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Abstract 

Plasmonic nanoarrays offer a number of advantages over other technologies when it comes 

to optical sensing and colour filtering—namely their full tunability across the visible 

spectrum, high sensitivity to local refractive index changes, relative stability, and ultra-high 

resolution. For optical sensors, as their use progresses towards portable devices capable of 

rapid and highly-specific sensing, reduction in complexity, device size, and data acquisition 

time is key; and for optical colour filtering and encoding, the desire for long-term-stability 

and ultra-high resolution is key. One way to achieve the aforementioned goals in both fields 

is through the development of optical devices capable of producing two signals/displays 

within one region. This thesis explores the fabrication and characterisation of such devices 

for applications in molecular sensing and colour display technologies.  

 

First, a proof-of-concept device consisting of two nanoplasmonic arrays arranged in a 

multilayer configuration is explored. This device is demonstrated capable of self-correcting 

for drift by simultaneously obtaining both sensing and reference signals from a single 

measurement without complex optics or multiple sensing regions. This is design holds 

promise for point-of-care diagnostics, where data acquisition occurs over extended periods 

of time and measurement stability due to the external environment may be problematic.  

 

Next, another method of arranging two plasmonic nanoarrays is examined. These devices 

consist of superimposed aluminium and gold nanoarrays with modified surface chemistries 

resulting in a bimetallic device which produces two distinct resonance peaks for each sensing 

region. When combined, the signals from the different arrays are demonstrated capable of 

discriminating between organic solvents and between whiskies using trained pattern 

recognition. As each element in the bimetallic optical tongue produces two partially-

selective measurements (rather than the one measurement capable with comparable devices), 

the proposed sensor is capable of halving device size and data-acquisition time. This advance 

in miniaturisation and multiplexed readout would be highly useful in areas that rely on assays 

for determining if a mixture is within tolerance, such as the medical, food & drug, and 

security industries. 

 

Then, a new approach to high-density image encoding is demonstrated using full-colour, 

dual-state nano-pixels, doubling the amount of information that can be stored in a unit area. 

The smallest readable ‘unit’ using a standard optical microscope relates to 370 nm x 370 



Abstract 
 

 
J.R. Sperling 2019 2 

nm. As a result, dual-state nano-pixels may prove significant for long-term, high-resolution 

optical image encoding, and counterfeit-prevention measures. 

 

Finally, a combination of plasmonic sensing with the dual-state capabilities of the nano-pixel 

design presented is investigated. The dual-state capabilities of the nano-pixel design will 

allow trapping of biomolecules with one arm while simultaneously, yet independently, 

sensing with the other. While only preliminary work is covered, once successfully 

developed, such devices will aid the understanding of proteins and thus benefit the fields of 

biology, chemistry, medicine, and pharmacy. Additionally, they will allow for the testing 

and creation of new disease screenings and drug therapies. 
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Chapter 1: Introduction and Theory  

1.1 Introduction 

This Chapter briefly describes the theory behind and reviews applications of the interaction 

between light and metal at the nanoscale. These interactions are the underlying phenomena 

that drive the technology presented in this thesis. An overview of surface plasmon resonance 

(SPR), localised surface plasmon resonance (LSPR), extraordinary transmission (EOT) of 

light, and applications of these phenomena as sensors and colour image displays are 

introduced.  

1.2 Plasmonics  

Plasmonics is the field of science dedicated to the study of the oscillations of mobile 

conduction electrons in materials, like noble metals, with fixed positive ion cores. When 

electromagnetic (EM) radiation interacts with these free charges, a variety of effects can 

occur depending on the frequency of the interacting photons [1-3]. As EM radiation 

approaches the near-infrared to visible (NIR-VIS) range of the spectrum, when coupled, it 

begins to interact with the mobile conduction electrons of metals. This interaction creates a 

resonant condition for the free electrons. There are two kinds of plasmonic resonance—

surface plasmon resonance (SPR) and localised surface plasmon resonance (LSPR)—both 

of which will be discussed in Chapter 1.2.2. The dispersive properties of this resonance can 

be described by a complex dielectric function ε"(𝜔) [3]. To properly understand this 

phenomenon, the dielectric function of metals will first be derived.  

1.2.1 Derivation of the Dielectric Function of Metals 
 
In this section, the dielectric function of metals will be derived from Maxwell’s Equations 

and the Plasma Model. 

1.2.1.1 Maxwell’s Equations 
 
The complex dielectric properties of metals and their subsequent interactions with the EM 

spectra are defined by the differential forms of Maxwell’s equations of macroscopic 

electromagnetism [3]. 
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These four equations are given by Gauss’s law for electricity: 

 

∇ ∙ 𝐃 = ρ+,-,        (1.1a) 

 

Gauss’s law for magnetism: 

 

∇ ∙ 𝐁 = 0,        (1.1b) 

 

Faraday’s law of induction: 

 

∇ × 𝐄 = −𝝏𝑩
5-

,        (1.1c) 

 

and Ampere’s law: 

 

∇ × 𝐇 = 𝐉𝒆𝒙𝒕 +
𝝏𝑫
5-

       (1.1d) 

 

where 𝐃 is the dielectric displacement, ρ+,- is the external charge density, 𝐁 is the magnetic 

induction, 𝐄 is the electric field, 𝐇 is the magnetic field, and 𝐉𝒆𝒙𝒕 is the external current 

density. The total current and charge densities (	𝐉𝒕𝒐𝒕𝒂𝒍	, 	ρ-B-CD	) are the sum of the external 

(	𝐉𝒆𝒙𝒕	, 	ρ+,-	) and internal (	𝐉	, ρ	) densities. 

 

For linear, isotropic, and nonmagnetic media, the following relations apply:  

 

  𝐃 = εE𝐄 + 𝐏        (1.2a) 

  𝐃 = ε"εE𝐄        (1.2b) 

  𝐁 = µ"µE𝐇 = µE𝐇       (1.3) 

  𝐉 = 𝜎𝐄         (1.4) 

 

where 𝐏 is polarisation, 𝜎 is conductivity, εE is the electric permittivity of vacuum, ε" is the 

relative permittivity (or dielectric value) of the medium, µE is the magnetic permeability of 

vacuum, and µ" is the relative permeability of the medium (for nonmagnetic media, µ" =

1) [3]. From these equations, it can be seen that defining ε" in terms of frequency would 

provide a dielectric function of the material (in this case, metal). 
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 1.2.1.2 Plasmon Resonance and the Plasma Model 
 
After defining and relating Maxwell’s equations of macroscopic electromagnetism, the next 

step is to connect them to the plasma model of electronic conduction. In the plasma model, 

metals consist of a plasma of 𝑛 freely moving electrons surrounding a positive ion core [1, 

3-4]. An applied electromagnetic field 𝐄 disrupts the electrons and causes them to oscillate 

with motion 𝐱. By free movement and collisions in the plasma, the electrons eventually 

restore to their equilibrium states. 

 

The plasma model assumes aspects of the band structure of electrons are incorporated in the 

optical mass (𝑚) of each electron, rather than considering lattice potential and electron-

electron interactions [3]. The motion of an electron disrupted by an external electric field 𝐄 

can thus be defined by:  

 

  𝑚MN𝐱
M-N

+ 𝑚 5𝐱
5-
𝛾 = −𝑒𝐄      (1.5) 

 

where 𝑒 is electron charge and 𝛾 is the collision frequency of the free electron gas (which is 

about 100 THz at room temperature) [3]. 

 

A harmonic external electric field 𝐄 with frequency ω (defined by the time-domain equation 

𝐄(𝑡) = 𝐄𝟎𝑒TUV-) will oscillate an electron with the same frequency (defined by the time-

domain equation 𝐱(𝑡) = 𝐱𝟎𝑒TUV-). Substituting these time-domain equations into Equation 

1.5 yields: 

 

  𝐱(𝑡) = +
"(VNWUXV)

𝐄(𝑡)      (1.6) 

 

which defines electron oscillation with relation to the incident electric field.  

 

To relate the electron displacement back to Maxwell’s equations, the relationship between 

polarisation 𝐏 and displacement 𝐱 must be defined. From a macroscopic approach, it is 𝐏 =

−𝑛𝑒𝐱. Thus, the macroscopic polarisation 𝐏 by electric field 𝐄 is: 
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  𝐏 = − Y+N

"(VNWUXV)
𝐄       (1.7) 

 

Inserting this into Equation 1.2a: 

 

  𝐃 = εE(1 −
Y+N

Z["(VNWUXV)
)𝐄      (1.8) 

1.2.1.3 Dielectric Function of Metals 
 
Comparing Equation 1.2b with Equation 1.8, the dielectric function of metals ε"(𝜔) is:  

 

ε"(𝜔) = 1 − Y+N

Z["(VNWUXV)
      (1.9) 

 

For a given metal, the term Y+
N

Z["
 is a constant defined as the material dependent plasmon 

frequency 𝜔\ given by the relationship: [3] 

 

  𝜔\] =
Y+N

Z["
        (1.10) 

 

which alters Equation 1.8 to: 

 

  𝐃 = εE(1 −
V^N

(VNWUXV)
)𝐄      (1.11) 

 

and Equation 1.9 to: 

 

  ε"(𝜔) = 1 − V^N

(VNWUXV)
      (1.12) 

 

Equation 1.12 is known as the Drude Model [3, 5]. Splitting ε"(𝜔) into its real and 

imaginary components defined as ε_ and 𝑖ε], respectively, gives: 

 

  ε_ = 1 − V^N

(VNWXN)
       (1.13a) 

  ε] =
V^NX

V(VNWXN)
        (1.13b) 
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The real part ε_ refers to the magnitude of polarisation [3, 5-7], and the imaginary part ε] 

refers to a phase-shift delay in dielectric response [3, 5-7]. For bulk plasmas, EM radiation 

below and above 𝜔\ are reflected and transmitted, respectively [2, 6, 8]. Both planar surfaces 

and nanoparticles of plasmonic-supporting materials exhibit surface plasmon resonance 

modes and will be discussed in the following section. 

1.2.2 Propagating and Localised Plasmon Resonance 
 
Depending on the dimensions of the material, the plasmon resonance can propagate or 

remain localised. The propagation of the plasmon resonance along the surface and 

surrounding dielectric interface of a bulk metal material is called SPR [3]. When the metal 

material has nano-scale dimensions with sizes at or below that of the excitation EM 

wavelength, the SPR becomes localised around the nanostructure—hence termed LSPR [3]. 

1.2.2.1 Surface Plasmon Resonance (SPR) 
 
The simplest geometry supporting SPR is a single flat metal-dielectric interface [3]. In 

Figure 1.1a, SPR propagations occur along the plasmonic material surface (x-axis) and are 

known as surface plasmon polaritons (SPP) [2-3, 5, 9]. The distance of the SPP in the x- and 

y-directions is determined by the geometry and absorption of the material [2-3, 5, 9]. 

 

 
Figure 1.1: SPR propagation and dispersion curve. (a) The SPR propagates along the x-
axis and is called a surface plasmon polariton (SPP). The dielectric-metal boundary is at z 
= 0, where z > 0 is the dielectric and z < 0 is the metal. This figure is from [2]. (b) Dispersion 
curve of SPR, where 𝝎𝒑 is the plasma frequency of free electrons in the metal. 

SPP is characterised in terms of its dispersion. The dispersion of SPPs propagating at the 

interface between a single flat metal and dielectric is given by the wavevector of the surface 

plasmon (𝑘dee): 
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  𝑘dee = 𝑘Ef
ghgi
ghWgi

        (1.14) 

 

where 𝜀k is the real part of the dielectric (z > 0), 𝜀" is the dielectric of the metal (z < 0), and 

𝑘E is the free-space wavevector (𝑘E =
V
l
) [3]. As mentioned previously, the metal dielectric 

constant 𝜀" is defined by a frequency-dependent equation. When the frequency of the SPP 

approaches the value V^
m_Wgi

 (which is called the surface plasmon frequency and denoted by 

𝜔dee), 𝑘dee approaches infinity. When the frequency approaches zero, 𝑘dee approaches 

𝑘Em𝜀k (which is called the dielectric light line) [3]. The dispersion curve for SPP is show in 

Figure 1.1b. 

 

Equation 1.14 indicates two things: (1) SPP may exist over a wide range of 𝜔, and (2) For 

freely propagating light, the wavevector of the SPP mode is always greater than that of the 

light in the dielectric region. This means that freely propagating light is unable to couple to 

the SPP modes. Therefore, to couple light to the SPP node, a prism or Bragg scattering block 

is needed [3, 5]. Effectively, a prism creates a ‘sandwiching’ of the metal between two media 

with different dielectric values, where the prism has the higher dielectric value, resulting in 

total internal reflection. A beam reflected at the interface of the higher dielectric constant, 

and the metal will have enough momentum to excite SPP mode at the interface between the 

metal and the lower dielectric medium.  

 

 
Figure 1.2: Prism coupling configurations for SPP. (a) The Kretschmann configuration 
[10] has direct contact between the metal and the prism. (b) The Otto configuration [11] has 
a thin air-gap between the prism and the metal. Both configuration cause total internal 
reflection and give rise to the momentum necessary to achieve SPP. The black arrow in both 
(a) and (b) represents EM radiation (light) 

The two most-common configurations for this coupling are the Kretschmann [10] and the 

Otto [11] configurations. To achieve the necessary momentum of light, the Kreschmann 
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configuration (Figure 1.2a) uses a thin layer of metal evaporated directly onto the prism, 

and the Otto configuration (Figure 1.2b) uses a thin air-gap between the metal and prism. 

 

The x- and y- propagation of SPP is on the order of tens to hundreds of microns along the 

interface between the metal and the dielectric; the z-direction, however, yields an 

exponential decay circa 200 nm [2]. For prism-coupled SPR, thickness of the metallic layer 

is very important [12]. Too thin a layer results in a decrease in sensitivity to reflectance 

changes (a broadening of the response curve) and too thick a layer narrows the linear range 

(a shallowing and thinning of the response curve) [13]. 

 

Additionally, a periodic nano-aperture array (NAA) in a thin metal film can be used to excite 

SPR modes by acting as a two-dimensional grating. Chapter 1.2.4.2 will discuss NAA in 

detail. 

1.2.2.2 Localised Surface Plasmon Resonance (LSPR) 
 
When EM radiation interacts with particles of a plasmon-supporting material that are much 

smaller than the incident wavelength of light, the electrons in the conduction band of the 

nanoparticle interact with the oscillating EM field (Figure 1.3) [2].  

 

 
Figure 1.3: Schematic of the localised surface plasmon resonance (LSPR). The oscillating 
EM field displaces the free electrons surrounding the ion core of the nanoparticles, giving 
rise to a localised plasmon resonance at the surface of the nanostructures. This figure is 
from [2]. 

The dislocation and restoration of the electrons effectively makes the nanoparticle a dipole. 

When the frequency of the exciting EM field matches the natural resonant oscillatory 

frequency of the nanoparticle, LSPR occurs. In LSPR, the oscillations are confined to the 

nanoparticle and arise without the need of a mode-coupling dielectric material. The 
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interaction between the conduction electrons and the incident EM field results in the 

enhancement of the oscillations of the electrons around their fixed ion core, creating 

oscillations with higher energy than the incident EM field and resulting in preferential 

absorption and scattering of different wavelengths of light [5-6, 8]. Compared to SPR, the 

decay length of LSPR from the metal surface is much shorter, on the orders of tens of 

nanometers [14]. 

 

For a nanoparticle with a size much less than the incident excitation wavelength, a quasistatic 

approximation can be made because the phase of the EM wave is effectively constant over 

the entire particle. Using this approximation, the polarisability of the nanoparticle 

approximately has a dipole moment 𝐩 given by: 

 

  𝐩 = 𝜀𝜀E𝛼𝐄        (1.15) 

 

where 𝛼 is the polarisability of the particle [3]. Assuming the collective response of the 

nanoparticle is uniform across the nanoparticle, the dipolar quasistatic approximation of 

polarizability of the metal nanoparticle is [7]: 

 

  𝛼 = (1 + 𝜅)𝜀E𝑉
ghTgi
ghWrgi

      (1.16) 

 

where 𝑉 is the volume of the particle, 𝜅 is the shape factor that incorporates the dependence 

of polarisability on geometry of the surface that defines the electron oscillations, 𝜀k 

represents the dielectric function of the surrounding dielectric medium, and 𝜀" represents 

the dielectric function of the metal. By Equation 1.16, it is clear that the polarizability is 

highly sensitive to size, shape, and material of the particle and the local environment 

surrounding it. Larger particles have a bigger polarizability and display stronger LSPR. 

 

Resonance is achieved when 𝛼 is maximised, which occurs when 𝜀" + 𝜅𝜀k is minimised. In 

this instance, the resonance can be simplified to the Fröhlich condition [7] given by: 

 

  Re[𝜀"] = −𝜅𝜀k       (1.17) 
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For further simplification, a spherical particle with radius R (𝜅 = 2, 𝑉 = 𝑅y𝜋 {
y
) [6] will be 

considered because it sufficiently details some important characteristics of LSPR. For a 

spherical particle, Equation 1.16 and Equation 1.17 become: 

 

  𝛼 = 4𝜋𝑅y ghTgi
ghW]gi

        (1.18a) 

  Re[𝜀"] = −2𝜀k       (1.18b) 

 

As a spherical particle increases in size beyond the limit where the quasistatic approximation 

can be used (R > 50 nm), things ignored by the approximation, such as interband transitions, 

become more pronounced and the size of the particle has more effect on plasmonic 

frequency. Increases to the size of the nanoparticle typically results in a redshift in the 

plasmon resonance frequency. 

 

As mentioned, the oscillations of the bulk plasmon of the metal create a dipole. This dipole 

is able to induce an electric potential distinct from that of the applied electric field, which is 

known as photonic excitation.  

 

The near-field strength of LSPR can be mathematically understood by the polar form of the 

electric field strength (𝐄}de~). For a spherical particle, this is given by:  

 

𝐄}de~ = 𝐸E cos 𝜃 +
�[~� ��� �

��
� ghTgi
ghW]gi

�      (1.19) 

 

where 𝐸E is the electric field strength of the light source, cos 𝜃 is the direction of light 

polarisation, 𝑟 is the radial distance from the particle [3]. As can be seen by Equation 1.19, 

the induced electric field and electromagnetic field enhancement decay as 1/𝑟y with 

distance from the surface of the nanoparticle.  

 

Another way to determine the LSPR of particles is by their efficiency to scatter and absorb 

light. The scattering and absorption cross sections of a nanoparticle are derived using a time-

averaged Poynting vector expression [3-4]. Using a spherical assumption, the scattering 

cross section (𝜎�lC) and absorption cross section (𝜎C��) are given by: 

 

  𝜎�lC =
��
y
𝑓{𝑟� � ghTgi

ghW]gi
	�
]
      (1.20a) 
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  𝜎C�� = 4𝜋𝑓𝑟yIm � ghTgi
ghW]gi

	�      (1.20b) 

 

where 𝑓 = 2𝜋/𝜆 [3-4]. The scattering and absorption cross sections quantify the radiative 

and non-radiative transfer processes involved in LSPR, respectively. From Equation 1.20a 

and Equation 1.20b, it is observed that for small particles absorption dominates and 

scattering becomes more important as the particles’ size increases. 

 

The sum of the scattering and absorption cross sections quantify the total energy transfer 

process in LSPR. This sum represented by the extinction cross section (𝜎+,-) [3-4]  

 

  𝜎+,- = 𝜎�lC + 𝜎C��       (1.21) 

 

The extinction cross section is also derived via a time-average Poynting vector expression 

[3-4]. Using a spherical assumption, the extinction cross section (𝜎+,-) is: 

 

  𝜎+,- = 9V
l
𝜀k
y/]𝑉 gN

(g�W]gi)NWgNN
      (1.22) 

 

where 𝑉 is the volume of the sphere and 𝜀_ and 𝜀] are the respective real and imaginary parts 

of the complex dielectric function of the metal as defined by Equation 1.13a and Equation 

1.13b.  

 

The proximity of other plasmonic structures can also affect the LSPR [3-6, 8, 15-16]. When 

two plasmonic structures are separated by a very small distance, coupling of the LSPR 

between the two nanoparticles occurs. The response of the shift depends on the polarisation 

of the particles [3-6, 8, 15-16]. Regardless of the surrounding medium, particle shape, metal 

composition, and diameter, plasmonic nanoparticles exhibit a near-field coupling strength 

∆𝜆/𝜆 and falls almost exponentially over a distance of about 0.2 times the particle diameter 

as governed by Equation 1.23 [6] 

 
∆�
�
= 𝑝𝑒T

 
[.N¢        (1.23) 
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where 𝑠/𝐷 is the interparticular gap (𝑠) normalized by the particle size (𝐷) and 𝑝 is the 

maximum plasmon shift for a particle pair depending on composition, environment, shape, 

etc. 

 

In summary, LSPR is highly sensitive to the local environment (the surrounding substrate 

on which it is built and the medium which surrounds it) [3-4, 16-17], nanoparticle geometry 

(size, shape, and surface roughness) [2-5, 15, 18-21], proximity to nearby nanoparticles [3-

6, 8, 15-16], and nanoparticle material composition [2-3, 5-6, 18, 22], making 

nanoplasmonic structures highly tuneable to interact with wavelengths throughout the VIS-

NIR spectrum and highly useful for sensing applications.  

1.2.3 Appropriate Metals 
 
The free electrons and complex permittivity of metals make them ideal for use as surface 

plasmon resonant materials [5, 8]. Silver (Ag) has the lowest intrinsic losses through 

intraband excitations [23] in the visible range of the EM spectrum and has been used in a 

variety of applications [2]. However, its high likelihood to oxidise and corrode makes it 

difficult for long-term use and biological applications [24]. Gold (Au) is much more 

chemically and physically stable than Ag (and also offers very low intrinsic losses through 

intraband excitations) [23]. Au is also highly compatible with biological samples. However, 

its use is often limited by its expense and significant optical loss below 600 nm wavelengths 

[23]. Aluminium (Al) is able to be tuned across the UV-VIS-NIR spectrum [23, 25-26] and 

is much cheaper than the aforementioned materials. Unlike Ag, Al forms a self-protecting 

oxidising layer which makes it more stable than Ag.  

 

In this thesis, Au was chosen to build self-referencing sensors demonstrated for biological 

sensing applications, both Au and Al were chosen for use as bimetallic sensors for mixture 

discrimination, and Al was chosen to make plasmonic nano-pixels for high-density optical 

image-encoding. The two types of plasmonic structure arrays fabricated from these metals 

were nano-particle arrays (NPA) and nano-aperture arrays (NAA). 

1.2.4 Types of Nano-Plasmonic Structures 
 
Figure 1.4 shows the difference between these types of nanostructures. NPAs typically act 

as band-stop filters where they have high transmission across most wavelengths and 

attenuate the signal at their plasmonic peaks. NAAs, on the other hand, typically act as band-
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pass filters where they only have high-transmission at their plasmonic peak. Applications of 

nanostructure arrays will be discussed in Chapter 1.3. 

 

 
Figure 1.4: Rendering of nanostructure arrays. The nanostructure arrays in this thesis 
consisted of (top) positive nanostructures referred to as nano-particles and (bottom) 
negative nanostructures referred to as nano-apertures. 

1.2.4.1 Nanoparticle Array (NPA) 
 
NPAs are governed by LSPR. These types of arrays can be fabricated from either a bottom-

up or top-down approach. Bottom-up processes typically involve direct chemical synthesis 

that produces metal nanoparticles [5]. Whereas top-down approaches involve using 

expensive equipment, such as electron-beam lithography or focused ion-beam milling, to 

produce nanostructures in ordered arrays [5]. Bottom-up approaches do not require highly 

expensive equipment and can produce nanoparticles quite quickly, whereas top-down 

approaches are much better at making consistent, ordered array patterns at arbitrary size, 

shape, and complexity. In this thesis, the top-down electron-beam lithography approach was 

used because high-resolution and ordered nanostructure arrays with good reproducibility 

were desired.  

1.2.4.2 Nano-Aperture Array (NAA) and Extraordinary Transmission (EOT) of Light 
 
NAAs are governed by SPR and the phenomenon known as extraordinary transmission 

(EOT) of light. Classic theory states that when plane wave light encounters a circular 
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aperture perforated into an optically opaque and perfectly conducting screen, the 

transmission 𝑇 is proportional to radius 𝑅 and wavelength 𝜆 [3] 

 

𝑇 ∝ �~
�
�
{
        (1.24) 

 

Equation 1.24 indicates a very weak total transmission as wavelength increases. However, 

for metals, this is not the case. In fact, subwavelength NAAs in thin metallic sheets allow 

transmittance per unit hole much higher (on the order of magnitudes) than that predicted by 

classic diffraction theory [27]. This ‘extraordinary light transmission’ arises from a 

combination of SPR and constructive interference [3, 28]. In other words, plasmonics 

provides the ability to overcome the diffraction limit of light, which is on the hundreds-of-

nanometers-scale [5]. 

 

 
Figure 1.5: Extraordinary light transmission diagram. When (a) incident light hits the 
metal surface at the metal-dielectric-1 interface, a SPR wave arises that (b) propagates 
laterally along the metal-dielectric-1 interface, (c) tunnels vertically through the nano-
aperture, and (d) propagates laterally along the metal-dielectric-2 interface. (e) 
Interference of the laterally propagating surface waves from neighbouring apertures occurs 
and affects (f) the radiant light from the decaying SPR that is observed as transmitted light. 

Figure 1.5 shows a diagram of the light coupling that arises from EOT. When (a) light 

encounters a periodic, subwavelength NAA in a metal structure, (b) SPR occurs laterally at 

the incident interface, (c) tunnels through the nano-aperture vertically, and (d) travels 

laterally along the backside interface. This generates (e) interference between the front and 

back SPR, producing (f) radiant photons. The dimensions of the apertures in a NAA 

determine the coupling wavelength and the periodicity of the NAA determines the 

interference between the front and back SPR. Both dimension and periodicity thus affect the 

observed transmitted light [3]. NAAs of circular shape [29-30], rectangular shape [31], 
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elliptical shape [32], and triangular bowtie shape [33] have all been demonstrated to produce 

different types of interference modes and patterns for EOT. As shapes become asymmetrical, 

polarisation-dependent modes arise in the EOT [34-35].  

1.3 Applications of Plasmonics 

A multitude of applications exist for plasmonic nanoarrays. For the purposes of this thesis 

and the work presented herein, the applications of plasmonic sensors and colour image 

displays will be briefly introduced. 

1.3.1 Plasmonic Sensors 
 
The high-sensitivity to changes in the local environment and label-free detection capabilities 

of nanoplasmonic structures makes them a useful tool for chemical and biological sensing 

compared to other techniques [1, 4, 36-38]. For example, gold-standard biological detection 

techniques like enzyme-linked immunosorbent assays (ELISA) and molecular fluorophore-

coupled polymerase chain reaction (PCR) are susceptible to photobleaching and 

contamination, have broad absorption/emission bands, and rely on relatively expensive 

equipment for detection that also hinders their portability. [1, 39] Additionally, the target 

antigen is often not directly detected but rather a secondary molecule is detected. [1] 

Plasmonic-based sensors, on the other hand, can be used for the direct detection of a target 

molecule, allowing for continuous, real-time measurements of binding kinetics. [1, 40] 

Changes in the refractive index of the surrounding environment produce a characteristic shift 

in the optical response [4]. The shift in optical response per refractive index unit (nm per 

RIU or nm·RIU-1) is referred to as the bulk refractive index sensitivity and is used to compare 

plasmonic sensors to one another. The sensitivity range of plasmonic sensors depends highly 

on the nanostructure morphology, geometry, and close-proximity-coupling. It can typically 

range anywhere from 90 nm·RIU-1 to 1000 nm·RIU-1 [1, 36, 41-42]. The refractive index 

sensitivity, however, does not consider precision issues that arise when the line-width of the 

plasmonic peak is large. To account for both the refractive index sensitivity and the peak 

line-width of different sensors, a Figure of Merit (FoM) [43] is used. The FoM is defined by 

the ratio of the refractive index sensitivity (𝑚) to the full-width half-max (𝐹𝑊𝐻𝑀) of the 

peak: 

 

𝐹𝑜𝑀 = "	(¬∙®¯°±�)
²³´µ	(¬)

       (2.25) 
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and can typically range anywhere from 0.8 to 5.4 [1, 36, 41-42]. 

 

Another advantage of plasmonic sensors is that their response, through modifications of the 

surface, can be tailored to specific analytes or events, such as protein-substrate binding [1, 

4, 36, 44], antibody-antigen binding [42, 45-46], and DNA base pairing [36, 47-49]. 

Resonance shifts in plasmonic sensor can also occur from changes in the external 

environment such as temperature shifts and light-intensity fluctuations. To account for this, 

a reference is used to determine if a detected event is from a desired signal or some sort of 

drift [50]. 

 

Plasmonics has also been demonstrated as useful in optical sensor arrays due to their high 

stability, easy surface modification, and tuneable physiochemical properties [37]. Optical 

sensor arrays serve as excellent tools for the recognition and discrimination of a variety of 

liquid and gas mixtures by pattern-based recognition from signals across multiple sensing 

regions. As the use of optical sensor arrays progresses towards rapid, highly personalised 

diagnosis and component identification devices, plasmonic structure offer a label-free, 

highly stable, and reusable platform for each element of the array [37].  

 

Further applications of plasmonic structures include their use as a means to simultaneously 

trap and sense individual molecules by techniques such as Self-Induced Back-Action [30, 

33, 51]. Additionally, the highly-confined electric fields of the nanostructures can be used 

to enhance the spectroscopic sensing techniques of both Raman scattering [4] and 

fluorescence [1, 52]. These aforementioned applications are not covered in the scope of this 

thesis. 

