https://theses.gla.ac.uk/

Theses Digitisation:
https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

$$
b y
$$

riched Roy Wiatiems

A thesis sumitted to the Univeraity of Glesem ron the degree of pocton or Thilosophy.

$$
\begin{aligned}
& \text { A Graph Theorw lonol por the } \\
& \text { Comutog sogution of untverejtv } \\
& \text { Tinewtebles and Roleted Probleme }
\end{aligned}
$$

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10646338
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Summary of Thesise

"A Graph Theory Model for the Computer Solution of University Time-tables and Related Problens"

The work desoribed in this thesis is concerned with four main fields of investigation, three concerned with the problems of a universlity sdainistration in producing timemtebles, and one concerne with the theory of graphs which provides a convenient mathematical model of a waiversity"s coursemstudent structure.

A wiversity administration's tiac-table problens moy be classified unden tharee headings:

1/ the production of exmanation tirae-tables,
2/ the asgignment of students to elabises, and
3/ the production of class-teachermon tine-tables. These three problems ares a olass of the eeneral cembinatonial problem and thus simple emumeration wili, in theory provide a solution. This thesis describes end eveluaters several algoxithmic methods of solution and several heuristic approaches to reduce the comblnaborsel difficulties of the problems. Although heuristic methods ao not guexentee the finding of an optimel solution, or, in some cases, eny solution ett all, the success of particular heoristic Is demonetrated on actual coursemstudent data.

A new algocithmic method is proposed for the construction of class-teacher-roon time-tables. The feasibility of this method is demonstrated with a nonmtrivial exaraple based on a game.

The thesia concludes with on investigation of the theory of graphs, the mathematical model used in previous work. Upper and lower bounds for the chromatio number of a graph are developed and procedures fox reducing the elze of the problem are constructed and discussed.

An algorithm for finding all the complete subgraphs of a graph fe developed as an ald in determining the solution to parts of the timemtable problem. This is then related to several theorems conoeming the eigenvelues end eigenvectors of the matrices ansoaiated with graphs and their meaning in the terms of the structure of thest graphisn This leads readily to a bound, involving elgenvalues, for the cize of the largest complate subgraph in any given graph.

The eraph theory section exds with a short note on the four coleur pronlem.

Acknowledrements

I should like to express my thanks to my collearrues in the Computing Department at the University of Glaseon for their help and encouragenent in preparing this thesis, and the mony stimulatine discussions wich have helped me to modify and extend my orisinal ides. Fy thanks are also due to Professor J. E. J. Peok, who originally suggested the tovic, and to the office of the Recistrar, University of Alberta, Calcary who very kindly supolied me with tro complete sets of stucent data, without which I could not possibly have progressec as far as I have.

Finally a speciel word of thanks to Professor D. G. Gilles for his support, encouragement, and the suggestions he has given me, and the University of Glesgow for providins the opportunity for me to do this work.

Table of Contents

Introduction 1
Chapter 1 .- Examination Time-tables
Section 1. . 1 - The Problem 7
Section 1.2 - Methods of Solution 1.0
Section 1.3 .- Heuristic Procedures 16
Section 1.4 .. An Improvenent 2.2
Section 1.5 - Determination of the Chromatic Number 29
Section 1.6 -: Results of the Investigatjon 44
Section 1.7 -- Possible Modifications 51
Chepter 2 - Sectioning Students to Classes
Section 2.1 - The Froblem 54
Section 2.2 - Heuristic Procedures 58
Section 2.3 - Transportation Networks 78
Section 2.4 - Complete Graph Alsorithmic Approach 85
Section 2.5 .. Experience With the Complete Graph Sectioning Algorithm 92
Chepter 3 ... Master Class-Teacher-Room Time-tables
Section 3.1 - The Problem 98
Section 3.2 - Proposed Procedures 101
Section 3.3 .. A New Aprroach 110
Section 3.4 - Doktor Ador's Geme 119
Chapter 4 - Further Results
Section 4.1 ... A Bound for the Chromatic
Number 1.25
Section 4.2 .- Graphical Reduction 132
Section 4.3 .- The Eigenvalues and
Elgenvectors of a Graph 135
Section 4.4 ... A Justification for the
Heuristic Colouring Procedure 147
Section 4.5 .-. The Four Colour Problem 150
References 152
Related Naterial 156
Programs and Flow Charts
List of Programs 159
The Complete Graph Frocedure
Flow Chart 163
Listing 166
The Peckwillians Examinetion Time-table
Procedure 181
The Eigenvector Approxination Procedure 184
t

TNTRODUCTION

Education is very bie business. lext to natioral defence it is probably the largest single objective in every civilized country. It intimately concerns about 20% of the population and is one of the major i.tems in the national budget. With millions of people and vast amounts of money to be accounted for, educational administration is rioe for the apolication of computexs to some of the difficult problems arising in educational institutions.

A very latge curriculum reform is jn progress in response to the expansion of knowledge and the general dissatisfaction with the school programs of the 1930's and 1940's. There are now many groups working in different countries studying changes needed in the school curciculum. Each of these groups is producing the hundreds of items necessary for an instructional packege. But underlying each package js an assumption of how the curriculum should be orgenized. To date the computex has played a very minor role in this curriculum reform. However as the reform movement grows towards more and more individualized instruction, the computer will becone not only a great help but the only possible means for a large institution to deal with its ourricuium roblers.

This thesis considers three aspects of the workloed of an educational adninistretion:

```
2/ the assignment of students to classes
3/ the production of classuteacher-room time-teble:
```

These three problems are a class of the general combinatorial problen. The fact that complete enumeration of all possible assignments or time-tables provides a theoretically satisfactory solution to the problem is evident, hovever the practical impossibility of applying total enumexation to any but the smallest of problems is also quite clear. An experienced person is able to produce a reasonable tine-table, reasonable, that is, in the efrort reouired to find a better one, because he can see to avoid the many unfruitful paths the computer would have to take. However as universities increase in size and complexity the effort irvolved in this task will grow to the point where computer based methods may prove to be the only reasonable method of accomplishing them.

This thesis describes and evaluates several
algorithmic methods of solution and several heuristic approaches to eliminate the combinatorial impossibility of the problems. Although the use of heuristics eliminates the assurance of eventually obtaining a solution (if, indeed, one exists at all) and will not guerantee that, if found, the solution is optimun, the success of particular heuristics will be demonstrated.

The computetionel porer of an English-mlectric.. Len-inarconi KDF 9 computer was used to develop and
check out the procedures. The main part of this thesis is a description of the ideas leading to the development of the procedures, however some of the approaches found in the literature have been included for reasons of completeness.

Although the organization of schools differs from area to area the basic procedures are applicable to all levels of school organization. The emphasis has been placed on a situation similar to that of a North American university as it is somewhat more general than either a school ox a British university situation, and the author was very familiar with e North American unjversity administration. The fact that many problems, not directly related to the production of time-.tables, may be expressed in the same notation as that used in this thests gives an indication that these procedures may have wider applicability than just educational administration.

It is hoped thet, by an examination of these and other procedures, both heuristic and algorithmic, someone may be able to determine a relationship between the data and the time..tables produced. As J. Von Neumann (16) once said:

> "That the first, and occesionally the most inportant, heuristic polnters for rew mathembtical advarces should oricinate in
physios (experimentation) is not a ner or surprising ocourence The calculus itself oricinated in physics. The ereat advances in the theory of elleptic differential equations originated in equivalent insights. This applies even in the heuristic approach to the corcect formulation of their uniqueness theorems and of their natural bourdary conditions."

Thus by expounding heuristic methods perhaps an insight may be obtained into an area where modern mathematics can not go, just as it once could not delve into the jnner mysteries of elliptic djferential equatiors.

The rest of this work is divided into four major chapters. The first chapter deals with the production of examination time-tables. After developing a graph theoretic model, an heuristic procedure for the production of the time-tables is developed. A number of other authors have developed very similer heuristics for producing examination time.-tables, however it appears that all the authors have worked in ignorance of one anothers work. Using this heuristic as a base it is then possible to show the relevance and use of an eigenvector of one of the matrices used. This leads to an improvement in the basic hounistic resultine in an extremely good procedure. In order to shon the success
of the improved heuristic an investigation of possible algorithmic procedures is conducted, resulting in the development of an algorithm for finding complete subcraphs of a given graph. This procedure is partially bascd on Theorem 1.5.3, the statement of which, but not the proof, is attributable to Dr. A. R. Meetham from the National Physical Laboratory. The chapter ends with a brief summary of the computational results and a note on the possible modifications to the procedure.

Chapter 2 deals with the problem of assigning students 'to classes. After showing the relevance of the problem, an heuristic procedure is developed and compared to those previously described in the literature. A section is then devoted to describing the solution to the problem in terms of transportation networks. This section is an exbension of a general work by Ford and Fulkerston (41). The chapter rinishes with. the development of an aloorithmic sectioninc procedure, based on the complete graph algonjthn, and a discussion of some aspects of jits implementation.

Chapter 3 is a review of some of the literature dealing with the problem of producing full master time-tables gnd a discussion of an algorithmic procedure. The chepter concludes with an example, based on a pane, of how the procediure would operate.

Chopter 4 investigates the theory behird the problems. Upper and lower bounds for the chrometic
number of a graph are developed and procedures for reducing the size of the problem are developed and discussed. A section is devoted to the eigervalues and eigenvectors of various matrices and their associetion with the colouring problem. The chapter finishes with a justification for the heuristic procedure developed in Chapter 1 and a short note on the four colour problem.
!

$$
\mathrm{CHAPTER} 1
$$

Examination lime-tables

The character of the examination time table problem allows it to be readily represented by a mathematical model known as a graph (2, 4, 19). A graph is:

$$
\begin{aligned}
& 1 / \text { a set } X \\
& 2 / \text { a function } U \text { mapping } X \text { into } X \text {. }
\end{aligned}
$$

Or, to put it another way, a graph G, which is denoted by

$$
\mathrm{G}=(\mathrm{X}, \ddot{\mathrm{U}})
$$

is the pair consisting of the set X and the function U. It is convenient to visualize the set X as points or vertices in a plane, and if x and y are two vertices such that

$$
y \in U x \quad \text { and } \quad x \in U y,
$$

then the two vertices will be joined by a line or edge. If x and y are two vertices such that

$$
y \in U x \quad \text { but } \quad x \notin U y
$$

then x and y will be joined by an edge oriented in the direction y to x.

Graphs are met with in different disciplines under different names: in psychology they are called socionrems; in topology, simplexes; in physics and
engineering, circuit diagrams. In the context of the production of an examination time-table the set of vertices, X, will represent the set of classes offered at the educational institution and the function U will be such that if any student is taking both course x and course y then U will generate an undirected edge between vertex x and vertex y. For example in FIGURE l.1.1 are listed the courses being taken by four students and the graph generated by this data. The general problem of producing examination time-tables is one of partitioning the vertices of these graphs into jndependent or disjoint sets, such that erch set contejns no pair of vertices which are comected by an edge. This may be considered as "colouring" the vertices of the graph. A colouring of a graph, using at most k colours, is a function C defined over the vertices of the graph and taking. one of the values $1,2,3, \ldots . .0 k$ at each vertex with . the condition that

$$
C(x) \not \approx C(y)
$$

if the vertices x and y are joined by an edge. If the graph is colourable in k colours tut not with $k-1$ colours then k is celled the chromatic number and the graph is said to be k chromatic. The symbol.

Student A	Student B		Student C

FIGURE 1.1.1
Showing the courses taken by four students and the graph generated by this data.
will denote the chromatic number of the graph G. If a graph consists of two or more discomected components the chromatic mumber of the whole graph is that of the component with laxgest chromatic number.

To find the chromatic number and the colours assigned to the vertices of a graph G (with N vertices and E edges) it is possible to use an empixical procedure which is straightforward and capable of direct implementation, but not always effective, an analytic procedure which gives a solution systematically but requires a tremendous amount of computation, or an heuristic procedure which, although it does not optinum guarantee an/solution, can in practice give an acceptable ansiex with a minimum of effort.

The empiricel procedure consists of startine with an arbitrary colourings using the colours $1,2, \ldots, p$ and attemptine step by step to eliminate one of them. This can be readily seen to be an awhard and not necessarily successful procedure if implemented on a large complex graph.

The analytic procedure consists of testing analytically whether the graph can be coloured with p colours. With any scheme using p colours it is possible to associate numbers $S(i, j)$ and $C(i, q)$ (where $i=1,2, \ldots$; $j=1,2, \ldots, E ; q=1,2, \ldots, p$) such that:

$$
C(i, \underline{q})=\left\{\begin{array}{l}
1 \text { if vertex i is of colour } q \\
0 \text { otherwise }
\end{array}\right.
$$

$$
S(i, j)=\left\{\begin{array}{l}
1 \text { in edge } j \text { is incident with vertex } ; \\
0 \text { otherwise }
\end{array}\right.
$$

The problem of detemining if the graph can be coloured in p colours now reduces to finding integers $C(i, a)$ such that

$$
\begin{aligned}
& C(i, q) \geq 0 \quad(i=1,2, \ldots, N ; q=1,2, \ldots, p) \\
& \sum_{q=1}^{p} C(i, q)=1 \quad(i=1,2, \ldots, \mathbb{N}) \\
& \sum_{k=1}^{N} s(k, j) C(k, q)=1 \quad(j=1,2, \ldots, E ; q=1,2, \ldots, p)
\end{aligned}
$$

Thus there exists a system of linerx inequalities whose compatibility may be investigated by the usual methods of jntegex programming. If integers C(i,o) can be found satisiyjng the above constraints then p may be systematically reduced until the chromatic number, and thus the values of the colouring function, are determined.

Unfortunately the analytic procedure also breaks down on large graphs because of the rapidly increasing computation necessary as the size of the graph gets larger. The computation effort may be reduced if the graph is separable into several disjojnt subgraphs.

The individual connected subgraphs may be easily determined by considering the orjginal data and not the graph. Fach student will have taken a set of $|R|$ courses, R, which is a subset of the N courses offered
by the institution. By considering each set R in turn the following algorithm will easily determine the connected subcraphs:
$1 /$ Produce an N elernent vector B such that

$$
B_{i}=i \quad(i=1,2,3, \ldots, N)
$$

2/Select a course j from R such that

$$
\mathrm{R}_{j}=\min \cdot \mathrm{R}_{\mathrm{k}} \quad(\mathrm{k}=1,2,3, \ldots,|\mathrm{R}|)
$$

3/For each $R_{k}(k=1,2,3 \ldots,|B|)$ replace
each occurrence of the number R_{k} in B by B_{j} 4/After considering all the sets \mathbb{R}, the vector
B is scanned and if

$$
B_{i}=B_{j}
$$

then i and j are vertices in the same connected subgraph

The integer programmen procedure may now be applied to each disconnected subgraph in turn. If the graph is not separable, or if each disconnected subgraph is still too laxge to make an analytic procedure practicable, then recourse may be made to finding a "point of articulation" if one exists. A point of articulation is a vertex, p, which separates the vertices of the graph into two or more subsets, V_{1}, V_{2}, \ldots, V_{n}, having only p in common and such thet any edge chain between a vertex in V_{i} and a vertex in V_{j} must pass throuch p. For example the eraph in FIGURE 1,2.1 vertices c and are points of articulation.

FIGUBE 1.2.1

Shoring a graph in rihich vertices c and d are points of articulation.

Removal of vertex c separates the cratch into two disconnected subgrephs. If the subgraphs are now coloured it rill only be necessary to assign a colour to vertex c such that (perhaps after permuting the colours of one of the subgraphs) it is different from the colours assigned to vertices a, b, and d. This concept may be extended to finding a "minimal articulated set". This is a set (not necessarily uni rue) consisting of the least number of vertices Whose removal will divide the graph into two or more unconnected subgraphs. The problem of finding a minimal articulated set is not trivial.

To find the minimal articulated set of a graph, $G=(N, U), N$ must be divided into three subsets Ni, N2, and a such that:

$$
\begin{align*}
& \mathrm{U}_{\mathrm{N} 1} \wedge \mathrm{~N} 2=\varnothing \tag{1.2.1}\\
& \mathrm{U}_{\mathrm{N} 2} \wedge \mathrm{~N} 1=\varnothing \tag{1.2.2}
\end{align*}
$$

|a| is minimal.

Let Fi be the boolean matrix such the

$$
M_{i j}=\left\{\begin{array}{l}
1 \text { if vertex } i \text { is adjacent to vertex } j \\
0 \text { otherwise } .
\end{array}\right.
$$

$$
\begin{aligned}
& M=\begin{array}{c|ccccccccc}
a & b & c & d & e & f & R & h & i \\
a & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
b & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
c & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
e & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
f & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
g & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
h & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
i & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0
\end{array} \\
& \cdots \quad \begin{array}{c|ccccccccc}
a & b & c & d & e & n & a & h & i \\
a & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
b & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
c & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
d & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
e & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
b & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
h & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}
\end{aligned}
$$

FIGURE 1.2 .2

Showing a graph, jts matrix N, the complement matrjx M_{3} and two mimimal axticulated sets

FIGURE 1.2 .2 shows a graph, its matrix M and the complement $\bar{M}(\vec{M}=1 \ldots \mathrm{M})$ of M 。 The submatrix of $\overline{\mathrm{M}}$ defined by the rows corresponding to $\mathbb{N 1}$ and the colums corresponding to $N 2$ has all its elements equal to 1 , as defined by the relations (1.2.1) and (1.2.2) above. The problem thus reduces to finding the largest complete (ie. all elements equal to 1) subnatrix of $\overline{\mathrm{M}}$ 。 Kaurmann (23) describes an algorithm wich will yield both

$$
\begin{aligned}
1 / N 1 & =a, b, c, d \quad N 2=f, b, h \\
a & =e, i \quad \text { and } \quad|a|=2
\end{aligned}
$$

and

$$
\begin{array}{rlrl}
2 / N 1 & =a, b, c \quad N 2=f, g, h, i \\
a & =d, e \quad \text { and } \quad|a| & =2
\end{array}
$$

Unfortunately Kaufmann's algorithm is quite expensive in computer time and, as the size of the graph increases, more and more minimal articulated sets will be needed, thus making it almost impossible to ensure that the colourings of the individual subgraphs will be compatible. Because of these difficulties the aralytic procedure must be counted as impracticable for large graphs.

An heuristic procedure offers neither the assurance of finding an optimal solutions as does the analytic procedure, nor the simplicity or the empirical procedure, but it does offer the ability to obtain a solution ir
a practical case and to obtein this solution without an unreasonable amount of computation.

The author (28), A. J. Cole (5) and others have proposed heuristics for solving this problem. The author's work (hereafter refered to as the Peck-williams procedure) is slightly more general than most of the others but they all follow the same general pattern. The main heuristic assumption is: If a course (vertex) i conflicts with a large number of other courses, then it will be harder to find a time period (coloux) to fit it in than to find a time period for a course j which conflicts vith only a few other courses.

If d_{i} denotes the degree of vertex i (the number of edges incident with vertex i) then this becomes an index of the extent to which course i conflicts with other courses (for example in FIGURE 1.3.1, $d_{3}=4$ which indicates that course 3 is in direct conflict with three other courses, plus one because $a_{33}=1$).

Assuming that the first $\mathrm{T}-1$ periods of an examination time-table are complete, then to select the courses which will write examinations in period T the heuristic procedure would be as follows:
$1 /$ find the unassigned course with the largest d_{i}
2/check to see if this course is joined by an edge to any other course already assigned to period T : lif no edge exists then assign this
course to period T and go to step 1 , otherwise remove this course from further consideration in period I and go to step 1 .

This heuristio has two distinct adventages:
$1 /$ it has intuitive appeal.
2/it is very simple to implement on even very small computers.

The intuitive appeal stems from the experience of "hand" produced examination time-tables, where to fit a new course, having a large student population (and hence a large number of conflicts with other courses) into an already conpleted tine table is an almost impossible task. It is for this reason that a clerk of examinations will always time-mble the large classes first and then let the classes with a small population fit in where they can.

The Peck-Williams procedure has been successifully jmplemented on a very small. I.B.N. 1620 where the core store was not sufficient to hold all the reguired. information. Resort was made to a large loop of paper tape which was searched to find the items of information that were required. Even under such a severe handicap the procedure produced usable results in a realisticelly short time. The procedure proposed by cole has been implemented on an Elliot 803 and, although limited to less than 340 subjects, also produced usable results

Without using vest amounts of computer time.
For greater generality consider a graph $G=(V, U)$ whose vertices are $v_{1}, v_{2} \ldots, v_{n}$. Let $a_{i j}$ be the number of edges of g going from vextex v_{i} to vertex v_{j}. The souare matrix A with n rows and n columns is called the matrix associated with the graph G. The element $a_{j i}$ is meaningless in the context of examination time-utabies. It will be a convention that $a_{i j}=1$ unless otherwise stated. In most situations the elements of A will only take the values 0 or 1 , in this case A may be considered to be a boolean matrix with $0 \equiv$ false and $1 \equiv$ true. It will often be convenient to consider A both as a numeric matrix suitable for computation and as a boolean matrix for use in logical operations. The context of the argument will make clear which form of A is being used.

The heuristics, in the above mentioned procedures; actually opexate on the associated matrix of the graph of the course conflicts. The ordering criterion, d_{i}, is obtained by

$$
a_{i}=\sum_{j} a_{i j}
$$

and the adjacency of two vertices, v_{i} and v_{j}, may be deterinjed by inspection of the element $a_{i j}$ 。

By this heuristic the first course scheduled to hold its examination in period 1 will be the course whose vertex has the largest degree. However comrlications
arise when two or more courses have vertices of the same degree. It is obvious the the selection of course i, for inclusion in period T, may produce a significantly different time-table from the one produced if course j had been initially selected.

The Cole procedure differentiates between courses of equal d_{i} by selecting the subject with the largest number of multiple papers which must be written on consecutive days. If no course emerges unique from this criterion then a selection is made by considering the number of papers written in each subject. If this still does not yield a unique course for consideration then the original ordering of the courses is considered and the first course encountered, meeting all of the above conditions, is selected for inclusion in tire period T.

The Feck. Williams procedure, on the other hand, simply selects the first course it encounters with the appropiste d_{i}.

It is interesting to note that Holman and Turkes in one of the most widely reed reports on this subject, while considering the order of scheduling classes, state:
"an arbitrary policy states that the variables should be scheduled in the order $A_{3}, A_{2}, A_{5}, . . "$ They po on to develop this arbitrary policy into a procedure which does not do justice to the more ont ind
which appeare in the title of their report. By claining to rely heavily on Bellman's principle of optimality, which states:

An optimel policy has the property thet, whatever the initial state and initial decisions are, the remainjng decisions must constitute an optimal policy with respect to the state resulting from the first decisjons,
they have produced a procedure which, although very cunning in the way it; adds a course to the partially completed time period, still violates Bellnan's principle, with respect to the whole time-teble, by selecting the inlial courses rox each period according to an arbitrary policy.

This lack of a decjsion oriterion for the selection of courses is a serious drawback of all these procedures as it can be shown that an incorrect choice of verter can lead to time..tables which axe far from optimal. For example, consider a selection of twelve courses whose conflict pattern produces the graph and its associated matrix shown in FIGURE 1.3.1. There is no single vertex of maximu degree, rether the choice lies between vertices 5,6 , and 7 , each of which has a degree of six.

