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NOTATION

The author has defined the notation in the thesis at the time of use. 
Those important variables used universally throughout the thesis are 

detailed below*

A Continuous state transition matrix,
B(N-j) Optimal feedback coefficient matrix,
C(n-l) Condition matrix for controllability,
C(n-l) Condition matrix for observability,
D Continuous control transition matrix,
E ‘ Statistical expectation,
fjj.̂ £̂x(j)'] Performance index at time (N-j)T,

0 Discrete control transition matrix,
ÏÏ Control cost matrix,
H Effective intergampl© control oost matrix*
1 Unit matrix.
J Error covariance matrix,
m(jT) Control input at time jT.
N Optimisation interval,
P(N-j) Equivalent discrete riccati matrix.
Q State cost matrix,

Q* Effective intersample state cost matrix,

Q Effective intersample - progressive stability
state cost matrix. '

R(j) Discrete disturbance covariance matrix at time jT.



- IX -

R(N-J) Partitioned part of E.D.R# matrix.
r(jT) Discrete disturbance input vector at time jT.
T Sampling period,

t Time.
U ■ Matrix used in intersample theory.
TJ* Matrix used in intersample - progressive

stability theory.
V(N-j) Partitioned part of E.D.R. matrix.
V(j) Matrix used in estimation theory.
W(j) Discrete measurement covariance matrix at time jT.
w(jT) Discrete measurement input vector at time jT.
x(jT) State vector or system variable vector at time jT.
y(jp) State vector or system variable vector at time jT,

Z(N-j) Partitioned part of E.D.R, matrix.

z(jT) State vector or system variable vector at time jT,
^  Uncontrolled system's discrete state transition matrix.

Controlled system's discrete state transition matrix.
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CHAPTER 1 - INTRODUCTION

1.1 PRELIMINARY REMARKS

The necessity of improving the efficiency of industrial 

processes and the ever increasing demand for high performance 
systems have resulted in a reawalcening of research activity in 
the field of optimal control theory. The classical interrelated 
problems of Lagrange, Bolza and Mayer, first analysed in the 
nineteenth century with the aid of the specifically devised 
techniques of the Calculus of Variations (l), could be considered 
as the first mathematically orientated study of the general control 
optimisation problem. The recent resurgence of activity received 
much of its initial momentum from the publication of the work of 
two eminent applied mathematicians, namely L. S. Pontryagin and 
R. E. Bellman, The Maximum Principle of Pontryagin (2) and the 
Principle of Optimality of Bellman (5), along with the classical 
theories of the calculus of variations, now forms a rigorous 
mathematical foundation upon which to base the solution of complex 
optimisation problems.

The optimisation problem is essentially the determination 

of the open or closed loop control inputs, which, when applied to 

the dynamic system, results in a response which minimises some 

functional which, it has already been decided, characterises the
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performance of the system. Certain constraints may also be imposed 
concerning the admissability of the control inputs or the resulting 
response of the controlled system. The control inputs so determined 

are called the optimal control inputs, or the optimal control policy 

of the system.

In the case of non-linear dynamic systems, the optimisation 

problem eventually evolves into the determination of the solution of 
a two point boundary value problem, which is notoriously difficult 
in all but a few cases. In recent years many papers have been 
published which, when dealing with the complex optimisation problem, ' 
have as their net result the reduction of the problem to a 
correspondingly complex two point boundary value problem. On the 
other hand, relatively few papers have dealt with the fundamental 
problem of immense practical importance, namely, the solution of the 
typical two point boundary value problems found in optimal control 
theory. The author has found the most notable papers in this vein 
have been those of Bryson and Denham (4) (5)i Westcott, Florentin 
and Pearson (6), Noton (7) and Levine (8). The methods presented 

therein necessitate, in general, the use of large high-speed digital 
computers. In the solution of the two point boundary value problem, 
the time taken to converge to an optimal solution, if convergence 
actually occurs, is not known at the outset of the calculation.
This lack of information is a major drawback in the utilisation of
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such an optimisation procedure in an on-line capacity. The 
logical development is the approximation of the non-linear problem 
by a corresponding linear problem for which a quasi-analytic solution 
can be derived and hence its on-line use is feasible. Satisfactory 
results have been reported by Pearson (9) and Davis (lO) using such 
a procedure.

In order to obtain a quasi-analytic solution, not only must 
one have a linear system, but one is also restricted, at least at 
present, to a quadratic performance criterion. The continuous 
optimisation problem then reduces to the determination of the solution 
of the well known matrix ricatti equation, which is relatively easily 

accomplished by the adjoint variable technique (9)» (H), (12), The 
optimal control input in this case turns out to be a linear function 
of, in general, all the state variables of the system. The resulting 
system therefore has a closed loop feedback structure, as opposed to 
the open loop structure which results from the implementation of the 

optimal input of a non-linear system. Classical control engineering 

analysis (ij) has shown that a closed loop system is a desirable 
structure, a conclusion which has been confirmed as a by-product of 
calculating the optimal control input of a linear system. Although 
the optimal non-linear system design results in an open loop structure 

in practice, it seems reasonable to assume that it is, in fact, a non-



linear feedback system, but the methods of analysis are such that 
the problem cannot be solved in such a way as to permit feedback 
implementation. This thesis is concerned with the digital optimal 
control problem; therefore it is not intended to discuss in depth 
the optimal control techniques applicable to continuous systems*

A digital control system is defined as a dynamic system 
in which the control input is applied to the system intermittently.

One of the reasons why such a system arrangement is of practical 
significance is that if any form of digital device is required in 
the system.to calculate the control inputs etc., the output of that 
device will be intermittent. Assuming the continuation of present 
trends, it is likely that digital computers will be incorporated in 

complex control systems, performing such functions as dynamic optimal 
control generation and system identification. As yet, the majority 
of computers which have been included in control systems have been 
used to tackle the static optimisation problem. Nevertheless, 
recent results would suggest that a further improvement in system 

efficiency could be made by dynamic optimal control (14). The 
process control industries will undoubtedly be one of the major users 
of computer control, and therefore it is desirable that any digital 
optimal control technique devised should be applicable to systems with 

typical process dynamics. Although, as in the continuous case, it 

is necessary to restrict the system's dynamics to be linear and the
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‘ criterion to be quadratic, to obtain a quasi-analytic solution, it 
will be shown in the following chapters that it is possible to 
include systems with multiple state, control, and measurement delays 
and with additive correlated noise disturbance and measurement inputs.

The approach in this thesis has been to assume the presence 
of a computer in the system, and hence derive the optimal digital 
control input for a linear dynamic system. The dynamics are assumed

;independent of time, although in fact they may be slowly varying with 
the corresponding intermittent updating of the optimal control 
calculations. Wherever possible, particular attention has been given 
to designing good sub-optimal digital control systems where the reduction 
in system complexity compensates for the loss of optimality,

1,2 - THE OPTIMAL DIGITAL CONTROL PROBLM

The Maximum Principle was originally devised for continuous 
systems, but has recently been extended to deal with discrete systems 
with limited success (15) (l6). On the other hand, the Principle of 
Optimality and the associated Dynamic Programming theory are essentially 

discrete in concept and therefore easily applied to the solution of the 
optimal digital control problem. For this reason, the dynamic 
programming approach has been used in this thesis.

In an optimal digital control system, the choice of control 

inputs is made at each sampling instant in such a way that the performance 

criterion governing the response of the system over some specified number 

of sampling intervals, N, is minimised. The optimal digital control
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problem is therefore clearly seen to be an N stage control input 
decision process, which is, in general, difficult to solve. In 
analogy with continuous systems, the set of inputs which result 
from making the N stage decisions is called the optimal control input 
policy of the system.

The intuitive concept of the Principle of Optimality can be 
stated as - An optimal control input policy has the property .that 
whatever the initial state and initial control decisions are, the 
remaining control decisions must constitute an optimal control policy 
with regard to the state resulting from the preceding control input 
decisions. Thus by making the control input decisions in reverse 
order to which they will actually be used^reduces the N stage decision 
process to N single stage decision processes, which are readily solvable. 
Since the decision making has to be performed in reverse time, one 
requires to have a knowledge of the state of the system at each sampling 
instant before the input decisions at all the preceding sampling instants 
have been made. The lack of this information about the state of the 
system is the stumbling block which prevents the direct application of 
the dynamic programming, techniques to non-linear dynamic systems.
Although theoretical methods can easily be developed (5), their 
implementation, for all but a few simple problems, would require a digita 
computer with storage capacity and speed several magnitudes greater than 

those even anticipated today.
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In mathematical terms, the Principle of Optimality can he

stated as
f (S^ t) « g(t) + f(H-jTl t) ' (1*̂ .1

with f(NÎi T) = 0
where T is the sampling period,

N is the total number of sampling intervals over 
which the system has to be optimally controlled,

f(N-j T) and f (N-jld t) are the optimal values of 
the performance index calculated from the initial 
sampling instant to j th and j+1 th sampling instant 

respectively,
and g(t) is the value of optimal performance index during

the time interval jT ̂  t < j+1 T.

It was pointed out by Kalman and Koepcke (17) that if one

restricted the system to have linear deterministic dynamics and the 
performance criterion to be quadratic in the state and control variables 
of the system, the functional f(N-j, T) could be expressed as a function 

of the state x(jT), namely

£ (S^T) = xtjT) P t) x(ôt) (1./.
where P(N-j) is a square, symmetric, non-negative definite 

matrix of dimensions equal to the order of the system.
This equality is analogous to a similar expression, which is 

obtained for continuous systems under the same restrictions. In 

that case the matrix P(N-j t) is the ricatti matrix and therefore,

for rotational convenience, the author has called the matrix P(N-j)
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the equivalent discrete ricatti matrix or the E.D.R, matrix.

The use of the relationships of equations (l. .̂l.) and 
(1,̂ ,2, henoe-forth expressed in a more precise notation as,

(a) - g[x(jT). ni(ôT)] + [x(ô+l T) ]
with [x(-t)] = 0
and x(jT) and m(jT) the state and control input of
the system at sampling instant jT,

(h) = %(jT) P(S^T) x(jT)
f 'enable a quasi-analytic method of determining the optimal control 

policy for the digitally controlled system as will be shown in 
Chapter 2, As in the pure dynamic programming approach, the
control inputs are again calculated in the reverse order to that
in which they would be used.

The original optimisation technique (l?) was developed 
correctly by Gunckel and Franklin (18) and wrongly by Tou (19 ) 
and Joseph (20) to include linear systems with additive noise 
disturbances with zero mean, A further development which allowed 

the amplitude of the control variable inputs to be constrained 
within prescribed inputs was indicated by Deley and Franklin (2l), 

but the practicability of the proposed technique is questionable, 
from a computational point of view, for systems of even modest 
complexity.

The research reported in this thesis was motivated by
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several factors# Firstly, the author was interested in the 
possibility of extending the basic optimisation technique to a 
larger class of systems and in particular to carry out the 
optimisation with respect to a more design orientated performance 
criterion than those used by the authors of the above mentioned 
papers (l?), (l8), (I9), (20). Secondly, to the author’s 
knowledge, there was no recorded discussion of the computational 
aspects of even the simple optimal digital control technique, a 
fact most certainly due to the very few numerical calculations 
which have been attempted and reported. Thirdly, there was the 
problem of implementing the optimal control possibly in a sub- 
optimal manner if such a procedure was judged advantageous.
Finally, the author was interested in exactly how such factors 

as the systems eigenvalues, the sampling period and the 

compatibility of the performance criterion with the system's dynamics 
would affect the generation of the optimal control policy and the 
resulting performance index of the optimal system. The results 
of the author's investigations are reported in the remainder of 
this thesis.
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CHAPTER 2 - OPTIMAL DIGITAL CONTROL TECHNIQUES

2.1. - STATE VARIABLE DESCRIPTION OF DYNAMIC SYSTEMS
2.1.1. - CONCEPT OF THE STATE OF A SYSTEM '

In the study of the optimisation problem in control theory, 

it has been found that it is more convenient mathematically to 
describe the dynamics of a system in the time domain rather than 
in the frequency domain, the latter being mainly used in more . 
classical control theory. In order to develop a generalised form 

of the description of the system's dynamics in the time domain, the 
concept of a system's state and its state vector has been 
introduced (22), (25). A complete understanding of the meaning 
of a system's state is essential to'̂ comprehension of the methods 
of solution to be used throughout this thesis. Therefore it was 

thought worthwhile to include a concise note on this topic.

The author has found it convenient to define the state of 
a dynamic system to be the minimum amount of information about the 
system at time t̂  which, along with a Icaowledge of the dynamic 

characteristics of the system and the inputs to the system during 
the time interval t-t̂  allows the response of the system at time t, 

t ^ t̂ , to be calculated. The state vector has then been defined 
as the column vector of minimum dimensions, a knowledge of the past 
and present history of whose elements is equivalent to a knowledge 
of the state of the system.
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Consider a system whose dynamics are described by a p th 
order differential equation. It can be shown that this single equation 
can be represented by a non-unique set of p 1st order differential 
equations, linear systems retaining their linear properties (24)#
Let the p time dependent variables used in these p equations be 
defined as the system variables. It should be noted that these 1st' 
order equations will also contain any input variables appearing in the 
p th order equation. In order to calculate the response of the system 
under discussion at some future time, one would only require a knowledge 

of the system variables at the present time t̂  along with a knowledge of 
the dynamic • characteristics of the system and the inputs to the system 
in time interval t-t̂ . The vector of the system variables can therefore 
be seen to be equivalent to the state vector previously defined. The 

system variables are thus defined to be the state variable, i.e. variable 
which describe the system's state* To simplify mathematical manipulation, 
the p 1st order differential equations are henceforth represented in 
matrix form,

x(t) » f(x(t), m(t), t) 

where x(t) is the state vector, 
m(t) is the control input vector, 
t is the independent time variable,
f(x(t), m(t) t) is a vector of functions of its arguments.

The above argument has considered the special case of a system 
described by differential equations, but similar remarks also hold for
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systems described by difference equations (25), (26). In the case 
of systems described by partial differential equations one could also 
theoretically define a state vector, but the latter would be infinitely 
large since the elements of the state vector would have to represent
continuous distributions rather than a finite number of variables.
Approximations to the infinite state vector can be made, as will be 
shown when the multiple state and control delay system, a subset of 
the general partial differential class of systems, is solved in sub

section (2.1.4*)

2.1.2.'- THE AUGMENTED STATE VECTOR

\
From the definition of the state vector, it can be deduced 

that if two systems with state variable equations

i(t) = f(x(t), m(t), t) (2.1.)
and ÿ(t) = g(y(t), u(t), t) (2.2.)

are ^terconnected through a system with no dynamics, then one of 
the state vectors of the composite system would be the partitioned 
vector z(t),

z(t) - [x(t) ; y(t)]
Consider a control system described by equation (2.1.) which is 
subject to an additive disturbance input described by equation (2.2.)
The above statement indicates that the response of the composite
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disturbed system can be studied by considering the single augmented 

state system
&(t) « ĥ [z(t), m(t), u(t), t)
It can also be deduced that if no direct interconnection 

existed between the two systems, then the two separate systems could 
be examined together by considering the single augmented state system 

z(t) = hgfzft), m(t), u(t), t) 
where hgfzft), m(t), u(t), t) = ' f(x(t), m(t), tj

g(y(t), u(t), t)
The augmented state variable approach to systems analysis 

indicated above is used extensively in deriving the general solution 
of the digital optimisation problem presented later in this chapter#

2.1.5. - SOLUTION OF STAJE EQUATION &(t) = f(xCt). mft),
2.1.5. - SOLUTION OF STATE EQUATION &(t) = f(xCt). mft),

The discrete dynamic programming optimisation problem 
requires the state at one sampling instant to be a known function of 
the state at the preceding sampling instants. The state equations 
governing the system must therefore be represented in the form of a 
matrix difference equation. Such a representation of the general 
matrix state vector differential equation will now be calculated and, 
by an extension of the solution technique adopted, an approximate 
solution of the general state vector difference - differential 

equation will be obtained.
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Consider the matrix differential equation
x(t) « f(x(t), m(t), t) (2,5.)

Equation (2,5*) is satisfied by the integral equation
/t

x(t) = x(t ) + \ f(x(r), m(r), r) dr (2.4,)
J^o

If one regards x(t) appearing in equation (2,4*) to be unknown, then 

equation (2,4) can be solved by the method of successive approximations (2.W-) 
and thence it can be shown that the function x(t) defined in equation
(2,4) is the general solution of equation (2,5)* In particular, the 
linear time varying coefficient differential equation corresponding 

to equation (2,5) ie.
x(t) » A(t) x(t) + D(t) m(t) (2,5.)

has solution
t

x(t) =  ̂ [A(q)x(q) + D(q)m(q)l dq (2.6.)
o

Considering t to be a dummy variable, one can obtain expressions

x(q) « x(t ) + \ [A(r)x(r) + b(r)m(r)] dr
%

x(r) = x(t ) + [a(s)x(s) + b(s)m(s)} ds
° )t

etc.
The successive substitution of these expressions into equation
(2,6) would eventually yield the infinite series solution

00 CO

x(t) x(t^) + (2.7.)
l«* iso

where (t,t̂ ) = I
rt

A(ï ) (r,t̂ ) dr i - 1, 2 ...
to
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 ̂ D(r) m(r) <3ran
/  O -  O-

o
ft

/Sl(t'to) “ \ (Z't^) dr i=l, 2 ...

If the equation (2,5) has time invariant coefficients, then equation
(2.7) can he reduced to a simpler form, i,e.

x(t) « x(t ) + AT %(t ) + A^T^/2; x(t ) +
^  ft /§

+ D\ m(q)dq + AD ( m(r) dr dq + ,,,, (2,8.)
3t h  ̂  to 0 0

where T « t-t̂ .

If it is further assumed that t-t̂  is the sampling period of the 
digital control system, then, hy definition of the latter, the input 
variable m(r) has a constant value during this period equal to m(t̂ ).
The equation then becomes

x(t) -Z.(AT)Vil x(t ) + f  A^*'V/i: Bu(t ) (2.9.)t.*o ^ 1 * 1  O
Deplacing the infinite series by the variables used in later sections 
of this thesis, the difference equation solution of the differential 

equation (2,5.) ia
x(t) x(t^) + G(t-tg) ni(t̂ ) (2.10.)

00 .
where ^ (t-t ) « Z1 (AT)̂ /iI (commonly denoted by exp(AT))

° a, 'r ft
and G(t-t ) - 21 T /i: D « I ^ (t-r) D dr 

° ‘‘M )t0
Having obtained the matrix infinite series(t-t^), its 

convergence properties must be established before equation (2,10) 
can be shown to be practically useful. The scalar form of the
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series is well known to be convergent for all finite T, but the 
matrix form requires proof (22),

to rLet S denote the finite series 2  (TA)̂ /̂kl where A is a p x p matrix.
Let the (i,j)th element of S be denoted by Z.a(k).. T /ki

^  W.-0
Let oi a max ( %  |a(k). . | ) where maximisation is with respect to 

the p rows of matrix Ŝ ,

Then max I a(k + l). .1 « maxi X  a._a(k)_ . I
ij ‘ 13' ij * 1̂  13 '

^ max (^la J Ja(k) j)
ij e-( 13*

^ (max ^  |a._ I )(max |a(k) . I ) 
i 1 Ij

Hence max 1 a(k+l),.[ ^ max \ a(k).. 1,
ij 13 ij 13

Por n = 0, max \ a(o) . . \ oc
ij 13

Therefore by induction

max I a(k+l)., I « o<.̂
ij ^

Thus the infinite series defining the elements of <f̂ (t-t ) is dominated 
^ I ^

by series which is a scalar exponential series and is uniformly
\C.Q -

convergent. Having therefore proved the convergence of ^ (t-t̂ ) the 
convergence of G(t-t^) automatically follows due to simple relationship 
between these matrices (cf equation (2,10),

2,1,4, - SOLUTION OF THE GENERAL MATRIX DIFFERENCE- 
LIFFEREHTIAL EQUATION

In the introduction it was pointed out that the type of

systems to which optimal digital control were likely to be applied
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wÿlere those whose dynamics often contain pure time delays, i,e, 
systems whose dynamics are described by difference-differential 
equations# Using an extension of the method used in the solution 
of equation (2*5), the solution of the linear time invariant matrix 
difference-differential equation

. &(t) =.2LA, x(t-i^) m(t-iS) (2*11.)Izo 1 i~o J.
where and are specified positive integer quantities 
and x(t) and m(t) are the system variables and control

j
variable vectors respectively, 

will now be derived*
The general solution of equation (2*ll) was derived by firstly 
examining simple cases of the equation and thence deducing the 
general solution structure*
Consider the unforced system described by the class 1 difference-

differential equation

x(t) = A x(t) + Bx(t-S) (2,12*)
where 5 is a pure time delay.

If one considers x(t-S) to be a time varying input, then the above
equation has a solution similar in form to equation (2,10), namely,

x(t) « çi (t-t̂ ) x(tg) (t-q) B x(q-5) dq (2,15.)
ô

The variable x(t) is a function of x(t^) and x(r) where t̂ - S ̂  r ^ 
t-S. In order to expand x(t) as a function of x(t̂ ), x(t̂ -5) etc, 
it is necessary to find an expression relating x(q-S) to x(t^-S) and
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x(s) where ^ t-2S'# This can be done by considering
t and in equation (2,15) as dummy variables and thence by slight
manipulation of equation (2.15) one obtains the expression

x(q-S) « 5̂ (q-t̂ ) x(t^-S) + 1 (q-S-r)B x(r-S)dr (2.I4,)
■t»- s

By changing variable in last term, equation (2,14) becomes
/q

. x(q-S) « 5̂ (q-t̂ ) X (t̂ -a) + \ ^(q-s)B x(s-25)ds (2,15.)

Inspection of equations (2,15) and (2.15) reveals that a 
general form of equation for x(q-i&) has been derived, The 
successive substitution of these expressions into equation (2,15) 
in a similar fashion to the method used for solution of equation

(2,5), eventually yields an infinite series expression for x(t),
vO

x(t) « 2ji(‘*̂"'to) 3c(t-iS) (2,16,)
where equal tojzi(t-t̂ ) in equation (2.9)
and 94(t-q) B J2̂ ;.,(q-t̂ ) dq

%
The system variable vector x(t) has therefore been expressed 

as a function of the delayed system variables. The remaining problem 
however, is to derive a simple method of evaluating ^-(t-t )̂ for l>0,
A particular case of equation (2,12) is that in whichS« 0, i.e.

x(t) « (a + B) x(t)
which has a known solution (cf equations (2.5*) and (2,10))

x(t) = [l + (a+B)T + (A+B)̂ T^/21 + (AtB)̂ T^/): + ... ]x(t^) (2.17.)
where T « t-t • o

From equation (2,16) it is apparent that the termy^(t-t^) contains
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matrix B to the cumulative i’th power only# Since equation 
(2.17) holds for all finite matrices B, the infinite series in 
equation (2#17) can be arranged as a sum of groups of terms with 
a common cumulative power of B, the i ' th group of terms being 
equal to the matrix (t-t̂ )# Therefore

- I + AT + Â T̂ /21 + A^tV?1 + ... (2.18.)
^ l(t-to) =■ 0 + BT + (AB + BA)T^/21+(A^B+ABA+BA^)T^/)1 + ...

/ - 0 + 0 + B T̂^/2: + (ab^+bab+b^a)tV51 + ...
etc.

The j th group, where j denotes power of T, in the expression for 
will be denoted as F̂ j(T). From equations (2.17) it can 

be seen by inspection that F. .(t) consists of a summation of termsij
of general form

(a) AT/o X (term with common factor T3"^/(j-l)l and B to 
the cumulative i th power) 

or (b) BT/j X (term with common factor T3*^/(j-l)i and B to
the cumulative (i-l)th power)

In other words F. . can be formed from a summation of

(a) AT/j X Pij_i(T) 
and (b) BT/j X ^_^(t)

Expressed in mathematical terms, the iteration procedure for F̂  ̂

becomes
F^j(T) - [at F__^(T) + BT q_ijj|T)]/j (2.19)
where F (t) = I 00 '

and ĵjq(ï) = F_^ ̂ (T) « 0 for k > 0 and all 1.
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The validity of the above iterative equation was proved by straight- 
forŵ ard expansion and then comparison with the groups appearing in 
equations (2,18), The matrices ŷ (̂t-t̂ ) can now be easily calculated 

from expression 1 F (T ) .

A simple iterative procedure has thus been developed to calculate 
the matrices appearing in equation (2,16),

The infinite series solution of equation (2,12) expressed 
in equation (2,16) is the exact solution. Before a truncated form 

of the solution can be used as an approximation to the true solution, 
the infinite series must be proved convergent. Before considering 
the convergence of ÿ̂ (̂t-t̂ ) to a null matrix, one must first consider 
the convergence of F. .(t) with increasing j. Assume that F. _ . , (t)Ij X — — J.
converges with increasing j, so that for a sufficiently large j, j:̂ n, 
F. - ,(t) is approximately a null matrix. The iteration for F. .(t)

for j > n can then be simplified to
F^^(t) « AT F^ where j >n

CO p  oo . 1

Hence (Aïf Z. - [ Z  (AT)Vô’. j.]/?) (%-%):j
OO

[ 2  (AT)Vôî ] I'i j_i(T) ̂  (a-1): (2.21)<

where < means less than all the terms of

The infinite series in square brackets has already been proved to be 
convergent, thus left hand side of equation (2,2,l) converges to a 

limit subject to F._m ._m(T) converging. But iteration for F . (t)
oo

converges since ^^(t-t^) » F̂  .(T) which has already been proved
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convergent. By induction it can therefore be deduced that P.,(t)X J

is convergent for all finite matrices A and B and for all finite T* 
The equations (2,18) show that^when j^i and i>0, F..(t) = 0; thusX J
convergence of F ĵ(T) as j increases ensures the convergence of 
ĵ̂ (t-t̂ ) as i increases. Truncation of exact solution expressed 

in equation (2,l6) to obtain an approximate solution is therefore 

valid.

The class 2 difference-differential equation

x(t) = A x(t) + B x(t-S) + C x(t-&) (2.22)

where and £ are pure time delays,

will now be examined in the light of the results already obtained
and thence a solution for the general multiple state delay equation 

will be deduced.

Equation (2,22) has solution (cf equation (2,15)).

x(t) x(t^) +( <j> (t-q) B x(q-a) dq
^0

 ̂96 (t-q) C x(q-^ dq (2.23)
o

From equation (2.23) an expression for x(q-̂ ), where b' is some 
arbitrary delay, can be derived (cf equation 2,14)
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X(q-y) ( q - t g )  x ( t ^ - î f )  +  j  ( % - r ^  ( S  a c C r - ^ - ' » ' )  « V X
*̂0
Æ

+ C. ( r-£,- X\ (&.'

Since both x(r-S-2f) and x(r-i-^) have a similar form to x(q-l̂ ), 
equation (2,24) represents a general expression which could be 
successively substituted into equation (2,2)), The resulting 
infinite series can be represented as

00 €jO

%(t) - 2 1  ^  f'H ('t-to') (-t -VS - 4 £.') (2.25)
t"0 o

In the general case of multiple delays, the equation corresponding 
to equation (2,25) would contain r^ infinite summations, where r^ 
is the number of state delays present. To eliminate the duplex 
infinite summations, the assumption that all delays are an integer 

multiple of a basic delay is made. In the particular case under 
consideration, one assumes 4 • 2.§. This type of assumption is not 

as restrictive as it might at first appear, since in the multiple 
delay case not all the delays need be present; thus the assumption 
is equivalent to requiring that the physical delays are integer 

multiples of a basic delay which itself may be entirely fictitious.

With the assumption that e*2:S, an expression for x(q-S) can be found 
which is a function of x(t^-S), x(r-S) and x(r-2S), i.e. equation 
(2,2.4) with The successive substitution of this expression
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into equation (2,23) yields the expression for x(t)*

CO
x(t) » 21 (Ht- (2,26)

*.•0
where S (t-t ) is as before / o o

95 has form (

with eaohy^ either matrix B or G.

As in the class 1 system, the particular case of S % & « O was 
considered since exact solution was known to be

X (t) - [l + (A+B+C)T + (A+B+C)^T^2l + ... j x(t^) (2.28)

From detailed expansion of equation (2,26) it was noted that the 
expression for {̂ (̂■̂ “■̂q) contained matrix B to the cumulative k th 
power and matrix 0 to the cumulative 1 th power, for all non negative 

integer values of k and 1 where the relationship

i = k + 21 (2.29)

was satisfied. Since matrices B and C can have any value, it is 
possible to equate JlĴ (t-t̂ ) to the group of terms of equation (2,28) 

where the relationship of equation (2.29) holds. By a similar 
argument to that used to derive the, iteration procedure for calculating 

jé ^(t-tQ) for the class 1 equation, the iteration for class 2 systems can
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be proved to be
00

h  - L  ' (2.30)

where F̂ . = [aT F. + BT + CT j.iC^)] A

and F (t) - I, F̂ ^̂ (T) - F_ ĝ(T) - F_g^(T) = 0 for k > 0 and all t.

The validity of this iteration was proved by straightforward 
expansion. The series ĵ Ĉt-t̂ ) can also be shown to be convergent 
by the methods already illustrated.

By a close examination of the results expressed in equations 
(2.16), (2.19), (2,20), (2.26) and (2.30) one can deduce that the 
solution of the general homogeneous difference-differential equation

x(t) “ 2. î 3c(t̂ -î ) (2.51)
1*0

can be expressed as
00

x(t) - x(t^-iS) (2.32)
cO

where = Z

and j - l W V 3
$1=0

with F (t) - I and F, (t) » F , (t) - 0 for m > 0,00 ' ko -m, 1'
all 1, and all k except k « 0.

Having considered systems described by homogeneous
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difference-differential equations, the theory will now he developed 

to include systems with multiple delay inputs. Consider the system

&(t) « A x(t) + B x(t-S) + B m̂(t) (2.55)

The solution of this equation is (cf equation (2.13))
ft( Jx(t) »p(t-t^) x(t^) +\ ^ (t-q) B x(q-6) dq

A.
+f ^ (t-q) B^m(q) dq (2.54)

o

Using method of successive substitution as previously, equation 
(2.34) can be rewritten as the infinite series solution

« ^  
x(t) - x(t^-iS) + Z^i(t-tQ) (2.35)

t.*0

where Jîf̂ (t-t̂ ) is defined as before (cf equation 2.20)

^  (t-r) D^m(r-iS) dr,
*̂0
/t

and Xij(t-t^) ^(t-r) *i,j_i(z"tQ) dr

Since the expressions for j4̂ (t-t̂ ) is identical to those already

obtained, the only problem is the evaluation of <&̂ (̂t-tQ), From 

equation (2.35) it can be seen that BL^^t-t )̂ is related to 
^^(t-to) by equation

*ii(t^^o) “ f D^m(r-iS) dr (2.36)
■̂o
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By definition of a digital control system m(r) = m(t^) for
t^f^ r «2. t. On the other hand, variable ra(r-iS) will adopt
at least two values and therefore cannot be directly removed
from the integrand in equation (2.36). Figure (l) illustrates
the variation of m(r-i&). The integral expression can
nevertheless be split into two parts, giving

/ 1 ____
^ 11 “ l ° 5̂  i(t-r) D^dr T\+l) • (2.37)

t̂

where 'C*̂ = ^ integer part of (î /(t-t^)
and « i 5* - x •

Using equation (2.20), equation (2.37) can be rewritten as

Sii(t-t^) = [ Z  (F^j(T) ^ T - Fi j ( T-%) :̂ ( T- D̂ /j +1 ] m( t ^ - )
-J*®

X (T-«j)]l>o/d+l] “( V ’'i)

= 82̂ (5 )̂ m(t^- T.+l) + S^̂ (D^) ffl(t̂ -X.) (2.38)

By substituting expression for #_^(t-tQ) from equation (2,38) into 
equation (2.35) and collecting terms with common factor m(t^-iT) 
one obtains the expression

00 00
x(t) - Z  x(t^-iS) + m(tQ-iT) (2.39)

where is defined as before (cf equation (2.20))
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and G. (t-t ) « 7" BL.(D ) + SL , m(D ) with summation 10' ô  ^  Ij' 0  ̂ 2,j-l' o'
taken over all j where "U. (8) = IT starting with j = 0.

3

In the case where 5 is greater than T, the occasion will arise when
T . a iT and T. _ = (i+2)ï. In such cases G.(t-t ) is defined as J 0+1 ' ' lo' o'
a null matrix.

Note that since F^^(r) and jẑ (̂r) have already been proved convergent 

for any finite time interval r, the matrix Ĝ J t-t̂  ) will also be 

convergent#

By‘examination of the above results, it can be deduced 
that the solution of equation

&(t) “ A x(t) + B x(t-6) + B^m(t) + D^m(t-^) (2#40)

is x(t) = Z  x(t -̂iS) + Z

+ Z  (2.41)

where ÿü^^t-t^) are defined as before (cf equation (2,20) 
G^^(t-t^) are defined in equation (2.39)

Gii(t-to) « ^  “ 2̂ j-1^^1^ with summation
taken over all j where (5) = i starting withu
j = 1.

and 8 ĵ(B̂ ) and S2̂ (D̂ ) are defined in equation (2.38) 
with replacing B̂ .
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Equation (2.41) can be simplified by collecting terms with common 
factor u(t^*iT) resulting in expression

oO 04
x(t) - Z x ( t ^ - i S )  + Z  m(to-lT) (2.42)L/ 4*0 C“0
where G.(t-t ) = G. (t-t ) + G,,(t-t ) l' o 10 ' o ll' o'

Finally, it is now possible to deduce that the difference 
equation solution of general difference-differential equation 

described by equation (2,ll) is
OO ^

x(t) - x(t̂ -iS) + Z- "(tg-iT) (2.45)t*»■

OÛ

where (a) ^^(t-t^) = %

Z-(T) . i  F,_̂ ,j_i(T)/j
$4*0

, With F̂ g(T) - I, Fĵ (̂t) = (t) = 0 for
m > 0, all 1, and all k except k « 0.

n.
and (b) G^(t-t^) » Z  Gi^/t-t^)

9t*o

^ik ' Z- ■*■ 2̂,I
with summation taken over all j where 
■Û (S) « iT starting with j = k

oO

i
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j = o
%j(5) » (t-t̂ ) >t integer part of j5/(t-t^) 

crj - jS - Tj(S) and T » t-t̂

It can be inferred from the convergence analysis previously 
carried out that ÿ̂ (̂t-t̂ ) and G^(t-t̂ ) are convergent to null'matrices 

with increasing i. It is thus possible to obtain an approximate 
truncated solution of equation (2.45), namely,

x(t) “ 21 +2- ^i(^"^o) Q^t^-iT)
£. e O

According to the author^s definition of state given in sub-section 

(2.1.1.), the state of the system described by equation (2.1l) with 
solution described by equation (2.45) Is a knowledge of vectors 
x(t-iS) and u(t-iT) for i & 0. The state vector of general 
difference differential equation is thus an infinite vector for exact 
solution, but a finite vector for a truncated approximate solution. 