1.3.2 Coloured Image Displays  
 
As shown mathematically in previous sections, plasmons can enhance and confine electric 

fields and preferentially scatter and absorb different wavelength of light. Thus, structures 

can be engineered to interact with white light such that they appear a particular colour. This 

has led to their research and development for applications in coloured image display, colour 

filtering, and optical image encoding [53]. The high-density capabilities and high-stability 

of plasmonic structures for colour applications offers advantages over using dyes and other 

organic pigments, which fade over time and have limitations to their resolution capabilities. 

Plasmonic colour filters based on positive nanostructures [54-61], filters based on nano-
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apertures [29, 34, 62-64], and filters based on combinations of both of these designs [65-67] 

have been widely used for subwavelength colour printing [54-56, 58, 67-68], anti-

counterfeiting measures [69-70], and red-green-blue splitting for image sensors [29, 63, 71-

72]. 

1.4 Research Work Described Herein 

The experimental work of this thesis explores the optical properties of periodic metal 

nanoarrays and their relative applications in optical sensing, display, and encoding. The 

research covered can be divided into three major areas: (1) development of a novel LSPR 

self-referencing sensor based on NPA, (2) development of a novel LSPR bimetallic optical 

sensor array based on NPA, and (3) development of highly-condensed, dual-state nano-pixel 

arrays (i.e. NAAs) for the all-optical encoding of two information states in the same space. 

1.4.1 Development of a Novel LSPR Self-Referencing Sensor 
 
As previously discussed in 1.3.1, plasmonic sensing applications have inherent advantages 

over other techniques. They also require a reference in order to detect a shift in signal and to 

determine if a signal detected arises from the desired event. For applications where only 

single measurements are taken, referencing can be done immediately prior to the 

measurement and the likelihood of signal drift is minimal. For applications where multiple 

measurements are taken in succession over an extended period of time, the initial reference 

may not be adequate as signal drift from baseline due to external factors, such as light 

intensity fluctuations, may occur [50].  While many different approaches have been made to 

produce self-referencing within the detection channel [50, 73-81], an approach using 

multiple layers of plasmonic NPA has yet to be explored. NPAs are ideal for this application 

because they inherently act as band-stop filters (as opposed to NAAs which act as bandpass 

filters). By working in this way, two layers with different plasmonic signal peaks can be 

utilised. Chapter 3 explores a proof-of-concept design for the utilisation of a multilayered, 

self-referencing NPA sensor. 

1.4.2 Development of a Novel Bimetallic Optical Sensor Array 
 
As also mentioned in 1.3.1, optical sensor arrays are powerful tools in differentiating 

between many different liquid and gas mixtures [37]. Compared to polymer and ligand-

based counterparts which are one-time use, NPAs have been demonstrated in this field to be 

highly tuneable, reusable, and easily modified for specific sensor array applications [37]. 
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However, as the use of optical sensor arrays progresses towards rapid, highly personalised 

diagnosis and component identification devices, reduction in complexity and data-

acquisition time is key [37]. One way to achieve this is in the reduction of elements in the 

array without compromising the differential capabilities of the device. Given enough 

distance between individual components in NPAs, each metallic structure in the array can 

yield a response to the local environment independent to that of its neighbour. Therefore, 

combinations of different metal structures and surface chemistries within the same NPA can 

yield multiple, distinct signals from each element of the sensing array. Thus, using multiple 

metal structures in one region has the potential to reduce the number of elements in a sensor 

array while still providing the same amount of data necessary to allow for successful 

differentiation. Chapter 4 explores the use of a novel prototype device consisting of Au and 

Al NPAs with altered surface chemistries.  

 

1.4.3 Development of Dual-State Pixels for High-Density Optical Encoding 
 
As reviewed in 1.3.2, nanostructures can be employed in a variety of applications where 

their high-tunability, high-stability, and age-longevity make them advantageous over 

standard dye and pigment techniques for creating images. In Chapter 5, a new approach to 

high-density image encoding, based on dual-state plasmonic pixels with polarisation-

dependence, is demonstrated. While previous studies using plasmonics for colour display 

applications employed colour or position switching in fixed images [60, 82], these 

techniques only altered the colour of the same image or ‘hid’ the image. The design utilised 

here, on the other hand, shows two fully independent optical states of completely separate 

images and information states that can be encoded in the same single array of nano-pixels. 

1.5 References 

 
[1]  Mayer, K. M.; Hafner, J. H. Localized Surface Plasmon Resonance Sensors. Chem. 

Rev. 2011, 111 (6), 3828-3857, DOI: 10.1021/cr100313v. 
[2]  Willets, K. A.; Van Duyne, R. P. Localized Surface Plasmon Resonance 

Spectroscopy and Sensing. Annual Review of Physical Chemistry 2007, 58, 267-
297, DOI: 10.1146/annurev.physchem.58.032806.104607. 

[3]  Maier, S. A. Plasmonics: Fundamentals and Applications, Springer 
Science+Business Media LLC: New York, 2007. 

[4]  Langer, J.; Novikov, S. M.; Liz-Marzan, L. M. Sensing Using Plasmonic 
Nanostructures and Nanoparticles. Nanotechnology 2015, 26 (32), DOI: 
10.1088/0957-4484/26/32/322001. 



Chapter 1: Introduction and Theory 
 

 
J.R. Sperling 2019  29 

[5]  Murray, W. A.; Barnes, W. L. Plasmonic Materials. Advanced Materials 2007, 19 
(22), 3771-3782, DOI: 10.1002/adma.200700678. 

[6]  Jain, P. K.; El-Sayed, M. A. Plasmonic Coupling in Noble Metal Nanostructures. 
Chem. Phys. Lett. 2010, 487 (4-6), 153-164, DOI: 10.1016/j.cplett.2010.01.062. 

[7]  Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters, Springer: Berlin, 
1995; Vol. 25. 

[8]  Pelton, M.; Aizpurua, J.; Bryant, G. Metal-Nanoparticle Plasmonics. Laser & 
Photonics Reviews 2008, 2 (3), 136-159, DOI: 10.1002/lpor.200810003. 

[9]  Raether, H. Surface-Plasmons on Smooth and Rough Surfaces and on Gratings. 
Springer Tracts Mod. Phys. 1988, 111, 1-133. 

[10]  Kretschmann, E.; Raether, H. Radiative Decay of Non Radiative Surface Plasmons 
Excited by Light. Zeitschrift Fur Naturforschung Part a-Astrophysik Physik Und 
Physikalische Chemie 1968, A 23 (12), 2135-&. 

[11]  Otto, A. Excitation of Nonradiative Surface Plasma Waves in Silver by Method of 
Frustrated Total Reflection. Zeitschrift Fur Physik 1968, 216 (4), 398-&, DOI: 
10.1007/bf01391532. 

[12]  Homola, J.; Yee, S. S.; Gauglitz, G. Surface Plasmon Resonance Sensors: Review. 
Sens. Actuators, B 1999, 54 (1-2), 3-15, DOI: https://doi.org/10.1016/S0925-
4005(98)00321-9. 

[13]  Ekgasit, S.; Thammacharoen, C.; Yu, F.; Knoll, W. Influence of the Metal Film 
Thickness on the Sensitivity of Surface Plasmon Resonance Biosensors. Applied 
Spectroscopy 2005, 59 (5), 661-667. 

[14]  Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. A Nanoscale Optical 
Biosensor:  The Long Range Distance Dependence of the Localized Surface 
Plasmon Resonance of Noble Metal Nanoparticles. J. Phys. Chem. B 2004, 108, 
109-116. 

[15]  Liz-Marzan, L. M. Tailoring Surface Plasmons through the Morphology and 
Assembly of Metal Nanoparticles. Langmuir 2006, 22 (1), 32-41, DOI: 
10.1021/la0513353. 

[16]  Malinsky, M. D.; Kelly, K. L.; Schatz, G. C.; Van Duyne, R. P. Nanosphere 
Lithography: Effect of Substrate on the Localized Surface Plasmon Resonance 
Spectrum of Silver Nanoparticles. J. Phys. Chem. B 2001, 105 (12), 2343-2350. 

[17]  Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; Mulvaney, P. Gold 
Nanorods: Synthesis, Characterization and Applications. Coordination Chemistry 
Reviews 2005, 249 (17-18), 1870-1901, DOI: 10.1016/j.ccr.2005.01.030. 

[18]  Haes, A. J.; Zou, S. L.; Schatz, G. C.; Van Duyne, R. P. Nanoscale Optical 
Biosensor: Short Range Distance Dependence of the Localized Surface Plasmon 
Resonance of Noble Metal Nanoparticles. J. Phys. Chem. B 2004, 108 (22), 6961-
6968, DOI: 10.1021/jp036261n. 

[19]  Liz-Marzan, L. M.; Perez-Juste, J.; Pastoriza-Santos, I. Plasmonics of Gold 
Nanorods. Considerations for Biosensing. Nanomaterials for Applications in 
Medicine and Biology 2008, 103-111, DOI: 10.1007/978-1-4020-6829-4_9. 

[20]  Pecharroman, C.; Perez-Juste, J.; Mata-Osoro, G.; Liz-Marzan, L. M.; Mulvaney, 
P. Redshift of Surface Plasmon Modes of Small Gold Rods Due to Their Atomic 
Roughness and End-Cap Geometry. Physical Review B 2008, 77 (3), DOI: 
10.1103/PhysRevB.77.035418. 

[21]  Rodriguez-Fernandez, J.; Funston, A. M.; Perez-Juste, J.; Alvarez-Puebla, R. A.; 
Liz-Marzan, L. M.; Mulvaney, P. The Effect of Surface Roughness on the 
Plasmonic Response of Individual Sub-Micron Gold Spheres. Physical Chemistry 
Chemical Physics 2009, 11 (28), 5909-5914, DOI: 10.1039/b905200n. 



Chapter 1: Introduction and Theory 
 

 
J.R. Sperling 2019  30 

[22]  Knight, M. W.; King, N. S.; Liu, L.; Everitt, H. O.; Nordlander, P.; Halas, N. J. 
Aluminum for Plasmonics. Acs Nano 2014, 8 (1), 834-840, DOI: 
10.1021/nn405495q. 

[23]  Zoric, I.; Zach, M.; Kasemo, B.; Langhammer, C. Gold, Platinum, and Aluminum 
Nanodisk Plasmons: Material Independence, Subradiance, and Damping 
Mechanisms. Acs Nano 2011, 5 (4), 2535-2546, DOI: 10.1021/nn102166t. 

[24]  Graedel, T. E. Corrosion Mechanisms for Silver Exposed to the Atmosphere. J. 
Electrochem. Soc. 1992, 139 (7), 1963-1970, DOI: 10.1149/1.2221162. 

[25]  Li, W.; Qiu, Y.; Zhang, L.; Jiang, L.; Zhou, Z.; Chen, H.; Zhou, J. Aluminum 
Nanopyramid Array with Tunable Ultraviolet-Visible-Infrared Wavelength 
Plasmon Resonances for Rapid Detection of Carbohydrate Antigen 199. Biosensors 
and Bioelectronic 2016,  (79), 500-507, DOI: 10.1016/j.bios.2015.12.038. 

[26]  Langhammer, C.; Schwind, M.; Kasemo, B.; Zoric, I. Localized Surface Plasmon 
Resonances in Aluminum Nanodisks. Nano Lett. 2008, 8 (5), 1461-1471, DOI: 
10.1021/nl080453i. 

[27]  Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinary 
Optical Transmission through Sub-Wavelength Hole Arrays. Nature 1998, 391 
(6668), 667-669, DOI: 10.1038/35570. 

[28]  Liu, H.; Lalanne, P. Microscopic Theory of the Extraordinary Optical 
Transmission. Nature 2008, 452 (7188), 728-731, DOI: 10.1038/nature06762. 

[29]  Burgos, S. P.; Yokogawa, S.; Atwater, H. A. Color Imaging Via Nearest Neighbor 
Hole Coupling in Plasmonic Color Filters Integrated onto a Complementary Metal-
Oxide Semiconductor Image Sensor. Acs Nano 2013, 7 (11), 10038-10047, DOI: 
10.1021/nn403991d. 

[30]  Juan, M. L.; Gordon, R.; Pang, Y.; Eftekhari, F.; Quidant, R. Self-Induced Back-
Action Optical Trapping of Dielectric Nanoparticles. Nature Physics 2009, 5 (12), 
915-919, DOI: 10.1038/nphys1422. 

[31]  Ren, X. F.; Zhang, P.; Guo, G. P.; Huang, Y. F.; Wang, Z. W.; Guo, G. C. 
Polarization Properties of Subwavelength Hole Arrays Consisting of Rectangular 
Holes. Applied Physics B-Lasers and Optics 2008, 91 (3-4), 601-604, DOI: 
10.1007/s00340-008-3027-1. 

[32]  Gordon, R.; Brolo, A. G.; McKinnon, A.; Rajora, A.; Leathem, B.; Kavanagh, K. L. 
Strong Polarization in the Optical Transmission through Elliptical Nanohole 
Arrays. Physical Review Letters 2004, 92 (3), DOI: 
10.1103/PhysRevLett.92.037401. 

[33]  Mestres, P.; Berthelot, J.; Acimovic, S. S.; Quidant, R. Unraveling the 
Optomechanical Nature of Plasmonic Trapping. Light-Science & Applications 
2016, 5, DOI: 10.1038/lsa.2016.92. 

[34]  Li, Z. B.; Clark, A. W.; Cooper, J. M. Dual Color Plasmonic Pixels Create a 
Polarization Controlled Nano Color Palette. Acs Nano 2016, 10 (1), 492-498, DOI: 
10.1021/acsnano.5b05411. 

[35]  Heydari, E.; Sperling, J. R.; Neale, S. L.; Clark, A. W. Plasmonic Color Filters as 
Dual-State Nanopixels for High-Density Microimage Encoding. Adv. Funct. Mater. 
2017, 27 (35), DOI: 10.1002/adfm.201701866. 

[36]  Unser, S.; Bruzas, I.; He, J.; Sagle, L. Localized Surface Plasmon Resonance 
Biosensing: Current Challenges and Approaches. Sensors 2015, 15 (7), 15684-
15716, DOI: 10.3390/s150715684. 

[37]  Bigdeli, A.; Ghasemi, F.; Golmohammadi, H.; Abbasi-Moayed, S.; Nejad, M. A. 
F.; Fahimi-Kashani, N.; Jafarinejad, S.; Shahrajabian, M.; Hormozi-Nezhad, M. R. 
Nanoparticle-Based Optical Sensor Arrays. Nanoscale 2017, 9 (43), 16546-16563, 
DOI: 10.1039/c7nr03311g. 



Chapter 1: Introduction and Theory 
 

 
J.R. Sperling 2019  31 

[38]  Gordon, R.; Sinton, D.; Kavanagh, K. L.; Brolo, A. G. A New Generation of 
Sensors Based on Extraordinary Optical Transmission. Accounts of Chemical 
Research 2008, 41 (8), 1049-1057, DOI: 10.1021/ar800074d. 

[39]  Rosi, N. L.; Mirkin, C. A. Nanostructures in Biodiagnostics. Chem. Rev. 2005, 105, 
1547-1562, DOI: 10.1021/cr030067f. 

[40]  Mayer, K. M.; Hao, F.; Lee, S.; Nordlander, P.; Hafner, J. H. A Single Molecule 
Immunoassay by Localized Surface Plasmon Resonance. Nanotechnology 2010, 21 
(25), DOI: 10.1088/0957-4484/21/25/255503. 

[41]  Szunerits, S.; Boukherroub, R. Sensing Using Localised Surface Plasmon 
Resonance Sensors. Chem. Commun. (Cambridge) 2012, 48 (72), 8999-9010, DOI: 
10.1039/c2cc33266c. 

[42]  Acimovic, S. S.; Sipova, H.; Emilsson, G.; Dahlin, A. B.; Antosiewicz, T. J.; Kall, 
M. Superior Lspr Substrates Based on Electromagnetic Decoupling for on-a-Chip 
High-Throughput Label-Free Biosensing. Light: Sci. Appl 2017, 6, DOI: 
10.1038/lsa.2017.42. 

[43]  Sherry, L. J.; Chang, S. H.; Schatz, G. C.; Van Duyne, R. P.; Wiley, B. J.; Xia, Y. 
N. Localized Surface Plasmon Resonance Spectroscopy of Single Silver 
Nanocubes. Nano Lett. 2005, 5 (10), 2034-2038, DOI: 10.1021/nl0515753. 

[44]  Sagle, L. B.; Ruvuna, L. K.; Ruemmele, J. A.; Van Duyne, R. P. Advances in 
Localized Surface Plasmon Resonance Spectroscopy Biosensing. Nanomedicine 
2011, 6 (8), 1447-1462, DOI: 10.2217/nnm.11.117. 

[45]  Fernandez, F.; Garcia-Lopez, O.; Tellechea, E.; Asensio, A. C.; Cornago, I. Lspr 
Cuvette for Real-Time Biosensing by Using a Common Spectrophotometer. IEEE 
Sens. J. 2016, 16 (11), 4158-4165, DOI: 10.1109/jsen.2016.2544953. 

[46]  Acimovic, S. S.; Ortega, M. A.; Sanz, V.; Berthelot, J.; Garcia-Cordero, J. L.; 
Renger, J.; Maerkl, S. J.; Kreuzer, M. P.; Quidant, R. Lspr Chip for Parallel, Rapid, 
and Sensitive Detection of Cancer Markers in Serum. Nano Lett. 2014, 14 (5), 
2636-2641, DOI: 10.1021/nl500574n. 

[47]  Sonnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P. A Molecular Ruler 
Based on Plasmon Coupling of Single Gold and Silver Nanoparticles. Nat. 
Biotechnol. 2005, 23 (6), 741-745, DOI: 10.1038/nbt1100. 

[48]  Yoo, S. Y.; Kim, D.-K.; Park, T. J.; Kim, E. K.; Tamiya, E.; Lee, S. Y. Detection of 
the Most Common Corneal Dystrophies Caused by Bigh3 Gene Point Mutations 
Using a Multispot Gold-Capped Nanoparticle Array Chip. Anal. Chem. 2010, 82 
(4), 1349-1357, DOI: 10.1021/ac902410z. 

[49]  Verdoold, R.; Gill, R.; Ungureanu, F.; Molenaar, R.; Kooyman, R. P. N. 
Femtomolar DNA Detection by Parallel Colorimetric Darkfield Microscopy of 
Functionalized Gold Nanoparticles. Biosens. Bioelectron. 2011, 27 (1), 77-81, DOI: 
10.1016/j.bios.2011.06.019. 

[50]  Wadell, C.; Langhammer, C. Drift-Corrected Nanoplasmonic Hydrogen Sensing by 
Polarization. Nanoscale 2015, 7 (25), 10963-10969, DOI: 10.1039/c5nr01818h. 

[51]  Kotnala, A.; Gordon, R. Quantification of High-Efficiency Trapping of 
Nanoparticles in a Double Nanohole Optical Tweezer. Nano Lett. 2014, 14 (2), 
853-856, DOI: 10.1021/nl404233z. 

[52]  Brolo, A. G.; Kwok, S. C.; Moffitt, M. G.; Gordon, R.; Riordon, J.; Kavanagh, K. 
L. Enhanced Fluorescence from Arrays of Nanoholes in a Gold Film. J. Am. Chem. 
Soc. 2005, 127 (42), 14936-14941, DOI: 10.1021/ja0548687. 

[53]  Shao, L.; Zhuo, X.; Wang, J. Advanced Plasmonic Materials for Dynamic Color 
Display. Advanced Materials 2018, 30 (16), DOI: 10.1002/adma.201704338. 

[54]  Miyata, M.; Hatada, H.; Takahara, J. Full-Color Subwavelength Printing with Gap-
Plasmonic Optical Antennas. Nano Lett. 2016, 16 (5), 3166-3172, DOI: 
10.1021/acs.nanolett.6b00500. 



Chapter 1: Introduction and Theory 
 

 
J.R. Sperling 2019  32 

[55]  Tan, S. J.; Zhang, L.; Zhu, D.; Goh, X. M.; Wang, Y. M.; Kumar, K.; Qiu, C.-W.; 
Yang, J. K. W. Plasmonic Color Palettes for Photorealistic Printing with Aluminum 
Nanostructures. Nano Lett. 2014, 14 (7), 4023-4029, DOI: 10.1021/nl501460x. 

[56]  Kumar, K.; Duan, H.; Hegde, R. S.; Koh, S. C. W.; Wei, J. N.; Yang, J. K. W. 
Printing Colour at the Optical Diffraction Limit. Nature Nanotechnology 2012, 7 
(9), 557-561, DOI: 10.1038/nnano.2012.128. 

[57]  Roberts, A. S.; Pors, A.; Albrektsen, O.; Bozhevolnyi, S. I. Subwavelength 
Plasmonic Color Printing Protected for Ambient Use. Nano Lett. 2014, 14 (2), 783-
787, DOI: 10.1021/nl404129n. 

[58]  Olson, J.; Manjavacas, A.; Liu, L.; Chang, W.-S.; Foerster, B.; King, N. S.; Knight, 
M. W.; Nordlander, P.; Halas, N. J.; Link, S. Vivid, Full-Color Aluminum 
Plasmonic Pixels. Proceedings of the National Academy of Sciences 2014, 111 
(40), 14348-14353, DOI: 10.1073/pnas.1415970111. 

[59]  Chen, T. H.; Reinhard, B. M. Assembling Color on the Nanoscale: Multichromatic 
Switchable Pixels from Plasmonic Atoms and Molecules. Advanced Materials 
2016, 28 (18), 3522-+, DOI: 10.1002/adma.201506179. 

[60]  Goh, X. M.; Zheng, Y.; Tan, S. J.; Zhang, L.; Kumar, K.; Qiu, C.-W.; Yang, J. K. 
W. Three-Dimensional Plasmonic Stereoscopic Prints in Full Colour. Nature 
Communications 2014, 5, DOI: 10.1038/ncomms6361. 

[61]  Huang, Y. W.; Chen, W. T.; Tsai, W. Y.; Wu, P. C.; Wang, C. M.; Sun, G.; Tsai, 
D. P. Aluminum Plasmonic Multicolor Meta-Hologram. Nano Lett. 2015, 15 (5), 
3122-3127, DOI: 10.1021/acs.nanolett.5b00184. 

[62]  Shrestha, V. R.; Lee, S.-S.; Kim, E.-S.; Choi, D.-Y. Aluminum Plasmonics Based 
Highly Transmissive Polarization-Independent Subtractive Color Filters Exploiting 
a Nanopatch Array. Nano Lett. 2014, 14 (11), 6672-6678, DOI: 
10.1021/nl503353z. 

[63]  Zheng, B. Y.; Wang, Y. M.; Nordlander, P.; Halas, N. J. Color-Selective and 
Cmos-Compatible Photodetection Based on Aluminum Plasmonics. Advanced 
Materials 2014, 26 (36), 6318-6323, DOI: 10.1002/adma.201401168. 

[64]  Rajasekharan, R.; Balaur, E.; Minovich, A.; Collins, S.; James, T. D.; Djalalian-
Assl, A.; Ganesan, K.; Tomljenovic-Hanic, S.; Kandasamy, S.; Skafidas, E.; 
Neshev, D. N.; Mulvaney, P.; Roberts, A.; Prawer, S. Filling Schemes at 
Submicron Scale: Development of Submicron Sized Plasmonic Colour Filters. Sci. 
Rep. 2014, 4, DOI: 10.1038/srep06435. 

[65]  Ahn, M.-S.; Chung, T.; Jeong, K.-H. Structural Coloration of Transmission Light 
through Self-Aligned and Complementary Plasmonic Nanostructures. Nanoscale 
2018, 10 (14), 6313-6317, DOI: 10.1039/c8nr01006d. 

[66]  Lochbihler, H.; Ye, Y.; Xu, Y. Complementary Aluminum Nanopatch/Nanohole 
Arrays for Broad Palettes of Colors. Plasmonics 2018, 1-7, DOI: 10.1007/s11468-
018-0733-3. 

[67]  James, T. D.; Mulvaney, P.; Roberts, A. The Plasmonic Pixel: Large Area, Wide 
Gamut Color Reproduction Using Aluminum Nanostructures. Nano Lett. 2016, 16 
(6), 3817-3823. 

[68]  Gu, Y.; Zhang, L.; Yang, J. K. W.; Yeo, S. P.; Qiu, C.-W. Color Generation Via 
Subwavelength Plasmonic Nanostructures. Nanoscale 2015, 7 (15), 6409-6419, 
DOI: 10.1039/c5nr00578g. 

[69]  Smith, A. F.; Patton, P.; Skrabalak, S. E. Plasmonic Nanoparticles as a Physically 
Unclonable Function for Responsive Anti-Counterfeit Nanofingerprints. Adv. 
Funct. Mater. 2016, 26 (9), 1315-1321, DOI: 10.1002/adfm.201503989. 

[70]  Zheng, Y. H.; Jiang, C.; Ng, S. H.; Lu, Y.; Han, F.; Bach, U.; Gooding, J. J. 
Unclonable Plasmonic Security Labels Achieved by Shadow-Mask-Lithography-



 
 

 
J.R. Sperling 2019  33 

Assisted Self-Assembly. Advanced Materials 2016, 28 (12), 2330-2336, DOI: 
10.1002/adma.201505022. 

[71]  Chen, Q.; Das, D.; Chitnis, D.; Walls, K.; Drysdale, T. D.; Collins, S.; Cumming, 
D. R. S. A Cmos Image Sensor Integrated with Plasmonic Colour Filters. 
Plasmonics 2012, 7 (4), 695-699, DOI: 10.1007/s11468-012-9360-6. 

[72]  Frey, L.; Parrein, P.; Raby, J.; Pellé, C.; Hérault, D.; Marty, M.; Michailos, J. Color 
Filters Including Infrared Cut-Off Integrated on Cmos Image Sensor. Optics 
Express 2011, 19 (14), 13073-13080, DOI: 10.1364/OE.19.013073. 

[73]  Lu, H. B.; Homola, J.; Campbell, C. T.; Nenninger, G. G.; Yee, S. S.; Ratner, B. D. 
Protein Contact Printing for a Surface Plasmon Resonance Biosensor with on-Chip 
Referencing. Sens. Actuators, B 2001, 74 (1-3), 91-99, DOI: 10.1016/s0925-
4005(00)00716-4. 

[74]  Boozer, C.; Yu, Q. M.; Chen, S. F.; Lee, C. Y.; Homola, J.; Yee, S. S.; Jiang, S. Y. 
Surface Functionalization for Self-Referencing Surface Plasmon Resonance (Spr) 
Biosensors by Multi-Step Self-Assembly. Sens. Actuators, B 2003, 90 (1-3), 22-30, 
DOI: 10.1016/s0925-4005(03)00017-0. 

[75]  Levy, R.; Ruschin, S. Design of a Single-Channel Modal Interferometer 
Waveguide Sensor. IEEE Sens. J. 2009, 9 (1-2), 146-153, DOI: 
10.1109/jsen.2008.2011075. 

[76]  Kashif, M.; Bakar, A. A. A.; Hashim, F. H. Analysing Surface Plasmon Resonance 
Phase Sensor Based on Mach-Zehnder Interferometer Technique Using Glycerin. 
Opt. Commun. 2016, 380, 419-424, DOI: 10.1016/j.optcom.2016.06.033. 

[77]  Wu, S. Y.; Ho, H. P.; Law, W. C.; Lin, C. L.; Kong, S. K. Highly Sensitive 
Differential Phase-Sensitive Surface Plasmon Resonance Biosensor Based on the 
Mach-Zehnder Configuration. Opt. Lett. 2004, 29 (20), 2378-2380, DOI: 
10.1364/ol.29.002378. 

[78]  Hao, N.; Zhang, Y.; Zhong, H.; Zhou, Z.; Hua, R.; Qian, J.; Liu, Q.; Li, H.; Wang, 
K. Design of a Dual Channel Self-Reference Photoelectrochemical Biosensor. 
Anal. Chem. 2017, 89 (19), 10133-10136, DOI: 10.1021/acs.analchem.7b03132. 

[79]  Wang, X.; Chang, T.-W.; Lin, G.; Gartia, M. R.; Liu, G. L. Self-Referenced 
Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical 
Sensing. Anal. Chem. 2017, 89 (1), 611-615, DOI: 10.1021/acs.analchem.6b02484. 

[80]  Wersall, M.; Verre, R.; Svedendahl, M.; Johansson, P.; Kall, M.; Shegai, T. 
Directional Nanoplasmonic Antennas for Self-Referenced Refractometric 
Molecular Analysis. J. Phys. Chem. C 2014, 118 (36), 21075-21080, DOI: 
10.1021/jp5064929. 

[81]  Rivero, P. J.; Ibanez, E.; Goicoechea, J.; Urrutia, A.; Matias, I. R.; Arregui, F. J. A 
Self-Referenced Optical Colorimetric Sensor Based on Silver and Gold 
Nanoparticles for Quantitative Determination of Hydrogen Peroxide. Sens. 
Actuators, B 2017, 251, 624-631, DOI: 10.1016/j.snb.2017.05.110. 

[82]  Li, X. P.; Zhang, Q. M.; Chen, X.; Gu, M. Giant Refractive-Index Modulation by 
Two-Photon Reduction of Fluorescent Graphene Oxides for Multimode Optical 
Recording. Sci. Rep. 2013, 3, 4, DOI: 10.1038/srep02819. 

 



Chapter 2: Materials and Methods 
 

 
J.R. Sperling 2019  34 

Chapter 2: Materials and Methods  

2.1 Introduction 

This Chapter provides an overview of the numerical and experimental techniques used in 

the course of the research of this thesis. Specific implementation of the protocols is 

introduced in the relevant experimental chapters. All the fabrication steps, SEM, and AFM 

were carried out in the James Watt Nanofabrication Centre at the University of Glasgow. 

Optical transmission data acquisition was carried out in the Rankine Building at the 

University of Glasgow. 