Both the Cole and the Peck.Willians procedure would have choosen vertex five as the initisl assiment and thus producea a time-table of four periods as

FIGURE 1.3 .1

Shouting a graph, its associated matrix and the decree of each vertex.
period 1 period 2 period 3 period 4
$5 \quad 6$ 2 94.1
8
courses11
12An inspection of this trivjal graph will reveal thatits chromatic number is, in fact, three and it shouldbe possible to produce an examination time-table of theform:

period 1	period 2	period 3
6	5	9
7	10	1
2	3	
8	4	

Section 1. 4 An Improvement
In Tyvestugethe ne required changes to the heuristic procedure it will be useful to define the "influence" or "degree of order k " (d_{i}^{k}) of a vertex. This influence will be an index of the degree of the vertices joined, by an edge path of length k, to the vertex under consideration.

For example, consider a tournament with four players $v_{1}, v_{2}, v_{3}, v_{4}$; if v_{i} defeats v_{j} then v_{i} is joined to v_{j} by two edges directed from v_{i} to v_{j} if the match was drawn then the two vertices are again joined by two edges -- one directed towards each. At the end of the tournament the results are placed into the graph and its associated matrix shown in FIGURE 1.4.1 (the loops on each vertex mean simply that each player is only as strong as himself).

The term $a_{i j}^{k}$ is the general element of the matrix: A^{k} (ie. the umber of edge paths of length k between the vertices v_{i} and v_{j}) and

$$
\mathrm{d}_{i}^{k}=\sum_{j} \mathrm{a}_{\mathrm{i} j}^{k} .
$$

Thus d_{i}^{1} is the degree of vertex ∇_{i} (ie. $d_{i}^{1}=d_{i}$)。
In the example of the tournament in FIGURE 1.4.1

$$
\begin{array}{ll}
d_{1}^{1}=5 & d_{2}^{1}=3 \\
d_{3}^{1}=5 & d_{4}^{1}=3 .
\end{array}
$$

$$
\begin{aligned}
& v_{1} \text { defeats } v_{3} \text { and } v_{4} \\
& v_{2} \text { defeats } v_{1} \\
& v_{3} \text { defeats } v_{2} \text { and } v_{4} \\
& v_{4} \text { defeats } v_{2}
\end{aligned}
$$

$$
A=\begin{array}{llll}
1 & 0 & 2 & 2 \\
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 2 \\
0 & 2 & 0 & 1
\end{array}
$$

FIGURE 1.4 .1

Showing the results of a tournament, their transommtion into a graph, and the matrix associated with the graph.

Contestants v_{1} and v_{3} both have a degree of 5 , while contestants v_{2} and v_{4} have a degree of 3 . So no one player has seemingly emerged victorious. Continuing the process by finding d_{i}^{2}, where

$$
\begin{equation*}
d_{i}^{n+1}=\sum_{j} a_{j . j} d_{j}^{n} \tag{1.4.1}
\end{equation*}
$$

the following results are obtained:

$$
\begin{array}{ll}
d_{1}^{2}=21 & d_{2}^{2}=13 \\
d_{3}^{2}=17 & d_{4}^{2}=9 .
\end{array}
$$

This indicates that player v_{1} is the winner or the tournament. This is due to the fact that the players defeated by $v_{1}\left(v_{3}\right.$ and $\left.v_{4}\right)$ were stronger than those defeated by $v_{3}\left(v_{2}\right.$ and $\left.v_{4}\right)$ 。

It has been suggested by Barge (2), in a discussion on tournament theory, that the "iterated power of order k of the vertex $v_{i} "\left(\pi_{i}^{k}\right)$ be defined as

$$
\pi_{i}^{k}=\frac{d_{i}^{k}}{\sum_{i} d_{i}^{k}}
$$

It is well known that the $\operatorname{limit}_{x \rightarrow \infty} \pi_{i}^{*}$ exists for positive matrices, end the vector:

$$
\pi^{k}=\left(\pi_{1}^{k}, \pi_{2}^{k}, \cdots, \pi_{m}^{k}\right)
$$

tends toward the eigenvector corresponding to the largest real positive eigenvalue of the matrix 4 .

A brief loow at a comblotely djfrerent probler moy provicie a further incight into the neture of the auratity d_{i}^{k}.

In an etterpt to devise a schere for drarine.
a rreph on a computer control?ed plotter or djsplay it on a cathode ray device, the followine problom erose:

Qiven n vertices, some of which are joined tropether by edres, produce a neju of X, Y co-ordirates fox each vertex such thot wher the vertjoes are distrinuted on thejr comordingtes the sum of the distreces cetroen the bound pairs of vertices is minimel, the centre of grevity of the systen is on the oxipir and the whole sustem is distriroted evendy oven a circulfer display rrea.

If the co-ordinetes of vertex $\dot{1}$ are X_{i} and Y_{i} then

$$
\begin{equation*}
\sum_{i} X_{i}=0 \text { and } \sum_{i} Y_{i}=0 \tag{1.4.2}
\end{equation*}
$$

to keep the plot centred on the oriain end

$$
\begin{equation*}
\sum_{i} X_{i}^{2}=c \quad \text { and } \quad \sum_{i} Y_{i}^{2}=c \tag{1.4.3}
\end{equation*}
$$

to cortein the rlot rithir a constent arer. If the matrix A is the n by n symetric zenomone matrix associcted rith the siver rrenh then o function, \hat{i}, mey be conatructed which rinl provicie er iteratimu

$$
f=\frac{\text { sum of the squares of the distances between }}{a l l \text { joined vertices }}
$$

then

$$
\begin{equation*}
2 f=\sum_{i} \sum_{j}\left(\left(X_{i}-X_{j}\right)^{2}+\left(Y_{i}-Y_{j}\right)^{2}\right) a_{i j} \tag{1.4.4}
\end{equation*}
$$

Expanding this it is possible to obtain

$$
\begin{aligned}
f= & \sum_{i}\left(X_{i}^{2} \sum_{j} a_{i j}\right)-2 \sum_{j} \sum_{i} X_{i} X_{j} a_{i j}+\sum_{j} X_{j}^{2} \sum_{i} a_{i j} \\
& +\sum_{i}\left(Y_{i}^{2} \sum_{j} a_{i j}\right)-2 \sum_{j} \sum_{i} Y_{j} X_{j} a_{i j}+\sum_{j} Y^{2} \sum_{i} a_{i j} \quad(1.4 .5
\end{aligned}
$$

To produce the best clustering the function f must be a minimum, Considering one vertex, i, and for simplicity assuming that the graph has no loops, ie e ai j $=0$, it is possible to obtain

$$
\begin{equation*}
\frac{\partial f}{\partial X_{i}}=X_{i \sum_{j}} a_{i j}-\sum_{j} X_{j}^{a_{i j}} \tag{1.4.6}
\end{equation*}
$$

Setting $\frac{\partial f}{\partial X_{i}}=0$ and solving for X_{i} it is found that

$$
\begin{equation*}
X_{i}=\frac{\sum_{i} X_{i} i_{j}}{\sum_{j} a_{i j}} \tag{1.4.7}
\end{equation*}
$$

similarly

$$
\begin{equation*}
Y_{i}=\frac{\sum_{j} Y_{j}^{a} i j}{\sum_{j} a_{i j}} \tag{1,4.8}
\end{equation*}
$$

By using (1.4.7) and (1.4.8) in an iterative procedure
it is possible to determine the X_{i} and Y_{i} for each vertex. Obviously, in the practical display problems it is necessary to scale $X_{i} Y_{i}$ and shift the origin between each iteration to satisify conditions (1.4.2) and (1.4.3) and extra steps must be taken to ensure that closely related groups of vertices do not shrink to a single point or all vertices come to cluster along the line $X=Y$.

The similarity between (1.4.7) and (1.4.1) is striking but not unexpected, for in both problems the object is to find the "centre of gravity" of the graph. In (1.4.7) the denominator may be interpreted as a factor tending to pull a vertex of high degree to the centre of the system.

In attempting to assign colours to the vertices of a graph it will be the vertex with the largest dix (from (1.4.1)) or the smallest $X_{i}(f r o m(1.4 .7)$) that is most likely to cause trouble as it is the vertex most deeply embedded in the system.

Returning to the problem of examination time-tebles; it should now be clear that, because $\operatorname{limit}_{k \rightarrow \infty} \pi^{k}$ tends townad the principal eigenvector comesponding to the largest eigenvalue of the matrix associated with the this eigenvector shouldbe used as the ordering criterion. graph of their conflicts, In any practical situetion the computation of this eigervector is difficult (and on small computers its computation would be prohibitive).
thus the courses should be ordered by their d_{i}^{k} where k is large enough to obtain sufficient seperation of. the classes to make the order of scheduling clear. The actual value of k that should be used will vary with the size or the problem and as the nature of the graph. In general the iterative procedure should be carried out to as high a k as possible, notwithstanding the fact that if a clear separation of the vertices is obtajned (no two elements of d^{k} being equal) then the iterative procedure should be stopped. It should be noted that, as in the case of V_{11} and v_{12} in FIGURE 1.3 .1 , a complete separation may never be obtained irrespective of the number of iterations performed.

Returning to FIGURE 1.3.1 to consider a concrete example, the associated matrix and the first three d_{i}^{k} is are

1	0	0	0	1	1	0	0	0	0	0	0		3	15	66
0	1	1	0	1	0	0	0	0	0	0	0		3	13	56
0	1	1	0	0	1	1	0	0	0	0	0		4	19	79
0	0	0	1	0	0	1	0	0	0	0	0		2	8	28
1	1	0	0	1	1	0	1	1	0	0	0		6	24	107
1	0	1	0	1	1	0	0	1	1	0	0		6	27	125
0	0	1	1	0	0	1	0	0	1	1	1		6	20	83
0	0	0	0	1	0	0	1	0	0	0	0	2	2	8	32
0	0	0	0	1	1	0	0	1	1	0	0		4	20	91
0	0	0	0	0	1	1	0	1	1	0	0		4	20	87
0	0	0	0	0	0	1	0	0	0	1	0		2	8	28
0	0	0	0	0	0	1	0	0	0	0	1		2	8	28

Using d_{i}^{1} as the ordering criterion the Feck-hilliems procedure produces an examination time..tsible of four periodsos follows:

period 1	period 2	period 3	period 4
5	6	3	10
7	2	9	
	4	1	
	8		
	11		
	12		

If this procedure is changed to use a_{i}^{3} as the ordecing criterion it is possible to produce a three perjod time-table:

period 1	period 2	period 3
6	5	9
7	10	1
2	3	
8	4	

11
12

This is the best possible in this case. Thus with an expenditure of a small effort in computing a^{k} a significant improvement can be made in the heuristic even for trivial graphs.

In determining an examination time-table by heuristic methods it car not be assumed that the result is optimal, or indeed anywhere near optimal. For this reason a great deal of time was spent on methods of checking the result to see if it could be further improved.

The mathematical basis of graph theory has not progressed to the point where, given a graph, a formula may easily be determined to give the chromatic number, much less indicate which vertices should be given what colours.

One approach to the determination of the chromatic number of a graph may be made through the theory of chromatic polynomials. A chromatic polynomial is a function, $F(\lambda)$, which expresses the number of different ways of colouring a greph as a function of the number. of colours used, λ. For example, in FIGURE 1.5.1 the centre vertex may be coloured in any of the λ colours, the two outer vertices may now be coloured independently each in $\lambda-1$ ways. Thus

$$
F(\lambda)=\lambda(\lambda-1)^{2} .
$$

Similarly in FIGURE 1.5.2 the top vertex may be coloured in λ ways, there ere then $\lambda-1$ ways of assigning a colour to one of the adjacent vertices ard $\lambda \cdots 2$ ways

$$
F(\lambda)=\lambda(\lambda \ldots 1)^{2}
$$

FIGURE 1.5.1

Showing a greph and its chromatic polynomial

$$
F(\lambda)=\lambda(\lambda-1)(\lambda--2)
$$

FIGURE 1.5 .2

Showing a graph ard its chromatic polynomial
of colouring the third vertex. Thus

$$
F(\lambda)=\lambda(\lambda-1)(\lambda-2)
$$

It has been shown by in. C. Read (30) that $F(\lambda)$ is always a polynomial of the following form:

$$
F(\lambda)=c_{r} \lambda^{n}-c_{r-1} \lambda^{n-1} \ldots \omega_{r-n} \lambda
$$

where n is the number of vertices in the graph,

$$
\begin{aligned}
& C_{x}=+1 \\
& C_{x-1}=\text { the number of edges in the graph }
\end{aligned}
$$

and the sign of C_{i} alternates at each term.
If $F(\lambda)$ is the number of ways of colouring the graph in λ colours then the smallest positive irteger (excluding zero), λ, such that

$$
F(\lambda) \geq 0
$$

will be the chromatic number of the graph.
The computation of the coefficients of the polynomial is, in general, an impossibly complex process for a large greph. In fact very little is known about chromatic polynomials and only one way has ever been found to construct then. A number of theorems in the pacer by Read (30) give necessary conditions for a polynomial to be the chromatic polynomial of some graph, but none of them give a sufficient condition.

Because of the various limitations of these ard
other methods, it became necessary to retreat to basic concepts and attempt to design a procedure which would give some information on the chromatic number of a greph.
J. De Brujjn (unpublished but his proof appears in a paper by G. A. Dirac (8)) has shown that a graph always contains a critical chromatic subcraph and that this suberaph is finite and connected (a critical greph is one in which if you delete an erbitrary vertex or edse you reduce the chromatic number of the graph). This result was improved by Brooks (8) who showed that if $k \geq 4$ a cxitical k--chromatic exeph conteins either a k-complete graph or a vertex of degree k. Dirac (9) was then able to show that, if $0 \leq p \leq k-1$, a critical k-chromatic graph contains either a complete $k-p$ greph as a subgraph or has at least $k+p+2$ vertices. Dirac (10) was then also able to show that if a critical k-chromatic grarh contains $n<k$ vertices (ie. it is not a complete graph on k vertices) and e edges then the relation

$$
2 e \geq(k-1) n+k-3
$$

must hold true.
With the above results in mind, an attempt was made to investigate the properties of the graph (defined by its associated matrix) of each of the data sets used in the examination timentable experiments. In craer to
examine the colourirg properties of a graph it mould be useful to find the size and composition of the critical chromatic submeph. However tre possible complex nature of its construction, as indicated by the example in FIGURE 1.5 .3 (a critical chromatic greph of 8 vertices whose $\gamma(G)=6$ yet the largest complete subgraph is of order 5), rules out any reesorable method of detemining it exactly. It is difficult (though not impossible) to deliberately construct a critical k-chromatic graph which does not contain a complete graph of order k, $\mathrm{k}-1$, or $\mathrm{k}-\mathrm{d}$. It is therefore reasonable to suppose that, in the graphical problems arising out of the physical world, the critical chromatic graphs will be composed of either a complete sraph of ordex k, or a complete graph of order k-p, where p will be a small (with respect to k) integer. Thus an algorithm for determiring the sire and composition of the larcest complete graph, inbedded in the course conflict graph, was the prime objective of the investigation. A complete graph of order n will be denoted by K_{n}. A number of attempts at this rroblem have been found in the literature, most of which were by sociologists attempting to analyze clioues or othax group structures in sociogrers. Typical of the aroroeches wes that used by Forsyth end Katz (15). They used the following empirical procedures:

FIGURE 1.5 .3
A graph reouiring six colours; the lergest complete subgraph is of order five.

1/choose a vertex, a
2/ehumerate all vertices comected to a
3/interchange rows and colums of the associated matrix so that the rows and columns, correspondin to the vertices found in step 2 , are side by side

4/interchande the rows and columns of this submatrix until as many of the non-zero elements as possible are clustered near the diagonal

5/the lareest subnatrix. whoes elements are all non-zero corresponds to the largest complete graph.

This rather unwieldy procedure was eventually replaced by one developed by Harrary and Ross (20). They made use of the fact that, given a graph G and its associated matrix A, the powers of A yield a matrix whose elements $a_{i j}^{p}$ (the i, j th element of the matrix $A \times A \times A \ldots p$ times) are the number of paths of length p going from vertex i to vertex j. This leads readily to the fact that each element in the diagonal of the cube of the associated matrjx of a K_{n} is the number

$$
(n-1)(n-2)
$$

where n is the number of vertices in the complete graph. Thus by cubirg an associated matrix and inspecting the diagonnl it is possible to deterriine
the largest complete graph embedded in the system.
This method is limited to those cases where there exists only one (or perhaps several disjoint) complete graph and can not be made applicable to a graph, such as that in FIGURE 1.5.4, made up of several interconnected complete graphs.

In attempting to remedy these feults it was noted that a. K_{n} is mede up of a sertes of $K_{2} s$ and, if $n \geq 3$, then it is made up of a series of $K_{3} s$. In general the following results may be obtained.

Theorem 1.5.1
A complete graph, $G(X, U)$, of order $n(n \geq 3)$, will contain, as subcraphs, n complete graphs of order n-1.

Proof
Delete one vertex, x, from the eraph G along with the edges such that $r \in U_{X}$ (for all $x \in X \sim r$).

There are now $n-1$ vertices left, and these are connected by edges such that $x \in U y$ (for all $x, y \in X-x)$. This, by definition, is a complete graph of order $n-1$ on the $n-1$ vertices in the set X... r. As x may be any of the n vertices in X there must be n complete graphs of order $n-1$ in G 。

A slightly more general result is:

Theorem 1.5.2

A complete graph, $G(X, U)$, of order $n(n \geq 3)$ contains, as subgraphs, $n!/(p!(n-p)!)$ complete graphs of ordex $p(2 \leq p \leq n)$.

Proof
Delete any $n-p$ vertices along with any edges incident with them. By the same arcument used in Theorem 1.5.1, the remaining graph is a complete graph of order p. As the n-p vertices, deleted above, may be any vertices in the set X, it is obvious that the number of complete graphs of ordex p as subgraphs of G is the number of combinations of n things teken p at a time, or $n!/(p!(n-p)!)$.

Theorem 1.5.3

In a complete graph $G(X, U)$, of order $n,(n \geq 3)$, each edge is part of nm2 edge circuits or length three.

Proof
Consider an edge, α, between the vertices i and j. If any other vertex $r(r \in X-j-j)$
is taken then, by the derinition of a complete graph, $r \in U i$ and $r \in U j$ and therefore an edge circuit of length three exists and consists of the edges $\alpha, U_{j r}$, and $U_{i r}$. As r may be any of the $n-2$ vertices in $X-j-j$ the theorem is proved.

By the results deduced above it should be rossible
to design an algorithm to find all the $K_{n} s$ then see if the vertices of these graphs form a K_{n+1} and continue in this manner untjl the largest complete graph is found.

Because of the combinatorial nature of the problem it would be helpful if the search could be started with n as large as possible, and yet still be certain that a K_{n} still existed. This would eliminate part. of the very time consuming search.
P. Erdös (11) has shown that if a graph G, with n vertices, has

$$
\frac{n^{2}}{4}+n
$$

edges then it contains at least

$$
\frac{n}{2}+n-1
$$

complete three graphs, if it contains any at all. This, although it looks as if it should provide a starting point for an iterative procedure, proves useless because

$$
\frac{n^{2}}{4}
$$

is such a large number. For example, one of the data sets used in this investigation gave rise to a graph such that

$$
\frac{n^{2}}{4} \approx 75000
$$

The eraph had abcut $5 ; 00$ ediges and thus h has a value of aproximgtely .69000 and the gram contains about -69250 complete graphs of order three, jf it contains any at all. As most of the graphs used for registerinc course conflicts rill heve the same density of edmes this approach is impracticable. J. W. Hoon (25) exterded the work of Erdös to outain a lower bound for the rumber of complete graphs of order k contained in any given graph. This, although of some theoretical interest, is useless for a sterting point on any actual computation.

An alternate approach nould be to attempt to deternine the upper and lowex limits of the chromatic number of the graph and thus, at least, find the possible range of the orders of the complete graphs. Thjs has been made possible by the work of Ersov and Kozuhin (12) who mede the following observations.

If a graph has n vertices and p edees (no loops or parallel edges) then the largest possible chromatic number, X, is:

$$
x=\left[\frac{3+\sqrt{9+8(x-n)}}{2}\right]
$$

and the smallest possible chromstic number, x, is:

$$
x=-\left[-\frac{n}{\left[\frac{n^{2}-2 p}{n}\right]}\left(1 \cdots \frac{\left\{\frac{n^{2}-2 p}{n}\right\}}{1+\left[\frac{n^{2}-2 p}{n}\right]}\right)\right]
$$

where the brackets [] end \{ \} denote the integral and frectional parts of the number respectlvely. When these formules are applied to the aforementioned data set they give the following results

$$
x=100 \quad x=1
$$

so thet

$$
1 \leq \gamma(G) \leq 100
$$

These, although better than the previous bounds, are still of no sreat use.

Fortunately Theorem 1.5 .3 makes it possible to design an algorithm to check for the existence of a complete subgraph of a particular ordex. To determine the largest conplete subgraph it should only be necessery to make this algorithm iterative, ie. check for a complete subgraph of order n by eliminatine any edges not members of at least $n-2$ edge circuits of length three, then iteratively entering this algorithn to check Whether this reduced graph contains a corpilete graph of order n+1. This process is continued until the graph is conposed entirely of isclated vertices, thus incicating that the larsest complete subsragh is of oraer n-1. If a graph, G, is subjected to this operetion (ceroted
by \triangle In) in an attemp to loonte a complete subgran of order n, then the reduced graph (in which each edee is a merber of at least n-2 edse circuits of lencth three) will be denoted by $\min (G)$, nototion due to A. R. Foetron.

If the graoh is stored in the form of a booleen matrix the procedure for checking that each edge is a member of at least $n-2$ edge circuits of length three becomes quite simple:

1/ensure thet all elements of the leading dieconal of the boolean matrix, A, have the value false (this procedure is not valid for grephs with loops)

2/if an edge, α, exists betweon vextex i and vertex j then form a boolean vector B with n elements whose values are determined by the boolean expression

$$
B_{k}=A_{i k} \wedge A_{j k} \quad(k=1,2,3, \ldots, n)
$$

$3 / i f p$ is the number of truen eienents in the boolean vector B then the edge α is a member: of P edge circuits of length trree.

This elementery complete graph eiforithr suffers from two distinct disadvantages. The first, a rather minor disadvantares is the fact that it will not dewerare a distinct complete rraph. This arises from the fact that complete sraphs noy be interlinked. For exenple FIGURE 1.5.4 consists of three aiterlinked comlete graphs of order foux. The second, and mojor diservone.
is that the converse of Theorem 1.5 .3 , ie.

If, in a graph G, all edges are part of $n-2$ edge circuits of length 3 then G is a complete graph of order n
is false. Any graphs whose edges are members of $\mathrm{n}-2$ edge circuits of length three but do not contain a complete graph of order n will be known as "false" complete graphs. As can be seen from FIGURE 1.5 .5 (the simplest known "false" complete graph) each edee is a member of two edge circujts of length three, which by Theorem 1.5 .3 would indicate that it contained a complete graph of order four when, in fact, it only contajns complete graphs of order three.

