
 
 
 
 
 
 
 

https://theses.gla.ac.uk/ 
 
 
 

 

Theses Digitisation: 

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ 

This is a digitised version of the original print thesis. 

 

 
 
 
 
 
 
 

Copyright and moral rights for this work are retained by the author 
 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 
 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 
 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 
 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 
 
 
 
 
 
 
 
 
 
 
 
 

 
Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


CAVITATION NUCLEI

AND

RESORPTION OF AIR BUBBLES

By

PETER JUI-SH^N CHENG, B.Sc.(Eng.), A.M.I.N.A.

Depart.-’.ient of Aeronautics and Fluid Mechanics, 

University of Glasgow.



ProQuest Number: 10646853

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uesL

ProQuest 10646853

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 48106- 1346



'Thests
l % a

C ^ X



CONTENTS

6. Variation in experimental conditions and repeatibility

Page
Preface

Acknowledgements

Part I - Cavitation Nuclei

1. Introduction     1
2. Model of cavitation nuclei   3

3. Description of apparatus   7
3.1 Test tank ----   7
3.2 Barium titanate transducer   7

3.3 Mounting of transducer   7

3.4 Reflector     8
3.3 Electronic equip/.ient   8

4. Experimental ;:iethod and procedure   9

4.1 Ain and scope of experi.';'ient   9
4.2 Detection of cavitation onset   9

4.3 Procedures for the determination of the thresholds

for gaseous ana vaporous cavitation 10
4.4 Deaeration and aeration   12

4.5 Measurement of total air content ---- I3
3. Experimental results and observations ---  l4

5.1 Calibration of souna pressure in the focus of the 

stanuing w a v e   ----

5.2 Cavitation thresholds,for tap water p8
3.3 Cavitation thresholus for distilled water 22

2.4 Cavitation thresholds for filtered tap water 23

5.5 Effect of wetting agent on thresholds of cavitation 24

3.6 Pressurisation   23

26r of results7. Discussion     27
8. Conclusion     31

9. Reference ---- —--- 32

10. List of tables ana figures   35



Page

Part II - Resorption of Air Bubbles

List of symbols and values of constants used
1. Introduction     1

1.1 Aim of the experiment   5

2. design and description of apparatus --   3

2.1 The '.lain tube —--   — 4

2.2 Pressurisation    4

2.3 Bubble generation   4

2.4 heasurecient of rate of resorption ---- 4

2.3 Lighting   3

2.6 Air content of water   3

3* Experimental procedure and technique --- 6

3-1 Preparation of water   6

3.2 Setting ambient pressure   6

3.3 Bubble generation   7

3.4 Time - distance record   7

3.3 Range covered by experiment   8
4. Experimental results   9

3* Analysis of experimental results   11

3.1 Lewis-Whitnan equation   11

3.2 Rate of change of bubble radius ----  11

3.3 Bubble radius and its rising velocity 12

3-4 Evaluation of   l4

3 .3 Resorption equations for air bubbles 15

60 Sources of error ----   I8

7. Discussion     20

8. Conclusions —  — — — ̂ 21

9. Reference     22

10. Appendix      24

11. List of tables and figures   26



PREFACE

It has now been generally accepteo that the formation of cavities 

in flowing or static water upon the reduction of local pressure is due 

to the growth of microscopic gas nuclei to visible size. The sizes 

of such nuclei determine the inception pressure of cavitation. In 

water tunnels where model testingjare carried out to predict the 

inception point of a prototype it is necessary to learn more about 

the characteristics of the nuclei present in tĥ . tunnel water and the 

water used in the prototype before a proper scaling law ;,iay be de­

rived.

The air bubbles for/.ied by cavitation in the working section of 

the water tunnel make the prolonged operation of tunnel unsatisfactory 

if not removed. Resorbers have been constructed to force tnese

free air bubbles back into solution. The di.'^ension of the resorbers 

was determined by using the resorption equations for air buoble in 

undersaturated water based on the Lewis-'hitman concept of gas and 

liquid films. The e;.,pirical liquid coefficient is of direct

importance in fixing the dimension of the resorber.

The thesis is divideo into two parts. The first part describes 

the investigation into the characteristics of nuclei coer ronly present 

in water and the possible mechanisms of stabilization of such nuclei. 

In part two , an apparatus is described for evaluating the empirical 

liquid coefficient for small sir bubbles.
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CAVITATION NUCLEI
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GAVIT.:1TI0TT NUCLEI-,

1. Introduction

The formation of calvities in water under reduced pressure was 

first observed by Reynolds (ref.l) in a venturi, but its engineering 

implication was only realised in-connection wdtli -tlie’ design of high speed 
marine propellers, Barnaby (ref.2) explained that the decrease in 
efficiency of marine propellers at high speed was due to the formation 

of cavities on the back of the rropellor blades filled with water vapour 

and air. This explanation was borne out by Parson's experiment (ref.3) 

on a model nroneller in a heated water tank under reduced pressure.

RoE, Proude suggested that this phenomenon be described by the term 

"Cavitation."

Since then much work has been done on the subject; for the 

background of the general aspects of co.vitation references 4 to 7 

should be consulted.

One basic problem which is of interest to both scientists and 

engineers is tho determination of the critical pressure for the onset 
of cavitation in a liquid. To the physicist this represents the 
maximum negative static pressure (tension) tho liquid will stand, i.e., 

the tensile strength of the liquid, while to the h^-drodynamicist 

the dynamic inception nros sure is tho orit-rion for cavitation free 

operation in hydrodynamic machines such as ship pronellers. More recently 

the interest was shared by the acoustical engineers concerned T/ith the 

transmission of sound waves in lipuids and tho process of ultrasonic cleaning, 
A roviow of the literature such as that by Tomperley and Chambers 

(ref.8) shows that the reported values of the tensile strengths of 
liquids are widely scattered. It is now known that this is due to the

different experimental methods used, the effect of air .and solid particle 

contents and the effect of pro-treatment of the specimens.

In the field of hydrodynamics it had. long been assumed that 
flowing wo/ter could not withstand tension o.nd vapour cavities would form 

in water when the pressure was reduced to that of the vapour pressure 
corresponding to the water temperature. It is now realized that 

cavitation may occur above or below vapour pressure depending on the 
condition of the water.
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Q.-uantitative measurements of the threshold for ultrasonic 

cavitation in water havo only recently hoen undertaken, (rof.9 to 1$)
The results show large differences between neasurencnt by different 

workers,

It has now been generally accented that the discrepancies 
between the various values of critical pressure for the inception 
of cavitation in water arc due to the presonce of weak spots in 

water. These woak snots havo been given the namo "nuclei."
Experimental evidonco has led to speculation that they arc cavities 

containing undissolved air, Tho first of such experiments was 

performed by harvoy ct al, (ref.14). They showed that by applying 
a temporary high pressure (lOOO atms.) to a water sample the resistance
to cavitation was greatly increased. This pressurization hffect

has since been confirmed by Strasborg (ref .12), Iyengo,r and Richardson 
(ref.13) and Enapn (rof.15). It was explained that the high pressure 
forced the undissolved air cavities into solution and thus removed the 

nuclei or weak spots in water. Since the sizes of such nuclei 

probably detornino tho critical pressures for the onset of cavitation 

in water, for a bettor understanding of tho mechanism of inception 
we must try to learn more about the characteristics of the nuclei in water.
It was with this aim that the present work was undertaken.



_  3 -

2. Model of Cayltr.tion Nuclei,

2.1 Free Air Bubbles,

In order to explain the ease vdth which untroated water can be 
made to cavitate it is necessary to postule to that microscopic gas nuclei 

(lO"^ to 10”  ̂cm) exist in water yrhich has not been specially treated. 

Cavitation is the growth of such nuclei to visible size. It is unlikely 

that tho gas nuclei are free air bubbles, since they will be 

compressed out of existence by the surface tension or grow by the 
diffusion of air into the bubble and eventually rise out of the water. 
Consider the equation of statical equilibrium for an air bubble in 

water,

pQ " + h  - ̂   ....(2.1.1)
where p = water pressure.

P = gas oressure in bubble,
e
p = vapour pressure 

<T = surface tension

r @ radius of bubble.

The equilibriui.a can only be maintained if

Pg “ ..... ....o (2,1,2)

where p^ is tho equivalent dissolved gas pressure. Therefore in 

saturated or suporsatumted water there is only one size of bubble 
vfhich can maintain the equilibrium, largor bubbles will grow by tho 
diffusion of air into the bubble end smaller ones will dissolve 
undor the pressure of surface tension. In undersaturated wo.ter o.ll 

bubbles will soon dissolve. Experimental evidence showed that nuclei 

persisted even in und or s a tura t e d vrater. Therefore some mechanism 
must exist which stabilizes the gas nuclei and prevents thoir absorption 

in undersaturated Tfator.

Before going on to examine the possible macha.nisms of stabilization 

we shall assume that free air bubb]os exist in water and the 
condition under which the;; will grow can bo calculated.

From equation (2,1,1 ) it had been shoT/n by Blake (rof 9) c,nd also 

by Noppiras and holtingk (ref.20) that there is a limit to the 
mechanical stability of such a bubble. The minimum pressure 

at which the bubble become unsta.blo is given by the equation.
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Pc = Pv - 9
3

..(2.1.3)

whore - initial radius of bubllo

Pĵ  = initio.l hydrostatic pressure outside bubble.

Equation (2,1.5) gives tho critical pressure for tho accurance 

of vaporous cavitation.

The bubble can also grow by the diffusion of air into the 

bubble if it is subjected to a forced oscillation by a sound wave 
(ref 9 and rof 2l). During tho positive half-cycle tho air inside the 

bubble is compressed and diffuses out of the bubble, but during 
the negative half-cycle the air diffuse into the bubble from tho sur­
rounding wotor. Since the expanded surface area in the negative half- 
cycle is largor than the contracted surface area in the positive ha.lf, 
there is a net influx of gas into the bubble. If this influx 

is greater than the amount of gas dissolved, in the some time, the 
bubble y rill grow, Therefore there is a theshold for the growth of 
bubbles by induced sonic osci]lotion depending on the air content of 
vjater, tho hydrostatic pressure, radius of the bubble and the frequency 
of tho sound wave. The peak soupd pressure Pg required to cause gasoous 

cavitohion is given by Blake (ref 9) as,

|i + '»îf/3r^p^ J [l + ' U  ]

p T w a v p F T v q y r ...........

whore f = frequency of sound wave 

D @ diffusivity

Without questioning the mechanism of stabilization and by 
assuming tho oxistance of a microscopic gas nuclei (spherical) it is 
possible to derive tho peak sound pressure required for vaporous 
and gasoous cavitation. The critical pressure is equal to 

(Ps-Po)*
Two theories exist to explain tho persistence of the gas nuclei 

in undersaturated water,

2.2 Gas nuclei with organic skin,

1 hypothesis wr.s put forrrard by Fox and Herzold (rof .22 ) to
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explain the persistence of nuclei in water. They suggested that gas

nuclei are stabilized by an organic skin which covers the whole 

bubble. As air diffuses out of the bubblu tho sige of the bubble 
will be reduced and the skin conprossed. The conprossicn of the skin 

finally cuts off the solution cf more air and diffusion ceases. 
Alternatively tho skin acts as an elastic shell to support the pressure 
difforenco botwoon the gas pressure, pressure duo to surface tension 

and the water pressure. This allows tho air inside the bubble to reach 

diffusion equilibrium with the dissolved air in T/ater even if it is 

undcrsaturah ed.

As shown in reference (22) the maximum size of bubble which will 
Tn«x.

survive undor anhydrestatic pressure of p,-̂ will have radius.

2 (C= - # )
r

Pm - PLwhore Ĉ _- crambling strength of the skin. The gas pressure inside 

the bubble is assumed to be oqual to the equivalent dissolved 

gas pressure.

