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Abstract

The mouse mammary gland develops mainly postnatally by highly regulated phases of 

invasive growth, ductal branching, differentiation, apoptosis and tissue remodelling during 

each pregnancy cycle. Detailed analyses of these stages of development were performed 

using proteomics in order to identify proteins that are regulated in these stages of 

development. Sixteen time points spanning the key stages of development were analysed 

and data mined by 2-D gel electrophoresis. Digital copies of the proteome images revealed 

the expression profiles of all the protein features detected across the developmental time 

points. These expression profiles were interrogated by creating two databases, and from 

these databases 125 protein features were selected for mass spectrometry analysis. 

Selection was based on the following criteria; features that were exclusively present in 

particular phases of development, and features that were altered during the switch from 

lactation to involution. Fifty nine protein identifications were determined by mass 

spectrometry.

In addition to analysing these stages of development, specialised structures which drive 

ductal morphogenesis, the terminal end buds, were isolated and analysed by 2-D gel 

electrophoresis. Forty four protein features which showed differential expression between 

the terminal end buds and the adult virgin gland were chosen for mass spectrometry 

analysis. Of these protein features, 24 produced protein identifications.

Detailed analyses were performed on selected protein identifications using western blot, 

immunohistochemistry, real-time RT-PCR and data available from a microarray study. 

Investigations on one particular protein identification, annexin A2, were extended to breast 

cancer tissue samples.

Not all the protein features selected for mass spectrometry analysis revealed protein 

identifications. The expression profiles of these features were assessed again and 28 were 

chosen for reanalysis by mass spectrometry. The data generated for one particular protein 

identification, BTF3, indicates a possible regulatory role in mouse mammary gland 

development.

This study has used proteomics as a tool for identifying proteins which regulate mouse 

mammary gland development. Many proteins were identified, and the follow-up studies 

performed highlighted a few as being important in this area of research.
3
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This introduction provides an overview of the developing mammary gland both 

structurally and morphologically. A combination of proteomics and mammary gland 

development was the basis of this thesis and therefore various proteomic techniques are 

discussed. The intention was to dissect key events and critical time points in mammary 

gland development using proteomics. Each results Chapter has an introduction focussing 

on the areas relevant to the content of each Chapter.

1.1 The mouse mammary gland

1.1.1 Postnatal development of the mouse mammary gland

The unique aspect of the mammary gland is that unlike most organs it develops 

predominantly postnatally and therefore different stages of the developing gland can be 

defined. Its development advances in distinct stages, namely prepubertal, pubertal, resting 

virginal, pregnant, lactating and involuting (apoptosis of the gland). As the gland 

progresses through these phases of development, extensive tissue remodelling occurs 

which is achieved by the processes of proliferation, differentiation and apoptosis. 

Development is also dependent on the circulating levels of mammotrophic hormones, in 

particular oestrogen, progesterone and prolactin. There are other levels of control involved 

in mammary growth, such as epithelial-stromal interactions, i.e. interactions with the 

ductal epithelial components of the extracellular matrix (ECM).

The prepubertal gland is composed of a matrix of connective tissue and a special type of 

adipose tissue known as the fat pad. At puberty the gland develops by movement through 

the mammary gland of specialised club-shaped structures called terminal end buds (TEBs). 

During pregnancy another major change takes place with the development of 

lobuloalveolar structures along ductal branches. These structures are composed of a single 

layer of secretory alveolar epithelial cells, which are surrounded by an outer layer of 

myoepithelial cells. The final stage of development is involution, where extensive 

apoptosis of the epithelial cells occurs, resulting in extensive tissue remodelling (Figure 

1.1). These stages are described in more detail below to provide the context of the project.

1.1.2 Composition of the gland

The mammary gland is a complex tissue composed of multiple cell types; epithelium, 

adipose tissue and connective tissue stroma. Dispersed within the gland are blood vessels, 

nerves, smooth muscle fibres, lymph nodes and a lymphatic system (Kaye et al, 1995). 

There are two main compartments of the mammary gland, the epithelial (or parenchymal) 

compartment and the stromal (or mesenchymal) compartment. The parenchymal
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Figure 1.1 Postnatal stages of mouse mammary gland development. The prepubertal 
stage is a resting phase of development which continues until puberty. The release of 
ovarian hormones at puberty results in ductal branching and invasion by TEBs. At 10 
weeks of age the fat pad is filled with ductal epithelium. Alveoli form along the ductal side 
branches and differentiate into lobular alveoli. During lactation the gland is filled with milk 
and the majority of the gland is composed of epithelial cells. Apoptosis of the epithelial 
cells occurs during involution resulting in much tissue reorganisation. The gland is 
remodelled back to its state prior to pregnancy.
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Figure 1.2 Cell types and structures of the mouse mammary gland. The epithelial cells 
are in contact with the lumen of the ducts and myoepithelial cells. Following these cells are 
layers of basement membrane, stroma and adipocytes. Most of the TEB is composed of 
body cells which become ductal epithelial cells and the tip is surrounded by a layer of cap 
cells which differentiate into myoepithelial cells (Wiseman and Werb, 2002).
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compartment comprises of different epithelial structures, namely luminal epithelium of 

ducts, TEBs, alveoli and myoepithelial cells which vary morphologically and functionally 

(Figure 1.2).

The apical surface of the luminal epithelium is in contact with the lumen of the ducts and 

alveoli. Epithelial cell shape ranges from cuboidal or columnar in ducts, to pyramidal in 

non-secreting alveoli and flattened in secreting cells (Richardson, 1947). The 

myoepithelium surrounds the luminal epithelium of ducts and alveoli and its shape and 

thickness varies during development. The layer of myoepithelial cells is discontinuous 

around the alveoli during pregnancy and lactation, and forms a thick continuous layer 

during early involution. Although the alveoli regress during this phase of development, 

myoepithelial cells can reside around these sites (Emerman and Vogl, 1986). Evidence for 

the myoepithelial rather than the luminal cells secreting basement membrane, is the 

detection of the basement membrane proteins laminin intracellularly within the 

myoepithelium and not the epithelium layer (Warburton et al, 1982). The myoepithelium 

synthesises and secretes basement membrane which separates the epithelium from 

connective stroma (Pitelka, 1980; Ferguson et al, 1992; Gordon and Bemfield, 1980). The 

myoepithelial layer is between the luminal epithelium and basement membrane (Glukhova 

et al, 1995; Koukoulis et al, 1991; Gould et al, 1977; Hollmann, 1974; Kim and Clifton, 

1993; Russo and Russo, 1978; Moore et al, 1987).

The connective tissue stroma differs in density, thickness and composition around the 

ducts and alveoli, being denser around the ducts (Van Zwieten, 1984). The stroma is rich 

with adipocytes which rapidly and reversibly change in size and number during lactation 

and involution. A major difficulty in analysing the effects of mammary stroma arises from 

the heterogeneity of the cell types that are present. Mammary stroma is composed of 

mesenchymal cells, adipocytes, fibroblasts, pericytes, endothelial cells and mast cells, all 

of which have an effect on the epithelium (Gouon-Evans et al, 2000). The effect of each 

type of stromal cell in mammary gland development must be identified in order to 

determine its role in this organ.

1.1.3 The fat pad

The fat pad plays a crucial role in mammary development and is a mediator of endocrine 

action and growth regulation. Despite this the properties of the fat pad have received little 

attention. Understanding these properties may prove helpful in elucidating the importance 

of the fat pad in mammary gland development. Numerous studies have shown that it has an
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essential role in morphogenesis of the mammary epithelium in the adult gland and in 

mammary pattern formation (DeOme et al, 1959; Sakakura et al, 1982; Daniel et al, 

1984). This property of the stroma has been used to develop the transgenic fat pad, a 

technique whereby the epithelium of the gland is removed to leave a "cleared" fat pad. 

Genetically manipulated epithelial cells expressing a gene of interest are introduced into 

the gland and the effect of this gene on mammary gland development is assessed (DeOme 

et al, 1959; Edwards et al, 1988). The cleared fat pad comprises of adipocytes, 

fibroblasts, endothelial and immune cells all of which could influence mammogenesis 

(Gouon-Evans et al, 2000). Similar gland development is seen by transplantation of the 

epithelium to other sites of adipose tissue, which demonstrates that mammary epithelial 

growth is not specific to mammary adipose tissue (Ormerod and Rudland, 1986).

There are two kinds of adipose tissue, brown adipocytes which are energy dissipating cells 

and white adipocytes which are energy storing cells (Klaus, 1997). It had been assumed 

that the adipose in the mammary gland was white (Hovey et al, 1999) but both types are 

present in the postnatal mammary gland. Brown and white adipocytes can be distinguished 

by their lipid inclusions. Brown adipocytes have multilocular lipid inclusions whereas 

white adipose tissue is unilocular (Nechad, 1986). As mammary development progresses 

there is a substantial change in the lipid content of the fad pad. The fat pad's weight 

increases from the adult virgin stage to gestation and decreases during lactation, as 

adipocytes lose most of their fat content. The brown adipocytes are a component of the 

mammary stroma during the first few weeks of life. Their presence decreases as mice age 

and they are undetectable prior to adulthood. Brown adipose tissue is located between the 

nipple and lymph node around the rudimentary ductal system. Investigations indicate that 

brown adipocytes negatively regulate mammary epithelial differentiation in early postnatal 

development (Gouon-Evans and Pollard, 2002).

1.2 Structural changes of the mouse mammary gland

1.2.1 Virginal gland

At birth the mouse mammary gland is composed of a rudimentary ductal system (Figure 

1.3A). During puberty as a response to hormonal changes, these primitive ducts lengthen 

and undergo extensive branching into secondary and tertiary ducts. They slowly elongate 

from the nipple into the fat pad which at this stage consists mainly of adipose tissue 

(Figure 1.3B). The ductal system which develops eventually fills the mammary fat pad 

(Williams and Daniel, 1983; Daniel and Silberstein, 1987; Richert et al, 2000). At the start 

of puberty bulbous TEBs appear at the ductal tips and invade mammary stromal tissue
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Figure 1.3 Wholemounts of postnatal mammary gland development. The morphology 
of the gland is visualised by carmine (A) Adult virgin 3 weeks (B) Adult virgin 6 weeks 
(C) Mid pregnancy (D) Early lactation. Magnification 16x.
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(Figure 1.4). These are highly proliferative structures which propel ductal growth by 

generating differentiated ductal and myoepithelial cells. TEBs control directional growth, 

branching, turning and pattern formation of the mammary gland ductal system (Williams 

and Daniel, 1983; Daniel and Silberstein, 1987). The TEB consists of two histologically 

distinct cell types; cap cells and body cells. The cap cells appear in the outer layer of the 

TEB structure and differentiate to become myoepithelial cells surrounding the ducts. The 

majority of cells in the TEB are the body cells, which give rise to ductal epithelial cells. 

These are found as multicellular layers within the central cavity of the bud that surround 

the lumen (Dulbecco et al, 1982; 1983; Pitelka and Hamamoto, 1977; Williams and 

Daniel, 1983; Humphreys et al, 1996).

The TEBs act as control points and are influenced by systemic hormones and local growth 

factors. Systemic hormones supply stimulation for growth, and local factors influence the 

direction of growth and spacing of the ducts. These signals eventually lead to regression of 

the buds as they reach the limits of the fat pad and regress. This occurs at about 10 weeks 

of age when the mammary fat pad is filled by the branching network of ducts, which cease 

to elongate as they reach the margin of the fatty stroma (Daniel and Silberstein, 1987; 

Faulkin and DeOme, 1960). TEBs play a key role in mammary development as they are 

involved in proliferation, differentiation and apoptosis (Williams and Daniel, 1983; Sapino 

et al, 1990; Humphreys, 1999; Humphreys et al, 1996). Their importance is extended to 

epithelial mesenchymal interactions and ECM remodelling (Daniel and Silberstein, 1987; 

Cunha and Hom, 1996; Robinson et al, 1999).

1.2.2 Pregnancy

The duration of gestation in Balb/C mice is normally around 21 days. During pregnancy 

highly co-ordinated processes of proliferation, differentiation, apoptosis and tissue 

remodelling take place to allow for the expansion and formation of alveoli in the gland. At 

the onset of pregnancy the rate of proliferation of epithelial cells increases over the number 

of adipocytes formed. This results in rapid and intense proliferation of the ductal branches 

and the formation of alveolar buds, as is seen during postpubertal development (Nandi, 

1958). These alveolar buds form along the walls of the mammary ducts and progressively 

cleave and differentiate into individual alveoli. At the start of the third week of gestation, 

lobuloalveolar structures, which are composed of many alveoli predominate in the gland 

(Figure 1.3C). These will eventually become the milk secreting lobules during lactation. 

During late gestation the alveolar epithelial cells produce milk proteins and lipids for the 

preparation of lactation. The individual cells of the lobuloalveoli expand due to the
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Figure 1.4 Terminal End Bud. Adipocytes (a) abut cap cells (cp) at the tip. Fibrous 
components and fibrocytes (f) comprise the connective tissue. The basal lamina (bl) 
represented as a cutaway to expose the underlying cap cells. Cap cells are cuboidal but 
become flattened toward the midregion of the end bud, then differentiate into 
myoepithelial cells (me) in the neck region. The basal lamina overlying myoepithelial cells 
in the midregion is 14 times thicker than that at the tip. The majority of the TEB is 
composed of body cells (bd) which differentiate into ductal epithelial cells (Daniel and 
Silberstein, 1987).
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accumulation of secretory products and cause the thickness of the gland to increase. By 

late pregnancy the alveoli fill the majority of the fat pad and are the most dominant 

structures within the gland. Myoepithelial cells still surround the alveoli but are not as 

continuous, so that the epithelial cells can be in contact with the basement membrane. This 

may be crucial for full development and milk secretion (Adams and Watt, 1993; Barcellos- 

Hoff et al, 1989; Ferguson et al, 1992; Lee et al, 1985; Howlett and Bissell, 1993). The 

vast increase in the number of epithelial cells is accompanied by a decrease in surrounding 

stroma to allow contact between the epithelium and adipocytes (Neville et al, 1998; Elias 

et al, 1973). The predominance of the alveolar structures continues into lactation.

1.2.3 Lactation

Within three days of parturition, the alveoli appear very swollen as they are engorged with 

milk. Most of the cells in the mammary gland undergo a dramatic increase in size during 

pregnancy (Figure 1.3D). Extensive cell proliferation also takes place three to four days 

postpartum. The gland does not change its appearance for the duration of lactation, which 

lasts for approximately three weeks. Milk production increases each day and finally peaks 

in the second week of lactation (Knight and Peaker, 1982). After the onset of lactation, the 

luminal epithelium changes shape and cells become flattened. Milk fat globules can be 

seen within the epithelial cells which secrete large amounts of milk proteins from their 

apical membrane into the lumen of the alveolus that they surround. Myoepithelial cells 

form a discontinuous layer around each alveolus. The myoepithelial cells contract in 

response to oxytocin and in doing so force milk from the alveolus into the connecting 

ductal system (Richardson, 1947; Dulbecco et al, 1986). At the start of lactation the gland 

is composed of approximately a third of adipocytes, but as lactation progresses the fat in 

the adipocytes is metabolised to enable the alveoli to expand and completely fill the gland 

(Elias et al, 1973; Neville et al, 1998). During lactation the adipocytes are present as long 

projections within the interstitial space of the alveoli (Elias et al, 1973; Blanchette-Mackie 

etal, 1995).

1.2.4 Involution

Lactation will continue until the pups are weaned or the litter is removed, and then the 

gland undergoes a process called involution. This is when extensive apoptosis and tissue 

remodelling occur within the gland (Quarrie et al, 1996). Involution is initiated by the 

build up of milk once it is no longer removed from the gland. This process is reversible 

within two days if suckling is once again initiated within this time. This is because local
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factors related to milk accumulation are sufficient to induce apoptosis. However if 

systemic lactogenic hormones persist, alveolar cell death is no longer induced.

The two phase process of involution is regulated by local and systemic factors. During the 

reversible phase of involution the gland remains histologically similar to the lactating 

gland and no major morphological changes have taken place. In this first stage of apoptosis 

the expression of cell cycle control genes is altered as well as survival genes such as bcl-2 

(Yang and Korsmeyer, 1996). Local signals are sufficient to induce programmed cell death 

in this phase of involution, and it is independent of proteinase activity unlike the second 

phase of involution (Li et al, 1997).

After two days, involution is irreversible (48 h after removal of litter). The secretory 

epithelial cells of the alveoli begin to apoptose and the basement membrane starts to 

remodel. At the start of the second stage of apoptosis the alveoli seem to be intact and the 

epithelial structures still appear to be in an organised state. As involution becomes 

established, the alveolar epithelial cells begin to apoptose and the alveoli collapse into 

clusters of epithelial cells.

The second phase of involution is dominated by proteinase activation such the matrix 

metalloproteinases (MMPs) (Lund et al, 1996). The apoptotic epithelial cells are 

phagocytesed not only by macrophages (professional phagocytes), but also by semi- 

professional phagocytes (e.g. fibroblasts) and neighbouring epithelial cells (Fadok et al, 
1998; Monks et al, 2002). Epithelial cells which are undergoing apoptosis are cleared 

prior to their lysis, thus preventing toxic and immunogenic substances from being released. 

Macrophages engulf the apoptotic epithelial cell and produce an anti-inflammatory 

reaction (Voll et al, 1997; Fadok et al, 1998; Gao et al, 1998). It appears that semi- 

professional phagocytes and epithelial cells initially remove apoptotic cells until 

macrophages have matured and have the ability to phagocytose (Savill et al, 1990).

The production of secretory products ceases and much cellular debris is found in the lumen 

of the mammary tree. At this point the volume of the fat pad occupied by adipocytes 

increases and the epithelium decreases. The removal of epithelial cells enables the stroma 

surrounding the collapsed alveoli to increase. The epithelium appears very disorganised, 

yet the stroma surrounding the ducts keeps its morphology. Approximately six days after 

the start of involution the majority of cell death has occurred, all the alveoli have collapsed 

into clusters, and the stroma and epithelium begin to rearrange (Strange et al, 1992). The
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gland eventually regresses until only a highly branched ductal system and a few alveoli 

remain. At this stage, a thin layer of epithelial cells is surrounded by myoepithelial cells, 

which rest on the basement membrane, and a dense layer of stroma envelops the ducts. The 

gland is very similar in appearance to the adult virgin mouse except that it is slightly more 

differentiated, as a few alveoli are present.

1.3 Lactogenesis

Lactogenesis is the term given to mammary differentiation and the processes involved to 

achieve lactation. This occurs in two stages. The first begins during mid pregnancy with 

the synthesis of milk components and can be distinguished morphologically by the 

presence of lipid droplets in the cytoplasm of the epithelial cells. The second stage of 

lactogenesis commences at parturition which is characterised by an increase in expression 

of milk proteins and movement of the lipid droplets and casein micelles from the 

cytoplasm to the lumen of the alveoli. Progesterone is no longer present during this stage 

and is replaced with prolactin and oxytocin which are stimulated by suckling.

The mammary gland has a highly organised secretory pathway during pregnancy and 

lactation. Most secreted milk proteins such as caseins are synthesised by the epithelial 

cells. They are synthesised on ribosomes of the rough endoplasmic reticulum and 

translocated to the Golgi by secretory vesicles. The contents of the secretory vesicles are 

released by their fusion to the apical plasma membrane (Franke et al, 1976). The 

organisation of this pathway was defined many years ago (Saacke and Heald, 1974). Some 

milk proteins are derived from blood plasma such as immunoglobulins and the iron carrier 

transferrin. These enter the epithelium by endocytosis at the basolateral surface and are 

subsequently transported to the apical surface by transcytosis (Rothman, 1994). Much of 

the information about the secretory mechanisms and transport processes involved in the 

regulation of milk secretion in the mammary gland has been acquired from knowledge of 

these pathways in other cell types (Rothman, 1994).

1.4 Hormones and growth factors control mammary gland development

The development of the mammary gland is controlled by a variety of reproductive 

hormones including oestrogen, progesterone, prolactin and oxytocin, and growth factors 

such as epidermal growth factor and transforming growth factor-a (Topper and Freeman, 

1980). Genetic manipulation of the mouse using transgenic techniques and knockouts has 

provided the opportunity to investigate the molecular and cellular mechanisms of normal 

mammary gland development.
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Ovarian hormones are responsible for the ductal outgrowth which takes place postpuberty, 

and they also play a role in alveolar proliferation. However, many other complex hormonal 

growth factor and ECM interactions are involved. Deletion of the oestrogen receptor gene 

using knockout mice confirmed that oestrogen was required for ductal morphogenesis 

(Korach et al, 1996). Oestrogen receptors are present on mammary stromal fibroblasts and 

adipocytes, and their expression is modulated during development (Fendrick et al., 1998). 

Cunha and colleagues demonstrated that the mammary stroma was the mediator of 

oestrogen-stimulated growth in the mouse (Cunha et al, 1997). This was achieved by 

using wildtype and oestrogen receptor negative stromal and epithelial tissue recombinants. 

It is thought that after its role in ductal morphogenesis oestrogen causes the induction of 

progesterone receptors in the luminal epithelial cells (Hovey et al, 2002). Oestrogen is 

present throughout pregnancy with rising levels towards late pregnancy (Mizoguchi et al, 

1997).

Progesterone plays a definitive role in the formation of ductal side branches and levels 

begin to rise during early pregnancy to contribute to the development of lobuloalveolar 

structures (Atwood et al, 2000; Ichinose and Nandi, 1966). The signalling of progesterone 

is mediated through stromal and epithelial progesterone receptors (Humphreys et al, 

1997).

Prolactin signalling is important for the proliferation and differentiation of the 

lobuloalveolar structures during pregnancy (Topper and Freeman, 1980). It induces the 

formation of alveoli that secrete milk products, including casein. Maintenance of the 

alveoli requires the hormones oestrogen, progesterone and growth hormone. Other 

circulating hormones such as cortisol and insulin, and local factors also contribute to the 

development of the mammary gland.

The development of transgenic and knockout mice has enabled scientists to explore the 

role of growth factors and determine how they affect the development of the mammary 

gland. Growth factors are able to regulate cell behaviour by ECM remodelling. Growth 

hormone (GH) has been shown to be as essential as oestrogen in mammary gland 

development. GH acts through the GH receptor in the stromal cells of the mammary gland 

(Feldman et al, 1993; Walden et al, 1998, Kleinberg et al, 1990). The function of GH is 

mediated by insulin-like growth factor I to induce TEB formation and ductal 

morphogenesis during mammary gland development (Ruan and Kleinberg, 1999). GH
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receptors have also been detected in the epithelium, and therefore GH may have a role in 

differentiation and/or function in the luminal epithelial cells (Ilkbahar et al, 1999).

1.5 Functional changes of mouse mammary gland development

The mammary gland is a complex tissue consisting of epithelial cells which have adhesive 

interactions with the ECM. The ECM provides an essential physical support for most cells, 

but its direct interaction with them is essential for maintaining normal tissue homeostasis 

and function. During pregnancy, lactation and involution, interactions between the 

mammary epithelial cells and the surrounding ECM contribute to the signals needed for 

their proliferation, differentiation and survival. Therefore these mesenchymal-epithelial 

interactions play an important role in development and tissue remodelling. Stromal cells 

appear to influence epithelial cells by growth hormones and/or by altering the ECM. 

Regulation during pregnancy is dependent on the hormones oestrogen and progesterone 

and in turn these hormones are maintained by epithelial-stromal interactions (Haslam, 

1986; Haslam and Counterman, 1991; McGrath, 1983).

The appropriate multicellular environment is needed for mammary epithelial cells to 

function normally. If these cells are isolated and not cultured under the correct conditions, 

the cells do not differentiate and will undergo apoptosis. Reconstituted basement 

membrane derived from Englebreth-Holm-Swarm tumour (Matrigel) has been used 

extensively to investigate the role of the ECM in the function of epithelial cells. The 

importance of the ECM for mammary differentiation was demonstrated using this system. 

Mammary epithelial cells rapidly lost their ability to secrete most milk proteins when 

cultured on plastic. However, when cultured on Matrigel, the mRNA levels of milk 

proteins were greatly enhanced (Li et al, 1987). Further evidence for the importance of the 

basement membrane in mammary development was found when isolated mammary cells, 

in the presence of reconstituted basement membrane, were able to form alveoli. These cells 

expressed P-casein in the presence of basement membrane without collagen I (Streuli et 

al, 1991). Epithelial cells require cell-cell adhesion systems for polarity and interaction 

with other cells. The basement membrane also provides polarity to the epithelial cells.

The ECM is essential for the control of mammary epithelial survival (Streuli and Gilmore, 

1999). Stromal cells produce matrix proteins such as collagen I, laminin and fibronectin. 

These matrix proteins are able to interact with epithelial cells by cell surface receptors 

including integrins and initiate signal transduction pathways. Cells primarily adhere to the 

underlying ECM through integrins, which are transmembrane glycoproteins (Hynes, 1992).
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Matrix proteins, their receptors and integrins are important for alveolar development 

during pregnancy, and differentiation of epithelial cells during lactation (Streuli et al, 

1995). Although the influence of the ECM on proliferating epithelial cells is not well 

understood, epithelial-stromal interactions play a major role in branching morphogenesis 

by enabling TEBs to invade stromal tissue (Daniel et al, 1984).

Detachment of the epithelial cells from the ECM leads to apoptosis, whereas integrin 

mediated attachment prevents apoptosis from occurring. Cells have specific requirements 

for the type of ECM that promotes survival, since mammary epithelial cells undergo 

apoptosis on collagen 1 or fibronectin basement membranes (Boudreau et al, 1995) but are 

able to survive on a laminin-rich basement membrane (Pullan et al, 1996). These 

phenotypic effects are partly due to the integrin cell surface receptors, because blocking the 

pi integrin subunit induces apoptosis (Farrelly et al, 1999). Different integrin subunits 

have different abilities to suppress apoptosis and therefore adhesion to a particular 

extracellular matrix does not necessarily mean signalling survival. The role of integrins in 

cell survival is achieved by functioning as a linker between the extracellular matrix and the 

actin-containing cytoskeleton. They provide a mechanism whereby they recruit scaffolding 

proteins that organise cytoskeletal proteins and signalling molecules.

The structural link of integrins with the actin cytoskeleton regulates cell shape and 

provides a means for migration. There are many different responses to adhesion which are 

important for growth and survival. For example activation of the actin cytoskeleton, 

signalling through enzyme pathways such as protein tyrosine kinases, and cell shape 

promoting cell survival (Miyamoto et al, 1996; Plopper et al, 1995). Transmembrane 

proteins such as integrins serve as adhesion molecules, have cytoskeletal links and are 

important in signalling pathways. These are factors that are critical in determining the fate 

of a cell.

MMPs are a family of secreted proteases and their expression pattern suggests an 

important role in the morphological and frmctional changes of the mammary gland. The 

activity of MMPs is evident in branching morphogenesis and involution. Ongoing 

investigations examining MMPs in branching morphogenesis are determining which 

mediate branching elongation and which mediate lateral branching (Wiseman et al, 2003). 

The expression of MMPs increases dramatically during involution coinciding with the 

major tissue remodelling phase of this stage of development (Lefebvre et al, 1992; 

Talhouk et al, 1992; Li et al, 1994; Lund et al, 1996). MMPs can degrade various
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proteinace components of the ECM and are responsible for remodelling of the basement 

membrane and stroma to allow the gland to return to its resting adult state (Werb, 1997).

The ECM may be focal to understanding how different cell types communicate with each 

other. Mammary epithelial cells are not only regulated by hormones and growth factors but 

also by integrin-ECM connections. Cell adhesion is essential for tissue organisation and 

maintaining normal homeostasis of mammary epithelial cells.

1.6 Proteomics and two-dimensional (2-D) gel electrophoresis

As proteomics was used as a technique to determine proteins involved in mammary gland 

development, an overview of this technology is given below.

1.6.1 Historical overview of 2-D gel electrophoretic proteomics

The term "proteome" was coined by Wilkins (Wilkins et al, 1996b) to describe global 

patterns of gene expression at the protein level. Proteomics is the experimental tool used to 

study the proteome, which uses a number of complex techniques for resolving, quantitating 

and characterising proteins. The concept of proteomics was introduced scientifically more 

than 15 years earlier during the evolution of 2-D gel electrophoresis (O'Farrell, 1975; 

Klose, 1975).

The combination of the separation of proteins by charge (isoelectric point (pi)) and 

molecular weight (Mr) created the 2-D gel profile of the protein sample. The analysis of a 

proteome by 2-D gel electrophoresis resolves thousands of proteins. The proteomes 

produced from the different samples analysed are compared by the protein feature (spot) 

patterns produced. The expression levels of each protein in each proteome can be 

determined and used as a method of assessing the importance of the protein to the 

biological system being manipulated. Candidate protein features that are of importance can 

be excised from the gel, enzymatically digested and subsequently identified by mass 

spectrometry. The number of proteins that are analysed by mass spectrometry are always 

limited due to cost and time constraints.

Before modem DNA techniques were introduced, 2-D gels seemed to be the only approach 

suitable for determining the cellular function. The importance of proteomics is its ability to 

study post-translational modifications (PTMs) within a cell. Phosphorylation, méthylation, 

acétylation and processing of proteins as well as many other modifications are extremely

32



important for protein function as they can determine activity, stability, localisation and 

turnover. Many signalling pathways are also known to mediate their effects through PTMs.

In the late 1970s, researchers started to build protein databases and catalogue the protein 

expression data produced from 2-D gel electrophoresis. However, the constant drawback 

of this technique was at the level of identification of the proteins due to the lack of 

sensitive and rapid analytical methods present at the current time. 2-D gel protein 

databases such as that created by Celis and colleagues (Cells et al., 1990) have since 

offered global approaches to study the function of groups of proteins.

The most significant breakthrough for proteomics in the 1990s was the identification of 

proteins separated by 2-D gel electrophoresis using mass spectrometry. Mass spectrometry 

has essentially replaced the classical technique of Edman sequencing (Edman and Begg, 

1967) which chemically degraded a protein or peptide from its amino (N)-terminus and 

then identified the released amino acids (Hewick et al, 1981). The powerful technique of 

highly sensitive mass spectrometry has enabled the rapid identification, characterisation 

and sequencing of femtomolar levels of proteins extracted from 2-D gels. Algorithms are 

now used to achieve the rapid identification of a protein by correlating the mass 

spectrometry data to sequence databases. The success of earlier studies (prior to the release 

of the human and mouse genomes) in identifying a protein via mass spectrometry was 

heavily dependent on the accessibility to sequence databases, both public and private. 

Public access to all genome sequencing projects has enabled proteomics to advance in 

many research disciplines.

1.6.2 Proteomics versus genomics

The advances of molecular genetic techniques have led to the high-throughput sequence 

analysis of many free-living organisms including the mouse genome which have made a 

crucial contribution to understanding the biology of whole organisms (Waterston et al, 

2002). Researchers have since realised that the sequencing of genomes is not sufficient for 

determining the biological function of a cell. It is proteins that are most commonly the 

functional molecules of a cell, and where most regulatory processes take place. Therefore, 

they are most likely to reveal a gene's true clinical and scientific significance. For this 

reason, it is proteins that are directly targeted for drug development. Proteins which are 

specific to a particular disease can be identified by quantifying the abundance of proteins 

present in diseased and normal samples. Proteomics has therefore been of great benefit in 

the field of research and drug discovery, as it can quantitatively identify specific proteins
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which are related to a particular disease. For of these reasons there is now much more 

focus placed on proteomics.

The assignment of a protein function will require analysis of expression, localisation and 

structure of the proteins encoded by genomes. Information about post-translational control 

and modifications of a protein can rarely be determined from the detail of its gene 

sequence, as not all structural modifications and quantitative changes are controlled by the 

same gene. It is apparent that a large number of proteins undergo PTMs. Whilst the 

genome's content does not change, the proteome is continually being modified. Proteins 

are constantly changing their levels of expression according to the physiological and 

developmental state of the cell. Proteomics addresses areas that DNA analysis cannot 

approach such as synthesis rates, expressions levels, protein-protein interactions and 

PTMs. Therefore proteomics is needed to supplement the genomic data available by 

studying the patterns of protein expression (Dove, 1999; Pennington et al, 1997; Wilkins 

etal, 1995c).

The application of DNA chips and microarrays have had a profound effect on the 

investigations of gene function. They provide high throughput data of mRNA expression in 

a cell and tissue at a given moment. The advances of microarray technology have enabled 

thousands of differentially expressed genes to be analysed in parallel. After identifying the 

genes which have interesting expression changes, search tools and electronic information 

are readily available to decipher their implications and function with regards to the system 

being investigated. Microarray profiling is also less time consuming and labour intensive 

compared to proteomics and the past few years have produced a flurry of studies using this 

technology in a variety of biological systems. However, it is well known that gene 

expression at the mRNA level does not always correlate with protein expression levels 

which is also true for the reverse, as regulation occurs at the transcriptional and 

translational level (Gygi et al, 1999b; Anderson and Seilhamer, 1997). mRNA expression 

data must be subsequently validated with protein expression profiles. Despite this, 

proteomics and microarray analyses are complementary as they both investigate the 

molecular organisation of a cell, one at a protein level and the other at the gene level. The 

data from each technique can enhance the effectiveness of the other. In combination, the 

data generated may lead to a better understanding of the regulatory processes involved in 

normal and diseased tissues.
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One of the main challenges facing these approaches is their analyses, interpretation and 

ability to deal with the large amounts of data produced. Thus there is a need to develop 

simple and rapid methods of validating this information.