It is now obvious that an extra test must be incorporated in the algorithm to distingush the true from the false complete graphs. A great deal of effort was put into devising a suitable test to deternine the "completeness" of the subgraphs under consideration. The possibility of simply checking all the combinations of edges and vertices was dismissed when it was found that, in a modest graph, a check would have to be done on all possible combinations of 58 vertices taken 27 at a time. This very time consuming process would have taken far loncer than the original determination

FIGURE 1.5.4
Showing three interlocked complete graphs of order four.

FIGURE 1.5 .5
Showing the simplest knom "false" complete graph.

The graphs in FIGURE 1.5 .4 and FIGURE 1.5 .5 have the same number of vertices and edges.
of $\mathbb{T}_{27}(G)$.
The work of Erdös, Moon and Moser, cited previously, also fail.s as a test for complete graphs. Both foon's and Erdös' theorems use relations between the number of vertices and the number of edges in a graph; as the graphs in FIGURE 1.5 .4 and FIGURE 1.5 .5 both contain six vertices and twelve edges, even these simple examples are enough to show that the theoxems by Erdös and Moon are not suitable to practical application.

The method eventually used to provide the final check for the complete subgraphs was as follows: $1 /$ select a vertex, i, from $T_{n}(G)$ such that the vertices d_{i} is a minimum for all \ddagger in $\mathrm{T}_{n}(G)$ 。 2/produce a graph $\mathrm{r}_{\mathrm{n}}^{i}(G)$, containing i and those vertices joined to i ajong with all the edges those
joining vertices. FIGURE 1.5 .6 shows this process in graphical form.
$3 / a$ check is made to determine the number of completely connected vertices in $T_{n}^{i}(G)$ 。If $d_{i}=n-1$ then this check simply reduces to verifying that all off-diagonal elements of the boolean matrix associated with $T_{n}^{i}(G)$ have the value true. If $d_{i} \neq n-1$ then the complete graph algorithm must be applied to $T_{n}^{i}(G)$ - this amounts to a recursive entry into the complete graph algorithm and then step four is only entered when the bottom

FIGURE 1.5 .6
Showing the relationship between $T_{n}(G)$ and $T_{n}^{i}(G)$
level of recursion has been reached.
4/if the number of completely connected vertjces in $T_{n}^{i}(G)$ is greater then or equal to n then there exists a complete graph of order n. If this number is less than n then vertex is deleted from the graph $T_{n}(G)$ (along with any incident edges) and the operation ΔT_{n} is reapplied to the now modified $T_{n}(G)$ 。

The flowcharts and actual ALGOI 60 coding are included in the appendices.

The investigetion of the examination time--table problem started with data produced by means of a randon number generator. This was initially set to produce three different sets of deta, each of which was in the form of a boolean matrix. A pseudowandon number generator with a sauare distribution betreen zero and one provided the criterion of whether or not an edge was present in the graph, the i, j th and j, i th elements of the matrix were set to true if the random number was less than $\frac{1}{2}, 1 / 3$, or $\frac{3}{4}$ respectively for the three different data sets.

It was soon realized that a random number generator could not simulate the cluster patterns of course conflicts thet arise in a real situation, so the investig. ation was finally carried out on two sets of student data from the University of Alberta, Calgary (Canada) (1964-65 and 1965 - 66 student bodies).

These two sets of data were a very good test of. the procedures because the students from U.A.C. are able to attend classes from many different disciplines and thus the graphs of course conflicts are much more complex than those arising out or universities with a rigjd faculty structure. The procedure for sepratins a graph into its individual conected subgrawh; as
described in Section 1.1, was implemented ard both data sets subjected to this separation process. It was found that, for all practical purposes, the two graphs from U.A.C. were nonseparable.

No attempt wes made to reduce these two graphs by finding minimal articulated sets or cut sets because the procedures seemed to function well even on these large singl \ddot{y} connected graphs. However if the size of the graph grew by a factor of two or more it would be necessary to attempt some form of reduction simply because most computer memories could not hold it all at once. This could raise serious problems for a very large connected graph as most of the reduction procedures are based on the matrix method of storing the data, thus reduction presents the same fundamental storage problem as the original colouring procedures.

An examination time..table was produced for each
of the two sets of data, using first the Peck-Williams procedure and then the eigenvector approximation procedure. It was found that, in both cases, the eigenvector approximation proceduce produced an examination time-table using less periods than the time-table produced by the Peck-Williams procedure (see TABLE 1.6.1). The data was then subjected to the complete graph procedure, in order to determine a lower bound for the number of examination time periods required for each data set.

TABLE 1.6.1
Showing the number of examination time periods required by the different procedures on each of the data sets, along with the size of the largest complete graph in each set.

TABLE 1.6 .2
Showing the run times of the different procedures on each data set.

From TABLE 1.6.1 it can be seen that the ejgenvector ppproximation procedure came closer to the theoretical minjmum than the Peck-Williams procedure. The discrepancy betreen the actual and theoretical results can be conjectured to be due to the fact that the critical chromatic subgraph of the data sets is not a complete graph but rather a complex graph containing a complete graph as a subgraph. If this conjecture is correct, and there seems no way of testing its truth, then the lower bound is raised slightly and better agreement would be obtained between actual results and the absolute theoretical minimum.

A very intensive study was made on the U.A.C. $1965-66$ data set to try to discover if the chromatic
number kvas indeed larger than 25 (the size of its largest complete subgraph). The study revealed that the largest complete subgraph was of order 25 but there existed three subgraphs of order 26 lacking only one edge each to make them complete graphs, two subgraphs or order 27 lacking only two edges each to make them complete, and one subgraph of order 28 lacking only three edges to make it complete. Of all the complete subgraphs of order 25, eight were found, all completely interlockinge This vexy complex situation is exactly what is reauired as a base for a complex critical chronatic subrraph of order greater than 25. A great deal of woris wos put into an attempt to elucidate
the structure of this critical chromatic subgraph but it could not be found. This failure to find a cxitical k-chromatic subgraph ($k>25$) does not mean that it did not exist, the complex structure of the subgraphs of order 25, 26,27 , and 28 point to its existence but the number of possible subtle combinations of these subgraphs with any of the 600 other vertices makes its determination hinge on having very extraordinary luck. TABLE 1.6.2 indicates the running time for each of the examination time-table procedures on each of the data sets. This is the time taken on an English. Electric...Leomarconi KDF 9 computer with the programs written in the KIDSGROVE (unoptimised) dialect of ALGOL 60. The very Jaxge boolean matrices (656×656 in the case of the U.A.C. 1965 - 66 data) were kept in the store by designing a series of ALGOL procedures written in USER CODE (the assembly language of the KDF 9) which packed a single element of the matrix into one bit. Thus the 430,336 elements of the matrix could be contained in approximatly $10,000 \mathrm{KDF} 948 \mathrm{mbit}$ words. This packing of data is, unfortunatly, necessary because the procedures must examine the matrix elements at random and, if the matrix were stored on magnetic tape or even a random access device, the time taken to produce a time-table would moke the procedures uneconomic, unless implemerited on a time-shared machine. The actual calculation of the next approximation
to the largest eigenvector of the system was accomplished by a highly efficient procedure written in USER CODE。 This procedure made special use of the fact that the matrix associated with the graph was stored one element per bit, and this, combined with the powerful set of logical instructions on the KDF 9, has resulted in an ultra fast routine. Thus to implement the eigenvector approximation procedure on an alternative computer may increase the computation time over the Peck-Williams procedure by a greater percentage than is evident from TABLE 1.5.2.

The effect of continued iteration towards the eigenvector corresponding to the largest eigenvalue of the associated matrix was examined in some detajl for the two data sets. In particular the relative magnitudes of the elements of this vector were investigated at each iteration, because of their impoxtance in controljing the order in which the vertices are chosen for assignment. If the relative magnitudes of the elements of this vector remain the same after one or two iterations then it is senseless to continue iterating towerds the actual eigenvector when even a very poor approximation j.s computationally satisfactory. A program was written to compare the relative magnitudes of the elements from one itecation to the next and the results produced are shown in FJGURE 1.6.1. The percentage of elements changing position of relative magnitude and the average.
number of places chanced in the scale of relative magnitudes shed some light on the computetional effort needed to produce the sains offered by the eicenvertor approximetion colourins procedure. It is evident thot the ordering goes through a ormatic resequencing during the first few iterations. The first itecation changes the order of about 85% of all the vertices by an average of arprorimately 30 places up on ciowr the list. However by the time five iterations have been done only about 10% of the vertices are changing their positions in the table of relative magnitudes and tris change is not more than one on two places. The actual eigenvector is found (to an accuracy detemn ned by the KDF 9 48-bit word length) after 1.0 .. 15 iterations, thus it is only necessary to carry the iteration out a few times to reap the benofit of any gains of the more advanced colouring procedure.

The 1964-65 data was used by the University of Alberta, Calgary to produce an examination time-table by their traditional methods. This was done by tro highly competent (and as a result highly paid) members of the Office of the Registrar in slightly less than six weeks. The resulting time-table had 30 examination time periods, and did not sotisfy the no-conflict demends of about 15 stucerte. When this is comrared to the cost and efricioncy of the computer procedure it can easily be seen that the computer can sove a

FIGURE 1.6 .1
lerge amount of money time, and effort in this area of a university's administration。 This last statement does not take into account the costs of data preparetion, horever the dete mer be easily obtaired as a byproduct of the sectioning process described in Chapter 2 .

During this investigation it was noted that every exemination time-teble rrocedure mentioned in the literetur had, as one of its parareters, an indication of the number of seats evailable in the examination room. For the basic "one class - one paper" situation there is absolute] y no need to consider the room size as a parameter. If the numbex of students scheduled to write examinations in a perticular period exceeds the capacity of the rooms available, then the registrar may reschedule some of the examinations from this pexiod to another free day and still be assured that, in his situetion, he has a neax optimum time-tablen It. was found that, for the U.A.C. data; the actual physicai situation comtaired so many conflicts that usine a cut off parameter such as room size was unnecessary. In fact even using the size of the lorgest class as the room size parameter, the timentable produced did not vary in the number of periods used.

The system for finding examination time-tables, as described in the previous sections, seems to be better (in regard to computing power necessary and number of periods used) than any described so far in the open literature. However a number of practical objections may be made to it. It is often necessary to limit the number of examination time periods, or attempt to distribute the number of examinations evenly throughout the examination session, or cause two different examination to be held at the same time.

The last of these objections may easjly be dealt with by some form of pre-mssignment feature as in the published version of the Peckwilliams procedure. The other two objectives, limiting the number of exanination time periods and distribution of the examinations, are by their very nature contrary to the fundamental idea behind the colouring procedure.

The number of time periods, or colours, may not be linited because the procedure will already attempt to use the minimum number of periods. An attempt may be made to determjne the bounds of exactly how many periods will be used but these bounde are very poor and their determination takes more effort than the actual computation of the time-table. The even distributior of the examinations is also a point which cou" not

If you remove this volume from the shelf, enter on this card the reason for removal, the date, and your initials and leave the card on the shelf in place of the volume. Before re-shelving the volume, score through the record of removal and replace the card in the volume.

be choreed without disturbing the omtimismen ertect of the procedure. After the time-table has been found the posebbility exists of movine some of the examinatome jn the early perions to the leter porioos withont csuan conflicts. This iray help to ease the load on the fijst, fer periocis.

FIGURE 1.7 .1 shors the distribution of examiretions throurhout the tinewteble. This ton hoavy fom is appreciated by most of the staf but defiribejy rot welcomed by the stuients.

If the univershty administration is riljircs to stior a few conslicts jn their examination time-trble, both of these objections car be alleviatod, but orly at a mice. As onn be seen from Frune 1.7.1 the lest fer time periods only contein a few enominationa It would be possible to talse the time period with the least number of eraminations and place these jn other periods in such a maner that the number of conflicts generrted is a minimum. This redistribution will require a matrix, c, such thet $c_{i j}$ is the number of students involved in tho conflict betreen course i. courso j, so the the number of sturentis juvolved in any one conflict ray de noted. The size of this natrix dictstes that it will heve to be kept on sore
 device. Howarer some moltire of the elementis is rossint beceuse the larrest element is krown to be

FIGURE 1.7.1
Showing the number of examinations in each time period
less than or equal to the enrolment in the second most popular course. Another requirement of the redistribution is that all examinations being removed from the Ith period must be placed in periods that heve not had other examinations from the Jth period already put there Failure to observe this restriction may lead to three and four way conflicts instead of just the two way conflicts being formed. To reduce the number of time periods by the greatest amount for the least cost, all the exeminations from period I should be redistrjbuted to the same new period.

$C B A P T E R 2$

Sectioning stuoents to
 Classes

Many unjvareities overcone theix time-tablinc or space mohlems by splittine each cless into many different sections, each siven at a different time throurhout the reek. For example, if a first year course in chemistry is expectins an enrolment of 200 students, but the lecture rooms will anly hold 75 people and the leboretories will ondy accomadete 50 students at a times the miversity administration may section the:class as follows:

Lect. section 1. - Mon Wed. Fri. Room 813 9:00. 10:
Lect. section 2 - Mon. Ved. Fri. Hoon 93 11:00-12:C
Lect, section 3-- Tues. Thurs. Set. Room 798

Lab. section 1. -- Non. Roon 712 9:00-12:00
Lab. section 2-Tues. Room 712 9:00-12:00
Lab. section 3-Wed. Room 712 2:00-. 5:00
Lab。 section 4-Fri. Foom 712 2:00-5:00
If a student wes taking mathemetjes on monday morning at 9:00 then he could still efsily fit ore of the other tro sections of chemistry lecture irto his time-table. It is now necessary to find some metrod of distrjbuting the students into the various sections which will not only teke into cocount the í rossible choiees of cheristry but the total mumber of oroices avoilable to him from $\quad 7 . ?$ his subiects.

Unfortunatily this choice of sections can not be left to the student himself. Few students would willingly choose chemistry lecture section 3, and thus there would be hopless overcrowding in lecture sections 1 and 2.

Sectioning students to clesses with the aid of a computer hes been dealt with in many pepers and actually jmplemented on a fev machines. the majority of these implementations and discussions have dealt with the problem in the situation where large scale computers wexe available. In this discussion a sucgestion will be given involving a large scale computer and a sugestion which will enable its jimplementation in the situation in which a small scale computer with a random acoess auxiliary memory, or a large scale ocrputex (on which time is a very important factor) is available to the administration.

All the methods under consideration reguire the university administration to supply a naster tine-tables giving the times and maximum encolments for each section of each course, and a set of cerds (or othec suitable input medium for each student indicating the courses in which he is enrolled.

The major objective of conputer scheduling is to assign the student to nonconflicting sections of his courses, subject to some or all of the followise

1/When the sectioning of all studerts hes rowi finished the different sections of a clacs must heve roughly equal nombers of students, or the numoers of students in the dirferent sections must be in a predeternined ratio to one another.

2/Particular students should be placed in a particular section of a course, the constrajnt being sex, faculty or other personal or academic infometion.

3/Particulax sections of a course are closed to particular students, the constraint segain being sex, faculty, or other pessonel or academic information.

One of the bonefits of sectionine using a conputer is that the registration process may be speeded up, but this is not the onl.y advantage. If, as each student is sectioned, a record is mede of his section assicnments, the procedure may have the beneficial sjde-effect of providing accurate studert records, statistics, and class lists immediately upon the conclusion of the resistration procedure.

As in the problem of examination time--tebles, the mester time--toble of the university classes may be best described in the terminolog of grach theory. The master time-table may be visualined as a gravh, $G=(V, U)$, whose vertices, V, are the classes ofered
by the institution, and the edge generating function, U, being defined as generating an edge between V_{i} and ∇_{j} if both course i and course j are offered during the same or overlapping time periods.

Sectioning students to classes now becomes the problem of partitioning the graph of the master time-table into disjoint sets such that no two vertices in any given set are joined by an edge. It can now be seen that this is exactly the same colourjng problem as was presented in the discussion on examination tine-tables. However, because of the different physical situation in which the problem arises, and the added constraints to its solution, the actual procedures used for the solution will differ from those used in the solution of. examination tine-tables.

The more complicated system of courses with . multiple sections is a simple extension of the afore. mentioned graph, namely each of the sections of a course is now a separate vertex. The vertex corresponding to section k of course i will be denoted by v_{i}^{k}.

Section 2.2
 Heuriatic Frocedures

The rixst, and perhaps nost eenerals attack on the problem wes initiated in 1959 si purdue University by J. F. Blakesley (3), who although handicapped by an extremely primitive computer, produced a syster which embodied the basic design of every subseonent heuristic implementation. The program thet he develoned follows the logic

1 /erch student must be sectioned and the procedure used should be as fast as gossible $2 /$ the last student sectioned should have the sere probebility of being assigned to a pertuculst course section as the first student had.

From this logic two key points emerge. One is that courses must be ordered according to the difficulty of finding alterwe sections (single section courses first, for they have no alternate time schedule, followed by courses with more and more sections). The second, and just as important, point re"uires that the student be placed in the section with the Jargest number or remainins unfilled student places. If this section cannot be made to fits, then the remaining sections are tried (from lergest to smallest number of remaining places) until asection is found wich will fit the schedule.

FIGURE 2.2.1 is a simplified fow chatt of the besic Blakesley model for a computer sectioning promem. The Bl kesley model consists of three major loops, Whach try ell vossible eombinetions of courses in en attempt to construct a schedule. These loops are:

A/the primery course section assighment loop

- select the section (of the courso under consideration) with the lareest number of unfilled student places
- if the selected section does not confliet with the previously assignea course sections tren proceed on to the next course, otherwjso entex loop B
$B /$ the section progression J.oop
- this selects the section with the next lergert number of empty student places and returns to $\operatorname{loop} A$

C/the course backtrack loop

- this loop is used then all sections of a course have been tried and found to conflict with the sections of previously scheduled courses - the loop backtracks to the last scheduled course, selects an alternate non-conflicting section a"d returns to 1.000 A to schedule the subsequent courses.
 usually temned a yo-yo tree search, is coram to all

FIGURE 2.2.1
enviroments in rhich the sectioning procedures may be irplewented, that is to sey, it is not dependent on the detriled fooulty or course structure of an irstibutiom. Every proposed sectioning procedure hrs followed the same general outline, the only'difference being a gradual refinement and modification of the methods of acomplishing the three bestc steps.

The tro basio heuristics (omering the student course requests by the number of sections in each, and selecting for consideration the untried section with the smallest enrolment) have also been used in all the procedures investigated, the sole exception being a very errly experiment at Weshington Stete University (13).

It is rather curious thet Blakesley used the momer of empty sents left inaclass, xather than the number of people assigned to that cless, as his oxiterion for choosing the section with the smallest enrolment. The author's own work (hereafter refered to as the Colijn... Williams procedure) points out the pit-rajls of the use or room capacity. A quote from the paper by Colijn and Williams (6) will show the havoc that the use of roon capacity can cause。
"The University Administration had produced a master time--teble shoming a particuler course With three sections, each of which wes to have an enrolmont of about thixty studenta.

Sectjons 1 and 2 were to meet in roms
holding forty students each but, due to limitetions of the physical plant available, section 3 had to meet jn a roon accommodetine 250 peovle. The result of sectioning using room capacities, as the section sorting critexion, was that approximately 90% of the students reouesting this course were assigned to section 3s leaving sections 1 and 2 rith only those students whose other course requests blocked section 3 fron consideration." Another curious point about BlekesJey's orjginal. system is thet it would consjex all possible combinetjons of the avajlable course sections before it decided that a tine-table could not be produced. If a student is enrolled in a series of courses, all of which have a large number of sections, then itt is possible to have in excess of 10^{9} section combinations to be investigated. Even very lerge computers can only be expected to consjder: a fraction of these. It was not until quite recently that Faulkner (13) and Colijn and Wllijams (6) attempted to design the backtracking loops to serch intelligently number for a workable schedule rather than trying an arbitraryl (5000 in the case of Anderson (1)) of combinations before giving up.

Since Blakesley's first attempt the method of storing the moster time-utable infomation has undergone e vest improvenent. Although the storane of the raster
time..table is a practical matter, depending heavily on the computer to be used, it is of sufficient significance to be briefly discussed. The significence lies in the fact that it requires a large amount of memory, end that it must be accessed frequently. Because of these heavy expenditures of the computer's resources on the time-table, the mode of storage will affect the efficiency as well as the basic design of the final procedure to a marked degree.

Several methods are available for storing the time-table information. The first, that of recording the actual day and time of a course, eg. M.W.F. 9-10 (or suiteble coding for this information, as was done by Blakesley) will not be considered because of the obviously greater ease of processing offered by the other methods.

The second method involves the use of a boolean "time-vector", T, of which two types have been used. in the past.

Type 1-26 boolaan elements, six of which represent the days of the week (ie. $T_{i}=$ true if the class is held on the i th day of the week, $1 \leq i \leq 6$) and 20 representing the time of day. The first of these time of dey elements represents the half hour period 8:00 - 8:30, the second 8:30-9:00, the last element representing the period 5:30-

6:00. For example, a class given Fonday, Wednesday, and Friday from 9:00 -- 10:00 would have a type 1 time-vector of:

10101.000110000000000000000

Type 2 - Similar to the "time of day" elements in the type 1. time..vector, except there is a complete set oif 20 booleans for each day of the week. Thus the type 2 time-vector consists of 120 boolean elements, the first 20 representin the time of day the class is glven on Monday, the next 20 representing Tuesday, the final 20 representing Saturday. For the example given under type 1 , the type 2 time...vector would be:

001100000000000000000000000000000000000000110
......et

It is easily seen that, although type 2 time-vectors take more menory space than type 1: they allow much more flexibility in representing a class which is given on different times on different days. If the vertices of the time-.table graph each have an associated timevector, then by doing a boolean Aind operation on tine. vector i and time-vector j (in the case of type 1 timevectors this must be done twice, once on the day elements and once on the time elements) it is possibles by
checking to see if the resultent veotor has any true eJements, to determine if an edce exists between vertex i and vertex of the time-wtable sranh.

A third method of storjrg the time-table involves the use of the boolean matrix associated with the graph. The use of a boolean matrix for storing time-table informetion, althoush more difficult to set up than the time-vector methods, hes several adventeres whioh will be explored in a later sectjon. It also has the disadvantare that unless the university offers fewer than 120 courses it takes considerably more storape than the time-vector system. This, however, need not be a serious dxawback if a high speed rendona acoess device is available.

A second, and perheps better known, attock on the problem rres initiated by Anderson (1) in conjunction With the New England School Development Council in 1962. Anderson's procedure was extremly fast - up to 1000 pupils per minute - but it should be rememoered that this speed ras due, to a large extent, to the ract that itt wes a school sectioning problem rather than a university one; the mrster time-table for e school will inverjably be better suited to machjne sectioning because of the fewer courses offered, each course generally heving only one sections and the more limited choice riven to the ourils.

As rell as the usurd master time-table infommetor
(eventually coded into a type 2 time-vector) Anderson also recorded two other variables, X_{i}^{k} and X_{i}^{k}, where X_{i}^{k} is the number of pupils that must be registered as wishing to take section k of course i before it becomes a practical proposition to even offer this section, and Y_{i}^{k} is the maximum number of pupils that may be admitted to section k of course i. If the first T... courses, for a particular student, have been successfúlly sectioned, then Anderson's procedure will perform the following operations in attempting to determine a valid section assignment to course T.

