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Stumary of Thesie»

"A Graph 5?heory Hodel for the Computer Solution of ITniversity 
tables and Belated Problema**

!lhe work described in this tliesis is concerned vdth four main 
fields of investigation, three concerned with the problems of a 
wniverslty administration in producing time-tables j and on© concerne 
with the theory of graphs which provides a conveîiient mathematical 
model of a university’s course-studont structure#

â university administration’s time'"table problems may be 
classified under tteee headingss

1/ the production of exsmiimtion time-tables?
Zf the assignment of students to clasBos, and 
5/ tlie production of olass-teaoher-room time-tablem.

Ihese three problems are a class of the general oorabinatorial 
problem and thus simple enumeration will, in theory, provide a 
solution* Ihis üiesis describes and evaluates several algorithmic 
methods of solution and several heuristic approaches to reduce the 
combinatorial difficulties of the problems* Althoiigh heuristic 
methods do not guarantee the finding of an optimal solution, or, in 
some cases, any solution at all, the success of particular heuristic 
is demonstrated on actual course-student data*

A new algorithmic method is proposed for the construction of 
olass-teaoher-room time-tables# The feasibility of this method is 
demonstrated with a non-trivial example based on a game*

The thesis concludes with an inyestigation of the theory of 
graphs, the mathematical model used in previous work* Upper and 
lower bounds for the chromatic number of a grapli are developed and 
procedures for reducing the size of the problem are constructed and 
discussed*



An algorithm for finding all the complete eubgraphe of a graph 
is developed as an aid in determining the solution to parts of the 
time-tahl© problem* This is then related to several theorems con- 
oeming the eigenvalues and eigenvectors of tlie mtxdoes associated 
with graphs and their meeming in the terms of the structure of thes< 
graphs# This leads readily to a bound, involving eigenvalues, for 
the size of the largest complete subgraph in any given graph*

The graph theory section ends with a short note on the four 
colour problem*
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I N T R O D U C T I O N



Education is very big business. text to nstlonal 
defence it is probably the largest single objective 
in every civilized country. It intimately concerns 
about 20^ of the population and is one of the major 
items in the national budget'. With millions of people 
and vast amounts of money to be accounted for, educational 
administration is ripe for the apelioation of computers 
to some of the difficult problems arising in educational 

institutions.
A very large curriculum reform is in progress in 

response to the expansion of knowledge and the general 
dis sa t is fact ion with the school programs of the 1930's 
and 1940 * 8 « There are now many groups working in 
different countries studying changes needed in the school 
curriculum. Each of these groups is producing the 
hundreds of items necessary for an instructional package. 
But underlying each package is an assumption of how the 

curriculum should be organized. To date the computer 
has played a very minor role in this curriculum reform. 
However as the reform movement grows towards more and 
more individualized instruction, the computer will become 
not only a great help but the only possible means for 
a large institution to deal "with i ts curriculum problems .

This thesis considers three aspects of the workload 
of an educat iona 1 b drninis tra t ion :

1/ the production of examination time-tables



2/ the assignment of students to classes
3/ the production of c].ass-teacher-room time-table:

These three problems are a class of the general 

combinatorial, problem. The fact that complete enumeration 
of all possible assignments or time-tables provides 

a theoretically satisfactory solution to the problem 
is évidents however the. practical impossibility of 
^PPlyli'^S total enumeration to any but the smallest 
of problems is also quite clear. An experienced person 

is able to produce' a reasonable time-table, reasonable, 
that is 5 in the effort required to find a better one, 
because he can see to avoid the many unfruitful paths 
the computer would have to take. HoTrever as universities 
increase in size and complexity the effort involved 
in this task will grow to the point where computer 
based methods may prove to be the only rea.sonable method 
of accomplishing them

This thesis describes and evaluates several 
algorithmic methods of solution and several heuristic 
approaches to eliminate the combinatorial impossibility 

of the problems. Although the use of heuristics 
eliminates the assurance of eventually obtaining a 
solution (if, indeed, one exists at all) and will not 
guarantee that, if found, the solution is optimum, the 
success of particular heuristics will be demonstrated «

The computational power of an English-Electric- 
Leo-Marconi KDF 9 computer was used to develop and



check out the procedures « The main part of this thesis 

is a description of the ideas leading to the development 
of the procedures 5 however some of the approaches found 
in the literature have been included for reasons of 
completeness.

Although the organization of schools differs from
area to area the basic procedures are applicable to all
levels of school organization. The emphasis has been
placed on a situation Similar to that of a North American
university as it is somewhat more general than either a 

t
school or a British university situation, and the 
authoir ŵ as very familiar with a North American university 
adrninistrat ion , The fact tha t many probl ems , not 
directly related to the production of time-tables, may 
be expressed in the same notation as that used in this 

thesis gives an indication that these procedures may 
have wider applicability than just educational 
admin i s t ra t i on.

It is hoped that, by an examination of these and 
other pirocedures 5 both heuristic and algorithmic, someone 

may be able to determine a relationship between the data 
and the time-tables produced. As J. Von Neumann (16) 
once said:

*'That the first, and occasionally the most 
important, heuristic pointers for new 
mathematical advances should originate in



physiCvS (experimentation) is not a neâ  or 
surprising occuUfEncec The calculus itself 
originated in physics. The great advcinces 
in the theory of elliptic differential 
equations originated in equivalent insights,, 
This applies even in the heuristic 
approach to the correct formulation of 
their uniqueness theorems and of their 
natura 1 hound a ry c ond i t i on s . *’

Thus by expounding heuristic methods perhaps an insight 

may be obtained into an area where modern mathematics 
can not go, just as it once coud d not delve into the 
inner mysteries of elliptic differential equati ons.

The rest of this work is divided into four major 
chapters. The first chapter deals with the production 
of examination time-tables. After developing a graph 
theoretic model., an heuristic procedure for the productior; 

of the time-tables is developed. A number of other 
authors have developed very similer heuristics for 
producing examination time-tables, however it appears 
that all the authors have worked in ignorance of one 
anothers work. Using this heuristic as a base it is 
then possible to show the relevance and use of an 
eigenvector of one of the matrices used. This leads to 

an improvemert in the ba sic heuri s t i c resuj t ing in an 
extremely good procedure. In order to show the success



of the improved heuristic an investigation of possible 
algorithmic procedures is conducted, result ing in the 

development of an algorithm for finding complete subgraphs 
of B. given graphs This procedure is partially based 
on Theorem 1,5‘'3? the statement of which, but not the 
proof, is attributable to Dr. A, R. Meetham from the 
National Physical La bortory. The chapter ends with a 
brief summary of the computational results and a note 

on the possible modifications to the procedure.
Chapter 2 deals with the problem of assigning; 

tstudents to classes. After showing; the relevance of 
the problem, an heuristic procedure is developed and 
compared to those previously described in the literature.
A section is then devoted to describing the solution 
to the problem in terms of transportation networks.
This section is an extension of a general work by 

Ford and Fulkerston (41), The chapter finishes with- 
the development of an algorithmic sectioning procedure, 

based on the complete graph algorithm, and a discussion 
of some aspects of its implementation,

Chapter 3 is a review of some of the literature 
dealing with the problem of producing fulD. master 
time-tables and a discussion of an algorithmic procedure. 
The chapter co'̂ -clud.es with an example, based on a gan.e, 
of how the procedure would operate.

Chapter 4 investigates the theory behind the 
problems, Upper and lower bounds for the chromatic



number of a graph are developed ae-̂d procedures for 
reducing the size of the problem are developed and 
discussed, A section is devoted to the eigenvalues and 
eigenvectors of various matrices and their association 
with the colouring problem. The chapter finishes with 

a justification for the heuristic procedure developed 
in Chapter 1 and a short note on the four colour problem



C H A P T E R  1

Examination Time-tables



Section 1,1 The Problem

The character of the examination time-table 
problem allows it to be readily represe^ited by a 
mathematical model known as a graph (2,4,19). A 

graph is ;
■1/ a set X
2/ a function. U mapping X into X ,

Or ; to put it another way, a graph G, which is denoted 
by

G = (X,U),

is the pair consisting of the set X and the function 
Uc It is convenient to visualize the set X as points 
or vertices in a plane, and if x and y are two. vertices 
•such that

y e Ux and x e Uy,

then the two vertices will be joined by a line or edge.
If X and y are two vertices such that

y € Ux but X / Uy

then X and y viill be joined by an edge oriented in the 
direction y to x .

Graphs are met with in different disciplines 
under different names ? in psychology they are called, 
sociograms; in topology, siraplexes; in physics and



engineering, circuit diagrams « In the context of the 
production of an examination time-table the set of 

vertices, X, will represent the set of classes offered 
at the eciucational institution and the function U 
will be such that if any student is taking both course 
X and course y then U will generate an undirected 
edge between vertex x and vertex y . Po]r example in 
FIGURE 1.1.1 are listed the courses being taken by 
four students and the graph generated by this data.

The general iDroblem of producing examination 

time-tables is one of partitioning the vertices of 
these graphs into independent or disjoint sets, such 
that each set contains no pair of vertices which are 
connected by an edge, This may be considered as 
"colouring" the vertices of the graph. A colouring 
of a graph, using at most k colours, is a function 
C defined over the vertices of the graph and taking . 
one of the values 1, 2 ,3 9 » * « - sk a.t each vertex with 
the condition that

C(x) C(y)

if the vertices x and y are joined by an edge. If 
the graph is colourable in k colours but not with 
k " 1 colours then k is called the chromatic number 
and the graph is said to be k chromatic. The symbol

V(G)



student A 
course 1 
course 2 
course 3

Student B 
course 4 
course 5 
course 6

Student C 
course 1 
course 4 
course 3

Student D 
course 2 
course 5 
course 3

4

FIGURE l a d
Showing the courses tsken hy four students and the 

graph generated by this data «



will denote the chromatic number of the graph

If a graph consists of two or more disconnected 
components the chromatic number of the whole graph is 
that of the component with largest chromatic number.



Section 1 o 2

To find the chromatic number auid the colours 
assigned to the vertices of a graph G (with N vertices 
and E edges) it is possible to use an empirlca], procedure 
which is straightforward and capable of direct 
implementations but not always effectives an analytic 
procedure which gives a solution systeraa.tically but 

requires a tremendous amount of computation, or an 

heuristic procedure which, although it does not 
guarantee aw^solution, can in practice give an acceptable 
ansi'̂ er with a minimum of effort,

The empirical procedure consists of starting 

with an arbitrary colouring, using the colours 1,2,=,,p 
and attempting step by step to eliminate one of them *
This can be readily seen to be an awkward and not 
necessarily successful procedure if implemented on a 

large complex graph,
The analytic procedure consists of testing 

analytically whether the graph can be coloured with p 

colours ̂ With any scheme using p colours it is possibl.e 
to associate numbers 8(i,j) and C(i,g) (where i - 1,2,,.N 
j = 1,2 ;c *.,E ; q = 1,2,,,.,p) such that :

1 if vertex' i is of colour q
C ( i 5 q ) =

0 otherwise



J'l if edge j is incident with vertex i
S{i,j) -

[p otherwise

The problem of determining if the graph can be coloured 
in p colours now reduces to finding integers C (i,q ) 
such that

C(i,q) - 0 (i - 1,2,o. . g q = 1,2,* * e,p)
p ̂
2  G(i,q) “ 1 (i = 1,2)*.o,N)

^  8(k;j)C(k,q) = 1 (j=l,2)^ q = l ; 2,.c,p)

Thus there exists a system of linear inequalities 

whose compatibility may be investigated by the usua] 
methods of integer programming^ If integers C(i,q) 
can be found satisfying the above constraints then 
p may be systematically reduced until the chromatic 
number, and thus the values of the colouring function, 
are determined

Unfortunately the analytic procedure also breaks

down on large graphs because of the rapidly increasing 
computation necessary as the size of the graph gets 
larger. The computation effort may be reduced if the 

graph is separable into several disjoint subgraphs*
The individual connected subgraphs may be eas11y 

determined by considering the original data and not 
the graph. Each student will have taken a set of |R 
courses, R, which is a subset of the N courses offered



by the Institution* By considering each set R in 
turn the foilowing algorithm will easily determine 
the connected subgraphs ;

1/Produce an N el.eroent vector B such that 
— i ( i —

2/Select a course j from R such that

Rj - min* R^ (k - 1,2 ,3,. « ̂ ̂ |r| )
3/For each (k == 1,2,3,***, |B| ) replace 

each occurrence of the number R̂  ̂ in B by B^ 
4/After considering all the sets R, the vector 

B is scanned and if

= Bj

then i and j are vertices in the same connected 
subgraph,

The integer programming procedure may now be 
applied to each disconnected subgraph in turn* If 
the graph is not separable, or if each disconnected • 
subgraph is still too large to make an analytic procedure 
practicable, then recourse may be made to finding a 
"point of articulation" if one exists* A point of 
articulation is a vertex, p, which separates the 
vertices of the graph into two or more subsets, ,

V2,* * . , ,  having only p in common and such that any 
edge chain betw^een a vertex in and a vertex in 
Vj must pa.ss through p. For example the graph in 
FIGURE 1,2*1 vertices c and d are points of articulation*



a

FIGURE 1*2 cl

Showing a graph in ^'hich vertices c and d are points
of articulation *



Removal of vertex c separates the graph into two 

disconnected subgraphs, If the subgraphs are now 
coloured it vrill only be necessary to assign a. colour 
to vertex c such that (perhaps afters permuting the 
colours of one of the subgraphs) it is different 
from the colours assigned to vertices a, b, and d.

This concept may be extended to f.lading a "minimal 
articulated set". This is a set (not necessarily 
un i ue ) consisting of the 1 ea s t number of vert ices 
whose removal will divide the graph into two or more 
unconnected subgraphs * The problem of finding a 
\v inima 1 art icu 1 a.ted set is not 11'ivial *

To find the minimal articulated set of a graph,

G = ( ,U) , N must be divided into three subsets Nl,
N25 and a such that ;

Ufjl A  N2 = 0 (1.2.1)

U^gA Nl = 0  (1,2,2)

la( is minimal.

Let M be the boolean matrix such that

jl if vertex i is adjacent to vertex j 
\o otherwis e



h

M

M

a b c d e f R' h i
a 0 1:■"1"1 "1 0 o'" O'"0
b 1 0 1 0 0 0 0 0 0
c 1 1 0 1 1 0 0 0 0
d 1 0 1 0 1 0 0 0 1
e 1 0 1 1 0 1 1 0 1
f 0 0 0 0 1 0 1 1 1
S 0 0 0 0 1 1 0 1 1
h 0 0 0 0 0 1 1 0 1
i 0 0 0 1 1 1 1 0 0

a b c d e f P-; h i
a 1'”0 0“ 0" 0 :1 T'T'T:
b 0 1 0 1 1 1 1 1 :
c 0 0 1 0 0 ;i 1 1 l!
d 0 1 0 1 0 1 1 1 0
e 0 1 0 0 1 0 1 1 1
f .1 1 1 1 0 1 0 0 0
S 1 1 1 1 1 0 1 0 0
h 1 1 1 1 1 0 0 1 0
i 1 1 1 0 1 0 0 0 1

Showing a graph5 its matrix M, the complement matrix
and two minimal articulated sets



FIGURE 1 < 2.2 shows a graph, its matrix M and the, conipleinont 
M (M ” 1-M) of Mo The submatrlx of M defined by the 

rows corresponding to N1 and the columns corresponding 
to M2 has all its elements equal to 1, as defined b} 
the relations (1,2*1) and (1*2*2) above* The problem 
thus reduces to finding the largest complete (ie* all 
elements equal to 1) submatrix of M * Kaufmann (2 3) 
describes an algorithm which will yield both

1/ N1 “ a gb;C,d N2 = f,g,h 
a = e,i and |a| = 2

and

2/ N1 = a ,b,c N2 f,g,h,i
a “ d 5 e and |a| - 2

Unfortunately Kaufmann*s algorithm is quite expensive 

in computer time and, as the size of the graph increases, 
more and more minimal articulated sets will be needed, 
thus making it almost impossible to ensure that the 
colourings of the individual subgraphs will be 
compatible* Because of these difficulties the analytic 
procedure must be counted as impracticable for large 
graphs e

An heuristic procedure offers neither the assurance 
of finding an optimal solution, as does the analytic 
procedure, nor the simplicity of the empirical procedure, 

but it does offer the ability to obtain a solution in



a practical case and to obtain this solution withou' 
an unreasonable amount of computation*



Section 1*3 Heuristic Procedures

The author (2 8), A* J* Cole ( 5 ) and others have 
proposed heuristics for solving this problem* The 
author* s work (hereafter refered to as the Peck-VJi3.1iams 
procedure) is slightly more general than most of the 

others but they all follow the same general pattern*
The main heuristic assumption is: If a course (vertex)
1 conflicts with a large number of other courses, then 

it will be harder to find a time period (colour) to 
fit it in than to find a time period for a course j 
which conflicts with only a few other courses*

If d^ denotes the degx'ee of vertex i (the number 
of edges incident with vertex 1) then this becomes 
an index of the extent to which course 1 conflicts 

with other courses (for example in FIGURE 1*3,1) 
d^ = A which indicates that course 3 is in direct 
conflict with three other courses, plus one because 
a = 1),

Assuming that the first T-1 periods of an examination 

time-table are complete, then to select the courses 
which will write examinations in period T the heuristic 
procedure w^ould be as follows ;

1/find the unassigned course with the largest

2/check to see if this course is joined, by an 
edge to any other course already assigned to 
period T; rf no edge exists then assign this



course to period T and go to step 1, otherwise 
remove this course from further consideration 
in period T and go to step I*

This heuristic has ti-'o distinct advantages :
1/it has intuitive appeal
2/it is very simple to implement on even very 

small computers *
The intuitive appeal sterns from the experience of 
"hand" produced examination time-tables, where to fit 
a new course, having a large student population (and 

hence a large number of conflicts with other courses) 
into an already completed time-table is an almost 
impossible task* It is for this reason that a clerk 
of examinations will always time-table the large classes 
first and then let the classes with a small population 
fit in where they can *

The Peck-Williams procedure has been successfully 

implemented on a very small I.B *h * 1620 where the core 
store was not sufficient to hold all the required 
information* Resort made to a large loop of paper

tape which was searched to find the items of information 
that were required* Even under such a severe handicap 
the procedure produced usable results in a realistically 
short time* The procedure proposed by Cole has been 
implemented on an Elliot 8O3 and, although limited 
to less than 3AO subjects, also produced usab].e results



without using vast amounts of computer time *
For greater generality consider a graph G = (V,U) 

whose vertices are v^, v^,* * *, v^o Let be the
number of edges of G going from vertex, v^ to vertex 

Vj* The souare matrix A with n rows and n columns is 
called the matrix associated with the graph G * The 
element  ̂ is meaningless in the context of examination 
time-tables* It will be a convention that a - 1 
unless otherwise stated* In most situations the elements 
of A will only take the values 0 or 1, in this case 
A may be considered to be a boolean matrix with 
0 5 false and 1 ^ true * It will often be convenient 
to consider A both as a numeric matrix suitable for 

computation and. as a boolean matrix for use in logical 
operations* The context of the argument will make 
clear which form of A is being used*

The heuristicss in the above mentioned procedures, 

actually operate on the associated matrix of the graph 
of the course conflicts* The ordering criterion, 
d^, is obtained by

4
and the adjacency of two vertices, v^ and V p  may be 
determined by inspection of the eleiLent a. •*

J

By this heuristic the first course scheduled to 
hold its examination in period 1 will be the course 

whose vertex has the lare:est devree* However complications



arise when two or more courses have vertices of the 
same degree* It is obvious that the selection of 
course i, for inclusion in period T, may produce a 
sig-'ifica^'^tly different time-tab].e from the one Twroduced 
if course j had been initially selected*

The Cole procedure differentiates between courses 
of equal d^ by selecting the subject with the largest 
number of multiple papers which must be '̂-ritten on 
consecutive days* If no course emerges unique from this 
criterion then a selection is made by considering the 
number of papers written in each subject. If this 
still does not yield a unique course for consideration 
then the original ordering of the courses is considered 
and the first course encountered, meeting all of the 
above conditions, is selected for inclusion in time 
period T *

The Peck-Williams procedure, on the other hand,
8 imply selects the first course it encounters with the 
approplate d^.

It is interesting to note that Hole man and. Turkes (22) 
in one of the most •̂■■idely read reports on this subject, 
while considering the order of scheduling c].asses, 
state :

"an arbitrary policy states that the variables 
should be scheduled in the order «.Ag , A, c;, . , " . 

They vo on to develop this arbitrary policy irto a 
procedure which does not do justice to the v:ord op rima 1



V

w hi oh a p p e a r e in the title of the! i' r e p o r t * By c 1. a i m 1 n p: 

to rely heavily on Bellmanprinciple of optimality, 
which states :

An o%)tirai policy has the property that, 
whatever the initial state and initial decisions 

are, the remaining decisions must constitute 
an optimal policy with respect to the state 
resulting from the first decisions, 

they have produced a procedure I'djich, although very 
cunning in the way it adds a course to the partially 
completed time period, still violates Bellman's 
principle, with respect to the wholé time-table, by 
selecting the initial courses for each period according 
to an arbitrary policy*

This lack of a decis 3 on criterion for the selection 
of courses is a serious drawback of all these procedures 
as it can be shown that an incorrect choice of vertex 
can lead to time-tAbles which are far from optimal *

For example, consider a selection of twelve courses 
whose conflict pattern produces the graph and its 
associated matrix shown in FIGURE 1*3*1* There is no 
single vertex of maximum degree, rather the choice 
lies between vertices 5? 6, and ?, each of which has a 
degree of six.

Both the Cole and the Peck-V/illiarns procedure 

would have choosen vertex five as the initial assig/irent 
and thus produced a time-tab'J.e of four periods as
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d

A

1 0 0 0 1 1 0 0 0 0 0 0 3
0 1 1 0 1 0 0 0 0 0 0 0 30 1 1 0 0 1 1 0 0 0 0 0 4
0 0 0 1 0 0 1 0 0 0 0 0 2
1 1 0 0 1 1 0 1 1 0 0 0 6
1 0 1 0 1 1 0 0 1 1 0 0 6
0 0 1 1 0 0 1 0 0 1 1 1 6
0 0 0 0 1 0 0 1 0 0 0 0 2
0 0 0 0 1 1 0 0 1 1 0 0 4
0 0 0 0 0 1 1 0 1 1 0 0 A
0 0 0 0 0 0 1 0 0 0 1 0 2
0 0 0 0 0 0 1 0 0 0 0 1 2

FIGURE 1.3.1

Sho'.'Ting a graiRij its associated matrix and the 
de,aree of each vertex.



follows :

period 1 period 2 period 3 period 4 
5 6 3 10

7 2 9
courses 4 1

8
11

12
An inspection of this trivial graph will reveal that 

its chromatic number is, in fact; three and it should 
be possible to produce an examination time-table of the 
form :

'i od 1 period 2 period 3
6 5 9
7 10 •1
2 3
8

11
12

crlter ion used in these heuristic
procedures is not optimal and should; if possible, 
be changed.



An _ ImproYement 

Section lo4 An Improvement“'™"irr'TnVe‘rPxgaTirrg Trne'Tc-Wüired changes to the

heuristic procedure it will be useful to define the
influence'^ or “degree of order k“ (d^) of a vertex,

This influence will be an index of the degree of the
vertices joined, by an edge path of length k, to the
vertex under consideration.

For examplej consider a tournament with four
players v. ; v^ 5 , v., ; if v. defeats v . then v. is ̂ 3  ̂ J 1
joined to v. by two edges directed from’v. to v.s if j ■ 1 j
the match was drawn then the two vertices are again

joined by two edges - one directed towards each, At
the end of the tournament the results are placed into
the graph and its associated matrix shown in FIGURE 1,4.1
(the loops on each vertex mean simply that each player

is only eis strong as himself).
kThe t:erm a. . is the general element of the matrix

k ^A (ie, the number of edge paths of length k between
the vertices v^ and v^) and

_ V  ok

1 1 Thus d^ is the degree of vertex v^-(ie. d-y = dĵ )*
In the example of the tournament in FIGURE 1.4,1

aj = 5 . 3

^3 = 5 = 3.



defeats and
defeats

Y j  defeats and

V defeats v 4" ^

4 0

A =

1 0  2 2 
2 1 0  0 
0 2 1 2  
0 2 0 1

FIGURE 1.4.1

ShoTilns the results of a tournaments their transformation 
into a graph, and the matrix associated with the graph.



