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NOTATION

The author has defined the notation in the thesig at fthe time of use,
Those important variables used universally throughout the thesis are

detailed below.

A Continuous state transition matrix,
B(l-3) Optimal feedback coefficient matrix,
c(n-l) Condition matrix for controllability.
T(n-1) Condition matrix for observability.
D Continuous control transition matrix,
B : Statistical expectation,

fm;j[x(j)] Performance index at time (N=j)T,

G Discrete control transition matrix,

H Control cost matrix.

Ii* Effective intersample control cost matrix,
I Unit matrix,

J Er&or covariance matrix,

n(3T) Control input at time JT.

N Optimisation interval.

P(N=-3) Equivalent discrete riccati matrix.

Q - State cost matrix,

Q* ‘ Effective intersample stete cost matrix,

Qf* Effective intersample - progressive stability

state cost matrix,

R(3) Discrete disturbance covariance matrix at time JT.



R(N-3)

r(3T)

v(¥-J)
V(i)
w(3)
w(JT)
x(3T)
y(3T)
z(N-3)

z(JT)

- ix -

Partitioned part of E.D,R. matrix,
Discrete disturbance input vector at time JT.
Sampling period,

Time,

- Matrix used in intersample theory.

Matrix used in intersample - progressive
stability theory. '

Partifioned part of E.D.R. matrix.

Matrix used in estimation theory,

Discrete measurement covariance matrix at time jT.
Digcrete measurement input vector at time JT.
State vecltor oxr system variable vector at time JT.
State vector or system variable vector at time JT.

Partitioned part of E.D.R. matrix.

‘State vector or system variable vector at time jT.

Uncontrolled system's discrete state transition matrix.

Controlled system's discrete state transition matrix,



CHAPTER 1 - INTRODUCTION

1.1 FPRELIMINARY REMARKS

The necessity of imprbving the efficiency of industrial
processes and the ever increasing demand for high performance
systems have resulted in a reawakening of research activity in
the field of optimal control theory. The classical interreléﬁed
problems of Lagrange, Bolza and Mayer, first analysed in the
nineteenth century with the aid of the specifically devised
techniques of the Caleculus of Variations (1), could be considered
a5 the first mathematically orientated study of the general control
optimisation problem, The recent resurgence of activity received
much of its initial momentum from the publication of the work of
two eminent applied mathematicians, namely L. S. Pontryagin and
R. E. Bellman; The Maximum Principle of Péntryagin (2) end ‘the
Principle of Optimality of Bellman (5), along with the classical
theories of the calculus of variations, now forms a rigorous
mathematical foundation upon which to base the solutién of complex

optimisation problenms,

The optimisation problem is essentially the determination
of the open or closed loop control inputs, which, when applied to
the dynamic system, results in a response which minimises some

functional which, it has already been decided, characterises the

5
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peiformance of the system. Certain constraints may also be imposed
concerning the admissability of the control inputs or the resulting

response of the controlled system, The control inputs so determined
are called the optimal control inputs, or the optimal control policy

of the system,

In the case of non-linear dynamic systems, the optimisation |
problem eventually evolves into the determination of the solution of
a two point boundary value problem, which is notoriously difficult
_ in all but a few ceses. In recent years many papers have been
published which, when dealing with the complex optimisation problem,
have as their net result the reduction of the problem to a
correspondingly complex two point boundary value problem, On the
other hand, relatively few papers have dealt with the fundamental
problem of immense practical importance, namely, the solution of the
typical two point boundary wvalue probiems found in optimal control
theory. The author has found the most notable papers in this vein
have been those of Bryson and Denhem (4) (5), Westcott, Florentin
and Pearson (6), Noton (7) and Levine (8). The methods presented
therein necessitate, in general, the use of large high~speed digital
computers, In the solution of the two point boundary value problem,
the time taken to converge to an optimal solution, if convergence
actually occurs, is not known at the outset of the calculation.

This lack of infoxrmation is a major drawback in the utilisation of
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guch an opbtimisation procedure in an on~line capacity. The

logical development is the approximation of the non-linear problem
by a corresponding linear problem for which a quasi-analytic solution
. can be derived and hence its on-line use is feasible, Satisfactory
results have been reported by Pearson (9) and Davis (10) using such

a procedure,

In ordexr to §btaih a quasi-analytic solution, not only must
one have a linear system, but one is also restricted, at least at
present, to a quadratic performance criterion. The continuous
optimisation problem then reduces to the determination of the solution
of the well known matrix ricatti equation, which is relatively easily
accomplished by the adjoint variable technigue (9), (11), (12). The
optimal control input in this case turns out to be a linear function
of, in general, all the state variab}es of the system, The resulting
system therefore has a closed loop feedback structure, as opposed to
the open loop structure which results from the implementation of the
- optimal input of a non-linear system, (Classical control engineering
analysis (13) hes shown that a closed loop system is a desirable
structure, a conclusion which has been confirmed as & by-product of
calculating the optimal control input of a linear system. Although
the optimal non-linear system design results in an open loop structure

in practice, it seems reasonable to assume that it is, in fact, a non-
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linear feedback system,'but the methods of analysis are such that
the problem cannot be solved in such a way as to permit feedback
implementation. This thesis is concerned with the digital optimal
control problem; therefore it is not intended to discuss in depth

the optimal control techniques applicable to continuous systems,

A digital control system'is defined as a dynamic system
in which the control inpubt is applied to the system.intermittéhtly.
One of the reasons why such a system arrangement is of practical
significance ié that if any form of digital device is required in
" the system.to calculate the control inputs etc., the output of that
device will be intermittent, Assuming the continuation of present
trends, it is likely that digital computers will be incoxporated in
complex control systems, performing such functions as dynamic optimal
control generation and system identification. As yet, the majority
of computers which have been included in control systems have been
used to tackle the static optimisation problem. Nevertheless,
recent results would suggest that a further improvemeﬁt in system
efficiency could be made by dynamic optimal control (14). The
process control industries will undoubtedly be one 6f the major users
of computer control, and therefore it is desirable that any digital
optimal control technique devised should be applicable to systems with
typical process dynamics, Although, as in the continuous case, it

is necessary to resirict the system's dynamics to be linear and the
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' criterion to be quadratic, to obtain a quasi-analytic solution, it
will be shown in the following chapters that it is possible to

include systems with multiple state, control and measurement delays

end with additive correlated noise disturbance and measurement inputs.

-

The approach in this thesis has been to assume the presence
of a computer in the system, and hence derive the optimal digital
control input for a linear dynamic system, The dynamics are assumed
independent of time, although in fact they may be slowly varying‘with’
the corresponding intermittent updating of the o?timal control
calculations, Wherever possible, particular attention has been given
to designing good sub-optimel digital control systems where the reduction

in system complexity compensates for the loss of optimality.

1,2 - THE OPTIMAL DIGITAL CONTROL PROBLEM

The Maximum Pr;nciple was originally devised for continuous
-~ systems, but hﬁs recently been extended to deal with discrete systems
with limited success (15) (16). On the other hand, the Principle of
Optimality and the associated Dynamic Programming theory'are essentially
discrete in concept and therefore easily applied to the solution of the
optimal digital control problem, For this reason, the dynamic

programming approach has been used in this thesis,

In an optimal digital control system, the choice of control
inputs is made at each sampling instant in such a way that the performance

criterion governing the response of the system over some specified number

of sampling intervals, N, is minimised. The optimal digital control
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problem isg therefore clearly seen to be an N stage control input
decision process, which is, in general, difficult to solve, In
analogy with continuous systems, the set of inputs which result

from making the N stage decisions is called the optimal control input

policy of the system,

The intuitive concept of the Principle of Optimality can be
stated as - An optimal control input policy has the property .that
whatever the initial state and initial control decisions are, the
remgining control decisions must constitute an optimal control policy
with regard to the state resulting from the preceding control input
decisions; Thus by making the control input decisions in reverse
order to which they will actually be used,reduces the N stage decision
~process to N single stage decision processes, which are readily solvable.
Since the decision making has to be performed in reverse time, one
requires to have a knowledge of the state of the system at each sampling
instant before the input decisions at all the preceding sampling instants
have been made. The lack of this information about the state of the
system is the stumbling block which prevents the direct application of
the dynamic programming.techniques to non-linear dynamic systems.
Although theoretical methods can easily be developed (3), their
implementation, foi all but a few simple problems, would require a digita
computer with étorage capacity and speed several magnitudes greater than

those even anticipated today,
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In mathematical texms, the Principle of Optimality can be
stated as

£ (T3 1) = g(t) + £(FFRL ) : (1.7.1

with £(0+1 T) = 0
where T is the sampling period,

N is the total number of sampling intervals ovex

which the system has ﬁo be optimally controlled,

£(N~3 T) and £(N-3+1 T) are the optimal values of

the performance index calculated from the initial

sampling ingtant to J th and J+1 th sampling instant

respectively,

and g(t) is the value of optimal performance index during

the time interval JT s ¢ s j+1 T.

