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Abstract

RNA polymerase (pel) III transcription is stimulated in response to a variety of factors. 

Numerous studies concerning the DNA tumour virus Simian Virus 40 (SV40) have 

served to identify mechanisms surrounding its ability to elevate pol III transcriptional 

activity. Polyomavirus, a close relative of SV40, has similarly been shown to induce 

abnormally elevated levels of pol III transcription; however, the mechanisms involved 

were not previously established. This study presents an analysis of the mechanisms 

employed by Polyomavirus, as well as providing further insight into those utilised by 

SV40. In untransformed fibroblasts, the basal pol III factor TFIIIB is repressed through 

association with the retinoblastoma protein RB; this restraint is overcome by the large T 

antigens of Polyomavirus and SY40. Furthermore, cells transformed by these 

papovaviruses overexpress the B” subunit of TFIIIB, at both the protein and mRNA 

levels. Despite the overexpression of B”, the abundance of other TFIIIB components, 

TBP and BRF, is unperturbed following papovavirus transformation. In contrast, all five 

subunits of the basal factor TFIIIC2 are abnormally abundant in fibroblasts transformed 

by either Polyomavirus or SV40, as demonstrated by the elevated levels of their mRNAs. 

Thus, both papovaviruses stimulate pol III transcription by boosting production 

specifically of selected components of the basal machinery.

However, Polyomavirus differs from SV40 in adopting an additional and appaiently 

unique deregulatory mechanism. This study presents the first evidence of a direct 

increase in pol III itself following viral transformation, as pol III activity and an 

accompanying elevation in the abundance of pol III subunits are observed following
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transformation by Polyomavirus. Another important difference of Polyomavirus is its 

ability to encode a highly oncogenic middle T antigen that is localised outside the nucleus 

and activates several signal transduction pathways. Like the lai'ge T antigen, the middle 

T antigen can serve as a potent and specific activator of pol III in transfected cells. This 

may be mediated through the middle T-induced activation of the MAPK pathway, 

correlating with an increase in the expression of active ERK. Furthermore, an 

endogenous interaction between ERK and TFIIIB presents the possibility of a direct role 

for ERK in the stimulation of pol III transcription. Thus, a striking variety of distinct 

mechanisms contribute to the dramatically elevated levels of pol III transcription that 

accompany transformation by Polyomavirus and SV40.
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Chapter 1

Introduction

1.1 Eukaryotic RNA polymerases

While a single RNA polymerase is responsible for the synthesis of all cellular RNA in 

prokaryotes and archaebacteria, eukaryotes utilise three distinct DNA-dependent 

RNA polymerases to transcribe nuclear genes (Chambon, 1975). Additionally, 

mitochondria and chloroplasts each possess their own unique RNA polymerase 

separable from those found in the nucleus (Chambon, 1975; Sentenac, 1985). The 

three nuclear eukaryotic RNA polymerases were originally identified through their 

differential elution on DEAE-Sephadex columns (Roeder and Rutter, 1969). In 

addition to their distinct chromatographic properties and template preferences, they 

also vary in salt requirements and display differential sensitivity to the toxin a- 

amanitin, a cyclin octapeptide produced by the poisonous Amanita mushrooms, which 

was a definitive aspect of their classification (Kedinger et ah, 1970; Roeder and 

Rutter, 1969). In mammals, pol II is the most sensitive to a-amanitin (50% inhibition 

at 25ng/ml), with pol III displaying intermediate sensitivity (50% inhibition at 

20|Lig/ml) and pol I being completely resistant (Schwartz et al., 1974). Consequently, 

this property has been gainfully exploited to detemiine the polymerase responsible for 

transcription of any given template.



Genes encoding all the subunits of pols I, II and III have been cloned from 

Saccharomyces cerevisiae. These are the best characterised nuclear RNA 

polymerases, although the situation is believed to be very similar in higher 

eukaryotes. The three polymerases comprise two large subunits and a series of 

smaller components. Pols I, II and III share five common subunits, ABC27, 23, 14.5, 

10a and lOp, where A denotes a subunit found in pol I, B a subunit of pol II and C a 

subunit of pol III. An additional two subunits, AC 19 and AC40 are found in both pols 

I and III (Mann et al., 1987). While these subunits are not found in pol II, the B12.5 

and B44 pol II subunits ai’e functionally equivalent, respectively (Martindale, 1990). 

Furthermore, the two largest polypeptides of each are homologous to the equivalent 

polypeptides of the others (Breant et al., 1983; Buhler et al., 1980) and to the p ’ and p 

subunits of prokaryotic RNA polymerases (Allison et al., 1985; Sweetser et al., 1987).

Despite some shared subunits, pols I, II and III differ in their structure and 

localisation. Consequently, the RNA polymerases do not display functional 

redundancy and each RNA polymerase is responsible for the transcription of a 

specific set of genes. The variation in the number of genes transcribed by each 

polymerase is considerable and, moreover, the size of each set of genes proves highly 

disproportionate to the contribution to total nucleai* transcription. Thus, although pol I 

synthesises only a single transcript, 45S ribosomal RNA (rRNA), pol I transcription 

constitutes -70% of total nuclear transcription in an actively growing cell. Each 45S 

rRNA molecule is, however, subsequently cleaved to produce 5.8S rRNA, I8S rRNA 

and 28S rRNA molecules. The essential nature of these RNA components of 

ribosomes and the requirement of sufficient ribosomes to support cellular protein



synthesis demands may account for the gene encoding the 45S rRNA precursor being 

highly reiterated in the eukaryotic genome.

In contrast, while pol II alone is responsible for the synthesis of messenger RNA 

(mRNA) encoding all proteins and also transcribes most small nuclear RNA 

(snRNA), only -20% of total nuclear transcription is ascribed to pol II. The 

remaining 10% of nuclear transcription is earned out by pol III, which transcribes an 

intermediate sized set of genes encoding a variety of stable RNAs, including 5S 

rRNA, transfer RNA (tRNA) and U6 snRNA. In view of these distinct groups of 

templates transcribed by polymerases I, II and III, these sets are commonly termed 

class I, II and III genes, respectively. In addition to their distinct classes of genes, the 

polymerases are localised to distinct sites within the nucleus. Pol I transcription 

occurs at discrete sites called nucleoli, with rRNA being synthesised in the fibrillai' 

centres and subsequently processed and assembled into ribosomes in the sun'ounding 

granular regions (Shaw and Jordan, 1995). Pol II also functions at its own spatially 

separate locations, of which there may be -8000 per HeLa cell, while pol III 

transcription is localised to -2000 sites within the nucleoplasm, with each site 

containing, on average, five molecules of active pol III (Pombo et ah, 1999).

That transcription in eukaryotes is divided between the three nuclear RNA 

polymerases may reflect the greater complexity of most eukaryotic genomes and of 

precise regulatory control mechanisms for gene expression, as compared with 

bacteria.



1.2 Pol III transcripts

The class III genes transcribed by pol III encode small RNA molecules that serve vital 

functions in cellular metabolism. At approximately 120 nucleotides long, 5S rRNA is 

the smallest of the ribosomal RNAs and the only one transcribed by pol III (White, 

1998a). It is found associated with the large subunit of ribosomes in all eukaryotic 

organisms and has a critical role in translation. The haploid human genome contains 

200 to 300 5S genes, many of which occur in clusters of tandem repeats; however, 

some are dispersed as single copies (Sorensen and Frederiksen, 1991). Other class III 

genes that are similai'ly essential in translation are the tRNA genes. tRNAs range 

between 70 to 90 nucleotides in length and serve as adaptor molecules, translating the 

genetic infoiTnation contained within mRNA into the specific order of amino acid 

residues of the protein it encodes. The three residue anticodon sequence of a given 

tRNA is specific for a particular amino acid. Consequently, base-pairing of the tRNA 

anticodon with the complementary codon of the mRNA ensures the accurate synthesis 

of the polypeptide chain encoded by the mRNA nucleotide sequence. Eukaryotic 

cells possess 50 to 100 distinct tRNA species (Sharp et al., 1984), although the 

proportions of different tRNAs vary significantly between cell types (Garel, 1976). 

The human genome contains in the region of 500 tRNA genes giving rise to 60 to 90 

different tRNA species (Hatlen and Attardi, 1971). The considerable redundancy 

displayed among tRNA genes results in an average copy number of 10-20 genes for 

an amino acid tRNA adaptor.

U6 snRNA genes also fall into the class III gene family. U6 is the smallest of five 

snRNA species that comprise a ribonucleoprotein (RNP) complex termed a

4



spliceosome (Kunkel et al., 1986; Moenne et a l, 1990). Spliceosomes function in 

post-transcriptional processing of pre-mRNA (Maniatis and Reed, 1987), removing 

introns to generate mature mRNA. The 106 nucleotide U6 transcript is the most 

highly conserved of the spliceosomal RNAs (Brow and Guthrie, 1988) and the only 

one not transcribed by pol II (Kunkel et a l, 1986; Moenne et a l, 1990).

Pol n i is also responsible for the transcription of other components of 

ribonucleoprotein complexes, including 7SL, HI, MRP and 7SK. There are four 7SL 

genes in the human genome, encoding a highly conserved 300 nucleotide transcript 

(Ullu and Tschudi, 1984; Ullu and Weiner, 1984). 7SL RNA forms the scaffold of 

the signal recognition particle (SRP), which plays an essential role in intracellular 

localisation of proteins through its involvement in the co-translational insertion of 

nascent polypeptides into the endoplasmic reticulum (Walter and Blobel, 1982).

HI is a 369 nucleotide RNA which forms part of RNase P, an endoribonclease 

involved in processing the 5'-termini of pre-tRNA (Bartkiewicz et a l, 1989; Lee and 

Engelke, 1989; Momssey and Tollervey, 1995) and which exhibits several blocks of 

sequence homology to MRP RNA (Gold et al, 1989). MRP is a 265 nucleotide RNA 

forming part of RNase MRP, another endoribonuclease, which serves an important 

role in the endonucleolytic processing of pre-rRNA (Morrissey and Tollervey, 1995; 

Schmitt and Clayton, 1993), That some essential transcripts for post-transcriptional 

processing are encoded by class III genes, suggests the influence of pol III 

transcription on protein synthesis may not be restricted to the confines of translational 

components.



The 330 nucleotide 7SK RNA associates with eight proteins to form a 12S RNP 

(Murphy et al., 1986) with an unknown role, that is likely important, as implied by its 

considerable evolutionary conservation (Ullu et al., 1982).

Similarly, the function of vaults, which are large cytoplasmic RNPs containing pol 

Ill-transcribed vault RNA (Rome et al., 1991), remains elusive, as does the role of the 

69 to 112 nucleotide Y RNAs that associate with the Ro autoantigen (Wolin and 

Steitz, 1983). Likewise, the BCl and BC200 transcripts of rodents and primates, 

respectively, that aie restricted to a specific subset of neurons in the central and 

peripheral nervous systems (DeChiara and Brosius, 1987; Tiedge et al., 1991) have no 

known role.

The various gene families of repetitive short interspersed elements (SINEs) constitute 

quantitatively important classes of pol III template in higher organisms (Jelinek and 

Schmid, 1982; Singer, 1982), with SINE DNA accounting for a substantial proportion 

of mammalian genomes. The principal SINE in primates is the Alu family, of which 

there are in the region of one million copies in the haploid human genome (Britten, 

1994; Jelinek et al., 1980; Rubin et al., 1980), totalling -10% of the total genome. 

Alu genes consist of two imperfect repeats separated by an 18bp spacer (Deininger et 

al., 1981; Rubin et al., 1980) with a functional pol III promoter located in the 

upstream repeat (Paolella et al., 1983).

Of the various SINE families found in rodent species, B1 and B2 genes are the most 

abundant, with -100 000 and 80 000 copies per haploid mouse genome, respectively 

(Bennett et al., 1984; Krayev et al., 1980; Rogers, 1985). B1 genes show 

approximately 80% homology with human Alu genes, while the B2 family is specific 

to rodents and alone constitutes -0.7% of total mouse genomic DNA. SINEs are
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frequently clustered and Alu or B1 genes are found immediately downstream of 7SK, 

HI and MRP genes (Baer et a l, 1990; Chang and Clayton, 1989; Muiphy et al,

1986).

Retrotransposition, where pol III transcripts are reverse transcribed into DNA and 

subsequently integrated into new genomic sites, is thought to allow the dispersal and 

amplification of SINEs (Weiner et al., 1986). The high rate of transpostition of 

SINEs relative to other retroposons may be accounted for by the presence of internal 

promoters found in many class III genes. Consequently, promoters are included in the 

transcripts resulting in their duplication during retroposition. Thus, each gene copy 

has the potential to be transcribed and generate additional copies, removing the 

requirement of fortuitous insertion into DNA at an active promoter, which is a 

limiting event when external promoters are necessary (White, 1998a),

A clearly defined functional role has not been established for a SINE family (Howard 

and Sakamoto, 1990). The principal SINE families appear to be derived from class III 

genes of known physiological significance. tRNA genes seem the likely evolutionary 

source of SINE families such as B2 and ID (Daniels and Deininger, 1985), while the 

B1 and Alu families are believed to have evolved from the 7SL gene (Ullu and 

Tschudi, 1984). The possibility exists that SINEs represent large numbers of 

pseudogenes of no functional significance, however, during the course of evolution 

certain SINE transcripts may have acquired roles. Proposed functions for particular 

SINEs include roles in regulating expression of adjacent genes (Britten and Davidson, 

1969), splicing (Ki'ayev et al., 1982), translation (Chang et al., 1994), DNA 

replication (Anachkova et al., 1985; Anachkova et al., 1984; Aiiga, 1984), cell stress 

response (Fornace and Mitchell, 1986; Liu et al., 1995) and regulation of growth
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(Sakamoto et al., 1991) or the turnover of specific mRNAs (Clemens, 1987). 

However, an argument against roles in gene regulation or RNA processing is 

presented by the relatively recent multiplication of repetitive families. Thus, SINE 

functions would have to be subsidiary or highly responsive to evolution.

The insertion of SINEs into new genomic locations will have a significant impact on 

the structure and evolution of the genome, irrespective of possessing a functional role. 

Indeed, as a major source of genetic variability and fluidity of genomes through 

increased recombination events, SINEs have a huge capacity to disrupt sequences at 

the site of integration, conferring a mutagenic potential, which may account, at least 

in part, for their extremely low overall expression level.

1.3 Class III gene promoters

Within the class III gene family exists three further categories, types I, II and III, 

which relate to promoter structure. A significant and unusual property of the 

promoters of most class III genes, namely those of types I and II, is their requirement 

for sequence elements downstream of the transcription start site. They include 

discontinuous intragenic control regions (ICRs) that are composed of essential 

sequence blocks separated by non-essential nucleotides, a characteristic which sets 

them apart from pol I and pol II promoters and from the third pol III promoter type. 

In contrast, type III promoters, lacking intragenic elements, are similar to pol I and 

pol n  promoters and rely on 5’ flanking sequences to direct transcription (Murphy et 

al., 1987). The class III promoter types are presented schematically in figure 1.1.



Figure 1.1

Promoter structure of class III genes

Schematic depiction of the three general types of promoter utilised by pol III, The 

sites of transcription initiation and termination are indicated by +1 and Tn, 

respectively. Also represented are the relative positions of the various promoter 

elements that characterise each promoter type. Included are the inteiTnediate element 

(IE) of the type I promoter and the proximal and distal sequence elements (PSE and 

DSE, respectively) found in type III promoters.
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Type I promoters

Type I promoters are unique to 5S rRNA genes. The Xenopus laevis somatic 5S 

rRNA gene serves as a classic example, possessing two functional domains located 

within the transcribed region, the 5’ A-block (+50 to +64) and a second domain 

comprising an intermediate element (+67 to +72) and the 3’ C-block (+80 to +97) 

(Pieler et ah, 1987). The particular bases in between these sequence elements are not 

influential on transcription efficiency; however, they collectively act as spacers, with 

variation in the spacing of the essential elements being poorly tolerated (Pieler et al.,

1987). Studies have demonstrated that the region between the A-block and 

transcriptional start site is an important determinant of 5S rRNA expression, 

particularly under conditions suboptimal for transcription (Fradkin et al., 1989; Keller 

et al., 1990). However, the three essential elements contained within the minimal ICR 

(+50 to +97) suffice for efficient transcription (Pieler et al., 1987). These ICRs are 

highly conserved between species and mutations in the A- and C-blocks abolish 

transcription (Keller et al., 1990). In contrast, the flanldng sequences display limited 

conservation and, despite having strong modulatory effects, they are significantly 

more resilient to mutations (White, 1998a).

Type II promoters

The majority of class III genes, including the tRNA genes, the adenovirus VA genes 

and numerous middle repetitive gene families such as Alu, B1 and B2, utilise a type II 

promoter (White, 1998a). The ICRs of type II promoters consist of two essential and 

highly conserved sequence elements termed the A- and B-blocks. Each block is 

-lObp and they are separated by 30-40bp (White, 1998a). The A-blocks of type I and 

II promoters are homologous and in certain cases are interchangeable, although they
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differ in their location relative to the start site (Ciliberto et ah, 1983b). The A-block 

of type II promoters is located at approximately +10 to +20, contrasting with its 

location in type I promoters, in which it is commonly found -40bp further upstream 

(Galli et ah, 1981). The location of the B-block is immensely variable, which is 

partly a manifestation of the presence of short introns within the coding region of 

some tRNA genes. Although the interblock separation for optimal transcription is 

~30-60bp, distances of up to 365bp can be tolerated (Baker et al., 1987; Fabrizio et 

al., 1987). This flexibility is remarkable given that a single transcription factor, 

TFIIIC, binds simultaneously to both the A- and B-blocks (Schultz et al., 1989).

The A- and B-blocks have consensus sequences TGGCNNAGTGG and

GGTTCGANN-CC, respectively, and constitute the essential elements of a type II

promoter. Point mutations in the A- and B-blocks have been found to confer a

substantial effect on transcription efficiency (Newman et ah, 1983; Nichols et ah,

1989; Traboni et ah, 1984) and have lead to a general observation that mutations

capable of reducing template activity also impinge on factor binding (Gaeta et ah,

1990). However, additional internal or flanking sequences commonly confer

modulatory effects. Indeed, although the site at which initiation can occur is dictated

primarily in relation to the A-block (Baker et ah, 1987; Ciliberto et ah, 1983b), the

precise start site within that region is determined by local sequence. Thus, pol III

favours initiation at a purine preceded by a pyrimidine (Ciliberto et ah, 1983a;

Fruscoloni et ah, 1995) and the upstream flanking region can also be influential. In

most cases the 5’ flanldng sequences have an overall stimulatory influence upon

transcription, although repressive effects can also occur (DeFranco et ah, 1981;

Dingermann et ah, 1982; Hipsldnd and Clarkson, 1983). Despite their modulatory

effects, flanldng regions are generally poorly conserved. Indeed, the 5’ flanking
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regions of tRNA genes display little or no homology, even between different genes 

encoding the same tRNA isoacceptor (White, 1998a). However, this variation may 

provide a mechanism for differential regulation of tRNA genes in response to 

differing codon and amino acid demands in various cell types.

The tRNA genes classically define type II promoters and variations in type II 

promoters of different genes are minimal. The A- and B-blocks remain the essential 

components and, as with tRNA genes, the B-block is the major quantitative 

determinant of VAi promoter activity (Railey and Wu, 1988; Wu et al., 1987). 

Similarly, like tRNA genes, modulatory effects on VAi transcription are conferred by 

interblock and external sequences (Railey and Wu, 1988; Wang and Roeder, 1996). 

The influence of these additional effects could account, at least in part, for the VAi 

gene being more strongly transcribed than tRNA genes and, indeed, as a general 

feature influencing differential promoter strength of different class III genes with type 

II promoters.

Type III promoters

A small proportion of vertebrate pol III templates possess type III promoters. While 

retaining some A-block homologies, they have no equivalent B- or C-block domains. 

Indeed, they lack any requirement for intragenic promoter elements and type III 

promoter function pertains to the extragenic sequence elements located in the 5’ 

flanking region of the gene (Gabrielsen and Sentenac, 1991; Willis, 1993). Thus, 

mouse U6 snRNA as well as human U6 snRNA, 7SK and MRP RNA genes, which all 

rely on type III promoters, retain full transcriptional activity in the absence of all 

sequences downstream of +1 (Das et al., 1988; Kunkel and Pederson, 1989; Muiphy 

et al., 1987; Yuan and Reddy, 1991). Although this feature of type III promoters is an
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obscurity for class III genes, it is standard promoter structure for class I and II genes, 

as well as bacteria.

The human U6 gene is a well characterised type III promoter. Efficient expression is 

dependent upon a TATA box between -30 and -25, a proximal sequence element 

(PSE) between -66 and -47 and a distal sequence element (DSE) between -244 and -  

214 (Bark et ah, 1987; Carbon et al., 1987; Das et al., 1988; Kunkel and Pederson,

1988). These upstream regions show considerable homology to the promoters of the 

class II snRNA genes. Indeed, the PSEs of the human U2 and U6 promoters are 

identical at 13 out of 17 positions and are functionally interchangeable (Lobo and 

Hernandez, 1989). This feature is reflected by the DSEs, with DSEs from U2 and U6 

genes being at least partially interchangeable in supporting expression (Bark et al., 

1987; Kunkel and Pederson, 1988). However, while U6 DSEs show some positional 

flexibility, they do not display the extreme position- and orientation-independence 

which is commonly demonstrated by the enhancers of many class III genes (Das et al., 

1988; Kunkel and Pederson, 1988).

The TATA box is a principal detenninant of polymerase specificity for the U snRNA 

genes (Lobo et al., 1991; Mattaj et al., 1988). The TATA element is not a feature 

normally associated with class III genes. It is, however, a general component of 

promoters transcribed by pol II, although interestingly, the promoters of class II U 

snRNA genes notably lack a TATA box. Paradoxically, insertion of a TATA box into 

a U2 gene can convert it into a pol III template, while inactivation of the TATA 

element allows U6 to be transcribed by pol II (Lobo and Hernandez, 1989; Mattaj et 

al., 1988). Meticulous point mutational studies have demonstrated that the exact 

sequence requirements for a class III TATA box differ from those of a TATA box in a
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class II gene (Simmen and Mattaj, 1990). Nonetheless, there is considerable overlap 

and class II TATA elements can substitute for the U6 TATA box in directing pol III 

transcription (Lobo et ah, 1991). Despite this, polymerase specificity of the U1 gene 

cannot be converted by the U6 TATA box alone (Lescure et ah, 1991) and a 4bp shift 

upstream of the PSE is also required, making the distance between the TATA box and 

PSE equivalent to that in the U6 promoter (Lescure et ah, 1991). This observation 

reflects the rigid spacing requirement of the U6 promoter. Start site selection is 

influenced by both the TATA box and PSE and alteration in the separation of these 

elements severely compromises pol III transcription (Goomer and Kunkel, 1992).

In contrast to the upstream promoter elements of vertebrate U6 genes, the yeast U6 

promoters resemble type II promoters of tRNA and VA genes (Willis, 1993), with 

transcription of the S. cerevisiae U6 gene being dependent on downstream A- and B~ 

blocks (Brow and Guthrie, 1990). A TATA box is located upstream at -30 to -25, 

which influences start site selection and stimulates transcription in vitro, although has 

little effect upon in vivo expression (Chalker and Sandmeyer, 1993; Gerlach et ah,

1995). A region around -55 displays partial homology to PSEs of vertebrate U6 

promoters, but similarly confers little or no effect on expression levels (Bumol et ah, 

1993; Gerlach et ah, 1995). The promoter arrangements of other type III genes 

closely resemble that of vertebrate U6 genes and the type I and II promoters aie 

reasonably well conserved between yeast and vertebrates (White, 1998a).

Mixed promoters

Some class III genes possess promoters that do not fall into any of these promoter 

categories. Instead, they rely on a combination of internal and upstream sequences 

for efficient expression. For example, the EBER2 gene of Epstein-BaiT virus has
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intrgenic A- and B-blocks that are essential for transcription (Howe and Shu, 1989). 

While these elements are typical of type II promoters, the EBER2 promoter differs in 

its requirement for upstream sequences, which are thought to allow binding of Spl 

and activating transcription factor (ATE) (Howe and Shu, 1989). Additionally, a 

TATA box located between -28 and -23 can stimulate transcriptional activity 5-fold 

(Howe and Shu, 1989).

Similarly, the human 7SL gene depends on both internal and external promoter 

elements. It possesses A- and B-blocks, although they are fairly degenerate compared 

to those of type II promoters (Allison et al., 1983). Efficient expression requires 

upstream sequences which, like the EBER2 promoter, include an ATP binding site at 

-51 to -44 and a putative TATA box between -28 to -24 (Bredow et al., 1990; Howe 

and Shu, 1993). Thus, along with silkworm tRNA^^  ̂genes (Sprague et al., 1980), the 

Xenopus tRNA®^  ̂ gene (Carbon and Krol, 1991) and the rat vault RNA gene (Vilalta 

et al., 1994), these genes utilise the A- and B-block elements, homologous to those of 

type II promoters, in combination with sequence elements such as ATE- and Spl- 

binding sites from type III promoters, as the 5’ flanldng sequences of the human 7SL 

gene can be efficiently substituted by those of the 7SK gene (Kleinert et al., 1988).

1.4 RNA polymerase III

Although pol III is responsible for the transcription of a less extensive and diverse

range of DNA templates than pol II, it is, nonetheless, the largest nuclear RNA

polymerase, with a molecular weight of 600-7001x0 (Sentenac, 1985). Pol III has
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been purified from a variety of organisms, including human (Jaehning et ah, 1977; 

Wang and Roeder, 1997), mouse (Sklar and Roeder, 1976), frog (Engelke et ah, 

1983), silkworm (Sklai’ et ah, 1976), fruitfly (Gundelfinger et ah, 1980), wheat 

(Jendrisak, 1981) and yeast (Valenzuela et ak, 1976). There is significant similarity 

in the polypeptide composition of pol III between the different species.

