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ABSTRACT OF A Ph.D. THESIS by E. M, Barrowman

THERMAL STRESSES IN SPHERICAL SHELLS

The subject matter of this thesis concerns the
analytical and experimental investigation of the stress distributions
caused-by the steady state temperature distribations in spherical shells
with various bounaary conditions.

After a short critical review of the relevant literature,
consideration is given in Chapter 1 to the analytic expressions for the
temperature distributions in spherical shells exposed to ambient
temperature and subject to the conductive, convective and radiant modes
of heat transfer. |

In Chapter 2 the equations foi" the stress resultants in
a spherical shell as presented by Flﬁ.gge are modified to include thermal
effects. A particular solution of the shell equation is presented using
the derived analytic temperature distributions, This solution, along with
an asymptotic comnlementary function solution derived by Leckie, gives
a general solution for the thermal stresses in spherical shells due io
axisymmetric temperature distributions.

The problem of a heated opening in a spherical shell is
considered and results are presented for the stresses for se'ected values
of the shell parameters.

In Chapter 3 consideration is given to that region of the
shell with large meridional angle whereas the region of shell appropriate
to the shallow shell theory is considered in Chapter 4. In both these
regions appropriate simplifications can be made to the complicated
general solution {or the spherical shell and somewhat simpler expressions

for the stress resultants are obtained.
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It i3 shown that the shallow shell theory is
suitable for the evaluation of the thermal stresses in that region of the
sphere which can be appropriately described as shallow.

Thermal stresses in cylindrical skirts are considered
and comparisons are made with anaiytic work whith has already been
presented.,

In Chapter 5§ the stress concentrations at the
junction of a uniformly heated cylindrical shell and a shallow spherical
shell are investigated and computed results are presented for various
cylinder to sphere thickness ratios.

Asymmetric temperature distributions on spherical
shells are considered in Chapter 6 and methods of solution for the
resulting stress distributions are discussed. An analytic solution is
presented for a slowly varying line of temperature on a spherical shell,

The exvperimental investigations are.described in
.Chapter 7 which also includes an examination of the problem of measuring
thermal straing by the use Qf strain gauges.

Temperature distributions into three thicknesses of
spherical shell from small uniformly heated circular openings are
measured and agree favourably with the theoretical predictions.

The stress distribution into a %" spherical shell from
a uniformly heated opening is measured using temperature compensated
strain gauges and agreement is found between the experimental results and
the analylic predictions,

In/



In Appendix 1 the computational procedures associated
with the numerical evaluation of the analytic expressions developed i
the thesis are considered, |

The circular disc is considered in Appendix 2 ,while in
Appendix 3 the convective and radiant modes of heat transfer are
examined.

Appendix 4 gives the results obtained for the author hy
Babcock and Wilcox from a computer analysis, using the finite element
technique, of a particular temperature distribution on a spherical shell.
These resulis are compared with the equivalent theoretical predictions

derived in the thesis.
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NOMENCLATURE

Rectangular co~ordinates

Polar co~ordinates

Radii of curvature of the middle surface of a shell
Radius of curvature of sphere or cylinder

Ar ) a = O0O=YHA(5%1=3)
ea, arbitrary constant, N BoaNE + oot

Biot number,
A heat transfer parameter, c’= 2m

kR
Membrane stiffness, D . Eh

Young's modulus -

Stress function

Thickness of a plate or shell

Bending stiffness, K =« TFZ‘(};T’T)

The coefficient of thermal conductivity
A characteristic length '
Moment resultants per unit length

The surface heat transfer coefficient
The convective heat transfer coefficient
The radiant heat transfer coefficient
The stress resultants per unit length

A summation index

Transverse shear per unit length

The rate of heat flow

Heat transfer parameter, S . 2m g

Kk
Temperature of opening or boundary
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Temperature
Independent shell variables

Displacement in the direction of the tangent
to the parallel circle and the meridian
respectively

Displacement in the direction of the normal
to the shell surface

Coefficient of linear thermal expansion
Shear strain

Strains

Shell parameter folf = D§\~:‘)
Koy

Intensity of plane hot—vspot

Poisson's ratio

Stress components

. Shear stress

Angle of tangent rotation



INTRODUCTION

The determination of the thermal stresses play an
important, and frequently even a primary role, in the design of
nuclear reactors, gas and steam turbines, heat exchangers,
supersonic aircraft and space structures and many other types of
structure operating at elevated temperatures. The thermal stress
calculations are generally based on linear elasticity and this often
serves as a first step indicating whether further computations will
be required to allow for non-linear effects caused either by plastic
flow and creep or changes in the physical constants of the materials
with temperature. This thesis concerns itself only with the
assumptions of linear elasticity.

The formulation of elasticity problems which included
the effect of temperature variation is credited to DUHAMEL(l) .

He presented the papers in 1835, which was not long after the basic
formulation of the theory of elasticity, which discussed the
generalisation of the fundamental theorems of elasticity to include
thermal strains and stresses caused by non-uniform temperature
distributions in an elastic body. The theory which he presented was
at that time of only academic interest and was not at all developed
until the postwar years when the rapid developments and advances in
nuclear and chemical engineering, gas turbines, missiles and

supersonic/
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supersonic aircraft have stimulated further interest in thermo-
elasticity and have led to extensive theoretical and experimental
research on thermal stress problems.

Situations requiring the determination of the magnitude
of thermal stress are to be found in many branches of engineering.
Pressure vessels in process plants are subjected to varied
conditions of operating temperature and pressure. The operating
temperatures may be anywhere from extreme low levels to the
maximum that construction materials will permit. Pressures may
be high vacuum or several thousand pounds per square inch or
anywhere between. Vessels when placed in service or shut down
commonly undergo large changes in temperature or pressure, or
both. These changes induce siresses in the support structures
through variations in expansion between the vessel and its
supports. Such stresses may on occasion be quite large.,

In nuclear power engineering the containment vessels
which house the nuclear reactor must be capable of withstanding
thermal gradients particularly at skirts and nozzles. This is also
true of the associated heat exchangers where the temperature
gradients can be even more severe.

In chemical engineering many of the processes can be
accel erated and carried out more efficiently by raising the
temperature and the pressure. Hence, in designing vesselAs in
which a high temperature is needed for chemical reactions, thermal
stresses must be included in the design calculations and combined
with the stresses due to pressure and other forms of loading to
ensure adequate strength and life.

In producing power by heat engines, the heat cycle

efficiency/
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efficiency increases with the absolute temperature, this result
being implicit from the Carnot efficiency for the conversion of heat
into work in an ideal engine. An increase therefore in the
operating temperature will produce a gain in efficiency but it also
entails higher thermal stresses and higher creep rates for given
stress, There have been recently many costly failures in the
steam turbines of the Electricity Board due to fhermal fatigue.
This fatigue is caused by the shutting down of the plant in the
evening when the demand for electricity falls off and restarting the
following morning as the demand increases.

Aircraft structures designed for supersonic flight are
subjected to aerodynamic heating. The air surrounding the
aircraft in flight is progressively slowed down through the boundary
layer and this process generates heat and consequently all external
surfaces on the aircraft are heated. This leads to non~-uniform
transient temperatures of about lOOOC and 25000 for Mach numbers

of 2 and 3 respectively.



CRITICAL _REVIEW

The analytical foundations of the therimoelastic
theory were established by DUHAMEL(I)WhO, in 1835, presented a
paper in which he modified the equations of isothermal elasticity
which had been previously formulated in 1829 by POISSO N(Z) .

In DUHAMEL'S fundamental equation the temperature
and the strain distribution are coupled, as functions of time and so
an exact analysis would require the simultaneous determination of
both the strain and temperature distributions. Examples of the
solution of this coupled type of equation are presénted by BOLEY
and WEINER(?’) . .

Fortunately the thermoelastic coupling effect is small
and it is not usual to include it in the stress analysis of plate and
shell structures. It is possible therefore to determine independently
as functions of time, the temperature distributions and the
deformations of a body., DUHAMEL examined the implifications of
various simplifying assumptions and he propounded an analogy,
appropriately named DUHAMEL'S analogyv, which establishes a
correspondence between the thermal stress problem and the body
and surface stress problem which leads to identical strains.

At first sight it may appear therefore that the solution of many
thermal stress problems are readily available in elastic theory.

Unfortunately/
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Unfortunately this is not so since only a few body force problems
have been solved and those which have are of little interest for
thermal stresses. IOHNS(4) , in his recent book, outlines the
underlying theory of this analogy which he describes as the
"Body Force" analogy.

At about the same time as DUHAMEL'S original paper,
NEUMANN(S) deduced the thermoelastic stress equations, while,
in 1879, HOPKINSON (6) gave the full thermoelastié equations
essentially in the same form as they are found to~day in the many
books on thermal elasticity theory including the work by
TIMOSHENKO and GOODIER (7) and the two books already indicated,
One of the most outstanding workers in thermal

elasticity was BIOT (8)

who as well as devising variational
procedures for the numerical solutions of the heat conduction
problem and the time dependent equations of thermal elasticity,

was also the first to demonstrate the importance of a basic heat
transfer parameter in the formation of thermal stresses within a body.
This parameter,BI0OT'S number (13) is defined by

B =mil
k

where m 1is the external heat transfer coefficient, { is a
characteristic length in the direction of heat flow, and K is the
thermal conductivity of the material.

PRZEMIENIECKI .(9) observes that the magnitude of the

thermal stresses increase with an increase in the BIOT number and

that the increase is the more pronounced for the higher values of
(10)
who

-

this number. This observation is confirmed by HEISLER
has prepared charts giving numerical values of the stresses in flat
plates which are initially at zero temperature and are then suddenly

exposed/
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exposed to a uniform ambient temperature. These charts show the
increase in magnitude of the stresses with an increase in the BIOT
number, HLINKA (i) demonstrates that the same is also true for
slabs and cylinders. A form of BIOT'S number is also fundamental
to the temperature distributions within this thesis and the effects
of the magnitude of this number on the magnitudes of the resulting
stresses for the cases congsidered can be seen to further confirm
the general observation of PRZEMIENIECKI and thus highlight the
'importance of the BIOT number,.

The governing differential equations for axisymmetrical
shells of constant thickness were expressed as functions of two
independent variables U and V by MEISSNER (12) and

subsequently modified by EICHELBERG (13) and by PARKUS (14)

to
include axisymmetric temperature distributions.

The two dependent variables are determined from the
differential eguations in which the angle ;é occufs as the

independent variable

LWD-YRU = — RV « g 0
R'L i(RL 1
LO) +YRY o ERRSU — WP
Ra, Ro (ii)
where
L. ) = J»z(m\ R, b [Ra\ . cot j(ck(-\ _ Y_{_.a co’tl 0D
d o™ N [Ez ?EP( R)  cotq X RE ?

(iii)
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(P - RO R-R)eot T — dR.T - R““a}
¥ R.h 7 Py B

(iv)

H@) = RCER ~ cot @ (\ _Re - tcmct> ciR £ - ERRe k(1)
Rz R\ (’ld‘)
(v)

while the remaining parameters are as defined in Figures (i - ii)
and in the index of nomenclature.

The stress-resultants and deformations are given in
terms of U and V . Thus the problem of finding thermal stresses
and the resulting deformations due to arbitrary axisymmetrical
temperature distributions reduces to the solution of two simultaneous
differential equations of the second order in which the *“temperature
loading ' terms occur on the right hand sides of the equations
replacing the ordinary loading terms. ‘

The general solution of equations (i) and (ii) can be
separated into the homogeneous solution (complementary function)
and the particular solution (particular integral). The complementary
functions are used to-satisfy the required boundary conditions while
the particular integral depends on the temperature distribution only
and is independent of the boundary conditions.

The method of describing the temperature loading in
terms of the mean temperature;t,and the temperature gradient:{lu
through the sghell thickness,h,is now almost uniformly adopted in
problems involving shells and plates.,

The exact solutions toﬁ cylindrical and conical shells
are available in terms of trigonometric and modified Bessel functions

respectively.

When/
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When the two basic functions VY andV have been
solved the stress resgsultants and deformations can be obtained

from relatively simple expressions. These are summarised below

N‘ = _C.ths \‘/21
N';\: ";._X_’_.
R,
aQ = N
R,
™M, = "K(U -+ \)Co“tEP\ hlmi'—,

S

M, = —K(Ucotc75 & v_ti) + E hvf
R (I‘—VB

Qz%ln¢<\/ + \)co't;ﬁ \__ R, %\'v\?é't

il

w

where dots denote derivatives with respect to(‘f) : :and W is the
displacement in the direction normal to the shell surface,
measured positive inwards,

For the spherical shell, where R, = R, = & |

the mean radius of the sphere, these equations simplify considerably.

Recognising UV = U;W. for the angle of tangent rotation X and

since V = a @ where (_ is shear stress resultant, then equations

(i) and (ii) can for the spherical shell, be reduced to

LX) = vX = ~a' Q- (e aat’
- n (vi)
L& =¥ QL = ERX &+ Eh«t’
. A

(vii)
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which are similar to the equations which are derived,in Chapter 2
of this thesis from the shell equation as presented by FLI.J:GGE (15)
and modified to in_clude temperature effects.

The homogeneous portions of equations (vi) and (vii)
can be combined to give a single equation in terms of the shear
stress resultant (. and upon eliminating the operator L. one
obtains the "basic" equation for the spherical shell which was first
suggested by H, REISSNER (16) in 1912. MEISSNER proposed an
analytic solution to this homogeneous equation in terms of a
hypergeometric series and FLT‘J:GGE reached a somewhat similar
solution when with a suitable change in dependent function he
transformed the equation into the hypergeometric form with two
complex solutions whose real and imaginary parts are a set of four
independent solutions.

A general analytic solution could thelfefore be obtained
for the thermal stresses in a spherical shell provided the
temperature loading on the right~hand side of the equations are also
able to be expressed in the same form as the complementary
function, that is as a hypergeometric series or in its associated form
a series of Legendre polynomials of the first kind. This is the form
of solution proposed by NOWACKI (17) although he does suggest that
because of the poor convergence of the series one could follow the
approximate procedure which had been proposed by GECKELER (25).
The poor convergence of the hypergeometric series for spherical
shell problems has been commented upon by EXSTROM (19) who, for
values of C’/h = 62.5, found it was necessary to consider not less

than 18 terms of the series, and by FLUGGE who considered that it

was practically impossible (before the advent of modern computers ?)

to/
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to apply his series to shells whose O‘/h value is substantially
greater than 26 and where the edge to be considered has a
co-latitude angle, 525 , of not less than 700. NOVOZHILOV (20)
concludes that the efforts to obtain the mathematically exact
solution are to a great extent wasted since such solutions are
inconvenient to use in practice and are moreover inconsistent since
the basic assumptions of the original equations involve errors of
the order \"/d in comparison with unity and hence ,' he claims, there
is little sense in retaining terms in the final solution of a smaller
order than Yo .

Because of the difficulties associated with the analytic
solutions of the shell problems, various forms of asymptotic
integration of the general equation have been considered. The
approximate solutions thus derived are usually of a relatively
simple form which makes them directly applicable to engineering
calculations. ' |

Following the method discussed by JEFFREYS (21)

, for
the asymptotic integration for second order differential equations
which have one parameter large compared with unity ,PRZEMIENIECKI
proposed as a suitable parameter for axisymmetrical shells

K - W(L\

hR'z_ r‘c—»ﬂ-.
which is large for slender shells with thin walls. A second

assumpticn which he introduced for the asymptotic integration was
that the radius of curvature R, must not be equal to zero and
therefore his solutions will break down near the pointed nose of a
shell. Any practical slender shell will however usually have a

solid nose to that R, % O and hence the asymptotic solution can

be/
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be used. PRZEMIENIECKI then presented the first order
approximation of the asymptotic series solution for ring shells,
conical shelis and cylindrical shells which have axisymmetric
temperature distributions. His results, which are summarised in
Table (i), give the general solution for the two basic functions U
and V , in equations (i) and (ii), in two parts; complementary
functions with four arbitrary constants of integration C,, C2, B
and © and the particular integrals R?_(EHRT)“‘H@} and

K RAR\\_\ G (925\ which are known functions depending upon the

- temperature distributions. In the solution for ring shells, that is
shells where R, is a constant and wherem is as defined in Table (i),
it is necessary to use the integral 5(\— /\Lcmec;ﬁ)“% cigé

which cannot be expressed interms of known tabulated functions.
This integral has been evaluated numerically by PRZEMIENIECKI
for a series of values of/A and some numerical results are shown
in Figure (iii). '

The particular integrals given by the asymptotic
solutions are approximate. Better approximations can be
obtained by using series expansion solutions whose coefficients
are determined from the differential equations but this would
require an appreciable amount of computation.

The asymptotic solutions for the ring shells can be
modified, by putting w= O and R,=d , to include the special
case of tha spherical shell. The resulting expression for the

shear stress resultant then becomes

Q = Eh clemqsc,os(ﬁkyér-qs) - Czemﬁk%%\'n (Iﬂ# - F\g
q‘éln}é
— Gy "
ah (viii)
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where the homogeneous portion of this solution is the same as
the asymptotic solution of H, REISSNER'S spherical shell equation
which was first proposed by BLUMENTHAL (23) . The same
approximate solution for the complementary function was also
obtained by HETéNYI (24) when he reduced the problem of a
symmetrically loaded spherical shell to the problem of the flexure
of elastically supported curved beams of variable width. For a
somewhat coarser approximation, which is vealid f’or large values of
opening anglesﬁ , GECKELBR(ZS) proposed a simplification to
" MEISSNER'S equations by dropping from the L. operator of equation
(iii) all terms other than the second derivative since, he argued,
the second derivative is large in comparison with the other terms.
The resulting equations are the same as the governing equations for
the cylindrical shell and their solution is the same as equation (viii)
with the exclusion of the (%in ¢)—J’: term but, of course, ‘:,i\f\¢ =8
for these larger values of 95 . ‘

All of the asymptotic solutions for the spherical shell
so far listed suffer from the resirictions that they are not valid
for small values of the angle ;é . To overcome this difiiculty,
LECKIE (26)'transformed the homogeneous equation into the form of
the LANGER (27) equation for which an asymptotic solution is
available. This solution is valid for all values of the angle 55

and it gives for the shear stress resultant

Q= ~¢ Y’:(A‘bew\ﬁ\m?ﬁ + Azbel\ﬁmgﬁ + Ay ker 553{}15 “+ Agk@.iﬁp(%\
‘a'm?é

(ix)
LECKIE demonstrated that this solution agrees with the
shallow shell solution for small values of/cé , where ;5/3”@ |
and/
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and with the HETENYI type asymptotic solution for the larger
values of the angle.

A full discussion of the relevance of all the approximate
solutions is undertaken by TOOTH(ZB) .

A method for the calculation of stresses and
deformations in shallow shells subject to variqus forms of loading
was developed by AMBARTSUMYAN (29) . This method depends on
the separation of the Fourier series solution into a portion
recognisable as that of a flat plate under the same loading and the
remainder due to the small curvature of the shell. Also using a
Fourier analysis GRADOWCZYK (So)considered the thermal stresses
on a shallow spherical shell and he evaluated numerical results
after programming his Fourier coefficients., Of great interest

are the soclutions obtained by CONRAD and FLUGGE (31)

for shallow
spherical, cylindrical and hyperbolic shells under the action of
plane and bending hot spots. The stresses and displacements at
any point in a temperature field can be obtained by integrating

the "effects" of the hot spots which comprise the field. The
potentiality of this method for the numerical calculation of thermal
stresses dua to any temperature distribution has not yet been fully
developed due perhaps to the lack of suitable algorithims for the
Kelvin function, which describe the unit actions.

Though the homogeneous equation for the asymmetrically
loaded shell has been solved by HAVERS (32) , using an asymptotic
method similar to that of BLUMENTHAL and by LECKIE using the
LANGER asymptotic equation, little work has been done to congsider

(33)

the appropriate thermal loadings. STEELE , starting from the

general shell equations as given by NOVOZHILOV, has shown using

a/
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a wave form, that for any type of loading, including thermal,
which has a rapid variation with respect to one curvature
co-ordinate relative to a slow variation in another then it is the
rapid variation only which need be considered when estimating the
stress distribution. A particulr case of this general form had
already been presented by BOUMA (34)who had investigated slowly
varying edge loading of some shallow shell forms.

The junction problems, which arise wflere external
members meet a spherical shell, have recently, because of their
practical importance, received much atfention by researchers.

The analysis, usually involved, is carried out by combining existing
solutions of the equations of the spherical shell and the penetrating
member, often another shell shape, in such a way as to satisfy the
appropriate compatibility and equilibrium conditions.

A great number of valuable papers on this subject were
presented at the NUCLEAR REACTOR CONTAINMENT iBUILDINGS AND
PRESSURE VESSELS symposium. A paper by PENNY (35) treating the
junction of a cylindrical with a spherical pressure vessel demonstrates
the value of using matrix methods for the matching of the displacement
of the adjoining elements. LECKIE and LIVESLEY (36)considered the
meeting of the cylindrical supporting shell with a spherical shellwhile .
BAILEY and HICKS(37) investigated junction problems between a
spherical shellm and its supporting skirt.

Many conditions .of mechanical loading of a cylindrical
shell and the spherical dome which it intersects have been examined
by BI]LAARD(SB).

In a series of review articles on the supports for

vertical pressure vessels, WOLOSEWICK (39)

of/

observes that "surveys
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of literature in the past number of years does not disclose any

detailed studies of temperature variations in vertical skirts,
insulated externally, internally or both"., He presents the following
empirical equation, Dbased on test data, for the metal temperature Tix

at some distance X inches below the tangent line on a vertical skirt

IS 4
T = (Ty —50%) - 60375 — O*289 5 + OO0 = — O-00007 X

where Tv is the vapour or liquid temperature. In the tests from
which the above relationship is formulated both surfaces of the skirt
were insulated with equal amounts of insulation, the total insulation
varying from 2 to 4% inches. It is assumed, though not explicitly
stated by the author, that the temperature must be stated in OP.
WOLOSEWICK states that, "the above equation does not satisfy fully
the experimental data, but it does give fairly reasonable average
values™".

: It appears, from the papers by WOLOSEWICK,

40) '

BERGMEN and from the many technical reports'within industry,

to be common vpractice for full scale models to be constructed of
portions of shell and skirt and the temperature distributions arethen
"fed into" computer programs for the full shell and the subsegquent
stresses and deformations determined. PENNY has stated that this
was the procedure adopted by the C,E. G, B, and indeed at the present
time this same organisation are performing full scale tests, involving
temperature and strain measurement, on turbine casings. It has been
found that the high thermal stresses associated with the daily
"switching on" and "shutting down" have resulted in thermal fatigue
and thus occasionally the total loss of a turbine set. The tests

therefore, like those on pressure vessel skirts, are directed towards

formulating/
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formulating a design code to include thermal stresses.
Corresponding with the growing requirement for

engineering structures to withstand higher and higher temperatures

has been the necessity to determine the stresses on the structure

when it is in service, This has motivated a great deal of research,
(41)

7

MICRO-MEASTTREMENT and BUDD, into experimental techniques of

particularly by strain gauge manufacturers such as BALDWIN

measurement at elevated temperature and in hostile environments.

Several large commercial organisations have undertaken
their own research into measuring techniques and indeed some
companies, such as Rolls Royce, even manufacture their own strain
gauges. Much of the valuable research work, involving strain
measurement, is contained within technical reports which are not
made generally available Fortunately there has grown a greater
interest in experimental techniques and this has led to an increase in
the publications dealing entirely with these topic__s: Such a
publication is the journal STRAIN.

One experimental researcher who has made a valuable
contribution to the understanding of the physical behaviour of
different alloys, at elevated temperatures and subjected to stress,
is BERTODOMZ) . He was seeking a material which would be suitable
for the measurement _of strains in the temperature range from ambient
up to IOOOOC. His published results give a clear assessment of the
capabilities of most of the common strain gauge alloys and indicate
their suitability for measurement over a particular temperature range.

The effects of the heating rates on strain gauges have
been considered recently by BROAD (43) . His experiments showthat

the rate of heating of a gauge affects the recorded strain reading.
The/
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The magnitude of this apparent strain depends upon the type of
gauge, the cement used and upon the rate of heating. A converse
effect, to that of the heating rate, is commented upon in this thesis.
The author observes that the sudden cooling of the surface of a
strain gauge, due to small environmental changes, greatly affects
the recorded strain reading.

Unfortunately, even with all these recent
improvements in strain measurement techniques, there is still a
dearth of published qualatative results from the measurement of

strains due to temperature distributions on shell structures.
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CHAPTER 1

TEMPERATURE DISTRIBUTION




bl A Mt

Before seeking solutions of the uncoupled equations
of thermal elasticity, it is first necessary to define mathematically
temperature distributions which have some physical significance
on a spherical shell.

A temperature distribution is derived for a spherical shell
involving the conductive, convective and radiant modes of heat
transfer. Analytic and asymptotic solutions are presented for the
axisymmetric case. These solutions are compared with the
appropriate known solutions for the flat circular plate and the
cylindrical shell.  All of the solutions contain a parameter which
is identified as being similar in form to the BIOT number.

The special case of a slowly varying line of heat around
a spherical shell is considered and an asymptotic solution is

presented.
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1.1 Heat Transfer

The basic law governing the heat conduction within
a body, Fourier's Conduction Law, states that the flu:;c of heat
conducted across a surface is proportional to the temperature
gradient, taken in a direction normal to the surface, at thepoint
in question. This law is often expressed in the form

q - ~ kA dt

dn
1.1

where q denotes the rate of heat flow across the area A ,
At
dn

and the constant of proportionality, & , is called the thermal

is the temperature gradient in the normal direction

conductivity of the material.

The prediction of the rate at which heat is convected
away from a solid surface by an ambient fluid requires an under-
standing of the principles of heat conduction, fluid dynamics and
boundary layer theory. All these different phenoména have been
included in terms of a single parameter by the assumption that
the loss of convected heat at a surface is proportional to the
temperature of that surface above ambient,

Thus if T ¢ is the surface temperature and Ty  is the
fluid temperature measured at some point suitably far removed from
that surface, the heat loss, 9. , can then be expressed by

9. = e A (te- T—Q
1.2a
where the constant M. is known as the convective heat transfer
coefficient. This constant is a gross gquantity which attempts
only to represent an overall effect. It does not include any

attempts/



~25-

attempts to explain the actual mechanism of the heat transfer,
which must depend upon such things as the composition of the
fluid and the nature and geometry of its motion past the surface.
This linear relationship is known as Newton's Law of Cooling.

The final form of heat transfer is thermal radiation.
its two distinguishing features are that it requires no medium
of transport and that it depends upon the level of temperature of
the emitting bodies. Whereas the rate of heat transfer by the
modes of conduction and convection is proportional to the
difference in temperature between the heat source and the heat
sink this is not the case for thermal radiation. Here the quantity
of heat exchanged is proportional to the differences of the fourth
powers of the absolute temperatures of the radiating bodies.