It was pointed out by Kalman and Koepcke (17) that if one
restricted the system to have linear deterministic dynamics and the
pexrformance criteribn to be quadratic in the state and control variables
of the system, thefunctional f(ﬁzﬁ_T) could be expressed as a function
of the state x(jT), namely

£ (F31) = x(51) P (F=3 ) =(3r) (1.7.

where P(N-j) is a square, symmetric, non-negative definite

matrix of dimensions equal to the order of the system.

This equality is analogous to a similar expression, which is
obtained for continuous systems undexr the same restrictions. In

that case the matrix P(N<j T) is the ricatti metrix and therefore,

for notational convenience, the author has called the matrix P(N-j)
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the equivalent discrete ricatti matrix or the E.D.R. matrix,

The use of the relationships of equations (1,2.1.) and
(1.2.2.),hence—forth expressed in a more precise notation as,
(&) £y xGD)] = elx@@m), n(O) + £y s [x(31 D]

with x(~1)] = 0

N+l [

and x(3jT) and m(jT) the state and control input of

the gystem at sampling instant JT,.

(®) £y sLx(39] = =(37) PFD) x(37)

enable a Quasi-agélytic method of determining fhe optimal control
policy for the digifally controlled system as will be shown in
Chapter 2, As in the pure dynamic programming approach, the
control inputs are again calculated in-the reverse order to that
in which they would be used,

The original optimisation technique (17) was developed
correctly by Gunckel and Franklin (18) and wrongly by Tou (19)
end Joseph (20) to include lineax syétems with additive noise
disturbances with zero mean., A further development which allowed
the amplitude of the control variable inputs to be constrained
within prescribed inputs was indicated by Deley and Franklin (21),
but the practicability of the pﬁoposed technique is questionable,

. from a computational point of view, for systems of even modest

complexity.

The research reported in this thesis was motivated by

(1e243.

(1.2.4




-
several factors. Firstly, the author was interested in the
possibility of extending the basic optimisation technique to a
larger class of systems and in p&rticulai to éarry out the
optimisation with respect to a more design oxrientated performence
criterion than those used by the authors of the above mentioned
papers (17), (18), (19), (20). Secondly, to the author's
knowledge, there was no recoxded discussion of the computational
aspects of evén the simple optimal digital control technique; a
fact most certainly due to the very few mumerical calculations
which have been attempted and reported. Thirdly, there was the
problem of implementing the optimel control possibly in a sube-
optimal manner if such a procedure was Judged advantageous,

Finally, the author was interested in exactly how such factors

as the systems eigenvalues, the sampling period and the
compatibility of the performaﬁce criterion with the system's dynamics
would affect the generation of the o@timal control policy and the
resulting performance index of the optimal system. The results

of the author's investigations are reported in the remainder of

this thesis,
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CHAPTER 2 -~ OPTIMAL DIGITAL CONTROL TECHNIOUES

2,1, - STATE VARTABLE DESCRIFTION OF DYNAMIC SYSTEMS

2.1.1, - CONCEPT OF THE STATE OF A SYSTEM

In the study of the optimisation problem in control theory,
it has been found that it is more convenient mathematically to
describe the dynamics of & system in the time domain rather than
in the frequency domain, the latter being mainly used in more .
clasgsical control theory. In order to develop a generalised form
of the description of the system's dynamics in the time domain, the
concept of a system's'sfate and its state vector has been
introduced (22), (23). A complete understanding of the meaning
of a system's state is essential t:fzomprehension of the methods

of solution to be used throughout this thesis, Therefore it was

thought worthwhile to include a concise note on this topic.

The author has found it convenient to define the state of
a dynamic system 4o be the minimum amount of information about the
system at time to which, along with a knowledge of the‘dynamic
characteristics of the system and the inputs to the system during
.the time interval t-to allows the response of the system at time t,
t > to’ to be calculated, ~ The state vector has then been defined
as the column vector of minimum dimensions, a knowledge of the past
and present history of whose elements is equivalent to a knowiédge

of the state of the system,
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Consider a system whose dynamics are described by a p th
order differential equation. It cén be shown that this single equation
caﬁ be represented by a non~unique set of ﬁ 1st’order differential
equations, linear systems retaining their linear properties (24).
Let the p time dependent variables used in these p equations be
defined as the system variables. It should be noted that these lst’
order equations will also contain any input variaﬁles appeaxring in the
p th order equation., In order to calculate the response of the system
wnder discussion at some future time, one would only require a knowledge
of the system variables at the present time to along with a knowledge of
the dynamic.characteristics of the system and the inputs to the system
in time interval t-to. The vector of the system variables can therefore
be seen to be equivalent to the state vector previously defined, The
system variables are thus defined to be the state variable, i.e. variable
which describe the system's state. To simplify mathematical manipulation,
the p 1lst orxder differential equations’are henceforth represented in
mnatrix form,
(%) = £(x(t), m(t), t)

where x(t) is the state vector,

m(t) is the control input vector,

t is the independent time variable,

£(x(t), m(t) t) is & vector of functions of its arguments

The above argument has considered the special case of a system

described by differential equations, but similar remarks also hold for
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systems described by difference equations (25), (26). In the case

of systems described by partial differential equations one could also
theoretically define a state vector, bﬁt tﬁe laéter would be infinitely
large since the elements of the state vector would have to represent
continuous distributions rather than a finite number of vexriables,
Approximations to the infinite state vector can be made, as will be
shown when the multiple state and control delay system, a subset of

the general partial differential class of systems, is solved in sub-

section (2.1.4.)

2.,1,2, '~ THE AUGMENTED STATE VECTOR

Ay

From the definition of the state vector, it can be deduced
that if two systems with state variable equations
2(t) = £{x(t), m(‘t)‘, t) (2.1.)
and #(t) = g(r(t), u(t), t) |  (2.2.)
are intercomnected through a system with no dynamics, then one of
the state vectors of the composite system would be the éartitioned
vector z(t),
a(4) = [x(8) | 7))
Consider a control system described by equation (2.1.) which is
subject to an additive disturbance input described by equation (2.2.)

The above statement indicates that the response of the composite
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disturbed system can be studied by considering the single augmented
state system
Ca(8) = by (a(8), m(t), u(s), +)

It can also be deduced that if no direct interconnection
existed between the two systems, then the two separate systems could
be examined together by considering the single augmented state system

2() = hy(2(s), m(s), u(t), +)
where h, (z(t), m(t), u(t), t)= "[£(x(t), m(s), t)
| g(r(t), u(t), )
The augmented state variable approach to systems analysis
indicated above is used extensively in dexiving the general solution

of the digital optimisation problem presented later in this chaptex.

2.1.3. - SOLUTION OF STATE EQUATION %(t) = £(x(%), m(4), %)

2,1.3, - SOLUTION OF STATE EQUATION %(t) = £(x(t), m(t), )

The discrete dynamic programiing optimisation problem
requires the state at one sampling instant to be a known function of
the state at the preceding sampling instants. The stafe equations
governing the system must therefore be represented in the form of a
matrix difference equation. Such a representation of the general
matrix state vector differential eguation will now be calculated and,
by an extension of the solution technigue adopted, an approximate
solution of the general state vector difference -~ differential

equation will be obtained,
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Consider the matrix differential equation

2(t) = £(x(t), m(t), t) (2.3.)
Equation (2.3.) is satisfied by the integfél equation
b
x(t) = x(to) + g fo(r), n(r), ) dr (2.4.)
t
o

If one regards x(t) appearing in equation (2.4.) to be unknown, then
equatién (2.4) can be solved by the method of successive approximations (24)
and thence it can be shown that the function x(t) defined in equation

(2.4) is the general solution of equation (2.3). In particular, the
linear_time varying coefficient'differential equation correspdnding

to equation (2.3) ie.

2(t) = A(H) x(t) + D(t) m(t) | (2.5.)
has solution . .
) t
x(t) = x(t)) + gt [a(a)x(a) + D(a)n(a)] 4 (2.6.)

Considering t to be a dummy variable, one can obtain expressions

x(q) = x(to) + §? [A()x(x) + D(r)m(r)l dr

x(z) = x(to)u+ gé [A(s)x(s) + D(s)m(s)] ds

%

etc,
The successive substitution of these expressions into equation

(2.6) would eventually yield the infinite series solution

tO

(%) =§_o¢-(t,to) x(to) + £ (%) (2.7.)
where o (t,to) =1
-t . .
«4 (‘c,to) =5 Ax) di._lr(r,to) dr i =1, 2 ...
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- t
a.nd/So(t,to) = g D(x) m(x) dr

t
0

t : .
ﬁi(t,to) = gt A(r)/_-,’i_l (r,to) dr  A=1l, 2
o
If the equation (2.5) has time invariant coefficients, then equation
(2.7) can be reduced to a simpler form, i.e,
x(t) = x(to) + AT x(t ) + A2T2/2! x(to) +eene
t

+ Dg; m(q)dq + AD[: (t n(r) 4r dq + eeee . (2.8.)

where T = t-to.