1.6.3 Sample preparation

A reproducible sample preparation is crucial in proteomic analyses. Reproducibility can 

also be maximised during 2-D gel electrophoresis by running sample sets simultaneously. 

Until recently 2-D gel electrophoresis technology relied on the use of carrier ampholytes to 

generate a pH gradient. However, this method failed to generate reproducible high 

resolution protein gels. This can be attributed to the poor reproducibility in generating the 

carrier ampholytes and their drift during focusing towards the cathode. The introduction of 

immobilised pH gradients (IPGs) overcame the problems of reproducibility and introduced 

the ability to select the pH range of interest. Wide range gradients are useful for initial 

analysis of a sample but may only represent a small proportion of the proteome sample due 

to inadequate spatial resolution. Selecting a smaller pH range can improve protein 

separation and resolution and prevent protein features from overlapping. The gels which 

cover a narrow pH range are known as 'zoom gels' (Gorg et al, 2000). IPGs are pH 

gradients that are covalently grafted by vinyl bonds to a polyacrylamide-supporting matrix 

(Bjellqvist et al., 1982; Gorg et al, 1988; 2000). A general guide for focusing these IPG 

strips is to commence with a lower voltage to enable the sample to be absorbed into the gel 

and then the voltage is progressively increased to a maximum. Focusing times vary; 

however, shorter focusing times are favoured for better resolution and prevention of basic 

end streaking. If focusing times are too short they will result in both horizontal and vertical 

streaking. Prior to 2-D electrophoresis the IPG strips are equilibrated to allow the focused 

proteins to interact with sodium dodecyl sulphate (SDS) for migration purposes. In most 

2-D gel proteomic studies, IPG strips are the method of choice for first dimensional 

separation of the protein sample.

The mammary gland is a particularly heterogeneous tissue and this contributes to the 

complexity of the sample preparation. In order to reduce the sample complexity for 2-D gel 

analysis and thus prevent loss of particular types of proteins, sample preparation 

techniques can be refined. One approach which is particularly favoured, is prefractionation 

preparations of samples, as they are able to enrich low abundant proteins (Pasquali et al, 

1999). Subcellular fractionation separates organelles based on their physical properties and 

is a method which firstly disrupts the cellular organisation by homogenisation. Secondly, 

the homogenate is fractionated into the different populations of organelles by
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centrifugation (e.g. nuclei, heavy mitochondria, cytoskeletal components and plasma 

membrane; light mitochondria, lysosomes, and peroxisomes; and cytosol) (Pasquali et ai, 

1999). However, there are disadvantages to this approach as fractionation disrupts 

important cell to cell interactions in the mammary gland and the results may not give an 

accurate representation of the processes involved in mammary gland development.

Efforts have been made to remove proteins from sample preparations which are known to 

obscure many areas of 2-D gels such as serum albumin and immunoglobulins. However 

there is the consideration that this may also remove other proteins of potential interest 

(Dunn, 1987; Lollo etal., 1999).

Protein solubility is of major importance in proteomics in terms of reproducibility and in 

obtaining a representative sample preparation of the proteome investigated. One particular 

challenge is the solubility of membrane proteins. The degree of recovery of membrane 

proteins is variable due to solubility (Santoni et al., 2000). A combination of CHAPS 

(3 [(cholamidopropyl)dimethylammonio]-l-propane sulphonate), thiourea and urea has the 

greatest effect for solubilising these particular types of proteins (Perdew et al., 1983; 

Molley et al, 1998; Rabilloud et al, 1997). SDS is very effective at solubilising proteins, 

although one drawback to using it is its anionic effect. This effect can be neutralised by the 

addition of zwitterionic detergents (such as CHAPS) to the lysis buffer used.

1.6.4 Visualisation and detection of protein features

The absence of a technique equivalent to PCR to amplify small amounts of proteins 

dictates that proteomics is limited to proteins that are detectable above a certain level of 

expression. The identification of low abundance proteins is an important area to research, 

as these proteins may consist of receptors, signal transduction and regulatory proteins.

Improvements have been made in detecting low abundant proteins by the introduction of 

fluorescent staining methods such as the OGT stain (Oxford GlycoSciences) (molecule on 

the basis of Hassner et al, 1984) which can detect proteins to the femtomolar level. This 

particular fluorescent stain has successfully been used in several breast studies (Page et al, 

1999). It was used in an extensive human breast cancer cell line study to detect changes 

between breast cancer cell lines and cell lines derived from normal or benign disease tissue 

(Harris et al, 2002). Fluorescent stains provide a greater sensitivity, and a larger dynamic 

range compared to organic dyes such as Coomassie blue which is only capable of detecting 

between 30-100 ng of protein (Brush, 1998). Silver staining can also be used and is more
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sensitive than Coomassie blue. Despite the numerous methods used for silver staining, 

none combines convenience, sensitivity and speed (Rabilloud, 1992; Rabilloud, 1999).

1.6.5 Image processing

At the start of the 1980s software was created for the analysis of 2-D gel imaging 

(Anderson et al., 1981). Evaluating the reproducibility of protein features in a data set and 

analysing the results cannot be performed without computer image analysis software. 

Firstly to use the computer based processing programs the 2-D gel images are converted 

into digital copies. Early image processing packages such as Elsie, Tycho, Melanie and 

Quest were originally created in academia and these have now been dramatically improved 

to the commercially available program Melanie III (GeneBio, Geneva, Switzerland). 

Melanie III is able to determine noise and artefacts so that they are not included during 

subsequent analyses. These programs perform operations such as detecting and quantifying 

a protein feature from a gel image, pairing features between duplicate gels and ereating 

synthetic master gels. Computer imaging programs are able to determine the positions of 

the proteins in terms of pi and Mr and the shape of the protein for measuring abundance. 

Pairing protein features correctly is a crucial process in proteomics for successful analyses 

of the proteomes. Once this is completed the database can be interrogated to identify 

proteins which appear to have biologically interesting expression profiles with respect to 

the system being investigated. Once again the success of the image processing algorithms 

is reflected in the similarity of the gel replicates. Consistency is needed at the protein 

separation stage and during data formatting. The next step is to give the selected protein an 

identification using mass spectrometry.

1.6.6 Mass spectrometry

Mass spectrometry has increasingly been the most popular choice of analysis for the 

identification and characterisation of proteins and has led to incremental advances in 

standard proteome technology. Its ability to provide information on PTMs by determining 

the mass shifts of peptide fragments has also drawn attention to its use. Mass spectrometers 

consist of an ion source, a mass analyser for measuring the mass to charge ratio (m/z) of 

the ionised peptides and a detector for determining the number of ions at each m/z. 

Tandem mass spectrometry and matrix-assisted laser desorption ionisation (MALDI) are 

the most commonly used techniques to ionise proteins or peptides for mass spectrometry 

analysis. MALDI-time of flight (MALDI-TOF) has been used in numerous high- 

throughput applications (Karas and Hillenkamp, 1988; Yates, 2000; Patterson and 

Aebersold, 1995). MALDI measures the mass of a peptide and is normally the chosen mass
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spectrometry technique used to analyse relatively simple peptide samples. MALDI ionises 

the sample on a dry crystalline matrix by applying short laser pulses, and mass separation 

of ions is based on their time of flight (Figure 1.5). Tandem mass spectrometry such as the 

quadrupole time-of-flight (Q-TOF) is a more sensitive application, detecting proteins at the 

femtomole level and it is preferred for partial peptide sequencing (Fenn et al, 1989; 

Loboda et al, 2000). Peptides are initially separated by liquid chromatography (LC) which 

is coupled to the mass spectrometer. The peptides are in solution and are subsequently 

ionised by electrospray ionisation; the resolved peptides are dissociated into either being a 

carboxy (C)- or N- terminal fragment. The peptide fragmentation ion spectra generated can 

be used to propagate sequence databases for a protein identification (Figure 1.6). The 

advantage of this technique is that peptide sequence information is much more specific for 

determining a protein identification than the peptide masses that are produced by MALDI 

analysis. It is also the preferred method for analysing complex protein samples. The 

advantages of MALDI-TOF are its simplicity, mass accuracy, high resolution and 

sensitivity.

Microfluidic technology has received much attention over the past years which is partly 

due to genomics and proteomics. The combination of this system to mass spectrometry has 

enabled direct, high throughput mass spectrometric analysis of picomole (pmol) amounts 

of peptides by electrospray ionisation mass spectrometry procedures (Lion et al, 2003).

Despite the advances made with mass spectrometry there are still problems that are 

associated with its use in proteomics. A large amount of tandem mass spectrometry spectra 

data is due to noise or contaminants rather than peptides from the sample. A considerable 

amount of time and expense will already have been spent to get from protein separation to 

protein selection. The main delays of these stages are at the bioinformatic level. Even the 

final stage of identifying the protein by mass spectrometry is fraught with spending an 

enormous amount of time on interpreting the data which may yield no protein 

identification. The use of algorithms which are able to match spectra data to sequence have 

been an important development to proteomics, and these are continually being refined and 

improved. However, yet again this has its drawbacks because the results produced are 

based on significance scores which can introduce false positives. Manual analysis of the 

spectra data is able to increase confidence in a peptide sequence match.
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Figure 1.5 MALDI time-of-flight mass spectrometer. Samples are ionised out of a 
crystalline matrix by a laser beam. The ions are accelerated to high kinetic energy and are 
separated down a flight tube, this is known as time-of-flight (TOF). Ions are turned around 
by a reflector to compensate for slight differences in kinetic energy. The mass-to-charge 
(m/z) ratio is determined according to the time taken for an ion to reach the detector. 
Lighter ions will arrive first.
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Figure 1.6 Quadrupole time-of-flight mass spectrometer. Samples are most commonly 
ionised by electrospray ionisation for QTOF mass spectrometry. The quadrupole is a mass 
filter which selects by time-varying electric fields between four rods. The ions enter a 
vaccum and are focused in the first quadrupole section (qO). Ions are mass separated in Q1 
and then fragmented in a collision cell (q2). The mass of the ions are measure by a time-of- 
flight analyser.
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As the field of proteomics is continuing to expand these problems are more likely to be 

addressed, algorithms will be refined and the number of hits by mass spectrometry 

increased due to the availability of most species' genome sequences.

1.6.7 Bioinformatics

Bioinformatics is required at many levels of 2-D gel proteomics, firstly at the 2-D image 

analysis stage and secondly at mass spectrometry stage. The advances in hardware and 

software development have made it possible to correlate mass spectrometric data with 

sequence databases. More sophisticated and accessible database searches with integrated 

algorithms have led to rapid protein identifications. Sequest (Eng et al, 1994) and Mascot 

from Matrix Science (Perkins et al, 1999) are algorithm programs that are used to 

correlate fragment mass spectral data of peptides with amino acid sequences in a protein 

database. The protein sequence databases used are in silico digested according to the 

specificity of the enzyme used in mass spectrometry (for example trypsin) to generate 

theoretical peptides. Sequest performs a cross-correlation analysis which scores these 

peptides to determine the best match to the experimental data obtained. Mascot uses 

probability based scoring which determines the probability of a match between the 

experimental data and theoretical fragmentation information being a random event. 

Sequest does not allow searching on the internet whereas the newer program Mascot is 

Web accessible.

To date the most comprehensive database used in proteomics is ExPASy (Appel et al, 

1994; Bairoch and Apweiler, 1997; http://www.expasv.ch/1. ExPASy hosts databases such 

as SWISS-PROT (Figure 1.7) and TrEMBLE, SWISS-2DPAGE and PROSITE and access 

to these databases is free to academic institutions. SWISS-PROT is maintained at the Swiss 

Institute for Bioinformatics in Geneva, Switzerland and the European Bioinformatics 

Institute. This internet accessible proteome database contains protein sequences from 

different species and includes information such as protein expression, function, structural 

domains, PTMs and citation information. The database also cross-links to other well 

known on-line sources of information such as European Molecular Biology Laboratories 

(EMBL) (WWW.ebi.ac.uk/embll and Ensembl (www.ensembl.orgl. Information is provided 

on theoretical Mr and pi values, but these must be used with caution because if the protein 

has been modified post-translationally it can alter these values. ExPASy provides access to 

a number of databases and analytic tools and is continually being refined to support the 

advances made in proteomics.
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Figure 1.7 SWISS-PROT entry for Perilipin. This image represents a proportion of data 
that is provided by this proteome database. Information on the function, location, PTM and 
sequence of the protein is shown including appropriate references.
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Although proteomics has increased in popularity there are areas in this field which are less 

popular, such as protein isoform changes and modifications as they are difficult to 

characterise. The use of databases such as SWISS-PROT can help in this area as they 

provide enormous amounts of information on protein processing and modifications. 

Programs have been created that can search for mass differences that correspond to a 

particular modification. The peptide sequence and mass data are entered into the system 

and sites where potential modifications could occur are determined (Wilkins et al, 1999). 

The number of different proteins expressed by a genome is probably vastly underestimated 

as genomic information does not predict all PTMs.

Even though there has been much progress made with proteomics there is still the need to 

develop software tools that can identify the most likely identification based on protein and 

nucleic acid sequence of an unidentified peptide.

1.6.8 Alternative methods to 2-D gel electrophoresis

Alternative methods used to separate proteins for proteomic analysis include protein chip 

assays, direct analysis by mass spectrometry (Link et al, 1999) and affinity tag techniques 

(Gygi et al, 1999a). It is possible with advancing technology to apply microarray methods 

to proteomics in the form of protein biochips or protein arrays. Protein arrays enable 

thousands of proteins to be interrogated simultaneously with minimum sample 

consumption. These are more powerful than microarrays as they can analyse protein 

function, modification and regulation on a large scale (Zhu and Snyder, 2001; Zhu et al, 

2001 ; MacBeath and Schreiber 2000). This relatively new technology will be advantageous 

to the pharmaceutical industry due to its high throughput analyses. Depending on the 

configuration of the arrays they can measure protein expression levels and protein 

interactions. Antibody arrays were a starting point for proteomic microarray technology. 

However, a drawback with this technique was the potential lack of specificity (Haab et al, 

2001). One option which scientists are using to reduce this problem is antibody fragments 

(Borrebaeck et al, 2001). A number of companies are developing antibody protein chip 

strategies. Another approach to protein array technology has been to attach proteins onto a 

glass slide which can be used to test for protein interactions (MacBeath and Schreiber 

2000).

An alternative method to protein chip technology uses mass spectrometry. This technique 

has been termed SELDI (surface enhanced laser desorption/ionisation) and was developed 

by Ciphergen Biosystems. A MALDI target surface is modified with affinity ligands which
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capture the proteins of interest and these are subsequently identified by MALDI-TOF mass 

spectrometry (Merchant and Weinberger, 2000). The arrays are available with different 

chromatographic properties which include hydrophobic and hydrophilic surfaces. These 

chips have also been designed to have pre-activated surfaces which are used for 

experiments such as antibody-antigen binding studies. Although this technology can 

provide much information about the proteins within a sample, it is not a quantitative 

method like 2-D gel electrophoresis.

Numerous alternative protein arrays will undoubtedly be created in the future and will 

accelerate the use of microarray technology to proteomics. Improving current methods of 

protein array fabrication, processing and analysis will also be of benefit to protein function 

microarrays.

Isotope-coded affinity tagging (ICAT) is a quantitative proteomic method which is being 

used as an alternative to 2-D gel separation (Figure 1.8) (Gygi et al, 1999a). It has been 

used to study differential protein expression in biological systems. The ICAT reagent 

consists of an affinity tag (biotin) which isolates ICAT labelled peptides, a linker region 

for incorporating stable isotopes and finally a thiol specific reactive group (i.e. cysteines). 

The stable isotopes are generated using linkers composed of either eight deuterium atoms 

(heavy reagent) or eight hydrogen atoms (light reagent). One sample is derivatised with the 

heavy reagent and the other sample with the light reagent. The samples are combined, 

digested and the peptides produced are selectively isolated by avidin affinity 

chromatography to retrieve only the cysteine containing peptides. This reduces the 

complexity of the sample for subsequent analysis by mass spectrometry. Mass 

spectrometry provides information on quantitative protein levels by measuring the peak 

ratios of isotopes which differ by 8 Da, and a tandem mass spectrometry provides the 

protein identification. Despite its quantitative abilities and automated processes this 

method has drawbacks. For example proteins must have a cysteine residue due to the 

specificity of the reactive group.

Proteomics is often used for comparison of different protein profiles. However, a few of 

the drawbacks of 2-D gel proteomics are gel-to-gel variation and time spent on creating 

databases for comparing protein expression changes between different samples. Difference 

gel electrophoresis (DIGE) is a modification of the 2-D gel electrophoresis technique, as it 

enables samples to be run simultaneously on the same 2-D gel (Figure 1.9)
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Figure 1.8 Isotope-coded affinity tagging. The analysis of two protein samples which are 
labelled with either ICAT heavy or light reagents. The samples are mixed and digested 
with trypsin and ICAT labelled peptides are isolated by affinity chromatography and 
analysed by a tandem mass spectrometer. M/Z (mass : charge ratio).
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Figure 1.9 Outline of the 2-D DIGE technique. Samples A and B are labelled with a 
fluorescent dye (Cy3 or Cy5) and a pooled sample of A and B is labelled with Cy2 
(internal standard). The samples labelled with Cy2, Cy3 and Cy5 are mix and separated on 
the same 2-D gel. The protein patterns of each sample can be visualised by illuminating the 
gel with specific excitation wavelengths. Samples A and B are subsequently normalised by 
the pooled internal standard sample. Differential expression analyses can be performed and 
the protein features of interest detennined by mass spectrometry.
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(Unlu et al, 1997; Tonge et al, 2001). This is made possible by fluorescently labelling 

protein samples with different cyanine dyes, Cy2, Cy3 and Cy5. A disadvantage of this 

technique is the limited number of samples that can be analysed. The samples are labelled 

with Cy3 or Cy5, and a pooled sample is made up of equal amounts of all the samples in 

the experiment and acts as an internal control (Cy2). The samples are applied to the same 

gel, separated simultaneously according to their isoelectric focusing point and 

subsequently by Mr using 2-D gel electrophoresis. The technique avoids gel-to-gel 

variation and enables protein expression values between different samples to be compared 

directly. Again there are problems with this methodology, such as sensitivity i.e. detecting 

low abundance proteins, and protein migration changes. As a result of labelling the 

proteins with fluorophores, they migrate at a slightly higher mass compared to those 

proteins that are not labelled. This leads to complications when protein features are excised 

for mass spectrometry (Unlu et al, 1997). Despite the advantages that this technique 

offers, projects which have large sample comparisons render this technique unsuitable.

In the last few years progress has been made in developing alternative methods to separate 

proteins for proteomics such as the techniques mentioned. 2-D gel electrophoresis remains 

the leading choice for separating complex protein samples in most proteomic based 

projects, despite the limitations mentioned such as visualising low abundance proteins, 

hydrophobic and very basic proteins, and the reproducibility of gel replicate. The 

advantage of this methodology is its sensitivity, high resolution and ability to separate 

thousands of proteins from complex protein samples.

1.7 Identifying developmentally regulated proteins during mouse 

mammary gland development - Aims
At the beginning of this study it was recognised that proteomics and microarray technology 

could be used to identify genes that were associated with mammary gland development, 

specifically the major changes during pregnancy and at the lactation involution switch. The 

primary objective was to develop an appropriate extraction procedure to isolate high 

quality protein and RNA which was suitable for these techniques. Subsequently the second 

objective was to produce high quality data from triplicate samples using stages of 

mammary gland development. This project was to focus on the proteomics aspects, and 

other members of the research group would take forward the RNA profiling data. The 

correlation of these data would provide important information on comparisons of the two 

techniques and also assist with validation of the proteomics information.
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A collaboration was formed which combined Oxford GlycoSciences expertise in 

proteomics and Professor Gusterson's in breast studies. After establishing techniques for 

producing reproducible 2-D gels from mammary tissue and TEBs, proteins would be 

identified which were associated to specific stages of mammary development. Having 

identified known and novel proteins, the next objective would be to validate the results. As 

the processes involved in breast development (invasion of connective tissue by epithelium, 

high proliferation rate and tissue remodelling) are similar to those that occur in breast 

cancer, it was predicted that genes regulating these processes would also be common to 

both. The creation of a mammary gland proteomic database could be used as a basis for 

breast cancer proteome studies. It was the intention that candidate proteins selected 

because of their interest to normal mammary gland development would also be examined 

in normal and cancerous breast tissue.
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Materials and Methods
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2.1 Mouse mammary gland
2.1.1 Mouse husbandry

The mice used in this study were female Balb/C, and male Balb/C mice were used for 

mating (Charles River U.K.), Mice were cared for in accordance with the guidelines 

established by the Beatson Institute. They were kept at a constant temperature of 

21 (+/- 2) °C with a 12 h light/dark cycles, housed in conventional cages bedded with 

aspen chip, and provided with food (SDS CRME breading diet) and tap water ad libitum.

2.1.2 Tissue collection

All mammary tissue was collected from the fourth inguinal gland of female Balb/C mice. 

The mice were culled by cervical dislocation, placed on a cork board ventral side up and 

restrained using metal pins. 70% (v/v) ethanol was applied liberally to the body. The 

mammary glands were then exposed by a ventral midline inverted Y incision midway 

between the fourth and fifth nipples and laterally down each hind limb. The abdominal 

skins, with the mammary glands attached were secured to the corkboard. The gland was 

removed by gripping the fat pad behind the nipple and peeling it from the skin using blunt 

ended scissors. The mammary gland was collected from the following developmental 

stages: i) 10 week old virgin, ii) pregnancy days 4.5, 8.5, 12.5, 14.5, 17.5 post coitum, iii) 

lactation days 1,3, and 7 post partum and iv) involution, where the pups were removed 

after 7 days of lactation and the tissue collected on day 1, 2, 3, 4, 5, 10 and 20 post 

weaning. In the text and figure legends these stages are referred to as: AvlO, P4.5, P8.5, 

P12.5, P14.5, P17.5, LI, L3, L7, Invl, Inv2, Inv3, Inv4, Inv5, InvlO and Inv20 

respectively. Mice were mated in the evening, and the morning of the next day was 

counted as 0.5 days of pregnancy. Females were checked for the presence of a copulation 

plug in the vagina (vaginal plug). This consists of seminal coagulated proteins from the 

male seminal fluid and in most strains it can be identified easily.

2.1.3 Terminal end bud extraction

TEBs from the fourth inguinal mammary gland of Balb/C mice were isolated from animals 

aged 5-6 weeks and weighing between 16-18 g. The glands were removed from the mice 

and chilled with Liebovitz L-15 medium (Invitrogen). 12 glands were coarsely chopped 

with scalpel blades and digested for 30 min at 37°C in 10 ml of 1 mg/ml (w/v) collagenase 

type II (Sigma) in L-15 medium. To prevent further digestion after the specified time, 

chilled L-15 medium was added to the samples. The samples were centrifuged at 500 x g 

for 5 min at 4°C. The pelleted material was rinsed and resuspended in 1-2 ml chilled L-15 

medium before transferring to a gridded contact dish (Nunc). TEBs were removed from the
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other surrounding matter using a 10 |il micropipette (Gilson) and visualising the TEBs 

under a dissecting microscope. The samples were frozen at -80°C until a sufficient number 

had been collected for either protein or RNA extraction. 1110-1200 TEBs were collected 

for RNA extraction and 450-500 pooled TEBs for protein extraction.

2.1.4 Preparation of mouse mammary gland wholemounts

Mammary glands were prepared for wholemount analysis using a technique described by 

Edwards et al (Edwards et al, 1992). The excised glands were spread out onto clean, dry 

microscope slides and teased out flat, until they were in the orientation which is seen in 

vivo. The glands were fixed in Camoys [25% (v/v) glacial acetic acid and 75% (v/v) 

absolute alcohol] for 2 h. The fixed glands were then washed for 1 h in 70% (v/v) ethanol 

and further rinsed for 5 min in dHzO. The wholemounts were stained overnight with 

Carmine dye [2 mg/ml Carmine (Sigma), 5 mg/ml aluminium potassium sulphate (Sigma) 

and 0.1 mg/ml Thymol (Sigma)]. Following this the tissues were dehydrated in a series of 

increasing amounts of ethanol. 70% (v/v) ethanol for 45 min, 95% (v/v) ethanol for 

30 min, and 100% (v/v) ethanol for 30 min (x2). The wholemounts were placed in Methyl 

Salicylate (Sigma) to remove fat from the gland and it was also used for storage purposes. 

To examine the wholemounts they were temporarily transferred to 100% (v/v) ethanol.

2.2 Protein extraction and quantification
2.2.1 Extraction of protein for 2-D gel electrophoresis

Protein was extracted from the fourth inguinal mammary gland. A section of tissue was 

taken rather than the whole gland, as a uniform sample was desired. A transverse section of 

the gland was cut approximately 3 mm in width, past the lymph node and distal from the 

nipple (Figure 2.1).

Lymph node
3 mm tissue section

Nipple

Figure 2.1 Schematic of a fourth right mouse mammary gland. The diagram indicates 
the area where a 3 mm section of tissue was taken for protein extraction.

The section of tissue was first washed in Dulbecco's Modified Eagle Medium (DMEM) for

5 min at room temperature (RT). Secondly the gland was 'milked of blood'. This term

describes the technique used to expel blood contained within the mammary gland
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vasculature. Digital pressure was applied to the gland to expel the blood followed by a 5 

min wash in DMEM. To extract protein, the tissue was roughly cut with scissors in 2-D 

lysis buffer (see Appendix 1) and then homogenised with an Eppendorf pestle (Sigma) in a

1.5 ml tube. The resulting homogenate was incubated at 10°C for 10 min and then 

centrifuged at 20,000 x g for 5 min at 10°C to pellet any insoluble material. The 

supernatant (protein sample) was separated from the insoluble material, snap frozen and 

stored at -80°C. The concentrations of the protein samples were later adjusted to 0.5 pg/pl 

for running 2-D gels.

2.2.2 Quantitation of total protein in 2-D lysis buffer

To estimate the protein concentration of a protein sample in 2-D lysis buffer, the Pierce 

Coomassie Plus protein assay was used. It is based on the Coomassie dye changing colour 

on binding to protein. The assay is based on an Absorbance shift from 465 nm to 595 nm 

on protein binding. The Coomassie Plus reagent was equilibrated to RT before use. This 

assay was prepared in a 96-well plate. A range of standards was prepared prior to the assay 

from a stock of 2 mg/ml bovine serum albumin (BSA) provided. The standards had been 

diluted in 2-D lysis buffer to give final concentrations of 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 and

1.5 pg/pl of BSA in a total volume of 400 pi. 2-D lysis buffer was used as a blank. Various 

dilutions of the samples for estimation were prepared using 2-D lysis buffer as a diluent. 

10 pi of each sample, standard and blank, were used in triplicate. To each well that was 

used 300 pi of Coomassie Plus reagent was added and then a cover was applied to the 

plate. The plate was shaken for 1 min at RT and then read at an absorbance of 600 nm. A 

standard curve was plotted in Excel using the BSA standard absorbance readings. A linear 

line of best fit calculated the protein concentration of the sample (Bradford, 1976).

2.2.3 Extraction of protein from 2-D to 1-D lysis buffer

Protein that had been extracted in 2-D lysis buffer was transferred into 1-D lysis buffer 

(2% (w/v) SDS and 63 mM Tris-HCl, pH 7.4) for Western blotting by acetone extaction. 6 

volumes of cold acetone (-20°C) was added to the sample to precipitate the protein. This 

was stored overnight at-20°C and then centrifuged at 14,000 x g for 5 min at 4°C to pellet 

the protein. The sample was washed in 70% ethanol, centrifuged at 14,000 x g for 5 min at 

4°C, air dried and resuspended in 1-D lysis buffer.

2.2.4 Quantitation of total protein in 1-D lysis buffer

To estimate the protein concentration of a protein sample in 1-D lysis buffer, the Pierce 

bicinchoninic acid (BCA) protein assay reagent kit was used (Smith et al, 1985). In this
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reaction Cu^ is reduced to Cu^ by protein in an alkaline medium (Biuret reaction). 

Detection is based on a purple complex formed between the cuprous ion and BCA with the 

absorbance maximised at 562 nm. This assay was prepared in a 96-well plate. A range of 

standards were prepared prior to the assay from a stock of 2 mg/ml BSA provided. The 

standards had been diluted in 1-D lysis buffer to give final concentrations of 0.1, 0.2, 0.4, 

0.6, 0.8, 1.0 and 1.5 pg/pl of BSA in a total volume of 400 pi. 1-D lysis buffer was used as 

a blank. Reagents A and B (provided in the kit) were mixed to 50:1 reagent A to B (BCA 

reagent) in a sufficient volume for 200 pi per sample and standard. Dilutions of the 

samples for estimation were prepared using 1-D lysis buffer as a diluent. 10 pi of each 

sample, standard and blank, were used in triplicate. To each well 200 pi of BCA reagent 

was added and then a cover was applied to the plate. The plate was shaken for 1 min at RT 

and subsequently incubated at 37°C for 30-60 min. The plate was allowed to cool to RT

before reading the absorbance at 560 nm (Thermo Spectronic Biomate™ 3

Spectrophotometer). A standard curve was plotted in Excel using the BSA standard

absorbance readings. A linear line of best fit calculated the protein concentration of the 

sample.

2.3 Oxford GlycoSciences 2-D gels
2.3.1 2-D gel preparation

Precautions were taken to minimise contamination of the mouse mammary protein samples 

to foreign material such as human keratin which if detected by mass spectrometry would 

give misleading results. Dissection and protein extraction of the mammary gland was 

performed while gowned and gloved. All 2-D preparations were performed in an area of 

controlled entry to minimise exposure to these contaminants. All operators in this area 

were gowned, gloved, masked and hair netted. The gels are cast, focused,

electrophoretically separated, scanned, stored and cut for mass spectrometry under these 

conditions and in the controlled area dedicated to this technology.

2.3.2 Plate preparation

The 2-D gels were cast between a step plate and a plain plate. The step plate was wiped 

with absolute ethanol and then coated with 2% (w/v) dimethyldichloro silane in 

octamethylcyclotetrasiloxane (Rapel; BDH) to prevent the gel from adhering. The plate 

was air-dried, heated and rinsed with dHiO and absolute ethanol. The plain plate was 

coated 3x with 0.4% (v/v) bind-silane (Amersham Pharmacia) in absolute ethanol to 

adhere the gel to the plate. One ml of bind-silane was added with each covering per plate, 

the plates were then air-dried for 1 h.
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2.3.3 Casting 2-D gel

9-16% gradient acrylamide 2-D gels were made using:

Heavy acrylamide: 1.067 (w/v) Piperazine diacrylyl (PDA) and 40% acrylamide

Light acrylamide: heavy acrylamide 25% (v/v)

Light ammonium persulphate (APS): 1.2% (w/v) APS and 0.5% Nai (8 0 3 ) 2

Heavy APS: 3.2% (w/v) APS and 0.5% Na% (8 0 3 )2

Light TEMED: 0.6% (v/v) TEMED (N,N,N’,N’-tetramethylethylenediamine)

Heavy TEMED: 1.4% (v/v) TEMED 

After casting the gel a layer of butanol was added to the top of the gel to create a barrier 

between the air and the gel. After 5 h slab buffer (94 mM Tris-HCl pH 8 .8 ) was added to 

the gel tank overnight. The gels were then stored in a cassette at 4°C until electrophoresis. 

The gels were 1 mm thick 20 x 20 cm width/height. Gels were stored for a maximum of 

one month before use.

2.3.4 2-D gel electrophoresis

Triplicate samples of the 16 stages of development investigated and duplicate samples of 

the TEBs were separated by 2-D gel electrophoresis. In the first dimension, IPG gels 18 cm 

long (Immobiline Dry8 trip 3-10 non linear (NL), Amersham Pharmacia Biotech) were 

brought to RT and rehydrated with 120 pg of solubilised sample and bromophenol blue. 

For gel rehydration the IPG gels were placed gel side up in solution, and to minimise 

evaporation of sample a layer of mineral oil was added. A 16 h overnight incubation at 

20°C was required to rehydrate the IPG gels (8 anchez et al, 1997). The IPG gels were 

placed in focusing trays in which damp electrode wicks had been placed over the anode 

and cathode. Electrode wicks must be blotted with tissue paper to remove excess liquid as 

it may cause streaking. The IPG gels were handled with forceps touching only the outside 

edges. The outer edges of the IPG strips were placed over the wicks gel side down, and 

covered with mineral oil to improve contact. The gels were focused in four phases: a 

ramping time of 10 min to reach 300 V; 300 V for 2 h; a gradient increase from 300 V- 

3500 V over 2 h, and then 3500 V for 18 h. Immediately after focusing, the IPG gels were 

equilibrated in 6  M urea, 2% (w/v) 8 DS, 2% (w/v) DTT, 50 mM Tris pH 6 .8 , and 30% 

(v/v) glycerol for 15 min at 20°C, in preparation for running the second dimension. A 

9-16% acrylamide gel (2-D gel) was added to an electrophoresis tank to run the samples in 

the second dimension. To this a top buffer of 25 mM Tris base, 0.192 M glycine and 0.1% 

(w/v) 8 D8  was added to improve the current. A lOx concentration of this solution was 

added to the rest of the tank. A pre-run of the 2-D gel was performed at low voltage
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(10 mA) for 30 min to remove any un'wanted acrylamide. A 2% dithiothreitol (DTT), 0.5% 

agarose and trace bromophenol blue solution was added on top of the 9-16% acrylamide 

gel to act as a stacking gel and focus the proteins. The IPG gels were placed in their 

allocated position on the top of the 2-D gels, and each was run at 10 mA for 10 min, 

followed by a further 6 h at 60 mA. Keeping the 2-D gels within the casting glass plates 

they were immediately fixed in 40% (v/v) ethanol: 10% (v/v) acetic acid overnight for 16 h. 