Tho poak sound pressure required to cause vaporous 

cavitation is given by reference (22) as

P = p - p + 2(T +y") (~ -f- — p)...........(2.2.2)•̂ s o L s r a '

where T - tensile strength of tne skin

a' - a constant

If r is used in equation (2.2.2) we have, m

p - p + Ap - (l+A) Pt + B ...............(2.2.3)s o m L

T̂  - (T 2 (T̂  +g)
where A - v-----  and B =  ----—:----Cs + (T

2,3 Air trapped in a crovicG.

Tho coneopt of undissolved air trapped in the unwetted crevice 

of suspended particles as the model of nuclei was due to Harvey (ref.I4), 
If the wall of the crevice is hydrophobic the liquid /air surface wdll 
be convex towards the air if tho water is undorsaturatod and the surface 
tension force will act opposito to that of w.ater nressuro.
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The air pressure inside the crevice can ho kept in diffusion equilibrium 

even if the water is undersnturated.
The peak sound pressure for vaporous cavita.tion was calculated 

by Strasborg (ref.12) as

p = p H- B p — (B + B_) p «...«...».(2.3*l)■̂ s o c m  o 1 L

where and B^ are numerical constants depending on the geometry

of the crovice and the receding angle of conto.ct and the solid/go.s/liquid

interface,

Strasberg (ref.l?) observed that with two completely 
different concepts of the mechanism of stabilization of the nuclei 
the critical pressures for vaporous cavitation shorn a sinilo.r linear 
relationship with and This renders the verification of

the mechanism of stabilisation by cynorimcnt more difficult.
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Description of apparatus

The apparatus is similar to that used by Iyengar and 
Ptcho.rdson (ref.13 ) vtth differences in the details of 

construction. The sound pressure to cause cavitation 
is gonoratod by setting up a spherical standing wave system in 

a test tank with a barium titanato bowl transducer and 
reflector. With this system high sound, pressures can be 

generated in the body of tho liquid avray from any solid 
surfaces. The properties measured are therefore those of the 
liquid tested, .A genoral view of the apparatus used is 
shown in Fig (l),

3.1 Tost Tank.
The tank was constructed of perspex sheet.

The main dimensions arc given in Fig (?). The top and 

bottom covers of the tanlc ^ore removable and were bolted 
to the flanges on the side of tho t.ank using rubber gaskets. 

Drain holes wore provided on the top and bottom covers,

Vfeter for testing v/as drav/n into the tanlc through a rubber 

tube connected to the bottom drain hole to avoid splashing 

and air ontrainment. Fig (5) shows tho tost tanlc together 

with the barium titanate transducer and refdoctor in place,

5.2 Barium Titanate transducer

The spherical transducer was made to 

order by Technical Ceramic Limited. It had a radius of 

curvature of 6.35 cm. and o, uniform thickness of 6 m.m.

The diameter across tho face of the transducer was 10.6 cm. 

Both sides of the transducer were silver plated and electric 
contact wo,s made by means of spring contacts, (see fig,2)

3.3 Mounting of transducer.

The mounting for the transducer was made of two 
Bakelite discs. It was designed to reduce the restraint 
on tho transducer to a minimum.. The transducer was 

clamped around its perimeter along the centre of the thicknoss 
by metrns of a rubber "O" ring and the "V" grove cut on the 
two discs ; since the centre of the thickness was a node



■when the transducer was driven at half-wave resonance.

The mounting together with the transducer was bolted to one end of the 

tank v/ith rubber gasket as shewn in Pig (?). The transducer 

thus had air backing (high potential side) and was in direct 

contact ■'mith the liquid under test inside the tank (ground side).

3.4 Reflector

The reflector was also made of perspex. Th:e surface

shell facing the transducer was made of -2." thick perspex16
sheets and had the same radius of curvature as the transducer.

The spherical shape was obtained by pressing the heated 

perspex sheet into a mould and polishing to the required finish.
The spherical shell was then glued to the base around its 

perimeter leaving an air space betv/oen the shell and the base.
The use of perspex for the construction of the reflector 
facilitated the lighting of the tank. Coarse focusing 

of the reflector wp.s effected by shifting the perspex shaft on 

which it was mounted. An c,djusting nut on the shaft provided 

the fine movement needed for focusing.

3.5 Electronic equipment .

A block diagram of the electronic equipment used is
given in Pig (4)° The spherical transducer was driven a,t its
±esonant frequency of 428kc/sec through a turned L 0 circuit
by a modifbd TIO radio trcnsmittor. The transmitter was supplied by

Siemens Edison Swan Ltd. Tho power output was controlled
by varying the E.H.T. of the power amplifier. A Marconi

valve voltmeter was used to measure the voltage applied to the
transducer. For a standing wave the maximum voltage
available to drive the transducer was 60 volts and corresponded

to a pe?lc sound pressure of 30 atmospheres at the focus of the
standing wave,

Tho sound pressure at the focus of the standing
wave was mor.sured by a ultrasonic probe UP800C also supplied

1by Technical Ceramic Ltd., whose sensitive element was
16

in length and 0,038" in diameter. The accuracy quoted by 

tho maker was - 2 db.



- 9 -
4* Experimental method and procédure

4•d Aim and Scope of experiment.
The aim of the experiment was to determine the cavitation 

thresholds of tap water, distiller water and filtered tap water under 

various experimental conditions and to deduce from the results, the 

characteristics and the mechanism of stabilization of gas nuclei.

The majority of the experiments were conducted on tap water.
For the purpose of comparison some experiments were repeated in distilled 
Yfater and one in filtered tap v/ater.

The thresholds of gaseous and vaporous cavitation were determined 

in many samples and the effects of such factors as ago of water, total air 

content, re-aeration and deaeration, wetting agent and ores surizati on on the 
thresholds wore investigated,

4.2 Detection of Cavitation onset

The onset of cavitation in water for both gaseous 

and vaporous cavitation were detected by the resulting noise.

Tho spherical transducer was used also as a detector and the 

noise won made visible by feeding the signals received into 

an oscilloscope. A twin - T filter was used to eliminate 

tho driving signal of 428 kc/sec so that only the noise 
generated by bubbles were displayed on the screen of the 
oscilloscope. However a small portion of the r.f. signal 

still apneared on the screen, but since the amplitude of this 

residual signal was comparable to that of the noise generated by 

the bubbles at onset of cavitation, vmich were also of a much 
lower frequency, there was no difficulty in distirguishing 

one from the other. No attempt was therefore made to improve 
the filter used.

The noise generated by gaseous cavitation had a broad 

frequency range and was continuous while the noise caused by vaporous 
cavitation appeared as individual pulses having by rough estimation a 
duration less than one milli second.

This method of detection is similar in principle to the method 

used by Iyengar and Richardson (ref.4) and has: many advantages over visual 
detection.



-  10 -

For gaooous oewitn+don 1];% air natural ed water the 

onset of noise was aocomptinied by tho sudden appecorance 
of small bubbles in the focal region. However for nartially 

degassed v/ater ( ,>50/ saturation) the noise sometimes 
appeared long before any bubbles became visible, and if tho ap~ 

poarancG of bubbles had been t a k a s  a criterion for the onset 

of gaseous cavitation the threshold v/ould have been overestimated. 

Since the onset of gaseous cavitation is identified with a 

the growth of a bubble by a process called "rectified diffusion" 

the threshold should be defined as the pressure which will 

cause the growth by this crocess irrespective of the time 
required for the bubble to grow to a certain size.

At the frequoncy of 4-28 kc/sec the bubbles generated 

by vaporous cavitation never grew to visible size before 

their final collapse at a sound pressure slightly higher 

than the threshold. It was therefore not possible to 

determine the threshold of vaporous cavitation by visual 

insnection in the present experiment. It is to be 

noted that at sound pressures very much higher than the ' 
threshold for vaporous cavitation tho vapour bubbles 

generated by cavitation did become visible to unaid eyes.
4•3 Procedures for the dotorminati on of the thresholds 

of gaseous and vaporous cavitation.

To determine the thresholds of gaseous and 

vaporous cavitation it was found necessary to adopt a 
different procedure for each. To déterminé the threshold 

of gaseous cavitstion in water the sound pressure was 
increased slowly until noiso appeared on the oscilloscope 
indicating the onset of gaseous cavitation. The 

appoaranco of noise might or might not
be accompanied by the anpoarancc of bubbles depending on 
the total air content of the woter. The voltage applied 

to tho trp.iisducor was noted and tho sound wave was turned 

off immndiaholy to nrevent further formation of bubbles.
UnliKo tho apparatus used by Strasborg (rof.12) whore only 
one bubble was formed the nrosont apparatus continued



—  11 —

to produce bubbles if the sound v:cvo was left on,

% e n  all the bubbles produced had risen to 

the ton of tho tank and none could be seen in the body 

of tho water, especially in the focal region, tho 

water was slightly stirred with the polythene tube 

stirrer, Experience showed that if the second 

me.'isiircnant was undertaken without renlacing tho w.ater 

in tho focal region which had been subjoctod to cavitation, 

the threshold determined was in many cases either higher or 

lower than the first measurement. Results showed that more 

consistent rea,dings were obtained if frosh wa.tor xie.s 

brought into the focal region after each measurement,
About thirty seconds after the water was 

stirred tho seuond moasurcment was ma,de. This time 

tho sound pressure was quickly brought up to a point about 

10/ below the threshold measured in the first trial. If 
no cavitation occurred before this point was reached the sound 
pressure was held there for ten seconds. And if no cavitation 

occurred during that time the sound pressure v/as 

increased in steps every ton seconds until the threshold 
was re-ached, "By bringing up the sound nressuro quickly to 

the neighbourhood of the threshold estimated by the first 

trial it was hoped to reduce the time effect and to limit 

the heating of the water in the focal region to a minimum 

This was repeated six to eight times, and the arithmetical 

mean of the measurements obtained was taken to be the 
threshold of the water tested.

The procedure adopted for determining the 

threshold of vaporous cavitation v/as slightly different from 

that for gaseous cavitation. It was realised that at a low 

total air content where most of the exporimonts for 

vaporous cavitation were carried out the nuclei available 

for cavitation are few in number. In order to derive 

a threshold which is representitive of the whole body 

of the water the following procedure was used. As in 

the procedure for gaseous cavitation the first measurement was
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■used to estimate the approximate value of the threshold.

¥/hen that was determined the water was slightly stirred and 

thirty seconds were allc’/ed to elapse before the sound pressure 

was again increased to a point lo/ below the estimated 
threshold. During the increase a close watch was kept on the 

screen of the oscilloscope to see whether any vaporous 

cavitoAion took place. If a pulse v/as seen on ■the screen 

the lower value was to be taken as the estimated threshold 

and the sound pressure brought to a point lO/ below that.

The sound pressure was than held there for ten seconds. If 

no cavitation was detected during that time the sound pressure 

was turned off and the water slightly stirred. Thirty seconds 

later the sound ■oressure was again brought up to the same value 

for ten seconds. This was repeated for five times. If ao 

cavitation occurred during that time the sound pressure 

was then increased and the procedure repeated until vaporous 
cavitation did occur at least once during the five trials.

In order to establish that this was not due to an extra weak 

nucleus the procedure was repeated another ten times and 

the pressure vfas taken to be the threshold of vaporous 

cavitation if at least S of the ton trials resulted in a 
vaporous cavitation. Admittedly the threshold determined in 
this way was arbitrary in nature but id did represent a 

threshold which was most representative of the whole body of 
water tested. This procedure also limited the sound 

radiation to ton seconds each time and the effect of heating 

will be very small,
4*4 Deaeration and re-aeration

Deaoration of water samples was accomplished 

by shaking ‘the glass bottle containing the sample under vaccum. 
When the desired air content v/as approximately reached 

tho water was then transferred to the tost tank. Care was 

taken not to cause any splashing of the water when it was 

dra'V'ai into the tank thro^ugh the bottom drain hole.
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?feter was allowed to fill the whole tank and any air 

bubbles trapped in the tank were removed by tilting the 
tank and causing them to escape through the overflow.