- If it is further assumed that t-to is the gsampling pexriod of the
digital control system, then, by definition of the latter, the input
variable m(r) has a constant value during this period egual to m(to).

The equetion then becomes

o0

x(6) =2 (Ar)/ir x(s)) +2 A5V /i us, ) (2.9.)

ixo (2.1}

Replacing the infinife series by the variables used in later sections
of.this thesis, the difference equation solution of the differential
equation (2,5,) is
x(8) = (t-1) x(1) + G(t-t,) m(t)) | (2.10.)
where @ (‘c-to) = :ZO(AT)i/i!‘ (commonly denoted by exp(AT))

o %
and G(t~t_) =7 s etsin p - g @ (t=-r) D dr
(x)

0
Having obtained the matrix infinite series@ (t-t ), its
convergence properties must be established before equation (2.10)

can be shown 1o be practically useful, The scalar form of the
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series is well known to be convergent for all finite T, but the

matrix form requires proof (22).

Let S, denote the finite series Z (TA)k/k' where A is a p x p matrix.

Let the (3.,3)"Lh element of §_ be denoted by Z a(k) ™ /iy

Let & = max ( Z ‘a(k) \ ) where maximisation is with respect to

the p rows of matrix SI,.

Then max | a(k + 1)ijl = ma,xl Z a, a(k) \

ij &=
$ max (i[a 590 ‘a(k)lal)
iJ
(max g_: lalll )(ma.x la(k)la‘ )

Hence max |a(k+l),.| < =mex | a(k) .
For n = 0, max \a(o):.Lj | s «
id

Therefore by induction

max \a(k-rl)ij | < o(%.

~
iJ
Thus the J.nf:mlte series defining the elements of ¢ (t—t ) is dominated

by series Z@T)

(Y

convergent, Having therefore proved the convergence of P (t-to) the

which is a scalar exponential series and is uniformly

convergence of G(t-to) automatically follows due to simple relationship

between these matrices (cf equation (2,10).

2.1s4s - SOLUTION OF THE GENERAL MATRIX DIFFERENCE=-
DIFFERENTIAL EQUATION

In the introduction it was pointed out that the type of

systems to which optimal digital control were likely to be applied
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wiiere those whose dynamics often contain pure time delays, i.e.
systems whose dynamics are described by difference~differential
equations, Using an extension of the mefhod uéed in the solution
of equation (2.5), the solution of the linear time invarient matrix
difference-difffrential equatign
(%) ==;o A; x(t-18) +§;Di m(t=-1i8 ) (2.11.)
where ¥, and T, are specified positive integer quantities

’

and x(t) and m(t) are the system variables and control
variable ;ectors respectively,
will now be derived.-
The general solution of equation (2.11) was derived by firstly
examining simple cases of the equation and thence deducing the
general solution structure.
Consider the unforced system described by the class 1 difference-
differential equation
%(%) = & x(t) + Bx(t-8) " (2.12.)
where § is a pure time delay,

If one considers x(t~8§) to be a time varying input, then the above

equation has a solution similar in form to equation (2.10), namely,

() = 6 (1-t,) x(5,) +{ 6 () B x(a-8) g (2.13.)

The variable x(t) is a function of x(to) and x(r) whexre b $<r g
t-8. In order to expand x(t) as a function of x(to), x(toué) etc.

it is necessary to find an expression relating x(q~§) to x(to-S) and -



x(s) where t0-25=s s = =28, This can be done by considering
t and to in equation (2.13) as dummy variables and thence by slight

manipulation of equation (2.13) one obtains the'expression

9-8 '
x(2-8) =  (art)) w(6-8) + | (a-8o)3 x(z-8)ax (2.14.)
ks
By changing variable in last term, equation (2.14) becomes
_ q |
. %(q=8) = ys(q-to) X (to~5) + g gﬁ(q—s)B x(g~28)ds (2.15.)
o

Inspection of egquations (2.13) and (2.15) reveals that a
generalAform of equation for x(g=i8) has been derived, The
successive substitution of these expressions into equation (2,13)
in a gimilar fashion to the method used for solution of equatién

(2.5), eventually yields an infinite series expression for x(t).

x(t) = :Zya(t-to) x(=18) (2.16.)

where 950(‘0-1;0) is equal to ¢('b-to) in equation (2.9)

and  Pi(t-t,) =Stt¢(’f--q) B @, (a-t,) dq

The system ﬁariable vector x(%) has therefore been expressed
as a function of the delayed system variables, The remaining problem
however, is to derive a simple method of evaluating ?5:.‘(""'170) for iL>0,
A perticular case of equation (2,12) is that in which &= 0, i.e.
%(t) = (A + B) x(%)
which has a known solution (cf equations (2.5.) and (2,10))
x(8) = [T+ (aB)n + (a+B)°0%/21 + (W4B)’0/50 + o0 Jx(s)  (2.17.)
where T = t-to.

From equation (2,16) it is apparent that the termf&(t-to) contains
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matrix B to the cumulétive i'th power only. Since equation
(2.17) holds for all finite matrices B, the infinite series in
eguation (2,17) can be arranged as a sum of groﬁpa of terms'with
a common cumulative power of B, the i'th group of terms being
equal to the matrix @ (t-t 0). Therefore
B (=b,) = T+ AT+ A5TP/20 4 PT/3 + 4 (2.18.)
é 1(t-—to) =0 + BT + (AB + BA)TZ/QL+(AZB+ABA+BA2)T3/31‘+ voo
@ 2('1‘-’50) =0+ 0 + BZT2/2'.' + (AB2+BAB+BZA)T3/31 + ene
etc,
The J th group, where J denotes power of T, in the expression for
‘¢ i(ﬁ-ta) will be denoted es F&j(T). From equations (2.17) it can
be seen by inspection that Fij(T)'consists of a summation of “terms
of geneyxal form
(a) AT/j x (term with common factor T ™1/(j-1)! and B to
the cumulative i th power)
or (b) B1/j x (term with common factor Tj~l/(j-1)l and B to
the cumulative (i=-1)th power)
In other words Fij can be formed from a summation of
(a) AT/} x‘Fia._l(T)
and (b) BT/j x P 1 j_l(m)
Expressed in mathematical terms; the iteration procedure for Fi

J

becomes
Py (1) = [AEL‘ Fyyq(T) + BT NGOIVE < (2.19)
where FBO(T) =1

and R (7)) = F_l’e(T) = 0 for k > 0 and all 1.

\
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The validity of the above iterative equation was proved by siraight-
forwvard expansion and then comparison with the groups appearing in
equations (2.18), The matricesgﬁi(t-to)ican now be easily calculated

from expression

# (bt)) = 27, ().

i=o

A simple iterative procedure has thus been developed to calculate

the matrices appearing in equation (2.16).

The infinite series solution of equation (2,12) expressed
in equation (2,16) is the exact solution, ﬁefore a truncated form
of the solgtion can be used as an approximation to the true solution,
- the infinite series must be proved convergent. Before considering
the convergence of ¢i(t~to) to a null matrix, one must first consider
(1)

converges with increasing J, so that for a sufficiently large j, J>n,

the convergence of F..(T) with increasing j. Assume that F, . .

i i=1,J~1
i1 j(T) is approximately a null matrix. The iteration for Fij(T)
for j>» n can then be simplified to

Fij(T) = AT Fy j_l(T)/j vhere j>n
iZ;_‘ Fij = [E (AT)j/j!lFi j_l(T) * (n=-1)}
< |2 ami/s v (0 x (1) (2.21)

i=e

Hence (AT)"

where < mea.ns' less than all the terms ofe
The infinite series in square brackets has already been proved to be
" convergent, thus left hand side of equation (2.2.1) converges to a

limit subject to Fi-l,j-l(T) converging, ~ But iteration for F . (1)

converges since qS o(t"to). = Z Foj(T) which has already been proved

A%e
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convergent., By induction it can therefore be deduced that Fij(T)
is convergent for all.finite matrices A and B and for all finite T,
' The equations (2.18) show that-when J<i aﬁd i>d, Fij(T) = 0;  thus
convergence of Fij(T) as Jj increaseé ensures the convergence of
¢ﬁ(t'to) as i increases. Truncation of exact solution expressed
in equation (2.16) to obtain an approximate solution is therefore
valid.

