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Immunity to an asexual erythrocytic Plasmodium chabaudi chabaudi AS infection in 

NIH mice is mediated sequentially by Thl and Th2 cells. The predominantly Thl 

mediated response is responsible for the control of the acute phase of infection and there 

is then a switch to predominantly Th2 mediated response(s). Cytokines and 

inflammatory mediators are important molecules involved in the parasiticidal 

mechanisms induced by Th 1 and Th2 cells during the course of a P. chabaudi infection. 

IFNy (Thl associated cytokine) and EL-4 (Th2 associated cytokine) production during a 

P. chabaudi infection reflects the sequential involvement of Thl and Th2 cells. EL-6 is a 

cytokine which is involved in Th2 mediated responses but can also stimulate the 

production of inflammatory mediators such as acute phase proteins. The actual role of 

individual cytokines during the course of experimental malaria infection can be 

investigated by depletion of the cytokine by antibody treatment or addition of exogenous 

cytokine and observing the outcome of the infection. Studies were performed, utilising 

cytokine or cytokine receptor gene deficient mice to investigate the role of individual 

cytokines during the course of P. chabaudi infection.

The induction of inflammatory mediators, such as nitric oxide (NO) and acute phase 

proteins, by cytokines is an important aspect of the protective immune response to P. 

chabaudi AS infection but it is unclear where and how these molecules can mediate a 

protective response. During P. chabaudi infection, mature asexual erythrocytic stage 

parasites sequester to the liver, making this non-lymphoid organ a potential site of a 

protective immune response. Serum amyloid P (SAP) and NO are two inflammatory 

mediators that are synthesised in the liver and may participate in parasiticidal 

mechanisms.

IFNy receptor (IFNyR) deficient mice are more susceptible to a P. chabaudi infection 

than intact mice. A high mortality rate was observed in the IFNyR deficient mice 

whereas none of the control mice died. The IFNyR deficient mice consistently had a
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higher peak primary parasitaemia compared to the control mice but this was never 

statistically significant. Total IgG2a and parasite-specific IgG responses in the serum of 

IFNyR deficient mice were reduced compared with control mice, whereas both groups 

had similar total IgGl levels in their serum. Interestingly, a large total IgE response was 

observed in the serum of the IFNyR deficient mice. Control mice had negligible levels of 

total IgE in their serum, which is the normal IgE response during a primary P. chabaudi 

infection. Analysis of leukocytes present in the spleen and liver during the course of 

infection revealed that there was a reduction in the numbers of lymphoid cells in the 

spleen at peak parasitaemia and a reduction of lymphoid cell, monocyte and 

polymorphonuclear (PMN) cell numbers present in the liver of P. chabaudi infected 

mice during the acute phase of the infection. This study demonstrated the importance of 

IFNy mediated responses during a primary erythrocytic P. chabaudi infection.

The role of the Th2 associated cytokines during a P. chabaudi infection was investigated 

by infecting, in separate experiments, IL-4 and IL-6 deficient mice. P. chabaudi 

infection of IL-4 deficient mice consistently resulted in an exacerbation of the peak of the 

primary parasitaemia compared to that of intact control mice. This observation was 

repeated in P. chabaudi infection of IL-4 deficient mice on three different genetic 

backgrounds. There was a reduction in the total IgGl response in the serum of the IL-4 

deficient mice during the acute phase of P. chabaudi infection compared to that of 

control mice but both groups had similar total IgG2a and parasite-specific IgG 

responses. Analysis of leukocytes present in the spleen and liver during the course of a 

P. chabaudi infection revealed a reduction in the number of lymphoid cells in the spleen 

and a reduction in the number of lymphoid cells, monocytes and PMN cells in the liver 

of IL-4 deficient mice compared with intact controls. These studies confirmed previous 

reports that IL-4 is not essential for the control of a primary P. chabaudi infection.

Infection of IL-6 deficient mice with 1x10^ parasitised erythrocytes of P. chabaudi 

consistently resulted in an exacerbated peak of the primary parasitaemia (not statistically
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significant) and a significantly reduced rate of parasite clearance compared to intact 

control mice. There was no exacerbation of the peak of the primary parasitaemia in IL-6 

deficient mice compared to control mice following infection with 2x10^ parasitised 

erythrocytes of P. chabaudi. The reduced rate of parasite clearance was, however, still 

evident in the IL-6 deficient mice. Total IgGl and total IgG2a responses in the serum of 

the IL-6 deficient mice (for both challenge doses) were reduced compared to the intact 

control mice and there was no significant difference observed in the production of 

parasite specific IgG. Hence, IL-6 deficient mice have a slower rate of parasite clearance 

than control mice and also demonstrated dose-dependent immune responses illustrated 

by the loss of the exacerbation in the peak parasitaemia observed in IL-6 deficient mice 

infected with 1x10^ pRBCs upon infection with 2x10^ pRBCs.

To examine if the liver was involved in a protective immune response to the asexual 

erythrocytic stage of a P. chabaudi infection, lymphomyeloid (LM) cells were isolated 

from the livers of P. chabaudi infected mice. An increase in the numbers of LM cells 

was observed during the acute phase of a primary P. chabaudi infection with peak 

numbers of LM cells present in the liver one or two days after the peak of the primary 

parasitaemia. Adoptive transfer of LM cells isolated at this time of the infection, 

significantly protected irradiated recipient mice against a P. chabaudi challenge compared 

to leukocytes isolated from spleens and peripheral blood of P. chabaudi infected mice at 

the same time in the course of infection and leukocytes isolated from the spleens of naive 

mice. Preliminary data was also obtained on the role of the resident liver macrophages, 

Kupffer cells, during P. chabaudi infection. Depletion of Kupffer cells in mice resulted 

in an exacerbation of the peak of the primary parasitaemia of a P. chabaudi infection. 

These experiments suggest that the liver may be a site of a protective immune response 

involving the recruitment of effector cells, and Kupffer cells.

P. chabaudi infection of mice was shown to induce the production of SAP, the major 

acute phase protein in mice. SAP levels were elevated during the course of a P. chabaudi

IX



infection compared to non-infected mice. In vitro studies using SAP isolated from serum 

taken from P. chabaudi infected mice at day 11 post infection, demonstrated that SAP 

may have a direct effect on the growth of erythrocytic stage malaria parasites and is 

potentially an important immunomodulatory molecule. The liver is a site which has the 

potential to produce a high local concentration of NO, an inflammatory molecule which 

has been shown to have parasiticidal activity. In vitro studies were performed, using a 

NO donor, to investigate if NO had any effect on the development of asexual 

erythrocytic stage parasites. Late stage parasites were found to be more susceptible to 

NO and the effect of NO may be cytostatic rather than cytotoxic.



Chapter One 

General Introduction



Background

Malaria remains one of the most prevalent diseases in man today. Approximately 40% of 

the world's population are at risk of infection and 2-3 million people are killed by 

malaria each year, most of these being children in sub-Saharan Africa (WHO 1993) and 

there are between 200-300 million clinical cases of malaria each year. Eradication of 

malaria appears to be a more difficult objective to achieve now than at any other time. 

Several different problems are compounding the difficulties faced by clinicians and 

researchers. The increasing incidence of drug resistance in the parasite and insecticide 

resistance in the vector mosquitoes are allowing the disease to spread, which could result 

in malaria returning to regions where it has been eradicated for years. Reduced funding 

for control programmes, political unrest and the problem of refugees in the Third World 

are all adding to the biological problems already faced. The prospects for an effective 

malarial vaccine in the immediate future have diminished slightly. The much heralded 

SPf66, produced by Manuel Patarroyo and colleagues has disappointed in recent trials in 

Africa and Thailand (Nosten et a l, 1996, Alonso et a l, 1994) following promising 

results initially (Valero et a l, 1993). SPf66 has shown that partial immunity to malaria 

can be generated by a peptide polymer and the controversy surrounding the SPf66 

vaccine trials has led to better definition of the conduct for future trials of a malaria 

vaccine.

The Parasite

There are four species of malaria parasite which infect humans, Plasmodium falciparum, 

P. vivax, P. malariae and P. ovale. P. falciparum  is responsible for the majority of 

deaths attributed to malaria infection and hence is regarded clinically as the most 

important species. A diagrammatic summary of the malaria life cycle is illustrated in 

figure 1.



Infection is initiated in humans when a female Anopheles mosquito takes a blood meal. 

During this process, anticoagulant from the salivary glands is released and introduces the 

infective sporozoites (of malaria) into the bloodstream. These pass rapidly to the liver 

and penetrate hepatocytes, initiating the pre- or exo-erythrocytic stage (Fairley, 1947, 

Sinden and Smith, 1982). Following growth and replication within the hepatocyte, the 

liver schizont ruptures releasing thousands of merozoites into the circulation (Garnham, 

1966). The duration of this stage of the life cycle depends upon the species of the 

parasite. The exo-erythrocytic stage of P. falciparum  infection lasts approximately 5-6 

days. In P. vivax and P. ovale dormant exo-erythrocytic forms, known as hypnozoites, 

can remain in the liver for several months (Krotoski et al., 1982). The merozoites, 

released from the ruptured liver schizont, quickly attach to and invade circulating 

erythrocytes where they undergo asexual replication repeatedly. It is this phase of 

infection, the asexual erythrocytic stage that causes the morbidity and mortality 

associated with disease. The parasite develops through ring stages to trophozoite and 

then schizonts which rupture releasing merozoites into the bloodstream which repeat the 

cycle by invading new erythrocytes (Dvorak et al., 1975). Each asexual erythrocytic 

cycle can be 24,48 or 72 hours depending upon the species of malaria.

In the final third of the asexual cycle of P. falciparum  and a few other species, the 

infected erythrocytes classified as late trophozoite/schizont stages, stop circulating and 

adhere to the endothelial cells of post capillary venules. This process is known as 

sequestration and the infected erythrocytes can cytoadhere to endothelial cells in post 

capillary venules of several organs including the brain, heart, kidneys, gut and liver.
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Merozoites, following invasion of an erythrocyte, can differentiate into gametocytes 

which are the sexual forms and infective to the mosquito during a blood meal. These can 

then mature in the mid-gut of the mosquito to the extracellular gametes. Fertilisation 

produces a zygote, the only stage of the life cycle where the parasite is in a diploid form, 

which develops into a motile ookinete. This burrows into the mid-gut wall where it 

encysts on the outer surface. The oocyst, develops and grows to release sporozoites 

which migrate to the salivary glands of the mosquito ready to infect at the next blood 

meal (Vanderberg, 1975).

The P, chabaudi Laboratory Model

In order to produce a successful malaria vaccine, it is logical that a comprehensive 

understanding of immunity to malarial infection will facilitate the achievement of such a 

project. The definition of immune responses induced by malarial antigens will aid the 

decision of what type of antigens are to be included in a vaccine and the identification of 

the type of immune response which will be required to be induced by the prospective 

vaccine. To achieve this aim, studies are required to elucidate the mechanisms of 

protective immune responses induced by either specific malarial antigens or malaria 

infection. It is possible to culture human malaria parasites in vitro but there are 

limitations to any in vitro system making it difficult to extrapolate any observations made 

to an in vivo situation. Human Plasmodium species are host specific restricting infection 

studies of animal models with human malaria parasites. Furthermore, experimental 

infections of volunteers with human Plasmodium species, are strictly controlled with the 

welfare of the volunteer of the utmost importance. For these reasons, researchers have 

turned to animal models which allow examination of malaria infections in vivo. Rodent 

models are mainly used because of the availability of the mammalian hosts, rats or mice, 

and due to the fact that it is relatively easy to maintain a supply of the respective rodent



parasite species. Animal models have supplied researchers with a convenient method of 

studying immunity to malaria infections.

During the studies undertaken in this thesis, the parasite species used was P. chabaudi 

chabaudi AS. This species represents a reasonable model of P. falciparum  infection 

because it shares several important features with P. falciparum. Both species invade 

normocytes, sequester from circulation during the latter stages of their asexual cycle 

(although P. chabaudi has a 24 hour asexual cycle compared with P. falciparum's 48 

hours) and undergo antigenic variation. Hence P. chabaudi infection in mice provides a 

relevant model which can be utilised to analyse immunity to malaria infection.

Clinical manifestations of malaria

Malaria infection can result in a spectrum of disease manifestations, from asymptomatic 

to fatal infections. The parasite species can determine the outcome of infection. P. 

falciparum  is responsible for the majority of deaths associated with human malaria 

infections. Transmission intensity, anti-malarial drug use, the drug resistance of 

parasites and host resistance are all known to contribute to the severity of malaria 

infection. The ability of different parasite strains to induce cytokine production and their 

rosetting or cytoadherent properties may also influence the nature of malaria infection 

(Molyneux, 1995).

Fever, headaches, chills, rigors and sweating are common symptoms of all human 

malarias (Warrell, 1993) although the intensity of individual symptoms varies depending 

upon the infecting Plasmodium species (Shute, 1952, Covell and Nicol, 1951). These 

symptoms are associated with uncomplicated malaria infection and anaemia may develop 

if infections are prolonged (Molyneux, 1995). Malaria infection is considered severe 

when it is life threatening. For research purposes severe malaria is defined by the 

presence of any of the following complications: coma, renal failure, severe anaemia.



acidosis, respiratory distress syndrome, hypoglycaemia, bleeding, shock or 

intravascular haemolysis. Other characteristic symptoms include altered consciousness, 

weakness, convulsions, jaundice and hyperparasitaemia. It is thought that approximately 

one infection in a hundred of children with severe malaria may be fatal in the absence of 

drug treatment (Greenwood et a l ,  1987). Children in intense transmission areas 

(subSaharan Africa) are at greatest risk of developing severe malaria. Severe anaemia, 

cerebral malaria, acidosis, hypoglycaemia and respiratory distress are the five main 

symptoms in African children with severe falciparum malaria (Molyneux, 1995). 

Cerebral malaria, characterised by altered consciousness and convulsions is the main 

cause of death due to malaria in children (Molyneux, 1995). In adults, severe malaria 

infection differs from that in children because complications such as acute renal failure 

and respiratory distress syndrome are more common.

Host resistance to malaria

Natural resistance

Susceptibility and resistance to malaria infection are influenced by several factors which 

are not immunologically mediated responses. Erythrocytic stage malaria parasites gain 

entry into the erythrocyte through a complex process following interaction between 

molecules on the parasite surface and receptors on the erythrocyte membrane (Butcher, 

Mitchell and Cohen, 1973, Miller et al., 1973). If the erythrocyte lacks this receptor then 

the merozoite is unable to penetrate the cell. P. knowlesi merozoites are unable to enter 

cells lacking the Duffy blood group antigens (Miller et al., 1975). This observation is 

extended to the human malaria P. vivax and it is possible that the absence of P. vivax in 

areas of West Africa can be explained by the incidence of Duffy negative individuals 

(Miller etal., 1976).



The intracellular environment of the erythrocyte can also influence the growth of malaria 

parasites. Alteration in the haemoglobin constitution due to the genetic disorder, sickle

cell anaemia, may have an inhibitory effect on the development of malaria parasites. 

Sickle-cell haemoglobin has a single amino acid mutation in the p chain, which results in 

the erythrocyte adopting a sickle-like shape due to the precipitation of sickle-cell 

haemoglobin (HbS) when the oxygen concentration is reduced. An inhibitory effect of 

HbS on the growth of P. falciparum  blood-stage parasites was suggested by the high 

frequency of the sickle-cell gene in areas of hyperendemic malaria transmission (Allison, 

1954). Homozygotes for the sickle cell gene tend to die young often as a result of 

infection, renal failure, cardiac failure or thrombosis. Recently, a report has 

demonstrated a higher resistance to P. falciparum infection in patients homozygous for 

sickle-cell in Western Kenya (Aluoch, 1997). Furthermore, transgenic mice expressing 

high levels of HbS are protected against a lethal infection of P. yoelii (Hood et al., 

1996). The growth rate of P. falciparum in vitro in homozygous or heterozygous 

erythrocytes for the sickle-cell trait is normal but as the oxygen level is reduced, 

development of the parasite is inhibited (Friedman, 1978). It is thought that the 

mechanism of growth inhibition may be due to a loss of potassium under hypoxic 

conditions (Friedman et al., 1979).

A number of other haemoglobin mutations and erythrocyte abnormalities are thought to 

be positively selected for by malaria infection in populations within areas of high 

transmission. Thalassaemias, genetic disorders of haemoglobin synthesis are thought to 

confer protection against malaria infection (Williams et a i, 1996, Senok et al., 1997). 

Deficiencies in red cell enzymes, such as gIucose-6-phosphate dehydrogenase, are also 

thought to influence resistance to malaria infection. A double genetic defect of 

thalassaemia trait and severe glucose-6-phosphate dehydrogenase deficiency has been 

correlated with enhanced protection against malaria infection (Oo et a i ,  1995). 

Individuals carrying the sickle-cell trait have a significant retardation in the switch from 

foetal to adult haemoglobin during the first five years of life (Giardina et al., 1995).



Persistence of foetal haemoglobin may contribute to host resistance because P. 

falciparum  growth is retarded in cord blood cells containing approximately 85% foetal 

haemoglobin, in erythrocytes that contain 20% foetal haemoglobin from infants and in 

erythrocytes containing foetal haemoglobin from adult homozygotes for hereditary 

persistence of foetal haemoglobin (Giardina et a l, 1995). It is thought the retardation of 

P. falciparum  growth in all these cells illustrates a role for foetal haemoglobin in 

mediating an increase in oxidative stress which may lead to early elimination of 

parasitised erythrocytes (Nagel and Roth, 1989).

Dietary intake is another factor which may influence host resistance to malaria infection. 

Variation in diet has been shown to alter the outcome of experimental malaria infection 

and has been proposed to have a role in host resistance to human malaria infection. P. 

berghei infection in rats can be suppressed by a milk diet (Maegraith, Deegan and 

Sherwood Jones, 1952). It was shown that milk is deficient in p-aminobenzoic acid 

(PABA) and that PABA supplementation could reverse the suppression of P. berghei 

infection in rats and P. knowlesi in rhesus monkeys (Hawking, 1954). Mice fed a diet 

containing cod liver oil survive for a significantly longer period following infection with 

lethal P. berghei infection (Godfrey, 1957). The protective effect was reversed by the 

addition of vitamin E and subsequently a vitamin E-deficient diet has been shown to 

suppress lethal P. yoelii infection in mice (Taylor et a l, 1997). Restriction of the dietary 

intake of mice (food was restricted to produce a body weight loss of 1-2%) during a P. 

berghei ANKA infection reduced mortality compared to mice fed ad libitum (Hunt, 

Manduci and Thumwood, 1993). The reduction in the level of protein intake in mice and 

rats (fed on a cassava meal which has a low protein content compared to controls which 

were given a protein-rich diet) has been shown to reduce the severity of P. yoelii, P. 

berghei and P. vinckei infections (Ibekwe and Ugwunna, 1990, Edirisinghe, Fern and 

Targett, 1981). The addition of vitamin E free fish oil to antimalarial chemotherapy 

treatment of Chinese patients with P. falciparum, enhanced the rate of clinical cure 

(Levander et a l, 1994). The development of P. falciparum in vitro can be inhibited by



the addition of omega-3-fatty acids derived from fish oil to culture medium (Fevang, 

Bjorkman and Hostmerk, 1992, Kumaratilake etal., 1992).

Acquired immunity to malaria

The complexity of the life cycle of the Plasmodium species in the mammalian host, the 

large number of different parasite antigens presented to the host and the ability to evade 

the immune response through mechanisms such as antigen diversity results in the slow 

development of immunological memory in humans to malaria infection. Effective levels 

of natural immunity to infection develop slowly and only upon repeated exposure. 

Infants up to the age of 6 months are protected from infection possibly because of the 

presence of maternal antibodies (Bruce-Chwatt, 1952), or the lack of PABA in the milk 

diet of the infants. The persistence of foetal haemoglobin may also contribute to the low 

frequency of malaria during the first 6 months of life. Children from 6 months to 5 years 

are most at risk from P. falciparum infection (McGregor, 1964) but the development of 

immunity is largely determined by the level of malarial transmission. Clinical malaria in 

children less than 1 year of age occurs in hyperendemic areas with the major 

manifestation being anaemia (Brewster, Kwiatkowski and White, 1990, Snow et a l, 

1994). Seasonal or less intense transmission of malaria results in levels of exposure 

which are insufficient to induce significant protecive immunity. Hence individuals of all 

ages are susceptible to severe infection. Anaemia is the main clinical symptom in 

children of under 1 year, while cerebral complications manifest in the older groups. 

Recently, it has been suggested that naturally acquired immunity in adults develops after 

only 1-2 years of exposure to hyperendemic malaria and that this is an age-dependent 

phenomenon (Baird et a l,  1991, Baird et a l ,  1993). An age-dependent decrease in 

susceptibility to high-grade and frequent parasitaemia was observed in transmigrants 

with limited history of exposure to endemic malaria (Baird et a l,  1993). The authors 

suggest that a protective immune response to an endemic falciparum malaria is governed 

by a relatively brief heavy exposure and an unknown intrinsic immune factor(s) which
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are associated with the host. The brief period of heavy exposure to malaria infection 

conferred greater protective advantage to adults than children. However, one parameter 

that is ignored is the greater antigen load that adults will have compared to children and 

this may be a factor in the development of the age-dependent, naturally acquired 

immunity.

Immunity to malaria is traditionally regarded as stage-specific but the potential exists for 

effector mechanisms generated in response to one stage of the life cycle to act against 

another stage which is present in the host at that time.

Immunity to Pre-erythrocytic Stage

Information on immunity to sporozoites and intra-hepatic stages comes mainly from 

experimental immunisation of volunteers or animals with attenuated (u.v., x-ray or y-ray 

irradiated) sporozoites which are able to invade and partially develop in hepatocytes 

(Ramsey, Beaudoin and Hollingdale, 1982). Irradiated sporozoites of P. falciparum and 

P. vivax induced protective immunity in a high proportion of immunised volunteers 

(Clyde et a l, 1973, Clyde e ta l,  1975).

The major immunodominant protein found during the sporozoite stage of the parasite's 

life cycle is the circumsporozoite protein (CSP). The CSP consists of a central region 

which has immunodominant, multiple repeat sequences and two flanking regions. 

Region I and Region II. The repeat region is unique for each species of parasite but 

Region I and II are highly conserved and found in the CSP of all species (Phillips 

1994a). The motility of the sporozoites is linked with the secretion of the CSP from the 

apical end of the parasite and its translocation posteriorly (Stewart and Vanderberg, 1988 

and 1991). Region II of the CSP has a relatively high degree of homology to 

thrombospondin, (Cerami et a l, 1992) an adhesion molecule and hence it has been 

suggested that the CSP is involved, via Region II, in the binding of the sporozoite to the
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hepatocyte prior to invasion. When the sporozoite enters the hepatocyte, substantial 

quantities of the CSP are shed into the hepatocyte cytoplasm (Khan, Ng and 

Vanderberg, 1992). As the intrahepatic parasite developed, the CSP was localised 

around the periphery of the parasite but the function of this distribution of the CSP 

remains unclear. The demonstration that sporozoites release quantities of CSP suggests a 

possible mechanism for the presentation of fragments of the CSP to the immune system 

which may induce a CSP specific response to the intrahepatic parasite. This protein has 

been demonstrated to induce immune responses mediated by both antibody dependent 

and independent mechanisms (Mazier et al, 1988).

Antibody-dependent protective mechanisms against the pre-erythrocytic 

stage

Evidence that protective immunity to pre-erythrocytic stages of malaria, is mediated by 

antibody-dependent mechanisms is mainly provided by immunisation experiments. 

Serum from mice immunised with irradiated P. bergehi sporozoites inhibited sporozoite 

invasion and development of exo-erythrocytic forms in vitro (Chatterjee et a l, 1996). 

The antibody recognised both Region II sequences of P. falciparum  CSP and Liver 

Stage Antigen-1 (LSA-1) based repeat sequences. Antibodies from mice immunised with 

irradiated P. bergehi or P. yoelii sporozoites, protected recipient mice against a viable 

homologous sporozoite challenge (Potocnjak e ta l, 1980, Charoenvit et a l, 1991). The 

repeat region of the CS protein was the epitope recognised by these protective 

antibodies.

A monoclonal antibody which recognises a 17kDa protein found on the parasitophorous 

vacuole membrane of hepatocytes or erythrocytes infected with P. yoelii, can inhibit the 

development of intrahepatic forms of P. yoelii in vitro (Charoenvit et a l, 1995). Cross

species protection to the pre-erythrocytic stage has been reported (Sina et a l, 1995). 

Following immunisation with P. falciparum sporozoites, mice were protected against a
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p. berghei sporozoite challenge (Sina et a l, 1995). Serum and monoclonal antibodies 

derived from these mice recognise a novel 42/54 kDa antigen designated 

circumsporozoite protein 2 (CSP 2), in both P. falciparum  and P. berghei and can 

inhibit P. falciparum and P. berghei sporozoite invasion of hepatoma cells in vitro (Sina 

et a l, 1995). Anti-CSP 2 monoclonal antibody was also shown to protect mice from a 

P. berghei sporozoite challenge (Sina et al, 1995).

The mechanism by which an antibody protects or prevents the development of the 

parasite at the pre-erythrocytic stage of the parasite's life cycle remains unclear. Anti- 

CSP antibodies have been shown to inhibit sporozoite penetration into hepatocytes 

(Mazier et a l, 1987, Mazier et a l, 1986, Nudelmann et a l, 1988) but there have also 

been reports of 'protective' antibodies failing to block the penetration of sporozoites 

(Mellouk ef 1986a, Mellouk gf a/., 1986b).

Involvement of anti-CSP antibodies in post-penetration inhibitory events was observed 

with P. falciparum  (Mazier et a l, 1988) where it was noted that attachment of the 

sporozoite to the hepatocyte membrane and subsequent intrahepatocytic development of 

the parasite were interfered with by the anti-CSP antibodies. It has been suggested that 

the antibodies may destroy the intracellular parasite (through their presence) in the 

parasitophorous vacuole. Antibodies have been observed in the parasitophorous vacuole 

following staining with fluorescent labelled anti-IgG (Nudelmann et a l, 1988). Anti- 

CSP antibodies have also been reported to enhance the penetration of the sporozoite. 

Low titres of antibodies against the CS protein of P. falciparum  (Hollingdale et a l, 

1988) and P. yoelii (Nudelmann et a l, 1988) show an increase in the number of liver 

parasites when compared with controls. Enhancement was observed with both 

polyclonal and monoclonal antibodies.

Most of the reports regarding the activity of protective antibodies against the exo- 

erythrocytic stage, the majority of these being anti-CSP antibodies, are experiments
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performed in vitro. Hence the results should be interpreted with caution because the 

results obtained in an in vitro system may not define the role of these protective 

antibodies in vivo. Indeed, although repeated exposure of humans to sporozoites may 

result in detectable antibody levels in serum (Nardin et a l, 1979) there is still a lack of 

strong evidence that this antibody is actually protective (Hoffman et al, 1987).

The assumption that the protection observed in immunised volunteers (Clyde et a l, 

1973, Clyde et al, 1975) was mediated by a protective antibody, led to the design of the 

first P. falciparum  vaccines based on the immunodominant B cell epitope, (NANP)n 

from the conserved central region of the CS protein. These vaccines had very little 

success (Ballou et a l, 1987, Herrington et a l, 1987, Fries et a l ,  1992) and indicated 

that there were antibody independent mechanisms which were important in the protective 

response against the exo-erythrocytic stages. However, recently an immunogenic 

recombinant CSP vaccine has been developed which protects adults, with no previous 

exposure to malaria, against experimental challenge with P. falciparum  sporozoites 

(Stoute et a l ,  1997). The vaccine contains CSP central tandem-repeat epitopes and 

carboxy-terminal epitopes which are fused to hepatits B surface antigen (HBsAg) and is 

expressed together with unfused HBsAg. The vaccine is given in conjunction with a 

potent adjuvant and can induce large titres of antibodies against the CSP repeat epitopes 

(Stoute a/., 1997).

Protective immunity to pre-erythrocytic stages mediated by antibody- 

independent mechanisms

The demonstration that it was possible to induce protection in B cell deficient mice 

following immunisation with irradiated sporozoites (Chen, Tigelaar and Weinbaum, 

1977) gave an early indication that protective responses induced may involve antibody- 

independent mechanisms. Similar to the experiments demonstrating antibody-dependent
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protective immunity, the understanding of the nature of antibody-independent mediated 

responses in immunisation experiments comes from in vitro observations.

C ytotoxic CD8+ T cells

CD8+ cytotoxic T lymphocytes (CTL) recognise antigens which have been processed by 

antigen presenting cells and are presented in association with MHC Class I (Townsend 

and Bodmer 1989). A series of in vivo depletion experiments (Schofield et a l, 1987b, 

Weiss et a l, 1988) and adoptive transfer of T cell clones (Egan et a l, 1987) has 

demonstrated that CTL are protective in some rodent models following immunisation 

with irradiated sporozoites. Since CTL function is MHC restricted, the target of their 

cytotoxic function would appear to be the intracellular form residing within the 

hepatocyte because this cell is capable of expressing functional MHC class 1 peptides. 

CTL taken from mice immunised with irradiated sporozoites have been shown to inhibit 

the development of exo-erythrocytic parasites cultured in mouse hepatocytes (Hoffman 

et a l, 1989). The need for parasite derived liver stage antigens presented in association 

with MHC class 1 to CD8+ CTL in order to induce effective protection has been 

illustrated by studies using beta2-microglobulin (beta2m) knockout mice. Beta2m 

knockout mice are resistant to T. gondii (Denkers et a l, 1993) and T. cruzi (Tarleton et 

a l,  1992) infections but failed to develop protective immunity against a P. berghei 

sporozoite challenge following immunisation with attenuated P. berghei sporozoites 

(White, Synder and Krzych, 1996).

Fragments or epitopes of the CSP have been shown to be one of the main targets for 

CTL (Kumar et a l, 1988, Weiss et a l, 1990). In vivo depletion of CD8+ CTL 

abrogated protection following vaccination with attenuated vaccinia virus (NYVAC) 

recombinants expressing the CSP (Lanar et a l, 1996). MHC class 1 restricted CD8+ 

CTL against the CSP protect mice from a P. yoelii challenge (Malik et a l, 1995). 

Immunisation with synthetic peptides, derived from the CSP of P. berghei, failed to

15



protect mice against a subsequent challenge (Renggli et a l, 1995). CTL clones, 

harvested from mice immunised with synthetic peptides derived from the CSP of P. 

berghei, were expanded in vitro (long term culture, re-stimulated every 7-10 days with a 

specific synthetic peptide), and were able to protect naive, recipient mice upon adoptive 

transfer against a P. berghei sporozoite challenge (Renggli et a l, 1995). No protection 

against a P. berghei sporozoite challenge was observed in the mice immunised with the 

peptides. It is thought that CTL-dependent protection may require the migration of CTL 

to the liver and that this is achieved when the CTL are adoptively transferred but does 

not seem to occur efficiently in peptide immunised mice (Renggli et al., 1995). 

Immunisation with irradiated sporozoites produces a significant increase in CD8+ CTL 

in the livers of challenged mice (Faure et a l, 1995). In vivo, the effector function of 

CSP specific CD8+ CTL clones, appears to be related to the expression of CD44 and 

VLA-4 (Rodrigues et a l, 1992). These adhesion molecules have important roles in cell 

trafficking and their expression may be a critical step in the migration of CD8+ CTL to 

the liver. A CTL clone which recognises an epitope within the P. berghei CSP, in a 

MHC class 1 restricted manner, can protect mice against a homolougous sporozoite 

challenge if administered in conjunction with IL-2 (Romero et a l, 1989). Salmonella 

typhimurium  recombinants expressing the P. berghei CSP gene have been used as a 

delivery vehicle to induce protection mediated by specific CD8+ CTL (Aggarwal et al, 

1990).

The sporozoite surface protein 2 (SSP2) is another protein which has been shown to be 

a target of CDS'*" CTL (Khusmith et al, 1994, Wizel et al, 1995). Mice immunised with 

irradiated P. yoelii sporozoites produce CTL against CSP and P. yoelii SSP2 (PySSP2). 

In vivo depletion of these CD8+ CTL abrogated the protection (Khusmith et a l, 1994). 

CD8+ CTL clones specific for PySSP2 were able to protect naive recipient mice against 

P. yoelii following adoptive transfer (Khusmith et a l, 1994). This illustrates that CD8+ 

CTL against PySSP2 could protect mice against a P. yoelii sporozoite challenge in the 

absence of other parasite specific immune responses. The clones appear to recognise and
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eliminate infected hepatocytes because protection was still mediated even when the 

CDS'*" CTL clones were transferred to recipients three hours after sporozoite inoculation 

which is a time when the sporozoite will have entered the hepatocyte (Khusmith et a l,

1994).

As already stated the evidence demonstrating a protective role for CDS'*" CTL comes 

from either immunisation or in vitro experiments. The majority of experiments involve 

the rodent parasites P. berghei and P. yoelii. These parasites can infect mice but their 

natural hosts tend not to be used in laboratory models. Indeed, if correctly matched host- 

parasite combinations are used, they are often not as effective as using P. berghei 

sporozoite infection in mice. However, protective immunity induced by irradiated 

sporozoites is not observed in all mouse strain-P. berghei or P. yoelii combinations 

(Suhrbier 1991). In some examples of parasite-mouse strain experiments protection is 

CDS'*" CTL independent.

A second point to consider when analysing results from sporozoite infection of mice is 

the infectivity of the sporozoite itself. If non-irradiated sporozoites are highly infective to 

the mouse strain, often the protection induced by immunisation with irradiated 

sporozoites from the same parasite species is weak and correlates with a poor CDS'*" 

CTL response (Suhrbier, 1991). Poor infectivity of sporozoites in some models, such as 

P. berghei sporozoite infections of mice, induce a strong CDS"*" CTL response. Large 

numbers of P. berghei sporozoites are thought to perish shortly after invasion of the 

hepatocyte in vitro (Suhrbier, 1991), releasing sporozoite antigens into the cytoplasm of 

the hepatocyte. The sporozoite antigens are then processed and associate with MHC 

Class I molecules, resulting in the induction of a strong CDB'^ CTL response (Suhrbier 

et al., 1990). Hence, the infectivity of the sporozoite, which is dependent upon the host- 

parasite combination, will influence the level of the CDS'*" CTL response. Release of 

CSP by P. berghei sporozoites has been described in vivo (Khan, Ng and Vanderberg, 

1992) and, therefore, the strong CDS"*" CTL response induced by immunisation with
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irradiated sporozoites may be related to the poor infectivity of the sporozoites. Poor 

infectivity is not believed to occur in human malarias (Rosenberg et a i, 1990). Hence 

the question remains as to which immune responses observed in animal models actually 

occur during natural infections in humans.

Immunisation of volunteers, with irradiated sporozoites of P. falciparum, induced a 

CDS’*" CTL response, which recognised a region of the CSP (Malik et a l, 1991). Adult 

Kenyans (Sedegah et a l, 1992) and Australians (Doolan et a l, 1991) who lived in a 

malarious area were found to have CDS’*" CTL circulating, which recognised the same 

region of the CSP as the CD8+ CTL found in the immunised volunteers. Studies in the 

Gambia have provided indirect evidence that CD8+ CTL play a protective role against P. 

falciparum  (Aidoo et a l, 1995). Further studies in the Gambia (Hill et a l, 1991, Hill et 

a l ,  1992) have demonstrated an association between individuals expressing HLA- 

Bw53, a gene of the MHC, and a reduced incidence of severe P. falciparum. A small 

number of these individuals were found to have a CDS'*' CTL which recognised a 

peptide from the LSA-1 (Hill et al, 1992).

CD4^ T cell mediated immunity to pre-erythrocytic stages

The importance of CD4^ T cells in the protective immune response against the exo- 

erythrocytic stage has slowly emerged. A CD4^ T cell clone, which has cytotoxic 

activity in vitro, was shown to mediate protection against a P. berghei challenge (Tsuji et 

al, 1990). Several CD4^ T cell determinants have been identified in the CSP (Zvering et 

al, 1992) but it is unclear which epitopes can induce protective immunity. CD4^ T cells 

which recognise epitopes from the CSP can eliminate infected hepatocytes in vitro 

(Renia et a l, 1993) and following adoptive transfer can protect naive mice against a 

sporozoite challenge, apparently by direct killing (Renia et al., 1993). Activation of 

CD4‘̂ T cells in response to the P. falciparum  CSP in individuals from Papa New 

Guinea has been observed (Doolan et a l, 1994). As with the evidence demonstrating
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MHC Class I restricted CD8^ CTL activity, it appears that processed fragments of exo- 

erythrocytic parasite derived proteins can be expressed in association with MHC Class 

II. Hepatocytes do not express MHC Class II antigens constitutively but its expression 

can be upregulated during infection (Franco et al, 1988).

Mice primed intrasplenically with exo-erythrocytic forms of P. yoelii were protected 

against a sporozoite challenge but this protection was abrogated following in vivo 

depletion of CD4^ T cells prior to the sporozoite challenge (Renia, Rodrigues and 

Nussenzweig, 1994). Numbers of CD4^ T cells in the extravascular hepatic 

compartment of the liver, following priming with live P. yoelii sporozoites were raised 

when compared with controls (Faure et a l, 1995).

The division of murine CD4^ T helper cells into T helper 1 (Thl) or Th2 CD4^ T cells 

(Mosmann and Coffmann 1987) according to their cytokine profiles, led to a change in 

the approach for studying the role of CD4^ T cells in the immune response to the exo- 

erythrocytic stage of malaria. Each subset of T helper cell can influence the immune 

system through their cytokine production. Thl cells produce IL-2 and IFNy, and IL-4, 

IL-6 and IL-10 are produced by Th2 cells (Mosmann and Coffmann 1987). One of the 

most studied cytokines in this area is the Thl associated IFNy. In vivo and in vitro 

studies have demonstrated that IFNy can inhibit the development of rodent and human 

pre-erythrocytic stage malaria parasites (Ferreira et a l, 1986, Mellouk et a l, 1987, 

Maheshwari et a l, 1986). Administration of IFNy systemically will protect rhesus 

monkeys against a P. cynomolgi B sporozoite challenge (Maheshwari et a l, 1986). The 

sterile immunity observed in mice immunised with irradiated sporozoites is abrogated 

following anti-IFNy neutralising antibody treatment (Schofield et a l, 1987b). 

