(\eta_{1}, \ldots, \eta_{n}\right)$ is seperably generated over k, Wis simple for V if and only if the matrix $\left[\frac{\partial \mathrm{g}_{j}}{\partial \mathrm{X}_{j}}\right]$ has rank $n-x$ at η.

Mumquences

[2] S. Rang
m Antroduction to Algobela Geonotry,
Tutersatence Publachars Tno., Lenm on $p .33$.
[3] D. G. Nowtheott is Tdea] Theozy

[4] 0. Zaximsi

- The concept of a staple point on an abstact
a gobrate varietyo
Trens. Anez. 1 tathe 500.901 .62 (194.7).
[5] 0. Zaxdmin \% P. Samaed
- Commuatuve Algebra,

