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Abstract

Influenza viruses are a major cause of morbidity and mortality worldwide, with

seasonal epidemics of influenza resulting in around three to five million cases of se-

vere illness globally each year. The evolution of influenza A viruses is characterised

by rapid antigenic drift, which allows mutant viruses to evade host immunity ac-

quired to previously circulating viruses. Antigenic variation is observed across a

wide range of infectious organisms and can circumvent long-lasting immunity in

hosts leading to repeated infection or non-clearance. Influenza A viruses can often

be effectively combatted by the immune system and vaccines also exist to pro-

tect at-risk individuals, limiting the burden of disease. However, the effectiveness

of the vaccine depends on constituents being antigenically similar to circulating

viruses. Antigenic drift of influenza viruses therefore requires a global surveillance

system responsible for the antigenic characterisation of circulating viruses. The

identification of emerging antigenic variants is critical to the vaccine virus selec-

tion process and in addition experts must anticipate which viruses are likely to

predominate in forthcoming epidemic seasons. Mutations to B-cell epitopes on the

surface of haemagglutinin (HA) that facilitate escape from neutralising antibodies

play a key role in influenza antigenic drift. Consequently the haemagglutination

inhibition (HI) assay, which measures HA cross-reactivity, is commonly used to

approximate antigenic phenotype.

In this thesis, I investigate the genetic basis of antigenic variation among human

influenza A viruses through analysis of HI data collected in recent decades and

associated HA gene sequence data. In Chapter 2, I use phylogenetic methods and

antigenic cartography to characterise the genetic and antigenic variation among

the viruses studied and evaluate the usefulness of these methods for epitope iden-

tification. In Chapter 3, I extend a model developed to investigate antigenic differ-

ences among foot-and-mouth disease (FMD) viruses to former seasonal A(H1N1)

viruses. By attributing variation in HI titre to amino acid differences between

viruses, while accounting for phylogenetic relationships, I identify substitutions

that have driven the antigenic evolution of the virus. Reverse genetics was then

used to validate model predictions experimentally. In Chapter 4, I further extend

the model and investigate the genetic drivers of antigenic drift among A(H3N2)

viruses, comparing model results with published HI data generated using mutant
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recombinant viruses. In Chapter 5, I explore the power of the identified genetic

determinants for predicting antigenic relationships among A(H1N1) and A(H3N2)

viruses. Specifically I show that sequence-based models can be used to estimate

the antigenicity of emerging viruses directly from their sequence and that by in-

cluding substitutions of smaller antigenic impact, in addition to the high-impact

substitutions that are often focused on, predictions were improved. I also demon-

strate the versatility of these methods by extending this sequence-based approach

to predict antigenic relationships among viruses of three serotypes of FMD virus.

Determining phenotype from genotype is a fundamental challenge for virus re-

search. It is of particular interest in the case of the antigenic evolution of influenza

viruses, given the need to continually track changes in the virus population, antic-

ipate which viruses will predominate in future seasons, and select vaccine viruses.

Collectively, the results I present demonstrate an enhanced quantitative under-

standing of the molecular genetic basis of the adaptive phenotype of influenza

viruses. The ability to quantify the phenotypic impact of specific amino acid

substitutions should help to refine methods that predict, from genotype, the fit-

ness and evolutionary success of influenza viruses from one season to the next,

strengthening the theoretical foundations for vaccine virus selection. The tech-

niques presented also have great potential to be extended to other antigenically

variable pathogens and to elucidate the genetic basis of their antigenic variation.
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Introduction

1.1 Influenza

Influenza viruses, identified as the causative agents of human epidemics of influenza in 1933

(Smith et al., 1933), are one of the major causes of infectious disease in humans. Influenza

viruses have a segmented, negative-sense, single-stranded RNA genome and are members of

the family Orthomyxoviridae. Influenza viruses are classified into three genetically and anti-

genically distinct types (A, B, C, classified based on the nucleoprotein and matrix segments).

Influenza A viruses infect a range of bird and mammal species, though migratory birds (shore-

birds and waterfowls) are understood to be the natural reservoir of these viruses. Influenza B

and C viruses have been isolated primarily from humans, though there have been reports of

the isolation of influenza B virus from horses and seals (Ohishi et al., 2002; Osterhaus et al.,

2000) and of influenza C virus from pigs (Kimura et al., 1997; Yuanji et al., 1983). Among

influenza viruses, influenza A viruses are the most prevalent pathogen for both humans and

animals and will form the focus throughout.

Influenza viruses are one of the most important causes of respiratory disease in humans and

are a major cause of morbidity and mortality worldwide. Globally, seasonal influenza epi-

demics were estimated to result in three to five million cases of severe illness and about

250,000 to 500,000 deaths annually in years prior to 2009 (WHO, 2009). Influenza epidemics

occur annually during autumn and winter in temperate regions. Influenza A viruses, together

with influenza B viruses, circulate globally and are responsible for these seasonal epidemics,

though the majority of severe illness is caused by influenza A viruses. The most striking

feature of human influenza A viruses is perhaps their capacity to evade host immunity and

cause recurrent annual epidemics of disease and, at infrequent intervals, major global pan-

demics (Hay et al., 2001). Influenza pandemics occur due to the introduction of antigenically

novel viruses into a human population that is immunologically naive to the new virus and

resulted in tens of millions of deaths in the 20th century (Hay et al., 2001; Kilbourne, 2006).

Among influenza viruses, only influenza A has the capacity to cause pandemics owing to its

extended host range and greater antigenic diversity (Hay et al., 2001).

The influenza A genome which is around 13 kb in size, consists of eight single-stranded
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1.1 INFLUENZA

RNA segments and encodes at least 14 proteins. Each gene segment is encapsidated into

ribonucleoproteins (RNPs) by the viral RNA polymerase and multiple copies of the viral

nucleoprotein. RNPs are imported into the nucleus of an infected cell where the viral RNA

is transcribed to give positive sense mRNA (Wise et al., 2012). Segments are numbered

one–eight in decreasing order of size. Segments one, four, five, and six each encode a single

protein: polymerase basic protein two (PB2), haemagglutinin (HA), nucleoprotein (NP), and

neuraminidase (NA) respectively. The primary protein products encoded by gene segments

two and three are polymerase basic protein one (PB1) and polymerase acidic protein (PA)

respectively, however additional protein products encoded by both. The proteins PB1-F2,

PB1-N40, and PA-X are also encoded by gene segments two and three as a result of leaky

ribosomal scanning and traslation termination-reinitiation in the case of segment two and +1

ribosomal frameshifting for segment three (Chen et al., 2001; Jagger et al., 2012; Wise et al.,

2011, 2009). The coding capacity of segments seven and eight is expanded by differential

RNA splicing. Unspliced segment seven encodes the matrix one (M1) protein. Three spliced

transcripts have been detected (mRNAs 2–4). Of these, mRNA2 has been demonstrated to

encode matrix protein two (M2), while mRNA4 has been demonstrated to encode a M2-

related variant, designated M42 (Lamb et al., 1981; Wise et al., 2012). A single spliced

species encoded by segment eight has been described, producing nuclear export protein/non-

structural protein two (NEP/NS2), while non-structural protein one (NS1) is the unspliced

product (Inglis et al., 1980; Lamb & Lai, 1980).

Influenza A is a pleomorphic, enveloped virus. Laboratory-adapted strains often form spher-

ical virions that are ∼100 nm in diameter whereas samples isolated from the human upper

respiratory tract show mainly filamentous forms that are ∼100 nm in diameter and up to 20

µm in length (Chu et al., 1949; Kilbourne & Murphy, 1960). The lipid envelope, which is

derived from the host cell membrane from which the virus has budded, is studded with two

morphologically distinct glycoproteins: HA and NA, encoded by gene segments four and five

respectively. The HA protein is a homotrimer responsible for binding to host cells, fusion,

and cell entry, while NA is a homotetrameric sialidase responsible for cell cleavage enabling

budding viruses to be released from infected cells (Gamblin & Skehel, 2010). HA, NA, and

the ion channel protein (M2) are anchored in the in the lipid bilayer of the viral envelope.

The ratio of HA to NA molecules in the viral envelope usually ranges between 4:1 and 5:1

(Subbarao & Joseph, 2007). M1 which is the most abundant structural protein in the virus

particle lies beneath the virus envelope and associates with the RNP complex. Inside the

M1 layer, each of the eight RNA segments forms a helical RNP complex, being encapsidated

with NP and associated with a viral RNA dependent RNA polymerase (RdRp) which is com-

prised of the proteins PB1, PB2, and PA. The structure of the influenza A virus particle is

summarised in Figure 1.1.

HA and NA are also the primary antigens of influenza A viruses, which are classified into

subtypes according to their antigenic composition, being named after the combination of HA
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Figure 1.1: Overview of the structure of an influenza virus particle: (A) Schematic

representation of an influenza A virus particle. The surface glycoproteins HA (blue), NA (green)

and the proton channel protein M2 (violet) are embedded in the host-derived lipid envelope

(turquoise). The membrane is lined on the interior with the M1 capsid protein (yellow). The

viral genome consists of eight ribonucleoprotein particles (RNPs, red), with each segment

formed by viral RNA (vRNA), the nucleoprotein (NP), and the viral polymerase proteins (PB1,

PB2 and PA, coloured in grey). (B) Transmission electron micrograph (TEM) of an influenza

A/X-31 virion. Regions of the lipid membrane (turquoise) and of the M1 capsid (yellow) as well

as one RNP (red) are coloured as in (A). In the magnified section of the electron micrograph

HA and NA (blue and green respectively) were overlaid with surface representations of the

corresponding crystal structures filtered to an TEM-comparable resolution (attainable by

3D-TEM-reconstruction techniques) (Böttcher et al., 1999). On the right side the enlarged

surface representation of the HA 3D-structure is overlaid with its crystal structure (Protein

Data Bank (PDB) ID: 2YPG (Lin et al., 2012)), monomers in green, red, yellow. Image

reproduced as appears in Figure 1 in Mair et al. (2014) with permission from the rightsholder.
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and NA they express. To date, 18 HA subtypes and 11 NA subtypes have been identified.

HA subtypes 1–16 and NA subtypes 1–9 have all been isolated from birds and reassortment

among them is feasible. In recent years, novel influenza virus genomes (designated H17N10

and H18N11) have been isolated from bats (Tong et al., 2012, 2013), though studies indicate

that the surface proteins of these viruses have unusual structures and functions, that they

are unlikely to reassort with either influenza A or B viruses, and therefore that they may be

considered as belonging to a separate species or genus of the Orthomyxoviridae (Sun et al.,

2013; Zhou et al., 2014; Zhu et al., 2012, 2013). Antibodies specific for the M2 ion channel

protein cannot neutralise infectivity but are protective in vivo (Webster et al., 1992; Zebedee

& Lamb, 1988). The cellular immune response is chiefly directed against NP, PB2 and PA

(Subbarao & Joseph, 2007).

The global pandemic of 1918, caused by an influenza A(H1N1) virus, is the most severe

pandemic of human disease recorded. During the 1918 “Spanish” influenza pandemic an

estimated one third of the global population was infected (Taubenberger & Morens, 2006).

The disease was exceptionally severe, case fatality rates are estimated to have exceeded 2.5%

and total deaths have been estimated at somewhere in the region of 50 million (Johnson &

Mueller, 2002; Taubenberger & Morens, 2006). Phylogenetic analysis of molecular genetic

data suggest the HA and NA genes of the 1918 virus to be of avian origin (Taubenberger

et al., 2001). Influenza viruses of pandemic potential emerge when the genomic reassortment

of virus gene segments derived from different parental strains results in the formation of new

influenza virus subtypes with novel combinations of HA and NA. This process is commonly

referred to as “antigenic shift”.

In 1957, circulating A(H1N1) viruses that had acquired by reassortment HA, NA and poly-

merase basic protein 1 (PB1) segments of avian origin caused the “Asian” influenza pandemic

(Scholtissek et al., 1978b). These A(H2N2) viruses replaced subtype A(H1N1) viruses in

the human population and circulated until their subsequent replacement by viruses of the

A(H3N2) subtype that were responsible for the 1968 “Hong Kong” influenza pandemic. The

pandemic virus in 1968 resulted from a reassortment event between circulating A(H2N2)

viruses and avian influenza viruses in which the human strain acquired novel HA and PB1

segments (Scholtissek et al., 1978b). In 1977, A(H1N1) viruses genetically and antigenically

similar to those circulating two decades previously re-emerged in the human population in

Russia or Northern China causing a pseudo-pandemic almost entirely restricted to persons

of less than 25 years of age who did not possess protective antibodies from prior exposure

(Scholtissek et al., 1978a; WHO, 1977). A(H1N1) and A(H3N2) viruses have co-circulated

in the human population, alongside influenza B viruses, to the present, though viruses de-

scended from the 1977 A(H1N1) virus were replaced by a novel triple reassortant virus,

A(H1N1)pdm09, that was transmitted from swine to humans causing a relatively mild pan-

demic in 2009 (Garten et al., 2009; Smith et al., 2009).
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Interpandemic periods in the evolution of influenza are characterised by seasonal epidemics of

varying severity (Fleming & Elliot, 2008; Hay et al., 2001). Point mutations in the antigenic

regions of the HA and NA glycoproteins can alter the structure of epitopes affecting antibody

binding (Nelson & Holmes, 2007; Skehel & Wiley, 2000). Novel antigenic variants capable

of evading the host immunity and infecting previously exposed individuals emerge by this

process and may, when the selective advantage conferred is sufficient, out-compete other

viruses of the same subtype, which they replace in the virus population. This process is

commonly referred to as “antigenic drift”. High rates of mutation and a well-connected global

population with frequent migration events contribute to diversity of antigenic phenotypes

exposed to selection (Bedford et al., 2015), as does the mutational tolerance of the influenza

structural proteins relative to those found in some other viruses (Thyagarajan & Bloom,

2014).

The antigenic evolution and epidemiology of human influenza, characterised by infrequent

pandemics and annual epidemics, reflects the particular characteristics of the virus genome

whereby antigenic shift (caused by genetic reassortment) and drift (caused by point muta-

tions) can be attributed to the segmented and single-stranded RNA properties of the genome

respectively. Intra-genomic recombination is not important in the evolution of influenza

viruses (Strelkowa & Lässig, 2012). Studies on the HA gene have shown that high mutation

rates sometimes result in the same mutation originating independently but the absence of

any correlation between this occurring and distance between sequence sites indicates that

any small deviations from complete association are generated by independent originations of

the same mutation rather than by recombination of alleles (Strelkowa & Lässig, 2012).

The antigenic variability of influenza viruses requires a World Health Organization (WHO)

coordinated Global Influenza Surveillance and Response System (GISRS) responsible for

virological surveillance and the genetic and antigenic characterisation of influenza viruses

(WHO, 2015a). The objectives are: 1) the early detection and characterisation of novel

influenza A subtypes with the potential to cause pandemics and 2) the identification of

new antigenic variants among circulating influenza A and B viruses in order to ensure that

influenza vaccine components reflect the antigenic characteristics of the most prevalent viruses

(Hay et al., 2001).

1.2 Vaccination and antigenic drift

The influenza vaccine, first used on a population-scale in 1945 among US military person-

nel (Grabenstein et al., 2006), remains the primary means of disease prevention and control

(WHO, 2015c). It is administered biannually in anticipation of the influenza seasons that

occur in winters of the Northern and Southern hemispheres. The vaccine has most commonly

been trivalent comprising inactivated strains of influenza A(H1N1), A(H3N2) and B viruses
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(Barr et al., 2014; WHO, 2015d), although quadrivalent vaccines containing one virus from

each of the two antigenically distinct lineages of influenza B viruses, B/Victoria/2/87-like

(Vic) and B/Yamagata/16/88-like (Yam), have also been used in recent years (Barr et al.,

2014; WHO, 2015d). An intranasally administered, live attenuated vaccine accounts for a

smaller proportion of influenza vaccination (Osterholm et al., 2012). A meta-analysis of

randomised controlled trials has suggested that influenza vaccines can provide moderate pro-

tection against virologically confirmed influenza, but that vaccine effectiveness is variable for

seasonal influenza and that in some seasons protection is greatly reduced (Osterholm et al.,

2012). Vaccination provides minimal protection across subtypes and effectiveness within-

subtype is maximised when the vaccine virus is more antigenically similar to circulating

influenza viruses (Belongia et al., 2009). In contrast to many other vaccines, influenza vac-

cines are assessed for updating twice-yearly and updates to one or more components are

frequently made to provide protection against emerging antigenic variants (WHO, 2015d).

When antigenic drift results in the antigenic phenotype of predominant circulating influenza

viruses becoming distinct to that of the vaccine virus, the protective efficacy of the vaccine

may be insufficient resulting in more serious epidemics such as observed in 1947 (Kilbourne

& Smith, 2002) and 1997/98 (de Jong et al., 2000). In the 2014/15 influenza season in the

United Kingdom the vaccine effectiveness of the quadrivalent live attenuated influenza vac-

cine was reduced to 34% as a result of antigenically drifted A(H3N2) and B viruses (Pebody

et al., 2014).

Soon after the introduction of the first inactivated vaccines in the 1940s, it became apparent

that antigenic changes occurring in the virus population reduced vaccine efficacy (Salk &

Suriano, 1949). The consequences of antigenic drift for vaccine effectiveness and epidemic

severity necessitate a global surveillance system which was first started following the winter

of 1948/49 (Chu et al., 1950). Since 1952, the WHO has coordinated monitoring of the

antigenic properties of influenza viruses in humans and, more recently, in animals (WHO,

2015a). The GISRS (formerly the Global Influenza Surveillance Network, GISN) currently

comprises of six WHO collaborating centres (CCs), four essential regulatory laboratories

(ERLs), 142 national influenza centres (NICs) in 111 WHO member states and 13 H5 reference

laboratories (WHO, 2015a). The responsibilities of the NICs include collecting samples from

patients with symptoms of influenza-like illness or acute respiratory disease and reporting on

influenza activity. The CCs receive clinical samples or virus isolates from NICs and carry out

detailed characterisation which includes assessment of antiviral drug susceptibility, genetic

sequencing and phylogenetic analysis, and antigenic analysis.

The GISRS subject matter experts then meet twice-yearly at WHO convened technical con-

sultations (vaccine composition meetings) to review these data in the context of candidate

vaccine virus selection (Barr et al., 2014). Due to the logistics of the vaccine production pro-

cess it is necessary for decisions on vaccine composition to be made several months in advance

of the influenza season. Data on the antigenic characteristics and epidemiological features of
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viruses circulating in the months up to September must be reviewed to determine whether

they justify a change in the recommended composition of the vaccine ahead of the influenza

season in the following year in the Southern Hemisphere, with the corresponding decision for

the Northern Hemisphere being made in February (WHO, 2015d). As a result, in addition to

identifying circulating antigenic variants, decision makers must attempt to anticipate which

viruses will predominate in the influenza population up to a year in advance.

Given the importance of having a vaccine virus that is antigenically similar to circulating

viruses, it is vitally important that the process by which influenza viruses change antigeni-

cally is well understood. The ability to accurately characterise the antigenic phenotype of

circulating influenza viruses is crucial. Influenza HA and NA are both targets for activated

B cells, however HA is the primary target for neutralising antibodies and principal antigenic

determinant of influenza viruses (Skehel & Wiley, 2000). Because of the immunodominance of

HA, decisions regarding recommendations on vaccine viruses are are made using data on HA

antigenicity (Barr et al., 2014). The NA in the vaccine is always from the same virus as the

HA and is not independently antigenically matched to circulating strains (WHO, 2015d). For

these reasons, HA has been at the focus of a majority of studies investigating the antigenicity

of influenza viruses. Much of the fundamental understanding of the antigenicity of HA comes

from experimental studies carried out in the 1980s (e.g. Caton et al., 1982; Knossow et al.,

1984; Skehel et al., 1984; Webster & Laver, 1980; Wiley et al., 1981; Wilson et al., 1981;

Yewdell et al., 1986) that revealed details of the structure and location of antibody-binding

sites upon the surface of the HA protein. Phylogenetic studies on the influenza HA gene

have helped to elucidate the mechanisms of antigenic drift of influenza A viruses in nature.

HA neutralising antibodies present in the human population due to either prior infection or

vaccination select for novel antigenic variants, and when the selective advantage is sufficient

these antigenic variants replace circulating viruses (Fitch et al., 1997).

1.3 Haemagglutinin

HA is the receptor-binding and membrane fusion glycoprotein of influenza virus and also

the principal target for neutralising antibodies (Skehel & Wiley, 2000). The first study to

resolve the structure of HA revealed a homotrimeric structure consisting of a stalk region

extending from the virus membrane and a globular head domain containing the receptor

binding site and variable antigenic regions (Wilson et al., 1981). Each HA monomer contains

two polypeptides (HA1 and HA2) that result from enzymatic proteolytic cleavage of a single

precursor HA0 (Skehel & Wiley, 2000). The primary receptor-binding site is composed of

a number of amino acid residues in a shallow depression near the head of the HA protein.

The cellular receptors for influenza viruses are terminal sialic acids of glycoproteins and

glycolipids (Wiley & Skehel, 1987). Neu5Ac α(2,3)-Gal and Neu5Ac α(2,6)-Gal are the two
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Figure 1.2: Haemagglutinin structure: Surface representation of the homotrimeric HA

3D-structure is overlaid with its crystal structure (PDB ID: 1HGG (Sauter et al., 1992)). HA1

is shown in green and HA2 in blue, while the amino acids comprising the receptor-binding site

of the frontmost monomer are shown in red. (A) The globular head domain (rich in β-pleated

sheet) and fibrous stalk (rich in α-helix) are indicated. Note that the surface-exposed regions of

the fibrous stalk are comprised of both HA1 and HA2 (Figure 1.3) (B) The homotrimeric

structure of HA is more apparent when viewed from above. (C) Functional groups of the amino

acid residues that are highly conserved among A(H3N2) viruses and have a confirmed role in

binding (numbered, red) and the sialic acid receptor (C11H19NO6, magenta) are shown. The

190 helix on the upper boundary of the binding site is also indicated.

major linkages between the sialic acid and penultimate galactose residues of carbohydrates

found in nature and different HAs have different recognition specificities for these linkages

(Skehel & Wiley, 2000). For example, the avian derived HA of the A(H3N2) virus responsible

for the 1968 influenza pandemic changed on introduction into humans from a preference for

avian receptors (α(2,3)-linked sialic acid) to a preference for human receptors (α(2,6)-linked

sialic acid) (Lin et al., 2012). Influenza viruses also vary in their receptor-binding avidity.

Avidity refers to the accumulated strength of multiple affinities of individual non-covalent

binding interactions participating in a biomolecular interaction. Receptor-binding avidity is
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not necessarily the sum of the constituent individual affinities involved as other interactions

occur, according to valency and structure, that influence the accumulated binding strength.

The avidity of A(H3N2) viruses for the human receptor has decreased over time with a ∼4-fold

reduction between 1968 and 2001, a further ∼200-fold drop during the period of 2001–2004,

and a subsequent drop of such a magnitude that it could not be quantified (Lin et al., 2012).

Influenza epitopes have principally been identified by a combination of structural analysis,

analysis of gene sequences and the characterisation of monoclonal antibody (mAb) escape

mutants, genetic variants generated under selective pressure through exposure to neutralising

monoclonal antibodies (mAbs) (e.g. Caton et al., 1982; Skehel et al., 1984; Webster & Laver,

1980). mAbs are produced by a clonal population of immune cells derived from a unique

parent cell and have affinity for a single epitope. Influenza viruses grown in the presence of a

single anti-HA neutralising mAb typically acquire single amino acid substitutions that reduce

antibody binding and crystallography studies have shown that these substitutions distort the

structure of a single antigenic site leaving the other antigenic sites unaffected (Knossow et al.,

1984; Wiley et al., 1981). In this context, the structure of an epitope includes the biophysical

and biochemical properties of the constituent amino acid residues. Sequencing of mutants

selected by exposure to neutralising mAbs can reveal amino acid positions that comprise an

epitope and substitutions that allow the virus to escape the mAb binding.

mAbs that compete for binding are considered to bind to the same antigenic site, which

may comprise many epitopes or antibody-binding sites which are structurally defined as the

amino acids of the antigen that contact amino acids of a particular mAb. A single antibody

is not likely to bind to all amino acids of a particular antigenic site but epitopes in the same

antigenic site may be physically overlapping and a single amino acid substitution within

that site may affect the binding of several antibodies with specificity for that site. mAb

competition assays originally identified four antigenic sites (A–D) on the surface of H3 HA1

(Webster & Laver, 1980). Further mAb escape studies subsequently identified a fifth antigenic

site (E) on H3 HA1 (Skehel et al., 1984). Amino acid substitutions present in laboratory-

selected variants derived from viruses grown in the presence of hyperimmune antisera or

monoclonal antibodies have been mapped to the structure of HA and this information was

used to define five topographically distinct clusters of surface-exposed amino acids on H3

HA1 that comprise antigenic sites A–E (Figure 1.3) (Wiley & Skehel, 1987; Wiley et al.,

1981). Similar mapping experiments have identified four comparable antigenic sites (Ca, Cb,

Sa, and Sb) in similar regions close to the globular head of the HA1 of H1 HA (Figure 1.4)

(Caton et al., 1982).

Examination of the locations on the HA structure of amino acid substitutions in natural and

monoclonal antibody-selected antigenic variants indicates that all are at surface-exposed po-

sitions and that these are predominantly on the membrane distal HA1 domain, particularly

in areas surrounding the receptor-binding site (Skehel & Wiley, 2000). A notable feature of
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Figure 1.3: A(H3N2) HA antigenic sites: Surface representation of HA of A/Aichi/2/68

(H3N2) (Protein Data Bank ID: 1HGG (Sauter et al., 1992)) with HA1 antigenic sites shown.

Antigenic sites are coloured yellow (A), orange (B), red (C), brown (D) and pink (E). The

primary receptor binding site is shown in green. Remaining parts of the HA1 surface are shown

in light blue while HA2 is shown in dark blue.

HA antigenic sites is that they are largely composed of residues belonging to loop-like struc-

tures projecting from the HA surface. These prominent loops are often able to accept amino

acid substitutions without affecting the stability or function of the HA therefore antibody-

selected mutations at these sites may be tolerated with minimal associated fitness cost (Skehel

& Wiley, 2000; Wilson & Cox, 1990). Constituents of antigenic sites are listed in Table 1.1.

The close proximity to the primary receptor-binding site of several residues in the HA anti-

genic sites results in steric hindrance of receptor association while other antibody-selected

changes influence receptor-binding directly by affecting specific interactions with the sug-

ars linked to sialic acid (Gamblin & Skehel, 2010). Examination of the structure of HA in

complex with the fragment antigen-binding (Fab) of an antibody that binds at a site dis-

tant to the receptor-binding site has also been shown to neutralise infectivity by blocking

receptor-binding indirectly through the bulk of either the Fab fragment or immunoglobulin

molecule, indicating that disruption of receptor-binding is an important mode of neutralisa-

tion for antibodies binding across HA (Skehel & Wiley, 2000). In general the concave shape

of the receptor-binding site appears to prevent the production of avid antibodies that bind di-

rectly to its principal constituents allowing these to remain conserved without the concurrent

production of neutralising cross-protective antibodies (Skehel & Wiley, 2000; Wiley et al.,

1981). In some cases the footprint of an antibody may overlap with the receptor-binding site

but these antibodies are still susceptible to escape mutations if the subset of residues that
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Figure 1.4: A(H1N1) HA antigenic sites: Surface representation of HA of A/Puerto

Rico/8/34 (H1N1) (Protein Data Bank ID: 1RU7 (Gamblin et al., 2004)) with HA1 antigenic

sites shown. Antigenic sites are coloured pink (Ca), red (Cb), yellow (Sa) and orange (Sb) while

the primary receptor binding site is shown in green. Remaining parts of the HA1 surface are

shown in light blue and HA2 is shown in dark blue.

are important for antibody binding are not identical to those necessary for receptor-binding

(Colman, 1997).

As a result of the proximity of the antibody-binding sites and the receptor-binding site,

substitutions may simultaneously affect both antigenicity and receptor-binding properties

including specificity and avidity (Daniels et al., 1984; Hensley et al., 2009; Li et al., 2013).

For example, two receptor-binding mutants of X-31 A(H3N2) influenza virus which differ

in receptor-specificity (recognising either α(2,3)- or α(2,6)-linked sialic acid as the result of

a single amino acid difference at HA1 position 226) could also be distinguished between

antigenically using a panel of mAbs (Daniels et al., 1984). Passage of A(H1N1) virus in

immunised mice was also shown to select for single amino acid HA substitutions that increased

receptor-binding avidity (Hensley et al., 2009). Subsequent passage in naive mice resulted in

compensatory avidity-decreasing mutations suggesting that increases to avidity may play an

important role in escape from polyclonal antibodies (Hensley et al., 2009).

It is not clear whether or not the assertion made by Hensley et al. (2009), that antigenic

drift of influenza A viruses is driven by changes to receptor-binding avidity, is compatible

with the observed long-term decrease in avidity of A(H3N2) viruses (Lin et al., 2012), though

Hensley et al. (2009) suggest that alternating passage between immune and naive individuals

(e.g. children) could resolve this apparent contradiction. Recent work on differences in the
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Table 1.1: HA1 amino acid residues in defined antigenic sites and the primary sialic acid

receptor-binding site.

Subtype Biological role HA1 amino acid position

A(H1N1)

Ca 137,138,139,140,141,142,166,167,168,169,170,203,204,

205,221,222,235,236,237

Antigenic Cb 69,70,71,72,73,74

site* Sa 124,125,153,154,155,156,157,159,160,161,162,163,164

Sb 184,185,186,187,188,189,190,191,192,193,194,195

Receptor
94,131,133,150,152,180,187,191,223,225

binding site†

A(H3N2)

A 122,124,126,130,131,132,133,135,137,138,140,142,

143,144,145,146,150,152,168

B 128,129,155,156,157,158,159,160,163,164,165,186,

187,188,189,190,192,193,194,196,197,198

C 44,45,46,47,48,50,51,53,54,273,275,276,278,279,280,

Antigenic 294,297,299,300,304,305,307,308,309,310,311,312

site‡ D 96,102,103,117,121,167,170,171,172,173,174,175,176,177,

179,182,201,203,207,208,209,212,213,214,215,216,217,218,

219,226,227,228,229,230,238,240,242,244,246,247,248

E 57,59,62,63,67,75,78,80,81,82,83,86,87,88,91,92,94,

109,260,261,262,265

Receptor 98,134,135,136,137,138,153,155,183,190,194,

binding site§ 195,224,225,226,227,228

* Reported by Brownlee & Fodor (2001).
† Reported by Skehel & Wiley (2000) and Soundararajan et al. (2011).
‡ All residues are reported by Bush et al. (1999a) which builds on previous studies (e.g.

Wiley et al., 1981; Wilson & Cox, 1990). Subset in bold reported by Shih et al. (2007).
§ Reported by Skehel & Wiley (2000); Weis et al. (1988). Bold positions are highly conserved

and confirmed using crystallographic studies of complexes with receptor analogs (Skehel &

Wiley, 2000).

patterns of global circulation and rates of antigenic drift of A(H1N1) and A(H3N2) viruses

has revealed differences in age of infection as a potentially important factor, with A(H1N1)

viruses being associated with lower ages of infection (Bedford et al., 2015). If A(H1N1)

viruses disproportionally affect younger, naive individuals it could be that avidity differences

are more important relative to antigenic differences in this subtype.

In addition to substitutions that directly impact on antibody binding or receptor-binding,

substitutions introducing glycosylation sites have been observed during HA evolution. The

introduction of N-linked glycosylation sites near the antigenic sites represents another mech-

anism for influenza A to escape antibody neutralisation and has been described in human H3

and H1 viruses (Gambaryan et al., 1998; Skehel et al., 1984). Oligosaccharides bound to these

sites can sterically inhibit existing antibodies from accessing their binding footprint or shield
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nearby epitopes preventing these from inducing an antibody response. Human H3 viruses

have acquired novel glycosylation sites at a greater rate, compared with H1 viruses, with four

potential sites introduced between 1968 and 1999 (Skehel & Wiley, 2000). The introduction

of glycosylation sites can also influence receptor-binding. Generally, glycosylation reduces

avidity, due to either steric hindrance or an overall reduction in surface charge, preventing

hyperglycosylation from being an effective means of escaping immunity (Das et al., 2011).

In summary, neutralising antibodies may select for HA substitutions that change the structure

or biophysical properties of epitopes at various locations on the protein, cause changes to

receptor-binding avidity, and introduce or remove glycosylation sites. Human influenza A

viruses can therefore evade immune pressure by a variety of mechanisms, and while the

molecular basis of these mechanisms is relatively well characterised, the relative contributions

of each of these mechanisms to antigenic drift, and consequently the fitness impact of specific

substitutions in adaptive evolution more generally is less well understood.

1.4 Characterising antigenic phenotype

Effective surveillance and antigenic characterisation of circulating influenza viruses is critical

for ensuring that vaccination provides adequate protection against circulating viruses. Ulti-

mately we are interested in the the level of in vivo cross-protection conferred by the vaccine

virus. We want to know what level of protection antibodies raised in response to the vac-

cine virus will provide against other influenza viruses of the same subtype circulating in the

human population. Most aspects of phenotype (e.g. metabolic rate, bird wing span, virus

receptor-binding avidity) can be measured independently for a given individual, however in

the case of antigenic phenotype we are instead interested in the contrasts between individuals

and the degree of antigenic similarity to other individuals (viruses). To assess the antigenic

novelty of circulating viruses, antigenic similarity to existing antigenic phenotypes, especially

those of the vaccine viruses, must be assessed. It is of critical importance to the vaccine

virus selection process that the GISRS is able to accurately quantify cross-reactivity and the

antigenic similarity of strains, and whether exposure to the vaccine virus will protect against

emerging viruses. Antigenic similarity is typically assessed by measuring the degree of vi-

ral cross-reactivity. Cross-reactivity refers to the extent to which antibodies react with an

antigen that differs from the immunogen, or in this context, the extent to which antibodies

raised against one influenza virus react with a second virus. It is sometimes also referred to

as cross-immunity or cross-protective immunity, though cross-reactivity does not necessarily

equate to cross-protection.

The antigenic phenotype of human influenza viruses is most commonly characterised using

the haemagglutination inhibition (HI) assay. The HI assay is used as a surrogate for in

vivo protection and shows only an indirect relationship as each titre value reflects a ternary
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reaction between antigen, erythrocyte and antibody, and as such may be influenced by a

number of variables in each of these, including limitations in the accuracy of their dilution.

A schematic illustration of the HI assay is shown in Figure 1.5. In the absence of influenza

virus, a suspension of erythrocytes in phosphate-buffered saline (PBS) will sink and form

a button in the bottom of a V-shaped well. When a sufficient amount of virus able to

bind to the receptors on the erythrocyte surface is present when erythrocytes are added,

haemagglutination occurs and the erythrocytes are bound in a diffuse lattice giving the well

a cloudy appearance. When antiserum contains antibodies that are able to bind to the virus,

haemagglutination is inhibited and the erythrocytes sink to the bottom of the well giving

a button appearance. Antigenic relationships are inferred by measuring the effectiveness

of polyclonal antibodies in post-infection ferret antisera, raised against a panel of reference

viruses, to inhibit agglutination of erythrocytes by viruses isolated from clinical samples (Barr

et al., 2014). Post-infection antisera are serially diluted (usually two-fold) and a titre value

is generated for each combination of virus isolate and reference virus that represents the

reciprocal of the maximum dilution of antiserum raised against the reference virus that is

able to inhibit HA binding to receptor analogs on the erythrocyte surface, and is used to

estimate the antigenic similarity of a pair of viruses (Hirst, 1942, 1943).

Appearance	in	well	

Bu#on	–	no	reac,on	

Cloudy	–		
haemagglu,na,on	

Bu#on	–		
haemagglu,na,on	

inhibi,on	

Erythrocytes	

Erythrocytes	

Erythrocytes	

Virus	

Virus	 An,bodies	

Figure 1.5: HI assay schematic: An illustration of the components of the HI assay,

interactions between particles, and the resulting appearance of the well. In the top row,

erythrocytes in the absence of virus particles sink to the bottom of a V-shaped well giving the

button appearance. In the middle row, virus particles haemagglutinate erythrocytes resulting in

a cloudy appearance. In the bottom row, antibodies bind to virus particles inhibiting

haemagglutination resulting in the button appearance produced in the absence of virus particles.

The HI assay is powerful in comparison with other immunological assays for characterising
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antigenic phenotype as it is relatively quick, inexpensive and simple to perform in a high-

throughput manner in laboratories across the world, however it also suffers from a number of

limitations. Several of these limitations are shared with other immunological binding assays

while some are specific to the HI assay. Working with a human virus necessitates working

with reagents from outside the natural host. Using human antiserum to characterise viruses

is problematic as infection history cannot usually be determined and may be the result of

multiple infections and boosts. In contrast, post infection ferret antiserum can be raised

in naive animals and this has become the accepted model for this system. It is, however,

possible that discrepancies in the immune response recognised by human and ferret immune

cells complicate the relationship between ferret post-infection HI titres and protection in

humans (Lee & Yang, 2003; Nolan et al., 2003), though there is no convincing evidence.

Agglutination of non-human erythrocytes (usually guinea pig, turkey or chicken) is used as

a surrogate for attachment to the human receptor. The HI assay therefore measures the

reaction between ferret antibodies, non-human erythrocytes and human viruses that may

have acquired changes upon propagation in cells or hen’s eggs.

It is recognised that HI titres can be affected by a variety of non-antigenic factors. In par-

ticular, it was quickly noted after the introduction of the HI assay that changes in viral

receptor-binding avidity can impact on HI assays (Archetti & Horsfall, 1950; Hirst, 1943).

Influenza viruses that bind to erythrocytes with increased avidity may require a higher con-

centration of antibodies to overcome this and inhibit agglutination in the HI assay. This may

have important consequences for the interpretation of the HI assay. Increased avidity may

reduce HI titres resulting in the virus being falsely defined as antigenically novel, while viruses

with low avidity may be falsely defined as being more antigenically similar to the reference

virus than they actually are (Daniels et al., 1984; Hensley et al., 2009; Yewdell et al., 1986).

Experimental studies of A(H1N1) have shown that this effect can result from a single amino

acid substitution (Hensley et al., 2009).

Somewhat counter-intuitively, it is also possible that increased viral receptor-binding avidity

may lead to higher HI titres. Influenza samples are standardised prior to HI based on their

ability to agglutinate erythrocytes using the haemagglutination assay (Ndifon, 2011). A

standardised number of haemagglutinating units of virus are used in HI, usually four or eight

(i.e. a sample that can agglutinate a standardised suspension of erythrocytes when diluted

four- or eight-fold, but not when diluted eight- or 16-fold respectively). A virus that binds to

erythrocytes with decreased avidity will require more virus particles to agglutinate the same

number of erythrocytes in the haemagglutination assay resulting in a higher concentration

of virus particles in the HI assay, which may require more antibodies for total inhibition of

agglutination and thus result in higher HI titres. The complexities of particle interactions of

this kind in the HI assay are explored in depth using biophysical models by Ndifon (2011).

Similarly, differences in the magnitudes of titres measured using different reference strains
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arise, perhaps due to differences in their immunogenicity or antibody-inducing capacity, fur-

ther complicating inference of results (Hirst, 1943). Antisera raised against some viruses

appears to be more potent resulting in higher titres against viruses in general, regardless of

antigenic differences. To account for differences of this kind HI titres are sometimes con-

sidered relative to the homologous titre recorded when antisera is used to test the reference

virus used to generate it (e.g. Klimov et al., 2012) or the maximum titre recorded using that

antiserum (Smith et al., 2004). Furthermore, differences in the immune-response of individual

ferrets may influence HI titres.

In addition to the limitations described above, the behaviour of A(H3N2) viruses in haemag-

glutination and HI assays has changed in recent years and, as a result, interpretations have

become even more complex (Barr et al., 2010; Lin et al., 2010). In particular, the ∼200-fold

reduction in the avidity of A(H3N2) for the human receptor during the period 2001–2004 and

greater subsequent drop described above, resulted in a change in reactivity against erythro-

cytes of various species and necessitated a switch in HI from turkey to guinea pig erythro-

cytes (Lin et al., 2012). Participation of the virus NA in the agglutination of erythrocytes

by A(H3N2) viruses has also been observed to influence HI titres and to control for this,

HI assays may be performed in the presence of the neuraminidase inhibitor oseltamavir (Lin

et al., 2010).

Virus neutralisation (VN) assays (plaque reduction and microneutralisation) are the principal

alternatives to the HI assay for characterising antigenic phenotype of influenza viruses. An

advantage of VN assays is that virus neutralisation is more biologically relevant than inhi-

bition of binding to erythrocytes and studies have shown that VN assays are more sensitive

than HI assays for detecting antigenic differences (Belshe et al., 2000). Nonetheless, HI and

VN titres are usually well correlated and given that VN assays are relatively time-consuming

and difficult to perform, HI assays remain the principal method of antigenic characterisation

(Barr et al., 2014; Belshe et al., 2000).

The results of many HI assays, together with the results of VN assays performed using smaller

numbers of viruses, are assessed in order to identify patterns of antigenic cross-reactivity

among circulating influenza viruses and to identify antigenic variants (Barr et al., 2014). In

addition to these antigenic studies that use post-infection ferret antisera, human serum panels

obtained pre- and post-vaccination with seasonal influenza vaccine formulations are used to

assess the coverage afforded by current vaccines against panels of representative recently

circulating viruses. These data in combination are used to inform the decision on whether or

not to re-formulate the seasonal vaccine (Barr et al., 2014).