The two largest polypeptides of pol III are immunologically related to the

conesponding subunits of pols I and II and, indeed, 11 of the 12 subunits of

Saccharomyces pol II are related or identical to a subunit in pol I and/or III (Sadhale

and Woychik, 1994). However, pol III also has many unique subunits and seven of

these pol Ill-specific subunits associate with the evolutionarily conserved core of the

yeast pol III enzymes, which is comprised of C160, C128, AC40 and AC19. It

possesses seventeen subunits in all, ranging between 10 to 1601xD in size (Chedin et

al., 1998). The genes for sixteen of these have been cloned and proved to be essential

for yeast cell viability (Chedin et al., 1998). In contrast, several pol II subunits are

dispensable for growth (Woychik et al., 1990; Young, 1991). The C37 and C25

subunits of pol HI have been found absent from some preparations that remain viable

for accurate transcription (Werner et al., 1992). However, genetic disruption of C25

inhibits tRNA synthesis in vivo (Sadhale and Woychik, 1994), suggesting that it

remains a necessary component of pol III. The catalytic region and binding sites for

the DNA template and nascent RNA lie in the ‘active site’, which is thought to

incorporate three blocks of homology that aie conserved between the largest subunits

in all RNA polymerases that have been analysed. Another homology domain of the

largest pol III subunit in S. cerevisiae, C160, is thought to play an important role in

maintaining structural integrity. The second largest subunit. C l28, appears to be

involved in the response of pol III to termination signals, as mutations introduced in
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its conserved regions can affect transcription termination (Shaaban et al., 1995). 

AC40 and AC 19, the remaining two subunits forming the enzymatic core of yeast pol 

III along with C l60 and C l28, show some sequence homology to the prokaryotic a  

subunit, which functions in polymerase assembly (Dequard et al., 1991). This role is 

reflected in pols I and III, where assembly in vivo is defective as a result of a 

temperature-sensitive mutation in AC40 (Mann et al., 1987).

Three of the yeast pol Ill-specific subunits, C82, C34 and C31, are believed to form a 

subcomplex (Valenzuela et al., 1976). C31 also interacts with CI60 (Thuillier et al.,

1995) and may, therefore, serve to tether the subcomplex to the polymerase core. 

C62, C39 and C32 are human homologues of the yeast subcomplex subunits and 

although human pol III depleted of this subcomplex remains active for transcriptional 

elongation and termination, the ability to support promoter-directed initiation is lost 

(Wang and Roeder, 1997). Consequently, this subcomplex appears to be involved in 

directing pol III to the preinitiation complex, a contention supported by the fact that 

yeast C34 and human C39 bind directly to the initiation factor TFIIIB (Wang and 

Roeder, 1997; Wemer et al., 1993). Purified nuclear RNA polymerases have no 

sequence-specificity for DNA and interactions with transcription factors such as 

TFIIIB are therefore necessary to direct accurate transcription (Parker and Roeder, 

1977)
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1.5 Transcription factors utilised by RNA polymerase III

The process of transcription involves a complex aiTay of trans-3iCimg factors that 

work in conjunction with the cw-acting DNA elements. These factors serve to recruit 

pol n i  to the appropriate start sites of the class III gene set and direct initiation (Parker 

and Roeder, 1977); without them, transcription by pol III would initiate randomly 

(Cozzarelli et al., 1983; Weil et al., 1979). Although a variety of such factors, for 

example TFIIIA, confer an element of regulation on pol III transcription in a gene- 

specific manner, there are a host of general transcription factors which are common to 

pol III recruitment.

TATA-binding protein

The TATA-binding protein (TBP) epitomises the general transcription factor. It is 

utilised by all three nuclear RNA polymerases (Hernandez, 1993; Rigby, 1993; White 

and Jackson, 1992b). Moreover, it is required not only for genes possessing a TATA 

box, but unexpectedly for many genes devoid of a TATA box as well (White et al., 

1992a; White et al., 1992b). This is a significant finding in view of the fact that the 

majority of pol III templates lack a TATA-like sequence.

The requirement of TBP for transcription of TATA-less class III genes was first

suggested by White et al. They observed that transcription of the TATA-less pol III

templates, 5S, tRNA, VA, Alu, B1 and B2, in addition to the TATA-containing U6

and EBER2 genes, is severely inhibited by competition with TATA box sequences

from class II promoters; however, this could be restored by addition of pure

recombinant TBP (White et al., 1992a; White et al., 1992b). Support for this finding
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was provided by a variety of studies, including the observation that recombinant TBP 

restores transcription of TATA-less pol III templates where TBP has been depleted by 

fractionation or heat-treatment (Huet and Sentenac, 1993; White et ah, 1992a; White 

et ah, 1992b). Indeed, in the cases of all three nuclear RNA polymerases, extracts 

prepai'ed from yeast expressing mutant TBP are unable to support transcription 

(Cormack and Struhl, 1992; Poon et ah, 1993; Schultz et ah, 1992). This deficiency 

can be relieved by addition of recombinant TBP, confirming the specific requirement 

for TBP for transcription by each polymerase (Poon et ah, 1993; Schultz et ah, 1992). 

Consequently, it constitutes a clear potential target for the co-ordinated regulation of 

transcription by pols I, II and III.

The fundamental role of TBP is highlighted by the fact that it is the most conserved 

eukaiyotic transcription factor. All TBP genes encode a small (27-3 8kD) 

polypeptide. The N-terminal region is variable in both size and sequence and it has 

been suggested that it may modulate the activity of the extremely highly conserved C- 

terminal domain (Kuddus and Schmidt, 1993; Lescure et ah, 1994; Mittal and 

Hernandez, 1997). The C-terminal domain of TBP possesses two 66-67 residue direct 

repeats, to which the TATA-box binding function has been ascribed (Heal'd et ah, 

1993; Reddy and Hahn, 1991; Strubin and Struhl, 1992). TATA binding is a slow, 

temperature-dependent step, which occurs through contacts in the minor groove (Lee 

et ah, 1991; StaiT and Hawley, 1991) and induces DNA bending (Horikoshi et ah, 

1992; Kuddus and Schmidt, 1993). X-ray crystallography of Arabidopsis TBP has 

revealed the nature of DNA binding by TBP, with an antiparallel (3-sheet motif at the 

DNA interface and a region of a-helices foi*ming a site for protein interaction 

(Nikolov et ah, 1992). Tolerance of the resulting DNA distortion is an underlying
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criterion for TBP binding and may constitute as important a role as base-specific 

recognition. This may account, in part, for the ability of TBP to bind sequences 

displaying poor TATA homology (Singer et al., 1990).

TBP interacts with other polypeptides, termed TBP-associated factors (TAFs), to form 

a number of different TBP-TAF complexes. This has provided the basis for a model 

which proposes that polymerase specificity is achieved through TBP interaction with 

sets of TAFs to give rise to distinct complexes. These, in conjunction with 

appropriate initiation factors, form class-specific complexes at promoters and 

facilitate recruitment of the coirect RNA polymerase (Hernandez, 1993; Rigby, 1993; 

White and Jackson, 1992b). Thus, the TBP-containing complex SLl serves to recruit 

pol I (Comai et al., 1992; Eberhard et al., 1993; Zomerdijk et al., 1994), while the 

equivalent complexes in the pol II and pol III systems are TFIID (Greenblatt, 1991; 

Pugh and Tjian, 1991) and TFIIIB (Huet and Sentenac, 1993; Taggart et al., 1992; 

White and Jackson, 1992a), respectively.

TFIIIB

Although TFIIIB itself is unable to bind directly to TATA-less class III genes 

(Klekamp and Weil, 1986), it is, nonetheless, capable of independent recruitment of 

polymerase and, thus, able to dictate the site at which transcription is initiated 

(Kassavetis et al., 1990). Considerable focus has been given to elucidating the 

composition of this central transcription factor. Using cation exchange 

chromatography Kassavetis et al. split a TFIIIB preparation into two components, 

termed B’ and B” (Kassavetis et al., 1991), both of which proved necessary for tRNA 

transcription in the presence of purified TFIIIC and pol IB. Work by Bartholomew et 

al. exploited the ability of TFIIIC to recruit TFIIIB into the vicinity of DNA, in order
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to probe the polypeptide composition of TFIIIB by photocrosslinldng. This allowed 

the detection of two polypeptides within the TFIIIB fraction which are recruited to the 

promoter by TFIIIC (Baitholomew et ah, 1991), a 701dD polypeptide which was 

associated with the B’ fraction of TFIIIB and a second polypeptide of 90kD found in 

the B” fraction (Kassavetis et ah, 1991).

Three groups independently cloned the BRFl (TDS4/ PCF4) gene encoding the 70kD 

yeast TFIIB-related factor (yBRF) protein product (Buratowski and Zhou, 1992; 

Colbert and Hahn, 1992; Lopez-de-Leon et ah, 1992), so-named on account of the 

extensive sequence homology of the N-terminal half to the general pol II transcription 

factor TFIIB (Colbert and Hahn, 1992). Disruption of BRFl resulted in a rapid 

decline in tRNA synthesis without compromising in vivo expression of either class I 

or class II genes (Buratowski and Zhou, 1992; Lopez-de-Leon et ah, 1992). Addition 

of recombinant yBRF to BRF-deficient extracts was able to restore compromised pol 

III transcription; furthermore, in wild-type extracts, recombinant yBRF stimulates 

class III transcription, identifying it as a normally limiting factor (Colbert and Hahn, 

1992; Lopez-de-Leon et ah, 1992).

BRFl encodes a protein of 596 amino acids with a predicted molecular mass of 671xD 

(Colbert and Hahn, 1992). The majority of the homology that exists between yBRF 

and TFIIB pertains to a putative zinc finger at the extreme N-terminus and two 

imperfect repeats of 76 amino acids within the remainder of the amino half 

(Buratowski and Zhou, 1992; Colbert and Hahn, 1992; Lopez-de-Leon et ah, 1992). 

In contrast, the C-teiminal half of yBRF displays no obvious homology to any other 

known protein and is significantly less well conserved. However, three discreet 

regions of strong conservation have been identified, yeast homology regions I, II and
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n i (HI, HII and HIII), and are likely to be essential for BRF function (Khoo et ak,

1994).

Extensive mutagenesis has demonstrated that BRF contains two distinct TBP-binding 

domains, which interact with opposite faces of the TBP-DNA complex (Colbert et al., 

1998; Kassavetis et al., 1998). The HII domain of the C-terminal half of BRF is 

thought to mediate one interaction with TBP (Andrau et ak, 1999; Colbert et ak, 1998; 

Khoo et ak, 1994). The second TBP-binding site is ascribed to the conserved direct 

repeat region in the N-terminal half, which has also been shown to directly contact 

RNA polymerase III (Kdioo et ak, 1994) and interact with the largest subunit of yeast 

TFIIIC (Chaussivert et ak, 1995). Remarkably, BRF can be divided into two separate 

halves that remain functional when mixed (Kassavetis et ak, 1998).

Both yBRF and TBP can be detected in the B ’ fraction of TFIIIB by western analysis. 

Additionally, antibodies against either recombinant TBP or yBRF ai*e able to 

specifically supershift a TFIIIB/tDNA complex in a gel retardation assay (Buratowski 

and Zhou, 1992; Kassavetis et ak, 1992). Furthermore, Kassavetis et al. (Kassavetis 

et ak, 1992) showed that recombinant TBP and yBRF are necessary and sufficient to 

reconstitute all known properties of the B’ fraction, conferring strong evidence that 

TBP and yBRF interact to form part of TFIIIB.

The activity of the other fraction identified by Kassavetis et al. (Kassavetis et ak,

1991), B”, was found to co-migrate with the 90kD polypeptide in a SDS- 

polyacrylamide gel (Kassavetis et ak, 1992). Cloning of the TFC5 gene encoding the 

901dD subunit confirmed its responsibility for the B” activity (Kassavetis et ak, 1995; 

Roberts et ak, 1996). The B” gene encodes a 594 amino acid protein with a predicted 

mass of ~68kD but that migrates at ~90kD (Kassavetis et ak, 1995; Roberts et ak,
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1996). It shows no significant homology to other known proteins with the exception 

of a putative SANT domain (Aasland et al., 1996; Kassavetis et al., 1995; Roberts et 

al., 1996). B” proves to be remarkably resistant to truncation and a core domain of 

176 amino acids (residues 224-400) will continue to support U6 transcription (Kumar 

et a l, 1997). However, two distinct domains (residues 270-305 and 390-460) are both 

required for tRNA synthesis, either of which can function in the case of U6 (Kumar et 

al., 1997). Protein footprinting suggests that B” is folded such that these two domains 

are in close proximity when TFIIIB is assembled onto DNA (Kumar et al., 1997). B” 

makes numerous contacts within the transcription complex (Bartholomew et al., 1991; 

Joazeiro et al., 1994; Kassavetis et al., 1991; Roberts et al., 1996), possibly 

accounting for its resilience to deletion mutagenesis if the loss of any individual 

contact is compensated for by other interactions made by the protein. Protein-protein 

interactions of B” also appear to function co-operatively, as although recombinant B” 

binds weakly to TBP alone, binding affinity is substantially greater in the presence of 

yBRF and in the absence of TBP, no interaction is observed between B” and yBRF 

(Roberts et al., 1996).

Although TFIIIB, reconstituted from recombinant TBP, yBRF and B”, is able to

support both TFIIIC-dependent and TATA-dependent DNA binding and transcription

(Roberts et al., 1996; Ruth et al., 1996), the reconstituted factor was found to be less

active than native TFIIIB (Kassavetis et al., 1995; Ruth et al., 1996). This could

possibly be due to the recombinant polypeptides being folded inconectly or lacking

important post-transcriptional modifications. The possibility also exists that a

component(s) missing from the reconstituted TFIIIB could be non-essential but

stimulatory or essential but present in residual amounts as a contaminant of the

purified complementary fractions used to reconstitute transcription. Alternatively,
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TFIIIE, which is present in both native B’ and B” fractions (Dieci et ah, 1993) has 

been shown to augment transcriptional ability of recombinant TFIIIB (Ruth et ah, 

1996). Consequently, it highlights the potential for a set of additional regulatory 

subunits that are distinct from TFIIIB and not requisites for basal transcription.

Characterisation of mammalian TFIIIB is less advanced than that of yeast. A variety 

of chromatographic procedures have been employed in its purification. Using anti- 

TBP antibodies, a TAF of 88-90kD could be specifically immunoprecipitated from 

fractions containing TFIIIB (Mital et ah, 1996; Wang and Roeder, 1995). The cDNA 

encoding this polypeptide was isolated by peptide sequencing and established as 

encoding a 677 amino acid protein (Mital et ah, 1996). On account of the N-terminal 

280 residues being 24% identical to human TFIIB and 41% identical to yBRF from S. 

cerevisiae, this TAF was tei*med human TFIIB-related factor (hBRF) (Mital et ah, 

1996). It shaies regions of extensive homology with other BRF species, including a 

zinc finger motif and two direct repeats (Mital et ah, 1996). With the exception of 

yeast homology region II (HII), the C-terminal half of hBRF displays little homology 

to yBRFs (Mital et ah, 1996). However, like its yeast homologues, hBRF possesses 

two TBP-binding sites, a weak site in its N-terminal half and a stronger site which 

may be ascribed to the conserved HII domain in its C-teiminal half; transcriptional 

activity is abolished by deletion of either half (Wang and Roeder, 1995). 

Transcription of VA and tRNA genes was found to be severely inhibited following 

immunodepletion of hBRF and was restored by addition of recombinant TBP and 

hBRF, proving its essential role in human pol III transcription (Mital et ah, 1996; 

Wang and Roeder, 1995).
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A significant advance in determining the composition of hTFIIIB was made by the 

cloning of a human homologue of yeast B” (Schramm et al., 2000). Human B” (hB”) 

is required for transcription of both TATA-less tRNA-type promoters and TATA- 

containing snRNA-type pol III promoters (Schramm et al., 2000). With a calculated 

molecular mass of 156kD, it is significantly larger than its yeast counteipart. It 

possesses three principal regions of sequence homology: a putative SANT domain 

(residues 415-472), which shows 43% identity to that of yeast B”, a 131 amino acid 

region immediately upstream of this domain, of 21% identity, and a 115 amino acid 

region immediately downstream of the SANT domain, which displays 17% identity to 

yB” (Schramm et al., 2000). In addition, a striking feature of hB” is a region of 19 

repeats of 26-28 amino acids in the C-terminal domain, which is absent from yB”. 

The functional significance of hB” was demonstrated by the severe inhibition of class 

III gene expression following its immunodepletion from cell extracts, which could be 

restored by addition of recombinant hB”. This was shown to be unique to pol III 

transcription, as hB” immunodepletion confened no effect on pol II transcription of 

either the adenovirus major late promoter or the human U1 snRNA promoter 

(Schramm et al., 2000).

Given that essential homologues of all three core yeast TFIIIB subunits, TBP, BRF

and B”, are found in human TFIIIB, TFIIIB appears to be strongly conserved between

these species. However, varying forms of TFIIIB appear to function at different class

III promoters in humans, setting it apart from the yeast system in which a single form

of TFIIIB is necessary and sufficient for transcription of all class III genes. Thus, the

TFIIIB requirement of type III promoters varies from that of types I and II, with

TFIIIB fractions capable of supporting VAi expression being inactive for U6 or 7SK

(Lobo et al., 1992; Mitai et a l, 1996; Teichmann and Seifart, 1995). Teichmann and
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Seifart (Teichmann and Seifart, 1995) separated two forms of hTFIIIB using 

chromatography on EMD-DEAE-Fractogel (EDF). One form, hTFIIIB-a, was free of 

hBRF and active for U6 but not VAi expression. However, the second form, 

hTFIIIB-p, co-eluted with hBRF and efficiently supported VAi but not U6 

transcription (Teichmann et al., 1997; Teichmann and Seifart, 1995). Indeed, despite 

being essential for transcription of type I and II genes, the requirement of hBRF for 

transcription of type III genes has been controversial. Wang and Roeder observed 

inhibition of U6 and 7SK expression following immunodepletion using anti-BRF 

antibodies (Wang and Roeder, 1995). Conversely, Mital et ah demonstrated that 

immunodepletion of hBRF inhibited VAi but not U6 transcription (Mital et al., 1996). 

The recent cloning of a novel gene that encodes a protein termed BRFU (Schramm et 

al., 2000) may account for these observations. BRFU is highly related to hBRF and 

hTFIIB but is required for transcription of human U6 and 7SK genes, although not 

VAi (Schramm et al., 2000). Consequently, it is plausible that anti-BRF antibodies 

utilised by Wang and Roeder recognised both hBRF and BRFU, while those of Mital 

et al. depleted extracts only of hBRF. Furthermore, other splice variants of hBRF 

have also been cloned, all of which are able to complex with TBP. They are, 

however, differentially required for transcription at structurally distinct promoter 

types. hBRFl is the most active variant in transcription of type I and II promoters, 

while hBRF2 serves in U6 gene expression (McCulloch et al., 2000). Thus, it may be 

the case that both hBRFU and hBRF2 are components of TFIIIB required for U6 

transcription.

As a principal factor in the transcription of pol III templates, TFIIIB constitutes a 

major determinant of biosynthetic capacity that is frequently targeted for regulation of
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pol n i transcription levels. Some of the influencing factors of TFIIIB are summarised 

in figure 1.2.

TFIIIC

Another of the general transcription factors associated with pol III transcription is 

TFIIIC. TFIIIC is responsible for recruiting TFIIIB, which has no sequence-specific 

affinity for DNA, to genes possessing type I or II promoters. As with TFIIIB, it was 

first purified from yeast, where it is also referred to as T factor. Consequently, the 

polypeptides of approximately 138, 131, 95, 91, 60 and 55kD, that co-purify with 

TFIIIC transcriptional and DNA-binding activity are often referred to as xl38, xl31, 

t95, t91, t60 and t55, respectively (Bartholomew et al., 1990; Braun et al., 1992; 

Swanson et al., 1991). Direct visualisation studies using scanning transmission 

electron microscopy (STEM) revealed that TFIIIC/tDNA complexes have a 

dumbbell-shaped appearance, with individual protein domains, termed tA  and tB, 

bound separately to the A- and B-blocks, respectively (Schultz et al., 1989). 

Although the xB domain constitutes the principal quantitative determinant of binding, 

interaction of the xA domain with the A-block is also required for transcription 

(Marzouki et al., 1986). The remarkable ability of TFIIIC to bind to A- and B-blocks 

simultaneously while separated by highly variable distances is due to the flexible 

linker connecting the two DNA-binding domains (Marzould et al., 1986). Figure 1.3 

displays a schematic illustration of the relative positions of the various subunits of S. 

cerevisiae TFIIIC when bound to a tRNA promoter.

In contrast to the situation for TFIIIB, human and yeast TFIIIC display significant 

differences. Human TFIIIC can be resolved by ion exchange chromatography on

27



Figure 1.2

Antagonistic influences targeting TFIIIB

The growth suppressors RB, pl07, pl30, p53 andD rl can all repress TFIIIB by direct 

interactions. In contrast, a variety of oncogenic influences have been shown to 

stimulate TFIIIB activity; in some of these cases the effect is achieved without a 

direct interaction. Activators of TFIIIB include the E l A protein of adenovirus, SV40 

large T antigen, the Tax protein of HTLV-1, the X protein of HBV, activated Ras and 

the tumour-promoting phorbol ester TPA.
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Figure 1.3

TFIIIC interactions with a tRNA promoter

Diagrammatic illustration of the interactions made between the various subunits of S, 

cerevisiae TFIIIC and the promoter elements of a tRNA gene. The molecular mass of 

each subunit is indicated (kD), as is the site of transcription initiation (+1).
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Mono Q into two components termed TFIIIC 1 and TFIIIC2 (Dean and Berk, 1987; 

Yoshinaga et al., 1987). Both components aie essential for transcription of 5S, VAi 

and tRNA genes (Dean and Berk, 1987; Lagna et al., 1994; Oettel et al., 1997; 

Yoshinaga et al., 1987); however, TFIIIC2 is dispensable for U6 and 7SK 

transcription (Lagna et al., 1994; Oettel et al., 1997). Sedimentation analysis suggests 

a mass of up to 2001dD for TFIIIC 1, assuming it to be globular, although its subunit 

compostion has yet to be defined (Yoshinaga et al., 1987). The initial recognition of 

type I and II promoters is achieved by TFIIIC2, which binds specifically with high 

affinity to the B-block (Boulanger et al., 1987). It, in turn, serves to recruit TFIIIB 

and TFIIIC 1, which enhances and extends the protein footprint produced by TFIIIC2 

to include the A-block (Dean and Berk, 1988; Wang and Roeder, 1996; Yoshinaga et 

a l, 1987). Human TFIIIC2 has been highly purified and consists of five polypeptides 

of 220, 110, 102, 90 and 63kD, giving a cumulative mass approaching 600kD (Sinn et 

al, 1995; Wang and Roeder, 1996; Yoshinaga et al, 1989).

Hoeffler et al. resolved two DNA-binding forms of HeLa cell TFIIIC2 on non­

denaturing gels. The two forms, termed TFIIIC2a and TFIIIC2b, produce identical 

footprints on VAi and have comparable DNA-binding affinities (Hoeffler et a l, 1988; 

Sinn et a l, 1995). However, transcriptional activity is associated only with TFIIIC2a 

(Hoeffler et a l, 1988).

All five subunits of TFIIIC2 have been cloned; hTFIIIC220, hTFIIICllO and 

hTFIIIC90 show no significant homology to any of the subunits of yeast TFIIIC. The 

hTFIIIC63 and hTFIIIC102 subunits display weak homology of 22% to x95 and 31% 

to t131, respectively.
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Additional general transcription factors

Although apparently not an essential factor in basal transcription, TFIIIE is another 

general transcription factor that has been identified in yeast (Dieci et ah, 1993). 

TFIIIE is required for the efficient transcription of 5S and tRNA genes using partially 

purified factors (Dieci et ah, 1993). However, as yet, a defined role of TFIIIE in 

transcription has not been established; proposals include roles in TFIIIB recruitment, 

stabilisation of the transcription complex and conformational rearrangements in 

TFIIIB (Ruth et ah, 1996).

Ottonello et al. (Ottonello et al., 1987) resolved an activity, termed TFIIID, which is 

required for transcription of tRNA and 5S genes in silkwoim. This remains the only 

system in which its activity has been identified, although it has been suggested that 

silkworm TFIIIC and TFIIID represent a subdivision of the components associated 

with TFIIIC in other organisms (Sprague, 1992; Young et ah, 1991). Thus, it may be 

that silkworm TFIIIC and TFIIID bear some equivalence to human TFIIIC 1 and 

TFIIIC2.

TFIIIA

In contrast to the general transcription factors, TFIIIA is a gene-specific factor, 

required only for the expression of 58 genes (Engelke et ah, 1980). It has a predicted 

sequence of 344 amino acids and is predominantly composed of 9 tandem 27 amino 

acid repeats, each characterised by pairs of cysteine and histidine residues at precisely 

repeated positions (Ginsberg et ah, 1984; Miller et ah, 1985). Each repeat forms an 

independent domain enclosing a central zinc ion within a loop-like structure that 

directly contacts DNA, termed a “zinc finger” (Miller et ah, 1985). These are
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essential for the DNA-binding activity of TFIIIA (Hanas et ah, 1983) and an a-helix 

contained within each finger domain makes contacts in the major groove of DNA 

(Pavletich and Pabo, 1991). The DNA-binding domain is divided into three distinct 

regions with clusters of zinc fingers binding to separate regions of the 5S gene ICR 

(Clemens et ah, 1992; Vrana et ah, 1988). Fingers 1-3 and 7-9 foiTn two compact 

regions, binding the C- and A-blocks, respectively (Christensen et ah, 1991; Clemens 

et ah, 1992; Liao et ah, 1992). The third region, composed of fingers 4-6, is extended 

with finger 5 binding to the intermediate element and fingers 4 and 6 acting as spacer 

elements spanning these promoter regions (Christensen et ah, 1991; Clemens et ah, 

1992; Liao et ah, 1992). Mutation of finger 3 has a strong detrimental effect on 

binding and disruption of finger 9 confers a severe loss of transcription (Del Rio and 

Setzer, 1993). Indeed, data imply that while fingers 1-6 are required purely for 

binding to the ICR, fingers 7-9 perform an additional structural or catalytic role.

TFIIIA, although essentially a transcription factor serving as an adaptor molecule 

between TFIIIC and the 5S gene promoter, also functions in both the storage and 

transport of 5S rRNA (Tafuri and Wolffe, 1993). Through the export of 5S RNA 

from the nucleus, a negative feedback loop is generated. This arises from the 

transport of TFIIIA to the cytoplasm in the form of a RNP complex, thus depleting the 

level of TFIIIA available in the nucleus to function in transcription of 5S genes 

(Guddat et ah, 1990).