2.2 Materials 

1-decanethiol (DT) Sigma-Aldrich 
1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) Sigma-Aldrich 
1H,1H,2H,2H-perfluoro-1-decanethiol (PFDT) Sigma-Aldrich 
2-[methoxy (polyethyleneoxy)6-9 propyl] trimethoxysilane (PEG6-9) Sigma-Aldrich 
AbsolutÒ Vodka  
Acetone Fisher Scientific 
AR-PC 5091 (Electra-92) conductive protective coating AllResist 
Avidin Sigma-Aldrich 
Biotin hydrazide Sigma-Aldrich 
Borosilicate glass, 4-inch wafers, 500 μm thick University Wafer, Inc. 
Bovine serum albumin (BSA) Sigma-Aldrich 
Deionised (DI) water Sigma-Aldrich 
Electron beam evaporated aluminium (Al) metal Kurt J. Lesker Company 
Electron beam evaporated gold (Au) metal Pi-KEM, Ltd. 
Electron beam evaporated titanium (Ti) metal Kurt J. Lesker Company 
Ethanol Sigma-Aldrich 
Ethanolamine Sigma-Aldrich 
Glass slides and coverslips Thermo-Fischer 
Glen MarnochÒ Bourbon Cask  
Glen MarnochÒ Rum Cask  
Glen MarnochÒ Sherry Cask,  
GlenfiddichÒ 12 Year  
GlenfiddichÒ 15 Year  
GlenfiddichÒ 18  
Hexamethyldisilazane (HMDS) Sigma-Aldrich 
Hydrogen silsesquioxane (HSQ) Fox 16 Flowable Oxide Dow Corning, Co. 
Isopropyl Alcohol Scientific Laboratory Supplies, Ltd.  
LaphroaigÒ 10 Year  
Linear polarisers  Thorlabs 
Mercaptoundecanoic acid (MUA) Sigma-Aldrich 
Methyl isobutyl ketone (MIBK) Merck Chemicals 
Microposit MF CD-26 Shipley 
Microposit Remover 1165 Shipley 
O-xylene Sigma-Aldrich 
Phosphate buffer solution (PBS) Sigma-Aldrich 
Polydimethylsiloxane (PDMS) Sigma-Aldrich 
Polymetyl Methacrylate (PMMA) Lucite International, Inc. 
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Sodium hydroxide (NaOH) Sigma-Aldrich 
Sucrose Sigma-Aldrich 
Tetramethylammonium hydroxide (TMAH) 25% Chestech, Ltd. 
Tween-20 Sigma-Aldrich 
ZEP520A ZEON, Ltd. 

2.3 Simulation Techniques 

2.3.1 Finite-Difference Time-Domain (FDTD) Simulations 
 
In Chapter 1, Maxwell equations are used to define the interactions of electromagnetic waves 

with their surrounding environment and objects. A common method to model this interaction 

is the numerical calculation method of finite-difference time-domain (FDTD). As its name 

implies, FDTD uses a finite-difference approximation to the continuous derivatives in both 

the spatial and temporal domains, in the Cartesian coordinate system. This allows the use of 

the central-difference (rather than partial-differential) forms of the time-dependent Maxwell 

equations. 3D FDTD analysis divides the computational space into cubic grids called Yee 

Lattices [1]. The magnetic field vector components of the Yee Lattice originate at the centre 

of each grid face and are directionally perpendicular to each face, and the electric field vector 

components of the Yee Lattice originate at the centre of each grid edge and are directionally 

parallel to each edge (see Figure 2.1). 

 
Figure 2.1: Yee Lattice diagram. The vector components of the electric (green) and 
magnetic (red) fields as defined by the Yee Lattice [1]. 

Defining the electric and magnetic fields in this way results in each component being 

separated spatially by a ‘half-step.’ This allows for discrete calculations of the field 

components in a cyclic pattern, where the electric field is solved at one time-point followed 
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by the magnetic field at the subsequent time-point. This cyclic pattern repeats until all the 

fields in the whole space are solved [2]. 

2.3.2 Lumerical FDTD 
 
Throughout this research, Lumerical FDTD Solutions was used to model the optical 

transmission and resonant field distributions. 3D simulation models were built by defining 

the structural dimensions and materials of each object in the model using data from the 

included materials database and data measured by ellipsometry. The interface between the 

base glass of each sample and the first fabricated structure was always positioned at Z = 0 

nm. The dielectric values of gold and titanium were obtained from the CRC library [3] and 

of glass and aluminium were obtained from the Palik library [4]. 

 

After building the model, simulation boundaries were then defined with certain dimensions 

in X, Y, and Z. The simulation region provided the ability to define background index, 

meshing accuracy, and boundary conditions. Depending on what was being simulated, the 

background index was modified accordingly. Since each fabricated device in this work 

consists of periodic arrays across the surface of the device (defined in the X and Y plane), 

the X-Y plane was defined with periodic boundary conditions (representing an infinite 

array). The simulation model was therefore built for one period-worth of nanoplamonic 

structures. The boundary condition in Z was set as a perfectly-matched-layer (PML) 

boundary condition. For all simulations, a mesh override was added to increase the accuracy 

of the simulation.  

 

A linearly polarised plane wave was defined for the simulation area originating from the 

negative Z-axis near the lower Z-boundary of the simulation region, propagating in the +Z 

direction so that it transmitted through the sample. The wave intensity and phase, 

polarisation, and wavelength range were each altered depending on the device simulated. To 

monitor transmission, a frequency domain and power monitor was positioned in the positive 

Z-axis near the upper Z-boundary of the simulation region. To monitor the electric field, a 

frequency domain field monitor was used, intersecting the regions of interest. 

 

Details on the parameters used to simulate each device explored in this work can be found 

in the subsequent chapters. 
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2.4 Fabrication Tools 

2.4.1 Electron-Beam (E-Beam) Lithography 
 
Electron-beam (e-beam) lithography is a process used for the fabrication of patterns with the 

capabilities of nanometer resolution [5]. E-beam lithography systems use a focused beam of 

electrons to expose a polymer film called a resist. Depending on if the resist is a positive or 

negative, the exposure to the e-beam will either break long-chains in the polymer or cross-

link short-chains to long, less soluble chains, respectively. After e-beam exposure, resist is 

chemically developed. Exposed positive resist and unexposed negative resist are removed 

while unexposed positive resist and exposed negative resist remain. An example of positive 

resist (PMMA) is found in Chapter 2.5.3 and negative (HSQ) is found in Chapter 2.5.5. 

Additionally, e-beam lithography is a direct-writing system which means it only exposes 

one area at a time (unlike using photolithography where the full pattern is exposed all at 

once). 

 
Figure 2.2: Schematic of e-beam lithography tool and vector scanning. The e-beam tool 
operates at high-vacuum. The electron gun generates an electron beam (dashed-grey line) 
that is focused and deflected by a series of coils and lenses in the column. The stage can be 
moved between the chamber (where exposure to the e-beam occurs) and loadlock (where 
loading/unloading at atmospheric pressure occurs). (inset) The pattern is written by vector 
scanning as indicated by the arrows. 
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While there are slight differences in configuration between different e-beam tools, the 

typical e-beam tool consists of a high-voltage electron gun, beam focusing parts, sample 

holder(s), and a vacuum/pumping system. Figure 2.2 shows a schematic of the tool. Free 

electrons are produced by the electron gun through either thermal or field emission, and a 

strong electric field with high voltage accelerates the free electrons into a beam. As the e-

beam travels through the column, it is focused by a series of electromagnetic lenses and 

deflection coils. The designed pattern is then written by vector scanning movement of the 

stage (see inset of Figure 2.2). 

 

To properly write a pattern into the resist, the correct exposure dose (electron charge density 

per area measured in µC×cm-2) is necessary. A common method to determine the proper dose 

is to expose multiple iterations of the same pattern with varied doses. This method is 

commonly referred to as a ‘dose test.’  

 

 
Figure 2.3: Scattering of electrons by resist and substrate. Forward scattering of electrons 
by molecules in the resist and backward of electrons scattering by molecules of the substrate 
results in lateral exposure of the resist. 

E-beam exposure is not only dependent on the dose, but also on the scattering of the focused 

electrons once they have made contact with the substrate. To prevent charge build-up, the 

substrate must be conductive to allow electron dissipation. Otherwise, accumulation of 

electrons will occur on the substrate surface, which will repel incoming electrons, distort the 

e-beam, and alter the pattern shape and resolution. For non-conductive substrates, such as 

the glass ones used in this research, a thin layer of metal or charge-conductive polymer is 

necessary to act as a conduction layer. Additionally, the molecules of the substrate can 

backward scatter electrons, and the molecules of the resist can forward scatter electrons. 

Both types of scattering result in electrons travelling laterally through the resist layer and 
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expose adjacent areas of the resist (see Figure 2.3). This lateral exposure, referred to as 

‘proximity effects,’ enlarges the exposed pattern and is especially prominent when making 

very small features in relatively thick resist layers [6]. To overcome this, the doses across 

the pattern extent can be varied. 

 

For nanofabrication jobs where multiple e-beam lithography steps are warranted and high-

accuracy of each pattern on the substrate is important, the process of alignment is a crucial 

step [7]. Alignment markers allow for finding the exact location on the substrate for e-beam 

exposure and correcting location, rotation, keystone, and scale in both X and Y. One type of 

alignment markers involves using simple geometric shapes. However, this method relies on 

scanning the beam across a pair of parallel edges. If any two parallel sides are not even, a 

marker may not be ‘found.’ If one marker is slightly larger than another, it may result in 

altered position, rotation, keystone, and/or scale (in X, Y, or both). Correlation-based 

alignment with Penrose patterns has been demonstrated to be less susceptible to these 

potential defects, with sub-5 nm alignment, even when up to 80% of the marker pattern is 

missing [8]. Figure 2.4 shows local registration markers of geometric and Penrose patterns. 

The work in this research utilised both types of markers. For the devices of Chapter 3, 

geometric markers were used. The devices in Chapter 4 required more accurate alignment, 

and therefore, Penrose markers were used. 

 
Figure 2.4: SEM images of alignment markers using geometric squares and correlation 
Penrose patterns. Geometric markers are susceptible to marker-edge defects. Penrose 
markers are much less susceptible and can still achieve sub-5 nm resolution, even with up 
to 80% of the pattern missing [8]. 
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The e-beam tool used in this work is a Vistec VB6 Ultra High Resolution Extra Wide Field 

(UHR EWF) electron-beam lithography tool. The VB6 operates at 100 kV and has a 

minimum beam size of 4 nm. To ensure full exposure of resist and an acceptable writing 

time, the beam size for writing should be slightly larger than the beam step size (BSS). BSS 

is defined as the distance between two consecutive exposure spots and is the product of the 

resolution and an integer number called the variable resolution unit (VRU): 𝐵𝑆𝑆	 =

	𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 × 𝑉𝑅𝑈. Writing time for a pattern can be estimated by 𝑇𝑖𝑚𝑒	 =

	(456789:;	<78;)	×	(456789:;	>:;?)
(@;?A	B9::;CD)

. 

2.4.2 Electron-Beam Metal Evaporation 
 
An electron-beam metal evaporation process is used for the controlled linear deposition of 

metal onto a substrate. The sample is loaded into a load-lock chamber at high-vacuum. An 

electron beam is generated at 9.7 kV and a magnetic field is used to deflect and direct the 

beam onto a metal in a lower chamber. By controlling the current, the metal is rapidly heated 

and changes to the vapour state. The vapour state then evaporates onto the sample with high-

linear directionality (as opposed to that in a sputtering process), which is highly beneficial 

for metallisation/lift-off techniques (see Chapter 2.5.3). Evaporation rate and film thickness 

are monitored by oscillation frequency detection of a quartz crystal. In this work, a Plassys 

MEB 550S and Plassys MEB 400S machine were used. 

2.4.3 Plasma Enhanced Chemical Vapour Deposition (PECVD) of SiO2 
 
Plasma Enhanced Chemical Vapour Deposition (PECVD) [9] is a thin-film deposition 

technique that uses plasma to react chemicals in the gas state to deposit dielectric, metal 

oxide, and metal nitride thin films in the solid state. For the PECVD process, a sample is 

placed in a high-vacuum chamber and a specific mixture of gases is then flowed into the 

chamber at a controlled rate so that pressure in the chamber is maintained. The gas selected 

for this process is chosen based on the desired material for deposition. Power is supplied to 

parallel electrode plates (positioned above and below, but isolated from, the sample) in the 

chamber, which ignites the gas and generates an ionized plasma. The electrons in the plasma 

move along an EM field and accumulate, forming a voltage bias. The voltage bias maintains 

the plasma and accelerates the ions between the vertical plates, which is critical in depositing 

the formed solid materials on the surface. The substrate table is brought to high temperature 

to help with the deposition process. The PECVD process carried out in this work was for the 

deposition of SiO2 (see Chapter 2.5.6 which refers to the sample fabrication process for 
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devices from Chapter 5). An Oxford Instrument System 100 Plasma Deposition Tool was 

used with the recipe SiH4/N2O/N2 = 7/146/85 sccm, 15 W, 1000 mTorr, 300° C which 

resulted in a deposition rate around 65 nm/min. 

2.4.4 Inductively Coupled Plasmon Chemical Vapour Deposition (ICP-CVD) of SiNx 
 
Inductively Coupled Plasmon Chemical Vapour Deposition (ICP-CVD) is similar to 

PECVD (see Chapter 2.4.3). However, the inductively coupled plasma in ICP-CVD is 

generated by a strong magnetic field via inductance coils [10]. This allows for film 

deposition at room temperature [11]. The ICP-CVD process carried out in this work was for 

the deposition of silicon nitride (see Chapter 2.5.4 which refers to the sample fabrication 

process for devices from Chapter 3). An Oxford Instruments System 100 ICP 180 PECVD 

was used with a recipe of SiH4/N2 = 7/6 sccm, ICP/Platen = 100/0 W, 4 mTorr, 25° C which 

resulted in a deposition rate of around 16 nm/min. 

2.4.5 Reactive-Ion Etching (RIE) of Aluminium 
  
Reactive-Ion Etching (RIE), commonly referred to as “dry-etching,” uses plasma from gases 

to chemically react with and physically remove materials on a substrate [12-13]. For the RIE 

process, a sample is placed in a high-vacuum chamber and a specific gas or mixture of gases 

is then flowed into the chamber at a controlled rate so that pressure in the chamber is 

maintained. The gas selected for this process is chosen based on its ability to etch the desired 

material. Power is supplied to parallel electrode plates (positioned above and below, but 

isolated from, the sample) in the chamber, which ignites the gas and generates an ionized 

plasma. The electrons in the plasma move along an EM field and accumulate, forming a 

voltage bias. The voltage bias maintains the plasma and accelerates the ions between the 

vertical plates, which is critical in removing the materials on the surface in an anisotropic 

etching process. Since the RIE process is anisotropic, a mask (made of resist, nitride, or 

metal) can be used to confine etching to a specific area on the substrate. Alterations to 

chamber pressure, power, and gas-flow-rate result in different etch rates and structural 

profiles. 

 

In this work, an Oxford Instrument Plasmalab System 100 T-Gate Reactive Ion Etch Tool 

was used to etch nano-apertures into 100 nm aluminium (see Chapter 2.5.6 which refers to 

the sample fabrication process for devices from Chapter 5). ZEP520A was used as the 
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etching mask and SiCl4 plasma was used in the RIE with the parameters of 18 sccm, 250 W, 

9 mTorr, 20° C. 

2.5 Fabrication Processes 

2.5.1 Design Software 
 
For e-beam lithography, L-Edit Software (Tanner Research, Inc.) was used to design a 

graphical data system (GDS) file with 0.125 nm resolution. Layout Beamer Software 

(GenlSys Gmbh) was then used to extract each layer in the GDS file and generate 

corresponding VEP format files for each. A custom Java program called Belle was used to 

then generate a TXT file that instructed the e-beam tool position, exposure dose, beam size 

VRU, and which design to pattern on the sample. Jobs written with specific alignment 

requirements to previous patterns on the sample (registration jobs) were also defined in the 

Belle-generated TXT file. All plasmonic structures were written with a 1 nA, 4 nm beam 

size with a VRU value of 8. All markers were written with a 64 nA, 33 nm beam size with 

VRU of 50. 

2.5.2 Device Cleaning 
 
Glass samples were ultrasonically cleaned for 5 minutes in acetone then IPA to remove 

organic/inorganic contaminants and then blow dried by nitrogen. Samples were then O2 

plasma cleaned in a Gala Plasma Prep 5 Oxygen Barrel Asher for 3 minutes at 150 W and 

3x10-1 mTorr. 

2.5.3 Metal Structure Fabrication 
 
A ‘top-down’ (see Chapter 1.2.4) approach was used for the fabrication of the metal markers 

and nanostructure arrays on the devices from Chapter 3 and Chapter 4. The nanostructure 

arrays for the final devices used for these two Chapters were fabricated using the registration 

job local-field alignment (as discussed in Chapter 2.4.1).  
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Figure 2.5: Schematic of e-beam-lithography-mediated metal fabrication steps. The 
fabrication process involves (i) cleaning a glass substrate, (ii-iii) spinning a resist bilayer 
and hotplate baking after each layer is spun on, (iv) depositing a charge conduction layer, 
(v) exposing the sample with e-beam tool, (vi) removing the charge conduction layer, (vii) 
developing the sample, (viii) removing resist residue with an O2 plasma asher, (ix) e-beam 
metal evaporation for 50 nm Al or 2:50 nm Ti:Au  (in this Figure, Ti:Au is shown), (x) lift-
off of resist and metal not deposited on the substrate base, and (xi) a final O2 plasma ash 
clean. 

Figure 2.5 shows a schematic of the fabrication steps. Once the glass base surface of the 

device was (i) cleaned, (ii-iii) a positive resist bi-layer of 4% poly(methyl methacrylate) 

resist (PMMA) 2010 and 2.5% PMMA 2041 was spun onto the surface at 5000 RPM for 60 

seconds (total thickness around 100 nm and 50 nm, respectively). Between each PMMA 

spun layer, the device was hotplate baked at 180° C for 15 seconds to evaporate the O-xylene 

solvent out of the PMMA layer. 4% PMMA 2010 was chosen because its 5000 RPM spun-

on height is well above the desired height of the metal markers and nanostructures. A bilayer 

was used in order to gain an undercut profile necessary for good metal lift-off and 

nanostructure definition. PMMA 2010 has a lower molecular weight and is therefore more 

sensitive to the electron beam, resulting in a larger area cleared by the same dose beam when 

compared to PMMA 2041. (iv) To prevent charge build-up and allow for electron conduction 

during the e-beam lithography process, a 10 nm Al charge conduction layer was deposited 
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by electron-beam metal evaporation. Either a Plassys MEB 550S or Plassys MEB 400S was 

used for this step. During the metallisation process, the substrate was upside-down in the 

load-lock chamber and the process was automatically controlled by the machine software 

(0.3 nm/s deposition rate). (v) The sample was then submitted for e-beam lithography. In 

order to determine the correct electron dose for writing, a substrate consisting of the same 

pattern with varying doses was written and examined by SEM. Too low of a dose results in 

incomplete patterns and loss of sharp edges. Too high a dose results in oversized patterns. 

After dose testing, markers and large patterns were written with a 64 nA, 33 nm diameter 

beam at a dose of 600 µC/cm2 at 50 variable-resolution-unit (VRU) and nanoarrays were 

written with a 1 nA, 4 nm diameter beam at a dose of 1150 µC/cm2 at 8 VRU. (vi) Post-

lithography, CD-26 solution (2.5% TMAH) was used to remove the Al charge conduction 

layer. (vii) The substrate was next developed in 2.5:1 IPA:MIBK solution at 23° C for 45 

seconds followed by a 30-second IPA rinse and N2 drying. As can be seen in the Figure, 

areas of the positive-tone resist exposed to the e-beam are more soluble and wash away 

during development. (viii) To remove any undeveloped resist residues on the surface, an O2 

plasma ash gently etched away several nanometres of the resist layer. A barrel asher set at 

80 W / 3x10-1 mTorr for 20 seconds was used. (ix) As in (iv), either a Plassys MEB 550S or 

Plassys MEB 400S was used for Ti/Au and Al evaporation. The entire deposition recipe 

process was automatically controlled by the software for the machines using evaporation 

rates of 0.3 nm/s. As mentioned in Chapter 2.4.2, electron-beam evaporation allows for 

linear control in the metal deposition process, where only areas on the substrate normal to 

the metal vapor have metal deposited on them. A sputtering process could result in metal 

deposited along the edge walls of the resist and result in problems with the lift-off step. 

Thickness of Au and Al was 50 nm. For Au deposition, a 2 nm Ti layer was first deposited 

to promote surface adhesion. This is the metallisation process shown in (ix). For Al 

deposition, this was not necessary. (x) The sample was next placed in 50° C acetone, which 

dissolved the PMMA bilayer and lifted-off the metal deposited only on the resist. The 

undercut between the two layers of resist prevented the metal deposited on the base substrate 

and on the resist from being continuous. It also allowed for the acetone to effectively get 

‘under’ the resist layer, which promoted a clean lift-off process. A pipette was used to 

vigorously agitate the sample, and the sample underwent multiple washes with fresh acetone. 

(xi) Once the lift-off process was complete, the sample was rinsed with a mixture of 

acetone/DI water, rinsed with IPA, and then N2 dried. A final O2 plasma ash clean was then 

completed at 150 W / 3x10-1 mTorr for 3 minutes. 
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2.5.4 Silicon Nitride Micro-Region Fabrication 
 
Similar to Chapter 2.5.3, the registration job local-field alignment e-beam lithography 

technique was used to fabricate the silicon-nitride micro-regions of the devices in Chapter 

3. 

 
Figure 2.6: Schematic of silicon nitride micro-region fabrication process. The fabrication 
process involves (i) O2 plasma ash cleaning a substrate, (ii-iii) spinning a resist bilayer and 
hotplate baking after each layer is spun on, (iv) depositing a charge conduction layer, (v) 
exposing the sample with e-beam tool, (vi) removing the charge conduction layer, (vii) 
developing the sample, (viii) removing resist residue with an O2 plasma ash, (ix) nitride 
deposition, (x) lift-off of resist and nitride not deposited on the substrate base, and (xi) a 
final O2 plasma ash clean. 

Figure 2.6 shows a schematic of the fabrication steps. Once the glass base with metal 

nanostructures of the device was (i) O2 plasma cleaned at 150 W / 3x10-1 mTorr for 3 

minutes, (ii-iii) a positive resist bi-layer of 8% poly(methyl methacrylate) resist (PMMA) 

2010 and 4% PMMA 2041 was spun onto the surface at 5000 RPM for 60 seconds (total 

thickness around 200 nm and 100 nm, respectively). Between each PMMA spun layer, the 

device was hotplate baked at 180° C for 15 seconds to evaporate the O-xylene solvent out 

of the PMMA layer. 8% PMMA 2010 was chosen because its 5000 RPM spun-on height is 

well above the desired height of the nitride deposition. As previously mentioned in Chapter 

2.5.3, a bilayer was used in order to aid in the lift off step, post development. (iv) To prevent 

charge build-up and allow for electron conduction during the e-beam lithography process, a 

10 nm Al charge conduction layer was deposited by electron-beam metal evaporation. Either 

a Plassys MEB 550S or Plassys MEB 400S was used for this step. During the metallisation 
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process, the substrate was upside-down in the load-lock chamber and the process was 

automatically controlled by the machine software (0.3 nm/s deposition rate). (v) The sample 

was then submitted for e-beam lithography using a 64 nA, 33 nm diameter beam at a dose 

of 650 µC/cm2 at 50 VRU to open a 375 µm x 375 µm window over the nanostructure array 

region. (vi) Post-lithography, CD-26 solution (2.5% TMAH) was used to remove the Al 

charge conduction layer. (vii) The substrate was next developed in 2.5:1 IPA:MIBK solution 

at 23° C for 45 seconds followed by a 30-second IPA rinse and air drying. As can be seen in 

the Figure, the bilayer resist has an undercut, and the areas of the positive-tone resist exposed 

to the e-beam are more soluble and wash away during development. (viii) To remove any 

undeveloped resist residues on the surface, an O2 plasma ash gently etched away several 

nanometres of the resist layer. A barrel asher set at 80 W / 3x10-1 mTorr for 20 seconds was 

used. (ix) The 85 nm to 100 nm silicon nitride layer was deposited using an Oxford 

Instruments System 100 ICP 180 PECVD nitride deposition tool (SiH4/N2 = 7/6 sccm, 

ICP/Platen = 100/0 W, 4 mTorr, 25° C) with a deposition rate of 16 nm/min. (x) The sample 

was next placed in 50° C acetone, which dissolved the PMMA bilayer and lifted-off the 

nitride deposited only on the resist. The undercut between the two layers of resist prevented 

the nitride deposited on the base substrate and on the resist from being continuous. It also 

allowed for the acetone to effectively get ‘under’ the resist layer, which promoted a clean 

lift-off process. A pipette was used to vigorously agitate the sample, and the sample 

underwent multiple washes with fresh acetone. (xi) Once the lift-off process was complete, 

the sample was rinsed with a mixture of acetone/DI water, rinsed with IPA, and then N2 

dried. A final O2 plasma ash clean was then completed at 150 W / 3x10-1 mTorr for 3 

minutes. 

2.5.5 HSQ Micro-Region Fabrication 
 
Similar to Chapter 2.5.3 and Chapter 2.5.4, the registration job local-field alignment e-beam 

lithography technique was used to fabricate the HSQ micro-regions of the devices in Chapter 

3. 
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Figure 2.7: Schematic of HSQ micro-region layer fabrication process. The fabrication 
process involves (i) O2 plasma ash cleaning a substrate, (ii) spinning HSQ resist and 
hotplate baking, (iii) depositing a charge conduction layer, (iv) exposing the sample with e-
beam tool, (v) removing the charge conduction layer and developing the sample, and (vi) a 
final O2 plasma ash clean. 

Figure 2.7 shows a schematic of the fabrication steps. Once the device with glass base, metal 

nanostructures and silicon nitride was (i) O2 plasma cleaned at 150 W / 3x10-1 mTorr for 3 

minutes, (ii) a negative resist HSQ (neat) was spun onto the sample at 6000 RPM for 60 

seconds (total thickness around 320 nm). The sample was then hotplate baked at 90° C for 

2 minutes to evaporate off the MIBK solvent. (iii) To prevent charge build-up and allow for 

electron conduction during the e-beam lithography process, a 10 nm Al charge conduction 

layer was deposited by electron-beam metal evaporation. Either a Plassys MEB 550S or 

Plassys MEB 400S was used for this step. During the metallisation process, the substrate 

was upside-down in the load-lock chamber and the process was automatically controlled by 

the machine software (0.3 nm/s deposition rate). (iv) The sample was then submitted for e-

beam lithography using a 64 nA, 33 nm diameter beam at a dose of 1000 µC/cm2 at 50 VRUs 

to write a 375 µm x 375 µm HSQ window over the nanostructure array region. High-dose, 

over-exposure was used to promote cross-linking of the HSQ. (v) Post-lithography, 25% 

TMAH was used to remove the Al charge conduction layer (30 seconds) and develop the 

HSQ resist (30 seconds). As can be seen in the Figure, areas of the negative-tone resist 

exposed to the e-beam are less soluble and unexposed areas wash away during development. 

The device was immediately rinsed in two separate IPA baths for 30 seconds, then N2 dried. 

(vi) A final O2 plasma ash clean was then completed at 150 W / 3x10-1 mTorr for 3 minutes. 

2.5.6 Nano-Aperture Fabrication 
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The nanoaperture arrays from the devices in Chapter 5 were also fabricated using the e-beam 

lithography tool. However, no registration job lithography technique was required because 

these devices were not fabricated with multiple, high-resolution alignment lithography 

cycles. 

 
Figure 2.8: Schematic of the nanoaperture fabrication process. The fabrication process 
involves (i) cleaning a glass substrate and spinning on primer, (ii) 100 nm Al deposition, 
(iii) spinning a resist layer and oven baking, (iv) exposing the sample with e-beam tool, (v) 
developing the sample, (vi) O2 plasma ash and reactive-ion etching of the metal, (vii) 
stripping of the resist, (viii) O2 plasma ash clean, and (ix) silicon dioxide deposition. 

Figure 2.8 shows a schematic of the fabrication steps. (i) MCC 80/20 Primer was spun onto 

a cleaned piece of glass at 5000 RPM for 60 seconds to act as an adhesion layer for Al metal 

deposition. (ii) Either a Plassys MEB 550S or Plassys MEB 400S was used to electron-beam 

evaporate 100 nm of Al at a 0.3 nm/sec rate. During the metallisation process, the substrate 

was upside-down in the load-lock chamber and the process was automatically controlled by 

the machine software. (iii) The positive resist ZEP520A in a 2:1 dilution with anisole was 

spun on at 3000 RPM for 60 seconds (approximate 200 nm thickness), followed by a 180° 

C bake in the oven for 40 minutes. ZEP520A was chosen due to its high etch-resistance. (iv) 

The sample was then submitted for e-beam lithography. In order to determine the correct 

electron dose for writing, a substrate consisting of the same pattern with varying doses was 

written and examined by SEM. The final parameters of 1 nA, 4 nm diameter beam at a dose 

of 1000 µC/cm2 at 8 VRUs. (v) Post-exposure, the resist was developed in O-xylene for 45 

seconds, immediately followed by a 60 second IPA rinse and N2 dried. As can be seen in the 

Figure, areas of the positive-tone resist exposed to the e-beam are more soluble and wash 
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away during development. (vi) Developed substrates were then taken to an Oxford System 

100 T-Gate reactive-ion etching tool. Samples were cleaned by O2 Plasma Ash at 10 sccm, 

10 W, 50 mTorr followed by 100 nm Al etch using SiCl4 gas at 18 sccm, 250 W, 9 mTorr at 

20° C. (vii) Microposit Remover 1165 at 80° C was used to strip any remaining ZEP520A 

from the surface. (viii) A final O2 plasma ash clean was then completed at 150 W / 3x10-1 

mTorr for 3 minutes. (ix) An Oxford Instrument Plasmalab 80Plus PECVD tool was used to 

deposit silicon dioxide using SiH4/N2O/N2 = 7/146/85 sccm, 15 W, 1000 mTorr, 300° C with 

a deposition rate around 65 nm/min. 