In summary, the HI assay, which remains the most important assay for the antigenic char-

acterisation of influenza viruses, reflects a complex interplay of factors including antibody

binding, serum potency, and virus receptor-binding avidity and specificity. In addition to

these various factors that directly impact HI titres, the assay is affected by a degree of exper-

17



1.5 COMPUTATIONAL METHODS

imental variation stemming from multiple sources. The complex nature of HI data requires

expert decision-makers with the ability to identify patterns in tables of HI titres that indi-

cate the presence or absence of genuinely antigenically distinct viruses among the circulating

strains. Even when antigenic differences between viruses are apparent, these factors further

complicate efforts to quantify the antigenic impact of specific genetic differences. For in-

stance, with an emerging clade of antigenically distinct viruses, the antigenic similarity of

these viruses to previously circulating viruses may be under- or over-estimated if the viruses

in the emerging clade also have lower or higher titres as a result of altered receptor-binding

avidity. The ability to accurately characterise the influenza virus population is determined,

at least to some extent, by the range of antigenic phenotypes represented by the panel of

antiserum used. There are practical limitations on the number of reference viruses that can

be used, so choice of reference virus becomes another important decision in the surveillance

process that relies on expert knowledge of the system.

1.5 Computational methods

A variety of mathematical, statistical and computational techniques have been used to inves-

tigate antigenic drift of influenza A viruses. These methods have used various types of data,

but principally have involved the analysis of either genetic sequence data, antigenic data

from the HI assay, or both. These data have been used explore a diverse range of research

questions relating to antigenic drift. Among these, various approaches have been used to

attempt to identify which codons/amino acid residues are important in adaptive evolution of

influenza viruses, to characterise the dynamics of antigenic evolution relative to the molecular

evolution of the virus, and to explore possibilities for predicting the future composition of

the virus population based on knowledge of the current population and historical events.

1.5.1 Phylogenetic analysis of haemagglutinin

Phylogenetic analysis is used to infer evolutionary history from genetic sequence data. Study-

ing the shape of inferred phylogenies can allow inferences of how epidemiological, immuno-

logical and evolutionary processes act upon the genetic sequence in question. In Figure 1.6, a

phylogenetic tree for the HA1 of 229 human A(H3N2) viruses isolated between 1968 and 2013

is shown. Each tip or terminal node of the phylogeny (filled black circles in Figure 1.6) repre-

sents an actual sampled virus of known sequence. Internal nodes of the phylogeny represent

hypothetical ancestors and the branching pattern or tree topology describes the evolutionary

relationships between nodes. The phylogeny in Figure 1.6 is rooted and the inferred position

of the root, or ancestor of all sampled taxa, is indicated by a red diamond. Alternatively,

phylogenetic trees may be unrooted. An unrooted tree only positions individual taxa relative
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to one another without indicating the direction of the evolutionary process.
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Figure 1.6: Typical A(H3N2) HA1 phylogenetic tree: The maximum clade credibility,

time-resolved HA1 phylogenetic tree for 229 A(H3N2) viruses isolated between 1968 and 2013.

The position of the root is indicated with a red diamond. Branch lengths are measured in

evolutionary time in terms of years rather than substitutions and the scale is indicated.

In Figure 1.6 genetic change to evolutionary lineages is portrayed in the horizontal dimension.

The vertical dimension in Figure 1.6 has no meaning and is simply used for visualisation

purposes. Vertical lines in the branching structure therefore simply indicate the topology of

the phylogenetic tree and their length is irrelevant. At each node in the phylogeny shown

in Figure 1.6, the branch leading to the greater number of tips has been positioned higher

in the vertical dimension. The length of a branch in the horizontal dimension represents the

amount of genetic change. The units of branch length are usually nucleotide substitutions per

site (i.e. the number of nucleotide changes divided by the length of the sequence). Models

of nucleotide substitution provide a statistical description of the evolutionary process and

are used to compute genetic distance. The simplest possible nucleotide substitution model,

introduced by Jukes and Cantor in 1969 (JC69), specifies that equilibrium frequencies of the

four nucleotide bases are equal and that any nucleotide has the same probability to be replaced

by any other (Jukes & Cantor, 1969). The K80 model distinguishes between transitions

and transversions while retaining the assumption of equal base frequencies (Kimura, 1980).

Contrastingly, the F81 model is an extension of the JC69 model in which base frequencies

are allowed to vary from 0.25 (Felsenstein, 1981). The HKY85 model can be thought of

as combining the extensions made in the K80 and F81 models as it distinguishes between
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transitions and transversions and allows unequal base frequencies (Hasegawa et al., 1985).

The general time reversible (GTR) model allows each of the nucleotide substitution rates

between four bases and frequencies of the four bases at equilibrium to vary (Tavare, 1986;

Yang, 1994). To account for differences in the rate of evolution at different sites in a DNA

sequence, a gamma (Γ) distribution of rates across sites can be used and in addition a

proportion of invariant sites can be estimated (Yang, 1993). In Figure 1.6 branch lengths are

however shown in time rather than nucleotide substitutions per site. The phylogeny shown

in Figure 1.6 is therefore said to be time-resolved and has been generated using a molecular

clock model. The molecular clock is a hypothesis that mutations and substitutions occur in

lineages of a tree at a particular rate (Zuckerkandl & Pauling, 1965). Therefore, if all lineages

of a tree are from the same time they should all have the same genetic distance from the

root. If taxa are from different times, the distance of a particular sequence from the root of

the tree should be proportional to the amount of time that has accumulated from the root

to the time of sampling. For a viral population sampled through time, the differences in date

of isolation can be used to calibrate the rate (nucleotide substitutions per site per unit time)

of the molecular clock. A time-resolved phylogeny allows for the date of divergence events in

the evolutionary history of sampled taxa to be estimated. The existence of a molecular clock

seems to support the neutral theory of evolution and deviations from clock-like behaviour may

reveal adaptive evolution, relaxing functional constraints, or changes in effective population

size (Kimura, 1968).

BEAST (Bayesian Evolutionary Analysis Sampling Trees) is a program for Bayesian analysis

of molecular sequences using Markov chain Monte Carlo (MCMC) used at various points

points throughout this thesis (Drummond et al., 2012). BEAST is used to co-estimate phy-

logenies and divergence times. Phylogenies estimated by BEAST are rooted, bifurcating and

time-resolved inferred using strict or relaxed molecular clock models. Evolutionary hypothe-

ses can also be tested without conditioning on a single tree topology. BEAST uses MCMC

to average over tree space, so that each tree is weighted proportional to its posterior proba-

bility. When selecting a single tree is chosen from the posterior sample, the maximum clade

credibility (MCC) tree is usually identified. The maximum credibility method evaluates each

of the sampled posterior trees. Each clade within the tree is scored based on the proportion

of times that it appears in the set of sampled trees and the product of these scores is taken

as the trees overall score. The tree with the highest score is the MCC tree.

Phylogenetic trees generated using the HA gene of human influenza A viruses are charac-

terised by the presence of a single predominant trunk lineage, relatively short side branches,

and the absence of deep bifurcations (Fitch et al., 1997; Nelson & Holmes, 2007). A typical

example is shown in Figure 1.6. This branching structure arises due to rapid turnover in the

HA population; contemporaneous virus lineages coalesce to a common recent ancestor at a

rate that exceeds the temporal span of samples used to generate the tree (Bedford et al.,

2011). This is in contrast to, for example, the HA gene of the measles virus which gener-
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ates bushier trees with far deeper branching (Bedford et al., 2011). Influenza A(H3N2) HA

phylogenetic trees are, in particular, characterised by this high rate of lineage coalescence,

the absence of deep bifurcations or distinct lineages that co-circulate for several years, and a

relatively low effective population size (Bedford et al., 2011). It is striking that the immune

pressure exerted upon A(H3N2) HA results in a single predominant trunk lineage rather

than antigenic diversification as is observed in some other virus proteins such as the foot-

and-mouth disease virus (FMDV) capsid protein whose adaptive evolution is also shaped by

immune pressure (Logan et al., 1993). This predominance of a single lineage may be linked

to the global circulation patterns of A(H3N2) viruses; the global population is so highly in-

terconnected that genetic variants do not persist locally between epidemics but are instead

postulated to be reseeded from South and Southeast Asia (Russell et al., 2008). In contrast,

global movements of A(H1N1) viruses occur less frequently, with genetic lineages sometimes

persisting locally across several seasons (though still only for ∼9 months on average) (Bed-

ford et al., 2015). This co-occurs with a lower rate of coalescence, a bushier phylogenetic tree

with deeper bifurcations, and a higher effective population size exhibited by A(H1N1) viruses,

relative to A(H3N2) (Bedford et al., 2015). Though it is not as apparent as in A(H3N2),

A(H1N1) HA phylogenetic trees still exhibit a predominant trunk lineage and are relatively

lacking in deep bifurcations when compared with phylogenetic trees generated for the HA of

influenza B viruses or other viral genes in general (Bedford et al., 2015).

1.5.2 Genotypic analysis

Various approaches utilising genetic sequence data have been used to investigate antigenic

drift of influenza A viruses and to identify antigenically important substitutions. Several

studies have estimated ratios of rates of synonymous (dS ) and non-synonymous (dN ) muta-

tion across whole genes, parts of genes or at specific codons using reconstructed phylogenetic

trees (e.g. Bush et al., 1999b; Fitch et al., 1997; Yang, 2000). Estimated dN /dS ratios that

are significantly different from unity (one) indicate adaptive evolution. dN /dS ratios greater

than one indicate positive selection, while ratios lower than one indicate purifying or negative

selection. Analysing an alignment of A(H3N2) HA1 sequences, Fitch et al. (1997) observed

there to be an excess of non-synonymous mutations in the side branches and tips of the phy-

logenetic tree compared with the trunk lineage and identified 25 HA1 codons with dN /dS

ratios indicating positive selection and six indicating purifying selection. A further excess of

non-synonymous mutations in terminal branches leading to egg-propagated viruses indicated

that dN /dS ratios were affected by genetic changes not relevant to the adaptive evolution of

the virus. It is possible that the observed excess of non-synonymous mutations in terminal

branches is due to the presence of deleterious substitutions in the sequences of isolated viruses

that are sampled once before they are removed by selection and are not therefore important

in the evolution of the virus at the population level.
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In response to these potential problems, a follow-up analysis calculated codon-specific dN /dS

ratios for internal and terminal branches separately (Bush et al., 1999b). dN /dS ratios

indicating positive selection were detected at eighteen codons in the HA1 domain when only

mutations in internal branches were considered, indicating positive selection at these positions

at the population level. Each of these codons coded for surface-exposed amino acid residues

in positions assigned to antigenic sites A (positions 124, 133, 135, 138, 142 and 145), B

(156, 158, 186, 190, 193, 194 and 197), C (275), D (121, 201 and 226) or E (262) (Bush

et al., 1999b). These results suggested that of the five antigenic sites defined based on

characterisation of mAb escape mutants, antigenic sites A and B were more important in

the adaptive evolution of influenza than antigenic sites C–E. The competitive race against

the human immune repertoire is expected to be the major selective pressure causing positive

selection in HA, however evidence of positive selection does not necessarily indicate that a

position is antigenically important. Five of the 18 positively selected codons (135, 138, 190,

194 and 226) were also among the 16 positions identified by Weis et al. (1988) as being

involved in receptor-binding. While some positions involved in receptor-binding at the centre

of the pocket which binds sialic acid are highly conserved (Weis et al., 1988), it is possible that

changes to receptor-binding avidity or specificity caused by substitutions at these positions

are an important component of the adaptive evolution of influenza viruses, perhaps as part of

the response to immune-pressure as suggested by Hensley et al. (2009). Another possibility

is that some of the positively selected positions undergo compensatory changes that occur

alongside antigenic changes which are required to remain to maintain HA function.

In contrast to these methods which investigate mutations at individual sites, Tusche et al.

(2012) developed a dN /dS -based method that incorporated estimates of positive selection

for individual sites and also information on the spatial distances between residues on the 3D

protein structure in order to detect dense patches of residues showing high average positive

selection. With this approach, individual sites that would not be identified by codon-specific

methods may be identified if they are in close proximity to other positions with strong evi-

dence of positive selection. Intuitively, this is a good idea, since we know antibodies bind to

epitopes composed of clustered residues. When applied to A(H1N1) and A(H3N2) HA, this

method identified eight and nine patches of positive selection respectively of which all but

one contained antigenic residues identified by other methods (Tusche et al., 2012).

dN /dS -based methods evidently have some power in their ability to detect antigenically im-

portant positions in the evolution of influenza viruses and complement mAb escape mutant

studies well. mAb studies can identify specific substitutions that inhibit binding of neutral-

ising antibodies to HA epitopes, but these substitutions are not necessarily all important in

nature. For example, some antigenic substitutions may cause maladaptive effects that are

not clear in the laboratory but that have consequences for intra-strain competition. The

analysis of temporally sampled virus genotypes can help to reveal which positions among

experimentally defined antigenic sites have also been important in nature, and can also give
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indications of their relative importance. For example these methods have commonly identi-

fied more positions showing evidence of positive selection in antigenic sites A and B, relative

to sites C, D and in particular E. The identification of positions under positive selection

must be interpreted with caution as inferences are made in the absence of phenotypic data

and so the substitutions identified provide a good set of candidate substitutions for further

consideration, for instance by testing in HI assays. dN /dS -based methods also possess some

disadvantages when applied to viral datasets because the relationship between the strength

of selection and dN /dS ratio can become complex when applied to sequences sampled serially

through time from a single population (Bhatt et al., 2011). By definition, these methods are

also more sensitive to recurrent selection (repeated substitutions to the same codon) than

to selected mutations that occur only once (solitary selective sweeps) (Bhatt et al., 2011),

which may actually be very important in human influenza A viruses given that evolution

is characterised by the serial replacement of variants in the trunk lineage and not antigenic

diversification (Bedford et al., 2011).

Alternative approaches that utilise genetic sequence data without estimating rates of syn-

onymous and non-synonymous mutation generally rely on tracking changes in the frequency

of amino acid variants. Bhatt et al. (2011) analysed serially sampled A(H1N1) and A(H3N2)

whole genomes using a population genetics method based on an extension of the McDonald-

Krietman test (McDonald & Kreitman, 1991) to quantify the rate of adaptive fixation of

substitutions across genes or parts of genes through time. This analysis found that HA1

exhibited a much higher rate of adaptive evolution than HA2 and that the rate of adaptive

evolution is greater for A(H3N2) than for A(H1N1). This supported previous findings, and

also revealed high rates of evolution for surface-exposed regions of NA and for internal genes

(Bhatt et al., 2011), though this method does not detect specific codons under positive or

purifying selection. Steinbrück & McHardy (2011) presented a method that explicitly investi-

gates changes in the frequency of mutations at specific sites through time in order to identify

individual alleles or sets of mutations that might be under positive selection.

Population-genetic analysis has also been used to characterise the dynamics of antigenic evo-

lution. A punctuated pattern of evolution has been observed in antigen-antibody binding

data (Smith et al., 2004) and also in the temporal distribution of fixations of amino acid

substitution in the virus population (Shih et al., 2007). Clustering has been described by a

model of episodic evolution (Koelle et al., 2006) indicating that rare high-impact substitu-

tions are important in the adaptive evolution of influenza A viruses, however other studies

investigating frequency changes and rates of mutation indicate that most substitutions to

positions in antigenic sites are adaptive (Shih et al., 2007). Under this scenario where bene-

ficial mutations are common, clustering can be explained by fitness interactions or epistasis

between substitutions occurring within antigenic sites (Kryazhimskiy et al., 2011; Shih et al.,

2007). Analysis of polymorphism frequency time-series data has shown that beneficial muta-

tions are common in HA evolution and that observed clustering is the result of competition
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between HA genotypes, and not a limited supply of beneficial mutations (Strelkowa & Lässig,

2012).

1.5.3 Phenotypic analysis

Multidimensional scaling (MDS) covers a range of techniques geared towards dimensionality

reduction and the graphical representation of data, where algorithms are used to identify a

low dimensional space, usually Euclidean, in which points represent the pattern of proximities

(i.e. similarities or distances) among a set of objects (Cox & Cox, 2000). An example of an

MDS analysis of distances between pairs of geographic locations is given in Figure 1.7. In

this example, the proximities among a set of objects (US airports) are geographic distances

measured in miles. Figure 1.7 shows that an MDS analysis of the matrix of distances between

pairs of US airports (shown in A) is capable of recovering the true geographic structure, shown

in map in C.
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ATL	 -	 934	 585	 542	 1209	 1942	 605	 751	 2181	 2139	 424	
BOS	 		 -	 853	 392	 1769	 2601	 1252	 183	 2492	 2700	 1356	
ORD	 		 		 -	 598	 918	 1748	 1187	 720	 1736	 1857	 830	
DCA	 		 		 		 -	 1493	 2305	 922	 209	 2328	 2442	 964	
DEN	 		 		 		 		 -	 836	 1723	 1636	 1023	 951	 1079	
LAX	 		 		 		 		 		 -	 2345	 2461	 957	 341	 1679	
MIA	 		 		 		 		 		 		 -	 1092	 2733	 2594	 669	
JFK	 		 		 		 		 		 		 		 -	 2412	 2577	 1173	
SEA	 		 		 		 		 		 		 		 		 -	 681	 2101	
SFO	 		 		 		 		 		 		 		 		 		 -	 1925	
MSY	 		 		 		 		 		 		 		 		 		 		 -	

Figure 1.7: Multidimensional scaling analysis of pairwise distances between US

airports: Distances in miles between 11 US airports which are indicated by their three-letter

International Air Transport Association codes are shown (A). Distances are colour coded: red,

2501 or more miles; orange, 2001-2500 miles; yellow, 1501-2000 miles; green, 1001-1500 miles;

cyan, 501-1000 miles; blue, 500 or fewer miles. An MDS analysis of these distances was used to

estimate airport locations in two-dimensional space (B) using the R function cmdscale().

Distances in (B) are proportional and do not represent actual distances in miles. (C) Points in

(B) were rescaled using the mean and standard deviations of true latitude and longitude

coordinates and are plotted as red diamonds alongside true locations denoted by blue points.

MDS was adopted by Smith et al. (2004) and applied to HI data to explore antigenic similarity
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of human influenza A(H3N2) viruses isolated from 1968 to 2003 and (Figure 1.8). The

application of MDS to antigenic data such as HI or VN titres is commonly referred to as

“antigenic cartography”. Viruses are positioned on “antigenic maps” so that distances to

antisera, which are positioned in the same space, best satisfy HI titres measured between

them, with distance between virus points intended to be inversely related to their antigenic

similarity. Antigenic maps provide a visual representation of antigenic evolution and the

analysis of Smith and colleagues showed that the antigenic evolution of influenza A(H3N2)

viruses was punctuated relative to molecular evolution, considered in terms of both nucleotide

and amino acid substitutions (Smith et al., 2004). Clusters of antigenically similar viruses

on the A(H3N2) map were defined using k-means clustering analysis and, while in many

cases viruses belonging to the same antigenic cluster are more distant on the map (Figure

1.8), these transitions between clusters likely represented important changes in antigenic

phenotype. Antigenic cartography also allows the antigenic similarity of pairs of viruses not

directly compared by HI assay to be estimated. This is useful as realistically only a small

minority of viruses can be directly compared experimentally and predictions for unobserved

titres can help to fill in gaps in the data providing a more complete antigenic profile of the

virus population.

In Figure 1.8 the greatest amount of antigenic distance is portrayed in the vertical dimension,

though the orientation of the map in antigenic spaces is free as only the relative positions of

viruses and antisera can be determined. The earliest A(H3N2) viruses isolated from humans

belong to purple HK68 cluster at the top of Figure 1.8 while the most recently isolated viruses

belong to the orange FU02 cluster at the bottom. Broadly speaking, movement in antigenic

space from top to bottom of the antigenic map in Figure 1.8 corresponds to the changing

antigenic phenotype of A(H3N2) HA through time. This means that to an extent, with

the orientation of map in Figure 1.8, antigenic evolution in the trunk lineage of A(H3N2)

is expressed in the vertical dimension while antigenic evolution in the side branches of the

A(H3N2) phylogeny is expressed in the horizontal dimension. The unusual evolutionary

ecology of the influenza A HA gene that leads to distinctive phylogenies (1.6) may also result

in two dimensions typically resulting in the best resolution antigenic maps generated from

influenza HI data (e.g. Bedford et al., 2014; Smith et al., 2004) while three dimensional maps

have typically been favoured for antigenic data collected for other viruses (e.g. Horton et al.,

2010; Ludi et al., 2014) (though occasionally three dimensions have been used for influenza

HI data (e.g. Sun et al., 2013)).

Following the original analysis of A(H3N2) virus HI data using antigenic cartography, the

technique has been used to visualise antigenic differences among other influenza viruses, in-

cluding A(H1N1) (Bedford et al., 2014; Sandbulte & Westgeest, 2011) (including A(H1N1)pdm09

(Garten et al., 2009; Klimov et al., 2012)), influenza B (Barr et al., 2010, 2014; Bedford et al.,

2014), avian influenza A(H5N1) (Koel et al., 2014), and extended to other viruses including

FMDV serotype A (Ludi et al., 2014), several species of lyssavirus (Horton et al., 2010), and
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Figure 1.8: Antigenic map of influenza A(H3N2) viruses isolated from 1968 to

2003: Viruses (coloured shapes) and antisera (uncoloured open shapes) have been positioned so

that distances between them represent corresponding HI data with the least error. Colours

indicate antigenic clusters which were identified using a k-means clustering analysis. Clusters

are named after the first vaccine strain they include with letters referring to the location of

isolation (Hong Kong, England, Victoria, Texas, Bangkok, Sichuan, Beijing, Wuhan, Sydney,

and Fujian) and numbers referring to the year of isolation. Vertical and horizontal gridlines

both represent antigenic distance with the spacing between lines representing corresponding to a

two-fold dilution of antiserum in the HI assay. As only the relative positions of antigens and

antisera can be determined, the orientation of the map within these axes is free. Image

reproduced as appears in Figure 1 in Smith et al. (2004) with permission from the rightsholder.

enterovirus 71 (Huang et al., 2009). Across these studies utilising antigenic cartography, ge-

netically similar viruses are generally placed closer together in antigenic space. For example,

more genetically related species of lyssavirus tested by Horton et al. (2010) cluster closer to-

gether on an antigenic map generated from VN data. A notable exception to this observation

is found on the antigenic map generated from VN titres measured between FMDV serotype

A viruses where the three topotypes (genetically and geographically defined lineages) tested

were well intermixed (Ludi et al., 2014).

Antigenic cartography does not directly infer mechanistic relationships between structural

changes to antigenic sites and variation in antibody binding. However, cartographic methods

may be used to select amino acid substitutions for further investigation by experimentation.

When clusters of virus are apparent on antigenic maps, consistent amino acid differences
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between clusters represent candidate substitutions that may have caused the antigenic change.

This approach has been used to determine the amino acid substitutions that have caused

transitions between clusters of antigenically similar viruses on antigenic maps of A(H3N2) and

A(H5N1) viruses (Koel et al., 2014, 2013). Between one and thirteen amino acid substitutions

were associated with transitions between clusters of antigenically similar viruses defined on the

A(H3N2) antigenic map generated by Smith et al. (2004). Subsequent testing of all candidate

substitutions by reverse genetics revealed which substitutions had caused the transitions

between clusters (Koel et al., 2013). Antigenic maps often lack obvious clustering of viruses

(e.g. Garten et al., 2009; Klimov et al., 2012; Ludi et al., 2014) and in these cases it is not

possible to identify which substitutions may have caused the antigenic variation expressed on

the map. Genetic mutations drive antigenic change and so genetically related viruses sharing

a greater proportion of their evolutionary history are also likely to be antigenically similar.

This results in a correlation between antigenically neutral genetic changes and antigenic

distance as expressed in HI titres and on antigenic maps. The same problem is faced when

trying to determine which substitutions may have caused antigenic differences represented as

within-cluster variation on antigenic maps where clustering is present.

All of the substitutions identified as causing transitions between antigenic clusters of A(H3N2)

and A(H5N1) viruses occurred at positions very close to the primary sialic acid-binding site

(Koel et al., 2014, 2013). Li et al. (2013) used a simple method described by Archetti

& Horsfall (1950) to account for variation in HI titres caused by differences in the receptor-

binding avidity of viruses. On A(H3N2) maps generated using the avidity-corrected titres the

extent to which viruses formed distinct clusters was reduced, suggesting that variation in virus

avidity affects positioning on antigenic maps and that substitutions that affect antigenicity

are more likely to be detected as causing antigenic change using antigenic cartography if they

simultaneously alter avidity (Li et al., 2013). This represents an important consideration

when interpreting the results of Koel et al. (2014, 2013), as it is possible that antigenically

important substitutions that do not affect avidity are underestimated in their impact by

antigenic cartography.

1.5.4 Integrating genotypic and phenotypic analyses

Various modelling approaches have been used to explore the mechanisms underlying the

relationship between genotype and antigenic phenotype using models that incorporate genetic

sequence data and data from antigenic analyses such as the HI assay. Lee & Chen (2004)

developed a model that used the count of amino acid differences in the five H3 antigenic

sites A–E to predict antigenic distances, measured by HI assay, between A(H3N2) viruses.

This approach did not account for variation in the antigenic impact of substitutions within

the antigenic sites that is dependent on either the position at which the substitution occurs

or the amino acids involved, or for the potential antigenic impact of substitutions occurring
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outside the described antigenic sites. The predictive power of Lee and Chen’s model was

improved by grouping amino acids into similarity classes based on properties such as polarity

and charge and considering only amino acid substitutions between these classes (Liao et al.,

2008).

While the models described by Lee & Chen (2004) and Liao et al. (2008) are clearly simplistic,

regression-based approaches such as these have advantages over methods that make inferences

based on either genetic (i.e. dN /dS -based selection analyses) or antigenic (i.e. antigenic

cartography) data only. By directly attributing antigenic variation expressed in assays such

as HI to differences in virus genotype, these methods may quantify the antigenic change

caused by specific genetic changes. The methods can, like positive selection analyses, identify

codons linked to adaptive evolution of natural isolates, however in this case the identification

is supported by phenotypic data. They can also, like antigenic cartography, be used to

predict cross-reactivity of pairs of virus that have not been directly assessed experimentally

on the basis of differences in genotype. However, predictions made by these models differ

qualitatively from antigenic cartography in that they are based on an attempt to understand

the mechanistic relationship between structural changes to epitopes and antibody binding.

Conceptually similar work has tested amino acid diversity at each HA amino acid position, as

measured by Shannon entropy, as a predictor of antigenic variation in HI assay (Huang et al.,

2012). Applying this method to A(H1N1) data, Huang et al. (2012) identified as important

several HA positions outwith the H1 antigenic sites identified experimentally (Caton et al.,

1982) but at positions in locations similar to remaining parts of A(H3N2) antigenic sites A–E,

a result consistent with entropy-based analyses of H1 HA sequences that did not use HI data

(Deem & Pan, 2009).

The evolutionary process creates a significant challenge for regression-based analyses that seek

to attribute antigenic differences, expressed in serological assays, to genetic differences be-

tween viruses. The antigenic similarity of influenza viruses depends on amino acid differences

that affect the binding of antibodies to epitopes. Antigenically important HA substitutions

are expected to correlate with variation in HI titre, however non-antigenically important sub-

stitutions are also expected to correlate with reduced cross-reactivity, as a result of the shared

evolutionary history of genetically and antigenically similar viruses. It has long been recog-

nised that individuals drawn from a hierarchically structured phylogeny cannot be regarded

as being independent for statistical purposes. Measures that control for shared evolutionary

history when investigating genetic predictors of phenotype typically focus on properties of

the individual (Felsenstein, 1985), rather than the degree of similarity or difference between

individuals which is what is relevant when considering levels of antigenic cross-reactivity.

Analysing VN measurements of cross-reactivity between pairs of FMDV serotypes SAT1 and

SAT2 isolates, Reeve et al. (2010) introduced a method for detecting antigenically important

amino acid changes while controlling for the shared evolutionary history of viruses. This
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method was based on the recognition that a substitution occurring at a single position in

the phylogeny which correlates with reduced cross-reactivity represents a single independent

piece of evidence that the substitution is antigenically important, regardless of how many

different pairs of virus with reduced titres are separated by that substitution. By identifying

branches of the phylogeny that correlate with reduced cross-reactivity between virus pairs

and only identifying amino acid differences that improved upon this model, positions are only

identified as antigenically important if they possess substitutions correlating with antigenic

change in multiple branches of the phylogeny (Reeve et al., 2010). This approach was used to

identify surface-exposed loops of the FMDV capsid protein containing antigenically important

substitutions and to make sequence-based predictions of titre. Steinbrück & McHardy (2012)

applied a similar method to influenza A(H3N2) HI data and HA sequences, estimating two

independent antigenic weights (up and down) for each branch of the phylogeny. Ancestral

state reconstruction was then used to map substitutions to the branches of the HA phylogeny

and substitutions associated with multiple branches with an average antigenic weight above a

threshold value were identified. It is not clear exactly why up and down weights should differ,

but it is possible that they reflect other aspects of virus phenotype such as receptor-binding

avidity, something Reeve et al. (2010) accounted for using virus-specific corrections to titre.

Methods of this kind, that account for the phylogenetic structure in cross-reactivity data,

possess greater power for distinguishing antigenically important substitutions from neutral

or near-neutral hitchhikers.

1.5.5 Predicting evolutionary success of genotypes

Predicting the direction of evolution of human influenza A viruses is an important aim as

the vaccination process requires decision makers to anticipate which viruses will predominate

in epidemics several months in advance. Early attempts at prediction showed that viral

lineages with the greatest number of substitutions at positions in antigenic sites A and B

or the receptor binding site showing signatures of positive selection were the progenitors of

future A(H3N2) lineages in most seasons (Bush et al., 1999a). Current methods for predicting

the evolutionary success of circulating influenza viruses have also focused on A(H3N2) and

demonstrate an ability to make informative predictions of evolutionary success in most seasons

( Luksza & Lässig, 2014; Neher et al., 2014). Neher et al. (2014) presented a method which

uses information on the shape and branching pattern of the HA phylogenetic tree to inform

predictions of future increase or decrease in genotype frequency. This method therefore relies

on tracking and extrapolating the frequency of genetic variants, and does not require an

understanding of the mechanistic relationship between genetic changes and antibody binding.

 Luksza & Lässig (2014) also used information on the frequency of genetic variants, however

their predictions were also informed by an understanding of which codons are important

in antigenic evolution. Their predictive model included a sequence-based estimate of virus

fitness, where antigenic novelty was approximated by a count of amino acid differences in

29



1.6 SUMMARY AND STATEMENT OF AIMS

antigenic sites reported by Shih et al. (2007), while substitutions outside these sites were

penalised on the assumption that they are likely to be deleterious. A more sophisticated

estimate of antigenic novelty could be incorporated into these models however this depends

on greater understanding of the impact of specific amino acid substitutions on antigenicity,

and indeed the adaptive and maladaptive fitness contributions of specific substitutions more

generally.

1.6 Summary and statement of aims

Host-pathogen interactions drive the adaptive evolution of human influenza A viruses. Ex-

posure via infection or vaccination results in lasting immunity against the virus the host is

exposed to and partial immunity against infection by antigenically similar viruses. Immunity

in the host population exerts a strong selective pressure on the virus population. Mutations

that alter the structure of epitope regions in such a way that existing antibodies are inhibited

in their ability to neutralise are positively selected and novel antigenic variants out compete

other viruses and cause new epidemics. The surveillance and antigenic characterisation of

circulating influenza viruses is critical to the maintenance of an effective influenza vaccine,

as effectiveness depends on the antigenic similarity of the vaccine virus to circulating viruses.

However, attempts to predict the antigenic novelty of genetic variants are limited by our

understanding of the impact of specific genetic changes on antigenic phenotype.

The primary aim of this thesis is the development of models based on the mechanistic rela-

tionship between genetic changes and variation in the structure of antigenic sites that affects

recognition by antibodies. This will primarily be done through analysis of HI data collected

in recent decades and associated genetic sequence data. The HI assay measures the cross-

reactivity of influenza HA and while there are other aspects of the antigenic phenotype of

influenza viruses, including the targets of anti-NA antibodies and T cells, the contribution

of HA epitopes to antigenicity and to the wider adaptive phenotype of influenza viruses is

clear. The methods used are, however, not intended to be specific to influenza A and the

HI assay but to be generalisable, capable of being extended to other antigenically variable

viruses where pairwise estimates of antigenic similarity and relevant sequence data exist.

In Chapter 2, I use phylogenetic methods, analyses for the detection of positive selection, and

antigenic cartography to characterise the genetic and antigenic variation among the viruses

studied throughout the thesis. I evaluate various genetic measures as predictors of antigenic

similarity, as expressed in HI titres and evaluate the usefulness of the aforementioned methods

for epitope identification. In Chapter 3, I extend to influenza A viruses, the model used by

Reeve et al. (2010) to investigate antigenic differences among FMDV. Reeve et al. (2010)

developed a model to identify regions of the FMDV capsid where counts of amino acid

differences between viruses reduced cross-reactivity, as expressed in VN assays. In Chapter

30



1.6 SUMMARY AND STATEMENT OF AIMS

3, I extend this model to identify specific amino acid substitutions that have caused antigenic

changes in the evolution of A(H1N1) viruses and quantify their relative impact. I then use site-

directed mutagenesis and antigenic characterisation of mutant recombinant viruses produced

by reverse genetics to experimentally validate model predictions. In Chapter 4, I further

extend the model and investigate the antigenic drivers of antigenic drift among A(H3N2)

viruses, comparing model results with published HI data generated using recombinant viruses.

In Chapter 5, I explore the power that identified antigenic determinants have for predicting

antigenic relationships among A(H1N1) and A(H3N2) influenza viruses and also among FMD

viruses belonging to three antigenically distinct serotypes. Collectively these studies will lead

to improvements in the quantification of the genetic basis of variation in antigenic phenotype

with consequences for sequence-based prediction of virus fitness and evolutionary success.
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CHAPTER 2

Characterisation of the molecular and

antigenic evolution of human influenza A

viruses



Characterisation of the molecular and anti-
genic evolution of human influenza A viruses

2.1 Abstract

Antigenic drift allows human influenza A viruses to circumvent immunity that exists in the

human population and that conferred by vaccination, contributing to the disease burden of

influenza. Increased understanding of the antigenic difference between strains is critical for

surveillance and vaccine strain selection. Mutations to antigenic sites of the haemagglutinin

(HA) protein result in antigenically distinct clades that co-exist for relatively short periods.

When the selective advantage conferred is sufficient, novel antigenic variants out-compete

other viruses and are incorporated into the trunk lineage from which all future viruses are

descended. The haemagglutination inhibition (HI) assay is the principal method of antigenic

characterisation. HA sequence data from influenza A(H3N2) and former-seasonal A(H1N1)

isolates and reference viruses with complementary data from the HI assay were analysed. A

range of genetic and phylogenetic techniques and antigenic analyses were used to characterise

the molecular and antigenic evolution of the HA. Results indicate only a weak relationship

between existing measures of phylogenetic and antigenic dissimilarity. Identification of known

antigenic HA positions using analyses for the detection of positive selection and further

antigenic analysis indicates that these methods are useful for the identification of antigenically

important genetic changes. However, despite some degree of correspondence in the amino

acid positions identified by these two methods, residual, unexplained variation in HI titres

indicate a need for better quantitative methods to fully explore the relationship between

molecular and antigenic evolution.

2.2 Introduction

A thorough understanding of antigenic evolution, and in particular the HA protein, is vital

for maintenance of an effective vaccination programme. Experimental studies have been

vital to the characterisation of the antigenicity of the HA protein, primarily through genetic
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sequencing of monoclonal escape antibodies (e.g. Caton et al., 1982; Skehel et al., 1984;

Webster & Laver, 1980; Wiley et al., 1981). The results of these experiments and antibody

competition assays have been used to map antigenic sites to the globular head region of the

influenza HA glycoprotein (Caton et al., 1982; Wiley et al., 1981). Laboratory studies of

this kind cannot however fully predict the antigenic impact of, or fitness consequences of

mutations to antigenic regions of HA in nature.

Quantifying the phenotypic impact of specific mutations and related fitness consequences is a

significant challenge for virus research that remains largely unresolved (Koelle & Rasmussen,

2014). Many antigenic regions are also able to influence receptor-binding avidity or specificity

(Daniels et al., 1984; Hensley et al., 2009; Yewdell et al., 1986) and the ability of monoclonal

antibody escape mutants to replicate under laboratory conditions does not necessarily mean

that an identified antigenic variant will be capable of competing with other viruses in natural

host populations. Assessing the fitness impact of specific substitutions that affect antibody

binding is complex and difficult. It is however an important goal, as it is likely that a

better, quantitative understanding of the fitness consequences of specific mutations would

enable better predictions of the direction of evolution among circulating viruses to be made.

Recently published methods have used simple counts of non-synonymous mutations inside

and outside defined antigenic sites for such purposes ( Luksza & Lässig, 2014).

The principal methods for quantifying antigenic differences among circulating influenza viruses

assess the antigenic similarity of strains by evaluating the ability of a panel of post-infection

antisera, raised against a set of strains representative of the known antigenic variation ob-

served among recently circulating strains, to inhibit haemagglutination of ertythrocytes by

circulating viruses (Barr et al., 2014). This is primarily done using the HI assay, though virus

neutralisation (VN) tests are also performed using far smaller numbers of viruses (Barr et al.,

2014). Variation in HI assays and various sources of non-antigenic variation complicate their

interpretation and correlations between antigenic and molecular evolution make it difficult

to track changes in phenotype as measured by these serological assays back to genetic differ-

ences between viruses. One solution to this problem has been to summarise these data using

multidimensional scaling and to identify candidate mutations separating clusters of similar

viruses on the resulting antigenic maps (Smith et al., 2004) with reverse genetics being used

subsequently to resolve remaining ambiguities (Koel et al., 2013). Alternative methods use

phylogenetic information to infer knowledge of the substitutions affecting antigenic phenotype

by detecting positions under positive selection (Bush et al., 1999b).

The aims of this thesis are to investigate the genetic basis of antigenic evolution by identifying

the HA codons where mutations cause antigenic change, to quantify the antigenic impact of

specific amino acid substitutions, and to explore the possibilities for sequence-based predic-

tion of antigenic similarity. In this chapter, I explore the usefulness of existing methods for

achieving these aims. These methods include the reconstruction of phylogenetic trees, the
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detection of signatures of positive and purifying selection, and antigenic cartography. Histor-

ical A(H1N1) and A(H3N2) datasets consisting of genetic sequence data and antigenic data

from the HI assay were analysed.

2.3 Materials and Methods

2.3.1 Viruses, antisera and HI assays

The genetic and antigenic data analysed in this chapter were generated by staff of the Crick

Worldwide Influenza Centre, UK (formerly the WHO Collaborating Centre for Reference and

Research on Influenza, MRC National Institute for Medical Research, UK). Influenza viruses

were originally isolated from clinical specimens by either the WHO National Influenza Centres

(NICs) or the Crick Worldwide Influenza Centre and were further propagated in either MDCK

or MDCK-SIAT1 cells or, for a few viruses only, in 10-day old embryonated hen eggs. Post-

infection ferret antisera were raised against cell- or egg-propagated reference viruses.

Ferrets were from a Home Office approved supplier and housed in containment level 2 in the

UK Home Office approved facilities at the Mill Hill laboratories. The studies were approved

by the Ethical Review Bodies of The Francis Crick Institute and the MRC National Institute

for Medical Research and licensed by the UK Home Office under license numbers 80/2541,

80/2090 and previous licenses under the UK Animals (Scientific Procedures) Act 1986. In-

fected ferrets were monitored closely with respect to their health (e.g. lethargy, inability to

feed/drink, etc.) and any that considered to be showing severe symptoms were culled by

terminal anesthesia. Two weeks post-infection the ferrets were put under terminal anesthesia

using a specific mixture of drugs (Vetalar, Rompun and Pentoject) dependent on the weight

of the ferret and were exsanguinated to provide antiserum for use in HI studies.

HI assays were performed to compare the reactivity of cultured viruses with post-infection

ferret antisera according to standard methods (WHO, 2011). Antiserum samples were treated

with receptor-destroying enzyme to eliminate non-specific inhibitors present in serum, inacti-

vated at 56◦C and then two-fold serially diluted in phosphate-buffered saline (PBS) from an

initial dilution of 1:10, 1:20 or 1:40. Virus samples were diluted in PBS to either four or eight

haemagglutinating units. Virus dilutions were then added to the serially diluted antiserum

samples and left for 30 minutes to allow antibodies to bind. Suspensions of erythrocytes in

PBS were then added to antiserum:virus mixtures. Titres were recorded as reciprocals of the

highest dilution of antisera that inhibited haemagglutination. HI assays for A(H3N2) were

conducted using suspensions of chicken (0.75%), turkey (0.75%) or guinea pig (1.0%) erythro-

cytes, while turkey (0.75%) erythrocytes were used for all A(H1N1) assays. The behaviour of

A(H3N2) viruses in haemagglutination and HI assays has changed during the period of data
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collection potentially complicating the relationship between HI titres and antigenic change

(Lin et al., 2010, 2012). In the period 2005–2009 the role of neuraminidase-mediated ag-

glutination of erythrocytes was observed to complicate the relationship between HI titres

and antigenic change in A(H3N2) viruses (Lin et al., 2010). HI assays for A(H3N2) in more

recent years have therefore been carried out in the presence of the neuraminidase inhibitor

oseltamavir.

A(H1N1) and A(H3N2) HI datasets were assembled from historical data by including all titres

for which HA1 sequence for both virus and reference virus (antiserum) were known. The HI

dataset assembled for A(H1N1) comprised 506 viruses including 43 reference viruses against

which post-infection ferret antisera were raised, with 19,905 HI titres measured between 3,734

unique combinations of virus and antiserum, recorded on 351 dates from 1997 to 2009. Year

of isolation for A(H1N1) viruses in this dataset ranged between 1978 and 2009. The larger

A(H3N2) HI dataset comprised 49,766 titres for 15,855 virus-antiserum pairs measured using

1,857 viruses and antiserum raised against 194 reference viruses recorded on 732 dates. Year

of isolation of A(H3N2) viruses in this dataset ranged between 1968 and 2014. Computational

limitations necessitated the creation of a subset of the A(H3N2) dataset to be used in some

analyses. This subset was chosen to have a high proportion of viruses used as reference viruses.