SNAPc/PTF

SNAPc/PTF is essential for transcription of 7SK and vertebrate U6 genes (Yoon et

ah, 1995). It binds to the PSE of type III promoters and can greatly enhance the

recruitment of TFIIIB to the TATA box (Yoon et ah, 1995). SNAPc/PTF comprises
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five subunits of 190, 50, 45, 43 and 191cD (Henry et al., 1995; Sadowsld et al., 1993), 

with a native mass of ~200kD (Sadowski et al., 1993). Both the largest subunit, 

SNAP190 (PTFa), and the second largest, SNAP50 (PTFp), can be crosslinked to 

PSE DNA and are responsible for contacting DNA (Henry et al., 1996; Yoon et al.,

1995). The other subunits do not bind independently to DNA (Yoon and Roeder,

1996) but are present in the complex binding to the PSE (Yoon et al., 1995). 

Immunodepletion of extracts of SNAP50 (PTFP), SNAP43 (PTFy) or SNAP45 

(PTFÔ) specifically repressed transcription from the 7SK and U6 promoters while 

conferring no effect on the VAi and AdML promoters (Henry et al., 1996; Sadowski 

et al., 1996; Yoon and Roeder, 1996). However, transcription of the pol II U1 and U2 

genes was also inhibited by this immunodepletion and could be restored by addition 

of highly purified SNAPc/PTF, demonstrating that this PSE-binding protein is 

required specifically by both pol II- and pol Ill-transcribed U snRNA genes.

SNAPc/PTF interacts directly with TBP (Sadowski et al., 1993; Yoon and Roeder,

1996) and, like TBP, hBRF can be co-immunoprecipitated with SNAPc/PTF (Bai et 

al., 1996). Indeed, antisera against SNAPc/PTF immunoprecipitate TBP and hBRF in 

equimolar amounts, suggesting that SNAPc/PTF interacts with a form of TFIIIB, as 

opposed to free TBP (Bai et al., 1996).

1.6 Preinitiation complex formation on class III genes

The formation of transcription complexes involves the assembly of factors, which 

bind to DNA at the relevant gene promoter in an ordered stepwise manner
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(summarised in figure 1.4). In the case of type I and II promoters, it has been 

established that TFIIIB is only able to bind to the promoter after the binding of 

TFIIIC (Bieker et ah, 1985; Lassar et ah, 1983). The 5S gene, possessing a type I 

promoter, requires an additional initial step, whereby TFIIIA binds to the promoter 

prior to TFIIIC (Bieker et ah, 1985; Lassar et ah, 1983). Subsequent studies provided 

further insight by revealing that TFIIIC2 is the first factor to bind VAi or tRNA genes 

through its B-block-binding activity. TFIIIC 1 and TFIIIB then interact, in either 

order, to form a preinitiation complex (Dean and Berk, 1988), a situation which is 

also likely to be true for 5S genes. Consequently, the sequence-specific DNA-binding 

function of TBP is not required for transcription of the TATA-less class III genes 

(Martinez et ah, 1995; Schultz et ah, 1992). However, once recruited as a component 

of TFIIIB, TBP is positioned on the DNA such that it can discriminate between 

different upstream sequences (Joazeiro et ah, 1996), possibly providing an 

explanation for the general preference for A/T-richness in the 5’-flanking regions of 

class III genes. Pol III recruitment is the final step in initiation complex foiTnation 

and is mediated through protein-protein interactions with TFIIIB (Bieker et ah, 1985; 

Setzer and Brown, 1985).

The an'ay of interactions involved in preinitiation complex assembly is most fully 

characterised in yeast, where positions of the various TFIIIC subunits relative to a 

tRNA promoter have been established by photocrosslinking (Bartholomew et ah, 

1990). The t138 subunit of TFIIIC is associated with the B-block, the x95 and t55 

subunits with the A-block region (Bartholomew et ah, 1990), while the x91 subunit is 

located at the downstream end of class III genes (Braun et ah, 1992). tI31 is the only 

subunit of TFIIIC that is located, in part, upstream of the start site (Bartholomew et
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Figure 1.4

The order of promoter assembly on class III genes

Flow charts depicting the order of interaction of transcription factors and pol III with 

either a typical type II promoter such as that of a tRNA gene (panel A) or with the 

class I promoter of a 5S gene (panel B).
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al, 1990; Bartholomew et ah, 1991). It contains 11 tetratricopeptide repeats (TPRs), 

which function in protein-protein interactions, maldng it a likely candidate for 

interacting and positioning TFIIIB (Baitholomew et ah, 1991). Indeed, TFIIIB 

extends the upstream footprint produced by t131 (Braun et ah, 1989; Kassavetis et ah, 

1989). The initial contact is made with the B’ component of TFIIIB, with B” 

requiring B’ to be present in order to be recruited (Kassavetis et ah, 1991). yBRF has 

been shown to bind directly to xl31 via an interaction with its N-terminal half 

(Chaussivert et ah, 1995; Khoo et ah, 1994) and its binding to the TFIIIC/tDNA 

complex is stabilised by the addition of TBP before B” is recruited (Kassavetis et ah,

1992).

The sequential assembly of TFIIIB components on DNA results in changes in 

photocrosslinking efficiency of t131 with these subunits, suggesting a series of 

conformational changes (Kassavetis et ah, 1992). These possibly account for the 

ability of TFIIIB, which alone has no affinity for DNA, to bind tightly to DNA once 

fully assembled on the DNA. Thus, interaction with xl31 may unmask the high- 

affinity TBP-binding site located in the C-terminal half of BRF (Khoo et ah, 1994) 

and the subsequent binding of TBP may also reveal a cryptic DNA-binding site in 

yBRF (Huet et ah, 1997). Consequently, following the recruitment of TFIIIB, TFIIIA 

and TFIIIC are dispensable for transcription in yeast (Kassavetis et ah, 1990). In 

humans, a less avid interaction is made between TFIIIB and DNA despite it 

occupying a similai' position in transcription complexes (McBryant et ah, 1995; 

Tapping et ah, 1994). TFIIIB is responsible for the subsequent recruitment of pol III. 

All three TFIIIB components are necessary for the stable recruitment of pol III, 

although pol III interacts directly, through the C34 and C17 subunits, with yBRF only
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(Feixi et al., 2000; Werner et al., 1993). Similarly, the C39 subunit of human pol III, 

the homologue of yeast C34, binds directly to hBRF, as well as forming an additional 

interaction with TBP (Wang and Roeder, 1997).

The assembly of transcription complexes at type III promoters differs due to lack of 

ICRs, which consequently eliminates the need for TFIIIA and TFIIIC2 (Bemues et 

al., 1993; Lagna et al., 1994; Oettel et al., 1997). While these promoters still utilise 

TFIIIC 1 (Oettel et ah, 1997; Yoon et ah, 1995), they employ a form of TFIIIB which 

is chromatographically separable from that used by types I and II (Lobo et ah, 1992; 

Teichmann and Seifart, 1995). PSE occupancy is of primary importance in 

transcription complex assembly on a type III promoter, with SNAPc/PTF and TBP 

enhancing each others recruitment, an effect dependent on the N-terminal of TBP 

(Mittal and Hernandez, 1997).

Once assembled, class III transcription complexes are extremely stable and their 

components remain associated after transcription initiation (Bogenhagen et ah, 1982; 

Lassar et ah, 1985). The polymerase is recycled without being released from the 

template, generally committing the gene to multiple rounds of transcription which are 

able to proceed 5- to 10-fold more rapidly than the initial round (Bogenhagen et ah, 

1982; Dieci and Sentenac, 1996; Lassar et ah, 1983).

37



1.7 Regulation of RNA pol III transcription

Pol III is subject to regulation, both positive and negative, by a variety of mechanisms 

which function to ensure that gene expression progresses within a carefully controlled 

system.

1.7.1 Activities that reduce pol III transcription 

Drl

In considering the repression of pol III transcription, the transcription factor TFIIIB 

serves as the principal player. One of the cellular proteins capable of targeting TFIIIB 

for repression is the 19kD nuclear phosphoprotein Drl, the activity of which can be 

stimulated by a 281<D co-repressor termed DRAPl, which on its own is inactive 

(Mermelstein et ah, 1996). Drl has little affinity for DNA and functions through 

binding the essential TFIIIB component TBP (Inostroza et ah, 1992; Kim et ah,

1997).

Using recombinant proteins, it has been shown that Drl can prevent the binding of 

TBP to BRF (White et ah, 1994). BRF binds to TBP through two distinct sites (Khoo 

et ah, 1994; Wang and Roeder, 1995). It is believed that disruption of TBP-binding to 

the N-terminal direct repeats of BRF is achieved through conformational changes 

induced in TBP by D rl. The second TBP-binding site, located in the C-terminal half 

of BRF, appears to make a pol Ill-specific high-affinity interaction with the basic 

repeat region of TBP (Khoo et ah, 1994). Point mutations in TBP that can prevent 

this interaction with BRF similarly block binding of Drl (Khoo et ah, 1994; Kim et
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al., 1995), strongly suggesting that Drl and BRF compete directly for over-lapping 

binding sites in the basic repeat region of TBP. Thus, both TBP-binding sites can be 

blocked by Drl, preventing essential interactions required for formation of an active 

preinitiation complex.

Drl demonstrates a similar ability to inhibit pol II transcription but pol I transcription 

appears to be immune to the repressive effects of Drl (Inostroza et ah, 1992; White et 

al., 1994). Consequently, when rRNA levels are limiting, this protein presents a 

potential mechanism for shifting the balance of nuclear transcription in favour of pol 

I.

Retinoblastoma protein

Another protein that can target TFIIIB is RB, the 105kD nuclear phosphoprotein 

product of the retinoblastoma susceptibility gene, Rb. It was initially isolated because 

of its association with an inherited predisposition to retinoblastoma, a raie pediatric 

tumour of the retina (Friend et al., 1986). However, inactivating mutations in Rb have 

also been found in many other types of human tumour (Weinberg, 1995; Whyte,

1995) and it is now widely recognised as a potent tumour suppressor.

RB is expressed almost ubiquitously in normal human and mouse cells and plays a 

vital role in the control of growth and proliferation, ensuring that cell cycle 

progression through the restriction (R) point in late Gi phase occurs only under 

favourable conditions. Under such conditions, cyclin D- and E-dependent kinases 

hyperphosphorylate RB, causing its inactivation and the subsequent progression into 

S phase (Weinberg, 1995; Whyte, 1995). The ability of cells to aixest growth and

39



proliferation is severely compromised when RB is inactivated (Weinberg, 1995; 

Whyte, 1995), potentiating the progression towards carcinogenesis.

The growth-suppressive function of RB lies in the pocket region (residues 380 to 785) 

(Weinberg, 1995; Whyte, 1995). The two pocket subdomains, A and B, are separated 

by a non-essential spacer and mutations within the pocket domain frequently arise in 

cancers (Weinberg, 1995; Whyte, 1995).

The ability of RB to repress pol III transcription was initially demonstrated by White 

et ah (White et al., 1996). The overexpression of RB was found to inhibit 

transcription of VAi without compromising transcription of a co-transfected CAT 

gene under the control of the pol Il-transcribed human immunodeficiency virus 

promoter (White et ah, 1996). This in vivo observation could potentially have 

resulted from an indirect effect arising from cell cycle changes. Evidence to support a 

direct inhibition of pol HI transcription was provided by the finding that recombinant 

RB repressed the expression of a range of class III genes when transcription was 

reconstituted in vitro using partially purified factors (White et ah, 1996). 

Furthermore, analysis of the pol III transcriptional activity in two human 

osteosarcoma cell lines, U20S, which contain functional wild-type RB, and SA0S2, 

which only express a non-functional truncated form of RB, demonstrated that RB 

could inhibit pol III when present at physiological concentrations within a cell (White 

et ah, 1996). The RB-deficient SAOS2 cells were found to express a transfected VAi 

gene -5-fold more actively than U20S and, similarly, SA0S2 cell extracts showed 

higher pol III activity in vitro (White et ah, 1996). Moreover, synthesis of pol III 

products was shown to be -5 -fold higher in fibroblasts derived from Rb' '̂ mice than 

the equivalent cells from wild-type Rb mice, providing conclusive evidence of a
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major role for endogenous RB in suppression of pol III transcription in vivo (White et 

ah, 1996). Indeed, RB has been shown to repress transcription of all pol III templates 

tested, demonstrating an ability to regulate transcription from all class III promoter 

types (Larminie et al., 1997; White et al., 1996). This strongly suggested that its 

mode of action pertained to modulation of a general pol III transcription factor or to 

pol III itself. Larminie et al. subsequently showed that TFIIIB is a specific target for 

repression by RB and pull-down assays identified that GST-RB was able to interact 

with TBP and hBRF to deplete extracts of TFIIIB activity (Larminie et ah, 1997). 

Furthermore, immunoprécipitation experiments provided evidence of an interaction 

between endogenous RB and TFIIIB when these factors are present at physiological 

ratios and demonstrated that this interaction occurs specifically with the 

hypophosphorylated (active) form of RB (Larminie et ah, 1997). This evidence is 

consistent with previous data demonstrating that TFIIIB activity increases as cells 

progress from Gi into S phase, the interval through which RB is inactivated by 

hyperphosphorylation (White et ah, 1995a). Subsequent studies identified more 

specifically the exact mechanism allowing RB to repress class III gene expression by 

demonstrating that when TFIIIB is repressed by RB, it is unable to form the necessary 

interactions with TFIIIC and pol III that are required for pol III transcription (Sutcliffe 

et ah, 2000). The foixn of TFIIIB utilised by type HI promoters differs from that used 

by types I and II. Although RB may also be able to inhibit this form recent data 

suggest that RB can repress transcription of class III genes with external promoters, 

such as the type III promoter gene U6, by targeting TBP and/or SNAPc/PTF (Hirsch 

et ah, 2000). SNAPc/PTF, which is not required for transcription of genes possessing 

type I or II promoters, interacts with RB. This presents the possibility that more than
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one mechanism of RB-mediated repression may regulate expression of genes with 

type III promoters.

RB has indeed been shown to repress transcription from all three nuclear RNA 

polymerases (Larminie et al., 1998; White, 1997). However, although a general 

repressor of pol III transcription, the class II genes inhibited by RB are very limited 

(Larminie et ah, 1997). Significantly though, a key target of RB is the factor E2F 

(Adams and Kaelin, 1995; Dyson, 1998), which is responsible for activation of a 

variety of pol Il-transcribed genes that are important for cell cycle progression 

(Adams and Kaelin, 1995; Dyson, 1998). Taken together with the repressive effects 

of RB on pols I and III, which are responsible for the production of important 

components required for protein synthesis, RB-repression presents a vital mechanism 

for controlling both cell growth, through inhibition of pols I and III, and cell 

proliferation, through its inactivation of E2F (Adams and Kaelin, 1995; Dyson, 1998). 

This regulation, along with a schematic illustration of RB and the interactions that 

allow it to repress transcription of pols I, II and III, is displayed in figure 1.5.

p53

Another important tumour suppressor, which is unrelated to RB, is p53. The gene 

encoding p53 is highly conserved among vertebrate species and with more than half 

of all human malignancies displaying a loss or mutation of the p53 gene, it represents 

the most frequently mutated gene in human cancers (Hollstein et al., 1991). Wild- 

type p53, like RB, can arrest cell growth and proliferation (Crook et al., 1994; Mercer 

et al., 1990). However, in contrast to RB, p53 is not an intrinsic cell cycle regulator 

and instead functions as an important checkpoint control mechanism protecting 

against aberrant growth and neoplastic transformation (Donehower et ah, 1992). Its
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Figure 1.5

The retinoblastoma protein and its repressive effects

Panel A shows a schematic diagram of the retinoblastoma protein (RB), indicating the 

A and B subdomains within the pocket domain.

RB is able to regulate transcription by RNA polymerases I, II and III (panel B). Key 

transcription factors are indicated. RB represses pol I transcription through the 

general factor UBF. RB is able to repress a subset of pol II templates through gene- 

specific regulatory factors such as E2F and RB-mediated repression of pol III 

transcription is achieved through an interaction with the general factor TFIIIB.

The pol II transcription factor E2F promotes cell cycle progression, apparently 

through activating the expression of genes that encode products required for DNA 

replication, such as thymidine kinase (TK), dihydrofolate reductase (DHFR) and 

DNA polymerase a, in addition to proteins that drive the cell cycle, including cdc2 

and cyclins. RB may limit the synthesis of these products through repressing E2F, 

providing a brake on proliferation. The transcription factors UBF and TFIIIB can also 

be repressed by RB, reducing the synthesis of rRNA and tRNA, which are important 

determinants of the biosynthetic capacity of the cell. Consequently, this may present 

a mechanism by which RB is able to limit the rate of translation and cellular growth.
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ability to do this is highlighted by the fact that Li-Fraumeni individuals, who possess 

a germ-line mutation in p53, are highly prone to cancer (Ko and Prives, 1996).

The p53 protein displays a variety of biochemical activities, amongst which is the 

ability to regulate transcription (Haffner and Oren, 1995). Its central core domain 

(residues 100 to 300) allows it to bind to DNA in a sequence-specific manner and 

stimulate expression of proximal class II genes with p53-binding sites (Kern et al., 

1991; Zambetti et al., 1992). Transcriptional activation is mediated through an acidic 

domain at the N-terminus that directly binds TBP (Liu et al., 1993; Truant et al., 

1993) and several TAFs in TFIID (Farmer et al., 1996). Such activation can influence 

pol Il-transcribed genes encoding proteins that are instrumental in inhibition of cell 

cycle progression. These include the cyclin-dependent kinase inhibitor p21/WAFl, 

which is able to prevent both Gi/S and G2/M transitions in the cell cycle, and pro- 

apoptotic genes such as Bax (Ko and Prives, 1996; Levine, 1997). In addition, p53 is 

also able to specifically repress promoters lacldng a p53-response element, including 

those that encode c-fos (Kley et al., 1992), PCNA (Jackson et al., 1994) and cyclin A 

(Yamamoto et ah, 1994), which are implicated in promoting progression of the cell 

cycle. Consequently, the ability of p53 to both activate and repress transcription of 

specific genes is likely to contribute to its role as a tumour suppressor (Cox and Lane, 

1995; Ko and Prives, 1996).

Transcriptional regulation by p53 does, however, extend beyond the confines of pol 

Il-transcribed genes and pol Ill-transcribed genes are also subject to p53-repression 

(Chesnokov et al., 1996). p53 appears to function as a general repressor of class III 

gene expression; however, these genes display differential sensitivity to the repressive
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effects of p53, with genes such as Alu and U6, possessing weak promoters, appearing 

most susceptible (Cairns and White, 1998; Chesnokov et al., 1996).

As a key general transcription factor, TFIIIB again serves as a direct target for 

repression by p53. Co-fractionation and co-immunoprecipitation experiments 

demonstrated that p53 associates with endogenous TFIIIB in a relatively stable 

complex at physiological ratios (Cairns and White, 1998). In wild-type fibroblasts 

TFIIIB is limiting, but disruption of the p53 gene confened a specific increase in 

TFIIIB activity and pol III transcription. Furthermore, the inhibition by p53 of in 

vitro pol n i  transcription can be specifically relieved by the addition of excess TFIIIB 

(Cairns and White, 1998). It has also been shown that the N-terminal region of p53, 

which possesses a TBP-binding site, is sufficient to bind TFIIIB (Chesnokov et al.,

1996). Point mutations that abolish the binding of free TBP similarly abolish TFIIIB 

binding and, moreover, also abrogate the ability of p53 to repress pol III transcription 

(Chesnokov et al., 1996). These data suggest that p53-repression of pol III 

transcription involves a direct interaction with TBP within the TFIIIB complex. Once 

TFIIIB has been assembled into a transcription complex, however, it becomes 

significantly less susceptible to p53-repression (Cairns and White, 1998).

A number of studies have implicated p53 in protein synthesis regulation (Ewen et al., 

1995; Fontoura et al., 1997; Maréchal et al., 1994). Its ability to control pol III 

transcription, specifically targeting TFIIIB, a major determinant of biosynthetic 

capacity of cells, supports this contention. Furthermore, that TFIIIB is targeted by 

two independent major tumour suppressors, RB and p53, both of which perfoim 

crucial physiological roles in regulating growth under specific environmental
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conditions, confers considerable weight to the role of pol III regulation in the control 

of growth.

1.7.2 Activities that stimulate pol III transcription 

TAPI

The TAPI gene has been cloned from yeast and shown to be essential for cell 

viability (Di Segni et al., 1993). Immunoblotting with anti-TAPI antibodies has 

demonstrated that TAPI does not co-purify with any known class III factors but is 

thought to act on DNA in chromatin to facilitate both transcription and transcript 

release, on account of its homology to a yeast DNA strand transfer protein with 

riboexonuclease activity (Aldiich et al., 1993; Di Segni et al., 1993).

Staf and Oct-1

Staf is a 651cD polypeptide of 600 amino acid residues (Schuster et al., 1995). It 

possesses seven tandemly repeated zinc fingers which are responsible for specifically 

binding to activator elements of DNA (Schuster et al., 1995). Staf was found to bind 

to the DSE elements of vertebrate U snRNA and 7SK genes and substitution of the 

Staf-binding motif resulted in reduced expression in vivo (Schaub et al., 1997). The 

majority of DSE elements contain an octamer motif within 28bp of a Staf site. It is 

believed that the ubiquitous Oct-1 factor, which has been shown to stimulate both pol 

II and pol III transcription (Murphy et al., 1989) may function co-operatively with 

Staf, since their respective binding motifs can activate synergistically, if appropriately 

spaced (Schaub et ai., 1997). Staf alone, however, is similarly able to stimulate both 

pol n  and pol III transcription (Schaub et al., 1997).
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Oct-1 was originally identified as a pol II factor and several other such factors have 

been implicated as potential regulators of pol III transcription, on the basis of 

sequence motifs linked with class III genes. Members of the ATF and CREB family 

that bind ATF sites may interact with a component of the pol III transcriptional 

machinery. ATF sites present in promoters of EBER2 and 7SL genes contribute to 

their expression (Bredow et al., 1990; Howe and Shu, 1989). Extracts prepared from 

HeLa cells treated with forskolin in order to raise cAMP levels and consequently 

activate a subset of these factors, displayed elevated levels of 7SL transcription, but 

not 7SK, which lacks an ATF motif in its promoter (Bredow et al., 1990). This 

suggests that these factors may be able to regulate pol III transcription.

Casein kinase II

Casein kinase II (CKII), which has been implicated in growth and cell cycle control, 

is a highly conserved serine/threonine protein kinase that is also able to stimulate pol 

III transcription in yeast (Hoclonan and Schultz, 1996). Extracts from the yeast strain 

cka2^, which carries a mutation in the catalytic a ’ subunit of CKII, ai*e compromised 

for transcription of tRNA and 5S rRNA while pol I and basal pol II transcription 

remain unaffected (Hockman and Schultz, 1996). Furtheianore, compromised 

transcription could be relieved by the addition of purified CKII and also by a 

synergistic action of CKII and recombinant TBP (Ghavidel et al., 1999; Hoclonan and 

Schultz, 1996). Thus CKII is thought to stimulate pol III transcription through 

phosphorylation of TFIIIB, most likely through specifically phosphorylating the TBP 

component of TFIIIB. However, other components of TFIIIB or of the remaining pol 

III machinery that also possess CKII tai'get motifs may be subject to stimulation by 

CKII (Ghavidel et al., 1999; Hockman and Schultz, 1996).
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La can stimulate recycling of the human pol III transcription complex and 

transcription from isolated complexes preassembled on the VAi promoter (Fan et al., 

1997; Maraia, 1996). CKII phosphor y lates La; however, in contrast to the situation in 

yeast, CKII appears to confer an inhibitory effect on La (Fan et al., 1997), although 

the effect of this inhibition on the rate of pol III transcription under physiological 

conditions remains to be established.

Protein phosphatase 2A

A yeast strain tpd3^\ which possesses a temperature-sensitive mutation in the TPD3 

gene encoding the regulatory A subunit of protein phosphatase 2A (PP2A), was found 

to cease synthesis of tRNA at the non-permissive temperature and, similaiiy, extracts 

were unable to support transcription of tRNA genes (Van Zyl et al., 1992). Mixing 

experiments revealed that the defect in tpd3‘® cells is attributed to an inhibitory 

activity, as opposed to the loss of a transcription component (Van Zyl et ah, 1992). It 

is believed that PP2A confers a positive regulation on pol III transcription in yeast 

through stimulating TFIIIB, and to a lesser degree, pol III (Van Zyl et al., 1992). A 

Idnase that inactivates TFIIIB, and possibly pol III, through phosphorylation could 

account for the inhibitory effect observed in the tpd3 mutants, since this inhibition 

may noiTnally be balanced by PP2A.

1.7.3 Repression by chromatin

The assembly of DNA into chromatin, the natural organisation of DNA in vivo, is 

achieved principally through association with highly conserved proteins called 

histones. They are small basic polypeptides of 11-161<D and the core histones, H2A, 

H2B, H3 and H4, interact with each other to form a nucleosome, the fundamental
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repeating unit of chromatin (Komberg, 1977). A nucleosome is comprised of a 

central (H3/H4)2 tetramer around which 120bp of DNA are wrapped. A histone 

H2A/H2B dimer subsequently flanks each end through protein-protein interactions to 

result in an octamer organising a total 160bp of DNA in two left-handed superhelical 

turns (Thomas, 1984; White, 2001; Wolffe, 1998). Nucleosomes are generally 

separated by 20-30bp that is refened to as linker DNA, which is commonly associated 

with a linker histone such as HI, the presence of which stabilises the interaction of the 

nucleosome with the DNA wrapped around it (Thomas, 1984; White, 2001; Wolffe, 

1998). Linker histones promote the organisation of nucleosomal an*ays to coil and 

fold into chromatin fibres (Thomas, 1984). These fibres are believed to have a 

solenoidal structure, with each turn containing six or more nucleosomes and over 

lOOObp of DNA (Thomas, 1984). Chromatin fibres are assembled into large domains 

with non-histone proteins performing both structural and regulatory roles. Further 

folding of these domains within the chromosome compacts the length of DNA by an 

additional 100-fold.

Eukaryotic rRNA genes lack nucleosomes on the transcribed repeats (Lucchini and

Sogo, 1998); however, nucleosomes are associated with the coding regions of many

genes transcribed by pol II and pol III (Chipev and Wolffe, 1992; Englander and

Howard, 1995; Gottesfeld and Bloomer, 1980; Louis et al., 1980). Such packing of

DNA presents a major obstacle to transcription, severely restricting the accessibility

of genes to transcription factors (Wolffe, 1995). A variety of studies have established

that pol HI transcription can be inhibited by the presence of histones (Almouzni et al.,

1990; Gottesfeld and Bloomer, 1982; Morse, 1989). However, the susceptibility of

class III genes to nucleosomal repression is highly template-dependent. The majority

of tRNA genes are remarkably resistant to chromatin-mediated repression, while
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middle repetitive genes such as B2 and Alu are extremely susceptible (Bouvet et ah, 

1994; Russanova et ah, 1995). Acétylation can facilitate the access of transcription 

factors to chromatinised promoter sequences (Lee et al., 1993). Thus, evidence that 

human TFIIIC2 possesses histone acetyltransferase (HAT) activity (Hsieh et al., 1999; 

Kundu et al., 1999) suggests that TFIIIC performs a role, in addition to its function as 

an assembly factor, to weaken the interaction of nucleosomes with the transcribed 

region of at least some class III genes.