This relationship is known as the Stefan-Boltzmann Law for radiant
heat emission. This law was proposed by Stefan based on his
experimental evidence and was later derived by Boltzmann from the
laws of Thermodynamics. "

Even though the loss of radiant energy is prbportional to
the difference of the fourth powers of the temperatures, it is never-
theless found expedient in many engineering applications to define
a "radiation coefficient" My on the basis of the linear temperature
difference between the body and ambient. That is the coefficient

My is defined such that

G = Am. (g =Ty
1.2b

where 9 is the radiant heat loss.
Since this radiant heat transfer takes place simultaneously

with, but independently of, the convective mode of transfer which

we/
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we have expressed in equation (1.2a), we can therefore combine

these two results to give the total loss of heat from a surface as

1T = 1r ™ 4e .

Substituting from equations (1.2a) and (1.2b) this becomes
q = Alme+mAts=ty)

or the two coefficients may be combined to give

4 = Am(ts-ts) | 1.2

This relationship, which contains the empiric
coefficient, M , is used to estimate the heat losses from
pipes, heat exchanges and from cooling fins.

The two relationships (given by equations (1.2) and (1.1))
can be made compatible provided the temperature is measured

relative to a point removed from the boundary layer, 'in which case

T - ty -~ T .
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1.1(a) The Equation for the Temperature Distribution
in a Spherical Shell

Consider a thin spherical shell of radius d and
thickness h which has an asymmetric temperature distribution.
Let us assume, however, that the temperature is constant
through the thickness of the shell. An energy balance can
be made on an element of the shell such as is shown in
Fig.l.l. Adopt the following notation:~-

¢, = heat conducted into the element at ¢

9, = heat conducted out of the element at ¢ -+ >

9+ = heat conducted into the element at &
9,= heat conducted out of the element at & + &©

Q5 = heat convected out of the element at the two
surfaces

The principal of the conservation of energy, in the steady state,

requires in the element that

CL|+CL“5= C(_Q_-i.CLA‘L-’-CLg' )
From Fourier's Conduction Law and from Newton's Law of Cooling,

the above equation may be written as

-k‘n(qsm7$ o6 Bt }?5 mkh(q%sﬁ asungﬂae\@

X@-‘- “e +?\m&15m¢5¢ Y=

*xh(aﬁmgﬁé@ Bt ¢\¢ o4 ~kh{adg

Ctsm

In the limit where Bfé*r o and $© — O we obtain the following

differential equation

N %__ s D 4 L Dt = St
Sin D S 2.
poos ? o ee 1.2
where the parameter § is given by
S = Am_ o 1.4

k h °
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Recognising the Laplace Operator in spherical polar

co-ordinates as

ks ' .
v = Ly sm@gal.N o 3L
(.0 binqﬁ o6 ¢ b}é ™ Sm‘(,zS e

then we can write equation (1.3) in a more concise form as

vi = S5t

.

For the particular case where there is heat conduction only
the heat transfer coefficient would be zero and the equation
(1.3) would then become

t = O
vt = 1.5

which is, of course, Laplace’s Equation.
It is of interest to observe that the heat
z
transfer parameter O given by equation (1.4) is very similar

to the BIOT number, B, which is
o m

where | is the characteristic length in the direction of
heat flow. BIOT(S) showed that this thermal characteristic of
a body influenced the magnitude of the resulting thermal
stresses, The greater the magnitude of the BIOT number the

greater the magnitude of the stress.
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Solutions of the Equation for the Axisymmetric
Temperature Distribution in a Spherical Shell

Analvytic Solution in Legendre Polynomials

For a spherical shell, with axisymmetry,

equation (1.3) becomes

A .' dt _ 2
$in¢%?—5°°“¢g~9; St

which may be further reduced to

L

£+ cotg tT~ O% - O

where the dots indicate differentiation with respect to gb .

Using the substitution X o= Qotgb
equation (1.7) becomes
2
(=D dt - 2xdt _ g% . o .
cdod A

Legendre's Equation is of the form

(\“113&, ~ 2edt . p(P+1) T = O
A

dx*

Equation (1.8) can therefore be expressed as Legendre®s

Equation provided we set

. 2 Ji
P o= ~L T 1)

_.J?_\-_x_-_.LcL

It

1.

1

1.

and the solution can be then expressed in terms of Legendre

Polynomials as

where /

t =R Ep%(““?ﬂ T By .\J._CL(CO%}ﬁ

1.

6

.7

9
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where

2 s LcLCC°'°967 = Legendre Polynomial, zero order, lst kind

@—911(60595\) = Legendre Polynomial, zero order, 2nd kind

and A and B the constants of integration,

Fortunately, these particular Legendre Polynomials
of complex degree have been investigated and have been shown
to be capable of representation in a series form of either sines
or cosines of the angle, For a full discussion of their
properties one can refer to Spherical and Ellipsoidal Harmonics
by Hobson. There the functions are called CONIC FUNCTIONS

and their series representation is given as

2 % 2 L 4
- b &+ | . ey -
P-Jiﬂi(cm?ﬂ) =| + —*——?:l——(sm b)) + (‘*‘i;‘ W*‘L::’) AR

(;).gt 5254’\1’

Unfortunately, in common with many solutions
expressed as a series of Legendre Polynomials, the convergence
of these solutions is very poor. It was found that the Sirius
Computer took over one hour to calculate one point when the series
was continued till a term less than 0,01 per cent of the sum of the
preceding terms was reached, Thus, though we have an analytic
solution for the temperature distribution, it has severe lj:mitations
which make it impracticable for use in the subsequent calculations
of the stress functions. This is of course especially true of
calculations near the apex of the shell, where the angle }75 is
very small, a region which is of particular interest in the stress

analysis of the spherical shell.



1.2(b) The Classical Method of Asymptotic Integration

Since the analytic solution which we have just
obtained vields a series with poor convergence, let us now
consider an asymptotic solution using the method of asymptotic
integration described by HILDEBRAND (44).

Assume that the temperature t ($) can be expressed

in the series form

- LS ' 1.10

n=0
where £ To,t, etc. are functions of ¢. The expressions
t = eIt
7= T2t + S "
7. et m Y b+ O, Y25t + £ Ys "

are substituted in the differential equation (1.11) to give

M
O

%‘f{(f»fftn + 5{512\« + 25T Lo t‘:'} + go‘tiﬁ (STLa+t) — S n] S "

Regarding this expression as a series in
descending powers of S we can equate the coefficients of
2 1 0 -1 ‘
S ,S8 ,8,S8 7, etc., to zero, and in so doing we obtain the

following infinite set of equations
2 '
E 1o - -‘:-o = 0O

Z..lt-l - -t-\ ¥ c.°t0 * ?\E.t; + CO—C% to

i
O

Z'zt'g, _ t’L 4 l‘vtl 4 '2\-(.~-t\u - (-Ot?stl - t;.'i- C,Ot?s t(:l = O
Z.Zt's I E"tz + Zz.t; + (,O'tgA ‘t'g_ + T ‘.° + go’tyé t.\ = 0O
o n " u M “ ® = O

u " . = ]. . 1]. ade
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From the first of these equations (1.15a) we deduce
that

= |
that is, on integrating

I = ¢ +(C,
The constant Cl can be dropped since its effect is merely to

multiply the entire series by a constant. The remaining

equations (1.11 bcd) may now be simplified to read
?\to. + COT—%.T-O

1

o
e ST SR
- Z-—t(tl.u N (_ot?,tf}

— " it [U~Y 1

i

2t + cotgi,

2t, + cot 915:[7_

If

1.16 abc

Equation (1.12a) can be readily solved and found to be

—

Te = C, sin "525

where CZ is the constant of integration. Since the right-hand

side of equation {1.12b) is proportional to C2 it is clear that the
particular integrals of the remaining equations are also

proportional to CZ . Substituting this value of Le in the right hand

side of equation (1.12b) yields the differential equations

’,Z‘tl + c.ot?ﬁ. t] = = C, Z"Ml E—lz“_ b;nm%'gs ( lec,otz?s “+ l)}

i

T o5 C. (1w *'ic,otlgé} S\.\'\-%‘¢
which has the solution
T, = Cq 5]1{%?5 T Cog 'EJmmi;zﬁ (95 - cd{;;ﬁ)

A two term series solution for the temperature would then be

¢ = e Plan v o Shinip 3 Cyunig, f(f - cot)]
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The effects of the constants of integration

Cz, C3 etc. can be traced through and the expression written
in the form

t=(c, '+%_3 v }Cﬂu S?S{bin'i ¥ %_3_ s‘r:i?é_(;é—cot?ﬂi___--}

to demonstrate that only the particular integrals of equation

(1.12 bc) need be considered.

Thus the two term series solution is
sk -y " . )
T=RAe {sm ?é — %g%m ?5(?/) ~¢ot¢)\§ ~+ Be {gm ?4 + __l_ sm -Co 75} .

1.18
For large values of }75 this solution may be

reduced to the form
+5
T = € yé(l s _i_%)
33

For small values of Fﬂ the representation of the

temperature will be

T =y 1Y
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1.2(c) Langer's Asymptotic Solution

LANGER (27)

has presented a method of asymptotic
expansion which has been recently applied to shell theory by
various authors.

Formerly it had been the practice when dealing with
small openings to replace cot?S by 95—‘, which in this case |
would give the equation of the flat plate and the solution would
then be valid for small values of 55 only. The Langer solution
however does not suffer from this restriction and is valid for all
values of Sﬁ .

Using the substitution X = Sin 55/2 the

differential equation (1.6) becomes

dood x(-xty dt - & = 0 1.14
0 o dx .

If we normalise this equation by means of the

substitution t = wy, where
-4 . -1
w =[x =) % = [ cos 56/;{ =M ?5/11 o

the resulting equation in y is then

ol

Sincex is limited to | >»>xX. 2 O and providing S is

T 2
<i"'\)(.1) xl (l”;&) v 1‘15
sufficiently large, then the dominant terms in the coefficient
ofy are the first two.
The general form of the differential equation for

which Langer gives the asymptotic solution is

AFU V2 SRS 3

"’d‘:;_ + GY(Z)—‘"'&"E—{“ +)k(7~7u“0 1.16
where/ .
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where
e

(i) e is a large constant
(11) \(2(7_) =z —Z%)‘l () where }D, (z)

is analytic and bounded in the range | = Z = O
and M ~ O
FS
(iii) A is a constant

(iv) A(z\ is analytic and bounded in the range | = Z # O

The asymptotic solution of equation (I.20) is
- POF O

where @ p = 2 A
() F)= j Y@ dz
(c) CLE@: ;/'—Ji > Eom
(@) 5() = e =)

and (o) C(5)

is any cylinder function of order p

Comparing equations (1.15) and (1.16) we find
(W) @
Wl = 5 M=%

H

- (»sY

@i A = O
. = 2 - tz
(iv) A@) ey
and therefore
y = | Jh( i_ 255]1/\“:3;3[9\ 'J"Q(LXSB'U;LX) + B\li (LZSS}VVDC)]

(= oV
From/
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From the properties of Bessel functions, we have

J, (1) 1ol

It

Yo Gz) = K (D)

Recalling that

1l

T

-
* . 2
cws . SN \
(cos 'y singk) ° Y
it is then possible to write the general solution in the form

- (Hng) ATy + BRG]

which is valid for all values of 75 in the range I > (,75 z O
provided S2 is large.
When the angle gﬁ is small

-~ ro= a%
}é/ﬁinfé I ?
and the equation (1.17) can be written as
— '
t - AL (s5) + BK.(SE)

which is the equation for a flat circular plale.

1.17

For large values of 3;15 we may replace the Bessel

Functions 1o and ¥ _ by their asymptotic representation.

If 575 > 10 then

5 oF — | —.=9 -
10(57;) = (2“3}#\ e [_ l - 85}25 -+ W?‘)z _____

Ko (s = (’WY’: O T Tl B e U,

B i 21 (Bsg)”

':&—;Z

If therefore S is sufficiently large and 75 is in the region

of I

then/
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then

L.Gspy = (2msp)Fe”

Kolsp) = [m_\*e™
o ° 2.5¢
so that for these conditions equation (1 .,17) becomes

¢

+t =e¥ c + e "D

where C and D are constants. This is the form <.>f the equation
for a thin cylindrical shell,

The expression for the temperature distribution which
we have developed using the Langer Asymptotic Expansion agrees
with the known theory at the apex and at the equator, where the
spherical shell approximates to a flat plate and to a cylindrical
shell respectively.

The expression also provides an original asymptotic
form for the Conic functions or the Mehler functiox‘ls as they are

called by the Russian authors.
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1.2(d) A Comparison of the three solutions

Each of the solutions has been computed over a range

of values of the angle, 55 , for selected values of the parameter O
. These numerical results are presented in tables 1.1 to 1.3.

The three selected values of S are S= 3, 6 and 12.

It is shown in Chapter 7 that a reasonable value of S, for a

L inch thick ¢omi-polished mild steel spherical shell of radius

58 inches, is S= 7. The values of S used in the tables , however,

were not chosen with any particular material or shell geometry in

mind but rather to illustrate the limitations of the various forms of

solution of the temperature equation.

The tables present the values, for specific values of
the angle }é , of each of the functions which, along with their
integration constants, make up each of the three solutions.

Fach of these solutions has two parts, the temperature equation
being of second order, one part being a function which increase
with }25 the other a decreasing function with 75 . It is not

possible to compare the three sets of results directly but all of

them can be normalised to a common value at some specific value

offb.

is adopted when they are "fitted" to any boundary conditions.

This iz not unreasonable since an identical procedure

The value of 95 chosen for normalising in the tables is ;’b = [+5
which is the nearest tabu].ate‘d value to the equator of the
spherical shell.

The Conic Function series were continued till a term
less than .0lper cent of the sum of the preceding terms was
reached. The Sirius computer used for the calculation took

almost/
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almost one hour to determine each value at the extremities of the
angle shown in the tables. The time required is such a severe
limitation that it makes this form of solution impractical for
further work.

The "classical" Asymptotic solution was, obviously,
easy and quick to compute. The values obtained compare
favourably with those from the other two methods of solution
except near the apex of the sphere. It would appeér that this
solution is not suitable for small values of/d but very suitable
for the remainder of the shell. Unforttinately, we do wish to
investigate the stress resultants in the vicinity of small openings
and therefore this very attractive form of solution is also
unsuitable.,

The Langer Asymptotic solution agrees well with the
Conic Function solution, particularly near the origin. It has
already been demonstrated that the Langer solution ,approximates
to the solution for a flat plate in that region. It is, however,
noticed that for small values of the parameter S the Langer
solutions near the values of ¢ = SZ are not in so good agreement
with the Conic Function solutions as are the "classical" Asymptotic
solutions.

Since we are particularly interested in conditions near
the origin, it would appear that the most "suitable" expression for
the temperature distribution is the Langer Asymptotic solution,

namely, equation (1.17)
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1.3 Heat Transfer due to Conduction Only

If there is no loss of heat from the surfaces of the
shell due to convection or radiation, then the heat transfer
coefficient, m , defined in the relationship (1.2) is zero. The
equations, for each of the three shell forms considered, will reduce
in each case to Laplace's Equation in the appropriate co-ordinate
system.

The problem of heat transfer due to conduction alone is
important since it describes exactly conditions in an insulated body.

When the equation (1.6) for the spherical shell with
an axisymmetric temperature distribution is modified to include

m = ¢ it becomes

d_ singdt o
d ¢ o 1.19

If we integrate once we find

-t, i = c}\ft - C
d¢ sin o
1.20
and if we integrate a second time
T = ¢ la(eosec g —colef) + D
. 1.21

where, as before, C and D are the constants of integration.
These constants may be found by inserting the boundary
t = T at ¢ = &, and
T = Ta at ¥ .—:?gﬂ 1.22
¢ - po
in edquation (121) whence
T C A (cosec.?ﬁ, - c_ot;zf.ﬁ -
Ta c I (.cosec?;z ~ cot ?ﬁz) *
and/

i

D
D

i
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and solving these two equations

C T - Ta

A cos@cgﬁ. ~ cot b,

T
CoseC c}ﬁ.‘ — cotl 75,_‘

D - (-7 /[)m (cosecgs'z - C-O't?é'*)

JM cos@cgﬁl - col 55,
coseeds = col . 1.23

Examination of equation (1.19) reveals that for small values of the
-angle ?5 , where co 575 =~ | , the equation reduces to that of the
flat plate whereas for large values of ;IS where 5{n<75 ~ |

the equation becomes that of the cylinder.
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1.4 General Comment on and Conclusions about
Axisymmetric Temperature Distribution in
Spherical Shells

Let us as an example consider the particular case
of a spherical shell which has the following boundary conditions
t =T et 55 = O-|
t =0 at = | .5
Let us find the temperature distributions corresponding to the

following values of the parameter S |
5 = 0;175)51‘)1“:1 \O.

It has been already demonstrated that the most suitable

form of expression of the temperature distribution is

T = (#eing ) LAT.(3¢) + BRe(o¢h)]

which result was obtained by the use of the Langer Asymptotic
Equation. |

Taking each of the values of S in turn and substituting
in the boundary conditions the constants A and B are easily
evaluated and thus the temperature can be computed for discrete
values of ¢ in the range o] € ¥ < 1S . This can be repeated
for all the values of S except for S = 0, the heat conduction case,
where we must use, in the same manner as described above,

the equation (1.21)
t = CLCQOWC};& - co-t§£3 + D
for the temperature distribution.

These computations have been performed and the

results are presented in Figure (1. 2)

1t/
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It is observed from this graph that for S= 0 and 1
that there are non-zero temperature gradients at <,‘5 =1.5.
For all other values of S the temperature has died out before the
outer boundary has been reached with the greater the value of S
the quicker the die out. This of course is shown in the
computation where it is found that the constant A, associated with
the Io term, is also zero for these larger values of S. This prompts
us to examine the form of these Modified Bessel Functions Io and
Ko. We can see from Figure (1.3) that the function Ko is
particularly associated with the inner boundary yﬁ = 95.
where we have the temperature T. Further, if the temperature
dies out before the outer boundary is reached, then the constant A

must be zero and the equation {1.17) is then reduced to

t = ( ?{/sfn?f)liBKo(sfs} . ' 1.24
Thus, depending on the value of S and the angle between the two
boundaries, we can use this simpler expression for the
temperature and in the particular example which we are considering
it appears to be true for values of © 2 5 . It will be demonstrated,
in the experimental section, that where there is convection present
usually S>> 35 .

The temperature distribution curve for S= 0 is

noticed to be almost linear for values of ;zﬁ 7 1°0 ., This,however,

is only to be expected since, from equation (1. 20)

L C
‘L Sin ;ﬁ

and we have already observed that the corresponding temperature

in a cylindrical shell would be linear.

This/
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FIGURE(LB) THE MODIFIED BESSEL FUNCTIONS
Io(x), Ko(x), Totx) AnD I, (o)
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This observation of the linear temperature
distribution is important since it has been shown by DEN HARTOG(5®
that such a temperature distribution in cylindrical shells causes

zero stress resultants.
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Conclusions

Expressions for the symmetric temperature
distribution have been derived for a spherical shell which has
conductivity within the thickness of the shell and heat convection
and radiation at the surfaces. The convective heat loss from an
element of area is assumed to be proportional to the temperature
at the element as is the radiant heat loss. ‘

The solution which appears most satisfactory for
ease of computation, is that obtained by using the Langer
asymptotic expansion form for the basic heat equation. This

solution .
= (Fg) (AL + BRGsp))

agrees reasonably with the analytic solution and with the
solutions for the flat plate and the cylinder over these regions of
the sphere which approximate to these configurations. This
therefore is the form of the solution which will be ﬁsed in the
subsequent investigation.

Where the temperature gradiant reduces to zero on

the shell the simplified form of the solution

t = (Phang)* BKa(5¢)

may be used.
If there i s no convection loss from the surface of

the shell, S= 0 and the temperature is then given by

T = Ch (cosec?é - cot7§§ + D
where the temperature gradiant could never be zero since no heat
is lost at the surfaces. For this particular case one would
always require two boundary conditions to evaluate the

temperature equation.
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1.5 A Slowly Varying Line of Heat Around a
Spherical Shell

We shall now extend the scope of the present
chapter to include the unsymmetric problem of a slowly varying
line of heat around a spherical shell. That is for some specific
value of the anglesﬁ . saytl:fﬁ = ¢‘ , we have a temperature
distribution which can be defined as T, (&) . The small suffix N
is used to avoid any confusion with the problem, for which we have
developed a solution, of a uniform line of temperature around a
spherical shell.

Let us impose a limitation to the argument and
propose that this line of heat is in the central portion of the shell
where it can be assumed that

Sin §5 ~ | .
The unsymmetric temperature distribution on a spherical shell is,

from equation (1.3), given by

! 2, 2
L2 smpdt 4 L 2C = St '
sing a?é 2;;5: sin'g Het .
For the central portion of the sphere, where it can be assumed that
S\nyi =~ \ , this equation reduces to

'a.x_ A
B-Ll + 2T = St
o >t . 1.25

It is possible to change the reference for the
co~ordinate system from the p¢le, where ;.6 = ¢ , by defining

an angle <\ , measured from the line of heat, such that

A = % — ¢ i
This is shown in Figure (1. 4) Equation (1.25)can now be

written/



LINE OF SLOWLY
VARYING TEMPERATURE

{Z = Tn(e)

NEW PLANE OF
REFEREMNCE OF THE

CO- LATITUDINAL ANGLE

FicurRe (). 4) CHANGE OF CO-ORDINATE SYSTEM FOR A
LINE OF SLOWLY VARYING TEMPERATURE
ROUND A SPHERICAL SHELL
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written as

& &< 2
ot 4 2 = O% 1.26
o ISk :

Let us suppose that the variation of temperature

with © is slow. Propose

w =<9 1.27
where & is some small constant. This implies
T = T(e,w)
and gives
L et
D6 dW .

Let us express the temperature in the series form

T, w) = T (ek,ud) + 621\(,6\wa + &qtv_(&,w\ Yo

1.28
and substitute this series for € in equation 1. . to find
2 2 &2 I\ 2 2 §
pte o gt et vghole 4 gTR
Yol & Bk Qo e duat dw o
= 51(t°+8ttl i—Elf‘C,‘,_-s- _g___\

Regarding this expression as a series in ascending
. R R
powers of & we can equate the coefficients of € , £ &
etc. to zero and thereby obtain an infinite set of equations.
Since, however, ¢ is small, let us examine the first two

equations of the set. They are

2t - g,
dl®
2. 2, 2
DT, + 9 te = bt‘

SoL® dw* 1.29-30
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From the first of these equations the expression for Te

is found to be

S

t. = A we

when we are considering the particular case of the temperature

decreasing with angle oA , Equation (1.30 then becomes
2T, 4 e > 3 Mo = ™t
‘ad} duw*

which has the solution

Sell

t, = A(wye ™+ 1L YA ae”

2D o w* .
Thus if we consider only the first two terms in the

set the series solution of equation (1.26) is

T o= AE T HE(RET + 1 Yh aae"‘*"‘\

25 dwk 1.31

If the constant € is sufficiently small that

7\ 3
we can neglect the terms involving € then this expression

reduces to

- YN
T o ALE T+ L ¥Pe A€
25 o or
. 1.32

Let us now postulate the boundary condition that
t b Tn_ (@\ at ol = O

where T.(&®) varies slowly with the angle & . Substitute this

condition in equation (1.32). We have therefore that

A©) = Ta(®

so that we may rewrite equation (1.32) as

T=Tae +« L 3Yh ae™
2S 20" . 1.33
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DT

EYsh

must be of small magnitude. Because of this and since S is a

Since V. varies slowly with© then

reasonably large number, then it would appear to be a satisfactory
approximation to drop the second term in equation (1. 33) so that

the temperature distribution can be expressed as
— ekl
—t = T\ (6\ G . . 1.34

This agrees, in the limit, where 1.(8)= 1 with the result
which we have already obtained for a uniform line of heat around
the shell, |

The result obtained in equation (1. 34) has practical
significance since there are many situations in which it is possible
for the temperature to vary slowly in one direction relative to the
other, for example, where a flat plate meets the shell or at the
junction of a skirt with a shell.
A result similar to this was obtained by BOUMA (34)

for the stress resultants in a shallow shell due to a slowly varying

edge load. BOUMA in his argument used an assum?tion of the type
Tle, ¢y = t(gﬂ Aw cosn®

where MN.cosne© varies slowly with@® , to describe his edge
loading. We could have used this same assumption but the
argument involves a more intuitive type of reasoning to produce

the same final result.
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CHAPTER 2

A GENERAL SOLUTION OF THE DIFFERENTIAL EQUATIONS
FOR THE STRESS RESULTANTS IN SPHERICAL SHELLS
SUBJECTED TQ AXTSYMMETRIC TEMPERATURE DISTRIBUTIONS
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The well known differential equations for the stress
resultants in a spherical shell of uniform thickness are extended
to include the effects of temperature.

The particular integrals of these equations are found
for the axisymmetric temperature distributions investigated in the
previous Chapter. These particular integrals are added to known
complementary function solutions to provide a general solution for
the stress resultants in spherical shells. '

The case of a uniformly heated circLilar opening, which
is free of external constraints, is considered in detail. The effect
of varying the shell and temperature parameters on the magnitudes
of the stress resultants is investigated and the results are

presented in graphical form.
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2,1 Solution of the Differential Equations

The derivation of the differential equations for a
spherical shell have occupied the attentions of a great number
of researchers over a great number of years and indeed
controversy still can be aroused over the order of accuracy of
terms to be included or excluded. However, the form of the
differential equations described in great detail by TII\/IOSHENKO(7)
and by FL'UGGE(l 5) are now generally accepted, The author will
develop the equations presented by FLUGGE to include thermal
effects. The sign conventions adopted by FLUGGE (which are

shown in Figures (2.1 - 2) ) are maintained.

'

2.1(a) The Differential Equations including Temperature

Effects

To include the effects of temperature in the equations
as developed by FLUGGE let us assume that the temperature
variation through the shell thickness is linear and that it can be
represented as

t(o$7) = L(e,¢) + FT(ed
2.1

where, T (S} Sb) is the average temperature over the thickness,
%(@,;63 is the temperature difference between the inner and
the outer shell surfaces andZ. is the distance out from the middle
surface.

