

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Enlighten: Theses <u>https://theses.gla.ac.uk/</u> research-enlighten@glasgow.ac.uk

THERMODYNAMIC PROPERTIES OF CaO-AlgO3-SiO2 SLAGS.

THESIS

submitted to the

UNIVERSITY OF GLASGOW

for the degree of

DOCTOR OF PHILOSOPHY

by

THOMAS G. MACFARLANE, B.Sc., A.R.T.C.

October, 1955.

ProQuest Number: 10646775

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10646775

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

CONTENTS:

Chapter	I	INTRODUCTION	1
Chapter	II	REVIEW OF PREVIOUS WORK	3
Chapter	III	THEORETICAL CONSIDERATIONS The choice of a standard slag. The determination of a _{CaS} of a slag. The determination of the sulphuris- sing potential. A, of the gas.	15 17 17 21
Chapter	IV	EXPERIMENTAL TECHNIQUE. Gas production, purification, control	32
		of rate of flow and mixing.	32
		Analysis of the gas mixture.	35
		The furnace and the reaction chamber.	37
		Analyzia of elega	41 42
		Estimation of sulphur.	4 4
		Experimental procedure.	48
		Determination of the attainment of equilibrium.	50
Chanter	ν.	RESULTS OF SLAG-GAS EXPERIMENTS.	53
- mp - out		Tables of results.	53
		Preliminary runs using slag A6 -	47
		Table V.	6E
		The Constant systems	00 71
		The CaO-Alpo -Sion system.	75
<u>.</u>	***		
Unapter	VI.	AND COMPARISON WITH PREVIOUS DATA	77
		The CeO-Aloo system.	77
		The CaO-SiO system	86
		The CaO-Al203-SiO2 system.	97
Chapter	VII	GENERAL DISCUSSION AND CONCLUSIONS	103
		APPENDIX	107
		ACKNOWLEDGEMENTS.	112
		REFERENCES	113

Page.

CHAPTER I.

INTRODUCTION.

INTRODUCTION.

The manufacture of iron and steel was well established as an art long before any major scientific investigations were carried out on the reactions underlying the processes. Over the last thirty years, research has discovered much about the fundamentals of the processes and the results obtained are now being used in iron- and steel-making plants as means of controlling rather complex operations.

The important part played by the slag phase in these operations has long been recognised. In iron-making the quality of the iron produced, which depends mainly on the sulphur and silicon contents, is determined by reactions which take place between the metal and slag phases. In steel making, slag-metal reactions play a major role in the removal of silicon, phosphorus, carbon and sulphur, although gas-metal and gas-slag reactions may also occur, especially in the cases of desulphurisation and decarbonisation.

It is obvious that, before the reactions governing the iron- and steel-making processes can be fully understood, a knowledge of the constitution of the liquid slag phase is necessary. The present knowledge of the constitution of iron- and steel-making has been derived from various works and laboratory investigations, the most fruitful source as yet being the investigation of slag-metal equilibria. However, such data are not easy to interpret, on account of the lack of information on the activity coefficients of various constituents in both the liquid iron and the liquid slag phases.

In the present approach to the problem of liquid slag constitution it was decided to study slag-gas equilibria. The information gained from such studies is usually easier to interpret than that obtained from slag-metal studies, since the gas phase can be regarded as an ideal solution and the activity or potential of each component is therefore obtained from a knowledge of the equilibrium conditions at the temperature The iron oxide-oxygen equilibrium has already been studied of study. by White(1), by Darken and Gurry(2) and by Chipman and Larson(3), but the knowledge of slag constitution thus obtained was limited to slags containsing iron oxides and other oxides which combine with the iron oxides. In the present work, the equilibrium between molten slags and gases containing sulphur has been studied. This can give information not only about the constitution of liquid slags used in iron- and steel-making, and the activities of the slag components, but also about the transfer of sulphur between gas and slag in the open-hearth steelmaking process.

The ultimate reaction to be studied is

$$\frac{1}{2}S_2 + 0 = \frac{1}{2}O_2 + S$$

Since the number of variables involved in using iron- and steel-making slags and gases would have been too great to cope with under laboratory conditions, the slag systems studied were limited to those containing CaO as the only basic oxide constituent, and Al_2O_3 or SiO_2 or both as the acidic oxide constituents, while the gases used were mixtures of CO, CO_2 and SO_2 , the simplest possible to give calculable values of PO₂ and P_{S_2} The present work was almost completely limited to an experimental temperature of $1500^{\circ}C$.

CHAPTER II.

REVIEW OF PREVIOUS WORK

.

•

1

The earliest attempts to apply the laws of physical chemistry to iron- and steel-making slag-metal reaction used the total concentrations of the reactants, but met with little success. Consequently attempts were made to assess the "free" concentrations of the reactants in the slag, i.e., that part of the "total" concentration of a component which can be regarded as available for chemical reaction. The assumption was made that the compounds found in the solidified slags were also present in the liquid state and that these compounds were partially dissociated in the liquid slag. Thus Schenck(4) assumed that the comspounds formed in a steel-making slag were Ca0.SiO₂, 2Mn0.SiO₂, 2Fe0.SiO₂, 3Ca0.F₂O₅ or 4Ca0.P₂O₅, and 3Ca0.Fe₃O₄, and that they were in equilibrium with the "free" concentrations of their component oxides, e.g.,

$2Fe0.SiO_2 = 2FeO + SiO_2$

From *e* large amount of works data on slag-metal relationships and from the laboratory results of Korber and Oelsen(5), Schenck obtained values for the dissociation constants of these compounds, and constructed charts relating the free concentrations of slag components to the chemical analysis of the slag. Considering the assumptions involved in Schenck's treatment, the agreement obtained by various workers between observed steelmaking data and values calculated from Schenck's charts is good, although it is by no means perfect.

White(1) obtained dissociation constants for compounds formed between iron orides, silica and lime, by comparing the loss in weight caused by the dissociation of Fe_2O_3 , when melted alone, with the loss observed on the addition of known quantities of silica and lime,

З.

separately and together. White attributed the change in dissociation to the formation of ferrous silicates and calcium ferrites and calculated dissociation constants for these compounds in a manner similar to that of Schenck. The agreement between the results of Schenck and of White is not good, but, since White's experiments were carried out in the absence of molten iron and at oxygen pressures of 2-76 cms., this is not really surprising.

Recently, Grant and Chipman(6), investigating sulphur equilibria between liquid iron and slags, explained their results on the basis of a slag constitution model similar to that of Schenck. The basic oxides, CaO, MgO and MnO, were taken to be equivalent, on a molar basis, in their capacities to neutralise the acidic oxides, and were taken to combine with them according to the following rules.

2 Base $1SiO_2$, 4 Base $1P_2O_5$, 2 Base $1Al_2O_3$, 1 Base $1Fe_2O_3$, the remaining base being termed "excess base". Their results showed that the sulphur distribution ratio, (S)/[S], was controlled by the excess base or acid count, and that the relationship was almost linear.

Theories based on the ionic concept of slag constitution have been put forward by Herasymenko(7), Temkin(8), Kheinman(9) and Flood, Førland and Grjotheim(10) to explain slag-metal equilibria. Herasymenko's theory assumed complete ionisation of the slag, and gave reasonable agreement with acid open-hearth data. It was modified in a later paper(11 to explain basic steelmaking reactions, but the "equilibrium constants" were found to vary with slag composition. This was not surprising, since slag concentrations were expressed as ion fractions, i.e., the

number of gm. ions of the ion considered divided by the total number of gm. ions present (cations and anions) and constancy of the "equilibrium constant" would have implied that the ions were randomly mixed irrespective of their nature or the sign of their charge.

The theory put forward by Temkin(8) was similar to that of Herasymenko, but differed in one important respect, in that it assumed that each cation was surrounded by anions and vice versa. Kheinman(9) pointed out that the concept of non-ionised oxides and compounds put forward by Schenck(4) could be used to explain oxygen distribution but not sulphur distribution between metal and basic slags, whereas the ionic theory of Temkin could explain sulphur distribution but not oxygen distribution, and suggested that both sulphur and oxygen distribution could be accounted for satisfactorily if it were assumed that silicate melts contained both ionised and non-ionised compounds.

It is unlikely, however, that the various cations are associated equally with the different anions present, irrespective of charge, size, co-ordination number, etc., as is implicit in Temkin's theory. Flood, Førland and Grjotheim(10) made allowance for the differences in the energies of interaction of the various ions present and achieved consider-•able success in the interpretation of sulphur, manganese and phosphorus equilibria under basic slags.

Less success has been achieved in the application of these theories to acid steelmaking, principally because of the lack of knowledge of the state of combination of silica in acid slags. Thus before the ionic theory could be applied it would be necessary to know the types of silicate ions present in acid slags.

The purely thermodynamic approach to the problem of slag-constitution, in which the chemical activity of each component is utilized in the evaluation of slag-metal equilibria, is more useful than an approach relying on one of the theories given above, since it can be used independently of the methods and assumptions involved in obtaining the Thus the attempts which workers such as Schenck and activity values. Chipman have made to obtain suitable expressions for the "free" concentrations of slag reactants in slag-metal reactions can be regarded as methods of assessing the activity of those reactants in slags. In recent years, Richardson(12) has used thermodynamic data to estimate the activity of FeO and SiO₂ in molten FeO-SiO₂ slags, Rey(13) has used the phase diagrams of a number of binary silicate systems to estimate the activities of SiO₂ and the corresponding metal oxides, and Bell, Murad and Carter(14) have used the results of experiments on the distribution of Mn and O between iron and FeO-MnO-SiO2 slags to determine activities of the oxide componsents of these slags. Such activity values can be used in the evaluation of slag-metal equilibria independently of how they were obtained. The present approach, through gas-slag equilibria would fall to be included in this category.

The amount of data at present available on reactions of the slag phase with the furnace atmosphere is small compared with the data available on slag-metal reactions, and hence there is not an adequate basis for a full understanding of the transfer mechanism of sulphur and oxygen between gas and slag. Apart from the recent work of Fincham and Richardson(15) information obtained by laboratory investigations has been confined to

f

studies on oxygen transfer between the gas phase and slags containing iron oxides, and information on gas-slag sulphur transfer has been obtained only from works data and sulphur balances, which are, of course, unsatisfactory as sources of fundamental data on iron- and steel-making reactions.

Laboratory investigations on oxygen-iron oxide gas-slag equilibria have been mainly of two types.-

- (a) the study of the dissociation of molten slags in an evacuated system, the oxygen pressure resulting from its decomposition being measured, and
- (b) the study of the equilibration of slags with gases of known oxygen potentials.

The former method was used by Krings and Schackmann(16) in their studies of the dissociation of iron oxide-lime-silica mixtures at temperatures of 1550-1600°C. The latter method was first used by White(1), as outlined above. The decomposition of ferric oxide into oxygen and lower iron oxides was studied at various temperatures under oxygen pressures of 2 - 76 cms. and the effect of additions of CaO and SiO₂ upon this dissociation was also observed. The experimental procedure involved suspending a sample in a platinum crucible from one arm of an analytical balance, the proportions of ferric and ferrous oxides being calculated from observations of the weight loss caused by the reaction

$$Fe_2 O_3 = 2FeO + \frac{1}{2}O_2$$

Unfortunately iron dissolves in the crucible according to the reaction

 $Fe0 = Fe (in Pt) + \frac{1}{3}O_3$

thus causing a permanent weight loss to the system. Reviewing this work, Larson and Chipman(3) indicated that White's results do not agree with the later work of Darken and Gurry(2) on account of a faulty method of correcting for this reaction.

Darken and Gurry(2) worked on the iron-oxygen system melting iron oxide in a platinum crucible under an atmosphere of controlled oxygen potential. Depending upon the oxygen potential desired, their atmospheres were obtained from $CO-CO_2$, CO_2-H_2 , H_2O , CO_2 , air or O_2 , gases. By calculations from the ferrous and ferric oxide analyses of the quenched samples, Darken and Gurry were able to determine the iron and oxygen activities in the various slags used. In subsequent work they investigated the effect of additions of CaO, MnO and SiO₂ on the iron and oxygen activities.

Analogous methods of slag-gas equilibria using $CO-CO_2$ gas mixtures to fix the oxygen potentials of the gases, have been employed by Schuhmann and Ensio(17) and by Michal and Schuhmann(18) in studies of the thermodynamic properties of iron silicate slags. Thus the laboratory technique involved in slag-gas equilibria investigations of oxygen transfer requires

- (a) the use of a suitable gas mixture to give the desired oxygen potential at the experimental temperature, and
- (b) satisfactory techniques for the freezing of the equilibrium

and the subsequent analysis of the sample. Both of these conditions were readily obtainable in the above investigations of oxygen-iron oxide equilibria, and it follows that similar

conditions would be necessary for the investigation of gas-slag sulphur transfer.

The only work which has been carried out on gas-slag equilibria involving sulphur transfer is that of Fincham and Richardson(15) which was published when the present work was almost completed. Their work was carried out using a similar experimental technique to that employed in the present work. They investigated the absorption of sulphur by various molten silicates and aluminates and iron- and steel-making slags. Small samples of the slags were brought into equilibrium with gas mixtures of CO2, H2, SO2 and N2 in such proportions as to give, at the experimental temperatures the required oxygen and sulphur potentials as calculated from the available thermodynamic data. Whereas in the present work a detailed study was made of the CaO-Al₂O₃-SiO₂ system at 1500°C, over sixty slag compositions being used, Fincham and Richardson investigated only a few CaO-Al₂O₃-SiO₂ slag compositions, one MgO-SiO₂ slag, two FeO-SiO₂ slags. On the other hand, Fincham and Richardson made a detailed investigation of the effect of temperature and the oxygen potenstial of the gas phases. Their work was carried out at four temperatures ranging from 1425-1650°C, and at oxygen potentials from 1 - 10¹¹ From their work, Fincham and Richardson were able to atmospheres. compare the relative sulphide capacities of the slags.investigated, within the temperature range important in iron- and steel-making, and certain comparisons will be made between the results of the present work and their results.

It was stated in the introduction that a study of gas-slag

equilibria involving sulphur transfer would give information about the desulphurisation process in steelmaking. It is, therefore, desirable to note here some of the results obtained from works data and sulphur balances which bear on the problem of desulphurisation, noting especially those pertaining to gas-slag equilibria.

Whiteley(19) with data from an acid open-hearth furnace, was one of the first to study the effect of the sulphur content of the furnace gases on the desulphurisation of the bath. He found that, during the refining period, sulphur was picked up by the bath only when the gas was incompletely burnt. With completely burnt gas, a slight loss of sulphur from the bath to the gas could occur.

Schenck(4) in another early study of works data investigated the sulphurisation and desulphurisation of the molten bith by the heating gases during the boil, and concluded that the reaction takes place mainly between the gas and the slag, while the metal bath is subject to the influence of the gaseous phase by way of the slag. Scienck assumed that the sulphur in the gas is present almost entirely as SO_2 , and reacts with the free lime according to the equation

 $SO_2 + CaO + 3CO = CaS + 3CO_2$

He concluded that sulphurisation of the bath is encouraged by reducing conditions.

Herty et al(20), stated that, once the slag has overed the bath in the basic open-hearth furnace, transfer of sulphur from gas to slag takes place according to the following reactions:

$$SO_2 + CaO + 3CO = CaS + 3CO_2$$
,

the CO being derived from the carbon-oxygen reaction in the bath, and

$$SO_2 + CaO + 3Fe(1) = CaS + 3FeO_1$$

the iron being present as small droplets suspended in the slag. Assuming that all the sulphur in the gas is present as SO₂, Herty worked out the ratio

Vol
$$\%$$
 sulphur in the gas over the bath = 0.27 $\%$ sulphur in the slag

but this ratio has no thermodynamic significance since neither the CO/CO_2 ratio of the gas, nor the state of oxidation of the slag, nor the effect of temperature has been taken into account.

Chipman and Ta Li(21) in their investigations into the problem, also emphasised the importance of the slag phase in desulphurisation. They showed that the most important variable in desulphurisation is the free lime content of the slag, and that oxygen tends to desulphurise the slag by oxidising CaS to SO_2 . However, as other substances in the slag are competing with the CaS for the small amount of oxygen available, there could be no efficient desulphurisation via the excess air in the flame.

At various times, investigators have endeavoured to obtain an overall picture of the movement of sulphur in an open-hearth heat by carrying out a sulphur balance over the whole operation. Due to the practical difficulties encountered in carrying out such a test, and the large number of personnel required to carry out the necessary work, relatively few complete sulphur balances have been carried out. Such balances as have been carried out furnish us with information on gas-slag sulphur movement as follows. Eisenstecken and Schultz(22) showed that in the heats they investigated in a furnace fired by a mixture of cokeoven gas and blast furnace gas, the sulphur in the gas was only **absorbed** in the charging and melting periods and that not only was this sulphur completely liberated in the boil during the refining period, but the bath underwent a net loss of sulphur. This desulphurisation was found to take place independently of whether a reducing or oxidising atmosphere was present.

Short and Meyrick(23) in a similar sulphur balance on a furnace fired by a mixture of coke-oven gas and producer gas, pointed out that by far the greatest amount of sulphur entering and leaving the furnace does so with the gas. In this test a little more sulphur was found to leave the furnace with the waste gases than enter with the fuel gases. Hence Short and Meyrick's results are in conformity with the observations of Eisenstecken and Schultz, since desulphurisation of the charge has taken place. Short and Meyrick also found that the use of sulphur-free instead of sulphur-containing gases has very little effect on the final sulphur content of the steel and attributed this to the intervention of checker reactions.

Harders, Grewe and Oelsen (24) recently carried out sulphur balances on 25 heats in a furnace using mixtures of coke-oven gas, blast furnace gas and producer gas. They found that there was a considerable absorption of sulphur by the slag and metal from the gas phase during charging and melting. Although there was found to be in many cases an increase in the sulphur content of the metal + slag in the refining

period also, the sulphur content of the metal itself was reduced due to sulphur transfer from metal to slag during this period. The decrease in the metal sulphur content during the boil was found to be smaller with increasing sulphur content in the gas. These results clearly show that sulphur can be picked up from the gas phase during the refining period, although they do not indicate whether the sulphur is transferred from the furnace gases to the slag directly or indirectly via molten metal globules thrown up through the slag into the gas phase by the action of the boil.

The qualitative conclusions of such works data were followed by a paper giving theoretical calculations on slag-gas sulphur reactions by Richardson and Withers(25). They represented the slag-gas sulphur reaction thus.

$$\frac{1}{2}O_{2} + (S^{-}) = \frac{1}{2}S_{2} + (O^{-})$$

$$K_{slag-gas} = \frac{(O^{-}) p_{S_{2}}^{1}}{(S^{-}) p_{S_{2}}^{1}}$$

Although experimental values for the equilibrium constant for this reaction were not available, Richardson and Withers circumvented this difficulty by using the gas-metal equilibrium.

 $\frac{1}{2}O_{3} + [S] = \frac{1}{3}S_{3} + [O]$ $K_{gas-metal} = \frac{\frac{1}{p^{2}}S_{2}[O]}{\frac{1}{p^{2}}O_{3}[S]} \quad \text{or} \quad \frac{\frac{1}{p^{2}}S_{2}}{\frac{1}{p^{2}}O_{3}} = K_{gas-metal} \quad \frac{[S]}{[O]}$

and by defining the slag in terms of the [O] and [S] values with which it would be in equilibrium. Thus values of the ratio $(p^{\frac{1}{2}}S_{2})/(p^{\frac{1}{2}}O_{2})$ in equilibrium with any slag defined in this manner could be calculated.

This approach to the problem showed that the metal can lose sulphur to the gas phase via the slag, even though the same metal in direct contact with the gas would pick up sulphur, this sulphur transfer from a lower to a higher sulphur potential being made possible by the simultaneous movement of oxygen from a higher to a lower potential, i.e., from the gas via the slag to the metal. The results of Richardson and Wither's calculations were presented in the form of curves showing the amount of sulphur which the gas phase could contain, at different gas CO/CO_2 levels and temperatures, before transfer of sulphur to the slag occurred. High temperatures and low CO/CO_2 ratios increased the tendency for this transfer to occur.

Such a treatment depends strictly on the condition of nonoxidation of the slag being fulfilled. This condition is not obtained in practice, since, at high oxygen potentials, (0^{--}) is reduced due to Fe₂O₃ formation. Richardson and Withers, however, were able to show that the reduction of (0^{--}) which might be expected was relatively unimportant as was also (SO_4^{--}) formation, except at very low CO/CO₂ ratios. The work of Richardson and Finchem has shown that the conclusions of the former workers can be taken as substantially correct,

Thus, while the gas phase variables which play an important part in the desulphurisation problem have been dealt with adequately by Richardson and co-workers, the present work is intended to elucidate more clearly the factors involved in desulphurisation from the point of view of the constitution of the slag phase.

CHAPTER III.

ķ

ALC: NOT THE REAL PROPERTY OF

THEORETICAL CONSIDERATIONS.

The reaction by which a lime-bearing slag absorbs sulphur from a gas containing SO_2 , CO and CO_2 may be represented chemically by the equations.-

In the present investigation into the absorption of sulphur from $CO-CO_2-SO_2$ gases by $CaO-Al_2O_3-SiO_2$ slags, the p_{O_3} of the gases used varied within the range 2 x 10^{-9} to 2 x 10^{-8} atmospheres (see Appendix). Therefore, the only reaction which need be considered is that represented by equation (1) above. For the purposes of a thermodynamic computation of the activity of CaO, it is more convenient to express it in the form

 $(CaO) + \frac{1}{2}S_2 = (CaS) + \frac{1}{2}O_2$ (3)

where round brackets denote concentrations in the slag phase. The equilibrium constant is then represented by

$$K = \frac{a_{CaS}}{a_{Ca0}} \cdot \frac{(P_{O_2})^2}{(PS_2)^4}$$
$$\cdot a_{Ca0} \propto a_{CaS} \frac{(P_{O_2})^4}{(PS_2)^4}$$

The most satisfactory method of obtaining a value for the ^aCaO of a slag is to refer unit activity to a slag in equilibrium with solid CaO. Therefore, if a_{CaO} and a_{CaS} refer to the activities of CaO and CaS in a slag in equilibrium with a gas of oxygen and sulphur potentials p_{O_2} and p_{S_2} respectively, and if a slag of unit CaO activity, in equilibrium with a gas of oxygen and sulphur potential $p_{O_2}^o$ and $p_{S_2}^o$ respectively has a CaS activity of a_{CaS}^o , then the value of the activity of CaO of the first slag is given by

$$a_{CaO} = \frac{a_{CaS} (P_{O_2})^2}{a_{CaS} (p_{O_2})^2} (p_{S_2})^2$$

Hence the determination of a_{CaO} of a slag depends on a knowledge of a_{CaS} of the slag when it is in equilibrium with a gas of known p_{O_2} and p_{S_2} , and of a_{CaS} of the standard slag when it is in equilibrium with a gas of known p_{O_2} and p_{S_2} .