It contained 7,315 titres recorded for 2,738 different virus and antiserum pairs between 229

viruses and antiserum raised against 169 different reference viruses. Both A(H3N2) datasets

included HI and associated HA1 gene sequence data, primarily relating to pre-1990 viruses,

published by Bedford et al. (2014) in addition to data collected by the Crick Worldwide

Influenza Centre, UK. This additional HI dataset included titres recorded for 650 virus-

antiserum pairs with 91 viruses tested using antisera raised against 36 reference strains.

2.3.2 Phylogenetic analysis

HA1 nucleotide sequences were aligned using MUSCLE alignment software (Edgar, 2004).

Phylogenetic reconstruction and analysis were carried out using BEAST v1.7.5 (Drummond

et al., 2012) which uses a Markov chain Monte Carlo (MCMC) algorithm to explore parameter

space and evaluate phylogenetic models. BEAST also uses date of isolation to calibrate a

molecular clock model allowing rates of evolution along branches to be estimated. The

goodness-of-fit of 88 models of nucleotide substitution were evaluated prior to analysis in

BEAST using jModelTest v2.1.7 (Darriba et al., 2012; Guindon & Gascuel, 2003). The

preferred model from this analysis was tested against similar models in BEAST through

comparison of Bayes factors (Suchard et al., 2001) calculated using Tracer v1.5 (Rambaut &

Drummond, 2009). The best model of nucleotide substitution was then tested with codon-

position models that allow rates to differ across all three codon positions and at the third

position relative to the first two. These comparisons were made using the simplest molecular

clock model (strict clock) (Zuckerkandl & Pauling, 1965) and relatively uninformative priors
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on all model parameters.

The strict molecular clock model, which assumes a constant rate of substitution along all

branches of the phylogeny, was then tested against other molecular clock models, using the

optimal model of nucleotide substitution with or without codon-partitioning. The alternative

clock models tested were the random local clock model which allows substitution rate to

vary across the tree, while being constant within local subtrees (Drummond & Suchard,

2010) and the relaxed (uncorrelated) molecular clock where each branch is assigned its own

substitution rate which are collectively assumed to have a common probability distribution

(Drummond et al., 2006). The relaxed molecular clock was tested with branch substitution

rates drawn from both lognormal and exponential probability distributions. Different priors

on the coalescence process, based on assumptions of the demographic history of the influenza

population, were also tested. A model assuming constant population size was tested against

models of exponential, logistic and linear growth. Additionally the tree was reconstructed

with a Bayesian skyline model where the effective population size is estimated from the data

allowing more complex patterns of demographic change. Both molecular clock models and

priors on demographic history were again assessed by calculation of Bayes factors in Tracer.

Autocorrelation and run length were assessed through calculation of effective sample size

(ESS) using Tracer. The ESS of a parameter sampled from an MCMC is the number of effec-

tively independent draws from the posterior distribution that the Markov chain is equivalent

to. The ESS of a parameter is reduced when autocorrelation, the similarity of parameter

estimates as a function of the number of samples of the Markov chain separating them, is

high. High autocorrelation and low ESS indicate poor mixing which means the efficiency

with which the MCMC algorithm has sampled a parameter is low and the estimate for the

parameter is less likely to be accurate. The ESS of parameters was recalculated across inde-

pendent MCMC simulations to assess convergence. The maximum clade credibility tree was

identified from a posterior sample of 10,000 trees using the TreeAnnotator v1.7.5 program,

which is distributed within the BEAST package. For A(H1N1), substitution at position 187,

associated with adaptation to propagation in eggs (Gambaryan et al., 1999; Raymond et al.,

1986; Robertson et al., 1987), was assumed to be an artefact with potential to distort phy-

logenetic inference, so nucleotides coding for position 187 were excluded from phylogenetic

analysis unless otherwise stated.

Two measures of genetic similarity were tested as correlates of HI titres. Amino acid dis-

tances were calculated as the Hamming distance between pairs of aligned HA1 amino acid

sequences. Patristic distances between pairs of viruses in the HA1 phylogeny were also calcu-

lated. Patristic distances are the sum of the branch lengths (branch lengths are represented

in the horizontal dimension in Figures 2.3 and 2.3 only and not the vertical dimension) sep-

arating two viruses and are therefore the genetic distance as estimated using a nucleotide

substitution model. These patristic distances are referred to here as phylogenetic distances.
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2.3.3 Signatures of selection

Codon-specific rates of non-synonymous (dN ) and synonymous (dS ) nucleotide substitu-

tions were estimated across HA1. Estimates of dN significantly different from dS imply

non-neutral evolution, with dN /dS > 1 indicative of positive selection and dN /dS < 1 in-

dicative of purifying selection. All methods of analysis used for detecting site-by-site selection

were implemented using either the HyPhy package v2.2.4 (Kosakovsky Pond et al., 2005) or

the associated Datamonkey webserver (http://www.datamonkey.org/) (Delport et al., 2010;

Kosakovsky Pond & Frost, 2005a).

At each site, dN and dS were directly estimated based on a codon-nucleotide substitution

model using the fixed-effects likelihood (FEL) method (Kosakovsky Pond & Frost, 2005b).

The FEL method takes into account, for each three-base sequence, the number of synony-

mous and non-synonymous non-stop codons accessible given a single nucleotide substitution

according to the structure of the genetic code. At each codon, rates of synonymous and non-

synonymous nucleotide substitution are estimated and codon-specific p-values are generated

using a likelihood ratio test. These likelihood ratio tests evaluate whether the estimated

pattern of mutation can be explained by a single rate of mutation (1 parameter) or if two

different rates of mutation for synonymous and for non-synonymous mutations is preferable

(2 parameters). The likelihood ratio test at each codon thus has one degree of freedom to

test dN 6= dS. This analysis was repeated using the internal fixed-effects likelihood (IFEL)

method, a variation of the FEL method which excludes mutations occurring in terminal

branches of the phylogenetic tree when deriving dN /dS (Kosakovsky Pond et al., 2006). It

is useful to consider the dN /dS ratio derived using only internal branches of the phylogeny

as non-synonymous mutations in terminal branches are effectively removed from the pop-

ulation and are therefore not important at the population level. The mixed effects model

evolution (MEME) method is an extension of FEL that allows some branches to be under

positive selection while others are under purifying selection (Murrell et al., 2012). MEME

was used to identify codons subject to episodic diversifying selection. Codons identified by

FEL/IFEL/MEME methods with p-values < 0.05 are reported.

Fast unconstrained Bayesian approximation (FUBAR), an alternative method for detecting

codon-specific positive and purifying selection based on dN and dS, was also used to analyse

HA1 (Murrell et al., 2013). FUBAR ensures robustness against model misspecification by

averaging over a large number of predefined site classes, leaving the distribution of selection

parameters essentially unconstrained. Codons with dN /dS ratios greater than one with

posterior probabilities greater than 0.95 are reported.

The PyMOL Molecular Graphics System v1.7.7.2 (http://www.pymol.org) was used to vi-

sualise the locations of surface-exposed codons exposed to positive or purifying selection on

the HA 3D structures of A/Puerto Rico/8/34 (H1N1) (Protein Data Bank (PDB) ID: 1RU7
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(Gamblin et al., 2004)) and A/Aichi/2/68 (H3N2) (PDB ID: 1HGG (Sauter et al., 1992)).

Proportions of identified codons associated with defined antigenic sites were calculated and

compared with proportions calculated across the full HA1 alignments. Codons associated

with A(H1N1) and A(H3N2) antigenic sites are based on those sets of 50 and 60 reported by

Brownlee & Fodor (2001) and Shih et al. (2007) respectively (detailed in Table 1.1).

2.3.4 Antigenic cartography

Virus and antiserum locations in antigenic space were estimated using a Bayesian multidi-

mensional scaling (BMDS) model (Bedford et al., 2014). This methodology extends that

introduced by Smith et al. (2004) by incorporating a phylogenetic diffusion process and es-

timates of antiserum and virus reactivity to account for variation in the immunogenicity of

reference viruses and in the receptor-binding avidity of viruses. This model was used to posi-

tion viruses and antisera in a two dimensional space, following Smith et al. (2004) and Bedford

et al. (2014), so that distances best satisfied the HI data. After accounting for variation in

titres dependent on differences in antiserum and virus reactivity, viruses and antisera were

positioned so that distances between their locations on the map best reflected the inverse of

observed log2 HI titres. Here, the two dimensions in antigenic space are termed the primary

and secondary antigenic dimensions.

Multiple configurations of virus and serum locations in two-dimensional space may give the

same likelihood, given an incomplete matrix of observed HI titres. Very antigenically distant

viruses (i.e. those sampled decades apart) are rarely tested together by HI, accentuating

this issue of model identifiability. Given the expectation that antigenic distance between

seasonal influenza viruses increases with time, a weak prior was used to inform the expected

location of viruses and antisera whereby their position in the primary antigenic dimension

was informed by date of sampling (Bedford et al., 2014). A weakly informative diffuse gamma

prior with shape = 0.001 and rate = 0.001 was put on the annual rate of drift in the primary

antigenic dimension. This assumption that temporally distant viruses are also antigenically

distant accounts for the issue with model identifiability in part, producing more interpretable

visualisations of the HI data.

Genetic relatedness, as estimated by the phylogenetic analysis described above, was also used

to inform the locations of viruses in antigenic space. This involved estimating locations of each

internal node of the phylogenetic tree, including the root, in antigenic space, in addition to the

tips (viruses) by modelling antigenic phenotype as an evolutionary diffusion; a character state

that evolves along branches of the phylogenetic tree according to a Brownian motion process

(Lemey et al., 2010). Tree topology and branch lengths were used to predict virus locations

with an assumption that a node or tip location follows from the location of its parent node,

with the addition of the temporal drift in the primary antigenic dimension described above
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(Bedford et al., 2014). Thus, prior locations of viruses were informed by date of sampling

and genetic similarity to other viruses. Phylogenetic information from 50 trees sampled

from the posterior of the BEAST phylogenetic analyses described above was incorporated.

Trees from this set were randomly proposed and accepted following the Metropolis-Hastings

algorithm (Pagel et al., 2004), thus accounting for phylogenetic uncertainty (Bedford et al.,

2014). MCMC was used to sample from the posterior distribution of the BMDS model. This

was implemented in BEAST using XML files adapted from published templates (Bedford

et al., 2014). MCMC samples were then analysed, and antigenic maps constructed, using R

(R Core Team, 2015). Antigenic maps were constructed using the full A(H1N1) dataset and

the subset of the A(H3N2) dataset.

k -medoids clustering was used to determine clusters of antigenically similar viruses according

to the X and Y coordinates describing the locations in antigenic space. k -medoids clustering

is a partitioning technique that clusters a set of objects (e.g. virus locations in antigenic

space) into a pre-determined number of k clusters (Theodoridis & Koutroumbas, 2006). A

medoid is the object of a cluster whose average dissimilarity (e.g. distance in multidimensional

antigenic space) to all objects in the cluster is minimal. k -medoids clustering is conceptu-

ally similar to k -meas clustering, though it is more robust to noise and outliers because it

minimises a sum of pairwise dissimilarities instead of a sum of squared Euclidean distances.

k was determined using the silhouette method which determines the number of clusters by

minimising the average distance between medoids and other objects assigned to the same

cluster (Rousseeuw, 1987). Amino acid differences conserved between at least 0.95 of viruses

in adjacent antigenic clusters were identified by comparison with HA1 alignments. The Par-

titioning Around Medoids (PAM) algorithm for k -medoids clustering was implemented using

the R package fpc (Hennig, 2015).

2.4 Results

HI titres may be affected by several non-antigenic factors. Variation in titres can occur due

to variability in other characteristics of viruses such as receptor-binding avidity. Similarly,

different antisera may produce titres of lower or higher magnitude due to differences in the

antibody-inducing capacity of the viruses used to generate them. Variation in the immune

response of individual animals used to generate antiserum for use in the assay and between

batches of cells may also impact titres. Other sources of experimental variation arise due to

limitations in the accuracy of dilutions of reagents used and the subjective nature involved in

reading assay results from the plate. The observed variation in titres recorded for any given

virus-antiserum pair gives an indication of the degree of experimental variability in HI titres

and is plotted for each subtype in Figure 2.1. Here, for every virus-antiserum pair with at

least two observations, each log2 HI titre recorded is plotted against the mean titre recorded
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for the virus-antiserum pair.
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Figure 2.1: Variation in HI titres: Mean and observed log2 titres are shown for each

virus-antiserum pair with at least two HI titres recorded. Discrete bands in observed titres

correspond to two-fold dilutions in the HI assay and points have been randomly displaced by a

small amount in this dimension to facilitate visualisation of overlapping points. 16,801 titres for

630 virus-antiserum pairs are shown for A(H1N1) (A) and 36,133 titres for 2,222

virus-antiserum pairs are shown for A(H3N2) (B). Black dotted lines with slope =1 and

intercept = 0 are shown.

Notable levels of variability in the titres recorded per virus-antiserum pair are observed in

both subtypes. In the A(H1N1) dataset, 16,801 titres were recorded for 630 virus-antiserum

pairs with at least two titres. Observed titres could predict much of the variation in mean

titres (R2 = 0.87), however discrepancies between mean and observed log2 titres as great

as 4.35 were observed; the mean, absolute error for a single reading (the difference between

mean and observed log2 titre) was calculated as 0.55. This is roughly half of a two-fold

dilution in HI assay and slightly more than double than the value of 0.25 which is the optimal

expected error given the two-fold dilutions involved even when everything else occurs without

error. The A(H3N2) HI dataset comprised 36,133 titres recorded for 2,222 virus-antiserum

pairs with at least two titres. The relationship between mean and observed log2 titres was

very similar to that recorded for A(H1N1) (R2 = 0.88), however the greatest discrepancy

was significantly larger (6.00) and the mean, absolute error was also slightly greater (0.59).

Figure 2.1 indicates that in many instances, variation in titres measured for a given virus-

antiserum pair are of a magnitude that might otherwise indicate antigenic dissimilarity. This

demonstrates the necessity of experience when interpreting and recognising patterns among

the results of many HI assays and shows why it is often difficult to track changes in antigenic

phenotype back to specific genetic differences between viruses using HI data. Given the

observed levels of variability in titres, comparisons of molecular and antigenic evolution were
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made using mean log2 titres calculated for each virus-antiserum pair.

2.4.1 Phylogenetic analysis

For both A(H1N1) and A(H3N2), the GTR+I+Γ4 model was determined to be the best-fit

model of nucleotide substitution by jModelTest. This model, a general time-reversible model

of nucleotide substitution with a proportion of invariant sites and a gamma distribution de-

scribing among-site rate variation with four categories estimated from the empirical data was

tested against similar models in BEAST and was also supported by comparison of Bayes

factors (Suchard et al., 2001). Bayes factor analysis also determined that a codon-position

model that allowed rates of nucleotide substitution to vary at the third codon position relative

to the first and second codon positions should be used. For both subtypes, a relaxed (un-

correlated) molecular clock (Drummond et al., 2006) with branch substitution rates drawn

from an exponential distribution was determined to best represent the rate of evolution along

branches of the phylogeny. For A(H1N1), the constant size population model outperformed

other models. This is not surprising since, while influenza population sizes fluctuate region-

ally depending on season, global population size is not expected to have changed dramatically

during the period studied. With higher-resolution data on the dates of isolation of viruses,

the Bayesian skyline demographic model (Drummond et al., 2005) may have been able to

more accurately capture seasonal fluctuations in population size. For A(H3N2), Bayes fac-

tor analysis indicated support for both an assumption of constant population size and the

Bayesian skyline model ahead of the various models of population growth tested, though

these models were equally well supported (i.e. standard errors on marginal likelihoods of

models were greater than differences in marginal likelihood of models). For computational

reasons, the assumption of constant population size was used in subsequent analyses. The

resulting maximum clade credibility phylogenetic trees generated for A(H1N1) and A(H3N2)

are shown in Figures 2.2 and 2.3 respectively. Figure 2.3 shows separate trees for the full

genetic sequence data set consisting of 1860 virus sequences and the subset of 229 sequences.

Reference viruses used to raise antisera present in the HI dataset and viruses included in

seasonal influenza vaccines are highlighted in each phylogenetic tree.

2.4.2 Comparison of antigenic and phylogenetic data

The relationship between molecular and antigenic evolution was investigated by testing amino

acid and phylogenetic distances between pairs of viruses as predictors of HI titres. Amino

acid distances between all viruses in the HI datasets were calculated from translated HA1

nucleotide sequences. Phylogenetic distances were calculated as the sum of branch lengths,

measured in years, separating virus pairs on the HA1 phylogeny. Pairwise amino acid and

phylogenetic distances are plotted against mean log2 titres for each virus-antiserum pair in
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Figure 2.2: A(H1N1) phylogenetic tree: The maximum clade credibility, time-resolved

HA1 phylogenetic tree for 506 A(H1N1) viruses with associated HI data. Reference viruses used

to raise antisera and vaccine components are coloured blue and red respectively. Branch lengths

are measured in evolutionary time in terms of years rather than substitutions.

the A(H1N1) and A(H3N2) datasets in Figures 2.4 and 2.5. These plots suggest that the

antigenic similarity of strains is related to their genetic similarity but that the relationship is

not adequate for sequence-based inference of antigenic phenotype. This likely represents both

heterogeneity in the antigenic impact of genetic changes and the influence of other sources of

variation on mean HI titres.

For A(H1N1), 183 amino acid positions in HA1 were conserved while 144 were variable.

The largest amino acid distance between any pair of viruses in the HA1 alignment was 38

but among the virus-antiserum pairs in the HI data the highest distance was 26. A linear

model determined that on average each amino acid difference between viruses resulted in

a drop in log2 titre of 0.23 (p < 10−10), though amino acid distance was a relatively poor

predictor of HI titre (R2 = 0.31). Phylogenetic distance, measured in evolutionary time,

was an even weaker predictor of titre (R2 = 0.17), though a significant relationship was

seen, with each year of evolutionary time resulting in a drop in log2 titre of 0.14 (p <
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Figure 2.3: A(H3N2) phylogenetic trees: The maximum clade credibility, time-resolved

HA1 phylogenetic tree for (A) 229 and (B) 1860 A(H3N2) viruses with associated HI data.

Reference viruses used to raise antisera and vaccine components are coloured blue and red

respectively. Branch lengths are measured in evolutionary time in terms of years rather than

substitutions.
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Figure 2.4: A(H1N1) pairwise amino acid and phylogenetic distances as predictors

of HI titres: The mean log2 HI titre for each virus-antiserum pair (n = 3,734) plotted against

(A) the pairwise amino acid distance, the number of differences in the HA1 amino acid

sequences of test and reference virus and (B) the pairwise phylogenetic distance, the sum of

branch lengths separating two viruses in a time-resolved HA1 phylogenetic tree. Given the

discrete nature of amino acid distances, a small amount of random displacement in both axes

has been added to the position of points in (A) to facilitate visualisation of overlapping points.

Red lines show linear model fits and R2 values are noted.
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10−10). A greater proportion of HA1 amino acid positions were variable among the viruses

in the extended A(H3N2) alignment (233 out of 328 HA1 positions). The largest amino acid

distance between viruses in the A(H3N2) alignment was 70 while 62 was the greatest distance

between a pair of viruses with associated HI data. On average each amino acid difference

resulted in a smaller drop in log2 titre (0.14, p < 10−10), relative to the A(H1N1) dataset,

and amino acid distance explained an even smaller proportion of variation in titre (R2 =

0.18). For A(H3N2), phylogenetic distance was a comparable predictor of log2 titre (R2 =

0.18) but was still a statistically significant correlate with each year of evolutionary time

resulting in an average drop in log2 titre of 0.26. Thus, genetic distances provide some power

for estimating antigenic similarity of influenza A(H1N1) and A(H3N2) viruses, however the

low coefficients of determination (R2) indicate that simple measures of genetic distance are

inadequate predictors.

A visual representation of the relationship between between molecular and antigenic evo-

lution for A(H1N1) viruses is shown in Figure 2.6. Here, viruses and antisera are sorted

phylogenetically according to the maximum clade credibility trees generated in BEAST and

coloured cells indicate average HI titres for pairs of virus and antiserum tested. It is clear

from this figure that, generally, viruses that are phylogenetically related are also antigenically

similar, however there are instances where phylogenetically similar viruses are antigenically

distinct. For example, the starkest antigenic change in the A(H1N1) HI dataset is represented

as the red to yellow change in the columns for the antisera raised against reference viruses

A/Johannesburg/82/96 and A/Bayern/7/95 to the left of the heat-map in Figure 2.6. The

colour change in these columns of the heat-map corresponds to a relatively deep bifurcation

in the HA1 phylogeny to the left of Figure 2.6, where one or more changes in amino acid must

have caused a disproportionally large change in antigenic structure. This further indicates

the level of heterogeneity in the antigenic impact of genetic changes.
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Figure 2.5: A(H3N2) pairwise amino acid and phylogenetic distances as predictors

of HI titres: The mean log2 HI titre for each virus-antiserum pair (n = 15,855) plotted against

(A) the pairwise amino acid distance, the number of differences in the HA1 amino acid

sequences of test and reference virus and (B) the pairwise phylogenetic distance, the sum of

branch lengths separating two viruses in a time-resolved HA1 phylogenetic tree. Given the

discrete nature of amino acid distances, a small amount of random displacement in both axes

has been added to the position of points in (A) to facilitate visualisation of overlapping points.

Red lines show linear model fits and R2 values are noted.

47



2.4 RESULTS

A/
Br

az
il/1

1/
78

A/
Ch

ile
/1

/8
3

A/
Ta

iw
an

/1
/8

6
A/

Jo
ha

nn
es

bu
rg

/8
2/

96
A/

Ba
ye

rn
/7

/9
5

A/
W

el
lin

gt
on

/8
/9

7
A/

Ch
ile

/4
79

5/
20

00
A/

Te
xa

s/
36

/9
1

A/
Be

ijin
g/

26
2/

95
A/

W
uh

an
/3

71
/9

5
A/

O
st

ra
va

/8
01

/9
8

A/
Jo

ha
nn

es
bu

rg
/1

59
/9

7
A/

Ul
an
−U

de
/2

09
/9

8
A/

Ka
na

ga
wa

/9
2/

98
A/

Ho
ng

 K
on

g/
48

47
/9

8
A/

M
ad

ag
as

ca
r/5

77
94

/2
00

0
A/

Ch
ile

/8
88

5/
20

02
A/

Ne
w 

Ca
le

do
ni

a/
20

/9
9

A/
Fu

ku
ok

a/
C8

6/
20

00
A/

Eg
yp

t/9
6/

20
02

A/
Ic

el
an

d/
12

3/
20

03
A/

Ho
ng

 K
on

g/
12

52
/2

00
0

A/
Th

es
sa

lo
ni

ki/
24

/2
00

5
A/

Ne
th

er
la

nd
s/

12
8/

20
04

A/
Eg

yp
t/3

9/
20

05
A/

So
lo

m
on

 Is
la

nd
s/

3/
20

06
A/

Fu
ku

sh
im

a/
14

1/
20

06
A/

Fu
ku

sh
im

a/
97

/2
00

6
A/

Ho
ng

 K
on

g/
26

37
/2

00
4

A/
St

. P
et

er
sb

ur
g/

8/
20

06
A/

St
. P

et
er

sb
ur

g/
10

/2
00

7
A/

Ho
ng

 K
on

g/
26

52
/2

00
6

A/
Ho

ng
 K

on
g/

18
56

/2
00

8
A/

Ho
ng

 K
on

g/
18

70
/2

00
8

A/
Br

isb
an

e/
59

/2
00

7
A/

Jih
la

va
/8

/2
00

7
A/

Ne
th

er
la

nd
s/

34
5/

20
07

A/
St

. P
et

er
sb

ur
g/

12
/2

00
8

A/
Eg

yp
t/1

0/
20

07
A/

St
. P

et
er

sb
ur

g/
5/

20
08

A/
Se

yc
he

lle
s/

22
39

/2
00

8
A/

M
os

co
w/

2/
20

09
A/

Ho
ng

 K
on

g/
19

88
/2

00
9

Post−infection ferret antisera



3 4 5 6 7 8
log2 HI titre

0
20

0
50

0
Co

un
t

A/JOHANNESBURG/82/1996

A/FUKUOKA/C86/2000

A/MADAGASCAR/57794/2000

A/HONGKONG/1870/2008

A/HONGKONG/1252/2000

A/HONGKONG/1988/2009

A/SOLOMONISLANDS/3/2006

A/EGYPT/39/2005

A/CHILE/1/1983

A/NETHERLANDS/128/2004

A/BRAZIL/11/1978

A/TEXAS/36/1991

A/WELLINGTON/8/1997

A/THESSALONIKI/24/2005

A/SEYCHELLES/2239/2008

A/JIHLAVA/8/2007

A/STPETERSBURG/12/2008

A/WUHAN/371/1995

A/HONGKONG/1856/2008

A/STPETERSBURG/10/2007

A/HONGKONG/2637/2004

A/OSTRAVA/801/1998

A/EGYPT/10/2007

A/KANAGAWA/92/1998

A/JOHANNESBURG/159/1997

A/NETHERLANDS/345/2007

A/FUKUSHIMA/141/2006

A/BRISBANE/59/2007

A/FUKUSHIMA/97/2006

A/NEWCALEDONIA/20/1999

A/BEIJING/262/1995

A/STPETERSBURG/5/2008

A/BAYERN/7/1995

A/EGYPT/96/2002

A/TAIWAN/1/1986

A/MOSCOW/2/2009

A/STPETERSBURG/8/2006

A/ULANUDE/209/1998

A/HONGKONG/2652/2006

A/CHILE/8885/2002

A/HONGKONG/4847/1998

A/ICELAND/123/2003

A/CHILE/4795/2000

Figure 2.6: Heat-map of A(H1N1) HI titres sorted phylogenetically according to

HA1 gene: Cells are coloured by mean log2 HI titre for each pairing of antiserum and test

virus present in the full dataset. The colour key for HI titres is shown in the histogram at top

left along with the number of assays yielding each titre. Test viruses and reference viruses used

to generate post-infection ferret antisera are sorted phylogenetically on the HA1 gene along the

vertical and horizontal axes respectively. Phylogenies are shown to the left for test viruses and

above for reference viruses.
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2.4.3 Signatures of selection

Four codon-based maximum likelihood methods, FEL, IFEL, MEME and FUBAR, were used

to estimate the dN /dS ratio (also known as the Ka/Ks or ω ratio) at each codon in alignments

of A(H1N1) and A(H3N2) HA1 sequences. Retaining the topology of the time-resolved,

maximum clade credibility phylogenetic trees generated using BEAST, codon-specific rates of

synonymous and non-synonymous mutations were estimated. The FEL and FUBAR methods

were used to estimate codon-specific dN /dS ratios across the full HA1 phylogenetic trees.

The IFEL method was used to identify codons subject to selective pressures at the population

level (i.e. along internal branches only). The MEME method was used to estimate codon-

specific dN /dS ratios that may vary across branches of the tree, potentially identifying codons

exposed to episodic positive selection. These analyses revealed the proportion of HA1 codons

under purifying selection to be notably higher than the proportion under positive selection

in both subtypes (Table 2.1).

Table 2.1: Proportion of codons across HA1, and in antigenic sites, under positive and

purifying selection

Subtype Method
Positive selection Purifying selection

HA1 Antigenic sites HA1 Antigenic sites

A(H1N1)

FEL 0.01(2) 0.02(1) 0.35(116) 0.20(10)

IFEL 0.01(3) 0.02(1) 0.18(59) 0.08(4)

MEME 0.01(4) 0.04(2) - -

FUBAR 0.01(4) 0.06(3) 0.45(146) 0.28(14)

A(H3N2)

FEL 0.04(13) 0.17(10) 0.24(80) 0.03(2)

IFEL 0.03(9) 0.13(8) 0.12(40) 0.02(1)

MEME 0.04(14) 0.18(11) - -

FUBAR 0.03(9) 0.12(7) 0.27(87) 0.02(1)

Proportion (and count in parentheses) of codons with dN/dS ratios significantly greater than 1

(p-value < 0.05 using FEL/IFEL/MEME or posterior probability > 0.95 using FUBAR).

The proportions of codons coding for amino acid positions in defined antigenic sites detected

as being exposed to positive or purifying selection were also calculated and these proportions

were compared with HA1-wide proportions. The proportions of codons associated with anti-

genic sites in A(H1N1), identified by the various methods, were marginally higher than the

HA1-wide proportions (Table 2.1). In A(H3N2), the differences in observed proportions were

starker, with more codons in antigenic sites exposed to positive selection and fewer exposed

to purifying selection, relative to the proportions calculated across the entire HA1. This

possibly indicates a more significant role of immune-mediated evolution in A(H3N2), relative

to A(H1N1).

Surface-exposed amino acid positions identified by any of the four methods as being exposed
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A	
   B	
  

Figure 2.7: HA1 selection surfaces: Surface representations of HA of (A) A/Puerto

Rico/8/34 (H1N1) (PDB ID: 1RU7 (Gamblin et al., 2004)) and (B) A/Aichi/2/68 (H3N2)

(PDB ID: 1HGG (Sauter et al., 1992)) with positions under positive and negative selection

shown. HA1 is shown in white and HA2 in grey. Amino acid positions with codon-specific

dN /dS ratios indicating significant signatures of positive or negative selection as detected by at

least one method are coloured red or blue respectively (p < 0.05 using FEL/IFEL/MEME or

posterior probability > 0.95 using FUBAR).

to either positive or purifying selection are shown on the HA structure, in red and blue

respectively, in Figure 2.7. No codon was identified as showing a significant signature of

both positive and purifying selection using different methods. Strikingly, a large proportion

of the positions identified as being under positive selection are close to the top globular

head of the A(H3N2) HA. This is consistent with expectations based on knowledge of the

locations of neutralising antibody binding sites (Wiley & Skehel, 1987) and the importance

of substitutions at positions in the periphery of the binding site in antigenic evolution of

this subtype (Koel et al., 2013). Contrastingly, positively selected positions in A(H1N1)

are more sparse and regions analogous to those positively selected at the head of A(H3N2)

HA are, in many cases, associated with purifying selection. Root mean square deviation

(RMSD) was used to evaluate the similarity of the HA1 structures of A/Puerto Rico/8/34

and A/Aichi/2/68. The RMSD weighted over 315 aligned HA1 amino acids was calculated,

using the software SAP (Taylor, 1999, 2000), to be 2.69 Å.

HA1 codons in each subtype showing evidence of positive selection are shown in Table 2.2.
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A	 B	 C	

Figure 2.8: Comparison of the HA1 structures of A/Puerto Rico/8/34 (H1N1) and

A/Aichi/2/68 (H3N2): In (A) and (B) aligned HA1 peptide backbone chains are shown as

solid lines linking α carbons. In (A) A/Puerto Rico/8/34 (PDB ID: 1RU7) is coloured blue and

A/Aichi/2/68 (PDB ID: 1HGG) is coloured red. In (B) chains are coloured according to the

proximity of aligned α carbons using the temperature colouring option in RasMol v 2.7.5.2.

which gives the sequence blue, cyan, green, yellow, orange, and red, where blue indicates

greatest distance between α carbons, and red indicates least. (C) shows a visualisation of the

distances between aligned α carbons. For reference, the red line at the base of the structure

represents a distance of 8.21 Å. For instances where an α carbon was not aligned (i.e. at the

base of the structure), no line is drawn and instead a dot is drawn at the position of the residue

for which there are coordinates.

There is a high degree of correspondence between methods. All codons identified using

either the FEL or FUBAR methods were identified using both methods, though the level

of confidence in the identification of some codons did differ between methods. A(H1N1)

codons 141, 186 and 222 and A(H3N2) codons 138 and 186 were identified using the FEL

and FUBAR methods which analyse mutation rates in all branches of the phylogenetic tree,

but not by the IFEL method which estimates dN and dS rates using only mutations inferred

to have occured in internal branches of the tree. Evidence of positive selection at these five

sites is therefore dependent on an overabundance of non-synonymous mutations occurring in

terminal branches. This suggests that amino acid substitutions contributing to a signature

of positive selection are transient, are removed from the population, and do not contribute to

the future evolution of the virus. It can therefore be inferred that there is no evidence for the
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role of these five positions in the adaptive evolution of either subtype at a population level.

Table 2.2: HA1 codons showing evidence of positive selection

Subtype Codon
Method Antigenic site/

FEL IFEL MEME FUBAR receptor binding

A(H1N1)

57 X X X X

87 X

94 ∗ X ∗ binding

141 ∗ ∗ X Ca

170 X Ca

186 ∗ X Sb

189 X Sb

222 X X X Ca/binding

A(H3N2)

128 X ∗ X X

133 X A

135 X X X ∗ A/binding

137 X X X X A/binding

138 X X ∗ binding

142 X ∗ ∗ ∗ A

145 X X X X A

155 X B/binding

157 X ∗ X X B

158 ∗ X ∗ ∗ B

159 X X X X B

186 X X X B

193 X X X X B

194 X X X X binding

226 X X X X D/binding

262 X X X ∗ E

XCodon-specific dN/dS ratio significantly greater than 1 (p-value < 0.05 using

FEL/IFEL/MEME or posterior probability > 0.95 using FUBAR).

∗ Positive selection identified with reduced certainty: p-value < 0.1 (FEL/IFEL/MEME)

or posterior probability > 0.9 (FUBAR).

MEME, an extension of the FEL methodology that allows dN /dS to vary between sites

and between lineages, was used to detect codons with dN /dS ratios indicative of positive

selection in some part(s) of the phylogenetic tree but not others. Theoretically, it is possible

that a codon involved in antigenic evolution could be subject to positive selection in one

area of the phylogeny and then subject to purifying selection in the descendent part of the

phylogeny. A particular amino acid substitution at a position within an epitope might provide

a significant selective advantage and this codon may therefore have a dN /dS ratio indicative of

positive selection and the substitution would be expected to increase in frequency within the

influenza population. For a period, subsequent amino acid substitutions, either reversions of

the positively selected substitution or alternative substitutions away from the antigenically

distinct state towards other amino acids more easily bound by existing antibodies in the
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human population, may be selected against. As A(H1N1) codons 87 and 170 and A(H3N2)

codons 133 and 155 were identified using the MEME method but not by other methods, it

can be inferred that these positions may have experienced episodic positive selection. For

A(H1N1), each method of analysis was repeated with codon 187 included and in each case a

highly significant signature of positive selection was detected with the highest dN /dS ratio

of any codon in either subtype which is unsurprising given the tendency for amino acid

substitutions to occur at this position as an adaptation to growth in eggs and cell culture.

Table 2.2 shows that several codons showing evidence of positive selection are known to code

for amino acid residues belonging to antigenic sites. It is notable however that these codons

are not evenly distributed across antigenic sites. In A(H1N1) positively selected codons were

associated with antigenic sites Ca and Sb but not Cb or Sa, while in A(H3N2) antigenic sites

A and B are represented in greater numbers than sites C–E. Evidence of positive selection

was also identified at a number of codons associated with a role in receptor-binding which is

consistent with observations of the importance of receptor binding in the adaptive evolution

of influenza viruses (Hensley et al., 2009; Lin et al., 2012).

2.4.4 Antigenic cartography

Viruses and antisera of each subtype were positioned in two-dimensional antigenic maps

using a BMDS model (Bedford et al., 2014) that estimates reference virus immunogenicity

and test virus receptor-binding avidity while also incorporating information on the year of

virus isolation and the phylogenetic relatedness of strains. A(H1N1) and A(H3N2) viruses

positioned in antigenic maps are shown in Figure 2.9. Viruses are represented on these maps

as coloured circles coloured by year of isolation. To aid the interpretability of the maps a

prior was used resulting in most variation being expressed in the primary antigenic dimension

(shown in the x-axis in both maps in Figure 2.9), with a smaller amount of variation being

contained in the secondary antigenic dimension. Thus the majority of antigenic drift through

time is shown in the x-axis of the maps in Figure 2.9 while antigenic variation in the y-

axis principally represents antigenic differences between lineages that emerge and transiently

coexist.

The rate of antigenic drift, or change of location in the primary antigenic dimension, was

calculated for each subtype. Viruses of the A(H1N1) subtype evolved at a mean rate of 0.51

antigenic units per year (95% HPD: 0.48–0.54), slower than the rate of 0.60 estimated for

A(H3N2) (95% HPD: 0.55-0.65). This observation is consistent with the significantly slower

rate of vaccine updates in A(H1N1) and also the application of this Bayesian multidimensional

scaling analysis to other A(H1N1) and A(H3N2) HI datasets though the disparity in rates

observed here is less stark (Bedford et al., 2010). Both of these estimates of antigenic change

per year are significantly lower than the figures reported above when estimating the drop in
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Figure 2.9: A(H1N1) and A(H3N2) antigenic maps: For each subtype, map locations

are shown for a representative example from a Bayesian multidimensional scaling model that

estimates virus location, antiserum location, reference virus immunogenicity and test virus

receptor-binding avidity. (A) 506 A(H1N1) and (B) 229 A(H3N2) viruses are shown as circles

coloured by date of isolation according to the legends at right and antisera are shown as grey

diamonds. Primary and secondary antigenic dimensions are shown in the horizontal and vertical

dimensions respectively. Gridlines represent single antigenic units, twofold dilutions in the HI

assay.

log2 HI titre per unit of evolutionary time separating viruses in phylogenetic trees generated

using HA1 (0.14 and 0.26 log2 titre per year for A(H1N1) and A(H3N2) respectively). These

figures are not however contradictory as on the map antigenic change is averaged across the

number of years in the period of data collection, whereas using the phylogenetic method

antigenic change is averaged across evolutionary time which is summed over all branches of

the phylogeny, a figure which may be significantly higher. Using either method, antigenic

change per unit of time in A(H3N2) is estimated to be greater than in A(H1N1).

Distinct clusters of antigenically similar viruses, indicating punctuated antigenic evolution,
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are apparent in the maps constructed for both subtypes (Figure 2.9). k -medoids clustering

was used to define clusters of antigenically similar viruses based on locations estimated using

BMDS. For both subtypes, antigenic clusters are shown in Figure 2.10. Clusters are named

after the first vaccine virus they contain with letters and numbers indicating the location and

year of virus isolation respectively. The 506 A(H1N1) viruses were identified as belonging to

three distinct clusters of antigenically similar viruses, shown in red, green and blue in Figure

2.10. Of the seven vaccine viruses in the A(H1N1) dataset (red circles in the phylogenetic tree

in Figure 2.2), the three earliest (A/Brazil/11/78, A/Chile/1/83 and A/Bayern/7/95) were

assigned to the red cluster, though A/Brazil/11/78 and A/Chile/1/83 are the two obvious

outliers, antigenically distant from all other viruses, to the lower left of the map (their colour

in Figure 2.9 indicates their age relative to other viruses in the dataset). It is anticipated that

the addition on higher numbers of earlier viruses would result in aditional antigenic clusters

to which these two older vaccine viruses would be associated. The next two vaccine viruses

occurring in the evolution of the virus (A/Beijing/262/95 and A/New Caledonia/20/99) were

assigned to the central green cluster and the two most recent vaccine viruses (A/Solomon

Islands/3/2006 and A/Brisbane/59/2007) were assigned to the cluster shown in blue. It is

notable that, even after discounting some of the more obvious outliers at the fringes of clusters,

distances between some viruses belonging to the same cluster exceed distances between some

virus belonging to different clusters.

k -medoids clustering was used to define 11 clusters of antigenically similar A(H3N2) viruses

isolated during the period 1968–2013 (Figure 2.10). Smith et al. (2004) identified 11 clusters

over the shorter period 1968–2003 using a k -means clustering analysis, though the method

for determining k in that study is not fully described. k = 10 was used, and subsequently an

eleventh cluster was defined based on a priori knowledge of a genetic and antigenic variant

(A/Texas/1/77). The identification of fewer clusters here is however consistent with observa-

tions that the number of antigenic clusters identified is reduced by accounting for differences

in viral receptor-binding avidity (Li et al., 2013) and by the inclusion of greater numbers of

viruses (Sun et al., 2013).

From left to right on the map in Figure 2.10, similar groupings of virus to clusters named by

Smith et al. (2004) after A/Hong Kong/1/68 (HK68, green), A/England/42/1972 (EN72, or-

ange) and A/Victoria/3/75 (VI75, magenta) are retained. The A/Texas/1/77 cluster defined

manually post-analysis by Smith et al. (2004) is clustered together with the A/Bangkok/1/79

cluster (TX77, light blue). Viruses belonging to Smith et al. (2004) clusters A/Sichuan/2/87

and A/Beijing/353/89 form the black cluster (SI87). Similar groupings of viruses to Smith

et al. (2004) clusters A/Beijing/32/92 (BE92, red), A/Wuhan/359/95 (WU95, brown), A/Sydney/5/97

(SY97, grey) and A/Fujian/411/2002 (FU02, yellow) were also identified. The seven most re-

cent vaccine viruses in the HI dataset investigated here post-date viruses included on the map

constructed by Smith et al. (2004). Of these, A/Wellington/1/2004 was identified in the yel-

low cluster alongside A/Fujian/411/2002, while A/California/7/2004, A/Wisconsin/67/2005

55



2.4 RESULTS

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●
●
●

●

●
●

●

●

● ●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

●●

●

●

●

●●

●

●
●

●
● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

BZ78

BE95

SO06

A

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●●

●
●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●●
HK68

EN72

VI75

TX77 SI87

BE92
WU95

SY97

FU02

CA04

PE09

B

Figure 2.10: A(H1N1) and A(H3N2) antigenic clusters: A(H1N1) (A) and A(H3N2)

(B) viruses positioned in antigenic space (as per Figure 2.9) represented by filled circles

coloured by antigenic cluster. Clusters of antigenically similar viruses identified by k -medoids

clustering analysis are named after the first vaccine virus in the cluster — letters refer to the

location of isolation (Brazil, Beijing, and Solomon Islands for A(H1N1) and Hong Kong,

England, Victoria, Texas, Sichuan, Beijing, Wuhan, Sydney, Fujian, California, and Perth for

A(H3N2)) and numbers indicate year of isolation. Gridlines represent single antigenic units,

twofold dilutions in the HI assay.

and A/Brisbane/10/2007 were among viruses forming the descendent antigenic cluster shown

in pink (CA04) and the most recent antigenic cluster shown in dark blue (PE09) contained the

vaccine viruses A/Perth/16/2009, A/Victoria/361/2011 and A/Texas/50/2012. Antigenic

maps including these more recent viruses have shown similar clustering patterns (Bedford

et al., 2014).