For the latter case, the resulting matrix state vector difference 

equation corresponding to equation (2.1l) can then be written as is 
indicated in figure (2).

After the author had completed this part of his research, 
a paper by Koepcke ( 2? ) was published, in which a similar problem 
to that solved in this sub-section was tackled, A combined s-plane
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z-plane method was used and a solution determined for the extremely 
restricted case of the delays being equal to multiples of the sampling 
interval. With this assumption, it was found that both methods 
yielded identical numerical results.

In conclusion, this sub-section contains the derivation

of the general difference-differential equation in the form of a

difference equation, which is required by the discrete dynamic'
programming optimisation technique. The only additional restriction

equation
imposed on the linear,time invariant coefficient difference-differential/ 
was that the delays appearing in that equation where multiples of some 
delay which may itself be fictitious. The matrix iterative equationsi
developed in this section are ideal for computer handling. An. algol 
program used to derive the various matrices found in the solution of 
equation (2,ll) is detailed in appendix (a)

2.1.4. - ADDITIVE NOISE DISTURBANCES

All physical systems operate in a noisy environment.
Nevertheless, for the most part, classical system design is carried 
out under the assumption that negligible random disturbances are 
present. In this thesis, the particular case of additive random 

noise introduced to an otherwise deterministic system will be 
considered. The introduction of stochastic processes raises the 
problem of whether the state of the system, previously defined for a

deterministic system, is applicable in the stochastic situation, since
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the future response of a stochastic system is generally dependent 
on the manner in which it reached its present condition* If the 
statistical characteristics of the random disturbances are known and 
are independent of the previous response of the system, the estimated 
response of the system at time t could be calculated from a knowledge 
of the.present condition of the system at time t̂  and the deterministic 
inputs to the system in interval t̂  to t̂ . Therefore the previous 
definition of state still holds for this subset of all stochastic 
processes* Such processes are commonly called Markov processes and 
these will be the only type of stochastic process investigated in this 
thesis*

2*2* - THE QUADRATIC SUMMATION CRITERION OPTIMAL DIGITAL CONTROL POLICY.

In this section the optimal digital control policy of the 
digitally controlled Markovian system described by the state vector 

equations

i = A x(.t) + D m(t) + u(t) (2.44)
where u(t) is an additive independent random vector, 

will be determined such that when it is applied to the system, it 
minimises the expected value of the performance criterion defined by 

equation

Jjj [x(o)l - 2 _  x(iT) + m'(lT) H m(iT)% T (2.45)
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where T is constant sampling period 
Q is state cost matrix 

and H is control cost matrix.

In order that the performance criterion, satisfies the convexity 
requirement for a unique minimum,thé matrices Q and H are restricted 
to being positive definite or semi-definite*

In Chapter 1 it was pointed out that several papers had been 
published on the solution of the problem posed above, the most notable 
being those of Tou (l9)> Gunckel and Franklin (l8) and Joseph (20), 

Nevertheless, the optimal control law of the above system will be 

determined below, using the methods proposed in these papers because
(a) the performance criterion differs from those 

proposed in the beforementioned papers,
(b) the results differ from those obtained in references 

(19) and (20), even allowing for the different 
criterion used,

(0) the results will be shown to be a particular case of 
the results obtained with a more practically orientated 
performance criterion.than that expressed in equation

(2.45).

Before attempting to determine the optimal digital control law, some 
justification is put forward for the choice of the performance criterion
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structure. The criterion commonly used by several authors is

Jt„[x(0)] -ZCx'CiT) Q x(iT) + m'(r^T) 5 m(iTl T)]t (2.46)
i-l

which does not include any term which is a function of the initial 
state x(0). The authors, in using such a criterion, argue that 
since there is no control over the initial state, there is no need 
to include it in the performance criterion, which is a reasonable 
argument. At the same time, it is'often suggested that equation

(2.46) is the discrete analogue of the continuous criterion
/NT

Jgg. [x(0) { [x'(t) Q.x(t) + m'(t) H m(t)] dt (2.47)
/ o

Considering the limit of the continuous integral to be an infinite 

summation, it is obvious that equation (2,45) aud not equation
(2.46) is the discrete analogue of (2,47)# It was for this reason 
that the performance criterion of equation (2,45) was initially 
adopted as the performance criterion.

It should be noted that the multiplicative sampling period 
term appearing in equation (2,45) is of no real significance, since 
minimising the funtional [x(0).] also minimises 1/t times that 

functional. Although equation (2,45) is the discrete analogue 
of equation (2,47), the two values of the performance index need 
bear little relationship to one another when they are calculated 
for a specific optimal digital control, except in the case as T-> 0 
when the two indices will tend to the same value. (28),
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Finally, it was stated that the expected value of the 
performance index will be minimised# It has become accepted 
practice to use the expected value approach when dealing with 
stochastic systems (2$), In the particular problem to be solved, 
the expectation is made with respect to the independent random 
noise input u(t)#

2.2.1. - DERIVATION OF OPTIMAL CONTROL POLICY

In Chapter 1 the fundamental concept of dynamic 
programming, namely the Principle of Optimality, was introduced.
The latter will now be used in the solution of the optimisation 
problem. No additional restrictions will be made concerning the 

independent noise disturbance's characteristics until it is found 
necessary to do so*

From the results of subsection (2.1.5*), the equation (2.44) has 
a difference equation solution

x(5+i T) =^(t) x(jT) + G(t) m(jT) + r(jT) (2.48)

where Ĉ (t) and G(t) are defined in equation (2.10)

r(jT) = j with = T.
H

In the following analysis, it is assumed that the sampling period 
is constant and thus, for simplicity, the argument T will not be 
included where it is unnecessary to an understanding of the mathematics.
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The optimal performance index is defined as

f^ [x(0)% = Min E  f  Z  x ' ( i )  %  % ( i )  + m'(i) H m ( i ) |  (2.49)
® m(i) L h; ' J
where the N stage minimisation is made with respect
to the choice of m(i) for all 0 ̂  i ̂  N.

The principle of optimality states, (cf equation (l,l)),

- Min E [x''(j )q x(j) + m'(j) H m(j) +
 ̂ m(j) ,T

(̂i5+i)3 j (2.50)

where the one stage minimisation is made with respect 
to m(j) and f̂  ̂[,x(N+l)| « 0.

Let it now he assumed that f̂ _j [%(j)j can be expressed as

fjj_jCx(j)I = x'(j) P(M?j) x(j) + z(u-j) (2.51)

where P(N-j) is a symmetric, as yet, arbitrary matrix, 
and z(N-j) is an unknown scalar quantity.

Substituting the corresponding form of the above expression into 

equation (2.50) yields

I % x(j) + m'(j) H m(j)m(j) * \
+ E [x'(j+l) P(N-3+1) x(j+l) + z(N-JTim2.52)

remembering that the expectation is taken with respect to the independent
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noise input u(t).
\

Substituting the expression for x(j+l) from equation (2,48) into 
equation (2.52) and assuming that the independent noise disturbance 
u(t) has zero mean, one obtains expression

J  “ I x'(j) [a + ^ P(N-j+i)/] x(j) 
+2x̂ (j)[ji'p(K-J+i) g] m(j)

+ m'(j) [h + G'p(N-j+i) G] m(j)
+ E [/(j) P(U-j+l)r(j)] + z(B-j) ] (2.55)

Since the minimisation of equation (2.55) is only over one stage, 
equating the first variation of f̂ ^̂ j”x(j)l with respect of m(j) 

to zero will yield the optimal choice of m(j) i.e.

2 x'(j) çi P(H-j+i)G + 2m'(j) [h+g'p(N-oTi) g} <= 0.

Hence

m(j) = - [h+g'p (N-5+1)g]"^ g'p(H-J+1)^ x(j) (2.54a)
= B(N-Pâ) x(j) (2.54b)

assuming that the inverse exists.

The control vector m(j) has been found to be a function of the 
arbitrary matrix P(N-J+i) under the assumption expressed in equation 

(2.51), To prove that the structure of the latter is valid,and,as
a result,obtain an iterative or difference equation in P(H-j) and

2(N-j),the expression for m(j) will be-back-substituted into equation
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(2,55), giving

. x'(j) [q + ^ p(ïï-JTi) f  ■

+ J P̂(N-J+1)g[H+G'P(N-o“ i)g ] G'p(N-3Tl)/j x(j)
+ E^r'Cj) P(îï-jTi) r(j)] + Z(N-fri) (2.55)

On the other hand, by assumption,

f^_j[x(j)l = x'(j) P(M-j) x(j) + Z(N-j) ' (2.56)

The equation (2.55) and (2.56) are of identical form, thus structure 
of the assumed expression for f^_j[x(j)] is valid. This is not to 
say that the assumed structure is the only possible valid one. As 

it so happens, the control input expressed in equation (2,54) is in 
fact the optimal input, but the mathematical rigour of the digital 
optimisation technique concerning this point is not as complete as it 
might be. It is not intended to analyse this problem, but the 
appreciation that such a problem exists assists in the understanding 
of developments of the basic optimisation technique in Chapter 5*

Returning to the main theme of this section, since equations'(2.55) 
and (2.56) hold for all values of x(j), theequivalent parts of these 
equations can be equated, giving

P(N-j) % +^P(B-J+1) ̂
+^p(h-3+1)g [h+g'p(n-o+1)g]“  ̂g'’p(n-3+ï) ̂  (2.57)

end Z(M-j) = E[r'(ô) P(N-j+î) r(j)] + z(rr-j+i) (2.58)
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The determination of the initial conditions and the relationship 
between the various variables used in the above analysis and the 
forward time axis are clarified by an examination of Figure (j)#
The optimisation interval is O^t^HT, so that the last control 
vector to be applied to the system would be m(N)* Consider 
equation (2.50) with j « K, i.e.

£ [x (k )] » Min E [x '(h ) Q, x (n ) + m'(N) H m(N)j m(K)
since f_^ [x(M+l)] = 0 by definition.

Since both matrices Q and H are positive definite or semi-défini te 
minimisation will be achieved by letting m(N) be a null vector. 

Therefore

fg[x(N)] = x'(E) Q(N) x(H)
a x (̂IT) P(0) x(n ) (by assumption)

The initial conditions for the difference equations (2.57) and (2.53) 
are therefore P(0) = Q and z(0) = 0,

Figure ($) shows that P(E-j ) is calculated in reverse time, thus 
only when P(N) has been calculated from equation (2.57) with initial 
conditions P(0) #= Q can the first control variable m(0)febe calculated,

2.2.2. - CHARACTERISTICS OF OPTIML SYSTEM

Firstly, it is noted that the optimal control policy is



— 42 —

DVHRtAïC S'fSiTEnCONTROL. STATE. STRSAMI

SftnPUEOPTVtApiU TtVAiASFoRtA Hcut»

OUTPUT.
TP.AHSFOR.nl, >

FIGURE 4 OPTIMAL FEEDBACK SYSTEM.
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independent of the statistics of the random noise disturbance when 
the latter is restricted to having a zero mean.

It is seen from equation (2.54) that the control input at 
time t = jT is a linear time varying function of the state variables 
of the system at the same time. The resultant system, as indicated 
in Figure (4) is in the form of a feedback system with, in general, a 
non-dynamic loop emanating from each state variable and terminating at 
each control input point. The useful practical characteristics of 

well designed feedback systems are well known. It would therefore 
be hoped that the optimally controlled system, which would result from 
the implementation of the optimal control policy, would have these 
desirable properties. Such aspects of optimal digital design are 
discussed in detail in Chapters 4 and 5# For obvious reasons the 

matrix B(H-j+l) appearing in equation (2.54%) is called the optimal 
feedback coefficient matrix. Since the latter is time varying, all 
the values of P(H-j) for i ̂  j < N would have to be stored to allow the 
calculation of m(i) for 0 < i < This storage requirement, an
inherent property of the dynamic programming approach, is a severe 

limitation to the usefulness of the optimal digital control policy 
calculated above. If it is assumed that the difference equation in 
p(n-j) ie. equation (2*57), is stable, then, as N-j becomes large, 
p(K-j) would tend to a constant matrix. For practical purposes let 

the difference between successive values of P(N-j) be less than some
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specified tolerance for j > n̂ . If matrix was then used to
calculate m(j) for 0 - j ̂  n^ and the resulting controlled system was 
stable, with x(i) approximating to a null vector for i% n̂ , then the 
control input for m(j) for j > n^ would be zero. The optimal feedback 

coefficient matrix is therefore time invariant if the optimisation 
interval FT, in the definition of the performance criterion, is 
greater than (n^+ Ug)?. If the upper limit on the optimisation 
interval was infinite, then the feedback matrix would always be time 
invariant.

2.3, - GENERALISATIOK OF OPTIMISATION PROCEDURE.

In this section two particular problems are solved and thence 

a generalised optimisation procedure is developed, which is applicable 

to a large class of linear systems. The details of the calculations 

are given in appendix (b).

2.3.1. - STOCHASTIC SYSTEM WITH NOH-ZERQ MEAR NOISE DISTURBANCE

The system under consideration is described by equation

&(t) « A x(t) + B m(t) + u(t) (2,59)
where u(t) is independent noise disturbance input 
with non-zero mean.

By splitting u(t) into a zero mean random noise part and a mean part,
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it is possible to rewrite equation (2*59) iu form

&(t) » A x(t) + B m(t) + K u^(t) + Ugft)

where UgCt) is zero mean disturbance matrix
u^(t) is vector of mean values of random disturbances, 

and K is a suitable matrix.

The above equation also represents a system with zero mean disturbance 

inputs and a deterministic time varying disturbance input vector 

u^(t). All the remarks of this section are thus applicable to such 

a system.

Assuming that the performance criterion is as defined in equation (2.45) 
the results of this optimisation problem were found to be (of appendix's).

Control Policy:
m(j) - - [h (5) + g'p(H-J+1)g ] X

|G'p(E-j+i)y(x(j) + [G'p(lI-J+i) + G'v(H-5Ti)]r^(j)^ (2.60)
/

i.e. feedback from both state variables x(j) and discrete

variables r (̂j) corresponding to u^(j) (cf appendix b).

Performance Index:

P(N-j)x(j) + 2x'' (j) 7(N-j) r (̂j)
+ (j) a(N-j) r(j) +'Z(N-j)



-  4^ ■”

where the matrices P(N-j), V(N-j) and R(N-j) and scalar z(H-j) 
are determined from difference equations

p(N-j) = Q +fJp(isr-55

- jÉ>'p(N-5+ï) gP+G^P(N-5+Î)gV^ G^P(K-5+Î) <j> (2.61)
V(N-j) - -}ip(N-5+i)G[H+G'‘p(K-5+ï)Gl"^ fG'p(N-J+ï)+G'V(N-i+ï)]

}4'v(lJ-J+i)+/p(N-j+i) (2.62)
B(N-j) - 2v(rr-J^) + r(n-J^) + p(n-5+î) - , • (2.65)

[G''p(N-j+î)+G\(N-5+î)l[H+G'p(N-J+î)G]"^[G'p(H-Jâ)+G' v(H-Jri.)] 

Z(K-j) = B [xg^j) P(H-3+Î) rgfj)!* Z(N-3+l) (2.64)
with initial conditions P(o) = Q, and V(o) =* R(0) =% null matrix 
and z(0) « 0.

The assumption necessarily made to obtain a solution was that the vector 

u^(j) was constant over interval O^t^NT, which is the'case if the 

statistics are stationary.

In sub-section (2.1.2.) the augmented state vector was
introduced. Using the augmented state formulation of the above
problem it will be shown that the two methods give identical results.

The same terminology is used as in the above calculation and u^(t) is
assumed constant over the full optimisation interval.
•

Consider the augmented state vector |[x(t) i*u_(t)*̂  with the correspondingt X
matrix dynamic equation

-* I- *1 r* T V
(2.65)%(t)l “ x(t) •f D u(t) +

.■ÿt')] 0 I 0 * i(t) .°'j I ° .



- 47 "

which has solution

x(j+l) 35 x(j) + ■ G 'm(t) +

,u^(ô+l).
1

L 0 /1 J .û (j). .0 , . 0 .

But

_
where is matrix I <h (j+lT - q)K dqJjQi r

/j+lT _  
r^(j) = j <j> (j+lT - q)K n̂ (q) dq

“ oC n^(jT) under assumption of constant n̂ (t).

Thus to give uniform results, let augmented state vector [x(j)'r^(j)]^ 
he considered. The difference equation description of system in terms 
of this state vector is

"x(3+l) m xU) ' + G m(t) +
- -
r_2(t)

.r̂ (ô+l). '.oil. .X]̂ (j). .0 . . 0 .

(2.66)

The corresponding performance criterion is

® '̂ ■'0 1*0 I -  ----  ̂ -
( k  (i)Jlo ' 0

x(i) + m'(i) H m(i)C (2.67)

A system with same form of state difference equations and performance 
criterion has already been solved in sub-section (2.2.1.) with results 

given in equations (2.5l), (2.54&), (2.57) and (2.58), By direct 
substitution of corresponding matrices, it is found that
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Control Policy:

m(j) - [H(j) + G'p(m-j+l)GÏ"l X •
[G'p(N-j+l) ̂  I Ĝ pCN-J+I) + G'v(lT-3+l)]rx(d)

irjj)

Performance Index:

3-j x(j) St x(j)
*
p(H-n ; v(N-j)

r
x(j) + Z(N-j) (2.69)

; . Xi(ô), y (B -j) l R (B -j).

(2.68)

where the matrices P(N-j)» V(H-j ) and R(lSr-j) and scalar 
z(N-j) are defined in equations (2.6l) - (2.64),

Due to the exact equivalence of the above relationships with those 
obtained by direct method of calculation, the augmented state 
formulation of the above problem has thus been shown to result in a 

solution which is identical to that obtained by the more direct 
method.

2.3.2. - THE DIFFERMCE CRITERION

In many circumstances one is interested in forcing one or 
more of the state variables of a system to follow a prescribed 
trajectory# Such systems are the more general case of the regulator 

problem studied in section (2.2).

Consider the system described by equation
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x(t) = A x(t) + B m(t) (2,70)

The deterministic system has been chosen for no other reason than 

to simplify the argument, but similar results also hold for 

stochastic systems.

Let a vector y(t), with same dimensions as x(t) be the vector of 
the desired value of Vector x(t). In the case calculated below 
it is assumed that the desired value of x(t) is constant during 
interval 0^ t^ NT, By a simple argument, but with a considerable 
increase in numerical complexity, the results of this section can 
be shown to hold when y(t) is the output vector of a dynamic system 
with state vector [y(t)j w(t)]^ and dynamic equation of form

[ÿ(t) I w(t)]̂  = A[y(t) I v(t)] + h(t)
-

where A is matrix of desired output system,
h(t) is a deterministic constant vector or an 
independent random noise input*

The quadratic summation performance index which defines the cost 

of deviation from the desired trajectory while at the same time 

putting a cost on the control is

JgCx(o)] = ̂  [x(i) - y(i)l Q [x(i) - y(i)l + m (i) H m(i) (2.71) 

The detailed solution of this problem is given in appendix (b), the
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important results are,

Control Policy:

m(j) » - [h + G'p(N-5+l)G]"^rG''p(K-5+i)j^x(j) + G'7(N-j+l)y(j)] (2.72)

i.e. feedback from the state variables and the desired 
trajectory variables.

Performance Index:

fjj_jtx(d)3 “ x'(j) ?(M-j)x(j) + 2x/(j) y(lT-j)y(j) + y^(j)R(N-j)y(iX2.73)

where matrices P(H-j), V(H-j) and R(H-j) are determined from 
difference equations,

p(H-j) » Q(j) +/p(N-j+l)

- j<'p(N-J+l)G£Ĥ :G'p(U-j+l)G]"̂  G^P(R-J+i) (2.74)

v(R-j) = -&■!- ÿip(N-j+i)G [a + g'p(r^J+1)g]"̂  G'y(rr-J+i)
+ v (h-57i) (2.75)

R(N-j) = Q + R(N-J+i)
- v '(N-J+1) g [h + G'P(H-J+i)Gl"^ G‘'v (N-JR) (2.76)

with initial conditions P(o) = Q, ̂ d V(0) = R(0) are null matrices.

As in sub-section (2.3.1), the problem will now be 
formulated in augmented state vector terminology. Consider the 
augmented state vector[x(t)I y(t)] . The equivalent dynamic
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equations and performance criterion are

x(t) A ' 0t x(t) + D

.y(t).1 .0 ! 0 . .y(t). .0 .
m(t>

*o
and JjjCx(o)} - 2 'x(t)'/"q 1 -q ’ x(t)

.y(t). rQ « .'y(t).

These augmented state vector equations are a particular case ofu
the system discussed in sub-section (2.2.1) tĥ s the solution can 

be found by substitution and some simple manipulation to be

Control Policy:

m ( j )  -  - [ h  +  G ' p ( N - j r i ) G p ^ C G ' p ( H - J + i ) ^ x ( j )  +  G ' v ( K - 5 + ï ) y ( j ) ]  ( 2 . 7 7 )
Performance Index;

■N-j x(j) 
. y(j)

x(j)
y(j)

p(R-j) ;v(R-j) 
U  (B-j)|R(M-j)j

x(j) 

.y(j).
(2.78)

where matrices P(U-j), V(H-j) and R(H-j) are defined in 

equations (2.74) • (2.76),

As in section (2.3.1) it has been shown that the augmented state 
vector formulation of the optimisation problem results in an 
identical solution to that obtained by a more direct method.
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2,3,3. - CQHCLÏÏSIOHS

In conclusion, the importance of the analysis discussed 
in section (2,3) is two fold. Firstly, by considering the results 
of section (2,2) with those of this section, it can be deduced 
that the direct approach optimisation techniques can be generalised 
by considering the completely augmented state variable formulation 
of the problem and the basic technique of section (2.2). This 
result is of major importance in the study of the optimisation 

problem, as it malœs it necessary to write only one computer 
optimisation program rather than a multitude of programs, which 
would be required by the direct unaugmented method. Secondly, 
and more importantly, the augmented E.D.R, matrix has been shov/n 
to be a matrix compounded of three different types of matrices, 

which have differing properties, resulting from the difference 

equations which define them. The blind use of the augmented 
state variable approach, without a detailed knowledge of the 
direct approach, would lead to a confused understanding of the 
stability properties of the augmented F.B.R, matrix difference 

equation, which will be discussed in detail in Chapter 3*

2.4 - SHORTCOMINGS OF THE QUADRATIC SIMMATIQH CRITERION

One of the objectives of the research reported in this 
thesis was to develop a practically useful optimal design
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procedure. In this respect the quadratic Buaunation criterion
oo

Jjj[x(o)X = 2  x'(i) % x(i) + m'(i) H m(i)
l«o

suffers from two severe limitations, which will he discussed 

below.

In order that the optimally controlled system be acceptable,
it must be stable when the optimal control policy is implemented#
As a result of this necessary property, the state vector in the

regulator problem will tend to a null vector with increasing time#

If the sampling period is chosen large enough, the state vector will
approximately be a null vector before the second sampling instant.
Only the first control input will be non-zero and the total performance
index will be made up of terms due to the initial state and/or the

initial control input, assuming that matrices Q and/or H are non-null.

It would thus appear that increasing the sampling period to a large
value would result in a possible decrease in the performance index,
which is indicative of an improvement in the system’s response. From
all the usual practical design considerations, this conclusion of

improved performance is fallacious. If the criterion were redefined
so as to include the sampling period as a multiplication term i.e.

«
ft x(i) + m'(i) H m(i)] T

then at least increasing the sampling period to large values would not
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reduce the value of the index, hut the possibility of no change in 

index still exists if

X (O) Q x(0) + m^(0) H m(0) « 0

There follows an illustrative example of a 3rd order deterministic 
system described by

X(t) rta

L

+ 'o *

XgCt) 0

J 1

m.(t)-0.5 1 0
0 - 2 . 1
0 0 - 1

The initial conditions are taken as-x^(O) » XgCo) = x^(0) » 1,

For a performance criterion of %  [%̂ (i) 1 x(i) + m^(i) H m(i)% , 
with H « 0 and 1, the variation of performance index with sampling 
period is shown in Figure (ga)* As the sampling period tends to 
zero, the value of the performance index in both cases tends to an 

infinite value. These results indicate a supposedly better or 
equally good system response for increasing values of sampling period 
over the entire range of sampling period#

Figure (5b) shows the variation of performance index multiplied by 

the sampling period against the sampling period. The line 00̂  
to which the plotted functions become asymptotic with increasing 
period is g(T) « Dĉ (O) I x(o)]̂ T. This alternative measure of the 
system's performance at least results in an indicated worsening of 
the system's response with increasing period#
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The designer of a digital control system has at some time 

to decide upon a value of sampling period, basing his choice upon 
the results of the analysis of the performance system with respect 
to changes in the latter. The results of the above example do 
not encourage the belief that the results obtained from analysing 
the optimal system, even with the criterion including the 
multiplicative sampling period, would be consistent with classical 
design procedures. The net result of above discussion is that 
the quadratic summation criterion is not a practically suitable 
measure of the system* s performance.

The second related objection to the quadratic summation 
criterion concerns one of the inherent disadvantages of digital 
control systems, namely, the frequent occurrence of ripple in the 
state variables during the sampling period. In the author’s 
experience, a particular type of intersample ripple has been found 

to occur in many cases where the optimal control policy has been 
calculated by the quadratic summation criterion. The state 
variables which appear in the expanded performance criterion are 
forced by the control input to achieve zero value at the sampling 
instants, but during the sampling interval large deviations occur.

The particular case where these deviations have a frequency of half 
the sampling frequency is the common underdamped oscillatory response* 
Such responses with large ripple content are not acceptable from the
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more classical design standards; thus it must be concluded once again 

that the quadratic summation criterion is not an acceptable measure of 
system performance. After the introduction of an improved performance 
criterion,a system, in which excessive intersample ripple occurs, will 
be discussed in detail.

2.5 - THE INTERSA>1PLS QUADRATIC SUMMATION CRITERION

The shortcomings of the quadratic summation criterion are due 
to the fundamental limitation of that criterion, which is that it is 
dependent on the response of the system at sampling instants only and 
not throu^out the sampling period* An alternative criterion, which 
overcomes this practical objection, has been developed and still allows 
the solution of the optimal digital control problem. This criterion 
has been designated the intersample quadratic summation criterion and 
is defined as

'̂N[x(0)] ( 'TCx'(k) Q x(k)3+ m^(jT) H m(jT) j (2.79)
^ t.**0 ' •

where k « jT + is
and n some prescribed integer quantity such that ns ̂  T with 

8 a time interval.

In the particular case when n « 0 the above criterion is in the form 
of a quadratic summation criterion.
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2.5.1, - DERIVATION OF OPTIMAL CONTROL POLICY 

Consider the system treated in section (2.2),

&(t) * A x(t) + D m(t) + n(t) (2*80)

The optimal control policy will now be evaluated, which minimises 

the expectation of the criterion defined in equation (2*79) using 
a similar method to that of section (2,2).

The general difference equation solution of equation (2.80) is
x(jT + is) =^(is) x(jT) + G(is) m(jT) + r(j,is) (2.8l)

where 0 ̂  is ̂  T
^(is) and G(is) are defined in equation (2,10) 

i jT+is
and r(j,is) « j (jT + is-q) n(q) dq.

/ jT
Using equation (2.8l) and assuming that the independent noise input 

has zero mean it can be shown that

J^)x(O)] « x'(jT) Q* x(jT) + 2 x'(jT) U m(jT)

+ m̂ (jT) H* m(jT) 4* e[ ^  r'(j,is) Q, r(j,is)j (2.82)

■¥rwhere Q, « (is) Q^(is)
i*o

E* = H + 7  c'fis) ft G(is)

U « 21 ft G(is).
I
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By Principle of Optimality, the multistage decision process can 
he written as

f„ . fx( jT)2 « Min E ) 7*x^(k) Q x(k) + m (iT) H m(iï)

, + [%(j+iT)i j (2.83)

where fx(N+lT)J « 0

and k • jT + is (cf equation 2,79)•

Let it he assumed that

f^_j[x(jT)] » x'(jT) P(N-j) x(jT) + z(H-j) (2.84)

Suhstituting expression for [ x ( f r o m  equation (2.84)
and thence expression for x(j+lT) from equation (2,8l), one obtains 
an expression for f^^jjx(jT)] in terms of x(jT) and m(jT), The 

first variation of :E"̂ ,j[x(jT)] can then be equated to zero, giving 
an optimal control policy of

m(jT) - -[h* + &'(%) P(N-j+l) G(t)1 X
£g '(t ) P(ïï-jHÏ)ÿ>(T) + tjQ x(j) (2.85)

Back-substituting this expression for m(jT) into the expanded 
version of equation (2,83) yields the difference equations governing 
the E,D,R, matrix P(N-j) and scalar z(N-j) as '
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P(N-j) - Q* +5̂ tï) P(N-j+l)ÿf(T)
P(N-j+l) G(T) + u ]£h* + G(ï)P(N-j+l) G(t)]"^X 

[g'(t) P(N-j+iyfr)(- U'J (2.86)

r* ^ Tand z(N-j) « E|^r^(j) P(N-J+1) r(j) + 2L r\j,l8) Q r(j,is)j +
Z(N-j+l) (2.87)

The initial conditions of the above difference equations can be 
obtained from equation (2,83) since

f [x (N)] = Minr21x^(NT + is) ft x (HT + is) + m''(m) H m(KT)'J 
m(K) t=o

Hence
p(0) = ft* - u [h*3"^ u '

A.

and Z(o) = E ^r^(j,is) Q r(j,is)
L= I

The structural properties of the equations (2,85) - (2,87) 
bear a strong relationship to those derived in solution with a quadratic 
summation criterion. The system designed by using the intersample 
criterion will therefore also have the properties noted in sub-section 
(2,2,2), in particular the state feedback, characteristics, A comparable 
generalised optimisation technique similar to that described in section 

(2,3) can also be shown to exist.

To illustrate the reduction in intersample ripple, which
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results from using the intersample criterion, a system will be 
discussed, which is particularly susceptible to intersample ripple 
when designed using the quadratic summation criterion. Consider the 
deterministic 2nd order system described by state equation

0 j m^(t)

± j t ) l  L 0 -2 J L %s(t) J I 1

Ihe system is to be forced in such a way that x^(t) follows a 
sinusoidal oscillation y(t) with period 8 secs, and amplitude unity. 

The initial conditions are x^(o) « x Ĉo) » -0.5 units and y « 1 unit. 
The two performance criterion chosen were

CO

(a) quadratic summation: x(o) = 2  jT) - y( jT)| ̂
J” ®

o o  I
and(b) intersample: %(0) ~2Z ̂ + 1^2) - y(jT + iT/2|j «0 1*0

i.e. deviation is costed at sampling instant and halfway 
through period.

Figures (6) and (7) show the optimal trajectories of x^(t) and y(t) 
and Figures (8) and (9) show the deviation of the actual from the 
desired trajectory for both criteria. The figures are reduced copies 
of the output of a computer program which was written to produce the 
results of the optimisation program in graphical form on a flexov/riter 
or line printer.
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The deviation in the system with criterion was found to be zero 
at the second and all subsequent sampling instants, i.e. the N stage 
decision process has degenerated into a single stage decision process. 
In conventional sampled-data theory, this is called a dead-beat 

response. The excessive inters ample ripple, common to such systems, 
has a period twice that of the sampling period. The reduction in
intersample ripple when the intersample criterion was used is clearly
seen from a comparison of Figures (8) and (9). It can therefore be 
concluded that even one of the simplest types of intersample criterion

has resulted in a system* s performance, which is more acceptable from
the point of view of conventional design criteria than that which 
resulted from using the quadratic summation criterion.

2.5.2. - THE GdÆDRATIO IÎ FTEGRAL ORITmiON.

Well established methods have been devised for the numerical 
determination of the definite integral

f g(a) da

Due to the fact that integration is essentially a smoothing process 
relatively simple methods give high accuracy results. A series of 
formulai which only require a knowledge of the value of g(a) at 
equidistant points over interval b to c, can be determined from the 
Lagrange interpolation formula (50). The mechanics of the process 

consist of approximating the function g(a) by a polynomial, which
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passes through the loiown values of g(a). Weddle’s rule defined 
below is such a formula

I g(a) da = $s/lO ( w^ 4- $ŵ  +  ŵ  +  6ŵ  + w^ + 5ŵ  + ŵ )
4* error term due to polynomial approximation.

• where c-b is divided into 6 equal sub-intervals of length s 
so that w\ « g(b 4- is).

Assuming that the sub-interval is small enough, the integration rule 

without the error term gives accurate results. V/here necessary, the 
interval c-b could be divided into groups of 6 equidistant ordinates 
and the complete integral calculated by summing the separate 
calculated values for each group.

Returning to the intersample criterion, it can be rearranged 

from form of equation (2.79) into

Jw %(0) % x(k) + m(jT) H m(jT) j (2.88)

where n^ « n/6

and k = jT + (l + i-l)s

If matrices Q and H are assumed to vary during period according to

Q = Q x 5 s / l O K q ^  and H « H h T  (2.89)
where Q and H are constant matrices
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and = 1 for r = 0, 2, 4

5 for r « 1, 5
6 for r = 5,

then, from Weddle's rule, equation (2,88) is an approximation to
the continuous integral

/MT _  , .
x(0) = I \x (t) Q, x(t) + m (t) H m(t)j dt

/ o
time dependent

The use of/cost matrices does not overcomplicate the digital

optimisation procedure, since one need only perform the corresponding
* *substitution of value of Q and ÏÏ in the evaluation of Q , tJ and H •

The inter sample criterion has therefore been shown to be equivalent
to the integral criterion for all values of period under the conditions
of equation (2,89), and assuming that the sub-interval s is small 

enough. The integral criterion is a type of criterion which gives 
logical results when the performance index is analysed for varying 
sampling period, since it is .a continuous measure of performance 
equally valid for all sampling periods, whereas the quadratic and 

intersample criterion are not.