2.5.7 Surface Modifications 
 
Various surface modifications were made to both Au and Al nanostructures. For the real-

time biotin-avidin interaction observed in Chapter 3, the surface was modified by thiolation 

of the Au nanostructures with 11-mercaptoundecanoic acid (MUA) followed by 

modifications to the non-bound end of the MUA by 1-Ethyl-3-(3-dimethylaminopropyl)-

carbodiimide then biotin hydrazide [14]. In Chapter 4, sensors in the optical tongue arrays 

were modified by thiolation of Au with 1-decanethiol and 1H,1H,2H,2H-perfluoro-1-

decanethiol [15-16] and by silanisation of Al with 2-[methoxy (polyethyleneoxy)6-9 propyl] 

trimethoxysilane and hexamethyldisilazane [17-18]. Further details and information relating 

to the steps for each surface modification can be found in Chapter 3.3 and Chapter 4.3, 

respectively. 

2.6 Characterisation Tools and Techniques 

2.6.1 Atomic Force Microscopy (AFM) 
 
Atomic Force Microscopy (AFM) allows for highly-accurate surface profiling, capable of 

viewing surface topology and roughness. A cantilever with a pyramid-shaped probing tip is 

moved across the surface of a sample in a raster pattern. The reflection of a laser off the 

backside of the cantilever is measured by a photodiode array and used to determine vertical 

displacement of the tip from (and thus the height of) the surface of the sample. In this work, 

an Icon AFM in ‘tapping’ mode was used to measure the surface roughness of the 

multilayered devices fabricated in Chapter 3. Tapping mode reduces potential damage of the 

tip and the sample during scanning by using high-frequency oscillations of the cantilever to 

‘tap’ the surface rather than be in constant contact [19]. 
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2.6.2 Ellipsometry 
 
Ellipsometry is used to determine the thickness and dielectric (n,k) values of a material 

deposited on a sample [20-21]. The ellipsometer measures the change in polarisation of light 

reflected from a surface. By using fitting functions, the measurements from the ellisometer 

can be used to then determine the aforementioned values. In this work, a J.A. Woollam Mark 

II Variable Angle Spectroscopic Ellipsometer was used for measuring the silicon nitride 

layer deposited on the devices of Chapter 3.  

2.6.3 Scanning Electron Microscopy (SEM) 
 
Scanning electron microscopy (SEM) allows for higher resolution image capturing when 

compared to light microscopy because the focused electron beam is orders of magnitude 

smaller than a focused region capable with light.  

 

An SEM works in the following way: An electron gun generates a beam of electrons in a 

high-vacuum column. Electromagnetic lenses focus the beam and coils deflect it to scan the 

surface of an area. Modifying the lenses and apertures of the SEM allow for the control of 

beam size. To produce a high-resolution image, a secondary electron (SE) detector is used 

to detect the signal from the surface of the sample. Additionally, some SEMs have back-

scattering electron detectors (BSE) and X-ray detectors (XRD) that allow for better resolved 

images and even chemical analysis. The combination between voltage, current, and working-

distance from the sample affect the resolution of the image. Adjusting the focal distance and 

stigma in X and Y fine-tunes the resolution of the image. For samples that are not conductive, 

typically a conductive layer is sputtered over the sample to prevent charge build-up and 

allow for clear image generation.  

 

In this work, images of structures were taken using both a Hitachi S4700 SEM tool and a 

Hitachi SU8240 SEM tool. Depending on if a spun-on polymer charge conduction layer was 

used, the SEM tools were operated at either 5 kV / 10 µA (without) or 10 kV / 20 µA (with). 

The charge-conduction polymer used was Electra-92, spun onto the sample at 4000 RPM 

for 60 seconds followed by a 2-minute hotplate bake at 90° C.  The Hitachi SU8240 was 

always operated with both SE and BSE.  
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2.6.4 Spectrophotometry 
 
A spectrophotometer is a device that is used to measure the transmission, reflection, or 

absorption of a sample as a function of either wavelength, electron volts, or wavenumber. 

For this research, only transmission measurements were used. Transmittance is the ratio of 

the intensity of light that is able to transmit (pass through) a sample to the intensity of the 

reference light without passing through the sample. Depending on the spectrophotometer, 

either a diffraction grating at the light source can be rotated to generate monochromatic light 

of different wavelengths (and a photodetector can measure each wavelength individually) or 

a diffraction grating at the detector can be used to split the light monochromatically and 

simultaneously measure each wavelength. 

 
Figure 2.9: Schematic of a double-beam UV-VIS-NIR spectrophotometer. A grating is 
used to diffract light into subsequent wavelengths and transmitted through a reference and 
sample. The beam-width is controlled by the slit and the polarisation is controlled by the 
linear polariser.  

Transmission measurements on the millimetre scale were measured on a Shimadzu 

UV3101PC spectrophotometer (see Figure 2.9). This spectrophotometer used a double 

beam of UV-VIS-NIR light and rotated a diffraction grating at the light source. This was 

mostly used for measuring the transmission spectra of the substrates from Chapter 5. 

Substrates were attached to a vertical stage and aligned to a 1 mm hole. A diffraction grating 

generating monochromatic light in the UV-VIS-NIR spectrum was used (350 nm to 1000 

nm). A change in the grating occurred at 894 nm, resulting in a slight discontinuity around 

that wavelength. Prior to measurements, a baseline scan was used to calibrate the detectors, 

and the 1 mm pinholes of two empty holders were aligned in the reference and sample 
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positions. To take measurements of actual samples, Blu-Tack was used to adhere them flush 

against the holder in the sample position. Blank glass was adhered, in the same fashion, to 

the holder in the reference position. The test sample was rotated to the parallel and 

perpendicular positions relative to the incident polarisation. 

 
Figure 2.10: Microspectrophotometer optical diagram and photograph. Fiber-optic cables 
and lenses are used to focus white light on a sample and measure the transmission of light 
through it using the StellarNet Blue Wave box. The numbering in the schematic (left) 
correlates with the numbered labels in the photograph (right). 

Transmission measurements on the micro-scale were measured on a custom-built 

microspectrophotometer. Light from a VIS-NIR light source (tungsten-halogen 400 to 1200 

nm wavelength) was used to probe the sensor. Figure 2.10 shows a schematic of the optics 

and photo of the microspectrophotometry device. A 10x objective was used to couple the 

transmitted light into an optical fibre attached to a StellarNet Microspectrophotometer 

(StellarNet Blue Wave, 0.5 nm resolution) with a diffraction grating at the detector for the 

simultaneous measurement of monochromatic wavelengths of light. This resulted in a spot 

size of approximately 45 µm. Prior to taking measurements of actual samples, a light 

reference (a spot from a blank region of the sample) and dark reference (measurement when 

the shutter was closed) were taken. Integration time and number of scans to average varied 

depending on whether or not a linear polarisation filter was used. This set up was used for 

the real-time measurements of Chapter 3, optical tongue measurements of Chapter 4, and 
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the angle-dependency measurements of Chapter 5 (see the Section 3 of these chapters for 

details on the parameter settings of the microspectrophotometer). 

 

For polarisation-dependent measurements on either spectrophotometer, a Thorlabs linear 

polariser was placed between the incident light and the sample.  

2.7 Data Analysis Techniques 

2.7.1 Transmission Trough Determination 
 
MATLAB and Origin were used to analyse of the transmission spectra for each series of the 

real-time measurements. 

 
Figure 2.11: Determination of the transmission trough using MATLAB. (a) Raw data was 
(b) smoothed (20 points, mean-average) and interpolated (0.5 nm to 0.01 nm), (c) then 
inverted. (d) Next, the MATLAB findpeaks function (minimum peak distance 100 nm, 
minimum peak prominence of 0.1) was used to obtain the position of the ‘peak.’ 

The wavelength in nanometers and transmission value of the two minima were determined 

using MATLAB. The raw spectrum data (Figure 2.11a) was smoothed (20 points, mean-
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average smoothing) and interpolated (from the 0.5 nm resolution of the 

microspectrophotometer to 0.01 nm) (Figure 2.11b). The spectrum was then inverted to 

make the troughs become peaks (Figure 2.11c). Next, the findpeaks function with a 

minimum peak distance of 100 nm and minimum peak prominence of 0.1 was used to 

determine the resonance position (Figure 2.11d). 

 

The FWHM values were determined using inherent functions in Origin.  

2.7.2 Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) 
 
Principal Component Analysis (PCA) is a multivariate analysis technique used to look at the 

structure of a set of data. Denoting the dataset as an n by p matrix called X, the n rows are 

considered ‘objects’ or ‘observations,’ and the p columns are considered ‘variables’ that 

contain the measurements made on the n objects. PCA is commonly used to do the following: 

dimensionally reduce the p variables of matrix X to the most-important components, identify 

outliers, delineate classes, model the data, and predict outcomes from measurements made 

on unknown objects [22]. 

 

In PCA, X is transformed into a new coordinate system (the score matrix T) based on the 

variance (from greatest to least) of each component by an orthogonal linear transformation. 

The orthogonal linear transformation works in the following way: Each row of X denoted as 

x(i), is mapped to a new vector of principal component (PC) scores t(i) by a unit vector w(k) 

(called loadings) such that each component of the resulting score vector t(i) inherits the 

maximum possible variance from x. The matrix of loading vectors W is defined as the 

eigenvectors of XTX, and the full matrix of scores T is thus defined by T = XW [22]. For 

the resulting score matrix T, the rows correspond to the same n observations as in X, and the 

columns correspond to the components of the dataset. 

 

Quantification of the capabilities of a PCA is determined by its dimensionality, the distance 

between the groupings of repetition measurements, and ‘tightness’ within each grouping. 

The dimensionality of the PCA is measured by the number of components required to 

achieve 95% cumulative variance.  

 

LDA is a supervised technique similar to PCA. It is typically applied to data to generate new 

“scores” that maximise the ratio of between sample variance of known groups whilst 

minimising variance within each group. Unlike PCA, LDA is a biased technique in that the 
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classification of each sample is known beforehand and taken into account during analysis 

[23]. 

 

In Chapter 4, PCA and LDA are used to analyse the optical tongue and determine its ability 

to classify different concentrations of organic solvents and different whiskies. An example 

data matrix for PCA and LDA are found in Chapter 4.3.6. 

2.7.3 CIE XYZ Spectra 
 
The International Commission on Illumination (CIE) 1931 [24] chromaticity diagram 

(Figure 2.12) is a graphical representation of the link between perceived human colour 

vision and the electromagnetic spectrum of visible light. Using the chromaticity values of 

X, Y, and Z, any colour can be calculated based on the colour matching functions [25].  

 

 
Figure 2.12: CIE 1931 chromaticity diagram. The CIE diagram is a graphical 
representation of the link between perceived human colour vision and the electromagnetic 
spectrum of visible light. 

The CIE figures found in Chapter 5 were produced by loading measured transmission spectra 

into CIE1931xy.V.1.6.0.2a software. 

2.8 Conclusion 

This chapter contained an overview of the materials and fabrication processes used for 

making the plasmonic structures described in this work. Additionally, characterisation tools, 
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simulation techniques, and data analysis techniques were presented and explained. More 

specific details can be found in the subsequent experimental chapters. 
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Chapter 3: Multilayered Nanoplasmonic Arrays for Self-Referenced 
Biosensing 

3.1 Introduction 

When it comes to When it comes to molecular-based sensing, as mentioned in Chapter 1.3.1, 

plasmonic-based techniques have advantage over other techniques. SPR, especially has long 

been used as a label-free optical biosensing technique [1]. While a powerful tool for sensing, 

the use of SPR sensors in point-of-care devices is typically hindered by miniaturisation 

problems and complex supporting optics [2-3]. As an alternative, sensors based on LSPR 

have been demonstrated to have similar performance to SPR sensors [4]. While SPR relies 

on the propagation of surface plasmon polaritons on a continuous metal film, LSPR is 

localised to structures on the nanoscale. Therefore, LSPR allows for the use of more compact 

optics, does not need precise temperature control, and thus has the potential to be 

miniaturised beyond the capabilities of SPR sensors [5]. For example, LSPR sensors were 

demonstrated in the parallel biosensing of 32 independent sensor elements on the same chip 

[2]. 

 

Sensors based on LSPR offer unprecedented advantage as real-time, label-free, and easily 

miniaturised chemical and biological detectors [2-3, 5-15]. As previously discussed in 

Chapter 1, the resonance peaks of plasmonic nanostructures are highly sensitive to local 

refractive index changes and shift by different amounts when subject to different biological 

and chemical environments. Modifications to the nanostructure surface can also allow for 

detection of specific molecules and chemicals with shifts so sensitive that the presence of 

single molecules can be detected. This highly localised sensing minimises bulk refractive 

index (RI) effects [3, 6-7] and has been used for real-time, label-free detection of nanoscale 

biochemical events such as protein-substrate binding [5-6, 8-9], antibody-antigen binding 

[2-3, 10], and DNA base pairing [5, 11-13]. However, this extreme sensitivity has its 

drawbacks. Resonance shifts also occur due to light intensity fluctuations and other 

environmental factors.  

 

Since LSPR is highly responsive to a multitude of changes on the nano-scale, a reference is 

required to determine if a detected event is from a desired signal or some sort of drift [14]. 

This is especially problematic for devices designed for point of care applications, where a 

sensor is more likely to be exposed to environments where precise control of external 
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factors—such as intensity fluctuations of the light source, temperature, and humidity, for 

example—is not possible. A separate reference channel is typically used to address this 

issue. However, a two-channel design often makes devices at least twice as big, requires two 

light sources and detectors (or complex optical setups) to obtain sensing and reference 

signals, requires the injection of potentially expensive or of limited quantity samples into a 

non-capturing channel, and subjects the reference to potential biofouling [15-16]. 

 

To address this challenge, a variety of self-refencing sensor technologies have been 

explored. Examples include dual-metal SPR sensors [17-18], modified Mach-Zehnder 

Interferometer phase sensors [19-21], porous silicon double layer sensors [22-23], 

photochemical sensors [24], nanohole LSPR sensors [25], refractometric LSPR sensors [26], 

dual-metal suspended colloid LSPR sensors [27], and polarisation-dependent sensors [14], 

to name a few. 

 

In this chapter, a proof-of-concept multilayered LSPR sensor with internal-referencing that 

self-corrects for baseline drift is explored.  Comprised of both an encapsulated and an 

exposed nanoplasmonic layer, this device exhibits two distinct peaks: a reference peak from 

the encapsulated layer and a sensing peak from the exposed layer. The presence of the 

reference layer directly below the sensing layer allows for the correction of any drift that 

may occur during real-time chemical and biosensing experiments using single measurement 

from a single beam of light. 

 

Additionally, utilising one channel rather than separate sensing and referencing channels 

allows for a more compact design and eliminates the need to inject potentially expensive 

samples into a parallel reference channel [17]. 

 

This design also offers advantage over the other technologies in that the self-referencing 

mechanism does not require spatial control over different surface modifications [17-18] and 

is not subject to fouling because the reference layer is isolated from the sensing region [17-

18, 22-26]. Additionally, this device self-corrects rather than just recognising “unreliable 

data” [24], can be regenerated and thus reused in multiple detection events rather than being 

consumed during detection [27], and doesn’t require multiple detectors [26] or a beam-

splitter [14]. 
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The first section of this chapter reviews the device design and fabrication steps. The second 

section discusses device characterisation and calibration. The third and fourth sections of 

this chapter discusses experimental analysis of the device in the real-time detection of 

chemical and biological molecules, respectively. The final section of this chapter compares 

FDTD simulation of the final design of the device and to the experimental results. 

 

The majority of work detailed in this chapter was published by J.R. Sperling, G. Macias, 

S.L. Neale, and A.W. Clark (2018) [28]. 

3.2 Materials 

The materials used are available in Chapter 2.  

3.3 Methods 

3.3.1 Fabrication of Multilayered Sensor 
 
Devices were fabricated using electron-beam lithography as covered in Chapter 2.5 (See 

Metal Nanostructure Fabrication, Silicon Nitride Micro-Region Fabrication, and HSQ 

Micro-Region Fabrication). For both the reference and sensing nano-antenna layers, a resist 

bi-layer of PMMA 2010 and PMMA 2041 (total thickness 150 nm) was patterned using a 

Vistec VB6 UHR EWF electron beam lithography tool. Following development of the 

pattern, a 2/50 nm Ti/Au layer was evaporated onto the sample using a Plassys MEB 

400S/550S electron-beam evaporation tool. The silicon nitride layer was deposited using an 

Oxford Instruments System 100 ICP 180 PECVD nitride deposition tool at room 

temperature. For devices with a hydrogen silsesquioxane (HSQ, Fox 16) layer, HSQ was 

spun on and then cross-linked using the electron-beam lithography tool. The final sensing 

nano-antenna layer was then fabricated on top of the device, following the same procedure 

as the fabrication steps of the reference layer. More detailed descriptions for each step of the 

fabrication process can be found in Chapter 2. 

3.3.2 Experimental Setup 
 
A polydimethylsiloxane (PDMS) microfluidic channel was placed on top of the device and 

a positive crankcase ventilation (PVC) value was used to allow for sample injection without 

disrupting flow. The flow rate from the microfluidic pump was set to 100 µL·min-1. A 
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custom-built microspectrophotometer was used to measure the real-time transmission 

spectra (0.5 nm resolution). Light from a visible to near-infrared light source (tungsten-

halogen 400 to 1200 nm wavelength) was used to probe the sensor. A 10x objective was 

used to couple the transmitted light into an optical-fibre attached to a StellarNet 

Microspectrophotometer (StellarNet Blue Wave). 

3.3.3 Peak Analysis 
 
MATLAB and Origin were used to analyse of the transmission spectra for each series of the 

real-time measurements. The transmission spectrum was smoothed (20 points, mean-

average smoothing) and interpolated (from 0.5 nm to 0.01 nm). The peak position value of 

the two minima peaks and full-width half-max (FWHM) values were determined. The 

corrected position response (CPR) was calculated by subtracting the position of the sensing 

peak from the reference peak.  

3.3.4 Sensor Calibration 
 

For the calibration experiments, water containing varying concentrations of dissolved 

sucrose (Sigma Aldrich), from 0.5% to 50% (w/w) was introduced to the device. The 

refractive index of the surrounding medium was, thus, altered from 1.333 to 1.4201 [29]. A 

sample rate of 7.5 seconds was used to capture a 30-measure-averaged transmission 

response. 

3.3.5 Device Functionalisation 
 
The sensor was immersed in a 10 mM ethanolic solution of 11-mercaptoundecanoic acid 

(MUA, Sigma Aldrich) overnight, rinsed three times with ethanol, dried under a stream of 

nitrogen, and assembled with the microfluidic system. A constant flow rate of 100 μL·min-

1 was maintained throughout the functionalisation steps. The channel was flushed with water 

for 20 min prior to the injection of 500 μL of 200 mM 1-Ethyl-3-(3-dimethylaminopropyl)-

carbodiimide (EDC, Sigma Aldrich) in MES buffer at pH 5.5 and rinsed with deionised (DI) 

water for 15 min. 500 μL of 500 μg·mL-1 biotin hydrazide (Sigma Aldrich) in DI water was 

then injected, followed by a DI water rinse for a further 15 min. Finally, unreacted sites were 

blocked with 500 μL of 1 M ethanolamine (Sigma Aldrich) in DI water and rinsed with DI 

water for 15 min. 
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3.3.6 Biological Sensing  
 
0.1% Tween-20 in phosphate buffer saline (PBS) was used as the flowing solution 

throughout the experiments. Prior to the biological sensing, the device was stabilized by 

flowing the PBS solution at 100 μL·min-1 for 30 min. Throughout the experiments, the flow 

rate was kept constant at 100 μL·min-1 and at least 10 min of baseline were acquired before 

the biomolecule injection. Sensor regeneration was achieved by injecting 500 μL of 20 mM 

sodium hydroxide in DI water. As a non-specific control, 500 μL of 100 μg·mL-1 bovine 

serum albumin was injected. Finally, 0.1, 1, 100 and 500 μg·mL-1 of avidin in 0.1% Tween-

20 PBS was injected at a constant volume of 500 μL in order to test the specificity and dose-

dependency of the device. A sample rate of 3.5 seconds was used to capture a 30-measure-

averaged transmission response. 

3.3.7 FDTD Simulations 
 
FDTD simulations were performed using Lumerical FDTD Solutions software. 

3.3.7.1 Optimisation Simulations 
 
The optimisation simulation layout is shown in Figure 3.1. A linearly polarised plane wave 

was defined for a unit area cell with a period of 300 nm x 300 nm. For the form-following 

layer of silicon nitride, the dielectric values (n2, k2) as measured by ellipsometry for device 

2 (shown in Figure 3.9b) were used with varying heights. For the simulation to determine 

the effect of nitride thickness on plasmonic response (depicted in Figure 3.1 and investigated 

in Chapter 3.4.1.1), a rough-estimate of nitride deposition was used, where the side profile 

of nitride deposited on the nanostructures was 1/3 the height of the deposition. For the 

simulation to determine the effect of vertical distance between nanostructure arrays 

(investigated in Chapter 3.4.1.2), the nitride layer was simulated as a flat surface. The 

dielectric values of Au and titanium were obtained from the CRC library [30] and glass was 

obtained from the Palik library [31]. Periodic boundary conditions were used in the X-axis 

and Y-axis, and a perfectly-matched-layers (PML) boundary was used in the Z-axis. A 

uniform mesh size of 5 nm was used in all axes.  
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Figure 3.1: FDTD simulation schematic for optimisation of the nitride encapsulated layer 
of the device. The grid in each view is 100 nm x 100 nm. (i) FDTD simulation area of 300 
nm x 300 nm. The FDTD area is simulated as periodic in X-Y and PML (perfectly-matched-
layer) in Z. (ii) Transmission detector. (iii) Silicon nitride layer conforming to the array 
layer. The dielectric constants and thickness used came from measurements of the nitride 
layer deposited on the actual device ((n2, k2) from Figure 3.4). (iv) XY electric field detector 
for wavelength of 858 nm for Z at the nanostructure base, nanostructure centre, and 
nanostructure top. (v) XZ electric field detector for wavelength of 858 nm for Y at the 
nanostructure edge and nanostructure centre. (vi) 5 nm resolution mesh for the 
nanostructure. (vii) Nanostructure layer (2 nm Ti : 50 nm Au) with dielectric constants from 
the CRC library [30]. (viii) Plane-wave light source (400 nm to 1000 nm). (ix) Glass base 
with dielectric constants from the Palik library [31]. 

3.3.7.2 Full Device Simulation 
 
The full device simulation is shown in Figure 3.2. A linearly polarised plane wave was 

defined for a unit area cell with a period of 300 nm x 300 nm. For the form-following layer 

of silicon nitride, the dielectric values (n2, k2) and thickness as measured by ellipsometry for 

device 2 (shown in Figure 3.9b) were used. Unlike the optimisation simulations, the nitride 

layer was simulated as gradual rather than as a square block. The 320 nm thick HSQ layer 

was given a dielectric constant value of 1.4. The dielectric values of Au and titanium were 

obtained from the CRC library [30] and glass was obtained from the Palik library [31]. 

Periodic boundary conditions were used in the X-axis and Y-axis, and a perfectly-matched-

layers (PML) boundary was used in the Z-axis. A uniform mesh size of 2.5 nm was used in 

all axes. In order to simulate both water and a range of sucrose solutions, the refractive index 

values of the surrounding medium altered between 1.333 and 1.4201 [29]. 
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Figure 3.2: FDTD simulation schematic of the full multilayered device. The grid in each 
view is 100 nm x 100 nm. (i) FDTD simulation area of 300 nm x 300 nm. The FDTD area is 
simulated as periodic in X-Y and PML (perfectly-matched-layer) in Z. (ii) Transmission 
detector. (iii) 2.5 nm X-Y-Z resolution mesh for sensing layer. (iv) Sensing nanostructure 
layer (2 nm Ti : 50 nm Au) with dielectric constants from the CRC library [30]. (v) 320 nm 
thick HSQ layer with dielectric constant of 1.4. (vi) Silicon nitride layer conforming to the 
reference array layer. The dielectric constants and thickness used came from measurements 
of the nitride layer deposited on the actual device ((n2, k2) from Figure 3.4). (vii) 2.5 nm 
resolution mesh for the reference layer. (viii) Reference nanostructure layer (2 nm Ti : 50 
nm Au) offset 150 nm in both X and Y from the sensing layer with dielectric constants from 
the CRC library [30]. (ix) Plane-wave light source (550 nm to 1000 nm). (x) Glass base with 
dielectric constants from the Palik library [31]. 

3.3.8 Surface Planarisation 
 
Various thicknesses of HSQ were spun on to 50 nm tall nanostructures. AFM was used to 

measure surface roughness in order to determine the minimum thickness necessary for 

planarisation. 

3.3.9 Nitride Characteristics 
 
A J.A. Woollam Mark II Variable Angle Spectroscopic Ellipsometer was used to determine 

the thickness and dielectric (n,k) values of the nitride. 
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3.4 Results and Discussion 

3.4.1 Design and Fabrication of Multilayer Sensor 
 
The multilayer substrate design consists of two Au nanoarrays—an encapsulated reference 

array and exposed sensing array (Figure 3.2)—with a 2 nm thick titanium adhesion layer. 

Nanosquare shapes were chosen for this proof-of-concept design because (1) the design 

allows for easy, repeatable fabrication, (2) the symmetrical shape is not subject to a 

polarisation-dependent response, and (3) the shape maximises the surface area coverage for 

a given periodicity (and thus maximises the plasmonic signal). A periodicity of 300 nm was 

chosen to provide a significant enough distance between nanostructures to make plasmon 

coupling negligible [32] while still providing a strong plasmonic signal (>90% transmission-

attenuation).  

3.4.1.1 FDTD Determination of Minimum Nitride Thickness 
 
To determine the minimum thickness of nitride necessary to isolate the reference layer from 

detecting refractive index changes of the region above it, FDTD simulation of varying nitride 

thickness for different sized nano-prism shapes was carried out.  Figure 3.3a shows (i) XY 

and (ii) XZ renderings of the various parameters simulated, where s is the length and width 

of the structure, t is the metal thickness, P is the period of the array, and h is the thickness 

of the nitride. For these simulations, the minimum thickness of nitride where peak resonance 

shifts are no longer observed signifies that the electric field of the structure is isolated from 

the refractive index of the region immediately above the nitride layer. Figure 3.3b(i) shows 

the simulated transmission of a nanostructure array where s = 100 nm, t = 50 nm, P = 300 

nm, and h is varied from 0 nm to 120 nm. The transmission peak red-shifts from h = 0 to 80 

nm and remains the same after 80 nm, signifying that for this structure, isolation occurs at h 

> 80 nm. To further expand on this, simulations with varied h were also done for additional 

nanostructure prisms with s x t (nm) of 50x25, 75x25, 100x25, 50x50, and 75x50. As seen 

by the plateaued regions in Figure 3.3b(ii), the thickness of nitride where the resonance no 

longer shifts was also found to be at h > 80 nm for the other simulated structures. Therefore, 

for electric field isolation, the nitride layer must be greater than 80 nm thick. The inset of 

Figure 3.3b(ii) shows the transmission value at the resonance peak. From the transmission 

plot in Figure 3.3b(i) and the transmission at peak plot in the inset of Figure 3.3b(ii), the s = 

100, t = 50 structure has the most attenuation with well-defined peaks for h = 0 nm and h > 

80 nm (which would represent the sensing and reference regions, respectively). Thus, this 

structure was chosen for the proof-of-concept design. As the purpose of this design is to 
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evaluate the viability of the multilayer design for self-referencing, neither the geometry of 

the nanostructures nor the array periodicity was optimized to produce the most sensitive 

device. 

 

 
Figure 3.3: FDTD Simulation for silicon nitride thickness. (a) Rendering of the simulation 
in (i) XY and (ii) XZ for Au nanostructures with dimensions s by s by t and periodicity of P 
= 300 nm. The height of nitride deposited (h) was varied from 0 nm to 120 nm. The side-
wall coverage for the nitride deposition is roughly 1/3 h. (b)(i) Transmission response for s 
= 100 nm and t = 50 nm for increased nitride height h. After 80 nm of nitride, the peak 
position does not shift (purple arrow). (ii) Resonance position for square nanostructures 
with varying s (50 nm, 75 nm, and 100 nm) and t (25 nm and 50 nm), versus nitride thickness 
h. For h > 80 nm (after the purple line), the resonance position plateaus, indicating the ideal 
thickness for isolation of the nanostructure. (inset) Transmission at peak for each of the 
nanostructures versus nitride thickness h. The s = 100 nm, t = 50 nm structure has the most 
attenuation at h=0 nm and in the plateau region of h > 80 nm (after the purple line).  

The simulated electric field of the chosen structure (s = 100 nm, t = 50 nm, and P = 300 nm) 

with h = 100 nm (Figure 3.4a) shows how the electric field propagates and attenuates in the 
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nitride layer. As can be seen by the XY slices (Figure 3.4b) where Z is sliced at (i) the 

interface between the bottom of the nanostructure and glass base, (ii) the centre of the 

nanostructure, and (iii) at the interface between the top of the nanostructure and surrounding 

nitride, the high electric field is found at the corners of the nanostructure shape. As can be 

seen by the XZ slices (Figure 3.4c) where Y is sliced at (i) the centre and (ii) the edge of the 

structure, the high electric field is found at the top corners of the structure shape. 

