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SUMMARY

This research study has been carried out to gain further 

insight into existing available testing methods for measuring a 

soil-reinforcement friction coefficient.

Previous research work pertaining to soil-reinforcement 

friction mobilization, including testing methods and the relative 

influences of different factors affecting the value of the soil- 

reinforcement friction coefficient has been reviewed.

Actual site material, strip and soil has been employed 

in this investigation. Shear tests on soil samples compacted 

at various densities using both direct shear and triaxial tests 

were carried out in order to develop a relationship between dry 

density and angle of internal friction. The relationships obtained 

using both testing methods were linear.

Friction tests on both smooth and ribbed reinforcing 

strip samples at varying density were performed using a shear box.

The results indicated a linear relationship between dry density 

and angle of skin friction for both types of reinforcement. On 

comparing the results of smooth and ribbed strips, it appeared 

that ribbed strip yielded a greater value of skin friction coefficient 

than smooth strip, both being lower at all densities than the 

coefficient internal friction of the soil alone. It was also noted 
that density had very little effect on the soil-reinforcement 

friction coefficient in the case of the smooth strip where as it 

had a significant influence in the case of the ribbed strip.
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The main part of the present investigation was a study 

of pull-out testing methods. For this purpose, an apparatus, at 

large scale, was constructed in which three series of tests 

were conducted. The first series of tests consisted of pulling 

the strip out and calculating the apparent friction coefficient.

In the second series of tests the strip together with the facing 

plate was pulled out at the same normal pressure range, as in 

the first series, in order to determine the effect of the testing 

method. The results showed that both pull-out testing methods 

in loose and dense soil gave higher value of apparent friction 

coefficient compared to the direct shear method and indicated a 

trend of decreasing apparent friction coefficient-with-increasing 

normal pressure. The dense soil yielded higher value of apparent 

friction coefficient than the loose soil. A decrease of 3.5° and 

4° in the values of angle of skin friction in the case of the dense 

and loose soil respectively was noticed when the facing plate was 

pulled out with the strip. The third series of tests was carried 

out using both testing methods and with density varying along the 

length of the strip in order to investigate the effect of density 

variation on the value of skin friction angle. The results showed 

that the apparent friction coefficient decreased with decreasing 

density along the length of the strip.

Besides the other researcher's conclusions that the 

direct shear method gives conservative values of soil-reinforcement 

friction coefficient and the pull-out test yields extremely high 

values which are believed to be due to dilatancy, arching, and 

undulations in the strip, the author has concluded that the testing/
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method and variation of density along the length of the strip 

have also an influence on the value of the soil-reinforcement 

friction coefficient. If all these factors were taken into 

account the angle of skin friction would be almost equal to the 

value of the angle of internal friction of soil, thus the author 
believes that the use of a high value of soil-reinforcement friction 

coefficient in design would be misleading, A further insight could 

be gained into the pull-out testing method by measuring the tensile 

force distribution and normal pressure distribution along the 

length of the strip.
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CHAPTER 1 

INTRODUCTION

Reinforced earth, as introduced by M.H, Vidal (57) is 

the incorporation of earth and reinforcing strips in such a way 

as to enhance the strength of a soil mass by the mobilization 

of friction between soil and reinforcement.

Reinforced earth has been used, since its innovation, 

in a variety of structures such as industrial structures (material 

processing and storage facilities, containment dykes for crude 

oil, liquefied natural gas storage and foundation slabs), hydraulic 

structures (sea walls, dams, tunnels, flood protection structures 

and sedimentation basins) and various forms of earth retaining 

structures. It is in this latter role that reinforced earth 

has been most widely applied, as McKittrick, D.P. (42) reported 

that over 3000 structures have been completed.

The construction of a reinforced earth retaining wall, 

fig.1.1̂ consists of alternating layers of compacted granular soil 

and reinforcing strips which are distributed at suitable 

horizontal and vertical intervals, with one end of the strips 

attached to the facing element.

General design procedures for earth retaining walls 

include the checking of interal and external stability. External 

stability of a reinforced earth wall is checked using conventional 
procedures. Internal stability requires checking against 

tension failure and adhesion failure. To design a reinforced 

earth retaining wall against the latter type of failure, a/
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REINFORCING STRIP

FACING ELEMENT

CONNECTION

BACKFILt M^1)E(^IAL

Fig.1.1. Schematic representation of major elements
of reinforced earth wall.
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knowledge of appropriate friction coefficient values between 

the reinforcement strip and the fill material is required.

The various ways in which different investigators have 

attempted to obtain these values are outlined below and cover 

the range from laboratory to full-scale testing.

Direct Shear test:

This test, fig. 1.2, consists of a shear box, one half 

of which is fitted with a sample of the reinforcement in such a 

way that the sample is flush with the top edges while the other 

half is filled with the soil. By shearing in a conventional 

manner, the peak shear is measured and the ratio of peak shear 

stress to applied normal stress is taken to be the value of 

skin friction coefficient.

Pull-out test

This test consists of withdrawing reinforcement from a soil 

mass and recording the pull-out force-displacement curve from 

which the peak pull-out force is taken as a measure of the skin 

friction coefficient. This test has been carried out by 

different investigators using several methods, e.g. pull-out test 

from shear box, model pull-out test, pull-out test on actual 

structure and pull-out test by rotation, as shown in fig, 1.3.

Model tests

From model tests to failure by reinforcement slippage, 

the soil-reinforcement friction coefficient has also been/
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calculated by taking the maximum strip tension as a maximum 

pull-out resistance.

Over the past few years, besides other aspects of reinforced 

earth, extensive research work on the complex mechanism of soil- 

reinforcement interaction has been carried out by investigators 

in various countries. This research has included the study of 

mobilization of friction and the relative influence of various 

factors affecting the value of soil-reinforcement friction 
coefficient,

The present investigation was aimed at gaining further 
insight into testing methods available for measuring the soil- 

reinforcement friction coefficient.

Scope of thesis

The findings into soil-reinforcement frictional behaviour 

reported from tests performed by different investigators using 

all existing available testing methods and the discussions on 

them held in various conferences have been reviewed.

The author has determined the strength of a fill material 

over a range of densities using both direct shear and triaxial 

tests. Friction tests on both ribbed and smooth steel 

reinforcement strips have been conducted in a shear box using 

fill material at varying densities. Pull-out tests were carried 

out using two different methods, strip pull-out (a conventional 

testing method) and strip-with-facing plate pull-out. The results 

obtained from these two testing methods were then compared in/
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order to observe the influence of the test method on the measured 

value of skin friction coefficient.

One series of tests was conducted in which the fill density 

was varied along the length of the strip and both methods of 

pull-out were used in order to determine the effect of density 

variation along the length of the strip on the skin friction 
coefficient.

Finally, the results are discussed in general, conclusions 
drawn, and future recommendations are presented.
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CHAPTER 2 

REVIEW OF INVESTIGATIONS INTO THE 

SQIL-REINFQRCEMENT FRICTION BEHAVIOUR 

OF REINFORCED EARTH SYSTEMS .

2.1 Introduction

Since the introduction of reinforced earth techniques, 
a great emphasis has been placed on the methods from which a 

realistic value of angle of skin friction can be measured.

Two types of test have normally been used in measuring 
the angle of skin friction, viz:

- Direct shear test

- Pull-out test

Model test results at failure have also been used by 

several investigators to measure an angle of skin friction.

The pull-out test is carried out under different conditions, 
as follows :

- Reinforcing strip pull-out tests 

from rig or shear box.

- Reinforcing strip pull-out tests from model, 
prototype and full scale reinforced earth 
wall and embankments.

- Reinforcing strip pull-out test from a 

rigid moving model wall.

- Reinforcing strip pull-out tests during 

vibrations - model and prototype.



- 9 -

In the following sections, the work pertaining to 

determination of friction angle between soil and reinforcement 

from both testing methods and from model tests carried out by 

different investigators will be reviewed.

2.2, Direct shear tests

Potyondy (45) first used the direct shear box to 

measure the angle of skin friction between various construction 

materials such as steel, wood and concrete and different type of 

soils .

When Vidal introduced the technique of reinforced 

earth, this method was proposed for measuring the angle of friction 

between soil and reinforcement and since then many investigators 

including Shen et al (53), Jones and Smith (32), Bacot et al (5 ), 

Al-Hussani and Perry (2 ), Ingold and Templeman (28) and Osman (44) 

have carried out tests on different strip materials, metallic and 

non-metallic to measure the angle of skin friction either for the 

use of design or for the comparison with pull-out test results.

Besides the general use of the shear box to derive a 

design parameter, some of the investigators have reported a large 

number of tests in which the influence of some factors^ such as 

roughness of strip, density, supporting medium to the strip^ and 

testing method^on the magnitude of angle of skin friction, and 

the strain pattern in the direct shear test have been investigated.

Schlosser and Vidal ( 52) performed a series of tests 

on samples of calcareous and leucate sand with smooth and roughened/
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reinforcements. The results of these tests are shown in fig,2.1. 

They concluded that the grooved strip gave higher values of angle 

of skin friction (close to the angle of internal friction of soil) 

than the smooth strip. Examination of the strips after shearing 

showed some striation marks on the smooth strip oriented in the 
direction of the displacement, evidence that sliding of soil 

particles along the strip had occurred. Examination of the 

roughened strip did not show such striations, evidence that 

sliding of soil particles had taken place along a soil-soil 

interface.

In addition to conventional testing methods Soydemir 

and Espinosa ( 55)performed tests using another testing method 

in which instead of shearing the sand at the strip surface, the 

strip was sandwiched at the level of the controlled shearing 

plane. They found that this method gave an angle of skin friction 

10° higher than the conventional method.

Lee K.L. (34 ) conducted a series of tests on samples 

of sand at various densities sheared along and in contact with a 

sheet of aluminium foil in order to measure the angle of skin 

friction. He discovered that density has no effect on the value 

of angle of skin friction, and has suggested that the angle of 

skin friction should be expressed as a ratio of the angle of 

internal friction of soil (k^ = ^ Z^) which varies between the 

limits of approximately zero for frictionless surface to a 

maximum of 1.0. The ratio of 0.66 is normally accepted in 

design.
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Friction tests were carried out by Deliuas et al (22) 

to study the soil-fabric friction in the direct shear box. He 

used many types of soil as a supporting medium to the strip and 

various type of fabrics. He has reported test results which show 

the effect of the particle size distribution, shape of soil 

particles, the nature of the fabric and the normal pressure,and 

concluded that supporting gravel yields greater values of angle 

of skin friction than supporting sand and that the apparent 

angle of skin friction increases with increasing normal pressure.

