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Summary of Thosis.

"A Graph Theory Model for the Computer Sclution of University
Time-tables and Related Problems™

The work desoribed in this thesls is concermed with four main
fields of investigetion, three concerned with the problems of a
udverslty sduinistration in produecing time~tables, and one concerne
with the theory of graphs which provides e convenient mathematical
model of a waivergity's course-~siudent structure.

A vniversity administration's time.-table problems may be
clapaified under three headings:

1/ the production of exsmination time-tables,

2/ the assigmment of atudents 4o ¢laopaen, and

3/ the production of class~beacher~room time-tables.
These three probleng are o olasg of the geneval cembliastorial
problem and thus simple emmeration will, in theoxy, provide a
solution. Thisg thesis demcribes and evelualtes several algorithmic
metheds of golution and several heuristic approaches to reduce the
combingtorlel difficuliies of the problems. Although heuristic
wethods de not guarentee the finding of sn optimwel solution, or, in
sone cages, any =elutlion ab all, the succesy of perticular heurlstic
1z demonetrated ou sctual course-student data.

A new algoclthmic method lg propesed for the construction of
class-teacher«-room tima-tables. The feasibillty of this method is
demonstrated with a nen-trivial example based on a gume,

The thesis concludes with en investigation of the theory of
graphs, the mathematical model used in previous works Upper and
lower bounds fox the chromatic number of a graph are developed and
procedures for reducing the slze of the problem are constructed and
discussed.



An algorithm for finding all the complete subgraphs of a graph
ig developed as an ald in determining the solution to parts of the
time~table problsm. This is then xelated to several theorems cone
cexrnlng the eigenvelues and eigenvectors of the mahelces asscalated
with graphs and their meaning in the terms of the structure of these
graphs. ‘This leads readily to a bound, invelving elgenvalues, for
the slze of the largest complete subgraph in any given graph.

The graph theory section ends wlth & short note on the four
coleur problem,
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INTRODUCT Y ON




Fducation 1is very big busin . lext to neticrsl
defence it 1is probably the largest single objective
in every civilized country. It intimat=ly concernn
about 20% of the population and is one of the major
jtems in the national budget. With millions of people
and vast amounts of money to be accounted for, educationsa
administration is rive for the gpvlication of computers
to some of the difficult problems arising in educational
institutions. |

A very large curriculum reform ig in progyess in
response to the expansion of knowledge and the generel
dissatisfaction with the school vrograms of the 1930's
and 1940's., There are now many groups working in
different countries studyling chanrges neczdad in the school
curriculum. Each of these groups 1s producing the
hundreds of items necessary for an instructional packege.
But underlying each package is an assumption of how Lbe
curriculun should be orgsnized. To date the corpuler
has played a very minor role in this curriculum reform.,
However as the reform movement grows towards more and
more individuslized instruction, the co-puter will becone
not only a great help but the only possible means for
2 lerge irstitution to degl with its curriculiun rroblemxs,

This thesis considers three aspscts of the workloed

of an educaticral adninistretion:

1/ the production of exaxnination time-tzbles



2/ the assignment of students to classes

3/ the production of class-teacher-room time-table:

These three problems are & class of the gereral
combinatorial vroblen. The fact that complete enumeration
of all possible assignments or time-tebles provides
& theoretically satisfactory solution to the problem
is evident, however the practical impossibility df
applying total enumeration to any but the smalleét‘
of problems is also agulite clear. An experlenced person
is able to produoe'a reasorable time-table, reasonable,
that 13, in the effort required to find a better one,
because he can see to avoid the many unfruitful psaths
the computer would have to take. However as universities
increase in size and complexity the effort irvolved
in this task will grow to the point where computer
based methods may prove to be the only reasonable method
of eccomplishing them.

This thesls describes and evaluates several
algorithmic methods of solution and several heuristic
approzches to elimirate the combinatorial impossibility
of the problems. Although the use of heuristics

eliminates the assurance of eventually obtaining a

sclution (if, indeed, one evistes gt 211) arnd will not

Q

verantee that, if found, the solution is optimum, the

’}

success of particular heuristics will be demonstrated.

'The computztional pvower of an English-Electric-

Leo~Merconi KD¥ © computer w2s used to develop and



check out the procedures. The maln part of this thesis
is a description of the ldeas leadlng to the developnent
of the procedures, however some of the approaches found
in the literature have been included for reasons of
completeness.

Although the organization of schools differs from
area to ares the baslic procedures are applicable to 211
levels of school organization. The emphasis has been
placed on a situation similar to that of a North American

university as it 1s somewhat more general than eithexr a
t

\ .

school oY a British university situation, and the
suthor was véry familiar with & lNorth Americen university
administration, The fact that many problems, not
directly related to the production of time~tables, may
be expressed in the same notatlon &s that used in this
thesls gives an indication that these procedures mayv
have wider applicabillity than just educationsl
administration.

It 1s hovped that, by an examination of these and
other vprocedures, both heﬁristio and algorithmlce, someone
may be able to determine a relatlonship betveen the data

and the time-tables produced. As J. Von Neumann (16)

once ssid:

"Thet the first, and occasionally the most
important, heuristic vointers for rew

mathembtical advarces should originate in



physics (experimentation) is not & new or
surprising occumwence, The calculus itself
originated in physi(;s° The grest advances
in the theory of elléptic differentisal
equations originated in eguivalent incights.
This applies even in the heuristic

apprcach to the correct formulation of
their uniqueness theorems ard of their

natural boundary conditions."

Thus by expounding heuristic methods perhaps an insight
may be obtained into an grea where modern rathematics
can not go, just as it once couvid not delve into the
inner mysteries of elliptic differvertlal equations.

The rest of this work 1s divided into four major
chapters., The firsat chapter deals with the production
of examination time-tables., After deveioping a graph
theoretic model, an heuristic procedure {or the producticn
of the Time-~tables is developed. A number of other
authors have developed very similer heuristics for

ppears

producing examination time-tables, however it a
that all the authors have worked in ignora=xce of one
aﬁothers work., Using this heuristic as a2 base it 1is
then possible to show the relevance and use of an
elgenvector of one of the matrices ussd. This lezds to

an invroverart inr the tasic heuristic resuiting in an

[

extremely gzood procedure., In order to show ths succass



of the ilmproved heuristic an Investipsation of nossible
algorithmic procedures is conducted,; rasulting in the
development of an algorithm for finding complete subgraphs
of a given graph, This procedure is partially bascd

on Theorem 1.5.3, the stetement of which, but not the
proof, is attributable to Dr. A. R. Meetham from the
National Physical lLaboratory. The chapter ends with a
brief sumﬁary of the computational results and & note

on the possible modifications to the procedure.

Chapter 2 desls with the problem of assigning
studentsgfo olasseé. After showing the relevance of
the problem, an heuristic procedure is developed and
compared to those previously described in the literature.
A section is then devoted to describing the solution
to the problem in terms of transportation networks,

.This sectlion is an exfension of & general work by

Ford and Fulkerston (41). The chapter Tinishes with.
the development of an aleorithmic sectloning procedure,
bhased on the complete graph algorithm, and a discussion
of some aspects of its implementation.

Chapter 3 is a review of some of the literature
dealing with the problem of producing full master
time-~tables end a8 discussion of an algorithmic procedure,
The chavpter concludes vwith an exauple, tased on & gane,
of’ how the procedure would operate.

Chepter 4 investigates the theory behird the

problems. Upper and lowver bounds for the chromatic



number of a graph ere developed and procedures for
reducing the size of the problewm are developed and
discussed, A section 1s devoted to the eigernvalues and
eigenvectors of various matrices and thelr associsticn
with the colouring problem. The chapter finishes with
a Justification for the heuristic procedure developed

in Chapter 1 and a short note on the four colour problem.
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CHAPTER 1

Examination Time~tables




Section 1.1 The Problem

The characlter of the examination time-~table
problem 21lows it to be readily represented by @
mothematical model known as a graph (2,4,19). A
graph is:

1/ a set X
"2/ a function. U mapping X into X.
Or, to put it another way, a greph G, which is denoted

by

t

G = (X9U)9
1s the pailir consisting of the set X and the function
U. It is convenlent to visuelizc the set X as points
or vertices in a plane, and if x and y are two. vertices

‘such that
¥y € Ux and x e Uy,

then the tvo vertices will be Jjoined by a line or edge.

If x and y are two vertices such that
v € Ux but x ¢ Uy

then x and y will be Jolned by an edge oriented in the
direction y to x,.

Graphs are met with in different disciplines
under different names: 1in psychology they are called

socloagrams; in topology, simplexes; in physics end



engineering, circuit diagrems. In the context of the
production of an examination time-table the set of
vertices, X, will represent the set of classes offered
at the educaltional institution and the function U
wlll be such thalt i1f any student is taking both course
X and course y then U will generate an undirected
edge between vertex x and vertex y. For exemple in
FIGURE 1.1.1 are listed the courses being taken by
four students and the graph generated by this data.
The general problem of producing examination
time-~tables is one of partitioning the vertices of
these gfaphs into indgpendent or disjoint sets, such
that erch set conteins no palr of vertices which are
conriected by an edge. This may be considered as
"colouring" the vertices of the graph. A colouring
of a graph, using at most k colours, is a function
C defined ovexr the vertices of the greph snd taking
orne of the values 1,2,3,....3K at each vertex with

the condition that
C(x) # C(y)

1f the vertices x and y are joined by an edge. IT
the gravh is colourable in k colours but not with
k - 1 colours then k is celled the chromatic number

and the graph 1is said to be k chromatic. The symbol

Y(G)



Stvdent A Student B Student C Student D

course 1 course & course 1 course 2

course 2 course 5 course 4 course 5

course 3 course 6 course 3 course 3
1

FIGURE 1.1.1

Showing the courses taken by four students and the

graph generated by this data.



will denote the chromatic number of the graph G.
If a greph consists of two or more disconnected
components the chromatic number of the whole graph is

that of the component with Jlsrgest chromatic number.,



»

Section 1.2  Methods of Solution

To find the chromatic number and the colours
assigned to the vertices of a graph G (with N vertices
and E edges) 1t is possible to use an empirical procedure
which is straightforward and capable of direct
implementation, but not always effective, an analytic
procedure which gives a solution systematically but
requires a tremendous amount of computation, or an
heuristic procedure which, slthough it does not

OP}-\'m waty
guarantee_a'%solution9 can in practice give an acceptable
ansver with 2 minimum of effort.

The empirical procedure consists of starting
with an arbitrary oolouriﬁg3 using the colours 1,2;..,P
and attempting step by step to eliminate one of them.
This can be readlly seen to be an awkward and not
necessarlly successful procedure 1f luplemented on a
large couplex graph.

The analytic procedure consists of testing
analytically whether the graph can bhe coloured with p
colours. With any scheme using p colours it is possible
to associate numbers S(i,J) and C(i,q) (where i = 1,2,..N;
J=1,250..485 @ = 152,...,P) such that:

1 if vertex' 1 1s of colour g

Cli,q) =-
0 otherwise



S(i,)) =
\p otherwise

The problem of determining 1T the graph can be coloured

in p colours now reduces to finding integers C(i,q)

such that

C(i,q) ZT 0 (i =1,2,c.0.,N5 Q@ = 1,2,00045D)
Cliyq) =1 (1 = 1,2,0..,N)
S(k,;ji)C(k,q) =1 (3:1,2,¢?,E; Q=1,25c04P)

Thus there exists a system of linesr inegualities
whose compatibllity may be investigated by the usual
methods of integer programming. If integers C(i,q)
can be found satisfying the above constraints theh

p may be systematically reduced untll the chromatilc
number, and thus the values of the colouvring function,
are determined.

Unfortunately the analytic procedure also bresks
down on large graphs because of the raepldly incressing
‘computation necessary as the size of the graph gets
larger. The computation effort may be reduced if the
graph ls separable into several disjoini subgraphs,

The iIndividual connected subgraphs may be easily
determined by considering the original data and not
the graph. FEach student will have teken a set of ]Bl

courses, R, which is 8 subset of the N courses offered

Jﬁ if edge j is incident with vertez 3



by the institution. By considering each set R in
turn the following algorithm will easily determine
the connected subgraphs:
1/Produce an N element vector B such that
B, =1 (1 = 1,2,350003N)
2/Select a course } from R such that

B, = win, B (k= 1,2,3,000, [B) )
3/For esach B (k= 1,2,3,..., [B] ) replace
each occurrence of the number Rk in B by Bj

Lh/after considering all the sets R, the vector

‘B is scanned and if

then 1 and J are vertices in the same connected
subgraph.
The integer programming procedure mey now be

applied to each disconnected subgraph in turn. If
the greph is not separable, or 1f each disconnected -
subgraph is still too large to make an analytic procedure
‘practicable, then recourse may be made to finding a
"'point of articulation" if one exists., A point of
articulation is a vertex, p, which sepsrates the
vertices of the graph into two or more subsets, Vi
st.,agvns having only p in common and such thst ary
edge chain between a vertex in V; and a vertex in
Vi, must pass through p. For example the graph in

J
FIGURE 1,2.1 vertices ¢ and d are points of articulation.
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FIGURE 1.2.1

Showing a graph in which vertices ¢ and d are points

of articulation.



1

Removal of vertex c¢ secparates the gravh into two

€]

disconnected subgrevhs. I the subgraphs are ncw

sry to essign a colour

L A

[0
)

coloured 1t will only be neces
to vertex ¢ such that (verhavs after vermuting the
colours of one of the subgraphs) it is different

from the colours essigned to vertices a, b, and d.

This conceot may be ertended to finding a "minimal
articulated set", This is e set (rot necessarily
uni~ue) consisting of the least number of vertices
whose removal will divide the graph into two or more
unconnected subgraphs. The problem of finding a
rinimal articulated set 1s not trivial.

‘To find the minimal erticuleted set of a graph,

G = (N,U), N must be divided into three subsets Ni,

N2, and & such that:

'I
=
——
‘._1.
L]
hel
L]

[ N
—

Uyl A N2
UNZ/\ N1 = @ (1.2.,2)

lal is minimel,.
Let M be the boolean matrix such thet

fi if vertex 1 is adiacent to vertex J

1] \p otherwise
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FIGURE 1.2.2 shows a graph, itsmatrix M ard the.cémplement
¥ (M = 1-M) of M. The submatrix of M defined by the

rows corresponding to N1 and the columns corresponding

to N2 has all its elements equal to 1, as defined by

the relations (1.2.1) and (1.2.2) above. The problem

thus reduces to finding the largest complete (ie. all
elements equal to 1) submatrix of M., Kaufmann (23)

describes an algorithm which will yield both

1/ N1 = a,bsc,d N2 = f;g,h

a = e,i and jal= 2
and
2/ N1 = a,b,c N2 = f,g,h,1
a = d,e and ]a’:: z

Unfortunately Kaufmann's algorithm is ouite expensive
in computer time and, as the sigze of thé graph increases,
more and more minimal erticuleted sets will be needed,
thus meking it almost impossible to ensure that the
colourings of the indivldual subgraphs will be
compatible. Because of these difficulties the aralytic
procedure must be counted as impracticable for large
grayhs.

An heuristic proceduvre offers neither the assurance
of finding an optimal solution; as does the analytic
vrocedure, nor the simplicity of the empirical procedure,

but it does offer the ability to obtain a solution in



a practical case and to obtain this solution without

an unitreasonable amrount of computation,.
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Section 1,3 Heuristic Procedures

The author (28), A. J. Cole (5 ) and others have
proposed heuristics for solving this problem. The
authorfs work (herecafter vrefered to as the Peck-Williams
procedure) is slightly more general than most of the
others but they 211 follow the same general pattern.
The main heuristic assumption is: If a course (vertex)
1 conflicts with a large ruumber of olther courses, then
it will be harder to find a time period (colour) to
fit it in than to find a time period for a course j
which conflicts with only a few other courses.

e dy denotes the degree of vertex 1 (the number
of edges incident with vertex 1) then this becomes
an index of the extent to which course 1 conflicts
with other courses (for example in FIGURE 1.3.1,
d3 = U which indicates that course 3 is in direct
confiict with three other courses, plus one because
f33 = 1)

Assuming that the first T-1 periods of an examination
time-table are complete, then to select the courses

which will write examinstions in period T the heuristic
procedure would be as follows:
1/find the unassigned course with the largest
di
2/check to see if this course is joined by an
edge to any other course already assigned to

period T; if no edge exists then assign this

Lo



course to period T and go Lo step 1, otherwise
remove this course from further consideration
in period T and go to step 1.
This heuristlc has two distinct advantages:
1/it has intuitive appeal
2/it is very simple to implement on even very
small computers.
The intuiltive appeal stems from the experience of
"hand" produced examination time-tables, where to fit
a new course, having a large student population (and
hence a large number of conflicts with other courses)
into aﬂ already completed time~table is an almost
impossible tesk, It is for this reason that a clerk
of examinations will always time-~table the large classes
first and then let the classes with a small povulation
fit in where they oaﬁo
The Peck-Williams procedure has been successfully
jmplemented on a very small I.B.M. 1620 whers the core
store was not sufficient to hold all the reguirsd
information. BResort was made to a large lood of paper
tape which was searched to find the items of information
that were required. Even under such a severe handicap
the procedure produced usable results in a reslisticelly
short time. The procsdure proposed by Cole has been
implemented on an Elliot 803 and, although limited

to less than 340 subjects,; also produced usable results



wlthout using vast amounts of couwputer time.
For greater generality consider a graph G = (V,U)

whose vertices are Vs ¥ v

291‘-0(\9 no

nunber of edges of G golng from vertex vy to vertex

Let a.. be the
1)

vje The soauare matrix A with n rows and n columns 1is
called the matrix assoclated with the graph G. The
element 854 1s meaningless in the context of examination

time-tabies., It will be a conventlion that a = 1

il
unless otherwise stated. In most situations the elements
of A will only take the values O or 1, in this case
A may be considered to be a boolean matrix with
0 Z false and 1 = true. It will often be convenlent
to consider A both as a numeric matrix suitable for
computation and as & boolean matrix for use in logical
operations, The context of the argument will make
clear which form of A is being used.

The heuristicss in thg above mentioned procedures,
actually operate on the associated matrix of the graph
of the course conflicts. The ordering criterion,
d

1y 1is obtained by

di :T;aij

and the adjacency of two vertices, vy and Vi MAY be
deterwined by inspection of the element 84 50

By this heuristic the first course scheduled to
hold its exeminatlon in pericd 1 will be the course

whose vertex has the largest degree. However comrlications



arise when tvo or more courses have vertices of the
same degree. It is obvicus that the selecticn of

course 1, for inclusion in period T, nay produce &
sigrificantly different time~table from the one produced

if course J had been initially selected.

The Cole procedure differentiates between courses
of eaquszl di by selecting the subject with the largest
nuincer of multiple papers which must be written on
consecutive days. If no course emerges unique from this
criterion then a selection is made by considering the
nuiiber of papers written in each subject. If this
still does ﬁot vield a unique course for considerotion
then the original ordering of the courses 1is considered
and the first course encountered, meeting all of the
above condlitions, is selected for inclusion in time
period T.

The Feck-Williems procedure, on the other hand,
simply selects the first course it encounters with the
apprépiate di‘

It is interesting to note that Holzman and Tuvrkes (22)
in one of the most widely reed reports on this subject,
wnile considerirz the order of scheduling classes,

state:

"an arbvitrary volicy states that the ver]

[Xy)
]
[
(W]
'
‘._l
m
n

should e scheduled in the order A39A?,Aq,.,",

They =c on to develov This sruitrary volicy irtec a

procadure which dces mot do justice to ths word ortimal



which appears in the title of thelr report. By claiming

L

to rely heavily on Ba2llman's principle of op!
which states:
An optirel policy hzs the proverty thst,
whatever the initizl state and inliltial decisions
are, the remaining decislons must constitute
an optimal policy with respect to the state
resulting from the first decisions,
they have produced a procedure which, although very
cunning in the way it adds a course to the partizlly
completed time period, still violates Bellman's
principle, with respect to the wholeée time-ta2btle, by
selecting the inilial courses for each period according
to an arbitrary policy.

This lack of & decision criterion for the selection
of courses 1is a serious dreswback of all these procedures
as it can be shovwm that an incorrect choice of vertex
can lead to time-tables which are far from optinal.

Fﬁr exanple, consider a selection of twelve courses
whose conflict pattern produces the graph and its
associated matrix shown ia FIGURE 1.3.1. There is no
singie vertex of maximnum degree, rather the choice
lies between vertices 5, 6, and 7, each of which has a
degree of six.

Both the Cole ard the Peck-Yilliams procedure

would have chnoosen vaertex five as the initisl assimrrant

and thus produced a tirme-table o four periods ==
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follows:s

period 1 period 2 period 3 period 4

5 6 3 10
7 2 9
courses b 1
8
11
12

An inspection of this Trivial graph will reveal that
its chromatic number is, .in fact, three and 1t should
be possible to produce an examination time~table of the
forms

period 1 period 2 period 13

6 5 9
7 10 1
2 3
8 L.

11

12

Thus the ordering criterion used in these heuristic
procedures 1is not optimal and should, if possible,

be changed.



Section 1.4  An Iwprovement

Section 1.4 An Iwmprovement
TTTTIHTTTAVEST 1 ZETITIRT TR T reduilred changes to the

heuristic procedure it will be useful to define the
"influence" or "“degree of order k" (d?) of a vertex.
This influence will be an index of the degree of the
vertices joined, by an edge path of length k, to the
vertex under consideration. ‘

For example, conslder a tournament with four

players Vis Vou V VM; if v, defeats vj then vi is

3’ 1

joilned to vj by two edges directed from'vi to vj, if

the match was drawn then the two vertices are again

joined by two edges - one directed towerds each. AL

the end of the tournament the results are placed into
the graph and its associated matrix shown in FIGURE 1..4.1
(the loops on each vertex mean simply that each player

is only as strong as himself),

k

The tern aij is the general element of the matrix

k :
A" (ie. the number of edge paths of length k between

the vertices A and Vj) and

.k T
(lj. = Zai.] °

4

Thus di is the degree of vertex wv,-(ie. d% = dy)e

In the example of the tournament in FIGURE 1.4.1

1 1
dl = 5 d2 = 3
1 1
d3:5 ay = 3.



Vi defeats v. and Vi

3
v2 defeats vl

V3 defeats v2 and v4

VLL defeats vz

N
=
<
N O N

o
Do
o
=

PIGURE 1.4.1

Showing the results of a tournament, thelr transformation

into a graph, and the matrix associated with the graph.



