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Scientific innovation is built on three pillars, namely; theory, experimentation and mod-

elling.

The theorists are only able to convince themselves.

The experimenters are only doubted by themselves

The poor modellers (like me), however, convince no-one, including them-

selves.



Abstract

Mathematical modelling is an essential and convenient tool to understand the systemic

mechanism of human bodies and to assist the diagnosis and/or the treatment of various

diseases. The main objective of this thesis is to develop soft tissue mechanics models

and use these to address a number of particular clinical topics, namely, the human iris,

the artery and the mitral valve. Important modelling aspects such as fluid-structure

interaction, fibre reinforcement, material anisotropy and organ-organ interaction are

included.

To avoid the acute closed-angle glaucoma and the buckling of floppy iris syndrome in

Descemet’s stripping endothelial keratoplasty, three-dimensional linear human iris is

studied and the intraocular pressure is found to be a critical factor in determining the

involving complications.

Human arteries usually consist of two or more families of collagen fibres in each of the

three distinct layers (the intima, the media and the adventitia). One challenge is to

explain the recent experimental observation that only one family of (circumferential)

fibres exists in the media of the iliac artery. Using an invariant-based fibre-reinforced

nonlinear constitutive model, we are able to provide a plausible explanation from the

mechanics viewpoint, and show that such fibre architecture achieves the optimal energy

or stress distributions. We also find that the axial pre-stretch plays a vital role in

different fibre structures.

We finally develop a patient-specific human mitral valve model using the immersed

boundary finite element method. A major advantage of this approach is that we can

incorporate experimentally based constitutive laws for material properties in a coupled

three-dimensional fluid-structure interaction framework. This mitral valve model is ex-

tended by coupling with a contractile left ventricular model and a comparative analysis

is further conducted.
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Chapter 1

Overall introduction

1.1 History and brief background

Soft tissue mechanics is the science of force and motion in the soft tissue state, which

relates structure to the function at all hierarchical levels: from biomolecules to cells, tis-

sues, organs, and individuals. Human soft tissue is highly deformable and its mechanical

properties vary significantly from one person to another. Although a living cell is not a

homogeneous continuum, it is a protein machine with internal machinery that functions

in an orderly way according to the laws of mechanics [18].

The beginning of biomechanics goes back to more than two millennia ago; the classical

Chinese book Huangdi Neijing, or the Yellow Emperor’s Inner Classic in the late Warring

States Period (475-221 BC) and the book On the Parts of Animals written by Greek sci-

entist Aristotle (384-322 BC) include many theories of biomechanics. In the Renaissance

period, many well-known mechanics scientists contributed to this area, e.g. Leonardo da

Vinci (1452-1519), Galileo Galilei (1564-1642), Robert Hooke (1635-1703), Isaac Newton

(1642-1727), Leonhard Euler (1707-1783), Thomas Young (1773-1829), Simeon Poisson

(1781-1840), Louis Navier (1785-1836) and Augustin Cauchy (1789-1857). With the

works of George Green (1793-1841), Lord Kelvin (1824-1907) and others, the fundamen-

tal mathematical theory was established. More recently, with the fast development of

1
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new science and technology, this area has increasingly become a worth-digging interdis-

ciplinary study; Yuan-Cheng Fung (1919-), particularly, is considered to be the founder

of modern biomechanics.

Mathematical models of the biological system, followed by the use of advanced contin-

uum mechanics and efficient, accurate numerical algorithms have allowed applied mathe-

maticians to make significant progresses in the interpretation of the system functionality

and dysfunctionality. However, there are numbers of challenges we should think of in

modelling, for instance, material property characterization, linear and nonlinear anal-

ysis, large deformation modelling, fluid-structure interaction as well as organ to organ

interaction.

Forces applied to solids cause deformation, and forces applied to fluid cause flow. Often,

the major objective of a mechanical analysis is to find the deformation or the flow, in

other words, the displacement, the stress and the strain under given loading and/or

boundary conditions. Material models characterize the relationship of the stress and

the strain, which is usually determined by the material itself and its surrounding envi-

ronment. Equilibrium equations of forces give the description of the internal stress in

terms of the exterior forces, for example, using Newton’s law of motion. The geometry

of deformation completes the equation system by adding the compatible relationship of

the displacement and the strain.

It is usually hard or even impossible to solve the complex mechanical system involving

partial differential equations by purely analytical means and one has to resort to nu-

merical approximations. The finite element method (FEM) is a very powerful tool for

numerical analysis in solid and structural mechanics. It subdivides the whole compu-

tational domain into simpler finite elements, and the element equations are commonly

generated by a weak form as in the Galerkin method. The global system is systemati-

cally assembled by all sets of element equations. In contrast to FEM, finite difference

method (FDM) is much simpler and easier to implement, and it has a broad application

particularly in fluid mechanics. It is based upon the application of a local Taylor expan-

sion to approximate the differential equations and uses a topologically regular network

to construct the discretization.
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This thesis is driven by specific clinical requests, and focuses on a number of different soft

tissue related research topics. These range from linear anisotropic soft tissue mechan-

ics applied to human iris, nonlinear fibre reinforced modelling applied to iliac arteries,

and nonlinear anisotropic fluid-structure interaction modelling applied to human mitral

valve, to fully coupled left ventricle-mitral valve modelling.

1.2 Physiological background

To help to explian the modelling approaches adopted in this thesis, we first provide some

essential background for the physiological problems studied.

1.2.1 The human iris

As shown in Fig. 1.1, the iris is a thin, circular structure in an eye, responsible for

controlling the diameter and the size of the pupil and thus the amount of light reaching

the retina. The anterior chamber of eyeball is the fluid-filled space inside the eye between

the iris and the cornea.

Figure 1.1: The human eye anatomy, adopted from http://ygraph.com/chart/

1597.

A human iris is an important component of an eye, and its many properties need to be

explored in some of the most frequently conducted ocular surgeries, such as cataracts,

glaucoma and complications that may occur during surgical procedures, e.g. floppy-iris

syndrome. Among these, closed-angle glaucoma is an eye disorder in which the iris and

http://ygraph.com/chart/1597
http://ygraph.com/chart/1597
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the lens block the movement of fluid between the anterior and posterior chambers of the

eye. The blockage of fluid causes pressure to build up in the eye. This causes the iris to

press on the drainage system (trabecular meshwork) of the eye. The increased pressure

can cause damage to the optic nerve, which leads to severe vision loss and blindness.

Treatment may include medicines to lower the pressure in the eye, monitoring of the

drainage angle, and possibly surgery [19]. The floppy iris syndrome normally occurs

in cataract surgery, and is characterized by a flaccid iris which billows in response to

ordinary intraocular flow. This floppy iris prolapses towards the area of cataract extrac-

tion during surgery, and further causes progressive intraoperative pupil constriction and

other complications [20]. The ophthalmologists at Tennent Institute of Ophthalmology,

Gartnavel General Hospital reported two interesting clinical cases regarding to human

iris. Here, we develop linear models for iris to study these problems.

1.2.2 The iliac arteries

Figure 1.2: (a) Anatomy of the abdominal aorta and iliac arteries and (b) the
schematic graph of human large artery [1].

In human anatomy, the common iliac arteries are two large arteries that originate from

the aortic bifurcation at the level of the fourth lumbar vertebra and bifurcate further into

the external and internal iliac arteries, see in Fig. 1.2(a). Aortoiliac occlusive disease is
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the narrowing or blockage of the main arteries in the pelvis, which supply blood to the

legs. It is a type of peripheral arterial disease which affects arteries that carry blood

away from the heart to the head, torso, arms, and legs. Iliac artery angioplasty and

selective stent placement for isolated iliac artery stenosis have become the preferred

treatments for localized aortoiliac occlusive disease [21].

Large arteries have long been a popular area of biomechanical studies as they are me-

chanically typical, geometrically simple and relatively easy to harvest. A fundamental

knowledge and understanding of the entire arterial histology is required to accurately

describe the mechanical behaviour of arterial walls. As many large arteries, common il-

iac arteries are composed of normally three distinct layers, the intima, the media and the

adventitia, see in Fig. 1.2(b). The innermost layer, known as the intima, is made up of

one layer of endothelial cells which are in direct contact with the blood flow. It lines the

entire circulatory system, from the heart and the large arteries all the way down to the

very tiny capillary beds. The medial and adventitial layers are much thicker compared

to the intimal layer, and are mechanically significant walls [1]. The muscular middle

layer, or media, contains smooth muscle cells and this allows the arteries to constrict

and dilate to adjust the volume of blood needed by the tissues. The elastic fibres within

the medial layer unite to form lamellae which alternate with the layers of muscular fi-

bres; these lamellae are united to one another by elastic fibres which pass between the

muscular bundles, and are connected with the fenestrated membrane of the inner coat.

The adventitia is mainly composed of collagen fibrils arranged in helical structures and

is supported by exterial elastic lamellae. It serves to anchor the blood vessel to nearby

organs to maintain its stability. The outer two layers are generally reinforced by two or

more families of fibres and so are intrinsically anisotropic. Understanding this anisotropy

due to the fibre construction is of crucial importance for studying the functionality and

diseases of arterial walls.

1.2.3 The mitral valve and the left ventricle

The hearts of large mammals, such as humans, have four heart valves. The mitral

valve (MV) is a switch-like membrane sitting between the left atrium (LA) and the left
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ventricle (LV). MVs have the largest area between heart valves and bear the highest

pressure load during systole. During diastole, the MV opens to allow the blood to enter

the LV from the LA. As the LV contracts during systole, blood is pumped out through

the aortic valve into the aortic arch and onward to the rest of the body. At the end

of atrial contraction, in particular, the MV closes off the LA collecting the oxygenated

blood coming in from the lung and prevents a reversal of blood flow.

Figure 1.3: The schematic graph of human heart, along with details of the
mitral valve, adapted from http://www.heartmdinstitute.com/health-topics/

heart-disease/447-mitral-valve-prolapse and [2].

Shown in Fig. 1.3, the MV has two cusps, the anterior and posterior leaflets. The fibrous

ring connecting the MV to the left ventricular wall is known as the annulus. The anterior

leaflet rises higher and has a larger area, while the posterior leaflet is narrower and takes

up a larger part of the ring. These valve leaflets are prevented from prolapsing into the

LA by the action of tendons attached to the posterior surface of the valve, known as the

chordae tendineae. The papillary muscles are finger-like extruded muscles from the left

ventricular wall and give origin at their apices to the chordae tendinae; they contract

to prevent inversion or prolapse of the MV in systole [22]. The LV is the thickest of the

heart’s chambers; it generates high blood pressure and actively contracts due to ionic

signals. Any congenital or acquired disorder of individual components can disturb the

finely coordinated mechanism of the MV and the LV and result in an incompetent valve,

heart failure and even death [23].

http://www.heartmdinstitute.com/health-topics/heart-disease/447-mitral-valve-prolapse
http://www.heartmdinstitute.com/health-topics/heart-disease/447-mitral-valve-prolapse
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MV cycles roughly 100,000 times/day. More than 300,000 patients each year undergo

open-heart surgery to treat malfunctioning or diseased heart valves. Dysfunction of the

MV causes significant morbidity and premature mortality and remains a leading medical

problem worldwide [24]. According to the recent report from the British Heart Founda-

tion (https://www.bhf.org.uk/research/heart-statistics), cardiovascular disease

causes more than a quarter of all deaths in UK, or around 155,000 deaths each year–

an average of 425 people each day or one every three minutes. Around 41,000 people

under the age of 75 in the UK die from cardiovascular disease each year. Understand-

ing the biomechanics of human MV can lead to the development of new therapies and

treatment strategies to related diseases, such as mitral regurgitation, mitral prolapse

and MV stenosis. Changes in mitral leaflet geometry could perturb the stress patterns

and affect repair device durability [25–27]. However, measuring detailed stress patterns

in the MV is extremely challenging in vitro and nearly impossible in vivo. Computa-

tional models can fill in this knowledge gap by providing estimated stress patterns from

structure-based models of the tissue mechanics, dynamic loading conditions, and in vivo

deformation [28–30]. Developments of such models are critically required to develop

quantitative methods for determining patient-specific medical and surgical strategies for

the treatment of valvular heart diseases.

1.3 Comparison between imaging modalities

Before proceeding, let us summarize the current imaging techniques that are utilized

as the pre-processing tools in our computation. We rely on those tools to provide

more information, e.g. geometry. The development of diagnostic imaging techniques

in recent year, has enabled us to meet the growing need for patient-specific and inte-

grated modelling of human organs, and support comprehensive disease diagnoses and

intervention planning as well as therapeutic prediction. Amongst these techniques, car-

diovascular imaging is the most important [31]. This is in accordance with the enor-

mous efforts worldwide, such like the Virtual Physiological Human framework (http://

vph-institute.org/) aiming towards the combination of personalised data and population-

based representations.

https://www.bhf.org.uk/research/heart-statistics
http://vph-institute.org/
http://vph-institute.org/
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Currently, a variety of non-invasive imaging modalities have been involved in in vivo

studies, including magnetic resonance (MR) imaging, ultrasound, X-rays, computed

tomography (CT) and nuclear imaging. To simplify the presentation, we restrict our

attention to the cardiac imaging techniques.

Figure 1.4: The most commonly used imaging planes in CMR: SA (blue), 4C (black)
and 2C (red).

Cardiac MR (CMR) imaging is a type of scan technique that uses strong magnetic fields

and radio waves to visualise the inside of one’s heart, and is usually performed along

the major axes of the LV. The most frequently acquired orientations in CMR are short-

axis (SA) view, four-chamber (4C) view and two-chamber (2C) view, see in Fig. 1.4.

Cine CMR can provide both anatomical and functional information of the heart. It

produces consecutive frames corresponding to difference phases of the cardiac cycle. In

cine CMR images, the blood is bright and the tissue is dark, and the contrast between

them is usually quite high. Among various acquisition protocols used in CMR imaging,

contrast-enhanced MR images offers the capability to directly discriminate infarcted

tissue from normal myocardium and also indicate the severity of myocardial injury [32].

Similar to cine CMR, tagged CMR is also a dynamic image so as to provide heart motion;

the difference is that tagged CMR gives more direct and accurate quantification of the

regional motion and strain.
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CMR has been shown to be an accurate and secure tool for the estimation of heart

valve motion and blood flow field. It can offer an unrestricted choice of scanning planes

together with three-dimensional coverage of the whole heart [33]. Geometric assumptions

regarding the shape and size of the heart are therefore not necessarily required in the

calculation [34]. In addition, its excellent reproducibility makes temporal follow-up of

any individual patient in the clinical setting a realistic possibility [34]. Such technique,

however, can be a lengthy and noisy procedure, and is subject to potential inaccuracies

caused by patient motion and respiration occurring between images [35].

Echocardiography or echo, another widely available technique, is an ultrasound scan

technique of the heart and has the advantage of being relatively inexpensive and safe.

It can provide an efficient assessment of global cardiac and valvular function. Two-

dimensional and three-dimensional echocardiography combined with Doppler interroga-

tion plays a crucial role in the identification of the MV mechanisms, in the accurate

quantification of the severity of mitral regurgitation, and in the assessment of the suit-

ability for repair [36]. Yet, due to its highly dependence on acoustic windows†, this

method has less reproducibility in comparison to MR imaging [34], and its high intraob-

server variability is a limitation [37].

Since its introduction, CT has been subject to constant technological improvement and

optimization in order to increase its use in everyday medical practice. It makes use

of computer-processed combinations of many X-ray images to produce cross-sectional

images of specific areas of a scanned object. CT scanning requires less time than MR, it

usually allows for a comprehensive assessment within a few minutes [38]. It is useful in

the diagnosis of coronary artery diseases due to its high resolution [31]. Similarly as using

radiation, during a nuclear cardiology test, a very small amount of radionuclide (radioac-

tive tracer) is injected into a vein and is then taken up by the heart, which is recorded by

gamma camera. Nuclear imaging evaluates how organs function, unlike other imaging

methods that assess how organs appear. Although these radiation-involved cardiologies

are said to provide an accurate assessment of LV function with good reproducibility,

†Typically, acoustic windows in cardiac ultrasound scanning involve areas conducive to ultrasound
transmission such as the liver, intercostal muscles and chest wall. These structures are hypoechoic and
when placed in the near field, facilitate sound transmission (little attenuation or weakening of the signal).
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their exposure to ionising radiation (X-rays in CT and gamma-rays in nuclear imaging)

is problematic when repeated measurements are required. This increases the risk of

cancer in the future, especially for children.

1.4 The thesis layout

The thesis is organized as follows: A brief overview of the linear and nonlinear consti-

tutive laws is summarized in Chapter 2. Chapter 3 presents two specific clinical cases

regarding the human iris, and mathematical tools are used to analyse the causes of the

complications during ocular surgeries. An unusual phenomenon of the fibre structure in

the medial layer of iliac arteries is discussed in Chapter 4. We next derive the mathemat-

ical and numerical formulations of immersed boundary finite element method in Chapter

5. In Chapter 6, we model the dynamics and fluid-structure interaction of an image-

derived human MV under a physiological pressure loading. A transversely isotropic

material constitutive model is used for characterizing the mechanical behaviour of the

MV tissue based on recent mechanical tests of healthy human mitral leaflet. Finally, we

study the dynamic MV model coupled with a contractile LV chamber, and preliminary

results are given in Chapter 7.



Chapter 2

Linear and nonlinear elasticity

In this chapter, we will introduce the mathematical theory used to analyse the mechan-

ical properties of solid materials. Stress and strain are critical and basic concepts to

understand continuum mechanics. At the end of the chapter, some popular constitutive

equations for elastic biological materials will be discussed.

Figure 2.1: A body deforms from its reference configuration B0 to its current con-
figuration Bt. The particle has position vector X in B0 and x in Bt relative to origin
o(O). u = x−X is the displacement vector. In general O and o need not coincide.

11
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2.1 The concept of strain and deformation

We define the relationship between what is known as the reference, or undeformed,

configuration B0 of a body and the current, or deformed, configuration Bt, as depicted

in Fig. 2.1 [39]. In order to analyse the deformation locally, we use the relationship

dx = FdX,

where

F =
∂x

∂X
= ∇u + I

is the deformation gradient tensor, I is the identity tensor, u is the displacement vector.

F is a second-order tensor and is not necessarily symmetric. It is then convenient to

define the Jacobian determinant J ≡ detF to be interpreted as the local ratio of the

current to the reference volume of a material element. If the local volume of a mate-

rial in a neighbourhood of each point is constant in time, then we say the material is

incompressible and J = 1. This is usually being assumed for soft biological tissue, for

example arteries [40, 41].

We can now define the Green or Lagrangian finite strain tensor E by

E =
1

2
(FTF− I).

Note that E is a second-order symmetric tensor. In addition to the finite strain tensor,

other deformation tensors are often defined in terms of the deformation gradient. The

most used deformation measures are the right and left Cauchy-Green tensors, defined

as:

C = FTF, B = FFT,

respectively. Physically, they give us the square of local changes in distances due to

deformation in reference and current configurations, respectively.

From the expression of F, it follows that E = 1
2 [(∇u)T +∇u+(∇u)T ·∇u]. If we assume

the displacement of a material particle is infinitesimally small then the infinitesimal
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strain tensor is defined by ε, so that

ε =
1

2
((∇u)T +∇u) ≈ E.

We introduce this as it will be used in Chapter 3 for human iris modelling. Again, ε is

a second-order symmetric tensor. Although the stress-strain law in infinitesimal strain

theory is linear and much simpler to use, the assumption is not valid for most soft tissues

undergoing large deformation.

2.2 The concept of stress

Figure 2.2: Notation of the Cauchy stress components.

Stress occurs when forces are applied to a body. Let us consider a three dimensional

object in a Cartesian frame (x1, x2, x3), and a traction force vector t acting internally on

an area of an arbitrary direction; then each traction vector will have three components.

For instance, on ∆Si, i = 1, 2, 3 in Fig. 2.2, the three components σi1, σi2, σi3 denote

the traction vector ti in the directions of the standard vectors e1, e2, e3, respectively.
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Then ti = σijej , i, j = 1, 2, 3, where σij are known as the Cauchy stresses. We assume

that the volume of the cube can be sequentially shrunk down to a point if the volume is

homogeneous, so that the three components of each of the traction vectors on the cube

faces become nine components of the second order Cauchy stress tensor. It is important

to note that this stress tensor is symmetric due to the balance of moment and is defined

in the deformed state of the material.