Immunisation of mice with P. berghei sporozoites induces IFNy production (White, 

Jarboe and Krzych, 1994). IFNy does not exert an inhibitory effect on free sporozoites 

but on the intracellular development of liver stage parasites (Mazier et a l, 1988). 

Optimal inhibition of P. berghei sporozoite development was observed when the primary
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hepatocyte culture was treated with IFNy 6 hours prior to the addition of the sporozoites 

(Schofield et a l, 1987a). Addition of IFNy to developed intracellular liver stages, 

resulted in the lysis of parasites (Mellouk et al, 1987). This demonstrates that IFNy can 

have a cytotoxic effect on liver stage parasites as well as the cytostatic role defined by the 

inhibition of development of parasites intracellularly (Mazier et al., 1988). There are 

several mechanisms through which IFNy can mediate inhibition of growth. IFNy 

receptors are found on the hepatocyte (Schofield et al, 1987a) and it is thought that the 

binding of IFNy to its specific receptor induces intracellular alterations which result in an 

unsuitable environment for parasite development (Schofield et a l, 1987a). However, 

IFNy induced tryptophan starvation, a mechanism which can kill the intracellular 

pathogen Toxoplasma gondii, does not appear to participate in the inhibitory effect on 

malaria parasite development mediated by IFNy (Schofield et a l, 1987a). The density of 

IFNy receptors present on hepatocytes may explain the observations that in vitro 

(Mellouk et al, 1987) and in vivo (Vergara et al, 1987) some parasites are able to evade 

the inhibitory action of IFNy. A lower density of receptors may result in a failure to 

reach a threshold level of IFNy stimulation of the hepatocytes and consequently the 

parasite is able to develop within the cell.

IFNy may mediate anti-parasite immunity by stimulating resident liver macrophages, 

Kupffer cells, to phagocytose sporozoites (Seguin et a l, 1989). Another function of 

IFNy during this phase of infection may be to stimulate an increase in antigen 

presentation by hepatocytes or Kupffer cells through the upregulation of MHC Class II 

expression. Subsequently this would increase the presentation of parasite antigens to 

CD4^ T cells and result in an amplification of IFNy production and other T cell products. 

Hence, IFNy can upregulate its own production via the stimulation of antigen presenting 

cells ensuring that enough is present locally in the liver to mediate protective immunity. 

Initially it was thought that CD8^ CTL were the source of IFNy in the liver (Schofield,

1989) but the demonstration of CD4^ T cell presence in the liver (Faure et a l, 1995) 

provides another source of IFNy. Indeed it has been shown that during P. yoelii
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infection, IFN y can also be produced by a non-T cell source presumably natural killer 

(NK) cells which require IL-12 and TNF stimulation (Sedegah, Finklemann and 

Hoffman, 1994).

The only direct role that Th2 CD4+ T cells appear to have in the immune response to the 

exo-erythrocytic stages is as a possible source of IL-6 which has been shown to be an 

important mediator in the protective response (Pied et a l, 1992). An important indirect 

mechanism, which Th2 cells are vital for is the production of a humoral response. Th2 

cells supply crucial "helper" signals which are involved in the stimulation, differentiation 

and proliferation of B cells. This results in plasma cells producing an antibody response 

which, as already discussed, can prevent the development of the parasite by various 

means. This "help" is usually the production of cytokines which are classically Th2 

associated. There is however, very little evidence for a large production of IL-4 during 

this phase of the infection. No IL-4 production was observed during in vitro 

proliferation of splenocytes following immunisation of mice with P. berghei sporozoites 

(White, Jarboe and Krzych, 1994). However, a systemic increase in IL-4 production 

was noted following immunisation with P. yoelii CSP plasmid DNA (Mor et a l, 1995). 

The increase in IL-4 was associated with a primary humoral response following the first 

immunisation but this switched to an IFNy mediated response after the booster of P. 

yoelii CSP plasmid DNA. IL-4 production was found not only in the lymph nodes but 

in several lymphoid organs. This experimental immunisation model illustrates a 

mechanism which may explain the absence of evidence for an IL-4 mediated response. 

In this model there are low levels of parasite derived antigen and under these conditions 

B cells are involved in antigen presentation which results in a preferential activation of 

Th2 cells (Mamula and Janeway, 1993, Ron and Sprent, 1987) and consequently an 

increase in IL-4 production. The levels of parasite derived antigen in other experimental 

immunisation models is probably higher and would result in activation of Thl CD4+ T 

cells and an increase in IFNy production.
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The Th2 associated cytokine, IL-6, has been extensively studied in conjuction with IL-1 

and TNFa. They are known as endogenous pyrogens and are important mediators of the 

acute inflammatory response to various stimuli. TNF has been shown to inhibit the 

development of malarial exo-erythrocytic forms (Schofield et a l, 1988). No inhibitory 

effect mediated by TNF was observed when using a primary culture of hepatocytes in 

vitro (Mazier et al, 1990). The addition of non-parenchymal cells, such as lymphocytes, 

NK cells and Kupffer cells, restored the inhibitory effect of TNF (Mazier et a l, 1990). 

Elevated IL-6 concentrations were observed in these in vitro cultures. Addition of anti- 

IL-6 monoclonal antibodies resulted in a decrease in the TNF inhibition suggesting that 

IL-6 is a crucial mediator in the protective mechanism (Mazier et a l, 1990). IL-6 was 

observed in the sera of mice infected with P. yoelii sporozoites (Pied et a l, 1992). 

Intraperitoneal administration of IL-6 significantly reduced the development of P. 

berghei, liver schizonts in rats (Vreden e ta l, 1992). Administration of anti-IL-6 resulted 

in a 40% increase of liver schizonts (Vreden et a l, 1992). IL-6, IL-1 and TNF mediate 

their protective response via their role as inducers of the acute phase response. They 

participate in an intricate network which results in the stimulation of hepatocytes and 

non-parenchymal cells. These endogenous pryogens can act in synergy (Vreden et al, 

1992, Mazier et al, 1990) and can also induce the production of each other (Pied et al,

1992). This inflammatory network can induce the production of a series of proteins 

known as acute phase reactants (Ramadori et a l, 1985). Acute phase proteins are 

synthesised mainly by the hepatocyte and include C-Reactive protein (CRP), a2 - 

macroglobulin, serum amyloid A and serum amyloid P. Rapid increase in systemic 

levels of these proteins is observed following various stimuli. CRP has been shown to 

prevent sporozoite penetration into the hepatocyte and can block parasite division 

through an antibody-like effect (Pied et a l, 1991). Acute phase reactants represent a 

non-specific response stimulated by inflammatory cytokines. Another non-specific 

response, which is an effector mechanism stimulated by IL-6 and TNF is the production 

of nitric oxide (NO). NO is derived from L-arginine and can inhibit the development of 

Toxoplasma (Adams \99Ql) 2x\à. Leishmania (Green gf a/., 1990). Macrophages,
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Kupffer cells and hepatocytes have all been shown to produce NO upon stimulation 

(Nussler et al., 1991a, Billiar et a l, 1989, Klotz et al., 1995). Inhibition of NO 

production by inhibitors of NO synthesis resulted in the abrogation of the protective 

effect mediated by TNF and IL-6 (Nussler et al., 1991a). In vitro experiments have 

demonstrated that the protective effect observed with IFNy is also mediated via NO 

(Mellouk et a l, 1991). The production of NO is now regarded as one of the major 

protective mechanisms against the exo-erythrocytic stages of malaria infection.

Immunity to the asexual erythrocytic stages of malaria

Naturally acquired immunity to the asexual erythrocytic stages of malaria is manifested 

in individuals who harbour a low grade parasitaemia with no clinical symptoms. As the 

asexual blood-stage parasites are responsible for the morbidity of the disease, it has been 

hypothesised that immunity is partly anti-parasitic and partly anti-toxic (Sinton, Harbhag 

and Singh, 1931), a theory which has been redefined recently as anti-parasite and anti

disease immunity (Playfair et a l,  1990). Humoral responses may be sufficient for the 

anti-disease immunity but it is thought that a combination of humoral and cellular 

mechanisms is required for the development of effective anti-parasitic immunity, 

however, the exact nature of the anti-malarial mechanisms are unclear.

There are difficulties in investigating the immune response in humans and these studies 

usually involve a serological approach or analysis of peripheral blood mononuclear cells 

usually by restimulation in vitro. Often the history of exposure to malaria for an 

individual is unknown and concurrent infections other than malaria may influence the 

serological profile or the composition of the cells in the peripheral blood. Hence, much 

of our understanding of the immune mechanisms to the blood-stage of infection comes 

from experimental models. The mechanism of protective immunity in these models often 

depends upon the host-parasite combination. However, this does reflect the situation in 

human malaria infection because the genetic background of the host and the strain of the
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infecting Plasmodium species will influence the development of the protective immune 

response and ultimately the outcome of the infection.

Humoral Immunity

Transfusion of y-globulin or purified umbilical cord IgG isolated from immune adults, to 

non-immune children during falciparum malaria infection results in a decrease in 

parasitaemia (Cohen, McGregor and Carrington, 1961, Sabchareon et al., 1991). 

Passive transfer of IgG from immune donors protects Thai patients against P. falciparum 

infection (Bouharoun-Tayoun etal., 1990) and the antibodies which demonstrated this 

clinical effect were able to mediate inhibition of P. falciparum development in vitro by a 

process termed antibody-dependent cellular inhibition (ADCI) (Bouharoun-Tayoun et 

a l, 1990). Antibodies that proved clinically ineffective in the same individuals did not 

promote ADCI. The mechanism of ADCI is dependent upon IgG binding to monocytes 

via their FcyRII receptors which induces the release of soluble factors, thought to 

include TNF, which act upon young intraerythrocytic parasites (Bouharoun-Tayoun et 

a l, 1995). A correlation between the presence of cytophilic or non-cytophilic antibodies 

and the clinical status of protection has been observed (Bouharoun-Tayoun and Druilhe,

1992). An increase in IgGl and IgG3 correlated with the development of clinical 

immunity whereas a susceptible group of the population in an endemic area produced the 

non-cytophilic antibodies, IgM and IgG2 in response to infection (Bouharoun-Tayoun 

and Druilhe, 1992). It has been suggested that anti-malarial antibody may block invasion 

of host erythrocytes by merozoites (Cohen and Butcher, 1970, Phillips et a l,  1972) and 

may also prevent cytoadherence (David et a l ,  1983). However, the interaction of 

malarial antibody with cellular mechanisms was demonstrated by the requirement for the 

presence of antibody to enable PBMN cells to reduce the growth of P. falciparum  

(Brown and Smalley, 1980).
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Mice immunised with a recombinant fusion protein incorporating the carboxy-terminal 

region of P. yoelii MSP, are resistant to a homologous challenge (Daly and Long, 

1995). Furthermore, resistance was passively transferred by immune serum or purified 

Ig from the immunised mice to recipient mice challenged with P. yoelii (Daly and Long, 

1995). It has been reported that during a primary infection with P. chabaudi there is a 

polyclonal activation of B cells resulting predominantly in the production of IgG2a 

(Langhorne, Kim and Asofky, 1985, Falanga et a l ,  1987). Protection against re

infection appears to involve IgGl (DTmperio et a l ,  1996). IgGl has also been 

implicated in the control of the recrudescence parasitaemia of a primary P. chabaudi 

infection following treatment of mice with recombinant IL-6 (Akanmori, Kawai and 

Suzuki, 1996), a cytokine known to stimulate B cells to secrete immunoglobulins 

(Teranishi e ta l ,  1982, Muraguchi et a l, 1988, Takatsuki e ta l ,  1988). Both IgGl and 

IgG3 have been proposed to confer protection against human malaria (Groux and Gysin,

1990).

Cell mediated immunity - rodent malaria

Immunity to the asexual blood-stages of malaria in rodent models can be transferred with 

immune spleen and lymph node cells (Stechschulte, 1969, Roberts and Tracey-Patte, 

1969, Phillips, 1970, Kasper and Alger, 1973). Rats infected with the blood-stages of 

P. berghei rapidly control the infection after receiving immune spleen cells (Phillips and 

Jones, 1972). Thymectomized mice are more susceptible to P. chabaudi infection than 

controls (McDonald and Phillips, 1978b). Adoptive transfer of immune spleen cells 

protects irradiated mice against a P. chabaudi challenge (McDonald and Phillips, 1978b). 

Unfractionated spleen cells were observed to confer better protection than enriched T cell 

populations demonstrating the requirement for both T cells and B cells. The same 

observation was made by Jayawardena et a l, (1982) where both T cells and B cells 

recovered from P. yoelii infected mice, conferred protection to non-immune irradiated 

recipients to a homologous challenge. However, it was noted that optimal protection was
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obtained by the adoptive transfer of B cells and CD4+ T cells (Jayawardena et a i ,  

1982). B cell depleted mice are able to control an infection with P. chabaudi adami or P. 

vinckei petted  (Grun and Weidanz, 1981, Grun and Weidanz, 1983, Clark, 1987, 

Kumar et a i, 1989, Cavacini, Parke and Weidanz, 1990) demonstrating the importance 

of T cell regulated cell-mediated immunity. The role of CD4+ T cells in protection 

against the asexual erythrocytic stage of infection in mice has been the focus of extensive 

research. Depletion of CD4+ T cell function by a monoclonal antibody during the 

primary parasitaemia of a P. chabaudi infection confirmed the essential role which CD4+ 

T cells have in mediating the control of this acute erythrocytic stage (Langhorne, 1989). 

Analysis of splenic lymphocytes from mice during a primary infection of P. chabaudi, 

showed a greater frequency of Thl CD4+ T cells characterised by the production of 

IFNy and IL-2 (Langhorne, 1989). As the infection progressed, the frequency of these 

cells decreased, replaced by Th2 cells characterised by the production of IL-4. Hence, it 

appears that Thl cells mediate the acquired immunity to the acute phase of a P. chabaudi 

infection but there is a switch to Th2 mediated immunity (see Diagram 2). This implies 

that early protective mechanisms are antibody-independent with a switch to antibody- 

dependent mechanisms during the later stages of infection. This was clearly 

demonstrated when SCID mice, reconstituted with CD4+ T cells from naive animals or 

infected mice, survived a P. chabaudi infection but a persistent recrudescence 

parasitaemia was observed (Meding and Langhorne, 1991). However, the transfer of B 

cells in addition to the CD4+ T cells, resulted in the SCID mice eliminating the parasite.

Characterisation of CD4+ T cell clones from P. chabaudi infected mice recovering from 

a primary parasitaemia or from mice which had cleared a secondary infection, confirmed 

the polarisation of the CD4+ T cell response during P. chabaudi infection (Taylor- 

Robinson and Phillips, 1992). The clones derived from the period when the acute 

primary parasitaemia was in decline, were of the Thl phenotype whereas the clones 

derived from mice which had cleared a secondary infection were characteristic of Th2 

cells. Adoptive transfer of both the Thl and Th2 clones conferred protection against a P.
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chabaudi challenge in immunocompromised hosts (Taylor-Robinson and Phillips,

1993). However, the transfer of the Th2 clone also required the transfer of splenic B 

cells to be fully protected in immunocompromised hosts. The Thl clone is thought to 

regulate the development of protective immunity through the production of IL-2 and 

IFNy possibly via a NO dependent mechanism and the Th2 clone mediates protection by 

promoting the production of a specific antibody via the secretion of IL-4 (Taylor- 

Robinson and Phillips, 1993, Taylor-Robinson et a l,  1993).

B cells appear to have an important role in the development of the Th2 responses during 

P. chabaudi infection, thus extending the function of B cells beyond that of specific 

antibody production. As already mentioned, SCID mice require the transfer of both 

CD4"*" T cells and B cells to resolve a P. chabaudi infection efficiently (Meding and 

Langhorne, 1991). Passive transfer of immune IgG did not confer protection to P. 

chabaudi challenged SCID mice (von der Weid et al., 1994), demonstrating that the 

presence of B cells is required for efficient elimination of the parasite. The B cells, most 

likely act as antigen presenting cells and produce cytokines or display important co

stimulatory molecules which promote Th2 cell development (Troye-Blomberg, Berzins 

and Perlmann, 1994).

The interaction between Thl and Th2 cells and their respective responses is a crucial 

factor in the development of a protective immune response to not only P. chabaudi 

infection in mice but several other infectious diseases. Inappropriate responses can often 

contribute to the pathology of a disease. As already described CD4+ T cells are 

subdivided into two distinct subsets by the pattern of cytokine secretion. Thl cells 

produce IL-2 and IFNy whereas Th2 cells characteristically produce IL-4, IL-5, IL-6 

and IL-10 (Mosmann and Coffman, 1989). Both Thl and Th2 cells provide help for B 

cell function through the secretion of IFNy and IL-4 or IL-5 (Mosmann and Coffman, 

1989). Thl cells mediate delayed type hypersensitivity inflammatory reactions (Cher and 

Mosmann, 1987) whereas Th2 cells are associated with allergic responses (Mosmann
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and Coffman, 1989). IFNy can inhibit the proliferation of Th2 cells (Gajewski and 

Fitch, 1988) but does not affect proliferation or lymphokine production by Thl cells 

(Fernandez-Botran et al., 1988). IL-10 can inhibit antigen presenting cell induced 

cytokine production by Thl cells (Fiorentino et al., 1991). Hence, Thl and Th2 cells 

can regulate the proliferation and expansion of the other subset which has important 

consequences on the response to a pathogen.

During P. chabaudi infection in mice, the sequential involvement of Thl and then Th2 

mediated responses results in efficient control of the infection. The regulation and 

differentiation mechanisms of the CD4+ T cell response are unclear. Naive CD4+ T 

cells, when first stimulated produce IL-2 and then differentiate into either the Thl or Th2 

phenotype (Mosmann and Sad, 1996). T cells expressing the cytokines from both Thl 

and Th2 phenotypes have been designated ThO (Romagnani, 1996). The differentiation 

of effector Thl or Th2 cells proceeds through this ThO phase of expressing multiple 

cytokines (Mosmann and Sad, 1996).

There are several factors which can influence the process of Thl/Th2 differentiation. 

One of the most important factors is the microenvironment of the responding Th cell. 

The presence of IL-4 is a strong stimulus for Th2 differentiation whereas IL-12 is 

regarded as the main stimulus for Thl development (Seder and Paul, 1994). During an 

initial response, antigen specific T cells are present at a low frequency and hence, other 

cells can produce the cytokines necessary for the induction of the required Th response. 

Mast cells, basophils and a subpopulation of T cells, NK1.1+ cells may be a source of 

early IL-4 production and macrophages are major producers of IL-12 (Mosmann and 

Sad, 1996). Naive ThO cells have recently been shown to produce IL-4 in small 

quantities upon initial activation and it is thought that this may promote differentiation 

from naive ThO cell to a Th2 cell (Romagnani, 1996). Early IFNy production, by NK 

cells for example, may inhibit the development of Th2 cells (Seder and Paul, 1994) and 

hence promote Thl expansion.
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It was initially thought that antigen presenting cells (APC) may be able to influence the 

Thl/Th2 decision. Thl cells respond optimally to purified adherent cells from spleen 

cells, while Th2 cells had optimal proliferative responses when splenic B cells were used 

as APC (Gajewski et al., 1991). However, it is now known that dendritic cells, 

macrophages and B cells are all capable of inducing differentiation of Thl or Th2 cells in 

the presence of the appropriate cytokines (Mosmann and Sad, 1996). Recently, IL-6 

derived from APC was shown to be capable of inducing polarisation of naive Th cells to 

Th2 cells by stimulating IL-4 production in CD4+ T cells (Rincon et al., 1997). Hence, 

a role for APC in the induction of Thl or Th2 cells cannot be excluded because they may 

exert an influence via the cytokines they secrete or as has been recently suggested, the 

expression of co-stimulatory molecules on APC may selectively influence the Thl/Th2 

decision.

B7-1 and B7-2 molecules are expressed on activated B cells, dendritic cells, activated T 

cells and monocytes (Constant and Bottomly, 1997). They bind to CD28 on T cells and 

CTLA-4 on activated T cells (Lenschow, Walun as and Bluestone, 1996). The presence 

of either B7 molecule is essential to induce naive CD4+ T cells to produce IL-2 and 

proliferate (Chen and Nabavi, 1994). B7-2 expression is induced more rapidly than B7- 

1 (Hathcock e ta l ,  1994) and a 100 fold higher level of B7-2 expression than B7-1 was 

shown on dendritic cells (Inaba e ta l ,  1994). Both B7-1 and B7-2 have been shown to 

induce Thl or Th2 differentiation (Seder and Paul, 1994) but B7-2 appears to be the 

dominant costimulatory molecule during primary responses whereas B7-1 may be 

important in maintaining primary and secondary responses (Mosmann and Sad, 1996).

Antigen dose is another factor which may influence the Thl/Th2 decision. Early in vivo 

studies suggested that low doses of antigen, either Leishmania or Trichuris muris 

infection, induced a Thl response, but an increase in antigen dose induced a Th2 

response (Bretscher, Wei and Menon, 1992, Bancroft, Else and Grencis, 1994).
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However, conflicting reports indicated that using various soluble proteins as antigens, 

an increase in antigen dose skewed the response to a Thl phenotype (HayGlass et a l,  

1986, Chaturvedi et a l ,  1996). Hence, the type of antigen may account for the 

discrepancies in the studies with Thl responses induced by low doses of parasites as 

immunogens whereas Th2 responses were observed following administration of low 

doses of soluble proteins. A further explanation may be that at high doses of antigen, 

Thl cells are more susceptible to activation-induced cell death (apoptosis), and therefore, 

high doses of parasite antigen may promote the expansion of Th2 cells because the 

negative cross-regulation of Thl cells is eliminated (Constant and Bottomly, 1997). The 

regulation of Thl/Th2 differentiation by antigen dose may also involve the interaction of 

the T cell receptor (TCR) with the antigen. The strength of this ligation and the role of 

various co-receptors will determine if there is a sustained pattern of signal transduction. 

It has been suggested that for a naive Th cell to produce IFNy (Thl phenotype) a 

threshold of activation is required (Constant and Bottomly, 1997). If the interaction 

between the TCR and antigen is strong, this will lead to constant signal transduction, 

sustained activation and IFNy production. A weak interaction between the TCR and 

antigen may result in a transient pattern of activation, resulting in IL-4 production (Th2 

phenotype). The role of antigen dose in the induction of Thl or Th2 responses is 

complex and the studies performed have to be interpreted with caution because there are 

many variable factors involved and hence, it is difficult to construct a clear hypothesis.

The induction of either Thl or Th2 responses during P. chabaudi infection is an 

important step in the development of protective immunity. The sequential involvement of 

Thl mediated responses followed by Th2 induced effector mechanism is required for the 

efficient elimination of the parasite. The mechanisms of induction of the initial Thl 

differentiation and secondly a switch to Th2 mediated responses during P. chabaudi 

remain unclear. The cytokine environment, various APC and the level of antigen dose 

have all been proposed to induce the appropriate type of Th cell response and effector 

functions. Investigation into these mechanisms will have important consequences on the
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research for a vaccine targeted to the asexual blood stages because the demonstration that 

human Thl and Th2 cells exist (Romagnani, 1996) illustrates that the vaccine will need 

to induce the appropriate CD4+ T cell response.

CD8+ T cells do not appear to have a significant role in the protective immunity to the 

asexual blood-stage of malaria infection in rodents. Adoptive transfer of CD8'*' T cells 

was shown to confer a degree of protection against a P. yoelii infection (Mogil, Patton 

and Green, 1987) but this was contradictory to reports demonstrating that only CD4+ T 

cells were required for protection against P. yoelii (Vinetz et a l, 1990). However, mice 

immunised with a crude P. falciparum antigen were partially protected against a P. yoelii 

challenge and this protection was apparently CD8+ T cell mediated (Lucas et al., 1993). 

CD8+ T cells were also proposed to participate in the resolution of the later phases of P. 

chabaudi adami and P. chabaudi AS infection (Weidanz, Melancon-Kaplan and 

Cavacini, 1990, Podoba and Stevenson, 1991). Infection of p2-microglobulin deficient 

mice, which lack surface expression of the MHC class I molecule on nucleated cells and 

are, therefore, essentially devoid of a functional CD8'*" T cell response, with either P. 

chabaudi AS, P. chabaudi adami or P. yoelii resulted in a similar resolution of infection 

as in the intact control mice (van der Heyde etal., 1993). This observation suggests that 

the role of CD8+ T cells during a primary malaria infection in mice is minimal, although 

the possibility of compensatory mechanisms, such as increased production of IFNy by 

another source cannot be ignored.

Cell mediated immunity - human malaria

Investigations of the role of cell-mediated immunity in human malaria infection has 

mainly consisted of studies examining the in vitro response of PBMN cells from infected 

patients or malaria-immune donors. However, these studies have to be interpreted with
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caution because they are influenced by various factors. Details of an individual's 

parasitological history and current parasitological and immune status are sometimes 

unknown. Non-malaria related illness and pregnancy can also influence the parameters 

measured in these studies (Riley and Greenwood, 1990). The proliferative response and 

the ability to produce cytokines in response to stimulation with malarial antigen are the 

main parameters analysed in the studies of human T cell responses during malaria 

infection. As in mice, human CD4"*" T cells can be separated into distinct subsets by 

cytokine profiles (Troye-Blomberg and Perlmann, 1988). CD4+ T cell derived IL-4 

production can be induced by stimulation of PBMN cells from immune donors in vitro 

with malarial antigens (Troye-Blomberg et al., 1990a). Clinically immune adults were 

shown to give strong proliferative and IFNy responses to a soluble malarial antigen 

(Riley et al., 1988). Both IFNy and IL-4 have been implicated in protective immune 

mechanisms during blood-stage malaria infection (see later). IFNy, a potent activator of 

effector cells (Boehm et al., 1997), is thought to be involved in the killing of blood-stage 

parasites (Ockenhouse, Schulman and Shear, 1984, Shear etal., 1989). Increased IL-4 

levels in the serum of aparasitaemic individuals from an area of perennial and 

holoendemic P. falciparum transmission, suggests this cytokine may be involved in an 

anti-parasitic response (Mshana, Boulandi and Mshana, 1991).

The role of CD8+ T cells in immunity to the asexual blood-stage of human malaria 

infection is thought to be a minor one. There are several reports of increased numbers of 

CD8+ T cells in individuals who have recently recovered from an attack of malaria 

(Hoffman e ta l ,  1984, Troye-Blomberg eta l., 1984). Malaria-specific CD8+ T cell 

clones have been isolated from the peripheral blood of recently infected individuals 

(Sinigaglia, Matile and Pink, 1987). However, it is thought that the role of CD8+ T cells 

may be immunoregulatory and indeed may be immunosuppressive (Troye-Blomberg, 

Berzins and Perlmann, 1994). Removal of CD8+ cells from isolated PBMN cells by 

anti-CD8+ treatment, enhanced the proliferative and IFNy responses of cells which were 

normally low responders to in vitro stimulation (Riley, Jobe and Whittle, 1989). As
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already described, CD8+ T cells have an important role in the protective immune 

response to the intra-hepatic stage of malaria infection and that this mechanism is partly 

IFNy dependent. The production of high levels of IFNy by CD8+ T cells in response to 

the pre-erythrocytic stage of infection could influence the immune response of an 

individual to a concurrent blood-stage infection. Furthermore the demonstration that 

CD8+ T cells (Mosmann, Li and Sad, 1997), as with CD4+ T cells, can be separated 

into different subsets, characterised by their cytokine secretion profiles (Mosmann and 

Coffman, 1987) demonstrates the potential immunoregulatory role of CD8+ T cells 

during human malaria infection.

A characteristic of the T cell response of patients with acute falciparum malaria is an 

antigen-specific immunodépression. This unresponsiveness may be due to an absence of 

antigen-specific T cells in the peripheral blood possibly due to a sequestration of the 

appropriate T cells to sites from the peripheral blood (Hviid et al., 1991, Hviid et al.,

1993). Defective IL-2 production may contribute to the immunosuppression observed 

(Troye-Blomberg et a l, 1985, Ho et a l, 1988). PBMN cells from patients with acute 

falciparum malaria fail to produce IL-2 or express IL-2 receptors upon stimulation with 

malaria specific antigen (Ho et a l, 1988). Serum from malaria patients can suppress in 

vitro cellular responses of PBMN cells from children with acute malaria to restimulation 

with malaria antigens, non-malaria antigens and mitogens (Riley et a l ,  1988). It has 

been shown that prostaglandin E, which can inhibit antigen and mitogen-induced 

blastogenesis (Leung and Mihich, 1980), is in part responsible for the suppression of 

the in vitro cellular responses of PBMN cells from malaria patients (Riley et a l,  1989). 

However, Ho and Webster (1990) in contrast, report that they have been unable to 

consistently demonstrate suppressor serum factors including prostaglandin E. It has 

been suggested that the counter regulatory roles of CD4+ T cell subsets may contribute 

to the immunosupression through the production of inhibitory cytokines such as IFNy or 

IL-4 (Ho and Webster, 1990). The induction of NO production by Thl mediated
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inflammatory responses may also contribute to the immunosuppression observed 

(Rockett âf/., 1994).

Role of yô T cells in immunity to the asexual erythrocytic stages

Recent evidence has suggested that T cells expressing the y5 T cell receptor may be 

involved in immunity to the blood-stages of malaria infection. yÔ T cells constitute only a 

small minority of peripheral T cells in man and mouse (Falini e ta l ,  1989, Haas, Pereira 

and Tonegawa, 1993, Allison, 1993). These cells are characteristically CD3"*" but in the 

majority of cases do not express CD4 or CD8 (Haas, Pereira and Tonegawa, 1993). A 

protective role for y5 T cells in various infectious and parasitic diseases has been 

proposed (Modlin et a i,  1989, Minoprio et al., 1989, Hiramatsu et al., 1992, Russo et 

al., 1993). Elevated numbers of yô T cells in the peripheral blood of patients during 

acute P. falciparum  infection or convalescence has been reported (Ho et al., 1990, 

Roussilhon et a l, 1990). Recently, two studies have demonstrated the activation of yô T 

cells during human malaria infection (Rzepczyk et al., 1996, Worku et al., 1997), 

confirming the possible protective and/or immunomodulatory role for yô T cells in 

malaria. Preliminary reports have suggested that human yÔ T cells can inhibit the growth 

of P. falciparum in vitro (Elloso etal., 1994).

These observations in human malaria are confirmed in experimental malaria infections, 

yô T cell numbers increase in the spleen of mice resolving a P. chabaudi infection 

(Langhorne, Pells and Eichmann, 1993, van der Heyde et al., 1993b). There is a 

pronounced increase in the yÔ T cell number in P2-microglobulin deficient mice and B 

cell deficient mice during experimental malaria infection (van der Heyde et al., 1993b, 

Langhorne, Pells and Eichmann, 1993). Mice lacking T cells with the yô TCR were able 

to control a P. chabaudi infection with a slight delay in the time of clearance of the acute 

phase of infection and higher recrudescent parasitaemias were observed compared to 

controls (Langhorne, Mombaerts and Tonegawa, 1995). It was observed that the
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increase in the splenic yô T cells in P. chabaudi infected mice was localised in the red 

pulp areas of the spleen (Langhorne, Pells and Eichmann, 1993). This occurs during 

human malaria infection as well (Bordessoule, Gaulard and Mason, 1990). The location 

of yô T cells in the red pulp of the spleen would allow these cells to be in close contact 

with parasitised erythrocytes and hence, yÔ T cells may have a role in parasite 

destruction. yÔ T cells are known to produce IFNy and TNFp (Patel, Wacholtz and 

Duby, 1989, Kabelitz, Pechold and Bender, 1991, Ferrini, Prigione and Bottino, 1989) 

and resemble NK cells, lymphokine activated cells and aP  T cells in that they can lyse 

target cells (Borst et a l, 1987, Lanier, Ruitenberg and Phillips, 1986). Therefore they 

have the potential to mediate or perform parasiticidal activity. However, it must be noted 

that a p  T cell deficient mice were unable to control a P. chabaudi infection despite a 

functional yô T cell response (Langhorne, Mombaerts and Tonegawa, 1995). It is 

possible that in the absence of ap  T cells, yÔ T cells are not able to provide the required 

help for antibody production which is necessary for parasite elimination. Furthermore, 

yô T cell deficient mice have been shown to be able to control a P. chabaudi infection 

with a similar efficiency to that of control mice (Taylor-Robinson et a l ,  1994b) 

suggesting that yô T cells do not play a significant role in control of blood-stage malaria

infection.

Role of cytokines in immunity to asexual erythrocytic stages

The interactions of cytokines clearly influence the development of immunity to the 

asexual blood stage of malaria infection. IFNy, produced by CD4+ Thl cells, CD8+ T 

cells and NK cells, has been shown to activate macrophages to kill intracellular malaria 

parasites (Ockenhouse, Schulman and Shear, 1984). T cell clones derived from PBMN 

cells from individuals living in an endemic region, immune to P. falciparum  infection, 

produce IFNy upon re-stimulation with malarial antigen in vitro (Sinigaglia and Pink, 

1985). T cells isolated from patients acutely infected with P. falciparum produce IFNy in 

vitro following antigen specific stimulation (Troye-Blomberg e ta l ,  1985). IFNy has
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been detected in the sera of patients with either P. falciparum  or P. vivax (Rhodes- 

Feuilletee et a i, 1985, Kern et al., 1989). In vivo treatment of P. chabaudi infected mice 

with recombinant IFNy enhanced protection (Clark et al., 1987) and mice treated with 

anti-IFNy antibodies during P. chabaudi infection were found to have an exacerbated 

parasitaemia (Stevenson et al., 1990). The role of IFNy during P. chabaudi infection 

appears to be restricted to the primary parasitaemia with peak production occurring 2 or 

3 days prior to the peak of the primary parasitaemia (Slade and Langhorne, 1989, 

Stevenson et al., 1990). IFNy can activate macrophages to secrete inflammatory 

molecules such as NO and oxygen radicals, IL-1, TN Fa and IL-6 (Phillips, 1994a, 

Taylor-Robinson, 1995) which have all been proposed to be involved in parasiticidal 

mechanisms (Phillips, 1994a, Taylor-Robinson, 1995). The macrophage has a pivotal 

role during the development of immunity to the asexual erythrocytic stages because it is 

involved in the induction of the immune response via antigen presentation and is also an 

effector cell.

TNF is an important macrophage product which is induced by IFNy stimulation 

(Langhorne, 1989, Stevenson et al., 1990, Taylor-Robinson and Phillips, 1992, Waki 

et a i, 1992) or directly by stimulation with parasite derived toxins (Kwiatkowski et al., 

1989, Schofield and Hackett, 1993, Bate et al., 1990, Bate et al., 1992). Mononuclear 

cells isolated from the peripheral blood of patients with acute malaria are primed to 

secrete enhanced levels of TNF (Bate et a l, 1990). Macrophages from the spleens and 

livers of mice infected with rodent malarial parasites have also been shown to have an 

enhanced capacity to secrete TNF (Bate et al., 1990). High levels of TNF have been 

detected in the sera of patients infected with P. falciparum (Scuderi et al., 1986, Kern et 

a l,  1989, Grau et a l, 1989b, Kwiatkowski et al., 1990). Recombinant TNF treatment 

of P. chabaudi adami infected mice resulted in an earlier resolution of the parasitaemia 

and an earlier appearance of crisis forms (Clark et a l ,  1987). Human recombinant 

TNFa treatment protects susceptible A/J mice against a lethal P. chabaudi AS infection 

(Stevenson and Ghadirian, 1989). An increase in TNF expression in the spleen
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correlates with resistance to a P. chabaudi AS infection (Jacobs, Radzioch and 

Stevenson, 1996). TNF may not have a direct cytotoxic effect on parasites because the 

recombinant molecule had no cytotoxic effect on P. yoelii (Taverne et a l,  1987) or P. 

falciparum  (Hviid et a i, 1988). Hence, TNF mediated parasite destruction may be 

through the activation of various cells such as macrophages, neutrophils, lymphocytes 

and endothelial cells (Stevenson, Nowotarski and Yap, 1990).

Raised levels of IL-1 and IL-6, both macrophage products, have been observed in the 

serum of patients infected with P. falciparum (Jakobsen et al., 1994) and both IL-1 and 

IL-6 can synergise with TNF in mediating the characteristic malarial fever 

(Kwiatkowski, 1995). IL-12 has been recently shown to mediate protection to P. 

chabaudi infection via IFNy and TNF induction of NO secretion (Stevenson et al.,

1995). IL-12 promotes the development of Thl mediated immunity and the production 

of IFNy by both NK cells and T cells (Trinchieri, 1995) and hence is an important 

mediator of cell mediated immunity. There is no direct evidence that IL-12 has a role 

during human malaria infection but it is proposed that it is important in the induction of 

cell mediated immunity during the acute phase of infection.

The Th2 associated cytokines IL-4 and IL-10 are important for the development of the 

humoral immunity to the asexual blood stages of malaria infection. Th2 clones derived 

from P. chabaudi infected mice protected recipient mice in an IL-4 and B cell dependent 

manner (Taylor-Robinson and Phillips, 1993). IL-4 is primarily responsible for the 

production of IgE (Finkelman et a i, 1990) and hence, elevated concentrations of IgE in 

the semm of P. falciparum infected individuals may reflect elevated IL-4 levels (Helmby 

et a l, 1996, Perlmann et a l, 1997). Elevated levels of IL-10 have been detected in the 

sera of patients infected with P. falciparum (Peyron et a l, 1994) and in mice challenged 

with a lethal P. yoelii infection (Kobayashi et a l, 1996). However, it is unclear if the 

elevated levels of IL-10 are detrimental because they are capable of inhibiting cellular 

immune responses or beneficial by reducing parasite-induced inflammatory responses.
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Malarial Pathology

The erythrocytic stage of malaria causes the pathology associated with the disease. 