Contestants v1 and V3 both have a degree of 5y
while contestsnts v, and 7y, have a degree of 3. So
no one player has seemingly emerged victorious.

Continuing the process by finding d?E where

n+41 n |
di "_t. z B.jjdj (1 nl‘!'ol)

the following results are obtalined:

2 2
2 2
d_3 = 17 Cl“_ = 9,
This indicates thatlt player vy is the winner ol the

tournament, This 1is due to the fact that the players
defeated by vy (v3 and v, ) were stronger than those
defeated by v, (vo and vy).

It has been suggested by Berge (2 ), in a discussion

on tournament theory, that the ®itereted power of

order k of the vertex Vi" ('mk) be defined as
k
a.
k
>, af
_ i
[#

It i1s well known that the ;}mit Wf exists for positive

- o0

metrices, and the vector:

LR AN

&
2

. ﬂﬁiﬁ

tends toward the eigenvector correscvonding to the

largest real positive eicenvalue of the matrix &,



A brief loo¥ alt & couvnletely cifferent problemn

moy provide a further ineight into the nature of

the ousrrntlity d?»

In an 2ttewpt to devise a scherre Tor drawino

a gravh on a comvuter controlled plotter or disnlay

it on a cathode ray device, the following nproblcm zrose!

ojiven n vertices, some of wnich 2re Jjoined

tosether by edres, »roduc

1

2 ralir of X,Y

gl

co-crdiratea for each vertex suchk thot when

the vertices are digtribvuted on theil

=

the btound pairs of vertices is mirimal, the
centre of grsvity of the system ils or the
oripir and the whole svslem is distrituted
evenly over 2 clrculsr display erea.

If the co-ordinates of vertex 1 are Xi and Yj then

2%y =0 and Y'Y, =0 (1.5.2)
B :

v

te keepr ths vlot ce-tred or the origin and

N

E;Xi = ¢ and ESY = C (L.4.3)
: .

L

[

to contiedin the plot withir & constert area. If the

matrix A is the r» by n svrretric zaro-ore matrix

asgocisted with the «iver oranh then o furction, T,

i 5

may bte constructed which will proviae .gr» iterative

T P S meun - 4 o
bogls for the assi-nneri of

Ceen -

- Y - r E , - . .
an X ard Y to z2ch ver

PR Tt



sum of the scuares of the distances between
f = all Jjoined vertices
2

then
20 = SISH(X, X)) + (Y.-¥)%) &, . (L.5.4)
TS L i 7 1)
Expanding this it is possible to obtain
2 2 .
t-Zi(Y.l gaij)&};zé{iyjaij—r%jy Zjaij (1.4,5

To produce Ehe best clustering the function f must be

_ 2 ‘ FSTxE
£ = SUXS Z aij)mzz5 ?;:‘ Xixjaij“i;szaij

a minimum. Conslidering one vertex, i, and for simplicity

assuming that the greph has no loops, le. 8,5 = 0,
it 1s possible to obtain
gt
—_— = X > a., - .o, 1.4,.6
-~ lzj oy ijjalj ( )
i
ar
Setting -— = 0 and solving for Xi it is found that
6Xi
sz.ai.
Xi 21__.._:1,_“_3_; (11:“’.7)
S
similarly
Y.a, .
Y, OIS (1.4.8)
Sa

By using (1.4.7) and (1.4.8) in an iterative procedure



it is possible to determine the Xi gnd Yi for each
vertex. Obviously, in the practical display problen,
it 1s necessary to scale Xi Xi and shift the origin
between each iteration to satisify conditions (1.4.2)
and (1.4.3) and extra steps must be taken to ensure
that closely related groups of vertices do not shrink
to a single point or all vertices come to cluster along
the line X = Y.

The similarity between (1.4.7) and (l.4.1) is
striking but not unexpected; for in both problems the
object is to Tind the "centre of gravity" of the
graphof In (1.4.7) the denominator may be interpreted as
a factor tending to pull a vertex of high degree to
the centre of the system.

In attempting to asslign colours to the vertices of

Xk
1

(from (1.4.1)) or the smallest X5 (from- (1.4.7)) that

a graph it will be the vertex with the largest d

is most likely to cause trouble as it is the vertex
most deeply embedded in the system.
Returning to the problem of examination time-tables:
. . [ ‘
it should now be clear thal; because 1g§1t 77" tends
S (=
towsard the principal eigenvector corresponding to the
lergest eligenvelue of the matrix associated with the
U\.ls e'u(}emu’ﬁd‘of" .Skoul&b& weed astae &F&Bﬂvg cobetion,
graph of thelr conflicts, In any practical situstion

the computation of this elgenvector is difficult (and

on small computers its computation would be preohibitive),



thus the courses should be ordered by thelr @, where

k
1
k is large enough to obtain sufficient seperation of -
the classes to make thé order of scheduling clear.

The actual value of k that should bs used will vary-égh
the size of the problem and as the nature of the graph.
In general the iterative procedure should be carried out
to as high a k as possible, notwithstanding the fact
that if a clear separatlon of the vertices 1s obtained
(no two elements of dk being egual) then the iterstive
procedure should be stopped. It should be noted that,

as in the case of vyq and v in FIGURE 1.3.1, & complete

12
separation may never be obtalned irrespective of the
number of iteretions performed.

Returning to FIGUBE 1.3.1 to consider a concrete

example, the assoclated matrix and the first three

Xk
dis's are

1 1 2 3
di di di
100011000000 3 15 66
01 1010000O0O0CO 3 13 56
011001100000 L 19 79
O0010010O0O0CO0CO0 2 8 28
1120011011000 6 24 107
101011001100 6 27 125
0011001001111 6 20 63
0O00C0100100O0O0 2 8 32
0O0001 1001121200 1y 20 91
000001101100 I} 20 87
0000001 O0O0O0110O0 2 8 28
0000001 0O0OO0O01 2 8 28

. 1 . . . . rs -
Using di as the ordering criterion the Feck-Williecms
vrocedure produces an exanination time-table of four

veriodssg follows:



period 1  period 2  period 3 period 4

5§ .

5 6 3 10
7 2 9

W 1

8

11

12

If this procedure is changed to use d? as the ordering
i
criterion it 1s possible to produce a three period

time~table:

period 1 period 2 veriod 3
6 5 9
7 10 1
2 3

8 by

11

12

This 1s the best possible in this case. Thus with an
) " - ral Ly LY y 1{ L) . 3 . L3
expenditure of a small effort 1n computing d— a significent
improvement can be made in the heuristic even for

trivial graphs.



T

Section 1.5 Determination of the Chromatic MNumber

i determining an examination time-table by heuvristic

methods it car rnot be assumed that the resuvlt is
optimal, or irndeed anywhere neer optimal. For this
reason a great deal of time wrs spent on methods of
checking the result to see 1T 1t could be further
inmproved.

The mathematical basis of graph theory has not
progressed to the point where, given a graph, & formula
may ezsily be determlined to give the cﬂromatic number,
much less irdicate which vertices should be given what
co]ourﬁn

One approach to the determination of the chromatic
nimber of a graph may be made through the thsory of
chromatic polynomialée A chromatic polynomial is a
function, F( A ), which expresses the number of different
ways of colouring & greph as a function of the number

of colours used, A . For exemple, in FIGURE 1.5.1

the certre vertex may be coloured in any of the X colours,

the two outer vertices may now be coloured independently

each in A - 1 ways. Thus

() = n(n-1)7.

Similerly In FIGURE 1.5.2 the top vertex nmay be coloured
in A wsys, there #re then Z~1 ways of assigning &

colour to one of  the zdjecent vertices and Ww-2 woys



. . o PO = a1

FIGURE 1,5.1

Showing a graeph and its chromatic polynomial

FIGURE 1.5.2

Showing a graph snd its chromatic polynomial



of colouring the Third vertex. Thus
FOCA) = A(A-1)(A-2),

Tt hss been shown by L. C. Read (3@) that F(A)

is always a polynomisal of the following form:

A

\ —_ n 7~ nhi
P()\)—‘CTA ""\»‘1.,_1_>\ ¢ G000 cC O CI‘-—-I’l

where n is the number of vertlces in the graph,

CT,_H1 = the number of edges 1in the graph,

and the sign of C.1 alternatez a2t each term.
If F( A) is the number of ways of colouring the
graph in X colours then the smallest positive irteger

(excluding zero), A , such thet
F(X) =0

will be the chromatic number of the graph.

The computation of the coefficlents of the
volynomial is, in general, an iwpossibly complex process
for a large graph, In fact very little is known about
chromatic polynomials and only one way has ever been
found to construct then. A numbter of theorems in the

Y

vaper by Read (30) give necessary condition

M

for a

pol

e

nomial to be the chromatic polynomizl of some graph,
but none of them give a sufficient conditicn.

Recause of the various limitations of these &and



other‘methods, it became necessary to retreat to basic
concepts and attempt to design a procedure which would
give some Information on the chromatic numter of &
grephe

J. De Bruijn (unpublished but his proof appeers
in a paper by G. A. Dirac (8 )) has shown that a
graph a2lways contains a critical chromatic subgraph
and that this subgraph is finite and connected (a
critical greph 1s one 1in which if you delete an erbitrary
vertex or edge you reduce the chromatic number of the
graph). This result was improved by Brooks ( 8 ) who
showed thet if k¥ = 4 a critical kmchromatic‘graph contz ins
either a k-complete graph or & vertex of degree k.
Dirac (@ ) was then able to show that, if 0= p= k-1,
a critical k-chromatic graph contains either a complete
k-p greph as a subgréph or has at least k+p+2 vertices.
Dirac (10) was then also able to show that if a critical
k-chromatic grath contains n<£Xk vertices (ie. it is. not
a complete graph on k vertices) and e edges then the

relation
2e = (k-1)n+k-3

must hold true.

With the above results in mind, an attemplt was made
to investigate the pwoperties of the graph (defined by
its associated matrix) of each of the data sets used in

the examination tims-table exveriments, In crder to



examine the colouring prcperties of a graph it wouvld
be useful to find the slize and comrpositlion of the
critical chromatic subrreph. Howeﬁer trhe poseible
corylex nature of its construction, &s indilcated &y
by the example in FIGURE 1.5.3 (a critical chromatic
graph of 8 vertices vhose Y(G) = 6 yet the largest
complete subgraph is of order 5), rules oul any
reasonable method of determining it exactly.

It is difficult (though not impossible) to
deliberately construct a critical k-chromatic graph
vhich does not contcain a complete graph ol orxder Xk,
k-1, or k-2, It is therefore reasonable to suppose
that, in the grsphical prqoblems arising out of the
physical world, the critical chroratic graphs will be
composed of either a complete eraph of ocrder kX, ox
a complete graph of order k-p, where p will be a snall
(with respect to k) integer. Thus an algérithm for
determiring the sizve and composition of the largest
coﬁplete graph, iunbedded in the course conflict graph,
was the prime objective of the investigation. A
complete graph of order n will be denoted by Kn°

A nunmber of attempts st this vroblem have been
found in the literature, most of which were by

sociologists atterpting to analyze clicues or otherx
L) = by

group structures in socilogrers. Tyvical of the arvrosch
wes that used by Forsyth snd XKetz (15). Thev use? ths

-
L

dure

W

®
9}

following enplrical vrec

5
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FIGURE 1.5.3

o . the
A graph reculring six colours whes® lergest complete

subgraprh 1is of order five.



1/choose a vertex, a
2/ehunerate all vertices connected to a
3/interchange rows and colurmns of the associated
matrix so that the rows and columns, correspondin
to the vertices found in step 2, are side by
side
u/interchange the rows and columns of this
submatrix until as many of the non-zero
elements as possible are clustered nesr the
diagonal
5/the largest submatrix. whoes elements are a1l
non-zero corresvonds to the largest complete
graph,
This rather unwleldy procedure was eventually
replaced by one developed by Harrary and Ross (20).
They made use of the fact that, given a graph G and
its associlated matrix 4, the powers of A yield a mabtrix

whose elements agj

(the i,j th element of the matrix
AXAXA ,... p times) are the number of vaths o} length
P going from vertex 1 to vertex j. This leads readily
to the fact that each element in the diagonal of the

cube of the associated matrix of a Kn is the nummber
(n-1)(n-2)

where n 1s the number of vertices in the complete
gravh. Thus by cublirng an associzted matrix and

inspeclting the diagonal 1t 1s possible to deternine



the largest complete greph embedded -in the systen.
This method 1is limited to those cases where there
exists only one (or perhaps several disjoint) complete
graph and can not be made @applicable to a graph,
such as that in FIGURE 1.5.4, made up of several
interconnected complete graphs.
In attempting to remedy these feults 1t was noted
that 2 X, 1s mede up of a series of Kzs and,'if
n = 3; then it is made up of a series of KBSQ In

general the following results may be obtalned.

Theorem 1.5.1
A complete graph, G(X,U), of ordery (n = 3),
will contain, as subgraphs, n conplete graphs
of order n-1,

Proof

Delete one vertex, r, from the graph G along
with the edges such that re Uy (for all xe X-r).
There are now n~1 vertices left, and these eare
connected by edges such that xe Uy (for all
X,y€ X-r). This, by definition, is a complete
graph of order n~1 on the n-1 vertices in the
‘set X-~r. As 1 may be any of the n vertices
in X there must be n complete gravhs of order
n-1 in G,

A slightly more general resultl is:

Theorem 1.5.2



A complete graph, G(X,U), of order n (n =73)
contains, as subgraphs, n!/(pl(n-p)l) complete
graphs of order p (2=p=n).
Proof

Delete any n-p vertilces along with any edges
incident with them. By the same argument used
in Theorem 1,5.1, the remaining greph is a
complete graph of order p., As the n-p vertices,
deleted ebove, may be any vertices in the set

Xy 1t is obvious that the number of complete
graphs of order p as subgraphs of G 1s the
>number of' comblrations of n things teken p

at 2 time, or nt/(pti{n-p)i).

Theorem 1.5.3
In & complete graph G(X,U), of order n, (n=z=3),
each edge is part of n-2 edge circuits ol length
three,
Proof

Consider an edge, «, between the vertices 1
and j. If any other vertex v (re X-i-J)

is taken then, by the definition of a complete
graph, reUl and reU)] and therefore an edge

-circuit of length three exists and consists of
the edges «, Ujr’ and Uir' As r may be any

of the n-2 vertices in X-1i-J the theorem is

proved.

By the results deduced sbove 1t should be vossikle



to design an algorithm to find all the Kns then see
if the vertices of these graphs form a Kn+1 and continue
in this manner untill the largest complete graph is
found.

Because of the combinatorial nature of the problem
it would be helpfﬁl 1f the search could be started
with n es large as possible, and yet still be certain
that a Ky still existed. This would eliminate part
of the very time consuming search.

P. Erdds (11) has shown that if a graph G, with

n vertices, has

edges then 1t contains at least

o -
5 + h 1

complete three graphs, 1f 1t contains any at all.
This, although it looks as if it should provide a
‘starting point for an iterative procedure, proves

useless because

n?

L
is such a large number. For example, one of the data
sets used in this investigation gave rise to a graph

such that



27

The greaph had abcocut 5500 edges end thus h has a value
of aprroximately --69000 ard the greph containe about
~-69250 complete grarhs of order three, 1f it contains
any at all., As most of the graphs used for registering
course conflicts will heve the same density of edres
this epproach is impracticable. J. W. loon (25%)
extended the work of Erdods to obtain a lower bound

for the number of complete graphs of order k contained
in any given graprh., This, although of some theoretical
interest,; 1s useless for a starting point on any

actual computation.

An slternate approzch vould be to attempt to
determine the uorer and lower limits of the chromatic
number of the graph and thus, at least, find the possible
range of the orders of the complete graphs. This has
been made possible by the work of Ersov and XKozuhin (12)
who made the following observations.

If a graph has n vertices and p edgmes’ (no loops
or parallel edeges) then the largest possible chrouztic

number, X, is:

T-11 )

X = 3 w }/__9—2'":' 8(

anda the smallest vossible chromatlic number, ¥, 1is:



2 - i
n=—-2p
_ )3} / q { gt ]
r = o {1 ...,_______)
l:_n._____z -2 P 1 32_“_“ 2}?)
n ot n
L i

where the brackets[ ] and{ } dencte the integral and
fractional parts of the number respectively. When these
formulas are applied to the aforementioned data set

they give the following results

X = 100 x = 1

1= Y(G) = 100,

These, 2lthough bhetter than the previous bounds, are
still of no great use.

Fortunately Theorem 1.5.3 makes it possible to
design an salgorithm to check for the existence of a
complete subgrapvh of a particular ordexr. To determine
the largest comvlete subgraph 1t should only be nec=scary
to make this algorithm iterative; 1ie, check for a
complete‘subgraph of order n by eliminating any edges
not members of 2t least n-2 edge circults of length
three, then 1teratively entering this algorithum to check
wﬁether this reduced graph contains a cemilete graph of
order n+l. This process 1is continued until the gravh

is comnposed entirely of isclated vertices, thus indicating

that the largeat comzlete subzrarh is of order a-1.
If a graph, G, is subjected to this overztion (deroted



by ATn) in an attewot to locate a complete subzarenh of
order n, then the reduced graph (in which esch edge is
a menbar of 2t lecst n-2 edoe circults of lerncth thres)
will be denoted by Tn(G), 2 nototion dus to A. R, kpebtrs-,
If the grach 1s stored in the form of a bhoolesn
matrix the procedure for checking that each edge is a
member of at least n-~2 edge clrcuits of lernzth threc
becomes auite simvles

1/ensure that all elements of the leading

diagonal of the boolean matrix, A, hsve the

1
L)

valve false  (thls procedure is not vali
for graphs with loops)

2/1if an edge, o, exislts betwecn vertex i and
vertex J then form a booleasn vector B with

"n elements wvhose values sre debternined by the

boolean expression

By = Aik/\Ajk (k = 1,2?3;°ceﬁn)
3/if P is the number of trus elements in the
boolean vector B then the edge K ig 2 membex
of P edge circuits of length three.
This elementery conmnplete graph algorithr suffsrs

from two distinct disadvantages. The {irst, a rat

——

er

ninor disadvantagae, is the fact that it will not

<

®
¢t
[
-

3

2 distinct complete gravh. This arises fromn the

)
A

cr

c

4
I

that conplete granhs m=ay be interliaked, Tor exanule

FIGURE 1.5.4 consists of three iaterlinlked coivlaio

1 < P " - < ~ 4 s ox - J -
graphs of order Tour. The gsecond, and m=jor CisodvyarTo -



ig that the converse of Theorem 1.5.3, ie.

If, in a graph G, all edges are part
of n-2 edge clrcults of length 3 then

G 1s a cowmplete graph of order n

is falseo‘ Any gréphs whose edges are members of n-2
edge clrcults of length three bﬁt do not contain a
complete graph of order n will be known as "false"
complete grephs. As can be seen from FIGURE 1.5.5

(the simplest known "false" complete graph) each edge
is a member of Two edge circuits of length three, which
by Theorem 1.5.3 would indicate that it contained a
complete graph of order four when, in fact, it only
contains complete graphs of order three.

It 1s now obvious that an extra test must be
incorporated in the a2lgorithm to distingush the true
from the false complete graphs. A great deal of effort
was put into devising a sultable test to determine the
~"completeness™ of the subgraphs under consideration.
The possibility of simpl& checking a2ll the combinations
of edges and vertices was dismissed when 1t was found
that, 1n & modest graph, a check would have to be donre
on all possible combinations of 58 vertices taken
27 at a time. This very time consuming process would

have taken far lorger than the original determination



FIGURE 1.5.4

Showing three interlocked complete graphs of order four.

FPIGURE 1.5.5

Showing the simplest known "false" complete graph.

The graphs in FIGURE 1.5.4 and Y¥IGURE 1.5.5 have the samne

number oi vertices and edges,



of T27(G)a
The work of Erdos, Moon and Moser, cited previouvsly,
also fails as a test for complete graphs. Both Moon's
and Erdos' theorems use relations between the number of
vertices and the number of edges 1in a graph; as the
graphs in FIGURE 1.5.4 and FIGURE 1.5.5 both contain
six vertices and twelve edges, even these simple examples
are enough to show that the theérems{by Erdds and
Moon are not suitable to practical application.
The method eventually used to provide the final
check for the complete subgraphs was as followss
1/select a vertex, i, from T,(G) such that
the vedices
d, is a minimum for all # in T,(G).
2/produce a graph T%(G), containing i1 and those

vertices Jjolned to 1 slong with 2l1ll the edges

joining'ﬁquggﬁaiwﬁAvertices, FIGURE 1.,5.6
shows this process in graphical form,

3/a check is made to determine the number of
completely connected vertices in Tfl(G)° It
d; = n-1 then this check simply reduces %o
verlfying that all off-diagonal elements of
the boolean mstrix associated with T1(G)
have the value true. If d, # n-1 then the
complete gravh algerithm must be applied to
Ti(G) ~ this amounts to a recursive entry
into the cowmplste gravh algorithm and then

step four is only entered when the bottom



pl
lll(G)

FIGURE 1.5.6

Showing the relationship betwaen Tn(G) and Té(G)



level of recursion has been reached,

L/if the nuiber of completely connected vertices in
'T%(G) is greater then or ecsval to n then there
exlists a complete graph of order n. If this
number 1is less than n then vertex 1 is
deleted from the graph T, (G) (along with any
inclident edges) and the operation AxTn is
reapplied to the now modified Tn((})°

The flowcharts and actual ALGOL 60 coding are

included in the apprendices.
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Section 1.6 Results of the Investigation

DU Y

The invastigﬁtion of the examiﬁation time-table
problem started with data produced by means of a random
number generator. This waes initially set to produce
three different sets of deta, each of which was in the
form of a boolean mstrix. A pseudo-random number
generator with a souare distribution between zero and one
provided the criterion of whether or not an edge was
present in the graph, the 1,j th and j,i1 th elements
of the matrix were set to true if the random number
was less than %, 1/3, or % respectively for the three
different data sets.

It was soon realized that a random number generator
could not simuleﬁe the cluster patterns of course
conflicts that arise in a real situation, so the investig-
ation was Tfinally carried out on two seté of student
data from the University of Alberta, Calgary (Canada)
(1964 ~65 and 1965 - 66 student bodies).