Another alternative stress tensors, usually used in large deformation mechanics include

the first Piola-Kirchoff (1st PK) stress tensor. It is expressed via the Cauchy stress by

P = JσF−T,

and the transpose PT is known as the nominal stress. Note that σ denotes the current

force over the current area whereas P denotes the current force over the reference area,

and that P is not necessarily a symmetric tensor.

2.3 Linear constitutive equations

The properties of a material are specified by constitutive equations which describe the

nature of the material and the distinct types of material behaviours. The simplest linear

constitutive law is Hooke’s law, i.e.,

σ = Cε,

where C is a fourth-order tensor of elastic constants, or moduli, which are independent

of stress or strain. Note that the infinitesimal strain tensor ε is only suitable to describe

materials in the small strain regime.

The greatest reduction of C is when the material is isotropic, i.e. when the elastic

properties are identical in all directions. In this case, C involves only two independent

elastic moduli, for instance, the elastic modulus E and the Poisson’s ratio ν via

σij =
E

1 + ν

[
εij +

ν

1− 2ν
εkkδij

]
, i, j, k = 1, 2, 3. (2.1)
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where δij is the Kronecker delta. If the material is assumed to be incompressible, then

ν = 0.5.

Consider an orthotropic material which has three mutually orthogonal axes of rotation-

ally symmetric material properties; then C has nine independent parameters and its

inverse is

C−1 =



1
E1

−ν12
E2

−ν13
E3

0 0 0

−ν21
E1

1
E2

−ν23
E3

0 0 0

−ν31
E1

−ν32
E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G31

0

0 0 0 0 0 1
G12


where Ei and νij , i = 1, 2, 3 are the elastic moduli and the Poisson’s ratios in the three

mutually orthogonal directions, νij/Ei = νji/Ej , and Gij are the shear moduli [42]. We

will use these material properties in Chapter 3.

2.4 Nonlinear constitutive equations

Most living tissues behave nonlinearly and can not be described by the linear theory.

Here we are only concerned with pure elastic and homogeneous mechanical theories re-

lating to soft tissues and we exclude other aspects such as plasticity/viscoelasticity and

temperature/electrical conductivity. Some of the constitutive equations are phenomeno-

logical or experimentally determined, although there are more and more models that are

derived from inherent structures of the material and related to morphological aspects of

the material, especially for biological tissues [1]. Soft tissues are often modelled via the

hyperelastic idealization, for which the stress-strain relationship derives from a strain-

energy density function, or a strain-energy function (SEF) Ψ. Thus, we can write a

general relationship between various stresses and finite strain tensors using a SEF as

PT =
∂Ψ(F)

∂F
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or

σ =
1

J
F
∂Ψ(F)

∂F
. (2.2)

For an isotropic material, the SEF is expressible as a function of the principal stretches

λ1, λ2, λ3 as Ψ(λ1, λ2, λ3). It follows that the principal Cauchy stresses are

Jσi = λi
∂Ψ

∂λi
, i = 1, 2, 3. (2.3)

Instead of using stretches, we can use equivalently the invariants [39] defined by

I1 = tr(C) ≡ λ2
1 + λ2

2 + λ2
3,

I2 =
1

2
[I2

1 − tr(C2)] ≡ λ2
2λ

2
3 + λ2

1λ
2
3 + λ2

1λ
2
2,

I3 = det(C) ≡ λ2
1λ

2
2λ

2
3 = J2.

Therefore, we can get the expression of the Cauchy stress from Eq. (2.2) via

σ =
1

J
F
∂Ψ(F)

∂Ii

∂Ii
∂F

, i = 1, 2, 3, (2.4)

where the derivatives are

∂I1

∂F
= 2FT,

∂I2

∂F
= 2I1FT − 2FTFFT,

∂I3

∂F
= 2I3F−1 (2.5)

If the considered material is incompressible, Eq. (2.4) is replaced by

σ = −%I + F
∂Ψ(F)

∂Ii

∂Ii
∂F

, i = 1, 2, 3. (2.6)

where % is a Lagrangian multiplier.

The simplest nonlinear SEF, known as the neo-Hookean material, has the form

Ψ =
c1

2
(I1 − 3), (2.7)
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where c1 > 0 is the shear modulus of the material in the reference configuration. The

chordae tendineae in Chapter 6 and 7 is modelled as a neo-Hookean material.

This isotropic elastic response is valid to a limited extent for some biological soft tissues.

However, soft tissues usually exhibit anisotropy in their mechanical response. This

is associated with distributions of collagen fibres that endow the material locally with

preferred directions [1]. In chordae and tendons, for example, the material can be treated

as transversely isotropic, characterized by a single family of parallel fibres. Other soft

tissues have two distinct distributions of collagen fibres with two preferred directions,

typically in the layers of an arterial wall. In the following contents, we illustrate the

expressions of these two types of anisotropic SEFs.

Let the unit vector a0 be along a preferred direction in the reference configuration B0.

In general, a0 varies with position X. We then introduce two more invariants I4, I5 given

by

I4 = a0 · (Ca0), I5 = a0 · (C2a0).

The direct interpretation of I4 is as the square of the stretch in the direction of a0;

I5 is also associated with the fibre stretch but introduces an additional relationship to

the behaviour of the reinforcement under shear deformation [43]. So the SEF becomes

Ψ(I1, I2, I3, I4, I5). Selective invariants are included in various constitutive laws. The

mitral valve leaflets simulated in Chapter 6 and 7 uses I4 to characterise the mechanical

contribution from their embedded fibres. Similarly consider the situation in which there

are two distinct preferred directions in the reference configuration. Let a01 and a02 be

the associated unit vectors. Then, the SEF Ψ additionally depends on [44]

I4 = a01 · (Ca01), I5 = a01 · (C2a01), I6 = a02 · (Ca02), I7 = a02 · (C2a02), I8 = a01 · (Ca02).

Note that I6, I7 are the counterparts for a02 of I4, I5, respectively, and I8 is the cou-

pling term between the two direction vectors. Typical examples are the fibre-reinforced

models [1, 45] for arteries, detailed in Chapter 4, and for passive myocardium tissue, in

Chapter 7.
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2.5 Summary

Material mechanics, and especially tissue mechanics, can be quite complex, and assump-

tions have to be made when deriving a constitutive equation. It is basically impossible

to derive a particular law that could accurately model all aspects of tissue behaviour

under any type of loading. Therefore, whenever we develop a constitutive equation to

model a tissue, we need to balance the need to accurately reflect the tissue behaviour

under the range of loading with the need to have a constitutive equation that is simple

and plausible enough to implement in a numerical model and to experimentally measure

all the variables in the equation. In the following chapters, we will apply both linear

and nonlinear constitutive laws to different biological tissues problems.



Chapter 3

Application to human iris

In this chapter, we use the linear material properties described in Sec. 2.3 to investigate

two clinical cases relating to the human iris. The first part has been published in Clinical

& Experimental Ophthalmology [3] and the second part is to be submitted.

3.1 The optimum size of iridotomy to prevent acute angle

close glaucoma in a uveitic eye

Uveitic glaucoma is a condition in which ocular inflammation causes a persistent or

recurrent elevation in intraocular pressure (IOP). It is relatively uncommon, however in

chronic uveitis its incidence can be as high as 46% [46]. Both secondary open angle and

closure mechanisms are implicated in this condition with the pathogenesis considered to

be multi-factorial.

The complex relationship between IOP and inflammation makes the management of

uveitic glaucoma a challenge. Usually the secondary angle closure glaucoma presents

itself acutely and therefore requires immediate anti-glaucoma medical therapy to reduce

the IOP. If the mechanism is pupil block, the standard practice is neodymium-doped yt-

trium aluminium garnet (Nd:YAG) peripheral iridotomy (PI). During episodes of uveitis,

multiple mechanisms can increase the resistance to aqueous outflow leading to an ele-

vated IOP.

19
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Acute angle closure glaucoma (AACG), despite having a Nd:YAG PI, have been reported

with a high failure rate in a uveitic eyes. It has also been well documented in the

literature that the failure is attributed to the inadequate size of PI [47–49]. In cases of

uveitis and iris bombe associated AACG, the failure rate is significantly higher, being

reported in the region of 40-61% [47, 49].

We present a case of a recurrence of AACG in a uveitic patient where Nd:YAG PI

failed to prevent further AACG. We believe a much larger PI is required to prevent

recurrent episodes of AACG in a uveitic eye. Therefore, we constructed and applied a

mathematical model to determine the optimal size of iridotomy, and ultimately to help

understand and modify treatment options.

3.1.1 Description of the clinical case

A 22 year old female presented to the eye casualty with a one-day history of a severely

painful left eye, headache, nausea and vomiting. Her vision was counting fingers in the

left eye and 6/6† in the right. On examination she had corneal oedema, iris bombe,

360◦ posterior synechiae (PS) and an IOP of 58 mmHg‡ left, 18 mmHg right. Medical

therapy was initiated. She attended three weeks prior to this presentation with a similar

episode of AACG, and was treated with Nd:YAG PI, which appeared potent. She has a

one-year history of left chronic anterior uveitis resulting in raised IOP, which remained

stable following insertion of Ahmed valve and cataract surgery, five months prior to her

presentation. And she also developed peripheral anterior synechiae secondary to the

chronic uveitis, with resultant damage and scarring to the trabecular meshwork.

Imaging techniques were undertaken to investigate the mechanism of AACG. A high

resolution image with ultrasound biomicroscopy (UBM) in Fig. 3.1 showed the marked

iris bombe with the peripheral iris in contact with the cornea in all quadrants. Medical

therapy was initiated for AACG and a further Nd:YAG laser PI was performed reducing

the IOP to 28 mmHg. The PI reduced the degree of iris bombe but did not resolve the

occlusion of the drainage angle.

†This is a measurement of visual acuity, 6/6 corresponds to an acuity of 1.0.
‡Note that this pressure is too high compared to a typical human IOP.
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Figure 3.1: Left UBM: marked iris bombe with the peripheral iris in contact with
the cornea in all quadrants, very thin iris measuring approximately 0.3mm. A drainage
tube is in situ at the 1 o’clock position. The iris is pointing at the tip of the tube and

occluding it, adopted from [3].

The next day she underwent a left surgical iridectomy. The size of the initial Nd:YAG PI

was 195×110 µm2. Eight months on, she has remained stable with an IOP of 12 mmHg

on no anti-glaucoma medication with a visual acuity of 6/9.

3.1.2 Mathematical modelling of the iris bulging

A mathematical model is constructed to determine the optimal size of PI required in

patients with uveitis related iris bombe and angle closure. The model setup is illustrated

in Fig. 3.2 where the geometrical data has been scaled from the UBM image in Fig. 3.1.

The iris is modelled as a deformable elastic disc with a central circular aperture [4]. To

mimic the PS, the inner edge of the iris is assumed to adhere to the lens, preventing flow

of aqueous humour between the posterior and anterior chambers. As fluid accumulates

in the posterior chamber, it drives a pressure difference (∆P ) across the iris and causes

it to deform. Computations of the iris shape are conducted in Abaqus 6.13 (SIMULIA,

Providence, RI) assuming the iris to be of uniform initial thickness h with linear elastic

moduli listed in Table 3.1.

The PI formed in the iris to reduce the IOP is modelled as a small cylindrical aperture

of radius r. For the system to be in equilibrium, the liquid flow through the PI (between

the anterior and posterior chambers) must be matched exactly by the production flow Q
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Figure 3.2: The geometry of the model has been scaled from the UBM image in
Fig. 3.1: the iris is modelled as a deformable elastic disc with a central circular aper-

ture [4]; the cornea and the lens are assumed to be rigid and impermeable.

of the aqueous humour. Assuming the flux of liquid through the PI can be approximated

by Poiseuille’s law, it emerges that the transiris pressure difference ∆P can be written

as

∆P =
8ζhQ

πr4
, (3.1)

where ζ is the viscosity of the aqueous humour, the value of which is also listed in

Table 3.1. This formula is used to determine the optimal radius r of the PI.

Table 3.1: Parameters used in the mathematical model.

Symbol Parameter Value

E Young’s modulus of normal iris 9.6 kPa [50]
ν Poisson’s ratio of iris 0.48
h thickness of iris 0.3 mm
ζ viscosity of aqueous humour 1.6 mPa·s [51]
Q production flux of aqueous humour 2.75 µL/min [52]
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3.1.3 Results

Three typical examples of the iris shape for various ∆P are shown in Fig. 3.3; as ∆P

increases the iris bulges axis-symmetrically into the anterior chamber, which is generally

consistent with Fig.3.1.

Figure 3.3: Computations of the iris shape as a function of this transiris pressure
difference were conducted in the Finite Element software ABAQUS 6.13 (SIMULIA,
Providence, RI), assuming the iris to be of uniform initial thickness h with elastic
moduli listed in Table 3.1. The elastic stiffness of the iris tissue is represented by its
Young’s modulus, E, and its compressibility by its Poisson ratio, ν. Three snapshots
of the iris deformation as a function of the pressure difference ∆P are presented. The
black lines indicate the computational mesh used in simulations and the colour shading

indicates the displacement of the iris tissue.

The simulations elucidate that the angle between the iris and cornea, denoted as θ,

decreases as the pressure difference across the iris increases, and for ∆P above a certain

threshold, denoted ∆Pcr, the iris makes contact with the cornea leading to acute angle

closure, as shown in Fig. 3.4. For the model parameters listed in Table 3.1, this critical

pressure difference is calculated to be ∆Pcr = 0.3871 mmHg as for the normal iris
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elastic properties. This value is slightly larger than the pressure differences assumed in

other modelling studies [48, 53]. Decreasing the Young’s modulus by a factor of 10 (E

= 0.96 kPa), the critical pressure difference for this atrophic/floppy iris takes a much

smaller value ∆Pcr = 0.0385 mmHg.

Figure 3.4: ∆P vs. θ: predicted acute angle θ between the cornea and the iris as a
function of pressure difference ∆P for E = 9.6 kPa and E = 0.96 kPa

Figure 3.5: ∆P vs. r: predicted radius of PI as a function of the pressure drop
for E = 9.6 kPa and E = 0.96 kPa with corresponding prediction for ζ = 1.0 mPa·s,

1.6 mPa·s, 3.0 mPa·s and 10.0 mPa·s.
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The predicted curve of ∆P versus PI radius r is plotted as the solid line in Fig. 3.5, where

the required pressure difference between the anterior and posterior chambers decreases

as the radius of the PI increases. The predicted minimal PI radius can be as large as

32.27 µm for a normal iris (E = 9.6 kPa). In Table 3.2, we demonstrate a ten-fold

decrease in the Young’s modulus of the iris as predicted in uveitic eyes, resulting in the

critical area of the PI increasing by approximately a factor of three, and the predicted

minimal PI radius to be larger at 57.47 µm.

Table 3.2: Minimal PI radius as a function of the viscosity of aqueous humour. The
last column A is πr2, thus the minimal area of PI, which is more applicable clinically.

E [kPa] ζ [mPa·s] ∆Pcr [mmHg] r [µm] A [×103 µm2]

9.6

1.0

0.3871

28.69 2.58
1.6 32.27 3.27
1.8 33.24 3.47
3.0 37.77 4.48
10.0 51.03 8.18

0.96

1.0

0.0385

51.10 8.20
1.6 57.47 10.37
3.0 67.25 14.21
10.0 90.88 25.94

In addition, the change in the flow pattern in the anterior and posterior chambers due

to the PI can also induce an increase in the aqueous viscosity due to non-Newtonian

rheology; in Table 3.2, increases in the viscosity of the aqueous humour ζ also results in

an increase in the critical area of the PI.

3.1.4 Discussion and conclusion

In our case we believe multiple factors contributed to the development of AACG.

The patient had damaged/scarred trabecular meshwork and 270◦ of peripheral anterior

synechiae, implying she had elements of both secondary open and closed angle glaucoma

prior to having tube surgery. She went on to develop AACG on two occasions despite

having a functioning tube. Both were due to the formation of 360◦ PS causing pupil

block, iris bombe and resulting in occlusion of the Ahmed valve and angle closure in a

pseudophakic eye.
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There are other factors in this case which we believe contributed to the failure of the

Nd:YAG PI. The increased viscosity of the aqueous humour due to the chronic uveitis

increases the resistance in the aperture of the PI, and thus reduces the flow through it.

Coupled with a floppy, atrophic iris, the pressure required to cause the iris bombe was

similar to blowing up a balloon. To blow a balloon initially a high amount of pressure

is needed followed by minimal effort.

In our patient, the first episode was treated with a Nd:YAG PI but a second episode

occurred despite this. The literature reports high failure rates in uveitis [47, 49], however,

the size of the PI is not determined in these studies. Furthermore, there is no report in

the literature documenting the average size of PI created by Nd:YAG, possibly because

this is variable and often operator dependent. Fleck [48] reported cases of primary

AACG despite patent Nd:YAG PI, which have been considered to be due to inadequate

size of PI.

To determine the optimal size of PI required to prevent AACG, Fleck [48] constructed

a mathematical model which predicted a minimal size of iridotomy of 10-15 µm based

on an estimate of the transiris pressure difference, which is difficult to measure in vivo.

Their mathematical model was based on the assumptions of aqueous viscosity to be

equal to the viscosity of water, aqueous flow rate of 2 µL/min and iris thickness of

50 µm. Based on clinical case and experience, they recommended that the minimal

size iridotomy required to prevent AACG should be at least 150-200 µm in diameter,

incorporating a large safety margin.

In our patient, the size of the initial Nd:YAG PI was measured to be 195×110 µm2, which

suggests a PI size greater than Fleck’s [48] recommendation of 150-200 µm required in

a uveitic eye. In our model, we improved on their approach by predicting the transiris

pressure difference using computational solid mechanics. Assuming the viscosity of the

aqueous in the eye to be the same as plasma and the iris stiffness to be comparable to

a normal iris, the minimum diameter of PI predicted by our model is 64.54 µm. This

critical value is significantly less than the YAG PI size used on our patient, explaining

its initial success in reducing the patient’s IOP.



Chapter 3. Application to human iris modelling 27

However, due to the ongoing pathology of the disease the IOP eventually increased again,

and a further surgical PI was required to control the IOP. The model demonstrates that

this further increase in IOP can be attributed to a decrease in the iris stiffness and/or

an increase in the aqueous viscosity. To account for changes in viscosity, the critical

diameter for a tenfold decrease in the iris stiffness (E = 0.96 kPa) and plasma aqueous

viscosity of 1.6 mPa·s is predicted as 114.94 µm. Therefore, in order to prevent AACG

in patients with uveitis related iris bombe, we recommend a diameter for the PI of at

least 300-350 µm†. For a PI of the size 300 µm, this would be equivalent to 11 Nd:YAG

PIs of similar size to that conducted on our patient (195×110 µm2). For a diameter of

350 µm, 21 Nd:YAG PIs would be needed.‡

The mathematical model constructed is deliberately simple and has limitations, with

several of the model parameters, excluding the thickness of the iris, based on estimated

values from the literature [50–52]. Parameters such as the aqueous viscosity and the

iris stiffness are dependent on the pathology of the disease and these values can only be

estimated.

This case highlights the therapeutic challenge of managing a patient with uveitic glau-

coma due to the complex relationship between IOP and inflammation. The mathematical

model allows us to explore the possible mechanism and variables in a uveitic eye. The

model shows increasing aqueous viscosity and the atrophic/floppy properties of the iris,

as postulated in a uveitic eye, requires a larger diameter of PI than previously recom-

mended by Fleck et al. [48] of 150-200 µm. Based on our model, we advise a minimum

diameter of PI to be 300-350 µm to prevent AACG in a uveitic eye, and we suggest that

a surgical approach rather than Nd:YAG PI may be more beneficial for these complex

patients.