 

 
Figure 3.4: FDTD of electric field for 100 nm x 100 nm x 50 nm Au nanostructure with 
100 nm nitride deposited on top. (a) Rendering showing (i) XY and (ii) XZ views of the 
simulated region. The electric field at a wavelength of 858 nm was simulated for 100 x 100 
x 50 nm (L x W x H) structures, with 100 nm nitride, and a periodicity of 300 nm. (b) The 
electric field in XY at slices in Z for at (i) the interface between the bottom of the structure 
and glass base, (ii) the centre of the structure, and (iii) the interface between the top of the 
structure and the surrounding nitride. (c) The electric field in XZ at slices in Y at (i) the 
centre of the structure and (ii) the edge of the structure. As can be seen by the electric field 
for each slice, the corners generate the highest electric field, especially at the interface 
between the nanostructure and the surrounding nitride. 

3.4.1.2 FDTD Determination of Minimum Distance Between Nanoarray Layers 
 
The FDTD simulation used to determine minimum nitride thickness was slightly altered to 

determine the minimum distance between the sensing and reference layer necessary to 

prevent plasmonic coupling between the layers. In this FDTD simulation, two arrays of 100 

nm x 100 nm x 50 nm (L x W x H) Au nanostructures were simulated as shown in the 

rendering in Figure 3.5a. The thickness of nitride was varied to alter the distance D between 
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the nanostructures (10 nm < D < 400 nm). To simplify the simulation, the silicon nitride 

layer was considered to be planar. 

 

 
Figure 3.5: FDTD simulation of the effect of altering the distance between two gold 
nanostructure array layers. (a) Rendering of the device. The distance D between the 
structures was altered from 10 nm to 400 nm. (b) The resonance of the two most-significant 
peaks of the structure versus the distance between each structure. (inset) The transmission 
at the peak for each resonance. (c) The XZ electric field sliced where Y is at the centre of 
the nanostructures for wavelengths corresponding to (i) Resonance 1 and (ii) Resonance 2 
from (b) for distance D. The resonant wavelength is indicated below each subfigure. In both 
(b) and (c), coupling effects are minimal when D > 100 nm. 

Figure 3.5b shows the results of the simulation for the two resonant peaks in the 

transmission. Figure 3.5c shows the XZ electric field for each resonant peak where Y is at 

the centre of the nanostructure. Both confirm that coupling effects are minimal when the 

distance between array layers is at least 100 nm.  
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3.4.1.3 Determination of Minimum HSQ Thickness 
 
Initially, a device consisting of 100 nm x 100 nm x 50 nm (L x W x H) Au nanostructure 

arrays with a 300 nm periodicity was made, where the sensing layer was directly fabricated 

on top of the nitride layer (Figure 3.6a(i)). The transmission in water of the nano-array layer 

on glass (blue line), nano-array layer encapsulated in nitride (orange line), and fully 

fabricated device (green line) are shown in Figure 3.6a(ii). 

 

 
Figure 3.6: Analysis of device fabrication using a silicon nitride encapsulated layer. The 
multi-layered device where the reference layer is encapsulated in silicon nitride and the 
sensing layer is fabricated (a) directly on the nitride layer and (b) on an HSQ planarisation 
layer. The nanostructures for these devices were 100 nm x 100 nm x 50 nm (L x W x H) Au 
nanostructures. For both (a) and (b), (i) a rendering showing the multi-layered device 
design; (ii) the transmission response, in water, immediately after fabrication of the first 
plasmonic layer (blue), encapsulating layer(s) (orange), and second plasmonic layer 
(green); and (iii) the corresponding SEM images taken after each layer is fabricated. The 
orange-boxed SEM image in b(iii) shows two SEM images combined, diagonally. The first 
just after the nitride deposition (top-left-half) and second just after the HSQ deposition 
(bottom-right-half). The nanoarrays for the layers in devices (a) and (b) were 100 nm x 100 
nm x 50 nm Au with a period of 300 nm. 

As expected, the transmission spectra of the nanostructure array red-shifts when it is 

encapsulated in nitride. However, the transmission of the fully fabricated device has only 
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one peak where two (one from each the encapsulated and exposed nano-arrays) were 

expected.  

 

The transmission response of the full device in Figure 3.6a is best understood by examining 

the corresponding SEM images at each stage of the fabrication process (Figure 3.6a(iii)). 

The SEM images show that the nitride layer conforms to the nano-array layer below it and 

is not planar. By fabricating the sensing array directly on top of the nitride layer, each 

nanostructure of the sensing array was surrounded by nitride on all sides. The increased 

value of the refractive index surrounding the sensing layer resulted in a red-shifted 

transmission compared to that of the same designed nano-array on a planar surface. Thus, 

for device (a), the transmission signal from the reference and sensing plasmonic layers 

merged and produced a single-peak transmission (as shown in the green line of the 

transmission spectra of Figure 3.6a(ii)). 

 

To resolve this, an HSQ planarisation step was added to the fabrication process. The device 

shown in Figure 3.6b(i) has an HSQ layer deposited between the nitride layer and second 

nanoarray layer. The transmission in water of the nanoarray layer on glass (blue line), 

nanoarray layer encapsulated in nitride and capped by HSQ (orange line), and fully 

fabricated device (green line) are shown in Figure 3.6b(ii). Just like the device of Figure 

3.6a, the transmission spectra of the nanoarray layer encapsulated in nitride is red-shifted 

from that of the structure prior to encapsulation. Unlike that of the device in Figure 3.6a, 

the transmission of the full device in Figure 3.6b(ii) has two, distinct peaks that match up 

with the signal from the nanoarray layer on glass (blue) and the nitride-encapsulated layer 

(orange). The SEM images in Figure 3.6b(iii) reveal that the HSQ layer planarises the 

conforming nitride layer and allows for the second nanoarray to be fully open to the 

environment surrounding each structure. This explains the two distinct peaks in Figure 

3.6b(ii) for the multi-layered device (green plot) that align with that of the single layer (blue) 

and capped single layer (orange) transmission resonances. Thus, it was concluded that the 

HSQ layer was necessary for the design of the device. 

 

To determine the minimum HSQ thickness necessary to planarise the surface, various HSQ 

thicknesses were spun on to structures of 50 nm x 50 nm x 50 nm (L x W x H) and 100 nm 

x 100 nm x 50 nm (L x W x H), as shown in Figure 3.7. For both sizes of structures, an HSQ 

thickness of 200 nm was found sufficient to planarise the nitride layer.  
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Figure 3.7: Surface planarisation by HSQ. (a) AFM image and height profile for HSQ layer 
with thickness of (i) 52 nm, (ii) 100 nm, and (iii) 200 nm spun onto nanostructures with 
dimensions of 50 nm x 50 nm x 50 nm (L x W x H). (b) AFM image and height profile for 
HSQ layer with thickness of (i) 52 nm, (ii) 100 nm, and (iii) 200 nm spun onto nanostructures 
with dimensions of 100 nm x 100 nm x 50 nm (L x W x H). For both nanostructure shapes, 
planarisation occurs when there is at least 200 nm of HSQ. 

To support a microfluidic channel for real-time fluid flow testing, the same design as that of 

Figure 3.6b was fabricated on a glass slide and both SEM and AFM images and 

measurements were taken during the fabrication process (Figure 3.8). For this new device, 

the resulting nitride thickness was measured by ellipsometry to be 86 nm. After each stage 

of the fabrication process (i-iv) as indicated in the rendering of Figure 3.8a, brightfield 

microscopy, SEM, and AFM images were taken. Figure 3.8b shows corresponding bright-

field microscopy/SEM images; Figure 3.8c shows SEM images of the corner of the device; 

and Figure 3.8d shows corresponding SEM/AFM images. The AFM images further confirm 

that the HSQ planarises the non-planar nitride layer. 
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Figure 3.8: Schematic and SEM/AFM images of multilayered sensing device. (a) 
Schematic showing the multilayered device. (i) An Au nanostructure LSPR reference layer 
encapsulated in (ii) a conforming silicon nitride with (iii) a HSQ planarisation layer, and 
(iv) a gold LSPR sensing layer. The heights of each layer and periodicity of the arrays are 
labelled. Both nanostructure arrays consist of elements that are 100 nm x 100 nm x 50 nm 
(LxWxH). (b) Bright field and low magnification SEM images of each layer of the device 
taken at time of deposition. (c) Further magnified SEM images of (i-iv).  (d) AFM (top) and 
SEM (bottom) images of each of the device layers (i-iv) taken at the time of deposition. The 
AFM images confirm that the HSQ layer planarised the nitride layer. Parts (a) and (d) were 
published in Sperling, et.al. (2018) [28]. 

3.4.1.4 Consistency of Nitride Deposition 
 

Figure 3.9a compares the transmission of the device from Figure 3.6b (labelled as ‘1’) to 

that of Figure 3.8 (labelled as ‘2’). While both devices have two distinct sets of peaks, the 

resulting transmissions are different, most noticeably around the second peak corresponding 

to the nitride-encapsulated nanostructures. The two of devices shown in Figure 3.6 and the 

third device shown in Figure 3.8 went through two, separate nitride depositions. Despite 

having requested for a 100 nm deposition with the same process and parameters (as can be 
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seen by the resulting (n,k) values for each deposition in Figure 3.9b) two different nitrides 

were deposited. Additionally, the measured thickness of the nitride layer for Device 1 and 

Device 2 were 89.50 ± 0.07 nm and 86.59 ± 0.04 nm (out of the requested 100 nm), 

respectively. Device 1 has a blue-shifted second peak because the nitride layer deposited on 

this sample has a lower (n,k) refractive index. Device 2 was used for the experiments in the 

subsequent sections of this chapter. 

 

 
Figure 3.9: Silicon nitride deposition effect on the plasmonic response. (a) The 
transmission of two multilayered devices with different silicon nitride depositions. The right-
most peak corresponds to the encapsulated reference layer of the device. (b) The 
corresponding (n,k) values of the nitride layers for each device as measured by ellipsometry. 
The thickness of deposition requested was 100 nm.  The measured thickness for Device 1 
and Device 2 were 89.50 ± 0.067 nm and 86.59 ± 0.042 nm, respectively. Device 2 was used 
for real-time measurements. 

3.4.2 Multilayer Sensor Calibration 
 
As previously demonstrated, the transmission of the sensor has two peaks. Here, they will 

be denoted as P1 and P2, as shown in Figure 3.10, corresponding to the sensing peak and 

reference peak, respectively.  
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Figure 3.10: Corrected Position Response (CPR). CPR is defined as the difference between 
the sensing peak (P1) and encapsulated reference peak (P2). This Figure was published in 
Sperling, et.al. (2018) [28]. 

To correct for drift in peak position, the CPR was calculated by subtracting the position of 

the sensing peak from that of the reference peak [14, 22]: 

 

 𝐶𝑃𝑅	[𝑛𝑚] = 	𝑃* − 𝑃,        (3.1) 

 

To measure the spectral response of this sensor, the custom-made microspectrophotometer 

described in Chapter 2 was used to measure the transmission as fluid flowed over the device 

through a polydimethylsiloxane (PDMS) microfluidic channel.  

 

Figure 3.11 demonstrates the stability of the reference peak. In Figure 3.11a, changing the 

refractive index surrounding the sensor from that of water (RI = 1.333) to that of 20% (w/w) 

sucrose solution (RI = 1.3639) [29] results in a clear shift in P1. The position of P2 remains 

constant. The contour plot in Figure 3.11b further expands upon this. It shows the 

transmission (dark-to-light-blue colour profile) between wavelengths of 600 nm and 850 nm 

(X-axis) to the refractive indexes of 1.333, 1.3405, 1.3478, 1.3555, 1.3639, and 1.4201 (Y-

axis). The refractive indexes used correspond to that of 0%, 5%, 10%, 15%, 20%, and 50% 

(w/w) sucrose solutions in water [29]. The reference peak (right-most dashed line) does not 

exhibit a shift in response with varying refractive index while the sensing peak (left-most 

dashed line) does. This indicates that the encapsulated peak is a viable reference, 

independent from the refractive index changes of the sensing region. Therefore, the reference 

peak can be used to correct the position of the sensing layer’s peak. 
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Figure 3.11: Experimental data from multi-layered device. (a) Transmission plot of the 
device in response to water (RIU = 1.333) and 20% sucrose (w/w) (RIU = 1.3639). (b) 
Contour plot of the transmission of multi-layered sensor in 0%, 5%, 10%, 15%, 20%, and 
50% (w/w) sucrose solutions. Significantly, the encapsulated reference peak (right-most 
dashed line) does not exhibit a shift in response with varying refractive index while the 
uncapped sensing peak (left-most dashed line) does. (c) Experimental results of the CPR to 
changes in the refractive index. The experimental CPR has a sensitivity of 122 ± 3 nm·RIU-

1, respectively. A linear fit best describes the CPR because it has an adjusted R2 value well 
above 99%. This figure was published in Sperling, et.al. (2018) [28]. 

The sensitivity of the sensor was determined by taking the slope of the CPR-Refractive Index 

curves shown in Figure 3.11c. The CPR sensitivity of 122 ± 3 nm·RIU-1 and Figure of Merit 

(FoM) [33] of 1.3 makes it close to sensitivity shown for silver nanocubes [34], but overall, 

at the lower sensitivity range of other LSPR sensing devices, which range from 90 nm·RIU-

1 to 1000 nm·RIU-1 and FoM of 0.8 to 5.4 [3, 5-7]. Conceptually, this design shows potential 

as a means to self-refence. To improve the device, tuning the nanostructure material, size, 

and/or shape may alter the plasmonic properties and result in a higher sensitivity (see 

Chapter 1) [6-8]. 

3.4.3 Multilayer Device for Real-Time RI Sensing 
 

To further demonstrate the stability, real-time measurements of induced refractive index 

changes were measured. Figure 3.12a shows the real-time position response of P1 (black), 

P2 (red), and CPR (blue) of the sensor to injections of sucrose solutions with varying RIs 

(green dashed lines).  

 

The injections of sucrose solutions (in water w/w) for (i) the first run were 0%, 5%, 10%, 

15%, 20%, and 50; (ii) the second run were 0%, 0.5%, 1.0%, 2.5%, 5%, 10%, 15%, and 

20%; and (iii) the third run were 0%, 5%, 15%, and 20%. For each run, the device was left 

to stabilise at baseline and injections of sucrose were only started following 10 minutes of 

stabilised response. The measurements in Figure 3.12a(ii) and Figure 3.12a(iii) were taken 

in quick succession. As a result, for the first ten minutes of these runs, the sensor was still 

returning to baseline from the sucrose injection from the previous run. Figure 3.12b shows 

the shift in (i) P1, (ii) P2, and (iii) CPR from the baseline measurements for the five injections 

shown in Figure 3.12a(i).  Both the sensing peak position and CPR show a stepwise change 

in response when higher concentrations of sucrose water are injected into the system, where 

the reference does not. 
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Figure 3.12: Real-time response of sensor to changes in refractive index. (a) The real-time 
response of P1 (black), P2 (red), and CPR (blue) to varying refractive index changes using 
sucrose solutions (w/w in water) of (i) 0%, 5%, 10%, 15%, 20%, and 50%; (ii) 0%, 0.5%, 
1.0%, 2.5%, 5%, 10%, 15%, and 20%; and (iii) 0%, 5%, 10%, 15%, and 20%. The dotted 
green lines indicated the time at which sucrose was injected into the system.  For each run, 
during the first 10 minutes, the device is stabilising at baseline. The measurements in (a)ii 
and (a)iii were taken in immediate succession of the previous run. In the first ten minutes of 
the measurement, the sensor was returning to baseline from the last sucrose injection of the 
previous run. (b) The shift in peak for (i) P1, (ii) P2, and (iii) CPR for the five injections 
from (a)i: 5% (t=35.5-40 minutes), 10% (t=50-54.5 minutes), 15% (t=64.5-69 minutes), 
20% (t=80-84.5 minutes), and 50% (t=100.25-104.75 minutes). This figure was published 
in Sperling, et.al. (2018) [28]. 

As the measurements from the second run (Figure 3.12a(ii)) have the most fluctuation, this 

run was used to determine the noise, limit of detection, and limit of quantification of the 

sensor. Using the full ten minutes prior to the first injection of this run as the baseline, the 

standard deviation of the baseline (noise), limit of detection (2x noise), and limit of 

quantification (3x noise) were determined from the CPR (Table 3.1). The values of 2x and 

3x for limits of detection and quantification, respectively, are chosen from the ‘based on 

signal to noise’ analysis by T.A. Little (2015) [35]. 
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Table 3.1: Noise-level, limit of detection, and limit of quantification for CPR and the 
corresponding RI values. This table was published in Sperling, et.al. (2018) [28]. 

 ∆CPR ∆RIU (CPR) 
Noise-Level 9.28 x 10-2 7.59 x 10-4 

Limit of Detection 1.86 x 10-2 1.52 x 10-3 
Limit of Quantification 2.78 x 10-2 2.28 x 10-3 

 

 

The sensitivity for CPR was then used to calculate the corresponding change in RIU. The 

limit of detection and limit of quantification for the sensor are changes of 1.52 x 10-3 RIU 

and 2.28 x 10-3 RIU respectively. Although these values are also on the lower end of other 

published LSPR sensor devices [6-7, 36], we have successfully demonstrated a new design 

for self-referencing devices that can now be modified with much more sensitive 

nanostructure arrays. By simply modifying the size, shape, and material of the nano-

plasmonic structures based on their well-known characteristics (see Chapter 1), more 

sensitive devices with better limits of detection and quantification can be achieved. 

3.4.4 Multilayer Device for Real-Time Biosensing 
 
A biochemical binding assay was performed in order to demonstrate the applicability of the 

self-correcting device for biosensing applications. For this purpose, the well-known biotin-

avidin interaction was used as a model. The sensing region of the device was functionalised 

with 11-mercaptoundecanoic acid (MUA) [36-37]. This treatment  provided a self-

assembled monolayer (SAM) with carboxylic acid moieties that were further used to 

covalently attach biotin-hydrazide via ethyl-carbodiimide cross linking [37]. Unreacted sites 

on the nanostructures were blocked with ethanolamine [36], and Tween-20 was added to the 

PBS solution used during the biosensing experiment to prevent avidin from binding to 

unblocked regions of the glass base of the device.  
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Figure 3.13: Real-time biosensing of the biotin-avidin interaction. (a) The real-time 
change of CPR to the specific binding and pH-mediated release of 500 µg·mL-1 avidin to 
biotin. The dotted green line denotes the time at which the protein was injected into the 
system. The dotted purple line denotes when NaOH was injected to release any bound 
proteins. The fluctuation after NaOH injection is present because of the change of the 
refractive index of solutions flowing through the device. Prior to injecting any other 
concentrations of protein into the device, the device was allowed a long flush (>30 minutes) 
with PBS buffer to return the signal to baseline. (b) The real-time change of CPR to the non-
specific interaction of BSA (100 µg·mL-1) and the specific binding of avidin (0.1, 1, 100, and 
500 µg·mL-1) with biotin. The dotted green line denotes the time at which the protein was 
injected into the system. This figure was published in Sperling, et.al. (2018) [28]. 

Figure 3.13a shows the change in CPR to an injection of 500 μg·mL-1 avidin (green dotted 

line). To regenerate the surface after protein binding, 20 mM NaOH was injected into the 

device (purple dotted line). In order to verify the suitability of the sensor in providing a dose-

dependent response, three additional concentrations of avidin (0.1, 1, and 100 μg·mL-1) were 

also injected into the device. Additionally, the specificity of the sensor was tested by 

injecting bovine serum albumin (BSA) at a concentration of 100 μg·mL-1. Figure 3.13b 

shows the shift in CPR to BSA and all four concentrations of avidin. The BSA injection did 

not produce a significant shift in the response of the sensor, thus demonstrating specificity 

to avidin. Avidin, though, was detected in a dose-dependent manner, and the concentrations 

of avidin where a significant shift could be observed were 100 μg·mL-1 and 500 μg·mL-1. 

The sensitivity may be improved by investigating different antenna geometries. 

3.4.5 Full Device FDTD Simulation  
 

To better understand the trends in the sensor, FDTD simulations were performed using 

Lumerical FDTD Solutions software (see 3.3.7 for simulation parameters used).  

 

The simulation results in Figure 3.14a show that increasing the refractive index surrounding 

the sensor from 1.333 (water) to 1.3639 (20% w/w sucrose in water [29]) results in a clear 

shift in P1 and a stable P2. Additionally, the contour plot in Figure 3.14b shows the 
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transmission (dark-to-light blue colour profile) between wavelengths of 600 nm to 900 nm 

(X-axis) to RI = 1.333, 1.3343, 1.335, 1.337, 1.3405, 1.3478, 1.3555, 1.3639, 1.3812, 

1.3999, and 1.4201, respectively (Y-axis). Just like the experimental results shown in Figure 

3.11, the sensing peak (left-most dashed line) exhibits a shift in response with varying 

refractive index while the reference peak (right-most dashed line) does not. Figure 3.14c 

shows the sensitivity curve of simulated CPR for the aforementioned refractive indexes. The 

simulated CPR has a sensitivity of 269 ± 2 nm·RIU-1. 

 

Significantly, the FDTD results confirm the self-referencing characteristic seen in the 

experimental results—a stable reference peak and a negative, linear sensitivity curve for 

CPR. However, compared to the experimental results, the simulation has a reference peak 

that is more red-shifted and is twice as sensitive.  

 

These discrepancies are attributed to the physical differences between the simulated and the 

fabricated device. First, the silicon nitride layer in the simulation was approximated to be a 

flat, uniformly deposited layer that conformed to the shape of the surface below with 

dielectric values (n2, k2) as measure by ellipsometry (Figure 3.3). In the real sample, the gas-

induced sputtering deposition at room temperature most likely produces edge effects of the 

silicon nitride particles that are deposited on the metal nanostructures on the sample, 

resulting in a non-uniform dielectric environment. This most likely accounts for why the 

simulated reference peak is much more red-shifted compared to that of the experimental 

reference peak. Additionally, the fabricated plasmonic nano-antennae, unlike the FDTD 

nano-antennae, were not perfectly square (see Figure 3.4), and shape has a major effect on 

plasmonic response [8, 38-39]. Altogether, these discrepancies yield a different response 

between the simulated and experimental results. 
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Figure 3.14: FDTD simulation of the multilayered device. (a) FDTD transmission to water 
(RIU = 1.333) and 20% sucrose (w/w) (RIU = 1.3639). (b) Contour plot of the transmission 
of the FDTD simulation for the multilayered sensor in 0%, 0.5%, 1%, 2.5%, 5%, 10%, 20%, 
30%, 40%, and 50% (w/w) sucrose solutions. Just like the in the experimental data (see 
Figure 3.11), the encapsulated reference peak (right-most dashed line) does not exhibit a 
shift in response with varying refractive index while the uncapped sensing peak (left-most 
dashed line) does. (c) FDTD simulation of the CPR to changes in the refractive index. The 
FDTD CPR has sensitivities of 269 ± 2 nm·RIU-1. 

3.5 Conclusion and Future Work 

 
In summary, a proof-of-concept multilayered LSPR device with an encapsulated reference 

region was demonstrated to self-correct for drift and detect, with selectivity and dose-

dependence, the biotin-avidin interaction. The inclusion of both the reference and sensing 

regions within the same physical space allows for a more compact design, eliminates the 

need to inject samples that are potentially expensive or of limited quantity into a non-

capturing parallel reference channel, and allows for the use of a single detector rather than 

multiple detectors. This is especially of interest for point-of-care diagnostic devices because 

the self-referencing design accounts for limitations in resources and sample quantity, 

operates in transmission-mode (standard UV-Vis instrumentation at point of care is 

generally carried out in this mode) [5], and can be incorporated into multiplexed microfluidic 

systems with different, more sensitive LSPR structures. 
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Chapter 4: Bimetallic Nano-Plasmonics for the Optical Tasting of 
Whisky 

4.1 Introduction 

Today’s electronic sensing devices have evolved to strongly resemble the senses of animals 

[1]. Photodetectors and filter algorithms found in digital cameras and video recorders [2-4], 

pressure and temperature sensors [5-6], and microphones [7] can all be related to the 

biological counterparts of vision, touch, and hearing, respectively. However, there are still 

two senses that science hasn't yet been able to sufficiently replicate: smell and taste [8-9]. 

 

While chromatography is the gold-standard technology to identify, detect, and quantify the 

components in a gas [10] or liquid [11] mixture, it requires efficient separation of the 

mixture's components prior to analysis using specialist laboratory equipment. Therefore, to 

provide accurate results necessitates a complex, costly, time-consuming, and highly-

wasteful process [12], which makes this equipment unsuitable for applications where speed, 

cost, and portability are important, such as point-of-care diagnostics or food and beverage 

testing. To address these issues, recent efforts have turned to modelling detection and 

identification technologies on the senses of taste and smell leading to the development of 

optical and electronic “tongues” and “noses.” [8, 13-17] Compared to the aforementioned, 

laboratory-based tools [10-11], these artificial noses and tongues are portable, do not require 

component isolation, and can be fabricated relatively cheaply [18]. In particular they have 

shown great effect in the detection of small changes in complex mixtures [19]. 

 

Our perception of taste and smell are the product of multiple partially-selective 

chemoreceptors in our nose and tongue that result in distinct electro-chemical patterns for 

specific odours/flavours [20-21]. Artificial tongues/noses mimic this by combining the 

responses of multiple cross-reacting sensor, allowing them to identify flavour/odour through 

trained pattern recognition rather than by measuring absolute concentrations of specific 

components within the mixture [19, 21-24]. The more sensing regions added to the analysis, 

the more accurate the device is at differentiating between different mixtures (as long as the 

ratio of measured data to sensing elements is high, ideally greater than six to avoid over-

fitting/bias) [25]. While sensor arrays require "training" to identify different mixtures [13], 

they are widely applicable and have found uses in a range of diverse fields including medical 

diagnostics, where their ability to differentiate between a variety of different conditions 
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provides faster, non-invasive screening methods and enhances early-detection rates [14, 26-

31], environmental monitoring [32-33], and food-safety, where they are used to monitor 

food-spoilage [8, 15, 34]. 

 

While in some previous works olfactory proteins have been used in artificial olfactory 

systems, their inherent long-term instability has prevented their widespread use [35]. To 

provide better stability, more robust synthetic materials are used, such as nanomaterials, 

doped metal oxides, or fluorescent polymers, as the partially-selective sensing elements [24, 

34]. 

 

Recently, devices based on plasmonic Au nanostructures have emerged as a useful platform 

for constructing sensor arrays, thanks to their optoelectronic properties and chemical 

stability [36-37]. The optical response of Au nanostructures is dictated by their localised 

surface plasmon resonance (LSPR), a phenomena particularly sensitive to changes in local 

refractive index [38]. Partial selectivity in these devices is achieved by using multiple arrays 

of chemically-functionalised nanostructures as individual sensing regions. By monitoring 

the resonance peak-shifts for each of these sensing regions upon addition of a chemical 

mixture, a fingerprint of that mixture can be obtained [31]. However, the need for multiple 

sensing regions can inevitably result in limitations to miniaturisation and data acquisition 

time. As a result, there are size, weight, and speed advantages associated with reducing the 

number of sensors and measurements that are required for successful mixture classification. 

 

To address these issues, this Chapter presents an optical tongue device where each sensing 

element of the tongue-array is multiplexed, providing two of the necessary partially-selective 

signals from one measurement. Each region consists of two superimposed nanoplasmonic 

arrays featuring two distinct metals: Au and Al. In addition to providing two distinct 

plasmonic resonance peak shifts from a single measurement, this choice of materials that 

makes up a ‘bimetallic’ array allows the selective chemical functionalisation of each 

superimposed array via thiol (Au array) [39-41] and silane (Al array) [40, 42] chemistries. 

Compared to its monometallic counterparts, the bimetallic Al/Au sensor is shown capable 

of operating with halve the number of sensing elements, thus reducing device size and 

regions to probe (i.e. data-acquisition time), all without compromising identification and 

classification capabilities of the device. Furthermore, the bimetallic optical tongue is used to 

distinguish between seven different whiskies and three controls. 
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The majority of work detailed in this chapter was presented as a talk at 2019 SPIE Photonics 

West Conference (BiOS, Frontiers in Biological Detection: From Nanosensors to Systems 

XI) by J.R. Sperling [43]. 

4.2 Materials 

The materials used are available in Chapter 2.  

4.3 Methods 

4.3.1 Simulations of Designs 
 
Finite-difference time-domain (FDTD) simulations were performed using Lumerical FDTD 

Solutions software. 

4.3.2 Fabrication of Nanostructures 
 
Devices were fabricated using electron-beam lithography as covered in Chapter 2.5 (See 

Metal Nanostructure Fabrication). For the nanostructures, a resist bi-layer of poly(methyl 

methacrylate) resist (PMMA) 2010 and PMMA 2041 (total thickness 150 nm) was patterned 

using a Vistec VB6 UHR EWF electron beam lithography tool. Following development of 

each run, a Plassys MEB 400S/550S electron-beam evaporation tool was used to evaporate 

(run 1) 2/50 nm titanium/Au and (run 2) 50 nm Al. For each electron beam lithography step, 

alignment was carried out using Penrose makers (see Chapter 2.4.1).  

 

4.3.3 Surface Chemistry Modifications 
 
The bimetallic optical tongue device consisted of 3 Al/Au sensors. Modifications to the 

surface chemistry of these three sensors involved silanisation of Al and thiolation of Au. For 

the first sensor, no modifications were made, leaving native Al and Au (with its native oxide 

layer). For these regions, the base substrate remained native glass (Figure 4.1a). 
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Figure 4.1: Surface chemistry diagram. (a) The surface chemistries of native Au and Al, 
(b) Au-DT and Al-HMDS, and (c) Au-PFDT and Al-PEG. 

The second sensor was immersed in a 10 mM ethanolic solution of 1-decanethiol (DT, 

Sigma-Aldrich) for 24 hours, rinsed three times with ethanol, and dried with nitrogen. 

Hexamethyldisilazane (HMDS, Sigma-Aldrich) was then spun on at 4000 revolutions per 

minute for 60 seconds, allowed to air-dry for 2 minutes, and the excess was washed off. This 

produced the Al-HMDS and Au-DT surfaces (Figure 4.1b). For this sensor, the base 

substrate was modified to glass-HMDS. 