1/ Select, for consideration, all possible sections of course T such that

$$
X_{T}^{k}>0 \quad(k=1,2,3, \ldots, n)
$$

(this is known as the minimum mode of search).
2/ Order the course sections, obtained in the previous step, in numerically descending order by their respective $X_{T} \mathrm{k}$.
$3 /$ Compare the time--vector of the first section (the one with maximum X_{T}^{k}) with the time--vectors of the sections scheduled for the previous T-1 courses to determine if it conflicts With any of the previously assigned sections. If this section will not "fit", repeat the procedure for all the necmissible sections of course T. If the list of permiscible
sections is exhausted without finding a fit go to stop 4 If a fit is found decrease X_{T}^{k} and Y_{T}^{k} by one and attempt to schedule course $\mathrm{T}+1$.

4/ Redefine the list of perinissible sections as all sections such that

$$
Y_{T}^{K}>0 \quad\left(r=1,2,3, \ldots, r_{1}\right)
$$

(this is known as the maximum mode of search). Repeat steps 1 to 4, if this does not produce a fit then it is assumed that it mos the assignment to course $T-1$ which is the cause of the conflict, therefore Anderson exchanges course T with course Twi and tries again to find a rorkeble set of section assignments for this student. If, after trying 5000 possible section combinations, a time-table is not found the student is abandoned and his time--table must be prepared by hand. The values given to the individual X_{i}^{k} and Y_{i}^{r} will dramatically alter the efficiency of the system. For example if n pupils request course T (rich has p possible sections) then if

$$
\sum_{k=1}^{P} Y_{T}^{k}<n
$$

it rill result in pupils not being sectioned duce to insufficient seats available; if

$$
\sum_{n=1}^{r} x_{\mathrm{T}}^{\mathrm{k}}<n
$$

it will force the procedure into the maximum node of sestch When this action is not necessery. For single section courses it would make the computer look for alternative sections when there are none. On the other hand a much finer degree of control can be kept on the sectioning process with modificetions being mede to the individual X_{i}^{k} and Y_{i}^{k}. For example, section imbalance may be corrected thus:
a larger X_{i}^{k} will cause section k to fill up fastex;
a smaller X_{i}^{k} will cause this section to remajn empty for a longer period;
a certain section, k, (known to fit the schedules of difficult pupils) may be kept. open because the procedure will reserve $y_{1}^{k}-X_{1}^{k}$ seats for students whose schedules are determined in the maximum mode of search.

Hovever, if, as Anderson suggests, his procedure will deal with up to 1000 students per minute; then any thought of modifyng the values of X_{i}^{k} and Y_{i}^{k} during the execution of the program is ridiculous. If it is implemented on a much slower machine than Anderson's I.B.M. 7094 then concejvably there may be enough time available for a human beine to use his abilities am mowledge to modify the prameters durjng the erecution
of the program.
Several other attempts at designing class sectionina programs heve been mode in the interval since Anderson's report vas published. Althouch these seem to have been ouite independent attacks, it will suffice to describe in detajl the procedure proposed by Coljjn and Williams (6) as this contains most of the devices used by other authors plus one or two extra interesting heuristic steps.

The Colijn-WiJliams procedure ras based on a type 2 time.-vector as the method of storing the master time--table information. Thejr procedure was designed to be implemented on a small I,Bolio 1620 computer st the University of Alberta, Calgaxy. The computer configuration (40,000 digits of coxe store, one disk unit of $2,000,000$ digits storage, 240 line per minute printer) was very limited, in particular the digital. form of the core store crented problems with the necessary boolean and logical operations. The I.B.f. 1620 had no arithmetic unit, instead it used a serjes or tables, loceted in the core store, to look up the ans:er to each arjthmetic coeration a digit at a time. This peculiar feature was used, by a suitable modification or the arithmetio tables, to effectively change the ADD instruction to a boolean ADD instruction, and to
change the COMPABE instruction into one which would set an indicator if all 120 booleens were zero. The course structure they had to deal rith complicated the sectioning procedure to such an extent that a "pure" heuristic mas impossible to desicn. The University offered 600 courses, which were divided into about 1500 scctions, hovever a large number of these sections were reserved for students of a particular sex or studying particular subjects. A further restriction pertajned to students in the Faculty of Education who could not attend classes offered by other faculties if they were held in the mornings (because of their student teaching requirements) however they were allowed to attend moning sessions of some Education classes. To complicate mattexs further some classes were held only in the first term (oct. .. Jan.), some only in the second term (Feb. .. May), and some all year. Because the student teachins vas only held in the mornings of the second term, it further complicates the sectioning of the students in the Faculty of Education. It is instructive to examine the sectioning problem under these conditions because they are the type of constraints found in practice, and any study of the pure situetion would lead to possible false conclusions.

It is also irstructive to exemire tre sectionire probleu whon orly a swoll combuer is evejlebe. Ju?
to therelatively alow acoess the for the 1620 aist urit the reguests for time-vector inrometion must be kept down to an absolute minimm. Thus short cuts hed to bs made in the heuristios which, had there been a large scale computer, rould have been overlooked as beince trivial.

The procedure starts by reading the student's course reauests ard formine a vector, REWUST, such that the i thelement of this vector contans the code number of the i th course reauest and the number of sections in thet request. This REXEST vector is then subjected to the standerd heuristic of sorting its ejement.s into ascending ordex by the number of sections in esch request. This ensures thet the single sectior, courses will be deelt with before the courser that here a number of different possible sections.

The course requests are dealt with one at a time, one section of each course beiner chosen for the studert's time-table. Thjs sortine heuristic is effective in producins a time-terle for about 75% of the ceses but, for the other 25% some sort of "bock up and try apair." process must be atterpted.

On tre besis of the heuristic assumption: "If a set of course assimments can be rode, there is at lerst one correct order in mich to prooess the revuests suoh thet the screarta
to the relativly slow access time for the 1620 disk unit the requests for time-vector information must be kept down to an absolute minimun. Thus short cuts had to be made in the heuristics which, hed there been a large scale computer, would have been overlooked as being trivial.

The procedure starts by reading the student's course requests and formine a vector, REDUEST, such that the i thelement of this vector contains the code number of the i th course request and the number of sections in thet request. This REsUEST vector is then subjected to the standard heuristic of sorting its elements into ascending order by the number of sections in each reouest. This ensures that the single section courses will be dealt with berore the courses that have a number of different possible sections.

The course requests are dealt with one at a tine, one section of each course being choosen for the studert's timemtable. This sorting heuristic is effective in producing a time-tarle for about 75% of the cases but, for the other 25% some sort of "back up and try agrain" process must be attempted.

On the besis of the heuristic assumption:
"If a set of course assignments can be made, there is at lesst one correct order in which to process the requests such that tre schedule
will be produced with the least duplicetion of effort。"
the following backtracking heuristic wes developed (the neuristic is difficult to describe but reference to the simplified flow chart, FIGURE 2.2.2, should help). When course \mathbb{N} can not be given a conflictofree assigment, the Jist of previous assignments is scanned to find a course, M, whose assignment caused the confjict. If N is a multiseotioned course then it is nossible, and in fact likely, that section N_{1} confljots with the assignment made for course $M_{\text {, }}$ while section N_{2} conflicts with the assignment mede for course L, thus an arbjtrary section of in must be used for the backward scan.

If it is found that both course M and course N have only a single section, then it is useless to continue and the student is told to dxop either M or N and select. another course. If course N hes multiple sections and course M has only a single section, then it is cleer that the assignment for M can not be chenged ard thus a diffexent section of N must be used fox the scan back. This process is continued until a previous assignment of a multiple sectioned course is found which b.locks course N from assighment. If all the sections of N are blocked out by single section courses, then again it is useless to continue and the student is informed of the multiple course conflict.

After the confliot hes been found the problem is

FIGURE 2.2.2 (2)

FIGURE 2.2.2 (3)

FIGURE 2.2 .2 (4)
still left of whet to do about it. In the first irstance, the courses were selected for sectioning in escending order of the number of sections available. By the previous assumption, thet of an order existing for the selection of course requests, itt appears than course M and course N were in the wrong order and that the first ordering heuristics at least for this set of requests, was in error. The list of course requests is therefore reerranged, by interchanging course M and course N, so that the sectioning process, on its second try, will attempt to schedule course N before course M .

It should be noted that if a conflict is encountered on the second time through then a further "swap" on the two conflicting courses takes place. This process is adventageous only up to about ten swaps, the charce of a correct order being produced for a successful time-table diminishing rapidly thereafter, because of the course order in the REQUBSJ vector being reduced to virtual randomness.

The procedure used a SECTION vector to satisify the re uirement of distributing the students evenly among the various sections of a course. When a course recuest is being considered a SECTION vector is produced such that the Ith element contajrs both the code mumbex of the Ith section and the number of students previously assigned to that section. The SECTION vector is then sorted, by the numbex of studerts in each sectic, into
ascending order. When the procedure attempts to find a section of the course into which the student might fit, it will try the section indicated by the first element of the SECTIOn vector, ie, the section with the lowest enrolment, and will only try the section with the greatest enrolment when all the others have been considered and rejected.

The section vector concept takes a very important partin two aspects of the procedure besides the section balance requirement. When a conflict has been detected and a swap has taken place, the second time through the procedure the elements of the section vector may be rearranged so that the same combination of sections j.s not retried. This best takes the form of a cyclic shift of the section vector's elements (of the course which originally caused the conflict) by one position, ie. take the first elements place it at the end of the vector and move all other elements up one position. In general if n swaps take place on this course, the first n elements of the section vector should be cyclically shifted. This double use of the section vector not only assures against the possibility of the procedure getting into a closed loop by trying the same section of the same courses each time, but also ensures that no section of a course fills to capacity berore the other sections are within one or two places of themselves being full. Thus the student who i : ocessed
last has, on the whole, the same chance of being assigned to the "best" sections as the student who was processed first.

Another objective of the Colijn-Williams procedure is to satisfy the demand that a particular student is placed in a specifjc section, the constraint being sex, faculty or other personal/academic information. As a courses section vector is being compiled a check is made on a "xeservation number" associated with each section, if this reservation number is non-zero it directs the procedure to a specific series of routines, the particular routine depending on the reservation number These routines can deal with the section under consideretion in three ways:

1/ Add this section to the section vector as a possible assignment, if the sex, faculty, or other information is consistent with what is required.

2/ Exclude this section from the section vector; this will, in effect, deny any knowledge of the existence of this section to the procedure and therefore render it impossible for the student to be assjgned to it.
$3 /$ Add tris section to the section vector, and delete all other sections, thus forcing the student to be assigned to this section.

This technique was not restricted to the examination
of a students oersonal data, and was used to examire the previous assjemments in oriex to dynarically control the contents of the section vector. For example, if it is reauired thet a student be assicned to the seme section im both course I and course J, when course J is encountered duxins the assigment orocess, the reservation number assiciated with the course dixects the rrogran to the appropriate routire which checks to see if a section has been previously assicned ior cource j and, if so, forces the correct assigment for course I usine point 3 above.

This system of heuristics has worked quite well. It was used for wesistering nearly 4000 students as bhey apaeared for the stext of tho 1965 - 66 academjc yeer at the University of Aiberta, Calgerye 85% of the student body mere successfully scheduled by the computer; of the rest of the students many had true conflicts due to their orn carelessness or exrore made during the data collection (a system involvins maxk sonse cerds) The greetest cause of exron was the master time-table itself. Almost all of the second year chemistry suderts were rejected because of a conflot between two courses, both of which were compulsory for them; one half of the first yoer engineers rere elso rejected because the a17onedo enrolments in each section were only half of What they should have been.

Although the orocedure itsel fros sstiefrctuon tra
computer configuration on which it was implemented proved very limiting. The University administration required a very complex and voluminous output for each student processed, this combined with the slow access time to the disk unit resulted in the procedure taking about 30 seconds for each student.

These two slow peripheral devices were thus the limiting factor in the whole process. Very little can be done to speed up the output of the student's time--table except obtain a faster output medium, however some improvement can be obtained in the utilization of the disk unitt (or course if the core store is large enough there keed be no access to the disk, but few small universities have computers of this magnitude). To reduce the Preouency of operations involving a random access device a procedure could be implemented to use the boolean matrix for the storage of the master timem table conflict data. The procedure would follow the same general lines as the time-vector scheme however When looking for a possible section assignment for a course the procedure would be able to "see" which sections were out of the question due to conflicts With previous assignmerts, rather than "grope around blindly" on the random access device to find the conflict free sections. This ability to "see" comes from the fact that, as eech course is assigred a section, the row of the boolean matrix, corresponding to the st ion
assigned, is added (by means of a boolean OR operation) to the accumulated rows of previous section assignments. It is then auite trivial to scan down this cumulative availability vector to determine the sections of the next course which are still available for use this method would cut down the need to access the master time-.table information from

$$
2 \mathrm{~N}+\sum_{i=1}^{N} \mathrm{~S}_{1}
$$

accesses to about 2N
accesses in the case where no conflicts are encountered during the schedule completion (N is the number of courses requested by a student and S_{i} is the number of sections in the i th course request). When a conflict is encounterer the number of accesses necessary to resolve the conflict will vary depending on the two courses in conflict and how much intermediate information is avajlable in the core store.

The relationship of sectioning to the problem of finding a flow through a network is interesting enough for a short description. The problems involved in implementing this type of approach are formidable, particularly in the area of data storage. However the network flow approach to sectioning is interesting because it is able to determjne whether or not a time. table exists for a particular student, and in so doing uses an algorithm which has been extensively studied by operations reserch personnel.

A transportation network is a finite directed graph, without loops, in which each arc is assigned an integer

$$
C\left(x_{i}, x_{j}\right) \geq 0
$$

known as the capacity of the arc from x_{i} to X_{j}, and in which:

1 / There is only one vertex x_{0} such that all arcs joined to x_{0} are directed away from X_{0}. x_{0} is known as the entry to the network or as the source.

2/ There is one and only one vertex x_{n} such that all aros joined to x_{n} are directed towards x_{n} 。 x_{n} is known as the ex:; from the network or sink.

A flow through a network is a function

$$
f\left(x_{i}, x_{j}\right)
$$

defined over all the arcs such that

$$
\begin{aligned}
& f\left(x_{i}, x_{j}\right) \text { is an integer } \\
& 0 \leq f\left(x_{i}, x_{j}\right) \leq C\left(x_{i}, x_{j}\right) \\
& f\left(x_{i}, x_{j}\right)=f\left(x_{j}, x_{i}\right)
\end{aligned}
$$

The value of the flows F, is

$$
F=\sum_{i} f\left(x_{0}, x_{i}\right)=\sum_{i} f\left(x_{i}, x_{n}\right)
$$

One of the basic problems in network flows is to find the maximum F for a given network with a given set of capacities.

Of basic consideration in network flows is the idea of a cut. If α is a set of vertices of the network which includes X_{n} but not X_{0}, the set of arcs $U_{\alpha}^{\prime \prime \prime}$ connected terminally to α (ie. the arcs are directed toward α) is a cut of the network. For example in FIGURE 2.3 .1

$$
\begin{aligned}
\alpha= & x_{n}, x_{2}, x_{3}, x_{6}, x_{9} \\
U_{\alpha}= & \left(x_{8}, x_{n}\right)\left(x_{10}, x_{n}\right)\left(x_{0}, x_{2}\right)\left(x_{1}, x_{2}\right)\left(x_{5}, x_{2}\right) \\
& \left(x_{0}, x_{3}\right)\left(x_{5}, x_{9}\right)\left(x_{10}, x_{9}\right)
\end{aligned}
$$

The cut is shown by a dotted line. This line is simply to show the terminally connected arcs which are

FIGURE 2. 3.1
Showing a transportation network and a cut of this network
encountered, it may also have nonconnected, open or closed segments depending on the cholce of α 。

Since a includes the sink, any flow from x_{0} to X_{n} poes through at least one arc from U_{∞}^{m}, thus whatever the flow F and the cut U_{α}^{-}may be

$$
F \leq C\left(U_{\alpha}^{\alpha-j}\right)
$$

Where $C\left(U_{\alpha}^{m}\right)$ is the sum of the capecity of the edges in the cut U_{α}^{*} 。

If there is a flow F (from x_{0} to x_{n}) and a cut V such that

$$
F=C(V)
$$

the flow is a maximum and the cut is of minimum capacity; this is essentially the theorem proved by Ford and Fulkerson (14)

In a given transport network the maximal flow is equal to the minimal cut.

To represent the sectioning problem it is possible to define a transport network as follows

- a. source x_{0} and a sink x_{n}
- to each counse i offered by an institution

Let there be two vertices x_{i} and y_{i}

- the existing aros and thejr capacities are defined as follows (where R is the set of courses requested by a student and $|x|$ is

$$
\begin{aligned}
& \text { the number of courses requested) } \\
& C\left(x_{0}, x_{i}\right)=\left\{\begin{array}{l}
|R| \cdots 1 \quad(i f i \in R) \\
0 \text { otherwise }
\end{array}\right. \\
& C\left(x_{i}, y_{j}\right)=\left\{\begin{array}{l}
1 \text { in i is not given et the same time } \\
0 \text { otherwise as } j, ~ a n d ~ i \in R, j \in \mathrm{~F}
\end{array}\right. \\
& C\left(y, x_{n}\right)=\left\{\begin{array}{l}
|R|-1 \quad(i f j \in R) \\
0 \text { otherwise }
\end{array}\right.
\end{aligned}
$$

If a timetable can be found for this student then this network must have a maximum flow, F, such that

$$
E=|R|^{2}-|R|
$$

For example consider the flow out of x_{0}, there are $|p|$ courses and each are, by construction, has a flow of $|R|-1$, thus the total flow out of x_{0} is $|R|^{2}-|R|$. Similarly the flow into x_{n} can have a maximum value of $|R|^{2}-|R|$. For every $x_{i} \in R$ the flow out of this vertex must be equal to the flow into it, ie. $|R|-1 . \quad B y$ construction

$$
C\left(x_{i}, y_{j}\right)=1
$$

if course i and course j may be taken simultaneously. Again, assuming a timetable is possible,

$$
f\left(x_{i}, y_{j}\right)=|p|-1 \quad(\text { for } i, j \in R)
$$

and

$$
\sum_{i} f\left(x_{i}, x_{j}\right)=|R|^{2}-|R|
$$

so that the cut containing only those vertices in R must be such that

$$
C(V)=F=|R|^{2}-|R|
$$

Application of the Ford-wulkerson algorithm (23) will show if any network has a maximal flow of $|R|^{2}-|R|$ and thus show the existence, or nonexistence, of a time.-table for the student under consideration.

This same concept may be extended to the situation where each course consists of several sections. By dividing the course sections into time disjoint groups it is possible to define a series of k sets D_{1}, D_{2}, $\mathrm{D}_{3} \ldots \mathrm{D}_{\mathrm{k}}$: each set containing those sections given at the same or overlapping time periods. A transportation network may now be set up with the vertices as follows

$$
\begin{aligned}
& -x_{0} \text { source } \\
& -x_{n} \text { sink } \\
& \cdots x_{i} \text { for each course } i \\
& -x_{i j} \text { for each section } j \text { of course } i \\
& -D_{l} \text { for each time division } l
\end{aligned}
$$

whose arcs and their capacities are a fined as follows

$$
\begin{aligned}
& C\left(x_{0}, x_{i}\right)= \begin{cases}1 & \text { for all } i \in R \\
0 & \text { otherwise }\end{cases} \\
& C\left(x_{i}, x_{i j}\right)= \begin{cases}1 & \text { if } j \text { is a section of course } i \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& C\left(x_{i j}, D_{1}\right)=\left\{\begin{array}{l}
i \text { if } j \text { is offered in time division I } \\
0 \text { othervise }
\end{array}\right. \\
& C\left(D_{1}, x_{n}\right)=1 \text { for all } D_{l}
\end{aligned}
$$

If a workable time a. set of $|R|$ sections, one for each course in R, which are joined to $|\mathrm{R}|$ different D_{1}.

The maximal flow out of x_{0} can be seer to be $|\mathrm{B}|$. For the flow out of x_{i} to enual the flow into x_{i} there must exist only one $x_{i j}$ for esch x_{i} (because the rlow must be integral valued) to retain the maximal flow at its value of $|\mathrm{R}|$. For the meximal flow into x_{n} to be $|R|$ the flow must have come from $|B|$ different D_{1} because by construction

$$
C\left(D_{1}, x_{n}\right)=1 .
$$

Therefore the maximum flow must proceed from the $|\mathrm{B}|$ separate $X_{i j}$ to the $|R|$ separate D_{1}, thus the network is shown to have a maxinal flow of

$$
F=|R|
$$

when a time- table exists and a flow of

$$
F<|\mathrm{H}|
$$

when a time..table does not exist. Nonexisterce of a time-table will be skom by ares with the reauired capecity of lal not beirg present from $x_{i j}$ to D_{1}, m
if they are, then arcs from two selected $x_{i j}$ will be incident with one D_{1} and because

$$
f\left(D_{1}, x_{n}\right)=1
$$

the flow will be $|\mathrm{B}|-1$ or less.
The Ford-Fulverston algorithm for finding the maximal flow through a network requires that the path of this flow be traced and from this trace come the nonconflicting course sections satisfing R.

This is a very satisfying formulation and solution to the sectioning problem as the procedure used has been well investigated and the theory (very little of which has been mentioned here) has been extensively studied.

Section 2. 4 Complete Graph Algorithmic Approach

The major problem with an heuristic sectioning procedure is to detemine if a set of conflict free assignments exists without trying all possible sections. In general, the situations in which a time-table does exist are quite easily solved by heuristic procedures, horever in the situations in which time-tables do not exist the computer spends a great deal of time in the assignment and back-tracking sections of the procedure, and is generally forced to give up without either finding a time-table or determining that one does not exist. Some aspects of the heuristic procedures, such as the concept of a section vector, are well worth keeping but the basic assignment and backtracking loops need to be modified.
F. Hall's famous dissertation "On the Representatives of Subsets" (18) provides a method of determining whether a student's course requests are compatible. Hall states (in his Theorem 2):

Given any set S (divided into any number of classes $S_{1}, S_{2}, \ldots, S_{n}$) and a finite system of subsets of $\mathrm{S}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{m}}\right)$ such that

$$
s_{i} \wedge s_{j}=\emptyset \quad(\text { for } i \not \approx j)
$$

then there aluays exists a set of melements
($a_{1}, a_{2}, \ldots, a_{m}$) no two of which belong to the same class, such that

$$
a_{i} \in T_{i} \quad(i=1,2,3, \ldots, m)
$$

provided only that for each $K=1,2,3, \ldots, m$ any K of the sets T_{i} contain between them elements from at least K classes.

The proof of this statement is in the original journal, however the arguments used in the section on network flows (Section 2.3) may be used as a proof.

The set's may be considered as the set of sections of the m requested courses of a student. The class S_{i} are sections meeting at time period i. The subsets of $S\left(T_{1}, T_{2}, \ldots s T_{m}\right)$ are the sections of the m individual course requests. The set of m distinct representative elements now correspond to the section of each class which would provide the nonconflicting timetable ($K=m$) 。

It is only necessary to verify the sufficiency condition of Hall's theorem for each student's course requests to determine the existence, or nonexistence of a time-teble. For nontrivial cases this verification may require a large amount of computing, thus it would be advantageous to produce, as a byproduct of the verification, the actual student time-table.