These two sets of data were a very good test of
the vprocedures because the students from U.A.C. are
able to attend classes from many different disciplines
and thus the graphs of course conflicts are much more
complex than those arising out of universitlies with a
rigid faculty structure. The vrocedure for sepcraticg

a graph into its individual ccrnectsd subsrarns, 2s



described in Section 1.1, wss implemented and both
data sets subjected to this separation process. 1t
was found that, for all practical purposes, the two
graphs from U.A.C. were nonseparable,

No attempt wes made to reduce these two graphs by
finding minimal atrticulated sets or cut sels because
the procedures seemed to function well even on these
large singly.  connected graphs. However if the size of
the graph grew by a factor of two or more it would
be necessary to atfempt some form of reduction simply
because most compulber memories could not hold it all
atlorﬁ.oea This could raise serious problems for & very
large connected graph as most of the reduction procedures
are based on the matrix method of storing the data; thus
reduction presents the same fundamental storage problem
as the original colouring procedures,.

An examination time~table was produéed for each
of the eSS sets of dota, vsing first the Peck-Williams
procedure and then the eigenvector approximation
procedure. It was found that, in both cases, the
elgenvector approximation procedure produced an examination
time-table usiné less perlods than the time-table
produced by the Peck-Williams procedure (see TABLE 1.6.1).
The data was then subjlected to the complete graph
procedure, in order to determine a lower bound for the
number of examination time periods reaquired for each

data set.



largest
elgenvector complete
Peck-Williams approximation graph

U.A.C. 64 ~ 65
(547 vertices) 27 26 22

U.A.C, 65 « 66 )
(656 vertices) 29 28 25

"TABLE 1.6,1

Showing the number of examination time periods reguired
by the different procedures on each of the data sets,
along with the size of the largest complete graph in

each set.

. elgenvector
Peck-~Williams ap%roximation

U.A.C. 64 ~ 65 5 min, 8 sec. | 5 min, 42 sec,

U.A.C. 65 -~ 66 6 min., 6 sec,. | 6 min. 49 sec.

TABLE 1.6,.2

Showing the run-times of the different procedures on

each data set.



From TABLE 1.6.1 it can be seen that the eigenvector
approximation procedure came closer to the theoretical
minimum than the Peck-Willlams procedure. The discrepancy
betwveen the actual and theoretical results can be
conjectured to be due to the fact that the critical
chromatic subgraph of the data sets is not a conplete
gravh but rather a complex graph containing a complete
graph as a subgraph. If this conjecture is correct,
and there seems no way of testing its truth, then the
Jlower bound 1s ralsed slightly and better agreement
wonld be obtained between actual results and the absolute
theoretical minimum,

A very intensive study was made on the U.A.C.

1%?5 - 66 data set to try to discover if the chromatic
Zﬁgéfindeed larger than 25 (the size of its largest
complete subgraph). The study revealed that the
largest complete subgraph was of order 25 but there
existed three subgraphs of order 26 lacking only one
edge each to make them complete graphs,; two subgraphs
off order 27 lacking only two edges each to make then
complete, and one subgraph of order 28 lacking only
three edges to make 1t complete., Of all the complete
subgraphs of order 25, eight were found, all completdy
interlocking. This vexry complex situstlon is exactly
whaet is reouired as a base for a complex critical
chromatic suberaph of order greater than 25. A

great deal of work w=s oul into an attempt to elucidate



the structure of this critical chromeltic subgrapnhn butb

it could not be found. This fellure to find a critical

k-chromatic subgrsph (k > 2%) does not mean that it

did not exist, the complex structure of the subgraphs

of order 25, 26, 27, and 28 point to its existence but

the number of possible subtle comblnations of these

subgraphs with any'of the 600 other vertices makes its

determination hinge on having very extraordinary luck.
TABLE 1.6.2 indicates the runming time for each

of the examination time-~table procedures on each of the

data se‘g_s° This is the time taken on an English-

Electric-Leo-Marconl KDF 9 compuber with the programs

written in the KIDSGROVE (unoptimised) dialect of

ALGOL 60, The very large boolean matrices (656 X 656

in the case of the U.A.C. 1965 ~ 66 data) were kept

in the store by designing a series of ALGOL procedures

written in USER CODE (the assembly language of the

KDF 9) which packed a single element of the matrix

into one bit. Thus the 430,336 elements of the matrix

could be contained in approximatly 10,000 KDF 9 48.bit

words. This packing of data is,; unfortunatly, neoesgary

because the proéedures must examine the matrix elements

at randém and, 1if the matrix were stored on magnetic

tape or even a random access device, the time taken

to produce a time-table would make the procedures

uneconomic,; vanless implemented on a time-shared machine.

The actual calculation of the next approximation



to the largest elgenvector of the system was accomplished
by a highly efficient procedure written in USER CODE.
This procedure made special use of the fact that the
matrix associsted with the graph was stored one element
per bit, and this, cowmbined with the powerful set of
logical instructions on the KDF 9, has resulted in an
ultra fast routine; Thus to implement the elgenvector
approximation procedure on an elternative computer may
increase the computation time over the Peck-Williams
procedure by a greater percentage than is evident from
TABLE 1.5.2.

| The effect of continued iteration towards the
elgenvector corresponding to the largest elgenvalue of
the associated matrix was exemined in some detall for
the two data sets. In particular the relative magnitudes
of the elements of this veclor were invesltigated at esch
iteration, because of thelr importance iﬁ controlling
the order in which the vertices are chosen for assilignment.
If the relative magnitudes of the elements of this
vector remain the same 2fter one or two iterations phen
1t is senseless to continue itersting towsrds the actuval
elgenvector when even a very pooxr approximation is
computationally satisfactory. A program was written
to compare the relative magnitudes of the elements
from one iteration to the next and the results produced
are shown in FIGURE 1.6,1. The percentage of elements

changling position of relative magnltude and the average .



numbar of vlaces chanced in the scsle of relative

magnitudes shed some light on the computetional effont
needed to produce the wains offered by the eigenvector
approxlmetion colocuring vroceduvre, It is evidert that
the ordering goes through a drametlc resequencing
during the firvst few itcrations. The first iteration
changes thé order of about 85% of all the vertices by
an average of arproximately 30 vlaces up or dowrn the
list. However by the time five iterations have been
done only about 10% of the vertices are, chsnging their
positbions in the table of relative magnitudes and this
change iz not more than one or two places. The actual
eigenvector is found (to an accuracy determined by the
KDF 9 48-bit word length) sfter 10 - 15 iterations,
thus 11l is only necessary to carry the iteration out

a few times to rcap the benaofit of any gains of the
more advanced colouring procedure.

The 1964 - 65 data was used by the University of
Alberta, Calgary to produce an examination time~table
by thelr treditional methods., This was done by two
highly competent (and as.a result highly p2id) members
of the Office of the Registrar in slightly less than
six weeks., The resulting time-table had 30 examination
time periods, and did not s=2tisfy the no-conflict
demands of abvout 15 studerts, Whnen this is comuored

]

to the cost and efficiency of the conmputeor procecdurs

it can essily be seen that the computer can save ¢



% of elements changing position

100 —— U.A.C. 1964 - 65
—————— UA.Co 1965 - 66
90T
80T
70
60T
501
Lo 440
30¢ {30
201 120
10 110
Rt d R en
8 10

number of iteretions

FIGURE 1.6.1
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large amount of money, time, end effort in this ares
of & university's sdminlstration. This last sta
does not take into account the costs of date prepzretion,
hovever the dets may be easily obtaired as a byproduct

of the sectloning process described in Chapter 2.

During this investigatibn it was noted that every
exzmination time-table procedure mentioned in the literstur
had, os oné of its parareters, an indication of the
number cf seats available in the examiration room.

For the basic "one class - one paper" situation there

is absolutdly no need to consider the room size as a
perameter. If the number of students scheduled to
write examirations in a particular veriod exceeds the
capacity of the rooms aveilable, then the registrar

may reschedule some of the examiraticns from this pericd
to eanother free day and still be assured that, in

his situetion, he has 2 near optimum time-table. It-
was found that, for the U.A.C. data, the actual physical
situation contaired so many conflicts thet using a cut
off parasmeter such as room size was unnecessary. In
fact even using the sizevbf the largest class as the
room size parareter; the time~table produced did not

vary in the number of pericds used.



Section 1.7 Posgible Modifications

A v g e

The system for finding examination time-tables,
as described in the previous seétions, seems to be better
(in regard to computing power necessary and number of
periods used) than any described so faxr in the open
literature. Howevef a number of practical objections
may be made to it., It is often necessary to limit
the number of examination time periods, or attempt to
distritute the number of examnirations evenly bthroughout
the examinatlon session, or cause two different examination
to be held af the same time.

The last of these objections may easily be dealt
with by some form of pre-assignnent feature as in the
published version of the Peck-Williams procedure. The
other two.objectives, limiting the number of examination
time periods and distribution of the examinations, are
by their very nature contrary to the fundeamentsl idea
behind the colouring procedure.

The number of time periods, or colours, may not
be linited becauvse the procedure will already attempt
to use Tthe minimum number of periods. An attempt may
be made to determine the bounds of exactly how many
periods wlll be used but these bounds are very poor
and thelr determination takes more effort than the
ectuval computation of the time-~table. The evon distribuvtior

of the examirations is also a pcint which cou” ' not



.(t . fVvVILWMM V

Location: Author :

PhD -y Ab&AWakuZ, \JjCOo (**0IZl1Ad eun

/4 THA) </ m/foob
'I
S || “iMA co0MED s8u)tie.j. u
Lcef-1i t 1 Date of deposit; , 2- »

If you remove this volume from the shelf, enter on this
card the reason for removal, the date, and your initials
and leave the card on the shelf in place of the wvolume.

Before re-shelving the volume” score through the record
of removal and replace the card in the volume.

Reason for removal Date jInitials

"PreyeA TVe Viarh

Process Date Initials
Accessioned
Catalogued

Classified

Cataloguing
checked

Processed

Processing
checked

Shelved
GUL 73.26



be cheeamed —ithnout &

of the procedure

—

is

After the

tuching the orlhi
time--table

sSomne

PR
TSN

hes

ey 1
1 clu

found

Yoy o -
aogen

Cionn

the possiblility exists of movine cf the examins
in the early vericds to the leter periods without czusiy

conflicts. This way help to ease the load on the First
few veriods.

FIGURE 1.7.1 shove the exanirnatiors

throughout Lthe tims-~table. heavy form is

This ton

appreciated by moat of the stalT but defiritely rot

wglcomed by the students.

I the university adwminlstration is villing to

sllow few conTlicts in thelr examirnation

.
[

+ ime.--to Oli\"}

)
-

both of thege obiections car e all but

viated,

4o

a L

2 S

[

at price. As coan be seern Trom FPICURE

1.7.1

few tLime periods only contain & few exsuinations

would be posesible to take the time period with the
least rumber of examinations and plece these in other

reriods in such & manner that the number of cornflicts
genersated is a minimum. Thls r=disctrivution will

require a matrix, nunher of

studerts irvolved tatwsen course 3

course j, so thet the number

in any one conflict way ve roted, The size of this
matrix dicretess that 1t will heve to be kKept on sore
fora of auxiliary menory, vrobtobhly & rardon access
devicea. io>2ver somne vaclhin~ of the elemerts ig poasit:
becaugz the larcest element is krcun to ba



Wy O
O O
t !
= g
OO
o O
i I
<
<t
o
oo

. e
®]
<
]

|
|
[
|

e
L. 5. |1 A 1 1 A ] y . | | L} 1 1 i i
&) &) (&) o O IS &) )
3o - O i = ' N i
Nunber of ewxaminations

PIGURE 1.7.1

Showing the number of examinations 1in each time period

25

20

15

RS

vl

vericd

a

time

Examination



less than or ecual to the enrolment in the second most
popular course. Another reqguirement of the redistribution
is that all exeminations beling removed from the Ith

period must be placed in periods that heve not had

other examinations from the Jth perlod already put

there. Failure to observe this restriction may lead

to three and four way conflicts instead of Jjust the

two way confllcts being formed. To reduce the number

of time periods by the grestest amount for the least

cost, all the exsminations from period I should be

redistributed to the same new period.



CHAPTRERR 2

Sectioning Students to

Classes




Tha Problem

e B e AT a T i A— e e

tany uriversilties overcons their time-tablinge
or space problews by splittine each class irnto wagy
different sections, each given at a differert time
throushout the week. For example, 1f a first year
course in chemistry is erxpectine an ernrolment of
200 students, but the lecture rooms will enly hold 75
peovle and the laborstories vwill only eccomrodate 50
students at a time, The university adrinigtration may
section the.class as follows:

Lect. section 1 - Mon. Wed. Fri. Room 813 9:00-101(

Lect., section 2 -~ Mon. Wed. Fri. Hoom 93 11:00-12:(

Lect, section

)
i

Tues, Thurs. Sat. Roouw 798

Labh. section 1 - Mon,. Room 712 9:00-12:00

Lab. section 2 Tues, Room 712 9:00-12:00

1

§

Lab., section 3 Wed. Room 712 2:00-5:00

Lab., section 4 ~ Fri., Koom 712 2:00-5:00

If a2 student was taking mathemotics on Mondeay

morning at 9:00 then he could still essily Fit onrs
¢f the other tro sectlions of chemistyy lecture irto
his time~table. It 1s now necessary to find some melbed
of digstributing the students into the various sectiors
which will not only teke intoAaooount the 12 rossivle

~

cholces of chenistryv but tre total runher of oroics

e
t g . . —
.

192}

[

available to him from =211 his subiects,



Unfortunally this cholce of sections can not be
left to the studenl himself. Few students would
willingly'choose chemistuy lecturehsection 3. end thus
there would be hopless overcrowding in lecture secltions
1 and 2.

Sectioning students to clcsses with the aid of a
computer has been dealt with in meny papers and actualliy
implemented on a few wmechines. The majority of these
implementations and discussions have dealt with the
problem in the situvation where large scale computers werc
avallable, In thils discussion a suggestion will be
given involving a large scale compuler and a suggestion
which will enable its implementatilion in the situation
in which a smwall scale computer with a random access
auxiliary memory, or a large scale computer (on which
time is a very important factor) is available to the
administration.

All the methods vunder consideratlorn rezuire the
university sdninistration to suprply a master time-tables
giving the times and maximum enrolments for each
section of each course, and a set of cerds (or other
suitable input mediun) for each student indicating the
courses in wnich he 1s enrolled.,

The major objective of corputer scheduling is to
assign the student to nonconfilicting sections of his

cources, subi=sct to soum

4]

or all of the folloirg

conditions:



1/When the secltioning of 211 studenils hag heun
finished the different sections of a2 clzus
rust heve roughly equal numnbers of students,
or the nuwmbers of students in the different
sections must be in & predetermined ratio
to one another.
2/Particular students should bs nlaced in o
particular section of a course, the constraint
being sex, faculty or other personal or
academic informat ion,
3/Particular sections of & course are closed to
particular students, the constraint agsin
beirg sex, faculty, or othexr personal or
academic iwformationu
One of the benefits of sectioning using a computer
is that the registration vrocess may be speeded up,
but this 1s not the only advantage. If, 2s each student
is sectlored, a record is mede of his sectlon essignmenis,
the procedure may heve the beneficial side-~effect of
providing accurate student records, statistics, and
cless 1lists immediately upon the conclusion of the regmiat-
ration procedure.

As in the prcblem of examination time-tables

(%

the master time-~teble of the university classes may
be btest describsed in the termivology of grerh theery,
The waeter time-table may be visvallized eg a grauh,

t

G = (V,U), whosa verticzs, V, s#re the clesses offered



by the institution, and the edge generating function,
U, being defined as generating an edge between vy

and v, if both course 1 end course J are offered during

J
the same or overleapping time periods.

Sectioning students to classes now becomes the
problem of partitioning the graph of the master time-table
into disjJoint sets such that no two vertices in any
given set are joined by an edge. Il can now be seen
that this is exectly the same colouring problem as was
presented in the discussion on examination time-tables.
However, because of the different physical situation
iﬁ‘which the problem arises, and the added constraints
to its solution, the actual procedures used for the
solution will differ from those used in the solution
of examination time-tables,.

The more compliceted system of courses with.
multiple sections 1s a simple extension of the afore-
mentioned gravh, nemely esch of the sections of a course
is now a separate vertex. The vertex corresponding to

-section k of course 1 will be denoted by V?o



Section 2.2 Heurisgtic Frocedures

e A A A b e M A st mareems st s s ans s £ v T e e W A 0 . Snefr

The Tirst, ard perhaps nost general, attack on
tre problen wers initiated in 1959 =L FPrdue University
by J. F. Blakesley (3 ), vho although handicapped by an
extremely primitive computer, produced & systemr which
embodied the bssic design of every subsecuent heuristic
imelementation. The program that he developzd {ollaows
the logic
1/esch student must be sectioned and the
procedure used should be as fast as vossible
2/the lsst student sectioned should hazve the seve
probebility of beling assigned to a varviculsw
course secti-m gs the first student hsd.
From this logic two key points emerge. ne is thet
courses must be ordered according to the difficulty of
finding alterm~te sections (single section courses First,
for they have no alternate lime schedule, followaed bLy
courses with more and more sections). The second, and
just as important, point‘re“uires thetl the student be
vlaced in the sectlon with the largest number of remeining
unfilled student places. If this secticn cannot be
made to fit; then the remaining sections sre Tried

(from lergest to smallest number of remaiiing placeg)

-~

until & sectlon is found which will fi{ the schedule,



FIGURE 2.2.1 is & simplified flow chart of the
basic Blakesley model for a computer sectioning prozram.
The B]fkeéley nedel consists of thrée ma jor loops,
which try 211 voseible combinztlions of courses in an
attemot to construct a schedule, These loops are:

A/tre primary course section assignment loop
- select the section (of the coursc under
consideration) with the largest number of
unfilled student places
— 1f the selected section does not conflict
with the previously assigned course sections
tren proceed on to the next course, otherwisc
entexr loop B
B/the secction progression loop
- this'selects the section with the next lerge=sti
number of empty student places and returns
to loop A
C/the course backtrack loop
~.this loop is used vhen all sections of a
course have been tried and found to conflict
with the sections of previously scheduled
courses -~ the loop backtracks to the last
scheduléd course, sSelects an a2lternate
non-cenflicting section a-d returns to
loor A to schedule the subsequant courses.

4
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environments in vhich the sectioning procaedures mnzy b=
irplerented, that is to say, 1t 1s not dependent on
the detalled frculty or course struciture of an instituticn,
Bvery proposad sectioning procedurs hos followed the
same general outlline, the only difference beling a
graduval rafinesment and modification of the melhoeds of
accomnlishing the three b2sic steps,

The two brslc heuristics (ovdering the student
course reguests by the numnber of sections in each, =and
selecting for consideration the untried section with the
smallest enrplment) have also been used in all the

proceduras investigated, the sole exception bhain:

b,
9

vary early exveriment at Washington State University (13).

It 1s rather curilous the{ Blakesley usaed the munbsy
of emplty se~ts left Inaclass,; rather than ths nunmber of
people assigned to that cless, &5 his criterion for
choosing the section with the smallest enrolment, The
author's own work (hereafter refered to aé the Coll jn-
Williams procedure) points out the pit~Talls of the uss
of room capacity. A quobte from ths paper by Colijn
and Williams ( 6 ) will show the havbc that the use of
room capaclity can cause,

"The University Adninistration had »roduced =

master time~teble showing a particular course

arn enrolmart or =houb

Secticneg 1 ard 2 were to west in rooms



holding forty students each but, dus to
limitations of the prhysical plant available,
section 3 had to meet Iin & room accommodztin
250 peovle. The result of sectlioning using
room capacitles,; as tﬁe section sorting
criterion, wss that approximately 90% of the
students reouesting this course were assigned
to section 3; leaving sections 1 and 2 w=ith
only those sltudents whose other couise
requests blocked section 3 from consideration.h
Another curiocus point about Blakesley's original
sysltem 1s thaet it would consider 211 vosslble combtinztions
of the available course sectlons before it decided thst
g time-table could not be produced. If a student is
enrolled in 2 series of courses, all of which have a
large number of secltions, then 11 1is possible to have
in excess of 109 section combinations to be investigeted.,
Bven very lzrge computers can only be expected to consider
a fraction of these. It was not until quite recently
that Faulkner (13) and Colijn and Williams ( 6 ) attempted
to design the backitracking loops to serrch intelligently
n wimher
for a workable schedule rather than trying an arbitrary[
(5000 in the case of Anderson (1 )) of combinations
before giving up.
Since Blakesley's first éttempt the method of storin~

PR o
Vs

1 lj

the mester timeatablz information hes undercors
, .

improvement., Although the storagze of the master



time~table is a practical matter, degending heavily

on the computer to be used; it is of sufficlent
significance to be briefly discussed. The significance
lies in the fact that it reguires a large amount of
memory, #nd that it must be accessed frequently.
Because of -these heavy expenditures of the computer's
resources on the time-table; the mode of storage will
affect the efficiency as well as the basic design of
the final procedure to a marked degree.

Several methods are avallable for storing the
time~table informetion. The first, that of recording
the actﬁal day and time of a course, eg. M.W.F. 9-10
(or suitsble coding for this information, as was done
by Blakesley) will not be considered because of the
obviously greater ease ol processing offgred by the
other methods,

The second method involves the use of a boolzan
"timé~veotor", T, of which two types have been used
in the past.

Type 1 ~ 26 boolean elements, six of which
represent the days of the week (ie. T, =

i
true if the cless is held on the i th day

e

of the week, | = 1 = 6) and 20 revresenting the

D

time of day. The first of these time of day
elements represents the half hour period
§:00 - 8:30, the second 8:30 -~ 9:00, the

last element representing the veriod 3:30 -~



- 6:00, Tor exanple, a class given konday,
Wednesday, and Friday from 9:00 - 10:00

would have a tyoe 1 time-vector of:
10101000110000000000000000

Type 2 - Similar to fhe time of day" elements in
fhe type 1 time-vector,; except there is a
complete set of 20 booleans for each day of
the week. Thus the type 2 time-vector consists
of 120 boolean elements, the first 20 representin
the time of day the class 1s gilven on Monday,
the nextbzo representing Tuesday, the final
20 representing Saturday. For the example
given under type 1, the type 2 time-vector would

be:

0011000000000000000000000000000000000000001 %

.Oi.loet

It is easily seen that, elthough type 2 time-~vectors
take more memory space than type 1. they allow much
more flexibility in représenting a class which is given
on different times on different deys., If the vertices
of the time-table graph each have an associated time-
vector, then by doing & bcolean ARD overation on tine-
vector i and time-vector J (in the case of type 1 time-
vectors this must be done twicey; once on the day elemsnts

and once on the time elements) itv is possible. by
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i

in

checking to see 1T the resvltant vecltor hasg sny t:

[+

elements, to determine if an edge exists between vertex 1
and vertex 1 of the tiwe-tahle gravh.