 

The third sensor was immersed in a 10 mM ethanolic solution of 1H,1H,2H,2H-perfluoro-

1-decanethiol (PFDT, Sigma Aldrich) for 24 hours, rinsed three times with ethanol, and dried 

with nitrogen. The sensor was then immersed in 0.5% solution (by volume) of 2-[methoxy 

(polyethyleneoxy)6-9 propyl] trimethoxysilane (PEG, Sigma-Aldrich) in toluene for 1 hour, 

rinsed three times with toluene, and rinsed three times with deionised water. The sensor was 

then nitrogen dried and oven-baked at 100°C for 30 minutes. This produced the Al-PEG and 
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Au-PFDT surfaces (Figure 4.1c). For this sensor, the base substrate was modified to glass-

PEG. 

 

A monometallic device consisting of 6 nanoarray regions (3 Al and 3 Au) was fabricated for 

comparison. The same surface modifications were made to create the six sensors of Al, Au, 

Al-HMDS, Au-DT, Al-PEG, and Au-PFDT. 

4.3.4 Solution Preparation 
 

Solutions of 10%, 20%, and 30% acetone (by volume) and 10%, 20%, 30%, and 40% ethanol 

(by volume) in deionised water were prepared. The selection of whiskies and vodka in Table 

4.1 were purchased from their respective distilleries.  

 

Table 4.1: Solutions tested in the whisky tongue. The shape/colour for each solution in the 
subsequent PCA plots is denoted in the ‘ID’ column. 

ID Name Serial 
Number 

% Type Region Barrel Malt Age 

0 
� 

DI H2O - 0 Deionised 
Water 

- - - - 

E 
� 

40% Ethanol 
in DI H2O (v/v) 

- 40 Deionised 
Water / Ethanol 
Mixture 

- - - - 

V 
¸ 

AbsolutÒ L20180109H 
16:07 

40 Vodka - - - - 

W1 
+ 

GlenfiddichÒ 
12 y 

L33B46542108 
0841 

40 Scotch Whisky Speyside Amer. Oak / 
Eur. Sherry 

Single 12 

W2 
D 

GlenfiddichÒ 
15 y 

L33B44663005 
1142 

40 Scotch Whisky Speyside Eur. Sherry / 
Solera Vat 

Single 15 

W3 
¸ 

GlenfiddichÒ 
18 y 

L33B46271907 
1531 

40 Scotch Whisky Speyside Amer. Oak / 
Span. Oloroso 

Single 18 

W4 
+ 

Glen MarnochÒ 
Sherry Cask 

LBB6B1406 
021117 15:44 

40 Scotch Whisky Highland Amer. Oak / 
Eur. Sherry 

Single - 

W5 
D 

Glen MarnochÒ 
Bourbon Cask 

LBB6B1405 
021117 19:42 

40 Scotch Whisky Highland Amer. Oak / 
Bourbon 

Single - 

W6 
¸ 

Glen MarnochÒ 
Rum Cask 

LBB6B1407 
021117 17:53 

40 Scotch Whisky Highland Amer. Oak / 
Caribbean Rum 

Single - 

W7 
¸ 

LaphroaigÒ  
10 y 

L6262MB2 
22990853 

40 Scotch Whisky Islay Bourbon Single 10 

 

4.3.5 Experimental Setup and Data Collection 
 
A polydimethylsiloxane (PDMS) chamber on a glass slide was filled with each solution and 

samples were submerged in the chamber and slightly agitated for 2 minutes. A custom-built 

micro-spectrophotometer was used to measure the real-time transmission spectra (0.5 nm 

resolution). Light from a VIS-NIR light source (tungsten-halogen 400 to 1200 nm 
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wavelength) was used to probe the sensor. A 10x objective was used to couple the 

transmitted light into an optical-fibre attached to a StellarNet Microspectrophotometer 

(StellarNet Blue Wave). For the acetone and ethanol solvent differentiation, three different 

preparations of each solvent were made, and subsequent transmission spectra were taken. 

For the alcohol differentiation experimentation, thirty transmission spectra per region, for 

each solution, were measured. Between measurements, samples were rinsed in water, then 

ethanol, and nitrogen dried. A baseline measurement of a “blank” region the sample was 

used prior to measuring an element in one of the tongue arrays for background correction. 

4.3.6 Data Analysis 
 
MATLAB was used to analyse the transmission spectra. The transmission spectrum was 

smoothed (20 points, mean-average smoothing) and interpolate (from 0.5 nm to 0.01 nm). 

The peak position value of the minima peaks (one for each monometallic sensor and two for 

each bimetallic sensor) was determined. The resulting transmission peak values (wavelength 

in nanometres) were arranged in a data matrix similar to that of Table 4.2, where the rows 

of the matrix corresponded to a particular solution and the columns corresponded to the 

wavelength of the resonant peaks for each chemistry—Au, Al, Au-DT, Al-HMDS, Au-

PFDT, Al-PEG.  

 

Table 4.2: Example table of the data analysed for organic solvent differentiation and 
whisky differentiation. 

 Transmission Peak Response (nm) 

Solution Al Au Al-HMDS Au-DT Al-PEG Au-PFDT 
Solution 1 492.79 660.17 485.49 661.4 484.11 659.04 

Solution 2 494.03 663.36 488.69 664.59 486.19 661.61 

∙ 
∙ 
∙ 

Solution N 495.14 664.75 490.01 664.32 485.54 661.51 

 

 

The data matrix was analysed using the inherent principal component analysis (PCA) 

function in MATLAB (by singular value decomposition algorithm). The variance for the 

scree plot was obtained from the MATLAB PCA result set. (See Chapter 2.7.2 for more 

information on PCA). For the whisky experiment, linear discriminant analysis (LDA) was 

then performed on the same data matrix using Systat 13 software. 
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4.4 Results and Discussion 

4.4.1 Design and Fabrication of Bimetallic Nano-Square Sensors 
 
The bimetallic nanoplasmonic sensor consists of two arrays of square (100 nm length by 100 

nm width) nanostructures organised in a “checkboard”-like arrangement as depicted in 

Figure 4.2a; one array constructed with Au, the other with Al. This spatial configuration 

was chosen for its characteristic optic features, which displayed two well resolved peaks 

with very low transmission at their respective minima.  Similar to Chapter 3, the shape of 

the nanostructures was chosen because (1) its design allows for easy, repeatable fabrication 

with the VB6 electron-beam lithography tool available, (2) the symmetrical shape is not 

subject to a polarisation-dependent response, and (3) the shape maximises the surface area 

of coverage for a given periodicity (and thus maximises the plasmonic signal).  

4.4.1.1 Determination of Periodicity 
 
For optimisation of the periodicity between the Al and Au nanostructure arrays, FDTD 

simulations were conducted. A linearly polarised plane wave was defined for a unit area cell 

with various periods (Figure 4.2b). The dielectric values of gold and titanium were obtained 

from the CRC library [44], and the dielectric values of glass and aluminium were obtained 

from the Palik library [45]. Periodic boundary conditions were used in the X-axis and Y-

axis, and a perfectly-matched-layers (PML) boundary was used in the Z-axis. A uniform 

mesh size of 4 nm was used in all axes and the background refractive index (RI) was set to 

that of water (RI=1.333). 

 

Based on the simulation results, a period of 300 nm for each array (offset by 150 nm in X 

and Y) was chosen for fabrication of this device because it provides for two distinct peaks 

with the highest transmission attenuation with virtually no coupling between the two 

nanostructures at their resonance peaks (Figure 4.2c). 
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Figure 4.2: FDTD simulation of different periodicities between Al and Au nanostructures 
in bimetallic arrays. (a) Rendering of the simulation of the effect of periodicity (P) for arrays 
of Au and Al nanostructures with dimensions of 100 x 100 x 50 nm (length x width x height). 
For each simulation, the nanostructures were considered to be offset by half a period in both 
X and Y. (b) Resulting transmission as P increases from 200 nm to 500 nm, in increments of 
50 nm. (c) The XY electric field between the nanostructures for a wavelength corresponding 
to (i) Resonance 1 (Al) and (ii) Resonance 2 (Au) from (b) (as labelled below each subfigure) 
for P of 250 nm, 300 nm, and 350 nm. As indicated by the bold line in (b) and the middle 
electric field plots of c(i) and c(ii), P = 300 nm shows two distinct peaks, with high 
transmission, and virtually no coupling between the nanostructures at their resonance 
peaks. 

4.4.1.2 Fabrication and Alignment 
 
SEM images of two monometallic (top row) and ten bimetallic (bottom two rows) arrays are 

shown in Figure 4.3. The two metals can be differentiated by the shade of grey due to their 

distinct electron diffraction properties, Au being ‘brighter’ and Al being ‘darker.’ [46] While 

the bimetallic arrays were written with the same programmed pattern alignment, variations 
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in alignment of between the two metallic arrays within each region is clearly visible. While 

within tolerance of the e-beam tool, this variation in alignment can cause the two metal 

arrays to become within close proximity with one another and produce coupling effects on 

the resonance peaks for each metal. 

 

 
Figure 4.3: SEM of monometallic and bimetallic sensors. A1 and A6 are monometallic 
sensors of Au and Al, respectively. B2, C2, C3, C4, C6, D3, E2, E5, F2, and F6 are all 
bimetallic Al/Au sensors. For each bimetallic SEM, the outer 4x4 array is Au and the offset, 
inner 3x3 array is of Al. Although the alignment between the two metal arrays is within 
fabrication tolerance of the e-beam lithography tool, there is a slight difference in the 
alignment between each metallic array in each bimetallic sensor.  

4.4.1.3 Effect of Al-Au Nanostructure Distance for Bimetallic Array 
 
To understand the effects of alignment during fabrication on the electric field between the 

nanostructures, FDTD simulation was carried out. A linearly polarised plane wave was 

defined for a unit area cell with a period of 300 nm in both X and Y. Both nanostructures 

were defined with dimensions of 100 nm x 100 nm x 50 nm (length by width by height). The 

distance between the Au and Al nanostructures was decreased from largest distance possible 

between structures (150 nm in X and Y for a period of 300 nm) to ‘touching,’ as shown in 

Figure 4.4a. The dielectric values of Au and titanium were obtained from the CRC library 

[44], and the dielectric values of glass and Al were obtained from the Palik library [45]. 

Periodic boundary conditions were used in the X-axis and Y-axis, and a perfectly-matched-
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layers (PML) boundary was used in the Z-axis. A uniform mesh size of 4 nm was used in all 

axes and the background refractive index (RI) was set to that of water (RI=1.333). 

 
Figure 4.4: FDTD simulation of effect on electric field by changes to distance between Al 
and Au nanostructures in a bimetallic array. (a) Rendering of the simulations and resulting 
XY electric fields for the resonance peaks corresponding to (b) Al and (c) Au as the distance 
between the metal nanostructures is decreased. Simulation for nanostructures separated in 
(X, Y) by (i) (150 nm, 150 nm), (ii) (125 nm, 150 nm), (iii) (100 nm, 150 nm), (iv) (125 nm, 
125 nm), and (v) (100 nm, 100 nm) are shown. The nanostructures of Au and Al are 100 nm 
x 100 nm x 50 nm (length x width x height) with an X-Y period of 300 nm between each Au-
Al pair and a mesh size of 4 nm in X-Y-Z was used. The resulting electric fields indicate 
strong coupling when alignment is off by more than 25 nm in either X or Y.  

As seen by the resulting electric field at the resonance associated with Al (Figure 4.4b) and 

Au (Figure 4.4c), strong coupling occurs when the alignment between nanostructure arrays 

is off by more than 25 nm (iii-v). 
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The E2 region is well within the tolerance as determined by simulation and is therefore used 

for the analysis to compare arrays of monometallic and bimetallic sensors as optical tongue 

devices in the subsequent sections. 

 

4.4.1.4 Transmission Response of Bimetallic Array 
 
Figure 4.5a shows a schematic of the device; and Figure 4.5b-c shows bright-field 

microscopy (10x) and SEM images of the E2 region, respectively. Figure 4.5d shows a 

typical transmission spectrum for a bimetallic plasmonic sensor (solid, black line) compared 

to equivalent, single-metal sensors of Al (dotted, blue line) and Au (dotted, red line). As 

confirmed by the spectra of the two monometallic sensors, the two distinct and separate 

peaks in the bimetallic transmission spectrum at 500 nm and 660 nm correspond to Al and 

Au, respectively. 

 

 
Figure 4.5: Schematic, bright field microscopy image, SEM image and transmission 
response of a bimetallic plasmonic device. (a) Schematic showing the Au and Al bimetallic 
device. (b) Bright field microscopy image of the bimetallic device. (c) SEM image of the 
bimetallic sensor. (d) Transmission response of arrays of Al (dotted-blue), Au (dotted-red), 
and Al/Au (black solid) in water. 

4.4.1.5 Analysis of Surface Chemistries 
 
Both Au and Al can support selective functionalisation of their surfaces. While Au 

nanostructures can be readily modified by thiol chemistry [39-41], the native oxide layer 

present on the Al nanostructures displays -OH groups which enables the use of silane 

chemistry for functionalisation [40, 42]. The use of organic ligands in this way has 

previously been reported to change the sensitivity Au nanostructure based electronic noses, 
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in response to contact with certain organic molecules [36]. However, as these devices 

consisted of monometallic sensing regions, only one organic ligand per sensing region was 

reported. The bimetallic device designed here enables two ligand groups to be present in the 

same region, which  has yet to be explored for plasmonic nose/tongues devices. 

 
Figure 4.6: The effect of surface chemistry on transmission. The transmission response in 
water from (a) six monometallic sensors (Al, Au, Al-HMDS, AU-DT, Al-PEG, and Au-
PFDT) and (b) three bimetallic sensors (Al/Au, Al-HMDS/Au-DT, and Al-PEG/Au-PFDT) 
for the wavelength ranges of (i) 450 nm to 750 nm, (ii) 493 nm to 513 nm (a zoom-in 
corresponding to the Al-type nanostructure peaks), and (iii) 650 nm to 670 nm (a zoom-in 
corresponding to the Au-type nanostructure peaks). Both the surface chemistry present on 
the metallic nanostructures and the type of sensor (mono- versus bimetallic) results in 
unique transmission responses. 

To test this, 3 bimetallic sensors, each exhibiting unique surface chemistries as shown in 

Figure 4.1, were produced: (1) native Al/Au, (2) Al-HMDS/Au-DT, and (3) Al-PEG/Au-

PFDT. These surface chemistries were chosen to represent varied levels of hydrophobicity. 

Altering the hydrophobicity of the LSPR nanostructures affects how individual components 

in a mixture interact with the local environment of the nanostructure (and thus the plasmonic 

response).  In addition to these bimetallic sensors, 6 comparable monometallic sensors were 

produced: (1) native Al, (2) native Au, (3) Al-HMDS, (4) Au-DT, (5) Al-PEG, (6) Au-PFDT. 
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Figure 4.6 shows the effect of the altered surface chemistries on the transmission response 

in water for (a) the 6 monometallic sensors and (b) the 3 bimetallic sensors. As expected, 

alterations to the surface chemistry cause a clear change in affinity for water. 

4.4.2 Organic Solvent Differentiation 
 
To determine whether the surface chemistry modifications actually alter the sensing 

capabilities of the plasmonic region and change affinities for organic solvents (rather than 

simply ‘shifting’ the resonance peak), the resulting 6 monometallic (Figure 4.7a) and 3 

bimetallic (Figure 4.7b) sensors were tested against varying refractive index media adjusted 

with (i) ethanol and (ii) acetone. The resulting resonance shifts from water (RIU=1.333) 

were compared using RIU values for acetone [47] and ethanol [48] solutions.  

 

In all cases (regardless of the organic solvent used to alter the refractive index, the metal of 

the nanostructure, or if the region is mono- or bimetallic), it can be observed that organic 

ligand present on the nanostructures alters the sensitivity curves. (i.e. Al, Al-HMDS, and Al-

PEG curves in Figure 4.7a(i) are different.) 

 

However, for sensors with the same metallic base and organic ligand (regardless if the region 

is mono- or bimetallic), the sensitivity curve depends on the organic solvent used to alter the 

refractive index. (i.e. The sensitivity curves for a monometallic array of Au-DT in acetone 

(Figure 4.7a(i)) and ethanol (Figure 4.7a(ii)) are different).  

 

Additionally, the sensitivity curves for regions with the same metallic base, organic ligand, 

and organic solvent differ depending on if the sensor region is monometallic or bimetallic. 

(i.e. Au-PFDT sensitivity curves in Figure 4.7a(i) and Figure 4.7b(i) are not the same.) 
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Figure 4.7: Comparison of the effect of surface chemistry on sensitivity of sensors 
consisting of (a) monometallic and (b) bimetallic Au and Al nanoarrays. Each plot in the 
figure shows the shift from water of the plasmonic peaks in 10%, 20%, and 30% solutions 
(v/v) of (i) acetone and (ii) ethanol, in RIUs. The different surface chemistries (native Al, Al-
HMDS, Al-PEG, native Au, Au-DT, and Au-PFDT) alter the plasmonic peak of the 
nanostructures when exposed to the same organic solvent. The RIUs for acetone and ethanol 
solutions were obtained from S.S. Kurtz, et.al. (1965) [47] and T.A. Scott (1946) [48], 
respectively. The error bars can be attributed to the multiple preparation of solutions as 
each chemistry combination was tested individually with 3 different sets of each solution. 

These observed behaviours are attributed to the segregation of the solvent at the solid liquid 

interface and corresponding changes to the local refractive index. Solvent segregation 

depends on the chemical groups present at the interface; [49] using different metals and 

different ligands on the surface results in different segregation behaviours, which likely 

explains the different plasmonic responses. This is especially important when comparing the 

mono- and bimetallic responses; the presence of a second metal and second ligand results in 

a unique solvent segregation behaviour different than that which occurs for the two, separate 

monometallic counterparts. These results are in good agreement with previous reports [36], 

and they confirm that the partial-selectivity of a sensor can be tuned via silane and thiol 

chemistries. 
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Figure 4.8: PCA for organic solvent differentiation using mono- and bimetallic sensors. 
The resulting PCA for (a) individual, separate regions with Au and Al arrays (elements 
A1/A6) and (b) bimetallic arrays of Au and Al (element E2) as the responses from more 
sensors are added to the PCA: (i) Al and Au, only; (ii) Al, Au, Al-HMDS, and Au-DT; and 
(iii) Al, Au, Al-HMDS, Au-DT, Al-PEG, and Au-PFDT. As the responses from more sensors 
are added to the PCA, the optical tongue is better able to distinguish the difference between 
water and 10%, 20%, and 30% (v/v) acetone and ethanol.  
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To further verify the applicability of the bimetallic approach for artificial tongue 

development, the resulting transmission peaks from the acetone/ethanol test for one group 

of bimetallic sensors (E2 from Figure 4.3) were analysed using PCA [17, 50] and compared 

to that of a comparable group of monometallic sensors (A1 and A6 from Figure 4.3). For 

the PCA data matrix, the resulting transmission peaks were arranged in a matrix similar to 

that shown in Table 4.2. 

 

Figure 4.8 shows PCA scatterplots of the first two principal components for (a) 

monometallic Al and Au sensors (A1 and A6 from Figure 4.3) and (b) bimetallic sensors 

(E2 from Figure 4.3). To demonstrate the effect of adding more partially-selective responses 

of additional sensors to the analysis, PCA was calculated using the transmission peaks from 

the columns in the data matrices corresponding to (i) Al and Au, only; (ii) Al, Au, Al-HMDS, 

and Au-DT; and (iii) Al, Au, Al-HMDS, Au-DT, Al-PEG, and Au-PFDT. In each PCA, 

black dots represent DI water, red dots represent acetone-based media and yellow dots 

represent ethanol-based media. 

 

 
Figure 4.9: 3D PCA for organic solvent differentiation. Plot of the first (PCA1), second 
(PCA2), and third (PCA3) principal components of organic solvent sensing for (a) 
monometallic and (b) bimetallic sensor arrays from Figure 4.8a(iii) and Figure 4.8b(iii). 
The third component further helps display the clustering of the data.  

From Figure 4.8, it is observed that as the responses from more partially-selective elements 

are added to the PCA, further clustering occurs among responses to the same solution and 

further separation occurs between the clusters corresponding to different solutions. Further 

separation and clustering is shown in the PCA of the first three principal components for all 

six chemistries (Figure 4.9). 
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This clustering and separation are further demonstrated when looking across all 10 bimetallic 

‘tongues’ from Figure 4.3. Figure 4.10 shows the PCA of the first two principal components 

(that explain 87.3% of the total variance) for all 6 chemistries across all 10 bimetallic 

‘tongues’ shown in Figure 4.3 (each tongue consisting of 3 sensing regions).  

 
Figure 4.10: PCA for organic solvent differentiation using bimetallic sensor regions. The 
transmission peaks of 10 bimetallic optical-tongue arrays (30 sensing regions) in 10%, 20%, 
and 30% acetone and ethanol solutions were used to generate a PCA with each sensor as a 
new row of the PCA. The resulting PCA shows distinguishable groupings for the 
differentiation of the organic solvents.  

While delineation of classes (acetone/ethanol and the v/v percent of each) is shown, it is 

important to note that this PCA analysed the results across 10 different optical tongue 

devices.  A close look at SEM images from the 10 bimetallic sensors in Figure 4.3 revealed 

that, while within the specifications of the e-beam lithography tool (i.e. 20 nm spatial 

resolution), the X-Y distances between the two metals was slightly different in each device. 

Given the high sensitivity of plasmonic nanostructures to their near-field environment, such 

minute misalignments can result in sensitivity differences from sensor to sensor [51-52], and 

this is confirmed by simulation in Figure 4.4. Additionally, the positioning between the Al 

and Au nanostructures can effectively alter the full surface wettability and segregation 

properties, which are intended to be used as part of the surface chemistry modifications 
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within this design for a plasmonic tongue [53]. This is because the distribution of 

hydrophobic and hydrophilic groups is dependent on the position of the metals and their 

uniquely modified surface chemistries within the array [53]. Thus, the spread of point within 

each class in the PCA is most likely attributed to this fabrication resolution. Regardless, the 

PCA shows clustering of the different solutions by combining the response from three 

sensing regions (even across 10 different tongue devices), which constitutes the very basic 

requirement for the development of an artificial tongue. 

4.4.3 Whisky Differentiation  
 
To further demonstrate the capabilities of bimetallic tongue, the ten sensor arrays (as shown 

in Figure 4.3) were tested with seven whiskies with identical alcohol contents (40%), a 40% 

vodka, and 40% ethanol in water, with water as the control (as shown in Table 4.1). This 

test was performed on each of the bimetallic tongues, individually, to minimise the variance 

between sensors that would increase the noise within the data.  

 

First, the PCA resulting response from the three sensors that the bimetallic tongue E2 

comprises of will be compared to that of the equivalent six sensors that make-up the 

monometallic tongue using A1 and A6. Then, the resulting PCAs from all 10 bimetallic 

sensor arrays will be compared to one another to examine the effects of the different ‘within-

spec’ alignments between the metal arrays. 

4.4.3.1 Monometallic Sensor Array v. Bimetallic Sensor Array 
 
The resulting PCA for the first two principal components for monometallic (elements A1 

and A6 from Figure 4.3) and bimetallic (element E2 from Figure 4.3) sensing arrays are 

shown in Figure 4.11a and Figure 4.11b, respectively. The colours and symbols used in the 

PCA are identified by the first column of Table 4.1. To demonstrate the effect of adding 

more partially-selective responses of additional sensors to the analysis, PCA was calculated 

using the transmission peaks from the columns in the data matrices corresponding to (i) Al 

and Au, only; (ii) Al, Au, Al-HMDS, and Au-DT; and (iii) Al, Au, Al-HMDS, Au-DT, Al-

PEG, and Au-PFDT. The boxed region in (iii), which contains the alcohol solutions, is 

enlarged in (iv). Similar to the organic solvent tests, further delineation of class (clustering 

of each solution and increasing distance between clusters) occurs as more elements are added 

to the PCA.  
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Figure 4.11: 2D PCA for whisky differentiation. This figure shows scatterplots of the first 
and second principal components of the plasmonic peaks from an optical-tongue sensor 
consisting of (a) monometallic Au and Al sensors (elements A1/A6 from Figure 4.3) and (b) 
bimetallic arrays of Au/Al (element E2 from Figure 4.3) as the responses from more sensors 
are added to the PCA: (i) Al and Au; (ii) Al, Au, Au-DT, and Al-HMDS; and (iii) Al, Au, Au-
DT, Al-HMDS, Au-PFDT, and Al-PEG. (iv) Zoomed-in plot of the box from (iii) to show 
more closely the clustering of and separation between the whiskies in the PCA. For 
identification of the solutions, the colours of and symbols correspond to Column 1 of Table 
4.1. 

To further exhibit the achieved clustering and delineation of class, the first (PC1), second 

(PC2), and third (PC3) principal components for all chemistries (as shown in Figure 4.11 

a(iii) and Figure 4.11 b(iii), representing >95% variance) are shown in Figure 4.12 for the 

(a) mono- and (b) bimetallic arrays. The inset in each figure shows a magnified view of the 

region of the PCA containing only the alcohol elements.  

 

 
Figure 4.12: 3D PCA for whisky differentiation. Scatterplots show the PCA results using 
all 6 partially-selective responses from the optical tongue consisting of (a) 6 monometallic 
sensors (A1/A6) and (b) 3 bimetallic sensors (E2). (right) Zoomed-in plot of the boxed region 
indicated in the corresponding PCA to the left. For identification of the solutions, the colours 
of and symbols correspond to Column 1 of Table 4.1. 
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Similar to the organic solvent PCA above, it is observed that as the responses from more 

partially-selective elements are added to the PCA, further clustering occurs among responses 

corresponding to the same solution and further separation occurs between the clusters 

corresponding to different solutions. 

 

 
Figure 4.13: PCA scree plots from (a) mono- and (b) bimetallic tongues for whisky 
differentiation.  

Sensor performance is determined by the dimensionality of the PCA, the distance between 

the groupings, and ‘tightness’ of the groupings. The dimensionality is measured by the 

number of components required to account for 95% of measurement variance, as shown in 

Figure 4.13a and Figure 4.13b. For the plasmonic tongue comprised of six monometallic 

sensors (A1/A6), two dimensions (principal components) contained >95% variance; and for 

the plasmonic tongue comprised of three bimetallic sensors (E2), >95% of the variance was 

spread over three dimensions. The overall difference between the cumulative variance of 

monometallic and bimetallic tongues with two principal components is very small. In both 

cases, the important qualitative point is that the PCA algorithm shows distinct clustering of 

the different test solutions. However, the main difference between the monometallic and 

bimetallic tongues is best explained by observing what happens when comparing the device 

classification capabilities based on using one versus two principal components. 

 

To better understand how each partially-selective element in the sensing array affects the 

PCA, the resulting coefficients for the first (PC1), second (PC2), and third (PC3) principal 

components for the monometallic (A1/A6) and bimetallic (E2) whisky tongues are shown in 

Table 4.3. These PCs are derived from using the full transmission peak response matrix for 

the monometallic and bimetallic tongues (i.e. all 6 partially-selective responses). 
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Table 4.3: Coefficients for the first, second, and third principal components of the 
monometallic and bimetallic whisky tongues (using the full tongue arrays consisting of 
all 6 and all 3 sensing regions, respectively). 

 𝑃𝐶 Al Au Al-HMDS Au-DT Al-PEG Au-PFDT % variance 

monometallic 

(A1/A6) 

1 0.341 0.667 0.213 0.349 0.325 0.407 83.1 

2 0.515 -0.568 0.582 0.019 0.269 -0.034 13.0 

3 -0.236 0.223 0.081 -0.437 0.725 -0.414 2.1 

bimetallic 

(E2) 

1 0.215 0.673 0.474 0.397 0.088 0.333 63.9 

2 0.454 -0.467 0.390 -0.015 0.648 -0.057 30.7 

3 0.087 0.473 -0.531 -0.367 0.593 0.024 2.7 

 

 

In both PCAs (mono- versus bimetallic) the pattern of water versus whisky and 

ethanol/vodka versus whisky is largely similar. W1 (GlenfiddichÒ 12y) in particular gives a 

markedly different signal to the other spirits tested. Analysis of the principal components in 

each tongue give an indication of the elements contributing to each PC. For the monometallic 

tongue, PC1 is from the transmission peaks corresponding to the Au nanostructures, 

particularly Au and Au-PFDT that separate water from ethanolic solutions. Al-HDMS 

contributes to the PC2, along with Al which has the most separation of the whiskies/controls. 

In the bimetallic tongue, many regions contribute to the PC1, but PC2 is dominated by Al 

and Al-PEG, demonstrating that by combining the surface chemistries in a single device, 

very different behaviour is observed.   

 

In this sensor configuration, it is hypothesised that the organic aromatic components in the 

whiskies (phenols, terpenes and vanillin) and aliphatics (lactones) interacting with the bare 

or coated metal surfaces, as well as factors such as pH/ionic strength will all contribute to 

the subtle changes seen on the sensor chips. 
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Figure 4.14: LDA classification of whisky using (a) mono- and (b) bimetallic tongue 
devices. For both analyses, (i) shows the full LDA and (ii) shows a zoomed in LDA of only 
the alcoholic solutions. For the monometallic device, classification had 100% accuracy. W4 
and W5 are well separated in Score 3 (1.1%). For the bimetallic device, classification had 
99.7% accuracy (W3 and W5 had one point misclassified). W4 is well separated out by Score 
3 (1.9%). The ellipses are one standard deviation.  