Very important work was carried out by Jewell (30) 
to study the patterns of strain which result from the interaction 

between sand and reinforcement in the direct shear box test. He 

believes that reinforcement imposes constraint on the way that the 

sand may strain; due to this constraint the new patterns of 

strain occur. To study this he performed a set of tests in a 

large shear box in which the reinforcement was embedded within 

dense sand across the central plane.

He observed two important features in the shear box 

test, (i) a new well defined zone of strain patterns and(ii) 

strip force-displacement relationship, as shown in fig.2.2 which 

were then compared with pull-out tests carried out using the 

same material subject to the same stress level.

2.2.1. DISCUSSIONS

The use of the direct shear box for measuring an 

angle of friction between soil and reinforcement remains a 

controversial topic among different researchers.
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McKittrick (42) noted in particular, following the 

work carried out by Schlosser, that an appropriately roughened 

strip surface gave a value of angle of skin friction approximately 

equal to the angle of internal friction of soil, and suggested 

that the values of friction obtained from either a plane compression 

test adjusted for the effects of dilatancy, or from a direct shear 

test in the case of a non-dilatant soil could be used in design.

He further argued that the shear box testing method was readily 

available to designers to measure the angle of skin friction ; 

unlike other testing procedures which required more specialized 

apparatus.

Additional support for its use comes from the work 

performed indirectly by different investigators.

Osman (44) carried out direct shear tests employing 

a plain strip and sand. The value of angle of skin friction 

obtained was compared with the value which was back-calculated 

from the results of model tests carried out to investigate the 

pull-out failure mode. The same value was found in both cases.

Masaru Hoshiya ( 27) also reported the same value 
of angle of skin friction both by the direct shear test and by 

a prediction from model test results, using plain brass strip 

as a reinforcement.

Chapuis Cl8), used the results of model tests 

carried out by Bacot (5) and Lee (34) and presented in the form 

of failure height, H^, versus length of strip, L^, to determine 

f from the equation for R^, the tensile strength of the strip:

\  = 2b f
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where b is the strip width, and is the soil unit weight.

He found approximately the same value of f as determined by the 

direct shear test. From this discussion it seems that the 

direct shear testing method in the case of the smooth strip 

measures a quite realistic value of angle of skin friction but 

this is not the case with ribbed strip for which no such 

comparison between model and laboratory test results has been 

made.

On the other hand, most of researchers argue that this 

method does not model the behaviour of a strip subject to tensile 

force ; in the field it is not certain whether the strip slides 

over the sand surface or is pulled out from the layers of soil.

This method measures dynamic coefficient of skin friction, but 

in design a static coefficient of skin friction is required 

(Al-Yassin et), McGown (41) and other investigators consider 

that the direct shear test probably represents the lower limit 

of soil-reinforcement frictional interaction,

2.3. PULL-OUT TEST

An alternative method for measuring an angle of skin 

friction is naturally a pull-out test which consists of withdrawing 

a reinforcing strip from the reinforced earth mass and recording 

the pull-out force-displacement curve. This test represents 

adequately the conditions which actually occur in reinforced earth 

structures. The values of soil-reinforcement friction coefficient 

measured from this testing method are used in designing structures, 
when considering failure by lack of bond. However, because of 

the dilatancy effect the normal pressure exterted on the strip 

is unknown. Hence this test gives only an/
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average apparent friction coefficient, f*, which is derived from 

a knowledge of the pull-out force, p, the embedded length, 1, 

overburden pressure, yH, and strip width, w.

f* = ZwlyH

In the following section, the conditions under which 

pull-out tests have been carried out by different investigators 

will be reviewed under their separate headings.

2.3.1 Reinforcing strip pull-out tests from rig or shear box

Shen and Mitchell (53) performed a series of pull-out 

tests on steel strips of various lengths and widths in apparatus 

especially constructed for this purpose. The values of angle 

of skin friction obtained are shown in table 2.1. After noting 

the random variation of angle of skin friction with strip size, 

which was thought to be due to the presence of waves in the 

backfill strip, a few tests on a undulating strip were carried 

out. The results showed quite large differences in ô values 

compared to those obtained with a plane strip, as shown in fig. 2.3, 

Shen and Mitchell suggested that the apparent angle of skin 

friction would be affected not only by the testing method but 

also by soil arching, dilation, boundary conditions, soil compaction, 

strip geometry (length and width) and undulations in the strip,

P.O. Walter (58) conducted a series of pull-out tests 

to compare the performance of ribbed and smooth reinforcing strips 

in various types of soil compacted at different moisture contents.

The results are shown in fig. 2-A,. He concluded that ribbed strip/
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'"--.^Wdth (cm) 
L e n q th (c m r -^ 1-2 7 2 54 5-08

39-12 11-9 ‘16-5 15-7

31-50 12-4 14-2 162

23-88 12-6 14-1 15-5

1 6-26 13-0 14-1 14-1

Table 2.1, Angle of skin friction from pull-out tests 
(after Shen et al)
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Waved s trip

Length = 39-12 cm 
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5 = 22-0
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60 80 
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100

F ig .  2 .3 . Effect of undulations in the strip (After Shen et al)
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Fig. 2.4. Summary of test results (After Walter)



— 18 —

performed better than smooth strip at the optimum moisture 

content, and that the soil-reinforcement friction coefficient 

decreased with increasing surcharge load.

Some pull-out tests were conducted by the Reinforced

Earth Company, U.S.A. (42) on both smooth and ribbed strips using

a special large shear box under the maximum normal pressure of 
2200 kN/m . Five type of soil such as Ottawa sand,Coal refuse, a 

decomposed phillite gravel, a bank run gravel and a river sand 

were used. The results from two types of soil are shown in fig.2.5.

The conclusions drawn from this are that the apparent 

friction coefficient decreases with increasing value of average 

normal pressure, and that the high values of apparent friction 

coefficient, greater than tan 0 in the case of ribbed sand and 

higher than tan "ÿ in the case of the smooth strip, were thought 

to be due to the dilatancy of soil.

Jewell R.A.OO) carried out a series of pull-out tests, 
in addition to the direct shear tests already mentioned in the 

previous section, in studying the strain pattern.

The results presented showed a limited zone of straining 

sand developed between an unyielding mass of sand and the surface 

of the reinforcement, and well defined peak and residual points on 
the load-displacement curve (Fig. 2.2),

Some investigators have used various types of net structures 

and fabrics in place of metallic reinforcement.

Ingold and Templeman (28), in their comparative performance/
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Fig. 2.5. Pull-out tests on a large direct shear box 
(After Schlosser) .
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Study of polymer reinforcement, performed a series of pull-out 

tests from the rig described in reference ( 28), on five different 

type of samples including plain steel, sand coated steel, two 

net structures (Netlon 1168 and FBM5) and Woven fabric (Terram 

RF/12) .

The results presented in the form of Oh vsx; and Oh vs f* 

are reproduced here in fig.2.6. They state in their concluding 

remarks that the apparent angle of skin friction decreases with 

increasing normal pressure, and that the extremely high value of 

apparent angle of skin friction obtained is not simply because of 

dilatancy but postulate that some additional mechanism is acting,

A good bond can be achieved between soil and reinforcement by 

using fabrics or nets instead of steel or aluminium.

Pull-out tests employing fabric reinforcing strip (NT400) 

in a direct shear box were carried out by Delmas et al(21) . An attempt 

was also made to interpret a pull-out test theoretically by using 

elastic theory in which the deformations of the fabric and of the 

soil were incorporated. It was concluded that the fabric 

maintained a relatively plane shape and that the results were close 

to those obtained with a smooth support in the friction tests. The 

importance of fabric length was also noted ; for a long strip a 

large displacement was needed at the fixed end to mobilize friction 

at the free end. The experimental results were in partial 

agreement with the theoretical.

The possibility of constructing reinforced earth structures 

with in-situ fine-grained soils instead of imported coarse-grained/
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materials has led to the investigation of the friction 

characteristics of fine-grained soils.

Elias Vc (23) performed a series of pull-out tests in 

a large direct shear box, using various type of soils (fine sand, 

silt and clay) and ribbed strip of the type which is presently 

used by the Reinforced Earth Company, The results were presented 

in the form of load-displacement curves from which the f* values 

were calculated. The conclusions drawn by the author are that 

the apparent friction coefficient decreased with increasing 

normal stress, as in the case of cohesionless soil, and that the 

f* values for fine-grained soil appeared to be considerably less 

than for coarse-grained soil. He suggested that for all normal 

pressures greater than 47,9 to 71.8 IcN/m , the value of f* equal 
to 1/2 to 2/3 of the drained angle of friction could be used and 

for lower normal pressure, it is justified to use an f* value 

equal to the drained angle of friction, and that the soil should 

be compacted dry of optimum, Elias does not mention the fact that 

the angle of friction has been found to depend on the normal 

pressure at testing, and is not, therefore, unique,

2.3.2, Reinforcing strip pull-out tests from model, prototype 

and full scale reinforced earth walls and embankments,

Tumay et al (56) carried out, on model walls, a 

comparative study which was designed to evaluate the efficiency 

in mobilizing soil-reinforcement interaction of both non-woven 

fibre fabric and metal reinforcement, and also to study the effect 

of relative density of the sand backfill and length of reinforcement 

The equipment, testing procedure and results are described in/
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reference (56) . He drew the following conclusions from his work.

The effectiveness in mobilizing sand-reinforcement 

interaction for fibre fabric is three times higher than that 

of metal, because of the grabbing effect of fibre fabric. The 

frictional resistance of fibre fabric reinforcement increases 

with increasing relative density of sand ; whereas in the case 

of metallic reinforcement the relative density has very little 

effect in improving friction capacity.

Increasing length increases the efficiency in mobilizing 

soil-strip interaction for both types of reinforcement,

A great improvement can be achieved by using fibre 

fabric at low densities of sand.

To study the effect of density and width of reinforcement, 

pull-out tests on a reduced scale model of sand embankment were 

carried out by Alimi and Schlosser (3).

The results, fig, 2,7a, showed that at low density the 
peak value of tension was achieved at a small displacement of 2mm, 

whereas at high density it was obtained at greater displacement 

of 160 mm. The high density of soil yielded a greatly enhanced
3value of f* increasing from 0,3 at a dry density of 1,56 Mg/m

3to 2,5 at a density of 1,76 Mg/m , due to the dilatancy of the 

granular soil at high density.

