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SUNMRARY OF A Thigls SUBKITTED FOR THE M.boes 1K COUPUTING

BY ADAN K. WALKER

NUMMRICAL SOLUTIONS OF A PARTIAL DIFFERFRTIAL EQUATION

The subjeot of the thesis is the numerical integr:tion of the Partial

Differential Equatiomn 1

-%-% - e ?—3- for 0<x4.

In partioular, the case p = 1 is declt with under the oonditions

£(0,t) = oy ! f(x,0) = °, for 0<x <l 3%{- X =0

Alev, several othar ceses &re trested ir order to dbring out various aspects of
the techniques used. The ctse p = =] is treated in order to obtain comperisons
with known enalyticsl solutions. In the osse p = O the techniques 2re wntirely
linesr and one method of integration used demands the inversion of a tri-diagone]
patrix. Other velues of p sre ohosen in oxrder to illustrete verious esspects of
the stability theory and demmstrate the generality of the methods.

In the first chapter, an analytio spproach is siopted and the equatic
ie olessified by ite nonelinesrity end by the fact thet it is Fersbolic. The
equation is nonelinesr in the sense thet it contains ® product of the dependent
variable and » partial deriv:tive. These ocbservetions determine the spprosch to
the numerical solution. In this chepter sn ettewpt is made to find snalyticel
solutione but it appears that suech solutions are only useful for highly apecieli
initisl and boundery aomditiors. ZEven when such soclutions eximst, thay sre usual.

juplicit end very unwieldy. The exception to this is the ovse p » =1 which csn



be soen tc have a simple enalytioal solution

£(xet) = 4 ton (T/4+5+¢)

roimsublo boundery snd initis)] oconditions.

In the second ohapter, three numerioc:l methods of integration are

discusved in detail. These are
le A simple explicit method.
2. A peni-oxplicit method which requires @ special sterting procedure. The
method used is lnown as the Dul'ort-Frankel sethod.
3. An implicit method based on the well-known Crenk<iiigcolson technique. This
method reduces to the solution of sets of simultensous nonelinesr egquations
The stability of the thre: methods is dealt with empiricslly by coa=-
parison with the linesr heateconduotion equstion. The results obtained way be
stated briefly as follows.
1. For the explicit method we must have
t’-§-i- ' A ] 0.
(bx)?

20 For the DuFort-Frankel method
t’ >0

5'/(%;)2 is unrestricted.

3o For the Crankeliicolson method 3

@ >0,

providing that the paremeter r used to combine the forward difference &and
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backwerd difference representations of 4%%- ie greater than y. ot snd 5x are
the step-lengths in ¢, x respectively. The seoond method is found to exhibit
the phenomenon of inccnsistency unless St/ 0x 1s kept small. Truncetion errors
end the trestment of the eingulerity ere mentioned briefly in this chepter. The
main portion of the chapter is devoted to the development of the Crank-licolson
simultaneous eqQuations snd methods for the solution of these equations. Iteratiw
zethods for the solution of the egquations are trected in detail. Fxplioit snalyt
methods for the solution of the equations tsre ignored, since they are clumsy to
programme. Two iterative processes are given. One is sn extension of Newtomn-
Rapheon iteration and the other is a generslisation of direct functional iteratio
Three separate methods are investigsted for the generation of first approximation
for the iterative processos. These are
(s) The expliot formuls mentioned oarli;g.
(b) The Newton Beckward Difference oxti?olntlon formala,
{c) Use of f(x,t =2t) ss & first spproxizeation to f(x,t).

In the third chapter, tbo'mlin results ere presented and disocussed.
It is found that the empirical stability theory given in the second chapter gives
agreement with the numeriosl resulta. The DuFort-Frankel method is seen to give
inconsistendy for values of Ot/( 8:)2 higher than those allowed for stebility in
the simple explicit nethod. The numerical results obtained by the explicit and
Crank-Nicolson methods &re found to sgrec fairly closely. The Crank-Nicolson
method gives good agreement with the snalytical solution for p = <1j ususlly the
sgTeement is much oloser then 1 % The Newton-Rapheon iterative method is found

toube much superior to the direct iteration process snd it is found that extremel



fast convergence may be obtained by meking the parameter r just greater than #.
At the end of the ohapter, & review of the investigetion is given and some
oonclusions of a generel nature are drewn.

The sppendioces oontain & brief scoount of the progrrammes used and
some of the numeriocal results obteined, ss well as & short liet of the books fow

useful in the solution of the problem.




i wish to thenk all theé steif of the Computing
Lsborstory for their help with this theats. I
am particuliarly grateful to Dr. Cilles for his

ssaistance and encourtgenent.



Page
Chapter 1 |
l,1. Introduction
1. 2. Statement of the Problem
1.%3. Analyticael Discussion
1.4, General Notes
Chapter 2 12
2.1, Review of General Techniques
2.2. Representation of Boundery Conditiion
2.3, Singularity
2.4 Truncetion Error and Stability
2.5. Trectment of Crank-Nicolson Method in General
2.6, Iterative Methods for Crani-hicoleson Formik
Chavter 3 44
3.1, Genoral
e 26 Summary of Results
3.5. Disoussion of Results and General Conclusion.
Appendix 1
Programmes
Appendix 2
Results
Appendix 3

CONTENTS

References



NUNMRRICAL SOLUTIUKS OF A PARTIAL DIPFERENTIAL FGIATION

— o

Cb-.gm 1

l.l. Introdng &;m
The development of high speed digital computers during the lest

twenty years hes mbde possible the solution of sany difficult problems in
nunerical anslysies in particuler, these problexs whioh involve tediocus
processing of lerge smounts of deta. The solution of Pertisl Differentisl
Equetions by numericsl methods, usu«lly leads % the treatuent of large
numbers of verisbles and therefore, this field was one of the first to under-
g0 oxtansive investigation. To begin with, much resesroh wes done on the
solution of linear Partial Diff{erential Equations. This was due to two
things. Firstly, the tmthemstionl techniques required had beer. developed

to & high degree in the years imuediertely pibr to, md during the war. Two
oein topios, Stebility and Metrix Iterstion had been studied for some time.
Secondly, the probleme whioh ¢rose were usually linesr or could be suitably
linecarised. iowever, work has been done onmwnelinesr equations, for example
by Blench snd slgo by Crank end Nicolson. In general, atteupts to solve none
linear equations have develored on = semie-ewpiricel apurosch to the important
queastion of stability. For excmple, the Pertial Differentisl “guation

'u.b: (un)
e

mey be written in the fomm

2 g Lo (Pt LB
2 o x (ru )
end this may be trested via its eimilaxity to the heste-gonduction equetian

with diffusion constant mi™ %,



Tils sexi-empirioel approsch yields resulta which are useful but not rigorous

and it is used in the problem denslt with here.

l1.2. Stat b
Ve wish to find numeriosal solutions to the Partiel Differential

Eguation s

with the oonditions @

£(x,0) = o, Oc<m< )3}
£(0st) = k, 04t <02, where k7 0

5 4

Y TR Bt St

In this investigotion we shall take

kw2,
c=1,
p=1l.
except when it is neceszary to ocheok particulsr points in the thoory. Hence

the following wvelues of the paremeters will elso be used

p=i p=2
k= <2 and k= =2
0= =l 0=l

These values of the parsmeters are chosen for convenience in checking by

hande @he resson for tho ohoice of negative velues for k snd o will emerge
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lster. The o2se p = ~lis also '‘reated for speoisl initiel amd boundary

conditions.

1.3« Agalytios) Discugslop
To begin with, we obeerve thet the eguation is nonelinear and does

not contain nixed partial dorivstives. Next, we exazine the oharecteristiocs

of the equation. The characterigtice are given by the suxilicry equation 1o
2 1%
t? a - 0 wh aTe >\ o -

that is N = 0 (twice) for all x, t, pe

Hence the cquetion is of peradolioc type for all values of x and ¢
sinoe it has only one real eheracteristio.

Since the egqustion is non-livenr, it cannot bte reduced to simpler
forw as is the case with certsinm linear and guasilinear equations.

The ateence of nixed dorivetives such as introduces the

3 xat
possibiliity of explieit methods, for if %{- is repleced by (B'-l)t,t mﬁ-%f

5t
by (E’-l)fxt then g% way be ex resaed as follows ¢
B x

2
" AR ,/
~v1 T (B =1)(B,~1)¢ St 8x
-):t'(x +1t + 1)- £(x +1t)~- f@,t + 1)0- f(x ,tg%’g-{i
end this lsst expression involves simultsnecus determination of two unknowns
(x,tﬂ.)md (xﬂtﬂ)xn the solution of the equation ot time t+l.
)
It is vorth mentioning that enalytiocsl solutions ocan b given under

special circuzstznaes.