The gels were washed for 30 min in 0.5% (w/v) SDS:7.5% (v/v) acetic acid to replace SDS 

removed during fixing. After washing, the gels were stained vdth a fluorescent stain OGT 

1238 (0.06% OGT and 7.5% acetic acid) (Oxford GlycoSciences) (Hassner et al, 1984). 

Sixteen-bit monochrome fluorescent images at 200 pm resolution were obtained by 

scanning the gels with an Apollo III linear fluorescence scanner (Oxford GlycoSciences). 

The intensity of the fluorescence signals was directly proportional to the abundance of 

each protein feature (spot) present.

2.4 2-D gel analysis

2.4.1 Analysis of gel images

The scanned images were processed with a custom version of Medical ELectrophoresis 

Analysis Interactive Expert group (MELANIE) III (GeneBio). The pi and Mr of each 

feature had been calculated by bilinear interpolation between landmark features on each 

image previously calibrated with respect to Esherichia coli (Swiss 2-D service ECO). Two 

different preparations were made using 1:1 and 2:1 ratio of sample: E.coli and standard 

loading conditions were used. Eleven landmarks proteins of E.coli were used and have 

been listed in table 2.1.

Individually resolved protein features were enumerated and quantified based on their 

fluorescence signal intensity. Intensity was measured by summing pixels within each 

feature boundary and recorded as a percentage of the total feature intensity of the image. 

The index which represented the pi, Mr and sample, and the percentage intensity values 

representing abundance (mean of replicate) for each gel feature were entered into a 

database (Rosetta™; Oxford GlycoSciences) to form a protein expression map (PEM). In 

order to compare PEMs from different samples, each protein was assigned a unique 

identifier number, the molecular cluster index (MCI). Thus a protein present in one PEM 

could then be compared to the other PEMs in the set. An 'image alignment' algorithm was 

used in order to create the electronic database that integrated all the MCIs present in the 

developmental stages collected and TEB proteomes (gel images). The PEMs produced 

were warped and aligned onto a single common geometry in order to compare the
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individual features within the data set using a single database. Initially MELANIE III 

matched the gels to each other with checks performed by in-house programs and human 

operators. The level of error incurred such as mismatching features is -0.1% (false 

positives and false negatives) when this alignment algorithm is applied (Wilkins et al, 

1996a). This is sufficiently low for the construction of this type of database. Differential 

analysis of the data generated from the proteomes produced was undertaken using

RosettaTM

Table 2.1 E.coli landmark proteins

E.coli landmark pi Mr

THP8 4.39 13035

THP7 4.64 27664

THP14 4.47 56134

THPIO 4.45 105904

THP4 5.00 51686

THPll 5.39 30847

THP3 5.82 113700

THP12 6.36 47178

THP13 7.23 22298

THP5 8.98 11638

THP9 9.27 35639

E.coli was used to landmark proteins from the proteome images produced in this study. Eleven landmarks 
were used and their pi and Mr (Da) have been given. E.coli reference sample Swiss 2-D service ECO.

For this project two databases were created, reasons for which have been explained in 

greater detail in Chapter 4. The first database included AvlO, P4.5, P8.5, P12.5, P14.5 and 

P I7.5, Inv5, InvlO and Inv20. This database was called the developmental database and 

did not include any of the lactation and early involution samples. MCIs (features) which 

were selected for mass spectrometry from this database were identified by Rosetta™. Only 

MCIs that were detected in 2/3 triplicates were retained. An MCI was not selected from 

this list if it appeared to be present in both pregnancy and involution. The feature had to 

present exclusively in pregnancy and absent in involution or vice versa for mass 

spectrometry selection. The duplicate proteome images of the TEBs were compared to the 

AvlO proteomes and only MCIs unique to TEBs were selected for mass spectrometry.
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Certain stages of development were excluded from the development database as the 

samples contained large amounts of milk proteins. As these excluded samples were still of 

interest, a second database was created which included all 16 stages of development and 

was named the Lactation/Involution database. Only MCIs that were detected in triplicate 

were retained which was achieved using Rosetta™. More stringent selection criteria were 

used for this database to compensate for the poorer quality lactation 2-D gels. Unlike the 

developmental database each MCI selected for mass spectrometry was manually checked 

using MELANIE III. Firstly, this was to ensure that the identified feature was not within 

the smeared areas of the gel. Secondly, this was done to check that the patterning of the 

surrounding MCIs to the one of interest could confirm that it was the same feature in all of 

the gels that it was detected in. Comparisons were made between lactation and involution.

2.4.2 Protein identification by mass spectrometry

Selected proteins features of interest were excised from the 2-D gels using a software 

driven robotic cutter. The gel pieces were transferred to a 96-well plate and digested with 

trypsin to produce a tryptic peptide pool. The tryptic peptide pool was divided using 10% 

for MALDI-TOF and 90% for analysis by Q-TOF. A mass list of peptides from each 

selected feature was determined using a MALDI-TOF spectrophotometer (Voyager-DE 

STR; Applied Biosystems) with a mass range of 800-2000. Fragmentation spectra from 

1 Da mass windows (obtained using the MALDI mass list) were recorded using a 

nanospray ionisation source on a Q-TOF instrument (Micromass). The fragmentation 

spectra were converted to centred spectra and used to search the private Incyte database 

and a non-redundant NCBI sequence database (Released ID 244) with the Sequest (Eng et 

al, 1994) and Oxford GlycoSciences internal computer programs.

2.5 Bio-Rad 2-D gels
2.5.1 Immobilised pH gradient gel strip rehydration

To 80 pg protein suspended in 2-D lysis buffer 0.2% (w/v) Resolytes (containing trace 

amounts of Bromophenol blue) (BDH Laboratory Supplies) were added resulting in a total 

volume of 185 pi. Resolytes enhance protein solubility and improve separation during 1-D 

focusing. The 185 pi sample was pipetted into a rehydration tray to which an 11 cm 

pH3-10 ReadyStrip immobilised pH gradient (IPG) gel strip (Bio-Rad) was added gel side 

up to avoid the introduction of bubbles. Once 2 ml mineral oil (Sigma) was overlaid on top 

of the sample the IPG strips were rehydrated for 15 h at RT.
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2.5.2 1-D Isoelectric Focusing

Damp paper wicks were placed over the cathode and anode of the focusing tray. IPG strips 

were focused using a PROTEAN lEF Cell (Bio-Rad). The PROTEAN isoelectric focusing 

(lEF) Cell system is conducted at high voltage and low current due to the low ionic 

strength within the IPG strips. During lEF the current decreases whilst the voltage 

increases as the proteins migrate to their pi positions. The IPG strips were positioned in the 

correct orientation and covered with a sufficient amount of mineral oil. A low voltage 

(250 V) conditioning step was applied to the strip for 15 min to remove salt ions and 

charged contaminants. When this was completed, a linear voltage ramping step to increase 

the voltage to 8000 V proceeded. The current of each strip did not exceed 50 pA. Once 

maximum voltage was achieved the strips were focused for 35,000 Vh. A hold step of 

500 V was incorporated into the run to prevent diffusion of focused proteins.

2.5.3 Equilibration of IPG strip

After completion of focusing, the strips were drained of oil to reduce horizontal streaking 

caused by unabsorbed protein. The strips were equilibrated for 30 min at RT with 

equilibration buffer prior to running the second dimension (see Appendix 1).

2.5.4 Criterion^^ Cell 2-D gel electrophoresis

IPG strips were loaded onto an 8-16% Tris-HCl Criterion gel (Bio-Rad). An additional 

well on the gel was loaded with an unstained marker MARK 12 for sizing proteins on the 

membrane after transfer. The marker was visualised using Ponceau S. A Ix Tris-Glycine 

running buffer was used and the gels were run at 180 V for approximately 1.5 h.

2.5.5 Semi-Dry transfer of 2-D gel

Proteins were transferred from 2-D gels onto Nitrocellulose membrane (0.2 pm) using a 

TE 70 Semi-Phor Semi-Dry transfer unit (Amersham Pharmacia Biotech). The stack for 

transfer was assembled in the following order. A mylar mask was placed over the anode 

with a rectangular section removed from the centre. The shape removed from the mask was 

slightly smaller than the size of the 2-D gel being transferred. Three sheets of Whatmann 

3MM paper cut to gel size and soaked in transfer buffer (see Appendix 1) were applied on 

top followed by membrane, gel and a further 3 sheets of wet Whatmann paper. The 

maximum current achieved during transfer was 0.8 mA/cm^, transfer proceeded for 1 h. 

Blots were briefly stained with Ponceau S to visualise and label the marker ladder.
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2.5.6 2-D western labelling

The same protocol was used for 2-D western labelling as for 1-D western blots.

2.6 1-D electrophoresis, western blotting

2.6.1 Protein electrophoresis

Protein electrophoresis was performed using the Novex NuPAGE™ Electrophoresis 

system. The Xcell II™ kit was used and 17-well 4-12% Bis-Tris-HCl 

(Bis (2-hydroxyethyl) amino-tris(hydroxymethyl) methane-HCl) buffered (pH 6.4) 

polyacrylamide gels. The running buffer used was Ix NuPAGE® MES SDS running 

buffer, diluted from a 20x MES SDS Running Buffer stock solution (Invitrogen) (see 

Appendix 2). For reduced protein samples one sixth of a volume of NuPage® Antioxidant 

was added to the upper chamber running buffer. The gels were run at a constant 200 V 

with an expected starting current of 100-115 mA/gel and a final current of 60-70 mA/gel, 

for approximately 50 min.

Samples were prepared under denaturing and reducing conditions. To the protein samples 

(20-40 pg) 4x NuPAGE® sample buffer (Invitrogen) was added with 40 mM DTT. The 

final sample solution was heated to 70°C for 10 min, and loaded onto the gel. An unstained 

marker MARK 12 from Invitrogen was used for sizing the proteins on the membrane after 

transfer. The marker was visualised using Ponceau S.

2.6.2 Western blotting

Proteins were transferred from SDS-Page gels onto Nitrocellulose membrane (0.2 pm) 

(Schleicher and Schuell), using a Novex XCell II™ Blot module. The membrane, gel, 

Whatmann 3MM paper and four blotting pads were soaked in transfer buffer. Transfer 

buffer was used at Ix, diluted from a 20x stock solution using dH2 0  and 10% (v/v) 

methanol (see Appendix 2 for transfer buffer). After soaking, these were assembled in the 

blot module in the following order. Two blotting pads were placed into the cathode core of 

the module, and then added to this was Whatmann paper, the gel, membrane, Whatmann 

paper and finally 2 blotting pads. Once the module was assembled it was filled with 

transfer buffer and the outer chamber was filled with deionised dHzO. Transfer was 

performed at 30 V constant for 1 h.

2.6.3 Western labelling

After transfer the membrane blots were removed from the module and briefly stained with 

Ponceau S to determine the efficiency of the transfer. In order to visualise the transfer of
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proteins on the blots, the stain was partially removed with dH2Û and then washed further 

with phosphate buffered saline (PBS) (pH 7.3) to remove the stain completely. The blots 

were blocked in blocking solution (PBS, 0.1% (v/v) Tween-20, 5% (w/v) Marvel milk or 

1% BSA (depending on antibody)) for 1 h at RT to remove none specific binding of the 

antibody. The primary antibody (concentration depending on antibody) was diluted in the 

blocking buffer and incubated at RT for 1 h or overnight at 4°C. 3x 15 min washes were 

performed using PBS, 0.1% (v/v) Tween-20 on a horizontal shaker at room temperature. 

The secondary antibody (concentration depending on antibody) was diluted in blocking 

buffer and incubated at room temperature for 1 h. 3x 15 min washes were performed using 

PBS, 0.1% (v/v) Tween-20 at room temperature.

2.6.4 Western signal detection

Horseradish peroxidase (HRP) conjugated secondary antibodies were used to detect signals 

on western blots. The HRP activity can be detected using either chemiluminescence or 3,3- 

diaminobenzamidine (DAB) substrates.

Chemiluminescence detection using the ECL'^’̂  western blotting analysis system 

(Amersham Pharmacia) was performed by adding equal volumes of reagent 1 and 

reagent 2 to the filter, incubating at RT for 1 min and then exposing the blot, covered in 

Saran wrap, to ECL film (Amersham Pharmacia) for different lengths of time before 

developing using an X-OMAT film processor.

2.6.5 Coomassie blue staining of SDS-PAGE gels

After electrophoresis when required the gels were stained with Coomassie Brilliant Blue 

(Sigma) on an orbital shaker. After a sufficient time of staining (~ 40 min) the gels were 

destained with 30% (v/v) methanol and 10% (v/v) acetic acid on a shaker. The destaining 

solution was frequently changed until sharp protein bands on a clear background appeared 

on the gel.

2.6.6 Primary and secondary antibodies

Table 2.2 shows the primary and secondary antibodies used for western labelling and 

immunohistochemistry, including the dilutions used.
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Table 2.2 Antibodies used for western labelling and immunohistochemistry

Antibody and Source Concentration and Use

Anti-Perilipin
(guinea pig polyclonal, Research diagnostics)

1:200 (immunohistochemistry) 
1:2500 (western)

Anti-MCM2
(mouse polyclonal, donated by G. Williams) 1:1000 (immunohistochemistry)

Anti-MCM3
(goat polyclonal, Santa Cruz Biotechnology, Inc)

1:200 (immunohistochemistry) 
1:1000 (western)

Anti-Rabl 1
(mouse monoclonal, BD Biosciences) 1:1000 (western)

Anti-Annexin II
(mouse monoclonal, BD Biosciences)

1:100 (immunohistochemistry) 
1:5000 (western)

Anti-PTRF
(chicken polyclonal, donated by P. Grummt) 1:200 (western)

Anti-WDRl
(rabbit polyclonal, donated by M. Lomax) 1:1000 (western)

Anti-Lumican
(rabbit polyclonal, donated by T. Ishiwata) 1:1000 (western)

Anti-Ki67
(rat monoclonal, Dako) 1:75 (immunohistochemistry)

Anti-actin
(mouse monoclonal. Abeam)

1:10000 (western)
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2.7 Immunohistochemistry (IHC)
2.7.1 Human breast tissue collection

Human breast tissues were used from archives at the North Glasgow Pathology 

department, and had local research ethics committee approval.

2.7.2 Paraffin embedded tissue sections

Tissues were fixed in 10% (v/v) buffered formalin for 24 h before being processed through 

graded alcohols (70% (v/v), 90% (v/v) and 100%) to remove residual H2O, to xylene, to 

remove the alcohol. They were finally embedded with molten paraffin wax under vacuum 

conditions. This automated process was performed by a Miles Scientific VIP tissue 

processor, which lasts 18 h.

Tissue sections (3 pm thick) were cut using a Leitz microtome and mounted on pre-treated 

microscope slides coated with 2% (v/v) 3-aminopropyltriethoxysilane (APES). The slides 

were air-dried and later oven-dried at 60°C overnight. The sections were next de- 

paraffinized in xylene (2x 5 min) followed by rehydration through 100% alcohol 

(2x 5 min), 70% (v/v) alcohol (5 min) to tap water (at least 2 min). Prior to antigen 

retrieval sections were pretreated with 3% (v/v) hydrogen peroxide for 10 min to remove 

endogenous peroxidases and then rinsed in tap water.

2.7.3 Citrate buffer/EDTA antigen retrieval on paraffin embedded sections

Three methods of antigen retrieval were used on paraffin embedded tissue. The first two 

methods involved adding the sections to either boiling 10 mM citrate buffer pH 6.0 or

1 mM EDTA and subsequently cooking in a microwave pressure cooker at full pressure for

2 to 4 min (times varied according to the antibody used). Sections were cooled in running 

tap water and later rinsed in either PBS pH 7.4 or Tris buffered saline (TBS) (100 mM 

Tris-HCl, 138 mM NaCl, and 27 mM KCl) pH 7.4 washing buffers (depending on the 

primary antibody). All incubations from this point were performed at RT. Non-specific 

binding was blocked by using 10% (v/v) serum (DAKO) diluted in PBS/TBS. The species 

used depended on the primary and secondary antibodies. After 20 min blocking, the 

sections were incubated with the appropriate antibody for 30-60 min depending on the 

primary antibody, using an optimised dilution prepared in blocking solution. Sections were 

washed 3x in 10 min with washing buffer and a biotinylated secondary antibody was 

applied for 30 min (type used depended on the primary antibody). The sections were 

washed again 3x in 10 min. The signal was amplified using avidin-biotin-peroxidase 

complex system (DAKO) which was added for 30 min. This step was not required if the
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secondary antibody was HRP-conjugated. Sections were washed for 5 min and the 

peroxidase activity was visualised using DAB to produce a permanent end product. Slides 

were counterstained with haematoxylin (Harris's), dehydrated and mounted in mounting 

medium using 22 mm x 40 mm coverslips. Appropriate tissue sections as positive and 

negative controls were included. Microscopic images were acquired by a Zeiss Axiophot 

microscope and processed using Axiovision 3.1 software.

2.7.4 SDS antigen retrieval of paraffin embedded sections

The third antigen retrieval method used on paraffin embedded sections was SDS. Sections 

were incubated at RT with 1% (w/v) SDS in TBS for 5 min and then washed 3x 5 min with 

TBS. After washing the sections were blocked with 10% (v/v) serum diluted with TBS for 

1 h at 37°C (serum from host species of secondary antibody). The appropriate dilution of 

the primary antibody diluted in blocking buffer was applied to the slides and incubated at 

37°C for 2 h. The slides were washed 3x 5 min with TBS and covered with an HRP- 

conjugated or biotinylated secondary antibody for 1 h at 37°C. When an HRP-conjugated 

secondary antibody was used the avidin-biotin amplification step was not necessary. 

Sections were washed 3x 5 min in TBS and the remainder of the protocol used for the 

citrate buffer/EDTA antigen retrieval method starting from DAB staining was followed.

2.7.5 Frozen fixed tissue sections

Dissected tissues were frozen immediately in OCT (Tissue Tek) with liquid nitrogen and 

stored at -80°C until use. Frozen sections were serially sectioned at 5 |im thickness on a 

Bright Instrument microtome and mounted on glass slides coated with APES and stored at 

-80°C. For IHC, sections were air-dried, then fixed in acetone for 10 min. All incubations 

from this point were performed at RT. The sections were washed with PBS 2x 5 min, 

blocked in 10% (v/v) serum for 30 min, incubated for 30 min with the appropriate primary 

antibody diluted to the desired concentration in blocking solution, and washed again with 

PBS 3x 3.5 min (this has been described in more detail under section 2.7.2). Sections were 

incubated with a FITC-conjugated antibody diluted to the desired concentration in PBS for 

30 min, washed with PBS 3x 3.5 min and then counterstained for 1 min with 1:100 dilution 

of propidium iodide (stock 500 pg/ml) which is a nuclear stain. Slides were mounted in 

Vectashield mounting medium (Vector) using 22 mm x 40 mm coverslips, and stored at 

4°C away from light.
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Samples were viewed by fluorescence microscopy, carried out using a Wang Biomedical 

microscope and a fluorescein filter. Images were captured by a Camedia digital camera 

C-2020 Z and processed using Adobe Photoshop 7.0.

2.7.6 Counterstaining with Haematoxylin

Slides were stained with haematoxylin (a nuclear stain) for 30 s and transferred to running 

tap water. To remove excess stain, slides were dipped in 1% (v/v) acid alcohol 3x and 

again transferred to running tap water. Slides were placed in Scott's tap water (81.14 mM 

anhydrous MgSÛ4 and 41.66 mM NaHCOa) for 30 s which blues the haematoxylin and 

rinsed in running tap water. Five minute incubations were used for dehydrating the slides 

from 70% (v/v) (Ix) to 100% alcohol (2x) and finally to xylene (3x). Sections were 

mounted with permount using 22 mm x 40 mm coverslips.

2.8 Nucleic acid isolation and quantification

2.8.1 Preparation of total RNA

Total RNA was prepared from the whole fourth inguinal mammary gland using TRIZOL 

® Reagent (Invitrogen). Prior to dissection of the gland the lymph node was removed, then 

it was immediately snap frozen in liquid nitrogen. Disposable plastics, RNase-free were 

used for all the procedures and RNaseZap (Ambion) used to clean all work surfaces, 

equipment and instruments. The gland was crushed in liquid nitrogen using a pestle and 

mortar, which had been cooled on dry ice. To create a fine powder-like consistency, the 

gland was homogenised further using Mikro-Dismembrator (B. Braun Biotech 

International) contained in a polytetrafluoroethylene (PTFE) capsule cooled in liquid 

Nitrogen. Approximately 50-100 mg of tissue per 1 ml TRIZOL reagent was used for 

isolation. The homogenate was incubated at RT for 5 min to permit the complete 

dissociation of nucleoprotein complexes. 0.2 ml of chloroform was added per 1 ml 

TRIZOL reagent, the sample was shaken vigorously by hand for 15 s and incubated at RT 

for 2 min. The homogenate was then centrifuged at 12,000 x g for 15 min at 4°C. This 

separates the mixture into 3 phases: a lower red, phenol-chloroform phase (containing 

protein), an interphase (containing DNA) and a colourless upper aqueous phase (containing 

RNA). The aqueous phase was transferred to a fresh tube and 0.5 ml of isopropanol per 

1 ml of TRIZOL reagent was used to precipitate the RNA. The sample was allowed to 

stand for 10 min at RT and then centrifuged at 12,000 x g for 10 min at 4°C. The 

supernatant was removed and the RNA pellet was washed once by adding 1 ml of 75% 

(v/v) ethanol (made with diethyl pyrocarbonate (DEPC) dH20, Sigma) per 1 ml TRIZOL 

reagent. The sample was vortexed and then centrifuged at 7,500 x g for 5 min at 4°C. The
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RNA pellet was briefly air-dried, and resuspended in an appropriate volume of DEPC 

dHiO. A suitable volume of the sample was used for RNA quantiflcation, the remaining 

RNA was aliquoted and stored at -80°C.

2.8.2 Quantiflcation of nucleic acids

Nucleic acid concentrations were estimated by spectrophotometry at A260/A280 (Beckman 

spectrophotometer DU-600), where an OD of 1 at 260 nm corresponds to 50 pg/ml of 

double-stranded DNA and 40 pg/ml of single-stranded DNA and RNA. Readings were 

zeroed with the solution in which the samples had been diluted. However the nucleic acid 

purity of RNA was determined by diluting the RNA in 10 mM Tris buffer pH 8.1 because 

dH20 can vary the ratio as it is not buffered. The ratio of A260/A280 provided an estimate of 

nucleic acid purity. Values between 1.8 and 2.0 indicated pure preparations.

2.8.3 RNA purification

Qiagen RNeasy columns were used on RNA for Microarray chips and TaqMan analysis 

and this was applied according to the manufacturers' instructions to clean all RNA 

samples. The column isolates all RNA molecules that are longer than 200 nucleotides, and 

excludes most RNAs <200 nucleotides (such as 5.8S rRNA, 5S rRNA and tRNAs). RNA 

was eluted in a suitable volume of DEPC dH20.

2.8.4 DNase treatment of RNA

All RNA samples used for TaqMan analysis were DNase treated using Ambion's 

DNA free™ DNase treatment and removal agents according to the manufacturers' 

instructions. This is designed to remove contaminating DNA from RNA samples.

2.8.5 Assessment of RNA quality

For microarray analysis all RNA samples were assessed for RNA quality by using Agilent 

Technologies RNA 6000 Nano LabChip® Kit according to the manufacturers' instructions.

2.9 Northern blotting
2.9.1 Probe preparation for Northern blotting

A radiolabelled cDNA probe was used to generate a signal to determine the size and 

abundance of the target RNA across speciflc stages of mouse mammary gland 

development. Radiolabelling the cDNA probe was achieved using RadPrime DNA 

labelling system (Invitrogen). Thirty ng (21 |il) cDNA was denatured at 90°C for 5 min 

and immediately cooled on ice for at least 1 min. Leaving the cDNA on ice the following
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components were added: 1 pi dATP, Ipl dTTP, Ipl dGTP, 20 pi 2.5x random primer 

solution (all provided in kit) and 5 pi a-^^P-dCTP (50 pCi). Lastly 1 pi Klenow fragment 

was added to the probe mixture and incubated at 37°C for 10 min. The probe was placed 

on ice for 1 min and applied to a Sephadex G50 NICK™ column (Amersham Biosciences) 

with 380 pi TE buffer pH 8 (1 M Tris-HCl and 0.5 M EDTA). This wash removed the 

unincorporated radioactivity, and a further 400 pi TE was added to collect the 

radiolabelled probe. The final concentration of probe for Northern blotting was 

1.0 X  10̂  cpm per ml.

2.9.2 Northern electrophoresis

All equipment and surfaces used for gel preparation were cleaned with RNaseZap™ 

(Ambion) and rinsed with DEPC dHzO. A 1% formaldehyde-agarose gel (see Appendix 3) 

was prepared in a fume hood and Ix MOPS was used as running buffer diluted from a lOx 

stock (see Appendix 3). A volume of 200 pi RNA loading buffer (see Appendix 3) was 

added to aliquots of 20 pg (19.8 pi) total RNA. To 2 pg (2 pi) RNA Millennium™ marker 

(Ambion) 5 pi RNA loading buffer was added. Samples and marker were placed at 65°C 

for 15 min and transferred to ice for 1 min. Each tube was centrifuged briefly to collect the 

contents and 5 pi loading dye (see Appendix 3) was added. Once the samples were loaded 

the gel was run at a constant 100 V for 3 h.

The gel was washed several times over 30 min with ultra pure dHiO on a horizontal shaker 

to remove formaldehyde. The gel was stained in Ix running buffer containing 0.5 pg/pl 

EtBr for 10-20 min and destained with 2x washes of dH%0 for 20 min. The gel was 

photographed using a Digi Doc-It imaging system under UV light in order to visualise and 

measure the migration of the markers from the loading wells. This also enabled 

visualisation of loading by the intensity of the rRNA (18S and 28S) bands. If the intensity 

of the markers was too bright, the lane was cut from the gel and destained overnight.

2.9.3 Northern blotting

RNA was transferred from the agarose gel to a positively charged nylon membrane 

(Hybond-N+; Amersham). The loading wells were removed from the gel with a scalpel 

blade and then the gel was washed in lOx SSC (see Appendix 3) for 20-30 min. The 

following materials were assembled in the order stated to achieve transfer. Three dry 

pieces of Whatmann 3MM paper (cut slightly larger than gel) were placed on top of a 3 cm 

stack of paper towels (cut 1-2 cm wider than gel). Two pieces of wet Whatmann paper 

soaked in lOx SSC were added to the top of the stack followed by membrane and gel
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(upright). Once the membrane and gel were centred and air bubbles removed, 3 pieces of 

wet Whatmann paper were stacked on top followed by a 1 cm thick sponge the same size 

as the Whatmann paper soaked with lOx SSC. Transfer was left for 1.5-2 h.

After disassembling the transfer apparatus the membrane was marked for orientation 

purposes. The RNA was crosslinked immediately after transfer using a UV Stratalinker 

(Stratagene) for 1200 pjoules xlOO. The blot was stored between Whatmann paper.

2.9.4 Northern hybridisation

The blot was rinsed with 2x SSC and then incubated with 20 ml Rapid-Hyb buffer 

(Amersham Biosciences) for at least 15 min at 65°C. At all times the blot was kept 

hydrated. Half the volume of prepared probe was heated at 90°C for 5 min, cooled on ice 

for 1 min and then added to the prehybridised blot. Hybridisation was allowed to proceed 

for 1.5 h at 65°C. The blot was rinsed with 2x SSC and washed for 20 min with 

2x SSC, 0.1% (w/v) SDS at 60°C. A further 2x 20 min washes were applied using a higher 

stringency wash of 0.2x SSC, 0.1% (w/v) SDS at 60°C. After a final rinse with 2x SSC the 

blot was wrapped in plastic wrap and exposed to an imaging plate (Fujifilm). The signal 

was captured using a FUJIFILM FLA-5000 phosphoimager and a 635 nm laser. The 

images were processed using Advanced Image Data Analyser (AIDA) software (Fujifilm).

2.9.5 Stripping Northern blots

Blots were stripped with boiling 0.1% (w/v) SDS until solution was cold in order to 

hybridise blot with different probes.

2.10 Affymetrix microarrays

2.10.1 Oligonucleotide microarray hybridisation

Total RNA (10 pg) previously extracted from AvlO, Avl2, PI, P2, P3, P8.5, P12.5, P14.5,

P17.5, LI, L3, L7, Invl, Inv2, Inv3, Inv4 and Inv20 was used to produce biotinylated

cRNA. The protocol followed has been described in the Affymetrix manual. All stages of

development were repeated in triplicate from three different mice. Five pg of the labelled

cRNA was checked for quality purposes by hybridising to an Affymetrix test chip (Test3).

Following confirmation of the quality of labelled cRNA 15 pg of each sample was

hybridised to the MG-U74Av2 chip (Affymetrix) for 16 h at 45°C in a rotating

hybridisation oven. Chips were washed and stained with Streptavidin-phycoerythrin by

using an automated fluidics system (Affymetrix). The chips were scanned with an Agilent

scanner and the raw data were analysed by Microarray Suite 5.0 software. The results were
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scaled to a target signal of 100 (arbitrary value) and the scaling factors of the individual 

experiments were no greater than three fold between each other. A total of 12,488 probe 

sets were interrogated.

2.10.2 Microarray data analysis

Details of the algorithms used are available at http//www.Affymetrix.com. The database 

used for analysis was constructed with Affymetrix MicroDB® software and was analysed 

with the Affymetrix Data Mining Tool® (DTM).

2.11 Polymerase chain reaction

2.11.1 Reverse transcriptase (RT)-PCR

Total RNA was reverse transcribed using Superscript™ II RNase H' Reverse Transcriptase 

(Invitrogen). One to 5 pg of total RNA was added into a reaction containing 500 ng Oligo 

(dT)i5 primer (Roche) and 0.5 mM of each dNTP (Invitrogen) to a final volume of 12 pi 

dHiO. The reaction was heated to 65°C for 5 min, and then placed on ice to denature the 

secondary structure of the RNA. To each reaction the following was added: Ix first strand 

buffer, 5 mM DTT and 40 U RNaseOUT Recombinant Ribonuclease Inhibitor 

(Invitrogen). After a 2 min incubation at 42°C, 200 U Superscript™ II RNase H' Reverse 

Transcriptase was added and the reaction incubated at 42°C for 50 min. Final reaction 

volume was 20 pi. The reaction was terminated by 15 min incubation at 70°C, and the 

RNA/DNA duplex degraded by the addition of 2 U of RNase H (Invitrogen) for 20 min at 

37°C. A suitable amount of synthesised cDNA (0.5-1 pi) was used for each PCR reaction.

2.11.2 Standard PCR

Standard PCR protocols were used for routine amplification of cDNAs. 0.5 pi of template 

cDNA was used per reaction. Each reaction contained Ix PCR buffer (minus MgCh), 1.5 

mM MgCh, 0.2 mM each dNTP, 0.5 pM forward and reverse primers and 1.25 U Taq 

DNA polymerase (Invitrogen), in a final volume of 25 pi. Cycling was performed in thin- 

walled dome-topped 0.2 ml PCR tubes (ABgene) in an Eppendorf Gradient thermocycler 

or a Biometra™ T3 thermocycler.

Cycling conditions were typically:

94°C for 3 min to ensure template dénaturation.

25-35 cycles; denaturing at 94°C, 15 s/ annealing at 50-60°C, 30 s/ extension at 72°C, 

1 -3 min.

72°C, 5 min.
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Annealing temperatures were dependent on the primers used. When multiple PCR 

reactions were run at the same time or same samples run using different annealing 

temperatures, the Eppendorf Gradient PCR machine was used and a gradient imposed 

across the heating block to account for the required annealing temperatures.

2.12 Real-time TaqMan RT-PCR

2.12.1 Primer and Probe design

The primers and probes were designed to produce an amplicon spanning an intron-exon 

boundary and such that either primer or probe overlapped two exons to prevent genomic 

amplification. The following guidelines were used for designing the primers and probes. 

Designing probes: G-C content in the range of 30-80%

No G on 5' end

Sequence containing more Cs than Gs 

A Tm value of 10°C greater than the primers 

Avoiding runs of more than 4 of the same base 

Length of probe no longer than 30 nucleotides 

Designing primers: G-C content in the range of 30-80%

Avoiding runs of more than 4 of the same base 

A Tm value between 58-60°C

Placing both primers close to the probe without overlapping 

The five nucleotides at the 3' end should have no more than 2G and/or C bases.

2.12.2 Real-time TaqMan® PCR of gene expression

Oligonucloetide primers and Taqman probes were designed to meet specific criteria using 

Primer Express, version 2.0 (Applied Biosystems) from the GenBank database. The 

TaqMan probe consists of an oligonucleotide with a 5' fluorescent reporter dye, 6-carboxy- 

fiuorescein (FAM) that is covalently linked to the 5'-end of the oligonucleotide. The 

reporter dye is quenched by 6-carboxy-tetramethyl-rhodamine (TAMRA) at the 3'-end. 