Since performance criterion defined in equation (2,88) results 
in a reduction of intersample ripple and also gives logical sampling 
frequency analysis results, it is considered to be a more practical 
measure of the system's performance and, as such, will be used in 

the examples detailed in Chapter 6,
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CHAPTER 3 - COICPTJTATIOML CGHSIPERATIOHS

5.1. - MOTIVATION

Although a great deal of effort has gone into developing 
control calculation techniques for the solution of specific optimal 
control problems, concentrating mainly on systems of a continuous 
nature, little work has been published on the examination of the 
resulting optimal solutions. If the optimal control policies are 
to be implemented, it is vital that such an analysis should be 
carried out. The analytic and numerical properties of the iterative 
optimal procedures devised in the proceeding chapter will be discussed 
in this chapter,

Kalman in his paper (31) detailed a proof of the existence 
of the optimal solution for a linear deterministic state unaugmented 
system, and hence the convergence of the corresponding E,D,R, matrix 
iterative equation. The proof relied on the complete rather than 
the partial controllability property of the unaugmented system.
Certain aspects of the controllability property of a system will be 

discussed in section ($,2), The theoretical asymptotic properties 

of some extremely restricted scalar cases of the iterative matrix 
equations similar to those defined in section (2,2) were analysed 
by Adorno in paper (52), It is intended to provide a general 
proof of convergence for both state-unaugmented and augmented systems
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later in this chapter.

The author was unable to find any papers which discussed 
the numerical or computational aspects of calculating the optimal 
digital control policy from iterative matrix equations of any type 
of matrices similar to those detailed in Chapter 2, The reason 
for this is undoubtedly due to the fact that very few numerical 
examples have actually been calculated, even for the quadratic 
summation criterion. Those systems that have been examined have 
been of an extremely simple and well behaved type, i.e. asymptotically 
stable uncontrolled systems. The use of the quadratic inter sample 
criterion was found in many cases to increase the difficulties of . 
obtaining an accurate numerical solution; thus a thorough analysis 
of the computational aspects of the method of generating the optimal 

control policy was carried out, in an attempt to devise a more 

computationally accurate method,

5,2. - THE EXISTENCE OF AN OPTIMAL CONTROL POLICY

In this section the author has attempted to stipulate the 

conditions which, when obeyed, ensure the existence of a control 
policy. To do so, the system property of controllability is used.
The concept of controllability was first introduced by Kalman( 5I ) 
and has since been considerably elaborated upon in several papers. 
Those of particular note are reference ( 55 ) foẑ  continuous systems
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and reference ( 54 ) for sampled data systems. The definitions of 
controllability vary widely from paper to paper, so the author has 
defined a complete and a partial controllability property, which 
have particular reference to the optimisation problem under 

discussion in this thesis,

5,2,1, - THE CONTROLLABILITY PROPERTY

The most general and at the same time practical definition 
of a completely controllable system is a system in which one, some 
or all of the input variables stimulate all the modes of the .system. 
In an undisturbed optimal control problem, one is interested in 
whether or not it is possible to force all the state variables and 
control variables, which appear in the criterion, to zero. The 
requirements for an optimal system are thus less restrictive than 
those required for a completely controllable system. If a system 
is such that the control inputs can be chosen to force only some 
specified variables to zero, then the system is defined to be 
partially controllable. Since some of the modes of a system may 
be unaffected by the control inputs and yet, due to being inherently 

stable, the associated state variables tend to zero values, the 
partial controllability property will be seen to be of direct 
application in the analysis of the optimisation problem.

Consider the system described by the state difference equation
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x(j^ t ) = ^x(jT) + G m(ôT) (5.1)

where ̂  is of dimensions p * p '
and G is of dimensions p x c

By successive substitution, assuming initial condition x(o) and 

dropping argument T for simplicity,

x(n) = x(0) + C(n-l) (n-l) (5#2)

where C(n-l) is augmented matrix["^^"^G; Ĝj | Gj[
and|*(n-l) is augmented vector fm(0) ; m(l) j .... !m(n-l)][

Letting y(n).= x(n) • x(0), equation (5,2) becomes

C(n-l)|J (n-l) = y(n) (5.5)

For equation (5.5) to have any solution for ̂  (n-l), not necessarily 
unique, the scalar equations must be consistent, i.e, rank[c(n-l)} 
must equal rank ̂ C(n-l) I y(n)j, If rank [c(n-l)] equals p, which 
is the largest value possible for a matrix with dimensions p x (pc), 
then rank |c(n-l) I y(n)] will also have ranlc p. If, on the other 
hand, rank [c(n-l)] is less than p, then it is possible that rank 

[c(n-l) ; y(n)j will differ from ranlc [c(n-l)], A sufficient but 
not necessary condition for the equations to have any solution is 

therefore

Rank [c(n-l)] = p (5.4)
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As a result, a sufficient condition for the system to be completely 
controllable is expressed in equation (5*4)» where n is as. yet 
unspecified.

Since matrix G (n-l) has rank p, the augmented part cannot 
reduce or increase the rank; thus assuming equation (5*4) is true

Ranlc [[c(n+i)*3 « Ranlc [c(n)*] =» p for i 5: 0

j . r  'Due to Caley-Harailton theorem f> G can be expressed as a linear
Ir—1 fr—2combination of ̂  G, p G, ,,, and G where r ̂  p, the dimension 

of^, It is therefore only necessary to consider n = p, since 
n>p does not contribute any further information. The complete 
controllability condition, which is a sufficient but not necessary 
condition, then becomes

Rank [c(p-l)] « p

Returning to the digital optimal control problem, let it 
be assumed that only some of the state variables appear in the 
performance criterion, either directly or indirectly. If the 
control cost matrix is non null, all the state variables will appear 
indirectly in criterion in general, since the optimal control inputs 

are linear functions of all the state variables, except in extremely 
rare cases. Nevertheless, consider the case when the cost matrix 
is null and let the vector x(j) of dimension s^x 1, defined by
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x(p̂ x(j)
where M, is a suitable one to one transformation matrix,

1 . ,

be the vector of the variables in the criterion. From equation (5*l)

x(n) » x(0) + C(n-l)p (n-l)

Therefore M^C(n-l) p (n-l) « M^y(n) (5,6)

Let it how be assumed that the uncontrolled system equation has 
some stable modes, hence

^  a matrix with ŝ -Sg rows of zero elements
/f -*00
where n « r x p

The objective of the optimal control is to force the state variables
zero

x(n) to zero and therefore the matrix M^y(n) will contain s^-s^/rows 
as r - T h e  corresponding consistency condition for equation 

(5.6)to have any solution is

Ranlc [M^M^C(n-l)] = ŝ  (5*7)

where matrix Mg is a suitable one to one transformation 
such that MgM^y(n) is the non null vector of dimensions 
SgX 1 corresponding to the non null rows of as r-» «o,

Since ranlc [m^M^C(n-l)*] sS Min  ̂rank [Mg], rank[ M^], rank [ C(n-l)2 ̂  
and rank f = Sg and ranlc = ŝ , a necessary condition for
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equation (5#7) to be true is that rank |]c(n-l)l > Sg. This is not 
a sufficient condition and therefore one must be satisfied with 

condition expressed in equation (5.7)*

Once again, using the Caley-Hamilton ■ theorem, it can be deduced that 
one need only consider n » p due to linear dependence for n > p.
One can therefore conclude that a system has the property of partial 
controllability if the system obeys the sufficient condition

Rank [MgM^ C(p-l)1 = Sg, (5*8)

Although the conditions for complete and partial 

controllability are both only sufficient, it is evident that the 
condition for partial controllability is less restrictive than that 
for complete controllability. From a practical viewpoint, one 
would like to be a-yle to stimulate all the modes of the system by 
the chosen control inputs, since such a system is then easily controlled. 
In general, the majority of practical systems are completely controllable 

but, if an augmented state description of the system is considered due 
to uncontrollable disturbance or reference inputs, the augmented system 
will not be completely controllable.

5,2.2, - EXISTENCE AND CONVERGENCE THEOREM FOR 
UNAÏÏGMENTED STATE SYSTEMS.

Having digressed on the subject of partial controllability, 

this property will now be used to prove the existence of an optimal
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control policy and hence to prove the theoretical convergence of 

the iterative equations used in the calculation of the control 
policy* For the moment, consider an unaugmented system described 

by the difference state equation

x(j+l) =^x(j) + G m(j).

If this system obeys the partial controllability condition, then 

the performance index, f^_j(x(j)], will have an upper bound, which 
will be denoted b y j ) ,  m(j)], where m(j) is some possible 
non-optimal control input vector* Since the state and control 
cost matrices have been defined to be at least positive semi- 
definite, f _̂j (x(j)] will also have a lower limit of zero# Hence 

one has the inequality

■N-ji- J N-Ô

The existence of an optimal solution for a system which is partially 

controllable and has a performance criterion with positive definite 
or positive semi-definite cost matrices, has therefore been proved.

Consider an N and an N-l stage optimisation process with 
corresponding optimal control policies m(N-j) and m(N-l-j)* Let 
m(N-l -j) be the truncated control policy, made up from the optimal 
policy m(N-j). By the definition of optimality.
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and due to positive definite or semi-definite cost matrices

[x(j). mfÊPÏ-j)] &

Henoe fjj_̂ £x(j)].

By assumed form of Ê (j )î »

%'(j) [p(a-j) - P(N-J+i)l x(j) % 0

i.e. [,B(N-j) - P(H-j+l)|is positive semi-definite.

Matrix P(ïï-j) is therefore a member of a bounded increasing sequence 
of matrices, and it follows that the individual elements of the 
unaugmented B.D.H. matrix converge to "'respective ultimate values for 
a sufficiently large optimisation interval. Nevertheless, nothing 
can be said about the specific elemental convergence properties, even 
for the case where the cost matrices are positive definite.

The E.B.R. matrix iteration procedure used in the calculation of the 
optimal control policy for an unaugmented system has therefore been 
proved to be theoretically convergent.

It was noted in Chapter 2 that the optimal control policy 

and the matrix iterative equation in the E.D.R. matrix for a system 
with zero mean additive noise was independent of the noise
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characteristics. The existence of an optimal control policy and 
the convergence of the E.D.H. matrix will therefore follow from the 
proof for the deterministic system. The main difference between 
the stochastic and deterministic systems is that for the former 
systems the performance index does not have an upper limit due to 
the additional term z(N-j) that appears therein.

The difference equation governing z(3ST-j) was detailed in equation 

(2.87), which can be rearranged, into

z(N-j) - z(N-o+i) = E[r'(j) P(N-j+l) r(j)
+ Zlr''(j,is) Q r(j,is)

As P(N-j+l) converges to its ultimate steady state value, the left 
hand side of equation (5.9) tends to a limit; thus the rate of 
change of z(N-j) and hence the rate of change of the performance 
index tends to a constant non-zero value with increasing number of 
sampling intervals, as will be seen in the following example.

Consider a system described by the state equation

*x(t) K t -0.5 1 '
, ^

, 0 -1 _t L

1- '
0 m(t) + r , . *7 n(t)
,1, .0 .

where the covariance of the independent noise input n(t) 
2

is 0,0153 units and the mean value of n (t) is zero.

(5.9)

(of Appendix G),
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r  2The intersajnple criterion is equivalent to E l[3ĉ (t) +

Pigure (lO) shows the graph of the performance index for the noiseless 
and the noisy system# In the latter case, the actual value of the 
performance index is plotted rather than its expected value. Prom 
the three cases shown with different noise sequences, hut with the 
same prescribed characteristics, the rate of change of the mean or , 
expected value of the performance index approximates to the calculated 
value of the left hand side of equation ($.9), namely 4*94̂ *̂2 units^/ 
sampling period.

The effect of the independent additive noise with zero mean 
is therefore the introduction of an additional loss term in the 

performance index for eveiy sampling period, the loss term tending to 
a constant non-zero value with an increasing number of samples*

3*2*5. - CQMVERGENCE THEOHEH POE AÏÏGMMTED STATS SYSTEMS*

In the preceding section, the iterative equation for the 

unaugmented E.D.R* matrix was proved to be convergent. This convergent 

property will now be used in this section to prove the stability of the 
additional difference equations found in augmented state systems. Hence 
it follows that an optimal control policy can be calculated; thus, there 
is no necessity to prove an existence theorem for augmented systems*

Rather than deal with the specific types of augmented state system
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and the resulting difference equationŝ  only the general structures 
of these equations need be considered, since it has been found that 
the difference equations have definite structures universal to all 
augmented systems* In Chapter 2 it was noted that the augmented 
state E.R.R. matrix was made up of several different matrices, each 
satisfying a particular type of difference equation. In particular, 

for a system with true state vector %(j) and additional state vector 

y(j), the performance index was found to be equal to

P(N-d) ; 7(M-j)f x(j) sa
r *1

%(j).
* J.

1

%(j)
.y(j).

The partitioned parts of the augmented E.D.R. matrix can be categorised 
by their relationship with respect to the state vectors %(j) and y(j)

as, -X

(a) Matrix P(H-j) which is only associated with the 
true state vector,

(b) î̂atrix V(H-j) which is associated with the true 

and the additional state vectors,
(c) Matrix r(H-j) which is only associated with the 

additional state vector.

These matrices will now be examined in detail, noting that variables 

}̂ (t), G(t), Q and ÏÏ refer to the unaugmented system, whereas 

quantities with bar above refer to completely augmented general system.
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p(g-j)
(

The matrix difference equation governing p(H-j) has the form 
indicated below, assuming an intersample criterion, ‘

P(N-j) = Q* -f P(H-J+1)^(t)
- f j i ' ( T )  p(w -3+i) g( t ) + tiX h*  + g'(t ) p (k- 5 ^ )  g( o; ) ]“  ̂ »

[g '(t ) P(5-J+ï)ÿ^(# u' ]

Only the partitioned parts of the system matrices and the performance 
cost matrices associated with the true state are used in this equation.
The latter is therefore ̂ identical to the difference equations, which 
would result if one considered the dynamics etc. associated with the 
true state to be a completely separate unaugmented system. It has 

already been proved that such a system results in a stable difference 
equation for P(N-j) subject to a partial controllability condition 
being obeyed. The partitioned part matrix P(lT-j) of the augmented 
system will also converge to a steady state value, subject to an 
identical partial controllability condition.

y t o l
The matrix equation governing V(N-j) has been found by examination to 
have the general structure (cf equations (2.62) (2.75))

V(N-j) = e3^[p(K-5+i),^(T), G(t ), Q*, H*]+9i'(r) + B'(îr-i+l)G(T)]*
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where is a non-linear function of the matrix arguments, 
and B(N-j+l) is the feedback coefficient matrix associated 

with the true state.

It is important to note the significance of matrix (t)+ B̂ (K"j-t'l)Ĝ (T)3 
which is the transpose of the unaugmented dynamic state transition 
matrix of the controlled system. It has already been proved that 
matrix P(K-j) converges; thus, the function g^ and 

will tend to their respective constant matrices andgiving

v(H-j) = +/Sv (h-o’T i ) (3,10)

This is a constant coefficient difference equation, whose stability
can be investigated by looking at the solution of the homogeneous0
part of equation (3*10), i#e,

V(N-d) (3.11)

In all practical cases of interest, the controlled system will be 

stable, i.e. eigenvalues of ^ + GB will be contained within the unit 

circle. This is the condition for the stability of equation (3.11),

The matrix V(H-j) has thus been proved to converge for a sufficiently 
large optimisation interval. The fact that one was unable to 
determine the properties of v(H-j ) when it was governed by a time 

varying coefficient difference equation does not alter the fact that
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the difference equation in V(lT-j) has been proved to be eventually 
stable.

The matrix difference equation governing R(N-j) has been found to 
comply with the general structure (cf equation (2,63))

R(N-j) - gg [p(N-J+i). V(N-5+1),^ (0?), G(T), T, S*] '
+ E(N-Jâ) (5.12)

Let it again be assumed that sufficient time has elapsed for 
P(H-5+Î) and V(N-5+l)to have attained their steady state values, 
then gg can be replaced b y R e a r r a n g i n g  equation (3# 12) gives

S(N-j) - r (K-J+1) .«Ig

The rate of change of E(R-j) thus tends to a constant limit with
increasing number of sampling instants. The optimal performance 
index has been shown to be

“ %'(j) P(K-j) %(j) + 2 x'(j) V(N-j) y(j)
+ y'(j) R(R-d) y(d)

As a result, only when (Xg is a null matrix will the performance index 
converge to a steady state value (assuming that l| y(j)llĵ  O). Otherwise 

it will adopt a constant rate of change with time for large values of time.
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The matrix ç( ̂  has been found to be directly related to the compatibility 
of the performance criterion and the systems dynamic equations. If the 
performance criterion is incompatible, it is found that matrix is 
non-null, whereas a compatible criterion gives a null matrix. To 
illustrate the relationship, three examples of systems with incompatible 
criteria are indicated below.

1* Consider the system represented by the diagram in Figure (ll*),oo
with intersample criterion equivalent to j[x̂ (t) + (x2(t)-r2)̂ ] dt, 
where r̂  is a constant reference input, whose value Xgft) is desired 
to achieve. Input r̂  has value 2 units and the initial conditions 
are x (̂0) « X2(0) » 1 unit.
The criterion is obviously incompatible with the system dynamics 
due to the presence of the integrator. Figure (ll) shows the 
resulting non-zero rate of change of index with large values of time.

2. Consider system represented by diagram in Figure (12) with
intersample criterion equivalent to J jj[x̂ (t) - r^)^ + (x2(t)-r2)^]dt 
where r^ and are the constant reference inputs equal to 2 units. 

The initial conditions are x^(0) « ^2^̂  ̂“  ̂tinit. The criterion 
is incompatible, since one is attempting to control two states 
with only one input. The index has again a non-zerp,,.constant 
gradient at large values of time, as can be seen in Figure (l2).

In this case R(îf-j) - R(N-ô+1) 0.04 -0.08
-0.08 0.16
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with non-zero elements associated with r̂  and r̂ # If the 
situation should arise where,, for example, only those 
elements associated with r^ were non-zero, then this would 
indicate that x^(t) achieves the value r̂ , whereas Xg(t) 
does not achieve value r̂ .

5* Consider system of example (2) with no reference inputs, 
hut with a constant deterministic disturbance input h of
unit value, added at state x*, and a criterion
" " o p  x^(t) + X p ( t )  dt.

2The criterion is incompatible, since to bring x.(t) to zero,
(
the variable XgCt) must necessarily have a value equal and 
opposite to the disturbance input'. The non-zero constant 
gradient of the performance index with large values of period 

is shown in Figure (l$).

In practice only compatible criteria are of interest, but with 
complex systems the compatibility or otherwise of the criteria is not 
always as obvious as in the above examples. It is therefore of 

interest to note that the digital optimal control technique devised in 

Chapter 2 inherently carries out a compatibility check, the result of 
which can easily be determined by examining the elements of matrix 
R(W-j).
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The augmented E#D*R« matrix as a whole has thus been shown 
in this section to converge to a steady state limit, if the 
unaugmented system is partially controllable, the controlled system 
is stable and the performance criterion is compatible with the 
augmented state dynamic equations.

5,2.4. - A hOlVER BOTJm ON THE NUMBER 0? CONTROL 
VARIABLES.

If a system is not completely or partially controllable,
then it would be advantageous to the designer to know whether he
has sufficient control inputs. In this section, the dynamic

the determination of 
equations of the system are manipulated into a form which enables/
the minimum number of control variables which are necessary,
although not sufficient, to ensure that the system obeys the

' ' ' ;
controllability conditions.

Consider a system described by the differential equation,

&(t) « A x(t) + D m(t) (5,15)

It is well known that a non-singular transformation matrix S can 

be found (55)» such that

—1, „ /, \ _-l.&(t) - S" AS x(t) + 8~ D m(t)

-1where S AS is the jordon cannonic form of matrix A,
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Consequently, the difference equation form of equation (5,15)

x(j+l) « <f> x(j) + G m(t)

can be transformed into,

x(j+l) - s"̂  x(d) + s"̂  G m(j)

where - exp (ST)

The matrix 8̂ , the discrete jordon cannonic form of matrix

A, has
(a) Diagonal elements equal to & ' , where Xj, are 

eigenvalues of matrix A, the number of diagonal 
elements with same value corresponding to the 
total multiplicity of the eigenvalue,

(b) A jordon block associated with each eigenvalue 

of multiplicity greater than unity having non
zero elements above the diagonal, yet within the 
block,

(c) Zero elements elsewhere.

As in the continuous jordon cannonic form, it is possible to have 
more than one block associated with the same eigenvalue.

To recapitulate, the property of complete controllability 
requires that all the modes of the system be stimulated by the control
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inputs# Hence, for a system described in discrete jordon cannonic 

form to be completely controllable,

(a) The rows of the matrix corresponding 

to each distinct (i.e. unit multiplicity) 
eigenvalue must ha^e at least one non-zero 
element, otherwise the associated mode is 
uncontrollable#

(b) The rows of the matrix s7^G corresponding
I i

to each of the last rows of the discrete 
jordon blocks associated with the same 
eigenvalue must be linearly independent 
of each other, otherwise the associated 
modes cannot be controlled independently.

?or requirement (b) to hold, it is necessary, although not sufficient, 

that there be at least as many control inputs as there are discrete 
jordon cannonic blocks associated with the same eigenvalue# A lower 
limit on the number of control inputs has thus been determined.

The above analysis is dependent on one's ability to calculate 

the transformation matrix Ŝ , which is not the simplest of tasks for 
systems of modest order with multiple eigenvalues# The complete 
rather than the partial controllability condition was considered above 
since, althoug^h the property of partial controllability was all that
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was required to prove the existence of the optimal solution, it is 
important in practical systems to be able to control all the modes 

of the unaugmented system*

’5.5# - THE AUGMENTED E.D.R* MATRIX ITERATION,

To implement the digital optimisation technique devised 
in Chapter 2, one is required to calculate the completely augmented 
E.D.R* matrix. If one is solely interested in the case where the 
optimisation interval is infinite, then this only necessitates the 

calculation of the steady state value of the E.D.R. matrix. Three 

possible methods come to mind*

(1) One could obtain the general solution of the time 
varying coefficient non-linear difference matrix 

equation governing the E.D.R. matrix and thence 
evaluate the solution at a sufficiently large H-j.
The non-linear and time varying characteristics 
of this problem prohibit any attempt at such a 
solution, so one must resort to more direct methods.

(2) At sufficiently large N-j, it has been proved that 
the E.D.R. matrix converges to a constant matrix. 
Considering P(N-j) and P(R-j+l) as equal to the 
converged value of the matrix, the difference 
equation reduces to a non-linear algebraic matrix
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equation. The author spent considerable time using 
ordinary and generalised matrix theory in an attempt 
to obtain a matrix solution, but no satisfactory results 
were obtained. A brute force method of determination 
would be the elemental expansion of the algebraic non
linear equations and their solution for the -J-n(n+l) 
unknown elements of the symmetric E.D.R. matrix. For 
systems of even modest order, this approach is formidable.

(5) The final and, it is concluded, only feasible method is 

the successive substitution in the difference matrix 
equations to evaluate the sequence of matrices P(R-j) 
until the latter converges to some steady state value.

5.5.1. - CQMPIJTATIOML INSTABILITY.

Computational instability is said to exist in a numerical 

calculation, when the round off errors become predominant over the 
true result with repeated substitutions in an iterative equation.
It was found that in many cases of interest, any attempt to calculate 
the steady state value of the E.D.R. matrix by successive substitution 
was balked by computational instability. Even on a floating-point 
computer with twelve significant figures, the round off errors in 
many cases could accumulate after only a few iterations to a value 
several thousand per cent greater than the true solution. The 
computational stability of the iteration will now be examined and
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a computationally stable iteration procedure developed*

Before proceeding with the analysis, it is useful to derive 
a relationship between the eigenvectors of the continuous system 
transition matrix A and its discrete couterpart

The Caley-Hamilton theory states that fa matrix, A, satisfies its 
own characteristic equation, i.e.

+o(̂ Â "̂  + ô Â "̂  + .... + o( I - 0 (3.14)

where are the polynomial coefficients

and p is the order of matrix A.

Equation (5.I4) can be rearranged into,

A^ (̂A- Agi) (a- XjI) .... (a- A pl)]| + #*#
+/^i[(A- X^I) (A- 7 1̂) ....(A-Xi_^l) (A- ....(A-y)l

+ .... + Æ  [(A-A^I) (A- Xgl) .... (A-Xp.j^l)l (3.15)

w h e r e a r e  suitable scalar coefficients 
and \. are the eigenvalues of matrix A*

Post-multiplying both sides of equation (5.I5) by ŷ , the eigenvector 

of one obtains

*. # • C\i "XUi^
K

- \i
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rSimilarly it could be proved that A y^ = ŷ . The matrix
ji5(t) is a polynomial in A; thus the eigenvectors of A are also 
the eigenvectors of independent of the sampling period*

Returning to the main theme of this section, let ideal 
matrix P(ïï-J+i) be contaminated with an additive error matrix 
£ (R-j+l), hence one can rewrite the difference equation (2*86) 
in P(R-j) as

P(K-j) +£(K-j) - Q* +/[p(N-jïï) +£(H-jri)3 j|E>

- |,i'[p(ïï-i+i) +£(K-J+1)]g + »
+ G'[p(N-j+i) +£.(N-ftl)]G^"^ X

[ G f p ( l î - j r i )  +  i ( N - 5 Ï Î ) ]  +  U ' }  ( 3 . 1 5 )
where notation is that of equation (2*82) with all 
the matrices referring to the completely augmented 
system.

Assuming C (N-j+1) ̂  P(N-j+I) and ignoring terras with second order 
terms in the error matrix, the equation (5.15) can be rewritten as

£ (N-J) ^

- [|4'p(H-J+i)G + ïï][h* + g 'p(n-3+1)g1"Hg*£(n-5+î ) ji]
- r/'£(N-5+l)G][H* + G'p(N-jri)G]"̂ £G'P(H-fri)yf+ 9']

(5,16)
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Pre and post multiplying equation (5,16) by y^ and y, where y is 

the eigenvector of any eigenvector X  of matrix (T),

^(N-j) =» X^ ̂  (H-j+l)
-  2 X V f p ( N - 5 + i )  +  È  Q £ l( is) X ( i s ) A ( T ) ]  x*• l»o
[h* + g'p(Iî-J+Î)g]"̂  G'6(N-j+i)y 

where ŷ £(N-â)y =^(N-3). (3.17)

To determine the exact stability conditions governing equation
(5,17) would, if possible, be a difficult task. Since the objective 
of this analysis is to develop a computationally stable iteration, a 
good approximation to the stability condition would be just as useful.

If the last term of equation (5.1?) is assumed to be zero, then the 
resulting equation will be stable, if and only if |X| < I . Since 

equation (5*17) holds for all the eigenvalues of yi(T), an approximate 

computational stability condition for complete equation (5*17) is 
that all the eigenvalues of ĵ (t) lie within the unit circle in the 
z-plane, i.e. that the uncontrolled system is stable.

Numerical experience indicated that this approximate stability 

condition was reasonable, since computational stability was only, 
but not always, found in uncontrolled unstable systems. A combination 
of computational experience and analytic calculation therefore leads 
to the conclusion that if the uncontrolled system is unstable, there 
is more likelihood of computational instability oocuring in the E.D.R. 

iteration.
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5,5.2, - PROGRESSIVE COMPUTATIONAL STABILITY.

If one were to assume some discrete state feedback for an 
otherwise uncontrolled unstable system, so that the resulting system 
was stable, and thence calculate the optimal state feedback, the 
optimal state feedback arrangement for the original unstable system 

could be found by simply adding the assumed and the calculated feedback 
coefficients. Since a stable system was used in the optimisation 
calculations, the chances of computational instability would be 
greatly reduced. All optimally controlled systems of practical 

importance must be stable ; thus, if the assumed state feedback matrix 
was determined by making progressively better estimates of the overall 
optimal feedback matrix, one would eventually have a stable system 
in the optimisation calculations. The author has called this method 
of determining the E.D.R, matrix sequence and the optimal control 
policy, the progressive stability method. The details of the latter 
are given below.

Consider a system described by equation (2,60) and intersample 
criterion defined in equation (2,79)*

Assuming that r approximations to the steady state value of the 

feedback coefficient matrix have been made, the non-optimal state 
feedback is defined by



m
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(j) » + Bg + ... + x(j) » B x(j) (3.18)

Let m(j) denote the optimal control input calculated by the digital 
optimal control technique. The modified systems dynamic state 
difference equation is then represented by

x(j+lT) -[çt(T) + G(T)B]x(jT) + G(t) m(jT)
■ f(t)x (jT) + G(t) m(jT) _ (3.19)

The performance index also is modified and becomes

fjj_j[x(j)] - E^I'^Dt'(k) Q x(k)3 + [m(jT) + m(jTj]E^(jT)+m(jT)3j

where notation is that of equation (2.79)*

Substituting for m(j) from equation (5.18),

fir_j[x(3)l“ E x(jT) + 2 x(dT) V* m(jT)
+ m'(j) H* m(j){ . (5.20)

where « 21 $  (ie) Q ̂ (fs) +B HB
1*0

H** - a + Z  g '(xs) Q G(is) 

and U = 21 $ (is) Q G(is)+B ÏÏ

The structure of state equations (5.19) and (2.8I) and the performance 
index equations (5*20) and (2.82) are identical, thus the difference 
equations for P(N-j) and z(lT-j) could be obtained by the substitution of



100 -

$ (t) for
** #
Q for Q
** *H for ÏÏ

and D for U

in equations (2,66) and (2,87) respectively. By expanding these 
equations in terms of the original variables jp (T), Q , H and U, 
and then performing some elementary matrix manipulations, it can* 
be shown that the sequence of E,I),R, matrices calculated by the 
progressive stability technique is identical to the sequence that 
would be ideally generated by direct method, if there was no 
computational instability. In other words, the sequence of 
matrices P(N-j) including the initial condition matrix is 
independent of the estimated value of the feedback coefficient 

matrix, provided the resulting system is computationally stable.

The overall optimal control policy could therefore either be 
calculated by the addition of the estimated and calculated modified 
optimal feedback coefficients or from (cf equation(2,85))•

B(N-fn) - -[h* + g ' (T )  P(N-o> 1 ) G(t )1"^ *
[ g '(t ) P(N-5+1)}6(t ) + u ' l

Details of the algol procedure used to determine the optimal 

control policy by the progressive stability method are given in 

Appendix (d). The author has used this procedure in many extremely
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computationally unstable systems, and in no case did the iteration 

fail to eventually converge to the true optimal solution#

5*5*5. - TEST FOR OPTIMALITY.

Since the non-linear equation governing the error matrix 
(cf equation (5*16)) has time dependent coefficients, in the form 
of matrix P(N-J+Î), it is possible that the error matrix may build 
up over part of the optimisation interval, but not diverge 
excessively# This could result in undetected errors in the E,D*R, 
matrix, and therefore a test for optimality is required.

Due to the mechanics of the solution of the digital optimisation 
problem, the substitution of the calculated values of P(N-j) and 
m(j) into the equation defining the first variation of the performance 
index with respect to the control input, will always give a null vector, 
even when the calculated values of P(N-j) are in error. The only sure 

method of confirming optimality is therefore to perturb the elements 
of the feedback coefficient matrix about the calculated value and 
determine the resulting performance index. If the latter is greater 
than the calculated optimal index for small perturbations, the 
calculated optimal control policy is truly optimal.
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5.4. - PERFORMANCE INDEX INSTABILITY •

In section (5.2) the sufficient conditions for complete 
controllability were found by considering the discrete version of 
the system's matrix dynamic equation. This condition is therefore 
a function of the sampling period, with the result that the complete 

controllability condition could be violated for some periods, whereas 
it could hold for others. Since the complete controllability * 
conditions are only sufficient, their violation does not necessarily 
mean that an optimal control policy does not exist. Nevertheless, 
one could suspect that if the condition was a good approximation to 
the necessary condition, the performance index would change rapidly 
in the vicinity of the sampling periods for which the condition was 
violated. Such a behaviour of the performance index has been called 
index instability, A particularly interesting situation arises when 
one is attempting to control a system described by either differential 
or difference equations and the system has at least one pair of complex 

roots.

5.4.1. - INSTABILITY SAMPLING PERIOD

In subsection (5.2.4.) & continuous system was considered in 

its transformed discrete jordon cannonic form. For a system with one 

control variable, consider the last row of two jordon blocks, associated 
with eigenvaluesand of the continuous system's equation, are
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Xjj.(i+l) =■ %^(i) + êjj m(i) (3.2l)

%^(i+l) = % (̂i) + m(i) (5.22)

where and ^  are assumed non-zero#
Pre-multiplying equation (5*2l) and equation (5*22) by 'ĝ and 
respectively and subtracting gives

Xjj;(i+1) - %  Xĵ (i+l) - 6  ̂ e^®x^(i) . (5.25)

Let
and » g W  + i

where zeal quantities
and j « (-1)2

Assuming that o(-̂ = oĈ , one can rewrite equation (5.25) as

y(i+l) - 4/^ [g^ X)̂ (i) - ijj x^(l)e^^l

where y(i+l) = x^(l+l) - ^  %^(i+l)

If “ 2hw for h = 0, 1, 2 .... then

y(i+l) - e“fc’’̂ ■*■ y(i) (3.24)

Equation (5*24) indicates that the value of and cannot be 
controlled independently and thus the system is uncontrollable in 
the complete sense#
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The assumptions made concerning the eigenvalues were

M \ )  = Re(A^) ' (3.25)
and flm(Xĵ ) - Im(X^)] T - 2hit h = 0, 1, 2 ... (5.26)

where Re and Im refer to Real and Imaginary parts 
respectively.