The equation is

2
oo

¥e now look for soluticns of the form

fix,t) = X(x)r(s)

o AT* = XxPrPxep

where the dashes denote differentiation with respeet to the independent veriebl

Rearranging gives
' p=1
-LT - X"X
"

L -
Now -'-r--l- is & funotion of ¢t alone sud xwxP 1 is a funotion of x alone.

*

Hence, esch of these functions equals soue oconstant. That is

1 xe --;”31"- e,

vhere ““ iz some artitrary constent.

In the gaoe p = O we have simply solutions of the form 13
‘*t (“ \g)

which may be fitted to suitable boundary oondi tions.

In the cese p = 1 we hove

)
X" e X 3 'TL".O&’

and theso way be integrated directly to give

2
X = ué-ﬁ ‘!’B.

T - T

where A, B, C are oomstants of integration.



HEemoe the generel solution of this form 18 1@

(-°:-‘3+Ax+n)

£(xet) = - (:L to)

The condition " w0 gives A = =X,
x=]

Therefore p ,
f(:") - = % - A
(o‘\t"O)
This snalysis shows that if
f(x,0) = oliz -l X+ B
2
then there is a solution
f(x.t) =2 - = = 2
(<t=1)

This solution will heve a singulerity at ¢ -i unless o £ 0,

It 18 not pos:=ible to fit & solution of this type to the initiel

oonditions given in the protlem oonaldered here.

It is of interest to look for solutions of the equation »

_ﬂ. {“_‘.
> x2

shich aye of the form f(x,¢) = g(x=vt) where v is a constant end g ie

sone funcotion to be determined. Solutions of this type esre similer to

travelling wave solutions of the linear wave equrtion. Ve now eusek to

deternine the form of g. Ve have

-3-{-- -vg'( ()
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whore ! = x « vt and the dessh denotes differentistion with respect %o {

Also
2 -
L o et
2 x

Substituting in the prrtial dif!srential equation gives :

“vg' = gi"

Now
& - -&‘(b’) s wherep & g°.
E ’ o
ence Py c'P;g
that is p(® -g + v) « 0.
Therefore, pe0 or '*‘nn.o.

de

But p = 0 just gives the simple solution s g = constent.

The other solution is &

vog'-g: - 0

or
.,
(-4

Bow suppose n ¥ l.

-:? z(nxl)‘( Bn-l)
Therefore

Gy - o

é

thus -G:-:T’ i Bl

vhere ©; is an arbitrery coftstant.



] e

Substituting p = ﬁ glves 1

PR FE———

(e« vy

Therefore

o

/ [ ——
£~ {00.
J . Gy "&:f"x) ;

where 02 is another arbitrery constant.

Now

/_ :

EE G‘Iﬂ"‘%:f - o))

may be expressed in terme of elementary functioms for specicl velues of n.
¥e now oonsider some of these saspociel solutions.
(a) The cosen = O

Ye have

- vg'=g"

This leads to the solution

f(!.‘) - kl .'Y(SM) + kzo

(b) Thoocegcen =1

Hore we obt&in

'0‘&.0



thet is vigg +p = °1

where °1 is an arbitrexy conatant.

Therefore
~

-——L-—- e g#.z
(0, = v og ¢)

where °, ie an arbitrary constant.

Put u e o, - v log g. dn-:% dg- 3-.-(“.01)/'.

f-%_.(u-.l)/' - ¢ + 0,

This latter integiel msy be reduced, by simple transformetions, to

Therefore

KJ/-{:-dq

Thies integral is of the same iorm a8 the ExponentisleIntegral
-y
e i(x) = [yz— ' x> 0.
“‘x u
Integrels of this type oftem =ppesr in non-line«y provlems. The anzlytical
soclution for nw=l osannot be taken further.

(¢) [The cise ne=-1
In this orse we have

LR “ s E"'C
(0, + 36

where % end o, are arbitrery constanta.



Therefore

then -
-llt.nimlu 54‘02-
Thus
-1
ne ml.-ﬁ"z+l where ‘2'.0'
2% -
1
Therefore &/k, = tan(i, - a... =)

This expression for g is simple and explicit.

(d) The osse n = 2

The geners)] expression reduces tot

*— ) z-.o
¥ 2
(z - °1)

where °1 end °2 sre arbitrery constants

[ e
/4 g ¥ P

v-0,g



o 10 -

Hence

- - log (v=0.) = ! +o0
;& ;iz 1 2

This formuls givea g implicitly as a function of x and t. The usefulnese of

thies special snalytiocel spproech is severely restricted, since we must have

1(x,0) = g(x,0).
In effect, these solutions are only suitable for highly speciclised initial
values, end in general, it is impossible to fit boundsry conditions which
contain e derivative. However, it is of interest to note that the problem
examined here can be relsted to another problem which hes been studied in

some detail., The equation 1

) - bz‘l
% 5

sy be written in the form @

2
-(-_‘—'!-ﬁ {-)-'- (t"”l) - %;‘ e for n#1
1

Employing the chsnge in the dependent variable defined by l'n’

' N
<+ v - 0 :
(~n+1) -% OX {u(-lul )

Results ere given by Richtayer (see reference) for the non=linear equation @

= u gives 1

2
85 W)

using the wethod whiich hes Just been discusczad (for suitably chosen initisl
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values) and the theoretical answers are compared with those found by mesns

of a linesrised Crsak-iicolson wethod. The sgrecaent is found to be good.

1.4. General Notep

Ve way oboarve that the oquation under investigetion bears a strong

resesblense to the line»r diffusion equation 13

; 2
4 2 . D g
k 3 J X where k is 2 conastsnt.

T™he recemblencs is exploited later.
In tre numericel trestment, omre has been taken tc ensure that
£(x,0) is never rero. The reaseon for thig iz e&s follows.

The equatior 3

pay be written in the form 1@

3'?';; " = (105 £ + g(x))
where g(x) is &n arbitrery function of x.
It f(x,t) is szero for some x,t then log f takes the value =~} in other words
& singularity oocurs. In order % svoid such & possibility, K and ¢ are
ohosen to be nonegero.
The numeriesl solution to the problem was found using the English

Eleotric KIF 9 Digital Computer. The progremuing langusge used was Algol.
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Chapter 2

2.1. ieview of General Teghniqu

T™he choice of methods of sclving the given egquation is determined
by the {act thet the equation is parabolic and non-linesr. The general
position may besumnerised briefly ss follows.

Elliptic and hyperbdolic pertial differential equations are extreze
types but cen ususlly be solved by welle-defined methods. Elliptio equations
have no reel characteristics 2nd in genersl, suoch equetions ere solved by
implicit methods. At the other extreme, hyperbolic equstions have real distino
cherscteristios and oen oftem be sclved conveniently using one of three methods
Percbolic equations csnnot be solved using the method of ochsracteristics but
can usually be solved by explicit or implioit methods.

Eany of the methods which heave been used for linesr equations wsy
be extended to non-linesr equations. An extensive socount of explicit and
izplicit methods 18 given by Richtmyer in comrecticn with the linear heat ocon-
duotion equetion and sume of these methods may eagily be sdapted to nom-linesr
problems. Here we shall use three methode, two explicit end one implicit.
From tioe to time in the investigetion, combinations of these methods will be
used. As we have noted earlier, purely expliicit methode ere esvsilsble, sinee
the equetion does not contain any mixed partisl derivetives. In the first
instance we shall simply give the representations used, and desl with the

deteils leter.
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(a) [Explicit listho
L
In this method we replsce - ry by the finite difference
)
expression

(By - 1)1
§ s

2
Sxf
¢ 32
(b =)
where .t end 0 i have the ususl meenings and { ¢+ and b x sre the step-~lenghs
in ¢ and x respectively. In these representations we have ignored higher

differsncea. lence the egqustion

~

R S
SV

is replesced by

o 4

(B, =)t = 2P (03) 5 x°¢
(sx)?

and it is oonvenient to write S = O V(S:)z.

(b) Semi-lxplicit Metbod

The uzethod used here is due to ufort end Frankel end is an

sdeption of Richardson's Formiwla. In this method, /;—:- is reprusented by 1



-u-

2
and %—2‘- is represented by
0x

05 1R s X 0 B 0 Wil = W 3

(5 x)°

again ignoring higher differences.

The quentities in the suffioces represent stepe of ) ¢t #nd 0 %e The

original equetior. now becomes

- ] L - \
fxul ‘xt-l 2":% (rﬂl.t fx,t+1‘ f‘x,-t-l 23 f‘x—l,t’
where s = )% as before.
Gx)?

This method is semi-explicit since it requires & sterting procedure. In

order to evaluate ‘xt#l it is necessery to imow ¢ xt and ‘xi-l' This neans
that if fx o is given for all x then ‘x.l mst be ctlcul:ted by sowe other
*
provess before ‘x g oan be found from the DuFortefrenkel method. The
¢
rbove form.la may be put into the more suggestive form s

(2-:;t (£ 4 +f

x+1t ~ xtel x-lt) 5

Txte1 xt=1)/(1 + £° 20).