A polythene tube was then inserted into the tank through the 

overflow to serve as a stirrer as well as helping to keep the 

air content of water nearly constant over a long period.

Re-aeration of degassed samples was carried out 

in these ways,

(1) The degassed sample was allowed to stand quietly

in a polythene bottle under atmospheric pressure. The bottle 

vras closed to avoid the collection of dust on the water 

surface. The restoration of air content was by the slow 
process of molecular diffusion.

(2) The air content was restored by mixing the
degassed sample with water saturated v/ith air. The resultant 

air content depended on the amount of saturated water added.

(5) The air content of a degassed sample was

restored by bubbling .. air through it. The

arrangement is shown in fig (s). The vaccum pump v/as used

to provide the suction required to draw air into the bottle.
Tho rate of flow of air v/as controlled by the glass stop cock. 
By this method there was no fear of oil contamination (commonly 
present in compressed air) and no filter was required,
4.5 Measurement of total air content.

The measurement of the total air content was 

made by the M.E.R.L. air content apparatus (ref.17) using 

the corrections suggested by Kaneillopoulous (ref.18 & I9)
The moasuromont of the air content was always carried out 

aftor the determination of tho threshold.



Experimental results and observations.

3,1 Calibration of sound pressure in the focus 
of the standing wave.

To measure the sound pressure in the focus of the standing wave

an Ultrasonic Probe UP 8000 was obtained from Technical Ceramics I,td.

To convert the output voltage of the probe to sound pressure a

calibration curare was supplied by the manufacturer with five points
covering the frequency range from 2Qkc/sec to 1 Kc/sec.

It was not practical to use the probe directly in measuring the

pressure at which cavitation occurred during an experiment. Since

the presence of the probe in the sound focus would cause cavitation
to occur on the body of the probe first. It v/as decided to use the
voltage across the transducer as a measure of the sound pressure at the

focus of the standing wave. Uith the probe placed in the focus of the
standing wave the voltage across the transducer was calibrated against the
oiktput voltage of the probe which in turn was converted to sound pressure

by using the manufacturer's calibration curves.

One difficulty immediately presented itself. In the present

system, tho standing wave was established by using a spherical transducer
and reflector. The reflector vns placed at a distance away from the

transducer approximately equal to t’nco the radius of curvature of tho

transducer. The voltage across the transducer /;as tho vector sum of

the driving voltage and the voltage induced by tho reflected sound wave,
The phase difference between the two components depended on the distance
of the reflector from the transducer,, the frequoncy of the sound wn.vc and the

velocity of sound in water. If tho velocity of sound remained constant
at a fixed frequency a position would bo found for the reflector so that

the two components were in phase resulting in a maximum available

pressure in the focus as '/ell as a .maximum voltage across the transducer
for a given amount of electric power applied. Unfortunately the température

of the water used varied from ll^G to l6^G during on experiment which
might last for 1 to 2 days. The ch-’.nge in the velocity of sound is

1.3/ for a temperature difforenco of 3°C, From the equation,

where c - velocity of sound

f - frequency 

1 - wave length.
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for a constant frequoncy the variation in wave length will also he

1.3/
The distance between the transducer and reflector was approximately 

120 mm, the accumula.ted increase of wave length over that distance was 
1,56 mm which is nearly half a wave length at 428 kc/sec (3.4 m.m.)
Hence a variation in tho temperature of tho ws.tor used resulted in a 
shift of phase between the two components of the sound waves, 
and the sound pressure in the focus of the standing wave might not 
vary in tho same proportion as the voltage across tho transducrc for 
a given teraporaturo variation. A calibration of sound pressure against 

the voltage across the transducer at one tomnorature could not bo useful 
for any other tomnoratures,

To overcome this difficulty two methods can bo used,
(1) To change the frequency slightly bo that the wave length 

1 remains consta'nt as the temperature varies,

(2) To take up tho ac cumul "'ted increase in wave length by shifting 
the rofloctor accordingly,

Tho first method was not practical undor the nresent system. The 

transmitter employed to drive the transducer had timed master oscillator, 

a tuned power amplifier and a tuned LC circuit. To tune the 

frequency as the temperature varies before each measurement will be most 
elaborate.

The second method was therefore used. An adjusting nut was 

nrovided for the fine movement of the reflector (see fig.2). As 

the temperature varied the reflector was moved accordingly by turning 
the adjusting nut v/ith the sound wave turned on at low power until the 
voltage across the transducer reached a maximum, indicating thc,t the 

components were in phase.
In order to establish that moving the reflector is an adequate 

remedy for this tomperature effect, calibration of tho sound pressure aga,inst 

tho voltage across the transducer was carried out ovon 8ifforont 
temperatures. The température of water was increased by heating it ivith two 
150 watts incandescent lamp.
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The results are tabulated in table (l)* It indicates 

that the system adopted was adequate. Tho mean values were used for 
plotting tho calibration curve in fig; (6), Pig(6A) demonstrates 

the shift of phase between the two compononts as the temperature varies. 
The components wore in phase at 10°C and tho voltage across the transducer 
was 2 volts. It shows that the phase of sound nressuro in the focus 
varies with that of the voltage across the transducer but thoir amplitude 
are not in the same nroportion.

The dotted line shoan in fig (6) is the calibration curve for 

progressive wave, the reflector being removed in tho caso. On comparison 

with the standing wave it shows that the prossuro in tho focus vias 

approximately the same for tho same voltage across the transducer since 
in a standing wave tho pressure in the focus o'as doubled for a given power 
input but the voltage across tho transducer was also doubled (due to 
induced voltage) in tho nresent system with the result that for the
same voltage across tho transducer the pressure in tho focus was the

same for the progrossivo and standing waves. For a given power 

input the maximum availo.blc pressure was doubled in tho later compared 

vfith the former case.

As shown in Fig (6) the pressure st the focus in tho stouding 
wave was outuo.lly loss than that of tho corresponding progressive wave 
for the same voltage. This was to be expoctedj since the alignment 

of tho reflector was by no moans perfect resulting in the slight 
reduction of pressure in the focus of th. standing wave.

5*2 Cavitation thresholds for tap T/ater,

In renortod exporimonts on tap water (rof.12 & 13) water 

samples wore drown into the tank directly from tho to.p resulting 

in tho ontrainment of numerous small air bubbles. Idiore 

is reason to believe that this way of drawing water ïiàs some 
offset on the threshold. To understand tho behavior of
tap water i/e must investigate the past histoiyr of the

water.

The source of tap water varies in difforent places.
For most cases water is drawn from a laJeo or roservior '■rhore 

tho tcm m/rature is usually much lower than room temperature 
and for this reason the tap water is a ln o jy s  suporsaturatod
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■with air at room tomperaturo. After passing through, filter 

hods whore most of tho suspended solids arc removed the 

water there enters tho nains. Since the pressure in the 

mains is much higher than atmospheric prossuro all tap water 

has boon pressurised to o. certain extent.

It is v.rith these points in mind that tho first 

exporimont was undertaken.

Water was drrron from the tap in two difforont ways

(1) Water was dravm with tho tap running free, resulting in

a cloud of entrained air bubbles. Th ; threshold of cavitation 

was determined when no visible bubbles could bo seen in the body 

of tho water, Tho cavitation was gasoous in this case,

(2) With a tube connected directly to tho tap water wa's 

drawn out slowly into tho tank through the bottom drain hole. 

Care was taken not to cause any splashing, Undor strong light 

it could bo soon that there were no minute bubbles in tho water.
One tost immediately followed tho other so that the 

same batch of water was used in the two exporimonts, The 

exporimont was repeated on six different days and tho peak sound 
pressures which caused cavitation are listed in table (2),

In each case the poak sound pressure is higher if.tho tap water 
is dravm out quietly.

3.2,1 Iwoing of tap water,

Strasborg (rof,12) observed that if freshly drawn tap 
water is left standing for several days the threshold increases 
gradually from y- atmosphère to 1-M atmosnheros, Ho explained 

this by saying that it is most probably due to the rising of 
very small bubbles out of,water. Th./ mo.gnitudo of tho time 

involved is of tho ri'̂ ’̂ht order, if wo assume that bubbles of 

tho size 10"^ to 10 “5 can exist in water. Stoke's Law is 
used to calcul'"to tho velocity of rise of such small bubbles. 
This rolohionship was used by Iyengar and Richo.rdson (ref,1$) 
to dotermine the sizes of nuclei in water, although in their 
exporimonts the time involved wo,s only sovon hours for the 
threshold to increase from 1,75 atmospheres to 4 atmosnheres.
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In view of those experimental results, one of the 

present experiments was dosigned to investigate further the 

mechanism of ageing of tap water. On the assumption that 
the incroase in threshold with time is due to the rising of 
microscopic huhhles then the time reopiired for a certain size 

of huhhle to rise out of water is proportional to the depth of 

the water holovf the sound focus. On changing the depth of 

water holow the sound focus the agoing curve of the tap water 
should also shift along the time axis.

The tgst tank as described in section (j.l) had 

removable end covers and extensions could be easily connected 

to it to increase the depth of water below the sound focus.

However experiments with freshly drai/vn tap water (free 

running tap) standing in the tank showed no perceptible 

increase in threshold with time and the investigation was thus 

abandoned.

Altogether six samples wore investigated. The

results are tabulated in table (5). In each case water vras

drawn from the tap into a large glass bottle, transported to

tho tost tank and drawn into the tank throngh the bottom.

An air space was loft between the tanlc top cover and the water

surface to allow water to attain saturation condition while standing,

Tho first measurement was takon when tho water had been standing

for 15 minutes. By that time there wore bo no visible bubbles

in the body of tho water. Bach value listed in table (5)
is tho arithmetical mean of six to eight measurements, No

trend can be observed in tho results,

'5.2,2 Effect of total air content on the 
thresholds of cavitation.

Even without any quantitative measurements much 

can bo learned about the effect of air content on tho threshold of 

cavit.ation. For quietly drawn tap water (supersaturated with 
air) minute bubbles suddenly appeared in the focus as tho 
threshold for gaseous cavitation was reached and the cavitation 
zone quickly spread to both sides of the focus. Tho motion 

of the bubbles was simil.ar to those obsorved by Blako (ref.9)j
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Straeberg (ref.12) and Iyengar and Richardson (ref.lj).

There i.s no intention of repeating the detail description 

and only such details which may be of interest are recorded.
The bubbles were observed to appear one by one 

at a pressure antinode and each one moved along exactly 

the samo circular path to a pressure node where they 

coalesced to form a large bubble. This large bubble 

remained trapped at the pressure antinode until it 

grew to such a size that boyancy force finally ovoroame 

the sound force and it rose to the top of the tank. These 

circular paths along YJhich the bubbles travelled were 

spread at half a wave length apart and their planes were 
perpendicular to the oxis of the transducer. Prom the 

side of the tank they appeared as evenly spaced rings 

increasing in diameter "'ith distance from the focus.

The spreading of the cavitation zone to both sides of the 

focus, only happened in the case when the water was near 

saturation and the peak sound pressure to cause cavitation 

was higher than atmosphere. At lo’̂er air contents or 

if tho peak sound pressure to cause cavitation was lower 

than ly atmospheres in saturated wator, the bubbles only 

appeared in the focal region at the threshold and there 
was no tendency for the cavitation zone to spread if the 
sound pressure was kept constant,

1/hen the total air content was reduced to about 
50^ s - turation gaseous Ccavitation gave way to vaporous 
cavitation in tap water, Tho transition from one to the 
other was not very clearly defined. A region existed 

where the two forms of cavitation occurred either separately 
or si^jultaneously. On further reducing the air content 

the vaporous cavitation became predominant and always was tho first 
to appoo.r. But if the sound pressure was increased beyond 

the threshold for vaporous cavitation tho familiar noise 

of gaseous cavitation could also be seen among tho pulses 
generated by the vaporous cavitation. There was a lower 
limit of air content beyond which no gaseous cavitation could be
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initis.tcd however high tho sound pressure.