Following Smith et al. (2004) and Koel et al. (2013), amino acid differences between ances-

tral and descendent antigenic clusters were identified in order to produce sets of candidate

substitutions for each phenotypic change. On both antigenic maps distances between viruses
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belonging to the same antigenic cluster often exceed distances between viruses in adjacent

clusters. To reflect this, and the possible uncertainty in the assignment of some viruses to

clusters that could arise due to this, amino acid differences between clusters were considered

that were not completely correlated with the separation of viruses into adjacent clusters; 0.95

was used as a cutoff. The amino acid positions associated with transitions between antigenic

clusters are detailed in Table 2.3.

Table 2.3: Amino acid substitutions associated with transitions between antigenic clusters

Subtype
Cluster

Amino acid substitutions
transition*

A(H1N1)
BZ78–BE95 R43L, S69L, F71I, A80V, ∆K130, T133S, S183P, S271P, T310A

BE95–SO06 K141E

A(H3N2)

HK68–EN72 T122N, G144D, T155Y, N188D, R207K, D275G

EN72–VI75 L164Q, F174S, Q189K, R201K, I217V, I278S

VI75–TX77 K50R, G158E, M260I

TX77–SI87 Y155H, S159Y, K189R

SI87–BE92 S133D, E190D

BE92–WU95 I121T, G172D, R197Q, N262S, S278N

WU95–SY97 K62E, K156Q, E158K, V196A, N276K

SY97-FU02

FU02–CA04 K145N

CA04–PE09 K158N, N189K

* Antigenic clusters identified by k -medoids clustering are shown Figure 2.10. Names refer to location and year of

isolation.

Nine amino acid differences were identified as separating the ancestral BZ78 cluster in Figure

2.10 from the descended BE95 cluster shown in green: R43L, S69L, F71I, A80V, ∆K130 (a

deletion of lysine at position 130), T133S, S183P, S271P, and T310A. Only A80V was totally

correlated with assignment to red and green clusters. Of the positions at which these nine

substitutions occur, only positions 69 and 71 belong to the defined H1 antigenic sites, both

being constituents of the Cb antigenic site (Brownlee & Fodor, 2001). Despite this, ∆K130 has

been previously identified as causing a large antigenic change in A(H1N1) subtype viruses and

is associated with a change in phenotype from viruses antigenically similar to the vaccine virus

A/Bayern/7/95 (BZ78 cluster in Figure 2.10) to viruses antigenically similar to the vaccine

virus A/Beijing/262/95 (BE95 cluster in Figure 2.10) (McDonald et al., 2007) (∆K134 in

cited work). K141E was identified as the substitution best correlated with assignment of

viruses to either the green antigenic cluster or the descendent cluster shown in blue in Figure

2.10. Position 141 is a constituent of the Ca antigenic site and has previously been identified

as a substitution separating clusters of antigenically distinct viruses on a map constructed

from HI data collected using A(H1N1) viruses from the same period as those used in this
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study (Koel et al., 2013). Of the ten candidate positions identified using antigenic maps of

A(H1N1) viruses (43, 69, 71, 80, 130, 133, 141, 183, 271, and 310), only position 141 was also

associated with a signature of positive selection being identified using the FUBAR analysis

and with less certainty by the FEL and MEME analyses (Table 2.2).

Position 130 has not been identified as belonging to one of the principal antigenic sites

identified from monoclonal antibody escape mutant studies (Brownlee & Fodor, 2001) but

presumably the deletion affected antibody binding either by inhibiting the binding of anti-

bodies which were interacting with position 130 directly or by causing structural changes that

affected antibody binding at nearby epitopes. The impact on structure of ∆K130 has been

investigated by McDonald et al. (2007) by the prediction of molecular graphic images based

on the A/Puerto Rico/8/34 (which bears a deletion of position 130) and A/swine/Iowa/30

(which bears K130) HA trimers (Gamblin et al., 2004) using the Chimera package (Computer

Graphics Laboratory, University of California, San Francisco, USA) (Huang et al., 1996; San-

ner et al., 1996). K130 was predicted to lie along the edge of the receptor-binding pocket,

potentially reducing the size of the pocket and impacting on the specificity or the avidity

of receptor-binding. This analysis indicated that the addition of K130 into the A/Puerto

Rico/8/34 HA would introduce a strong positive charge on the right side of the receptor-

binding as well as slightly reducing negative charge at the bottom of the pocket (Figure

2.11). Position 130 was also predicted to have high solvent accessibility and therefore could

play a role in binding of neutralising antibodies (McDonald et al., 2007). The results of this

structural analysis combined with those of reverse genetics experiments conducted by (Mc-

Donald et al., 2007) indicate that K at position 130 acted as an immunodominant epitope

and that ∆K130 resulted in escape from neutralising antibodies.

To reflect the increased uncertainty in the assignment of viruses to clusters upon the A(H3N2)

antigenic map, the criteria for identifying amino acid substitutions separating viruses belong-

ing to adjacent clusters was relaxed. If no substitutions were identified using the 0.95 cutoff,

this was relaxed in intervals of 0.05 until either substitutions were identified or 0.80 was

reached. In total, 33 substitutions were identified by this method. Substitutions also identi-

fied as causing transitions between antigenic clusters by reverse genetics experiments (Koel

et al., 2013) are highlighted in bold in Table 2.3. As many as six substitutions were found to

be associated with transition between antigenic clusters, however for the SY97–FU02 tran-

sition no substitutions were identified. Of these 33 cluster-defining substitutions identified,

eight (T155Y, Q189K, G158E, Y155H, S159Y, K189R, K156Q, and E158K) have been previ-

ously determined to cause transitions between clusters using reverse genetics methods to test

all cluster-defining substitutions (Koel et al., 2013). Koel et al. (2013) additionally identified

K156E as causing a transition between Smith clusters A/Texas/1/77 and A/Bangkok/1/79,

N145K as causing a transition to another cluster not identified here (A/Beijing/353/89),

E156K as causing the SI87–BE92 transition, N145K as causing the BE92–WU95 transition,

and Q156H as causing the SY97–FU02 transition.
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Supplementary Fig. S2. Predicted surface charge distribution of A/Puerto Rico/8/1934 HA1 
domain monomer with insertion of K134. Positive and negative charges are indicated in blue and 
red, respectively. Neutral charges are depicted in white. (a) Predicted structure of PR8 with 
insertion of K134. (b) Structure of wild-type PR8, bearing a deletion of residue 134. 
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Figure 2.11: Predicted impact of ∆K130 on HA1 domain surface charge

distribution: Positive and negative charges are indicated in blue and red, respectively. Neutral

charges are depicted in white. (a) Predicted structure of A/Puerto Rico/8/34 with insertion of

K130 (labelled as position 134 in original publication). (b) Structure of A/Puerto Rico/8/34

which bears a deletion of residue 130 (PDB ID: 1RU7 (Gamblin et al., 2004)). Image

reproduced as appears in Supplementary Figure S2 in McDonald et al. (2007) with permission

from the rightsholder.

The two antigenic clusters coloured pink and dark blue to the right of Figure 2.10 post-

date the viruses analysed by Koel et al. (2013). Clustering analysis of the virus locations

estimated by BMDS identify the substitutions K145N as the candidate substitutions best

correlated with the causing the transition from the FU02 to the CA04 cluster (though the

substitutions Y159F and S189N were also identified when the cutoff was reduced to 0.80). The

substitution N145K has previously been found to be associated with two cluster transitions in

the antigenic evolution of A(H3N2) (Koel et al., 2013). The CA04–PE09 transition correlated

best with the substitutions K158N and N189K. Each of these three substitutions (and indeed

Y159F and S189N) occur at positions within the A or B antigenic sites (Wiley et al., 1981)

that have been previously associated with transitions between antigenic clusters (Koel et al.,

2013) and therefore represent reasonable candidates. Multiple cluster-defining substitutions

were identified at positions 155 (2), 158 (3), 189 (3) and 278 (2), therefore in total the 33

identified substitutions occurred at 27 positions. Each of these 27 positions are among the 60
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positions assigned to antigenic sites by Shih et al. (2007), while 6 (0.18) were also identified as

being positions exposed to positive selection by the analyses described above (positions 133,

145, 155, 158, 159 and 262). Seven of the 13 positions in antigenic sites identified by selection

analyses were not identified as cluster-defining on the A(H3N2) antigenic map, potentially

highlighting an antigenically adaptive role of substitutions causing smaller antigenic changes

not detected using antigenic cartography.

2.5 Discussion

When investigating simple measures of pairwise genetic distance as correlates of the antigenic

distance between viruses as reflected by HI titres, amino acid distance was more highly cor-

related with HI titres than phylogenetic distance for both serotypes. There are two potential

explanations: Firstly, phylogenetic distances are influenced by synonymous mutations, which

are antigenically irrelevant as they do not affect protein structure, while amino acid distances

are not. Secondly, phylogenetic distances cannot reflect cases of convergent evolution or the

reversal of amino acid substitution while amino acid distance can. When viruses in separate

lineages of phylogeny converge on the same amino acid state at one or more positions, amino

acid distance between them is reduced and intuitively these viruses are more likely to have

become more antigenically similar than not, however the phylogenetic distance between them

is increased by the mutations causing the convergence of amino acid states. Increased genetic

distance quantified by each of these measures was significantly correlated with decreased

antigenic cross-reactivity, as represented by lower HI titres. However, the low coefficients

of determination associated with these correlations indicate that the relationship between

molecular and antigenic evolution is more complex and that increased knowledge of the het-

erogeneities in the antigenic impact of genetic changes is required for accurate sequence-based

prediction of antigenic similarity.

Various approaches for estimating codon specific dN /dS ratios were used to identify codons

showing evidence of exposure to positive and purifying selection. In both subtypes a higher

proportion of HA1 was identified as being exposed to purifying selection rather than positive

selection. Despite a high degree of mutational tolerance of influenza A HA relative to proteins

of some other viruses with similarly high mutation rates (Thyagarajan & Bloom, 2014), it is

unsurprising that a high proportion of HA1 codons are resistant to amino acid substitution

given the requirement for HA to retain the ability to bind host receptors and to initiate mem-

brane fusion, two functions essential for viral replication (Russell et al., 2004; Wiley & Skehel,

1987). The proportion of HA1 codons showing evidence of purifying selection, estimated us-

ing three methods, was noticeably higher in A(H1N1) (0.18–0.45) compared with A(H3N2)

(0.12–0.27). This perhaps indicates an increased level of mutational tolerance in A(H3N2),

relative to A(H1N1), which may be a factor contributing to the increased rate of antigenic
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drift of A(H3N2) viruses identified by the BMDS analysis presented here and in previous

studies (Bedford et al., 2015, 2014). Several codons identified by these analyses belong to

described antigenic sites suggesting that such methods have some power for identification of

the amino acid positions at which substitutions are important in antigenic drift.

Antigenic characterisation of recombinant viruses generated by reverse genetics is a powerful

method for determining the antigenic impact of specific amino acid substitutions, though in

the absence of unlimited resources a method for identifying candidate substitutions is re-

quired. A BMDS model applied to HI data was used to estimate virus locations in antigenic

space and a clustering analysis of these locations identified cluster-defining substitutions that

could be considered as candidates for reverse genetics experiments. Koel et al. (2013) used

reverse genetics to test 54 substitutions identified as defining antigenic clusters on maps esti-

mated using a conceptually similar multi-dimensional scaling technique applied to a broadly

similar HI dataset collected over a similar period. Their experiments identified 14 substi-

tutions at seven positions that had caused the largest antigenic changes in the evolution of

A(H3N2) over a 35 year period. However, this did require the definition of an antigenic

cluster not identified by a clustering analysis of virus locations but instead based on a priori

knowledge of a genetic and antigenic variant (A/Texas/1/77) and the 14 also included the

substitution S159Y that was not identified as a cluster-defining candidate substitution in

their analyses (though it was identified here — Table 2.3). There are several inconsistencies

in the candidate substitutions identified here and by Koel et al. (2013), with only eight of

14 cluster transition substitutions being identified consistently across studies. This is due

in part to the A/Texas/1/77 case however inconsistencies remain even after accounting for

this. Another similar analysis of virus locations in antigenic space produced yet another set

of candidate substitutions (Sun et al., 2013).

This difficulty in replicating the same set of candidate substitutions raises the question of

whether it would be preferable to test all substitutions estimated as having occurred in the

trunk lineage of influenza using a phylogenetic analysis to reconstruct ancestral sequences.

This approach would have resulted in 52 of the 54 substitutions Koel et al. (2013) identified

as cluster-defining on A(H3N2) antigenic maps still being tested by reverse genetics. The

substitutions N145K and N193S identified as defining the A/Beijing/353/89 cluster would

not be identified as candidates as they lie outside the trunk lineage. The inability to identify

potentially antigenically important substitutions outside the trunk lineage is a clear limitation

of using this phylogenetic approach, however a strict implementation of the testing of cluster-

defining substitutions would fail to identify candidate substitutions leading to and from the

the A/Texas/1/77 antigenic cluster and the S159Y substitution, which each occurred in the

trunk lineage.

Several amino acid positions with dN /dS ratios indicating exposure to positive selection were

not identified as candidate substitutions using antigenic cartography. While it is possible that
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these dN /dS ratios are false positives or that these codons have been selected to change for

reasons other than antibody evasion, it is possible that this indicates a role in antigenic evo-

lution for substitutions that do not result in major changes in antigenic evolution that are

apparent on maps generated by applying BMDS to HI data. Previous work supporting the

importance of smaller-impact amino acid substitutions in the evolution of influenza viruses

include other studies (Bush et al., 1999b) that also identify evidence of positive selection at

many more codons than those identified by Koel et al. (2013) and the inclusion of a wider

selection of codons in antigenic sites in models used to predict changes in frequencies of lin-

eages between influenza seasons ( Luksza & Lässig, 2014). Much of the variation expressed

on the antigenic maps is within-cluster rather than between-cluster, though it is not clear

how to identify the amino acid substitutions responsible for this variation. Correlating amino

acid substitutions against cartographic distance without distinct clusters indicating instances

of phenotypic change is problematic given the shared evolutionary history of viruses which

results in a strong correlation between genetic and antigenic change through time. If in-

deed non-cluster-defining substitutions are important in the antigenic evolution of influenza

viruses, alternative methods for their identification are required.
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Statistical identification and experimental
validation of genetic drivers of antigenic change
in influenza A(H1N1)

This chapter (together with some parts of Chapters 2 and 6) has been published as:

Harvey, W.T., Benton, D.J., Gregory, V., Hall, P.J., Daniels, R.S., Bedford, T., Haydon, D.T.,

Hay, A.J., McCauley, J.W. & Reeve, R. (2016) Identification of low- and high-impact hemag-

glutinin amino acid substitutions that drive antigenic drift of influenza A(H1N1) viruses.

PLoS Pathogens. 12(4): e1005526. doi: 10.1371/journal.ppat.1005526.

A pre-print version of this work is available at arXiv.org:

Harvey, W.T., Gregory, V., Benton, D.J., Hall, P.J., Daniels, R.S., Bedford, T., Haydon,

D.T., Hay, A.J., McCauley, J.W. & Reeve, R. (2014) Identifying the genetic basis of antigenic

change in influenza A(H1N1). arXiv:1404.4197v2.

3.1 Abstract

Determining phenotype from genotype is a fundamental challenge in virus research, espe-

cially as sequence data become ever easier to generate. Identification of emerging antigenic

variants among circulating influenza viruses is critical to the vaccine virus selection process,

with vaccine effectiveness maximised when constituents are antigenically similar to circu-

lating viruses. Haemagglutination inhibition (HI) assay data are commonly used to assess

influenza antigenicity. Here, sequence and 3D structural information for haemagglutinin (HA)

glycoproteins were analysed together with corresponding HI assay data for former seasonal

influenza A(H1N1) virus isolates (1997–2009) and reference viruses. The models developed

identify and quantify the impact of eighteen amino acid substitutions that affect the anti-

genicity of HA, two of which were responsible for major transitions in antigenic phenotype.

Reverse genetics was used to demonstrate the causal effect on antigenicity for a subset of these

substitutions including one instance where multiple contemporaneous substitutions made a

definitive identification impossible from the evolutionary history. The ability to quantify the
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phenotypic impact of specific amino acid substitutions increases the value of new HA gene

sequence data for monitoring antigenic drift and phenotypic evolution and should help refine

emerging techniques to predict the evolution of virus populations from one year to the next,

leading to stronger theoretical foundations for selection of candidate vaccine viruses. The gen-

erality of an approach originally developed for foot-and-mouth disease virus is demonstrated,

and this calls for extension to other antigenically variable pathogens.

3.2 Introduction

Evolution of human influenza A viruses is characterised by rapid antigenic drift, with struc-

tural changes in antigenic epitopes allowing the virus to escape existing immunity. Antigenic

changes in circulating influenza viruses are principally assessed by the HI assay (Hirst, 1942;

WHO, 2011). Results of many HI assays can be summarised using multidimensional scal-

ing approaches, which approximate antigenic dissimilarity by Euclidean distances between

viruses and antisera on a map, with antigenic evolution in influenza represented as movement

between clusters of viruses (Smith et al., 2004). The non-synonymous genetic mutation(s)

causing transitions between antigenic clusters can be determined experimentally by reverse

genetics (Koel et al., 2013), though this approach is often laborious, as multiple amino acid

substitutions bridge each antigenic cluster transition, and individual substitutions need to be

assessed. This approach recently demonstrated that transitions between antigenic clusters

of H3N2 viruses are caused predominantly by single amino acid substitutions at positions

near the receptor-binding site (Koel et al., 2013). However, clusters cannot always be readily

identified by automated techniques (Chapter 2) and major cluster transitions may not be the

only antigenically important events and an exhaustive reverse genetics analysis of all observed

substitutions is not feasible due to high levels of amino acid sequence diversity in HA (e.g.

at 46% of amino acid positions, in this study).

An alternative approach is to integrate matching sequence, antigenic and structural data

into models that allow us to attribute the observed antigenic differences in a dataset directly

to their underlying causes. Reeve et al. (2010) developed such a model to identify surface-

exposed regions of the capsid proteins of foot-and-mouth disease virus where substitutions

were correlated with antigenic change, but were unable to show definitive causal connection

with specific substitutions. Various other computational approaches have similarly been

used to identify antigenically important amino acid positions in influenza HA by comparison

of predominant sequences of successive antigenic clusters and by comparing sequence and

antigenic data (Huang et al., 2012; Lee & Chen, 2004; Smith et al., 2004; Steinbrück &

McHardy, 2012; Sun et al., 2013).

This chapter: 1. extends the modelling approach of Reeve et al. (2010) to former seasonal

influenza A(H1N1) viruses, focusing on these first rather than A(H3N2) viruses, for which the
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role of neuraminidase-mediated agglutination of erythrocytes has complicated the relationship

between HI data and antigenic change (Lin et al., 2010), or the distinct A(H1N1)pdm09

viruses, which have remained antigenically similar since emerging in humans in 2009 (Barr

et al., 2014); 2. attributes variation in HI titres to individual amino acid substitutions;

3. quantifies their antigenic impact; 4. validates the model experimentally by assessing

the impact of a subset of the identified substitutions introduced by reverse genetics. This

quantitative understanding of the phenotypic impact of specific HA substitutions improves

our understanding of the antigenic evolution of the virus and should allow for more accurate

predictions of the antigenic phenotype of emerging influenza viruses, measurement of which

is critical to predicting the evolutionary success of newly emerging variants.

3.3 Materials and Methods

3.3.1 Data

The former seasonal influenza A(H1N1) dataset is introduced in detail in Chapter 2. These

data were collected by staff of the of the Crick Worldwide Influenza Centre, UK (formerly

the WHO Collaborating Centre for Reference and Research on Influenza, MRC National

Institute for Medical Research, UK) over a number of years. Viruses were originally isolated

from clinical specimens either by WHO National Influenza Centres (NICs) or by the Crick

Worldwide Influenza Centre (formerly the WHO Collaborating Centre for Reference and

Research on Influenza, MRC National Institute for Medical Research, UK). The antigenic

dataset encompassed 506 A(H1N1) viruses for which HA gene sequence data were available,

inclusive of 43 reference viruses against which post-infection ferret antisera were raised, with

19,905 HI titres measured between 3,734 unique combinations of virus and antiserum, made

on 351 dates from 1997 to 2009.

3.3.2 Phylogenetic analysis

HA1 nucleotide sequences of all viruses were aligned using MUSCLE (Edgar, 2004). Phyloge-

nies were estimated using a variety of nucleotide substitution and molecular clock models. A

relaxed, uncorrelated clock and a GTR+I+Γ4 nucleotide substitution model were determined

to be most suitable through comparison of Bayes factors (Suchard et al., 2001). Year of iso-

lation was used to calibrate the molecular clock allowing rates of evolution along branches

to be estimated. To incorporate phylogenetic error, a posterior sample of 9,000 trees (after

removing 1,000 as burnin) was sampled across and the maximum clade credibility tree was

selected. Substitution at HA position 187 is associated with adaptation to growth in eggs

(Gambaryan et al., 1999; Raymond et al., 1986; Robertson et al., 1987) and was therefore
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considered to be an artefact with potential to distort phylogenetic inference, so nucleotides

coding for position 187 were excluded from the phylogenetic analysis. Phylogeny construction

and analysis was carried out using BEAST v1.7.4 (Drummond et al., 2012) and Tracer v1.5

(Rambaut & Drummond, 2009). Ancestral amino acid state at each node in the phylogeny for

each position identified by modelling was estimated using the FLU amino acid substitution

model (Dang et al., 2010) and unlinked strict molecular clocks for each amino acid position.

3.3.3 Mixed effects modelling and model selection

Co-variance between HI titre and the size of residuals from models using linear HI titres ne-

cessitated the use of logarithmically transformed HI titre, whose residuals were homoscedastic

(i.e. their variance was equal across the observed range of HI titres), as the response vari-

able. Base 2 was chosen (without loss of generality) for the logarithm to follow Smith et al.

(2004) and work throughout was in terms of log2 titre (or antigenic units), so 1 antigenic unit

corresponds to a two-fold dilution of antiserum in the HI assay. Goodness of fit of models

including each of the following variables was assessed by likelihood ratio test: The reference

virus against which the antiserum was raised, the test virus, and the date on which the as-

say was performed. Models were fitted using the package lme4 (Bates et al., 2012) in R (R

Core Team, 2015). Parameters values for all terms were estimated using restricted maximum

likelihood (REML).

Following Reeve et al. (2010), each branch of the HA1 phylogeny was tested in the model as

a fixed effect term. Each branch term was included as a discrete indicator variable: 1 when

reference virus and test virus were separated by the branch in the phylogenetic tree and 0

otherwise. Random restart hill-climbing (Russell & Norvig, 1995) was used to determine the

best model as computation of all possible combinations of branch terms was not feasible. To a

random consistent starting model, branch terms were added and removed stepwise at random

to maximise model fit, assessed by AIC (Akaike, 1974). This was repeated while randomising

their order to avoid sensitivity to the order in which the parameters are presented. This

approach is conservative in that it is biased towards inclusion of parameters including possible

false positives. This is desirable since it was used to determine the branches used to control for

phylogenetic correlations in the data, and adding in extra unnecessary terms simply reduced

the power of the analysis. In an ongoing collaboration with Vinny Davies, Richard Reeve and

Dirk Husmeier (all University of Glasgow) we show that sparse Bayesian variable selection

methods are more powerful for such problems, but these are not currently computationally

feasible for use on such large datasets (Davies et al., 2014). Conceptually similar machine

learning techniques have been used on related influenza datasets (Sun et al., 2013), but these

did not control for phylogenetic correlation, which we consider to be critical to avoid false

positives, and this remains the computationally expensive step.
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PyMOL Molecular Graphics System v1.7.7.2 (http://www.pymol.org) was used to visualise

and identify surface-exposed positions on the external surface of the HA 3D structure of

A/Puerto Rico/8/34 (resolved to 2.3 Å, Protein Data Bank (PDB) ID: 1RU7) (Gamblin

et al., 2004), which had previously been identified as having significant solvent accessibility

using naccess v2.1.1 (Hubbard & Thornton, 1993) (absolute solvent accessibility > 18 Å2) .

To account for potential structural changes in the HA1 of human A(H1N1) viruses since the

isolation of A/Puerto Rico/8/34 in 1934, the lower resolution (3.19 Å) structure of HA of

A/Solomon Islands/3/2006 (PDB ID: 3SM5) (Whittle et al., 2011) was also used. The HA1

sequences of A/Puerto Rico/8/34 and A/Solomon Islands/3/2006 are identical at 86.1% of

nucleotide sites. Root mean square deviation (RMSD) is often used to measure the difference

between structures. The RMSD of the structures 1RU7 and 3SM5 weighted over 320 aligned

HA1 positions was calculated, using the software SAP (Taylor, 1999, 2000), to be 1.35 Å.

The superimposed structures of the A/Puerto Rico/8/34 and A/Solomon Islands/3/2006 HA1

peptide backbone chains are shown in Figure 3.1. For comparison, the RMSD of 1RU7 and

the structure of A/Aichi/2/68 (H3N2) (PDB ID: 1HGG) (Sauter et al., 1992) was calculated

by the same method to be 2.69 Å (see Figure 2.8 for a visual comparison).

Amino acid positions determined to be surface-exposed according to the structure of either

A/Puerto Rico/8/34 or A/Solomon Islands/3/2006 were classed as surface-exposed. Depend-

ing on the structure, 24-28 residues identified as being surface-exposed using naccess were

identified as being located on the interior of the HA homotrimeric protein and were omit-

ted from the analysis on the basis that they are not exposed on the true external surface.

Amino acid dissimilarity between reference virus and test virus at each surface-exposed posi-

tion that was not conserved within the dataset, was tested as a predictor of reduced HI titre

(p < 0.05) using a Holm-Bonferroni correction to account for multiple tests (Holm, 1979).

To test whether the omission of non-surface-exposed residues may have mistakingly resulted

in false-negatives, substitutions at buried positions were separately tested as predictors of

reduced titre. Although position 187 was excluded from phylogenetic inference for A(H1N1)

(see Chapter 2), amino acid dissimilarity at this position was tested as a predictor of anti-

genic difference. At each HA position identified at this stage, the mean antigenic impact of

specific amino acid substitutions was determined by examining the associated parameter (k1,

Equation 3.4) using data subsets consisting of viruses and reference viruses with one of the

two amino acid variants being considered at that position.

3.3.4 Recombinant viruses

Viruses were generated using a protocol based on that described by Hoffmann et al. (2000).

HA and neuraminidase cDNAs of A/Netherlands/1/93 (Neth93), which had been exclusively

propagated in cell culture, were amplified using a standard RT-PCR protocol. These cDNAs

were cloned into the pHW2000 vector (Lin et al., 2010, 2012). Mutations were introduced
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A	 B	 C	

Figure 3.1: Comparison of the HA1 structures of A/Puerto Rico/8/34 and

A/Solomon Islands/3/2006: In (A) and (B) aligned HA1 peptide backbone chains are

shown as solid lines linking α carbons. In (A) A/Puerto Rico/8/34 (PDB ID: 1RU7) is coloured

blue and A/Solomon Islands/3/2006 (PDB ID: 3SM5) is coloured red. In (B) chains are

coloured according to the proximity of aligned α carbons using the temperature colouring

option in RasMol v 2.7.5.2. which gives the sequence blue, cyan, green, yellow, orange, and red,

where blue indicates greatest distance between α carbons, and red indicates least. (C) shows a

visualisation of distances between aligned α carbons. For reference, the red line at the base of

the structure represents a distance of 2.54 Å. For instances where an α carbon was not aligned

(i.e. at the very base of the structure), no line is drawn and instead a dot is drawn at the

position of the residue for which there are coordinates.

into the HA plasmid using the QuikChange lightning site-directed mutagenesis kit (Agilent

Technologies). Co-cultured 293T and Madin-Darby canine kidney (MDCK) epithelial cells

were co-transfected with plasmids containing HA and neuraminidase derived from Neth93

with the remaining six genes from A/Puerto Rico/8/34. MDCK cells were purchased from

the American Type Culture Collection (ATCC) and maintained at Mill Hill laboratories.

After 2–3 days, recombinant viruses in the supernatant of transfected cells were recovered

and propagated in MDCK cells as described by Lin et al. (2012). Virus HA sequences were

verified after passage. These methods were performed at containment level 2.
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3.3.5 HI assays and analysis

HI assays were performed on recombinant viruses by standard methods (WHO, 2011). An-

tiserum samples were treated with receptor-destroying enzyme to eliminate non-specific in-

hibitors present in serum, inactivated at 56◦C and then two-fold serially diluted in phosphate-

buffered saline (PBS) from an initial dilution of 1:40. Virus samples were diluted in PBS

to eight haemagglutinating units. Virus dilutions were then added to the serially diluted

antiserum samples and left for 30 minutes to allow antibodies to bind. Suspensions of turkey

(0.75%) erythrocytes in PBS were then added to antiserum:virus mixtures. Titres were

recorded as reciprocals of the highest dilution of antisera that inhibited haemagglutination.

The reciprocal of the highest two-fold dilution of post-infection ferret antiserum to com-

pletely inhibit haemagglutination (non-haemagglutinated blood drop reached the side of the

well within 30 seconds when a plate was turned on its side) was recorded as the HI titre.

Transfections were performed at containment level 2.

Post-infection ferret antisera raised against the following seven reference viruses were used to

characterise recombinant viruses: A/Bayern/7/95, A/Johannesburg/82/96, A/Johannesburg

/159/97, A/Ulan-Ude/209/98, A/Hong Kong/4847/98, A/New Caledonia/20/99 and A/Hong

Kong/1252/2000. Antisera samples were obtained from archives of the WHO Collaborating

Centre. Reference strains were chosen, in part, due to their phylogenetic proximity to the

parent virus, Neth93. Where possible reference strains possessing and lacking the amino acid

substitutions introduced by reverse genetics were chosen to allow changes in HI titres, asso-

ciated with the introduction of substitutions, to be attributed to antigenic and non-antigenic

effects of substitutions.

Average changes in log2 HI titre between parent and mutant recombinant viruses were quan-

tified. These were partitioned into antigenic (∆HA) and non-antigenic (∆HN ) effects using

Equation 3.1:

∆HA =
∆H2 −∆H1

2
∆HN =

∆H1 + ∆H2

2
(3.1)

If the amino acid substitution introduced was antigenically important it was expected to cause

a decrease in HI titre against parent-like virus derived antisera (∆H1) and a corresponding

increase in HI titer against mutant-like virus derived antisera (∆H2). Conversely, a change in

virus receptor-binding avidity is expected to cause a consistent decrease (or increase) in titre

with these two groups of antisera (∆H1 and ∆H2). Consequently, for each substitution the

associated change in log2 HI titre, relative to the parental virus, was partitioned into antigenic

(∆HA) and non-antigenic (∆HN ) components. (∆HA) is estimated by halving the difference

between (∆H1) and (∆H2) whereas (∆HN ) is estimated by taking the mean of (∆H1) and

(∆H2). Therefore if a substitution has an impact on phenotype which, on average, decreases
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titres against parent-like antisera by 1 log2 titre (∆H1 = −1) and increases titre against

mutant-like antisera by 1 log2 titre (∆H2 = +1), the substitution would be estimated to have

an antigenic effect of 1 log2 titre ((+1 − −1)/2 = 1) and no non-antigenic effect on titre

((+1 + −1)/2 = 0). If a substitution impacts phenotype in such a way as to, on average,

increase titres by 1 log2 titre against both parent- and mutant-like antisera (∆H1 = +1 and

∆H1 = +1), the substitution would be estimated to have no antigenic effect ((+1−+1)/2 = 0)

and to increase titres by 1 log2 titre as a result of a non-antigenic effect ((+1 + +1)/2 = 1).

Antigenic effects were compared with predictions from modelling. Mean error in predictions

across all substitutions was calculated as the average difference between the predicted mean

and each measured antigenic change in HI using a specific virus dilution measured against

a particular antiserum (excluding measurements restricted by the lower threshold of the

HI assay). Small non-antigenic changes in HI titre (∆HN ) between two viruses could be

explained by the routine standardisation of both viruses by the haemagglutination assay

prior to HI. Limitations in the accuracy of the haemagglutination assay controlling for virus

concentration for both parent and mutant viruses mean that small effects on log2 HI titre

(95% CI: ± 0.78 log2 titre) could be a result of test error. The haemagglutination assay was

used to generate a virus sample that could agglutinate 0.50 µl of turkey erythrocytes (0.75%

suspension in phosphate buffered saline) suspended in a further 0.50 µl of phosphate buffered

saline when diluted 8-fold (or 3 log2 titre) but not when diluted 16-fold (or 4 log2 titre). If

the exact dilutions of each virus are uniformly distributed between 3 and 4 log2 titres, the

potential difference between the parent and mutant virus dilutions is between + 1 log2 titre

and − 1 log2 titre, which could result in a two-fold difference in HI titre (± 1 log2 titre). The

distribution of errors is therefore the difference between two independent uniform variables,

and 95% of the time this will be within 1−
√

0.05 ≈ 0.78 log2 titre.

3.4 Results

3.4.1 The effect of amino acid substitutions at specific positions

Linear mixed effects models were used to identify antigenic relationships and their predic-

tors by accounting for variation in HI titres, as described by Reeve et al. (2010). Initial

model selection identified non-antigenic sources of variation in HI titre. It was determined

that a fixed effect, Av, for each virus, v, should be included in the model (n = 506, p <

10−20), to account for consistent differences in titres between viruses, reflecting changes in

receptor-binding avidity amongst other factors. A further fixed effect, Ir, was required for

each reference virus, r (n = 43, p < 10−20), to account for consistent differences in titres

between antisera raised against different reference viruses, potentially reflecting differences in

immunogenicity. Date of test (n = 351) needed to be controlled for as a random effect, εD (n
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= 351, p < 10−20), accounting for variability in batches of erythrocytes and dilutions of ery-

throcytes, antisera and viruses. These factors compensate for non-antigenic effects impacting

on HI titres (Equation 3.2).

Hr,v = k0 + Ir +Av + k1α1(r, v) + εD + εR (3.2)

Hr,v is the log2 HI titre for test virus v and antiserum raised against reference virus r. k0 is

a baseline, and εR is the residual measurement error not explained by the model.

Equation 3.2 includes a term, k1α1(r,v), to investigate the effect of amino acid substitu-

tions at specific positions: α1 represents the presence (1) or absence (0) of an amino acid

mismatch between the reference virus, r, and test virus, v, at a specific position. k1 is the

associated regression coefficient. Using this model (Equation 3.2) substitutions at over 50%

of non-conserved, surface-exposed positions and over 25% of non-conserved, non-surface-

exposed positions were significantly correlated with reduced HI titre (p < 0.05) using a

Holm-Bonferroni correction for multiple tests (Holm, 1979). Furthermore, the number of

synonymous mutations between viruses was significantly correlated with reduced titre (p <

10−15) because of a correlation between molecular and antigenic evolution. This demonstrates

that a simple regression analysis will incorrectly identify some antigenically neutral changes

as antigenically important (i.e. false positives) simply because they occur in either the same

branch or in a nearby branch to one where antigenically important substitution(s) occur.

3.4.2 Incorporating phylogenetic structure

The described tendency for identification of false positives required phylogenetic structure to

be incorporated in the model. Equation 7 of Reeve et al. (2010) was used to identify branches

of the phylogeny that were correlated with lower HI titres when they separated reference virus

and test virus:

Hr,v = k0 + Ir +Av +
∑

i
miδi(r, v) + εD + εR (3.3)

Equation 3.3 incorporates branch terms miδi(r, v) instead of the term representing substitu-

tions at a single amino acid position: δi = 1 when reference virus (r) and test virus (v) are

separated by branch i of the phylogeny and δi = 0 otherwise, with mi being the associated

regression coefficient from the mixed effects model. Because of the computational infeasibility

of searching the 21010 possible antigenically important sets of branches (in a tree containing

1010 branches), a stochastic hill-climbing approach was used. This identified 62 branches as

correlating with drops in HI titre when they separated reference and test viruses, indicating
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that antigenic evolution occurred in these branches. Such antigenic events were found in

much higher proportion in the trunk (38.3%) than in side (4.6%) branches (χ2 test, p <

10−13), supporting the standard model of influenza antigenic drift, whereby substitutions al-

tering antigenicity without loss of fitness undergo preferential fixation, thus forming the trunk

lineage from which future viruses descend (Fitch et al., 1997; Nelson & Holmes, 2007). With

these 62 branch terms included in the model (Equation 3.3), there was no longer a significant

correlation between HI titre and the number of synonymous mutations between reference

and test virus (p > 0.05), nor with any of the non-surface-exposed positions. This shows

that including branch terms accounted for the correlation between molecular and antigenic

evolution and therefore reduced the false discovery rate as required.

Reference	virus	r	

Test	virus	v	

δ	=	0	

δ	=	0	

δ	=	0	

δ	=	0	

δ	=	0	

δ	=	0	
δ	=	0	

δ	=	0	

δ	=	0	

δ	=	1	

δ	=	1	

δ	=	1	
δ	=	1	

δ	=	1	

Figure 3.2: An example of a phylogeny including δ terms introduced in Equation

3.3: The assignment of values to δ terms associated with each branch, given the indicated

positions of a reference virus, r and a test virus, v, is illustrated. δ = 1 for each branch of the

phylogeny that separates reference virus r and test virus v (these branches are also coloured

blue), while δ = 0 for each branch that does not occur between them.
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3.4.3 Substitutions affecting antigenicity in multiple positions of the phy-

logeny

The model was extended by combining Equations 3.2 and 3.3 to include explicit terms for

amino acid substitutions to identify antigenically important substitutions:

Hr,v = k0 + Ir +Av + k1α1(r, v) +
∑

i
miδi(r, v) + εD + εR (3.4)

Equation 3.4 incorporates the term k1α1(r,v) from Equation 3.2 representing specific amino

acid substitutions. Each of the previously identified 62 branch terms (δi) were included and

associated regression coefficients (mi) were re-estimated in a model containing the k1α1(r,v)

term. Because δi terms account for the antigenic changes inferred to occur in single specific

branches of the phylogeny, any significant improvement to model fit by α1 must be a result of

the term representing amino acid substitutions at a single HA1 position being correlated with

a change in the antigenicity of the virus represented in multiple branches of the phylogeny.

Thus an improvement to model fit achieved by inclusion of α1 indicates that there have been

alternative, convergent or back-substitutions at the same amino acid position associated with

antigenic change in at least two branches of the phylogeny.

One hundred and thirteen non-conserved, surface exposed amino acid positions of the HA1

domain were tested as predictors of variation in HI titre. At four of these (positions 141, 153,

187 and 190), the inclusion of an α1 term representing a substitution at that site (Equation

3.4) improved model fit compared with the model containing only branch terms (Equation

3.3). Since the identified positions improve model fit in the presence of branch terms (δi), it

can be inferred that substitutions at these positions correlate with antigenic change in more

than one position of the phylogeny. Thus these substitutions are described as having support

across the phylogeny. Each of these four amino acid positions (Figure 3.3) has previously

been allocated to one of the H1 antigenic sites (Caton et al., 1982). Position 187 is also a

constituent of the primary sialic acid receptor-binding site and the analogous position 190

in H3-HA has been described as forming hydrogen bonds with the 9-hydroxyl group of sialic

acid (Skehel & Wiley, 2000). Non-surface exposed positions were examined separately and

model fit was not significantly improved by substitution at any of these positions.

Different substitutions at the same position are expected to vary in antigenic impact according

to the biochemical properties of the amino acids involved. To account for this, the significance

and average impact (in antigenic units, where a unit corresponds to a 2-fold dilution in the

HI assay) of each substitution at HA1 positions 141, 153, 187 and 190 that was observed to

have occurred between reference and test viruses in the dataset was measured. Substitutions

between seven pairs of amino acids at the four positions showed significant antigenic impact

with support across the phylogeny. The mean antigenic impact (k1 in Equation 3.4) of
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Figure 3.3: A(H1N1) HA positions implicated in antigenic change: Amino acid

positions identified as affecting antigenic phenotype shown on the HA structure of A/Puerto

Rico/8/34 (Protein Data Bank ID: 1RU7) (Gamblin et al., 2004). HA1 is shown in light blue

and HA2 in dark blue. The primary sialic acid binding site is shown in green and antigenic sites

Ca, Cb, Sa and Sb are coloured yellow. Amino acid positions of substitutions identified as

causing antigenic change in multiple positions of the phylogeny are shown in red. Positions of

substitutions correlated with antigenic change in a single position of the phylogeny are shown in

orange. *As A/Puerto Rico/8/34 possessed a deletion at 130 relative to some viruses used in

the study, position 129 is coloured instead. Substitutions at positions 43, 71, 130 and 271 (†)
and at positions 74 and 120 (‡) were each identified as alternative causes of the antigenic change

inferred to have occurred at two specific points in the evolutionary history of the virus.

exchange between amino acids of each pair is shown in Table 3.1. Among these substitutions,

exchange between lysine and glutamic acid at position 141, the most prominently protruding

position on the 140-loop (antigenic site Ca) is associated with the greatest mean drop in

cross-reactivity (2.37 antigenic units). The remaining three positions at which there was

support across the phylogeny (153 (150-loop), 187 and 190 (190-helix)) form an exposed

ridge bordering the upper lip of the depression containing residues involved in binding to

host receptors (Figure 3.3).
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Table 3.1: HA1 amino acid substitutions that correlate with antigenic changes in

A(H1N1) viruses

Substitution(s) Antigenic site
Antigenic impact*

(H1-HA numbering) H1 H3

Substitutions with support across phylogeny identified using Equation 3.4†:

K141E Ca A 2.37 (2.27-2.47)

E153G Sa B 0.20 (0.07-0.33)

E153K Sa B 0.66 (0.39-0.93)

G153K Sa B 1.50 (0.51-2.49)

D187N Sb B 0.33 (0.30-0.36)

D187V Sb B 0.88 (0.51-2.49)

A190T Sb B 0.24 (0.17-0.31)

Substitutions with support across phylogeny identified using Equation 3.5†:

S36N - C 0.66 (0.22-1.11)

S72F Cb E 0.81 (0.49-1.13)

E74G, E120G‡ Cb,- E,A 0.43 (0.29-0.57)

R43L, F71I, ∆K130‡, S271P -,Cb,-,- C,-,A,- 3.53 (3.44-3.62)

S142N Ca A 0.75 (0.58-0.92)

K163N Sa - 0.67 (0.62-0.73)

S183P - B 0.61 (0.33-0.89)

N184S Sb B 0.51 (0.31-0.70)

W252R - - 0.37 (0.32-0.43)

E274K - - 1.31 (0.68-1.93)

R313K - - 1.47 (0.84-2.10)

* k1 in Equation 3.4 or k′ in Equation 3.5. Mean and 95% CI are shown.
† Substitutions identified by likelihood ratio test using p-value of 0.05 adjusted using

Bonferroni correction.
‡ Multiple substitutions in the same branch offer alternative explanations for the as-

sociated antigenic change.