These are approximately the conditions which Kalman stated, without 

proof in paper (35)» must he violated to ensure that the complete 
controllability conditions derived for continuously controlled systems 
automatically hold for its discrete formulation with sampling period T#
The difference between equations (3,25) and (3,26) and those of Kalman 

is that in the latter h is not permitted to have a zero value. If h « 0, 

then either T - 0 and/or [̂ lm(X̂ ) - Im(X-j_) J « 0 for conditions expressed 
in equation (3*26) to hold. When T = 0, there can be no control input, 
since G(t) = 0; thus system is uncontrollable in both complete and 
practical sense. It should be noted that making T » 0 is not equivalent 
to a continuous input, but making T « t, for 0 and £ —► 0, is the 
limiting case of the digitally controlled system. Nevertheless, as 
T 0, the system will tend to become uncontrollable, according to the 
sufficient conditions derived; thus, unless the controllability conditions 
are poor approximations to the necessary conditions, one would expect 
large deviations in the index as T 0, Numerical experience and 
intuition would lead one to conclude that as T 0, the performance of 
the system would improve with a corresponding reduction in performance
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index and therefore the controllability conditions must be poor 

approximations to the necessary conditions as T-^0#

Returning to the conditions of equations (3*25) and (3,26), 

there are only two cases likely to occur#

■ (a) Real equal eigenvalues with separate jordon 
blocks —  Since [im(Aî ) - Im(\^)] « 0, the 

equations (3*25) and (3,26) will hold for 
all T, The system is therefore uncontrollable 
(of sub-section (3*24), condition (a) for 
uncontrollability),

(b) Complex pair of eigenvalues **
Since such eigenvalues are very common in 

systems, the following results are of 

considerable importance. For a complex 
pair with natural frequency w , the 
uncontrollability dr index instability 
period T^ is given by equation (3,26), i,e,

Tg » hTt/w^ » hT^/2 for h « 1, 2,

where T^ is the natural period.

It is current design practice to sample at a 
period smaller than T̂ , if the complex roots 

are the predominant roots. Nevertheless, as
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is shown in following example, the side effect 
of an increased performance index also extends*
to periods c o n s i d e r a b l y  less than the critical 

period. Finally, if the system had several 
pairs of complex roots, then there may be several 
sets of periodic index instability critical 
periods.

The above analysis was carried out under the initial assumptions, 
that there was only one control input variable and and are 
.non-zero. When there are more than one control variable, then 
equations (3,25) and (3*26) must hold, and the rows of cannonical 
input matrix, corresponding to last rows of the jordon blocks 

associated with eigenvalues and X̂ , must also be linearly 
dependent for uncontrollability and, hence, index instability 
to occur (cf subsection 3*2,4,), Hence, a method of overcoming 
the index instability problem would be to increase the number of 
independent control inputs to at least the calculated lower bound 

value. It should be remembered that, as was noted in sub-section 
(3,2.4*), such a move does not necessarily result in a controllable 
system, but with a suitable choice of the systems input matrix 
controllability can be achieved.

Finally, it should be noted that the index instability is
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not inevidence in all systems with complex poles. In some cases,
notably stable uncontrolled systems, the performance index is not

’

adversely affected in the vicinity of the theoretical instability 
period or multiples thereof. In such cases, the sufficient 
conditions for controllability are not good approximations to the 
undetermined necessary conditions for controllability,

3.4.2, - CONTROLLABILITY CHARACTERISTIC NIMBER.

The problem of index instability highlights the desirability 
of calculating whether a system obeys the controllability condition 
or not. The rank of the condition matrix C(p-l) can be calculatedourv
in several ways, the most common being to form^eohlon matrix from 

the original matrix, and thence the rank is equal to the number of 
rows which contain at least one non-zero element. Unfortunately, 
the accuracy of such a method becomes questionable when the matrix 
tends to having linearly dependent columns.

It would be more suitable and informative to quantitatively 
represent the quality of the controllability of a system by a scalar 
quantity rather than the boolean rank condition.

Consider the controllability condition

Ranlî [c(p-l)] ■ p

where matrix C(p-l) is rectangular matrix of dimensions p x q.
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But Rank [c(p-l)] “ Rank [o(p"l) C^(p-l)1

where dimension of C(p-l) o'(p-l) is p x'p, i,e, square.

Since the matrix is square, its rank can be determined by evaluating 
its determinant, which is zero if the rank is less than the order of 
the matrix. The evaluation of the determinant by standard procedures 

also becomes inaccurate when the matrix tends to having linearlŷ  
dependent columns. The inaccuracy results from subtracting two 
almost equal numbers, the resulting number having an excessively large 
round-off error. When the latter number is used in further 
calculations, the error builds up with the associated reduction in 
accuracy, A second drawback of the direct determinant approach to 

controllability determination is that one arrives at a single number, 

upon which one Diust base a decision upon the quality of the linear 

dependence of the rows.

To overcome the inaccuracies and to provide some quantitative insight, 
the author has written a short but involved program, which evaluates 
the determinant of any square matrix by the fundamental expansion of 
the cofactors (cf Appendix d ). In this program, the determinant 
calculation was performed in such a way that no numbers of opposite 
sign were added together and no numbers of equal sign were subtracted 
from each other. The result of the calculation is two numbers which 

represent the positive and negative part of the determinant, the latter

being the sum of these two parts. The quality of the linear



-  109 -

dependence of the rows of the matrix can be gauged by examining by
how much the two parts differ from each other in absolute value,
compared to the sum of their absolute values# For complete 
dependence, the positive and negative parts would have equal 
absolute value#

Let c< and be the positive and negative parts respectively, then 
I c(p-l) c'(p-l)t “ oC-y3 and the characteristic controllability 
number = * The characteristic number has a maximum value
of unity and a minimum value of zero, the smaller the number the more 
dependent are the rows of the matrix. The number is indeterminant
when = 0, but in this case the determinant is zero anyway#

There are two drawbacks to the above method# Firstly, 
the calculation time can become excessive for systems of large order, 
since the number of multiplicative and additive operations is a 
function of the factorial of the order of the matrix# Secondly, 

the controllability conditions are only sufficient, thus the results 

so obtained must be viewed with caution#

3.4.5. - HKAMFIE

Consider a system described by the matrix state differential
equation
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\(t) ■ ""0.5 1 0

*2(t) 0 0 1
ijCt) —1 —2 0

x^(t) + " 0"
XgCt) 0

1

*l(t)

Since the results of this example are to be reused in Chapter
the performance criterion chosen was the quadratic summation criterion

oo

- 2 1  + %2(j) + X;(j)A mO
(it should be noted that similar results also hold for the intersample 

criterion).
'4"

The uncontrolled continuous system is unstable with eigenvalues

2 » 1.820408^0 . 1 i j 1.510449io + 0 

and Xj “ -8,640816^q-1,

From the analysis of sub-section (3,4#l), the instability period has 

value

Tg « = 2,0799iq + 0,

Index instability is therefore likely to, and in fact does, occur at 
all positive integer multiples of this period, as can be seen in 
Figure (I4), which is the graph of index against sampling period for 
initial conditions x^(0) » Xg(o) « x^(0) » 1 unit. Although the 
values of index at multiples of the index instability period were 

excessively large, they were in fact finite quantitieŝ %îÿfAn optimal
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control policy was calculable, even althou^ the complete controllability 
condition was violated, which indicates the sufficiency rather than the 
necessity of the controllability condition# The finite nature of the 

performance criterion can be seen by examining Figure (15)» which is 
the locus of the complex pair of roots of the controlled system. The 
third root is zero for all sampling periods, which is later proved in 

Chapter 5 to be case for all single control input systems# The 
controlled system is therefore stable for all sampling periods except 
for the trivial value T = 0; thus the performance index is always 
finite#

The inverse of the controllability characteristic number is plotted 
against the sampling period in Figure (l6)# Due to the sufficiency 
of the condition, one cannot expect an exact correspondence between 
the performance index curve of Figure (I4) and Figure (I6)#
Nevertheless, it can be seen that there is reasonable agreement in 
the shape of the curves in the vicinity of the instability periods#
Figure (16) shows that as T-^0, the quality of controllability 
deteriorates as was discussed in sub-section ($#4#l)*

The lower bound on the control inputs is two at the instability periods 
and one at the other periods. Increasing the number of̂ ilîiiependent 
control inputs to two, such that the system is described by state 
equation
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'0.5 1 0
0 0 1
•1 -2 0

X^(t) + 0 o"

Xg(t) 0 1

J ^1 0_

m̂ (t)

will therefore result in an optimal system, which does not exhibit 
index instability. This can be seen from Figure (17)» which is the 
graph of the performance index against sampling period. The 
appearance of divergence at high values of sampling period is due to 
the effect of sampling at a frequency approaching one of the 
uncontrolled system’s natural frequencies. This phenomenon will be 
considered in detail in Chapter 5# The natural frequency, in the 
particular case above, is the natural frequency of the complex 
eigenvalues.
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CHAPTER 4 - SENSITIVITY OF OPTIMAL 'DIGITAL SYSTEMS

4.1. - THE SENSITIVITY PROBLEM <

The optimal control policy has been derived under the basic 
assumption that one has a complete and accurate knowledge of the 
dynamic equations governing the system. In reality, the designer 
is rarely, if ever, in this ideal position, since only approximate 
values of the system’s parameters are usually available. In most 
physical systems, the parameters also change due to ageing, 
variations in working conditions etc. The designer must therefore 

produce a controlled system, whose response is insensitive to 
variations in system parameters, and thus compensate for his lack of 
information. The situation also arises, in which the designer wishes 
to design one controller, which is to be used with several systems 

with slightly different parameter values. Here again the controller 
must be designed to reduce the effect of different parameter values (56),

One of the properties of a well designed feedback system is 
the reduced sensitivity of the overall response due to changes in system 
parameters (15), (57)# Since the implementation of the optimal digital 
control policy for linear systems results in an optimal feedback 
configuration, it would be hoped that the optimal system would be 
insensitive to parameter variations. Kalman, in his paper (58) on the 
inverse optimisation problem for continuous systems, proved that the

absolute value of the return difference of classical control theory is
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always less than unity for an optimal linear state feedback system.
This means that sensitivity of the system to parameter perturbations 
in the open loop configuration is always reduced by the addition of 
the state feedback loops. Similar results can also be shown to hold 
for optimal digital systems. The degree of insensitivity is not 
specifically defined, and therefore it would be better to design the 
optimal system, subject to the constraint that the resulting system 
has minimum sensitivity with respect to the parameter variations.
This chapter is devoted to the attempted solution of this problem.
In particular, the sensitivity of the optimal system with respect 

to variations in the coefficients of the state equations and the 
feedback coefficients will be examined.

4.2 - LARGE FERTDRBATIQIT SENSITIVITY ITOCTIQNS

Before the sensitivity of a system’s response can be examined, 
it must be defined. Since the optimality of the system’s response is 
determined by the performance criterion, it seems only logical to 
consider the variations in the performance criterion due to variations 

in parameters of the system, as a measure of sensitivity. (4l),(39),(40)* 
One of the assets of such a measure is that it is a scalar quantity.

The terminology used in this chapter concerning the performance 
index varies slightly from that previously used, so it is explained below.

(l) The performance index ?jm (â ), a^^ is the index
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which results when the optimal feedback 
coefficient calculated for a system with 
system parameters â  ̂is used in conjunction 
with a system with parameters a..u

(2) The performance index F[m(b̂ ), a^] is the 
index which results when control feedback 
coefficient matrix with parameters b. is

*

used in conjunction with a system with 
parameters *

4.2.1, - ABSOLUTE Aim RELATIVE SENSITIVITY FUNCTIONS

The first sensitivity function to be considered is the 
absolute sensitivity function which, as the name suggests, is a 
measure of the absolute deviation of the performance of the perturbed 
system away from its optimal value calculated for the unperturbed system 
(59)« In mathematical terms it is

A graphical illustration of this sensitivity function is given in 
Figure (l8a), where the performance index is assumed, for simplicity 

of argument, to be a function of a scalar control quantity m with 
m » m(a^) being the optimal value of this control quantity for a 
system with parameters â . The curves for three sets of system 
parameters â , â  and are shown.
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Assuming parameter values â  and represent perturbed values of 
the ideal parameter value â , the sensitivity functions are

A?ab8 - /&-

As can be seen from Figure (l8a), it is possible for the absolute 
sensitivity function to be negative. , This indicates that an alteration 
in the parameter values causes a reduction in the performance index and, 
consequently, a better system's response. Ideally, one would like to 
design a system such that any parameter perturbation would result in an 
increase in the performance index, when compared with the optimal 
performance index. It is assumed henceforth that the parameter values 
â  have been chosen due to their having some significant value, e.g. 
centre of the range in which parameter values are known to lie.

Figure (l8b) shows the situation where the sensitivity functions 
are zero in both oases of parameter deviations. Assuming â  is fixed, 
designing a system so as to minimise the absolute sensitivity function 
would result in a system which is independent of any considerations about 

the optimal performance index, which could be achieved by using the 
optimal control policy of the perturbed system. As a means of overcoming 
this shortcoming of the absolute sensitivity function, a second sensitivity 
function is introduced. It is called the relative sensitivity function, 
as it is a measure of the performance of the perturbed system relative to

the optimal performance that could be achieved, using the optimal control
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policy for the perturbed system. In mathematical terms it is

Figure (l$a) is a graphical illustration of the relative sensitivity 
function. The control quantities m(a^) and m(ag) are the optimal 
control scalar quantities associated with the systems with perturbed 
parameters â  and respectively.

Assuming that are the unperturbed parameters, the sensitivity 
functions are

6 ?rel - 

& Frei = X - *<2

Since ? &(a), a] is always less than ]?{m(a ), a] by the definition of
optimality, the relative sensitivity function is always non-negative.

Figure (l9b) shows the ideal case where the sensitivity functions are 
both zero for perturbed values and â . This figure illustrates 
the shortcoming of a design procedure, which attempts to develop a 
system with minimal relative sensitivity. Uo consideration is given 
to the absolute value of the optimal performance index of the perturbed 
system relative to that of the unperturbed system. A measure of this 
deviation has already been defined as the absolute sensitivity function. 
Although neither sensitivity function is ideal from the design point of

view, a combination of both would result in a reasonable design, since
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the shortcomings of one are compensated by the other sensitivity 
function. Since the two functions are inter-related, it is necessary 

to minimise both functions simultaneously, rather than design a system 
which minimises one, then redesign to minimise the other.

4.2.2. - TBE CONTROLLER SENSITIVJTT FUÎ̂ CTION

The ideal coefficient feedback matrix will be, accurately known 
in practice, but parameter variations will occur when the controller is 
implemented. The corresponding controller sensitivity function has 
been defined as the difference between the performance index of the 
system with a perturbed feedback coefficient matrix and the optimal 
index for the unperturbed system, i.e.

where b̂  are the optimal coefficients for system with 
parameters â .

Due to the definition of optimality, the controller sensitivity function 
will always be greater than or equal to zero.

4.5 - SMALL PERTURBATION SMSITIVITY FDKCTIQNS

Having developed some useful sensitivity functions for large 
parameter perturbations, one is faced with use of these functions in 
the design problem. The method of attackadopted was to consider the
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corresponding sensitivity functions for infinitely small perturbations
of the parameters and use these to impose sensitivity constraints on
the optimal solution. This type of approach is not uncommon in
traditional control theory, since it usually allows a general analytic
solution to a problem, for which no general large perturbation solution
can easily be implemented or derived.

♦

4.5.1. - MINIMAL ABSOLUTE SMSITIVITY.

Assuming the state equation coefficients, i.e. elements of 
matrices A and D, are perturbed by an infinitely small quantity S â , 
the corresponding absolute sensitivity function can be redefined as

+Sa] - p[m(â ), aj (4.I)

Expanding p[m(a ), â  +Saj in a Taylor series truncated at the 
second term, equation (4.I) becomes

SFabs = a]/-ôa^ a*®ao
<5 (4.2)

where represents the elements of the vector of all the 
perturbed variables.

In matrix notation equation (4.2) can be written 

Sî’abe -')F(m(a^), a] /"ha a
a a a0

It is required to design a system in which is a minimum, which

is equivalent to making *̂ F[m(â ), aj /3 a a minimum. In particular
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consider a digital control system

x(t) « A x(t) + D m(t) ’ ' (4*3)

which has to he controlled in such a way as to minimise the quadratic 
summation criterion

a] - %  m(a^)]

“ %  %'(j) Q %(j) + m'(j) H m(j) (4.4)

But %F[m(a ), a] /<>a = 2 j),m(a )3/3 x( j) ^ 3x( j ) /'be.
t»o

By definition_

j[x(ô), m(a^)] = x'(j) Q x(j) + m'(j) H m(j)

“ x'(j)[Q + B'(N-j) H B(N-j)] x(j) 

where b(N-J) is the coefficient feedback matrix.

Hence 'dj[x(j), m(a^)] /3x(j) = [zx^(j)Q + 2x'(j) B^(N-j)HB(N-j)]
a—a a®a0 o

where defining a « â  means that x(j) is the state 
trajectory* with parameters â .

Let 3x(j)/3a be denoted by y(j) and let it be assumed for the moment 

that the dynamic equations governing the trajectory of y( j) can be 
determined. Then
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'ôp [x(j), m(a )] /2x(ô) ZlCsx'Cj) Q y(j)

+ 2x‘'(j) b''(K-ô)H B(N7ô) y(j) ] (4.5)

Optimal control requires the minimisation of equation (4*4)$whereas 
minimal absolute sensitivity required the minimisation of equation

(4.5), The similarity of the structures of the equations (4*4) &nd
(4.5) suggests the use of the function 2F|x(j), m(a^)l/^x(j) as a 
constraint on the system's response by including it in the performance 
criterion. The drawback, which balks the analysis, is that the 
coefficient feedback matrix B(N-̂ ) is not known at the outset of the 
calculation, and thus is not a permissible variable in the criterion.
If the perturbed system is considered to have an open loop structure, 
with the control input that of the unperturbed system, the coefficient 
feedback matrix would not appear in equation (4.5). One is essentially 
considering an open loop rather than a closed loop or feedback system. 
Since the optimal closed loop system has been shown (58) to be less 
sensitive than the open loop structure, a design method based on the 
open loop configuration should also give satisfactory results for the 
actual closed loop system. 'Note that if the control cost matrix is 
zero, there is no problem, since B(N-j) does not appear in equation

(4.5).

Under the assumption of open loop control
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F m(a^)] /Sx(j) I « 2x'(j)Q y(j)
I a=*a -tx o a=a

A combined performance criterion is then
r4

I'lfx(d). y(j), ®(%)] - Z. x'(c)Q x(j) + m(j)

+ 2w^x (3)q y(j)

where ŵ  is a weighting constant.

(4.6)

This criterion is sign indefinite, due to term 2w^x'(j)Q y(j); thus 
the optimisation methods already discussed are not applicable# To
ensure at least sign semi-definiteness, a further term Wgy'Cd)^ y(j) 
is required to be added. The variable y(j) was defined as the rate 
of change of the trajectory with the perturbed parameters, and 
therefore represents a measure of system sensitivity, which has been 
called the state sensitivity function. The inclusion of y(j) in the 
performance criterion in a suitably weighted quadratic form is 

therefore mathematically and practically justified.

Using the augmented state vector j[x(j) j y(j)3 the final combined 
performance criterion becomes

m x(j)
,/

Q *1% 'x(j).
1 WgQ.

Fg [x(j), y(j),

where w^ and w^ are the weighting factors for the 

absolute and state sensitivity functions#

(4.7)
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The remaining problem is the development of the dynamic 

equations governing y(t), Expressing equation (4#3) in partial
derivative form, since %(j) is a function of the perturbed parameter

values, and the independent time variable t, one obtains

3x(a,t) /^t = A(a) x(a,t) + h(a) m(t) (4*8)

But ^  v.vL-V̂ l

a ^ C ̂  ̂̂ ^ X, Cowj’tb
Qx. 'b Ov.

where it has been assumed that m(t) is the optimal 
open loop input of unperturbed system.

Therefore
3y(t)/dt A(a )y(t) +3jA(a)x(%,t) + D(a)m(t)]/3a

a=ao
(4.9)

a«=âo
where stipulation that a « determines that the equation 

describes the dynamics of y(t) for the unperturbed system.

Initially, the rate of change of x(0) with respect to the perturbed 
parameters, i.e. y(o), will be zero, since the initial condition of 
the state is independent of the perturbed parameters. The dynamic 
equations governing y(t) have thus been completely defined. Using
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the augmented state vector j^x(t) j y(t) J the dynamic equations became

D m(t) (4'10)i(t) A(â ) 1 0 x(t)

: A(â ).

wheretx(a^) x(t) +y^(a )̂ m(t) = ^|A(a)x(%t)+D(a)m(t)]/Z)a
a=a

Using the augmented state equation (4.IO) and the performance criterion 
of equation (4*7), the resulting optimally controlled system will*have 
its sensitivity to parameter variations constrained in the absolute 
and state sensitivity senses.

The formulation of the performance criterion with sensitivity 
constraints for the intersample criterion can most easily be dealt with 
by considering the equivalent continuous integral criterion. The 
results exactly correspond to those for the quadratic summation criterion.

In this sub-section, by making some reasonable assumptions, a 

procedure has been developed, which,when implemented, results in an 
optimal system, whose combined absolute and state sensitivity is minimised. 
The introduction of the additional state vector iy(j) and the need for 
its value to be known at each sampling instant to implement the constrained 
system’s control policy, are inherent disadvantages of the above design 
procedure. From the augmented state dynamic equations it can be seen 
that the state vector x(j) is completely uncoupled from the state vector 
y(j), if the control input is independent of y(j). In Chapter 5$ & method
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of determining a control input subject to such an independence constraint 

will be illustrated. The net result would therefore be a design 

procedure, which allows one to determine a sub-optimal control policy 
for the unaugmented system, the sub-optimal system being less sensitive 
to parameter variations than the optimal system.

The above technique for including a sensitivity constraint, 

with or without the independence constraint, did not prove to be as 
useful in optimal system's design as had been originally hoped for. 
Although, by a suitable weighting of the sensitivity segments of the 
performance index, it was always possible to reduce the sensitivity 
of the optimal system to parameter variations, a very frequently 
occurring side effect detracted from the method's practical usefulness. 
For systems which did exhibit sensitivity to system parameters, the 
performance index, which resulted from using the sensitivity constrained 
criterion, was found, in all the cases analysed by the author, to be 
considerably greater than the unconstrained index plus the deviation 
due to the parameter variations. Hence, from a practical point of 
view, the optimal sensitive system is better than the optimal sensitivity 
constrained system. If the independence constraint is also imposed, 
there will be a further increase in the constrained performance index, 
since the sensitivity and independence constrained system is sub-optimal 
compared to the purely sensitivity constrained system. This further 
increase in performance index, discussed more fully in Chapter 5#
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completely outweighs the benefit of the reduced sensitivity and complexity 
of the system.

The author examined many optimal systems and found that in 

the range of sampling period in which they were likely to be used
h(of Chapter 5) the optimal systems were comparative insensitive to 

variations of the order of IOp/j in the systems parameters, A typical 
value of the absolute sensitivity functions was 0.1^ of the optimal 
unconstrained performance index. To, in fact, obtain system which 
were sensitive, such as the example at the end of this chapter, the 

author had to go outwith the range of likely sampling periods. Before 
drawing any conclusions, the two other proposed sensitivity functions 
will be examined,

4,5.2, - MINIMAL BELATIVE SENSITIVITY

If one assumes infinitesimally small parameter variations, 
the definition of the relative sensitivity function becomes

^rel “ ^&>(%)» % +  & aJ - Ap(%+^%)> (%+ (4.11)

Expanding PGn(a^), % +  ̂ ^̂ 3 sus a Taylor series in p|m(a^+^^), (a^+^a )̂]
truncated at the third term, one obtains

L j ’̂m(a^y3m(a.)
Sm(a^)Sm(a.) . (4*12)

a«a + 5 a o o
where 5 m(a) » m(a +Sa ) - m(a ).o o' 'o'
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It should be noted that the second term in the Taylor expansion does 
not appear, since it is zero, due to definition of optimality#

Rewriting equation (4.12) in matrix form

5F T = ^ Sm^(a) [m(a), al/D^ m(a^ Sm(a) (4*13)
a=a +^a o o

As in thé case of the large perturbation relative sensitivity function, 
the sensitivity function of (4*13) is always positive as long as «the 
performance index satisfies the convexity requirements of a unique 
minimum.

Since 3m(a) is a fixed quantity depending on the perturbed parameters, 
minimising [m(a), a ] / 3^ m(a) is equivalent to minimising the 

sensitivity function of equation (4*13)* Consider the system described 

by state equation (4*5) and the inters ample performance index of equation 
(2.79), repeated below

FOn(a), a] = Z  % x(k)l + m'Q/C) H mQl) }
t . o

Hence from the results of section (2*5)

[m(a), a] /'c)̂ m(a) = ̂ f^_j[x(j)] /g^m(a)^

- 2[h* + g'(t) P(N-d) g(t)]

where H is defined in equation (2.82).
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The design problem of minimising the relative sensitivity function
has thus been reduced to minimising the matrix [h* + Gt (̂t ) P(N-j) G(t)*J

■
It has been shown in Chapter 2 that

F[m{a), a] = “ %'(0) P(N-j) x(o) (4.14)

which has a minimum value for all x(0)# The E.D#R. matrix P(N-j) 
can therefore be considered as a minimal positive semi-definite matrix#
The matrix G (̂t) P(N-j) G(t) would also be a minimal semi-definite matrix, 
this being particularly obvious in the case when there is only one control 
variable and G(t) is reduced to a vector, which could be considered as a 
particular initial condition vector x(o) in equation (4,14), Unless 
the dynamic equations governing the system or the performance index are 

altered, the positive definite matrix H is invariable. (Note that 
matrix. H must be positive definite, otherwise the initial value P(0) 
could not be determined, and optimisation technique breaks down). The 
complete matrix [n + G (t) P(N-j) G(T)] can therefore be thought of as 
a minimal positive definite matrix, i.e.

Sm'(a) [h* + g '(t) P(F-j) G(t)] 5m(a) 

has a minimal value for any vector Sm(a).

The optimisation procedure therefore automatically results in a system
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which has minimal relative sensitivity. Further reduction would only 
he possible by altering the system dynamics or the performance criterion.

4,3,5, - m i M L  CONTROLLER SENSITIVITY.

For small perturbations the controller sensitivity function 
is defined as

^^cont “ % ]  - % ]  • (4.15)

where Sb is an infinitesimally small valued vector*

Expanding F[m(b̂  + 5b), â ] in a Taylor series in F[m(b̂ ),â 3 
truncated at third term, one obtains

ĉont " 2 Z  'P^PL(b), aJ (4.16)
i j "ab.-ôb. lb=b ** i C o

where b. and b. are elements of controller parameter ̂ o
variations

The resemblance between equation (4,16) and (4,12) allows one to deduce 
that the small perturbation controller sensitivity function is also 
minimised by the digital optimisation procedure*

4,5,4, - CONCLUSIONS

It has been found that

(a) the proposed method of minimising the absolute and 

state sensitivity functions results, in general, in
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a system which, although less sensitive, is 
sub-optimal compared to the original 
unconstrained optimal system, even with its 

sensitivity,

and (b) the relative and controller sensitivity functions 
are automatically minimised as a by-product of the 
digital optimisation procedure.

A point of interest is that, as was stated in the introduction to the 
sensitivity problem, all the interrelated sensitivity functions would 
have to be minimised in parallel rather than serially. Due to the 
relative and controller sensitivity functions being minimised 
automatically, the absolute - state sensitivity method is such a parallel 
method,

4.4. - EXAMPLE

To illustrate the design procedure proposed in sub-section
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(4.3,1) and, at the same time, show the prevelant drawback of the 
method, an example will be illustrated#

Consider a system described by state equations

*l(t) A /3
1
x^(t) + '0

.0 2K . 1 . 1 .

(4.17)

which is to be optimally controlled according to the performance •
/OO

criterion j [x^(t) + ̂ ^(t) + m^(t)] dt

Let it be assumed that and V have nominal values of unity, but 
for the purposes of this example they adopt perturbed values of 
-0#9f 1.1 and 1.1 units respectively. Let the initial conditions 
be x^(0) « XgCo) = 1 unit and the sampling period be 0.2 units.

The performance indeces of the perturbed and unperturbed systems were 
calculated without an absolute - state sensitivity constraint. The 
sub-optimal performance index was calculated for the perturbed system, 
but in this case the optimal feedback matrix for the unperturbed system 

was used. Similar calculations were carried out for the system with 
an absolute - state sensitivity constraint, using weighting factors 
w^ « 1 and Wg = 2. In addition, that part of the augmented state 
performance index which corresponds to the actual performance index 
of interest, namely, |̂ Cx̂ (t) + Xg(t) + m̂ (t)], was also determined 
for the constrained systems. These values will be used in determining
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(a) System without Sensitivity Constraint and Unaugmented Criterion:

Optimal Index 
Sub-optimal Index

Unperturbed

5,166955

Perturbed

5.687209
3.736726

(b) System with Sensitivity Constraint and Augmented Criterion:

Optimal Index 
Sub-optimal Index

Unperturbed

9.399358

(c) System with Sensitivity Constraint but with Index 
Calculated from Unaugmented Criterion:

Perturbed
9.909170
9.981889

Partial Optimal Index 
Partial Sub-optimal Index

Unperturbed

9.317275

(d) Unperturbed System without Sensitivity Constraint

Optimal Index
Index with 10^ increase in 
coefficient feedback matrix

‘ 5.166955 
5.230724

Perturbed

9.821141
9.875390

TABLE 1 - SENSITIVITY RESULTS.
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the absolute sensitivity functions. For the purposes of calculating 
the controller sensitivity function, the value of the performance index 
for the unperturbed unconstrained system was also determined when the 

elements of the coefficient matrix were perturbed by 10j5 of their optimal 

values. All these results are tabulated in table (l) where the index 
values have common arbitrary units.

é
%e absolute sensitivity functions for the system of equation (4V17), 
with and without sensitivity constraints, was found to be and

11,41̂  of their respective optimal values of the performance index for 
the corresponding unperturbed system. The absolute - state sensitivity 
technique has therefore approximately halved the sensitivity of the 
performance index to parameter variations. On the other hand, the 

value of the performance index for the sensitivity constrained system 

is considerably in excess of the value of the unconstrained system.
The advantages derived from using the constraint technique are therefore 
completely outweighed by the excessive increase in the resulting 
performance index#

In conclusion, the relative and controller sensitivity functions for the 
unperturbed, unconstrained system were found to be 1»22^ and 1.62Ĵ  of 
the perturbed and unperturbed systems''respectively. The small values
of these functions is in agreement with the analysis already carried out, 
which indicated automatic minimisation.
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CHAPTER 5 - DESIGN OF DIGITAL CONTROL SYSTEMS

5.1, - DESIGN PROBLEMS.

The optimal control policy has been shown to be a linear 
function of all the state variables of the system, even when some 
of those state variables may, in fact, be fictitious augmented 
state variables. In general, all the state variables are not 
measurable, even in a deterministic system; thus the implementation 
of the optimal control policy is difficult, if not impossible.
Apart from some reported work on the simulation of all or part of 
the augmented state system and thence measuring the complete state 
vector (42), there has been little research activity in the elimination 
of the state measurement problem for deterministic systems. On the 
other hand, the estimation of state variables and system parameters of 
stochastic systems has received considerable attention by several authors, 
using a variety of techniques (43), (44), (45)# In this chapter, sub- 
optimal methods for both deterministic and stochastic systems are 
discussed and developed.

In conclusion, such aspects of the design problem as the optimal system’s 
stability conditions and a semi-quantitative method of choosing the 
sampling period will be analysed,

5.2. - STATE VARIABLE MEASUREMENT IN DETERMINISTIC SYSTEMS.

In the deterministic problem, it will be assumed that only
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some of the state variables can be measured, but that those can be 
measured accurately# The problem is then to devise the best control 
policy, which is linearly dependent on only those variables which can 
be measured#

5,2#1, - SYSTEM EQUIVALENCE OR SINGULARITY.

Inasmuch as it was eventually decided that the quadratic 
summation criterion was not a suitable criterion for design purposes, 
this sub-section is a digression# Its direct connection with the 
state measurement problem nevertheless merits its inclusion in this 
thesis# It will be proved that for a linear deterministic system, 
with a single control input and no cost on that control input, the 
resulting optimal transition matrix has a rank less than its order#

At least one of the state variables is then linearly related to the 

other n-1 state variables, where n is the order of the system# The 
state measurement problem is simplified in this particular case, 
since it is only necessary to measure n-1 of the state variables, in 
order to be able to calculate the other state variable, and hence 

have a complete knowledge of the state vector# The n dimensional 
optimal system is therefore equivalent to a n-1 dimensional system#

Consider a system described by the dynamic differential equations

Jc(t) * A x(t) + D m(t)

The optimal digitally controlled system can be described by matrix
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difference equation

x(5+i 5?) + G(t) B(N-j)] x(jT) (5.1.)

where, assuming a quadratic summation criterion, the coefficient feedback 
matrix is defined by

B(N-d) - -[h + c'(r) P(H-j) G(t)]"̂  G^P(N-j)^(T)
«

Dropping all arguments superfluous to an understanding of the problem, 
the optimal transition matrix ̂  is

§ . ^ - GCa + g'pg]"̂  g'p <f>

» |l - [h + G'PG]"̂  GG^p| j> since G is a vector

Since P is a symmetric matrix and G is a vector
rt q.

Ĝ PG « trace GĜ P » ^  ĝ  ̂ ^
t»I j=I

The elements ŵ  of matrix W * fl - fe + Ĝ  PGI  ̂GĜ  P1row, col *•
è,dcan be expresŝ  as

(1) for row » col:

''row,col “ Z. GjPjk+ h)/( ZsiZgjPji+ h) (5.2)
H ;jsi 1=1 * = '

where k has all values between 1 and n except k « row

(2) for row / col:
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^row,col " (5*3)
i=' Ui j=%

where H « h, a scalar, for uniformity of notation#
f

Consider the matrix W, which is formed by multiplying all the i th. 

rows of matrix W by factor
rv-

«col Z  SjPji •‘Z s i  Z  gjPji + hJ*1 t=| I
Note that the last part of multiplying factor is simply the denominator 

of equations (5,2) and (5*3)#

The off-diagonal elements of matrix W can be expressed as
A. TV»

r̂ow, col “ "(^row ^j^jcol^  ̂(̂ ool 22 ̂ j^jrow^3** 3=»

-(g^ow^- SjPjrow^ ^ (̂ col ZL ^j^jcol^ (5*4)
i** iM

whereas the diagonal elements of W are ’
TV, V*»'

r̂ow, col “ < Z  «k Z  «jPjk + («col Z  «fjcol) (5*5)

where k has all values from 1 to n except k ■* row,

Prom equations (5,4) and (5,3) it is seen that matrix W has linearly 
dependent rows, if h » 0, since, in this case, the sum of the off 
diagonal elements equals the diagonal elements of each column# The 
determinant of W is therefore zero and hence determinant of W is also 
zero, i,e, rank [w] < n, where n is order of system#
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Now Rank ]  < Min  ̂Rank [ v ]  , Rank C I  |

Now Rank < Min  ̂Rank [ v ]  , Rank ^

If <f> represents the transition matrix of a continuous system, then its 
rank is equal to the order of system; therefore

Rank [5 1 ^ Rank [w] < n

The optimal system’s transition matrix has linearly dependent rows; 

therefore, at least one of the state variables at the sampling instant 
is linearly related to the other n-1 state variables# There may, in 
fact, be i linearly dependent state variables, in which case only the 
n-i independent state variables need be measured for a complete 

knowledge of the state#

An attempt was made to extend the above analysis to systems with an 
intersample criterion, but subsequent numerical examples indicated that, 

in general, the optimal transition matrix is non-singular#

As on example, consider the example of sub-section (5#4*3)«
It has already been stated that one of the roots of the optimal transition 
matrix is zero for all sampling periods, indicating the singularity of 

the said transition matrix# For a sampling period of 2 units, it is 

found that the corresponding linear relationship between the state 
variables is

= 13.80 X2(dT) + 25.56 XjCJT) (5.6)

Thus being able to measure any two of the three state variables is
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equivalent to a complete knowledge of the state. It should he noted 
that the linear dependence is exhibited throu^out the sampling 
interval, since only the structural properties of the various matrices 
were used in the above analysis.