1.8 Physiological regulation of pol III transcription

In higher eukaryotes pol III transcription is strongly regulated in response to a variety 

of important physiological stimuli (White, 1998a; White, 1998b).

Differentiation

In situ hybridisation has revealed that pol III transcript levels are substantially reduced

when parietal endoderm foims during early mouse embryogenesis (Vasseur et al.,

1985). This can be similarly reproduced in culture using F9 embryonal carcinoma

(EC) cells, which differentiate into parietal endoderm upon treatment with retinoic

acid and cAMP (Muiphy et al., 1983; White et al., 1989). Differentiation causes

approximately a 9-fold reduction in pol III transcription rate, mediated through a

specific down-regulation of TFIIIB (White et al., 1989). More specifically, it has

been shown that the abundance of two of the essential components of TFIIIB, TBP

and BRF, decreases during F9 cell differentiation. The assembly of TBP specifically

into TFIIIB is reduced, which is not the case for all TBP-containing complexes. BRF
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levels, in particular, show a dramatic decrease during F9 cell differentiation, which 

alone is sufficient to account for the overall decline in class III transcriptional activity 

that accompanies parietal endoderm foiTnation (Alzuherri and White, 1998).

The cell cycle

In mammalian systems, the cell cycle is subject to careful regulatory control and 

various mechanisms are employed to modulate pol III transcription (Figure 1.6). 

Indeed, all nuclear transcription is repressed at mitosis (Gottesfeld and Forbes, 1997), 

with inhibition of pol HI transcription being achieved through the phosphorylation 

and inactivation of TFIIIB (Gottesfeld et al., 1994; Leresche et al., 1996; White et al., 

1995b). Gottesfeld et al. demonstrated that TFIIIB from metaphase-aiTested Xenopus 

eggs was incapable of supporting transcription without prior treatment with 

phosphatase (Gottesfeld et a l, 1994). Nonetheless, cyclin B/cdc2-depleted mitotic 

extracts still display repressed pol III transcription. This can be relieved by the 

general kinase inhibitor DMAP, suggesting that additional Idnases may be present that 

can similarly inhibit pol HI activity in metaphase-arrested Xenopus eggs (Hartl et a l,

1993).

TFIIIB is also subject to specific inhibition in mitotic HeLa cells (White et a l, 

1995b). In both Xenopus and HeLa cells, the TBP subunit of TFIIIB becomes 

hyperphosphorylated during mitosis, the functional significance of which, however, 

remains unclear (Leresche et a l, 1996; White et a l, 1995b). Recombinant TBP is 

unable to restore transcriptional activity in mitotic extracts and repression appears to 

be attributed to a specific loss of TAF activity (Leresche et a l, 1996; White et al, 

1995b). Indeed, given that the BRF subunit of TFIIIB is also found to be 

hypeiphosphorylated in mitotic HeLa cells, it may be that specific inactivation of this
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Figure 1.6

Cell cycle control of pol III transcription

Model illustrating the regulatory mechanisms that contribute to the cell cycle control 

of pol III transcription in mammalian systems. During quiescence (Go), when 

expression of pol III transcripts is low, TFIIIC may be present in its transcriptionally 

inactive TFIIIC2b fonn and TFIIIB activity is subject to repression by RB. In cycling 

cells TFIIIC predominates in its active TFHIC2a form, however, TFIIIB remains 

associated with RB, sustaining low transcription levels. Following the Gi/S 

transition, transcription levels aie significantly elevated until the end of G2 phase. 

Transcription is repressed again during mitosis through the phosphorylation-mediated 

inactivation of TFIIIB.

52



Gq phase

TFIIIB

Gj phase

TFIII

;TFm;c2a;

M phase

S phase

PoTHT

T F IIIR )™ /9 f!

G. phase

. Pol I I I .

TFIHC2a



TAF could account for the repression of transcription. However, the highly 

condensed state of chromosomes, that is characteristic of mitosis, is likely to be a 

contributing factor (White et al., 1995b).

As cells exit mitosis, TFIIIB hyperphosphorylation is rapidly reversed, although 

TFIIIB activity remains low and is limiting in early Gi, a situation that reflects the 

low TAF activity during this phase (White et al., 1995a). The rate of pol III 

transcription only increases gradually as cells progress through Gi phase (Scott, 2001; 

White et al., 1995a). Transcription levels are maximal in S and G2 phases when TAF 

activity is no longer limiting and active TFIIIB is in relative excess over TFIIIC 

(White et al., 1995a).

Detailed time courses have established that the significant rise in TFIIIB activity and 

pol III transcription in late G] phase closely correlates to the time when RB is 

inactivated through hyperphosphorylation by the cyclin D- and E-dependent kinases 

around the restriction (R) point (Johnson et al., 1974; Mauck and Green, 1974). 

Indeed, co-immunoprecipitation experiments revealed that RB dissociates from 

TFIIIB shortly before S phase entry, reflecting its ability to bind and inactivate TFIIIB 

only when in its active underphosphor y lated form (Scott, 2001). RB remains in its 

inactive hypeiphosphorylated state throughout the S and Gz phases, until being 

dephosphorylated at the start of the next Gi phase. It is then again able to bind and 

inactivate TFIIIB, likely accounting for the low transcriptional activity during this 

phase of the cell cycle (Grana et al., 1998; Herwig and Strauss, 1997; Mittnacht, 

1998). Consequently, RB plays a major role in cell cycle regulation of pol III 

transcription.

53



In addition to its active period during early Gi, RB is similarly underphosphorylated 

and active in quiescent cells (White et al., 1995a). During quiescence, when cells exit 

the cell cycle and growth arrest, the synthesis of tRNA and 5S rRNA is dramatically 

reduced (Johnson et ah, 1974; Mauck and Green, 1974). This reflects the reduced 

biosynthetic demands of cells at rest and the likely important role of RB in 

suppressing pol III transcription during Go phase. In support of the crucial function of 

RB in this context, a decrease in TFIIIB activity has been observed in serum-starved 

mouse fibroblasts (Tower and Sollner-Webb, 1988). However, in Rb"^'fibroblasts the 

ability to down-regulate pol III transcription is compromised (Scott, 2001), strongly 

implicating RB-mediated repression of TFIIIB in the reduced pol III transcription 

levels characteristic of G q phase. Despite this, some decline in transcription, albeit 

less substantial, is still observed in quiescent RB cells, indicating the involvement of 

additional mechanisms in the control of pol III activity in quiescent cells (Scott, 

2001). The RB-related pocket proteins pl07 and pl30 possess the ability to repress 

pol III transcription both in vitro and in vivo (Sutcliffe et ah, 1999). Furthermore, 

pl07 p i30 double knockout mouse fibroblasts are compromised in their ability to 

decrease pol III transcription in response to serum withdrawal, suggesting that one or 

both of these proteins contribute to the control of pol III transcription during 

quiescence (Sutcliffe et al., 1999). It would appear that pl30 is likely to be the more 

prominent player in this regard, as while pl07 is poorly expressed in serum-starved 

mouse fibroblasts, pl30 is relatively abundant and in an active form (Grana et al.,

1998).

54



1.9 Deregulation of pol III transcription by transformation

An accumulating mass of evidence shows that the abundance of pol III transcripts is 

abnormally elevated in transformed and tumour cell lines (Brickell et ah, 1983; 

Kramerov et ah, 1990; Majello et ah, 1985; Scott et ah, 1983). Numerous 

transforming agents can stimulate pol III transcription, including a range of chemical 

carcinogens when applied to cells (Garber et al., 1991; Garber et al., 1994; Scott et al., 

1983). Moreover, recent studies have established that elevation of pol III transcripts 

is a feature that can also be observed in tumours in vivo (Chen et al., 1997a; Chen et 

a l, 1997b; Winter et a l, 2000), providing substantial support for the contention of a 

critical role of pol III transcriptional activation in tumourigenesis. However, in many 

cases the mechanistic basis of pol III deregulation remains elusive. Given the 

prominent roles of RB and p53 in pol III repression and the propensity for their 

inactivation during neoplastic transformation, inactivation of these tumour 

suppressors could possibly account for such deregulation of pol III in transformed and 

tumour cell types. Indeed, although p53 inactivation has yet to be established as 

contributing to the elevated pol III activity found in tumours, evidence that this is the 

case for RB has already been documented.

Most of the naturally occumng RB mutations in tumours encompass the pocket 

domain (Hu et a l, 1990), which is essential for RB regulation of pol III activity 

(White et a l, 1996). Moreover, direct evidence linking naturally occumng RB 

mutations with the elevation of pol III activity consistently observed in transformed 

and tumour cells has been documented. Studies have shown that subtle mutations 

within the pocket domain arising in small cell lung carcinomas, which inactivated RB
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function, also conferred a loss of the ability to repress pol III transcription (White et 

ah, 1996). Additionally, TFIIIB is unable to bind to a mutant form of RB that is 

found in the osteosarcoma cell line SAOS2 (Larminie et ai., 1999). It seems highly 

likely that the release of TFIIIB from RB-mediated repression will arise whenever RB 

function is compromised and it has been suggested that this may be the case in all 

human malignancies (Weinberg, 1995).

Regulation of RB activity in normal cells can be achieved through the action of the 

cyclin D- and E-dependent kinases (Grana et al., 1998). In many human cancers, 

which retain wild-type RB, cyclin D-dependent kinases are hyperactive, providing an 

alternative mechanism for RB inactivation. In addition to the overexpression of 

cyclin DI in 30-40% of primary breast tumours (Bates and Peters, 1995), the gene for 

p i6, a specific repressor of the cyclin D-dependent kinases, is deleted in many other 

cancers such as oesophageal, bladder, lung and pancreatic carcinomas (Hirama and 

Koeffler, 1995; Hunter and Pines, 1994). Thus, these mechanisms provide two 

distinct means of elevating cyclin D-dependent kinase activity in cancers, ensuring 

inactivation of RB by phosphorylation.

While inactivation of RB can release TFIIIB from repression, increase in TFIIIB 

activity can similarly result from constitutively active Ras (Wang et al., 1997). Given 

that activating mutations in Ras are also very frequently found in human tumours, this 

presents yet another potential mechanism for deregulating pol III transcription in 

transformed and tumour cells (Lowry and Willumsen, 1993).
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1.10 Regulation of pol III transcription by viruses

Following infection, viruses are able to subvert the host cells translational and 

replication machinery towards mass synthesis of viral proteins and the viral genome, 

A variety of viruses have been shown to stimulate pol III transcription, frequently as a 

means to meet an increase in biosynthetic demands. Despite the evolution of various 

deregulating mechanisms, there are a number of common features centralising around 

the key aspects of pol III transcriptional control.

Adenovirus

Several viral genomes contain class III genes which aie necessary for viral replication 

(White, 1998a). Adenovirus is one such example and encodes two pol III products, 

VAi and VAn (Soderlund et al., 1976; Weinmann et al., 1976). These short RNAs are 

expressed at very high levels late in infection (Soderlund et al., 1976) and contribute 

to manipulation of the host cell’s translational apparatus, ensuring the synthesis of 

viral proteins (Thimmappaya et al., 1982).

The deregulation of pol III transcription pertains largely to the adenovirus oncoprotein 

ElA. Indeed, mutant virus strains lacking E lA  show little or no activation of VA 

(Berger and Folk, 1985; Hoeffler and Roeder, 1985; Sollerbrant et al., 1993) while 

transfection of the E lA  gene is alone sufficient to transactivate VA (Aufiero and 

Schneider, 1990). Furthermore, purified recombinant E lA  can stimulate VAi 

transcription by up to 50-fold in HeLa extracts (Datta et al., 1991). However, ElA  

does not bind to the VAi gene to exert a direct effect (Datta et al., 1991) but 

influences transcription through the general pol III factors. HeLa cells infected with
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wild-type adenovirus display a significant elevation in TFIIIC2 activity (Hoeffler et 

al., 1988; Hoeffler and Roeder, 1985). This is a manifestation of a selective increase 

in the level of the TFIIIC 110 subunit, seemingly through an induction of TFIIICllO 

mRNA by ElA  (Sinn et al., 1995) that raises the proportion of the transcriptionally 

active TFIIIC2a form (Hoeffler et al., 1988). However, E lA  has also been shown to 

stimulate pol III transcription in vitro (Datta et al., 1991), implying that alternative 

mechanisms, that do not require de novo protein synthesis, are also utilised by 

adenovirus in order to stimulate pol III transcription. Indeed, E lA  can bind and 

inactivate the RB family of pocket proteins and thereby release TFIIIB from 

repression (White et al., 1996), as well as disrupting the interaction between Drl and 

TBP (Kraus et al., 1994). That E lA  can overcome the important inhibitory functions 

of RB and D rl that regulate TFIIIB activity provides additional routes by which 

adenovirus may deregulate pol III transcription (White et al., 1994; White et al.,

1996).

In addition to the viral VAi and VAn transcripts, adenovirus-infected cells have been 

shown to overexpress endogenous Alu genes (Panning and Smiley, 1993; Russanova 

et al., 1995). This may be attributed, at least in part, to the increased proportion of 

Alu genes that are accessible to transcription factors through changes in the chromatin 

structure (Russanova et al., 1995). Full induction of Alu genes, however, requires 

another adenovirus oncoprotein, ElB (Panning and Smiley, 1993). ElB is able to 

bind and inactivate p53, suggesting that adenovirus infection may also overcome the 

regulatory effects of p53 on pol III transcription (Ko and Prives, 1996). Taken 

together, these observations demonstrate that a range of mechanisms can be employed 

by adenovirus in order to achieve elevated pol III transcription levels.
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Hepatitis B virus

Hepatitis B virus (HB V) is strongly associated with the development of hepatocellular 

carcinoma and its X gene induces liver cancer in transgenic mice (Kim et ah, 1991). 

Pol III transcription can be significantly increased by transfection into a variety of cell 

lines, including rat lA, Drosophila S-2 and Chang liver (CL) cells (Aufiero and 

Schneider, 1990; Kwee et al., 1992; Wang et al., 1995). As with the adenovirus ElA  

protein, the X gene products are unable to bind DNA directly and use protein-protein 

interactions with general transcription factors to influence pol III transcription. The X 

protein is able to interact directly with the conserved core of the TFIIIB subunit TBP 

and the human RPB5 subunit of pols I, II and III (Cheong et al., 1995; Qadri et al., 

1995). Furthermore, a specific increase in TFIIIB activity that is observed could be 

accounted for by an X-induced rise in cellular TBP, since TBP is the limiting factor 

for pol III transcription in the cell lines utilised in these studies (Trivedi et al., 1996; 

Wang et al., 1997; Wang et al., 1995).

Additionally, the X gene products have also been found to stimulate kinase pathways, 

with both the protein kinase C (PKC) and Ras-Raf-MEK-MAP kinase signalling 

cascades being activated (Benn and Schneider, 1990; Kekule et al., 1993). Inhibitors 

of either PKC or Ras are able to block the X-mediated increase in TBP abundance and 

pol III transcription (Wang et al., 1997; Wang et al., 1995). A dominant negative 

mutant form of Ras achieves the same effect but can be relieved by coexpression of 

constitutively active Raf-1 (Wang et al., 1997). These results provide evidence that X 

activates pol III transcription via cellular signalling pathways. Notably, in the 

absence of the X protein, the PKC pathway has a negative effect on pol III activity 

(James and Carter, 1992; Wang et al., 1995).
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Human papillomavirus

Human papillomaviruses (HPVs) have an aetiological role in most cervical 

malignancies (Vousden, 1995). HPV expresses a viral oncoprotein called E7 which 

has been shown to bind to the pocket domain of RB causing its inactivation (Dyson et 

al., 1989). Significantly, the affinity with which E7 binds RB is greater in the highly 

malignant HPV strains such as HPV-16 and HPV-18 (Heck et al., 1992). Pol III 

transcription can be dramatically elevated in vivo by E7, which cannot be attributed to 

an indirect response to cell transformation since a non-transforming mutant E7 

protein, that retains its RB-binding activity, is similarly able to stimulate pol III 

transcription (Larminie et al., 1999; Sutcliffe et al., 1999). This supports the fact that 

the ability of E7 to activate pol III transcription is dependent on the integrity of the 

LXCXE RB-binding motif of E7, since deletions or substitutions within this domain 

abolish its capacity to stimulate expression of a class III gene (Sutcliffe et al., 1999). 

Consequently, it seems highly probable that the ability of the HPV E7 oncoprotein to 

deregulate pol III transcription is achieved through release of TFIIIB from repression 

by RB and its p i07 and p i30 relatives.

Human T-cell leukaemia virus type I

Human T-cell leukaemia virus type I (HTLV-I) is responsible for the aggressive 

malignancy called adult T-cell leukaemia and a neurodegenerative disease known as 

tropical spastic pai'aparesis/HTLV-I-associated myelopathy (Jacobson et al., 1988; 

Poiesz et al., 1980). The pathogenic effects of HTLV-I are ascribed to the Tax protein 

it expresses. This protein has been shown to transactivate VAi when co-expressed in 

transient transfection assays and recombinant Tax stimulates expression of various pol 

III genes when added to crude extracts (Gottesfeld et al., 1996; Piras et al., 1996). In
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HTLV-I-infected T cells TFIIIB activity and the synthesis of tRNA and 5S rRNA are 

elevated (Gottesfeld et al., 1996). Tax is believed to stimulate pol III transcription 

through raising the effective concentration of active TFIIIB, although the precise 

mechanisms involved have yet to be elucidated.

Simian virus 40

The small DNA tumour virus Simian virus 40 (SV40) is able to transform a variety of 

rodent cell types, causing a stimulation of pol III transcription (Carey et al., 1986; 

Scott et al., 1983). Several comparisons can be drawn with adenovirus as regards the 

mechanisms employed to achieve this. Like adenovirus, both TFIIIB and TFIIIC2 

activities are substantially elevated in SV40-transformed cell extracts when compared 

to extracts of the untransformed parental cell line (Lanninie et al., 1999). While only 

the TFIIICllO subunit of TFIIIC2 is overexpressed in adenovirus-infected HeLa cells, 

both the TFIIIC220 and TFIIICllO subunits aie significantly more abundant 

following SV40 transformation, suggesting that overexpression of TFIIIC2 may 

account for its increased activity (Larminie et al., 1999). Furthermore, the increased 

abundance of these subunits reflects an overproduction of the conesponding mRNAs 

(Larminie et al., 1999). SV40 appears to mimic adenovirus more closely in its ability 

to increase the proportion of TFIIIC2 in its active TFIIIC2a foim (White et al., 1990).

SV40 stimulation of TFIIIB activity, however, stems from an alternative mechanism, 

with expression levels of the TBP and BRF subunits of TFIIIB remaining unaffected 

following SV40 transformation (Larminie et al., 1999). As with adenovirus, TFIIIB 

activity is raised through release from RB-mediated repression. SV40 encodes a large 

tumour (T) antigen that resembles ElA  in being able to bind and inactivate RB 

(DeCaprio et al., 1988; Ewen et al., 1989; Ludlow et al., 1989). Consequently, this
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abolishes the repressive influence of RB on TFIIIB and the proportion of TFIIIB 

bound by RB in SV40-transfoiTned fibroblasts is severely diminished (Lanninie et aL,

1999). In contrast to adenovirus, where a second oncoprotein, ElB , binds and inhibits 

p53, in SV40, this function also pertains to the large T antigen, despite another t 

antigen being expressed (Ko and Prives, 1996). However, the effect of this large T 

antigen interaction on the function of p53 in pol III transcriptional repression remains 

to be determined.
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1.11 Objectives

Polyomavirus is another small DNA tumour virus and is closely related to SV40. It 

was shown to stimulate pol III transcription by Majello et al, in 1985; however, the 

mode of action involved remained to be deteimined. Consequently, the focus of this 

study has been to elucidate the mechanisms by which Polyomavirus exerts its effects 

on pol n i transcription.

Several features of viral transformation can be observed among different viruses. 

Nonetheless, while common mechanisms of deregulation exist, viruses capable of 

stimulating pol HI transcription display variable oncogenic capacities pertaining to the 

transforming proteins they express.

It was therefore of interest to establish which aspects of the pol III transcriptional 

machinery are targeted by Polyomavirus, identifying mechanisms common to SV40 

or other transforming viruses and those unique to Polyomavirus.

Furthermore, establishing which of the three oncoproteins expressed by Polyomavirus 

is responsible for each deregulating activity was also a principal objective.
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Chapter 2

Materials and Methods

2.1 Cell culture

All cell lines, Balb/c 3T3 Clone A31, Py3T3 (transformed by wild-type 

Polyomavirus) (Scott et al., 1983), Pytsa3T3 (transformed by the tsa mutant which 

has a mutation in the gene encoding the large T-antigen) (Scott et al., 1983), SV3T3 

C138 and SV3T3 C149 (transformed by Simian Virus 40)(Rigby et aL, 1980) were 

routinely cultured in DMEM (Dulbecco’s Modified Eagle Medium) containing 10% 

fetal calf serum (PCS, Sigma), 2mM L-glutamine, lOOU/ml penicillin and lOOjig/ml 

streptomycin in a humidified atmosphere containing 5% CO2 at 37°C. Cell culture 

was performed in a class II hood, using aseptic technique and sterile equipment and 

reagents.

Cells were passaged when subconfluent; approximately every 2 to 3 days. After 

media was aspirated from the flask, 2ml of buffered trypsin-EDTA (0.05% trypsin, 

0.02% EDTA) was added to the cells, then aspirated immediately. A further 2ml was 

added and left for approximately 2 minutes at 37°C. Following trypsinisation, fresh 

media was immediately added to the dissociated cells in order to neutralise the 

trypsin. Cells were centrifuged at 1200g for 2 minutes at 4°C and the media removed. 

The pelleted cells were then resuspended in fresh 10% PCS DMEM solution at a ratio 

of 1:10 or as appropriate.
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Cyro-freezing was used for storage of all cell lines. Cells were trypsinised as 

described and, following pelleting by centrifugation, cells were resuspended in a 

solution of 82% DMEM (10% ECS), 10% neat ECS and 8% dimethylsulphoxide 

(DMSO). Cells were aliquotted into cyro-tubes and frozen in stages by initially being 

placed at ~80°C overnight and subsequently being transfen'ed to liquid nitrogen 

storage. Thawing of cells was peifoiTned rapidly by placing cyro-tubes in a waterbath 

at 37°C until just thawed. Cells were then mixed with fresh media, centrifuged and 

the supernatant aspirated off to ensure removal of DMSO prior to resuspension in 

10% PCS DMEM.

2.2 [̂ H] Thymidine incorporation

Cells were plated out onto 24-well plates at a concentration of 5 x 10  ̂ cells/well in 

1ml of media. Cells for serum withdrawal or serum stimulation treatment, were 

incubated in 400p.1 of serum-free media for 24 hours before addition of lOOpl of 

serum-free media or neat serum, respectively. Following a 3 hour incubation period, 

cells were treated with [^H] thymidine (O.lpCi/ml) and incubated for a further 3 hours 

prior to harvesting. Cells were washed 3 times with 500pl of ice-cold phosphate- 

buffered saline (PBS), 3 times with 500pl of 5% trichloroacetic acid (TCA) to 

precipitate the DNA and twice with 500|li1 of ethanol. Samples were then solubilized 

in 500pl of 0.3M NaOH, transfened to scintillation vials and 3ml of Optiflow (Fisons 

chemicals) added to allow the incorporation of [^H] thymidine into DNA to be
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measured by liquid scintillation counting. Results are expressed as disintegrations per 

minute.

2.3 Preparation of whole cell extracts

All whole cell extracts were prepared from cells grown in 10cm tissue culture dishes 

to facilitate scraping and were harvested at approximately 80% confluency. 

Preparation was performed on ice as rapidly as possible and all solutions and tubes 

were kept ice-cold to maintain cell activity. Cells were washed twice with 5ml of 

PBS before being scraped with a plastic spatula into 5ml of ice-cold PBS. Cells were 

collected in 50ml Falcon tubes and pelleted by slow centrifugation at 1200g for 8 

minutes at 4°C. A small volume of fresh ice-cold PBS was used to resuspend the cell 

pellets and allow the cells to be transfeiTcd to eppendorf tubes. These were then 

microcentrifuged briefly at 4°C to re-pellet the cells and the PBS removed. The 

volume of cell pellets were then measured by comparison with pre-measured volumes 

of water. Mircroextraction requires pellets to be between 50 - 150jil, giving 

approximately 0.5 -  3 x 10  ̂cells; larger pellets were subdivided. An equal volume of 

freshly made pre-cooled microextraction buffer (450mM NaCl, 50mM NaF, 20mM 

Hepes pH 7.8, 25% glycerol, ImM DTT, 0.5mM PMSF, 0.2mM EDTA, 40pg/ml 

bestatin, Ipg/ml trypsin inhibitor, 0.7|Lig/ml pepstatin, 0.5pg/ml aprotinin, 0.5jig/ml 

leupeptin) was added to the cells and, following resuspension, the cells were 

immediately snap-frozen on dry ice. Cells were then placed in a 30°C waterbath until 

just thawed before being immediately returned to dry-ice. This freeze-thaw procedure
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was performed a total of 3 times to ensure optimal cell lysis, with cells then being 

microcentrifuged at 7000g for 7 minutes at 4°C after the third thaw. The supernatant 

was carefully decanted into a fresh tube, leaving behind the cell debris, and then 

promptly aliquotted and snap frozen. These whole cell extracts were then stored at -  

70°C,

2.4 Preparation of total cellular RNA

Total cellular RNA was isolated from cells when approximately 80% confluent using 

TRI reagent (Sigma), a solution of guanidine thiocyanate and phenol, in accordance 

with the manufacturer’s instructions. Media was aspirated off cells grown in 10cm 

tissue culture dishes and residual media removed with two washes using 5ml ice-cold 

PBS. Cells from each dish were harvested by scraping in 1ml of TRI reagent per dish 

and transfened to a sterile eppendorf tube. Cells were left to stand for 5 minutes at 

room temperature to ensure complete dissociation of nucleoprotein complexes. 0.2ml 

of chloroform was then added to each tube and the samples vortexed for 15 seconds. 