†This range is calculated from a safety factor of three.
‡Suppose that the area of Nd: YAG PI is ANd and the area of a required single PI is A, then the

model predicts that the number of Nd:YAG PI can be approximated by n = ( A
ANd

)2 (see the relationship

of ∆P and area A = πr2 in Eq. 3.1). Hence, based on our recommendation of a diameter of 300 µm
(A = 7.0684×104µm2) and the Nd:YAG PI area of the first PI of 195×110 µm2 (ANd = 2.1450×104µm2),
then the number of YAG PI required is 10.86. So to obtain the desired flow rate with our predicted PI
size, we need comparatively 11 Nd:YAG PIs. In the same manner, for a diameter of 350 µm that would
equate to 21 Nd:YAG PIs.
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3.2 Modelling of iris buckling within floppy iris syndrome

In recent years, conventional penetrating keratoplasty (PTK) has given way to new pos-

terior lamellar keratoplasty techniques for selective replacement of the diseased posterior

layers of the cornea in patients with endothelial insufficiency, such as Descemet’s strip-

ping endothelial keratoplasty (DSEK) [5, 54]. DSEK has established itself as a preferred

corneal transplantation technique worldwide, because patients achieve satisfactory vi-

sual acuity more quickly than after PTK, and have minimal change in corneal surface

topography or refraction [54, 55].

Figure 3.6: The procedure of DSEK showing the anterior chamber of the eye with
diseased endothelium on Descemet membrane, adapted from [5].

During a DSEK procedure, two small incisions are made to allow microsurgical instru-

ments to strip off the diseased endothelium from the central portion of the patient’s

cornea (Fig. 3.6(a)). After the donor replacement corneal tissue layer is prepared, it

is gently folded and placed within the fluid-filled anterior chamber of the eye, beneath

the patients cornea (Fig. 3.6(b)). Injected sterile air creates a tamponading air bubble

(Fig. 3.6(c)), which is used to slowly unroll the donor tissue until it lies against the iris

(Fig. 3.6(d)). Then the air bubble is removed causing the anterior chamber to collapse

such that the graft cannot roll up again (Fig. 3.6(e)). Finally a second air bubble is

introduced and inflated to carefully press the graft against the posterior surface of the

host cornea and hold it in the exact location where the abnormal tissue was removed to
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ensure sutureless apposition and graft attachment (Fig. 3.6(f)). The smaller incisions,

the need for fewer or no sutures, and the shorter procedure and recovery time make the

DSEK procedure safer and produce better visual results than conventional full thickness

PTK [5, 56].

However, despite the many advantages of the DSEK procedure compared to the full

thickness corneal transplantation, it is not completely free of post operative complica-

tions, which include posterior graft dislocation, graft failure and iatrogenic pupil block

glaucoma [54, 57]. Recently, the incidence of floppy iris syndrome during the DSEK

procedure has acquired a lot of clinical attention. This syndrome is characterised by

uncontrollable billowing, pupillary miosis and prolapse of iris into the corneal incisions.

In addition, the iris can roll up and block the peripheral angle, which in turn rises the

intraocular pressure (IOP) sharply due to mechanical obstruction of fluid though the

drainage structures present in the angle of the anterior chamber of the eye (trabecular

meshwork). Attempts to relieve this iridocorneal contact by removal of the second air

bubble are typically unsuccessful. Injection of balanced salt solution into the angle can

create a wave of fluid pushing the iris back, but the iris quickly returns to its highly

deformed configuration [4]. In order to develop better management or prevention of this

clinical scenario, we need to understand the mechanical behaviour of the iris during the

DSEK procedure.

We hypothesize that the reason for the angle closure following the surgery is due to the

iris buckling under the increased IOP induced by the presence of the second air bubble.

To test this hypothesis, we have developed a three-dimensional elastic model of the iris,

which can account for the anisotropic material properties, and predict deformation of

the iris under pressure. This model is solved using finite element method and used to

investigate the critical IOP required to cause the iris buckling (roll-up). Post-buckling

deformation of the iris may then block the superior angle.

The majority of eye modelling studies have focused on ocular fluid mechanics [48, 58, 59],

or simplified fluid-structure interaction [60, 61]; some of these studies have considered

the iris and its interaction with aqueous humour [53, 58, 59]. However, to the best

of our knowledge, three-dimensional modelling of iris buckling under pressure loading
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accounting for the anisotropy of the iris tissue has not been reported. We believe that

a detailed mathematical modelling of mechanical behaviour of the iris plays a vital

role on the effective management for clinical complications such as these associated

with the floppy iris syndrome, and our model of iris buckling is the first step towards

understanding complications during the DSEK.

3.2.1 Iris Buckling Model

Figure 3.7: (a) The side view of a general eye structure; (b) the iris structure with
the geometric information, and (c) the three dimensional model of the iris, its relation

with (b) is indicated.
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3.2.2 Model set up

The iris is again modelled as a curved annular disc with a central aperture (mimicking

the pupil). The external edge of the tissue is fixed to the ciliary body and sclera, as

shown in Fig. 3.7, which is the same as described in Section 3.1.2. However, unlike

our patient-specific geometrical data from the UBM image in the first clinical case, we

use averaged human data available from the literature [62–65], and assume that the iris

has a uniform thickness of 0.43 mm with a convexity of 0.27 mm, the anterior chamber

width and depth are 11.72 mm and 2.64 mm, respectively, and the pupil length is

4.58 mm[63]. We define this configuration as the reference configuration described by a

cylindrical coordinate system (r, θ, z). The IOP is denoted as P and we assume that the

iris behaves as a linear elastic material occupying volume V with boundary Γ. We also

assume that all free surfaces of the iris are subject to a constant IOP of magnitude P ,

while the additional pressure gradient due to the slow viscous flow of aqueous humour

is negligible.

3.2.3 Linear buckling analysis

In the absence of body force, the total potential energy is

Π =
1

2

∫
V
εTCεdv −

∫
Γ

uTPnds. (3.2)

where C is the elasticity tensor and n is the unit normal vector at the boundary Γ.

Using the principle of virtual displacement, and evaluating δΠ = 0 with respect to the

displacements, we obtain the equilibrium equations. With the finite element discretiza-

tion, i.e. using the nodal displacement vector U to represent u and ε, we can express

the equilibrium equations in the matrix form:

KU = R (3.3)

where K is the stiffness matrix, and R is the discretised load vector [66].
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We use buckling analysis to assess the stability characteristics of the iris structure [67].

We find the critical pressure load for which the stiffness matrix K becomes singular in

the following eigenvalue problem. An incremental loading pattern, P = P base + λkP
inc,

is defined, where λk is the scaling factor which becomes the eigenvalue when the critical

conditions are reached:

(Kcr
0 + λkK

cr
∆)Ucr

k = 0 (3.4)

where Kcr
0 is the stiffness matrix corresponding to the base state, Kcr

∆ is due to the

incremental loading, and Ucr
k are the eigenvectors of the kth buckling mode [68].

3.2.4 Nonlinear static analysis

A general analysis in which the effects of nonlinearity is considered in this model. It

is carried out as a series of linear analyses and the material properties are assumed

to be constant in the whole analysis. The maximum time increment allowed is 0.1, if

convergence is not possible it will re-solve with a reduced time step. In ABAQUS this

procedure is repeated until convergence is reached in its minimum increment (1× 10−5

in our case). To trigger instability we apply a small amplitude sinusoidal perturbation

of period 2π along the circular ring.

3.2.5 Elastic properties

We assume that the iris tissue is nearly incompressible, so that the Poisson’s ratio is

nearing 0.5. In the simulations reported below we choose the Poisson’s ratio to be

0.497 [50]. We consider both isotropic and orthotropic elastic responses of the iris

following from Sec. 2.3.

For the isotropic case, we choose the elastic modulus E in the range of 2.00 to 10.00 kPa,

based on measurements of cadaveric porcine and bovine iris, where moduli of 2.97 kPa

and 9.60 kPa are reported, respectively [50, 69]. For the orthotropic case, we choose the

azimuthal elastic modulus to be 2.97 kPa, and the radial elastic modulus to be 4.00 kPa,

based on the tests of porcine iris tissue [69].
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The typical IOP in humans is around 10-21 mmHg in normal subjects [4, 70]. However, it

can exceed 35 mmHg in pathological situations [4]. To mimic the increase in IOP during

graft surgery caused by the injection of an intracameral air bubble into the aqueous

fluid, we apply a pressure loading incrementally from P base = 10 mmHg onwards. This

loading is applied simultaneously to the upper, lower and inner circular surfaces of the

iris as indicated in Fig. 3.7(c). The displacement of the outer circular surface is fully

constrained to mimic the anchoring by the ciliary muscles. Surface tension and shear

forces due to the air/aqueous flow are considered to be negligible as the flow is very

slow.

Following the grid independence test, we construct a finite element mesh with 17,000

nodes and 12,240 hexhedral elements. The finite element model is implemented using

the commercial package ABAQUS 6.13 (SIMULIA, Providence, RI).

3.2.6 Results

3.2.6.1 Buckling analysis for isotropic iris tissue

Table 3.3: Critical pressures (mmHg) in the first five modes under different elastic
moduli (kPa) in the isotropic case. The buckling modes for E =4.00 kPa are shown in

Fig. 3.8.

E[kPa]
P [mmHg]

n = 0 n = 1 n = 2 n = 3 n = 4

2.00 14.09 16.14 20.44 25.28 28.67
2.97 17.63 21.28 28.88 37.51 46.85
4.00 22.24 27.77 39.17 52.32 66.88
6.00 33.23 42.62 61.80 84.43 110.20
8.00 46.27 59.55 86.62 119.22 156.99
10.00 60.83 77.88 112.78 155.58 205.75

We choose P base = P inc = 10 mmHg and increase the pressure (i.e. increase the scale

factor λk) until the critical conditions are reached. The critical buckling load when the

iris first buckles is found to be 22.24 mmHg at E = 4.00 kPa, as listed in Fig. 3.8. With

further increases in IOP, higher buckling modes also occur. We label each buckling mode

according to the number of local maxima across the structure, for example, mode n=2



Chapter 3. Application to human iris modelling 34

Figure 3.8: The first five buckling modes in the r-θ plane view for the isotropic iris
model, in which E = 4.00 kPa. The colour indicates the longitudinal displacement.

has 2 maxima as shown in Fig. 3.8.(c) The critical buckling pressures for each mode for

different elastic moduli are listed in Table 3.3.

The critical IOP required for each buckling mode is significantly lowered as the material

becomes less stiff (floppy), as expected from other buckling studies in elastic tissue [71,

72]. In addition, the differences in the critical pressure between individual modes become

greater with increased material stiffness. In other words, the higher modes are more

likely to occur for a floppy material. However, all buckling modes have some symmetries

for the isotropic material. The n = 0 mode is axis-symmetric while for n > 0, mode n

has n symmetries. As in the analytical solution [73], the annular isotropic plate always

buckles into the axisymmetric form regardless of the hole size.

3.2.6.2 Buckling analysis for orthotropic iris tissue

Here the iris is instead modelled as an orthotropic material and we repeat the stability

analysis as in Sec. 3.2.6.1. Again, we label the modes in the same manner as before,
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and the critical buckling pressures for the first five modes are listed in Table 3.4, with

the corresponding onsets of unstable shapes shown in Fig. 3.9. However, in this case we

find distinct modes with the same number of symmetries for n ≥ 2, which we label with

the suffix ‘a’, ‘b’ etc.

Figure 3.9: The first five buckling modes in the r-θ plane view for the orthotropic
material model.

Table 3.4: Critical pressures (mmHg) in the first five modes in the orthotropic case.

Er[kPa] Eθ[kPa] Ez[kPa]
P [mmHg]

n = 1 n = 2a n = 2b n = 3a n = 3b

4.00 2.97 4.00 16.73 16.89 20.65 24.33 25.99

In this case the mode n = 1 is the most unstable at a critical pressure of 16.73 mmHg for

the choice of the elastic moduli. As expected, the critical buckling pressures are lower

than for the corresponding isotropic material with E = 4 kPa (listed in Table 3.4).

These results suggest the importance of modelling the iris as an orthotropic material.

For example, with this model, the post-buckling deformation may cause the angle closure

in an asymmetric manner as was observed during the surgery. The subsequent increase
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in pressure due to the fluid blockage could eventually lead to complete angle closure and

pupil block glaucoma.

3.2.6.3 Post-buckling analysis and angle closure

Figure 3.10: The configurations of mode n = 1 with cornea shown in the r-z cut-plane
view where (a) η = 1.0 and (b) η = 0.5. We note that when η is below 0.5, the iris

makes contact with the cornea.

Furthermore, we investigate the fully nonlinear deformation of the orthotropic iris as

the loading continues beyond the critical buckling pressure. In particular, we consider

the case where the IOP is close to the critical value for the first buckling mode (P =

16.73 mmHg) and introduce a circumferentially sine-shaped pressure with magnitude

of 0.001 mmHg. The corresponding static iris profile is shown in Fig. 3.10(a). The

predicted iris deformation agrees very well with the eigenfunction of the n = 1 buckling

mode shown in Fig. 3.9.
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3.2.6.4 Implication for ‘floppy iris syndrome’

We note that the elastic properties of the iris can be very different in abnormal sit-

uations: for example, in the case of floppy iris syndrome the elastic moduli decrease

significantly [4]. To further analyse the floppy iris behaviour, we changed the elastic

moduli in the orthotropic iris model using a proportion factor η, so that the elastic

moduli become ηEi, i = r, θ, z. The relationship between the first critical pressure and

η is shown in Fig. 3.11, highlighting how a uniform reduction in stiffness can reduce the

critical pressure in the range of the normal IOP. This may explain why the complications

associated with the floppy iris syndrome were observed in the DSEK procedure [4].

Figure 3.11: The critical IOP for the first buckling mode as a function of the reduction
in η.

A plot of the minimum angle between iris and cornea (denoted α) as a function of the

IOP is shown in Fig. 3.12. As the structural material becomes less stiff, i.e. η is smaller,

the minimum angle tends to zero, indicating angle closure and obstruction of the fluid

drainage into the Schlemm’s canal, as is shown in Fig. 3.10(b) when η = 0.5. This in

turn can lead to acute angle glaucoma.
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Figure 3.12: The mininum angle between iris and cornea as a function of the reduction
in η.

3.2.7 Discussion and conclusion

This study aims to understand the mechanism of acute rise in the IOP in the case of

corneal transplant surgery using a finite element mechanical model of iris. The model is

used to identify the key parameters in the iris buckling, the air bubble induced pressure,

and the material properties of iris. These are helpful in the understanding and treatment

of complications. As a result, we have modified our clinical approach to control the initial

pressure rise in surgery which may cause the iris buckling.

It is worth mentioning that although our iris model is built on a symmetric ring structure,

when the critical pressure is reached, it buckles into many asymmetric modes. This

suggests that such analyses must be done with three-dimensional models. Importantly,

the critical pressure is sensitive to the material properties, especially during surgery

when inflammation may occur. In this sense, it is crucial to obtain measurements of

the human iris tissues under both physiological and pathological conditions. Since the

mechanical properties of human iris tissue are not available, we have to estimate our

model parameters based on measurements of animal (canine and porcine) iris, hence

we cannot validate our model prediction directly with the clinical case without the

knowledge of the iris property of the subject in question. Therefore, although our model

predictions can explain the mechanism in general, these are not patient-specific.
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To conclude, we have developed a finite element orthotropic iris mechanical model to

understand the mechanism of acute rise in the IOP. Using a buckling analysis, we are

able to predict the critical pressures under which the iris may lose its stability. This

situation is exacerbated by the floppiness of the iris since the critical pressure is much

lower when the iris is less stiff. We believe the buckling of the iris is the key reason

leading to the blockage the superior angle, and subsequent complications.



Chapter 4

Investigation of the optimal

collagen fibre orientation in

human iliac arteries

The distribution of collagen fibres plays a significant role in the mechanical behaviour of

arterial walls. Experimental data show that in most arterial wall layers there are two (or

more) in-plane symmetrically disposed families of fibres. However, a recent investigation

revealed that some arterial wall layers have only one preferred fibre direction, notably

in the medial layer of human common iliac arteries (CIAs). This paper aims to provide

a possible explanation for this intriguing phenomenon. The results have been published

in Journal of the Mechanical Behaviour of Biomedical Materials [74].

4.1 Introduction

The collagen fibres within arterial walls play a significant role in the macroscopic be-

haviour of the walls [1, 75]. Human CIAs are of particular clinical interest, as atherosclerosis-

prone vessels, since they frequently undergo endovascular treatment. Iliac arteries are

relatively easy to access for vascular diagnostic procedures [7].

40
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Most of the aforementioned studies focused on the mechanical properties of coronary

arteries [76]. In this study we concentrate on the human iliac artery. This is because an

exception to the fibre structure has been found in the medial layer of human CIAs in the

recent work by Schriefl et al. [6]. Using polarised light microscopy on stained arterial

tissues, these researchers measured the layer-specific collagen fibre density distribution

in human thoracic and abdominal aortas, and in CIAs. They found that unlike in most

of the investigated arterial layers where there are two or more distinct families of the

collagen fibres, fibres are found to be mostly parallel to the circumferential direction

in the media of the human CIAs, as is shown in Fig. 4.1. Various fibre dispersions in

different layers of arteries were also reported.

Figure 4.1: The density of the measured angles of fibre families for the descending
thoracic aorta T, the abdominal aorta A and the common iliac arteries CI. The three
columns are for (a) intima, (b) media and (c) adventitia. The degree of the fibre angle
is measured with respect of the circumferential direction of the arteries. The grey box
highlights the unusual distribution in the medial layer of CIAs, where the preferred
direction of the fibre families is along the circumferential direction. Adapted from [6]

with permission.

The work [6] raises interesting questions. In particular, what determines the optimal

fibre orientation? Can we explain the fibre distribution in the media of the CIA from

the mechanics standpoint?
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In this chapter, we attempt to answer these questions using a combined analytical and

computational approach.

We treat the iliac artery as a two-layer thick-walled model, including only the media

and adventitia. We use the κ model [75] in which the effect of the fibre dispersion is

taken into account. Both the axial pre-stretch and the circumferential residual stress are

considered. To separate the effects of the circumferential and axial residual stresses from

the geometric influences, we also investigate a straight tube model with the correspond-

ing material properties as well as the residual stresses in the circumferential direction.

Inflation and extension experiments are simulated numerically with 13.33 kPa blood

pressure loading. For simplicity, we confine our study to static loading only. Finally,

three different hypotheses are used to determine the ‘optimal fibre angle’ in the iliac

artery model. Results from all three hypotheses support the experimental observation

that there is probably a single fibre family in the media of human iliac arteries.

4.2 Methodology

4.2.1 Geometry of a 3D aorto-iliac bifurcation

Based on human data documented in the literature [7–10], an ideal but typical bifur-

cation geometry of an iliac artery is built, as shown in Fig. 4.2. The bifurcation is

constructed such that the cross section at the end of the aorta is gradually changed

from a sequence of circles to ellipses, see in Fig. 4.3. This is then smoothly connected

to the two iliac arteries via cubic spline positional polylines using Matlab (R2012b). By

this special treatment, the quality of the hexahedral elements can be guaranteed. In

addition, the label and the corresponding position of every single element are fully cap-

tured, which makes it convenient to assign the fibre orientations on each finite element

later on.

We model the iliac bifurcation as a two-layer thick-walled structure, and the thickness

ratio between the medial and adventitial layers is taken to be 4:3 [6]. A total of seven

hexahedral elements (four in the media and three in the adventitia) through the wall
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Figure 4.2: Three-dimensional geometry of the aorto-iliac bifurcation model. The
geometric information is taken from the literature. The inner and outer diameters are
chosen to be 14.2 mm and 15.6 mm, respectively, for the abdominal aorta, and 9.3 mm
and 10.7 mm, respectively, for the CIAs, following [7] and [8]. The length of the aorta
and each iliac artery is taken to be 57 mm [9, 10]. The two iliac branches are assumed
to deviate from the centreline of the aorta symmetrically at 30◦ [11, 12]. The labels

‘C’ to ‘E’ correspond to Fig. 4.3.

thickness is constructed. Although the geometry is symmetric and the modelling could

be achieved by considering a quarter of the whole section, we choose to use the whole

geometry so that the modelling can be easily extended to include the fluid-structure

interaction in future studies, for which the flow field can be asymmetric. We also note

that the three-dimensional simulation of the whole section is not costly in computational

time.
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Figure 4.3: Special scheme to connect the aorta and the two iliac branches. We use
sequences of ellipses approaching from the aorta in blue (‘D’ to ‘C’) and approaching
from one of the iliac branch in black (‘E’ to ‘C’) to mimic the bifurcation neck) . To
connect them, we use two sequences of perpendicular semi-ellipses at ‘C’ (highlighted

in red in Fig. 4.2) such that the following stacks progressively become flat.