¢

The class 2 difference~differential equation
%(t) = A x(t) + B x(t~8) + ¢ x(t~g) : (2.22)
where § and & are pure time delays,

will now be examined in the light of the results already obtained
and thence a solution for the general multiple state delay equation

will be deduced.

Equation (2,22) has solution (cf equation (2.13)).

() = (10t 3(5,) +{ # (400) B x(a3) ag

v 7t
*L # (t-q) ¢ x(a- ) dq (2.23)

0o

From equation (2.23) an expression for x(q-¥), where ¥ is some

arbitrary delay, can be derived (cf equation 2.14)
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Since both x(z-$~%) and x(r-:¢~¥) have a similar form to x(qg~Y¥),
equation (2.24) represents a general expression which could be

successively substituted into equation (2,23), The resulting

infinite series can be represented as

o0 o

x(t) = Z Pig (£-10) = (& -i8-4e) (2.25)
L=0 j=o

In the gene¥a1 case of multiple delays, the equation corresponding
to equation (2.25) would contain r, infinite summations, where r;
is the number of state delays present, To eliminate the duplex
infinite summations, the assumption that all delays are an integer
multiple of & basic delay is made, In the particular case under
consideration, one assumes & ® 23, This type of assumption is mnot
as restrictive as it might at first appear, since in the multiple
delay case not all the delays need be present; +thus the assumption
is equivalent to requixing that the physical delays are integer

maltiples of a basic delay which itself may be entirely fictitious,

With the assumption that €+2§, an expression for x(g~-$) can be found
which is a function of x(to-ﬁ), x(r~9) and x(r-2%), i.e. equation

(2.2.4) with &=2§. The successive substitution of this expression
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into equation (2.23) yields the expression for x(t).

o]

x(t) = Z P (-t = (-&.-7"\,5) e (2.26)

ML P

where ¢0(t-to) is as before

t 12 s ‘
- ¢ 4(t=t ) has form L # {-t-q,)ﬁ$ L Plo-e) fBe L a58§2+27)

with each ﬁj either matrix B or C.

As in the class 1 system, the particular case of Sx &= O was

considered since exact solution was known to be
x(t) = [I + (A+B+C)T + (A+B+C)2‘1‘2/2'. + eee ]x(to) (2.28)

From detailed expansion of equation (2,26) it was noted that the
expression for P, (t-t ) contained matrix B to the cumulative k th
power and matrix C to the cumulative 1 th power, for all non negative

integer values of k and 1 where the relationship
i=k+ 21 - (2.29)

was satisfied. Since matrices B and C can have any value, it is
possible to equate ¢i(t-to) to the group of terms of equation (2,28)
where the relationship of equation (2.29) holds., By a similar
argument to that used to derive the iteration procedure for calculating

56 i(t-to) for the class 1 equation, the iteration for class 2 systems can
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be proved to be

o«

;6; (t-t,) ”.Z Fij('l‘) : , (2.30)
dt.} .

where Fij = [ AT F, j__1(T) + BT Fi-l,j-l(T) + QT Fi_z’_j_l('l‘)] /3

and Foo(T) = I, Fko(_T) = F—-R(T) = F_Zt(T) =0 for k >0 and all {,

The validity of this iteration was proved by straightforward
expansion. The series ﬂsi(t-to) can also be'shown to be convergent

by the methods already illustrated,

By a close examination of the results expressed in equations
(2.16), (2.19), (2.20), (2.,26) and (2.30) one can deduce that the
sélution of the general homogeneous difference~differential equation

%(t) = .—Z Ay x(to-iS) (2.31)

t=o

can be expressed as

x(4) = ifsi(t-to) x(t ~13) o (2.32)

%0

where;éi(t-to) = i Fij(T)

j=e
L
and Fij(T) = e'.Z [AkT Fi-ﬁ, j-l(m)l /J
. 5O
with FOO(T) = I and FkO(T) =T JL('r) =0 form >0,

all 1, and all k except k = 0,

=

Having considered systems described by homogeneous
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- difference~differential equations, the theoxry will now be developed

to include systems with multiple delay inputs. Consider the systenm
%(t) = A x(t) + B x(t~8) + Dom(t) (2433)

The solution of this equation is (ef equation (2.13))

o

t Co
x(t) =p(e-t,) x(t,) +§t # (t-a) B x(a-8) dq

t :
+§ $ (t-q) D m(q) dg (2.34)
%
Using methogi of successive substitution as previously, equation
(2.34) can be rewritten as the infinite series solution
oo hd ’
x() ”;Z:, $rt=t,) x(t -i8) + Zo ¥, (mt,) (2.35)

where 55 i(t-to) is. defined as before (cf equation 2,20)
, | (v :
Xio(t-to) = {t ¢ (t=x) Do?:n(r-iS) dr,
o

i,j-l(r-to) dr

1
and Xij(t-to) =ft ¢ (t-x) D, ¥
o ..
Since the expressions for géi(t-to) is identical to those already
obtained, the only problem is the evaluation of Kii(t-to). From
equation (2,35) it can be seen that Kii(t-to) is related to

;5 i(t-to) by equation

% : .
z{ii(t-to) = L ;éi(fc-r) Dom(r-ié) dr (2.36)

0
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By definition of a- digital control system m(x) ='m(to) for

t, < <+t. On the other hand, variable m(r-i8) will adopi
at least two values and therefore cannot be diréctly :r.'emov"red
from the integrand in equation (2.36). Tigure (1) illustrates
the vamiation of m(r-i%). The integral expression can

nevertheless be split into two parts, giving

to+n';
bl ii(t-to) aft ¢ i(t_-r) D dr m(to- ti+1)
)
[ $ .00 e m
+ ;6.t-r D dr m(t - T.)
1 (o] (o] 1 ’
t0+ﬁ'i

where T, = (tuto) x integer part of (iS/(t-tO)

and O% = i & -'ci’

>

Using equation (2,20), equation (2.37) can be rewritten as

(2.37)

8 (s-t,) =[i {Fij(T)‘& T - 'Fij(rr-m_)x (T-B'XDO/;HI]m(tO-E;ﬁ)

i

{Z {:'Fij('l‘-o:) X (T-o;.)}Do/,j+11 m(to- 'r.i)
j=o _

i

By substituting expression for xii(t'to) from equation (2,38) into

equation (2,35) and collecting terms with'common factor m(tonim)
one obtains the expression
o0 o
ORPARCOECEDE ;aio(t-to) n(t -1

where 75;, is defined as before (cf equation (2.20))

5,:(D,) m(t - T +#1) + 5., (D) m(t -T;) (2.38)

(2.39)
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and G, (t-t ) = Z: 55(0,) + SZ,j—l(Do) with sumation

i
taken over all j where'tj(S) = iT starting with j = O.

In the case where 8§ is greater than T, the occasion will arise when.
Ty =il end T 0 = (i+2)T.  In such cases G,(t~t ) is defined as

a null matrix.

Note that since Fij(r) andjﬁi(r) have slready been proved convergent
for any finite time interval r, the matrix'aigt-to) will also be

convergent,

By examination of the above results, it can be deduced

that the solution of equation

£(t) = & x(8) + B x(t-8) + D_u(t) + Dm(t-3)

o0

s x(t) = 2? ;6i(t~to)~x(t0-i5) f Zi ?%O(t-to)m(to-iT)

+ Zi_Gil(t-to)m(to_iT)

i=o

ifo

where gﬁi(t-to) are defined as before (cf egmation (2,20)
"aio(t-to) are defined in equation (2.39)
Gil(t—to) = %f slj(nl) - 52,3-1(31) with summation
taken over all J where'tj(é) = i starting with
,j:‘lo
and Slj(Dl) and Szj(Dl) are defined in equation (2.38)

with Dl replacing Do.

(2.40)

(2.41)
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Equation (2.41) can be simplified by collecting terms with common
factor u(to~iT) resulting in expression

x(t) = f¢i(t-to) x(to-iﬁ) + 2 Gi(t-to) m(to-iT) (2.42)

‘=0 i=o

where Gi(t-to) = Gio(t-to) + Gil(t-to)

Finally, it is now possible to deduce that the difference
equation solution of general difference-differential equation
described by equation (2.11) is

x(i_;) = i;&i(t-to) x(to-is) + ;‘Gi(t-to) m(to-i'l‘) _(2.43)

FET)

whére (a) @ (1~ ) = j_ZFi;)(T)
Fij(T) = e;o AkT Fi-r, j-l(T)/j

with Foo('l‘) = I, .FkO(T) = Fo o (T) = O for

m> 0, all 1, -and all k except k = O,

o
and  (b) G, (t-t ) go Gy (8-1,)

G

ik = ; 515(0) + S, 5.1(D)

with summation taken over all J whexe

TJ(S) = iT starting with j = k

5,4(D) = Z_-_[Fij(T) xT - F; (1-g) % (1-9)} p, /511
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o0

S—l;j(Dk) = Z[Fij(T) 3 (T-o;)] D, /3+1

3:0

tj(é) = (t-to)&ainteger part of jS/(t-to)
o = j8- 1:3(5) and T = t-t_

It can be inferred from the convergence analysis previously
carried out thétgéi(t-to) and Gi(tuto) are convergent to nmull matrices
with increasing i, It is thus possible to obtain an approximate

truncated solution of equation (2.43), namely,

Leo

x(%) = Z ;éi(t-to) x(tsi8) +Z Gi(t-fo) m(to-iT)

ixo
According to the author's definition of state given in sub~section
(2.1.1.), the state of the system described by equation (2,11) with
solution described by equation (2.4%) is a lmowledge of vectors
x(t=18) and u(t~iT) for i > 0, The state vector of general
difference differential equation is thus an infinite vector for exact
solution, but a finite vector for a truncated approximate solution,
Foxr the latter cage, the resulting matrix state vector difference
- equation corresponding to equation (2.11) can then be written as is

indicated in figure (2).