A third method of storing the time-table involves
the use of the boolean matrix assoclated with the graph.
The use of a boolean maltrix for storing time-table
informetion, althoush more difficult to set up then
the time-vecter wethods, hes several advantages which
111 be exvlored in & later sgection. It also hss
the disadvantege thet unless the university offers
fewer than 120 couvrses it takes considerably more storare
than the time-vector system. This, however, nced
not be a serious drawvack if a high speed random sccgss
device 1s avallable.

A second, and perhavs belter known, atteck on the
problem v=g initisted by Arderson (1) in conjunction
with the New England Schocl Develcpment Council in
1962. Anderson's procedure was exbtremly fzst - up to
1000 pupils per minute - but it should be remembered
that this speed wasg due, to & lerge extent, to the fact
that it v=s a scheool sectioning problem rather than &
university one; the mester time-table for & .school will
invariably be better suited to machine sectioning
because of the fewer courses offered, each course
generally having only one sectlion,; and the more limited
cholca 2iven to the purils,

Ag well as the usu~l master time-table infeornstion



(eventually coded into a type 2 time-~vector) Anderson
also recorded two other variables; X§ and Y?, where
X? is the number of pupils that must be registered as
wishing to take section k of course 1 before it becomes
a practical proposition to even offer this section, and
Y; is the maximum number of puplls that may be admitted
to section k of course i. If the first T-1 courses,
for a particular student, have teen successfully sectioned,
then Anderson's procedure will perform the following
operations 1in attempting to determine a valid section
assignment to course T,

1/ Select, for consideration, all possible

sectlons of course T such that

k
XT >0 (k = 1,2,3,n,,,n)

(this is known as the minimum mode of search).
2/ Order the course sectlons, obtained in the

previous step, in numerically descending

order by theilr respective XF»

T
53/ Compare the time-vector of the first section
(the one with maximwn X%) with the timemvéotors
of thé sections scheduled for the previous
T-1 courses to determine 1if it conflicts

with any of the previously assligned gections.

If this section will not "fit", repeat the

ol
4

‘ocedure for all ths vermissible ssctions

of course T, If the 1ist of permiscible



gectiong 18 exhausted without {inding a it

go to step b, f a fit is found decrease
X K . )
o end 1T by one and attempt to schedule

course T+1,
4/ Redefine the list of permissible scctions es

all sections such that
Y > O (}k{ = 15253540991’1)

(this is knovn as the maximum mode of sezrch).
Repest steps 1 to 4, if this does not produce o
Tit then it 1s essumed that 1t wes the assignument
to course T-1 which is the cause of the
conflict, therefore Anderson excnangeses course
T with course T-1 and tries egain to fird a
vorkable set of sectlion assignments for this
student., If, after trying 5000 possible
sectlon combinations, a time-table 1s not
found the student is z2bandoned and his
time~table must be prepsred dy hand,
The values given to the individual X? and Y?

will drazmatically alter the efficiency of the systen.

For example if n pupils reqguest course T (»hich has

P nossible sections) then if

4

2

&K=1

< n

“‘3/‘!

it w111 result in punils rnot being sacticnad dus o

<

0
W

insufficient s:

s a2vailaebley if

i
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it will force the procedure into thg maximum mnode of sesven
when this action is not necessary. For single seciion
courses 1t would make the computer look for sltervative
sectlons when there are none. On the other hand a
much finer degree of control can be kepl on the
sectioning process with wodifications beilng made to the
indivicual XE and an For exémple9 section imbalarce
may be corrected thus:
a larger X? will csuse section k to fill
up faster;
a smaller X? w11l cause this sectlion to remzin
empty for a longer period;
a certain section, k%, (known to fit the
schedules of difficult pupils) may be kept
open because the procedure will reserve
yi- x

are determined in the maximum mode of

seats for students whose schedules

search.

However, if, as Anderson suggests, his procedurse
will deal with .up to 1000 students per minute; then any
thougnt of modifiing the values of X? and Y? during
the execution of the vrogram is ridiculous. If it is

implemented on a much slower machine than Anderson's

I.B.M. 7094 then conceivebly there may be enouch time

\J»
evaillavls for 2 hunan tzine Lo use his abilitliss and
knowledge to modify the varameters during the execution



of the program,

Several other attempts abt designing class sacliocning
programg have bsen m=de in the iwtérval since Andewrsonts
report wes published., Although these seenm to have been
ounite independent attacks, it will suffice to describe
in devall the procedure proposed by Colijn and Willilans
(6 ) as this contalns most of the devices used by other
authors nlus one or two extra interesting heuristic
steps.

The Colijn-Williams procedure tvas based on a tyne
2 time-vector as the method of storing the master
tiﬁemtable information., Thelr procedure was designed
to be implemented on a swmall I,B.H. 1620 computer =t
the University of Alherta, Calgary. The computer
configuration (40,000 digits of core store, one disk
unit of 2,000,000 digits storage, 240 line per minute
printer) wes very limited, in particulaf the diglital
form of the core store crested problems with the
necessery boolean end logical operations. The I.B.M.
1620 had no arithmetic unit, instead it used a series of
tables; located in the core store, to 1look up the ansier
to each arithwuetic cperation a digit at a time. This

e modification

)

peculiar festure was used, by a suitab
ol the srithumetic tables, to effectively change tre

ADD instruction Lo a boolean AND instruction, and to



chance the CONPABE instruction into one wnich would
set an indicator if all 120 boolezns were Zero.

The course structure they had to deal vith
complicated the sectloning procedure to such an extent
that a “pure" heuristic was impossible to design.,

The University offered 600 courses, which were divided

into about 1500 scctions, however a large number of

Yy

these sectlons were reserved for students of & particular

sex or studying particuler subjects. A further restriction

pertained to students in the Faculty of Education who

could not attend classes offered by other faculties if

they were held in the mornings (because of their student

teaching reguirements) however they were allowed to
sttend morning sessiong of some Education classes,

To complicate matters further some classes were held
o1ly in the first term (Oct. - Jan.), some only in the
second term (Feb, - May), and some all year. Because
the student tezching was only held in the mornings of
the second term, 1t further complicates the sectioning

of the students in the Faculty of Education. It is

instructive to examine the sectioning problem under these

conditions because they are the type of constraints
found in practice, gnd any study of the pure situstion

would Jlead to possible false conclusions.



to therelativelwv zlo eccaess tire for the 1620 disk vrit
The reguests for time-vector informetion must be kept
dovn to en absolute mirimam. Thus short cuts had to ba
made 1n the heurisiics vhich, had there becern a large
scale computer, wowld heve been overlooked as being
trivial.

The procedure sterts by reading the studeat's
course retuests ard formine 2 vector, REJLUEST, such
that the 1 th element of this vector centninsg the code
number of the i th course recuest snd the rumber of
secuions iﬁ:tth request. This RE.ULST vector is then
subjected to the standard heuristic of sorting its
elements into ascending order by ths numbsr of sectionsg
in esch reauest. This ensures that the sivgle sectior
courses will be dealt with tefore the courses that have
g number of different vossible sections.,

The course reguests are dealt with one at & time,
orne scction of e=ch course beling chosen for the studert's
time-table. This sorting heuristic is effective iwn
producing & time-telle for about 75% of the ceses but,
for the other 25% some sort of "bazck up and try aesip"
process must be attempted,

On tre besis of the heuristic assumption:

"If 8 set of course assicrments can be wade,
theare ig &t lerst orne correct ordsr in whicn
ay

to process the rewuests such thot the scraliule
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to the relativly slow access time for the 1620 disk unit
the reguests for time-vector informaztion must be kept

down to an absoclute minimun. Thus short cuts had to be

o)

made 1n the heuristics which, had there been a larg
scale computer, would have been overlooked as being
trivial,.

The procedure starts by reading the student's
course requests and forming a vector, REJUEST, such
that the 1 th element of this veclor contalns the code
number of the 1 th course request and the number of
sections irn thet request. This REQUEST vector is then
subjected to the standard heuristic of sorting its
elementis Into ascending order by the number of sections
in each reguest. This ensures that the single section
courses will be dealt with Eefore the courses that have
a number of different vossible sections.

The course requests are dealt with one alt 8 time,
one sectlon of each course being choosen fTor the studert's
time~table. This sorting heuristic is effective in
producing a time-tatle for about 75% of the cases but,
for the other 25% some sort of "back up ané try again®
process must be attempted.

On the baslils of the heuristic assumption:

"If & set of course assignments can be made,
there is at lezst one correct order in which

to process the recuests such thst the schedule

.



will be produced with the least duplication

of effort."
the following bvaclitracking heuristic wes developed (the
heuristic ig difflcult to describe but reference to
the simplified flow chart, FIGURE 2.2.2, should help).

When course N can not be given a conflict-free
agssignment, the Jlist of previous assignments 1is scanned
to find a course, M, whose assignmeﬁt caused the conflict,
If N i1s a multisectioned course then it 1s vrossible;
end in fact likely, that section N1 conflicts with the
assigneent made for course M, while section N, conflicts
with the asslgnment made for course L, thus an arbitrary
section of N must be used for the backward scan.
If it is found thal both course M and course N

have only a single section, then it is useless to continue
and the student 1s told to drop either M or N and gelect
another course., If course N has multiple sectlions, and
course M has only a single section, then it is cleesr
that Tthe asslignment for M can not be changed and thus
a different section of N muslil be used for the scéen
back. Thils process 1s continued until a previous
assignment of a multiple sectioned course is found which
blocks course N from assignment. If all the sections
of N are blocked but by single section courses, then
agaln it 1is uselecs to continue and the student is
informed of the-multiple course conflict.

1

After the coniliclt has been Tound the problem 1is
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still left of whet to do about it. 1In the first instance,
the courses were selected for secltioning in sscending
order of the number of sections available. By the
previous assumption, that of an order existing for the
selection of course requestsyfit appeers than course M
and course N were in the wrong order and that the first
ordering heuristic, at least for this set of requests,
was in error. The list of course requests is therefore
rearranged, by interchanging course M and course N,
so that the sectioning process, on its second try, will
attempt to schedule course N before course M.A
| It should be noted that if a conflict is encountered

on the second time through then a further “swap" on
the two conflicting courses takes place. This process
is advantageous only up to about lten swaps, the chance
of a correct order being produced for & successful
time-table diminishing rapidly thereaftef, because
of the course order in the RBREQUEST vector being reduced
to virtual randomness.

The procedure used a SECTION vector to setisify
the re~uirement of distributing the students evenly
among the various sections of a course. When a course
recuest is being considered a SECTION vector is procuced
such that the I(th element contains both the code number
of the Ith section and the number of students previously
assignad to thet section. The SHCTION vector is then

y by the number of studerts in each sectic -, into

[g]
(o7

orte

4]



ascending order. When the procedure attempts to find
a secticn of the course into which the student might
fit, it will Try the section indicated by the first
element of the SECTICN vector, le. the seclion with the
lowest enrolment,; and will only Try the section with
the greatest enrolment when all the others have been
consldered and rejected.

The section vector conceuvt takes a very lmportant
part in two aspects of the procedure besides the section
balance regulrement. When a conflict has been detected
and a swap has tsken place, the second time through the
procedure the elements of the section vector may be
rearranged so that the same combination of sections is
not retried., This best takes the form of a cyc]id
shift of the section vector's elements (of the course
which originally caused the conflict) by one position,
ie. take the first element; place it at the end of the
vector end move all other elements up one position,

In general if n swaps take plece on this course, the
first n elements of the section vector should be
cyelicslly shifted., This double use of the section
vectol not only essures against the possibility of the
procedure getting into a closed loop by trying the same
section of the same courses each time, but also ensures
that no section of a course fills to capacity before
the other sections are within one or two places of

themrselves being full. Thus the student who 1: ~ocessed



last has, on the whole, the same chance of being assigned
to the "best" sectlions as the student who was processed
first.

Another objective of the Colijn-Williams procedure
is to satisfy the demand that a particular student 1is
placed in a specific section, the constraint being
sex, faculty or other personasl/academic information.

As a courses section vector 1g being compriled a check
is made on & '"reservation number" associated with each
section, 1f this reservation number 18 non-zero it
directs the procedure to & specific series of routines,
the particular routine depending on the reservatilon
number. These routines can deal with the section under
consideretion in three ways:

1/ Add this section to the section vector as a
possible assignment, if the sex, faculty, or
other information is consistent with what is
required.

2/ Exclude this section from the section vectors
this wi1ll, in effect, deny sny knowledge of the
existence of this section to the procedure and
therefore render it impossible for the student
to be assigned to it,

3/ Add tris section to the section vector, anrd
delete all other sections, thus forcing the
student to be sssigned to this section.

This technique was not restricted to the exanmination



of a students versonal data, and was used to examine the

previous assigmments in order to dynamically control

1

the contents of the sectiorn vector. TFor example, if 1t

7]

is recuired that o student boe esslicred to the sfne

section in both course I and course J, when coursc I 1is
encountered during the essignment vprocess, the rescrvation
number assicliated with the course directs the progran to

the appropriale routine wvhich checks to see 1T a secticn

0

has been previously assicned for course J and, 1if so,

3.

forces the correct assigrment for course I using point
3 above.

This sﬁstem of heuristics has worked quite wvell.
It was uvsed for registerine nesxly #4000 students as they
apreared for the stzrt of the 1965 - 66 acadenic veer
at the University of Alberta, Calgary. 85% of the
student body were successfully scheduled by the computer:
of the rest of the students many had true conflicts
due to their om carelessness oY errors made during the
deta collection (a2 system involving mark scnse ceras),
The greztest cause of errvor was the master time-table
itself., Almost all of the second year chemistry students

were rejected because of & conflict batween two courssas,

—

both of which were compulsory for them; onrne half of the

cireers were a2lso rejected because tre

LA

first year e

i

Pty
o]
=4

allowabple enroiments in each section were only halfl

- \ ~ 3 3 = . “‘Y“ ra T =1 -
vag setisfacliony Lrns



computer configuration on vhich 1t was implemented proved
very limiting. The University administration required a
very complex and voluminous output for each student
processed,; this combined with the slow access time
to the disk unit resulted in the procedure taklng
aboult 30 seconds for each student.

These two slow peripheral devices were thus the
limiting factor in the whole process. Very little can
be done to speed up the output of the student's time-~table
except obtain a faster outpult medium, however some
improvemrent can be obtained in the utilization of the
disk unit (of course if the core store is large enough
there weed be no access to the disk, but few small
universities hsve computers of this magnitude). To
reduce the frecuency of operétions involving a randon
access device a procedure could be implemented to use
the boolean matrix for the storage of the master time-
table conflict data. The procedure would follow the
same general lines as the time-vector scheme however
when looking for a possible section assignment for a
course the vprocedure would be able to "see'" which
sections were out of the gquestion due to conflicts
with previous assignments, rather than "grope around
blindly" on the random access dgvice to find the conflict
free sections. This ability to "see" comes from the fact
that, as ezch course ié 2ssigred & seclion, the row

of the boolean matrix, corresponding to the s8¢ _ion



assigned, is added (by means of a boolean OR operation)
to the accumulated rows of previous cactlon assignments.
It i1s then auite triviel to scan down this cumulative
availablility vector to determine the sections of the
next course which are still available for use. This
method would cut down the need to access the master

time-table information from
~
2N o+ S.
DIEN
<=/
accesses Lo about

2N

accesses in the case where no conflicts are encountered
during the schedule completion (N is the number of courses
requested by a student and Si 1s the number of sections

in the i th course reguest). When a2 conflicht is encountere
the number of accesses necessary to fesoive the conflict
will vary devending on the two courses in oonflict.and
how much intermediate information is available in the

-core store,



Section 283‘ Transportation Networks

The relstionship of sectioning to the problem
of finding a flow through a network is interesting
enough for a short déscription. The problems involved
in implementing this type of.approach are formidable,
paftioulariy in the area of data storage. However the
nétwork flow approach to sectioning is interesting
because 1t 1s able to determine whether or not a time-
table exlists for a particular student, and in so
doing uses an algorithm which has been extensively
studied by operations research personnel,

A transportation network is e finite directed
graph, without loops,; in which each arc 1is assigned an
integer

C(Xi,xj) = 0

known as the capacity of the arc from Xi to Xj’ and in
which:
1/ There is only one vertex Xy such that a1l

arcs Jjoined to Xy are directed away from Xge

Xq is known as the entry to the network or

as the source.

2/ There is one and only one vertex XD such

that all arcs joined to x_ are directed

n

towards Xy o Xy is known as the ex:! from the

network or sink.



A flow through a network is a function
f(Xing)

defined over all the arcs such thet

f(Xi9Xj) is an integer

0 = f(xi”};‘j) = C(Xigx_i)

t

f(Xing) = f(x 53{1)

J

The value of the flow, Fy; 1is

' = Zf(}iog}(i) = Zf(}’;igxn)o

One of the basic problems In network flows ig to find
the maximum F for a given network with a given set of
cayracities,

Of basic considerstion in network flows 1g the
ldea of a cut., If « 1is a set of vertices of the
networlk which includes X, but not X, the set of arcs
U« connected terminally to « (ie. the arcs are directed
toward =) is & cut of the network. For example in

FIGURE 2.3.1
X T FpeE2aXgsXgsXg

U = (XSSXH) (xiogxn) fgsx,) (xq5%,) (XSSXZ)

(xQ,XB) (X55X9)‘(X109X9)

The cut is shown by & dotted line. This line is

simply to show the teiminally connected arcs which are



FIGURE 2.3.1

Showing a transportation network and a cut of this network



encountered, it may also have nonconnected, open or
closed segments depending on the cholce of «o

Since « includes the sink, any flow from Xq to
x woes through at least one arc from Uy, thus whatever

n
the flow F and the cut Ug may be

F = C(UL)

where C(U%) is the sum of the capacity of the edges in

the cut UL.

If there is a flow F (from Xq to xn) and a cut V

such that

F = C(V)

NS

the flow 1s a maximum and the cut is of minlimum capacitys

this is essentially the theorem proved by Ford and

Fulkerson (14)

In a given transport network the maximal flow

is equal to the minlwal cut,

To represent the sectioning problem 1t is possible

to define a transport network as follows

S 8 source XO and a sink xg

- to each course 1 offered by an institution
let there be two vertices *y and ¥y

~ the exlisting arcs and their capacities are

defined as follows (where R is the set of

3

courses reauested by a student and [Rl 1



the number of courses recuested)

-

: Il ~ 1 (1f 1 e R)
C(x X.) =
0°™1 10 othervise
(1 if 1 is not given at the same time
C(Xisy,) = as j, and 1 &R, jek
J 1 0 otherwise
- [B] ~ 1 (if j e R)
C(y.axn) =
J 0 otherwise

If & time~table can be found for this student then

this network must have a maximum flow, F, such that
24
F=|rl" « |B

For example consider the flow out of x,, there are [

courses and each arc, by construction, has a {low of

B} -~ 1, thus the total flow out of X, is [Blz - |R].
Similarly the flow into X, can have a maximuﬂ—value of
|Rl2 - ]RI, For every X4 € B the flow out of this vertex
must be egqual to the flow into ity ie. IRI - 1. By

construction
C(Xisyj) = 1

if course 1 and course J may be taken similtaneously.

Again, assuming a time-table 1s possible,
f(x,,y,) = |g] -1 (for 1,j ¢ R)

and




so that the cut containing only thogse vertices in R
£

must be such that
C(V) = F = IR~ -~ IR].

Application of the Ford-Fulkerson slgorithm (23) will
show if any network has a maximal flow of IB[Z ~ |B|
~and thus show the exilistence, or nonexistence, of a
time~table for the student undexr consideration.

This same concepl may be extended to the situation
where each course consists of several sections. By
dividing the course sectlions into time disjoint groups
it is possible to define a series of k sets Dl’ D,,

d-‘

D39n°9Dk9 each set containing those sections given

at the same or overlapping time periods. A trensportation

network may now be sebt up with the vertices as follows

- XO source

- X 8ir
n ink

= Xi for each course i

- Xij for each section J of course 1

- Dl ffor each time division 1

whose arcs and their capacities are defined as follows

1 for all 1€ R
0°7i
0 otherwise

1 if j is & section of course 1
C(x,

i ) =

1] :
J 0 otherwvise



C(Xn.‘gD- ) ==
13774 0 olherwise

C(Dlgxn) = 1 for all Dy

If a workable time-~teble 1s possible then there coxists
a set of |R| sections, one for each course in R, which

are joined to [R] different Dy -

The mayimal flow out of XO can be seen to be IR .

For the flow out of Xi to enxual the flow into xi there

must exist only one Xij for esch %, (because the {low

i
must be integral valued) to retain the maxiwal flow at

1ts value of IBl. For the maximal flow into o te Te
|Rl the flow must have come from |Rl different Dy

because by construction
C(D X = 10
15 1_1)

Therefore the maximum flow must proceed from the | Rl
separate Xy4 to the |R] separate D,, thus the retwork

is shown to have a maximal flow of
= [l
when a time-table exists and a flow of
P < |g]

vhen a time~table does not exist. Nonexisterice of a

time-tablse will be shown by arcs with the rezuired

; 2y £ R T SR T SN : - .
capacity of |8l nob beirgz present fron o x. . to D o

- :_‘»_ J l ] -

%]

1 if J is offered 1n time divislon
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if they are; then ercs from two selected Xij will be

incident with one D1 and because

f(Dlyxn) = 1

the flow will be IR] ~ 1 or less.

The Ford-Fulkerston algorithm for finding the
meximal flow through a network reoulres that the path
of this flow be traced and from this trece come the
nonconflicting course sections satisfing R,

This 1s a very saltisfying formulation and solution
to the sectionlng problem as The procedure used has . been
weil investigated and the theory (very little of which

has besen mentioned here) has been extensively studied.