Symptoms can range from mild fever and oedema to cerebral malaria. Malaria pathology 

depends upon the strain of parasite and the immune status of the host (White and Ho, 

1992). Non-immune individuals in endemic areas are at the most risk of developing 

severe pathology but this is rarely observed in individuals older than 7 years of age.

Although T cells are regarded as being crucial for the host response to malaria infection, 

they were first examined in the pathology of the disease. Wright (1968) proposed that 

thymic atrophy found in children suffering from Kwashiorker (a protein deficiency 

disease) explained the low incidence of cerebral manifestations in these children when 

they became infected. Neonatally thymectomised hamsters survived P. berghei infection 

much longer than control animals (Wright, 1968). P. berghei ANKA strain is regarded 

as a reasonable laboratory model for examining the pathology of malaria infection. P. 

berghei infection in some strains of mice, leads to the development of cerebral malaria. 

In vivo depletion of CD4+ T cells in P. berghei infected mice with an anti-CD4+ 

monoclonal antibody prevented the development of cerebral malaria without any direct 

effect on the parasitaemia (Hermsen et a l, 1997). Adoptive transfer of CD4+ CD8" T 

cells from mice with cerebral malaria exacerbated mortality in infected euthymie mice 

(Grau and Behr, 1994).

TNF has emerged as the crucial mediator in the development of cerebral malaria. 

Injection of anti-TNF antibodies prevented the onset of cerebral pathology in mice 

infected with P. berghei ANKA (Grau et a l, 1987). Overproduction of TNF appears to 

be mediated by CD4+ T cells (Grau et a l, 1987). IFNy is another T cell product which 

has been implicated in the pathology of malaria. Administration of neutralising anti-IFNy 

antibody reduced the incidence of cerebral symptoms in infected mice with P. berghei
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ANKA (Grau et al., 1989a). Susceptibility to cerebral malaria is accompanied by the up- 

regulation of IFNy gene (Grau and Behr, 1994) and the expression of IL-4 and TGFp, 

both antagonists of IFNy/TNF mediated responses, are significantly down-regulated in 

susceptible mice. Therefore the balance of Thl and Th2 cytokine production appears to 

be important in determining resistance or susceptibility. IFNy is capable of activating 

macrophages to produce TNF and can induce the up-regulation of TNF receptors 

(Pandita et al., 1992). Thus overproduction of IFNy and TNF leads to the activation of 

endothelial cells resulting in the up-regulation of many adhesion molecules such as 

ICAM-1 which have been implicated in the pathogenesis of cerebral malaria. Two recent 

studies have demonstrated the importance of IFNy, TNF and ICAM-1 in the 

development of pathology. IFNy receptor deficient mice following P. berghei ANKA 

infection did not develop cerebral malaria (Rudin et a l, 1997a). TNF ot/p deficient mice 

were completely resistant to P. berghei ANKA induced cerebral malaria (Rudin et a l, 

1997b). In both studies the normal up-regulation of ICAM-1 observed during P. berghei 

ANKA infection of normal mice is reduced in IFNy receptor deficient mice and TNF cx/p 

deficient mice, illustrating the importance of IFNy or TNF induced up-regulation of 

ICAM-1 expression to the development of cerebral malaria in this model.

It is well established that IFNy and TNF can synergise to stimulate the production of NO 

by macrophages (Drapier, Wietzerbin and Hibbs, 1988) but the role of NO in cerebral 

malaria remains unclear. Sequestered parasitised red blood cells which adhere to 

endothelial cells can induce the release of cytokines locally at high concentrations which 

will stimulate the production of NO. It has been proposed that NO could alter brain 

functions and possibly lead to coma (Clark, Rockett and Cowden, 1991). Another 

effector mechanism in the development of cerebral malaria could involve platelets (Grau 

et a l,  1991). Treatment of P. berghei ANKA infected mice with anti-LFA-1 monoclonal 

antibodies, even when mice developed neurological symptoms prevented cerebral 

lesions and death ensuing (Grau et a l,  1991, Falanga and Butcher, 1991). Platelets 

express LFA-1, the ligand for ICAM-1 expressed on endothelial cells and hence the
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adherence between platelets and endothelial cells may have an important role in 

mediating the microvascular damage observed in cerebral malaria.

P. berghei ANKA infection in mice has provided evidence that a Th 1 mediated response 

may be responsible for the development of cerebral malaria. Indeed, it has recently been 

proposed that Thl CD4+ T cells may initiate the inflammatory response to malaria 

infection in non-immune individuals and contribute to the pathology of the disease (Dick 

et ah, 1996). However, the same T cell subset has been shown to be critical in the 

control of P. chabaudi erythrocytic stages (Langhorne etal., 1989, Taylor-Robinson and 

Phillips, 1992). Therefore, it appears that the balance of Thl versus Th2 mediated 

responses is vital for the protection against malaria but overproduction of Thl mediated 

inflammatory responses is involved in the development of pathology.

Immunity to sexual stages

Immunity to the sexual stages of malaria infection is referred to as transmission blocking 

immunity because it will reduce the infectivity of the parasites to mosquitoes and hence, 

reduce transmission. There are two main mechanisms involved in immunity to the sexual 

stages. The first is mediated by non-specific factors such as TNF and IFNy which 

reduces the infectivity of gametocytes to mosquitoes (De Naotunne e ta l ,  1991). T cells 

isolated from individuals previously infected with P. falciparum  produce IFNy m vitro 

following stimulation with a gamete antigen (Good et a l ,  1987). PBMN cells from 

semi-immune individuals can be stimulated in vitro by a P. vivax antigen to produce 

TNF (Karunaweera et a l ,  1992). It is thought that NO may be the effector molecule 

stimulated by TNF and IFNy to reduce the infectivity of malaria sexual stages (Motard et

oA, 1993).

The second mechanism of transmission blocking immunity is mediated by a humoral 

response. Antibodies directed against surface antigens of gametes or gametocytes of
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malaria parasites can modify the infectivity to mosquitoes (Carter e ta l,  1988). There are 

various target antigens on the surface of the sexual stages which elicit a humoral 

response. Antibodies to the glutamate-rich repeat region of Pf 11.1 in the presence of 

complement were found to suppress transmission (Feng et a l,  1993) and it has been 

suggested that these antibodies can penetrate the membrane of a gametocyte infected 

erythrocyte because Pf 11.1 (also known as Pfs2400) is confined to the parasitophorous 

vacuolar membrane (Scherf et a l, 1992). Complement mediated lysis of gametes has 

also been shown with antibodies to Pfs230, a gamete surface antigen (Quakyi et a l ,  

1987, Healer e ta l,  1997). Pfs 48 and Pfs45 are an antigenically similar doublet, present 

in gametocytes and on gamete surfaces (Carter et al., 1990). The Pfs48/45 doub;et 

forms a non-covalent comples with Pfs230 (Kumar and Wizel, 1992). Antibodies to 

Pfs48/45 have transmission blocking activity and bind to known B cell epitopes present 

in the Pfs48/45 doublet (Kaslow, 1993). The binding of one monoclonal antibody to 

one epitope on Pfs48/45 appears to enhance the binding of monoclonal antibodies to 

Other epitopes, perhaps explaining why some monoclonal antibodies do not suppress 

transmission when tested alone but do block transmission when mixed together (Rener 

et a l,  1983). Pfs40 is another possible antigen which may be a target of antibodies 

which mediate transmission blocking immunity. (Rawlings and Kaslow, 1992). Pfs25 

is a zygote/early ookinete target antigen which in a recombinant form can induce 

antibodies which block transmission (Kaslow et a l ,  1991, Barr et a l ,  1991). The 

humoral response to sexual stage antigens appears to require the presence of complement 

and hence, for a successful transmission blocking vaccine it must induce antibody 

isotypes which fix complement efficiently such as IgGl or IgG3 (Healer et a l, 1997).

The strategy of developing a vaccine designed to prevent transmission is an attractive 

one. A transmission-blocking vaccine could be used to control or prevent the re- 

introduction of malaria in areas where malaria is currently absent. The transmission- 

blocking vaccine may be included in a multi-component malaria vaccine which would 

target several stages of the malaria life cycle. The problems of antigenic diversity and
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poor immunogenecity of gametocyte target antigens will have to be overcome to ensure 

the vaccine will induce the correct immune mechanisms which mediate transmission- 

blocking immunity.

Project aims

The development of a protective immune response to the asexual erythrocytic stage of P. 

chabaudi AS infection in mice has been the focus of extensive research within Professor 

Phillips' laboratory and others. It is well established that immunity to P. chabaudi 

infection in mice is mediated by a sequential Thl/Th2 response (Langhorne etal., 1989, 

Taylor-Robinson and Phillips, 1992). The cytokines secreted by each of these CD4+ T 

cell subsets are important mediators of the effector mechanism induced by either Thl or 

Th2 cells. Experiments were performed to define further the role of individual cytokines 

during a primary P. chabaudi infection using cytokine or cytokine receptor gene deficient 

mice. IFNy deficient, IL-4 deficient and IL-6 deficient mice were used in these studies 

which allowed the comparison of responses to P. chabaudi infection in mice with 

dysfunctional Th 1 responses (IFNyR deficient mice) or Th2 responses (IL-4 and IL-6 

deficient mice).

One characteristic of P. chabaudi is that it undergoes sequestration, similar to P. 

falciparum. The liver is a main site of sequestration during P. chabaudi infection in mice. 

It has been proposed that the liver may be a site of a protective immune response during 

experimental blood-stage malaria infection in mice (Dockrell, DeSouza and Playfair, 

1980). Extensive research has been performed on the immune response present in the 

liver against the intrahepatic stage of malaria following experimental infection initiated 

with sporozoites (reviewed in Suhrbier, 1991). Experiments were designed to 

investigate if there was a protective immune response present in the livers of mice during 

P. chabaudi infection. Lymphomyeloid cells were isolated from the liver of P. chabaudi 

infected mice during the course of infection and adoptive transfer studies were
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performed to see if the lymphomyeloid cells could protect recipient mice from a 

homologous challenge. The role of Kupffer cells (tissue macrophages resident in the 

liver) during a blood-stage infection was also investigated by depletion of the Kupffer 

cells in mice before and during a P. chabaudi infection.

The liver is the main site of acute phase protein synthesis and C-reactive protein has been 

shown to inhibit pre-erythrocytic stage parasite development (Pied et al., 1989). Studies 

were performed to determine if infection of mice with the erythrocytic stages of P. 

chabaudi induced an acute phase response, indicated by the production of SAP (the main 

acute phase protein of mice) and to determine the role, if any, of SAP during the course 

of a P. chabaudi infection.

During the process of sequestration, the parasite progresses from schizont to merozoite, 

the two stages of the parasites' life cycle which are probably the most vulnerable to 

immune attack from cytotoxic molecules such as NO. The liver is a site where potentially 

a high local concentration of NO may be produced. In vitro studies were performed, 

using a NO donor to determine if NO has a direct effect on the development of asexual 

erythrocytic stage malaria parasites.

The aim of the final section of studies presented in this thesis was to continue ongoing 

studies within the laboratory of Professor Phillips investigating the interaction of 

chemotherapy with protective immune mechanisms. Chloroquine has been previously 

shown to inhibit TNFa and IL-6 production by macrophages (Picot et a l ,  1993). In 

vitro studies were designed to determine if chloroquine could also inhibit NO production 

by macrophages.

4 4



Chapter Two 

Materials and Methods
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Mice

Inbred female NIH mice were used routinely for experimental infections. These mice 

were purchased from Harlan Oak (Bicester, UK) and kept in the University of Glasgow 

Joint Animal Facility at 22°C and 50-60% humidity. They were maintained in 12 hours 

artificial light from 0700 to 1900 and given pelleted CRM breeder diet (Labsure Ltd). 

Both food and water were given ad libitum.

Male IL-6 -/- (129SVJ)F2, IL-4 -/- (129SV x C57BL/6)F2, IL-4 -/- (B6 x 129SV)F2, 

IL-4 -/- (Balb/c)F2 , IFNy receptor -/- (129 SVEV)F2  were generated as described (Kopf 

et al., 1994, Kopf et al., 1993, Huang et a l ,  1993). These and wild-type control 

animals of the same strain combination were obtained from Professor J. Alexander, 

University of Strathclyde. The original breeding pairs were obtained from H. 

Bluethmann, Basel. The mice were bred and maintained in the animal facility at the 

University of Strathclyde in 12 hours artifical light (0700 to 1900) and given pelleted 

CRM breeder diet (Labsure Ltd.). Food and water were given ad libitum.

All mice used for experimental purposes were aged 6-12 weeks old and weighed 

approximately 25 grams.

Parasites

Plasmodium chabaudi chabaudi AS was originally isolated from adult thicket rats 

{Thamnomys rutilans) from La Maboke, Central African Republic, in 1969 by Professor 

David Walliker (University of Edinburgh). The strain was established in laboratory mice 

and cloned by limiting dilution (Walliker, Carter and Morgan, 1971). Stabilates of 

parasites, derived from the original AS parent parasite clone, were maintained by 

frequent cryopreservation and subpassage through mice. P. berghei K SPll parasites 

were maintained in a similar fashion to the P. chabaudi AS stabilates.
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Maintenance of P, chabaudi AS

For long-term preservation, vials of blood infected with P. chabaudi AS parent are kept 

in liquid N2  (-196°C). Infected blood was recovered for experimental use by immersion 

of the vial in a 37°C waterbath (Gallencamp). Once defrosted, an equal amount of a 

solution of 15% glucose added slowly dropwise with frequent mixing. The diluted 

blood was administered by i.p. or i.v. injection into one or two recipient naive mice 

from which the experimental groups were infected.

Maintenance of P. falciparum

P. falciparum erythrocytic stage parasites were cultured routinely by the in vitro culture 

method developed by Trager and Jenson (1976). The strain of P. falciparum  used was 

the JS strain which was culture adapted in Professor Phillips' laboratory in 1994 and 

originally derived from Malawi. Briefly, RPMI 1640 medium was prepared with 25 mM 

HEPES buffer at pH 7.2. Sodium bicarbonate was added to a final concentration of 

0.2% to form incomplete medium. Human serum, normally AB (heat-inactivated at 

60°C for 30 minutes) was added to a final concentration of 10%, forming complete 

malaria medium. P. falciparum stabilates were stored in liquid N2  until required. The 

stabilate was thawed and transferred to a 20 ml universal (Greiner). 0.5 ml of 4.5 % 

saline was added dropwise, followed by the addition of 3.5% saline dropwise in order 

to prevent lysis of the erythrocytes. The suspension was centrifuged for 5 minutes at 

250g and the supernatant discarded. The pellet was resuspended in incomplete malaria 

medium and washed twice (250g for 5 minutes). The final pellet was resuspended in 1.5 

ml of complete malaria medium and transferred to a sterile petri dish (35x10mm, 

Falcon). A few drops of washed, packed O group erythrocytes were added to the 

culture. The petri dish was placed in a candle jar and incubated at 37°C, 5% CO2 , 5-18% 

O2 . The medium was changed on a daily basis and the growth of the parasites was
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monitored by daily preparation of thin blood smears fixed with methanol and stained 

with Giemsa’s stain. The cultures were diluted on a regular basis by the addition of 

fresh erythrocytes and complete malaria medium.

Cryopreservation of blood

Infected blood at a parasitaemia of 5-10% containing ring stage parasites was collected 

by cardiac puncture into a syringe containing sodium heparin (1000 i.u./ml) in 

phosphate buffered saline (PBS, pH 7.2) as an anticoagulent at 10 i.u. heparin per ml of 

blood from mice, sacrificed in a CO2 chamber. The infected blood was diluted 1:1 with a 

solution of sorbitol-glycerol (38% glycerol, 2.9% sorbitol, 0.63% NaCl). 200ml 

aliquots were dispensed into 1.2 ml cryopreservation vials and labelled with the species 

of parasite and a code. The vials were snap frozen by immersing in liquid N2 and stored.

Challenge infections

The infected blood was obtained by cardiac puncture as described. The parasitaemia was 

determined from Giemsa’s stained thin blood smears. The blood was diluted in RPMI 

1640 medium to the required concentration. The mice were placed in a warm box at 

32°C for 10 minutes to allow vasodilation. Mice were infected with 1x10^ pRBCs 

(except where stated) administered i.v. as a 200|il inoculum using a 1ml syringe fitted 

with a 26 gauge needle. Experimental groups consisted of 5 or 6 mice.

Determination of parasitaemia

The parasitaemia of infected mice was determined by daily examination of Giemsa’s 

stained thin blood smears from peripheral blood. Samples were taken between 0900- 

1030 each day by piercing the tip of the tail with a lancet. A new lancet was used for 

each experimental group. A drop of blood was placed at one end of a glass microscope
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slide (BDH Ltd), smeared and allowed to dry at room temperature. The smear was fixed 

in 100% methanol (Analar, BDH Ltd) and then stained in Giemsa’s stain (1:10 of 

Giemsa’s stain in Giemsa’s phosphate buffer, pH 7.2, see appendix). The slide was 

then rinsed in tap water, air dried and examined under oil immersion using xlOO 

objective and xlO eyepiece lenses on a Leitz S.M. Lux binocular microscope. 

Parasitaemias were obtained by calculating the number of pRBCs from a total number of 

RBCs. At least 20 fields containing at least 200 erythrocytes were examined. Infections 

were considered sub-patent when no parasites were observed in 50 fields. The day of 

infection was termed day 0 and smears were normally taken from day 3 post infection 

until at least day 50 post infection.

Presentation of parasitaemic data

The course of infection of a group of mice was represented by plotting the geometric 

mean of the parasitaemia (mean logio of the number of pRBC in 10  ̂RBC) or the mean 

percentage parasitaemia against time. For clarity's sake the standard deviation for each 

data point has been omitted but significant differences at specific timepoints are noted in 

the text.

Collection of serum

Mice were sacrificed as described and blood was obtained by cardiac puncture if large 

volumes of sera were required. The blood was allowed to clot, loosened from the edges 

of the container and allowed to contract overnight at room temperature. The serum was 

harvested and contaminating RBC were removed by centrifugation for 5 minutes at 

9000g. The sample was then labelled and stored at -20°C until required. Smaller 

samples were collected from tailbleeds of mice during the course of the infection and 

processed as for larger volumes. Immune serum from infected mice was collected from 

individual mice in different groups from day 0 onwards. Each mouse within an

49



experimental group was bled on an equal number of occasions to ensure anaemia did not 

result from repeated bleeding of an individual mouse.

Irradiation of mice

Mice were irradiated with whole body gamma irradiation from a ^^Co source chamber 

(Nuclear Engineering) in the Department of Veterinary Physiology, University of 

Glasgow. The mice were exposed to sub-lethal irradiation (400 rads). Irradiation of 

recipient mice prior to adoptive transfer and challenge infection, occurred no earlier than 

24 hours previously.

Analysis of anti-malarial antibody production during infection

The slide IF AT procedure of Van Meirvenne et a l ,  (1975) modified by McLean, 

Pearson and Phillips, (1982) was used to determine total anti-malarial antibody levels in 

the serum of infected mice. The procedure is an adaptation of the indirect fluorescent 

antibody method described by Voiler (1964) and O’Neill and Johnson (1970).

To prepare malarial antigen slides, trophozoite/schizont stage parasites were harvested 

from infected mice as the source of antigen. Mice with a parasitaemia of 5-15% were 

bled and the infected blood was mixed with 10 i.u./ml heparinised PBS. The pRBCs 

were washed three times in 20 ml PBS (pH 7.2) by centrifugation (250g for 5 minutes) 

and resuspension. The pellet was then resuspended in PBS to a volume approximately 

equal to the original blood volume and used to prepare thin blood smears covering a 

microscope slide. The slides, following overnight dehydration in a desiccator, were 

wrapped in tissue, packed with silica gel and stored at -20°C until required (Manawadu 

and Voiler, 1978).
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For use in IF AT, the antigen slides were brought up to room temperature in a desiccator 

for 1-2 hours. The slides were fixed in absolute acetone (Rhone-Poulenc Ltd.) for 5 

minutes and air dried. An H series texpen (Deacon Laboratories) was then used to mark 

out reaction zones on the antigen slides which were allowed to dry for 1 hour in a 

dessicator. The slides were washed in successive coplin jars of PBS (pH 7.2), drained 

and rehydrated in a third jar of PBS (pH 7.2) for 15 minutes. 20pl of sample were 

applied to each reaction zone. Each slide contained a PBS sample, a negative serum and 

a hyperimmune serum as controls. Test samples were assayed at an initial dilution of 

1:20 and diluted until the sample became negative (see later). The slide was then 

incubated in a humid chamber at room temperature for 15 minutes. Excess sera was 

poured off and washed in PBS (pH 7.2) as described previously. The edges of the slide 

were dried and 1 ml of FITC-conjugated sheep anti-mouse IgG (SAPU) diluted 1:200 in 

PBS (pH 7.2) containing Evans Blue (1:10,000 w/v) (Merck) and incubated for 15 

minutes in the humid chamber. The Evans Blue acts as a counter-stain (El Nahel and 

Bray, 1963). The excess conjugate-PBS solution was poured off and the slide washed 

as above. A coverslip (22x55mm, Chance Propper Ltd) was mounted with a 1:1 

solution of non-fluorescent PBS:glycerol (Merck).

The slide was examined for fluorescence by a Leitz Ortholux linked to an Epson PX4 

computer through a Leitz MPV Compact 2 microscope photometer. The overhead u.v. 

source used was a Wotan HBO-50 mercury lamp with 2 x kP490 exciting filters and a 

TK 510 dichroic beam-splitting mirror and a k515 suppression filter. The slide was 

examined by a x600 water immersion objective. The endpoint titre of the sample was 

considered to be the last dilution of serum with which specific fluorescence was 

observed. The control zones of hyperimmune and normal serum and PBS (pH 7.2) 

were examined for comparison.
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Determination of total antibody production

Sera were collected as described previously and assayed for production of total IgGl, 

IgG2a or IgE antibodies. Capture anti-antibody monoclonals were diluted to the required 

concentration (anti-IgGl at 4|ig/ml and both anti-IgG2a and anti-IgE at 2pg/ml) in 

coating buffer (bicarbonate buffer, pH 8.2). 50|il of capture antibody were aliquoted per 

well on an Immunlon 4 ELISA plate (Dynatech) and incubated overnight at 4°C. The 

plate was washed twice with PBS/Tween (0.05%). For each wash, wells were filled 

with PBS/Tween and allowed to stand for at least one minute. The PBS/Tween was 

discarded and the plate was pounded onto paper towels after the final wash. The wells 

were then blocked by the addition of 200fxl/well of 10% FCS/PBS for one hour at 37°C. 

The plate was then washed twice as described above. Standards and samples were then 

added at 50fxl/well in the required concentration. Standard IgGl was added at Ipg/ml, 

IgG2a at 0.4pg/ml and IgE at Ipg/ml. The serum samples were diluted 1:100 for both 

IgGl and IgE assays and 1:500 for the IgG2a assay. The standards and samples were 

diluted in 10% FCS/PBS. The plate was washed four times as before. Detecting 

monoclonal antibodies were diluted in 10% FCS/PBS to the required concentration. 

Biotinylated anti-IgG2a and IgE were both used at 2|xg/ml. Biotinylated anti-IgGl k and 

1 chains were added in a 1:1 mixture at 2jig/ml each. 50pl of the respective detecting 

antibody were added per well and incubated at 37°C for one hour. The plate was washed 

six times in PBS/Tween and lOOpl of streptavidin-peroxidase (Sigma) at 2jig/ml were 

added per well. The plate was incubated at 37°C for one hour and then washed 8 times 

as before. lOOpl/well of 3,3%5,5’-tetramethyIbenzidine (TMB) substrate (KPL) was 

added and colour (blue) was allowed to develop (5-30 minutes). The plate was read at 

630 nm with a reference filter at 405 nm on a MRX plate reader (Dynatech). The results 

of the unknown samples were calculated against a standard curve of known 

concentrations plotted using Biolinx software (Dynatech).
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Preparation of spleen cell suspensions

Mice were sacrificed and the spleens removed aseptically. The spleens were disrupted 

mechanically using the plunger from a sterile syringe to disrupt the tissue through a 

sterile stainless steel sieve (mesh size 0.025 mm^) and collected in a 9 cm Petri dish 

(Sterlin) containing incomplete RPMI 1640 medium. The supernatant was harvested 

using a sterile Pasteur pipette after allowing sedimentation of tissue debris and clumps of 

cells. The spleen cells were washed in 10% Foetal Calf Serum (FCS) RPMI 1640 

medium (250g for 5 minutes) and then resuspended in 1 ml of 10% FCS RPMI 1640 

medium. Contaminating erythrocytes were lysed by incubating 1 ml of spleen cell 

suspension in 9 ml 0.83% Tris-ammonium chloride (Tris-NH^Cl, pH 7.4) for 5 minutes 

at room temperature. The spleen cell suspension was washed twice with 10% FCS 

RPMI 1640 medium at 250g for 5 minutes. The pellet was resuspended in 1 ml of 10% 

FCS RPMI medium for determination of cell viability and number.

Preparation of liver lymphomyeloid cells

Livers were excised from mice aseptically, cut into small pieces and digested in a 

warmed (37°C) solution of RPMI 1640 medium containing 50 U/ml collagenase 

(Sigma) for 30 minutes under constant agitation at 37°C. The suspension was washed in 

10% FCS RPMI 1640 medium (250g for 5 minutes). The remaining tissue was 

mechanically disrupted as previously described and washed in 10% FCS RPMI 1640 

medium (250g for 5 minutes). The cell suspension was then passed through a packed 

glass wool column to remove tissue debris and clumps of cells. After a further wash in 

10% FCS RPMI 1640 medium (250g for 5 minutes), the cell suspension was washed in 

100% FCS for 3 minutes at lOOg and then washed in 10% FCS RPMI 1640 medium as 

described above. The cell suspension was pipetted onto a petri dish and incubated at 

37°C, 5% CO2 for one hour to allow adherent cells to stick to the plastic. The non

adherent cells were harvested and washed in 10% FCS RPMI 1640 medium.
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Contaminating erythrocytes were lysed by treating with Tris-NH^Cl and then washed in 

10% FCS RPMI 1640 medium. 6ml of the cell suspension were layered onto 3 ml 

NycoPrep™ in a 15 ml centrifuge tube and centrifuged at 600g for 15 minutes. The 

mononuclear cells formed a layer at the interface between the NycoPrep^^ and the 

medium with the hepatocytes found at the bottom of the centrifuge tube. The 

lymphomyeloid cells were harvested by a pasteur pipette and washed in 10% FCS 

RPMI 1640 medium. The final pellet of lymphomyeloid cells was resuspended in 1 ml 

of 10% FCS RPMI 1640 medium for determination of cell number and viability.

Preparation of peripheral blood mononuclear cells

Mice were sacrificed and bled as described previously. The whole blood was diluted by 

the addition of an equal volume of 0.9% sodium chloride and then separated by density 

centrifugation. 6 ml of the diluted blood were layered over 3 ml NycoPrep^^ 

(Nycomed) in a 15 ml centrifuge tube and centrifuged at 600g for 15 minutes. The 

peripheral blood mononuclear (PBMN) cells were harvested from the interface between 

the plasma layer and the NycoPrep™ solution using a sterile pasteur pipette. The PBMN 

cells were washed twice in 10% FCS RPMI 1640 medium and then resuspended in 1 ml 

of 10% FCS RPMI 1640 medium for determination of cell number and viability.

Preparation of murine splenic macrophages

Mice were sacrificed and the spleens removed aseptically. The spleens were 

mechanically disrupted as described previously and harvested in a Petri dish containing 

10% FCS RPMI 1640 medium. The spleen cell suspension was incubated at 37°C, 5% 

CO 2  for one hour to allow the macrophages to adhere to the plastic of the petri dish. 

Non-adherent cells were discarded and the adherent cell population was harvested using 

a pasteur pipette and washed three times with 10% FCS RPMI 1640 medium (250g for 

minutes). Contaminating erythrocytes were lysed with Tris-NH^Cl as described
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previously. The adherent cell suspension was washed twice with 10% FCS RPMI 1640 

medium as described above and then resuspended in 1 ml of 10% FCS RPMI 1640 

medium for determination of cell number and viability.

Preparation of peritoneal wash cell suspensions

Mice were sacrificed and 5 ml of sterile incomplete RPMI 1640 medium were injected 

into the peritoneal cavity. The abdomen of the mouse was gently massaged and the 

medium plus the peritoneal wash cells were harvested. The cell suspension was washed 

twice with 10% FCS RPMI 1640 medium and treated with Tris-NH^Cl if necessary. 

The final pellet of peritoneal wash cells were resuspended in 1 ml of 10% FCS RPMI 

1640 medium for determination of cell number and viability.

Determination of cell number and viability

The viability of cell preparations was measured by the trypan blue dye exclusion test. A 

dilution of 1:10 or 1:100 of cells in PBS (pH 7.2) was prepared and further diluted 1:1 

with a solution of 0.2% w/v trypan blue (Gurr, BDH Ltd) in PBS (pH 7.2). The 

suspension was mixed and incubated at room temperature for 2-3 minutes and then 

examined by phase contrast under oil immersion (xlOOO) on a light microscope. Viable 

cells remained clear, whereas dead cells were unable to exclude the dye and stained blue. 

The proportion of live to dead cells gave the percentage viability. At least 100 cells were 

counted.

To determine cell numbers, a 20jil aliquot of the 1:10 or 1:100 dilution of the cell 

suspension was pipetted into a haemocytometer (ARH) and the cells were counted under 

phase contrast (x400) on a light microscope. The calculation gave a total number cells 

per ml and from this the correct number of cells required for the experimental procedure 

was determined.
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In vivo depletion of Kupffer cells

Kupffer cells were depleted in mice by adaptation of the method described by Claasen 

and van Rooijen (1986). The liposomes were prepared by David Taylor (Department of 

Biochemistry, University of Glasgow). Briefly, 45mg phosphatidyl choline, 5 mg 

cholesterol, lOmg dicetyl phosphate and 5mg galactose ceramide (all from Sigma) were 

dissolved in 5ml chloroform (BDH) and 5ml methanol (Fisons Ltd). The solvent was 

removed by rotary evaporation under low vacuum at 37°C. The lipid film formed was 

once more removed by rotary evaporation under low vacuum at 37®C. The lipid film 

was then resuspended in 5ml PBS containing 945mg dichloromethylene diphosphonate 

(clodronate, Boehringer Mannheim) and rotated gently for 2 hours at 37®C. The 

suspension was then sonicated in a water bath sonicator (Ultrasonics Ltd) for 3 minutes 

and left at room temperature for 2 hours. This allowed liposome formation. The 

liposomes were washed by diluting to 36ml with PBS, centrifuged at 100,000g at 160C 

for 30 minutes. The supernatant was discarded and the liposomes were resuspended in 

20ml PBS. The concentration of liposome-entrapped clodronate was determined by the 

protocol described by Claasen and van Rooijen (1986). It was determined by David 

Taylor, that a regime of Sjig total lipid per gram body mass in a 200pl total volume 

given intravenously every 7 days, depleted the phagocytic activity of the liver most 

efficiently whilst the spleen remained unaffected.

Proliferative assays

Cell suspensions were prepared as described and adjusted to a final concentration of 

IxlO^/ml in 10% FCS RPMI 1640 medium. lOOpl of cel Is/well were aliquoted into 96 

well flat bottomed plate (Nunc) with lOOpl of either a crude P. chabaudi antigen 

(250|ig/ml), a normal RBC antigen (250jig/ml) and Con A (Ipg/m l, from stock 

solution of 1 mg/ml. Sigma). Control cultures were unstimulated. The plate was
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incubated at 37°C, 5% CO2  for 72 hours. Each well was pulsed with IpCi (37kBq) of 

^H-methyl-thymidine (ImCi/ml, specific activity 5Ci/mmol, Amersham) in a 10|il 

volume of 10% FCS RPMI 1640 medium and the plate was incubated for a further 18 

hours at 37°C. The wells were harvested with a semi-automatic cell harvester (Titertek, 

Flow) onto glass fibre filter paper (FG/A Whatman) and air-dried. Each filter disc, 

corresponding to a specific well, was transferred to plastic beta vials (LKB) and 2 ml 

non-aqueous scintillation fluid (Optiscint safe, LKB) added. Lids were placed on the 

insert tubes which were placed inside outer plastic scintillation vials. The beta activity 

present in each sample was detected during 1 minute using a scintillation counter (LKB 

Wallac 1219 Rackbeta) and the counts per minute (cpm) calculated using the Ultroterm 

III software package. All samples were set up in triplicate to enable an arithmetic mean 

of the cpm, representative of the proliferative response, to be calculated.

Preparation of parasitised and normal red blood cell lysates

For in vitro stimulation of cell suspensions soluble crude P. chabaudi antigens were 

prepared. P. chabaudi infected mice were kept under a reversed light-dark cycle 

(12hours of light between 1900-0700) conditions, and therefore schizogony, which 

under normal light condition would occur at around 0100 hour, occurred between 1100- 

1300. Mice at peak parasitaemia were sacrificed and bled as described before 

schizogony occurred. Erythrocytes containing mainly late ring stages were washed twice 

in 5% FCS RPMI 1640 medium at 250g for 5 minutes. The erythrocytes were 

resuspended to a 10% haematocrit and cultured in a petri dish containing complete 

malaria medium with the human serum replaced by FCS to at a final concentration of 

10%. Once the parasites had reached the schizont stage, monitored every 30 minutes by 

examination of Giemsa’s stained thin blood smears, the cells were washed in 5% FCS 

RPMI 1640 medium at 250g for 5 minutes and resuspended to the original volume in 

sterile PBS (pH 7.2). The suspension was filtered through a sterile Whatman CFl 1 

powdered cellulose paper column to remove leukocytes (B eu tier et al., 1976). The
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filtrate was washed in 5% FCS RPMI 1640 medium at 250g for 5 minutes and then 

resuspended in PBS (pH 7.2). 1ml of cell suspension was mixed with 1 ml of NaH2 P0 4  

and centrifuged at 9000g for 2 minutes. The supernatant was discarded and the process 

was repeated with 2 volumes of parasitised erythrocytes to 10 volumes NaH2 P 0 4  and 

centrifuged at 9000g for 5 minutes. The supernatant was discarded and the pellet was 

diluted in PBS. The cell suspension was freeze-thawed three times. Each cycle of 

freeze-thawing entailed snap freezing the preparation by plunging into liquid N2  then 

immediately defrosting the suspension in a 37°C waterbath (Gallencamp). The disrupted 

parasitised erythrocytes were centrifuged at 1500g for 10 minutes and the supernatant 

was collected. This was termed the pRBC lysate antigen and was stored at -20°C until 

required.

Non-infected blood was used to prepare the normal RBC (nRBC) lysate antigen. The 

procedure was as for the preparation of the pRBC lysate excluding the culturing of the 

parasitised erythrocytes.

Determination of total protein concentration

The total protein concentration of both the pRBC and nRBC lysate was determined by 

an adaptation of the method described by Smith et al., (1985). Standards of known 

protein concentrations were prepared by diluting 2 mg/ml stock BSA standard (Pierce 

Chemical Co.) in PBS to give a range from 1-25 |ig/ml. Dilutions of the unknown 

protein lysates were prepared in PBS (1:100,1:1000, 1:10000). lOOjil/well of standards 

and samples were pipetted into a 96 well plate. lOOjil of Coomassie Protein Assay 

Reagent (Pierce) was added to each well. The plate was read at 570 nm on a MRX plate 

reader and the protein concentration was determined by plotting the results against the 

curve of the protein standards using Biolinx software (Dynatech).



Cytological analysis of cell suspensions

Cell suspensions were prepared as described and adjusted to a final volume of 10^ 

cells/ml in 10% FCS RPMI 1640 medium. 500|il of the cell suspension was aliquoted 

into the sample chamber. A microscope slide with a filter card covering the slide except 

for two circular areas (6 mm diameter, Shandon) was placed against the sample chamber 

and placed in a Shandon cytofuge. The samples were centrifuged at 4000g for 10 

minutes. A smear of the cells was formed on the microscope slide in the uncovered 

areas. The slide was air-dried, fixed in methanol and stained with Giemsa's stain. The 

cells were counted under oil immersion (xlOOO). At least 500 cells per slide were 

counted.

Determination of serum amyloid P production

Sera was harvested as described and assayed for the production of serum amyloid P 

(SAP). SAP standards were prepared in 1% bovine serum albumin (BSA) in PBS to 

cover a range of 1.5-50pg/ml (original stock SAP was lOOpg/ml, Calbiochem) and 

stored at -20^C until required. The negative control was 1% BSA/PBS alone. Samples 

and standards were diluted 1:100 in coating buffer (pH 9.6) and lOOjil/well was 

aliquoted onto an Immunlon 2 96 well plate (Dynatech). The plate was covered and 

incubated overnight at room temperature with continuous gentle shaking. The excess 

samples and standards were decanted and the non-specific binding sites were blocked 

with 10% Marvel/PBS and incubated at room temperature for one hour under constant 

agitation. The excess blocking agent was discarded and the plate was washed three times 

with PBS/Tween (0.05%). For each wash, wells were filled with PBS/Tween and 

allowed to stand for 3 minutes prior to the PBS/Tween being discarded. After the final 

wash, the plate was pounded onto paper towels. lOOpl of a 1:4000 dilution of rabbit 

anti-murine SAP antibody (Calbiochem) in 1% BSA/PBS/Tween were added to each 

well and incubated at room temperature for 90 minutes. Excess antibody was decanted
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and the plate was washed 3 times as before. 150)il of TMB substrate (KPL) was added 

to each well and the plate was covered in tinfoil and incubated for 15 minutes at room 

temperature. The reaction was then stopped by the addition of 50|il of sulphuric acid 

(H2SO4) to each well. The absorbance was read at 450 nm on a MRX plate reader 

(Dynatech) and concentrations of unknown samples were calculated against a plot of the 

standard curve using Biolinx software (Dynatech).