If the ratio $(p_{S_3})^{\frac{1}{2}}/(p_{O_3})^{\frac{1}{3}}$ of a gas is denoted by A, then

$$a_{Ca0} = \frac{a_{CaS} \cdot A^{\circ}}{a_{CaS}^{\circ} \cdot A}$$

And A may be termed the "sulphurising potential" of the gas. This chapter is therefore concerned with

- (a) the choice of a standard slag,
- (b) the determination of a_{CaS} of a slag, and
- (c) the determination of the A value of a gas.

(a) The choice of a standard slag.

The thermal equilibrium diagrams of the systems $CaO-Al_2O_3$, CaO-SiO₂ and CaO-Al₂O₃-SiO₂ are shown in Figs. 1, 2 and 3, respectively, the former being taken from Eitel(26) and the latter two from Hall and Insley's collection (27). In the CaO-Al₂O₃ system, it can be seen that, at the experimental temperature of 1500°C, the liquid range extends from $42 - 56 \cdot 5\%$ CaO. At 1500°C, no melt is in equilibrium with solid CaO, although, by extrapolation of the CaO liquidus below 1535°C, the 1500°C isotherm cuts it at approximately 59% CaO and, as will be shown in the results, the value of a_{CaO} in CaO-Al₂O₃ slags when extrapolated to 59% CaO agrees well with that of the standard slag.

In the CaO-SiO₂ system there are two ranges liquid at 1500° C - 35-42.5% and 52-56% CaO. Again no liquid is in equilibrium with solid CaO.

In the CaO-Al₂O₃-SiO₂ system, there is a considerable range liquid at 1500°C, as indicated by the two areas within the 1500°C isothermal in Fig.3. It will be observed that along a small part of this isothermal, marked MN liquid slags are in equilibrium with solid CaO. Accordingly one slag on this line, composed of 60.5% CaO, 7.0%SiO₂ and 32.5% Al₂O₃ (slag AS1) was chosen as the standard slag, of unit lime activity.

(b) The determination of ^aC_eS of a slag.

The activity of CaS in a slag cannot be determined from the present study. However, the sulphide content of each slag can be

FIG. 2: CaO-SiO, PHASE DIAGRAM.

obtained by analysis. To use the sulphide data, it is therefore necessary to make certain assumptions, viz:

(1) that the activity of CaS in a given slag is proportional

to the %S in the slag,

(2) that the activity of CaS does not vary with the slag composition. In order to estimate the a_{CaO} value of a slag by this method it is also necessary to assume

(3) that the activity of CaO in the liquid slag is not significantly

lowered by the substitution of small amounts of sulphide for oxide. These assumptions will only hold below a certain limiting value of sulphur content in the slag, and such a limit must be set as a guide to the composition of the gas with which the slags are to be equilibrated in each experiment.

Obviously this limiting value must be below the sulphur saturation value of the slag. Various workers have given values for this: Glaser(28) found the solubility of sulphur in liquid CaSiO₂ to be 55% at 1500°C; Filer and Darken(29) found the sulphur saturation limit in blast furnace slags to be $3 \cdot 5 - 4 \cdot 5\%$ S at 1500°C; MacCaffery and Oesterle(30) found the solubility of CaS in CaO-Al₂O₃-SiO₂ melts at 1500°C to correspond to about 8% S for acid melts and 11% S for more basic melts; Martin, Glockler and Wood(31) studied the forms of sulphur in blast furnace slags and record that the solubility of CaS in a CaO-Al₂O₃-SiO₂ slag is $3 \cdot 6\%$ CaS at 1400-1425°C, i.e., $1 \cdot 6\%$ S. Fincham and Richerdson(15) attributed certain abnormally high results to saturation with CaS. The example given by them is $4 \cdot 2\%$ S in a 41%

FIG. 5: SULPHURIZING POTENTIALS OF CO-CO2-502 GASES. (1500°C.).

CaO - 52% Al₂O₃ - 7% SiO₂ slag at 1500° C., and from their results it can be calculated, as shown in the Appendix, p.110,that the expected sulphur content of this slag is approximately 1.9%S, which indicates that the sulphur saturation limit for this slag is less than 1.9%S at 1500°C. In the present work two preliminary results (see Table VI, p.59, run 88) of 4.5 and 6.1%S were obtained in a run using a CaO-Al₂O₃ slag containing 54.4% CaO, the resultant slags have a peculiar bulbous appearance. Subsequent work showed that the expected sulphur content should have been about 2.9% S. These results are therefore to be attributed to saturation with CaS, indicating that the sulphur saturation limit for this slag is less than 2.9% S. However, these sulphur satura-.tion values would be expected to be considerably higher than the limiting sulphide concentration which is in keeping with assumptions (1) and (3).above

Rosenqvist(32) applied his results to those of Hatch and Chipman(33) to derive the graph shown in Fig.4 for the activity of CaS in synthetic blast furnace slags (CaO-SiO₂-MgO-Al₂O₃ slags containing 5-26% Al₂O₃ and O·1-19% MgO.) However, in deriving this graph, Rosenqvist makes several assumptions whose validity he does not justify, vize

(1) He assumes that sulphide saturation occurs at 10% S - which figure is rather higher than most of the data quoted above. In addition, the data of Hatch and Chipman, which he uses for the derivation of this graph and for the estimation of the sulphur saturation value, are probably not accurate enough for this purpose. (2) He assumes that the activity of CaO in a complex CaO-MgO-Al₂O₃-SiO₂ slag of a given CaO + 3MgO SiO₂ + Al₂O₃ ratio is the same as that in a simple CaO-SiO₂ slag of the same CaO/SiO₂ ratio.
(3) He assumes that the absorption by a slag of sulphur contents

of up to 5% does not result in any change in its a_{CaO} value. On account of these criticisms no great stress can be laid on Rosenqvist's graph. The form of the graph of a_{CaS} v. % should, however, be similar to that shown by Rosenqvist.

Fincham and Richardson(15) have shown that for a given $CaO-Al_2O_3$ -SiO₂ slag at 1500°C, the function $(%S)(p_{O_2})^{\frac{1}{2}}/(p_{S_2})^{\frac{1}{2}}$ was constant over a range of sulphur contents from 0.003% to approximately 1.3%. Since constancy must be shown by the function $a_{CaS} \cdot (p_{O_2})^{\frac{1}{2}} / (p_{S_2})^{\frac{1}{2}}$, a_{CaS} is therefore proportional to % S, i.e., γ_{CaS} is constant, over this range The limit to which this constancy of γ_{CaS} extends of sulphur contents. in the CaO-Al2 03-SiO2 slags used in the present work is not known. However, a value of 2% was decided upon as the limit below which aCaS could be taken as proportional to the sulphur content of the slag, and below which a_{CaO} would not be significantly affected by the substitution of small amounts of sulphide for oxide in the melt. If this limiting value is too high, then errors will be introduced into the values of aCaO obtained, and the direction of these errors can be shown as follows. Fig.4 shows that as % increases, γ_{CaS} decreases. Therefore, if the value of a_{CaS} is taken to be correct at say 2% S, the value of a_{CaS}

at 0.05% S will be higher than would have been the case if f_{CaS} had been constant over the range 0-2% S. Hence if the standard slag of $a_{CaO} = 1$, and a slag of low a_{CaO} are both brought to equilibrium with the same CO-CO₂-SO₂ gas giving S° and S% sulphur respectively,

$$a_{Ca0} \propto \frac{a_{CaS}}{a_{CaS}} = \frac{\gamma_{CaS}}{\gamma_{CaS}} = \frac{\gamma_{CaS}}$$

In calculating the a_{CaO} value of a slag in the present work, the assumption made is that

$$a_{CaO} \propto \frac{S}{S}$$

i.e., that χ_{CaS} is constant over the range 0 - 2% S and for all slag compositions used. The error, therefore, is such as would tend to give a low value to a_{CaO} and would increase as χ_{CaS} increased, i.e., as the sulphur content of the slag decreased. In the present work data will be presented to show that χ_{CaS} in the standard slag is constant up to 1.8% S. However, it is felt that the largest assumption being made in the present investigation is the constancy of χ_{CaS} throughout the considerable range of slag compositions used.

(c) The determination of the sulphurising potential, A, of the gas.

To calculate A, the data required area-

(1) the free energy change for the reaction

 $200 + 0_2 = 200_2$

Richardson and Jeffes(34) give

$$\Delta G_{T}^{\circ} = -135,100 + 41.5T$$
 cals.
hence $\Delta G_{1773}^{\circ} = -61,520$ cals.
and $K_{4.773} = 3.84 \times 10^{7}$

(2) the free energy changes for the formation of the gaseous compounds of sulphur, carbon and oxygen from SO_2 and CO. This data was initially obtained from Kelley(35). Later, however, the data collected by Richardson and Jeffes(36) became available. The value of A obtained using the data of Kelley is therefore denoted by A_K , and that using the data of Richardson and Jeffes by A_R .

The following are the equations for ΔG_T^{o} derived from Kelley's data, with the values of ΔG_{1773}^{o} and K_{1773} .

Reaction	$\Delta G_{\rm T}^{\circ}$ (cals.)	ΔG [°] 1773 (cals.)	K ₁₇₇₃
53+203=2502	-172,630+3•43T logT - 0•712x10 ⁻³ T ² +0•168x10 ⁵ T ⁻¹ + 24•30T	-112,020	6•46x10 ¹³
SO ₂ =S+O ₂	+137,620-4.56T log T + 0.578x10 ⁻³ T ² -0.084x10 ⁵ T ⁻¹ - 16.9T	+83,200	5•31x10 ⁻¹¹
S03=S0 + 1303	+79,760-1.715T log T + 0.356x10 ⁻³ T ² -0.084x10 ⁵ T ⁻¹ - 13.5T	+47,060	1.58x10 ⁻⁶
$SO_2 + CO = COS + O_2$	+62,390-6.80T logT + 1.536x10 ⁻³ T ³ +0.662x10 ⁻⁵ T ⁻¹ + 21.45T	+66,070	7•16x10 ⁻⁹
	^ ^ ^		

TABLE 1.

The data for S_6 , S_8 and SO_3 showed that, within the range of gas compositions being used the amounts formed of these compounds would be negligible, while calculations using the data for CS_2 showed that the partial pressure of CS_2 would never exceed $0 \cdot 1\%$ of the total partial pressure of all sulphur-bearing gases in the gas mixture, and therefore it also was neglected. The data of Richardson and Jeffes(36) gave the following equations for ΔG_{T}° and the derived values of ΔG_{1773}° and K_{1773} as follows.

ጥለ	RIT	TT	
-12	متعدد	ويلديكم	

Reaction	$\Delta G_{\rm T}^{\rm o}$ (cals)	Estimated Accuracy	ΔG°_{1773} (cals)	K ₁₇₇₃
S ₂ +20 ₂ =2S0 ₂	-173,24 0+ 34.62T	+1 Kcal.	- 111,850	6•03x10 ¹³
SO2=S+02	+125,250-32.16T	+5 Kcals.	+ 68,220	3.89x10 ⁻⁹
S02=S0+203	+ 62,120-18.56T	± >5 Kcals.	+ 29,210	2.51x10 ⁴
SO ₂ +CO=CO3+O ₂	+ 63,760+1•39T	+2 Kcals.	+ 66,220	6.86x10 ⁻⁹

Data are also given for carbon monosulphide, CS, but it can be shown that, within the range of gas compositions being used, the amount of CS formed is negligible.

Before making any comparison between the two sets of data and their reliability, a sample calculation, by which the $\mathbf{A}_{\mathbf{K}}$ value of a gas was obtained, will be shown.

Given the initial CO/CO_2 and $\%SO_2$ of a gas, the mathematics involved in calculating its A_K value are very complex. Consequently a simpler way is to assume figures for the equilibrium CO/CO_2 and the total partial pressure of all sulphur-bearing compounds in the equilibrium gas and by calculation, the values of p_{O_2} and p_{S_2} , and therefore A_K in the equilibrium gas, and also the initial CO/CO_2 and % SO_2 can be obtained. By carrying out a sufficient number of such calculations graphs can be drawn of A_K v. initial CO/CO₂ at various initial CO/CO₂ levels. An example of the calculation will make this clear.

Consider a gas at 1500°C, 760 mm. pressure with an equilibrium CO/CO_2 of 1.46 and the equilibrium total partial pressure of all sulphurcontaining compounds = 0.0062 (denote this by Σp_3).

Then $p_{O_2} = 1.218 \times 10^{-8}$, $p_{CO} = 0.5899$, $p_{CO_2} = 0.4039$

and $\sum p_{SO_2} = p_{SO_2} + p_{S} + p_{S_2} + p_{SO} + p_{COS} = 0.0062$

From the $K_{1,7,3}$ values for the various reactions producing these S compounds we have:-

$$p_{S} = \frac{5 \cdot 309 \times 10^{-11}}{1 \cdot 218 \times 10^{-6}} \cdot a = 0.00436a$$

$$p_{S_{3}} = \frac{1}{6 \cdot 461 \times 10^{13} \times 1 \cdot 218^{2} \times 10^{-46}} \cdot a^{2} = 104 \cdot 2a^{2}$$

$$p_{S0} = \frac{1 \cdot 578 \times 10^{-6}}{1 \cdot 218^{2} \times 10^{-6}} \cdot a = 0.0143a$$

$$P_{COS} = \frac{7 \cdot 162 \times 10^{-9}}{1 \cdot 218 \times 10^{-8}} p_{CO} \cdot a = 0.3466a$$

$$\cdot 104 \cdot 2a^{2} + a(1 + 0.0044 + 0.0143 + 0.3466) = 0.0062$$
which gives the equilibrium percentages of the sulphur-containing compounds as follows -

 $SO_2 = 0.3572\%$, S = 0.0016%, $S_2 = 0.1330\%$, SO= 0.0051\%, COS = 0.1238\%, and $A_K = 331$.

To determine the composition of the initial $CO-CO_2-SO_2$ gas, it can be shown, by considering the changes in gas volumes in a series of reactions of SO_2 with CO giving CO_2 and each of the sulphur-containing compounds already considered,

$$e \cdot g \cdot , S \circ_3 + 2 \circ \circ = 2 \circ \circ_3 + S$$

that

the initial volume of $SO_2 = p_{SO_3} + p_{S_2}$.

the initial volume of CO = $p_{CO} + 2p_S + 4p_{S_2} + p_{SO} + 3p_{COS}$ and the initial volume of CO₂ = $p_{CO_2} - 2p_S - 4p_{S_2} - p_{SO} - 2p_{COS}$ In the present example, the data gives

initial volume of $SO_3 = 0.00753$

initial volume of CO = 0.5990

initial volume of $CO_2 = 0.3961$

Total = 1.0026

• initial % SO₂ = 0.752% and initial CO/CO₂ = 1.512

A series of similar calculations gave the following results.

Σps	Initial Ga CO/CO ₂	s Composition %SO2	AK
0.0062	1.512	0.752	331
0.0066	1.517	0.805	347
0.0070	1.522	0.859	364
0.0074	1.527	0.914	381

From a graph of these results the following data were obtained.

Initial % SO₂	Gas Composition CO/CO3	A _K
0.77	1.514	336
0.80	1.517	346
0.83	1.519	355
0.86	1.522	364
0.89	1.525	373
0.92	1.527	383

From similar calculations and graphs, based on equilibrium CO/CO_2 values of 1.42, 1.50 and 1.54, similar values were obtained, and these results were then graphed as shown in Fig.6. This graph was then used to determine of the A_K values a gas with an initial CO/CO_3 within the range 1.45 - 1.65 and an initial $\%SO_3$ within the range 0.77 - 0.92 by interpolation between the curves of varying $\% SO_2$ levels. The data for this graph are contained in the Appendix, calculations numbers 1-24.

Fig.8 gives a general picture of the variation in A_K at initial CO/CO_2 ratios of 1.0 - 4.0 and at initial $\%SO_2$ levels of 0.5, 1.0, 1.5 and 2.0%. The data for this graph are contained in the Appendix, calculations numbers 25 - 40.

Fig.5 gives the variation in $A_{\rm K}$ in gases of initial CO/CO₂ ratios of 3.2 - 4.9 at initial %SO₂ levels of 2.0 - 3.4. The data for this graph are contained in the Appendix, calculations numbers 41-94.

Using the data of Richardson and Jeffes(36), values of A_R over ranges of gas composition somewhat similar to those covered by Figs. 5 and 6 were calculated and are shown in Figs.5 and 7, the data used being

Comparison of values of A_K and A_R show that there is a considerable difference between the two, particularly at low values of A, e.g., (1) for a gas of initial CO/CO₂ of 1.52, initial SO₂ of 0.81%.

 $A_{\rm K} = 350$, and $A_{\rm R} = 181$;

(2) for a gas of initial CO/CO_2 of 3.34, initial SO_2 of 3.01%:

 $A_{\rm K} = 1640$, and $A_{\rm R} = 1280$.

The cause of these differences lies in the discrepancies between the ΔG_{T}^{0} values of the reactions involving (a) S, and (b) SO: (a) for SO₂ = S + O₃, Kelley gives $\Delta G_{1773}^{0} = 83,200$ cals. (b) for SO₂ = SO + $\frac{1}{2}O_3$, Kelley gives $\Delta G_{1773}^{0} = 47,060$ cals. Richardson - 29,210 cals.

These differences are further seen if the proportions of S and SO to the total sulphur containing gases in an equilibrium gas are compared.

		ps	P _{SO}
For gas (1) above	Σps Kelley.	compounds. 0.0025	Σps compounds. 0.0083
	Richardson	0.078	O•55
For gas (2) above	Kelley	0.0024	0.0045
	Richardson	0.10	0.39

The sources from which Kelley and Richardson obtained their data were therefore investigated.

For the reaction $SO_2 = S + O_2$ the uncertainty lies in the reaction $S_2(g) = 2S(g)$.

contained in the Appendix, calculations numbers 101-124.

Kelley bases his calculations on corrected spectroscopic data of Montgomery and Kassel(37) giving a dissociation energy $\Delta \mathbf{H}_{o}^{o}$ of + 102.6 kcals. This value gives 137.6 kcals. for ΔH_{o}^{o} of the reaction $SO_{3} = S + O_{2}$.

Richardson and Jeffes(36) quoting Gaydon(38) state that spectro-•scopic measurements indicate that the dissociation energy of S_2 is most probably 101 \pm 3 kcals., although +83 and +76 are also possible values. Gaydon states that it is impossible to decide between the three values, but indicates a preference for the highest value. Richardson and Jeffes, however, taking into account molecular weight determinations by Nernst(39) and von Wartenberg(40), recommend a value of +73 kcals. for ΔH_0^2 of $S_2 =$ 2S - which gives +125.2 kcals. for ΔH_0^2 of the reaction $SO_2 = S + O_2$.

For the reaction $SO_2 = SO + \frac{1}{2}O_2$, the uncertainty lies in the reaction $S + O = SO_3$

Kelley bases his calculations on corrected specroscopic data of Montgomery and Kassel(37) giving a ΔH_0° value of -13.1 kcals. for the reaction $S_2 + O_2 = 2SO$. When allowance is made for the dissociation energies of S_2 (+102.6 kcals.) and of O_2 (+118.0 kcals.) this value corresponds to a dissociation energy of SO into its atoms, of +117 kcals., and to +79.8 kcals. for ΔH_0° of $SO_2 = SO + \frac{1}{2}O_2$.

Richardson and Jeffes quote Gaydon(38) as giving two values for the dissociation energy of SO into its atoms, viz., +119.5 kcals. and +92.3 kcals. Although he admits there is no conclusive evidence on the point, Gaydon prefers the higher value, and Richardson and Jeffes accept this value. When this value is combined with Richardson and Jeffes'

most probable value for the dissociation energy of S_3 (+ 73 kcals.,) and with the dissociation energy of O_2 (+117.2 kcals.,) it gives - 49 kcals. for ΔH_2° of the reaction $S_2 + O_3 = 2$ SO, and 62.1 kcals. for ΔH_0° of $SO_2 = SO + \frac{1}{2}O_2$. Richardson and Jeffes also note that if the lower value for the dissociation energy of SO (+92.3 kcals.) is used, ΔH_0° of the reaction $S_2 + O_3 = 2$ SO becomes +6 kcals. - and accordingly give: the corresponding free energy equation the highest error limits.

Since Richardson and Jeffes' collection of data was published, St. Pierre and Chipman(41) have carried out experiments on lime-iron oxide slags, bringing them to equilibrium with $SO_2 + CO$ mixtures at 1550°C. They show that their data lead to a decision between the possible values of the dissociation energies of SO and S_2 quoted by Gaydon, and that they are in favour of values of +119.5 kcals. for ΔH_0^2 of SO = S + O, and + 83 kcals. for ΔH_0^2 of $S_3 = 2S$.

The effect of these discrepancies on the present work may be seen more clearly if several combinations of the possible Δ HS values of SO = S + O and of S₂ = 2S are used in the calculation of the A values of the gases marked (1) and (2) above, and the ratios A_2/A_1 thus obtained, compared as shown in Table III below.

TABLE III.

∆H8 S0=S+0	(kcals./r $S_2=2S$	nole) 0 ₂ +S ₂ =250	ΔG^{0}_{1773} (kcal; S 0_{2} = S $0\frac{1}{2}0_{2}$	s/mole). SO ₂ =S+C	Values accepte	ad A_2/A_1
+92-3	+73	+6	+56.6	+68.2	by	<u>1630</u> 577=5,16
+92.3	+83					310 0010
+92.3	+101					
+119.5	+73	-49	+29.2	+68.2	Richardson	$\frac{1280}{181} = 7.07$
+119.5	+83			and Cr	St.Pierre	not calculated but approx. 6.4.
+117	+102 .6	-13.1	+ 47 • 1	+83.2	Kelley	$\frac{1640}{350} = 4.69$

In this Table, A_2/A_1 in the first line is obtained from the data given in the Appendix, calculations 125-6. This line corresponds to the alternative value for the dissociation energy of SO of 92.3 kcals., which Richardson and Jeffes(36) mention but do not favour. Indeed this value is favoured by none of the workers quoted above. Therefore, no values have been calculated for the ratio A_2/A_1 in the second and third lines of the above table. The value of A_2/A_1 shown in the fifth line was obtained by interpolation between the values given in the fourth and sixth lines, since, as the present work will show, it was not necessary to obtain an exact value for this line.

The above table indicates a method by which it should be possible to select the correct data relating to SO and S formation. By bringing samples of the same slag to equilibrium with gases of widely different A values (e.g., gases (1) and (2) above), an experimental value of the ratio $\Lambda_2/\Lambda_1 = S_2/S_1$ will be obtained where S_2 and S_1 are the sulphur contents of the slag at equilibrium with gases (1) and (2) respectively.

The Effect of Temperature on Ak.

From the data in the Appendix, calculations numbers 127-130, it can be shown that, for a gas of initial $CO/CO_2 = 1.52$ and initial SO_2 of 0.85%, the rate of change of A_K is -1.30% per °C over the range 1490-1500°C, and -1.28% per °C over the range 1500-1510°C. Therefore at 1500°C, the rate of change is -1.3% per °C.