This verification can be accomplished with the procedures developed to find complete subgraphs in

Section 1.5. First, however, the master time-table must be stored in the form of a boolean matrix. To each section of each course there corresponds one row and column of the time-table boolean metrix, Tg with the requixement that $t_{i j}$ is true if section is given at the same, or overlapping, time as section je With the master time-table in this form the verification of Hall's sufficiency condition reduces to the following steps.

1/ For each student construct a boolean matrix, M, consisting of only those rous and columns of T corresponding to the sections of his requested courses (this matrix is associated with a graph G which is a subgraph of T). 2/ If any row, j, of M represents a single sectioned course then scan this row for any true elements i, and eliminate the row and column i from the matrix. This elimination may take the form of setting all elements in row and column i to the value true but preferebly should consist of actually removing row and column i from M as this will speed up the later stages of the algorithm. This eliminetion process corresponds to an indicstion that there is no alternative section assigmment available for course j.

3/ Ensure that there is still at least one section avallable for assignment in each requested course. If all sections of any course were deleted in step 2 then it will be impossible to construct a time-table for this student.

4/ Generate edges between vertices corresponding to the individual sections of each course request, ie. if a course is divided into s sections $(1,2,3, \ldots, s)$ then $M_{i j}$ should be set to the value true for all i and $j=1,2, \ldots, s$ (including the case $i=j$). This will ensure that this student is not placed in two sections of the same course.

5/ Take the complement, Fi, of the matrix M ($\bar{M}=1-\mathrm{M}$). $\overline{\mathrm{M}}$ is now a boolean matrix corresponding to a graph, \bar{G}, of the pairvise permissible course sections.

6/ If the student has reguested N courses then, using the complete graph algorithm developed in Section 1.5, determine the complete subgraphs of order N in \bar{G}.

7/ If any complete subgraphs of order N exist in \bar{G} then Hell's sufficiency condition has been obteined and a time-table corresponds to the N vertices in any K_{N} of \bar{G}.

Step 1 produces a boolean matrix which indicates which section of the $|R|$ requested courses may not be taken simultaneously. For example FIGURE 2.4.1 shows the graph, and its associated matrix M, of the conflicts between the sections of five courses:

> A - a single sectioned course (vertex 1)
> B - a single section course (vertex 2)
> C - a three section course (vertices 3, 4, 5)
> D - a three section course (vertices 6, 7, 8)
> E - a four section course (vertices 9, 10, 11, 12).

From FIGURE 2.4.1 it can be seen that section 1 (course
A) is given the same time as section 9 (the first section of course E) and section 2 (course B) is given at the same time as section 8 (the thrid section of course D). Because courses A and B have only one section each it is obvious that sections 8 and 9 cannot possibly be included in any tine-table with . 1 and 2. Step 2 takes care of this incompatibility by effectively removing these two vertices (8 and 9) from the graph by generating edges between them and all other vertices. This step is illustrated in FIGURE 2.4.2, the new edges being the continuous lines and the original edges the deshed lines.

Step 4 takes care of the possibility that a
student may be assioned to two sections of the same course. It is efsijy done by generating edges betreen

FIGURE 2.4.I

FIGURE 2. 4.2

FIGURE 2.4 .3

the sections of o course, so thet if one section is assimed to a student ell othor sections in that course are then incompatible wjeh the timewtable This is shown in FIGURE 2.4.3, with the nemly inserted edees again being shown as continuous limes and the previous edres as dashed lines.

Step five produces the complementary graph, that is the wreph with the same rumber of vertices but where the orisinel wraph had an edore the complement has nore, and where the oricinal graph did not have an edee the complement has. The complementary greph now indicetes mhich neirs of coursen are permitted together in a time-teble. It is now only necossary to find |r| (in this cose 5) vertions forming a complete gmen to both verify the sufriciency condition of Holy's ineonem and flnd a time-table. FIGUME 2.4.4 illustretes the complementary graph and the circled vertices ore or. the many complete five graphs availanle fox a timentabie. The method of constructins this sraph cnenres
that there will be no complete kraphs of order $|R|+1$, and only a complete graph of order \mid l \mid if a time-table exists. Thus the operation $\triangle T|F|$ (see section 1.4) performed on the matrix $\frac{1}{\operatorname{li}}$ will quickly determine jif a timentable is possible, and only if it is, is it necesscry to continue on to find the complete praohs whioh ectuali u represent the time-tobles.
The amount oi computetion necessamy to perform the
operation ΔT_{n} is dependent on $\frac{v^{2}}{2}$ rhere v is the number of vertices in the graph. For this reason it is best, in step 2, to completely remove a row and column from the matrix M rather than adding the extra edges. Winich of these two methods are actually used will be heavily devendent on the computer in use and the method of storing the matrix M.

In very bad cases the matrix M may be larger than 100×100. This, because of the amount of computation necessary for the operation ΔT_{n}, may lead to excessive computer time being used, however this may be alleviated If the computer has a range of poverful logical irstructior The general availability of machires with multiple processing units will also aid in overcomjng the problem of excessive computer time being used. The operation $\triangle T_{i}$ is suited for mutiple processor mechires because the checking of the number of edge cixcuits of length three subtended on each edge is irdependent of operetions on other edges. Although it can be shown that serial processing may result in fever actual operations being performed, the time saved ky parallei processing will be significant in the real time situations in Which student sectionires is usually carried out。

> The complete graph sectioning aleorith was
implenented in an Frglish-mectric- Leominsconi KDF 9 using data obtained from the Registrar of the University of Alberta, Calmay. This implenentetion was not jrtended for an actual sectionine production rung as was the heurictic implemented in Section 2.2 , but simply to gain experience in the runnirg problems of this algorithme The implementetion consisted of foux seperate prorrams:

1/A program to read the master tine..teble data from cards and produce a type 2 timevector - writter in ALGOI, with some procedure bodies in USER CODR
2. A program to read the type 2 tire-vectors and from them build up the master time..table boolean matrix which was then stored on the KDF 9 disk unit -- written in ALGOL vith some procedure bodies in USER CODE

3/ A prograru to read students couxse reoliests end produce the individual boolean metrices by selectins the appropiate rows and coiurns from the maston time-meble metxix - uritten ir hociurith some roocedure bodies ir

USBR GODE
4/ The actuel sectioning algorithm - written within the framerork of AIGOL but most of the promern is ratten in USER CODS in orcer to obtain full use of the KDF 9 logical instructions and to simulate as closely as possible actual production conditions. Frooran 1, 2, and 3 rere not written with the intent that they be as frest as possible. In fact it turned out thet, due to the access time on the disk unit, better usace of the computer time would have resulted if program 2 had never been written - the individual student matricos being bujlt up by direct comprison of the time-vectors rather than removing the relevent rows and colums from the disk. Frogram 4, on the obrer hand, wes written with the intention thet its runing time should be kept to a minimum.

By a slight modificetion or the complete graph procedure it is possible to cause it to find all the complete graphs of a given order rather than just one complete graph. This was used in an attempt to produce all possible time-tarles for a student, thus allowine: a selection procedure besed on the "goodness" of a particular time-table. It was found that, after the first complete graph hed been found, the subsecuert compete gravis were found at a rate which was limited
only by the output devices (nemetic tapes with a transfer rate of 40,000 characters per second). Thus it seems possible that number of different time--tables can be completed and the "best" one given to the student.

During an attempt to find a function which would predict the amount of computing time each student would need, a plat of the number of vertices in the individual student's conflict graph against the computer time used Was produced (see FIGURE 2.5.1). This showed an alarinire tendency for the graphs to fall into three distinct types. Type A (see FIGURE 2.5.1) is easily explained as the graphs of students whose course requests were such that they did not possess a confict-free time-table. Type B and C however are students who did possess a time.. table and no simple test could detect the difference between a type B and a type C graph. Plots of both the average number of sections in each course against time, and the average degree of each vertex against time shored this same threerold division.

It became imperative to find the cause of thjs division when it was found that one student rooulred 1231. seconds computing time to determine a time--teble. This student's final graph was large, 110 vertices with 5588 edees, and wes so constructed thet it red a possible 14,929,920 different section combinations. However the simple size of the graph had to be disresarded when

Computing time taken with
the complete graph sectioning procedure

FIGUPE 2.5.1
another student wes found with the same size of sraph. (110 vertices, 7234 edges, and $218,350,080$ possible combinations of sections -- about 20 times as many as the first student) rhose time-table only took 6.6 seconds to compute.

As it tumed out the basic nature of the complete graph algorithm, a yo-yo tree search, was the culrrit. If, in searohing down the tree, the algorithm initially chooses an unproductive branch, a great deal of effort is rasted in searching all the offshoots of this branch before the procedure can again look for a more fruitful branch. In the case of the two students cited above, tire formex made the procedure search seven long unproductive branches before it found one leading to a complete graphs in the case of the latter student the procedure found e fruitrul branch immediately and after only recursing six times it found the complete graph.

Any attempt to elimingte the searching of unproductive branches must eliminate the ability of the algorithm to find all possible time-tables for a student. However computirg times of 1231 seconds for a single student are also unacceptable. A compromise must be found.

Each step down the complete sraph search tree eliminates from the graph at least one vertex which does not possess the necessary edees to form a complete
graph. This ejiminstion means that; as one poes rurthos dorm a: direct fruitrul branch, the ratiog β, where

$$
\beta=\frac{\text { number of edres in this minam of } i \text { vestices }}{\text { number of edses in a } K_{\mathrm{N}}}
$$

must increase. Thus if β is computed for each step, and compared to the ratio obtained in the last step, an indication of the possible "funitfulness" of the brench is obtelned.

When this extra step was incorporatea into tho complete graph sectioning procedure the case which formally reauired 1231 seconds computine timo now reouired only 23 seconds. As can be seen fron FTGURE $2.5 x$ this added step tended to bring the B ard C types of graph topether and very substantielly lowered the total. computing time necessary, although the conputing time for each of the type B graphs wes slightly increased,

This step is detrimental to the algorithm as it may prevent it finding all the complete graphse It is horever a necessary step if sectioning is to be done in a real time situation.

FIGURE 2.5 .3 shows the beheviour of the search for several typleal students. The RATIO 2.5.1 (shown as a percentace) is plotter against each recursive ster (or branch point in the search tree) met during the search, the height of the plot indicates the cowrueteress of the suberaph, The oriqurai tyoe of each grant

Computing tiwe taken with complete graph sectioning procedure using the β ratio

A plot of β against the number of steps taken in determining a complete subgraph

FIGURE 2.5 .3
(from Jine B ox C on $F I G U R E 2.5 .1$) is indicated beside the nlot.

The processing time veried from 0.3 seconds to
56 seconds per student with an average of less than
10 seconds, well within the time allowable for a universit
of moderate size with a computen the size of KDF 9.

$\mathrm{CHAPTER} \mathrm{\quad 3}$

Master Class-Teacher-Room Time-tables

This final aspect of the three part time-table problem is the most complex (and as a result least understood) of the time-wtabling situations arising in educational administrations. The construction of a master time..table may be consjdered as the next logical step after the student sectioning problem hes been solved. However this involves progressing from a one dimensional scheduling problem (examination time-tables) where optimality can be closly defined and vixtually attained, to a two dimensional scheduling problem (studert sectioning) where a definition of optimality can only be vaguely suggested, to a four dimensional scheduling problem where optimality is practically (if not actually) jmpossible to define and to simply find a feasible solution would be considered an achievenent. The fact that the problem has reached into four dimensions does not, of itself, prove the stumbling block, but the subtle interplay of the constraints to the variables (possible free selection of courses by students, ensuring departments are not overloaded in any one teaching hour, limited classroom aveilability, preferences of faculty members for certair times of day, the possibility of several courses being given by the same person -. to mertion but a few) are
the factors rhich mole it remamoble thet mester timetables exist at all, let enone attemnine to defire an optimum solvtion.

Producing a moster time-table for a university becomes an intricnte problem paticulorly it it is attempted to give each student the fullest possible choice of subjectis. Even carefully designed mester large number of studenis to take courses they rould not have chosen except for the fact that "It wes the only one that would fit into my schedule"。

The ideal situation would be to allor students to registex, then use a computer to mocuce a master time-teble from data obtained durine the registration. Aside from the fact that a student would be free to register for any course he is otheroise quelified to take, this method of producing a master time..table may lead to a considerable improvement in the utini\%ation of an institution's physical facilities. The traditionel schedule is to group the lectures in the mornings ard leave the afternoons free for the longer laboratory and tutorial sessions. It is, of course, very wasteful to have laboratories (probably the most expensive class room space in a university) inle for one haly of each day, but to schedule a three hour chemistry leboretory for the moming is to court onssible dis?stse in the
individual student's schedule Having the master time-table produced after registration might well lead to some of the laboratory periods being scheduled in the morning with some of the lectures in the afternoon. On the other hand it may be quite impossible to produce a feasible master time-table by this method and some Iimitations may still have to be placed on the course combinations selected by the students.

The literature available on the production of master tine--tables may be divided into four distinct groups characterized by their approach to the problem. The four groups are 1/mathematical, 2/ clerical, 3/ algorithmic, and $4 /$ heuristic. It will suffice to describe one example from each catecory as being typical. G. R. Sherman (31,32) hes published what is perhaps the most comprehensive work which attempts to define the problem from a purely mathematical basis. Using set theory and probability distributions of students selecting various sets of courses he has managed to formally define the various steps necessary in the solution of the problem as well. as some of the relationa - Which must hold true for the resultant schedule to be actually implemented. In Sherman's major work (32) an attempt has also been made to define what is meant by a "good" schedule. This, unfortunately, is taken from the view that "good" only applies to each set of resources, rather than the institution as a whole.

Although Sherman has developed algorithms to perform the various steps he defines, the author was unable to find any racord of them actually being implemented in a realistic situation. This undoubtedly stems from the fact thet they are almost purely combinatorial in nature
and would ve van entravarat, is not imporaction, ju the comptor time used. It ja also mbon morownste thst his work, being a set theory dissertation, is extremey difejent to resed and thus his rotentingly userul definitions are incompehensible to the vast majority of ndministrative persomel who mould be eble to benefit from them,

The seoond, and pomans most fruitrul, emponch is typified by the system knom as GoA.S.E. (Generalized Acodemic Simulation Prograns) devised by R. E. Holty (21) who worked under the direction of the Registrar's Office et the Fessachusetts Institute of Technology. The basio phjosomy behind the system is:
"As scheduling involves mery highly responsible nersonnal, end considereble clericel rork is involved in the decisions to be made, you have high level peope simply making a fer decisions and then doing mountains of pacer work. G.A.S.P. prograns mere designed to be used by the persons charged with building the schecule; the commuter simply taking over their role as clerta."

According to the published results a registrax, starture from basic deta, will have e workable timotable siter 3 - 4 rums, and grter 10 -- 20 runs, sroced a day on so anort; he would have a mestor time-terte

methods. Aftex each successive run the goo? feturee o: a timentable sre noted and the bad fortures are modifior by the user. Thus proposed scheduje innovetions can be studien for feasilifity much more readily than jes possible with manual procedures. For example, if, during a series of runs, the data on students, times; and steff are kept fixed while the number and sire of clessrooms are veried then the schodules resulting from the series of runs would give a valuable insight to the number of class rooms actually required. This same method would prove a valuable tool in forecesting the reauirements of the institution in the future. The GoA.S.P. scheduling system is desicned as a four dimensional assismment problem (time, rooms, steff: and students). Its approach is to sacrifice an exact, conflict free solution in return for keeping the abiljty to make all four of the assignments and to be of use to very laree institutions. The time-teble construction routines will schedule classes in the order designated by the user, time assignments being based on the availavility, influenced by a user generated weighting fectors of stefr roons, and students. If the program is unable to make a reauired assignment, from its specified choioes, it simply leaves that job for the user to do manually or for a future run when the user has eltered the input dets.

The Gand.j. system is conposed of several prorene
only one of which is concerned rith the actual constructior of a master time-table. The other programs will attempt to schedule a representative group of students to the new master time-table and output various statistics to aid the user in evaluating the resulting time-table. The scheme proposed by C. C. Gotlieb and J. Csima (7,17) for the solution of school time-tables envisoges the construction of the three dimensional boolean array $B_{i j k}$ each element of which represents the meeting of a class (i) with a teacher (j) at a particular hour (k). A false element indicates that this class is not available to meet with this teacher at this hour. Initially the array is filled with the value true, indicating that any teacher is aveilable to meet with any class at any hour. The procedure then modifies the arrey so that, at the conclusion of the modification, at each hour it is possible for each teacher to meet onjy one class and for each class to meet only one teacher, and each teacher can meet each class a predetermined number of times. The time-table is then inherent in the resulting array.

Gotlieb ensures that the resulting time-table conforms to certain desirarle patterns and fully exploits facilities in heavy demand by allowing preassignments to be made. Although he has been able to prove that the procedure will detect mhen a timenteble is impossiole under a given set of preessignments, he has not been acle
to show that, for a given set of classrooms, teecher, and times, a time--table exists. He has, however been able to prove existence in some special cases.

The procedure requires that, at regular intervals during the procedure, an examination be made of each plane section of the three dimensional array. It is shown that each plane section is effectively square in that any seeming excess of rows or columns can always be eliminated. If b is an ($n \times n$) plane section of the arcay B then an r-partial solution of b is a set of r independent true elements, ie. r true elements such that no two occur in the same row or column. An n-partial solution is the time-table for the class, tameher of hour represented by b.

The examination of b has two stages :
1/ conførmation of the existence of at. least one schedule (feasibility test)

2/ any true element which does not belong to a possible schedule is changed to false (matrix reduction)

The feasibility test is a very simple procedure but the matrix reduction is a highly complex process requiring large amounts of computing time. The proposed "tight set search" procedure for reducing the matrix can be shown to converge to a solution in about $2^{\text {n }}$ steps and thus is, urfortunately, imoractical if n 参 20 . J. Lions (24) has developed some refinements to the tight
set search which will reduce the effort required to about $(m n)^{2}$ operations, where m is the number of true elements in b。

The lergest reported time-teble produced by this method is one for a school of 9 rooms, 9 teachers, and 9 teaching hours. Lions has used the method to produce master time-tables for schools in Ontariog however, to the author's knowledge, none of his time-tables have ever been openly published.

The last method under consideration is one developed, on an experimental basis, by J. Pfaltz (29) of the University of Maryland. His heuristic procedure is vexy crude because he did not carry his work to completion, however i.t shows promise of becoming a very useful system.

Pfaltz conceived of the procedure being used after the student body had enrolled, thus it would have an accurate record of the number of students enrolled in each course and the number of students taking any pajr of courses. The registrar was expected to supply, as input data, the following information:

1/ Course data

- name
-. Iength of class eg. 1 hour 3 times a week
- two preferred times for class meeting, or to be arranged, if necessary
-- the maximum number of students to be allowed in any one section of the course

2/ Availsble time periods

- a list of all hours, suitable for teaching in any one wee?

3/ The aforomentioned repistmetion date.
The procedure will perform the folloring hesic steps in its attempt to design a time-table:

1/ Tabulate all the reoistretions for each course and form a list of the courses conflictiry with erch course,

2/ Compexe the total registration with the maximum number of students permitted in each sedtions and deejde hore may seotione or ench course are to be offered.
$3 /$ Form a priorjty list of the classes to be scheduled. This ensures thet classes whjoh are djfficult to schedule are attempted first. The prionity list is besed on the total enrolment, whetherit is a sincle or multiole sectioned course, and the length of time a class is to meet over one week.

4/ Modify the conflict lists of the multiple sectioned courses so thet only the most serious possible conflicts remein. The besic onilosonhy behind this is quite simple -- if two sindle section curses heve students common to boin, then they cennot mont et tho same or orerlaroing times, horeven if ons of
the courses has heen divided into tro sections there is some possibility thet assjening students to the other section will resolve the apparent schedule confiact. If one, ox both, of the conflicting counses has more than three sections then Efallz imnores the apparent conflict.

5/ The firal step is to assich the top unscheduled course in the priorjty list to the time period of its choice, if possible, othervise to any free time period. The routine then attenpts to sssion as many courses as possible to the serne time period; however ir any of the first five courses, in the non-conflicting list, orefers that time oeriod it gets it, ever though it is out of striot priority. This added quoue jumping does not seem to adversely affect the system and will go a long way in making it moje palatable to the user.

In the limited tests Pfalt: made, the procedure seemed to work very well. There are, honever, a number of improvements rinich could be mede:
$1 /$ Pfaltz arbitrarily chose some of the parametems (such as the mumber of conficts which the procedure could serely irnore). Further stuny could refine these amd pember sucsest others.

2/As the promram tries to schedule all the covmses in as fer time periods as possible, the resulting distribution of courses over the week is very uneven. Some form of levelling routine will be necessary, this may even be accomplished by modifing the values of the pamameters mentioned in point 1 above.

Of all the master time-table procedures aveilable in the literature none is entixely satisfactory. The most fruitful avenue of aproach is, perhaps, to combine the clexical reducino ideas of H-ltz with the easily modified heuristics of Pfaltz to produce a system rhichs if not perfect, would be extremely useful.

The problems involved in producjng eanimation time-tables and the sectioning of students to classes are essentially one and two dimensional assierment problems. All of the structures dealt with in Chapters 1 and 2 involved only relations between pairs of items, often called dyadic relations. The mastex time-table of an institution, on the other hand, reouires one to deal in tetradic relationships, ie. student A meets with teacher B in room C at time D. This may be simplified to a triadic relation if the teacher is considered as simply another student required to attend the class.

A fruitful metheraticel theory for n-adje relations ($n>2$) seems to be undiscovered. This is esseritially due to the fact that dyadic relations correspond to matrices and standard matrix operations have a definite meaning in terms of dyadic relatjons. Horever n-adic relations correspond to n-dimensional metrices and the handing of these matrices presents a number of specjal problems.

To be able to apply the techniques developed in Chapters 1 and 2 to the problem of rroducing a master time-table some method must be developed to reduce the problen to sinule dyadic relations. In the pest, the attemots at building a master tine-table heve ovraicerax
rooms, students, teachers, and times as separate entities and thus were forced into three or four dimensional assignment problems.

In some scheduling problems, notably problems arising out of shop floor and assembly line scheduling, not all assignmentis have to be made at once, for example a piece of work mey not have a machine or operator available for it, and thus it can simply be put into a rajting queue. On the other hand, a cless. With a room but no teacher is quite a useless assignment. Thus students, teachers, rooms, times and any special equipment reouired are all of equal importance in the consideration of mastiex time-tables.

In order to aroid confustion in the discussion on master timemtable preparation the following definjitions are necessary:
.. a "primitive facility" (or "primitive") will denote a particular teacher, room; tjme segment, piece of equipment, group of students, etc.