Isolation of SAP from immune sera

SAP was isolated from immune sera by an adaptation of the technique used by Siripont, 

Tebo and Mortensen, (1988). Immune sera were pooled from P. chabaudi infected mice 

at day 11 post infection (approximately when peak production of SAP occurred). The 

pooled serum was passed through a column containing a 5 ml packed gel of o- 

phosphorylethanolamine-agarose (Sigma) which was equilibrated with 0.02M Tris- 

buffered (pH 7.4) saline containing 5 mM Ca^^. Bound SAP was eluted with Tris- 

buffered saline containing 5mM EDTA. The fractions collected were analysed for SAP 

content by the direct quantitative ELISA utilised to monitor SAP levels in serum. The 

fraction containing the eluted SAP was dialysed against PBS to ensure it was suitable 

for in vitro use. The sample containing the eluted SAP was aliquoted into standard 

dialysis tubing and placed in a beaker containing a 1:10 dilution of PBS (pH 7.2). The 

PBS was changed after several hours and the beaker was covered and incubated at 4°C 

overnight under constant stirring. The sample was then assayed for SAP content by the 

direct quantitative ELISA described.

The effect of SAP on the growth of malaria parasites in vitro

To determine if SAP had direct activity against malaria parasites, P. falciparum  and P. 

chabaudi were cultured in the presence of SAP (100-5000 fig/ml) isolated from immune 

serum by the technique described and chloroquine (0.1-10 pg/ml) was used as a control.
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The effect on the growth of either parasite was determined by the uptake of tritiated 

hypoxanthine. For P. falciparum, the cultures were incubated for 48 hours at 37®C 

under the conditions previously described and the radioactive tracer was added 

(IpCi/well). The plate was incubated for a further 18 hours and harvested as previously 

described. The effect on growth was determined as before and expressed as counts per 

minute.

The effect of SAP on the proliferative response of splenocytes

To determine if SAP had an effect on the proliferative response of splenocytes, isolated 

SAP (lOOOpg/ml) was added to cultures of splenocytes (5x10^ cells/ml), prepared as 

before from a naive mouse, at the same time as stimulation with Con A or LPS (both at 

5pg/ml). The cultures were incubated at 37®C for 72 hours and tritiated thymidine 

(IpCi/well) was added. The cultures were incubated for a further 18 hours and 

harvested as before. The effect on growth was determined as described previously and 

plotted as counts per minute.

The effect of NO on the growth of malaria parasites in vitro

The effect of NO on the development of malaria parasites in vitro was determined using 

s-nitroso-acetyl penicillamine (SNAP) (Calbiochem), a NO donor. P. falciparum  was 

obtained from the continuous cultures previously described. The parasitaemia used was 

0.5% and lOOpl of parasites at 5% haematocrit was pipetted into each well of a sterile 96 

well plate (Costar). SNAP was freshly prepared in complete malaria medium to give a 

range of concentrations from 45-363|iM. Controls included complete malaria medium, 

D-penicillamine (to control for SNAP) and sodium nitrite (to control for nitrite 

production), both at the same range of concentrations as SNAP. The cultures were 

incubated at 37°C under the conditions already described for the maintenance of P. 

falciparum  cultures. Growth of the parasite was measured by the uptake of tritiated



hypoxanthine (specific activity 28 Ci/mmol, stock ImCi/ml, Amersham) added at 

l|iCi/well in a lOpI volume (in complete malaria medium). The wells were harvested, at 

the indicated time after the addition of the radioactive tracer (see Chapter 8), using the 

semi-automatic cell harvester (Titertek, Flow) previously described. The cpm were 

determined as before and an arithmetic mean growth calculated.

For the experiments using the murine malarias P. chabaiidi or P. berghei, the parasites 

were obtained from infected mice as described and diluted to the required parasitaemia 

using normal mouse red blood cells. The assay was performed as described for P. 

falciparum except that the duration of the experiment was for 24 hours.

Determination of the effect of chloroquine on NO production by 

macrophages in vitro

An in vitro assay was designed to examine the effect of chloroquine on nitric oxide (NO) 

production by macrophages in vitro. Three types of macrophages were used. The 

macrophage-like cell line J774 was continuously cultured under standard cell culture 

conditions (5% CO2 , 37°C) in 10% FCS RPMI 1640 medium until required. The 

splenic macrophages and peritoneal wash cells were obtained from naive mice as 

described previously. Chloroquine (Chloroquine diphosphate salt, Sigma) standard 

solutions containing 1, 10, 100 or lOOOpM chloroquine in 10% FCS RPMI 1640 

medium were prepared and stored at -20°C until required. The cells were aliquoted into 

24 well plates (Greiner) at a concentration of 5x10^ cells/ml in 1 ml of 10% FCS RPMI 

1640 medium. The cells were treated with chloroquine at the concentrations indicated at 

-24, -2, 0, +2 and 4-6  (or +24) hours with respect to stimulation of the cells with IFNg 

(100 U/ml, stock: 200000 U/ml , Sigma) and LPS (25 ng/ml, stock: 1 mg/ml. Sigma). 

The cultures were incubated for 48 hours at 5% CO2 , 37°C and then the culture 

supernatants were assayed for nitrite concentration as an indication of NO production.
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Determination of NO production

The level of NO production in vitro was determined by the measurement of the end 

product nitrite using the Griess reaction described by Migliorini et al., (1991). Nitrite 

standards were prepared by diluting a 10 “ mM stock solution of sodium nitrite in 10% 

FCS RPMI 1640 medium to give a range of 5-300p.M nitrite. 60 |il of culture 

supernatant or standard was added to 60 pi of Griess solution (1:1 mix of 0.1% a- 

napthylamine, Sigma and 1% sulphanilamide in 5% phosphoric acid, Sigma) in a 

individual well of a 96 well plate (Corning). The plate was incubated for 10 minutes at 

room temperature and read at 540 nm on a MRX plate reader. The concentration of 

nitrite for the unkown samples was calculated against a plot of the standard curve using 

Biolinx software (Dynatech).

Statistical analysis

Results are expressed as means±lSDM and group data were compared using a 

Student's t -test. A significant result was considered to be when the value of p< 0.05.
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Chapter Three

The liver: a possible site of a protective immune response 

against the asexual erythrocytic stage of P. chabaudi

infection.

6 4



Introduction

The presence of immunocompetent cells in the liver has been reported in parasitic, viral 

and bacterial infections (Khan and Vanderberg, 1992, Koziel et al., 1992, Goossens, 

Jouin and Milon, 1991). Recruitment of peripheral blood mononuclear phagocytes to the 

liver during Listeria monocytogenes infection (North, 1970) has shown the importance 

of this non-lymphoid organ. This process of recruitment during L. monocytogenes 

infection has now been shown to fall into three distinct phases (Goossens, Jouin and 

Milon, 1991). There is an initial recruitment of lymphomeyloid cells which is followed 

by recruitment of myelomonocytic cells and then CD8+ T cells. The hypothesis that the 

liver is an important organ of the immune system, is gathering momentum. The 

anatomical position of the liver means it is in contact with several different 

immunological environments including the spleen, gut and lymphatic system and may be 

involved in a protective immune response to several different pathogens. The presence 

of immunocompetent cells in the liver may not only be due to recruitment from the 

peripheral blood, spleen or bone marrow, but may also be due to expansion of 

intrahepatic lymphomyeloid cells. Recently, the liver has been described as a meeting 

place for thymus-dependent circulating T cells and thymus-independent T cells which 

express NK cell markers (Crispe and Mehal, 1996). The two sets of cells are 

differentiated by expression markers. One subpopulation believed to derive from the 

circulating T cell pool is a mixture of CD8+, CD4+ and CD4" CD8' (double negative) 

cells while the other subpopulation of cells express an intermediate level of TCRap and 

also N K l.l. The population of T cells expressing N K l.l is not only restricted to the 

liver but is also found in the bone marrow and thymus (Watanabe et al., 1995), and the 

numbers of these cells have been shown to increase in response to IL-12 and TNFa 

(Crispe and Mehal, 1996). Therefore, an active immune response in the liver may 

involve not only recruitment of cells but expansion of intrahepatic lymphomyeloid cells.
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Immunity to the intrahepatic stages of malaria provides one of the best examples of a 

protective immune response in the liver to a pathogen (refer to Introduction for a review 

of immunity to pre-erythrocytic stages of malaria). Both CD4+ and CD8+ T cells have 

been shown to mediate the immune response to pre-erythrocytic stages of various 

malaria species (Renia et al., 1993, Suhrbier, 1991). The intrahepatic form of the 

parasite can be a target of antibodies, cytokines, phagocytic and cytotoxic cells (Mazier 

et al., 1988) and non-specific factors such as acute phase proteins (Mazier et a i,  1988). 

Strong immune responses can be induced to the pre-erythrocytic stages of malaria by 

vaccination with irradiated sporozoites (Hoffman and Franke, 1994). Cytological 

analysis of leukocytes isolated from livers following a sporozoite-induced P. yoelii 

malaria infection in mice revealed that after the clearance of the subsequent erythrocytic 

stage, CD4+ and CD8“̂  T cells and B cells were the (pre)dominant cells present during a 

primary infection (Faure et al., 1994). Following challenge of mice with a second 

sporozoite inoculation one week after clearing the erythrocytic stage of infection, the 

composition of the leukocytes changed to CD3+CD4"CD8* cells and polymorphonuclear 

cells (Faure et a l, 1994).

The role of the liver in the immune response to the erythrocytic stage of malaria infection 

has largely been ignored. However, the extensively characterised response to the exo- 

erythrocytic stage has demonstrated there are several immune effector mechanisms 

present in the liver which have the potential to be directed against erythrocytic stage 

parasites. Dockrell and colleagues proposed an important role for the liver in the 

recovery from blood stage infection (Dockrell, De Souza and Playfair, 1980). Mice 

vaccinated with fixed parasitised RBCs of P. yoelii and Bordetella pertussis can clear a 

normally lethal challenge of P. yoelii and this is associated with an increase in the 

number of cells present in the liver and an increase in the uptake of parasitised 

erythrocytes by the liver (Dockrell, De Souza and Playfair, 1980, Playfair and De 

Souza, 1982). Activation of Kupffer cells has also been reported to occur during blood- 

stage infection (Dockrell, De Souza and Playfair, 1980) and these cells are involved in
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phagocytosis of parasitised erythrocytes but also may act as antigen presenting cells 

(Suss et a l, 1988). Increased retention or trapping of lymphocytes in the liver has been 

demonstrated around peak parasitaemia during P. chabaudi infection in mice 

(Kumararatne et al., 1987) and increased migration of leukocytes to the livers of mice 

vaccinated against P. yoelii with a crude P. yoelii parasitised erythrocyte lysate and 

Bordetella pertussis has been observed (Playfair et al., 1979). Concomitantly, there is a 

decrease in the retention of lymphocytes by spleens of P. chabaudi infected mice 

(Kumararatne et al., 1987) suggesting a redistribution of lymphocytes occurs at peak 

parasitaemia which results in an exclusion of lymphocytes from the spleen.

One characteristic of the P. chabaudi model is that mature parasitised erythrocytes stop 

circulating in the peripheral blood and cytoadhere to the endothelial linings of the 

sinusoids in the liver and also endothelial linings of the spleen (Cox, Semoff and 

Hommel, 1987). Sequestration is traditionally thought of as being a mechanism which 

the parasite undergoes to avoid splenic filtration which has been demonstrated during 

both lethal and non-lethal P. yoelii infection (Weiss, 1990) and involves splenic barrier 

cells. Therefore, it is unclear why late stage P. chabaudi parasitised erythrocytes would 

sequester to the spleen. It is unknown where in the spleen the parasitised erythrocyte 

cytoadheres to and hence the parasitised erythrocyte may avoid splenic clearance by 

undergoing schizogony before reaching the splenic barrier cells. However, 

cytoadherence of the parasitised erythrocyte to endothelial cells may induce a localised 

immune response, with the presence of parasite-derived antigens on the surface of the 

parasitised erythrocyte being a possible target. During schizogony, merozoites, toxins 

and cell debris are released into the bloodstream. The merozoite form of the parasite may 

be the most vulnerable to immune attack because it is extracellular. The release of 

parasite derived toxins and cellular debris following schizogony may provide a strong 

antigenic stimulus thereby inducing an intense localised response. The observation that 

there is an increase in the numbers of lymphomyeloid cells present in the liver around 

peak parasitaemia compared with a reduction in the numbers present in the spleen
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(Kum araratne et a l ,  1987) suggests different immune responses may be 

compartmentalised to each of these sites. This was investigated by firstly isolating 

lymphomyeloid cells from livers of mice during the acute phase of P. chabaudi 

infection. Adoptive transfer studies were performed to determine if the lymphomyeloid 

cells isolated from the liver could confer protection to a P. chabaudi challenge. The 

degree of protection mediated by these cells was compared with splenocytes isolated at 

the same time in the acute phase of infection. Preliminary investigations into the role of 

Kupffer cells by depletion in vivo using liposome-encapsulated clodronate further 

defined the importance of the liver during the asexual blood-stage of a malaria infection.

Results

Isolation of lymphomyeloid cells from livers of P. chabaudi infected 

mice

Lymphomyeloid (LM) cells were isolated from livers of P. chabaudi infected mice by 

the protocol described in Materials and Methods. NIH mice were infected with 1x10^ 

pRBC of P. chabaudi and two mice were killed at each of the time points indicated. The 

number of LM cells harvested from each liver was determined and a mean value was 

calculated. Peak numbers of LM cells were isolated at day 10 post infection with a mean 

value of 20x10^ cells per liver (Figure 3.1): this was two days after the peak of the 

parasitaemia.

Adoptive transfer of isolated LM cells

Adoptive transfer studies were performed to determine if LM cells, isolated from the 

livers of infected mice could confer protection against a P. chabaudi challenge. LM cells 

were isolated, as before, from donor NIH mice infected with 1x10$ pRBCs of P. 

chabaudi, at day 11 post infection. Simultaneously, non-adherent splenocytes and
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Figure 3.1. Extraction of lymphomyeloid cells (LM) from the livers of 
P. chabaudi infected mice. Mice were infected with 1x10^ pRBCs of P. 
chabaudi. Two mice were sacrificed at each timepoint and the mean number 
of cells per liver (xlO^) calculated.
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peripheral blood mononuclear (PBMN) cells were harvested by standard isolation 

techniques (described in Material and Methods) from the same donor mice. Splenocytes 

were also harvested from naive NIH mice, to enable the study to include cells whieh had 

no prior exposure to malaria infection. Recipient NIH mice were sub-lethally irradiated 

(400 Rads) 24 hours before the transfer of cells. Groups of six mice received either 

3x10^ LM cells, 3x10^ PBMN cells, 1x10^ immune splenocytes or 1x10^ naive 

splenocytes. The mice were subsequently infected with 1x10^ pRBCs of P. chabaudi. 

The group of mice receiving the LM cells were significantly protected at peak 

parasitaemia when compared with control groups (Figure 3.2). No mortality was 

observed in any of the recipient groups. At peak parasitaemia, the control groups had 

similar values although the mice receiving the PBMN cells had an earlier peak of 

parasitaemia and subsequently cleared the primary parasitaemia first. No differences 

were observed between the groups after the primary parasitaemia, with the parasitaemia 

remaining sub-patent during the time observed (Figure 3.2). Attempts were made to 

expand the adoptive transfer studies to include LM cells from the livers of non-infected 

mice but repeat experiments failed to demonstrate any protective effect mediated by the 

adoptive transfer of, not only the immune LM cells but the immune splenic cells. On two 

occasions the challenge infection did not establish within the recipient mice. Hence, the 

data obtained for the adoptive transfer of immune LM cells isolated form the livers of P. 

chabaudi infected mice has to be considered as preliminary data. Further repeats of the 

adoptive transfer studies are planned.

The effect of Kupffer cell depletion on the course of P. chabaudi 

infection

A preliminary experiment was performed to investigate the role of the Kupffer cell 

during the asexual-blood stage of P. chabaudi infection. Kupffer cells were depleted by 

treatment of NIH mice with liposome-encapsulated clodronate before infection with 

1x10^ pRBCs of P. chabaudi and once every 7 days thereafter for the duration of the
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Figure 3.2.1. Adoptive transfer of liver LM cells, isolated at day LI of a 
P. c/iabaudiinfection, to irradiated recipients, significantly reduced the peak 
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parasitaemia B) are presented.
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infection to prevent Kupffer cell replenishment (Refer to Materials and Methods). 

Control NIH mice were infected with 10^ pRBCS and given no treatment. The mice 

depleted of Kupffer cells had a significantly exacerbated peak of parasitaemia compared 

with the control group (p values for day 9, 10 11 and 12 post infection were all < 0.03). 

No significant differences were observed during the recrudescence parasitaemia between 

the two groups (Figure 3.3).

D iscussion

The demonstration that there is an increase in the number of LM cells present in the liver 

at a point where the primary parasitaemia of a P. chabaudi infection is going into 

remission, confirms earlier observations (Kumararatne et a i, 1987). The present study, 

unlike others (Playfair and De Souza, 1982, Kumararatne et a i,  1987) does not involve 

administration of radiolabelled cells and tracking of the homing patterns of these cells 

during infection and hence, identifies that the liver is a site of a possible immune 

response to the acute phase of a P. chabaudi infection. It is not clear if the increase in the 

number of cells isolated from the liver is a consequence of increased recruitment or an 

expansion of an intrahepatic LM cell population. Peak numbers of cells were isolated 

one or two days after the peak of the primary parasitaemia suggesting that these cells 

might be involved in the immune response at this time of infection. Adoptive transfer of 

LM cells isolated from the liver at this time conferred protection to irradiated, naive 

recipient mice against an homologous challenge. The protection observed was 

significantly greater than that mediated by splenocytes from the same time of infection 

(day 11 post infection). The LM cells significantly reduced the peak of the primary 

parasitaemia compared to the control groups indicating that the protection conferred 

resulted in an increase in anti-parasite effector mechanisms. During a preliminary 

experiment, LM cells isolated from livers at day 11 post infection were able, upon 

adoptive transfer, to delay mortality observed in irradiated, naive recipient mice, 

following a P. chabaudi challenge (data not shown). The cause of death in all groups of
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this preliminary experiment appeared to be due to the fulminating parasitaemia, 

suggesting the liver LM cells were capable of suppressing parasite growth for a period 

but were able only to delay the time of death.

Previous studies have shown an increase in numbers of cells present in the liver 

(Kumararatne et a l, 1987) and associated this increase with protection (Dockrell, De 

Souza and Playfair, 1980) but the adoptive transfer studies reported here demonstrate 

the LM cells present in the liver during the acute phase of P. chabaudi infection are 

involved in a protective immune response against the blood-stage of infection. It has 

been recently suggested that the liver is a site where T cells migrate too in order to 

apoptose (Crispe and Mehal, 1996). The LM cells isolated from the liver are unlikely to 

be undergoing apoptosis because the adoptive transfer studies demonstrate that they are 

capable of mediating a protective immune response.

To understand what type of effector mechanism may be mediated by the LM cells 

present in the liver which possibly results in parasite destruction, it is important to know 

the types of cells which participate in this response. Lymphomyeloid cells isolated from 

the liver have been shown to contain unusual lymphocytes. The y5 T cell subset, which 

have been reported to expand during malaria infection (van der Heyde et a i ,  1993b), 

appear to be a minor ingredient of the liver LM cells along with B cells, although this 

may be dependent upon the isolation technique (Crispe and Mehal, 1996). It is mainly T 

cells that have been characterised in cells isolated from the liver. A mixture of CD8+, 

CD4+ and CD4" CD8" T cells along with a subset termed N K l.l T cells, which express 

TCRaP at an intermediate level and IL-2 receptor along with the natural killer 1.1 cell 

marker, have been shown to be present in the intrahepatic T cell pool (Ohteki and 

MacDonald, 1994, Crispe and Mehal, 1996). The N K l.l T cells have an unusual 

distribution with a high frequency of cells present in the liver, bone marrow and thymus 

suggesting that they may exert their functions in specialised locations (Vicari and 

Zlotnik, 1996). The morphology of these cells indicates that they are
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intermediate between T cells and NK cells (Watanabe et a l, 1995). NK 1.1 T cells have 

been shown to produce both IL-4 and IFNy (Arase, Arase and Saito, 1996) and can 

differentiate into cytotoxic effector cells upon activation with IL-2, with the ability to kill 

targets of NK cells (Koyasu, 1994). The function of this subset of T cells is unclear but 

because of their cytokine secretion profile and potential cytotoxic ability, they may be 

involved in not only directing the CD4+ T helper cell mediated responses through IFNy 

or IL-4 secretion but may also participate in parasite destruction within the liver.

Cytofluorometric analysis of the isolated LM cells during the acute phase of P. chabaudi 

infection, would enable identification of the eells present within this population and 

could be compared with changes in the lymphocyte subsets in the spleen. This would 

give a direct comparison between the lymphocyte populations within the liver and 

spleen, identifying the immune responses which are functional in both these organs 

during a primary P. chabaudi infection and perhaps reveal why LM cells from the liver 

confer significantly better protection than splenocytes upon adoptive transfer to recipient 

mice receiving an homologous challenge of P. chabaudi. However, it must be noted that 

at day 11 post infection, when the cells were isolated from both the spleen and liver, it 

has been reported that there is an exclusion of lymphocytes from the spleen and 

increased retention of lymphocytes in the liver (Kumararatne et al., 1987), perhaps 

reflecting a change in the site of the protective immune response at this time point in the 

infection. Liver LM cells have been previously characterised by cytofluorometric 

analysis following infection of mice with P. yoelii sporozoites (Faure et al., 1994). The 

majority of cells identified were lymphoid, with a rapid increase in CD4+, CD8+ and 

CD4" CD8" T cells plus B cells (Faure et al., 1994). The increase in cell numbers in the 

livers was persistent throughout the subsequent blood stage infection following 

inoculation with sporozoites of P. yoelii. Cytological analysis of the same LM cells 

revealed that polymorphonuclear (PMN) cells and macrophage/monocytes were also 

present in high numbers (Faure et al., 1994). Liver LM cells isolated from mice during a 

primary P. chabaudi infection and analysed cytologically, were found to have an
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parasitaemia A) and mean percentage parasitaemia B) are presented.
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increase in lymphoid, monocyte and PMN cell populations (see Chapter 6 and 7). The 

absence of this increase, most notably in the monocyte and PMN cells, observed in 

IFNy receptor and IL-4 gene deficient mice was associated with an exacerbation of the 

primary parasitaemia (see Chapter 6 and 7). Therefore, the recruitment of monocytes 

and PMN cells appears to be crucial to the protective effector mechanisms in the liver 

during the acute phase of P. chabaudi infection.

It has been estimated that more than half the circulating monocytes are destined to 

become the resident macrophages in the liver, known as Kupffer cells (Crofton, 

Diesselhoff-den Dulk and Van Furth, 1978). These cells can phagocytose parasitised 

erythrocytes (Shear, Nussenzweig and Bianco, 1979) and may act as antigen-presenting 

cells (Faure et al., 1994). Hence, Kupffer cells appear to have a pivotal role in the 

immune response in the liver. Antigen presentation to T cells will result in an expansion 

of intrahepatic T cells or enhanced recruitment which will stimulate effector cells present 

in the liver, including Kupffer cells, to secrete various inflammatory cytokines and toxic 

molecules such as NO, associated with activated macrophages. When Kupffer cells 

were depleted in vivo, a significant exacerbation of the primary peak of parasitaemia was 

observed. This demonstrates the importance of Kupffer cells during the acute phase of 

infection but also illustrates that control of the primary parasitaemia includes effector 

mechanisms which are Kupffer cell independent. It must be noted however, that this 

observation is preliminary and requires further investigation.

Malaria is a very dynamic, systemic infection which induces the production of various 

inflammatory cytokines (Bate, Taverne and Playfair, 1988, Kwiatkowski et a l,  1990). 

Associated with the production of these cytokines, such as IL-1 and TN Fa, is the 

activation of endothelial cells and the up-regulation of adhesion molecules (Schofield et 

a l, 1996). The presence of the parasite induces this inflammatory environment but both 

the parasite and the immune system utilise it, either in the process of parasite 

sequestration or the recruitment of immunocompetent cells to various sites. In the P.
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chabaudi model, a major site of sequestration, as already mentioned, is the liver (Cox, 

Semoff and Hommel, 1987). This process is linked to antigenic variation and the 

establishment of chronic infection (Gilks, Walliker and Newbold, 1990) but it is unclear 

if sequestration is required to induce the recruitment of LM cells to the liver. The 

cytoadherence of the mature parasitised erythrocyte, in an environment which has the 

potential to mediate a protective immune response, provides a good opportunity for anti

parasite effector mechanisms. Analysis of LM cells present in the liver during infection 

with a non-sequestering clone of P. chabaudi would determine if sequestration is 

necessary to induce the increase in the numbers of LM cells present and the proposed 

protective effector mechanism occurring in the liver during a primary P. chabaudi 

infection.

The liver is potentially a site of parasite destruction during the acute phase of a P. 

chabaudi infection. An increase in the numbers of LM cells present in the liver coincides 

with the peak of the primary parasitaemia and these cells were able to confer protection 

to an homologous challenge. The importance of the liver was further defined by the 

observation that depletion of Kupffer cells resulted in an exacerbation of the primary 

patent parasitaemia. Identification of the cell types present in the isolated LM cells would 

elucidate the type of immune response which potentially is involved in parasite 

destruction during the asexual erythrocytic stage of P. chabaudi infection. Further 

investigations of the LM cells present in the liver during a P. chabaudi infection are 

planned. Cytofluorometric analysis is already underway with the aim of identifying the 

composition of the LM cells through the expression of surface molecules. Initially the 

work has focused on lymphoid cells, where both B and T cells have been identified, 

although this work will be expanded to include CD3+CD4"CD8" T cells and NK cells. 

As already mentioned, repeat studies of the adoptive transfer experiments are planned, 

including LM cells isolated from the liver of naive mice as a further control.
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Chapter Four

The role of serum amyloid P during blood-stage malaria

infection .
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Introduction

A rapid inflammatory response is an essential part of the host’s non-specific response to 

injury or microbial infection. This is characterised by fever and an increase in the 

synthesis in the liver of serum proteins termed acute phase reactants (APR). The major 

APR in humans is C-Reactive protein (CRP), originally named for its calcium dependent 

binding to the C-polysaccharide of pneumococcal bacteria (Volanakis and Kaplan, 

1971). In mice, CRP is present at very low concentrations in the serum and has not yet 

been identified as an APR in mice (Pepys et al., 1978, Le, Muller and Mortensen, 

1982). Serum amyloid P (SAP) is the main APR in mice (Pepys et al., 1979) and is a 

molecular homologue of CRP (Pepys et al., 1978, Levo, Frangione and Franklin, 

1977). Both CRP and SAP are pentraxins (Osmand et a l ,  1977), with both coding 

genes found on chromosome 1 in humans and mice (Steel and Whitehead, 1994). The 

biological activity of these APRs is related to non-specific host defence mechanisms with 

both CRP and SAP having similar properties. However, the role of CRP has been better 

characterised. CRP can act as an opsonin for bacteria and immune complexes (Steel and 

Whitehead, 1994) mediated through the ability of CRP to bind to Fc receptors 

(Mortensen and Dusckiewicz, 1977), and activate the classical pathway of complement 

(Osmand et a l, 1975). SAP is the circulating precursor to amyloid P component which 

is a constituent of amyloid deposits (Benson et a i, 1976). Like CRP, SAP can enhance 

macrophage mediated phagocytosis via binding to glycoprotein receptors (Siripont, Tebo 

and Mortensen, 1988) and can activate the classical complement pathway via binding to 

C lq  (Ying et al., 1993). SAP has also been shown to regulate antibody responses in 

vitro (Sarlo and Mortensen, 1987). Both CRP and SAP have the capacity to bind 

chromatin, histones and DNA (Steel and Whitehead, 1994) and it has been suggested 

that the binding to and subsequent clearance of nuclear material which is released from 

necrotic tissue during inflammation would prevent the development of nuclear antigen 

specific autoimmunity (Steel and Whitehead, 1994).
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An increased rate of APR synthesis can occur following various inflammatory stimuli. 

Rapid increases in hepatic SAP mRNA in mice following an intraperitoneal injection of 

thioglycollate have been reported (Zahedi and Whitehead, 1989). IL-1 and IL-6 have 

been shown to stimulate the production of SAP by mouse hepatocytes in vitro (Lin et 

al., 1990). Administration of recombinant IL-1 and TN Fa induces SAP production in 

vivo (Mortensen et al., 1988). Hence, APRs are synthesised rapidly following 

inflammatory stimuli, which is important during an infection, when the non-specific 

immune response controls the initial stages of infection allowing the development of 

acquired, specific effector mechanisms.

Although mice do not synthesise CRP as part of their acute phase response, passively 

administered human CRP has been shown to protect mice from lethal infection with 

Streptococcus pneumoniae (Mold et al., 1981). Transgenic mice, expressing human 

CRP, have increased protection to S. pneumoniae (Szalai, Briles and Volanakis, 1995). 

Elevated levels of SAP have been observed in the serum of mice infected with 

Nippostrongyls braziliensis (LaMontague et a i, 1984) and Schistosoma mansoni (Pepys 

et a l, 1979). Trypanosomia cruzi infection in mice induces an increase in SAP levels 

(Luz, van Leuven and Araujo-Jorge, 1994, Truyens et al., 1994) and is associated with 

a delay in mortality following a lethal infection (Truyens et al., 1994).

The exo-erythrocytic stage of malaria infection involves a developmental phase within 

the liver which induces a strong inflammatory response inducing the required stimuli for 

the production of APRs. CRP has been shown to bind to the surface membrane of P. 

falciparum  and P. yoelii sporozoites probably via a phosphorylcholine-binding site 

(Mazier et a l, 1988). Addition of purified CRP to hepatocyte monolayers in vitro, at the 

time of inoculation with P. yoelii sporozoites inhibited parasite schizogony (Pied et a l,

1989). This effect was abrogated by the pre-treatment of cultures with anti-CRP 

antibodies (Pied et al., 1989). Time-course experiments revealed that CRP-mediated
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inhibition occurred at the early phase of infection (Mazier et a l, 1988). It is thought that 

CRP inhibits sporozoite penetration of the hepatocyte by masking recognition sites 

involved in the sporozoite-hepatocyte interaction (Nussler et al., 1991c). CRP mediated 

inhibition was also observed after sporozoite penetration (Nussler et al., 1991c). It is 

possible that CRP bound to sporozoites, penetrates the hepatocyte and subsequently 

prevents trophozoite division (Nussler et a l, 1991b). Induction of raised CRP levels in 

rats by injection with turpentine oil, protected against a challenge with P. yoelii 

sporozoites (Pied et a l, 1989). The susceptibility to P. berghei infection of two species 

of rat has been attributed to differences in the acute phase response induced by infection 

(Vreden et a l ,  1995). Furthermore, sporozoites incubated in acute phase serum had 

reduced infectivity but this was abolished by the treatment of the cultures with anti-CRP 

antibodies (Pied et a l ,  1989). The inhibition of the exo-erythrocytic stage of 

development may also involve indirect CRP mediated mechanisms such as the activation 

of complement or macrophages resulting in opsonisation of the parasite.

Raised serum levels of CRP have been observed in P. falciparum  infected individuals 

(Gillespie et a l, 1991) and correlate with severity of disease. CRP has been shown to 

bind to merozoites (Pied et a l,  1989), probably in a similar manner to the calcium 

dependent binding to sporozoites. However, the role of APRs in the immune response 

induced by blood-stage malaria infection is unclear. This study investigated the 

production of SAP, the main APR of mice during the course of experimental 

erythrocytic malaria infection. In vitro assays were performed to analyse if SAP had any 

direct anti-parasite effect.
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Results

SAP production during experimental blood-stage malaria infection

Levels of SAP in the serum of mice infected with P. chabaudi, P. berghei and P. vinckei 

petteri. were assayed by the technique described (Materials and Methods). Each group 

consisted of six mice and were infected with 1x10^ pRBCs of the respective parasite 

species. Semm samples were collected by tail bleeds from 3 mice of each experimental 

group and two mice from a non-infected control group. Each individual sample was 

assayed in triplicate and the mean value of SAP was calculated for each group. Elevated 

SAP levels were observed during the course of infection for all three malaria species 

compared to serum taken from non-infected controls (Figures 4.1, 4.2 and 4.3). Peak 

production of SAP during P. chabaudi and P. vinckei infection, occurred one or two 

days after the peak of the primary parasitaemia (Figures 4.1 and 4.2). SAP production 

during a lethal infection of P. berghei was elevated (Figure 4.3) and remained relatively 

high (compared to control levels) until the time of death (mortality data not shown).

The effect of SAP on the growth of P. falciparum in vitro

SAP was isolated from serum harvested from mice on day 11 of a P. chabaudi infection 

by the technique described (Materials and Methods). P. falciparum at 0.5% parasitaemia 

and 1.5% haematocrit was cultured in the presence of isolated SAP (100-5000 pg/ml) or 

chloroquine (0.1-10 pg/ml). The effect of either treatment on parasite growth was 

determined by the uptake of tritiated hypoxanthine. The addition of SAP, at 5 mg/ml, a 

concentration observed physiologically during a P. chabaudi infection, resulted in a 

significant decrease in tritiated hypoxanthine incorporation indicating an inhibitory effect 

of SAP on parasite growth (Figure 4.4).
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Figure 4.1. SAP was assayed in the serum of mice infected with 1x10  ̂
pRBCs of P. chabaudi Serum was collected from 3 mice at each timepoint 
and each serum sample was assayed in triplicate. Control mice were 
non-infected and serum was collected from two mice at each timepoint and 
assayed in triplicate. Each data point is the mean of all the results obtained 
for each group. Peak production of SAP occurred one day after the peak of 
the primary parasitaemia.
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The effect of SAP on the growth of P. chabaudi in vitro

P. chabaudi was harvested from an infected mouse and cultured at 0.5% parasitaemia 

and 1.5% haematocrit in the presence of isolated SAP (100-5000 pg/ml) or chloroquine 

(0.1-10 p-g/ml). The effect of both treatments on the growth of P. chabaudi in vitro over 

a 24 hour period was determined by tritiated hypoxanthine incorporation. No effect on 

parasite growth was observed following the addition of SAP to P. chabaudi cultures 

(Figure 4.5).

The effect of SAP on proliferative responses of splenocytes

Splenocytes were harvested from naive mice and cultured at 5x10^ cells/ml. The cells 

were stimulated with either Concanavalin A or LPS (both 5 pg/ml) and concomitantly 

treated with SAP (1 mg/ml). The effect of SAP on the proliferative response by 

splenocytes to both stimulants was determined by tritiated thymidine incorporation. 

Treatment of splenocytes with SAP was found to inhibit the proliferative response to the 

T cell mitogen, Concanavalin A (Figure 4.6). However, it was observed that the 

proliferative response to LPS was enhanced in the presence of SAP (Figure 4.6).

D iscussion

The data reported here demonstrates that experimental infection of mice with blood-stage 

malaria induces elevated production of SAP, the main APR in mice. During P. chabaudi 

and P. vinckei infection, both non-lethal infections in NIH mice, the peak production of 

SAP occurred one or two days after the peak of the primary patent parasitaemia. P. 

berghei infection in NIH mice has a lethal outcome, with death occurring approximately 

19 to 20 days after infection. SAP levels were elevated in the serum of P. berghei 

infected mice and remained relatively high com pared to the control
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Figure 4.2. SAP was assayed in the serum of mice infected with 1x10  ̂
pRBCs of P. vinckei petleri. Serum was collected from 3 mice at each 
timepoint and each serum sample was assayed in triplicate. Control mice 
were non-infected and serum was collected from two mice at each timepoint 
and assayed in triplicate. Each data point is the mean of all the results 
obtained for each group. Peak production of SAP occurred one day after the 
peak of the primary parasitaemia.
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group. It is unclear if the stimulus for inducing the increased rate of SAP synthesis is 

derived from the presence of the parasite and/or the inflammatory environment created 

by the response of the host to infection. During P. berghei infection, the parasitaemia 

remains at a high level from day 6 onwards until the time of death, resulting in sustained 

production of SAP probably due to the stimulation of inflammatory mediators during the 

course of infection.

During the course of P. chabaudi and P. vinckei infections, SAP production is elevated 

throughout, with similar concentrations at peak production of SAP. As already 

discussed (see Chapter 3), mature asexual erythrocytic stages of P. chabaudi withdraw 

from the circulation and cytoadhere to endothelial linings of tissues such as the liver. 

Hepatocytes are the main source of SAP synthesis (Koj, 1974) and it was thought that 

perhaps the sequestration of the parasite to the liver, resulting in a localised immune 

response, may induce SAP production. However, it appears sequestration does not 

significantly enhance the production of SAP because P. vinckei does not undergo 

sequestration but the level of SAP production during a P. vinckei infection is similar to 

that induced by a P. chabaudi infection. P. falciparum  infection in humans results in 

elevated CRP levels (Gillespie et al., 1991) and taken with the observations made from 

the three rodent malarial infections reported here, demonstrate that blood-stage malaria 

infection induces a systemic acute phase response.

The actual biological role of APR during blood-stage malaria infection is unclear. 