As most of the experimental work was carried out at $1500^{\circ}C_{\cdot}$, the temperature effect on A does not enter into the calculations. The following formula can therefore be used to calculate a_{CaS} .-

$$a_{CaO} = \frac{S/A}{S^{\circ}/A^{\circ}}$$

In using this formula the assumptions discussed above must be made. It may be noted in passing that S/A corresponds to the function used by Fincham and Richardson(15) in their work on sulphur in silicate and aluminate slags, viz., the sulphide capacity $C_{S} = (\%S)(p_{0_2})^{\frac{1}{2}}/(p_{S_2}^{\frac{1}{2}})$.

EXPERIMENTAL TECHNIQUE.

CHAPTER IV.

.

í. L The apparatus is shown in Fig.9 and consists of three main sections:

(1) apparatus for the production of a steady flow of the required CO-CO₂-SO₂ gas mixture;

(2) apparatus for the analysis of the gas mixture; and

(3) the furnace, containing the reaction chamber.

The details of each of these sections will now be outlined in turn.

Gas Production, Purification, Control of Rate of Flow and Mixing.

Carbon dioxide was obtained from cylinders of commercial liquid carbon dioxide, and dried by passing through anhydrone. Analysis of this gas for oxygen gave a figure of 0.04% - which can be neglected as far as its effect on the CO/CO_2 ratio of the gas mixture at equilibrium at 1500°C is concerned.

Sulphur dioxide was obtained from a syphon of the liquid, and dried by passing through anhydrone.

Carbon monoxide was obtained by passing carbon dioxide, obtained from commercial liquid carbon dioxide, over carbon at a high temperature. The carbon used was the powder obtained in drilling graphite electrodes to make crucibles, and was contained in a Pythagoras tube in a Nichrome wound furnace maintained at 1100-1150°C. In order to prevent the reaction

$C + H_2 O = CO + H_2$

į

taking place, the carbon dioxide was dried over anhydrone prior to reaction with the carbon, and the graphite powder was dried at 110°C.

and stored in a desiccator over anhydrone prior to use.

It was at first thought that a $CO-CO_2$ gas, of the CO/CO_2 ratio desired for the experiments, could be produced directly by control of the Nichrome furnace. However, using the data of Richardson and Jeffes(34) for the reaction

 $\mathrm{CO}_2 + \mathrm{C} = \mathrm{CO}$

 $\Delta G_{\rm T}^{\circ}$ = 40,800 - 41.7 T

it can be shown that, at temperatures of

 $742.5^{\circ}C$ $750^{\circ}C$ $760^{\circ}C$ the CO/CO₂ ratio obtained at equilibrium is

3.00 3.27 3.79 respectively, i.e., an increase in temperature of 10° C at 750°C results in an increase of approximately 16% in the CO/CO₂ ratio. The production of a gas of a given CO/CO₂ ratio under these conditions would have required a furnace controlled to a greater degree than was practicable with normal laboratory apparatus. Hence, it was more convenient to produce pure carbon monoride and obtain the desired CO/CO₂ ratio by mixing with pure carbon dioxide.

Further calculations showed that the % CO₂ remaining in the gas obtained by passing carbon dioxide over carbon at temperatures of

	1000°C	1050°C	1100°C
was	0.8%	0.42%	0.24%

Hence the graphite was maintained at a temperature of not less than 1100°C and the gas obtained was passed through self-indicating soda-asbestos granules to remove the last traces of carbon dioxide.

Another possible source of impurity in the gas would be sulphur in the graphite, but this need cause no anxiety since the reaction products of sulphur would also be removed by the soda-asbestos.

The three gases were each metered by capillary flowmeters, A. The capillaries were constructed by heating short lengths of normal capillary glass tubing in the flame until the constrictions produced were such as to give pressure differences within the range of 20-140 cms. of oil for the ranges of gas flow desired. The indicating liquid used in the flowmeters was Griffin and Tatlock's Special Flowmeter Oil, of very low vapour pressure. The total flow rate of the gas mixture normally used was 140-150 mls. per minute, while in a few runs a flow of 60-70 mls. per minute was used. The gas compositions used varied within the ranges 0.3 - 3.5% SO₂ and 1.0 - 4.8 CO/CO₂ ratio. Hence the flowmeter orifices were such as to give the following ranges of rates of flow:

SO2	0.5 - 5	mls.	per	minute;
CO	40 - 120	mls.	per	minute;
CO3	25 - 75	mls.	per	minute.

The flowmeters were calibrated using the same methods as are described later for gas analysis, but because of changes in atmospheric pressure and temperature causing small variations in the flowmeter readings for a given flow of gas (variations of up to $\pm 2\%$) the calibrations were only used as guides and the gas mixture to be used in a run was always analysed immediately prior to the run.

The problem of maintaining a constant flow of each gas was solved by incorporating in each gas system an adjustable bleeder column, B. The depth of water in each column was adjusted so that the desired flowmeter reading was obtained, and the gas cylinder and siphon valves were then closed till a small steady flow of gas was escaping through each bleeder column. By this means adequate control of the gas flow rates was obtained, since the pressure differences across the flowmeters could be kept constant to within +0.2 cms.

The three gases were then mixed by leading them to the foot of a boiling tube filled with glass wool, the gas mixture being led out at the top of the boiling tube.

Analysis of the Gas Mixture.

On commencing the flow of gases for a run or calibration, the gas mixture was by-passed through the sampling bulb at S and bubbled, via the limb C, through a vessel F with an adjustable water level, to the gas-jet at J where it was burned. After running for at least an hour, the weight of $(CO_2 + SO_2)$ flowing per minute was determined by absorption for a given The weight of SO2 flowing per time in the soda-asbestos midvale bulb, G. minute was likewise determined by absorption in 100 ml. of 5-volume hydrogen peroxide solution contained in the gas-jar H, the sulphuric acid formed being titrated against N/20 sodium hydroxide solution using methyl yellow as indicator. (Various indicators were tried, but, on account of the carbon dioxide dissolved in the peroxide solution, methyl yellow was found to be the most suitable. The end-point of the titration could be detected, by comparison with a standard colour, to within 0.2 ml., and with practice

this was reduced to within 0.1 ml., the titrations being never less than 10 mls.). Tests showed that, at the maximum rates of gas flow and at the maximum values of % SO₂ used, the depth of solution obtained by using 100 mls. of 5 vol. peroxide solution in a gas jar was sufficient to absorb all the sulphur dioxide in the gas mixture. During these determinations, the depth of water in each of the 3 vessels, F, was adjusted so that the resistance offered to the flow of gas in each of the limbs C, D and E, did not vary, and hence the rates of flow of the gases remained constant during analysis.

When constant duplicate results for the rates of flow of carbon dioxide and sulphur dioxide were obtained, the gas sample in the sampling bulb at S was removed and analysed for the ratio $CO/(CO_3 + SO_3)$. This was done by flushing the sample with CO2-free nitrogen through an analytical train consisting of a soda-asbestos midvale absorption bulb, followed by a copper oxide tube in a small furnace kept at 400-500°C, and finally a second soda-asbestos absorption bulb. A second copper oxide tube in the furnace followed by a soda-asbestos absorption bulb showed that the conversion of carbon monoxide to dioxide was complete in the first copper oxide tube. The ratio of the gain in weight in the second soda-asbestos absorption bulb to that in the first gave the weight ratio CO_2 (from CO)/ $(CO_3 + SO_2)$. Together with the rates of flow of carbon dioxide and of sulphur dioxide, this data was used to calculate the volumetric CO/CO2 ratio and the %SO2 in the gas mixture used in the experimental run.

Another possible source of impurity in the carbon monoxide, in addition to those previously mentioned, was hydrogen adsorbed by the

graphite. As a check on the freedom of the carbon monoxide from hydrogen, an anhydrone U-tube was inserted immediately after the copper oxide tube in the analytical train described above. A sample of carbon monoxide was then passed through the train and it was shown that no measurable quantities of hydrogen were present in the carbon monoxide.

The Furnace and Reaction Chamber.

The runs were carried out using a platinum-wound resistance furnace as shown in Fig.9. The furnace tube, K, was a l_8^{\pm} in. internal diameter mullite tube, 30 ins. long. (For later experiments a l_8^{\pm} in. tube was used). This was placed within a thin alundum tube on which was wound the platinum wire, L. This tube was wound over a length of 9 ins. with 20 S.W.G. platinum wire and insulated as shown by fused alumina, M, and diatomaceous brick, N. This furnace gave at 1500°C a hot zone which was constant to within 5°C, over a length of 1.8 ins. The power input to the furnace was controlled by a 16-Amp. Variac autotransformer, by hand adjustment of which the temperature could be maintained at 1500°C \pm 2°C, with only occasional attention.

The temperature was measured by a platinum/13% rhodium-platinum thermocouple housed in a mullite sheath, P, which fitted into a depression in the base of the reaction tray, Q. The thermocouple was regularly standardised against the melting points of gold (1063°C) and palladium (1555°C). The e.m.f. generated by the thermocouple was measured using a Tinsley vernier potentiometer and spot galvanometer. By comparison with another standard couple placed in one of the platinum crucibles in

the reaction tray, a slight correction, never amounting to more than 5°C, was found to be necessary between the reading obtained in the sheath and the actual temperature of the crucibles.

The alundum reaction tray, Q, was supported in the hot zone of the furnace by a series of alundum stools, R, fitting round the mullite sheath, P, and resting on the rubber bung, T, at the base of the furnace tube. The rubber bung, U, at the top of the furnace tube held an alumina tube, V, $\frac{1}{4}$ in., outside diameter, $\frac{1}{8}$ in., internal diameter, through which the gas entered the reaction chamber. The lower bung, T, also held a short gas entry tube, W, and the upper bung, U, a short gas exit tube, X. Another series of alundum stools, Y, fitted over the alumina tube, V, and filled the space between the reaction chamber and the upper bung. The lowest of these stools was cemented onto the alumina gas entry tube, V. The gap between this lowest stool and the top surface of the reaction tray was not more than 0.5 in., and this gap, together with the reaction tray may be conveniently termed the reaction chamber. Thus the reaction chamber was contained entirely within the hot zone of the furnace. The reaction tray itself was 0.4 - 0.5 in., deep and is shown in Figs.9(a), (b) and (c). It contained either (a) two $\frac{3}{8}$ in. diameter, (b) four $\frac{3}{16}$ in. diameter, or (c) three $\frac{7}{16}$ in. diameter, depressions to accommodate the crucibles.

The crucibles were made of platinum since this was the only material which would hold molten slag under the conditions of the experiment. Circles of platinum foil were cold-pressed into a hemispherical shape between a ball-bearing and a wooden block containing a series of

successively deeper depressions. Initially a $\frac{3}{6}$ in. diameter ball-bearing was used and the crucibles obtained were able to hold 0.25 - 0.30 gms. of the powdered slag. Two such crucibles could be accommodated within the $1\frac{4}{6}$ in. reaction tube. Later a $\frac{5}{16}$ in. diameter ball-bearing was used and the crucibles could hold 0.16 - 0.20 gms. of slag. Four such crucibles could be accommodated within the $1\frac{4}{3}$ in. diameter reaction tube. Later still a $\frac{7}{16}$ in. diameter ball-bearing was used and the crucibles could be accommodated within the $1\frac{4}{3}$ in. diameter reaction tube. Later still a $\frac{7}{16}$ in. diameter ball-bearing was used and the crucibles could be accommodated within the $1\frac{4}{3}$ in. diameter reaction tube. Later still a $\frac{7}{16}$ in. diameter ball-bearing was used and the crucibles could be accommodated within the $1\frac{1}{2}$ in. reaction tube. These weights of slag were found to be convenient for analysis of sulphur content, and the relatively high ratio of slag surface area to weight of slag facilitated the attain-.ment of equilibrium in a reasonable length of time.

Thus the reaction chamber and reaction tube fulfilled the following requirements.

(a) The possibility of error due to the effects of thermal diffusion, should be, as far as possible, eliminated. When a gas mixture is contained in an unevenly heated system, thermal diffusion results in a higher concentration of the less dense gas in the hotter regions of the system, with a corresponding decrease in the cooler regions. This effect is, of course, greater when using high frequency induction heating, than with a resistance wound furnace. Investigations of the effect have been made by Chapman(2,3), Ibbs(44,45), Gillespie(46) and Dastur and Chipman(47) who have shown that the effect increases with increasing ratio of the densities of the component gases, and that it varies with the proportions of the component gases, reaching a maximum when their molar fractions are

equal. Dastur and Chipman also showed that the effect of thermal diffusion in metal-gas equilibria can be minimised by using high flow rates, by preheating the gas mixture to the temperature of the metal, and by dilution of the gas mixture with an inert gas of high molecular weight. The effect of thermal diffusion was not expected to be great in the present experiments, since the ratio of the densities of SO2, CO2 and CO is not large, the percentages of SO2 used were small, and the gases would be preheated to some extent in travelling down the length of the gas inlet tube, V, (Fig.9). Indeed a thermocouple placed within the reaction chamber showed no change in temperature when nitrogen, at the rate of 150 mls. per minute. was passed down the tube, V, through the reaction chamber. The high linear velocity of the gas to and from the reaction chamber, and the fact that the reaction chamber was contained entirely within the hot zone of the furnace, would also tend to prevent thermal diffusion. Later. experiments showed that alteration of the linear velocity of gas flow (by altering the volume rate of gas flow or by using an alumina tube of thinner bore for the gas inlet tube, V) gave results agreeing, within the limits of experimental error, with those obtained using the normal linear velocity of gas flow. Hence it can be concluded that the rate of gas flow and the degree of preheat of the gas mixture are such that the effects of thermal diffusion in the present experiments are within the limits of experimental error.

(b) If required, it should be possible to approach equilibrium from both sides within the same experiment. This was practicable since there were at least two slag samples in each run.

(c) It should permit of a rapid means of freezing the equilibrium. At the end of a run, the lower bung, stools and reaction tray were lowered 2 - 3 ins., immediately after shutting off the gas flow and the power supply. The reaction tray was then removed from the furnace by slowly lowering over a period of 10 minutes. On account of the small bulk of the slag, solidification should be very rapid. Fincham and Richardson(15) have shown that solidification of a similar sample from a rather higher temperature took place in about 10 seconds. In only a very few instances did the reaction tray stick in the tube before it had been lowered sufficiently to cause solidification to take place, and in these instances it was found that the influx of air oxidised some of the sulphide giving low results.

Slag Freparation.

The raw materials used were as follows analar calcium carbonate, analar alumina, and silica sand.

The silica sand was further purified by boiling with concentrated hydrochloric acid to 99.9% purity.

To cover the range of CaO-Al₂O₃ slag compositions molten at 1500°C, three master slags, containing approximately 42, 48 and 55% CaO respectively, were prepared by calcining weighed quantities of the

calcium carbonate, mixing with the required weights of alumina and fusing in carbon crucibles using high frequency induction heating. The fused slag was then powdered and held in air at 1100°C to reconvert all calcium carbide formed to lime.

To cover the range of $CaO-SiO_2$ slag compositions molten at $1500^{\circ}C_{,}$ two slags, containing approximately 35 and 55% CaO respectively, were prepared in a similar fashion to the CaO-Al₂O₃ slags.

These five master slags were then analysed. Intermediate compositions in the CaO-Al₂O₃ and CaO-SiO₂ fields were made by mixing these slags in the necessary proportions. For CaO-Al₂O₃ slags of more than 55% CaO, small amounts of analar calcium carbonate were added to the 55% CaO master slag. Ternary CaO-Al₂O₃-SiO₂ slags were made by mixing the appropriate quantities of the binary master slags with, if necessary, small quantities of analar calcium carbonate or alumina.

Table IV (p. 54) gives a list of the slag compositions used. For convenience in reference each slag composition has been given a number.

Analysis of Slags.

CaO-SiO2 Slags.

0.4 gm. samples of the slags were fused with fusion mixture and the fusion dissolved in warm water, to which hydrochloric acid was added. Silica was determined by evaporating the solution to dryness and baking, the residue was then boiled with concentrated hydrochloric acid and the silica filtered off. The filtrate was again evaporated to dryness, baked, and the silica filtered off. Silica was then estimated by ignition and volatilisation by hydrofluoric and sulphuric acids.

Lime was estimated in the filtrate from the silica estimation by precipitation as oxalate from faintly alkaline solution, and ignition of the precipitate to CaO.

CaO-Al203 Slags.

0.4 gm. samples of the slags were dissolved by boiling in water and adding concentrated hydrochloric acid dropwise till solution was complete. Lime was estimated by precipitation as oxalate from a slightly alkaline solution buffered by the addition of a 2.5% citric acid - 0.1% salicylic acid solution to prevent interference of alumina. The oxalate precipitate was then ignited to CaO. Alumina was determined in a fresh sample of the slag by addition of ammonium chloride and nitric acid to the HCl solution obtained as above and precipitation as hydrated hydroxide by the addition of ammonia at a pH of 6.5-7.5. The precipitate was redissolved in a little hot dilute hydrochloric acid, reprecipitated and ignited to alumina.

The master slags prepared gave the following analyses.

CaO-Al ₂ O3 slags.	<u>%Ca0</u>	7A1203	Total
	41.1	58•6	99.7
	48.2	52•2	100.4
	54.4	45•8	100.2
CaO-SiO2 slags.	<u>%Ca0</u>	25102	Total
	34•3	65.2	99 .5
	55•4	45.1	100.5

Hence the accuracy of the slag analyses has been estimated at $\pm 1\%$ of each constituent.

Estimation of Sulphur.

Three methods are available by which sulphur may be estimated in slags.

- (1) gravimetrically, as barium sulphate;
- (2) by evolution, as hydrogen sulphide, and
- (3) by combustion, as sulphur dioxide.

On account of the small weight of samples used (0.2 - 0.4 gm), the low sulphur content of the slags (in some cases as low as 0.04%) and the time which would have been consumed by the gravimetric method, it was ruled out as impracticable. At the time when runs were being carried out on CaO-Al₂O₃ slags, estimation of the sulphur by evolution was considered to be more accurate than estimation by combustion (in oxygen) since in the latter only about 90% of the sulphur is evolved as SO_2 , and an evolution method had just been published by Kitchener, Liberman and Spratt(48), for use with steels. This method claimed a satisfactory technique for 100% absorption of the hydrogen sulphide evolved in a combined absorption-oxidation medium, alkaline hypochlorite solution.

This method was then investigated to determine whether it was suitable for the estimation of sulphur in slags. The method for use with steels consisted of dissolving the sample in a fixed volume of lel hydrochloric acid solution, in a stream of hydrogen and under slow heating. On complete solution of the sample, the solution was boiled for 5 minutes to ensure that all the hydrogen sulphide had been evolved and absorbed. The hydrogen sulphide was absorbed in alkaline N/10 hypochlorite solution, the absorbent was then boiled for 5 minutes to ensure complete oxidation of colloidal sulphur and other sulphur compounds to sulphate, and titrated cold iodometrically against N/20 sodium thiosulphate solution. A condenser above the evolution flask ensured that no hydrochloric acid was carried over into the absorption flask. One other feature of the apparatus was that it was of all-glass construction - no rubber tubing was employed to ensure no loss of sulphide through absorption by the rubber, and all joints were of ground-glass. After the estimation of sulphur in the steel sample, a blank was carried out and the difference between the blank and the sample gave the sulphur content thus.

l ml. N/20 thiosulphate = 0.2004 mgm. sulphur. Various modifications in the procedure were found to be necessary in applying this method to slags.

(1) it was found that the slag samples required times of up to 1 hour's boiling before they were completely dissolved. Hence the vaseline which K_itchener <u>et al</u> used on the ground glass joints was replaced by a silicone stopcock grease which proved to be satisfactory in keeping the joints gas-tight.

(2) with slag samples of 0.2 gm. and less than 0.8% S, the N/10 sodium hypochlorite solution was replaced by N/40 hypochlorite, and N/80 sodium thiosulphate solution was used for the titration.

(3) the slag samples could not be powdered, since, in the case of the higher sulphur samples, there was a distinct smell of hydrogen sulphide when they were ground in the mortar. With the CaO-Al₂O₃ slags, this did not prove to be a difficulty since boiling the slags for a period of 10 - 60 minutes resulted in complete solution of the slag.

Some difficulty was experienced in obtaining consistent blanks. The blank titration was usually of the order of 40 ml. of thiosulphate. ^In several cases, however, low values for the blank titration were obtained. In investigating the reasons for this, several factors were checked, viz.,

(1) the effect of photosensitivity on the thiosulphate solution this was shown to be negligible under the prevailing laboratory condition.

(2) the rate of flow of hydrogen through the apparatus - this was shown to have no effect, provided of course, that the rate of hydrogen flow was not sufficiently fast to carry over hydrochloric acid from the condenser into the alkaline hypochlorite solution. It was also checked that the hydrogen contained no hydrogen sulphide.

Up till that time, however, the apparatus had been rinsed out with acetone after each blank estimation. Occasionally the acetone was observed to contain a brown flocculent deposit, and it was shown that this was partially responsible for the errors in the blank - as, of course, was atmospheric dust of any description, but precautions had been taken against the latter. Also, at first the hydrochloric acid was stored in a Winchester bottle without any special precautions having been taken to prevent any contact with the atmosphere. However, it was found necessary to store it under nitrogen to prevent contact with air, since this was found to be a source of error in the blanks. With these precautions, nearly all the blanks were found to be within ± 0.1 ml. of the mean.

A few blanks were outwith these limits and were rejected. The former limits gave \pm 5% accuracy for slags of 0.15% sulphur using a 0.2 gm. sample, and proportionately better accuracies for slags of higher sulphur contents.

A fresh blast furnace slag of approximately 1% sulphur was used to determine the effect of other variables. The slag was powdered and kept in a sealed bottle to prevent oxidation of the sulphide. It was shown that, although the slag did not completely dissolve, consistent results were obtained provided it was boiled with the 1:1 acid for at least 1 hour. The effect of using different weights of sample was shown to be nil within the range 0.3 - 0.6 gms.

This method of analysis was found to be satisfactory for all $CaO-Al_2O_3$ slags and for a few $CaO-Al_2O_3-SiO_2$ slags (AS1-AS4). A gravimetric sulphate determination on a sample of the residual acid liquid containing the dissolved slag showed that no sulphate was present in the slag - which was to be expected from thermodynamic consideration.

In the case of CaO-SiO₂ slags, it was found that, since the slag would not dissolve in boiling lol hydrochloric acid, the only way in which the evolution method could be used to ensure that all the sulphur was evolved was by grinding the slag and boiling it for at least 1 hour. However, as is noted above, there is a loss of sulphur on grinding. At this time, the combustion method of Fincham and Richardson (49) using carbon dioxide as the combusting gas, was published, and the sulphide contents of CaO-SiO₂ and of CaO-Al₂O₃-SiO₂ slags were estimated by this method. The slag pellet was not crushed but after the platimum foil crucible had been peeled from it, was broken into about 4 smaller pieces and placed in a pre-ignited boat. The slag was combusted at 1450° C in a flow of carbon dioxide of about 1/4 l. per minute, the sulphur dioxide evolved was absorbed in a dilute hydrochloric acid solution containing starch and titrated during the combustion with an iodide-iodate solution (1 ml.= 0.1 mgm. sulphur). The time required for complete evolution of the sulphur varied from 30 to 120 minutes. Blank estimations also showed the necessity of making a slight correction, usually of the order of 0.1 ml. per 20 minutes of the time of evolution.