Tho effect of total air content on tho thresholds of 

gaseous and vaporous cavitation were determined by changing the 
air content of tho same sample. No attempt was made to 

determine the threshold of vaporous cavitation at high air 

content ( > ̂ 0^ saturation) although vaporous cavitation 

could also be initiated by raising tho sound pressure 

beyond that for gaseous cavitation. The swarm of bubblos 

produced by gaseous cavitation would have affected the sound 

pressure in the focus and thus made the measurement unrealistic,

5.2,3 Effect of deaeration on the thresholds of cavitation.

After the tap water had boen standing in the tank 

for several days during which time the effect of age on 

threshold of cavitation was determined the sample was then 

degassed in stages to determine the effect of deaeration 

on the thresholds. After each stage of deaoration the sample 

v/as allowed to stand for 15 minutes before any measurements 

were made. Experience showed that after the sample had been 

subjected to the low pressure of the vacuum pump it took 

some time for the equilibrium condition to be re-established. 

After each experiment a sample was drawn and its air content 
determined.

The experimental results are shown in fig (7) and 

fig (8).
There are a few points in the experimental results 

worth noting.

(1) The scatter is quite large for the six samples of tap 

water, but on close exam.ination it will be noted that if the 
results of only one of the samples are used, the spots 

seem to lie on well defined curves for both gaseous and vaporous 
cavitation. Therefore there is reason to believe that àap 

water dravm on différent days (over a. period of throe weeks 

for the present experiment) under identical conditions may not 
have the same threshold for cavitation. In other words the 

content or sizes of nuclei may be different.
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(2) The encirclod spots on the extreme right of fig (?) 

roprosont the threshold for gaseous cavitation before doacration. 

It is to be noted that on the first stage of deaoration the air 

content was reduced from approximately 22 c.c./litre water to 

19.5 c.c./litre water, but no increase in the threshold was 
noted. In one case the threshold decreased.

In f̂iew of those expérimental results it v/as 

decided to carry out the rest of the experiment by using 

the same batch of water in the hope that this would give more 
consistent results than by using wator drawn on different 

days, Water drawn from the tap was allowod to stand in 
a largo storage tank for 10 days. Tho tank was covered to 
prevent the collection of dust.

The experiments on the effect of deaoration on the 

thresholds of cavitation were repeated on the water drawn 

from the tank. Fig (9) and fig (lO) shoY i the results for 
six samples of water.

It can be seen that by using tho same batch of water 
the results become more consistant and tho threshold 
for both vaporous and gaseous cavitation varies as a linear 

function of the total air content within their ovm region of 

predominance. On superimposing fig (?) and fig (8) on 
fig (9) and fig (lO) rosnoctively it -111 bo noticed that for 
gaseous cavitation the average values of the threshold for wator 

from different batches lie very close to that for wator from the 
same batch. For vaporous cavitation the threshold for water 
from the same batch seems to form tho upper limit for that of 

different batches,

5.2.4 . Effect of re-aoration on the, throsholds of cavitation.
llie re~aoration of degassed ta,p wator was accomplished 

in throe ways as stated in section (4.4). The samo sample 

which was used for tho oxneriment on deaoration was used for 
re-aeration.
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Re-aeration by mixing with saturated water,

IWion the deaoration oxperimnnt on one sample was completed, 

the degassed water was withdrawm from the t<ank a.nd a. pre­

determined amount of saturated water added. Tho threshold' 

was again determined and the resultant air content measured.

More saturated water was then added and the process repeated, 

Re-aoration by bubbling .air through degassed vrater.

With the arrangement shown in fig (5) air was drawn 

through degassed tap wator and the threshold and air content wore 
determined.

'Re-aeration by standing.

Dogassod top wator was allowod to regain its air 

content by standing in a largo polythene bottle. Tho threshold 

and air content were determined every 12 hours. The water 

was always thoroughly stirred and allowed to mix properly before 

any measuremont was taken. This oliminatod local concentration 

of dissolved air.

The results for tho above experiments are shorn in 
fig (11), Two degassed samples were used for the re-aoration 
by mixing, but only one each was used for the re-aeration by 
bubbling and by standing, Tho remaining water in the storage 
tank unfortunately was thrown out by mistake before any more 

Gxporimonts could be made.

From fig (ll) it can be scon that re-aoration by either 
bubbling or mixing resulted in a throshold very near to the 

original value. But in tho case where air content was 
restored by quiet molecular diffusion a hysteresis effect seems 

to exist.

5.3 Cavitation thresholds for distilled water.

For the purpose of comparison a number of experiments 

wore ropeatod in distilled water. The results of the experiments 

are sho-m in Fig (l2 and 15).
5.3.1 Effect of doacration on threshold of cavitation.

Saturated distilled water cavitatcd at a critical 
pressure of about - 2 atmospheres '5 atmospheres peak sound 
pressure). The cavitation might bo gaseous or vaporous.

If vaporous cavitation apueared first it was always followed
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immediately by gaseous cavitatiori although the rcverso ivas 

not oJ.ways true. Thoro is reason to believe that the 

transition from gaseous to vaporous cavitation took place 

in tho noighbourhood of - 2 atmospheres critical pressure 
for distilled wator, Although the cavitation was not 
exclusively vaporous those points are included in fig (ij) 
and marked with a circle round them. At lower air contents 

the vaporous cavitation always a"^pcarod first. For air content 
above 50/ saturation (approximate) gaseous csvitation always 
followed tho first vaporous burst. The n d r content beloiv 

which no gaseous cavitation could be initiated appoared 
to bo approximately tho same as that for tan water,

.Is expected the threshold for vaporous cavitation 
is much higher in distilled wator than in tap water for the 

same- air content,

5.3,2 Iffopt of ro-aoration on the thresholds of cavitation.

Four samples were re-aerted. The results are shorm 

in fig (12). When roaerated by bubbling air through it the 
threshold approached that of tap water o„s the air content 

was increased and tho appearance of cavitation also changed 
from vaporous to gaseous, No hysteresis effect was shown by 

tho samples re-aerated by standing. The threshold was slightly 

lower in both samples.

5.4 Cavitation thresholds for filtered tap water.

The above experiment indicates that dust particles play 

a major part in determining the thresholds of cavitation.
It was reasoned that if dust particles aro removed from the 

tap water there should be a noticeable incroase in the threshold.
Tap water from the storage t-nk was filtered through a 

glass filter with pore di.amoter ranging from 6O-IOO microns.
Only one sample was doaoratod an-'', tested. The result is shovm 

in fir (13). The removal of dust particles or suspended 
solids increases the oav.'itation threshold c f tap water to nearly 
that of distillod water. Left-rs in brac'-ets beside the 

experimental noints indicate the nature of cavitation.
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5.5 Effect of wetting agent on threshold of cavitation.

The Gxperinental evidenco indicated that the nuclei in 

water were suspended dust particles. It was thought 

that the addition of wetting agent to the water should 

increase the threshold.

3 0.0 "Johnson's 526" wetting agent per litre of 
water was added to each sample. The addition of wetting 

agent had a. marked effect on the threshold and appoarance of 
cavitation. Some observations aro described in detail,

111 en v/etting agent r̂ as added to saturated tap water 
a number of small bubbles (r-~3 x 10”  ̂cm) wns seen to rise 
in the body of the water. The origin of the bubbles is 
not clear, Another interesting phenomenon was noted when gaseous 
cavitation T/as initiated in saturated tan water after the 

addition of wetting p.gento As in untreated tap water, 
minute bubbles appeared one aftor tho other and moved along 
the same circular path to bo collected at a pressure antinode.
But there was no coaloscenco of these minute bubbles, they 

simply formed a mass of small bubbles. On removing the 
sound pressure they rose as a body at first but after a 

few seconds broke away from one another and rose individually 

to the surface. There appeared to be no intoraction between 
the bubbles as they rose and all bubbles sc.jmed to be moving 
at the same velocity. Prom the rising velocity tho radius of 
the bubble was estimated to be 1 x 10“  ̂cm. It may be worth 

while noting that the resonant radius of an air bubble at 
atmospheric pressure is 0.8 x 10”  ̂cm for a froquency of 
428 kc/sec (ref .23).

Five samples of top wator ■ of different air content 

were invostigated. The thresholds wore determined before and 
after the addition of I'/etting agent in each case. Tho results 

arc shov/n in fig (14).

Two samnles of saturated distilled water wore also 
usod. The critical pressures measured wore - 18.4 
and ~ 20,4 atmosphores. Tho effect of \7otting agent on the

*
Tho tap water used was from a different batch.
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threshold of degassed distilled v/ater was not investigated.

5•6 Pressurization

Tap water wan used in this experiment. After the 

tap water had been pressurized in a pressure vessel, it 

was drawn into the tsnk and its threshold determined.
The maximum pressure applied was 280 lb/in/ for a  ueriod 

of 20 minutes. In all the samples tested no noticeable 
incroaso in threshold vers detected. It was suspected 

that some, water from the r ;serve tank of the hand pump 

must have got into the pressurizing vessel and thus 
contaminated tho wator inside it, Therofore no description 

of the pressurizing circuit and results are given.
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6. Variation in experimental conditions ana repcatibility of results

The temperature of water varied between 11°C and l6°C , and no 

attempt haa been made to study the effect of te-iperature on z h e cavi­

tation threshold in the present experi-.^tnt.

The results obtained in the experiments are quite repeatable.

AS was shown in the expcri/:ient that more consistent results were 

obtained if the ssuoe batch of water was used. However when tap water 

drawn on different days was used, the ,.;ean values were quite near to 

that of the sa;.ie batch although the scatter between each samples was 

greater c

Each of the experiritntal points represents the arith-u tical Mean 

of six to eight rieasurements, The ueviation of the individual 

measure-.ienr from the i.iean is usually less than But if the water

in the focal region was not replaced after a Measurement the con­

sequent neasurement quite often showed a difference of - 20% fron 

the .mean value. It should also be noted that at low air content 

(< 50% saturation) a sound pressure 50% higher tnan the j.iean value 

of the threshold for vaporous cavitation could sometir:c be i.';iposed 

on the water without any sign of cavitation. It is believed that 

this is due to the lack of nuclei in the vicinity of the focus. To 

ensure that the measured threshold represents the characteristics 

of the whole body of water tested, stirring is nessary in order to 

bring as many nuclei into tne focal region as possible.

The air contents of water sa.mples were determined by using the 

M.E.R.L. air content apparatus with corrections suggestea by 

Kanellopolous. The measurements are believed to be within an accu­

racy of - 1 - 2%. The air contents are recorded as c.c./lite water 

at N.P.T,
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7. Discussion

7.1 Effect of free running tap on the threshold of cavitation.

Water drawn quietly from the tap has a higher threshold than 
that drawn with the tap running free. The effect is believed to be

due to the pressurizing of the water in the mains. There is no appreciable

difference in the total air content of the water drawn by the two methods 
and both showed a supersaturation of about 15/ at the temperature of 

the water. Table (l) shows that tap water dravm quietly has a 

threshold of about 3 atmospheres. This is higher than the threshold 

of distilled water at the sane total air content. The disturbance 

caused by the free running of the tap decreased the threshold to that of 

distilled water. Although numerous small bubbled were seen in the 

body of the tap water drawn in that way, they were not responsible for 

the decrease in the threshold since the experiments on the ageing 

of tap water showed that no appreciable increase was noticed for 
samples which had been standing for 2 - 5  days. Had the bubbles 

created by the disturbance been responsible for the decrease in 
threshold, a gradual increase would have boen noted as they rose 

out of the 'eater. This iraplios that tho permanent decrease in the 

threshold is due to a shift from one equilibrium condition to another 

as a result of the disturbance.