Section 2,4 Complete Graph Algorithmic Approach

The ma jor problem with an heuristic sectioning
procedure 1s to determine 1f & sel of conflict free
assignments exists without trying all possible sections.
In general, the sitvations in which a time~table does
exlst are gquite easlily solved by heuristic procedures,
however in the situations in which time-tables do not
exlst the computer spends a great deal of time in the
assignment and back-tracking sectlions of the vprocedure,
and 1is generglly forced to give up without elther finding
a time-table or determining that one does not exist.

Some aspects of the heuristic procedures, such as the
concept of a Sedtion vector, are waell worth keeping
but the basic assignment andvbaoktracking Loops need
to be modified,

P. Hall's famous disgsertation "On the Representatives
of Subsets" (18) provides a method of determining
whether a student's course reauests are compatible.

Hall states (in his Theorem 2):

Given any set 8 (divided into any number

of classes 8, S,y v..5 8,) and a finite

svstem of subsets of S (T T

13 29 LN | Tm)
such that
Sj_/.\Sj = ¢ (for 1 #£ 3)

then there always exists a2 set of m elszments



(9.19 By ooy am) no two of which belong to

the same class, such that
a E [:[1. (:.I_ = 192939000&!}1)

provided only that for each K = 1,2,35¢00I

any K of the sets Ty contain between them

elements from at least K classes.

The proof of this statement is in the original journal,
however the arguments used in the section on ﬁetwork
flows (Section 2.3) may be used as a proof.

The set S may be considered as the set of sections
of the m re~uested courses of & student. The class Si
are sections meeting at time period 1. The subsets of
S (Tlg Tos weos Tm) are the sections of the m individual
course requests. The set of m distinct representative
elements now correspond to the section of each class
which would provide the nonconflicting time-table (XK = m).

It is only riecessary to verify the sufficiency
condition of Hall's theorem for each student’s course
recuests to determine the existence, or nonexistence
of a time-tzble. For nontrivial cases this verification
may reauire a large amount of computing, thus it would
be advantageous to produce, as a byproduct of the
verification, the actual student timemtable°

This verification can be accomplished with the

procedures developed to find cemplete subzraghs in



Section 1.5, Tirst, however, the master time-table

must be stored in the form of & bhoolean matrix. To

each section of each course there corresponds one rowW
and column of the time-table boolean matrix, T, with

the requirement that tij is Lrue if section i is given
at the same, or overlapping, time as sectlon J. With
the master time-table in this form the verification

of Hall's sufficliency condition reduces to the following
steps.

1/ For each student construct a boolean métrixg
M, consisting of only those rows and columns
of T corresponding to the sections of his
requested courses (this matrix is associated
with a graph G which is a subgraph of T).

2/ 1If any row, j, of M represents a single
sectioned course then scan this row for any
true element; i, snd.eliminate the row and
column i from the matrix. This elimination
may take the form of Setting all elements in
row and column i to the value true but
preferably should consist of actually removing
TOW eﬁd column 1 from M as this will sp=ed
up the l=zter stages of the algorithm. This
eliminatlon process corresponds to an indicsticn
that there is no slternative section assignment

available for course Jj.



3/ Ensure thst there is still at least one
sectlion avallable for assignment in each
requested course., If all sectlions of any
course were deleted in step 2 then it will
be impossible to construct a time~table for
this student.

4/ Generate edgmes between vertices corresponding
to the individual sections of each course
request, ie. if a course 1is divided inrto s
sections (1,2,3,...,8) then Mij should Ee set
to the value true for all 1 andj = 1,25¢..58
(including the case 1 = }). This will ensure
that this student is not placed 1n two sections
of the same course. |

5/ Take the complement, H, of the matrix M

(ﬁ 1 - M), M is now a boolean matrix

il

corresponding to a grapvh, G, of the pairwise
rermissible ooufse sections.

6/ If the student has reguested N courses then,
using the complete graph algorithm developed
in Section 1.5, determine the complete
subgréphs of order N in G.

7/ 1f any complete subgraphs of order N exist
in G then Hsll's sufficlency condition has
been obl=2ined and a time-table corresponds

J——

to the N vertices in any KR of G.
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Step 1 produces 2 boolezn matrix which indicatec
which section of the IR] recuested courses may not be
taken gimultaneously. For example FIGURE 2.4.1 shows
the graph, and 1ts associated wmatrix M, of the confTlicts

between the sectionsgs of five courses:

- 8 Singie-seotioned course (vertex 1)

- a single section course (vertex 2)

three section course (vertices 3, 4, 5)
- & three section course (vertices 6, 7, 8)

- a four section course (vertices 9, 10, 11, 12).

H g Q w >
i
o

From FIGURE 24,1 1t can be seen that section 1 (course
A) is given the same time as section 9 (the first
secltion of course E) and section 2 (course B) is given
at the same time as section 8 (the thivd section of
course D). Because oéurses A and B have only one
section each it is obvious that sections 8 and 9
cennot possibly be included in any time-table with

1 and 2. Step 2 takes care of this incOmpstibility by
effectively removing these two vertices (8 and 9)

from the gravh by generating edges between them and
all other vertices. This stlep 1s i1llustrated in
FIGURE 2.4.2, the new edges being the continuous lines

and the original edgzs the dashed lines,

Step 4 takes cere of the possibility thet =
student may be assiecned to two sections of the sane
course. It 1s =2=s5ily done by geverating edges betwsen
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the sections of & course, so that 1 one sectlilon is
agsgimred to a student 271 olther secltions in that course

are then incompatible with the time-table. This i

6]

shovn in FIGURE 2.4,3, with the newly inserted

o

Tres
again being shovn as continuous iines and the previous
ederes as dashed lines,

Step'five produces the complementary graph, that

1o

is the grsvh with the sawe rumber of vertlces but
vhere the orisinel greph had an edge the cowmplement
has nore, and where tre original greoh did not have an

aph now

edge the complement has. The complementary

"

indicates which valre of courses a2re vermitted together

in a time-teble., It is now only neccsssry to find [Rl

(in this case §5) vertices forming & covrlete graph to
both verify the sufficiency condition of Hall's tneoremnm

and find a time~table. FIGURE 2.4.4 illustrates the
complementary graph and the circeled vertices ore cf .
the many complete five graphs availlable for a time-tabie.

The method of constructing this eraph cunsnres

that there will be no complete graphs of order Rj

and only a complete graph of order [R| if 2 time-table

(X

exists. Thus the operation zﬁi‘ml (see section 1.4)

performed on the matrix M will ouickly determine if a

tine~table 18 possible, and only if it is, is it necs

[ e
oy oalen

D

O

to continue on to find the cowmplete craphs which sctualiy

n

represent the tine-tables,



: 2
operation AT is dependent on*%- vhere v 1is the number of

vertices in the graph. For this reason it is best, in
step 2, to completely remove a row and columm from

the matrix M rather than adding the extra edges. VUWhich
of these two methods are actually used will be heavily
devendent on the computer in use and the nethod of
storing the matrix M,

In very bad cases the matrix M may be larger than

100 X 100, This, because of the amount of computation
necessary for the operation gﬁTn, may lead to excessive
computer tim§ being used, however this may be alleviated
if the cowmputer has & renge of vpowerful logical irstructicr
The genervel] avallavility of machires with multiple
processing units will elso ald in overcomring the problem
of excessive computer time Being used. The operation

AsTn lg suited for multiple vprocessor maechires because
the checking of the number of edge cilrcuitls of length
three subtended on each edge is irdependent of overstions
on other edges. Although it can be showun that seriszl
processing may result in fewer ectual operations

being performed, the time saved bty perallel processing
will be significant in the real time situations in

which student sectionirg is usuallycarried out,
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Secticning Algorithm

The corplete gravh sectioning aleoorithm wos
implemented in an English-Blectric-~Leo~Marconi KDEF @
uging data obtained from the RBeglistrar of Tthe University
of Alberta, Caleary. This imnplementetion was not
irtended Tor &#n actuval sec tuomlrv producticor run, &as
was Lhe heurlctic irplermented in Section 2.2, but simply
to gain experience in the runnirne problems of this

algorithm. The implementetion consisted .of four

U"

separate programs!t

1/ A vrogrsm to resd the master tine-teble
data from cerds avnd produce & tvbe 2 time-
vector'w writter in ALGOL with some procedurs
bodies in USER CODE

2/ A program to read the type 2.timeuvectors
and from them build upy the master tirme-table
boolearn matrix which was then stored on the
KDEF 9 disk urnit -~ written in ALGOL with some
procedure bodies in USER CCODE

3/ A prozram to read students course recuests
end proeduce the 1+dividual booleen uwmetrices
by seleclting The soproprizte rows and colunns
frow the master time~tzble mwairix - wrlittar

ir LLGCL with ceme vrocadure bedies ir



USER CODE

L/ The sctuzl sectioning algorithm - written
‘within the framework of ALGOL but most of
the prosrarn is vritten In USER COLUX in orcder
to obtain full use of the KDF 9 logilcal
instructions and to simulate as closely
as possible actual production conditlons.

Programs 1, 2, and 3 wvere not writlten with the
intent that they be es fast as possible, In fact it
turned out that, due to the access time on the disk unit,
betlter usaece of the computer time would heve resulted 1if
program 2 had never been written -~ the individual
student matrices being bulilt up by direct comperison
of the time-~vectors rether than removing the relevant
rows and columns from the disk. Frogram &, on the olher
hand, wes written with the intention thet its TU ning
time should be kepl to a minimun,

By a slight modificetion of The complete graph
procedure it is possibhle to cause it to find all the
complete graphs of a given order rather than just one
complete graph. This wag used in an attempt to proauce
all possible tiﬁemtables for a student, thus allowing
a selection procedure besed on the "goodness" of =2
particular time-tadle,. It was found that, after the
first complete gravh had bzen {found, the subsesuent

complete eravhs were found at a rzte which wes limited



only by the output devices (magnetic tapes with a transfer
rate of 40,000 characters ver second). Thus it seews
possible that = nunbzr of different time-~tables can be
completed and the "bast" one given to the student.

During an attempt to find a function which would
predlict the amount Qf computizg time each student would
need, a pleat of the nunber of vertices in the individual
studentfs conflict gravh against the computer time used
was produced (see FIGURE 2.5.1). This showed an alarmirg
tendency for the graphs to fall into tThree distiﬁct
types. Type A (see FIGURE 2.5.1) 1s easily explained
as the graphs of students whose course requests were such
that they did not possess a confllict-free time-table.
Tyre B and C however are students who dld vossess a time-
table and no simple test could detect the differerce
between & tyve B and a type C graph. Plots of both
the average number of sections in each course againgat

time, and the average degree of each vertex against time
3 p [

[

shoved this same trreefold division.

It became imperstive to find the cause of this
divislion when 1t was found that one student requirea
1231 seconds odmputing time to determine a time-table.
This student's final graph vas large, 110 vertices with
5588 edees, and vas sc constructed that it hed a2 vossivls
14,929,920 different section combinations, However the

simple size of the sgraph had to be disrecarded when
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another student WES found with the same size of graph-
(110 vertices, 7234 edges, and 218,350,080 possible
combinatlons of sections - about 20 times as many as
the first student) vhose time-table only took 6.6
seconds to compute,

As it turned out the basic nature of the complete
graph algorithmy, a yo-yo tree search, was the culrrit.
If, in seasrching down the tree, the algorithm initially
chooses an unproductive brench, & grest deal of effort
is wasted 1in searching all the offshoots of this‘branch
before.the procedure can again look for a more fruitful
branch. In tre case of the two students cited above,
tre former made the procedure search seven long
unproductive branches before it found one leading to
a cowplete graph, in the case of the latter student
the procedure found e fruitfuvl branch immediately and
after only recursing six times it found the complete
graph,

Any attempt to eliminste the searching of unprciuctive
branches must eliminate the ablility of the slgorithm
to find all possible time-~tables for a student. However
computing timeé of 1231 secconds for a single student
are a2lso unacceptable., A compromise mwust be found.

Fach step down the complete craph search tree
eliminates from the graph at least one vertex which

does mnot vpossess the necessary edges to form a complete



graph. This eliminstion means that, as one goeg fvrinaey
dovn &-direct fruitful branch, the ratio, ﬂ, vhere
nattber of edees in this gragh of I vertices

/9 number of edges in a K

N
. (2.5.1)

must increase. Thus if ﬁ is cowputed for each step,
and compsred to the ratio obtained in the lazst step,
an indication o’ the vossible "frultfulness! of the
branch is obtained.

When this extra step was incorporsted into the
complete graph sectioning procedure the cacse which
formally reculred 1231 secords computing time now
recuired only 23 seconds. As ¢an be seen from FIGURE 2.5,
this added step tended to bring the B and C types of
graph together and very substantielly lowered the total
computing time necessary, although the computing time
for each of the type B graphs wes slightly incregsed,

This step is detrimental to the algorithm ag it
may prevent it finding all the complete graphs. It
1s however a necessary step if sectioning is to be
done in a real time gituation.

FIGURE 2.5.3 shows the behaviour of the search Tor
severéy typlecal students. The RATIO 2.5.1 (shown as
a percentage) is plotted against each recursive ster

(or branch voint in the search tree) met during the

search, the height of the vlot indicates the corrlietences
of the subgrarh. Thne origiral tyvpe ¢f esch oravh



Computing time taken

sectioning procedure

with complete graph

using the f?ratio

P
IS
»
.
»
— .
- ‘%——_‘__hm M
M\' . .
. : 3 t, 1 " A ' 1 m
[} O
O un
i

pedtmvhnt

1090

50

why

og scale)

(1

ing time

EE)
5
Q.
£

co

w
e

<

@
w



A plot of g against the number of steps taken in

determining a complete subgraph

ho]
P J, ) L 1 3 1 1 L) 1.
[ &) Q o ) )
> ) N b & o " M °©
&
@

PIGURE 2.5.3

recursive stevns



(from line B or C on FIGURE 2.5.1) is indicated beside
the rlot.
The processing time veried from 0.3 seconds to
56 seconds ver student with an average of less than
10 secondé, well within the time allowable for a universit

of moderate size with a computer the size of KDF 9,



CHAPTER 3

laster Class-~Teacher~Room Timemtables




Section J.1 The Problenm

This final aspect of the three part timémtable
problem is the most complex (and as a result least
understood) of the time~tabling situations arising
in educational administrations. The construction of
a master time~table may be corsidered as the next
logical step after the student sectloning problem hes
been solved. However this involves progressing from
a one dimensional scheduling problem-(examinatioﬁ
time-tables) where optimality can be closly defined
and virtuslly attained, to & two dimensional scheduling
problem (studert sectioning) where a definition of
optimality cen only be vaguely suggested,_to a four
dimensional scheduling protlem where ovrtimality is
practically (if not actuslly) impossible to define
and to simply find a feasible sclution would be considered
.an schievement. The fact that the problem has reached
into four dimensions does not, of itself, prove the
stumbling block, but the subtle interplay of the
oonstraintsAto the variables (possible free selection
of courses by étudents, ensuring departments are not
overloaded in any one teaching hour, limited classroon
avallability, preferences of faculty members for certair
times of day, the possibility of several courses being

given by the same person - to mention but a few) are



the facltors rhich make 1t remariabls thet roagster time-
tables exist ab 211, let alone a2iterntine To defire an
optimun solvtion.

Froducing 2 moster time-tablas for 2 university
becomes an Iintricoate probhlem varticulasrly it it is
attempted to give each student the fullest possible
cholce of suhjects., Hven carefully designed naster

larcae
time-Ltrbles reguire 2 &ﬁﬁ@$&ﬂ.ﬁu* Wit of stud

o

ents To
take courses they would not have chosen except for the
fact that "It wes the only one that would fit into wy
schedule!

The ideal situation would be to ellor students

to reglster, then us=s a computer Lo vroduce a mastes

m

time-teble from data oblaired during the registration,
Aside from the Tact tnat a studert would bhe frec to
register for any course he is otherwlse qualified to
take, this method of producing a master time-table
may lead to a considerable imvrovemnent in the utilization
of an institution's physical facilitles, The tradilional
schedule is to group the lectures in the morningé and
leave the afternoons free for the longer laboratory and

tutorial sessions. It is, of course, very wastsful to

have laboratories (probably the most expensive class

=y
(4}
3
Q
=y

room space in a university) idle for one half o

[

dav, but to schedule a three hour chemistry lsbor

)
¢t
O
=
<

the movrrinz is to court ovossible disaster in it

>3
D

for

.
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individusl student's schedule, Having the master
time-~-table produced after registration might well lead
to some of the iaboratory veriods being scheduled in
the morning with some of the lectures in the afternoon.
On the other hand it may be guite impossible to produce
a feaslble master time~table by this. method and some
limitations may still have to be placed on the course

combinations selected by the students,



LU

Section 3.2 Proposed Procedures

The literature svailable on the production of master
time-tables may be divided into four distinct groups
characterized by their approach to the problem. The
four groups are 1/ mathematical, 2/ clerical, 3/
algorithmic, and 4/ heuristic. It will suffice to
describe one example from each catecory as being typical.

G. R. Sherman (31,32) hes published what is perhaps
the most comprehensive work which attempts to define
the problem from a purely mathematical basis. Using
set theory and probability distributions of students
selecting various sets of courses he has managed to
formally define the verious steps necessary in the
solution of the prohlem as ﬁéll as some of the relations
- which must hold true for the resultant schedule to be
actually implemented. In Sherman's major work (32) an
attempt has also been made to define whaﬁ is meant by a
Meood" schedule. This, unfortunately, is taken from
the view that "good" only applies to each set of resources,
rather than the institution as a whole.

Although Sherman has developed algorithms to perform
the various steps he defines, the =2uthor was unable to
find any record of them actually being inplemented in

8 realistlc situation., This uhdoubtedly stems from the

Ao

fact that they ars almost purely combinatorial in rnaturse
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and would be vary evtravaca-t, 17 nob impyactical, 1=

the corrnter tine usad. It is olso rathey untertunste
that his work, being a set theory disgertation, is
extramaly difficnlt to recd and thus his wobtantisliy

useful cdefiniticng 2re incomprenansible to the vast

W

ma jority of ndministrative vpersonnel who would be 2ble
to bhenefit from them.
The sccond, and vernans most frulitiul, arproach
is tynified by the system krovn as G.A.S.FP. {(Generslizad
Academic Stmulation Programs) devised by R. E. Boltz {(21)
who worked under the direction of the Leglstrar's
Office at the Messschusetls Institute of Technolooy.
The bagic vhilosonhy benind Lhe system 1ss
"As scheduling involves meny hirhly respvonsitle
ersonncl, 2nd cornslderable clericel mork is
involved in the declsions to bé nade, vou hasve
high level veowle simply making a few declsions
and then doing mountalins of paper work.
G.A.S.P. programs were desimned to be used DY
the versons chasrgad with building the schecdule;
the comvuter sianly taking over their role
as clerka "
According to the published results a registrsr,

startlrae from basic deta, will have 2 workatle time-

table oafter 3 -~ & runs, and gfter 10 - 20 rurs. sriced
- ? ; N

y] -y N [P % hi p — o I - e B
g day or so a2veri, he vwould nove 2 naghteor tina~tabie
{ ) . - 1 5 . P oy . T I U e T
be ™ bthan a2-y ne could vaws produca’ by tradiigooal



methods. After each successlive run the good f{eatuvres ol

+

a time~table sxre nobed a~d the bad features are modifiaa

D

b¥ the uwsger., Thus provosed schedule innovatlions can
he studisd for feasitility much mors readiliy than 1s
possible with manual procedures. For example, 1if,
during a serles of runs, the data on students, times,
and stef{ ere kept fixed while the »number and size of
clessrooms are veried then the schedules vesulilnz fron
the series of runs would give & valuable i~sight to the
nunber of class rooms actually resquired. This sane
maethod would:prove a valuable tool in forecasting
the recuirements of the institution in the future.

The G.A«S.P. scheduling system is designed as 2
four dimesnsional assigrment vroblem (time, rooms, stzff,
and students). Its approach 1s to ssacrifice sn exact,
conflict free solution in return for keeping the ability
to make all four of the asslignments and to be of use to
very larsze institutions, The time-table construction
routines will schedule classes in the order designated by
the user; time assignments being based on the evailabpility,
influenc=d by a user generated wvelighting fector, ol staf?l
rooms, 2and students. If the program 1s unabls to make &
recoulired assigmment, from its specified choleces, 1t
simply leaves that job for the user to do manvally or

for a future run when the user hag eltered the innut

The G.A4:.3.F. system is cowposed of several pro:rrzig



onlj one of which is concerned with the actual construvctior
of & master time-table. The other programs will attempt
to schedule a fepresentative group of students to the
new master time—table and output various statistics to
ald the user in evaluating the resulting time-table.

The scheme pfoposed by C. C. Gotlieb and J.
Csima (7917) for the solution of school time-tables
enviseges the construction of the three dimensional

boolean array Bi each element of which represents the

Jk
meeting of a class (i) with a teacher (j) at a pasrticular
hour (k). A false element indicates that this class is
not available to meet with this teacher at this hour.
Initially the array is filled with the value true,
indicating that any teacher is aveilable to meet with

any class at any hour. The procedure then modifies

the array so that, at the conclusion of the modification,
at each hour it is possible for each teacher to meet only
one class and for each class to meet only one teacher,
and each teacher can meet each class a predetermined
number of times. The time-~table is then inherent in the
resulting array.

Gotlieb ensures that the resulting time-table
conforms to certain desirarle patterns and fully exploits
fecilities in heavy demand by alloring preassignments
to be made. Although he has been able to prove that

the vrocedure will detect when a tire~tabhle 1s impossitle

under a given set of prescssignments, he has not been stle



to éhow that, for a given set of classroomns, teascher, and
times, a time~table exists, He has, however been able
to prove existence in some special cases. |
The procedure resquires that, at regular intervals
during tre procedure, an examination ~be madé of each
plane section of the three dimensional array. It is
shown that each plane section 18§ effectively sguare
in that any seeming excess of rows 0r columns can always
be eliminated. If b is an (n ¥ n) plane section Qf the
array B then an r-partial solution of b is a set of r
independent true elements,; ile. r Lrue elements such that
no‘two occur in the same row or colunn. -An n-partial
solution is the time-table for the class, te&%cher o¥F
hour represented by b.
The examination of b has two stages:
1/ confdrmation of the existence of at. least
one schedule (fessibllity test)
2/ any true element which does not belong to
a possible schedule is changed to false
(matrix reduction)
The feasibility test is a very simple procedure
but the matrix reduction 1is & highly complex process
reguiring large amounts of computing time. The proposed
"tight set sezrch" procedure for reducing the matrix
can be shown to converge to a solution in about 2" steps
and thus is, unfortunately, iweractical 1f néf?ﬁ), J e

Lions (24) hes developed some refinements to the tight
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set search which will reduce the effort recuired to anut
(mn)2 operations, where m is the number of true elements
in b.