Contestants and both have a degree of 5s 

while contestants Vg and have a degree of 3* So 
no one player has seemingly emerged victorious,

pContinuing the process by finding dr ̂ where

the following results are obtaineds

d^ = 2 1  dp - 13

2 2d^ = 17 d;;j, = 9*

This indicates that player v^ is the winner of the
tournament, This is due to the fact that the players 

defeated by v^ (v^ and vg) were stronger than those 
defeated by v^ (vp and v^)o

It has been suggested by Berge ( 2 ), in a discussion 

on tournament theory, that the '‘iterated power of

order k of the vertex v^" ( ) be defined as

77-

It is well known that the limit 7f/ exists for positive 
matrices, and the vector:

V  = ( n t

tends toward the eigenvector corresponding to the 

1 argest real pos itive ei enva 1 ue of the ma trix A .



A hr 1 e f 1 o ok at a complote] y d i f forent p %- o h] em. 

may provide a further insight into the nature of 
t he 0 ua r; t i t v c

In an attempt to devise a. scheme for draviru’;

a rrrarh on a computer co'^tro] l ed plotter or display 
it on a cathode ray device, the following problem arose: 

miven n vertices, some of which are joined 
together by edges, produce a uair of X 
co-oi'diTiates for each vertex such that when 
the vert'ices a r o d i s t r i i)Uted on the i. 2'* 
co-ordinates the sum of the distances be ta" eon 
the bound pairs of vertices is mj l'imal , the 
centre of p:raÂ ity of the system is o v the 
origin and the adiol e system is distrit^uted 
even 1 y over a c ircul.a r displa y a r ea .

If the co-ordinates of vend ex i are Xĵ  and then

2  X^ 0 a/'vl ^  Y^ =z 0 (1,4,2)

to keep the plot ce'tred on the oriwin and

X x ?  = c and Xy ?  ^ c ( 1. ü . ] )C * c. ,

to corita in the plot uithJv a constant area. If the
matrix A is the n by n symmetric zero-one ma trix 
associa.ted with the riven mranh then a fug'Ction, f,

I
may be cons true ted which will provide an. ileï'atun'e 
basis for the assi'^-nment of an X and Y to each vea-tex.



If
sum of the squares of the distances between 

f =    fJQ- joined Arertices   ~ Y

then

2f = XX((Xi-XJ^ + (Y,-YO^) a (1,4.4)
 ̂ j  <i J- J -L J

Expanding this it is possible to obtain

•'-X̂ î Xnf-sXX^ppigX^^'Xnj cm.5J t J
To produce the best clustering the function f must be 
a minimumc Considering one A^ertex, i, and for simplicity 
assuming that the graph.has no loops, let a^. = 0, 
it is possible to obtain 

0 f ^
y y  = (1.4.6)

3 f
Setting —  = 0 and solving for X it is found that

3 X^ 1

X, (1.4.7)

Similarly

VY.a. .
- U m ,  (1.4.8)

X W j

By using (1,4,7) and (1 «4,8) in an iterative procedure



it is possible to determine the X. and for each
vertex, ObÂ ’iously, in the practical display problem,
it is necessary to scale X. Y, and shift the origin1
between each iteration to sat is ify conditions (1,4,2) 

and (lc4«3) and extra steps must be taken to ensure 

that closely related groups of vertices do not shrink 

to a single point or all vertices come to cluster along 

the line X - Y«

The similarity between (1,4,7) ^nd (1,4,1) is 

striking but not unexpected, for in both problems the 

object is to find the “centre of gra\rity“ of the 

graphe In (1,4,7) the denominator may be interpreted sts 

a factor tending to pull a vertex of high degree to 

the centre of the system.

In attempting to assign colours to the vertices of 
a graph it will be the vertex with the largest d^
(from (1,4,1)) or the smallest X^ (from (1,4,7)) that 
is most likely to cause trouble as it is the vertex 
most deeply embedded in the system.

Returning to the problem of examination time-tables ; 

it should now be clear that, because limit tends 

tovjard the principal eigenvector corresponding to the 

largest eigenv^'lue of the matrix associated with the 

graph of their conflictsj In any practical situation 

the computation of this eigenvector is difficult (and 

on small computers its computation would be prohibitive)^



Vthus the courses should be ordered by their cl“" where 
k is large enough to obtain sufficient separation of • 

the classes to make the order of scheduling clear.
The actual value of k that should be used will \rary
the size of the problem and as the nature of the graph.
In general the iterative procedure should be carried out
to as high a k as possible, notwithstanding the fact
that if a clear separation of the vertices is obtained

k(no two elements of d being equal) then the iterative 

procedure should be stopped. It should be noted that, 
as in the case of v^^ and v̂  ̂  in FIGURE 1,3,1, a complete 
separation may never be obtained irrespective of the 
number of iterations performed.

Returning to FIGURE 1,3« 1 to consider a concrete

dÿ's are

periods as follows :

the a■ SSociated matr'i:X and the first three

4 4 4
1 0 0 0 1 1 0 0 0 0 0 0 3 15 *66
0 1 1 0 1 0 0 0 0 0 0 0 3 13 56
0 1 1 0 0 1 1 0 0 0 0 0 4 19 790 0 0 1 0 0 1 0 0 0 0 0 2 8 28
1 1 0 0 1 1 0 1 1 0 0 0 6 24 107
1 0 1 0 1 1 0 0 1 1 0 0 6 2? 125
0 0 1 1 0 0 1 0 0 '1 1 1 6 20 83
0 0 0 0 1 0 0 1 0 0 0 0 2 8 32
0 0 0 0 1 1 0 0 1 1 0 0 4- 20 910 0 0 0 0 1 1 0 1 1 0 0 4 20 87
0 0 0 0 0 0 1 0 0 0 1 0 2 8 28
0 0 0 0 0 0 1 0 0 0 0 1 2 8 28

as the or'de:rin;g crit'erion the Peck-I■/illiams
pr'oduces an examiinatilon time--table of four



period 1 period 2 î rjqoct

5 6 3

7 2 9
4 1
8
11
12

If this procedure is changed to 3use di
criterion it is poss ible to produce a
time-table :

period 1 period 2 period
6 5 9
7 10 1
2 3
8 4

11
12

1 0

This is the best possible in this case. Thus with an 
expenditure of a small effort in computing a significant 
improvement can be im̂ de in the heuristic even for 
trivial graphs «



Section 1,5 Determination of the Chromatic Numbei^

In. determining an examination time-tab] e by heunistio 
methods it can not be assumed that the result is 
optima.l, or indeed anywhere near optimal, For this 
reason a great deal of time was spent on methods of 
checking the result to see if it could be further 
improved,

The mathematical basis of graph theory has not 

progressed to the point where, given a graph, a formuJ.a 
may easi].y be determined to give the chromatic number, 
much less irdicate which vertices should be given what 
co]ours,

One approach to the determination of the chromatic 

number of a graph may be made through the theory of 
chromatic polynomials, A chromatic polynomial is a 

function, F( X), which expresses the number of different 
ways of colouring a graph as a function of the numbe2? 
of colours used, X , For example, in FIGURE 1,5 » 1 
the centre vertex may be coloured in any of the X colours, 
the two outer vertices may now be coloured independently 
each in X - 1 ways, Thus

P( >\ ) = TsCX-l)^.

Similarly in FIGURE 1,5*2 the top vertex may be coloured 

in X V'ays, there are then >-l ways of assigning a 
colour to one of ' the c.djacent vertices and X-2 ways



P( A ) =

FIGURE 1.5.1
Showing a gr&Aph and its ohi'omatic polynomial

F{ X ) = X(X-l)(A-2)

FIGURE 1,5.2 
Showing a graph and its chromatic polynomial



of colouring the third vertex. Thus

F( A ) - A( X -1)(A -2) „

It has been shown by R , C, Read (3^) that F( A )
is always a polynomia 1 of the . following f 02?m ;

F( A ) = - «r-l ....... X

where n is the number of vertices in the graph,

g  = -M,

“ the number of edges in the graph,

and the sign of alternates at each term»

If F( A ) is the number of ways of colouring the 
graph in X col ours then the smallest positive ir teger 
(excluding zero), X , such ths.t

F( A ) 5: 0

wi]1 be the chromatic number of the graph.

The computation of the coefficients of the 
polynomial is, in general, an iü'possibly complex process 
for ei large graph. In fact very little is knovrn about 
chromatic polynomials and only one “way has ever been 

found to construct then. A number of theorems in the 
paper by Read (3 0) give necessary conditions for a 
polynomial to be the chromatic polynomial of some graph, 
but none of them gi\̂ e a suf f ic i ent cond iticn ,

Eecause of the variou.s limitations of these and



other methods s It became necessary to retreat to basic 

concepts and attempt to design a procedure which would 
give some information on the chromatic number of a 
gra ph e

J, De Bruijn (unpublished but his proof appears 
in a paper by G, A, Dirac ( 8 )) has shown that a 
graph a].ways contains a critical chromatic subgraph 
and that this subgraph is finite and connected (a 
critical graph is one in which if you delete an arbitrary 
vertex or edge you reduce the chromatic number of the 
graph). This result was improved by Brooks ( 8 ) who 
showed that if k S 4 a critical k-chromatic graph contains 
either a k-complete graph or a vertex of degree k.
Dira c ( 9 ) was then able to show that, if 0:s p < k-1, 
a critical k-chromatic graph contains either a complete 
k-p graph as a subgraph or has at least k4-pf2 vertices, 
Dirac (10) was then also able to show that if a critical 

k-chromâtic granh contains n <.k vertices (ie, it is.not 
a complete graph on k vertices) and e edges then the 
relation

2e - (k-l)nlk-3

must hold true.
With the above results in mind, an attempt was made 

to investigate the properties of the graph (defined by 
its associated matrix) of each of the data sets used in 

the examination time-table exueriments, In order to
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examine the colouring properties of a graph it would 
be useful to find the size and composition of the 

critical 'chromatic subgraph. However the possible 
complex nature of its construction, as indicated 
by the example in FIGURE 1,5*3 critical chromatic 
graph of 8 vertices whose V(G) = 6 yet the largest 
comp],ete subgraph is of order 5)s rules out any 
reasonable method of de term; in in g it exactly.

It is difficult (though not impossible) to 
deliberately construct a critical k-chromatic graph 
which does not contain a complete graph of order k, 
k-'l s or k-2. It is therefore reasonable to suppose 
that 5 in the graphical problems arising out of the 
physical world, the critical chrom-atic graphs will, be 

composed of either a complete graph of order k, or 
a complete graph of order k-p, where p will be a small 
(with respect to k) integer. Thus an algorithm for 
determining the size and composition of the largest 
complete graph, inbedded in the course conflict graph, 
was the prime objective of the investigation. A 
complete graph of order n will be denoted by

A number of attempts at this problem have been 
found in the literature, most of wdiich were by 
sociologists attempting' to analyze clicues or other 
group structures in soclograms. Typical of the approadie, 
was that used by Forsyth and Katz: (15). They used the 
follouring empirical procedures :



FIGURE l,5o3

A graph reauirirg six colours^ largest complete
subgraph is of order five o



1/choose a vertexs a
2/ehumerate all vertices connected to a
3/interchange rows and columns of the associated 
matrix so that the rows and columns, correspondis 
to the vertices found in step 2, are side by 
side

^'/interchané'e the rows and columns of this 
submatrix until as many of the non-zero 
elements as possible are clustered near the 
diagonal

5/the largest submatrix whoes elements are all 
non-zero corresp>onds to the largest complete 
graph»

This rather unwieldy procedure was eventually 
replaced by one developed by Harrary and Ross (2 0)»
They made use of the fact that, given a graph G and 

its associated matrix A, the powers of A yield a matrix 
whose elements (the i,j th element of the matrix
A k A x A p times) are the number of paths of length
p going from vertex i to vertex j » This leads readily 
to the fact that each element in the diagonal of the 
cube of the associated matrix of a is the number

(n-1)(n-2)

where n is the number of vertices in the complete 
graphe Thus by cubing an associated matrix and 
inspecting the diagonal it is possible to determine



the largest complete graph embedded -in the system»
This method is limited to those cases where there 

exists only one (or perhaps several disjoint) complete 
graph and can not be made applicable to a graph, 
such as that in FIGURE 1 ,5 » > made up of several 
interconnected complete graphs »

In attempting to remedy these faults it was noted 

that a is made up of a series of Kp>s and ̂ if 
n > 3? then it is made up of a series of K^s» In 
general the following results may be obtained.

Theorem 1 « 5 » 1
A complete graph, G ( , U ) , of order ^ (n ^ 3)?
will contain, as subgraphs, n complete graphs 
of order n-1 »

Proof
Delete one vertex, r, from the graph G along 
with the edges such that re U^ (for all xe X~r) 
There are now n-1 vertices left, and these are 
connected by edges such that x g Uy (for all 
X,y G X-r)» This, by definition, is a complete 
graph of order n-i on the n-1 vertices in the 
■set X-r» As r may be any of the n vertices 
in X there must be n complete graphs of order 
n-1 in G,

A slightly more general result is :

Theorem 1,5.2



A complete graphs G(XjU)j of order n  (n ^3) 
contains 5 as subgraphs, ni/(pj (n-p)j) complete 
graphs of order p (2:<p<n) o

Proof
Delete any n-p vertices along with any edges 
incident with them. By the same argument used 
in Theorem 1,5,1, the remaining graph is a 

complete graph of order p. As the n-p vertices, 
deleted above, may be any vertices in the set 
X, it is obvious that the number of complete 
graphs of order p as subgraphs of G is the 
number of combinations of n things taken p 
at a time, or n )/(p((n-p)!),

Theorem 1.5*3
In a complete graph G(X,U), of order n, (n > 3)$ 
each edge is part of n-2 edge circuits of length 
three,

Proof
Consider an edge, o< , between the vertices i 
and J. If any other vertex r (reX-i-j) 
is taken then, by the definition of a complete 
graph, reUl and reUj and therefore an edge 
circuit of length three exists and consists of 

the edges ^md As r may be any
of the n-2 vertices in X-i-j the theorem is 
proved,

By the results deduced above it should be possible
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to design an algord thm to find all the then see
if the vertices of these graphs form a and continue
in this manner until the largest complete graph is 
found,

Because of the combinatorial nature of the problem 

it would be helpful if the search could be started 
with n as large as possible, and yet still be certain 

that a K yi still existed. This would eliminate part 
of the very time consuming search,

Pc Erdos (11) has shown that if a graph G, with 
n vertices, has

f  *  h

edges then it contains at least

complete three graphs, if it contains any at all * 
This 5 although it looks as if it should provide a 
starting point for an iterative procedure, proves 
useless because

is such a large number. For example, one of the da ta 
sets used in this investigation gave rise to a graph 
such that



or

■jd % 75000

The graph had about gdOO edges and thus h has a value 
of approxima tely -• 69000 a nd 1:he gra uh con ta ins about 
“69250 complete graphs of order three, if it contains 

any at all. As most of the graphs used for registering 
course conflicts will have the same density of edges 
this approach is impracticable, J, W, Moon (2 5) 
extended the work of Erdos to obtain a lower bound 
for the number of complete graphs of order k contained 
in any given graph. This, although of some theoretical 
interest, is useless for a starting point on any 
actual computation,

An alternate approach would be to atteompt to 
determine the upper and. lower limits of the chromatic 
number of the graph and thus, at least, find the possible 
range of the orders of the complete graphs. This has 
been made possible by the work of Ersov and Kozuhin (12) 
who made the following observations.

If a graph has n vertices and p edges'(no loops 
or parallel edges) then the largest possible chromatic 
number, X, isî

X

and the smallest possible chromatic number, z, is



X  =

fn-“2pin. n J
n̂ '"'2p

\
1-F n^“2pn n

where the brackets [ ] and { J denote the integral and 
fractional parts of the number respectively. When these 
formulas are applied to the aforementioned data set 
they give the following results

X 100

so that

1 '̂ (G) ^ 100

These, although better than the previous bounds, are
still of no great use.

Fortunately Theoreni 1,5*3 makes it possible to
design an algorithm to check for the existence of a
complete subgraph of a particular order. To determine
the largest complete subgraph it should only be necessary
to make this algorithm iterative, ie, check for a
complete subgraph of order n by eliminating any edges
not members of at least n-2 edge circuits of length
three, then iteratively entering this algorithm to check
whether this reduced graph contains a complete graph of
order nml* This process is continued until the grauh
is composed entirely of isolated vertices, thus indicat in
that the largest complete subgraph is of order n-1.
If a graph, G, is subjected to this operation (denoted



by ATn) In an sttemnt to locate a complete subgraph of 

order n, then the reduced graph (in which each edge is
a member of at least n-2 edge circuits of length three)
will be denoted by Tn (G) ̂ a notn-tion due to A, R, hee the , 

If the graph is stored in the form of a boolean 
matrix the procedure for checking that each edge is a 

member of at least n-2 edge circuits of length three 
bee Dili e s q u x te si m p 1 e s

1/ensure that all elements of the leadi)ig
diagonal of the boolean matriz. A, have the
value false (this procedure is not valid 
for gra phs v"ith loops)

2/if an edge, , exists between vertex i and
vertex j then form a booi.ean vector B with 
n elements grhose values are determined by the 
boolean expression

Bĵ  ̂*- ■̂ ĵ k'̂ '̂ jk. ( ~ 1,2,350*’* )
3/if P is the number of true elements in the 

boolean vector B then the edge c< is a member 
of P edge circuits of length three,

This elementary complete graph algorithm suffers 
from two distinct disadvantages. The first, a ratlier 
minor disadva:ntag:e, is the fact that it will not dcrcrri nc 

a distinct complete graph. This arises from the fact 
that complete gra.phs m̂-i y be interlinked. For exarn;le 
FIGURE 1,5.4 consists of three interlinked complete 
graphs of order four. The second, and disadmav'w;



is that the converse of Theorem lo5*3s le,

If, In a graph G, all edges are part

of n-2 edge circuits of length 3 then
G is a complete graph of order n

Is fais0 0 Any graphs whose edges are members of n-2
edge circuits of length three but do not contain a 
complete graph of order n will be known as "false" 
complete graphs. As can be seen from FIGURE 1.5*5 
(the simplest known ’’false*' complete graph) each edge 
is a member of two edge circuits of length three, which 
by Theorem 1.5*3 would ind.icate that it contained a 
complete graph of order four when. In fact, it only 
contains complete graphs of order three.

It is now obvious that an extra test must be 

incorporated in the algorithm to distingush the true 
from the false complete graphs, A great deal of effort 
was put into devising a suitable test to determine the 
’’completeness*' of the subgraphs under consideration.
The possibility of simply checking all the combinations 
of edges and vertices was dismissed when it was found 
that, in a modest graph, a check would have to be done 
on all possible combinations of 58 vertices taken 
2? at a time. This very time consuming process would 
have taken far lonver than the original déterminât ion



FIGURE 1.9,4
Showing three interlocked complete graphs of order four

FIGURE 1.5.9
Shô ^̂ xng the simplest known ’’false” complete graph

The graphs in FIGURE 1.9^4 and FIGURE 1.5*5 have the same 
number of vertices and edp̂ es *



of Tg (G).
The work of Erdos 5 Moon and Moser, cited previously^ 

also fails as a test for complete graphs. Both Moon's 

and Erdos' theorems use relations between the number of 
vertices and the number of edges in a graph; as the 
graphs in FIGURE 1,5*4 and FIGURE 1«5*5 Both contain 
six vertices and twelve edges, even these simple examples 
are enough to show that the theorems by Erdds and 
Moon are not suitable to practical application *

The method eventually used to provide the final 
check for the complete subgraphs was as follows :

1/select a vertex, ip from Tĵ (g) such that
/101+i’ces

d^ is a minimum for all â in T^(G),
2/produce a graph T^(g), containing i and those

vertices joined to i along with all the edges 
those^

joining vertices, FIGURE 1,5

shows this process in graphical form,

3/a check is made to determine the number of 
completely connected vertices in T^(G), If 
d^ = n-1 then this check simply reduces to 
verifying that all off-diagonal elements of

Athe boolean matrix associated with T^(G) 
have the value true, If d̂  ̂ / n-1 then the 
complete graph algorithm must be applied to 

T^(G) - this amounts to a recursive entry 
into the complete graph algorithm and then 
step four is only entered when the bottom



FIGURE 1.5.6
Sho’-’ing the rslstionship Deti'vsen (G ) and T^(0 )



level of recursion has been reached.
4/if the number of completely connected vertices in. 

T^(G) is greater then or eaual to n then there 
exists a complete graph of order n . If this 
number Is less than n then vertex i is 
deleted from the graph (G) (along with any 
incident edges) and the operation is
reapplied to the now modified ( G ) ,

The flowcharts and actual ALGOL 60 coding are 
Included in the appendices *
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Section 1,6 Results of the Investigation

The investing tion of the examination time-table 

problem started with data produced by means of a random: 

number generatore This was Initially set to produce 

three different sets of data, each of which was in the 

form of a boolean matrix, A pseudo--random number 

generator with a souare distribution between zero and one 

provided the criterion of whether or not an edge was 

present in the graph, the 1,j th and j ,i th elements 

of the matrix were set to true if the random number 

was less than 1/3 s or i respectively for the three 

different data sets.

It was soon realized that a random number generator 

could not simulate the cluster patterns of course 

conflicts that arise in a real situation, so the investig

ation was finally carried out on two sets of student 

data from the University of Alberta, Calgary (Canada)

(1964 “65 and I965 - 66 student bodies).

These two sets of data were a very good test of 

the procedures because the students from U.A.C. are 

able to attend classes from many different disciplines 

and thus the graphs of course conflicts are much more 

complex than those arising out of universities with a 

rigid faculty structure. The procedure for separating 

a graph into its individual connected s u b g r a p h s , as



gr-D

described in Section 1,1, was implemented and both 

data sets subjected to this separation process. It 

was found that, for all practical purposes, the two 

graphs from U .A , C , were nonseparable,

No attempt was made to reduce these two graphs by 

finding minimal articulated sets or cut sets because 

the procedures seemed to function well even on these 

large singly^ connected g r a p h s , However if the size of 

the graph grew by a factor of two or more it would 

be necessary to attempt some form of reduction simply 

because most computer memories could not hold it all 

at once. This could raise serious problems for a very 

large connected graph as most of the reduction procedures 

are based on the matrix method of storing the data, thus 

reduction presents the same fundamental storage problem 

as the original colouring procedures.

An examination time-table was produced for each 
twoof the sets of data, using first the Peck-Wllliams

procedure and then the eigenvector approximation 
procedure. It was found that, in both cases, the 
eigenvector approximation procedure produced an examination 
time-table using less periods than the time-table 
produced by the Peck-VJilliams procedure (see TABLE 1.6,1), 
The data vras then subjected to the complete graph 
procedure, in order to determine a lower bound for the 
number of examination time periods required for each 
data set.



largest 
eigenvector complete 

Peck-Williams approximation R'raph

U,AoG„ 6A 65 
(5^7 vertices) 27 26 22

U,A.G. 65 - 66
(656 vertices) 29 28 25

■ t a b l e  1.6.1

Showing the number of examination time periods required 

by the different procedures on each of the data sets» 

along with the size of the largest complete graph in

each set.

eigenvector

U.A.C 0 6 A - 65 5 min c 8 sec. 5 min, 42 sec.

U.A.C, 65 ™ 66 6 min 0 6 sec. 6 m i n , 49 sec.

TABLE 1 ,6,2
Showing the run-times of the different procedures on

each data set.



From TABLE 1,6,1 it can be seen that the eigenvector 

fspproximation procedure came closer to the theoretical 

miniitiuni than the Peck-Williams procedure. The discrepancy 

between the actual and theoretical results can be 

conjectured to be due to the fact that the critical 

chromatic subgraph of the data sets is not a complete 

graph but rather a complex graph containing a complete 

graph as a subgraph. If this conjecture is co r r e c t5 
and there seems no way of testing its t r u t h , then the 

lower bound is raised slightly and better agreement 

would be obtained between actual results and the absolute 

theoretical minimum,

A very intensive study was made on the U.A.C,

1965 ” 66 data set to try to discover if the chromatic 

'̂"as indeed larger than 25 (the size of its largest 

complete subgraph). The study revealed that the 

largest complete subgraph was of order 25 but there 

existed three subgraphs of order 26 lacking only one 

edge each to make them complete graphs^ two subgraphs 

of order 27 lacking only two edges each to make them 

co m p l e t e , and one subgraph of order 28 lacking only 

three edges to make it complete, Of all the complete 

subgraphs of order 255 eight were f o u n d , all complete y 

interlocking, This very complex situation is exactly 

what is reauired as a base for a complex critical 

chromatic subgraph of order greater than 25 = A 

great deal of work ŵ-'-s put into an attempc. to elucidate



the structure of this critical chromatic subgraph but 

it could not be found, This failure to find a critical 
k"chromâtic subgraph (k > 25) does not mean that it 
did not exists the complex structure of the subgraphs 
of order 25s 26  ̂ 27» and 28 point to its existence but 
the number of possible subtle combinations of these 
subgraphs with any of the 6OO other vertices makes its 

determination hinge on having very extraordinary luck, 
TABLE 1.6.2 indicates the running time for each 

of the examination time-table procedures on each of the 
data sets, This is the time taken on an English- 
Electric-Leo-Marconi KDF 9 computer with the programs 
written in the KID8GR0VE (unoptimised) dialect of 
ALGOL 60, The very large boolean matrices (656 X 656 
in the case of the UcA.C, I965 - 66 data) were kept 
in the store by designing a series of ALGOL procedures 
written in USER CODE (the assembly language of the 

KDF 9) which packed a single element of the matrix 
into one bit, Thus the 4.30 5 336 elements of the matrix 
could be contained in a,pproximatly 10,000 KDF 9 48-bit 
words. This packing of data is, unfortunatly, necessary 
because the procedures must examine the matrix elements 
at random and, if the matrix were stored on magnetic 

tape or even a random access device, the time taken 
to produce a time-table would make the procedures 
uneconomic, unless implemented on a time-shared machine. 