Using equation (5.6) the equivalent 2nd order system can be derived, 

whose dynamic difference equation is in terms of ^n^ Xj(jT)
only, i.e.

5491 -12.1247
1484 6.4222

The corresponding optimal feedback coefficient for sufficiently large 

(N-j) is

B(K-j) - [1.7288 1.55011

The response of this system is identical to that of the 53?d order 

system with the restriction that the initial conditions also obey 

equation (5.6).

X g f j + I T ) m ,

. X j ( j + 1 T ) . L
i\ Xg(jT) + ' 0.6278 m(t)

2j *3(3®). -0.0714.

5.2.2. - THE BEST LINEAR COITOOL POLICY.
;
It has been shown that the optimal control input is a linear 

function of, in general, all the state variables of the fully augmented 
system. If, and only if, all elements of the i th column of the 
feedback coefficient matrix is zero, will the optimal control input 
not be a function of the i th state variable* The system designer
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would ideally like to specify which state variables should be used in 
the generation of the control input, and which should not. The 
development of such a control policy, which the author has called 
the best linear control policy, is the subject of this sub-section. 
Prior to the author’s own research, an extremely involved, but 
illuminating paper by Anderson (46) tackled a similar problem in 
connection with the Merriam parametric expansion continuous 
optimisation procedure. In that paper, the state independence 
constraint was introduced into the problem’s solution by the inclusion 
of an initially unspecified Dagrangian constraint in the performance 

criterion, and thence, assuming certain properties to be exhibited 
by the constraint, a satisfactory control policy could be generated. 
The method was so involved, and to some extent arbitrary, due to the 
inclusion of further unspecified Lagrange multiplier, that the 

significance of the technique and the final result was obscured.

Using the same source of information as the author of this thesis, a 

recent paper (47) by Hosking has arrived at the continuous ricatti 

equation analogue of the result derived in this sub-seotion, Onoe 
again the significance and the sub-optimality of the result does not 
seem to have been appreciated. The author of this thesis originally 
devised the best linear control policy from an intuitive point of 
view, but, upon becoming aware of Anderson’s paper, he has based the 
technique on a more mathematically rigourous foundation. After some
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preliminary remarks, the general technique will be presented below.

Assuming that the control input is a. linear function of all 
the state variables, if one specifies that the i th column of the 
coefficient feedback matrix is zero, then, in order to maintain the 
optimal value of the input vector, the other elements of the 

coefficient feedback matrix, by the laws of linear algebra, must 
be replaced by non-linear functions of the state variables, including 
the i th state variable. Thus, by imposing the state independence 
constraint, one sacrifices the simplicity of linear state feedback, 
even for an otherwise linear system. Any linear control policy, 

which results from a procedure in which one imposes an independence 
constraint, is therefore sub-optimal. Furthermore, for any given 
initial conditions and the resulting trajectory, there will be a 
linear control policy, which is the best linear approximation to the 
ideal optimal non-linear control policy. Since this approximation 
is dependent on the system’s trajectory and the designer does not 
know beforehand exactly which trajectories the system is likely to 
encounter, it is necessary to derive the best linear approximation 
to the optimal control policy for all state trajectories. In summary, 

the designer would like to derive the least upper (sub-optimal) bound, 
over all system trajectories, of the best linear approximation to the 
ideal non-linear feedback optimal control policy.

Consider the deterministic version of the system, whose optimal 

control policy and associated difference equations were derived in
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section (2,5). Let it be assumed that an unspecified Lagrangian 
constraint exists, which is a functional of the state and control 

vectors and is zero for some trajectories of the system. Denote the 
constraint functional by

A [x(jT), - 0. (5.7)

The constrained system can then be analysed by minimising the 

intersample performance criterion (cf equation 2.79)

t i tJj s o  t-so

where notation is that of equation (2.79)#

J]j [x(0)] - Z[^3c'(k) Q x(k) + m/(jr) an(jT)+A^(jT),m(jT)] j

'Ey Principle of Optimality,

Cx(j)3 = Min f2Ix'(k)Q, x(k) + m'(jT) m(jT)

+At(jT), m(3T)] + fjj_j^[x(ô+l)l ] (5.8)

Let it be assumed, remembering that it is a deterministic system, that

%-5+i P(N-5+i) x(j+l) (5.9)
positive

where p(K-j+l) is a symmetric/semi-definite, as yet, unknown 

matrix.

Substituting this expression for [x(j+l)]into equation (5*8)
and following a similar procedure to that of section (2,5) to obtain
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the minimum by taking first variation of f̂ ^̂  [x(j)]with respect to 
m(jT), one obtains the control policy defined by

m(jT) - -[h* + g '(t) P(K-J7i)g]"^ K

P(N-J+i)j< + u'(H-Jâ)]x(dT)+'34[a:(âT).m(dT)]/ain(̂ T)| (5.10)

where H and U(N-j+l) are defined in equation (2,82)

8ince^^(jT), m( jT)] is as yet not completely defined, it can be 
assumed that

3A|x(jT),m(jT)] /jm(jT) = R(N-5^) x(jT)

where R(N-j-fl) is a matrix to be specified.

The coefficient feedback matrix is therefore

B(H-d^) - -Î.H* + g'(t) P(N-5+1) G(t)]"̂  k

[G'(T) P(N-J+i)sS(T) + Btw-J+i) + E(R-j+i)]

Since [a + G^(t) P(N-5Ti)g(t )] is assumed non-singulax for the inverse
and hence the control input to be calculable, its inverse will also be 
non-singular. The matrix B(U-j+l) can then have zero column if and 

only if the matrix (]g (̂t) P(N-j+l)^(T) + U^(R-J+i) + R(N-j+l)] has the 
elements of its corresponding column zero. Since matrix R(N-j+l) is 
so far undefined, let it have columns of elements equal and opposite to
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those column of Jg-̂ (t) P(N-j+ï)ÿ&(T) + U^(K-j+l)] corresponding to 
the states not to he included in the control policy and zero elements 
elsewhere. The matrix B(N-j+l) will then have the desired zero 
columns and the control input will be linearly dependent only on the 
specified state variables, i.e,

B(H-Jrt) - -[h* + G'(T)P(N-Ji0.)G(T)]"^
[g '(t) p(n-5Ti)^(t) + u'(ïï-3+i)] K • (5.11)

where K is matrix with unity on the diagonal if 
corresponding state variable is specified as 
appearing in the control policy and zero elsewhere.

As in section (2,5), to obtain the equations governing the E,B,R, 
matrix P(N-j), the control policy derived above is substituted into 
the expanded version of equation (5*8) giving

fjj_^[x(j)] = x'(ôn) [(3% 5</(T)P(H-JH);l(T)-KoC-«<K+»Æ]x(jT) (5.12)

where (K -[/^(ï) P(N-j+i)G(T) + ü(K-3+Ï)] x 
[a* + G'(T)P(K-5+i)G(T)]“^ X 
Tg'(t) P(1î-JTi )̂ (t) + U'(lî-J+Î)] 

and Q is defined in equation (2,82),

By linear algebra, the matrix K<k *f ô K is symmetric and at least 
positive semi-definite, therefore assumed form of f^^j[%(j)] in
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equation (5.9) is valid. If equations (5*9) â nd (5.12) hold for all 
x(jT), then

P(N-j) « Q* + <tf'(T)P(N-j+l) (t) - + K<AK (5,15)

By similar argument to that used in section (2,5), the initial 
conditions for difference equation (5*15) can be found to be

*P(0) « Q - Ky?-y&C + K/2k 

where u '

The above optimisation procedure will now be discussed. 
Firstly, a control input policy has been developed, which is linear, 
due to the linear dynamics of the system, the quadratic nature of the 
criterion and, most important, due to the assumed structure for 
f« .[x(j)]. Secondly, in the derivation of the difference equation 
for the E.B.R. matrix, one desired equations (5*9) and (5.12) to hold 
for all x(j). Thenet result is therefore a control policy, which 

minimises the performance criterion subject to a state independence and 

a linearity constraint for all state trajectories. This is exactly 
the definition of the best linear control policy; therefore, the 
procedure detailed above is the desired method of including a state 
independence constraint in the digital optimisation solution.

When K is the unit matrix, the control policy derived is the optimal 
control policy, being a linear function of all the state variables.
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To illustrate the best linear control policy, consider the 

system described by the state equations

* l ( t )
'

as - 0 . 5  1 + 0

.*2(t) 0  - 1 % g ( t )
►

1 . «

m(t)

which is to be minimised according to performance criterion equivalent
to ̂  [*6x̂ (t) + Gxgft) + 0.5m^(t)] dt with sampling period of 0.5 units.'

With no independence constraint, the converged value of the feedback 
coefficient matrix is found to be

0.465].

The graphs of the performance index for two sets of initial conditions, 
namely x^(0) = x^Co) = 1 and x^(0) « 0, x^Co) = 1, against variations in 
the first element, b̂ , of the feedback matrix are shown as curves ĉ  and 
Cg respectively in figure (20),

Imposing a constraint such that x (̂t) only is specified as appearing in 

the control policy, results in a best linear feedback coefficient matrix 
for all state trajectories of

Bsub-opt [-0.222 oj.
:

The graphs of the performance index for both sets of initial conditions 

against variations in b^ are also shown as curves ĉ  and c^ in figure (20),

The optimality of the unconstrained system’s coefficient feedback matrix
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and its independence of the initial conditions, i.e. its linearity, 
can be seen from figure (20) by the fact that the calculated value of 

®opt to the minimum of the index curve for both sets of
initial conditions. One is assuming that b^ has its optimal value, 
which, in fact, it does. The essential non-linear nature of the 
constrained feedback system can be seen from the dependence of the 
best linear approximation to the optimal feedback matrix on the initial 

conditions. The best linear approximation for the specific initialI
conditions corresponds to the values of b^ at the minimum of curves 
ĉ  and ĉ .

The performance index, which results from using the best linear feedback
coefficient matrix for all state trajectories, i.e. b^ » -0,222 in this

case, will always be greater than or equal to the smallest value of the
index obtainable by using the best linear approximation for any specified
initial state. This is due to any specified set of initial conditions
being a sub-set of all possible sets of initial conditions, for which

the best linear feedback coefficient matrix B , . was devised. Thesub-opt
graphical evidence agrees with this conclusion.

Finally, since the best linear control policy is sub-optimal, the 
corresponding performance index is greater than its unconstrained optimal 
va%ue. In the two particular cases illustrated, the increases due to 

imposing the constraint were 15?5 and 111^ of their corresponding unconstrained 
optimal values for initial conditions x^(G) « XgOo) * 1 and x^(0) « 0,Xg(0) - 1
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respectively. In many cases, (cf Chapter 6), the increases can be 
excessively large, if not infinite, and thus the procedure devised 
above for including a state independence constraint must not be used 
with abandon,

5.2,5. - ASmPTOTIC PROPERTIES OF STATE CONSTRAINED SYSTEM.

To establish the conditions for the existence and convergence 
of the optimal solution to the digital control problem without a state 
independence constraint, the property of partial controllability was 
used in' sub-section (5,2,2) to ensure an upper bound on the index.

This approach is not applicable.to the independence constrained 
system, since the constrained system is only sub-optimal. It is not 
difficult to imagine a case where, upon stipulating that certain control 
variables should not appear in the optimal control policy, it is 
impossible to derive a control input, which does not result in a system 

which is unstable in some of the variables appearing in the criterion. 

The non-negative definiteness of the performance criterion is sufficient 
to prove that a best linear control policy exists, if an upper bound 
can be found for the linear state constrained system. The conditions 
for such an upper bound will now be found by considering the system 
described by the state difference equation

x(ô+l) =^x(j) + Gm(j)

where m(j) - B x(j).



- 157 •

The matrix B is assumed to be an arbitrary matrix, whose columns 
corresponding to those state variables which have not to appear in 

the control policy, have zero elements throughout, i.e, matrix B 
satisfies the independence constraint.

Hence x(j+n) = x(j)

In optimisation theory, one requires the state variables, which 
appear directly or indirectly in the performance criterion̂  te- 

eventually attain a zero value. If vector y(j) is vector of those 
state variables which appear in criterion, then, for suitable matrix M,

y(j) - M x(j).

The requirement for stability of y(j) is then

f  m CjJ + Gif 0.  ̂ (5.14)

This condition is independent of the initial conditions of the system 
and therefore holds for all state trajectories. Thus, if this condition 

holds for the semi-arbitrary matrix B, then the performance index for 
linear constrained system has a non-infinite upper bound, and the 
existence of a best linear control policy and the convergence of the 
iterative procedure for the E.D.R, matrix can be proved (cf sub-section 
(3.2.2.)).

The determination of whether equation (5.14) holds or not is not a
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simple problem, since one must analyse the condition in an elemental 
rather than in a matrix form. Even for a system of modest order, an 
analytic analysis becomes tedious# One must therefore, in practice, 
resort to a form of hill-climbing procedure, which adjusts the allowable 
elements of B in order to minimise the resulting value of the performance 
index over some specified time interval* This procedure need only be 
continued until condition of equation (5,14) is obeyed# Note that the 
logical conclusion of such a hill-climber would be the determination of 
the best linear approximation to the optimal non-linear control policy 
for the specific initial conditions chosen, and not the determination 
of the best linear control policy for any initial conditions,

A sufficient condition for equation (5,14) to be obeyed is that the 
eigenvalues of[^+ GB] lie within the uqit circle in the Z-plane# If
B is assumed to be a null matrix, then condition is obeyed if the 
uncontrolled system is stable* Hence the uncertainty about convergence 
only occurs when the uncontrolled system is unstable# The difficulty 
in determining an easily verifiable condition for unstable system suggests 
that the most direct method of determining convergence is to actually 
carry out the optimal iterative procedure. It was noted in sub
section (5.5,2) that computational instability was also most often in 
evidence with unstable systems. In agreement with the previously reported 
practical success of the progressive stability technique of calculating 
the E.D.R# Matrix sequence, it was found that if convergence was not
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eventually attained, it was due to condition of equation (5*14) "being 
violated and not due to computational instability.

5.2.4, - Z-TRMSPOm IMPimmTATION 0¥ OHB CAICDIATED CONTROL POLICY.

In classical sampled-data systems, controllers are not in general 
in the form of feedback from all the state variables, but rather in the 
form of dynamic filters in cascade with the system or in feedback' paths 
from some of the state variables, usually the output variables# It is 
therefore of interest to examine the possibility of constructing a more 
conventional controller configuration from that of the optimal state 
feedback controller#

Consider an optimal single input single output reference system depicted 

in figure (21a) with disturbance input variable h(t). The system can
be analytically rearranged into the structure of figure (21b) where

y&(a) and .̂re found from the dynamic relationships between the
variables. Direct implementation would suggest that filtering the
output throu^ a compensator ̂ s  ) would result in an identical conventionally 

controlled system. The drawback is that yS(s) has, in general, more zeros 
than poles and, hence, is physically difficult to realise. This is not 
too obvious for figure (21b) but, if one considers the system depicted
in figure (22), the transfer functionyfi(s) becomes

yS(s) » + bg/Pg(s)

-  b ^ U ( s )  +  b g V C e )  /tr(s)
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where I’gCs) « ïï(3)/V‘(s).

Since & physical system, order £u(s)J < or̂ der [v(s)2 , hence
y^(s) will have a numerator of greater order than its denominator, and 

therefore will he physically difficult to implement. Equality of 
order can occur, hut it is not common.

Consider now the discrete cascade plus continuous feedback controllers 
of system depicted in figure (21c), where K (̂s) and ^^(G) are the 
respective transfer functions of the controllers. The problem is to 
find what values of K^(s) and ̂ ^(s) will make this system and the optimal 
system equivalent. Little thought is required to see that making 
K̂ (s) « 1 and ^^(s) «/&(s) would result in an equivalent, but physically 
unrealisable system, but the mathematical derivation of this result 
highlights certain fundamental aspects of the equivalence requirements 
of systems.

Using classical modified z transform theory (48) and assuming that the 
disturbance is zero, the output/reference input transfer function of the 
optimal system of figure (21b) is found to be

o(z,m)/b^x(z) » P^Cz.m)/ [l-F^^(z)].
where c(z,m) is the modified z transform of the output
o(t) etc.

The corresponding relationship for compensator system is
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c(z,m)/b^r(z) - %]̂ (z)F]̂ (z,m)/[l-IĈ (z)P̂ Kg(z)].

Equating these transfer functions gives relationship

l/fl-F^(z)J - K^(z)/P-K^(z)P^K2(z)]. (5.15)

Thus by equating the optimal and compensation system’s output/reference 
.input transfer functions, an expression has been obtained in the two 
unknown compensators K̂ (s) and ^̂ (s). Some semi-arbitrary choice of 
one of these compensators could then be made, and the other calculated 
from equation (5,15), so that both were physically realisable,
Nevertheless, although the two systems have identical responses to the 
same inputs, assuming no disturbances, this is not a sufficient 
condition to dictate that the two systems are dynamically identical.
One must also consider the output/disturbance (actual or fictitious) 
input transfer functions of the two system configurations, and also 
equate these before exact equivalence is assured.

In z transform theory, one is not always able to calculate the transfer 
function between two variables, due to the mechanics of the transform.
In this case, the output response can only be calculated as a function 
of the disturbance input since, unless the disturbance is input through 
a sampler, K^hg(z) / Kg(z)hg(&) and ^^(z) / ̂ {z)h^{z)0 For the 
optimal configuration, the output response, assuming zero reference input, 
is found to be

c(z,m) = hgCz.m) + F^(z,m)y6hg(z)/[l- F^z)]
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and for the compensator system

c(z,m) = hg(z,m) + F^(z,m)K^(z)K2hg(z)/|l-K^(z)K2F̂ (z)].

Equating these two output responses gives expression

. K^(z)E2h2(z)/(l-K^(z)%(z)] -^gCz^fl^P^Cz)] (5.16)

Erom expressions (5#15) (5#1&) one can obtain expression

Kgdg(z) »/&hg(z) (5.17)

A sufficient condition for equation (5#1?) to hold is for Eg(s) “y&(s). 

Substituting this value of K^(s) into equation (5#15) yields K (̂z) * 1# 
These values of K^(s) and ̂ (̂s) were the values of the compensators 
that were deduced by inspection.

Although by simply equating the output/reference input transfer functions 
of the system one would seem to be able to implement the optimal state 
feedback system with realisable compensators, the two systems are not 
truely identical. It is only when the disturbance output responses of 
the systems are also equated that true equivalence is obtained with the 
resulting unrealisability of the controllers*

Other-compensator and system arrangements could be studied in 
the light of the above analysis, but due to the shortage of time, the 
author was not able to further investigate this avenue of approach*
This type of analysis is tending towards methods of calculating
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optimal compensator transfer functions to minimise some specified 

criteria, usually some form of integral error squared, which have been 

studied in the past with some success (49)# An interesting area of 
research would be to attempt, with the aid of the recently developed 
optimisation techniques, to determine optimal transfer functions, or 

their equivalents, which have a prescribed position in the system*
The development of the. best linear control policy is the first step 
in this direction, but more time and effort would be required before 
a complete solution to the problem could be found,

5.3# - STATE VARIABLE MEASUREKSNT IN NOISY SYSTEMS*

All systems are subject to random variations of various types 
to a greater or lesser extent, For the solution of the digital
optimisation problem, the statistical characteristics were restricted 
to additive independent noise. The additive nature of the noise input 
is not too restrictive, but the independent or uncorrelated property is 
extremely restrictive. Correlated noise with a specified spectral 
density, which can be approximated to by a meromorphic function, is 
equivalent to passing white noise through a suitably defined filter (50)# 
The white noise has the necessary independence property and the dynamic 
filter can be included in the overall dynamics of the system by the 
augmented state technique. The restriction of independent noise can 
therefore be replaced by the much less restrictive condition that the 

spectral density can be adequately represented by a meromorphic function.
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The spectral density will not in practice be known to any high degree 
of accuracy, therefore the above restriction allows for a more general 
use of the digital optimisation technique in noisy systems*

The estimation of state variables in stochastic systems has 
been the subject of several papers. A particular method,to which 
several other proposed methods have been shown to be related, is based 
on the theory of orthogonal projections in multi-dimensional spaces#
It has commonly been given the name of the Kalman Filter. This 
method results in the optimal estimate of the state vector, where the 
estimate is optimal, inasmuch as it minimises the covariance matrix 
of the error between the predicted value and the true value of the 
state for a noise input with independent gaussian characteristics*
If the input is non-gaussian, then the estimate is only the best linear 
estimate, which minimises the covariance error matrix# It has been 
shown by Tou (l$) that the optimal control and optimal estimation 

procedures are entirely separable and that if one uses the optimal estimate 
of the state in the generation of the optimal control policy, then the 
resulting combined system can be considered as optimal*

In this section, it is intended to develop the Kalman filter 
technique to cope with systems in which the measurement of the system's 
output variables are subject to pure time delays, a common feature of 
process control systems. Thence, a sub-optimal estimator suitable for 
optimal control purposes will be developed by considering the estimation
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difference equations in the light of the generalised inverse matrix 

theory*

5*5*1* - THE KALMAK FILTER*

In order to present the development of the estimator with 
multiple delays in the measurement of the output variables, it is 
first necessary to rearrange the results obtained in references 
(19) (45) in a suitable form. The general details of the method will 
not be given, since these are well recorded in the before mentioned 
papers*

Consider the system described by the matrix state difference equation

x(j+l) -^(t) x(j) + G(T)m(j) + r(j) (5.19)

where r(j) ia an additive independent discrete
noise input with zero mean.

Let the output vector y(j) be a linear combination of the state variables 
plus an additive independent noise disturbance with zero mean, i*e.

y(j) = M x(j) + w(j)

Define Y.(d) to be the space made up of all linear combinations of the 
measurable output vector y(k), k ̂  j. The space Y(j) then represents 
the space of knowledge upon which the optimal estimations will be based. 
Similarly, x(j) is defined to be the space made up of all linear combinations
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of the vectors x(k), kaj. It is important to note that the dimension 
of the space X(j) is greater than that of space Y(j) if the number 

of independent output variables is less than the order of the system, 
which is always the case.

The orthogonal projection of matrix x(j) onto space Y(k) is denoted by 
x(j/k) and the corresponding normal of x(j) on Y(k) is denoted by 
x(j/k), therefore one has the fundamental relationship

x(j) = %(j/k) + x(j/k) for j > k. (5,20)

The objective of the analysis is to derive an expression for x(j/j), 
the orthogonal projection of x(j) on Y(j), since it has been proved to 

be the optimal estimate of the state vector x(j) in the sense of 

minimising the variance of the error matrix (43)«

By using standard vector space methods (5l), it can be shown (19) that 
a linear transition matrix exists between x(j+l/j) and x(j/j), namely,

x(j+l/j) + G(t )b(N-ô)] x(j/j)

^(j) %(j/d). (5.21)

This equation is the predictor equation, since the orthogonal 

projection of x(j+l) is predicted from the knowledge contained in 

space Y(j).

Since the value of y(j+l) is known at time (j+l)T, it is desirable
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that this knowledge he used in the evaluation of x(j+l/j-t-l). In 
order to do so, a further vector space z(j+l) is considered to be 
made up of vectors V(j+l) y(j+l/j) where V(j+l) is'an, as yet, undefined 
matrix. Using the property that space z(j+l) is orthogonal to all 
vectors in space T(j), and hence that space Y(j+l), by definition, is 
the sum of the two spaces Y(j) and Z(j+l), the optimal estimator equation 

is found to be (19).

X (j+i/j+i) =§(d) x(j/j) - v‘(d+i)[n^(d)x(j/d) - y(j+i)] (5.22)

The optimal estimate of x(j+l) knowing the output y(j+l) is therefore 
seen to be a linear combination of the predicted value of x(j+l) based 

on Y(j) minus a correction factor due to the difference between the 
predicted value of the output vector and the actual output at time (j+l)T.

The pair of matrix difference equations governing the matrix V(j+l) is 
determined by considering the covariance matrix, j(j+l) of the error 
between the predicted value of the state x(j+l) based on Y(j) and its 
true value, i.e.

J(j+l) = E x(j+l/j ) 3C "(j+l/j) ̂

which upon using equations (5*19), (5.21) and (5.22) becomes

J(j+i) -1(d) [i - v(d)M] J(j) [i - v(d)M]f (d)
+ E(d) +l(d)T(d) v(j)v'(d)l'(d) (5.23)

where R(j) and ¥(j) are the covariance matrices of the 

disturbance input r(j) and measurement input w(j) respectively.
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Using the orthogonal properties of the spaces Y(j) and z(j+l), an 
expression for V(j+l) can he derived (19), namely,

v(d+i) = J(d+i) M'[MJ(d+i)M' + w(d+i)]"^ (5.24)

assiming that inverse exists#

Assuming that an initial error covariance matrix J(0) and an initial 
best estimate of state x(-l/-l) are known, then one is in a position 
to calculate v(j+l) and x(j+l/j+l) for j^O, the latter being the 
optimal estimate of the state vector, the objective of the above 
analysis#

5.5.2# - ASYMPTOTIC PROPERTIES OF THE OPTIMAL ESTIMATOR#

In order that the estimation procedure derived above is to 
be of use, it must be proved that the covariance matrix of the error 
converges to a limiting value with an increasing number of samples 
of the output variables# It must also be decided exactly what the 
initial condition J(0) of the sequence of covariance matrices is, 
since the ultimate value of the sequence is dependent on its initial 
conditions. Before discussing these points, the conditions governing a 
property of the controlled and uncontrolled system, commonly known as 
the observability property, will be derived#

A deterministic system is said to be observable if all the modes of the 

system are evident in the measurable output vector of the system. In
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simpler terms a deterministic system is observable if it is possible 
to calculate the initial state of the system given the output vectors 

and control input vectors over some finite time interval#

To determine the conditions for observability, consider the system 
described by the state difference and output equations,

x(j+l) + Gm(j)

y(j) « m(j)

Hence, by successive substitution, assuming an initial condition of x(o),

y(n) - x(0) + M 2.5^^ G m(i)
1*0

irv—I

If z(n) « y(n) - M 2. Gm(i) then
i*o

z(n) « %(0)

Consider the augmented state matrix equation 

£z(0) j z(l)J ...,z(n)] = C(n-l) x(0) 

where C(n-l) = [m ; ; w f  .... ]

In order for system to be observable, according to the definition, the 
above matrix equation must be solvable for x(0), For any solution to 
exist, the matrix algebraic equation must be compatible* a sufficient 
condition being
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Rajok [*c(n-l)*] = p

where p is order of system, i.e. dimension of

According to Caley-Hamilton theorem is linearly dependent onj6^"^ 
for n ^ p, therefore rank condition is reduced to

Rankf C(p-l)3 « P (5.25)

Rote that this sufficient condition for observability is independent 
of the method of generating the control vector and is therefore of use 
when the control vector is unknown. On the other hand, consider the 
case where the control policy is given by

m(j) - B(lT-j) %(j)

In the remainder of the analysis it will be assumed, for simplcity that 
B(R-j) has converged to its ultimate value.(Similar results also hold 
for the time varying case).

Then y(n) = M [^+ GB]^ %(o)

= M 5 ̂  x(0)

The corresponding sufficient condition for observability is found to be

Rank I M .... (5.26)

The conditions for controllability will now be used in the analysis of
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the convergence properties of the estimator.

By eliminating V(j+l) from equations (5,25) and (5,-24) one obtains 

the expression

J(j+i) - R(j) +#(j) J(d)§tô)
-§(j) j(j) m '[wQ) + (5.27)

Compare this equation with equation (2,57), repeated below, which 'is 
the E.D,R, matrix difference equation for a quadratic summation 
performance criterion,

P(N-0̂.-̂?) = Q +94 P(R-J+i) 56
- 94'p(N-ï+i)G[H+G'p(R-J+l)Gl"̂  G'p(N-J+i)/. (5.28)

Equations (5,27) and (5*28) are duals of one another. This duality 
property was first noted by Kalman in reference (51), but due to 
complex notation, the essential .simplicity of the argument was lost.
The above presentation clearly indicates the following dual matrix 

paire[^, ̂ '(j)b |g ,M'], {Q,R(j)b {h ,W(ô)} and [p(H-j), J(jti!j.

The difference equation (5,28) in augmented form was shown in section 
(2,5) to be convergent, subject to the following conditions

(a) Matrices Q and ÏÏ are positive semi-definite,

(b) The augmented state system satisfies a partial 

controllability condition, the performance 

criterion and the augmented system* s dynamics



- 174 -

are compatible and the controlled augmented 
system is stable.

Thus for optimal estimator to be proved convergent, the following 
dual conditions must be satisfied

(.a) Matrices R(j) and w(j ) are positive semi 

definite.
(b) There is no corresponding condition to the 

criterion compatability condition, therefore 
the dual of the conditions for complete 
controllability must be satisfied. Complete 

' controllability is seldom satisfied in augmented 
state systems, but its dual fortunately is usually 
satisfied.

The sufficient complete controllability condition is ..

Hank[G;ÿ)G; ^^G ....ÿf'^G] = p 

which has dual
■ J , ‘

Rank [m ;Mi I M #  .... = p  (5.29)

Equation (5.29) is identical with the sufficient condition for 

observability (cf equation (5.26)); therefore, controllability and
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observability are duals of one another. Since one does not know at 
the outset of the optimisation calculation what the control input will 
be, the sufficient observability condition of equation (5,25) is a more 

convenient method of determining convergence, i.e.

Rank [m i .... = p.

The duality property has therefore greatly facilitated the determination 
of the sufficient conditions for convergence. Three further aspects of 

the estimator will now be discussed.

Firstly, the initial value of the covariance error matrix, J(0), was 
not specifically defined but, by analogy with the E.D.R, matrix iteration, 
the initial value should be equal to the covariance matrix of the discrete 
disturbance noise input, R(0), With this initial value, one is 

effectively stipulating that prior to the first state vector estimation, 
there is no estimation problem, i.e. ideal measurement of the state vector 
in the presence of noise disturbances. Secondly, since matrix ^  is the 
transition matrix of the controlled system, it will have all its eigenvalues 

on or within the unit circle in the z-plane. According to the progressive 
stability theory, the probability of computational instability is therefore 
greatly reduced. Thirdly, the estimator could be subject to periodic 
instabilities in the covariance error matrix of a type similar to those 

found in the E.D.R. matrix (cf section 5*4)• Excessive instabilities 

are usually only found in unstable systems with complex roots. Since 
the controlled system will always in practice be stable, the probability
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of excessive periodic instabilities is greatly reduced.

5.5.5. - OPTIMAL ESTIMATION V/ITH PURE TIME DELAYS 
IR THE OUTPUT MJEASUREMENT.

For the purposes of this sub-section, consider an optimally 
controlled system, described by the state and output equations

%(j+l) = ,.̂ (T) x(jT) + G(t) B(N-j) x(jT) (5.30)

and. y(jP) = 22. x(jT - q )  ( 5 * 3 l )
t = o

where M^ are the output matrices 
and are pure time delays.

The output vector y(jT) is a linear combination of past and present 
values of the state vector. If one considers M^ to be null matrices 
for all but i » 1, then

?(jT) = x(jO? - 6^) + w(jT)

One no longer has a knowledge of the output at the time one wishes to 

make an estimate of the state vector, and therefore the previously pure 
estimation problem is now a combined estimation and prediction problem.
As will be shown later, this particular case can be separated into\
easily recognisable estimation and prediction parts, but in general this 

is not obvious.

The author at first tried to solve the problem by using a
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more complicated orthogonal projection theory, but this approach did not 
meet with much success, A more elegant and conceptionally simple method 
was then developed, based on a reappraisal of the problem. Consider the 
graphical representation of the matrix output equation (5.31), illustrated 
in figure (2$), Ihe state vector of the system is that at position(a), 
but if one.considers the delay elements as being included in the dynamics 
of the system, rather than in the output vector generator, the state vector 
would be that at position (b). The state vector would then be

1
The state transition equation of the controlled system would then be, 
assuming for simplicity that B(N-j ) constant value B

oC (T) « • c • 0
0

0

1

where oc(t) + G(t)b

and /S(S^) = c* (T-<r)c<; (t)"̂
with k = integer part of 5j_/T and cr =

and the output matrix equation would be

y(ôT) = ^  I Mg ] x(jT) + w (oT)

- kT.

Thus, by changing the formulation of the multiple measurement delay
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problem, it has been reduced to a problem similar to that already- 
solved in the derivation of the Kalman filter* The optimal estimate 
of the state vector can therefore be calculated by the substitution of 
the augmented state matrices into the. difference equations (5*22),

(5.23) and (5.24).

It is illustrative to consider the case where is only non
null for i « 1 and the delay in measurement is equal to one sampling 
period. In this case, the controlled systems transition matrix can 

be. considered as

§ (j) §(j) 0
.0 j(j-i)

and the augmented output matrix is

M

Assuming the augmented matrix V(j+l) of equation (5*24) to be suitably 
partitioned, i.e.