After analysing the PCA and clustering capabilities of both mono- and bimetallic tongues, 

it was concluded that both tongues are able to cluster and are sensitive to the functional 

groups present on their surface. However, bimetallic tongues are more sensitive to the 

functional groups on the surface while providing similar clustering capabilities. To 

investigate whether full classification was possible, linear discriminant analysis (LDA), a 

supervised technique, was applied to the data to generate new “scores” (in a similar 

methodology to PCA) to maximise separation between known clusters whilst minimising 

variance within each cluster [54]. Both the mono (Figure 4.14a) and bimetallic (Figure 

4.14b) tongues could classify (using leave-one-out cross validation to test accuracy) 100% 

and 99.7% of the data, respectively. Although the bimetallic tongue performed fractionally 

worse than the monometallic tongue (confusing one instance of W3 for W5), this was 

compensated for by the bimetallic device in its ability to provide two signals from one 

measurement and therefore fewer measurements required to collect the data. 
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4.4.3.2 Analysis of 10 Bimetallic Sensor Arrays 
 
Examination of the effects of ‘within-spec’ fabrication alignment of the bimetallic tongue is 

best understood by comparing and analysing all 10 bimetallic tongues shown in Figure 4.3. 

The PCA, scree plots, and LDA for each sensor array are shown in Figure 4.15, Figure 

4.16, and Figure 4.17, respectively. 

 

Applying the same critical analysis as in the previous section, it can be observed regardless 

of any ‘within spec’ differences in alignment for the bimetallic tongue sensors, delineation 

and differentiation are achieved. However, some of the bimetallic tongues performed better 

than others. Classification accuracy (using leave-one-out cross validation to test accuracy) 

across all ten tongues ranged between 97% and 100% (see Table 4.4). As previously 

mentioned, due to the relatively close proximity of the nanostructure design, the ‘within-

spec’ misalignment from the fabrication for the bimetallic tongues may result in undesired 

coupling between the individual structures and may additionally alter their full surface 

wettability and segregation properties. It is probable that this is the reason for the difference 

in both PCA and LDA between the different bimetallic tongues. Regardless, the bimetallic 

devices demonstrate the capability of distinguishing between different alcohols, using half 

the number of elements of the comparable monometallic tongue. 
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Figure 4.15: PCA plots for 11 whisky tongues. Zoomed in PCA of the first and second 
principal components (all six chemistries) for the monometallic (6 sensors) and all 10 
bimetallic (3 sensors) tongues (SEMs shown in Figure 4.3). For better viewing, water is not 
shown and the PCAs are all zoomed in to the area containing the dataset for the eight 
alcoholic solutions. For identification of the alcohols from the key, see Table 4.1. 
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Figure 4.16: Scree plots for 11 whisky tongues. The corresponding scree plot for the PCAs 
of the monometallic and all 10 bimetallic tongues shown in Figure 4.15. The blue line 
denotes 95% cumulative variance. 
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Figure 4.17: LDA for 11 whisky tongues. The corresponding LDA plots for the 
monometallic and all 10 bimetallic tongues shown in Figure 4.15.  
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Table 4.4: Classification accuracy from LDA using leave-one-out cross validation to test 
accuracy. 
 

Device % Accuracy Instances of Misclassification 
A1/A6 100.0% - 

E2 99.7% W3 as W5 

B2 100.0% - 

C2 100% - 

C3 99.7% W2 as W3 

C4 99.0% W5 as W3 (x3) 

C6 100% - 

D3 99.3% W4 as W5; W3 as W5 

E5 100.0% - 

F2 97.0% W3 as W4 (x8); W4 as W7 

F6 99.3% W1 as W2; W6 as W4 

 
 

4.5 Conclusion and Future Work 

This Chapter presented a bimetallic approach for the development of an optical tongue 

device. Compared to other devices which produce only one partially selective signal per 

element, each element of the bimetallic device provides two partially-selective signals. This 

unique feature effectively halves the number of elements necessary to provide the same 

amount of data as previous devices. Thus, device size and data acquisition time are halved 

while still providing dataset clustering upon PCA and successful classification with LDA. 

Additionally, the partial-selectivity to organic solvents is demonstrated to be tuned by 

altering the surface chemistry of the two different metals of the nanostructures within each 

element of the sensing array. To develop a high quality nanoplasmonic tongue for a given 

application, simple alterations to the surface ligands present in a region or change of metallic 

base components of one (or both) of the superimposed nanoarrays can yield new moieties 

with unique chemical responses. The technology presented here has applications in a number 

of fields that rely on assays for identification/classification of mixtures with multiple 

analytes, such as point of care diagnostics, food and drink processing, environmental 

monitoring, and the defence industry. 
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Chapter 5: Plasmonic Nano-Apertures as Dual-State, Nanopixels for 
High-Density Micro-Image Encoding 

5.1 Introduction 

From painted artwork to spectral filters for modern image displays, discrete colour 

separation from white light is key for our ability to record and view optical information. 

Colour separation in these instances is typically provided by organic compounds, dyes, and 

pigments that absorb and scatter particular wavelengths of light, resulting in distinct colour 

profiles. Alternative to absorptive dyes, structured coloured systems based on engineered 

nanophotonic materials have recently emerged [1-16].  

 

As briefly discussed in Chapter 1, plasmonic colour filters based on positive nanostructures 

[4, 8, 10, 12-13, 17-19], filters based on nano-apertures [2, 5, 20-22], and filters based on 

combinations of both of these designs [9, 15-16] are among these recent advances. Each of 

these approaches has a distinct fabrication and geometrical solution for achieving colour 

nanopixels for selective white-light separation. Plasmonic colour pixels offer several 

advantages over their microscale, dye-based counterparts. Most notably, the use of 

plasmonics allows for (a) ultra-dense, ultra-thin pixels arrays due to their subwavelength 

dimensions and (b) images that are environmentally stable and do not degrade or fade over 

time from radiation exposure. As a result, plasmonic colour filters have emerged as new 

technological solutions for subwavelength colour printing [1, 4, 8-10, 13], anti-

counterfeiting measures [23-24], and red-green-blue splitting for image sensors [2, 21, 25-

26]. This chapter explores a new application of polarisation-controlled plasmonic filters’ 

dual-output, full-colour optical image encoding. 

 

Recent developments in the engineering and manipulation of materials on the nanoscale have 

given rise to a number of new techniques with the potential for physically encoding images 

and data into optically readable surfaces and volumes [27-28]. Researchers have 

demonstrated novel 2D and 3D techniques (such as semiconductor quantum dots [29-31], 

graphene [32], and super-resolution lithography techniques [33-38]) that may enable the next 

generation of optical storage and encoding techniques. Additionally, plasmonic filters and 

particles are also among these techniques where optical data storage has been demonstrated 

alongside their abilities to encode images [27-28, 39-41]. 
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In this Chapter, a new approach to high-density image encoding is demonstrated using full 

colour, dual-state plasmonic nanopixels based on polarisation-dependence. As opposed to 

previous studies that employed colour or position switching in fixed images [18, 32], this 

work shows two arbitrary full-colour images that can be encoded into a single array of pixels. 

Based on the EOT phenomenon discussed in Chapter 1, asymmetric cross-shaped nano-

apertures in thin films of Al are used to encode two data sets into a single set of pixels for 

the first time, generating vivid, near-full sRGB (standard Red Green Blue colour space) 

colour images and codes with polarisation-switchable information states. Using a standard 

optical microscope, the smallest ‘unit’ that can be read relates to 2 × 2 nano-pixels (370 nm 

× 370 nm). As a result, dual-state nano-pixels may prove significant for long-term, high-

resolution optical image encoding, and counterfeit-prevention measures.  

 

The majority of work detailed in this chapter was published by E. Heydari, J.R. Sperling, 

S.L. Neale, and A.W. Clark (2017) [6]. 

5.2 Materials 

The materials used are available in Chapter 2. 

5.3 Methods 

5.3.1 Fabrication of Nano-Aperture Arrays 
 
Devices were fabricated using electron-beam lithography, reactive ion etching, and 

inductively coupled plasma deposition as covered in Nano-Aperture Fabrication (Chapter 

2.5.6). 100 nm of Al was deposited onto a 500 µm thick borosilicate substrate by electron-

beam evaporation. A Vistec VB6 UHR EWF electron-beam lithography tool was used to 

pattern a ZEP520A etch mask. Nano-apertures were etched into the Al using SiCl4 gas in an 

Oxford Instruments System 100 reactive ion etch tool. An Oxford Instrument System 100 

plasma deposition tool was then used to deposit 150 nm of SiO2. 

5.3.2 Optical Image Capturing 
 
Bright-field images of the pixel arrays were captured using a Zeiss Axio Imager A1 optical 

microscope with a Sony NEX-F3 camera. The Zeiss Epiplan-Neofluar objective lenses used 

included a 20 x 0.5 NA, 50 x 0.5 NA, and 100 x 0.75 NA. 
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5.3.3 Optical Transmission Spectra 
 
Transmission spectra were collected over the visible spectrum using a linear film polariser 

with both a Shimadzu UV2101PC spectrophotometer and a custom-built 

microspectrophotometer. For the microspectrophotometer, a 10 x 0.5 NA objective was used 

to couple the transmitted light into an optical fibre attached to a StellarNet 

Microspectrophotometer (StellarNet Blue Wave). 

5.3.4 Angled Measurements 
 
3-D printed wedges at 5°, 10°, 15°, 20°, 30°, and 45° to normal were used to capture 

transmission spectra and optical images. 

5.3.5 FDTD Simulations 
 
FDTD simulations were modelled using Lumerical FDTD software. Further details on the 

parameters can be found in Chapter 5.4.1. 

5.4 Results and Discussion 

5.4.1 FDTD Simulations of Nano-Pixel Design 
 
The colour pixels were designed as two nano-slit-apertures combined to form a nano-cross-

aperture in a thin Al film. Al was chosen for its wide spectral plasmonic band, which can be 

tuned from the UV to the NIR, its low-cost, and its compatibility with current semiconductor 

manufacturing processes [5-6, 42]. 

 

Figure 5.1 shows 5 nm resolution FDTD simulations of the electric field generated by 600 

nm plane-wave source linearly polarised parallel to (a) the X-arm and (b) the Y-arm for a 

nano-aperture array in 100 nm thick Al deposited on glass. The source was transmitted 

through the glass-base of the sample as indicated by the red arrow labelled l in Figure 

5.1a(i) and Figure 5.1b(i). The nano-aperture simulated has an arm length of 160 nm in X 

and 170 nm in Y, a periodicity of 310 nm in X and 300 nm in Y, and arm widths of 20 nm. 

The simulation was periodic in X-Y and perfectly-matched-layer (PML) in Z, and the 

dielectric values for both the glass and Al were obtained from the Palik library [43]. 
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Figure 5.1: FDTD simulation of nano-pixel electric field.  FDTD simulation (5 nm mesh, 
periodic in X-Y and PML in Z, l = 600 nm plane-wave light source) of nano-pixel array 
with arm lengths Lx = 160 nm, Ly = 170 nm; arm widths W = 20 nm; and period Tx = 310 
nm, Ty = 300 nm etched into H = 100 nm of Al deposited on glass. The polarisation of the 
incident light source is indicated by E. The glass base and Al were simulated with dielectric 
constants from the Palik library [43]. (a) Linearly polarised light parallel to the x-axis 
generates a strong electric field in the y-arm as shown by the (i) cross section of the electric 
field in a 3D rendering of the simulated structure and (ii) the electric field at the surface of 
the Al. Whereas (b) linearly polarised light parallel to the y-axis generates a strong electric 
field in the x-arm as shown by the (i) cross section of the electric field in a 3D rendering of 
the simulated structure and (ii) the electric field at the top surface of the Al. It is important 
to note that the electric field in the arm parallel to the incident light is equal to that of the 
background, indicating that the two polarisation states are virtually independent of one 
another with no cross-talk. 

As seen in the simulation results, linearly polarised light parallel to the X-arm generates a 

strong electric field in the Y-arm and linearly polarised light parallel to the Y-arm generates 

a strong electric field in the X-arm. It is important to note that the electric field in the arm 

parallel to the incident light is practically equal to that of the background, indicating that the 

two polarisation states are virtually independent of one another. The cross-structure itself 

thus enables polarisation dependence due to the selection rules for light propagating through 



Chapter 5: Plasmonic Nano-Apertures as Dual-State, Nanopixels for High-Density Micro-Image Encoding 
 

 
J.R. Sperling 2019  122 

a nano-scale slit, which requires light to be perpendicular to the length of the slit. As a result, 

the two perpendicular arms can support their own resonance properties that can be tuned 

independently of one another, with zero cross-talk (colour-leak) between modes. 

 
Figure 5.2: FDTD simulation of nano-pixel arm-length and periodicity.  FDTD simulation 
(5 nm mesh, periodic in X-Y and PML in Z, linearly-polarised plane-wave light source) of 
the effect of varying periodicity (T) and arm-length (A) of a nano-pixel array etched into 100 
nm of Al on glass. (a) Using a set arm-length of 200 nm and increasing the period from 295 
nm to 315 nm results in a red-shift in the plasmonic peak and decrease in transmission. (b) 
Using a set period of 315 nm and increasing the arm-length from 185 nm to 200 nm yields 
a red-shift in the plasmonic peak and increase in transmission. For (a) and (b), part (i) is a 
rendering of the surface simulated and part (ii) is the transmission spectra. The glass base 
and Al were simulated with dielectric constants from the Palik library [43]. 

In Figure 5.2, the effects of changing (a) the period between nano-pixels and (b) the arm-

length of the nano-pixel were explored by FDTD simulation (5 nm mesh, periodic in X-Y, 

PML in Z, linearly polarised plane-wave light source from 400 nm to 1000 nm). As can be 

seen from the simulation results, both the arm-length (perpendicular to the electric-field) and 

periodicity (parallel to the electric-field) of the nano-apertures affects the transmission. 
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Increasing the period from 295 nm to 315 nm results in a red-shift in the transmission peak 

and a decrease in transmission. Increasing the arm-length from 185 nm to 200 nm results in 

a red-shift in the transmission peak and an increase in transmission. Based on these 

simulations, it can also be concluded that variations to arm-length result in a larger peak-

shift than variations to period. 

5.4.2 Fabricated Nano-Pixels 
 
With the trends determined by FDTD in mind, the colour pixels were then fabricated on a 

borosilicate substrate using a combination of metal-evaporation, electron-beam lithography, 

and reactive ion etching, followed by inductively coupled plasma deposition of 150 nm of 

SiO2 as a protective layer. Acting as a filter for white light, the colour response of the 

individual pixels was tuned by independently altering the arm-length and periodicity of each 

arm of the cross structure (Figure 5.3 a,b).  

 

To determine the etch-rate for the nano-size structures, a variety of etch-times were tested. 

Figure 5.3a and Figure 5.3b show polarisation-switchable colour palettes using etch times 

of (i) 70 seconds and (ii) 120 seconds. For the colour palettes in Figure 5.3: Moving from 

top to bottom, the length of the x-arm is designed to increase from 120 nm to 220 nm, in 5 

nm increments, while the period in the x-axis is designed to decrease from 350 nm to 250 

nm, in 5 nm increments. Moving from left to right, the length of the y-arm is designed to 

decrease from 220 nm to 120 nm, in 5 nm increments, while the period in the y-axis is 

designed to increase from 250 nm to 350 nm, in 5 nm increments. As a result, the top-left 

half and bottom-right half of the palette are mirrored pixel-arrays, rotated by 90 degrees as 

indicated by the white diagonal line. 
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Figure 5.3: Effects of etching. (a,b) Bright-field microscope images showing a switchable 
colour palette with different colour outputs linked to different white-light polarisations with 
(i) 70 second and (ii) 120 reactive ion-etch times. For (a) and (b) the electric field is 
polarised in the X-axis and Y-axis, respectively.  The geometry and period of each pixel 
array have been altered across the palette to produce a colour range that spans the visible 
spectrum, and where both extremes of the range can be encoded into the same pixel. The 
pixel arrays are labelled A1 – U21. Moving from top to bottom the arm length in the x-axis 
is increased from while the x-axis period is decreased. Moving from left to right the arm-
length in the y-axis is decreased while the y-axis period is increased. The arm width is fixed.  
The pixel arrays on either side of the diagonal line are the inverse of one another (i.e. the x-
axis period and arm-length of the array in the top-left of the palette have the same values as 
the y-axis period and arm-length of the array in the bottom-right). SEM images of regions 
(c) A1/U21, (d) D1/U18, and (e) A21 of the colour palettes shown in (a) and (b). As expected, 
over-etching results in a red-shift of the plasmonic filter and drastically alters the shape of 
the nano-pixel. Figure parts a(i) and b(i) are reprinted from Heydari, et.al. (2017) [6] 

The two palettes seen in Figure 5.3a(i) and Figure 5.3b(i) are in the same physical space, 

with each different palette activated by transmitted white-light polarised at 0-degrees and 

90-degrees. Figure 5.3 a(ii) and Figure 5.3 b(ii), just like the aforementioned palettes, 

occupy the same physical space and are activated by transmitting light polarised at 0-degrees 

and 90-degrees. As can be seen from the colour palettes, both the arm-length (perpendicular 

to the electric-field) and periodicity (parallel to the electric-field) of the nano-apertures 

affects the pixel colour. Increases to either value results in red-shifting, which matches the 

pattern seen in the simulation Figure 5.2. The sharpness of each resonance and transmission 

efficiency are both dictated by the periodicity (where the resonance becomes broader with 

decreasing inter-pixel distance and longer arms let through a higher percentage of light). As 

a result, there is a compromise between transmission percentage, spectral width, and peak 

position. 

 

As indicated by the actual colour of the palettes and confirmed in the SEM images (Figure 

5.3 c-e) of the selected pixels from the (i) 70 second and (ii) 120 second etches, a longer 

etch-time enlarges the nano-aperture width and results in a red-shifted palette. The nano-

apertures also begin to merge, and shape-integrity is lost. Thus, it was concluded that in 

order to produce the widest range of colours and maintain the individuality of each nano-

cross, the etch time of 70 seconds was warranted. 

5.4.3 Analysis of the Nano-Pixel Colour Palette Spectrum 
 

For the 70 second etched samples, the actual arm-lengths were measured by SEM to range 

from 112 ± 5 nm to 219 ± 9 nm [SD] with arm widths of 21 ± 2 nm. These dimensions 
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produced a palette encompassing the visible spectrum from deep blue to magenta. This 

palette demonstrates a vast selection of colours that can be accessed using the 

aforementioned dimensional constraints. However, it is by no means a demonstration of all 

the colours that can be created. Choosing a minimum pixel period of 250 nm allows the arm-

length of the neighbouring pixel to be increased up to 220 nm without the two adjacent pixels 

merging. This translates to the widest colour gamut available while still allowing the ability 

to encode both colour extremes of magenta and deep-blue into a single pixel geometry. 

 
Figure 5.4: Nano-pixel properties. (a) Normalised x-arm transmission spectra selected 
from the pixel arrays shown, and labelled, in Figure 5.3b(i), to best demonstrate the colour 
range achievable across the visible spectrum. (b) The same selection of pixel arrays plotted 
on a CIE XY chromaticity diagram. The sRGB colour space is marked by the white triangle. 
This figure is reprinted from Heydari, et.al. (2017) [6] 

Figure 5.4 shows spectral analysis of 22 nano-pixel arrays selected from Figure 5.3b(i) that 

best represent the colour range attainable using the cross-shaped nano-apertures. For a 

majority of the palette, the high-frequency mode either occurs below 400 nm or is so weak 

that its presence does not affect the perceived colour output. As a result, increasing the arm-

length or period results in a predictable red-shift of the spectra and perceived colour output. 

However, the pixel arrays with larger transmission arm-lengths and periods can have a strong 

mode between 400 nm and 450 nm. This is the case for the magenta outputs. While the low-

frequency peak occurs between 650 nm and 700 nm (red), the strong high-frequency (blue) 

peak results in a perceived mixture of the two colours (magenta). Various combinations of 

different arm-lengths and periodicities have the potential to encode any single pixel with any 
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two visible colours. For practicality purposes, only a selection of these combinations has 

been demonstrated. The CIE XY chromaticity diagram (Figure 5.4b) of the 22 selected 

pixels gives a clear representation of the colour range accessible using the aforementioned 

constraints. Coverage is shown extending across the extremities of the majority of the sRGB 

colour-space (marked as a white triangle on the figure). 

5.4.4 Nano-Pixels for Dual-Image Printing and Encoding 
 

Each pixel holds potential for ultra-high-resolution image ‘printing’ at the nano-scale, 

facilitating print resolutions far beyond the diffraction limit [10]. The dual-colour 

capabilities for each pixel also makes them capable of encoding two full-colour image states 

[5-6, 44] into the same unit area using the same set of nano-pixels.  

 

Figure 5.5 shows an example of the ability of these nano-pixels to produce dual, 

polarisation-dependent information states in the same space. Bright-field microscopy (20x 

objective) reveals images of two distinct colour patterns produced from the same pixel array 

as designed by E. Heydari and fabricated by both E. Heydari and J.R. Sperling [6]. When 

light is transmitted through this filter, y-axis polarised light shows micro-images of the 

University of Glasgow crest and x-axis polarised light shows the University’s main building. 

The ‘arms’ of each individual cross in the micro-image have been tuned to transmit the 

appropriate colour for each polarisation state. Since each nano-pixel can be tuned to produce 

any two visible colours, this technique can be extended to encode any two arbitrary, full-

colour images or information sets in the same area using the same pixels. As can be seen in 

the colour palettes of Figure 5.3 and the micro-images of Figure 5.5, there is no colour-

leaking between polarisation states. 

 

The nano-pixel design allows for optically readable storage at the diffraction limit that, 

unlike magnetic or electronic methods, can provide stable, long-term data retention in 

scenarios where heat, humidity, or radiation damage may be of concern. This makes them, 

along with other nanophotonic solutions, attractive additions to the field of information 

storage and display [28, 39]. Compared to devices with single resonance pixels, the dual-

state capabilities of these surfaces have double the information density. Additionally, the 

colour-based pixels allow for the stored information to be ‘read’ using white light, a standard 

microscope, and the human eye. The ability to encode two colour images in the same area 

with nano-scale resolutions may also make this technology appealing for the creation of anti-

counterfeiting labels for bank notes and high-valued goods because the high-resolution and 
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dual-state capabilities make it much more difficult to forge than currently implemented 

techniques. 

 

 

 
Figure 5.5: Bright-field microscope images showing the switchable nature of the 
information displayed by a single set of nano-pixels. (a) Bright-field transmission images 
(20x objective) showing the full-colour pictures produced by the array when illuminated 
from the rear with white-light at different polarisations. Switching the polarisation of light 
causes the image displayed in the far-field to switch. (b) Schematic showing how the images 
were taken. A white-light source passes through a linear polariser before being selectively 
transmitted through the nano-apertures (pixels). At each polarisation state the aperture 
transmits colour corresponding to the desired display pattern. This figure is from Heydari, 
et.al. (2017) [6] 

As previously discussed, a wide variation in periodicity is required to achieve a full colour 

palette. Therefore, the pixel density (measured in pixels-per-inch or PPI) varies with colour. 

The PPI ranges from 101,599 PPI at its most dense to 72,568 at its most sparse. These values 

represent the number of physical apertures in a single inch, in any one axis (the periods in X 

and Y may differ depending on the desired two-colour pixel response). Since each aperture 
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has two arms that can be independently encoded with its own colour profile, the PPI range 

can be effectively doubled in terms of useful image encoding density. However, in order to 

determine the ultimate usable capacity of this system, the size limit below which individual 

groups of pixels cannot be resolved using white light must be determined. 

 

 
Figure 5.6: Bright-field microscope images showing the smallest discernible pixel array 
size by standard microscopy. A nano-pixel array using 120 nm x 220 nm designed pixels 
(measured by SEM as 112 ± 5 nm by 219 ± 9 nm) of (i) 10x10, (ii) 8x8, (iii) 6x6, (iv) 4x4, (v) 
2x2, (vi) 2x1, and (vii) 1x1 pixel(s) with a period in (x,y) of (350 nm, 250 nm). The smallest 
discernible pixel array size is 2x2 nano-pixels using a 100x objective. 

Figure 5.6 shows seven array sizes (10x10, 8x8, 6x6, 4x4, 2x2, 2x1, and 1x1 nano-pixels) 

of the magenta-blue pixel from the colour palette. The smallest discernible nano-pixel array 

size using white light and a standard optical microscope (100x objective) was found to be 

2x2 nano-pixels. This corresponds to a resolution of 370 nm by 370 nm. 

 

The smallest discernible component was then used to create ultra-high-density QR codes 

encoded with 2 layers of information, as shown in Figure 5.7. QR codes are comprised of a 

matrix of contrasting modules, the layout of which define a 2D barcode. By using simple 

Boolean logic (Figure 5.7a), two different QR codes images were used to generate 

overlapping layers of shared foreground (yellow/blue), shared background (blue/yellow), 

QR1-only (always yellow), and QR2-only (always blue) images. These QR codes have 

feature sizes beyond the diffraction limit that are nevertheless visible using a simple optical 

microscope.  
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Figure 5.7: Bright-field and SEM images of a switchable QR-code. (a) Boolean logic used 
to create the pixel regions for the foreground (in b(i)/b(ii) yellow/blue), background (in 
b(i)/b(ii) blue/yellow), QR1-only (always yellow), and QR2-only (always blue). (b) Bright-
field images (100x objective) of a 16 µm QR code (20 µm with border included) taken using 
a 100x objective lens when the illuminating white-light is polarised along (i) the X-axis and 
(ii) the Y-axes of the code. A different QR code is visible at each polarisation state. To view 
the information stored within the dual-state QR code, a QR reader capable of scanning 
reversed contrast codes, such as I-nigma, is necessary (bright patterns on dark 
backgrounds). (c) SEM images showing the composition of the QR-code. (i) A wide-area 
image showing the pattern present in the top-right corner of the QR code. (ii) The smallest 
unit that can be resolved optically, 2x2 pixels with a period of 250 x 250 nm. These 2x2 units 
formed the building blocks of the QR code. SEM were taken before the deposition of the SiO2 
layer. Parts (b) and (c) from this figure are from Heydari, et.al. (2017) [6]. 

The dual state code in Figure 5.7b has outputs relating to the homepage URLs of Advanced 

Functional Materials (where this was published) and the University of Glasgow School of 

Engineering. The 16 µm x 16 µm codes (the smallest possible using the 2x2 pixel per QR-

module limit with a periodicity of 250 nm between pixels) are clearly visible using a 100x 
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objective lens. Both information outputs can be easily decoded using a mobile phone QR-

reader application. At this level, colour separation from immediately adjacent pixel 

groupings is maintained, as is the polarisation-switching capability (green boxes marked on 

Figure 5.6b(i) and Figure 5.6b(ii)). This visible-pixel density relates to an area of 370 nm 

x 370 nm for the smallest features demonstrated here (period and arm-length). At the time 

of its publication, this was believed to be the smallest, most information dense, optically 

resolvable QR codes demonstrated to date. 

5.4.5 Angle-Dependence of Nano-Pixel 
 
As previously discussed in Chapter 1, EOT is highly dependent on the way the incident light 

couples with the nano-slitted, plasmon-supporting material. Changes to the angle of incident 

light alters the way light both couples with the structured surface and gives rise to the SPR. 

Therefore, an understanding of how the angle of incident light affects the transmission (and 

thus visible colour) is necessary in order to use these dual-state nano-pixels for any potential 

applications (such as anti-counterfeiting).  

 

Figure 5.8 and Figure 5.9 shows the relationship between the angle of incident light with 

respect to the actively polarised ‘arm’ for the longest and shortest arm-lengths used in the 

colour palette, respectively. For long-arm nano-pixels, changes to the angle of incidence 

result in red-shifting of the transmission when the active arm is parallel to the axis of the 

angle of incidence and blue-shifting when the active arm is perpendicular to the axis of the 

angle of incidence. Comparing the shift caused by the same change in angle of incidence, 

the red-shift when the active arm is parallel to the axis of the angle of incidence is greater 

than the blue-shift when the active arm is perpendicular. For short-arm nano-pixels, changes 

to the angle of incidence when the axis is in parallel and perpendicular to the arm-length 

result in red-shifting of the transmission. The transmission shift that occurs is dependent on 

the orientation of the polarisation of light to the angle of incidence, with a greater shift 

occurring when the axis of the angle of incidence is parallel to the polarisation of light. 
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Figure 5.8: Angle-dependence response for long-arm nano-pixels. This figure shows how 
the angle of incident light (0°, 5°, 10°, 20°, 30°, and 45°) affects the transmission response 
of the active long-arm (measured by SEM as 179 ± 3 nm by 18 ± 1 nm [SD]) of a nano-pixel 
array when the angle of incident light is altered along the axis (a) parallel and (b) 
perpendicular to the active arm. For each sub-figure: (i) The transmission shift caused by 
increases in angle of incidence. (ii) Bright-field microscopy colour for 0°, 5°, 10°, and 45° 
incidence. (iii) Rendering of the nano-pixel array showing orientation of the pixels and the 
angle of incidence. (iv) SEM image of the nan-opixel array with orientation of the 
polarisation of incident light. (v) Plot for each angle of incidence of the nan-opixel array on 
the CIE XY chromaticity diagram. For long-arm nano-pixels, changes to the angle of 
incidence result in red-shifting of the transmission when the active arm is parallel to the 
angle of incidence axis and blue-shifting when the active arm is perpendicular to the angle 
of incidence axis. Comparing the shift caused by the same change in angle of incidence, the 
red-shift when the active arm parallel to the angle of incidence axis is greater than the blue-
shift when the active arm is perpendicular. 
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Figure 5.9: Angle-dependence response for short-arm nano-pixels. This figure shows how 
the angle of incident light (0°, 5°, 10°, 20°, 30°, and 45°) affects the transmission response 
of the active short-arm (measured by SEM as 92 ± 2 nm by 18 ± 1 nm [SD]) of a nano-pixel 
array when the angle of incident light is altered along the axis in (a) parallel and (b) 
perpendicular to the active arm. For each sub-figure: (i) The transmission shift caused by 
increases in angle of incidence. (ii) Bright-field microscopy colour for 0°, 5°, 10°, and 45° 
incidence. (iii) Rendering of the nanopixel array showing orientation of the pixels and the 
angle of incidence. (iv) SEM image of the nanopixel array with orientation of the 
polarisation of incident light. (v) Plot for each angle of incidence of the nanopixel array on 
the CIE XY chromaticity diagram. For short-arm nano-pixels, changes to the angle of 
incidence result in red-shifting of the transmission. The transmission shift that occurs is 
dependent on the orientation of the polarisation of light to the axis of the angle of incidence, 
with a greater shift occurring when the axis of the angle of incidence is parallel to the active 
arm. 