This /
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This heating of the shell will produce the strains

E@xéffz-d-t*-z;—\-ok{) X@?é""'o

2.2
where oA is the coefficient of thermal expansion of the material
of the shell. Hooke's law must now be modified to include this
thermal expansion and the problem is then redu;:ed by expressing
the stress resultants in terms of the tangent rotation X and the

transverse shear stress resultant & 74 through the relationships
N75 = - G\?g cdt§é
Neo
"y

M@ = K Y_Xco’t?ﬁ + \)’X.. ] - K (\-r V)cL:E_
o h

i

“'&.?{

"

'\E;_LX F V%cofyﬂ] - %(1+v}¢_’E

2.3~6

The differential equations, in terms of these dependent
variables, assume the form

(X)) = ¥X = o Qg+ A (L r V) T
K h

L (@) + Y&y = ~D(1-¥)K + DO-»at’

when the operator | is introduced where

LC)= )7 (L) eotg= (D)ol 2.7

The constants YN and D are the bending and membrane

stiffness of the shell respectively and are given by

3

K = Eh ' D = E]‘\ x
120 ~»") |~

The/
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The two coupled equat'ions above can be separated to

obtain the two independen: fourth order equations in and

LLley) -Yay =« ap = Dia [UO -V e by T

LLOO=- X = ~a-D§l~ X D(x-vﬂ{a tva  CTUE)Y-¥»E7
| W Dh(1-v)

which can be rewritten in the form

L.L(Qf) + 43*(“@\76 = D(l"VL)aL[L(t'%VT.'] - %\_(kv‘)(wv)qoﬂf-
L. L (X) + 43\:7( = _D_‘O* VI)CJ}d\"t‘ + dc"\éh\b LL(—E ) — \).EL]
K
2,8-9

where

b = DO->a v o~ 120-v)a"
K e 2.10

The fully expanded form of the equation (2. 8)

when the temperature effect is zero, is

_A_ig.;& -+ ’Zc;os,;é Q}\B&?{ —_ o—"“olmlfﬁ OL Qn}‘ ,‘c.osszg(S*r? sm;ﬁ)c(&?{

d?sl* Sl‘ngi d7€3 %lhfé Sin ?5 cl}/
S o

2.11

(16)

This equation was derived by H. REISSNER in1912.

The equations >\ ) are similar to the equations (V'l — vii)

which were derived from the work of MEISSNER(lz)
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2.1(b) A Solution for the Complementary Function

Many solutions for H.REISSNER'Sdifferential equation
for the stress resultant Qﬁz have been proposed . These range
from analytic solutions in terms of hypergeometric functions or
Legendre polynomials, with of course poor convergence, to
approximate solutions usually valid for only a particular portion of
the sphere., A detailed description and critical review of these
various solutions is undertaken by TOOTH(28) .

An asymptotic solution, which is valid for all values

of the angle ;5 is

1 P o ’ !
Q?; = (_¢/ T‘(A, f}efrj'?\.ﬂfg + [—\J)MJ—?\ D&}é + P\JRWfiN(? + . Rex ﬁzx;ﬂ
sing _
2.12
This result was presented by LECKIE(ZG). It is obtained byusing
the method of asymptotic integration developed by LANGER(27).

This method i3z described in detail in Chapter 1 where it was used
to find the temperature distribution on a spherical shell.
The solution, equation (2.12), has also been obtained by
GALLETLY%)using a different approach.

It is proposed to use this solution as our complementary
function in the ensuing investigation into the thermal stresses
on a spherical shell. There now remains the problem of finding

appropriate particular integrals and hence a general solution of

the problem. -



~64-

The Particular Integral

Consider the action of the |_(.....)) operator on the

temperature gradient. It gives
() = T t-‘cotizﬂ - t.COtz¢

= (t~ =+ t'cot;é)' T

The equation (1.7) for the temperature distribution is

T o= t’cot;zﬁ = %
which gives
Lt =t (31)

Substituting this value for L. (1‘:) into equation (2. 8)

we find

LL(@g)+ AL:NI'Q/J = D=Vl (s 1-T

Propose a particular integral for this equation of the form

Ry = AT

where, as usual, Ais a constant and substitute this expression

for&f& back into equation (2.13) to vield

ALY wuxt] = D (=) ot (7 +1=») T
whence

A - D(\-—vz)ol_(%‘wlm\i>
(‘3‘-{ I)z o M '

It is observed that for the particular case where S = 0, that is

no heat loss due to convection, the value of A becomes

AT D (=»h) e (-

b ¥

2

.13

14
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It should be observed that whereas it requires, in the
many cases where the temperature gradient becomes zero on the
surface of the shell, only one boundary condition to define the
constant A, the conduction only case requires a thermal gradient
at some outer boundary and hence there will be resulting boundary
effects to be considered at that boundary.

For the general case, the general solution for the stress
resultant, Q;" , on a spherical shell, due to an axisymmetric
temperature distribution and subject to the heat transfer laws

which have been postulated, is

= ( 5%“55){(’)" b%«(’ﬁnf + F\zbéL,EN}A * P\B er\!J—z_:xié-r H* ke':ﬁ:x?{>+ ,‘_\‘i-:

2.15
where the constant A is defined in equation (2.14)

Using this value for GI.}A we can now substitute back into the
linking equations (2. 8a—9a) and obtain the corresponding

expressions for the stress resultants and the dispiacements as

N;S = - Cot}ﬁ (Sm )Ji Aber z + P\zbELZ* !\z,k‘i\"1+ A kel z) P\cot§5 t

Neo r-ﬁ(sm Y‘i A Lbhewz + 2‘ﬁm L‘_}IT + c,o’qﬁ) bevf 2_1
~ A Lberz — 1 (1 4 cold) bei'z |
2323¢ 525 ,
] v Nlkelz + L (1 4 cotg) kerz]
2> ¢
- P\HLKEY*Z— L L - c,ot}ﬂ KQ'\Z.I§
2T P

+ A cot';zﬁ -5t
K= 20 (QYE Ay Lbe«z—~v bevﬂ Ao Lberz * ¥ _belz )
sing

D(\—‘v&) 24t

+ p\ELKELZ"“ = kev‘z'] A [kerz + 1\«@7_]%
> 2

~

4 ot .ok t°
($*4 ﬂz TN u
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A e S R R )

+ A[(kuz zs—.xzpwfz)

250 (derz zl’i>< 13

* AslGez - 5 ke?) + s (houz + L5 Aor)]

+ /3\*[_(,&@,;1 + —i—ﬁx?wlﬁ = "9;"5(1('@“*1 a gﬁv«%’“ ﬂ}
+ ?%_%‘__5 Cst = (=) th;o’t'_[

Mo = VC{ 5\”?) { thvsk"*zv + gellar ?&’zx’Q’”’rZi]
+ A BQR&Z~T-ZE}V%W > - ?D& Jﬂ*z- 7&}{£%NZD]
Ay ke - z:‘»«’?"“ﬂ + Yo (hz + Zg_w«ng,r-ljl

Py L dedZ + é"rz‘m&”’f - W—:(%“”z B zm(/?w SH

4 a Al UG- v)‘(‘_coiszf fv%t]
(st - ‘D

U, = o{‘:‘;l‘h% (N@wnygw + a%inff.oﬂt

Eh |
2.16-21
where
z = J'z:;»c;ﬁ

'E‘ = [—;E + (hzﬂaot?q
fo= Ly + (0 D eotg]

A - DU YD e (5% 1=V
(o™ O + Lot

andl

X,MIZ = i__, ('?M—L-)
Jz

&le.



-57 =

These equations for the stresz resultants and the
displacements are somewhat involved. Simplification of various
types are possible, however. The most obvious is the use of the
usual approximations for the trigonometric functions in the region
of the apex where;ﬁ is small and in the region of the equator where
¢= r% . Another possibility is the use of the asymptotic forms
of the Kelvin functions which are valid for arguments greater
than 6. The various simplifications will be discussed in
subsequent chapters as they become applicable,

The Kelvin functions found in equations (2,16-21) are
of two distinct types. The ber- bei functions and their derivations
represent waves which are zero or small at the origin but which
increase rapidly with the argument; this can be easily observed in
Figure (2.3). The converse is true for the ker - kei functions and
their derivatives., Expressions involving the Kelvin functions
therefore represent waves starting at the boundaries but decaying
rapidly into the shell. The terms involving the bér_— bei's, which
in our case are the terms associated with the constants Al and Az,
represent conditions at the outer boundary which die out rapidly
into the shell, whereas the terms involving the ker -~ kei functions
are associated with the inner boundary. It is possible therefore,
in those problems where the temperature gradient is associated
with one boundary but is zero before the other boundary is reached,
to make the two appropriate integration constants zero,

The equations, which have been developed, can be
applied to a number of specific problems. The first to be

considered is that of the uniformly heated circular opening.
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2.2 The Spherical Shell with the Uniformly Heated
Circular Opening

Consider a spherical shell which has an axisymmetric
circular opening atgf = gﬁl . Let this opening be .free of external
constraints and be heated to a constant temperature T. Further
permit the temperature gradient, into the shell, away from this
boundary, to become zero before some outer boundary is reached.

Let us for such a shell as described above investigate the
magnitude and the distribution of the stresses and the displacements.

The boundary conditions of the shell may be expressed

as Niﬁf = M?S\ =0
t,s‘ = T

and for large values of the angle
=0

This final condition allows us to discard the terms involving the
constants Al and Az in equations (2.16-21),
The first two boundary conditions, in conjunction with

equations (2.16) and (2.17), now give

i

N¢. = O wcot?ﬁ'(%?ﬁn‘%[p\gh'z, - AJ@,‘\'Z] - Reotd, t,
Mg O = g () L lem - B S i )

i
i

2% 273
+ AL,(*L(/?@)L'L + g\%‘; Qm'lzh + 35;1,_ ("Quwzl + %N)u:?_)}]
hﬁLE‘_______ECI-v)t:cot?{l +ystT _

5’*-\4—3)

2.22-23
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where, it is recalled,

Eoh (‘az*‘\—\’)

A =
(5*+0)" + Lot
After introducing a new constant B such that
BN, S € R AR
S E ok (SPri) + G 2.24
we can solve equations (2.22-23) for the constants AB and A4 to
find |
- et N
-7 H%sz;sﬁo_ﬂ“¢W* L
A = EhaTB| T ST (Y (Zr )
Tho'z, = Tha'z,
_ /?u{' 5 (- V>co'(.é.-r i:L N
A, = EhdTR fe SPTESAN. (5?5;5,/?53““
) i N
T desr'z, = Theiz, !
where
- : fu N
I = [u’“?‘l N zﬁ:(gw z) + 1"1(&"(1 - zh:x eas! Z\_.{
-E‘I.l : .
= E(g“’ﬁ-l za’iwqwﬂ -+ 23* ( T ST /L_M?—h]
For simplicity of expression let us introduce two
further constants B3 and B4 such that
[“\1_, = E h OKT B'S
A~ EhaT By
2.25-26
and of course these new constants B3 and B4 can be found from
the appropriate expressions for AS and A4 given above.

Since/
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Since the temperature gradient becomes zero before an
outer boundary is reached, we may write the temperature equation

(1.37) as
T ( sm}ﬁ) F K, (5?5)
and using the boundary condition thatt¢,="T we find the constant

F to be

e T ()"
Ko (56,

The exprescion for the temperature in our problem is therefore

-7 gl Ko
(?5%'\55)1 Ko (5?5.) . 2.27

Using the well known properties of Bessel functions we can
differentiate this expression to findt ’, the temperature gradient .
as

" w;\ "Ke (ssﬂ[ () %‘mi‘:“iw# R ( ’ASK(Zﬁl

The value of this gradient at the opening, when /05 = 525. , is then

L

SR PR
24, sind, Ko(o4)

with which value we can evaluate the constants B3 and B4.
The equations (2.16-21) for the stress resultants can now be
computed for the effects into the shell for each particular opening
value.

The results obtained can be expressed in terms of
stresses. For the membrane stress resultants N@ and Ny{
we need only divide the results by the thickness of the shellto
obtain the actual membrane stresses O, and G"?Sm

where/
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where the second subscript,m , indicates a membrane action.
If in the case of the bending stress resultants we assume that
the stress distribution is linear across the thickness of the

sectioﬁ, then the relationship between these stress resultants

and the maximum stresses at the surface are
.

M@é%()‘-’@b
Mg = % 0 b

where the subscript, , indicates a bending action.
The expressions for the streseg distribution ir the

problem which we have considered are therefore

= —cot g ( 7%‘;75\%'(53 borz v By hi'2) - Beotg T

il

mG{mCi
A

R (g[8, et 5y vect ore] — Bulphort - s ¢ +Cot¢>s@:z}]

+ B(T Co‘l.?g
% = sm?ﬁ) [B SL ’9’2“{-1” FETS '?1“"' } B‘bigmz- +'7~N %QU‘Z}I
¢ 4z x

(3% ’Dz-r-[-#-'}('* T

%é% - Si'a&h sm?’h \_Bﬁ(}iwz—z&{x%u )+ e @”"'L* Tﬁ*@rz‘ﬂ
- * S(%Ml’rmm%” )= 35 G- 55 =

A e
O—/'b Qd\‘; ,__i’i_. o \') .
Ef:‘r = Touh NN LB i(&’”z“ ?f:x?‘m Zac o« zrm%"”’z‘)zk
B, ez o) - 2,,,47_(%@,,1 o bl
& L=Wt cot § + ¥t
N (w1 ) T 75 T
Un |
= — -
asing 4T T E (W®m - vo“/yﬁm) T
\Ul\e’ve 2.29"‘34
B = '51*- i~ v

(Sl-‘- 1')1 + [;.:;\gLf
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Let us now consider the graphical results which are
presented. These results can be divided into two main types.
They are:

(1) the stresses and the displacements at the actual shell

opening (these we shall call henceforth the opening values),

and
* (2) the stresses and the displacementg into the shell from
a particular value of opening.

In both sets of results, it is assumed that the value of
the temperature at the opening is T and that the temperature and
the stress distribution terminate within the portion of the shell
being investigated so that no outer boundary conditions need be
considered.

Using the results of equations (2.29~34), a series of
opening values has been computed for certain selected values of
the shell parameters., These opening values are pll"esented as
full lines in Figures (2.4-10), From the same equations the stress
distributions into the shell from certain selected values of opening

were also computed. These results are presented as broken lines

in the same figures and the value of the particular opening from
which they emulate is found alongside each line., Details of the
computation are given in Appendix 1.

The values of the shell parameter d/h selected for
presentation are 30, 90 and 150. The reason for this choice is
the popularity of these values in shell literature. These values
cover a fair range of practical shell forms. The choice of values

for the parameter S was more difficult. Consideration was given

to/
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to the shells which are discussed in the experimental section and
it was felt that values of 6, 9 and 12 for S would adequately
demonstrate the variations due to heat transfer effects,

The value of 0.255 for the Poisson's ratio was also chosen from
experimental considerations. It ig the value obtained for the
mild steel of the experimental shell. Now let us examine in

detail Figures (2 .4 - 10) where some of these results are

presented.
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TABLES (2.1 - 3)

AND

OPENING VALUES FOR VARIOUS VALUES OF S
(o}
WITHw = 90

= 0,255,
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_ The graphs of the opening values show up two distinct
regions. In the first region, approximately defined by © <« ¢ < 0-§
there are great variations in the values of the stresses and of the
displacements. Beyond the value of ?5, = 05 these opening
values tend toward a more constant value. In the next Chapter
we shall investigate this region of the shell.

It is observed that the opening value of the membrane
circumferential stress, for all values of the parameters, appear to
‘tend to the same value at the origin, namely, — E«T while
the corresponding values of the bending stress, angular rotation
and the displacement all tend to a value of zero. These limiting
conditions shall be proved later to be the case. These limiting
values are the game as those for a circular flat plate. However,
it would appear wrong from these results to consider any portion of
the spherical form as a flat plate, although this has been done by
certain researchers. ’

Stresses whose magnitude is in the region of E«T
are high and may require careful thought from the design viewpoint.
Further, it must be remembered that these results are for a
completely free opening., Stresses due to edge restraints must be
added to the stress values which we have just considered. This
problem we shall consider when we are investigating the inter-
action of a cylindrical sheli with a shallow spherical shell.

The stress distributions shown by the broken lir;es , into a shell
from a particular opening, die out very rapidly. This justifies
our confidence in dropping the terms involving the constants of
integration A3 and A4 from equations (2.16~21) when we consider
the thermal effects assgociated with the lower boundary of the angle.

The/
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The Tables (2.1 -~ 3) along with the appropriate Figures
show that for a fixed value of O‘/h (a value of 90 was the one
chosen to illustrate this effect) the stresses and the displacements
vary with the parameter S. The greater the value of S the greater
are the stresses. The variation appears more pronounced for larger
values of opening where each of the opening terms tends to a
constant value. This constant value we will investigate.

This variation of the magnitude of the stress term with the parameter
S we would rather expect but not, perhaps, that the effect would
appear greater for the larger values of opening.

It has already been observed that the constant S,
which is a heat transfer parameter, is very similar to the BIOT
number. BIOT(B) has already demonstrated that the greater the
number the larger are likely to be the magnitude of the stresses.
The results in this example, for the uniformly heated circular
opening, confirm the importance of this parameter. The reduction
of the magnitude of the thermal stresses in a spherical shell
therefore becomes the problem of reducing the magnitude of the

parameter S.
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CHAPTER 3

STRESSES IN A SPHERICAL SHELL AT

LARGE VALUES OF THE MERIDIONAL ANGLE
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For larger values of the meridional angle
the Kelvin functions can be replaced by their asymptotic
form. This results in greater simplification of the
expressions for the stresses and the displacements on
a spherical shell. These expressions are shown to be
similar to and, in the region of the equator cof the shell,
the same as, the results for a cylindrical shell. '

The problem of a line of heat around a épherical
shell is considered and graphical results are presented

illustrating the effects of varying the main parameters.



3.1

(b)

(c)

-84~

Stresses in a Spherical Shell at Large Values
of the Meridional Angle

The Simplified Equations of the Spherical
Shell for Large Values of Angle

The Spherical Shell with a Large Heated Opening

A Line of Heat Around a Spherical Shell
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3.1(a) The Simplified Equations of the Spherical Shell
for Large Values of Angle

In order to simplify the rather involved expressions
for the stress resultants which were derived in Chapter 2, we
could first consider replacing the Kelvin functions by their

asymptotic forms. They are

<% % y -4
per Z =(RUD) € Veos (%5 -T) 3 berz = (AW2) € Fcosl ~ %)

. -4 ze . iy .
belz = (D e (%~ %) betz = ) 2 e ain (B + %)

- .

Ing -‘?: ~% - ! s J?_.— -4.;/1
ker 2= ()" € %cos (Za+ B 5 ker'z= = ()T e Feos (-3

A Lo
keiz=-(EV €% sn(F+%) ;  kelze (E)'€%ain(% -1

L

3.1 - 8!

TIMOSHENKO and REISSNERMB) suggest that
these expressions are valid for values of Z > &
However, FI:[‘IGGB states that the larger value Z > |O is more
correct and he observes that at Z = (O the errors made in using
these formulae are in the order of several per cent.

Using these asymptotic forms in the expression for the
shear stress resultant,@/qﬁ, equation (2.26) will reduce to

Q;A = —I—_;—\_;‘-_% [C?NF&(F\, c.osm/d + A?_s'mm;é) + é‘w?S(A}COS?ﬂjﬁﬁ- I—\,@inﬂ;@]

This is, however, the form of the solution obtained by IIE.TL{NYl(24)
when he reduced the problem of the spherical shell to that of a

beam/
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beam on an elastic foundation. BLUMENTHAL(ZS) arrived at the
same solution, by simplifications of REISSNER'S basic equation
(2.11), as did LECKIE by using the classical method of asymptotic
integration.
Replacing the Kelvin functions in equations
(2.16~21) by their asymptotic form as given in equations
(3.1 - 8), we arrive at the following expressions for the stress

resultants and the displacements:-

Qfg = ($ir\¢)%%{ew£(f-\lcosm¢ + Aysin ﬁ?ﬂ + @_N?g(F\BCOSN?S-rAqs;nN?ﬁ)} + p\t-

N ?5 = =~ col 75 Qfg ,
Na = «—")TKN (SW\?S) {e FéLP\( cos(wxié + 3 + p\a 5”\ (—N?A ‘r)-l
LH3 sin(otg + ) - Ascos (oxg + 4)]} + P\(tcat}z( -3%)

Mg = o Ginglfe "7‘\}\ sin (e + ) ~ Racos G v %3]
- e “;1 LA'S C.O&CD‘(;é ;D) +A+Sir\(3‘{?§ + )1}
+ ..ELB___.._ESt —Q~ v)co’tyﬂ‘tl

2l Y
Me = ;'_%C}. (Sin;ﬁ)L{ 6‘ [h Sm(m?bf/} — R;CO&.(&«;? + EY]
— &7 [y cos (i + %Y+ Py sin (oep = 1

-+ Sc:}A L(|«v}‘t c.otié RNV AN tl
- Y

K= 22 (gl L€ psinag = A cosngt) = € (s = Aacosng)]

Ehn
PR S 2t
(‘a—k\\"""?“-%
T (Ng-v Ng) + <t 3.9 ~ 15

asin;ﬁ Lh
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3.1 (b) The Spherical Shell with a Large Heated Opening

Let us now reconsider the problem in the previous
Chapter of a spherical shell with a uniformly heated axisymmetric
opening. However, let us impose the furthercondition that

2 >™g > 10

so that the opening must be large.

Since we have stipulated that the opening, at

?ﬁ = 525( , is free of external constraints and that the temperature

distribution reduces to zero before the outer boundary is reached

then the appropriate boundary conditions are

Ng, = ™ g, = O
t;,s, = T
and .
T — o |
for large values of 56 . It is recalled that this last condition

allows us to drop the terms with the coeifficients Al and Az in
equations (3.9 -~ 15). '
Substituting for the first two boundary conditions in

equations (3.10 & 12) vields

N?‘l = @ = Cotyﬂll_(%l-hféji ( A Cosm?;, + Ay sin Ngﬁhﬁ;yﬁ 4—{\1‘_:1 .
Mg = ©O =-9 ‘ 4 S
7’54 ) V3 ¢ (5'“?6!) ¢ LAS cos (Nfﬁ,*r '/'Tf,)-hﬁqsln(uyﬁnuig;ﬂ
+ G A [ %, = (1=) cot b, T,
Sl = Y L \m¥) < ¢ A

or/
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or expressing these two equations in matrix notation

© ('03:’{?!' Binveeh A + NG L -t
= - he (an?ﬁ)“' i
O o8 (v{?"-r 9:/*) %\h(}* ?6'*;‘:) {3\“‘ f‘:{"_v[g.t\_(i_vvmt;él ttl
We may now transpose this matrix to give
Ay O A ML LEC T | By
= ﬁe+“¢5§n*¢‘ z |
M, ~ cos (o, + %) cos:rr;é, %\2‘:_\)[& t\-C\—v\cOth"t‘ 1

Let us now evaluate some of the stress resultants
for our problem using these values of the integration constants.
From equation (3.11)
Ne = JZm ;\bm?ﬂ)“&e—”*ﬁ’g Csin (b ) = cos (o .@g‘ﬂ[;\;} + A(tetg-51)
Ay
After substituting in this expression the values of the constants

of integration which we have jus{ found, it becomes

t =N . D . : -
Ne = mm(iﬁé) (E™FH) [sinods ) —codbeg BN Sinbed %) -simoct | [T
~eon(of ) cossay | 1S 1SE-0elgt]

Shel -

"‘Mt"wtjé S D

For the opening value of Ng , that is the value at 5:6 - &,

the expression reduces to

No, = 2oA[t] o5 g, 0, + tiestgh =St ]
o= - — - — y X [, coley, — DLy
o, > R S— 5{31‘ (-»eotd, |3+ C2i~(3.16) .

By substituting in equation (3.14) we can find, by

the same method, the opening value of the angular rotation to be

XI - M%\“Ll' ~—__E /[Sl'tl -—(i‘"v\aot?é\-t\.l%
E h \F3 -V

3.17
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We could now evaluate these results for particular

values of the main parameters ( V , , ) but first let us

7
examine the expressions for the temperature distribution.
For the evaluation of the results in our previous graphs, we

assumed that the temperature distribution was given by equation
(1.21) as

4.
T = BXK. (55?5) i ( %m?g\z .
We have already seen however, in section 1.2 (c¢),
that for larger values of S;é the asymptotic form for the Modified
Bessel Function Ke(s¢)would give

t - Be ¥
- 3.18

It would seem reasonable therefore to use this expression for the
temperature in problems of the type we are considering where
Jim}é > 10 although we realise that there could be cases
. (for small values of S) where the two criteria, for uéing the
asymptotic forms, are not compatible.
Applying the boundary condition
—t?sr = T

to equation (3.18) yields

t = T e:fs#
Sl
3.19
which when differentiated gives )
U = —oT &%
6“5%!

3.20



~90-

At the opening where 75 = 975| , the temperature gradient will be

t, = - 5T,

t

3.21

Assuming that the two criteria for the asymptotic
forms are compatible, we can now substitute this value for the

temperature gradient into the equations (3.16 - 17) to vield

2 2 kS
No, = ETeah (svi-9 i?gx ~ 225 - 5 — it _(\ +- -——_———ZTI“”ID‘)
CSeiy + b L ST — Y oY

1!

X‘l LT 2‘-3;5 “(51*\“‘"\* 2')(5"‘/2.‘3\(L+C_ot¢‘(%"\ﬂ‘23*]
(" Dz + ot

-

3.22-23
Where the parameter S = 12 and the Poisson's ratio ¥ = 0,255,

these expressions, for the selected values of ’gf;‘ given, reduceto:

Ne,(%._*m = (-0 3435 - O-OBLMD7<,O£?5,3 ETah
No(s=14) = (01931 — O-03%] cot 4, ETelh
No(x=1) = (-0-1395 — 0O-.02278 cot $) ETh
Xu (¢ =30) = (" PSRN + 04091 cot c;ﬁl) LT
X, (%= 90) = (= L9007 + 05912 cot 9253 T

N (e =56y = (—5-8832  + 05206 col ) LT |
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‘We may now compare these expressions with the
graphical solutions presented in the preceding Chapter. It has
already been observed that the two graphs in question, those for
N, and X‘ , quickly attain constant values for the larger values
of the opening angle. The value of cot 75\ is very small for the
large values of 525. and the constant term associated with it is
also relatively small. Thus with the expressions above we
could have predicted the "linear" portions of the graphs.

If we cérry the approximation consedquential to the
dropping of the co‘t?(y terms back to equations (3.9 —~ 15) and
indeed back to the equations in Chapter 2 from which the equations
(3.9 ~ 15) were developed, we find an interesting resulfc. For
example, the shear stress resultant Qfs would be, omitting the

t term
st = eﬁﬁ(l\‘ cos P+ [-\?_S‘ln'.)\f#‘) + e~“¢(rl\3cosx?£ + A(f%[nzx(gﬁ\

The complementary function portion of this expression is the

solution of the differential equation

ceon o

Qg * h>"Qp = O 3.24

Alternatively, if we considerthe L. (_..)) operator

L) = () + (L) et = (L) ot
and drop there the terms involving cot 55 the equation (2.24)
will also reduce to this form.
This is the form of the solution, for large values of
the angle, proposed by GECKELER(ZS) . It is also the solution
for a cylindrical shell so that in effect we are approximating this

region/
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region of the spherical shell to a cylindrical shell.
Full discussions of the implifications of this approximation are
found in FLUGGE and HETENVI. It is of interest to us to notice
that our "temperature® terms in the stress resultants simplify
considerably. The constant A would also simplify since the
numerator would become S2 and the denominator S + Lot
inplace of (& +1 —v J)and (5 + | ) + o' respectively if
the same simplifying assumptions are carried into the temperature
equations.