The effect of reinforcement width was observed by 

testing three widths of reinforcement (1,5 cm, 3cm and 4.5 cm) 

and the results presented are shown in fig, 2,7b,
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For an overburden height, h, less than 18 cm. the f* 

values decreased with increasing width but for h greater than 

18 cm, no definite trend appeared. The author further stated 

that the width of reinforcement indirectly influences the f* 

values, e.g. by decreasing the deformability of the strip with 

increasing width and by decreasing the dilatancy effect beyond 

a critical value of the width the f* values decrease.

A great number of pull-out tests at full-scale to 
investigate the effects of embedded length, overburden and strip 

roughness have been carried out by different investigators.

Chang (13) performed the first full scale field pull-out 

tests during the construction of a reinforced earth wall at 

Highway 39, California, U.S.A. The results were obtained in the 

form of load-displacement curves with yielding, peak and residual 

points clearly defined (Fig. 2.8). These points correspond to 
three loads which are : the yield load, representing maximum

possible frictional grip of the compacted soil without introduction 

of strain of the soil ; the peak load which represents the maximum 

mobile pulling resistance of the composite material of the soil 

and reinforcement ; residual load, representing the load which 

occurs after peak load when the strip becomes partially loose 

and the whole length of the strip starts sliding. Fig. 2.8 shows 

the relationships between these three pulling loads and the 
overburden height, overburden load and strip length.

Chang concluded that the angle of skin friction decreases 

with increasing overburden height and increases with the length of/
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the reinforcement (Fig. 2.9.),

The effects of strip length on the apparent friction 

coefficient are also reported by other investigators, viz, 

Schlosser& Elias(47), as shown in fig. 2.9, and Alimi and Bacot 
( 5 ) .

Some 500 field pull-out tests, using two types of 

reinforcements, plain and ribbed galvanised steel strip, in 

granular fill material have been performed by the Reinforced 

Earth Company to study the effect of strip roughness. Typical 

load-displacement curves, fig. 2,10, show that the peak resistance 

for ribbed strip is greater than for smooth strip, occurring at 

a displacement of approximately 50 mm and 5 mm with the ribbed 

strip and the smooth strip respectively. The value of f* for 

both types of reinforcement was greater than tan Ÿ  measured using 

a direct shear box.

The influence of overburden pressure from full-scale

pull-out tests on both ribbed and smooth reinforcement reported

by Schlosser and Elias (47), Fig, 2.11 shows extremely high values

of f* at low overburden pressures, particularly for the ribbed

strip, which decrease with increasing overburden pressure, and

appear to remain constant after reaching an overburden pressure
2of approximately 100 kN/m . The same author presented another 

two series of tests on ribbed and smooth strip. Fig. 2.13, which 

show the same trend, i.e. a decrease of f* with increasing 

overburden pressure, and it appears that f* values are higher 

than unity for a ribbed strip. The extremely high value of f*
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at low normal pressure is attributed by McKittrick (42) to 

dilatancy.

Ingold (29) discussed the dilatancy effect, which he 

believes, cannot completely account for the 36° increase in 6 

value recorded for ribbed strip, but which may account for the 

17° increase for the smooth strip.

To further explain this behaviour, Guilloux (24) 

carried out shear tests on highly compacted samples of sand 

under constant volume conditions. The results of these tests 
and the envelope of full-scale pull-out test results are shown in 

fig.2.12. He suggested that dilatancy, which occurs in the

immediate vicinity of the reinforcement, is restrained during 

pull-out which, in turn, increases the normal pressure acting on 

the strip. This increased normal pressure, therefore, results 

in high values of apparent friction coefficient f*.

2.3.3. Reinforcing strip pull-out test from a rigid moving 

model wall.

Lee and Hausman (25) conducted tests in which a rigid model 

wall was used in place of a conventional element wall to determine 

the actual soil-reinforcement friction coefficient.

Rotating the model wall about a knife edge support attached 

to the base of the box containing sand backfill, the curve of the 

applied moment-versus the rotation angle was recorded. The authors/
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indicated that results are believed to be relevant to Reinforced 

earth design, because the overall deformation pattern reported 

for experimental walls is essentially that of rotation rather 

than translation.

They concluded that soil-reinforcement friction 

mobilization is a function of the overall deformation of the 

reinforced earth mass and that frictional resistance is not fully 

mobilized, even at the point of failure, when compared with direct 

shear test results.

2.3.4. Reinforcing stip pull-out tests during vibration - 

model and Prototype.

In the design of seismically stable reinforced earth 

structures it was felt necessary to evaluate the effect of vibration 

on the soil-strip friction angle. Richardson and Lee (47) performed 

pull-out tests at various stages such as initially after construction 

of the wall, during 0.05 g acceleration and statically after the 

acceleration was removed, from the model walls, A pull-out device 

constructed in the laboratory was used to measure the force- 

displacement characteristics, and peak values were used for 

calculating the angle of skin friction. The summary of their 

results is shown in fig.2.14.

They found a considerable reduction in values of skin 

friction angle from peak to residual. The most surprising 

observation was that the peak soil-strip friction angle was 
higher during vibration and after vibration than under static 

conditions (pre vibration).
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To determine if surface vibrations such as produced by 

traffic can affect the adherence resistance of reinforced earth

structures, Murray and Carder (39) carried out pull-out tests on

metal and fiber reinforced plastic reinforcement embedded in an 

experimental reinforced earth wall, at full-scale, using uniformly 

graded sand. The tests were done under both dynamic and static 

conditions. The results are given in fig. 2.15 & 2.16, They 

found that the apparent friction coefficient measured from 

dynamic tests was approximately 25 percent lower than that obtained 

from static tests. They also concluded that the measured values 

of skin friction angle were greater than those obtained from shear 

box tests. This effect was attributed to dilatancy of the soil 

and undulations in the strip.

2.4. Estimation of the friction coefficient from model wall

test results.

A few investigators have attempted to calculate the 

soil-reinforcement friction coefficient from the results of tests 

conducted on model walls failed by lack of adherence. Some 

researchers have compared the calculated f* values from the 

failure tests of models with those obtained from existing available 

laboratory methods in order to check the reliability of the 

testing method,

Shen and Mitchell (53) performed a series of tests on a 

model with rigid and flexible facings to measure the tensile 
strain distribution along the length of the reinforcement, from 

which the angle of skin friction was back-calculated. After/
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Back of Box

30

1-0
3

■Q~
c
0

'oJo
0-5 u

c
0-4 o

"u
0-3 U-

Oi
0*2 5

'Ô
0.1

35

l-’ i g .  2 .1 4 ,  Summary o f  s o i l - s t r i p ' f r i c t i o n  data  ( A f t e r  R ichardson  
-» & Lee) ,

I

I
?

h

O  Tests with surcharge  & fo llow ing v ib ra t ion  without surcharge 

#  T e s ts  w ithout surcharge p r io r  to v ib ra t io n _____________

Galvanized 
mild steel 4 8'6

o

-
-----28-7

3 L.-  S ta in less steel

--------1------ f . 1......... _1------------ — I-----------------1--------

F ig .  2.15

2 3 . 4  5 6

NORMAL l o a d ' PER METER LENGTH 

OF REINFORCEMENT- KN

P u l l - o u t  t e s t s  under s t a t i c  lo a d  ( A f t e r  M urray & Carder)



- 35-

o Static tests 
•  V ib ra tion  tes ts  assuming

20

<bu
o

3
01
3
0_ o S ta t ic  tests

# Vibration tests with reduced 
overburden stress basedon 
geophone resut ts20

0 4 8 12 16 20

For. 2.16
Force re s is t in g  pu l l-o u t-2 W  tany/HL (KN)

Results of pull-out tests with both static and dynamic 
conditions showing the effect of vibration in reducing 
overburden stress (After Murray & Carder).



- 36 -

noticing the resemblance between the mobilization of friction 

along the length of strip in model test and friction forces which 

are developed in a pull-out test, the authors suggested that the 
pull-out test should be used to determine the frictional 

behaviour of the soil-strip interaction.

Osman (44) also calculated the apparent friction 

coefficient by assuming the maximum tie tension, measured from 

the reinforced earth retaining wall model at the moment of failure, 
equal to the pull-out resistance.

Comparing these values with those obtained from shear 

box tests using the same strip material and soil, he found a 

good agreement between them,

Bacot (5 ) carried out failure tests on a reduced-scale 

tridemensional model. Considering a broken strip and its breaking 

point represented by (auto-destruction height)and (adherence 

length to this height) he calculated the experimental lower and 
upper bounds of f* values using the equation:

which exists when the friction mobilization along a strip reaches 

its tensile strength. The effect of geometry of the strip 

(length and width) on f* was also determined. He concluded that 

the friction coefficient is always greater than that obtained with 

the shear box, and that f* varies inversely with width and directly 
with length.
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This approach was also followed by Chapuis (18 ).

Using experimental values of and the curves (H,L) were 

plotted to provide a possible check on the laboratory methods 

normally used to measure f* values. For this purpose, two sets 

of model wall tests, carried out by Lee (34) and Bacot ( 5), in 

which the two different methods were used to measure f* value, 

were selected, Chapuis concluded that the shear box test gives 

a good evaluation of the friction coefficient but the pull-out 

test yields an overvaluation.

2.5. DISCUSSIONS

A study has been made of a large number of papers by 
many investigators on the subject of pull-out tests on full-scale 

and model-scale reinforced earth walls under different conditions. 

It is concluded that a pull-out testing method gives a high value 

of the apparent friction coefficient, which is influenced by 

numerous factors such as dilatancy, overburden pressure, density, 

undulations in the strip, deformability, surface conditions and 

geometry of the reinforcement.

The use of this high value in design has been debated 
by various researchers. Most of them believe that a pull-out 

test represents a frictional behaviour which exists in actual 

reinforced earth structures, and that the use of a high value 

would permit economy in design.

Shen et ( 53) suggested that pull-out test shouM be used 

for measuring an angle of skin friction, because the results of 

this testing method agree with those of the model tests.
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Al-Yassin (4) further supported his opinion. He analysed the 

rigid facing model using a finite element technique, and found 

very good agreement between the model test data and the analytical 

test results when the angle of skin friction as determined by 

pull-out testing was used.

A significant discussion on the use of the pull-out 

test was presented in the Seventh European Conference on Soil 

Mechanics and Foundation Engineering, Schlosser considered that 

it was advantageous to use the pull-out test for measuring an 

angle of skin friction, because the various factors could be 

included in it. Such factors are difficult to analyse otherwise. 

The apparent friction coeffient takes into consideration the 

effects of dilatancy and compaction, which are difficult to 

include separately in a calculation.