3.4.4 Substitutions affecting antigenicity at single positions in the phy-

logeny

Next, terms kj and αj representing each of the the seven inferred antigenic substitutions

at the four positions with support across the phylogeny (Table 3.1) were added to produce

Equation 3.5. The causes of antigenic change in branches that still had large estimated

antigenic impacts were investigated:

Hr,v = k0 + Ir +Av + k′α′(r, v) +
∑

j
kjαj(r, v) +

∑
i
miδi(r, v) + εD + εR (3.5)
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Terms for these seven substitutions absorbed variation in HI previously explained by branch

terms that correspond to the positions in the phylogeny where those substitutions were es-

timated to have occurred. However, this model still included 18 branch terms representing

internal branches of the phylogeny whose estimated impact on the HI assay (mi), in the model

containing terms for each of the seven substitutions, remained at least 0.25 antigenic units.

Each of these 18 branch terms were excluded in turn, the model re-built with the residual

branches, and each remaining amino acid position (as k′ and α′) was retested to determine

which substitution(s) could explain the variation in HI titre associated with the excluded

branch term. A substitution identified at this stage (when a branch term had been excluded)

was inferred to have caused the associated antigenic change at that position in the phylogeny

if it was the only substitution to be identified.

In nine cases, a single substitution was identified as explaining variation in HI titre upon

exclusion of one branch. These substitutions were at positions 36, 72, 142, 163, 183, 184,

252, 274 and 313 (Table 3.1). Unique identification was not possible in two further cases, as

multiple substitutions occurring in the same branch could not be discriminated. The branch

associated with the greatest drop in HI titre across the phylogeny (starred in Figure 3.4) has

a deletion of lysine at position 130 (∆K130) and substitutions R43L, F71I and S271P. The

antigenic significance of ∆K130 has been described (McDonald et al., 2007); however each of

these co-occurring substitutions have also been identified as antigenic determinants by another

in silico technique, which did not identify them as false positives (Huang et al., 2012). Each of

these four changes is assigned equal weight in our model but it is identified explicitly that they

offer alternative explanations for the same antigenic change and are not independent antigenic

determinants. To infer their individual effects experimental investigation was required. One

further instance of alternative substitutions at different positions explaining an antigenic

change equally well involved positions 74 and 120 (Table 3.1).

Although the substitutions identified when branch terms were excluded correlated with anti-

genic change at only a single position in the phylogeny, it is notable that, among them,

positions 72, 74, 142, 163 and 184 map to previously described H1 antigenic sites while po-

sitions analogous to 36, 120 and 183 are constituents of H3 antigenic sites (Wiley & Skehel,

1987). The amino acids and inferred mean antigenic impact of each of the substitutions is

shown in Table 3.1 alongside the seven substitutions identified with support across the phy-

logeny. Locations within the phylogeny where any of the identified substitutions in Table 3.1

altered the antigenic phenotype of the virus by at least 0.5 antigenic units and the degree of

correspondence with changes to the H1 vaccine component are shown in Figure 3.4.
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Figure 3.4: Locations of significant antigenic change in HA1 phylogeny: HA1

phylogeny showing positions of significant antigenic substitutions. Colour changes mark the

locations of substitutions associated with changes in antigenic phenotype of at least 0.5

antigenic units according to Table 3.1. The position of the branch associated with the greatest

drop in cross-reactivity among the sampled viruses is marked (*). Filled black circles indicate

the positions of viruses included in the influenza vaccine over the period of HI data collection

and are labeled: A/Bayern/7/95 (V1), A/Beijing/262/95 (V2), A/New Caledonia/20/99 (V3),

A/Solomon Islands/3/2006 (V4) and A/Brisbane/59/2007 (V5). Older vaccine viruses are not

indicated. Branch length indicates the estimated number of nucleotide substitutions per site.
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3.4.5 Production of mutant viruses by reverse genetics

To validate the identification of substitutions affecting antigenicity and assess the accuracy of

estimated antigenic effects mutant viruses containing a subset of the amino acid substitutions

identified in Table 3.1 were generated by reverse genetics. The HA gene of an exclusively cell-

propagated virus, A/Netherlands/1/93 (Neth93) was used. The K130 deletion (∆K130) and

the R43L substitution were introduced into the Neth93 HA independently to test whether

both of these changes cause antigenic change. Consistent with the results of McDonald et al.

(2007), a large antigenic impact associated with ∆K130 was observed. The introduction

of ∆K130 therefore generated an additional, antigenically distinct HA background (Neth93

∆130) in which to further test the effects of substitutions. The HA genes of both Neth93

and Neth93 ∆130 were used to produce viruses carrying individual substitutions of K141E,

E153K, D187N and D187V. E153G and A190T were not investigated as it was considered

that their antigenic impact might be too small to detect; the lower 95% confidence interval on

their predicted antigenic impact was 0.07 and 0.17 log2 titre respectively (for all substitutions

tested, the lower 95% confidence interval ≥ 0.3 log2 titre).

Table 3.2: Antisera used to characterise recombinant viruses

Substitution Reference viruses against which antisera were raised

resulting from A/BAY A/JBG A/JBG A/UU A/HK A/NC A/HK

mutagenesis /7/95 /82/96 /159/97 /209/98 /4847/98 /20/99 /1252/00

R43L R R L L L L L

∆K130 K K ∆* ∆* ∆* ∆* ∆*

K141E K K K K K K E

E153K E E E K G G G

D187N D D D D N D D

D187V D D D D N D D

Abbreviations in reference virus names: Bayern (BAY), Johannesburg (JBG), Ulan-Ude (UU),

Hong Kong (HK) and New Caledonia (NC). * ∆ indicates deletion of amino acid corresponding to

position 130). Red indicates that the reference virus used to generate antisera lacked the introduced

substitution and so was in the ancestral state (e.g. R43) and blue indicates that the reference virus

shared the introduced substitution (e.g. L43). Absence of colour indicates that the reference amino

acid identity at the position of substitution in the recombinant virus was different from both of the

parental viruses (Neth93 and Neth93 ∆130) and from the mutant virus.

Mutant recombinant viruses were characterised by HI using a panel of post-infection ferret

antisera raised against seven reference viruses. Amino acid identities of these seven reference

viruses at positions at which substitutions were introduced in recombinant viruses (HA1

positions 43, 130, 141, 153 and 187) are shown in Table 3.2. Geometric mean titres for

these HI assays averaged across four repeats are shown in Appendix A, Table A.1 and a

visual representation of these data is given in Figure 3.5. The top row of the heatmap in
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Figure 3.5 shows the average log titres for the parental virus Neth93 against each of the

antisera used. High titres (dark red) indicate that, of the antisera used, Neth93 is most

antigenically similar to A/Bayern/7/95 and A/Johannesburg/82/96 and low titres indicate

that Neth93 is least antigenically similar to A/Ulan-Ude/209/98, A/Hong Kong/4847/99,

and A/Hong Kong/1252/2000. In the second row, the colours for the mutant recombinant

virus possessing the substitution R43L are the same as in the top row and the dendogram

bifurcation separating these two rows at the left of the figure is almost flat indicating that

R43L has had almost no impact on HI titre.

The deepest bifurcation in the dendogram at the left of the figure corresponds to the introduc-

tion of ∆K130. Titres recorded for the ∆K130 mutant are lower than Neth93 for the antisera

A/Bayern/7/95 and A/Johannesburg/82/96 and higher for the antisera A/Johannesburg/159/97,

A/Ulan-Ude/209/98, A/Hong Kong/4847/99, and A/New Caledonia/20/99 indicating re-

duced and increased antigenic similarity against these two groups of antisera respectively. Ta-

ble 3.2 shows that the the viruses A/Bayern/7/95 and A/Johannesburg/82/96 possess K130

while A/Johannesburg/159/97, A/Ulan-Ude/209/98, A/Hong Kong/4847/99, and A/New

Caledonia/20/99 bear a deletion of residue 130. This indicates that the ∆K130 change is

also responsible for the deepest bifurcation in the antisera dendogram above the heatmap in

Figure 3.5. A/Hong Kong/1252/2000 is also ∆130 but the ∆K130 change has not increased

titre, relative to the parental virus Neth93, against this antiserum.

The second deepest bifurcation in the virus dendogram is associated with the introduction

of E153K or K141E substitutions into the Neth93 ∆130 background. In addition to lowering

titres against A/Johannesburg/159/97, A/Ulan-Ude/209/98, A/Hong Kong/4847/99, and

A/New Caledonia/20/99, K141E is associated with an increased titre against the A/Hong

Kong/1252/2000 antisera. The titre recorded for the Neth93 ∆K130 K141E mutant was

almost as high as the homologous titre recorded for A/Hong Kong/1252/2000 (174 vs. 202,

Table A.1), the only reference virus used with E141 indicating that the introduction of two

amino acid changes (∆K130 K141E) could convert the antigenic phenotype of Neth93 from

A/Bayern/7/95-like to A/Hong Kong/1252/2000-like.

3.4.6 The antigenic and non-antigenic effects of introduced substitutions

It is possible that HI titres recorded, and represented in Figure 3.5, were influenced by a

combination of both the antigenic and non-antigenic properties of the viruses tested. To assess

the antigenic impact of each amino acid substitution introduced by mutagenesis, antisera

of two types were chosen: 1) antisera raised against parent-like viruses that had amino

acid identity in common with the parent virus (i.e. R43 for the substitution R43L); 2)

antisera raised against mutant-like viruses that had amino acid identity in common with the

recombinant virus (i.e. L43 for the substitution R43L). For each amino acid substitution
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Figure 3.5: Heat-map and clustering analysis of HI titres with mutant viruses:

Hierarchical clustering of the wild type Neth93 and mutant viruses generated from it by reverse

genetics. Reference viruses used to generate antisera are arranged according to their ability to

inhibit agglutination of turkey erythrocytes by each virus. Viruses are simultaneously clustered

along the vertical axis according to their antigenic profile. Dendograms indicating antigenic

relatedness are shown at the top (for antisera) and to the left (for viruses). Colouring represents

log2 HI titre as indicated at top left with the histogram showing the frequency (count) for each

titre. Cells are labelled to indicate reference virus amino acid identity at the position of

substitution. In the bottom three rows, labels refer to the second substitution (and not ∆K130).
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introduced into the recombinant viruses, the assignment of antisera to these two categories,

based on reference virus amino acid sequence, is shown in red or blue cell colour respectively

in Table 3.2.

For each recombinant virus, changes in log2 HI titre, relative to the parental virus Neth93 or

Neth93 ∆130, were partitioned into antigenic and non-antigenic components using Equation

3.1. The predicted antigenic effect of each substitution (from Table 3.1) is shown alongside

mean observed changes in log2 HI titre partitioned into antigenic (∆HA) and non-antigenic

effects (∆HN ) in Table 3.3. Comparing columns two and four in Table 3.3 shows the similarity

in the mean antigenic impact of substitutions in models applied to the full HI dataset and in

the reverse genetics experiments described above. The range of antigenic effects of K141E,

∆K130, E153K and D187N amino acid substitutions, measured against the panel of antisera

shown in Table 3.2, were consistent with predictions from modelling. The predicted antigenic

impact and the mean and range in antigenic impact (∆HA) measured experimentally using

individual antisera is shown in Figure 3.6. Across all substitutions a mean error in predictions

of only 0.14 antigenic units was calculated.

Table 3.3: Predicted and observed antigenic impacts of A(H1N1) HA1

amino acid substitutions

Substitution
Predicted Mutagenesis Observed effect†

antigenic effect* background ∆HA ∆HN

K141E‡ 2.37 Neth93 ∆130 2.60 +0.27

E153K 0.66 Neth93 0.67 -0.42

Neth93 ∆130 0.65 -2.15

Averaged 0.66 -1.28

D187N 0.33 Neth93 0.41 -0.41

Neth93 ∆130 -0.08 -0.54

Averaged 0.16 -0.47

∆K130 3.53§ Neth93 4.10 -0.78

R43L 3.53§ Neth93 0.01 -0.01

* Predicted mean antigenic impact (from Table 3.1) measured in antigenic

units.
† Mean observed changes in log2 HI titre (in antigenic units) partitioned

into antigenic (∆HA) and non-antigenic (∆HN ) effects.
‡ HA plasmids were generated for the mutant Neth93 K141E but multiple

attempts to rescue were unsuccessful.
§ ∆K130 and R43L occur in the same branch of the phylogeny and thus

offer alternative explanations for the associated antigenic change.

The predicted and observed antigenic impacts, based on HI results, shown in Table 3.3 and

in Figure 3.6 indicate that our model captures the mean impacts of the HA1 amino acid

substitutions identified. However, non-antigenic effects (∆HN ) of substitutions that resulted
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Figure 3.6: Observed and predicted antigenic impact of H1 HA1 amino acid

substitutions: The mean antigenic impact of each substitution predicted from modelling

(Table 3.1) plotted against the mean observed impact averaged across antisera in the panel

(Table 3.2). 95% confidence intervals are shown for both. Each point shows the observed mean

antigenic impact (∆HA, change in HI titre for a recombinant virus relative to its parent virus)

of a particular amino acid substitution (labelled at top) with each antiserum in the panel. For

each amino acid substitution an antiserum was classified into one of two groups dependent on

whether the reference virus it was raised against lacked or shared that particular

deletion/substitution. Red points indicate that the reference virus lacked the amino acid

substitution, so the predicted impact of mutation is a reduction in titre; blue points indicate

that the reference virus shared the substitution, so the predicted impact of mutation is an

increase in titre. The number of points for each substitution is dependent on whether it was

inserted into one or both (Neth93 and Neth93 ∆130) parental viruses and on the number of

reference viruses sharing one of the two amino acid identities being considered. A negative

observed antigenic impact indicates a change in HI titre in the opposite direction to that

predicted.
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in higher or lower HI titres irrespective of antigenic similarity between test virus and the

reference virus against which a particular antiserum was raised were also observed. Such

effects exceeding 0.78 antigenic units, shown in bold in Table 3.3, cannot be explained solely by

differences in virus concentration resulting from the limited accuracy of the haemagglutination

assay, used to standardise haemagglutinating units prior to HI. A relatively small antigenic

impact of the E153K substitution, but a large non-antigenic effect, on HI titre was observed.

This result is supported by previous work showing E153K to have a relatively small impact

on monoclonal antibody binding while causing a large increase in erythrocyte binding avidity

that together contributed to large reductions in HI titre indicating escape from inhibition by

polyclonal antiserum (Hensley et al., 2009).

Two HA plasmids were generated containing the D187V substitution; multiple attempts to

rescue Neth93 D187V were unsuccessful and while Neth93 ∆K130 D187V was rescued, the

absence of an available antiserum raised against a virus carrying this substitution (Table

3.2) prevented the partitioning of changes in HI, relative to the parental virus, into antigenic

and non-antigenic effects. Where no reference strain exists that carries the substitution,

limitations in the accuracy of the haemagglutination assay controlling for virus concentration

(± 0.5 antigenic units) for both parent and mutant viruses mean that small effects (95% CI:

±0.78 antigenic units) could be a result of test error. This is because the haemagglutination

inhibition assay is is used to generate a sample that can agglutinate a standardised sample

of erythrocytes when diluted 8-fold (or 3 log2 titre) but not 16-fold (or 4 log2 titre). With

a potential difference of 1 log2 titre between parent and mutant, 95% of the time this would

be expected to be within 0.78 log2 titre as explained in Section 3.3.5. Having reference

viruses that have both amino acid identities allows antigenic and non-antigenic effects to be

distinguished (see Equation 3.1). A mean drop of 0.17 units measured against antisera raised

against viruses lacking the D187V substitution was therefore consistent with our predicted

effect of between 0.51 and 1.25, giving 95% CI of -0.61 to 0.95.

3.5 Discussion

Using a modelling approach that integrated HA sequence data and HI antigenic data for over

500 viruses, substitutions responsible for the antigenic evolution of former seasonal influenza

A(H1N1) viruses over a period of more than 10 years were identified. Substitutions at 15

amino acid positions in HA1 that not only had high-impact on antigenicity (which individ-

ually may lead to a need to change vaccine virus), but also those of low-impact with many

possibly not being directly observable in routine HI assays were identified. Antigenic cartog-

raphy of these A(H1N1) viruses identified three antigenic clusters (Figure 2.10 in Chapter

2). In addition to the two amino acid substitutions that can explain the transitions between

these clusters (∆K130 and K141E), the antigenic determinants identified include substitu-
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tions at thirteen further positions. At three of these positions (153, 187, and 190), the same

substitutions co-occur with detectable antigenic change at multiple times in the evolution-

ary history of the virus, consistently explaining observed antigenic changes. The application

of the modelling framework used here to influenza viruses demonstrates the generality of

an approach used previously to build predictive models of antigenic cross-reactivity between

foot-and-mouth disease viruses (Reeve et al., 2010). This approach is distinguished from other

regression-based approaches by the use of phylogenetic information to reduce false positive

detection rates and to identify when alternative explanations for the same antigenic event

exist. By incorporating phylogenetic information, the locations in the HA1 phylogeny where

antigenic changes occurred were also estimated. Antigenic events were found disproportion-

ately in the trunk lineage using Equation 3.3 (χ2 test, p < 10−13) supporting the standard

model of antigenic drift in influenza A HA, whereby substitutions altering antigenicity with-

out loss of fitness undergo preferential fixation, thus forming the trunk lineage from which

future viruses descend (Fitch et al., 1997; Nelson & Holmes, 2007).

In antigenic maps of A(H3N2) viruses, antigenic distances between viruses belonging to the

same antigenic cluster often exceeded distances between viruses in adjacent clusters, demon-

strating the need to assess non-cluster defining substitutions (Smith et al., 2004). Further,

the selection of approximately twice as many H3N2 vaccine viruses as antigenic clusters iden-

tified by Smith et al. (2004) during the period 1968 to 2003 is supportive of the importance of

substitutions not readily identified using antigenic maps in the evolution of influenza viruses.

Substitutions identified in this chapter ranged in their antigenic impact from high-impact

antigenic determinants which individually may have led to a need to change the vaccine virus

(∆K130 which was previously identified as antigenically important and as being associated

with the A/Bayern/7/95 to A/Beijing/262/95 vaccine change by McDonald et al. (2007) and

the K141E substitution which was observed multiple times and associated with the A/New

Caledonia/20/99 to A/Solomon Islands/3/2006 vaccine change) to smaller-impact antigenic

determinants that were individually less apparent but that may have accumulated to cause

antigenic drift. Inclusion of antigenic substitutions of lower-impact allowed us to trace the

antigenic evolution of influenza A(H1N1) in finer detail and the identification of substitutions

responsible for such smaller incremental changes in antigenicity also raises the prospect of

fine-tuning vaccine viruses by mutating existing candidate vaccine viruses or their derivatives.

The model also dissects the results of HI assay into antigenic and non-antigenic effects and in

the characterisation of mutant viruses generated by reverse genetics non-antigenic effects of

specific substitutions on HI were identified, in addition to their antigenic effects. Changes in

the receptor-binding avidity of influenza viruses are known to contribute to apparent antigenic

effects as measured by HI assay (Daniels et al., 1984; Hensley et al., 2009). The results of the

described reverse genetics experiments showed that investigated substitutions also affected

HI titre as a result of non-antigenic effects (∆HN ) in addition to the predicted antigenic

effects (∆HA). It is clear that that understanding the impact of non-antigenic variation on
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titre is important when interpreting HI data and drawing conclusions on antigenic similarity

of influenza viruses. Understanding the genetic variation underlying changes in the receptor-

binding avidity of influenza viruses that contribute to apparent antigenic effects as measured

by HI assay is clearly a very important area for further investigation. A sequence-based

method to investigate the mechanistic relationship between HA amino acid substitutions

and variation in HI attributable to changes in avidity, to complement our current model of

antigenic evolution, is desirable.

The ability to quantify the phenotypic impact of substitutions involved in antigenicity in-

troduces an opportunity to investigate interactions between such substitutions. It has been

proposed that epistasis is prevalent in the evolution of the influenza surface proteins, however

few examples have been confirmed using phenotypic data (Kryazhimskiy et al., 2011). The

models presented in this chapter do not explicitly account for how the antigenic impact of

substitution at one position depends on substitutions present at other HA, or neuraminidase,

positions. In the computational analysis described, variation in the antigenic effects of par-

ticular substitutions across the full dataset was observed. Further, in the assessment of

recombinant viruses, variation in the effect of substitutions was observed between mutagen-

esis backgrounds (Neth93 and Neth93 ∆K130), dependent on which antiserum was used in

HI assays. I speculate that the antigenic impact of a particular HA substitution is depen-

dent on how similar or different the HA epitope structure of a test virus is to that of the

reference virus used to raise antiserum, on the basis that successive substitutions in the same

antigenic site will have diminishing fitness returns in terms of decreased antibody binding.

Understanding how variation in the antigenic impact of a particular substitution can be at-

tributed to amino acids present at other positions on the antigenic surface is another area for

investigation, called for by this work, that should further improve our understanding of how

specific substitutions affect antigenicity.
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Identifying the genetic drivers of antigenic
evolution of influenza A(H3N2) viruses

4.1 Abstract

Understanding how specific features of the viral genome contribute to strain fitness and

evolutionary success is vital for increasing our ability to predict their evolutionary future. In-

fluenza A(H3N2) viruses circulate globally in the human population with increased epidemic

frequency and severity, relative to other seasonal influenza viruses. Current methods for

predicting which influenza A(H3N2) viruses among circulating variants will seed epidemics

in future seasons suggest that the fitness profile in the viral population is complex with the

accumulation of several adaptive and maladaptive mutations contributing to virus fitness,

though our knowledge of the phenotypic impact of genetic differences remains limited. The

haemagglutination inhibition assay is commonly used to assess influenza antigenic relation-

ships, but only summarises a complex interplay of factors that affect survival. In particular,

it confounds the effects of antigenicity and receptor binding avidity, both of which are well

known to play critical roles. Here a sequence-based method that has previously been shown

to predict vaccine match for foot-and-mouth disease and identify drivers of antigenic evolu-

tion of A(H1N1) viruses is extended and applied to A(H3N2) HI data. By quantifying the

antigenic impact of specific amino acid substitutions that have occurred during the evolution

of A(H3N2) a pathway towards the inclusion of a more mechanistic, detailed understanding

of the role-play between molecular and antigenic evolution in sequence-based predictions of

evolutionary success is presented.

4.2 Introduction

A(H3N2) viruses have circulated globally in the human population since 1968 causing seasonal

epidemics of disease. Influenza A(H1N1)pdm09 and influenza B viruses also circulate in the

human population, cause similar symptoms and evolve by similar mechanisms of immune

escape, however A(H3N2) viruses have a considerably higher disease burden and have been
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responsible for the majority of severe illness caused by seasonal influenza in recent decades

(Barr et al., 2014). Influenza A viruses exhibit higher rates of nucleotide mutation and amino

acid substitution, and reduced genealogical diversity relative to influenza B viruses, suggesting

an increased role of adaptive evolution in A viruses (Bedford et al., 2015). Though rates of

molecular evolution in A(H3N2) and A(H1N1) viruses are similar, the rate of antigenic drift

of A(H3N2) viruses is higher than that of both A(H1N1) and B viruses (Bedford et al.,

2014). Owing to a range of evolutionary and epidemiological factors, a more interconnected

global population of A(H3N2) viruses has been shown to coincide with reduced rates of

local persistence of genetic and antigenic variants, higher ages of infection, and larger, more

frequent epidemics relative to A(H1N1) and B viruses (Bedford et al., 2015).

As a result of the increased frequency and severity of seasonal A(H3N2) epidemics, relative

to other human influenza viruses, this subtype has been at the focus of recently emerging

techniques for predicting the evolutionary trajectory of circulating influenza viruses ( Luksza

& Lässig, 2014; Neher et al., 2014). The method described by Neher et al. (2014) uses

information in the shape and branching pattern of the HA phylogenetic tree to track changes

in the frequency of genetic variants and to make predictions of whether variants will increase

or decrease in frequency in the future.  Luksza & Lässig (2014) also used information on

the frequency of clades defined on the HA phylogenetic tree to inform predictions of future

composition of the viral population, however their predictions were also informed by our

understanding of which codons are involved in the antigenic evolution of A(H3N2) viruses.

Their model incorporated a sequence-based estimate of viral fitness where antigenic novelty

was approximated by a count of amino acid differences in antigenic sites reported by Shih

et al. (2007), while substitutions outside these sites were penalised on the assumption that

they are likely to to be deleterious ( Luksza & Lässig, 2014). A natural extension of these

methods is the incorporation of a quantitative model of the impact of specific amino acid

substitutions on antigenicity, and indeed other relevant facets of viral phenotype. Research in

this area is restricted by limitations in our understanding of the molecular basis of antigenic

evolution, the phenotypic impact of specific amino acid substitutions, and the consequences

for viral fitness.

Much of our understanding of the antigenicity of A(H3N2) is derived from fundamental

experimental work in the 1980s (Knossow et al., 1984; Skehel et al., 1984; Webster & Laver,

1980; Wiley et al., 1981; Wilson et al., 1981). The contributions of these studies included the

solving of the 3D structure of the H3 HA glycoprotein (Wilson et al., 1981) and the mapping

of substitutions facilitating escape from neutralising monoclonal antibodies to antigenic sites

denoted A–E (Wiley et al., 1981). Various approaches have been used to investigate the

mechanisms of antigenic drift (Hensley et al., 2009; Koelle et al., 2006) and phylogenetic-

based methods have been used to identify positively selected codons that may have been

important in the antigenic evolution of the virus (Bush et al., 1999b; Shih et al., 2007). The

application of multi-dimensional scaling to HI data, termed antigenic cartography, has allowed
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for visualisation of HI data and antigenic maps generated for A(H3N2) have indicated that

antigenic evolution is punctuated, relative to the more continuous accumulation of genetic

changes (Smith et al., 2004). Substitutions causing major changes in A(H3N2) antigenic

evolution, many of which are apparent as transitions between clusters on these antigenic

maps, have subsequently been identified by exhaustive testing of viruses generated by reverse

genetics containing cluster-difference substitutions introduced by site-directed mutagenesis

(Koel et al., 2013). This experimental approach provides definitive identification of the genetic

determinants causing very large antigenic changes.

It is possible that the adaptive evolution of A(H3N2) viruses proceeds via rare amino acid

substitutions with large phenotypic effects only, however under this scenario the fitness profile

of the viral population is homogenous most of the time. That  Luksza & Lässig (2014) and

Neher et al. (2014) were able to make informative predictions of evolutionary success in most

seasons implies persistent fitness variation among circulating A(H3N2) viruses suggesting

that adaptive evolution proceeds by the accumulation of a greater number of small effect

mutations.  Luksza & Lässig (2014) found that while substitutions to antigenic site E did not

inform predictions, substitutions in sites A–D did, which adds support to the hypothesis that

a wider set of codons than those identified as causing the largest antigenic changes, which

occur in sites A and B only (Koel et al., 2013), are important in A(H3N2) antigenic evolution.

In this chapter, the application of the modelling approach introduced in Chapter 3 to viruses

of the A(H3N2) subtype is described. In A(H1N1) it was observed that corrections to baseline

titres made for each virus tested by HI co-varied with year of isolation, suggesting a potential

molecular basis of variation in some non-antigenic trait affecting HI titre, possibly receptor-

binding avidity. In this chapter the method of incorporating phylogenetic structure into the

model is developed to allow non-antigenic differences between virus and antisera, which may

be the result of changes in virus avidity and immunogenicity respectively, to be explained by

branches of the phylogeny where these changes are estimated to have occurred. The aims

of this chapter are to identify antigenic determinants that have caused both large and more

gradual changes in antigenic phenotype of A(H3N2) viruses and to quantify their relative

antigenic impact.

4.3 Materials and Methods

4.3.1 Data

The A(H3N2) dataset used in this chapter is introduced in Chapter 2. Most of the HI data

and associated HA sequence data analysed were generated by staff of the Crick Worldwide In-

fluenza Centre (formerly the WHO Collaborating Centre at the National Institute for Medical
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Research, MRC National Institute for Medical Research, UK) over a number of years. These

data were augmented with data from a study by Smith et al. (2004), made available subse-

quently (Bedford et al., 2014), which comprised observations of 650 unique virus:reference

strain combinations between 91 viruses, all isolated prior to 1990, and antisera raised against

36 reference strains. For computational reasons, a subset of the full A(H3N2) dataset de-

scribed in Chapter 2 was used here. This subset consisted of 7,315 titre measurements for

2,738 unique virus:reference strain combinations between 229 viruses and antisera raised

against 169 reference strains and was inclusive of the data published by Bedford et al. (2014).

4.3.2 Phylogenetic analysis

HA1 nucleotide sequences of all viruses were aligned using MUSCLE (Edgar, 2004). Phyloge-

nies were estimated using a variety of nucleotide substitution and molecular clock models. A

GTR+I+Γ4 nucleotide substitution model was determined to be most suitable through com-

parison of Bayes factors (Suchard et al., 2001). Bayes factor analysis also favoured allowing

rates to differ at the third codon position relative to the first two and a relaxed, uncorrelated

molecular clock model with branch rates drawn from an exponential distribution. Year of

isolation was used to calibrate the molecular clock allowing rates of evolution along branches

to be estimated. A coalescent demographic model with constant effective population size

was used. To incorporate phylogenetic error, a posterior sample of 10,000 trees was sam-

pled across and the maximum clade credibility tree was selected. Phylogeny construction

and analysis was carried out using BEAST v1.7.5 (Drummond et al., 2012) and Tracer v1.5

(Rambaut & Drummond, 2009).

4.3.3 Mixed effects modelling and model selection

As in Chapter 3, HI titres were log transformed (using base 2) to ensure homoscedasticity of

residuals. A difference in log2 titre of one corresponds to a two-fold dilution of antiserum in

the HI assay. Goodness of fit of models including each of the following variables were assessed

by likelihood ratio test: the reference virus against which the antiserum was raised, the test

virus, erythrocyte species (turkey or guinea pig), the date on which the assay was performed,

and the presence or absence of the neuraminidase inhibititor oseltamavir in the assay.

In Chapter 3 each branch of the HA1 phylogeny was incorporated as a discrete indicator

variable: a binary variable where 1 indicated that reference virus and test virus were separated

by the branch in the phylogenetic tree and 0 otherwise with an associated antigenic impact,

following Reeve et al. (2010). Each branch splits the tree in two and can be thought of as

defining a single virus or clade of viruses separated from all other viruses in the tree. The

inclusion of a branch term of this kind indicates that amino acid substitutions that occurred
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in the branch changed the antigenic phenotype of the virus such that a lower than otherwise

expected HI titre is observed when viruses separated by the branch in the phylogeny are

tested together.

Other non-antigenic properties of viruses can also affect HI titre. In particular, substitutions

altering the receptor-binding avidity may influence HI resulting in lower or higher titres

against all antisera. Likewise, substitutions may alter some property of the virus so that

reference viruses carrying these substitutions will produce antisera which will have higher or

lower titres against all test viruses irrespective of antigenic similarity. Here, this property

of a reference virus is referred to as its immunogenicity. These two properties of the virus,

receptor-binding avidity and immunogenicity, were not reflected by the phylogenetic terms

incorporated in the models in Chapter 3. In this chapter, the model is developed to allow

changes in virus and antiserum reactivity associated with the genetic changes occurring in

branches to be estimated. It was possible to do this in this chapter because the larger HI

dataset was sub-sampled to give a dataset rich in reference viruses. When only a small

proportion of viruses in a dataset have been used to generate antisera it is, in most cases,

not possible to differentiate whether lower titres reflect antigenic differences or are due to

changes in receptor-binding avidity.

In the method introduced in this chapter, each branch also had associated binary indica-

tor variables to indicate whether the clade defined by that branch contained (1), or did not

contain (0), the test virus or separately the reference strain used to generate antisera in the

HI assay. The inclusion of either of these two variables indicates a receptor-binding avidity

or immunogenic effect associated with the branch defining that clade respectively. Where

possible, for each branch, we included these binary, indicator variables for the associated

reactivity and immunogenic effects in addition to the antigenic branch effect used in Chapter

3 and described above. It was possible to estimate these three phylogenetic terms indepen-

dently when the clade defined by a branch contained at least one virus tested by HI and at

least one reference virus used to generate antisera used in the dataset. In the HA1 phylogeny

that contained 458 branches, 335 branches defined clades containing at least one test virus

and at least one reference virus allowing antigenic, avidity and immunogenicity effects to be

estimated independently. Where a clade contains only test viruses (or reference viruses), the

antigenic and receptor-binding avidity (or immunogenic) effects associated with the branch

defining it cannot be discriminated. Therefore, branches were associated with either three

binary indicator variables (allowing antigenic, avidity and immunogenicity effects to be esti-

mated independently) or a single binary indicator (in cases where these effects could not be

discriminated between). These various binary variables reflecting phylogenetic structure were

tested as fixed effect terms with random restart hill-climbing (Russell & Norvig, 1995) used to

determine the best model. To a random consistent starting model, branch terms were added

and removed stepwise at random to maximise model fit, assessed by AIC (Akaike, 1974), as

in Chapter 3. This was repeated while randomising their order to avoid sensitivity to the

92



4.3 MATERIALS AND METHODS

order in which the parameters were presented.

The PyMOL Molecular Graphics System v1.7.7.2 (http://www.pymol.org) was used to visu-

alise and identify surface-exposed amino acid positions on the HA1 according to the structure

of the recombinant viral strain A/X-31, that carries HA from the A/Aichi/2/68 isolate (Pro-

tein Data Bank ID: 1HGG) (Sauter et al., 1992). Amino acid dissimilarity between reference

virus and test virus at each of 132 surface-exposed HA1 positions, not conserved within the

dataset, was tested as a predictor of reduced HI titre (p < 0.05) using a Holm-Bonferroni

correction to account for multiple tests (Holm, 1979). As in the previous chapter, HA2 po-

sitions were not tested for two reasons: First, the HA1 has been identified as the target

for most anti-HA neutralising antibodies and for this reason is though to be the principal

antigenic determinant for influenza A; second, for many viruses only HA1 gene sequences

exist and thus opting to use the full HA gene would have greatly diminished the number of

pairwise comparisons that could have been investigated. At each HA position identified at

this stage, the mean antigenic impact of specific amino acid substitutions was determined

by examining the associated parameter (k1, Equation 4.3) using data subsets consisting of

viruses and reference viruses with one of the two amino acid variants being considered at

that position. Substitutions identified at this stage were added together into the same model

along with identified phylogenetic terms. Phylogenetic terms that were still associated with

drops in log2 titre exceeding 0.3 were then removed in turn. Upon removal of each of these

branches, substitutions not identified as correlating with antigenic change at multiple points

in the phylogeny were re-tested, again using a Holm-Bonferroni correction for multiple tests.

The substitution, or substitutions, identified upon re-testing in the absence of a particular

branch were only significantly correlated with antigenic change at that single point in the

evolutionary history of the virus. The antigenic impact of all identified substitutions was

then re-estimated in a single model lacking any of the branch terms included in models used

to identify antigenically important substitutions. The estimated antigenic impacts of substi-

tutions in this model were used for comparison with the experimentally estimated impact of

substitutions introduced into recombinant viruses.

4.3.4 Analysis of HI assays using recombinant viruses

Koel et al. (2013) carried out an intensive reverse genetics search, introducing substitutions

associated with transitions between eleven clusters of antigenically similar viruses expressed

on previously generated antigenic maps of A(H3N2) viruses isolated between 1968 and 2003

(Smith et al., 2004). To identify the HA substitutions responsible for transitions between

antigenic clusters, viruses containing consensus amino acid sequences were constructed. Koel

and colleagues then introduced each of the 54 cluster-difference substitutions within HA1

positions 109 to 301 into corresponding consensus HA. In several cases, double and triple

substitution mutants were also tested and substitutions showing signs of altering antigenicity
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were tested in reverse too. When cluster-difference substitutions did not bring about the

anticipated change in phenotype other substitutions were also tested by the same method

(Koel et al., 2013). Parent and mutant recombinant viruses were tested by HI using antisera

raised against a panel of genetically and antigenically variable viruses.

Koel et al. (2013) estimated the antigenic effect of introduced substitutions by comparing

the position of mutant and parental viruses on an antigenic map generated from HI data,

though there are indications that this method is also sensitive to changes in receptor-binding

avidity that may be caused by the introduction of certain HA1 substitutions (Li et al., 2013).

Here, the HI results for mutant viruses, geometric mean titres averaged over a number of

repeats, were considered relative to the titres of the parental virus. Differences in log2 HI

titre associated with introduced substitutions were attributed to antigenic and non-antigenic

changes in phenotype using Equation 3.1. As discussed in Chapter 3, this is done by at-

tributing changes in titre associated with a substitution to antigenic effects if titres drop

against antisera raised against viruses lacking the introduced substitution and increase titres

against antisera raised against viruses sharing the introduced substitution. Changes in titre

that are consistent across both these groups of antisera are considered non-antigenic and are

likely to be the result of changes in receptor-binding avidity caused by the substitution. The

allocation of antisera to these two categories is detailed in Appendix B, Table B.1. Titres

below the lower threshold of the assay (i.e. the most concentrated sample of antisera tested

did not inhibit erythrocyte agglutination) were excluded from this analysis.

4.4 Results

To identify the amino acid changes responsible for antigenic differences among A(H3N2)

viruses and to quantify heterogeneities in their impact, variation in HI titres was modelled to-

gether with amino acid sequence data. The response variable throughout model development

was Hr,v, the log2 titre recorded when a virus, v, was tested using antiserum raised against

reference virus r. In common with A(H1N1) (Chapter 3), it was determined that terms for

each virus, v, and antiserum raised against each reference virus, r should be included in the

model (p < 10−20) to account for consistent differences in titres between viruses and antisera

respectively. These differences likely represent, amongst other factors, differences in virus

receptor-binding avidity and reference virus immunogenicity respectively. Additionally an

error term representing date of test had to be included (p < 10−20). Day-to-day variability

in titres may be due to variability in batches of erythrocytes and in dilutions of erythrocytes,

viruses, and antisera which are typically made each day. Using these terms to account for

non-antigenic variation in titre, amino acid difference at each variable surface-exposed HA1

position was tested as a predictor of variation in titre using
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Hr,v = k0 + Ir +Av + k1α1(r, v) + εD + εR (4.1)

which is identical to Equation 3.2. The term k1α1(r, v) was used to test amino acid difference

(or substitution) at specific amino acid positions. α1 is an indicator variable that was 1 when

reference virus, r, and test virus, v, possessed different amino acids, and zero otherwise. k1 is

the associated regression coefficient that represents the antigenic impact or expected drop in

log2 titre when viruses are separated by substitution at the position being tested. In addition

to terms representing each virus, Av, antiserum raised against each reference virus Ir and

date of test εD, k0 is an intercept or baseline titre and εR represents residual measurement

error not explained by the model.

Using Equation 4.1 substitutions at over 60% of variable, surface-exposed positions and 25%

of non-surface-exposed were identified as being significantly correlated with antigenic change

(reduced cross-reactivity in the HI assay) (p < 0.05) using a Holm-Bonferroni correction for

multiple tests (Holm, 1979). As only surface-exposed HA1 positions have been identified

as antigenically important in A(H3N2) (Skehel & Wiley, 2000), these percentages almost

certainly reflect a high false positive discovery rate. Furthermore a significant correlation

between the count of synonymous mutations between viruses and reduced cross-reactivity in

the HI assay (p < 10−10) caused by a strong correlation between molecular and antigenic evo-

lution demonstrates how a regression analysis is predisposed to identify a significant number

of false positives when applied to this problem.