The equations (3.9 - 15) have thus been simplified
even further but, as \HETENYI observes, 1t is a somewhat coarser
approximation that results. The equations for the stress resultants

in this case are

Qg = €7 (Acossig + Rusind) + € 7 (Ryconmeg + B, sinocgt)
+ AL |
N;g = O

Ne = ~J2 ¢ {Ez“ﬂ%[ﬂf\!cos(wfﬁ )+ Rw_s‘mb«,ﬁ*‘ 1}?31
- e,m; D'\s ém(m;ﬁ+%} — A%cos@&gﬁ + %}l_\‘&

= Ast

Mg = 22 { @™ A sin G ) ~ A, cos (o + Y]

- & LA cos (o ) A, 3.”‘(3‘75 * %3178

+ a As'T
SE4 =Y
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Y Mg

=
v}
it

P
I

2™ (N, sin>g = A, conngd )

- =g .
C CMsmmfé ~ Ay cos>eb) |

o e gt
S Lo
= !
%7 ET\“'N@ vt 3.25 - 31
where
Ehe S
A = S Lot .

The simplified results of equations (3.25- 31) are

of considerable interest since they are also the equations for a
cylindrical shell with a longitudinal temperature distribution.
For a cylindrical shell it is customary to change from the
meridional co-ordinate 75 to an axial co-ordinate > where

X = Oi}zé For the region of the shell, {fvhere thé GECKELER
equations are valid, the equations (3.22 - 23), for the opening
values of the circumferential membrane stress and tangent

rotation, become

3 o
No, = ETah S [R:N - Ry 51
ST S
N, o= 2T 25 (-8 raxs — 2]
STa oo T

3.32~-33
The horizontal displacement W is given by

equation (3.31) as

U= &~ Neg + aLlT
for/ Eh ®
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for large values of ;é . The value of W\ at the shell opening will,

from equations (3.32) then be

U, = Oo':r___________[#:»( +23\&3“‘7C.3(5]
S 4+ ot . 3.34

Equations (3.33 - 34) can be written as

X, = ?“’LTS {"‘—5—1 + A —-7:&
(4 + _,) 7
W = Rdaal 2+ ‘s — l
]
(4 + 22 >
3.35 -~ 36
The equations for the tangent rotation X,
contains the term T . It has been shown, in equation (3.21),

that this is in fact the temperature gradient at the opening so
that
ST = — 1, :

and equation (3.35) can be written as

XI._:-—ROA’E E.—_;_ 1%._.?\\
574 3.37
It is observed that the two equations (3.36 - 37)
contain terms which are powers of the ratio of the heat transfer
parameter, S, to the basic shell parameter,>( . The value cf this
ratio is

> - <\'\\ - - am %; (Dli
> ‘. =5 (5)* [< >3<'”v)

Thus, provided the two heat transfer parameters and the Poisson's

ratio/
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ratio remain constant, the ratio% = const./a. This implies
that the opening values of the displacements are independent of
the shell thickness but are functions of /a. This confirms what
has already been observed, that the "size effect" is of
importance on the magnitudes of the thermal effects.

For the special case of heat conduction only, that
is where there is no loss of heat from the gurfaces, then S= 0

and the equations (3.36 - 37) reduce to

i

W, = - oL,
Moo= o 3.38-39
Further, since both Ng =0 and Mg, =0 then it can be seen
from equations (3.25 - 31) that there is no stress distribution into
the shell fér thi s temperature distribution.

It has been shown in section 1.3(b) of Chapter I
that the temperature distribution of a cylindrical shell, due to
heat conduction only, will be linear. ‘

TIMOSHENKO (49) (50)

and DEN HARTOG have
investigated the case of a cylindrical shell with a linearly varying
axial temperature distribution and have confirmed that there should
be no stress distribution in the shell and that the edge displace-~
ments are as given by equations (3.38 -~ 39).
It is of interest to compare the opening values of

the displacements for the various combinations of shell parameter,

% , and heat transfer parameter, o , which have bezn used
in the earlier graphs and tables, The values of 7<"/QU:,' and

,w/oﬂ— have been evaluated from equations (3.36 ~ 37).

‘L A
=
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The opening values are presented in tables (3.1 - 2).

The results show excellent agreement with the corresponding
graphical results in Figures (2.6 - 7) for the larger values of
opening.

For the horizontal displacement, U,, it is observed
that its value decreases with an increase in S so that the greatest
displacement is associated with the conduction only mode of heat
transfer, S= O , that is with a fully insulated shell.

One cannot draw a general conclusion from table
(3.2) because the temperature gradient at the opening,”t; , is

itself a function of © , since from equation (3.21)
£ - -5t

It is possible to express the dependent term asXKT for all the values
of 5 except S® O for which values the equation (3.21) is no longer
valid. TFor this special case the temperature gradieht is linear
between the opening and some other defined boundary.

Table (3.3) shows%/ﬂ for all the parameters so far
considered except 5= O . It is difficult to draw any general
conclusions from the values presented. One could be tempted into
predicting that the value of the tangent rotation at opening would
increase with the value of S for any particular value of §— |

n

A comparison between the values at S=9 and S =12 for % = 20

shows, however, that this is not the case. These particular results

indicate that there must be a turning value in equation (3.37) in the

region of % = 13 and that beyond this value the tangent
rotation X, will decrease with increasing S .

. 47

HICKS( ), in his investigation of the junction

problem/
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jL///%/h 30 90 150
0 1 1 1
6 .8375 .9257 .9506
9 7379 .8658 .9068
12 .6527 .8054 .8598

Table (3.1)

The value of q%;f%for various values
of the shell parameters S and XN |

(¥ = 0.255)
%/ h 30 90 150
0 1 1 1
6 4536 .6218 .6896
9 .3251 4996 . 5784
12 2424 4073 .4893

Table (3.2)

The value 0f7€ﬁii for various values

of the paramters 5 and >¢.

(V= 6.255)

ja///g/h 30 90 150
6 -2,7214 ~3.7310 ~4,1373
9 ~2.9261 ~4.4961 -5,2051
12 ~2.9084 ~-4,8878 ~-5.8717
Table (3.3) The value of7€4(r for various values

of the shell parameters.

(¥ = 0.255)
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problem between a spherical shell and its cylindrical skirt, made
the assumption that the temperature distribution on the skirt could
be expressed as
t = ce””

where C and M are constants and X is the axial co-ordinate.
He then substituted this expression in the HETENYI equation for
the displacemesuat of a cylindrical shell due to an axial temperature
distribution. HICKS thus obtained solutions for the horizontal
displacement and the tangent rotation of the opening which are the
same as those given in equations (3.36 ~ 37). HICKS then states
that when 35; is sufficiently small these formulae will reduce to

X, = et

U, = aaT
This is, of course, the result which was obtained, in equations
(3.38 - 39), for the condition of heat conduction only, where o= O |
HICKS proceeds to develop all of his interaction equ;’ations on the
assumption that %/»g is small.

WEIL and I\/IURPHY(SI) who investigated the problem
of a cylindrical skirt supporting a pressure vessel also made the
assumption that the opening displacements are as those which are
produced by a linear temperature distribution and are therefore given
by equations (3.38 - 39). These authors indicate, however, by the
examples which they present, that they are considering well insulated
skirts with insulations of 4" thickness on both surfaces. BERGM‘ANMO)
presents experimental results which indicate that a 2" insulation
would reduce the value of S to 0.468 whereas a 3" insulation would

reduce the value to 0,092 5

WEIL and MURPHY present,as an example, the problem
of/
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of cylindrical skirt which has the followiny experimentally measured

values:-
G = 114.9 ins o = 7.7 x107° /8°
E = 25.5x%10° 1b/in® T = 880°r=s00r°
h = 0.9063in t, = -32.7 °%n

insulation thickness = 4" per surface.

If we assume a Poisson's ratio for the skirt material of

Y = O-AS5
then the value of the parameter> for the shell will be

— oo
X oE[3U=YDE]T = q4es7

and since, from equation (3.21),

t,= -9ST
then
S = -t = ©0-040875
T .
The appropriate value of the parameter S/y\ for their shell is
therefore
S o QO*O87S . 0.-00R8O0S
P \Y 57 .

Substituting this value in the appropriate expressions for the

displacements, equations (3.36 - 37), gives

Xoo= =t (O-99719)

W, = 099999 6 a«T

This result somewhat justifies the assumption made by the authors,

provided cylindrical skirts have 4" insulation., It is interesting to

observe that taking a value of 30 Btu/hr ft Fo for the conductivity of

the steel and 1.4 Btu/hr ftz r° for the coefficient of surface heat

transfer between steel and atmosphere will give, for the equivalent

uninsulated,
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uninsulated skirt
L

L
S = (20 \'q {22 42 N\ ued - o-o64s
%\ 0 406% * 30 S

which value can be compared with the value of S= 0.040875

obtained earlier, for the 4" insulated skirt. Moreover a value of
S =10.644 would lead us to expect, after equations (3.36 - 37) ,

displacements of the order

W, = O-43% aoT = O-307
-3
X, = 3% 8 % \0
as compared with
w, = o-707"
~3
X .= 0252 x\0O

for the insulated skirt.

On the basis of these assumptions about the relationship
between the temperature distribut ions and the displacements WEIL
and MURPHY then evaluated their interaction equétions between the
skirt and the pressure vessel. BERGMAN, after cdmmenting upon
the great number of pressure vessels with skirt supports which had
been constructed since the 1930's and which were in successful
operation comments, "had the analysis and examples given by WEIL
and MURPHY and CHENG and WEIL for the three intersecting cylinder
problem been available during this period, they might have been a
powerful deterrent to the use of skirt supports. Their calculations
show stresses on an elastic basis well over doubkle the cold yield

point of the steel".
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3.1(c) A Line of Heat Round a Spherical Shell

Before proceeding to investigate the problem of a
uniform line of heat around a spherical shell, let us first consider
the relationship existing between the edge loadings and their
corresponding displacements in that region of the shell where
these GECKELER type equations are valid.

The stress resultants M 55 and QF{ at fé = Sjl
are given by equations (3.25) and (3.28) as

Qg = e"“’ﬁ‘ (AN cos N;ﬁ, + P\%S{Y‘\N?S.\ + f—\t;

...')‘ 'mad .

Mg = =g €[N con o v Ty + Agsin(oxgt ]+ AT
Ja™x

where only the displacements, stress resultants and temperature

distributions in the portion of the sphere below the circle are

considered. In matrix form these two equations can be written as

k| T AN Eided s ak
—E%a_mﬁ* AL, cos (@, + T sin (o + ) Ay

and hence transposed to give the expressions for the integration

constants

Ay B Sin (oxb + TR —= SN, Qg — N
= e’ -
Ay ~cos (¢, + ) cos ~§%§«_ Mg TR,
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The corresponding expression for the angular rotation

X. , equation (3.30), also written in matrix form is

2 . .
X, =~ memfﬁ'Csmmgbl —cosmﬁﬁler v Lol AT,
& A S+ bt
Ly

>

Substituting for P\s and !l\ltand then simplifying leads to

K, o= 2R [ 25 -] Qg - At © Lbw" dX,

Eh S%e LFNLP

- B2 Mg+ RocAL,
@]

This relationship shows that the rotation at the opening
is independent of the value of )‘5‘ , which could similarly be shown
of the horizontal displacement in the same region of the sphere.

The independence of the stress resultants and their corresponding
displacements from the position on the sphere greatly simplifies
any problem in this region. This factor has been made use of by
researchers, including HICKS when he consideredtt‘he interaction of
a spherical shell with a cylindrical skirt, and can be readily shown
from FL"L;GGE'S equations. FLUGGE changed the independent
variable fromyﬁ to 551 where

séz = ¢ B ¢i
as shown in Figure (3.1) , and demonstrated that the "effects" from
a condition at 751 are the same into both portions of the sphere.

The above results are of course compatible with equation
(3.18) and indeed could be said to be consequential upon GECKELER'S
assertion that this portion of a spherical shell can be considered as
a cylindrical shell. .

Proceeding now with the problem of a line of heat causing
a uniform temperatureT around a spherical shell at ¢ = ¢, we
must first limit our argument to region where cot?ﬁ is very

small/
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SPHERICAL SHELL DIVIDED INTO TWO PCRTIONS
BY THE MERIDIONAL & = ¢

s

LOWER PORTION OF SHELL SHOWING NEW
VARIABLE $o WHERE o = ¢ -~ ¢,

Fieure (3.1)
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small and the GECKELER forms of solution are applicable. It is
more convenient to consider the spherical shell as comprising

an upper and lower portion heated uniformly at their boundary ¢n
to a temperature 7 . From the foregoing discussion it can be seen
that the two portions are symmetric with respect to the stress
resultants and the displacements although 75| is not necessarily
at the equator of the shell. This enables us to consider only

one portion of the shell, the lower, and requires that portion to

satisfy the following boundary conditions
Qg = X, = O
to make it compatible with the upper portion.

The temperature distribution into the lower portion of

the shell is, after equation (3.18), given by

—_ 5
t = Be 7
which after satisfying the htemperature boundary cphdition at
becomes ‘
— 3;{
t = T &
e~ Y

and it is appreciated that a similar form of temperature distribution
exists in the upper portion of the shell.

Substituting for the boundary conditions into equations
(3.25, 30) gives
Qg = O = e“"fﬁ'( Aycos>@  + Agsinxg) + At

)

X, T O = =2 &% ( Ny sin g, — Aq_cosx%S v awt oLt
Eh SL&+['_:>{'T

In/

-
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In matrix form this can be written as

— —r —— — —

O oS, Sin >, N At

@ Sin m, - cosxd, || Ay - 2o A,

— -} b —t e — he —

which we can transpose to give

7 - . .
Ay - cosmfz{i ~ Sin NP, )
' ":"%s
At €
. “‘?\D{.L
- o
A, SIn P, cosx g, 2

Let us now evaluate each of the stress resultants
using these values of the integration constants. Substituting
first into equation (3.25) for the shear stress resultant &76

yields

Q;é = /X’cIEﬂVMN'él I:cosmﬁé 3irm7§l -cosm;f{,- —s‘ma% I |+ AU
| —-Ib.mm;ﬁ‘- cos:ni/cé _"3_825

Evaluating this matrix we find

Qg = ~A5Te“(’5“¢‘{w conlf= B = 23 sin(P-gd] + A

If we now change the dependent variable by defining
p -9
where the physical meaning of ?32 is as shown in Figure (3.1),

we have

Qfé - Eh*TS( [e~u¢ (“Co%b\éj’g - 23« 5“’\3\(75) e ?éi(k

44 lfx“

Similar/
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Similar substitutions for the other stress resultants
lead to the following expressions for the stresses into the

shell from the line of uniform temperature

3

O om = _’\gl_@ = — BV _ 5 {J_?lvﬂc: w‘{?in(mﬂr"}fﬂ* %{fos (3*‘?{_1— }S}-P 36‘%}

S LM

’

R 3 H?‘z . . '_3/‘
o, CMg - bg EBTS gl‘ & fEfos(’*fvT‘/]ﬁ-vaémf“‘*‘i{’“"f‘/ﬂ*‘ s PL}
N n S Lo (Foe ) 4 <

i

xX - AT ’R—NLS%[GH“ ‘ (— 5in'ﬂ751 + _‘&;:g Cosmflgﬂ — 25 e’ S?{?"‘K
: S* A

The equations for the stresées and d,isplacements
have been programmed and numerical results have been obtained
for the same values of the main parameters (V | % , S) which
were considered in Chapter 2. The results are presented in
graphical form, using the same conventions as previously, in
Figures (3.2 -~7).

The heat conduction case, where S = (0, has not been
presented. We have already shown that, for this case, the
temperature distribution is linear and that for a "free" open shell
the stress resultants are zero. This latter property implies that
the problem would only b2 one of rr}atohing the displacement and
the rotation. The linear temperature case, for a cylindrical shell,

’
has been presented, as an example, by HETENYI. If we substitute

our/
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our temperature distribution T =T & P in the equation
obtained by HET%NYI for the c;ylindrical shell, using his simplified
approach, then we obtain results identical to those presented.

The same problem, however, occurs in one of the earliest papers on
thermal stress in shells which was written by DEN HARTOG(SO) .
This paper reminds us that the lower end of the temperature
distribution must also be considered since there will be a rotational
term, though no displacement at that end of the field.

The importance of this problem and of the results
presented is that they could be considered as describing the effects
of a line of heat around the central portion of a spherical shell with
a temperature distribution away from the line such as is shown in
Figure (3.8a). Theoretically, such a situation is impossible since
the heat must be transferred on to the shell through a finite area.

In practice it is likely to be transferred through a band of uniform
width, for example through a plate welded to the spheré. The width
of this band is likely to be of the order of the thickness of the shell
so that the assumption of a line of heat seems not ‘unreasonable.
We could if we wished, however, take the width of the band into

consideration by dividing the shell into the regions
O % ;5 é\%\ where T =71

¢~7§zali§_—( ~ where t «:t(§$,_j

which are as shown in Figure (3.8b), then rﬁatching up the
resulting boundary conditions.
The graphical results are presented in Figures
(3.2 ~7) for two values of the temperature parameter &S (5=¢,5* P
and/
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-112-

and for two values of the shell parameter % (% = 30, % = |so> )
Combinations of the same values of these parameters have been
considered in the previous se'ts of graphs.

It is observed once more that the highest values of the
stresses are likely to occur at the temperature boundary.
Larger values of the stresses are associated with larger values of

S but with smaller values of g’h"

The maximum value of the meridional bending stress,
 which has a magnitude of | 'OSEXT for S= \’2\' and - = 30
is very pronounced. In the circumferential direction the same
combination of parameters give a total maximum stress of
magnitude O-92 EAT These stresses are comparable in magnitude |
with those found in our previous problem at small heated openings.

It is noticed that the magnitudes of the stresses at the
line of -temperature depend upon the value of the ratio S/:»{ .
Recalling from the earlier discussion, in the preceding section,
that

S o 2

X (D=
it is interesting to observe that two of the cases presented have

L] L S []
very similar 7% ratios. These are

S - & [- ]
AT

and

_S = 12 . 0983
(N Ti50

Examination of the various "line" values of the stresses for these
two particular cases demonstrates that their values are very

similar with the larger value being associated with the larger ratio.
The "line" values of the horizontal displacement display, as before,

are/



-113~

are contrary effect with a smaller displacement being associated
with the larger S/N ratio.

It is recalled, from the earlier discussion, that when
the parameter 5/3\( is broken into its components
= Ccomst Ja
Thus, as with the shell with the free opening, it is demonstrated
that the magnitudes of the stress and di::placemen’; at the line of
temperature depend upon the radius O that is upon the actual

size of the sphere or of the cylinder.
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CHAPTER 4

SHALLOW SPHERICAL SHELLS
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Shallow Shell theory has been used, because of

its great simplifications, to investigate localised effects in
spherical shells. It has also been used in the investigation of
the interaction effects between cylindrical nozzle and a
spherical shell.

_ In this Chapter it is demonstrated that the
Shallow Shell theory can be used to investigate certain problems
involving thermal gradients even though much of the temperature
field extends beyond that region of the shell which could properly

be described as "shallow".
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The Stress Resultants for a Symmetric Temperature
Distribution on a Shallow Spherical Shell

The Solution of the Linking Equations

A Comparison with the Spherical Shell Theory

The Shallow Spherical Shell with the Uniformly
Heated Axisymmetric Opening
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4.1 The Stress Resultants for a Symmetric Temperature
Distribution on a Shallow Spherical Shell

To investigate the effects of thermal gradients near
the apex of a spherical shell simplifying assumptions, of the type
g
Sind

could be made in the equations which have already been derived

for the spherical shell.

Since the concept of "shallowness" is of such great
importance in shell literature, because of the great simplifications
it brings to the involved expressions for the stress resultants,
it is of interest to see if it can be usefully applied to the problems
which have already been considered. It could however have the
added complication that the temperature field may extend beyond the
region which could properly be considered as shallow. 1In this
connection E. REISSNER(48) , who did much of the pioneer work on
shallow shell theory, indicates that a segment will be called shallow

if the ratio of its height to base diameter is less than 1/8th

(this would indicz_ite on our spherical shell the surface included by

b < 307
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4.1(a) The Solution of the Linking Equations

In his investigation of temperature hot spots

(31)

CONRAD derived the equations for the shallow spherical shell

including t?le temperature effects. Although CONRAD'S work will
be discussed later, it is interesting at this point to observe that
he likened the top portion of a sphere to a parabaloid of revolution
whose equation he used. One can accept CONRAD'S two basic
linked equations which are given in terms of the normal deflection

\W , positive inwards, and a stress function ¥ . The deflection

is shown in Figure (4.la). These equations are

VW - _LYF - _ 1Y avX
AK h
* 3 2 T T
TF + DEIYW = =DO=-»aVYL
d
4,1 -2
"Where V" is the Laplacian operator, defined for this coordinate
system as
L) = 4 l) )

1
Ar? rodye 4.3
The relationships between the stress resultants and

the dependent variables are, for the rotationally symmetric case,

a, = —k{¥wW)'
N, = 1 F'

r\
N@ - F.-II
Me = "K{LW"+«yw")

r r

Mo =~1<(%w e W)
K= W

4.4-9
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where the primes denote differentiation with respect to N
Using the technique described by REISSNER the

coupled equations (4-.1—2) can be solved to give

F = Aberz + Nobeiz + Aikerz +~ Ay ketz

+ Asgdnz + Ae - Ehai'sl
S* o fo®
W= 2od (N beiz - A.ber z . Askelz - }}\%ke_rz\
a DH=YY)

+ A, Ay - Ay — bodaat

S™ 4 Loyt

4.10~11

where Z = JZXY |
a

After eliminating the constants of integration the

stress resultants can be written as

- = P\iberz +F\zbeiz + Avkerz+ I‘\quLz. — Eha}e\ ST
S o
W= 25¢  (A/belz = Auberz + Pykeiz — Ry ker )
a D (-»)
oo g T
S T
N = 2 (l\, berz . A.belz 4 Raker'z o F\qkeL'z)
aq* p4 Z Z Z.

— J,ETN Cha sl
(SL"*- L};.N"\) =z

Ne = 2 A, (~belz - L berz) + Mo (berz— L belz)
ar a “

T, (M keiz — _}{__Ker’z) v By (kerz — _\_Z ket 'Z\—l

— Ehas® ("oztuﬁ“ﬂ'&;)
.

%‘1‘ + L«LNH
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Me= ~1[{Alberz - |-V beiz) + A,(beiz + 1=Y berz)
a z =
A kerz — 1=Y kei'z) + A, (keiz » LY kerz) )
2.
+ Ehaot Lot = (- axt]
T4 .
g Loy
X =M_ (P\lbeilz« - /\lbevrz + A kel 'z. — Pwker'z\
"D (-3
= Lot
S + Lot

W = r [Ne ~vNe| +rat
E W

4,12 -18

For convenience and consistency with earlier
sections the primes and the dots imply

bEY"ZE ck(ber*lj ') ( ____ ) = &(___3
dz 5
This latter operator is used since in the range of the shaliow shell
£ = ;ﬁ
o)

and this affords direct comparison with the general spherical shell
theory.
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4.,1(b) A Comparison with the Spherical Shell Theory

In Chapter 2 was developed, in equation (2.186),

the expressien for the stress resultant, N74 , in a spherical shell as

Nfﬂ = ”Co't;é(_%> (P\ berz+ Az be|z+ f\skerzxr Lka\ ‘ZJ J\cot%ﬁ t

For small values of the angle;ﬁ if the following assumptions are made

cot 325
?

i W ot .

~ |

-1
i
d

n

N

then they lead to

We see immediately that the form of this agrees with the
complementary function portion of equations (4.14) for Np in a
shallow spherical shell.

To compare the particular integral portions we must
examine the constant A in equation (2. 16) in more detail. It has

the value, equation (2.14), of

A = Eha (57+1= )
(S?‘-t-\)?' + Lo 't
When it is realised that It N%iS a very large number and that |—Y < \

then it can be seen that the two solutions are perfectly compatible,
within a small order of magnitude, for all values of S.

It can therefore be concluded that the equations which
have been developed using the shallow shell theory appear to be in
agreement, over the appropriate range of the sphere, with the
general expressions of Chapter 2 which were based upon Langer's
Asymptotic Equation. It will be of interest now to compare actual
numerical results from both theories and this shall be done in the

next section.
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4,2 The Shallow Spherical Shell with the Uniformly
Heated Axisymmetric Opening

This problem has already been considered for the
general case of the spherical shell and for the case of large angles
of opening. One can now specialise the problem for small angles
of opening and use the theory which has just been developed for
shallow spherical shells.

In the previous Chapters were postulated the boundary:

conditions, for this particular problem, as

Nr\ = Mv*‘ = O
-t t = T
where the small subscript + refers to the conditions at the

unrestrained opening at V= I, ., Further assume, as was also
done previously, that the temperature distribution into the shell is

described by the equation (1.6) as
2 ey
’V 't = %?. t
and that the temperature gradient becomes zero within the boundaries

of the shell.

After equation (1.7) the temperature at any point

is given by
£ o= AKL(5T) + BT.(55)

Substituting for the temperature boundary conditions this equation

becomes

£ o= T KJ()

Ko (%)
4.19
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and, upon differentiating, it gives

AT - -7 KD
dor ¢ Ko (2D 4,20

so that the value of the temperature gradient at the opening is

(.41) . -T oo KUGEE
ar) A Ko(2) ' 4.21

Now use the stress free boundary conditions. They give

Np = O = KB*_Z(P\ER@Y‘IZI + P\L,»\.«E.IIZ.) _ ZsERSet,

a? Z, Z (sY+ L;:N%)Z.\
M = O = mui_{ l\stkerz.-ﬂ (-v)keyz,] + P\L}Y_keiz.* (\“ﬂker’lnl
o) Z, Z,
r E ho o [SzTn (\*V\)J_?jxjgij
— Z

S* o hoct

and can be more conveniently expressed in a matrix form as

f ! P
O 2" ker z, 2> ker z, N3 -2,
ar oz, a® ., |, Eha
= y . Shied!l .
@) ~(kerz, -~ =Y keiz)L —(keiz, + 1Y kerz)g Py O\{bT*(l—v)N't‘
'Z-, A Zy Z"l
-~ - ~«L L. o

This matrix can be transposed to vield

7] B . _,"“” 7

. 2 -
A, - keiz, ~ =¥ ker'z, ~2at Kelz, || 2t
Ehet - o
4 Y it ' -
AL B (5" o) kerz, + =¥ keiz, 2> kerz|| = 57+ (),
T T2 Z,

-] &Y

4,22
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where

i . 4 ./ o
A = 20 kerz. (- keiz, - 1Y kerz,) _kel Z.(—-k6r~1l+ 1-v,\/\e\z»§
C{l e 4 Z Zy
One can now substitute these constants of integration back into the
equations (4.12 - 18) to give the full solution, for the stress

resultants and displacement, of the problem,

4,2(a) A Comparison of the Results with those for the
Spherical Shell

The values of the stress resultants have been
computed for a range of opening values. The values of the
parameters used were the same as those of the spherical shell.