- a "resource" will denote a collection of identical (or interchangeable) primitives, eg. a number of teachers having the same qualifications, a number of rooms of equal capacity etc.。
- a "class" vill denote a collection of primitives (one from each necessary resource), a class fill nomelly be given a name, eg. the class called.
jr. mathematics may consist of the primitives:-. Mr. White (the teacher)- room 709.. the first year group of mathematicsstudents
- the time segment Mon. Wed. Fri。 9:00-10:00... the first year mathematics demonstretjonkit.- a "time-teble" will denote the collection ofall the classes.
Consider a student enrolling for studies. In Chepter

2. it was seer how he could produce a list of the courseshe wished to attend and how a computer could assign himspecific sections of each counse. If, in place of thisstudent, we substitute a department head, he couldproduce a list of resources necessery for the formationof a class. For example, if he was preparing a list ofresources for jr. chemistry it might consist of
1/ a teacher of chemistry2/ a lecture room holding 200 studentss with ademonstration bench$3 /$ the first year class of science studerts$4 /$ a chart of the periodic teble of elements$5 /$ a time segment consisting of three singlehours per week.

primitives, for example:

$1 /$ (teacher) a four section resource
a) Mr. White
b) Mr. Brown
c) Mr. Green
d) Dr. Red

2/ (room) a two section resource
a) room 707
b) room 103
$3 /$ (pupils) a single section resource 4/ (chart) a three section resource
a.) chart A
b) chart B
c) chart C
$5 /$ (time) a ten section resource
a) Mon. Wed. Fri. 8:00-9:00
b) Mon. Wed. Fri. 9:00-10:00
c) Tues. Thurs. Sat. 8:00 .. 9:00 etc..

The process of choosing one primitive from each resource to form a class is easily seen to be identical to the problem of sectioning students to classes.

The full porer of an algorithmic sectioning procedure is vital to the successful production of a workable timentable by this method. Each primitive may be
rewresented in the seme monner es actual comed sections were in Chaptex 2, the section vector and resexveitor momber concepts actime as porenoul seleoticu criteriat por obtoining the cormet assichment of terchers, roons, tinos, eruipment, etc.

The booleen matrix, T, representing the master time-teble in Chepter 2, is now replaced ky boolean matrix P hevine one row end coinu for each rindtive aveilable Initianty $P_{i j}=$ false jomicnting that any paix of primitives may be assiched tosether As the assif ments aie mede for ench class the matriy y is undated to show the conficts of the orimitives in the "tire" resource with the primitives in the other rescurces

In prectice the metrix p wifl not be oasily set up. For" example the "time" primitives may have to be mosified to avoid orexlapping time periods, and a great deal of study will be needed to accurately detemine all the primitives within an institution。 Although unaieloj to set up, the matrix may be used to mreat advantore, for example, if a oiece of onuirment, is is gveiloble only jr the cherjstry building then by assicning

$$
P_{i j}=\operatorname{true}(j=a l l \text { rooms not in cheristry }
$$

this will ensure thet a class requiring eauthuent ioily Ge reld ir the cheristry buildines.
Un]ike stodertsetioniner, -rnexe sectiors cf tre
course fomed a combletely disjoint setrith scotions fro.
another courses the primitives in one resource ney be identical with some or all of the primitives in anotrer resource, eg, a teacher qualified in both chemistry and mathematics. Thus great oere must be taken in ensuring that there is one and only one row and column in P for each primitive. This also forces a slight chenge in the sectioning algorithm. Step 4, the generetion of edees between vertices of the individual sections (primitives) of one course (resource) must now be accomplished by setting $P_{i j}=$ true if primitive i arid primitive j are in the same resourse, for each resource in which primitive i and j are grouped.

To ensure an even distribution of the workloar to each primitive in a resource it is only necessary to keep a record (corresponding to the number of students in each section) of the number of hours each primitive is occupied. The sectioning procedure, by means of the section vector, will attempt to assign the primitive with the least usage before attempting to use primitives in greater demand.

It would be possible to use this method by selectinc at random a department head's list of requirements, sectioning them, and selecting another list of reguirenerts This, however, will rapidly lead to a situation in wich it is impossible to find a valid assignment of primitives for ore or wore classes. This is equivalent to the ravecu selcction of vertices for colouring, a process seen, in

Chapter 1, to produce fax from optimum results.
The selection order of the lists of recuirements may be obtained by the same methods as the selection order for vertices in the graph colouring problen. An $N X N$ matrix R (where the institute wishes to offer N classes) is produced such that

$$
R_{i j}=s
$$

if s requirements of class i are the same as those of class j. The eigenvector is found corresponding to the largest eigenvalue of the matrix F (or an approximetion to this eigenvector .. see Section 1.5) then the classes for assignment of primitives are chosen in the order of decreasing magnitude of the elements of this eigenvector (see Section 1.3).

This ordering criterion may be changed in individual situations by having an extra weighting factor of two or three on the conflict of room requirements if the institute is short of space, or teachers if it is short of staff, etc.. This will tend to raise the magnituce of the eigenvector elements corresponding to the weighted requirements.

Because the various sections of a course will normally have the same primitives, they will have equel. values of their elements in the eigenvector and thus be sectioned one after anotrer. This together with the distributing function of the section vector will ensure
that they are sectioned in different time primitives. A conflict list of the type used by Pfaltz (note point 3 in the description of Pfaltz's procedure in Section 3.2) may also be useful in ensuring an even distribution of assignments.

If an extremely powerful computer is available an alternate approsch will produce "best possible" results. The graph, G_{i}, corresponding to the non.-conflicts between primitives for any one perticulax requirement; is (the graph from which a complete n graph is found, giving a workable sectioning) will normally contain more than one complete n graph, these complete n graphs will be denoted by $\gamma_{i}^{\prime}, \gamma_{i}^{2}, \gamma_{i}^{8}, \ldots . \gamma_{i}^{\prime}$

The following procedure will determine all the possjul time-tables for an institution:

1/Produce all the γ_{i} for each revuirement i.
2/ Form a graph, Γ, the vertices of which correspond to the γ_{i} produced in step 1.
3/ If there exists $\gamma_{i}^{\prime}, \gamma_{i}^{2}, \gamma_{i}^{3}, \ldots ., \gamma_{i}^{n}$ for any reoulrement i then connect the vertices corresponding to the $n \quad \gamma_{i}$ such that they form a complete n graph

4/ Take the time primitive associated with a vertex γ_{i}^{n} and compare it with the time primitives associated with each vertex $\gamma_{j}^{\ell}(j \neq j)$. If the two time primitives conflict and a student

$$
\begin{aligned}
& \text { has requested both course } i \text { and course } j \text { then } \\
& \text { join } \gamma_{i}^{\kappa} \text { by an edge to } \gamma_{i j}^{\prime} \text {. } \\
& 5 / \text { Take the complement of } \Gamma \text {. } \bar{\Gamma} \text { is now the } \\
& \text { graph of all the } \gamma_{i} \text { rich are pairwise compatible } \\
& 6 / \text { If the administration specified } N \text { classes } \\
& \text { then from } \bar{\Gamma} \text { find all the complete graphs of } \\
& \text { order } N \text {. These represent all the possible } \\
& \text { timetables the institution may use. } \\
& \text { Once again the repeated use of the complete graph } \\
& \text { sectioning algorithm will yield the solution to a very } \\
& \text { difficult problem }
\end{aligned}
$$

Section 3 圱 Dotom Angonto crme

The comolote rrom method, summerton in the 7 at sections for the conetrmotion of sotoot tiventernen was mut forman es a serious sucrestion foreven, in practice, a number or drambeks make uncmasives fett when it comes to desimine a prectios imolewentetior
 amome of dethe in se men unoturel form and, if the data wexe colleoted, it monld ronuine g verg larce eve porerrul computer to analyse ito

To collect end chasify all the resoumoes or a unjversity rould bs an extremely arduous taske In fsct it is likely that the total resources on phosong
facilitias available to a untwonity ere asven ersuty known. In 1964 the Office of the Reristran of the University of Alberte, Calgrary attembted to claseify aja the lecture, laboretory, and seminay rooms ard their contents; to the duthox's knorledge this surmer res never completed and finally abondoned completely die to its comolex noture.

The duthor hes hed the privilege of artending tho I.F.I.v. Conrress 68 (Erinburch 1968). Durine the Concreas F. C. Johnston and K. Wolfenden presentes e poner entitica "Conmtom Aided Constmution Es Schon? finewtobes" -rioh desonibode agtos of ontectint
school data in a fom similar to thet revired by the
 indionted that this dets colleotion, for a smell shool, wes a nontrixial ond error prone tosk.

From the experience pained in runing the complete algorithm for student sactioning (and a projuct desoriber in Section 4.3), it was forecast thet a realistic ettempt at constructing a mester timerable ronle tille of the ordec of tens of hows of KDF 9 computer time. Foreven (Again from experience craned on implenentinc the sectiontat alporithm) it should be possjble to increase tre crficjecoy of the elrorithm from 150% to 300% by very crefur
hand coding. This would not only be a huge iob, it, would mean hand coding of recursive rovthers: mossy businces at the best of times.

Because of these difficulties, and a lack of both the time and the money to find methoas of overconing them, it was deaided that an imolementation or the systom was not a practical possibility, escecially on a computer the size of a KDF 9. It was possible, nevertheless, to solve a smoll problem with this master timo. table mocedure and, in so doings learn more about its operation.

In the snine of 1968 e toy, claiming to one ar invention of ons Toutor Ador, colled Inctant Insenty come on the merbet. The rieces of this areme ter frum cubes with the fuces coloureu rad, sreen, blue, sta

> red $1,7,8,9,15,21,23$
> yellow $2,6,12,16,19,20$
> green $3,5,10,17,18,22$
> blue $4,11,13,14,24$

FIGURE 3.4 .1

Showing the colour scheme of Doktor Adlor's cubes.
yellow The obdect is to phace the eubes ir: a lire bo fom a solid rectongle such thet eech colour is rencesmated once ard only once on each foce of the solid rectonele rhe cube colow sotrone is thet shom in FIGURE 3.4.1.

Although simple in concept it is extremely difficult to find a solution. The author ins never been able to find a solution and knows of ouly a fer people rino, weneraly aftex a month or more, heve discovered one Horever it is possible to formulate this problem ir terms of maph theory ani, because of its resemblenoe to the school time-tabe problem, construct an alronither to tabulate oll possible solutions.

Form a sraph, g_{s} of 24 vertices represonting tine 24 faces of the four oubes; in face i is on a diferent oube from face j and has a diferent colour fron face j then vertices i and j are joined by an edge. The acaph g nor represents those faces which may be ploced adincent to esch other to form one half of a faee of the solid reotangle. If all of the complete graphs of order four axe found then these K_{4} 's rill represent an arrenanent of one face from each abe such thet rinen placea torether they form s. solution to one fece of the solid recterele. It should be noted that this one face solution imajes nothinc about the other three foces in any rossindesolv: -
 mreph rrocedure which raoduced 130 one foes solution,
or 130 rays of arromins the cubes such that at least one fece of the solid recthale shors all four colours. Because of tre symetry of the situstion many of the 130 K_{4} 's from gey be oliminated from consideration ir the final solution. Specirically the K_{4} 's corresponding to a single face solution may be eliminated if the face on the opposite side of the solid rectanale is not also a one face solution.

After eliminating the useless ons face solutions a graph, G, may be formed, each vertex of which corresrocis to one of the remeining K_{4} 's of 8 . Vertex it is joined to vertex j in G if the two one face solutions corresponding to i and j are compatible. This competivilu i.s achieved if:

1/ no face of a cube used in solution i is used in solution j

2/ if the face of one cube used in solution i is on the opoosite side of the cube to the face used in solution j then the three other faces must also be opoosite in i and j.

Any complete graph of order four in G will now renresert four compatible one face solutions or the final answer to Doktor Adlor's problem.

The eliningtion of useless $K_{4}^{\prime \prime}$ frow \# Inaver
six of the K_{4} 's as being possibly contained in a solution

$$
\begin{aligned}
& 1 / 1,12,13,22 \\
& 2 / 4,10,15,20 \\
& 3 / 6,10,14,23 \\
& 4 / 3,11,15,20 \\
& 5 / 2,8,13,22 \\
& 6 / 5,8,16,24
\end{aligned}
$$

These give rise to the graph G shown in FIGURE 3.4.2. It is easily: seen that there is only one K_{4} in G and thus only one solution to Doktor Adlor's problem, namely:

$$
\begin{aligned}
& \text { face } 1-1,12,13,22 \\
& \text { face } 2-6,10,14,23 \\
& \text { face } 3-3,11,15,20 \\
& \text { face } 4-5,8,16,24 .
\end{aligned}
$$

This rather trivial problem serves as an example of the use of one graph representing groups of vertices and their relations in another graph. It thus gives an elementary problem to examine which will help determine the problems involved in implementing this type of approach. In general it can be said that a problem of this size is easily dealt with on even small computers although a small increase in its complexity

$$
\text { FIGURE } 3.4 .2
$$

The graph of the one face solutions to Doktor Adlor's problem.
could result in the comouten eronedins meny tines tha erfort to obtsin sombiom.

The nein diffichltw would geem to be ir the drajer of roocdures to honde the dete betreen uses of the complete groph proceduxe In pertioulax the design of efficient procedures to eliminete the useless or redundant pratisl solutions is the tosk mhich could more or break this approech.
$C H A P T E R \quad 4$

Further Results

In this chapter an investigation is made of the graph colouring processes and related topics. A few interesting results are obtained and several valuable insights into computational processes are found. Several theorems will be valuable for the future discussion.

Theorem 4.1.1
If a graph, $G(V, U)$, without loops or parallel edges has an associated matrix A, then two vertjces i and j may be given the same colour if row i of A is ldenticel to row j of A.

Proor
It is known that vertices i and j may be given the same colour if they are not connected by an edge and if they are not both in a circuit containing an odd number of edges. Thus the proof can be split into two parts.

1/ Assume that vertex i and vertex j ere joined by an edge, then

$$
a_{i j}=1 \quad \text { and } \quad a_{j i}=1
$$

for row 1 to be identical to row j this would force

$$
a_{i i}=1 \quad \text { and } \quad a_{j j}=1
$$

which contradicts the assumption that G has no loops. Therefore vertex i is not joined to vertex j.

2/For row i to be identical to row j there must exist a set of vertices K such that

$$
a_{i k}=1 \quad \text { and } \quad a_{j k}=1
$$

which implies that there must exist a circuit from i to j and back to i of the form
i, k, j, k, i
where k is any member of the set K. This circuit has an even number of edges and obviously is the only type of circuit in existence.

This proves the theorem.
This result may be used to eliminate from the graph any vertices which, by reason of having an identical twin, are definitely not part of a critical subgraph.

A stronger result is:

Theorem 4.1.2
If row j in the matrix A, associated with the
graph $G(V, U)$ (no loops or parallel edges), is a linear combination of the rows

$$
i_{1}, \dot{i}_{2}, \ldots ., i_{p}
$$

then the vertices corresponding to the rows

$$
\dot{i}_{1}, i_{2}, \ldots . .
$$

may be given the same colour as the vertex corresponding to the row j.

The vertices $i_{1}, i_{2}, \ldots . i_{p}$ must be at a distance two from vertex j and only j. There must exist p nonempty sets $K_{1}, K_{2}, \ldots, K_{p}$ such that

$$
i_{r} \in U_{K_{r}} \quad \text { and } \quad j \in U_{K_{r}} \quad(r=1,2, \ldots p
$$

and

$$
i_{r} \notin U_{K_{S}} \quad(\text { for all } r \neq s)
$$

It will only be necessary to show that any of
the vertices i_{r} may be given the same colour as j and that this colouring of i_{r} does not effect the colours assigned to the other p rI.
vertices.
Assume that the graph has been coloured in a minimal number of colours and that vertex j was given the colour α. If the vertex I_{r} has olso been given the colour α then there is no problem, however if it has been given the colour β then consider the following --

No vertex in K_{r} may be coloured α because

$$
j \in \mathrm{U}_{\mathrm{K}_{\mathrm{r}}}
$$

or β because

$$
\dot{\mathbf{i}} \in U_{K_{r}}
$$

By an aroument similer to that in theorem 4.1 .1 concerning the possible joining of vertex ir and j and the length of the smallest circuit containing both vertices it is possible to show thet vertex I_{r} may be given ejther the colour α or the colour β, thus one may change the colour of i_{r} to α 。

The colouring of i_{r} must be independent of the colourines of the other p - 1. vertices!

The relation

$$
\mathrm{K}_{\mathrm{r}} \wedge \mathrm{~K}_{\mathrm{Im}}=\varnothing
$$

must hold true otherwise i_{r} and i_{m} would be at a distance two from one another, and the vertex k satisfying the conditions

$$
k \in U_{i_{x}} \quad k \in U_{j} \quad k \in U_{i_{m}}
$$

would force the element

$$
a_{j k k}>1
$$

which violates the condition that G contain no parallel edges. Thus i_{x} and $i_{I n}$ are at a distance four from each other and thus do not have to be given different colours by reason of being on an edge circuit of odd length. Finally

because the reverse implies that i_{r} is included in one of the sets K_{m}. If

$$
\dot{i}_{\mathrm{r}} \in U_{\dot{i}_{\mathrm{m}}}
$$

then

$$
\dot{i}_{x} \in U_{j}
$$

; Which has already been show to be impossible. Thus the theorem is proved.

Theorem 4.1 .2 may bo used in any attempt to locate the critical chromatic subgraph of a large graph. This result leads directly onto another giving an urger bound for the chromatic number of a graph.

Theorem 4.1.3

The chromatic number of a graph, $\gamma(G)$, obeys the relation

$$
\gamma(G) \leq R
$$

Where R is the rank of the matrix A associated with the graph G.

Proof
The rank of a matrix is the number of lineaxiy Independent rows and columns of the matrix. Theorem 4.1 .2 allows the deletion of all dependent rows and columns without changing $\delta(G)$, therefore

$$
\gamma(G) \leq R .
$$

Equality holds in theorem 4.1 .3 for complete graphs on n vertices $(\mathrm{R}=\mathrm{n})$. Thus this upper bound is the best, possible for general graphs.

Recently Szekeres and Wilf (44) have published (without proof) a potentially better bound for $\gamma(G)$. Their bound is:

$$
\begin{equation*}
\gamma(G) \leq \lambda_{1}+1 \tag{4.1.4}
\end{equation*}
$$

where $\lambda_{\text {, }}$ is the largest eigenvalue of the matrix associated with the graph G 。 Results deduced in Section 4.3 will throw doubt on the validity of (4.1.4) for general graphs.

The largest factor in determining the efficiency of a graph colouring procedure is the size of the graph i.tself. If some method could be found to easily reduce the stze then the computation necessary to produce a minimal colouring will be greatly reduced.

A very much weaker (but computetionally more significant) resulit than Theorem 4.1 .2 is the following:

Theorem 4.2.1

If two rows of a matrix A (associated with a graph G having no loops or paxallel edees) bear the relation that the nonzero elements of row i are a subset of the nonzero elements of row j then the vertex i may be given the same colour as the vertex j.

Proof
The proof follows the same general lines as
the proof of theorem 4.1.1.

This theorem is computationally important because it is very easily programmed on most computers in such a manner that the full power of the computer's logical instruction set can be brought to bear on the proolen of determining if row is a subset of row j. This
particular operation (that of reducing the number of vertices in a graph by eliminating subset rows) will be known as reducing the graph. A graph G, having been fully reduced, wlll be demoted by Gr, similarly its associated matrix will be denoted by A^{r}.

If only the chromatic numbex is wanted then an alternate method of reduction is available involving the cartesian product of two sraphs. This method is only useful on a limited number of graphs but if the physical problem bejng represented has some symmetry to it then this method may be applied.

The certesian product of two graphs $G(v, u)$ and $H(z, w)$ (both having no loops or parallel edges) is the graph $\Gamma(V, U)$ whose veritices are the ordered pairs (x, y) where $x \in v$ and $y \in z$ and (x, y) is adjacent to (x^{\prime}, y^{\prime}) if and only is

$$
\begin{aligned}
& 1 / x=x^{\prime} \text { and } y \text { is adjacent to } y^{\prime} \text { in } H \\
& \text { or } \\
& 2 / y=y^{\prime} \text { and } x \text { is adjacent to } x^{\prime} \text { in } G
\end{aligned}
$$

V. G. Vissing (34) has shown that

$$
\gamma(\Gamma)=\max \{\gamma(G), \gamma(H)\}
$$

thus if it is possiole to factor the original grach into tro cartesian factors G and H the rork needed to

$$
\mathrm{H}=1 \cdot 2
$$

$$
\begin{array}{llll}
1 & 2 & 3 \\
1 & 0 & 1 & 1 \\
2 & 1 & 0 & 1 \\
3 & 1 & 1 & 0
\end{array}
$$

$$
\begin{array}{ll}
1 & 2 \\
1 \\
2 & \begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}
\end{array}
$$

1,1
1,2
2,1
2,2

3,1 | 1,1 | 1,2 | 2,1 | 2,2 | 3,1 | 3,2 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 | 0 | |
| 3,2 | 1 | 1 | 0 | 0 | 1 | |
| 1 | 0 | 1 | 0 | 0 | 1 | |
| 1 | 0 | 1 | 1 | 0 | | |

FIGURE 4.2 .1
find the chromatic number may be reduced by several. orders of magnitude.

To factor Γ into G and H it is obvious that

$$
|v| X|z|=|V|
$$

If $|z|<|v|$ then the δ_{i} of Γ must have $|z|$ symmetry, ie. if $|z|=3$ then $|\mathbf{N}| \div 3$ must be integral and there must at least be $\beta_{3} \delta_{i}$: of Γ with the same value Inspection of FIGURE 4.2 .1 will clarify the matter.

A simple test to determine if it is possible that G and H are the cartesian factors of Γ is to determine that the following relation always holds true for the degree (δ) of each vertex in 5 .

$$
\delta_{i} \leq|v|+|z|-2
$$

If this is not the case then G and H can not possibly be cartesian factors of Γ.

Graphs with this type of symmetry are not common. Because of this, and the effort necessary to deduce G and H, cartesian factoring is only usefully employed in cases where this type of symmetry is known to exist.

Section 4.3 The Eigenvalues and Eigenvectors of a Graph

The use of an eigenvector as the ordering criterion of a colouring procedure naturally led to the problem of the meaning, in graphical terms, of all the eigenvalues and eigenvectors of the matrix associated with a graph. Considering, for a moment, only undirected graphs with no parallel edges (ie. the associated matrix is symmetrio, the elements are either 0 or 1 , and there are 1's down the leading diagonal) it is evident that this array may be considered as a correlation matrix, a pair of vertices joined by an edse having a correlation coefficient of 1 and other pairs of vertices having a correlation coefficient of 0 . Taking this view of a graph it is possible to find explanations for the eigenvalues and eigenvectors of a graph in the body of knowledge built up around that part of multivariate statistical methods known as principal component analysis.