Isolation of SAP from immune serum allowed the investigation of any direct anti

parasite effect. The addition of murine SAP, at a concentration which is found in the 

serum of mice at peak parasitaemia, to P. falciparum  cultures, inhibited parasite 

development. However, no effect on the growth of P. chabaudi in vitro was observed in 

terms of the uptake of tritiated hypoxanthine. The lack of growth inhibition mediated by 

SAP against P. chabaudi, although disappointing, may actually give an insight into the 

mechanism of inhibition of P. falciparum  growth. The normal culture conditions for
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Figure 4.3. SAP was assayed in the scrum of mice infected with 1x10  ̂
pRBCs of P. berghei. Serum was collected from 3 mice at each timepoint 
and each serum sample was assayed in triplicate. Control mice were 
non-infected and serum was collected from two mice at each timepoint and 
assayed in triplicate. Each data point is the mean of all the results obtained 
for each group. SAP was elevated in the serum of mice infected with 
P. berghei until the time of death.
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p. falciparum, are not ideal for the growth of P. chabaudi in vitro. P. chabaudi has been 

shown to have a preference for young erythrocytes and the best growth rate has been 

obtained using 10% rat serum instead of foetal calf serum which was used in this study 

(McNally, O'Donovan and Dalton, 1992). Furthermore, it has been reported that 

although schizogony does occur in P. chabaudi in vitro cultures, only a small proportion 

of merozoites re-invade and produce new rings (Sohal and Amot, 1993). The growth 

rate of P. chabaudi was determined by tritiated hypoxanthine incorporation in this study 

but it has been shown that most of the uptake of this tracer occurs during the early phase 

of development and in fact the rate of incorporation decreases as schizogony commences 

(Newbold et al., 1982, Sohal and Arnot, 1993). Therefore, if SAP mediated growth 

inhibition occurs during schizogony and release of merozoites, this would not be 

reflected by the determination of tritiated hypoxanthine uptake because the incorporation 

of the tracer would occur earlier in the parasites growth cycle. P. falciparum  completes 

its life cycle under in vitro conditions and readily goes through schizogony allowing 

continuous culture (growth of P. falciparum in vitro is asynchronous). Hence, the 

inhibition of SAP may occur during schizogony when SAP has easier access to the cell. 

Even though SAP, at 230kDa, is a large glycoprotein it may enter the erythrocyte via 

endocytosis or a parasitophorous duct (J. Kusel, personal communication). The other 

possibility is that SAP may interfere with the invasion of the merozoite into the 

erythrocyte. CRP has been shown to bind to merozoites (Pied et al., 1989) and can 

interfere with the sporozoite invasion of hepatocytes by masking important binding sites. 

SAP may prevent merozoite invasion of erythrocytes by either binding to the merozoite, 

probably in a calcium dependent manner or by masking important receptors on the 

erythrocyte because SAP has been shown to bind to complement coated erythrocytes 

(Hutchcraft er «/., 1981).

During P. chabaudi infection (and P. falciparum infection), the parasites undergo deep 

tissue schizogony in the liver. The merozoites released may be vulnerable to a high local 

concentration of SAP which may inhibit re-invasion of erythrocytes by merozoites. The
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Figure 4.4. The effect of SAP on the growth of P. falciparum in vitro. 
SAP was isolated from the serum of P. chabaudi infected mice was added 
to in vitro cultures of P. falciparum at the concentrations shown. 
Chloroquine (CLQ) was used as a control indicating parasite killing. SAP at 
5mg/ml,which is a concentration found in the serum of mice at peak 
parasitaemia, significantly 'mbihiicàP. falciparum growth (p< 0.0003),
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possible direct inhibition of parasite growth mediated by SAP requires further 

investigation. Induction of the acute phase response and hence, elevated APR levels 

prior to infection with P. chabaudi, would determine if SAP is involved in controlling 

the primary parasitaemia but it would be difficult to elucidate if this was a direct or 

indirect mechanism mediated by SAP.

SAP may be involved in the response to P. chabaudi infection indirectly through the 

activation of several different protective mechanisms of the immune system. 

Macrophages have an important role in the immune response to malaria infection through 

their ability to present antigen, phagocytose parasitised erythrocytes and secrete various 

inflammatory mediators. SAP has been reported to activate macrophages, enhancing IL- 

1 production (Sarlo and Mortensen, 1985) and increasing the bactericidal activity of 

elicited, inflammatory macrophages (Singh et a l, 1986). Therefore, elevated production 

of SAP during malaria infection may inhibit the growth of the parasite throughout the 

activation of macrophage-mediated responses. The interaction between macrophages and 

the synthesis of APR is important because the macrophage is the major source of the 

inflammatory mediators such as lL-1 and lL-6 which induce the production of APR. 

Hence, activated macrophages will secrete products which induce APR synthesis, which 

in turn further activate macrophages creating a response which depends upon the 

constant stimulation of macrophages. Depletion of macrophages during a primary P. 

chabaudi infection (Chapter 3) demonstrated that the macrophage appears to be important 

in controlling the primary patent parasitaemia which is when the peak production of SAP 

occurs. It would be interesting to repeat the depletion of macrophages during the course 

of a P. chabaudi infection and monitor the effect this has on the production of SAP. The 

effect of Kupffer cell depletion on macrophage-derived molecules such as NO, would 

also have to be examined.

Acute phase reactants have been shown to modulate neutrophil function (Butcha et al., 

1987) with enhanced chemotaxis and phagocytosis by neutrophils following in vitro

9 2



SAP O.lmg/ml

Clq 0. l/<g/ml -

SAP 0.5mg/ml -

Clq l/fg/ml -  4

SAP Img/ml

Clq 10/<g/ml -

SAP 5mg/ml 

Med -■

Parasites -
I

500 1000 1500 2000 2500 3000

Tritiated Hypoxanthine Incorporation (cpm)

Figure 4.5. The effect of SAP on the growth of P. chabaudi in vitro . 
Isolated SAP was added tom vZ/rc? cultures of P. chabaudi freshly obtained 
from an infected mouse, at the concentrations shown. Chloroquine (Clq) 
was used as a control of parasite killing. SAP had no effect on the growth 
of P. chabaudi in vitro
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stimulation with CRP. Neutrophil activation has been reported during severe malaria 

infection (Mohamed et al., 1996) and neutrophils can kill P. falciparum in vitro by a 

phagocytic mechanism (Celada, Cruchaud and Perrin, 1984). Hence, APR modulation 

of neutrophil function during a malaria infection may result in increased parasite killing 

through phagocytosis.

The evidence for an important role for complement in immunity to blood-stage malaria 

infection is conflicting. During acute phase infections complement levels have been 

reported to decrease (Greenwood and Brueton, 1974) and in vitro studies have 

demonstrated monocyte- and neutrophil-mediated phagocytosis of P. falciparum  

parasitised erythrocytes is independent of complement (Celada, Cruchaud and Perrin, 

1984). However, another study reported that phagocytosis of P. falciparum in vitro was 

facilitated by complement (Schwarzer et al., 1992) and required the presence of 

complement (Salmon et al., 1986). SAP can activate complement by binding to C lq 

(Ying et a i, 1993) and it has also been shown to bind to C4-binding protein (De Beer et 

a l,  1981) and C5b6 (Barbashov, Wang and Nicholson-Weller, 1997). The production 

of APR may be involved in the protective immune response through the activation of the 

complement cascade which may be involved in the development of protective immunity 

to the erythrocytic stages of malaria infection.

One of the main mechanisms through which SAP could influence the response to malaria 

infection is by exerting an immunomodulatory effect on various cells of the immune 

system. The studies reported here indicate that SAP has the ability to modulate the 

responses of both T cells and B cells because the proliferative response of splenocytes to 

the T cell mitogen, Concanavalin A, was inhibited following treatment with SAP. 

Furthermore, the proliferation of splenocytes in response to LPS stimulation was 

enhanced following the addition of SAP. These observations confirm earlier reports 

investigating the effect of SAP on T cells (Levo and Wollner, 1985, Li et al., 1984) 

where SAP was found to inhibit T cell responses to Concanavalin A and the
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Figure 4.6. The effect of SAP on the proliferative responses of 
splenocytes. Isolated SAP (Img/ml) was added to splenocytes harvested 
from naive mice. The cultures were stimulated with Concanavalin A (ConA)
or LPS (both at 5pg/ml). SAP inhibited the proliferative response to Con A 
(p< 0.001) but actually enhanced the response of splenocytes to LPS (p< 
0.004).
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proliferative responses of human peripheral blood m ononuclear cells to 

phytohaemagglutinin. These observations suggest that APR may exert an 

immunosuppressive effect on T cell responses. Splenocytes isolated from mice at peak 

parasitaemia of a P. chabaudi infection, display a suppressed response to T cell mitogens 

(Bernadette et a i, 1996). This coincides with peak production of SAP and suggests that 

the elevated levels of SAP may suppress T cell responses perhaps as a regulatory 

mechanism to dampen inflammatory responses which may be involved in the pathology 

associated with severe infection.

The immunosuppressive effect exerted on T cells by SAP, may not extend to B cells 

because addition of SAP to splenocytes, enhances the proliferative response to the B cell 

stimulant, LPS. Furthermore, SAP has been shown to suppress antibody responses in 

vitro to T cell dependent antigens (Sarlo and Mortensen, 1987). Another possible link 

between antibody production and SAP comes from the studies reported later (Chapter 5) 

on P. chabaudi infection of IL-6 gene deficient mice. As already mentioned, IL-6 is one 

of the main inducers of APR production (Heinrich, Castell and Andus, 1990) and 

subsequently, IL-6 deficient mice have an impaired acute phase response (Kopf et a l, 

1994). During the course of a P. chabaudi infection, the normal production of SAP is 

absent and this correlates with an extension of the primary parasitaemia and a reduced 

humoral response to the infection in the IL-6 deficient mice. Therefore, it is possible that 

the absence of SAP production and subsequent loss of its immunosuppressive effect, 

may result in a delay in reaching the required level of humoral response which is 

necessary for parasite clearance after the peak of the primary parasitaemia. However, it 

must be noted that the IL-6 deficient mice still cleared the P. chabaudi infection 

indicating that the role of SAP, if any, during immunity to this experimental infection is 

a minor one.

The work presented here demonstrates that experimental infection of mice results in the 

systemic production of APR, namely SAP and that this acute phase protein may have a
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direct inhibitory effect on the development of malaria parasites. SAP also has the 

potential to be an important immunoregulatory molecule which may influence the 

immune response to malaria infection.
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Chapter Five

Course of P. chabaudi infection in IL-6 defîcient mice.
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Introduction

IL-6, a glycoprotein of 20-30 kDa, is a pleiotropic cytokine produced by many cell 

types including monocytes/macrophages, endothelial cells, T cells and B cells (Akira, 

Taga and Kashimoto, 1993). Although it is the major stimulus of acute phase 

production (Gauldie et al, 1987, Andus et al, 1987), IL-6 is also important for the 

growth of B cells (Akira, Taga and Kashimoto, 1993) and can act on mitogen- 

activated B cells to induce IgM, IgG and IgA production without stimulating B cell 

proliferation (Muraguchi et al, 1988, Beagley et al, 1989). T cell activation, growth 

and differentiation are all regulated partially by IL-6, including the proliferation of 

peripheral T cells and differentiation of CTLs (Takai et al, 1988, Okada et al, 1988, 

Renauld, Vink and van Snick, 1989). IL-6 may achieve these activities by converting 

T cells to an IL-2 responsive state through the upregulation of IL-2 receptor expression 

and inducing IL-2 production by T cells (Noma et al, 1987, Le et al, 1988, Garman et 

a l,  1987, Houssiau et al, 1988). Hence, IL-6 can induce IL-2 secretion and 

proliferation of T cells directly, bypassing the requirement of expression of co

stimulatory molecules by antigen presenting cells (Kasahara et al, 1990, Lorre et al,

1990). It is a possibility that IL-6 may be a co-stimulatory factor when a macrophage 

is acting as an antigen presenting cell. Macrophage phagocytosis and expression of a 

number of macrophage differentiation antigens can be enhanced by IL-6 (Akira, Taga 

and Kashimoto, 1993, Shabo e ta l ,  1988, Lotem, Shabo and Sachs, 1989). In general, 

cells require stimulation to produce IL-6. LPS and IFN-y can induce IL-6 production 

by monocytes (Helfgott et al, 1987, Leeuwenberg et al, 1990). EL-1 and TNF can 

also induce IL-6 production (Kohase et al, 1986, Van Damme et al, 1987) but IL-6 

cannot induce IL-1 or TNF production. Indeed, IL-6 can suppress endotoxin induced 

EL-1 and TNF production by macrophages (Aderka, Le and Vilcek, 1989, Schindler et 

al, 1990). Signal transduction pathways for the expression of IL-6 appear to involve 

protein kinase C and adenylate cyclase following induction by IL-1 or TNF (Zhang,
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Lin and Vilcek, 1988, Sehgal, Walther and Tamm, 1987). Dexamethasone and other 

glucocorticoids can markedly suppress the production of IL-6 (Helfgott et a l, 1987): 

suppression occurs at both transcriptional and post-transcriptional levels.

IL-6 is involved in haematopoiesis, the inflammatory response, bone metabolism and 

can exert an influence on neuronal cells (Akira, Taga and Kashimoto, 1993). The 

activity of NK cells can be enhanced by IL-6 stimulation (Luger et a l, 1989). IL-6 

induced production of acute phase proteins (APP) by hepatocytes is well established 

(Gauldie et a l, 1987, Andus et a l, 1987). The actual biological function of many of 

the acute phase proteins remains unclear. Several cytokines can synergise with IL-6 to 

induce acute phase protein production, including IL-1, IL-11, TN F-a and TGF-P 

(Akira, Taka and Kashimoto, 1993). IL-6 is also involved in the control of body 

temperature. It can act directly on the anterior hypothalamus altering the 

thermoregulatory set-point probably via the induction of PGEg sy n th es is  

(Kwiatkowski, 1995). This has obvious importance during a malarial infection where 

TNF, IL-1 and IL-6 are attributed with mediating/regulating the fever associated with 

schizont rupture. Although IL-6 appears to be a pro-inflammatory cytokine, anti

inflammatory activities have also been reported. IL-6 has been shown to inhibit TNF 

production and may have a role in a negative feedback mechanism which can inhibit 

endotoxin initiated, cytokine mediated acute inflammation (Ulich et a l, 1991).

Elevated levels of IL-6 have been detected in the serum of patients presenting with 

severe P. falciparum infection (Kern et a l, 1989). The levels correlate with parasite 

density and high serum TNF levels (Kern et a l, 1989). Soluble IL-6 receptor levels 

were raised in children with severe P. falciparum  and appear to be a sensitive marker 

of cerebral malaria in conjunction with IL-6 serum levels (Jakobsen et a l, 1994). It 

has been suggested that elevated IL-6 levels may be related to 

hypergammaglobulinaemia observed in malaria (Grau et a l, 1990). The ability of IL-6
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to inhibit hepatic gluconeogenesis (Hill, Stith and McCallum, 1990) may contribute to 

the hypoglycaemia observed during malarial infection (Clark et al, 1981).

Whilst research concerning the cause of fever during a malaria infection has centred 

on the TNF inducing abilities of parasitised erythrocytes or supernatants from in vitro 

cultures (Taverne et al, 1990a, Taverne et al, 1990b), it has been shown that the same 

crude extracts can also induce IL-6 production by monocytes (Jakobsen et al, 1993). 

In vitro experiments have illustrated that IL-6 can inhibit the development of exo- 

erythrocytic stages of parasites directly or indirectly (Pied et al, 1992, Nussler et al, 

1991b). This has also been shown in vivo in rats infected with P. berghei (Vreden et 

al, 1995). IL-6 levels were raised in rats resistant to P. berghei infection compared 

with a susceptible strain of rat.

A protective role for IL-6 during experimental human malaria has been suggested. 

Immunized volunteers, receiving irradiated P. falciparum sporozoites, were protected 

from a subsequent P. falciparum challenge (Harpaz et al, 1992). IL-6 was the only 

cytokine measured where a significant rise from background levels was observed. 

IFN-y, CRP, soluble CD8 and soluble IL-2 receptor were all raised in non-vaccinated 

individuals who all developed parasitaemia following a P. falciparum sporozoite 

challenge. It is interesting to note the absence of detectable CRP levels in the protected 

individuals suggesting that IL-6 may be involved at local level during first exposure to 

the infection but when individuals are vaccinated and then challenged the role of IL-6 

may be to generate a specific humoral response. Serum analysis of individuals during 

the vaccination process may give an indication of the mechanisms which result in 

mediating protection against a live sporozoite challenge and elucidate the role of IL-6 

during both responses.

Mice deficient in IL-6 production develop and breed normally (Kopf et al, 1994). The 

numbers of thymocytes and peripheral T cells are reduced when compared with
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controls but they were shown to have normal expression levels of characteristic T cell 

markers (Kopf et al, 1994). B cell functions in the IL-6 deficient mice were deficient 

in response to infection with vesicular stomatitis virus (Kopf e ta l ,  1994). IgG 

production and mucosal IgA responses were reduced in IL-6 deficient mice but IgM 

responses were normal. Reduced generation and activity of cytotoxic T cells were 

demonstrated by inefficient control of vaccinia virus by IL-6 deficient mice (Kopf et 

al, 1994). IL-6 deficient mice are more susceptible, than intact control mice, to 

Listeria monocytogenes (Kopf et al, 1994, Dalrymple et al, 1995), Candida albicans 

(Romani et al, 1996), Escherichia coli infection (Dalrymple et al, 1996), and have 

impaired resistance to the development of toxoplasmic encephalitis (Suzuki et al, 

1997). However, efficient immunity to Leishmania major infection develops in IL-6 

deficient mice (Moskowitz, Brown and Reiner, 1997) demonstrating that IL-6 

deficient mice mount an effective CD4+ Thl T cell response which mediates 

protective immunity to L. major infection (Locksley et al., 1993) through the 

activation of macrophages to produce NO (Liew et al,  1990). The IL-6 deficient mice 

produce comparable levels of IFNy in lymph nodes to that of control mice following L. 

major infection (Moskowitz, Brown and Reiner, 1997) but reduced IFNy production 

in the brains of T. gondii infected IL-6 deficient mice was observed (Suzuki et al, 

1997). This suggests that IL-6 may have different functions depending upon the site of 

the inflammatory response. Impaired recruitment of inflammatory cells to the brains of 

T. gondii infected IL-6 deficient mice may be a consequence of reduced IFNy 

production due to the absence of IL-6 (Suzuki et al, 1997).

One of the main detrimental effects of the absence of IL-6 during the response to an 

infection is a reduced peripheral blood neutrophilia. This has been observed following 

infection with E. coli (Dalrymple et al, 1996), C. albicans (Romani et al, 1996), L. 

monocytogenes (Dalrymple et al, 1995) and has been proposed as a possible 

deficiency in the inflammatory response to T. gondii (Suzuki et al, 1997). However, 

the inefficient neutrophilia resulting from the absence of IL-6 appears to be
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inconsequential to the control of L. major infection (Moskowitz, Brown and Reiner, 

1997).

As already mentioned above, IL-6 is involved in the immune response to the 

intrahepatic stages of malaria (Pied et al., 1992). Elevated levels of IL-6 have been 

observed in P. falciparum infected individuals but the actual role of IL-6, if any, 

during the erythrocytic stages of infection, is unclear. Hence, IL-6 deficient mice were 

used to investigate the role of IL-6 in immunity to P. chabaudi infection.

Results

The course of P, chabaudi infection in IL-6 deficient mice

Inbred IL-6 deficient mice on a 129SVJ background and inbred intact control mice 

(129SVJ) were infected with either 1x10^ pRBCs or 2x10^ pRBCs of P. chabaudi AS. 

Each group consisted of six mice and the parasitaemia was observed daily by 

microscopic examination of Giemsa's stained thin blood smears collected from the tail. 

IL-6 deficient mice receiving 1x10^ pRBCs of P. chabaudi consistently had a lower 

peak parasitaemia compared with control mice (Figure 5.1), although the difference 

was never statistically significant. A small but significant extension to the primary 

patent parasitaemia was observed in the IL-6 deficient mice (Figure 5.1). Infection of 

the IL-6 deficient mice with the higher challenge dose of 2x10^ pRBCs of P. chabaudi 

(Figure 5.2), abrogated the suppression of the peak parasitaemia observed following 

infection with the lower dose of 1x10^ pRBCs, but the significant extension of the 

primary patent parasitaemia remained in the IL-6 deficient mice (Figure 5.2). The 

appearance of recrudescent parasites in both the IL-6 deficient mice and control mice 

was inconsistent.
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Figure 5.1. The course of infection in IL-6 deficient mice (IL-6 -/-
129SVJ) and control mice (129SVJ) following inoculation with 1x10 ^ 
pRBCs of P. chabaudi. The parasitaemia is the mean of six mice.
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Total IgG production in IL-6 deficient mice during P. chabaudi infection

Total IgGl and IgG2a production was determined in the serum of IL-6 deficient mice 

during P. chabaudi infection. Both IL-6 deficient mice and intact control mice 

received either 1x10^ pRBCs or 2x10^ pRBCs of P. chabaudi AS. Three mice in each 

group were sacrificed at various time points and serum was collected, pooled and 

assayed for the production of total IgGl and IgG2a by the protocol described (see 

Materials and Methods). Following infection with either 1x10^ pRBCs (Figure 5.3) or 

2x10^ pRBCs (Figure 5.4) of P. chabaudi, production of both total IgGl and IgG2a 

was delayed and reduced compared to control mice.

The production of parasite-specific IgG in IL-6 deficient mice during P. chabaudi 

infection

Parasite-specific IgG production in the serum of IL-6 deficient mice and control mice 

was determined following infection with 1x10^ pRBCs or 2x10^ pRBCs of P. 

chabaudi AS by the indirect fluorescent antibody test (IFAT) described in Materials 

and Methods. Serum was collected from 3 mice via the tail vein at the time points 

indicated and assayed for the production of parasite-specific IgG. No significant 

differences were observed between the two groups in terms of parasite-specific IgG 

produced in the serum following infection with either 1x10^ pRBCs or 2x10^ pRBCs 

of P. chabaudi (Tables 1 and 2).

Ex vivo analysis of the response of splenocytes taken from IL-6 deficient mice 

during P. chabaudi infection

IL-6 deficient mice and intact control mice were infected with 1x10^ pRBCs of P. 

chabaudi AS. Three mice from each group were sacrificed at the various time points 

indicated. Splenocytes were harvested and pooled from the three individual mice of

105



G 4 “
COCd
o

K
Cccocc_ou
_o

s

20 30 5010 4 0 600

days post in lection

IL-6 - I -  129SVJ 

■O  129SVJ

Figure 5.2. The course of infection in IL-6 deficient mice (IL-6 -/-
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pRBCs of P. chabaudi. The parasitaemia is the mean of six mice.

106



each group in vitro at 5x10^ cells/ml and stimulated with Concanavalin A (Con A) or 

LPS (both at l|Xg/ml). The proliferative response of the splenocytes was determined by 

the incorporation of tritiated thymidine. Splenocytes taken from non-infected IL-6 

deficient mice and control mice had similar proliferative responses to Con A and LPS 

stimulation (Figure 5.5). Splenocytes from IL-6 deficient mice at days 4 and 8 post 

infection had a greater proliferative response to both Con A and LPS compared with 

splenocytes from control mice (Figure 5.5). On day 15 post infection splenocytes from 

the control mice had an enhanced proliferative response to Con A compared to 

splenocytes from IL-6 deficient mice. Both groups displayed a suppressed response to 

Con A stimulation on day 11 post infection (Figure 5.5). No parasite-specific 

proliferation was observed for splenocytes from either the IL-6 deficient mice or 

control mice (data not shown).

Cytological analysis of cells present in the spleen and liver of IL-6 deficient mice 

during P. chabaudi infection

Cytological analysis was performed on leukocytes extracted from the spleen and liver 

of both IL-6 deficient mice and control mice during P. chabaudi infection. IL-6 

deficient mice and control mice were infected with 1x10^ pRBCs of P. chabaudi. 

Three mice were sacrificed at the time points indicated, the leukocytes were extracted 

from the liver and spleen of individual mice and then pooled to give leukocytes 

extracted from either the liver or spleen for each group. Cytological analysis was 

performed as described in Materials and Methods and the results expressed as number 

of cells present per spleen or liver. It was observed that there was a delay in reaching 

peak numbers of lymphoid cells in the spleens of IL-6 deficient mice (Figure 5.6) but 

the monocyte and polymorphonuclear (PMN) cell numbers were similar in both 

groups. The data obtained from the liver is incomplete and therefore no definite 

conclusions can be made but there appears to be a trend of reduced monocyte and
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Figure 5.3. Total IgGl, A) and total lgG2a, B) production were 
determined in the serum of lL-6 deficient mice and control mice following
inoculation with IxlO^pRBCS of P. chabaudi. SQXum from three mice was 
analysed individually for both groups, in triplicate and the mean ± SD 
antibody level was calculated.
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PMN cells present in the liver during the early phase of infection (Figure 5.6) in the 

IL-6 deficient mice.

SAP production in IL-6 deficient mice during P. chabaudi infection

SAP production was determined in the serum of IL-6 deficient mice and control mice 

following infection with either 1x10^ pRBCs or 2x10^ pRBCs of P. chabaudi. Serum 

was collected from three mice via the tail vein at the time points indicated and assayed 

for SAP production individually. SAP production in the IL-6 deficient mice following 

infection with either dose of P. chabaudi did not rise significantly above background 

levels (Figure 5.7). In the control mice peak production of SAP coincided with the 

peak of the primary parasitaemia (Figure 5.7).

Discussion

The role of IL-6 during P. chabaudi infection appears to be a minor one. Infection of 

mice deficient in IL-6 production with 1x10^ pRBCs of P. chabaudi, consistently 

resulted in a lower peak parasitaemia when compared with wild type mice. Therefore, 

this result suggests that IL-6 is not involved in the control of the primary patent 

parasitaemia but may have a regulatory or negative role to play. The removal of IL-6 

production from the repertoire of the immune response creates an imbalance in the 

cytokine network, resulting in B cell and T cell deficiencies and impaired acute phase 

protein production (Kopf et a l, 1994). The lower peak parasitaemia observed in the 

IL-6 deficient mice suggests that there is an increase in parasite killing. IL-6 is capable 

of down-regulating TNF production by monocytes and hence could result in a 

suppression of inflammatory responses mediated by macrophages in response to 

malarial antigens. The absence of IL-6 in vivo during P. chabaudi infection may result 

in an increase in synthesis of macrophage products which have been linked with 

parasite killing. The increased proliferative response of splenocytes from IL-6
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deficient mice suggests greater T cell activation which may be responsible for the 

increased stimulation of macrophages to produce inflammatory products such as TNF, 

NO and IL-12 which have been implicated in the control of the primary patent 

parasitaemia (Stevenson et a l, 1995). The IL-6 deficient mice do not suffer from 

endotoxic shock, unlike IL-10 deficient mice which succumb to overproduction of 

inflammatory mediators following P. chabaudi infection (Linke et a l, 1995). Hence 

IL-6 is not the main down-regulator of the macrophage mediated inflammatory 

response, indeed evidence suggests that IL-10 may fulfil this role (Moore et a l, 1993). 

Depletion of macrophages during P. chabaudi infection results in an exacerbation of 

the primary peak parasitaemia (see Chapter 3). This illustrates that the macrophage has 

an important function in the control of the peak parasitaemia confirming that down- 

regulation of macrophage mediated inflammatory responses will result in an increase 

in the number of parasites at peak parasitaemia. Therefore it is feasible to suggest that 

the removal of the negative feedback mechanism mediated by IL-6 may result in an 

increase in the production of inflammatory products like TNF, IL-1 and NO by 

macrophages, leading to an increase in parasite killing. However the increase in 

parasite killing does not significantly reduce the peak of the primary parasitaemia 

which implies that the importance of the proposed negative feedback mechanism 

mediated by IL-6 is minor and probably secondary to IL-10 mediated suppression of 

inflammatory responses.

Another possible explanation of the lower peak parasitaemia observed in the IL-6 

deficient mice could be related to the ability of IL-6 to alter body temperature 

(Kwiatkowski, 1995). Fever is a well documented symptom of a malarial infection. It 

has been suggested that although fever is distressing to the infected individual, the 

change in body temperature may interfere with parasite development because malarial 

parasites have optimal temperatures for growth (Kwiatkowski, 1989). During malaria 

infection in mice, the body temperature actually decreases and it is unclear how this 

process actually occurs. Fever in humans has been correlated with schizont rupture and
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Days post 
infection

Group

IL-6 -/- 129SVJ 129SVJ

0
4 - -

7 - -

10 100 100
14 500 500
17 1000 1000
20 1000 1000
24 1000 1000
31 1000 1000
38 1000 1000
45 1000 1000

Table 1. Parasite-specific IgG production in IL-6 deficient mice and control mice 
following inoculation with 1x10^ pRBCs of P. chabaudi. Serum from three mice was 
pooled and the level of parasite-specific IgG was determined by indirect fluorescence. 
Results are the mean of three samples and are expressed as the reciprocal of antibody 
titre.

Days post Group
infection

IL-6 -/- 129SVJ 129SVJ

0
4 - -

7 - -

10 - 500
14 100 500
17 1000 500
20 500 500
24 1000 1000
31 500 500
38 1000 500
45 1000 1000

Table 2. Parasite-specific IgG production in IL-6 deficient mice and control mice 
following inoculation with 2x10^ pRBCs of P. chabaudi. Serum from three mice was 
pooled and the level of parasite-specific IgG was determined by indirect fluorescence. 
Results are the mean of three samples and are expressed as the reciprocal of antibody 
titre.

Note: Range of samples analysed was 1:50 - 1:1000.
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the production of endogenous pyrogens, TNF, DL-1, and IL-6 (Kwiatkowski, 1995). It 

is possible that the removal of IL-6 production during P. chabaudi infection results in 

the temperature of IL-6 deficient mice being different to that of the normal intact 

control mice. This may mean that the body temperature of the IL-6 deficient mice is 

not optimal for the growth of the parasite and results in a slightly decreased peak 

parasitaemia.

Immunity to P. chabaudi in mice is regarded as a sequential Thl/Th2 mediated 

response. Following a challenge with 1x10^ pRBCs, IL-6 deficient mice had a slower 

rate of parasite clearance when compared with controls. To analyse if this slower 

clearance of the patent parasitaemia could be attributed to a delay in the switch from 

Thl to Th2 T cell mediated responses, the mice were challenged with 1x10^ and 

2x10^ pRBCs. It was possible that the IL-6 deficient mice receiving the 1x10^ pRBCs, 

had a reduced parasite load at peak parasitaemia compared with controls. Hence, there 

was less stimulation of effector mechanisms which would result in a slower clearance 

of parasites. This theory was shown to be incorrect because the IL-6 deficient mice, 

when challenged with 2x10^ pRBCs had approximately the same peak parasitaemia as 

control mice. Therefore the antigen load and stimulation of the effector mechanisms 

involved in the clearance of parasites was the same in both groups of mice but the IL-6 

deficient mice still had a slower rate of clearance of the primary patent parasitaemia.

Increasing the challenge of inoculation appears to have abrogated the reduction in the 

peak parasitaemia observed in the IL-6 deficient mice. The beneficial effect during the 

peak parasitaemia attributed to the absence of IL-6 production may be lost due to the 

increased growth rate of the parasite and a greater antigen load. The resultant increase 

in the production of inflammatory products may stimulate compensatory, down- 

regulating mechanisms, hence reducing the rate of parasite killing. The increase in the 

parasite challenge and consequently parasite growth rate, overrides the mechanism 

which results in a reduction in the peak parasitaemia when IL-6 production is absent.
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Figure 5.5. The proliferative response of splenoeytes from lL-6 
deficient miee and control mice harvested following inoculation with
1x10^ pRBCs of P. chabaudi. Three miee from both groups were sacrificed 
and the splenoeytes were pooled within each group and stimulated with 
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The extension of the primary parasitaemia observed in the IL-6 deficient mice is 

associated with a delay and reduction of total IgGl and IgG2a and an absence of acute 

phase protein production. The role of IL-6 in the maturation of B cells is well 

established and a deficiency in this process may explain the slower rate of parasite 

clearance as both IgGl and IgG2a have been shown to be involved in immunity during 

a malarial infection (Troye-Blomberg, Berzins and Perlmann, 1994, Akanmori, Waki 

and Suzuki, 1994). However, there appears to be no significant reduction in the levels 

of parasite specific IgG produced in the IL-6 deficient mice during P. chabaudi 

infection although this data is subjective and requires further confirmation through the 

production of parasite-specific Ig isotypes. There is a reduced proliferative response of 

splenoeytes taken from IL-6 deficient mice at a time which coincides with the 

extension of the primary parasitaemia. It is possible that the reduced activation of T 

cells at this time may result in a reduction of the CD4+ Th2 T cell mediated assistance 

required to stimulate the production of the appropriate humoral response. Further 

investigation into the cytokine profiles of T cells at this time of infection would 

elucidate any deficiency in this process.

Administration of recombinant IL-6 to mice has been shown to boost anti-plasmodial 

IgG subtype production and suppress the secondary phase of P. chabaudi infection 

(Akanmori, Kawai and Suzuki, 1996). However, the absence of IL-6 does not 

conversely exacerbate the parasitaemia of P. chabaudi infection or reduce the 

production of parasite-specific IgG. Akanmori and colleagues (1996) proposed that IL- 

6 mediates the protective humoral response mounted during the secondary phase of P. 

chabaudi infection but in the studies performed here, the influence of IL-6, albeit a 

minor one, appears to be during the acute phase of infection. Inconsistent observations 

concerning the appearance of recrudescent parasites prevents any conclusions being 

made about the effect IL-6 absence has on the secondary phase of P. chabaudi 

infection.
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Figure 5.6. Cytological analysis of cells present in the spleen of IL-6
deficient mice and control mice following inoculation with 1x10 ^ pRBCs 
of P. chabaudi. Three mice from each group were sacrificed at each 
timepomt and the cells harvested were pooled and centrifuged. 500 cells 
were counted on each Geimsa's stained cytospin smear. Each data point is 
calculated from one smear and the number of A) lymphoid, B) monocyte 
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Acute phase protein production, indicated by the measurement of SAP, was impaired 

during P. chabaudi infection in the IL-6 deficient mice. This demonstrates that the 

stimulation of the production of acute phase reactants is mainly via IL-6. Malaria 

infection cannot override this deficiency, nor can it stimulate the production of these 

inflammatory products either directly or through a compensatory mechanism. An 

interesting point is that the peak of SAP production in the control mice occurs just 

after the clearance of the primary parasitaemia. The possibility exists that the absence 

of the production of SAP at this time in the IL-6 deficient mice may contribute to the 

decreased rate of parasite clearance. This could be through a direct inhibition of the 

growth of the parasite, as SAP is known to bind to erythrocytes, the host cell for 

Plasmodium parasites during the asexual cycle in mammals. The other option is that 

SAP production may be an important stimulatory step in the process leading to 

effective parasite clearance (see Chapter 4).

Further work is required on this experimental model to determine the compensatory 

mechanisms which result from the absence of IL-6 production. An imbalance in the 

cytokine network is created but it is unclear if there is a cytokine which can replace the 

functions of IL-6 or if overproduction of several cytokines compensates for the IL-6 

deficiency. Analysis of the response of splenoeytes during the peak parasitaemia and 

the remission of the primary patent parasitaemia to specific and non-specific antigens 

may reveal why the deficiency in the cytokine network results in a lower peak 

parasitaemia and reduced rate of parasite clearance observed in the IL-6 deficient 

mice.

IL-6 is a pleiotropic cytokine involved in many different areas of the immune 

response, bridging specific and non-specific protective mechanisms. It is possible that 

the diverse functions of IL-6 may contribute to the minor detrimental effect observed 

in IL-6 deficient mice during P. chabaudi infection. Efficient compensatory 

mechanisms are probably already functional in an immunocompetent host but in fact
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Figure 5.7. Cytological analysis of cells present in the liver of IL-6
deficient mice and control mice following inoculation with 1x10^ pRBCs 
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synergise with IL-6 to stimulate the required response under normal conditions. 

Therefore, the absence of IL-6 would result in an over-expression of the synergistic 

mechanisms which may explain the minor role for IL-6 observed in the experiments 

performed here. IL-6 deficient mice can mount efficient immunity to L. major 

infection (Moskowitz, Brown and Reiner, 1997) even though the macrophage, a major 

source of IL-6, has a pivotal role during leishmaniasis. However, the absence of IL-6 

results in increased susceptibility to L. monocytogenes (Kopf et a l, 1994) and E. coli 

infection (Dalrymple et al, 1996). The determining factor in the outcome of different 

infections in IL-6 deficient mice will be the influence IL-6 exerts on the definitive 

microbicidal mechanism. NO production is known to be the effector molecule of anti- 

parasitic activity during leishmaniasis (Liew et a l ,  1990), whereas, the identity of the 

microbicidal mechanism during malaria infection remains elusive. However, it is clear 

that the process is complex and involves innate and acquired immune responses. 

Hence, the outcome of a malaria infection may not be significantly altered by the loss 

of IL-6 production.
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Chapter Six

The course of P. chabaudi infection in IL-4 deficient mice
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Introduction

IL-4 is a 19 kDa glycoprotein, which has pleiotropic effects on various components of 

the immune response. The gene for IL-4 is found on chromosome 5 (human) or 

chromosome 11 (mouse) and is part of a cytokine complex which includes genes for IL- 

3, IL-5 and GM-CSF (Paul, 1991). IL-4 can influence several types of cells including B 

cells, T cells, monocyte/macrophages and mast cells and mediates its function by 

binding to a receptor expressed on the target cell. The receptor is a 140 kDa 

transmembrane protein (Mosley et a l, 1989, Idzerda et al., 1990) which is known to 

activate at least two distinctive pathways following interaction with IL-4 (Kaplan et al., 

1996). One involves the activation of Stat 6 (signal transducer and activator of 

transcription 6), which appears to be the critical pathway for mediating IL-4 induced 

responses in lymphocytes (Kaplan et al., 1996). The second pathway involves the 

phosphorylation of an insulin receptor substrate termed 4 PS which associates with 

phosphatidylinositol 3-kinase (Keegan etal., 1994).