After the author had completed this part of his research,
a paper by Koepcke ( 27 ) was published, in which a similar problem

to that solved in this sub-section was tackled, A combined s-pleane
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z-plane method was used and a solution determined for the extremely
restricted case of the delays being equal to multiples of the sampling
interval., with this assumption, it was found that both methods

yielded identical numerical results,

In conclusion, this sub-section contains.the derivation
of the-general difference~differential equation in the form of a
difference equation, which is required by the discrete dynamic’
programming optimisation technique., The only additional restriction

equation

imposed on the linear,time invariant coefficient difference-differential/
was that thg delays appearing in that equation where multiples of some
delay which may itself be fictitious., The matrix iterative equations
developed in this section are ideal for compute¥ handling. An algol

progrem used to derive the various matrices found in the solution of

equation (2,11) is detailed in appendix (A)

2,1.4, - ADDITIVE NOISE DISTURBANCES

A1l physicel systems operate in a noisy environment,
Nevertheiess, for the most part, classical system design is carried
out under the assumption that negligible random disturbances are
present. In this thesis, the particular case of additive random
noise intioduced to an otherwise deterministic system will be
considered, The introduction of stochastic processes raises the

problem of whether the state of the system, previously defined for a

deterministic systeﬁ, is applicable in the stochastic situation, since
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the future response of a stochastic system is generally dependent

on the manner in which it reached its present condition, If the
statistical characteristics of the random ﬁistuibances are knowvn and
are independent of the previous response of the system, the estimated
regponse of the system at time t could be calculated from a knowledge
of the present condition of the system at time to and the deterministic
inputs to the system in interval to to tl‘ Therefore the previous
definition of state still holds for this subset of all stochastic
Processes. Such processes are commonly called Markov processes and
these will be the only type of stochastic process investigated in this

thesis,

2.2, = THE QUADRATIC SUMMATION CRITERTON OPTIMAL DIGITAL CONTROL PCLICY.

In this section the optimal digital control policy of the
digitally controlled Markovian system described by the state vector

_ equations

% = A x(t) + D m(t) + u(t) | (2.44)
where u(t) is an additive independent random vectoz,
will be determined such that when it is applied to the system, it
minimises the expected,value of the performance criterion defined by
equation

- [x(o)] - Z [x'(im)Q x(1iT7) + m'(im) H m(isv)] P (2.45)

.
2 4
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where T is constant sampling period
Q is state cost matrix

and H is control cost matrix.

In order that the performance criterion satisfies the convexity
’ requirement for a unique minimum, the matrices Q and H are restricted

to being positive definite or semi-definite,

In Chapter 1 it was pointed out that several papers had been
published on the solution of the problem posed above, the most notable
being those of Tou (19), Gunckel and Franklin (18) and Joseph (20).
Nevertheless, the optimal control law of the above syétem will be
determined below, using the methods proposed in these papers bécause
(a) the performance criterion differs from those
proposed in the beforementioned papers,

(b) the results differ from those obtained in references
(19) and (20), even allm}ing for the different
criterion used,

(c) the results will be shown to be a particular case of

the results obtained wifh a more practically orientated

performance criterion. than that expressed in equation

(2.45).

Before attempting to determine the optimal digital control law, some

Justification is put forward for the choice of the performance criterion
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structure. The criterion commonly used by several authors is

™~
4 f Jp— J—
Jim.[x(o)] = 7 [x'(ir) @ x(ir) + n’ (A1) T m(T1 )T (2.46)
=1

which does not include any term which is a function of the initial

state x(0)., The authors, in using such a criterion, argue that

gince there is no control over the initial state, there is no need

to include it in the performance criterion, which is a reasonable

argument, At the same time, it is often suggested that equation

(2;46) ig the discrete analogue of the continuous criterion
- NT ., | ,
T [0 T L) @.x(e) + () m m(0)] (2.47)
- 0

Considering the limit of the continuous integral to he an infinite
summation, it is obvious that equation (2,45) and not equation
(2.46) is the discrete analogue of (2,47)s It was for this reason
that the performance criterion éf equation (2.45) was initially

adopted as the performance criterion.

It should be noted that the multiplicative sampling period
term appearing in equation (2.45) is of no real significance, since
minimising the funtional Jy (x(0)] also minimises 1/T times that
functional, Although equation (2.45) is the discrete analogue
of equation (2,47), the two values of the performance index need
bear little relationship to one another when they are calculafed
for a specific optimal digital control, except in the case as T~ 0O

when the two inddces will tend to the same value., (28),
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Finally, it was stated that the expected value of the
performance index will be minimised; It has become accepted
préctice to use the expected value approaéh wheh dealing with
stochastic systems (29). In the particular problem to be solved,
the expectation is made with respect to the independent random

noise input u(t).

2.2,1, - DERIVATION OF OPTIMAL CONTROL POLICY

In Chapter 1 the fundamental concept of dymamic
programming, namely the Principle of Optimality, was introduced.
The lattex Qill now be used in the solution of the optimisation
problem, No additional restrictions will be made concerning the
independent noise disturbanceds characteristics until it is found

necessary to do so,

From the results of subsection (2.1.3.), theequation (2.44) hés

a difference equation solution

x(3+1 1) =@B(7) x(3T) + &(T) u(jT) + x(37) (2.48)

where ¢(T) and G(T) are defined in equation (2,10)

24

+
'r(jT) zf (tj+1-q) u(q) dq with tj_ﬂ-tj =T,

-t .

3
In the following analyéis, it is assumed that the sampling period
is constant and thus, for simplicity, the argument T will not be

included where it is unnecessary to an understanding of the mathematics.



The optimal performence index is defined as

£y [x(0)] = Hin, n[ ;x'(i) Q@ x(i) +n'(i) B m(i)}

where the N stage minimisation is made with respect

to the choice of m(i) for all 0% i< N,

The principle of optimality states, (cf equation (1.1)),

g [x] - M:(LSIEE:X (5 )0 5(3) + w(9) ¥ a(3) +
g Dol |

where the one stage minimisation is made with respect

to m(j) and £, Ix(w)1 = o
Let it now be assumed that fi_ [x(j)] can be expressed as

£y (@] = %) B(w3) x(3) + 2(-3)

where P(N=j) is a symmetric, as yet, arbitrary matrix,

and Z(N=j) is an unknown scalar quantity.

Substituting the corresponding form of the sbove expression into

equation (2,50) yields

¢

e gle()] = 3n {2°03) @ x(3) + 2"(5) ¥ m(a)

m(J

(2449)

(2.50)

(2.51)

+ B [x (j+1) P(¥=-3¥1) x(J+1) + Z(N~J+lﬂ§(2 52)

remembering that the expectation is taken with respect to the independent



noise input u(t).

\
Substituting the expression for x(j+1) from equation (2.48) into
equation (2.52) and assuming that the independent noise disturbance

u(t) has zero mean, one obtains expression

fyg (@) = 2 13/ fa s #20-F00p] ()
w2’ (N [pP@-341) ¢l m(5)
+n'(3) [0+ ¢ p(¥-371) 6] m(3) |
« 5 [0 -T2 ¢ ) | (253)

Since the minimisation of equation (2.53) is only over one stage,

equating the first variation of fN

to zero will yield the optimal choice of m(j) i.e.