Separation of the quencher dye fi-om the reporter results in increased fluorescence. The 

samples were placed in 96-well plates using a final 25 pi reaction volume. The reaction 

mix contained a final concentration of 300 or 900 nM (depending on the primer set) 

forward and reverse primers, 200 nM TaqMan probe, 0.1 pg cDNA sample and Ix PCR 

mastermix (TaqMan® Universal PCR Master Mix, No AmpErase ® UNG; Applied 

Biosystems). The samples were amplified in an automated fluorometer (ABI PRISM 7700 

sequence Detection System; Applied Biosystems). Amplification conditions were 2 min at 

50°C, 10 min at 95°C and 40 cycles of 15 s at 95°C and 1 min at 60°C. Each sample was
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repeated in duplicate for consistency and control reactions without reverse transcriptase 

were run for each sample. In addition, negative control reactions containing only dH20 and 

no RNA were used to establish baseline levels of fluorescence. Glyceraldehyde-3- 

phosphate dehydrogenase (GAPDH) was used as an endogenous control for normalisation.

2.12.3 TaqMan analysis

The relative quantitation of gene expression was obtained by the comparative Ct method 

which uses the arithmetic formula Values are expressed relative to a reference

sample, called the calibrator. First, the threshold cycle (Cj) of the target gene and the Ct of 

the endogenous control were determined for each sample. The Cj value is the cycle 

number at which exponential growth of the PCR product commences. As each sample was 

duplicated the values were averaged. The difference between the target Ct and endogenous 

control, called A C t, were calculated in order to normalise for the differences in RNA 

extractions and the efficiency of the reverse transcription step. The A C t values for each 

normalised experimental sample was subtracted from the A C t of the calibrator, called the 

A A C t value. Lastly the amount of target, normalised to the endogenous reference and 

relative to the calibrator was calculated by 2''^^^ .̂ Therefore these values demonstrate the 

«-fold difference of the experimental values relative to the calibrator.

To validate the A A C t calculation, the efficiencies of the target and endogenous control 

must be approximately equal. This can be assessed by analysing the A C t in a dilution 

series of the template. Six dilutions of cDNA were prepared in duplicate and were 

amplified to obtain standard curves. The average Ct values of the target and endogenous 

control were determined and the A C t was calculated. The log input of the total amount of 

RNA was plotted against A C t. If the efficiencies of the two amplicons were approximately 

equal, the slope of the log input versus A C t was < 0.1.

A C t (sample) = C t (target gene) - C t (GAPDH)

A A C t = A C t (sample)- A C t (calibrator) 

relative expression = 2'^^^^

(ABI Prism Sequence Detection System User Bulletin #2)

2.13 DNA electrophoresis and purification
2.13.1 Agarose gel electrophoresis of DNA

DNAs were separated in 1% agarose in 0.5x TBE (90 mM Tris, 90 mM boric acid, pH 8.3,

2 mM EDTA) containing 0.1 pg/ml EtBr as described in Sambrook and Russell (2001),
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using 0.5x TBE as the electrophoresis buffer. DNA was visualised under UV light, and 

sizes of fragments were compared to a 1 kb or 123 bp ladders (Invitrogen). Prior to 

loading, 6x loading dye (0.25% (w/v) bromophenol blue, 0.25% (w/v) xylene cyanol, 30% 

(v/v) glycerol in dHiO) was added to the samples to a final Ix concentration.

2.13.2 Purification of DNA from gels

DNA fragments were excised from the gel using a clean scalpel blade and the DNA 

extracted using the Qiagen Gel Extraction kit according to the manufacturers' instructions. 

DNA was typically eluted in 30 pi of dH20.

2.14 Oligonucleotide synthesis
Oligonucleotides were synthesised by the Sigma-Genosys custom primer service on a 

0.025 pmol scale, purified by a minimum of desalting, and their quality assessed by 

MALDI-TOF analysis. Oligonucleotides were received as a lyophilised pellet, resuspended 

in dH20 to a stock concentration of 100 pM and further diluted with dH20 to a working 

concentration of 6.6 pM. All primers were stored at -20°C.

2.15 Automated DNA sequencing
Automated sequencing was performed at the Glasgow University Molecular Biology 

Support unit (MBSU). A single-stranded reaction was used with template and primer 

supplied at 10 ng/100 bp and 3.2 pmol respectively, with a PCR mix containing 

fluorescently labelled dideoxynucleotides. Samples were run on an agarose gel with the 

nucleotides being detected on an ABI automated DNA sequencer. Analysis was carried out 

by the Applied Biosystems automated sequence analysis programme, and the sequence 

data viewed and further analysed using Editview (version 1.0, free DNA sequencing 

software from Perkin Elmer).
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Chapter 3

Preparation of the mouse mammary gland
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3.1 Summary

This Chapter describes the collection of mammary glands at various stages of development 

and optimisation of the extraction procedure to obtain good quality protein for 2-D gel 

analysis. Sixteen stages of the developing mouse mammary gland were selected for 

detailed morphological and biological analysis. These were key time points of 

development which demonstrate the processes of proliferation, differentiation and 

apoptosis, which are iterated in pregnancy, lactation and involution. In order to observe the 

morphological changes, which take place during development, wholemounts were taken of 

both the left and right fourth inguinal mammary gland for each of the 16 stages of interest. 

Tissues were collected for RNA and protein extraction. The protein extracted from the 

mammary glands was of suitable quality for proteomic analysis. This technique was used 

as a tool to identify proteins that may be regulating proliferation, differentiation and 

apoptosis during mammary gland development. In addition, proteomic analysis was used 

to identify proteins specifically associated with invasion and migration by isolating 

specialised structures called TEBs from the pubertal gland and extracting protein in the 

same way as for whole glands.

72



3.2 Introduction

The first six months of this project were dedicated to standardising the conditions for 

dissection and collection of intact mammary glands and TEBs for proteomic analysis. This 

work was in collaboration with Oxford GlycoSciences. All gland collection and extraction 

procedures were carried out by myself, and the 2-D gels were run at Oxford 

GlycoSciences. One year was spent at Oxford GlycoSciences in order to understand each 

aspect of proteomics and, at the practical level, to run 2-D gels.

3.2.1 Investigation of the mouse mammary gland

An inbred mouse strain was chosen to investigate mammary gland development as it 

provided a uniform and reproducible system. The long term aim of the project was to 

identify proteins which regulated human breast development. However, due to the lack of 

availability of human tissue and the similarities that are shared between human and mouse 

breast development the mouse mammary gland was the most logical tissue to study. After 

identifying proteins regulating mouse mammary gland development these could then be 

related to human breast development.

Female mice have five pairs of mammary glands, three thoracic and two inguinal (Figure 

3.1). The fourth inguinal gland was chosen for investigation in this study due to the ease of 

complete removal of the gland from the animal and rapid dissection. Less muscle is 

removed with the fourth gland which makes the tissue preparation cleaner.

The female mouse, when maintained in good condition, ovulates at intervals of four to five 

days. Ovulation occurs during each oestrous cycle and ductal cells give rise to alveolar 

buds. During the adult virgin stage of development some strains of mice do not have a 

functional ovarian luteal phase, and so the mammary gland consists entirely of ducts. The 

strain of mouse chosen for this study was Balb/C because females from this strain do not 

develop alveoli prior to pregnancy. This was desirable to identify clearly the 

morphological change from adult virgin to pregnancy (Fekete, 1938).

3.2.2 The developing mouse mammary gland

Sixteen stages of mammary development were focused on in this study, ranging from the 

adult virgin gland to pregnancy, lactation and involution. In newborn female mice, the 

mammary gland is composed of ducts, which are able to migrate from the nipple through 

the fat pad, which is driven by structures at the duct tips, known as TEBs. These
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Figure 3.1 Five pairs of mouse mammary glands. Taken from Cole, 1933. The mouse 
has three pairs of thoracic and two pairs of inguinal mammary glands.
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specialised structures were collected for analysis at both the RNA and protein level as were 

glands from the 16 stages of mammary gland development.

The TEBs regress before adulthood leaving an extensively branched ductal system to fill 

the whole fat pad. This stage of development is reached at about 10 weeks of age. Tissue 

samples from 10 week old adult virgin mice were collected since at this stage it was 

regarded as a normal resting mammary gland. Comparisons of the expression levels in 

pregnant, lactating and involuting glands could then be made with the resting virgin gland.

A number of stages within the different phases of gland development were selected in 

order to have a representative sample of each of the main changes that occur. In pregnancy 

early (P4.5 and P8.5), mid (P12.5, P14.5) and late (P17.5) pregnancy samples were 

selected. An increase in ductal branching and the formation of alveoli are seen within the 

first days of gestation, hence the collection of P4.5. Lobuloalveoli have formed by P8.5 

and by P12.5 to P14.5 they are mature structures. By late pregnancy (PI7.5) the gland has 

increased in thickness and is predominantly alveolar structures.

As minimal changes take place within the first week of milk production, lactation samples 

were collected only on day one (first day of parturition) (LI), three (L3) and seven (L7).

During involution a cascade of apoptotic events take place. In order to focus on the switch 

from lactation to involution and also on the factors which steer the gland through the 

irreversible stage of involution, samples were collected from the initial stages of involution 

Invl (the first day after removal of the pups), Inv2, Inv3, Inv4, InvS. The latter stages of 

involution, InvlO and Inv20, were also collected, since at these time points the gland 

resembles that of an adult virgin. All 16 stages of development are shown in Table 3.1.

Table 3.1 Stages of mammary gland development studied

Days

Adult Virgin Pregnancy Lactation Involution

10 weeks 4.5 1 1
8.5 3 2
12.5 7 3
14.5 4
17.5 5

10
20
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3,3 Results

3.3.1 Comparison of fresh and frozen tissue for protein extraction

Trial tissue samples were collected from adult virgin female mouse mammary glands. The 

samples were tested on 2-D gels in order to optimise the protein extraction protocol prior 

to using the mammary developmental sample set. Triplicate samples of fresh and frozen 

tissue were used for the first trial samples run by 2-D gels, but fewer than 1000 protein 

features resolved on the gels compared to the 2000 expected. Figure 3.2A is the proteome 

image produced from a frozen sample and Figure 3.2B from a fresh sample. Table 3.2 

shows the number of protein features detected in the first and second tissue preparation 

trials; the procedure used for trial 2 is described below. In the first trial the majority of the 

frozen samples had a greater number of protein features detected compared to the fresh 

samples. This was because they were more concentrated than the fresh samples and 

consequently a higher amount was loaded onto the gels.

The protein extraction protocol used on the fresh and frozen tissue was based on the wet 

weight of the tissue per volume of lysis buffer. This vastly underestimated the amount of 

tissue required to obtain a suitable concentration of protein for proteomics. A refined 

technique was applied to increase the yield of protein extracted from the gland. To increase 

the amount of tissue per volume of lysis buffer the dounce homogeniser was replaced with 

an Eppendorf homogeniser, which was able to contain the sample in a smaller volume and 

resulted in less loss of tissue.

The second set of trial samples that were extracted in this way had a concentration above 

0.5 pg/pl. A concentration of >0.5 pg/pl enables the 120 pg protein loading target to be 

achieved. Again, fresh and frozen samples were collected in triplicate to assess 

reproducibility. The scanned images of these 2-D gels revealed that five out of the six 

samples in trial 2 had over 2000 protein features detected (Table 3.2). The 2-D gels 

revealed that the fresh samples produced a better proteome (gel image) (Figure 3.2D) than 

the frozen samples (Figure 3.2C) because they had resolved a greater number of higher 

molecular weight proteins. Only extreme changes are visualised on these gels and it must 

be remembered that the scanning software used to create these digital gel images can detect 

to levels that can barely be visualised.

76



(A) (B)

2 cm

t  •

• . *

(C)

s :

,

: .1  •• -  .

‘ ' yJ»  rî^
• ’ ‘- I .  •••

(D)

I

(E) t (F)

. a ; .

i--.- • ; :» •> .. ^  *
-  *r* * v

w .
% < : • ‘U-.

Figure 3.2 Fluorescent 2-D gel images of optimised tissue extraction protocol. 2-D gel
images stained with OGT 1238 and scanned with an Apollo III linear fluorescent scanner. 
For scale, images are 40% of the original size. (A) Frozen (B) Fresh tissue extracted with a 
dounce homogeniser (<1000 features). (C) and (D) Frozen and fresh tissue (respectively) 
extracted with an eppendorf homogeniser (>2000 features). (E) Mammary gland washed in 
DMEM prior to extraction to reduce serum albumin contamination (indicated with yellow 
arrows). (F) Mammary gland tissue section 'milked' of blood. Yellow oval highlights the 
greater number of high molecular weight proteins detected in (D) compared to (C).
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Table 3.2 Features detected in 2-D gel trial sample preparations

Trial 1 No. of features Trial 2 No. of features

Frozen 1 659 Frozen 1 2231

Frozen 2 696 Frozen 2 2106

Frozen 3 632 Frozen 3 1972

Fresh 1 516 Fresh 1 2034

Fresh 2 568 Fresh 2 2265

Fresh 3 770 Fresh 3 2324

The primary images o f the 2-D gels were processed using MELANIE III software which detected the 
fluorescently stained features resolved on the gels.

3.3.2 Washing the tissue to remove serum albumin contamination

Serum protein contamination is a major concern in proteomics. A volume of 2 pi of serum 

can generate a proteome image of 1000 protein features on 2-D gels run by Oxford 

GlycoSciences. This amount of serum contamination in a tissue sample will result in the 

obscuring of proteins surrounding the affected areas. Serum proteins are used as a marker 

of the amount of blood contamination present in a sample. Since this was a problem in the 

trial samples, an attempt was made to minimise the amount of serum albumin (i.e. serum 

contamination) in the samples. The first approach to this problem was to wash the glands 

for various lengths of time with DMEM. Visual comparisons were made of the 2-D gels 

which showed no obvious benefit in extending the washes with regards to reducing the 

levels of serum. Figure 3.2E shows the proteome image produced after washing for 5 min 

in DMEM. The yellow arrows on images C, D, E and F are pointing to the serum albumin 

feature. There appeared to be some benefit in washing the tissue in medium when 

comparing the image to Figure 3.2D which is of an unwashed fresh sample. The image 

produced from the unwashed protein sample was used as a reference gel as it demonstrated 

a sample which had not been subjected to further optimisation protocols such as washing 

with DMEM, 'milking' or digestion of the gland. These techniques are described later in 

this Chapter. In conclusion, 5 min washes were applied to subsequent protein extractions to 

reduce the level of serum albumin contamination. Previous experience at Oxford 

GlycoSciences had also found DMEM washes beneficial to serum removal.

3.3.3 'Milking' the tissue to remove serum albumin contamination

A second technique was developed to remove endogenous serum from the gland without 

any damage to the tissue. After dissecting a section of gland digital pressure was applied 

along the length of the gland thus blanching the tissue as blood was expelled. Duplicate
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samples were prepared by this method known as 'milking the gland' and analysed on 2-D 

gels. The 'milked' gel image (Figure 3.2F) was compared to the unwashed unmilked 

protein sample (Figure 3.2D), and it was concluded that there was some advantage in using 

this technique. Therefore it was applied to subsequent protein extractions.

3.3.4 Proteome generation of the mouse mammary gland development set

These revised protein extraction methods were used on all 16 stages of development, 

which were collected in triplicate and run on 2-D gels. Visual analysis of the triplicate gel 

images revealed no gross differences and showed feature patterns complimentary to each 

other indicating their reproducibility. Similar levels of high abundant proteins were also 

visualised from the triplicate images (data not shown). The reproducibility of the sample 

preparation was shown by the 2-D images produced, as over 2000 features were resolved 

on each gel. The proteome images of these samples are at the back of this thesis in CD 

format.

3.3.5 Morphological analysis of the mouse mammary gland

To visualise the morphological changes taking place during mammary gland development 

wholemounts were collected from each of the 16 stages of interest. Representative stages 

were captured on a digital camera and are shown in Figure 3.3A-J. Each stage was 

collected in duplicate to verify whether there was any individual variation. Both the left 

and right gland of each mouse was wholemounted to establish whether developmental 

progression was identical on each side. Indeed, the left and right glands were identical to 

each other which enabled both sides to be manipulated.

3.3.6 Generation of the TEB proteome

These structures were captured on wholemount sections and Figure 3.4 highlights the 

bulbous club-shaped TEBs. A protocol described by Richards et al, 1982 was modified to 

isolate these structures from the gland. The 2-D gel image produced from the TEB sample 

resulted in a large area of the gel being occupied by serum protein, thus preventing many 

proteins from being identified (Figure 3.5A). The TEB extraction technique was therefore 

revised by using medium containing no serum. The proteome image produced from the 

TEBs without serum (Figure 3.5B) compared to the TEBs with serum was completely 

different. Only 1689 features were detected from the TEB serum positive preparation 

compared to 2172 features resolved from the TEB serum free sample. This demonstrates 

the importance of reducing the levels of serum in a sample, since features may be masked 

by serum proteins when resolved on a 2-D gel.
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Figure 3.3 Wholemounts of representative stages of mammary gland development.
These images are of wholemount mammary glands that have been stained with carmine 
which identifies the epithelium of the gland. The dark pink oval shaped structure lying 
almost central to the gland is the lymph node. For some of the glands more than one lymph 
node can be seen. (A) to (H) range from AvlO to Inv5. Photographs were taken at 6x 
magnification using a Zeiss SVll  microscope and a Zeiss KL1500 LCD light source. 
Images were captured on the Fuji fine pix digital camera.
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Figure 3.3 continued Wholemounts of representative stages of mammary gland 
development. (I)-(J) InvlO and Inv20 the final stage of mammary gland development 
investigated.

2mm

0.5mm

Figure 3.4 Structure of the TEB. (A) A wholemount of a gland taken from a six week old 
female mouse. The TEBs have just past the lymph node and have been indicated by black 
arrows. The wholemount has captured the in vivo morphological organisation of the 
mammary gland. Photograph taken at 6x magnification using a Zeiss SVll  microscope 
and a Zeiss KL1500 LCD light source. Images were captured on a Fuji fine pix digital 
camera. For scale, the length of the lymph node is approximately 2mm. (B) An image of 
isolated TEBs suspended in L-15 medium post digestion, photograph taken using a phase 
contrast microscope at 5Ox magnification.
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Figure 3.5 Fluorescent 2-D gel images of optimised TEB extraction protocol. 2-DE 
images were stained with OGT 1238 and scanned with an Apollo III linear fluorescent 
scanner. For scale, these images are 40% of the original size. (A) TEBs with serum, (B) 
TEBs without serum, (C) Digested glands washed 3x with L-15, (D) Digested glands not 
washed.
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An additional complication associated with the TEB preparation was observed from the 

2-D gel image. The image showed evidence of streaking at the basic end of the gel which 

is usually caused by salt. Streaking of gels to the degree seen in the TEB sample had not 

been detected in the tissue section samples. The culture medium used for digestion was not 

implicated as the cause of streaking for the following reason. L-15 medium and DMEM 

have similar salt concentrations and the gel image of the sample that had not been washed 

or 'milked' (Figure 3.2D) showed no difference in the degree of streaking at the basic end 

when compared to a sample washed in DMEM (Figure 3.2E). Again, as with serum 

contamination, the levels of salt needed to be reduced; otherwise protein features within 

the streaked area would not be incorporated into the proteome database which would be 

used later for expression analysis.

It was thought that the salt causing the basic end streaking was possibly from the 

collagenase used to digest the glands. This may have been due to residual amounts of 

collagenase being present in the suspended TEBs. To try and reduce the collagenase levels, 

additional washes with L-15 medium were made to the pelleted material before isolating 

the TEBs on contact dishes. However, the length of time taken to collect a sufficient 

number of TEBs for a 2-D gel limited further optimisation experiments performed with the 

TEB sample. Therefore an attempt to reduce the salt levels was made by taking 16-18 g 

mice and digesting their whole mammary glands using the normal digestion procedure. 

The pelleted material was washed 3x with L-15 medium and protein was extracted from 

the pelleted material and not from the TEBs. This was performed on two different samples 

for reproducibility^ purposes. As a control to determine whether streaking had been reduced 

by this technique, two samples were prepared from digested mammary glands which when 

pelleted were not washed 3x in culture medium.

Visual analysis of the gel images from the washed Figure 3.5C and unwashed digest 

samples Figure 3.5D showed that both had a higher degree of basic end streaking when 

compared to the gel images produced from tissue sections which had not been digested 

(Figures 3.2D, E, and F). This provided evidence that the digestion procedure was 

intensifying streaking at the basic end. When the duplicate washed and unwashed pellet 

images were compared, they showed that washing the pellet did not improve the basic end 

streaking on the gels. In conclusion as the removal of basic end streaking was not 

achieved, the previous optimised methodology for isolating TEBs was used. The TEB 2-D
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gels passed the quality control checks performed by Oxford GlycoSciences. However, 

areas that were affected by basic end streaking were avoided for expression analysis.

3.4 Discussion

3.4.1 Mouse mammary gland tissue preparation

At the beginning of this project there were no publications linking proteomics and mouse 

mammary gland development. Hence, there was no technique devised to extract protein 

from this type of tissue which was of suitable quality for proteomic analyses. This Chapter 

has described the improvements which were made to the preparation of protein samples 

from mouse mammary glands.

The mammary gland is a fatty tissue particularly prior to pregnancy before the invasion of 

alveolar epithelial cells. This made complete homogenisation of the mammary gland 

difficult to achieve, but an alteration of the equipment used resulted in a smoother 

suspension than was previously obtained. This improvement increased the number of 

features detected on a 2-D gel to achieve the target of over 2000 protein features.

The extraction of protein from fresh tissue resolved a larger number of higher molecular 

weight proteins compared to frozen tissue. Frozen tissue would have been preferable to use 

since the protein could have been extracted when convenient. However, as the quality of 

the protein was of principal importance, protein was always extracted from fresh tissue.

A large area of the gel was occupied by serum albumin which may have masked proteins 

that had migrated in the same area as this protein. These masked proteins could have had 

potentially interesting expression profiles and therefore in order to detect them the levels of 

serum contamination needed to be reduced. This was achieved by a combination of 

washing and 'milking' the gland of blood. It is believed that only a minimal change was 

detected in the attempt to reduce the serum protein levels because the majority of it was 

endogenous. Many blood capillaries run through the mammary gland which become more 

vascularised during pregnancy and have most likely contributed to most of the serum 

proteins present on the 2-D gels.

3.4.2 Reproducibility of the mammary gland and its importance in proteomics

Wholemounting the left and right glands across development revealed that they were 

morphologically the same, and microarray data (not shown) also showed this at the RNA 

level. Therefore the left gland was taken for protein extraction and the right was taken for
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RNA purposes. Reproducibility is crucial to the success of proteomics and sample 

preparation is a major contributor to reproducibility. The triplicate tissue section samples 

collected produced reproducible proteome images.

Quality control and curation of 2-D images also contribute to reproducibility in 

proteomics. Many 2-D gels fail image quality control checks because of visual 

imperfections such as those caused by gel overloading and poor resolution. All of the 

developmental mammary samples passed the quality control criteria which can be 

demonstrated at the bioinformatic level during curation. Once artefact features were 

discarded by an image processing algorithm, the triplicate gels were grouped into a single 

virtual feature group. The virtual image produced only contained features which were 

present in two or more of the individual gels. It was only these replicated features that were 

integrated into the master group for differential analysis. This was achieved by image 

processing software MELANIE III and differential software called Rosetta™. Therefore 

the replicate samples were of the highest quality.

3.4.3 A modified approach to TEB isolation

The TEB extraction procedure was both intricate and long, and there had been concern 

with regard to the quality of the protein and RNA extracted. However, good quality 2-D 

images were produced from the protein extracts and RNA quality control checks 

demonstrated good quality RNA. The TEB preparation (without serum) revealed almost 

500 extra protein features compared to the TEB preparation (with serum). Many of these 

extra features had previously been masked by serum proteins.

A greater degree of streaking was found at the basic end of the TEB 2-D gel (without 

serum) when comparing it to the tissue section image. The attempts made to reduce the 

level of streaking were not effective and therefore the areas affected were not incorporated 

into the proteome database generated later on.

In conclusion of this Chapter, good quality protein was extracted from all stages of 

mammary gland development including the TEBs. As a result good quality reproducible 

proteomes were produced which were then used to identify features which changed either 

in their presence or absence across development, or demonstrated a change in expression 

levels across development.

85



Chapter 4

Generation of the mouse mammary gland proteome by 2-D gel

electrophoresis
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4.1 Summary

Detailed analyses of 16 time points of mammary gland development and TEB preparations 

were carried out using the technique of proteomics 2-D gel electrophoresis. The proteomes 

revealed the expression profiles of all the protein features detected across these 

developmental time points. The information generated from the proteome images was 

interrogated by creating three databases. One database contained only gel images from the 

adult virgin, pregnancy and mid-late involution stages called the developmental database; a 

second database included all 16 stages of mammary gland development, known as the 

Lactation/Involution database; and finally the TEB database was created which consisted 

of TEBs and adult virgin proteomes. The developmental database analysed the expression 

profiles of MCIs across development, and 81 MCIs were selected from it for mass 

spectrometry analysis. The second database was used to analyse the switch from lactation 

to involution, and 44 MCIs were selected from it for mass spectrometry analysis. A further 

44 MCIs were selected from the TEB database when comparing the TEBs to the adult 

virgin proteomes. A total of 169 MCIs were selected for mass spectrometry analysis from 

these databases. The total number of MCIs with protein identifications (annotations) was 

83; 29 annotations were identified from the developmental database, 30 from the 

Lactation/Involution database and 24 from the TEB database. Some of these MCIs had 

more than one protein annotation within the selected feature and were called clusters. 

These annotations were categorised into areas of their biological function which included 

metabolic enzymes and mitochondrial, signalling, serum, cytoskeletal, transport, milk, 

RNA processes, adipose associated, protein turnover proteins, and annotations which 

shared no common function to any of these were classed as 'other'.

Eight annotations were chosen from the developmental and Lactation/Involution databases 

for further work based on their biological interest, novelty to mammary gland development 

and quality of the peptide sequence that linked to the annotation. A further two MCIs with 

three annotations were pursued as they were hypothetical and unique proteins.

Analysis of the TEB annotations concluded that the majority of cytoskeletal proteins 

detected have previously been reported to be present in axonal growth cones. The 

proteomic data and the similarities of growth observed between TEBs and axonal growth 

cones such as directional growth and spatial patterning suggest that other proteins which 

are related to growth cone function could be important to TEBs.
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4.2 Introduction

4.2.1 Overview of Proteomics

Proteomics can broadly be defined as large-scale systematic analysis of protein expression 

levels in biological systems. Proteins are firstly separated according to their isoelectric 

focusing point and then by molecular \veight. The former is achieved using IPG strips and 

the latter by a polyacrylamide gel. The gels are subsequently stained with an appropriate 

dye that will highlight the distribution of the proteins. Sophisticated software scans the gel 

image to create a synthetic gel (Protein Expression Map (PEM)) and once all the images 

for a particular study have been scanned they are then curated. This is a process which 

landmarks the proteins according to their pi and Mr, and warps and aligns the PEM onto a 

single common geometry. Each protein feature detected is assigned a unique identifier 

number known as the molecular cluster index (MCI) number. This enables proteins in 

other PEMs to be compared. Once this process has been completed the images are 

interrogated to determine expression distributions of the features separated. The selected 

features of interest are subjected to tryptic proteolysis and the resulting peptide fragments 

are analysed by mass spectrometry in order to determine the protein identification of the 

feature of interest. Figure 4.1 overviews the steps taken during proteomics to achieve mass 

spectral data from a feature present on a 2-D gel image.

As previously mentioned in Chapter 3 this project was run in collaboration with Oxford 

GlycoSciences. Their proteomic unit ran the mammary gland samples on 2-D gels and 

curators then built a digital copy of the biological information held on each gel in order to 

create a database for differential analysis. To gain experience of these processes at Oxford 

GlycoSciences the manual selection of MCIs for mass spectrometry analysis, a method 

which was necessary for one of the databases created, was carried out by myself and a 

curator at Oxford GlycoSciences.

4.3 Results

4.3.1 Generation of the proteome databases

The objective of this study was to identify proteins that were differentially expressed 

during mammary gland development. This was achieved by analysing each individual MCI 

both quantitatively and qualitatively with Rosetta™ software.

As a reference, a protein feature is a protein spot on a 2-D gel and each feature is assigned 

an MCI. Once an MCI has been selected for mass spectrometry, and a protein 

identification assigned to it, this is known as a protein annotation. In some cases there was
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more than one annotation for an MCI and these were called clustering annotations. These 

clusters have arisen from proteins that have co-migrated during separation on the 2-D gel. 

Therefore, in these instances the identification of the protein with the expression profile of 

interest cannot be unambiguously determined without further analysis.

Triplicate samples of each of the 16 stages of mammary gland development and duplicate 

samples of the TEBs were run on 2-D gels. The proteome images produced were scanned 

and processed using MELANIE 111. Rosetta™ software enabled a protein expression 

database to be created from these data (as previously described in materials and methods), 

which could then be interrogated for differential analysis.

Figure 4.2 shows images of an annotated MCI. These images demonstrate the pattern 

effect of the features surrounding the feature of interest which were then used as a guide to 

determine whether the same feature was present in the other gels within the study. Not all 

of the features on a gel can readily be seen by eye.

AvlO Inv20
»

Perilipin • '  ^  \  ^

jy JÛ m. ^  ZD ü
Figure 4.2 2-D gel images of perilipin. Computer imaging software has identified all 
detectable features present (highlighted in red) on the gels. A yellow arrow indicates the 
annotation of interest. A yellow circle indicates the area where the annotation would have 
appeared if the feature had been present in that stage. The features which were used as a 
guide are identified with blue arrows.

The first database created was composed of gel images from the AvlO, pregnancy and 

early involution images. All of these stages passed Oxford GlycoSciences quality control 

criteria. This database was called the developmental database and was used to identify 

absolute changes of expression in pregnancy and involution. Differential analysis of the 16 

mammary gland proteome images was accomplished by creating a second database. This 

was necessary because the lactation and early involution gels did not pass the Oxford 

GlycoSciences quality control criteria for automated analysis, as large areas of the gels 

were swamped by milk proteins (Figure 4.3A and B). The milk proteins were identified as 

smears across the 2-D gels; however, certain areas of these gels were not affected by the 

milk proteins and these areas were analysed manually. The database created to include 

these gels was called the Lactation/Involution database and contained all 16 stages of 

development. This was created primarily to determine changes of expression from lactation
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(B)

Figure 4.3 2-D gel images of L7 versus Invl. These images are of representative samples 
containing high amounts of milk proteins which resulted in swamping certain areas of the 
gels. These areas have been highlighted by yellow ovals on the gel images (A) L7 (B) 
Invl.
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to involution which is an important process in mammary gland development, as it results in 

the commencement of apoptotic signalling to revert the gland back to its pre-pregnant 

state. All MCIs selected for mass spectrometry from this database were analysed manually 

to ensure that the changes were real. A third database was created called the TEB database 

in order to identify proteins which were specifically associated with the migration of TEBs. 

This was achieved by comparing the TEB proteome images to AvlO.

The three databases analysed a total of 169 MCIs by mass spectrometry and identified 83 

MCIs with a protein annotation, some of which were clustering proteins. Twenty nine 

MCIs were identified from the developmental database, thirty MCIs were determined in 

the Lactation/Involution database and 24 MCIs in the TEB database. Eight of the MCIs in 

the developmental database, 15 in the Lactation/Involution database and 10 in the TEB 

database had more than one protein annotation. Figure 4.4 summarises the steps taken to 

create these databases, the criteria used for selection for mass spectrometry analysis and 

archiving of the resultant annotations.

4.3.2 Identification and classification of annotations from the developmental database

The stages of development interrogated in the first database, known as the developmental 

database, were AvlO, P4.5, PS.5, P12.5, P14.5, and P17.5, Inv5, InvlO and Inv20. 7664 

MCIs were identified in this database and the average number of MCIs detected per sample 

was approximately 2000 features.

An image processing algorithm was set to the specifications of Oxford GlycoSciences to 

determine gel artefacts. Artefacts such as gel imperfections, features created from residual 

OGT stain and areas of poor resolution were identified and remained in the databases but 

were not included in further analyses. As a result less than half the number of MCIs 

remained for protein expression analysis. A list of MCIs was created which selected all 

features present in at least two out of the three triplicate gels. A feature was present if it 

was identified in at least 2/3 triplicate gels; a feature was absent if it was identified in none 

or 1/3 triplicate gels. This list was subjected to further assessment and only MCIs which 

were present exclusively in pregnancy and absent in involution, or exclusively present in 

involution and absent in pregnancy were chosen for mass spectrometry analysis. This was 

called a presence/absence assessment. To determine the protein identifications of the 

selected MCIs, mass spectrometry analysis (MALDI and Q-TOF instruments) was used. 

The peptide sequences revealed by mass spectrometry were matched to sequence databases 

in order to identify the corresponding protein annotation.
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Determination of differentially expressed proteins using proteomics

I
Sample preparation

i
Proteomics

Ana ysis

Automated selection-RosettaTM Manual selection-MELANIE III

i
Developmental database TEB database Lactation/Involution database

Selection criteria for mass spectrometry

i
Present in 3/3 replicate gels: 

Present in 2/3 replicate Present 2/2 replicate j e x p r e s s i o n  between L7
gels during pregnancy or gels in TEB and absent
involution in AvlO 2: Altered expression in lactation

3: Altered expression in involution

Mass spectrometry

i
Archived annotations

General function Clustered Known protein Unknown protein 
annotations annotations annotations

Figure 4.4 A flow diagram of the steps taken for determining differentially expressed 
protein annotations during mouse mammary gland development. This flow diagram 
can be used as a reference for the steps taken to determine a differential protein annotation 
from an extracted protein sample by proteomic analysis. Different criteria were set for 
three different databases interrogated. Once the annotations were identified and archived a 
small number were selected as candidate proteins which were subject to further 
investigation.
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A total of 81 MCIs were selected for protein identification by mass spectrometry analysis 

from the developmental database. Their selection was based on their expression profiles 

across development. The gel containing the most abundant amount of protein for the MCI 

of interest was cut for mass spectrometry identification. The most abundant feature was 

used, because the greater the abundance of a feature used for mass spectrometry, then the 

greater the chance of obtaining a protein identification.