IL-4, originally identified by its ability to induce B cell differentiation (Howard et al., 

1982) is essential for Ig class switching to IgGl production (Snapper and Paul, 1987a 

and 1987b) and is essential for the induction of IgE production (Snapper, Finkleman and 

Paul, 1988). Transgenic mice, which overexpress IL-4, have elevated levels of both IgE 

and IgG l (Tepper et a l ,  1990). IL-4 stimulation of B cells results in increased 

expression of MHC class II (Noelle et a i, 1984), IL-4 receptor (Ohara and Paul, 1988) 

and CD23, which is a low affinity IgE receptor (Conrad et a i,  1987). The influence of 

IL-4 extends beyond B cell functions. Increased expression of la antigen and MHC class 

I and II induced by IL-4 stimulation, can result in the enhancement of the ability of 

macrophages to present antigen (Zlotnik et al., 1987, Stuart et al., 1988). IL-4 has been 

shown to enhance the proliferation of precursors of cytotoxic T cells and differentiation 

into CTL (Widner and Grabstein, 1987, Trenn et a l, 1988) and it has been proposed
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that IL-4 may have a role in the development of the T cell repertoire within the thymus 

(Tepper a/., 1990).

One of the principal functions of IL-4 is the polarisation of the CD4+ T helper subsets. 

Th 1 CD4+ T cells secrete IFNy and TNpp whereas Th2 CD4+ T cells produce IL-4, IL- 

5 and XL-10 (Mosmann et al., 1986). The different subsets have been the focus of 

extensive research into their involvement in various mechanisms of the immune system 

and host defence responses. However, evidence is emerging that there is not such a clear 

definition of Thl and Th2 subsets, with some T cells secreting both sets of cytokines 

(Romagnani, 1996). The microenvironment can influence the polarisation of the CD4+ T 

cell response, with the presence of IL-4 early in the development being a potent stimulus 

for Th2 differentiation. Potential sources of rapid IL-4 production include a subset of 

CD4+ NK 1.1 cells or naive Th CD4+ T cells (Romagnani, 1997). As the activation of 

T cells increases, the production of IL-4 by naive Th cells would increase and reach a 

threshold level, polarising the differentiation of CD4+ T cells to the Th2 phenotype 

because IL-4 is capable of dominating the effeets of the other cytokines produced by 

naive Th cells (Romagnani, 1997).

The polarisation of the CD4+ Th subsets has been extensively investigated during 

infectious diseases, with IFNy and IL-4 reflecting the involvement of Thl and Th2 

mediated responses respectively. Hence, the role of IL-4 (and Th2 mediated responses) 

during infectious diseases has been analysed by anti-IL-4 treatment, addition of 

recombinant IL-4, detection of mRNA expression or protein secretion and more recently 

by the generation of IL-4 gene deficient mice.

Susceptibility to L. major infection in mice is associated with IL-4 production rather than 

IFN y (Reiner and Locksley, 1995). Depletion of IL-4 in susceptible mice by 

administration of anti-IL-4 antibody results in resistance to L. major (Sadick et al., 

1990). In contrast, IL-4 mediates a protective response to the gastrointestinal nematodes
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Heligmosomoides poly gyrus (Urban et a l ,  1991) and Trichuris muris (Else et a l ,

1994). Mouse strains which produce Th2 associated cytokines including IL-4 are 

resistant to T. muris infection whereas mice which produce T hl cytokines are 

susceptible (Else and Grencis, 1991, Else et a l, 1994). Treatment of susceptible mice 

with IL-4, induces Th2 mediated responses, preventing the establishment of a chronic T. 

muris infection and can also cure an established T. muris infection (Else et a l, 1994). 

Furthermore, IL-4 treatment of immunodeficient mice can cure established 

Nippostrongylus brazliensis infection (Urban e ta l,  1995).

The generation of IL-4 deficient mice has confirmed the results of studies where the role 

of IL-4 was examined previously by depletion of IL-4 by antibodies or addition of 

exogenous IL-4. The early production of IL-4 in Balb/c mice predisposes a susceptible 

phenotype to L. major infection and hence IL-4 deficient mice upon infection with L. 

major were found to be resistant with reduced Th2 responses (Kopf et a l ,  1996). 

Infection of IL-4 deficient mice with L. mexicana demonstrated that IL-4 is involved in 

down-regulating a protective Thl response as observed during L. major infection 

(Satoskar, Bluethmann and Alexander, 1995). IL-4 deficient mice are more susceptible 

than control mice during the initial phase of a T. gondii infection, where there is a rapid 

proliferation of tachyzoites, but have decreased pathology associated with chronic 

infection (Roberts et a l, 1996). Hence, IL-4 appears to have a protective role during the 

initial phase of a T. gondii infection, probably through down-regulation of inflammatory 

responses but the long-term effects of IL-4 are detrimental on the outcome of the 

development of protective mechanisms to bradyzoites, which encyst in tissues and 

initiate the chronic phase of infection. Immunocompetent mice can mount a protective 

immune response to a secondary H. polygyrus infection following drug cure of a 

primary infection (Urban et a l, 1992), unlike IL-4 deficient mice which are unable to 

reduce fecundity and expel adult worms during a secondary infection (Kopf et a l ,

1995).
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EL-4 and IL-5 are produced during Schistosoma mansoni infection in mice but only after 

an initial IFNy mediated Thl response (Paul, 1991). The sequential involvement of T hl/ 

Th2 mediated responses is also apparent in experimental malaria infection of mice with 

P. chabaudi. During a primary infection with P. chabaudi, Thl and Th2 cells appear 

sequentially during the course of infection (Langhorne et al., 1989) and CD4+ T cell 

clones isolated from mice at day 16 post infection and after clearance of a secondary P. 

chabaudi infection, which were of a Thl and Th2 subset respectively, were able to 

confer protection to an homologous challenge (Taylor-Robinson and Phillips, 1994b). 

These results imply that control of the acute phase of P. chabaudi infection is mediated 

by Thl responses, essentially antibody-independent mechanisms and that this is 

superceded by antibody-dependent Th2 mediated response which is important for 

parasite elimination. Early production of IL-4 correlates with susceptibility to a P. 

chabaudi infection (Jacobs, Radzioch and Stevenson, 1995), plus IL-4 appears to have 

no role in the protective response of mice to P. vinckei vinckei infection (Perlmann et 

al., 1995). Furthermore, IL-4 does not appear to be involved in anti-sporozoite 

immunity (White, Jarboe and Krzych, 1994) even though antibody-dependent 

mechanisms are thought to participate in a protective response (Nussenzweig et al., 

1967). Hence, IL-4 deficient mice have been used to examine the role of IL-4 and 

consequently Th2 mediated responses during experimental blood-stage malaria infection 

(von der Weid et al., 1994b, van der Hey de et al., 1997). Th2 associated cytokines (IL- 

5, IL-9 and IL-10 ) are reduced in the IL-4 deficient mice following N. braziliensis 

infection (Kopf et al., 1993) and IgE responses to the same nematode infection are also 

absent (Kuhn, Rajewsky and Muller, 1991).

IL-4 deficient mice have been used to investigate the role of IL-4 and IL-4 driven Th2 

responses to experimental malaria infection. The outcome of the previous investigations 

using IL-4 deficient mice infected with either P. chabaudi chabaudi AS, P. chabaudi 

adami or P. yoelii was that the absence of IL-4 has no significant exacerbating effect on 

the course of infection (von der Weid et al., 1994b, van der Heyde et al., 1997). In the
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studies described here infection of IL-4 deficient mice on three different backgrounds, 

one outbred (B6xl29) and two inbred (129SV and Balb/c) strains, with P. chabaudi 

chabaudi AS was performed in order to dissect the roles of Thl and Th2 mediated 

responses and complement the investigation of the outcome of malaria infection in mice 

lacking the receptor for the Th 1 associated cytokine, IFNy (see Chapter 7).

Results

The course of P. chabaudi infection in IL-4 deHcient mice

IL-4 deficient mice and corresponding intact control mice were infected with 1x10^ 

pRBCs of P. chabaudi AS. Mice of three different backgrounds with the disruption of 

the IL-4 gene were used, one outbred (B6xl29SV) and two inbred strains (129SV and 

Balb/c). Each group consisted of six mice and the parasitaemia was observed daily by 

microscopic examination of Giemsa's stained thin blood smears collected from the tail. 

P. chabaudi infection of IL-4 deficient B6xl29 mice resulted in a significant 

exacerbation at peak parasitaemia [p<0.04 at day 10 post infection] (Figure 6.1). The 

same result was observed following P. chabaudi infection of IL-4 deficient 129SV 

[p<0.002 at day 12 post infection] and Balb/c mice [p<0.0004 at day 9 post infection] 

(Figures 6.2 and 6.3 respectively). Clearance of the primary patent parasitaemia 

occurred at a similar rate in the IL-4 deficient mice (all three backgrounds) and the 

control mice. Recrudescent parasites appeared only in the IL-4 deficient 129SV mice 

(Figure 6.2). No data was obtained on the recrudescence parasitaemia for IL-4 deficient 

Balb/c mice because the course of infection was followed only for 20 days.
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Total IgG and IgE production in IL-4 deficient mice during P. chabaudi

infection

Total IgGl, Ig02a and IgE production was determined in the serum of IL-4 deficient 

mice during P. chabaudi infection. IL-4 deficient 129SV mice and control 129SV mice 

received 1x10^ pRBCs of P. chabaudi. Three mice in each group were sacrificed at 

various time points and serum was collected, pooled and assayed for the production of 

total IgGl, IgG2a or IgE by the protocol described (see Materials and Methods). Total 

IgGl was reduced in IL-4 deficient 129SV mice compared with control 129SV mice 

during the early phase of the primary parasitaemia (Figure 6.4). The level of total IgG2a 

production in the IL-4 129SV deficient mice was similar to that in the serum of control 

129SV mice (Figure 6.4). Neither IL-4 deficient 129SV mice nor control 129SV mice 

produced significant levels of total IgE (Figure 6.4).

The production of parasite-specific IgG in IL-4 deficient mice during P. 

chabaudi infection

Parasite-specific IgG production in the serum of IL-4 deficient 129SV mice and control 

129SV mice was determined following infection with 1x10^ pRBCs of P. chabaudi AS 

by the indirect fluorescent antibody test (IFAT) described in Materials and Methods. 

Three mice from each group were sacrificed at the time points indicated and serum was 

collected, pooled and assayed for the production of parasite-specific IgG. No significant 

differences were observed between the two groups in terms of parasite-specific IgG 

produced in the serum during P. chabaudi infection (Table 3).

1 2 8



A)

4 -

o

3 -

c .

S

o-H lD
0 50 7010 20 30 60

days post in fection

B )

IL-4 -/- 129SV  

129 SV

4 0

3 0 -

E
%
2
g. 2 0 -  

3
1 0 -

50 7020 30 4 0 600 10

days post in fection

Figure 6.2. The course of infection in inbred IL-4 deficient mice (IL-4 -/- 
129SV) and control mice (129SV) following infection with IxKP pRBCs 
of P. chabaudi. The mean log parasitaemia A), and percentage parasitaemia 
B), of six mice are presented.

129



Ex vivo analysis of the response of splenoeytes taken from IL-4 deficient 

mice during P. chabaudi infection

IL-4 deficient 129SV mice and intact control 129SV mice were infected with 1x10^ 

pRBCs of P. chabaudi AS. Three mice from each group were sacrificed at the various 

time points indicated. Splenoeytes were harvested and pooled from the three individual 

mice of each group, cultured in vitro at 5x10^ cells/ml and stimulated with Con A 

(Ip-g/ml). The proliferative response of the splenoeytes was determined by the 

incorporation of tritiated thymidine. Splenoeytes from non-infected IL-4 deficient 129SV 

mice and control 129SV mice had similar proliferative responses to Con A stimulation 

(Figure 6.5). Splenoeytes from both groups had similar responses to Con A stimulation 

during the course of P. chabaudi infection except for day 6 post infection where 

splenoeytes from IL-4 deficient 129SV mice had a reduced proliferative response 

[p<0.002] (Figure 6.5).

Cytological analysis of cells present in the spleen and liver of IL-4 

deficient mice during P. chabaudi infection

Cytological analysis was performed on leukocytes extracted from the spleen and liver of 

both IL-4 deficient 129SV mice and control 129SV mice following infection with 1x10^ 

pRBCs of P. chabaudi. Three mice from each group were sacrificed at the time points 

indicated, the leukocytes were extracted from the liver and spleen of individual mice and 

then pooled to give leukocytes extracted from either the liver or spleen for each group. 

Cytological analysis was performed as described in Materials and Methods and the 

results expressed as the number of cells present per spleen or liver. A small reduction in 

the numbers of lymphoid cells present in the spleen of IL-4 deficient 129SV mice was 

observed but both groups had similar numbers of monocytes and PMN cells present in 

the spleen (Figure 6.7). There was a reduction in the numbers of lymphoid, monocyte
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and PMN cells present in the liver of IL-4 deficient 129SV mice during P. chabaudi

infection (Figure 6.8).

Discussion

IL-4 deficient mice can control and clear a primary infection of P. chabaudi with similar 

efficiency to that of controls. However, a small but significant exacerbation of the peak 

of the primary patent parasitaemia was observed in the IL-4 deficient mice. This result 

was consistently observed in IL-4 deficient mice on three different backgrounds. The 

work reported here confirms previous studies (von der Weid et al., 1994, van der Heyde 

et a l, 1997) in that the presence of IL-4 is not essential for the efficient elimination of a 

patent erythrocytic stage malarial infection in mice.

The sequential involvement of Thl and Th2 associated cytokines and the related cell 

mediated immunity (antibody-independent) and antibody-dependent immunity during P. 

chabaudi infection is well documented (Langhorne et al., 1989, Taylor-Robinson and 

Phillips, 1992). The importance of IL-4 in the development of Th2 cells dictates that the 

absence of this Th2 associated cytokine during a P. chabaudi infection might result in a 

deficiency in the clearance of the parasites, a mechanism attributed to antibody mediated 

immunity (Meding and Langhorne, 1991, Stevenson and Tam, 1993). However, the 

studies presented here and elsewhere (von der Weid et al., 1994b, van der Heyde et a i, 

1997), using IL-4 deficient mice, contradict the proposed role for IL-4 in mediating Th2 

associated effector mechanisms thought to be involved in the elimination of blood-stage 

infection. Infection of IL-4 deficient mice with P. yoelii, resulted in no difference 

compared to control mice (van der Heyde et a l,  1997) even though immunity to P. 

yoelii is traditionally thought to be mainly antibody-dependent (Weinbaum, Evans and 

Tigelaar, 1976). Furthermore, in the studies reported here, an exacerbation of the 

primary patent parasitaemia was observed in the IL-4 deficient mice despite this phase of 

the P. chabaudi infection being thought to be predominately a Th 1 and IFNy mediated
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response (Langhorne et a i ,  1989, Taylor-Robinson and Phillips, 1992). Previously, 

infection of IL-4 deficient mice resulted in a sustained Thl response indicated by 

prolonged IFNy production and elevated XL-12 levels (von der Weid et a i ,  1994b). 

Analysis of cytokine production in the present studies, by splenoeytes in vitro, in the 

serum or mRNA expression, would indicate if there was a similar sustained Thl 

response. The exacerbation of the peak parasitaemia observed in the absence of IL-4 

suggests that the acute phase of P. chabaudi is not solely under the control of Thl 

mediated responses. However, the assumption that IL-4, although the main cytokine 

involved in the development of Th2 CD4^ T cells, is essential for Th2 mediated 

responses is now regarded unlikely, von der Weid and colleagues (1994b) demonstrated 

that despite the absence of IL-4 during P. chabaudi infection, other Th2 associated 

cytokines (IL-5, IL-6, IL-10) were still produced and that CD4^ T cells from the IL-4 

deficient mice were only delayed in their switch from the Thl to Th2 phenotype.

Infection of IL-4 deficient mice with P. chabaudi in the studies reported here and 

elsewhere (von der Weid et al., 1994b) demonstrate the importance of the humoral 

response to malaria infection because even in the absence of IL-4, compensatory 

mechanisms ensure that a protective humoral response is still induced albeit either 

reduced or delayed. Total IgGl levels were reduced in IL-4 deficient mice confirming 

previous reports (von der Weid et a l, 1994b) and a reduction in parasite-specific IgGl 

has also been documented (von der Weid et at., 1994b). These observations are not 

surprising because of the importance of IL-4 in class switching to IgGl production 

(Snapper and Paul, 1987a). It is interesting that IL-4 deficient mice did not have a low 

grade persistent parasitaemia which is observed in B cell deficient mice following a P. 

chabaudi infection (Taylor-Robinson and Phillips, 1994a). A sustained Thl mediated 

response, indicated by IFNy and IL-12 production (Taylor-Robinson and Phillips, 

1994a) and by the frequency of Thl CD4"  ̂T cells following limited dilution analysis 

(von der Weid and Langhorne, 1993) was observed in P. chabaudi infected B cell 

deficient mice. Concomitantly, a reduction in IL-4 was observed (von der Weid and
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Days post 
infection

Group 
IL-4 -/- 129SV 129SV

0 - -

6 100 -

10 100 100
13 1000 1000
15 500 1000
22 1000 1000

Table 3. Parasite-specific IgG production in IL-4 deficient 129SV mice and control 
129SV mice following inoculation with 1x10^ pRBCs of P. chabaudi. Serum from three 
mice was pooled and the level of parasite-specific IgG was determined by indirect 
fluorescence. Results are the mean of three samples and are expressed as the reciprocal of 
antibody titre.

Note: Range of samples analysed was 1: 50 - 1: 1000.
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Langhorne, 1993, Taylor-Robinson and Phillips, 1994a) and is probably a result of the 

loss of B cells as antigen presenting cells which may influence the development of CD4^ 

T cells towards Th2 differentiation and subsequently IL-4 production (Gajewski et a l, 

1991). A loss of B cell production of IL-10, a cytokine which can suppress Thl 

development (Moore et a l, 1993), would also result in a reduction of IL-4 production 

because the response would now have a Thl bias. However, the persistent patent 

parasitaemia observed in B cell deficient mice does not appear to be a consequence of the 

reduced Th2 associated cytokine production but is more likely due to the loss of the 

protective humoral response. IL-4 deficient mice efficiently clear a P. yoelii infection 

which is thought to induce antibody-dependent immunity (van der Heyde et al., 1997). 

Furthermore, P. chabaudi infection of IL-4 deficient mice results in a similar sustained 

Thl response as seen in the B cell deficient mice (von der Weid et al., 1994b) but there 

is a humoral response still induced in the IL-4 deficient mice and subsequently the IL-4 

deficient mice can efficiently control the infection unlike B cell deficient mice. These 

observations suggest that parasite elimination following the acute phase of a primary P. 

chabaudi infection, requires B cell production of parasite-specific antibodies whereas the 

involvement of IL-4 and Th2 mediated responses is not synomonous with antibody- 

dependent immunity. Evidence for this hypothesis is provided by the observation of an 

exacerbated P. yoelii infection in IFNy deficient mice (van der Heyde et al., 1997), 

which suggests that IFNy can contribute to antibody-dependent immunity. Hence, the 

chronic parasitaemia observed in B cell deficient mice can be attributed to the absence of 

the humoral response and not the failure to switch from Thl to Th2 mediated responses.

The reason why IL-4 deficient mice in this study have an exacerbated peak of the 

primary parasitaemia is unclear. It is most likely that the reduction in the humoral 

response, indicated by reduced levels of total IgG may contribute to this observation. 

Another possibility is that the alteration in the balance of cytokine interactions which 

regulate Thl/Th2 development caused by the absence of IL-4 may result in reduced anti

parasite immunity at this time of infection. IL-4 mediated induction of IgGl has been
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shown to be involved in the protection mediated by a Th2 CD4^ T cell clone to CD4^ T 

cell depleted mice upon challenge with P. chabaudi (Taylor-Robinson et a l, 1993). The 

reduction of IgGl in IL-4 deficient mice during the course of P. chabaudi infection may 

lead to a decrease in antibody-dependent cellular cytotoxicity (ADCC) which has been 

proposed to inhibit P. falciparum  growth in vitro (Brown and Smalley, 1980, Brown, 

Greenwood and Terry, 1986). An increase in ADCC has been reported in P. chabaudi 

infected mice (McDonald and Phillips, 1978a) and hence, the exacerbated peak of 

parasitaemia may be due to decreased IgGl mediated ADCC.

IL-4 does exert effects on the immune system outwith Th2 T cell development and 

stimulation of IgGl production. The stimulation of endothelial cells by IL-4, resulting in 

the enhanced adhesion of lymphocytes could explain, in part, the reduced numbers of 

lymphoid cells present in the liver of IL-4 deficient mice at peak parasitaemia. As 

previously discussed (see Chapter 3), lymphomyeloid cells present in the liver may be 

involved in a protective immune response at this point of a P. chabaudi infection. Hence, 

in the absence of IL-4, the reduced numbers of lymphomyeloid cells present in the liver 

may contribute to the exacerbated peak of parasitaemia observed in P. chabaudi infected 

IL-4 deficient mice.

The infection of IL-4 deficient mice with P. chabaudi demonstrates that either the 

requirement for IL-4 induction of Th2 mediated antibody-dependent immunity during a 

primary infection is of less importance than previously thought or that significant 

mechanisms compensate for the loss of IL-4 function. IL-10 or IL-13, alone or in 

combination, may replace IL-4 function and induce the required protective immunity 

during a malaria infection. However, no significant detrimental effect on the outcome of 

a P. chabaudi infection has been observed in mice deficient of Th2 associated cytokines 

(van der Hey de et a l ,  1997, see Chapter 5), promoting the hypothesis that Thl 

associated cytokine mediated antibody-dependent immunity may be sufficient to control 

a primary P. chabaudi infection and that the contribution of IL-4 and Th2 associated
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cytokines is of secondary importance. Further analysis of both the profile of cytokine 

production and the humoral response, in particular the production of parasite-specific 

antibody isotypes is necessary to elucidate the contribution of IL-4 to immunity to 

experimental malaria infection and the compensatory mechanisms replacing the function 

of IL-4.
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Chapter Seven

The course of P. chabaudi infection in IFNyR deficient mice
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Introduction

IFNy was first identified as an antiviral agent in the supernatants of leukocytes cultures 

stimulated by PHA (Wheelock, 1965). Subsequently, IFNy has been shown to 

orchestrate a wide range of cellular responses which demonstrates the importance of 

IFNy in the regulation of the immune system and the control of infectious disease. The 

main sources of IFNy are activated Thl CD4+ T cells (Mosmann and Coffman, 1989), 

activated NK cells (Perussia, 1991) and CD8+ cytotoxic T cells of the type 1 cytokine 

phenotype (Sad, Marcotte and Mosmann, 1995). Cross-linking of the T cell receptor is 

the major stimulus of IFNy production by T cells (Ullman et a l ,  1990). IFNy 

production by NK cells is stimulated by TNFa and IL-12 (Trinchieri, 1995) and can 

also be autostimulated by IFNy itself (Hardy and Sawada, 1989). Biologically active 

IFNy is a 34 kDa homodimer (Greenland, Wenner and Schreiber, 1992, Fountoulakis et 

al., 1992) which interacts with a specific cell receptor ubiquitously expressed on all 

nucleated ceils (Valente et at., 1992). The IFNy receptor (IFNyR) consists of two 

subunits, a 90 kDa a  chain (Farrar and Schreiber, 1993) and a 314 amino acid (60-65 

kDa) p chain (Bach, Aguet and Schreiber, 1997). Each chain of the IFNyR is associated 

with a specific Janus kinase [JAK] (Igarashi et a l, 1994). The IFNy homodimer binds 

to 2 a  chains of the IFNyR, resulting in a  chain dimérisation (Fountoulakis et a l, 1992) 

and consequent association of the p chains which leads to activation of the JAKs 

(Boehm et a l, 1997). This induces binding of ST AT l a  (signal transducer and activator 

of transcription la )  to the receptor complex (Greenland et at., 1994, Heim et a l,  1995). 

S T A T la  homodimers are formed following phosphorylation of the bound ST A Tla 

(Greenland et a l,  1995). The STA Tla homodimers (also known as Gamma Activated 

Factor, GAF) translocate to the nucleus and bind to gamma activated sites and initiate 

transcription (Boehm et a l,  1997). Through this signaling pathway, IFNy can initiate 

transcription of a number of genes bearing suitable gamma activated sites in their 

promoter regions. Currently there are over 200 known IFNy-regulated genes (Boehm et 

a i,  1997).
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The rapid response to IFNy induced transcription is due to the activation of the latent 

cytosolic transcription factor STA Tla and hence it does not require the synthesis of new 

transcription factors. However, some cellular responses to IFNy require the synthesis of 

IFNy induced transcription factors to initiate the transcription of the desired product 

(Boehm et al., 1997). These secondary transcription factors are termed interferon 

regulatory factors (IRF) (Boehm et a l,  1997). IRF-1 is induced by IFNy via a gamma 

activated site, participates in several IFNy specific cellular responses (Sims et a i,  1993, 

Coccia et a l,  1995) and is also induced by TNFa (Fujita et a l ,  1989). IRF-2 is 

antagonistic to IRF-1 and acts as a transcription inhibitor (Harada et al., 1989, Harada et 

al., 1994).

The major function of IFNy is immunoregulatory, where it is involved in the 

development of the CD4+ T cell response which determines the response to an antigen 

or pathogen. The dichotomy of the CD4+ T cell response is well established. EL-12 and 

IFNy are implicated in the decision to adopt a Thl phenotype whereas IL-4 induces Th2 

differentiation (Seder and Paul, 1994). The actual role of IFNy in this process appears to 

be secondary to IL-12 which has emerged as one of the main immunoregulatory 

molecules directing cell-mediated immunity (Trinchieri, 1995). Thl differentiation is 

maintained by a positive feedback loop in which IL-12 production from stimulated 

macrophages, induces IFNy production by naive CD4+ T cells resulting in the adoption 

of a Thl phenotype. IFNy from the Thl cells or IL-12 activated NK cells, induces EL-12 

production by macrophages providing a constant stimulus for the differentiation of the 

CD4+ T cell response to the Thl phenotype and links innate recognition of pathogens to 

acquired immunity. IFNy has been shown in vitro to enhance the Thl differentiating 

effects of IL-12 (Wenner e ta i ,  1996, Bradley, Dalton and Croft, 1996). It is possible 

that this phenomenon may be attributed to IFNy induced expression of the IL-12 

receptor on naive T cells (Boehm e ta i,  1997). The costimulatory ligands B7-1 and B7- 

2 are thought to have a role in the induction of T cell responses (Lenchow, Walunas and
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Bluestone, 1996). Both are upregulated by IFNy (Freedman et al., 1991, Hathcock et 

al., 1994) but they may have differential effects on Th cell development with B7-1 

favouring Thl and B7-2 favouring Th2 cell development (Freeman et al., 1995, 

Kuchroo et a l, 1995).

One feature of the Thl/Th2 paradigm is the antagonistic effect mediated by IFNy on Th2 

development and associated functions. Conversely, IL-4 is antagonistic to IFNy 

mediated responses. IFNy can inhibit the growth of Th2 CD4+ T cell clones in vitro 

(Gajewski and Fitch, 1988, Maggi et al., 1992) but it is unclear if IFNy can suppress 

IL-4 gene transcription during the establishment of Thl development. The antagonistic 

effects of IFNy and IL-4 are present throughout Thl/Th2 mediated responses. IFNy is 

the main switch factor regulating IgG2a switching in the mouse (Snapper and Paul, 

1987a) and IL-4 induces IgGl and IgE class switching (Vitetta et a i, 1985, Coffman et 

al., 1986) with both cytokines antagonising the class switching mediated by the 

reciprocal cytokine. The expression of FcyRI on macrophages is upregulated by IFNy 

stimulation and results in an increase in Ig02a mediated opsonisation (Boehm et al., 

1997). EL-4 induction of FceRII (CD23) on basophils and mast cells is down regulated 

by IFNy (Boehm et a i,  1997).

IFNy is a critical mediator of early immune responses during the acute phases of various 

infections. The generation of mice with a disruption of the gene for IFNy or the IFNyR 

has enabled the confirmation of the importance of IFNy induced cellular responses to 

viral, bacterial and parasitic infections. IFN'jR deficient mice are susceptible to vaccinia 

virus (Huang et al., 1993) and mycobacterial infection (Kamijo et al., 1993) 

demonstrating the requirement for IFNy mediated functions in controlling infectious 

pathogens. The primary responses to L  monocytogenes infection are IFNy dependent 

(Huang et a i, 1993) and early IFNy production is associated with resistance to L. major 

infection (Heinzel et al., 1991). Hence, IFNy is a critical mediator of enhanced
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microbicidal activity to acute infection mainly through the activation of macrophages to 

increase antigen presentation or the secretion of antimicrobial products such as NO.

The role of IFNy during experimental malaria infection has been extensively studied. 

The intrahepatocytic development of P. berghei in vitro was inhibited upon the addition 

of recombinant human IFNy (Schofield et a i,  1987a). IFNy is produced prior to the 

peak parasitaemia of P. chabaudi infection (Slade and Langhome, 1989). Treatment of 

mice infected with P. yoelii with recombinant IFNy increases resistance to infection 

(Shear et al., 1989). The addition of recombinant IFNy to co-cultures of P. falciparum  

and human monocyte-derived macrophages increases the appearance of crisis forms of 

P. falciparum in vitro (Ockenhouse, Shulman and Shear, 1984). Control of the acute 

phase of P. chabaudi infection is Thl mediated and partly IFNy dependent (Meding et 

a i, 1990). Mice resistant to P. chabaudi infection have been shown to produce an early 

IFNy response whereas susceptible mice have an early IL-4 response (Stevenson and 

Tam, 1993). However, anti-IFNy treatment during P. chabaudi infection does not 

abrogate protective immunity suggesting that IFNy independent mechanisms are also 

involved in the control of the acute phase of infection (Stevenson e ta i,  1990).

IF N ^  deficient mice displayed no significant increased susceptibility to P. yoelii and P. 

chabaudi adami infection (Tsuji et a l, 1995). However, IFNy deficient mice have been 

shown to be more susceptible to P. yoelii and P. chabaudi adami (van der Hey de et a l, 

1997), illustrating that the response of the two types of deficient mice perhaps cannot be 

directly compared. Recently, IFNyR deficient mice were shown to be more susceptible 

to P. chabaudi chabaudi infection displaying a high mortality rate and an increased 

leukocytosis compared to control mice (Favre et a l, 1997, published while these studies 

were in progress). No significant differences were observed between the two groups 

during the primary parasitaemia, but, IFNyR deficient mice developed a pronounced 

secondary parasitaemia. Hence, IFNy dependent cellular responses are crucial to the 

development of protective immunity during a P. chabaudi infection. The studies reported
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here aim to elucidate why the absence of the IF N ^  results in an increased susceptibility 

to P. chabaudi infection.

Results

The course of P. chabaudi infection in IFNyR deficient mice

IFNyR deficient 129SVEV mice and intact control 129SVEV mice were infected with 

either 1x10^ pRBCs or 1x10^ pRBCs of P. chabaudi AS. Each group consisted of at 

least six mice and the parasitaemia was observed daily by microscopic examination of 

Giemsa's stained thin blood smears collected from the tail. Infection of IFNyR deficient 

mice with both 1x10^ pRBCs and 1x10^ pRBCs of P. chabaudi resulted in a significant 

secondary peak of parasitaemia (no recrudescence parasitaemia was observed in the 

control mice) observed after 20 days post infection (Figures 7.1 and 7.2). There was no 

significant difference between the IFNyR deficient mice and control mice during the 

primary parasitaemia although there was a consistent trend in that the peak of the 

primary parasitaemia was greater in the IFNyR deficient mice. In control mice the 

infection became sub-patent (determined by microscopic examination) around 20 days 

post infection whereas in IFNyR deficient mice, clearance of the parasites to sub-patency 

did not occur until approximately day 40 post infection (Figures 7.1 and 7.2).

Survival in IFNyR deficient mice during P. chabaudi infection

P. chabaudi infection of IF N '^  deficient mice resulted in an increase in the mortality rate 

compared with control mice. 75% of IFNyR deficient mice succumbed to infection with 

1x10^ pRBCs of P. chabaudi (Figure 7.3) and 43% died following infection with 

IxlQ l pRBCs of P. chabaudi (Figure 7.4). No mortality was observed in the control 

mice with either dose of P. chabaudi infection (Figures 7.3 and 7.4).
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three replicate experiments.
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Total IgG and IgE production in IFNyR deficient mice during P , 

chabaudi infection

Total IgGl, Ig02a and IgE production was determined in the serum of IFNyR deficient 

mice during P. chabaudi infection. IFNyR deficient mice and control mice received 

1x10^ pRBCs o f f .  chabaudi. Three mice in each group were sacrificed at various time 

points and serum was collected, pooled and assayed for the production of total IgGl, 

IgG2a or IgE (see Materials and Methods). Total IgGl levels in the serum of IFNyR 

deficient mice were similar to that of control mice (Figure 7.5A). There was a delay and 

a reduction in the total IgG2a response of IFNyR deficient mice to P. chabaudi infection 

compared to control mice (Figure 7.5B). IFNyR deficient mice produced a significant 

amount of total IgE in response to P. chabaudi infection whereas no significant levels of 

total IgE were observed in the serum of control mice (Figure 7.5C).

The production of parasite-specific IgG in IFNyR deficient mice during 

P. chabaudi infection

Parasite-specific IgG production in the serum of IFNyR deficient mice and control mice 

was determined following infection with 1x10^ pRBCs of P. chabaudi AS by IF AT 

described in Materials and Methods). Three mice from each group were sacrificed at the 

time points indicated and serum was collected, pooled and assayed for the production of 

parasite-specific IgG. The level of parasite-specific IgG in the serum of IFNyR deficient 

mice during P. chabaudi infection was reduced compared to control mice throughout the 

period of infection analysed (Table 4).
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Ex vivo analysis of the response of splenocytes taken from IFNyR 

deficient mice during P. chabaudi infection

IFNyR deficient mice and control mice were infected with 1x10^ pRBCs of P. chabaudi 

AS. Three mice from each group were sacrificed at the various time points indicated. 

Splenocytes were harvested and pooled from the three individual mice of each group, 

cultured in vitro at 5x10^ cells/ml and stimulated with Con A (l|Xg/ml). The proliferative 

response of the splenocytes was determined by the incorporation of tritiated thymidine. 

Splenocytes from IFNyR deficient mice had a greater proliferative response to Con A 

than splenocytes from control mice on day 0 post infection [p<0.002] (Figure 7.6). On 

days 6, 10 and 15 post infection, splenocytes from IFNyR deficient mice had a 

significantly increased proliferative response compared with splenocytes from control 

mice to Con A stimulation [p<0.002] (Figure 7.6). Splenocytes taken from control mice 

had a significantly greater proliferative response to Con A than splenocytes from IFNyR 

deficient mice on day 13 post infection [p<0.001] (Figure 7.6). No parasite-specific 

proliferative response was observed following stimulation of splenocytes with a pRBC 

lysate of P. chabaudi (data not shown).

Cytological analysis of cells present in the spleen or liver of IFNyR 

deficient mice during P. chabaudi infection

Cytological analysis was performed on leukocytes extracted from the spleen and liver of 

both IFNyR deficient mice and control mice following infection with 1x10^ pRBCs of 

P. chabaudi. Three mice from each group were sacrificed at the time points indicated, 

the leukocytes extracted from the liver and spleen of individual mice and then pooled to 

give leukocytes extracted from either the liver or spleen for each group. Cytological 

analysis was performed as described in Materials and Methods and the results expressed 

as the number of cells present per spleen or liver. There was a reduction in the number 

of lymphoid cells present in the spleen of IFNyR deficient mice but both
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groups had similar numbers of monocytes and PMN cells present in the spleen (Figure 

7.7). In the liver, a reduction in lymphoid, monocyte and PMN cells present was 

observed in IFNyR deficient mice compared to control mice during P. chabaudi infection 

(Figure 7.8).

Discussion

The data presented in this study demonstrate that IFNyR deficient mice are more 

susceptible to P. chabaudi infection. A high mortality rate in the IFNyR deficient mice 

was observed whereas there were no deaths in the control groups. The acute phase of 

the P. chabaudi infection was controlled by both IFNyR deficient mice and control mice 

with a similar efficiency. However, the infection never became sub-patent in the IFNyR 

deficient mice and this was followed by a pronounced secondary parasitaemia unlike the 

control mice where no recrudescence occurred during the period of infection observed. 

These observations confirm previous results (Favre et a l,  1997, van der Heyde et a l, 

1997) illustrating the importance of IFNy dependent cellular responses to malaria 

infection.

The use of IFNyR deficient and IFNy deficient mice has extended the studies of IFNy 

mediated response to malaria infection whereas in previous studies this took the form of 

either deletion of IFNy by antibody treatment or addition of exogenous IFNy (Meding et 

al., 1990, Stevenson et al., 1990). Anti-IFNy treatment of mice resulted in a 

significantly higher primary peak parasitaemia of P. chabaudi infection Meding et a l, 

(1990), and Stevenson et a l,  (1990). However, Jacobs and colleagues (1996) did not 

observe significant differences in the course of the parasitaemia of a P. chabaudi 

infection. The results obtained in this study and elsewhere (Favre et a l ,  1997) 

demonstrate that the absence of the IFNyR results in a pronounced secondary peak of 

parasitaemia which is different to other published observations (Tsuji et a l, 1995) in 

which IFNyR deficient mice had only a moderately prolonged parasitaemia and no
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mortality associated with infection. These discrepancies could have several explanations. 

Different genetic backgrounds of the IFNyR deficient mice and infection with different 

murine malaria parasite species may contribute to the contradictory results obtained 

using IFNyR deficient mice. The degree of depletion of IFNy mediated function by 

treatment with antibodies may vary from study to study and is probably not as absolute 

as the gene disruption strategy. Conversely, IFNyR deficient mice may have developed 

mechanisms to compensate for the loss of IFNy function, thus making comparisons 

between studies more difficult.

The pronounced secondary peak of parasitaemia observed in the IFNyR deficient mice 

infected with P. chabaudi is in accord with a previous report (Favre et al., 1997) and is 

similar to the outcome of infection of IFNy deficient mice with P. chabaudi adami in that 

clearance of infection is significantly delayed when compared to controls (van der Heyde 

etai., 1997). Mice treated with anti-IL-12 monoclonal antibodies have also been shown 

to have a pronounced secondary parasitaemia following P. chabaudi infection (Yap, 

Jacobs and Stevenson, 1994) which when taken together with the results reported here 

and previous studies (Favre et al., 1997, van der Heyde et a l ,  1997) supports the 

hypothesis that IL-12 mediated protection is partly dependent upon IFNy stimulated 

cellular responses (Stevenson e ta i,  1995).