The actual calculation of the next approximation
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to the largest eigenvector of the system was accomplished 

by a highly efficient procedure written in USER CODSo 

This procedure made special use of the fact that the 

matrix associated with the graph was stored one element 

per bit, and this, combined with the powerful set of 

logical instructions on the KDF 9 5 has resulted in an 

ultra fast routine. Thus to implement the eigenvector 

approximation procedure on an alternative computer may 

increase the computation time over the Peck-Willlams 

procedure by a greater percentage than is evident from 

TABLE 1,5.2.

The effect of continued iteration towards the 

eigenvector corresponding to the largest eigenvalue of 

the associated matrix was examined in some detail for 

the two data sets. In particular the relative magnitudes 

of the elements of this vector were investigated at each 

iteration, because of their importance in controlling 

the order in which the vertices are chosen for assignment 

If the relative magnitudes of the elements of this 

vector remain the same after one or two iterations then 

it is senseless to continue iterating towards the actual 

eigenvector when even a very poor approximation is 

computationally satisfactory. A program was written 

to compare the relative magnitudes of the elements 

from one iteration to the next and the results produced 

are shown in FIGURE 1,6,1. The percentage of elements 

changing position of relative magnitude and the average .



number of pinces changed in the sen le of relative 
magnitudes shed some light on the consputational effort 
needed to produce the gn ins of fered by the eigenvecIoj' 
approximstion colouring procedure. It is evident that 
the ordering goes through a dramatic resequencing 
during the first few iterations. The first iteration 
changes the order of about 85/2 of all the vertices by 
an average of arproximatel y 10 places up or down the 
1. i s t , How ever by the t i m c f iv e i t e ra t io n a; have bee n 

done only about lOfo of the vertices are, changing their 
positions in the table of relative magnitudes and this 
change is not more than one or two places. The actual 
eigenvector is found (to an accuracy deterimj ned by the 
KDP 9 48-bit word l.ength ) after 10 - 15 iterations, 

thus it is only necessary to carry the iteration out 
a few times to reap the benefit of any gains of the 
more advanced colouring procedure.

The 1964 - 65 data was used by the University of 
Alberta, Calgary to produce an examination time-table 

by their traditional methods. This was'done by two 
highly competent (and as a result highly paid) members 

of the Office of the Registrar in slightly less than 
six weeks. The resulting time-table had 30 examination 

’ time periods, and did not satisfy the no-conf]ict 

d em a nd s of a. b ou t 1 5 s tud e n t s , Wh e n t h i. s i s c om p a > ■ e d 

to the cost and ef f iciency of the con, put or procedure 
it can easily be seen that the computer can save a
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large amount of money ̂ time, and effort in this ares 

of a university's adminis tra.t i o n . This last statement 

does not take into account the costs of data prépares tion 5 
ho^'^ever the data ms y be eas il y obtai>-'ed as a byproduct 

of the sectioning process described in Chapter 2.

During this investigation it vas noted that every 

examination time-table procedure mentioned in the litei'stur 

had ; as one of its parametei'S ̂ an indication of the 

number of seats available in the examination room.

For the basic "one class - one paper" situation there 

is absolute y no need to consider the room size as a 

pa ra meter o If the number of students scheduled, to 

write examinations in a particular period exceeds the 

capacity of the rooms ava liable, then the registrar 

may reschedule some of the examinations from this period 

to another free day and still be assured that, in 

his situation, he has a near optimum time-table. It - 

was found that, for the U.A.C. data, the actual physical 

situation contained, so many conflicts that using a cut 

off parameter such as room size was unnecessary. In 

fact even using the size of the largest class as the 

room size parameter, the time-table produced did not 

vary in the number of periods used c
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The system for finding examination time-tables, 
as described in the previous sections, seems to be better 
(in regard to computing power necessary and number of 

periods used) them any described so far in the open 
literaturec However a number of practical objections 
may be made to it. It is often necessary to limit 
the number of examination time periods, or attempt to 

distribute the number of examinations evenly throughout 
the examination session, or cause two different examination 
to be held at the same time.

The last of these objections may easily be dealt 
with by some form of pre-assignment feature as in the 
published version of the Peck-Williams procedure. The 
other two.objectives, limiting the number of examination 
time periods and distribution of the examinations, are 
by:their very nature contrary to the fundamental idea 
behind the colouring procedure.

The number of time periods, or colours, may not 
be limited because the procedure will already attempt 
to use the minimum number of periods. An attempt may 
be made to determine the bounds of exactly how many 
periods will be used but these bounds are very poor 
and their determination takes more effort than the 

actual computation of the time-table. The even distributior 
of the examinations is also a point which couf ■ not
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be cb- ep'pd disturbinr: tr-e opJ;icneji neffect

of the procedure. After the ti.me-tabl e has been found 
the poss:ibi‘lity exists of moviny some of the exanni net io:'' 
i.n the eai: 1 y uericd s to th e ].s ter pcr.i od s vithout: ceur; i' 
conflicts. This may help to ease the load on the first 
fex'?' periods.

FIGURE 1,7.1 sboxes the distribution of examinations 
throughout the time-table. This top heavy form is 
apprcia ted by mor;t of t.he staf f bu t def i.ni Lely not 

V e 1 c om e d b y t h e s tu d e n !■ s .
If the university administra tion is vi’Jiiny to 

a] 1 o’-' a. f ê-r c on f ] i c t.s i n t he i r exani i na t i, on t i m.c-1 a bl e , 
both of these objections can be alleviated , but on].y 

at a price. As c.an be seen from FIGURE lc?J. the last 
few time periods' on I y contain a fex*: exxaqi nations : It

XATould be possible to take the time period v ith the
least number of examinations and place those other 
periods in such a manner that the number of cor<f] lets 

generated is a minimum. This redistribution xril] 
requirr'e a matri'x, G, such that c j  is the number of

students involved in- the conf'J let beti'̂ een course i
course j ) so that the number of students involved 
in any one corf] let may be noted. The size of this 
matrix die ës tes tiiat it v ill have to be kept on some 
forn. of auxiliary memory, pro bn bl y a random access 
device, Ho'-xxver some p-s ck i n o f  the elements is pcssii: 
bec.au.S3 the I.armest element is known to be
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less than or equal to the enrolment in the second most 

popular course 6 Another reouirement of the redistribution 

is that all examinations being removed from the Ith 

period must be placed in periods that have not had 

other examinations from the Jth period already put 

there c Failure to. observe this restriction may lead 

to three and four way conflicts instead of just the 

two T'-ay conflicts being formed* To reduce the number 

of time periods by the greatest amount for the least 

cost 5 all the examinations from period I should be 

redistributed to the same new p e r i o d „



C H A P T E R  2

Sectioning Students to 

Classes



s e c t i on 2 ,1 Th ̂ Pr obi e'n

n y un 3 v<̂ r o i t i f3> o ov oro c t b o i r 11 n: o - to bl i n y 
or spnoe probloms by split!io:- each doss into if^ny 
different sectionsj eoch given at a different time 

throughout the veekn For example, if ai first year 
course in chemistry is expecting an enrolment of 
200 students, but the lecture rooms vûil only hold ?5 
people and the laboratories vill oitly occorcrr.odate SO 

students at a time, the university administra tio'o may 
section the:class ss follows:

Lect, section 1 - bon. Wed, Fri « Room. 813 9'00-10 iC, 
Lect* section 2 - Ron, Wed, Fri. Hoorn 93 11:00-12:C 
Lect. section J - Tues, Thurs . Sal;, Room 798

10 Ï00-JI îOr 

Lab, section 1 - bonc Room ?12 9:00-12 :00 
Lab. section 2 - Tuesc Room 712 9^00-12;00 
Labe section J - Wed, Room 712 2:00-5*00
Lab. section k - Fri. Room 712 2:00-5^00

If a student was taking mathematics on Monday 

morning at 9:00 then he could still easily fit one 

of the other two sections of chemivstry lecture ir to 
his time-table. It is now necessary to fi>id some met bod 
of dis tributing the students into the various sections 

w h 1 c h T'U. 11 not only t f̂ k e into a c c oun t the 12 p o s s 1 b 1 e
choices of chemistry but tbe total number of choices
a V 9 i 1 a b 1 e t o h i m from c'l.l his s u "o j e c t s ,



Unfortunatly this choice of sections can not he 
left to the student himself. Few students would 
willingly choose chemistry lecture section 3* end thus 
there would he hopless overcrovrding in lecture sections 

1 and 2.
Sectioning students to desses with the aid of a 

computer has been dealt with in many papers and actually 
impiem.anted on a. f e tc.b .ctiines . The majority of these 

implementations and discussions have dealt with the 
problem in the situ.ation where large scale computers were 
available. In this discussion a suggestion will be 
given involving a large scale computer and a suggestion 
which will enable its implements tion in the situation 
in which a small scale computer with a random access 

auxiliary memory, or a large scale computer (on which 
time is a very important facto:?) is available to the 

administration,
All the methods under consideration require the 

univers ity administration to supply a master time-table ̂ 
giving the times and maximum enrolments for each 
section of each course, and a set of cards (or other 
suitable input medium) for each student indicating the 

courses in which he is enrolled..
The major objective of computer scheduling is to 

assign the student to nonconflicting sections of his 
courses, subject to some or all of the follcing 
conditions :



l/’fnen the sectior.ing of all students has hear, 
finished the different sections of a class 
must have roughly equal numbers of students, 
or the numbc;rs of students in the d if f erent 
sections rnust be in a predeterrained ratio 
to one another.

2/Particu3ar students should be placed in a
particuJar section of a course, the constraint 
being sex, faculty or other personal or 
8. cadem i c in forma i ion ,

3/Partlculsr sections of a course are closed to 
particular students, the constraint again 
being sex, faculty, or other personal or 
a ca d em ic in forma t ion.

One of the benefits of sectioning using a computer 
is that the registration process may be speeded up, 
but this is not the only advantage. If, as each student 
is sectioned, a record is made of his section assignLients, 
the procedure may have the beneficial side-effect of 
providing accurate student records, statistics, and 
class lists immediately upon the conclusion of the regist
res t ion procedure.

As in the problem of examination time-tables,
the master time-tnble of the university classes may
be best described in the termi^'^ology of gp-aph theory.
The ma s t e r 11 me - table ma y be visua 1 i r ed a s a grauli,

<

C- (V,U), whose vertices, V, are the classes offered



by the institution, and the edge generating function,
U g being defined as generating an edge between
and Vj if both course i and course j are offered during
the same or overlapping time periods.

Sectioning students to classes now becomes the 

problem of partitioning the graph of the master time-table 

into disjoint sets such that no two vertices in any 
given set are joined by an edge. It can now be seen 
that this is exactly the same colouring problem as was 
presented in the discussion on examination time-tables. 

However^ because of the different physical situation 
in which the problem arises, and the added constraints 
to its solution, the actual procedures used for the 
solution will differ from those used in the solution 
of examination time-tables.

The more complicated system of courses with .
multiple sections is a simple extension of the afore-

mentioned graph, namely each of the sections of a course
is now a separate vertex. The vertex corresponding to
section k of course i will be denoted by v̂ ĉi



Section 2.2 Heuristic Procedures

The first 5 and perhars most general, attack on 

the problem ^as initiated in 1959 -  ̂ PlU'due University 
by J. F. Blakesley ( 3 ), who although handicapped by a.n 
extremely primitive computer, produced, a system which 
embodied the basic des ign of every subsecuent heur 1s tic 
impleraentatloru The program that he developed follows 
the logic

l/each student must be sectioned and the
procedure used should be as fast as possible 

2/the last student sectioned should have the sa ire 
probability of being assig;ned to a prta.ou 1 ar 
course section as the first student had.

From this logic two key points emerge. One is that 
courses must be ordered according to the difficulty of 
finding alterma te sections (single section courses first, 
for they have no alternate time schedule, followed by 
courses with more and more sections). The second, and 
just as important, point re ires that the student be 
placed, in the section with the largest number of rema in in 

unfilled student places. If this section cannot be 
made to fit, then the remaining sections are tried 
(from largest to smallest number of remai.iing places) 
until a section is found which will fit the schedule t,



FIGURE 2.2.1 is a simplified flow chart of the 
basic Blakesley model for a computer sectioning proyr-am. 
The Flakesley model consists of three major loops, 
whi.ch try a 1.1 poss ible combina t ions of courses in a n 

attempt to construct a schedule. These loops are :
A/the primary course section assignment loop 

*" select the section (of the course under 
considera11on) with the largest number of 
unfilled student places

- if the selected section does not conflict 
with the previously assigned course sections 
then proceed on to the next course, otherwise 
enter loop B

B/the section progression loop

- this selects the section with the next largest 
number of empty student places and returns
to loop A 

C/the course backtrack loop
“ this loop is used when all sections of a 

course have been tried and found to conflict 
with the sections of previously scheduled 
courses - the loop backtracks to the last 
scheduled course, selects an alternate 
non-conf 1 j.cting section as d returns to 
loop A to schedule the subsequent courses.

The c'̂ sic rlan of the ii^sley sec ti i pr n-rsr.,

usually tet :a ed a yo-yo tree search, is cormuon to a 11
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fiËẐcT f o Af 

IV o T'/'= ̂ FIow chart of the 
basic Blakesley 
model of a 
sectioning prograr

FIGURE 2.2.1



environiiients in idiich the sectioning procedures nay be 
impie'-'ented 5 that is to say, it is not dependent on 
the detailed cult y or course structure of an ins t i tut ic"'î „ 
Every proposed sectioning procedure has followed the 
same general outline, the o?i 1 y 'difference being a 
gradual refinement and modification of the methods of 
accomplishing the three basic steps.

The two basic heuristics ( o-'"dering the student 
course requests by the number of sections in each, and 
selecting for consideration the untried section with the 
smallest enrolment) have also been used in all the 
procedures investigated, the sole exception being a 
very early experiment at Washington State University (13)„ 

It is rather curious that Blakesley used the nu.mber 
of empty seats left in a class, rather than the number of 
people assigned to that class, as his criterion for 
choosing the section with the smallest enrolment. The 
author * s own work (hereafter refered to as the Coli jn- 

Williams procedure) points out the pit-faIls of the use 
of room capacity. A quote from the paper by Colijn 
and Williams ( 6 ) will show the havoc that the use of 
room capacity can cause «

"The University Administration had produced a 
master time-table showing a particular course 
with three sections, each of which was to have 
an enrolment of about thirty studend'.s.

Sections 1 and 2 were to meet in rooms



holding forty students oach but, duo to 
limitations of the phys ical plant available, 
section 3 Fad to meet in a room accommodat:no 

250 peoplec The result of sectioning using 
room capacities, as the section sorting 
criterion, was that approximately 90/ of the 
students reçuesting this course were assigned 
to section 3s leaving sections 1 and 2 with 
only those students whose other course 
requests blocked section 3 from consideratiori, 

Another curious point about Bla.kesi.ey* s original 
system is that it would consider all possibl.e corobinations 
of the available course sections before it decided that 
a time-table could not be produced. If a student is 
enrolled in a series of courses, all of which have a 
large number of sections, then it is possible to have 
in excess of 10^ section combinations to be investigated. 

Even very large computers can only be expected to consider 
a fraction of these. It was not until quite recently 
that Faulkner (13) and Colijn and Williams ( 6 ) attempted 
to design the backtracking loops to search intelligently 
for a workable schedule rather than trying an arbitrary^ 
(5000 in the case of Anderson (1 )) of combinations 

before giving up.
Since Blakesley*s first attempt the method of storing 

the master time-table information has undergone a vast 
improvement. Although the storage of the master



time-table is a practical matter, depending heavily 

on the computer to be used, it is of sufficient 
significance to be briefly discussed. The significance 
lies in the fact that it requires a large amount of 
memory, and that it must be accessed frequently.
Because of-these heavy expenditures of the computer*s 

resources on the time-table, the mode of storage will 
affect the efficiency as well,as the bas ic design of 
the final procedure to a marked degree ̂

Several methods are available for storing the 
time-table information. The first, that of recording 
the actual day and time of a course, eg. M ,W .P . 9-10 
(or suitable coding for this information, as was done 
by■ Blakesley) will not be considered because of the
obviously greater ease of processing offered by the

other methods,
The second method involves the use of a boolean 

"time-vector", T , of which two types have been used 

in the paste
Type 1 “ 26 boolean elements, six of which 

represent the days of the week (ie. T^ = 
true if the class is held on the i th day 
of the week, I - 1 ^ 6) and 20 representing the
time of day. The first of these time of day
elements represents the half hour period 
8 ;00 - 8 :30, the second 8;30 - 9:00, the 
last element representing the period 5 0 0  -



6:00, For example, a class given Monday, 
Wednesday, and Friday from 9:00 - 10:00 
V T O u l d  have a type 1 time-vector of:

10101000110000000000000000

Type 2 - Similar to the "time of day" elements in 
the type 1 time-vector, except there is a 
complete set of 20 booleans for each day of 
the week. Thus the type 2 time-vector consists 
of 120 boolean elements, the first 20 represent in 
the time of day the class is given on Monday, 
the next 20 representing Tuesday, the final 
20 representing Saturday. For the example 
given under type 1, the type 2 time-vector would 

be :

0 0 11 00 00 00 00 00 00 00000000000000000000000000110

...... et

It is easily seen that, a It hough type 2 t irne-vectors 

take more memory space than type 1, they allow much 
more flexibility in representing a class which is given 
on different times on different days. If the vertices 
of the time-table graph each have an associated time- 
vector, then by doing a boolean AMD operation on time- 
vector i and time-vector j (in the case of type 1 time- 

vectors this must be done twice, once on the day elements 

and once on the time elements) ir is possible., by



checking to see if ttje resultant vector }ias any tr_ue 

elements, to determine if an edge exists between verte:: i 
and ver t e x ;] o f the t i \v e -1 a bl e g’ r a n h .

A third method of storing the time-table involves 

the use of the boolean matrix associated with the graph. 
The use of a boolean matrix for storing time-table 
inf orma ti.on , a 11hou.vh more difficult to s et up than 

the time-vector methods, has several advavitages wViich 
-̂'ill be explored in a later section. It also has 
the disadvantage that unless the university offers 
fewer than 120 courses it takes cons iderab 1 y more storap;e 
than the time-vector system, This, however, need 

not be a serious drawback if a high speed random access 
d- ev i c e i s a va ilabl e ,

A second, and perhaps better known, attack on the 
problem initiated by Anderson (1) in conjunction
with the hew England School Development Council in 

1962. Anderson’s procedure Wcss extremly fast - up to 
1000 pupils per n?inute - but it should be remembered 
that this speed was due, to a large extent, to the fact 

that it WA'S a school sectioning problem rather than a 
university one; the master time-table for a .school v:ill 
invariably be better suited to maohine sectioning 
because of the fewer courses offered, each course 
generally havi ng only one section, and the more limJted 
choice riven to the pu;cils.

As well as the usiw 1 master time-table informa uion



(eventually coded into a type 2 time-vector) Anderson
also recorded two other variables, and where

is the number of pupils that must be registered as
wishing to take section k of course i before it becomes
a practical proposition to even offer this section, and 
k is the maximum number of pupils that may be admitted, 

to section k of course 1. If the first T-1 courses, 
for a particular student, have been successfully sectioned, 
then Anderson's procedure will perform the following 
operations in attempting to determine a valid section 
assignment to course T,

1/ Select 5 for consideration, all possible 
sections of course T such that

^ 0 ( k - 1 5 2 5 3 9 o . . 5 n )

(this is known as the minimum mode of search).

2/ Order the course sections, obtained in the 
previous step, in numerically descending 

order by their respective X ^ ,
3/ Compare the time-vector of the first section 

(the one with maximum X^) with the time-vectors 
of the sections scheduled for the previous 
T“1 courses to determine if it conflicts 
with any of the previously assigned sections.
If this section will not "fit", repeat the 
procedure for all the permissible sections 
of course T. If the list of permise hole



sections is exhausted without finding a fit 

go to step t'ç If a fit is found decrease 

and by one and attempt to schedule 
course T-f 1.

^^/ Redefine the list of permissible sections as 
all sections such that

Y^ > 0 (k “ 1,2 , 3 ,  ̂, n )

(this is known as the maximum mode of search). 
Repeat steps 1 to d, if this does not produce a 
fit then it is assumed that it aias the assignment 

to course T-1 which is the cause of the 
conflict, therefore Anderson exchanges course 
T with course T-1 and tries again to find a 
workable set of section assignments for this 
student. If, after trying <000 possible 
section combinations, a time-table is not 
found the student is abandoned and his 
time-table must be prepared by hand^

The values given to the individual and Y^ 
will dramatically alter the efficiency of the system.

For example if n pupils request course T (which has 
p possible sections) then if

K--X

it '̂"111 result in pupils not being sectioned due to 

insufficient seats available ; if
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it will force the procedure into the maximum mode of searci 

when this action is not necessary. For single section 
courses it would make the computer look for alternative 
sections when there are none. On the other hand a 

much finer degree of control can be kept on the 
sectioning process with modifications being made to the 
individual X'f and For example, section imbalance
may be corrected thus :

a larger X^ will cause section k to fill 
up faster;

a. smaller X^ '̂cill cause this section to remain 
empty for a longer period; 

a certain section, k, (known to fit the
schedules of difficult pupils) may be kept 

open because the procedure will reserve 
Y^ - seats for students whose schedules 

are determined in the maximum mode of 
search.

However, if, as Anderson suggests, his procedure
will deal with.up to 1000 students per minute, then any

k kthought of modifying the values of X'̂  and Y^ during

the execution of the program is ridicui.ous. If it is
implemented on a much slower machine than Anderson’s

I.B.M. 709A then conceivably there may be enough time
a va ilabi e f o r a. hr ma n bei n g t o use his abil it is s a nc 
knowledge to modify the parameters during the execution



of the program.
Several other attempts at designing class sectionin; 

p3?ograms have been made in the i'-terval since Anderson’s 
report was published. Although these seem to have been 
ouite independent attacks, it will suffice to describe 
in detail the procedure proposed by Colijn and Williams 
( 6 ) as this contains most of the devices used by other 
authors ulus one o v  two extra interesting heuristic

The Colijn-Williams procedure was based on a type 

2 time-vector as the method of storing the master 
time-table information. Their procedure was designed 
to be implemented on a small l620 comiputer at
the University of Alberta, Calgary. The computer 
configuration (40,000 digits of core store, one disk 
unit of 2 g000,000 digits storage, 2A0 line per minute 
printer) was very limited, in particular the digital 
form of the core store created problems with the 
necessary boolean and logical operations. The I.B.K. 
1620 had no arithmetic unit, instead it used a series of 
tables 5 located in the core store, to look up the ans-rer 
to each arithmetic operation a digit at a time. This 

peculiar feature was used, by a suitab]e modification 

of the ariuhmetic tables, to effectively change the 
ADD instruction to a boolean AND instruction, and to



change the COMPARE instruction into one which would 
set an Indicator if all 120 hoolesns were zero.

The course structui'c they had to deal. with, 
complicated the sectioning procedure to such an extent 
that a "pure" heuristic was impossible to design.
The University offered 600 courses, which were divided 
into about 1 $00 sections, however" a large number of 
these sections were reserved for students of a particular 
sex or studying particular subjects. A further restriction 

pertained to students in the Faculty of Education who 
cou],d not attend classes offered by other faculties if 
they were held in the mornings (because of their student 
teaching requirements) however they were allowed to 
attend morning sessions of some Education classes.
To complicate matters further some classes were held 
only in the first terra (Oct. - Jan.), some only in the 
second term (Feb, - May), and some all year. Because 
the student teaching was only held in the mornings of 

the second terra, it further com.pl icates the sectioning 
of the students in the Faculty of Education. It is 
instructive to exa::'ine the sectioning problem under these 

conditions because they are the type of constraints 

found in practice, and any study of the pure situation 
would, lead to possible false conclusions.