On the contrary, some investigators,e.g McGown (41) 
and Jewell (30), have criticized this testing method. They 

believe that a pull-out test does not model the behaviour which 

actually occurs in the reinforced earth system. McGown has 

discussed the fact that the shear stress distribution is not the 

same as that in a reinforced earth system, and that in the case 

of deformable reinforcement the distribution of stresses and 

strains is not uniform, which affects the measured value of f*.

He also pointed out that the pull-out test is influenced by 

various factors such as overburden pressure and its distribution 

and the edge effect in the vicinity of the facing.
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Similar comments have been made by Jewell (30), more 

particularly, he states that values of f* greater than tan 0 

in reinforced earth are far from reality, and that these values 

reflect only the particular conditions of the pull-out test.
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CHAPTER 3

TEST EQUIPMENT AND MATERIALS

3, In this chapter the equipment which was constructed to

investigate the pull-out testing methods and the materials, strip 

and soil, will be described.

3.1, Test equipment

The testing equipment Fig,3.1 and 3.2 mainly consisted 

of a steel box, facing plates and a pulling arrangement. Each 

will be described under their separate headings.

3.1.1. Box
The planned tests were to consist of (a) pulling a 

reinforcing strip out of a mass of soil through a slit in a facing 

plate, and (b) pulling the facing plate with the reinforcing strip 

attached away from the soil mass. In view of this, and the fact 

that a full-size reinforcing strip was to be used embedded in fill 

material with a large particle size, a relatively large box was 

required. In addition edge effects had to be minimised. Previous 

investigators making tests on full size strips (23) had used 

0,91 X 0.9 X 45 ram size of box.

In the present test series the width upon height ratio 

of the box was kept to 1.9. In a further attempt to cut down the 

effects of side friction, the box was lined with thin plastic sheet.

A steel box with internal dimensions 2000 mm long.

420 mm wide and 229 ram high was constructed. The drawing of this 

is shown in fig. 3,3.
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Fig. 3.1. General view of pull-out apparatus.
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■Fig, 3.2. General View of pull-out apparatus.
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3.1.2. Facing Plates

Two separate facing plates were made from 12.7 mm thick 

steel plate for strip pull-out and strip with facing plate pull-out 

and a slot (80 x 30 mm) was cut in the middle of the plate. One 

facing plate had bolt holes to fix it to the front of the box for

use in the pull-out test. The other had an arrangement, as shown

in Fig23.3 to fasten the strip at the middle of the plate and to attach 

the facing plate to the pulling frame in order to pull the strip

and facing plate together for use in the strip-with-facing pull-out
test.

3.1.3, Pulling arrangement

To withdraw the strip from the box, a steel frame, as 

shown in fig, 3.3 was used. To keep the frame in position and to 

fix the hydraulic jack at the strip level, a bottom frame (reaction 

frame) with jack box bolted on the top of it was used. The front 
end of this frame was bolted down to the floor to prevent it from 

lifting up while pulling the strip out, and the opposite end was 

welded to the underside of the box.

Two guides for each arm of the pulling frame were provided 

in order to keep the pulling frame at the strip level and to restrict 

the sideways movement. These guides were fixed to the bottom frame.

The jack was fixed in the jack box and connected to an 

"Enerpac hydraulic pump" in order to apply a steady pulling load to 
the strip.

To measure the pulling load, a 5-ton proving ring was/
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fitted between the hydraulic jack and the pulling frame end. The 

contact between the ram of the hydraulic jack and the proving 

ring was made through a steel ball.

While carrying out the tests, the strip, the hydraulic jack 

and the centre of the pulling frame were all placed in line.

3.2. Normal Pressure

A simulated overburden pressure was applied to the level, 

surface of soil filling the box by means of air pressure acting on 

a rubber membrane fixed under the steel top plate of the box.

3.3. Materials

The reinforcing strip and soil employed in this investigation 

were brought from a site at Maryhill in Glasgow. It was believed 

that these materials had been selected according to specification 

of the Reinforced Earth Company, The properties of the materials 

will be described in the following section.

3,3.1.Strips

The galvanised steel ribbed reinforcing strips used had

a geometric configuration is shown in fig.3.4,

A piece of strip 1-ra long was cut from a long strip for

use in the tests. The tensile strength of the strip material
2measured in the laboratory was 355 N/mm .

3.3.2. Soil

The air-dried soil used in this investigation was 10 mm/
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down sandy gravel. The particle size distribution is shown in 

fig. 3.5. Tests to obtain the shear strength characteristics of 

the soil are fully described in Chapter 4 together with the detailed 

results over a range of densities. The pull-out tests were
3carried out at two different density values viz. 1.76 Mg/m and

32,05 Mg/m . The term loose soil and dense soil as used herein 

refer to these two density conditions.
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CHAPTER 4

SHEAR TESTS ON FILL MATERIAL 
AND FRICTION TESTS ON SMOOTH AND RIBBED REINFORCING 

STRIPS USING SHEAR BOX

4.1. SHEAR TESTS

4.1,1.Introduction

The conventional constant rate of strain shear box apparatus 

(10.16 X 10.16 X 4.8 cm) was used to measure the internal friction 

of the fill material,

The fill material used in these tests has already been 

described in Chapter 3.

In the following section, the test procedure and the 

results will be presented.

4,1.2, Test Procedure

4.1.2.1.Preparation of soil sample.

The normal procedure for preparing a sample in direct 

shear test was used, i.e. the soil was filled in the box in layers 

and each layer was compacted before placing the next layer, this 

procedure being continued until the soil was flush with the top 

of the box.

4.1.2.2. Compaction

Insitu density measurements made in the field (by the 

Civil Engineering Department) on the reinforced earth retaining 

wall at Maryhill produced the results shown in fig. 4.1. An attempt/
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was made to carry out the laboratory direct shear tests at the
3same average dry density of 2,1 g/cm as obtained from the field 

tests. To obtain this density and to control it at each normal 

pressure in the direct shear tests, the standard compaction 

techniques tamping and vibrating, were employed. Initially, a 
tamping method was tried in which the soil was placed in layers 

and each layer was compacted by tamping with a light steel rod.

The tests were carried out, for each normal pressure, on samples 

compacted at the same number of blows. TheCT-X relationship and 

the actual densities at which the tests were carried out are shown 

in fig. 4,2. The density variation and the scattered points on 

the CT-X plot which resulted may havebeen due to the method of 

compaction. In view of this , another method, vibrating, was 

tried in which each layer of the soil in the box was compacted by 

vibration.

To vibrate the box, initially, a 'kango hammer' was used 

but later the box was placed on a 'vibrating table*. The box, 

with one layer of the soil . was allowed to vibrate for a certain 

period and then the next layer of the soil was placed and vibrated 

for the same time period. This procedure was continued until the 

soil was flush with the top edge of the box. For this method the 

(T-Z relationship and the sample densities are given in fig.4.3.

The scatter of the data on the (T-X plot also appeared using this 

method of compaction.

This problem was overcome by carrying out direct shear 

tests at the same normal pressure using samples of different density 

and then repeating for different normal stresses to obtain/
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relationships between dry density and shear stress for each normal 

stress, figs. 4,4, From these the shear stress vs normal stress 

at particular values of density were picked out by interpolation, 

figs. 4.5 and 4.6. The establishment of the r<i-L relationship 

was used to establish the influence of density on the angle of 

internal friction, fig.4.7. Later, in developing the Td-t 

relationships, the vibrating method of compaction was preferred to 

the tamping method, because it gave reasonably uniform values of 

density and it was also possible to obtain some intermediate 

densities between maximum and minimum which was difficult using the 

tamping method.

4.2. TRIAXIAL TESTS

4.2.1.Introduction

A series of cylindrical compression tests on the soil 

were carried out in order to measure the angle of internal friction, 

to develop the relationship between dry density and angle of internal 

friction, and to compare the values of angle of internal friction 

from the triaxial test with those obtained by direct shear tests 

on the same soil.

In the following section, the testing procedure will be 

described, the results presented and the discussions on them will 

be given together with direct shear test results.

4.2.2, Testing procedure

4.2,2,1,Triaxial apparatus/-
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4.2.2.1. Triaxial apparatus

A conventional triaxial apparatus was employed in 

this testing programme. A triaxial cell recommended for a 

compacted 101,6 mm diameter sample (Bishop and Henkel, 1962) was 

used. To prepare the sample, a 101.6 mm former was used. The cell 

pressure was applied through a compressed air/water system and a 

strain controlled loading system was adopted in shearing the sample.

4.2.2.2. Preparation of sample

The 101.6 ram diameter, 203.2 ram high sample was

prepared using the former. A rubber membrane, 0.9 mm thick, 101.6 mm

diameter and 304.8 ram high was used to enclose the sample.

Compaction was done by tamping the soil in layers with a steel rod.

As a preliminary, a few samples were compacted with a varying number

of blows in order to note the range between maximum and minimum
dry density within which the tests were to be carried out.

Maintaining the same density at different confining pressures was

difficult. Therefore, the relationship between deviator stress at

failure and dry density for each confining pressure (20, 40, 50,60 
2kN/m ) was established, fig, 4,8. From these curves the deviator 

stress values at the same density were picked out to obtain the 

angle of internal friction of the soil, fig, 4,9.

4.3, DISCUSSION OF RESULTS

In this section, the results obtained from the direct 

shear and triaxial tests are discussed.

The average angle of internal friction of the soil 

measured was 54,7 and 46.7° from direct shear and triaxial tests/
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3 3respectively within the density range of 1.85 g/cm to 2.1 g/cm .

The difference was about 5° larger from direct 

shear tests as compared to the triaxial tests. This agrees with 

the results reported by Lee(07) Bishop (8 ) Comforth (20) and others 

who have reported the differences about 1° to 4° larger for direct 
shear tests. The probable factors which cause this difference 

are :

Strain conditions: In triaxial test a sample is

tested under symmetric strain conditions which mobilize the minimum 

shearing resistance whereas in direct shear test the non-uniform 

strain conditions occur which mobilize the maximum shearing 

resistance.

Dilatancy: In triaxial tests the soil particles

strain equally in the direction of equal stress under the symmetric 

external stress. On the contrary, in direct shear test the soil

particles are least free to move in a random direction and the

particles in the line of shear are obstructed by neighbouring 

particles which sets up a high normal pressure and results in

increased angle of internal friction.