The lergest revorted time-t=2ble produced by this
method is one for a school of 9 rooms, 9 teeachers, and
9 teaching hours. Lions has used the method to produce
master tlme-tables for schools in Ontariq;however, to
the author's knowledge, none of his time-tables have
ever been openly published.

The 1ast method under consideration is one déveloped9
on an experimental basis, by J. Pfaltz (29) of the
University of Maryland. His heufistic procedure is very
crude because he did not cerry his work to completion,
however it shows pfomise of becoming a very useful system.

Pfaltz conceived of the‘procedure_being used after
the student body had enrolled, thus it would have an
sccurste record of the number of students enrolled in
each course and the number of students taking any pair
of courses. The registrar wes expected to supply, as
iaput data, the following information:

1/ Course data

name
-~ length of claess eg. 1 hour 3 times a week
- two preferred times for class meeting, or
to be arranged, if necessary
-~ the mgximum number of students to be allowed

in aniy one section of the course



2/ Avaiisble tlwe nperiods
- a list of 2ll hcurs, sulitedble for teaching

in any ona weel

3/ The aforementioned registration data,

The procedvre will perform the follovwing hesic
steps in 1its attempt to design o time~table:

1./ Tabtulate a1l the repistrations for each
course and form & list of the courses conflictin.
with each course,

2/ Compare the totsl registration with the
maximum numher of students permiitted in esch
sedtion, and declde how nmany sections ol each
course are to be offered.

3/ Form a vriority list of the classes to be
scheduled. This ensures that classes which
are difficult to schedule are.atterpted Tirst.
The priority list is bzsed on the total
enrolment, witgther it 1g a single or multivle
Sectioned course, and the length of tine a
class 1is to meet over one weelk,

4./ Modiﬁ}eﬁ the conflict lists of the multiple
seotiéned courses so thet only the most
gserious possible conflicts rem=in., The ba2sic
vnilosorhy behind this 1is culte sinple - 1if
two siroele section c-urees heve ¢
compion to both, then they conrolt maeb g the

same or ovarlavpinag times, hovever 1If cnz of



the courses has hteen divided into two sectiors
there 1s some p-ssibility that assignling
students to tre other sectlon wlll resolve the
apparent schedule conflict. If one, or both,
of the conflicting courses has more than threc
sections then Pfalfz irnores the apparent
éonflictu

5/ The Ti-al step 1s to assign the top unschedul=d
course in the priority list to the time veriod
of its choice, if possible, otherwise to any
free time per Jod The routine then attenpts to
ssalgn as many courses as possible to the same

time period; however il any of the first five

Q

courses, in the non~conflicting list, vrefers
that time veriod 1t gets 1t, ever Thouvgn 1t ie
out of strict priority. This added queue
jumping does not seemn to adversely affect the
systém and will go & long way in makineg 1t nore
palatable to the user.

In the limited tests Pfaltz made, tThe procedure
seemed to work very well. There are; hovever, ¢ numbar
of improveuwents wvwnich covld be made:

1/ Pfaltz arbitrarily chose some of the perameters
(such s the number of co~flicts which the

procedure could safely isnore), Furbher

T
¥
0
i
i

study conld refi=e

oo e YV -, il I B N At
snd rcerhars syuee=3

othzrs



2/ As the pro~ram tries to schedule 21l the coursas
in as few time periods as pogsible, the
resulting distribution of courses over the week
is very uneven. Some Torm of levellinz routinsz
will be necessary, this may even be accomplished
by modifing the values of the varameters
mentioned in point 1 above,
Of all the master timemtable procedures available

in the literature none 1is entirely satisfactory. The

most fruitiful avenue of evproach is, perhaps, to combine

the clerical reducing ldess of H~-1tz with the easily

modified heuristics of Pfaltz to produce a system which,

if not perfect, would be extremely useful,



Section 3.3 A New Avpproach

Ao e i a a s wnes e ol o, 8 e o

The probtiems 1nvolved in producing erawiration
time-tatles and the sectioning of studernts to classges
are essentlially one and two dimensional assigrment
problems. All of the structures dealt with in Chapters
1 and 2 irnvolved only reletions bveatwser palrs of itews,
often called dyadic relations. The master tTiwme-table
of an institution, on the other hand, requireslone to deal
in tetradic reiationships, ie. student A meets with
teacher B in room C at time D, This may be simplified to
a trisdic relstion if the teacher i1s considered as
simply another student required to attend the class,

A fruitful mathermatlicel theory for n-adic relatlons
(n>2) seems to be undiscoverad. This is essentially
due to the fact that dyadic relations correspond to
matrices and standerd maetrix operations have a definite
meaning in terms of dyadic relations. Hovever n—ﬁdié
relations correspond to n-dimensional wmatrices and
"the handling of theée matrices presents a number of
specisal problems,

To be able to apply the techniques developed in
Chapters 1 andl2 to the vroblem of vroducling 2 master
time-table some method must be develoved to raduce thne
problem to girvle dyadic rzilations, In the pest, the

attemets at Hullding a xast

Ay

4]

LA | 1 - - 2 3 - -
r tire~tahle havs covsidsrs



rooms, .students, teachers, and times as sgeparate entities
and thus were forced into three or four dimensional
assignment prohtlems,

In some scheduling problems, notably problems
arising out of shop floor and essembly line SGheduling;
not all assignments have Lo be made at once, for example
a plece of.work m=2y not have a machine or operator
avallable for it, and thus 1t can siwmply be rut into
a waiting agueue. On the other hand, & cless - with & roon
but no teacher is guite a useless assignment, Thﬁs
students, teachers, rooms, times and any special
equlipment reculired are all of equ2zl importance in the
consideration of master time-tables.

In order to avold confusion in the discussion on
maester tiwme~table preperation the following definitions
are necessary:

- a "primitive facility™ (or "primitive") will
denote a particular teacher, room, time segment,
piece of equipment, group of students, etc.

- a "regource" will denote & collection of
identical (or interchangeable) primitives,
eg. a number of teachers having the szme
qualifications, a number of rooms of eqgual
capaclty etc,..

- a "class" will denote a collection of primitives

(one from each necessary resource), & class vill

623

normally be given a name, eg. the class called



jr. mathematics may consist of the primitives:
- Mr. Wnite (the teacher)
- TOOMm 709'
-~ the first year group of mathematics
students
- ﬁhe time segment Mon. Wed. Fri., 9:00-10500
- the first year mathematics demonstretion
kit,
- a "time-table" will denote the collection of
a1l the classes,
Consider & student enrolling for studieso- In Chenpter
2 it was geen how he couvld produce & list of the covrses
he wished to ettend and how a computer could assign him
specific sections of each course. If, ir plece of this
student, we substitute a department head, he could
produce a 1list of resources necessary Tor the fermation
of a cless, For example, 1f he was preparing a 1ist.of

resources for jr. chemistry it might consist of:

1/ a teacher of chemistry

2/ a lecture room holding 200 students, with a
demonstration‘bench

3/ the first year class of science students

L/ a chart of the periodic %table of elements

5/ a time segment consisting of three single

hours per week.

Fach of these rescurces 1is composed of one or more



primitives,

1/ (teach

2/ (roon)
a)

b)

L4

for exaumple:

o]
pors

r) a four section resource
White

Broum

Green

Dr. Red

a two section resource

room 707

room 1073

3/ (pupils) a single section resource

I/ (chart) & three section resource

chart A
chart B

chart C

5/ (time) a ten section resource

a) Mon. Wed. Fri. 8:00 - 9:00

b) Mon, Wed. Fri. 9:00 - 10:00
c) Tues. Thurs. Sat, 8:00 - 9:00
etc..

The process of choosing one primitive from each resource
to form a class 1s easlly seen to be identical to the
problem of sectlioning students to classes.

The full power of an algorithmic sectloning procedure
is vital to the successful production of a workable

time~table by this method. Each vrimitive may be
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revregented in the geme Menner #s8 ecohual coursae cectlons

were in Chapter 2, the sccvlon vector and reserveticn

numliery corcevts actine as voveriul selechticy criterias ov
obtoiring the corrsct assiurment of te~chers, roome, Liraosn,

exulpment, etc..

The boolesn matrix, T, revresenting the master
time~teble ir Chepter 2, 18 nov replaced by a2 boolean
matrliy P havine one row end coliuwn for each =mrinmitive
avellable, Initielly P,, = false indicating that any
pair of primitives nmay be assigned together. As the assi;:
merts are mede for each class the matriy P ig upidated to
show the conilicts of the orimitives in the "time™
resource with the primitives in the other resourcoes.

In practice the metrix P will not bz ezzily st ub,
For example the "tiwme" priwitives may have to be modified
te avold overlappine time periods, end & great deal of
study vill be ne=eded Lo accurately determine gll the

primitives within an irstiitution. Althougn unwieldy to

jAv]
'::.‘J
<l
W
r_.
'-'\

set up, the ratrix may be used to great e, Tor

exarple, 1 a o2dece of enuivment, i, is =2vsllsble only

[2

ir the chermistry bullding then by assigning

P = true (j = all rooms not in crhewistry
1] building)

this will ensure that a cless reguiring equipment i +il1l

e neld 1ir ths chexlistry bulldinzg,
Unlike stvder® sz lonine, —mare caectiore ¢f orne
L]

......



another course,; the primitives in one resource sy be
identicel with some or e2ll of the primitives in anotrer
resource,‘.ego a teaccher aualified in hoth chemistry and
mathematics. Thus great czre must be taken in ensuring
that there is one and only one row and column in P for
egach primitive. This also forces a slight chenge in
the sectioning algorithm, Step 4, the generztion of
edees between vertices of the individual sections
(primitives) of one course (rescurce) must now be
accomplished by setting Pij = true if priwitive 1 and
primitive J are in the same resourse, for each resources
In which primitive 1 and J ere grouped.

To ensure an even distribution of the workload
to each primitive in a resource it is only necessary
to keep a record.(corresponding to the number of students
in each section) of the number of hours each primitive
is occupied. The secticning procedureg-by means of the
section vector, will attempt to assign the primitive with
the least usage before atteﬁpting to use primitives in
- greater demand,

It would be possible to use this method by selecting
at rendom a department hesds list of requirements,
sectioniné them,; 2nd selecting another list of reauirsmerte
This,; however, will rapidly leed to a situation in wuhich
it is impossibie to find a vealid assigrment of primitives
for ore or morz clesges. This is eszuilvalert to the revicT

seleclticon of vertices fTor colouring, a process seen, 1in
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Chapter 1, to produce far from optimum results.

The selection order of the lists of reculrements
may be obltained by the same methods as the selection order
for vertices in the graph colouring problem., An N X N
matrix R (where the institute wisheg to offer N classes)

is produced such ﬁhat

if s requirements of class 1 are the same as those of
class J. The elgenvector is found corresponding to the
largest eigenvalue of the matrix R (or an approximstion
to this eigenvector -~ see Section 1.5) then the classes
for assignment of primitives are chosen in the order of
decressing magnitude of the elements of this eigenvector
(see Section 1.3).

This ordering criterion may be changed in individual
situstions by having an extra welghting factor of two or
three on the conflict of room reguirements if the
institute 1s short of space, or teschers if it is short
of staff, etc.. This will tend to raise the magnituce of
the eigenvector elements corresponding to the weilghted
redquirements,

Because the various sections of a course will
normally have the same primitives, they will have eqgusal
values of their‘elements in thé elgenvector and thus
be sectioned one after anotrer. This together with thes

distributing function of the section vector will ensure



that they are sectioned in different time primitives.

A conflict list -of the type used by Pfaltz (note point 3
in the description of Pfaltz's procedure in Section 3.2)
may also be useful In ensuring an even distribution of
assignments,

If an extremely powerfﬁla computer is available an
alternate épproach wlll produce "best possible" results.
The graph, Gy, corresponding to the non-conflicts
between primitives for any one perticular requirement; 1
(the graph from which a complets n graph is found, giving
e workable sectioning) will normelly contain more than
one complets n graph, these complete n graphs will be
denoted by )ﬁ, Xf, %f, q.eoXi

The following vprocedure will determine a2ll the possitl

L

time-tables for an institution:

1/ Produce 211 the Y¥; for each re-uirement i

2/ Form a graph, [T, the vertices of which
correspond to the ¥ produced in step 1

3/ If there exists ¥%, %, ¥s veveus¥ for
any reaulrement i1 then connect the vertices
corresponding to the n ¥: such that they form
a complete n graph

I/ Toke the time primitive sssociated with a

vertex Efand compare it ﬁ% the time primitives

2
associated with each vertex ¥ (1 # j). If

the two time primitvives conflict and a student
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has reguested both course i1 and course j then
join ﬁcby an edge to 3;.
5/ Take the complement of " . [° is now the
graph of all the ¥ vhich are pairwise compatible
6/ If the administration specified N classes
then from Tx find all the complete graphs of

order N. These represent all the possible

time-~tables the institution may use.

Once again the repeated use of the complete graph
sectioning algorithm will yield the solution to a very

difficuit prbblemo



Sectimn 3B
The comnlaete ~reTmh
caction, for tho conatr

S

was nalt forwayrd 8

practice, & rnunbzry of

when it comas to degien

& pract

arount of daebtas ivn o rat
data were collected, 1T

powerful computer

end

To collect

university would be an

it is 1ikelv that the

Y
%

facilitlzs availeble Lo

known., In 1964 the Off

University of Alberte,

the lecture, laboratory

contentssy to the duthor

never completed sgnd finally abandoned conplat

its covmonlex naturs,

duthor hes

erious

drawbacks make

claa

total rozour

Calganry

Doktor fdlornic (Grme

- R [N JRR S

. E = e pmy dep A L]

wethrd , susrastsd 1,
4. o~ ey Y Yo

icticn of schiool Tiv

sucocestion,

se

Lhemn

e o practies

icnl svauven rorla

'\*' -

extremaly arduous

ceR

o

university e

o

~

ice of the Reg
atternvted

2 - L} -
s MO Semilmalrr ooms

's knowledge this

4
L

h

[=1
[

privilege of artt

Howe

ives

TENU

of

e..‘-&

s
4 “1__ P
s g

ne
el en

SAURaN 5

£ |
[

1o

her arnaturat forn and, if th
would reoulire & 'very lasrue g
nalygse 1it,

sify 211 Lhe rescurces of &

the

A

T.F.1.%. Conzgress 65 (Edinburchn 16468), Durinz the
Congress k. O, Johnmston and K. Wolfenden vrssenied
DO entitled "Ceormonter Alded Corstruction o8 Scevao
Time~tohlez? “hich dascriboed 2 ralivnnad of enllenti -~

nolementatior

£

-t

R IR

i



school date in a

complato gronn e

V=
a=1T

indiceted t

wigg a nomtrivial

From the

algorithm for student Sectjoﬁing (2nd & preji=ct described
in Seotion~H&3)9 it wag forecastinhal a realistic attemnnt
at constructing » wester tive.-table —onld trlke bﬁ

ordaer of tens of hours of KDF 9 computer Lime, Hovevorw
(pgain from experience gained on 1mp1amgnting the scectioni:

EN

alporithm) it sh

)

of ithn glworithm

hand coding.

mean hand coding

at the bhast of t
Because of
1.

the time anrd the

it was de

theu,

w&s not a prachi

compubter the siz
to

theless, solv

table rrocedure

its overation.

Thi

form similer to that reruired by the
athod, Dicecussion oTter the pragontziion
iz dete collectlon, for a smsll school,
end ervor vrona togi,
perlence galined in runming the complete

ould bﬁ possible Lo increase

from 150% Lo 300% by very csreful

is would not only be & hume job, 1t vould
of recursive rovitlnes, 2 messy busincss
ines,

thesge difTiculties, eand a lack of both
money to find methoas of overcoring.
cided that an imvlementation of thz systoem

cal escecially on 8

e of & KDF 9, It was pessibls, never-
s & swrell pnroblem with thls mester time-
=nd, in so doing, learn mave &bout

In ths sprine o f 1968 2 tey, clainine to &e ar
inventior of onz Do¥her Adlor, called Instant Tnssarnitv
cama on the meruat,  The nleczs of tLrig onra 272 frur
cubaes with the fzaces coloursd rsd, grec:, 2luc, f:4

I

-

the efficlercy

L



F

I5 \\\_‘\] ' ‘ 1.0

red.1,7,8,9,15,21,23
yellow 2,6,12,16,19,20
green 3,5,10,17,18,22
blue 4,11,13,14,24

FIGURE 3.4.1

Showing the colour scheme of Doktor Adlor's cubes.
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form a solid rectangle such that ecch colour 1s
represocntaed orce and only once on é?ch fmee of the
solld rectnncele, -Th? cuh2 colour schaowe i1s ihet shomn
in FIGURE 3.4.1.

Although simple in concevlt it is extremely difficul
to find a2 solution., The 2uthor nhas never been able To
find 2 solution snd knows of only & few peorle who,
generally after 2 nonth or were, have discoverzd o a.
However it is possible to formul=te this problem 1=
terms of gravh theory and, because of its resemblance
to the school tTime-ltable problew, construct arn alporithm
to tabulate 1l possible solutions.

Form a eraph, &, of 2 vartices reprssonting the
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24 faces of the four cubes; If face i 1is

[¢H

cube from face J and has a different colour from face
then vertices 1 snd J are Jolned by an cdg The graph
g nov represents those faces which may be plecad adiscent
to e2ch other to forwm orie half of & face of the solid

rectangle, If all of tha comnplete grapns of order lour

l-.rj’

(’1

are founrd thew thlece Ku's w111l represent an errarcerent of

I~
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one face from each cubs such that when placzd torethe
they form = solution to one face of the s011d recizigle.

It should e roted that this one face zclulilicn inrlies

T P U ) -1 - [ A, K o : . ey n I NN S T '
nothino about thne other three fo2ces in any vossivls gnlv.
The gravh o woa forvad a-d subritted to Lhns oornlate

craph vrocziurs hnizh rroducad 130 one foeoce solutic s,



or 130 ways of arrsmeine the cubes such thzl at least
one Tace of the solid recitonele shows all four colours.,
Becaugse of tre gsvrmetry of the gituation wary of the 130
Kq's frow g may be ellimirnated from consideration in the
final solution. Specifica]ly the KM'S corresponding to
a single fgce solution megy be eliminated 1if the face
on the cpposite side of the so0lid rectanele 1is not als0
a one face solution.

After eliminaling the ussless onz face solutions
a graph, G, mey be formed, each vertex of which corresconds
to one of the remaining K&'s of . Vertex 1 is jolned
to vertex J in G i1f the two one face solutions
corresponding to 1 and J sre compatible. Thls compzuiinilitl

is achieved if:

1/ no face of a cube used in solution i is usefd
in solution ]

2/ if the fzce of one cube used in solution 1

is on the oprosite side o7 the cube to the

fece used i1 solution J then the three other

faces must 21s0o be ovvosite in 1 and J.

Any comnlete gravh of order four in G will now rapresari

four compsatible one face solutions or the final ansver

to Doktor Adlor's protlen,
The eliminstion of useless ¥, 's frow o laaves
by
six of the Ku’s as teing 108sibly  contalined iw a sgluation



namely:

1/ 1,12,13,22
2/ L4,10,15,20
3/ 6,10,14,23
b/ 3,11,15,20
5/ 2,8,13,22
6/ 5,8,16,24

These give rise to the graph ¢ shown in FIGURE 3.4.2.
It is easily seen that there is only one K, in G and
thus only one solution to Doktor Adlor's problem,

namely:

fece 1 - 1,12,13,22
face 2 - 6€,10,14,23

face 3 - 3,11,15,20

= W
i

face 5,8,16,24,

This rather trivial problem serves as an example of
the use of one graph representing groups of vertices
and thelr relations in another graph. It thus gives
an elémentary problem to examine which will help
determine the problems involved in lmplementing this
typé of approach. In general it can be said that a
problzm of this size ié eagily dealt with on even grall

computers although a small increase in its complexity



FIGURE 3.4,.2

' The graph of the one face solutions to Doktor Adlor's

problem.



could rTesulL In the cownonter eeondlirng rary Limezs Lho

afforl to obit=in = =solntion,
The wein diTficnlty »ould gseew Lo hoe Ivn the deaior
by |

of rrocedures to h=ndle the duebs batween us=s of the

complete graph procedure. In perticular the design of

efficient procedurss to eliminste the useless or redundarnd

pzrtial solutions is tha tosk which could nnke or brenk

this aporoach.
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Further Results




Section L.1 A Bound for the Chromatic Number

In this chapter an investication is made of the
graph colouring processes and related toplcs. A few
interesting results are obtained and several valuable
insights into computational processes are found.

Several theorens will be valuable for the future

discussion,

Theorem 4,1.1

" If a graph, G(V,U), without loops or parallel
edges has an associated matrix A, then two
vertices 1 and J may be given the same colour
if row 1 of A 1s 1identical to row j of A,

Proof
It is known that vertices 1 and ] may be given
the same colour if they are not connected by

an edge and if they are ﬁot both in a circuit
containing an odd number of edges., Thus the prcof
can be split into two parts,

1/ Assume that vertex 1 end vertex j are joined

by en edge, then

aij = 1 and aji = 1

for row 1 to be identical to row j this would

L)

force
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£ ox o= > 8. =
8y = 1 and 33 1
which contradicts the assumptlion that G
has nc loops., Therefore vertex 1 1s not

joined to vertex J.

2/For row 1 to be ildentical to row J there

must exist a set of vertices K such that
Bix = 1 and ajk = 1

which implies that there must exist a circuit

from 1 to J and back to 1 of the form

where k is any.member of’ the set K. This
circuit has an even number of edges and
obviously is the only type of circuit in
existence.
This proves the theorem,
This result may be used to eliminate from the éraph
any vertices wﬁichg by reason of having an identical
twin, are definitely not part of a critical subgraph.

A stronger result 1s:

Theorem 4.1 .2

iy

If row J in the matrix A, assccietzd with the



Proof

graph G(V,U) (no loops or parallel edces), 1s a

linear combination of the rows

ot
e
-
H-
Do
-l
=
2
-
2
2
~
!.Ja

may be given the same colour as the vertex

~corresponding to the row j.