(e) Cremk-iigolson Implieit Method
If higher differences sre ignored we hawe

(”t-l)t - lfpgz 4

using ¢ forward difference expression tor%{



-1l5 =

and

(el = o521

o)
(Y

o/
o
.

ueing & backward difference expression for

The seocond of thece expressions may be written as

(B,-1)t = nEt(t’S ;‘:r)

by opersuting on both sides of the eguetion with 't'
¥e now introduce & numbter r such that
Dl

and form a linesr cosbination of the two representstions ss follows s
(r)(B,-1)t = a(1r)e? 52 ¢
r(E=1)f = s » st(r’ 5: f)
Adiing the equetions gives s
(1)t = a(r B+ (1-r)) £9 ol

This gives us the well knowmn Crenk-liicolson formula.

2e20 Re entation of bounda Con

The boundery oonditionm %ﬁ-—\ = ° 0 may be incorporeted se

folloss. ignoring terus of higher order

g = fxelp -
-S{' x#lt - £

25 x



If the xe-axis ic divided into stepa of cqual length then if x = 1 is the
mth point, we must introduce & virtual point outside x = 1 ot whioh f{x,t)

is represented by f

atl,t’ Herige &t the doundary we have 1

b‘ e t -f - 0O
o 2, ¢
that is
f

.’1.‘ - “Hp‘

This enables us to find b i f for all x in the formilee derived above.

2.3« The Singulerity

In the iritial oonditions given for the problem, a singulerity
ooours at x = O, ¢t = O, In the neighbourhood of x =« Oy, t = 0, the finite
difference representation is of doudbtful value. The difficulty may be
avoided in two ways, both of which are desoribed here. The first method

utilises the ohange of varisbles to X,T given by 1
A= xt'* Tw t*

Then the eguation

g w P (x,8) D2
Ot '3;5

io trensiormed to

—

b
2 X d x

=

- v P ’ 32
%’M‘"‘ £ (x T)_.{

whioh 18 etill percbolic.
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In the new systex, the point x @ 0, ¢t = O beoomes the line T = 0. 7The

line t = O becomen the point st infinity on T = O, The boundary line

X =» 0 becomen the line X = 0. In effect, the origin hes dbeen trensformed
into a line. The singularity in f then becomes & graducl chenge. On T = O

we have for the initial vslues

P(x,0)2% + X 3f = 0
v 2 B

uPur + %n' - 0 where u(X) ® £(X,0).

The difficulties involved in this approsoh are obvious. Not only
is the new equation more complicated thsn the ariginel equation, but the solut
of the ordinary differential equation for the initisl walues is not & trivial
problem. Fven when resulte heve bdeen cbteined for the transformed egustiom,
a difficult interpolstion process hes to be csrried out in order tc give value
of £ on a rectangular grid in the originel x-t plame.

':{'he second metkod involves the use of a fino mash nesr the singulari
and transforustion t0 & cosrser mesh when She effects of the singulerity ere
sufficiently small. The chief drewbuok in this epproach is that it involves

& change in mesh lengthe, which msy be inconovunient.

2+4. Trunce tion Errorxr Stabi

Before proceeding with the discuseion of stability for the nonelinee:
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oace it is neceesary to Yeview some standard results for the linear oase

p = Ue Lt is convenient to consider the linear difiusion equation in the

form »
Q £ b?
Tt -z kﬁ
o 1

\

with initiesl and doundnyry oonditions as before. k is = constant &&kﬂ

o ”

for the purposes of analysis. 3

In the stability discussion of linear Partiel Differential Fguatioms
two tochniques are widely used. In the firet of these it is sssumed that the
errcr at any time cen be expended in a Fourier series in x. That is

.('o.‘) . % ,o ; .1 nhx

Sint;o the equation is line«r, 1t is possible to deal with the
sbove series term by term end look for stability conditions for esghp =
componetite This wethod is extrecoely convenient for linesr equations with
initial velues given. lLowever, this spproach is unsuitadle when the boundary
condi tione involve derivetivea. For problems which involve 2 derivetive in
some simple way, it is usually posesible to apply mctrix teohniques. We now
indicete how this latter method may be epplied by considering Lriefly the
¥xplicit Forward Difference representstion.

The Fxplicit Forward Difference formule for the linesr diffusion

equation is

-2 ?
(B, = 1)f = ks 52 f where o= (3‘;)2

and k is the constant introduced cerlier.
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It is convenient to re-introduce the subscripts which were dropped

previously. We have :

£ =g

it ® ke (s

3."1 &t > 5

xele® ~ “x,t x+tl,t

Yo

This syteu of equatione msy be expres2ed concisely in the following matrix

formula :
Brq = PRt
where A o B
rli .tOI
'lt. fzt ' s " g
tnt 0
Bi. the matrix. : t { .
l=2%ks ks
ks l=-2ks ks

ks

Lo

P is in fect a triedisgonal matrix.

Ve now suppose that eech & is subject to error 2,

Then

Boay * 20 = 2, v 2) * o
2a -5 8 +o,

Therefore 24 - ba,

and

l=2kes

2 k»

kKs

l=2%ks



Also, we suppose that B hes n distinot vectors U; cece U e

We may write
e = R IR

s B eees B8 areconstents.
1 n

where & 2

This expansion is the setrix egquivelemt of the fourier Expension done
earlier.
Kow

-,Et

241 o
= () e ¢ )%, + oo+ ()%
37 Sy T Vig) Oglig T "’ "un

vhere )\1, )\2000 >\n eye the letent roots of B,

Bow

cen only be true if \A‘i < 1.

The error is bounded if lhll - ].

Hence the proces: is stable if the moduli of the latent roots of B ure

less than, or equsl to unity. The latent roots of B are given by

IB =« 2Il =o0.
It sy be showm by consideration of the rvots of the chexscteristio

equation of E thet the conditions foy etability are 1

k 703 s ks
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8imiler discussions may be produced for the other two formulese
given previously. HLere we shall merely summerise the results obtained.

For the DuPn:teFrinkel formule, the stsbility conditiome are 13

k>0, » unyestricted.
Por the Crank<iicoleson process the stebility oconditions ere

k>0,

s kgz-n:};’- for Ccr i

s unrestricted fer g« r <1
wheTe r is the psrumeter introduced eariier in the discussion.
The truncetion error involved in the three representstions zay

be exemined by writing out the series for E‘ and S: in full.

This gives :

, 2 2
(Bt-l)r-éﬁtn‘o(-&}) J 0(&) D’#...#..))f

2
2 t 3 t

S:t- é(Sx)2 2 ﬁ(ﬁx)‘l): 0 (Sz) D +...§t

e Dy 'Sg =e " 'g'i

Using thesme sarirs it may be shown that for the Explicit Forwsrd Difterence
formuls

(B,-1)r k5% ¢

- & =
" x TSA:)' w (ﬁ M f(h(s"))(HL )% + s

Thus the truncation error for the Explicit Forwgrd lifference Formule is @

=

0 (5¢) +0}(5x)? ]



1f we choose %‘-’g so that

k¢t
G - %
then the system is steble smd the truncation error is 0[(5:)‘]. Appliocation

of series for E. snd 3: to the DuFsre-Frankel formula shows that the error

t
is

e =0(5¢) +0[(Sx)°] « 0‘_(%"})2]

An intereating feature eumerg?s fyom this enalysis of the truncation

error for the DuFort-Frenkel wethod. The term 1
$ $y2 22

i 3 ) ﬂ{
appears in the error ¢xpression. A finite difference representation is said
to be oonsistent with the correspomding differential equation if the truncetio
erxor tends to zeyo 8s ® t and Sx tend % sero. It is clear thet in this metho
consistency demends that 5t tends $0 sero feeter then S x. Certesinly, we must
<£’-3'< l. If this ie not true and

S x
lim S $.2
)

Stx>0 °

rave

= gonet

then the finite difforence representation is oconsistent with an egquation of

%{-%;‘*(omt)g—:‘ - 0

snd this equotsi m is hyperbolic. 7The precoticzl sutocme of this behaevicur

the form ?

is thet the ratio g—} must de kept saall. In fact, this devtroys some of the

sdventoage of unrestricted stebilivy.



.

Finally, for the Cremk-licclson formula, it may be showu that by

using the same¢meries &s before, the truncetion error is given by 1

e = 0(5¢) + 0] (5x)?
Although the use of trumorted series may involve some error unless > t and dx
ere trken to be vanishingly smell, in this ocvse, it svoids the possibility of
inoressing epurious solutions. Inoreasing spurious solutions sometimes appecs:
when the finite difference representation of » differential equetion includea
differences of higher order then the corresponding derivetives in the diffe-
erential equation.