It is also instructive to examine the secti onin.g 
probi erj '̂'hen only a sm̂ l], computer is available,- bu ̂
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to the rota 11 ve'l y sjo"' access t:t.;re for the 162 0 disk n i  t 
the :"equests for time-vector information must be kepi 
down to an absolute minimum. Thus short cuts had to bo. 
ma d e i t he h eur i s t i cs h i ch , ha d t here been a 1 arge 
scale computer, would have been overlooked as being 
trivia 1.

The procedure starts by reading the student’s 
course requests and. forming' a vector, HEchJFST, such 
that the i th element of this vector contains the code 
number of the i th course recuest and the number of 
sections in that request. This RErUSST vector is then 
subjected to the standard heuristic of sorting its 
e] ement.s into ascending order by the number of' sections 
in each request. This ensures that the sirqgle section 

courses will be dealt with before the courses that have 
a number of different possibl.e sections.

The course requests are dealt with one at a time,
one section of each course being chosen for the stude^'-t’s
time-table. This sortinv heuristic is effective in 
producing a time-table for about 75/ of the cases but, 
for the other 2$/ some sort of "back up and try amain" 
process must be attempted.

On the ba. sis of the heur 1st ic ass ump t i on :
"If a set of course assignments can be made,
there is at le-̂ st one correct order in ■■-hich
to process the requests such th."-1 the sci e7 1 e
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to the relativly slô *' access time for the 1620 disk unit 
the requests for time-vector information must be kept 
down to an absol.ute minimum. Thus short cuts had to be 
made in the heuristics which, had there been a large 
scale computer, would have been overlooked as being 
trivia.l,

The procedure starts by reading the student’s 
course requests and forming a vector, REQUEST , such 
that the i th element of this vector contains the code 
number of the 1 th course request and the number of 
sections in.that request. This REQUEST vector is then 
subjected to the standard heuristic of sorting its 
elements into ascending order by the number of sections 
in each request. This ensures that the single section 

courses will be dealt with before the courses that have
a number of different possible sections.

The course requests are dealt with one at a time, 
one section of each course being choosen for the student’s 
time-table. This sorting heuristic is effective in 
producing a time-table for about of the cases but,

for the other 2 6/ some sort of "back up and try" again" 
process must be attempted.

On the basis of the heuristic assumption:
"If a set of course assignments can be made,
there is at least one correct order in which
to process the requests such that tl:e schedule



will be produced with the least duplication 

of effort c"
the following backtracking heuristic was developed (the 

heuristic is difficult to describe but reference to 
the simplified flow chart, FIGURE 2,2,2, should help) <>

When course N can not be given a. conflict-free 

assignment, the list of previous assignments is scanned 
to find a course, M, '̂̂ hose assignment caused the conflict. 
If N is a multisectioned course then it is uossible, 

and in fact likely, that section conflicts with the 
assignment made for course M, while section Np conflicts 
with the assignment made for course L, thus an arbitrary 
section of N must be used for the backward scan.

If it is found that both course M and course N 
have only a single section, then it is useless to continue 

and the student is told to drop either M or N and select 
another course. If course N has multiple sections, and 
course M has only a single section, then it is clear 
that the assignment for M can not be changed and thus 
a differe^wb section of N must be used for the scan 
back. This process is continued unti3. a previous 

assignment of a multiple sectioned course is found which 
blocks course N from assignment. If all the sections 
of N are blocked out by single section courses, then 
again it is useless to continue and the student is 
informed of the -multip1e course conf1ict,

After the conflict has been found the problem is
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still left of vrha t to do about it ̂ In the first instance 

the courses were selected for sectioning in ascending 
order of the number of sections available « By the 
previous assumption ̂ that of an order existing for the 
selection of course requests 5 .it appears than course M 
and course N were in the wrong order and that the first 
ordering heuristics at least for this set of requests^ 
was in error « The list of course requests is therefore 

rearranged, by interchanging course M and course Nj 
so that the sectioning process, on its second try, will 
attempt.to schedule course N before course M*

It should be noted that if a conflict is encountered 
on the second time through then a further "swap" on 
the two conflicting courses takes place « This process 
is advantageous only up to about ten swaps, the chance 
of a correct order being produced for a successful 
time-table diminishing rapidly thereafter, because 

of the course order in the REQUEST vector being reduced 
to virtual randomness,

The procedure used a SECTIOR vector to satis ify 
the re'^uirement of distributing the students evenly 
among the various sections of a course. When a course 
recuest is being considered a SECTION vector is produced 
such that the Ith element contains both the code number 
of the Ith section and the number of students previously 
assigned to that section. The SECTION vector is then 
sorted, by the number of students in each sectic , into
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ascending order « When the procedure attempts to find 
a section of the course into which the student might 

fits it will try the section indicated by the first 

element of the SECTION vector, ie. the section with the 
lowest enrolments and will only try the section with 
the greatest enrolment when all the others have been 
considered and. rejected «

The section vector concept takes a very important 

part.in two aspects of the procedure besides the section 
balance requirement. When a conflict has been detected 
and a swap has taken place, the second time through the 
procedure the elements of the section vector may be 
rearranged so that the same combination of sections is 
not retried. This best takes the form of a cyclic 
shift of the section vector^s elements (of the course 

which originally caused the conflict) by one position, 
ie6 take the first element, place it at the end of tlie 
vector and move all other elements up one position.
In general if n swaps take place on this course, the 
first n elements of the section vector should be 
cyclically shifted. This double use of the section 
vector not only assures against the possibility of the 
procedure getting i'̂ to a closed loop by trying the same 

section of the same courses each time, but also ensures 
that no section of a course fills to capacity before 
the other sections are within one or two places of 
themselves being full. Thus the student who 1: ;'ocessed



last has 5 on the whole, the same chance of being assigned 
to the “best" sections as the student who was processed 
first,

Another objective of the Colijn-Williams procedure 
is to satisfy the demand that a particular student is 

placed in a specific section, the constraint being 
sex'5 faculty or other personal/academic information.

As a courses section vector is being compiled a check 

is made on a "reservation number" associated with each 
section, if this reservation number is non-zero it 
directs the procedure to a specific series of routinesj 
the particular routine depending on the reservation 
numberÇ These routines can deal with the section under 
consideration in three ways ;

1/ Add this section to the section vector as a 

possible assignment, if the sex, faculty, or 
other information is consistent with what is 
required.

2/ Exclude this section from the section vector; 
this will, in effect, deny any knowledge of the 
existence of this section to the procedure and 
therefox^e render it Impossible for the student 
to be assigned to it,

3/ Add this section to the section vector, and 
delete all other sections, thus forcing the 
student to be assigned to this section.

This technique was not restricted to the examination



of a students persor^al data , and was used to examine the 
previ ou8 as s 3.gnment s in orci er t o dynarc 3 ca 1 dy oontro 1 
the contents of the section vector, For example, if it 
is recuired that, a student be assigned to the same 
section in both course I and coux'se J, when course I is 
encountered during the assignment nrocess, the reservation. 
number assiciated with the course directs the program to 
the appropriate routine which checks to see if a section 
has been previously assigned for course 0 and, if so, 
forces the correct assignment for course I using point 

3 above o
This system of heuristics has worked quite well.

It xvas used for registering nearly dOOO students as b'hoy 
appeared, for the start of the 1965 - 66 academic year 
at the University of Alberta, Calgary^ 85m of the 
student body were success full, y scheduled by the computer; 

of the rest of the students many had true conflicts 
due to their o^m CArelcssness or errors made during the 
data collection (a system involving mark sense caros)^
The greatest cause of error was the master time-table 
itself. Almost all of the second year cheniistxp/ students 

were rejected because of a confli ct between two courses, 
both of which were compulsory for them; one half of the 
first year engineers f̂ere also rejected because the 
a 1.1 owable enrolments in each section were only half of 
what they should have'been.

A11 h ou ah t il e r r b c e du r e i t s e 1 f wa s s a t i s f a c I: o y t h e
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computer configuration on which it was implemented proved 
very limiting, The University administration required a 
very complex and voluminous output for each student 

processed, this combined with the s1ow access time 
to the disk unit resulted in the procedure taking 
about 30 seconds for each student,

These two slow periphez'al devices were thus the 
limiting factor in the whole process„ Very little can 
be done to speed up the output of the student's time-table 
except obtain a faster output medium, however some 

improvement can be obtained in the utilization of the 
disk unit (of course if the core store is large enough 
there lieed be no access to the disk, but few small 

universities have computers of this magnitude)^ To 
reduce the freouency of operations involving; a random 
access device a procedure could be implemented to use 
the boolean matrix for the storage of the master time
table conflict data. The procedure would follow the 
same general lines as the time-vector scheme however 
when looking for a possible section assignment for a 

course the procedure would be able to "see" which 
sections were out of the question due to conflicts 
with previous assignments, rather than "grope around 
blindly" on the random access device to find the conflict 
free sections « This ability to "see" comes from the fact 
that, as each ccurse is assigned a section, the row 

of the boolean matrix, corresponding to the Sf .ion
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assigned, is added (by means of a boolean OR, operation) 
to the a ocumulated rows of previous section assignments 
It is then quite trivial to scan down this cumulative 

availability vector to determine the sections of the 
next course which are still available for useo This 
method would cut down the need to access the master 
time-table information from

2N 4 y  S.
^  ]-

accesses to about 

2N

accesses in the case where no conflicts are encountered 

during the schedule completion (N is the number of courses 
requested by a student and is the number of sections

in the i th course request). When a conflict is encountered 
the number of accesses necessary to resolve the conflict 
will vary depending on the two courses in conflict and 
how much intermediate information is available in the 

core storeo
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Section 2.3 Transportation Networks

The relationship of sectioning to the problem 
of finding a flow through a network is Interesting 
enough for a short description. The problems involved 

in implementing this type of approach are formidable, 
particularly in the area of data storage. However the 
netvTork flow approach to sectioning is interesting 

because it is able to determine whether or not a time
table exists for a particular student, ^nd in so 

doing uses an algorithm which has been extensively 
studied by operations research personnel.

A transportation network is a finite directed 
graph, without loops, in which each arc is assigned an 
integer

G (x. ,x , ) > 0
 ̂ j

known as the capacity of the arc from x. to x ., and in1 j
which

1/ There is only one vertex Xq such that all 
arcs joined to Xq are directed away from Xq . 
Xq is known as the entry to the network or 
as the source.

2/ There is one and only one vertex x̂  ̂such 
that all arcs joined to x^ are directed 

towards x^^ x^ is known as the ex  ̂ from the 
network or sink.
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A flow through a network is a function

sXJJ

defined over all the arcs such that 

f(x^yX^) is an integer

0 =Î f (x ,X. ) a C(x, ,x.)J 1 J

f (x, ,X ) = f (x, ,x. )J J 1

The value of the flow, F, is

F = y  f
i ' i

One of the basic problems in network flows is to find
the maximum F for a given network with a given set of
capacities.

Of basic consideration in network flows is the 

idea of a cut. If ^ is a set of vertices of the 
network which includes x̂,̂ but not X q , the set of arcs 
iC connected terminally to (x (ie. the arcs are directed 

toward ) is a cut of the network. For example in 

FIGURE 2.3.1

(X =

W  = (Xg,Xj,p (x^Q;X^) ^QsXg) (x^ ,Xg) (x^jXg) 
(xo,XcJ (x^sX ) (x^Q,Xg)

The cut is shown by a dotted line « This line is 

simply to show the terminally connected arcs which are



X4-

X7

f i g u r e 2.3.1
Showing a transportation network and a cut of this network



encountered 5 it may also have noneonneoted, open or

closed segments depending on the choice of o< «

Since includes the sink, any flow from to

X R'oes through at least one arc from UlJ, thus whatever Î1
the flow F and the cut may be

F ^ c(u;)

where G(U‘̂) is the sum of the capacity of the edges in 

the cut UlJ,
If there is a flow F (from x^ to x ) and a cut Vo n

such that

F = G(V)

the flow is a maximum and the cut is of minimum capacity; 

this is essentially the theorem proved by Ford and 
Fulkerson (14)

In a given transport network the maximal flow 

is equal to the minimal cut.

To represent the sectioning problem it is possible 

to define a transport network as follows

a source x^ and a sink x̂ ^
to each course i offered by an institution 
let there be two vertices x̂  ̂ and y^ 
the existing arcs and their capacities are 
defined as follows (where R is the set of 
courses requested by a student and |rI is



the number of courses requested)

1r [ 1 (if i G R)
I 0 otherwise

C(x ,y.) 
J

c(y.,x^)

1 if i is not given at the same time 
as j 5 and i 6R, j e R

0 otherwise 

R| - 1 (if j e R)
0 otherwise

' If a time-table can be found for this student then 

this network must have a maximum flow, F, such that

p = h F  - hi

For example consider the flow out of x^, there are |r | 
courses and each arc, by construction, has a flow of 
Ir ] - 1, thus the total flow out of x^ is |r |  ̂ - |r | o 
Similarly the flow into x^ can have a maximum value of 
|r |^ - |r [, For every x^e R the flow out of this vertex 
must be equ'al to the flow into it, ie, [r | - Ic By
construction

) = 1

if course i and course j may be taken simultaneously 
Again, assuming a time-table is possible.

- Jr I 1 (for i,j e R)

and

R f (x ,x J  '= |r| ̂  - ini
f  i  .1 I I  * I
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so that the cut containing only those vertices in R 
must be such that

C(V) = P = 1R| ̂  - |R|.

Application of the Ford-Fulkerson algorithm (23) will 

show if any network has a maximal flow of |R| - |R|

and thus show the existence, or nonexistence, of a 
time-table for the student under consideration»

This same concept may be extended to the situation 

where each course consists of several sections « By 
dividing the course sections into time disjoint groups 
it is possible to define a series of k sets D. , ^

9 « o each set containing those sections given
at the same or overlapping time periods » A transportation 
network may no%̂  be set up with the vertices as follows

- Xq source
" X sink
- for each course 1
“ Xĵ j for each section j of course i 
“ for each time division 1

whose arcs and their capacities are defined as follows

1 for all i e R 
0 otherwise

1 if j is a section of course i

C{Xo,xp

 ̂ '0 otherwise



1 if j is offered in time divisiovi 
0 otherwise

C(D-,jX ) - 1 for all D.1 ̂ n X

If a workable time-table is possible then there exists 

a set of 1r | sections, one for each course in R, which
are joined to |r I different c

The maximal flow out of x_ can be seen to be |R| » 

For the flow out of x^ to eeual the flow" into x^ there 
must exist only one x^^ for each x^ (because the flow 
must be Integral valued) to retain the maxî fial flow" at 

its value of |r | .> For the maximal flow into x^ to be 
IR| the flow must have come from |R.| different 

because by construction

C(D_,x ) =: Ic 1 n

Therefore the maximum flow must proceed from the 1r 1 

separate x^^ to the |r 1 separate , thus the network 
is 8hown to have a maximal flow of

p Is I

when a time-table exists and a flow of

p < 1r|

when a time-table does not exist. Nonexistence of a 

time-table "'"ill be shown by arcs with the reouired
cape city of |R| not being present from x . . to D , or— J 1
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if they are, then arcs from two selected x. . will be1. J
incident with one and because 

fCD^^yX^) rz 1

the flow will be 1r | - 1 or less ̂
The Ford“Fulkerston algorithm for finding the 

maximal flow through a network reouires that the path 

of this flow be traced and from this trace come the 
nonconfdieting course sections satisfing R .

This is a very satisfyi?ig formulation and solution 
to the sectioning problem as the procedure used has , been 

well investigated and the theory (very little of which 
has been mentioned here) has been extensively studied «
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Section 2 ok Complete Graph Algorithmic Approach

The major problem with an heuristic sectioning 
procedure is to determine if a set of conflict free 
assignments exists without trying all possible sections.
In general, the situations in which a time-table does 
exist are quite easily solved by heuristic procedures, 
however in the situations in which time-tables do not 
exist the computer spends a great deal of time in the 
assignment and back-tracking sections of the procedure, 
and is generally forced to give up without either finding 
a time-table or determining that one does not exist,
Some aspects of the heuristic procedures, such as the 

concept of a section vector, are well worth keeping 
but the basic assignment and backtracking loops need 
to be modifiedc

F, Hall*s famous dissertation "On the Representatives 
of Subsets" (18) provides a method of determining • 
whether a student's course requests are compatible.
Hall states (in his Theorem 2):

Given any set S (divided into any number 

of classés Sgg . 8 ^ )  and a finite
system of subsets of S (T^, T^, T^)
such that

then there always exists a set of m elements
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(a^ 5 a 2, .,,0, no two of which belong to
the same class, such that

T. (i - 1,2,3,

provided only that for each K = 1,2 , 3 ; *. «

any K of the sets contain between them 
elements from at least K classes.

The proof of this statement is in the original journal, 

however the arguments used in the section on network 
flows (Section 2*3) may be used as a proof *

The set's may be considered as the set of sections 

of the in recuested courses of a student. The class 
are sections meeting at time period i. The subsets of 

S (T^, T^ s . « o 5 Tĵ ) are the sections of the m individual 
course requests* The set of m distinct representative 
elements now correspond to the section of each class 

which would provide the nonconf 1 icting time-table (K m) 
It is only necessary to verify the sufficiency 

condition of Hall's theorem for each student's course 

reouests to determine the existence, or nonexistence 
of a time-table* For nontrivial cases this verification 

may recuire a large amount of computing, thus it would 
be advantageous to produce, as a byproduct of the 
verification, the actual student time-table*

This verification can be accomplished with the 

procedures developed to find complete subgraphs in



Section 1*5* First, however, the master time-table 

must be stored in the form of a boolean matrix, To 
each section of each course there corresponds one row 
and column of the time-table boolean matrix, T, with 
the requirement that t. . is true if section i is given1J ---
at the same, or overlapping, time as section j * With 
the master time-table in this form the verification 
of Hall's sufficiency condition reduces to the following 
steps *

1/ For each student construct a boolean matrix,
M, consisting of only those rows and columns 
of T corresponding to the sections of his 
requested courses (this matrix is associated 
with a graph G which is a subgraph of T)*

2/ If any row, j, of M represents a single 
sectioned course then scan this row for any 
true element, i, and-.eliminate the row and 
column i from the matrix* This elimination 
may take the form of setting all elements in 
row and column i to the value true but 
preferably should consist of actually removing 
row and column i from M as this will speed 
up the later stages of the algorithm* This 
elimination process corresponds to an indication 
that there is no alternative section assignment 
available for course j «



3/ Ensure that there is still at least one
section available for assignment in each
requested course* If all sections of any
course were deleted in step 2 then it will
be impossible to construct a time-table for
this student*

k/ Generate edges between vertices corresponding
to the individual sections of each course
request, ie, if a course is divided into s
sections (1,2,3,.* *,s) then M . should be set1J
to the value true for all i andj - 1 ,2,*,*,s 
(including the case i = j), This will ensure 
that this student is not placed in two sections 
of the same course.

5/ Take the complementM, of the matrix M 
(M ” 1 - M). M is now a boolean matrix 
corresponding to a graph, G, of the pairwise 
permissible course sections*

6/ If the student has requested N courses then, 
using the complete graph algorithm developed 
in Section 1 . 5 s  determine the complete 
subgraphs of order N in G,

7/ If any complete subgraphs of order N exist 
in G* then Hsll's sufficiency condition has 
been obtained and a time-table corresponds 
to the N vertices in any K_ of "g *
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step 1 produces a, boolean matrix which indicates 
which section of the |R| requested courses may not be 
taken simultaneously* For example FIGURE 2*4*1 shows 
the graph, and its associated matrix M , of the conflicts 
between the sections of five courses ;

A - a single sectioned course (vertex 1)
B - a single section course (vertex 2)

C “ a three section course (vertices 3s 4, 5)
I) - a three section course (vertices '6, 7, 8)
E - a four section course (vertices 9? 10, 11, 12),

From FIGURE 2,4*1 it can be seen that section 1 (course 

A) is given the same time as section 9 (the first 
section of course E) and section 2 (course B) is given 
at the same time as section 8 (the third section of
course D)o Because courses A and B have only one
section each it is obvious that sections 8 and 9 
cannot possibly be included in any time-table T-uth 
1 and 2. Step 2 takes care of this incGmp^tibility by 
effectively removing these two vertices (8 and 9) 
from the graph by generating edges between them and 
all other vertices* This step is illustrated in 
FIGURE 2*4,2, the new edges being the continuous lines 
and the original edges the dashed lines*

Step 4 takes care of the possibility that a 
student may be assigned to two sections of the same 
course* It is s i] y done by generating edges between
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the sections of n course, so that If one section is 
assimioc] to a stucent all other sections in that course 
are then Incompatible with the time-table^ This is 
8 ho !" n in FI GU RE 2 . p 3 3 i t h t h e n e!*; 1 y 1 n s e r t- e d e d y e s 
again being shown as continuous lines and the previous 
edges as dashed lines «

Step five produces the complementary graph, that 
is the grarh with the same number of vertices but 

where the original graph had an edge the complomie-^t 
has none, and fv-here the original graph did not have an 
edge the complement has. The complementary graph now 
indicates nhich pairs of courses are nermi tted. together 

in a time-table. It is now only necessary to find |r|
(in this case 5) vertices forming a complete graph to 
both Verify tho sufficiency cond 1 tdon of Rail*s tneore 10 
and find a time-table, FIGURE 2,4,4 illustrates the 
complementary graph and the circled vertices one of • 
the many complete five graphs available for a time-table« 

The method of constructing this graph ensures 

that there will be no complete graphs of order |Rj -r 1, 
and only a complete graph of order ]r| if a time-table 
exists. Thus the operation A T  (see section 1 
performed on the matrix M will quickly determine if a 
time-table is posslbl.e, and only if it is, is it necessary 

to continue on to find the complete mraphs which actual^.y 
represent the time-tables.

The amount of compubaticn necessary to perform the
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operation AT^ is dependent on-g— where v is the number of 
vertices in the graph « For this reason it is best, in 
step 2, to completely remove a row and column from 
the matrix M rather than adding the extra edges. Which 
of these two methods are actually used will be heavily 
dependent on the computer in use and the method of 
storing the matrix M,

In very bad cases the matrix M may be larger than 
100 X 100, This, because of the amount of computation 
necessary for the operation AT^, may lead to excessive 
computer time being used, however this may be alleviated, 
if the computer has a range of powerful logical instructior 
The general avail ability of machines with multiple 
-processing units will also aid in overcoming the problem, 

of excessive computer time being used. The operation 
A  T̂  ̂ is suited for multiple processor machines because 
the checking of the number of edge circuits of length 
three subtended on each edge is independent of operations 
on other edges. Although it can be shown that serial 
processing may result in fewer actual operations 
being performed, the time saved by parallel processing 
will be significant in the real time situations in 
which student sectionir:g is usually carried out o



Sect 1 on 2,3
Sect 1 o ri 1 n g Al p; e r i 1: h m

Th e c o "■' p 1 e t. e g r a r.) h s e c t i o ï 1 i r, g a 1 p- o r ;i, t hm w c  s 
implemented in an EngO ish-El ectr ic-Iiec-M-^rconi KDE 9 
using data obtained from the Registrar of the University 
of Alberta, Calgai'y, This implementation was not 
ir tended f or ps n actua 1 secti.oni.ng producf. 1 ori run , a.s 
was the heur i.cti.c imp 1 emented. in Section 2,2, but s i mply 
to gain experience in the running problems of this 
algorithm, The impl ementation consisted : of four 
separate programs :

1/ A program to read the mas te:: tiii.e-table 
data from cards and produce a type 2 time- 
vector - written, in AEG01, with some procedure 
bodies in USER CODS 

2/ A program to read the type 2 time-vectors 
and froüi them build up the master time-table 
boolean ma t r ix vIn i.c h wa  s then s tored on t he 
KDE 9 disk it ~ written in ALGOL with some 
procedure bodies in USER CODE 

3/ A program to read students course reouests 
and produce the i 'dividual boolean matrices 
by selecting the appropriate rows and columns 
f Ï'C'D the ra 5 toi" t irae-1able matt i.x - v:r 111en 
ir; ALGOL T.-ith some rrocedure bodies in



USSR CODE
4/ The actual sectioning algorithm - or1tten 

■within the framework of ÂIGOL but most of 
the pro.oram is written in USER CODE in orcer 

to obtain full use of the KDF 9 logical 
instructions and to simulate as closely 
as possible actual production conditions. 

Programs 1, 2 ̂ and 3 wore not written with the 

intent that they be as fast as possible. In fact it 
turned out that, due to the access time on the disk unitj 

better usame of the computer time would have resulted if 
program 2 had never been written - the individual 
student matrices being bui.lt up by direct comparison 
of the time-vectors rather than removing the relevard: 
rows and columns from the disk. Program. 4, on the ol.her 
hand, was written with the intention that its ru'^ning 
time should be kept to a minimum.