The vertices il’ i ceeey 1 must be at a

2’ D
distance two from vertex j and only J. There

must exist p nonempty sets K K29 ecey K

19
such that

i e U and J e Uy (r = 1,2,..D
T r

and

(for 21l » # s)

It will only be necessary to show that =2ny of
the vertices ir may be given the same colour
gs J and that thlis colouring cof i do

T
effect the colours assigned to the other p ~ 1

(¢

S not



126

_vertices,

Assume thatlt the graph h=s been coloured in a
minimal number of colours and that vertex J was
given the colour o« . If the vertex 1r has #lso
been given the colour « then there 1s no problem,
however if it has been given the colour P2 then
consider the followlng -

No vertex in Kr may be coloured « bescause

je U
Ky

or p because

By an argument similar to that in theorem 4.,1.1
concerning the possible Jjoining of vertex ir-and

J and the length of the smallest clrcuilt containing
both vertices it is possible to show thet vertex

1, may be given either the colour o« or the

colour 4, thus 6ne may change the colour of

ir to &,

The colouring of ir must be indevendent of the

colourings of the other p - 1 vertices!

The relation

KI’/\ Km = g



must hold true otherwise ir and 1. would be

m
at a dilstance two from one another, and the vertex

k satlsfying the conditions

k € Uir k € Uj k € Ui

would force the element

- which violates the condition that G contain no
parallel edges. Thus ir and im are at a distance
four from each other and thus do not have to

be given different colours by reason of being

on an edge circult of odd length.

Finally

ir)Z/Uim |

because the reverse implies that ir is included

in one of the sets Km, If

then

i.€e U



which has alrendy been show - to be iwvossible.

Thus the theorem 1s proved,

Theorem 4.1.2 may be used in any attemot to locste
the critical chromatic subgraph of a large graph.
This result leads directly onto another giving an utper

bound for the chromatic number of a graph.

Theorem 4.1.73

The chromatic number of a graph, ¥(G), obeys

~the relation
¥(G) = R

where R is the rank of the matrix A associated
with the grsph G,

Proof
The rank of a matrix is the number of linearly
independent rows and columns of the matrix.

Theorem 4.1.2 allows the deletion of all dependent

rows and columns without changing ¥(G), therefore
¥(G) = R.
Eouality holds in theorem 4,1.3 for complete graphs

on n vertices (R = n). Thus this upver bound is the best

possible for peneral graohs.



Recently Szekeres and Wilf (44) have published
{without vroof) & potentiallyv better bound for ¥(G).

Their bound 1ls:
¥(G) = N, + 1 (4,1.4)

where A, is the largest elzenvalue of the natrix
assocliated with the graph G. Results deduced in
Section 4.3 will throw doubt on the validity of

(4.1.4) for general graphs.



Section 4,2 Graphical Reduction

The largest factor in determining the efficiency
of a graph colouring procedure is the size of the graph
itself. If some method could be found to easily reduce the
stze then the computation necesssary to produce a minimal
"colouring will be greatly reduced,
A very much weaker (but computsationally more

significant) result than Theorem 4.1.2 is the following:

Theorem 4.2.1

-If two rows of a matrix A (associated with a
graph G having no loops or parallel edges)
bear the relation that the nonzero elements of
row 1 are a subset of the nonzero elements bf
oW j then the vertex 1 may be gilven the sane
colour as the vertex J.

Proof
The proof follows the same general lines as

the proof of theorem 4,1.1,

This theorem 1s computationally important because it

is very easily programmed cn most computers in such =

&1

manner that the full power of the computer's logi

0
)
(¢l

instruction set can be brought to bezr on th= drovlexm

Q

of detzrnining if row i1 is a2 subset of row J. This



parfioular overation (that of reducing the number of
vertices in a graph by eliminating subset rows) will
known as reducing the graph. A graph G, having been
fully reduced, wlll be denoted by Gr, similarly its
associated matrix will be denoted by AT,

If only the chromatic number is wanted then an
" alternate method of reduction is available involving
the carteslan product of two graphs. Thls method is
only useful on a limited number of graphs but if the
physical problem belng represented has some symmebry
to it then thris method may be applied.

The cartesian product of two graphs G(v,u) and

H(z,w) (both having no loops or parallel edges) is the

graph /7{(V,U) whose vertices are the ordered pairs
(x,y) where xev and ye z and (x,y) 1s adjacent to

(x',y') if and only is

1/ x = x' and y is adjacent to y' in H
or

2/ ¥

H

y!' and x is adjacent to x' in G

V. G. Vissing (3%) has shown that

thus if it is possitle tcec factror the original grath

into two cartesisn factors G and H the wvork needed to



o
| 12 /\ 32
o XX
21 \/ 3
22

1,1 1,2 2,1 2,2 3,1 3,2

1,10 1 1 0 "1 0
1,2/ 1 0 0 1 o0 0
2,11 0o o0 1 1 o0
2,2l 0 1 1 0o o 1
3,11 0o 1 0o 0 1

3,2l 0 0o o 1 1 o

FIGURE 4,2,1

Showing two gravhs G and H and thelr cartesian »pnroduct 7.



find the chromatic number may be reduced by several
orders of magnitude.

To factor J7into G and H it is obvious that
vl Xz = |V]

"If |z|<|v| then the J;of}“ must have |z| symmetry, _ie.
if fzf = 3 then N[+ 3 must be integral and there must
bemz;mf}‘.of " with the same value, forceidel=gm—
Inspection of FIGURE 4.2.,1 will clarify . the matter.

A simple test to determine if it 1is possible that
G and H are the cartesian factors of [ is to determine

that the following relation always holds true for the

degree (J ) of each vertex in J7 .

F= o+ oz -2

It this'is not the case then G and H can not possibly
be cartesian factors of 7 .

Graphs with this type of symmetry are not common,
Because of this, and the effort necessary to deduce
G and H,; cartesian factoring is only usefully employed

in cases where this type of symretry is known to exist.
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Section 4,3 The Rigenvalues and Eigenvectors of a Graph

~

The use of an elgenvector as the ordering criterion
Qf a colouring procedure naturally led to the problem
of the meaning, in graphical terms, of all the eigenvaliues
and elgenvectors of the matrix associated with a graph,
'Considering, for a moment, only undirected graphs with
no parallel edges (le. the associlated matrix is symmetris,
the elements are either 0 or 1, and there are 1's down
the leading diagonal.) it 1is evident that this array
may be considered as a correlation matrix, a palr of
vertices Jjolned by an edge having a correlation
coefficlent of 1 and other pairs of vertices having a
correlation coefficient of 0, Taking this view of a
graph 1t i1s possible to find explanations for the
elgenvalues and eigenvectors of a graph in the body of
knowledge built up around that part of multivariate
statistical methods known as principal component analysis,
Investigators in the behavioural sciences are
often faced with the problem of having data of a series
of observations on several aspects of one individual,
or the correlations of these observations on several
individuals, As these observations are all drawn on
a single individual there will clearly be some dependence
relationship between them. Principal compcnent anslysis
is one of the methods of elucldating this dependence

structure., In general this dependence wlll be bssed on
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a number of factors, each of which vill add its own
component to the system's structure.
Morrison (26) shows that the Jth principal component

oOf a system 1s a linear compound

Y :-‘:a.X'{‘aX'II' s e 0o o "{'a’

g = agdqtank, £

P
of the observations, Xi’ whose coefficients, aj, are

the elements of the eigenvector of the correlation matrix
A corresponding to the Jth largest eigenvalue, ),a

The iwmportance of the Jth component, Ij’ in describing

the dependence structure is:

I, = N (4.3.1)
J tr(4)

vhere tr(4) is the trace of the matrix A,

The graphical interpretation of this 1s evident
from FIGURE 4.3.1 in which a graph of nine vertices
and sixteen edges 1is displayed along with four of its
elgenvalues and elgenvectors. The other five elgenvalues
are all ecual to zero and thus by EQUATION 4.3.1 have
no significance in describing the structure. The first
elgenvector, as was seen previously, gilves a measure
of how deeply embedded a vertex 1is, or a measure of its
ability to dominate the other vertices in the graph.
As expected, vertex 5 éomes out a&s the most domiﬁant,

followed by vertices 2, 4, 6, and 8 which in turn ars



Sho

5
3 4 8 9
1 234567809
1{1 111200000
21111110000
31111100 000
b1 112110000
5101 0111010
610 00011111
71000001 111
80 0 001 1111
910 0 OO0 0O 1 1 11
eigenvalue = 4,6262 eigenvalue = 4.0000
corresvonding vector corresponding vector
0.27740 035355
0,36426 0.35355
0.27740 0.35355
0.36426 0.35355
0.40181 0.00000
0.36426 -0.35355
0.27740 0435355
0.36426 ~0.35355
0.27740 ~0.35355
eigenvalue = 1,5151 eigenvalue = -1,1413
corresponding vector corresponding vector
0.35855 ~0.21093
-0,08692 0.33130
0.35855 -0,21093
-0.08692 0.33130
-0.,67495 -0,61887
-0.08692 0.33130
0.35855 ~0.21093
-0.08692 0.33130
0.35855 -0,21093

ing a graph,

unique eigenvalues and eigenvectors,

FIGURE 4,3.1

its associated watrix, and its four



oloéely followed by 1, 3, 7, and 9. EQUATION 4,3,.1

sﬁows thét the Tirst eigenvector explains 52.5% of the
dependence relation in this structure. The second
eigenvector, explaining 44.5%, poinbs out the locally
compact eoguval groups of vertices 1, 2, 3, 4 and

6, 7, 8, 9. The third eigenvector,'explaining 16.7%

"of the structure, presents what amounts to two divisions
of power or dominance, one the outer and central vertices
1, 3, 5, 7 and 9, and the other the inner structure

2y, 4, 6, and 8. The final eilgenvector corresponds to

a negative elgenvalue, indicating that the previous three
eigenvectors have over-specified the structure by 13.7%
and this vector will help correct the situation,

Congider an n X n matrix of the form:

1.PDP eee PP
Pl1pP .. PP
ppl ... PD
.0.1000
.."1'.
PPDP ses 1D
PPDP oo 1
if
O=p=1

then the largest eigenvalue of this matrix, 7 , 1is

A =1+ (n-1)p



and the corresponding eligenvectory Uy s is

1 1 1 1 1

R T

u

which may be scaled up to
u, = (1,151,000,
The other n-1 elgenvalues are
N=A= A== L., =R, = 1o

and the corresvonding eigenvectors are all orthogonal
to u, . Thus a complete graph on n vertices has an

assocliated matrix, all of whose elements are 1, with

Consider a positive definite . n X n matrix A
(811 of whose elements are either 0 or 1) of rank r

(r = n). A can be expressed as
t
A :2:%uiui

if each

1



U.;Vlg = 1 (fOI‘ i = 1925;3,00091’1)
then 211 the elgenvectors gre of the form

u, = [u, ,U. U,
125

j,_ 11 133 s 003 Lli

1’1]
"with
us. = either 0 or 1

1k

.Beoause‘all the elgenvectors must be orthogonal it is

cleer that if

then

0 (for all k # 1)

u
-k

As an example consider the matrices Al and A2 in
FIGURE 403.2c The matrices A4 and A2 correspond to the
graphs Gq and G, in FIGURE 4.3.2.

The complement of a graph G, denoted by G, is the grsp
formed from the same vertex set ags G bul having edges

according to the following rule:

if wertex 1 and vertex J are Jjoined in

-



G then they are not joined in G and
if vertex 1 agnd vertex j are not joined

in G then they are inr G.

An examination of the graphs-al and G1 and their
assoclated matricés Eﬁ and Al shows that a minimal
.colouring of the vertices of G may be obtained by the

following rule

vertex 1 is given colour J if and only

if us

Ji = 1.

L &0

Thus the elgenvectors of tThe matrices. Al and A, represent

colour groups of the vertices of‘ai and E%.

Given a graph G and its complement G it is obvious

that the metrix A, associated with'a; will not always

have eigenvectors of the form

LUYE = 1. (4.3.2)

However the following theorem eases this particuler

difficulty.

Theorewmn 4.3.1

If a graph G, of chromatic number ¥(G), hes
extra edges added to it to form the graph G!

then the chrometic number of G', ¥(G'), obeys



1213456 12345
1[T0 1010 AT 0000
20010101 210100 0
Ag=3]1 01010 Ay=30 0100
Llo1 0101 Lfooo1o0
5101010 510 0001
60101 01
A= 3 uy =[101010] A= 1 u1=[10000]
n= 3 u, =[010101] A= 1 u, = {01000]
A= M= Agm A= 0 M= 1 uy = [00100]
A=1 u, = [@0010]
A= 1 ug = [00001]
0
JQ\B?/SQ !
Q,; e
Gl = Gz.-
Lo RN —¢ ..
% 5
R s 5 !
— — 1.%.;
Gl:: Gzz
a S ¢ :255;
k] +

FIGURE 4,3,2

Showing two matrices, their eigenvalues and eigenvectors,

and thelr corresponding graphs and converse graphs,
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the relation
¥(G) = ¥(g), '
Proof

Obvious.

If edges are added to G then the correspording
‘edges are deleted from G. Thus it should be possible
to define a metrix B and consequently a metrix C such

that
A .- B =2C (4.3.3)

and such that condition (4.3.2) holds for the matrix C.
An examination of the properties of the matrix B will
shed some light on graph colouring processes.

An internally stable set of vertices is a set
such that no two memnbers of the set are adjecent.
The coefficient of internal stability is the number
of vertices in the largest internally steble set and
is denoted by <«(G).

Because of the relation (4.3,2) there must be
exactly N vertices with the colour i in any graph

corresponding to the matrix C in (4.3.3). That is to say
w'i; = IVI

where v 1s an internslly stable set of vertices from G.
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'It is known that
o (G) ¥(G) = n (4.3, 4)

where n 1s the number of vertices in the graph. It
is not possible, however,i to colour a graph by finding
‘the largest internally stable set and giving this colour
1, then finding the next lergest internslly stable
set etc.. This is easily demonstreted by the graph
in FIGURE 4.3.3. The largest internally stable set are
those vertices represented by circles. If these afe
given colour 1 then the remaining three vertices nust
be given colours 2, 3, and 4. Four colours have then
- been used when the chromatlc nunmber of the graph is
only three. If the graph 1s reduced, using Theorem 4.2,1
then thils difficulty is overcome 1in Gr.

For a reduced graph the coefficlent of internal
stability is egqual to the number of vertices having

the most popular colour and, by the previous argument

———

X(G) = X

Thus relation (4.3.3) may be rewritten as

~

and



()
it

FIGURE 4.3.3

Showing a graph G and i1ts reduction ct.



Morm=lly thigs is not a very cocd lover bound, however
1t may be used as a first aporoximation,

After esteblishinzy these few bagic relations it
1s possible to return to the probhlem of finding the
matrix B in ecustbion (4.3.2). Severel vrooertiers of

B are immediately obvious, If 8 18 the null wmatriv then

[
Yot

and K 1s in the form of & block disgonal mutrix, or
k

may be put in the form of & block diagonal matrix by
e suit=ble interchance of rows and columns {ie. by
renumbering the vertices). If A is of block diagonal
form then G 1s seid to be k-partite, where k is ths
number of blocks along the disgonal.

If it is posgible to find a matrix B then the metrix
C is very likely to have decreased in rank with respect

to A, In fact by making
B = A

it is possible to czuse C to be the null matrix and thus

arrive at the derener-te condlition of one colour for sacn

vartow e 1t dig vegzagr>T o grapi i oLyt o ¥ oA =i
= s PUES T e L i M T 0l L P L wlioz o <z O N

the minimum numter of elements ecual Lo 1 and trst Lne



l L'b L;.

rank of B also be kept to a minimum,

It 1s possible to set up the solution of B as a
linear programming problem. However this involves a
double minimization of the rank of B and the number of
elements of B which leads to the same consegquences as
the original linear programming formulation of the
~colouring problem in Section 1,2 (which, considering
it is really the same problem, is not Suprising)f.

An alternate algorithmic approach to finding B is
contained in the simple statement |

————

K(GY) = o(aT)

where K(G) is the size of the largest complete subgraph
in the greph G.

Each block along the diagonal of C represents
the vertices given each colour. The largest complete
subgraph of G is the largest block along the diagonal
of C. Thus the complete graph algorithm may be used
repeatedly to determine each block of C and thus |
indirectly determine B. )

This 1s an algorithmic method of colouring a graph
which possesses none of the disadvantages of the other
algorithms and the advantage that, once the complete
graph algorithm has beenrimplemented, is easily programmad,

A byproduct of this investligation is the fect that

K(G)= X,



and
K(G) = X\,

The bound by Szekers and Wilf mentioned in Section 4.1

(4.1.4) is not, of.neoessity, valid because the relation
K(G) = ¥(G) = K(G) + 1

is not always true and thus
B(G) = A+ 1

is not valid for all graphs. Even though this may not
be valid it is still sultable as a first arnproximation.
The accuracy of this approximation may be Jjudged from the
fact that the U.A.C. 1965 ~ 66 data is colourable in
28 colours (using the heuristics developed in Chapter 1)
while its largest elgenvalue was 79.4,.

There may or may not be a unicue metrix B and
thus a unigue colouring of GY'. There is likely to be
at least one vertex which may be given either éolour 1
or colour J. If one colour group is too lerge then the
following procedure will redistribute the colours of
G in a2 more even fashion., Take a colour group I

consisting of the ptd vertices 1 Ypgqs eoocs ir+p“



If there exists & row j of the matrix B such thst
B. =1 (for g = T,r+l TH+2, 00 e, T5D)

then vertex 1 may be a2dded to colour group 1.

It should be possibie to check ths heuristic
calculations of Chapter 1 Dy this corpvlebte sraph nmethod.
Unfortunately the enount of CC‘HT‘-PUtatiC’?"'1 necessaxry
incresses greatly as the number of edges In the graph
increases. The converse of both data sels used in
Chapter 1 contained so many edges thal over six hours of
KD¥ 9 time falled to yleld a solution. However subgranh:s
from these data setls, conslisting of 50 vertices each,

were run and the results verified the heuristic

calculations in each case,



Section 4.4 A Justification for the Heuristic Colouring

Procedure

Fach graph contains a critical k-chromatic subgraph.
If this subgraph is coloured, and this colouring "fixed"
to the subzraph, then the other vertices may have
" several different possible colours attached to them,
Assume theré exiéts a matrix P (with n rows and columns)
such that Py 1s the probability that vertex i1 has been
given the colour J for a minimal colouring of the graph.

P will not necessarily be symmetric or of any

particular rank but in general will take the form

It is known that
Ezpij = 1 (for all i)

If a nmatrix 1 is formed such that

t
M= 2 PyiPry



LAo

then T, may be considered as the probability that
vertex 1 is not Jjoined to wvertex j. It is obvious that

M is'a symnetric n X n matrix and that

Iff the vertex 1 1s a member of thé critical

k-—-chromatic subgraph oif G then

otherwise

If T, is the probabllity that vertex 1 1is not joined to

vertex j then M bears a similarity to the matrix A, and
I = . = - N = A
tr(n) = D)/, = n = tr(hA) 2 By

with equality holding only when the graph on éll n vertices
is a critical k-chromatic graph.
It is&alsopossible to construct a similer matrix

N such that



1® 3 +

f z 3 4 5 A 3,43 r 2 3 + 5 & T
il Pyt .82 A o L 31
F | i ! AL 2 { ! ! It .47
3| ! ! 1 P 3 ! ! 1| ,31!

A= 4 s 3% A=l , 1| as
5 ! I P aé s I I ] Lde
81 1 LIz é ! U [}.¢¢

! 2 3

1 ! 2} (o]

2zl o |t | o

M o o | I

P:‘r %l o

AR VAN

slo |4l %

' 3 & 5§ & x50 ' 2 i & 5 ¢ 2 R7
it lolo| %l of 3+ ol o |1 [ %]| 1] . %
afolr fol|l% | W] .50 2| 1 ol 1 { %Al Al . ¢

. sfo|o| 1o || . — A AR AR
R PARAR R AATARY I AARR A APARE
SE3/ ) Yo 126 |5 | e | 06| 30 SV 3 154V e 3| Yia | a3

st o | % V/ '/4- 75 /A A2 ¢y ! '/z % 3/4 “16 % 3%

FIGURE &4,4,1

Showing a graph and its relation to the matrices



then T, is the probability that vertex i is joined to
vertex j. T will be a2 matrix similar to A with the

provision that

“and

if the edge (1,3) and vertices 1 and j are part of the
oritical k-chromatic subgraph of G.

The largest principal component of T will show a
high correlation with the elements of the crltical
chromatic subgraph of the graph G. It 1s obvious that
the principal eigenvector of T will be "similar" to
the principal eigenvector of A, This explains the use
of the principal eigenvector of A.in the heuristic
colburing procedure, and the importance of-ordering
the vertices by the magnitude of the elements of this
vector.

The examplé shown in FIGURE 4.4.1 usefully
illustrates the relation between G, A, A, P, , and
M o It should be noted that the elements of the
principal eigenvector of M bear the same relation to
one another a2s the elements of the principal elgervector

of" A.



Section k.5 Tng Four Colour Frobl

No work of thisz sort wvould he complote withoul
some mentlon, rnomnrtter how briof, of the four colour
problem. The four colour protlem in graph theory erd
Fermat's last oonjecture'in number theory probably rank
as the two greatest unsolved vroblems in mothemntlcs.

Tne four colour problem 1ls a 1little more thon e
century old. The first known source discussing the
preblen is a letter (dated Qct. 23, 1852) from Aurustus
de Forgan, Professor of Hathematics at Unilversity
Collepe London, to his friend Sir Williem Novwan
Hemilton at Trinity Collegpe Dublin. Since that tine
several prools have been proposed and each has cventuslly
been refuted.

FIGURE 4.5,.1 shows a maximally planar graph, le.

a planar graph is naximaslly plansxr i thé sddition of

a%jextra edge resullis in the loss of the ability *to

—

o
sy
P
L
ot
4

represent the graph in a viane. It is easy to
(by the use of Thoorem 4.73.1 and Theorem 4.1.3) that
the chromatic number of such & gravh is less ithen ov
equal to four.