4.4. TESTS TO DETERMINE FRICTION BETWEEN 
REINFORCING STRIP AND FILL MATERIAL 
USING DIRECT SHEAR BOX

4,4,1. Preparation of soil-reinforcement sample

To prepare a soil-reinforcement sample, a perspex 

block, size 10 x 10 x 1.5 cm, was cut to fit inside the lower half 

of the shear box to give a rigid support to the strip in the box.
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For the soil-ribbed sample, two pieces of strip of the same size 

as the block were cut from the original strip. The ribs on the 

strip were not equally spaced, so the sample pieces were cut in

such a way that two ribs could be included in the required pieces

of the strip. The perspex block was fitted in the lower part

of the box and then pieces of the strips were mounted on it so

that the strip surface was flush with the top of the lower part 
of the box. After that, the soil was filled and compacted in 

layers in the upper part of the box. In the case of the soil-smooth 

strip, the same strip was used, only the ribs and zinc coating were 

machined off so as to make the surface smooth. The rest of the 

procedure in preparing the sample was the same as that adopted in 

the above case.

4.4.2. Test Results

4.4.2.1.Soil-smooth strip

In the case of the smooth strip, the relationships between
2yd and I for the normal pressure range of 50-200 kN/m were found 

and are shown in fig, 4.10.

Fig. 4.11shows the normal stress/shear stress relationships
3for the density range of 1.85 to 2,1 g/cm from which the angles 

of skin friction were calculated and shown in table 4.1 . The 

relationship between the angles of skin friction and dry density 

is plotted in fig.4.12.

4.4.2.2. Soil-ribbed strip

Using a similar procedure to that for soil-soil tests/
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Table 4.1.

DRY DENSITV-g/cm^ ANGLE OF SKIN FRICTION 
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Fig. 4.12. Dry density - angle of skin friction 
relationship (Soil-smooth strip).
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the dry density-shearing stress relationships for a normal pressure 

range of 50-200 kN/m^ were obtained for the soil-ribbed strip and 

are shown in fig. 4.13. The normal stress versus shear stress 

plets were obtained at four density values, ranging from 1.85 - 2.1 

g/cm^, figs, 4.14 and 4.15.

The values of shear stress corresponding to desired 

density, which was the same at each normal pressure, were taken 

from the yd/t curves. Table 4.2 shows the values of angle of 

skin friction measured from plots. These values are plotted

against dry density and the relationship obtained between them is 

shown in fig. 4,16.

4.4.3. Discussions on experimental results

Fig. 4,17 and table 4,3 show the relationships between 

Y'd vs Iff and yd vs 0 derived from the tests, soil-soil (Direct shear), 

soil-soil (Triaxial), soil-smooth strip and soil-ribbed strip.

From the shearing stress/displacement curves, a typical curve at a
2 3normal pressure of 200 kN/m at a dry density of 2,1 g/cm obtained

from these three types of tests is presented here in fig, 4,18.

It can be seen that the values of angle of skin friction 

obtained were higher for the ribbed reinforcement than the smooth 

strip, A probably reason for these lower values in the case of 

smooth strip is that the contact planes are parallel to the strip 

surface so that particles slide easily on the strip surface and 

therefore less dilatancy occurs.



- 6 7 -

o

o
in

o o

oin

owo oQCN
i<- A1ISN30 AHO

o<N O

COCOd)MuCO
00
•HMccJ<U
CO
TJaccJ
>>w
CO0(UT)
U'T3
0 .4)(U IX5 •l-lU u4) 4JrO CO
CX T3*H 41,X3COrdd •Ho l-l'tri 1■U 1—1cd T-tr-C o<U COPd s_/
cn
T—I
<r
ÜÛ

•H



- 68

£

I
wt/)
L
<J)
en
c

odj_c
lD

150

1 0 0

Dry Densiiy- 1-95 g/cm

50

250150 20050 1 000
Normal  S t r e s s - K N / m

E
z

LO
en
C
001-C

200

1 50

100 Dry Density-2-00 g/m

50

50

Fig, 4.14

100 150 200
Normal Stress - KN/m^

250

Soil-ribbed strip friction by direct 
shear tests.



—  6 9 ”

200

^ 150
Dry Density = 2-05 g/cm

=41100
cn

50

250100 1 5050 20Q0
Normal Stress-KN/m^

200

Dry D en sity = 2-10 g/cm'

100

50 2500 150100 200
Normal Stress -KN/m^

Fig, 4.15, Soil-ribbed strip friction by direct shear tests



— 70 —

Table 4.2.

Dry density  -  g /cm ^ Angle of skin fr ic t ion  (degreed

1-95 36
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Fig. 4.16. Dry-density - angle of skin friction 
relationship (soil-ribbed strip).
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Table 4.3

SAMPLE TEST DRY DENSITY-g/ar ^av

SOIL-SOIL DIRECT SHEAR 1-85-2-10
o

51-7

SOIL-SOIL TRIAXIAL 185-2  10
o

46-7

s o il - r i b b e d
STRIP

DIRECT SHEAR 1-95-2 10 39 8

SOIL-SMOOTH
STRIP

DIRECT SHEAR 1-85-2-10 2 8-6°

•  SOIL-SOIL (Triaxial) ^— ^SOIL-RIBBED STRIP

SOIL-SOIL (Direct shear) - O — — ^^SOIL-SMOOTH STRIP

2-10

im
J  2-00
cn
!
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coZ
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190

1-80
30 45 50

orp (DEGREES)

Fig.4,17. Comparison of dry density-angle of friction 
relationships.
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Upon close examination of the strip surface after 

shearing in the case of the soil-smooth strip, some striation marks 

oriented in the direction of displacement were observed which 

reveals that sliding of soil particles along the strip surface 

occurs. On the contrary, the soil-ribbed strip tests did not show 

any striation marks. This indicates that sliding of soil particles 

did not occur along the strip surface, but that shearing took place 

along the soil-soil interface parallel to the longitudinal axis of 
the strip. The same striation marks on the strip surface after 

shearing have been noted by other investigators, (48).

It has been argued by different researchers, Schlosser (52) 

Mackittrick (42), that in the case of the smooth strip, the 

frictional behaviour depends on the soil-to-reinforcement interaction 

and in the case of the ribbed strip the soil-to-soil interaction 

controls the friction. If, in the case of the ribbed strip, the 

friction depends on the frictional behaviour of soil alone, then 

the values of the angle of skin friction,T/T, would have been 

expected to correspond to the angle of internal friction of the soil.

It was found, however, that the average value of angle of internal 

friction (0 = 51.7°) measured from direct shear test was 12° higher 

than the average value of angle of skin friction ("ÿ̂ = 39.8°) for 

the ribbed strip. This shows that simple soil-soil characteristic 

does not control the friction between soil and reinforcement, but 

it is also possible that shearing takes place on the strip surface 

and the soil-soil interface as well.

The relationships, yd vs for soil-smooth strip 

and soil-ribbed strip found are linear. It appears that in the/
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osoil-smooth strip case, increasing density from 1.85 to 2.00 g/cm 

gives 1° average increase in-y value, this shows that density has 

very little influence on the magnitude of y  value. This agrees 

with the results of Lee (34) in which he used aluminium foil with 
sand and found that density had no effect on the angle of skin 

friction.

In the case of soil-ribbed strip, however, the

value is increased by 8° as the density increased from 1.85 to 2.0
/ 3g/cm ,

Fig. 4.18 shows the general form of shearing stress/ 
displacement curves obtained from each test. In the case of soil- 

smooth strip, the maximum shearing stress value was obtained at 

a small displacement, 2 mm, as compared to the soil-ribbed strip 

where the maximum shearing stress value was attained at a large 

displacement, 6,25 mm. The soil-smooth strip case showed no well 

defined peak, on the contrary, the soil-ribbed strip case showed 

a broad zone peak value. The soil-soil case showed a clear peak 

which was attained at almost the same displacement as in soil- 

ribbed strip case. This also supports the idea of soil-soil 

friction controlling the behaviour in the case of soil-ribbed 
strip.

The results obtained with soil-ribbed strip will be 

compared with pull-out test results in the next Chapter.
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CHAPTER 5 

PULL-OUT TESTS

5.1. Summary of test programme

The present test programme consisted of two test series,

viz.
1. strip pull-out,

2, strip with facing plate pull-out.

A summary of these test series will be given in this
section. The materials and apparatus used in these test series have

been described in Chapter 3, All the tests used ribbed strip.

5.1.1. Strip pull-out

This is a conventional method to study the friction 

between soil and reinforcement, which has been used by different 

researchers. This testing method was adopted in the present test 

series in order to determine the angle of skin friction at different 
normal pressures and to compare the results with those of the other 

method.

The tests were carried out at normal pressures, ranging 
2 2from 25 kN/m to 105 kN/m in both loose and dense soil, corresponding

3 3to densities of 1,76 g/cm and 2.05 g/cm respectively.

The test results were compared with those of the second 

test series and the direct shear test results.

5.1.2. Strip with facing plate pull-out

It was thought that the action of pulling a strip through 

a slot in a rigid facing plate as used in the test just described/
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would result in setting up higher lateral pressures and therefore 

higher vertical or normal pressures on the strip than would be 

the case in the field. This, in turn, would lead to an incre^e 

in the angle of skin friction.

This test series was intended to determine the influence 

of the testing method on the magnitude of angle of skin friction.

For this purpose a strip was pulled out together with the facing 

plate instead of pulling out the strip alone.

The tests were carried out within the same normal 

pressure range at the same densities as in the previous tests.

The results were compared with those of the previous test results,

5.2, STRIP PULL-OUT

5,2.1 Introduction

Since the actual site materials were available for 

testing, it was decided to carry out the pull-out tests at a 

reasonably large scale to obtain the angle of skin friction and 

its variation with normal stress and to compare these results with 

the other testing method in which the strip and facing plate would 

be pulled out together.

For this purpose, a pull-out rig was constructed in which

the tests were carried out in the conventional manner at normal
2 2pressures, ranging from 25 kN/m to 105 kN/m on both loose and 

dense soil.

The testing procedure adopted and the results in the/
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form of CTn/X , 6/ CTn and f*/ CTn will be given in the following 

section.

5.2.2, Testing Procedures

The apparatus, the steel box, pulling arrangement ; 

normal pressure applying technique and the materials (soil and 

strip) are fully described in Chapter 3, Here, the test procedure 

will be explained.

5.2.2.1. Sample preparation

An air-dried soil sample was placed in layers into the 

box, and in every test the weight of soil used to fill the box was 

noted for density measurements. Prior to soil placement, a thin plastic 

liner was placed in the box to reduce friction along the sides.

The soil was placed at two density conditions, loose and dense.

In the case of the dense sample, each layer of soil was compacted 

by tamping it thoroughly with an 11 kg hammer. The density 

measurements were made knowing the volume of soil from the measured 

dimensions of the box and the weight of soil used to fill the box,
3The densities obtained were within the range of 2.00 g/cm to 2.05

3g/cm . In the case of the loose sample, the soil was simply

placed in the box without any compaction, and densities were
3achieved within the range of 1.75 to 1,76 g/cm . After placing 

the first two layers, the reinforcing strip, 112 cm long and 6 cm 

wide, was positioned. This put the strip at the mid height of 

the box and in line with the horizontal slit at the facing plate.