Some effect of pressurization v;as still évident for water drerm 

with froG running tap although the effect was partially destroyed by 
the disturbance on drawing. Pig (7) shows that after the tap 

water had been standing for 2 - 5  days tho first stage of deaoration 

showed no increase in the threshold for some samples. However on 

further deaorating the sample e definite increase was noticed.

On subjecting the water to a, low nr es sure the remaining effect of 
pressurization must have boon completely destroyed and the nuclei 

enlarged, but the do.?.oration caused a reduction in the size of the nuclei 
The two effects approximately balanced out and the nucleus size remained 
almost unchanged although tho total air content of the wator was 
lowered,

7.2 Ageing of tan water
Freshly drawn tap wator showed no increase in the 

threshold while it stood in tho tost tank over a period of 2 - 5  days.
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This is at variance with the observations of Blake 

(ref,9) and Strasberg (ref.12), Both ruported that the 

threshold of freshly drawn tap water increased from 

about atmosphere to 1-|- or 2 ^  atmospheres over soveral days. 

Howovor in the present oxpcriment the throshold of freshly drawn 

tap wator was never less than 1% atmospheres as shown in 
table (2)0 This indicates thot the threshold is already too 
high for the effect to bo observed. A possible explanation 

is tha,t the tap wator used in the proscrit expo riment has been 
subjected to a higher pressuro than the samples used by 

Blake and 8trasherg or alternatively that their samples wore 
drawn in such a way that the effect of pressurization was 
completely destroyed,

7.3 Effect of deaoration and re-aeration on the thresholds 
of cavitation.

The transition from gaseous to vaporous cavitation in 
tap water took place at ,a peak sound pressure of 2-|- - 2|- 
okmosphores. This agrees fairly well with the theoretical 
value calculated by using the formulae derived by Blake 
(ref,9)i.e,, equation (2,1.3) and equation (2.1.4) 
the peak sound pressure required for causing vaporous and gaseous 
cavitation at atmospheric pressuro aro plotted against 

tho sizes of gas nuclei in fig (ll). The experimental 
results for the tap water in fig (9) and fig (lO) are plotted to 
logrithmic scale in fig (16). The agreement in trend is 

fairly good. It can be observed that the transtion from gaseous 
to vaporous cavitation takes place at a slightly higher sound 

pressure than that calculated from theory.

If we assume the cavitation thresholds are correctly 

expressed by equation (2,1.3) and equation (2.1.4) then fig (15) 
can bo used to estimate the sizes of the largest nuclei in the 
tap wator used, At a saturated air content under atmospheric 
pressure the ro.dius of tho nucleus bubble J.g about 6.6 x 10”5 
cm and it -hcroases to 1.8 x 10"5cra at 25/ saturation.

The vo.riation of th.e threshold for vaporous cavitation 

in tap wator v/ith total air content is linear as predicted
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by the theorectical equations (2.2.3) and (2.3*l) based 

on the two different concepts of nuc].ei. In distilled 

water the samo linear variation is observed and on 

comparison with Strasbcrg's result on ta,p water the three 

lines appear to have tho same slope. It may be postulated 
that the nuclei in tap and distillod tap have the samo physical 
characteristics but the size of the nuclei is smaller in 
distilled water.

On restoring the air content of tap water no appreciable 

differonce was noticed when the air content was restored 
either by bubbling air through it or by mixing it ?;ith saturated 
sample. However, when tho air content was restored by 

leaving it standing quietlj^inder atmosphoric pressuro an increase 

in the threshold was noted for the same air content. It is 

believed, that when the air content of the sample was restored 

by 8tanding the original size of tho nuclei was not restored.
This is the effect of pressurization observed by Strasberg 
(rof .12) ; since lo'Tc.ring of tho ■ dissolved gas

content has the same effect as increasing the hydrostatic 
pressure. Ylhon air was bubbled through tho degassed sample 
the disturboonce caused by its passage probably destroyed the 

effect of undersatura.tion or alternatively fresh nuclei 

wero introduced into the water, such as dust p-^rticles. In 
tho case where saturated wo,tor was added tho nuclei in tho 

saturated we toi' prevailed and the effect of unders s. turation was 
not obsorvod.

The results of the distilled water wore different,
No effect of undorsaturation was observed. In fact -a lowering 

of the throshold for the same air content was noted. It 

was thought that this is due to the introduction of new nuclei 

when the d.istillod viator wo.s transforrcd to and from, tho tost 

tank. On bubbling air through degassed distilled water a 

marked lowering of the threshold was noted. The threshold 
quickly approached that of tap water for tho sarno air content.

This suggested that new nuclei which has tho same size as

those originally present in the tap water wore introduced when air
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was bubbled, through distilled v;ater.

Effect of filtering on the threshold.

Although only one sample of tap water was filtered 
and tested, the resulting increaso in tho threshold was 
unmistakable, The glass filter usod had pores with diameters 

ranging from 60-100 microns. It is thought unlikely that 

unattached gan nuclei (lO"4 to 10"5cm) w i l l  be removed in the 

filtering. It is believed that the physical size of the 

suspended particles limits the maximum size of the nuclei v/hich 

can be stabilized on them,^nd that the nuclei in distilled 

water wore stabilized on suspended particles smaller in size than 

that of tap water. It is quite possible that those smaller 

particles were carried ovdr in tho distillation process 

since tho distillod water usod in the present experiment was 

made from tap water.
Effect of wetting agent on threshold.

The addition of wetting agent groodly reduced the surface 

tension of water. It is not known whether the increase in 

threshold after the addition of wetting- agent in saturated tap 
wator was due to the covering up of the hylrophobic crevices or 
due to thg. displacement of air from the crevices. For 

partioJly di'gassed tap wator the latter seemed to be tho 
case. It is believed that the crevices va:re completely 

wotted and the threshold measured (l2 atmosrhores) was the 
peak sound pressure required to tear tho water away from the 

wall of tho suspended narticles in tho presence of wetting 
agent,

The measurement in saturated distilled w.atcr showed that 

the threshold in this case is 19-20 atnosrhoros,
su.'.niary of the experimental results is given in fig (17). 

Strasberg's results on tap water together with the results of 

Itengar ana Richardson are shown in dotted lines.

The results obtained in the present experiment agree in treni 
with those obtained by Strasberg, It is not know why the results 

should be so different from th';t of Iyengar and Richardson.
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3. Conclus ions

(1) Top water drawn quietly showed some effect of pressurization

but this effect can bo martially or corripletoly destroyed by
Croatiny a disturbance in the water or subjecting the water to
a lov; pressure,

(2) No eyeing of tap water was observed in the present 
experiment probably due to the size of the nuclei pros ont 
in tho water being too small for the effect to take pime.
(5) Tho transition from gaseous to va^orouo cavitation
was observed and tho point of transition measured agrees fairly 
well with tho value calculated theoretically by Blake (ref.9).
The linear variation of threshold with air content of water was 
verified and ovrced lûth the result obtained by Strasberg (ref.12)
(4} Experiments with tap wator, distillod water and
filtorod trn water led to tho belief that nuclei in water consist

of undi8solved a,ir stabilized in the crevices of suspended particles. 
The Tihysical size of such "-'articles determines the maximum size 
of tho gas nuclei vfhich can bo shibilizod on them. The removal 

of the larger suspended particles increased tho threshold,
(5) The addition of wettiiy agent to tap and distilled
water greatly incro'sed their resistance to cavit'-.tion.
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(PART II)

RESORPTION OF AIR BUBBLES



LIST OF-SYMBOLS USBX)'

  liquid coefficient (ft/sec)

^2 ^3 --  height above datum line (ft)
 V  rising velocity oi small air. bubble (ft//sec)
^  rate of decrease d  rising velocjvty of small air bubble

(^^/eec^) 

t time (sec)
py  ambient pressure (abs.) of water in main t.ube at a height

3
above datum line (Ib/ft^)

2  atmospheric pressure (lb/ft )
  density of mercury (ib/ft^)

•2  density of water (lb/ft )
p   pressure of air inside bubble (ib/ft^)
 V surface tension (lb/ft)
r ---  radius of bubble (ft)

2p^ “—  vapour pressure of water (lb/ft )
_—  saturation gas pressure for a gas concentration of 

in water (ib/ft^)
S ——— Pl

w --- weight of gas in bubble (lb)
A --  interface area (ft )
C -—  concentration of gas in water saturated at a gas pressure 

Pg (Ib/fP)

  concentration of gas in water saturated at a gas pressure
p^ (Ib/ft^)

  rate of transfer of gas (lb/sec)

R --- gas constant (ft/°K)
T  temperature of water (*̂ K)
H --  Henry’s constant (ft"^)
g — - acceleration due to gravity (ft/sec )
P --  mass density of water (lb sec^/ft^)
P --- mass density of air in bubble (lb sec^/ft^)
yU viscosity of water (lb sec/ft )



  for region outside Stoke’s (ft/sec)

  for Stoke’s region (ft/sec)

V --- velocity of flow (ft/sec)
2p -—  ambient pressure (lb/ft )

p^   ambient pressure at time t = 0 (Ib/ft^)
r^   radius of bubble at time t = 0 (ft)

VALUES OF CONSTANTS USED

(T = 3.44 X 10"^ lb/ft
P^ = 33 Ib/ft^
R = 96 ft/°K
T = 286.3 °K

H = 8.59 X 10”'̂ ft"^ 
g = 32.2 ft/sec^

1.939 lb sec^/ft^
//(= 24.85 X 10 ^ lb sec/ft'



RESORPTION OF AIR BUBBLES

1.■ Introduction.
Much interest has been shown in recent years in the absorption 

of air bubbles in undersaturated water. This is intimately connected 
with the study of cavitation on models in water tunnels. Mien cavitation 
occurs on a model in the working section of a water tunnel with the air 
content of the tunnel water near saturation a large number of small 
bubbles containing a mixture of air and water vapour are formed on the 
collapse of the cavitation bubbles. These bubbles are entrained and 
recirculated unless means afe, provided for their removal or re-absorption 
(resorption). Their presence in the tunnel water ’prevents the satisfactory 
operation of the tunnel for long periods and may affect the results of 
experiments on cavitation inception where the size of the c%itation 
nucl i is an important factor in determining the inception pressure.
The physical removal of these free bubbles will alter the total 
dissolved air content of the tunnel water and may affect the experimental 
results. Therefore to maintain a constant dissolved air content of 
the tunnel water as well as a bubble-free operational condition in the 
working section it is necessary to force these free air bubbles formed 
by cavitation back,into solution before the water returns to the working 
section.

The first practical device for achieving the aim outlined above 
was constructed at the Hydrodynamic Laboratory of the California Institute 
of Technology and was termed a "Resorber" (See ref.l). It is essentially 
a deep cylindrical pit which forms a part of the tunnel circuit. Water 
from the working section is led into the "resorber" and with vertical 
tubes and partitions is allowed to spend enough time under pressure to
tt’e-d3asolve any free air bubbles entrained in the water, î.5any resorbers
have been constructed since (see ref 2, 5 and 4). The design of the 
resorber and the determination of its physical dimensions depend on 
information obtained from the analysis of the rate of re-absorption 
(resorption is to be used in the following text) of air bubbles in 
undersaturated water under conditions similar to those encountered in the 
water tunnel. The first of such analysis is by Brown (ref*5) who worked 
out a resorption equation for air bubbles under a constant external pressure
equal to the mean pressure in the resorber.



— 2 —

& more recent analysis which takes into account the continuously Varying 

external pressure as the bubble is transported up or down the vertical 

limbs of the resorber is provided by Silverleaf (ref,4). The basis

of both analyses is the Lewis-19hitman concept of liquid and gas film 

(ref 6) in dealing with the transfer of air through the bubble wall. The

Lewis-Whitman equation for a gas of lov; solubility therefore forms one 

of the basic equations in their analyse.a (for Lewis-Whitman equation 

see section (5*1) Op̂ n, (5.1.l) ). The empirical liquid coefficient 

is thus of direct importance in determining the time required for 

resorbing an air bubble of a certain size under a constant or varying 

external pressure.