The computed results are tabulated in Tables (4.1 - 2) alongside the
corresponding values obtained using our general spherical shell
equations. Although only the "opening" values arc presented, itis
appreciated from the earlier work that these are usually the maximum
values of the particular "effect" examined. In fact the stress
resultants into the shell from various size of opening were also
computed. Their values and the relative divergence from the
spherical shell results merely parallel the opening values which are
shown tabulated. For that reason and since a fair sample would
have to be shown, they are not presented.

One can conclude from these tabulated results that it
is possible, with a fair degree of accuracy, to use the shallow
shell theory. In effect, one can use the shallow shell theory for
temperature problems in situations where one would be using the

normal/
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normal shallow shell theory. One of these situations is the
meeting of a cylindrical shell with a shallow shell and since this

is such an important problem the next Chapter is devoted entirely

to it.

4,2(b) The Limiting Values of the Stress Resultants for
Small Angles of Opening

The graphs presented in Chapter 2 for the opening
values of the stresses and the displacements in a spherical shell,
with a free heated opening, indicated that as the angle of opening
was reduced to zero, these values tended to the same limit as for a
flat plate under the same conditions. The more simple shallow
shell equations enable this phenomena to be examined in some
detail.

For small values of the argument the asymptotic form

of the Kelvin functions is

kA

kerz = —dnz + Oisq +» NZ ~
e
: 2
kel z = = Z bz =T 4 VUSHZ 4 _ome
4 4 L
- - kA
Zlkev"l = “ZI+E w L Ao L
5 6
-l R .
Z kev L. = —_}z!lﬂz —JL; + O'S58 v 4.23

Since the limiting case is being considered where

/cé —3¥ O and hence Z. —» O then it would be sufficient to take

ket Z m *—L\Z
kel z = -’1}
— -
7 kerz = 2 vz -7
' 16 4,24

= o
7V Kelz o= ~i?-J3,nZ.
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Examine first the circumferential stress resultant

which after equation (4.30) is, in matrix notation,

Ng = 2o¢|-keiz - 1 kerz  kerz—_1kervz|| A, |- Ebsl (St-¥2xt)
a{ 7 z SH-\HL{.'}CQ‘ z

N
Ll-

-

For the particular problem of the free heated opening
the integration constants A and i\& have the value given in
equations (4.22}.

Substituting therefore for them in the above equation

yields

——

. ! A : ! L Y 7

N_. = 2>"|-keiz ~1 kerz  kerz —-_l_j<ew{| -keiz,~ =¥kerz, -— 2x ke 7,
° T z z z, @
.« .

+ kerz, -~ =¥ keiz, ¢ kerz
zy C(‘L Z

J2 < Szt,‘

Fh . Ehow (st- %)
[V, -
~ST 4 (- Bxt | (8 NENDYAN S v ot

it

Z,

- b -

where, as before,

/ . f - o
A "?\mzi ker'z, (-keiz, - 1= kerz, )~ keiz, (kerz + 1= Vkel ZDE
a? i\ =X i Zy A

For simplicity first consider the limiting value of this
denominator 4\ by substituting into it the apprbpriate values from
equations (4.24). It becomes

S R R R S|

q'l
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which with a rearrangement of terms, is

(1= ) Z‘*JQN\'ZZ‘ + lerms ;r\UOSVmo‘\ powers of Z‘g

It is observed that the lowest powers of Z in the
numerator of N@ also involve Z,_Lr. One can therefore consider
multiplying both the numerator and the dencrninator by ZlLF before
taking the limit as Z, — O ., This would greatly' simplify the
task. One need only include terms of the order of Zu_qwhen
evaluating the matrix since all the other terms will eventually tend

3

to zero.

Substituting from the equations (4.24) in the
expression for Ne and following the method as described above,
gives

Ng, = Eha i—ﬁmf;_t_;_ - R ﬁwt\hzlLZ.*(SHT—SZﬁmt;\}
z o  SYwund Z, z,

This can be simplified to

3 . 4
Ng = EhaT (=23t zohz, = 5")
1 S‘} L{- —T
e 4,25
Recalling from equation (4. 20) that the expression

for the temperature gradient is

dt L L s TR(ED
dar A Ke(sp
hence

T, =

dt] - - STK(E)
d(8) K ()
t
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For small arguments the asymptotic values of these

Modified Bessel functions are
K= —dax

— 1

K= =x .
Hence the expression
it 7z, ~ szlhaz |
" ST,
T (5% .

Further, since Z, = J2« %1 this expression reduces in the limit to

j_[_._ .-Z-t'R«Y-l ~ Jﬁ')(
T

Substituting this value back in equation (4. 25)it gives

(= 4" = 5") = —Ehal

Ne| = EhaT
M 4 ot
Qt't. as 75 —_— O
. 4,26

Equation (4. 18) has for the opening value of the horizontal

displacement
(,um . 1L No, + oT
r/ Eh
Using the result of equation (4. 26) this becomes
@% = O
r
! /QI Y\l ———3 O

In & similar manner it can also be shown that

X =0

]

My

/Q“t.as, Y“ — O
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These results for the various limiting values confirm
the graphical results as presented in Chapter 2. Further, as has
been already stated, these values are the same as the appropriate
values for a flat plate. It must however be emphasised again that
this correspondence is only true at the limit where ™ approaches
zero and it would not appear practical to consider the spherical shell
as a flat plate. Indeed this is well illustrated in Chapter 7 where
very small opening values are considered and the corresponding
stresses are evaluated. It is shown there that the bending stresses
are considerable.

(60)

It is of interest to note that HICKS in his analysis of
small holes (and similarly in analysis by WATERS(B)‘\makeS the
assumption that regions of the pressure vessel local to the opening
can be treated as a flat plate. PENNYLZSQggests that such treatment
will be of limited application. This appears to be the case for the

thermal gradients which have been examined.
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4,3 The Shallow Shell Equations Expressed in
Cartesian Co-ordinates

™

The linking equations (4.1 - 2) express the normal
deflection W and the stress function F in the cartesian

co-ordinate system provided the Laplacian Operator reads

TN = YD L YD

dx* BU\G‘
4,27

and where the co-ordinates X and 4 are as shown in -
Figure (4.2). Separate these linked equations by acting upon
equation (4.1) with the operator ¥V 2, multiplying equation (4.2) by

-1
(ak) 7 and then adding the resulting equations to give

A 4 z 2
VW + 4> YW = ol L VT
at o’ ‘ 4,28
This equation may be specialised for the single
dimensional problem if there 1s no variation of W in the ‘3/ direction

and the operator then becomes

2D

dx* 4,29

H

v ()

The solution for the complementary function of
equation (4.28) for this case is

—

+ 2K u .
W =¢ ° ['\FC’S’Q& + P\zsinvﬁ] +C © P\BCOS’_LE +}5\L*%m><x
: a @) A A

T As X “+ P\Q'
4.30
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FlGURE(ll-?) SHALLOW SHELL WITH CARTESIAN CO- ORDINATE
SYSTEM SHOWING POSITIVE DIRECTION OF

DISPLACEMENT W.
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To find the appropriate particular integral one may use

the well tried technique of proposing that
W = AT
where A 1s some constant to be determined.

After substituting for W in equation (4.28) and

recalling from Chapter 1 and section 4.2 that .

vt = 3t
q’i.
for such linear cases it yields

A = *Q—:("L . Ol
S gt .

The general solution of equation (4.28) for W is

therefore
+‘b~('3c.— . __:z-(a‘:_c.__
W = ¢ © [P\‘c_os_:»g_sg + l\lsngc‘_l + € ‘:A3cos§_§_ + RL,S\n?_«_bg]
< o] a A
FRgx v A Lo ca
S* o ot

4,31

The constant A ., which represents a rigid body
movement, can be discarded and if the geometric compatibility of
the shell portion is examined it can show that the constant Ag¢
is also zero.

It is observed that this solution forVY is the same as
the solution for U , equation (3.31), obtained using the GECKELER
assumptions for large angles of opening. It is recalled that the
GECKELER solution is the solution for cylindrical shells.

It would appear that the shallow shell solutions are

compatible, at the equator of the shell, to the GECKELER solutions
of /



of Chapter 3.

The shallow shell equations in cartesian co-ordinates
have been used by many researchers including GRADOWCZYK (=0)
CONRAD " and BOUMA®"

These cartesian forms of the shell equations are
developed at this stage and are made use of in subsequent

Chapters.
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CHAPTER 5§

STRESS CONCENTRATIONS AT THE JUNCTION
OF A UNIFORMLY HEATED CYLINDRICAL SHELL
AND A SHALLOW SPHERICAL SHELL
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The problem of determining the stress distribution
in a shallow spherical shell which is joined to a hfaated
cylindrical shell is considered. It is assumed that the cylindrical
shell is at a uniform elevated temperature and that the thermal
gradients into the spherical shell are as described in Chapter 1.

The problem is evaluated in matrix notation and
the final results computed.

It is demonstrated that this problem is the general
case since the two limiting values of thickness ratio describe
respectively a free opening and a rigid insert.

The results presented are for various common
thickness ratios of cylinder to sphere and indicate therefore the
possible variations in the magnitudes of the stresses at a

spherical shell opening with differing boundary conditions.
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The Heated Cylinder and the Shallow Spherical Shell

The Equations for the Cylindrical Shell

The Equations for the Shallow Spherical Shell
The Linked Equations for the Two Shell Forms
Computed Results

Conclusions and Observations
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lf‘l@U@E('S.\) INTERACTION OF A HEATED CYLINDRICAL
SHELL WITH A SHALLOW SPHERICAL SHELL .
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5.1 The Heated Cyvlinder and the Shallow Spherical Shell

The problems associated with the interaction between
cylindrical and spherical shells have been considered by a number

of authors for various loading conditions. BI[ILAAZ\&RD(3 8)

, in his work
for the Welding Research Council, has considered many of the local
loading effects transferred from a pipe to a shallow spherical shell.
Mention must also be made of the many papers presented at the
symposium on Reactor Containment Buildings and Nuclear Pressure
Vessels held in the Royal College of Science and Technology.
Many of the papers demonstrate the value of the matrix approach to
the interaction problems where complex cases can be presented with
greater clarity. Perhaps one paper in particular could be referred to
- 'Stresses at the Junction of Pressure Vessel and Duct' by PENNY(?’S),
as being relevant to the method which is now followed.

Let us first define the problem. A cyiindrical shell is
joined axisymmetrically to a spherical shell as shown in Figure (5.1).
For simplicity of computation one can, like BIJLAARD, use the
shallow shell theory for the spherical shell portion. This limits
somewhat the range of application but allows the problem to be
programmed for a small computer like Sirius. This point is
elaborated in Appendix 1 where the computational difficulties are
discussed. The cylinder is now assumed to be heated to a uniform
temperature and the spherical shell to have a steady state

temperature distribution which is defined by the relationships

investigated in Chapter 1.
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5.1(a) The Equation for the Cylindrical Shell

For an open cylindrical shell heated to a uniform
temperature | , the following relationships between the edge

loadings and the corresponding deflections are given by TIMOSHENKO;

We= =1 (BMc + Q) - R T
2R°K
Xo= 1 (2pMe + GO
2B*
P 5.1 -2
where the shell constant B is defined by
A 2=y
hp = ——r5—
B R hc‘

The small subscript « 1is used to refer to the
cylinder and the sign convention, which is of great importance, is
as shown in Figure (5.2). The above equations have been used
earlier in Chapter 3, where mention was made of their association
with the work of HETENYI.

In order to express these equations in a more suitable
form for linking to the shallow shell equations, introduce a new

parameter Y where

e - 1£(1~v‘)*&2 . 4R'B’ 5.3

he

which parameter corresponds more closely to 2 , the parameter for
the spherical shell. Rewriting equations (5.1 - 2) in matrix

notation and introducing this new parameter gives

~ - - _
—-7Lj R - 22X || Re O

— We A Me.

B v 1 R el 5.4
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| (.

N_a.
"/ W, \

FIGURE (5.2) SIGN CONVENTION FOR A CYLINDRICAL
SHELL.,

Nz;‘zm Mr

FISURE (5.3)  SiGN CONVENTION FOR A SHALLOW
SPHERICAL SHELL.
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A still more suitable form of expression of these equations for

subsequent matching is

- X < N Qc. ' o
- We Eche Me
—~----R "O"' OL.c,T
) - o 5.5
where the matrix [M.—J is
\ -\ - AXda
R
M( =
.- <
N X R . . 9.6
5.1(b) The Equation for the Shallow Spherical Shell

In Chapter 4 the equations (4.12 - 18) were developed
for the stress resultants and the displacements in an open shallow
spherical shell which has a temperature distribution described by

2
ve = 2t
The sign convention for the shallow shell is shown, once again, in
Figure (5.3).
The stress resultants N, and M, at the boundary

v = R can be written as
Ny,T 7 A—5 T |
d'?.
= ™., — Ehe« M
Me Ay S b
L2 L AL 9% 5.7




~145~

where the matrices [M"’J and I:M{I are

2" \«e‘t‘fz‘ 2 > ke ’Z.
z, ' L
[Mz} - - y f
- ~kerz, + 1—v keiz, ~ke1zZ~ 1=V kerz,
z, 7
Sz,ri >~(I_.
-y
Ms a . )
= ST + (=) T
ey

R
2—-| = ﬁx—a—'

. At
T (d(ﬁ)Y’:R -

Solving the equation (5.7) for the constants A L and A , vields
=1 =l

As N |
o
= Mz + Ml M's
Ay Mr
| 9] L. 1L 9 R -+ L - ° 5.8

The equation for the horizontal displacement and the angular

rotation at r =R then become

X g R As O
or :
g >
= A ML]- - = S Ms‘ “+-
Eh S bt
U A, AT
o

5.9
where the matrices [M J and [M .;:I are
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are _ ‘ -
Zockei'z ’ —Jz> ker'z,
liMJ - -
~kerz, — 1+Y ker'z, kerz, — 1+Y keiz,
) L2 N
I L™ T°
] -
TOLET- (= MR L

Sl:bstituting for the constants A and A, from
equation (5.8) into equl‘_‘:}jzionn (5.9) gives

- 2 gL S— - -
g Nr
T
= A M._,_ Mz 4+ Mz M‘g, o MS
W Eh Me St 4o
® S
L . O | S| o 4k S

5.10
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5.1(c) The Linked Equations for the Two Shell Forms

One now can consider joining the two heated shell
forms af their common boundary which in the case of the shallow
spherical shell, is at © = R . Assuming that the joint is rigid so
that the angular rotation and the horizontal displacement of the
cylinder and the sphere are equal, will give, after considering the
sign convention and notation,

- Ke Xog

- W L |
R R o.11

—

o

Further, the stress resultants at this boundary must also be equal

so that

Q. = Ng
M, = Mg |
Now substitute from equations (5.5) and (5.10) into equation (5.11)
to find
T Teal T[o
2.X M, + =
E.he
" Me oL T
L 4L 4
.__— = :I —
. Nr : o
PN le MZ + M'L M'S + < Mg +
= Me S fxt <
[w])
L_ 5.2

These are a pair of equations for Ny and Mg which can be

solved/
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solved to yield —1

—— ' Ec.\'\r. E \\
[}

N{Z ) 23{1
M= - 2 Mol — M‘f M'L

2 n a o
-———w?\x \V‘L\L M'L M".) -+~ -———————**'d\ M'S- +
€ h D boyt T (=)
, ' 5.13
- A

The values obtained for Ng and My ‘may be
substituted back into equation (5.8) and hence the constants A,
and A » found. With these constants the stress resultants andthe
displacements into the shallow spherical shell can be calculated
for the particular opening value of KR , under consideration.

If the cvylindrical and the spherical shells are
constructed of the same material , with the same values of the
material constants, then equation (5.13) may be simplified to

—-\ -
Ng

=| 2XTh [ M| = 2o¢| M| Ma

he

Mg
a

—

23{2‘ Mq M2 M3 + E.h;.{‘_.__ MS‘
St Lot

5.14
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5.1(d) Computed Results

A program was prepared for a Sirius computer to
evaluate the matrix (5.14). After obtaining values for the two stress
resultants Nra and M w the integration constants were then
calculated from the matrix (5.8). It was then possible to find the
opening values of all the stress resultants and displacements in the
shallow shell.

It should also have been possible for the computer to
find the values of the stress resultants into the shell from a
particular value of opening but unfortunately the storage capacity
of the machine could not cope. The Sirius is rather a small
machine. One can, however, take the values of the integration
constants A, and AN ,ffrom one program and use them in a second
program to find the resultants into the shell. This was, however,
not very successful,

The values of the shell parameters used to obtain
numerical results were the same as those used earlier. The value
of Poisson's ratio is taken as 0,255 for both the cylinder and the
shallow shell. A selection of values for the ratio of the thickness
of the shallow shell to the thickness of the cylinder was used for
computation. Graphical results are presented in Figures (5.4 - 9)
for the stresses and the displacements of the shallow shell for
certain of the thickness ratios. The two limiting values of these