4.4.1 Incorporating phylogenetic structure

Phylogenetic structure was incorporated in the model to reduce the described tendency for

identification of false positives. Each branch was investigated as a predictor of reduced

antigenic cross-reactivity apparent as a drop in HI titre when reference and test virus in HI

are separated by the branch. Each branch was also tested as predictors of variation in the

magnitude of HI titres associated with the use of particular reference or test viruses. These

phylogenetic terms associated with branches of the phylogeny were tested using:

Hr,v = k0 + Ir +Av +
∑

i∈Fanti

miδi(r, v) +
∑

i∈Fimmu

niζi(r) +
∑

i∈Favid

piζi(v) +
∑

i∈Fanti′

m′iδi(r, v)

+ εD + εR (4.2)

which modifies Equation 4.1 by replacing the term representing substitution at a single amino

acid position with various phylogenetic terms. miδi(r, v) terms are phylogenetic terms rep-

resenting antigenic differences. As described in Chapter 3 and used in Equation 3.3, δi is an
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A	

B	

Figure 4.1: An example of a phylogeny including ζ terms introduced in Equation

4.2: The assignment of values 0 and 1 to ζ(r) (A) and ζ(v) (B) terms associated with branches

of an example phylogeny, given the indicated positions of a reference virus, r and a test virus, v,

is shown. Red circles indicate a set of four possible reference viruses that includes the reference

virus used in this example. ζ() terms are assigned only to branches whose descendants include

both antisera (reference viruses) and test viruses (i.e. branches that occur between the root of

the tree and either of the four references strains). (A) ζ(r) = 1 when the reference virus, r, is

descended from a branch and ζ(r) = 0 otherwise. (B) ζ(v) = 1 when the test virus, v, is

descended from a branch and ζ(v) = 0 otherwise.
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indicator variable and δi(r, v) = 1 when reference virus (r) and test virus (v) are separated by

branch i of the phylogeny and δi(r, v) = 0 otherwise, with mi being the associated regression

coefficient. However, there are now terms to identify avidity or immunogenicity changes in

the phylogeny. ζi is a second kind of indicator variable and ζi() = 1 when a virus, either a

reference virus r or a test virus v, is descended from branch i and ζi() = 0 otherwise. niζi(r)

phylogenetic terms are associated with variation in the immunogenicity of reference viruses,

or in other words the reactivity of antisera raised against them, descended from a particular

branch, with ni being the the associated regression coefficient. piζi(v) phylogenetic terms

are associated with variation in the receptor-binding avidity of test viruses descended from

a particular branch, with pi being the the associated regression coefficient. It is only possi-

ble to differentiate between these three phylogenetic effects for branches whose descendants

include both antisera (reference viruses) and test viruses. For this set of branches, associ-

ated antigenic, avidity and immunogenicity effects are tested separately as Fanti, Fimmu and

Favid. For branches where this was not true, phylogenetic terms in the set Fanti′ were tested.

For branches in this set, δi(r, v) terms are the same as described above and m′i is now the

associated regression coefficient. In Figure 4.1, the allocation of ζ(r) and ζ(v) to branches of

the same phylogeny represented in Figure 3.2 is shown. Figure 3.2 shows the assignment of

values of 0 or 1 to δi(r, v) terms associated with each branch of this phylogeny.

In total, 281 phylogenetic terms were selected by a search that maximised AIC. 81 branches

were identified as correlating with antigenic change and these become Fanti in Equation 4.3.

77 branches were were identified as explaining variation in HI titre explained by differences

in antiserum reactivity and become Fimmu in Equation 4.3. 109 branches were identified

as explaining significant variation in HI titre caused by differences in virus reactivity and

become Favid in Equation 4.3. 14 branches were identified as being associated with variation

in HI titre as a result of a change in either antigenicity or virus reactivity. As no viruses

descended from these 14 branches were reference viruses used to generate antiserum in this

dataset, it was not possible to resolve whether differences in titre observed when these viruses

were tested were due to antigenic differences or the result of differences in receptor-binding

avidity, relative to viruses outside the clades defined by these branches. These 14 branches

become Fanti′ in Equation 4.3. Using maximisation of AIC tends towards the selection of false

positives however this actually represents a conservative choice as these phylogenetic terms

are being used as a control mechanism to prevent false positive identification of substitution

terms.

4.4.2 Identification of substitutions affecting antigenicity

To identify antigenically important substitutions, variable, surface-exposed HA1 amino acid

positions were tested alongside the 281 phylogenetic terms by the model:

97



4.4 RESULTS

Hr,v = k0 + Ir +Av + k1α1(r, v) +
∑

i∈Fanti

miδi(r, v) +
∑

i∈Fimmu

niζi(r) +
∑

i∈Favid

piζi(v)

+
∑

i∈Fanti′

m′iδi(r, v) + εD + εR (4.3)

which retains the 81 miδi(r, v) terms in Fanti, 77 niζi(r) terms in Fimmu, 109 niζi(v) terms

in Favid, and 14 miδi(r, v) terms in Fanti′ selected using Equation 4.2. As in Equation 4.1,

k1α1(r, v) terms represent amino acid substitution at a specific position. After accounting

for multiple testing, amino acid differences at 20 positions (2, 62, 83, 124, 133, 138, 144, 145,

155, 156, 158, 172, 183, 189, 193, 197, 214, 217, 262 and 276) were found to be significantly

correlated with variation in HI titres. As these positions were identified alongside phylo-

genetic terms selected using Equation 4.2, substitutions at each of these positions must be

correlated with antigenic change in at least two locations in the phylogeny (there is support

across the phylogeny). To identify specific amino acid substitutions with support across the

phylogeny, k1α1(r, v) terms were re-examined using subsets of the data that included only

viruses possessing the various possible combinations of two amino acid variants at each of

these positions with support across the phylogeny. Specific amino acid substitutions identi-

fied as impacting on antigenic phenotype with support in multiple positions of the phylogeny

are included in Table 4.1. The antigenic impact of substitutions in Table 4.1 is the absolute

value of k1 in Equation 4.3.
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Table 4.1: HA1 amino acid substitutions correlated with antigenic

change at multiple points in the evolution of A(H3N2) viruses

HA position Antigenic site Amino acid pair Antigenic impact∗

124 A D-G 0.62

133 A
D-N 0.40

N-S 0.51

138 A A-S 0.29

144 A I-N 0.55

145 A

D-N 0.45

K-N 0.48

N-S 0.50

156 B E-K 0.42

158 B
E-K 0.67

K-N 1.01

172 D D-G 0.61

183 - H-L 0.31

193 B N-S 0.49

197 B Q-R 0.69

214 D I-T 0.36

217 D I-V 0.56

∗Estimated mean antigenic impact of substitution(s) associated with a

particular branch measured in log2 HI titre (antigenic units).

Substitutions with support across the phylogeny were added to Equation 4.3 and the regres-

sion coefficients associated with phylogenetic terms were re-estimated. Antigenic phylogenetic

terms (miδi() and m′iδi() terms) were re-examined in this model. Any of these terms that

remained associated with significant changes in antigenicity were not therefore explained, or

completely explained, by substitutions with support across the phylogeny. To identify the

amino acid substitutions responsible for the antigenic changes associated with these branches

of the phylogeny, single phylogenetic branch terms were dropped in turn. As in Equation

3.5 in the previous chapter, to identify the most likely substitutions responsible for the anti-

genic change associated with the excluded branch, variable surface-exposed HA1 amino acid

positions were retested as k′ and α′ in place of each excluded phylogenetic term using the

equation:

Hr,v = k0 + Ir +Av + k′α′(r, v) +
∑
i∈S

kiαi(r, v) +
∑

i∈Fanti

miδi(r, v) +
∑

i∈Fimmu

niζi(r)

+
∑

i∈Favid

piζi(v) +
∑

i∈Fanti′

m′iδi(r, v) + εD + εR (4.4)

where terms ki and αi(r, v) represent each of the 17 substitutions with support across the
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phylogeny (substitutions in Table 4.1). Substitutions identified using Equation 4.4 correlate

with antigenic change at a single point in the evolutionary history of the virus and are

also shown in Table 4.2. They are sorted by estimated antigenic impact. In several cases,

multiple substitutions estimated to occur simultaneously in the evolution of the virus provide

equally likely explanations for the antigenic change associated with a particular branch of

the phylogeny. Among the substitutions in Table 4.2, those occurring at HA1 positions

where there was support across the phylogeny for a role in antigenicity for substitutions in

general (but not for the specific substitution) are marked X. For example, five different

substitutions at position 189 were identified using Equation 4.4 and are present in Table 4.2

(N189K, K189Q, R189S, K189R and S189N). Each of these substitutions was identified as

correlating with antigenic change at a single point in the phylogeny, so individually none was

identified with support across the phylogeny, whereas substitution at position 189 in general

was. Eighteen out of the 24 branches investigated had a least one potentially causative

substitution that occurred at a position with support across the phylogeny.

The substitutions identified using Equation 4.4 included several substitutions identified by

Koel et al. (2013) as being involved in major antigenic changes, causing transitions between

clusters apparent on antigenic maps generated using HI data (T155Y, Y155H, K156Q, E158K,

S159Y, K189Q and K189R — Table 4.2). This indicates that several of the most antigenically

important A(H3N2) substitutions have occurred at only single points in the evolution of the

virus, based on knowledge of sampled viruses. This suggests that the immune repertoire of

the human population prevents the reversion to antigenic phenotypes, even when they were

most recently circulating many years ago. Candidate substitutions identified for nine of the

eleven points in the antigenic evolution of A(H3N2) where antigenic change is estimated to

be over 1 antigenic unit included substitution(s) at at least one of the positions 155, 156, 158,

159 or 189 (all of which are in antigenic site B). This highlights the immunodominant role

of amino acid positions forming an antigenic ridge bordering the upper lip of the primary

receptor-binding site (Figure 4.2).
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Figure 4.2: A(H3N2) HA positions implicated in antigenic change: HA1 positions

where substitutions were identified as affecting antigenic phenotype shown on the HA structure

of A/Aichi/2/68 (H3N2) (Protein Data Bank ID: 1HGG) (Sauter et al., 1992) viewed side on

(A) and from above (B). HA1 is shown in light blue and HA2 in dark blue. Amino acid

positions where there is a significant correlation between substitution and antigenic change at

multiple points in the evolution of the virus are shown in red. Positions where substitution is

correlated with antigenic change in only a single part of the phylogeny are shown in orange.

Remaining parts of the primary sialic acid binding site and antigenic sites A–E are shown in

green and yellow respectively. (C) An exposed ridge at the upper boundary of the

receptor-binding site comprised of residues at positions 131, 155, 156, 157, 158, 159, 187, 189,

and 193 is shown in red.
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Table 4.2: HA1 amino acid substitutions associated with antigenic

change at single points in the evolutionary history of A(H3N2)

Antigenic weight Candidate Antigenic site Support for position

associated with branch∗ substitution(s) across phylogeny

2.68

L25I -

H75Q E

A131T A

H155T A X

2.55
K158N B X

N189K B X

2.29

T122N A

G144D A X

T155Y B X

R207K D

1.93

K62E E X

V144I A X

K156Q B X

V196A B

N276K C X

1.79 N262T E X

1.77

I62M E X

F79L -

S159N B

1.65
L164Q B

R201K D

1.41 K189Q B X

1.29 G135K A

1.19 R189S B X

1.07
K307R C

D144V A X

0.88
K135T A

N262S E X

0.83
Y155H B X

K189R B X

0.72

Y159F B

S189N B X

S227P D

0.69
N2K - X

D144V A X

0.66 D158E B X

0.63 K158N B X

0.62

K50R C

E158G B X

M260I E

0.62
E62K E X

N144K A X

0.62
S193F B X

D225N -

0.57 S159Y B

0.48 G135E A

0.43 T212A D

0.41 L157S B

∗Estimated mean antigenic impact of substitution(s) associated with a

particular branch measured in log2 HI titre (antigenic units).
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4.4.3 Analysis of HI assays using recombinant viruses

Predictions of the antigenic impacts of substitutions identified as affecting antigenic pheno-

type were compared with the results of antigenic analyses of recombinant viruses possessing

those identified substitutions. Koel et al. (2013) generated recombinant viruses possessing

amino acid substitutions associated with transitions between clusters of antigenically similar

viruses on antigenic maps generated from HI data collected using A(H3N2) viruses isolated

over a similar period to this study. Koel et al. (2013) then assessed the antigenic impact of

introduced substitutions by positioning recombinant viruses on antigenic maps among circu-

lating viruses using data generated from HI assays. The estimated antigenic impacts of these

experimentally introduced substitutions were compared with the predicted antigenic effects

of substitutions in Tables 4.1 and 4.2 when these were added together into a single model

lacking the branch terms included in models used for identification of substitutions.

Substitutions identified in Tables 4.1 and 4.2 that were also introduced into recombinant

viruses by Koel et al. (2013) are shown in Table 4.3. To determine the antigenic and non-

antigenic impact of introduced substitutions, Equation 3.1 was applied to the relevant HI

data. ∆H1 is the mean change in log titre associated with each substitution averaged across

HIs measured using antisera from viruses lacking the introduced substitution. An antigenic

change associated with substitution is expected to reduce cross-reactivity or antigenic simi-

larity to these viruses so ∆H1 is expected to be negative. Conversely, the antigenic impact of

a substitution is expected to increase cross-reactivity or antigenic similarity to viruses sharing

the introduced substitution so the change in log2 titre measured against these viruses, ∆H2,

is expected to be positive when a substitution affects antigenicity. A substitution affecting

antigenicity can therefore decrease or increase antigenic similarity to reference viruses, and

therefore HI titre, depending on whether those reference viruses lack or share the introduced

substitution. The antigenic effect on log2 titre of substitutions, ∆HA, is therefore reported

without a sign in Table 4.3, except in cases where the change in titre is the opposite of

what is expected when an antigenic change is observed (i.e. ∆H1 > ∆H2). In these instances

where mutating away or towards a reference strain increases or decreases HI titre respectively,

changes in titre are assumed to be the result of experimental variability. In these cases, a

negative sign is shown with the estimated antigenic change (∆HA). A consistent decrease

or increase in log2 titre associated with the introduction of a substitution that is measured

using antisera raised against viruses both lacking and sharing the introduced substitution

cannot be considered the result of an antigenic change and these effects are considered to be

the result of a non-antigenic impact of a substitution, ∆HN .
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Table 4.3: Antigenic and non-antigenic impacts of H3 HA1 substitutions introduced into re-

combinant viruses

HA1 Introduced Mutagenesis Observed effect†

position substitution background* ∆H1 ∆H2 ∆HA ∆HN

122 T122N HK68REC +0.14 +0.84 0.34 +0.49

133 N133S TX77REC +0.04 -0.14 -0.09 -0.05

135 G135E SI87REC -0.46 +1.18 0.81 +0.36

144 G144D HK68REC -0.03 +1.58 0.80 +0.78

145 N145K SI87REC -1.98 +0.63 1.31 -0.68

N145K BE92REC -1.92 +1.93 1.93 +0.01

K145N BE89REC +1.25 +2.83 0.79 +2.04

K145N WU95REC -1.08 +2.95 2.01 +0.93

K-N mean 1.51

155 T155Y HK68REC -2.95 +1.06 2.01 -0.95

Y155T EN72REC -1.14 +3.20 2.17 +1.03

T-Y mean 2.09

H155T SY97REC +1.15 +1.48 0.16 +1.32

T155H FU02REC -2.24 -0.39 0.92 -1.31

H-T mean 0.54

Y155H BK79159SY189KR -1.34 -0.15 0.59 -0.74

156 K156E TX77REC +0.69 +2.04 0.67 +1.36

K156E BE92REC -1.10 +2.76 1.93 +0.83

E156K BK79REC -1.62 -0.52 0.55 -1.07

E156K SI87REC -0.11 -2.58 -1.24 -1.34

E-K mean 0.48

K156Q WU95REC -2.10 +0.60 1.35 -0.75

Q156K SY97158KE -0.52 +1.61 1.07 +0.53

K-Q mean 1.21

158 G158E VI75REC -1.52 -0.02 0.75 -0.77

E158K WU95156KQ 0.20 +1.00 0.40 +0.60

K158E SY97REC -1.10 +2.26 1.68 +0.58

E-K mean 1.04

159 S159Y TX77156KE +1.10 +1.55 0.22 +1.32

S159Y BK79155YH189KR -1.25 +1.34 1.30 +0.05

S-Y mean 0.76

164 L164Q EN72REC -0.07 +0.22 0.15 +0.07

172 G172D TX77REC -0.14 0.01 0.08 -0.07

189 Q189K EN72REC -0.58 +5.00 2.79 +2.21

K189Q VI75REC -4.08 +0.04 2.06 -2.02

K-Q mean 2.43

K189R BK79155YH159SY -4.73 -0.32 2.21 -2.52

R189S SI87REC -0.55 -0.58 -0.02 -0.57

S189R BE92REC -0.34 +0.53 0.44 +0.10

R-S mean 0.21

193 N193S SI87REC 0.00 -0.01 0.00 0.00
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HA1 Introduced Mutagenesis Observed effect†

position substitution background* ∆H1 ∆H2 ∆HA ∆HN

S193N BE92REC -1.51 -0.28 0.89 -0.61

N-S mean 0.45

196 V196A WU95REC -0.69 -0.61 0.04 -0.65

197 Q197R TX77REC 0.44 -0.10 -0.27 +0.17

207 R207K HK68REC +0.24 +1.07 0.42 +0.66

217 I217V EN72REC +0.14 +0.22 0.04 +0.18

V217I TX77REC +0.04 +0.22 0.09 +0.13

I-V mean 0.07

260 M260I VI75REC +0.67 +0.14 -0.27 +0.41

262 N262T BE92REC +0.10 +0.05 0.03 +0.08

276 N276K WU95REC -0.50 +0.18 0.34 -0.16

* Mutagenesis backgrounds labels are taken from Koel et al. (2013) and refer to

antigenic clusters defined by Smith et al. (2004).
† Mean observed changes in log2 HI titre (in antigenic units) against antisera

lacking (∆H1) and sharing (∆H2) the introduced substitution are partitioned

into antigenic (∆HA) and non-antigenic (∆HN ) effects.

The antigenic and non-antigenic impacts of laboratory-tested substitutions identified in Ta-

bles 4.1 and 4.2 are shown in Table 4.3. For each substitution introduced into multiple

mutagenesis backgrounds, antigenic effects were averaged across mutagenesis backgrounds.

These mean, observed antigenic effects are plotted against the antigenic impacts of substitu-

tions estimated by modelling in Figure 4.3. The predicted and observed antigenic impacts of

substitutions are significantly positively correlated (p < 0.05), however there is a considerable

degree of variation around this relationship and this is reflected by a relatively low coefficient

of determination (R2 = 0.37). The spread of antigenic impacts around the observed means is

also high. This demonstrates the degree to which the observed antigenic impact of substitu-

tion on HI titre depends on the existing genetic and antigenic differences between the parent

virus and the viruses used to generate antiserum.

Equation 3.1 was also used to estimate the non-antigenic impact of substitutions (∆HN in

Table 4.3). Smaller differences in this value could represent differences in the dilution of

parental and mutant viruses prior to HI testing given the limited accuracy of the haemagglu-

tination inhibition assay (> 0.78 — see Chapter 3, section 3.3.5). Larger values likely reflect

differences to the viral receptor-binding avidity caused by the introduced substitution. Non-

antigenic impacts exceeding 0.78 were found to occur as a result of substitution at positions

145, 155, 156, 158, 159 and 189 (Table 4.3). If a substitution resulted in lower HI titres as

a result of a change to receptor binding-avidity, the reverse substitution would be expected

to increase titres by the same amount, and vice versa. Across the amino acid differences

with non-antigenic impacts exceeding 0.78 where substitutions were tested in both directions
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Figure 4.3: Observed and predicted antigenic impacts of H3 HA1 amino acid

substitutions: The mean antigenic impact of each substitution predicted from modelling

(Tables 4.1 and 4.2) plotted against the mean observed impact averaged across antisera in the

panel (Table B.1) and mutagenesis backgrounds (Table 4.3). For each substitution, a point

shows the observed mean antigenic impact (∆HA) associated with a change in HI titre

(averaged across mutagenesis backgrounds and antisera) plotted against the antigenic effect

predicted by modelling. A negative observed antigenic impact indicates a change in HI titre in

the opposite direction to that predicted. Substitutions are labelled in (A) and shown with 95%

confidence intervals in (B). Substitutions in (A) and (B) are coloured to ease comparison;

colours are assigned randomly and recycled. (A) Labels indicate if substitutions were tested in

a single direction (e.g. K189R) or in both directions (e.g. 189K:Q). (B) 95% confidence

intervals are shown for both predicted and observed antigenic effects.
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(e.g. H155T and T155H), substitution was found to increase titre when introduced in one

direction and decrease titre when the reverse was introduced. The non-antigenic impacts of

substitutions in each of these pairs, and in particular those at positions 155, 156 and 189, were

of similar magnitudes (Table 4.3 and Figure 4.4). While the negative correlation between

the estimated non-antigenic effects of K145N and N145K is not as strong, the relationship

holds in that one is associated with an increase in titre while the other is associated with an

drop in titre, albeit a smaller one. This negative correlation supports the hypothesis that the

observed effects on HI titre are due to genuine differences in viral phenotype, as these effects

would presumably be drawn randomly from some underlying distribution otherwise.
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Figure 4.4: Non-antigenic impacts of paired amino acid substitutions on HI titres:

Estimated impact on log2 HI titre of non-antigenic changes in viral phenotype caused by the

introduction of paired substitutions (e.g. H155T and T155H). This is the consistent change in

HI titre for a mutant virus relative to its parent virus, averaged across groups of antisera lacking

and sharing the introduced substitution. Paired substitutions are labelled with the substitution

whose non-antigenic impact resulted in an increase in titre (i.e. H155T rather than T155H).

4.5 Discussion

By attributing antigenic variation in HI titres to HA1 amino acid differences between viruses,

a detailed quantitative analysis of the determinants of antigenic drift of human influenza
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A(H3N2) viruses isolated during the period 1968-2014 is presented. In addition to several

previously identified determinants of major antigenic changes that have been incorporated

into the trunk lineage during the evolution of the virus, the described methods also identify

further substitutions of varying antigenic impact by incorporating information on substitu-

tions occurring in multiple places in the phylogeny including those occurring in side branches

that may occur only at low frequency within the viral population. While there is notable

uncertainty in the identification of antigenic determinants in several cases where the anti-

genic impact of co-occurring substitutions could not be discriminated, nearly all identified

substitutions have been experimentally validated or occur at positions belonging to the main

antigenic sites defined based on the results of monoclonal antibody escape mutant studies,

indicating the usefulness of this approach. I am now working as part of a collaboration in-

volving the authors of recently developed methods for predicting the evolutionary success

of competing viral lineages in the A(H3N2) population ( Luksza & Lässig, 2014) to assess

how these could benefit from our ability to quantify the relative antigenic importance of

substitutions occurring in the HA1 domain.

Estimated antigenic impacts of substitutions identified by modelling were compared with

the published results of HI assays performed using mutant recombinant viruses possessing

several of the identified substitutions. Changes in HI titre associated with the introduction of

substitutions were partitioned into antigenic and non-antigenic effects. Ideally the antigenic

impact of an introduced substitution would be assessed using antisera raised against both

the parental and mutant viruses, though this is rarely feasible. In the absence of these

antisera, the antigenic impact of an introduced substitution must be estimated using HI

titres measured against a panel of antisera that would preferably include antisera raised

against reference viruses both lacking and sharing the introduced substitution, as I did in

Chapter 3.

The antisera used by Koel et al. (2013) were raised against viruses spread more widely across

the phylogeny. This increases the range of genetic and antigenic differences between the

viruses used for comparison which is likely to result in the estimated antigenic impacts of

substitutions in Table 4.3 being less reliable as other substitutions are likely to have occurred

at other positions in epitopes which may affect inference. Koel et al. (2013) reported the

antigenic distances as between the parental virus and the mutant possessing the introduced

substitution on an antigenic map. While antigenic distances estimated by this method may

be influenced by changes to receptor-binding avidity caused by the substitution (Li et al.,

2013), they may better represent antigenic impact of substitutions under these experimental

conditions. These observations demonstrate how difficult it can be to quantify the antigenic

impact of specific genetic changes, even when the substitution causing the change in antigenic

phenotype is known.

Substitutions tested by Koel et al. (2013) at six positions were identified as having a non-
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antigenic impact on HI titres. Residues at five of these six positions (155, 156, 158, 159 and

189) form an exposed ridge above the primary receptor-binding site (Figure 4.2). Changes

in HI titre due to altered receptor-binding avidity caused by substitutions at positions in

the 150-loop have been described in former seasonal A(H1N1) (Hensley et al., 2009) and in

A(H1N1)pdm09 (Liu et al., 2010). At the final position among the set of six, 145, the negative

correlation between the substitutions K145N and N145K was not as strong as between the

other pairs of substitutions highlighted, however changes in HI titre caused by a change in

receptor-binding avidity have previously been attributed to the substitution N145K which also

influenced clustering of viruses on antigenic maps of A(H3N2) viruses (Li et al., 2013). These

six positions were also among the seven identified by Koel et al. (2013) as being substitutions

causing the major changes in antigenic phenotype of A(H3N2) viruses in the period 1968–

2003. That these positions are identified as having affected both binding and antigenic

phenotype could be supportive of the important role of changes in receptor-binding avidity

in influenza A antigenic drift (Hensley et al., 2009). Alternatively, it could demonstrate the

influence that changes in receptor-binding avidity have on virus clustering on antigenic maps

generated using HI data. This feature of antigenic maps has been described previously (Li

et al., 2013) and may have implications for which “kind” of antigenic changes are likely to

be identified using methods based around the construction of antigenic maps.

In this application of this approach to this A(H3N2) dataset there is increased uncertainty,

relative to the A(H1N1) analysis described in Chapter 3, in the both the identification of

substitutions causing antigenic drift and in the estimation of antigenic impact. This is at

least in part because the viral population is sampled more sparsely here, relative to Chapter

3, with fewer viruses isolated over a longer period included. This has resulted in substitu-

tions, that may occur in different branches of the phylogeny with denser sampling, appearing

to have occurred simultaneously. Substitutions that achieved only low frequency in the virus

population are also more likely to be missed with sparser sampling. Computational limita-

tions informed the decision to use the sparser sampling here. A more CPU intensive Bayesian

alternative to the methodology described here, which similarly attributes variation in pair-

wise measurements of antigenic cross-reactivity to sequence differences while incorporating

phylogenetic information in a single step, and as a result less conservatively, is currently

being developed and has successfully been applied to smaller foot-and-mouth disease virus

datasets (Davies et al., 2014). Ongoing work is currently speeding up this algorithm so it will

be viable on larger datasets like the ones studied here. Using statistical methods, it is diffi-

cult to differentiate between the antigenic impact of co-occurring substitutions that do not

show significantly different patterns of substitution elsewhere in the phylogeny. Challenges

in identifying a definitive set of genetic determinants of antigenicity using statistical methods

call for a method that accounts for model uncertainty when using viral sequence to predict

antigenicity. This is explored using a method of Bayesian model averaging in Chapter 5.
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Quantifying and predicting antigenic rela-
tionships among influenza A and foot-and-
mouth disease viruses

5.1 Abstract

Maintaining an efficacious influenza vaccine in the face of rapid antigenic drift requires a

global surveillance effort. This involves the antigenic characterisation of circulating viruses

and anticipation of which strains will predominate in future epidemics. Various modelling

approaches have used data from antigenic assays, such as the haemagglutination inhibition

(HI) assay, to characterise antigenically variable viruses, to quantify and predict antigenic

similarity, and to explore the relationship between genetic and antigenic evolution (e.g. Bed-

ford et al., 2014; Sun et al., 2013). In previous chapters I have described methods for the

identification of genetic drivers of antigenic change in influenza A viruses. In this chapter I

test the ability of sequence-based models that incorporate these genetic determinants to pre-

dict antigenic relationships, as expressed in the HI assay, among viruses of influenza subtypes

A(H1N1) and A(H3N2). I compare predictive performance against antigenic cartography,

showing the sequence-based approach to be similarly capable of the relatively unchallenging

task of predicting unobserved HI titres and better able to predict titres for potential vac-

cine viruses. A further advantage of the sequence-based approach is the ability to predict

antigenic relationships for uncharacterised, novel viruses from their amino acid sequence.

Under this scenario, I show that substitutions identified as having low antigenic impact are

a critical component of virus cross-reactivity and that by including these in addition to the

high-impact substitutions often focused on, the accuracy of predicting antigenic phenotypes

of emerging viruses from genotype was improved dramatically. By applying the same methods

to viruses of three antigenically distinct serotypes of foot-and-mouth disease virus (FMDV) I

demonstrate the versatility of the approach presented. Accurate sequence-based prediction of

antigenic phenotype has the potential to inform choices of reference viruses used to generate

antiserum, the targeting of antigenic assays, and predictions of the evolutionary success of

different genotypes. This could ultimately help to inform the vaccine selection process.
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5.2 Introduction

Antigenic drift of seasonal influenza viruses presents a significant challenge to the maintenance

of effective influenza vaccines and requires ongoing antigenic characterisation of the virus

population. The HI assay is the most widely used method of antigenic characterisation,

however interpretation of the results of HI assays are complicated by a variety of non-antigenic

factors that impact titres (Archetti & Horsfall, 1950; Ndifon, 2011). These complicating

factors hamper attempts to quantify the antigenic impact of specific genetic changes and

consequently, current methods for predicting the evolutionary future of genotypes within the

influenza population do not account for differences in the antigenic impact of HA substitutions

( Luksza & Lässig, 2014; Neher et al., 2014). In Chapters 3 and 4 I describe methods for the

identification of amino acid substitutions that affect the antigenic similarity of influenza

A(H1N1) and A(H3N2) viruses. In this chapter I investigate the predictive power of these

genetic determinants of antigenicity. As discussed in previous chapters, uncertainties in the

identification of the specific genetic changes responsible for differences in antigenic phenotype

arise when substitutions occur at the same (or almost the same) position in the phylogeny.

Rather than attempting to converge on an optimal set of genetic determinants, here I use

a form of Bayesian model averaging (BMA) that explicitly incorporates uncertainty in the

identification of causative substitutions and reflects this uncertainty in predictions of titre

(Hoeting et al., 1999).

5.2.1 Foot-and-mouth disease virus

To further investigate the predictive performance of the approaches presented, and to as-

certain their generalisability, antigenic relationships among viruses of FMDV serotypes A,

O and SAT1 were also investigated. FMDV is a single-stranded, positive-sense RNA virus

that together with Equine rhinitis A virus constitutes the genus Apthovirus of the family

Picornaviridae (Fry et al., 2005). The ∼ 8.2 kb genome encodes a single polyprotein that

is cleaved post-translationally by viral proteases to yield structural and non-structural pro-

teins. The virion is roughly spherical with a diameter of ∼ 30 nm and is, unlike influenza,

non-enveloped. The capsid comprises 60 copies of four proteins VP1, VP2, VP3, and VP4

arranged in a pseudo T=3 icosahedral lattice (Figure 5.1). VP1, VP2, and VP3 are wedge-

shaped eight-stranged β-sandwiches that fit together and are exposed on the capsid surface

while VP4, together with the N-termini of VP1 and VP3, is located at the interior of the

capsid (Fry et al., 2005).

FMDV causes a highly contagious disease that predominantly affects animals of the order

Artiodactyla. Globally, foot-and-mouth disease (FMD) is one of the most economically im-

portant diseases of livestock with the primary hosts being cattle, water buffalo (Bubalus

bubalis) and small ruminants although there are also significant levels of virus circulation in
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Figure 5.1: Overview of the structure of the FMD virus particle: Surface

representations of the FMD capsid. VP1, VP2, and VP3 are coloured blue, green, and red

respectively. VP4 is internal and is not shown. (A) Atomic model of the C-S8c1 crystal

structure (Lea et al., 1994). (B) Schematic of the capsid architecture with one protomer shaded

and numbers to denote VP1, VP2, and VP3. Five protomers form a pentamer (delimited by

cyan lines). The neighbouring pentamer below is delimited by violet lines. Axes of symmetry

are also indicated (five-fold, pentamer; three-fold, triangle; two-fold, diamond). The psuedo

T=3 icosahedral lattice is comprised of 60 protomers (12 pentamers). (C) FMD virion and one

of the pentamers into which it dissociates are represented to scale. Dissociation can occur due

to a variety of factors that included elevated temperatures. Image reproduced as appears in

Figure 1 in Rincon et al. (2014) with permission from the rightsholder.

wildlife, particularly in the African buffalo (Syncerus caffer) (Thomson et al., 2003; Vosloo

et al., 1996). There are seven antigenically distinct FMDV serotypes, namely A, C, O, Asia

1, and Southern African Territories (SAT) 1, 2, and 3. While individual vaccines may pro-

tect against large groups of genetically diverse viruses within some serotypes, there are still

antigenically distinct groups within all serotypes with little or no antigenic cross-reactivity

among them. Antigenic variability between and within serotypes prevents the production of

a universally protective vaccine capable of protecting against all FMD viruses, or even all

viruses of the same serotype (Paton et al., 2005).

Inactivated vaccines play an important role in the control of FMD, and though the quality

of the vaccine used is probably the most important factor for the effectiveness of vaccination,

a sufficient degree of antigenic similarity between vaccine virus and circulating strains is also

considered essential (Paton et al., 2005). In common with influenza, antibodies play a critical

role in the host response to FMDV infection (Alexandersen et al., 2003; Juleff et al., 2009) and

generally, levels of neutralising antibody correlate well with protection observed in vivo (Pay

& Hingley, 1987; Van Bekkum, 1969). Serotypes do vary in degree of antigenic variability

that they exhibit, with viruses of serotype A showing particularly high levels of genetic and

antigenic variability that reduce cross-reactivity and hinder control by vaccination. The

antigenic similarity of FMD viruses can be assessed using the virus neutralisation (VN) test.

VN titres give an in vitro measure of the whether the epitopes targeted by neutralising
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antibodies remain sufficiently similar to cross-react.

In common with the HI assay, VN tests are affected by several non-antigenic factors (Reeve

et al., 2010). Variation in titres can occur due to variability in other characteristics of viruses

such as receptor-binding avidity. Similarly variation in the magnitude of titres measured

using antisera raised against different vaccine or reference strains is observed. Sources of

experimental variation include potential differences in the immune response of individual

animals used to generate antiserum for use in the assay, differences between batches of cells,

and limitations in the accuracy of dilutions of reagents used. In contrast to the HI assay

used to characterise human influenza viruses, we have the advantage of being able to work

with antiserum drawn from the definitive host (cattle) when using VN to assess antigenic

similarity of FMD viruses.

5.2.2 Prediction

There are various challenges faced by traditional serological approaches used for the anti-

genic characterisation of viruses such as influenza or FMDV. These are accentuated by the

fact that both HI and VN titres are affected by a variety of non-antigenic factors which

hinder the interpretability of the results of these assays and complicate the process of mak-

ing decisions regarding vaccination. Computational methods have the potential to aid and

inform these important decisions. For example, antigenic cartography is routinely used to

visualise antigenic relationships among circulating influenza viruses and is incorporated into

reports containing vaccine virus recommendations (Barr et al., 2010, 2014; Klimov et al.,

2012). Emerging techniques have demonstrated accurate predictions of changes in frequency

of genotypes within the A(H3N2) population between epidemic seasons ( Luksza & Lässig,

2014; Neher et al., 2014), presenting an opportunity to enhance vaccine selection decisions

that must be made up to a year in advance of anticipated epidemics. In this chapter I inves-

tigate the usefulness of sequence-based models for predicting antigenic relationships between

viruses (using HI and VN titres as surrogate measures). Model cross-validation typically

involves repeatedly dividing the data into training and test datasets chosen at random, pa-

rameterising the model using the training data and testing predictions for the test data. In

this chapter I assess the ability of sequence-based predictive models to answer a variety of

different, but related, questions that are relevant to the vaccine decision-making process by

varying the composition of data subsets used to train and test models.

Both HI and VN assays are used to measure the antigenic similarity of pairs of viruses.

Decisions regarding vaccination require the wider viral population to be antigenically char-

acterised using available data on the pairwise similarity of sampled virus isolates. Typically

only a small fraction of pairwise measurements among all relevant, isolated viruses are made

making this task even more difficult. Here, by parameterising sequence-based and Bayesian
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multidimensional scaling (BMDS) antigenic cartography models using training datasets lack-

ing a proportion of virus:antiserum pairs and predicting titres for those missing pairs, the

suitability of these methods for predicting unobserved antigenic relationships and aiding this

process was assessed.

Due to limitations on the availability of animals for the generation of antiserum, the number

of virus strains used to raise antiserum is typically a major limiting factor on the proportion

of pairwise antigenic relationships that can be investigated experimentally. Given that the

ability to characterise the viral population necessarily depends on the range of antigenic phe-

notypes represented in the panel of antisera used, the ability to predict antigenic relationships

for antiserum before it is produced is useful. By predicting titres for antisera excluded from

the data used to parameterise models, the power of sequence-based and antigenic cartography

models for predicting antigenic coverage of new reference or vaccine viruses was also assessed.

By excluding viruses from the training datasets entirely, the accuracy of sequence-based pre-

diction of titres for non-antigenically characterised viruses was investigated. Predictions of

this kind are not possible using antigenic cartography because viruses must be characterised

experimentally using some antisera before they can be positioned in antigenic space. Pre-

dicting titres for non-antigenically characterised viruses is potentially a more difficult task

than those described above. This is partly because in the absence of any serological data for

a virus it is not possible to estimate the impact of receptor-binding avidity on titres. The

ability to predict antigenic phenotype from viral sequence data is however a desirable goal,

and has implications for vaccine matching and for the informed targeting of laboratory-based

antigenic assays.

If the antigenic similarity of emerging viruses to existing viruses or vaccines can be inferred

from sequence, this also has the potential to inform predictions of viral fitness, epidemic sever-

ity, and the likely evolutionary success of genotypes. Specifically for influenza, we therefore

examine the power of sequence-based approaches for predicting titres for emerging viruses

using models trained using data collected in previous years. Under this scenario, I formed

comparisons with predictions made using sequence-based models with terms for only the

substitutions causing the largest changes in antigenic phenotype which are often focussed

on. The ability to form sequence-based predictions of the antigenic novelty of viruses circu-

lating in future influenza seasons has implications for the theoretical foundations of vaccine

selection.
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5.3 Materials and Methods

5.3.1 Influenza data

The influenza A HI and genetic sequence data were introduced in Chapter 2. The iden-

tification of amino acid positions at which substitution is associated with antigenic drift

is described for subtypes A(H1N1) and A(H3N2) in Chapters 3 and 4 respectively. These

analyses also identified other sources of experimental and non-antigenic variation in HI titres.

5.3.2 Foot-and-mouth disease virus data

The FMD viruses investigated were either supplied by the World Reference Laboratory for

Foot-and-Mouth Disease at the Pirbright Institute, UK (serotypes A and O) or form part

of the virus databank at the Transboundary Animal Diseases Programme (TADP), Onder-

stepoort Veterinary Institute, South Africa (serotype SAT1). Antigenic relationships among

viruses of each serotype were determined by VN test. Viral sequence and VN data were

generated for serotypes A and O by researchers at the Pirbright Institute and for serotype

SAT1 by researchers and staff at the Onderstepoort Veterinary Institute. These data have

been published by Reeve et al. (2010) (SAT1), Bari et al. (2014) (A), and Reeve et al. (2016)

(under revision) (O, SAT1).

VN test datasets included titres for 56 A, 77 O and 42 SAT1 viruses and cattle antisera

raised against seven A, five O and five SAT1 strains. For serotypes A and O, post-vaccination

bovine antisera were generated by vaccinating cattle with 10 micrograms of vaccine antigen

per dose after sublimating with montanide ISA 206 (Sepic, France). 21-day or 28-day post-

vaccination antisera were pooled from five animals vaccinated with each virus. Two serotype

O antisera (O Manisa/69 and O TUR/5/2009) were procured from Intervet, Germany. For

SAT1, a group of five cattle were inoculated intradermolingually with 104 TCID50 of each

virus and convalescent sera were taken from cattle at 28 days post-infection. SAT1 antisera

from individual animals were then used for VN tests.

Datasets consisted of 929 observations for 371 pairs of virus and antiserum for serotype

A, 768 observations for 334 pairs for O and 1809 observations for 153 pairs for SAT1. Two-

dimensional virus neutralisation tests were also carried out following established methodology

(Rweyemamu et al., 1978). Antibody titres were calculated from regression data as the log10

reciprocal antibody dilution required for 50% neutralisation of 100 tissue culture infective

doses of virus (log10SN50/100 TCID50). For SAT1, all the serological tests were repeated on

different dates between one and five times and carried out independently by three different

individuals (operators). Date of test was also recorded for A and O and operator was recorded
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for O, while all A tests were completed by the same individual.

Viral RNA was extracted from cell culture adapted isolates and reverse transcription (RT)

polymerase chain reaction (PCR) was used to amplify capsid encoding genes and nucleotide

sequencing was performed as previously described (Reeve et al., 2010; Upadhyaya et al.,

2014). The P1 region of the viral genome was then sequenced and consensus nucleotide

sequences were used to determine the amino acid sequence of the full capsid (VP1-4) for each

reference strain and test virus present in the VN dataset. P1 nucleotide sequences aligned

using ClustalW v2.1 (Thompson et al., 1994) were used to generate phylogenetic trees for

the viruses in each serotype using BEAST v1.7.2 (Drummond et al., 2012).

Antigenic determinants were identified by attributing variation in VN test titres to amino acid

differences at surface-exposed positions of the capsid using models similar to those presented

in Chapters 3 and 4. These analyses are described for serotypes O and SAT1 by Reeve et al.

(2016) (under revision) and for serotype A by Bari et al. (2015) and the amino acid positions

identified by those studies were considered here.

5.3.3 Underlying titres

HI and VN titres are frequently affected by experimental variability and other forms of non-

antigenic variability. By identifying variables that explain this variation and quantifying their

effect on titres, it was possible to generate fitted underlying titres with the explained variation

removed. An underlying titre, with experimental sources of variation removed, was estimated

for each virus-antiserum pair present in the dataset. These underlying titres are the estimated

true titres for each virus-antiserum pair and these, rather than the raw titres, were used to

validate predictive models. For each dataset, various experimental variables were tested and

slightly different combinations of these were identified as explaining significant variation in

titre. The general structure of the model fitted to the data is described by:

Hr,v = Ir +Av +Dr,v + εT (5.1)

where Hr,v is the log2 HI or VN titre for virus v and antiserum raised against reference virus

r. There are effects for reference strain immunogenicity (Ir) and test virus avidity (Av) which

reflect differences in the magnitude of titres when particular antisera or viruses are used

irrespective of antigenic similarity to other strains. In addition to these two terms, there is

a term for each combination of reference strain and test virus (Dr,v), which describes their

antigenic relationship. This term reflects the extent to which titres for reference strain r and

test virus v are lower than would otherwise be expected for these two viruses as a result of

reduced antigenic similarity and can not take a positive value.
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The term εT in Equation 5.1 represents the total error in the model. Some of this error

was attributed to variation in titre caused by experimental variability, with the specific terms

used to do so varying between datasets. For influenza A(H1N1) and A(H3N2) and for FMDV

serotypes A and O, εT = εd + ε where εd is a term to absorb day-to-day variability that can

take a different value for each date, d, on which titres were measured. In HI assays day-

to-day variability can arise due to variability in batches of erythrocytes, and in dilutions of

erythrocytes, antisera, and viruses. ε represents residual error not explained by any other

parameter in the model. Day-to-day variability can arise in VN tests as a result of differences

in cells and in dilutions of viruses and antiserum. For FMDV serotype SAT1 where tests were

carried out by multiple operators on multiple dates and information on the individual animal

used to raise antiserum was available, εT = εr + εs + ε where εr is an effect to account for

differences in titre attributable to run (assays completed by a specific operator on a specific

date) and εs is an effect to account for differences in titre dependent on the individual animal

from which serum was drawn reflecting animal-to-animal variability in the immune response.