The course of P. chabaudi infection in IFNyR deficient mice is similar to that observed 

in immunocompromised mice such as SCID or nude mice and mice depleted of CD4"*’ T 

cells or B cells. All of these mice demonstrate an element of control during the acute 

phase of the infection but the development of the acquired protective immunity is absent 

or delayed and a chronic parasitaemia develops (Stevenson, Tam and Rae, 1990 Meding 

and Langhorne, 1991, Podoba and Stevenson, 1991, Taylor-Robinson and Phillips, 

1994a). Hence, the outcome of experimental malaria infection in immunocompromised 

mice is similar to that of IFNyR deficient mice in that a high mortality rate and a 

pronounced secondary  parasitaem ia  are observed , a lthough  the
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IFNyR deficient mice are able to clear the infection by day 40 post infection in this study 

and by day 23 post infection in the studies performed by Favre et al. (1997). The 

importance of the sequential involvement of Thl and Th2 mediated responses in the 

development of protective immunity to P. chabaudi infection was confirmed by the 

studies using immunocompromised hosts. However, they also demonstrated the 

requirement for not only CD4+ T cells but B cells to confer efficient resolution of 

infection in reconstituted immunocompromised hosts (Meding and Langhorne, 1991, 

Taylor-Robinson and Phillips, 1993). Hence, Thl cells are important in the control of 

the acute phase of infection through the stimulation and amplification of non-specific 

inflammatory responses and Th2 cells and B cells are responsible for the total clearance 

of parasites. The mechanism of the switch between Thl and Th2 mediated responses 

during a primary P. chabaudi infection is unclear. It has been proposed that B cells are 

required for this switch in the CD4+ T cell response because of the development of a 

chronic parasitaemia in B cell deficient mice following the control of the acute phase of 

infection (Taylor-Robinson and Phillips, 1994a), Analysis of the CD4+ helper T cell 

profiles during a P. chabaudi infection of B cell deficient mice revealed that a persistent 

Thl response is present in these mice with a failure to switch to Th2 mediated 

responses. The role of B cells in antigen presentation is an important one which will 

influence the Thl/Th2 dichotomy during a P. chabaudi infection but it may be the 

production of the appropriate humoral response which is the main contributory factor to 

the development of the chronic parasitaemia observed in B cell deficient mice. It is 

feasible that the absence of IFNyR mediated function in B cells may prevent the desired 

humoral response being produced in the IFNyR deficient mice during a P. chabaudi 

infection. Analysis of the CD4+ T cell helper response during infection of IFNyR 

deficient mice with P. chabaudi would determine if there is a failure to switch from Thl 

to Th2 mediated responses or if there is an earlier appearance of Th2 and IL-4 mediated 

responses which has been associated with susceptibility to P. chabaudi infection 

(Stevenson and Tam, 1993). An indication may be given by the significant total IgE 

response observed in the serum of IFNyR deficient mice which may reflect an aberrant
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Days post 
infection

Group 
IFNyR -/- 129SVEV 129SVEV

0 - -

6 - -

10 50 100
13 100 1000
15 100 1000
22 N/A 1000

Table 4. Parasite-specific IgG production in IFNyR deficient 129SVEV mice and
control 129SVEV mice following inoculation with 1x10^ pRBCs of P. chabaudi. Serum 
from three mice was pooled and the level of parasite-specific IgG was determined by 
indirect fluorescence. Results are the mean of three samples and are expressed as the 
reciprocal of antibody titre.

Note: Range of samples analysed was 1:50 - 1:1000.
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Th2 response in these mice. Indeed, it may be that there is a requirement for the 

inhibitory interaction between IFNy and IL-4 to induce the sequential Thl/Th2 mediated 

responses. It must be noted, however, that IL-12 is now regarded as the main cytokine 

involved in Thl development and that IFNy is a product of Thl response which induces 

the cellular responses associated with Thl CD4+ T cell immunity (Manetti et al., 1993). 

IFNy dependent functions may have a pivotal role in the control of the switch between 

Thl and Th2 regulated responses and hence the IFNyR deficient mice may have a 

dysfunctional CD4+ T cell response because of the lack of IFNy dependent cellular 

responses.

There are several explanations why a P. chabaudi infection of IFNyR deficient mice 

does not become sub-patent at the same time as in control mice. Increased parasite 

survival may occur due to the absence of IFNy induced expression of adhesion 

molecules which could reduce not only the level of sequestration of mature pRBCs but 

reduce the recruitment of cells to the liver, which has been proposed as a site of a 

possible protective immune response (see Chapter 3). This is reflected in the reduced 

numbers of lymphoid, monocyte and PMN cells observed in the liver of P. chabaudi 

infected IFNyR deficient mice and may contribute to an increase in parasite survival. The 

IFNyR deficient mice do have an increased leukocytosis compared to control mice 

following a P. chabaudi infection (Favre et al., 1997 and personal observations) which 

may be a consequence of a disruption in the redistribution of immune cells to organs 

such as the liver or spleen.

The failure of IFNyR deficient mice to clear the infection as efficiently as control mice 

could, as already mentioned, be attributed to the deficiency in IFNy dependent humoral 

responses. In this study, there is a reduction in parasite-specific IgG production and 

total IgG2a levels in the IFNyR deficient mice. IgG2a has been proposed to have a 

protective role in experimental malaria infection (Waki et al., 1995). It is possible that 

during the acute phase of infection, the parasite-specific isotype produced is IgG2a, a
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IFNy dependent isotype (Snapper and Paul, 1987), which could explain the lower level 

of parasite-specific antibody production and the failure to resolve a P. chabaudi infection 

efficiently. However, it must be noted that the IFNyR deficient mice do produce 

detectable levels of total IgG2a demonstrating an IFNy independent pathway of 

stimulation for IgG2a production.

The pleiotropic effects of IFNy mean that there are deficiencies in several functions of 

the immune system in IFNyR deficient mice which could contribute to the inefficient 

development of protective immunity to P. chabaudi infection. IFNy activation of 

macrophages and its influence on antigen presentation are processes which will be 

dysfunctional in the IFNyR deficient mice and will have a bearing on the outcome of a 

P. chabaudi infection. However, the possibility of compensatory mechanisms cannot be 

ignored and IFNy independent pathways of activation of macrophages and NK cells, 

together could contribute to the degree of protective immunity observed during P. 

chabaudi infection in IFNyR deficient mice.

It is unclear why there is a high mortality rate in the IFNyR deficient mice following 

infection with the normally self-resolving P. chabaudi. Mortality is not consistently 

linked with fulminating parasitaemia and occurs throughout the course of a primary 

infection. The extent of the anaemia in the IFNyR deficient mice following P. chabaudi 

infection was the same as control mice (Favre et al., 1997) and does not appear to 

contribute to the high mortality rate observed. It is unknown if there is an over

production of other inflammatory mediators such as IL-1 or TNF to compensate for the 

lack of IFNy stimulated inflammatory responses. This would be similar to P. chabaudi 

infection of IL-10 mice which appear to succumb to an increase in pathology attributed 

to a combination of malaria toxins and an exacerbated inflammatory response (Linke et 

a l,  1996). However, recently IL-10 deficient mice were shown to survive and control 

both P. yoelii and P. chabaudi adami infection with a similar efficiency as control mice 

with no mortality observed (van der Heyde et al., 1997). The increase in the
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proliferative response of splenocytes taken from P. chabaudi infected IFNyR deficient 

mice to Con A stimulation suggests that they may be primed to produce a greater 

response to infection but that this response is inappropriate because efficient control of 

the infection is not observed. Indeed it may be indicative of over-production of 

inflammatory mediators.

A significant quantity of total IgE was observed in the serum of IFNyR deficient mice 

during a P. chabaudi infection. IgE has recently been proposed as a pathogenic factor in 

P. falciparum  infection (Perlmann et al., 1997). Patients with cerebral malaria were 

shown to have significantly higher IgE levels compared to those with uncomplicated 

malaria (Perlmann et a i, 1994). The elevation of IgE may contribute to the pathology of 

severe disease without cerebral involvement and may be a pathogenic factor in P. 

falciparum  infection in general (Perlmann et a i,  1997). The proposed mechanism 

involved in IgE mediated pathology is the interaction of IgE with the low-affinity FceRII 

(CD23) receptor which is expressed on a variety of cells including 

monocytes/macrophages, eosinophils and B cells (Perlmann et al., 1997). This process 

can induce the production of cytokines such as TNF which has been shown to be 

involved in the pathogenesis of malaria infection (Grau et al., 1987, Clark, Rockett and 

Cowden, 1991). There does not appear to be a correlation between the level of parasite- 

specific IgE and pathogenicity but rather, it is the quantity of IgE that correlates with 

disease severity (Perlmann et al., 1994, Perlmann et a l,  1997). Hence although the 

quantity of parasite-specific IgE in the IFNyR deficient mice during a P. chabaudi 

infection is unknown, the significant total IgE response may contribute to the pathology 

observed (high mortality rate) through the cross-linking of CD23 receptors on effector 

cells such as monocytes, resulting in the over-production of inflammatory mediators. 

Measurement of the level of TNF and NO production would confirm if this is a 

mechanism which is a contributory factor in the high mortality rate observed in the 

EFN'^R deficient mice following a P. chabaudi infection.
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The infection of IFNyR deficient mice with P. chabaudi provides a model which may 

contribute to the understanding of the development of protective immunity to blood- 

stage malaria. Analysis of cytokine production by re-stimulation of splenocytes in vitro, 

tissue-specific mRNA expression and levels in the semm is planned and may identify if 

there is a bias to a Th2 response indicated by the significant IgE production or if it is an 

over-production of inflammatory cytokines such as IL-1, TNF and IL-6 that is 

detrimental to the host's response to infection.

1 6 5



Chapter Eight

The effect of the nitric oxide donor, SNAP, on the growth of

malaria parasites in vitro.
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Introduction

NO is produced when L-arginine is oxidised to produce one molecule each of L-citrulline 

and NO. This process is catalysed by the enzyme nitric oxide synthase (NOS). Three 

isoforms of NOS are expressed in mammals, two of which, NOSl and NOS3, are 

dependent on elevated intracellular Ca^+ (MacMicking, Xie and Nathan, 1997) and are 

expressed constitutively. The third isoform, N0S2, is independent of intracellular Ca^+ 

concentration and is termed inducible NOS (iNOS) (Xie et al., 1992, Green and Nacy, 

1993). NOSl and N0S3 are often termed cNOS and produce a low output of NO which 

mediates the physiological functions of NO. NOS2 (iNOS) produces a high output of 

NO which is stimulated during inflammation and infection. Production of NO by NOS 

requires the attachment of several molecules including haeme, tetrahydrobiopterin, 

calmodulin, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) 

(MacMicking, Xie and Nathan, 1997). The difference in NO output between cNOS and 

iNOS can be attributed first to the ability of iNOS to bind calmodulin tightly independent 

of intracellular Ca^+ concentration and secondly to the sustained response of iNOS to 

inflammatory stimuli (Green and Nacy, 1993, MacMicking, Xie and Nathan, 1997).

Activation of iNOS requires a priming agent and a secondary signal. IFNy, LPS, TNF 

and other cytokines have all been shown to induce iNOS expression and subsequent NO 

production (Weinberg, Chapman and Hibbs, 1978, Amber et al., 1988, Ding, Nathan 

and Stuehr, 1988, Drapier, Weitzerbin and Hibbs, 1988). Induction of iNOS by IFNy 

and LPS occurs at the level of transcription (Xie, Whisnant and Nathan, 1993, Martin, 

Nathan and Xie, 1994). The promoter region of the iNOS gene contains consensus 

sequences for the binding of transcription factors which are involved in the induction of 

several IFNy inducible genes (Harada et al., 1989, Xie, Whisnant and Nathan, 1993, 

Kamijo et a l,  1994, Martin, Nathan and Xie, 1994). Inhibition of iNOS expression by 

cytokines such as IL-4, IL-10 and TGF(3 (Ding et al., 1990, Gazzinelli et al., 1991, 

Cunha, Moncada and Liew, 1992, Oswald et al., 1992) is an important control
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mechanism which prevents inappropriate production of NO. Inducible NOS activity is 

also inhibited by NO (Assruey et a l, 1993), demonstrating an important self-regulatory 

feedback mechanism.

NO can interact with other free radicals to yield various intermediates which are usually 

short-lived molecules but can influence the biological function of NO (MacMicking, Xie 

and Nathan, 1997). The physiological function(s) of NO includes vasodilation, enzyme 

regulation and neurotransmission (Moncada, Palmer and Higgs, 1991). The role of NO 

in response to inflammation or infection has been the focus of extensive research. NO 

has been shown to have microbicidal activity against bacteria, protozoan and helminth 

parasites, fungi and tumour cells. The cytotoxic potential of NO, produced by activated 

macrophages was first observed in tumour immunology studies (Hibbs et al., 1988). 

The target of NO mediated inhibition of tumour cell growth was iron-sulphur complexes 

present in enzymes essential for mitochondrial respiration (Hibbs et al., 1988). 

Subsequently, NO was shown to inhibit DNA synthesis in tumour cells through 

inhibition of ribonucleotide reductase which is the rate-limiting step in DNA synthesis 

(Kwon, Stuehr and Nathan, 1991).

NO is considered to be one of the major cytotoxic mechanisms in host responses to 

protozoan infection. L. major actually invades the macrophage, a major source of NO, 

but the production of NO has been shown to be the main effector mechanism against L. 

major infection (Green et al., 1990, Liew et al., 1990). Control of T. gondii infection 

has been shown to involve NO during the chronic phase of infection (Gazzinelli et al., 

1993). Down-regulation of iNOS activity is thought to lead to re-activation of T. gondii 

infection. Killing of helminth parasites has been partially attributed to NO (James and 

Hibbs, 1990) possibly through inhibition of enzymes containing iron-sulphur 

complexes that are important in metabolic function. Clostridium and Eschericha coli 

have also been shown to be susceptible to NO mediated cytotoxicity (Kwon, Stuehr and 

Nathan, 1991, Green and Nacy, 1993).
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NO production was identified to be one of the main effector mechanisms in the 

distmction of intra-hepatic malaria parasites (Nussler et al. 1991a). IL-6, IL-1, TNF and 

IFNy have been shown to stimulate L-arginine dependent elimination of exo-erythrocytic 

stages of the parasite. Several cells in the liver have the potential to produce NO, such as 

endothelial cells, Kupffer cells and the hepatocytes themselves (Nussler et al., 1991a). 

The protective role of NO against the exo-erythrocytic stage is thus well established but 

no definitive role for NO during the blood stage of infection has been obtained. The 

demonstration of killing of P. falciparum in vitro by NO derivatives (Rockett et a l, 

1991) illustrated a possible direct, cytotoxic effect of NO against blood stage parasites. 

Exogenous TNFa, lymphotoxin and IL-1 can induce in vivo production of nitrite and 

nitrate in P. vinckei infected mice (Rockett et al., 1992). The authors suggest that this 

indicates a possible role for inflammatory cytokines and NO production in the pathology 

associated with severe malaria. However, they do not record if the increase in nitrite and 

nitrate levels following administration of the cytokines, results in any alterations in the 

course of the P. vinckei infection.

The role of NO in cerebral malaria is controversial. Cerebral malaria caused by P. 

falciparum  has conventionally been explained as resulting from blockage of the blood 

supply by parasitised erythrocytes which sequester in the cerebral microvasculature 

(Aikawa, 1988). The argument against this explanation is that those patients who 

recover from cerebral malaria but do not have the neurologic impairment associated with 

long term oxygen deprivation (Clark, Rockett and Cowden, 1992). Immunological 

analysis of the cause of coma during cerebral malaria infection has provided evidence for 

a NO-dependent pathology mechanism but also a protective role during the severe 

complications of malaria infection (see below).

In both experimental model and human infections, TNFa appears to play a pivotal role. 

Patients with cerebral malaria, demonstrate high levels of T N F a  in plasma
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(Kwiatkowski et a l, 1990, Grau et al, 1989b). Individuals homozygous for the TNF2 

allele, a variant of the TN Fa gene promoter region, have a greatly increased risk for 

death or severe neurologic sequelae due to cerebral malaria (McGuire et a l, 1994). In 

the P. berghei ANKA mouse model of cerebral malaria, treatment with anti-IFNy 

reduced the excessive overproduction of TN Fa and prevented the development of 

cerebral lesions (Grau et al, 1989a).

The mechanisms by which sequestered parasitised erythrocytes cause coma are unclear 

but the hypothesis is that the parasitised erythrocytes bind to specific receptors on 

endothelial cells via host adhesion molecules such as ICAM-1. Expression of adhesion 

molecules is increased during cerebral malaria as part of a systemic endothelial activation 

by inflammatory molecules. The adhesion of parasitised erythrocytes to endothelial cells 

in the microvasculature of the brain may stimulate local production of TNFa which in 

turn stimulates NO production. TNFa induced NO can then diffuse through the blood 

brain barrier and interfere with neurologic function possibly by stimulating guanylate 

cyclase in neurons. This would result in an increase in cyclic GMP levels leading to 

further stimulation of NO production, resulting in brain dysfunction (Asension et a l, 

1993). This may be due to the toxic properties of NO (Snyder, 1992) or through 

inhibition of NO synthase activity by NO (Griscavage et a l, 1993) hence, disrupting 

local neurotransmission in the brain. NO may also be responsible for the increase in 

intracranial pressure observed in cerebral malaria patients through an increase in 

vasodilation (Newton gf aZ., 1991).

Further evidence supporting the pathological role attributed to TNF induced NO 

production and up-regulated ICAM-1 expression is supplied by P. berghei ANKA 

infection of TNFa/p double deficient mice. These mice have a complete disruption of 

TNF signalling pathways and hence no TNF production. P. berghei ANKA infection in 

intact mice induces fatal cerebral malaria with death occurring within 5 to 8 days. The 

TNFa/p deficient mice are completely resistant to P. berghei ANKA induced cerebral
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malaria (Rudin et al, 1997a). Furthermore, systemic release of NO and up-regulation of 

ICAM-1 expression on endothelial cells were only observed in the control mice. TNF 

also appears to be involved in the recruitment of mononuclear cells and microvascular 

damage because vascular leakage and perivascular haemorrhage plus mononuclear cell 

adhesion to endothelial cells were absent in the TNFa/p deficient mice (Rudin et a l, 

1997a). The absence of adhesion by mononuclear cells could probably be attributed to 

the lack of ICAM-1 expression in the TNFcx/p deficient mice during infection.

In contrast to these results the role of NO in the development of experimental cerebral 

malaria has been shown to be minimal. L-NMMA treatment had no influence on the 

course of murine cerebral malaria development (Kremsner et a l, 1993, Asension et al, 

1993). Other data suggests that the production of NO during cerebral malaria may be 

beneficial rather than pathological. In vivo inhibition of NO production results in an 

increased leukocyte adherence to endothelial cells via CD11/CD18 integrins (Kubes, 

Suzuki and Granger, 1991). A nti-C D lla treatment abrogated the development of 

experimental cerebral malaria indicating that CDl 1/CD 18 mediated leukocyte adhesion is 

crucial in the pathogenesis of this experimental cerebral malaria (Falanga and Butcher 

1991, Grau et a l, 1991). NO has been shown to inhibit leukocyte-endothelial 

interactions. Neutrophil adhesion to endothelial cells is inhibited by NO (Niu, Ibbotson 

and Kubes, 1996) and NO has also been shown to suppress ICAM-1 expression on 

endothelial cells (Biffl et a l,  1996). Hence, NO may suppress the recruitment of 

leukocytes by down-regulating CDl 1/CD 18 mediated adhesion or the expression of 

other involved adhesion molecules.

The constriction of intracerebral arterioles occurs during human and experimental 

cerebral malaria (Polder, Jerusalem and Eling, 1991). Both NO and prostacyclin can 

induce vasodilation and inhibit platelet aggregation (Hyslop and De Nucci 1991). 

Administration of a prostacyclin analogue prevented the development of cerebral malaria 

suggesting that the vasodilatory property of NO may be protective during cerebral

171



malaria. There is, therefore, strong evidence from experimental cerebral malaria to 

support a protective role for NO during malaria infection. However, results obtained 

from the experimental model of cerebral malaria cannot be readily extrapolated to human 

cerebral malaria because the pathology observed in the model result from the 

accumulation of leukocytes, rather than parasitised erythrocytes in the cerebral blood 

vessels. The role of NO during human cerebral malaria has been investigated. There 

have been several studies which have analysed NO end products, reactive nitrogen 

intermediates (RNI), in plasma of patients. Contradictory results, supporting both a 

pathological and a protective role for NO have emerged.

RNI levels in Tanzanian children were inversely related to disease severity, with levels 

highest in subclinical infections and lowest in fatal cerebral malaria. IL-10, a cytokine 

which can suppress NO production (Cunha, Moncada and Liew, 1992), increased with 

severity (Anstey et al, 1996). The suppression of NO synthesis in cerebral malaria may 

contribute to pathogenesis because NO may have a protective role during infection. 

Another study, proposing a protective role for NO was carried out on Gabonese 

patients. (Kremsner et al, 1996). High plasma RNI levels during severe malaria could 

be correlated with an accelerated cure. In contrast with these two studies, a study 

performed on cerebral malaria patients from Papa New Guinea suggests a pathological 

role for NO (Al-Yaman et a l, 1996). The RNI levels measured were compared to 

disease severity and clinical outcome, and correlated with the depth and duration of 

coma. Higher RNI levels were observed in patients with deeper coma and with longer 

duration of coma. Fatal outcomes were correlated with significantly higher RNI levels. 

The results suggest that NO is involved in the development of coma during cerebral 

malaria.

Immunosuppression during malaria infection is well documented (reviewed in Weidanz, 

1983). Malaria infected children have more severe gastro-intestinal and respiratory 

infections than normal children (Greenwood et a l, 1972). Malaria has also been
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reported to impair the efficacy of childhood vaccination against tetanus, typhoid and 

meningococcal disease (Williamson and Greenwood 1978). A poor proliferative 

response of lymphocytes to Con A and other mitogens parallels the degree of 

immunosuppression in both human (MacDermott et a l, 1980) and rodent infections 

(Correa, Narayanon and Miller 1980). During trypanosome infection T cell responses 

are suppressed. This phenomenon has been shown to be mediated via suppressor 

macrophages which down-regulate T cell proliferative responses through NO and 

prostaglandin dependent mechanisms (Schleifer and Mansfield, 1993). The addition of 

L-NMMA to splenocyte cultures from malaria infected mice, restored the proliferative 

response of the splenocytes to similar levels as controls (Rockett et a l ,  1994) 

suggesting that NO may mediate antigen-specific immunosuppression observed during 

malaria infection. NO mediated immunosuppression has also been observed in burn- 

injured rats (Bamberger et al, 1992) and an increase in NO synthase in pregnant rats is 

thought to mediate the immunosuppression observed during pregnancy (Conrad et a l,

1993). There are several different mechanisms through which NO may induce 

immunosuppression. NO appears to suppress T cell clonal expansion but not T cell 

effector cell maturation and cytokine secretion (Schleifer and Mansfield, 1993). Hence, 

the suppression mediated by NO may occur as a consequence of discrete signalling 

events. This could be achieved by down-regulation of IL-2 receptor expression, 

modification of the CD3/TCR complex or modulation of accessory molecules which are 

important for the expression of T cells. NO could also inactivate components of the 

mitochondrial respiratory chain (Stuehr and Nathan, 1989) resulting in a reduction in 

cellular metabolic energy levels or it may inactivate ribonucleotide reductase which is 

required for DNA synthesis and hence cell proliferation (Kwon, Stuehr and Nathan, 

1991).

The microbicidal activity of NO generated by a L-arginine dependent pathway has been 

extensively demonstrated during T. gondii (Adams et a l, 1990, Marietta et a l, 1988) 

and L. major infections (Green et a l, 1990, Liew et a l, 1990). As already mentioned
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NO has been shown to inhibit the intrahepatic development of malaria parasites 

(Schofield et a l, 1987a, Nussler et a l, 1991a). The role of NO during the blood stage 

of infection, as discussed is unclear. In P. chabaudi infection, a NO peak coincides with 

peak parasitaemia (Taylor-Robinson et a l, 1994a). The increase in NO production may 

be necessary for the host to control the acute infection because L-NMMA given to mice 

results in an exacerbation of the parasitaemia (Taylor-Robinson et a l, 1993). During P. 

chabaudi infection, Thl cells appear to control the primary parasitaemia with a switch to 

Th2 mediated immunity after the peak parasitaemia. It has been suggested that NO may 

be the molecule which induces the switch in immunity because it is capable of down- 

regulating Thl cell functions (Taylor-Robinson and Phillips 1994b, Taylor-Robinson et 

a l, 1994a).

There is no substantial evidence for NO having a direct cytotoxic effect on parasitised 

erythrocytes. In vitro experiments performed by Rockett and colleagues (1991) 

demonstrated that derivatives of NO can inhibit parasite growth. However, the levels of 

the derivatives they used may not reflect physiological levels of NO produced during a 

malaria infection. This chapter describes the effect of NO, generated by s-nitroso-acetyl- 

penicillamine (SNAP), on malaria parasites in vitro. The effect on various stages of P. 

falciparum was examined and also the effect of SNAP on the rodent malarial parasites, 

P. chabaudi and P. berghei. The hypothesis that haemoglobin may quench NO in the 

bloodstream (Sternberg e ta l ,  1994) and prevent any direct effect against the parasite 

was also investigated.
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Results

Generation of NO in vitro by SNAP

SNAP was freshly prepared in complete malaria medium (45-363 |liM, final 

concentration). Complete malaria medium alone was included as a control. All cultures 

were incubated at 37®C and supernatants were harvested at the time points indicated 

over a 72 hour period (Figure 8.1). Nitrite levels in the supernatant were measured by 

the Griess reaction as an indication of NO production by SNAP. The generation of NO 

by SNAP occurred over 24 hours for all the concentrations of SNAP analysed (Figure 

8 . 1).

Inhibition of P. falciparum  growth in the presence of SNAP

The effect of SNAP generated NO, on the growth of P. falciparum  was determined by 

culturing the parasites in the presence of the range of concentrations of SNAP indicated 

and observing the effect on the uptake of tritiated hypoxanthine by the parasite. Controls 

contained either medium alone or equivalent concentrations of DL penicillamine or 

sodium nitrite. Neither of these two substances, at the concentrations used, inhibited 

parasite growth and therefore all the control values have been combined. In figure 8.2A 

and 8.2B, the P. falciparum cultures were initiated with late (trophozoite) stages. SNAP 

was added at the start of the experiment or after 24 hours when the majority of the 

parasites had re-invaded new erythrocytes and were now ring stages. The tritiated 

hypoxanthine was added at the same time as the SNAP and the cultures were harvested 

24 hours later. SNAP at concentrations as low as 45|iM could inhibit the growth of P. 

falciparum  indicated by the reduction in the uptake of tritiated hypoxanthine compared 

with the controls. Cultures containing trophozoites (Figure 8.2A) appear to be more 

susceptible to the effect of SNAP than cultures containing mainly ring stages (Figure 

8 .2B) .  E x a m i n a t i o n  of  smears  t aken  f r om the  c u l t u r e s
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Figure 8.1. SNAP was freshly prepared and incubated at 3 7 % . Culture 
supernatants were harvested over a 72 hour period. Nitrite levels were 
measured by the Griess reaction as an indication of NO production by 
SNAP. Each data point is the mean ± SD combined from two replicate 
experiments.
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indicated that the higher eoncentrations of SNAP were killing parasites but that the lower 

concentrations of SNAP, parasites appeared to be developing more slowly than parasites 

from control cultures. This suggests that SNAP at lower concentrations may be having a 

cytostatic effect on the growth of parasites.

Cytostatic effect of NO, generated by SNAP, on the growth of 

P. falciparum

To investigate the possible cytostatic effect of low concentrations of SNAP on the 

growth of P. falciparum, SNAP at a concentration of 91|iM was added to cultures 

containing trophozoites. The tritiated hypoxanthine was then added at the times indicated 

on Figure 8.3. All the cultures were harvested at 31 hours after the addition of SNAP. 

As the amount of NO production declined (see Figure 8.1), the uptake of tritiated 

hypoxanthine increased to levels closer to controls. Smears from the cultures confirmed 

that during the period of NO generation by SNAP, the trophozoite stages were viable 

but not developing. However, at the end of the experiment, after NO production had 

ceased, the parasites had developed and some were undergoing division and re

invasion.

A different approach to investigating the cytostatic role of NO generated by SNAP was 

to add 91|xM of SNAP to cultures containing trophozoites and add the tritiated 

hypoxanthine at the same time as the SNAP but harvest the cultures at the times 

indicated on Figure 8.4. SNAP had a greater inhibitory effect on the growth of the 

parasites during the early part of the experiment but as the duration of the experiment 

neared the cessation of NO generation by SNAP, a recovery in parasite growth was 

observed. This suggests a possible cytostatic role for NO rather than a cytotoxic effect 

on the growth of malaria parasites in vitro.
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Figure 8.2A. The effect of SNAP on the growth of trophozoite stages of 
P. falciparum in vitro . Cultures were initiated with trophozoite stages. 
SNAP and tritiated hypoxanthine were added at the start (0 hours) and the 
cultures were harvested 24 hours later. Incorporation of tritiated 
hypoxanthine is shown relative to controls. Each point is the mean ± SD of 
an experiment performed in triplicate.
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Figure 8.2B. The effect of SNAP on the growth of ring stages of 
P. falciparum in vitro. Cultures contained mainly ring stages. SNAP and 
tritiated hypoxanthine were added at 0 hours and the cultures were harvested 
24 hours later. Incorporation of tritiated hypoxanthine is shown relative to 
controls. Each point is the mean ± SD of an experiment performed in 
triplicate.
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The effect of NO generated by SNAP on the growth of the murine 

malaria parasites, P. chabaudi and P. berghei in vitro.

The effect of SNAP on the growth of P. chabaudi and P. berghei under in vitro culture 

conditions was investigated. Mice, infected with either parasite were bled on the day of 

the experiment. The parasitaemia of both parasites was adjusted to 1 % by the addition of 

non-infected erythrocytes and cultures at a 5 % haematocrit. SNAP was added to the 

cultures at the concentrations indicated on Figure 8.5 and 8.6. Tritiated hypoxanthine 

was added at the same time as SNAP and the cultures were harvested 24 hours later. 

Figure 8.5 shows the effect SNAP had on the growth of P. chabaudi in vitro. SNAP 

was able to inhibit P. chabaudi growth at 91|xM. The effect of the higher concentrations 

of SNAP, appears to be lessened when in culture with the murine parasite, P. chabaudi, 

compared to the results observed for the human parasite, P. falciparum. This 

observation is confirmed by the results obtained for the effect of SNAP on the growth of 

P. berghei in vitro (Figure 8.6). The protocol was designed exactly the same as the P. 

chabaudi experiment. SNAP had an inhibitory effect on the growth of P. berghei in vitro 

but only at 182pM and above, thus confirming the reduced effect of NO generated by 

SNAP on murine malaria parasites compared with the effect of NO on the growth of P. 

falciparum.

An increase in haemoglobin levels does not reduce the effect of NO 

generated by SNAP on the growth of malaria parasites in vitro,

NO can bind to the haeme group of haemoglobin (Hakim et al., 1996) and it is possible 

that this may dilute any effect against the intra-erythrocytic malaria parasite. This 

hypothesis was investigated by using P. chabaudi in vitro at various parasitaemia 

obtained by the addition of non-infected erythrocytes. SNAP and the tritiated 

hypoxanthine were added at the same time and the cultures were harvested 24 hours

1 7 9



100

g
•^3 7 5 -

5 0 -

2 5 -

21190 6

[ 3  SN A P  

[jP control

hours

Figure 8.3. Cytostatic effect of NO on the growth of P. falciparum in 
vitro. SNAP at 9\pM  was added to trophozoite stages. Tritiated 
hypoxanthine was added at 0,6,  19 and 21 hours. The cultures were 
harvested at 31 hours. Incorporation of tritiated hypoxanthine is shown 
relative to controls. Each point is the mean ± SD of an experiment performed 
in triplicate.
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later. The parasites were cultured at 18%, 9%, 4.5% and 2.25% in the presence of 

SNAP. Inhibition of parasite growth was observed consistently at 91 pM SNAP and 

above with no decrease in the inhibitory effect of SNAP generated NO, as the number of 

non-infected erythrocytes increased (Figure 8.7). Therefore, the increase in the 

haemoglobin levels present in the cultures does not appear to suppress the inhibitory 

effect of NO, generated by SNAP, on the growth of malaria parasites.

Discussion

The in vitro experiments performed demonstrate that NO, generated by SNAP can 

inhibit the growth and development of malaria parasites. At concentrations of SNAP 

above 182pM, the growth of the asexual erythrocytic parasites was inhibited. However, 

at lower concentrations of SNAP, the trophozoite stage of the parasite life cycle, 

appeared more sensitive to the inhibitory effect of the NO donor, SNAP, than earlier 

ring stages. The effect of NO on the growth of malaria parasites in vitro, was observed 

not only on the human malaria parasite, P. falciparum  but also the murine malaria 

species, P. chabaudi and P. berghei. Hence, these results suggest that NO may inhibit 

the growth and development of the malaria parasite within the erythrocyte.

NO, generated by SNAP, has been shown to kill Trypanosoma cruzi trypomastigotes in 

vitro  (Vespa, Cunha and Silva, 1994) and L. major (Assreuy et a l,  1994), 

demonstrating the importance of NO during certain parasitic infections. Interestingly, 

NO does not have a protective role during T. brucei infection (Sternberg et a l, 1994). 

Indeed, the immunosuppression observed during T. brucei infection is mediated by NO 

and inhibition of NO production results in a reduced parasitaemia (Sternberg et a l,

1994). This illustrates how NO can have a varied influence on the immune response to 

infections. NO has been proposed to mediate the pathology observed during cerebral 

malaria (Clark, Rockett and Cowden, 1991) and also immunosuppression (Rockett et 

al, 1994). The results presented in this study, propose a protective role for NO against 

the asexual erythrocytic stage of malaria. Previous work demonstrated killing of P.
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Figure 8.4. The recovery of parasite growth as the production of NO 
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falciparum in vitro by NO derivatives (Rockett e ta l, 1991). Nitrosothiol derivatives of 

cysteine and glutathione were found to be the most effective compounds used. Nitrite 

was also reported to kill parasites in vitro (Rockett et a l, 1991), however, nitrite was 

found to have no inhibitory effect at levels equivalent to SNAP in the studies reported 

here. These contradictory results may be explained by the fact that Rockett and 

colleagues (1991) observed killing of P. falciparum  by sodium nitrite at 30 times the 

concentration used in the experiments undertaken in this study.

In vivo studies have failed to define the role of NO during the asexual erythrocytic stage 

of malaria infection. P. chabaudi infected mice, receiving NMMA treatment, 

demonstrated a marked increase in parasitaemia (Taylor-Robinson et a l, 1993). 

Previous studies, using NMMA and aminoguanidine as NO synthase inhibitors, did not 

demonstrate any increase in the parasitaemia during P. chabaudi infeetion but did report 

an exacerbation in susceptibility to infection (Rockett et a l, 1994, Jacobs, Radzioch 

and Stevenson, 1995, Amante and Good, 1997). Different protocols may account for 

the conflicting results because Taylor-Robinson et a l ,  (1993) were using 

thymectomised mice and transfer of T cell clones while the other studies were using 

immunocompetent mice. Therefore, NO may be protective by a mechanism other than 

being parasiticidal. Mice pre-treated with NMMA, infected with P. vinckei and treated 

with chloroquine plus IFNy exhibited higher mortality and more pronounced liver and 

kidney lesions (Kremnser et a l, 1992). This suggests that NO may act as a tissue- 

protective molecule during malaria infection either by inactivating tissue damage by 

oxygen radicals or inhibiting leukocyte adhesion to endothelium and preventing hypoxic 

tissue damage (Jacobs, Radzioch and Stevenson, 1995). Further evidence for this 

hypothesis comes from human malaria infection. Patients infected with P. falciparum or 

P. vivax have increased plasma levels of RNI (Nussler et a l, 1994). Also, the duration 

of coma due to cerebral malaria is shorter in children with relatively high NO plasma 

levels (Cot gr aZ., 1994).
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Figure 8.5. The effect of NO, generated by SNAP, on the growth of 
P. chabaudi in vitro. SNAP and tritiated hypoxanthine were added at 0 
hours. The cultures were harvested 24 hours later. Incorporation of tritiated 
hypoxanthine is shown relative to controls. Each point is the mean ± SD of 
triplicates and is data combined from two replicate experiments.
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Although, NO has been shown to be cytotoxic to L. major (Liew et a l, 1990) and T. 

gondii (Adams et a l, 1990) in vivo, there is insufficient evidence to confirm a direct 

cytotoxic effect of NO on malaria parasites in vivo. However, NO may act on the 

intraerythrocytic parasite in a cytostatic manner. As NO production by SNAP ceased, it 

was observed that the parasites resumed growth suggesting a cytostatic effect rather than 

cytotoxic. To elucidate how NO could be exerting a cytostatic effect on the growth of the 

malaria parasite, the mechanisms involved in the development of the intraerythrocytic 

phase of the complex life cycle have to be examined. An important process which is a 

likely candidate for interference by NO, is the reduction of ribonucleotide diphosphates 

to deoxyribonucleotide triphosphates which are needed for DNA synthesis. This 

reaction is catalysed by the enzyme, ribonucleotide reductase (RR) which is a target of 

macrophage derived NO cytotoxicity to tumour cells (Kwon, Stuehr and Nathan, 1991). 