In the pret, attempts to treat the stebility of nonelinesy Partiesl
Differential Equations by rigorous &nalytical meth ds h2ve gemerelly tailed.
However, 1t is often pos~ible to develop an empirical model for stability by
sujitedle linesrisation of the equation under investigetion. This is, in fect,
the proocedure rdopted here, but before this is deelt with, o more rigorous
discursion onimtetility is presented for the Explicit Forwerd Difference
formule.

The finite differenoe nchezme is 1
& 2
(y=1)f =8 £P5 0 ¢

let fx t be the true solution of the above equation. Let 6, be the
»

rounded solution.

We define
.3.‘ -f " - “.‘
Then P e
(pt-l)‘x § e tx.t x £x,0



Dropping subacripts and subtrecting the secgond equetion from the first gives

(K'-l)c =g 1’5: e+ o(tp-xp)S: &

Now, 4f p is @ positive integer we heve 1

P
dﬂi P R N e Bl ¥ T fa

and we may denote the right hend side of this by B(f,g).

Hence

(ltﬁl)..lfpS:O’lil(fgg)S:‘

Unfortunately, there secms to be no way in whioch this partial difference
equation may be either solved or simplified. This serves to show that the
exror vearies irom point to point in & complicated way.
¥e now turn to the empirical disoussion of stability. It hoe alread;
been noted thet the equetion under oonsiderstion bears a strong resemblence to
the linesr diffusion equetion
2L . k2L

b ' oxﬂ

for which atability criteria have been derived rigorously. Theo obvicus
epprosch is to replace k by fp in the appropriate expressions on the under-
stending thet it ey be necessary to choosze the pérameters s and r pessiciste
ically in order to ensure stability for all values of e? likely to be
encountered in the molution of the problem. When thies is done the following

results emerge.



For the YVorward Differemnce formula

t®> 0,
f’n { *
For the DuForte-Frinkel method

!")0

For the Crankeliicolson method

>0,

P ¢

s unrestricted for §<» <1.

How en interesting possibility emexges if p is cdd end £ takes negetive
values., Under those circumstonces the lineerised theoory suggestas that all
three methods are unatable. Otherwise we ghould hope to find etability if
® end v are ctosm esuitably with P given ite maximum velue in the inequalitie
Of course, it must be emphesired that the lineer model is only really mesning-
ful in regions wvhere t? veries so slowly thet the non=linesr equation behaves
like 2 lincar difiusion equation.

The truncetion error inwvolved et ench step in the integration of
the none=linesr equation may be exomined by methods similer to those used
for the linear ocsse.

For the FExplicit Forward Difference Representetion we have :

(B =1)f = o i



Fxponding the left hand side by Taylor series gives 1@

A 2 2

(Et-'l)‘ - 3‘ bt ! + wz bf * secee
I | 27 D t!

end in the right h:d side expension of S:f gives 1

« p
) x * Teeae = e ¥ Tpae

e aé 4 A
(h‘) 6 f I ’_4_% (b&) b f‘d! + oo
bx 2 x

By substituting these expressions in the finite difference representotian
we find that the trunoation error e 18 given by :

54) 24 P (5x)2 24
e P RO L

This expression shows thet 5x must be kept smell if the feotor f' in the
second term is large. In thé non-lineér case it is not poscible to choose s
in 8 special way in order to make the predominent termzs in the truncetion
error of the fourth order.

In the DuFort-Frankel representation

4 -f

L xtel =23 (£ " frin " faear * faad)
275t L

By applying the szwme techniques as before, we find thst the truncetion error

e is given by

(38)° 2 rP (8) 2 2%
.-L;%l '5;%.':7 » 0(%") f’ )'2 ¥ sene



Agein the phenomenon of incansistency sppesrs. While Yt end ) x may both
be small enough to mal < the firet two terme in the expression for e

negligidvle, the ratic }i— Bay be lerge enough to make the beheviour

of the third term significsnt. In cases where this ococur:, the DuFort-

Frankel represantation would be consistent with

d L S b"
=5 6_:; 4('5-})’:’ a—'f -0

The Crank«iicolson reprasentation is

2
(Bg=1) _ (sBy + (1r)) 295 2 ¢
t (81)2

..
o}

The truncetion error ie found to be @

54 o2 < 33 > 52
o.-z—‘ -b-;‘z- --‘3‘ 0 x)%® (?-x*-r(&) I’B—xi:-rgt—‘gl.sjo...

In this method the representsation is voneistant but, as usuasl, the trunocati
error may vary siguificently ae t' chenges .

This oconcludes the disocussion of stability end truncation error.

The detaile of the two explicit methods ere triviel es far ee
progreuming is oconcerned. The adventage of explicit methods lies in the
fact that each astep in the csloulation only requires the eveluation of

en erithmetic expressiom.



Un the other hand, the Cronk-iiicolson implicit method involves
the solution of sisulteaneocus nonelinesr equations for p ¥ O« The Crenke

Kicolson formuls say be written in the form

- wrtbs?

-t tail-r)tp 32 ‘t

B (fx’t x z,t
Sinoce the right hend side of this eqguetion is slways lnown it may be repluced

by ol x$’ The equation mey be reduced to

fapel = *xpe1 Fergen = Fe * Taszenn) = L g

Substituting y for ‘8"1 for convenience gives

ye2ent - et 00 * fhaen) " oLy

For any value of ¢t there are m such equetivos in = quentities of the type

r‘tﬂ. llence we have to solve m equations in m unknowns with the special

oordition £ at the boundiry, though this lest ocondition

xely tel ‘:—1.%1
ie just a2 computitional detail.
if p is sn integer, then the typical equation is similay to a
polynominl with one undetermined coefficiemt.
At this point we may coneider various wsys of handling the simultsne
equations which appear in the Crank-liicoleon methods Tho first possivility
is the use of linesrisetion. This tecinique hes been used suocessfully in

the solution of the Purtial Differential Equation

o f 2



The lineerisation ie carried out =g follows, using Taylor Series

P e

D
~ fg, *5%p f:tl—ﬁ?"
7 Yy a3u

-1
’:; (‘:,ﬂ e ‘x.t)

—~—~

where terns of order (S t)z héve been neglected. The solution of the
eimultaneous linear equations may then be eflected by standerd matrix
zethodes. This method is not used here for the following ressons. Firstly,
the truncated Taylor series introduces sdditionsl error and in some coszes
the linearisation way destroy the advantage of unrestricted stability.
Secondly, linear nethods have besn treated extsustively and the object of
this investi;ntion is to retain the non-linecarity for as long as posaible.
Another nmethodi for the solution of non-linesr systems uscs a

generalisstion of Newton-Raphson Iteration. If the aystem of equations is

ﬂ‘(x) -0

where x is the veotor of unknowns fjc then if each funotion ’1 is welli-be-

heved in the neighbourhood of X there exiests an iterstive process 1

= -1
= Ty " Ty (Bpo)f(x, )
In this procese, f iz the vector whose elements are the ’i end t’ -%{4\
J

whioh ia just the Jecobien metrix of the ¢1' This procesc zay be shown



to be convergént, tut we svoid it here becuuse repeated calculation of the
matrix f;l is undesirsble. In the problem considered here tx is & tri-
diagons] metrix but even for this simple forw of matrix, excot invereion 1is
not trivial and the use of a psub=iterstion for the inverse only compliceates
progromming.

We now oonsider & third epproach to the solution of the simulteneo
non-linear equations of the Crank-Nicolson method. In this method it is

sseuned thet the undetermined coefficient (f 1) in the typical

x+1‘\+l - fg-]_’g...

equotion

+1 P
v+ 2amy’ - exy “xﬂ'u-l £ ‘:-l’hl) rec B

cén be found approximstely. This uesna that we require sowme process for

gencreting epproximete velues for all the Assuming that approximste

‘x}ﬂ'
values of ‘x}ﬂ osn be found for sll x end that p is an integer, we are
faced with the solution of sets of polynomiel equations. It is tempting to
couigider the use of explicit formulae for the solutiom of these polynomials
in tho céaes p = 1, 2, 5, but this idea may be rejected for two recsons.
Firstly, snalytical formulee for p = 1, 2, 3 give all the roots
of the equation snd this inwvolves selection of the "ocorrect™ root. TFven
when this osn be dome logioelly, further complication hes been introduced
into the rrogremming, and this is undesirrble. The difficulty emerges at
once in the siuple csse p = 1 where the resulting quadratioc equations have

solutions of the type :
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using standard notztion for the coefiicients.

Seoondly, using the improved values for t“ 1 it will be necessary
then to set up the simultencous egquations cnee more :uing the improved value
for the undetermined coefiiciemnt. Clearly, there is no advantege to be
gtined by solving the eguations exscotly at esch stage. It is sctually essier
to usre iterctive methods for the solution of the equations and this cuxosch

is developed in the next section.