Some 12 cm of test piece was left projecting out of this slit for 

connection to the pull-out frame. The embedded length, 100 cm.
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was kept constant throughout all tests. After that, the remaining 

layers of soil were placed in order to flush the soil with the 

edges of the box, the excess soil was trimmed off, subsequently, 

a rubber sheet, 1,6 mm thick, was laid on the top of the soil 

filled open box, and a rubber gasket was also fitted around the 

edges to stop leakage. A thick steel plate was then positioned 
on top and bolted down at the edges of the box.

5.2.2.2. Testing

The pulling out steel frame, described in Chapter 3, 

was moved towards the box so that the projected piece of the strip 

could be pinned down at the centre of the frame. The pulling load 

was applied by a hydraulic jack nounted on the thick steel plate 

located within the frame. The jack, strip and axis of the proving 

ring were in line. The jack, in turn was connected to an "Enerpac 

hydraulic pump” to apply a steady load. The load measurements 

were made by a standard proving ring placed between the hydraulic 

jack and the frame used to pull the strip.

A 50-mm travel dial gauge was attached to the box in

order to record the relative horizontal movement of the strip.

Normal pressure was applied through the air pressure system,

described in Chapter 3. The range of normal pressure from 5 to

105 kN/ra^ was selected on the basis of Schlosser's findings (48):

"the value of apparent angle of skin friction remains approximately
2constant after a normal pressure of 100 kN/m ” , Normal pressure 

used in calculating the apparent angle of skin friction was the 

sum of applied normal pressure and overburden weight of soil, yh,
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on the strip. A series of tests at each normal pressure, ranging
2 2 from 5 to 105 kN/m and 2.41 to 102.41 kN/m in case of the dense

and loose sample respectively, were carried out. After applying

normal pressure, the strips were pulled out until either sliding

occurred or there was no further increase in tensile resistance.

The pulling loads and the relative movements of the strip were

recorded and plotted to obtain peak loads at each normal pressure

for loose and dense soil.

5.2,3, Presentation of results

Taking the maximum loads from the pull-out load- 

displacement curves drawn for each normal pressure, the shear 

stresses were calculated. It was assumed that the shear stress 

was uniformly mobilized on both sides of the strip and over the 

full embedded length and the edge friction ignored. On this basis, 

the shear stresses were calculated by using the formula:

Xs= P
2b

where P = Pulling load

b = width of strip 

1 - length of strip

These shear stresses were plotted against the normal stresses to 

obtain the relationship between them for loose and dense soil. 

This relationship is shown in fig. (5,1). Fig,5.2. shows the 

relationship between apparent angle of skin friction,Ô, and 
normal stress, CTn, for both dense and loose soil. The values of 

Z and CTn taken from the Z /Ohrelationship in fig,5.1 were used/
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to calculate the apparent angle of skin friction, 6, which is 

equal to tan ^X/Qh.

Fig.5.3 shows also the relationship between normal 

stress, (Tn, and apparent coefficient of friction ( f * = tang).

Fig.5,4 shows the comparision between the results 

obtained from the present test series and direct shear.

Fig,5.5 shows the typical pulling force displacement
2 2curves obtained at normal pressure of 105 kN/m and 102,41 kN/m 

for dense and loose soil respectively, which were selected from 

all pulling force-displacement curves for each normal pressure to 

present here.

These results will be discussed in the following section.

5.2.4. Discussions on experimental results

Fig,5.2 shows that the apparent angle of skin friction 

decreases with increasing normal pressure. This is also confirmed 
by Schlosser and others (47,28)from field and model pull-out tests.

At low normal pressure levels the value of 5 reaches 70° for 

loose soil and 83° for dense soil as compared to the values of 0 

which are 54.5° and 46.0° ; 54.5° and 41,5° (Dense, loose) measured 

from direct shear and triaxial tests.respectively,

The 83° value of 6, in the case of dense soil agrees 

well with the values reported, by Schlosser and Elias (47) who 

measured 82° for ribbed strip pull-out under a normal pressure 

of 100 kN/m^. The soil used was gravel with 0 values of 46°,
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measured from direct shear test.

The extremely high values of apparent coefficient of 

friction at low normal pressures are mainly attributed to the 

dilatancy which is experienced in pull-out and which in turn 

increases the normal pressure acting on the strip surface. This 
hypothesis is borne out by Guilloux (24) . He carried out shear 

tests under constant volume conditions on highly compacted sand 

and found very large increases in the normal pressure values.

At a high normal pressure level, in the case of loose 

soil, the angle of skin friction,6, nearly approaches the value 

of 0, whereas in case of the dense soil it is much higher than 0.

From the relationship between normal pressure and

apparent friction coefficient, it can be seen that, in case of

dense soil, the magnitude of apparent friction coefficient, f*,
2does not vary much above a normal pressure of 80 kN/m and, in

the case of the loose soil, it remains almost constant after a
2normal pressure of 40 kN/m .

Fig.5.2. shows the influence of density on the magnitude 

of 5 value. The dense soil gave higher values of ô as compared to 

the loose soil. This has also been reported by other researchers 
(4 8). Later, the effect of varying density along the length of 

strip on the magnitude of Ô was also investigated. This will be 

presented and discussed in the next chapter.

Just as striation marks were observed on the strip 

surface in the direct shear test, the same marks were also 

observed in the pull-out tests. It is interesting to note that/
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the ribbed strip in dense soil in the direct shear test did not 

show any striation marks but it did appear in the pull-out tests. 

This supports the idea that the pattern of strain in the soil is 

not the same in the two testing methods, direct shear and pull-out, 

Jewell (30).

The present test results were also compared with the 

direct shear test results. It appears that the direct shear 

method gives lower or conservative values of angle of skin friction 

than the pull-out method. This phenomenon has been noted by 

others (2-8,30,41,48).

The pulling force/displacement curves obtained for 

loose and dense soil show that in case of the dense soil, the strip 

had broken at the connection when the load reached the yield 

strength of the strip. After breaking of the strip, there was no 

peak or residual load. This point indicates that design of the 

connection between strip and facing element needs careful 

attention.

It is concluded from the above discussions that the 

behaviour during pull-out testing observed in the present study 

is the same as that reported by others. The factors, dilatancy, 

arching, boundary conditions, geometry of the strip and undulations 

in the strip, are believed to be responsible for yielding high 

values of coefficient of strip friction. Besides these factors, 
it was also thought that the rigid facing plate enhances the 

lateral pressure while the strip is pulled out, which, in turn, 

increases applied normal pressure on the strip and results in 

high values of coefficient of skin friction. To investigate this/
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point, some changes were made to the conventional testing method. 

These will be described and their results will be presented and 

discussed in the following section.

5.3. STRIP WITH FACING PLATE PULL-OUT

5.3.1. Introduction

It is thought that in the case of the strip pull-out

test where the facing plate is integral with the box, lateral

pressure develops on the back of the facing plate while the strip 

is being withdrawn. This, in turn, increases the normal pressure 

acting on the strip surface, resulting in high values of apparent 

angle of skin friction.

To investigate this effect, the facing plate in the 
pull-out rig was replaced with one which had an arrangement to 

allow the facing plate and the strip to be pulled together.

The tests were carried out within the same normal

pressure range as in the previous strip pull-out tests, on both

loose and dense soil.

The results were compared with the previous ones,

The testing procedure, results and dicussions on them 
will be presented in the following section.

5.3.2. Testing procedure

The same box used in the previous tests was modified 

by removing the facing plate and replacing it with another facing 

plate which had an arrangement to fix the strip at the centre and/
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connect it to the pull-out frame. This is clearly described in 

Chapter 3.

The testing procedure; sample preparation (Placement

of soil, compaction and density measurements), normal pressure

applying technique and pulling arrangement adopted was the same

as in the previous test series. A series of tests at normal
2pressures, ranging from 5 to 105 kN/m on both loose and dense 

soil were carried out. Pulling loads corresponding to relative 

displacements were recorded and plotted in the form of load versus 

displacement for each normal pressure. The peak loads as maximum 

loads were taken from these curves to calculate the apparent 

angle of skin friction.

5.3.3, Presentation of results

Fig. 5.6 shows the relationships between normal stress 

and shear stress for loose and dense soil.

Fig,5.7 shows the relationship between normal stress 
and apparent angle of skin friction ( 0= tan b̂/o"̂ ) which were 

calculated by taking the values of band Cn from the normal stress/ 

shear stress curves.

The values of 0 determined by direct shear and triaxial 

tests are plotted in the same graph for comparison purpose.

5.3.4. Comparision between previous and present test results

In this section, the results obtained in the previous 

test series will be compared with present test results.
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Fig. 5,8 shows the comparison of relationships between 

normal stress and shear stress obtained from both testing methods 

for loose and dense soil.

Fig, 5.9 shows the comparison of CT̂  - Ô relationships 

obtained from both testing methods for loose and dense soil.

Fig. 5.10 shows the comparison of Oh - f* relationships 

obtained from both testing methods for loose and dense soil.

Fig. 5.11 shows the typical pulling force-displacement 

curves obtained for loose and dense soil.

To compare the load/displacement behaviour of these two 

testing methods, the curves obtained at 85 kN/m were selected, 
because a similar pattern observed at each normal pressure, which 

is shown in fig.5,12,

Fig, 5.13 shows the pulling force-displacement behaviour 

of both pull-out tests and direct shear test. The displacements 

corresponding to the maximum pulling loads for each normal 

pressure are given in table 5.1.