No absolute standardisation of the evolution method was possible, on account of there being no satisfactory standard sulphide available. However, a fresh blast-furnace slag (in which the sulphate sulphur should be negligible) was analysed by both the evolution and the combustion methods, the results obtained being as follows:

- by evolution method 1.18% S.
- by combustion method 1.21% S.

Therefore the evolution method can be considered as stoichiometric.

Experimental Procedure.

A number of preliminary runs were carried out on slag A6, using two 3/8 in. diameter crucibles, to ascertain whether equilibrium was being attained, and to ensure that certain variables did not affect the results.

On the evening prior to the day of a run, the reaction tray, crucibles and slag were placed in the furnace. The furnace tube was

tested to ensure that it was gas-tight, flushed out with nitrogen, then heated overnight to approximately 1000° C. A further 3 hours' heating the following morning brought it to 1500° C. During this period of heating the CO-CO₂-SO₂ gas mixture was run, by-passing the furnace, the bleeder columns being adjusted to give the desired rates of gas flow. Preliminary runs had shown that a gas of 0.8% SO₂ and $CO/CO_2 = 1.5$ would give sulphide contents of 0.13% S for slag Al and c.1.2% S for slag All, i.e., sulphur contents not too small for convenient analysis, nor sufficiently large to exceed the sulphur saturation value of the slag. Hence the gas flows were calculated to give that gas composition for a total flow of 150 ml. per minute. After running for at least an hour, the rates of flow of CO₂ and SO₂ were measured as previously described. When constant values were obtained, the gas sample collected at S was analysed for the CO/(CO₂ + SO₃) ratio as previously described.

When the furnace was steady at the desired temperature the gas was flushed through the reaction tube, entering via the tube W (Fig.9) in the lower bung and leaving via the tube X in the upper bung. Flushing was complete in half-an-hour, after which the gas was led direct to the reaction chamber at the centre of the furnace tube via the alumina tube, V.

Various methods to determine when equilibrium had been attained were tried. Eventually the method adopted was to hold the slags for periods of $2\frac{1}{2}$, $3\frac{1}{2}$ and $4\frac{1}{2}$ hours. For all the slags used, exposure to the gas for a period of $3\frac{1}{2}$ hours was found to be adequate to ensure that equilibrium had been attained (as will be described below). At the end of this time the gas flow to the reaction chamber was cut off, the power supply to the furnace switched off and the reaction tray immediately lowered a distance of about 3 ins. It was then slowly removed from the reaction tube over a period of 10 minutes to prevent spalling of either the tube or the tray. The slags were then analysed for sulphide in the manner described earlier in this Chapter.

Determination of the Attainment of Equilibrium.

The first means which, it was hoped, would indicate when equilibrium had been reached, was by the analysis of the exit gases from the reaction chamber. The reaction tube at that time incorporated an additionsal alumina tube, of the same bore as, and parallel to the gas entry tube V_8 by means of which the gas could be led immediately from the reaction chamber for sampling and analysis. This additional alumina tube led through a two-way stopcock to gas sampling bulbs in parallel, and then led into the common limb, Z, from which it could be led through limbs D and E for analysis for CO_2 and SO_2 . The first attempt to use this method by the analysis of periodic samples of the exit gas for the ratio $CO/(CO_2 + SO_2)$ was found to be impracticable because of the time consumed in carrying out the analysis. Following this, the rate of flow of sulphur dioxide in the exit gas was measured by absorption in hydrogen peroxide solution. The amount of sulphur dioxide present was found to be very small - about 2% of the quantity in the inlet gas - and also roughly constant. Thirdly, the weight of gas absorbed by soda-asbestos over a given time was tried, and proved more suitable for measurement. At 1500°C, carbon monoxide and sulphur dioxide react giving carbon dioxide

and various sulphur compounds. Accordingly, the weight of gas absorbed by soda-asbestos was found to be some 2-6% greater than that in the inlet gas. In some cases, it was found that there was a distinct maximum in the graph of weight flow absorbed in soda-asbestos per minute v. time, usually about 1-2 hours after the gas had first passed through the furnace, followed by a fall to a steady rate of flow. In other cases the graph rose to this steady value and no maximum was obtained. Further a blank run, in which no slags were used, was carried out, and the graph obtained for it showed a maximum after about an hour's running, followed by a fall to a steady value. Hence this method of indicating when equilibrium had been reached, by some kind of analysis of the exit gas, was abandoned as being unsatisfactory.

The second method of obtaining an indication of equilibrium was by the addition of sulphur to one of the two slag samples. In the first place, sulphur was added as calcium sulphide, an equivalent amount of alumina also being added to maintain the same CaO:Al₂O₃ ratio; this proved quite satisfactory, especially in run 4, (see Table V, p. 56) where a run of 3/4 hour's duration resulted in one slag, initially containing no sulphur, picking up 0.27% sulphur, while the other, containing initially 0.8% fell to 0.64% sulphur. Also, in run 8, of $3\frac{1}{4}$ hours duration slags of initial sulphur contents of 0.3 and 0.5% both gave analyses of 0.44% sulphur. Additions of calcium-sulphate were tried, but did not give satisfactory results and destroyed the platinum crucibles, appearing to cause embrittlement of the platinum. A further indication of the time required to attain equilibrium was obtained by carrying out a series of runs, for increasing lengths of time, till constant results were obtained. Runs were carried out for periods of $2\frac{1}{4}$, $3\frac{1}{4}$ and $4\frac{1}{4}$ hours (See Table V, p. 56, runs 6, 7, 9 and 11). The results of runs 4-11 have been plotted against the duration of the run in Fig.10, and show that equilibrium was almost attained in $2\frac{1}{4}$ hours, and that $3\frac{1}{4}$ hours would be a sufficient time to ensure that equilibrium had been attained.

Similar runs for $3\frac{1}{4}$ and $4\frac{1}{4}$ hours were carried out on slags All, Sl and S6 (Table VI runs Nos.14-16, 31-32, 34-45). In each case, $3\frac{1}{4}$ hours was found to be adequate, for the attainment of equilibrium. It was assumed that this would hold for all the slag compositions used in the experiments. Hence all runs were carried out for a minimum duration of $3\frac{1}{4}$ hours.

CHAPTER V.

RESULTS OF SLAG-GAS EXPERIMENTS.

(1) Tables of Results.

Table IV shows the compositions of all the ratios $N_{CaO}/(N_{Al_2O_3})^{*d}$ in both weight per cent and mole fraction, their mole ratios $N_{CaO}/(N_{Al_2O_3})^{*d}$ N_{SiO_2} , and melting points. The melting points have been estimated from the binary and ternary diagrams collected by Hall and Insley(27) and given earlier (Figs. I, II, III,). The melting point of slag Al2 is given as 1520°C. Although the run using this slag (run 22) was carried out at 1500°C as usual, examination of the slag after the run showed that the absorption of 1.6% sulphur had been sufficient to liquefy the slag completely at the experimental temperature. As will be shown later in Fig.11, the result obtained in this run fits the a_{CaO} v. %CaO graph for CaO-Al₂O₈ slags. In no other case was the liquidus temperature of the initial slag higher than the experimental temperature.

The results of the preliminary runs using slag A6 are shown in Table V.. Table VI, shows the results of the runs using all other binary and ternary slags listed. All the data given refer to an experimental temperature of 1500°C (excepting runs 12 and 13), and to a total gas flow rate of 140-150 ml. per minute (excepting run 10). The estimation of sulphur in the slags in runs 1-25, 33, 41-44 and 88-89 was done by the evolution method, and the remaining slag sulphurs were estimated by combustion in carbon dioxide.

The values of the sulphurising potential of the gas, Λ , which have been used are those derived from Kelley's thermodynamic data, i.e., the A_K values. It will be shown later that Kelley's data are the data

TABLE IV.

COLPOSITIONS OF SLAGS.

No.	Compc CaO	osition Al ₂ 03	(Wt.%) SiO ₂	Mole F ^N CaO	ractions ^N algO3	^N SiO2	Mole Ratio	Melting Point (°C)	
CaQ-Al ₂ O ₃ Slags. NCaO/NAl ₂ O ₃									
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12	42.0 42.4 43.0 45.0 47.8 48.2 50.0 52.0 52.0 54.0 54.4 56.0 53.0	58.0 57.6 57.0 55.0 52.2 51.8 50.0 48.0 46.0 45.6 44.0 42.0	-	0.568 0.572 0.578 0.598 0.625 0.628 0.645 0.645 0.681 0.681 0.684 0.698 0.715	0.432 0.428 0.422 0.402 0.375 0.375 0.372 0.355 0.337 0.319 0.316 0.302 0.285		1.31 1.34 1.37 1.49 1.66 1.69 1.82 1.97 2.13 2.17 2.31 2.51	$ \begin{array}{r} 1500 \\ 1490 \\ 1480 \\ 1450 \\ 1450 \\ 1450 \\ 1450 \\ 1460 \\ 1470 \\ 1490 \\ 1520 \\ \end{array} $	
CaO-SiO2 Slags.				N _{CaO} /N _{SiO2}				દે	
S1 S2 S3 S4 S5 S6 S7	35.0 38.0 42.5 52.0 53.0 55.4 56.0		65.0 62.0 57.5 48.0 47.0 44.6 44.0	0.366 0.395 0.442 0.537 0.547 0.547 0.571 0.577		0.634 0.605 0.558 0.463 0.453 0.429 0.423	0.58 0.65 0.79 1.16 1.21 1.33 1.36	1500 1450 1500 1500 1490 1470 1500	
<u>Ca0-A</u>	l ₂ 0 ₃ – Si	On Slag	S•			N	$CaO/(N_{Alg})$	$_{\rm h}$ +NSiO ₂)	
AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11	60.5 57.2 58.3 59.5 56.3 53.4 49.0 47.2 49.3 42.5 44.5	32.5 39.8 35.7 31.5 39.0 35.3 34.0 38.8 40.7 46.7 48.5	7.0 3.0 6.0 9.0 4.7 11.3 17.0 14.0 10.0 10.8 7.0	0.713 0.698 0.698 0.698 0.686 0.640 0.586 0.578 0.609 0.543	0.210 0.268 0.235 0.203 0.261 0.233 0.224 0.262 0.276 0.328 0.343	0.077 0.034 0.067 0.099 0.053 0.127 0.190 0.160 0.115 0.129 0.084	1.77 2.31 2.31 2.31 2.04 1.98 1.42 1.37 1.55 1.19	1500 1480 1460 1490 1450 1500 1500 1490 1400 1500	

TABLE IV. (Cont'd).

COMPOSITIONS OF SLAGS.

No.	Composition		(Wt.%)	Mole F	Mole Fractions		Mole	Melting
	Ca0		SiO ₂	N _{CaO}	^N A1203	^N StiO ₂	Ratio	Point (°C)
<u>Ca</u> O-A]	203-Si	03 Slaf	<u></u>			NGaO/NAL203	+ ^N S10 ₂)	
AS12	46.0	50.0	4.0	0.596	0.356	0.048	1.47	1430
AS13	51.º	5.0	43.2	0.546	0.029	0.425	1.20	1400
ASIA	50.7	10.0	39•3	0.546	0.059	0.395	1.20	1440
ASIS	49.6	15.0	35.4	0.546	0.091	0.303	1.20	1470
AS16	38.0	4.0	58.0	0.403	0.023	0.574	0.67	1450
ASI7	38.0	8.0	54.0	0.410	0.047	0.543	0.69	1430
AST8	38 . 0		50.0	0.416	0.072		0.71	1390
TOTO TOTO	30.0	T0•0	46.0	0.421	0.125	0.479	0.73	133U
AGOI	30.0	20.0	4 ∠ •U	0.43I	0.1/5	0 410	0.70	
A COO	33.0	.≾3•U	39.0	0.449	0.140	0.201	0.70	1420
HDXX ADDX	30.0	20.0	30.0	0.442	0.167	0 254 0 291	0.79	1430
ADCO ADCO	30.0	30.0	3.<.↓U	0.430	0.196	0.504	0.02	1490
A COE	40.0	10.0	50.0	0.443	0.085	0.000	0.70	1420
r sje	40.0		40.0	0.441	0.005		0.79	1200
12000 1 200	40.0	70.0	42.0U	0.457	0 1 2 8	0.405	0.84	1410
ACOR	40.0	22 0	30.0	0.457	0.145	0.306	0.85	1420
1000 AUX		26 0	37.0	0.465	0 166	0.360	0.87	1400
8930	40.0	28	50 7	0 479	0.022	0.400	0.02	1500
AS31	45.1	J∎0 17.5	10•1 17.1	0.482	0.044	0.474	0.92	1450
V835	44.8	11.3	43.9	0.487	0.068	0.445	0.93	1370
4.933	44.3	15.1	40.6	0.490	0.091	0.419	0.96	1340
AS34	43.7	20.5	35-8	0.494	0.128	0.378	0.96	1470
AS35	46.0	5.0	49.0	0.487	0.029	0.484	0.95	1490
AS36	46.0	8-7	45.3	0.494	0.051	0.455	0.98	1420
4537	46.0	12.4	47.6	0.503	0.074	0.423	1.01	1330
AS38	46.7	16.5	37.4	0.512	0,101	0.387	1.05	1430
A539	52.0	3.3	44.7	0.544	0.019	0.437	1.20	1440
ASAO	52.0	6-6	47.4	0.551	0-030	0.410	7.23	1430
AS41	50-0	10-0	40.0	0.539	0.059	0.402	7,79	1380
AS42	31.6	45.5	22.9	0.405	0.321	0.274	0.68	1500

56.

TABLE V.

RESULTS OF PRELIMINARY RUNS ON SLAG A6.

(Unless otherwise stated, runs are at 1500°C and 140-150 ml.per minute).

Run	un Inlet Gag			Time SLAG			Weald	S	an fan de sense ander an de sense ander	
No.	C0/C0 ₂	/4502	A _K	of Run (hrs.)	%s	G	% S.		Remarks	
1.	1.51	0.78	340	4	1)0.408 2)0.408	G }	0.408	12.0		
2.	1.50	0.77	330	4	1)0.428 2)0.400	}	0.414	12.6	Furnace-cooled.	
3.	1.51	0.77	334	1 32	1)0.318 2)0.320	}	0.319	9.6	Delayed quench.	
4.	1.52	0.83	356	3 4	1)0.275 2)0.640				Neither at equilibrium. 0.8%S added to(2).	
5.	1.51	0.79	34 0	21	1)0.396 2)0.378	}	0.387	11.4	Almost at equilibrium Narrow gas-tube.	
6.	1.48	0.82	340	24	1)0.394 2)0.363	G	0.378	11.1	Almost at equilibrium.	
7.	1.52	0.83	357	34	0.446	G		12.5	No duplicate.	
8.	1.55	0.84	367	3 <u>4</u>	1)0.439 2)0.439	G) G)	0.439	12.0	0.3% S added to(1) 0.5% S added to(2).	
9.	1.49	0.83	346	34	0.417	G		12.1	No duplicate.	
10.	1.47	0.82	336	1 38	1)0.391 2)0.388	G) G)	0.390	11.6	65ml./min.gas flow.	
11.	1.49	0.84	348	44	1)0.401 2)0.423	}	0.412	11.9		
12.	1.50	0.85		34	0,372	G			At 1513°C, no duplicate	
13.	1.50	0. 86		3 <mark>4</mark>	1)0.332 2)0.371	}	0.352		At 1525°C	

Mean value of $S/A_K \times 10^6$ (from runs 7-11) is 12.0.
57.

TABLE VI.

RESULTS OF ALL SLAGS.

(Unless otherwise stated, all runs are of $3\frac{1}{4}$ hours' duration).

Run	Slag	Inlet	Gas	SLAG		$S/A_{\rm K}({ m x10^6})$		aco	
No.	No	C0/C0 ₂	%S03	AK.	%S GL	ASS G	VALUE	MEAN VALUE	CaOK
7-11	$\mathbf{A6}$							12.0	0.23
14	<u>A11</u>	1.52	0.80	347	1.25		36 .0)		4
15==	A11	1.49	0.85	349	1.29		37.0)	36.5	0.69
16#	-11	1.51	0.78	337	1.23		36.4)		
17	Al	1.52	0.80	347	0.137	G	3.95)	3.92	0.074
18	ĽΛ	1 50	0.83	356	© 232	G	5.5		0 100
10	A-7 17	1 50	0.83	356	0.570				0 205
20	AI 18	1 50	0.83	350	NO 304		22 Q)	· * ·	0.303
~0	24.0	T* 20	0.00		a)0.804		22.9)	22•9	0.11
21	$\mathbf{A9}$	1.50	0.86	358	1.02		28.4		0.54
22	A12	1.50	0.86	358)1. 65		46.1)	44.8	0.85
23	A.ST	1.52	0.77	340	N1.87		53. 3)		
~5		エ・ジル	V • / /	040	J1.77		52.1)	52.7	1.00
24	A2	3.32	2.83	1600	0.571		3.56	2 66	0.000
25	A2	3.36	3.18	1680	0.631		3.76	3.00	0.069
26	A 3	1.49	0.72	311	0.147	G	4.73		0.090
27	A5	1.06	0.72	168	0.196	G	11.7		0.222
28	A5	1.51	0.30	165	0.196	G	11.9		0.226
29	A10	1.06	0.72	168	0.46	G	27.2		0.52
30	ASL	1.06	0.72	168	0.88	G	52.4		0.99
31	Sl	3.67	3.08	180	0)0.040	G	0.22)		
					\$0. 036	G	0,20)		
32±	Sl	3.69	3.02	1800	JO.0 36	G	0.20)	0.21	0.0040
					20.039	G	0.21)		•
33	S 6	1.51	0.82	34 9	0.064	,	1.83		0.035
34	S 6	3.67	3.08	1800	1)0.318		l.76)		
	_				2)0.333		1.84)	1.73	0-033
35≢≃	S 6	3.69	3.02	1800	1)0.305		1.70)	2010	
26	60	די כ	<u> </u>	1000	\$)0.291	0	1.62)		0.0000
20	9 60 100	2 €2 2•1⊥	2 11	1790		দ			0.0032
51	53	い。ロイ	J•TT	1700	20.050		0.23)	0.27	0.0051
33	S4	4.70	3.41	2260	0.259	G	1.15		0.022
39	S 5	3.62	3.11	1780)0. 262	G	1.47)	1.45	0-028
					2)0.256	G	l.43)		
40	S7	4.53	3.13	2160	0.348	G	1.61		0.031
41	A S 2	1.52	0.86	365	1.40		38.4)	38-5	0.73
42	AS 2	1.51	0.84	355	1.36		38.5)		

1

34 hours' run.

sicie:

* 44 hours' run.

Run	Slag	INLET	GAS	SLAG		S/A _K (2	10 ⁶)	0	
No.	No.	CO/CO2	%S02	AK	%S	GLASS	VALUE	MEAN	^a CaO _K
						G		VALUE	<u>کې</u>
43	AS3	1.51	0.84	355	ッ1.53 ン1.60		43°2) 45°2)	44.2	0.84
44 ·	AS4	1.52	0.84	358	n1.53 x)1.62		42• ⁸) 45•2	44.0	0.84
45	AS 5	1.43	0.98	361	1.04		28.8		0.55
46	AS6	1.43	0.98	361	0.462		12.8		0.245
47	AS7	1.49	0.72	311	0.153	3	4.92		0.093
48	153	1.43	0.98	361	0.124		3.44		0.065
49	AS9	1.37	0.88	311	0.314	G	10.1		0.192
50	ASIO	1.48	0.49	236	0.092	2 G	3,90		0.074
51	AS11	1.37	0.88	311	0.189	G	6.07		0.115
52	AS1 2	1.37	0.88	311	0.192	G G	6117		0.117
53	<u>AS13</u>	3.62	3.05	1770	10.314	l G	1.77)		0 005
					2)0.34]	G	1.92)	T*00	0.035
54	AS14	3.62	3.05	1770	1)0.407	7 G	2.29)	2.24	0.042
					20.387	'G	2.18′	~~~	
55	AS15	3.32	2.83	1600	10.462	2	2,88)	2.83	0.054
	5 6 7 7 6				2)0.444	L .	2.77)		
56	AS16	3.71	2.90	1790	0.038	3 G	0.21		0.0040
57	ASL7	3.88	2.66	TSTO	0.044	l G	0.24	0.22	0.0042
58	ASL7	3.71	2.90	1790	0.036	5 Gr	0.20)		
59	ASLO	4.64	3•⊥7	2200	0.083	3 Gr	0.38	0.38	0.0072
60	ୟସେଠ	3,58 1 ⊑0	2.89	1730	0.060	b Gr	0.38)		0-0074
67 01	4200 4200	3,00	2.09	1730	NO 07/		0.42		0.0070
0%	And U	3.09	∠•0⊥	1(U 0014	t G	0.43	0.47	0.0089
63	5 CO 1	3 88	2 66	ר א ר	AD 075		0.42		
00		3.00	2.00	TOTO	20 060	a c	0 381	0 48	
64	4.521	3, 58	2.89	1730	0.111	ם ע ר ה	0.64	0.10	0.0071
65	AS22	3,58	2.89	1730	0.098	3 6	0.57		0-07.08
66	4523	3-69	2.61	1720	10.124	L G	(0.72)		0.0100
00		0.00	~•••	±1~U	20,121		0.70)	0.71	0.0135
67	A324	3.71	2.90	1790	0.053	3 G	0.29		0.0055
68	AS2.5	3.74	2.87	1800	0.052	2 G	0.29		0.0055
69	AS26	3.74	2.87	1800	0.079	9 G	0.44		0.0084
70	AS27	3.74	2.87	1800	0.104		0.57		0.0108
71	AS28	3.88	2.66	1810	0.107	7 G	0.59		0.0112
72	AS29	3.74	2.87	1800	0,103	3 G	0.57)	0 70	
73	AS29	4.64	3.17	2200	0.219) G	1.00	0.79	0.0120
74	AS30	4.39	3.41	2]40	0,120) G	0.56	0 50	0.07.07
75	AS30	4.05	3.07	1960	0.096	5 G	0.49	0.53	0.0TOT
76	AS31	4.05	3.07	1960	0.124	ŧ G	0.63		0.0120

1....

TABLE	VI.	(Cont!	d)	•
the second se	the second second	•		

-	·								والواحداني وعاري ومناكات وبراكل فيدانهم معرفاته
Run	Slag	INLET GAS		SLAGS		S/AK(x10 ⁶)			
No.	No.	C0/C0 ₂	%SO ₂ A	_f Κ	%S	GLASS G	VALUE	MEAN VALUE	^a CaO _K
77 78	AS32	4.05	3.07]	196 0	0.159	G	0.81		0.0154
79 80	AS34 AS35	4.05 4.76	3.07 J 2.92 2	1960 2210	0.192 0.192 00.139	G	0.98 0.63)		0.0186
81	AS36	4.53	3.13 2	2160	a)0.146 0.182	G G	0.66) 0.84	0.65	0.0123 0.0159
82 83	AS37 AS38	4.39 4.76	3.41 2 2.92 2	2140 2210	0.229 0.309	G G	1.07 1.40		0.020 0.027
8 <u>4</u> 85	A339 AS40	4•70 4•70	3.41 2	2260	0.324	G G	1.43 1.88		0.027 0.036
86 8 7	AS41 AS42	4.39	3.17 2 3.41 2	2200 2140	0.422 0.126	G G	1.92 0.59		0.036
Runs not used in calculations of activities.									
38	A10	3.22	0.95	98 0)4.5 96.1		46 62		
89	Expect AS6 Expect	ed valu 3.70 ed valu	e at 98 2.90] .e	8 0. 1780	2 .9 2 .5 2		29.8 14.2 12.8		0.5 66

Sulphur analyses of runs 1-25, 33, 41-44 and 88-89 werecarried out by the evolution method, and of all other runs by the combustion method.