2.6. _ltexstive Methods fory the Crepk-Nigolgon Formsla
In this seotion we construot s deteailed soheme for the progremming

of the Crank<Nioolson method, but before desaling with the general cease we
find it inetructive to look st the case p = O. The cese p = O illustrates
sicply many of the points which cmexge in the geercl cese. For p = O the

Partial Differential Fquation is linear and the Cramk-Kiocolson scheme beocomes

(Bg=1)f = o(rE, +1 - £)d it

Thus we have & set of simultaneous linear cquations for f__ and this eset may

xt
be expressed in matrix form as Ax = b where x is the veotor of uninmowns ‘xt

and A is the matrix

1l +2s . 2
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A 18, in fact, & tri=-disgonal matrix snd is claso symmetrio if boundery

velues ere specified. A may be written in the foram

A=wDe+yu
where D is » disgonal metrix end u is ¢ mstrix with seroa on its prineipsl

disgonal. Then we have i

(Deu)x=d
or Ix + ux = b

Now we consider the iterstive matrix scheme represented by 1

th.d#un-b

This moy be written in the form 1
- =3
X el” D lb - D ux

end wve note that the inverse of D iz obtained simply by inverting its none

serocelenments, Also, if x is the actuel solution of Ax = b then

x o0 « 0 hx
Ve now define & n ® X = X o where En is just the error st the nth iteration.
By subtracting :nﬂ from x we have

X =gy = D ulx - x)

That ie
< n+el -» 1“211

Continued spplication of this lrat reletionship gives 1
+1 n+l
€ g = (A @MW
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and Eo ie tho error in the initicl approximsation to x. If D'lu hes =

distinot laztent mhhl. cos )1‘ end ocorresponding lstent veotors “1' cee U

-

then it is pos=zible to write

€ »
2 .1“1 + .2\12 * o0 ¥ ..u.

where .1"" l. are conmtonts.

This gives

&nﬂ. - (-l)n‘l(n-lu)n*l(ollll + l!zll2 P eee * ..ﬂ-)

- (1" P e B e a NP0 )

Obviously, the condition for the convergence of the itergtive sohewe is that

| A 1\ <1 for ell 1. Multiplying u by D™ gives o

l+2roe

D-xu.- -r 8 0 A
1+ 2rs l+27rs
A -5 &

l1+2zre8
Sey ' 1+2rs 0

and the roots of |D'1u - ;\Il = 0 may be found ontlyuuliy snd it energes

that the conditions for convergence of the iterative procese sre s, r 20.

These conditions are slwsye satistied. An importent fespure concerning r
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ray be seen. The error 5'”1 is determined by the rate st whioch the elementes

of (1)"111)n <2 approsch serc. The uon-gero elements of (D.ln)"ﬂ' consist of

produots whioh depend on the megnitude of

(1 :12_% e)

Now 4f O< ¥ <1 them

uic‘!rl,g‘ (1%2l)

Thus we expect faster convergence of tho iterstions for r<l, although tre

Crankeliicolson stability condition demande thet ¥ > § for unrestriced

stebility. The typical egquation in the lineer cuse is 1

(1+2r-)t - (f

x+1gel * fx-l,tﬂ)" 8 <5

}4-1
In the iterative process considered here we know the factor

(‘xol,hl . ‘x-lrl)

approximstely and we wigh to find improved wvelucs of ¢ ior all x.

x}+l

Clesrly, in order to do this, ve have to solve siuple linear equations of
the type 1

J b(x;“1 - ’J 1.) -0
where the dash denotes epproximate welues. Wemmy apply NewtoneRaphson itersti

to each equation in tum giving

) L) - (ox ) b(xl g * Xiy) = )
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e ['(3:*1 4 8:.1) + 0] /.

r denotes the rth iteretion. It is quite olear that we may repleace the

dash by (r) to give the iterstive process s

(”1) {b( (l') - ‘(l‘) ) + .] /e

This ie Just the séme result ss we obteined esrlier using wstrix notation.

The significant difference is shat we have deslt with esoh eguetion indive

iduslly, and the iterative process werely oorrects one coefficient in the

lineay relation. This ides is the bigis of the method used in the gemersl

non=linear cese. The tecbnigue iz worthwhile as lung s the term to be

correcoted is feirly smull compured to deifinitely imown terms and terms oon-

teining the iterst.d quentity. Thet this ocondition is ressomsble can be

peen ot once from the form of the sim:ltanecus squetions.

¥e now consider the details of the iterative process used to solve

the Crank«liicolson simultoneous equetions. The basic steps in the procesa

pay bemumzarised as follows. Assume that 1@

(a)

(v)

Thexe is some syswetic procedure for finding a first sppruxicetion

x}*l

We treat esch equetion of the ype

to f for all x.

ptl

y+*2ery -8 y"(txﬂ.”1 - t’_“ﬂ) - ol xt

as en equetion in the unknown y, with the coefficient (f !*3;“1“*‘1."1)

deteruined by the first approximetion.
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(¢) Faoh oquation in y may be procassed by some method to obtain 2 closer

apyroximetion to esch f ;’41‘

(d) The closer spproximstion may be used to redetermine ecoh unknown

coeffiotent of the form (fnu’w1 - rx—lfﬂ)'

(e) Steps (b), (o) and (d) ere repested until the successive approximstions
differ by less than some presoribed smount. This is the besis of the
implicit wethod. The details of the programming cre dealt with later.

We now give detailed consideretion to etepe () to (e).

Tt b e (£ o0 * 'x-xpx)/l

C I
end drop all suffices. We sre now oconsidering the solution by iterstion

of equations of the type

v+ oy") capy? ok =0

Two iterstive processes for the solution of this equation guggest theemselves
imoedinely.

(s) Hevton-Raphson iterrtion.

(b) Simple functional iterstion.
Since the sbove equation may de written in meny 4ifferemt forme, any one of
vhich cen be tremted by the two methods indiosted above, we shnll pimply
choone two forms which eare esay to hendle.

(1) In the Newton-Haphsom formuls



w 3 -

choose 2(y) =y .yrl - aby? « o<

. £(y) = 1 + a(pe)y® - sbpy®"

(2) 1In the funotional iterstiom procese the equation is written in the

form ¢
’(lfl’p-lb,'p.l)- A
end for the iterstive process we teke ¢

b " %

Thie deals with sssumption (o).

There are twoc importent considerstiona for step (a). PFiretly,

given & ressonsbly good approximation to r“ﬂ. She iteration cust convergs.
]

Secondly, & process for generating good epproximetions to ] o0t be

xpel
found for lerge 8. This leat point io one which con only be investigeted
numerioslly. The guestion of convergance of the iterstions is examined
in some deteil below,
Suppose g(x) hes no pole whioh coinocides with & yoot of f(x) = O,

1L
b(x) » x = g(x) £(x)

then eny root of £(x) = 0 petisfies x » h(x). If X is @ yoot of f(x) = O

and Af g(x) is snalytieel end nonesero in the neighbourhood of x, then

X, is the only root of

h(x) = x = g(x).2(x)
in this neighbourhood of Xye This sug,esta the possibility of ohoosing



¢(x) so that the sequence
X" b(xi)
gonverges %o 31 provided that the initisl point x o is suificiently cloae

to Xy In fect, it 28y be shown that the oomdition

lh'(xl) | « |
is sufficient to ensure the existence of some neighbourhood of =y in which
Xiey ® h(x‘) converges.

It may also be shown that convergence is more rapid for emeller

| h'(xl) |. Clerrly 4t would be an advantage to make h'(xl) = 0. W¥hen
this is 80, the sequence x ., = h(xi)h srid to hove second order oonvergeno(

Ve may spply these results to the two iterative methods outlined eerlier.

In the Newton-ilaphson forauls we have

h(x) » x -%‘,%3)

- 2200
ft"(x)]a

whence ht(x ) = £(x )"(x,) =0
1 _h__%
[r‘(xl)]

”“ma f.(ll) * 0.