4.2.2 Constitutive κ model

Artery walls are usually composed of three distinct layers, the intima, the media and the

adventitia, and it is widely accepted that variations exist in both the structural com-

position and the material properties of arterial walls in different regions of the arterial

tree, even from the same individual [1, 13, 77]. Collagen fibres are key ingredients in the

structure of arterial walls. In most regions, load bearing layers such as the media and

adventitia are shown to have two (or more) in-plane symmetrically disposed families of

fibres.

Therefore, continuum constitutive models of arterial layers integrate information about

the tissue morphology and allow investigation of the interrelation between structure

and function in response to mechanical loading. Carefully constructed constitutive laws

based on experiments are of critical importance for analysing the physiological and

pathological load-carrying mechanisms in soft tissues [75].

A number of experimental studies, based on polarised light microscopy of stained arterial

tissue, have shed light into the detailed structural organisation of the complex three-

dimensional elastin, collagen and smooth muscle arrangement within the arterial wall [6,
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78–80]. These studies show not only that artery tissues are highly anisotropic, but

also provide an explanation for the exponential response of the tissues. The gradual

recruitment of the collagen fibres, which are considered to be crimped in their natural

configuration, is responsible for the exponentially increased stiffness of the tissue when

stretched [81, 82].

With this understanding, more advanced constitutive laws have been developed to make

use of the microscopic information of arterial wall structures [1, 75, 83, 84]. The

anisotropic elastic energy functions proposed by [1], [85] and [86] represent one cate-

gory of such structure-based approaches. For example, the constitutive model by [1]

is used to represent the ground matrix and the distinct fibre families in the arterial

wall. The model assumes that the fibres are symmetrically disposed relative to the axial

direction and have no component in the radial direction.

This model assumes that the strain-energy function Ψ is the sum of an isotropic potential

Ψiso associated with the ground matrix and an anisotropic potential Ψaniso associated

with the embedded families of perfectly aligned collagen fibres [87]. It is assumed that

the artery material is incompressible, so we have J = 1. We have the two fibre families

aligned in the directions of the unit vectors a01 and a02 in the reference configuration.

These are symmetric and lie in the tangent plane (no radial component). Let λr, λθ and

λz be the principal stretches in the cylindrical system. Then, the strain-energy function†

associated with the right Cauchy–Green tensor C is

Ψ = Ψiso(C) + Ψaniso(C,a01,a02)

=
c

2
(I1 − 3) +

k1

2k2

∑
i=4,6

[
exp

(
k2(Ii − 1)2

)
− 1
]
,

(4.1)

with the I4 term only included if I4 > 1 and same for the I6 term. This ensures that the

load-bearing collagen fibres embedded in the arterial wall only bear loads when stretched,

not compressed. For the walls of most large arteries, these two fibre families are located

symmetrically about the axial direction, so that, for the deformation considered here,

†Note, this strain-energy function is designed as an incompressible formulation. A modified version
of Eq. (4.1) with an isochoric/volumetric split is used in the finite element implementation.
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I4 = I6 = λ2
θ cos2 β + λ2

z sin2 β, where β denotes the angle between a01 (or a02) and the

circumferential direction of the artery.

However, the above constitutive model does not include the fibre dispersion observed in

experiments, and to take account of fibre dispersions, two extended models have been

developed subsequently. One of these is the ρ model [76, 88] in which a constant scalar

ρ is introduced to account for the fibre dispersion. The other is the κ model which

is derived from a generalised structure tensor [75]. Both the ρ and the κ models are

invariant–based and include the effect of fibre dispersion, but unlike ρ, κ can be directly

estimated from the measured fibre density distributions using, for example, polarised

light microscopy [6, 78–80]. In particular, the κ model extends the model of [1] by

changing the anisotropic part to [75, 86]

Ψaniso =
k1

2k2

∑
i=4,6

[
exp(k2Ê

2
i )− 1

]
, (4.2)

where

Êi = κI1 + (1− 3κ)Ii − 1, i = 4, 6,

and κ ∈ [0, 1/3] is a dispersion parameter (the same for each fibre family). Notice that

when κ = 0, the κ model is the same as the one published in [1], and when κ = 1/3 we

recover the isotropic potential similar to that used in [89].

Recall from Eq. (2.6), that for the considered model the Cauchy stress tensor is given

by

σ = −%I + cB + 2k1

∑
i=4,6

Êiexp(k2Ê
2
i ) [κB + (1− 3κ)(ai ⊗ ai)] ,

in which ai = Fa0i, i = 1, 2, where % is a Lagrangian multiplier.

We adopt the κ model in Eq. (4.2) and assume that the material properties of the

abdominal aorta are the same as for the descending CIAs. Figure 4.4 shows a comparison

between the experimental data and the fitted results for both the circumferential and

axial direction of the medial and adventitial layers in the iliac artery. The ‘goodness
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Figure 4.4: The circumferential and axial stress-stretch responses of (a) the medial
and (b) the adventitial layers of a human iliac artery fitted to experimental data. The
experimental data shown in symbols (circumferential: circle; axial: square) are from

sample no. IV in [13]. The parameters used are listed in Table 4.1.

of fit’, as defined in [7] and [6], is 0.09 and 0.16†, respectively. The fitted material and

structural parameters of a representative human iliac artery are given in Table 4.1, with

the azimuthal angles βj , j = M, A determined from biaxial experiments [6].

Table 4.1: Layer-specific material and structural parameters for a human CIA based
on the κ model.

c [kPa] k1 [kPa] k2 κ [6] βj , j = M, A [deg] [6]

Media 20.99 29.34 19.33 0.20 0
Adventitia 8.74 55.09 328.27 0.26 53.8

4.2.3 Finite element simulation

The finite element simulations were performed using the commercially available finite

element package Abaqus 6.13 (SIMULIA, Providence, RI). For a typical simulation we

use a total of 54,096 hexahedral elements for a bifurcation model, with 19,152 elements

for the aorta, and 17,472 for each branch of the CIA. The grid size is chosen following a

grid independence test‡. Each branch of the bifurcation is subjected to an in vivo axial

pre-stretch of λz = 1.07 [7], defined as the ratio of in situ length to ex situ length [7, 90],

†As the value tends to zero, the fit becomes better.
‡Simulations were run for increasingly refined grids until the results converged; this is also called

‘mesh convergence study’.
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and a transmural physiological mean pressure of 100 mmHg [1, 7, 91]. The circumferen-

tial displacements of the inlet and outlets are fixed by setting these to zero in the locally

cylindrical coordinate systems.

The simulation was run with different alignments of the fibres in the media of the

descending iliac artery from βM = 0◦ to 50◦. The upper limit of 50◦ is used as it is

widely accepted that the medial layer tends to support more circumferential than axial

stresses, in the sense that the fibre orientation is closer to the circumferential direction

than the axial direction [6]. When βM = 0◦, the two families of fibres merge into a single

family aligned along the circumferential direction. Except in the energy optimisation

method discussed below, in all other simulation, the fibre angle βA of the adventitia is

fixed at 53.8◦, following measurements documented in [6].

4.3 Criteria to determine the optimal angle

In order to determine the optimal fibre angle, we consider three different hypotheses.

These are based on uniformity factor of the transmural stress distribution, stress-driven

remodelling, and energy arguments.

4.3.1 Hypothesis I: uniformity factor

This approach assumes that the fibres are aligned so that under the peak blood pressure

and an axial pre-stretch, the transmural gradient of the maximum principal Cauchy

stress σθ is minimised. To start with, we assume that the unloaded configuration is

stress-free, but this assumption is discarded later in Section 4.3.1.2. In accordance

with [92], the distributions of these stresses are considered across the deformed wall

thickness (including the medial and the adventitial layers). To quantify the uniformity

of the circumferential stress throughout the arterial wall, we adopt the definition of the

standard deviation as the uniformity factor (UF) [93], i.e.

UF =

(
1

N − 1

N∑
n=1

(σθn − σ̄θ)2

) 1
2

,
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where σθn is the circumferential Cauchy stress of the n-th sampling point through the

iliac arterial wall (the daughter branches) and σ̄θ is the mean value of σθn across the

wall. The number of sampling points N herein is 7, corresponding to the centre points

of the finite elements across the wall. The transmural stress distributions at the pre-

βM 0◦ 10◦ 20◦ 30◦ 40◦ 50◦

UF 14.91 15.05 14.83 18.53 28.18 40.08

Figure 4.5: Transmural stress distribution σθ at different medial fibre angle align-
ments. The x-axis shows the sampling point n from the inner to the outer radius. The
curves of the circumferential stress σθ are interpolated from the centre points of the
finite elements. The thick solid curve at β = 20◦ is shown to be more uniform than all

other angles since its UF value is the smallest, as listed at the bottom.

stretch of 1.07 are plotted in Fig. 4.5, indicating a distinct jump between the medial and

adventitial layers. This agrees with published works [92, 94, 95], and is caused by the

fact that different material parameters are used for the medial and adventitial layers.

Another explanation of this piecewise pattern of the stress gap against the fibre angle

βj , j = M,A is due to the fact that the collagen fibre constituent is the main contributor

to the anisotropic behaviour. Under a constant βA, the larger of βM , the more effort it

will contribute to support the axial forces and less to the circumferential ones. This then

results in relieving the circumferential burden on medial layer while aggravating the one
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on the adventitial layer. Therefore, there should exist a proper angle which makes the

best balance of the stresses in those two layers, in other words, gives the smallest UF

value.

Fig. 4.5 reveals that the transmural stress distribution becomes more uniform for both

layers, for βM ≤ 20◦. Indeed,the UF value is quantitatively smallest when the fibre angle

is set to be 20◦, though the difference is small compared with that for βM = 0◦.

4.3.1.1 Comparison between the bifurcation and the tube structure

To distinguish the effect of the pre-stretch from the bifurcation geometry, the simulations

were run for several selective axial pre-stretches in addition to the physiological value of

λz = 1.07, for both the bifurcation and the straight tube structure. All other parameters

and loading conditions are kept the same as for the tube model. The optimal fibre angles

from the UF criterion are listed in Table 4.2.

Table 4.2: Optimal fibre angles with different pre-stretches for the bifurcation and the
tube structure.

λz 1.05 1.07 1.08 1.09 1.10 1.12 1.20

Bifurcation structure 30◦ 20◦ 10◦ 0◦ 0◦ 0◦ 0◦

Tube structure 30◦ 20◦ 10◦ 0◦ 0◦ 0◦ 0◦ − 10◦

Interestingly, Table 4.2 shows that the optimal fibre angles of the bifurcation and the

tube structure are very similar. In other words, the effect of the pre-stretch seems to

be much more important than the geometrical effects since, for a given pre-stretch, the

optimal fibre angle is basically the same in either the bifurcation or the tube model

under this hypothesis. This important observation suggests that we may now focus on

the effects of the pre-stretch using the tube model for which the analytical solutions can

be easily derived.

4.3.1.2 Effect of the circumferential residual stress

Since Table 4.2 shows that the optimal fibre angle is 20◦, and not 0◦, it suggests that our

UF model has not captured all the important factors. One possibility is due to the fact
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that the unloaded configuration is not stress free as we have assumed in our previous

calculations. Several studies have shown that the circumferential residual stress can

change the stress distribution through the thickness [93, 96–99].

Figure 4.6: Cylindrical arterial wall in the stress-free configuration Ωr, the unloaded
configuration Ω0, and the current configuration Ωt, replotted following [14].

To address this issue we introduce a circumferential residual stress based on the opening

angle method [96]. Let α denote the opening angle in the reference configuration, as

depicted in Fig. 4.6. Then, in terms of cylindrical polar coordinates (R,Θ, Z), the

reference geometry of the tube is defined by

RM
i ≤ R ≤ RA

o , 0 ≤ Θ ≤ 2π − α, 0 ≤ Z ≤ L, (4.3)

where RM
i and RA

o denote the inner radius of the medial layer and the outer radius of

the adventitial layer, respectively, while L is the length of the undeformed sector. For

continuity, we also have RM
o = RA

i . Note that the opening angle identified in Fig. 4.6

differs from the definition used in [100, 101].
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In terms of coordinates (r, θ, z), the geometry of the current configuration is given by

rM
i ≤ r ≤ rA

o , 0 ≤ θ ≤ 2π, 0 ≤ z ≤ l, (4.4)

where rM
i , rA

o and l denote the inner and the outer radius and the length of the deformed

tube, respectively, with rM
o = rA

i .

The deformation gradient F is then the composition of the deformation gradient F0

relative to the unloaded configuration, and Fr relative to the stress-free configuration,

as indicated in Fig. 4.6. Thus,

F = F0Fr. (4.5)

Using the cylindrical coordinates we have x = rer + zez, where (er, eθ, ez) are the unit

basis vectors in the current configuration. For our problem

r =

√
R2 − (RM

i )2

kλz
+ (rM

i )2, θ = kΘ, z = λzZ, (4.6)

where λz is the (constant) axial pre-stretch stretch, and k = 2π/(2π − α).

By incompressibility, λrλθλz = 1. Hence, we have

λr(R) =
R

rkλz
, λθ(R) = (λrλz)

−1 =
rk

R
. (4.7)

The deformation gradient is then

F = λrer ⊗ER + λθeθ ⊗EΘ + λzez ⊗EZ , (4.8)

with λm,m = r, θ, z being the principal stretches in the radial, circumferential and axial

directions, respectively, and Em,m = R,Θ, Z, are the unit basis vectors in the reference

configuration. In the absence of body forces and by assuming no external pressure, the

internal pressure P is

P =

∫ rAo

rMi

(σθ − σr)
dr

r
, (4.9)

where σθ and σr are the principal Cauchy stresses in the circumferential and the radial

directions, respectively.
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We need to make one assumption on the kinematics in order to make progress. To be

specific, we assume that the wall thickness does not change between the initial and the

stress-free configuration, following the studies of [93] and [1], and by making use of the

incompressibility condition, we obtain

k(R2
o −R2

i ) = r2
o − r2

i , (4.10)

where Ro = Ri + H and ro = ri + H, and H is the wall thickness. This allows us to

solve Eq. (4.9) numerically using a Gaussian integration scheme [1]. The geometrical

parameters used in the simulation are summarised in Table 4.3.

Table 4.3: Geometrical parameters used for the iliac artery, chosen from [6–8]. As no
measured opening angle is available for human iliac arteries, the corresponding opening

angle of rat is used [1, 17] for both the medial and the adventitial layers.

Parameter Description
Value

Media Adventitia

Ri [mm] Inner referential radius 8.9 9.7
Ro [mm] Outer referential radius 9.7 10.3
H [mm] Wall thickness 0.8 0.6
ri [mm] Inner current radius 4.7 5.5
ro [mm] Outer current radius 5.5 6.1
α [deg] Opening angle 160 160

The minimum values of UF versus the medial fibre angle βM are illustrated in Fig. 4.7,

which shows that when including the circumferential stress, the optimal fibre angle is

around 0◦. This now agrees with the experiments.

Table 4.4: Minimum value of UF and corresponding βM obtained for different values
of pre-stretch λz, when including the opening angle (α = 160◦).

λz 1.00 1.05 1.07 1.10 1.14 1.15 1.17 1.20

βM 0◦ 0◦ 0◦ 0◦ 0◦ 30◦ 41◦ 57◦

UFmin 12.84 38.00 48.48 59.75 69.95 71.80 72.98 73.13

The minimum value of UF at different values of λz is shown in Table 4.4, which indicates

a strong dependence of optimal βM on λz. It seems that the medial fibres tend to be

aligned in the circumferential direction when the pre-stretch is below 1.14. However, βM

increases sharply (> 30◦) for λz > 1.15, and the transmural stress distribution becomes

more uneven. This is probably the reason why in human samples the corresponding

angular deviation of the mean fibre angle in the media of iliac artery is close to 0◦ [6].
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Figure 4.7: UF plotted against the fibre angle βM for the opening angles α = 0◦

(dashed curve) and α = 160◦ (solid curve). The optimal fibre angle (solid diamond
symbol) shifts from 16◦ to 0◦ when the circumferential residual stress is included in the

model. Results are obtained for a pre-stretch value of λz = 1.07.

4.3.2 Hypothesis II: stress-driven remodelling

This hypothesis assumes that the fibres adapt during the remodelling process so that

the artery layers have optimal load-bearing capability. Here we adopt a simple stress-

driven remodelling model proposed by Hariton et al. [102], which assumes that the two

families of collagen fibres are along a direction between the principal stretch directions

as dictated by the ratio of the two largest principal stresses σθ and σz [102, 103]. In the

present study, only the collagen fibre orientation in the medial layer is adjusted due to

the remodelling process. Since remodelling requires the solution of an inverse problem,

an iterative procedure is developed, as shown in Fig. 4.8.

Figure 4.8: Inverse procedure for determining the fibre orientation using the stress-
driven criterion.
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The Cauchy stress is given by

σ = σθeθ ⊗ eθ + σzez ⊗ ez + σrer ⊗ er,

where σm (m = r, θ, z) are the principal Cauchy stresses, and em (m = r, θ, z) are the

principal directions. Following [103] and [102], we assume that the angle βM of fibre

alignment between the fibre directions obeys

tanβM =
σz
σθ
, (4.11)

whereby the fibres are assumed to be in the plane spanned by the vectors aligned with the

two largest principal stresses, and the collagen fibres are symmetrically aligned relative

to eθ, the direction of the maximal principal stress. The two maximal principal stresses

are obtained from the tube model. The unit vectors along the two families of collagen

fibres are, in the current configuration,

ai = cosβMeθ ± sinβMez,

and in the reference configuration,

a0i =
F−1ai
|F−1ai|

, i = 1, 2.

The updated fibre alignment in the reference configuration is then calculated from

cos(2βM
0 ) = a01 · a02.

The remodelling procedure terminates when the maximal absolute variance of the mean

fibre orientation between the current and last steps is below a set tolerance. For each

step, we assume that the artery is in a quasi-static condition. To check that the conver-

gence problem is unbiased of the initial value, we initialize the iterative procedure with

three different mean fibre orientations (0◦, 30◦ and 50◦); Fig. 4.9 shows that all those

three independent iterations converge to an identical result.
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Figure 4.9: (a)The maximal medial fibre angle difference between two successive
iterations and (b) the remodelled fibre orientation against the medial layer of the arterial
wall at the pre-stretch 1.07. On one hand, all three simulations converge since the angle
differences reach to zeros eventually and on the other hand, these convergent results

are indistinguishable, in other words, they converge to the same results.

Figure 4.10 provides the results of the remodelling process with the circumferential resid-

ual stress under different pre-stretches. The mean fibre orientation across the arterial

wall of the medial layer is 6.3◦ at a pre-stretch of λz = 1.07 as in Fig. 4.9. The result

is reasonably close to zero degree, and suggests that the fibres are mostly circumferen-

tially oriented. The influence of the axial pre-stretch is also shown in Fig. 4.10. On the

whole, the values of the fibre angle increase with λz, while the range of βM becomes

wider when λz becomes larger. Note that if λz is assigned an even larger number (for

example, > 1.13), the iterative system loses its stability, and it becomes divergent. The

negative fibre angles proximal to the inner radius are due to the flip-over of the two fibre

directions. Though uniformly stretched, the inner wall in the axial direction is under

compression; in other words, the medial principal stresses σz < 0, and consequently, the

βM derived through Eq. (4.11) change their sign. The marginal differences in the opti-

mal angles compared with the UF criterion may be due to the oversimplified criterion

of the remodelling model used.
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Figure 4.10: Dependence of the remodelled fibre orientation (characterized by βM)
on the medial radial coordinate r as a function of the axial pre-stretch given as 1.05
(dashed), 1.07 (solid), 1.10 (dash-dotted) and 1.12 (dotted). Residual strains are in-

cluded through the opening angle of α = 160◦.

4.3.3 Hypothesis III: energy-minimisation

We now determine the optimal fibre orientation based on the energy arguments recently

proposed by Waffenschmidt and Menzel [14], which assumes that the fibres are aligned

so that the minimum of total potential energy Π is maximised with respect to βM and

βA. For a hyperelastic material, Π is the sum of the elastic strain energy Πint stored

in the deformed body and the potential energy Πext of the applied forces, expressed as

Π = Πint + Πext + const. The main objective is to access information on the preferred

material, structural and loading parameters that are associated with the extremal states

of the total energy, and to use these to identify the favourable configurations for the

design and adaptation of arterial walls. Specifically, the total energy for a tube model

can then be expressed as

Π = 2πl

∫ rAo

r=rMi

Ψ(λr, λθ, λz)rdr − Pπ(rM
i )2l + const. (4.12)
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Note that λz is prescribed, and with the incompressibility condition λrλθλz = 1, the

strain energy Ψ is a function of βM, βA, λθi and α, where λθi is the inner circumferential

stretch.