L

ļ,

which agree best with the results obtained in the present work. Column 9 of Table V, and column 8 of Table VI, show the value of the ratio S/A_K for each run. This ratio is proportional to the activity of CaO in the slag, hence S/A_K values for runs 7-11 (all using slag A6) should be constant - which was found to be the case. In run 23, the standard slag AS1 ($a_{CaO} = 1.00$) was used and the value of 52.7 x 10⁻⁶ obtained for S/A_K for this slag. The activity of each slag, shown in column 10, was calculated using this value, and is denoted by a_{CaO_K} .

The S/A_K value for each individual sample has been shown in the Tables. For most of the binary slags, duplicate samples were used. Where no duplicate result is shown, it infers in most cases that the duplicate sample was lost - usually on account of leakage of the crucible. For most of the ternary slags, only one sample of each composition was used. Occasionally, however, duplicates of samples were carried out, sometimes using different gas compositions. Where duplicates have been carried out, only the mean value of a_{CaO} has been calculated.

The agreement obtained between duplicates was reasonably good. Examination of the results using slag A6 (runs 7-11) shows that all lie within $\pm 5\%$ of the mean. Over the other duplicates, agreement in all but two cases was within $\pm 10\%$ - which is regarded as satisfactory, since in many cases the sulphur content of the slags was less than 0.1%. Two other points may be noted here: (1) the sulphur content of the slags was never greater than 1.8%, and in more than 80% of the runs the sulphur content was less than 0.5%. (2) the appearance of the slags varied considerably, the majority were glasses, white, clear or yellow in colour,

whilst the others were minutely crystalline, white, greyish or yellow in colour. Two slags (AS7 and S6) were "falling slags" and became powders on standing for a day or two. In the columns in Tables V and VI headed "Glass", glassy slags are indicated by "G" and unmarked slags are minutely crystalline. No relation could be seen between the colour and the tendency to glass formation of a slag on the one hand, and its composition on the other, and it is probable that variations in appearance - which were obtained even between duplicates of the same slag in the same run - are to be explained by slight differences in the cooling of slag samples on completion of a run.

(2) Freliminary Runs Using Slag A6 - Table V.

These preliminary runs were designed to show the effect of certain variables on the results obtained, as follows.

(a) Effect of Rate of Cooling.

The difference between the normal method of cooling of slags, as described on p.50 , and furnace-cooling is shown by runs 1 and 2. At the end of run 2, after the gas flow and power supply had been cut off, the slag samples were allowed to cool within the furnace hot zone. Comparison with run 1 shows the furnace-cooled samples to be about 5% higher. Under furnace cooling the sulphur content of the slag tends towards the equilibrium sulphur content of the slag at the temperature of solidification. It would appear, therefore, that the sulphur content of the slag in equilibrium with a gas of given initial composition

increases with fall in temperature. Subsequently all slags were cooled to give rapid solidification by lowering the reaction tray 3 ins. immediate-.ly after terminating a run.

(b) Effect of the reaction tray sticking in the furnace tube.

At the end of a run it was occasionally found, after the lower bung and stools had been removed, that the reaction tray had stuck in the centre of the furnace tube - due to canting for instance. Run 3 ("delayed quench") was such an instance, and the result shows that atmospheric oxygen had reacted with some of the sulphur before solidifi-.cation had taken place, giving low result. Hence all such runs were discorded.

(c) Effect of Changes in the Rate of Gas Flow.

This is shown by runs 5 and 10. In run 5 the gas mixture entered the reaction chamber via an alumina tube, V, (Fig.9) of narrower bore - $\frac{1}{16}$ in. internal diameter instead of the normal $\frac{1}{5}$ in. Since the total gas flow was maintained at 150 mls. per minute, the linear gas velocity down the entry was four times as great. The result of run 5 is seen to be comparable to that of run 6, both being for $2^{\frac{1}{2}}$ hours, i.e., equilibrium very nearly, but not quite, attained. The change in linear gas velocity has made no significant difference to the result. In run 10 the total gas flow was reduced to 65 mls. per minute. Again no significant difference is seen in the result. It can, therefore, be inferred that the gas is adequately preheated before reaching the reaction chamber, and that errors due to thermal diffusion or to incomplete attainment of equilibrium in the gas mixture are within the limits of experimental error.

(d) The effect of temperature.

Runs 12 and 13 were carried out at 1513°C and 1525°C respectively If run 12 had been conducted at 1500°C, the $A_{\rm K}$ value of the gas would have been 354, and, since the mean value of S/A_K for slag A6 is 12.0 x 10⁻⁶, a slag culphur of 0.425% would have been obtained. Therefore, a rise in temperature of 13°C, giving 0.372% S, results in a loss of 13% of the sulphur content. Similarly run 13 would have given an $A_{\rm K}$ of 356 and a slag of 0.427% S at 1500°C. Therefore, a rise in temperature of 25°C results in a loss of 18% of the sulphur content. Therefore, the sulphur content of a slag in equilibrium with a gas of given initial composition decreases with rise in temperature, the rate for slag A6 being approximately 1% of the sulphur content per °C at 1500°C. This confirms the qualitative conclusion reached above from the furnace-cooled sample.

At first sight this appears to contradict the results of Fincham and Richardson(15) who showed that, under gases of constant equilibrium p_{0_2} and constant SO_2 input, raising the temperature increases the amount of sulphur in the melt. At different temperatures gases of the same initial SO_2 content and of the same equilibrium p_{0_2} are initially of different compositions. Therefore, the results of the present work cannot be compared directly with those of Fincham and Richardson. To facilitate comparison it is necessary to recalculate the results of the present work and thus obtain the effect of changes in temperature on the absorption of sulphur by slag A6 under gases of the same initial SO_2

content and equilibrium p_{O_2} . This was carried out for the results of run 12 as follows.

By extrapolation of the data for 1510° C in the Appendix, calculations numbers 127-8, it can be shown that at 1513° C, a gas of initial CO/CO₂ = 1.50 and SO₂ = 0.85% gives $A_{\rm X}$ = 298 and p_{O_2} = 1.62 x 10⁻⁸. Slag A6 absorbed 0.372% S from this gas at 1513°C (result of run 12).

At 1500°C a gas of the same initial SO₂ content (0.85%) and of the same equilibrium p_{O_2} (1.62 x 10⁻⁸) gives $A_K = 282$ and its initial CO/CO₂ = 1.31. From the S/A_K value of slag A6 at 1500°C, it can be shown that, at equilibrium with this latter gas, slag A6 would have absorbed 0.339% S. Therefore, a rise of 13°C, using gases of constant initial SO₂ content and equilibrium p_{O_2} results in a change in sulphur content from 0.339% to 0.372%, i.e., a rise of $\frac{3}{2}$ % per °C., which agrees qualitatively with the conclusion of Finchem and Richardson.

It will be seen from the later discussion (p.80) that whether a_{CaO} rises or falls with increase in temperature depends on the composition of the slag. For slag A6, the effect of temperature on the a_{CaO} value can be determined as follows. For the reaction

$$CaO(B) + \frac{1}{2}S_2 = CaS(B) + \frac{1}{2}O_2$$
(3)
 $K = \frac{a_{CaS}}{a_{CaO,AK}}$

Equilibrating slag A6 with the same initial gas at 1500°C and 1513°C, it follows that

$$\frac{a_{Ca0(1500^{\circ}C)}}{a_{Ca0(1513^{\circ}C)}} = \frac{S_{1500^{\circ}C}}{S_{1513^{\circ}C}} \cdot \frac{A_{K(1500^{\circ}C)}}{A_{K(1513^{\circ}C)}} \cdot \frac{K_{1513^{\circ}C}}{K_{1500^{\circ}C}} \cdot \frac{Y_{1500^{\circ}C}}{Y_{1513^{\circ}C}}$$

In calculating the effect of temperature on $A_{\rm K}$, it was shown (p.31), that the rate of change of $A_{\rm K}$ for a given gas was $-1\cdot3\%$ per °C. The present work shows that, for a given initial gas, the sulphur content of the slag decreases by approximately 1% per °C. The values of K1500°C and K1513°C can be obtained from the free energy equation for the reaction (3) above. Rosenqvist(32) has shown that the free energy for the reaction

$$CaO(s) + H_2S = CaS(s) + H_2O$$

is given by

$$\Delta G_{\rm T}^{o} = -15,560 + 0.87T$$

Combining this with the free energy given by Richardson and Jeffes(34) for

$$H_2 + \frac{1}{2}O_2 = H_2O$$

 $\Delta G_T^0 = -59,000 + 13.38T$

and the free energy given by Richardson and Jeffes (36), for

$$H_2 + \frac{1}{3}S_2 = H_2S$$

 $\Delta G_T^0 = -21,580 + 11.81T,$

the free energy equation for the reaction (3) above is given by

$$\Delta G_{T}^{0} = +21,770 - 0.70T$$

$$K_{1500^{\circ}C} = 2.94 \times 10^{-3} \text{ and } K_{1513^{\circ}C} = 3.08 \times 10^{-3}$$

$$\frac{a_{Ca0}(1500^{\circ}C)}{a_{Ca0}(1513^{\circ}C)} = \frac{1}{0.87} + \frac{0.83}{1} \cdot \frac{1.047}{1} \cdot \frac{51500^{\circ}C}{51513^{\circ}C} = 0.999 \frac{51500^{\circ}C}{51513^{\circ}C}$$

If V_{CaS} remains constant, then a_{CaO} will not vary within the temperature range 1500° - 1513°C. As the solubility of CaS probably rises with temperature an accompanying decrease in V_{CaS} might be expected. For this particular slag this would therefore indicate a decrease in a_{CaO} with rise in temperature.

(3) The CaO-Al₂O₃ System.

The a_{CaO_K} values of CaO-Al₂O₃ slags and of the standard slag ASI obtained using gases of approximately constant A_K values of 350 ± 15 (run 7-22) were plotted against wt.% CaO as shown in Fig.ll, (points without appended numbers). The smooth curve obtained shows a steady increase of a_{CaO} with % CaO until unit activity is reached at approximately 59% CaO. This agrees well with the value of 59% CaO obtained for the point at which the extrapolated CaO liquidus cuts the 1500°C isotherm (Fig.l).

On account of the large differences between the calculated values of A_K and A_R for a given gas, it was originally intended to circumvent the resulting difficulty by equilibrating all slags under gases of approximately constant composition. However, when CaO-SiO2 slags were equilibrated with gases of AK values of 350 + 15, it was found that even with slag S6, i.e., almost the highest CaO content possible in a CaO-SiO₂ slag liquid at 1500°C, the sulphur content obtained was only 0.064% (run 33). It was therefore necessary to use gases of higher sulphurising potentials, e.g., $A_K = 1600-2200$. Accordingly before further runs were carried out using CaO-SiO2 slags, it was necessary to obtain data from which a decision could be made as to whether the AK or the AR gas values It would have been ideal if gases of the were the more accurate. higher sulphurising potentials could have been equilibrated with the standard slag AS1, but this was impracticable since the quantity of sulphur absorbed would have been 8-10%. Slag S6 had been equilibrated with a gas of low sulphurising potential (run 33) and was later

equilibrated with gases of high sulphurising potentials (runs 34 and 35). When the A_K values are used, it can be seen, from Table VI, that S/A_K is approximately constant for the three runs. On Fig.13, the result of run 33 is shown separately from the mean of runs 34 and 35 (A_K values are appended to both points). If the A_R values had been used, the following results would have been obtained.

Run 33 : $A_R = 180$ S = 0.064% $S/A_R = 3.6 \times 10^{-6}$ $a_{CaO_R} = 0.035$ Mean of Runs 34 and 35 : $A_R = 1430$ S = 0.326% $S/A_R = 2.3 \times 10^{-6}$ $a_{CaO_R} = 0.022$ These two a_{CaO_R} values have also been shown on Fig.13, (with A_R values appended). It can be seen that, while the a_{CaO_R} value of run 33 must be the same as the a_{CaO_K} value, the a_{CaO_R} value of runs 34 and 35 drops to about 65\% of the corresponding a_{CaO_K} value. Although this indicates that the A_K values are more accurate, it was felt that no great stress could be put on this result since the accuracy of the slag sulphur analysis in run 33 (in which the sulphur was estimated by the evolution method) was about $\pm 25\%$, on account of the low titration difference of 1.2 mls., equivalent to the sulphur content. Therefore, some better method of comparison was required.

In Chapter III, p.27, values of A which have been calculated using the various free energy data available, are shown for two gases of widely different sulphurising potentials, (1) of initial CO/CO_2 of 1.52 and initial SO_2 of 0.81%, and (2) of initial CO/CO_2 of 3.34 and initial SO_2 of 3.01%. From these, values of the ratio A_2/A_1 were calculated and compared as shown in Table II. Using the data of Richardson and Jeffes(36), $A_2/A_1 = 7.07$, using the data of Chipman and St. Pierre(41), $A_2/A_1 =$ approximately 6.4; and using the data of Kelley(35), $A_2/A_1 = 4.69$. It was also pointed out that, by bringing samples of the same slag to equilibrium with gases(1) and (2), an experimental value of the ratio $A_2/A_1 = S_3/S_1$ would be obtained, where S_1 and S_2 are the sulphur contents of the slag at equilibrium with gases (1) and (2) respectively.

A CaO-Al₂O₃ slag of low CaO content, slag A2, was selected for this comparison, in order to keep the %S absorbed by the slag when equilibrated with the gas of higher sulphurising potential under the limit of 2%. Runs 24 and 25 show the results obtained using the gas of higher sulphurising potential.

For the standard slag, $S/A_{\rm K} = 52.7 \times 10^{-6}$. Since $a_{\rm CaO} \propto S/A_{\rm K}$, it can be shown from Fig.ll, that for slag A2,

 $S_1 / A_{K_1} = 4.16 \times 10^{-6}$ • at $A_{K_1} = 350$, $S_1 = 0.146$ %S.

From runs 24 and 25,

at $A_{K_2} = 1640$, $S_2 = 0.601\%$ $S_2/S_1 = 4.12$.

Comparing this with the values of the ratio A_2/A_1 given above, obtained using the free energy data of Richardson and Jeffes(36), of Chipman and St. Pierre(41) and of Kelley(35), it can be seen that the experimental data fit the free energy data of Kelley more closely than they do any of the other free energy data. The experimental evidence given thus supports the values of +101 and +119.5 kcals. for the dissociation energies of S_2 and 50 respectively. This conclusion, however, is based on the results of experimental work on one slag composition and a number of similar experiments should be carried out before the above findings can be regarded as conclusive. In the present work calculations of experimental results are based on the A_K values of the gases, but where the use of A_R values produce significant differences, the results based on the A_R values are also shown, these results being denoted by the suffix R.

In the above calculation, an error will be introduced if there is any significant difference between the values of β_{OaS} at 0.146% S and at 0.60%S. The direction of such an error can be shown as follows. The activity-mole fraction curve of a solution of CaS in a slag will probably take a form similar to that shown diagrammatically in Fig.12. This is similar in form to the approximate curve for the activity of CaS in blast furnace slags derived by Rosenqvist(32) from the experimental data of Hatch and Chipman(33), shown in Fig.4. Such a curve shows positive deviations from Racult's Law but negative deviations from Henry's Law. β_{CaS} is given by the slope of the chord of the curve and decreases with increase in the sulphur content of the slag. In the case of the slags of sulphur contents S_1 (0.146%S) and S_2 (0.60%S) above,

$$\gamma_{CaS} > \gamma_{CaS}$$

where f_{CaS} , f_{CaS} " refer to the activity coefficients of CaS in the A2 slags containing S₁ and S₂% sulphur respectively. Further, where N_{CaS} , N_{CaS} and a_{CaS} , a_{CaS} ,

$$\frac{A_2}{A_1} = \frac{a_{Ca0}"}{a_{CaS}} = \frac{I_{CaS}" \cdot {}^{N}Ca0"}{I_{CaS}' \cdot {}^{N}CaS'} = \frac{I_{CaS}" \cdot S_2}{I_{CaS}' \cdot S_1}$$

In the calculation above to decide which thermodynamic data fit best, it was assumed that γ_{CaS} was constant for the range of slag sulphur contents used, i.e., that $A_2/A_1 = S_2/S_1$. The correction for the error introduced by this assumption would therefore decrease the value of the ratio a_{CaS}''/a_{CaS}' i.e., in this particular case, the value of $S_2/S_1 = 4.12$ would tend to be decreased if allowance were made for the variation in the value of γ_{CaS} . Such a correction would therefore not alter the decision regarding the various sets of free energy data.

One other source of possible error lies in the use of slags of the same initial composition for the comparison, no compensation being made for the effect of the replacement of some oxide by sulphide in the experiment. The results of Fincham and Richardson(15) which show that a_{CaS} is proportional to %S from 0.003 to 1.3% S in their slags (see above, p.20) suggest that this error is negligible.

It has been shown above that the experimentally determined ratio $S_2/S_1 = 4.12$, and that the ratio A_2/A_1 obtained using the data of Kelley is 4.69. This discrepancy may be due to (a) inaccuracies in the thermodynamic data used by Kelley, as well as to (b) experimental errors in determining S_2/S_1 . It it was assumed that the error was due

totally to (a), and that the value of $A_{K} = 350$ was the true A value of the gas of composition (1) above, then the correction factor (based on the experimental data) which would require to be applied to the A_K value of 1640 to obtain the true A value would be 4.12/4.69 = 0.88, i.e., the true A value of the gas of composition (2) would be 12% lower than the value given by the A_X graph for this gas. In several runs (Nos.26-30) various CaO-Al₂C₃ slags were equilibrated with gases of $A_{\rm K}$ values less than 350. The results of these runs are also plotted on Fig.11, the numbers appended to the points on the graph indicating the AK values of the gases used (no correction being applied to these AK values). An examination of these points shows that they all lie, within the probable limits of experimental error, on the curve and, moreover, that the point obtained from runs 24 and 25, using the gas of $A_K = 1640$, also lies within the limits of error of the curve. There is, therefore, no justification, on the basis of the present data, for the application of a correction factor to the high \mathbb{A}_{K} values.

It may be pointed out also that, if the graph of a_{GaO} of Fig.ll is based on the A_R values of the gases, the a_{CaOR} curve thus obtained will be exactly the same as the a_{CaOK} curve shown. Therefore, the use of the suffixes K and R when referring to a_{CaO} in CaO-Al₂O₃ slags will be discontinued except when necessary and the curve will be referred to as the a_{CaO} curve. It may also be noted that the a_{CaOR} points which would have been obtained from runs 26-30 would be slightly higher than the corresponding a_{CaOK} points (since the ratio AK/AR is found to increase with decrease of CO/CO₂ and % SO₂ of the initial gas), but for these points the increase would be very small. The a_{GaO_R} point corresopending to runs 24 and 25, however, would have been decreased considerably - in fact by the ratio 4.69/7.07, i.e., to 67% of the a_{GaO_K} value or to 53% of the value given by the aCaO v. % CaO curve. It is, therefore, on the basis of this last point that the free energy data of Kelley can be supported in preference to the data of Richardson. It should be noted also, that, in order to make the a_{CaO_R} value of slag A2 fall on the a_{CaO} curve, an experimental result of 1.03%S would have been required, instead of the result of 0.60%S obtained - and such a discrepancy could not be attributed to experimental errors.

The agreement of the results of runs 24-30 with the graph obtained using gases of AK values of 350 + 15 (i.e., runs 7-11, 14-23) is not solely dependent on the accuracy of the free energy data of Kelley. It depends also on the variation of κ_{CaS} with sulphur content in any given slag, on the variation of f_{CaS} with slag composition, and on the effect of the absorption of sulphur on the residual $N_{\rm CaO}$ and $a_{\rm CaO}$ values of the In all graphs of results, the values of % CaO and $N_{\mbox{CaO}}$ used slags. were those calculated on the basis of the composition of the slag before any sulphur had been absorbed, and no allowance was made for the effect of sulphur absorption on the value of N_{CaO} and therefore on the "true" a_{CaO} value of a slag of given N_{CaO} . Ideally it would be necessary to equilibrate each slag with a series of gases of progressively decreasing sulphurising potentials, extrapolating to zero sulphur content and thus obtaining the "true" a_{CaO} value of the slag. A limitation is imposed on this method of course, by the difficulty in the analysis of slags of

very low sulphur contents obtained under gases of low sulphurising potentials. The data available from the present series of experiments on CaO-Al2O3 slags do however indicate certain probable conclusions. Since the results of runs 24-30 lie fairly close to the graph and do not show any trend with either AK or %S, it can be concluded that the effects of all three factors mentioned above, viz., (1) an error in Kelley's thermodynamic data, requiring a correction to $A_{\rm K}$, (2) the variations of \mathcal{L}_{CaS} , and (3) the effect of the absorption of sulphur on the residual $N_{\rm CaO}$ value of a slag, and therefore on the "true" $a_{\rm CaO}$ value of the slag, are such as to cancel each other out, or the effect of each factor is within the limits of experimental error. It is probable that the latter is the case since the points on the graph corresponding to runs 24-30 cover the whole range of slag compositions liquid at 1500°C, and do not show any trend with change in AK or with change in % in a given slag.

In terms of the ionic model of the constitution of a liquid slag, the above data can be shown to fit into such a picture. When sulphur atoms are introduced into a $CaO-Al_2O_3$ slag the S⁻ ions are held by the Ca⁺⁺ ions less securely than the O⁻⁻ ions which they displace, mainly because of their greater size. The activity of CaO in the melt (An other words, the oxide activity) is not however decreased by an amount corresponding to the S⁻⁻ ion introduced, but by an amount less than this. One would therefore expect that, if a graph of a_{CaO} v. %S were made for any given slag (i.e., of constant initial composition) the a_{CaO} value would fall slowly from its true value as the sulphur content of the slag increased. From the data at present available, it appears that the variation of a_{CaO} with % is probably smaller, for the slag sulphur contents used, than the present experimental error limits.

(4) The CaO-SiO₂ System.