ratios, namely

h -0 y ho= ox 10 (=) |
h. e
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JUNCTION VALUE OF STRESS

~~~~~ STRESS DISTRIBUTION INTO
SHELL FROM A JUNCTION
AT yf = QO 057

b THICKNESS OF SHALLOW SHELL
he = THICKNESS OF CYLINDER

S
e

e T o e ST Y P X W /)
o GETR emmn ool B e
2 & < '@

Ficure (5.4) JUNCTION VALUES OF THE MERIDIONAL MEMBRANE
STRESS ON A SHALLOW SPHERICAL SHELL.

mos

MEMBRANME STRESS
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6
FIGURE (5.¢) MERIDIONAL BENDING STRESS
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FIGURE (5.7) CIRCUMFERENTIAL BENDING STRESS
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Flcure (5. 8)

HORIZOWNTAL DISPLACEMENT
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FIGURE (5.9)  ANGULAR ROTATION
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are included. The importance of these two values is that the
first could represent a rigid insert in a shallow shell and the
second represent an open shell. As in all the previous graphs
presented, a full line gives the opening value of the stress for each
particular value of opening.

It was considered of value to show also the stress
distribution into the shallow shell from a particular opening.
The value chosen ?5 = 0.057 has already been illustrated.
These stresses are shown as before by broken line. Only the two
limiting values of thickness ratio were thought necessary to
illustrate the stress distribution into the shell.

The value vaken for the heat transfer parameter, S

is, for all cases, S = 1R.

5.1(e) Conclusions and Observations

It is observed that there is a slight "falling away" in
many of the graphs for larger values of the angle ;ﬁ .  This is
particularly noticeable when the values are of greater magnitude.
This "falling away" seems to correspond to the approximate limit of
the shallow shell theory.

The graphs for the limiting case, %\“c_ = e
correspond to the graphs for the open spherical shell, with of course
the same parameters, presented in Chapter 2.

The graphs for the other limiting condition, o,

oo
he
show correspondence, for the larger values of opening, with the
graphs shown in Chapter 3 for a line of temperature round a
spherical shell.

Let/
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Let us examine now the magnitude of the total stress,
that is the sum of the bending and the membrane stresses, on the
surface of the shallow shell. Although it is only possible to add
these stresses for the opening values, it has already been
observed that the stress at the opening is likely to be the one of the
greatest magnitude. For the open shell, —%\“g = O, it is seen
that the total circumferential stress is much greater than the total
meridional stress, whereas for the rigid insert the converse is the

case. The values of the total circumferential stress for the open

shell are
@, = .02 .05 .l
C6meed = 1,07 1.03 0.59
Eal v

for these three selected junction values. Where the shell has
a rigid insert the values of the total meridional stress for certain

junction values are

;él = 005 el .2 .3
CSv(me® = .14 1.164 1.144 1.13
BV

These total values are quite considerable., For all the cases
examined, however, the total principal stress has not been found to
be greater than %—L%— , the maximum stress for a totally restrained
flat plate. It should however be emphasised that the rigid insert
considered in the foregoing results is of the same material as the
shallow shell, If different material were used with different
coefficients of linear thermal expansion, then there would be
greater stresses to be considered.

No/
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No account has been taken of the vertical movement
of the shallow shell and of course of the cylinder. 1If this
movement were restrained in any way, further stresses are
probable. _\These could be estimated using the results of )
BI]LM—&I:{D(3 8) who considered the case of a vertical load on the
cylinder.

The results demonstrate that it is possible to have
thermal stresses of quite a high magnitude at any heated opening
on a spherical shell. These stresses are supplemented by
boundary conditions which are also due to the temperature

distribution.
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CHAPTER 6

UNSYMMETRIC TEMPERATURE DISTRIBUTIONS
ON SPHERICAL SHELLS
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The general problem of unsymmetric temperature
distributions is considered.

The stresses and displacements on a spherical shell
due to a temperature distribution which varies rapidly with
respect to one line of curvature and slowly with respect to the
other are investigated. This problem is of practical significance
in that such a situation can arise from a slowly varying "line"
of heat on the shell. The results are similar in form to those
obtained by other authors for the corresponding boundary value
problem of a slowly varying edge load on a spherical shell,

A general method of solution for any temperature
distribution is considered involving temperature “hot spots"
and the "influence line technique".

A general method of solution for any axisymmetric
temperature in cylindrical shells is presented which involves
dividing the shell into a number of bands each of uniform
temperature.

Examples are presented which illustrate the various

techniques of solution.



6.1.

ey}
[N
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The Stresses Arising from a Temperature
Distribution which Varies Slowly Along
One Axis of Curvature but Rapidly Aloag
the Other.

(a) The Influence Line Technique

(b) Conrad's Solution for a Plain Hot Spot

(c) An Influence Band of Uniform Temperature
Around a Spherical Shell.

(d) EXAMPLES
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6.1 The Stresses Arising from a Temperature Distribution
which Varies Slowly Along One Axis of Curvature
but Rapidly Along the Other

The case of a varying line of heat on a
spherical shell was considered in Chapter 1 where it was demonstrated

that the temperature distribution could be expressed in the form

-&x - x>
Ll ~ Tpe ~ _L 3T xe
250 E\ﬁ""

6.1
where T ( "53 is the temperature of the line of heat which lies along
the ordinate at xX.= O . It was argued that provided the temperature
of the line of heat was slowly varying and 28a reasonably large in

magnitude, then it would be reasonable to drop the second term in
2.

this approximation since %—};1 must be very small. The

temperature distribution into the shell is therefore,with these
conditions,
- %x

t(x,v(pzz; Te
6.2

Let us now examine the stress distribution likely to
arise from such a temperature field. For the analysis, let us
specialise cartesian co-ordinates. The two appropriate basic

linked equations are given by CONRAD(3l)as

VW - 1_VF . o 6.3
o K
4 2
v F + Eh YW = = DU-YYA VT
a

6.4
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They may be separated to give

Ve\;\/ + [{-quw = “Lf-ﬁﬂd\v't 6.5
b y 2 L
VF + 4e'VYE = —EhaVt .
where the constant e is given by
L
C - Gl l.+ .

Let us now obtain a solution 'for equation (6.5).
Following the same analytical method as was adopted in Chapter 1,

first propose a new function G where

uo—_ft%

and & is some small constant. Further, let us assume that the

deflection W  can be expressed in the series form as

W(x,%ﬁ = W, w)= Wo (xx, w) + &M, (e, 1) o+ Eﬁ\f\/z(bc,@*_“w_
6.7
This series expression for W can now be
substituted in equation (6.5) to give
2 [ %L
_B:W._?... + L*QQMS_ + &7 2O We i eq é._\_’\_/i’. I QHW_' w\—é.‘;.“ﬁ.
S x.© D’ })x_“éw} dw™ 3xT ox. ©

- 2

*,k_‘\ —g—“H“” = "'Ll-elrc:iok 51T€ >

——

d’l.

e

6.8
Regarding this expression as a series in ascending
o 2. 73
powers of € equate the coefficients of € , E , €. ..., etc. to

zero./
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zero. In so doing obtain an infinite set of equations. The
temperature term on the right hand side of equation (6.8) arose from
T, term in equation (1.28) and it is therefore of the order & o.
Consider the first of these equations, that is the

equation from the zero order coefficients. It is

dWo 4 L»e“éi\\_/o :“‘L!-C‘fgf’\;;t
Bxe Bml d

»

6.9
The solution for the complementary function of this

equation obtained by the author is

Wo = € T A sinpoe + R eospsc] e [rtdsmpacs Py e gx]
+ Rs (wyx + Re .
If this displacement is due to a line of temperature which decays

rapidly in the x direction, then one can, provided the temperature
is ambient before the outer boundary is reached, discard the terms
involving theuconstants‘ A, A, and N . One can also, since it
represents a rigid body movement, discard the constant A
To determine the particular integral solution, assume that it is of the
form

Woe = AT
where A is some constant. Upon substituting this value for Wo

in equation (6.8) this constant is found to be
N - 4 p¥ e

S/an t hopt
The general solution of equation (6.9) is therefore

W, eﬁextp\;(uﬂém@: + AQQLO)COBQD’;’} — Lfevrcxpg“t .

Yw T Hp

i

6.10
Tt is observed that this solution for We 1is identical to the solution

for/
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for W in the one dimensional problem except that whereas the
coefficients A, and R4  in the one dimensional case were
constants they are now functions of .

The second equation in the series, found by

o z
equating the coefficients of &

, is
¢ u K 1 o 4 1h\/\/(.'s
BV g oo M o - 3 2ME o ket e
2 % dx*dDw D w
Upon substituting for the value of W, from equation (6.9) it
becomes
DGW, 1 L;.eq D W - ge* e:‘f”‘-( 3N S\Y\Gx + DRy c_ogex)
dx e 3 D W dW*
X 7 4
rohploe Ot S *he
. 1 ¢
dw %:;u. + Le .

The complementary function can be recognised as
being similar in form to that of the preceding equation in the series
and indeed to that of all the subsequent equations., The particular
integral has been determined using the "D" operation method. The

general solution of this equation is
Wl =€ EI(L\7 Sil’leoﬂ + Ry COSGDL» + qu + F\,o

+ EE E"ex[ }"'A'& ("biv\e:x_k-oa‘sex) + B;S;_ (COSCDQ-—- S;)’\'e:x\‘l

4e dw?
6.11
One can, as before, discard the terms involving the constants R g
T
and R, and also, since it involves the term %ﬁ N drop the
w

final term in the equation.

The series solution for W  considering only the
first/
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first two terms in that series, is

W= W, ot ETW,

Substituting in the values of Wo and \N, presented in equations

(6.9) and (6.10) respectively, this becomes

- fx s .
W+ €L hssingx » 2 B (shgmwcongd ]

Lfe Bta .
[R%c03€x + o YR (cose:n — $\V\Qx)1}
— _Fefaa ¢
"’:i“f + et

+ &2L6~€x (l‘\? s\.ne:n + Ng (_05636—3__\ .
If & is a small number, then, considering only the first order

terms, the solution for the normal deflection W is

W= enexi[93§\n€x - DL DA (S{nex 4+ c_o:se:c_}—l -
0

e >
[Pufcosg:c + %_E)i%‘i (COSQ*"*” 5""9@1%
—_ Lff"‘dok -t
_:bj -+ Ll-e

6.12
where &, Ay and A, are all functions of Y

In a similar manner, one can solve equations (6.6)

for the stress function F to find

F = e—-(:x, [01 sinps -+ > (sinpx + cos x) |+
SL 3 DINg L!-G ‘6 € ¢ 1
ol o 4+ x dau ( s 75
[_ 4 COSE __L‘L_p‘_gg OB Ex SIV\QDQ—X
— Ekot LS .t
S v uer © .

There/ 6.13
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There is, however, an obvious relationship between the constants
of the two equations. This relationship can be found by
substituting both these basic functions into the linking equation
(6.3) to vield

F o= eﬂex{[{:\-bﬁihﬁ)x + < _)t!\s (5\'V\Qx_ 4—c_oseac_3]“

I.J.() b\_b?.
[Pn,‘ cosex X DRy (COSQD.Q” 3“;‘@3‘3} . ?\(’10\ K
Y dIyr _
. _Eha %zl +
vkt 9 . 6.14

The stress resultants given in terms of the deflection
w  and the stress function t  are, after CONRAD, for the

cartesian co-ordinate system
Mo = Ty
Ny = F,xx
e = TR (W, xe x VW’“&Q

6 = — W (\/\/)ubvé f\)wjx'x)

M
M
Nx‘a"‘ - F-) DQZS
M

= - (=YK \N)x.a . 6.15 - 20

The expression of stress resultants Nx and M .

*0

are therefore

N — e’"(’x { B-‘Ib\t, 3"r\(>>(_ K }.__ bAL« (“’)\.Y\GI— v QOSGDC\)] —
P&

du® he 2y
> A . A4 2 ﬁf COSp%" SIh poc \gOin/l :
Lé\a’“ cospx. o b‘bL(O e e 31 ¢ .
Eh et oS »t

soovhet a2y
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and
— g 2
M, = — €& Ki"?\Q cose= . Ay +
i bIA [Gacsmga; = Bx.COSPX = 2(\~v3:\.mex1
o2yt
yx b (3”\QDC- + CDSQDCB + Zelb\lnezx... P +
e
al } :;c.‘a;Y\Q.x. A QDC.COE»CJ:L *—"2\(\-*»“) cobexj -+
2
Ve ( Cos Px “in Qx) %
4 e Bka
-+ Leo'aga K ( S RS }\LtB
o C’\L B\»S’
_3_? + L(.@Lf
6.21 - 22
To determine the form of the constants p\s (“a)
and _Atr (U(Q two distinct situations seem possible for

investigation. One is where the shell is open at >¢= O and has a
temperature distribution T = T (\33 along that boundary. The
second situation is where there is a "line source of heating" along
>. = O go that the temperature is T = T(»@ on that line.
The boundary conditions along this line are zero rotation and zero
shear stress through the thickness.
Consider in detail the case of the open shell where at

T e New = M = O

M

and

t = T \63
and where of course the various assumptions with regard to the
temperature distribution, which were made earlier, are still valid,

For/
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For the condition of zero normal stress at the

boundary ~x = O equation (6.21) yields

(No),, =0 =—22 akpe- Bt 5 (3%
> - é% ‘ aq-l-Ll-eL"O\. é\') . o

that is

(2

OL.KI-\.Q—&«E}”‘%‘ s"' .T] - O
) 2 kK (5 we) -

Thus
M = - EL\.*Z()‘ =N A T(B) & C»a + D
:?»‘% e LLG'*
«“ 6.23,

where C and © are constants. Though they both must be zero for
the problem which we are considering, it is of interest to observe
that the constant © would represent the edge loading in the boundary
value problem. This equation is discussed later.

| From the boundary condition of zero edge moment

equation (6.22) gives, at = = O,

(Mo = 0= Z¢h » -V, 4ean g,—r_rv(‘altt
x=0 3‘61' :b:q N Ll'eq a B‘B )
8 =0

Substituting into this equation the value of the constant A, vields

)113\4 - — Ll"(p‘fd o Y . BIT
B”S‘ (=Y &8 & 4@“) 561
d‘f

which can be integrated to give

N, = —4e'asy T
(\"‘VX.Z—:*-rLFQ*)

6.24
plus/
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plus of course the two constants of integration which again are zero

problem

AL Gy
A (%\

where B, and B,

the stress function

are constants.

Tt has therefore been shown that for this particular

= B, Ty
3,7 (‘6}

The normal deflection W and

can now be written as

W/ _ex§[TBg$;n€x + 2 By bT (smex ~tc<>sexﬁj +
‘ Lf@ B\a
[_T Be CobEoe %Eé B‘F%—l (aésex —_ 5.“'\@:1313
% S
-~ AP Ak eTET
v et
F r—t

e—ex—{[hr B, Sin E

% By 3T (sipx +cospsd |~
4e S BN RN l
’ B (= I B bT [l —_— \ .
[ coSExX -+ L(-P bv{) ( S Qx SY\Q 3]}29(:”&
. Eha __S: Tek%x
S a4 =5
EURRN

term involving 2T

6.25 - 26

This could be further simplified by realising that the

0 must be very small and thus one can, for a
.

slightly coarser approximation, drop these terms and the equation

then becomes

W= T(bﬁe o (B s:nex. + B, c.oseac) - /’f'gad\ Te TET
55wt
CL
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S
— O . 2 ™ =N
= - T(xa\ S (B(* sinpsc. B—; cosex} — Ehat L2Te
%+ 4 -
2 Tue
6.27 -28

This is a most interesting result. Provided the
temperature distribution at the open boundary, =¢C=¢ |, varies
slowly in the ua, direction, then the two equations (‘6 .26 -27) will
give us a reasonable approximation to the effects within the shell.

It is noticed that these equations are identical to those for the
constant temperature distribution along the open edge with, of course,
the term T(Lb\ replacing the term "V (a constant).

Many authors have considered the problem of varying
boundary loading on shells. BOUI\/IA(34) , investigating the problem of
shells with slowly varying edge loads, described that loading as the

cosine series

Z. (:x, \63 = Z“(Dﬁ.) CD&Y\B

He then showed that the normal deflection W could be expressed as

— Moo .
W = e i \3\, Cod o * B\z S\V\\"g} c_os_v\\.é
If we reconsider equation (6.22), in which the
constants € and © were zero for the problem under consideration,
we see that if there were no temperature distribution then this equation

would become

A, = C‘B*D

1

and the meaning of this expression, since %%;’ = O 1is a slowly
varying boundary loading. This result to some extent confirms the
slowly varying edge loading case investigated by BOUMA.,

arapowczyk 0 /
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GRADOWC ZYK(3 0)

argued that the errors occurred in
replacing the effects of a temperature distribution by a bending
couple and a membrane force along an edge, for the one dimensional
problem on a shallow spherical shell, are small. He then suggested
that the results of BOUMA'S work could be applied to the equivalent
thermal gradient problem.
' sTEELECY

NOVOYHILOV, that for any loading which varies like a series of

has shown, using the shell equations of

waves rapidly with respect to one ordinate and slowly with respect
to the other, then a solution is possible in terms of the expression
for the distribution in the direction of rapid variation. The value of
STEELE'S contribution is that it embraces all types of loading,
including thermal, and though the wave form is quite general, as is
shown in Figure (6.1), a half wave could be considered as equivalent
to the problem which has been considered in this section.

STEELE suggests that if 4, cosn® denotesg a typical
term in the Fourier expansion of some applied load and if N <<{Zthen
the applied load be termed "slowly varying". For such slowly varying
loads however SIMMONDS shows that the conventional influence coef-
ficient matrix which relates the Fourier components of the edge loads
to the Fourier components of the edge values of the displacements and
axial rotation is ill-conditioned.

A limitation of the results presented by the author is
that the angle 525 is sufficiently large. That is the results apply only
to that portion of a shell where the GECKELER solutions, for the sym-
metriéally loaded shell, are applicable. Further in order to obtain
the final results presented in equations (6.27-28) it was assumed that

the magnitude of the term of modulus

Lf' -)(/ ot o \’g.
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in equations (6.25-26), was such that this term could be neglected.
Changing the longitudinal distance > into the non~dimensional

form 525 , where x = 096 , means that the assumption would require

that

The foregoing analysis presents a simplified solution
for the class of asymmetric thermal distributions on spherical shells
which fulfil the requirement of being slowly varying with respect to

one principal axis of curvature relative to the other.
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<y
FIGURE (6,] ) SHELL SURFACE WITH SURFACE LOADS OF

RAPID VARIATION WITH RESFPECT T0 OME
COORDINATE,
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6.2(a) The Influence Line Technique

A more general method of tackling any two
dimensional temperature distribution is by a modification of the
Influence Lin; Technique. This technique is described in several
papers by KENEDI and TOOTH(GZ). ~

The influence line technique assumes the application
of the principle of superposition and is based on the construction of
appropriate influence lines or surfaces corresponding to a condition of
'reciprocal symmetry', which satisfies the linear theory between all
points on the surface of the shell. This condition expressed by
Maxwell's Reci procal Theorem links the cause and effect at any two
arbitrarily selected points on an elastic shell.

The ‘influence line' gives the variation of some
selected effect at any point C say of a structure as a unit action
travels from A to B along the path S of the ‘loading' applied to the
structure. The selected effect d may be stress, deflection, etc.
and the unit action may be representative of radial or.tangential load,

'bending or twisting' moment, or temperature depending on the nature

of the applied ‘loading' W ,

~ The total effect$at the point C due to the 'loading'
applied along S then becomes j w & ds which can be evaluated
numerically or graphically whichever is most convenient.

With temperature gradients where the effect is over an
area, influence surfaces in place of influence lines are considered.
Where the condition of 'reciprocal symmetry' exists the constructions
of the appropriate influence line or surface becomes quite simple.
Considering two points, F, on the load path AB, and C, any other
point/



point on the surface, the condition of reciprocity may be stated as

BCF‘ = %r—‘c.

where 9 ce 1s the selected effect at F due to the unit action
applied at C, and ©q is the same effect at C due to the unit action
at F. In such cases the influence line required for C may be

obtained directly by applying the unit action at C to the otherwise
unloaded structure and evaluating its selected effect along the load
path AB, THIS IS SHOWN IN FIGURE (6.2).

‘ To be able to make use of this method, however, it

is necessary to know the effect of the unit action imposed. Inthermal
analysis the plane temperature hot spot investigated by CONRAD and
FLGGGE(BD for a shallow spherical dome may be utilised for thi s

purpose.



-175-

INFLUENCE LINE FOR
DEFLECTION AT C.
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\ 14
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FIGURE (6,2) THE INFLUENCE LINE TECHNIQUE FOR FINDING
TME DEFLECTION AT C DUE TO A BAND OF

VARYING TEMPERATURE,

TOTAL DEFLECTION W AT € DUE T© TEMPERATURE
DISTRIBUTION T AgoNe THE BAND AB. IS
GIVEN BY W= 3 (TbhS$s)W
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6.2(b) Conrad's Solution for a Plain Hot Spot

Consider a circular area A of a shell, heated to a
uniform temperature | as shown in Figure (6.3). A plane hot spot

can be defined as the limiting case of a temperature distribution such

that as its area A —= O then | —» <> g0 that the quantity

/u = ﬁt AAT remains always finite. This definition, which is
analogous to that tor the intensity of a concentrated force, is chosen
so that a finite stress system will result and the quantity JL is
therefore a measure of the intensity of the hot spot.

The solution for the functions W and ¥ in the
region outwith the hot spot, are

W ?/M:xg ket JZor
™l A

Eo- DO-y) M ker R
T A

6.29 - 30
from which can be derived expressions for the stresses and the

displacements, some of which are

!
Ne = DO=v)udzox ker JEoxr
2Ira, A

.
Q@
it

DO = Y m R Ker fEm
21 a* A

M = DO—YIOM [kerjimy:_ _ G-y ke{ﬁmrj’\
" 2o, a VZ o ol

6.31 - 33
By/
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By using the appropriate asymptotic expansion forms
for the KELVIN functions it can be shown that in the vicinity of the

hot spot (but not within the hot spot itself) these singularities are of

the form

z
|

I
=

/f?

Mpo= UrMErm Ly o
L A )

6.34 - 37
7>

The expression for the radial deflection
equation (6.34), is not in agreement with the result given by CONRAD.
This disparity is due to CONRAD making the assumption that when -

approaching the origin
. 2
kerz ~ —z dnz

which can be seen by reference to any of the tables of these KELVIN
functions or by inspection of Figure (2.3) to be incorrect.
DWIGHT in his book "Tables of Integrals and other Mathematical

Data" gives, for small arguments,
. ’ 2
kerz = = (A) fnz — T 4 O(zz)
b B
The value, when approaching the origin, should
therefore be

kKeiz = - 1
’ &

-
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and this is the value which was used by the author to derive

equation (6.34).

If one considers the effects at the boundary of the hot

spot, where r = ) , then equations (6.34 - 37) vyield

W oo = BT
o
Ny = —1 EhaT
S

1 ERha’
2
E

haT () B ha T2
Yol

5
<

6.38-41

These expressions agree with the corresponding values
for the effects within the same hot spot. There is of course a
difference in sign for the hoop stress, Ne , which must be
compressive within the heated region.

Using these solutions of CONRAD for a temperature hot
spot, it should be possible to estimate the stresses at any point on a
continuous spherical shell for any temperature distribution. |

This could be done by integration or by using the
influence line technique which has already been described.
Unfortunately the integrals must involve the KELVIN functions and this
makes any solutions difficult. Attempts by the author to numerically
generate these functions were not wholly successful for the reasons
given in Appendix 1. However, with the larger computers now
becoming available, this could be a fruitful line of approach ,

especially/
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especially since it is possible, without added difficulty, to include
loading and bending hot spots in any calculation.
Let us now consider a number of examples in which

these results are made use of in thermal stress problems.
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6.2(c) An Influence Band of Uniform Temperature
Around a Spherical Shell

As a first example of the use of the hot spot technique
let us find the normal deflection W at some point + distance >
from an infinite band, of uniform temperature T and width b
which lies along the \'5' axis as shown in Figure (6.4.).

This problem can be tackled by the influence line
technique by "erecting" a unit hot spot at © and integrating the
"effect" of temperature and area along the length of the band. Since,
however, an analytic solution of the integral is possible in this case,
let us divide the bond into a number of hot spots each of area 5\3
and of temperature T . The deflection at the point & due to the
hot spot at % is, from equation (6.29)

B L
W = b%»a T > ket 22 (o + Lg\?’
Ta a
The total deflection at ¥ due to the band of temperature is therefore

+C-'Q

W= BaTad | kel Eox (e g A
TS ) s ¥
Consider the integral
—_— : 2z T l-;
([ = % g ke\ﬁv; (Dc.»rvb) ‘L?S
©
with the substitutions
o= dEx x
e
U = I?%_ )

it becomes

NG

1z o g kei (U )T dw
N

]

i

Using that known relationship between the Bessel functions

Ko(ﬁ?) = ker(2) + Lkei(z)
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the integral can be expressed as

oD
C e L
T - Ra g Ko (LU7+ LW ™ du
Y
(e}
Finally, with the substitution

D
ro= Lt
the integral takes the form oo
— - & 2 N
[0y = e Jn-tf) KeCr' e Eoya* de
~ (]
for which W!‘.TSOI\I(l S)gives the solution as
7.
=i ~ % by Vs
I(V) ”—“‘*“?:{e cos/\y‘;_ + SN /\r;)

The total deflection W at the point F is therefore

— 3l

W - —AT>b € T (cosbﬂ%} + Smbj_ab‘(_-\
A
6.42

and this result is shown graphically in Figure (6.5).
Similar integrations lead to the following expressions
for the stress resultants and rotation into a shell from a uniform band

of temperature -

Qe = EhaT @ xb e T oy mex
2o d
— DL .
Mx = Eha1 be A (5\\/\';2\9_5_ — C.OSN’JC_}
4o a a
2 ""T&.._.Z‘.. .
X = LT X b c o SN DX
Ch A
and
= " 'J
Ny Ehl a % - 6.43 - 46
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DISTANCE ’2%& FROM A UNIFORM BAND

OF WIDTH b AND TEMPRERATURE T.



One would be tempted to think that the use of a band
of infinite length was a rather severe limitation, unfortunately
necessary for the evaluation of the integrals involved. An inspection
of Figure (6.6), which is a graph showing the normal deflection at a
distance from a hot spot reveals a quick "die out" of effect with
distance from the hot spot. This is also true for the other stress
resultants. By a simple application of the influence technique whereby
the point under consideration is enclosed within a hot spot, it is
observed that there is therefore a circle of influence round any point
and any "effects" outwith this circle need not be considered. This
in the case of the normal deflection W we see from Figure (6.5)

a suitable radius of influence would be of the order of

N

5
The rapid falling off in value of the KELVIN functions,
whose integrals are required, is shown in Figure (2.3). Thus,
although a bond is taken as infinite, the same results are reasonably
true for all bonds greater than a certain finite length which is governed

by the shell parameters.

With these derived results for a uniform band of
temperature, it is now possible to evaluate the stress resultants due
to any axisymmetric temperature around a spherical shell. This can
be accomplished either by the iﬁtegration of the temperature effects
over the surface or by considering an influence bond of temperature at
a discrete point and summing the effects. Unlike the
case of temperature hot spot the functions involved are eaéily

"manipulated”.
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6.2(d) . EXAMPLES

The case of the uniform line of heat around a sphere,
which was considered in Chapter 3, should suitably demonstrate the
ease with which a solution can be obtained by adding, analytically,
the effects of a number of bands of temperature.

The temperature distribution into the shell from such a
line of heat is

+ 2
t =Te °
where | is the temperature at the line x. = O
Let us find the deflection at the point > = O due to this
temperature field., After dividing the shell into a number of bands
each of width D and of temperature T (DC) we can integrate the

effects of all these bands to give

(2o ]

Wx=d = 2 - A ox EH

©

which when evaluated vyields

gl»

x -TEX .
B P cosmx 4+ sindx) doc
A\ (@]

W = —gaT (s + 253)

9 4+ Ry + R

T
By multiplying both numerator and denominator by ( 57' —~ 2oes H+RSX )

this reduces to

3
Wooy = —caT (55 = ool « 4od')

S* v ot

This is the same result, except for a sign change, as
was obtained in the equations (3.40 - 43) by the general solution of
- the basic differential equation for large values of the meridional.
The/
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The sign change is due to CONRAD assuming that a positive normal
deflection is inward.

We have thus demonstrated that the hot spot technique
can give the same result as was obtained using the more direct
approach. Let us now consider a numerical example using the same
influence bond technique.

EXAMPLE *

To evaluate the deflections and the stresses in a
cylindrical support skirt of dimensions, length 48 in, thickness 1.75
in, mean radius 186 in. These stresses are caused by the symmetric

longitudinal temperature distribution which is expressed as
o - OB - O 185
t (°C) =300 —100€ + D-0025 €

where X 1s the longitudinal distance in inches., This distribution
is shown in Figure (6.7). The shell material properties are, the
coefficient of linear thermal expansion, o4& , =13.0x 10_6 per Co,
Poisson's ratio, » , =0.3.

Considering the influence line approach and using the
results derived in equations (6.42 - 46) for a band of uniform
temperature, let us numerically evaluate the desired effect at a
number of locations along the shell. Numerically this is not a
particularly easy problem since the temperature distribution, and hence
the stress distribution, does not become zero within the rather short
length of the cylindrical shell.  This requires the effects at the
boundaries to be considered.

To illustrate the numerical method of approach, let us
find the normal deflection at the point C distance =< = |'6 &

X
along /

67
This example and the following asymmetric problem, is due to PAYNB( )

He presents analytic and finite difference solutions for this particular
problem.
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along the shell, as shown in Figure.(6.7b) At this point erect an
"influence band" of width 33513 . The deflection distribution due
to such a band is given by equation (6.42) as
~X :
W o= —ATxb € & (cosxoe . 5m3~<x\
2 a d
and this distribution is also shown in the Figure.
The "effect" at C of a band of width Z2 = O

located about a point D distance 0.75 a from C is therefore

W o= - O34 LT obh

= —O 34 X |0l X 02X et

i

— 637 O

In a similar manner the effect of all of the other bands
which make up the surface of the shell, have been obtained and they

give a total deflection at C  of

W == 963 qa

The values for the stress resultants, obtained in a similar manner,‘
are shown in Table (6.1).

Figure (6.7) shows, however, that the effect of the
influence band at C is still considerable at both of the shell
boundaries. It is therefore obvious that the boundary conditions
must, in this problem, be considered. To do this an influence band
is now "erected" at each of the boundaries and the resulting effects
are estimated as before. These results are presented in Table (6.1)
from which it is observed there are bending moments and transverse
shears at both the boundaries. Since this is not the case for an open
shell/
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shell, "corrections " must be made relating these edge boundary
values to conditions within the shell. These corrections are
indicated in Tables (6.2-3). The values of the various effects
at the ends remote from the loaded boundary are small and have
consequently been neglected.

To find the deflection at C , in an open shell we must
also include the terms due to the bending moment and the transverse
shéar at both of the boundaries. Finally, a term must be included
which will involve the uniform rise in temperature of 200 c®. Using
Tables (6.1-3) the deflection at C due to all of these effects is