By a slight modification of the complete graph 

procedure it is possible to cause it to find all the 

complete graphs of a given order rather than just one 
complete graph, This was used in an attempt to produce 
all possible tinie-tables for a student, thus allowing 
a selection procedure based on the "goodness" of a 

particular time-table, It was found that, after the 
first complete graph had been found, the subsequent 
complete vrauhs vrere found at a rate which "was liirûted



only by the output devices (magnetic tapes with a transfer 
rate of 40,000 characters per second), Thus it seems 
possible that a. number of different time-tables can be 

completed and the "best" one given to the student.
During an attempt to find a function which would 

predict the amount of computing time each student would 
need, a plat of the number of vertices in the individual 
student*s conflict graph against the computer time used 
^as produced (see FIGURE 2 , ^ , 1 )  o This showed an alarming 
tendency for the graphs to fald. into three distinct 
types. Type A (see FIGURE 2,5*1) is easily explained 
as the graphs of students whose course requests were such 
that they did not possess a conflict-free time-table.
Type B and C however are students who did possess a time

table and no simple test coul.d detect the difference 
between a type B and a type C graph, Plots of both 
the average number of sections in each course against 
time, and the average degree of each vertex against time 
showed this same threefold division„

It became imperative to find the cause of this 
division when it was found that one student required 

1231 seconds computing time to determine a time-table.
This 8 tudent * s final graph -̂'ss large, 110 vertices with 
5588 edges, and iras so co-'istructed that it had a possible 
14,929 ; 920 different section combinations. However the 
simple size of the graph had to be disregarded when
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another student ues found with the same size of graph"
(110 vertices 5 ?23^ edges, and 218j350s080 possible 
combinations of sections - about 20 times as many as 
the first student) vdiose time-table only took 6.6 
seconds to compute «

As it turned out the basic nature of the complete 
graph algorithm, a yo-yo tree search, -̂as the culprit o 
If 5 in searching down the tree, the algorithm initially 
chooses an unproductive branch, a great deal of effort 
is ^̂ '88ted in searching all the offshoots of this branch 
before the procedure can again look for a more fruitful 
branch, In t^e case of the two students cited'above, 
the former made the procedure search seven long 

unproductive branches before it found one leading to 
a complete graph, in the case of the latter student 
the procedure found a fruitful branch Immediately and 
after only recursing six times it found the complete 
graph,

Any attempt to eliminate the searching of unproductive 
branches must eliminate the ability of the algorithm 
to find all possible time-tables for a student, however 
computing times of 1231 seconds for a single student 
are also -unacceptable. A compromise must be found *

Fach step down the complete graph search tree 
eliminates from the graph at least one vertex which 
does not possess the necessary edges to form a complete



graph. This élimination means that, as one goes fnrthor 

down a.'direct fruitful branch, the ratio, , where
number of edges in this g-raph of V vertices 

’ number of edges in a ïf|
(2„5/i)

must increase. Thus if ^ is computed for each step, 
and compared to the ratio obtained in the last step, 
an indication of the nossible **fruitfulness" of the 

branch is obtained,
When this extra step was incorpora ted. into the 

complete graph sectioning procedure the case which 
formally reouired I23I seconds computing time now 
reouired only 23 seconds. As can be seen from FIGURE 2,5^ 

this added step tended to bring the B and C types of 
graph together and very substantially lowered the total 

computing time necessary, although the computing time 

for each of the type B graphs was slightly increased.
This step is detrimental to the algorithm as it 

me y prevent it finding all the complete graphs. It 
is however a. necessary step if sectioning Is to be 
done in a real time situation,

FIGURE 2,^.3 shows the behaviour of the search for 
several typical students. The RATIO 2 , 5 (shown as 

a percentage) is plotted against each recursive step 
(or branch point in the search tree) met during the 
search, the height of the plot indicates the completeness 

of the sui)graph. The original type of each gi’aph
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(from line B or C on FIGURE 2,5.1) is indicated beside 

the plots
The processing time varied from 0,3 seconds to 

56 seconds per student with an average of less than 
10 secondsj well within the time allowmible for a univers it 
of moderate size with a computer the size of KDF 9 «



C H A P T E R  2

Master Class-Teacher-Room Time-tables
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Section 3 «1 The Problem

This final aspect of the three part time-table 
problem is the most complex (and as a result least 
understood) of the time-tabling situations arising 
in educational administrations. The construction of 
a master time-table may be considered as the next 
logical step after the student sectioning problem has 
been solved. However this involves progressing from 
a one dimensional scheduling problem (examination 
time-tables) where optimality can be closly defined 
and virtually attained, to a two dimensional scheduling 
problem (student sectioning) where a definition of 
optimality can only be vaguely suggested, to a four 
dimensional scheduling problem where optimality is 
practically (if not actually) impossible to define 
and to simply find a feasible solution would be considered 
an achievement. The fact that the problem has reached 
into four dimensions does not, of itself, prove the 
stumbling block, but the subtle interplay of the 
constraints to the variables (possible free selection 
of courses by students, ensuring departments are not 
overloaded in any one teaching hour, limited classroom 
ava liability, preferences of faculty members for certain 
times of day, the possibility of several courses being 
given by the same person - to mention but a few) are



the factors which make it rema rkohj.e th^t mes ter th'ce- 

tables exist at all, let a]one aitempbânw to defire an 
optinmm solution,

Producing a master time-table for s university 
becomes an intricate problem particularly if it is 
attempted to give each student the fullest possible 
choice of subjects. Even carefully designed master 

time-tables require a numia:;r of students to
take courses they would not have chosen except for the 
fact that " It 0̂9s the only one that would fit into my 

schedule",
The ideal situation would be to allow students 

to register, then use a computer to produce a master 
time-table from data ol,>tained during the registretion, 
Aside from the fact that a student would be free to 

register for any course he is otherwise qualified to 
take ; this method of produci'ng a master time-table 
may lead to a considerable improvement in the util ization 
of an institution's physical facilities. The traditional 
schedule is to group the lectures in the mornings and 
leave the afternooiis free for the longer laboratory and 
tutorial sessions. It is, of course, very wasteful to 
have laboratories (probably the most expensive class 
room space in a university) idle for one half of each 
day, but to schedule a three hour chemistry laboratory 
for the morn 1 no: is to court rossib'le disaster î: the



individual student's schedulec Having the master 

time-table produced after registration might well lead 
to some of the laboratory periods being scheduled in 
the morning with some of the lectures in the afternoon, 
On the other hand it may be quite impossible to produce 
a feasible master time-table by this^ method and some 
limitations may still have to be placed on the course 
combinations selected by the students *
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s e c t i on 3 «, 2 Proposed Procédures

The literature available on the production of master 
time-tables may be divided into four distinct groups 
characterized by their approach to the problem. The 
four groups are 1/ mathematical, 2/ clerical, 3/ 
algorithmic, and 4/ heuristic. It will suffice to 
describe one example from each category as being typical6-

G, R, Sherman (31,32) has published what is perhaps 

the most comprehensive work which attempts to define 
the problem .from a purely mathematical basis. Using 
set theory and, proba.bility distributions of students 
selecting various sets of courses he has managed to 
formally define the various steps necessary in the 
solution of the problem as well as some of the relations 
which must hold true for the resultant schedule to be 

actually implemented. In Sherman's major work (32) an 
attempt has also been made to define what is meant by a 
"good" schedule. This, unfortunately, is taken from 
the view that "good" only applies to each set of resources, 
rather than the institution as a wholec

Although Sherman has developed algorithms to perform 
the various steps he defines, the author was unable to 
find any record of them actually being implemented in 
a realistic situation. This undoubtedly stems from the 
fact that they are almost purely combinatorial in nature .



and i-ould be very , if nob i:rmro ob ical, in

the CO'?-pu ter tine used. It is n Is o :ru t her irn tortuuF tc 
tha.t h iR VTork, beinp; a. set theory d i.sserta t ion , is 
extreme l.y difficult to d. and thus his no tent 1-"ifi y 

usefu 1 d ef i:-i 11 ions a:re inccmprehens ible to the va st 
rna j ority o f n d'o in i s t ra t ive ue rs one el wh o uou 1 d be a b'l e 
to benefit from them.

The second, and re:" ha us n;r>st fruitful , anproach 
is typified by the system kuo^ui as G.A.S.Po (Generalized 

Academic Simulation Programs) devised by R. E, Poltz (21) 
who T'îorked under the direction of the Regist:r.v.r ' s 
Office at the Massachusetts Institute of Technology,
The basic phil osonhy behind the systeii' is :

"As scheduling involves many highly responsible 
uersonno 1, and onside:able cIerica 1 oi-b is 
involved in the decisions to be made, you have 
'n i gh level p e opl e s impl y ma k 1 ng a f e w deci s i on s 
and. then doing mountains of paper vjork.
G c A . S , P . pro.g ram s w e r e d. e s i gri e d t o be u s e d b y 

the persons charged with building the schedule; 
the computer simply taking over their role 
as clerks."

Accord!ng to the published results a registrar, 

starting from basic da ta, will have a workable ti?:e~ 
table after 3 •" runs, and after 10 - 2 0 runs, sra ced 
8 day or so ap'-rt, he ''"ould have a master time-table 
b""'.ter the:'! a-̂ v he cou'.' 1 '̂sue urod.uce-:" bv tc'ad 11:/-a 1



methods. After each successive run the good fen. tu res of 

a time-table are oted a-̂'d the bad features are modified 
by the u e r  , Thus pr opos ed schedu].e in n.ova t ioi-is can 
be studied for feasibility much more readily than is 
possible with manual procedures. For example, if, 
during a series of runs, the data on students, times, 
and sta ff a re kep t fixed wh i1e t he uumbe r and size of 
classrooms are varied then the schedules resulting from 

the series of runs woul d give a. valuable insight to the 
number of class rooms a c bua lly required, I’his same 
method would prove a valuable tool in forecasting 
the renuirements of the institution in the future.

The GoAcScP. schedul ing system is deslg:ned as a 

four dimensional assignment problem (time, rooms, staff, 
and. students). Its a.pproach is to sacrifice an exact, 
conflict free solution in I'eturn for keeping the ability 

to make all four of the assignments and to be of use to 
very large institutions . The time-table co-'istruction 
routines will schedule classes in the order designated by 
the user, time assignments being based on the availability, 
influenc-d by a user generated weighting factor, of staff 
rooms 5 and students. If the program is unable to make a 
reouired assignment, from its specified choices, it 
simply leaves that job for the user to do mainually or 
for a future run when the user has altered the Input 
data .

The G«ArS,P. system is composed of several pro:raus
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only one of which is concerned with the actual construct!or 
of a master time-ta-ble. The other progra,ms will attempt 
to schedule a representative group of students to the 
new master time-table and output various statistics to 
aid the user in evaluating the resulting time-table.

The scheme proposed by C , G, Gotlieb and J.
Csima (7,17) for the solution of school time-tables 

envisages the construction of the three dimensional 
boolean array each element of which represents the
meeting of a class (i) with a teacher (j) at a particular 
hour (k). A false element indicates that this class is 
not available to meet with this teacher at this hour. 
Initially the array is filled with the value true, 
Indicating that any teacher is available to meet with 
any class at any hour. The procedure then modifies 
the array so that, at the conclusion of the modification, 
at each hour it is possible for each teacher to meet only 
one class and for each class to meet only one teacher, 
and each teacher can meet each class a predetermined 
number of times. The time-table is then inherent in the 
resulting array.

Gotlieb ensures that the resulting time-taible 
conforms to certain desirable patterns and fully exploits 
facilities in heavy demand by allowing preassignments 
to be made. Although he has been able to prove that 
the procedure will detect when a time-table is impossible 

under a given set of ureassignments, he has not been able
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to show that, for a given set of classrooms, teacher, and 
times, a time-table exists. He has, however been able 
to prove existence in some special cases.

The procedure requires that, at regular intervals 

during the procedure, an examination'be made of each 
plane section of the three dimensional array. It is 
shown that each plane section is effectively square 
in that any seeming excess of rows or columns can always 
be eliminated. If b is an (n X n) plane section of the 
array B then an r-partial solution of b is a set of r 
independent true elements, ie, r true elements such that 
no two occur in the same row or column. An n-partial 

solution is the time-table for the class, teacher o:f 
hour represented by b.

The examination of b has two stages ;
1/ conf(J>rmation of the existence of at least 

one schedule (feasibility test)
2/ any true element which does not belong to 
a possible schedule is changed to false 
(matrix reduction)

The feasibility test is a very simple procedure 
but the iratrix reduction is a highly complex process 
requiring large amounts of computing time, The proposed 
"tight set search" procedure for reducing the matrix 
can be shown to converge to a solution in about 2^ steps 
and thus is, unf ortunate 1 y, imuractica 1 if n ̂ 20 , J ,

Lions (24) has developed some refinements to the tight
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set search which will reduce the effort required to about 
(mn) operations, where m is the number of ;tru_e elements 
in b.

The largest reported time-table produced by this 

method is one for a school of 9 rooms, 9 teachers, and.
9 teaching hours» Lions has used the method to produce 
master time-tables for schools in Ontario^ however, to 
the a-uthor's knowledge, none of his time-tables have 
ever been openly published »

The last method under consideration is one developed, 

on an experimental basis, by J. Pfaltz (29) of the 
University of Maryland » His heuristic procedure is very 
crude because he did not carry his work to completion, 
however it shows promise of becoming a very useful system, 

Pfaltz conceived of the procedure being used after 
the student body had enrolled, thus it would have an 
accurate record of the number of students enrolled in 
each course and the number of students taking any pair 
of courses. The registrar was expected to supply, as 
input da ta, the following information;

1/ Course data
“ name
- length of class eg, 1 hour 3 times a week
- two preferred times for class meeting, or 

to be arranged., if necessary
- the maximum number of students to be a 13.owed 

in apy one section of the course



2/ Available time periods
- a list of all hours, suitable foj' teachiug 

in any on.e weeli 
3/ The a foreen ti o e d  r eais tra t iorj da ta .

The procedure will perform the foilo^"ing basic 

steps in its attempt to design a time-table :
1 / Ta bu late a. 11 the r e ,p: i. s t ra t i o n s f o r e a c h

course and form a list of the courses cowf] j.ctin 
with eech course.

2/ Compare the tot-̂ l registration with the 
maximum number of students permitted in each 
section, and decide hô-" many sections of each 
course are to be of fei-ed .

3/ Form a priority list of the classes to be 
scheduled , Tliis ensures tha t c 1 a sses j c 11 
are difficui.t to schedule are . attemptad first, 
The priority list is based on the total 
enrolment 5 whether 11 is a single or multiple 
sectioned course, and the length of time a 
class is to meet over one week.

^'/ Modif^.^ the conflict lists of the multiple 
sectioned courses so that only the m.ost 
serious possible conflicts remain. The basic 
Philosophy behind this is quite simple - if 
t o  sinVle sect i on curses ha ve students 
comp;on to both, then they can^-ot meet at the 

same or overlapping times, however if one of



the courses has been divided into two secti s 
there 1 s s om e p • s s i b Hit y t h<a. t a s s i g n i n g  
students to t!'’e other section will resolve the 
apparent schedule confJ.ict. If one, or both, 
of the conflicting courses has more than three 
sections then Pfaltz ignores the apparent 
conf1let g

5/ The fi wil step is to assign bhe top unscheduled 
course in the priority list to the time period 
of its choice, if possible, othervrise to any 
free time period. The routine then attempts to
assign as many courses as possible to the same
time period; however if any of the first five 
courses, in the non-conflicting list, prefers 
that time period it gets it, even though it is 
out of strict priority. This added queue 
jumping does not seem to adversely affect the 
system and will go a long way in making it more 
palatable to the us er ̂

In the limited tests Pfaltz made, the procedure

seemed to work very well. There are, hc^ever, a number
of improvements which could be made:

1/ Pfaltz arbitrarily chose some of the psrameter.F 
. (such as the number of cO'"fl lets which the 
procedure could safely ignore), Further 
study could refiu:'e these amd pe?shaps suznest 
Others.



2/ As the program tries to schedule all the courses 
in as few time periods as possible, the 
resulting distribution of courses over tiie week 
is very uneven. Some form of levelling routine 
will be necessary, this may even be accomplished 
by modifing the values of the parameters 

. mentioned in point 1 above «
Of all the master time-table procedures available 

in the literature none is entirely satisfactory. The 
most fruitful avenue of auproa.ch is, perhaps, to combine 
the clerical reducing ideas of H-'ltz with the easily 
modified heuristics of Pfaltz to produce a system which, 
if not perfect, would be extremely useful.



Section 3.3 A N  ew Anpr oa c h

The problems involved in producing examination 
time-tables and the sectioning of students to cl.asses 
are- essentially one and two dimensional assignment 
problems. All of the structures dealt with in Chapters 
1 and 2 involved only relations between pairs of items, 
often called dya.dic relations. The master time-table 
of an institution, on the other hand, requires one to deal 
in tetradic relationships, ie, student A meets with 

teacher B in room C at time D, This may be simplified to 
a triadic relation if the teacher is considered as 
simply another student required to attend the class.

A fruitful mathematical theory for n-adic relations 
(n>2) seems to be undiscovered. This is essenbially 
due to the fact that dyadic relations correspond to 
matrices and standard matrix operations have a definite 
meaning in terms of dyadic relations, Hô '̂ ever n-adic 
relations correspond to n-dimensional matrices and 
the handling of these matrices presents a number of 
special problems.

To be able to apply the techniques developed in 
Chapters 1 and 2 to the problem of producing a master 

time-table some method must be developed to reduce the 
problem to simple dyadic relations. In the past, the 
attemuts at buildinp; a master time-table hvve ccr.sidered
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rooms s students, teachers, and times as separate entitles 
and thus were forced into three or four dimensional 
assignment problems.

In 8ome scheduling problems, nota.bly problems 
arising out of shop floor and assembly line scheduling, 
not all a^ssignments have to be made at once, for example 
a piece of v-rork may not have a machine or operator 
available for it, and thus it can simply be put into 
a \̂̂a i t ing queue. On the other hand, a class - with a room 
but no teacher is quite a useless assignment. Thus 

students, teachers, rooms, times and any special 
equipment reouired are all of equal importance in the 
consideration of master time-tables.

In order to avoid confusion in the discussion on 
master time-table preparation the following definitions 
are necessary:

- a "primitive facility" (or "primitive") will 
denote a particular teacher, room, time segment, 
piece of equipment, group of students, etc,

- a "resource" will denote a. collection of 
identical (or interchangeable) primitives, 
eg, a number of teachers having the same 
qualifications, a number of rooms of equal 
capacity etc,.

“ a "class" will denote a collection of primitives 
(one from each necessary resource), a class i-h.] 1 
normally be given a name, eg, the cla.ss called
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jr. mathematics may consist of the primitives:
- Mro V/hite (the teacher)

- room 709
- the first yea.r group of mathematics 

students
“ the time segment Mon. Wed, Fri, 9:00-10;00
- the first year mathematics demonstration 

kit.
“ a "time-table" will denote the collection of 
all the classes.

Consider a student enrolling for studies. In Chapter 
2 it was seen how he could produce a list of the courses 
he wished to attend and how a computer could assign him 
specific sections of each course. If, in place of this 
student, we substitute a department head, he could 
produce a list of resources necessary for the formation 
of a class. For example, if he was preparing a list of 
resources for jr. chemistry it might consist of:

1/ a teacher of chemistry
2/ a lecture room holding 200 students, with a 

demonstration bench 
3/ the first year class of science students 
4/ a chart of the periodic table of elements 
5/ a time segment consisting of three single 

hours per week,

Each of these resources is composed of one or more
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primi t ive s , for examp1e :

1/ (teacher) a four section resource
a) Mr c White
b ) M r , Brown

c) Mr, Green
d ) Dr. Red

2/ (room) a two section I'esource

a) room 70?
b) room 103

3/ (pupils) a single section resource 

4/ ('Chart ) a three section resource 
a ) chart A 
b ) chart B 
c ) chart C 

5/ (time) a ten section resource
a) Mon, Wed. Fri, 8;00 - 9:00
b) Mon. Wed, Fri. 9:00 » 10:00
c) Tues, Thurs. Bat ̂ 8 : 00 - 9 :00 
etc, ,

The process of choosing one primitive from each resource 
to form a class is easily seen to be identical to the 

problem of sectioning students to classesc
The full power of an algorithmic sectioning procedure 

is vital to the successful production of a workable 
time-table by this method. Each primitive may be



rerrese:iteo in thn snme n^^nner ns nctual course sections 
vjere in Chap ter 2 j the s oc: t i on vec t or a.nd ro s erva t i cn 
muidrior concepts actina as porortul selectlc;n criberaoi^ for 
obta in Ing the correct assianrent of te'-oherSs roocis , tiros 5 

ec:uip111ent g etc . *
The boolean roatrix^ representin^a the roaster 

time-table ir' Chapter 2 , is non replaced by a boolean 
inatrdr P havinp: one ron and cojma; for each pihnit'ivti 
available. Initia 11y P. , - false indicating that any 
pair of primitives may be ass i.a ne d together, As the assig:' 
inerts are rna.cie for each class the matriy P is updated to 
sho\‘J the conf  1 icts of tire 0r im 11 ives in the t iit.e'* 

resource viith the primitives in the other resources,
Iri practice the matrix P vi'J] not be easily set up %

For example the ''time" primitives may have to be modi fie d 
to avoid overlapping time periods , and a great deal of 
study vâll be needed to accurately determine all the
primitives uithiïi an Institution. Although unuieldy to

set up 5 the matrix may be used to great advantage^ for 
example, if a niece of equipment, i ̂ is available o-̂ 'ly 
j t h e c h em i s t r y bu i 1. d i n g the n by a s s i g;n i n g

“ true ( j - ail rooms not in chci istry
building)

this v:ij.l ensure that a class requiring ecuipii-ent i id. 11 
be held in the chemistry buildjng.

Unlike studer.t sed:d.onirn̂  j '"here section? cf one 

c ou r a 2 fo rm e a a c omr 1 e t e J. y c is joi n t set' : * i. t h s e c t ice 1 s f r c..



another course ̂ the primitives in one resource may be 
identical with some or all of the primitives in another 
resource 5 eg. a teacher Qualified in both chemistry and 
mathematics. Thus great care must be taken in ensuring 
that there is one and only one row and column in P for 
each primitive. This also forces a slight change in 
the sectioning algorithm. Step T, the generation of 

edges between vertices of the individual sections 
(primitives) of one course (resource) must now be 
accomnlished by setting P .. = true if primitive i and 
primitive j are in the same resourse, for each resource 
in which primitive i and j ere grouped.

To ensure an even distribution of the workload 

to each primitive in a resource it is only necessary 
to keep a record (corresponding to the number of students 
in each section) of the number of houz-s each primitive 
is occupied. The sectioning procedure, by means of the 
section vector, '̂ni].l attempt to assign the primitive with 
the least usage before attempting: to use primitives in 
greater demand.

It would be possible to use this method by selecting 
at random a department head/s list of requirements, 
sectioning them, and selecting another list of requirements' 

This, however, will rapidly lead to a situation in which 
it is impossible to find a valid assignment of primitives 
for ore or n ore classes. This is equivalent to the ran:cm 
selection of vertices for colouring, a process seen, in
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Chapter 1, to produce far from optimum results.
The selection order of the lists of requirements 

may be obtained by the same methods as the selection order 
for vertices in the graph colouring problem. An N X N 
matrix R (where the institute wishes to offer N classes) 
is produced such that

if s requirements of class i are the same as those of 
class j. The eigenvector is found corresponding to the 
largest eigenvalue of the matrix R (037 an approxima ti on 
to this eigenvector - see Section 1.5) then the claisses 
for assignment of primitives are chosen in the order of 
decreasing magnitude of the elements of this eigenvector 
(see Section 1.3) «>

This ordering criterion may be changed in individual 

situations by having an extra weighting factor of two or 
three on the conflict of room requirements if the 
institute is short of space, or teachers if it is short 
of staff, etc.* This will tend to raise the magnitude of 
the eigenvector elements corresponding to the weighted 
requirements *

Because the various sections of a course will 

normally have the same primitives, they will have equal 
values of their elements in the eigenvector and thus 
be sectioned one after anotiv:-r* This together with the 
distributing function of the section vector will ensure
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that they are sectioned in different time primitives,
A conflict list 'of the type used by Pfaltz (note point 3 
in the description of Pfaltz's procedure in Section 3*2) 
may also be useful in ensuring an even distribution of 
ass ignments.