The samples were then allowed to stand for a further 15 minutes at room temperature 

prior to being centrifuged at 13 OOOg for 15 minutes at 4°C. This resulted in 

separation of the samples into three phases: a lower red organic phase containing 

protein, a middle white interphase containing precipitated DNA and an upper 

colourless aqueous phase which contains the RNA. These upper phases were 

carefully removed, ensuring no contamination from the remaining phases and 

transferred to fresh eppendorf tubes. Isopropanol (500pl) was added to each of these
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tubes containing the aqueous RNA and thoroughly mixed by repeated inverting. 

Following 5 - 1 0  minutes incubation at room temperature to allow maximal 

precipitation of RNA, samples were centrifuged at 13 OOOg for 10 minutes at 4°C. 

The supernatant was then removed and the remaining RNA pellet was washed with 

1ml of 75% ethanol made up with diethypyrocarbonate (DEPC)-treated dHiO (0.1% 

DEPC), thoroughly mixed into solution, left overnight at room temperature and then 

autoclaved to inactivate the remaining DEPC. The samples were vortexed briefly, 

subsequently microcentrifuged at 7500g for 5 minutes at 4°C and the supernatant 

aspirated off. Residual supernatant was removed with a P20 pipette following pulse 

microcentrifugation. Appropriate volumes of DEPC-dHzO, in the range of 10 - 30pl, 

were added to the RNA pellets and the samples were heated in a 65°C waterbath for 

1 0 -1 5  minutes to facilitate resuspension of the RNA. The samples were stored at -  

70°C.

RNA concentration was determined by UV spectrophotometry using the calculation: 

RNA concentration (p,g/ml) = absorbance at 260nm x 40 x dilution factor. A ratio of 

absorbance at 260nm to 280nm in the range of 1.8 -  2, indicated the RNA samples 

were relatively free from contamination with DNA or protein.

2.5 Northern blot analysis of total cellular RNA

Typically RNA samples of 10 - 30pg were used in analysis, made up to a total volume 

of lOjil with DEPC-dHzO. lOpl of 2 x RNA sample buffer (1 x MOPS comprised of 

solutions made up with DEPC-dHzO (20mM MOPS pH 7.0, 8mM sodium acetate,
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ImM EDTA pH 8.0), 4.4M formaldehyde, 54% formamide) was added to each 

sample prior to heating at 65°C for 15 minutes to denature the RNA secondary 

structure. The samples were immediately transferred to ice to prevent any 

renaturation and 2\xl of Img/ml ethidium bromide and 2|Li1 of 10 x RNA loading 

buffer (50% glycerol, ImM EDTA, 0.25% bromophenol blue, 0.25% xylene cyanol 

FF) were added to each sample. Following a 20 minute pre-run at 40V of a 

denaturing gel (1% agarose, 2.2M formaldehyde, 1 x MOPS) in 1 x MOPS, samples 

were loaded and run for approximately 5 hours at 40V in order to electrophoretically 

separate the different species of RNA according to size. The gel was visualised under 

a UV transilluminator in order to confirm separation and photographed. It was then 

washed for 20 minutes in 20 x SSC buffer (3M NaCl, 0.3M sodium citrate pH 7.0) 

prior to capillary transfer as described by Maniatis et al. (Maniatis et al., 1982).

The transfer procedure required the prepared gel to be placed, inverted, on a bridge of

Whatmann 3MM chromatography paper supported on a glass plate and suspended

over a reservoir of 20 x SSC buffer. An appropriate size of Hybond N nylon

membrane optimised for nucleic acid transfer (Amersham) was pre-soaked in 20 x

SSC and positioned over the gel, followed by a further two layers of pre-soaked

Whatmann paper; at each stage of layering, care was taken to ensure removal of air

bubbles. This amangement was surmounted with a stack of paper towels and an

appropriate weight in order to allow efficient capillary action. During transfer, the

migration of the RNA from the gel to the nylon membrane is facilitated by the passive

movement of the transfer solution through the gel. Plastic wrap was used to prevent a

direct contact between the paper towels and the Whatmann bridge; this ensured

movement of the buffer was only through the gel. In order to achieve high-transfer

efficiency, the capillary action was allowed to proceed overnight. Following transfer,
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the RNA was fixed to the membrane by UV-crosslinking at 1200^J and was then 

washed for 5 minutes in DEPC-dH20.

Radiolabelled DNA probes complementary in sequence to a particular RNA of 

interest were used to locate it on the membrane. The pol III B2 gene probe was a 

240bp EcoRI-f jrri fragment from pTB14 (White et a l, 1989) and the pol II acidic 

ribosomal phosphoprotein PO (ARPP PO) probe, a I kb EcoKL-HindWl fragment from 

the mouse cDNA (Hurford et al., 1997). The probes were labelled using a Megaprime 

DNA labelling system (Amersham) according to the random oligonucleotide priming 

method of Feinberg and Vogel stein (Feinberg and Vogelstein, 1984). This method 

involved the addition of 5pi of random hexamer oligonucleotide sequences and the 

appropriate volume of DEPC-dH20 for a final volume of 50pl in the total reaction to 

25ng of purified DNA template, which was subsequently denatured by heating at 

95°C for 5 minutes. DNA synthesis is primed by the hexamer oligonucleotides 

which are able to anneal to the DNA during slow cooling to room temperature. 

Labelling was earned out at 37°C for Ihour in 1 x reaction buffer (containing Tris- 

HCl pH 7.5, 2-mercaptoethanol, MgCl2)(Amersham) following the addition of 4pl 

each of dATP, dGTP, dTTP (in Tris-HCl pH 8.0, 0,5mM EDTA), SO^Ci of [a“ P] 

dCTP (lOmCi/ml, 3000Ci/mmol) and 2U DNA polymerase I Klenow fragment (in 

lOOmM potassium phosphate pH 6.5, lOmM 2-mercaptoethanol, 50% glycerol). The 

reaction was stopped by heating at 80°C for 5 minutes and kept at 4°C until the nylon 

membrane with bound RNA had been pre-hybridised. This involved rotation in a 

hybridisation oven at 45°C for 45 minutes in 20ml of hybridisation buffer (0.2M 

sodium phosphate buffer pH 7.2, ImM EDTA, 1% (w/v) BSA, 7% (w/v) sodium 

dodecyl sulphate (SDS), 45% (w/v) foimamide in DEPC-dH20). Following this, the
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radiolabelled probe was added to 20ml of fresh hybridisation buffer, in which the 

membrane was incubated with rotation at 45”C overnight. The nylon membrane was 

then washed with rotation in wash buffer (40mM sodium phosphate buffer pH 7.2, 

ImM EDTA, 1% (w/v) SDS in DEPC-dH20) at room temperature for 2 minutes and 

then twice for 15 minutes at 65“C in order to remove non-specific radioactivity before 

being exposed to autoradiography film overnight at -70°C. Membranes were stripped 

by incubating in boiling water for 5 minutes and pre-hybridised again prior to being 

reprobed. Quantification of the RNA was achieved using a phosphoimager (Fujix Bas 

1000).

2.6 Preparation of cDNAs

cDNAs were prepared from 3|ag of RNA. Primer annealing was carried out in a final 

volume of 24|Li1 with 0.67 x hexanucleotide mix (Roche) (diluted in DEPC-dH20) and 

allowed to proceed for 10 minutes before transferral to ice. 8|al of 5 x First Strand 

Buffer (Life Technologies), 4|iil of O.IM DTT, 2pl of lOmM dNTP mix (made up in 

DEPC-dH20) and l|al (200U) of Superscript 11 Reverse Transcriptase (Life 

Technologies) was added to initiate reverse transcription, which was performed for 

Ihour at 47°C before the reaction was stopped by heating at 70°C for 15 minutes.
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2.7 Reverse transcriptase -  Polymerase chain reaction (RT-PCR)

PCRs were carried out using a PTC-100 thermal controller (MJ Research, Cambridge, 

MA). ZjLtl of cDNA was amplified with 20pmol of either ARPP PO primers (5’- 

GCACTGGAAGTCCAACTACTTC-3’ and 5 '-TGAGGTCCTCCTTGGTGAACAC- 

3’) to give a 265bp product; tRNA^"'" primers (5’-GTCAGGATGGCCGAGTGGTC- 

TAAG-3’ and 5 '-CCACGCCTCCATACGGAGACCAGAAGACCC-3') to give an 

88bp product; U6 RNA primers (5’-GCTCGCTTCGGCAGCACATATAC -3’ and 5’- 

TATCGAACGCTTCACGAATTTGCG-3’) to give a 96bp product; B” primers (5’- 

GCTGAT AG AGAT ACTCCTC-3 ' and 5 ' -CC AGAGAC A AG A ATCTTCTC-3 ' ) to 

give a 293bp product; TFIIIC220 primers (5 ' -TCCAGCGAGACCTTC AC ACC-3 ' 

and 5’-GGATTGAGTGTTGCTGGGCT-3’) to give a 144bp product; TFIIICllO 

primers (5’-CCAGAAGGGGTCTCAAAAGTCC-3’ and 5 ’-CTTTCTTCAGAGAT- 

GTCAAAGG-3’) to give a 303bp product; TFIIIC102 primers (5’-CCTACTAATGT- 

CCGTTATCTGTGG-3’ and 5 ' -GCAGAAGTAACATCATTGGC-3 ' ) to give a 

184bp product; TFIIIC90 primers (5 ' - A A AC AGA AGTTGCTG AGTGA-3 ' and 5’- 

ATGGTCAGGCGATTGTCC-3') to give a 210bp product; TFIIIC63 primers (5’- 

CGGCAGATGTTCTACCAGTTATGCG-3 ' and 5’-ATGGCTTGAAGTCCTCCTC- 

C-3’) to give a 300bp product. Amplification reactions contained 0.5U of Taq DNA 

polymerase (Promega) in 20|il of 1 x Taq DNA polymerase buffer (Promega) 

containing 1.5mM MgCli, 0.2mM of each dNTP and 1.8|aCi of [a^^P] dCTP 

(lOmCi/ml, 3000Ci/mmol).
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PCR was performed under the following cycling parameters:

ARPP PO: 95°C for 2 minutes, 18 cycles of [95°C for 1 minute, 58°C for 30 seconds, 

72°C for 1 minute], 72°C for 3 minutes,

tRNA^^": 95°C for 2 minutes, 30 seconds, 25 cycles of [95®C for 30 seconds, 68°C for 

30 seconds, 72°C for 20 seconds], 72°C for 5 minutes.

U6 RNA: 95°C for 3 minutes, 16 cycles of [95°C for 1 minute, 60°C for 30 seconds,

72°C for 1 minute], 72°C for 5 minutes.

B ” : 95°C for 2 minutes, 35 cycles of [95°C for 1 minute, 56°C for 1 minute, 72°C for 

1 minute], 72°C for 5 minutes.

TFIIIC220: 95°C for 3 minutes, 20 cycles of [94°C for 20 seconds, 62”C for 30 

seconds, 72°C for 30 seconds], 72°C for 10 minutes.

TFIIICllO: 94°C for 3 minutes, 5 cycles of [95°C for 1 minute, 66°C for 40 seconds,

72°C for 40 seconds], 22 cycles of [95°C for 1 minute, 62°C for 40 seconds, 72°C for

40 seconds], 72°C for 5 minutes.

TFIIIC102; 95°C for 3 minutes, 30 cycles of [95°C for 30 seconds, 61°C for 30 

seconds, 58°C for 30 seconds, 50°C for 30 seconds, 72°C for 1 minute], 72°C for 5 

minutes.

TFIIIC90: 95°C for 3 minutes, 23 cycles of [95“C for 1 minute, 55°C for 30 seconds, 

72°C for 1 minute], 72°C for 5 minutes.
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TFIIIC63: 95°C for 3 minutes, 22 cycles of [95°C for 1 minute, 69°C for 1 minute, 

62°C for 1 minute, 50°C for 1 minute, 72°C for 1 minute], 72°C for 5 minutes. In this 

case, 2mM MgClz was used in the PCR mix.

Reaction products were resolved on 7% polyacrylamide sequencing gels containing 

7M urea and 0.5 x TBE (45mM Tris, 45mM boric acid, 0.625mM EDTA pH 8.0). 

Gels were pre-run for 30 minutes at 40W in 0.5 x TBE and 2|al of each sample was 

loaded after being boiled at 95°C for 2 minutes and quenched on ice. Electrophoresis 

was carried out for a further Ihour at 40W and the gel subsequently vacuum-dried at 

80°C for Ihour before being exposed to autoradiography film in order to detect the 

radiolabelled products. Quantification of results was achieved by phosphoimaging 

(Fujix Bas 1000).

2.8 Measuring protein concentration

The protein concentration of samples was determined using Bradford’s reagent 

(Biorad). Quantification of the colour reaction produced upon mixing 1ml of diluted 

reagent (1:4 in distilled water) with a volume of sample containing protein in the 

range of -1 -12p,g gave an accurate indication of protein concentration. This was 

achieved by measuring the absorbance of these samples at 595nm in a UV 

spectrophotometer, as absorbance in response to increasing amounts of protein under 

these conditions is approximately linear. Absorbance readings obtained were then 

compared to a set of standards of known protein concentration using bovine serum 

albumin (BSA) measured at 595nm. A range of sample dilutions were measured and

7 4



compared in this manner in order to obtain an average, which would provide a more 

accurate measurement of protein concentration. Where sample absorbance readings 

fell outside the linear range of the standard set, appropriate dilutions were made and 

the samples re-measured.

2.9 Random polymerase assay

Assays of RNA polymerisation activity were based on a method described by Roeder 

(Roeder, 1974). Reactions were performed in a total volume of 50p,l with a final 

concentration of 6mM HEPES pH7.9, 30mM KCl, 3.6mM MgClz, 6mM Tris pH 7.9, 

200iaM EDTA, 7.5mM ammonium sulphate, 800|aM manganese chloride, 6 0 0 |liM  

rATP, rCTP and rGTP, 50p,M UTP, 0.6mM DTT and 5% glycerol. This was 

supplemented with 5|ag of poly(dA.dT) (2|al) to provide a non-specific template, 20|ig 

BSA, 10|xCi [a-^^P] UTP (400Ci/mmol) and typically 10 -15ftg of cell extract (up to 

15|Li1). For inhibition of pol II activity, a-amanitin (diluted in DEPC-dHzO) was 

added to give a final concentration of l|ag/ml or of 100p,g/ml for inhibition of both pol 

II and pol III activities. Reactions were performed at 30°C for 20 minutes and 

stopped by transferral to 2cm^ Whatmann DE51 paper discs, which were then 

subjected to serial 5 minute washes: 6 washes in 0.5M Na2HP0 4 , twice in distilled 

water, twice in 96% ethanol and finally once in ether. Discs were then dried at room 

temperature for a few minutes and transfeined to scintillation vials containing 5ml of 

Optiflow scintillation fluid (Fisons chemicals). Levels of incorporated activity were 

then measured in a scintillation counter counting ^̂ P for 5 minutes.
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2.10 Transformation of competent cells

E.coli XL-1 Blue supercompetent cells (Stratagene) were transformed for plasmid 

storage and propagation. Cells, which were stored at ~80®C and highly temperature 

sensitive, were thawed on ice to prevent loss of transformation ability. 0.4jil of P- 

mercaptoethanol, which enhances transformation efficiency, was added to the 50|li1 of 

cells that were required per transfoimation reaction to give a final concentration of 

25mM. Typically 10 -  20ng of plasmid DNA was then gently mixed into the chilled 

cells. The contents were gently tapped occasionally during a 30 minute incubation on 

ice, before being heat shocked at 42°C for exactly 45 seconds and then transfened to 

ice for a further 2 minutes. Cells were incubated at 37°C for Ihour on an orbital 

shaker (225 - 250ipm) following the addition of 450|al of preheated (42°C) SOC 

medium (LB broth, 0.04% glucose, lOmM MgS0 4 , lOmM MgClz). Typically 150|il 

of the transformation mixture was then plated on LB agar (2% LB, 2% agar) plates 

containing 50|Lig/ml ampicillin (Amp) and the plates were incubated at 37°C overnight 

to allow growth and colony-formation of the transformed cells.

2.11 Preparation of plasmid DNA

For large scale plasmid DNA preparation, a single isolated bacterial colony was 

selected from a freshly-streaked plate and used to inoculate 4ml of LB medium 

containing the selective antibiotic (50|ag/ml ampicillin). This was allowed to incubate
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with vigorous shaking at 37°C for ~6 hours to form a mini-culture and was 

subsequently used to inoculate 250ml of LB medium containing 50|ag/ml ampicillin. 

Following an overnight incubation at 37°C on an orbital shaker (~300rpm), cells were 

harvested by centrifugation at 6000g for 15 minutes at 4°C and plasmid DNA 

retrieved using the QIAGEN Plasmid Maxi Kit,

The bacterial pellet was resuspended in 10ml of Buffer PI (50mM Tris pH 8.0, lOmM 

EDTA, 100|ag/ml RNase A) and then gently but thoroughly mixed with 10ml of 

Buffer P2 (200mM NaOH, 1% SDS) to initiate an alkaline lysis reaction. This 

reaction was allowed to proceed for 5 minutes at room temperature before neutralising 

the lysate by the addition of 10ml of chilled Buffer P3 (3M potassium acetate, pH 5.5) 

which subsequently resulted in foimation of a precipitate of potassium dodecyl 

sulphate. The SDS-denatured proteins and chromosomal DNA were co-precipitated 

with the detergent whilst the plasmid DNA remained in solution due to a lack of close 

protein associations. Precipitation was enhanced by a 20 minute incubation on ice 

and the precipitate pelleted by centrifugation at 20 OOOg for 30 minutes at 4°C. The 

supernatant containing plasmid DNA was promptly removed and applied to a 

QIAGEN-tip 500 pre-equilibrated with 10ml of Buffer QBT (750mM NaCl, 50mM 

MOPS pH 7.0, 15% isopropanol, 0.15% Triton X-100). Gravity flow allowed the 

supernatant to pass through the anion-exchange resin to which plasmid DNA is able 

to tightly bind. The resin was then washed twice with 30ml of Buffer QC (IM NaCl, 

50mM MOPS pH 7.0, 15% isopropanol) and the purified plasmid DNA was 

subsequently eluted with 15ml of Buffer QF (1.25M NaCl, 50mM Tris pH 8.5, 15% 

isopropanol) and precipitated with 10.5ml (0.7 volume) of room-temperature 

isopropanol. This was immediately followed with a 15 OOOg centrifugation at 4°C for
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30 minutes. The plasmid DNA pellet was then washed with 70% ethanol, dried at 

room-temperature for 5 - 1 0  minutes and resuspended in an appropriate volume of 

sterile water or TE buffer, pH 8.0 (lOmM Tris pH 8.0, ImM EDTA).

2.12 RNA pol III in vitro transcription assay

In vitro transcription of class III genes was reconstituted using 20p,g of cell extracts to 

provide the basal pol III transcription components. This was supplemented with the 

addition of 250ng of plasmid DNA to supply a specific pol III template and reactions 

were carried out in a 25pi volume with a final concentration of 12mM HEPES pH 7.9, 

60mM KCl, 7.2mM MgClz, 0.28mM EDTA, 1.2mM DTT, 10% (v/v) glycerol, ImM 

creatine phosphate, 0.5mM each of rATP, rCTP and rGTP and lOpCi [a-^^P] UTP 

(400mCi/mmol) (Amersham). Transcription components were assembled on ice and 

the reaction was performed at 30°C for Ihour. In the case of assays incorporating 

additional reagents, a 15 minute pre-incubation at 30°C was cai'ried out prior to 

adding the nucleotides required to initiate transcription. Transcription was terminated 

by the addition of 250pl of IM ammonium acetate/0.1% SDS containing 20pg of 

yeast tRNA which acts as a stabiliser for the synthesised RNA. Phenol-choloroform 

extraction of the samples was performed to remove protein and DNA by adding 250pl 

of a 25:24:1 ratio solution of PhOH/CHCE/IAA. The samples were vortexed, 

microcentrifuged at 13 OOOg for 5 minutes and 200pl of the upper aqueous layer was 

then transfened to a fresh eppendorf tube containing 750pl of 96% ethanol in order to 

precipitate the RNA. The samples were thoroughly mixed by repeated inversion, left
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at “20°C overnight before being microcentrifuged at 13 OOOg for 20 minutes to pellet 

the precipitated RNA. The supernatant was carefully removed and 750pl of 70% 

ethanol was added to each sample to wash the pellet. This was also carefully removed 

to avoid dislodging the pellet and the samples were heated at 47°C for 5 - 1 0  minutes 

to dry. 4pl of foimamide loading buffer (98% formamide, lOmM EDTA pH 8.0, 

0.025% bromophenol blue, 0.025% xylene cyanol FF) was added to each sample, 

which was then vortexed for 20 minutes to ensure the RNA was fully redissolved. 

2pl of each sample was loaded on a pre-run 7% polyacrylamide sequencing gel 

containing 7M urea and 0.5 x TBE (45mM Tris, 45mM boric acid, 0.625mM EDTA 

pH 8.0) after being boiled at 95°C for 2 minutes and quenched on ice. Electrophoresis 

was performed at 40W for Ihour in 0.5 x TBE before being dried and exposed to 

autoradiography film in order to detect the radiolabelled transcripts. Quantification of 

results was achieved by phosphoimaging (Fujix Bas 1000).

The plasmid templates used for in vitro transcription assays were as follows: pVAi is 

a 221 bp Sall-Ball fragment of adenovirus 2 DNA containing the VAi gene subcloned 

into pUClS (Dean and Berk, 1988). pTB14 is a 0.2kb BgUL fragment containing a 

mouse B2 gene subcloned into pUC18 (White et a l, 1989). pE2-160 contains the 

EBER2 gene (Howe and Shu, 1989). pMcetl contains a C. elegans tRNA^™ gene 

(Cilibeito et a l, 1982). pGlu6 is a 490bp BamRl-EcoRl fragment of genomic DNA 

containing the human tRNA°‘“̂  gene subcloned into pAT153 (White et a l, 1995b),
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2.13 TFIIIB activity assay

TFIIIB activity assays were performed using 8pg of cell extracts made up to a volume 

of lOpl with microextraction buffer (450mM NaCl, 50mM NaF, 20mM Hepes pH 

7.8, 25% glycerol, ImM DTT, 0.5mM PMSF, 0.2mM EDTA, 40pg/ml bestatin, 

Ipg/ml trypsin inhibitor, 0.7pg/ml pepstatin, 0.5pg/ml aprotinin, 0.5pg/ml leupeptin) 

and LDBo (20mM Hepes pH 7.9, 12mM MgCb, O.lmM EDTA, 17% glycerol, 2mM 

DTT) to achieve a final optimal salt concentration of 60mM. These were heat-treated 

to specifically inactivate TFIIIC and TBP by a 15 minute incubation at exactly 47°C. 

5pi of a 1:4 mix of TBP to PC-C (a TFIIIC-containing phosphocellulose-column 

fraction), required for reconstitution of pol III transcription, was added to each 

sample. These heat-treated extracts were then analysed by in vitro transcription assay.

2.14 Immunoprecipition and immunodepletion

Antibodies for immunoprécipitation experiments were coupled to protein A- 

Sepharose beads. 20pl of packed beads was used per sample and beads were washed 

twice with 1 x TBS (2.5mM Tris-HCl pH 7.6, 15mM NaCl) prior to incubation with 

the appropriate antibody on a shaker for Ihour at 4°C. The beads were then washed 

twice with 1 x TBS to ensure removal of unbound antibody.
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For immunodepletion experiments, these beads, carrying equivalent amounts of 

prebound immunoglobulin (IgG) were incubated on ice with approximately 150pg of 

cell extract (made up to a volume of 30pl with 1 x TBS) for 2 hours, gently mixed by 

tapping every 5 minutes. Beads were pelleted by gentle pulse microcentrifugation 

and 4pl of the supernatant (immunodepleted extract) was analysed by in vitro 

transcription assay.

For co-immunoprecipitation reactions, typically 200 - 500pg of cell extract (made up 

to a total volume of ~300pl with 1 x TBS) was incubated with the prepared protein A- 

Sepharose beads at 4°C for 3 hours on an orbital shaker. The beads were gently 

pelleted by pulse microcentrifugation and the supernatants carefully removed. The 

beads were then subjected to extensive washing (once in 300pl of 1 x TBS, 0.25mM 

NaCl, 0.5% Triton X-100 and a further 3 - 4  washes in 300pl of 1 x TBS) before the 

bound material was released by the addition of an equal volume of 2 x protein sample 

buffer (125mM Tris pH 6.8, 1% SDS, 10% P-mercaptoethanol, 20% glycerol, 0.25% 

bromophenol blue) and analysed by SDS-PAGE and subsequent western blotting for 

the protein of interest.

2.15 Separation of proteins by polyacrylamide gel electrophoresis 

(SDS-PAGE)

Proteins were resolved on denaturing polyacrylamide gels according to molecular 

weight by electrophoresis. Typically, 7.8% polyacrylamide resolving mini gels

81



(375mM Tris pH 8.8, 0.1% SDS) were used with a stacking layer comprised of 4% 

polyacrylamide gel (125mM Tris pH 6.8, 0.1% SDS) based on the discontinuous 

buffer system described by Laemmli (Laemmli, 1970). Samples were boiled for 2 

minutes in 1 x protein sample buffer (62.5mM Tris pH 6.8, 0.5% SDS, 5% P- 

mercaptoethanol, 10% glycerol, 0.125% bromophenol blue) prior to loading. 

Electrophoresis was performed in 1 x SDS running buffer (0.1% SDS, 76.8mM 

glycine, lOmM Tris, pH 8.3) at an initial voltage of 70V while the bromophenol dye 

front moved through the stacking gel and a subsequent voltage of 140V after reaching 

the resolving gel. Electrophoresis was allowed to proceed until the dye front had 

reached the bottom of the gel, approximately 1 -1 .5  hours.

2.16 Western blotting

Electrophoretic transfer of proteins resolved by SDS-PAGE to PVDF membrane was 

achieved using the BioRad Mini Trans-Blot Electrophoretic Transfer Cell system. 

Transfer was carried out in 1 x transfer buffer (76.8mM glycine, lOmM Tris, pH 8.3, 

16.5% methanol) at 50V for 1 hour. Following transfer, the membrane was blocked 

in milk buffer (32.5mM Tris, 150mM NaCl, 0.2% Tween-20, 4% sldmmed milk 

powder (Mai’vel)) for Ihour at room temperature. Membranes were incubated with 

primary antibodies (typically a 1:1000 dilution in milk buffer) overnight at 4°C. 