Since the equilibrium of the system also requires the minimisation of the total strain

energy in terms of displacements, the optimisation of the total energy is the result of

maximising all the permissible minimised total energies. The solution of the underlying

boundary-value problem is obtained by the optimisation of Π. The deformation variables

(λθi, α) firstly minimise the total energy, which results in the triplet (λmin
θi , αmin,Πmin).

Subsequently, a set of values of Πmin corresponding to the states of equilibrium for which

Πmin is maximised to render the optimal material parameters (βM
opt, β

A
opt), i.e.

{βM
opt, β

A
opt} = arg max

βM,βA
{min
λθi,α

Π(λθi, α, β
M, βA)}. (4.13)

The reader is referred to [14] for the detailed algorithm that determines the functional

βM [deg] βA [deg] λθi [-] α [deg]

0 0 1.20 75

Figure 4.11: Values of Πmin plotted against βA and βM, with the optimum values of
the other parameters listed in the table The red dot indicates the maximum value of

Πmin.

Π in Eq. (4.12). The physical interpretation of Eq. (4.13) suggests that in an arterial

tissue, the fibres adapt to be aligned so that the tissue’s loading capacity is maximised.
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Thus, the internal energy is maximised among the minimised values of Π, in the case of

Dirichlet boundary conditions.

Figure 4.11 shows the variation of the total potential energy Π in the parameter space

of βM and βA. It is evaluated numerically at the physiological pressure of 13.33 kPa and

the axial stretch of 1.07. In Fig. 4.11 the maximum value of Πmin is indicated by a red

dot, which occurs at βM = 0◦. This is consistent with the results from the previous two

hypotheses. The value of βA is discussed in the next section.

Figure 4.12: Relation between the axial stretch λz, internal pressure P , and optimal
medial fibre angle βM

opt, as indicated by the colour bar. The black solid line highlights

the variation of βM
opt with P at λz = 1.07; for a wide range of pressure (βM

opt = 0).

Following [14], we also plot the relation between the axial stretch λz, the internal pressure

P and the optimal medial fibre angle βM
opt in Fig. 4.12, with the colour bar referring to

the optimal value of βM
opt. It is clear that in a wide range of physiological pressure,

the optimal fibre angle is oriented towards the circumferential direction, i.e. βM
opt =

0◦. However, if λz is > 1.12, then there is a sudden change of fibre alignment from

the circumferential to the axial direction, i.e. βM
opt = 90◦, irrespective of the pressure

magnitude. If we assign βA = 53.8◦ [6], then the results are similar to those shown in

Fig. 4.13(a). In particular, we have βM
opt = 0◦, λθi = 1.23, and α = 45◦.
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Figure 4.13: (a) Πmin vs. βM, with the red dot denoting βM
opt = 0◦ when Πmin reaches

its maximum; (b) Πmin vs. α, with the red dot denoting the optimal position at α = 45◦

when Π is minimised.

4.4 Discussion

The main result of this chapter is to show that by using each of the three different

hypotheses there seems to be an optimal mean fibre angle in the media of the human

iliac artery in the circumferential direction, as observed in recent experiments of Schriefl

et al. [6]. Since we only perform a static analysis, the agreement with experiments

seems to suggest that the fibre alignments are dominantly influenced by the static peak

physiological loading. In order to accurately estimate the fibre angle we need to include

the residual stress effect in the UF approach since the arteries do not recover to the

zero-stress configuration when unloaded.

In the first two approaches the fibre orientation of the adventitia is fixed. However, with

the energy optimisation method, all parameters can be estimated including the opening

angle α and the adventitial mean fibre orientation βA. In all simulations, the importance

of the pre-stretch in the determination of the fibre orientation is found to be paramount.

This and several other issues are discussed in more detail in the following.

4.4.1 Role of pre-stretch

Our simulations suggest that the iliac artery has only one family of fibres in the media

with preferred circumferential direction. Hence, it is useful to ask what is so special

about the iliac artery when compared to the aorta where two families of fibres are
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always present in each layer? The main explanation, as suggested by our results, comes

from the significance of the pre-stretch. In particular, the typical pre-stretch in an iliac

artery is around 1.07, yet in most of the large arteries such as the aorta and the carotid

artery the pre-stretch is normally larger than 1.1 [1, 90, 92, 104–106].

Indeed, when we apply the UF criterion to rabbit carotid arteries using the data from

[1], with the physiological value of pre-stretch 1.6, we find an optimal medial fibre angle

of 31◦ (see UFs in the Table 4.5), which is close to the average experimental results of

29◦ [1]. Incidentally, the optimal fibre angles of the rabbit carotid artery would also

be oriented towards the circumferential direction if the pre-stretches are below 1.45.

Additionally, as suggested by the energy optimisation criterion, βM
opt is equal to 0◦ for

an axial stretch below 1.55.

Table 4.5: Optimal medial fibre angle βM and corresponding UFmin at various values
of pre-stretches λz for a rabbit carotid artery.

λz 1.10 1.40 1.45 1.50 1.55 1.60 1.65 1.70

βM 0◦ 0◦ 0◦ 2◦ 13◦ 31◦ 42◦ 50◦

UFmin 49.79 71.86 75.62 79.29 82.65 83.82 81.52 74.92

We speculate that the reason for the lower value of the pre-stretch of the iliac artery

is partially due to the branching structure, though not all bifurcating arteries have

sufficiently low pre-stretch to develop a single fibre family. The spatial variation of

the pre-stretch along the arterial tree must have been developed optimally through a

complex remodelling process under the overall loading conditions, including dynamic

pressure, gravity and fluid-structure interaction, with the interplay of local artery ge-

ometries and material properties. For example, in a human carotid bifurcation, the

pre-stretch of the layer specific parent branch is very similar to that of the two daughter

branches [107]. It will be interesting to see more experimental data which may establish

a clearer relationship between the pre-stretch and the fibre orientation.

4.4.2 Opening angle in the human iliac artery

The energy optimisation method suggests that the optimal opening angle α is around

45◦ for a human iliac artery, as shown in Fig. 4.13(b). This is considerably lower than
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the published opening angle of 160◦ found in a rat iliac artery [1, 17]. Since we have

no experimental data available to validate this finding, we measured the opening angle

in porcine iliac arteries of two healthy adult swines, following the procedure described

by [108] and [109]. This measurement showed that the opening angle in the swine iliac

artery is around 80◦. As the swine anatomy bears some similarity to that of the human

anatomy, this seems to support our modelling prediction of a smaller human opening

angle of 45◦. Using the opening angle 45◦ in the UF approach, we obtained a similar

medial fibre angle to that of using 160◦ (rat), as shown in Table 4.6. Indeed, we have used

a number of different opening angles and found that as the results are unchanged once

the opening angle α is larger than 20◦. This suggests that although the fibre orientation

determined by the UF method requires the residual stress to be included, the final result

is not sensitive to the changes of the opening angle as long as the opening angle is larger

than a certain value. Indeed, the zero fibre angle in the medial layer holds true for a

wide range of opening angles, which makes sense since the in vivo physiological residual

stress must fluctuate due to the complex remodelling processes.

Table 4.6: Optimal medial fibre angle βM at various values of pre-stretches λz for
human iliac arteries when the opening angle is set to 45◦.

λz 1.07 1.10 1.16 1.17 1.18 1.19 1.20

βM 0◦ 0◦ 0◦ 30◦ 42◦ 50◦ 55◦

UFmin 18.30 34.89 60.41 62.23 62.73 62.81 62.89

4.4.3 Adventitia fibre orientation βA

In most of the simulations we have fixed the fibre angle βA in the adventitial layer. How-

ever, with the energy optimisation hypothesis, the estimated βA is 0◦, which disagrees

with the experimental measurement of 53.8◦. In fact, Fig. 4.11 shows that the maximum

value of Πmin is insensitive to the variation of βA; the curve of Πmin at βM = 0 is rather

flat for the whole range of βA. This finding is consistent with the results on carotid

arteries [14], and suggests that the energy optimisation method alone is not sufficient to

determine βA. Besides, the minor influence of βA on the determination of the optimal

fibre orientation in the medial layer is further confirmed via the sensitivity test under

the other two hypotheses.
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At this point, it is worth noting that Spencer et al. [110] considered a circular cylindrical

tube of incompressible ideal fibre-reinforced material in which the reinforcement through-

out its thickness is directed along two families of helices making angles of ±βA. Of par-

ticular importance, they argued that the relation of tanβA =
√

2, so that βA = 54.7◦,

holds in order to avoid the narrow bands of stress concentration near the surfaces of

inner and outer radii. This value is surprisingly similar to the adventitial fibre angle

measured in experiments [1, 6]. However, this should be viewed with caution since the

fibres are assumed to be inappropriate to compare with the inextensible case in [110],

and hence the agreement on the value of βA could be a coincidence.

4.4.4 Limitations

We identified that the κ model is able to capture the mechanical response of the iliac

artery, as, for example, documented in [13]. To this end, the parameters of the consti-

tutive model, especially the structural parameter κ as introduced in [75], are obtained

by means of the Levenberg-Marquardt algorithm. With the development of advanced

experimental techniques, this particular parameter can be directly estimated from the

measured fibre distribution density by, for example, a π-periodic von Mises distribu-

tion [75, 86]. However, such estimates are often different from the fitted values for the

human iliac arteries [6]. An improved description of the mechanics of arterial walls at

the microscopic level which can incorporate fibre-fibre interactions, fibre recruitment

and viscoelasticity [111–113] will be required in the future in order to make full use of

the experimental data.

Other limitations include the fact that we have only performed a static analysis. More-

over, with respect to the residual stresses, we have used the same constant parameters

for the two layers of the arterial wall. The stress-free configuration changes over time

so that the opening angles for the medial and adventitial layers and an intact artery

ring vary significantly [76, 100, 114]. Although the present study reveals the potential

link between the fibre orientation and the pre-stretch, we are yet unable to explain the

reason for requiring different values of the pre-stretch in different sections of arteries.
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Therefore, enhanced systematic studies including dynamic loading, fluid-structure inter-

action, and possibly tissue remodelling at the cellular level as well as measurements of

fibre angles and pre-stretches for other arteries are required.

4.5 Conclusion

From a mechanical point of view we have suggested an explanation for the rather unusual

fibre distribution in the medial layer of the human CIA. Three approaches have been

used, namely a uniform distribution of the transmural stress, fibre stress remodelling,

and optimisation of the total energy. All three approaches suggest that the optimal fibre

angle in the medial layer of human iliac arteries is zero relative to the circumferential

direction, as documented in [6]. In particular, we have found that the axial pre-stretch

is key for explaining the optimal fibre distribution, and the particularly low value in

the iliac artery is directly associated with the single fibre family. Moreover, we have

shown the necessary involvement of the residual stress when utilising the UF approach,

and we speculate that the opening angle in human iliac artery is around 45◦. Finally,

it is likely the case that the optimal fibre angle in the adventitia is determined by a

different optimisation principle to that of the medial layer such as dynamic loading and

fluid-structure interaction, which is a topic for future studies.
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The immersed boundary/finite

element method

5.1 Models for blood and valve interaction

In this section, we address a number of different approaches to capture the interaction

between blood and valve. Valve structure, as a typically thin structure, is different to

model in the sense that the valve motion usually induces problems related to mesh qual-

ity. Other than accuracy, performance such as convergence and robustness of the method

plays an even more important role in fluid-structure interaction (FSI) modelling [115].

In the FSI framework, the fluid domain is most conveniently described in Eulerian for-

mulation, while the solid domain is more likely to be in Lagrangian description. The

non-overlapping methods use two sets of different meshes and variables for fluid and

solid, and consider the interface conditions as physical boundary conditions. The com-

putational grid is fitted to and deforms with the moving boundary. The movement of

the grid is taken into account by using the arbitrary Lagrangian Eulerian (ALE) for-

mulation of the governing equations [116]. This ALE formulation has been previously

applied to simulate the flow through mechanical heart valves [117–119]. It has proven to

be an easy and accurate treatment of fluid-structure interfaces and permits significant

65
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fluid sloshing and swirling to occur without producing excessive distortions of the com-

putational mesh [120]. However, owing to the consistently large-deformed boundary of

the thin valvular structure, some form of remeshing is generally needed as the process

advances. This has, however, been known to not only introduce artificial diffusivity,

but also to be challenging and time-consuming to perform with sufficient robustness

and accuracy. This is particularly true for three-dimensional heart valves which are

geometrically complex and involve large structural displacements [121].

To resolve this problem, overlapping methods are proposed. They have become in-

creasingly popular in recent years, and have also been applied to simulate heart valve

problems. These methods, in contrast to the non-overlapping methods, treat the bound-

ary location and the related interface conditions as constraints imposed on the model

equations so that the background fluid grid overlaps with the structural mesh. As a

result, the fluid and/or the solid equations can be conveniently solved independently or

use the no-slip conditions to update the structure mesh. In either case, re-meshing is not

necessary. Since the grid used to discretize the fluid domain does not have to move with

the immersed boundary, such methods are inherently applicable to moving boundary

problems involving arbitrarily large structural displacements such as heart valves.

The fictitious domain (FD) method [122], one of the most popular overlapping methods,

couples the two domains together at the solid/fluid interface through a Lagrangian

multiplier so that the presence of a no-slip boundary at the location of the solid/fluid

interface can be detected by the surrounding flow. The FD method has been applied to

simulate flow in two-dimensional and three-dimensional trileaflet heart valves [123–125].

Van Loon et al. pointed out that one issue of the FD method is that it cannot yield

accurate results for the viscous shear stresses on the solid boundary, and thus proposed

a combination of the FD method with adaptive mesh refinement [126, 127].

On the other hand, the immersed boundary (IB) method is the earliest work to apply

an overlapping method to simulate heart valves [128]. The effect of a moving immersed

body on the fluid is accounted for by adding a body force to the governing equations of

fluid motion [120]. Note that unlike in FD method where the momentum equations of

both solid and fluid domains are solved, the fluid momentum is the only global governing
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formulation in the IB framework. To improve the accuracy for high Reynolds number

flows, second-order and/or adaptive IB methods were introduced [129–131]. IB methods

have been widely used to simulate the dynamics of the heart and its valves [15, 131–

136]. However, one major obstacle of the conventional IB method is that it uses the

discrete collections of a fibre-like immersed elastic structure to represent the real valve.

This assumption restrains realistic modelling of structures that may require complicated

constitutive laws as well as an accurate representation of the finite volume they occupy

within the fluid domain. Moreover, it is challenging to connect such description to

experimental data. Recent extensions in the IB method are able to incorporate finite

strain elasticity models for the solid region [137–141]. In the next several sections, we

will present a detailed derivation and a numerical implementation of a method that

merges the finite element description of the structure to the conventional IB method. It

is called the immersed boundary finite element (IB/FE) method, proposed by Griffith

and Luo [142].

5.2 The IB/FE formulations

The IB method is a mathematical formulation and numerical approach to FSI problem

in which an elastic structure is immersed in a viscous incompressible fluid. This method

was initiated by Peskin [143] in the 1970s. In particular, the IB/FE method expresses the

stress using a FE Lagrangian description of the displacement of the immersed material

along with a finite difference Eulerian description of the velocity and pressure of the

coupled fluid [139]. In this method the presence of the immersed deformable solid

boundary on the surrounding fluid grid nodes is accounted for by adding a body force

in the Navier-Stokes equations. The body force is distributed over several fluid grid

nodes in the vicinity of the boundary via a discrete delta function that has the effect of

spreading the solid boundary.

In reference to Fig. 5.1, we first let Ω ⊂ R3† denote the physical domain occupied by

the fluid-structure system, and suppose that U ⊂ R3 identifies the structure in the

†We can define the physical domain on any dimensions as Rd, however, d is normally taken as 2 or
3 for two- or three-dimensional regions.
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Figure 5.1: Evolution of a continuum material in IB method. If not specified, capital
letters refer to the Lagrangian variables, and small letters refer to the Eulerian ones.

reference coordinate system. Let x = (x1, x2, x3) ∈ Ω denote the material particles,

and X = (X1, X2, X3) ∈ U denote the fluid particles. The mapping between the two

frameworks is given by χ : (U, t) 7→ Ωs representing the physical trajectory of material

point X at time t, so that x = χ(X, t) ∈ Ωs is the physical region occupied by the

structure, and the physical region occupied by the fluid at time t is Ωf = Ω \ Ωs.

We define the velocity of position x at time t to be

u(x, t) =
∂χ

∂t
(X, t) =

∂x

∂t
(X, t),

and the acceleration by its material derivative as

Du

Dt
(x, t) =

∂2χ

∂t2
(X, t) =

∂u

∂t
+
∂x

∂t
· ∂u

∂x
=
∂u

∂t
+ u · ∇u. (5.1)

We assume there is no body force, and we consider an arbitrary smooth portion P †

evolving as Pt = χ(P, t), and let N(X) denote the exterior unit normal to X ∈ ∂P in

the Lagrangian configuration and n(x) be the exterior unit normal to x ∈ ∂Pt in the

Eulerian configuration. dA(X) and da(x) are the corresponding unit surface areas (as

shown in Fig. 5.1). Hence, the conservations of the linear and angular momenta in an

†The portion P can contain either solid or fluid material particles or both.
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arbitrary portion Pt in continuum mechanics can be expressed as

∫
Pt
ρ

Du

Dt
(x, t)dx =

∫
∂Pt

t(x,n, t)da, (5.2)∫
Pt

x× ρDu

Dt
(x, t)dx =

∫
∂Pt

x× t(x,n, t)da, (5.3)

where t is the surface force density (also known as the traction vector) and ρ is the

Eulerian mass density.

From here, we obtain the strong formulation of the equation of motion

ρ
Du

Dt
(x, t) = divσ (5.4)

by ∫
∂Pt

tda =

∫
∂Pt

σTnda =

∫
Pt

divσdx, (5.5)

in which we use the divergence theorem.

For any virtual displacement v(x), we have the principle of virtual work

ρ

∫
Pt

Du

Dt
· vdx =

∫
Pt

divσ · vdx. (5.6)

For notational convenience, we shall omit the dependent variables if they can be clearly

demonstrated.

Again, using the divergence theorem, we have

∫
Pt
∇ · (σ · v)dx =

∫
Pt

(divσ · v + σ : ∇v)dx (5.7)

=

∫
∂Pt

σn · vda, (5.8)

where the symbol ‘:’ is used (for example, in [1]) as a tensor product contraction, where

σ : ∇v = tr(σ∇v) = σαβ
∂vα
∂xβ

in index notation. Then Eq. (5.6) becomes

ρ

∫
Pt

Du

Dt
· vdx +

∫
Pt

σ : ∇vdx =

∫
∂Pt

σn · vda (5.9)
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Specifically the total Cauchy stress σ in the coupled fluid-structure system reads

σ(x, t) =

 σf(x, t) + σe(x, t), for x ∈ Ωs,

σf(x, t), otherwise,
(5.10)

where σf is an incompressible Newtonian fluid-like stress tensor defined as

σf(x, t) = −p(x, t)I + µ[∇u + (∇u)T ], (5.11)

in which µ is the viscosity and p(x, t) is the hydrostatic pressure. We can also regard p

as the Lagrange multiplier associated with the incompressible constraints in terms of the

Eulerian velocity field ∇ · u = 0. The term σe is the elastic structure stress satisfying∫
∂P Pe(X, t)NdA(X) =

∫
∂Pt σe(x, t)nda(x) using Nanson’s formula. We recall from

Section 2.2 that Pe = JσF−T, where F is the deformation gradient and Fij = ∂xi
∂Xj

and

J = detF.

In the IB/FE method, the stress generated by the immersed structure Pe is determined

from the passive hyperelastic property by a strain energy functional Ψ as described in

Section 2.4.

Therefore, with the separation in Eq. (5.10), Eq. (5.9) can be rewritten as

ρ

∫
Pt

Du

Dt
·vdx+

∫
Pt

σf : ∇vdx+

∫
Pt∩Ωs

σe : ∇vdx =

∫
∂Pt

σfn ·vda+

∫
∂Pt∩Ωs

σen ·vda.