7(j+l) V̂(j-fl)’
^^(j+l)

and hence, substituting into equation (5*22), one obtains the optimal 
estimate of x(j+l), knowing y(j+l) as
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x(j+l/j+l)
.x(j/j+l)

«3
(5.53)

The terminology is such that x(j/j+l) is the orthogonal.projection of 
x(j) on space Y(j+l), where the latter is space made up of all linear

combinations of y(k), k^sj+1. If one considers y(j+l) to be the ideal
measurement with no delay as used in derivation of Kalman filter, then 
y(j+l) is equivalent to y(j) and x(j/j+l) and x(j+l/j+l) are equivalent 
to x(j/j) and x(j+l/j) respectively. The two algebraic equations of 
equation (5.33) become

x(j+l/j) =§(j) x(j/j-l)-T̂ (j+l)[M̂ 5(j-l)x(j-l/j-l)-y(j)] (5.54)

and

x(j/j) = 5(j-)x(j-l/j-l) - V2(j+l)&Î i(j-l)x(j-l/j-l)-y(j)} (5.55)

Note that equations are interrelated through vector x(j-l/j-l). The 
equation (5*34) is in the form of a predictor, predicting x(j+l/j) 
from x(j/j-l) (c.f, equation (5*2l)), In this case there is an 
additional correction term, due to the difference between the predicted

value and the actual value of the measurable output y(j). On the

other hand, equation (5.35) is in the form of an estimator, estimating 
x(j/j) from x(j-l/j-l) (c.f. equation (5.22)). Again, there is a 
corresponding correction term.

The above particular^ case of the multiple measurement delay problem
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has therefore been shown to he a combination of a predictor and an 
estimator, as was envisaged when the problem of multiple measurement 
delays was formulated at the beginning of this sub-section. .

5 , 3 . 4 .  -  A  S U B - O P T i m  E S T IM A T IO N  A L G O R IT H M .

The matrix coefficients of the difference equation governing 
the optimal estimate of the state vector in both the no-delay and • 
multiple delay systems are time dependent, due to matrices V(j+l) and 
§(j). If the control optimisation is to be carried out over a 
sufficiently long time interval, then ÿ(j) will be time independent, 
a property that will be assumed to hold in the remainder of this 
sub-section. The problem of V(j+l) remains. It would be of 
practical interest to develop a time invariant sub-optimal estimator 

and thus considerably reduce the complexity of the system. This 
will be carried out by investigating the generalised inverse solution 
of the difference equation in V(j+l), namely

V(j+1) = J(j+l)M'j[MJ(j+l)M' + w(j+l)]“  ̂ (5.36)

In the above system w(j+l) is the covariance matrix of the 

independent zero mean measurement noise. If, as is more likely, the 
measurement noise is correlated, a white noise representation must be 
used. In this case, the white noise is considered as a disturbance 
input associated with a filter, which augments the dynamic state equations.
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The correlated measurement noise input is then one of the state variables 
of the system, and the output equation no longer contains an additive 
measurement noise vector w(j). In this more general case, or in the 
case where there is no measurement noise, the covariance matrix W( j+l) 
is zero. Hence, premultiplying equation (5*36) by M yields

M7(j+l) = I (5.57)

The solution of the vector equivalent of equation (5*37) has been 
extensively studied by Penrose (52) for the case where M is a singular 
or rectangular matrix. The solution of equation (5*37) can be proved, 
by direct substitution, to be

v(j+l) =

where is the generalised inverse of M, hence = M

and C is an arbitrary matrix.

Since M is a constant matrix, so is its generalised inverse. The 
arbitrary matrix C would ideally be time varying, so that v( j+l) 
could adopt its optimal time dependent values. As a first approximation, 
nevertheless V(j+l) could be equated to and the resulting sub-optimal 
estimation equation corresponding to equation (5*22) would then become

Xg(j+l/0+l) =$Xg(j/j) - M’̂[m Xg(j/d) - y(j+l)]

where subscript s refers to sub-optimality*

In this time invariant coefficient equation, the correction term is
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premultiplied by rather, than V(j+l). Equation (5#38) can be
rearranged to give

Xg(j+l/j+l) » M"̂ y(j+l) + f x^(j/j) (5.38)

To add some justification for making the above approximation for 
V(j+l), consider the optimal estimation equation (5.22) premultiplied 
by M, which gives

K^(j+l/j+l) = y(j+l) since M V(j+l) = I.

The solution of this equation can be proved by substitution to be

x(j+l/j+l) = M'y(j+1) + (5.39)

where c is an arbitrary vector.

The structure of equation (5.38) and (5*39) are similar with arbitrary 
vector c in optimal equation replacing vector ̂ x^(j/j) in sub-optimal 
equation. The matrix coefficients M*** and being identical in
both cases adds some justification for making the simplifying assumption 
that V( j+l) be replaced by M"*". This approach to reducing the complexity 

of the composite control-estimation system is applicable to both no-delay 

and multiple measurement delay systems.

So far the generalised inverse of M has been used without any 
indication of how it is calculated. As a result of the proposed 
relationship between V(j+l) and M’*’, a method of determining M"*" was devised
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by considering equation (5*24), in which it is assumed that W(j+l) is 

a null matrix, i.e.

n-1

In practice, the output matrix N has ranlc equal to its smaller dimension, 
otherwise there would be dependent outputs. To ensure the existence 

of the inverse, the matrix j(j+l) must be positive definite, so let 
j(j+l) be the unit matrix, then,

V « M [m \,1-1

*The matrix couple V and M are such that

(a) MV M = M

(b)
* * V MV = V* •

(o) (IW")'
*= MV

(d) = V M

*If all these conditions hold, then V is by definition the generalised 
inverse of M (52). The generalised inverse of M can therefore be 
calculated from equation

m’*' =

In order that the sub-optimal estimator be of practical use, 
it must result in a convergent sequence of covariance error matrices. 
Making approximation that V(j) « for all j, results in an iterative
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equation for J(j+l) corresponding to equation (5#25)# Assuming a 
non-zero measurement covariance matrix W(j), although a null matrix 
was assumed in the justification for the approximation, one has

Jg(j+1) Jg(j) + S(j)

where subscript s refers to sub-optimality.

By successive substitution and assuming that the statistics are 
stationary.

where o( = ̂  3

If all the eigenvalues of matrix oi lie within the unit circle in the 
z-plane, then J^(j+l) will tend to a limit defined by

i
f  Jg(ô+i) = [e
oO

5.5.5. - EXAMPLES OF ESTIMATORS

To illustrate the results achieved by using the before- 

mentioned estimators, two examples will be detailed, in which
(a) the optimal and sub-optimal estimators • 

are compared,
and (b) the optimal and delayed optimal estimators are 

compared.
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(a) The system considered is

\(t)' -0,5 1 ' \(t)- + "O' + ‘I-

.0 -1. i ,1, 0 m m

u(t)

with intersample criterion equivalent to + Xg(t)^ dt,
O

The output equation is assumed to be

y^(jT) =fl 1 1 [x^(jT) XgfjT)]

The sampling period is 0,5 secs. The disturbance noise input is an 
independent non-white sequence of delta functions with a fixed interval 
of 0,1 secs, between each impulse. The covariance of the continuous
noise input u(t) is 0,155 units , The resulting'discrete covariance
matrix of disturbance noise input is calculated to be

R 5,24624io"2 0
0 0

To examine the performance of the estimators devoid of control 
considerations one need only examine the error covariance matrix. The 
above example was chosen because it allows an illustrative comparison 
between the optimal and sub-optimal estimators since it represents the 
estimator equivalent of a dead-beat system, i.e, the error covariance 
matrix converges after one iteration to have a value equal to its 
initial value. The error covariance matrix is thus
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optimal 

With V(j)

5.24624io-2 0 H

1 
0 i

0  0  J
for j ^ 0,

On the other hand, the sub-optimal estimator is not of the dead-beat 
type and talces seven iterations to converge to value

sub-optimal 5.67455io - 2 -1,80912^0-5

7,65840̂ 0-4 JL-l,80912io-5

with the constant generalised inverse of [l 1% being

0.5 

L0.5

The reduction in optimality by using the generalised inverse approximation 
is seen to be two fold, Firstly, the error covariance associated with 
x^(t) is increased in the sub-optimal case. Secondly, whereas in the 
optimal estimator, the error auto and cross covariance associated with 
x (̂t) was zero, the sub-optimal estimator no longer maintains these 
zero values. The overall increase in the covariance is nevertheless 
small for this particular system, which would indicate the acceptability 
of the considerably less complex sub-optimal estimator.

(b) For the second example, the system considered is

\ ( t ) ' IS -0.5 1 + "o' m̂ (t) +

» «
0. ■ -1 

m .
1 ■ m 1

1

u(t)
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The performance criterion, sampling period and noise input are assumed 
to be the same as those in example (a). In this case, the discrete 
covariance matrix of the disturbance noise input is'calculated to be

R 5.56722̂ q-2 9.5i874io~5
,9.51874io-5 4.2l415io~2 _

The optimal estimators for a no delay and a single period delay in the 
measurement output are to be compared to illustrate the deterioration 
due to a predictor having to be added to the estimator in the latter case, 
The output equations are

(i) No delay: y (̂jT) «-x^(jT) + XgfjT)

(ii) Single delay: y^(jT) = x^(jT) + Xg(j^ T)

For the no-delay measurement, the covariance error matrix was found to 

converge after seven iterations, to give

no-delay 6.18680 0̂-2 6.90278 0̂-3
6.90278 0̂-3 ■ 4.3245810-2

In the case of delayed measurement of output, the corresponding partitioned 
part of the error covariance matrix converged after sixteen iterations to 

give

delay 6 . 9 8 7 3 8 1 0 - 2  -4.35125i o"3
_-4.35125iQ-3 5.8895O10-2
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The introduction of measurement delay therefore increases the number 

of iterations for the covariance error matrix to converge and also 
increases the auto-correlation error componenets, i.e. the diagonal 
elements of matrix J. The off diagonal or cross-correlation components 
are seen to be reduced, but this is of minor importance. The delayed 
measurement system, as expected, results in an overall deterioration 

in the estimator.

5,5.6, - COMPATIBILITY OF OPTIMAL DIGITAL CONTROL 
AMD ESTIMATION ALGORITHMS.

The optimal digital control techniques developed in Chapter (2) 
required that the additive disturbance noise be independent. On the 
other hand, the optimal estimation procedures developed in this chapter 
required the disturbance inputs and also the measurement inputs be 
independent. The restriction on the noise inputs are therefore 
compatible for both optimal control and estimation.

To increase the class of systems to which the optimal control technique 
was applicable, it was found necessary to resort to the white noise 
representation already discussed. Since the variance of pure white 

noise is infinite, some of the elements of discrete covariance matrix 
will have infinite values. In practice, ideal white noise does not 
exist, there being only approximations to it (of Appendix (g )), whose 
spectral density remains flat over a sufficiently large frequence range, 
but eventually tends to zero at high enough frequencies. The discrete
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covariance matrix will therefore have some elements, whose values tend 

to he large valued hut finite.

By the duality property between j(j+l) and P(N-j) one can write the 
norm inequality

II J(0) w < \\j(j+l)U for j » 0.

where |l j(o) \l « y J(0) y for any arbitrary vector y« '

Since J(o) = R(0),

II R(0) U S U \\ for j > 0.

Hence the covariance matrix of the error between the actual state and
its predicted value, note not its best estimate, will contain some 
large valued elements, particularly on the diagonal. The large values 
of the norm of J(j+l) indicate that the estimate of the state vector is 

poor, although in fact optimal. The implementation of the optimal 

digital control policy, using an optimal estimator for white noise 

configuration would therefore result in a system* s performance, which ■ 
was considerably inferior to the performance with ideal measurement,

5,5.7. - STJB-OPTIMAL ESTIMATION IN A BETERĵ UNISTIG SYSTEM.

In a deterministic system in which the number of the output 
variables measured at each sampling instant is less than the order, p, 

of the system, one need only measure the output at successive sampling
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instants, until one has p independent output measurements to be able to 
calculate the initial and all subsequent state vectors (assuming that 
the system is completely observable)* This approach suffers from a high 
sensitivity to the set of initial measurements of the output, a 
disadvantage common to feedforward systems* The sub-optimal estimation 
algorithm can be used to develop a less sensitive feedback structure. 
Initially, one does not know the complete state vector, so let the 
initial covariance error matrix have some reasonable assumed value, as 
if a random disturbance were present* The sub-optimal estimator is 
as before

s

which has a continually updated, i*e* feedback, structure and does not 
rely solely on one set of initial measurements; thus it is less sensitive 
to measurement errors and noise disturbances, which may exist but have 
not been taken into account.

Since the R(j) and w( j) are null matrices, the limiting value of the 
error covariance matrix would be

j(j+l) “ J(0)

where ^

which would tend to zero if all the eigen values of were within the 
unit circle in the z-plane*
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If one attempted to use the optimal estimator for a deterministic system, 

then immediately p independent output variables had been measured, the 

covariance matrix becomes zero and the inverse in the difference 
equation for V(j+l) no longer exists* Further values of the state 
vector could then only be calculated by the sensitive feedforward 

procedure#•

The use of the above sub-optimal estimator in a deterministic 
system is an alternative to the previously proposed best linear control 
policy technique# In general, the state dynamic equations would have 
to be rearranged in terms of the output variables, before one could 
directly apply the best linear control technique* A drawback of the 
sub-optimal estimator is that it requires a finite memory, since the 
previous best estimate of the state vector is used in the calculation 
of the succeeding best estimate# The sub-optimal estimator for 
deterministic systems would therefore result in a considerably more 
complex system than the best linear control system*

5*4. - OPTIMAL SYSTEM STABILITY,

Although a system may be optimally controlled according to a 
prescribed performance criterion, the overall system is not automatically 
stable* The conditions, derived in Chapter 5» which ensure the existence 
of an optimal control input and hence the convergence of the performance 
index, are alternatively, the sufficient conditions required to prove that 

the state variables which appear directly or indirectly in the performance
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criterion are stable. The state variables not contained in the 

performance criterion may, however, be unstable without adversely 
affecting the optimality of the system. If the coefficient feedback 
matrix is known, then the stability of the optimal transition matrix 
could be determined by an examination of the eigenvalues of that matrix*
At the outset of the optimal calculations, the coefficient feedback 
matrix is unknown, therefore this simple approach to stability analysis 
is thwarted* It should also be remembered that the convergence of the 
optimal iterative equations for augmented systems and the quasi-analytic 
proof of computational stability depended on the controlled system being 
completely stable# It may not, therefore, always be possible to calculate 
the optimal feedback matrix and the direct approach to stability analysis 
may not be feasible. It is intended in this section to devise a complete 

stability condition based on the uncontrolled system’s dynamic equations 
and the performance criterion*

5*4.1. - PERK)RMLA3̂ CE CRITERION VARIABLES*'

The state variables can be included in a performance criterion 
in two ways, namely, directly through the state cost matrix Q, or 
indirectly through the control cost matrix E. In practice, the control 
input vector is usually weighted and is in general a function of all the 
state variables* The performance criterion therefore usually includes 
all the state variables of the system either directly or indirectly#
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For a linear undisturbed system, the optimal steady state is reached when 
all the steady state variables appearing in the criterion become zero# 
Sufficient conditions have already been determined, which prove the existence 
of an optimal trajectory, and hence a null steady state vector for those 
state variables, which appear in the criterion# Thus, if the cost 
control matrix is non-null, the optimal system will in general be stable#
If the state cost matrix were positive definite, then one could categorically 
state that the optimal system would be stable, but this matrix is seldom 
positive definite in practice#

Of more interest is the best linearly controlled undisturbed 
system, in which only some of the state variables are prescribed as being 

included in the control input# It will be assumed that the control input 
is, in fact, a linear function of all the prescribed variables, and that 
the control cost matrix is non-null# The unprescribed variables are 
therefore not included in the criterion unless they are included directly 
through the state cost matrix Q# Although the corresponding sufficient 
conditions for optimality (of sub-section (5*2#5#)) ensure that variables 
appearing in criterion attain a null value, the trajectory of the 
unprescribed variables not appearing in the criterion may be unstable#

5.4,2. - STABILITY COEDITIONS.

The stability analysis to be used is based on the first method 

of Lyapunov (55) ue applied to discrete systems. The stability theorem
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can be stated as -

If a system can be described by the difference equation

x(j+i) T) -§(t) x(jT)

and there exists a function V [x(JT)j which is mathematically 
continuous and has the following properties

(a) V [x(jT)] is positive definite for Hx\\ / 0, where 
the norm is the euclidean norm,

(b) the first forward difference, tk V [x( jT)] , is 
negative semi-definite for II x \\ / 0,

and(c) V =o for % x% — # oo .

then the system is stable inasmuch as for every finite subspace of 
state vectors, £>0, there exists a corresponding subspace S> 0, such 
that whenever || x(jT)||<S> ||x(rT) || is contained in £ for r > j#

For the sake of simplicity, it is assumed that the coefficient feedback 

matrix has its converged best linear value. This is not a restriction 

on the analysis, since if a linear system can be proved to be stable 
over some time interval t^^ t<-t̂ , then it is also stable over the 
time interval t̂  <,t <.tg, where "**2^ The best linearly controlled
system is therefore described by
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x ( J + î  T) -f^(T) + G(T)Blx(jT)
(T) x(jT) " , , (5.40)

As a possible Lyapunov function, consider the function
H

V x(jT) = 2]x'(jT) Q x(jT) ' (5.41)

where Q. is a matrix with unity on diagonal corresponding to all
the state variables, which appear directly or indirectly in the

performance criterion governing the system.

The function of equation (5.4%) is mathematically continuous in the 
state x(jT) and has properties,

(a) V [x(jT)3 is positive semi-definite, since it
is a function of only some of the state variableŝ

(b) AV [x(jT)3 is negative semi-definite, since 
matrix Q is positive semi-definite

and (c) V [%( jT)] -» ̂  if and only if j|x(jT)\\ —♦ 00 , 
since only those variables which appear in 

performance criterion appear in v[x(jT)3 and hence 
it has an upper bound for finite |\ x(jT)\l «

All the conditions for stability hold, except V [x(jT)] is positive 
semi-definite, rather than positive definite for  ̂x(jT)HjiéO. It 
is therefore necessary to determine a further set of conditions which, 

when satisfied, ensure that V [x(jT)3 is, in fact, positive definite*
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To this end consider a system of order p, which is described by the 

partitioned difference equation equivalent to equation (5*40)# namely

11 !' ^  12
S 21 i §

V(j+1 t)' “ r
_z(j+l T). L 22 a

' y(JT)'
z(jT)U, ■

in which the state vector has been partitioned into a vector, y(jT), 
of variables which appear in the Lyapunov function, and a vector, 
z(jT), of variables which neither appear in criterion nor are specified 
to appear in best linear control policy# The partitioned parts ^ 

and ^ 22 of the controlled system will therefore only contain the 
corresponding elements of the uncontrolled systems state transition 
matrix and therefore will be independent of the feedback coefficient 

matrix. The vectors y(jT) and z(jT) are defined to have dimension 
q and (p-q) respectively.

Let it be assumed that y(jT) is a null vector, then for y(j+l T) also 
to be a null vector

row(i) z(jT) = 0 for i = 1, z, ,,,q# 

where row(i) is i th row of

(5.42)

If equation (5.42) is satisfied, then z(j+l) « ̂ gg z(jT) and condition 
for y(JT2 T) to be zero is

row(i)§22 z(jT) - 0 for X 1, z, #. #q.
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Similarly, y(kT) is null if

rov(i) ̂  22 z(jT) = 0 for X 1, 2, #*#,q 
and n « 0, 1, .#,#k-l

In matrix notation, the condition that y(kT) = 0 can be written

row(i) 

row (i) §22

row (i)§ k-l22

z(jT) for i « 1, 2 ..,q. (5,45)

By linear algebra, if the matrix in row(i) and^g k=p-q has rank 
equal to its dimensions, i.e. p-q, then, for equation (5,45) to be 
obeyed, the vector z(jT) must be a null vector. Due to choice of 
the Lyapunov function, the only occasion when the latter is zero is 
when y(jT) is a null vector. If y(jf) is a null vector, then so also 

is z(jT) for all future time if

Rank f row(i) j row(i) $ gg ! .... row(i) $ P-Q. (5,44)

Hence, if this additional condition is satisfied v[x(jT)'] is positive
definite for || x(jT) || ̂  0. Tlie undisturbed best linear control
system can thus be proved stable, if condition of equation (5.44) is
satisfied. To obtain this result, it must be remembered that it was
assumed that the control cost matrix was non-null and that all the

the
state variables which were prescribed as being included iiŷ best linear
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control policy were, in fact, included# Otherwise one could not 
derive a stability condition equivalent to equation (5#44)» which ^
was independent of the feedback coefficient matrix#

5,5, - DETERmmTIOH OF SAMPLING PERIOD

In classical sampled-data theory and more p̂ irticularly in 
optimal digital control theory, the determination of the sampling 
frequency has not received much attention. In classical theory the 
sampling frequency seems to be usually chosen by either of two methods 

(a) The empirical rule method, in which the
sampling period is chosen to be l/n times
the predominant time constant of the system, 
where n varies from 2 to 20, depending on 

reference#
or (b) The ripple factor method, in which a factor, 

which is a measure of the intersample ripple, 
is minimised by reducing the sampling period 
until the factor satisfies the system’s 

specifications (48)#

In optimal digital control systems, the quality of the responeeis 
determined by the resulting performance index; therefore, a 
quantitative method of determining the sampling frequency should be 
based on the variation of the optimal performance index with the

sampling period# For reasons of reliability and econony, the smaller
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the sampling frequency the better. The optimal sampling frequency 
could be defined as the smallest frequency which upon further reduction, 
does not significantly reduce the performance index of the system.

The ultimate performance index of the system is directly dependent 
on the initial state vector of the system since

[x(0)] - x'(0) P(K) x(0)

where P(K) is E.D.R, matrix of dimensions (n* n)

It would be preferable to have a method which was independent of the 
initial state vector, but such a method would necessitate the 
examination of the -|n(n+l) independent elements of the symmetric 
matrix P(r ), This approach becomes exceedingly tedious for systems 
of even modest order so, as an alternative, the index-sampling period 
graph can be determined for a specific initial state, and hence an 
approximate range of possible sampling periods could be obtained,
A particular sampling period could then be determined by a closer 
examination of the elements of the E,I),R, matrix in this range.

To illustrate the typical performance index sampling period 
curves and to show relationship between optimal sampling period method 
and the empirical rule method, two examples are detailed below,

(a) Second order damped oscillatory system:
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The. system of this example is described by the differential state equation

0 0 1 + "O'
X2(t) _ -17.796 -ijLxgCt)] .1 .

which is to be optimally controlled according to the intersample criterion 
equivalent to J ^^(t) + Xg(t) + m^(t) ] dt*

The graph of performance index against sampling period for the initial 

conditions x^(o) = ^2^̂  ̂“  ̂unit is shown in figure (24)# Significant 
divergence of the index is not apparent until a sampling period of 

approximately 0,5 units. The method of determining the sampling period 
is not precise due to the qualitative terra significant. The amount of 
trading of optimality for increased sampling period will depend on the 
particular problem being studied, so each case would have to be judged 
on its own merits.

Figure (24) also shows the relationship between the time constants 
of the uncontrolled system, the sampling period and the performance 
index. The eigenvalues of continuous system are

Ik 12 = -2 - 34.1887902
from which the exponential time constant is 0,5 units and period of 
natural oscillations is 1,5 units. From Figure (24) the index begins 
to increase rapidly at approximately half to a third of these values#
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The approximate relationship of a half to a third was found to he the 

case in many numerical examples analysed* The empirical rule that the 
predominant time constant and the sampling period are related in a ratio 
of 1 to 4 would give a reasonable sampling period, if anything a slightly 

overcautious estimate*

(b) Unstable second order systems

The system of this example is described by

as 2 1 " \(t)" "O'

.
0 -1 • •* .1.

niĵ (t)

which is to be optimised according to the intersample criterion equivalent
to J [x̂ (t) + Xgft) + m^(t)] dt.

The graph of the performance index against sampling period is shown in 
T’igure (25) for the initial conditions x (̂o) = Xg(o) » 1 unit* This 

would indicate a sampling period in the approximate range of 0*1 to 0*2 

units* In the case of unstable systems, the predominant root is the 
unstable root, which does not have a time constant in the conventional 
sense of the term. The empirical rule for determining the sampling 

period therefore breaks down for unstable systems, and one must, resort 
to an examination of the index-sampling period graph*
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CHAPTER 6 -  TWO EKAMPLES

In this chapter, two systems, namely the output concentration 
control of a chemical reactor and the short period pitch control of an 
aircraft, will be examined# Both these systems are basically non
linear systems but, for the digital optimisation analysis which has 
been developed, it is necessary to linearise them. The two systems
were chosen because the reactor was unstable if uncontrolled and, as a
result, is difficult to control, whereas the aircraft was stable and is
thus easily controlled# The details of the dynamics of the systems and
the notation used in their description are given in Appendices E and F, 
The two systems will now be examined in turn#

6#1, - THE OUTPUT CQKCENTRATIOH CONTROL OF A CHEMICAL REACTOR.

6.1.1, - THE PERFORMANCE CRITERION

Firstly, one must decide upon a performance criterion.
Minimum deviation from the maximum steady state product concentration 
is desired, thus the linearised product concentration perturbed variable 
is naturally weighted# The reactor temperature and the control inputs 
are also assumed to be weighted# The absolute values of the elements 
of the performance criterion cost matrices do not influence the 
calculation of the coefficient feedback matrix; it is only the relative 
weighting between the elements of the matrices which matter# The 
relative weighting was determined by the rule of thumb that the cost of a
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2^ variation in the steady state values of the product concentration 

should equal the cost of a 5^ variation in each of the other weighted 

variables# All the linearised perturbed variables were normalised by 
dividing by their corresponding steady state values (cf Appendix E), 
and thus the performance criterion was defined by the intersample 
criterion equivalent to

( Î

e O
x^(t) + 0,l6T^(t) + 0.16 fg(t) + 0,16 at . (6.1)

product
where is the output/concentration,

T is the reactor temperature, 
fg is the control input flow of reactant 2, 
f^ is the control input flow of cooling water 

and all variables are the linearised perturbed variables#

6#1#2. - CHARACTERISTICS OF SYSTEM WITH NO RECYCLE BYHAMICS.

The linearised reactor configuration, where it is assumed that 

there are no recycle dynamics in the feedback path, is governed by the 
equation

y(t) « A y(t) + D m(t) (6.2)

where y^(t) for i * 1, 2, ....5 are the respective 
reactant concentrations in effluent flow of
reactor (cf Appendix e),

y^(t) is the reactor temperature,
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m^(t) is the input flow of reactant 2,
MgCt) is the input flow of cooling water, 

and all variables are linearised perturbed variables#

The matrices A and D are defined in Figure (26) for a reactor temperature 

of 662°E,

It is found that the eigenvalues of the system are

. X 1 2 *“ ■*" 6*95 “ j 1*99 
- 21.65 - j 1.09 

X 5 - -8.96
X g  -  - 316.15

The system is therefore unstable and, in agreement with the approximate 
computational stability analysis, it was found that the iterative 
procedure for calculating the E.D.R* matrix sequence was extremely 

computationally unstable# The proposed progressive stability technique 
nevertheless enabled an accurate determination of the E.D.R. matrix 
sequence free from instabilities# A possibility also exists of there 
being periodic index instabilities due to the system having complex 
roots, but upon calculating the controllability numbers for the critical 
periods of 1*5?8 and 2,#878 hrs., it was found that since the system had 
two control inputs, the controllability number was non-zero# In .any 
case, the critical periods are considerably in excess of the chosen 
sampling period, as will be seen in the next sub-section#
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6.1,2. " smPLIEG PERIOD

To determine a suitable sampling period, the graph of the 
performance index against sampling period was constructed for initial 

conditions = 0.01 and y^ « 0,025* It is illustrated in Figure
(27). The monotonically divergent curve is typical of those for 
unstable systems, A sampling period of 0,05 hrs, was decided as being 
a compromise between optimality and a large sampling period. Examination 
of the E.D.R, matrix in the vicinity of this period indicated its 
suitability for all initial conditions.

The corresponding curve for the best linear control policy is also 
illustrated in Figure (27) for the case where the state variable y (̂t) 
was not permitted to appear in the feedback.control matrix. It is 
noticed that the divergence of the curve is considerably increased, and 
that a much lower sampling period is indicated. The reason for the 
increased divergence can possibly be explained by the results obtained 
in the analysis of the sensitivity of optimal systems, A change in 
sampling period is essentially the same as a change in the system’s 
parameters. It was noted in Chapter 4 that the optimal system seemed 
to result in an-insensitive system; thus one would expect a sub-optimal 
system, such as the best linear control policy, to be more sëMëitive 

to parameter variations, and thus to variations in the sampling frequency. 
The increased divergence for the best linear control system is a 
characteristic common to many systems, a second example being illustrated

in the case of the aircraft pitch control system.
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6.1,4, - OPTIMAL STATE TRAJECTORY.

The optimal state trajectories of the reactor concentrations 
and temperature were determined by digital computation for a sampling 

period of 0,05 hrs, and initial conditions of y^(o) •» 0,01 and 
y^(0) * 0,025, i.e. and 2,50 perturbations in the steady state 
values of the product concentration and reactor temperature respectively.
The optimal feedback coefficient matrix was found to be

B . [4.469^0+0 2.822^q+0 5.124io-l 1.042^q+0 -1.575;̂ q+0 6.776̂ q+1

4.105^0+0 2.768jq+0 2.857^q-1 l,045iQ+0 -1,5843̂0+0

Reduced copies of some of the graphical output of the author’s simulation 

program are shown in Figures (28), (29), (50) and(3l). In Figures

(28), (20) and (2l)* it is seen that even for the very small initial 
perturbations, the trajectories exhibit excessively large perturbations

in the product concentration and control flow inputs. Even larger
/

perturbations occur in the unweighted variables, so much so that some of 

the perturbed variables have maximum values of greater than - 1000 of 
their steady state values. The linearised model of the chemical reactor
is therefore completely inadequate for optimisation purposes with the
proposed performance criterion. It might be possible that a performance 
index which weighted all the state and control variables could be derived 

on a trial and error basis, such that excessive perturbations were not 

evident. In this case, one is no longer optimally controlling the system
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to minimise the deviations in the product concentration, hut one is 
simply altering the criterion for no reason other than to solve the 
large perturbation problem, The author found that even weighting 
all the elements equally did not result in an acceptable state 
trajectory. It must therefore be concluded that the idealised chemical 
reactor problem cannot be optimally controlled without taking into account 
its non-linear dynamics.

Similar results also hold for the best linearly controlled system,

6,1,5. * SECOND KEAQTOR COKPIGURATIOIf,

• The second, slightly more realistic* reactor configuration, as 
discussed in Appendix E, allowed for a first approximation Fade filter 
being included in the recycle path. It was assumed that the pure time 
delay to which the approximation was being made was 0,02 hrs. The resulting 

dynamic state equations are

z(t) = A z(t) f D m(t) (6,5)

where z.(t) for i = 1, 2 ,,,,6 )
/ are defined in equation (6,2) 

m^(t) and mg(t) )
and Zy(t) is the recycle concentration of reactant 1.

z8 M tf " n tt 2,
2 ( t )  t. .1 ,, . I. " '( 3 ,

The matrices A and D are defined in Figure (32)»
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Again it was found that the optimally and best linearly controlled system 
resulted in a system with excessively, large deviations in the state 
trajectories,

6,1,6, - THIRD HEA.GTOR COMGÜRATION.

The third reactor configuration, as discussed in Appendix E, 
allowed for a pure time delay of 0,02 hrs, to be included in the recycle 
dynamics. The system equations in this case are described by the 
difference differential equation

y(t) = Â y(t) + A^y(t-0,2) + Dm(t) (6.4)

where y(t) and m(t) are defined in equation (6,2),

The matrices Â , Â  and D are defined in Figure (53).

Using the methods proposed in Chapter 2, the state difference equation 
approximately equivalent to equation (6,4) was determined, but not 
without difficulty. Due to system being unstable, the convergence of 
the various infinite series encountered was slow, so the calculations 
required a larger amount of computer storage space than was available.
The author had therefore to be satisfied with a slightly less accurate 
approximate state difference equation than he would have liked. As 
expected, this system arrangement once again resulted in excessively 
large state trajectory perturbations.
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It must therefore be concluded that even the more realistic reactor 
configurations cannot be optimally controlled by considering the 
linearised form of their dynamics and thence deriving the small 

perturbation optimal control policy#

6,2 - THE PITCH CONTROL OF M  AIRCRAFT

6.2.1, - THE PERFORMANCE CRITERION.

As discussed in Appendix F, it is desired that the pitch of 

the aircraft to a step input on the joy-stick should follow an ideal 
pitch trajectory as closely as possible. One must also take into 
account that the elevator angle and pitch rate must also be weighted, so 
as not to result in a system with excessively large values of either, 

which would be practically unacceptable. The relative weightings were 

obtained by the rule of thumb that a cost of a 2^error in (actual minus 
ideal) pitch should equal each of the costs of a 40° elevator angle and 
a 4°/sec, pitch rate. The resulting difference intersample criterion 
was thus equivalent to the integral criterion

J [  ̂+ 0,025 x^(t) + 0.25x|(t)| dt (6.5)

where notation is that of Appendix F.

6.2.2, - CHARACTERISTICS OF SYSTEM

The completely augmented state system for an aircraft altitude
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of 50,000ft, and a velocity of mach 1 is given in Figure (54). The 
state vector is fully augmented by the noise filter variables and the 
reference pitch variables, (cf Appendix F for notation).

The dynamics are stable throughout the flight envelope and, in the five 
particular combinations of altitude and velocity studied, it was found 
that there was no evidence of computational instability. This

.Vi
observation is in agreement with the computational stability analysis 
of Chapter 5* The system has a pair of complex roots, but due to the 
system being stable, there is no index instability at the corresponding 

critical periods*

6.2,5, - SAKPLING PERIOD

Typical graphs of the performance index against sampling period • 
are shown in Figures (55) sind (56) for two particular points in the 
flight envelope. In obtaining these graphs, it was assumed that there 
was no noise disturbance input and that the joy-stick step input was 10°, 
These figures indicate a suitable sampling period of 0,2 secs. This is 
a low value of period and would indicate possible difficulties in 
implementing the optimal control policy, particularly if any calculations 

such as updating the feedback coefficient matrix, were to be performed 

between successive samples. The predominant roots of the aircraft in 
both cases are the complex pair, whose exponential time constant, T̂ , 
and natural period of oscillation T̂ , are shown on the time axis of each 
graph. It is seen that there is an abrupt rise in the performance index
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as the sampling period approaches these values# This shows the 
approximate relationship between sampling period and the predominant 

time constants as noted in Chapter 5#

It was found that the performance index for a sampling period of 0,2 secs, 
was remarkably constant throughout the flight trajectory, as can be seen 
from the following table

Altitude (ft,) Kach No, Performance Index
10.000 0,5 27,4
40.000 0,5 29.8

10.000 1.5 24,5
40.000 1.5 29.9
30.000 1,0 27.8

This would indicate that the optimal performance of the aircraft, although 

it has widely differing stability characteristics, has been forced to 

respond in such a way as to be approximately independent of its uncontrolled 
dynamics. The associated optimal feedback coefficient matrices naturally 
do not carry through the approximate constancy of the performance indeces; 
thus, to obtain a response independent of the position in the flight 
envelope, it would be necessary to continually update the feedback 
coefficient matrix with the aircraft’s position in its flight envelope*

The performance index-sampling period graph is also shown in Figure (35) 
for the best linear control policy for the case where the fictitious
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state variable ^ (̂t) is not included in the control policy generator. 
There is a considerable increase in the divergence of the curve compared 
to that of the unconstrained control policy* . This would indicate that 
feedback from state variable x̂ Ct), although the latter is fictitious, 
is important and would have to be implemented in some other way, possibly 
by using a dynamic feedback filter.