Differences in the optimal error structure between datasets likely represents differences in

data collection, and not differences in the underlying biology.

The prior distribution on the effect for each reference strain was defined as a normal dis-

tribution such that Ir ∼ N(µI , σ
2
I ) where µI ∼ N(0, 1,000,000) and the variance, σ2

I , was

drawn from an inverse gamma distribution such that σ2
I ∼ IG(0.001, 0.001). µI is analogous

to the intercept present in regression models described in previous chapters and forms a

baseline for titres around which a normal distribution exists that the effects for each refer-

ence strain, Ir, are drawn. The prior distribution on the effect for each virus was defined

as Av ∼ N(0, σ2
A) where σ2

A ∼ IG(0.001, 0.001). The Dr,v term describing the antigenic

relationship between viruses was set to zero when the antisera used was raised against the

same virus being tested (i.e. homologous titres). For heterologous titres, a truncated normal

distribution was used where Dr,v ∼ N(0, σ2
D)|Dr,v≤0 where σ2

D ∼ IG(0.001, 0.001). For each

term, x, in εT , εx ∼ N(0, σ2
εx) where σ2

εx ∼ IG(0.001, 0.001). As we assume that titres could

be lower as a result of differences between viruses, but not higher, the antigenic term for

heterologous virus-antiserum pairs was constrained to be negative.

Variation explained by εT was excluded from the posterior underlying titres which were

described by:

H ′r,v = Ir +Av +Dr,v (5.2)

where H ′r,v is the underlying log2 HI or VN titre for virus v and antiserum raised against

reference virus r and all terms on the right-hand side of the equation are fixed from Equation

5.1. The posterior median value of H ′r,v was calculated and used to validate predictions

from antigenic cartography and sequence-based models. Models were implemented using
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JAGS v3.3.0 (Plummer, 2012) through R (R Core Team, 2015) using the runjags package

(Denwood, 2013). Convergence and autocorrelation were evaluated using Gelman & Rubin

and Heidelberg & Welch diagnostic statistics and by visual inspection of MCMC plots for a

posterior sample of 500 taken from two independent MCMC chains

5.3.4 Sequence-based prediction

The identification of HA amino acid positions involved in antigenic evolution of influenza A

subtypes A(H1N1) and A(H3N2) is described in Chapters 3 and 4 respectively. Amino acid

positions exposed on the surface of the FMDV capsid involved in the antigenic evolution

of serotypes O and SAT1 were identified by Reeve et al. (2016) (under revision) while the

identification of positions involved in antigenic evolution of serotype A is described by Bari

et al. (2015). these identified amino acid positions were considered as candidate variables to

be used for sequence-based prediction and are shown in Table 5.1. To assess the predictive

performance of substitutions at these positions, cross-validation was carried out as described

above. The constituents of training and test datasets is detailed in the relevant sections of

the Results.

Table 5.1: Candidate amino acid positions for sequence-based approach

Virus Protein Amino acid positions

Influenza A(H1N1) HA 36, 43, 71, 72, 74, 80, 120, 130, 141, 142, 153, 163, 183,

184, 187, 190, 252, 274, 313

Influenza A(H3N2) HA 2, 25, 50, 62, 75, 79, 83, 122, 124, 131, 133, 135, 138,

144, 145, 155, 156, 157, 158, 159, 164, 172, 183, 189,

193, 196, 197, 201, 207, 212, 214, 217, 225, 227, 260,

262, 276, 307

FMDV A VP1 83, 147, 151, 157, 172, 180

VP2 74, 79

VP3 135

FMDV O VP1 142, 169, 211

VP2 74, 130, 193

VP3 56, 177

FMDV SAT1 VP1 102, 144, 146, 149, 163, 164, 209

VP2 72

VP3 72, 77, 171

* Candidate positions for influenza subtypes A(H1N1) and A(H3N2) identified by analyses de-

scribed in Chapters 3 and 4 respectively. FMDV amino acid positions involved in antigenic evo-

lution of serotypes O and SAT1 were identified by Reeve et al. (2016) (under revision) while the

identification of positions involved in antigenic evolution of serotype A is described by Bari et al.

(2015).
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The simplest sequence-based models tested contained terms for the presence or absence of

amino acid substitution between reference virus and test virus at each position in the set of

candidate positions, Λ, which is given for each dataset in Table 5.1. Training datasets were

used to parameterise a model described by:

Hr,v = Ir +Av +
∑
λ∈Λ

mλδλ(r, v) + εT (5.3)

which modifies Equation 5.1 by replacing the term Dr,v describing the antigenic relationship

between reference strain and test virus (r and v) with terms representing the presence or

absence of amino acid substitution at each candidate position in Λ. δλ(r, v) is 1 when

reference virus r and test virus v are separated by any substitution(s) at a specific position

in Λ and 0 otherwise. Each mλ parameter represents the estimated drop in titre resulting

from the antigenic impact of substitution at a particular amino acid position in Λ and has

the truncated prior mλ ∼ N(0, σ2
mΛ

)|mλ≤0 where the hyperparameter σ2
mΛ

is shared by all

elements of Λ and has the prior σ2
mΛ
∼ IG(0.001, 0.001). The terms retained from Equation

5.1 have the same priors as before.

Variation in titre (Hr,v) attributed to experimental and residual variation εT was excluded

as it is irrelevant to predictions made for titres in the test dataset which were generated by:

Hr,v = Ir +Av +
∑
λ∈Λ

mλδλ(r, v) (5.4)

where all terms on the right-hand side of the equation are fixed from Equation 5.3. If a

reference virus, r, or test virus, v, in the test data was not present in the training data then

the relevant parameter relating to the magnitude of titres, Ir or Av, could not be estimated

by Equation 5.3 and so was given the value µI or 0 respectively in Equation 5.4. Assigning

µI or 0 in this situation is approximately equivalent to assigning the average value of Ir or Av

estimated for reference or test viruses present in the training dataset. This practice was used

for all subsequent sequence-based predictive models. Titres predicted for the test datasets

using Equation 5.4 were compared with underlying titres extracted from the raw data using

Equation 5.2 by calculating the mean, absolute error and its lower 95% credible interval.

5.3.4.1 Variable selection using binary mask models

The methods described in the cited works for the selection of the candidate positions in

Table 5.1 did not consider, in depth, models containing combinations of terms representing

120



5.3 MATERIALS AND METHODS

substitution at these amino acid positions. Amino acid positions or substitutions with sta-

tistical support were identified singly after accounting for the phylogenetic structure of the

data. It is possible that some positions/substitutions explain some of the same variation in

titre and statistically there is uncertainty about which terms offer the best explanation for

the observed variation. Determining the optimal combination of these position/substitution

variables using standard stepwise regression techniques is problematic given the sensitivity of

these methods to the order in which variables are added or removed. Here, two approaches

implementing binary mask models were used to address this issue and to optimise the combi-

nation of variables associated with substitution at the candidate antigenic positions. Binary

mask models (e.g. Jow et al., 2014) have been used to perform variable selection in a variety

of contexts and are discussed together with other Bayesian alternatives, such as spike-and-

slab priors, in Chapter 13 of Murphy (2012). Each variable considered using a binary mask

model was associated with a 0–1 binary mask term which effectively excludes or includes

the variable from the model. MCMC was used to converge on the optimal combination of

included variables.

The first approach using binary mask terms was a two-step process. Candidate positions

were considered using a binary mask model applied to the full dataset in order to identify

an optimal set of variables representing substitutions at candidate positions. Following this,

a model including the optimal set of variables was used for prediction. To implement the

binary mask model, Equation 5.3 was modified:

Hr,v = Ir +Av +
∑
λ∈Λ

yλmλδλ(r, v) + εT (5.5)

so that each position in Λ is associated with a binary mask parameter, yλ, which takes the

value 0 or 1. When yλ is 0, the term representing the impact of substitution at a given

position, mλδλ(r, v), is multiplied by 0 and therefore has no impact on titre, Hr,v, and is said

to be masked. Each binary mask parameter was given the prior yλ ∼ Bernoulli(p), where p

was given the flat prior p ∼ Beta(1, 1) which was chosen to be minimally informative. The

posterior of p represents the estimated proportion of positions in Λ that ought to be included

in the optimal model.

Amino acid positions were ranked based on the how often the position parameter was not

masked (the proportion of MCMC samples where the relevant binary mask term took the

value 1). A higher posterior mean value of the binary mask term, yλ, thus represents increased

confidence in the inclusion of the associated amino acid position in the optimal model. The

posterior median value of the inclusion parameter p was used to determine the proportion

of positions from the ranked list of amino acid positions included in the optimal model.

These selected amino acid positions became elements of Λ′. To assess the predictive power

of substitutions at the positions in Λ′, the model was rerun with only the selected positions,
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so Λ′ replaces Λ in Equations 5.3 and 5.4.

5.3.4.2 Bayesian model averaging (BMA)

The second approach used to implement binary mask terms involved only a single step in

which predictions were made using a model including binary mask terms. By not requiring

an optimal set of positions to be chosen, this approach is a form of Bayesian model averaging

(BMA) that provides a coherent mechanism for accounting for model uncertainty. When

substitutions occur together in the phylogeny at a point where antigenic change occurs, there

is uncertainty as to which substitution(s) have caused the antigenic change. Information

on the antigenic consequence of the same substitutions occurring in other branches of the

phylogeny or other substitutions at the same sites can be used to resolve these ambiguities

in some cases, but often there is unresolved uncertainty in terms of which substitutions are

actually causing the observed antigenic change. One option is to attempt to optimise the

model despite this uncertainty. BMA reflects this uncertainty in predictions that are made.

Prediction is weighted towards the combination of position variables favoured by binary

mask terms (i.e. those that form Λ′) with less favourable combinations of position variables

represented less often according to their favourability as assessed by MCMC. This approach

involved applying Equation 5.5 to training data only, rather than the full dataset. Predictions

of titres in the test data were then made using:

Hr,v = Ir +Av +
∑
λ∈Λ

yλmλδλ(r, v) (5.6)

where the values estimated for all terms on the right-hand side of the equation are fixed

from Equation 5.5. Again, variation attributed to the error term, εT , was not used as it is

irrelevant to prediction.

5.3.4.3 Allowing for variation in the impact of different substitutions

To account for potential differences in the antigenic impact of different substitutions occurring

at the same position, Equation 5.3 was modified by replacing terms representing presence or

absence of substitution at each position in Table 5.1 with terms representing the presence or

absence of specific amino acid substitutions:

Hr,v = Ir +Av +
∑
λ∈Λ

∑
κ∈Kλ

m′κ,λδ
′
κ,λ(r, v) + εT (5.7)
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While δλ in Equation 5.3 took the value 0 or 1 to indicate the absence or presence of amino

acid dissimilarity at candidate position λ separating reference virus r and test virus v, here

δ′κ indicates the absence or presence of a specific amino acid difference, indexed by κ, among

the set of all observed substitutions Kλ at each position λ in the full set of positions Λ taken

from Table 5.1. Each m′κ parameter represents the estimated drop in titre resulting from

the antigenic impact on titre of a specific substitution and has the truncated prior m′κ ∼
N(µλ, σ

2
K)|m′κ≤0. This gives a normal distribution with a mean µλ specific to that position

representing the average effect on titre across all substitutions at position λ and a variance

shared by all substitutions σ2
K ∼ IG(0.001, 0.001). The position-specific mean µλ retains the

prior associated with the analogous mλ term in Equation 5.3 so that µλ ∼ N(0, σ2
mΛ

)|µλ≤0

with the hyperparameter σ2
mΛ
∼ IG(0.001, 0.001). Thus, the estimated antigenic impact of

a specific substitution depends upon both the amino acid position at which the substitution

takes place and the amino acids residues involved.

Again, variation in titre explained by εT was excluded from predictions which were generated

by:

Hr,v = Ir +Av +
∑
λ∈Λ

∑
κ∈Kλ

m′κ,λδ
′
κ,λ(r, v) (5.8)

which was applied to test data with parameters fixed from Equation 5.6 applied to the training

data.

The optimal combination of positions used for prediction was re-estimated while accounting

for heterogeneity in the antigenic impact of different substitutions at the same position using

binary mask models. Equation 5.7 was modified:

Hr,v = Ir +Av +
∑
λ∈Λ

yλ
∑
κ∈Kλ

m′κ,λδ
′
κ,λ(r, v) + εT (5.9)

to include binary mask terms, yλ, for each position, λ, in the set of candidate positions

Λ. All terms for specific substitutions, m′κ,λδ
′
κ,λ(r, v), are multiplied by a position-specific

binary mask term which takes the value 0 or 1, having the prior yλ ∼ Bernoulli(p) where

p ∼ Beta(1,1). Positions were again ranked based on the proportion of MCMC samples in

which they were unmasked and the posterior median value of p was used to select the optimal

proportion of positions from this ranked list of positions. To test the predictive performance

of terms representing substitutions at the set of positions, Λ∗, selected by applying Equation

5.9 to the full datasets, Equations 5.7 and 5.8 were re-applied to training and test datasets

with Λ replaced by Λ∗. Again, as an alternative to implementing the two step process of

selecting an optimal set of variables using a binary mask model and then predicting titres
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with the optimised set, predictions were made using a BMA approach by applying Equation

5.9 to training data and predicting titres in the test dataset using:

Hr,v = Ir +Av +
∑
λ∈Λ

yλ
∑
κ∈Kλ

m′κ,λδ
′
κ,λ(r, v) (5.10)

where the error term, εT , is dropped from Equation 5.9 while all other terms are parameterised

using the training data.

5.3.5 Antigenic cartography

Virus and antiserum locations in antigenic space were estimated as described in Chapter 2

(Section 2.3.4) using a Bayesian multidimensional scaling (BMDS) model (Bedford et al.,

2014). HI or VN titres are used to position antisera and viruses on the antigenic map

such that distances between them are inversely proportional to log2 titres and together all

distances are arranged in order to best satisfy the data. To follow previous studies, influenza

and FMD viruses were positioned in two-dimensional and three-dimensional antigenic space

respectively (Bedford et al., 2014; Ludi et al., 2014; Smith et al., 2004). The BMDS method

used extends the method of Smith et al. (2004) by incorporating estimates of antiserum and

virus reactivity to account for variation in titres caused by differences in the immunogenicity

of different reference viruses and in the receptor-binding avidity of viruses. These effects were

estimated for every antiserum and virus respectively in each influenza and FMDV dataset.

In addition, the prior locations of influenza viruses were informed by date of isolation and

by phylogenetic relatedness to other viruses as described in Chapter 2. Date of isolation

was not used to inform the prior locations of FMD viruses as there was no assumption of a

relationship between temporal separation and antigenic distance. Phylogenetic distances were

not used to inform the position of FMD viruses in antigenic space, however previous studies

suggest improvements to the predictive performance achieved by incorporating phylogenetic

information are minimal (0.01–0.05 log2 HI titre measured across four influenza datasets

(Bedford et al., 2014)). Models were implemented using BEAST (Drummond et al., 2012)

and posterior inference was carried out using R.

A posterior sample of locations was taken from those generated using MCMC after distances

between antiserum and virus locations had converged. Predictions of either HI or VN titre

are made using:

Hr,v =
Ir +Av

2
− Cr,v (5.11)

where Hr,v is the predicted log2 HI or VN titre for virus v and antiserum raised against
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reference virus r. For each titre the average of the estimated antiserum and virus reactivity

terms (Ir and Av respectively) is a baseline titre from which the Cartesian distance between

the virus and antiserum (Cr,v), from the antigenic map, is subtracted. As with sequence-

based modelling, predictive performance under a variety of scenarios was assessed using a

variety of training and test datasets. Maps were generated using subsets of the full data,

training datasets, and positions of viruses and antisera on the resultant maps were used to

predict underlying titres for virus-antiserum pairs in the remaining test data. Prediction

error was calculated by comparing titres predicted by Equation 5.11 with underlying titres

fitted using the model described by Equation 5.2. The mean and 95% credible interval on

the absolute prediction error, averaged across MCMC samples, was calculated.

5.4 Results

5.4.1 Binary mask models

Binary mask models were used to determine the optimal combinations of variables represent-

ing amino acid substitutions for predicting antigenic relationships. The influenza HA1 and

FMDV capsid amino acid positions selected using these models are shown in Tables 5.2 and

5.3 respectively. Two alternative binary mask models were applied to each of the five virus

datasets. Firstly, amino acid positions were tested using a model with the assumption that

all substitutions occurring at a particular position have the same antigenic impact (Equation

5.5). The results of these models are shown in table columns with the heading Λ′. Secondly,

amino acid positions were tested using a model which allowed different antigenic impacts for

different amino acid differences at the same position to be estimated (Equation 5.9). The

results of these models are shown in table columns with the heading Λ∗.

Amino acid positions in Tables 5.2 and 5.3 are ranked by their inclusion probability (IP). The

inclusion probability is the proportion of the MCMC chain in which an amino acid position

was included. The proportion of amino acid positions that ought to be included in the

optimal model was independently estimated using each model and is shown as a dashed line

in Tables 5.2 and 5.3. For each model, the proportion of amino acid positions estimated to

represent the optimal combination of genetic determinants of antigenicity is therefore found

above the dashed lines. These optimised sets of selected positions, Λ′ and Λ∗, were used in

sequence-based predictive models labelled 2 and 5 in Tables 5.4–5.6.
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Table 5.2: Influenza HA1 amino acid positions selected using binary

mask models.

A(H1N1) A(H3N2)

Λ′ Λ∗ Λ′ Λ∗

Position IP Position IP Position IP Position IP

36 1.00 36 1.00 124 1.00 2 1.00

43 1.00 43 1.00 135 1.00 50 1.00

72 1.00 71 1.00 133 1.00 62 1.00

74 1.00 72 1.00 138 1.00 133 1.00

141 1.00 74 1.00 144 1.00 135 1.00

142 1.00 141 1.00 145 1.00 138 1.00

153 1.00 142 1.00 156 1.00 145 1.00

163 1.00 153 1.00 158 1.00 156 1.00

183 1.00 163 1.00 164 1.00 157 1.00

184 1.00 183 1.00 183 1.00 158 1.00

187 1.00 184 1.00 189 1.00 159 1.00

190 1.00 187 1.00 193 1.00 172 1.00

252 1.00 190 1.00 196 1.00 183 1.00

274 1.00 252 1.00 207 1.00 189 1.00

313 1.00 274 1.00 212 1.00 193 1.00

71 0.79 130 0.99 262 1.00 212 1.00

130 0.71 120 0.97 25 0.94 262 1.00

80 0.57 313 0.95 172 0.94 131 0.99

120 0.45 80 0.89 79 0.92 155 0.99

75 0.88 276 0.99

214 0.85 225 0.98

50 0.84 307 0.98

197 0.75 25 0.97

201 0.55 75 0.96

122 0.50 196 0.96

225 0.41 197 0.96

217 0.31 207 0.95

62 0.18 164 0.94

227 0.10 201 0.71

157 0.07 79 0.65

307 0.07 214 0.58

131 0.06 122 0.49

159 0.06 260 0.49

276 0.06 217 0.41

83 0.05 124 0.26

155 0.05 227 0.26

260 0.05 83 0.04

2 0.04 144 0.02

Positions are ranked by their inclusion probability (IP) - the proportion of MCMC

samples in which the position is unmasked (i.e. the associated binary mask term =

1), with positions above the dashed lines being selected. Λ′ indicates positions se-

lected by a model without independent effects for different substitutions at the same

position (Equation 5.5) and Λ∗ with independent effects for different substitutions

at the same position (Equation 5.9).
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The proportion of candidate amino acid positions selected using both binary mask models

was higher for A(H1N1) than A(H3N2). This reflects the greater uncertainty associated with

the identification of genetic determinants of antigenic change in A(H3N2) as discussed in

Chapter 4, which arises when it is not possible to discriminate between multiple substitutions

that have occurred at the same point (or similar points) in the evolutionary history of the

virus. For A(H1N1), this situation arose in only two instances (Table 3.1) where it was

not possible to discriminate between substitutions at positions 74 and 120 in one case and

between substitutions at 43, 71, 80, and 130 in the other. In the second case, experimental

results indicate that the antigenically important change occurred at position 130 and not at

the others (McDonald et al., 2007, Chapter 3: Figure 3.6). Here, position 80 was not selected

using either binary mask model, however positions 43 and 71 were selected in addition to 130

indicating that other substitutions at these positions may correlate with antigenic change at

other points in the phylogeny. Position 74 was selected over 120 using the simpler binary mask

model where the antigenic impact of all substitutions at a position is assumed to be the same

(Equation 5.5), while both positions were selected when different amino acid substitutions

at a position were allowed to vary in their impact (Equation 5.9). A lower proportion of

A(H3N2) candidate positions were selected using both models, relative to A(H1N1). Two

positions, 155 and 159, where substitutions have been experimentally confirmed as causing

high-impact changes in HA antigenicity were not selected in Λ′ but were selected in Λ∗. This

possibly indicates an advantage of accounting for differences in the impact of different amino

acid changes when implementing binary mask models of this kind.

Table 5.3: FMDV capsid amino acid positions selected using binary mask models.

A O SAT1

Λ′ Λ∗ Λ′ Λ∗ Λ′ Λ∗

Position IP Position IP Position IP Position IP Position IP Position IP

VP1 83 1.00 VP1 83 1.00 VP1 142 1.00 VP3 177 1.00 VP2 72 1.00 VP2 72 1.00

VP1 147 1.00 VP1 147 1.00 VP3 177 1.00 VP1 211 0.99 VP1 102 1.00 VP1 144 1.00

VP1 151 1.00 VP1 151 1.00 VP2 74 0.32 VP1 142 0.82 VP1 144 1.00 VP1 149 1.00

VP1 172 1.00 VP1 157 1.00 VP2 130 0.31 VP2 130 0.60 VP1 149 1.00 VP1 163 1.00

VP2 79 0.93 VP1 172 1.00 VP2 193 0.28 VP2 74 0.51 VP1 163 1.00 VP1 209 1.00

VP1 157 0.93 VP2 74 0.97 VP1 211 0.24 VP2 193 0.37 VP3 171 1.00 VP3 72 0.99

VP1 180 0.90 VP2 79 0.88 VP3 56 0.18 VP1 169 0.31 VP1 209 1.00 VP1 102 0.99

VP2 74 0.89 VP1 180 0.78 VP1 169 0.12 VP3 56 0.29 VP3 72 0.99 VP3 171 0.91

VP3 135 0.64 VP3 135 0.58 VP3 77 0.97 VP1 146 0.85

VP1 164 0.96 VP3 77 0.82

VP1 146 0.88 VP1 164 0.72

Positions are ranked by their inclusion probability (IP) - the proportion of MCMC samples in which the position

is unmasked (i.e. the associated binary mask term = 1), with positions above the dashed lines being selected. Λ′

indicates positions selected by a model without independent effects for different substitutions at the same position

(Equation 5.5) and Λ∗ with independent effects for different substitutions at the same position (Equation 5.9).
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5.4.2 Predicting unobserved antigenic relationships

One of the challenges faced when attempting to identify the antigenic characteristics of a

virus population is that only a very small fraction of the viral population is ever isolated and

among these isolated viruses it is normal for only a small proportion of pairwise antigenic

relationships to be determined experimentally. To assess their ability to predict unobserved

antigenic relationships, models were parameterised using training datasets composed of titres

recorded between 90% of virus-antiserum pairs. Performance was assessed by calculating

the mean, absolute error (or test error) of titres predicted for test datasets containing the

remaining 10% of virus-antiserum pairs. The composition of test and training datasets was

randomised and this was repeated 50 times (i.e. 50-fold cross-validation) The mean, absolute

error for various sequence-based models described above and for antigenic cartography are

shown in Table 5.4.

Table 5.4: Sequence-based prediction: Average absolute prediction error of log2 titres

for test datasets consisting of missing virus:antiserum pairs

Model

Positions Variable Mean absolute error

or set Influenza FMDV

Substitutions A(H1N1) A(H3N2) A O SAT1

1 Positions All 0.63 0.69 0.74 0.55 0.35

2 Positions Optimised 0.62 0.69 0.75 0.55 0.36

3 Positions BMA 0.64 0.69 0.76 0.55 0.36

4 Substitutions All 0.62 0.66 0.75 0.57 0.34

5 Substitutions Optimised 0.60 0.68 0.74 0.56 0.34

6 Substitutions BMA 0.61 0.66 0.74 0.57 0.34

7 Antigenic cartography 0.54 0.77 0.68 0.54 0.65

Positions or substitutions refers to whether or not different substitutions at the same position were

able to have independent antigenic impacts. Either all variables were used, a set optimised using

binary mask models were used or BMA was used to average across models. The most accurate

sequence-based models are shown in bold.

Across the five datasets there is very little variability in the predictive performance of the

various sequence-based approaches tested. Accounting for differences in the antigenic impact

of different substitutions at the same position improves predictive performance for A(H1N1),

A(H3N2) and SAT1 (mean, absolute error for model 4 < mean, absolute error for model 1)

but not for FMDV serotypes A or O. A potential disadvantage of BMA is overfitting to the

data, though this does not seem to have occurred here as the predictive performance of models

3 and 6 are not notably less accurate than the other sequence-based models tested. Using

BMA to account for model uncertainty has not however resulted in better prediction either.

As the quantitative differences between sequence-based models is small, I favour Model 6

which is qualitatively superior for two reasons: Firstly it is preferable to allow different

substitutions at the same position to vary in antigenic impact as we know the antigenic

impact of substitutions does in fact depend on the different biophysical properties of the
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amino acids involved; and secondly because uncertainty in the best model does exist due to

multiple substitutions occurring at similar points in the evolution of the virus where antigenic

changes are estimated to have occurred, so it is better to reflect this in predictions.

On average, Model 6 outperforms antigenic cartography for two datasets (A(H3N2) and

SAT1) while antigenic cartography produced more accurate predictions of titres for A(H1N1),

and FMDV serotypes A and O. This shows that on average the sequence-based approach

presented here and state of art methods for antigenic cartography are similarly capable of

predicting unobserved antigenic relationships, as expressed in HI and VN tests. In addition

to the average error in predictions it is important to consider upper limits in the inaccuracy of

these models as this gives an indication of how risky it might be to rely on these techniques.

To this end, 95% credible intervals for the absolute error of predictions made using Model

6 and antigenic cartography were calculated and these are shown in Figure 5.2. Figure 5.2

shows that 95% credible intervals for predictions made using Model 6 were more accurate

than BMDS for influenza A(H3N2) and FMD serotypes A, O, and SAT1 and less accurate

for influenza A(H1N1). Figure 5.2 also shows 95% of predictions made using Model 6 across

influenza subtypes had a mean, absolute error less than two antigenic units, or a four-fold

dilution in the HI assay, while predictions for A(H3N2) made using antigenic cartography

were only marginally less accurate than this.
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Figure 5.2: Model cross-validation: predicting titres for missing virus-antiserum

pairs: Mean, absolute error and lower 95% credible intervals in predictions of log2 titres for

test datasets consisting of 10% of virus-antiserum pairs. Predictive performance is shown for

null, BMDS and sequence-based predictive models across datasets consisting of influenza A

subtypes A(H1N1) and A(H3N2) and FMD serotypes A, O, and SAT1 viruses and antisera.

5.4.3 Predicting cross-reactivity of uncharacterised antisera

Predicting titres for unobserved virus-antiserum pairs is a useful method of model cross-

validation and gives an indication of whether models are being overfitted to the data. How-

ever, viruses and antisera in the test datasets are also, in most cases, present in the training

dataset being tested against different antisera/viruses and so these represent viruses and an-

tisera that have already been antigenically characterised by HI or VN assay, and so provide

limited value. The ability to predict antigenic relationships, as expressed in these assays,

for either antisera or viruses that have not been antigenically characterised experimentally,

and therefore do not appear at all in training datasets, is more informative. The ability to

antigenically characterise a viral population depends to an extent on the range of antigenic

phenotypes represented by available antisera; if all antisera in a panel are antigenically simi-

lar, it is possible to learn only whether a test virus is similar to or different from the viruses

used to generate those antisera. There are practical limitations on the number of antisera

that can be used so there is therefore an implicit prediction of the antigenic characteristics
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of antiserum involved when a virus is chosen to raise antiserum.

To provide a more detailed understanding of the likely properties of an antiserum as part of

the process of selection of reference antiserum, I tested the ability of sequence-based models

to predict HI or VN titres for antisera that were entirely excluded from training data, using

the genetic sequence of the associated virus. For comparison, predictions were made using the

position of the associated virus in antigenic space estimated using BMDS. For A(H1N1) and

A(H3N2) test datasets containing 10% of antisera were repeatedly chosen at random. Each

FMDV dataset had seven or fewer antisera in total so test datasets containing each antiserum

in turn were used. The mean, absolute error of predictions of titre made for uncharacterised

antisera are shown in Table 5.5.

Table 5.5: Sequence-based prediction: Average absolute error for log2 titres esti-

mated for test datasets consisting of missing antisera

Model

Positions Variable Mean absolute error

or set Influenza FMDV

Substitutions A(H1N1) A(H3N2) A O SAT1

1 Positions All 0.78 0.90 1.61 1.79 0.42

2 Positions Optimised 0.79 0.94 1.57 1.59 0.41

3 Positions BMA 0.75 0.89 1.62 1.72 0.42

4 Substitutions All 0.85 0.88 1.77 1.76 0.36

5 Substitutions Optimised 0.81 0.85 1.71 1.61 0.35

6 Substitutions BMA 0.81 0.86 1.77 1.72 0.36

7 Antigenic cartography 0.75 0.98 2.02 1.96 1.87

Positions or substitutions refers to whether or not different substitutions at the same position were

able to have independent antigenic impacts. Either all variables were used, a set optimised using

binary mask models were used or BMA was used to average across models. The most accurate

sequence-based models are shown in bold.

Again, neither of the sequence-based models consistently outperforms the others. Models 2,

3 and 5 produced the lowest test errors on average for different datasets though the magni-

tudes of the differences between these means indicate that all sequence-based models perform

similarly well. On average, the BMA model of prediction that allows for differences in the

antigenic impact of different amino acid substitutions (Model 6) outperforms antigenic car-

tography when predictions are made from antisera of influenza A(H3N2) and all three FMDV

serotypes, while predictions for A(H1N1) are slightly more accurate on average when made

using antigenic cartography. 95% credible intervals for Model 6 and antigenic cartography

were calculated and are shown in Figure 5.3. When 95% credible intervals are considered the

sequence-based approach outperforms antigenic cartography across all five datasets.

Predictions of titres for uncharacterised antisera made for both influenza subtypes are less

accurate than predictions made for unobserved virus-antiserum pairs, as the exclusion of

all observations for a particular antiserum prevents the model learning the immunogenic-

ity parameter associated with each antiserum (Ir terms in Equations 5.1–5.10) resulting in
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Figure 5.3: Model cross-validation: predicting titres for uncharacterised antisera:

Mean, absolute error and lower 95% credible intervals in predictions of log2 titres for test

datasets consisting of 10% of virus-antiserum pairs. Predictive performance is shown for null,

BMDS and sequence-based predictive models across datasets consisting of influenza A subtypes

A(H1N1) and A(H3N2) and foot-and-mouth disease virus serotypes A, O and SAT1 viruses and

antisera.

systematic prediction errors.

5.4.4 Predicting cross-reactivity of uncharacterised viruses

One of the advantages of a sequence-based method is that antigenic relationships can be

predicted for viruses that have not been tested experimentally. This is potentially the most

useful application of prediction because, as genetic sequence data become easier to obtain, it

will provide the ability to quickly estimate antigenic phenotype before experimentation. Test

datasets consisting of all observations for 10% of the viruses in each dataset were repeatedly

chosen at random in a cross-validation procedure and predictions were made based on se-

quence differences to the reference/vaccine strains used to generate antiserum in the training

datasets. Mean, absolute error in predictions made by each of sequence-based models across

each of the five datasets are shown in Table 5.6. For four of the five datasets, the most accu-
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rate predictions were made for missing viruses when different amino acid substitutions were

allowed to vary in their predicted antigenic impact. In two cases, for A(H1N1) and SAT1,

Model 6 which also incorporates model uncertainty in predictions outperformed other mod-

els. Viruses for which no HI or VN data has been gathered cannot be positioned in antigenic

space using cartographic methods so under this scenario predictions cannot be made using

with antigenic cartography.

Table 5.6: Sequence-based prediction: Average absolute prediction error of log2 titres

for test datasets consisting of missing viruses

Model

Positions Variable Mean absolute error

or set Influenza FMDV

Substitutions A(H1N1) A(H3N2) A O SAT1

1 Positions All 0.87 0.99 0.99 0.64 0.55

2 Positions Optimised 0.90 0.98 0.95 0.65 0.55

3 Positions BMA 0.86 0.98 1.05 0.68 0.56

4 Substitutions All 0.86 0.99 0.91 0.71 0.54

5 Substitutions Optimised 0.88 0.93 0.92 0.66 0.54

6 Substitutions BMA 0.85 0.97 0.93 0.75 0.53

Positions or substitutions refers to whether or not different substitutions at the same position were

able to have independent antigenic impacts. Either all variables were used, a set optimised using

binary mask models were used or BMA was used to average across models. The most accurate

models are shown in bold.

For both influenza subtypes the mean, absolute errors of each predictive model were less

than one log2 titre (antigenic unit) so on average predictions of HI titres are within one

two-fold dilution or well on the plate of an HI assay (Table 5.6). Influenza predictions for

uncharacterised viruses are, however, less accurate than those made when predicting titres

for unobserved virus-antiserum pairs or for uncharacterised antisera. Viruses present in the

test data were totally absent from the training data, so the impact of virus receptor-binding

on titre could not be learnt (Av parameters in Equations 5.1–5.10) using the data and was

therefore taken as the average ofAv effects estimated for viruses present in the training dataset

instead. Titres predicted for missing viruses of each FMDV serotype were less accurate than

those made for missing virus-antiserum pairs suggesting that non-antigenic aspects of virus

phenotype may also be important in VN titres recorded for FMD viruses. The titres predicted

for serotypes A and O are, however, much more accurate than those made for uncharacterised

antisera. This indicates that the inability to train these virus reactivity parameters (Av) is

of less importance than the inability to train immunogenicity effects in these datasets.

5.4.5 Influenza: prediction through time

To further investigate the power of the sequence-based approach to predict antigenic pheno-

type in influenza, HI titres for viruses isolated in each year of our dataset (from 1998 to 2009
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for A(H1N1) and from 1998 to 2015 for A(H3N2)) were predicted using models trained to

data collected in previous years. Test datasets comprised all titres measured between viruses

isolated in a given calendar year and antisera to viruses collected over previous years. These

predictions are therefore directly relevant to decisions made during the vaccine selection pro-

cess since they are estimating the antigenic novelty, as expressed in the HI assay, of emerging

genotypes. 1998 was chosen as the first year to be predicted as there was a noticeable im-

provement in the number of data across both subtypes in the period 1996–98. Predictions

were made using Model 6 which was was the best and second best model for predicting titres

for uncharacterised viruses of subtypes A(H1N1) and A(H3N2) respectively (Table 5.6).

To investigate the relative contributions to HA cross-reactivity, I made further comparisons

between predictions made using the full sequence-based model with a model that used only

substitutions detectable as causing transitions between clusters of antigenically similar viruses

on an antigenic map for prediction. These substitutions are, in general, those of greatest anti-

genic impact, which individually may lead to a need to change vaccine virus. For A(H1N1),

∆K130 and K141E were used in this model. In Chapter 2 these substitutions were found

as being able to explain transitions between clusters of antigenically similar viruses (Figure

2.10) and their large antigenic impact has been demonstrated experimentally (McDonald

et al., 2007, Chapter 3: Figure 3.6). For A(H3N2), this model included substitutions at the

seven positions 145, 155, 156, 158, 159, 189 and 193. The substitutions N145K, T155Y,

Y155H, K156E, K156Q, Q156H, G158E, E158K, S159Y, Q189K, K189R, D193N have been

identified using reverse genetics experiments as causing transitions between antigenic clusters

apparent on maps of A(H3N2) viruses isolated between 1968 and 2003 (Koel et al., 2013) and

sequence analysis of more recent antigenic clusters indicates that the substitutions K145N,

Y159F, S189N, K158N and N189K may have caused more recent transitions between clusters

(Chapter 2, Section 2.4.4).

For A(H1N1), mean absolute prediction error when only the high-impact substitutions ∆K130

and K141E were included averaged across the twelve years was 1.81 log2 titre (SEM = 0.0139,

SD = 0.48). This was reduced to 0.82 log2 titre (SEM = 0.0072, SD = 0.25) when all

substitutions at each position in Table 5.1 were considered using BMA (Model 6). The mean

absolute prediction error of each model in each year is shown in Figure 5.4. In all years the

accuracy is improved by the inclusion of the smaller-scale antigenic determinants in addition

to the two substitutions that define antigenic clusters on the map.

For A(H3N2) mean absolute prediction error was also improved by the inclusion of sub-

stitutions causing changes in antigenic phenotype of lower-impact in addition to the set of

substitutions that have been identified as being responsible for the major changes in antigenic

phenotype that have occurred during the evolution of H3 HA in humans. The mean, absolute

error averaged across the 17 years used for prediction was 1.47 (SEM = 0.116, SD = 0.47)

when the antigenic substitutions of highest impact were included and this was reduced to 1.01
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Figure 5.4: A(H1N1): Prediction error through time for models used to predict HI

titres of viruses isolated in the following year: The mean, absolute difference between

observed titres for viruses isolated in a given year and titres predicted using models trained to

HI data collected in previous years is shown. Predictive models included terms for

cluster-defining substitutions ∆K130 and K141E only (solid blue line) or used a BMA model

allowing different antigenic impacts for different substitutions at each position in Table 5.1

(solid red line). For each model, shaded areas show the lower 95% credible interval on the

absolute prediction error. In each year the blue 95% credible interval extends vertically on the

y-axis above the red 95% credible interval and the overlapping area appears purple. The mean,

absolute prediction errors averaged across the 12 years are shown as dashed lines.

(SEM = 0.080, SD = 0.32) when the full sequence-based model of prediction was used. The

improvement in predictive performance achieved by a deeper understanding of the genetic

changes impacting upon HI titres was therefore smaller than in A(H1N1), however the BMA

model still improved prediction in each year (Figure 5.5).
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Figure 5.5: A(H3N2): Prediction error through time for models used to predict HI

titres of viruses isolated in the following year: The mean, absolute difference between

observed titres for viruses isolated in a given year and titres predicted using models trained to

HI data collected in previous years is shown. Predictive models included terms for

cluster-defining substitutions (solid blue line) or used a BMA model allowing different antigenic

impacts for different substitutions at each position in Table 5.1 (solid red line). For each model,

shaded areas show the lower 95% credible interval on the absolute prediction error. In each year

except 2000, the blue 95% credible interval extends vertically on the y-axis above the red 95%

credible interval and the overlapping area appears purple. The mean, absolute prediction errors

averaged across the 16 years are shown as dashed lines. After 2003, cluster-defining substitutions

are inferred from antigenic maps in Chapter 2 and are not experimentally validated.

5.5 Discussion

In this chapter, I demonstrate the ability to predict antigenic relationships, as expressed in

HI or VN titres, among viruses of two influenza A subtypes and three FMDV serotypes from

genetic sequence data under a variety of scenarios. Constraints on time and resources limit

the number of viruses that can be investigated experimentally using antigenic assays, and

HI and VN titres give only pairwise measures of cross-reactivity. Expert decision-makers

must attempt to form a complete picture of the antigenic profile of a virus population based

on the available set of pairwise measurements that realistically can only represent a small

minority of the possible pairwise comparisons between genotypes in the population. I first

examined the ability of sequence-based models to predict the antigenic cross-reactivity of

pairs of virus and antisera not directly compared experimentally by forming test datasets
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comprised of a proportion of virus-antiserum pairs in the full datasets. This is useful as it

shows the potential for this kind of method to provide a more complete antigenic profile of the

virus population. This analysis showed the presented sequence-based approach to be similarly

capable of predicting titres when compared to a BMDS antigenic cartography model which

has previously been demonstrated to be significantly better than other models of antigenic

cartography (Table 1 in Bedford et al., 2014). In addition to predicting titres more accurately

than BMDS for the A(H3N2) and SAT1 datasets on average (Table 5.4), the sequence-based

approach could be considered a less risky form of prediction as 95% lower credible intervals

on prediction error were reduced in four out of five datasets (Figure 5.2). In addition to the

quantitative argument, a sequence-based approach has a qualitative advantage in that it is

based on a falsifiable, mechanistic explanation of the relationship between genetic changes

and antigenic variation.

When predicting titres for uncharacterised antisera using sequence-based models, prediction

accuracy was lower for each of the five datasets than when predicting missing virus-antisera

pairs. Dropping reference antisera from test datasets prevents models being trained to the

estimated immunogenicity of those antisera so the immunogenicity term (Ir in Equations

5.1–5.11) is instead estimated as the average of antiserum effects estimated for antisera that

remain in the training data. This issue appears to have caused significant differences in

predictions made for FMDV serotypes A and O, where prediction accuracy using either

sequence-based models or BMDS is dramatically reduced. Particular difficulty may arise

in estimating the Ir terms for excluded antisera in these two datasets, where there are so

few antisera and given their immunogenicity is known to be highly variable since they in-

clude antiserum from animals vaccinated with commercial high potency vaccines and animals

vaccinated with custom vaccines not tested for potency.