_jfx(j)] with respect of m(j)

2 x'(5) ¢ P71 + 2n’(3) [mea'p(¥-371) €] = o,

Hence
n(3) = - [m¢'pP(-F1)e] ™ ¢ P(-FFDF x(3) (2.54a)
= B(N-j+1) x(J) (2.54b)

assuming that the inverse exists,

The control vector m(j) has been found to be a function of the
arbitrary matrix P(N-Jj+l) under the assumption expressed in equation
(2.51), To prove that the structure of the latter is valid,and,as
a Tesult,obtain an iterative or difference equation in P(N-j) and

Z(¥=3), the expression for m(j) will be back-substituted into equation
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(2.53), giving

£ (21 = x°(@) [ + #2(v-351) #
+¢'P(N—5?1)GE’H+G’P(N-5":1)G] - GIP(N“EITU;Z‘] =(3)

+ 5 [2'(3) B(E-31) =(3)] + 2(N-371) (2.55)
On the other hand, by assumption,
£ g (D] = %' (3) B(-3) x(3) + 2(w=3) L (2.56)

The equation (2.55) and (2,56) are of identical form, thus structure
of the assumed expression for fN_j[k(j)] is valid. This is not to
say that the assumed structure is the only possible valid one, As
it so happens, the control input expressed in equation (2.54) is in
fact the optimal input, but the mathematical rigour of the digital
optimisation technique concerning this point is nét as complete as it
might be. It is not intended to analyse this problem, but the
appreciation that such a problem exists assists in the understanding

of developments of the basic optimisation technique in Chapter 5.

Returning to the main theme of this section, since equations’(2.55)
and (2.56) hold foxr all values of x(j), theequivalent parts of these

equations can beequated, giving

P(N-3) = Q +@P(N-371) ¢
+ ¢ P(r-371)e [mec p(r-371)c] G'P(N-.FE);5 (2.57)

end z(8-3) = B[x'(3) P(-F1) 2(3)] + 2(w-F1) (2.58)
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The determination of the initial conditions and the relationship
between the various wvariables used in the gbove analysis and the
forward time axis are clarified by an examination of Figure (3).
The optimisation interval is O0< t sNT, so that the last control

vector to be applied to the system would be m(N), Consider

equation (2.50) with j = N, i.e.
£ ] = min B [x () @ x(W) + 0’ (¥) 2 n()]
n(X)
since f_, [x(w+1)] = 0 by definition,

Since both matrices @ and H are positive definite or semi-definite
minimisation will be achieved by letting m(XN) be a null vectox.

Therefore . °

£ L] = x"(w) a(w) =(w)

= xI(N) P(0) x() (by assumption)

The initial conditions for the difference equations (2.57) and (2.58)

are therefore P(0) = Q and 2(0) = O,

Figure (3) shows that P(N~j) is calculated in reverse time, thus
only when P(N) has been calculated from equation (2.57) with initial

conditions P(0) = Q can the first control variable m(0)ibe calculated,

22,2, - CHARACTERISTICS OF OPTIMAL SYSTEM

Firstly, it is noted that the optimal control policy is
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~ independent of the statistics of the random noise disturbance when

the latter is restricted to having a zero mean,

It is seen from equation (2.54) that the control input at
time t = JT is a linear time varying function of the state variables
of the system at the same time, The resultant system, as indicated
in Figure (4) is in the form of a feedback system with, in general, a
ﬁon-dynamic loop emanating from each state varisble and termineting at
each control input point. The useful practical characteristics of
well designed feedback systemsfare well known, It would therefore
be hoped that the optimally controlled system, which would result from
the impleméntation of the optimal control policy, would have these
desirable properties, Such aspects of optimal digital design are
discussed in detail in Chapters 4 and 5, Tor obvious reasons the
matrix B(N-j+1) appearing in equation (2.54b) is called the optimal
feedback coefficient matrix, Since the latter is time varying, all
the values of P(N-j) for i< j<N would have to be stored to allow the
calculation of m(i) for 0 £ i € N, This storage requirement, an
inherent property of the dynamic programming approach, is a severe
limitation to the usefulness of the optimal digital control policy
calculated above, If it is assumed that the difference equation in
P(N-j) ie. equatioﬁ (2.57), is stable, then, as N-J becomes large,
P(N-j) would tend to a constant matrix, For practical purposes let

the difference between successive values of P(N-j) be less than some
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gpecified tolerance for j>n If matrix P(N-nl) was then used to

1
calculate m(j) for 0£ = n, and the resulting controlled system was
stable, with x(i) approximating to a null vector for i>»n,, then the

~ control input for m(j) for ja=n2 would be zero, The optimal feedback
coefficient matrix is therefore time invariant if the optimisation
interval NT, in the definiticn of the performance criterion, is
greater than (n1+ nz)T. If the upper limit on the optimisation

interval was infinite, then the feedback matrix would always be time

invariant,

2434 ~ GENERALISATION OF OPTIMISATION PROCEDURE.

In this section two particular problems are solved and thence
a generalised optimisation procedure is developed, which is applicable
to a large class of linear systems, The details of the calculations

are given in appendix (B),

2,341 ~ STOCHASTIC SYSTEM WITH NON=-ZERO MEAN NOISE DISTURBANCE
The system under consideration is described by equation

%(t) = & x(t) + D m(t) + u(t) . (2.59)
where u(t) is independent noise disturbance input

with non~zero mean,

By splitting u(t) into a zero mean random noise part and a mean part,
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it is possible to rewrite equation (2,59) in form
%(t) = A x(%) + Dm(t) + X ul(t) + uz(t)

where uz(t) is zero mean disturbance matrix
ul(t) is vector of mean values of random disturbances,

end X is a suitable matrix,

The sbove equation also represents a system with zero mean disthrbance
inputs end a deterministic time varying disturbance input vector

ul(t). All the remarks_of this section are thus applicable to such

Assuming that the performance criterion is as defined in equation (2.45)

the results of this optimisation problem were found to be (cf appendix B).

Control Policy:
n(3) = - [8(3) + ¢'p(¥-Fr1)c] 7
{G P(N-J+1) $ x(3) + [G P(N-J+1) + @ v(N-j+1)]r (g)i " (2.60)

i.e. feedback from both state veriables x(j) and discrete

variables rl(j) corresponding to ul(j) (ef appendix B).

Performance Index:

o3 (@) 2 (D] = %' @) PR5)x(3) + 2 (3) v(w-3) = (3)
+ 2 (3) R(W-3) 2(3) + 5(v-3)
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where the matrices P(N-j), V(N~j) end R(N-j) and scalar z(N-j)

are determined from difference equations

P(N-3) = @ +@P(N-F) #
- ¢ p(N-7+1) ¢ e P-F1)e) 7t o p(w-531) ¢ (2.61)
V(N-3) = - $B(N-F+1)c[Brc P(N-371)6] ~* [0 P(0=371)+6" V(n-371)]
| #v(N-341)+ pP(n-5A)  (2.62)
R(N-3) = 2V(N-371) + R(N-J7I) + P(N-371) - = . (2.63)
[o” P(-371)+¢" v(w-F71)) [me6"p(w-331)6] " o’ (- 771) 40" v(w-371)]
2(N-3) = & {r,"(3) PON-371) £,(3)] + z(w-3+1) (2.64)
wiih initial conditions P(0) = Q and V(0) = ﬁ(o) = null matrix

_and 2(0) = 0,

The assumption necessarily made to obtain a solution was that the vector
ul(j) was constant over interval O £t $NT, which is the case if the

statistics are stetionary.

In sub-section (2.1.2.) the augmented state vector was
intfoduced. Using the augmented state formulation of the above
problem it will be shown that the two methods give identical results,
The seme terminology is used as in the above calculation and u, (%) is

assumed constant over the full optimisation interval,

.

. /
Consider the augmented state vectox [x(t) ! u-l(t)__l with the corresponding
]

matrix dynamic eéuation

._5[..(3) =lA K x(tz + |D u(t) + uz('b) (2.65)
a(t) 01 0} fu(t) 0 N Y



which has solution

x(j+1) | = ¢ﬁ o 1x(3) | + )6 {m(t) + rz(t)

e —
— - - — — o
— - - .

ul(j+l) 0 ;I ul(j) 0 0

jAr

where & is matrixf 75 (5+17 - @)X dq

JT '
' J+1T .

mat 7 () = ¢ (57T~ OK na) ag

JT

= o nl(jT) under assumption of constant nl(t).

Thus to give unifoxrm results, let augmented state vector Ex(j):rl(j)]l
. i
- be considered, The difference equation description of system in terms

of this state vector is

- - - -

T rl(j) 0 , 0

[%@?{}- [ ‘{ x(3) + |6 | m{t)  + rgﬂ (&%)

-

r, (§+1) 0

The corresponding performance criterion is

10 = 5 2. [a:(i) Ha ;0 ] { x(1) }Jr n' (1) E m(i)g (2.67)
| )

LxO - - - —

010

- e .