6*2.4. “ STATE TRAJECTORY*

The trajectory of the pitch, pitch rate, elevator and control 
input to the elevator actuator for a deterministic aircraft system 
(i*e* no noise disturbance) at an altitude of 30,000ft, and a velocity 
of Mach 1 is shown in Figures (37)> (58), (39) a^d (40) for a joy-stick 
step input of 10°, The feedback coefficient matrix in this case is

B- [1.107̂ 0+0 5.189^0-2 l'909io-l 7.577io-l -2.754io-l -7.240^Q-2^.822^Q-lj

If no cost weighting was put on the elevator angle and the pitch rate, then 
for a period of 0,2 secs, the actual pitch could be made to follow the ideal 
pitch, so much so that one would not be able to distinguish between the 

curves if plotted on same scale as Figure (37). In this case, however, the 
maximum elevator angle and pitch rate are -3.82° and 17.65°/sec, respectively, 
whereas for weighted performance criterion the maximum values are reduced to 
-4,69° and 12,75^/sec, respectively.
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6.2.5, - ESTIMATION OF STATE VECTOR VÆTH WHITE 
NOISE DISTURBANCE CONFIGURATION NOISE 
INPUT

Firstly, one must decide upon which of the state variables 
are measurable. Let it be assumed that there is negligible measurement 

noise and that the elevator angle, pitch rate and pitch are measurable#
The reference system’s variables are uncontaminated by noise, and therefore 
will be accurately measura’ble and have zero auto and cross-covariance 
elements associated with them. The output matrix equation can therefore 
be considered as

'yi(dT)' C3 "1 0 0 0 0 0 0 0 0*
0 0 1 0 0 0 0 0 0

7 5 (^1), 0L 0 0 1 0 0 0 0 0_

x(jT) (6.6)

The best linear control policy will be considered where one does not 

permit the fictitious variables, used in the white noise filter, to be 
included in the control law. The corresponding feedback coefficient 
matrix will have the identical elements associated with the other state 
variables, as they had in the case of the deterministic system. This 
is due to the control input and the other state variables having no 

influence on the response of the noise filter.

Although the white noise input has a theoretically infinite variance, 

consider the approximate case where the variance is 10 , The
corresponding discrete disturbance covariance noise matrix was calculated 

and is defined in Figuré (41). Note that the elements associated with
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the reference system axe not shown, since these are all zero. The zero 
values associated with the elevator angle, i,e, x̂ (t), are due to the noise 
input not influencing the elevator angle.

If one attempted to use the output matrix of equation (6,6) and the above 
discrete covariance matrix in the determination of the best estimate of the 
state vector, one finds that the inverse appearing in equation (5,24) does 
not exist, and therefore the method breaks down. To overcome this-, one 
must assume that the knowledge of the elevator angle is not used in the 
estimation. The output equation then becomes

0 0 1 0 0 0 0 0  0*

0 0 0 1 0 0 0 0  0.

In this case, the error covariance matrix converges after 20 iterations 
'to have a value defined in Figure (4I),

The values of the elements of the error covariance matrix associated with 
the fictitious white noise filter variables are naturally large, but since 
these are not included in the control policy, this is unimportant. The 
error covariance associated with the fictitious state aircraft variable 

Xg(t) is also large, i,e, 4.02658^ +̂5  ̂ since the correlated noise input 
is considered additive to the actuator output. The auto-covariance 
elements associated with the other state variables are acceptably low.

It has already been shown, when'considering the best linear control system 

of the deterministic aircraft, that the fictitious state variable 3Cg(t)

. y$(d^). L
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plays an important part in the optimal control policy. Since the optimal 
state estimation scheme results in an unacceptihly high error auto
covariance for x̂ Ct), one has not satisfactorily overcome the lack of 
knowledge about Xg(t), As the author indicated in Chapter 5> such 
difficulties indicate the need for an optimal control theory where, for 
linear systems, optimal transfer functions at specified points in the 
system* s structure could be determined, rather than complete state 
feedback. The best linear control policy is the first step in such a 
theory based on modem control techniques. Its use in the above example 

is advantageous in the case of removing the fictitious variables associated 
with white noise filter, but when one attempts to remove the aircraft’s 
fictitious variable, Xg(t), one must reduce the sampling period to almost 
zero or sacrifice a small performance index (of Figure (55)).
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CHAPTER 7 - CONCLUSIONS

Firstly, the author would like to point out that a research 
project such as the one reported in this thesis requires an exceptionally 
large amount of computer programming to he carried out. The author 

was not fortunate enough to join an established research group, which 
was interested in digital simulation and control, nor was he associated 
with an active computer department. As a result, the author has had to 
build up a computer library from scratch. This took some considerable 
time and effort, particularly as the hardware and software available 

for the ICDF 9 computer, which was installed in 1965* was always found to 
be one stage behind the requirements of the author. Originally the 
generalised simulation program was written in the author's algol matrix 
scheme but, due to the better storage facilities afforded by the official 

English Electric matrix scheme (55)* which became available with compiler 

errors in late 1965* the simulation program was rewritten in this 
language. One of the major bugbears of the computational work was the 
small storage space, 8192 words, which was available for storing the 
compiled programs. As a result, the final optimal control-estimation 
program had to be split into 6 parts, each of approximately 8,000 words, 

which automatically fed from one into another.

In the remainder of this chapter, the author sums up and draws some 
conclusions from the work reported in this thesis,

1, It has been possible to extend the class of systems, to which the



— 236 —

dynamic programming digital control technique is applicable, to include 

systems whose dynamics are described by difference differential equations, 
subject to the condition that all the delays appearing in the equations 
are multiples of some basic delay. The approximate method developed 
necessitates the use of a large, theoretically infinite, state vector.
The latter may in certain circumstances, such as unstable uncontrolled 
systems, prove to be so large as to forbid the solution of the 
optimisation problem by this method.

2. A discrete intersample quadratic performance criterion has been 
developed, which can be made equivalent to the continuous integral 
criterion, and thus is more acceptable from conventional design standards 
than the quadratic summation criterion. The corresponding digital 
optimisation technique was devised and shown to be a more general case of 
the quadratic summation criterion technique, A further generalisation 

of the optimisation technique was made possible by the development of 
the sub-optimal best linear control policy, in which case one could 
specify which state variables were allowed to appear in the state feedback 
policy, /

The theoretical convergence properties of the various unaugmented iterative 

equations used in the calculation of the optimal policy were examined with 
the aid of the partial controllability property of the system, the latter 
being introduced in easily understandable terms. The unaugmented optimal 
solution was shown to be convergent if the sufficient partial controllability
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condition was obeyed* In the case of augmented state systems, with non

zero mean noise inputs and difference performance criterion, it was found 
necessary to solve the optimisation problem by a direct method, which was 
then shovm to be equivalent to an augmented state solution, before the 
corresponding convergence conditions could be determined. These 
condititions turned out to be that the corresponding unaugmented state 
system was partially controllable, the controlled system was stable and 
the performance criterion was compatible with the system's dynamics.

An approximate computational stability analysis of the augmented E,D,E, 
matrix iteration indicated that the probability of computational 
instability was greatly increased if the uncontrolled system was unstable.
An alternative method of generating the E,b,R* matrix sequence was 
developed, which has since proved to be most successful in eradicating 
computational instability.

The stability and performance criterion compatibility characteristics 
of the uncontrolled system have thus been shown to affect the generation 
of the optimal control policy, although the digital optimisation technique 
would seem to indicate,on the surface,that the control policy could be 
generated independent of these properties,

3, In the analysis of the sensitivity of the optimal system's response 
to parameter changes, it was shown that two of the proposed sensitivity 
functions were automatically minimised as a by-product of the digital 
optimisation procedure, A method of minimising a third sensitivity function
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was developed, but upon its application, it was noted that the performance 
index of the insensitive system was, in all the cases analysed by the author, 
greater than the corresponding index for the perturbed sensitive system.
The sensitivity constrained system is therefore practically unacceptable*

4# The sub-optimal best linear control policy was developed as a first 
attempt at overcoming the problem of not being able to measure the complete 
state vector in deterministic systems. The resulting increase in the 
performance index, compared with that for the optimal policy, is found in 
many cases to be excessively large, and thus the best linear control policy 
is not a panacea to the measurement problem.

For stochastic systems, the convergence properties of the Kalman filter 
were examined in simple terms by considering a duality property that 
exists between the estimator and optimal controller for a quadratic 
summation'criterion. The Kalman filter estimator was then developed to 
include measurement systems with multiple state delays, which commonly 
occur in process control systems. By considering the generalised inverse 

solution of the equations used in the Kalman filter, a time invariant 
sub-optimal estimator was proposed which, at least in the example 
considered, gave reasonable results. The estimators proposed above are 
practical in the case of independent additive noise inputs but, for a 

white noise system configuration, ,which allows a larger class of systems
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to be considered, the 'resulting covariance error matrix can have v e r y

large valued elements and the estimate of the state vector is correspondingly
poor. Again, the measurement problem has not been conclusively solved.

It is thought that it would therefore be advantageous to develop an 
optimisation technique based on modern control theory, which would determine 
optimal transfer functions at specific points in the system, making full use 
of the measurable state variables,

3, Finally, the empirical relationship between the sampling period and the 
predominant stable system's time constant, which has been used in classical 
sampled-data theory for the determination of a suitable sampling period, 
is particularly obvious in the case of optimal systems. An approximate 
ratio of I/4 has been found to hold but, in the case when sub-optimal 
policies, such as the best linear control policy, are used, the ratio 
must be reduced.



- 240 -

4PEEEDIX A - THE PROGRAM«ÎED SOITJTIOH OF THE GENERAL 
DIFFEREHCE-BIFFBREHTIAL' EQHATIOH (2.1Ï).

As stated in Chapter 2, the matrix functions appearing
in the solution of the general difference-differential equation
(of equations (2,ll) and (2*45)) &re ideal for computer handling.
Five ALGOL procedures (54)* which determine the various matrices
appearing in equation (2*45) are detailed below* These
procedures are slightly simplified versions of those actually used,
the latter being considerably longer, due to various tolerance
conditions being included to save computer time. Since the matrix
infinite series in the solution were shown to be convergent, but not
necessarily elementally uniformly convergent, some care must be
exercised in the application of tolerances. For example, if a
tolerance condition is placed on then it is necessary when
applying the convergence test to consider groups of rather than
a single matrix. The group must contain at least as many consecutive
<h . as there are continuous transition matrices A.. Similar remarks r X 1
also hold for the other matrices determined by the procedures.

Wherever possible, the notation used in the derivation of 
the solution of the difference-differential equation has been carried 
over to the ALGOL procedures, but to clarify matters, a pair grouping 
is given below. In the case of array variables, only those parameters 
corresponding to the subscripts are shown, the other parameters 
corresponding to the row and column of the matrix elements are left 
blank.
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Procedure Result in notation of Procedure Notation
equation (2*43)

PIJ , f[-, -, i, j]
PHÏI -, 1]
S12J ( sip, -, j, k]

( S2j(Djj.) S2[-, -, j, k]
GIJ g [-, -, i, k]
GI Gap, *, i 1

The other general variable pair groupings are

Procedure Notation Analysis Notation

A [-, i1 4
D [-* -, i]
plant dimension of continuous transition matrix
control no, of control variables

statedelay r̂  of equation (2*ll)

ondelay r^ of equation (2.11)
period sampling period
delay s
interval interval of time over which one 

wishes to determine the solution

uplimitl upper limit on i in P. ,

uplimit2 upper limit on j in

ftol tolerance condition information 
storage delay

toll convergence tolerance measure
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The value of the variable interval is equal to the sampling period 
if one wishes to determine the system variables at one sampling period 
from those of past sampling periods# In the state equation (of Figure 2) 
the state at intermediate time intervals is also required, thus 
substituting a suitable value for interval allows the corresponding 
matrices to be determined.

There now follows the five procedures.
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70cedure FIJ(planta statedelay, interval, i, uplimitl, 
uplimit2, toll, ftol. A, F)j 

sal interval, toll;
iteger plant, statedelay, i, uplimitl, uplimit2;
)al array A, F; 
iteger array ftol;

begin
integer j, k, 1, m, n;
real array APHILI; plant, 1: plant];
if i = ü then

begin for j:= 0 step 1 until uplimitl do 
0 step 1 until uplimit2+l ^  '

Tf""j =* Ü ana k = 
for j := 1 step 1 un^iiT"plant do 
for k:= 1 step 1 until plant 3o" 
if j = k then F[J 
end else

Ü 'then ftol[j, k] := 1 else ftol[j, k] :» 0;

, k , 0, 0]:«“T  else F[j, k, 0, O]:« 0;
begin for j:= 1 step 1 until plant do
Ifbr 'k:= f step 1 until plant' ^  F ["3T k, i, 0]:» 0;
end;

for J:=* 0 step 1 until uplimit2 do
begin for k:= 1 step 1 until plant do
for 1;= 1 step 1 unfil plant ^  P [Ïc7 1, i, j +1 ] := 0;
for k:= 0 step 1 until statedelay do

begin if i-k < 0 then goto ZEROUT; 
if ftoTTi-k, j] = Ü then goto R1 ;
for 1:= 1 step 1 until plant do
'for m:« 1 step 1 until plant do

^egin APHI[1, mj:= 0; 
for n;= 1 step 1 until plant do
APni[l, m] APHI[1, m]+A[l, n, k]x

P[n, m, i-k, J];
APHI[1, m];= APHI[l, m]xinterval/(J+1)j
P[l, m, 1, J+1]:= APHI[1, m]+F[l, m, 1, j+1];
end;

HI : 
end;

ZEROUT:
for k:- 1 step 1 until plant 60^
for l:w 1 step 1 until plant do
ifabs ( F [ E ^ ,  1, j+1]) > toTT then ftol[i, j+l]:= 1; 
end;

end;
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rocedure PHII(plant, statedelay. Interval, uplimitl,
uplimit2, toll, ftol, F, PHI); 

eal Interval, toll ;
nteger plant, statedelay, uplimitl, uplimit2; 
eal array F, PHI; 
nteger array ftol;

begin
Integer i, J, k, 1;
for i:= ü step 1 until uplimitl do

begin VlJ(plantV statedelay, interval, i, uplimitl, 
uplimit2, toll, ftol. A, F);

for j:= 1 step 1 until plant do
'for k:= 1 step 1 unb'if plant PHI[J, k, i] :== p;
for 0 step 1 until uplimit2 do

begin 1 r ~ f tbl’[T," j J « ü then goto R2;
for 1 step 1 until plant" do
for 1:« 1 step 1 until plant Ho*
PHI[k, 1, TJT« PHlIkV“l, 1]+fTîc, 1, i, j];

end;
R2:end;

end;

rocedure 812J(plant, control, statedelay, cndelay. Interval,
period, delay, uplimitl, uplimit2, 
toll, ftol. A, D, F, 81, 82);

'eal interval, period, delay, toll;
.h'teger plant, control, statedelay, cndelay, uplimitl, uplimit2; 
'eal array A, D, F, 81, 82;
.nteger array ftol;

begin
real tau, sigma;
integer i, j, k, 1, m, n;
real array AG[l: plant, 1 : control];
comment preliminary partial calculation of S2J; 
for i:= 0 step 1 until uplimitl do 
for j:- 0 step 1 until cndelay do

begin for k;= 1 step 1 untTT plant do
for 1:= 1 step 1 until control do S5Tk, 1, i, j]2= 0;
for k:= 0 step 1 until uplimit2"Hb

begin if ftoTL'T; k] « 0 tHen goto R3; 
for 1;= 1 step 1 until plaSit' do
for m:= 1 step 1 until control 60^
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R3 :end; 
end;

begin AG[l, m]:= 0;
for n:= 1 step 1 until plant do
AGTI, m] :«“ÀGri, mJWCl, n, i7*lc]xD[n, m, j];
AG[l, m] AG[l, m]xinterval/(lc+l ) ;
S2[l, m, i, J]:« AG[l,.m] + S2[l, m, 1, j];
end;

;

comment calculation of SI J if interval > sigmai; 
for i 0 step 1 until uplimitl do

begin"tau;= periodxent1er(ixdelay/period); 
sigmaixdelay-tau; 
if sigma > interval then

begin for j:« U step 1 until cndelay do
for 1:= 1 step 1 until plant" do
for m:» 1 s^ep 1 until controT"do
BTTl, m, i7 j J :=
goto R5;
end;

for Ü step 1 until i do FIJ(plant, statedelay,
interval-sigma, J, i, uplimit2, toll, ftol. A, F)j 

for j:= 0 step 1 until cndelay do
begin for step 1 u n U l  plant do
for IT: = 1  step 1 unfil control do STTk, 1, i, j] %= 0;
for k:= Ü step 1 until up limit 2 " %

begin if ftolLi, kj = 0 then goto R4; 
for I:- 1 step 1 until plant do 
for m;c= 1 step 1 until control ^

, begin AG[l, mJ:= 0;
for n:= 1 step 1 until plant do
aGTI, m]:="ËTl, mX+FTl, n, i7^]x

D[n, m, J];
AG[1, m]:= AG[1, m]x

(interval»sigma)/(k+1) J
Sl[l, m, i, J]:« AG[1, m] +

SI [1, m, i, j];
end;

r4 :end; 
end;

R5 : end ;
comment completion of calculations of S2J; 
for i:« 0 step 1 until uplimitl ^
for j:= 0 step 1 until" cndelay do
for k;= 1 step 1 until plant do
for 1:» 1 sTep 1 until controT"do
S2[k, 1, 1, j]:= S2[k, 1, i, J]-Sl[k, 1, 1, J]j 
end;
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>rocedure GIJ(plant, control, cndelay, period, delay, uplimitl,
SI, 82, G);

'eal period, delay;
.nteger plant, control, cndelay, uplimitl;
‘eal array 81, 82, G;

begin
integer i, j, k, 1, m; 
irvCeger array start[0: cndelay];
for i:= Ü step 1 until entier (uplimitlxdelay/period+1 ) do
for J;= 0 step 1 u n U T  cndelay do

begin for k:= 1 step 1 urrE'il plant do
for 1 step 1 until corrErol ^  G[Ic7 1, i, j] := 0;
if i = 0 then start[j]:= J-1;
ïcT« startTlTT
for k;= k+1 while entier (kxdelay/period) - 1 do 

begin for'1:- 1 step 1 until plant do 
for m:= 1 step 1 until control do 
gTT, m, 1, 7)];= GLl, m, i, j] +
(if k-J < 0 or k-j > uplimitl then 0 
else 81[1, m, k-j, J])+
(ijnE-j-l < 0 or k-J-1 > uplimitl then Ü 
eTse 82[1, m,“k-j-l, j]); 

start[j]:« k; 
end;

end;
end;

procedure GI(plant, control, cndelay, period, delay, uplimitl, G, Gs); 
real period, delay;
Integer plant, control, cndelay, uplimitl; 
real array G, Gs;

begin
integer i, j, k, 1;
for i:= 0 step 1 until entier(uplimit1Xdelay/period+1) do 

begin Tor j:= 1 step 1 until plant do
for k;» 1 step 1' until contro 1 ^  GsTj, k, l] := 0;
for J:« 0 step 1 until cndelay do
for k:= 1 step 1 until plant do
for 1:= 1 step lunETT"control do
Gillc, 1, iTT^GsLk, Ï, 1]+G[k, 1, 1, j];
end;

end; .
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APPENDIX B - TWO PARTICULAR OPTIMAL SOLUTIONS

In this appendix, the two particular problems discussed in 
section (2#3) are solved,- using a similar dynamic programming 
formulation and terminology as that used in section (2#2).

A.I. - NON-ZERO MEAN ADDITIVE NOISE

The optimal control problem will be solved for a system 

described by equation (2.59) with performance criterion defined by 

equation (2.45)*

The equation (2.59) has the difference equation solution

%(j+l) =)%(%(j) + G m(j) + r^(j) + rg(j) (A.I)

where and G are defined in section (2.1) 

rm (j) « 1 j6(o+l T -q) K u., (q)dq 
/ ___

and r^(j) » J ŷ (j+l T -q) u (̂q) dq 
It

The principle of optimality allows the multistage decision process 
to be redefined as a series of single stage decision processes, 

namely, ^

E ( x(j) + m^(j) H m(j) (A.2)
m(ô) '■
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Let it be assumed that

^N-d “ x^(d) P(N-d) x(d) + 2x'(d) v(iî-d) r^(j)

+ (j) R(K-d) r^(j) + Z(R-d) (a .3)

where P(N-j) is a symmetric, as yet unknown matrix, 
and V(N-j) and Z(N-j) are, as yet, unknown matrices.

The procedure is now to substitute the expression for
from equation (A.3) and thence expression for x(j-fl) and r (̂j+l) into

equation (A,2),

So far, no expression has been developed or defined, which determines 
r^(j+l) from a knowledge of r^(j). In the case of random disturbances, 
one can usually make the assumption that the statistics are stationary 

and thus r^(j+l) « r̂ (j). It was indicated in Chapter 2 that equation 

of type (A.I) also describes a system with deterministic inputs Uĵ (t), 
a complete knowledge of whose dynamic characteristics is unlikely in 
a practical system. In order to proceed further with the solution, it 
is necessary to make some reasonable assumption about the dynamics.
Taking a lead from the stationary statistics case, it will be assumed 
that u^(t) is constant over the time interval 06 t< NT, where N is 
number of stages in optimisation problem and T is the sampling period.

Equation (A.2) then becomes
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z [x (j)]=  Min E 7 ^ (3 )  Cq + ^^P(M-3+1)^]x(3) 
m(j) *
+ 2 x'(3)fsi'p(lf-5+i)G3in(j) ,

+ m'(3) [h + G'p(M-j+i)G] m(j)

+ 2 x'O) [^'P(M-jTi) +}6v(N-J+i)] r^(3)

+ 2 m'(3) [ g' p (H-oT I )  + g' v (H-3>1)] r^(û)

+ r^' ( j )  [ r(IT-3Ti ) + P(N-JTi ) + 2V(N-5+l)]rj^(3)

+ ( j )  P(lT-i+l) rg ( j)  + Z(M-j+i) \ (A.4)

assuming that Ug(t) is an independent random noise input.

To find minimum, the first variation of f^_j[x(j)] is made with respect 

to m(j) and then equated to zero, giving,

m(3) - -  [h  + g'p(N-3^)g1 N

2 G^P(M-j+i)y&x(j) + [ g' p (M-3+1) + g' v (N -J S )] ij ^(3)| (A,5)

The optimal control policy is therefore a combination of a linear 
feedback from the state variables, plus an additional contribution 

due to the non-zero mean value of the noise (or deterministic) 
disturbance inputs.

The assumption of equation (A. 3) is shown to be valid by the 
substitution of the value of m(j) from equation (A. 5) into equation 

(a.4)» which results in



- 250 -

f̂ _j “ x (̂j) [q + f5 p (h-3+i);6-
P(K-j+i)G £H+G'P(N-J+l)G3"Vp(ir-5+i)/'|x(3)

+ 2x̂ (3) ( - /p(N-3Tl)G[H+G'p(N-3+i)Gj"^'p(K-3^)+G' V(H-3̂ .)]

+ jS p(R-3+i) + /v(M-3+i) j r^(3)

+ (3) [ 2V(N-3rt) + E(H-3rt)+P(N-3+i)

-[g 'p (N-3“ i)+o'v (N-5U)11h+g'p (N-3^1)g ] %

[g 'p (N-oTI) + G\(N-3Ti)] jr^(3)
+ E [rg (3) P(3J-3+i) rg(3)] + Z^(N-3+ï) (a .6)

The right hand side of equation (A.6) is seen to have the assumed form;
thus the assumption of equation (A.5) is valid. Since equation (A.6)
holds for all x(j), r^(j) and rg(j), it is possible to equate the 
corresponding parts of equation (A.3) and (A.6) to obtain the difference 

equations which are detailed in the main text of section (2.3) in
equations (2.6l) - (2.64). The initial conditions of these difference
equations can be calculated by an exactly similar argument to that used 

in section (2.2), giving

P(0) = Q,

and V(o), R(0) and Z(0) null matrices.

A.2. - THE DIPPERENGE CRITERION

Consider the system described by equation (2.70) with performance
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criterion defined by equation (2.7l). The difference equation solution 

of equation (2.70) is

x(j-fl) » ^x(j) + Gm(ô) (A.7)

Once again the multistage decision process can be arranged as a series 
of single stage decision processes, i.e.

^0) = Min {[x(o) - y] Q [x(j) - y] + (j)y

+ %_j” x ] (A.8)

Let it be assumed that

f x ( 3 ) ]  = X^(d) P(N-j) x(j) + 2x̂ (3) v ( u - 3 ) y
+ y R(M-3)y (A.9)

where P(N-j) is a symmetric, as yet unknown matrix 
and V(N-j ) and E(N-j) are, as yet, unknown matrices.

Substituting expression for f^_^^^[x(j+l)] from equation (A*9) and 
thence expression for x(j-̂ l) from equation (A.7), one obtains

“ Min ( x^(3) [ft*-’̂ R(N-3+i)^] x(3) 
m(3)‘

+ 2x (̂3) [y)'p(M-3+l)G'] m(3)

+ m'(3) [H-tG'p(N-3+i)G] m(3)

+  2 x ' ( 3 )  [ - Q  +  y & v ( R - 3 + l ) ]  y  
+  2 m ' ( 3 )  [ g ' v ( N - 3 T i ) ]  y
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+ ÿ^R(N-J+î)y I (A. 10)

Taking first variation of f̂ _j [x(j)] with respect to m(j) and 
equating to zero gives

m(j) - - fH+G'p(N-3” l) g ]"̂  [G'p(K-J+i) j4x(j) + G^V(N-j5)y ]

The assumption of equation (A.?) is proved to he valid by back 
substitution of m(j) into equation (A.IO), which gives,

" x'(j) P(H-a“ l)
+ (6p(R-j+l)G [H+G'p(N-J+l)G3"Vp(ir-3+l) ̂ |x(3)

+ 2x'(3) { -Q+56v(IT-3+1)
- ̂ P(K-J+1)G CH+G'p(N-jTl)G]"̂ G''v(ir-i+i)| y.

+ yqw(M-j+l)
- v'(ir-3Ti)G |H-fG'p(if-j+i)G3"Vv(H--5+i)] y (A.12)

The right hand side of equation (A.12) has same form as equation (A*9); 
thus the latter is valid. Since equation (A. 12) holds for all x(j) and y, 
the corresponding parts of equations (A.9) and (A. 12) can be equated to 
obtain the difference equation detailed in the main text of section 

(2,3) in equations (2.74) •* (2.76). .

The initial conditions are found to be

P(0) = Q
and V(o) and R(0) null matrices.
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APPENDIX G - PROCEDimE POR CALCULATION OF E.D.P. MATRIX SEQDmCE

An ALGOL procedure (54) > written in the ALGOL matrix scheme 
language (55)# is detailed below for calculating the E.D.E. matrix 
sequence. The procedure is applicable to completely augmented 
state systems with either the quadratic summation or the weddle 
integral criterion of Chapter 2. It includes provision for the 
calculation of either the optimal or the best linear control policy, 
and also illustrates the progressive computational stability technique 

discussed in Chapter 5*

A flow chart of the progressive stability iteration is illustrated• 
in Chart 1 opposite. The iteration for the steady state value of 
P(ïT-j) is terminated when the difference between the elements of the 
matrices on successive iterations is less than some tolerance, toll, 
times the absolute value of the element in question. Computational 
instability in general results in a divergent sequence of matrices; 

thus the convergence test also acts as an approximate stability test#
If convergence with initial tolerance, toll, is not achieved due to 

computational instability, the tolerance is increased until convergence 
is achieved, when an approximate value of the coefficient feedback 
matrix is calculated. The latter is added to the previous value of 
the coefficient feedback matrix, B, and the tolerance is reduced by a 
factor of ten. The process is then repeated until the iteration for'" 

the E.D.E. matrix and consequently the feedback coefficient matrix
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converges with respect to the initial tolerance, toll*

By the frequent use of comments, the operâ iion of each section 
of the program is self-explanatory* The notation of the analysis of 
the optimisation problem has been carried through to the procedure 
wherever possible, with the following pair groupings#

Procedure dotation 
PHI 
G

intersample

IHTERPHI
IHTERG
SELECTS

plant
control

weddle

nop

tol5

P

B

Analysis Notation 

G(0?)
integer subdivision of sampling period for 
weddle criterion thus must be multiple of 6*
^(T/intersample)
G(T/intersample)
matrix with unit on diagonal if corresponding 
state variable to be included in control input 
calculation#
dimension of state vector
dimension of control vector
Boolean variable, true if integral criterion, 
false if quadratic summation criterion#
maximum number of iterations permitted in 
calculation of converged value of P(H-j).
convergence tolerance condition for E*D*R# 
matrix sequence*

P(N-Ô)
B(H-j)
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procedure EDR(PHI, G, INTERPHI, INTERG, Q, H, SELECTS, plant,
control,weddle, intersample, nop, to13, P, B):

•alue PHI, G, INTERPHI, INTERG, SELECTS, plant, control, weddle, 
Intersample, nop, to13;

'eal to 13;
ntep;er plant, control, intersample, nop,

PHI, G, INTERPHI, INTERG, Q, H, SELECTS, P, B; 
oolean weddle;

Fëal"~pstol;
intepier i, j, k, 1, f1,

■ INTERQ, INTERH, INTERGPHI,
PSPHI, PSINTERPHI, HGPG, GPHI, HIPHI, PLPL, PLPL3, PLCN; 

pstol:« tol3; f 1:= format(^5sndddc2);
comment preparation of cost matrices if integral criterion;
Xf''weddle then

begin call(Q); mult by(period/intersample) ; equals (Q) ; 
calTCH); multby (period); equals(H);

* end;
comment calculation of P(0) for quadratic summation criterion; 
if dot weddle then

begin call"(Q); dup; 
equals(PLPL3); equals (P); 
end;

NW2;null(control, plant); equals (INTERGPHI); 
nullI control, control); equals(INTERH); 
null(plant, plant); equals (INTERQ);
comment calculation of preliminary transition matrix; 
calY(Pll); call(G); call(B); 
mult; add; equals(PSPHi);
comment calculation of additional terms if Integral criterion;
if not weddle then goto NW4;
unit^plant); e^ls(PSINTERPHl) ;
unit (plant); equals(PLPL);
null (plant, control); equals(PLCN);
for i:= 1 step 1 until inters amp le/6-fü. 5 do
for j:= 0 8teg 1 until 6 do

begin"T r j » O o r J » 2 o r J « 4 o r J « 6  then k:« 1 ; 
if j =“T  or j «“3  then k;« 5; 
iT j = 3 then k:= 5;'
if j = 0 then goto SI;
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call (PSINTERPHI); call (INTERPHI); itialt; 
call (PSINTERPHI)I call (INTERG); mult; 
call (pLCN); add; delete(PLCN);
equals(PLCN); dup; delete(PSINTERPHI); equals(PSINTERPHI); 
call (PLCN); call (B): mult; add;'
delete(PLPL); equals (PLPL);
SI :

mult; mult;

mult; mult;

mult; mult;

call (PLPL); trans; call (Q); call (PLPL);
mult by (kx3/lO); call (INTERQ); add; 
delete(INTERQ); equals(INTERQ);
call (PLCN); trans; call (Q); call (PLCN);
mult by (kx3/ic); call(INTERH); add; 
delete(INTERH); equals(INTERH);
call (PLCN); trans; call (Q); call (PLPL);
mult by (kx3/lC); call (INTERGPHI); add; 
delete(INTERGPHI); equals (INTERGPHI);

■ end;
deleteTFLPL); delete(PLCN); delete(PSINTERPHI);
comment calculation of additional computational stability terms 

for integral index; 
call(INTERQ); call(B); trans; call(H); call(B); 
mult; mult; add; delete(INTERQ); equals(INTERQ);
call(INTERGPHI); call(H); call(B);
mult; add; delete(INTERGPHI); equals(INTERGPHI);
call (INTERQ); call (Q); subtract; dup;
delete(INTERQ); equals (INTERQ) ;
call (Q); add; delete(Q); equals (Q)j
call (h ); call (INTERH); add; delete(H); equals (H);
comment calculation of P(o) for integral criterion;
if abs"Cpstol - to 13) > io-3 X to 13 then goto NW5;
call (Q);
call (INTERGPHI); trans; call (H); Invert; 
mult; call (INTERGPHI); mult;
call (SELECTB); mult; dup; trans; dup; call (SELECTS); mult; 
subtract; add; subtract; dup;
delete(PLPL3); delete(p); equals(PLPL3); equals (p); 
goto NW5;
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comment calculation of additional computational stability terms 
for quadratic summation criterion:

NW4:
call(Q); call(B); trans; call(H); call(B);
mult; mult; dup; delete(INTERQ); equals(INTERQ); add;
delete(Q); equals( Q) ;
call(H); call(B); mult; delete(INTERGPHI); equals(INTERGPHI);
comment calculation of EDR matrix sequence;
NW5 :
call(PLPL3); equals(P);
for i:= 1 step 1 until nop do 

begin
if i - nop then

begin write text (7 0 , [[2c5s]
N G ^  CGNVERGMCE * GP * P[5s] ITERATION ]); 

write (7 0 , f 1, i); 
write matrix ?70, 6 , P, i.P]); 
write matrix (7 0 ; 6 , PLPL, [DIPPERENCE^) ; 
write text (7 0 , JU 5s ] T0LERAÏÏCE2) ; 
write (7 0 , f2 , pstplT*; 
pstol:- pstol X 10; 
delete(P); delete(PLPL); 
goto NW5; 
end;

comment calculation of intermediate matrices; 
call (G); trans; call(P); call(G); mult; mult; 
call(H); add; invert; equals (HGPG);
call (g ); trans; call (P); call (PSPHI); mult; 
mult; call (INTERGPHI); add; equals (GPHi);
call (PSPHI); trans; call(P); call (PSPHI); mult; 
mult; equals (HIPHI;;
comment actual calculation of P(N-j);
calT(QT; call(HIPHI); add;
call (GPHI); trans;
call(HGPG); call(GPHI); mult; mult;
call(SELECTB); mult; dup; trans; dup; call(SELECTB); mult; 
subtract; add; subtract; 
delete(P); equals (?) ;
for j:= 1 step 1 until plant do 
for 1 := 1 step 1 until plant 3F
if abs(element(j, 1, PLPL)) > pstol X

(if abs (element (j, 1, P)) < then 10 "4 else 
abs(element(j, 1, P))) then goto; 13;
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write matrix (yo. 6, P, [P1 ) j
write text (70, [[53] NO. * OF ♦ ITERATIONS]):
write (7 0 , f1, iÿ;
write matrix (7 0 . 6, PLPL, [DIFFERENCE]); 
write text (7 0 , _[[_5s ]TOLERAWCE^) 
write (7 0 , f2 , pstolj; 
goto LI;
13:delete(HGPG); delete(GPHI); delete(HIPHI);
end;

comment reasignment of state and control cost matrices;
LI :
call (Q); call (INTERQ); subtract; delete(Q); equals ('Q) ; 
call (h ); call (INTERH); subtract; delete(h ); equals (h );
comment calculation of B and test for tolerance; 
caïïTlÏGPG) ; negate; call (GPHI); call ( SELECTB) : 
mult; mult; call(B); add; delete(B); equals(b); 
write matrix (70, 6 , B, uB^) ;
delete(HGPG); delete(GPHI); delete(HIPHI);
if pstol - to 13 > 10"3 X to 13 then 

begin pstol:- pstol/lO; 
gotcFNWS; 
end;

end;
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APPEEÎDIX D - COPACTOR EXPMSIOÏÏ

By definition, the determinant of a matrix,' as a function of 
the cofactors of the elements of the first row is

li niL= I
where n is the dimension of matrix A with elements
and Bt . is cofactor of a' . li li

The cofactors are defined by

• Bii - (-1)""' ZÎ Sij
where matrix A, of which â  ̂are elements of the first row with 
corresponding cofactors B̂ ,̂ is the matrix A with the i th row 
and column of A removed, i.e. square matrix of dimension n-1.