Little information is available on the numerical value of Kp 

which can be applied to evaluate the rate of resorption of small air 

bubbles under water tunnel conditions, Bro\wi (ref 5) found from 

experiment in the original water tunnel(vfithout resorber) that the 

resorption equation with + 6.5 x 10"4 ft/sec fitted the upper limit of 
the experimental data. Since the velocity of flow in the resorber will 

be much less than the velocities used in the experiment with a correspondingly 

lower level of turbulence, Brown thought that the axtual value of Kp 

should be between x 10“4 ft/sec (56 cm/hr) and 6,3 % 10"4 ft/sec 

(70 cm/hr). Silverleaf (ref 4) used a value of K l equal to 4*5 % 10”4 

ft/sec in his calculation although a value of 2,7 x 10"4 ft/sec was also 

used, , The only other experiment which was designed to measure the rate 

of resorption of air bubbles under conditions similar to those encountered 

in water tunnels is that of Silberman (ref 7). Resorption of air bubbles 

took place inside a perspex cylinder. The air bubble under study was kept 

from rising by rotating the water inside the cylinder with a rotor piste 

which also served as a turbulence generator. For the most turbulent case 

in his experiment and with the air content of water equal to zero Silberman 

obtained a value for Kj^ equal to 6.4 x 10”4 ft/sec. His experiment was 

carried out at a temperature of 5 9 these values of form the upper 

limit of conditions encountered ih ?/ater tunnels. For the satisfactory 

design of the resorber it is rather the lower limit of the value of 

which is more important.
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The present experiment was designed to evaluate Kl for conditions 

corresponding to the lower limit encountered in water tunnels,

1,1 Aim of the experiment

The aim of the present experiment T/as to study the 

resorption of air bubble under 1sminar flow 

conditions. Since K]-̂ increases with increasing amount of 

agitation (or turbulence) (ref 8) the study under such 

conditions wall provide the lower limit required. This was 

achieved by studying the resorption of small air bubbles 

rising in under saturated water. The effects of other 

factors such as air content of water, external pressure 

and bubblo size on Kp were also studied. No attempt was made 

to evaluate the effect of temperature on Kĵ  in the present 

experiment though there is evidence that Kp increases with 

increasing temperature (ref 9)*

In designing an experiment to achieve the aim outlined in the 

last section a few requirements have to be met by the apparatus,

(1) The apparatus must be long enough for a noticeable 

change in the size of the bubble to be observed.

(2) Some means of increasing the ambient pressure of 

the water must be provided,

(5) A method must be found to introduce different sizes

of small air bubbles into the apparatus under ambient 

pressures that may be higher than that of atmospheric.

The air bubbles must be produced by a cavitation process 

so they will have the same composition as the bubbles produced 

by cavitation in water tunnel, namely -f- nitrogen and 

& oxygen.

(4) The rate of resorption of the small air bubbles must be 

measured accurately and continuously so that a complete 

record may be obtained to show the effect of air content 

of water, ambient pressure and bubble sizes.
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2.1 The Main, tube.

A sketch of the apparatus is shoiwi in Fig, (l), it 

consists of a 7 foot long glass tube of one inch inside diameter. 

The top of the tube is terminated by a two way glass cock 

Jq which is connected to another three-way glass cock Jg by 

means of polythene tubing. By turning Jg one can either 

connect the main tube to drain or open it to atmosphere.

The purpose of having Jg is explained in section (5»2),

A three-way glass cock Jj forms the bottom end of the tube,

Jj provides the tube with a connection either to inlet 

or the mercury reservior Qp.

2.2 Prepsuri zat ion

The increase in the ambient pressure of water is 

achieved by elevating the mercury re servi or 0,% which moves 

along a vertical track mounted on a board upon which the 

main tube is also fixed. With a string and an overhead 

pulley Q,p can be moved to any desired position corresponding 

to the ambient pressure required and will remain there with 

the help of a jamming cleat. The actual ambient pressure 

of water in the tube is measured by means of a mercury 

manometer directly connected to the tube.

The bubble generator consists of a length of 

capillary tubing of ̂  m,m., bore, two-glass cocks and 

and a small mercury reservior Qg* The open end of the capillary 

tubing is made into a nozzle and sealed into the main tube.

The generation of bubbles is described in section (3.5)•

2.4 Measurement of rate of resorption

In order to measure the rate of solution of small 

air bubbles under different experimental conditions it is 

important to know the size of the bubble at any instant under 

one set of experimental conditions. Direct measurement 

of the size of an air bubble rising in the main tube would involve 

photographing such a small moving object at different points 

along the tube. To obtain an imago sharp enough for



„  5 -

measurement at -rorious points will be difficult■since not all the bubbles 

generated will rise in exactly the same vertical line.

It was decided to measure the rising velocity of 

such small bubbles at various points along the main tube 

instead. The rate of decrease of the bubble radius can 

then be calculated from the decrease in rising velocity 

measured. This required the plotting of a time-distance 

curve for each individual bubble. The slope of the curve 

at any instant gave the instantaneous rising velocity 

of the bubble.

Perspex marker rings with a hair-line at the centre 

of each are placed at fixed distances along the tube and 

the times at which the bubble passed the hair-lines of certain 

markers wore recorded by means of a 8 m,m, cine-camera with 

a 58 m.m, lens operated by remote control to photograph 

the dial of a stop-watch single shot. By this system as 

many readings as required can be obtained without any 

difficulty for one bubble and the whole experiment is within the 

capability of one person. The arrangement is shov,n in

Pig (2).

Pe/Sê^
B u T T O f^

dNB C/t/̂£/lA ____
- i -  S P r r s A y  

/teiAi —  ■

s r o P  i^ A T C H  

^ STOP M/ATCH

F IG  - Z ARRANGEMENT FOR C/NB CAMERA
2*5 L i g M Î M

Lighting of the main tube is provided by a 

long fluorescent tube which illuminates the whole length 

of the tube through a slot in the board with equal intensity 

and does not cause any appreciable heating of the water in 

the main tube over long periods. The board was painted black 

and the bubbles were viewed against this dark background,- 

2•6 Air content of water.

The air content of the water was determined
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by using the M.B.R.L, air content apparatus (ref lO)

with corrections suggested by Kenellopoulous (ref 11 and 12),

5• Experimental Procedure and Technique.

To measure the instantaneous rising velocity of snail air 

bubbles under various experimental conditions in the present apparatus 

the typical procedure followed for one experiment is described in 

the following,

5.1 Preparation of Water

Tap vfater wc.s used in all the experiments since this 

is the water used in most water tunnel experiments. To 

achieve a desired air content tap water in a large glass bottle 

was evacua.ted by moans of a vac cum pump. The bottle was 

rocked continuously to accelerate the removal of air from the 

water, Ti/hon a rough reckoning indicated that the desired 

air content had been reached the evacuation was discontinued 

and the water transferred to the long glass tube. With Jp 

open, J2 turned to drain and J5 to inlet (see Pig' 1. ) 

and with the glass bottle held high above the main tube, the 

long rubber tube connected to the inlet was inserted into 

the glass bottle, A light suction applied to the rubber 

tube which leads from J2 to drain started water siphoning 

into the main tube from the glass bottle. The v/ater was 

allowed to run to waste until about two complete changes 

of water had been effected in the tube. was then closed

and Jj turned to the position for connecting the main tube 

vdth the mercury reservior Qp, - A sample was withdrawn 

immediately from the water remaining in the bottle to determine 

the actual air content of water used,

5.2 Setting ambient pressure.
Jo was then turned to atmosphere and opened 

to let the whole system return to atmospheric pressure, (the 

open end of the rubber drain tube was at a lower position than 

the main tube, the ambient pressure inside the tube was slightly
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under atmospheric when J% was first closed.) With 

opened and closed Jp was again closed and the 

mercury reservior elevated to the desired position,

% e n  the mercury levels in the marometer and in the 

small mercury reservior Q,g became steady the apparatus 

was ready to receive its first bubble,

5*5 Bubble G-oneration

The stop-watch was then started. To generate 

bubbles of different sizes was closed and %2 lowered 

to reduce the pressure in the capillary tubes behind 

(all the tubes are filled with water). Air started to 

come out of solution and was collected at the inlet to 

to form a small air bubble. On opening and by 

manoeuvring Q2 the small air bubble was transported to the 
horizontal portion of the capillary tubing. Here, by 

the action of throttling with 0,2 the small air bubble was 

broken into a number of smaller bubbles. This required 

a certain amount of practice but once the necessary 

technique vas mastered minute air bubbles could be produced 

at will. By means of Q2 the desired minute bubble v;as 
transported to the base of the nozzle where it rose 

into the main tube under its ovm boyancy Care was 

taken not to impart any initial velocity to the bubble 

by forcing it out of the nozzle, % e n  that happens the 

bubble was ignored. V/hen the bubble left the nozzle 

was closed and 0,2 replaced on its holder. Bubbles 

of different sizes could be generated by this method 

even under ambient pressure much higher than atmospheric 

since the pressure difference was taken up by the 

mercury levels in the polythene tube connecting the 

reservior and the capillary tubing and had no effect 

on the working of this part of the apparatus,

5*4 Time-Distance Record

A distance of 9" separated the nozzle and the 

first marker ring to allow the bubble enough time to attain



its terminal velocity. When the buhhle passed the 

hair-line of the first marker ring, the button was 

pressed and the time shown on the stop-watch was 

recorded on the film of the 8 m.m, cine-camera,

A number of marker rings were placed along the tube 

.and the ones to be used depended on the size and the 

rate of resorption of the particular bubble. Usually 

7 markers were used for one bubble.

The manometer readings Xp and X2 were then 
taken and the experiment for one bubble was then complete.

This was repeated for 4 or 5 more bubbles of different 
sizes.

The ambient pressure v/as then increased to 

start another experiment. At the end of a set of 

experiments for one particular air content the water 

in the tube was withdrawn and its air content again 

determined to see if any change had occurred during the 

experiment.

The cine film was developed at the end 

of all the experiments and the recorded times read with 

the help of a microscope,

5,5 Range covered by experiment 

5,5*1 Ambient pressure 

The ambient pressure of water was increased 

from atmospheric pressure to approximately 5 atmospheres 

(absolute), the maximum pressure available in the apparatus, 

in 5 steps,

5,5•2 Air content

Altogether 5 different air contents were 

investigated ranging from saturation to about 50^ saturation, 

3.5*3 Bubble Sizes

The maximum size of bubble investigated had 

a rising velocity of approximately 0,1 ft/sec which corresponds 

to a bubble of radius 5*6 x 10 " 4 ft (approx,).
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Although bigger bubbles were also investigated but the 

rising velocities of these bubbles were too high for the 

change in velocities to be measured accurately with the 

present apparatus,

3«5*4 Temperature of Water

No attempt has been made in the present series 

of experiments to study the effect of temperature 

on the rate of resorption of air bubbles in water. The 

temperature of the tap water used in the experiment 

varied between 12° C and 15° 0 and a mean temperature 

of 15.5° 2 is used for all the calculations.