1 (1)

rl(i

A system with same form of state difference equations and performance
criterion has already been solved in sub=-section (2,2.1.) with results
given in equations (2.51), (2.54a), (2.57) and (2.58)., By direct

subgtitution of corresponding matrices, it is found that
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Control Policy:

u(3) = [BG) + ¢"P-F71)6) x-
[6'p(v-51) ¢ 4 ¢"p(v-371) + G'v(w-mﬂ[x(%g )] (2.68)

Performance Index:

/ .
fog 12D {= | x(3) |P(5-3) s V(=5) [1 (3) |+ 2(0=3) ~ (2.69)

- = — v — o — oy et s m. am e e e — et

2 () Lz Gy @-5)i r(=3) 4z, (5)
where the matrices P(N-j), V(¥~j) and R(N-j) and scalar

z(N-J) are defined in equations (2.61) - (2.64).

Due to the exact equivalence of the above relationships with those
obtained by direct method of calculation, the augmented state
formulation of the above problem has thus been shown fto result in a
solution which is identical to that obtained by the more direct .

method,

2.3,2, - THE DIFFERENCE CRITERION

In many circumstances one is interested in forcing one or
more of the state variables of a system to follow a prescribed
trajectory, Such systems are the more general case of the regulator

¢
problem studied in section (2.2).

Consider the system described by equation
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£(4) = A x(t) + D m(t) (2.70)

The deterministic system has been chosen for no -other reason than
to simplify the argument, but similar results also hold for

stochastic systems,

Let a vector y(t), with same dimensions as x(t) be the vector of
the desired value of vector x(t). In the case calculated below

it is assumed that the desired value of x(t) is constant during
interval 0= t= NT. By a simple argument, but with a considerable
increase in numerical complexity, the results of this section can
be shown to hold when y(t) is the output vector of & dynamid system

with state vectox [y(t)f w(t)]l and dynamic equation of form
[o(0)t ()] = Afre) w(e)) '+ n(e)

~ where K is matrix of desired output systen,
h(t) is a deterministic constant vector or an

independent random noise input,

The quadratic summation performance index which defines the cost
of deviation from the desired trajectory while at the same time
putting a cost on the control is
L) P .
/
5 x(0)] = 7. Tx(1) = y(0)] @ [x(1) = 7()] + 0" (1) B m(s) (2.72)
t=o

The detailed solution of this problem is given in appendix (B), the



- 50 =

important results are,
Control Policy:
. — -] / e . ’ o l .
n(3) = - (B + ¢'B(v-771)e] ™ [ ¢ P-371)  x(3) + ¢’ v(-371)y(3)] (2.72)

i.e. feedback from the state variables and the desired

£rajectory variables,
Performance Index: -
fs[x(3) = x"(3) 2(-9)x(3) + 2x’(5) v(w-3)y(3) + v (3)R(-3)5(3 ). 73)

where matrices P(N~-j), V(N~j) and R(N«j) are determined from

difference equations,

Q(3) + $e(n-F1) | |
@' P(n-371)6 B P(N=572)6] ~F ¢ P(w-31) (2.74)

P(N-3)

V(N-3) = -@ «+ $P(N-371)G [E + ¢’P(v-371)c]™ & v(w-771)

+ pV(§-391) (2.75)
R(N-3) = Q + R(N-j+1)
- v'(w-51) o [ + oP(r-311)6) "t ¢ v(m-51) (2.76)

with initial conditions P(0) =  and V(0) = R(0) are null matrices.

As in sub-section (2,3.1), the problem will now be
formulated in augmented state vector terminology. Considexr the

¢
augmented state vector‘lx(t); y(t)] . The equivalent dynamic
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equations and performance critexrion are

{sc(t)] - [:q_;_o_] {x}@] , [D m(t) .
7(%) 0, 0l ly(s) 0

]’9 _!_-_9} [ ’E(f)_] ,
@ 1 @l | yt)

and T [x(0)] = 2 [x(t)]
These augmented state vector equations are a particular case of’

izg [~~- -
(V.8

y(t)
the system discussed in sub-section (2,2.1) this the solution can

be found by substitution and some simple manipulation to be
Control Policy:
n(3) = = [E + ¢'P(-371)6] " [ ¢’ p(w-F71) x(3) + ¢"V(N-F71)y(3)] (2.77)

Performance Index§ '

s [m] : [.xfél]’[f’@*:ﬁ? ] [0) @)
() y()ILv @-3)ir@-5)4Lx()
where matrices P(N-j), V(N-j) and R(N-j) are defined.in

equations (2,74) = (2.76).

As in section (2,3%.]) it has been shown that the augmented state
vector formulation of the optimisation problem results in an

identical solution to that obtained by a more direct method,

¢
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In conclusion, the importance of the anglysis discussed
in section (2,3) is two fold, Firstly, by considering the results
of seotion (2.2) with those of this section, it can be deduced
that the direct approaéh optimisation techniques can be generalised
by oonéidering the completely augmented sfate variable formulation
of the problem and the basic technique of section (2.2). This
result is of major importance in the study of the optimisation
problem, as it makes it necessary to write only one computer
optimisation program rather than a multitude of programs, which
would be reéuired by the direct unaugmented method, | Secondly,
and more importantly, the augmented E,D,R, matrix has been shown
to be a matrix compouﬁded of three different types of matrices,
which have differing properties, resulting from the difference
equations which define them, The blind use of the augmented
state variable approach, without a detailed knowledge of the
direct approach, would lead to a confused understanding of fhe
gtability properties of the augmented E.D.R. matrix difference

equation, which will be discussed in detail in Chapter 3,

2,4 - SHORTCOMINGS OF THE QUADRATIC SUMMATION CRITERION

One of the objectives of the research reported in this

thesis was to develop a practically useful optimal design
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procedure., In this respect the quadratic summation criterion |

o0

I (0] = 72 x'(1) @ x(1) + n(3) E m(s)

t=o
suffers from two severe limitations, which will be discussed

below.

In order that the optimally controlled system be acceptable,
it must be stable when the optimal control policy is implemented.
As & result of this necessaxry propexrty, the state vector in the
regulator problem will tend to a null vector with incressing time,
If the sampling period is chosen large enough, the state vector will
approximately be a null vector before the second sampling instant,
Only the first control input will be non-zero and the total performance
index will be made up of terms due to the initial state and/or the
initial control input, assuming'that matrices Q and/br H are non-null.
It would thus appear that increasing the sampling period to a large
value would result in a possible decrease in the performance index,
whieh is indicative of an improvement in the system's response, From
all the usual practical design considerations, this conclusion of
improved performahce ig fallacious. If the criterion were redefined
éo as to include the sampling period as a multiplication term i.e.

' o ‘ ' :
JN[x(O)] - Z[x'(i) R x(1) + () Em(a)] T
LEFO '

then at least increasing the sampling period to lerge values would not
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reduce the value of the index, but the possibility of no change in

index still exists if
4 ¢
x (0) @x%(0) +m (0) Em(0) =0
There follows an illustrative example of a 3rd order deterministic

system described by

St

":'cl(*c)ﬂ = [F0.5 1 0] [x(®)] + [0 my(s).
:'cz(t) 0 -2 .1 xz(t) 0
L_:'c§(t)_ | 0 0 -1 x3(t) 1

The initial conditions are takeg’as-xl(o) = x2(0) = x3(0) = 1,

For a performance criterion of’zi (x(1) T x(i) + n’(1) Em(i)] ,
with H = O and 1, the variatiogmgf performance index with sampling
period is shown in Figure (5a). As the sampling period tends to
zero, the value of the performance index‘in both cases tends to an
infinite value. These results indicate a supposedly better or
equally good system response for increasing values of sampling period

over the entire range of sampliﬁg period,

Figure (5b) shows the variation of performance index multiplied by
the sampling period againét the sampling period., The line 00’

to which the plotted functions become asymptotic with ﬁﬁ%%éasing
period is g(1) = [x’(0) 1 x(O)]T{ This alternative measure of the
system's'performance at least results in an indicated worsening of

]

the system's response with incressing period,
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The designer of a digital control system has at some time
to decide upon a value of sampling period, basing his choice upon
the results of the analysis of the performance system with respect
to changes in the latterx, The results of the above example 4o
not encourage the belief that the results obtained from analysing
the optimal system, even with the criterion including the
multipiicative sampling period, would be consistent with classical
design procedures. The net result of above discussion is that
the quadratié summation criterion is not a practically suitable

measure of the system's performance,

The second related objection to the quadratic summation
criterion concerns one of the inherent disadvantages of digital
control systems, namely, the freqpent occurrence of ripple in the
state variables during the sampling period, In the author's
experience, a particular type of intersample ripple has been found
to occur in many cases where the optimal control policy has been
calculated by the quadratic summation criterion, The state
variables which appear in the expanded performance criterion are
forced by the control input to achieve zero value at the sampling
instants, but during the sampling interval lasrge deviations occur,
The particular case where these deviations have a frequencytof half
the sampling frequency is the common underdamped oscillatory response.