These 81 MCIs revealed 29 MCIs with annotated information. Eight of these MCIs were 

clustered annotations. Table 4.1 (see end of Chapter) lists each protein annotation 

according to the expression stage in which it was found to be present across mammary 

gland development. The data were then sorted by grouping the proteins according to their 

general function, and therefore Table 4.1 orders the annotations according to their 

functional group rather than the order that they were discovered. This was also the case for 

the Lactation/Involution and TEB databases. This enabled the data to be interrogated in a 

manner that could relate the function of the protein to the role it may play during 

development of the mammary gland. Protein annotations from the same cluster have been 

labelled with the same cluster letter.

In all three databases generated, the majority of the annotations were identified either as 

proteins classified as metabolic enzymes/mitochondrial proteins (ME/MP), or structural 

cytoskeletal proteins. Twelve ME/MP annotations were determined in the developmental 

database. Three were present during pregnancy and eight during involution. Carbonic 

anhydrase was classed as a ME/MP, but an error occurred with this selection as it was 

present both in the first three stages of pregnancy and in involution. Most of the 

annotations that were classified as cytoskeletal proteins were cytokeratins and actin 

associated proteins. This was the case for all three databases. A total of nine annotations 

were classed as cytoskeletal proteins in the developmental database.

Annotations were also grouped as adipose associated, milk, protein turnover, RNA 

processes, serum, signalling and transport proteins. Proteins that did not share a common 

function with the other annotations were classed under 'other'. Most annotations that have 

been classed as 'other' in all three databases are hypothetical or unique proteins with the 

exception of those proteins that cannot be classed under the other categories defined.
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Predictably adipose associated and milk proteins were found to be expressed from these 

tissues. Perilipin was classed as an adipose associated protein and this was present in 

involution. A number of milk protein annotations were identified in the developmental and 

Lactation/Involution databases. During normal mammary development low levels of 

caseins are knovm to be present and there is also a huge surge in milk production during 

pregnancy and lactation. Four annotations were classified as milk proteins in the 

developmental database, all of which were casein proteins.

Eight protein annotations were classed as 'other' in the developmental database. One was a 

unique protein present in P I7.5 and one was a hypothetical protein present in Inv5. Three 

annotations were identified under RNA processes and were present during involution. 

Unsurprisingly serum proteins were detected despite the efforts made to remove them from 

the samples and to avoid areas of known serum albumin identifications on 2-D gels.

Many signalling proteins will be required in the regulation of all phases of development 

during pregnancy, lactation and involution. Therefore careful consideration was taken with 

this group of annotations as follow-up proteins. Four signalling protein annotations were 

identified in the developmental database. Contrapsin expressed during P14.5 and annexin 

A2 expressed in InvlO were of primary interest. The final annotation Ras-related protein 

Rabl 1 was classified as a transport protein, and was present during pregnancy.

The location of all of the annotations mentioned in this database are shown on a 2-D gel in 

Figure 4.5. This image highlights the wide area of coverage of the gel used for selection of 

MCIs for mass spectrometry.

Sequest and Oxford GlycoSciences internal programs were used to search for the 

identifications of the MCIs from the public (NCBI) and Incyte sequence databases. In 

particular nr, nr_prip, nr rat-mouse sequences from the NCBI database and Lifeseq from 

the Incyte database were used to interrogate the peptide data from mass spectrometry.

The remaining 52 MCIs out of 81 selected for mass spectrometry analysis from the 

developmental database provided no protein identifications, which may have been due to a 

number of possibilities, for example insufficient amounts of protein for mass spectrometry, 

or loss of gel segment containing the feature for mass spectrometry analysis. The greatest 

impact on a protein identification was the information present in the sequence databases 

searched. At the time of this study there was restricted sequence information in the
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available databases searched for matching the peptide sequences generated by mass 

spectrometry to a protein.

These sequence databases were searched twice and the second time round more 

annotations were identified in all three databases created. The second round of sequence 

searches also removed annotations and this data has not been shown. Although the second 

sequence search was performed in October 2002, this data was not released for a further 10 

months. Changes to the algorithms used by Sequest and Oxford GlycoSciences internal 

programs will have contributed to some of the altered annotations. Only annotations from 

the second round of searches have been listed in the tables provided for all three databases 

created (Tables 4.1, 4.2 and 4.3). The additional protein annotations identified from the 

second round of sequence database searches have been highlighted in these tables with a 

red asterisk, and those annotations that were altered by the second search have been 

highlighted by two asterisks. The Lactation/Involution and TEB databases were most 

affected by the second round of sequence database searches. Unfortunately at the time of 

the second sequence search the list of candidate proteins had been selected. Time 

limitations restricted the number of annotations selected for follow-up. Therefore, although 

some of the new protein annotations were potentially interesting, they were not selected as 

follow-ups from the developmental and Lactation/Involution databases.

4.3.3 Identification and classification of annotations from the Lactation/Involution 

database

The second database created concentrated on differential expression changes found during 

lactation and involution. This database was called the Lactation/Involution database. All 16 

stages of mammary development were included, and only MCIs that were present in all 

three triplicate gels or absent in all three triplicate gels were considered. This was because 

the number of MCIs selected for mass spectrometry was limited to 44, and for quality 

assurance purposes as some gels were smeared with milk proteins.

The selection criteria used for mass spectrometry analysis were as follows. Where altered 

expression was used, this required a fold change limit of at least two or greater for 

significance: 14 MCIs selected were present in L7 and absent in Invl; 7 MCIs were absent 

in L7 and present in Invl; 8 MCIs were selected from an altered expression level from L7 

to Invl; 7 MCIs were present during all of lactation and finally 8 MCIs had an increase in 

expression from Invl to Inv20. A total of 30 out of the 44 MCIs selected from the 

Lactation/Involution database had protein annotations which had been identified using
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mass spectrometry. Table 4.2 (see end of Chapter) lists these MCIs according to the 

general classification of the protein annotation. As with the developmental database, some 

of the MCIs were clusters (15 clusters) which had more than one protein identification. 

Again, as with the developmental database, not all selected MCIs provided an annotation.

Twenty of ME/MP annotations were identified in the Lactation/Involution database. The 

majority of these annotations were added after the second sequence search. Of the six 

cytoskeletal proteins identified in this database four were cytokeratin annotations. One 

annotation was classified as an adipose associated protein which increased in expression 

during involution. Four milk protein annotations were identified: two lactadherin 

annotations which increased in expression from L7 to Invl, and two casein proteins. The 

casein expression profiles in this database were expanded to integrate the adult virgin, 

pregnancy and involution stages. It was possible to do this for the Lactation/Involution 

database, since each MCI selected for mass spectrometry was manually checked to 

determine their authenticity. The expanded profile of gamma casein is shown in Figure 4.6 

and demonstrates the typical increase of expression during lactation and subsequent 

decrease during involution.
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Figure 4.6 Expression plot of gamma casein across mammary gland development. The
expression profile for gamma casein peaks during lactation. The values plotted are the 
percentage volume of the MCI on the 2-D gels; this is based on the breadth and depth of 
the feature in the gel. For selection purposes only MCIs which were present in 3/3 
triplicate gels from the Lactation/Involution database were chosen as there was a limitation 
of 44 MCIs for mass spectrometry. Nevertheless the rule still applies that for a feature to 
be present it is found in at least 2/3 triplicate gels and for a feature to be absent it has to be 
found in one or none of the triplicate gels.

Sixteen annotations were classified as 'other' proteins. Four of the five unique proteins 

were present in L7 and absent in Inv 1. Three of the four hypothetical proteins were 

present throughout lactation. Of particular interest in this category was DNA replication
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licensing factor mini-chromosome maintenance (MCM)3 (MCM3), a protein known to 

license DNA replication. This protein increased in expression from early to late involution.

Three protein turnover annotations were identified in the Lactation/Involution database. 

Two of these were proteasomes and both showed an increase in expression during 

involution. Only one annotation was classified under RNA processes (heterogeneous 

nuclear ribonucleoprotein D), and two MCIs were identified as serum proteins both of 

which were serum albumin. Five signalling protein annotations were identified; WD-repeat 

protein 1 (WDRl) was of particular interest showing an increase in expression from L7 to 

Invl.

The final classification to mention in this database was the transport proteins. Four 

annotations were classed as transport proteins and none of these were considered for 

further follow-up work.

The location of all of the annotations identified in the Lactation/Involution database is 

shown in Figure 4.7. Again a wide area of coverage of the gel was used for selection of 

MCIs for mass spectrometry.

4.3.4 Identification and classification of annotations from the TEB database

The TEB proteomes were repeated in duplicate and not triplicate as for the other samples 

because of the difficulty in achieving sufficient numbers of TEBs. The database created 

included the TEB and the AvlO images. The comparison of the TEBs to the AvlO images 

was chosen, as the AvlO samples represent that of a resting virgin gland whereas the TEBs 

are involved in proliferation, differentiation and apoptotic processes. Since only duplicate 

samples of the TEBs were run, both gels had to contain the MCI for it to be counted as 

being present. A total of 108 MCIs were identified as being present in TEBs and absent in 

AvlO. Of these, 44 were selected for mass spectrometry analysis. Twenty four MCIs 

provided a protein identification. Ten of these MCIs were clusters and the remaining 14 

were single protein annotations. Table 4.3 (see end of Chapter) lists all the proteins 

identified in the order of their general fimction.

The positions of these annotations are shown on a 2-D gel image (see Figure 4.8). Based 

on the function of the annotations 17 were identified as cytoskeletal proteins, some of 

which were duplicated, for example keratin 2a (48442 and 49394). This group of proteins 

were mainly cytokeratin proteins (1, 2a, 8, 9, 10 and 19) and actin associated proteins
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(actin alpha 1, gelsolin, tubulin, tropomyosin, cofilin and myosin). As with all the 

databases, quite a number of annotations were identified as being involved in energy 

production. A total of eight annotations were classified as ME/MP. Nine annotations were 

classed as 'other'. Two of the annotations in this group were identified as being collagenase 

which are most likely to be contaminants from the digestion procedure. Three functional 

categories remain in this group, namely protein turnover, RNA processes and signalling 

proteins. Calumenin, proteasome subunit beta type 10 and 'similar to' chaperonin 

containing t complex polypeptide 1 (TCPl) were grouped as protein turnover annotations. 

The latter annotation was also identified in the Lactation/Involution database. Both the pi 

and Mr were altered which suggests that the protein has different isoforms (Figures 4.7 and 

4.8). An increase in weight suggests a glycosylation change and a shift in pi indicates a 

change in the phosphorylation state of the protein.

Two annotations were classed under RNA processes and one was classed as a signalling 

protein (annexin A2) which had also been determined in the developmental database. On 

comparing annexin A2 from the two databases they both shared the same Mr but their 

isoelectric focusing points were different. Annexin A2 from the developmental database 

was identified in the basic end of the gel, whereas in the TEB database it was more neutral 

(pi 7.48). This indicates that annexin A2 has different isoforms and the shift in location of 

annexin A2 on the gel is probably due to changes in the state of phosphorylation.

4.3.5 Selection criteria for candidate protein annotations

The selection criteria used at this stage of the project for candidate follow-up proteins was 

based on the biological interest of the annotation in terms of its expression profile over 

mammary gland development, the novelty of the protein to mammary gland development, 

relevance to cancer, the quality of mass spectrometry sequence data and the resources and 

materials available for that protein. Annotations which consistently appeared in other 

proteomic projects at Oxford GlycoSciences such as ME/MP were not selected for further 

work. This approach was taken in order to maximise the chances of selecting a potentially 

important annotation in mammary gland development.

The quality of the sequences was rated as good hits only if the annotations had either 

tandem sequence data from Sequest and/or Oxford GlycoSciences internal programs. Mass 

matches from MALDI mass spectrometry alone without tandem sequence data were not 

considered of sufficient quality to support confidence in the annotation determined. The 

algorithms set with these programs in determining a protein annotation have different
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thresholds. The algorithm used by the Oxford GlycoSciences internal program is more 

stringent in determining a protein annotation (details not available) compared to Sequest. 

Therefore annotations with an Oxford GlycoSciences internal tandem match are considered 

with greater confidence. Eight annotations from the developmental and 

Lactation/Involution databases were selected for further work based on reasons outlined in 

the discussion of this Chapter, and a further three were chosen as they had been identified 

as unique or hypothetical proteins. Table 4.4 summarises the annotations chosen for further 

analysis. All of these annotations had at least a Sequest and/or Oxford GlycoSciences 

internal tandem peptide sequence alignment (Table 4.5).

Table 4.4 Candidate selection from the developmental and Lactation/Involution 

databases

MCI Annotation Expression General Function Cluster Sequence Quality

49502 Contrapsin Pregnancy Serum protein Yes MALDI/Tandem Sequest

49502 Lumican Pregnancy Other Yes MALDI/Tandem Sequest

47015 Rabl la/b Pregnancy Transport protein No MALDI/Tandem Sequest

46776 Unique Pregnancy Other No Tandem Sequest

45950 WDRl L7/Invl Signalling protein No MALDI/Tandem Sequest

48838 Unique/
Hypothetical L7/Invl Other Yes Tandem Sequest no mass match

48474 Annexin A2 Involution Signalling protein Yes MALDI/Tandem OGS

46330 MCM3 Involution Other Yes Tandem Sequest no mass match

46036 Perilipin Involution Adipose associated No Tandem OGS

49021 PTRF Involution RNA processes No MALDI/Tandem OGS

PTRF (Polymerase I and transcript release factor); OGS (Oxford GlycoSciences)

4.4 Discussion
The discussion that follows first considers each of the annotations identified in the 

developmental and Lactation/Involution databases in relation to their functional attributes 

and then gives the reasons for including or rejecting them for future analysis. The TEB 

annotations are then discussed separately in section 4.4.11.

Although some proteins have been selected because of their association with breast cancer, 

the other area of focus of this project was to determine novel proteins regulating mammary 

gland development. Therefore not every protein that has been shown to be associated with 

breast cancer cell lines or tissue samples has been selected as a follow-up. Some of the 

protein annotations described in this discussion have similar functions but, as a limited 

number of annotations were selected for follow-up, not all could be chosen. In these

103



_1
H
LU
CL

c a
u hU
3 00
O" <1

w
LU
>

E
0)■ac S
Cd

H

E
%

I
o
s
J ,
$
3
O"

¥
0>

■3
C
w
H

QI

o :

g
g
C/D
S
C/D
Q
a
C/D

îi I
5

i

I
U

■S

X)

§
I

1 12 ex

if
<u Cd
I S

3 :  ^

Cd X

II

l î
rJ O

"O
(Uja
(j
c«
E
CQ
■a
(U
u
a
o>
s
Œ
(U
W)
<u

"O
‘■S
a

eu
l/D
Tf

0 ;
I f i
o  H Q

II< J  >

os
u
u
w

a
LU

us

ùO Q0 a

1
2 | ï
00 < >
I-J oc C/D

G
H  

O
C/D 
- J  
Q  
<  
aUJ

Q  W

u u
Q
X
Û

aI
mJ
>

>

us
C/D
S  

1 2 OtS
> "  y2Ë
S i
LL 00

— r\ | m  Tf

US
C/D
u  

Ü
g
ÔO
a  >
<

2§<I
LU 
U
O'

I I
—« <N r<D Tf in vO

W

>
PU

s
II
B> <

SsE
O h>
X

II
il

us
00
Q  oS
LU en

il t: CL

(N<

Î< i
U

e
3

hJ

■S
Q.

ë :

os
Q

Ig î
. 3|8

% -g
<u cdl |
X w
H  C/D

i5
T f
oo
T f

ON
T f

O
T f

\o
moo
T^

<N
OOn
T f

o o\vnTf

104



circumstances the annotation with the best sequence quality was favoured. This also 

created a list of candidate proteins with a diverse range of functions.

4.4.1 Identification of milk proteins

A number of the proteins identified were associated with milk and were grouped as milk 

proteins. All except for one were caseins. Caseins comprise a group of acidic proline-rich 

phosphoproteins that incorporate and provide a rich source of calcium in milk. Their 

expression is regulated by hormones at both the transcriptional and post-transcriptional 

level (Schmitt-Ney et al, 1991). Low levels of caseins are expressed in the virgin mouse, 

but their synthesis increases dramatically during pregnancy. Progesterone represses casein 

production in pregnancy. However, during lactation the removal of progesterone together 

with the induction of prolactin causes the levels of these milk proteins to peak. Cessation 

of the suckling stimulus caused by the removal of the pups from the lactating mother leads 

to a decline in the circulating levels of prolactin and hence a decrease in casein levels.

It was thought that the casein data could be used as a good positive control to validate the 

proteomic data, as their expression plots across mammary development were already 

known. Therefore none were selected for follow-up work. However as the casein data were 

examined in greater detail several discrepancies were found. The two beta caseins 

identified in the developmental database were present only in late involution and not in 

pregnancy. The clustered annotation of alpha casein in the developmental database showed 

expression only in PI 7.5. It would have been helpful if these MCIs could have included the 

lactation and early involution samples to determine their overall expression profile across 

development. However, without locating the MCI within these additional gel images in 

lactation and involution it would not be possible to determine whether the MCI resided in 

the smeared regions of the gel. Additionally it is possible that alpha casein was not the 

correct annotation for MCI 51886 as it was a cluster protein. After expanding the data for 

the alpha casein (48449) found in the Lactation/Involution database, it did not resemble the 

expected profile across mammary gland development.

Confidence grew with the data when plotting the graph for gamma casein 47001 (Figure 

4.6). This showed the predicted expression profile for this protein across mammary gland 

development. Gamma casein was also found in the developmental database during the later 

stage of pregnancy.
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In summary, not all the caseins showed the expected expression profiles. In some of the 

cases in the developmental database, it would have been helpful to have had the expression 

data across all of development. In some of the cases found in the Lactation/Involution 

database, the expanded data did not reveal the expected expression profile. One possible 

explanation for these unexpected expression profiles is that proteomics has detected 

different isoforms of these proteins which have not previously been identified.

Lactadherin, one of the major glycoproteins, was detected twice in the Lactation/Involution 

database. Lactadherin is a component of the human milk fat globule (Ceriani et al., 1983; 

Peterson et al, 1990). It is expressed in the epithelial cells during lactation but undergoes a 

10-20 fold increase in expression during involution (Collins et al, 1997). The expression 

of this annotation determined by proteomics further supported the validity of this technique 

as it confirmed previously reported work. This annotation was not selected for further 

interrogation as this protein was already well known in mammary gland development.

4.4.2 Identification of metabolic enzymes and mitochondrial proteins (ME/MP)

The mammary gland is a complex tissue to study in terms of the regulatory processes that 

take place over its development. It was therefore not surprising that a large number of the 

proteins identified were associated with cellular metabolism. These have been listed as 

ME/MP. The expression of these enzymes will have fulfilled the high energy requirements 

of the mammary cells in order to perform these developmental processes. As they are 

usually expressed at high levels, the probability of detecting these proteins by mass 

spectrometry analysis was increased. Thus, to minimise their selection for mass 

spectrometry identification, the expression data of this project was propagated against 

other proteomic projects. Propagation is the comparison of different project data. Protein 

annotations from previous studies that have for example been identified in cell respiration 

can be avoided for mass spectrometry selection. This technique can rule out proteins which 

are not regarded as interesting follow-ups. As these cellular metabolic enzymes were not 

priority, no further investigations were made with these annotations.

4.4.3 Identification of cytoskeletal proteins

The cytoskeletal proteins consisted of cytokeratins, actin, gelsolin and tubulin. Keratins are 

structural proteins which are classified as two families: type I (acidic) and type II (basic). 

One member of each class forms a heterodimer which is required for forming a mature 

keratin intermediate filament. Keratins were detected in both databases and for a few of 

these proteins the keratin pair was annotated, for example keratin 1 and 10. They were also
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expressed during the same stages of development when expanding the information from 

the Lactation/Involution database to include all of the time points. However, it was decided 

that the keratin data from the two databases would not be taken any further. This was 

mainly because of the common problem of contamination that arises with proteomics due 

to the shedding of keratins from the mouse epidermis or even human. Keratin 

contamination was kept to the minimum during sample preparation and gel electrophoresis, 

but it was never completely absent.

F-actin capping protein beta subunit (CapZ beta) was found to be present in L7 and absent 

in Invl. Capping proteins are major determinants of the cytoskeleton. They assemble, but 

do not sever, actin filaments and stabilise them by binding to their ends and thereby 

blocking the exchange of subunits at these ends (Provost et al, 2001; Rohrig et al, 1995). 

If this protein had been identified earlier it could have been investigated further, as it is 

known that structural changes do begin to take place early in involution. It seems that the 

start of structural tissue remodelling (involution) caused the structural protein F-actin to be 

inactivated.

Another capping protein detected was 'similar to' gelsolin. It was assumed that this protein 

performed the same functions as gelsolin. This actin-binding severing protein has a major 

role in the reorganisation and function of the actin cytoskeleton. The deletion of this gene 

results in failure of ductal elongation at puberty and a lack of terminal branching after the 

epithelium has filled the fat pad (Crowley et al, 2000). Gelsolin was not selected for 

further research as a considerable amount of work has been invested in mammary gland 

development.

Tubulin alpha chain was found to increase in expression from L7 to Invl. Tubulin is a 

constituent of the cytoskeleton and is the major component of the microtubules. Changes in 

the cytoskeleton during mammary gland development were not forefront for investigation, 

and therefore tubulin was not studied any further.

4.4.4 Identification of signalling proteins

Signalling proteins appeared in both databases. The epsI5 homology (EH) domain 

containing protein 2 (EHD2) was expressed from early to mid pregnancy. These proteins 

are often associated with the regulation of intracellular protein transport/sorting membrane 

trafficking (Salcini et al, 1997) as well as with endocytosis (Carbone et al, 1997; Mayer, 

1999). Their apparent function in signal transduction downstream of the receptor tyrosine
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kinases indicates that these proteins may participate in a variety of signalling cascades. 

Although EHD2 is potentially interesting to mammary development, it was not selected for 

further investigations because of poor quality sequence data.

The clustering MCI identifying apoptosis stimulating protein of p53 (ASPP)l belongs to 

the ASPP family of proteins interact which with and enhance p53 induced apoptosis. The 

inhibition of endogenous ASPP causes the suppression of the apoptotic function of 

endogenous p53 as a result of an apoptotic stimulus. ASPP is frequently down-regulated in 

human breast cancers that express wild-type p53 (Samuels-Lev et al, 2001). Despite 

ASPPTs novelty to mammary gland development, it was not chosen as a candidate 

annotation because of poor quality sequence data.

Annexin A2, another clustering protein, was discovered in the developmental database. 

Annexins are a family of proteins that are able to bind with membrane phospholipids in a 

calcium dependent manner (Crumpton and Dedman, 1990; Geisow and Walker, 1986). 

Annexin A2 has been found to be present in low levels across pregnancy and lactation 

(Handel et al, 1991), and is increased in several human cancers (Schwartz-Albiez et ai, 

1993). As proteomics had found annexin A2 to be present in late involution it was 

interesting to confirm this pattern of expression. The role of annexin A2 in breast cancer 

studies was also an important consideration in the decision to follow it up as a key protein.

WDRl was identified in the Lactation/Involution database. WD repeat proteins are 

important in a variety of cellular processes such as cytoskeletal organisation, signal 

transduction, transcriptional regulation, vesicular trafficking and cell division (Neer et al, 

1994; Smith et al, 1999; Neer et al., 2000). This appeared to be another interesting protein 

to work with because of its role as an actin severing binding protein. It is known that there 

is much tissue remodelling taking place at the start of involution and therefore it seemed 

plausible that this protein could have an important role with the onset of apoptosis.

Elongation factor 2 (EEF2) was expressed throughout lactation, although the identification 

of this MCI was not absolute as it was a cluster. Protein synthesis consumes a large amount 

of metabolic energy of mammalian cells which is mainly due to peptide chain elongation. 

EEF2 mediates the translocation step of elongation, the rate of which can be modulated by 

the phosphorylation of EEF2 (Merrick and Nyborg, 2000). The function of this protein 

with regard to mammary gland development was not particularly intriguing, as during 

lactation there is much energy consumption due to the vast production of milk proteins.

108



Contrapsin was a clustering protein. Contrapsin is a serine protease inhibitor and belongs 

to the serpin superfamily. Serpins control many physiological functions including blood 

coagulation, fibrinolysis and aspects of the inflammatory response. Luminal epithelial cells 

are known to be involved in the phagocytosis of neighbouring apoptotic epithelial cells 

during involution which is probably where these immune response genes are expressed 

(Stein et al, 2004). Although contrapsin is expressed during pregnancy which may be 

caused by an immune response to the embryo, it has not been linked to mammary gland or 

breast development. Contrapsin was therefore selected as a candidate protein.

Another protein that has been classified as a signalling protein is disabled homolog 2 

(D0C2). Expression of D0C2 has been demonstrated in the developing rat brain, 

suggesting a role in proliferating cells and this could therefore also imply a possible role in 

mammary gland development (Korteweg et al, 2000). Unfortunately this annotation was 

added to the database at a later date when candidate proteins had been chosen.

The signalling lymphocytic activation molecule (SLAM) detected throughout lactation is a 

protein that is involved in T-cell stimulation (Cocks et al, 1995). Expanding its expression 

profile across all of development showed that it increased at the onset of involution. 

Although this was a clustering protein, an infiltration of immune cells into the mammary 

gland has been reported in many animals during involution, including mice (Stein et al, 

2004). This evidence supports the possibility of the MCI being this annotation. SLAM was 

not investigated because of its known function in mammary gland development.

The last signalling protein to be discussed is caspase-like apoptosis regulatory protein 

(CLARP). This protein had been selected for mass spectrometry because it increased in 

expression during involution. It is an apoptosis regulator protein that could function as a 

vital link between cell survival and cell death pathways (Han et al, 1997). Although this 

was a clustering protein, it would have been an important protein to select for further 

investigations. However, this was another late edition to the proteomics data.

4.4.5 Identification of transport proteins

The Ras-related protein Rabl la/b was identified as a single annotation but the peptide 

sequence which linked the feature to Rabll could not distinguish between Rabl la or b. 

Rabl la modulates transport through recycling endosomes (Ullrich et al, 1996) and 

Rabl lb is essential for the transport of internalised transferrin (Schlierf et al, 2000).
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Rabl 1 was chosen as a priority follow-up because there had been no previous link of this 

protein to mammary or breast biology. Rabl I's expression during pregnancy (P12.5-P17.5) 

and its link to vesicle transport suggest that Rabl 1 plays a role in milk secretion.

The adapter-related protein complex 3 mu 1 subunit (Mu-adaptin 3A) was identified later 

in the project. This protein facilitates the budding of vesicles from the golgi membrane and 

may be involved in the trafficking to lysosomes (Dell' Angelica et al, 1999). Earlier 

knowledge of the protein would have been helpful in deciding whether to investigate it 

further.

'Similar to' vesicle amine transport protein 1 ('similar to' VAT-1) was classed as a transport 

protein. VAT-1 is a major component of synaptic vesicles that regulate neurotransmitters 

in nerve terminals (Matteoli and De Camilli, 1991). This protein was not taken forward for 

more research because of its late submission to the project, despite the fact that VAT-1 had 

been localised to a region encompassing the breast cancer gene BRCAl (Friedman et al,

1995). The detection of'similar to' VATl could also imply a different role to VATl.

ADP ribosylation factors (ARFs) are part of the Ras GTP-binding proteins and their 

activation is controlled by GTP-ase activating proteins (GAP) (Rothman, 1994). Protein 

tyrosine kinase 2 (PYK)-associated protein p (PAPP) contains ARF-GAP domains. 

Despite the obvious link with Rabll, it was not selected because of its late submission to 

the project. It appears that vesicle transport plays a part in mammary gland development, 

as five annotations have been linked to this role.

The final protein to discuss under the classification of transport proteins is sodium 

bicarbonate cotransporter 3/2b (NCB3/NCB2b). This protein plays an important role in 

transepithelial transport and pH regulation (Jacobson, 1981; Boron and Boulpaep, 1983). 

This protein was not taken through to the next stage of the project because of prioritisation.

4.4.6 Identification of protein turnover proteins

Only a few proteins were classed as having a role in protein turnover, one of which was 

'similar to' chaperonin containing TCPl. Chaperonin containing TCPl proteins are 

important in the folding of newly translated cytoskeletal proteins (Gao et al, 1993; 1992). 

Assuming that the 'similar to' chaperonin containing TCPl functions in a closely related 

manner to TCPl, one explanation for its absence during involution could be due to the 

rapid loss of epithelial cells via apoptosis.
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Two proteasome subunit alpha proteins were detected (subunits 1 and 7). Proteasomes 

appear to be involved in the ATP/ubiquitin-dependent non-lysosomal proteolytic pathway 

(Orlowski, 1990). These proteins were not selected for further work, since their functional 

relevance in mammary gland development was not clear.

4.4.7 Identification of RNA processing proteins

A few proteins have been classed as RNA processing proteins, one of which was the 

heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1). These proteins appear to 

influence pre-mRNA processing, mRNA processing and transport (Kamma et al, 1999; 

Matunis et al, 1994). Reports suggest that it may be involved in growth regulation and 

cancer development (Zhou et al, 1996). This annotation was not selected further as it had 

poor sequence data.

PTRF was a single cluster identification. It is involved in the transcription termination of 

the RNA polymerase I reaction (Jansa et al, 1998). Due to the unique expression profile of 

this protein, its novel biological interest and good sequence data from mass spectrometry, 

this protein was selected for further work.

Proteomics identified polyadenylate-binding protein. These proteins are required for 

poly (A) shortening and translation initiation (Deo et al, 1999). However, the peptide 

sequence matching to this protein could not distinguish between protein 1 and 2. For this 

reason and because of the weak peptide sequence data, this protein was not investigated.

The last protein to discuss in this category is heterogenous nuclear ribonucleoprotein D 

(hnRNP DO). Its function is unknown but it has been implicated in the regulation of RNA 

instability (Kiledjian et al, 1997). Again this protein was not selected for further work 

because other annotations had better sequence data from mass spectrometry.

4.4.8 Identification of proteins adipose associated proteins

Two proteins were classed as adipose associated proteins, one of which was perilipin. 

Perilipins are proteins which are associated with the surface of lipid storage droplets. 

Although they are expressed in adipocytes during lactation (Blanchette-Mackie et al, 

1995, Neville et al, 1998), their profile is unknown throughout mammary development. 

Therefore this protein was taken to the next stage of the project.
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The other protein in this category was fatty acid binding protein (adipocyte). Its function is 

to transport lipids in adipocytes (Matarese and Bemlohr, 1988). This protein showed an 

increase in expression during involution which is probably due to replenishing adipocytes. 

Based on this hypothesis it was decided not to select this protein as a follow-up.

4.4.9 Identification of proteins classed as 'other*

The final classification of proteins made was those whose function did not come under any 

other classes named and these were called 'other' proteins. Quite a number of hypothetical 

and unique proteins were determined in the two databases and these were classed as 'other'. 

These were of significant interest because of the novelty to mammary gland development 

and to scientific literature. Therefore these were selected for further research, although it 

should be noted that because of time constraints research was focused on the hypothetical 

and unique proteins detected earlier in the project and not those detected from the second 

sequence database search.

The peptide sequences that had been linked to part of a chromosome, RJKEN cDNA 

sequences and ensembl contigs were not taken forward for more detailed analysis, as more 

information about the sequences was required and the majority had been determined in the 

second round of sequence database searches.

Ubiquitin conjugating enzyme E2M was another protein classed as 'other'. This protein 

catalyses the attachment of ubiquitin-like protein NEDD8 to other proteins (Osaka et ah, 

1998). Very little information and resources were available for this protein. These factors 

contributed to the decision not to follow-up this protein further.

Lumican was a clustering protein which was detected in the developmental database. 

Lumican is a small leucine-rich proteoglycan. Lumican may be involved in the 

maintenance of tissue stromal structure as it can organise collagen fibrils (Scott, 1992;

1996). However it was the association of this protein with breast tissue, plus the over 

expression of lumican in invasive carcinomas which highlighted it for further investigation.

DNA ligase IV was expressed only in Inv20. A breast cancer case control study revealed 

that a polymorphism in DNA IV ligase was associated with a decrease in breast cancer risk 

(Kuschel et al, 2002). Despite this link with breast cancer, DNA IV ligase was not chosen 

as a protein for further research as other proteins had taken precedence.
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DNA replication licensing factor MCM3 (MCM3) ensures that DNA replication occurs 

only once per cell cycle (reviewed by Stillman, 1996). MCM3 consistently labels a higher 

proportion of tumour cells compared to conventional proliferation markers (Stoeber et al, 

2001; 1999), and may in fact be detecting cells with proliferative potential. MCM3 was 

selected as a candidate protein because, its expression during normal mammary 

development had not been previously reported. Interestingly MCM3 had been detected 

during involution in the mammary gland and reports have shown MCM3 to be cleaved 

during apoptosis which is thought to prevent continuation of mitotic events (Schwab et al, 

1998).