5.3.5, Discussions on experimental results

From the present test results it can be seen that the

trend of relationships, Oh -T , Oh - 6, Oh - f*, obtained is the

same as in the previous method, but the magnitude of Ô is different

In the case of the dense soil, after comparing the values, the

skin friction angle values, 5, are 3° to 7°, lower within a normal
2 2pressure range of 5 kN/m to 105 kN/m , than the values obtained/
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DENSE

NORMAL
PRESSURE

KN/m

MAXIMUM LOAD (N ) DISPLACEMENT AT MAX: (mrh 
LOAD

STRIP
PULL-OUT

STRIP WITH
FACING PLATE 

.PULL-OUT

STRIP
PULL-OUT

STRIP WITH 
FACING PLATE 
PULL-OUT

15 17 8 10*7 31 18

25 20 4 13 3 30 T6

45 24 0 174 16 20

65 30 4 23 7 23 20

85 34*8 24*8 25 19

LOOSE

NORMAL

PRESSURE

KN/m

MAXIMUM LOAD(N) DISPLACEMENT AT|^^:frnm)

STRIP
PULL-OUT

STRIP WITH 
FACING PLA1Ï 
PULL-OUT

STRIP 
• PULL-OUT

STRIP WITH 
FACING PLATE 
PULL-OUT

12 4 3-9 2-9 22 ■ 15

22 4 5-6 4-0 31 23

42 4 7-6 GO 31 28

62 4 9 5 8 4 47 26

82 4 12 2 11-2 38 29

Table 5.1. Displacements at maximum load in both strip 
pull-out test and strip with facing plate 
pull-out test.
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from the strip pull-out testing method. In the case of the loose
soil, 6 is decreased by 3° to 4° within a normal pressure range

2 2 of 2.41 kN/m to 102,41 kN/m .In the case of the loose soil, the

differences in Ô values between the two testing methods appear

to be the same at each normal pressure. On the contrary, in the

case of the dense soil, the differences in 6 values seem to increase
as the normal pressure increases.

All results from both testing methods for loose and

dense soil are given in fig. 5.8, but these are shown in a more
meaningful manner in fig.5.9. It can be seen that, in the case

of the loose soil, the value of the angle of skin friction decreases

with increasing normal pressure and almost approaches the angle

of internal friction of the soil, measured from the triaxial test,
2after a normal pressure of 80 kN/m . On the contrary, in case 

of the dense soil, the values of Ô do not appear to vary much 

and remain higher than the angle of internal friction of soil, 0.

The Oh/f* relationships from both testing methods for loose and 
dense soil show that these all follow the same trend of decreased 

f*-with-increasing normal pressure.

The effect of facing plate on the apparent angle of 

skin friction has been reported directly or indirectly by different 

investigators, Shen and Mitchell (53) reported differences in S 

values of about 1° when the tests were conducted with rigid and 

flexible facing plates and Tumay (56) measured the lateral 

reaction on a facing plate when the strip was pulled out.

The high values of 6, particularly in the dense soil/
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are often entirely attributed to dilatancy, but the present test 

results show that dilatancy is not entirely responsible for the 

high values of friction coefficient, testing method also having 

an influence on the S value.

Fig. 5.11 shows clear peak and residual points on the 

curve for dense soil. The maximum load was attained at a 
displacement of 20 ram in the case of dense soil and 30 mm in the 

case of loose soil.

A comparison of pulling force-displacement behaviour of 

these two testing methods is given in fig. 5.12. It appears that 

in the case of strip-with-facing plate pull-out test the ultimate, 

peak and residual points on the curve are clearly defined, but in 

the case of strip pull-out, the peak and residual points did not 

appear. The pulling load-displacement behaviour from this latter 

method agreed well with that of reported by Chang (13) from field 

pull-out tests. This also resembles the curves obtained by 

Guilloux (24) on high compacted sand from constant volume shear 

tests.

It can be seen in fig. 5.13 and table 5.1 that the 

displacement at maximum load in the two pull-out testing methods 

and in the direct shear test differs in magnitude. In the strip 

pull-out test the maximum load was reached at a longer displacement 

compared to that in the strip with facing plate pull-out test. 

Normal load-displacement curve for a cohesionless soil indicates 

that as the normal pressure increasing so the maximum load and the 

displacement at maximum load also increase.
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It has been assumed as stated previously that the 

normal pressure increases locally on a strip being pulled through 

the facing plate, and does not increase when a strip moves with 

the facing plate. This increase in normal pressure should 

obviously result in the observed phenomenon viz; strip pull-out 

giving a higher load at a larger displacement than strip with 

facing plate pull-out.

The differences in maximum load between these two types 

of test is smaller in the case of loose soil compared to the 

dense soil. The probable reason for this is that in the loose 

state the passive resistance of the soil particles is lower, 

resulting in a smaller increase in normal pressure on the strip.

The direct shear test indicates a maximum load at a 

smaller displacement than either of the pull-out tests. This 

is probably a reflection of the different testing method in 

which only one side of the strip is in contact with the soil.

All those points will be referred to and discussed 

in Chapter 7.



- 103 - 

CHAPTER 6

PULL-OUT TESTS WITH VARYING DENSITY 

ALONG THE LENGTH OF STRIP

6.1. Summary of testing programme

The object of this test series was to determine the 

effect of variation of density along the length of strip on the 

apparent angle of skin friction.

This test series was decided on after observing the 

density variation which occurred in an actual reinforced earth 

retaining wall.

In this series, using the same pull-out apparatus, tests
2 2were carried out under a normal pressure of 25 kN/m and 105 kN/m

with 25 percent and 50 percent of the strip length in dense soil

and the remainder in loose soil. Both testing methods strip

pull-out and strip with facing plate pull-out, were used with ribbed strip

The variation in apparent angle of skin friction with 

percentage of strip length in dense soil was observed,

6.2. Introduction

After reporting on the insitu field densities from the

backfill of a reinforced earth retaining wall at Maryhill in Glasgow,

as referred to at the beginning of Chapter 4, the effect of density

variation along the length of strip on the magnitude of 6 was thought

to be worthy of investigation. Thus, a series of 4 tests each at
2 2normal pressure of 25 kN/m and 105 kN/m , representing low and 

high normal pressure respectively, was carried out.
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The same test rig was used with a temporary barrier 

plate placed across the box at distances of 0.25 m in one test and

0.5 m in the other from the back of the facing plate in order to 

compact the rear zone first and then to fill the soil loose in the 

front zone.

The testing procedure adopted in this series and 

presentation of results and discussions on them will be given in 

the following section,

6.3, Testing procedure

The testing procedure adopted in this series of tests 

was the same as was adopted in the previous test series except for 

the preparation of the sample when the soil was placed in two 

zones ; one compacted and the other loose.

A series of four tests were carried out in which the 

first two tests had a loose zone, 0.25 m and 0.5 m respectively
2

from the back of the facing plate, at a normal pressure of 105 kN/m ,

and the other two tests had the same loose zone areas at a normal
2pressure of 25 kN/m .

In order to compact the rear zone and leaving the front 

zone uncompacted, a temporary steel plate, 11 cm x 40 cm, was used. 

This plate was placed vertically across the box at the distance of

0.25 m in the first test and 0.5 m in the second test from the 

back of the facing plate and then temporarily propped up so that 

it could not move forward while compacting the soil. Having 

temporarily fixed the plate, the rear part of the box was filled/
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with soil in layers and was compacted by the same method as was 

used in the previous best series. The front part was filled 

with loose soil without any compaction. This was done up to the 

mid height of the box. After that the plate and supports were 

removed from the box. Then, the reinforcing strip was placed 

flat on the soil surface ; with one end through the facing plate 

attached to the pulling frame. The plate was again positioned 

at the same distances and was temporarily supported, repeating 

the same procedure in placing and compating the remaining layers 

of the soil. After removing the plate and supports, the excess 

soil was trimmed off so as to flush the soil with the top edge 
of the box. The rubber sheet with gasket were laid on the soil 
surface and the steel plate bolted down at the edges of the box.

After applying normal pressure, the pulling load was applied through 

the hydraulic jack. The pulling loads were recorded on the proving 

ring dial gauge corresponding to the horizontal movement recorded 

on the dial gauge.

Plotting these pulling loads versus horizontal displacement 

values, the pulling load/displacement relationships were established 
from which the peak pulling loads were taken for calculating the 

apparent angle of skin friction, 5.

6.4. Presentation of test results

Table 6,1 shows the values of apparent skin friction angles 

obtained with both methods of testing and the values calculated by 

using the following equation.
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X tan 5^ + Y tan = 100 tan 6^

where X = Percentage of strip length in
Dense soil.

Y = Percentage of strip length in 

loose soil,

ôjj = Measured apparent skin friction angle 

at 100% compaction,

6^ = Measured apparent skin friction angle 

at 0% compaction.

6^ = Calculated apparent skin friction angle

at varying density along the length of

the strip.

Fig, 6.1 shows the relationship between apparent angle 

of skin friction and percentage of strip length in the dense 

soil.

The pulling load/displacement curves obtained from the 

present test series were plotted together with those obtained 

from both fully compacted and loose soil from both testing methods, 

and are shown in figs. 6,2 to 6.5.

6.5. Discussions on experimental results

A considerable change in the values of Ô was found when 

the density was varied along the length of the strip. Using the 

strip pull-out method, in the first case where 25% of the strip 

length was embedded in the loose soil, the 6 value was decreased 

by a constant 5.5° and in the second case with 50% of the strip/
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length embedded in the loose soil, the value was decreased by 

8.2° and 11.6° under normal pressures of 25 kN/m^ and 105 kN/ra^ 

respectively, A decrease in 5 values was also obtained using 

strip-with-facing plate pull-out method. This decrease was a 

constant 2.7° in the case of 25% of the strip length embedded in 

loose soil and 5.3° and 4.4° for 25 kN/m^ and 105 kN/ra^ respectively 

in the case of 50% of the strip length embedded in loose soil.

Fig, 6,1 and table 6,1 show that the calculated values 

of apparent angle of skin friction compare reasonably well 

with the measured values in the case of strip-with-facing plate 
pull-out test but this is not so in the case of strip pull-out 

test which shows slightly greater values than the measured values.

Fig. 6,1 clearly shows that the apparent angle of skin 

friction, Ô, decreases with decreasing density along the length 

of strip, particularly when the strip pull-out method was used.

It is generally assumed that the apparent angle of 

skin friction remains constant along the whole length of strip.

In actual field conditions, because of the specified compaction 
method used, the density is lower within the 2 m of backfill 

adjacent to the wall facing than in the rest of the fill. Because 

of this, the apparent angle of skin friction will not be the same 

along the whole length of strip.

Schlosser and Guilloux (48) conducted some pull-out 

tests from which the tensile forces and their distribution along 

the length of strip have been reported. The significant effect/
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DENSITY

VARIATION

TEST
APPARENT ANGLE OF SKIN FRICTION(DEGREE

MEASURED CALCULATED

0^i=25KN/nf Cp:,=105KN/2Cf^25KN/m'^ Cf=105KN/n?