The results of runs 31-40 are shown in the a_{CaO_K} v. % CaO graph in Fig.13. Since CaO-SiO₂ slags at 1500°C are solid between 42.5 and 52% CaO, that portion of the a_{CaO_K} curve in Fig.13 refers to the liquid slag in the supercooled state. Use of the Gibbs-Duhem relation later to determine a_{SiO_2K} helped to establish the shape of the curve. The scatter of points about the a_{CaO_K} curve is rather more than in the case of the CaO-Al₂O₃ slags in Fig.11, a fact which may be partly ascribed to the lower sulphur contents of the slags in the CaO-SiO₂ runs, and the consequent lower accuracy in their analysis. The a_{CaO_R} curve obtained using the A_R gas values has also been shown in Fig.13 and lies considerably below the a_{CaO_K} curve. The a_{CaO_R} values are all approximately 65% of the a_{CaO_K} values.

The comparison between a_{CaO_K} in CaO-SiO₂ and CaO-Al₂O₃ slags on a molar basis is shown in Fig.14. It can only be carried out over a very limited range at 1500°C, since N_{CaO} in CaO-rich liquid CaO-SiO₂ slags is approximately equal to N_{CaO} in Al₂O₃-rich liquid CaO-Al₂O₃ slags. Comparison of the a_{CaO} values at $N_{CaO} = 0.57$ in both systems shows:

> $a_{CaO} in 42.2\% CaO-Al_2O_3 slag = 0.076$ $a_{CaO_K} in 55.4\% CaO-SiO_2 slag = 0.033$ $a_{CaO_R} in 55.4\% CaO-SiO_3 slag = 0.021$

i.e., as would be expected from a knowledge of the affinity of CaO for SiO_2 and for Al_2O_3 , the activity of CaO in a CaO-SiO₂ slag is much lower than in a CaO-Al₂O₃ slag of the same mole fraction.

(5) The CaO-Al₂O₃-SiO₂ System.

The activities calculated from the experimental data have been used to construct iso-activity curves for a_{CaO_K} in CaO-Al₂O₃-SiO₂ slags at 1500°C, as shown in Figs.15 and 16, in which the activities are plotted against the slag composition expressed in weight % and mole fraction respectively. The corresponding a_{CaO_R} curves have not been calculated. In the low SiO₂ field they do not differ from the a_{CaO_K} curves, since the gases used in the runs in which low-SiO₂ slags were used had A_K values of approximately 350. In the low Al₂O₃ field the a_{CaO_K} values will be approximately 65% of the corresponding a_{CaO_K} values. As can be seen from the diagrams, only a part of the region liquid at 1500°C is covered by the experimental data the low-SiO₂ field has been fairly well covered, but in the low-Al₂O₃ field only the area with N_{CaO} > 0.4 has been investigated.

From Figs.15 and 16, the following points emerges (1) Replacement of Al_2O_3 by SiO_2 on a molar basis in the low-SiO₂ field does not materially alter a_{CaOK} . On a wt. % basis, replacement of Al_2O_3 by SiO_2 results in a slight increase in a_{CaOK} . (2) Replacement of SiO_2 by Al_2O_3 on either a molar basis or a wt.% basis in the low- Al_2O_3 field results in a small increase in a_{CaOK} . Fig.17 illustrates points (1) and (2) in another way, a_{CaOK} curves for slags of various Al_2O_3/SiO_2 ratios being fairly close to each other in the

case of low-SiO₂ slags. In the case of low-Al₂O₃ slags, the differences between the curves for the various Al_2O_3/SiO_2 ratios are rather greater.

(3) There is a steep drop in a_{CaO_K} with decreasing %CaO along lines of constant Al_2O_3/SiO_2 ratio. This is shown clearly in Fig.17. (The join of constant Al_2O_3/SiO_2 used in this figure are indicated in Fig.15). (4) The a_{CaO_K} values of slags in the low-SiO₂ field at 1500°C are consider-.ably higher than those in the low- Al_2O_3 field. This is partly due to the higher N_{O_2O} values existing in the low-SiO₂ field, but also to the lower affinity of CaO for Al_2O_3 than for SiO₂. The implications of the last two points for iron- and steel-making will be discussed later.

CHAPTER VI.

.

. . .

CALCULATIONS OF THERMODYNAMIC FUNCTIONS

.

AND COMPARISON WITH PREVIOUS DATA.

(1) The CaO-Al₂O₃ System.

In order to calculate values of $a_{Al_2O_3}$ from those of a_{CaO} it is necessary to know the value of a_{CaO} in the CaO-Al_2O_3 slag which is in equilibrium with solid Al_2O_3. The CaO-Al_2O_3 thermal equilibrium diagram (Fig.1), shows that no liquid CaO-Al_2O_3 slag is at equilibrium at 1500°C with solid Al_2O_3. It is also very difficult to extrapolate the Al_2O_3 liquidus to 1500°C, since (a) the Al_2O_3 liquidus is not accurately known, and (b) the extrapolation involved is quite a consider-.able one, since the Al_2O_3 liquidus stops at 1760°C.

The 1500°C isothermal cuts the CaO.Al₂O₃ liquidus. Therefore in the first instance, it was decided to calculate values of $a_{CaO,Al_2}O_3$ from the a_{CaO} curve by application of the Gibbs-Duhem relation, and the $a_{CaO.Al_2O_3}$ curve is shown in Fig.ll. Although not of great value in itself, this curve, along with the a_{CaO} curve was used to calculate $\Delta \mu_{CaO}$ and $\Delta \mu_{CaO.Al_2O_3}$ curves from which the free energy change for the reaction

$$5CaO_{(s.)} + 7(CaO_{Al_2}O_3)_{(s.)} = 12CaO_{O_3}Al_2O_{3(1)}$$

was calculated to be

$$\Delta G_{1773}^{o} = -39.6$$
 kcals.

Unfortunately only the most meagre information is as yet available on the free energies of $CaO-Al_2O_3$ melts, and this figure cannot be confirmed at present.

In order to effect a comparison with the free energy given by Fincham and Richardson(15) for CaO-Al₂O₃ melts at 1650° C, it was decided to make a tentative extrapolation of the Al₂O₃ liquidus to 1500° C. A figure of 31% CaO was selected as a probable value for the composition

at which the extrapolated Al₂O₃ liquidus would meet the 1500°C isothermal although the true value may lie anywhere from 27 to 35% CaO. An extraspolation of the acao curve to 31% CaO, with the aid of the Gibbs-Duhem $N_{CaO}/N_{Al_2O_3}$ v. log γ_{CaO} graph, gave a value of 0.016 for a_{CaO} at Al_2O_3 Use of the Gibbs-Duhem relation gave the and Curve shown saturation. in Fig.ll. The a_{CaO} and a_{AlaO3} curves were then used to calculate $\Delta \mu_{CaO}$ and $\Delta \mu_{Al_2O_3}$ curves and the curve of the free energy per mole of reactant for the formation of the melt from solid CaO and solid AlgO3 at 1500°C. These curves are shown on the free energy chart, Fig.18. If Ala Q3 had been taken to be 1 at 35.5% CaO instead of at 31% CaO, the free energy curve would have been raised by 0.5 - 0.8 kcals. Therefore. error limits of + 1 kcal may be put on the curve shown in Fig.18.

From this free energy curve, the following free energy change for the reaction

 $12CaO(s) + 7Al_2O_3(s) = 12CaO_7Al_2O_3(1)$ can be derived: $\Delta G^{\circ}_{1773} = 19 \times (-7.5)$ = -142 kcals,

with an uncertainty of + 10kcals.

The free energy curve in Fig.18 gives the value of the free energy change of the reaction producing the liquid slag. Therefore, the point on the curve corresponding to the composition $CaO.Al_2O_3$ represents the free energy, per mole of reactant, of the formation of $CaO.Al_2O_3(1)$, which at 1500°C is in the supercooled state. The free energy of formation of $CaO.Al_2O_3(s)$ however, can be calculated, using the activity product relationship, from the values of aCaO and aAl_2O_3 in the slag in equilibrium

with solid Ca0.Al₂O₃ at 1500°C. The composition of this slag, from Fig.ll, is 42% CaO and for this slag $a_{CaO} = 0.074$ and $a_{Al_2O_3} = 0.20$. For the reaction

$$CaO_{(s)} + Al_2O_3(s) = CaO_Al_2O_3(s)$$

 $\Delta G^{\circ}_{1773} = RT \ln a_{CaO_0}a_{Al_2}O_3$
 $= -14.9 \text{ kcals.}$

The errors involved in this calculation are again relatively large due to the uncertainty of the $a_{Al_2Q_3}$ curve. However, if $a_{Al_2Q_3}$ had been taken to be 1 at 35% CaO instead of at 31% CaO, the value of $a_{Al_2Q_3}$ at 42% CaO would have been 0.33, and the value of $\Delta G^{\circ}_{CaO,Al_2Q_3}$ at 1500°C -13.1 kcals. Even if $a_{Al_2Q_3}$ had been 0.5, $\Delta G^{\circ}_{CaO,Al_2Q_3}$ at 1500°C would then have been -11.6 kcals. Hence error limits of ± 3 kcals may be assigned to the value of -14.9 kcals. given above. This value is also reasonable when compared with the value of -19.5 kcals. obtained for the corresponding silicate, CaO.SiQ₂ (see later), which would be expected to be larger numerically from a consideration of the relative affinities of CaO for Al₂Q₃ and for SiQ₂.

The only comparable data on a_{CaO} in CaO-Al₂O₃ melts are those given by Fincham and Richardson(15). Most of their work on CaO-Al₂O₃ melts was carried out at 1650°C but from the approximate CaS saturation limit in a 52.4% CaO slag at 1500°C, they calculate $a_{CaO} = 0.5$. This value has been plotted on Fig.ll and agrees very well with the present work, being only 12% higher than the a_{CaO} curve of the present work.

Three values of a_{CaO} , obtained by Fincham and Richardson(15) at 1650°C assuming $\gamma_{CaS} = 5$, have also been plotted in Fig.ll. Since

at 1650°C, $a_{CaO} = 1$ at 62% CaO, this point has also been plotted in Fig.ll and a smooth curve drawn through it and the afore-mentioned three This curve lies considerably below that obtained from the points. present work at 1500°C, except at low N_{CaO} values. This must, of course, be true for the high CaO compositions, but whether the two a_{CaO} curves cross at lower N_{CaO} curves depends largely on the shape of the $\Delta H(CaO+$ Unfortunately the latter is not known. Al_2O_3) curve. It would be expected, however, to be similar in form to that for CaOrSiO2 melts given by Richardson(51), shown in Fig.20, which indicates that a_{CaO}(1600°C) should exceed a_{CaO}(1500°C) when N_{CaO} falls below 0.47. Fig.ll shows that the curves cross at approximately $N_{CaO} = 0.52$. Although this figure is not in dis_agreement with the corresponding value for the C2O-SiO2 system, it is, however, felt that the value of 5 for f_{CaS} assumed by Fincham and Richardson(15) in calculating their a_{CaO} values is low and that their acao curve for 1650°C should lie higher than is indicated by The curves would then cross at a somewhat higher N_{CaO} value them. (\sim 0.6). The assumed value of 5 corresponds to a solubility of sulphur of 8.6% S at 1650°C in a CaO-Al₂O₃ slag of NCaO/NAl₂O₃ = 2.0. However, it can be calculated from their data that the solubility of sulphur in the same slag at 1500°C is approximately 4.1% and that Kas is 10.7 at this temperature. Whereas the solubility of sulphur would be expected to increase with rise in temperature, a more than twofold increase seems unusually large.

It seems desirable at this point to examine the assumptions made in the present work regarding the constancy of χ_{CaS} (a) in a given slag over the range of sulphur contents used, and (b) in $CaO-Al_2O_3-SiO_2$ slags of the range of compositions used in the present work, as far as the available data allow, and to compare the values of γ_{CaS} given by the present work with the values used by other workers.

(a) In the calculation of a_{CaO} , the assumption was made that a_{CaS} is proportional to weight %S up to 2%. In the light of the discussion on pp. 72-74, the available data can be used to show to what extent this assumption is true over the range of sulphur contents used. For the reactions

$$Ca0 + \frac{1}{3}S_{2} = CaS + \frac{1}{3}O_{3}$$

$$K = \frac{a_{CaS}}{a_{CaO}} \cdot \frac{(PO_{2})^{\frac{1}{3}}}{(PS_{2})^{\frac{1}{3}}} = \frac{\sqrt{CaS} \cdot N_{CaS}}{a_{CaO} \cdot A_{K}}$$

Considering slag ASI and the results of runs 23 and 30, and assuming that $a_{CaO} = 1.00$ in both slags as they exist at equilibrium with the gases concerned, i.e., that the partial replacement of 0 by S does not significantly lower the a_{CaO} value, then for run 23. $A_K = 340$, $a_{CaO} = 1$, %S in slag = 1.79, $\cdot \cdot N_{CaS} = 0.0374$ $\cdot \cdot f_{CaS} = \frac{1 \times 340 \times K}{0.0374} = 9090 K$ for run 30. $A_K = 168$, $a_{CaO} = 1$, %S in slag = 0.88, $\cdot \cdot N_{CaS} = 0.0182$ $\cdot \cdot f_{CaS} = \frac{1 \times 168 \times K}{0.0182} = 9230 K$ $\cdot \cdot f_{CaS} = \frac{1 \times 168 \times K}{0.0182} = 9230 K$

Therefore, within the limits of experimental error, and assuming that variables (1) and (3) on p.73 have no appreciable effect, the above shows that f_{CaS} in slag ASI is constant for slags containing up to 1.8%. This agrees with the work of Fincham and Richardson(15) which shows

(see p20) that Kas at 1500°C is constant up to at least 1.3%S.

(b) The question of whether f_{CaS} in CaO-Al₂O₃-SiO₂ slags at 1500°C is substantially constant (as has been assumed in the present work) is a difficult one to answer. Deductions from the present work and the data given by previous workers can however be compared here.

The sulphur content of slag AS1 at which saturation occurs can be estimated approximately from certain experimental data obtained in A preliminary experiment using slag AlO gave sulphur the present work. contents of 4.5 and 6.1% (see run 88 in Table IV) but the bulbous appearsance of the slag suggested that the sulphur saturation content had been Later, calculations based on the mean S/AK value of slag exceeded. AlO indicated that a value of 2.9% sulphur should have been obtained in Therefore, it is concluded that saturation of slag AlO occurs run 88. at less than 2.9% S and at greater than 0.46% S - the experimentally obtained figure which gave a satisfactory result (run 29). In addition a run using slag AS6 gave an equilibrium sulphur content of 2.52% S (see run 89, Table VI). This slag was minutely crystalline in appearance, like many others, and did not appear to be above the sulphur saturation The result of 2.52% has not, however, been used since it content. exceeds the limit of 2% S above which it had been decided to reject The acaO value obtained for slag AS6 using this result is results. in fact about 11% higher than that obtained from the equilibrium sulphur content of run 46 of 0.46%S. YCas at 2.5% S would be expected to be less than YCaS at 0.46%S. If allowance had been made for the lower value of YCaS in the slag of 2.52%S, the aCaO value thus obtained would

have agreed more closely with the a_{CaO} value obtained from run 46. The results of these two runs can be used as pointers to the sulphur saturastion value of slag AS1. The saturation value of CaO-Al₂O₃-SiO₂ slags with CaS would not be expected to vary greatly for slags of the same basicity. From Table IV, it can be seen that the N_{CaO} value of the standard slag AS1 does not greatly exceed the N_{CaO} value of slags S10 and AS6. Therefore, an approximate estimate of the sulphur content at saturation of slag AS1 is 3.0% S, and it is improbable that this figure should be lower than 2.5% S or greater than 4%S. The corresponding values of f_{CaS} area

if saturation in slag ASl occurs at 3.0% S, $y_{CaS} = 16$, at 2.5% S, $y_{CaS} = 19$, and at 4.0% B, $y_{CaS} = 12$.

These \int_{CaS} figures are rather higher than the figure deduced from the work of Fincham and Richardson(15) of $\int_{CaS} = 10.7$ in a CaO-Al₂O₃ slag of CaO/Al₂O₃ = 2.00 at 1500°C. The solubility figures deduced from the present work are rather lower than most of the data obtained by other workers for various CaO-Al₂O₃-SiO₂ slags and given in Chapter III (p.18), figures of from 4 to 11% S being given by these workers. There is, therefore, no more than an approximate agreement between all the data available, but it is rather difficult to come to any definite conclusions. It does appear, however, that the value: of $\int_{CaS} = 5$, assumed by Fincham and Richardson is rather low, and that a value of 10-15 at 1500°C in the slags used in the present work is more likely. It also appears likely that there is some variation in the value of \int_{CaS} with slag

composition, and although the extent of this variation in the value of f_{CaS} with slag composition cannot be determined, f_{CaS} will probably vary within such limits as 12 ± 5 . It is therefore highly desirable that more accurate data be obtained on the variations of f_{CaS} and on the solubility of CaS in slags. As far as the present work is concerned the results can only be presented by assuming f_{CaS} is constant and the possibility of errors arising from this assumption is noted for future correction.

Further deductions can be made from the data on the standard slag. It has been shown that

$$K = \frac{a_{CaS}}{a_{CaO,A}}$$

For the standard slag, $a_{CaO} = 1$, and when saturated with S, $a_{CaS} = 1$. Under these conditions, K.A = 1

Using the A_K gas values and assuming saturation of slag AS1 with sulphur is at 3.0% S, then, since S/A_K for slag AS1 is 52.7x10⁻⁶, it can be shown that the A_K value of the gas required to obtain an absorption of 3.0% S is 569.

• $K_{4773} = 1.76 \times 10^{-3}$

Therefore for the reaction $CaO(s) + \frac{1}{2}S_2 = CaS(s) + \frac{1}{2}O_3$ $\triangle G^{O}_{1773} = +22.4 \text{ kcals.}$

If saturation were at 2.5% or 4.0% S, this figure would be +21.7 or +23.4 kcals. respectively. However, if the A_R gas values had been used, the free energy for the reaction would have been +20 kcals. It has been shown (p.65) that the free energy equation deduced from the work of Rosenqvist(32) and Richardson and Jeffes(34)(36) is

$$\Delta G_{\rm T}^{o} = +21,770 - 0.7{\rm T}$$
$$\bullet \Delta G_{1773}^{o} = + 20.5 \text{ kcals}$$

Although Rosenqvist's free energy data appear to support the choice of the AR gas values, his work was carried out at temperatures not exceedsing 1425°C., and it did not take into consideration the possibility of compounds such as HS or SO being formed. It is difficult to assess how these factors would affect the free energy equation obtained, but they may account for the difference between the value for the free energy of the reaction at 1500°C, deduced from Rosenqvist's work and the value obtained using the Ak gas values in the present work. In view of the discussion in the previous Chapter in support of the $\mathbf{A}_{\mathbf{K}}$ values , it is felt that Rosenqvist's work is not strongly enough evidenced to warrant any changes in the conclusions given there, i.e., that the Ax values are to be preferred to the AR values. On the other hand, the conclusions of the present work themselves require further evidence and it is theresfore desirable to show the results based on the A_R values where these results differ significantly from those obtained using the AK values.

Comparison can be made between the free energy curves for CaO-Al₂O₃ slags obtained at 1500°C from the present data and at 1650°C from the work of Richardson and Fincham(15). If it is assumed that the values of $\Delta H(CaO + Al_2O_3)$ are of the same order as the values of $\Delta H(CaO + SiO_2)$ given in Fig.20, then the difference between the free energy curves due to the effect of the 150°C difference in temperature is approximately 200-400 cals., which means that there is a remarkably close agreement between the two curves. It must be pointed out that, in view of the
assumptions made in obtaining each curve, the close agreement between the two curves cannot be taken as a guarantee of a high degree of accuracy but only as confirmation that the free energy curve given by Fincham and Richardson is correct to within the probable uncertainty figure of + 2 kcals. given by them.

(2) The CaO-SiO₂ System.

By the application of the Gibbs Duhem relation, values of a_{SiO}, were calculated from the a_{CaOK} curve and are shown in Fig.19. Since the values of a CaOR are an approximately constant proportion of the values of a_{CaOK} , the N_{CaO}/N_{SiO_2} v. log $\int CaO$ Gibbs-Duhem graph obtained from the a CaOR curve is the same as that obtained from the a CaOK values, differing only in its position relative to the $\log \gamma_{Ca0}$ axis. Conseequently the a_{SiO_R} durve coincides with the a_{SiO_2K} curve. Therefore, the use of the suffixes K and R with aSiO2 will be discontinued. The a_{CaO_K} and a_{SiO_2} , and the a_{CaO_R} and a_{SiO_2} curves were then used to calculate curves of $\Delta \mu_{CaO_R}$, $\Delta \mu_{CaO_R}$, $\Delta \mu_{SiO_R}$ and curves for the free energy of formation per mole of reactant of the melt from solid CaO and solid SiO₂, denoted by $\Delta G_{\rm K}$ and $\Delta G_{\rm R}$ respectively. These curves have been plotted on the free energy chart, Fig.21. As would be expected, the ΔG_R curve is similar in shape to the ΔG_K curve but slightly lower than it, the difference being from 0.5 to 1.0 kcals. For the purposes of comparison with the free energy curves obtained by other workers, it was desirable to determine the position of the minimum of the curves obtained Therefore, the a_{CaOK} and a_{CaOR} curves were extrain the present work.

*polated to 68% CaO with the aid of the N_{CaO}/N_{SiO₂} v. log γ_{CaO} graph used in the calculation of a_{SiO_2} by the Gibbs-Duhem relation, and the corresponding a_{SiO_2} values calculated. The free energy curves derived from these values showed minimum values as follows: $\Delta G(CaO+SiO_2)_K$ curve - minimum value = -10.4 kcals. at N_{SiO₂} = 0.38 $\Delta G(CaO+SiO_3)_R$ curve - minimum value = -11.4 kcals. at N_{SiO₂} = 0.37

The free energy curves also indicate the following values for the free energy of formation of the compound $CaO.SiO_2$ at $1500^{\circ}C$

 $CaO(s) + SiO_2(s) = CaO.SiO_2(1)$ $\Delta G^{O}_{1773}(K) = -19.5$ kcals. $\Delta G^{O}_{1773}(R) = -21.1$ kcals.

Since Ca0.SiO₂ does not melt till 1540°C it will be noted that this free energy equation refers to Ca0.SiO₂ in the supercooled liquid state.

The free energy of formation of the compound 2CaO.SiO₂ was calculated from the activity product relationship,

 $\Delta G^{\circ}_{1773} = -RT \ln a^{2}_{Ca0} \cdot a_{Si0_{2}}$

where a_{CaO} and a_{SiO_2} refer to the activities of CaO and SiO₂ in the liquid CaO-SiO₂ slag in equilibrium with solid 2CaO.SiO₂ at 1500°C. The values obtained were as follows:

 $2CaO(s) + SiO_{2}(s) = 2CaO.SiO_{2}(s)$ $\Delta G^{o}_{1773}(K) = -31.9 \text{ kcals.}$ $\Delta G^{o}_{1773}(R) = -35.0 \text{ kcals.}$

The results of the present work may be compared with the limited amount of experimentally determined free energy and activity data for the CaO-SiO₂ system which has so far been published, and also with theoretical comput•ations made recently by Richardson(50), Rey(13), Murray and White(51) and Darken(52). Chang and Derge(53) gave 2 values for a_{SiO_2} at 1500°C and these are indicated in Fig.19. The agreement with the present work is not good. Further comment on Chang and Derge's results will be made when considering their a_{SiO_2} values in CaO-Al₂O₃-SiO₂ slags.