Therefore
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The sssumption r'(xi) ¥ O is the sace s seying thet f(x) must not have

8 repested root at I‘o

Thie discussion shows that tho HewtoneRaphsan method is tegond
Order in general, and hence the particulsr Newton<liaphson process used

here is Second Order. If "("1) w O, that ia {f there is a repeated root

of £f(x) at ‘1' then % is indeterzimete. Thus for equations with

repeated or nearly equal rocts the Newton-Rephson process is 1ll-gonditioned

In the direot iteration we have :

’ . ---SZ-L =
n+l 1+ .,: # .w".t )
and here
h - A
i (1eay"-aby ")
therefore
h.(’) - ".2 & - ob )

(140y = aty?)?
1t % is u yoot of the equation represented vty this iterative process
then h'(xl) § O except in pethologicel cemes énd hence the process ie

firat order. Aleu, thie proces: is welleconditioned for multigle roota.
To sum up this snalytioel discusaion of the two iterstive methods we may
say that although the convergence of the Newton-Raphson process is of

higher order than the dircct iteration, it is erithwetiecsrlly wmore ocomplicataed



and sowetizes illeocouditiocned. Moreover, in the uirect progess the nucerator
is constant at eaoh stage in the iterztion and this faot is extrezely c one-
venient for hand caloulations. It is elso useful in wechine oomputsetiorn since
the quantity o/ need only be found onoe for esch x &nd t. The question of the
exiatence of reesl roots of the cquetions cannot be deslt with in edvance. The
only oontrol ie to ensuye that initial spproximetions ere ressonsbly good.
The uee of accelerstive devices suoh os Altken's 5 process and iterstive
methods of third or higher orders introduces more powerful oonvergerce at the
oost of simple progremming and hes been avoided heve. It is oonceivable trhat
such teotniques ore vseful for lerge vslues of &,
At this point it is worth ventioning that if the equation had dbeen
quaeielinear and if instead of tp ttiere hed been some explioit funotion of
x and t, then the solution of the aystem of equxtions whioh emerges in the
Crank«licoleson method would hive been much eagier. In faot, such a system
could be handled by iterative matrix cethoda. Thie is & brief indiostion of
the inoresse in complexity introduced by having a nonelinesr faector.
Firet approximations for use in the Crenkeliicolson method mey be

gmesrsted in t hree ways 1
le By nesns of the explicit formula. This method is idesl for use when

tenting the convergence of the iterations, eubjeot to the stebility

restriotions on the explicit formla.
2o By uesing .an extrapolztion formula. The wost gonvenient formlp is the

Hewton Baockwsrd Difference formula :

’vt ’vat“’ LE L L BN J

f -f
- onilil SONEY SRREY
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In this formula ¢ is estimated from & knowledge of ‘x

xp+l 3’ f:p-l'

fxt—!' ssene

S;noo the convergence of this foruule is generally poor, it is enough

to take just 2 few terme in the series. Ho grest advantage is gained

by ooneidering differences higher than the third or fourth. This formuls
provides an independent meons of testing the Cysnk-Niocolson method. It

is free from the stability restrictions of explicit formulae, but it is
clearly a poor approximmtica when compared with stadble expliocit represent-
ations.

The simplest method ia to approximete t' Obviously, this wmathod

pa % Tt

requires a powerful iterstion process.

There is snother way of looking st the iterative scheme used here. The

scheme may be seen t0 be & perticulerr csse of the genernlised Fewton-faphson

{teration when the lievSon-Raphson process is applied to the equetions indive
fduslly. The generalised Newton-Faphson proces: which wes briefly menticned
e:Tlier ia
-1

"% - (= )(x)
where

X is the vuotor of unknowns

f(x) 1o the vector of equations

r;l is the inverse of the Jeoobisn metrix of £(x)
X o3 18 @ closer spproximation to the roots of £(x) than x  provided that

-l
Tx

oan be found sutfieiently olosely end sscuming good initiel approximstions.
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There is reslly no point in finding f:l by exsct methods sinoe x .. need
orily be a2 gloser approximetion. It ie more in keeping with the epirit of

{iterstion %0 use & good approximation %o t;l. Thie point is similar to the

one we disocussed esrlier regerding the exsot sclution of the individusl
equations by explicit enclytical forsuleej such an approach is usually
laborious without giving eny merked udventages. The special form of the
sisultanecus equetions in ¢t Crank-licolson method allows @ considersble

simplificetion. The metrix f_  is sctuslly tri-disgomsl in form. Assuming

that the off=diagonal entries sre suall compared with the diesgonal entries,
it should be possible to epproximate t;l by D;l where D. is the matrix of

diagonal entries. The scheme may still oonverge sugcessfully even when thie

oondition is not sctisfied, sinoce we are not interested in finding f;l to

8 high degree of pregision by iterstion. We only reguire that the Newtone
Raphson prooess givesa suocessive approximations whieh inoresse in socuragy.
This is just the scheme whioh hes been used in this investisetion. The poss-

1bility of using D;lh this wvay makes the adoptiom of a2 non-lineexr spproach

wvorthwhile. The sdvantages to be seained by retasining the nonelinesrity snd
using the liovton<ilaphson iteration method are quite ele:xr. Thay ayre as
follows 1

(a) There ere no linesr approximations st sn early stage in the computotion.

¥hile we have introduced sn approximetion in the form D;l' . f;l it

uatters less na= convergent iterative prooess where there is no expliois
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truncation error inwvolved. The only significant drauwbeck in this

spproximetion is that the rate of convergence may be slightly less.
(b) 'The strong convergence of the Newton<hephson iteration avoids the

exaot inversion of metrices. The oein disedventege introduced by

non=-lineer iteretion is that there is some increrse in the complexity

of the programminge

This ooncludes the discuscion of iterstive sehemes for the solution

of the Crankeliisclson simultenecus equations.



Chapter 3

3.1. Gemers]

In this chepter, three 2spectas of the problem are discuesed. This
section deals with the prectiocal details of the investigation. The next
section oonteine & sumusyy of the numerigel results obtained. In the lest
scotion the results ere discussed in detail and some generel fertures are
exazined.

In the crogreomeing of the methode discussed in Chapter 2, the
ayproech wes experimentsl. The objectives of the ctudy were 2s follows 1
(e) To find numerieel solutions of the problem using the three formulse

developed earlier snd to test these f ormulse in #s meny weys &8 posaible
(t) To teet the usefulness of the empirical stebility theory.
(¢) To compsre & numeriosl sclution with sn smalytical solutiom.

In the first progresxe, the simple expliicit method was mecnunised
end solutions were found for the camse p = 1 for verious velues of 5 and for
other values of p and 8 with differens initisl ocunditions. This establishes
etability oonditione and cnables us to prosramme the other two methods. As
soon a&s Btrbility conditions were esteblished, the results of the explicit
method were used to stert the DulorteFrankel formuls. The DuFort-Frankel
zmothod wes investigeted for verious values of § t/(5x) but could not be run
with p odd and negetive function velues since no steble sturting proocedure

wig known. Finelly, the Crank-Nicolson method wée inveatigated under a wide

veriety of circumstinces. The stebility theory for this wethod wes ohecked
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in considersble detail, for different velues of p snd various funotiom
velues. The two {iterstive processes were progremned end compared., A

seizple method for speeding up convergence neaér the singulsrity was attempted.
This consisted of veing the result of the curremt iteretion for (mel)th

equation to correat the term f x=1, t+1

in the wth equation. All three initial
approxiwstion procedures were exsmined in [ elxr detail. The progrsenes were
tented with as many conbinetions of the paraseters s, p snd r s pessible.

¥e now coneider in detail the metrod whersby the analyticsl soclutio
wes obteined. In the first chapter verious enalyticel sclutions were discuss
snd vere found %o be too cgoupliceéted to progrezme quiokly. However, it was
found thiot the cese p » =] gives & simple snalytical solution. It may be

verified by differentiation thet a solution of

2
£3f
X t&hos:f.l

is
£(x,t) = 8 tan(T /4 +5 + ¢)

with the initial oonditions
£(x,0) » g tan(V' /4 4--;-)
and with time-varying boundsry eonditione
f(0yt) » & tan(T7 /4 + ¢)
£(let) = g ten(r/4 ¢ g + ¢)

The sein Crunk-licolson programme was adapted to solve thia equetion
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sy making the following essential wodificstions

1.  The boundery condition S | Sk

e () was removed,
2, The progrsmme wes sdjusted to celoulate f(x,0) for points in 0<x<1

using the expressiom

dtm (7/4 +%)

snd to use these velues #s initial data.
3. The boundery values f£(0,t) and f(1,t) vere similarly caloulsted and
imposed autometically.
The rest of the progrssme was left sudbstentielly integt, and suitadble values
of 8 and r vere used as input. Arrengements were wsde to print out the
ofloulated theoretical solution beside the numeriesl solution, obteined by
iteration. The values of x and t were suitebly restricted in order.to avoid

the discontinuity whioh appesrs at

/e 0-;'0 t -TT/2

in the theoretiecal eclution. Guch & process as we have just desoribed
assumes that the solution of the Partial Differential Equetion is unique,
given the initieal end boundaxy oonditions mentioned. The comwparison of the
thecretical and numericsl solutions is important in this study, since the
rsin problem bas no snalytiesl solution snd difficult festures such us
singularities and truncation error heve not beun adequately handled. 2Also,
it is of intereat to see how well the Crunke<liigoleon method works when it
is free from the effects of the spingularity and the stadbility can be cheoksd

in isolation.
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3.2. Sussmery of feeults

In this seotion we sumzarise the qualitative findings of the
investigation. HNumeriocsl results are given in the Appendix, and the
verious methods and techniques &re compared in detail there.