Investigators in the behavioural sciences are often faced with the problem of having data of a series of observations on several aspects of one individual, or the correlations of these observations on several individuals. As these observations are all drawn on a single individual there will clearly be some dependence relationship between them. Principal component anelysis is one of the methods of elucidating this dependence structure. In general this dependence will be bssed on
a number of factors，each of which will add its own component to the system＇s structure。

Morrison（26）shows that the Jth principal component of a system is a linear compound

$$
Y_{j}=a_{1} X_{1}+a_{2} X_{2}+\ldots \ldots+a_{p} X_{p}
$$

of the observations，X_{i} ，whose coefficients，a_{i} ，are the elements of the eigenvector of the correlation matrix． A corresponding to the Jth largest eigenvalue，λ_{s} 。 The importance of the Jth component，I_{j} ，in describing the dependence structure is：

$$
\begin{equation*}
I_{j}=\frac{\lambda_{j}}{\operatorname{tr}(A)} \tag{4.3.1}
\end{equation*}
$$

where $\operatorname{tr}(A)$ is the trace of the matrix A 。
The graphical interpretation of this is evident from FIGURE 4．3．1 in which a graph of nine vertices and sixteen edges is displayed along with four of its eigenvalues and eigenvectors．The other five eligenvalues are all equal to zero and thus by EQUATION 4.3 .1 have no significance in describing the structure．The first eigenvector，as was seen previously，gives a measure of how deeply embedded a vertex is，or a meesure of its ability to dominate the other vertices in the graph． As expected，vertex 5 comes out as the most dominent， followed by vertices 2，4，6，and 8 which in turn are

	1	2	3	4	5	6	7	8	9
1	1	1	1	1	0	0	0	0	0
2	1	1	1	1	1	0	0	0	0
3	1	1	1	1	0	0	0	0	0
4	1	1	1	1	1	0	0	0	0
5	0	1	0	1	1	1	0	1	0
6	0	0	0	0	1	1	1	1	1
7	0	0	0	0	0	1	1	1	1
8	0	0	0	0	1	1	1	1	1
9	0	0	0	0	0	1	1	1	1

eigenvalue $=4.6262$
corresponding vector
0.27740
0.36426
0.27740
0.36426
0.40181
0.36426
0.27740
0.36426
0.27740
eigenvalue $=4.0000$
corresponding vector
0.35355
0.35355
0.35355
0.35355
0.00000
-0.35355
-0.35355
-0.35355
-0.35355

$$
\begin{aligned}
& \text { eigenvalue }=1.5151 \\
& \text { corresponding vector } \\
& 0.35855 \\
& -0.08692 \\
& 0.35855 \\
& -0.08692 \\
& -0.67495 \\
& -0.08692 \\
& 0.35855 \\
& -0.08692 \\
& 0.35855
\end{aligned}
$$

ejgenvalue $=-1.1413$ corresponding vector
-0.21093
0.33130
-0. 21093
0.33130
-0.61887
0.33130
-0. 21093
0.33130
-0.21093

FIGURE 4.3.1

Shoring a graph, its associated matrix, and its four unique eigenvalues and eigenvectors.
closely followed by 1, 3.7, and 9. EQUATION 4.3.1 shows that the first eigenvector explains 52.5% of the dependence relation in this structure. The second eigenvector, explaining 44.5%, points out the locally compact equal groups of vertices $1,2,3,4$ and 6, 7, 8, 9. The third eigenvector, explaining 16.7\% of the structure, presents what amounts to two divisions of power or dominance, one the outer and central vertices 1, 3, 5, 7, and 9, and the other the inner structure 2, 4, 6, and 8. The final eigenvector corresponds to a negative eigenvalue, indicating that the previous three eigenvectors have over-specified the structure by 13.7% and this vector will help correct the situation. Consider an $n X$ matrix of the form:

if

$$
0 \leq p \leq 1
$$

then the largest eigenvalue of this matrix, λ_{1}, is

$$
\lambda_{1}=1+(n-1) p
$$

and the corresponding eigenvector, u_{1}, is

$$
u_{1}=\left[\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}} \ldots \frac{1}{\sqrt{n}}\right]
$$

Which may be scaled up to

$$
u_{1}=[1,1,1, \ldots, 1]
$$

The other $n-1$ eigenvalues are

$$
\lambda_{2}=\lambda_{3}=\lambda_{4}=\lambda_{5}=\cdots \cdot=\lambda_{n}=1-p
$$

and the corresponding eigenvectors are all orthogonal to u_{1}. Thus a complete graph on n vertices has an associated matrix, all of whose elements are 1 , with

$$
\begin{aligned}
& \lambda_{1}=1+n-1=n \\
& \lambda_{2}=\lambda_{1}=\lambda_{4}=\ldots=\lambda_{A}=0
\end{aligned}
$$

Consider a positive definite n X n matrix A
(all of whose elements are either 0 or 1) of rank r ($r=n$). A can be expressed as

$$
A=\sum_{i} \lambda_{i} u_{i}^{t} u_{i}
$$

$$
v_{i} \sqrt{\lambda_{i}}=1 \quad(\text { for } i=1,2,3, \ldots, n)
$$

then all the eigenvectors are of the form

$$
u_{i}=\left[u_{i_{1}}, u_{i_{2}}, u_{i_{3}}, \ldots, u_{i_{n}}\right]
$$

with

$$
u_{i_{k}}=\text { either } 0 \text { or } 1
$$

Because all the eigenvectors must be orthogonal it is clear that if

$$
u_{i_{j}}=1
$$

then

$$
u_{k_{j}}=0 \quad(\text { for all } k \not \equiv i)
$$

As an example consider the matrices A_{1} and A_{2} in FIGURE 4.3.2. The matrices A_{1} and A_{2} correspond to the graphs G_{1} and G_{2} in FIGURE 4.3.2.

The complement of a graph G g denoted by \bar{G}, is the grep formed from the same vertex set as G but having edges according to the following rule:
G then they are not joined in \bar{G} and in vertex i and vertex j are not joined in G then they are in \bar{G}.

An examination of the graphs \bar{G}_{1} and G_{1} and their associated matrices \bar{A}_{1} and A_{1} shows that a minimal colouring of the vertices of \bar{G} may be obtained by the following rule

$$
\begin{aligned}
& \text { vertex i is given colour } j \text { if and only } \\
& \text { if } u_{j_{i}}=1 \text {. }
\end{aligned}
$$

Thus the eigenvectors of the matrices A_{1} and A_{2} represent colour groups of the vertices of \bar{G}_{1} and \bar{G}_{2}.

Given a graph G and its complement \bar{G} it is obvious that the matrix \bar{A}, associated with \bar{G}, will not always have eigenvectors of the form

$$
\begin{equation*}
\sum_{i} \bar{u}_{i} \sqrt{\bar{\lambda}_{i}}=1 \tag{4.3.2}
\end{equation*}
$$

However the following theorem eases this particular difficulty.

Theorem 4.3.1

If a graph G, of chromatic number $\gamma(G)$, hes extra edges added to it to form the graph G^{\prime} then the chromatic number of $G^{\prime}, \gamma\left(G^{\prime}\right)$, obeys

$$
\begin{aligned}
& A_{1}=\begin{array}{l|llllll}
1 & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
2 & 0 & 1 & 0 & 1 & 0 & 1 \\
3 & 1 & 0 & 1 & 0 & 1 & 0 \\
4 & 0 & 1 & 0 & 1 & 0 & 1 \\
5 & 1 & 0 & 1 & 0 & 1 & 0 \\
6 & 0 & 1 & 0 & 1 & 0 & 1
\end{array} \\
& \lambda_{1}=3 \quad u_{1}=[101010] \\
& \lambda_{2}=3 \quad u_{2}=[010101] \\
& \lambda_{3}=\lambda_{4}=\lambda_{5}=\lambda_{6}=0 \\
& \lambda_{1}=1 \quad u_{1}=[10000] \\
& \lambda_{1}=1 \quad u_{2}=[01000] \\
& \lambda_{3}=1 \quad u_{3}=[00100] \\
& \lambda_{4}=1 \quad u_{4}=[00010] \\
& \lambda_{s}=1 \quad u_{5}=[00001]
\end{aligned}
$$

FIGURE 4.3 .2
Showing two matrices, their eigenvalues and eigenvectors, and their corresponding graphs and converse graphs.
the relation

$$
\gamma(G) \leq \gamma\left(G^{+}\right) .
$$

Proof
Obvious.

If edges are added to G then the corresponding edges are deleted from \bar{G}. Thus it should be possible to define a matrix B and consequently a metrix C such that

$$
\bar{A}-B=C
$$

and such that condition (4.3.2) holds for the matrix. C. An examination of the properties of the matrix B will shed some light on graph colouring processes.

An internally stable set of vertices is a set such that no two members of the set are adjacent. The coefficient of internal stability is the number of vertices in the largest internally steble set and is denoted by $\alpha(G)$.

Because of the relation (4.3.2) there must be exactly $\bar{\lambda}_{i}$ vertices with the colour i in any graph corresponding to the matrix C in (4.3.3). That is to say

$$
{\overline{\lambda_{i}}}=|v|
$$

where v is an internally stable set of vertices from G.

$$
\begin{equation*}
\propto(G) \gamma(G) \geq n \tag{4.3.4}
\end{equation*}
$$

Where n is the number of vertices in the graph. It is not possible, however, i to colour a graph by finding the largest internally stable set and giving this colour 1, then finding the next largest internally stable set etc. This is easily demonstrated by the graph in FIGURE 4.3.3. The largest internally stable set are those vertices represented by circles. If these are given colour 1 then the remaining three vertices must be given colours 2, 3, and 4. Four colours have then been used when the chromatic number of the graph is only three. If the graph is reduced, using Theorem 4.2.1 then this difficulty is overcome in G^{r}.

For a reduced graph the coefficient of internal
stability is equal to the number of vertices having the most popular colour and, by the previous argument

$$
\alpha(G) \leq \overline{\lambda_{1}}
$$

Thus relation (4.3.3) may be rewritten as

$$
\overline{\chi_{1}} \gamma(G) \geq n
$$

FIGURE 4.3 .3

Showing a graph G and its reduction G^{r}.

$$
\gamma(G) \geq \frac{n}{\beta_{1}}
$$

Nomelly this is rot a very sood lower bound however it may be used as a first approximation.

Aftex establishing these few basic relations it is possible to return to the problem of findine the matrix B in eountion (4.3.2) Severe properties of B are immediately obvious. If 3 is the mull matrix ther

$$
\bar{A}=C
$$

and T is in the form of a block diaconal matrix, or may be put in the form oi a block diagonal matrix by a suiteble interohane of roms and colums (ie. by renumbering the vertices). If \bar{A} is of block diagonal form then G is sejd to be k-partite, where k is the number of blocks along the diagonal.

If j.t is possible to find a matrix B then the matrix C is very likely to have decreased in rank with respect to \bar{A}. In fact by making

$$
B=\overleftarrow{A}
$$

it is possible to cause C to be the null matrix and thas arrive at the denenerete condition of one colow for eac. vertex, Thus it is rcosssrat to sescify the; \because cotalu the minimum number of elements equal to 1 and thot tho
rank of B also be kept to a minimum.
It is possible to set up the solution of B as a linear programming problem. However this involves a double ininimization of the rank of B and the number of elements of B which leads to the same consequences as the original linear programing formulation of the colourine problem in Section 1.2 (which, considering it is really the same problem, is not suprising).

An alternate algorithmic approach to finding B is contained in the simple stetement

$$
K\left(\overline{G^{r}}\right)=\alpha\left(G^{r}\right)
$$

where $K(G)$ js the size of the largest complete subgraph in the graph G.

Each block along the diagonal of C represents the vertices given each colour. The largest complete subgraph of \bar{G} is the largest block along the diagonal of C. Thus the complete graph algorithm may be used repeatedly to determine each block of C and thus indirectly determine B.

This is an algorithmic method of colouring a graph which possesses none of the disadvantages of the other algorithms and the advantage that, once the complete graph algorithm has been irmpemented, is easily programed.

A byproduct of this investigation is the fect that

$$
\alpha(G) \leq \bar{\lambda}_{1}
$$

and

$$
K(G) \leq \lambda_{1}
$$

The bound by Seekers and Will mentioned in Section 4.1 (4.1.4) is not, of necessity, valid because the relation

$$
K(G) \leq \gamma(G) \leq K(G)+1
$$

is not always true and thus

$$
\gamma(G) \leq \lambda_{1}+1
$$

is not valid for all graphs. Even though this may not be valid it is still suitable as a first approximation. The accuracy of this approximation may be judged from the fact that the U.A.C. 1965 - 66 data is colourable in 28 colours (using the heuristics developed in Chapter 1) while its largest eigenvalue was 79.4.

There may or may not be a unique matrix B and thus a unique colouring of G^{r}. There is likely to be at least one vertex which may be given either colour i or colour j. If one colour group is too large then the following procedure will redistribute the colours of G in a more even fashion. Take a colour group I consisting of the pt vertices $i_{r}, i_{r+1}, \ldots . . i_{r+p}$.

If there exists o rout j of the matrix B such that

$$
B_{i_{j_{Q}}}=1(\hat{\operatorname{O}} \mathrm{q}=r, r+1, r+2, \ldots, r)
$$

then vertex $\left\{\begin{array}{l}\text { may be added to colour group I. }\end{array}\right.$
It should be possible to check the heuristic calculations of Chapter 1 by tin is complete map method. Unfortunately the amount of computation necessary increases greatly as the number of edges in the graph increases. The converse of both data sets used in Chapter 1 contained so many edges that over six hours or GDP 9 time failed to yield a solution Homeren suberaphe from these data sets consisting of 50 vertices each, were run and the results verified the heuristic calculations in each case.

Procedure

Each graph contains a critical k-chromatic subgrapho If this subgraph is coloured, and this colouring "fixed" to the suberaph, then the other vertices may have several different possible colours attached to them. Assume there exists a matrix P (with n rows and colums) such that $p_{i j}$ is the probability that vertex i has been given the colour j for a minimal colouring of the graph。 P will not necessarily be symmetric or of any particular rank but in general will take the form

It is known that

$$
\sum p_{i j}=1 \quad(\text { for all } i)
$$

If a matrix π is formed such that

$$
\pi_{j k}=\sum P_{j i}^{t} P_{k i}
$$

then $\pi_{i s}$ may be considered as the probability that vertex i is not joined to vertex j. It is obvious that π is a symmetric $n X n$ matrix and that

$$
0 \leq \pi_{i T} \leq 1
$$

If the vertex i is a member of the critical
k -chromatic subgraph of G then

$$
\pi_{i i}=1
$$

otherwise

$$
0<\pi_{i i}<1
$$

If $\pi_{i j}$ is the probability that vertex i is not joined to vertex j then π bears a similarity to the matrix \bar{A}_{s} and

$$
\operatorname{tr}(\pi)=\sum_{i} \pi_{i i} \leq n=\operatorname{tr}(\overline{\mathrm{A}})=\sum_{i} \overrightarrow{\mathrm{~A}}_{i j}
$$

with equality holding only when the graph on all n vertices
is a critical k-chromatic graph. It is also possible to construct a similar matrix π such that

$$
\bar{\pi}_{i s}=1-\pi_{i J}
$$

FIGURE 4.4 .1

Showing a graph and jits relation to the matrices

$$
A, \bar{A}, P, \pi, \text { and } \bar{\pi}
$$

then $\bar{\pi}_{i s}$ is the probability that vertex i is joined to vertex j. $\bar{\pi}$ will be a matrix similar to A with the provision that

$$
0 \leq \bar{\pi}_{i J} \leq A_{i j} \leq 1
$$

and

$$
\bar{\pi}_{i j}=1
$$

if the edge (i,j) and vertices i and j are part of the critical k-chromatic subgraph of G.

The largest principal component of $\bar{\pi}$ will show a high correlation with the elements of the critical chromatic subgraph of the graph G. It is obvious that the principal eigenvector of $\bar{\pi}$ will be "similar" to the principal eigenvector of A. This explains the use of the principal eigenvector of A in the heuristic colouring procedure, and the importance of ordering the vertices by the magnitude oi the elements of this vector.

The example shown in FIGURE 4.4.1 usefully illustrates the relation between G, A, A, P, Π, and π. It should be noted that the elements of the principal eigenvector of $\bar{\pi}$ bear the same relation to one another as the elements of the principal eigervector of A.

Section 4.5 The Four Cotoum poblem

No work of this surt wound be complote rithout some mention, rometer hon briof, of the foum coloun problem. The four oolour proclem in graph theory aro. Fermat's last conjecture in number theory probebly rank as the two ereatest unsolved problam in mothemitics.

The four colour prolten is a little mone thon 6 contury old. The first known source discussine the probleri is a lettor (dated 0ot. 23, 1852) from Aucustue de forgan, Frofessor of lathemetics at Undversity Colleqe Lonóon, to his friend Sir Wiliam Roman Hamilton at Trinity College Imblino Sirce that time several proors heve been proposed and each has eventualr. been reruter.

FIGURR 4.5.1 shows a maxinally planar craph, ie. a planar graph is maximally planer if the sddition of anyextra edge results in the loss or the ability to represent the graph in a plane. It is easy to show (by the use of theorem 4.3 .1 and Theorem 4.1 .3) that the chrometic number of such a graph is less inen on equal to four.

FTGURE 4.5.2 shows a plenser sraph G. If the edge (1,3) is removed ond the edse (2,4) inserted to fom the graph C^{\prime} then G^{\prime} js seid to heve beon obtran
 has shom thei any two matrally plaw grarha fita

FIGURE 4.5 .1
Showing a maximally planar graph

FIGURE 4.5 .2

Showing a diagonal. transformation

 FTGURG 4.5.1.

The foun ootone mobler mo now ne btutod se foll $10 \pi s$

Theorem 4.5.1.
 invariant under diaromen tmoneforratione. Proof

Unknomm.

1/G. Ernest Anderson - An Algorithm for Assigning Pupils to Clesses, New England School Development Council.
2/C. Berge - The Theory of Graphs and its Applications.
John Wiley and Sons, New York, 1962.
3/ J. F. Blakesley - A Data Processing System for
Scheduling University Students to Classes
Using an Intermediate Speed Disital Computer
Thesis, Purdue University, June 1960.
4/ Busacker and Saaty - Finite Graphs and Networks,
McGraw-Hicll Inc. (1965)
5/A. J. Cole - Examination Time-tables, Computer
Journal (1964) p117.
6/ A. W. Colijn and M. R. Williams .- Scheduling Students
to Classes Using Heuristic Methods,
Proceedings of the 5th National Conference
of the Canadian Computer Society, June 1966.
7/J. Csima and C. C. Gotlieb - A Computer Method for
Constructing School Time-tables, University
of Toronto, Canada.
8/G. A. Dirac - Map Colour Theorems, Canadian Journal
of Mathematics (1952) p480.
9/G. A. Dirac - Some Theorems on Abstract Gxaphs,
Proceedings of the London Mathematical
Society (1952) p69.
 Comajon Jommen of Fothemation (1ger) 2225.

Certein Crembs, Considan Mothemetiona Empition, Vol. 7 (1064) p53.

Chenotio mmber of conocton burws
Dokledy Akedmii lames SSR (1962).
13/H. Faumer - Sore Thonehts on Comenter bertiontre

Rerresenteives, Cenadjon Toumat or
finthemtios, Vol. $10(1058)$ p?
15/ E. Fousyth amd Le ketp - A Matrixamrach to tre
Anelysts of Sociometric Dste, Sccionctry
Vol 9 (1046) p340.
16/H. H. Goldstone and J. Von jeumenn - Xrimoings of
Iare Sole Compati: Mechres, collectect
Wonks of J. Von Reuman (volume 5)
1./ C. C. Gotieb and J. Cema - The Construation of

Gless. Tescher Tinewsenes, Froceedines of
the I.F.T.E. Comress (man) 1962.

of the Ionton batherntiou sontet (1025)
p 26.

19／F。Hemrary et al－Structural models．Tone wijcy ard Sons（1965）．
$20 / \mathrm{F}$ ．Famrexy and I ．C．Ross－A Focedure for Cliune Deternindtan Ustre tho Groun iothix． Sociometry Vol． 20 （1957）p205．

21／R．E．Holtz … G．A．S．E．（Generelized Acgiomic simuletjoct Procrams），Orfice of the Reristrar，kens． Instjute of Technolom，（1964）．
 in Educotional Institutions Industrial Engine fing Denertment，University of Pittsburch，U．S．A．
$23 /$ A．Kaumera－Grephs．Dynomio Prowiamane aid pindie Gomes，Academic Fress（1967）．

24／J．Iions ‥ Batrix Beduction Usins tho Funnorisr Method for the Genoration of school Time－tables，Comm。A．c．me Vol． 9 （1966） p349．
$25 / \mathrm{J} . \mathrm{W}$ ．Moon－On the Number of Complete Subryarhe of G Graph，Canadian Joumel of Mathemetios （1964）

26／D．F．Morrison－Multivsriate Statistical lethods， MoGrew－Hill（1967）。

27／O．Ore－The Four Colour Lrohlem，Academic Fress （1967）

Soherulins Froondinss of the $16 ? 0$ Usems Grova Conrererce, Westem Romion, Tune 1960 , Foxtland $3.3 . A$.

29/J. Pfaltz .. Unpublished private commiontion.
30/R. C. Read -. An Intronuction to Chrongtio Polynomete. Journel of Combinatomis. Theory (1068) 152.

31/G. R. Shoman - A Combirgtoriel Problelagisime rom Schoduljne University Classes - Journal of the Tlenessce hodeny of Soiences, Vol. 38, \#3, July 1963.
$32 / \mathrm{G} \cdot \mathrm{F}$, Shemen - Combinatorig? Boheduline, Thesis University of Temessee, U.S.fo

33/G. Szekeres and H. S. Wilf - An Tnenuaty ros the Chromatje Pumber of a Graph, Tournal of Combinatorial Theory, Vol. 4 (1968) p1.

Rapport van de Studieconnissie Lestoosters, Stichting Studiecentrum Vor Administratieve Automatisering, Stadhouderskade 6, Amsterdam.
V. A. Abel. - A Comprehensive University Scheduling
System (CUSS), Proceedings of the 10 th
College and University Machine Records Conference, Michigan State University, May 1965.
W. W. Abendroth - How to Make Examinations Fit the Master
Class Schedule, College and University
Business, Vol. 32, May 1962.
M. Almond - An Algorithm for Constructing University
Time-tables, The Computex Journal, Vol. 8 (1966) p331.Appleby, Blake, and Newman - Techniques for ProducingSchool Time-tables and their Application
to Other Scheduling Problems, ComputerJournal (1961) p237.
E. Baraclough - notes given at a seminar at the Unjuersity
of Edinburgh, Dec. 7, 1965.
E. Barraclough .. The Production of School Time--tables,
The Computer Journal, Vol. 8 (1965) p136.
J. Berghuis - La Comoosition des Horaires Scolaires,

Bull Nederland - 23 Meeting of the Users Group of Gamma-Tambour Computers, Bologne.
J. B. Buxton An Appljcation of a Computer to the Production of Examination Time-tables, unpublished, Electronic Computing Department University of Leeds.
G. A. Dirac - Map Colour Theorems Related to the Heawood Colour Formula, Journal of the London Mathematical Society, Vol. 31 (1956) p460.
G. A. Dirac - The Structure of k-chromatic Graphs, Fundemanta Mathematicae (1953) p42.
G. A. Dirac - A Property of 4 -chromatic Graphs and some Remarks on Critical Graphs, Journal of the London Mathematical Society, Vol. 27 (1952) p85.
P. Erdös and A. Ha jnal - On Chromatic Number of Graphs and Set Systems, Acta Mathematica Acad. Sci. Hungaricae, Vol. 17 (1966) p61.
J. S. Folkers - A Computer System of Time-table Conditions,

Thesis, Technische Hogeschool, Delft,
Netherlands, (1967).
J. S. Green - Algol Programing for the KDF 2, English-Electric-Leo Computers Ltd., Kidsgrove.

Firatnefte Preavilues, Jowne of
Fathemelicn ort Ihasios, Vol. 38 (1959)
p104.
F. Herrary and I. Ross - Trdentification of the Itaison
Persons or on Ormaration Usime the
Strueture Fotrix, Fonorement Scioese (1055)
p251.
P. J. Hearood - Fiop Cotome Theorsm, Gaxterly Jourimal or
liathemptics, (1890) p332.