FIGURE lI,.5.2 shows a planzsr grevh G. If the
edee (1;3) is rercoved ard the edge (2,4) inserted to
form the grarh C' then ' g s21d to heve boer obisi-ad
frow ¢ by a discevanl  frarsforrotion., 0. Cre (27

3 e e e - e sy - "o PR N, N P e v, NI
has snovn that any two maxwirelly nles.ar graris viiln



FIGURE Ll‘ ) 5 [} 1

Showing a maximally planar graph

FIGUBE L"o 502

Showing a diagonal transformastion



n vertices cre ecuivolent under dicconsl treozior:
ard thus can be brewaforeesd Into the oy spovn in
PIGURT L,5.1.

The four colour probl= way now o stataed oo

The chivonatic rmanhar of a4 nlanar oravh is

invariant vwader disconel troanceforrvations.

Unkrovm .
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DBYOO5LO0OKPA

DBYO0O5M0O0KPS

DBYOO5N00KP 5

DBYO05300KP6

DBY00 5U00KF 4

DBYQO5VO0KE 5

construct the numerical matrix assoclated
with the grapvh of the student course
conflicts

find the largest complete graph (this is
the same program as DBYO05G00KP5 with large
portions of the program written in USER
CODE to increase its speed)

read master time-table data from cards and
produce time-vectors for each section,
time~vectors are written to a magnetic tape
produce Boolean matrix corresponding to

the graph of the oonfiicts between sections
of the master time-table, matrix written
to & magnetic tape

produce one boolean matrix for each
student indicating the conflicts in his
reguested course sections

find 211 complete graﬁhs of one particular
order - large portions of the progranm

are written in USER CODE

thecomplete graph sectioning program,
produces a great deal of output at each
stage to act as diagnostic material

plot graphs on a Calcomp pvlotter

- reduce graphs by ORing (ie. Theorem 4.2,1)
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The Complete Graph Procedure

This 1s not a listing of the actual program
used during the investigation, father a listing

of a "publication form" of the program.
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heein,

Ryﬂﬁﬁﬁﬁfﬁ,OWb cring(dvyst) s intocnr SV oghving g

newline(70,1)3 writetoxt(70,86)

*

end ol ocubstrings

st radty

nroceIny

y oubinteger{dv,i)s  dnhaser dveis
wrdte (70, Tomaat (Lpndaddal) ,4) ;
hrocedure complete graphs (matriz)graph

£ (size)vertices into:{all) complete subgiaphs

of:(order)s valne sizesonder,alls

[SSRIE AT NN

inbooor slve,order; hopleen ally hoolapnm ayiay

hesin

s P S

cormnent, Thig proceduire wlll take an undiivched

graph (in the oy of a sive X size symnetric

L5

boolean Incldence matrix, whose Ly Jjth
element 1ls Lrua I and only i vertsx 1 is

Joined by an edge bo vertes J, dia

clements belng asswuned o have the valtue

false) and remove from 1t all edges no’
belornging te at least one complete graph of

the regquired order, vhere order » 3. The
procedure may be used to detemmine a1l the
complete subgranphs of a partleular ordor by
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gaeoving the vardable all to the value ung
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or may o uscd to fMind the orxdor ol the
largost conplote subgraph Ly scbibing the
varj_vable all to the value falae. I ths
procetury L8 atbeanting Lo Cind the oxder of
the largest complete subgraph it wlll first
attempt to find o coanplote subgraph of the
inltial order and, i successful, will thon
incraags the parametor order by ong and bry
againg the vervices ceorreoponding to onoe
complete subgraph of the appropriate order
are oubtmut al cach iteration. The proceodure
8 based upon the Tact that cach edge i a
complete graph of ordor m is
edege clrecults of length 3. The nrocedure

contalng its own ocutput statonants but the

considered to cone from the parametor

E - ’ e . v - L2 rg. 2 eren
inteper arrny row,rod nurberilisizel;

wolaan firstscomblfirsts

procedurs delete(matrixgsize i, rov) s

- i - N w it ey A gnt
"y (4} tp o o - -y - ” - K o
valuga slue;iy  boolesn array mabrix;

inberenr

Stren der b vl e

commanly this procedure will set the elements

in the 1 th row and colunrn of the bLooleen

e

R AR MR - FR . -
array nehelx Yo the value fais

¢ end update
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the vector row to indicate the new number
.of Lrue elements in each row of the boclean array;
nteger Js
for J =1 gten T untll silze do
LL rowl§1>0 ghen.
il matrix[i,3] then
hegin
matrix[i,i]i=matrix[jsi]:=Ffalse;
rowl j]e=rowl j]=13
end 3
end of deleting row and column 13
row[ 1] =03

end of the procedure delete;

procedure zero(matrixysize)s value size;

integer sizej; hoolean array malbrix;
comment this procedure will assign the value

false to each element of the boolean array mabrix;

T D

beglin
Integer 1oJ3
for i := 1 gtep 1 unilil size do

=1 sgten 1 untll size do

matrixli,jle=matrixlj,i]l=Lals

BinAa Teanene,

of procedure zero;

16c



procedure comb(ny,reil);

comment This procedure is a modlfled version
of Algorithm 154. The distinct combinations
of the first n Integers taken r at a time
are generated in 1 In lexicographlcal order
starting With an Initial combination of the
r integers 1425000007 The boolean variable
combfirst 18 nonlocal to comb and must be
true before the first call, thereafter 1t
remains false until all combinatlons have
been generated;
begdn,
- dnkeger 8,33
LL combfirst Lhen

hegln,

for § =1 gten 1 unkil r do iljl:=3;

combfilrst:=false; goko exltcomb;

end. of initlal combinations;
1L ilrl<n then
begin
ilr]e=ilr]+1: gmoto exitecomb;
end 3
for J := r-1 glep -1 upkll 7 do
1L liln=-r+3 then

N

nteser n,r;  lonbtesger array 1



gTe=algl4+13
for & = j+1 gken 1 until » ggfifs]:mi[33+5wj§
goro, exitcomb §
end. 3
combfirste={rue;
exitcomb: |

end of the procedure comb;

integer procedure two row sum(il,jsmatrixysize):

value i,J.slze; Integer i,js,size;
hoglean array matrix;
comment this procedure will return the number
of LXue elements in a vector formed by a
- boolean AND operation between the ith and
Jth rows of the boolean array matrix;
integer sumyk;
sum =03
for k =1 gtep 1T until size do
AL matrixli,1] and matrixlk,J] Lhen sum:=sum+1;
two row sum:i=sumj;
end of procedure two row sum;
lnteger procedure row sum(i,matrix,size);

value l.sizes nleger issize; boglean array mabtrix;

comment, this procedure will return the number

off tmue elements in the 1th row of the



-boolean array matrix;

begin,

intener sumpks

sum =03

for k := 1 gten 1T unkil size do
1L matrixlk,i] then, sum:=sum-1;

YOW sums=gums;

end of procedure row sums

boglean procedure remove edges(matrix,size,rowyorder);
value slze order; integer slzeg order;

inkeger array rowi bhoolean array matrixg

comment this procedure wlill remove from the
graph (defined by the array matrix) all
edges whlch are not members of at least
order-2 edge c¢lrcults of length three. When
the removal is complete the elements of the
matrix are checked, 1 there are enough
edges left o make a complete graph of the
required order then the procedure has the
value Lrue else falses

begln

integer sum,ilsJs

boglean finished;

sum &=0 3

for i := 1 gtep 1 untll size do sums=sum-trow[il;




comment. check to see 1f there are enough
edges at the outset;

1P sumdorderxX{order=1) then goho works

remove edges:=false; goho quilts

work: finished:%truaf

[ Zhun At

for i := 1 gtep T unitll size do

LE row[11>0 then

for J := 1+1 gtep 1 untll size do
AL vow[j1>0 then

hegln,

1f matrix [1,3] then

begin,

il two row sum(isjsmatrixgsize)<orderm2 then
beglin,
commenlt delete the edge between
vertex 1 and vertex J;
matrixlisjli=matrix[j,1]:=false;
row[ils=row[i1]l-1; rowljl:i=rowljl-1;
sum:=sum=2; finished:=false}
end. of deleting an edge;
end of checking one row;
end of the entlire matrix;
1L not finlshed gthen golo work;

remove edges :=nobL sumlorderx(order=1)}

quit:

L7z
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engd.  of procedure remove edgess
procedure check(matbrix, row, row number,size,order);

integer sizej order;

inteser array, row,row number; hoolean array matrix:
bealn
boolean results
integer 1,Jskslsm;
comment this procedure wlll check that the
vertices and edges of the graph are, in
fécts part of a complete graph of the
required order. The procedure starts by
finding the vertex with the smallest
vnonzero degree, then determines the
complete graphs attached to this. vertexo:
ki=gize; L1:=0;
for j :=1 ghep 1 unkll size do
L rowl31>0 and rowljl<k then
Le=js kesrow[j]:
end of finding a vertex for further
invesﬁigation;
k=K1 3
comment now investigate the (possible)
complete subgraph on vertex 13

begin



boglean array subgraph{i:k,1:k]s

inkeger array new rowgnew row numberfi:kl;

zero(subgraphyk); new row numberl!]:=i;

form :=1 ghen 1 until size do

L row [ml>0 then

besin,

if matrix[i,m] Lhen
new row number{ll:=m; L:=1l+1;
v
end 3

end. 3

for 1 := 1 gten 1T unbtil k do

form = 1 gten T upkll k do

1e=23

subgraphl 1,m] :=subgraphim, 1] :=matrixinew row

number{ 1],new row numberim]]s;

comment. a subgraph has Just been

constructed, It congists of vertex i

and those vertlices jolned to 1 by an

edge, along with any edges Jjolning

the selected verticess The procedure

now checks to see if this is a
complete graphe ;

result:=frue;

form := 1 gten 1T unkll k do
begin.



new rowlm]:=row sum(m,subgraphyk) ;

1f new rowlm]<x-1 ghen result:=falses

new row number{m]:=row numberinew
row numberiml]]s;

comment this keeps our vertex
nunbering system constant;

end of elementary checks

1L result then, goto end of procedure;

comment. the elementary check was not
sufficient to determine if 5his is a
complete graphoe

again: LL remove edges(subgraphykynew rowsorder)
begin,
chaeck(subgraph,new row,new row
number;k,order) s

golo again;
end of detailed check;

comment the subgraph under check was
not complete., Row and column i of the
graph in the next highest level of
recursion must be set to falseg.s

delete(matrixgsize,i,row)s goto exit;

end of procedure: first:=false;

begin,

integer array vli:omder],sgvertex[1:k];
inteser arrav vll:order],sgvertex[1:k]:

hagiE g

then

ALETE



comblirsti=Lrues
combinations : comb(kyorder,v)

LE combfirst Lhen gobto last;

outstring(i,[ found*a*complete*
graph*of*orderl) s

outinteger(l ,order) ;

oubstring(i,[which*conslsts*of ¥the*
following*vertices]) ;

Lor m := 1 ghen 1 unfill order dg
outinteger(1,new row number[vim]l]);

if all then goho combinations eglse
goko exiti;

last: sgvertex[1]l:=1; m:=2;

foxr g =1 gtenp T wnbil size do

LT matrix{i,3] then
begin

sgvertex{m]:=3j3; m:=m+1;

for 1 :=1 ghep 1 uptil k do
if rowlsgvertex[l1]]l=k=1~3 then
hegln.
delete(matrix,sizeysgvertex[1], row);
Ji=dtls

end 3



Lrr

end.  of output;
end of subgraph checkings
£y

exltis AL nok all fthen

begin
firsti=tmes
1L kK>order+i gth;order:mk else order:=orderi;
comment, this ensures that if the
procedure has found a complete graph
of order k 1t does not keep looking
for complete graphs of order less than kj
goto once mores
end. 3
exlt:

end. of procedure checks

comment this is the start of the malin procedure:?
-:.\r\gnﬁq_ St p 3

- comment row number[i] i1s the name of the
1 th vertex;
row[il:=row sum(i,matrix,size); row number[i]:=i;
end of setting up data vectors;
once more: L remove edges(matrixpsize,rowsorder) then
begin

check(matrix,row, row number,size,order):



goLo once more;

end

of’ graph check;
LL nob, first Lhen
begin,
LE all then
outstring(1,[ these*are*all*the*complete*
subgraphs *ol*order]) é;gg
hegin
outstring(1,[ the*largest*complete®
subgraph*was*of*order]) ; |

orders=onder-1j;

end 3

outstring(1,[ there*were*no*complete*subgraphs*of*
order]) s |
outinteger(l,order)
end, of procedure complete graphs;
integer slzegordery,i,j;
boglean, all;
start: open(70); open(20); newline(70,5);
coutstring (1, [McRJWILLIAMS~COMPUTING]) ¢  size:=read(20);
order:=read(20); all:=read boolean(20);
outstring(l,[size**order**all]); outinteger(l,size):

outinteger(i,order) s
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;g_éll then outstring(i,[truel) glse outstring(i,[falsel);
begin,
boolean array. graphli:size,i:sizels
for i :=1 ghep 1 unbll size do
for. J =1 sten 1 until size dg graphli,jl:=falses
input: i:ﬂread(eo)j
AL 1=999 then goto end of read;

ji=read(20)s graphlisjl:=graphlj,il:=trues goto input

end of read:
close(20) s
complete graphs(graph,size,allyorder); close(70):
goto starts
end, 3
end->
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The Peck-Williame Examingtlon Time~table

Procedure




lol

Communications of the ACM

Yolume 9 / Number 6 / June, 1966

" ALGORITIM 286

EXAMINATION SCHEDULING [ZH]

J. I, L. Prcx anp M, R. Wirrniams (Reed. 17 Max, 1964,
25 Jan. 1965 and 1 Mar, 1966)

University of Alberta, Calgary, Alta., Canada

procedure partition (Fncidence) graph of order : (m) into : (1)
parts using weights ; (w) bound : (max) preassignment ;
(preassign) of number : (pren);

Boolcan array ncidence; integer avray w, preassign;
inleger m, n, Max, pren;

comment This is an heuristic examination time-tabling pro-
cedure for scheduling m courses in » time periods. It is essen-
tially the problem of graph partitioning and map coloring.

In the terminology of graph theory: Given a graph of m ver-
texes with a positive integer weight w{¢] at the ¢th verlex,
partition this graph into no more than n disjoint sets such
that cach set contains no two vertexes joined by an edge,
and such that the total weight of each sct is less than the
prescribed bound maz.

We represent the graph as an mXm symmetric Boolean muatrix
tncidence whose 7,7th element is true if and only if vertex ¢ is
joined to vertex 7 by an edge (if a student is taking both course ¢
and course §), diagonal elements being assigned the value truc.
The weight assigned to the tth vertex (number of students in the
ith cowrse) is w[7]. We shall see below that preassignment is
permitted. The number of courses to be preassigned is given in
pren and the course preassign ¢, 1] is to be placed at the time
preassign [t, 2.

This proecedure does not, minimize the second order incidence
i.e. a vertex 7 being assigned to the set %, where the set k—1
contains a vertex j joined to ¢ (a student writing two consecutive
examinations), but this may be done by rearranging the sets
after the partitioning is completed. The procedure contains its
own output statements, but its driver should provide the input;

begin integer array row [1mm], number [L:n];
integer 7, J, sum, course, time;

Boolean preset, compleled;

INITIALIZE:; preset:= falsc; .
for j := 1siep 1 until » do number [5] 1= 0;
for ¢ := 1 step 1 until m do
begin sum = 0;

for 7 ;= 1 step 1 uniil = do

if incidence [Z, j] thew sum := sum + 1;

row [1] ;= sum
end INITIALIZE. Note that row [7{] now contains the multi-

plicity of, or number of edges at the vertex 7 (number
of courses which conflict with the course 7). Of course since the
incidence matrix is symmetric, less thau half (f > j) need be
stored. However, this procedure, for the sake of simplicity,
is writlen for the whole matrix. Also note that row [7] will
eventually contain the negative of the set number to which
the 7th vertexis assigned (examination time for the ¢th course)
and number [j] will contain the weight of the jth set (number of
candidates at time j). From here on we drop the allusions to
graph theory in the comments;

THE PREASSIGNMENT: forj:=1stepluntil pren do

begin comment preassignment of courses to times is now ear-



ried out. If pren = 0, then there are no preassignments;

course 1= preassign [1,11; time:= preussign [7,2];

comment We now attempt te assign this course to the given
time;

SCRUTINIZE: if row [course] < 0 then

begin outstring (1, “This course’); outinteger (1, course);
outsiring (1, ‘is already scheduled at time’);
outinteger (1, —rowleoursel}; go to NEXT

end;

if number [({ime] - w(course] > max then

begin outstring (1, ‘Space is not available for course’);
outinleger (1, course); oulstring (1, ‘at time’);
outinteger (1, time); go to NEXT

end;
for 7 := 1 step 1 until » do
if row [{] = — fime then

begin if incidence [7, course] then
begin outstring (1, ‘course number’);
oulinteger (1, course); oulstring (1, ‘conflicts with’);
outinteger (1,7);
outsiring (1, ‘which is alveady scheduled at’);
outinteger (1, time),
go to NEXT
end if neidence
end if row;
SATISFACTORY : row{course] := —time;
aumber [tinie] := nwmber [time] -F w [cowrse];
preset 1= Lrue;
NEXT:
end THE PREASSIGNMENT,
MAIN PROGRAA: begin Boolean array avazlable [1anl;
integer next;
procedure check (course); integer course;
bhegin inicger §; commment This procedure renders un-
available those courses conflicting with the given course;
for j ;= 1 step 1 until m do
if incidence [course,j] Lhen available [7] := false
end of procedure check.
For each of the n time periods we select a suitable set of non-
conflicting courses whose students will fit the examination
room;
START OF MAIN PROGRAM:
for {ims = 1 step 1 until # do
if preset = nwmberf{iime] > 0 then
begin comument The preceding Boolean equivalence di-
rects the attention of the program initially only to
those times where prescheduling has occurred. We now
determine the available courses (i.e. unscheduled and
noncpnflicting). If course 7 is already scheduled, then
row[?] is negative;
completed 1= true;
for 2 ;= 1 step 1 until m do if row [{] > 0 then
begin arailable [1] := true;compleled ;= falsc end
elsc qvailable [¢] := false;
if completed then go 1o OUTPUT,
if preset then
begin comment Some courses were prescheduled at
this time. It is necessary to render their conflicts un-
available;
for i 1= 1 step 1 until m do
if rowli] = —iime Lthen check (1)



end prescheduled courses.
We now scleel the available course with the most con-
flicts. This is essentially the beuristic step and there-
fore the place where variations on the method may be
made;
AGAIN:

sum !

0;
for 7 := 1 step 1 until m do

if avadlable {i] A row {7] > sum then

begin next 1= 4; swmn 1= row [7] end most conflicts;
if sum > 0 then
begin comment There exists an available course, so

we test it (viz next) for size. If it does not fit we look
for another;

avatlable [next] 1= falsc;

if number [time] 4- wlnext] > maz then go to AGAIN;

comment If we are here the course will {it so we use it;

row [next] 1= —time;

number [time] ;= number [time] 4 wlnextl;

check (next); go lo AGAIN
end sum >0

end of the time loop;
if presel Lhen
Dbegin preset ;= false; go to START OF MAIN
PROGRAM end
In case of prescheduling this takes us back Lo try the re-
maining time periods.

If we have reached here with eompleled Lrue then all
courses are scheduled, but the converse may not be true,
therefore;

if — completed then
begin compleied 1= irue;
for ¢ 1= 1 step 1 until m do
if row [7] > 0 then compleied := false
end — completed and
end of the main program;
QUTPUT: if - eompleted then
begin comment The following for statement outputs the
courses that were not scheduled;
outstring (1, ‘courses not scheduled’);
for 7 := 1 step 1 until m do
if row [Z] > 0 then oulinteger (1,%)
end not scheduled.
The following outputs the time period j, the number of stu-
dents number[7] and the courses ¢ writlen at time j;
TIMETABLE: outstring(l, ‘time enrolment courses’);
for j ;= 1 slep 1 until n do
begin outinfeger (1,7); outinteger (1, nuwmber(j]);
for 7 := 1 step 1 until m do
if rowli] = —j then outinteger (1,7)
end j.
The following outputs the courdes, the times at which they are
written, and their envolment;
outstring (1, ‘course time enrolment’);
for i := 1 step 1 until m do
if row [i]l< 0 thenzg?t?inlcger (1, 2); outinieger (1, row lz]);
outinteger (1, wlil) owd.
else
begin outinleger(1,2); outstring (1, ‘unscheduled’);
outinteger (1, w[i])
end
end of the procedure



L ON

Hleenvector Approximation Procedure

All the boolean matriceé were kept in the core store of
the KDF 9 by storing one boolean element per bit (ie.

U8 boolean elements could be stored in each KDF 9

‘ word). This form of storage required the use of USER
CODE procedures for bit interrogation and manipulation.
The matrices were stored by rows in such a manner that
gach row occupled an integral number of WOrds, any

excess bits being set to the value false. The instruction
set of the KDF 9 makes certain bit manipulations easy

to code and efficlent to perform, for example the-
procedure "eigen" will perform a matrix-vector multiply
(700 X 700) in just under 7 seconds. "eigen" is included

here as being typical of the USER CODE procedures used,



procedure eigen(row,POWQ,matrix,size);

value size; Integer size;

real array matrix, row, row2;

comment this proceduré will take an approximation
to the largest eigenvector of MATRIX (given
in ROW) and leave a clogser approximation
in ROW2. MATRIX is a square O.1 bilt matrix
of size STZE. ;

KDFQ 4/6/0/0;

[size] ; DUP; SETA8; +I; ERASE; SET1; +; DUP;

(number of words per row);

=RC103 =RI13; SET1; +; =RC14; (number of rows);

SETH8B5 =RC11; (rmumber of bits per word);

[row]; =MI1; MI1; SETAYO; +; =MI1;

(address of the start of ROW);

[row2] ;5 =M1l MIA; SETAYO; +; =Mt4;

(address of the start of ROW2);

[matrix]; =M13; M13; SETAYO; +; =M13}

(address of MATRIX[0,0]);

33 ZERO; QI1TOR155 Q10TM12; (set counters to

deal with one row of matrix):

23 MI3Mi2Q; SETU8; =C153 (set up counters to

deal with one word of the current matrix row);



A

%13 ZERO; SHID1; NEG; MOMISQ; AND; CAB; 4F3 REV; J1C15NZS
(that is the inrner loop (short loop jump));

ERASE; J2CI12NZ;5 (get next word of current matrix row);
=MOMIAQ; M4T13; (get next row of matrix);

J3CTUNZ; (1s job finished);

EXIT;

ALGOL;