For the sinmple expliocit cethod, the stadility conditions are
found to be in soocord with those suggeated by the empirioel theory. For
f(xyt)> 0 stebility is obtained provided

folg for pel
For values of f(x,t) lese than mero, the stability oonditicm

Py (g
holde if p is sn even integer. For negetive values of f(x,t) and p = 1,
the numerical solution is violently unstable. It is found that when the
stebility oondition is not satiefied them inetebility ococurs.

The DuForteFrenkel pethod gives some resulte whioh disagree
considersbly with those obtained by the other two asethods. Violent in-
stability is not found to sppear, but the numeriocel results ore found to
differ quite conaiderably for larger values of s.

In the Crenk-Nicolson method it is found thet the stebility

conditions 2re the eeme as t hope obtained empiricelly, nswmely

t?> o
P <
of <E'TT:%'T— for 0<p<g
For r ) ¢ the mettod is found to give stability for all the values of @

exomineds gy gonvergence of the iteretive process is perticulerly good
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for velues of 8 Just grecter then . Of the three nethods used to genercte
first approximetions for the iterstive processes, the explicit formils is
the best, sssuming that it is used stebly. It is z2leo found that the Newton-
Raphson iterstion convergee much fester than the direot iterstion snd that
the direct iterstion process fails to converge for large velues of a. The
stteapt to speed up the convergence of the iterstions is only alightly sucoce:
ful. The comperison of sualyticel and numerioel results for the case p=-]
shows thet the genersl iterative sohepe is roasonable. The results obteined
for verious values of p with the explicit and Crankeiiicolson methods show
fair agreenent, and sre in socord with the empiricel stability theory as

far as they are inveatigeted.

The main results whioh emerge trom the investigution sre quite
strajghtforwerdy they ere listed below.

1. The eupiricsl stability theory gives & good ploture oi the stebility
of the trres methods used.

2. The DuFort=Frankel method is evkwerd to progresme and gives unrelMeble
resulta; the other two wmethods are in good sgreement when used under
stedle conditione.

3. The analytiocl solution snd the numeriocl solution for pe=-l are in
€004 sgreement, oonsidering thet the initial wslues of f(x,t) are

represented by only e few points slong the x=txis.
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We now discuss & few more general points, In the first place, it
nay be asked why impliocit metiode &re used &t all when a simple explicit
method is evajilable. It iz ttue thet for scell velues of p the explicit
method is much simpler, but for higher velues of p snd larger function values

the stability ocomndition

tPe (%
becomes too restrictive. The Crenk-ligolson method is eauily srrenged to
svoid this stebility restriction. The ohief drewbeck «noountered in the use
of the Crank-Nicolson method is the difficulty of generating first epprox-
imetions for larger vilues of 8. In order to find firet approxicetions, it
is necessory to use eituer f{x,t= §t) or the Newton Backward Difference Fore
rale. It is also escential to use a velue of r juet groatez.- than ¢ in order
to obtain repid oonvergence. There is an incidental advsntege in using the
iwplicit method for ¢ problem with & disocontinuity such ss we Love here.
After one step O t of the explicilwetiod, only one fumction velue hes ohsnged
and usuelly sany eteps must be considered before #ll the (unotion values are
virying with time. In the iterative wethod, the disoontinuity has time to
propygate before the iterstions stop and the bound:sry concition hes tiwe to
take effect. VYor this reoson, it is advisable t work to a feirly high pre-
cisbn when using the implicit method with rapid oconvergenoce, otherwise slow
propagution of the disoontinuity ocours as with the axpli&ﬁ wethod.

It is found thet the Crenk-liionlson wethod running times for the
two {iterstive processes are sbout the seme. This is not surprieing, sinoce
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the arithmetio involved in the direct iteration is uuoh less then tshat
required in the Newton-Raphson method, slthough the later, being seoond
order, oonve:ges much more quickly. The two efiects roughly balence oo
far ss tiwe of running is oongerned, but the Newton-iaphson method is muoch
superior for large s.

The cluose sgreeasnt of theoretical and numerioal results for the
oase p==1, shows thst the Crunk-liicolson smethod is very suiteble for prob-
lems which ocontain no singular inisial oonditions. The fact that cmly a
few points #re taken to represent f(x,t) wesns that the computation in well-
behisved ocsses need not be excessive in order %0 g ive a ressovnable decaoription
of f(x,t).

An Dleresting poscible method for the generstion of initisl approxe-
icetions hes not beon dealt with here but is mentioned for completeness.

The fundscenutel ides is t© use the explicit method to etert the DulorteFreanke]
process to obtaim approxizstions for f(x,t+ 0t). After f{x,t+ 5t) has been
found by iterstion it mey be used, together with the initisl conditions, to
ptort the uFort-Frinkel method egein. Subsequently, only the values of
r(x,t) found by the Crank-Nigolson method need be used to give the next first
approximation by insertion iu the DuFort-i'rankel formuls. In this way, it
may be poesible to have the unrestricted stability of the luFort-Frankel
process without sllowing inconsistenoy to develop.

Finally, we uention 8 uroblem which emerged in the investigetion
and whioti heas not beenu dealt with. It wes found when f(x,t) was ne-

gétive and p was an odd integer, that the verious methods aveiloble were
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unstsble. A theoretioal investigation of finite difference methods showe
that all such methods require tP to be positive. Thus, at present, there

eppears to bo no finite difference techtnique for the solution of ceses where

f’ is negative.
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DOEIN  commsnd 7o frograrme nobuio egn . by B Cxplad method
Anteger m,n,a,b }

real s,p }

open(20) j open(10) 3

a1mpead (20) 3 bimread(20) } s:=read(20) ;3 pr=read(20) 3

real array o[Osa,0rdbe1]

for mi=0 gtep 1 until a do
c(m,0] :=read(20) 3

for wi=0 pgtep 1 ungil b do
for mi=1 pastep 1 until a do
if mCa shen

bogin

elo,n)sme[0,0] 3

c[myn+1 Jime[mon J+c[mon Jrpxax(clm+1 ,n)-2xc(m,n]+eim=1,n]) 3
output(10,c[myn+1])

end

glge 1if wea then

RO commad A olole il o cbrivelit bpurlony conditio

elo,n]i=a[0,0] ;3
c(mon+1)1me[m,n]+alm,n ] rpw@x(clm=1,n]=c(myn]) ;
output(t10,elm,n+1})

end 3

close{20) § cloae(10)

od
!ﬁ*’mdo{%-oy—ﬂ»—w@



integer m,n,a,b }

real s,PeXsy 3

open(20) 3 open(10) ;

a=read(20) 3 bDiwread(20) 3 ar=read(20) ; pri=read(20) ; x:=read(20)

yi=read(20) 3

begin

real array ol0:a,0:1b¢1] ;

for mi=1 step 1 untll & do

elm,0}imy 3 e[0,0]1=x }

for mi=0 step 1 watil & do

e(m,? ] 1=read(20) 3

for ni=1 gstep 1 until b do

begin

e{o,n]imx 3

for mi=1 sgep 1 wntil a do

begin

clm,n+ ]imif mCa then

(2¢sxc[mon] rpx(e{m+t,n)-c(m,n=1]+c(m~1,n] )+c(m,n-1]})/
(14c(m,n] Tpc2xs )

else

(2xsxc[mon] Tp(2¢e[m-1,n]-c[m,n~1])+c(m,n=1])/
(1+c(m,n]rpo@xs) 3

output(10,c(m,n+1})

ad end

close(20) 3 close(10)

ond ol od of progebome



BORIN commerd Vhis peoparre aobio ey by Crand — Nisboor. methad ;

integer m,n,a,b ;

real 8,D,TsXeY }§

open(20) 3 open(10) j

ar=read(20) 3 bimread(20) j srwread(20) 3 p:eread(20) § riwread(20)
xtwpread (20) ; yr=read(20) ;

begin

real array o1,02(0:a,0:1d+1] ;

for mi=1 step | wntll a do

ol (m,0)1my ;3

¢1[0,0)1ex 3

for ni=0 gstep 1 until b do

begin

output(10,n) 3

for mi=1 step 1 until a do

BOBIN commict ihih Gusroto o Nesdon - Rophoo. ‘Siratoon. novs  ounel 3

ot [O,n¢1])1mx §

cl[m,n+! ]1=if m¢a then

cl(mon]+otm,n]rpeax(al[m+l ,n]-2¢c! [mn]+et (m=1,n])

glae

ol(mnl}+ei[m,n] rpxar@x(ct [m=1,n]=al[m,n])

O 3 commind  Hatirt frocere oTado ;