An lysis rote 2, Dert, of industrial
Adinistretion, University of Btrathelece,
Glasceror. 1965.
B. D. Luce and A. D. Perry - A Method of Metry Amelysis
of Group Structure, Psychonetrika Vol. 14
p 95.
A. R. Neethem - Grarh Separability aud Morl Grounime
Nature, Vol. 221, \#5044, plo5.
H. J. Eyser - Combinstorisl Fromerties of petuces of
Zeros and ones, Camdian jourmal of
Mathematics, (1957) 2371.

$$
\begin{gathered}
\text { PROGRAMS } \\
\text { and } \\
\text { FLOW } \quad \text { CHARTS }
\end{gathered}
$$

 of thss investinotions

DByougonomb - reans the abuent date from on on tore ard midtes it onto a megnetic tapeg onturat vaxious statistice such es tho numben of students in eoch courso eto.

DBYOOFAOOP5 - resd date from msmetuo tepo and orobucor the boojern motnix asconetoc with the graph of the course conflicto, puts metrix onto a magnetic tope, prints out areres of ench rertex
 procedure
 procedures printe out the ejrenve lues sre ejsenvectons at each jteration

DBYOOSDOOKJ4 -. builo up a boolean matrix djroctiy from paper tope deta - used for investientine small graphs

Dryoosmoke5 - investisete the chamee of posjtion of eecin vervex (ir the orderine criterion) at each iteretion of the eirenvector procedure

DVYOCSOOEF - deterrines if the lerse exanhs rev os mere up of sevemel urooneoted sunomers
 out the boolear matrix at esch itometan

DBYO0 5 HOOKP7 - construct the numerical matrix associated with the graph of the student course conflicts

DBY005J00KP5 - find the largest complete graph (tris is the same program as DBY005G00KP5 with large portions of the program written in USER CODE to increase its speed)

DBYOO 5KOOKP4 - read master time-table data from cards and produce time-vectors for each section, time-vectors are written to a magnetic tape

DBYOO 5IOOKP4 - produce boolean matrix corresponding to the graph of the conflicts between sections of the master time- table, matrix written to a magnetic tape

DBYOO5MOOKP5 - produce one boolean matrix for each student indicating the conflicts in his requested course sections

DBYOOSNOOKP5 - find ell complete graphs of one particular order - large portions of the program are written in USER CODE

DBYOO 5S00KP6 - the complete graph sectioning program, produces a great deal of output at each stage to act as diagnostic material

DBYOO5U00KF4 - plot graphs on a Calcomp plotter
DBYOO 5VOOKP 5 ... reduce graphs by ORing (ie. Theorem 4.2.1)
 metuy 8 ju colntion 4,303 en thus
detormine the onronstio munom of tre swer

gotoh end mite this converae to a merretion
tape
DBYOOSZOOKP4 -. a promram to solve Dostor ACTon's rablera

A nurber of othen minon proncema uene writton to do code conversions, reformatine of dete, and chereins the form of the data to tako adventare of an jreresse jn the computins porer and nemipherels of the $\mathrm{ND} \mathrm{w}^{9}$

The Complete Graph Procedure

This is not a listing of the actual program used during the investigation, rather a listing of a "publication form" of the program.

begin

besin
newane $(70,1)$; witatert $\left(70_{s} s t\right)$;
end of outstrangs

watco(70, romat ([mododal)si):
procegnise compete graphs (matmix)graph
ons(stze)vertioes intos(aly) complote subgrephs
or:(ordex); vanue sizesomergani
 pepin
commont ming prooedure whll take an motioctod graph (in the form of a size x size symetrio boolean incidonce matrix. whose is jth element is thue if anc only if ventex in is joined by an edge to vertor j d diagone? elements betng assumed to have the value false) and remove from it all edges nos belorgtng to at least one compete gxaph or the required oxder: where order 2 3o the procedure may be used to decemine all tre complote subgraphs of a particular order by setting the vamable all to the value tras
or may be usod to rinc the onder of the

vartable all to the value falses If the procecuro ds atomptons to fond the owar of the largost omplotes subgoph it will firat attomot to find a complate subgraph or the indtial order ands ir successfuls whe then Incroase the panmetor order by ore anc try againg the vortioes comeaponcing to ono complete subgraph of the apmaphate order are output at each itexation the procedure is based upon tho fact that oen odge in a complete gath of order in is a monber of me? edge circutis of length 3e The procedure contatns itss om output staboments but the
input is onnidered to cone from the pammeter listos Intecen in
intoren amay nomg rom numbril:stzol;
hoolean fitists combfirst:
nroocoure delete(matmixs stzegi, mon):
values sizest boolean agey metrix;
indeaen mazy romg irtecne stzesig
corment this procedure will set the elements
In the 1 th now and columa of the boolem
ampy rathax to the value falso and upate
the vector now to indicate the new number of true elements in each row of the boolean array; begin
integer j :
for $j:=1$ step 1 untide size do if $\operatorname{row}[j]>0$ then
becia if matxix[i,j] then
beenin
$\operatorname{matrlx}\left[\mathrm{i}_{2} j\right]:=\mathrm{matrix}[j, i]:=\mathrm{fa} \mathrm{lse} ;$
$\operatorname{row}[j]:=\operatorname{row}[j] \cdots i ;$
end ;
end of deleting row and column 1;
$\operatorname{row}[1]:=0 ;$
end of the procedure delete;
procedure zero(matrix.size); value size;
integer size; boolean amay matrix;
conment this procedure will assign the value
false to each element of the boolean array matrix:
begin
integen igj;
for $1:=1$ giep 1 until size do
for $j:=1$ step 1 until size do matrix[$\left.i_{2} j\right]:=m a t r i x[j, j]:=f a l s e ;$
end of procedure zero;

coment This procedure is a modified version of Algorithm 154. The distinct combinations of the finst n integens taken r at a time are genemted in in lexicographical order starting with an initial combination of the r integers $1,2,00000$. The boolean variable combriast is nonlocal to comb and must be true before the finst calls thereafter it remains false until ail combinations have been generated;
bepind
integer soj;
if combfinst then
beptin
for $j:=1$ step 1 until, x do $1[j]:=j ;$
combfinst: =false; goto exitcomb;
end of inictial combination;
If $1[r]<n$ then
begin
$1[r]:=\mathrm{i}[r]+1$; gotio exitcomb;
end ;
for $j:=$ roo step -9 untrl 1 do
1 if $i[j]<n=0+j$ then begin
$i[j]:=-i[j]+7 ;$

goto exitcomb;
end ;
combfirst:=trues

exitcomb:

end of the procedure comb;
integer procedure two row sum(isjomatrix, size);
value isjostze; interer $j_{s} j_{2} s i z e$;
boolean armay matwix;
comment this procedure will return the number
of brue elements in a vector formed by a
boolean AND operation between the ith and
j th rows of the boolean array matrix:
begin
integer sumsk;
sum: $=0$;
for $k:=1$ step 1 until size do
if matrix[$k, j]$ and matrix[$k, j]$ then sum:=sumti;
two row sum:=sum;
end of procedure two row sum;
integer procedure row sum(i,matrix, size);
value h_{2} size; integer i_{s} size; boolean array matrix;
comment this procedure will retum the number
of true elements in the 1 th row of the
boolean amay matrix;
begin
Interes sump;
sum: $=()_{\text {) }}^{\text {\% }}$
for $k:=1$ step 1 until size do
If matrix[k,i] then sum:=sumb1;
row sum: $=$ sum;
end of procedure row sum;
boolean procedure remove edges (matrix, sizes rowsorder);
value size, order; integen size,orders
integen array row; boolean armay matmix;
comment this procedure will remove from the graph (defined by the amay matrix) all
edges which are not members of at least
orderose edge clrcuits of length three. When
the removal is complete the elements of the
matrix are checked, if there are enough
edges left to make a complete graph of the
required order then the procedure has the
value true else false;
bepin
integer sumsigj;
boolean finished;
sum: $=()$;
for $i:=1$ step 1 until size do sum:=sumtron[i];
comment check to see if there are enough edges at the outset;

If sumzorderx (ordermi) then goto work;
remove edges:=false; goto quit;
work: finished:=true;
for i := 1 step 1 until size do
If row[i]>0 then
for $j:=1+1$ step 1 until size do
if row $[j]>0$ then
begin
If matrix $[1, j]$ then
bepin
If two row sum(isjmatrix, size)<ordere2 then begith
comment delete the edge between vertex is and vertex j;
$\operatorname{mat} x[x[i, j]:=m a t r i x[j, j]:=f a l s e ;$ $\operatorname{row}[i]:=\operatorname{row}[i]-1 ; \operatorname{row}[j]:=\operatorname{row}[j]-1 ;$
sum:=summen finished:=false;
end of deleting an edge;
end of checking one rowt
end of the entire matrix;
15 not finished then goto work; remove edges: =not sum<onderx(orderal):
end of procedure remove edges; procedure check(matrix, row, row number, size, order);
interes size,order;
integers array rows row number; boolean array matrix;
begin
boolean result:
Integer $i_{s} j_{s} k_{s} I_{g} m ;$
comment this procedure will cheok that the vertices and edges of the graph are, in fact. part of a complete graph of the required order. The procedure starts by finding the vertex with the smallest nonzero degree, then detemines the complete graphs attached to this vextexo;
k:=size; $\quad i:=()$;
for $j:=1$ ster 1 until size do
if $\operatorname{row}[j]>0$ and $\operatorname{row}[j]\langle k$ then
begin
I: $=\mathrm{j} ; \mathrm{k}:=\mathrm{How}[j]$;
end of finding a vertex for further investigation;
$k:=k+1$;
comment now investigate the (possible) complete subgraph on vertex 1 ; begin
boolean armay subgraph[1:k:1:k];
inderer array new rows new row number[1:k];
zero(subgraphsk); new row number[1]:=i; $1:=2$;
form:=1 step 1 until size do
if row [m]>0 then
begin
if matrix[ism] then
begin
new row number[$[1]:=m ; \quad I:=1+1$;
end ;
end ;
for $1:=1$ step 1 untid k do for $m:=1$ step 1 wntil k do subgraph $\left[\lambda_{g} m\right]:=$ subgraph $[m, 1]:=$ matrix[new row number $[I]$ nnew row number $[m]$;
comment a. subgraph has just been constructed. It consists of vertex 1 and those vertices joined to i by an edge, along with any edges joining the selected vertices. The procedure now checks to see if this is a complete grapho;
result: =true;
for $m:=1$ step 1 until k do begin.
new row $[\mathrm{m}]:=$ row $\operatorname{sum}\left(\mathrm{m}_{s} \operatorname{subgraph}_{g} k\right)$;
if new row[m]<kwi then result:=false,
new row number $[m]:=n$ now numbex $[$ new row number[m]];
comment this keeps our vertex
numbering system constant:
end of elementary check:
If result then goto end of procedure;
comment the elementary check was not sufficient to determine if this is a complete grapho;
again: if remove edges (subgraphaksnew row orden) then begin
check (subgraphonew row new row
numberskgorder);
goto again;
end of detailed check;
comment the subgraph under. check was
not complete. Row and column i of the
graph in the next highest level of
recursion must be set to felse;
delete(matrix, sizegigrow); goto exit;
end of procedure: first: $=$ felse;
begin
intecer array $v[1: o r d e r]$ sgrertex $[1: k]$; integer array $v[1: o r d e r] g$ grvertex $[1: k]$;
combfinst: =tnue;
combinations: comb (k_{9} orders v)
if combfirst then goto last;
outstring (9_{2} [found*a*complete*
graph*of*orderl);
outinteger (1,order);
outstring (1, Inhich*consists*of*the*
following*vertices, l);
form :=1 step 1 untid order do
outinteger $\left(1{ }_{\text {onew }}\right.$ row number $\left.[v[m]]\right)$;
if all then goto combinations else goto exitl;
last: sguentex[1]:=i; m:=2;
for $j:=1$ step 1 until size do
is matxix[1,j] then
begin
sgvertex[m]:=j; m:=m+1;
end ;
j: =:) ;
for $1:=1$ step 1 wotizk do
if $\operatorname{row}[s$ guertex[I] $]=k<1 \cdots j$ then
beg:ta
delete(matrix, sizessguertex[1], row);
$j:=j+1 ;$
end ;
end of output?
end of subgraph checking;
exith: if not all then
begin
first: =true.
if $k>o r d e r+1$ then order:=k else onder:=ordert
comment this ensures that if theprocedure has found a complete graphof order k it does not keep lookingfor complete graphs of order less than k;
goto once more;
end ;
exit:
end of procedure check;
comment this is the staxt of the matn procedure;
first:=inge:
for $i:=1$ step 1 until size do
beotin.
comment row number[i] is the name of the
i. th vertex;
row[i]:=row sum(ismatrix.size); row number[i]:=i;
end of setting up data vectors;
once more: if remove edges (matmix.size, rowsorder) then
begin
check(matrix, row, row numberssizesorder);
goto once more:
end of graph check:
if not first then
begin
if all then
outstring (1 [These*are*all*the*complete* subgraphs*of*ordex l) else
begin

> outstring (1. Lthe*largest*complete* subgraph*was *of*orderl); order:=onderm; end ;
end
else
outstring(19[there*were*no*complete*subgraphs*of* oxderl);
outintegen(1, order);
end of procedure complete graphs;
integer size,ordergisj;
boolean all:
staxt: open(70); open(20); newline (70.5);
outstring(1,[M。R。WILLTAMS=COMPUTING1); size:=read(20); order:=read (20); all:=read boolean(20);
outstring (1.[size**order**a]l]); outinteger(1.size); outinteger (1 sorder);
if all then outstring(1, [iruel) else outstring(1,[false]);beginboolean array graph[1:sizeg 1:size];for $i:=1$ step 1 until size do
for $j:=1$ step 1 unti] size do graph[i,j]:=fa]se;
input: $1:=$ read(20);
if i=999 then coto end of read;
$j:=\operatorname{read}(20) ; \quad \operatorname{graph}[i, j]:=\operatorname{graph}[j, i]:=t r y e ; \quad$ goto input
end of read:
close(20);
complete graphs(graphesizesallgorder); close(70);
goto start;
end ;
end \rightarrow

The Peck-Williams Examination Time..table
Procedure

Communications of the ACMI

Volume 9 / Number $6 /$ Junc, 1966

ALGORITHMI 286
EXAMINAITION SCHEDULING [ZH]
J. I. I. Peck and M. R. Wildiams (Recd. 17 Mar. 1964, 25 Jan. 1965 and 1 Mar. 1966)
University of Alborta, Calgary, Alta., Canada
procedure partition (incidence) graph of order: (m) into: (n) parts using weights : (w) bound : (max) preassignment : (preassign.) of number: (pren);
Boolean array incidence; integer array w, preassign; integer m, n, max, pren;
comment This is an heuristic cxamination time-tabling procedure for scheduling m courses in n time periods. It is essentially the problem of graph partitioning and map coloring.
In the terminology of graph theory: Given a graph of m vertexes with a positive integer weight $w[i]$ al the i th vertex, partition this graph into no more than n disjoint sets such that each set contains no two vertexes joined by an edge, and such that the total reight of each sct is less than the prescribed bound max.
We represent the graph as an $m \times m$ symmetric Boolean matrix incidence whose i, j th element is true if and only if vertex i is joined to vertex j by an edge (if a student is taking both course i and course j), diagonal elements boing assigned the value truc. The weight assigned to the i th vertex (number of students in the i th coursc) is $w[i]$. We shall see below that preassignment is permitted. The number of courses to be preassigned is given in pren and the course preassign $[i, 1]$ is to be placed at the time preassign [i,2].

This procedure docs not minimize the second order incidence i.e. a vertex i being assigned to the set k, where the set $k-1$ contains a vertex j joined to i (a student writing two consecutive examinations), but this may be done by rearranging the sets after the partitioning is completed. The procedure contains its own output statements, but its driver should provide the input;
begin integer array row [$1: m$], number $[1: n]$;
iateger i, j, sum, course, time;
Boolean preset, completed;
INTT'IALIZE: preset:= false;
for $j:=1 \operatorname{step} 1$ until n do number $[j]:=0$;
for $i:=1$ step 1 until m do
begin sum :=0;
for $j:=1$ step 1 until m do
if incidence $[i, j]$ then sum $:=$ sum +1 ;
row $[i]$:= sum
end INITIALIZE. Note that row [i] now contains the multiplicity of, or number of edges at the vertex i (number of courses which conflict with the course i. Of course since the incidence matrix is symmetric, less than half ($i>j$) need be stored. However, this procedure, for the sake of simplicity, is written for the whole matrix. Also note that row [i] will eventually contain the negative of the set number to which the i th vertex is assigned (examination time for the i th course) and number $[j]$ will contain the weight of the j th set (number of caudidates at time j). From here on we drop the allusions to graph theory in the comments;
T'HE PREASSIG\MENT': for $j:=1$ step 1 until pren do
begin comment preassignment of courses to times is now car-
ried out. If pren $=0$, then there are no preassignments;
course $:=$ prcassign $[j, 1] ;$ timc $:=$ preassign $[j, 2]$;
comment We now attempt to assign this course to the given time;
SGRUTINIZR: if row [course] <0 then
begin outstring (1 , 'This course'); outinteger (1 , course); outstring (1 , 'is already scheduled at time'); outintegcr (1, -rou[course]); go to NEXT
end;
if number $[$ lime $]+w[$ course $]>\max$ then
begin outstring (1 , 'Space is not available for course'); outinleger (1 , course); outstring (1 , 'at time'); outinteger (1 , time); go to $N E X T$
end;
for $i:=1$ step 1 until m do
if row $[i]=-$ time then
begin if incidence [i, course] then
begin outstring (1 , 'course number');
outinteger (1 , coursc); outstring (1 , 'conflicts with'); outinteger $(1, i)$;
outsiring (1, 'which is already scheduled at');
outinteger (1, time), go to NEXT
end if incidence
end if row;
SATISHACTORY: row[course]:= - lime;
number [time $]:=$ number $[$ time $]+w[$ course $]$;
presel := true;
NEXT:
end THE PREASSIGNDENT;
MAIN PROGRAM: begin Boolcan array available [1:m];
integer next;
procedure check (course); integer course;
begin integer j; comment This procedure renders unavailable those courses conflicting with the given course; for $j:=1$ step 1 until m do
if incidence [course, j] then arailable $[j]:=$ false
end of procedure chech.
For each of the n time periods we select a suitable set of nonconflieting courses whose students will fit the examination room;
START OF MATN PROGRAM:
for time $:=1$ step 1 until n do
if preset \equiv number $[$ lime $]>0$ then
begin comment The preceding Boolean equivalence directs the attention of the program initially only to those times where prescheduling has occurred. We now determine the available courses (i.e. unscheduled and nonconflicting). If course i is already scheduled, then row $[i]$ is negative;
completed $:=$ true;
for $i:=1$ step 1 until m do if row $[i]>0$ then
begin abailable [$i]:=$ true; completed $:=$ false end
clsc available [i] :=: false;
if completed then go to OUTPUT;
if proset then
begin comment Some courses were prescheduled at this time. It is necessary to render their confliets unavailable;
for $i:=1$ step 1 until m do if row $[i]=-$ time then check (i)
end prescheduled courses.
We now sclect the available course with the most conflicts. This is essentially the heuristic step and therefore the place where variations on the method may be made;
$\triangle G A I N:$
sum :=0;
for $i:=1 \mathrm{step}$ I unatil m do if available [i] \wedge row $[i]>$ sum then begin next $:=i$; sum $:=$ row [i] end most conflicts;
if sum >0 then
begin comment There exists an available course, so we test it (viz nexl) for size. If it docs not fit we look for another;
available [next]:=false;
if number [time] + w[ncxt] $>\max$ then go to $A G A I N$;
comment If we are here the course will fit so we use it; row $[$ ncxt $]:=-$ time ;
number $[$ lime $]:=$ number $[$ lime $]+w[$ next $]$;
check (next); go to AGAIN
end sum >0
end of the time loop;

- if presel then
begin preset $:=$ false; go to START OF MATN
PROGRAM end
In case of prescheduling this takes us back to try the remaining time periods.
If we have reached here with completed true then all courses are scheduled, but the conversemay not be true, therefore;
if \neg completed then
begiu completed $:=$ true;
for $i:=1$ step 1 until m do
if row [i] >0 then complcted $:=$ false
end \neg completed and
end of the main program;
OUTPUT: if ᄀ completcd then
begin comment The following for statement outputs the courses that were not scheduled;
outstring (1 , 'courses not scheduled');
for $i:=1$ step 1 until m do
if row [i] >0 then outinteger $(1, i)$
end not seheduled.
The following outputs the time period j, the number of students number $[j]$ and the courses i written at time j;
TMMETABLE: outstring (1 , 'time enrolment courses');
for $j:=1$ step 1 until n do
begin outinteger ($1, j$); outinteger (1, number $[j]$);
for $i:=1$ step 1 until m do
if row $[i]=-j$ then outinteger $(1, i)$
end j.
The following outputs the courses, the times at which they are
written, and their emrolment;
outstring (1 , 'course time enrolment');
for $i:=1$ step 1 until m do
if row $[i]<0$ thengetitinteger $(1, i)$; outinleger $(1$, row $[i])$;
outinteger $(1, w[i])$ end
else
begin outinteger ($1, i$); outstring(1 , 'unscheduled'); outinteger ($1, w[i]$)
end
end of the procedure

Elgenvector Approximation Procedure

All the boolean matrices were kept in the core store of the KDF 9 by storing one boolean element per bit (ie. 48 boolean elements could be stored in each KDF 9 word). This form of storage required the use of USER CODE procedures for bit interrogation and manipulation. The matrices were stored by rows in such a manner that each row occupied an integral number of words, any excess bits being set to the value false. The instruction set of the KDF 9 makes certain bit manipulations easy to code and efficient to perform, for example the procedure "eigen" will perform a matrix-vector multiply (700 X 700) in just under 7 seconds. "eigen" is included here as being typical of the USER CODE procedures used.
procedure eigen(row,row2, matrix, size);
value size; Integer size;
real array matrix, row, row2;
comment this procedure will take an approximation
to the largest eigenvector of MATRTX (given in ROW) and leave a closer approximation in ROW2. MATRTX is a square $0 . .1$ bit matrix of size SIZE.;
KDF9 4/6/0/0;
[size]; DUP; SET48; \div I; ERASE; SET1; $+;$ DUP;
(number of words per row);
$=$ RC10; =RI13; SET1; + ; =RC14; (number of rows);
SET48; =RC11; (number of bits per word);
[row]; =M11; M11; SETAYO; + ; =M11;
(address of the start of ROW);
[row2]; =M14; M14; SETAYO; $+;=$ M14;
(address of the start of ROW2);
[matrix]; =M13; M13; SETAYO; $+;=$ M1 3;
(address of MATRIX[0,0]);
3; ZERO; Q11TOQ15; Q10TOR12; (set counters to deal with one row of matrix);

2; M13M12Q; SET48; =C15; (set up counters to deal with one word of the current matrix row);
*1; ZERO; SHLD1; NEG; MOM15Q; AND; CAB; +F; REV; J1CI5NZS; (that is the inner loop (short loop jump));

ERASE; J2C12NZ; (get next word of current matrix row);
$=N O M 14 Q ; M+I 13 ;$ (get next row of matrix);
J3C14NZ; (is job finished);
EXIT:
ALGOL:

1