RR is the rate-limiting step in DNA synthesis, depends on thiols and a non-haeme iron 

in its reaction centre (Stubbe, 1990) which maintain a key trosyl radical (Ochiai et a l, 

1990). Thus, RR is a candidate for inactivation by NO. Activated macrophages and 

hydroxyurea, a pharmacological inhibitor of RR, were both shown to have a similar 

cytostatic effect on DNA synthesis in tumour cells (Kwon, Stuehr and Nathan, 1991, 

Lepoivre et a l, 1991). Iron chelation treatment of P. falciparum  infected erythrocytes 

interferes with iron-dependent metabolism of malaria parasites and inhibits their 

development (Lytton et a l, 1994). The mechanism of this inhibition is to block DNA 

synthesis catalysed by RR. The iron chelators block integration of iron into newly 

synthesised R2 subunits rather than removal of iron from fully assembled RR protein. A 

similar inhibition of parasite growth was observed using hydroxyurea (Rubin et a l,

1993). Parasites were able to recover from iron chelation after removal of the drug 

depending upon the treatment regime and drug properties (Lytton et a l, 1994). These 

observations mirror the results obtained for NO mediated inhibition of malaria parasites 

in vitro. As the generation of NO by SNAP neared completion, the parasites were able 

to recover which is similar to the recovery of parasite growth following iron chelation 

treatment.
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Figure 8.6. The effect of NO, generated by SNAP, on the growth of P. 
berghei in vitro. SNAP and tritiated hypoxanthine were added at 0 hours. 
The cultures were harvested 24 hours later. Incorporation of tritiated 
hypoxanthine is shown relative to controls. Each point is the mean ± SD of 
triplicates and is data combined from two replicate experiments.
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Mature parasites, trophozoites and schizonts are more susceptible to both NO and iron 

chelators probably because peak RR activity is found at this stage of parasite 

development (Rubin et a i, 1993). Hence, lower RR activity in the ring stages may 

account for the increased resistance to NO and iron chelation treatment. Another factor 

influencing the effect of NO and iron chelators is access to the parasite. This is 

dependent upon the permeability of the erythrocyte membrane and the stage of the 

intraerythrocytic parasite. The parasite causes alterations in the erythrocytic membrane to 

facilitate the movement of nutrients and waste products. A tubovesicular membrane 

network extending from the parasite vacuole membrane probably has a central role in 

this process (Deitsch and Wellems, 1996). As the parasite matures, changes in the 

permeability of the erythrocyte membrane occur, allowing access to small molecular 

weight molecules to the parasite possibly via the parasitophorous duct which is an 

extension of the tubovesicular membrane and allows transfer of molecules between the 

parasite and extracellular environment (Deitsch and Wellems, 1996). Therefore, 

susceptibility of trophozoites to NO, compared with ring stages, is because NO has 

easier access to the parasite and that peak activity of RR, one of the main candidate 

targets, occurs during mature parasites. There are other possible targets for NO mediated 

inhibition of parasite growth such as mitochondria respiratory functions which are 

catalysed by iron containing enzymes. The cytostatic inhibition of parasite growth by 

NO may result in the asynchronous growth observed at peak parasitaemia during an 

infection.

An important observation made during these studies was that an increase in the levels of 

haemoglobin did not quench the effect of NO on the growth of the parasite. It had been 

proposed that erythrocytes would act as a sink for NO because of the scavenging activity 

of haemoglobin (Sternberg et ai, 1994), thus preventing any anti-parasite effect of NO 

in the bloodstream. However, increasing the levels of haemoglobin was found not
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to diminish NO mediated inhibition of P. chabaudi growth in vitro. As the parasite 

develops within the erythrocyte, it degrades haemoglobin to yield amino acids which are 

a nutrient source for the developing parasite. The trophozoite stage digests the majority 

of the haemoglobin (Goldberg and Slater, 1992). Hence, NO may be able to inhibit the 

growth of the intraerythrocytic parasite because the scavenging capacity of haemoglobin 

is lost due to degradation by the parasite.

These results demonstrate that NO can inhibit the growth and development of malaria 

parasites in both a cytotoxic and cytostatic manner. Trophozoite stages are more 

susceptible to NO than ring stages possibly because of increased permeability of the 

erythrocyte membrane allowing increased access to the mature parasite for NO. The 

actual mechanism of inhibition mediated by NO is unclear. The potential of NO to 

inactivate RR and subsequently DNA synthesis offers one explanation of how NO may 

inhibit parasite growth and development. Analysis of various metabolic processes 

during parasite growth will confirm how NO inhibition is mediated. Measurement of 

DNA synthesis during the in vitro experiments in conjunction with observing the effect 

of the RR inhibitor, hydroxyurea would determine if this enzyme is susceptible to NO 

mediated inactivation. ATP levels would indicate if the mitochondria respiratory function 

was affected by the presence of NO.

The in vitro experiments suggest that in vivo, high localised concentrations of NO may 

be able to either kill intraerythrocytic parasites or more likely, inhibit their development. 

The mature stage parasites were more susceptible to NO, suggesting the parasite may be 

vulnerable in vivo during sequestration. This process involves the trophozoite/schizont 

infected erythrocytes adhering to endothelial linings of capillaries. The systemic 

inflammatory response induced by infection could stimulate a high, local production of 

NO by cells such as endothelial cells resulting in inhibition of parasite development. A 

cytotoxic effect would result in parasite death but a cytostatic effect may be important in
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aiding the effector mechanism of the immune system to respond to the non-circulating 

parasitised erythrocyte.
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Chapter Nine

The effect of chloroquine on nitric oxide production by

macrophages
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Introduction

The spread of P. falciparum  resistance to current antimalarial drugs and the slow 

progress towards an effective vaccine have the emphasised the need for new 

antimalarials. Advances have been made in the understanding of the mode of action of 

some antimalarials. However, the interaction between chemotherapy and protective 

immune responses to malaria infection is unclear and a better understanding will be 

important in future control programmes which may combine vaccination with 

chemotherapy.

Some antimalarials are known to be immunosuppressive. Indeed, chloroquine is used in 

the treatment of autoimmune disorders because of its anti-inflammatory properties (Hurst 

et al., 1986). The actual mechanism(s) of immunosuppression by antimalarials is 

unclear. Chloroquine has been shown to suppress the proliferation of lymphocytes (Trist 

and Weatherall, 1981, Salmeron and Lipsky, 1983) and this activity appears to be dose 

related, since only high concentrations of chloroquine profoundly suppressed the 

proliferation of mitogen and antigen stimulated lymphocytes (Bygberg and Flachs,

1986). Chloroquine, mefloquine and quinine, at high concentrations can inhibit IL-2 

production (Bygberg et a i ,  1987) which will affect subsequent T cell responses. 

Neutrophil chemotaxis can be inhibited by concentrations of the antimalarial achieved in 

the blood during malaria prophylaxis but no effect was observed on the bactericidal 

activity of these cells (Kharazmi et aL, 1983, Kharazmi and Eriksen, 1986). The 

immunosuppressive effect of chloroquine on leukocytes has only been demonstrated 

with high concentrations, suggesting that chemotherapy may not influence the immune 

response significantly. Furthermore, antimalarial prophylaxis does not appear to alter 

immune responses to commonly used vaccines (Bjorkman, 1988) but the effect on 

protective immune responses to malaria remains is still to be investigated.
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Chloroquine has been shown to reduce antibody titres to rabies vaccination (Taylor, 

Wasi and Bernard, 1984, Pappaioanou et a l,  1986). However, a normal prophylactic 

dose of chloroquine, did not affect cellular responses to typhoid vaccination (Bygberg 

and Flachs, 1986) and chloroquine did not have any affect on antibody production in 

rabbits following typhoid vaccination (Thompson and Bartholomew, 1964).

The uptake or digestion of haemoglobin by the parasite is thought to be the metabolic 

process altered by chloroquine (Foley and Tilley, 1997). Chloroquine is a weak base 

which can traverse the membrane of the parasitised erythrocyte and moves down the pH 

gradient to accumulate in the acidic food vacuole (Fitch et a l, 1974). A high intracellular 

concentration of chloroquine inhibits haem polymerisation resulting in a build up of 

haem which is toxic to the parasite (Vander Jagt, Hunsaker and Campos, 1986). The 

immunomodulatory properties of chloroquine derive from its ability to influence 

antigenic presentation. This can come about because chloroquine can accumulate in 

vesicles such as lysosome and endosomes, causing an elevation in pH which influences 

the assembly of antigenic peptides with the class IIMHC complex (Fox, 1995).

Macrophages are important antigen presenting cells and have a pivotal role in the 

immune system because they are involved in the induction of the immune response and 

subsequent effector mechanisms. Chloroquine has been shown to have suppressive 

effects on macrophages additional to its influence on antigen presentation. Production of 

T N F a  and IL-6 by macrophages is inhibited by chloroquine (Picot et al., 1993). 

Chloroquine has also been shown to inhibit IL-1 production by monocytes (Krogstad 

and Schlessinger, 1987). These observations indicate that chloroquine could have the 

potential to alter the production of inflammatory mediators by macrophages which could 

be important during a malarial infection. Overproduction of TN Fa and NO, both 

macrophage products, has been implicated in the development of cerebral malaria (Clark, 

Rockett and Cowden, 1991). Mice infected with P. chabaudi produce a sharp peak of 

NO at peak parasitaemia (Taylor-Robinson et al., 1993). However, in mice treated with
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chloroquine 24-48 hours prior to peak parasitaemia, the production of NO was ablated 

(Phillips, Mathers and Taylor-Robinson, 1994). Investigations were carried out to 

examine if chloroquine inhibited NO production by macrophages.

Results

Chloroquine mediated inhibition of NO production by J774 cells

Cells of the murine macrophage-like cell line, J774, were cultured at 5xl0^cells/ml and 

treated with chloroquine (1-lOOOpM final concentration) at 24 and 2 hours before, the 

same time as and 2 and 6 hours after stimulation with IFNy (lOOU/ml) and LPS 

(25ng/ml). Nitrite in the culture supernatant was measured by the Griess reaction as an 

indication of NO production. 100 and lOOOpM chloroquine inhibited NO production, 

both before and after stimulation (100|iM: -24 hours, p<0.04; -2 hours, p<0.004; 0 

hours, p<0.005, lOOOmM: -24 hours, p<0.05; -2 hours, p<0.002; 0 hours, p<0.006; 

4-2 hours, p<0.01; 4-6 hours, p<0.003). No inhibition of NO was observed for 

concentrations of chloroquine at 10|iM or below. lOOOpM chloroquine inhibited NO 

production by J774 cells at all the timepoints but the effect of lOOjiM chloroquine 

appeared to decrease when treatment was delayed until after stimulation.

Chloroquine induced inhibition of NO production by murine splenic 

macrophages

Splenic macrophages were obtained from of naive mice and cultured at 5x10^ cells/ml. 

Chloroquine treatment was identical to the protocol described above and the cells were 

again similarly stimulated with IFNy and LPS. NO production by the splenic 

macrophages was inhibited by 100 and lOOOpM chloroquine, similar to the result

194



} I
E D O Ea □ □

(U
C

_o
-C
U

2

o

^ ' t r i O O C ' s D ' t M O C M

c:c
JC
u

§

o

r i

\0 "t ri (3 00 •i- D  o  r i

\\H aiujiisj

X,

□ □

X  i:

□ □

<u
c
5

' O ^ r i O O O ' . O r f r J O C ' i

cr

H-f
VO D O 00 VO ^ O') o n

\ \ f i  ajuiiisj

195

(U
-C

(U
-C

"OI
"O

8
in
o

■2

30
8
(U

C O

1 
?

| i
CJ

s

V)

CL
5

" o  

_  Q(U GO 
^ -H

1 §  
§ s
U o

el
i s

a l  
g  a

I I
ft
•T3

I
3
B

8

g
§
3
O
3

1
CL

Oz

o 
co

- 1
C O

8 S
g §

=  ^
< U  C O  O ^
U I

I I
(U

13

I
3

f
J C
U

8
3OC

H 3u. 3
c

g
K3

(U
B

Ol
V3
8 I

i2c 5 «
'o 3O9
CL

( U<U 3
B 3

CJ

T lo "O 8(D
k . c33 C O I?
3(UG s 3oÎ 3

"O
QJO3

jCO c a
z o

3

8o
d

1

3
73

3 £
o B ,2

3
8 ■2<Uc

o' s !5
C O £o
CL O



obtained for the J774 cells (lOOjiM: -24 hours, p<0.0001; 0 hours, p<0.0001; +2 

hours, p<0.01; lOOOmM: -24 hours, p<0.0002; -2 hours, p<0.00006; 0 hours, 

p<0.00006: +2 hours, p<0.00003; +24 hours, p<0.0001). 10|xM chloroquine and 

below did not inhibit NO production by splenic macrophages.

NO production by murine peritoneal was cells is inhibited by 

chloroquine.

Peritoneal wash cells were obtained from naive mice and cultured at 5x10^ cells/ml. The 

cells were treated with 100|iM chloroquine 24 hours prior to and the same time as 

stimulation with IFNy and LPS. NO production by the murine peritoneal wash cells was 

significantly inhibited at both timepoints (-24 hours, p<0.00001; 0 hours, p<0.00002).

Discussion

The results performed in this study, demonstrate that chloroquine at a concentration 

lOOjiM can alter the production of effector molecules by stimulated macrophages. In 

earlier studies, chloroquine mediated inhibition of IL-1 (Krogstad and Schlessinger,

1987), TN Fa and IL-6 production (Picot et al., 1993) by macrophages has been 

demonstrated and this has now been extended to include NO. Chloroquine treatment of 

three types of macrophages, J774, murine splenic macrophages and murine peritoneal 

(adherent) wash cells resulted in an inhibition of NO production following stimulation 

with IFNy and LPS. Inhibition of NO production was observed with chloroquine 

treatment of the cells both prior to and after stimulation. However, with lOOjiM 

chloroquine treatment, a recovery of NO production was observed when treatment of the 

cells was after stimulation which was not observed in the cells treated with 1000}xM 

chloroquine.
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The production of NO by macrophages is a complex process. Stimulation of the 

macrophage is required to induce NOS transcription and the signal transduction pathway 

involves several different processes. Transcription factors such as NF-kB and IRF-1 

have binding sites in the promoter region of the iNOS gene (Martin, Nathan and Xie,

1994). LPS stimulation results in the binding of a NF-kB complex to the promoter 

region of iNOS (Xie, Kashiwabara and Nathan, 1994) but it may also enhance the 

production of transcription factors stimulated by IFNy (Xie, Whisnant and Nathan, 

1993). IFNy stimulation induces IRF-1 to bind to the appropriate binding site on the 

promoter sequence of the iNOS gene (Martin, Nathan and Xie, 1994). Macrophages 

from IRF-1 deficient mice did not express iNOS mRNA upon stimulation with IFNy and 

LPS (Kamijo et a l, 1994). The induction of IRF-1 by IFNy stimulation may be 

mediated by gamma activated factor (GAF) undergoing IFNy induced tyrosine 

phosphorylation which in turn induces translocation of GAF to the nucleus resulting in 

expression of the necessary transcription factors (Martin, Nathan and Xie, 1994). 

Approximately 22 transcription factor consensus sequences within the promoter region 

of iNOS have been identified (Xie, Whisnant and Nathan, 1993). These include 

consensus sequences for transcription factors involved in the induction of other genes by 

cytokines or bacterial products, such as the IFNy response element, the y-activated site 

and NF-kB binding sites (Xie, Whisnant and Nathan, 1993).

Inducible NOS only produces NO when homodimeric and attached to at least five other 

co-factor molecules: haem, tetrahydrobiopterin, calmodulin and the flavins, FAD and 

FMN (MacMicking etah, 1997). The binding of calmodulin can occur in the absence of 

elevated calcium levels unlike the constitutively expressed forms of NOS (Bastian and 

Hibbs, 1994). This allows iNOS to sustain production of NO because there is no 

requirement for elevated calcium.

Inhibition of iNOS activity by glucocorticoids has been demonstrated at transcription and 

post-transcriptional levels (Kunz et al., 1996). TGF(3l destabilises iNOS mRNA
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Figure 9.3, Chloroquine induced inhibition of NO production by murine 
(adherent) peritoneal wash cells. The cells were harvested from the
peritoneal cavity of naive mice and cultured at 5x10 ^ cells/ml. The cells 
were treated with lOO^M chloroquine 24 hours before or at the same time as
stimulation with IFN y and LPS. Control wells were cells plus medium 
alone. Each point is the mean ± SD for an experiment performed in 
triplicate.
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and accelerated its degradation (Vodovotz and Bogdan, 1994). Cytokines such as IL-4 

and IL-10 inhibit NO production by macrophages (Sands et al., 1994, Cunha, Moncada 

and Liew, 1992). From the experiments performed, it is unclear if chloroquine mediated 

inhibition of NO production occurs at the transcriptional or post-transcriptional level. 

Extraction of iNOS mRNA from the macrophage cultures treated with chloroquine 

would determine if the inhibtion mediated by chloroquine occurs at the transcriptional 

level. The inhibition is dose-dependent and at lOOpM the inhibition is not complete in 

relation to the treatment regime. TNF production by macrophages is also inhibited by 

choloroquine in a dose-dependent manner, through disruption of iron homeostasis (Picot 

et al., 1993). Recently a regulatory loop between iNOS induction and iron metabolism 

has been proposed (Weiss et a l,  1994). An increase in ferric ion concentration, 

decreased iNOS activity in response to LPS stimulation whereas iron chelation treatment 

of macrophages resulted in an increase in iNOS activity (Weiss et al., 1994). The 

changes in enzyme activity result from alterations in the transcription of iNOS mRNA. 

The stability of the mRNA is not significantly affected by the different treatments but the 

nuclear transcription of iNOS mRNA is increased following iron chelation and decreased 

by the presence of ferric ions (Weiss et al., 1994). Iron metabolism, therefore, has a 

regulatory role during the production of NO by iNOS. A regulatory element in the iNOS 

promoter region, responsive to iron chelation has recently been elucidated confirming the 

link between iron metabolism and iNOS expression (Melillo et al. 1997). Chloroquine 

has been shown to inhibit LPS-induced TN Fa production via disruption of iron 

homeostasis (Picot et al., 1993), hence, chloroquine inhibition of IFNy/LPS induced 

NO production by macrophages, may be mediated by disruption of the regulatory loop 

between iron metabolism and iNOS activity.

Chloroquine inhibition of cytokine secretion by macrophages has been shown to be not 

only related to disruption of iron metabolism (Picot et al., 1993). Chloroquine has also 

been shown to inhibit the activity of phospholipase A2 (PLA2) (Zidovetzki, Sherman 

and O'Brien, 1993, Nosal, Jancinova and Petrikova, 1995). This has important
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consequences on signal transduction pathways because PLA2 catalyses the production 

of arachadonic acid metabolites which can activate protein kinase C (PKC), which, 

through phosphorylation of proteins, initiates a cascade of kinase activation resulting in 

the induction of the required gene. Inhibitors of PKC activity has been shown to inhibit 

IFNy/LPS induced NO production (Severn, Wakelam and Liew, 1992). IL-4 mediated 

inhibition of NO production may occur through inhibition of phospholipase activity, 

reducing the generation of diacylglycerols subsequently inhibiting PKC activity (Severn, 

Wakelam and Liew, 1992). Upon activation, PKC is translocated to the cell membrane 

(Severn, Wakelam and Liew, 1992), however, the reduction of diacylglycerol 

stimulation of PKC by IL-4, results in an inhibition of iNOS gene transcription (Sands 

et al., 1994). Hence, chloroquine mediated inhibition of IFNy/LPS induced NO 

production, could possibly result from chloroquine suppression of PKC activation by 

products generated by phospholipase cleavage of phospholipids. Measurement of PKC 

activity would determine if chloroquine treatment of macrophages prevents NO 

production through inhibition of this pathway.

T N F a production has been shown to be important, in an autocrine fashion, in the 

induction of NO production (Jun et al., 1995). Anti-TNFa antibodies were shown to 

inhibit IFNy and taxol (an anti-cancer agent) induced NO production (Jun et al. 1995). 

The suppressive effect of IL-10 on NO production is exerted indirectly via its inhibition 

of TN Fa production (Oswald et al., 1992). Chloroquine inhibits TN Fa production 

(Picot et al., 1993), hence, the inhibition of NO production observed in this study may 

result from an inhibition of the autocrine pathway of stimulation involving TNFa. Both 

TNFa and NO have been implicated in the immunopathological damage associated with 

cerebral malaria (Clark, Rockett and Cowden, 1991). The spread of P. falciparum  

resistance to chloroquine means that it is rarely used in some areas. However, 

chloroquine may provide an inexpensive method of suppressing the pathology mediated 

by TN Fa and NO during cerebral malaria.
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The effect of chloroquine (or other antimalarial) chemotherapy or prophylaxis treatment 

on the generation of protective immunity to malaria infection is an area which remains 

poorly understood. There are several factors which can influence the interaction between 

antimalarial compound and immune response. These include: the immunosuppressive 

potential of antim alarials; the effect of antim alarials on m alaria-linked 

immunosuppression and immunopathology; the induction of immunity in relation to 

chemotherapy. The immunosuppressive effect of chemotherapy has already been briefly 

discussed but it is clear that antimalarials do have the potential to suppress the 

development of protective immune effector mechanisms although this may be dependent 

upon the dosage used in the chemotherapy (Bjorkman, 1988). Immunosuppressive 

effects tend to be observed with higher doses of antimalarial drugs. However, 

prophylactic doses of chloroquine (600mg base/week) have been shown to inhibit the 

phagocytosis of IgG coated sheep red blood cells by human monocytes (Osorio, Fonte 

and Finlay, 1992) demonstrating the immunosuppressive potential of antimalarials. The 

interaction between chemotherapy and the induction of immunity to malaria infection is 

an important issue. It is unclear if protection given by chemotherapy will reduce the level 

of acquired immunity gained by infection and re-infection. Semi-immune schoolchildren 

were given antimalarial treatment for one-two months in an endemic area of Tanzania 

(Pringle and Avery-Jones, 1966). Subsequent new clinical infections caused clinical 

symptoms and a parasitaemia that was significantly greater than before treatment. It was 

concluded that the short duration of drug treatment had reduced the immune status of the 

children. Hence, the difference between sub-curative and curative treatment of malaria 

may influence the immune status of an individual and interfere with the development of 

naturally acquired immunity to malaria infection. Conversely the immune status of an 

individual may influence the efficiency of antimalarial chemotherapy. Chloroquine was 

more effective against P. berghei after a degree of immunity had developed following 

exposure to several infections (Golenser et a i, 1978). The efficiency of chemotherapy 

treatment of P. chabaudi infection is reduced in T cell deficient mice compared to intact 

mice (Lwin et a l, 1979). The combination of passively transferred IgG antibodies, from
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hyper-immune mice infected with P. chabaudi, and chemotherapy was more effective 

than either form of therapy used alone (Bjorkman, 1988). This demonstrates that 

chemotherapy may have differing effects on humoral and cell-mediated immunity which 

may have consequences on the development of protective immunity to infection.
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Chapter Ten 

General Discussion
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The studies presented in this thesis cover two main areas: firstly, the role of cytokines in 

the development of protective immune responses to P. chabaudi infection in mice and 

secondly, the role of non-specific inflammatory mediators during a primary malaria 

infection in rodents. As already discussed the immune response to P. chabaudi infection 

in mice is mediated by a sequential involvement of Thl and Th2 regulated immunity 

(Langhorne et al., 1989, Taylor-Robinson et al., 1993). The role of Thl and Th2 

cytokines during P. chabaudi infection was investigated using IFNyR gene deficient 

mice, IL-4 and IL-6 gene deficient mice. This allowed a degree of comparison to be 

drawn between the effect of Thl (IFNyR deficient mice) and Th2 (IL-4 and IL-6 

deficient mice) deficiencies during infection.

The development of protective immunity to P. chabaudi infection involves three distinct 

pathways (illustrated in Diagram 3). The first is a rapid inflammatory response initiated 

by malarial antigen or parasite derived toxins stimulating effector cells to produce 

inflammatory mediators such as NO, oxygen radicals, TNFa, IL-1 which have been 

implicated in various mechanisms of parasite killing (Phillips, 1994a, Stevenson et al., 

1995, Taylor-Robinson, 1995). IL-12 and TNFa are important macrophage products 

which can stimulate NK cells and result in further activation of effector cells through the 

production of IFNy. The second pathway is initiated by antigen presentation to CD4"^ T 

cells. The presence of the correct co-stimulatory molecules and microenvironment will 

result in the expansion of Thl type CD4+ T cells which can activate effector cells 

through the production of cytokines such as IFNy and TNFp. IL-12 is a cytokine which 

has been shown to provide the correct microenvironment for the development of Thl 

cells (Trinchieri, 1995). Essentially Thl mediated responses amplify the rapid 

inflammatory response, resulting in an increase in parasite killing.

The third pathway is the development of Th2 mediated responses. Presentation of 

malarial antigen via, for example, B cells and in the presence of IL-4 will promote the
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development of Th2 cell proliferation. This results in the production of several Th2 

associated cytokines important for the development of humoral immunity and thereby, 

involved in parasite removal. This description of the protective immune response to P. 

chabaudi is a gross simplification. There are several crucial interactions between the 

Thl/Th2 associated cytokines which regulate the CD4+ T cell response. The balance 

between IL-12 and IL-4/IL-10 may influence which subset, Thl or Th2 will be 

preferentially induced (von der Weid et a i, 1994). IFNy, a Thl cytokine, can inhibit the 

expansion of Th2 cells (Gajewski and Fitch, 1988, Maggi et al., 1992) whereas IL-10, 

a Th2 cytokine, can inhibit the induction of Thl cell expansion (Fiorentino et al., 1991). 

Furthermore, humoral immunity is not exclusively mediated by Th2 cells because IFNy 

promotes the production of IgG2a (Snapper and Paul, 1987a).

In IFNyR deficient mice, the absence of a functional IFNy receptor and subsequently a 

loss of IFNy mediated responses, it would be expected that during P. chabaudi 

infection, a reduction in inflammatory responses (non-specific and Thl mediated) would 

be observed. The interactions between Thl/Th2 responses may be altered due to an 

abrogation of IFNy mediated down-regulation of Th2 development. The loss of IFNy 

function would also be reflected in the level of IgG2a observed. Consistently, IFNyR 

deficient mice, compared to control mice had an exacerbated peak of parasitaemia 

following P. chabaudi infection (although this was not statistically significant), 

indicative of a reduced inflammatory response. Raised total IgE levels in the serum of 

the IF N '^  deficient mice may indicate a strong Th2 response which could reflect a loss 

of IFNy function in the preferential activation of Thl cells and the inhibition of Th2 cell 

expansion. The total IgG2a response and the parasite-specific antibody level are both 

reduced in IFNyR deficient mice suggesting that IFNy induced humoral responses are 

important during a primary P. chabaudi infection. IFNyR deficient mice, therefore, are 

more susceptible to P. chabaudi infection compared to intact control mice, exhibiting a 

high mortality rate. The IFNyR deficient mice, which survive the acute phase of P.
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chabaudi infection, are unable to reduce the parasitaemia to sub-patent levels and 

consequently have a persistent, low grade parasitaemia.

The results observed for P. chabaudi infection of the mice deficient in IL-4 and IL-6 

production are not as striking as the infection of IFNyR deficient mice. Both IL-4 and 

IL-6 deficient mice recover from P. chabaudi infection, no mortality is observed and the 

efficiency of parasite clearance is broadly similar to that of intact mice. In IL-4 deficient 

mice, reduction in the IL-4 mediated Th2 development would be expected. An alteration 

in the balance of Thl and Th2 activation and expansion might occur. However, IL-10 is 

regarded as the main inhibitory cytokine to Thl development (Fiorentino etaL, 1991). 

Furthermore, a reduction in the production of IL-4 associated Ig isotypes would be 

expected. An exacerbation of the peak parasitaemia in IL-4 deficient mice was 

consistently observed, coupled with a reduction in the total IgGl response. The 

exacerbation of the peak parasitaemia may be attributed to an alteration in the balance 

between Thl/Th2 mediated immunity which results in a reduction of parasite killing. 

However, control of the peak parasitaemia may involve IgGl mediated responses and 

hence, the reduction in total IgGl levels may contribute to the exacerbated peak 

parasitaemia. The involvement of the humoral response in the control of the primary 

peak of parasitaemia is also demonstrated in IL-6 deficient mice. Infection of IL-6 

deficient mice with P. chabaudi results in a significant delay in parasite clearance after 

the peak of the primary parasitaemia. An exacerbation of peak parasitaemia was 

consistently observed (although never statistically significant) using 1x10^ pRBCs as 

the infective dose in the IL-6 deficient mice compared to intact control mice. The 

differences in the course of infection in IL-6 deficient mice coincide with a reduction in 

total IgG2a and total IgGl levels.

The studies using the gene deficient mice have produced some interesting results which 

merit further investigation. IFNy has been shown to be a critical mediator in the 

development of protective immunity to a primary P. chabaudi infection, whereas the
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absence of IL-4 or IL-6 function does not significantly alter the outcome of infection. 

IFNyR deficient mice have been shown to be as equally protected as control mice upon 

re-infection but it would be interesting to re-infect the IL-4 or IL-6 deficient mice 

because the protective response to re-infection is regarded as a Th2 mediated humoral 

response. The studies performed suggest that the Th2 associated cytokines, IL-4 and EL- 

6 are not required for the control of a primary P, chabaudi infection. However, it is 

possible that redundancies in the cytokine network compensate for the loss of either 

cytokine, resulting in only slight deficiencies in the immune response to P. chabaudi 

infection. Further investigations are required to elucidate why IFNyR deficient mice 

succumb to P. chabaudi infection and why mice deficient in the Th2 associated 

cytokines are capable of controlling a primary infection. Analysis of tissue-specific 

cytokine mRNA expression is planned as well as determination of the levels of various 

cytokines in the serum. Problems with the preparation of the parasite lysate antigen, 

prevented parasite-specific analysis of the proliferation and antibody studies which may 

have differentiated between general defects in the immune response due to the gene 

disruption and defective responses to infection.

Non-specific inflammatory mediators are an integral part of the immune response to 

malaria infection. Acute phase proteins are induced rapidly in response to various stimuli 

including malaria infection (Gillespie et a l, 1991). The role of the murine acute phase 

protein, SAP, was investigated during a P. chabaudi infection. P. chabaudi infection of 

mice stimulates a systemic acute phase response indicated by raised SAP levels which 

peak around the peak of the primary parasitaemia. The actual role of SAP during 

infection remains unclear. However, the in vitro studies suggest that SAP may have an 

anti-parasite effect but it is more likely to be an important immunomodulatory molecule. 

It would be interesting to perform infection studies where SAP has been depleted either 

by treatment with antibodies or gene dismption. The effect of the absence of SAP on the 

outcome of infection could be determined. However, it is most probable that SAP has 

only a minor role in the control of infection because IL-6 gene deficient mice do not
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produce SAP during a P. chabaudi infection but are still able to clear the parasite with a 

similar efficiency to that of controls.

The liver is the major site of synthesis of acute phase proteins and preliminary studies 

have suggested that the liver may also be the site of a protective immune response during 

a P. chabaudi infection. An increase in the number of lymphomyeloid cells present in the 

liver during a P. chabaudi infection was observed. Adoptive transfer of the 

lymphomyeloid cells from the liver during a P. chabaudi infection gave some protection 

to recipient mice from a homologous challenge. These studies confirmed previous work 

suggesting that the liver is involved in a protective response to murine malaria parasites 

(Playfair et a l, 1979, Dockrell, De Souza and Playfair, 1980, Playfair and De Souza, 

1982). P. chabaudi is known to sequester to the liver (Cox, Semoff and Hommel, 1987) 

during the latter stages of the asexual erythrocytic cycle of the parasite. Hence the 

parasite is present in the liver, at stages (late trophozoite/schizont and merozoites) which 

are the most likely to be vulnerable to the immune response. Hence, the liver is a 

potential site where parasite killing may occur. The studies using the gene deficient mice 

illustrated that immune responses in the liver may be involved in protective immunity 

because there was a reduction in lymphomyeloid cells present in the liver of these mice 

during a P. chabaudi infection. It is unclear if the increase in the number of LM cells 

present is due to an expansion of intrahepatic lymphomyeloid cells or if there is 

increased migration of cells to the liver during infection. Further investigations of the 

lymphomyeloid cells present in the liver are planned with the focus on identifying what 

these cells are and monitoring the change in the composition of these cells, particularly 

the lymphoid compartment, during the course of a P. chabaudi infection. It would be 

interesting to see if the sequestration of the parasite to the liver is required to induce the 

increase in the number of lymphomyeloid cells present. Non-sequestering murine 

malaria parasites induce a systemic acute phase protein response but it is unknown if 

there is an increase in the number of lymphomyeloid cells present in the liver of mice 

infected with non-sequestering species of murine malaria.
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NO is a non-specific inflammatory molecule which has been shown to inhibit the 

development of intrahepatic malaria parasites (Nussler et a l, 1991). Hence, the liver 

may be a source of NO production during the pre-erythrocytic stage of infection but as 

already mentioned, during a P. chabaudi infection, the parasite may be vulnerable to 

immune attack and molecules such as NO, during sequestration in the liver. The studies 

performed here suggest that at high local concentrations, NO may have a cytotoxic effect 

on malaria parasites. However, a cytostatic effect is more probable. NO has been shown 

to have a direct effect on parasite development both in vivo (Taylor-Robinson et al., 

1993) and in vitro (Rockett et al., 1991) but a protective role for NO which is not anti- 

parasitic, but host protective has also been suggested (Jacobs, Radzioch and Stevenson, 

1996).

Hence the liver may be an important site of a protective immune response mediated by 

the lymphomyeloid cells in the liver during infection and through the production of non

specific inflammatory molecules such as SAP and NO. Furthermore, the liver may be a 

site where immunity induced to the pre-erythrocytic malaria infection may also be 

protective against an ongoing blood stage infection, because the inflammatory molecules 

produced are not stage specific and may be involved in protective immune responses to 

the different stages. The liver is one of several sites which P. falciparum  sequesters to 

and this highlights a problem facing researchers investigating the immunology of malaria 

infection. Immune responses of infected individuals are analysed by re-stimulating 

PBMN cells. However, there may be tissue-specific responses which are important in 

the development protective immunity. Hence, the development of an effective vaccine is 

further complicated by this issue because observations made from in vitro studies of 

PBMN cells may not reflect the complete protective immune mechanisms. Therefore, if 

a vaccine is designed to induce the responses observed from the in vitro studies, the 

protective response induced will not include a protective mechanism which may be 

critical to the development of effective immunity.
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To conclude, the studies reported in this thesis have revealed two areas of work which 

merit further investigation. The first is, to examine why a deficiency in IFNy mediated 

cellular responses results in susceptibility to P. chabaudi infection. IFNyR deficient mice 

provide a model which can be utilised to investigate the failure to develop a protective 

immune response in the absence of IFNy mediated responses. It will be of importance to 

expand the current studies by including analysis of parasite-specific cellular responses in 

the IFNyR deficient mice. Determination of cytokine production by splenocytes (re

stimulated in vitro) and measurement of cytokine levels in sera is planned. Tissue- 

specific expression of cytokine mRNA will also be investigated to observe if there is 

deficiency or alteration in the development of tissue-specific protective immune 

responses. The second area which merits further investigation is the analysis of the LM 

cells present in the livers of P. chabaudi infected mice. Identification of the cell types 

present is necessary and it would be interesting to perform a time-course experiment 

where the changes in the liver could be analysed, giving an indication of the mechanism 

of the immune response mediated by the LM cells at various times during the course of a 

P. chabaudi infection.
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Phosphate buffered saline (pH 7.2)

60g Na2 HP0 4 . 1 2 H2 0

13.6g Na2HP04.2H20

8.5g NaCl

Made up to 1 litre with de ionised and distilled water.

RPMI 1640 stock medium

10.39g RPMI 1640 powdered medium (with L-glutamine) (Gibco)

5.94g N2-hydroxyethylpiperazine-N-2 ethane sulphonic acid (HEPES)

(25 mM)

Made up to 1 litre with de-ionised and distilled water, filter sterilised (Millipore/Gelman 

filter 0.22|Lim size) and pH adjusted to pH 7.2

Incomplete RPMI 1640 medium

To stock RPMI 1640 medium the following were added:

11 ml L-glutamine (Gibco)

5.5 ml NaHCOs

0.55 ml 2-Mercaptoethanol (O.IM)

22 ml Fungizone (Gibco)

2.2 ml Gentamycin (Sigma)

Complete RPMI 1640 medium

Heat inactivated foetal calf serum (Gibco) was added to incomplete RPMI 1640 medium 

at a final concentration of 10%.

2 1 4



RPMI 1640 Malaria stock medium

10.39g RPMI 1640 powdered medium (with L-glutamine) (Gibco)

5.94g N2-hydroxyethylpiperazine-N-2 ethane sulphonic acid (HEPES)

(25mM)

Made up to 960 ml with distilled water and filter sterilised.

Incomplete malaria medium

To 100 ml aliquots of RPMI 1640 malaria stock medium, the following were added:

4.2 ml 5% NaHCOs

0.25 ml Gentamycin (Sigma)

Complete malaria medium

Heat inactivated human AB serum was added to incomplete malaria medium at a final 

concentration of 10%.

Giemsa's Buffer

3g Na2HP04

0.6g KH2 PO4

Made up to 1 litre with distilled water and adjusted to pH 7.4 

Giemsa's stain

Giemsa's stain (GurrBDH Ltd) was diluted 1:10 in Giemsa’s buffer

Tris Buffered Saline (TBS)

9g NaCl

1.6g TrisHCl

The pH was adjusted to pH 7.6 with HCl and made up to final volume of 1 litre with de

ionised and distilled water.
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Carbonate/Bicarbonate Coating Buffer (0.05M)

1.59g NaiCOg

2.93g NaHCOg

0.2g NaNg

Made up to 1 litre with de-ionised and distilled water and adjusted to pH 9.6

Bicarbonate Coating Buffer

8.4g NaHCOg

Made up to 1 litre with de-ionised and distilled water and pH adjusted to 8.2 

PBS/Tween

0.5ml Tween 20 (polyoxyethylene sorbitan monolaurate)

Made up to 1 litre with PBS.
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