(5.12)

We treat the elastic part of the stress in terms of the first PK stress, which gives

ρ

∫
Pt

Du

Dt
·vdx+

∫
Pt

σf : ∇vdx+

∫
P∩U

Pe : ∇VdX =

∫
∂Pt

σfn·vda+

∫
∂P∩U

PeN·VdA(X),

(5.13)

where we defined v(x) evolving as v(x) = V(X, t) so that V(X, t) is an arbitrary

Lagrangian test function that is not assumed to vanish on ∂U .
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Using the same scheme as in Eq. (5.8), we have the identities

∫
Pt

(∇ · σf ) · vdx =

∫
Pt

divσf · vdx = −
∫
Pt

σf : ∇vdx +

∫
∂Pt

σfn · vda,∫
P∩U

(∇e · Pe) ·VdX =

∫
P∩U

DivPe ·VdX = −
∫
P∩U

Pe : ∇VdX +

∫
∂(P∩U)

PeN ·VdA(X),

where P ∩∂U = (∂(P ∩U))\ (∂P ∩U) (highlighted in red in Fig. 5.1), so that Eq. (5.13)

can then be expressed as

∫
Pt

(ρ
Du

Dt
−∇ · σf ) · vdx = −

∫
P∩U

Pe : ∇VdX +

∫
∂P∩U

PeN · dA(X)

= −

(∫
∂(P∩U)

PeN ·VdA(X)−
∫
P∩U

(∇e · Pe) ·VdX

)

+

∫
∂P∩U

PeN · dA(X)

=

∫
P∩U

(∇e · Pe) ·VdX−
∫
P∩∂U

PeN ·VdA(X). (5.14)

In continuum mechanics, the response of an elastic material to deformations is described

through the deformation gradient F; however, in an Eulerian framework, there is no

directly available scheme to achieve this [139]. We follow the method introduced in [144]

to express the elastic stress in its natural Lagrangian coordinates. Instead of explicitly

changing variables, we use the Dirac delta function δ(x) = δ(x1)δ(x2)δ(x3). We evaluate

any function at a point by multiplying it by an appropriately shifted delta function and

integrating over the entire space. For example,

V(X, t) = v(x) = v(χ(X, t)) =

∫
Pt

v(x)δ (x− χ(X, t)) dx. (5.15)

We treat the interior force generated by the body and the transmission force density

at the interface separately. Hence, g(x, t) and G(X, t) are defined as the Eulerian and

Lagrangian internal elastic force densities, and t(x, t) and T(X, t) are the Eulerian and
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Lagrangian transmission elastic force densities such that

G(X, t) = ∇e · Pe(X, t),

T(X, t) = −Pe(X, t)N(X)

and

g(x, t) =

∫
U

G(X, t)δ (x− χ(X, t)) dX,

t(X, t) =

∫
U

T(X, t)δ (x− χ(X, t)) dX.

The variational form of G and T are derived as

∫
P∩U

(∇e · Pe(X, t)) ·V(X, t)dX =

∫
P∩U

G(X, t) ·V(X, t)dX

=

∫
P∩U

G(X, t) ·
∫
Pt

v(x)δ (x− χ(X, t)) dxdX

=

∫
Pt

∫
P∩U

G(X, t)δ (x− χ(X, t)) dX · v(x)dx

=

∫
Pt

∫
U

G(X, t)δ (x− χ(X, t)) dX · v(x)dx

=

∫
Pt

g(x, t) · v(x)dx,

and similarly

−
∫
P∩∂U

Pe(X, t)N(X) ·V(X, t)dA(X) =

∫
Pt

t(x, t) · v(x)dx.

Finally, taking into account of the incompressible assumption, we have

∇ ·
(
µ(∇u + (∇u)T )

)
= µ∇2u
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and using Eqs. (5.1), (5.11), (5.14), we can summarize the strong form of the equations

of motion for the FSI system as:

ρ

(
∂u

∂t
(x, t) + u(x, t) · ∇u(x, t)

)
= −∇p(x, t) + µ∇2u(x, t) + f(x, t), (5.16)

f(x, t) = g(x, t) + t(x, t), (5.17)

∇ · u(x, t) = 0, (5.18)

∂χ

∂t
(X, t) =

∫
Ω

u(x, t)δ(x− χ(X, t))dx, (5.19)

g(x, t) =

∫
U
∇e · Pe(X, t)δ(x− χ(X, t))dX, (5.20)

t(x, t) = −
∫
∂U

Pe(X, t) N(X)δ(x− χ(X, t))dA(X). (5.21)

Although we refer to σe and Pe as the structural stresses, we remark that they are not

the total stresses of the immersed structure, but only account for the stresses associated

with the hyperelastic material response. The total stress of the immersed structure is

σ = σf + σe; see in Eq. (5.10). The integral transform in Eq. (5.19) specifies that the

velocity of the immersed structure is derived from the Eulerian velocity field u(x, t).

Eq. (5.19) is referred to as the velocity interpolation. Similarly, Eqs. (5.20), (5.21) are

the force spreading. We note that Eq. (5.19) is equivalent to ∂χ
∂t (X, t) = u(χ(X, t))

due to the definition of δ(x), which can be interpreted as non-slip condition or non-

penetration condition. It further implies that if Eq. (5.18) holds, then ∂J/∂t = J∇·u =

0. Consequently, if J = 1 at any time point, then J = 1 for all time.

There are two possible weak forms. The force formulations referred as the unified weak

form are

f(x, t) =

∫
U

F(X, t)δ(x− χ(X, t))dX∫
U

F(X, t) ·V(X)dX = −
∫
U
Pe(X, t) : ∇XV(X) dX

=

∫
U

(∇e · Pe(X, t)) ·V(X, t)dX−
∫
∂U

Pe(X, t)N(X) ·V(X, t)dA(X).

(5.22)

in which F(X, t) is the total Lagrangian elastic force density.
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Another weak formulation for the definition of f is to only do variational transformation

on G only. This is referred to as the partitioned weak form and is introduced as

g(x, t) =

∫
U

G(X, t)δ (x− χ(X, t)) dX,∫
U

G(X, t) ·V(X)dX = −
∫
U
Pe(X, t) : ∇XV(X) dX +

∫
∂U

Pe(X, t)N(X) ·V(X, t)dA(X).

(5.23)

Though these two weak forms are equivalent in the continuous setting, they lead to

different numerical schemes [142].

5.3 The IB/FE numerical scheme

In the numerical implementation, the Eulerian equations of motion are discretized by a

finite difference method on an adaptive, staggered grid, and the Lagrangian equations

are discretized using a finite element mesh.

5.3.1 Spatial discretizations

The discretization of the incompressible Navier-Stokes equations in space is the same

as in IB method [145, 146], where we employ a locally refined staggered-grid Eulerian

spatial discretization.

Briefly stated, the components of the Eulerian velocity field u and body force f are

approximated at the edge centres of the Cartesian grid cells; however, the pressure p is

approximated at the cell centres. Let ∇h·, ∇h and ∇2
h denote the standard staggered-

grid finite difference approximations to the divergence, gradient and Laplace operators,

respectively. Note that, ∇h · ∇h = ∇2
h [146]. Accordingly, ∇h · u is defined at the cell

centres, while ∇hp and ∇2
hu are defined at the cell edges. More details are given in [135].

Herein, we would like to draw more attention to the Lagrangian finite element scheme,

which is one of the major features in the IB/FE framework. Let Th be a subvision of

U into elements U e and denote by {Xl}Ml=1 the nodal variables of the mesh, and by
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{φl(X)}Ml=1 the Lagrangian basis function. We can thus define an approximation to

χ(X, t) by

χh(X, t) =
M∑
l=1

Xl(t)φl(X). (5.24)

Hence, the discretized Lagrangian force densities F(X, t) and G(X, t) are

Fh(X, t) =
M∑
l=1

Fl(t)φl(X)

and

Gh(X, t) =
M∑
l=1

Gl(t)φl(X).

The nodal values of {Fl}Ml=1 and {Gl}Ml=1 are determined from approximations to the

first PK stress tensor using Eq. (5.24). By restricting the test functions V to be lin-

ear combinations of the interpolatory Lagrangian basis functions as in the traditional

Galerkin finite element method [147], we can rewrite Eqs.(5.22) and (5.23)

M∑
l=1

(∫
Ue
φl(X)φm(X)dX

)
Fl(t) =−

∫
Ue
{Pe}h(X, t)∇Xφm(X)dX, (5.25)

M∑
l=1

(∫
Ue
φl(X)φm(X)dX

)
Gl(t) =−

∫
Ue
{Pe}h(X, t)∇Xφm(X)dX

+

∫
∂Ue
{Pe}h(X, t)N(X)φm(X)dA(X) (5.26)

for m = 1, · · · ,M .

Now let [F] denote the vector of nodal coefficients of Fh. We rewrite Eq.(5.25) as

[M][F] = [B], (5.27)

in which the mass matrix [M] has index form Mml =
∫
Ue φlφmdX, and [B] is a vector

with components Bm = −
∫
Ue{Pe}h(X, t)∇XφmdX.
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5.3.2 Lagrangian-Eulerian interactions

To compute the force spreading from the Lagrangian force density to Eulerian force den-

sity on the Cartesian grid, we construct for each element Ue ∈ Th a Gaussian quadrature

rule. We use the shorthand

f = SF, (5.28)

where S(χ) is the force-prolongation operator.

Correspondingly, a velocity-restriction operator R(χ) is determined via

dχ

dt
= Ru. (5.29)

The operator R defined here is the adjoint expression of S, so R = S∗ and we do not

need to compute it explicitly [142]. Because the same kernel δh is used in the spreading

and interpolation steps, the mass, force and torque are conserved during Lagrangian-

Eulerian interaction [144].

For the staggered-grid discretization and the locally-refined, adaptive grid construction,

one can refer to [135] and [145, 146], respectively.

Figure 5.2: The procedure of prolonging the elastic force density from (a) the La-
grangian nodes onto (b) Gaussian quadrature points and then onto (c) the Cartesian

grid.

In this context, we emphasize the implementation of the force prolongation. As indicated

in Fig. 5.2, we start with an approximation to the force density at the nodes of the

Lagrangian mesh, we use the FE basis functions to approximate the force density at
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quadrature points in the element interior, and then spread the interpolated forces from

the quadrature points to the background Eulerian grid using the smoothed delta function

δh(x). This approach permits the Lagrangian mesh to be significantly coarser than the

Eulerian grid as long as the net or submesh of quadrature points is sufficiently dense.

Denser nets of quadrature points can be obtained by increasing the order of the numerical

quadrature scheme.

5.3.3 Temporal discretizations

The IB/FE method has the same temporal discretization as the IB method where we em-

ploy a simple unsplit second-order scheme to discretize the equations in time [142, 146].

We take the unified weak form as an example, and let χn, un denote the approxima-

tions to the values of χ and u at time tn, and pn−
1
2 to the value of p at time tn−

1
2 ,

respectively. To advance χ, u and p forward in time, we first evaluate the intermediate

structure configuration by

χn+ 1
2 =

χ̃n+1 + χn

2

where χ̃n+1 is computed by

χ̃n+1 − χn

∆t
= S∗(χn)un.

Then the corresponding intermediate Eulerian force density follows

fn+ 1
2 = S(χn+ 1

2 )Fn+ 1
2 .

We then solve the momentum equation as

ρ

(
un+1 − un

∆t
+ Ãn+ 1

2

)
= −∇hpn+ 1

2 + µ∇2
h

un+1 + un

2
+ fn+ 1

2 , (5.30)

∇h · un+1 = 0, (5.31)
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where the nonlinear advection term Ãn+ 1
2 is determined by a second-order Adams-

Bashforth scheme, so that Ãn+ 1
2 = 3

2An− 1
2An−1 with An = un ·∇hun. It also requires

a Crank-Nicolson-type discretization for the viscous term [145].

For computing χn+1, we utilize again the intermediate structure configuration such that

χn+1 − χn

∆t
= S∗(χn+ 1

2 )
un+1 + un

2
.

To initialize, due to the timestep-lagged treatment, we instead use a two-step predictor-

corrector method. We firstly predict the values of χ, u and p at time tn+1 (symbolised

as χ̌n+1, ǔn+1 and p̌n+1) by their values at tn and assign pn+ 1
2 = 0. Then these values

are corrected by setting χn+ 1
2 = χ̌n+1+χn

2 as in the main loop. The only difference is

that we use Ãn+ 1
2 = un+ 1

2 · ∇hun+ 1
2 , in which un+ 1

2 = 1
2 ǔn+1 + un.

5.4 Summary

The conventional IB scheme is only first order accurate [128], but the IB/FE method

described above is a formally second-order accurate scheme and combines adaptive mesh

refinement and staggered-grid scheme to increase resolution in the vicinity of immersed

boundaries. Apart from this, one other significant advantage is that the standard IB

method uses regularized delta functions to apply nodal forces directly to the Cartesian

grid and to interpolate Cartesian grid velocities directly to the Lagrangian nodes [144].

This requires the Lagrangian mesh to be finer than the Cartesian grid to avoid leaks; the

ratio between the Eulerian and Lagrangian mesh sizes is advised to be at least 2:1 [144].

This requirement will induce the time steps to be sufficiently small to satisfy the CFL

condition. However, in the IB/FE method, as illustrated in Fig. 5.2, the Lagrangian

structure is watertight as long as the net of quadrature points is sufficiently dense by

controlling the order of the quadrature rule. Another key advance is the introduction

of the FE description of the structure. This enables us to include linear and nonlinear

constitutive laws to represent real biological tissues.
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To implement this IB/FE method, the numerical simulations in the following chapters

employ an open-source IB adaptive mesh refinement (AMR) software framework (http:

//ibamr.googlecode.com), which provides an adaptive and distributed-memory paral-

lel implementation of the IB/FE method. Support for distributed-memory parallelism

is via the Message Passing Interface. IBAMR leverages functionality provided by SAM-

RAI, the Structured Adaptive Mesh Refinement Application Infrastructure, who sup-

ports for spatial adaptivity (https://computation.llnl.gov/casc/SAMRAI) and other

freely available software libraries, including PETSc (http://www.mcs.anl.gov/petsc),

hypre (http://www.llnl.gov/CASC/hypre) and HDF5 (http://www.hdfgroup.org/

HDF5/).

http://ibamr.googlecode.com
http://ibamr.googlecode.com
https://computation.llnl.gov/casc/SAMRAI
http://www.mcs.anl.gov/petsc
http://www.llnl.gov/CASC/hypre
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/


Chapter 6

A fluid-structure interaction

model of a nonlinear human

mitral valve

In this chapter, a simulated human mitral valve (MV) model interacting with blood

flow under a physiological pressure loading is developed using the hybrid IB/FE method

described in Chapter 5. Most of the contents in this chapter has been published in

International Journal for Numerical Methods in Biomedical Engineering [148].

6.1 Introduction

Dysfunction of the MV causes significant morbidity and premature mortality, and re-

mains a major medical problem worldwide. Understanding biomechanics of human

MV can lead to the development of new therapies and treatment strategies. Dynamic

modelling of the MV is particularly difficult due to the large deformation of the non-

symmetric leaflets, the anisotropic nonlinear elastic behaviour of the valvular tissue, the

fluid-structure interaction, and the pulsatile haemodynamic loading during the cardiac

cycles.

80
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Ex-vivo biaxial testing of the anterior and posterior leaflets [28, 149] has revealed that

both leaflets exhibit large deformations and behave as anisotropic materials, being stiffer

along the circumferential direction, with the collagen fibres oriented predominantly par-

allel to the annulus. Other mechanical tests on porcine and human mitral apparatus

by Prot et al. [150–153], and Wang et al. [27] also suggest that the MV leaflets are

highly nonlinear and anisotropic. The in vivo mechanical properties of the human MV

are not readily attainable, although limited data has been obtained from animal tests

with minimum invasiveness and via inverse FE analyses. For example, Krishnamurthy

et al. [154] estimated the mechanical response of the anterior mitral leaflets based on

radiopaque markers sewn to sheep MVs, albeit with a linear isotropic material model.

Lee et al. [155] inversely estimated the in vivo material properties of ovine MV anterior

leaflets with various nonlinear anisotropic hyperelastic constitutive laws, and found that

the transversely isotropic law produced the most accurate results.

Computational MV models have been investigated by a number of groups, mostly focus-

ing on the MV structure without the interaction with blood. Kunzelman and co-workers

were the first to use a three-dimensional finite element(FE) model to simulate normal

MV [156], the mechanical analysis with valvular disease [157, 158], and surgical interven-

tions [158, 159]. Later on, Prot et al. [150–152] reported their work on MV simulations

in a series of studies using a transversely isotropic strain-energy function in their nonlin-

ear FE simulations. Their model was later extended to predict the stress distributions

on a healthy MV and a diseased MV in a hypertrophic obstructive cardiomyopathic

heart [153]. Active muscle contraction of MV was also studied [160], which is consid-

ered to reduce the leaflet bulging. The effects of the annular contraction on MV stress

were modelled by Stevanella et al. [161, 162]. One limitation in most of the afore-

mentioned studies is that the valve geometries were typically assumed to be symmetric

about the mid-line of the two leaflets. However, asymmetric stress patterns of an ovine

MV have been reported by Lim et al. [163]. Wenk et al. [164] developed a FE model

consisting of the left ventricle, mitral apparatus, and chordae tendineae from magnetic

resonance (MR) images from a sheep. Recently, Wang et al. [27] presented a patient-

specific FE model of a healthy human MV reconstructed from multi-slice computed

tomography scans with detailed mitral leaflet thickness, chordal information and mitral



Chapter 6. MV modelling 82

annulus dynamic motion. Surgical procedures were also investigated using structural

FE models [165–168].

Although these structural models are very useful for simulating static configurations

at the fully opened or fully closed states, fluid-structure interaction (FSI) needs to be

accounted for to describe the dynamics of the MV due to its strong interaction to the

blood flow [169]. Kunzelman, Einstein and co-workers started to use a fluid-coupled

three-dimensional computational model to simulate normal and pathological mitral func-

tion [2, 170, 171]. In [2], valve closure was characterised by positioning the valve in a

tubular fluid domain. Lau et al. [172] investigated the edge-to-edge repair technique

with FSI, and found that after the repair, the stress is twice greater than in the normal

case, and there is almost half reduction in the peak flow rate. The above studies all

used the commercial package LS-DYNA (Livermore Software Technology Corporation,

Livermore, CA) to implement FSI. Additionally, Ravooh et al. [127] addressed two-

dimensional computations of a MV motion in a pulsatile blood flow, using FSI method

combined with solid-rigid contact, where the FSI was realized via a fictitous domain

method extended with a local mesh adaptation.

Over the last few years, the Glasgow group has used the open source IB method to

model three-dimensional FSI models of a polyurethane prosthetic MV and a MR imaged-

derived human MV [15, 144, 173, 174]. We discovered that, despite being very thin, the

bending rigidity of the MV leaflets is highly relevant to the effective MV closing [136].

The bending effect of the MV is also confirmed by a recent study of human MV [15]

reconstructed from in vivo MR images showing that patient-specific MV geometry has

a significant influence on the simulation results. One major limitation of these studies

is that the MV is modelled with assumed discrete isotropic ‘elastic fibres’, which is not

suitable to model the realistic, anisotropic mechanical behaviour of the MV leaflets [151,

175].

The aim of this chapter is to overcome the structural simplification of the previous MV

models by developing a MV model using the recent IB/FE method. It has been carefully

verified against the commercial package Abaqus 6.13 (SIMULIA, Providence, RI) [176],

and the results showed that the IB/FE model is capable of predicting quantitatively
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accurate stress/strain distributions of the left ventricle. Our MV model is again con-

structed from a set of human MR images, and the IB/FE approach enables us to model

the MV tissue behaviour using a transversely isotropic model, together with the fully

dynamic three-dimensional FSI. This is a major step forward from the previous work by

Ma et al. [15].