Figure 5.10 shows an example of the effect angle of incident light has on the dual-state 

encoded micro-images from Figure 5.5. When the polarisation of light is parallel to the axis 

of the angle of incidence (and thus perpendicular to the ‘active’ arm), increases from normal-

to-the-surface to +45 degrees results in red-shifting of the colours. When the polarisation of 

light is perpendicular to the axis of the angle of incidence (and thus parallel to the ‘active’ 
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arm), increases from normal-to-the-surface to +45 degrees results in a ‘brightening’ of the 

colours.  

 

 

 
Figure 5.10: Bright-field microscope images showing the incident light angle-dependence 
for switchable information displayed by a single set of nano-pixels. Bright-field 
transmission images showing changes in colour of the full-colour pictures from Figure 5.5 
as a result of changes to the angle of incident light for each polarisation state of the pixels. 
The orientation of the picture to the polarisation and angle of incident light both affect the 
colour of the picture. 

As discussed in Chapter 1.2.4.2, the dimensions of the aperture in the array determine the 

coupling wavelength and the periodicity of the apertures determines the interference 

between the front and back SPR modes. When the angle of incident light is changed, the 

effective dimensions and periodicity of the aperture array, as interfaced with the light is 

altered. Thus, the shift in colour with change in angle of incident light observed in Figure 

5.8, Figure 5.9, and Figure 5.10 can all be attributed to the altered interference patterns of 

the EOT and frontside and backside SPR modes. The largest effect of angle-dependence 

occurs when the electric field is parallel to the plane of tilt, but images are still visible, and 

polarisation-dependence still remains. 

5.5 Conclusion and Future Work 

In this Chapter, nano-pixel apertures to encode two full-colour information states (both 

images and codes) in the same unit area were demonstrated. This technology shows promise 
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for future use in the micro-encoding and nano-imprinting industries. As dual-encoded pixels 

that exhibit virtually no cross-talk between information states, possesses a high PPI 

(>100,000), and are resistant to damage by heat, UV, and water, this technology may also 

be useful as an alternative to ink-based techniques used in high-resolution printing and anti-

counterfeiting applications. When implemented for use as anti-counterfeiting measures in 

the printing of paper money, for example, the Al nano-pixel design will be subjected to the 

same day-to-day wear-and-tear of current bills in circulation. Transferring this technique to 

flexible surfaces is of particular interest, especially for this type of application. With this in 

mind, further research into the angle-dependence of the colour states and the effect of 

stress/strain/shear on nano-pixels built on a flexible surface is warranted. 
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Chapter 6: Preliminary Work: Dual-State SIBA/FRET Trap for the 
Study of Individual Proteins 

6.1 Introduction 

The study of biomolecule function within the human body is key to developing a better 

understanding of disease mechanisms, disease prevention, and drug discovery. Proteins, for 

instance, are significantly complex biomolecules that we know drive cellular function on the 

nano-scale. However, how each of these proteins operates remains unanswered, as we do 

not possess the technological tools to properly study and understand them on the nano-scale. 

For example, research has hypothesized that there is a link between Alzheimer’s Disease 

and proteins [1-2], but the ability to fully investigate this link is limited by our understanding 

of how the proteins function. As a result, our ability to develop new pharmaceutical 

interventions, diagnostic tests, and therapeutic treatments is limited. The two major 

challenges with studying proteins arise from the difficulties in (1) trapping them and (2) 

observing how they function at the nano-scale [3]. 

 

While optical tweezing is a powerful tool capable of manipulating single microscopic objects 

by exerting forces resulting from the momentum carried by light [4], it does not work well 

for nanoscale objects. When decreasing the size of the object of interest down to the 

nanoscale, being able to develop a stable potential capable of overcoming environmental 

fluctuations becomes challenging as it would require a high optical power focused onto a 

very small (i.e. diffraction limited) spot [3-4]. For most dielectrics, these high optical 

intensities are far beyond their damage threshold [4]. In order to avoid using such high 

powers, the rapidly decaying evanescent fields of nanoplasmonic structures have been used 

to focus the light beyond the diffraction limit (L<<lambda) [3-4]. However, due to 

photothermal effects, this could only be applied to nanoparticles higher than 100 nm. As a 

solution to the issues associated with photothermal effects in nanoplasmonic tweezing, 

devices based on “self-induced back action” (SIBA) effect were developed [3-10]. In these 

devices, the particle to be trapped plays an active role in the trapping mechanism by 

modifying the momentum of the plasmonic transmitted photons with which it interacts. 

Therefore, if the particle has been considered during the design of the trap, it can be used to 

promote an automatic back trapping by inducing a higher intensity when the particle is in 

the trap [3-10]. Therefore, the use of a SIBA device can resolve the first problem. 
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For proteins, conformational dynamics define function. A common way to understand the 

conformational dynamics of a protein is to use a Förster Resonant Energy Transfer (FRET) 

mechanism [11], which involves tagging the protein with two fluorescent labels. One tag is 

excited by a laser and the other tag experiences non-radiative energy transfer from the first 

tag, which is a distance-dependent effect. Measuring the photon response of the tags based 

on this distance-dependence provides vital information on the conformational dynamics of 

the protein [11]. However, the photons produced by single florescent tags using current 

trapping methods provide very little information before the tags bleach and switch off and 

there is low signal-to-noise. For example, using mNeonGreen as a donor, only 14 

photons/ms can be detected above background noise and photo-bleaching occurs between 1-

2 seconds [12]. Plasmonic enhancement has been demonstrated to improve signal-to-noise 

ratio and ‘enhance’ fluorescent molecules [13-17].  

 

Combining the concept of plasmonic sensing presented in Chapter 3 and Chapter 4 with the 

dual-state capabilities of the nano-pixel design presented in Chapter 5 has the potential to 

allow for the development of multi-purpose plasmonic devices. In this chapter, the dual-state 

nature of the nano-aperture structures from Chapter 5 are proposed for the trapping of 

biomolecules with one arm while simultaneously, yet independently, sensing with the other. 

While only preliminary work is covered, once successfully developed, these novel devices 

will aid the understanding of proteins which define biological and chemical pathways and 

thus benefit the fields of biology, chemistry, medicine, and pharmacy. Additionally, they 

will allow for the testing and creation of new disease screenings and drug therapies. 

 

Device design and characterisation were carried out at the University of Glasgow (UK). 

Single-photon measurements were carried out at University Hospital Jena (DE). 

6.3 Materials 

For the device setup, single-mode polarisation-maintaining fibre (PM-S405XP), half-wave 

plates, mirrors, filters, and lenses were all purchased from ThorLabs. 

 

Additional materials used are available in Chapter 2. 
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6.4 Methods 

6.4.1 Fabrication of Nano-Aperture Arrays 
 
Devices were fabricated using electron-beam lithography, reactive ion etching, and 

inductively coupled plasma deposition as covered in Nano-Aperture Fabrication (Chapter 

2.5.6). 100 nm of Al was deposited onto 500 µm thick borosilicate substrate by electron-

beam evaporation. A Vistec VB6 UHR EWF electron-beam lithography tool was used to 

pattern a ZEP520A etch mask. Nano-apertures were etched into the Al using SiCl4 gas in an 

Oxford Instruments System 100 reactive ion etch tool.  

6.4.2 Optical Transmission Spectra 
 
Transmission spectra were collected over the visible spectrum using a linear film polariser 

with a custom-built microspectrophotometer. A 10 x 0.5 NA objective was used to couple 

the transmitted light into an optical fibre attached to a StellarNet Microspectrophotometer 

(StellarNet Blue Wave). 

6.4.3 Single-Photon Detection Setup 
 
A custom inverted microscope optical setup was built for single-photon detection 

experiments. The optical diagram of the setup is shown in Figure 6.1. The device was 

inverted and placed on top of a polydimethylsiloxane (PDMS) reservoir filled with sample 

solution. Light from a 515 nm wavelength laser was coupled into a single-mode, 

polarisation-maintaining fibre (ThorLabs PM S405 XP) and a 20x objective was used to 

focus light (roughly 4 mW measured at the backside of the device) through the back-side of 

an inverted device, onto the nano-apertures. A half-waveplate was used to control the 

polarisation of laser light with reference to the device. The transmitted light was then focused 

onto single-photon detectors—one for detecting the SIBA trapping and the second for 

detecting the FRET mechanism. For the SIBA photon detector, the filter in front of it should 

allow only the wavelengths associated with the SIBA mechanism (in this case, 515 nm) to 

reach the photon detector. For the FRET photon detector, the filter in front of it should block 

wavelengths outside the emission curve of the second fluorophore in the FRET mechanism. 
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Figure 6.1: Optical diagram of single-photon detection setup. Light from a 515 nm 
wavelength laser was coupled to a single-mode, polarisation-maintaining fibre, focused on 
and transmitted through a sample, and then focused on single-photon detectors. One photon 
detector should be for detecting the SIBA trapping and the other should be for detecting the 
FRET mechanism. For the SIBA photon detector, the filter in front of it should allow only 
the 515 nm wavelength to reach the photon detector. For the FRET photon detector, the 
filter in front of it should allow only the emission wavelengths of the second fluorophore in 
the FRET mechanism. (inset) Sample region enlarged showing the back-side transmission 
of the laser light through the nanoholes on the sample. The device is placed onto a PDMS 
channel filled with molecules suspended in solution. Light passes through the glass base of 
the device and through the nano-apertures in Al, activating the device. 

6.5 Results and Discussion 

To build this dual-state device, each arm was planned to be design and tuned separately. The 

first arm chosen was that for SIBA-trapping. Only the preliminary work towards this end 

has been approached. 

6.5.1 Design and Fabrication for the SIBA Arm 
 
The colour pixels were designed as two nano-slit-apertures combined to form a nano-cross-

aperture in a thin Al film. Similar to Chapter 5, Al was chosen for its wide spectral plasmonic 

band, which can be tuned from the UV to the NIR, and its low-cost. For SIBA with 

plasmonics, once a molecule gets trapped in the electric field of the nano-aperture, its 

presence will alter the local environment of structure and thus red-shift the resonance peak 

[4]. Therefore, the arm length of the SIBA-trapping arm will depend on the protein selected 

for study.  
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Figure 6.2: Colour Palette from Chapter 5. The green pixels of the colour palette from 
Chapter 5 are most likely to have a resonance around 515 nm, which is the wavelength of 
the laser used to activate the SIBA mechanism. Light is polarised along the Y-axis, therefore 
the dimensions of the X-arm and period in the Y-axis must be considered for device 
fabrication. For more details on the nano-pixels, see Chapter 5. 

Given that a 515 nm wavelength laser was chosen for the SIBA trapping mechanism, 

structures with a resonance slightly blue-shifted from 515 nm are desired [4, 8]. The green 

pixels of the colour palette fabricated in Chapter 5 and shown in Figure 6.2 are most likely 

to have resonance peaks that meet this requirement. The polarisation of light in Figure 6.2 

is parallel to the Y-axis; therefore, the dimensions of the X-arms and period in the Y-axis 

for the green regions are what to consider for designing the SIBA arm of the nano-aperture. 

With that in mind, regions F6 (145 nm length / 275 nm period), G7 (150 nm length / 280 nm 

period), H8 (155 nm length / 285 nm period), I9 (160 nm length / 290 nm period), and J10 

(165 nm length / 295 nm period) from this palette were selected for the active arm for the 

initial set of devices. To maintain the shape integrity of the individual nano-pixels, the 

second ‘inactive’ arm using the parameters of region A1 (120 nm arm / 250 nm period) was 

chosen because it has very low transmission at 515 nm. 
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Figure 6.3: Transmission and Single-Photon Detection of Preliminary Devices. (a) 
Transmission spectra in water of the (i) horizontal, long arm and (ii) vertical, short arm of 
preliminary device regions. For all regions, the vertical, short arm was designed to be 120 
nm length with a period of 250 nm. The horizontal, long arm was designed with the following 
parameters: F6 (145 nm length / 275 nm period), G7 (150 nm length / 280 nm period), H8 
(155 nm length / 285 nm period), I9 (160 nm length / 290 nm period), and J10 (165 nm 
length / 295 nm period). The width of both arms was designed as 20 nm. The insets show a 
rendering of the device and indicate the polarisation of light used to activate the arms shown 
in the transmission spectra. The dotted green line indicates the wavelength of the laser used 
in the setup. (b) Preliminary results of photon count (15 ms/bucket) for F6, G7, H8, I9, and 
J10 in water when the (green) horizontal, long arm and (blue) vertical, short arm were 
activated by changing the polarisation of light. Moving from F6 to J10, the device becomes 
less-tuned for the laser wavelength and this is apparent in the decrease in photon count. For 
all devices, after 2.4 seconds, the sample was moved to a region where the laser light was 
blocked, which shows the baseline photon count of the detector. As can be seen by the photon 
counts, the vertical arms have a count almost as low as the background noise, as they are 
not tuned for the laser, whereas the horizontal arms have a much more noticeable count. 
Each panel also shows an SEM of the device. The far-right panel shows the photon count 
from a reference region for comparison. 
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Figure 6.3a shows the transmission spectra in water for the aforementioned regions from 

the colour palette. The light is polarised, as shown in the inset of each subfigure, along (i) 

the Y-axis (activating the longer X-arm) and (ii) the X-axis (activating the shorter Y-arm). 

As expected, the transmission peak in Figure 6.3a(i) red-shifts with increases to both the 

arm-length in X and period in Y; the transmission spectra shown in Figure 6.3a(ii) have the 

same peak resonance because the arm-length in Y and period in X are kept constant between 

each region. The X-arm from region F6 (red line in Figure 6.3a(i)) has its peak closest to the 

515 nm laser (green dashed line) used in the SIBA setup. 

 

SEM of each region is shown within each panel of Figure 6.3b. Figure 6.3b also shows the 

photon counts (15 ms/bucket) for F6, G7, H8, I9, J10, and a reference region in water for 

the 515 nm laser polarised along the Y-axis (green line) and X-axis (blue line). For all 

measurements, the photon count was taken starting on a particular region and, after 2.4 

seconds, the sample was moved to a region where the laser light was blocked (which shows 

the baseline photon count of the detector). As can be seen by the photon counts, the count is 

the same for each region and almost as low as the background noise when the Y-arm is 

activated. This is because the Y-arm for each region is designed to be the same and has very 

low transmission at 515 nm. When the light is polarised to activate the long-arm, moving 

from F6 to J10, the photon count decreases because each subsequent region is less-tuned for 

the 515 nm laser.  These results correspond well with the transmission spectra shown in 

Figure 6a(i) and Figure 6a(ii), respectively, and indicate that the designed setup is able to 

measure the photons transmitted through devices. 

6.5.2 Fluorescent Marker Selection for FRET 
 
While this work has yet to progress towards tuning the second arm of the nano-aperture for 

the FRET mechanism, there has been preliminary consideration of the fluorophores. As 

previously mentioned, the FRET mechanism requires two fluorescent markers where the 

emission of the first marker must be able to activate the second marker. Given that a 515 nm 

wavelength laser will be used to trap proteins, a fluorescent marker that can be activated by 

this wavelength must be chosen for the first fluorophore of the FRET mechanism. For 

example, one option for the first fluorophore would be to use Cy3B. As shown in Figure 

6.4a, the 515 nm laser wavelength falls within the Cy3B excitation curve (max peak at 559 

nm) and is below its emission curve (max peak at 570 nm) [18]. With Cy3B as the first 

fluorophore, an example second fluorophore to use could be Alexa Fluor 594. As shown in 

Figure 6.4b, the peak emission of Cy3B falls within the excitation curve of Alexa Fluor 594 
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(max peak at 590 nm) and is below Alexa Fluor 594 emission curve (max peak at 618 nm) 

[19]. Figure 6.4c shows the overlay of the emission spectra of Cy3B and excitation spectra 

of Alexa Fluor 594. If Alexa Fluor 594 is chosen as the acceptor fluorophore for this 

mechanism, control experiments to see how its excitation by the 515 nm laser affects its 

fluorescent output will be necessary. For example, a baseline control for this would be 

tagging the protein with only Alexa Fluor 594, trapping it in the system with the 515 nm 

laser, and observing the output signal of emission. 

 

 
Figure 6.4: Normalised excitation/emission for Cy3B and Alexa Fluor 594. (a) The 
normalised extinction (blue) and emission (orange) for Cy3B. The wavelength of the 515 nm 
laser is indicated by the green dashed line. (inset) The Cy3B molecule [18]. (b) The 
normalised extinction (blue) and emission (orange) for Alexa Fluor 594. The wavelength of 
the 515 nm laser is indicated by the green dashed line and Cy3B emission is indicated by 
the dashed purple line. (inset) The Alexa Fluor 594 molecule [19]. (c) Overlay of Cy3B 
emission (orange) and Alexa Fluor 594 (blue) excitation curves. 
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6.5.3 Design for the FRET-Enhancing Arm 
 
Continuing with this example, Alex Fluor 594 has an emission peak around 618 nm. 

Therefore, in consideration of the second arm for the nano-pixel structure, a resonance peak 

around 618 nm is ideal. From the colour palette in Figure 6.2, nano-aperture designs with 

resonance in this range can be found around S19 and T20 (see Figure 6.5). Since the trapping 

of a protein would result in a red-shift in the transmission spectra (compared to that without 

a particle trapped), S19 is a better choice between these two designs. 

 
Figure 6.5: Transmission of Selected Nano-Pixels for Alexa Fluor 594 Emission. The 
normalised transmission of T20 (purple) and S19 (black) from the colour palette in Figure 
6.2. T20 has dimensions of 215 nm arm-length in X with a 345 nm period in Y. S19 has 
dimensions of 210 nm arm-length in X with a 340 nm period in Y. The normalised emission 
spectrum of Alexa Fluor 594 is shaded in red. Since the trapping of a particle in the nano-
aperture will result in a red-shift of the resonance peak, a structure with a transmission peak 
that is slightly blue-shifted (without a trapped particle) from the emission peak of the 
fluorophore is a better choice (i.e. S19). 

6.6 Conclusion and Future Work 

This chapter presented the initial ground-work for utilising the nano-apertures from Chapter 

5 as a new device capable of simultaneously trapping and probing individual proteins. 
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Although the research has yet to progress to a fully working device, the preliminary results 

show great potential. Further exploration into the capabilities of this structure to support 

SIBA-trapping and enhancement of FRET is warranted. Once successfully developed, 

devices will be modified for different proteins, vastly increasing our understanding of the 

mechanisms behind many under-explored biological and chemical pathways and advancing 

the development of new disease screenings and drug therapies. 

6.7 References 

[1]  DeToma, A. S.; Salamekh, S.; Ramamoorthy, A.; Lim, M. H. Misfolded Proteins in 
Alzheimer's Disease and Type Ii Diabetes. Chem. Soc. Rev. 2012, 41 (2), 608-621, 
DOI: 10.1039/c1cs15112f. 

[2]  Nikolaev, A.; McLaughlin, T.; O'Leary, D. D. M.; Tessier-Lavigne, M. App Binds 
Dr6 to Trigger Axon Pruning and Neuron Death Via Distinct Caspases. Nature 
2009, 457 (7232), 981-U1, DOI: 10.1038/nature07767. 

[3]  Juan, M. L.; Gordon, R.; Pang, Y.; Eftekhari, F.; Quidant, R. Self-Induced Back-
Action Optical Trapping of Dielectric Nanoparticles. Nature Physics 2009, 5 (12), 
915-919, DOI: 10.1038/nphys1422. 

[4]  Mestres, P.; Berthelot, J.; Acimovic, S. S.; Quidant, R. Unraveling the 
Optomechanical Nature of Plasmonic Trapping. Light-Science & Applications 
2016, 5, DOI: 10.1038/lsa.2016.92. 

[5]  Kotnala, A.; Gordon, R. Quantification of High-Efficiency Trapping of 
Nanoparticles in a Double Nanohole Optical Tweezer. Nano Lett. 2014, 14 (2), 
853-856, DOI: 10.1021/nl404233z. 

[6]  Uddin, N.; Du, G.; Chen, F.; Lu, Y.; Yang, Q.; Bian, H.; Yong, J.; Hou, X. Fano 
Resonance-Assisted Plasmonic Trapping of Nanoparticles. Plasmonics 2017, 12 
(3), 627-630, DOI: 10.1007/s11468-016-0307-1. 

[7]  Lu, Y.; Du, G.; Chen, F.; Yang, Q.; Bian, H.; Yong, J.; Hou, X. Tunable Potential 
Well for Plasmonic Trapping of Metallic Particles by Bowtie Nano-Apertures. Sci. 
Rep. 2016, 6, DOI: 10.1038/srep32675. 

[8]  Pang, Y.; Gordon, R. Optical Trapping of a Single Protein. Nano Lett. 2012, 12 (1), 
402-406, DOI: 10.1021/nl203719v. 

[9]  Zehtabi-Oskuie, A.; Zinck, A. A.; Gelfand, R. M.; Gordon, R. Template Stripped 
Double Nanohole in a Gold Film for Nano-Optical Tweezers. Nanotechnology 
2014, 25 (49), DOI: 10.1088/0957-4484/25/49/495301. 

[10]  Al Balushi, A. A.; Gordon, R. A Label-Free Untethered Approach to Single-
Molecule Protein Binding Kinetics. Nano Lett. 2014, 14 (10), 5787-5791, DOI: 
10.1021/nl502665n. 

[11]  Giepmans, B. N. G.; Adams, S. R.; Ellisman, M. H.; Tsien, R. Y. Review - the 
Fluorescent Toolbox for Assessing Protein Location and Function. Science 2006, 
312 (5771), 217-224, DOI: 10.1126/science.1124618. 

[12]  Dienerowitz, M.; Ilchenko, M.; Su, B.; Deckers-Hebestreit, G.; Mayer, G.; Henkel, 
T.; Heitkamp, T.; Boersch, M. In Optimized Green Fluorescent Protein Fused to 
Fof1-Atp Synthase for Single-Molecule Fret Using a Fast Anti-Brownian 
Electrokinetic Trap, Single Molecule Spectroscopy and Superresolution Imaging 
IX, San Francisco, CA, 2016 
Feb 13-18; San Francisco, CA, 2016. 



Chapter 6: Preliminary Work: Dual-State SIBA/FRET Trap for the Study of Individual Proteins 
 

 
J.R. Sperling 2019  149 

[13]  Faessler, V.; Hrelescu, C.; Lutich, A. A.; Osinkina, L.; Mayilo, S.; Jackel, F.; 
Feldmann, J. Accelerating Fluorescence Resonance Energy Transfer with 
Plasmonic Nanoresonators. Chem. Phys. Lett. 2011, 508 (1-3), 67-70, DOI: 
10.1016/j.cplett.2011.03.088. 

[14]  Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L. 
Plasmonics for Extreme Light Concentration and Manipulation. Nature Materials 
2010, 9 (3), 193-204, DOI: 10.1038/nmat2630. 

[15]  Chowdhury, M. H.; Ray, K.; Gray, S. K.; Pond, J.; Lakowicz, J. R. Aluminum 
Nanoparticles as Substrates for Metal-Enhanced Fluorescence in the Ultraviolet for 
the Label-Free Detection of Biomolecules. Anal. Chem. 2009, 81 (4), 1397-1403, 
DOI: 10.1021/ac802118s. 

[16]  Li, M.; Cushing, S. K.; Wu, N. Plasmon-Enhanced Optical Sensors: A Review. 
Analyst 2015, 140 (2), 386-406, DOI: 10.1039/c4an01079e. 

[17]  Zhang, J.; Fu, Y.; Lakowicz, J. R. Enhanced Forster Resonance Energy Transfer 
(Fret) on a Single Metal Particle. J. Phys. Chem. C 2007, 111 (1), 50-56, DOI: 
10.1021/jp062665e. 

[18]  Cooper, M.; Ebner, A.; Briggs, M.; Burrows, M.; Gardner, N.; Richardson, R.; 
West, R. Cy3b: Improving the Performance of Cyanine Dyes. Journal of 
Fluorescence 2004, 14 (2), 145-150. 

[19]  Alexa Fluor™ 594 Antibody Labeling Kit. ThermoFisher Scientific.  



Chapter 7: Conclusion 
 

 
J.R. Sperling 2019  150 

Chapter 7: Conclusion 

The numerical simulations and experimental investigations of this thesis have demonstrated 

three novel nanoplasmonic devices and their applications in biological sensing, solvent 

differentiation, and polarisation-dependent high-resolution colour filtering and image 

encoding.  

 

When it comes to molecular sensing, compared to standard assay-based techniques for 

detecting analytes, plasmonic-based devices are label-free, are highly-miniaturisable, can 

operate using simple optics, and are often reusable. This has led to their use in the 

continuous, real-time detection of molecules and binding kinetics using simple setups that 

are highly-portable. For applications where monitoring over extended periods of time is 

necessary, maintaining a stable baseline reference is necessary to verify that changes 

observed in the signal are due to analyte detection and not sensor drift. While the standard 

approach to account for this is to use a separate reference channel, a new approach was 

investigated in Chapter 3. Through simulation and multiple iterations of fabrication design, 

a technique was developed for building two nanoplasmonic arrays in the same X-Y space, 

offset in the Z-direction from one another. This multilayered nanoplasmonic device was then 

demonstrated capable of simultaneously obtaining sensing and referencing signals from one 

measurement without the need for either complex optics or multiple sensing regions. This 

design is especially useful for point-of-care applications because it accounts for potential 

problems with limitations in resources and sample quantities and can be incorporated into 

multiplexed microfluidic systems using a more-sensitive nanostructure design.  

 

Plasmonic-based devices also hold promise for applications in mixture 

discrimination/identification, where only the identification of a mixture from a known set is 

desired (rather than analysis of all the individual components in the mixture). In these cases, 

the ‘gold-standard’ method of chromatography typically becomes limited by its cost, bulky 

equipment and time-consuming process. Instead, arrays of sensors, each contributing a 

partially-selective signal, can be used to generate an identification map based on pattern-

recognition using multivariant techniques like PCA and LDA. In Chapter 4, a novel device 

made of sensing elements comprised of super-imposed, offset Al and Au nanoplasmonic 

arrays was demonstrated capable of differentiating between seven off-the-shelf whiskies 

with 99.7% accuracy (using LDA). Compared to their single-metal counterparts, the 
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bimetallic approach results in two (as opposed to one) partially-selective data points for 

pattern-based recognition from one measurement. Thus, the bimetallic approach uses half 

the number of sensing regions (halving device size) and has fewer elements to probe 

(reducing the time necessary to collect the data). This advance in device miniaturisation, 

functionalisation, and multiplexed readout makes bimetallic nanoplasmonic tongues ideal 

for chemical mixture identification in applications where exact identification of individual 

components in a mixture is not required and portability, reusability, and measurement speed 

are key. 

 

In addition to their sensing capabilities, plasmonic devices can also serve as an alternative 

to standard pigments and dyes used in full-colour nano-imprinting and micro-encoding. In 

Chapter 5, polarisation-sensitive nano-aperture arrays in 100 nm thin sheets of Al were 

demonstrated to support two full-colour information states in the same physical space, 

independently, with virtually no cross-talk yielding ultra-high resolution (370 nm x 370 nm) 

images. At the time of its publication, this technology was used to produce the smallest 

optically-resolvable QR codes which were 16 μm x 16 μm in size. The high PPI (>100,000), 

resistance to damage (UV/heat/water), and ability to encode two full-colour information 

states in the same physical space make this technology a highly useful alternative to ink-

based techniques in anti-counterfeiting and high-resolution printing applications. 

Transferring this technique to flexible surfaces, analysing stress/strain, and further analysing 

angle-dependence would be of particular interest, especially when it comes to anti-

counterfeiting applications of this technology. 

 

Combining the concept of plasmonic sensing presented in Chapter 3 and Chapter 4 with the 

dual-state nano-pixel design of Chapter 5, Chapter 6 presented preliminary development of 

a device where one arm of the aperture would serve to trap proteins via the SIBA effect 

while the second arm would independently be use for enhancing the signal-to-noise ratio of 

the FRET mechanism. While only preliminary work is covered, once successfully 

developed, these novel devices will aid the understanding of proteins which define biological 

and chemical pathways and thus benefit the fields of biology, chemistry, medicine, and 

pharmacy. Additionally, they will allow for the testing and creation of new disease 

screenings and drug therapies. 

 

While all three applications explored in this work show promise as highly-miniaturisable 

devices for their given applications, the fabrication techniques required to produce them 
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have a fairly high-cost (i.e. electron-beam lithography) and involve multiple, time-

consuming steps, all of which result in limitations when it comes to scalability and mass 

production of such devices. To overcome cost and increase production, electron-beam 

lithography can be replaced with techniques such as interference photolithograpy [1-3] or 

nanoimprint lithography [4]. Additionally, for the multilayered devices, switching from 

silicon nitride encapsulation / HSQ planarisation to using SU8 would reduce the number of 

steps in fabrication by one and remove two electron-beam lithography steps from the 

process. 

 

In summary, the proof-of-concept work presented in this thesis holds promise in a number 

of fields related to plasmonic sensing and high-resolution colour printing. Further work 

improving the sensitivity of these devices and improving the fabrication techniques can yield 

a new generation of sensing devices with applications in point-of-care diagnostics, mixture 

discrimination/identification, anti-counterfeiting, and high-resolution colour printing. 
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