100°/o Compactior 81-7 73 - -

15Vo o STRIP 76 2 67 7 79 9 70
SOVo ^ PULL-OUT 735 62 4 77 2 65-8

2 5 “/a ^ - - 72 4 59 5
QVo 62'6 49-5 - —

100°/c Compactiez ' STRIP WITH 77-3 66 - -

75"/o FACING PLA­ 74 6 63 2 75 0 62 8

B O V o  o
TE PULL-

72-0 61-6 71-8 58 8
25°/o

OUT
66 9 53 6

0 “/o 58-8 46-8 -
t n .....■■■■

Table 6.1

Loose Den se
S trip  p u ll-o u t 
S tr ip  w ith  fa c in g  
p la te  p u ll-o u t

Experimental 
va lues

•Crn = 25 KN/m^
X C alcu la ted va lues

40
20 40 60 80 100

Percentage of s tr ip  length in dense soil

Fig. 6.1 Variation of apparent angle of skin friction with 
percentage of strip length in dense soil.
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(strip pull-out)



- 110

<
o
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Fig. 6.3. Pulling load-Pisplacement Curves, 

(strip pull-out)
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Fig. 6,4. Pulling load-displaceraent curves.
(strip with facing plate pull-out)
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Fig, 6,5, Pulling load-displacement curves,
.strip with facing plate pull-out)
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of density on the mobilization of friction has been noticed. It 
is hypothesised that, in the case of the dense soil, the 

reinforcement acts as a deformable element and the mobilized 

friction is more important at the fixed end of the strip than near 

its free end. As has already been poirited out the front part 

of the strip is embedded within loose soil, and this may have an 

influence on the tensile force distribution and mobilization of 

friction. If the tensile forces and their distribution along 

the length of strip were determined under these conditions, the 

effect of variation of density on the mobilization of friction 

could have been observed.

From a comparison of pulling force-displacement 

relationships of each case it can be seen that a general form 

of all curves is somewhat the same and the maximum pulling loads 

are obtained at nearly the same displacement.

The present test results will further be discussed 

in the next Chapter,
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CHA.PTER 7 

GENERAL DISCUSSIONS, CONCLUSIONS 

AND FUTURE RECOMMENDATION.

Discussions on the results obtained from each series of 

tests have been presented at the end of each section. Here, all 

the results will be discussed in more detail.

In designing a reinforced earth wall against bond failure, 

there are Reinforced Earth Company, Rankine, Columb force, Columb 

moment methods in which the factor of safety depends on the friction 

coefficient between soil and reinforcement. This soil-reinforcement 

friction coefficient will significantly influence both the stability 

and economy of the final design. For determining this important 

design parameter, the existing available methods are direct shear 

and pull-out.

Different investigators have concluded from a large 

number of tests using both methods, that a direct shear method 

gives conservative or low values of soil-reinforcement friction 

coefficient while a pull-out method gives very high values of 

soil-reinforcement friction coefficient, even greater than the 

soil alone, particularly at low normal pressure. The use of high 

values of skin friction coefficient from pull-out method in design 

is a controversial subject among most researchers. Thus, different 

investigators have been involved in the study of pull-out tests 

on model, prototype actual field walls and embankments. They have 

reported that dilatancy, arching, geometry of the strip, boundary 

conditions and compaction of soil may cause an increased 

coefficient of friction.

To gâin further insight into this, the present/
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investigation was planned in which pull-out tests, employing 

actual site material, at large scale were carried out in order 

to see the effect of testing method, fill density and its 

variation along the length of strip on the soil-reinforcement 

friction coefficient. In addition to this, direct shear and 

triaxial tests on the same material were also performed.

Direct shear test results, in general, have shown a 

similar trend as has been reported by others. Both direct shear 

and triaxial tests were conducted on the soil sample at several 

densities to measure the angle of internal friction, the former 

method gave 5° higher value than the latter method. This difference 

agrees with that reported by other investigators. In a similar 

way direct shear tests on the soil-smooth strip and the soil- 

ribbed strip at the same densities were carried out in order to 

measure the angle of skin friction. From the results it appeared 

that the soil-smooth strip yields lower values of angle of skin 

friction compared with the values for the soil-ribbed strip.

The values of angle of skin friction from both these samples are 

lower than the angle of internal friction of the soil. The ratio 

of average values of tan é to tan y  is 0.55 and 0,77 for soil- 

smooth strip and soil-ribbed strip respectively. From the ydvs 0 

relationships it can be seen that, in the case of soil-smooth 

strip, density has a negligible effect on the ^  values, on the 
contrary, in the soil-ribbed strip case the if value is greatly 

influenced by the density,

A study of the pull-out testing method was the main/
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part of the present investigation in which three series of tests 

were carried out. A first series consisted of strip pull-out 

tests which have normally been used in measuring coefficient of 

friction between soil and reinforcement.

These tests were conducted at normal pressures,

ranging from 5 to 105 kN/m on both loose and dense soil. The

results obtained indicate the extremely high values of apparent

angle of skin friction at low normal pressure and the decrease

in it with increased normal pressure, A similar behaviour has

been reported by other investigators. One reason for the high

values of apparent friction coefficient may be dilatancy, i,e,

while the strip is pulling out, arching occurs across the strip
by which the ambient soil supresses the volumetric expansion

which, in turn, increases the applied normal pressure and results

in enhanced apparent angle of skin friction. If we take into

account a dilatancy effect, e.g. following Comforth (20) and

Ponce and Bell (46 ) who attributed an increase over 0 of 17° duecv
to dilatancy in dense sand, the value of 6 still remains high.

This shows that there is some mechanism involved in addition to 

dilatancy,

Another probable reason is that the action of pulling a 

strip through a slot in a rigid facing plate results in developing 

high lateral pressure which, in turn, enhances applied normal 

pressure on the strip. This leads to an increase in the angle 

of skin friction. To investigate this point, a second series of 

tests at the same normal pressures and in both loose and dense 

soil was carried out. In this testing method the strip and facing/
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plate were pulled out together. The results obtained show that 

the testing method has a considerable effect on the 5 value. A 

large reduction in the S value is obtained by using this method.

The results, in the case of loose soil, show that the apparent 

angle of skin friction approaches the value of angle of internal 

friction of soil at high normal pressure, but this was not so in 

the case of dense soil in which the values remained high.

This much higher value of apparent angle of skin friction 

in the case of dense soil may be due to the fact that a wedge 

of soil adjacent to the back of the facing plate is formed due to 

the action of pulling the strip. In addition the facing plate 

moves downwards, causing a bend in strip. This bending of the 

strip possibly increases the normal pressure acting on the strip 

and results in an enhanced apparent angle of skin friction.

After noting the variation of density along the length 

of strip in the backfill of a full-scale reinforced earth wall, 

the third series of tests was carried out in order to observe the 

effect of density variation on the 5 value. The tests were 

performed with both methods of pull-out. The results show a 

decrease of 5 value with decreased percentage of strip length in 

dense soil in both methods of pull-out. It seems that the latter 

method, strip with facing plate pull-out, with 75 percent of the 

strip length in dense soil reflects the condition which normally 

occurs in the field. The value of Ô achieved in this case is 

53° at a normal pressure of 106 kN/m^. If the 5 value is adjusted 

for the effects of dilatancy, it would be reduced to 46° which is 

equivalent to the angle of internal friction of the soil. This/
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shows that if the pull-out test is conducted under the conditions 

normally occurring in the field, the angle of skin friction would 

probably not be greater than the angle of internal friction, 

particularly at high normal pressure.

From the tests just discussed above, a further insight 

could be gained if the tensile force distribution along the 

length of strip was measured by instrumenting the strips with 

strain gauges. A more realistic value of angle of skin friction 

could be found if the stresses and strains in the proximity of a 

strip undergoing pull-out were determined. It is, however, 

difficult to place pressure cells in the vicinity of a strip for 

measuring stresses, without affecting the results.

It is postulated that if the distribution of normal 

pressure along the strip length is determined the angle of skin 

friction can be calculated by incremental treatment, i.e. the 

f* (;^) values are calculated at predetermined intervals along 

the strip, taking corresponding values of normal stresses and 

measured shearing stress. All f* values are then summed to 

obtain the true value of coefficient of skin friction.

Finally, it is concluded that the pull-out testing 

method is over-sensitive to the different factors such as testing 
method, fill density and its variation along strip length. So, 

at this stage, the author agrees withother investigators that, 

from the safety point of view, the values of coefficient of 

friction used in design should not be greater than the values 

of coefficient of internal friction of the soil.
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CONCLUSIONS

From direct shear test results:

1. The relationships, yd vs 0 and yd vs "gr , obtained from 

the soil-soil, soil-smooth strip and soil-ribbed strip were 

linear,

2. The ribbed strip gave higher values of coefficient of 

friction than the smooth strip,

3. In the case.of the soil-ribbed strip the magnitude of

was much influenced by the density, but, in the case of the 

soil-smooth strip the density had very little influence on 

the Ÿ  value.

4. The magnitude of values with the ribbed strip at all 

densities were lower than the angle of internal friction of 

the soil alone measured from triaxial and direct shear tests.

From Pull-out test results:

1, In general, the magnitude of the 5 value was considerably 

influenced by the testing method, density and its variation 

along the length of strip.

2. The apparent coefficient of friction decreased with 

increasing normal pressure in liaoth loose and dense soil.

This trend was obtained from both testing methods, strip 

pull-out and strip with facing plate pull-out.
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3. The density had considerable effect on the magnitude

of Ô value in both testing methods ; the dense soil gave

higher values of apparent coefficient of friction than the 

loose soil at each normal pressure,

4. The strip-with-facing plate pull-out testing method

yielded lower values of apparent angle of skin friction by 

3,5 and 4 in case of the dense and loose soil respectively

than those obtained from the strip pull-out testing method.

In this testing method, the value of apparent angle of skin 

friction approached the value of angle of internal friction 

of the soil measured from the triaxial test, particularly

at high normal pressure. In the case of dense soil the 

values did not vary much with normal pressure but remained 
high.

5. Both methods of pull-out gave high values of apparent 

angle of skin friction as compared to the direct shear 
method.

6. The apparent angle of skin friction decreased with 

varying density along the length of strip.

FUTURE RECOMMENDATION

1 « In order to see how friction is mobilized along the

strip the tensile forces and their distribution along the 

length of the strip can be measured by putting strain gauges 

at suitable intervals on the strip surface. This can be/
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done in both testing methods and with varying density along 

the length of the strip.

2. The influence of geometry of the strip (length, width)

on the apparent friction coefficient can be observed by using 

both methods of testing and with varying density along the 

length of the strip,

3. The effect of vibrations on the apparent friction

coefficient can be studied by carrying out tests with the 

same methods of pull-out as mentioned above.

4. Using both methods of pull-out, the apparent friction 

coefficient can be measured by employing other materials : 

coarse grained soil with different grain size distribution 

and silty or clayey soils ; fabric or plastic as a 

reinforcement instead of aluminium or steel.
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