4.4.10 Artefacts of contamination

The serum albumin and immunoglobulin annotations are most certainly artefacts of serum 

contamination. Although serum albumin appears to be differentially expressed, experience 

at Oxford GlycoSciences has found that serum albumin annotations are often not the 

correct annotations for the expression profile in question. These proteins are able to adhere 

to gel surfaces and gel plates, and therefore they can contaminate gel segments cut for 

mass spectrometry. As serum albumin produces good spectral data, often the correct 

protein is not detected.

4.4.11 TEB protein annotations

The TEB database was based on present absent calls. Differential expression was not used 

as a method of selection, as this change in expression may have only arisen because the 

TEB sample is a concentrated epithelial cell population whereas the adult virgin sample is 

a mixture of epithelial and stromal cells. If a sufficient collection of purified ducts had 

been possible at the time the start of this part of the study, it would have been preferable to 

compare TEB and ducts rather than the whole mammary gland. This would have identified 

proteins that were specific to TEBs. Some of the proteins identified in the TEBs were 

pursued and the data were published by Morris and colleagues (Morris et al, 2004). 

However, the main focus of this thesis concentrated on proteins expressed in pregnancy 

and the lactation involution switch.

The majority of the 24 annotations identified were either ME/MP or structural proteins. 

Most of the cytoskeletal annotations from the TEB database have been associated with 

axonal growth cones, namely actin alpha 1, gelsolin, cofilin, myosin IIB, myosin light 

chain 1, tropomyosin alpha and tubulin alpha. The family of proteins known as 

tropomyosins are components of the actin based cytoskeleton which stabilise actin
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microfilaments (Broschat et al, 1989; Kojima et al, 1994). Actin alpha 1 and two of its 

binding proteins, gelsolin and cofilin, were identified in this database. Actin binding 

proteins and gelsolin are important in growth cones as they are actin severing binding and 

depolymerising proteins (Lu et al, 1997). Cofilin is also an actin severing protein; it 

enables actin filaments to elongate (Chan et al, 2000; Zebda et al, 2000).

The interaction of actin and myosin filaments enables forward movement of growth cones. 

Traction force is generated from peripheral actin binding to a substrate and studies have 

shown that myosin IIB is required for traction force (Brown and Bridgman, 2003; 

Bridgman, 2002; Bridgman et al, 2001). Myosin light chain was detected in the TEB 

database and is known to phosphorylate myosin II (Schmidt et al, 2002). The cytoskeletal 

microtubule alpha tubulin was also detected and is important in growth cone turning 

(Jockusch and Jockusch, 1981; Miller et al, 1987; Tanaka and Kirschner, 1991). The 

annexin A2 annotation was also identified in the developmental database. It has been 

shown to be involved in changes of the cytoskeletal structure (Ma et al, 1994).

Six keratins were identified in this database, four of which were expressed as pairs (keratin 

1, 2a, 9 and 10). These keratins are epidermal specific proteins. Keratins have previously 

been reported to be preferentially expressed in TEBs (Grimm et al, 2002; Rosen, 2004 in 

preparation). However, this data must be approached cautiously as it may be a result of 

contamination.

4.4.12 Selection of candidate proteins annotations from the developmental and 

Lactation/Involution databases

The following annotations were selected for further investigations: annexin A2, contrapsin, 

lumican, MCM3, perilipin, PTRF, Rabl la/b, WDRl and three annotations from two MCIs 

(46776 and 48838) which were unique/hypothetical annotations.

Chapter 5 presents data accumulated to confirm the proteomics results. The techniques 

used to achieve this were western blotting, IHC, TaqMan and microarray analysis.
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Chapter 5 

Candidate protein annotations
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5.1 Summary

Eleven annotations were identified in the previous Chapter as candidate proteins for further 

analysis. This Chapter describes the criteria used for further selection and the evidence 

produced to make these decisions. Several different techniques were used in an attempt to 

validate the proteomic data: TaqMan, western blotting, microarray and IHC analyses. In 

some cases the proteomic data was not confirmed by the follow-up experiments conducted 

in this Chapter. Reasons for this have been outlined throughout the Chapter.

Two proteins, MCM3 and annexin A2, were investigated in more detail in this Chapter 

compared to the other candidate proteins selected for follow-up. Further investigations of 

MCM3 using TaqMan and western blot analyses revealed that its expression peaked during 

pregnancy. The results obtained by IHC for MCM3 and MCM2 during normal mammary 

gland development were compared to a known proliferation marker Ki67. Both MCM3 

and MCM2 antibodies stained a greater proportion of epithelial cells than the Ki67 

antibody. A possible explanation for this could be that MCM proteins are expressed in 

cells which have proliferative potential, whilst Ki67 stains nuclei in all stages of the cycle 

other than Gq.

The additional results obtained for annexin A2 in normal mammary gland development 

showed that its expression peaked during pregnancy and involution. This was confirmed 

by TaqMan, microarray and western blot analyses. The results obtained by IHC revealed 

that the annexin A2 antibody stained the stroma more strongly than the myoepithelial and 

luminal epithelial cells. The altered levels of staining found in the different cell types has 

not previously been reported. Annexin A2 expression was investigated in normal breast 

tissue and breast carcinomas and revealed that annexin A2 is up-regulated in breast 

tumours.
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5.2 Introduction

5.2.1 Candidate protein investigations

Fifty nine annotations were identified in the development and Lactation/Involution 

databases. However, only a small proportion of these could plausibly be followed-up 

within the duration of the project. Eleven proteins were selected as candidate proteins and 

the specific reasons for their selection have been stated in Chapter 4. Functional candidate 

proteins were selected based on their sequence quality, expression profile and biological 

interest. The priority of this Chapter was to confirm the proteomic expression data and this 

was attempted using a variety of techniques. TaqMan analysis was used to determine the 

mRNA expression of the genes of interest to try to identify the correct protein annotation 

from a clustered MCI; western blot analysis was used to confirm the protein expression 

profile across development (where reagents were available); and where necessary the 

mouse mammary gland microarray expression profile was compared to both the TaqMan 

expression data and protein expression profiles obtained for the selected candidate 

proteins. IHC was used for tissue localisation purposes where antibodies were available.

5.2.2 Clustering annotations

2-D proteomics can resolve simultaneously thousands of proteins, including their 

modifications. The most appropriate method for verifying the proteomics data is to use 

western blot analysis with specific antibodies. However, antibodies are not always 

available for analysing the protein annotations of interest. In this situation, techniques that 

analyse mRNA expression can be used to correlate general trends in proteomic data with 

mRNA trends. However, there are limitations to the conclusions that can be drawn when 

comparing mRNA levels with protein levels.

One such technique which analyses mRNA levels is TaqMan, The advantage of using 

TaqMan analysis is that the mRNA expression profiles of all the annotations within a 

cluster can be determined quantitatively. These expression profiles can then be used and 

compared to the proteomic profile of the clustered MCI in order to eliminate the most 

unlikely annotation. However, a limitation with TaqMan analysis is that potential PTMs 

are not considered at the mRNA level, and such PTMs may be functionally important in 

different stages of mammary gland development. Additionally, at the protein level, the 

antibodies that are available for certain proteins may not be specific enough to distinguish 

between different isoforms resolved by 2-D gel electrophoresis, and so can only detect 

total protein levels. Unfortunately, at present, the isoform-specific resources required to 

support the complex data produced by proteomics are rarely available. Figure 5.1
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demonstrates the multiple isoforms that can result from alternative splicing of a single 

gene, and the need for specific antibodies for the detection of each individual isoform.

Eleven candidate proteins were selected from Chapter 4 and, of these, six were in clusters 

that had more than one protein identification. All candidate clustered annotations were 

analysed by TaqMan across mammary gland development in order to determine the correct 

identity of the clustered MCIs. This was attempted by comparing the TaqMan expression 

profiles with the appropriate proteomic profiles. The TaqMan expression profiles, which 

were most similar to the MCI expression profile, were considered the most likely 

identification.

5.2.3 Clustering proteins and post-translational modifications

When studying a complex cellular heterogeneous protein extract, apparent gains or losses 

of a feature at a particular time point can be due to a number of factors. One explanation is 

a change in cellular composition where one cell type either individually changes in 

expression of a particular protein, or there is a large change in the number of cells of a 

specific cell type each producing the same amount of protein. The latter is an unlikely 

explanation where present/absent calls are determined at very close time points that have 

no observable morphological change in cellularity, for example L7 and Invl.

The second factor is an alteration of the location of a protein on a 2-D gel as a result of 

PTMs. The state of a protein may change during different time points resulting in a 

presence call at one time point and an absence in the next or visa versa.

5.2.4 2-D gel electrophoresis and post-translational modifications

Phosphorylation is an important PTM process in cell regulation and metabolism. It is 

estimated that more than a third of proteins are modified by phosphorylation in mammalian 

cells. Serine phosphorylation represents about 90% of cellular phosphorylation, threonine 

about 10% and an estimated 0.1% tyrosine phosphorylation (Adamczyk et al, 2001). The 

level of phosphorylation is modulated by phosphatases (enzymes that catalyse the removal 

of phosphate) and kinases (enzymes that catalyse phosphorylation). The resolution 

achieved by 2-D gel electrophoresis is often sufficient to separate protein modification 

states directly. When a protein becomes phosphorylated, the charge is altered causing a 

shift of the protein on the gel towards the basic end. This change is often shown on a 2-D 

gel by a horizontal trail of protein features. Phosphorylated proteins and their non- 

phosphorylated counterparts migrate closely together; however, the phosphorylated form
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usually migrates at a slightly slower rate. To identify conclusively an isolated 

phosphoprotein, the protein can be detected by autoradiography, phosphoimaging or 

western blotting after radio-labelling with Investigating protein modifications is more 

difficult than determining the identity of a protein. These studies require more material, as 

phosphorylated proteins are present in small amounts in cells. Also determining protein 

modifications by mass spectrometry requires all the peptides that do not have the expected 

mass to be analysed further.

5.2.5 Overview of candidate protein annotations

5.2.5.1 Perilipin

Perilipin appears to be localised to the periphery of lipid storage droplets in adipocytes 

(white and brown) and cholesterol ester-rich steroidogenic cells (Greenberg et al, 1993; 

Servetnick et al., 1995; Blanchette-Mackie et al, 1995). There are four protein isoforms of 

perilipin A, B, C and D, (Londos et al, 1995; 1999). It is hypothesised that perilipins 

function as regulators of lipolysis (Londos et al, 1999), a process mediated by HSL in 

adipocytes. Protein kinase A (PKA) phosphorylates perilipin and HSL (Anthonsen et al, 

1998), and the increase of PKA causes the lipase to change from the cytosol to the lipid 

droplet surface (Egan et al, 1992, Brasaemle et al, 2000). Phosphorylated perilipin may 

act as a docking protein to HSL or it may alter the surface of the lipid droplet, thus 

allowing lipase translocation (Londos et al, 1995). The data available suggests that non- 

phosphorylated perilipin inhibits lipolysis. Little is understood of the expression patterns of 

perilipins and research regarding lipid droplets is revealing that they are not merely used 

for lipid storage.

5.2.5.2 Contrapsin

Contrapsin is a plasma glycoprotein which is able to inhibit trypsin-like proteases 

(Takahara and Sinohara, 1982; 1983). Contrapsin (Spi2) is an extracellular protein and its 

human homologue alpha 1 antichymotrypsin is known to be associated with pro- 

inflammatory responses such as acute inflammation (Das and Potter, 1995; Hong et al, 

1995; Kanemaru et al, 1996; Lieb et al, 1996). The main function of most serpin proteins 

is involved in the regulation of proteolytic events using a variety of biochemical pathways, 

for example extracellular remodelling and cell differentiation. Second to human serine 

protease inhibitors, the mammalian serpins are most well characterised at the gene level, 

although understanding the biological function of these proteins remains elusive.
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5.2.5.3 Lumican

Lumican is a major keratan sulphate proteoglycan (Axelsson and Heinegard, 1978) which 

consists of a core protein and glycosaminoglycan side chains. Keratan sulphate 

proteoglycans are important in cell migration and proliferation during embryonic 

development, tissue repair and tumour growth, in addition to matrix assembly and structure 

(lozzo, 1997; Fullwood et al, 1996; Wight et al, 1992). Lumican is present in the 

extracellular matrix of many tissues and exists as two distinct forms with respect to its 

tissue localisation. Lumican is abundant in the cornea where it exists as a highly sulphated 

proteoglycan, whereas in the other connective tissues it is a poorly/non-sulphated 

glycoprotein (Funderburgh et al, 1991a; 1991b). An alteration in expression of a gene 

involved in normal cellular processes, such as stromal-epithelial interactions, may 

contribute towards the change to a cancerous state (Kinzler and Vogelstein, 1998). This 

has been suggested for lumican, which is expressed in normal stroma breast tissue and is 

increased in invasive carcinomas (Leygue et al, 1998).

5.2.5.4 PTRF

PTRF is involved in transcriptional termination. Transcription termination by RNA 

polymerase I (Pol I) is achieved by pausing elongating transcription complexes, and occurs 

at specific terminator elements downstream of the pre-rRNA (Grummt et al, 1985; Bartsch 

et al, 1987). The Pol I terminator elements known as the 'Sal box' are recognised by a 

specific DNA-binding protein (the transcription termination factor TTF-I) that stops 

elongating Pol I (Evers et al, 1995; Grummt et al, 1986). However, DNA-bound TTF-I 

requires a cellular factor to release the transcript. Dissociation is achieved by PTRF, which 

interacts with Pol I, TTF-I and the 3' end of pre-rRNA (Mason et al, 1997; Jansa et al, 

1998). Cellular PTRF is phosphorylated at multiple sites and its regulation of 

phosphorylation may control the 3' end formation of pre-rRNA or the recycling of Pol I.

5.2.5.5 R ab ll

Rab proteins are GTP-binding proteins which are involved in the formation, targeting, 

and/or fusion of transport vesicles (Novick and Zerial, 1997). The two isoforms of Rab 11, 

a and b, differ in the last 30 amino acids of the C-terminal, a region which interacts with 

target membranes (Brennwald and Novick, 1993; Chavrier et al, 1991). R ablla is sub- 

apically located in epithelial cells (Goldenring et al, 1996) and is associated in vesicle 

recycling through the pericentriolar recycling endosome compartment (Ullrich et al,
1996). Rabl lb is required for the transport of transferrin from the recycling compartment 

to the plasma membrane, but little is known about its localisation and frmction (Schlierf et
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al, 2000). Rab proteins function by cycling between an active GTP-bound membrane form 

and an inactive GDP-bound cytosolic form (Bourne et al, 1990). The exact function of 

these proteins is still poorly understood but it is thought that each Rab protein has a defined 

role since different Rab proteins localise to distinct vesicle compartments.

5.2.S.6 WDRl

WDRl is a WD-repeat protein that contains nine repeat motifs to mediate protein-protein 

interactions (Baillat et al, 2001; Tieu and Nunnari, 2000). WD-repeats have a conserved 

core of approximately 40 amino acids. Of the many known WD-repeat proteins, several 

have known functions which span a range of important regulatory mechanisms (Yu et al,

2000). Some WD-repeat proteins have undefined functions (Smith et al, 1999; Neer et al, 

1994) such as WDRl. WDRl in yeast causes depolymerisation of actin filaments, but this 

is only achieved in the presence of cofllin, an actin binding protein (Rodal et al, 1999). 

Actin filaments are regulated by actin-binding proteins which are necessary for the actin 

cytoskeleton to mediate endocytosis, exocytosis, cell motility, polarity and cytokinesis.

5,2,5 J  MCM3

MCM (mini-chromosome maintenance) proteins were originally identified by genetic 

studies in yeast (Maine et al, 1984). The family of MCM proteins contains at least six 

evolutionary conserved members from MCM2 to MCM7 which are essential in the 

initiation of replication (reviewed by Tye, 1999). The origin of recognition complex (ORC) 

is believed to be the initiator of DNA replication (Bell and Dutta, 2002; Dutta and Bell, 

1997). This binds to a specific site on chromatin with additional initiation factors, Cdc6, 

Cdtl and MCM proteins in Gi of the cell cycle, which results in the formation of a pre- 

replicative complex (pre-RC). The assembly of the pre-RC makes chromatin 'licensed' for 

replication (reviewed by Chavlier and Blow, 1996). Prior to the cell cycle entering S phase, 

MCM proteins bind to chromatin to make it competent for replication (Chong et al, 1996; 

Kearsey et al, 1996). The MCM proteins remain bound to chromatin until they gradually 

dissociate with phosphorylated members as S phase progresses (Kimura et al, 1994; 

Schulte et al, 1995; Todorov et al, 1995). The replicated chromatin without bound MCM 

proteins ensures that DNA is replicated once during a single cell cycle division. Studies 

have indicated that MCM proteins could potentially be used as prognostic markers in 

breast cancer as they are able to give a more accurate insight into the cell cycle state in 

tissue compared with conventional markers (Gonzalez et al, 2003; Stoeber et al, 2001).
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5.2.5.S Annexin A2

Annexin proteins are widely expressed in a range of tissues and cell types. Annexin A2 is a 

phospholipid binding peripheral membrane protein. It contains four annexin repeats 

(Geisow et al, 1986) which enable the protein to shuttle between water-soluble and 

membrane compartments as a result of fluctuating calcium levels. The core domain of 

annexin A2 possesses calcium binding sites (Crumpton and Dedman, 1990; Geisow and 

Walker, 1986), and it has been reported to be a calcium regulated protein on endothelial 

cells, macrophages and tumour cells. The N-terminal tail has two phosphorylation sites, 

tyrosine (Tyr)-23 and serine (Ser)-25 which are phosphorylated by protein tyrosine kinases 

and protein kinase C respectively (Glenney and Tack, 1985; Gould et al, 1986). It has 

recently been shown that annexin A2 regulates the glycoprotein tissue plasminogen 

activator (t-PA), which is synthesised by and binds to endothelial cells (Hajjar and Menell,

1997). The glycoprotein activates plasminogen to form plasmin, a fibrinolytic protease, 

and increases in expression in promyelocytic leukaemia cells due to abnormally high levels 

of annexin A2 (Menell et al, 1999).

Annexin A2 is developmentally expressed throughout pregnancy and lactation of the 

mouse mammary gland, outlining the apical membrane of alveoli (Handel et al, 1991). It 

appears to be present in both large and small vesicles of actively secreting epithelial cells, 

consistent with a possible structural and/or functional role in membrane trafficking within 

these cells (Creutz, 1992). Conflicting results, published by Lozano et al in 1989, found 

comparable levels of annexin A2 in both non-secretory and secretory mammary epithelial 

cells grown on collagen gels (Handel et al, 1991; Jamieson, et al, 1990).

Breast tissue studies of annexin A2 have shown that it is the most predominant annexin in 

normal and malignant mammary epithelial cells. In contrast to normal tissue higher levels 

of annexin A2 were expressed in stromal cells of mammary tumours. The differential 

expression of annexin A2 in normal and malignant human breast tissue suggests an 

important role for these proteins in the mammary gland (Schwartz-Albiez et al, 1993). 

Furthermore, it has been suggested that the association of annexin A2 with the plasma 

membrane in primary renal carcinoma cells may lead to pro-metastatic effects, such as 

preventing coagulation, oxidative stress and immunological surveillance (Tanaka et al, 

2004). A variety of malignant tumours, except human prostate cancer (Chetcuti et al,

2001), have shown an increase in expression of annexin A2, such as human hepatocellular 

(Frohlich et al, 1990) and gastric carcinoma (Emoto et al, 2001).
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5.3 Results

Eight annotations were selected for further follow-up work with an additional three 

hypothetical/unique proteins.

One of the techniques used in this Chapter was TaqMan analysis and Appendix 4 lists the 

primers and probe sequences for all the annotations interrogated. Not all annotations within 

a clustered MCI were analysed by TaqMan because other resources were available for 

confirmation of the proteomics results or because of cost issues. The results obtained from 

real-time RT-PCR are represented as relative fold change using the comparative C? 

method as described in Materials and Methods. The same calibrator (reference sample) 

was used for annotations within the same cluster in order to compare the results. However, 

the calibrator varied between different MCIs as these did not need to be compared.

As data was available from a separate mouse mammary gland microarray study, the 

expression profiles of all clustered annotations were obtained wherever necessary. The 

microarray data was used as an adjunct to the real-time PCR results. The results are 

displayed as scaled signal intensities (see Materials and Methods for details). It should be 

noted that the same RNA samples for the stages that are common to microarray analysis 

and TaqMan were used. Additional stages of mammary gland development were used for 

the microarrays. These were Av6, Avl2 (adult virgin 6 weeks and 12 weeks), PI, P2 and 

P3 (pregnancy 24 h, 48 h and 72 h respectively). Pregnancy 4.5, Inv5 and InvlO were not 

used in the microarray study. Furthermore, the protein samples used for proteomics were 

obtained from the left gland of a mouse, and the RNA samples used for TaqMan and 

microarray analyses were obtained from the right gland of the same mouse.

Western blot analysis was performed where possible, but as there was a restriction in the 

number of loading wells present per polyacrylamide gel, all stages of development were 

used except for Inv20. The exception to this rule was made for perilipin as this protein was 

detected during lnv20 in the proteomic data and therefore P4.5 was substituted for Inv20.

Once the expression profiles of the candidate proteins were determined using TaqMan, 

microarray and western blot analyses, the next stage was to identify their localisation 

within mammary gland tissue sections. Where possible IHC was performed with the 

antibodies used for western blotting to determine the tissue localisation of the proteins. In 

some cases the data collected using western blotting, real-time RT-PCR and microarrays 

had not confirmed the proteomic data. However, from the data gathered at this stage of the
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project (experimental and literature based) it was interesting to determine the regions of the 

gland in which these proteins were expressed.

Unfortunately not all the antibodies used for western blotting were suitable for IHC. This 

was true for PTRF, Rabll and WDRl; but annexin A2, MCM3 and perilipin were 

successfully used for IHC.

5.3.1 Expression of p-casein

For reference an MCI found in 2/3 triplicate samples was counted as a feature presence and 

1/3 was counted as a feature absence.

The expression profile of p-casein across mammary gland development has recently been 

published, using the same stages of development as in this study (Stein et al, 2004). The 

antibody to this protein was used only as a positive control to test the protein samples used 

for western blot analysis. The western blot profile for p-casein showed the expected up- 

regulation during mid pregnancy and down-regulation during involution (Figure 5.2). p- 

casein migrates at 26 kDa, and from the western blot multiple bands can be seen which 

may correspond to the other isoforms of casein.

5.3.2 Analysis of perilipin

Perilipin was not a cluster protein but mass spectrometry could not distinguish between the 

different isoforms of this protein. Perilipin is known to have four isoforms and the 

antibody used for western blotting detected isoforms A, B and C. Each of these three 

isoforms have different molecular weights, 57 kDa, 46 kDa and 38 kDa respectively 

(Londos et al, 1995; 1999). A slight change in the migration of perilipin C was observed 

on the western blot (Figure 5.3), but this can be attributed to having loaded the control in 

the last lane of the gel which occasionally alters the migration pattern of a protein. The 

western blot for perilipin showed that all three isoforms had strong expression during 

pregnancy, with a decrease during lactation. Their patterns of expression differed to each 

other during involution. All isoforms showed an increase in expression during involution, 

but this occurred at a later time point for perilipin B. None of these profiles matched that 

determined by proteomics which had shown perilipin to be expressed in Inv20.
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Figure 5.2 Western blot profile of p-casein during mouse mammary gland 
development. All stages of development were used (40 pg protein) except for Inv20. The 
blot was subsequently probed with p-actin for load verification.
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Figure 5.3 Western blot analysis of perilipin during mouse mammary development.
The Mr to which the proteins migrated have been indicated. All stages of development 
were used (40 pg) except for P4.5 due to the number of wells present on the gel. The blot 
was subsequently probed with P-actin for load verification. The adipocytes cell line 
3T3-L1 cells were used as a positive control.
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IHC demonstrated that perilipin’s expression was localised to the surface of adipocytes in 

the mammary gland as expected (Figure 5.4). Although this technique is not quantitative, 

clear changes in staining could be seen in extreme time points. This was due to the altering 

numbers of adipocytes during development rather than a change in the intensity of staining. 

A decrease in the number of cells stained with the perilipin antibody could be seen as the 

number of adipocytes decreased during pregnancy (Figure 5.4A), and this continued into 

lactation (Figure 5.4B). An increase in the number of cells stained with the perilipin 

antibody occurred during involution, as adipocytes are replenished during this phase of 

development (Figure 5.4C). The western blot for perilipin showed different expression 

profiles during involution for the three different isoforms detected. IHC did not distinguish 

the different isoforms of perilipin but detected all three; hence the discrepancy between the 

two techniques. If the isoforms of perilipin A, B and C were merged on the western blot 

image, an increase in expression would be observed from early to late involution as seen 

by IHC. No staining was observed in the negative control used for IHC which had had no 

primary antibody added to the section (Figure 5.4D). These expression profiles appear to 

have resulted from the altering ratio of epithelial to stromal cells during development.

5.3.3 Analysis of contrapsin and lumican

Contrapsin, lumican, carboxylesterase and HS21C001 (segment of chromosome) all 

clustered together (MCI 49502). The chromosome segment was not investigated by real

time RT-PCR; however, the other three were. Carboxylesterase was eliminated as being 

the potential identification of MCI 49502, as no signal was detected in all 40 cycles of the 

PCR reaction, whereas a signal was produced for the positive control. The expression 

profiles produced for contrapsin and lumican v/ere very different to each other 

(Figure 5.5). Contrapsin showed virtually no change to the calibrator during pregnancy and 

lactation, but an increase was observed during mid involution. The signal intensity of 

contrapsin from the microarray data was below a detectable level and was classed as 

absent; therefore no comparisons could be made to the TaqMan data. However lumican 

showed a similar microarray expression profile to the TaqMan results (Figure 5.5), as both 

showed a decrease in expression after mid pregnancy through to the start of involution. 

The expression plots varied during involution, but both showed an increase during mid 

involution. These profiles were not comparable to the proteomics results which had shown 

this MCI to be present only during P14.5. It is most probable that these differences are due 

to TaqMan and microarray analyses detecting total mRNA expression, whereas proteomics 

detects multiple isoforms.
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Figure 5.4 Immunohistochemical localisation of perilipin in various stages of mouse 
mammary gland development. Frozen tissue sections were stained with a guinea pig 
polyclonal anti-perilipin antibody. A FITC-conjugated secondary antibody was used to 
visualise staining and propidium iodide to counter stain. Sections were view at 250x 
magnification using a Wang Biomedical microscope and a fluorescein filter. Images were 
processed using Adobe Photoshop 7.0 software. (A) to (C) range from PI2.5 to Inv3 and 
(D) is the negative control. Adipocytes (A).
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Figure 5.5 Expression profiles of contrapsin and lumican during mouse mammary 
gland development. The expression profiles of contrapsin and lumican are demonstrated 
by TaqMan and/or microarray analysis. TaqMan results are presented as fold change 
relative to a stage within the set of samples tested. Microarray results are presented by 
signal intensity which has been scaled to an arbitrary value. Liver was used as the positive 
control tissue for contrapsin and heart was used for lumican.
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Unfortunately no antibody was available for contrapsin and the lumican antibody obtained 

failed to detect this protein within the mammary gland and the positive control. Therefore 

an attempt was made to localise these proteins in the mammary gland using in situ mRNA 

hybridisation. Several probes were designed and experimented on control tissue, but none 

of the probes successfully hybridised to the sections.

5.3.4 Analysis of PTRF

PTRF was a single MCI identification from the developmental database and western 

blotting was used to confirm the proteomics results. This protein migrated at 50 kDa on a 

western blot. When comparing the PTRF western blot expression profile (Figure 5.6) to the 

P-actin profile, they showed similar band concentrations suggesting that PTRF did not 

change in expression across development. However, cellular PTRF can be phosphorylated 

and as the antibody did not distinguish between phosphorylated and non-phosphorylated 

PTRF, it is unclear whether the phosphorylated form of this protein altered in expression 

across development. As PTRF was only detected during Inv5 in the proteomics data, it is 

possible there was only a change in phosphorylation state during this stage. The shift of pi 

caused by phosphorylation would have excluded the non-phosphorylated form from being 

detected on the 2-D gel. At this stage of the project attention was focused on particular 

candidate proteins. As resources were not available to distinguish between the 

phosphorylation states of PTRF, the analysis of this protein was not taken further.

5.3.5 Analysis of R ab ll

Rabll was another single MCI identification from the developmental database. The 

western blot expression profile of Rabll appeared to fluctuate across development but 

showed a distinct strong expression during the early stages of lactation and again from 

early to mid involution (Figure 5.6). However, the proteomics data suggested Rabll was 

expressed from mid to late pregnancy. The antibody used for Rabl 1 did not distinguish 

between Rabl 1 a or Rabl lb. Neither could the mass spectrometry distinguish between the 

two isoforms. Hence, the discrepancy between the western blot and proteomic results could 

be due to the different isoforms being present. Rabll was not investigated further because 

of the lack of resources available for discriminating between its different isoforms.

5.3.6 Analysis of W DRl

WDRl was investigated by western blotting. Unfortunately no positive control was 

obtained for WDRl (chick basilar papilla). However, the protein migrates at 67 kDa (Adler 

et al., 1999) and this was approximately the size of the bands detected by western blot
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Figure 5.6 Western blot analysis of candidate annotations during mouse mammary 
gland development. The Mr to which the proteins migrated has been indicated. All stages 
of development were used (40 pg) except for Inv20 due to the number of wells present on 
the gel. All blots were subsequently probed with p-actin for load verification. NIH-3T3 
fibroblast cells were used as a positive control for western blot analysis of PTRF, and 
Madin Darby Canine kidney (MOCK) cells were used for western blot analysis of Rabl 1.
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Figure 5.7 Expanded proteomic expression profile of WDRl during mouse mammary 
gland development. (A) extended proteomic expression profile has been determined by 
the percentage volume of the MCI within the 2-D gel. (B) Western blot analysis of WDRl. 
No positive control was used. All stages of development were used (40 pg protein) except 
for Inv20 due to the number of wells present on the gel. Blot was subsequently probed with 
P-actin for load verification.
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analysis (Figure 5.7B). No change in expression was observed across development when 

comparing the expression profile to P-actin. Expanding the expression profile of the 

proteomics results for WDRl (Figure 5.7A) revealed that its expression was not restricted 

to L7 and Invl but was in fact present during all stages of development. The proteomics 

profile showed that its expression was quite constant during AvlO and pregnancy but for 

lactation and involution WDRl showed no alteration in expression.

5.3.7 Analysis of MCM3

MCM3 and fumarate hydratase clustered together and both were analysed by real-time 

PCR. MCM3 and fumarate hydratase TaqMan expression profiles were overall quite 

similar, as they showed a temporary decrease in expression during lactation (Figure 5.8B 

and C). When comparing these results to the expanded proteomic data (Figure 5.8A), 

neither could be eliminated from being the annotation for MCI 46330. MCM3 and 

fumarate hydratase TaqMan profiles did not have exact matches to the proteomic 

expression profile. However, both were similar enough to it that they could not be 

discounted.

An antibody was not available for fumarate hydratase, but one was obtained for MCM3. 

Overall the western blot and TaqMan expression profiles for MCM3 resembled each other 

(Figure 5.8D), as expression was highest during pregnancy and dropped during lactation. 

All experiments showed MCM3 increasing in expression during involution, although the 

point at which this occurred varied between the three different techniques.

IHC was performed with the same MCM3 antibody which localised to nuclei of the 

epithelial cells of the mammary gland (Figure 5.9). The intensity and number of cells 

detecting MCM3 appeared greater during pregnancy (Figure 5.9B and C) compared to 

lactation (Figure 5.9D), the latter showed a heterogeneous level of staining. This pattern of 

expression was comparable with the results obtained by western blot analysis. A slight 

increase in the number of cells stained with MCM3 was observed after the first few days of 

involution (Figure 5.9E) compared to lactation and this persisted through to late involution 

(Figure 5.9F). Overall these changes in expression observed by IHC appeared to be in 

agreement with the other results produced for MCM3. No staining was detected in the 

negative control (Figure 5.9G).
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Figure 5.8 Expression profile of MCM3 and fumarate hydratase during mouse 
mammary gland development. (A) The proteomic profile could be MCM3 or fumarate 
hydratase and is represented as the percentage volume of the MCI within the 2-D gel. (B) 
and (C) TaqMan analysis of MCM3 and fumarate hydratase, respectively. Results are 
presented as fold change relative to a stage within the set of samples tested. (D) Western 
blot analysis of MCM3 using N1H-3T3 fibroblast cells as a positive control. All stages of 
development were used (40 pg protein) except for lnv20 due to the number of wells 
present on the gel. Blot was subsequently probed with p-actin for load verification.

143



. 100 urn '
<AvlO)

t B f  ^ -  / i

#  '  ^ 3 )  .

f }  ^  ,(yi2.*5) A ? : , V

-  — - r  ■ -

(Fl - %
1

 ̂ ‘‘‘I

(NEC)
Figure 5.9 Immunohistochemical localisation of MCM3 in various stages of mouse 
mammary gland development. Paraffin embedded tissue sections were stained with a 
goat polyclonal anti-MCM3 antibody. An HRP-conjugated secondary antibody was used to 
visualise staining with DAB. Sections were view at 400x magnification using a Zeiss 
Axiophot microscope and images were processed using Axiovision 3.1 software. (A)-(F) 
range from AvlO to Inv20 and (G) is the negative control. Stroma (S); epithelial cells (E); 
secretions (Se); adipocytes (A).
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5.3.8 Immunohistochemical staining of MCM2

All MCM proteins (2-7) complex together to 'license' cell division. As an antibody was 

available for another MCM protein (MCM2) this was investigated by IHC to support the 

data obtained for MCM3. MCM2 localised to the epithelial cells, and staining produced 

across development reflected the pattern seen with MCM3 IHC staining (Figure 5.10). A 

decrease in the intensity of staining and the number of cells that were positive for MCM2 

occurred from pregnancy (Figure 5.1 OB and C) to lactation (Figure 5.10D) and 

heterogeneous staining was observed during lactation. As with MCM3 IHC staining, after 

the first couple of days of apoptosis the number of cells expressing MCM2 increased 

(Figure 5.10E) and this progressed through to the later stages of involution (Figure 5.1 OF). 