If an extremely powerful , computer is available an 

alternate approach will produce "best possible" results.
The graph, , corresponding to the non-conflicts 
between primitives for any one particular requirement, i, 
(the graph from which a complete n graph is found, giving 
a workable sectioning) will normally contain more than 
one complete n graph, these complete n graphs will be 
denoted by If.', Y J ?

The following procedure will determine all the possibl
time-tables for an institution ;

1/ Produce all the for each recuirement i
2/ Form a graph, P , the vertices of which 

correspond to the X,- produced in step 1
3/ If there exists  ? for

any reoulrement i then connect the vertices 
corresponding to the n Ï; such that they form 
a complete n graph 

4/ Take the time primitive associated with a
vertex o/ and compare it the time priiriitives 
associated with each vertex Vj ( i 5̂ 3 ) . If 
the two time primitives conflict and a student
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has requested both course i and course j then 
join X" by an edge to «

5/ Take the complement of P . p is now the
graph of all the X'which are pairwise compatible 

6/ If the administration specified N classes 
then from / find all the complete graphs of 
order N. These represent all the possible 
time-tables the institution may use.

Once again the repeated use of the complete graph 
sectioning algorithm will yield the solution to a very 
difficult problème



Se et‘3 on S ̂ pot: tor - d ̂ or/ ,Pf%q

The co:"r] etc "̂•’■•rh ret!̂ :"? , su ̂--rvoe t^d lu the ]"ul 
section; for the con.ut.ruct icu' of s c hoot 13 r e-tuhl eu 
was eut forward as a serious sus ces tion. However, in 
practice, a number of drâ .dvecks Piakc themselves felt 
when it comes to des3r-'nnr: a practice.] imp] esiortation 
of the systeTdo pract 3 ca] systera vvn̂ .l d resu3re a i a i-e e 
amount of data î-» a rather umatural forn and, if th^ 
data were col.l.ected, it would recuire a 'very lame and 
p o vr er f ul c on put e r t o a na 1 yse it v

To collect and classify all the resources of a 

un ive3"8 it y would be an extremely arduous taslv. In fact 

it is likely that the total resources or physical 
fa.c i 1 i t i es a.va i 1 ab 1 e to a un ivc:cs i by & v e nev t.?r e a  c 11 
known. In 1964 the Office of the Registrar of t]ie 
University of Alberta, Calgary attempted to classify all 
the lecture, laboratory, and seminar rooms and their 
contents ; to the Author ̂ s kno'*rled.g:e th ;i.s sur ey ::c.s 
never completed and finally abandoned coic.pl et el y cbae to 
i 18 c o p i  ex n -'=! tur e .

The Author has had the privilege of attending the 

I . F . I . ̂  . C on r re s s 68 ( Eci i nbur yh 1968) . Uur 3. ny the 

Congress K. C. Johnston and K. Uolfenden prese>u^rd a 

pa 0 r e n t i 11. e d "Cor: uu. t; o r i d e cl G o s t ru o tin n c, f S c h o c 1 

Time-tables" ■'‘hlch described a :■ ethod of collectin.^"



school data in a form simi.i.ar to that renri.red by the 

complete gr^ph metViod.. Discuss lô i fter the presentation 
indicated, that this data col] ect ion, for a small schoo] , 
was a nontrivial and error prone task.

Prom the experience gained, in running the complete 
algorithm for student sectioning; (and a proj-'ct described 
i. n Section d-. 3 ) s i t wa s f or e c a s 11 ha t a re a ] i s t i c a 11 e m n i: 
at cons true t ing a mm-'star t in o--table  ̂"oulc t,'.k.e m|R the 
order of tens of hou77S of KDP 9 computer time, f oT'eve;r 

(again from experience gained on implementing: the sectio" in 
a].gorithro ) i t s h ou 1 d be poss i.ble to i ncrease the c f f 1 c i.ency 
of the algorithm from l^yO% to 300/̂  by very careful 
hand cod. ing, This would not only be a huge job, it ûoun d 
mean hmmid coding of I'eci.rrsive routines, a mossy business 

a t thc bost of t imes ,
Because of these difficulties, and a lack of both 

the time and the money to find methods of overcoming, 
them, it '̂vas decided that an implementation of the system 
wa s n o t a p  ra c t i c a 1 p o s s i b i 1 i t y , e a e c i 11 y o n a 

computer the size of a KDP 9 « It was possibloj never
theless, to solve a. small problem ori th tfnia master time

table procedure and, in so doing, 1 earn more about 
its operation.

In the spj?inv o f 1968 a. toy, c 1 a iming to be an 
invention of one Doktcr Adi or, called Instant Tnsr'city 
came on the market. The pieces of t- is game ere hrur 
cubes with the faces coloured red, cu’een, blue, - f d
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red 1,7,8,9515,21,23
yellow 2,6,12,16,19,20
green 3,5)10,17,18,22 
blue 4,11,13,14,24

FIGURE 3.4.1

Showing the colour scheme of Doktor Adlor's cubes.



yel loTi The oh j eo b is to p.locc the ouhoo io e lire to

form a solid rectangle such thct each colour is
representen orce arc onig once on each face of the 
solid recta r a] o, The cube colour schc'':'e is that shorn 
in FIGURE 3 ̂ 4 J. .

Although slmpl.e in concept it is extremely difficuj t 

to find a solution. The author has never been able to
find & solution and knous of o.aly a fee: people i-dio ̂
A'enera 11 y afh.er a month or more, hs vc: discovered one, 
iIô'"6Ver it is i>ossi b 1 e t o  f o rmu 1 ate this pro!>1 ern :'i.n 
terms of graph theo??y and, because of its resemblance 
to the school time-table problems construct an alrorithu' 
to tabulate all possible solutions.

Form a p'ra.ph, g, of 24 vsrt ices i-epresont n'̂ur the
24 faces of the f ouz' cubes ; if f£ice i is on f>. dif f erent
cube from face j and has a different colour froim face j 
then vertices i and j are joined by an edge. The graph 
p; n o"*’ repress n t s those f a c e s h i c h m a y be p 1 a c e d a. d i n c e n t- 
to e'-'ch other to form one half of a face of the solid 
rectangle. If all of the complete graphs of order four 
are f o u n d t h eu t !-■ e s e K g ̂ s  ̂■ ù 11 repr e s e n t a n a r ra r'* : z e : : C5 n t o 
one face from each cube su.ch that uhen rjlaced together 
they form a solution to O’̂e face of the solid rectangle «
It should be noted that this one face solution implies
nothing about the other three faces in any roseible solss L ' 

The graph g 5: formed a -u. submitted to the c "zrle'^- 

graph proced’ure '"h.ioh produced 110 one face solutic'S,



or 130 v̂ ays of arranpiinr the cubes such that at least 

one face of the so 1.1 cl rectangle shous all four colours. 
Because of t'r'C symmetry of the situation mar y of the 110 

 ̂B from A may be eliminated from co>isideration in the 

final solution. Spec if ical ly the ' s c o r e s p o n d. i n g to 
a s ingle face solut ion rno y be ellmina ted if the face 
on the opposite side of the solid rectangle is not also 

B one face solution^
After elirninat 1 ng; the useless one face solutions 

a gi'aph, G 5 ma y be formed, each vei'tex of uhich correspo/cds 
to one of the remaining K * s of gu Vertex i is joined 
to vertex j in G if the two one face solutions 
corresponding to i and j are compatible. This compatibiIit 

is achieved if :

1/ no face of a cube used in solution i is used 
in solution j 

2/ if the face of one cube used in solution i 
is on the opposite side of the cube to the 
face used ii solution j then the three other 
faces must also be opposite in i and j.

Any complete graph of order four in G will now represent 
four compatible one face solutions or the final ansvrer 
to Doktor Ad1 or's problem.

The elimination of useless 's from a leaves 

six of the K^/s as being possibly contained in a soluti an



namely ;

1/ 1 ,12,13,22 
2/ 4,10,15,20 

3/ 6,10,14,23 
4/ 3,11,15,20 
5/ 2,8,13,22 
6/ 5,8,16,24

These give rise to the graph G shown in FIGURE 3«4.2,
It is easily seen that there is only one in G and 
thus only one solution to Doktor Adlor's problem, 
namely :

face 1 1,12,13,22
face 2 - 6,10,14,23 

face 3 “ 3$11,15,20 
face 4 - 5)8,16,24,

This rather trivial problem serves as an example of 

the use of one graph representing groups of vertices 
and their relations in another graph. It thus gives 
an elementary problem to examine which will help 
determine the problems involved in implementing this 
type of approach. In general it can be said that a 
problem of this size is easily dealt with on even small 
computers although a small increase in its complexity
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FIGURE '3.4.2

The graph of the one face solutions to Doktor Adlor's
problem.



could result in tlr̂  connuior expending rany times 
effort to ol)t:in so 11ition .

The inain difficulty '-'ould seen to be i: the d-sjer 
of rroceduros to hp^ndle the dcba betc-̂ een uses of the 
complete graph procedure. In particular the design of 
efficient procedures to éliminai te the useless or redundant 

partial solutions is the task vihich could ma]-:e or break 
this a p pr oa c h .

ft



C H A P T E R  4

Further Results



Section 4.1 A Bound for the Chromatic Number

In this chapter an investigation is made of the 
graph colouring processes and related topics, A feu 
interesting results are obtained and several valuable 
insights into computational processes are found.
Several theorems will be valuable for the future 
discuss ion.

Theorem 4.1.1
If a graph, G(V,U), without loops or parallel 
edges has an associated matrix A, then two 
vertices i and j may be given the same colour 
if row i of A is identical to row j of A,

Proof
It is known that vertices i and j may be given 
the same colour if they are not connected by 
an edge and if they are not both in a circuit 
containing an odd number of edges. Thus the proof 
can be split into two parts.
1/ Assume that vertex i and vertex j are joined 

by an edge ; then

a. -  I and a = 1 11 j i

for row i to be identical to row j this would 
force
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^ 1. i  ̂ and. j ~ 1
which contradicts the assumption that G 
has no loops. Therefore vertex i is not 
joined to vertex j.

2/For row 1 to be identical to row j there 
must exist a set of vertices K such that

^ik "  ̂ and a - 1

which implies that there must exist a circuit 
from i to j and back to i of the form

is k s j 5 k; i

where k is any member of the set K. This 
circuit has an even number of edges and 
obviously is the only type of circuit in 
existence.

This proves the theorem.

This result may be used to eliminate from the graph 
any vertices which9 by rea,son of having an identical 
twin 9 are definitely not part of a critical subgraph.

A stronger result is :

Theorem 4.1.2
If row j in the matrix A , associated with the
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graph G(VjU) (no loops or parallel edges), is a 
linear combination of the rows

then the vertices corresponding to the rows

t - l g  j .  _ 5  o F c a . q  Ii 2 P

may be g;iven the same colour as the vertex 
corresponding to the row j.

Proof
The vertices i , i , ..,., i must be at a1 2  p
distance two from vertex j and only j. There
must exist p nonempty sets K., ̂ , K
such that

i E U and j e (r ==

and

i^ y  (for all r / s)
s

It will only be necessary to show that any of
the vertices i^ may be given the same colour
as j and that this colouring of i does notr
effect the colours assigned to the other p - 1
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vertices ,
Assume that the graph has been coloured in a 
minimal number of colours and that vertex j was 
given the colour o( ̂ If the vertex i^ has also 
been, given the colour then there is no problem, 
however if it has been given the colour p- then 
consider the following ™
No vertex in may be coloured because

or p  because

By an argument similar to that in theorem 4,1.1 
concerning the possible joining of vertex i^-and 
j and the length of the smallest circuit containing; 
both vertices it is possible to show that vertex 

ip may be given either the colour or the 
colour /? 5 thus one may change the colour of 
1^ to

The colouring of i^ must be independent of the 
colourings of the other p - 1 vertices!
The relation



must hold true otherwise i^ and î  ̂would be
at a distance two from one another, and the vertex
k satisfying the conditions

k E U. k G U. k € U.r J

would force the element

which violates the condition that G contain no 
parallel edges. Thus i^ and î  ̂are at a distance 
four from each other and thus do not have to 
be given different colours by reason of being 
on an edge circuit of odd length.
Finally

because the reverse implies that i^ is included
in one of the sets If

i-p € U t

then
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; which has already been show - to be i’̂ ipossible.
Thus the theorem is proved,

Theorem 4.1,2 may be used in any attempt to locate 

the critical chromatic subgraph of a large graph.
This result leads directly onto another giving an urper 
bound for the chromatic number of a graph.

Theorem 4.1.3
The chromatic number of a graph, X(G), obeys 
the relation

'/(G) < R

where R is the rank of the matrix A associated 
with the graph G,

Proof
The rank of a matrix is the number of linearly 
Independent rows and columns of the matrix.
Theorem 4,1.2 allows the deletion of all dependent 
rows and columns without changing %(G), therefore

Y(G) < R.

Eouality holds in theorem 4,1,3 for complete graphs 
on n vertices (R - n). Thus this upper bound is the best 

possible for general graphs.
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Recently Szekeres and Wllf (44) have published 

(without proof) a potent lad. ly better bound for "Z-(G) , 
Their bound is :

Y(o) < -H i (d'*lo4)

where A, is the largest eigenvalue of the matrix 
associated with the graph G . Results deduced in 
Section 4.3 will throw doubt on the validity of 
(4,1,4) for general graphs.
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Section 4,2 Graphical Reduction

The largest factor in determining the efficiency 
of a graph colouring procedure is the size of the graph 
itself. If some method could be found to easily reduce the 
size then the computation necessary to produce a minimal 
colouring will be greatly reduced.

A very much weaker (but coraputationally more 
significant) result than Theorem 4.1,2 is the following:

Theorem 4,2.1
If two rows of a matrix A (associated with a 
graph G having no loops or parallel edges) 
bear the relation that the nonzero elements of 
row i are a subset of the nonzero elements of 
row j then the vertex i may be given the same 
colour as the vertex j.

Proof
The proof follows the same general lines as 
the proof of theorem 4.1,1.

This theorem is computationally important because it 
is very easily programmed on most computers in such a 
manner that the full power of the computer's logical 
instruction set can be brought to bear on the problem 
of determining if row i is a subset of row j, This
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particular operation (that of reducing the number of
vertices in a graph by eliminating subset rows) will be
known as reducing the graph. A graph G, having been
fully reduced, will be denoted by G'̂ , similarly its

rassociated matrix will be denoted by A .
If only the chromatic number is wanted then an 

alternate method of reduction is available involving 
the cartesian product of two p:raphs. This method is 
only useful on a limited number of graphs but if the 
physical problem being represented has some symmetry 
to it then this method may be applied.

The cartesian product of two graphs G(v,u) and 
H(z,w) (both having no loops or parallel edges) is the 
graph r**(VjU) whose vertices are the ordered pairs 
(x,y) where x e v  and y e z  and (x,y) is adjacent to 
(x*,yM if and on].y is

1/ X ~ X* and y is adjacent to y* in H 
or
2/ y = y* and x is adjacent to x* in G 

V, G. Vi88ing (34) has shown that

/(r") max (X(G) , '/(H)}

thus if it is possible to factor the original graph 
into two cartesian factors G and H the work needed to



1 2 3
O i l  
1 0  1 
1 1 0

H

1 2
0 1 
1 0

-2

r  =
12

2,1

2,2

32

1,1 1,2 2,1 2,2 3,1 3,
1,1 0 1 1 0 1 0

1,2 1 0 0 1 0 0

2,1 1 0 0 1 1 0

2,2 0 1 1 0 0 1

3,1 1 0 1 0 0 1

3,2 0 0 0 1 1 0

FIGURE 4.2.1

Shoving two trraphs G and H and their cartesian product I"'



find the chromatic number may be reduced by several 
orders of magnitude.

To factor P  into G and H it is obvious that

|V1 X |2| r. |V|

If |z| < |v| then the of r" must have \z\ symmetry, lie « 

if \z\ = 3 then lV | - f  3 must be integral and there must
oJt kciJ: ^

be jj J'i i of P  with the same value, ^
Inspection of FIGURE T.2d will clarify .the matter,

A simple test to determine if it is possible that 
G and H are the cartesian factors of P  is to determine 
that the following relation always holds true for the 
degree ( ^ ) of each vertex in P  ,

X  S |V| -h \z\ - 2

If this is not the case then G and H can not possibly 
be cartesian factors of p  .

Graphs with, this type of symmetry are not common. 
Because of this, and the effort necessary to deduce 
G and H, cartesian factoring is only usefully employed 
in cases where this type of Siymmetpy is known to exist.
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Section 4o3 The Eigenvalues and Eip-;enYeotors of a Graph

The use of an eigenvector as the ordering criterion 
of a colouring procedure naturally led to the problem 

of the meaning) in graphical terms, of all the eigenvalues 
and eigenvectors of the matrix associated with a graph® 
Considering, for a moment, only undirected graphs with 
no parallel edges (ie, the associated matrix is syrmjetrlo, 
the elements are either 0 or 1, and there are l*s down 
the leading diagonal.. ) it is evident that this array 
may be considered as a correlation matrix, a pair of 
vertices joined by an edge having a correlation 
coefficient of 1 and other pairs of vertices having a 
correlation coefficient of 0® Taking this view of a 
graph it is possible to find explanations for the 
eigenvalues and eigenvectors of a graph in the body of 
knowledge built up around that part of multivariate 
statistical methods known as principal component analysis®

Investigators in the behavioural sciences are 
often faced with the problem of having data of a series 
of observations on several aspects of one individual, 

or the correlations of these observations on several 
individuals. As these observations are all drawn on 
a single individual there will clearly be some dependence 
relationship between them® Principal component analysis 

is one of the methods of elucidating this dependence 
structure. In general this dependence will be based on
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a number of factors, each of which will add its own 

component to the system * s structure®
Morrison (26) shows that the Jth principal component 

Of a system is a linear compound

of the observationss X^, whose coefficients, a^, are 
the elements of the eigenvector of the correlation matrix 
A corresponding to the Jth largest eigenvalue,
The importance of the Jth component, in describing
the dependence structure is ;

I = — (4.3.1)
 ̂ tr(A)

^"here tr(A) is the trace of the matrix Ao
The graphical interpretation of this is evident 

from FIGURE la which a graph of nine vertices
and sixteen edges is displayed along with four of its 
eigenvalues and eigenvectors. The other five eigenvalues 
are all eoual to zero and thus by EQUATION 4.3*1 have 
no significance in describing the structure. The first 
eigenvector, as was seen previously, gives a measure 
of how deeply embedded a vertex is, or a measure of its 
ability to dominate the other vertices in the graph.
As expected, vertex 5 comes out as the most dominant, 
followed by vertices 2, 4, 6, and 8 which in turn are



1 2 3  4 6 6 7 8 9
1 1 1 1  
1 1 1 1  
1 1 1 1  
1 1 1 1  
0 1 0  1 1  
0 0 0 0 1 
0 0 0 0 0 
0 0 0 0 1 
0 0 0 0 0

0 0 0 0 0 
1 0 0 0 0 
0 0 0 0 0 
1 0 0 0 0

1 0 
1 1

1 1

eigenvalue - 4.6262
corresDondlng vector
0.2774b
0.36426
0.27740
0.36426
0.40181
0,36426
0.27740
0.36426 
0.27740

eigenvalue = 4,0000
corresponding vector
0.35355
0.35355
0.35355
0.353550.00000
0.35355
0.35355
0.35355
0.35355

eigenvalue = 1,5151 
corresponding vector
0.358550.08692
0.358550,08692
■0.67495
■O.O8692
0.35855
O.O8692
0.35855

eigenvalue = -1.1413 
corresponding vector

-0.21093 
0,33130 

-0.21093 
0.33130 

-0.61887 
0.33130

-0.21093
0.33130

-0.21093

FIGURE 4.3.1

Sho-"ing a graph, its associated matrix, and Its four 

unique eigenvalues and eigenvectors,
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closely followed by 1, 3s 7? Gind 9* EQUATION 4,3^*1 
shows that the first eigenvector explains 52*5^ of the 
dependence relation in this structure® The second 

eigenvector, explaining 44®5^s points, out the locally 

compact equal groups of vertices 1, 2, 3> 4 and 

6, 7 s 8 5, 9* The third eigenvector, explaining 16,7^ 

of the structure, presents what amounts to two divisions 

of power or dominance, one the outer and central vertices

1, 3 5 5  9 7  9 5.nd 9 s and the other the inner structure

2, 4, 6, and 8® The final eigenvector corresponds to
a negative eigenvalue, indicating that the previous three 

eigenvectors have over-spec ified the structure by 13*7^ 
and this vector will help correct the situation®

Consider an n X n matrix of the form:

1; p p , 0 ® p p
p 1 p . ® ® p p
p p 1 . .. p p
• • * i • « e
• • • • ! • *  
P P P ® . 1 P
P P P . . . P 1

if

then the largest eigenvalue of this matrix, , is
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and the corresponding eigenvector, , is

u
1 1 1 1

]/rT yiT ]/rT /nT

1

which may be scaled up to

u = [ 1,1,1 , ,l]

The other n-1 eigenvalues are

..... — 7̂.71 = l“-p

and the corresponding eigenvectors are all orthogonal 
to u^. Thus a complete graph on n vertices has an 
associated matrix, all of whose elements are 1, with

"X, — lH-n~l = n

Consider a positive definite . n X n matrix A 
(all of whose elements are either 0 or 1) of rank r 
(r = n )® A can be expressed as

if each



then all the eigenvectors are of the form

a, — fUj; jU. ; U ' , *00, U.1 i I D  l2 13' ' In

with

Ua, = either 0 or 1 •̂ k

Because all the eigenvectors must be orthogonal it is 
clear that if

then

"ij - 1

u^ _ = 0 ( for all k i )

As an example consider the matrices A^ and Ag in 
FIGURE 4 o3*2® The matrices A^ and A^ correspond to the 
graphs and G^ in FIGURE 4*3*2,

The complement of a graph G, denoted by G, is the grap' 
formed from the same vertex set as G but having edges 
according to the following rule :

if vertex i and vei'tex j are joined in
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G then they are not joined in G and 
if vertex i and vertex j are not joined 
in G then they are in G ®

An examination of the graphs G^ and G^ and their 
associated matrices A^ and A^ shows that a minimal 
colouring of the vertices of G may he obtained by the 
following rule

vertex i is given colour j if and only 

if u 4 = 1*

Thus the eigenvectors of the matrices. A^ and A2 represent 
colour groups of the vertices of Ĝ  ̂ and G2 •

Given a graph G and its complement G it is obvious 

that the matrix F, associated with G, will not always 
have eigenvectors of the form

E v . / X  = 1. (4.3.2)

However the following theorem eases this particular 
difficulty.

Theorem 4,3*1
If a graph G, of chromatic number %(G), has 
extra, edges added to it to form the graph G ’ 
then the chromatic number of G*, Y(G'), obeys



1 2 3 4 5 6 1 2 3 4 51 1 0 1 0 1 0 1 1 0 0 0 02 0 1 0 1 0 1 2 0 1 0 0 0
A-i “ 3 1 0 1 0 1 0 A_= 3 0 0 1 0 04 0 1 0 1 0 1 2 u. 0 0 0 1 0

5 1 0 1 0 1 0 5 0 0 0 0 16 0 1 0 1 0 1

A| — 3 ui ; [101010] \= 1 u 1 = [10000]
3 ^2 Z [010101] 1 u 2 rr [01000]

^3- r — = 0 1 u 3 = [00100]
1 u4 [00010]
1 u5 = [00001]

G.
-KL m

 i
G'

Q

3 4-

G G, z

f3

FIGURE L.3.2
Showing two matrices, their eigenvalues and eigenvectors, 
and their corresponding graphs and converse graphsc
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the relation
Y(G) s Y(G').

Proof
Obvious o

If edges are added to G then the corresponding 
edges are deleted from G . Thus it should be possible 
to define a matrix B and consequently a matrix G such 
that

r  - B = C ('K3.3)

and such that condition (4.3«2) holds for the matrix C.
An examination of the properties of the matrix B will 
shed some light on graph colouring processes.

An internally stable set of vertices is a set 
such that no two members of the set are adjacent,
The coefficient of internal stability is the number 
of vertices in the largest internally stable set and 
is denoted by ‘̂(G).

Because of the relation (4.3,2) there must be 
exactly X; vertices with the colour i in any graph 

corresponding to the matrix C in (4.3.3)• That is to say

V

where v is an internally stable set of vertices from G.