therefore
We = —c (200 + 963 + 2173 — Ol + O-398 — 2:12.4)

= =~ O T7lTwm .

The values for the deflections and the stresses,
calculated in a similar manner as the deflection above', are presented
in Figures (6.8-10) where they may be compared with ’che analytic
results of PAYNE.,

Considering the magnitudes of the terms involved, the
results are most encouraging and show that the procedure was quite
satisfactory. The width of influence band used to estimate the
effects given in Table (6.1) was 2{‘5:3‘ = 0.2. A check at the left-
hand boundary, == 0 , showed that there was substantially
little difference between band widths of 0.1, 0.2 and 0.4.

Like the preyious case considered, this example could
also have been "solved'" analytically by straightforward integration of
the band effects. However, it does illustrate the capability of the

numerical approach.
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EXAMPLE

To evaluate the deflections in a spherical shell using
the influence area technique. The shell hés similar dimensions
and properties to the cylinder of the previous example. The temp-
erature distribution is expressed as

T 018X

Tt = jo0€e (V + cos 16©)

where @ is the circumferential angle and °C ig the distance
(in inches) from a great circle around the sphere. This expression
for the temperature can be written in terms of the shell parameters

as ¥ 1-786 J’im% (

£ = j00e | + cos O 8537, o &)

and it is shown graphically, in this form, in Figure (6.11), for one
quarter of the temperaturé field. This temperature distribution cannot
be considered as slowly varying since, in the circumferential
direction,

n = 16

and

J2ao = 18741
which neither meets the requirement suggested by STEELE that

noo== I

nor the requirement of the method of rsolution developed earlier in
this Chapter that
An analytic solution has been obtained however using the simplified
results as presented in equations (6.25-26) and the particular values
are presented for comparison with the influence area results under the

title of simplified theoretical values.
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As in the previous example a "unit hot spot™ is considered
to be acting around the point at which the deflection is required.
The remaining surface area of the shell is suitably portioned and
the "effect" of the unit hot spot at each of the "centroids" of area
is obtained either directly from equation (6.29) by substituting in
the appropriate distance or from its graphical form as presented in
Figure (6.6). Thus to find the normal deflection at A, in Figure (6.14)
first surround the point with a unit hot spot. This unit hot spot will

produce a deflection at point B, distance

r = 10 o
2 >
from A, a deflection of
= A
w‘oq = — 05 o
™a
The area surrounding B is
N
N = O&x0y . O
2o ®

and the temperature associated with B is, from Figure (6.11) , 4600.

Since the definition of a hot spot of intensity M is

M= AT
then the deflection at A due to the heated area around B is
Wab = —O05 >3 .0 O . 46 - — O0-S86 G
™o 2.0¢*
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In a similar manner the deflection at A due to all of the other

areas which make up the surface may be added to give
Wq = =871an (C°) .

The deflections at a number of points on the surface
were evaluated using this technique and the results are presented
in Figure (6.12). For comparison the results using the simplified
approac;h, which is applicable for slowly varying distributions in
the circumferential direction, are included. It is notiéeable that
the "influence area method" indicates a smaller value of the
maximum deflections but a greater "spread" of deflection "into"
the shell surface. This effect agrees, of course, with the dropping
of the second term in the simplified solution. Figure (6.13) shows
the deflection distribution along a longitudinal line at various
circumferential values. The similarity of form between the two
solutions is noticeable.

The estimation of the membrane and bending stresses by
this technique is more laborious. Stress variations from a unit
hot spot are much more "severe'" than the normal deflection distri-
bution. Furthermore the stress is expressed analytically in polar
co-ordinates relative to the hot~spot whereas the stresses which
are required do not fit this co-ordinate system.

Thus a stress transformation is required at each point B
under consideration.

Referring, once again, to Figure (6.14) the membrane

stress resultants Nw and N?g, at the point B relative to the unit

hot spot at A are from equations (6.35~36)

Nr, = —0-694%6.2>" . Eh
PR fon

Nfog = + 171896 2o Eh
2o’ '

However/
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However these stress resultants must be reorientated into the
(x,8) co-ordinates. Knowing the relevant angle associated
with the line joining the two points, AB, and the > ordinate
is 51O it is now possible to transform the stresses, by a Mohr

circle type transformation, to the cartesian co-ordinate system

to give
Nac bot = O-Liy 2o Eh
2o
N@bd = O-OS\E&i ER
25ra?
T xo = =092 2 Eh
e zw'n_&'l.
considering, as before, the area surrounding the point B as
A = Olb a
20

and the associated temperature of this area as 4600 then the stress

resultan_ts ., at A, due to this heated area are

\\[‘x.ab = Ol 25¢ Eh # ol v 6 x Odbd = 0-520 Ehet

27 a” 2o
N ~ O5516 208 EBhxd v 46 x 0168 = 0.060 E ha
®ab = 2 al® 2sct

Txe,, = = —1-079 Ehel

The resultant stresses at point A can, therefore, be found by summing
the component stresses at all of the small areas which make up
the heated surface

Stresses at the point A have been estimated using this

influence area technique., They are

N o = 3T ERe
N x. = T34 66 ERa

1l

M

Using/

T30 bl CERe
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Using the "simplified theory" the equivalent values for the stresses

are
No = =132 % Ehe
Noee = O
Mg = = 5977 Eho

As expected the magnitude of the stresses as indicated

by the influence area technique is the greatcr. It could be con-

cluded that the simplified solution does not give a feasonable

indication of the magnitude of the stresses for the temperature
distribution.

The example considered was laborious to evaluate by

the graphical technique employed.
obtainable.

Nevertheless a solution was

This same technique is suitable for computer application
provided the KELVIN functions can be expressed suitably in a

series form. One major disadvantage of the technique is its inability

to handle changes in the material properties with temperature.
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CHAPTER 7

EXPERIMENTAL
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The experimental work contained in this thesis is
partitioned into two main sections.

The first section contains details of the experimental
investigation of the temperature distribution on a mild steel
shallow spherical shell due to a uniformly heated circular opening.
The experimental results which were obtained are compared with
the theoretical predictions.

The second subdivision is the measurement of the
strains which are incidental to the temperature distributions
already considered.

The experimental strain readings are compared with

the theoretical predictions.
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7.1 The Object of the Experimental Work

One of the philosophical difficulties in a thesis of this
nature is to define what should be the object of any experiment
performed and what should be its relationship to the overall
theoretical development.,

The dbject of the experimental work now being
presented is to consider a particular case of temperature
distribution and to compare the measured values of the thermal
strain with the appropriate theoretical predictions. In particular,
the case of a uniformly heated circular opening in a shallow
spherical shell, such as would give rise to an axisymmetric
temperature distribution, is considered. The opening in the shell
and the shell's outer boundary are made free of any external
mechanical restraints and the temperature of the shell is allowed
to stabilise under the conductive, convective and radiant modes of
heat transfer; the latter two modes being rclative to a normal
laboratory at room temperature.

This experimental work cannot be considered as a
confirmation of the theoretical predictions made in the preceding
chapters since it is merely an examination of one particular case of
thermal stress for one particular set of shell parameters.

Despite this, it is valuable to have even one experimental set of
results to compare with the theoretical predictions.

Since the theoretical results suggest that the thermal

strains/
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strains are likely to be small in magnitude, it was considered
prudent to be guided further by these predictions and to
investigate as small a shell opening as practical since apparently
the smaller the opening the greater the magnitude of the maximum
stress.

The experimental work has been partitioned under two
distinct headings. The first is the temperature distribution and
the second is the measurement of the accompanying thermal strains.

From the outset of the experimental work it became
obvious that the question of whether thermal strains could be
satisfactorily measured or not by the strain gauges currently
available had to be considered. It is now obvious that for the
earlier work the answer must have been no since the order of the
magnitude of errors in the strain gauging was considerably higher
than that of the actual strains being measured. Fortunately much
improved gauges have recently become available but even with
these more sophisticated gauges the same question must still be

faced.
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7.2 The Temperature Distribution on a Shallow Spherical
Shell due to a Uniformly Heated Circular Opening

Three shallow spherical mild steel shells each of the
same mean radius but of different thickness of material were made
available by the Motherwell Bridge and Engiiicering Company.
These domes had been pressed on the same formers énd from the
same material which was used in the manufacture of the 1/10th
scale model of the Dounreay Sphere upon which much earlier
experimental work had been performed, particularly by Tooth.

The dimensions of the domes are detailed in
Figure (7.1). From specimen samples of the mild steel, average
values of its physical properties were found to be:-

Young's modulus, | = 13,700 ton/in2

Poisson's ratio = 0,255

Coefficient of linear thermal expansion, = ,

= 1n.3x10°%/°¢c.

The values of Young's modulus and Poisson's ratio were
determined at room temperature whereas the Coefficient of linear
expansion is an average value measured over the range 0— 10000.

To determine a suitable size for the circular opening in
each of the shells, cognisance.was paid to the difficulties which
would arise in the ensuing numerical analysis. A common value
for the shell parameter z of 0.1 was chosen for all three cpenings.

Thus

d =J§\:><;?5 = 0.1

where/
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where it is recalled from the theoretical work of the earlier
Chapters .

o™ = 21— %a
and @ is of course the angle of the opening.
The reason for this choice of value is that tabulated values of the
Kelvin functions for this argument are available and also this
particular value implies a suitably small opening in each of the
shells. |

The radius of the openings, r,, was calculated to be;-

1!
shell A (%" thick) r. = 0.2965"
shell B (3/8" thick) o= 0.2573"
shell C (3" thick) o= 0.2098"

and a hole was drilled and reamed as close to the appropriate
dimension as practical in each of shells,

The uniform heating of the circular hole both around its
circumference and through the shell thickness proved difficult.
To the two major requirements of uniformity and zero force action on
the wall of the shell must also be added, what subsequently proved
a major obstacle, the stipulation that no radiant heat be transferred
from the heating device to the surface of the shell.

After attémp‘cs to construct a small electrical element,
which would fit into the opening in the manner of a loose plug,
had failed, due to the excessive quantity of heat being generated
in a small volume, attention was concentrated on the problem of
having the source of heat external to the opening and heating the
hole by conduction or convection from the heat supply. An electric
furnace was constructed round a thin copper tube whose external

diameter was the same as the bore of the shell opening.
The/
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The heating rig is shown in Figure (7.2a). Both ends of the copper
tube were allowed to protrude from this enveloping furnace and,
while one end was fitted into the shell, to the other end was
attached an air supply which allowed air to be pumped up through
the copper tube. This pumping of air proved inconsequential.

It was found that excessive temperatures were required to be
developed in the furnace to raise the temperature at the opening of
the shell to even 100°C. This of course is due to the quantity of
heat requiring to be conducted along the copper bit and thus on to
the shell. Further, since the furnace was at such elevated
temperatures, a great quantity of heat was emitted from the lagging
and this heat had to be dispersed without affecting the surfaces

of the shell. There was also the problem of a temperature
differential through the shell with the surface near the furnace in
excess, due to the conduction effect along the tube. This method
of heating was also considered unsatisfactory.

The method of heating finally adopted consists ,again,
of a thin copper tube which mated with the opening iﬁ the shell,
Through this tube passed the flue gases from the combustion of a
calor gas burner situated under the tube. A funnel is brazed to the
lower end of the tube to ensure that all the hot gas passes up the
tube as shown in Figure (7.2) and schematically in Figure (7.3).
This funnel and the lower portion of the tube are lagged to minimise
heat loss to the underside of the shell. A cold air supply is also
provided around the tube underneath the shell. This colder air
can bhe used to prevent the entrapment of hot air due to the shape of
the shell. 1t is found essential to insert a small piece of wire

gauze in the tube above the opening. The heat given off to the
gauze/
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ri

FIGURE (7.2a) ELECTRIC FIGURE (7.2b) ARRANGEMENT OF
HEATING FURNACE. GAS BURNER AND COPPER TUBE.
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- gauze tends to balance that tendency for the lower surface of the
shell to be warmer, near the opening, than the upper surface.

The calor gas burner is easily controllable and steady temperature
conditions can be maintained.

It is found that the degree of pressure between the tube
and the opening wall is of the utmost importance. Any lack of
uniformity of pressure results in large discrepancies from the
axisymmetric temperature distribution which is required. To ensure
that the temperature distribution is axisymmetric, thermocouples
have been attached, tc; the surface of the sphere near to the opening,
on the same hoop circles but at different meridional angles.

These thermocouples along with the thermocouples along the radial
line, which indicate the axisymmetric temperature distribution, can
be seen on the photograph of the top surface of the %" thick shell,
Figure (7.4). Any difference in readings between the circum-
ferentially displaced thermocouples would indicate a lack of
symmetry in the heating of the shell and this would require to be
corrected by the appropriate orientation of the pressu.re of the
heating tube.

The axisymmetric temperature distribution is measured
by the same radial line of thermocouples on both surfaces of the
sphere, Since the temperatures are required to be measured
relative to room temperature there is no need for any cold junction
other than the potentiometer box itself upon which a reading in
millivolts, corresponding to the temperature, can be measured.

The general layout including the temperature measuring equipment
is shown in the photograph, Figure (7.4Db).

After/
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FIGURE (7.4) PHOTOGRAPH SHOWING THE TOP SURFACE OF SHELL AWITH
THE STRAIN GAUGES ON THE LEFT AND THE THERMOOOUPLES ON THE
RIGHT.
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FIGURE (7.4b) THE GENERAL LAYOUT OF THE EXPERIMENTAL RIG
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After several tests the most satisfactory method of
affixing the hot thermocouple junctions to the material was found to
be by spot welding. To strengthen the weld and also to provide
a protective coating, a blob of Araldite was put over the junction.
The lead wires to the junction were run for a short way along a path
of uniform temperature with that junction.

No difference in temperature through the thickness of
the plate was found beyond the first 4" radius from the axis.
Within the first 4" gradients through the plate could be corrected
by the pressure of the tube, position of the gauze in the tube and
cool air being p'umped round the heater. ‘

Results for three distinct temperature distributions are
presented in graphical form in Figures (7.5 - 7)_ for each of the
shells. |

Each of the traces on the temperature graphs was
extrapolated to give a temperature value at its particular opening;
this is the opening value of the temperature, T, which figured so
prominently in the theoretical development. As is common with all
extrapolation there is a degree of human judgement required and
hence a degree of error can be introduced.

After determining the opening values of the temperature
each of the distributions was normalised to its own particular value
and Figures (7.8 -~ 10) present the temperature distribution as a
function of the opening value. " The results are promising in that
they show that it is not unreasonable to express the temperature
distribution as a function of the opening temperature, T.

We can now investigate the suitability of the

theoretical/
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FiGurRE (7.8b) THE NORMALISED VALUES OF FIGURE (7-8) SHOWN
IN GREATER DETAIL FOR SMALL VALUES OF

THE RADIUS.
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theoretical predictions for the temperature made in Chapterl.

Equation (1.17) gives for a shallow spherical shell

t = AL + BR (54
where, from equation (1.4),
"= 2m. o
kK :

Let us consider an estimate of the value of this thermal
parameter S for shell A, Whereas there is no difficulty with the
thickness of the shell, h, and the mean radius of the shell, a,
much judgement is required in the selection of the values of the
thermal conductivity of the material, k, and the combined convective
and radiation coefficient, m. | ‘ .

Table (A3.2) would suggest that a value of 30 Btu/ft hroF
for the thermal conductivity, k, would not be unreasonable.
Récalling from equation (1.2) that the coefficientm is the sum of
the two coefficientsmc and My we find in Appendix 3 that MCADAMS(SG)
gives two empirical results, one for a horizontal plate facing
upward, equation (A3.1) and the other for the same plate facing
downward, equation (A3.2). Since we have the situation of one
surface facing upwards and the other downwards, let us take a

value between the two given by McADAMS and consider

L
m:. = O'B(ts"’tf)‘f

A greater problem is the determination of a suitable
value for the "constant" T.., the surface temperature of the plate.
Though the temperature at the opening is relatively high the main

surface is relatively cool. However, to arrive at some value let us

consider/
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consider values of 21201-‘ for t, and 75°F for the room temperature

txr, thus .

m. = 0.3(22-75 %

= 1.02 Btu/ft’n°F

The radiation coefficientM, is given by equation (A3.7) as

—

M, = o— & (tertth +15) .

where the temperatures are in absolute scale. Table (A3.3)
confirms that a value of 0.3 is not unreasonable for the emissivity,
& , of the material. Thus, assuming the same values for the
temperature as used earlier for the convective coefficient, we have
M. =01717 x 0.3 (530 + 672) (530 + 672%) x 1078
= 0.454  Btu/ft“h°F

and the value for the composite coefficient is

it

m mv\*‘m:.

= 0.454 +1.02 = 1.474 Btu/ft°hi°F

It is of interest to note that CHAPMAN(57) uses, in his
examples involving mild steel plates, for the conductivity constant
33 Btu/ft hr°F and for the coefficient m, 1.4 B’l:u/:f't2 hroT,

Using the values developed the thermal paramater S

becomes

NI

S = (2 x1.474 x12)
( 30x% )

= 7.66
Since/
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Since there are so many approximations and assumptions
made it would suffice to consider the value of

S = 7
and for coinparison with the experimental results to consider as
outside bounds the values of S=5 and S=9.

The equivalent S values, using the same conductivity
and overall heat transfer coefficient, for the other two shells are

shown in Table (7.1).

Recalling once again that the theoretical expression

for the temperature distribution is, from equation (1.21),

T = ALo(5g) = B Ko (5¢)
we can differentiate to find the thermal gradient as
t = SAL (5¢) - SBK(54) .

With the appropriate boundary conditions appertaining

to the experimental shells namely

Tt = T at ;6 B
T = 0 at ¢=;ﬁz

where ¢| and 5751 are the inner and outer shell boundary values,

i
1

]

the integration constants then become

A= Ko (o)
L33 K 58 + Kolog N Ti(5¢.)
B - I\(s(}éz)

T (e Kilog) + KelogdTi(sh)

With the tabulated values of S and the appropriate

values/"
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values of 75‘ and c}éz it is now possible to complete the
corresponding theoretical temperature distributions.
These distributions have been included in Figures (7.8-10).

It is observed that the thecretical temperature
distributions adequately represent the form or shape of the curve
given by the experimental values.

Consider in detail the shellA, Figure (7.8). At first
glance the theoretical trace given by S = 5 seems to.most closely
represent the experimental points. However, it can be seen that
this theoretical trace overestimates the temperatures close to the
opening and in consequence underestimates the thermal gradient at
the opening. This can be seen more clearly in Figure (7.8b),
which shows the values near the opening in greater detail.

It is this thermal gradient which seems so important in the
determination of the theoretical values of the stress distribution in
the shell. The experimental trace of S = 7 would appear to be more
suitable in describing the conditions near the opening and hence 7
would be a more suitable value to use in the theoretical calculations
appropriate to the % inch shell A,

In all cases the theoretical temperatures diverge from and
become less than the actual temperatures towards the outside boundary,
This can mean, physically, that not as much heat has been lost from
the shell surface as has been predicted theoretically. A closer
examinatidn of the surface of the shell, the upper surface of which
is shown in Figure (7.4), can provide one reason for this discrepancy.
It is observed from the photograph that a small part of the surface of
the sphere has a partial insulation in the form of thermocouple wires,
strain gauges and their leads, and of course Araldite. This
insulation will be particularly effective near the opening where the

temperatures/
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temperatures are relatively high. Because of this insulation the
heat which could have been lost will be conducted down the
sphere to the outer boundary and will of course cause higher
temperatures on the shell. This effect was not taken into account
in the theoretical considerations.

This experimental error aside it is surprising considering
the courseness of the approximations made in fo‘rming our heat
transfer coetficient S that one theoretical curve so closely fits the
experimental values, particularly since so much of the heat loss
from the surface is not a linear function of the temperature.

It is appreciated that if the shell were broken up into
a number of bands, each with their own S value, then a much better
correspondence could be achieved. Since, however, we are
requiring a value of S for our subsequent theoretical stress
calculations, there appears no need to do this as we have adequately
shown the reasonableness of the theoretical predictions close to the
important heated boundary. '

Examining now the results for the other two shells,
Figures (7.9 - 10), we see that they confirm what has already been
said for the -é-" shell but also since they represent another two
different thicknesses further confirm the validity of the theoretical

expression for the temperature distribution
T - AI0(5¢3 + BKo(5¢)

where the thickness of the shell, h , is contained in the constant

S which is given by

3

5 . Am o
I h
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FIGURE (7.11) A STRAIN GAUGE DURING THE GURING CYCLE
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7.3 Strain Distribution on a Shallow Spherical Shell due
to the Uniform Heating of a Circular Opening

With all the preliminary tests carried out,the selection
of the type of gauge, its cement and the method of wiring made,
it is then possible to proceed with the gauging of one of the shallow
shells, |

The shell selected for gauging was shell A which is
the thickest of the three shells considered earlier, namely, + inch,
With all the shells havfing a common spherical radius, O , the O\/h
ratio of shell A is therefore the least. The theoretical work of the
earlier chapters has indicated that the lower the O‘/h ratio the
higher is likely to be the magnitude of the maximum stresses
(provided © remains constant).

Despite the great care taken in the surface preparation,
the application of the adhesive and in the curing of the cement,
it was found that the first two gauges had not properly bonded to the
shell surface, there being slight gaps between the gauge backings
and the shell. It was felt that this fault was due to insufficient or
unevenly divided pressure on the gauge during curing. As has been
indicated earlier, a pressure jig was constructed round the shell
and the bonding of the subsequent gauges proved satisfactory.

Forty gauges were attached to the shell, equally divided
between the two surfaces and oriented in circumferential and radial
'directions, all along the same radial line as can be seen in Figures
(7.4) and (7.11). Most of the gauges were positioned as close to the
opening as possible as it was felt that the more interesting strain

distribution/
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distribution would be in this region.

| After the shell had been positioned in the heating rig
and the first full temperature tests carried out, it was found that
five of the gauges were unsatisfactory in so far as they gave an
erratic response or noresponse at all. The shell was removed from
the rig and these gauges repaired. Three of these gauges were found
to be damaged and were replaced while the soldering at the other two
was found to be "dry". The opportunity was then taken to attach a
further ten gauges to give a more complete description of the strain
distribution further away from the opening. The shell was then
replaced on the rig and once again the experiment continued.

The shell was heated, through its opening, a number of
times up to a maximum opening temperature of about ZOOOC to allow
the gauges, etc. to settle and to subject them to a few loading
cycles.

Full scale tests were then carried out heating the
opening to various temperatures and when steady temperature conditions
prevailed upon the sphere strain readings were taken. These readings
were corrected, once a curve for the temperature distribution had been
plotted, for the apparent strain and curves for the hoop and radial
strains on both surfaces plotted.

It was observed that a further four gauges gave readings
which were rather peculiar and did not fit into any recognisable
pattern. By means of an Avometer it was quickly confirmed that there
was some leakage from these gauges to the shell, although earlier
resistance checks had proved satisfactory. Unfortunately all these
gauges were situated on the lower surface and so once again the
shell had to be removed from the rig. Three of these gauges were

removed/
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removed and replaced. It was found on all of them that the
"earthing" took place at the soldered point of attachment of the
leads. In the case of the fourth gauge there was a minor fault at
its tabs.

During all this preliminary testing, one peculiarity
arose which had not previously been considered and which is not
mentioned in the literature. Whilst taking readings from a strain
gauge, it was found that there was an erratic movement of the
galvanometer needle., This movement became associated with the
opening and shutting of doors in the room, draughts and movement
close to the gauge. The slightest draught over a gauge was found
to cause a very large movement of the galvanometer and hence a
large reading of strain. The draught did not affect the lead wires.
At first this may appear to be somewhat of a contradiction since
self-temperature compensated gauges should be insensitive to small
changes in temperature such as are caused by draughts in a room.
However, it was realised that the boundary air in close proximity to
the gauges must be at a temperature comparable with that of the
gauge itself. Even the smallest draught would disturb this warm
boundary layer and thus cause a change in the thermal gradient through
the gauge. It is recalled that the earlier tests for apparent strain
were like those of the strain gauge manufacturer, performed within an
oven where the air temperature matched that of the specimen. This of
courge raises the question of whether an apparent strain recorded
within an oven is the same as the apparent strain on a specimen where
the gauge is itself transferring heat to a much colder atmosphere.
To overcome the difficulty of the fluctuations of the galvanometer,

it was found essential to cover the matrix of the gauge with a piece

of/
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of tape capable of providing thermal insulation. This eliminated
the fluctuations but obviously further interfered with the heat
transfer from the shell.

The readings are presented graphically in Figures
(7.14 - 17) as (O,+). The results are for only two distinct
temperature distributions but are quite representative of the many
similar tests carried out at different temperature levels,

The Figures (7.12 -13) also show the relevent theoretical
predictions which are now derived.,

The dimensions of the Shell A , Figure (7.1), upon which
the experimental thermal strain measurement was performed are such
that it falls well within the category of a shallow spherical shell,
The simplifications to the general case of a spherical shell, given
in Chapter 4 under the heading of Shallow Spherical Shells, are thus
permissible. Further, since the temperature effects are almost zero
at the outer boundary it is possible to consider only the integration
constants associated with the heated opening. The conditions at

this heated opening are

t—:T,Nr?O) My\:O where V‘=Y‘\ .

The analysis of this particular case is treated in some detail in

Section (4.2) where the above boundary conditions lead to

A.N - I~ j ™ . , . L i Find T — 2 ) —
n| |Of |2¢kerz, 2ot ketz, A\ = J2205t,
- - o A o + Ehs
S* et -
‘7 . / 2
-1 =V - -V _ Q= pt
Mpl L 0 N (kerz‘ L_'Zl— X§@L Z.h ; _g:(ke(,z‘-r \__Z-_l\_/\(ef‘ ‘Zh A"t alsT .._z,‘_ﬁodl
. _ L. I L. -
and the integration constants are given by
- 7 - ; "1 I
T . . -
A Zoe Ker 7, 22¢" kel 'z, N
E het ax Zi a* ra
S Loyt iy ) , N .
AL ~kerz, + 1= Yket zZ,. —keuz, = =Y kerz,||~sT + (1= M) Bk,
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where

L

z = FAD\L;% - ﬁmf&

Equation (4. 21) gives for the temperature gradient

at the opening

t,‘ . _Ts K, (3n)
a

We can now evaluate the constants A, and A,
for particular values of the parameters | and S and hence, by
substituting back into equations (4.12 - 18) find the stress
distribution into the shell from the opening. For comparison with
the experimental results, the strain distributions on the upper and
lower surfaces of the shell have been computed for shell A for three:
distinct values of S (S=5, 7 and 9) and the results are presented
in Tables (7.2 - 5) as functions of1, Since the strains for
the different values are so close to one another, only the strain
distribut ions for the case ©=7 are presented graphically in
Figures (7.12- 13). |

It is observed from the tables that the greater value of S
the greater the intensity of the strain and the quicker the "die out"