No staining was observed in the negative controls for either of these proteins although 

slight background staining could be seen (Figure 5.10G).

5.3.9 K167

Ki67 is a conventional proliferation marker and as MCM2 and MCM3 have been reported 

to detect higher levels of cycling cells in human breast tissue (Stoeber et al, 2001), Ki67 

was used as a comparison against the MCM proteins in mouse mammary gland tissue. 

Each comparison showed that the MCM antibodies consistently stained a greater number 

of epithelial cells than the Ki67 antibody (Figure 5.11). In the case of the MCM proteins 

and Ki67, no quantitative analysis was carried out as clear differences could be seen by 

visual inspection.

5.3.10 Analysis of annexin A2

Armexin A2 was investigated by TaqMan analysis since it was a cluster MCI (see Table 

4.1). Annexin A2 clustered with two keratin annotations and malate dehydrogenase. As 

annexin A2 had the most interesting potential biology in the mammary gland it was 

decided that this protein had priority over other annotations which clustered with annexin 

A2. Therefore annexin A2 was the only annotation in the cluster that was analysed by 

TaqMan and subsequently by western blotting, IHC and microarray analyses.

The expression profiles determined from TaqMan (Figure 5.12A), microarray (Figure 

5.12B) and western blot (Figure 5.12C) analyses for annexin A2 were similar; a decrease 

in expression was observed throughout pregnancy to lactation, and an increase during 

involution. These results contrasted to the proteomics data which showed annexin A2 to be 

present only in InvlO. The most likely explanation for this discrepancy is that western
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Figure 5.10 Immunohistochemical localisation of MCM2 in various stages of mouse 
mammary gland development. Paraffin embedded tissue sections were stained with a 
mouse monoclonal anti-MCM2 antibody. Envision detection system was used and staining 
was visualised with DAB. Sections were view at 400x magnification using a Zeiss 
Axiophot microscope and images were processed using Axiovision 3.1 software. (A)-(F) 
range from AvlO to Inv20 and (G) is the negative control. Stroma (S); epithelial cells (E); 
secretions (Se); adipocytes (A).
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Figure 5.11 Immunohistochemical localisation of Ki67 in various stages of mouse 
mammary gland development. Paraffin embedded tissue sections were stained with a rat 
monoclonal anti-Ki67 antibody. An HRP-conjugated secondary antibody was used to 
visualise staining with DAB. Sections were view at 400x magnification using a Zeiss 
Axiophot microscope and images were processed using Axiovision 3.1 software. (A)-(F) 
range from AvlO to Inv20 and (G) is the negative control. Stroma (S); epithelial cells (E); 
secretions (Se); adipocytes (A).
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Figure 5.12 Expression profiles of annexin A2 during mouse mammary gland 
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the set of samples tested. (B) Microarray results are presented by signal intensity which has 
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epidermoid carcinoma cells as a positive control. All stages of development were used 
(40 pg protein) except for Inv20 due to the number of wells present on the gel. Blot was 
subsequently probed with p-actin for load verification.
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blotting, TaqMan and microarray analyses can detect total amounts of protein or mRNA 

whereas proteomics identifies different isoforms.

IHC analysis of annexin A2 was performed on mouse mammary tissue sections. A serial 

dilution of the antibody on Avl2 sections revealed that different cell types stained at 

different intensities. At a 1:50 dilution, staining was seen in the stroma, myoepithelial and 

luminal epithelial cells (Figure 5.13A). Annexin A2 has previously been reported in the 

stroma of normal and tumour breast tissue (Schwartz-Albiez, et al 1993), and in mouse 

mammary epithelial cells (Handel et al, 1991; Creutz, 1992 and Lozano et al, 1989). 

Smooth muscle cells and adipocytes were consistently negative and endothelial cells were 

positive at higher concentrations. The antibody was used at a 1:100 dilution across 

mammary development to determine quantitative changes in expression between different 

cell types. The stromal fibroblast cells showed striking changes in the intensity of staining, 

and appeared to be both membrane and cytoplasmic. The epithelial cells were consistently 

negative.

Additional stages of mammary gland development were analysed with annexin A2. An 

increasing number of fibroblasts stained positive for annexin A2 from Av6 to AvlO, as 

well as the intensity of the stain. At Av6 only occasional cells were positive around the 

TEBs. The fibroblasts stained strongly positive from Avl2 (Figure 5.13B) through to the 

early stages of pregnancy (PI, P2 and P3) (Figure 5.13C), however this gradually 

decreased from P4.5 to P I7.5 (Figure 5.13D). Although the proportion of stromal to 

epithelial cells decreased during pregnancy, the intensity per cell also decreased. The low 

level of staining continued through lactation (Figure 5.13E) and early involution (Figure 

5.12F), but as the stromal to epithelial cell ratio increased, the intensity of the stain 

returned (Inv4-Inv20) (Figure 5.13G). At all stages of development, the myoepithelial and 

luminal cells were consistently negative, and no staining was observed in the negative 

control (Figure 5.13H).

5.3.11 IHC staining of annexin A2 in normal human breast tissue

Differential staining of annexin A2 was determined in the mouse mammary gland after 

using an appropriate antibody dilution. This result has not previously been reported as 

other studies used the antibody at too high a concentration. As this may have been the case 

with the breast tissue reports on annexin A2, further investigations were performed to 

identify whether differential staining could be seen in different cell populations of the 

breast. Strong IHC staining was seen in the myoepithelial and stromal cells, when using a
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Figure 5.13 Immunohistochemical localisation of annexin A2 in various stages of 
mouse mammary gland development. Paraffin embedded tissue sections were stained 
with a mouse monoclonal anti-annexin A2 antibody. An HRP-conjugated secondary 
antibody was used to visualise staining with DAB. Sections were viewed at 400x 
magnification using a Leitz Orthoplan microscope. Images were processed using 
Axiovision 3.1 software. (A, 1:50) adult virgin gland, (B-F, 1:100) range from Avl2 to 
Inv20, and (H) is the negative control. Stroma (S); epithelial cells (E); secretions (Se); 
adipocytes (A).
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1:50 dilution of the annexin A2 antibody, whereas weak staining was observed in the 

luminal cells (Figure 5.14A). Annexin A2 was predominantly localised to the stromal and 

myoepithelial cells at a 1:100 dilution however, the luminal cells were rarely positive 

(Figure 5.14B). Luminal staining of the apical membrane was identified in some ducts, and 

a variable staining pattern could be seen in the myoepithelial cells. In some areas the 

staining appeared to be vesicular (Figure 5.14C) and in others annexin A2 was located to 

the membrane (Figure 5.14D). At high power the staining appeared to be granular 

however, these could be very small vesicles which can not be not resolved at the light 

microscope level (Figure 5.14D). Positive staining was identified at the myoepithelial 

basal/stromal interface, and it was often difficult to deduce whether the staining was 

associated with the myoepithelial cells or the epithelial/stromal interface.

5.3.12 IHC staining of annexin A2 in benign hyperplasia and papillomas

Five cases of epithelia hyperplasia and two benign papillomas were examined. Both types 

of lesions are associated with the coordinated proliferation of luminal and myoepithelial 

cells. In the benign hyperplasia (Figure 5.14E) and papilloma cases (Figure 5.14F), the 

stain localised to the membrane and vesicular pattern of the myoepithelial cells but the 

luminal cells were relatively negative.

5.3.13 IHC staining of annexin A2 in in situ  breast cancer

Twenty cases of ductal carcinoma in situ (DCIS) were examined, together with eight cases 

of lobular carcinoma in situ (LCIS). The epithelial cells that form these lesions had a 

similar pattern of staining as was seen in the myoepithelial cells in normal breast. The 

staining was strong in most of the cases, but it was stronger in all cases when compared to 

the predominantly negative luminal cells in the adjacent normal breast tissue. The staining 

pattern was variably granular and membrane, with small to large vesicles within the 

cytoplasm. See Figure 5.140 for membrane staining. There was very variable staining 

within DCIS, both in the intensity and staining pattern. Two tumours were negative (Figure 

5.14FI), others displayed membrane staining (Figure 5.141) and some showed clear 

intracytoplasmic vesicles (Figure 5.14J). The attenuated myoepithelial cells were difficult 

to identify in the majority of cases of DCIS, but occasionally clear positivity was seen 

(Figure 5.14K)

5.3.14 IHC staining of annexin A2 in invasive lobular and invasive ductal carcinoma

Ten cases of invasive lobular carcinoma and 39 cases of invasive ductal carcinoma of 

various grades were examined. The staining pattern of infiltrating lobular carcinoma cases
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Figure 5.14 Immunohistochemical localisation of annexin A2 in breast tissue. Paraffin 
embedded tissue sections were stained with a mouse monoclonal anti-annexin A2 
antibody. An HRP-conjugated secondary antibody was used to visualise staining with 
DAB. Sections were view at 400x magnification using a Leitz Orthoplan microscope and 
images were processed using Adobe Photoshop 7.0 software. (A) 1:50 dilution; (B-H) 
1:100. Lobular in situ carcinoma (LISC); ductal in situ  carcinoma (DCIS); epithelial cells 
(E); lumen (L); myoepithelial cells (M); macrophages (mi))); stroma (S).
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Figure 5.14 Immunohistochemical localisation of annexin A2 in hreast tissue. Paraffin 
embedded tissue sections were stained with a mouse monoclonal anti-annexin A2 
antibody. An HRP-conjugated secondary antibody was used to visualise staining with 
DAB. Sections were view at 400x magnification using a Leitz Orthoplan microscope and 
images were processed using Adobe Photoshop 7.0 software. (I-N) 1:100 dilution. Ductal 
in situ  carcinoma (DCIS); myoepithelial cells (M); macrophages (m(|)).
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were difficult to interpret, as 9/10 cases showed strong staining on the membrane of the 

infiltrating carcinoma cells or at the epithelial/stromal interface. This was difficult to 

interpret under a light microscope, but the similar staining in LCIS suggests that it is 

membrane staining (Figure 5.14L). One infiltrating lobular carcinoma case was negative 

(Figure 5.14M). The staining of the infiltrating ductal carcinoma cases varied from strong 

to weak and one case was negative. The staining patterns were similar to those seen in the 

DCIS cases. There was not a consistent staining pattern within a tumour and all patterns of 

staining could be seen in different lesions. Weak staining tended to be focal, whereas the 

15 cases that had strong staining showed that most of the tumour cells were positive. 

Within the in situ and invasive carcinomas, macrophages were strongly positive (Figure 

5.14N), which is important when interpreting focal staining.

The tumours were graded according to the Nottingham grading classification (Table 5.1). 

The intensity of the staining was graded from zero (negative) to three (strongly positive) 

and no association was found between the strength of staining and the tumour grade. Chi- 

square test was used for statistical analysis which compared the number of cases that were 

positive for annexin A2 to the grade of the tumour. The results were not significant.

Table 5.1 Annexin A2 staining intensities of invasive carcinoma cases

Staining intensity

0 1 2 3 Total
Grade 1 0 3 1 2 6
Grade 2 0 6 3 6 15

Grade 3 2 5 4 7 18

5.3.15 2-D western blot analysis of annexin A2

To demonstrate the problems caused by PTMs, a protein which was known to be modified 

by phosphorylation was detected by western blotting after being separated by 2-D gel 

electrophoresis. The protein investigated by this method was annexin A2 which had 

already been shown to be modified in this project, as it had two different pi values in the 

developmental and TEB databases (see Table 4.1 and 4.3). Three stages of development 

were analysed, AvlO, L7 and InvlO in duplicate (Figure 5.15). Non-specific staining was 

detected above the located area of annexin A2 which had migrated at 36 kDa. The 

duplicate images obtained from the AvlO samples were very similar to each other. A 

distinct horizontal trail of the protein was detected across the blot which suggested that the 

protein had been phosphorylated (Figure 5.15A and B). The duplicate samples from L7
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Figure 5.15 2-D western blot analysis of annexin A2. Annexin A2 migrated at 36 kDa. 
All stages indicated were repeated in duplicate, loading 80 pg of protein per 2-D gel.
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were not as similar to each other; however, the horizontal trail of annexin A2 was again 

evident (Figure 5.15C and D). The last stage analysed (InvlO) showed a decrease in the 

level of annexin A2 staining which was almost undetectable. Although both gels showed 

weak staining, one shown in Figure 5.15F was slightly stronger than the other (Figure 

5.15E). The horizontal trail produced by this protein was less prominent compared with the 

other two stages. Duplicating the results using pre-cast mini 2-D gels was difficult to 

achieve as can be seen from the results, which also illustrate the problems caused by PTMs 

in 2-D gel analysis. In this proteomic project the shift in pi caused by phosphorylation 

would have meant that the altered form had a different MCI to the one selected and would 

not have been detected as the same protein. This may explain the discrepancy between the 

proteomic expression profile for annexin A2 compared to the 1-D western blot profile.

5.3.16 Analysis of hypothetical and Incyte unique annotations

Two annotations which were classified as unique proteins and one classed as a 

hypothetical protein were selected for further follow-up work. The hypothetical protein, 

DJ845024.2 clustered with one of the unique proteins, MCI 48838. These annotations 

were of particular interest as they are uncharacterised annotations with no known function. 

The release of the mouse genome sequence into the public domain enabled the peptide 

sequences which were matched to these annotations to be reanalysed to determine whether 

they were linked to a characterised protein. Mouse NCBl, Celera_16 and Sanger databases 

were searched using protein basic local alignment search tool (BLAST) and theoretically 

predicted protein sequences (TBLASTN and GENS CAN). The unique sequence identified 

for MCI 46776 CVNIQMLQGVK revealed no hit alignment even when changing leucine 

to isoleucine as they have the same mass values. The peptide sequence determined for the 

unique protein MCI 48838 TGIIIILSEVK was quite ambiguous, as it contained many 

leucine and/or isoleucines and these created many possible combinations of the protein 

sequence. All combinations were searched but no matches were found. KPVEDCPR from 

the hypothetical protein MCI 48838, the last sequence searched, also revealed no hit 

alignment within the mouse sequence. However, two hits were matched to the human 

database NCBI, accession numbers 060810 and XP 088816. The former sequence had 

previously been identified by Oxford GlycoSciences which was hypothetical protein 

DJ845024.2 and the latter sequence identified the protein 'similar to' hypothetical protein 

DJ845024.2 which has since been removed from the NCBI database. In conclusion no 

additional information about these three sequences was revealed by these searches.
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5.4 Discussion

5.4.1 Identifying post-translational modifications

Before proceeding further with the selected annotations, several different techniques were 

used in order to support the proteomics results. As antibodies were not available for all 

annotations, mRNA techniques were used to determine the identity of a clustered MCI. 

However, in most cases these methods did not confirm the proteomics results. Some 

annotations which were detected during only one stage of mammary gland development by 

proteomic analysis, appeared to be expressed in most stages of development using the 

other follow-up techniques. This does not mean that the proteomics results are incorrect. 

As has been explained in the introduction of this Chapter, using mRNA techniques is not 

an ideal method for confirming the proteomics results, because protein and mRNA trends 

do not always correlate. However, as no other resources were available, this was the only 

option to confirm the proteomic data, as for most candidate proteins antibodies were not 

available. Furthermore, even when antibodies are obtainable, they detect total protein 

levels rather than individual isoforms.

The most obvious explanation for the inconsistencies between the proteomic results and 

the follow-up data is the presence of PTMs and sensitivity of 2-D gel proteomics. Many 

changes are regulatory and reversible, such as protein phosphorylation. Modifications to 

the phosphorylation state of a protein cause a shift horizontally across a 2-D gel and 

glycosylation increases the Mr of the protein. Protein modifications can be detected by 

mass spectrometry but they were not identified in this project because of time restrictions 

and limitations on sample size. Many phosphorylated proteins are present in such small 

quantities that it is difficult to isolate them in vivo and therefore many phosphorylation 

studies are performed in vitro.

5.4.2 Expression of P-casein during mammary gland development

In order to check the protein sample preparation, the samples were tested at the protein 

level by western blotting with p-casein. p-casein was tested, because the expression profile 

during mammary gland development was well known. The western blot proved that the 

protein samples were of good integrity.

5.4.3 Expression and localisation of perilipin in mammary gland development

Western blot analysis and IHC staining of perilipin did not agree with the proteomics data 

which may be due to PTMs. The western blot data did reveal differential expression of the 

different isoforms across mammary gland development. The patterns of expression
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observed by IHC and western blotting were typical of those expected as a result of 

diminishing amounts of adipocyte cells in pregnancy and the replenishment of these cells 

during the latter stages of involution. For perilipin C, however, a high level of expression 

was seen during the earlier stages of involution rather than the latter suggesting it may be 

important during the early stages of tissue remodelling with the return of adipocytes. 

Perilipins are thought to be important in regulating lipolysis (Londos et al, 1999) and 

therefore the expression of this protein would be expected to change with the changing 

energy requirements needed over mammary gland development.

5.4.4 Expression of lumican and contrapsin during mammary gland development

TaqMan analysis ruled out carboxylesterase as being the possible identity of MCI 49502, 

as no expression was detected across mammary gland development. Therefore lumican, 

contrapsin and a segment of chromosome remained as potential identifiers. Neither 

expression profile obtained by TaqMan for contrapsin or lumican matched the proteomic 

expression profile, which may be due to PTMs or due to the fact that the fourth annotation 

identified was the correct annotation for MCI 49502. Lumican has been reported to be 

expressed in the stroma of breast tissue and the mouse mammary gland. Therefore the 

expression profiles obtained by TaqMan and microarray analysis for lumican may only be 

a mirror image of the change in epithelial to stromal ratio. During pregnancy there is an 

increase in the epithelial to stromal ratio and this is reversed during involution. The 

increased expression of lumican reported in breast stroma of normal and cancerous tissue 

(Leygue et al, 1998) suggested that it could play a regulatory role in mammary gland 

development.

In contrast the expression profile of contrapsin does not appear to result from a change in 

the stromal to epithelial ratio. The TaqMan expression profile for contrapsin only increased 

towards the end of involution and virtually no change was found in the other stages 

studied. Further confirmation of these results is required and although the results do not 

agree with the proteomic data, the data obtained by TaqMan analysis implicate a role for 

contrapsin during involution of the mammary gland. The expression of contrapsin during 

involution is particularly interesting as it is a stage where much remodelling of tissues, 

including the ECM, is taking place. This theory is further supported as contrapsin is known 

to be an extracellular matrix protein and serpins have previously been linked to 

extracellular matrix remodelling (Pei et al, 1994; Cao et al, 2004).
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5.4.5 Expression of PTRF, R ab ll and WDRl during mammary gland development

Western blot analysis of PTRF did not confirm the proteomic results and again this may be 

a possible consequence of phosphorylation. The PTRF antibody did not distinguish 

between phosphorylated and non-phosphorylated PTRF and it is known that PTRF is 

phosphorylated at multiple sites. Further investigations into the phosphorylation state of 

PTRF are required, since an antibody which detects only phosphorylated PTRF may show 

expression changes on a western blot profile. Its involvement in transcriptional termination 

by Pol I may still be regulated during mammary gland development (Mason et al, 1997; 

Jansa et al, 1998). However, its expression profile remains unclear.

No conclusion can be drawn from the Rabll results. Further investigations into the 

expression profile of the different isoforms is required during mammary gland 

development because neither mass spectrometry nor western blotting differentiated 

between R ablla or Rabllb. It would appear from the western blot that the overall 

expression of Rabll changes during pregnancy with a strong increase in lactation which 

may indicate that it is important in this stage of development. This is further supported by 

its involvement in vesicle transport as it may play a role in the transportation of milk 

components during lactation (Novick and Zerial, 1997).

The western blot profile of WDRl showed no change in expression across development. 

After expanding the proteomic results, a constant level of expression was also observed 

during AvlO and pregnancy. However, the expression levels of each sample varied 

considerably in involution, making it difficult to draw conclusions about its overall 

expression. It was therefore surmised from these experiments that WDRl did not play a 

regulatory role during mammary gland development.

5.4.6 Expression and localisation of MCM proteins

Overall the results collected in this study for MCM3 complimented each other. The 

TaqMan data was generally similar to the proteomic profile except for the latter stages of 

involution. This may be due to discrepancies which are known to occur between RNA and 

protein. A tentative explanation for these discrepancies may be because MCM3 is cleaved 

during apoptosis (Schwab et al, 1998). The six members of the MCM family contain 

several caspase recognition sequences (Hu et al, 1993). Investigations into MCM proteins 

during apoptosis of proliferating cells revealed that MCM3 was cleaved early in apoptosis. 

It has been proposed that cleavage of MCM3 prevents untimely DNA replication during
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apoptosis (Schwab et al, 1998). Cleavage of a protein would alter the location of a protein 

on a 2-D gel which may be why the TaqMan results differed during involution.

The results obtained from IHC for both MCM proteins investigated generally had the same 

expression profile to each other and to all the other data obtained for MCM3. The MCM 

antibodies appeared to stain only epithelial cells, and because of their involvement in cell 

replication the staining obtained by IHC for MCM2 and MCM3 was compared to the Ki67 

proliferation marker. The MCM antibodies stained a higher proportion of luminal epithelial 

cells than the Ki67 antibody, as has been demonstrated in human breast tissue (Stoeber et 

al, 2001). One suggested theory for this is that the MCM proteins are expressed in cells 

which have proliferative potential as well as in actively proliferating cells (Stoeber et al, 

2001). MCM proteins have therefore been investigated as potential prognostic markers for 

breast cancer. These proteins may be useful to assess proliferation in the mouse mammary 

gland as it is thought that Ki67 provides a limited assessment of the cell cycle state.

No conclusion was made about the correct identity of MCI 46330 and further 

investigations are needed to access the fumarate hydratase annotation.

5.4.7 Expression and localisation of annexin A2 in mammary gland development

The patterns of expression of annexin A2 determined by western blotting, TaqMan and 

microarray analyses all complimented each other. However, the results did not confirm the 

proteomic data. There are a number of possible explanations for this. Firstly annexin A2 

clustered with two keratin isoforms and malate dehydrogenase. No investigations were 

performed to exclude these annotations, as the identity to MCI 48474 and therefore 

annexin A2 may not be the correct one. Secondly, annexin A2 is phosphorylated within the 

amino-terminal region. Tyr-23 is phosphorylated by v-Src (Glenney, 1985) and Ser-25 is 

phosphorylated by protein kinase C (Gould et al, 1984). Two isoforms of annexin A2 

were determined from the developmental and TEB databases which probably have 

different states of phosphorylation due to their differing pi values. It is therefore also 

plausible that, if the correct identification of MCI 48474 was annexin A2, a change in its 

phosphorylation state during mammary gland development would result in a different 

proteomic expression profile when compared to a western blot. 1-D western blots do not 

distinguish between different phosphorylation changes in the way that 2-D gels can and 

this has been demonstrated with annexin A2 in this Chapter.

160



A 2-D western blot of annexin A2 revealed the typical pattern changes seen by a 

modification in the phosphorylation state of a protein. However the reproducibility of the 

results was questionable, since variations between duplicate samples could be seen. 

Immobilised pH gradient gels used have superior resolution and reproducibility compared 

to past techniques performed with tube gels and ampholytes. Reproducibility in tube gels 

was difficult to achieve due to cathodic drift and fragility of the gels. However, optimising 

the focusing conditions may have improved the reproducibility of the gels. The images 

produced with mini 2-D gels were sufficient to demonstrate the effect of protein 

phosphorylation changes and therefore no further investigations were performed.

The results obtained for annexin A2 confirmed previous data concerning the distribution of 

this protein in the mammary gland during pregnancy and lactation, and provided additional 

information for involution. However the altered levels of expression between different cell 

types, and changes in expression during mammary development, have not previously been 

reported. Annexin A2 localised to stromal, myoepithelial and epithelial cells of the 

mammary gland. Staining in the epithelial cells was not identified until a higher 

concentration of antibody was used. The altering level of expression of annexin A2 may 

have resulted from the altering ratio of epithelial to stromal cells during development. In 

relative terms there appears to be less stroma during pregnancy and lactation, and more 

during mid to late involution. However, the IHC results showed a clear decrease in  ̂

intensity per cell during pregnancy and lactation and an increase during involution.

As previously mentioned, conflicting results have been published on the expression of 

annexin A2 in the mammary gland. Annexin A2 is reported to play a role in DNA 

synthesis and proliferation (Jindal and Vishwanatha, 1990; Jindal et al, 1991; Kumble and 

Vishwanatha, 1991) however, annexin A2 is not expressed in the highly proliferative cap 

cells of the TEBs (Schwartz-Albiez et al, 1993). The results in this study found very few 

TEBs stained with the annexin A2 antibody. In addition, unless a high concentration of 

antibody was used, annexin A2 was not detectable in the epithelial and myoepithelial cells 

during the proliferative phase of pregnancy. Annexin A2 was highly expressed in the 

stroma in the virginal and early pregnant gland, and numerous studies have demonstrated 

the importance of the stroma during pregnancy and involution in mammary gland 

development (Neville et al, 1998; Elias et al, 1973). Previous investigations have shovm 

that annexin A2 binds to tPA which has a role degrading ECM proteins (Hajjar et al, 

1994; Mignatti et al, 1986). A tentative explanation for its role in early pregnancy is that
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annexin A2 is initially required for remodelling of the ECM during this early proliferative 

phase of development.

As the IHC data demonstrated different cell staining patterns with different antibody 

dilutions, it was thought that the discrepancies between previous reports may have been 

due to the concentration of the antibody being used. It is important to determine the 

appropriate dilution of an antibody since changes in expression of a protein may be masked 

with low dilutions. This may have been the case with previous annexin A2 breast tissue 

and cancer studies. Therefore, careful analysis of the expression of annexin A2 in human 

breast and a range of benign and malignant breast diseases was performed.

5.4.8 Expression of annexin A2 in breast tissue

In the normal breast, annexin A2 was differentially expressed in stromal and myoepithelial 

cells, compared with the luminal cells. The luminal cells were rarely positive when a 1:100 

dilution of antibody was used. Differential staining was observed between the basal 

(myoepithelial cells) versus luminal cells in the benign breast lesions. In the in situ breast 

cancer cases (LCIS and DCIS) annexin A2 was up-regulated in the tumour cells. This was 

also seen in the majority of the infiltrating carcinomas (lobular and ductal).

This pilot study was performed on a limited number of samples, and statistical analysis 

showed that the up-regulation of annexin A2 was independent of the grade of tumour. 

However, further investigations on a larger number of samples may show significance 

between staining intensity of annexin A2 and tumour grade. A more extensive study linked 

to clinical outcome is necessary to assess whether the up-regulation of annexin A2 is 

related to any clinico-pathological correlates such as survival and metastatic spread.

A theoretical consideration for annexin A2 being over-expressed in breast cancer, may be 

linked to this protein being a cell surface receptor to the t-PA and plasminogen 

(Hajjar et al, 1994). The plasminogen proteolytic system plays a key role in tumour cell 

invasion through its interaction with secreted proteases (Mignatti et al, 1986). In addition 

to its role in degrading ECM proteins, plasmin can activate several latent metalloproteases 

relevant for malignant cell invasion (He et al, 1989; Knauper et al, 1996). However, the 

invasive process of t-PA is not completely clear, and the precise functions of annexin A2 

are unknown. A possible explanation for the over expression of annexin A2 in several 

tumour types could be related to it binding to t-PA, which is important in tumour invasion.
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5.4.9 Hypothetical and unique protein annotations

No further information was acquired for the hypothetical and unique proteins of interest. 

Reasons for not finding these sequences in the various databases may be (1) due to 

different isoforms being present because of alternative splicing, (2) the sequence has not 

been predicted or (3) it is missing in the genome. If these peptide sequences had matched 

to a protein based on the assumption that sequence domains reflect functional aspects of a 

protein, it may have been possible to predict the functions of these annotations by sequence 

similarity comparisons. This could have been achieved using the SWISS-PROT database 

and BLAST searches (NCBI, http://www.ncbi.nlm.nih.gov). However, there can be errors 

with computational predictions necessitating experimental evidence to ascertain their 

biological role.

In conclusion, the major limitation of following-up the proteomic data was the lack of 

specific antibody resources with which to both identify individual proteins and also to 

distinguish between potential isoforms. The discrepancies which were found with the 

follow-up experiments could be due to PTMs. The annexin A2 2-D gel western blot 

demonstrates the problem caused in proteomics by a shift in protein phosphorylation state. 

If PTMs had been determined at the mass spectrometry stage of this proteomic project, it 

would have aided the subsequent follow-up studies of candidate proteins. It is possible to 

detect PTMs by mass spectrometry. However, this requires a larger sample size, greater 

time, expertise and expense. Therefore, for these reasons this additional analysis was not 

performed in this study.

Despite the lack of specific resources available to confirm the proteomic results, some of 

the candidate annotations displayed interesting expression profiles across mammary gland 

development and it would be interesting to determine their precise role in this field of 

research.

Chapter 6 presents data on MCIs which were reanalysed by mass spectrometry at the 

University of Glasgow in July 2003. These MCIs had previously been analysed at Oxford 

GlycoSciences in October 2001 and 2002, and no protein annotations had been identified. 

MCIs were selected for reanalysis based on their proteomic expression profiles across 

mammary gland development.
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Chapter 6

Reanalysis of selected MCIs by mass spectrometry
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6.1 Summary

This Chapter describes the reanalysis of selected MCIs which been analysed by mass 

spectrometry at Oxford GlycoSciences but had revealed no protein annotation. Twenty 

eight MCIs were chosen for reanalysis by mass spectrometry from the developmental and 

Lactation/Involution databases. The majority of MCIs selected from the developmental 

database for reanalysis had present calls in more than one stage of pregnancy. MCIs which 

were chosen for reanalysis from the Lactation/Involution database were selected on the 

basis of their pattern of expression after expanding the profile to the rest of the 

developmental stages. Included in the selection were the hypothetical protein MCI 48838 

and the unique identification MCI 46776.

Fourteen MCIs out of 28 which previously had no annotations identified by the first round 

of sequence database searches at Oxford GlycoSciences now had an identification after 

reanalysis by mass spectrometry at the University of Glasgow. The second sequence 

database search performed by Oxford GlycoSciences, provided additional annotated 

information on all MCIs investigated by mass spectrometry (see Chapter 4 Tables 4.1 and 

4.2). This data provided a direct comparison to the results produced by the University of 

Glasgow. In most cases the data was complimentary.

Prioritising the newly acquired data was necessary due to time constrictions, and therefore 

only one of these annotations was followed up, namely Transcription factor BTF3 (BTF3).
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6.2 Introduction

Twenty eight MCIs were reanalysed by mass spectrometry in an attempt to determine a 

protein annotation. The first MCIs had been selected at Oxford GlycoSciences based on a 

presence/absence assessment at specific stages in development. Although this was an 

absolute change it did not yield results which were readily confirmed. The discrepancy 

found between the proteomics data and follow-up experiments was mainly attributed to 

PTMs. Additionally, proteomics is able to identify specific protein isoforms whereas the 

follow-up techniques used only identified total protein or mRNA levels. A 

presence/absence assessment could not have avoided these modifications, but choosing 

MCIs based on their expression pattern across development would perhaps minimise their 

selection. Reanalysis of 28 MCIs based on their expression pattern, introduced new protein 

annotations to the existing data. One particular annotation is the main focus of this 

Chapter.

The initiation of gene transcription by RNA polymerase II requires the assembly of a 

number of promoter elements which bind to the polymerase in a multiprotein complex 

(Sawadogo and Sentenac, 1990; Greenblatt, 1991; Drapkin et al, 1993). BTF3 associates 

with RNA polymerase II, although its function remains unclear. BTF3 was first purified in 

HeLa cells (Zheng et al, 1987) and two isoforms BTF3a and BTF3b originate from a 

single gene as a result of alternative splicing (Zheng et al, 1990; Kanno et al, 1992). 

BTF3b encodes a shorter protein which lacks the first 44 N-terminal amino acid residues of 

BTF3a and, despite its ability to bind to RNA polymerase II, it is transcriptionally inactive. 

BTF3 is a 27 kDa protein, and is not abundantly expressed in cells.

A 2-D gel study investigating changes in protein patterns between apoptotic and non- 

apoptotic human Burkitt lymphoma cells identified BTF3. The protein feature on the 

2-D gel identified as BTF3 revealed a decrease in intensity in the apoptotic compared with 

non-apoptotic cells, although further investigations were needed to differentiate between 

(a) and (b) isoforms. The report concluded that BTF3 had been identified as an apoptotic 

associated protein (Brockstedt et al, 1999).

BTF3 was selected for further follow-up work because of its apparent developmental 

regulation in the mammary gland which was displayed by its proteomic expression profile.
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6.3 Results

6.3.1 Reanalysis of unidentified MCIs by mass spectrometry

Similar to the initial mass spectrometry analysis performed at Oxford GlycoSciences, cuts 

were taken from the gel containing the most abundant amount of the MCI of interest. 