It is known that

*((G) “̂"(G) > n (4,3,4)

where n is the number of vertices in the graph. It
is not possible, howeverto colour a graph by finding
the largest internally stable set and giving this colour
1, then finding the next largest internally stable
set etc.. This is easily demonstrated by the graph
in FIGURE 4.3*3* The largest internally stable set are
those vertices represented by circles, If these are
given colour 1 then the remaining three vertices must
be given colours 2, 3s and 4. Four colours have then
been used when the chromatic number of the graph is
only three. If the graph is reduced, using Theorem 4.2,1

rthen this difficulty is overcome in G *
For a reduced graph the coefficient of internal 

stability is equal to the number of vertices having 
the most popular colour and, by the previous argument

o< (G) ^  X]

Thus r e l a t i o n  ( ^ • ,3 »3 ) may be r e w r i t t e n  ai

X, 'iiG) s  n

a n d



G

FIGURE 4.3.3

Showing a graph G and its reduction G .
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Normally this is nnt a very good, lower hounds however 

it may he used as a first approximation,
After estahi ishinr these few hasio relations it 

is possible to return to the problem of finding the 
matrix B in ecuairion (t 3,2 ) , Severn 1 propertir-'S of 

B are immediately obvious, If 0 is the nul l matrix then

A :c G

and A is in the form of a block diagonal matrix or 
may be put in the form of a block diagonal matrix by
a sui table interchanrge of rows and coiumns (ie. by
renumbering the vertices). If A is of block diagonal 

form then G is said to be k-partite, x^hore k is the 
number of blocks along the diagonals

If it is possible to find a matrix B then the matrâ 
C is very likely^ to have decreased in rank with respect
to A. In fact by making

it is possible to cause C to be the null matr1x and thus 

arrive at the d egener^ te condition of one colour for eacn 
vertex. Thus it is rccsssrry to specify thr : f co .te in 
the minimum number of eleme-^ts eoual to 1 and that the
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rank of B also'be kept to a minimum «
It is possible to set up the solution of B as a 

linear programming problem. However this involves a 
double minimization of the rank of B and the number of 
elements of B which leads to the same consequences as 
the original linear programming formulation of the 
colouring problem in Section 1,2 (which, considering 
it is really the same problem, is not suprising),-

An alternate algorithmic approach to finding B is 
contained in the simple statement

K(gT) = 0((Ĝ )

where K(G) Is the size of the largest complete subgraph
in the graph G.

Each block along the diagonal of C represents 
the vertices given each colour. The largest complete 

subgraph of G is the largest block along the diagonal 
of G. Thus the complete graph algorithm may be used 

repeatedly to determine each block of C and thus 
indirectly determine B.

This is an algorithmic method of colouring a graph 
which possesses none of the disadvantages of the other 
algorithms and the advantage that, once the complete 
graph algorithm has been implemented, is easily programmed,. 

A byproduct of this investigation is the fact that

o i i G ) ^  T,
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and

K(G) £ X,

The bound by Seekers and Wllf mentioned in Section 4.1 
(4.1.4) is not; of necessity, valid because the relation

K(G) £ f(G) £ K(G) 4- 1

is not always true and thus

( G ) — "X,‘f- 1

is not valid for all graphs, E\?‘en though this may not 
be valid it is still suitable as a first approximation. 
The accuracy of this approximation may be judged from the 
fact that the U.A,C, 19^5 ~ 66 data is colourable in 
28 colours (using the heuristics developed in Chapter 1) 
while its largest eigenvalue was ?9*^*

There may or may not be a unique matrix B and 
thus a unique colouring of G^. There is likely to be 
at least one vertex which may be given either colour i 
or colour j. If one colour group is too large then the 
following procedure will redistribute the colours of 
G in a more even fashion « Take a colour group I 
consisting of the plf vertices i^, i^^^,
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If there exists a row j of the matrix B such that

B , - 1 (for q - r,rtl ̂ rt2 , . , ̂ ,r̂ i-p)

then vertex: j may be added to coj.our group I.

It should be possible to check the heuristic 
calculations of Chapter 1 by this coirplete rrraph method^ 
Unfortunately the amount of computation necessary 

increases greatly as the number of edges in the graph 
increaseso The converse of both data sets used in 
Chapter 1 contairu-̂ d so many edges that over six hours of 
KBP 9 time failed to yield a solution o However subgrcaoh. 

from these data sets^ consisting of 50 vertices each, 
were run and the results verified the heuristic 
calculations in each case„
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Section 4.4 A Justification for the Heuristic Colouring
Procedure

Each graph contains a critical k-chromatic subgraph 
If this subgraph is coloured, and this colouring *’flx:ed'® 

to the subgraph, then the other vertices may have 
several different possible colours attached to them. 
Assume there exists a matrix P (with n rows and columns) 
such that pĵ j is the probability that vertex i has been 
given the colour j for a minimal colouring of the graph, 

P will not necessarily be symmetric or of any 
particular rank but in general will take the form

It is known that

(for all i)

If a matrix n is formed such that
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then n,v may be considered as the probability that 
vertex i is not joined to vertex j. It is obvious that 
n is.a symmetric n X n matrix and that

0 < < 1

If the vertex i is a member of the critical 
k"chromatic subgraph of G then

n,-i= 1

otherwise

0 < n,-. < 1

If Tt;y is the probability that vertex i is not joined to 
vertex j then n bears a similarity to the matrix A, and

with equality holding only when the graph on all n vertices 
is a critical k-chromatic graph.

It is also possible to construct a similar matrix 
n such that

%  ::: 1 "



A

\ % 3 4- 5
0 » “ D ! X 3 4- f 4

1 I / / / 1 1 1 / .
X 1 t / ♦ 1 I / / 1 . 4-7

2 1 1 / 1 .fX 3 I / I .3 '

4 y / / ,3X A = ^ I 1 / I .4-f

S / / / .x(> s 1 1 /

6 / / I .3^ i / / f I . f  S"

I J Ù 0

z <9 1 0

3
D

c 0 /

r  =
4 Vx '/x 0

Vf •A- V j

0 % %

n -

/ i 3 4 s 6 % r t z 3 4 j- f \ f. 7

1 / P p A 0 .34 0 ! I % / . 44

a 0 / p '6 'U A . r<? X 1 0 ( '/x V 4 , f  (

3 0 ; 0 % A .34 ___  3
TT -

4

I 1 0 / '/a . f  4

4 'A 0 'A % 'A ,4A A A I 'A “A .3 Ï

f 'A Vf Vs 'A % .36 Vf % Vf '%6 Vf- %

6 0 /x A ’A % A .4^ 6 1 ‘A %. % % 'A ,3g

FIGURE ^.4.1

Showing a graph and its relation to the matrices
Aj A 5 P 5 rr 5 andlT
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then is the probability that vertex i is joined to 
vertex j « Tf will be a matrix similar to A with the 
provision that

‘i j

and

If the edge (1,j) and vertices i and j are part of the 
critical k-chromatic subgraph of G.

The largest principal component of TT will show a 
high correlation with the elements of the critical 
chromatic subgraph of the graph G« It is obvious that 
the principal eigenvector of "n will be ’’similar” to 
the principal eigenvector of A. This explains the use 
of the principal eigenvector of A in the heuristic 

colouring procedure, and the importance of ordering 
the vertices by the magnitude of the elements of this 
vector.

The example shown in FIGURE 4.4.1 usefully 
illustrates the relation between G, A, A, P, tt , and 
TT * It should be noted that the elements of the 
principal eigenvector of TT bear the same relation to 
one another as the elements of the principal eigenvector 
of A.



§6:0tlon _ 4^ 5 llio Four Cplour _ J'Xphle^i

No work of this soi'C '-roui.d 'be compj.cte withor.t 

some mention 5 no tter hov? brief j of the fonr colour 
problenu. The four colour problem in graph theory and 
Fermat’s last conjecture in number theory probably rank 
as the two greatest unsolved probl oms in mathematics..

The four colour pi'oblem is a little more thr’u &. 

century old. The first known source discuss ing the 
problem is a letter (dated Oct, 23, 1852) from Augustus 
de Morgans Professor of Mathematics at University 
Coll ege Lond on , t o h i s f r 1 end 3 i r W .1 3.1 i a m P o?:an 
Hamilton at Trinity College Dub] in, Sir:ce that time 
several proofs have been proposed and each has evcsitiia] l.y 
been refuted,

FIGURE 4 ,5,1 shows a maximally planar gi'aph, ie. 
a planar graph is maxima11y planar if the addition of 

an^ extra edge results in the loss of the abiliry to 
represent the .graph in a plane. It is easy to show 
(by the use of Theorem 4,3»^ and Theorem 4,1,3) that 
the chromatic number of such a graph is less then or 
equal to four,

FIGUR'E 4-, 5 e2 shows a planar graph G, If the

edge ( 1 ; 3 ) is reir-oved and the edge (2,4) inserted to
form the graph C ’ then G  ̂i s said to h-ve been obtny-icd
from G by a diagcna], tra r.s f ovTu t ion , 0, Ci'c (2 7
has shown that any two maximal]:; u] a r.ar nr a rhs i-w. tn



FIGURE 4.5.1 
Showing a maximally planar graph

3

G * =

3

FIGURE 4.5.2 
Showing a diagonal, transformation
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Jun 0 19 5 0 5 P o 1’ 1.1 a n d. U « , A .
29/ J c Pfaltz - Unpublished. piAvate commun 1 cc tion «
30/ R. C. Read - An Introduction to Chroiaa 1-ic Polynoe iad s

J our na 1 of C omb i n a t o r 1 ]. T)i eery (19 6 8 ) 
p52.

31/ O c  R. Sherman - A C o m b i t o i r i a l  Problem A r i s i n r £ £ ‘0::
U nive x'S 1 tx.„p.lpAi;fs. - J ourna 1 

of the Tennessee /'■ cade]ny of Scien.ces ̂

Vol. 38, #3, July 1963.
32/ G. R. Sherman - Oondpî^]atoiy'^gl^Sydiy^ ; Thesis

University of Ten n e s s e e , U.S. A .

33/ G . Szekeres and K. S« V/ilf - Ap. .luoeuaj^^i by^for

2&.f'.._Grapli ̂ J ou r n a 1 of 

Combinatorial T h e o r y , Voll A (I968) pi.



R E L A T E D  M A T E R I A L



Lestooster-Samenstellinpc Met Elektronische Apparatuur,
Rapport van da Studleoonnissie Lestoostersj 
Stlchtlng Studiecentrum Vor Administratleve 
Automatisering5 Stadhouderskade 6 * 
Amsterdam*

V. A. Abell " A Comprehensive University Scheduling
System (CUSS), Proceedings of the 10th 
College and University Machine Records 
Conferences Michigan State University,

May 1965.
W* W* Abendroth » How to Make Examinations Fit the Master

Class Schedule, College and University 
Business, Vol. 32, May I962.

M. Almond - An Alg^orlthm for Constructing University
Time-tables , The Computer Journal,
Vol. 8 (1966) P331*

Appleby, Blake, and Mewman - Techniques for Producing
School Time-tables and their Application 
to Other Scheduling Problems, Computer 
Journal (I96I) p237.

E. BadraClough - notes given at a seminar at the University
of Edinburgh, Dec. 7» I965«

E. Bavraclough - The Production of School Time-tables,
The Computer Journal, Vol. 8 (I965)
PI36.



Je Berghuis - La Composition des Horaires Scolaires,
Bull Nederland - 23 Meeting of the Users 
Group of Gamma“Tambour Computers, Bologne,

J, B. Buxton “ An Application of a Computer to the
Production of Examination Time-tables, 
unpublished, Electronic Computing Department 
University of Leeds,

G . A, Dirac - Map Colour Theorems Related to the Heawood
Colour Formula, Journal of the London 
Mathematical Society, Vol. 3I (1956) 
pA60*

G, A, Dirac - The Structure of k-chromatic Graphs,
Pundamanta Mathematicae (1953) p42.

G . A, Dirac - A Property of A-chromatic Graphs and some
Remarks on Critical Graphs, Journal of 
the London Mathematical Society, Vol, 27
(1952) p85.

P. Erdos and A, Hajnal - On Chromatic Number of Graphs
and Set Systems, Acta Mathematica Acad.
Sci. Hungaricae, Vol, 1? (I966) p6l,

J. S. Folkers » A Computer System of Time-table Conditions,
Thesis, Technische Hogeschool, Delft, 
Netherlands, (I967).

J . S. Green - Algol Programming for the KDF 9 ; English-
Electric-Leo Computers Ltd,, Kidsgrove,



F. Harrary ™ Theore t ic \91_A Fi
Â FR kLbîFJ- Fu_£_Àÿ29y i x  y x it l i  p  yx p  £  i  ô 

.-TjJl/ÀFF..kta. Fige\yr-:] u.0S , Jcur):al of 
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P R O G R A M S
and

F L O W  C H A R T S



The fol 1 vro^r-f^ns -■‘ere ’-n/itten durirr the ooiwse

of this investi nr ti 071

D£yÔ0 9000ï:}d!'

DByoo5èooxP5

DBYOOdPOOKFd

rends ihe stud out dote from p:per ter e 
end vrites it onto e regnetic tare, output, 
various statistics such as the number of 
s tud ents :\,n ed c h c oursc e tc , 
read data from megnetic taro and rroducoe 

the booj O'an matrix associated wi th the 
û'-aph of t he course co.ifliets , puts mat;:ci% 
onto a magnetic tape,, prints out dcrree of 
each vertex
Peck-Wil i i;-n:u: era:::inati on time-tabJe
procedure

DBYOO5COO.KP5 " ei.menvec tor arproriii'.a ti on t ir:'o--tabl 0
P  r o c 0 d u r 0 J p r i n t s out t h e c i. p' 0 n v " 1. u e s r. d 
ei geî'Â 'ectors at each iteration

DBYOOfDOOKPA - build up a boolean matrix di recti y from
paper tape da ta - usee f or 1.\’es tis;a t i ng 
small graphs

DBY003 j:0 0KP5 - inves t ipy-1e the chav r:e of nc;s i t ion of
each vertex (in the orderiîig criterion) 
at each iteration of the eigenvector 
procedure

.DBYOO5FOOKP5 - deterrrines if the l.arge p'rarhs I'-ay be
ii'ade up of several lu'co--.ected sub--r:p;rs 
fid the largest complete mraph, prince 
out the boolean iT.atri.x at each, itorati"co

IlBl'OO^GOOlr t



DBY005H00KP7 - construct the numerical matrix associated

with the graph of the student course 

conflicts

D BY005JOOKP5 “ find the largest complete graph (this is

the same program as DBYOO5GOOKP5 with large 
portions of the program written in USER 

CODE' to increase its speed)

DBYOO5KOOKPA ~ read master time-table data from cards and

produce time-vectors for each section, 

time-vectors are viritten to a magnetic tape 

DBYOO5LOOKPA - produce boolean matrix corresponding to

the graph of the conflicts between sections 

of the master time-table, matrix written 

to a magnetic tape 

DBYOO5MOOKP5 “ produce one boolean matrix for each

student indicating the conflicts in his 

requested course sections 

DBYOO5N O OKP5 - find all complete graphs of one particular

order - large portions of the program 

are written in USER CODE 

DBYOO5SOOKP6 “ the"complete graph sectioning program,

produces a great deal of output at each 

stage to act as diagnostic material 

DBYOO5UOOKPA - plot graphs on a Calcomp plotter 

DBYOO5V O O K P5 - reduce graphs by ORing (ie. Theorem A,2,1)



DBY005AO0KP7

DBY00 9Y00Ï1J/3

DBY00 9Z00KÏV-I

a prox-rpy attcni-ted to fine, the;
no t r i m  B i n  r e l a t i o n  . 3 . 3  a i d  t h i ’ o 

d e t  e r m in e  t r ie  c h i 'o m n t  l o  r iu ianor  o f  t h e  w'-cnh 

a nro.-' 're^^ t o  r i ' o d n c e  t h e  c o - 'y c i v -e  o f  a 

g r a p h  an d  w r i t e  t h  i s  c o n v e r s e  t o  o :r.̂ = gn et:. ic 

t a p e

a p r o r a n i  t o  so  1 ve  Dok to i r  Ad 1 o r   ̂s p r  o b ie m  ^

A n u n b e r  o f  . o t h e r  i r i n o r  p r o g r a m s  v e r e  w r  j  t t o n  t o  do 

c o d e  c o n v e r s i o n s ,  r e f o r m a t t i n g  o f  d - ' t a . , and  ch^  r g i  nr; 

t h e  f o r m  o f  t h e  d a t a  t o  t a k e  a d v a n t a g e  o f  ari i> - c r e a s e  3r 

t h e  c o r  p u t  i n n  poorer  and  p e r i p h e r a l s  o f  t h e  KDF 9^



The Complete Graph Procedure

This is not a listing of the actual program 

used during the investigation, rather a listing 

of a "publication form" of the program.



Trf « e

m t e-f T f

Ct) /wf l£ rf
» M «3 «j/îfl rt#£

 ̂0 t-S-T Ç 
\ u/- fl- J g f
\ oÆ6t?(Ç' y

CHECK (6,)
Tf?W e

/! /% G
■fl £ A -7-A* £■
\ <•’ reys-lû (,fir*fhi tfi \ citt>e/i"l

rv := N~ X

o u y  p u  T



F H t. s ̂ f X f T

&O0L F/?î i£

P£t. is TF £ p 6, ,=
C »'/ z)•T ffl/i-l

F r-t - I 
T̂/rt fc‘ $

^  U  M  ;r S l ^ r q - X

ÛOpU Tfii4C

A) "

^7% = rFtic



I b  re /%T g X

/•7 / A/ / /n /V)

NJ 14 7-/Vf 
/W b Tff f rt !■ (t t*4

(: P M r f
/?d U/

fZEÿ u UT '- -riQ 14. £

PÎ At Y Æo iv 1\bS 14 I T £ F //9 S T .'i f/) / f f

G r  e X.

/>t /. c r£

w s  /inc ë-S Ffior̂ t

^  '~ N  -h (



tiSfîln.
’.....  ^ ' ■'' ' ■ ' " ■ ai'v:-’.nsr-;outst:c'inc('^^v ̂ st) « inh-^r^or d v : -̂h a-:-»kl JU A ,1— -̂.*_ -Vi- -w . '. - »TJ-iK.’̂* L̂.1 \ irf 4 ^ ►”* -— . l T. ... .tCf Ji

nevfllne( 70^ 1 ) i v/ritetext (70^ bt) ;
Êdüâ, o r ou t B t ring I 

P]%]GCcl3i m  o\Atlnteger(dv<,l) I Intogor clv^l| 
write (70gro?/i:iat( £Bnclddcldj,) i ) :

K^ciidiire complete graphe (matrix) graph
of : ( s 1 ze ) ve rt 1 c o b in to : ( a 11 ) c o;np le t;e b ub g rf,phB 
of: (o rde r) j v/îJa e i ze ̂ o rde r,, a 11^
In te iib îi  B ix e ^ o r d e r ;  b p o le ^ .ii a i l :  booléen.  a,rra?;: u a b r : a

fPl?ilQHt. ThiB procedure will tcike an uiiclj mctcd 

graph (in the form of ei aize x size symnet?:ic 
boolean incidence matrix^ who b o  :L̂ j th 

element is tjivbi if end only if vertex i js 
joined by &xi edge to vertex j « diagonal 
el.ements being assumed to have the value 

fhlhp) &md remove from it all edges not 
belonging- to at least one complete graph of 

the re(iuired order^ where order ^ 3o The 
procedure may be used to deteiaiine all the 

complete subg.raphs of a particular order by 

setting the variable all to the value trara



or Kuiy be used to f;md the order of the

Irirgest complete subgi/a.ph;. by Bcttbng the
variable all to the value If the

procedure is atteAp;)ting to find the order of

the largest complete subgraph it vjill firAst

attempt to find a complete Kubgra.ph of the

initial ozxler and,̂  if Guccessfulp will then
iucreacB the parametc^r order by one and try

again^ the vortices corresponding to one

complete subgraph of the appropriante order

are outrait at each iteration ̂ The proccduz'e
1 b based upon the fact that each edge in a
complete graph o f  order in is a mcmbe r of m-h

edge circuits of length 3e Tlie procedure
contains its ov;n output statonents but the
input is considered to come from the parameter liste ;

i s S & E S X . . amyi. r o v i ^ x - o w nuiriber[1 :sl%e] ; 
iL Q o lg fiu . f  : l r s t  ̂ c o n b f I r a 11

î? im Ç . U r f i  d 3 l o t e ( m a t r i x 5 . r o , ; )  ; 
v a U a  « i ;i I Iz o o ie a ib  aç-rsIC m a tr:l.x; 
i a t s i i g r  ,a rr2 ,Y  ro v f j  s i z f c . , i j

som m sn jl t h i s  p r o c e d u r e  w i l l  s e t  t h e  -e le m e n ts  

i n  t i i s  i  t h  row and. colT.u;.n o f  th e  b o o le a .n  

a r r a y  r - a . t r ix .  t o  th e  v a lu e  f a j j . n .  a n d  upcbate
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th e  v e c t o r  ro w  t o  I n d i c a t e  th e  new  n u m b e r  

o f  tE U H  e le m e n ts  i n  e a c h  ro w  o f  t h e  b o o le a n  a r r a y s

Meio.

Integer jJ
Ù 2S. j  î=  1 a t m  1 u ia id l.  s iz e  o a  

i f  r o w [ j ] > o  j} ja ê îi 

fcêEla.
i£ .  m a t r l x [ i g  j  ] i im .

begin.
m a t r l x [ l ^  j  ] ; = m a t r ix [  j  : = fa l& e . j

ro w [ j  ] := ]ro w [ j  ] - 1 1

o f  d e l e t i n g  row  a n d  c o lu m n  1^ 

r o w [ l ] := ü ;

ênâ . o f  t h e  p r o c e d u r e  d e le t e ^

Ê Q.cedAj.£S. 26370(matrix,size) j yaJjiâ. sizej 

l ü M g e r  size; kssleaa. matrix;
t h i s  p i-o c e d u re  w i l l  a s s ig n  th e  v a lu e  

ÊaJiâg, t o  e a c h  e le m e n t  o f  th e  b o o le a n  a r r a y  m a t r i x ;

M e i a
intsssji i;j ;
£ a .c  1 :=  1 a im i i  v m tiJ , s iz e  do.

£ o£  j  :«  1 g .teg, 1 m t i j^  s iz e  do 

m a t r i x C l ,  j  ]  s = = m a tr ix [ j , i ]  := fa la P J  

g a d  o f  p r o c e d u r e  z e r o ;



E£ocedU3-Sl comb(n,r, 1 ) ; 'wMë&E. n,r; 3.arbe,ger. arrax 1 
comment This procedure is a modified version 
of Algorithm 154» The distinct combinations 
of the first n integers taken r at a time 
are generated in i in lexicograiphlciil order 
starting with an initial combination of the 
r integers 1,2, oooot.ro The boolean variable 
combfirst is nonlocal to comb and must be 
true before the fl37st call, thereafter it 
remains false until all combinations have 
been generated;

bS£4n.
8,j;

i £  combfirst ibSQ. 
begin.