Richardson and co-workers have given data on the CaO-SiO₂ system in various papers. In their collection of data on compounds of interest in iron and steel-making, Richardson, Jeffes and Withers(54) summarised the available data on the compounds CaO.SiO₂, 2CaO.SiO₂ and 3CaO.SiO₂. From this data, Richardson(50) deduced the free energy curve for CaO-SiO₂ slags at 1600°C., which is shown in Fig.20. As a result of the experimental work of Fincham and Richardson(15), this curve was amended over the range N_{SiO₂} = 0.4 - 0.5 and the amended portion of the curve is also shown in Fig.20. The values of a_{CaO} at 1600°C obtained from the curve of Richardson(50) and the value used by Fincham and Richardson(15) to amend the free energy curve have been plotted in Fig.13. The corressponding values of a_{SiO_2} have been plotted in Fig.19.

A fair comparison between the results of the present work and those of Fincham and Richardson(15) must make allowance for two factors: (1) the work of Fincham and Richardson was carried out at 1600°C while the present work was carried out at 1500°C., and

(2) the work of Fincham and Richardson is based on the thermodynamic data given by Richardson et al(36), whereas the evidence of the present work favours the data put forward by Kelley(35).

To eliminate the differences due to (2), the a_{CaO_R} and $\Delta G(CaO+SiO_2)_R$ data obtained in the present work must be used, and not the data based on the Ak gas values. It is also possible to eliminate the effect of the difference in temperature in the following way. Fincham and Richardson(15) in addition to giving the $\Delta G(CaO+SiO_2)_{1873}$ curve, also gave the $\Delta H(Ca0+SiO_2)_{1873}$ curve (shown in Fig.20). The $\Delta H(Ca0+SiO_2)_{1873}$ curve can be assumed to hold for 1500°C also since the difference due to 100°C change in temperature is negligible. Therefore, from the AH 873 and ΔG_{1873} curves given by Fincham and Richardson, the ΔG_{1773} curve was calculated and is shown in Fig.21. However, it is much more accurate to derive a ΔG curve from activity values than to derive activities from the intercepts of the tangents to the ΔG curve. Comparison between the present work and the work of Fincham and Richardson is therefore best made between the ΔG_{1773R} curve and the ΔG_{1773} curve deduced from the work of Fincham and Richardson. From Fig.21, it can be seen that the two curves are substantially in agreement. Therefore, the differences between the aCaOR curve and the acao curve of Fincham and Richardson seen in Fig.13, are to be attributed mainly to the difference in temperature. The only real points of disagreement between the two free energy curves are in the position of the minimum and in the shape of the curve at NSiOs values less than about 0.50. In the case of the present work, the shape of this portion of the curve depends on experimental results from $N_{SiO_2} = 0.5 - 0.42$, and on the extrapolation of the aCaOR curve at NSiO2 values below 0.42, whereas in the case of the ΔG_{1773} curve deduced from the work of Fincham and Richardson, the portion of this curve corresponding to NS10, values

less than about 0.5 depends on two data for the support of which adequate evidence is not available. These two data area

(1) the a_{CaO} value given by Fincham and Richardson for $N_{SiO_2} = 0.44$ [which in turn is derived, very indirectly, from their results by assuming that γ_{CaS} has an approximately constant value of 5 over the range of CaO-SiO₂ slags used in their work (i.e., $N_{CaO} = 0.39-0.56$)]. Fincham and Richardson did show that this value has some support but at best it can only be very approximate.

(2) the assumption that the $\Delta G_{1.873}$ curve at N_{SiO_2} values less than 0.44 is approximately parallel to the $\Delta G_{1.873}$ curve given by Richardson(50) which itself depends only on one point of rather doubtful accuracy at $N_{SiO_2} = 0.33$.

Since the results of the present work are based on experimental work, in which a fair number of precautions have been taken to ensure the accuracy of the results obtained, it is thought that the portion of the $\Delta G(CaO+SiO_2)$ and $1773_{\rm R}$ curve at $N_{\rm SiO_2}$ values less than about 0.5, is more accurate than the corresponding portion of the $\Delta G(CaO+SiO_2)_{1.773}$ curve given by Fincham and Richardson. It should also be noted, that although Fincham and Richardson do not state the probable uncertainty to be ascribed to their $\Delta G(CaO+SiO_2)$ curve, examination of the data used in compiling it indicate that it is at least ± 1 kcal., and this uncertainty is sufficiently great to enable it to be said that the $\Delta G(CaO+SiO_2)$ curve given by Fincham agrees with both the $\Delta G(CaO+SiO_2)_{\rm K}$ curve and the $\Delta G(CaO+SiO_2)_{\rm R}$ curve obtained in the present work.

Fulton and Chipman(55) have lately deduced values of a_{SiO_2} at 1600°C from their experiments on the reduction of SiO₂ from CaO-Al₂O₃-SiO₂

slags by carbon-saturated iron. Their values of a_{SiO_2} in CaO-SiO₂ slags are shown in Fig.19, and agree remarkably well, as they stated, with the a_{SiO_2} values derived by Richardson(50). Fulton and Chipman's values of a_{SiO_2} in CaO-SiO₂ slags do not agree so closely with the a_{SiO_2} values derived from the amended free energy curve of Fincham and Richardson, as can be seen from Fig.19. Fulton and Chipman's curve is also considerably below the a_{SiO_2} (1500°C) curve derived from the present work. Unfortunately their work covers only part of the range of slag composition covered by the present work. The agreement of the present work with the various other a_{SiO_2} curves shown in Fig.19 is also better than that of Fulton and Chipman's curve with them. A possible reason for this is that the work $\frac{1}{\sqrt{n}}$ in Fe-Si-C of the latter authors is based on the thermodynamic data of alts which is regarded as being, as yet, not too reliable.

Fulton and Chipman calculated values of $a_{CaO}(1600^{\circ}C)$ from their a_{SiO_2} curve using the Gibbs-Duhem relation and the activity product relationship K = $a^2_{CaO} a_{SiO_2}$ where K is derived from the free energy of formation of $2CaO a_{SiO_2}$. The free energy equation which they used is as follows:

> $2CaO(s) + SiO_2(s) = 2CaO \cdot SiO_2(s)$ $\Delta G^{o}_{T} = -26,200 - 4.9T$ $\Delta G^{o}_{1873} = -35.4$ kcals.

Their $a_{CaO}(1600^{\circ}C)$ curve is shown in Fig.13, and as would be expected, is considerably higher than the a_{CaO} curves obtained in the present work. The a_{CaO} and a_{SiO_2} curves obtained by Fulton and Chipman were used to calculate the $\Delta G(CaO+SiO_2)_{1.873}$ curve shown in Fig.20. It is interesting to note that Fulton and Chipman's $\Delta G(CaO+SiO_2)_{1673}$ curve does not show the agreement which might be expected, on the grounds of the agreement of the $aSiO_2$ curves, with the $\Delta G(CaO+SiO_2)_{1673}$ curves given by Richardson(50). This is due to the difference between the values of the free energy of formation of $2CaO_*SiO_2$ used in the two sets of data - the value used by Richardson being -30 kcals., and that used by Fulton and Chipman -35.4 kcals.

Fulton and Chipman's free energy curve agrees, within the limits of uncertainty, with both the free energy curves obtained in the present work, i.e., ΔG_R and ΔG_K , the difference between it and the ΔG_R curve being 1 kcal., and between it and the ΔG_K curve being 2 kcals. However, on account of the assumptions involved in calculating the a_{CaO} and ΔG_{1B73} curves from Fulton and Chipman's experimental data, the conclusion that Fulton and Chipman's work favours the choice of the ΔG_R curve rather than the ΔG_K curve is not justified.

Rey(13) deduced silica activities in CaO-SiO₂ melts at 1600°C from liquid immiscibility and melting point diagrams, hist a_{SiO_2} curves being shown in Fig.19. He admits, however, that the graph is only approximate, firstly because of the assumption made in the derivation of the equation used to compute the activity of a component, viz., that the solution was "regular", and secondly, because this equation can only be used when the slag composition is such that the solid deposited when the liquidus is reached is the pure component, in this case cristobalite, i.e., the equation can only be used from 68-64.5% SiO₂ at 1600°C. Below 64.5% SiO₂, the trend of the asio₂ curve was obtained by Rey, through the approximate similarity between the slope of the activity curve and that of

the solidification curve and through a_{SiO_2} being small when compositions are reached at which stable silicates are formed. At 1500°C, the range of compositions over which values of a_{SiO_2} can be calculated is 65 - 64.5% SiO₂, and over this very small range (where $a_{SiO_2} = 1 - 0.98$) it is not surprising that the graph obtained duplicates the results of the present work. The trend of the a_{SiO_2} graph at 1600°C given by Rey is probably consistent with that of the present work at 1500°C., but it is obvious that this method is not suitable for confirming the results of the present work.

Murray and White(51) deduced a_{GaO} and a_{SiO_2} at 1600°C from the dissociation constants of CaO.SiO₂ and 2CaO.SiO₂. They stressed that this treatment was "purely formal" and in no way inferred the existence of molecular entities in the slag, nor was it a solution of the problem of slag constitution. Their values are referred to liquid silica as the standard state and if divided by 0.509 (the factor between the activities referred to liquid and solid silica), can be compared with the present work. Their graph is shown on Fig.19. (It may be noted that it very nearly coincides with the curve of Chang and Derge(53) for a_{SiO_2} at 1600°C). However, it cannot be used for more than a general comparison with the present work.

Darken(52) has given a semi-quantitative free energy curve for the CaO-SiO₂ system at 1600° C, which he has constructed by using the free energy data of Chipman and co-workers and by calculating the free energies by a method recently devised by himself. The curve is shown in Fig.20 and is rather lower than the curves obtained in the present work and

than that given by Richardson(50) and corrected by Fincham and Richardson (15). Rosenqvist(32) used D_{a} rkem's chart to deduce two values of a_{CaO} at 1500°C and these values are indicated in Fig.13. They agree very well with the a_{CaO_R} curve obtained in the present work. However, Rosenqvist has stated that these values are only approximate, and they cannot therefore be used to support the a_{CaO_R} curve rather than the a_{CaO_K} curve. Bell, Murad and Carter(14) assumed values for a_{CaO} of 1 at $N_{SiO_2} = 0$ almost to $a_{CaO} = 0$ at $N_{SiO_2} = 0.33$, and, with Rosenqvist's values at less basic compositions, used the Gibbs-Duhem relation to calculate the a_{SiO_2} curve which is shown in Fig.19. The assumptions involved make this a very arbitrary graph and no useful comparison can be made with the present work.

A summary of the data available on the CaO-SiO₂ system can now be given. A comparison of all the a_{CaO} curves given in Fig.13, shows that, apart from the curves given by Fulton and Chipman(55) and by Richardson(50). there is a fair measure of agreement.

A comparison of all the a_{SiO_2} curves given in Fig.19 shows that the curve derived from the present work agrees fairly well with most of the other curves given. The present work is based more on direct experimental data than any of the other curves, excepting possibly that of Fulton and Chipman(55). Therefore, and because of the other reasons given above, it is felt that it is more accurate than the other activity curves given.

From a comparison of the free energy curves given in Figs.20 and 21, it can be seen that there is a general measure of agreement between

the curves obtained from the present work and most of the other curves given. The semi-quantitative curve given by D_{a} rken(52) is the only one which is outwith the probable errors involved in the derivation of the curve based on the present work. The agreement with the curve given by Fincham and Richardson(15) especially is very good. The shape of the curves based on the present work at N_{SiO_2} values less than 0.5 is flatter than that of any of the other curves given. The present curve is regarded as being more accurate, since the free energies of formation (per mole of reactant) of the two compounds Ca0.SiO₂ and 2Ca0.SiO₂ are approximately the same, and therefore, for melts with compositions between those of these two compounds, very little difference might be expected in the free energy of formation of the melt over that range of N_{SiO₂} values.

The values given by the various workers for the free energies of formation of the two compounds may also be compared as follows. For the reaction

$$CaO(s) + SiO_2(s) = CaO \cdot SiO_2(s)$$

Richardson, Jeffes and Withers(54) give

$$\Delta G_{1773}^{o} = -21.4$$
 kcals.

the error limit assigned to this value being <u>+</u> 3kcals. The values given by other workers are for the reaction

$$C_{a0}(s) + SiO_{2}(s) = C_{a0} \cdot SiO_{2}(1)$$

Fincham and Richardson(15) give

$$\Delta G^{o}_{1873} = -22 \text{ kcals}.$$

By extrapolation of the free energy curve obtained from the data of Fulton and Chipman(55), the following value is obtained

$$\Delta G_{1873}^{o} = -24.5 \text{ kcals}$$
.

Darken(52) gives

 $\Delta G^{o}_{1873} = -24 \text{ kcals}$

The values obtained in the present work are at 1500° C., but from the $\Delta H(CaO+SiO_2)_{1.873}$ curve given by Fincham and Richardson(15), the difference due to the 100° C difference in temperature has been shown to be ~ 400 cals. and can therefore be neglected. These values are

$$\Delta G_{\rm K}^{\circ} = -19.5$$
 kcals., and
 $\Delta G_{\rm R}^{\circ} = -21$ kcals.,

C20.SiO₂(1) referring here to the liquid in the supercooled state. For the reaction,

 $2C_{a0}(s) + SiO_{2}(s) = 2CaO_{\bullet}SiO_{2}(s)$

Richardson, Jeffes and Withers(54) give

$$\Delta G_{1773}^{o} = -30 \text{ kcals.}$$

Fulton and Chipman(55) give

$$\Delta G_{1773}^{\circ} = -34.9 \text{ kcals.}$$

and the present work gives

$$\Delta G_{1773K}^{\circ} = -31.9$$
 kcals., and

 $\Delta G^{\circ}_{177SR} = -35.0$ kcals.

In conclusion therefore the free energy curves and values obtained from the present work agree within the limits of experimental error with most of the data given by other works, the agreement being best with the data of Fincham and Richardson(15).

(3) The CaO-Al₂O₃-SiO₂ System.

An attempt was made to calculate a_{SiO_2} from the a_{CaO} curves obtained experimentally. Since no $a_{Al_2O_3}$ values were known, the only method available was that of Wagner(56) which enables values of a_{SiO_2} to be calculated along lines of constant $N_{Al_2O_3}/N_{SiO_2}$ ratio by an adaptastion of the Gibbs Duhem relation to ternaries.

Wagner showed that if $y = N_3 / (N_3 + N_1)$, $\log a_1(N_2,y) = -y \int_{N_2}^{N_2} \frac{\partial}{\lambda_y} \left(\frac{\log a_2}{(1-N_2)^2}\right)_{N_2} dN_2 - \int_{N_2}^{N_2} \frac{N_2}{1-N_2} d\log a_2,$ in which N_2^1 is the mole fraction of component 2 where $a_1 = 1$. Lines of constant y have $N_6/(N_6 + N_1) = \text{constant}$, i.e., $N_6/N_1 = \text{constant}$. In the present problem, component No.1 is SiO2, No.2 is CaO, and No.3 is Al203. Therefore, the integration is carried out along joins of constant NAL203/NSiO2 ratio. However, for the evaluation of the integration certain boundary conditions must be known. In this case, the choice of a standard state for SiO₂ is a slag in equilibrium with solid SiO₂. This restricts the use of Wagner's equation, since the integration can only be carried out along joins of constant NAL203/NSiO2 ratio which intersect the SiO₂ liquidus at 1500°C, i.e., it restricts Wagner's equation to the area with $N_{Al_2}O_3/N_{SiO_2} \neq 7/93$, which is a very small part of the ternary. Wider application of Wagner's equation would, of course, be possible if the values of a_{SiO2} were known along the 1500°C isothermal at which mullite separates out - but these values are not at present known. An attempt was made to apply Wagner's method to the present data in this restricted area, but it was found that the mathematics involved, especially in determining the first integral in the equation given above, were extremely complex.

and Wagner's method was therefore abandoned. Therefore, as this was the only method available, it was not possible to obtain accurate values of aSiO₂.

By assuming that $a_{Al_2Q_3}$ is constant along sections of constant $N_{Al_2Q_3}$, and applying the binary Gibbs-Duhem relation along such a section, approximate values of a_{SiQ_2} can be calculated. This method was used by Fulton and Chipman(55) to calculate a_{Ca0} in CaO-Al₂Q₃-SiQ₂ slags from their values of a_{SiQ_2} . The use of this method in the present work was limited to sections which cut the SiQ₂ liquidus, i.e., with $N_{Al_2Q_3} \neq 0.07$. It was, applied to the $N_{Al_2Q_3} = 0.05$ section and the a_{SiQ_2} curves shown on Fig.16 were obtained. Two points must be noted in connection with this method.

(1) Values of a_{CaO} along the $N_{Al_2O_3} = 0.05$ section are known only as far as $a_{CaO} = 0.0027$ at $N_{CaO} = 0.35$. Use of the Gibbs-Duhem relation demands a knowledge of the value of a_{CaO} at SiO₂ saturation. This was obtained by extrapolation of the Gibbs-Duhem N_{CaO}/N_{SiO_2} v. log γ_{CaO} graph, giving $a_{CaO} = 0.00054$ at SiO₂ saturation.

(2) The assumption that $a_{Al_2Q_3}$ is constant along the $N_{Al_2Q_3} = 0.05$ section is probably not correct, since the affinity of Al_2Q_3 for CaO is considerably smaller than that of SiQ₂ for CaO. One would therefore expect that, as N_{CaO} increased along the $N_{Al_2Q_3} = 0.05$ section, $a_{Al_2Q_3}$ would slowly decrease. The trend of a curve of constant $a_{Al_2Q_3}$ is indicated in Fig.16. Therefore, the curves of constant a_{SiQ_2} shown are probably nearer to the CaO-SiQ₂ binary than they ought to be, i.e., they indicate minimum values for a_{SiQ_2} .

Data obtained by other workers, with which the present work may be compared, is very limited. The conclusion of Holbrook and Joseph (57) can be compared qualitatively with the present work. In an attempt to find the factors controlling desulphurisation in the blast furnace, they carried out experiments using artificial CaO-MgO-AlgO3-SiO2 slags, and found that, for MgO-free slags containing 30-50% SiO2, 5-25% Al2O3 and 35-55% CaO, i.e., slags in the low-Al2O3 field of the CaO-Al2O3-SiO2 ternary, the desulphurising power of the slags (1) increased rapidly as lime replaced silica (by wt.), (2) increased less rapidly as lime replaced alumina, and (3) increased slowly as alumina replaced silica. lime Since the desulphurising power of a slag corresponds to its activity, these conclusions may be compared with the results of the present work, as shown in Fig.15 and with the points emerging from the present work noted above (p. 75, and it can be seen that the present work completely confirms the conclusions of Holbrook and Joseph.

Hatch and Chipman(33) have carried out a very comprehensive series of experiments on CaO-MgO-Al₂O₃-SiO₂ slags in which they brought carbon-saturated iron into equilibrium with the slags, in order to obtain a better understanding of the physical chemistry of desulphurisation by blast furnace slags. They defined the desulphurising power of a slag as being equal to the ratio (% sulphur in slag)/(% sulphur in metal) and reached the following conclusions for slag compositions consisting of 30-50% CaO, 29-40% SiO₂, 6-27% Al₂O₃ and 0-19% MgO at 1500°C. (1) The desulphurisation ratio (S)/[S] for slags containing approximately 1.5% S, is controlled by the excess base, where excess base is equal to $(CaO + \frac{2}{3} MgO) - (SiO_2 + Al_2O_3)$ in mols. per 100 gms. of slag.

(2) Alumina acts like silica in reducing the desulphurising power of a basic slag; in the more acid slags it is less harmful than silica.

(3) The sulphur concentration in the metal is not directly propor-•tional to the sulphur in the slag, but, as the sulphur in the slag increases the desulphurising power (S)/[S] increases. This phenomena could not be explained by them with the data available.

Magnesia-free slags of the compositions used by Hatch and Chipman lie in the low-Al₂O₃ field of the CaO-Al₂O₃-SiO₂ ternary. Applying the above conclusions to MgO-free slags and comparing with the present work, it can be seen that conclusions(1) and (2) agree roughly with a_{CaO_K} curves in Fig.15, although in the present work, it has been shown that Al₂O₃ is less harmful than SiO₂ for slags of all basicities in the low-Al₂O₃ field. A possible explanation of the increase of (S)/[S] with increase in (S) is that f(s) or f[s] is not constant but varies with the sulphur content of the slag. It seems more probable that f(s) in the slag decreases slightly as the sulphur content increases.

Chang and Derge(53) in a study of the reversible electrode potentials of molten $C_{2}O_{-}Al_{2}O_{3}-SiO_{2}$ slags, have given a graph of iso-e.m.f. curves at $1600^{\circ}C$. These iso-e.m.f. curves show one peculiarity, as Darken has pointed out in the discussion on this paper. If the cell is reversible then the iso-e.m.f. curves can, he points out, be interpreted as iso-activity curves. Also, the isothermal curves in the β -cristobalite

regions of the thermal equilibrium diagram are iso-activity curves. But whereas the isothermals slope upwards towards the SiO₂ corner, the isoe.m.f. curves all slope down. It is clear that, if the cell is reversible, iso-e.m.f. curves must follow the direction of the iso-activity curves. The fact that they cross, according to Chang and Derge, must be attributed to the cell not being truly reversible, the use of the wrong chemical equa-•tion to express the reaction, or unusually large experimental errors. Whatever may be the reason, the results cannot be used for a comparison with the present work.

Fincham and Richardson(15) have calculated the sulphide capacities C_s, of CaO-Al₂O₃-SiO₂ slags at 1500°C and 1650°C from their experimental work on gas-slag equilibria. As was pointed out earlier, their sulphide capacity is equivalent to the function (S)/A of the present investigation, and to convert their sulphide capacities into activities (making the assumptions noted earlier) only requires the knowledge of the sulphide capacities of slags in equilibrium with solid CaO at the experimental temperatures. Unfortunately Fincham and Richardson have not carried out such experiments. Comparison with the present data can therefore only be made on the basis of the trend of the iso-C_s and iso-activity curves. This comparison shows that the curvature of the $iso-C_S$ curves of Fincham and Richardson is considerably greater than that of the iso-activity curves of the present work - and this is true irrespective of whether the $a_{CaO_{Tr}}$ or a CaOR curves are considered. However, Fincham and Richardson admit that they have an inadequate number of points from which to draw their curves accurately. The qualitative evidence of Holbrook and Joseph (57) and of Hatch and Chipman(33) given above also seems to support the slight

curvature of the iso-a_{CaO} curves given by the present work.

Fulton and Chipman(55) have obtained values of a_{SiO_2} at 1600°C in CaO-Al₃O₃-SiO₃ slags of up to 0.1 $M_{Al_2O_3}$ from investigations of slagmetal graphite reactions. From these values, they have calculated values of a_{CaO} by making the same assumption as has been made in the present work (viz., that $a_{Al_2O_3}$ is constant along lines of constant $N_{Al_2O_3}$) and using the Gibbs-Duhem binary relation. Their iso-activity curves have been shown on Fig.16. The slopes of their a_{SiO_2} curves are roughly the same as those of the present work, but their values are approximately half those of the present work, and yet, as has been pointed out, the values obtained in the present work are to be looked on as minimum values. As has already been stated, it may be that the discrepancy lies in the values of $\begin{cases} C_{Si} \\ Si \end{cases}$ in Fe-Si-C melts used by Fulton and Chipman.