Excess primai'y antibody was removed by washing the blot 3 times for 3 minutes in 

fresh milk buffer before incubating for Ihour at room temperature with the 

appropriate horseradish peroxidase-conjugated secondary antibody (1:1000 dilution in
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milk buffer) (DAKO). To ensure removal of excess secondary antibody, the blot was 

sequentially washed in batches of fresh milk buffer, 3 times for 3 minutes, followed 

by 2 washes for 15 minutes. After one further 5 minute wash using 1 x TBS (2.5mM 

Tris-HCl pH 7.6, 15mM NaCl), the blot was developed using the enhanced 

chemiluminescence method (ECL, Amersham) as directed by the manufacturers.

2.17 Antibodies

Ab2E anti-TFIIIC220 (Shen et al, 1996)

AC19 anti-AC19 (Generous gift from J. Zomerdijk)

Cll anti-actin (Santa Cruz)

C15 anti-RB (Santa Cruz)

CIS anti-p70S6 kinase (Santa Cruz)

CIS anti-TFIIB (Santa Cruz)

F4 anti-Py T Ag (Oncogene science)

K-23 anti-ERK2 (Santa Cruz)

M19 anti-TAFi48 (Santa Cruz)

MTBP-6 anti-TBP (Pruzan et a l, 1992)

p44/42 MAPK anti-total ERK (New England Biolabs)
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phosphoERK

R-113

SL-1

SL30

TVG710Y

T4-7220

113

128-4

330-4

2663-4

anti-active ERK (New England Biolabs)

anti-Phasl (Santa Cruz)

anti-TBP (Lobo et al., 1992)

anti-TBP (Ruppert et al., 1996)

anti-HPV16-E7 (Santa Cruz)

anti-TFIIICllO (Transduction laboratories)

anti-BN51 (Ittmann et al., 1993)

anti-BRF (Cairns and White, 1998)

anti-BRF (Alzuherri and White, 1998)

anti-B” (Schramm et al., 2000)

2.18 Transient transfection

Expression vectors coding for Polyomavirus large T antigen (pSV-LT), middle T

antigen (pSV-MT) and a transforming mutant (pSV-NG59) were kindly provided by

Kurt Ballmer-Hoffer. An “empty” pSV expression vector was produced by a double

restriction digest of the pSV-MT insert with EcoRl and HindQi and the linearised

vector was then separated from the insert by electrophoresis through a 1% low

melting point agarose gel. Gel-purification of the vector was achieved using a

QIAquick gel extraction kit (Qiagen) and EcoKl and HindSl 5’ protruding ends were
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blunted using Klenow DNA polymerase. The vector was then re-ligated overnight at 

15°C using T4 DNA ligase and the ligation product used to transform E.coli XL-1 

Blue supercompetent cells (Stratagene). Mini-preparations of plasmid DNA were 

perfoimed from 2ml overnight cultures (in LB broth containing 50|ag/ml ampicillin) 

of a number of isolated colonies and digests performed with EcoRl to verify that cells 

contained the conect vector and lacked the insert prior to large scale plasmid 

preparation using a QIAGEN Plasmid Maxi kit. Again, plasmid preparations were 

verified and DNA concentrations deteimined by UV spectrophotometry.

Balb/c 3T3 Clone A31 cells for transient transfection were plated out at 3 x 10̂  

cells/well on 6-well plates 24 hours prior to transfection, resulting in a confluency of 

-70 -80% at the time of transfection. Two wells were transfected per treatment with 

a total of 4pg of plasmid DNA per well of cells; this was comprised of 0.5p.g of VAi, 

0.5|ig of SV40 CAT (Promega) and 3|ag of “empty” pSV expression vector, pSV-LT, 

pSV-MT or pSV-NG59. Masteimixes for each set of wells were made up comprising 

the appropriate plasmid DNA and neat DMEM media to give a volume of lOOpl per 

well. These were incubated at room temperature for 5 minutes and lOOpl vortexed 

with 8)Jil of Superfect (Qiagen) for each well to be treated. Following a 1 0  minute 

incubation period at room temperature, 600jli1 of DMEM (1 0 %  fetal calf serum 

(Sigma), 2mM L-glutamine, lOOU/ml penicillin and lOOpg/ml streptomycin) was 

used to dilute each Superfect mix. Media was removed from the cells prior to 

addition of the mix and plates swirled to ensure the wells were evenly covered. 

Treatment was carried out for 3 hours at 37°C before removing the mix, washing the 

cells once with waim PBS and applying fresh media. Cells were incubated for a 

further 48 hours to allow expression of transfected DNA; with media being renewed
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again after 24 hours. Cells were harvested and total RNA extracted for analysis by 

primer extension.

2.19 Primer extension

Expression levels of the transfected pol III template VAi and the CAT gene, which

was co-transfected as an internal control for transfection efficiency, were analysed by

primer extension. VAi (5’-CACGCGGGCGGTAACCGCATG-3’) or CAT (5’-CGA-

TGCCATTGGGATATATCA-3’) oligonucleotides were end-labelled using T4

polynucleotide Idnase (PNK). For each primer extension reaction, 10|ag of total RNA

(made up to IOp,l with DEPC-dHzO) and incubated at 80°C for 10 minutes with 9|Ltl of

5 X First Strand Buffer (Life Technologies) and Ipl (2.5ng) of the relevant probe to

act as a primer. Samples were immediately transferred to a 50°C hotblock for a

further 2 hours incubation. 30p,l of an elongation mix (23|Lil DEPC-dHiO, 0.5jal IM

DTT, 5|al 5mM dNTP mix (5mM in DEPC-dHiO), 0.5|al 4mg/ml actinomycin D,

0.5|Li1 RNasin, 0.5pi (lOOU) of Superscript II Reverse Transcriptase (Life

Technologies)) was then added to the samples to initiate reverse transcription and the

reaction was allowed to proceed for Ihour at 42°C. Reaction products were

precipitated overnight at -20°C by the addition of 5pi of 3M sodium acetate and

I25pl of ethanol and subsequently pelleted by microcentrifugation at 13 OOOg for 15

minutes. Pellets were washed with 300pl of 75% ethanol and dried at 47°C for 5

minutes before being resuspended by vortexing for 10 minutes in 4pl of formamide

loading buffer (98% formamide, lOmM EDTA pH 8.0, 0.025% bromophenol blue,
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0.025% xylene cyanol FF). Electrophoresis through a 7M urea 7% polyacrylamide 

gel was used to resolve the samples, the reaction products detected by overnight 

exposure to autoradiography film at -80°C and quantitated by phosphoimaging (Fujix 

Bas 1000).

2.20 Electrophoretic mobility shift assay (EMSA)

TFIIIC2 DNA-binding activity was determined by EMSAs which were earned out 

using a labelled oligonucleotide containing a B-block consensus (5’-AGAGGT-

CCTGAGTTCAAATCCCAG-3’ (RJWl) annealed to the complementaiy 3’ to 5’ 

strand (RJW2)). An oligonucleotide that contained a consensus Spl binding site (5’- 

ACTTGATT A ACTGGGCGG AGTT ATGATTG A-3 ’ (Ml) annealed to the 

complementary 3’ to 5’ strand (M2)) was employed to assay for Spl DNA-binding 

activity. For use in EMSAs, oligonucleotides were 5’ end-labelled using T4 

polynucleotide kinase (PNK). 40ng of RJWl or M l was assembled on ice with lOU 

of PNK in 1 X PNK buffer (Promega) and following the addition of 20pCi of [y-^^P] 

dATP (lOmCi/ml, 3000Ci/mmol) to give a total volume of lOpl, the reaction was 

performed at 37°C for Ihour. This was stopped by heating at 65*̂ C for 10 minutes and 

was succeeded by phenol-chloroform extraction of the PNK enzyme; achieved by 

addition of 50pl of PhOH/CHCb/lAA (25:24:1) followed by vortexing and 

microcentrifugation at 13 OOOg for 5 minutes. The aqueous layer was transfeiTed to a 

fresh eppendorf tube and 5jal of 3M sodium acetate and 125\x\ of 100% ethanol added. 

After a 30 minute incubation on dry ice, the precipitated oligonucleotide was pelleted
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by microcentrifugation at 13 OOOg for 10 minutes. The supernatant was removed and 

the pellet washed by sequential addition and removal of lOOpl of 70% ethanol to 

ensure removal of unincorporated label. The pellet was then dried by heating at 47"̂ C 

for 10 minutes before being redissolved by incubation at 30°C for 30 minutes in 20ql 

of TE buffer (lOmM Tris pH 8.0, ImM EDTA). This was followed by heating in a 

hotblock at 90°C for 2 minutes in the presence of unlabelled complementary 

oligonucleotide (RJW2’) which was added in 2.5 fold excess to ensure that all 

labelled oligonucleotide was annealed. The hotblock was then turned off and the 

sample allowed to cool slowly overnight, after which, it was stored at 4°C until ready 

for use.

Each binding reaction was performed in a total volume of lOpl, with an optimal salt 

concentration of 60mM KCl and contained Ipg of poly(dl.dC) (2pl), lOOng of non­

specific or specific competitor oligonucleotide (2|il), typically 2 - 4pl of cell extract 

and 0.25 -  0.5ng of labelled probe (2|ul). A pre-incubation of 15 minutes at 30°C was 

carried out prior to addition of the probe, followed by a further 15 minutes at 30°C. 

Analysis of the formation of protein-DNA complexes was achieved by electrophoresis 

of samples on a pre-run 4% nondenaturing polyacrylamide gel in 1 x TAE buffer 

(40mM Tris acetate, ImM EDTA pH 8.0) for 1.5 -2 hours at 4°C. The gel was dried 

for 1.5 hours at 80°C and exposed to autoradiography film overnight at -70°C. 

Phosphoimaging (Fujix Bas 1000) was used for quantification.



Chapter 3

Deregulation of pol III transcription in 

Polyomavirus-transformed cells

3.1 INTRODUCTION

The fundamental objective of the cell cycle is the faithful replication of DNA during S 

phase and the accurate segregation of the sister chromatids during mitosis. In 

eukaryotic cells, these events are highly regulated processes and the discrete 

transitions through stages in the cell cycle are subject to checkpoints. In order for 

cells to complete a full cycle, favourable conditions during the first two thirds of the 

Gi phase are required. Upon passing through the so-called R (restriction) point before 

the end of Gi, they commit to the remaining steps of the mitotic cycle and enter into a 

state of serum-independence (Weinberg, 1995). Checkpoints ensure that in conditions 

of low serum, cell damage or the absence of the correct signals, the cell cycle is 

anested and cells enter into a state of quiescence (Elledge, 1996).

Given that pol III is responsible for the transcription of a variety of essential cellular 

products, including tRNA, 5S rRNA, the 7SL component of the signal recognition 

particle and the U6 small nuclear RNA that is required for mRNA splicing (Willis, 

1993), it could be presumed that the genes encoding these housekeeping transcripts 

would be constitutively active. On the contrary, however, it has been clearly 

established that pol III transcription is strongly regulated in response to a variety of 

external stimuli and environmental conditions (Brown et al., 2000; White, 1998b).
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Indeed, transcription levels are intrinsically linked to growth conditions, falling when 

serum factors or nutrients aie limiting and increasing in response to mitogens. Upon 

mitogenic stimulation, there is an elevation of tRNA and rRNA synthesis, ribosomal 

protein assembly is accelerated and translation factors activated, overall resulting in a 

net increase in protein accumulation before cells reach S phase (Johnson et al., 1974; 

Rosenwald, 1996). Conversely, in quiescent cells tRNA and rRNA levels are down- 

regulated, polysomes disassemble and a decrease in the overall rate of protein 

synthesis is observed (Abelson et al., 1974; Clarke et al., 1996; Mauck and Green, 

1974). This transcriptional response to quiescence is consistent with the regulation 

demonstrated by pol III with respect to the cell cycle. When mammalian cells begin 

to proliferate, pol III activity increases just prior to the Gi/S transition and maximal 

transcription levels are sustained throughout S and G% phases (White et al., 1995b). 

Previous studies implicate the retinoblastoma protein, RB, and its relatives p i07 and 

p i30, collectively termed the pocket proteins, in this pattern of expression (Scott, 

2001; Sutcliffe et al., 1999). These regulatory proteins have been shown to associate 

with TFIIIB and repress pol III transcription, both in vitro and in vivo (Chu et al., 

1997; Larminie et al., 1997; Sutcliffe et al., 1999). During Go and early Gi phase, RB 

and pl30 bind and repress TFIIIB, dissociating again on the approach to S phase to 

permit an increase in transcription (Scott, 2001).

When cells enter mitosis at the end of interphase, there is a general cessation of

nuclear gene expression (Chiang et al., 1993; Prescott and Bender, 1962). With

regard to pol III transcription, this is achieved through the phosphorylation of TFIIIB

(Gottesfeld et al., 1994; White et al., 1995b). The components of this multisubunit

complex have now been elucidated and, as in yeast, it comprises the TATA-binding

protein TBP, the TFIIB-related factor BRF and a third subunit B” (Schramm et al.,
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2000). Although TBP is hyperphosphorylated in extracts of mitotic HeLa cells, 

restoration of transcription cannot be achieved by the addition of unphosphorylated 

recombinant TBP, requiring instead TBP-associated components of TFIIIB. Thus, the 

mitotic repression of pol III activity, mediated through TFIIIB, is by a specific 

inactivation of one or more of the TBP-associated components of this complex (White 

et al., 1995b).

Reversal of TFIIIB hyperphosphorylation ensues the exit of cycling human cells from 

mitosis, although TFIIIB activity is not restored during early Gi phase (White et al., 

1995a). This continued repression correlates strongly with the activity of the pocket 

proteins, which become dephosphorylated at the end of mitosis (Mittnacht, 1998) and 

are, consequently, active through early Gi phase and able to bind and inhibit TFIIIB 

until the restriction point is reached in mid to late Gi phase (Scott, 2001).

In addition to the regulation confeiTed by growth conditions and cell cycle control 

mechanisms, pol III transcription is subject to another, although unrelated, tumour 

suppressor protein, p53. It has been demonstrated that within its anay of functions, is 

the ability of p53 to repress pol III transcription (Cairns and White, 1998; Chesnokov 

et al., 1996). Similar to RB, regulation is confened by binding and inactivating 

TFIIIB, although the susceptibility of TFIIIB to p53-repression is significantly 

blocked following assembly into a pre-initiation complex (Cairns and White, 1998). 

During neoplastic transformation, RB and p53 are frequently lost or mutated 

(Hollstein et al., 1991; Weinberg, 1995) and the consequent release of TFIIIB from 

important restraints may constitute a pivotal process in transfoimation (Brown et al., 

2000).
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Furthermore, TFIIIB is repeatedly targeted for deregulation during viral 

transformation, demonstrating another mode of deregulation for pol III transcription 

(White, 1998b). Most transformed and tumour cells display elevated levels of pol III 

products, although this is a manifestation of a variety of mechanisms employed by 

transforming viruses (DeCaprio et al., 1988; Piras et al., 1996; Wang et al., 1997; 

Yoshinaga et al., 1986). Invariably, TFIIIB and TFIIIC are the focus for deregulation, 

with TFIIIB often being targeted for release from repression by RB (Larminie et al., 

1999; White et al., 1996) and the active or limiting subunits of TFIIIB and TFIIIC 

commonly being selectively increased (Larminie et al., 1999; Sinn et al., 1995; Wang 

et al., 1995). Other modes of action, however, include counteracting the effect of 

another cellular repressor, D rl, as observed in transformation by the E lA  oncoprotein 

of adenovirus (Ki'aus et al., 1994) and, in the case of hepatitis B virus (HBV), the viral 

X gene has been established as an activator of kinase signalling pathways which are 

implicated in the stimulation of pol HI transcription (Wang et al., 1995). Whilst 

clearly a range of activation mechanisms are utilised by viruses, the polymerase itself 

appears to remain exempt from direct deregulation in all studies to date, with 

stimulation of pol III transcription, instead, being mediated through the activities of 

pol HI-specific transcription factors. Nonetheless, as transforming mechanisms are 

being elucidated, an increasing abundance of evidence highlights the key role of pol 

III transcription in the progression towards tumourigenesis.

This chapter serves to establish the capacity of another transforming virus,

Polyomavirus, to deregulate cell growth and cell cycle control. Polyomavirus, which

is able to induce neoplasms in a wide variety of cell types (Eddy et al., 1958), is a

nuclear icosahedral virus containing a circular genome of double-stranded DNA

(Oliveira et ak, 1999). Like the closely related Simian Virus 40 (SV4Ü),
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Polyomavirus is a small DNA tumour virus belonging to the papovavirus family 

(McCormick et al., 1982). It produces 3 oncogenic T antigens, large, middle and 

small, which are all encoded by a common precursor mRNA that is differentially 

spliced to yield multiple raonocistronic mature mRNAs (Griffin et al., 1980).

It has been established that middle T antigen is necessary and sufficient to induce 

morphological transformation and alterations in the growth properties of established 

cell lines (Raptis et al., 1985), while large T antigen is essential for immortalisation of 

primary cells in culture (Freund et al., 1992). Although the expression of small t is 

not required for cell transformation, it can complement middle T for tumour induction 

(Asselin et al., 1983) and transformation (Asselin et al., 1986) and independent 

expression of small t antigen in fibroblasts enables them to grow to high cell density 

(Noda et al., 1986).

Elevated levels of pol III transcripts following transformation was first discovered 

with murine fibroblast lines that have been transformed by SV40 (Scott et al., 1983; 

Singh et al., 1985) and Majello et al subsequently established an increase in pol III 

transcription by Polyomavirus transformation. (Majello et al., 1985). However, while 

studies have provided much clarification on the mechanisms of SV40-mediated 

deregulation of pol III transcription (Laiminie et al., 1999), the mechanisms 

surrounding deregulation by Polyomavirus have remained elusive. This chapter 

presents data documenting the effect of Polyomavirus transformation on pol III 

transcription.
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3.2 RESULTS

3.2.1 Characterisation of 3T3 and Py3T3 cells 

3.2.1a Py3T3 cells display accelerated growth

Accelerated growth and uncontrolled proliferation are the hallmai'k of cellular 

transformation. A simple experiment, establishing rates of proliferation for a 

Polyomavirus-transformed fibroblast cell line, Py3T3, relative to the untransfoimed 

parental 3T3 cells, was conducted to highlight this fundamental deregulation and 

indicate appropriate passaging conditions for cell culture. Figure 3.1 A graphs cell 

counts over a period of 6 consecutive days following plating out at 5 x 10  ̂cells/ml. 

3T3 cells reached at maximum of 1.5 x 10  ̂ cells/ml on day 5 and subsequently 

showed a decline in number as cells demonstrated contact inhibition. In contrast, 

Py3T3 cells, which exhibited a significantly higher rate of proliferation from the 

outset, were still increasing in number at day 6, having reached 2.6 x 10  ̂ cells/ml. 

This behaviour is consistent with previous studies documenting the rapid proliferation 

of cells following transformation and their inability to contact inhibit (Aai'onson and 

Todaro, 1968)
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3.2.1b Serum-independence of Py3T3 cells

To determine the response of 3T3 and Py3T3 cells to serum-withdrawal and serum- 

stimulation, levels of [^H] thymidine incorporation into newly synthesised DNA were 

measured for serum-starved, serum-stimulated or asynchronous cells. 3T3 cells have 

previously been shown to enter a quiescent state with serum-withdrawal and to re­

enter the cell cycle upon serum-stimulation (Abelson et a l, 1974; Scott, 2001). As 

previously shown, actively growing 3T3 cells become quiescent after serum 

withdrawal (Figure 3.IB). These giowth aiTested cells were made to re-enter the cell 

cycle by the addition of media containing 20% serum and [^H] thymidine 

incoiporation data demonstrates the entry of these cells into S phase on serum 

stimulation (Figure 3.IB). Asynchronous 3T3 cells also show an increase in [^H] 

thymidine uptake over quiescent levels, although this value is approximately 50% 

lower than synchronised cells. In contrast, Py3T3 cells fail to respond to serum- 

withdrawal and [^H] thymidine incorporation levels remain similar to levels displayed 

by the asynchronous population. Furtheimore, it is significant that the basal level of 

Py3T3 cells passing through S phase in the absence of serum is similar to that of the 

3T3 cells following serum-stimulation. These results imply that while 3T3 cells 

withdraw from the cell cycle in serum-free conditions, Py3T3 cells are able to 

continue to pass through S phase in a serum-independent manner.
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Figure 3.1

Py3T3 cells have diminished serum dependence

Panel A shows a growth curve of the relative rates of proliferation for 3T3 and Py3T3 

cells. Cells were plated out at 5 x 10  ̂ cells/ml and cultured in DMEM medium 

supplemented with 10% fetal calf serum which was renewed daily. Counts were 

taken for each cell line over 6 consecutive days after plating. The values delineate the 

mean of two experiments ± standard deviation.

Relative levels of [^H] thymidine incorporation into newly synthesised DNA of 3T3 

and Py3T3 cells cultured for 24 hours in the absence of serum and subsequently 

stimulated with 20% serum for 3 hours prior to addition of [^H] thymidine and a 

further 3 hour incubation before harvesting are illustrated in panel B. Asynchronous 

cells were cultured in 10% senim prior to [^H] thymidine treatment. Values shown 

represent the mean of 20 counts taken over 2 experiments and are given relative to the 

value obtained for the asynchronous 3T3 population (designated 100%) ± standard 

deviation.
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3.2.2 Overexpression of pol III transcripts in Py3T3 cells

Previous studies, such as the activation of pol III transcription in SV40-transformed 

cells (Larminie et al., 1999; White et al., 1990), have established a precedent for a 

stimulation of pol 111 transcription by oncogenic viruses (reviewed in Brown et al., 

2000). To investigate the effect of transformation by Polyomavirus on pol 111 

transcription, RNA was extracted from 3T3 and Py3T3 cells and analysed by northern 

blotting. Figure 3.2A displays the steady state level of pol 111 transcripts derived from 

the B2 middle repetitive gene family. Py3T3 cells demonstrate a substantial 

overexpression relative to the 3T3 cells (compare lanes 1 and 2). It is evident from 

the levels of the pol 11 transcript encoding ARPP PO that this overexpression does not 

extend to pol 11 transcripts and is instead, specific to pol 111 (Figure 3.2B). After 

values for B2 levels were normalised against those for ARPP PO (Figure 3.2C), it was 

apparent that B2 transcript overexpression in the Py3T3 cells was in the region of 11- 

fold.

3.2.3 B2 overexpression is not dependent on cell confluency

The overexpression of the pol 111 B2 transcripts seen in figure 3.2 was clearly 

substantial. However, to ensure that this observation was not an artefact of 

proliferation rate and to address the implications of confluency of cells at the time of 

harvesting, RNA was extracted from 3T3 and Py3T3 cells over 6 consecutive days
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Figure 3.2

Pol III transcripts are overexpressed in Py3T3 cells

Total RNA (30jig) was extracted from 3T3 (lane 1) and Py3T3 (lane 2) cells and used 

for northern blot analysis. Panel A shows the blot probed with a B2 gene. The same 

blot was stripped and subsequently reprobed with the ARPP PO gene (Panel B). The 

levels of B2 and ARPP PO RNA from the northern analysis were quantitated by 

phosphoimaging (Fujix Bas 1000); B2 levels were normalised against levels for 

ARPP PO and expressed as arbitrary units. Values shown represent the mean of two 

experiments ± standard deviation, with the value obtained for the 3T3 cells being 

designated 1, as illustrated in panel C.
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after plating and used for northern analysis. Figure 3.3A displays the steady state 

level of pol Ill-transcribed B2 RNA with Py3T3 cells again demonstrating a 

substantial overexpression relative to the 3T3 cells (compare lanes 1-6 with lanes 7- 

12), For both cell lines, levels of B2 transcripts start to decline at higher confluencies 

when growth is no longer in the exponential phase; however, the increase in Py3T3 

cells of B2 transcripts holds, irrespective of confluency, and the B2 transcripts are 

consistently higher over the course of the 6 days. Although the levels of the pol II 

transcript encoding ARPP PO exhibited some variation (Figure 3.3B), when values for 

B2 levels were normalised against those for ARPP PO (Figure 3.3C), the 

overexpression of the B2 transcripts in the Py3T3 cells remained evident.

3.2.4 Py3T3 cells display deregulated pol III transcriptional activity

Support for the deregulation of pol III transcription is provided in figure 3.4. Specific 

pol n i  transcription reconstituted in vitro using the VA% template with 3T3 and Py3T3 

cell extracts, prepared from cells harvested over a course of 4 consecutive days, 

shows an elevated level of transcriptional activity for the Py3T3 extracts (compare 

lanes 1-4 with lanes 5-8). Consistent with the increase in B2 levels seen for Py3T3 

cells by northern analysis, the deregulation of reconstituted pol III transcription 

following transformation by Polyomavirus was apparent regardless of cell confluency 

at the time of harvesting.
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Figure 3.3

Overexpression of pol III transcripts is not dependent on cell 

confluency

Northern blot analysis of total RNA (30pg) extracted from 3T3 (lanes 1-6) and Py3T3 

(lanes 7-12) cells cultured in 10cm tissue culture dishes and harvested on consecutive 

days over a 6 day time course. Panel A shows the blot probed with a B2 gene. The 

same blot was stripped and subsequently reprobed with the ARPP PO gene (Panel B). 

The levels of B2 and ARPP PO RNA from the northern analysis were quantitated by 

phosphoimaging (Fujix Bas 1000); B2 levels were normalised against levels for 

ARPP PO and expressed as arbitrary units, with the lowest value obtained for the 3T3 

cells being designated 1, as depicted in panel C.
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Figure 3.4

Deregulation of pol III transcription is displayed by Py3T3 cell 

extracts

111 vitro transcription assay illustrating relative levels of pol III transcription for 3T3 

(lanes 1-4) and Py3T3 (lanes 5-8) cell extracts harvested over a course of 4 days. 

Transcription reactions contained 250ng of pVAi template and 20|Lig of cell extract.
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3.2.5 Transcriptional deregulation of Py3T3 cells is not gene specific

The in vitro transcription assay illustrated in figure 3.4 utilised the VA] template of 

adenovirus, as the VA% promoter is extremely well characterised and, therefore, 

routinely used in studies of mammalian pol III transcription. Figure 3.5 (compare 

lane 1 with lane 2 for each panel) demonstrates that the transcriptional deregulation 

observed for the Py3T3 cells is not a gene-specific phenomenon, since when in vitro 

transcription was reconstituted using a (A) B2, (B) EBER2, (C) tRNA^‘° or (D) 

tRNA°*“̂  template, a significant up-regulation in transcriptional activity was seen in 

each case.