4» Experimental result

The complete experimental results are given in tables 

(1 to 5)* Altogether about 120 bubbles were investigated but only 

55 were chosen to be recorded and used in plotting the time-distance 

curves, since many are repetition results and others have too high a 

rising velocity for the decrease in velocity to be measured accurately,

A typical set of time-distance curves for these bubbles at one

pressure setting and the same air content is shown in Pig (5), In 

fact these curves were plotted on a sheet of sectional paper of seven 

feet in length with the distance along the tube plotted full scale and

time axis to the scale of 1 inch = 5sec, Prom the slopes of these

curves the instantaneous rising velocities of bubbles at various positions 

along the main tube and under various experimental conditions were 

determined and tabulated in tables (6 to 10), By using the two sets 

of tables the rising velocity - time curves for individual bubbles can be 

plotted to determine the rate of decrease of rising velocity for various 

experimental conditions. Fig (4) shows a set of such curves for one air 
content but four different ambient pressures. Note that the curves are 

all straight lines and have the same slope for the same ambient pressure 

irrespective of the actual rising velocity of the bubble (i.e, independent 

of bubble sizes). The experimental results thus show that the rate of 

decrease of rising velocity (■^) of a small air bubble in under saturated 

water is constant



—10—

for one ambient pressure and is independent of the actual size of 

the bubble.

Table (11) contains the values of ■—  for the whole range 

of experimental conditions investigated.

In table (11) p^ is the air pressure inside the 

bubble, is the ambient pressure of water in the main tube

at a height of above, the datum and p^ is the air content*^ of •
water expressed in terms of equivalent saturation pressure by using 

H e n r y 's La w .

can be calculated from the manometer reading X^ 

and X2 and the atmospheric pressure p^.

^x^ = py + (X2 -  Xp) _ (X^ -  X^)  ( 4 . 1 )

where = density of mercury (ib/ft^)

= density of water (ih/ft^)

The variation of pressure along the tube due to the 

variation of X^ is small compared with other terms in equation 

(4.1) and it i« assumed that is constant along the tube and

equal to the actual ambient pressure at the middle of the tube i.e., 

with = 6 .25 ft (99 inches).
For a spherical gas bubble of radius r under an ambient

pressure of ^X^ the gas pressure inside the bubble is given by

equation,

Pg. = Pv + 15 ' - P _ ............( 4 . 2)g ^ V
where ^  = surface tension (lb/ft)’

py = vapour pressure of water (lb/ft )
; (TThe terra -X is negligible compare with other terms. The

gas pressure inside the bubble is also assumed to be constant along

the tube and equal to (p„ - p ) . The values of p.,,. and p listedV S

in table (11) are calculated from this simplified formula.

To determine the effects of various factors on the rate of
QV
d tdecrease in rising velocities, is plotted as a function of p ,

Lp - p and 1 - —  (i.e. 1 - S). The curves are shown in Figg L Pg
( 3 i ).

From these curves it is clear that the rate of decrease in 

rising velocity for a small bubble in undersaturated water is not a 

sole function of p or Pg - pĵ  but 1 - S (degree of undersaturation).
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Since we have already observed in Pig (3) that ^ is

independent of buhhlo sizes, the expérimental results thus point to the

fact that ^  is a linear function of 1 ~ S only*UT ^  /
Tho slope of the straight line in Pig Ç6') gives the 

empirical equation,

^  — 1 .5  X 10-5 ( 1 - 8 )

— —Bq X (l — s) 000,00. 00.0. 00(4*5) 
where B^ = 1.5 x 10-5

5.1 lewis-’̂Vhitman equation

To describe the resorption of air bubbles rising in tap water 

the Lewis-'Whitma.n concept of gas and liquid films (rof 6) is adopted. 

The air bubbles concerned here are air bubbles which came out of 

solution and therefore contain approximately  ̂oxygen and -f- nitrogen. 

Both of these gases are only slightly soluble in water. The equation 

to be used for the rate of transfer of gas per unit area is therefore 

the Lewis-\Wiitman equation for gases of low solubility (ref,6), since 

the gas film can bo neglected in this case,

1*0* “  = -Kh (Cg-Ch)•, o »o • (5*1*1)
where w = weight of gas in bubblo (lb)

A M interfsne area (ftp)

K l  = liquid coefficient (ft/sec)

Cg = concentration of gas in water saturated at a gas 

pressure p^ (ib/ftj) 

when Cg>CLj is negative and gas will diffuse out of

the bubblo into the water*

5*2 Rate of change of bubble radius

Consider a apherical gaq^Dubble of radius r  rising in

undcrsaturated water under a constant temperature T°K

and external pressure p, , The gas nressure inside the
5

bubble is given by equation (4*2)
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Pg =  ̂ - Py
The weight of gas inside the bubble is

w =  (3.2.1)

where R = gas constant (ft/%.)

T = temperature of water (°K)

The rate of transfer of gas is therefore

t  = ........... (s.2.n
Since for a sphere A = 4Tfr ...........(5-2.3)

i l l  = If I f ................(2.2.4)
From equations (3*1*1) end (3.2.4) we have

If = - H  (Cg - C p  ........(>.2.5)

Henry's Law gives,
C = Hp......... .....  (5.2.6)

where H - Henry’s constant (ft

Then we have
u —  P _̂_ _ (" CT p n \

■ 8 Pl
with equation (5=2,7) equation (5 2.y) becomes

If = -KlHRT (1 -

I.e., 4^ = (1 - S)....... (3 = 2.6)
Py

.vhere S.- —  . . . .  .........   (5.2.9)
Pg

All the terms contained in equation (p.2.c) except Iv̂  can 

be determined by experiments. Therefore equation (5=2.c) is to be usea 

for evaluation K.ĵ.

5.3 Lubble radius and its rising velocity)

We now take the empirical equation (4.3)

It  " “""i
obtained from experiment on tae one hand and the equation (5*2.6)

“dT " - S)
provided by the at. ove ' analj sis on the ot,her.

To link these the relationship between the radius of a 

s.mall air bubble and its rising velocity in tap water is determined.

any experiments have been carried out in the past by 

various workers to deterc.ine the rising velocity of small air bubbles 

in various liquids. For example Allen (ref. 13) determines the rising
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velocity of small air Wbbles in water and in aniline, Arnold 

(ref «14) worked with air 'buhhles in olive oil and in aniline while 
Bond and Newton (ref,13) measured the rate of rising of air huhhles 

in Syrup and in waterglass.

But the most complete and recent work on the rising velocity 

of gas huhhles in various liquids is hy Hnhermen and Morton (ref.l6) 

which covers a wido range of huhhle sizes and uses a largo numher 

of different liquids.

Prom their experimental results Eaherman and Morton observed 

that the drag coefficient of air bubbles rising at their terminal 

velocities in tap water, filtered tap v/ater and distilled water 

is equal to the drag coefficient of the corresponding rigid spheres 

for Reynolds numbers smaller than 40, Fig (s) is a reproduction 

of Pig (27) in reference (14) with the results for hot tap water 
omitted and that for stokos haw inserted. They also observed that 

there is no significant difference between the rates of rise of 

bubbles composed of oxygen and of air.

It is therefore assumed that the drag coefficients of small 

air bubbles investigated in the present experiments in tap water 

at room temperature arc equal to the drag coefficients of rigid 

spheres of the same diameters, since the lamgcst bubble investigated 

in tho present exporimont has a Reynolds number 10,

Fig (9) shows the radius of bubble and its corresponding 
rising velocity in v/ntor at Ip,3°C calculated from drag 

coefficient and Reynolds number for rigid spheres shown in Fig (8),

For Reynolds number smaller than 0,5 tho motion of the bubbl0 is 

prodictod by "Stokes' Law (rof,17), where the rising velocity is 

proportional to the squa.re of the radius of bubble, while beyond the region 

where Stoke'3 Law is valid the rising velocity is a linear function of the 

radius of bubble.

For the convenience of calculation in evaluating the liquid 

coefficient Kp and the derivation of resorption equations it was decided to 

divide the relationship between the rising velocity and bubble radius into 

two separate regions, namely tho Stoke's region and region beyond Stoke's.
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Transition is assumed to take place at a rising velocity of 1.32 

ft/sec as shown in Fig (9)*

5 . 4 Evaluation of

Stoke's region

For the Stoke's region the rising velocity of air bubbles 

in water is given by equation.
2 2 . - . NV = —  g ■ r ............(p.u.l)

where g - gravitational acceleration (ft/sec“)

P -  mass density of water (I b s e c ^ / f )

P ~  mass density of air in bubble (ibsec^/ft') 

viscosity of water (ibsec/ft^)

On differentiating * (5.4.1)

where

dv k P  dr
dt 5 g pzz" dt"
dr 1 dv
Q t = 5p r dt.....

_ 9
®2 - 7 ( f i - p ' ) S

 (5.4.?)

substituting equation (4.3) and (5.2.6) into (5*4.2) we have
Ü L  1

r  ̂ HRT 7
where Kt denotes for tlie Stoke's regron.

h  1 "i.e., K, = B. ~........... (5.4.3)
^ ^ 1 2  _ -8 2 where B? = ~ 5 * 7 x 10 ft /sec.

Equation (5*4.3) snows that the value of in the Stoke's

region is independent of tbe ambient pressure or the air content of

water but is inversely proportional to radius of the bubble.

Region beyond Stoke's

The rising velocity of air i.ubble in water is a linear 

function of the bubble radius as shown in Fig (7). The slope of the

straight line is given by the equation
QV dv / dr 
dr “ dt / dt

= 2.13 X 10^ sec"^ 

dt - Y l 3   (5*4.4)
Substituting equations (4.3) and (5*2.8) into (5*4.4)

we have, K = rTÏÏ^TTÔ^ hIt
= 3.0 X lO"̂ '" ft/sec.

See appendix,
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v:here denotes Kp in region outside Stoko’s,

The liquid coefficient is thereforo a constant and equal 

to 3.0 X 10"*4 ft/sec in the region beyond Stoke's and within the 

range of hubbies investigated in the oxporimont,

5*3 Resorption oquationa for air bubbles

With tho value of liquid coefficient Kp determined 

it is now possible to derive tho resorption equation for 

an air bubble in undersaturated water.

Brown (ref,5) derived a resorption equation for air 

bubbles under a constant ambient pressure equal to the 

mean pressure in the resorber, while Silverleaf)ref,4) 
considered tho case of a continuously varying ambient 

prossure as well as tho case of constant pressure. Both 

used o. constant value of Kp for their analysis. Since 

for small air bubbles (r<2 x 10”4 ft) the value of Kp 

is inversely proportional to the radius of the bubble 

s. now analysis is provided to include this effect. The 

analysis with Kp equal to a constant value of 3.0 x 10“4 

ft/sed (for bubble beyond the Stoke's region) is also 

included. This analysis is essentially the same as that of 

Silverleaf,

Resorption under varying ambient pressure 

Consider an air bubble being transported 

down a vortical pipe of largo diameter 

The velocity of flow V is largo compared 

wdth the rising velocity v of tho bubblo 

At time t == o the bubble is located at 

position 0, The radius of tho bubble is 

r̂p and the ambient pressure is po » At

some later instant t = t tho bubble is at a now position 

S with radius r and ambient pressure p. Since the increase 

in ambient pressure is solely due to tho incroa.se in the 

hydrostatic head of water the pressure p a,t S is given by 

P = Pq + P S ~ ^  t.,.,,0.,0, (5.5.1)
The gas pressure inside the bubble is

2«r
g p + - Py
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2<TAssume ana p are small compared with p.

Therefore p = p ........... (5-5»2)

The weight of gas inside the bubble is

-W = t ^  ^

and + J ^ -ff ]
For a sphere A = k K r ' "  

i-e-' r it )-.... (5 .5 .3)
iith equation ($.1.1), equation ($.$.$) becomes

j k  {-5p at  ̂ p I t ] '  - i. (Gg - V
s - K_h (p _ p ^ ) .......(5 .j^4 )

Cg CL
Since 8
From equation (p.p.l)

and since

dp
dt g V
dr dr / S I :dp dt d t
dr 
dt ■ V

dr
dp

Equation (p .$.4) is then,
, dr _ 3HRT « /  ̂ \ /_ = '

dp ^ ~ 8 V L ~ L ,.(j).$«6)
For Stoke's region (K^ - x

Equation ($.$.6) becomes,
2 3H.eTB3

3pr + r = - (p - r p

i.e., 3pr ~  + r^ + (p - ) = 0..,............. 3-7)

where 3B^Bp
^4 ' f a V " /> "g V

The resorption equation is obtainea b} integrating

($.$.?) and b} putting r = r^ at p = p^

The equation is ^

= [ï’o^ + (f Pp - P j J  ]  k f )  - ( j  p - p^^,..... (5 .5 .8) 
Since P = +/? g V t (for increasing pressure).