6.2 Methodology

6.2.1 MV geometrical model

An MR imaging study was performed on a healthy 28-year-old male volunteer using a

3-Tesla MR image system (Verio, Siemens, Germany). The study was approved by the

local NHS Research Ethics Committee, and an informed consent was signed before the

scan. Twelve planes along the left ventricular outflow tract (LVOT) view were obtained

to cover the entire MV. Typical parameters are slice thickness: 3 mm with 0 mm gap;

matrix size: 432×572; in-plane pixel size: 0.7× 0.7 mm2; frame rate: 25 per cardiac

cycle. Typical SA, 4C and 2C views of the ventricle were also acquired to provide

additional geometrical information, such as the positions of papillary muscle cap points.

The MV was segmented in middle diastole when it is opened by using an in-house MAT-

LAB (The MathWorks Inc., Natick, USA) code. The segmentation method is detailed

in the work [15]. Briefly stated, the profiles of the anterior and posterior leaflets are

manually segmented from the images in LVOT view (Fig. 6.1(a)). Two papillary attach-

ment points were identified from the LVOT and SA cine images, as shown in Fig. 6.1(b).

A uniform leaflet thickness of 1 mm was assumed and the physical position location

that connects the MV leaflets and the ventricular wall was identified as the annulus

ring, see in Fig. 6.1(c). We used the B-spline surface fitting in SolidWorks (Dassault

Systémes SolidWorks Corp., Waltham, MA, USA) for the three-dimensional reconstruc-

tion as shown in Fig. 6.1(d). In Fig. 6.1(e), a total of 16 evenly distributed primary

chordae tendinae were assumed based on anatomical descriptions, with 10 associated

with the posterior leaflet and 6 with the anterior leaflet. We assume that the chordae

are attached to the free margin of the leaflets and run through from the leaflet tip to
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Figure 6.1: Procedure to reconstruct the MV geometry from MR images including
(a) capture of anterior (blue) and posterior (red) profiles from LVOT images, (b) iden-
tification of papillary muscle cap points denoted by two green points, (c) assembly of
the segmented curves to get the leaflet surface, reconstruction of the three-dimensional
MV model with (d) a spatial annulus ring and (e) the ideal chordal architecture and

(f) definition of the fibre structure for the anterior and posterior leaflets.
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the annulus ring. This assumption is due to the lack of information from the MR im-

ages. For the same reason, we do not distinguish the marginal, strut and basal chordae.

Each of the chordae is connected to one of the two papillary muscle heads, and each is

assumed to have a uniform cross-sectional area of 0.16 mm2. The papillary heads are

allowed to move towards the MV side during systole with displacements measured from

the cine MR images. The embedded collagen fibres are defined along the circumferential

direction (parallel to the annulus ring) for both the anterior and the posterior leaflets,

as shown in Fig. 6.1(f).

6.2.2 Material models

The leaflets of the MV are modelled as an incompressible hyperelastic fibre-reinforced

material, in which the SEF takes the form

Ψleaflet = c(I1 − 3) +
k1

2k2

(
exp

[
k2(I4 − 1)2

]
− 1
)

(6.1)

where I4 = f · (Cf) is the square of stretch in the fibre direction and is only included

in the SEF when I4 > 1, and f denotes the unit tangent to the fibre direction in the

reference state.

The material parameters c, k1 and k2 are fitted to equal-biaxial in vitro tests on a

healthy human MV carried out by [27] and are listed in Table 6.1.

Table 6.1: Material parameter values for Ψleaflet

c (dyne/cm2) k1(dyne/cm2) k2

Anterior leaflet 1.74×105 3.13×105 55.93
Posterior leaflet 1.02×105 5.00×105 63.48

Following our previous study in [176], we found that it is useful to employ a modified

structural stress tensor Pe defined as

Pe =

(
∂Ψleaflet

∂F

)T

− 2cF−T + βs log(I3)F−T (6.2)

in which βs = 5.0 × 106 dyne/cm2 . The pressure-like term 2cF−T ensures that when

F = I, Pe = 0. This reduces the pressure discontinuity in the Eulerian pressure field
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and thereby reduces the magnitude of spurious volume loss at the fluid-solid interface.

The term βs log(I3)F−T is a penalty term to reinforce the incompressibility constraint in

the Lagrangian form, even though incompressibility is enforced globally in the Eulerian

equations, the numerical interpolation of the Eulerian velocity to the solid region may

not always yield a divergence-free discrete Lagrangian velocity field. This has been

shown to yield more accurate stresses [176].

Although linear tetrahedral elements will yield volumetric locking for sufficiently large

value of βs, comparisons to the same MV model with βs = 0 verified that for the value

of βs used here, we do not experience volumetric locking since the two models have

comparable deformation under the same static loading.

The chordae are assumed to be isotropic and modelled as a Neo-Hookean material. In

Eq. (2.7), c1 takes the value of 1.8× 108 dyne/cm2 in systole, and 1.08× 107 dyne/cm2

in diastole. These values are based on the measurements of human MV chordae [177].

Similarly, the stress tensor Pe for the chordae tendineae is defined as

Pe =

(
∂Ψchordae

∂F

)T

− c1F−T + βs log(I3)F−T. (6.3)

6.2.3 Boundary conditions and numerical implementations

Figure 6.2: The saddle shaped mitral annulus is fixed to a non-planar rigid housing
disc mounted to a semi-rigid circular tube of length 16 cm (not shown). The chordae
are anchored to two papillary attachment points. These structures are all immersed in

a cubic fluid box.
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In the following simulations, we let ρ = 1.0 g/ml and µ = 4 cP, and fix the MV

annulus to a housing disc that is mounted in a semi-rigid circular tube immersed in a

10 cm×10 cm×16 cm fluid box (Fig. 6.2). The fluid box is discretized with spacings

0.125 cm×0.125 cm×0.1 cm, corresponding to a regular 80×80×160 Cartesian grid. In

the numerical scheme, we use a standard four-point regularized version of the delta

function in the Lagrangian-Eulerian interaction [144]. A time step size of 2.5×10−5 s is

chosen in the explicit time-stepping scheme.

Figure 6.3: A typical human pressure profile, scaled to the subject-specific peak
systolic pressure, as used in our simulations. Note that only the rapid diastolic filling

and the systolic phases are modelled; see text for further discussion.

We specify the pressure difference between the inlet and outlet of the tube. Because

subject-specific transvalvular pressure data are not available, we instead use a typical

human physiological pressure profile rescaled to the subject’s cuff pressure, so that the

peak systolic pressure is 150 mmHg†, see Fig. 6.3. We do not model the LV here, so only

the rapid filling phase of the diastole and the systolic phase can be modelled properly.

This is because during the slow diastolic filling and atrial contraction, the transvalvular

flow mostly results from the passive deformation of the LV. Without proper boundary

conditions provided by the LV, these processes are hard to model. This is different

†Note that this subject’s blood pressure is slightly higher than the average.
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from rapid filling, in which the transvalvular flow is due to the suction caused by the LV

relaxation. In systole, the boundary conditions can also be easily approximated with the

systolic pressure and the papillary muscle movement, as modelled in other studies [136].

The period of diastolic filling lasts around 0.2 s, during which 80% of transvalvular flow

occurs [178]. Zero-pressure boundary conditions are applied along the remainder of the

domain boundaries.

A grid independence study is performed with Cartesian grids of 80× 80× 160, 96× 96× 198,

and 112 × 112 × 224. The differences in structural maximum and average displacements

of fully opened and fully loaded valves are all less than 5% for these three cases. For

computational efficiency, we use the 80 × 80 × 160 grid for all subsequent simulations.

6.3 Results

The fluid pressure fields from the IB/FE MV model are shown in Fig. 6.4 at three

time instants indicated in Fig. 6.3; when the valve is fully opened (t=0.1 s), just closed

(t=0.22 s), and fully loaded at the peak pressure of 150 mmHg (t=0.35 s). The valve

opens at a driving pressure gradient of around 8 mmHg and withstands a significant

physiological transvalvular pressure gradient when closed. The complete closure of the

leaflets occurs at a transvalvular pressure gradient of around 85 mmHg, then undergoes

minor further deformation before reaching the peak transvalvular pressure difference of

150 mmHg. Notice that our MV model has small gaps near the commissure area even

in the fully closed state, and no flow leakage appears in the simulation.

The corresponding velocity fields are shown in Fig. 6.5, and indicate a strong jet flow

towards the outlet (the LV side) when the MV opens. As the MV closes, there is a

closing regurgitation across the MV, as shown in Fig. 6.5(b), which is responsible for the

first heart sound. Figure 6.5(c) shows the velocity pattern when the pressure difference

reaches its peak. An interesting view provided by the streamlines when the MV is fully

opened is shown in Fig. 6.6. We can see that the flow is channelled by the two leaflets

first, then the chordae act as the second orifice [179], and split the jet flow into three,
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Figure 6.4: The in-plane view of the fluid pressure fields perpendicular to z-axis, when
the MV is (a) fully opened, (b) just closed, and (c) fully loaded at the peak pressure.

with the main stream moving towards the LV apex, and side streams flowing towards

the tube walls.

Fig. 6.7 gives the comparison of the deformed MV leaflets and the corresponding MR

images in LVOT view. Qualitatively, the opening and closing configurations of the

simulated MV show good agreement with the MR measurements. However, there is

evidence of some discrepancy, particularly in the anterior leaflet when fully closed: the

modelled MV is bulged into the left atrium, in contrast to that of the corresponding MR

image (Fig. 6.7(c)). This is presumably due to the simplified assumption of the chordae

structure, or the lack of strut chordae.

The flow rate through the valve orifice is shown in Fig. 6.8, along with the measured flow
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Figure 6.5: The fluid velocity fields at the three time instants, corresponding to the
ones in Fig. 6.4.

Figure 6.6: Instantaneous streamlines when the MV is fully opened.
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Figure 6.7: Cine MR images showing the MV shapes (a) at the beginning of the simu-
lation (middlle diastole), (b) when fully opened, and (c) just closed. The corresponding

MV model predictions are shown in (d, e, f), coloured by displacement.

Figure 6.8: Flow rate comparison among the predictions of the IB/FE model, the
previous IB model [15], and the measurements obtained from the cine MR scan. Note
again that only the time period in rapid filling of diastole lasting for 0.2 s can be

properly modelled.
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rate obtained from phase contrast MR measurements, as well as the one from the IB

fibre-networked MV model [15]. When the MV is opened, the flow rates from both the

IB and IB/FE MV models are comparable to the measured data, with slightly lower peak

value. However, the IB/FE model seems to predict a slightly higher regurgitation closing

flow (10.8 mL vs 9.4 mL), followed by much smaller oscillations compared with the IB

model. Furthermore, we plot the stress and strain distributions along the fibre direction

Figure 6.9: The fibre strain when the MV is (a) fully opened, (b) just closed, and (c)
fully loaded. The corresponding fibre stress distributions are shown in (d-f), respec-
tively, the stress values are capped at a peak stress of 500 kPa to avoid unrealistic high

stress concentrations at the chordal insertion areas.

in Fig. 6.9. When the MV is fully opened, majority of the leaflet belly is stretched

along the fibre direction, and the stress level is low. Immediately after the MV is closed,

high stress concentration occurs in the two fibrous trigones of the anterior leaflet as well

as along the valvular ring. Towards the commissures, there exist compressive stresses,

particularly in the neighbourhood of the wrinkles. When approaching the highest systolic

pressure (fully loaded state), the strain and stress patterns are similar to the ones when

the MV is just closed, but the high stress area increases, which is most visible in the

belly and along the annular ring.
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Figure 6.10: Three local regions in the anterior leaflet are selected for quantitative
stress analysis.

We select three local regions in the anterior leaflet for quantitative stress and strain

analysis. These include two trigones and one belly region illuminated in Fig. 6.10. The

average stress and strain of these regions are summarized in Table 6.2. We can see that

when the MV is fully opened, the fibres of the belly region are stretched as indicated by

the positive strain, and the stress is higher compared to the trigone regions. Immediately

after the MV has closed, the stresses increase in all regions; however, at this point, the

two trigones experience higher stress levels compared to the belly region. This pattern

remains the same when the MV experiences the peak systolic pressure load, though the

stresses are nearly doubled.

Regions number
Stress along fibre directions (kPa) Strain along fibre directions

Fully opened Just closed Fully loaded Fully opened Just closed Fully loaded

1 -2.9 92 193 -0.004 0.04 0.04
2 -0.8 72 144 -0.004 0.02 0.02
3 17 79 142 0.04 0.02 0.02

Table 6.2: Average regional stresses and strains along the fibre direction on the three
local regions defined in Fig. 6.10, again when the MV is fully opened, just closed, and

fully loaded.

The effect of the chordae tendineae structure is demonstrated in Fig. 6.11. When the

MV is fully opened, the orifice of the model without chordae is larger than the one with

chordae. This gives rise to a maximum inflow rates of 871 mL/s (without chordae) and

588 mL/s (with chordae). The no chordae MV begins to close and at some point in

systole, the simulation fails due to excessive distortions. The deformed MV structure



Chapter 6. MV modelling 94

Figure 6.11: Deformed MV models (a) without chordae, and (b) with chordae at the
time when the MVs are fully opened. The corresponding deformations right before the
models (c) without chordae, and (d) with chordae break down, respectively. The black

arrows in (c) indicate the prolapse regions.

right before abortion is presented in Fig. 6.11(c), The corresponding MV configuration

with chordal structure is given in Fig. 6.11(d). Clearly, the chordal structure plays an

important role in the MV dynamics: it serves as a secondary orifice in diastole, and helps

the thin leaflets from over prolapse in systole. We also investigate the average chordae

tendineae tension when the MV is fully loaded at the maximum systolic pressure of

150 mmHg. The average force for the 6 chordae associated with the anterior leaflet

is 0.68±0.31 N, which is substantially higher than that for the 10 chordae with the

posterior leaflet valued 0.23±0.15 N. The tensions in the two papillary muscle groups

are 3.0 N and 3.34 N, respectively. These tensions experienced by the chordae and the

papillary muscles are comparable with values from other studies [180, 181].
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6.4 Discussion

In this chapter, we develop an IB/FE model of a human MV using in vivo MR image-

based anatomy and fibre-reinforced hyperelastic laws. This approach allows us to analyse

the stress and strain patterns in the MV leaflets with experimentally determined con-

stitutive parameters. This is not possible in the previous IB model [15]. The model is

validated by comparing the computed opening and closing configurations, as well as the

flow rate, to the subject-specific clinical measurements.

Compared to the previous work [15], significant improvements are incorporated in the

current IB/FE MV model, namely, (1) the MV leaflets are described with a continuum

mechanics framework; (2) transversely isotropic constitutive laws are used for the MV

leaflets, instead of a fibre-like characterization; (3) the annulus ring is reconstructed from

clinical images, not an assumed planar elliptic shape; (4) detailed finite stress/strain

fields are presented, which are not available in the previous IB model.

Using the cine images, MV leaflet delineation is most clearly defined in diastole when

the transvalvular pressure difference is minimal because the influence from blood flow

is small [182], and the MV is in an opening state. By sewing miniature markers onto

the MV leaflets of 57 sheep, Rausch et al. [183] calculated the in vivo strain in these

anterior leaflets; using different reference states they found that the strain as well as

strain rate, however, is nearly insensitive to the choice of the reference configuration.

With this in mind, we reconstruct the MV structure in middle diastole. And because the

transvalvular pressure difference is minimal, this is also close to the zero loading state.

In addition, we keep the mitral annulus fixed in space, but allow the papillary muscles

to move towards the leaflets during systole with a maximum displacement measured

from cine images. By doing this, the leaflets are allowed to close when subjected to a

physiological pressure load, as discovered before [174, 184].

From Fig. 6.9, it is clear that the strains along the fibre direction are tensile for most

of the regions in the anterior leaflet throughout the cardiac cycle, but there are still

some regions that are compressed during closing. Similar results have been reported in

[2, 185]. Our model prediction of the fibre strain seems to agree well with the in vivo
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measurements, for example, Rausch et al. [183] measured the peak in vivo circumferential

strain in the belly region of the anterior leaflet, which is 3.5±3.6%. By defining a circular

region with 0.5 cm radius in the belly region of the anterior leaflets, the average strain

along fibre direction from our IB/FE model is 3.6±4.0%, which is comparable to Rausch’s

results, and lies close to the range reported by Sacks et al. [186] from in vivo studies

(2.5-3.3%).

On the other hand, mitral leaflet strain estimated from some in vitro measurements

seem to be higher than our predictions. Jimenez et al. [187] measured the strain in the

centre of a porcine anterior leaflet using a left heart simulator, and they found that their

peak circumferential strain is 11±4.9% in the normal annular configuration. Similar

peak circumferential strain ( 10%) in the centre of the leaflet was also reported in in

vitro studies by Sacks et al. [188] and He et al. [181, 189], although the range of the peak

circumferential strain can be as low as 2%†. The difference in strain between the in vivo

and in vitro measurements was also noted by Rausch et al. [183]. It is not clear if the

difference is due to the species difference among the porcine (in the in vitro studies),

ovine (in the in vivo studies), and human valves (in our study), or by the incapability of

in vitro models to accurately reproduce the mechanical and hemodynamic environment

of the MV in terms of the material property, boundary condition and the initial geometry.

We also note again that the peak systolic pressure of 150 mmHg used in the simulation

is higher than a typical value of 100-140 mmHg.

The peak average stress along the fibre direction in the belly region is 142 kPa, and

193 kPa, 144 kPa for the two fibrous trigons (see Table 6.2). These predicted stress levels

are of similar order to results of other published MV models [2, 29]. Jimenez et al. [190]

also measured different types of chordal systolic tension and the forces experienced by the

papillary muscles in their in vitro experiments. They reported the peak systolic tension

of 0.95±0.35 N in the anterior strut chordae and of 0.35±0.16 N in the anterior marginal

chordae. The average tension in the anterior chordae in our model is 0.68±0.31 N, which

is comparable with the range being reported [175, 190]. The maximum papillary muscle

†within one standard deviation
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forces are found to be 4.3 N and 4.6 N again from [190], and 4.51 N and 5.17 N from

Wang’s model [175]. These are also comparable with our predictions of 3.0 N and 3.34 N.

Although our results are in good agreement with the cine image observation and the

measured flow rate, several model limitations are worth mentioning. For example, the

simulated anterior leaflet appears to bulge into the left atrium, in contrast to that of

the cine MR image. Also, there are small gaps in the commissure areas when the

valve is fully closed. This is due to the difficulty of reconstructing the subvalvular ap-

paratus accurately from the images, especially for the commissure areas and chordae

tendineae. We have to build these relying on anatomical descriptions widely adopted

in other studies[15, 152, 153, 169, 191]. More accurate geometry reconstruction may be

possible using CT images. For example, Wang and Sun [175] reconstructed the MV mod-

els with chordal origins, insertion points by using multi-slices CT images. However, as

pointed out in Section 1.3, CT scans may not be applicable to the healthy volunteer due

to the radiation risk. Real time three-dimensional echocardiography could be another

promising way to obtain detailed MV structure either non-invasively or with limited

invasiveness [191], though the reproducibility is not as good as CT and MR techniques.

Current in vivo MR images are not able to quantify the fibre directions in the dynamic

MV leaflets, therefore their distributions are usually modelled using ‘rule-based’ meth-

ods [2, 15, 151, 169, 191], following experimental observations [149]. Recently, Lee et

al. [192] developed a micro-anatomical MV models from in vitro experimental measure-

ments by mapping the measured collagen fibre architecture using small light scattering

techniques to the MV models from the same ovine MV leaflets. Non-invasive methods

are needed to quantify the in vivo fibre architecture.

Moreover, instead of separating the marginal, basal and strut chordae which have various

mechanical responses, we have now only used simplified primary chordae inserting into

the leaflets from the free edge, following previous works[15, 173, 174]. This may be

partially responsible for the MV bulging towards the left atrium. We further model the

chordae simply as isotropic neo-Hookean materials having higher stiffness in systole and

becoming much softer in diastole. This is because in diastole when the MV opens, the

chordae are usually compressed and act as an isotropic material as the collagen fibres
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are deactivated. On the contrary, in systole, the collagen fibres embedded are mostly

being stretched, so a higher chordal stiffness is presented. However, chordae are actually

bundles of collagen fibres, and an anisotropic hyperelastic constitutive law should be

more accurate to describe their elasticity [151, 175]. Overall, this is a simplified model

of the chordal structure that has reproduced the measured in vivo dynamics of MV.

With new developments in clinical imaging it may be possible to model more detailed

patient-specific chordal structures and their effects on the MV behaviour in the near

future.