3.2.6 Elevated levels of pol III products in Py3T3 cells

Introns are processed from primary transcripts and subsequently degraded very 

rapidly. Consequently, their levels in a cell provide an accurate reflection of the rate 

of ongoing transcription (Cormack and Struhl, 1992). Primers that hybridise 

specifically to the intron sequence of short-lived precursors of tRNA^" and tRNÂ *̂̂  

were used in RT-PCR reactions to assay the levels of the primary transcripts in RNA 

extracted from 3T3 and Py3T3 cells. Py3T3 cells exhibited significantly higher levels 

of the primary tRNA^^“ and primary tRNA^^”̂ transcripts when compared with the 

untransformed 3T3 cells (Figure 3.6A and 3.6B, respectively). This effect was 

specific, as no change was detected in the levels of mRNA encoding ARPP PO, which 

is synthesised by pol II (Figure 3.6D).
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Figure 3.5

Py3T3 transcriptional deregulation is observed for a range of pol III 

transcripts

Comparison of the capacity of 3T3 and Py3T3 cell extracts to transcribe class III 

genes. Transcription reactions comprised 20pg of 3T3 (lane 1 for each panel) or 

Py3T3 (lane 2 for each panel) cell extract and 250ng of template. Templates utilised 

were pTB14 containing a mouse B2 gene (panel A), pE2-160 containing the EBER2 

gene (panel B), pMcetl containing a tRNA^™ gene (panel C) and pGlu6 containing a 

human tRNA '̂""" gene (panel D).
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To confirm that the increase observed with tRNA^^ and tRNA^^^ extended to other 

pol III products, U6 snRNA was tested and similarly displayed a substantial elevation 

in the Py3T3 cells (Figure 3.6C). Average relative increases after normalisation 

against the ARPP PO control, for each product, are shown in the corresponding 

graphs: (E) tRNA^"", (F) tRNA'^^  ̂and (G) U6.
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Figure 3.6

Py3T3 cells overexpress pol III transcripts

cDNAs were generated by reverse transcription of RNA from 3T3 (lane 1 in each 

panel) and Py3T3 (lane 2 in each panel) cells and were PCR amplified using primers 

for tRNA^" (panel A), tRNÂ *̂̂  (panel B), U6 snRNA (panel C) and ARPP PO (panel 

D). Levels of each transcript for both cell lines were quantitated by phosphoimaging 

(Fujix Bas 1000); values for pol III transcripts were normalised against ARPP PO and 

delineated in graphs E, F and G which correspond to panels A, B and C above. 

Values shown represent the mean of three experiments ± standard deviation, with the 

value obtained for the 3T3 cells being designated 1.
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3.3 DISCUSSION

3.3.1 Py3T3 cells display accelerated proliferation and loss of cell 

cycle control

Proliferating cells are characterised by their ability to complete a full cell cycle and 

undergo cell division; events that ai*e subject to meticulous regulation. It is well 

documented, however, that tumour and transformed cells display uncontrolled cell 

proliferation and typically employ mechanisms to deregulate the cell cycle (SheiT, 

1996). Consequently, it follows that the Py3T3 cells demonstrate an elevated rate of 

proliferation over the untransformed 3T3 cells. This averaged as a 2.1-fold increase 

during the exponential phase of the two cell growth curves. The decline of 3T3 cell 

number upon reaching confluency was also consistent with previous studies 

establishing the ability of cells to contact inhibit (Aaronson and Todaro, 1968). The 

Py3T3 cells showed a slightly reduced rate of proliferation at post-confluency, but 

failed to exhibit the decline in number observed for the 3T3 cells. Although a 

simplistic study, these growth curves were congruous with the established 

characteristics of untransformed and transformed cell lines (Aaronson and Todaro, 

1968) and served to demonstrate a deregulated level of cell proliferation following 

transformation. Additionally, appropriate passage requirements for each cell line 

were established on the basis of proliferation rates observed.

The tight regulation controlling progression through the cell cycle permits cells to 

withdraw into a quiescent state during unfavourable conditions (Laiminie et al..
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1998). 3T3 cells have previously been shown to demonstrate withdrawal from the 

cell cycle and subsequent re-entry upon serum-stimulation (Abelson et al., 1974; 

Scott, 2001). This cell cycle control was demonstrated here by the levels of [^H] 

thymidine incorporation into newly synthesised DNA, indicating cells passing 

through S phase. Serum-starved 3T3 cells show a marked reduction in S phase cells 

over the asynchronous population, indicating the withdrawal of cells into a quiescent 

state. As the asynchronous cells had not been subject to cell cycle co-ordination, the 

50% decrease in S phase cells shown following serum-withdrawal implied that many 

of the asynchronous 3T3 population were already out of cycle. Conversely, 3T3 cells 

treated with 20% serum to induce re-entry into the cell cycle, exhibit a level 

approximately 2-fold greater than the asynchronous cells and in the region of 4-fold 

over the quiesced cells.

Previous work has illustrated a directly proportional relationship between growth rate 

and protein accumulation; the principal determinant of which is the rate of translation 

(Baxter and Stanners, 1978). A 50% reduction in the rate of protein accumulation is 

sufficient to cause proliferating cells to withdraw from the cell cycle and quiesce 

(Brooks, 1977) In considering the 2-fold elevation of proliferation rate of Py3T3 cells 

exhibited relative to the 3T3 cells, it follows that to sustain this increased rate, growth 

levels and, therefore, protein synthesis demands would have to be met. Consequently, 

the increase over the 3T3 cells in the asynchronous population of Py3T3 cells passing 

through S phase, as delineated by the 2-fold increase in [^H] thymidine incorporation, 

suggests that growth and protein synthesis are abnormally active in Py3T3 cells.

Additionally, given that the genes commanding cell cycle control mechanisms are 

frequently targeted for mutation, deletion or amplification in tumours, resulting in a
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loss of cell cycle regulation (Sherr, 1996), the observation that the levels of [^H] 

thymidine incorporation were unremitting for serum-starved Py3T3 cells is indicative 

of the deregulated cell cycle control conferred by transformation.

Furthermore, [^H] thymidine incorporation levels for serum-stimulated 3T3 cells were 

equalled by those for the asynchronous Py3T3 population; a notable observation 

bestowing further evidence of the accelerated growth and proliferation that arises as a 

manifestation of Polyomavirus transformation.

3.3.2 Overexpression of pol III transcripts in Py3T3 cells

Not only is the rate of protein accumulation a critical deteiTuinant of cellular growth, 

but it has been appreciated for a number of years that organisms adjust their 

translational capacity to meet, but not exceed, the requirement for protein synthesis. 

Central to this aspect of regulation is the control of stable RNA (tRNA and rRNA) 

production. In vivo analyses of Saccharomyces cerevisiae under a variety of 

conditions clearly established a direct link between translational load, stable RNA 

synthesis and ultimately ribosome biogenesis (Clarke et al., 1996).

Activation of transcription by pol III of the B2 family of middle-repetitive elements is 

a general feature of Simian Virus 40 (SV40) transformation (Brickell et al., 1983; 

Scott et al., 1983) and accompanies an elevation in growth rate. Furthermore, 

previous studies have shown a stimulation by Polyomavirus in the production of pol
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Ill transcripts in vivo (Majello et a l, 1985) which supports the contention linldng 

growth and protein synthesis.

Northern analysis of relative B2 levels in the 3T3 and Py3T3 cell lines was used to 

confirm the activation of pol III transcripts in the Py3T3 cells and establish the degree 

of stimulation following transformation. The results clearly indicate that the Py3T3 

cells overexpress B2 transcripts. To expand on this observation and address the 

implications of cell confluency at the time of extract preparation on stimulatory effect 

of transformation, cells harvested over a course of 6 consecutive days were again 

analysed by northern. This revealed that despite B2 expression decreasing in both cell 

lines at higher states of confluency, there was a sustained overexpression in the Py3T3 

cells. Moreover, elevated transcription in the Py3T3 cells, demonstrated by in vitro 

transcription assays, supported the northern results with respect to both the increase in 

transcription and the congruity throughout a range of confluencies. In vitro 

transcription results also provided evidence of a general pol III transcription 

deregulatory effect by demonstrating deregulation with a variety of pol III templates.

Additional support was then obtained from RT-PCR analyses, with the transformed 

Py3T3 cells again demonstrating an elevation of pol III transcripts averaging just over 

2-fold greater than levels expressed by the 3T3 cells, a specific effect which was not 

observed for the pol II transcript ARPP PO.

Together these results demonstrate, through a range of techniques, that Polyomavirus 

is able to deregulate proliferation, cell cycle control and pol III transcription. These 

features are consistent with characteristics displayed by transfoiTned cell lines in 

previous studies.
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Chapter 4

Up-regulation of components of the pol III 

transcriptional machinery

4.1 INTRODUCTION

The transcription factor TFIIIB has been strongly established as a key component of 

the pol III transcriptional machinery and, as such, is inextricably linked to 

transcription control (White, 1998b). There is a strong propensity for it to be targeted 

for regulation under a variety of conditions, being specifically down-regulated during 

differentiation (White et al., 1989) and mitosis (Gottesfeld et al., 1994; White et al, 

1995b) and up-regulated as cells move into S phase (White et a l, 1995a) or by 

oncogenic viruses (Brown et a l, 2000).

Among the viruses capable of activating TFIIIB is the small DNA tumour virus 

Simian Virus 40 (SV40) and previous studies have documented higher specific 

activity of TFIIIB in the SV40-transformed cell lines SV3T3 C138 and SV3T3 C149 

(Larminie et a l, 1999). In untransformed murine fibroblasts, TFIIIB is subject to 

negative regulation by a physical interaction with the tumour suppressor protein RB 

(Larminie et a l, 1997; White et a l, 1996), but co-immunoprecipitation analyses 

demonstrated that in SV3T3 cells this interaction is compromised and the amount of 

TFIIIB associated with RB is significantly reduced (Larminie et a l, 1999). 

Furthermore, this mode of TFIIIB activation can be ascribed to the large T antigen of 

SV40. It possesses an LXCXE motif, allowing it to bind RB and result in its
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inactivation (DeCaprio et al., 1988; Ewen et a l, 1989; Livingston, 1992). Moreover, 

it has been established that mutations in laige T that interfere with RB binding 

abrogate its transfoiming activity (DeCaprio et a l, 1988; Ewen et a l, 1989). 

Consequently, this release of TFIIIB from RB-mediated repression contributes to the 

deregulation by SV40 that potentiates increased pol III transcription.

A similar ability to inactivate RB pertains in Py3T3 cells, where the large T antigen of 

Polyomavirus is also able to bind to RB through its LXCXE motif (Dyson et al, 

1990), strongly implicating TFIIIB as a target for deregulation by Polyomavirus. 

Furthermore, the presence of an LXCXE motif permitting binding of RB is a feature 

exploited by a number of viral oncoproteins, with E l A of adenovirus and E7 of 

Human Papillomavirus (HPV) both demonstrating the same ability (Dyson et a l, 

1992; Munger et a l, 1989; Whyte et a l, 1989).

Interestingly though, a recent study has suggested through mutagenesis of the 

LXCXE-binding site of human RB, that the cell cyele anest functions of RB are 

separable from binding to viral oncoproteins (Dick et a l, 2000). Evidence was 

presented to show that the LXCXE-binding cleft of RB is not required to actively 

repress transcription of E2F-responslve promoters and that the repressor molecules 

HDACl and CtIP, which also contain an LXCXE consensus sequence, must possess 

additional RB-binding sequences that are independent of this motif. Mutation of the 

LXCXE-binding site did not interfere with the regulation of RB by phosphorylation 

and the cell cycle arrest induced by these RB mutants was insensitive to inactivation 

by E7 (Dick et a l, 2000). These observations appear to contradict the established role 

of RB inactivation by transforming oncoproteins through this binding site. It is, 

however, possible that this paradox could be explained by a number of theories. It
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may be that the interactions between RB and cellular LXCXE-containing proteins 

contribute to cell cycle arrest by RB without being essential or that these interactions 

vary between cell types or types of arrest. Alternatively, the RB LXCXE-binding 

cleft could be important for cell cycle arrest only under certain conditions. 

Furthermore, redundancy may exist between the different transcriptional repressors 

that associate with RB, allowing repression of E2F-dependent transcription despite 

some E2F target genes being regulated by LXCXE-binding proteins.

The possibility also exists that since viral oncoproteins have evolved to bind RB in 

order to inactivate it, they likely favour high-affinity interactions while, conversely, 

cellular proteins interact with RB in a regulated and reversible fashion. Consequently, 

interaction of viral oncoproteins with RB may depend on the LXCXE-binding site to 

a far greater extent than cellular proteins involved in cell cycle arrest or 

transcriptional repression.

The pocket domain is required for a range of RB functions, including cell 

differentiation (Chen et al., 1996a) and activation of transcription (Chen et al., 1996b; 

Nead et al., 1998). Certain RB mutants possessing uncompromised LXCXE-binding 

sites have been shown to retain the ability to induce differentiation and transcription 

while failing to regulate cell proliferation (Sellers et al., 1998). This is significant 

because viral oncoproteins such as E7 have demonstrated the ability to block cellular 

differentiation (McCaffrey et al., 1999).

Although oncoproteins like E7 overcome cell cycle regulation by RB through their 

LXCXE motif, evidence has yet to be presented that implicates cellular proteins 

possessing this motif primarily in the cell cycle function of RB.
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These observations showing that mutation of this binding site allows RB to function 

as a cell cycle regulator while being resistant to inactivation by viral oncoproteins 

seem somewhat enigmatic. This is, however, a limited study and given the 

conservation of the LXCXE motif and its employment by a range of viral 

oncoproteins, it nevertheless clearly confers an important aspect of deregulation by 

transforming viruses.

The fact that transforming viruses exploit some of the same deregulator y mechanisms,

such as the binding and inactivation of RB, is significant. However, it is equally

interesting that even closely related oncogenic viruses display striking differences.

The large T antigen of SV40 shares 60% amino acid sequence identity and a wide

range of properties with the large T antigen of Polyomavirus (Turler, 1980). SV40

large T is able to bind to the tumour suppressor protein, p53, which is unrelated to

RB, and cause its inactivation (Lin and Simmons, 1991). p53 inactivation by point

mutation, deletion or MDM2 overexpression occurs frequently in Polyomavirus-

induced sarcomas; however, in contrast to SV40, the large T antigen of Polyomavirus,

as well as the middle and small T antigens, fail to bind p53 (Wang et al., 1989). Here

another paradox manifests itself, as the large T antigen of Polyomavirus is still able to

interfere with the growth suppressive activity of p53 (Doherty and Freund, 1997).

Interestingly, mutant large T antigens containing a defective RB-binding domain

failed to overcome growth arrest, implicating the large T interaction with RB in this

function. The ability of p53 to mediate growth arrest requires overexpression of p21

(Harper et al., 1995), which binds cyclin/cdk complexes and can inhibit kinase

activity of these complexes at high concentrations (Gu et al., 1993). Given, however,

that RB and its family members are substrates for cyclin/cdk complexes (Hinds et al.,

1992), it is suggested that p53-dependent growth arrest is a result of inhibition of
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phosphorylation of RB family proteins by p21. Furthermore, a population of RB is 

phosphorylated in cells expressing large T, p53 and p21, implying that large T 

expression ovenides the p21 inhibition of kinase activity or activates another RB 

Idnase (Doherty and Freund, 1997). Large T may achieve this through a direct 

interaction with p21 or by inducing another protein(s) that inactivates p21.

The complexity of the Polyomavirus large T antigen functions and its interplay with 

cellular proteins is clearly evident. However, this chapter focuses on identifying some 

of the mechanisms concerned with specifically deregulating pol III transcription in 

Polyomavirus-transformed cells. It documents both large T -dependent and -  

independent effects and establishes aspects of the pol III transcriptional machinery 

that are targeted for deregulation. While much conelation is observed with SV40 and 

indeed, some features of pol III deregulation by other transforming viruses, 

Polyomavirus also presents novel mechanisms of deregulation.
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4.2 RESULTS

4.2.1 Pol III activity is up-regulated by Polyomavirus transformation

There is a wide range of mechanisms by which pol III transcription can be modulated 

(reviewed in White, 1998b) and numerous transformed and tumour cell types have 

displayed abnormally elevated levels of pol III transcripts. However, previous studies 

have revealed no evidence for the polymerase itself to be controlled directly, with 

regulation being mediated instead through changes in the activities of pol Ill-specific 

transcription factors (Brown et al., 2000). To address the effect of Polyomavirus 

transformation on pol III itself, random polymerisation assays were performed using 

poly(dA.dT) as a non-specific template. As demonstrated in figure 4.1, the level of 

pol III activity was significantly higher in extracts from Py3T3 cells relative to the 

levels displayed in untransformed 3T3 cell extracts. With a 1.8-fold increase being 

produced, this would appear to be the first evidence of the pol III enzyme as a direct 

target for deregulation following viral transformation.

4.2.2 Elevated abundance of pel III subunits in Py3T3 cell extracts

Western blot analysis confened support for the direct targeting of the polymerase 

itself by Polyomavirus. A clear elevation in the abundance of the AC 19 pol III
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Figure 4.1

Py3T3 cells up-regulate pol III activity

Random polymerase assays, demonstrating specific levels of activity for pol I or pols 

I and III combined, were performed using 3T3 and Py3T3 cell extracts and the non­

specific template poly(dA.dT). Reactions were carried out in the presence of Ipg/ml 

a-amanitin to inhibit pol II only or in the presence of lOOpg/ml a-amanitin for 

inhibition of both pol H and pol III activities. Values illustrated represent the level of 

pol III activity alone as a mean of two experiments ± standard deviation.
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subunit is seen in extracts from Py3T3 cells relative to levels exhibited by 3T3 cell 

extracts (Figure 4.2A, compare lanes 1 and 2). A pol III fraction (lane 3) was run 

alongside to provide a positive control for the pol III subunit. Furthermore, similar 

elevation was seen for a second subunit of pol III, BN51 (Figure 4.2B, compare lanes 

1 and 2). Blotting for actin demonstrated that the increase observed for AC 19 and 

BN51 was specific, as levels for actin were constant for extracts from both cell lines 

(Figure 4.2C).

4.2.3 Elevated TFIIIB activity in Py3T3 cell extracts

Although Polyomavirus directly targets the polymerase for deregulation, the 

possibility of additional mechanisms of deregulation remained likely as oncogenic 

viruses often target more than one of the key transcription factors (Brown et al., 

2000). SV40 has not demonstrated the ability to target the polymerase itself; 

however, two SV40-transformed cell lines, SV3T3 C138 and SV3T3 C149, have 

previously been shown to display an increase in TFIIIB activity relative to the 

untransformed parental 3T3 cells (Larminie et al., 1999). Consequently, TFIIIB 

assays were conducted to establish the relative levels of TFIIIB activity in 3T3 and 

Py3T3 cell extracts. These assays exploit the differential sensitivity of pol III 

transcription factors to inactivation by mild heat treatment. Cell extracts were heat- 

treated for 15 minutes at 47°C, specifically inactivating TFIIIC and TBP. These were 

replenished by addition of PC-C, a TFIIIC- and Pol Ill-containing phosphocellulose- 

column fraction, along with recombinant TBP. The remaining components of the pol
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Figure 4.2

Overexpressioli of pol III subunits in Py3T3 cells

Whole cell extracts prepared from 3T3 (lane 1 in each panel) and Py3T3 (lane 2 in 

each panel) cells and a pol IQ fraction (lane 3) were resolved on a SDS-7.8% 

polyacrylamide gel and analysed by western immunoblotting using either the AC 19 

antibody raised against the AC19 subunit of pol 01 (panel A), an antibody, 113, 

against the BN51 subunit of pol OX (panel B) or an anti-actin antibody, C-11 (panel

C).

Panels A and B show the same blot, cut and probed with the respective antibodies. 

The blot was stripped and reprobed for actin (panel C).
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Ill machinery are uncompromised by the heat treatment and the heat-treated extracts 

were then assayed for TFIIIB activity using the VAi pol III template. Py3T3 cell 

extracts displayed substantially higher TFIIIB activity than the extracts from 3T3 cells 

(Figure 4.3, compare lanes 2 and 3). The control lane, replacing the addition of a cell 

extract with buffer alone (lane 1) showed no transcription, demonstrating the 

requirement of TFIIIB in the extracts for pol III transcription.

This increase in TFIIIB activity in Py3T3 cell extracts provides evidence of another 

deregulatory mechanism employed by Polyomavirus and is consistent with the 

observation of elevated TFIIIB activity in cell lines transformed by SV40.

4.2.4 TFIIIB subunits TBP and BRF are not overexpressed in Py3T3 

cells

The increase in TFIIIB activity accompanying SV40 transformation cannot be 

ascribed to an increase in the TBP and BRF subunits of TFIIIB, as levels of 

expression remain the same as levels observed in the parental 3T3 cells (Larminie et 

al., 1999). To investigate this angle in Polyomavirus-transformed cells, western 

analysis to determine protein levels of TBP and BRF was perfoimed using cell 

extracts from 3T3 and Py3T3 cells. Synonymous with the observations in SV40- 

transformed cells, Py3T3 cell extracts displayed equivalent levels of both TBP and 

BRF to those seen in extracts of 3T3 cells (Figure 4.4, panels A and B, compare lanes 

1 and 2). This demonstrated that the elevation in TFIIIB activity in Py3T3 cells was 

not manifested through overexpression of these subunits. Levels for TFIIB in the two
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Figure 4.3

TFIIIB activity is elevated in Py3T3 cells

Relative levels of TFIIIB activity for 3T3 (lane 2) and Py3T3 (lane 3) cells, as 

established by TFIIIB assay performed using 20pg of cell extracts and 250ng of pVAi 

template. Extracts were heat-treated to specifically inactivate TFIIIC and TBP, by a 

15 minute incubation at exactly 47°C, and analysed by in vitro transcription assay 

after the addition of TBP and PC-C (a TFIIIC-containing phosphocellulose-column 

fraction) required for reconstitution of pol III transcription. Lane 1 serves as a 

negative control where reactions were earned out in the absence of cell extract.
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cell lines were also assessed to confirm equal loading of extracts and, as expected, 

remained constant (Figure 4.4C).

4.2.5 Py3T3, C138 and C149 cells overexpress the B” subunit of 

TFIIIB

While yeast TFIIIB has been well defined for a number of years and known to 

comprise TBP (Kassavetis et al., 1992), BRF (Buratowsld and Zhou, 1992) and B” 

(Kassavetis et al., 1995), a mammalian homologue of yeast B” had not been identified 

until recently. However, following the characterisation of a human homologue of 

yeast B” (B”) (Schramm et al., 2000), it has been possible to include B” in studies for 

mammalian pol III transcription. Exploiting this advance, B” levels for 3T3 and 

Py3T3 cell extracts were deteimined by western analysis. Additionally, as the levels 

of the B” subunit had not previously been analysed in SV40-transformed cells, 

SV3T3 C138 and SV3T3 C149 cell extracts were similarly tested.

In blatant contrast to the observations for TBP and BRF, the level of B” in the Py3T3 

cell extract substantially exceeds the level displayed by the parental cell line (Figure 

4.5A, compare lanes 1 and 2). The overexpression is clearly specific, as 3T3 and 

Py3T3 cell extracts revealed equal protein levels of TFIIB (Figure 4.5B, lanes 1 and 

2).

Similarly, protein levels of B” expressed in C138 and C149 cell extracts were clearly

higher than in the extracts from 3T3 cells (Figure 4.5C, compare lanes 2 and 3 with

lane 1). Blotting for TFIIB provided a control for protein loading (Figure4.5D).
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Figure 4.4

TFIIIB subunits TBP and BRF are not overexpressed in Py3T3 cell 
extracts

Whole cell extracts prepared from 3T3 (lane 1 in each panel) and Py3T3 (lane 2 in 

each panel) cells were resolved on a SDS-7.8% polyacrylamide gel and analysed by 

western immunoblotting using either the anti-TBP antibody SL30 (panel A), the anti- 

BRF antibody 330 (panel B) or the C l8 antibody against TFIIB (panel C).

Panels A, B and C show the same blot, cut and probed with the respective antibodies.
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These results provide evidence, not only of up-regulation of the B” subunit of TFIIIB 

by Polyomavirus but, moreover, provides additional and novel insight into the 

targeting of TFIIIB for deregulation following S V40 transformation.

4.2.6 Elevated B” transcripts in Py3T3, C138 and C149 cells

The increase in B” for Py3T3, C138 and C149 cells relative to the parental 3T3 cells, 

demonstrated by western analysis (Figure 4.5), was unequivocal. However, to 

determine the level at which B” becomes up-regulated, semi-quantitative RT-PCR 

analysis of the B” transcript was performed for each cell line. In agreement with the 

results obtained from the western blotting, a significant elevation in the transcript 

encoding B” was apparent in total RNA extracted from Py3T3, C138 and C149 cells, 

when compared with levels in 3T3 cells (Figure 4.6A, compare lanes 2, 3 and 4 with 

1). This effect was specific, as no change was detected in the levels of mRNA 

encoding ARPP PO, which is synthesised by pol II (Figure 4.6B). The average 

relative increase in B” for each cell line, after normalisation against the ARPP PO 

control, is displayed in panel C and highlights a 3.5-fold increase confened by 

Polyomavirus. Furthermore, the more pronounced elevation in B” transcript levels 

observed for C138 cells than C149 cells is a significant finding (Figure 4.6C, compare 

columns 3 and 4), as C149 cells have a higher proliferation rate than that of C138 cells. 

Thus, the increased transcript level of B” in the C138 cells suggests that B” 

overexpression in the transformed cell lines is not simply a response to enhanced 

proliferation.
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Figure 4.5

Py3T3, C138 and C149 cell extracts overexpress the B” subunit of 
TFIIIB

3T3 and Py3T3 cell extracts (lanes 1 and 2, respectively, panels A and B) or extracts 

prepared from 3T3, C138 and C149 cells (lanes 1, 2 and 3, respectively, panels C and

D) were resolved on a SDS-7.8% polyacrylamide gel and analysed by western 

immunoblotting. Panels A and C show the blots probed with an anti-B” antibody, 

2663-4, while panels B and D show the lower section of each blot probed with the 

anti-TFIIB antibody, C18.
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Figure 4.6

Overexpression of B” mRNA in Py3T3, C138 and C149 cells

cDNAs were generated by reverse transcription of RNA from 3T3, Py3T3, C138 and 

C149 (lanes 1, 2, 3 and 4, respectively, in each panel) cells and were PCR amplified 

using primers for B” (panel A) and ARPP PO (panel B). Levels for each transcript for 

all four cell lines were quantitated by phosphoimaging (Fujix Bas 1000); values for 

B” were noiTnalised against ARPP PO and illustrated graphically (panel C). Values 

shown represent the mean of two experiments ± standard deviation, with the value 

obtained for the 3T3 cells being designated 1.
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4.2.7 The RB-BRF interaction is compromised in Py3T3 cells 

through targeting of RB by the large T antigen

Both the large T antigen of SV40 (DeCaprio et al., 1988) and Polyomavirus (Pilon et 

al., 1996) possess an LXCXE motif within their N-termini which allows them to 

interact with RB and its related family members. They specifically bind to the 

undeiphosphorylated form of RB (Khandjian and Tremblay, 1992; Ludlow et al., 

1989), resulting in its inactivation. Indeed, it has been demonstrated that the 

immortalisation function of Polyomavirus and SV40 large T antigens is dependent on 

their binding site for RB, pl07 and pl30 (Larose et al., 1991; Tevethia et al., 1997).