Less variation in the immunogenicity of SAT1 antisera meant that the problem of estimat-

ing Ir terms for excluded antisera did not seem to be problematic for that serotype, hence

titres estimated using the sequence-based approach are only slightly less accurate than when

predicting unobserved virus-antiserum pairs. This suggests that there are further disadvan-

tages to using antigenic cartography to estimate titres in this dataset as titres estimated for

missing SAT1 antiserum were significantly less accurate (Table 5.5 and Figure 5.3). This

is potentially a consequence of using virus–virus distances from the maps to predict titres.

When predicting titres for unobserved virus-antiserum pairs, and in all previously published

cross-validation of antigenic cartography that I am aware of, virus-antiserum distances from

maps are used. When antigenic maps are generated virus-antiserum distances are optimised

to reflect titres from antigenic assays, however virus-virus distances are what is most com-

monly interpreted from these maps. With influenza antigenic maps, predicting HI titres from

virus–virus distances taken from antigenic maps has not resulted in a loss of accuracy of a

similar magnitude.
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While the ability to predict titres for unobserved virus-antiserum pairs or uncharacterised

antisera is useful and interesting, the ability to predict titres for new virus isolates that

have not been antigenically characterised is a more desirable aim. Genetic variants are

constantly emerging in each of the influenza A subtypes and FMDV serotypes studied and

as the sequencing of viruses becomes less expensive and more routine, the ability to estimate

the antigenic similarity of these viruses to existing viruses will become more valuable. In each

of the five datasets investigated, sequence-based models proved capable of predicting titres

for uncharacterised viruses, not present in training datasets, with a mean, absolute error

below one two-fold dilution in either the HI or VN assay. Again, there is a loss in accuracy

relative to making predictions for unobserved virus-antiserum pairs. This could be accounted

for by differences in virus reactivity (Av terms in Equations 5.1–5.11), which cannot be

learnt. It has previously been shown that amino acid substitutions can allow escape from the

polyclonal antibody response represented in HI assays by increasing receptor-binding avidity

(Hensley et al., 2009), though it not known to what extent this kind of effect is important in

immune escape in nature. Identifying the amino acid differences responsible for the variation

in avidity that affects HI titres and using population genetics methods to assess the fitness

of those substitutions could potentially resolve this question, and additionally enable more

accurate sequence-based predictions of titres when Av effects cannot be learned from the

data.

For influenza subtypes A(H1N1) and A(H3N2), predictions were also made for viruses iso-

lated in each year from 1998 using BMA models that also account for differences in the

antigenic impact of different substitutions at the same position, trained to data collected in

previous years. The mean, absolute error of these predictions was roughly the same as when

making predictions for test datasets comprised of 10% of viruses. Under this scenario the full

sequence-based model produced significantly more accurate predictions than those achieved

using only substitutions that have caused high-impact changes in antigenic cross-reactivity

and that have been identified through analysis of antigenic maps generated using HI data,

followed by extensive reverse genetics experiments (Chapter 3 and Koel et al. (2013)). This

effect was greater in the A(H1N1) dataset, perhaps indicating that smaller-impact amino

acid substitutions play a greater role in the antigenic evolution of A(H1N1) viruses, relative

to A(H3N2). However, as there are other differences in the structure of datasets any such

inference should be made cautiously. The A(H3N2) dataset also contains a much higher pro-

portion of reference viruses. Reference viruses are selected partly because of their antigenic

properties and it is possible that high impact substitutions are more likely to be important

in defining antigenic relationships between reference viruses which are usually chosen to be

more antigenically diverse than a similar number of non-reference viruses.

In contrast to the gathering of genetic sequence data, which is becoming more routine, the

antigenic characterisation of A(H3N2) viruses, particularly those of the phylogenetic sub-clade

3C.2a, has recently become more technically difficult because of their changing properties
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(WHO, 2015b). Specifically, many 3C.2a viruses had low or undetectable haemagglutina-

tion activity which has required modifications to HI and VN assays to be made in order

to infer antigenic relationships by these methods. Problems of this kind faced by tradi-

tional approaches call for new modelling approaches to help them. In addition to predicting

antigenic variants based on prior knowledge of the importance of a genetic change that has

arisen previously in the evolution of a virus, a sequence-based approach can predict when

a genetic variant, possessing substitutions not associated with antigenic change in the past,

will be antigenically similar to existing viruses. In addition to the antigenic characterisa-

tion of circulating viruses, vaccine virus selection requires an anticipation of which viruses

will predominate in future epidemics up to a year in advance. Recently published methods

for predicting the evolutionary success of influenza viruses based on HA genotype ( Luksza

& Lässig, 2014; Neher et al., 2014) show that statistical methods can predict which strains

will predominate in future seasons. HA cross-reactivity as expressed in the HI assay is an

important aspect of antigenic phenotype and therefore of virus fitness. The ability to predict

the antigenic cross-reactivity, as measured by HI, of emerging influenza viruses using models

parameterised using data collected in previous years should help to refine such techniques.

This is discussed further in Chapter 6.
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Discussion



Discussion

6.1 General discussion

The aims of this thesis were to investigate the genetic basis of antigenic variation among hu-

man influenza A viruses using models based on the mechanistic relationship between amino

acid changes and antigenic evolution. I have attempted this using a range of models that

attribute variation in haemagglutinin (HA) cross-reactivity, measured using the haemagglu-

tination inhibition (HI) assay, to amino acid substitutions that have occurred during the

evolution of A(H3N2) and former seasonal A(H1N1) viruses. By quantifying the antigenic

impact of specific amino acid substitutions, our knowledge of how specific genetic changes

contribute to the antigenic phenotype of influenza viruses and therefore virus fitness is en-

hanced. In this chapter, I will begin summarising the key findings of each chapter, and will

then explore some of the unresolved issues that arose throughout the analyses described, with

a particular focus on the role of changes in receptor-binding avidity on HI titres. Finally,

I will describe the significance of the results in terms of how they could complement and

enhance related techniques and speculate on future directions.

In Chapter 2, the A(H1N1) and A(H3N2) datasets that are explored throughout the thesis

were analysed using methods that focus on either genotype or phenotype. Phylogenetic anal-

ysis indicated that the rate of genetic evolution is similar in both subtypes. Two measures

of genetic distance were tested as predictors of antigenic distance as reflected by HI titres,

and for both subtypes amino acid distance was a better predictor of titre than phylogenetic

distance, though neither measure was well correlated with HI titre indicating that a better

understanding of the heterogeneity in the antigenic impact of genetic changes is required

for accurate sequence-based prediction of antigenic similarity. The ratios of rates of syn-

onymous (dS) and non-synonymous (dN) mutations at each position in the HA1 domain of

HA were estimated using various related methods. These analyses showed the proportion

of HA1 codons under purifying selection to be notably higher than the proportion under

positive selection in both subtypes. The proportion of positions in H1 antigenic sites with

evidence of positive selection was marginally higher than the proportion detected as being

under positive selection across the whole of HA1, while in H3 antigenic sites the proportion
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of positions exposed to positive selection was much higher and fewer positions were exposed

to purifying selection. A(H3N2) viruses also exhibited higher rates of antigenic drift than

A(H1N1) viruses on antigenic maps generated from HI data, possibly indicating a more signif-

icant role of immune-mediated evolution in A(H3N2), relative to A(H1N1). Eight A(H1N1)

and 16 A(H3N2) HA1 codons were detected as showing signatures of positive selection. The

majority of these positions have previously been identified as having a role in either anti-

body binding or virus receptor binding or both but their role in adaptive evolution must be

interpreted with caution as their identification is based on phenotypic data.

Substitutions between antigenic clusters on antigenic maps generated using HI data were also

identified in Chapter 2, though notably the set of identified substitutions was inconsistent with

previously published similar studies that were also inconsistent with each other (Koel et al.,

2013; Sun et al., 2013). This difficulty in replicating the same set of candidate substitutions

raises the question of whether it would be preferable to test all substitutions estimated to

have occurred in the trunk lineage of HA phylogenetic trees. A significant degree of variation

expressed on the antigenic maps shown in Chapter 2 was within-cluster rather than between-

cluster and the genetic causes of this variation cannot be determined by existing methods.

In Chapter 3, a modelling approach used to identify surface-exposed regions of the capsid

protein of foot-and-mouth disease virus (FMDV) where substitutions were correlated with

antigenic change was extended and applied to A(H1N1). Nineteen amino acid substitutions

were identified as causing antigenic variation among the viruses studied. These included

seven substitutions detected as correlating with antigenic change at multiple points in the

evolution of the virus and one instance where two candidate substitutions (E74G and E120G)

could not be discriminated between to identify the genuine cause of antigenic change. The

antigenic impact of substitutions was also quantified and substitutions ranged in their av-

erage antigenic impact from 0.20 to 3.53 log2 titre. The two identified substitutions with

highest antigenic impact, K141E and ∆K130, were also identified as substitutions capable of

explaining transitions between antigenic clusters in Chapter 2. Reverse genetics was used to

validate the importance of four substitutions and the quantification of their antigenic impact.

In Chapter 4, I further extended the model used in Chapter 3 and used it to identify genetic

drivers of antigenic change that has occurred in the evolution of human A(H3N2) viruses.

Analysing a dataset with a much higher proportion of reference viruses enabled me to modify

the method of accounting for the phylogenetic structure of the dataset to allow changes in

virus and antiserum reactivity associated with genetic changes occurring in branches to be

estimated, in addition to the antigenic changes in viruses estimated for branches in Chap-

ter 3. Seventeen substitutions were identified as being correlated with antigenic change at

multiple points in the evolution of the virus. Candidate substitutions were identified as

plausible explanations of the antigenic change identified as occurring at 24 further points

in the phylogenetic tree. In most of these 24 instances, co-occurring substitutions repre-
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senting alternative candidate explanations for antigenic change meant there was increased

uncertainty in the identification of antigenic determinants of antigenic change, when com-

pared with the A(H1N1) analysis described in Chapter 3. Although definitive identification

of the substitutions causing antigenic change was not possible in every instance, the alter-

native candidate substitutions identified represent good candidates for further experimental

investigation. Without experimental data that can resolve these ambiguities, a model of

sequence-based prediction should reflect these ambiguities.

The predictive power of the sets of genetic determinants of antigenic variation identified in

Chapters 3 and 4 was tested in Chapter 5. Various models were used to predict antigenic

cross-reactivity based on amino acid sequence, including a model that accounted for the vari-

ability in antigenic impact of different amino acid substitutions to the same position and

uncertainty in the identification of substitutions using Bayesian Model Averaging (BMA).

To test the generalisability of these methods, predictions of virus neutralisation titres that

quantify antigenic relationships among viruses of three serotypes of FMDV were also made.

Sequence-based predictions proved to be similarly capable of predicting titres for unobserved

virus-antiserum pairs and better able on average to predict titres for uncharacterised an-

tiserum. More importantly, I demonstrated that the sequence-based models of prediction

were capable of predicting titres for uncharacterised viruses. The ability to predict titres for

emerging influenza viruses using models trained to data collected in previous years was also

shown. Using the preferred BMA model these predictions were made to within one log2 titre

on average. Figures 5.4 and 5.5 show that, for both A(H1N1) and A(H3N2), predictions of

HI titre for emerging viruses were improved when substitutions not causing high-impact anti-

genic changes and therefore transitions between antigenic clusters are included in addition to

those substitutions that do.

To demonstrate the impact of including substitutions of lower antigenic impact in addition

to those of largest effect the titres predicted by various models are plotted against observed

titres for test datasets consisting of 10% of observations in Figure 6.1. In (A) a simple null

model was used to make predictions according to the average titre for a reference antiserum

with a mean, absolute error of 1.32 log2 titre. In (B) this was reduced to 1.02 log2 titre

by including the high-impact substitutions, K141E and ∆K130, which explain transitions

between antigenic clusters shown in Figure 2.10. With this model, predictions are essentially

based on whether virus and antiserum are predicted to belong to the same antigenic cluster

in the antigenic map or not. In (C) the average error of predictions is further reduced to 0.69

log2 titre by using all substitutions identified in Chapter 3 (Table 3.1) for prediction. A final

gain in accuracy was achieved in (D) by including terms for the reactivity of each virus that

account for differences in titres related to properties of the virus such as receptor-binding

avidity (mean, absolute error = 0.54 log2 titre).

Understandably, much of the focus of studies of the genetic basis of antigenic variation of
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Figure 6.1: The roles of low- and high-impact HA amino acid substitutions in

predicting antigenic relationships between A(H1N1) viruses: Observed and predicted

HI titres plotted on log2 scale (antigenic units) using representative models trained with 90% of

the data. Predictive models contained terms for (A) average titres for each reference virus, (B)

antigenic cluster-defining substitutions ∆K130 and K141E, (C) all 18 antigenic substitution(s)

shown in Table 3.1, (D) all 18 antigenic substitution(s) shown in Table 3.1 with additional

terms that estimate differences in test virus receptor-binding avidity (non-antigenic variation in

titre associated with each virus). Each model was fitted to the same training dataset comprising

90% of all observations and predictions for the remaining data are shown.
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influenza viruses has been concentrated on the substitutions of highest antigenic impact

(e.g. Koel et al., 2013). However, the accuracies of predictions made using these alternative

models demonstrate that including substitutions that cause smaller antigenic changes in

addition to those that cause the largest antigenic changes significantly improves the accuracy

of predictions of the HA cross-reactivity of emerging viruses. Whether or not they are also

important in the wider antigenic phenotype and contribute to viral fitness remains to be

tested. It is possible that by examining the accuracy of predictions of genotype survival

between influenza seasons made using models that included substitutions of high-impact,

low-impact, or both, questions of this nature could be resolved.

6.2 The impact of receptor-binding avidity

As stated in Chapter 1, HI titres reflect a ternary reaction between antigen, erythrocyte

and antibody. The HI assay measures the ability of reference antisera to prevent binding of

influenza viruses to erythrocytes and after the introduction of the HI assay, it was quickly

noted that changes in viral receptor-binding avidity can impact HI titres (Archetti & Horsfall,

1950; Hirst, 1943). Understanding how substitutions that affect HA receptor-binding avidity

influence HI titre is critical to the interpretation of the HI assay, and therefore the antigenic

characterisation of influenza viruses. Avidity changes can potentially result in antigenic

differences between viruses being accentuated or masked. There is however no standard

method of accounting for the influence of receptor-binding avidity when interpreting HI data,

and instead GISRS expert decision-makers rely on experience when interpreting HI data as

part of the vaccine virus selection process. There is no method to correct for the impact of

variation in avidity on HI titres that has been systematically tested experimentally. Archetti

& Horsfall (1950) proposed a method to control for variation in receptor-binding avidity

producing an antigenic distance, d between two viruses, X and Y , that is roughly independent

of their receptor-binding avidities, though this measurement requires both homologous (HXX

and HY Y ) and both heterologous titres (HXY and HY X) to be known:

d(X,Y ) = log2

(√
HXXHY Y

HXYHY X

)
(6.1)

Using this Equation to control for the effect of avidity in has been shown to influence the

clustering of A(H3N2) viruses using antigenic cartography (Li et al., 2013). Equation 6.1 is

however limited in its usefulness as it requires both homologous and both heterologous titres.

As a result, Li et al. (2013) could only re-estimate positions in antigenic space for a small

subset of viruses positioned by Smith et al. (2004).

In Chapters 3 and 4 model selection showed that it was necessary to account for variation
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in the magnitude of HI titres measured using different viruses by including virus reactivity

parameters. These reactivity parameters (Av terms in equations used throughout chapters

3–5) may reflect differences in virus receptor-binding between viruses but could also reflect a

variety of factors related to individual viruses, including their dilution if they are tested on

only a single date. When plotted against year of isolation, these Av factors did not seem to

be distributed across years at random, with A(H1N1) virus Av terms in particular showning

a trend through time (Figure 6.2). This suggested that these Av factors might reflect changes

in the virus that have occurred over the sampled period of evolution.

Similar parameters reflecting differences in the reactivity of influenza viruses in HI assays

were estimated by BMDS models used to construct antigenic maps for the same viruses in

Chapter 2. The terms estimated by the BMDS model were strongly correlated with the Av

terms plotted in Figure 6.2 for A(H3N2) viruses (R2 = 0.80). While the correlation was

weaker for A(H1N1) (R2 = 0.54), plotting the virus reactivity terms estimated using the

BMDS model against year of isolation for the A(H1N1) viruses (Figure 6.3) revealed a very

similar pattern to that shown in Figure 6.2 (the virus reactivity parameters in the BMDS

model include an estimate of the baseline HI titre across all observations so appear higher

on the y-axis than those in 6.2). That the virus reactivity parameters estimated by these

two approaches show similar patterns indicates that the parameters are not just artefacts of

either modelling approach but that they do instead reflect genuine sources of variation in the

data.

To test the hypothesis that estimated Av effects reflected some genuine aspect of HA function

with an underlying genetic basis, virus reactivity parameters were modelled as a continuous

trait reconstructed on the HA1 phylogeny using BEAST (Drummond et al., 2012). The con-

tinuous trait model in BEAST was originally developed as a phylogeographic technique to

allow geographic coordinate data to be incorporated into phylogenetic tree reconstruction,

so that historical migration events could be reconstructed upon the phylogeny (Lemey et al.,

2010). It can also be used for ancestral reconstruction of any continuously measured pheno-

typic trait (e.g. five morphological traits of species of Darwin’s finches including wingspan

and tarsus length (Drummond et al., 2012)). Under the phylogeographic scenario, a con-

tinuous trait model can indicate the relationship between geographic proximity and genetic

relatedness of individuals, and allows key migration events to be mapped to branches of

the phylogeny that connect hypothetical ancestors. Phylogenetic trees were generated using

the same methodology described in Chapter 2 and the distribution of changes in Av across

branches of the phylogeny were drawn from a Cauchy distribution using default parameteri-

sation.

In Figure 6.4, Av parameters are reconstructed upon a phylogenetic tree for the 43 A(H1N1)

reference viruses described in the dataset in previous chapters. This was done for reference

viruses in the first instance because Av terms estimated for these viruses are more reliable. For
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Figure 6.2: Virus reactivity parameters plotted against year of isolation: Av

parameters used to adjust titres according to the reactivity of each virus estimated using

Equation 5.1 are plotted against the year of virus isolation. 502 A(H1N1) viruses are shown in

(A) and 229 A(H3N2) viruses are shown in (B). Av terms estimated for four A(H1N1) viruses

isolated during the period 1978–1994 are not shown in (A).
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Figure 6.3: A(H1N1) virus reactivity parameters estimated by BMDS plotted

against year of isolation: Av parameters used to adjust titres according to the reactivity of

each virus estimated by a Bayesian multidimensional scaling model, described in Chapter 2 are

plotted against the year of virus isolation. Av terms estimated for four A(H1N1) viruses isolated

during the period 1978–1994 are not shown.

a non-reference virus in the dataset, low titres to all reference antisera that it is tested against

could indicate that the virus is antigenically distinct or that it has increased avidity and that

it overcomes the polyclonal antibody response as a result of this. For reference viruses with

associated antiserum and known homologous titres, this ambiguity is resolved. Figure 6.4

indicates that the trend in Av patterns through time shown in Figure 6.2 is the result of under-

lying genetic variation and has not arisen because of some factor (i.e. changes in experimental

practice through time). For example, the Av parameter estimated for A/Chile/4765/2000 is

much more similar to those of phylogenetically related viruses in the clade close to the bottom

of the tree than it is to other viruses isolated in the same year (A/Madagascar/57794/2000,

A/Fukuoka/C86/2000 and A/Hong Kong/1252/2000) which are phylogenetically distant and

all appear higher up in the tree as it is displayed in Figure 6.4.

Discounting Av parameters for the oldest two viruses in the tree, which are likely to be

unreliable given how antigenically and genetically distant these viruses are to each other

and to all other viruses in the phylogeny, there is a decrease in Av across the period of

evolution studied. This means that generally titres are dropping as a result of non-antigenic

change in virus phenotype, which could indicate an increase in avidity, which tends to result

in lower titres as greater numbers of antibodies are required to overcome virus-erythrocyte

binding. This could complement the model of antigenic drift proposed by Hensley et al.
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Figure 6.4: A(H1N1) virus reactivity parameters reconstructed upon HA1

phylogeny: Av terms were estimated using Equation 5.1 for each reference virus in the

A(H1N1) dataset and modelled as a continuous trait in BEAST. The colouring of branches is

according to the legend at top left. This shows the Av parameter used to adjust titres according

to the reactivity of each virus and is shown as log2 titre. Branch lengths are measured in

evolutionary time in terms of years rather than substitutions with scale at bottom.
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(2009) introduced in Chapter 1 whereby A(H1N1) viruses escaped the polyclonal antibody

response of the host population by acquiring avidity increasing substitutions. There is no

obvious pattern between Av and year of isolation in A(H3N2) and phylogenetic analyses

incorporating this information are ongoing. A long term decrease in the receptor-binding

avidity of A(H3N2) viruses has been observed since their emergence in the human population

in 1968, though the haemagglutination assay performed prior to HI in an attempt to negate

the effect of differences in receptor-binding avidity on HI titres may have succeeded in this

is not reflected in Av terms estimated.

In the same way in which historical migration events can be mapped to particular internal

branches of the phylogeny when a continuous trait model is used for phylogeography, in this

scenario changes in receptor-binding avidity that affect HI titres can also be. Reconstruct-

ing which substitutions that occurred in the branches in which ancestral states of Av were

estimated to change most dramatically could indicate which genetic changes are the basis of

this phenotypic variation. After ignoring the oldest viruses in the phylogenetic tree, the most

apparent change in Av occurs in the trunk lineage in the area around A/Kanagawa/92/98.

Substitutions mapping to the trunk lineage in the branches either side of this virus are E153G,

S183P and I191L.

The development of methods to identify which amino acid substitutions have caused changes

in the receptor-binding avidity of influenza, as detected in HI assays, is a potential area

for future work. I have been unable here to attribute variation in receptor-binding avidity,

as expressed in HI, to specific amino acid substitutions that have occurred, instead using

Av corrections for individual viruses. However the impact on HI assays of single amino

acid substitutions introduced by mutagenesis was assessed in the reverse genetics experiment

described in Chapter 3. In addition to quantifying the antigenic impact of introduced sub-

stitutions, differences in titres for mutant viruses, relative to parental viruses, that were not

consistent with a pattern indicating antigenic change were quantified (Equation 3.1). The

same method was used to estimate the antigenic and non-antigenic impact on HI titres of

amino acid changes in A(H3N2) experiments carried out by Koel et al. (2013). This method

is conceptually similar to that of Archetti & Horsfall (1950) and can identify the impact on HI

titre of what appear to be changes in avidity. Substitutions with an estimated non-antigenic

impact on HI titre of a magnitude that indicates a change in virus properties are shown in

Table 6.1.

Table 6.1 also includes results from amino acid substitutions present in escape mutants from

studies using immunised mice (Hensley et al., 2009) and introduced by reverse genetics (Li

et al., 2013). These studies used erythrocyte binding assays in addition to HI assays to

show that the increases and decreases in HI titres caused by single mutations were the result

of decreases and increases in receptor-binding avidity respectively. These results validate

the inferences made at H1 HA position 153 and H3 HA position 145. More generally, they
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6.2 THE IMPACT OF RECEPTOR-BINDING AVIDITY

Table 6.1: HA1 amino acid substitutions identified as affecting antigenic analyses as a result

of changes to receptor-binding avidity

Subtype HA1 Substitution Charge Impact Reference§

position∗ change† on titre‡

A(H1N1)

153 (156)
E to K ++ drop (1.28) Chapter 3

E to K ++ drop Hensley et al. (2009)

155 (158) E to K ++ drop Hensley et al. (2009)

243 (246) E to G + drop Hensley et al. (2009)

A(H3N2)

145

K to N − rise (1.49) Chapter 4

K to N − rise Li et al. (2013)

N to K + drop (0.34) Chapter 4

N to K + drop Li et al. (2013)

155

T to Y 0 drop (0.95) Chapter 4

Y to T 0 rise (1.03) Chapter 4

H to T − rise (1.32) Chapter 4

T to H + drop (1.31) Chapter 4

156
E to K ++ drop (1.21) Chapter 4

K to E −− rise (1.10) Chapter 4

189

K to Q − drop (2.02) Chapter 4

Q to K + rise (2.21) Chapter 4

K to R 0 drop (2.52) Chapter 4

226 I to V 0 rise Li et al. (2013)

* For A(H1N1), H3 HA1 numbering is shown in brackets.
† ++ (or −−) indicates substitution from a negatively charged residue to a positively charged

residue (or the reverse). + (or −) indicates substitution from a negatively (positively) charged

residue to a non-charged residue or from a non-charged residue to a positively (negatively)

charged residue. 0 indicates no change in charge.
‡ Estimated impact on log2 titre in brackets.
§ Results from Chapter 4 are based on analysis of HI data published by Koel et al. (2013).

show that amino acid substitutions increasing and decreasing positive charge at the identified

positions typically result in lower and higher HI titres, respectively, as a result of non-antigenic

changes to virus phenotype. Changes in charge in Table 6.1 are based on side chain charge

at pH 7.4. This pH reflects the conditions under which binding is initiated; the host cell

membrane and the sialic acid receptor are predominantly negatively charged and therefore,

generally, amino acid substitutions increasing and decreasing the positive charge of HA1

increase and reduce, respectively, the binding avidity and affinity (Kobayashi & Suzuki,

2012). After the virus has bound to sialic acid, it is then endocytosed and transported within

the endosome where a declining pH (5.0–6.0) triggers a major conformational change (Mair

et al., 2014). The correlation between charge and receptor-binding avidity is seen across the

results shown in Table 6.1 except in the case of K–Q at position 189 in A(H3N2) where a
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6.3 MORE COMPLEX ANTIGENIC EFFECTS

drop in positive charge coincides with a lower HI titre and an increase in positive charge

coincides with an increase in titre.

These results provide support for the role of amino acid changes that alter avidity in the

escape from polyclonal antibody response, as represented in the HI assay, in both former

seasonal A(H1N1) and A(H3N2) viruses. Furthermore, substitutions in the 153-157 region

of A(H1N1)pdm09 viruses that influence receptor-binding specificity or avidity have been

observed to contribute to apparent antigenic effects in HI (Liu et al., 2010). I have shown

that it is possible to quantify the antigenic and non-antigenic impacts of amino acid changes

in HA and I think there is an opportunity to incorporate inference of this kind into the

interpretation of HI data in a more systematic way. It is clear that changes to receptor

binding avidity affect escape from polyclonal antibodies in HI assays, and laboratory studies

demonstrate that changes in avidity can also allow influenza viruses to escape the immunity

of vaccinated mice (Hensley et al., 2009). Determining the extent to which changes in avidity

contribute to escape from the polyclonal antibody response in nature is more difficult to

assess.

6.3 More complex antigenic effects

There are various ways in which the complexity of the models presented could be increased

to better reflect the relationships between antibodies and epitopes. A potential weakness of

the models presented is an assumption that the antigenic impact of forward and reverse sub-

stitutions are the same (i.e. they are symmetric). Experimental studies have shown that this

is not necessarily the case. In A(H3N2), the substitution N145K has been shown to introduce

an antigenically dominant epitope. The substitution N145K does not reduce cross-reactivity

to viruses possessing N145, because antibodies do not tend to bind to N145, however the

substitution K145N does reduce cross-reactivity to viruses possessing K145 because viruses

possessing K145 have an antigenically dominant epitope containing that residue (Li et al.,

2013). This asymmetric antigenic effect was seen in addition to a change in receptor binding

avidity caused by substitution in both directions (Table 6.1). The asymmetric antigenic effect

associated with N145K and K145N likely explains why the paired amino acid substitutions

K145N and N145K appear distant from the line in Figure 4.4, while the effects of all the

other pairs of forward or reverse substitutions that impact HI titres as a result of avidity

changes are very well negatively correlated. The inclusion of asymmetric antigenic effects

of substitutions, or any other more complex relationships of this kind, that are based on a

deeper knowledge of the interactions that occur between antibodies and the epitopes which

they bind to has real potential to increase the accuracy of sequence-based models such as

those I present.

To my knowledge no models of the genetic basis of antigenic variation that incorporate phe-
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notypic data estimate any effect of epistasis. It is possible that doing so would achieve a

better understanding of the relationship between molecular and antigenic evolution. The

models I have presented assume that a specific amino acid substitution occurring at a par-

ticular position will always have the same antigenic impact. Potentially models could allow

for the antigenic effect of substitutions to depend on the amino acid sequence in which they

arise. These kind of dependencies could also be more specific (perhaps between pairs of

amino acid positions). Dependencies between amino acid positions could be made to depend

on the proximity of residues on the surface of the structure of the glycoprotein or on mem-

bership of the same antigenic site defined by monoclonal antibody mapping experiments. In

interpretating HI assays carried out using viruses generated by reverse genetics with single

antigenically important substitutions, it was clear that the impact of a substitution on the

antigenic similarity of the mutated virus to any given reference antiserum depended on ex-

isting genetic and antigenic differences between parental virus and reference virus (e.g. the

variation in observed impact of substitutions in Figure 3.6). A more sophisticated model of

the genetic basis of antigenic relationships between viruses could attempt to quantify how

substitutions affecting antigenic similarity to specific viruses (e.g. vaccine viruses) depend on

existing genetic and antigenic differences between viruses.

6.4 Future directions and final conclusions

In Chapter 5, I demonstrate that the genetic determinants of antigenicity identified in Chap-

ters 3 and 4 can be used to predict HI titres of emerging influenza viruses from HA sequence

using models trained to data collected in previous years. Antigenic cross-reactivity of the

HA glycoprotein, as expressed in the HI assay, is a critical aspect of the antigenic phenotype

of influenza A viruses, and consequently, an important factor contributing to the adaptive

phenotype and virus fitness more generally. For this reason, I think it is possible that the

approaches described in previous chapters could be used to complement and refine existing

methods for predicting the evolutionary success of influenza viruses from genotype.

In previous chapters I describe the model presented by  Luksza & Lässig (2014) that predicts

the frequency of HA genotypes in one season based on their frequency within the virus

population in the previous season and a fitness score inferred from HA genotype. Amino acid

substitutions that arise define clades of viruses on the HA phylogeny. The fitness score for a

clade rewards antigenic novelty relative to other viruses in the tree, which is approximated by

a count of amino acid substitutions in the sets of positions in antigenic sites A–D classified by

Shih et al. (2007) and penalises substitutions that occur outside these antigenic sites on the

assumption that other regions of HA are likely to be under negative selection so that protein

structure and function is retained. Including quantitative estimates of the relative importance

of positions within epitopes and of the antigenic impact of specific amino acid substitutions
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should help to refine these techniques further. Together with my PhD supervisors, I am

currently working with Marta  Luksza and Michael Lässig to explore these possibilities.

In addition to providing more accurate predictions of the evolutionary success of HA geno-

types, combining the inferences made in previous chapters with this model of evolutionary

success could enhance our knowledge of antigenic evolution in other ways. For example, the

previous application of this model showed that counts of substitutions in H3 antigenic site

E did not improve model predictions, while counts of substitutions in antigenic sites A–D

did ( Luksza & Lässig, 2014). Testing the accuracy of predictions made using various sub-

sets of the genetic determinants identified could help us to understand the roles of antigenic

substitutions of low- and high-impact in the adaptive evolution of influenza viruses, while

including terms for substitutions identified as affecting avidity or even finding a way of in-

cluding Av terms in the fitness score used for predictions could inform us about whether

avidity effects apparent in HI are actually contributing to virus fitness or if they are actually

only complicating factors that need to be accounted for when the results of HI assays are

interpreted.

The collective results of previous chapters indicate an ability to quantify the effect of genetic

changes on a complex aspect of the phenotype of influenza A viruses. In this chapter I have

speculated on how these methods could be incorporated into various aspects of the process of

which the ultimate outcome is the selection of vaccine viruses. It should also be stressed that

the methods presented appear to be versatile. They were originally developed for FMDV and

in Chapter 5, the most recently developed methods are re-applied to FMD viruses showing

that is possible to predict VN titres. This generalisability calls for an extension to other

antigenically variable pathogens, especially where antigenic variation creates difficulties for

existing vaccines (e.g the orbiviruses, bluetongue, and African horse sickness, where serotype

identification is important for vaccination strategies) or prevents the development of effective

vaccines (e.g. hepatitis C). In particular, it would be interesting to apply these methods to

viruses about which less is known of their antigenic determinants. For a virus about which far

less is known of the constituents of epitopes and antigenic evolution more generally, there is

potentially more to be gained from the epitope identification aspect of the methods presented.
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Mean haemagglutination inhibition titres for
recombinant viruses generated in Chapter 3

Table A.1: Mean haemagglutination inhibition titres for reference viruses and recombinant viruses

generated in Chapter 3 against antisera raised against reference viruses presented in Table 3.2

Reference viruse against which antisera were raised

A/BAY A/JBG A/JBG A/UU A/HK A/NC A/HK

/7/95 /82/96 /159/97 /209/98 /4847/98 /20/99 /1252/00

Reference virus:

A/Bayern/7/95 1280 1016 32 20 20 20 20

A/Johannesburg/82/96 2560 2281 80 36 20 57 20

A/Johannesburg/159/97 40 40 1613 640 160 254 20

A/Ulan-Ude/209/98 26 20 202 453 71 113 20

A/Hong Kong/4847/98 20 20 45 127 72 57 20

A/New Caledonia/20/99 20 25 180 359 202 285 32

A/Hong Kong/1252/2000 20 20 20 22 25 32 202

Recombinant virus:

A/Netherlands/1/93 2792 2792 87 28 20 40 20

(Neth93)

Neth93 ∆K130 87 104 1174 698 453 453 24

Neth93 R43L 2792 2792 80 28 20 40 20

Neth93 E153K 1660 1522 28 34 20 24 20

Neth93 D187N 1396 1660 698 20 20 28 20

Neth93 ∆K130 K141E 62 24 174 160 48 48 174

Neth93 ∆K130 E153K 28 20 57 247 80 44 20

Neth93 ∆K130 D187N 67 52 698 538 293 320 28

Neth93 ∆K130 D187V 67 80 830 761 415 415 28

Geometric mean HI titres are recorded as the reciprocal of the highest dilution of a particular antiserum

that inhibited haemagglutination of a standardised concentration of erythrocytes by eight haemagglu-

tinating units of each recombinant virus. Abbreviations in reference virus names: Bayern (BAY), Jo-

hannesburg (JBG), Ulan-Ude (UU), Hong Kong (HK) and New Caledonia (NC). A visual description of

these data is provided in Figure 3.5.
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Antisera used to characterise recombinant
viruses in Chapter 4

Table B.1: Antisera used to characterise recombinant viruses are categorised as lacking or

sharing substitutions introduced by mutagenesis

Substitution Reference virus against which antisera were raised

introduced by Lacking introduced Sharing introduced

mutagenesis substitution substitution

S133D A/Stockholm/10/85, A/Sichaun/2/87 A/Shandong/9/93, A/Lyon/2279/95

A/Lyon/1149/91

G135E A/Stockholm/10/85, A/Sichaun/2/87 A/Lyon/1149/91

A/Shanghai/11/87, A/Shandong/9/93

G144D A/Hong Kong/1/68 A/Hong Kong/107/71, A/Bilthoven/21793/72

A/Port Chalmers/1/73, A/Victoria/3/75

N145K A/Netherlands/209/80, A/Stockholm/10/85 A/Beijing/353/89, A/Victoria/2/90

A/Sichaun/2/87, A/Shanghai/11/87 A/Lyon/1149/91, A/Netherlands/823/92

A/Hong Kong/34/90, A/Beijing/32/92 A/Paris/548/92, A/Lyon/2279/95

A/Shandong/9/93, A/Johannesburg/33/94 A/Nanchang/933/95, A/Wuhan/359/95

A/Brisbane/8/96, A/Sydney/5/97

S145N A/Hong Kong/1/68, A/Hong Kong/107/71 A/Netherlands/209/80

A/Bilthoven/21793/72, A/Port Chalmers/1/73

A/Scotland/840/74, A/Victoria/3/75

H155T A/Lyon/1149/91, A/Beijing/32/92 A/Fujian/411/2002, A/Netherlands/22/2003

A/Shandong/9/93, A/Lyon/2279/95 A/Wisconsin/67/2005, A/Netherlands/42/2006

A/Nanchang/933/95, A/Wuhan/359/95

A/Brisbane/8/96, A/Sydney/5/97

A/Netherlands/118/2001, A/Netherlands/88/2003

T155Y A/Hong Kong/1/68, A/Hong Kong/107/71 A/Bilthoven/21793/72, A/Port Chalmers/1/73

A/Victoria/3/75

Y155H A/Bilthoven/21793/72, A/Port Chalmers/1/73 A/Sichuan/2/87, A/Shanghai/11/87

A/Victoria/3/75, A/Netherlands/209/80 A/Hong Kong/34/90, A/Lyon/1149/91

A/Netherlands/241/82, A/Philippines/2/82

A/Stockholm/10/85

E156K A/Netherlands/209/80, A/Stockholm/10/85, A/Beijing/32/92, A/Shandong/9/93

A/Sichuan/2/87, A/Shanghai/11/87 A/Johannesburg/33/94, A/Lyon/2279/95

A/Beijing/353/89, A/Hong Kong/34/90

A/Victoria/2/90, A/Lyon/1149/91

A/Netherlands/823/92, A/Paris/548/92

K156E A/Bilthoven/21793/72, A/Port Chalmers/1/73 A/Bangkok/1/79, A/Netherlands/241/82

A/Victoria/3/75, A/Texas/1/77 A/Philippines/2/82, A/Stockholm/10/85

A/Sichuan/2/87

Q156H A/Sydney/5/97, A/Netherlands/118/2001 A/Fujian/411/2002, A/Netherlands/22/2003

A/Netherlands/88/2003, A/Wisconsin/67/2005 A/Netherlands/42/2006

K156Q A/Shandong/9/93, A/Lyon/2279/95 A/Sydney/5/97, A/Netherlands/118/2001

A/Brisbane/8/96

K158E A/Sydney/5/97, A/Netherlands/118/2001 A/Lyon/1149/91, A/Shandong/9/93
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Substitution Reference virus against which antisera were raised

introduced by Lacking introduced Sharing introduced

mutagenesis substitution substitution

A/Fujian/411/2002, A/Netherlands/22/2003 A/Johannesburg/33/94, A/Nanchang/933/95

A/Netherlands/88/2003, A/Wisconsin/67/2005 A/Wuhan/359/95, A/Brisbane/8/96

A/Netherlands/42/2006

G158E A/Hong Kong/107/71, A/Bilthoven/21793/72 A/Netherlands/209/80, A/Stockholm/10/85

A/Port Chalmers/1/73, A/Victoria/3/75

S159Y A/Bilthoven/21793/72, A/Port Chalmers/1/73 A/Stockholm/10/85, A/Shanghai/11/87

A/Victoria/3/75, A/Netherlands/209/80 A/Hong Kong/34/90, A/Lyon/1149/91

A/Netherlands/241/82, A/Philippines/2/82

G172D A/Netherlands/209/80, A/Netherlands/241/82 A/Bilthoven/21793/72, A/Port Chalmers/1/73

A/Philippines/2/82, A/Stockholm/10/85 A/Victoria/1/77

A/Sichaun/2/87

K189R A/Victoria/3/75, A/Netherlands/209/80 A/Sichuan/2/87, A/Shanghai/11/87

A/Netherlands/241/82, A/Philippines/2/82 A/Hong Kong/34/90, A/Lyon/1149/91

A/Stockholm/10/85

Q189K A/Hong Kong/1/68, A/Hong Kong/107/71 A/Victoria/3/75, A/Netherlands/209/80

A/Bilthoven/21793/72, A/Port Chalmers/1/73

R189S A/Sichaun/2/87, A/Shanghai/11/87 A/Shandong/9/93, A/Johannesburg/33/94

A/Hong Kong/34/90, A/Lyon/1149/91 A/Lyon/2279/95

A/Netherlands/823/92, Beijing/32/92

A/Paris/548/92

D193N A/Hong Kong/107/71, A/Port Chalmers/1/73

A/Netherlands/209/80, A/Stockholm/10/85

N193S A/Stockholm/10/85, A/Sichuan/2/87 A/Hong Kong/34/90, A/Lyon/1149/91

A/Shanghai/11/87 A/Beijing/32/92, A/Shandong/9/93

A/Johannesburg/33/94, A/Lyon/2279/95

V196A A/Lyon/1149/91, A/Shandong/9/93 A/Sydney/5/97, A/Netherlands/118/2001

A/Lyon/2279/95, A/Brisbane/8/96

Q197R A/Bilthoven/21793/72, A/Port Chalmers/1/73 A/Netherlands/241/82, A/Philippines/2/82

A/Victoria/3/75 A/Stockholm/10/85, A/Sichuan/2/87

I217V A/Hong Kong/1/68, A/Hong Kong/107/71 A/Victoria/3/75

A/Bilthoven/21793/72, A/Port Chalmers/1/73

A/Netherlands/209/80, A/Netherlands/241/82

A/Philippines/2/82, A/Stockholm/10/85

A/Sichuan/2/87

T262N A/Netherlands/209/80, A/Stockholm/10/85 A/Shanghai/11/87, A/Hong Kong/34/90

A/Sichuan/2/87, A/Beijing/353/89 A/Beijing/32/92, A/Shandong/9/93

A/Victoria/2/90, A/Lyon/1149/91 A/Johannesburg/33/94, A/Lyon/2279/95

A/Netherlands/823/92, A/Paris/548/92

N276K A/Shandong/9/93, A/Lyon/2279/95 A/Sydney/5/97, A/Netherlands/118/2001

A/Brisbane/8/96

I278S A/Hong Kong/1/68, A/Hong Kong/107/71 A/Victoria/3/75, A/Netherlands/209/80

A/Bilthoven/21793/72, A/Port Chalmers/1/73
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