£o£. j := 1 SMa. 1 WDiJxl. 1’ go. i[ j] :-j; 
combfirst s^false; gp£p, exitcorab; 
gacl of initial combination;

3 X  i[r]<n üimi 
begin.
i[r] s=i[ r]-h1 ; gpl;o. exltcomb;

snbL 3
£02, j r~1 giop, ph,t_H 1 ÜS,

UL i[ti Kn-r-i-J bbm. 

begin



i[j]:-l[j]+11

£û 2  fî sigja, 1 uaÈü. r âa. lEs] :=i[ j ;
E-Q.to. e x l t c o m b ;

combfirst ;=toia.l
a x i to o m b :

e n d, o f  t h e  p r o c e d u r e  bom b j  

jp ts g e x  H ,rQg„ed.nre tw o  ro w  s u m ( i , j , m a t r i x , s i z e )  ;  

l , j , 8 i z e ;  ia M g e x  i , j , s i z e ;  

b f i f i l f ig n .  a ff ilB X  m a t r i x ;

t h i s  p r o c e d u r e  w i l l  r e t u r n  th e  numbe)? 

o f  tiz u e . e le m e n ts  i n  a  v e c t o r  fo rm e d  b y  a  

b o o le a n  AND o p e r a t io n  b e tw e e n  th e  i t h  a n d  

j  t h  ro w s  o f  t h e  b o o le a n  a ir  r a y  m a t r i x ^

m&egeZ sum^k; 
sum : “ 0 1

f o r  k  1 g t ^  1 i m M X  B iz e  0.Q,

I f ,  m a t r i x [ k ^ i ]  m d .  m a t r i x [ k p  j  ] sum:=sum"i-1 ;

tv /o  ro w  s u m :-s u m ^

^ d ,  o f  p r o c e d u r e  tw o  ro w  sum ; 

in te g r a l D roG eam im . ro w  s u m ( i j ,m a t r iX f  s i z e )  ;

i ^ s i z e j  In i^ e g e r i ^ s i z e ;  bpo lea^n , a r r a z  m a t r i x ;  

c o o ia ^ o i, t h i s  p r o c e d u r e  w i l l  r e t u r n  th e  n u m b e r 

o f  e le m e n ts  i n  th e  i t h  ro w  o f  th e



-3- r J-

b o o le a n  a r r a y  m a t r i x ;

s u m ^k ;

s u m :-O j

£ S 2  k  :=  1 a is s . 1 m tk U . s iz e  dQ. 

if matrlx[k,i] ibêîl si«n:-sum+1 ;
ro w  s u m :-s u m ;

o f  p r o c e d u r e  rovf sum ;

M Q lm a , rem ove  e d g e s  ( m a t r ix ^  s iz e , ,  row ^ o r d e r )  ;

m JA m  s lz e ^ o J A d e r ; in . i§ m r  s iz e ^ o r d e r ;  

in jm g e r  a r r a y ,  ro w ;  b o o ie a a  a r r a x  m a t r i x ;

S O M llê lli t h i s  p ro c e d u re  w i l l  rem o ve  f ro m  th e  

g ra p h  ( d e f in e d  b y  th e  a r r a y  m a t r i x )  a l l  

e d g e s  w h ic h  a r e  n o t  m em bers o f  a t  l e a s t  

o r d e r - 2  edge  c i r c u i t s  o f  le n g t h  th r e e o  When 

th e  re m o v a l i s  c o m p le te  th e  e le m e n ts  o f  th e  

m a t r i x  az'^e c h e c k e d ^  i f  t h e r e  a r e  e n o u g h  

e d g e s  l e f t  t o  m ake a  c o m p le te  g ra p h  o f  th e  

r e q u i r e d  o r d e r  th e n  th e  p r o c e d u r e  h a s  th e  

v a lu e  tn ,\e  e ls e  £ â i§ e j 

km&lKL
Integer s u m ^ i ; , j ;  

k o Q lim  f i n i s h e d ;  

s u m :- 0 ;

£ o r  i  1 1 m M X  s i z e  do  sum:=-=sum-frov/[ i ]  ;



l y z

e.QBj.mep„ti, check to see If there are enough 
edges at the outset; 

ax 8umlorderx(order-1 ) thea gfifeo work; 
remove edges î«£alae,; got_o, quit; 

work: finished :~Èjai,e;
£or 1 1 giiep. 1 m M I .  -size dp„

ax row[l3>0 È b m
fS2 j := 1+1 g£mi 1 mfcu. size âg.

, ax rowLa ]>o then.

iX matrix [i,j] tb.ga 

Ms;üi
a x  two row sum( i, j ,matra_x,size) <order-2 tb,gli

comment.delete the edge between 
v e r t e x  i  a n d  v e r t e x  j  ; 

m a t r ix L  j ] :m i ia t r l x [  : ^ f a l a .eg

r o w [ i ] : - r o w [ l ] " 1 ;  r o w [ j ] : - r o w [ J ] - 1  ; 

s u m :^s tim “ 2 ;  f i n i s h e d  

ê H â  o f  d e le t i n g  an  e d g e ; 

e p d  o f  c h e c k in g  one  ro w ; 

e q d  o f  t h e  e n t i r e  m a t r i x ;

ax ûüt fanished # m i  ÉSSXa work;
remove edges :-QOt, sum<orderx(order-1 ) ;

q u i t  :



,173

o f  p r o c e d u r e  rem ove  e d g e s ;

G h e c k (m a tr iX j) ro w ^ ro w  m am ber^ s iz e . ,  o r d e r )  ; 

iK L to E o r s iz e . , o r d e r ;

a r m z  row^, ro w  n u m b e r ; k o o lm ii m a t r i x ;

r e s u l t ;

ooiM 3M Xt t h i s  p ro c e d u re  w i l l  c h e c k  t h a t  th e  

: v e r t i c e s  a n d  e d g e s  o f  th e  gi'̂ ciph a re ^  i n  

fa c t ;?  p a r t  o f  a  c o m p le te  g ra p h  o f  th e  

r e q u i r e d  o r d e r o  The p r o c e d u r e  s t a r t s  b y  

f i n d i n g  th e  v e r t e x  w i t h  th e  s m a l le s t  

n o n z e ro  d e g re e ^  th e n  de t e  m in e s  th e  

c o m p le te  g r^ ip h s  a t t a c h e d  t o  t h i s ,  v e r t e x  © 

k : - s i z e ;  i : - ( ) ;

£s2 j —  1 a M a  i m i l l  size og 
if row[j]>0 and row[ j ] <k ijieg

i:«jj k : = r o w [j ] ;

o f  f i n d i n g  a  v e r t e x  f o r  f u r t h e r  

i n v e s t i g a t i o n ; 

k : = k T l ;

c om m ent, now  i n v e s t i g a t e  th e  ( p o s s ib l e )  

c o m p le te  s u b g ra p h  on v e r t e x  i ;



boolean, a r m z  sub graph [ 1 îk, 1 :k] ; 
inisasx m r m %  new row,new row number[1 ;k]| 
zero(subgr£iph,k) I new row number! 1 ] ;=i| li=2|

£o£ m s= 1 aimi 1 m M X  size çio.
SX row [m]>0 theg

I"* 4

nevf row num b e r [ 1 ] :-m : 1 ;"l-Hl

£021 1 1 sMJI 1 unill k do
Lq^  m 1 1 m M 2 . k  f la

s u b g ra p h [  l,,m] :- s u b g ra p h  [m^, 1 ] : m a t r i x  [n e w  row  

n u m b e rL 1 ] ^new  ro w  n u m b e r [m ] ] ;

s m m m l u  a subgraph has just been

constructedo It consists of vertex 1 

and those vertices joined to i b y  an 

edgOf along with any edges joining 

the selected vertices,, The procedure 

now- checks to see if this is a 

complete graphoj

result

fpx m 1 g t m   ̂ m t i X  k âo



n ew row [ m  ] : - row sum ( m s u b  g x*aph ̂ k ) 

if, new row[m]<k-1 tb^o. rasult:-f^lge^; 

n ew row number[m] :-row number [new 

row number[m] ] ; 

s m m m n i  this keeps our vertex 

numbering system constant; 

e|xd of elementary check; 

if result U m x .  SPjyo. end of procedure; 

o m m m l  the elementary check was not 

sufficient to determine if this is a 

complete graphs ; 

again: remove edges ( sub graphs k., new row^ order)

k§is.ia
check ( subgra%Dh^new row^new rovx 

numb ergk^orde r); 

g o t ^  again;

end of detailed check;

the subgraph under check was 

not completeo Row and column i of the 

graph in the next highest level of 

recursiozi must be set to fW-soo; 

de3.ete(matrix,size,!,row) ; goto exit; 
end of procedure; first:-false;

M ein.
iDiÊKâS v[1 :order],sgvertex[1 :kj;

i n M s g X  a m u i  vL1 :ordsr],sgvertex[1 :k);



c ornb fi rs t : - 1 i\xe ; 
combinations : comb(k,order,v)|

if. combfirst tlÊa gojtg last; 
outstrlng( 1, [f oL3nd*a*c omplete * 

sraph*of*orderl); 
outlnteger(1,order); 
outstring(1,Lwblch*conslsts*of*the* 

following*vertlcesl);
£or m := 1 siSB, 1 U.n£;LL order do, 

outlnteger(1,new row number!v[m]]); 
if. ail ,tîiea gpfg combinations ej^_ 

goto exit1; 
last: sgvertex!1]:-i; m:=2;

j 1 âtep. 1 m ü i  size dg 
matrix! l,j ] ihmi 

begin
sgvertex[:n] :«j ; m:-m+1 ;

ma. }
j :'=ü;

£û 2  1 := 1 afegg 1 m i ü  k .dg 
If row!sgvertex!1]]=k~1-J Üiag

delete(matrix,size,sgvertex!1],row);

j J 
end ;



êüâ. of output I 
eM. of subgraph checking j 

exiti ; If UQJi all thm, 

tSEin.

firstï^üam.^
I t  k>order+1 Ijltaa, order:«k elfte order:=order-t-1 ̂  
SfimmeQ-t. this ensures that if the

procedure has found a complete graph 
of order k it does not keep looking 
for complete graphs of order less than kj 

EQÊ.O, once morej

m l  I
exit;

g d  of procedure checkj 
comment this is the start of the main procedure; 

first:=tQje,;
£q£  i 5= 1 aMja i u q M X  size fla

comment, row number[i] is the name of the
i t h  v e r t e x 5

r o w [ l ] : - r o w  s u m ( l^ m a t r ix ^ s i2 e ) J  ro w  n u m b e r [ l ] : - l ;  

o f  s e t t i n g  u p  d a ta  v e c t o r s ;  

o n c e  m o re : re m o ve  e d g e s  (m a t r ix .c  s iz e ^  rovf^ o r d e r )  t | i ^

check(matrix^row^ row numbei\csize^order)



EQto once more; 
end of graph check;

%£. aot first % h m .
Msln,
3X all È M a ,

outstr:'ijrig( 1 g Lthese^are^all *the *c omplet e 
subgraphs *of*orderl) elge. 

îlgSlü.
out8tring(1^Lthe*largest*complete* 

Bubgraph*was*of *order.I) ; 
order:-order-1;

pi *1 « P-

ou t s t ring ( 1 g Lt he re * we re *n o "̂ c omplete sub g raph s'^of 

oi-derl) ; 

outinteger( 1 g order)J

of procedure complete graphs; 

lUkeg^r size^order^i^oj; 

hoQlmmi. all; 

start: open(70); open(2ü); n e wline(70^5);
, outstrtog( 1 ̂ LMoR.WILLIAMS^COMPIJTINCtI) ; size :-i-ead(20) ; 

order:-read(20); a l l :-read b o o l e a n (2ü); 

outstring(1 ̂ LBize'^'^order^^'alll) ; outinteger(1.9 size) ; 
outinteger( 1 ̂ order);
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a ü  a l l  o u t s t r i n g ( 1  J ^ t r u e l)  o u t 8 t r l n g (  1 , L f a l s e l )  ;

begin.
bofilsao, BZ m z. gmph[1 :size^,1 ;slze]|
£.Q£. i ;= 1 1 IfflÜi. size £îa

£o£  J := 1 Si2ê33. 1 m t a i  Blze do gi-aph[l#j] :=£âJ^j 
Input: li=i’sad(2ü) I

i £ .  1 = 9 9 9  i b m  e a is i e nd  o f  r e a d ;

j :=read(2ü) ; graph[ 1, j ] :=graph[ j^l] KOto_ Input
e n d  o f  r e a d :  

c l o s e ( 2 ü ) j

c o m p le te  g r a p h s ( g r a p h e s I z e ^ a l l ^ o r d e r ) ;  c lo s e ( 7 ü ) ;  

g c ^ X  s t a r t ;
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The Peck-Willlams Examination Time-table 
Procedure
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C o n im im ic a Lions o f  Llie ACÏM  

V o lu m e  9 /  N u m ljc r  6 /  J u n e , 1966

ALGORITHM 286
EXAAIINATION SCHEDULING [ZH]
J. E. L. P e c k  a n d  M. R. W i l l i a m s  (Reed. 17 Mar. 1964, 

25 Jan. 1965 and 1 Alar. 1966)
University of Alberta, Calgary, Alta., Canada
p ro cedu re  partition {incidence) g raph  o f o rder : {m) in to  : (îl) 

p a rts  using w e igh ts  ; (w) bound  : (wta.T) preassignm ent : 
(preassign) o f num ber : {pren)\
B oo lean  a rra y  incidence; in te g e r  a rra y  w, preassign; 
in te g e r  m, n, max, pren; 

co m m en t T h is  is an h e u ris tic  e xa m ina tion  t im e - ta b lin g  p ro 
cedure fo r  schedu ling  m courses in  n t im e  periods. I t  is essen
t ia l ly  the p rob lem  o f g raph  p a r t it io n in g  and m ap co lo ring .

In  the  te rm in o lo g y  o f g raph  th e o ry  : G iven a graph  o f m ve r
texes w ith  a p o s itiv e  in tege r w e igh t w[i] a t the f t h  ve rtex , 
p a r t it io n  th is  g raph  in to  no more than  n  d is jo in t sets such 
th a t each set conta ins no tw o  vertexes jo in e d  b y  an edge, 
and such th a t the  to ta l w e ig h t o f each set is less than  the 
prescribed bound max.

We represent the  g raph  as an m X n i  sym m etric  Boolean m a tr ix  
incidence whose f j t h  e lem ent is t r u e  i f  and o n ly  i f  ve rte x  i  is 
jo in e d  to  ve rte x  j  b y  an edge ( if  a s tu d e n t is ta k in g  b o th  course i 
and course i ) ,  d iagona l elem ents be ing  assigned the va lue  t ru e . 
T he  w e ig h t assigned to  th e  f t h  ve rte x  (num ber of s tuden ts  in  the 
f t h  course) is io[i]. We sha ll see be low  th a t preassignm ent is 
p e rm itte d . The num ber o f courses to be prcassigncd is g iven in 
pren and the course preassign [t, 11 is to bo placed a t the  tim e  
preassign [ i, 2].

T h is  procedure docs n o t m in im ize  the second o rde r incidence 
i.e. a ve rte x  i  be ing  assigned to  the  set k, where the  set k — 1 
con ta ins a ve rtex  j  jo in e d  to  i  (a s tu d e jit w r it in g  tw o consecutive 
exam ina tions), b u t th is  m ay  bo done by  rea rrang ing  the  sets 
a fte r the  p a r t it io n in g  is com ple ted . T he  procedure conta ins its  
own o u tp u t s ta tem ents , b u t its  d r iv e r  should  p ro v id e  the  in p u t; 

b eg in  in te g e r a rra y  rate [ l ;m ],  number [ l :n ] ;  
in te g e r  i , j ,  sum, course, time;
B oolean  preset, completed;

I N I T I A J jIZJH'. preset:— fa ls e ;
fo r J :=  1 step 1 u n t i l  a do 7iumbor b’j 0; 
fo r  i  :=  1 step 1 u n t i l  7H do 
b eg in  sum :=  0;

fo r  J :=  1 step 1 u n t i l  m  do 
i f  incidence [i, J] th e n  sum :=  sum T  1; 
row b‘] :=  sum

end I N I T I A L I Z E .  N o te  th a t row [f] now conta ins the  m u lt i 
p l ic i ty  o f, o r num ber o f edges a t the ve rte x  i  (num ber 
o f courses w h ich  c o n flic t w ith  the course i ) .  O f course since the 
incidence m a tr ix  is sym m e tric , less than  h a lf {i >  j )  need be 
sto red . H ow ever, th is  procedure , fo r  the sake o f s im p lic ity , 
is w r it te n  fo r  the  w hole m a tr ix . A lso note th a t row [ f j w il l  
e ve n tu a lly  con ta in  the negative  o f the  set num ber to  w h ich  
the f t h  ve rte x  is assigned (exam ina tion  tim e  fo r  the f th  course) 
and nionber [ j ]  w il l  con ta in  the w e igh t o f the j t h  set (n u m b e r of 
candidates a t tim e  j ) .  F rom  here on we d ro p ’ the a llus ions to 
g raph  th e o ry  in  the  com m ents;

T H E  P R E A S S IG X iM E N T :  fo r  j  :=  I s te p  1 u n t i l  pren do 
beg in  co in m e iil preassignm ent o f courses to tim es is now car-



ried  o u t. I f  pren — 0, then there are no p re assignm ents; 
course preassign b ',1]; lime-.- preassig7i [ j,2 ]; 
c o n im c n i We now  a tte m p t to  assign th is  course to  the  g iven 

Hmc]
S C R U T I N I Z E :  i f  row [course] <  0 th e n

b e g in  outslring (1, ‘T h is  course’ ) ; ouiintegcr (1, course); 
outstriug (1, ‘ is a lready scheduled a t t im e ’ ); 
ouiintegcr (1, — jou'[co7irse]); go to  N E X T  

e n d ;
i f  nu7ni)cr +  re [course] >  max th e n
b e g in  outstring (1, ‘Space is n o t ava ilab le  fo r  course’ ) ; 

ouiinlcger (1, course); outstring (1, ‘a t t im e ’ ) ;  
outinlcgcr (1, time); go to  N E X T  

e n d ;
fo r  ^ 1 s te p  1 u n  i l l  in do

i f  row [t ] =  — time th e n  
b e g in  i f  i?icidcnce [f, coio'se] th e n

b e g in  outstring (1, ‘course n u m b e r’) ;
ouiintegcr (1, coicrsc); outstring (1, ‘ co n flic ts  w ith ’ ) ; 
outinteger ( I J ) ;
outsiring ( I ,  ‘w h ich  is a lready scheduled a t ') ;  
outinlegcr (1, time), 
go lo  N E X T  

end  i f  incidence 
en d  i f  row;

S A T IS E A C T O R Y : ?-o7c[course] :== - 't ime;
numhor [time] -. =  number [h'ujc] T  w [cow'sc]; 
preset t r u e ;

N E X T :
en d  T H E  P R E  A S S IG N  M E N T ;

M A I N  PRO GRAM :  b e g in  B o o le a n  a r ra y  available [ In n ]; 
in te g e r  next;
p ro c e d u re  check (course); in te g e r  course; 
b e g in  in te g e r  j ;  c o n iin c u L  T h is  procedure renders u n 

ava ilab le  those courses c o n flic tin g  w ith  the g iven  course; 
fo r  J 1 s te ii  1 u n t i l  m do
if incidence [cou rse j] th e n  available [ j ]  ;= fa ls e  

e n d  o f procedure check.
F o r each o f the n tim e  periods we select a su itab le  set o f non 
co n flic tin g  courses whose students w il l  f i t  the  exam ina tion  
room ;

S T A R T  OF M A I N  PROGRAM :
fo r  time :— 1 s te p  1 u n t i l  n do 

i f  preset ^  numhcr[timc] >  0 th e n
b e g in  c o n u u e n t T he  preceding Boolean equ ivalence d i

rects  the  a tte n tio n  o f the  p rog ram  in i t ia l ly  o n ly  to  
those tim es where p reschedu ling  has occurred. We now 
de te rm ine  the ava ilab le  courses (i.e. unscheduled and 
n o n co n flic tin g ). I f  course i is a lready  scheduled, then 
rorab'j is nega tive ; 

completed :— t r u e ;
fo r  i  ;=  1 s te p  1 u n t i l  m do i f  row [f] >  0 th e n  
b e g in  [ i ]  :=  t r u e ;  co?7ip/e^cd :=  fa ls e  c u d

else available [f] fa ls e ; 
i f  comjdcted th e n  go to  O U T P U T  ; 
i f  preset th e n
b e g in  c o m m e n t Some courses wore prescheduled a t 

th is  tim e . I t  is necessary to  render th e ir  con flic ts  u n 
a va ila b le ; 

fo r  i 1 s te p  1 u n t i l  m do 
i f  j'Otc[i] =  —lime th e n  check (f)



end  preschcdided courses.
We now select the  ava ilab le  course w ith  the  m ost con
flic ts . T h is  is essen tia lly  the  h e u ris tic  step and th e re - 
fo3’e the  place whore va ria tio n s  on the m ethod  m ay  be 
m ade;

A G A IN :
sniu  :=  0;
fo r  f 1 step 1 u n t i l  m do

i f  available [ i j  A  roio [f] >  sum th e n  
b e g in  îic.rf i; sum :=  row [ i] end m ost con flic ts ;

i f  SU771 >  0 th e n
b e g in  c o m m e n t T here  exists an ava ilab le  course, so 

we tes t i t  (v iz  next) fo r  size. I f  i t  docs n o t f i t  we lo o k  
fo r  ano the r; 

available D-axf] :=  fa lse;
i f  7U(??i6cr [bme] îü[jicx/] >  -77iax th e n  go to  A G A IN ; 
c o m m e n t I f  we arc here the course w il l  f i t  so wo use i t ;  
row [?îc.i;f] —time]
n i m i b e r :=  nu 77 ib er [h»ie] tü[îî.e.tlj;
check  ( n e x t ) ; go lo  A G A N Y  

end  SU771 >  0 
end  of the tim e  lo o p ;

. i f  pi'eset th e n
b eg in  preset :=  fa lse; go to  S T A R T  OF M A I N  

PRO G R AM  end
In  case o f p reschedu ling  th is  takes us back to  t r y  the  re 
m a in in g  tim e  periods.

I f  we have reached here w ith  coynjileted t r u e  then  a ll 
courses are scheduled, b u t the converse m ay n o t be tru e , 
the re fo re ; 

i f  -1  completed th e n  
b e g in  completed t r u e ;

fo r  f  1 step 1 u n t i l  771 do
i f  roio [î] > 0 th e n  co77iplctcd :=  fa ls e  

e n d  - 1  co7upletcd and 
e n d  o f the  m a in  p ro g ra m ;

O U T P U T :  i f  - ,  co77ipletcd th e n
b eg in  c o m m e n t T he  fo llo w in g  fo r  s ta tem en t o u tp u ts  the 

courses th a t were n o t scheduled; 
outs tring (1, ‘courses n o t schedu led '); 
fo r  1 step 1 u n t i l  m do

i f  row [f] > 0 th e n  ou tiiiicge r ( l , i )  
e n d  n o t scheduled.

T he  fo llo w in g  o u tp u ts  the  tim e  pe riod  j, the  num ber o f s tu 
dents 7i-u??i6er[j] and the  courses i  w r it te n  a t tim e  J; 

T IM E T A B L E :  outstring(l, ‘ tim e  en ro lm en t courses’) ; 
fo r  J :=  1 step 1 u n t i l  7i do 
b eg in  outioitegcr ( lU) ;  outi7itGgev (1, nu)nbe7'[j]); 

fo r  f  :=  1 step 1 u n t i l  î?i do
i f  7’0Xt'[t] =  — j th en  outinteger ( l , i )  

end  j.
T he  fo llo w in g  o u tp u ts  the cours'es, the tim es a t w h ich  th e y  are 
w r it te n , and th e ir  en ro lm e n t; 

outsti'iiig (1, ‘course tim e  e n ro lm e n t’ ) ; 
fo r  i  1 s te p  1 u n t i l  i7i do

i f  row b l<  0 thei^^itintcger  (1, i ) ;  outinteger (1, row [ j ] ) ;
outinteger (1, rc[i]) gwL 

else
b e g in  07iti7ilegcr(l,i)') outs(ring(l, ‘unschedu led ’ ) ;

outinteger (1, îc [î|) 
e n d

end of the  procedure



J.0 4-

È'igenvector Approximation Procedure

All the boolean matrices were kept in the core store of 
the KDF 9 by storing one boolean element per bit (ie*
48 boolean elements could be stored in each KDF 9 

word)* This form of storage required the use of USER 
CODE procedures for bit interrogation and manipulation*
The matrices were stored by rows in such a manner that 
each row occupied an Integral number of words, any 
excess bits being set to the value false. The instruction 
set of the KDF 9 makes certain bit manipulations easy 
to code and efficient to perform^ for example the.z 
procedure *’eigen" will perform a matrix-vector multiply 
(700 X 700) in just under 7 seconds, "eigen" is included 

here as being typical of the USER CODE procedures used*



X o

procedure e Ige n(r ow ow2 tr ix ;s ize ) j 
value size ; Integer size ; 
real array ma tr ix ̂ row ̂ r ow2 ;

comment this procedure will take an approxlrration 
t o the large s t e ige nve c t or of MATR IX (g ive n 
in r o w ) and leave a cloĵ rser approximation 
in RGW2. MATRIX is a square Ü--1 hit imtrix 
of size SIZE, ;

KDF9 4/6/ü/ü;

Uizelj DUP; SET4-8; -Ij ERASE; SET! j Tj DUPj 

(number of words per row);
-RC1Ü ; ==RH3; SET1 j f j -RCl 4- j (number of rows); 

SET48; -RC11 ; (number of bits per word);
[row]_; -Mil; Mil; SETAYO; i ;  =M1 1 ;

(address of the start of ROW);
[row2]__; -Ml4; Ml4; SETAYO; q; -M14;

(address of the start of R0W2 ) ;
[nBtrix]_; -M13; Ml3j SETAYO; i; -Ml 3'j 
(address of MATRIX[0 ,0] ) ;

3; z e r o ; Q11T0^15; Q10TCQ12; (set counters to 
deal with one row of rratrjjx);
2; Ml 3M12Q; SET48; =01 5; (set up counters to 

deal with one word of the current matrix row ) ;



J. u o

J z e r o ; SRLDI ; NEG; iO m IGQ.; a n d ; c a b ; pE; r e v ; JICIGNZS;

(that is the inner loop (short loop jump));
ERASE; J2C12NZ; (get next viord of current imtrix row ) ; 
-IYDMIAQ; M+113; (get next row of nia tr ix ) ;
J3C14-NZ; (is job finished);
EXIT;.
Al g o l :

\