Finally, our initial configuration is half opened, and it is generally very difficult to fully

close an opened complex MV configuration that is not initially driven from a fully closed

state. Inaccurate geometric details in the commissure areas may also be responsible. It

is a possible reason that the flows around the MV are not completely physiologically

realistic due to the absence of the left ventricle.

6.5 Conclusion

We have developed a new human MV model using a hybrid IB/FE approach, which

combines FSI simulations with cine MR image-derived geometry reconstruction and

a transversely isotropic, hyperelastic constitutive model. This model is a significant

enhancement from our previous work, because it provides dynamic stress distributions,

which are found to be concentrated in the annulus trigones and the belly of the anterior

leaflet. The results agree well with the opening and closing leaflet configurations and

with the flow rate, estimated from the MR measurements. Although there are still some

discrepancies between the model predictions and in vivo observation, with improved

imaging technique and further work, it is possible to develop more realistic MV models

that could be applied to study MV diseases.



Chapter 7

Fluid-structure interaction model

of human mitral valve within left

ventricle

In this chapter, we will present an integrated model of mitral valve (MV) coupled with

the left ventricle (LV) so that the MV-LV interaction can be taken into account. This

model is compared with a corresponding MV-tube model described in Chapter 6, and

differences in the results are discussed. The majority of this work is included in the

series of Functional Imaging and Modeling of the Heart [16].

7.1 Introduction

Moderate or severe MV dysfunction remains a major medical problem and is usually

caused by leaflet prolapse or is secondary to left ventricular disease [193]. It is believed

that computational studies of the MV mechanics as well as its coupled functioning

with LV have the potential to enhance our understanding of the valvular-ventricular

interaction, which will lead to successful MV repair and replacement.

Research on developing biomechanical MV models dates back to the 1990s [194], employ-

ing finite strain deformational kinematics, including realistic anatomical geometries and

99
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hyperelastic constitutive models [175, 195, 196]. However, a purely structural analysis

is usually applied to a statically or dynamically pressurized closed valve in an isolated

situation [197]. We know that the major function of the MV is to guide the blood to

flow only from the left atrium to the LV; additionally, the structure of the MV is closely

tied to the LV through the chordal connection. In this sense, to understand the full MV

mechanism, it is very important to simulate the dynamics of MV with inclusion of the

LV dynamics, as well as the FSI among the MV, LV and the blood.

FSI model simulating native mitral function was initiated by Kunzelman et al. [2, 170,

171]. More recently, there have been a number of FSI valvular models [15, 135, 148, 174],

for example, the model presented in Chapter 6 using IB methods. However, the effect of

LV dynamics is not included in these studies, and thus the flow field is not physiologically

realistic. Indeed, Lau et al. [198] compared the MV dynamics in a straight tube and a

ventricular-shaped fluid domain, and they found that when the MV is mounted into a LV,

the transvalvular velocity is slower, associated with increased fluid vorticity compared

to the one estimated in a tubular geometry. Yin et al. [184] investigated a chordaed

MV inside a LV and identified fluid vortices associated with the LV motion. They found

that a dynamic LV has a large impact on the fluid flow and valve tissue deformations.

However, their LV motion is modelled as a set of prescribed moving boundary, and

the MV model is simply constructed using a network of linear elastic fibres. Using a

simplified two-dimensional rigid MV model together with the left atrium and ventricle,

Dahl et al. [199] studied the MV behaviour during the diastolic filling, and concluded

that the asymmetric leaflet geometry is important for accurately predicting the MV

flow pattern, though the imposed LV wall movement was obtained from ultrasound

recordings. Chandran and Kim [200] recently reported prototype FSI MV dynamics in

a simplified LV chamber model using an immersed interface-like approach. To date, there

has been no work reported that properly includes both the three-dimensional MV-LV

interaction and FSI.

In this chapter, we have developed a preliminary fully integrated MV-LV model, which

is image-derived and simulated using again the IB/FE method. We will also compare

the differences of the MV dynamics when the MV is mounted in a LV and a tube .
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7.2 Model settings

7.2.1 Geometry models of MV and LV

Figure 7.1: (a)The short-axis view gives one extraction of LV wall boundary; (b) the
long-axis view provides the positional information of MV and LV; (c) the rebuilt LV
geometry superimposed on one MR image and (d) the fibre architecture of MV and LV

are depicted.

We adopt the same subject-specific MV geometry, following the procedure described in

Section 6.2.1. The LV geometry is reconstructed from the cine MR images performed on

the same volunteer, details can be found in [201, 202]. Summarized in Fig. 7.1, we extract

the contours from 7 slices in SA views in early diastole (immediately before the MV opens

when the LV pressure is lowest [202]), which record the information of ventricular wall

boundary from the LV base to the apex. Two artificial inflow and outflow tracts are
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extended at the top of the LV chamber to apply flow boundary conditions. The fibre

construction of myocardium follows the rule-based method detailed in [203], defined as

from the endocardium to the epicardium, the fibre direction linearly rotates from -60◦

to +60◦ and the sheet direction from -45◦ to +45◦, with respect to the throughwall

direction.

Figure 7.2: The sketches of (a) the MRI-derived MV-LV model, and (b) the MV-tube
model, adopted from [16].

The MV is mounted to the inflow tract of the elastic LV based on the relative positions

derived from the MR images. This forms the integrated MV-LV model. To conduct

the comparison, the MV is also fixed to a housing disc and mounted to a outer tube,

following the work in Chapter 6; this forms the MV-tube model. Both model settings are

plotted in Fig. 7.2. The chordae are not directly attached to the LV wall, but modelled

similarly as in Chapter 6.

7.2.2 Material models of MV and LV

We again adopt the MV material model in Section 6.2.2. However, due to the self-excited

mechanism of the LV wall, the passive and active contributions are both considered for

myocardium, as in [202]. The myocardium is considered to be incompressible, hence the
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first PK stress in the LV is

Pe = Pp + Pa,

where Pp corresponds to the passive stress and is derived similarly from Eq. (6.2). The

fibre-reinforced SEF for myocardial response is introduced by [45] via

Ψmyocadium =
a

2b
exp [b(I1 − 3− 2log(J))]

+
∑
i=4,6

ai
2bi

{
exp[bi(Ii − 1)2]− 1

}
+

afs
2bfs

{
exp[bfs(I8)2]− 1

}
. (7.1)

I4, I6 and I8 are the invariants accounting for the passive fibre, sheet and the shear

properties. Analogous to Eq. (6.1), I4 and I6 terms are only presented when the fibres

are in states of extension.

The exclusive active stress tensor Pa for myocardium is defined by

Pa = JFT sT f ⊗ f ,

where f is the fibre direction in the deformed configuration. T is a function determined

from the work done by Niederer et al. [204]. The constant scalar T s enables us to produce

real systolic dynamics.

7.2.3 Loading conditions

Simulations of the MV-LV and MV-tube models are conducted using the open-source

IBAMR software framework. The MV-tube model is identical to the one built in Chap-

ter 6. In the MV-LV model, the structure below LV base is contractile, the regions

above the LV, including the MV and its apparatus, are assumed to only bear the passive

load. The LV base is allowed to have radial expansion, but to be fixed in the axial and

circumferential directions. During diastole, zero flow boundary condition is imposed in

the outflow tract. The pressure, linearly ramped to the end-diastolic pressure (assumed

to be 8 mmHg), is applied in the inflow tract at 0.8 s. After the end of the diastole, the

LV region simultaneously contracts, triggered by a spatially homogeneous intracellular

calcium transient [201].
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The increased LV pressure closes the MV and opens the aortic valve when the LV

pressure exceeds the diastolic aortic pressure, which is assumed to be the measured

diastolic cuff pressure of 85 mmHg from the healthy volunteer. Because the aortic

valve is not included in the MV-LV model, the aortic tract is either completely open or

completely closed, determined by the pressure difference between the aorta and inside

LV. During the systolic ejection, a three-element Windkessel model [135] is connected

to the outflow tract to provide a physiological pressure-flow boundary condition; the

systolic phase ends when the LV no longer pumps blood out. The end-diastolic pressure

of 8 mmHg is maintained in the inflow tract till the end of the systole.

Figure 7.3: Cine MR images showing the MV and LV deformations (a) at the be-
ginning of the simulation, (b) when MV is fully opened, and (c) most closed. The

corresponding simulated results are given in (d, e, f), coloured by displacement

7.3 Results

The comparison of the deformed MV, LV configurations and the corresponding MR

images in LVOT view are presented in Fig. 7.3. Generally, the opening and closing con-

figurations of the simulated structures show an agreement with the MR measurements,

though in the most closed state, there exists a clear orifice between the two MV leaflets.
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Figure 7.4: The fully opened MV in (a) the MV-LV model, (b) the MV-tube model
(b). The most closed MV in (c) the MV-LV model, and (d) the MV-tube model.

Coloured by the displacement.

To give more comprehensive comparison between the MV-LV and MV-tube models,

we further obtain the MV deformations from these two models, depicted in Fig. 7.4.

Because of the increased pressure in the inflow tract during diastole, the volumetric flow

rate across the MV linearly increases until end of diastole, with a maximum value of

90 mL/s. The total inflow volume across the MV in diastole is 40 mL, which is less than

the real cardiac output (around 80 mL). Fig. 7.4(a) and (b) show the deformed MV

leaflets of the two models when the MV is fully opened. We can see that the orifice in

the MV-LV model is smaller, which suggests that the LV wall provides more resistance

to the blood flow that fills the LV cavity during the MV opening. This does not happen

in the MV-tube model; hence for the same pressure drop, the flow rate is greater.

About 0.8 s later, the LV starts to generate active tension, and ejects the blood through

the outflow tract. The closing regurgitation flow across the MV is estimated to be

7.2 mL. When the LV starts to eject blood, we notice that the MV in the MV-LV

model is partially closed, compared to that of the MV-tube model, see in Fig. 7.4(c) and

(d). The MV regurgitation in the MV-LV model persists in systole, which prevents the
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ventricular pressure to increase efficiently. The peak pressure is 117 mmHg, which is

much less than the peak value of 150 mmHg, corresponding to no leaking at the inflow

tract in systole.

Fig. 7.5 shows, respectively, the streamlines in the MV-LV model during the early dias-

tolic filling, the late diastolic filling, when the MV is closing, and when the LV is ejecting

blood through the outflow tract. The corresponding streamlines of the MV-tube model

are shown in Fig. 7.6. In the MV-LV model, the flow moves directly towards the LV apex

in the early filling (Fig. 7.6(a)), forming large vortices in the late diastolic filling in the

whole LV cavity, mixing the fresh blood from left atrium with the remaining blood from

the previous heart beat (Fig. 7.6(b)). These features are nearly absent in the MV-tube

model. Again, we note some leaking appearing in Fig. 7.5(d) as the MV is not closed

completely.

Figure 7.5: Streamlines in the MV-LV model (a) in the early diastolic filling, (b) in
the late diastolic filling, (c) when the MV is closing and (d) at the middle of the systolic

ejection. Coloured by the velocity magnitude and adapted from [16].
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Figure 7.6: Streamlines in the MV-tube model (a) in the early diastolic filling, (b)
at the late diastolic filling, (c) when the MV is closing and (d) when the MV is fully

closed. Coloured by the velocity magnitude and adapted from [16].

The flow patterns become much more complex with inclusion of MV in LV, especially

in the diastolic phase, given in Fig. 7.7. The flow jet, for example, is affected by the

existence of MV leaflets and chordae, typically in the late diastole. In Fig. 7.8, the

vortex dynamics is presented in the LVOT front view in the absence of MV at middle

systole. However, if the MV is included, the vortex dynamics changes, with vortices

appearing in different locations; instead, we can see it in the back view with the same

direction of rotation.

7.4 Discussion and Conclusion

In this chapter, we have built an integrated MV-LV model based on in vivo cine MR

images of a healthy volunteer. This model incorporates an elastic MV, a contractile LV



Chapter 7. MV+LV modelling 108

Figure 7.7: The comparison of the flow patterns in LV between the models with and
without the MV structure at different time points in diastole. The colour shows the

magnitude of velocity.

and the FSI for the first time.

Results are compared with that of a corresponding MV-tube model, and a number of

differences are pointed out. First, the flow patterns are very different in the MV-LV

model. When the MV is opened, the blood passes through the MV and directs to the

posterior leaflet side in the MV-tube model before hitting the tubular wall. However,

in the MV-LV model, the flow goes directly towards the LV apex, and then rebounds

toward LV base to form large vortices.

During diastole, the MV-LV model seems to produce a smaller opening configuration

compared to the corresponding MV-tube model. This is because of the extra resistance

offered by the LV wall, which is absent in the MV-tube model. Consequently, the total

inflow volume through the MV is reduced. We know that the diastolic phase is normally

divided into three phases–the rapid filling, the slow filling and the atrial contraction.

In the rapid filling, the transvalvular flow results from the relaxation of the LV (the

sucking effect), and 80% transvalvular flow occurs [178]. During the slow filling and

atrial contraction, the left atrium needs to generate higher pressure for further filling.



Chapter 7. MV+LV modelling 109

Figure 7.8: The vortices compared between the models with and without the MV
structure.

In the MV-LV model, the ramped pressure in the inflow tract during diastole is similar to

the slow filling and atrial contraction. However, the model is less accurate in simulating

the rapid filling phase. This suggests that our boundary conditions need to be further

improved. We also notice that during systole, the MV does not close as well as in the

MV-tube model, suggesting that other factors such as the deformation of the annulus ring

and the papillary muscles may have to be considered in order to produce a physiological

fluid environment around the MV.

Although the MV and LV models are from the same volunteer, the complex valvular-

ventricular interaction has not been fully accounted for in the current model, such as

connecting the chordae tendineae to the real papillary muscles deformed along with

the ventricular wall, and the changes of annulus ring shape caused by the LV contrac-

tion. Even though the MV/LV model by its own is able to simulate certain aspects

of cardiac functions physiologically [148, 201], the combination of the two models re-

quires additional treatments because the heart function is well coordinated through the
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electrical-mechanical coupling, the valvular closing and opening events, etc. Further-

more, the MV structure is reconstructed when the MV opens in middle diastole, and

thus there is a slight time delay for the LV model reconstructed in early diastole. When

the MV just opens, the heart starts to fill, and we therefore assume that the LV geom-

etry is similar to the shape just before the MV opens. It is worth mentioning that the

different reconstruction times for the MV and LV geometry can also affect the modelling

accuracy.

Other limitations include: non-realistic chordae structure, lack of the left atrium, the

aortic valve and the right heart, population-based pressure boundary conditions, etc.

Therefore the results from the current MV-LV model need to be interpreted with cau-

tion, and the model should be considered as a prototype model and a starting point

to incorporate more factors. Currently, we are developing a completed MV-LV model

which is promising for the simulation of patient-specific dynamics.



Chapter 8

Conclusion and future work

In this thesis, we have presented several mechanical models for soft tissue material char-

acterization, including the human iris, iliac arteries and the mitral valve coupled to the

left ventricle. Though these parts have very distinct geometries, there is generally a uni-

fied procedure to simulate their physiological conditions in terms of material properties.

Two clinical questions about the human iris are addressed in Chapter 3 using math-

ematical tools. We find that to avoid the acute angle close glaucoma, there exists a

minimum size of iridotomy, which is dependent on the viscosity of the aqueous humour

and the stiffness of the iris tissue. For the parameters studied, the minimum diameter of

iridotomy is 300 µm-350 µm in uveitic eye. We also study the buckling modes of a floppy

iris during a Descemet’s stripping endothelial keratoplasty, where again an orthotropic

three-dimensional model is set up to implement the buckling analysis and investigate

the critical intraocular pressure (IOP) required to initiate buckling. We identified a

positive correlation between the critical pressure and the iris stiffness, so that the iris

buckling (and hence closure) can arise in the normal IOP regime if the iris is floppy. Our

model predictions highlight the key role of IOP during surgery, and this has prompted

the ophthalmologists to purchase an IOP monitor for the operations.

Importantly, as the human eye is filled with aqueous humour which are composed pre-

dominantly of water and the iris is a thin membrane structure, a complex iris-aqueous

interaction may be necessary to identify the roles played by the flows within the anterior

111
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chamber. There are many other unknown issues relating to the iris. For example, the

iris damage during phacoemulsification, or small incision cataract surgery, under which

the floppy iris easily prolapse into the surgical incision, leading to unexpected constric-

tion of pupil and aspiration into the phaco probe. We want to point out that the linear

material model provides a first approximation to the problems and may not be proper

to model the iris under large deformation. However, this avenue is not pursued now as

the nonlinear material properties of iris are not yet available in the literature, and the

simple linear models seem capable to capture the main factors of the problem.

In Chapter 4, We provide a plausible explanation for the exceptional phenomenon of the

fibre directions present in human iliac arteries. An invariant-based fibre-reinforced non-

linear constitutive model is utilized to characterize the mechanical behaviour of arterial

tissues. We use three different hypotheses to determine the ‘optimal fibre angle’ in an

iliac artery model. All three hypotheses lead to the same conclusion that the optimal

fibre angle in the medial layer of the iliac artery is close to the circumferential direction.

The axial pre-stretch, in particular, is found to play an essential role in determining the

optimal fibre angle. We note that, though this model is applicable to healthy cases,

whether it is appropriate to diseased cases is an intriguing topic for further research.

In Chapter 6, a computational human mitral valve (MV) model derived from in vivo clin-

ical imaging data under physiological pressure loading is developed using the immersed

boundary finite element method. It incorporates experimentally-based constitutive laws

in a three-dimensional fluid-structure interaction framework. A transversely isotropic

material constitutive model is used to characterize the mechanical behaviour of the MV

tissue based on recent mechanical tests of healthy human mitral leaflets. Our results

show good agreement, in terms of the flow rate and the closing and opening configura-

tions, with measurements from in vivo magnetic resonance images. The stresses in the

anterior leaflet are found to be higher than those in the posterior leaflet and are concen-

trated around the annulus trigons and the belly of the leaflet. The results also show that

the chordae play an important role in providing a secondary orifice for the flow when

the valve opens. We then develop an MV model within a contractile left ventricle (LV)

chamber in Chapter 7. The initial results show that the developed MV with LV model is
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capable of simulating MV dynamics, LV wall deformation and ventricular flow, and has

the potential to simulate the highly complex valvular-ventricular interaction. The flow

patterns are rather different compared to the MV model in a tube simulator. Although

there are some discrepancies to be overcome in future work, our simulations show that

the developed computational model is promising in mimicking the in vivo MV dynamics

and providing important information that are not obtainable by in vivo measurements.

We have addressed several issues in the MV models: 1) the complex and highly non-

symmetric geometries of the MV and sub-valvular apparatus; 2) the complicated fibre

architectures inside myocardium and valvular tissue; 3) the nonlinear, anisotropic ma-

terial properties for different parts of the structure and 4) large deformation during the

blood-structure interaction. Yet, the development of the MV modelling still faces a

number of challenges. For instance, the papillary muscles contract and relax throughout

cardiac cycles; the geometry of the mitral annulus is dynamically deformed; the patho-

logical development in acute and mild time courses are still uncertain; and it is difficult

to estimate personalized MV and LV material parameters from limited clinical data.

Our integrated MV and LV model may be further developed to study MV diseases

and evaluate repair procedures. For instance, mitral regurgitation, in which the blood

flow leaks back into the left atrium during systole, is the second most frequent valve

pathology and thus imposes a considerable health burden on society [205]. In addition,

an MV model with a much more detailed and realistic chordae architecture obtained from

computed tomography images such as in [175] may be investigated. This is expected

to largely improve the leaflet closing configuration by reducing the leak between the

leaflets and developing the image-comparable valvular profile. Model development may

be greatly boosted from experimental studies. For example, patient-specific material

properties may be accurately obtained from e.g. diffusion tensor magnetic resonance

images. Our coupled model may be extended to include the left atrium and the aortic

valve. The FSI simulation for the MV model in a cardiac cycle typically takes two to

three days on a local Linux workstation (8-core, 3000 MHz processors), and the coupled

MV-LV model currently takes more than a week for one cardiac cycle. This means that
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the computational efficiency needs to be improved in order to conduct more realistic

simulations.

Lastly, regarding the material model, mathematical descriptions of multiscale behaviours

spanning from the subcellular, cellular, multicellular and organ scales are of great signifi-

cance, especially to fully understand the pathology development and growth mechanism.
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