Towers(58), from her investigations into the contact angles of slags on solid surfaces has given a value of $a_{SiO_3} = 0.15$ at $1520^{\circ}C$ for a slag of 40% CaO, 40% SiO₃ and 20% Al₂O₃. This value has been plotted on Fig.16 and agrees roughly with the present work, this agreement being considerably better than that with the work of Fulton and Chipman.

It can be said, therefore, that the data presented here for a_{CaO} and a_{SiO_2} in CaO-Al₂O₃-SiO₂ slags at 1500°C is in general agreement with the small amount of data already published in this field.

CHAPTER VII.

-

.

.

1 1

.

GENERAL DISCUSSION AND CONCLUSIONS.

-

A study has been made by means of slag-gas experiments of the equilibrium in the reaction

$$(Ca0) + \frac{1}{3}S_3 = (CaS) + \frac{1}{3}O_3$$

for which

$$K = \begin{pmatrix} a_{CaS} \\ a_{CaO} \end{pmatrix} \quad \left(\frac{p_{O_2}}{p_{S_2}}\right)^{\frac{1}{2}}$$

By making the assumption that γ_{CaS} does not vary with alag composition, the results of these experiments were used to determine a_{CaO} in CaO-Al₂O₃, CaO-SiO₂ and CaO-Al₂O₃-SiO₂ slags at 15^{OO} °C (as shown in Figs.11, 13 and 15). In the case of CaO-Al₂O₃ slags, a_{CaO} was obtained by comparing the sulphur pick-up with that of a slag of unit lime activity, using the same gas mixture. As it was necessary to use different gas mixtures in the case of CaO-SiO₂ and CaO-Al₂O₃-SiO₂ slags, a knowledge of the thermodynamic properties of the various sulphur compounds which might occur was required in order to calculate the composition of the gas at 1500°C. As experiments in which the same slag was equilibrated with different gas mixtures gave results which were found to agree best with the thermodynamic data of Kelley, these data were used in the calculation of a_{CaO} in CaO-SiO₂ and CaO-Al₂O₃-SiO₂ slags from the experimental results.

Fig.22 summarises the results obtained for a_{CaO} in CaO-Al₂O₃ and CaO-SiO₂ slags at 1500°C, and those calculated from the results of Fincham and Richardson(15) at higher temperatures. It will be seen that a_{CaO} is small for all compositions more acid than Ca₂SiO₄ but increases rapidly as NCaO increases beyond that corresponding to Ca₂SiO₄.

The effect of temperature appears to be comparatively small, only slight increases in N_{GaO} being required to produce the same values of a_{CaO} as the temperature rises. These observations are consistent with the oftused method of interpreting slag behaviour in steelmaking slag-metal reactions by assuming the formation of Ca₂SiO₄ when calculating "base" or "oxygen-ion" activities. At lower basicities than that corresponding to Ca₃SiO₄, the desulphurising and dephosphorising powers of basic steelmaking slags are very poor. Fig.22 also shows that the corresponding rapid increase in aCaO in CaO-Al₂O₃ slags occurs at much lower basicities and that the value of aCaO is more temperature dependent. As somewhat similar behaviour might be expected in more complex slags, it would appear that the method frequently used of assessing the effect of Al₂O₃ on the base or oxygen ion activity by assuming the formation of 3CaO.Al₂O₃, or AlO₃⁻⁻⁻ ions, is of dubious value.

It has been shown that the sulphur absorbed by the slag from a given gas mixture decreases with rise in temperature. High temperatures during melting and refining in open-hearth steelmaking should therefore result in lower metal sulphur contents. An increase in flame temperature, as would be obtained from a higher preheat, should have a similar effect. Increase in the oxygen potential of the gas phase, as would result from an increase in the air/gas ratio or improved combustion of the fuel should also minimise sulphur pick-up by the bath, or even cause loss of sulphur to the gas phase. On the other hand, excessive amounts of air might lead

to reduced flame temperatures which would offset to some extent the beneficial effects of increased oxygen potential. Similar considerations apply in the checkers where absorption of sulphur from the incoming fuel gas by lime and iron oxide dust deposited on the brickwork is favoured by the lower temperatures and reducing conditions prevailing on the ingoing side, and loss of sulphur to the waste gases during the subsequent reversal is favoured by the higher temperatures and oxidising conditions when the checkers are on waste gas.

Activities of lime in C_{a0} -Al₂O₃-SiO₂ slags are of interest when considering slag-metal reactions in the blast furnace. The variation of a_{Ca0} with slag composition has been given in Figs.15 and 17, from which it can be seen that.-

(a) in the "low-Al₂O₃" field, which covers the range of normal blast furnace slag compositions, aC₂O increases fairly rapidly with slag basicity, so that small composition changes may result in comparatively large changes in the sulphur content of the pig iron produced,
(b) slags in the "low-SiO₂" field have a_{C2}O values approximately 10-20 times those of normal blast furnace slags. They should give rise to vary low metal sulphur contents, and, on account of the low a_{S1O₂} values of these slags low silicon contents should also be obtained. However, ores high in Al₂O₃ and low in SiO₂ (e.g., the West African Consakri ore) are comparatively rare and also present a number of practical difficulties in ore preparation and smelting.

The Gibbs-Duhem integration was used to calculate a CaO-Al₂O₃ slags and a_{SiO2} in CaO-SiO₂ slags. It was also possible to estimate a_{SiO2} in a limited portion of the CaO-Al₂O₃-SiO₂ diagram. No data has been published for the values of a_{CaO} and $a_{Al_2O_3}$ in CaO-Al₂O₃ slags but values calculated from the results of Fincham and Richardson were consistent with the present results. Similar consistency was obtained when the results for CaO-SiC₂ slags were compared with those of the latter workers at 1650°C. The present results differed considerably from those of Fulton and Chipman who used a rather lengthy extrapolation to obtain values of χ_{Si} in graphite-saturated iron to calculate a_{SiO_2} . It is probable that the values of XSi used were too low at the higher carbon (and lower silicon) contents.

The activity values obtained in $C_0O-Al_2O_3$ and $CaO-SiO_3$ slags were used to construct free energy curves and to estimate the free energies of formation of $CaO.Al_2O_3$, 12 $C_0O.7Al_2O_3$, $CaO.SiO_3$ and $2CaO.SiO_3$. The experimental results were not sufficiently complete to determine the free energies of formation of the ternary compounds $2CaO.Al_2O_3.SiO_3$ and $CaO.Al_2O_3.2SiO_3$. However, as the primary crystallisation fields of $2CaO.SiO_3$ and $2CaO.Al_2O_3.SiO_3$ have a common point at $1500^{\circ}C$ for which $aAl_3O_3 \ll 1$, the free energy of formation of $2CaO.Al_2O_3.SiO_2$ must be considerably greater (numerically) than the value of -32 kcals obtained in the present work for $2CaO.SiO_3$.

APPENDIX;

•

.

.

,

Calculation	Initial G	as Composition	AK	-logiopo	
No	%S02	CO/CO ₂		~*	
			<u>en</u>	والأنبي الترجيبين الزائلة اليواكرين المرجانية	
Using Kelley's	Iree energy	equations, at 1500	- <u>U</u> .		
"	0.77	1.470	321	7.890	
2	0.80	1,473	330	*	
~ ?	0.83	1.475	339	Ħ	
J A	0.86	1.478	348		ł
5	0.89	1.480	357	tt	
6	0.92	1.483	366	Ħ	
7	0.77	1.514	336	7,914	
8	0.80	1,517	346	R R	
Ğ	0.83	1,519	355	tt.	
10	0.86	1.522	364	#	
11	0.89	1.525	373		
12	0,92	1.527	383	Ħ	
13	0.77	1,557	351	7,938	
14	0.80	1,560	361	N N	
15	0.83	1,563	371	Ħ	
16	0.86	1,566	381	×	
17	0.89	1,569	391	ti	
18	0.92	1,572	401		
19	0.77	1,601	367	7.960	
20	0-80	1.604	377	R	
21	0.83	1,607	387	, #2	
22	0.86	1,610	397		
23	0.89	1,613	407	Ħ	
24	0.92	1.616	417		
25	0.50	1,01	112	7.585	
26	1.00	1.03	204	10000	
27	1.50	1.05	282	*	
28	2.00	1.07	353		
29	0.50	1.83	335	8.085	
30	1.00	1,89	546		
20	1.50	1.96	720		
30	2.00	2.04	858		
22	0.50	2.60	537	8.381	
34	1 00	2.72	845	N N	
25	1 50	2 86	1 097	, W	
35	2.00	2 01	1204	ĸ	
20	2.50	3,30 300T	1671 710	8 525	
28 21		0€0£ 2 £1	אבי ארי	0.000 N	
30	1 50	3 00 Je Ji		f ^T	
3 3 10	T+ 20	J. (K	7 4 70	-	
40	2.00	3.95	1679		

Data	Used	in	AK	and	1	₹.	Initi	.al G	tas (Compo	sition	Graphs
		and the second s		the second se			and the second s		and the second s	the second se		

Calculation No.	Initial Gas XSO2	s Composition CO/CO2	A K	-logiop _{O2}
ستوحداده ويبرجون فالأربار وسواحتني فالبابل			الاليبية الالتين أراسينية المتحاط المحاد	- · · ·
4 1	2.00	3.57	1520	8.510
42	2.10	3.61	1 570	N
7~ 43	2.20	3.65	1620	II
44 44	2.30	3.70	1660	
45	2.40	3.74	1700	Ħ
45 46	2.50	3.78	1740	17
40 47	2.00	3,71	1590	8.540
48 48	2.10	3.76	1630	8
40	2.20	3,80	1680	
50	2,30	3.85	1720	N
51	2.40	3,89	1760	
52	2.50	3,04	1810	
52	2.80	3 .28	1580	8 281
54 54	2.00	3.31	1610	11 0.001
55	2.00	3 35	1650	Ħ
56	3 10	3.30	1680	
57	3.20	3.43	1710	Ħ
58	3 20	J+IJ 2 /7	1740	Ħ
50	2 80	2 12	1650	8 415
53	2 00	3043 2117	1680	8
60	2 00	2041 2 50	1000	Ħ
62	3 10	00 JA 255	1750	W
63	3.20	3.50	1780	
64	2.80	3.60	1720	8.448
65	2 90	3.00	1760	N
66	2.90	J•07 2 £8	1700	
67	3 10	2 72	1830 1830	Ħ
68	3 20	2.77	1860	M
60	3.2V 2.70	2011 270	1750	9 490
70	2 80	J • 1 % 2 9 %	1700	N
70	2.90	3070 281	1830	
72	2.50	3.86	1870	
73	3.10	3.07	10/0	
74	3.20	3.96	1940	Ħ
75	3,30	4.01	1070	
76	2.70	3.88	1820	8 510
70	2.80	3.03	1860	N
78	2.90	3.08	1000	Ħ
70	2 00	J 03	1900	W
80	3,10	1-03 1-08	1070	
81	3.20	T •00 A.13	2010	Ħ
82	3,20	₹€¥9	2080	*
83	2 20	70 JA	0100	, #
ου Ω <i>λ</i>	2 10	4 € 30		
04	3•4U	4• 44	216U	**

Calculation	Initial Ga	s Composition	A	-logiopa
No.	%S03	CO/CO2	Δ	
الاستخاب والبريين سويت ميرين القرير مرتب	·	ويسترجه المراجع والمستقد والمراجع والمستقد والمتعالي		
85	2.80	4•43	2060	8 .594
86	2.90	4.50	2110	18
87	3.00	4.57	2150	8 . 594
88	3.10	4.63	2190	11
89	3.20	4.70	2230	Ħ
90	3.30	4.77	2270	11
91	3.40	4.83	2310	
92	2.70	4.73	2160	8.647
93	2.80	4.80	2200	N
94	2.90	4.87	2250	N
95	0.30	1.508	165	7 . 93
96	0.49	1.483	236	7.91
97	0.72	1.060	168	7.62
98	0.72	1.487	311	7.90
99	0.88	1.370	311	7.83
100	0•98	1.432	361	7.86
Using Richardso	n ¹ s free ener	ev equations at 1	500°C.	
			AR	
101	0.77	1.552	180	7.938
102	0.80	1.554	186	#
103	0.83	1.557	192	11
104	0.86	1.560	198	n
105	0.89	1.562	204	N
106	0.92	1.565	210	11
107	0.77	1.510	171	7.914
108	0.80	1.512	177	
109	0. 83	1.514	183	
110	0.86	1.516	189	tt
111	0.89	1.519	195	11
112	0.92	1.521	201	Ħ
113	0.77	1.469	160	7.890
114	0.80	1471	166	
115	0.83	1.473	172	11
116	0.86	1.474	178) t
117	0.89	1.476	183	
118	0.92	1.478	189	Ħ
119	2.90	3.39	1290	8.431
120	3.00	3.43	1320	11
121	3.10	3.46	1350	W
122	2.90	3.47	1320	8.448
123	3.00	3.51	1350	11
124	3.10	3.55	1390	1

TA 4 6

Initial Ga	s Composition	٩	_
1000g	CO/CO ₂	₩R.	-logop02
$\frac{n^{1} \text{ s free ener}}{16^{\circ} = -49,00}$ n S ₃ + O ₃ =	gy equations at 1 0 - 2.5T by $\Delta G^{\circ} =$ 2SO.	.500°C +6,000 -	2.5T
0.81 3.01	1.52 3.34	316 1630	
free energy e	quations, at 1490	°C and 151	0°C.
		A _K	Temperature.
0.85 0.85 0.84 0.84	1.518 1.518 1.524 1.524	317 360 410 360	1510°C 1500°C 1490°C 1500°C
	$\frac{1^{l} s \text{ free ener}}{16^{\circ} = -49,00}$ 1 S ₂ + O ₂ = 0.81 3.01 <u>free energy e</u> 0.85 0.85 0.85 0.84 0.84	$\frac{1^{i} \text{ s free energy equations at 1}}{16^{\circ} = -49,000 - 2.5T \text{ by } △ 6^{\circ} = -49,000 - 2.$	$\frac{1^{i} \text{ s free energy equations at } 1500^{\circ}\text{C}}{16^{\circ} = -49,000 - 2.5\text{T by } \triangle 6^{\circ} = +6,000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 10000 -$

Calculation based on the data of Fincham and Richardson(15) on the maximum sulphur content at saturation of a 41% CaO-52% Al_2O_3 -7% SiO₂ slag at 1500°C - referred to on pp.18-19

Using an ingoing gas of

 $1\% SO_2$, $p_{N_2} = 0.5$, $p_{H_2}/p_{CO_2} = 3.25$ (a)

for which they have calculated

$$p_{O_2} = 4.27 \times 10^{10}$$
 and $p_{S_2} = 2.51 \times 10^{4}$,

Fincham and Richardson obtained, using the above slag composition, a clear, glassy slag containing 1.26% S.

$$C_{s} = (\%)(p_{0_{2}})^{\frac{1}{2}} / (p_{S_{2}})^{\frac{1}{2}} = 16.4 \times 10^{-4}$$

Using an ingoing gas of

$$2\% SO_2$$
, $p_{N_2} = 0.5$, $p_{H_2}/p_{CO_2} = 3.15$ (b)
for which they have calculated

$$p_{0_2} = 7.08 \times 10^{-10}$$
 and $p_{S_2} = 9.33 \times 10^{-4}$,

Fincham and Richardson obtained, using the same alag composition, a crystalline slag containing 4.2% S - which result they attribute to saturation with CaS.

Since C_s is constant for any given slag at a constant temperature, the value obtained above can be used to calculate the sulphur content been which would have/obtained using the gas of composition (b), had not saturation intervened. The expected sulphur content thus calculated

$$(\%S) = C_{s} \cdot (p_{S_{2}})^{\frac{1}{2}} / (p_{O_{2}})^{\frac{1}{2}}$$

= 16.4 x 10⁻⁴ x (7.08x10⁻¹⁰)^{\frac{1}{2}} / (9.33x10⁻⁴)^{\frac{1}{2}}
= 1.9%

ACKNOWLEDGEMENTS.

112.

The author wishes to express his thanks to Professor R. Hay for his interest and encouragement, to Dr. P.T. Carter, who directed the work, for his enthusiastic help and guidance, and to the Ferguson Bequest Fund whose financial help enabled the work to be carried out.

The author also wishes to express his indebtedness to the Rev. Tom Allan and the Rev. Ian G. Forbes, who, when the author was about to abandon this research, gave him a Christian faith and enabled him to continue and complete the work.

The research was carried out in the Metallurgy Department of the Royal Technical College, Glasgow.

113.

REFERENCES.

1.	J. White: J.I.S.I., Carnegie Schol.Memoirs, 1938, 27, 1.
2.	L.S.Darken and R.W.Gurry: J.Amer.Chem.Soc., 1945, 67, 1998.
3.	H.R.Larsen and J.Chipman: Trans. A.I.M.E., 1953, 197, 1089; Trans. A.I.M.E., 1954, 200, 759.
4.	H. Schenck: "Physical Chemistry of Steelmaking" (B.I.S.R.A., 1945).
5.	F.Korber and W.Oelsen: Mitt.Kaiser-Wilhelm Inst.Eisenforschung, 1932, 14, 181.
6.	N.J.Grant and J.Chipman: Trans. A.I.M.E., 1946, 167, 134.
7.	P. Herasymenko: Trans. Far. Soc., 1938, 34, 1245.
8.	M. Tamkin. Acta Physiochim., 1945, 20, 411.
9.	A.S.Kheinmans Bull. de L'Academie des Sciences de L'U.R.S.S. Classe des Sci.Tech., 1946, 1439.
10.	H.Flood, T.Førland and K.Grjotheim: "The Physical Chemistry of Melts" (Inst. Min. and Met., 1953, 46).
11.	P. Herasymenko and G.E. Speight: J.I.S.I., 1950, 166, 289.
12.	F.D.Richardson: Disc. Far. Soc., 1948, No.4, 244.
13.	M. Rey: ibid, 257.
14.	H.B.Bell, A.B.Murad and P.T.Carters Trans. A.I.M.E., 1952, 194, 718.
15.	C.J.B.Fincham and F.D.Richardsons Proc. Roy. Soc., A, 1954, 223, 40.
16.	W.Krings and H.Schackmanns Zeit. für Elektrochemie, 1935, 41, 479.
17.	R.Schuhmann(Jr.) and P.J.Ensio: Trans. A.I.M.E., 1951, 191, 401.
18.	E.J.Michal and R.Schuhmann(Jr.): Trans. A.ILM.E., 1952, 194, 723.
19.	J.H.Whiteleys J.West of Scotland I.S.I., 1923-4, 31, 42.
20.	C.H.Hertju(Jr.), A.R.Belyea, E.H.Buckart and C.C.Millar: Trans. A.I.M.E., 1925, 71, 569.

14

21.	J.Chipman and Ta Li: Trans. A.S.M., 1937, 25, 435.
22.	F.Eisenstecken and E.H.Schultz: Stahl u. Eisen, 1932, 52, 677.
23.	C.W.Short and T.G.Meyricks Iron and Coal Trades Rev., 1948, 71, 725.
24.	F.Harders, H.Grewe and W.Oelsen: Stahl u. Eisen, 1951, 71, 973.
25.	F.D.Richardson and G.Withers: J.I.S.I., 1950, 165, 66.
26.	W.Eitel: "The Physical Chemistry of the Silicates". (Univ.of Chicago Press, 1954).
27.	F.P.Hall and H.Insley: "Phase Diagrams for Ceramists" (J. Amer. Cer. Soc., 1947).
28.	O.Glaser: Zbl.Miner.Geol. Paläont, A, 1926, 81.
29.	E.W.Filer and L.S.Darken: Trans. A.I.M.E., 1952, 194, 253.
30.	R.S.MacCaffery and J.F.Oesterles Trans. A.I.M.E., 1923, 69, 606.
31.	A.E.Martin, G.Glockler and C.E.Wood: U.S.Bur.Mines, Rep. Inv. No.3552(1941).
32.	T.Rosenqvist. Trans. A.I.M.E., 1951, 191, 535.
33.	G.G.Hatch and J.Chipman: Trans. A.I.M.E., 1949, 185, 27.
34.	F.D.Richardson and J.H.E.Jeffess J.I.S.I., 1948, 160, 261.
35.	K.K.Kelley: Bull. U.S.Bur.Mines, 1937, No.406.
36.	F.D.Richardson and J.H.E.Jeffes: J.I.S.I., 1952, 171, 165.
37.	C.W.Montgomery and L.S.Kassel: J.Chem.Phys., 1934, 2, 417.
3 8.	A.G.Gaydons "Dissociation Energies and Spectra of Diatomic Molecules" (Chapman and Hall, London, 1947, 194).
39.	W.Nernst. Zeit.für Elektrochemie, 1903, <u>3</u> , 622.
40.	H.von Wartenberg. Zeit für anorg. Chemie, 1908, 56, 320.
41.	G.St.Pierre and J.Chipmans J.Amer. Chem. Soc., 1954, 76, 4787.
4 2.	S. Chapmans Trans. Roy. Soc., A, 1917, 217, 115.
43 •	S. Chapman and F.W. Dooston. Phil. Mag., 1917, 33, 248.

44.	T.L.Ibbs: Proc. Roy. Soc., A, 1921, 99, 385.
45∙	T.L. Ibbs and L. Underwoods Proc. Phys. Soc., 19277, 33, 327.
46.	L.J.Gillespie, J. ^{Chem.} Phys., 1939, 7, 530.
47.	M.N.Dastur and J.Chipmans Disc. Far. Soc., 1948, No.4, 100.
48 •	J.A.Kitchener, A.Liberman and D.A.Spratte Analyst, 1951, 76, 509.
49.	C.J.B.Fincham and F.D.Richardson: J.I.S.I., 1952, 172, 53.
50.	F.D.Richardson, "The Physical Chemistry of Melts" (Inst.Min. and Met., 1953, 75).
51.	P.Murray and J.White, Disc. Far. Soc., 1948, No.4, 287.
52.	L.S.Darkens "Thermodynamics in Physical Metallurgy". (Amer. Soc., Met., 1950, 38).
53 .	L.C. Chang and G. Derget Trans. A. I.M.E., 1947, 172, 90.
54.	F.D.Richardson, J.H.E. Jeffes and G.Withers: J.I.S.I., 1950, 166, 213.
55.	J.C.Fulton and J.Chipmans Trans. A.I.M.E., 1954, 200, 1136.
56.	C.Wagner: "Thermodynamics of Alloys" (Addison - Wesley Press, 1952, 19).
57.	W.F.Holbrook and T.L.Josephe Trans. A.I.M.E., 1936, 99, 1290.
58 .	H.Towers: Trans. Br. Cer. Soc., 1954, 53, 180.

•