with distance from the opening. The feature of the graphs is the
remarkable pattern of the strain distribution near the opening where
for three of the strains there is a rapid changing of sign leading to
a turning value and almost all of this taking place within the first
inch from the opening.

With the experimentally derived value for the coefficient
of linear expansion, ¢ =11.3 x 10_6/00, and the extrapolated values
for the opening temperatures, T = 72Co and T = 14000 , the parameters
of Figures (7 .12- 13) can be specialised to those of the actual tests

whose experimental results are reported in Figures (7.14 - 17) .
The/
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‘ The theoretical predictions of the strain distributions
for the actual opening temperature can then be evaluated.
They are indicated by continuous lines in Figures (7.14 - 17)
whereas the strain gauge readings are shown as discrete values.
It is encouraging to see the large measure of agreement
between the experimental values and theoretical predictions shown

on these graphs.
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Hoop Strain x («TY

Bottom Surface

Radius S =5 S =17 S =9
s,
.297 -1.008364 -1.06467 -1.10187
445 - .572175 - 60073 - .61785
. 594 - 405389 - 42293 -~ 43194
L742 - ,319388 - .33108 - .33568
.890 - 266653 - 27465 - 27649
1.039 ~ 230477 - .23589 - .23580
1.187 ~ 203682 - .20720 - .20565
1.335 - .182720 - .18472 - .18209
1.484 - .165654 - 16645 - 16293
1.632 - 151340 - .15116 - 14692
1,781 - .139059 - .13804 - .13323
2,077 - .118863 - .11653 - .11087
2.226 - .110386 - .10755 - .10156
2.374 ~ 102744 ~ 09945 - .09322
2.671 - 089478 - 08547 - ,08089
2.968 - .078339 - .07380 - 06695
4,155 - 047644 - 04212 - .03531
4,748 - 037802 - .03222 - .02573
5,342 - .030391, - .02491 - .01886
5.935 - .024833 - .01956 ~ 01399
7.122 - 017647 - .01298 - .00838
8.309 - .013810 - .00982 - .00612
9.496 - 011812 - .00811 - .00550
10.683 ~ .010722 - .00791 - .00556
11.870 - %09996 - 00763 - .00575
13.350 - .009173 - .00723 - .00578
14,838 - 008252 - .00663 - 00545
16,322 - 007212 ~ 00582 - 00484
17.805 - 006029 - 00470 - .00369
19,289 - 005597 - .00377 - ,00307

Table 7.2
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-1
Radial Strainx (&A1)

Bottom Surface

iy

Radius S =5 S =7 s =9
RIS
.297 +.257133 +.27149 +.28098
A -.099472 -.10524 ~.10916
.594 -.208275 -.21.958 ~.22688
L7142 - . 248001 -.26087 ~.26892
.890 -.261809 - 27484 -.28267
1.039 -.264105 ~.27671 ~.28398
1.187 -.260719 ~.27262 -.27919
1.335 -.254338 ~.26543 -.27124
1.484 -.246321 -.25655 -.26162
1.632 -.237411 -.24676 ~.25109
1.781 -.228030 ~.23653 -.24014
2.077 -.208775 -.21562 -.21792
2,226 -.199164 ~.20523 ~.20693
2.374 -.189660 -.19498 ~.19613
2.671 ~.171145 -.17509 -.16720
2.968 -, 153442 -.15612 ~.15537
4,155 ~.092049 -.09099 ~,08787
4,748 -.067091 -.06480 ~.06108
5,342 - .045760 -.04258 -.03858
5,935 -.027806 -.02407 ~.02000
7.122 ~.000881 +.00328 4+.,00693
8.309 +.016111 +.02002 +.02286
9.496 +.025556 +.02873 +.03068
10.683 +.029592 +.03203 +,03293
11.870 +.030003 +.03159 +.03162
13.350 +,027510 +,02811 4,02731
14,838 +.023464 +.02325 +.02189
16.322 +.019082 +.01829 +.01662
17.805 +.012181 +.01.074 +.00873
19,289 +.011632 +.01003 +,00827

Table 7.3
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Top Surface

-1
Hoop Strain x (T

Radius s = s = 7 S = 9
Y ins.
.297° -.241738 -.28656 ~.32923
445 -.073037 -.09412 -.11482
.594 ~,000718 -.01230 -.02425
742 +.040403 +.03394 +.02713
.890 +.067501 +.06419 +.05965
1.039 +.086931 +.08579 +.08314
1,187 +.101590 +.1020C1 +.10070
1.335 +.113006 +.11461 +.11426
1.484 +.,122065 +.12453 +.12492
1.632 +.129327 +.13249 +.13340
1.781 +.35166 +.13884 +.14017
2,077 +.143573 +,14793 +,14976
2.226 ©+.146485 +.15106 +.15302
2.374 +.148700 +.15342 +.15546
2.671 +.151399 +.15625 +.15829
2.968 +,152237 +,15707 +.15895
4,155 +.143729 +.14741 +.14814
4,748 +.135268 +.,13813 +.13812
5.342 +,125413 +.12741 +.11597
5,935 +.114837 +.11599 +.11458
7.122 . +.093346 +.09299 +.09050
8.309 +.073284 +.07176 +,06858
9.496 +.055847 +.05351 +.04999
10.683 +.041443 +.03863 +.03506
11,870 +.030026 +.02701 +.02360
13.350 +.019480 +.01648 +.01345
14,838 +.012301 +.00953 +.00695
16.322 +.,007639 +.00518 +.00308
17.805 +.004832 +.00285 +.00135
19,289 +.003254 +4+.00153 +.00028

Table 7,4



C =242~
“Radial Strainx @Y
Top Sﬁrface
Radius s =5 s = 7 S =9
IR
0297 +,061643 +.07307 +.08395
JAh5 -.,029617 -.03447 -.03903
« 594 -.,049235 -,05855 -.,06743
o742 -.,051508 -.06222 =, U7470
» 890 ~,048711 -.05972 -.07034
1.039 | =-.04449 ~.05549 - 06604
1.187 -.040313 -.05100 -.06136
1.335 ~,036474 -.04689 -,05696
1.484 - 4033187 -.,04330 -,05308
1,632 -.030476 -.04031 ~,04980"
1.781 -,028314 -.03788 -.04710
2.077 -.025439 -.03453 -.04327
2,226 -.024618 -,03353 -.04203
2,374 -.024139 -.03287 -.04117
2.671 -.024026 -.03246 ~-.04036
2,968 -,024782 ~-.03297 -.04050
4.155 ~.032121 -.03950 -, 04576
4,748 -,036446 -.04343 ~ 04907
5.342 ~.,040370 -.04692 -.,05192
5.935 -,043588 -.04968 ~.05400
7.122 -.,047448 ~-.05246 -.05547
8.309 -.047940 ~-.05180 -.05355
9.496 | -.045731 - . 04845 +.04906
10,683 -.041699 -.04334 -.04301
11.870 -,036674 ~,03738 ~.03633
13.350 -,030003 ~,02978 -,02809
14,838 -,022009 -.02281 -,02079
16,322 -,018286 -.01694 -.01480
17,805 ~.011074 -,00928 -.00706
19.289 ~,010716 -,00907 -,00714

Table7.5
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7.4 Conclusions and Discussion

Y

The temperature distributions into.a shallow spherical
shell from a uniformly heated axisymmetric circular opening were
measured for various values of the opening temperature and for
different shell thicknesses. Free convection and radiation of heat
was allowed from both the upper and lower surfaces of the shells,
Some of the experimental results are presented in Figures (7.5 - 7).
These results have been normalised in terms of the opening
temperature, T , and the resulting non-~dimensional temperature
distributions are shown in Figures (7.8 - 10). Although there is some
slight scatter of the results it appears reasonable, from these results,

to express the temperature distribution into the shell as
T = Tx%n.(ﬁé, }\\

The theoretical relationship developed in Chapter 1 for such a

temperature distribution is

T = AT(5F) + BK.(59)

where the heat transfer parameter S is given as

AN

S5 = [&m @)
k K
The heat conduction coefficient K is empiric and it

can be seen, from Table (A.3.2), that it is, to an extent, temperature
dependent. The assumption that the heat exchanged by the radiation
mode of heat transfer can be expressed in terms of the temperature
difference is less satisfactory, although it is not too unreasonable
for/
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for a small temperature range. The degree of agreement between
the normalised experimental results, for each shell thickness,
taken over the surface of the shell and hence over the various
temperature fields, indicates that the value for the radiation |
coefficient is not critical for the range of temperature, 0 - ZOOOC

. investigated. The theoretical temperature distribution graphs, for
different values of parameter S , faithfully reflect the form of the
experimental results. Some difficulties exist, however, in
determining which particular value of S most closely represents a
particular experimental result. A theoretical curve, for a lower
value of S , which gives a better overall picture of the temperature
distributions may not however give the best representation of the
conditions near the opening. For a better representation of the
situation close to the opening, where there are rapid changes in
temperature, a higher value of the coefficient, © , is required.
For a more accurate theoretical description of the temperature
distribution over the shell, the surface would require to be "broken

into" a number of temperature zones each with its own value of the
parameter, S . The temperatures at each of the zone boundaries
could then be equated to give an overall description. Such a
procedure could also account for variations in the other shell
parameters with temperature and would be idially suited to the finite
element technique discussed in Appendix 4. For the theoretical
determination of the thermal stresses within a shell from a heated
opening, it is the temperature distribution close to the opening which
appears the more pertinent to the calculations. The value of the
coefficient S , selected for any stress calculation should be the

value estimated for the opening conditions.

Tables/
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Tables (7.2 - 5) which give the strain distribution
in the %—" shell for these values of the parameter S , show that
neither the magnitude of the strain nor its distribution is over-
sensitive to the large variations of © represented. For example,
the largest values of the strains are those given in Table (7.2) for
the circumferential strain at opening; they are

Circumferential strain (S = 5) = -1.008364 x AT
Circumferential strain (S = 9) = -1.10187 x A%

The paucity of published experimental strain gauge
results in the thermal strain field led the author to examine
critically the techniques available. To this end, one shell was
strain gauged in order to investigate the strain pattern due to a
. particular temperature distribution. Two complete sets of
experimental results are presented in this Chapter. These are
typical of the results from the many similar tests which were
performed. Repeatability was found for the strain gauge readings
and, indeed, any lack of repeatability was taken as indicative of
an unsatisfactory strainlgauge .

The experimental results are compared with those
derived earlier by the analysis. On the whole it is felt that the
experimental results obtained confirm the general analytical approach
used in the thesis and emphasise the importance of testing the shell
in the correct environment. Regarding this latter point, it is clear
that thermal strain measurement can only satisfactorily take place

in ideal laboratory conditions.
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APPENDIX 1

COMPUTATION

-\

INTRODUCTION

The computation required for the production of the
graphs and the tables presented in this thesis was performed on a
Sirius Digital Computer. This model of computer, which was
designed primarily for teaching purposes, is limited in its storage
capacity to 4,000 words each of 10 digits and in its speed of
operation to 4 milli-seconds access time. These limitations are
rather severe and of course affect the numerical methods used in the
solving of the various edquations. With the larger computers now
available, greater possibilities arise. For example, a more
satisfactory program for the Kelvin functions could be written and
the thermal stress problem could be solved using the appropriate

Greens function.

The Modified Bessel Functions
The Modified Bessel functions 1o(Z), L, (2), Ko (Z)

and K‘(.7-3 are required for the computation of the temperature and

the temperature gradient throughout the shell. A standard autocode
program is available for these functions for values of argument less
than 10. This program uses the Chebyshev series with the
appropriate Chebyshev polynomials. It was found, however, that
the accuracy of the functions obtained by using this program fall
away as the argument approached the limiting value of 10, This,
of course, affected the results for the stress functions and in the

graphs/
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graphs produced a "kink" in the region where the argument was

just less than 10. It also made the matching of the effects due

to an opening on one side of‘Z= IO with the effects on the other

side of this value meaningless. The N.P.L., Tables for the

Chebyshev Polynomials (volume 5) give for the range of acceptable

validity of their polynomials for the Modified Bessel functions
-3 = Z = + ¥ .

For values of argument greater than 10 the series form

for the Bessel functions as given by MCLAUCHLIN(63)was used.
He gives the series for K.(Z) and X,(Z) as
Kolz) =~ 12533 € "D\~ '+ 9 — 78 4+  _
v L. 238 7> \O2.4.7Z.2
~2Z. .
K(z) ~ 12533 € )|+« 3 — 18  + 105 _
Z % 3Z. \z287* \o472.3
All-2

The values obtained using these series compare favourably with the
corresponding values in the standard tables,

The two distinct series forms which were used give
a satisfactory solution for the Modified Bessel functidns over the
whole range of argument except in the region 8 = Z = 10 .
For accurate values in this region a further set of Chebyshev
polynomials would be required to cover the range ¥ & Z <10
and thus provide better continuity over the whole shell. ltis
probable however that these are now available as one of the

standard subroutines of the larger computers.
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The Kelvin Functions

The series representation of the Kelvin functions

in powers of Z is

G+

be.l Z = Z (— l\k Z_ ,
g PR E('?\k*‘ m:lz

K=0
kerZz . ( 1.2 c\\aerz + 0 bE\Zﬁ—Z ZJ_.
z 2““Lmﬂ
K=0 m= O
[N 2k + 1
’ . K2
keiz = (Inz - <) beiz - ’\_[ber1+z—1\Kz A
> Iy ZQHIE?\\(*\\H?“
k=0
_ = |
where C is Euler's constant. A.1.3~6

The slow convergence of these series makes them

impractical for use in our involved program where a great number of

Kelvin functions may be required. Indeed, NOSOVA (64) , who is

responsible for the most recent tables of these functions, used an

asymptotic representation for obtaining his tabulated values at the

larger values of argument, This asymptotic series for kerzZ and
ket Z is
ker 7 (’T C [L (‘Z\COSLZ 4-7\ Mo (-2) s 3m z +’\r>
22 \F 3
keiz =~(I ¥ e (VW[M (-2) c.os(z * H) Lo(-2) sm( + _>
2z N3 {2, 3

Where/ A.l.?"‘S,
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where
k3 %% O N 3
L.Gz) = | cos . 1.3 cos 2T 4+ 1.5.5  cosdW
W8z M 21 (82 " 31 (9D b
. o . 2 . '
Mo(Z) = - ' sinf _ 123" ST _ '35 <inBT -
18z b 2\ (3D)* I 3 (32)? I

A.1.9-10
and the argument Z is large.
For even larger values of argument the functions Mo (z)

and L..(7) can be approximated by
Loz)= |

M)= O

and here the functions ker(z) and kel (2\ should become

L 2
ker(z) = (T_E e Tcos(z 4 T‘;\
27 NS

R
, L —~Z .
ker (@ :_.(T_r € Fain| & +E>
2z T2, 3 .
A.l1.11-12

These are the representations commonly used in shell
theory and which were discussed earlier in Chapter 3. There it was
stated that these approximations were reasonably valid for Z. > 10
and that the range of validityz> 6 , as given by REISSNER, is rather
optimistic.

Since a series cf representation of the Kelvin functions
for the larger values of the argument was readily available and was
suitable for inclusion in a computer program, an attempt was made
to find the appropriate Chebyshev polynomials for the lower
arguments. The values obtained were rather limited in their

accuracy. After correspondence with C. W, Clenshaw of N.P.L.

more/
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more éccurate values and these polynomials to a greater number
of digets than would be possible to obtain on the Sirius computer,
were provided by him. Since these values have not yet been
published, they are included now for the sake of completeness.
For the computation of the functions Kerz and ke;l

for arguments less than 8 write

erz. ez == {3) ()] VAT )

- Z SN

A.1.13
where o ‘
= (=
= = (%) |
Here the sum Z‘ ATy is the function berz + L berz

The coefficients A, and B, are now presented to 10 decimal places-

r A B

- L —L

0 + 4,51042 30966 + 33.42583 45543

1 -29.34949 10970 i ~ 33.85929 29333 i
2 +10.84058 01738 + 30.13631 27446

3 - 8.98868 87413 i - 3.51819 48725 i
4 + 8.71271 74102 + 11.24784 41174

5 + 3.46690 09758 i 4+ 5.59593 16514 i
6 - 0.85344 63697 - 1.55752 23300

7 - 0.14735 80153 i - 0.,29293 75949 i
8 + 0.01904 82639 4+ 0.04044 62330

9 4+ 0,00192 21032 i 4+  0.00430 62257 i
10 - 0,00015 59976 -~ 0,00036 56490
11 - 0.00001 04179 i - 0.00002 53896 i
12 -+ 5830 + 14702
13 + 277 1 + 721 i
14 - 11 - 30
15 - 0 1i - 1 i
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The coefficients of the derivatives of the Kelvin
functions can be obtained easily by the standard procedure for
the differentiation of a Chebyshev series. Unfortunately, one
loses one or two decimal places on each differentiation and since,
in calculating certain of the stress resultants more than one
differentiation is involved, we have what could be a serious loss
of accuracy.

In testing this Chebyshev series on the Sirius
computer, the limitation on the size of a word to 10 digits becomes
rather severe since one cannot make full use of the tabulated
coefficients. Indeed, only the first 1l coefficients can be used, and
these to a lesser accuracy. Tests showed good correspondence
between the tabulated values of ber bei,ker and kel and those
obtained using the modified polynomials except approaching the
limit of z. = 2 where there were growing discrepancies especially
in the case of the ker and ke functions. The first derivatives
of the Kelvin functions were also satisfactory over most of the range
until the upper limit was approached when the discrepancies were
even greater (to the order of 10% error) than for the function itself.

Since this source of error would require to be modified
and also since the range of argument 3 & Z- = 10 would require
investigation, it was felt that it would be unwise to proceed with
the attempt to program the Kelvin functions for the full range of
argument. It was decided to write into each program the values of
the required Kelvin functions at a number of discrete points over the
required range.

With the great improvement of computer facilities now
available, there is now a distinct possibility of preparing a program
for the Kelvin functions which will cover all arguments. It this is

done/
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done one could consider a numerical solution to many of the shell

problems where the Greens function involves these Kelvin functions.

The Computer Programs

The computer programs for the evaluation of the stress
resultants for the various shell parameters and conditions of loading
were prepared using the series representation of the Modified Bessel
functions and a set of values for the Kelvin functions at a finite
number of points.

Difficulty was experienced over that part of the range
involving 3 < 55255: 10 for the reason mentioned earlier but over
the rest of the range the various graphs appear smooth and
continuous.

In the case of the interaction of the cylinder with the
sphere it was found that the full problem of finding the stresses into
the sphere from a particular opening value reduired a greater machine
capacity than was available in Sirius. It was just possible to
obtain the appropriate integration constants and also the opening
values for the stress resultants. A further program is therefore
required to obtain the stresses into the sphere. This difficulty no
longer obtains with the larger computers available.

No attempt is made here to }present any of the programs,
which are written in Sirius Autocode, since they contain no matter

which would contribute to computational technique.
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APPENDIX 2

THE CIRCULAR DISC

The radial displacementU(r) of a circular disc which has
an axisymmetric temperature distribution is, by TIMOSHENKO and

GOODIER (49) , expressed in the form

d \tL d (rw) = oL {1+ V) AT
de LD Av Ar

The general solution of this equation is substituted, by them, into
the stress-strain and the strain-di splacement relationships to give

the following expressions for the displacement and the stresses

r

Wy = O+ \)314& Tr dr + v v Ca

v v
.
o= = —o& | Trdr + Eci - Ec.
r* |- G+ 72
o
.
o = £ Trdr — Bt +~ FEo 4 Ec. ;
& > - Ca2ls A,2.1-3

(=8

where, = is the inner boundary, ¢, and C- are the constants
of integration.
Impose the boundary condition that ¢~ = O at
Y= and ¥ = © and determine these -integration constants.

The expressions for the stresses and displacement then become

b "
O, = &E [ PFeo |ty dr — tr dr
r\'!. bl__a'l.
[« A
N o b r 2
o— o dEITTr—a \trdr + |trdr - Tr
& Y\’L bl"“ C’-L .
(=) <

1

U = &[mvﬁ trdr 4 (oD (\«-wa‘gwcﬂ A.2,4-6
Y\ \)'L—ql

(=] [] v
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It was shown in Chapter 1, equation (1.17)that the

axisymmetric temperature distribution in a flat plate is given by

t = Al.(cr) + BK.(or)
where A and B are constants and

ZMJ?:

C = \kw .
If then the temperature at the inner boundary ™= &

is T and provided the temperature gradient becomes zero before the

outer boundary r = © is reached, equation (1.6) will give

+ _ T Kolcr)
\QOCCC\E A.2.7

and, upon differentiating, the thermal gradient will be

7.t o~ o7 Kiler)
dr Kolca) . A.2.8

Examine the opening values of the stresses and the
displacemeni for the temperature disfcribution. The radial stress
at the opening is, of course, zero. Substituting in equations
(A.2.5-6) the expression for the temperature as given in equation

(A.2.7) will give
b
[w(rﬂ = Radk T i Ko(ar) v dr
r=o br-at Keled) Jy

b
[O*’@] L= 2B Al S KoleMvy dr — E T
~ br—a®  Kelea)

Making use of the recurrence relationship for Bessel functions

oA

JKO(Z\ Zdz = [*"Z K&z\]

which is as given by ABRAMOWITZ and STEGUN (65) , these equations
may be integrated to/
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may be integrated to

[u@] - 2 T LK = K, (Bl
oo (b‘-— q’“)C. Ko (Cob

'[G.f;l = g T [kiCea) ~ K (e | guv

e (bl Ko Cean - A.2.9-10
Recalling, from equation (A.2.8) that
’t .> = — T K\CQ\"}
\/\o(C\"\) .

and further, from our boundary conditionthatT = o at v = b

we can write equations (A.2.9-10) as

N - .2d’ ta
Lue) --zat o

[Ohﬂe—] = - A Ny OLE tc«. - EO"\T
o b*—a® C* A.2.11-12

For small values of opening in the circular plate we can

once again make use of the limiting forms of the Bessel functions for

small arguments. They were
-1
K@) = Z

Substituting these values therefore in equations

(A.2.11-12) and with Z - O we have

E U\(rﬂ oy O

r= o

—_—

Log] ~ E A.2.13-14
"o
The general expressions for the stress distribution into

the/
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the plate from the opening can be written as

UE =k Jo-n(rt, - atoy o (e et e (o oil\]
crr b*— a®

o——‘p = A B . Y\z" CL-L ()rt.a_ — (Y\t-\'- - O\t;)‘k
C-,_v,‘?. bt"‘o‘z

—

oo - JE \___ Peat ot . (rte ~—ot;¢_\1 ~ Eat
(ot br-a”

A.2.15-17
where the thermal gradient is

+ LT K (e
KolCr)
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APPENDIX 3

CONVECTIVE AND RADIENT HEAT TRANSFER

.

Convection is the term applied to the heat transfer
mechanism which takes place in a fluid because of a combination
of conduction within the fluid and energy transport which is due to
the fluid motion itself. The distinguishing feature therefore of
‘heat convection is this fluid motion.

When a fluid moves past a solid surface it is observed
that the fluid velocity varies from zero at that surface to some
finite value at some distance away. The velocity gradient is
affected by the condition of the boundary layer in this region and by
the actual geometric position of the surface whether it be lying
vertically or horizontally and whether it faces up or down.

It must be appreciated that the convective peat transfer
coefficient which was introduced in equation (1.2 \ a‘s“ Mec is only
an attempt to rationalise a rather complex and variable quantity for
computational purposes.

Experimental work has been performed in estimating the
rate of heat loss from flat plates to the still air which surroundsthem.
It was found that the rate of heat loss depended upon the size of the
plate and for plates 3 to 4 feet square the following simplified

(56)

formulae are recommended by McADAMS for the heat transfer

coefficient due to convection only -

L
M. = 038 (L, -1
A.3.1

for a horizontal surface facing upward.
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= 0. -t T .
Me = 020 (s -%y) A.3.2

for a horizontal surface facing downwards, and for a vertical
surface

me = 0O-27 (ts"—t-ﬁ-}{—r
A.3.3

where all three equations are for turbulent flow only.

It is apparent that the value oi M< for an upward
'facing surface is almost double that for a downward facing one
whereas the value for a vertical surface is almost equal to their

arithmetic mean.

THERMAL RADIATION

The rate at which heat is radiated from an emitting
surface N is giveh by the Stefen-Boltzmann law as
q = € o— AT
A.3.4
where T is the absolute temperature of the surféce, C— is a
universal constant and & is a property of the particular emitting
surface known as its emissivity, For an ideal radiator, a "black
body " the value of the emissivity is unity.
The heat loss, by radiation, from a body of surface
temperature 1. (absolute) to ambient surroundings at temperature
T¢ (absolute) is therefore given by the relationship
.= oA E(TY -
A.3.5
provided the area of the surface of the surroundings is very large

in comparison with the emitting area.:

It/
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It is found expedient to define a radient heat traﬁsfer
coefficient M, using the same linear temperature relationships
which are involved with the convective heat transfer coefficient

Postulate the following relationship

Up = Mr A(ts~-ty
A.3.6
and although it is realised that this empirical formula is

convenient for design and some computational purposes, it
obscures the real nature of the radient exchange mechanism since
m, must be some function of o=, & and the absolute temperatures

T. and T‘r . Indeed combining these two equations (A.3.5) and
(A.3.6) gives

P
mrf—rs“*l+ . o &
ty, — Ty

T 2
= O E_(T'b'tj—%-YTs -"T{—w A.3.7

Values for the emissivity of some common metallic

surfaces are given in Table (A.3.1). These values are after HSU(GG)
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Emissivity

Material R
Condition 100 F 500°F
Iron
Pure polished 0.06 0.08
Electrolytically deposited 0.05 0.07
Freshly rubbed with emery 0.24 -
Wrought polished 0.28 0.27
Wrought smooth 0.35 -
Wrought smooth but rifled 0.75 -
Cast freshly turned 0.44 -
Cast 0.21 -
Cast oxidized 0.63 0.66
Red rushed 0.62 -
Rolled oxidized 0.66 -
Very rusted 0.69 -
Electrolytically oxidized 0.79 0.80
Rough oxide layer 0.81 -
Matt oxidized wrought 0.95 0.95
Rough oxidized cast 0.98 -
Red iron oxide 0.96 -
Steel

Polished 0.07 \ 0.10
Carbonized 0.52 0.53
Oxidized 0.79 0,79
Plate rough ' 0.94 -
Table A,3.1 The emissivity of iron and steel for

various surface conditioms - HSU.
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Thermal
Temperature Conductivity
Alloy Range OF (k)

Btu/ft hrlr

Steels

0.5% C -212 31.6
Carbon steel 68 30.2
212 28.2
392 25.5
572 ' 24,2
752 20.2
1112 18.1

1.0% C -212
Carbon steel 68 24,8
212 24,8
392 24,2
572 22.8
752 21.5
1112 18.8
1.5% C -212 .
Carbon steel 68 20.8
212 20.8
392 20.8
572 20.2
752 19.5
1112 18.2

Table A.3.2 The thermal conductivity of

some alloy steels for various
temperature values,
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APPENDIX 4

FINITE ELEMENT SOLUTIONS

With the advent of the modern high speed digital
computer has grown an interest in the numerical methods suitable
for solving the problems associated with shells structures. Gne
such numerical procedure is known as the finite element technique.
This technique consists of "breaking" the shell up into a number of
elemenis. These elements must subsequently be "matched" at their
boundaries to give either continuity of stress or of displacement.
The solution of a shell problem by this method requires the use of a
computer with a storage capacity capable of handling the inversion
of the large matrix which is involved.

One commercial organisation which has a finite element
program for spherical shells is Babcock and Wilcox. Their program
is capable of evaluating the thermal stresses on a spherical shell due
to an axisymmetrical temperature distribution. S. H. Dance of this
company, when approached by the author, agreed to evaluate, using
this finite element program, two cases of a heated opening in a
spherical shell with a specified temperature distribution.

The values of the shell parameters subsequently supplied
to him were as shown in Figure (A.4.1). The two opening values for

which the thermal stress distribution was requested were

\N1 =O‘S|8“ 3 r\\: RS -587 .

The temperature distribution arising from such heated openings can
be/
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Me, BOUNDARY CONDITIONS

Q\? AT 1

Nr"ﬁ Mr‘, =

OUNIFORMLY HEATED OPENING
(Temp. 1000°¢)

1
THICKMNESS 1

2 < .
YOUNGS MODULUS, E = 30%10 lb/in? )
COEFFICIENT OF LINEAR ASSUMED CONSTAN
- : = X O n/in
THERMAL EXPANSION, of, = 11 %10 WinC® > OVER WHOLE SHELL
PoissoNs RATIo, V., = 0-:25H
. /
OPENING TEMPERATWRE, T, = (000 C
TEMPERATURE DISTRIBUTION, L, =T %ﬁ%
TEMPERATURE PARAMLTER, S, = 12

FIGURE (A4.1) DETAILS OF THE SHELL FOR WHICH
THE THERMAL STRESSES ARE

EVALUATED.
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SHELL
ELEMENT

ENDL___

7

W\
INSIDE SURFACE

"OUTSIPE SURFACE

END 2

FIGURE (A4-2) TYPICAL SHELL ELEMENT FOR THE FINITE
ELEMENT TECHNIQUE.
N.B. SINCE THE PROBLEM HAS BEEN SOLVED
UPSIDE DOwH THE LOWER DIAGRAM IS REQUIRED
TO INTERPRET THE RESULTS.
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be evaluated, using the relationsghip

T Ko(5F)

Ko (55)

T

since all of the parameters have been prescribed. These
temperature distributions are shown in Table (A.4.5).

‘ For the finite element method Dance divided the surface
of the shell, over which there was a non-zero temperature
distribution, into 40 equal tapered conical elements, where the taper
is, of course, zero in this problem. The surfaces of the spherethus
considered were

{-or f, = 0.518" , 0.518" = Y = 43.953"
for - 25.557" 25.557" = ¥ % 62.997"

The problem was then solved using a stiffness method.
This method should ensure reasconable accuracy of displacement but
the stresses could be subject to some error due to the approximations
inherent in the method. This type of problem is so_lved "upside
down'. Computation begins on the outer element, where the
temperature is zero, and proceeds to the opening. The assumption
is made that there is zero displacement and rotation of the outer
element. It is of interest to note that the meanings of "inside" and
"outside" surfaces, see Figure (A.4.2), as used in the program, do
not correspond with the usual connotation.

The results obtained by Dance, for certain of the
elements, are presented in Tables (A.4.1 and 3)‘. It is observed
that results afe presented for both "ends" of each element so that
the values for "end two" of an element should agree with the values
of "end one" of the consecutive element. The tables show perfect

agreement,/
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agreement between the end values of both the horizontal
displacement and of the rotation. There is good correspondence
between the hoop stress values. The axial stress values show
wide disparity particularly near the heated opening. The largevalue
given for the axial stress at this boundary is disconcerting.

An analytic solution for this same problem is presented
in Section 2 of Chapter 2. Substituting into this solution the
appropriate values of the parameters and of the bouhdary conditions
"analytic" solutions for the stress distributions are obtained.

The analytic results are presented in Tables (A.4, 2 and 4). It is
unfortunate that, because of the computational difficulties outlined
in Appendix | , the stress values cannot be calculated for the exact
values of the radil given in the finite element results.

It is observed that there is reasonable agreement
between all the computed and the analytic results except for the
axial stress values near the opening. The mean of the two adjacent
computed axial stress values does however give better agreement
with the analytic results. Rather surprisingly there is better

agreement between the stress values for the smaller value of opening,

¥, = 0.518", than between the stress values for the larger opening
where T, = 25,557". The same is not true for the horizo.ntall
displacement. In the case of "y = (.518"
W  (computed) = 0.1233 x 1():2‘2 in
W (analytic) = 0.,2116 x10 “in .

Once again, however, the correspondence between the two sets of
values improves with distance from the opening.
As with many other numerical procedures it would be

valuable to perform the finite element technique on the same problems

using/ -
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using different numbers of elements each time. The convergence
of the various results obtained for the stresses could then be
compared.

The earlier graphical results presented in this thesis
indicate rapid changes in the stresses within a region close to the
opening. An element size of approximately 1" in this region is
rather large. It would be more satisfactory to have an element
whose size varies with the radius. Thus would be provided small
elements in the region of the opening where the rapid changes take
place and large elements far ramoved from the opening where the

effects have reduced almost to zero.
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