Equation ($.$.8) becomes
2 r 2 ,2 .I , i / 5

= 1 ^ 0  * 7 T T  3  F. - P p j  (pg + f  g V t)

f p p • }

1 %  pQ " + 5 ^  S V 4 .......  (3.3.9)p g  V
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For region beyond Stoke's (K = 3 x 10~^ ft/sec)
2

The analysis is the same as that presented by Silverleaf 

(ref. 4) but is repeated here.

From equation ($.5.6)

3p dr + r dp + - -y K (p - p^) dp = 0

i.e., 3p dr + r dp + (p - p^) dp = 0 ........(5.5.10)

«bere ^

By integrating (5.5.10) and putting p = p^ for 

r = r^, the resorption equation is obtained.

pQ 1/3 r] 1 2
It  %fo + ('"o - Vl̂ J' t  V  + V l

Since p = p^ + p  g  Y t (for increasing pressure)

The resorption equation is then

■ - b .  • \

- ? HRTiq^ t  (5.5.11)

For decreasing ambient pressure

P = P Q - / > g V t

is used.

Resorption of air bubbles under constant ambient pressure

The resorption equation can be obtained directly from 

equation (5*2.8)

dt = - (1 - s)

with p replaced by p, the constant ambient pressure.

For Stoke's region (K^ = B, — )---------------    L,_ 3 r

II = - B3 S p  (1 - S)

I.e., rdr = HRTB^ (1 _ S) dt............. (5.5.12)
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On integrating eqn (5,5.12) and by putting 

r^ro at t--o, the resorption equation is obtained 

in the form.

r2 2 _ HRT (l-S) t

i.e., r^ == ro^-2Bq^B2 (l-S) t......... (5.5.1$)

Since B$=B1B2 
HRT

For the region beyond Stoke's (Hpp “ 3.0 x 10"^ ft/sec).
Since Kpp is a constant, the resorption equation is
obtained by integrating the equation (5.2.8) direct and letting

r -  r^ for t = 0

The resorption equation is

I' = r^ - Kp (l-S) HRT t............ (5,5.14)

6, Sources, of Errors.

Air content of water.

The measurement of the air content by using the M.E.R.L. air 

content apparatus (ref.lO) and the corrections suggested by Kenellopoulous 
(ref,11 and 12) is thought to be within an accuracy ofî l-2̂ . A possible 

source of error is the slight incroaso in air content due to the resorption 
of injected air bubbles. To determine the amount of increase in air 

content during an experiment measurements of air content are carried out before 
and after each sot of experiments for each sample of water used. The 

maximum increase in air content recorded was 2pf3.

Temperature of Water

The temperature of water used in the experiment was not 

controlled and depended on the room temperature which varied from 12°C 
to 15^0. For calculating the experimental results a mean temperature 

of 1$.5°C is used throughout. This variation in temperature introduces 

error in two ways. Firstly the viscosity of ■'water varies with temperature 

and the change in visicosity for a temperature difference oftl,5°C at 
13.5°C isi4^« The error involved in deriving the radius of air bubble from 

its rising velocity using a moan temperature of 1$,5°C is approximately42?̂  

for bubbles inside the Stoke As region and±4'/ for those outside it. Secondly 

there is evidence that Kp will increase vdth increasing temperature (ref 9),
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A1though there is no definite information on the vnrioHion of Kp with 

temperature for small air huhbles rising in undorsatur<?.ted water, it is 

thought the error will be betwQeni3-5w for o, temperature variation of 

tl.5°C.
Measurement of rising velocity of air bubble.

The accuracy of the rising velocity depends on the recording 

of the time said the determination of the slopes of the time-distance curves. 

The stop-watch used has a scale wtiich allows time to bo read to the accuracy 

of 0,1 sec. Little error is involved in the actual recording of the 

watch reading on film since ' ûth practice the time recorded will be 
within y sec of the actua.l time, A more serious error may be 

introduced in determining the slope of the Tiine-distance curves.

Although the curves were plotted full scale the slope may have a 

Vcariation of un to 57- depending on the judgement of the person concerned.

Variation of hydrostatic pressure along the tube

In the analysis of experimental results it is assumed that the 

bubble is subjected to a constant ambient pressure equal to the mean 

ambient pressure in the tube. Since the hydrostatic pressure is 

higher at the bottom than the top part of the tube the error 

introduced in assuming a constant mean pressure I s t j f c  ah atmosnhnric 

pressure and±$7^ at the max available ambient pressure of a,pproximatoly 
3 atmospheres (absolute).

Vfall of foot
In deriving the radius of Gl, small air bubble and its rising 

velocity in water the information containod in Fig (S) about the drag 
coefficient and Reynolds number for rigid spheres arc used. Since this 

information only applies to rigid spheres moving in an infinite medium it 
is necessary to consider the effect of the container wall on the 

rising voloci.ty of small air bubbles. The case of a rigid sphere moving 

in a stationary liquid inside a cylindrical tube has been solved 

theoretically by Eaberman and Sayre (ref.lS), The thcorectically 

deduced correction fa.ctor for drag is given as a function of diamoter ratio 
and Gugroes well with experimental results. This correction factor can 

bo used in the present experiment to estimate the effect of container 
wall on the rising velocity of small air bubbles, Tho 1-rycst bubble
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inveetigatod has a radius r  = 5*6 x Since the radius of the

cylindrical tube used is 4*2 x 10-2 ft, the decrease in drag for 

an air bubble with r = 5*6 x 10"4ft is over that in a infinite medium 

resulting in a 27̂ reduction of the rising velocity for the same 

size of bubble.

7. Discussion

The evaluation of the liquid coefficient Kjj in the present 

experiment is essentially empirical in nature. The derivation 

was based on the exuerimental result of bubbles. There is a certain 

amount of scatter in the final results. This is to be expected 

since tho temperature of water was not controlled in the present 

expei^iment and also the determination of tho rising velocities may 

well bo subject to an error of - 5̂ . An analytical determination 

of the slopes of the Time-Distance curves will certainly improve 

matters but it was felt that the effort would not be justified under 

the present experimental conditions. The variation in temperature alone 

would have introduced an error of - 2 - 4/*

The most significant result of the experiment is the linear 

decrease in the rising velocity of small air bubbles with time in 

undersaturated water. This confirms the observation of Lieberraann 

(ref.7)
However, there is a qualification to be made regarding the 

validity of the resorption equations for very small bubbles. In the 

experiment at least one small bubble was completely resorbed within the 

length of the main tube for each sot of experimental conditions. The 

bubble was observed to disappear completely, but the time at which this 

happened was not recorded, since the visibility of the bubble depended 

on the lighting arrangement and there was always some doubt as to tho 

precise moment at v/hich the bubble disappeared. The lowest rising 

velocity recorded in the experiment was approximately 1 x 10“  ̂ft/sec 

corresponding to a bubble of radius r 1.5 x 10“4ft, Since no end 

points wore obtained it was assumed that tho linearity of the decrease 

in rising velocity also applied to bubbles with radius smaller than

1.3 X 10 ^ ft. There is some experimental evidence that contamination 

in water sometimes delayed the complete resorption of very small air bubbles.



— 21 —

If this happons the resorption equations obtained for the Stoke*s 
region will underestimate the time roouired for the complete resorption 

of very small bubbles,

8, Conclusions.

(1) Tho rate of decrease of rising velocity of small air^ 

bubbles (r 6 x 10"4ft, tho maximum size investigated) in undersaturated 

water is independent of actual bubble size but is a linear function of the 

degree of undorsaturation (l - S) at a constant ?/ater temperature.

(2) At a. water temperature of I5.5°G the value of the 
empirical liquid coefficient Kp for small air bubbles rising in 
undisturbed undersaturatod tap water depends on the radius of the bubble.

For bubbles whoso motion are correctly predicted by Stoke*s Law

(r<2.0 X 10 ft) Kp is inversely proportiona,! to tho radius of the 

bubble and equal to 5*7 x 10”® x ft/sec. For bigger bubbles

(2,0 X 10“4 ft<r<5.6 X 10"4 ft) Kp is a constant and equal to 5,0 x 10“4
ft/sec* Tho largest bubble invostiga-'-od in the present experiment had a

radius r<'5.6 x 10“4 ft/sec.

( 5 )  The value of Kp obtained in the present experiment can be

used to estimato the mimimum time required for the resorption of an air

bubble of a certain size and to determine the mcoximum physical dimensions 

of the résorber for tho complete resorption of air bubbl.es of given initial sizes,

The resorption equations for a constant and continuously 

varying external pressure are derived and listed as equations (5.5.9);

(5.5*11); (5.5.15) and (5.5.14). The validity of the resorption 

equations for bubbles in the Stoke*s region is subjected to the 

qualification stated in section (%).

X Air = -;s oxygen + nitrogen.
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Appendix
Per an air bubble rising in undors-aturated water the 

forces anting on tho bubble con be peeproximately/- expressed in 

the follovnLng form,

P r Dp — '.a .•.noaorin.<-.o.o ( 1 ̂

where D - drag of bubble of radius r
Dp - induced drag due to the change in bubble 

radius as air diffuses out of the bubble,
B - boyancy force of bubble.
If - mass of tho air bubble,

A " acceleration of the air bubble.

For an air bubble rising at terminal velocity Dp = a = 0 

and eouation (l) becomes.

D  — B “ O e o * , a , , o , , , c o  (2 )

In carrying out the differentiation of equation (5,A *1) 
it was necessary to assume that the terms Dp and ha v;ere 

insignificant and eouation (2) .s sufficient, in expressing the 
motion of an air bubble risino: in undersaturated water.

To justify the nlnvo ossurution bvo numeri cal examples

are worked out,
(1) Value of Ka
The largest bubbl.s used in the experiment has 0. radius

r = 5,6 X 10"4 ft and the high ast value of a is equal to 0,001$

ft/sec®. Under the maximum ahbiont pressure p ^ 4800 lb/ft® 

the mass of gas inside tho bubble♦

TTr^".............(3)RTg 3

= 3.96 X 10 lb sec^/ft

T h e r e f o r e

Mb = 3.2 X 10 lb

(2) V o l u u  of Dj

The d r a g  i n n u c c d  for a slow m o v i n g  s p h e r e  w i t h  a 

decreasing r a d i u s  in a p e r f e c t  f l u i ... is givvn by D u n c a n
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(ref 19) as

D j  = -^ X  X  P  X V . . . ........ 0 . ( 4 )

, -411th r = 5*0 X 10 ft tho corresponding rising 

velocity v ~ 1.0 x 10  ̂ ft/sec.

Since

dr _ , d_v
dt “ dt 4 dr

and ^  = a = 0.0013 ft/sec^

^  = 2.13 X 10^ from (Fig 9)

Therefore

(t t ) = 6.15 X 10~ ft/sec 
Max

Hence from equation (4)

= 7.1 X 10"^^ lb

For an air bubble in water of radius

r = 5.6 X 10  ̂ ft

the boyancy force

4 3—  r X w3 w

= 3.27 X 10”^ pb

Theref ore

M
-g - 1.6 X 10

-3= 2 X 10 ^

It was thus consiuered justified to assume that 

equation (2) is adequate to express the motion of a small 

air bubble rising in undersaturatea water.
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nooM TÊtP. (fi/lTSA£J>) /̂jt6IJ>SfiHEAE

t o ‘ '

FIG

/ O ' / oi /o /ô
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