Reanalysis of selected MCIs was performed by the Sir Henry Wellcome Functional 

Genomics Facility (SHWFGF) at the University of Glasgow. After tryptic digestion, the 

samples were analysed by nano-LC electrospray tandem mass spectrometry. Tandem mass 

spectrometry was performed on QStar Pulsar i (Applied Biosystems) after having 

separated the tryptic peptides by reversed phase (PepMap C l8 column) liquid 

chromatography on an LG Packings Ultimate LC system (Dionex) directly interfaced to the 

Qstar via a nanoflow source (Protana) in order to maximise sensitivity. The data obtained 

from mass spectrometry were used to search publicly available sequence databases using 

an in-house Mascot (Matrix Science) search engine to determine the protein identifications 

of the MCIs analysed.

Mascot calculates the probability of the peptide match being a random event. Mascot 

scores above 59 are significant (p<0.05), although this value produces a relatively high 

error rate. Therefore in this study protein annotations were only counted as valid if the 

Mascot score was above 99 with at least two peptides matched to the annotation, each with 

significant scores.

6.3.2 Protein annotations identified

The annotated MCI results obtained by SHWFGF are listed in Tables 6.1 and 6.2. These 

tables list the protein annotations according to the databases from which they were chosen 

and from their general function respectively. The majority of the annotations identified 

have been classified as ME/MP (Table 6.2). Four newly identified annotations were 

determined from the developmental database. All were selected for reanalysis by mass 

spectrometry due to their presence in several stages of pregnancy, indicating a possible role 

during this phase of development. Histone H2A and membrane associated progesterone 

receptor component have been classed under 'other', and keratin 5 and actin as cytoskeletal 

proteins. No cytoskeletal proteins were identified from MCIs taken from the 

Lactation/Involution database.

The remaining 10 annotations were identified from the Lactation/Involution database. 

However, not all the MCIs chosen produced novel identifications to the project due to the 

second update by Oxford GlycoSciences. Although this second update was performed in
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Table 6.1 Annotations identified after reanalysis of MCIs by mass spectrometry

M C I Reanalysed annotation OGS annotation
Selection from developmental database

48877 Histone H2A N o ID

49022 Keratin 5 N o ID

49048 Actin N o ID

50090 Membrane associated progesterone receptor 
component 1 N o ID

Selection from expanded Lactation/Involution database

48199 Transcription factor BTF3 (RNA polymerase 
B transcription factor 3) No ID

45878 Glycerol-3 -phosphate dehydrogenase

Cluster 1: Glycerol phosphate dehydrogenase 1, 
mitochondrial 

Cluster 2: Signaling lymphocytic activation 
molecule 

Cluster 3: Keratin 6b

46790 2,4-dienoyl CoA reductase No ID

46820
Cluster 1 ; 3-hydroxyisobutyrate 

dehydrogenase,
Cluster 2: Proteasome subunit, alpha type 1

Cluster 1: Similar to 3-hydroxyisobutyrate 
dehydrogenase 

Cluster 2: Proteasome subunit alpha type 1 
Cluster 3: Caspase-like apoptosis regulatory

47692 Oxoglutarate dehydrogenase Hypothetical 116.4 kDa

46380 Isocitrate dehydrogenase

Cluster 1; Isocitrate dehydrogenase cytoplasmic 
Cluster 2; Glutamate-ammonia ligase/Glutamine 

synthetase
Cluster 3; Acyl-CoA dehydrogenase, long-chain 

specific, mitochondrial 
Cluster 4: Multifimctional protein ADE2

46638

Cluster 1 : Aldose reductase 
Cluster 2; Annexin A2 
Cluster 3: Polymerase delta interacting 

protein 38

Aldose reductase

48527 Glutathione transferase Crystal structure o f  the Arf-Gap domain and 
ankyrin repeats o f  Papbeta

47752 Cluster 1 : Elongation factor 2
Cluster 2: Muscle glycogen phosphorylase

Cluster 1; Elongation factor 2 
Cluster 2: AK025781 cDNA

47953 Cluster 1: Glycerol kinase 
Cluster 2: Serum albumin precursor

Cluster 1: Serum albumin 
Cluster 2; Tubulin alpha chain 
Cluster 3: Glycerol kinase

The annotated information o f  each MCI was identified using Mascot (Matrix Science) which interrogated the 
public sequence databases. The table shows the annotations determined by the proteomics unit and Oxford 
GlycoSciences. MCIs are ordered according to the databases that they were determined from in Chapter 4 
(see Tables 4.1 and 4.2).
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Table 6.2 Functional classification of reanalysed MCIs

MCI Protein Annotation Database

Cytoskeletal proteins

49022 Keratin 5 Developmental

49028 Actin Developmental

Metabolic enzymes and mitochondrial proteins (ME/MP)

47953 Cluster: Glycerol kinase Lactation/Involution

45878 Glycerol-3-phosphate dehydrogenase Lactation/Involution

46790 2,4-dienoyl CoA reductase Lactation/Involution

47692 Oxoglutarate dehydrogenase Lactation/Involution

46380 Isocitrate dehydrogenase cytoplasmic Lactation/Involution

48527 Glutathione transferase Lactation/Involution

47752 Cluster: Muscle glycogen phosphorylase Lactation/Involution

46820 Cluster: 3-hydroxyisobutyrate dehydrogenase Lactation/Involution

46638 Cluster: Aldose reductase Lactation/Involution

Other

50090 Membrane associated progesterone receptor component 1 Developmental

48877 Histone H2A Developmental

46638 Cluster: Polymerase delta interacting protein 38 Lactation/Involution

Protein turnover

46820 Cluster: Proteasome subunit alpha type 1 Lactation/Involution

RNA processes

48199 Transcription factor BTF3 (RNA polymerase B transcription factor 3) Lactation/Involution

Serum proteins

47953 Cluster: Serum albumin Serum albumin precursor Lactation/Involution

Signalling proteins

46638 Cluster: Annexin A2 Lactation/Involution

47752 Cluster: Elongation factor 2 Lactation/Involution

The annotated information o f  each MCI was identified using Mascot (Matrix Science) which interrogated the 
public sequence databases. A ll annotations have been classed according to their general function. The classes 
are cytoskeletal protein (cytoskeletal), metabolic enzyme/mitochondrial protein (ME/MP), other, protein 
turnover, RNA processes, serum protein, and signalling protein (signalling).
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October 2002, the data was not released until after the analysis had been completed at 

SHWFGF. Two of the 10 MCIs had no previous annotations identified by Oxford 

GlycoSciences. Eight of these MCIs had identified annotations both at Oxford 

GlycoSciences and SHWFGF, the majority of which were complimentary (Table 6.1).

6.3.3 Increased expression during pregnancy

Expanding the proteomic expression profile of MCI 48199 revealed an increase in 

expression from AvlO to P I7.5 and a subsequent decrease for the remaining stages of 

development (Figure 6.1 A). This MCI was selected as a priority, firstly because of its 

interesting expression profile which could indicate it having a regulatory role during 

pregnancy and secondly, because the triplicate values for each stage of development were 

very close to each other and showed a distinct and similar profile across development. The 

identification of this MCI was transcription factor BTF3 and is the only annotation classed 

under RNA processes (Table 6.2). No previous identification was made at Oxford 

GlycoSciences.

The other annotation which had not been identified at Oxford GlycoSciences was 2,4- 

dienoyl CoA reductase (MCI 46790). Figure 6.IB shows its expanded proteomic 

expression profile. This MCI had been selected for reanalysis, as its expression had peaked 

early in pregnancy, and only increased again mid involution. This was also the reason for 

selecting MCI 45878 and 46820 (Figures 6.1C and D). Both mass spectrometry analyses 

determined MCI 45878 as glycerol phosphate dehydrogenase however, Oxford 

GlycoSciences had identified it as a cluster (Table 6.1). MCI 46820 was identified as a 

cluster by Oxford GlycoSciences and the SHWFGF although the number of armotations in 

the cluster differed. The SHWFGF identified this MCI as 3-hydroxyisobutyrate 

dehydrogenase and a proteasome subunit.

6.3.4 Decreased expression from pregnancy to lactation

The expanded profiles of the following five MCIs all appeared to decrease in expression 

from AvlO through to mid involution, and following mid involution an increase was 

observed. This was true for all except MCI 47692 which only showed an increase in 

expression during the latter stages of involution (Figure 6. IE). MCI 47692 was identified 

as a single annotation oxoglutarate dehydrogenase, although this differed to the result 

obtained by Oxford GlycoSciences (Table 6.1). MCI 46242 revealed no armotation by the 

SHWFGF but MCI 46380 revealed a single identification, namely isocitrate 

dehydrogenase (Figure 6.IF). Oxford GlycoSciences also determined the same annotation
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Figure 6.1 (A-D) Expanded proteomic expression profiles. These MCIs were selected 
for reanalysis by mass spectrometry based on their expression profiles across development. 
Expression levels are represented as the percentage volume of the MCI.
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Figure 6.1 continued (E-H) Expanded proteomic expression profiles. These MCIs were 
selected for reanalysis by mass spectrometry based on their expression profiles across 
development. Expression levels are represented as the percentage volume of the MCI.
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Figure 6.1 continued (I-J) Expanded proteomic expression profiles. These MCIs were 
selected for reanalysis by mass spectrometry based on their expression profiles across 
development. Expression levels are represented as the percentage volume of the MCI.
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although it had more than one annotation. The reverse was true for MCI 46638 (Figure 

6.1G) as three annotations were determined by the SHWFGF (aldose reductase, annexin 

A2 and a polymerase interacting protein) and a single cluster was determined by Oxford 

GlycoSciences (aldose reductase). MCI 48527 (Figure 6.1H) was identified as glutathione 

transferase by SHWFGF which differed to the annotation determined by Oxford 

GlycoSciences.

6.3.5 Altered expression during mammary development

The final two MCIs were identified as cluster annotations by the SHWFGF. The two 

annotations for MCI 47752 were elongation factor 2 and glycogen phosphorylase. 

Elongation factor 2 had also been found by Oxford GlycoSciences. This MCI had been 

selected because the expanded profile showed a general increase in expression from AvlO 

to L7 and down-regulation thereafter (Figure 6.11). MCI 47953 was identified as glycerol 

kinase and serum albumin, and were classed under ME/MP and serum proteins 

respectively. Both annotations were also found by Oxford GlycoSciences. This MCI had 

originally been selected due to its presence during lactation and early to mid involution 

(Figure 6.1J).

Two of the MCIs selected for reanalysis were identified by Oxford GlycoSciences but not 

by the SHWFGF, these were MCI 46242 and 50787.

6.3.6 RT-PCR analysis of BTF3 in the mammary gland

BTF3a was of primary interest as this was the isoform that was transcriptionally active. 

However, the spectral data obtained for BTF3 did not distinguish between BTF3a or b 

because the two peptide sequences matching to this protein (V Q A SL A A N T F T IT G H A E T K  

and Q L T E M L P S IL N Q L G A D S L T SL R R ) were common to both isoforms. An antibody for 

BTF3 was obtained from Santa Cruz for western blotting but unfortunately it did not detect 

this protein in the mammary gland samples or in positive control tissue, and therefore RNA 

experiments were used for confirmation of the proteomics results. To ensure that BTF3 

was expressed in the mammary gland, non-quantitative RT-PCR analysis was carried out 

using one stage of mammary gland development (Figure 6.2). Primers were designed to 

amplify BTF3a. Primers could not be designed to detect only BTF3b because all of 

BTF3b's sequence was present in BTF3a. However, primers were designed in a region 

common to both isoforms (BTF3ab). HeLa cells and kidney cDNA were used as positive 

controls, and automated sequencing at the MBSU confirmed that the amplified products 

from the controls and mammary gland samples were BTF3a and BTF3ab. The experiment
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Figure 6.2 RT-PCR analysis of BTF3. Analysis was carried out with gene-specific 
intron-spanning primers for BTF3a and BTF3ab. cDNA was used as template. The 
expected product size for BTF3a was 491 bp and 233 bp for BTF3ab.
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Figure 6.3 Expression profiles of BTF3 during mouse mammary gland development.
The expression profile of BTF3a (A) and BTF3ab (B) produced by TaqMan analysis. 
TaqMan results are presented as fold change relative to a stage within the set of samples 
tested.
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indicates that BTF3b is expressed, as the intensity of the product for BTF3ab is greater 

than BTF3a alone. The sequence of BTF3a has not previously been isolated in the mouse, 

and primers were designed from a predicted sequence. See Table 6.3 for primer sequences.

Table 6.3 Primer sequences used for BTF3

Name Sequence 5’ 3' Application

BTF3a forward CCACCCAGGCGGACTCTC RT-PCR analysis of 
BTF3aBTF3a reverse ATTGTTTGGGCAGAGCTTC

BTF3ab forward GGGTGAACAACATCTCTGG RT-PCR analysis of 
BTF3abBTF3ab reverse ATTGTTTGGGCAGAGCTTC

BTF3ab forward CATTGGTGGGAAAGGAACTG Northern blot 
analysis BTF3abBTF3ab reverse ATTGTTTGGGCAGAGCTTC

6.3.7 TaqMan analysis of BTF3 in mammary gland development

To quantify the expression of BTF3a and BTF3ab across mammary gland development, 

TaqMan analysis was performed (Figure 6.3). Appendix 4 shows the primer and probe 

sequences used for TaqMan analysis of BTF3. As with the previous results obtained by 

TaqMan the data is presented as relative fold change to a reference sample. The results of 

the BTF3a (Figure 6.3A) experiment were very similar to the expanded proteomic profile 

(Figure 6.1 A). The expression profile obtained from the primers which identified both 

BTF3a and BTF3b (i.e. BTF3ab) (Figure 6.3B), again indicates that BTF3b is expressed as 

the profile is different to BTF3a. The comparison of the BTF3a and BTF3ab TaqMan 

profiles suggest that the proteomic annotation was BTF3a and not BTF3b.

6.3.8 Northern blot analysis of BTF3 in mammary gland development

In order to confirm these results and to determine the transcript sizes of BTF3a and b in the 

mouse, northern blot analysis was performed. The probe was designed within the 

homologous region of the two isoforms and would distinguish between the two because of 

their differing size. A previous report had published that BTF3a and b differed by 

approximately 750 bp. The precise size of the first exon was not known and therefore only 

an approximation can be given (Kanno et al, 1992). The intron-spanning probe used for 

northern blotting was 329 bp in length, see table 6.3 for primers used to design the probe. 

Automated sequencing at the MBSU confirmed that the probe was BTF3ab. Northern 

blotting revealed only one signal at 1.25 kb which is consistent with the size previously 

published for BTF3a by Kanno et al in 1992 (Figure 6.4). No signal was identified for 

BTF3b. Overall the northern blot expression profile shows that BTF3a has a higher

176



BTF3a 1.25 kb

P-actin

6.4 Northern blot analysis of BTF3a across mammary gland development. Total RNA 
was probed with cDNA of BTF3ab. This probe did not distinguish between the two 
isoforms of this gene although only a single band at 1.25 kb was produced which appears 
to be BTF3a. The blot was subsequently probed with cDNA for p-aetin for load 
verifieation.
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expression level in pregnancy compared with the other stages analysed. Slight 

discrepancies can be seen between the northern blot and TaqMan analysis profiles for 

BTF3a. This may be as a result of this gene being expressed in low levels, which can lead 

to inaccuracies. Alternatively, equal transfer was not achieved across the northern blot 

membrane.

In summary the results obtained for BTF3 indicate that the proteomic expression profile 

for BTF3 is in fact BTF3a. The data generated from the different experiments performed 

for BTF3a show that its expression peaks during pregnancy.

6.4 Discussion

6.4.1 Additional MCI annotations

The second round of mass spectrometry analysis revealed 14 MCIs with protein 

identifications. Six of these MCIs had no previously annotated data. Some of the 

annotations identified had not been detected before in this project which included histone 

H2A, keratin 5 and membrane associated progesterone receptor. Histone H2A was found 

in several stages of pregnancy. A change in its expression may be caused by an increase in 

the number of proliferating cells or reorganisation of the chromatin structure associated 

with altered transcriptional activities (Jeong et al, 2004). Actin and keratin 5 were found 

in multiple stages of pregnancy and although these MCIs were selected based on presence 

rather than expression level, the expectation would be that the relative amounts of these 

proteins would increase with the increasing number of epithelial cells during pregnancy. 

Membrane associated progesterone receptor was detected in multiple stages of pregnancy 

which would appear appropriate with respect to its function. Progesterone receptor plays a 

role in mediating the physiological effects of progesterone, a hormone which plays an 

essential role in establishing and maintaining pregnancy (Atwood et al, 2000; Ichinose and 

Nandi, 1966). Finally annexin A2 had not previously been linked to MCI 46638. Although 

it was a clustering protein, its expanded expression profile (Figure 6.1G) was the same as 

that identified by TaqMan and microarray analysis in Chapter 5 (Figure 5.12). This 

supports the theory that different isoforms of annexin A2 are present in the mammary 

gland.

6.4.2 Identification of BTF3 in mammary gland development

BTF3 was the most interesting annotation out of all those detected by the second round of 

mass spectrometry and was selected for follow-up for several reasons. BTF3 is down 

regulated during apoptosis (Brockstedt et al, 1999), and this agreed with the down
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regulation in involution on the mammary gland development proteomic expression profile, 

BTF3 may also have an effect on transcription of the oestrogen receptor which plays an 

important clinical role in breast cancer treatment (el-Tanani and Green, 1998). BTF3 had 

not previously been identified in this project, but the triplicate values obtained for each 

stage were very close and displayed a distinct regulatory role in pregnancy.

Transcription factors play important roles in mammary gland development such as the 

signal transduction and activation of transcription 3 (Stat3) transcription factor which is 

essential during involution (Chapman et al, 1999). Transcription factors have also been 

shown to be important during alveolar expansion and differentiation of the mammary 

gland. A greater understanding of how transcription factors regulate epithelial proliferation 

and differentiation, requires the identification of downstream target genes.

In conclusion, the data that has been generated in this Chapter suggests that BTF3a is 

regulated during mouse mammary gland development, a result not previously reported. 

Specifically, the experiments performed for BTF3a show that its expression peaks during 

pregnancy. It would appear that like other transcription factors (Chapman et al, 1999), 

BTF3a may be important during alveolar expansion and differentiation. Further analyses of 

BTF3a are required to determine its distinct role in mammary gland development.
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Chapter 7 

Further discussion
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7.1 Further discussion and future work

Proteomics was used as a method for determining differentially expressed proteins during 

mammary gland development. Chapter 4 described the generation of the two databases 

created from the mouse mammary gland proteomes. Two databases had to be formed due 

to the large presence of milk proteins in the lactation and early involution samples. The use 

of columns to remove these milk proteins from the samples had been considered during 

their preparation for 2-D gel electrophoresis, however it was decided not to use them. This 

decision was made based primarily on the preservation of the protein sample and the desire 

to create a proteomic database which captured the in vivo situation of the mammary gland 

and not a database from a 'manipulated' sample preparation.

7.1.1 Open access proteomics

Although 169 MCIs had been selected for mass spectrometry analysis in Chapter 4, only 

83 revealed annotated information after the second round of sequence database searches. 

The annotated data acquired by mass spectrometry is dependent on the sequence databases 

searched. Due to the sequence similarities shared between different species, the mouse, rat 

and human sequence databases were interrogated in this project. This increased the number 

of annotated hits obtained, since at the time of this study, the human genome sequence was 

more complete than the mouse genome. The more recent release of the mouse genome will 

be of great benefit to future mass spectrometry based proteomic projects. The effect of the 

increasing amounts of genome sequence data becoming available was demonstrated in this 

project by the additional number of MCIs found with annotated information after the 

second round of sequence database searches. Owing to the costs incurred and the time 

taken to identify annotations from 2-D gels there is a need to corroborate proteomic data in 

order that duplication of results can be avoided. Propagation of data from different 

databases was already used at Oxford GlycoSciences but a more open access facility to 

other proteomic data would result in faster and cheaper advances in proteomics.

7.1.2 e-Science

Although not used in this project, one step further than propagation is the use of e-Science, 

which hopes to capture global collaboration in key areas of science. Already many areas of 

science are reliant on collaboration and multidisciplinary work. e-Science is a vision which 

if successful will enable different communities to collaborate and create a robust, flexible, 

secure, co-ordinated resource-sharing organisation to approach complex problems with a 

wide variety of distributed resources. Global collaborations enabled by the internet will 

require access to a wide range of data collections, computing resources, control facilities
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and tools for visualisation, data mining and analysis. Its application will be a significant 

development to collaborative science and to proteomics (Hey and Trefethen, 2003).

7.1.3 Resources available for confirmation of proteomic results

Chapter 5 was based on experiments performed to validate the proteomics results obtained 

in Chapter 4. Unfortunately for many of the candidate proteins selected the proteomics 

results were not confirmed. This was attributed to PTMs, as discussed in Chapter 5, as this 

project did not search for these alterations. The proteomic profiles of well known proteins 

in mammary gland development such as p-casein did not show typical expression profiles. 

It is known that proteomics is capable of detecting different isoforms of the protein 

detected and that the traditional methods used to determine their expression profiles such 

as IHC cannot differentiate between them, unless specific antibodies are created to do so.

In hindsight, basing MCI selection on pattern changes across development (as 

demonstrated in Chapter 6) rather than an absolute change of presence/absence as was 

chosen in Chapter 4 proved to be a better method of analysis. The follow-up results 

obtained for BTF3 in Chapter 6 were able to confirm the proteomics results, whereas the 

majority of follow-up work based on presence/absence was not. Using pattern changes of 

an MCI across development provided a better understanding of the MCI's involvement in 

mammary gland development.

2-D gel electrophoresis is a technique which is able to separate different isoforms of 

proteins which are then identified by the sensitive technique of mass spectrometry. Equally 

important is confirmation of these results; however, the lack of suitable antibodies which 

are specific to these isoforms hinders this sophisticated technique. This has been the case 

in this project with annexin A2, as the antibodies available did not distinguish between 

phosphorylated and non-phosphorylated annexin A2. There is a high demand for antibody 

collections which are specific to different isoforms and readily available to improve the 

speed of confirmation of results. An alternative approach would be to 'tag' the proteins of 

interest with a sequence which is easily recognised by an antibody specific to the tag.

Due to the lack of antibody resources available mRNA expression profiles were turned to 

for distinguishing between clustered proteins. Microarray and TaqMan data were used, 

although there are known discrepancies between mRNA and protein expression. Generally 

where mRNA and western blotting expression profiles were available for the same gene, 

the data concurred.
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7.1.4 Microarrays and Proteomics

Over the past few years the improvements made to microarrays has developed them into a 

valuable tool for understanding gene expression. Their use in identifying pathways and 

cellular processes has been demonstrated numerous times in the mammary gland (Stein et 

al, 2004; Clarkson et al, 2004; Master et al, 2002). Whilst proteomics could potentially 

analyse all proteins revealed from a proteome image, this would require huge financial 

resources and time. In reality as with this project a limited number of protein annotations 

are analysed which have been chosen due to the specific conditions set. Also the results of 

each protein identification are not produced simultaneously as with microarray profiling. A 

clear advantage of proteomics over microarrays is that it studies proteins, the level where 

most regulatory processes take place and where most drug targets are found.

7.1.5 Protein arrays

Protein arrays are another alternative approach to analysing the mouse mammary gland 

proteome. This system allows high-throughput analysis of protein-protein, protein- 

substrate and protein-small molecule interactions to be detected (Zhu et al, 2000, 

MacBeath and Schreiber 2000). However, a major disadvantage of this technology is the 

long development times and labour intensive nature of the process. Conversely array 

technologies are advantageous due to smaller sample volumes, efficient analysis and high- 

throughput.

7.1.6 Complex protein samples

The samples analysed by 2-D gel electrophoresis were of whole protein extracts. The 

development of the extraction technique used was described in Chapter 3 and has the 

advantage of being a quick and reproducible sample preparation technique. In theory 2-D 

gel electrophoresis of whole tissue protein extracts provides a complete overview of all the 

proteins in the sample, based on protein feature patterns. Attention has now been turned to 

reducing the complexity of tissue samples prior to analysis in order to detect low abundant 

proteins which would otherwise be masked by those that are highly abundant. Most 

regulatory proteins such as phosphatases and kinases exist in low copy numbers but are 

very specific to subcellular localisation. Due to the low resolution of protein separation 

technologies currently used in proteomics, additional fragmentation steps are needed prior 

to 2-D gel electrophoresis and mass spectrometry. Prefractionation techniques such as 

subcellular organelle fractionation (Pasquali et al, 1999), affinity purification (Gavin et 

al, 2002) and zoom gels (Gorg et al, 2000) are processes which enrich the proteins in the
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separated fractions. Thus they improve the ability to investigate low abundant proteins 

such as those that are post-translationally modified. Focusing on certain compartments of 

the cell and restricting the focusing range of the mammary gland samples may have 

revealed a more comprehensive view of the regulatory processes of the mammary gland 

compared to the method that was used in this project.

Although proteomic technologies have made rapid progress in recent years, membrane 

proteins are still under-represented in datasets. Very few membrane proteins are resolved 

on 2-D gels due to their hydrophobic properties. Their key roles in signal transduction, cell 

adhesion and ion transport make it important to resolve this problem (Santoni et al, 2000). 

Also, membrane proteins are hugely important to the drug industry, as they represent a 

large percentage of pharmaceutical drug targets. Most refinements to improve their 

isolation have been directed at sample preparation such as preffactionation and enrichment 

techniques and solubilisation with organic solvents (Ferro et al, 2000; 2002). Advances in 

mass spectrometric methods to analyse proteins without the use of 2-D gels are being 

developed, such as ICAT labelling (Gygi et al, 1999a) and multidimensional protein 

identification technology (MudPIT) (Link et al, 1999) and have been applied to analysing 

membrane preparations.

Again these two techniques can be used to reduce the complexity of the samples analysed 

and are an alternative proteomic approach to interrogating the mammary gland without the 

use of 2-D gels. MudPIT separates complex peptide mixtures by multidimensional 

capillary chromatography and analyses them by the connecting ion trap mass spectrometer. 

However the reproducibility of this technique is unclear due to the limited number of 

studies performed by this technology. ICAT labelling has been described in the main 

introduction, but briefly it differentiates between two populations of proteins using probes 

which differ in their isotopic labelling. The limitation of this technique is the number of 

samples can be analysed. Therefore this technique would not be useful for differential 

analysis of mammary gland development, although ICAT labelling would be useful for 

analysing the switch from lactation to involution. In retrospect, limiting analysis to these 

two stages of development may have been more profitable in producing a comprehensive 

picture of the regulatory processes involved in this switch in development. The restricted 

number of MCIs for mass spectrometry analysis would have been concentrated on two 

stages, rather than using the same number across a wider range of samples, as was 

performed in this project.
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7.1.7 Functional assays

Due to the extensive confirmatory results carried out on the candidate proteins no 

functional assays were performed. The future direction of the project could have been in 

gene manipulation studies. If knockout mice had already been generated for these 

candidate proteins, then investigations could have been made into whether their deletion 

caused any defects in mammary gland morphogenesis. If none were available, then 

functional investigations would have focused on manipulating the gene of interest by 

reconstituting mammary gland development in tissue culture. When culturing EpH4 mouse 

mammary epithelial cells on matrigel complex (basement membrane) three-dimensional 

structures can be generated which resemble those formed during mammary gland 

development. This system represents the in vivo situation of the mammary gland more 

closely than 2-D tissue culture. Three-dimensional cultures are able to reproduce the 

morphogenic processes in the developing mammary gland, as branched tubules can form in 

the presence of hepatocyte growth factor/scatter factor and alveolar structures in the 

presence of neuregulin (Niemann et al, 1998). The matrigel system enables the 

investigation of signalling cascades that are activated by morphogenic factors such as ECM 

components. The interactions which are exchanged between stroma and epithelium play 

key roles in the different stages of development of the mammary gland. In summary, this 

system is a sophisticated method of gaining functional insights into the roles of proteins in 

mammary gland development before efforts are spent on manipulations in vivo.

7.1.8 Protein Interactions

Methods used to deduce protein function aim at identifying the proteins with which they 

interact, as they are generally involved in the same cellular processes. The yeast two- 

hybrid system and fluorescence resonance energy transfer (FRET) analysis are methods 

which are used to identify protein-protein interactions. These techniques could have 

produced important insights into role of the candidate proteins selected in mammary gland 

development.

In summary a number of different approaches and improvements have been described for 

analysing the mouse mammary gland proteome. This study has identified many protein 

annotations which are regulated in mammary gland development and has highlighted the 

necessity of identifying PTMs. For confirmation purposes, reagents which are specific to 

the isoforms detected need to be developed in order to create confidence in the results 

obtained. Subsequently investigations into the precise role of these proteins in mammary 

gland development can begin to be explored.
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Appendices

Appendix 1 : Buffers used for 2-D gel electrophoresis

2-D lysis buffer 4% (w/v) CHAPS 

8 M urea 

2 M thiourea 

65 mM DTT

0.8% (w/v) Resolytes 3.5-10 (Bio-Rad) 

trace bromophenol blue

Equilibration buffer

lOx Tris-glycine running buffer

Tris-glycine transfer buffer

per 100 ml of dHiO 

2% (w/v) SDS 

36 g Urea (6 M)

30% (v/v) glycerol 

2% (w/v) DTT 

5 ml Tris (50 mM) pH 6.8 

trace bromophenol blue

per 1000 ml of dH%0 

144 g glycine (1.92 M)

29 g Tris Base (250 mM)

1% (w/v) SDS

Ix buffer should be pH 8.3

per 1000 ml of dH2 0  

1.45 g Tris base (12 mM) 

7.2 g glycine (96 mM)

200 ml methanol
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Appendix 2: Buffers used for SDS-PAGE and western blot analysis

4x NuPage sample buffer per 10 ml of dH^O

0.42 M Tris-HCl, pH 6.8

8% (w/v) SDS

40% (w/v) glycerol

2.04 mM EDTA

0.88 mM SERVA® Blue G250

Ix buffer should be pH 8.5

20x MES-SDS Running Buffer per 500 ml of dH2 0

97.6 g MES (1 M) pH 7.2

60.6 g Tris base (1 M)

1% (w/v) SDS

3 g EDTA (20 mM)

Ix buffer should be pH 7.3

20 X Transfer Buffer

(Invitrogen)

per 125 ml of dH20 

10.2 g bicine (0.5 M)

13.1 g bis-tris (0.5 M)

0.75 g EDTA (3 mM)

0.025 g chlorobutanol (1 mM) 

Ix buffer should be pH 7.2

Ponceau S staining solution per 500 ml of dH20

1.5 g trichloroacetic acid 

0.5 g Ponceau S stain

IxPBS 137mMNaCl

2.7 mM KCl 

10 mM Na3P0 4  

2 mM KH2PO4, pH 7.3

From (Sambrook and Russell, 2001)
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Appendix 3: Solutions for formaldehyde gel and buffers used for 

Northern blot analysis

1% formaldehyde-agarose gel 147 ml DEPC dHzO 

2 g agarose 

20 ml lOx MOPS 

33 ml formaldehyde

RNA loading buffer 234 \i\ DEPC dHzO 

500 pi 50% (v/v) formamide 

166 pi formaldehyde (2.2M) 

100 pi IxMOPS 

(prepare fresh)

Sample loading dye 1 ml glycerol 

1 ml 1 Ox MOPS 

trace bromophenol blue

20x MOPS buffer per 500 ml DEPC dHiO 

41.9 g MOPS

6.8 g NaAc

2.6 g EDTA

Adjust to pH 7.0 with NaOH

20X SSC per 2 1 DEPC dHiO 

350.64 g NaCl (3M)

176.46 g CôHsOv trisodium citrate (0.3M)
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Appendix 4; TaqMan primer and probe sequences

Name F/R Sequence 5’ -> 3’ Probe 5’ -> 3’

Annexin II
F GCCTGGAGGGTGATCATTCTAC CCAAGTGCCTACGGGTCA

R CTCTCAGCATCGAAGTTGGTGTA GTCAAACC

Carboxylesterase
F TCCCGGCTGTGCTCTTGT TGGACACTCCAGCATCTC

R GGCGATACCGAAACTCATACATG TGAGGCTACG

Contrapsin
F TCACAGAAACCAAGAAACTGAGTGT

CCTTGTGGACCACCTG
R TGTGCCTGTCTCAGCCACAT

Fumarate F TCTTGGACAGGAATTCAGTGGTT TCACCATCGCATACTGGA

hydratase R TTGGCATGGCGGCTTT CTTGCTGAA

Lumican
F CTTGAAAAGTTTGATGTGAAGACCTT TCCTGGGACCACTGTCTT

R TGCCATCCAAGCGCAGAT ACTCCAAGATCA

MCM3
F ACCCTTACGACTTCAGTGAAGCA ACGCAGATGCCTCAAGTG

R CTCTTGGGAATCGTCAGTCTTTG CACACC

BTF3a
F AGCCGAGGACGGGAGTCT TTCTCCTGGTTCATGATT

R CACTTGTGCCTGCAGTTTGG GTTTCTTTCATCT

BTF3
F GGTGCAGACAGCCTGACTAGTTT TTGGGCAGAGCTTCAGCC

R GTGCTTTTCCATCCACAGATTG AGTCTCCT

GAPDH
F

R

ATGTGTCCGTCGTGGATCTGA

TCACCACCTTCTTGATGTCATCA

TGCCGCCTGGAGAAACCT
GCC

F/R refers to forward and reverse primers respectively.
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