The determination of the cofactor is thus similar to the calculation 
of the determinant, except that the dimension of the problem has been 
reduced by 1 to n-1. Proceeding in this way, as one does in manual 

calculation of small order matrices, one can eventually reduce the 
dimension of the problem to two, in which case the evaluation of the 
corresponding cofactors is trivial. Knowing the path by which one 
reduced the dimension of the problem, one can retrace one’s steps and 

. determine the cofactor for successively larger dimensions, until one 

finally obtains the determinant of the complete matrix A. Such a 

method of calculating the latter is performed by the ALGOL procedure



— 262 —

detailed below#

A recursive use is made of the procedure, i.e. it calls upon 
itself, and thus the operation of the procedure is rather involved.

It should be noted that little storage space is required, since only 
elements of matrix A and none of the matrices of smaller dimensions 
made up from elements of A are required to be stored# The path 
taken to reduce the dimension of the problem is stored in the integer 
array route, which is a column vector of dimension n# The integer 
array selection contains the information on which elements of the 
matrix A are to be considered in the evaluation of the cofactors#
The integer variables row and col are the subscripts of the various 
cofactors, whose values are stored and calculated in the form of a 

positive part, posdet, and a negative part, negdet, such that no two 
parts of the same sign are subtracted and no two parts of opposite 

sign are added. The real arrays posdet and negdet are matrices of 
dimension (nx n)#

The procedure call

GODET (a, 1, 0, n, route, posdet, negdet)

with route, posdet and negdet having all zero elements prior to the 
call, would evaluate the determinant of the matrix A of dimension n

V
in the form of a positive part, posdet [l, 0 j , and a negative part,

negdet [l, o] .
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irocedure GODET(A, row, ool, order, route, posdet, negdet):
'alue row, col; . .
.nteger row, col, order;
'eal array A, posdet, negdet;
.nteger array route;

begin
real term, dumpos; 
integer i, j, acol;
integer array selection[1 ; order+1-row];
J : ” 1 ;
for i:= 1 step 1 until order do if route[i] « 0 then 

begin selectionLj]:= i;
end;

for i:== row step 1 until order do
begin acol:= selection[i+1-row];
route[acol]:= 1;
if row+1 > order then goto LI;
C0DET(A, row+1, i, order, route, posdet, negdet);
LI :
term:= (-1)T( Ifi-(row-1 ) )xA[row, acol] ;
if row+1 > order then

begin.posdet[rbwfl, i]:= 1 ; 
negdet!rowfl, i]:= 0; 
end; ' 

if term > ü then
begin posdet[rowf1, i]:« posdet[row+1, i]xterm; 
negdet[row+l, i]:= negdetIrow+1, i]xterm; - 
■ Gnd else begin dumpos;« posdet[row+1, i]; 
posdet[row+1, i]:= negdet[row+1, i]xterm; 
negdet[row+1, i]:= dumposxterm; 
end;

route[acol]:= 0; 
end;

for i;= row step 1 until order do^begin posdet[row, col]:= posdet[row, co1]+posdet[row+1, ij; 
negdet[row, col]:= negdet[row, coll+negdetIrow+1, i];
posdet[row+1,.i]:= ü;.......................
negdet[row+1, i];» Ü; 
end; ... - ~ ■

end;
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APPENDIX E - AN IDEALISED MODEL OF A CHEMICAL REACTOR

The chemical reactor model discussed in this appendix was 
proposed in a paper hy Williams and Otto (56) for the express purpose 
of providing a model upon which comparisons could be made of the 
ability of various process digital computers, to solve the steady 
state optimisation problem# In the above mentioned paper full 
details, including structural details, are given of a chemical plant, 
which includes a reactor, heat-exchanger, decanter and distillation 

column# It is only proposed to use the reactor part of this model#

A schematic sketch of the operation of the reactor and associated 
recycle stream is given in Figure (42)# The input reactant flows are 
assumed to be 100ÿ$ pure, and only the flow of stream (2) is adjustable, 
i.e# can be used as a control input variable# The chemical reaction 

within the reactor is assumed to be three interconnected exothermic 
reactions, which obey the Arrhenius reaction rate equation (57)* Three 
by-products with concentrations represented by x̂ , x^ and x^ result 
from the reaction# The by-product with concentration x^ is assumed 
harmful to the reaction, and therefore is decanted from-the output 
stream before passing to other sections of the plant or entry to recycle 
stream# The product being manufactured has concentration x^ and is 
assumed to form a 10^ azeotropio mixture with the by-product x̂ # All ’ 

the product is distilled from the output stream, except the 10̂  azeotropic . 

mixture, before being recycled# The concentrations in the recycle stream 

are denoted by x with an additional subscript denoting the reactant, product,
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Physical Significance Value at 662̂
concentration of stream 1 (effluent) 0*0868

2̂ concentration of stream 2 (effluent) 0.3372
^3 concentration of stream 3 (effluent) 0.0143

concentration of stream 4 (effluent) O.O884
concentration of stream 5 (effluent) 0.4057
concentration of stream 6 (effluent) 0.0673

^rl concentration of recycle stream 1 O.O98I
^r2 concentration of recycle stream 2 0.3811

concentration of recycle stream 5 0.01625
.concentration of recycle stream 4 0.0458

'r5 concentration of recycle stream 5 0.4586
T reactor temperature 662 \

^1,2 temperature of input streams 1 and 2 530 °R
recycle temperature 560 °R

%; input water temperature 520’ °R
Arrhenius equation constants 5.9755io+5

&2 Arrhenius equation constants 2.5962j_q+12

b Arrhenius equation constants 9.6283^q+15
h Arrhenius equation constants 12,000
2̂ Arrhenius equation constants 15,000
b, Arrhenius equation constants 20,000 ■

heat of reaction 1 -125 BTïï/iioiu
^2 heat of reaction 2 -50 BTU/hour
h, heat of reaction 3 -143 BTCT/koui
V effective mass volume of reactor 4,640 Ibg,
G specific heat of reactor contents 0.4
ïï heat transfer coefficient 5,000 BTU/S°1
1̂ flow rate of stream 1 (input) 14,500 Ibs./l
2̂ flow rate of stream 2 (input) 35,350 Ibs./i
^w water flow rate 3,671 Ibs./tic

recycle flow rate 48,111 Ibs./l
f reactor effluent flow rate 95,961 Ibs./i

TABIiS (2)



- 267 -
etc•concerned# It is assumed that the reactor has ideal level control 

and that a fixed recycle flow is maintained*

It is a fairly straightforward matter to dérive the differential 
equations governing the output concentrations of the reactor. Since 
this is adequately detailed in reference (56), only the resulting first 
order nonlinear equations will be listed below* The notation is given 
in detail in Table (2).

dx^/dt = f^/v + - k^x^Xg

dXg/dt = fg /V  + x^2 f y ?  -  X g fA  -  kjjX^Xg -  k^x^x^

dx^dt - x̂ j f^A - XjfA + Zk̂ x̂ Xg - akgXgXj - k̂ x̂ x̂
dx^dt = x^^ f y V  - X f A  + kgXgX  ̂ -  0.5 kjXjX^

dx^/dt = x^^ fy? - x^f A  + ^kgXgX^
dxg/dt « -x̂  f/V + 1*5 k^x^x^

where k^ = a^ exp (-b̂ /r)

In addition to these equations, there are the algebraic conditions 
governing the concentrations and flow rates of the various streams, namely,

X^ + Xg + + X^ + X^ + Xg » 1

+ =̂ r5 + =̂ r4 + =r5 ° ^
%r4 " 0.1 x,2

and f - f̂  + f2 + f̂ .

The author will now manipulate this model into a form suitable for the 

digital optimisation problem*
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The concentrations in the recycle stream are related to the 
concentrations in the ouput stream, since the former is only the latter 
with the stream components fx̂  and f(x^ - 0,5x^) removed by decanting 
and distillation respectively. The ideal recycle concentrations, 
assuming no dynamics in the recycle path, can therefore be determined 
from the output flow concentration by relationship

■Pa -

= x%/(l - X g  - X . + O.lx )̂ for 1 = 1, 2, 3, 5,

An algol program was written to obtain the steady state solution of 
the non-linear concentration equations. The solution was accomplished 
by expressing all the concentrations as a function of Xg using the non
linear and algebraic equations, and thence, knowing that Xg must lie 
between zero and unity, successive approximations were made for x̂  
until the true solution was obtained. By this method, the graph of 
the steady state product concentration against temperature could be 

obtained and is shown in Figure (45)* It is seen that the maximum 
concentration occurs at 662̂ Rj therefore it is at this temperature 
that the linearisation of concentration equations was performed, since 
one was desirous of maintaining the output concentration at its maximum 
value. In table (2) the steady state values of variables are given 

at a reactor temperature of 662^E.

If there are dynamics in the recycle path, as will undoubtedly 
be the case, the recycle concentrations input to the reactor will be 
defined by
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%2i(3) - P(s) X̂ (̂s)

where F ( s )  is the transfer function of the recycle dynamics.

Three cases were considered by the author

(1) 1Î0 recycle dynamics, i.e. F(s) = 1
(2) First approximation Fade filter for pure delay 

i.e. F(s) « (1-0.5 (^8)/(l+0.5fs)
and (5) Pure time delay i.e. f(s) = exp (-6 s)

It should be noted that the last type of recycle dynamics results 
in the system being described by difference-differential equations.

Since the reactions are all exothermic, it is necessary to have 
some form of cooling, this being provided in the model by passing water 
through coils in the reactor vessel. It is assumed that the water 
flow rate is adjustable, and therefore acts as the second control input 

to the system. By equating the rate of loss of enthalpy from the 
reactor vessel to the rate of gain of enthalpy of the cooling water, 

it is possible to develop an expression for the rate at which the 
enthalpy is extracted from the reactor in terms of the reactor temperature, 

T, and the water flow rate, f̂ , namely

Enthalpy/hr. lost » 2TTf̂ (T̂  - l)/(n + 2f̂ )

where the nomenclature is that of table (2), and it is assumed 
that the rate of removal of enthalpy by cooling water is ITx(the mean
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water temperatur^, where 17 is a heat transfer coefficient, whose value 

is given in table (2).

Upon making heat balance for reactor, i.e.

d [̂ reactor enthalpy^/dt « d [input enthalpy] /dt
- d [output enthalpy ]/dt
+ d [chemical reaction enthalpy ] /dt

- d [enthalpy removed by cooling water ] /dt

one can obtain the expression for the rate of change of the reactor
j

temperature as

dT/dt - + fgTg + /V - fT/V

+ + JkgXgXjhg/c + l,5k,x,x.lij/c ]

+ 2Uf (T - T)/Vo(TJ + 2f,)w' W ' w

For complete details of the assumptions made in the derivation 
of the differential equations governing the system, the author 
recommends the reference (56)* Since the author's main interest lies 
with the resulting model, he did not think it necessary to expand at 
length on the derivation of the model, except where the equations have
been manipulated for the purposes of the digital optimisation problem#

Finally, for each of the three cases of the recycle dynamics 
configurations, a computer program was written to determine the linearised
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equivalent of the non-linear reactor concentration and temperature 
equations in the linearly independent output concentrations

Xy and x̂ ), the reactor temperature (t), the two control 
inputs (fg and f̂ ) and, for case of Fade filter system, in the three 
linearly independent recycle concentrations (x̂ ,̂ x^g and x̂ ^). The 
linearisation was carried out by a multivariable Taylor expansion, 

truncated at the second term. In addition, the variables were 

normalised by dividing them by their steady state values, since 
there was a wide disparity in the numerical values of the various 
variables. The linearised equations were suitably altered. The 
results of these calculations are shown in matrix form in Figures (26), 

(52) and (33) and equations (6.2), (6.3) and (6.4) in the main text 
of Chapter 6.
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APEENUIX F - AN AIRCRAFT HTCH CONTROL lOBEL

The fundamentals of the aircraft short period pitch control 
system, which is presented in this appendix, was obtained from Smiths 
Aviation Co. Ltd. in a private communication. It represents a 
hypothetical aircraft, upon which that Company were carrying out 
some investigations.

The model is non-linear, since the aerodynamic characteristics of the 
aircraft vary with its altitude and velocity (58). The model to be 
considered is the equivalent linearised model, whose transfer function 
between the pitch of the aircraft and the control input to the elevator 
actuator is given by

(s)/i(s) » a(s + b)/s(s + s)(s^ + 2b + d) (F.l)

The actuator has a transfer function of l/(s+8), the remainder of the 
left hand side of equation (F.l) being due to the aircraft's aerodynamics* 

The constants a, b and d are the coefficients which vary with the 

aircraft's altitude and velocity, their values being obtained from the 

isometric graphs illustrated in Figures (44)» (45) and (46)* The 
stability characteristics vary widely over the flight envelope, since 
the roots of system are dependent on b and d* It was intended to 

examine the effect of the changing system parameters on the resulting 
optimally controlled system.

With the control input assumed to act through an amplifier of gain 5»
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the aircraft pitch control system can he represented by the matrix 

state equation,

x^(t) »

ij(t)

L

-8 0 0 0
*-ab -2b -d 0' ;

a
0

1 0  0 
0 1 0

"1
\ ( t ) + 5

% 2 ( t ) 0

X j ( t ) 0
0h* «

mi(t)

where x (̂t) is the elevator angle in degrees,
Xg(t) is a fictitious state variable,
Xj(t) is the pitch rate in degrees/sec., 
x̂ (t-) is the pitch in degrees, 

and m(t) is the control input to the elevator-accuator.

Pilot opinion and other studies associated with the human pilot
V '

(59) have indicated that the majority of pilot^ would prefer all aircraft 
to have a certain type of response in order to reduce fatigue etc. Such 
a proposed response is represented by a transfer function between the 
pitch output and the joy-stick input of

®ldeal(«)Ajoy.stlck(=) = + 4.4e + lO).

This system has the desirable eigenvalues of -2,2 - 2,27, i#e# natural 
angular velocity of 2,27 radians/sec, and a coefficient of damping of 
0,695, It is intended to optimally control the system so that the 

response of the aircraft follows the ideal response as closely as 

possible. Assuming that only step responses are to be considered, the
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matrix state equation governing this reference response system is

n '0 1 0

ig(t) -10 -4*4 10
0 0 0

Xe(t)

where x^(t) is the ideal pitch,
Xg(t) is a fictitious state variable, 

and x^(t) is the joy-stick input.

An aircraft in flight experiences atmospheric turbulence, whose
statistical properties have been the subject of several papers (58) and
(60), It has been found,both theoretically and experimentally, that
a fairly good representation of the spectral density of the gust velocity
experienced by an aircraft travelling horizontally at a codant velocity 

of V ft./sec, is

G(w) - 12 ̂  v / l  X (ŵ  +

where w is the angular velocity in radians/sec,,
L is the scale of turbulence in feet (58) (60),
2 2and <r is the variance of the gust velocity in (ft,/sec,) ,

It is unusual to have the spectral density of the gust velocity as a 
function of its variance. Since the spectral density and correlation 
function are fourier transform pairs and the variance equals the 

correlation function at zero delay, if one determines the inverse fourier 

transform of G(w ), one finds that it does, in fact, obey the property

(F.2)
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that it equals the variance of the gust velocity at zero delay. It 
should be remembered that the above approximate spectral density has 
been determined under the assumption that the aircraft was in level 
flight, a requirement which will be assumed to hold in the optimisation 
analysis. In order to have time invariant dynamics, it will also be 
assumed that the velocity of the aircraft is constant. A scale of

Q
disturbance of 750ft. and a variance of gust velocity of 100(ft./sec. ) 
were used for the model#

The spectral density of equation (F.2) is considered to be generated 
by passing white noise with unit, spectral density through a filter 
with transfer function

F ( s ) =  o l ( s  +  y ^ ) / ( s  +  2^)^

pwhere oc = (l2 or v/L)®
/S = Ï, 

and X = V/L

The filter can be represented by the matrix state equations

m •
i^(t) sa 0 /S -28 %y(t) + 1 u^(t)

-28•/4 - 2.8 . XgCt) 1 • « .

where x^(t) is the output from the filter without gain o(, 
x (̂t) is a fictitious state variable, 

and u^(t) is the white noise input#
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It is assumed that the random noise disturbance is additive to the 
output of the elevator actuator through a fictitious amplifier of 

galn^0
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APPENDIX G ■- RANDOM SEQUENCE GENERATION

For simultation purposes, both sequences of, Independent non

white and white random disturbance inputs were required in the examples 
detailed in this thesis,. These sequences were generated digitally 
by methods discussed below, but before going into details, the relevant 
statistical tests used in the analysis of the generators will be listed,

G.l. STATISTICAL TESTS.

(a) Mean and Variance Tests (6l),

The theoretical probability frequency distribution of the sequence of 

the random numbers will be known, thus one can calculate the theoretical 

values of the mean and variance. These can be compared with the actual 

values determined by numerical calculation from the random sequence 
itself,

(b) Auto-correlation Function (6l).
The correlation function of independent noise is a delta function at 

zero delay. It should be noted that such a correlation function is only 

a sufficient, but not a necessary condition, for independence. In 
numerical calculations, a normalised correlation function was used, the 
latter being defined by

R(T:) « covariance [u(t), u(t +t: )]/variance [u(t)3

where u(t) is random sequence 
and X is delay.
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(c) Chi-squared Test (6l),
The chi-squared test is a null hypothesis test. As an example, one 
can divide the range in which a random variable lies into k subranges 
and then calculate the chi-sequence value

*= / ( actual (i) - hypo the tical ) ̂/kypo the tical (i)

where actual (i) is the number of times the random sequence lies in 
i th subrange and hypothetical (i) is the corresponding number of 
times which can be theoretically calculated under the hypothesis 

about the shape of the probability frequency distribution curve.
The chi-squared value is therefore a measure of the deviation of the 
actual from the hypothetical values, From the chi-squared value one 
can then determine the probability of chi-squared having this value#
If the probability is small, one must assume either that one has 
examined an extremely rare case or that the original hypothesis was 
wrong. On the other hand, if the probability was not small, then one 
can only say that at least the hypothesis has not been proved wrong.

The hypotheses under test in the examination of the random sequences 
are the rectangular shape of the probability frequency distribution 
function of the random number generator and the uncorrelated property 
of the random sequence#

(d) Spectral Density.
Since one requires to generate a random signal with a prescribed spectral 

density by passing white noise through a suitable filter, it is necessary
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to be able to examine the spectral density of a random signal*
The spectral density and the auto-correlation function are Fourier
transforms of one another. The definition of the Fourier transform
and its inverse varies widely in the literature and often on consecutive
pages of some texts. Before continuing, one must therefore decide
upon one definition to be used throughout the following analysis and
digital calculations. The related Laplace transform fortunately
does not suffer from this ambiguity, and therefore by analogy the
transform pair is defined by

«0
R(*c) « l/2*n j G(w ) dw

—,0
and G(w ) - j R(x ) dt:

where R(x) is auto-correlation function for delay x,
G(w ) is spectral density for angular frequency w, 

and j * (-1)̂ *
,00

Thus G(w) « 2 ^  R(x) c o s (w x ) dx.

Knowing the auto-correlation function of a signal therefore allows one 
to calculate the spectral density of that signal. The upper infinite 
limit can be replaced by a finite limit, since the correlation function 
will tend to become asymptotic to zero with increasing delay, i,e, 
sufficiently far apart values of a random signal tend to be independent* 
The integration could be carried out by any of the standard techniques.
In the spectral density program written by the author, the weddle formula 

was used (30),



- 284 ""

G.2. - RANDOM NUMBER GENERATION

The recursive multiplicative method of generating random sequences 
has been used frequently, particularly in Monte Carlo type calculations*
The numerical generating process can be described by the difference equation

- a â (j) + t
where (j) is a member of the random sequence with initial value" û (o),
the variables a and b are chosen constants, and the arithmetic is carried 
out in some prescribed modulo, M, The sequence will be periodic, the 
exact value of the period being M or less. The relationship between the 
period and the constants a, b and M has been the subject of several papers 
with the net result (62) that choosing constant a prime to the modulo and 
constant h odd would give a sequence with period equal to the modulo#
Further work (63) has also shown that to reduce the correlation between 
any number and the succeeding ten (approximately) numbers of the sequence, 
the relationship

b = M(0.5 + 3*/6 ) (G .l)

should hold and neither a nor b should have a small value#

Since the computer to be used was a binary machine with overflow 
occurring at an approximate value of 2̂ ,̂ the modulo of the generator 
was chosen to be 2̂  ̂with constant a having value (2̂  + l) and constant 
b, calculated from equation (H.I), having value 13549335641# (Bie 

quasi random number generator then becomes
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u^(j+l) . (24 + 1 ) û (j) + 1 3 5 4 9 5 3 5 6 4 1  (Modulo 2̂ 4) (G.2)

If the sequence u(j) is then substituted intp equation

u(j) « (upper-lower) uj[j)/2̂  ̂+ lower (G,5)

one would theoretically have a random sequence u(j) with a rectangular 
probability frequency distribution between the upper limit of upper and 
the lower limit of lower*

G,5. - TEST OF RANDOM TOBER GENERATOR.

The random number generator under test was assumed to have an 

upper and lower limit of 0,5 and -0,5 units respectively. The mean 
and variance tests gave typical values of 0,0089 and 0,5588 for a sample 
of 2,000 numbers, whereas the theoretical values are 0 and By
increasing the sample length to 10,000, one could improve on the agreement 
between the actual and the theoretical values by one further decimal 
place, but little improvement could be obtained by a still further 
increase in the sampling length.

To test the probability distribution, the range from -0,5 to 0,5 was
divided into 25 equal sub-intervals. It is generally accepted that a 
2X  probability of calculating the actually determined chi-squared value 

of less than 0,05 indicates that the hypothesis being tested is of 
questionable validity. Typical results from the probability frequency 
distribution test were found to give a X  probability of greater than 

0,25 for sample lengths from 2,000 to 10,000 numbers; thus, at least
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the rectangular hypothesis has not been proved invalid.

The correlation between the random numbers was examined by the two- 
dimensional chi-squared test (6l), In order to get consistent results, 
the independence mesh was limited to 25 elements and the sample length 
was taken as 10,000 numbers. The results indicated that the independence 
hypothesis was questionable, since typical probability values were 
less than 0,05# It was noticed that it was only the correlation-between 
successive numbers that seemed to be large, so the random number generator 
was modified to output only every second random number of the sequence.
The corresponding values of the X  probability were found to be approximately 
independent of the delay and to have a value greater than 0,15, This 
would indicate a valid independence hypothesis. To add some weight to 
this conclusion, the normalised correlation function was calculated. It 
was found to be unity at zero delay, a property of the function, and to 
have typical values of + 0,01 for delays greater than zero,

G,4. - INDEPENDENT NON-WHITE AND \VHITE NOISE GENERATORS.

Various approximate white noise generators have been proposed 

(49), (64) and (65), but the author was unable to find any results 
obtained from the implementation of these methods far less a comp^ative 
study of them. Due to the limited time available, the author was only 
able to derive and examine one white noise generator based on a method

N

proposed in reference (64)# It should be noted that since white noise 

is defined as noise with a constant spectral density for all frequencies,
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it is impossible to generate pure white noise. If the spectral 
density is flat over the range of frequencies of interest in any specific 
problem, then this is assumed to be an adequate representation of the ideal 
white noise.

Consider the random process 
<>*

%(t) ^  (G.4)
ta O

where â  is a random independent delta function with zero mean 
distributed at random and independently over the time axis with a constant 
averse density d or a mean value of time interval between impulses of 
l/d.
The probability distribution of there being n delta functions in the 
time interval T is governed by the poisson distribution (49)#

Prob [n] = e (dT)̂ /nl -

Assuming H(t) is a stable filter, then using standard probability 
techniques (64) one can determine an expression for the unnormalised 
correlation function, namely,

r (t ) . a 0-2 j H(t) H(t+-C) dt
/

2where tr ̂ variance of the random variable â .̂

Since the correlation function and the spectral density are fourier 

transforms of one another
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G(w ) “ j R(v ) e d*c
- 00 F#0

dtB W
-•o

Consider the case when filter H(t) is represented by

H(t) - (1/t )

then the spectral density becomes

G(w) - d <a/(l + w V )

Hence, for the limiting case as T —^ 0, i*e, H(t) tends to a unit 

delta function,

G(w ) = d (G#5)

The spectral density is constant and independent of angular frequency; 
therefore the random process described by equation (G*4)» under the
assumption that H(t) tends to a delta function, is a pure white noise
generator. As T is allowed to tend to zero, the mean value of the
time interval must also tend to zero for the above theory to be valid.
An infinite average impulse density is impractical, thus one must make 
do with a sufficiently large average impulse density, which will give 
an adequate representation of white noise over the frequency range of 
interest.

The purpose of generating white noise was to be able to generate 
noise with a meromorphic type spectral density, by passing white noise



-

I

g

t
VÎ
ttiJ

Jd:zÜ)

Hnw
h

>•r
5zwP
Ja:
HihV
uicuV3

r-
i
lii«3d3V)
C



- 290 -

with ymit spectral density through a suitable filter. The output from 

the latter will therefore be
ao

where P(t) is a suitable filter and is random independent delta 
function with zero mean distributed at random and independently over 
the time axis with constant average density d, such that d = 1#

The random number generator of equations (G.2) and (G#$)was used to 
generate the required random independent amplitude quantities â  and 
the random independent time intervals between the delta functions*
Care must be exercised that the starting numbers for time interval 
and amplitude generators are not closely sequentially related# To 
test the output of a filter, and hence indirectly test the white noise 
generator, the particular case when

F(s) « l/(l + s)̂

was examined. Firstly, the correlation function was calculated, and 
from that the spectral density was derived, as discussed in section 
(G.l). The curves in Figure (47) represent the worst upper and lower

2 2and also the best approximation to the ideal spectral density of l/(l+w ) , 

which were obtained in twelve tests made with different sets of starting 
numbers for the random generators# The correlation function was 
determined for the output of the filter by sampling every 0*04 secs* 
for the 15,000 samples following the first 2,000 samples, in order to
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nullify any generator start up errors, due to the absence of the tails 
of the responses that would have been applied prior to the start up of 
the generator. The lower limit for the time interval generator was 
chosen to be Vfo of the period at which the spectral density of the 
ideal output of filter was 0*5^ of its value at zero frequency. This 
gave a lower time interval limit of O.OI6 secs*, which, with an upper 
and lower amplitude limit of +0*25 and -0*25 units respectively, gave 
an upper limit on the time interval of 0*025 secs* (cf equation (0*5) 
with unit spectral density).

The agreement between the generated and theoretical spectral densities 
was not as good as it had been hoped; the major disparity in agreement 
was at low frequencies. The deviation due to using different sets ^ 

of starting numbers would most probably indicate that some of the 
sequences of variables and time intervals are not as independent 

as others. Since the theory relies on the independence property of 
these sequences, any violation will tend to give a deviation from ideal 
spectral density* Nevertheless, since the spectral density is in 
practice a function which is not usually known to a high degree of 
accuracy, the white noise generator proposed above was considered 

acceptable*

For simulation purposes, a non-white independent noise input 
is also required. Such an input can be generated, using the white 
noise generator, except that the time interval between successive impulses
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is fixed at some constant value

G.5. - H^OGRAMmP GENERATORS

The noise vector required for simulation of optimal controllers 
and estimators is the sampled data version of the continuous noise 
input, where the former is defined from the latter to be

r(j) " (j+1 T - q) u(q) dq ' (G.6)
/ jT

where is uncontrolled systems transition matrix,
u(q) is continuous noise input, calculated by 

white noise or independent generators
r(j) is discrete noise input,

and T is sampling period#

It is required for optimisation purposes that r(j) be independent of
r(k), k / j; thus as a final statistical test,the independence of the

2 / 2 corresponding discrete output of filter l/(l+s) was tested by the a .
independence test for non-white and white noise continuous inputs#
The resulting X probabilities in both cases were of the order of 0,2
independent of the delay, and thus are considerably in excess of the
significance level of 0,05,

Two procedures were written in ALGOL matrix scheme language for 
use in the general digital simulation program# These were a procedure 

RAIÎOGEIT, which is equivalent to equations (G#2) and (G. 3) &nd a procedure 
TRAJTSITKTJ, which generated the discrete noise input vector defined by
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equation (G#6), The former procedure requires no explanation, while 
the latter possibly does*

For a system with continuous transition matrix, A, and sampling period, 
period, the noise vector is calculated and stored in vector MT, Matrix 
LISFORM is the disturbance - state ' continuous transition matrix for the 
vector of noise inputs whose upper and lower bounds and last numbers 
used in the corresponding random number generators for amplitude and 
time intervals are stored in the vectors AUHPER, ALOWER M L  ALASTtIO and 
TUPFER, TLOWER ANL TIiASTNO respectively# The vector XSTIME stores the 
necessary information on what time remains of a random time interval 
at the end of each sampling period# A procedure call for TRANSITFHI 
is made in the procedure# This procedure calculates the discrete 
transition matrix ̂ (t) for any time interval t by infinite series method 
(cf Chapter 2,l)# It is not thought necessary to give details of this 

simple procedure#

There follows a printout of the procedures RANOGEN and ‘TRMSITNÏÏ#
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procedure RANOGEN (upper, lower, lastno, m )j  
value u^pGr, lower; 
real upper, lower, rn;
Integer lastno;

begin
integer random, 1;
random:= lastno;
for 1:» 1 step 1 until 2 do

begin random : =T 1 YXran3bm+135^9335641 ; 
random : « r andom-ent 1er ( random/ 2T34)x2T34; 
end;

rn := randomx (upper-lower) /2T3^+lower;
lastno:« random;
end;

procedure TRANSITNU(DISF0RM, period, TUPPER, TLQWER, TLASTNO,
AUPPER, ALOWER, ALASTNÜ, A, XSTIME, NU); 

value DISPORM, period, TUPPER, TLQWER, AUPPER, ALOWER, A;^ 
re¥ï period;
Integer DISPORM, TUPPER, TLQWER, TLASTNO, AUPPER, ALOWER, 

ALASTNO, A, XSTIME, NU;
begto
real rtlme, tlapse, ramp, tup, tlow, aup, alow; 
ïnte'ger 1, J, tlast, alast,

PHI, NU2, NU3;
null(rows(A), l)j equals(NU); 
for 1:« 1 step 1 until coIs(DISPORM) do 

begin tlapse:» 0; 
tup ;« element(l, 1, TUPPER): 
tlow:= element(l, 1, TLQWER); 
aup:= element(l, 1, AUPPER); 
alow:= element(l, 1, ALOWER);
null(rows(A), 1); equals(NU3);
null(rows(A), l); 
for 1 step 1 until rows(A) do 
put(element(j, 1, D ls % R M ), j, TT; 
equals(NU2);,
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RI :
tlast:*= element(1, 1, TLASTNO);
If abs (tlapse) > io-9 X period then

RANOGEN(tup, tlow, tlast, rtlme) else 
r t l m e e l e m e n t (1, 1,•XSTIME); 

call(TLASTNO); put(tlast, 1, l); 
delete(TLASTNO); equals(TLASTNO);
tlapsertlme+tlapse;
If tlapse > period then

begin call(XSTIîE) ; put (tlapse - period, 1, i); 
delete (XSTIME) ; equals (XSTIME) ; 
goto R2; 
end;

alast:= element(i, 1, ALASTNO);
RANOGEN(aup, alow, alast, ramp); 
call(ALASTNO); put(alast, 1, l); 
delete(ALASTNO); equals(ALASTNO);
TRANSITPHI(perlod-tlapse. A, PHI);
call(PHI); call(NU2);
delete(PHI);
mult by(ramp); mult;
call(NU3); add; delete(NU3); equals(NU3);
goto R1;
R2:call(NU3); call(NU): add; delete(NU); equals(NU);delete (NU2); delete (NU3);end;

end;
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