Such responses with large ripple content are not acceptable from the
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more classical design standards; thus it must be concluded once again
that the quadratic summation criterion is n9t an acceptable measure of
system performance. | After the introduction of én,improved performance
criterion, a system, in which excessive intersample :ipple occurs, will

be discussed in detail.

2,5 = THE INTERSAMPLE GUADRATIC SUMMATION CRITERION

The shortcomings of the quadratic summation criterion are due
to the fundamental limitation of that criterion, which is that it is
dependent on the respénse of the system at sampling instants only and
not throughout the sanpling period. An alternative criterion, which
overcomes this practical objection, has been developed and still allows
the solution of the optimal digital contxrol problem, This criterion
has been designated the intersample quadratic summation criterion and
igs defined as

N n

JN(x(o)] =Z {Z[x’ (k) @ x(x)3+ n’(37) B m(_jT)} (2.79)
s C=0 .

where k = jT + is

and n some prescribed integer quantity such that ns £ T with )

s a time interval,

In the particular case when n = O the above criterion is in the form

of a quadratic summation criterion,
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2.5.1, ~ DERTIVATION OF OFTIMAL CONTROL POLICY

Consider the system treated in seotion {2.2),
%(t) = & x(t) + D m(t) + n(t) . (2.80)

The optimal control policy will now be evaluated, which minimises
the expectation of the criterion defined in equation (2.79) using

a similar method to that of section (2.2).

The general difference equation solution of equation (2.80) is

x(3T + is) =5;S(is) x(37) + G(is) m(iT) + =(J,is) .(2.81)

where 0 is=<T
¢ (is) and G(is) are defined in equation (2,10)

JT+is .
and r(J,is) =j b (37 + is=q) n(q) dq.

JT
Using equation (2.81) and assuming that the independent noise input

has gzero ﬁxean it can be shown that

x (31) @ x(31) + 2 x'(57) U m(3T)

I Bx(0)]

+

Le)

w’(om) 5 asm) + 1 *(3,58) Qu(iis)]  (2.62)

where Qjfr = igﬁ/(is) ij(is)

H = H+ f_ ¢’ (1) @ c(is)

L=

U= 7 ¢'(is) Q(is).

L=
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By Principle of Optimality, the multistage decision process can

be written as

fyg BFGD)] - Mo, & jZ x' (k) @ () + 3 ‘(a1) E (1)
3 l.-"-'o

vhere f_, [&(ﬁ:iT)] = 0

and k = JT + is (cf equation 2,79).

Let it be assumed that
£ [xGD] = 1) P-3) x(3m) + 2(8-3) (2.84)

Substituting expression fox beE;i [x(f?iﬁl from equation (2.84)
and thence expression for x(j+17) from equation (2,81), one obtains
an expression for £ {k(JT)] in terms of x(jT) and m(jT) The
first variation of fy [i(JT)] can then be equated to zero, giving

an optimal control policy of

n(3T) = ~[ﬁ* + G'(T)'P(Nkj;i) G(T)] -1«
[e“(n) »(-F)B(2) + U] x(3) C (2.85)

Back-substituting this expression for m(JjT) into the expanded
version of equation (2,83) yields the difference equations governing

the E,D.R, matrix P(N~j) and scalar Z(N-j) as"
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P(N-3) = @ +@(1) P(N-3+1) ¢ (D)
T -[p) Ren) o) + U] [ 4 ()p(ge) o]

[a‘(r) p( N—J+1)f{(‘r}l~ vl (2.86)
s 2(0-3) = B[ (3) 2T 2(3) + 72 (5,48 @ 2(3,40)] +
‘Z(N-j-f-l) _ (2.87)

The initial conditions of the above difference equations can be

obtained from equation (2,83) since

i‘o[x(N)] = !_-Zx (W7 + is) Q x(NT + 19) + ' (§T) H m(NT)]

m{N
Hence
P0) =¢q -U[EJ*u’
end 72(0) = € / _z'(5,1s) @ x(J,is)

The structural properties of the equations (2,85) -~ (2.87)
bear a strong relationship to those defived in solution with a quadratic
sunmation criterion. The system designed by using the intersample
criterion will therefore also have the properties noted in sﬁb-section
(2.2.2), in particular the state feedback characteristics, A comparable
generalised optimisation technique similar to that described in section

(2.3) can also be shown to exist.

To illustrate the reduction in intersample ripple, which
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FIGURE 7 - TRAJECTORIES OF xl(’c) AND y(t) FOR INTERSAMPLE CRITERTION.
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results from using the intersample criterion, a system will be
discussed, which is particularly susceptible to intersample ripple
when designed using the quadratic summation critérion. Consider the

determiniétic 2nd oxrdexr system described by state equation
rml=l1 2 ] [xl(t)] + {o] m ()
fcz(t) 0 =2 xg(t) 1
The system is to be forced in such a way that xl(t) follows &a
sinusoidal oscillation y(t) with period 8 secs. and amplitude unity.
The initial conditions are xl(o) = xz(O) = ~0,5 units and y = 1 unit,
The fwo performance criterion chosen were
. S . 2
(a) quadratic summation: I x(0) =='Z [Xl(JT) - y(jT)]
. J:o .
. o0 1
. ) _ o a2
and(b)  intersample: Iyo x(0) _;,'-Zo :L::’[};l(JT + i7/2) - y(;j‘T + 1'1}/2%
i.e. deviation is costed at sampling instant and halfway

through period,

Figures (6) and (7) show the optimal trajectories of xl(t) and y(t)
and Figures (8) and (9) show the deviation of the actual from the
desired trajectory for both criteria, The figures are reduced copies
of the output of a computer program which was written to produce the
results of the optimisation program in.graphical form on a flexowritex

or line printer,
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The deviation in the system with criterion JNl ﬁas found to be zexo .
at the second and all subsequent sampling instants; i.e. the N stage
decision process has degenerated into a siﬁgle s%age decision process.
In conventional sampled-data theoxry, this is called a dead-beat
response, The excessive intersample ripple, common to such systems,
has a period twice that of the sampling pexriod. The reduction in
intersample ripple when the intersample crifterion was used is clearly
seen from a comparison of Figures (8) and (9). It can therefore be
concluded that even one of the simplest types of intersample criterion
has resulted in a system's performance, which is more accepiable from
the point of view of conventional design criteria than that which

resulted from using the quadratic summation criterion.

2.5.2, - THE QUADRATIC INTEGRAL CRITERION,

Well established methods have been devised for the mumerical

determination of the definite integral

c

g g(a) da

b
Due 1o the fact that integration is essentially a smoothing process'
relatively simple methods give high accuracy results. A series of
formulﬁi which only require a lmowledge of the value of g(a) at
equidistant points over interval b to ¢, can be determined from the

Lagrange interpolation formula (36). The mechanics of the process

consist of approximating the function g(a) by a polynomial, which
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passes through the known values of g(a). Weddle's rule defined
below is such a formula
c
Sb g(a) da = 38/10 ( W+ Sy + W +‘6w3 Wyt 5w5 + w6)
+ error term due to polynomial approximation,
where c~b is divided into 6 equal sub~intervals of length s

so that w; = g(b + is).

Assuming that the sub~interval is small enough, the integration rule

without the error term gives accurate results, VWhere necessary, the
interval ¢-b could be divided into groups of 6 equidistant ordinates

and the complete integral calculated by summing the separate

calculated values for each group.

Returning to the intersample criterion, it can be rearranged

from form of equation (2.79) into \

~

Iy x(0) =Z [ZZ x'(k) @ x(k) + n(j7) B m(j’I‘)l (2.88)

ino L‘l 2=°

where n, = n/6

and k= j7 ¢ (1 + i-1)s
If matrices Q and H are assumed to vary during period according to

Q ='é x 358/10 = 9, and H=HxT ' (2.89)

where Q@ and H are constant matrices



o

and g, = 1 forr =0, 2, 4
5 forr=1, 5

6 for r = 3,

then, from Weddle's rule, equation (2,88) is an approximation to

the continuous integral

H

N - -
Iy x(0) g [x'(t) Q x(t) +m (%) H m(t)] dt

time dependent
The use of /cost matrices does not overcomplicate the digital

optimisation procedure, since 6ne need only perform the correspbnding
substitution of value of Q and H in the evaluation of Q%, U and H*.
The intersample criterion has therefore been shown to be equivalent

to the integral criterion for all values of period under thé condibions
of equation (2.89), and assuming that the sub-interval s is small
enough, The integral ériterion is & type of criterion which gives
logical results when the performance index is analysed for varying
sempling period, since it is.a continuous measure of performance
equally wvalid for all sam?ling periods, whereas the quadratic and

intersample critexrion are not,.

Since performance criterion.defined in equation (2,88) results
in a reduction of intersample ripple and'also gives logical sampliﬂg
frequency analysis results, it is considered to be & more practical
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