1: for mi=1 gstep 1 until a do

c2[m,n+1Jimif m¢a then

al[m,n+1 |=(Daxsxe) [m,n+1 ] r(p+1)
«rxaX(cl) [me el Joc ) [m=1,n+1 ] )at [m,n+1 ] rptel [(mn+1 ]
=(o1 [mon J+ax(ter)xel [myn ] rpx(at (w1 ;n}=2xat [m,n}+ci(m=1,n])))/
(Daxex(p+1 )xal{mn+1 }1p
~rxaxel (monet JT(p=1)x(ct [m+? ;¢ Joa) [t ;001 ] )o1)

else

ctimyn+t l={Daxaxo) [m e+t I 7(pe1)
=2rxsXel [m=1,n+1 et [m,n+1 JTpect(m,n+1 ]
=(ct[m,n}+ax(1=r)@2xct [m,n] Tpx(ct(m~1 ;nj=ci(m,n})))/
(Daxax(p+1 el [mn+t ] Tp=rxar@ci [mn+1 J7(p=1 )xci [m=1,n+1 ]+1)

for m:=1 psgep 1 ungil a do

output(10,02[(mn+1]) 3

for mi=! step 1 untll a do

if aba(ei(m,n+l]=c2(m,n+1]) D>u-3 then

begin

for mi=) step ' wngll = do

ol[mon+! Jima2(m,n+1] 3

goto 1

and

end

e 3
close(20) 3 close(10)

and M;/MM



DOgIN  comnerd TH sl egn il P eguod T bimaio one by
integer m,n,asb § :
real 3,p,"}
open(20) 3 open(10) j
atmread (20) ;3 bimread(20) 3 s:=read(20) ; pie=read(20) 3 riesread(20)
begin
real array e1,02[0:a,0:0+1]} ;
for m:=0 step 1 until a do
eim,0)1m
0.5%s1n (3. 14159265/ 4+m/ (> ) ) /0ce (3. 14159265/ 4/ (02)) 3
for ni=0 sgep ' wntil b do
RORIN  commird bl and bornilony voditn wboidibiod amobfnelly ]
ocutput(1o,n) 3
ci{O,n+] 1=
0.5%sin{3. 14159265/4+(n+1 )xa/(at2) )/
coa (3. 14159265/4+ (n+1 )xa/(at2)) 3
cllan*!]i=m
0.5%sin (3. 14159265/4+1/2+(n+1 )xs/(a12) )/
cos (3. 14159265/8+1/2¢(n+1 xa/(at2)) 3
for mi=! ggep ' until a-1 do
begin
ctmen+l]im
ctm,nl+1/al[mnlxax(ct{m+1 ,n]l=-2¢01(m,nl+c1(m=1,n])



11 for mi=! gtep ¥ wntil a-! do

c2[m,n+! ] i=

clmonet J=(Daxsxal [m,n+t ] 7(p+1)
=rxsX(cl [+ ,net Ject [m=1,n+1 ] )xX1 /el [mne! J4at [m,ne1]
=(al{men J4sx(1=r)x1/c1(m,n]x(ct [m+1,n]-2¢c! [m,n}+ct[m=1,n])))/
(Daxax(p+) )x1 /0t [m,n+1]
~xaxl/cl(monet Jr2x(0) [m+1,ne1 Joct [m=1,ne1])e1) 3

for mi=! step ' until a-! do

output(10,e2[{men+1]) 3

output(1o,

0s5x8in(3. 14159265/4+ (n+1 )xa/ (212 )+m/ (D ) )/
cos (3. 14159265/4+(n+1 )xa/(at2)e/(Dw)))

end }

for mi=! step ' until a-l do

Af abs(ctimn+l]-c2(m,n+1}) >»-3 then

bagin

for mi=1 gstep 1 until a~! do

ot (m,n+1]:mo2({m,n+1)

goto 1

and

end

oad }
close(20) 3 close(l0)

end M%W



71OW DIAGRAM FOR CRANK-NICOLSON METHOD

begin

e e —

duc;llro DeNe@,ybyJ |

read in detag funotion |

values, a,b,J

-

. e g i y
oaloulate 1lst approx. (old') '
to all roots from kmowledge |
of previous funotion values l

.~ | J N ; ]
'[ m =0 l
2P 1} &
old swmew R 4 Improved vslue of mth
for all m ' | funotion value by iteration
r B l ‘
“ < Ko is m=a? l‘
| Yes

< is |oldm - ncw.l< 3
Yo ‘_ for all =?
- Yes

L No Is neb? “

Finish

The boundary oonditions are included in the blocks.
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All tha rosults avre for the initial end boundaxy conditions

£(Dy8) = 2.0

£(x,0) = 10 for 0<x2<]
exoept for the osse p = =1, whan the ipitiel and boundeyy
gonditions are those desoribed in the taxt. In el)l the Crenke
Hicolesun resuits the Newton-ilapheon Iteration is curried out to

& precision of 102,



Explicit Method p=1.0 B = Qe2i




Explicit lMethod p=2 s = 0.1




Explicit Method

8 = 0.05

3 2.000 1.156 1.007 1.000 1.000 1.000
4 2.000 1.209 1.015 1.000 1.000 1.000
9 2.000 1.262 1.024 1.001 1.000 1.000
6 2.000 1.312 1.036 1.002 1.000 1.000




Du Fort-Frankel lethod p=1 8 = 0.24

1.000

1.000

1.005

1.009

l.022

1.030

1.049

1.062

1.085




Du- Fort-Frankel letliod p=1 8 = 0.48




Du Fort-Frankel Method

8 a 0096

2.000

1944

1.859

1.799

1.753

1.743

2.000

1.946

1.893

1.839

1.809

1.792




Crank=Nicolson lMethod Newton-Raphson Iteration

pﬂl 8 = 024 r50.75

S x No. of
AN 0 1 2 3 4 5 Iterations
¥ required.
0 2.000 1.000 1.000 1.000 1,000 1.000 0
1 2.000 1.197 1.027 1.004 1.000 1.000 4
2 2.000 1.338 1.07% 1.0, 1.003 1.001 3
3 2.000 1437 1.130 1.031 1.007 1.002 3
L 2.000 1.506 1.185 1.053 1.013 1.005 3
5 2,000 1.556 1,235 1.079 1.023 1.011 3
6 2,000 1.595 1.280 1.106 1.036 1.018 2
7 2.000 1.625 1.320 1.13, 1.050 1,028 2
8 2.000 1.649 1.355 1.162 1.067 1.040 2
9 2.000 1.669 1.386 1.189 1,086 1.055 2
10 2.000 1.687 1.3 1,215 1.105 1.072 2




Crank-}Nicolson Hethod

p:l

3 BO.‘&B

Newton~-Raphson Iteration

r= 0.75

¥o. of
1 2 3 4 5 Iterations
v 1 r.gnir.d.

1.000 1.000 1.000 1.000 1.000 0
1.324 1.07 1.017 1.004 1.002 6
1.494 1.180 1.055 1.016 1.008 5
1.587 1.27 1.106 1.039 1.022 4
1.643 1.349 1.161 1.070 1.045 3
1.683 1.408 1.211 1.108 1.076 3
1.712 1.456 1.263 1.149 1.113 3




Crenk-Nicolson l{ethod Newton-Raphson Iteration

p =2 8 = 0.l r =0.7%
SX NO- Of
> 0 1 2 3 L 5 Iterations
st required.

0 2.000 1.000 1.000 1.000 1.000 1.000 0
1 2.000 1,098 1.006 1.000 1.000 1.000 2

:T:
2 2.000 1.191 1.020 1.001 1.000 1.000 2
b 2.000 1.274 1.040 1.004 1.000 1.000 3
4 2.000 1.345 1.064 1.008 1.001 1.000 3

w
5 2.000 1.404 1.092 1.014 1.002 1.000 3

o
6 2.000 1.452 1.121 1.022 1.003 1.001 5




Crank-Nicolson Method

P=3

8 = 0005

Newton-Raphson Iteration

r 80.75

No. of
5 Iterations
l_ - required.
1.000 0
: | 2.000 1.052 1.002 1.000 1.000 1.000 2
2 2.000 1.105 1.006 1.000 1.000 1.000 2
3 2.000 1.158 1.012 1.001 1.000 1.000 2
L 2.000 1.211 1.020 1.001 1.000 1.000 2
5 2.000 1.263 1.031 1.002 1.000 1.000 2
6 2.000 1.312 1.043 1.004 1.000 1.000 2




Crank-Nicolson Method Nowton-naghaon Iteration

P = -1.0 B = 0.2“- = 0055

Sx B No. of
0 | 2 3 4 5 Iterations
rtsuirid.

0.583 0.675 C.787 0.927 1.110 1.362 0
) 0.589 0.682 0.795 0.938 1.125 1.384, 1
2 0.595 0.689 0.804 0.99 1.140 1.406 1l

" |

3 0.601 0696 0.813 0961 1.156 1.428 b §
4 0.607 0« 704 0.822 0.973 1.172 1.451 1
5 0.613 O« 711 0.832 0985 1.188 1.475  §
6 0.619 0719 0.841 0.997 1.205 1.499 1l




Analyticel Solution

P = =1s0 8 = OQZ‘-
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