Consequently, it was of interest to determine the degree of interaction between 

endogenous RB and TFIIIB, which is subject to RB-mediated repression, in order to 

establish if this interaction was compromised in Py3T3 cells. The amount of BRF co- 

immunoprecipitated from Py3T3 cell extracts by an anti-RB antibody was severely 

diminished relative to that seen for 3T3 cell extracts (Figure 4.7A, compare lanes 1 

and 3). Extracts were similarly treated with an inelevant control antibody against the 

TAFi48 subunit of a pol I factor, SLl, which confirmed that the interaction between 

RB and BRF was specific, since BRF was not co-immunoprecipitated from either of 

the cell extracts using this antibody (Figure 4.7A, lanes 2 and 4).

Western analysis of RB protein levels in 3T3, Py3T3 and Pytsa3T3 cell extracts 

revealed that RB is similarly abundant in the different cell lines (Figure 4.7B, lanes 1, 

2 and 3), providing evidence that the reduced interaction between RB and BRF 

observed in the Py3T3 cells was not a consequence of a lower RB expression level.
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Complementary evidence, supporting the involvement of the large T antigen in this 

disrupted interaction, was obtained through a converse co-immunoprecipitation 

experiment addressing the interaction between endogenous RB and the large T 

antigen. RB is clearly co-immunoprecipitated from Py3T3 cell extract using an 

antibody against the Polyomavirus T antigens (Figure 4.7C, lane 3) and as expected, 

no RB was seen for the 3T3 cell extract (Figure 4.7C, lane 1), An additional cell line, 

Pytsa3T3 cells, which are transformed by Polyomavirus but defective for the function 

of large T, was used to demonstrate, through this mutation, that the interaction with 

RB was specific for the large T antigen. As expected, RB was not found to co- 

immunoprecipitate from extracts of the Pytsa3T3 cells (Figure 4.7C, lane 5). Again, 

extracts from each cell line were treated with the TAFi48 antibody to provide a 

control for the specific interaction and in each case showed no presence of RB 

(Figure4.7C, lanes 2, 4 and 6).

Taken in conjunction with the previous results, these data support the evidence for 

inactivation of RB by Polyomavirus large T antigen and implicate the disruption of 

the interaction between endogenous BRF and RB in Polyomavirus-mediated 

activation of TFIIIB.

4.2.8 Large T antigen stimulates pol III transcription

The involvement of the large T antigen in transformation by Polyomavirus is 

paramount. In order to establish its effect specifically with regard to pol III 

transcriptional activation, large T was transfected into untransformed 3T3 cells and its
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Figure 4.7

Interaction between RB and BRF is compromised in Py3T3 cells

Panel A shows whole cell extracts (150|LLg) prepared from 3T3 (lanes 1 and 2) and 

Py3T3 (lanes 3 and 4) cells, immunoprecipitated (IP) using the anti-RB antibody, C l5 

(lanes 1 and 3) or an anti-TAFi48 antibody, M19 (lanes 2 and 4). The precipitated 

material was resolved on a SDS-7.8% polyacrylamide gel and the presence of BRF 

was deteimined by western analysis with the anti-BRF antibody, 128-4.

Panel B shows whole cell extracts (50jiig) prepared from 3T3 (lane 1), Py3T3 (lane 2) 

and Pytsa3T3 (lane 3) cells resolved on a SDS-7.8% polyacrylamide gel and analysed 

by western immunoblotting using an anti-RB antibody. C l5.

Whole cell extracts (150p.g), shown in panel C, prepared from 3T3 (lanes 1 and 2), 

Py3T3 (lanes 3 and 4) and Pytsa3T3 (lanes 5 and 6) were immunoprecipitated using 

the F4 antibody against the Polyomavirus T antigens (lanes 1, 3 and 5) or an anti- 

TAFi48 antibody, M19 (lanes 2, 4 and 6). Western blotting was performed using the 

anti-BRF antibody, 128-4, following electrophoretic separation of the precipitated 

material on a SDS-7.8% polyacrylamide gel.
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ability to stimulate transcription of the VAi pol III template analysed by primer 

extension. A dramatic stimulation of transcription over both the empty vector and 

NG59, a functionally dead mutant, was observed with 0.5p.g of large T antigen DNA, 

which escalated further upon transfection of Ipg (Figure 4.8 A, compare lanes 3 and 4 

with lanes 1 and 2). Co-transfection of pCAT allowed transfection efficiency to be 

accounted for and confirmed a pol Ill-specific transcriptional stimulation (Figure 

4.8B). Values for VAi noimalised against CAT and presented graphically (Figure 

4.8C), highlight a stimulation of pol III transcription in the region of 150-fold at the 

higher concentration of large T transfection. While clearly expressed at artificially 

high levels, the effect of the large T antigen on pol III transcription is striking and 

constitutes an important aspect of its deregulation.

4.2.9 Elevation of TFIIIB activity is severely compromised in the 

absence of the large T antigen

Given that the large T antigen demonstrated a compelling aptitude to stimulate pol III 

transcription (Figure 4.8) and in view of its ability to disrupt the interaction between 

RB and BRF (Figure 4.7), the elevation of TFIIIB activity noted in the Py3T3 extracts 

(Figure 4.3) could likely be construed as the release of TFIIIB from RB-repression 

through the action of lai’ge T binding and inactivating RB.

To confiim this hypothesis, further use was made of the Pytsa3T3 cells. A TFIIIB 

assay established that the 5.9-fold elevation of TFIIIB activity conferred by the wild- 

type Polyomavirus was severely impaired, with only a 2.2-fold elevation observed
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Figure 4.8

Large T antigen stimulates pol III transcription in vivo

Transient transfection of the Polyomavirus large T antigen into 3T3 cells using the 

Superfect method. 3T3 cells growing in 10% serum were transfected with pVAi 

(0.5pg), pCAT (0.5jag) and the relevant amount of the plasmid of interest made up to 

3pg with “empty” pSV expression vector as follows: pSV alone (lane 1), pSV-NG59 

(Ipg, lane 2) or pSV-LT (0.5qg, lane 3 and Ipg, lane 4). VAi (panel A) and CAT 

(panel B) RNA levels were assayed by primer extension and then quantified by 

phosphoimaging (Fujix Bas 1000). Values shown in panel C are for VAi expression 

after normalisation to the levels of CAT RNA to correct for transfection efficiency; 

they are given relative to the value obtained with pSV vector alone (designated 1) and 

represent the mean of two experiments ± standard deviation.
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in the cells transformed by the mutant strain (Figure 4.9, compare lanes 3 and 4). 

This result implies that activation of TFIIEB is mediated through the action of the 

large T antigen and is consistent with the theory of release from repression by RB. 

However, it is significant that a slight elevation in TFIIIB activity still remains in the 

Pytsa3T3 cells, suggesting that TFIIIB activation is not wholly ascribed to large T 

function (Figure 4,9, compare lane 4 with lane 2). Western and RT-PCR analyses 

(Figure 4.5 and 4.6, respectively) showed that Py3T3 cells overexpress the B” 

subunit, which may explain this additional mode of TFIIIB activation, subject to it 

being a jarge T-independent effect.

4.2.10 Pytsa3T3 cells overexpress the B” subunit of TFIIIB

Continuing in this line of investigation, Pytsa3T3 cell extracts were analysed by 

western blotting to substantiate the B” expression levels relative to those of 3T3 and 

Py3T3 cell extracts. Accordant to the theory of large T-independent overexpression 

of B”, Pytsa3T3 cell extracts displayed significantly higher levels of B” than the 

untransformed 3T3 cells and equalled expression seen in wild-type Py3T3 cells 

(Figure 4.10A, compare lanes 3 and 4 with lane 2). Recombinant B” (Figure 4.10A, 

lane 1) provided a positive control for B” blotting and panel B (Figure 4.10), showing 

probing of the same blot for TFIIB, demonstrates equal protein loading and a B”- 

specific increase in the transformed cell lines.
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Figure 4.9

Elevation of TFIIIB activity is LT-dependent

Relative levels of TFIIIB activity for 3T3 (lane 2), Py3T3 (lane 3) and Pytsa3T3 (lane 

4) cells, as established by TFIIIB assay performed using 20pg of cell extracts and 

250ng of pVAi template. Extracts were heat-treated to specifically inactive TFIIIC 

and TBP by a 15 minute incubation at exactly ATC  and analysed by in vitro 

transcription assay after the addition of TBP and PC-C (a TFIIIC-containing 

phosphocellulose-column fraction) required for reconstitution of pol HI transcription. 

Lane 1 serves as a transcription control where reactions were carried out in the 

absence of cell extract.
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This result, in conjunction with the previous results, indeed suggests that in addition 

to a large T-dependent release of TFIIIB from RB-mediated repression, TFIIIB 

activation by Polyomavirus is also a manifestation of B” overexpression.

4.2.11 The rate limiting factor in Polyomavirus-transformed 

cells shifts from TFIIIC to TFIIIB in the absence of 

functional large T antigen

Although both the polymerase and TFIIIB display elevated activity in Py3T3 cell 

extracts, it was of interest to establish which of the general pol III transcription factors 

were rate limiting. To address this question, addback experiments were performed 

using purified fractions of TFIIIB, TFIIIC and pol III. It has previously been reported 

that TFIIIB is a rate limiting factor in 3T3 cells (Scott et al., 2001) but not for VA% in 

C138 or C149 cells (White et al., 1990). Individually adding back purified TFIIIB to 

an unfractionated Py3T3 extract conferred little or no stimulation of pol HI 

transcription (Figure 4.HA, compare lane 2 with lane 1), making this result 

compatible with the findings in C138 and C149 cells.

However, White et al also established that addition of PC-C, a crude phosphocellulose 

step fraction containing TFIIIC, resulted in stimulation of pol III transcription, 

identifying TFIIIC as the rate limiting factor in both the SV3T3 cell lines (White et 

al., 1990). Consistent with this observation, addition of the purified TFIIIC to a 

Py3T3 extract did confer a stimulation of pol III transcription of approximately 3-fold 

(Figure 4.11 A, compare lane 3 with lane 1). However, addition of pol III did not
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Figure 4.10

LT-defective Pytsa3T3 cells overexpress B” of TFIIIB

Whole cell extracts prepared from 3T3, Py3T3 and Pytsa3T3 cells (lanes 2, 3 and 4, 

respectively, in each panel) were resolved alongside recombinant B” (lane 1) on a 

SDS-7.8% polyacrylamide gel and analysed by western immunoblotting. Panels A 

and B show the same blot, cut and probed with an anti-B” antibody, 2663-4, or with 

the anti-TFUB antibody, C l8, respectively.
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result in elevation in transcription (Figure 4.11 A, lane 4 relative to lane 1) and it can 

be concluded that TFIIIC is the rate limiting factor in the Py3T3 cell extracts.

Conversely, similar analysis using Pytsa3T3 cells identified TFIIIB as the principal 

rate limiting factor (Figure 4.1 IB, lane 2 compared with lanes 1, 3 and 4). TFIIIC 

remained limiting, still showing an increase in transcription. However, at 1.6-fold, it 

was substantially less than with TFIIIB, which produced a 3.9-fold elevation (Figure

4.1 IB, compare lanes 2 and 3 with lane 1). Transcription remained unstimulated by 

addition of pol III (Figure 4.1 IB, compare lane 4 with lane 1). Significantly, the shift 

from TFIIIC to TFIIIB as the factor predominantly rate limiting emphasises the 

proficiency of the large T antigen to deregulate TFIIIB activity. In Pytsa3T3 cells, 

where large T is defective and, consequently, unable to relieve TFIIIB from 

repression by RB, TFIIIB becomes limiting as TFIIIC levels increase; this would 

suggest a causal-link between the observations.

4.2.12 Model of large T antigen-mediated activation of TFIIIB

Previous studies and data presented in this chapter implicate the large T antigen as an 

efficient activator of TFIIIB activity. Figure 4.12 depicts a model for pol III 

transcriptional deregulation through release of TFIIIB from its RB-mediated 

repression. The interaction between RB and TFIIIB prevents TFIIIB binding to pol 

III and TFIIIC (Sutcliffe et al., 2000). Specific targeting of RB by the large T antigen 

causes its inactivation, resulting in release of TFIIIB that, consequently, makes it 

available for pol III transcription initiation.
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Figure 4.11

TFIIIB becomes the most limiting factor in Pytsa3T3 cells

In vitro transcription was reconstituted using 20pg of Py3T3 (panel A) or Pytsa3T3 

(panel B) cell extract and 250ng of VAi template. Reactions were supplemented 

with purified fractions of TFIIIB (lane 2 in each panel), TFIIIC (lane 3 in each panel) 

or pol III (lane 4 in each panel). Transcription reactions carried out in the absence of 

additional fractions are shown in lane 1 (panels A and B) to provide an indication of 

the basal transcription level.
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Figure 4.12

Model illustrating a LT-dependent mechanism of pol III 

transcriptional deregulation

The large T antigen of Polyomavirus targets RB, thereby releasing TFIIIB from its 

RB-mediated repression and making it available for pol III transcription initiation.
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4.3 DISCUSSION

Although the deregulation of pol III transcription in tumour and transformed cells is 

principally through modulation of factors associated with the polymerase (Brown et 

al., 2000), results from random polymerisation assays established an enhanced level 

of actual polymerase activity in the region of 2-fold following transformation by 

Polyomavirus, which, furthermore, was reflected by an overexpression at the protein 

level of pol III subunits that were tested by western analysis.

That Polyomavirus specifically activates the polymerase presents a novel mechanism 

of deregulation, previously unreported in viral transformation. However, TFIIIB 

assays provided evidence of additional deregulation of a more commonly targeted 

transcription factor. The stimulation of TFIIIB activity confened by Polyomavirus is 

a feature shared with its close relative, SV40 (Larminie et al., 1999). The observation 

from western blotting that this activation was not mediated through overexpression of 

the TBP and BRF subunits of TFIIIB was also consistent with previous findings 

(Larminie et al., 1999). Moreover, that the B” subunit of TFIIIB was clearly 

overexpressed in Py3T3 cells and two SV40-transfoimed cell lines, further extended 

this similarity. RT-PCR showed that in each case an increase in the B” mRNA is 

likely to account, at least in part, for the elevated levels of the B” polypeptides. These 

observations for TFIIIB, established by analyses at the activity, protein and transcript 

levels, show a notable congelation between the two transforming viruses.

Co-immunoprecipitation experiments supported previous studies documenting an 

interaction between the large T antigen and RB in Polyomavirus-transfoimed cells
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(Pilon et al., 1996); it has been demonstrated here that this leads to a disruption of the 

RB-BRF interaction responsible for restraining TFIIIB activity. Furthermore, as 

would be predicted, Pytsa3T3 cells demonstrated, through their lack of functional 

large T antigen, the specific requirement of the large T antigen for interaction with 

RB.

The importance of the large T antigen in pol III transciiptional deregulation was 

emphasised through transfection into untransformed 3T3 cells, where it bestowed a 

marked stimulation. Additionally, TFIIIB assays utilising the large T defective 

Pytsa3T3 cells, established the large T antigen as the predominant activator of TFIIIB 

activity, which could be attributed, at least in part, to a partial release from repression 

byRB.

However, despite the efficacious action of the large T antigen on deregulation of pol 

III transcription, residual activation of TFIIIB activity was still observed in the 

Pytsa3T3 cells, suggesting that large T antigen activation of TFIIIB activity was 

complemented by an unrelated mechanism. As both Py3T3 and Pytsa3T3 cells 

displayed an overexpression of the B” subunit of TFIIIB, it could be construed that 

this overexpression may constitute the second mechanism of TFIIIB activation.

The data presented in this chapter provide compelling evidence for the activation of 

both pol III and TFIIIB by Polyomavirus and solicited the question of whether either 

of these, or another general pol III transcription factor, TFIIIC, was rate limiting for 

pol n i  transcription. Through addback experiments using purified fractions, TFIIIC 

was identified as the limiting factor in Py3T3 cells, in agreement with the finding of 

TFIIIC as the rate limiting factor in the cell lines C138 and C149 (White et al., 1990). 

Significantly, it was established that in Pytsa3T3 cells, where functional large T was
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not present to stimulate TFIIIB, TFIIIB then became the rate limiting factor for pol III 

transcription.

Arguably, however, this may be a simplistic conclusion given that these experiments 

were performed on extracts from asynchronous cell populations, which may mask the 

complexity of the situation. Studies utilising synchronised HeLa cells have revealed 

that during different phases of the cell cycle, the limiting pol III factor alternates. 

Hence, extracts from cells harvested during early Gi phase present TFIIIB activity as 

rate limiting for VAi expression, while in extracts of S- or G2~phase HeLa cells, 

TFIIIC becomes the limiting factor (White et al., 1995a). Consequently, while both 

these factors are necessary throughout the cell cycle, either of them individually may 

influence transcription for only a discrete interval of the cell cycle, subject to it being 

the limiting factor. Thus, presuming a comparable situation exists in 3T3 cells, 

activation of both TFIIIB and TFIIIC would likely be required to allow sustained 

elevation of pol III transcription rate.

Nevertheless, these results collectively argue that Polyomavirus is capable of 

activating both the polymerase itself and the general transcription factor TFIIIB, and 

that in the case of the latter, this is ensured by the action of two distinct mechanisms.
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Chapter 5

Overexpression of the pol III transcription 

factor TFIIIC2

5.1 INTRODUCTION

The multisubunit complex TFIIIC is a DNA-binding protein that has proved to be one 

of the largest and most complex transcription factors studied. In S. cerevisiae, TFIIIC 

comprises two globular domains, each approximately 300kD (Schultz et al., 1989). It 

is composed of six subunits, none of which have demonstrated the ability to bind 

specifically to DNA individually. Human TFIIIC appears to be somewhat different 

from its yeast counterpart. It demonstrates a lower overall stability and can be 

resolved into two components, TFIIIC 1 and TFIIIC2, by ion exchange 

chromatography (Dean and Berk, 1987; Oettel et al., 1997; Wang and Roeder, 1996; 

Yoshinaga et al., 1987). Studies have documented that expression of 5S rRNA, VAi 

and tRNA genes require both components, while U6 and 7SK transcription requires 

TFIIIC 1, although not TFIIIC2 (Lagna et al., 1994; Oettel et al., 1997; Yoon et al., 

1995). Although TFIIIC I is poorly characterised, human TFIIIC2 has been 

established as a five subunit complex consisting of polypeptides of 220, 110, 102, 90 

and 63kD, designated a, P, y, Ô and e, respectively (Sinn et al., 1995; Wang and 

Roeder, 1996; Yoshinaga et al., 1989). TFIIIC2 is responsible for the initial 

recognition of the A- and B-block sequences, which are core promoter elements found 

in type II promoters, serving then to recruit TFIIIC 1 and TFIIIB (Dean and Berk,
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1988). While the composition and exact function of TFIIIC 1 remain elusive, a role 

has been established for it in stabilisation of TFIIIC2 binding to A- and B-boxes 

(Wang and Roeder, 1996). TFIIIC 1 can bind independently to sequences downstream 

of the B-box that include the tennination region, contributing at least in part, to the 

enhanced level of TFIIIC2 binding observed through their co-operative interactions 

(Wang and Roeder, 1996).

TFIIIC2 can be detected in at least two forms, distinguishable by their differential 

migrations in electrophoretic mobility shift assays (Hoeffler et al., 1988; Kovelman 

and Roeder, 1992; Sinn et al., 1995) and which are distinct in their abilities to support 

transcription (Kovelman and Roeder, 1992). Chromatographic fractionation of HeLa 

cells has identified that the low-mobility form is transcriptionally active, while the 

higher-mobility species is inactive for transcription, although it retains the ability to 

bind DNA (Kovelman and Roeder, 1992). The difference underlying these 

transcriptional inconsistencies can be attributed to the llOkD subunit, termed 

TFIIIC 110; it is present in the active form, TFIIIC2a, but omitted from the inactive 

TFIIIC2b species (Kovelman and Roeder, 1992; Sinn et al., 1995). Notably, the slow- 

migrating species, TFIIIC2a, can be converted into the inactive TFllIC2b form upon 

treatment with acid phosphatase (Hoeffler et al., 1988). Thus, the transcriptional 

activity of TFIIIC can be modulated through phosphorylation. Furthermore, in vivo 

labelling has demonstrated the phosphorylation of all five subunits of TFIIIC2 in 

HeLa cells (Shen et al., 1996).

UV crosslinking has shown that the 220kD component, TFIIIC220, is the DNA- 

binding subunit of the TFIIIC2 complex. Nevertheless, TFIIIC220 alone exhibits no 

specific B-block-binding activity (Shen et al., 1996). However, an N-teiminal 83kD

142



fragment of the 220 subunit, comprising residues 1-732, can bind DNA specifically 

when in association with the 110 subunit, although this complex is unable to support 

transcription (Shen et al., 1996).

Intrinsic histone acetyl transferase (HAT) activity has been identified in TFIIIC 110 

and TFIIIC90 and strongly suggested in the TF1I1C220 subunit (Hsieh et al., 1999; 

Kundu et al., 1999). Elevated levels of TFIIIC2 have been demonstrated to reverse 

chromatin-mediated repression of a human tRNA gene and a partial inhibition of 

TFIIIC2 HAT activity confiâtes with a partial reduction in transcription from 

chromatin, although not naked DNA, templates (Kundu et al., 1999), The HAT 

activity of TFIIIC2 could, therefore, conceivably contribute to promoter accessibility 

to potentiate transcription, conferring an additional role to TFIIIC, over and above its 

function as an assembly factor for recruiting TFIIIB.

While TFIIIB is subject to strong regulation throughout the cell cycle (Scott, 2001; 

White, 1995; White, 1998b; White et al., 1995b), TFIIIC displays no evidence of cell 

cycle regulation. However, it has been observed in a murine system, that both TFIIIB 

and TFIIIC are less active in stationaiy-phase cells than they ai'e during active growth 

(Tower and Sollner-Webb, 1988).

As a rudimentary factor in the pol III transcriptional machinery, there is a strong 

propensity for it to be a target for deregulation. HeLa cells infected with wild-type 

adenovirus display a substantial increase in TFIIIC2 activity (Hoeffler et al., 1988; 

Sinn et al., 1995). This is a manifestation of a selective increase in the level of the 

TFIIIC 110 subunit, induced by the E l A oncoprotein, thereby raising the proportion of 

TFIIIC2 in the active TFIIIC2a foim (Hoeffler et al., 1988; Sinn et al., 1995). 

Moreover, serum stimulation of these cells similarly results in an increase in the
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abundance of TFIIIC 110, although interestingly, the level of the DNA-binding 

subunit TFIIIC220 remains constant under these conditions (Sinn et ah, 1995).

Another transforming virus that has revealed an ability to deregulate TFIIIC, is SV40. 

Elevation in the binding activity of TFIIIC2 has been documented in the SV40- 

transformed cell lines, SV3T3 C138 and SV3T3 C149 (White et al., 1990). Like 

adenovirus, SV40 is able to induce a significant increase in the level of TFIIIC 110, 

thus converting inactive TFIIIC2b into the active TFIIIC2a foim (Larminie et al., 

1999; White et al., 1990). However, in contrast to adenovirus, the ability to activate 

TFIIIC2 is not restricted to the confines of TFIIIC 110 elevation and SV40- 

transformed fibroblasts additionally show overexpression of TFIIIC220 (Laiminie et 

al., 1999). Furtheimore, the increased levels of TFIIIC2 subunits following SV40 

transformation reflect an elevation of transcripts encoding these subunits. In the case 

of TFIIIC 110, expression in C138 and C149 cell lines was seven- to eight-fold higher 

than in the corresponding untransformed parental cells (Larminie et al., 1999).

These examples of TFIIIC activation through viral transformation clearly establish it 

as an important target; however, perhaps more significantly, the first evidence of a pol 

III transcription factor, namely TFIIIC2, being overexpressed in tumours, has now 

been published (Winter et al., 2000). It was established that mRNAs encoding each 

of the TFIIIC2 subunits were overexpressed in human ovarian carcinomas. Given 

that there was little or no change in TFIIIC2 mRNA levels in actively cycling cells 

relative to growth-aiTested cells in culture, deregulation seems unlikely to be a 

secondary response to rapid cell proliferation within the carcinomas. Instead, it 

suggests that it is a more specific characteristic of tumouiigenesis, rather than a 

simple growth response (Winter et al., 2000).
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Additionally, activation of TFIIIC2 has been observed in breast carcinomas. Such 

observations in malignant human cells in vivo confer important credibility to the 

mechanisms of deregulation established through studies using transformed cell lines.

This chapter provides evidence of TFIIIC2 activation following transformation by 

Polyomavirus. The intrinsic involvement of the large T antigen in activation of 

TFIIIB has already been discussed; however, potentially, activation of TFIIIC could 

have been another manifestation of large T function. Data presented in this chapter 

argue against a role for the large T antigen and suggest that activation of TFIIIC2 is 

mediated through a large T-independent mechanism.
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5.2 RESULTS

5.2.1 Partial B2 overexpression in the absence of the Polyomavirus 

large T antigen

Chapter 4 identified the intrinsic involvement of the large T antigen in deregulation of 

TFIIIB activity. In order to establish if any pol III transcriptional deregulation 

persists in the absence of the lai'ge T antigen, Pytsa3T3 cells were utilised in northern 

analysis. Relative to the 3T3 cells, a marked overexpression of B2 transcripts was 

observed in the Pytsa3T3 cells (Figure 5.1 A, compare lane 3 with lane 1). However, 

as is more clearly demonstrated by a shorter exposure of the same blot, these cells 

were unable to match the B2 overexpression observed for wild-type transformed 

Py3T3 cells (Figure 5.IB, compare lanes 2 and 3 with lane 1). Reprobing the blot for 

the pol II transcript ARPP PO established that the B2 overexpression exhibited by 

these cell lines was specific (Figure 5.1C). Values for B2 levels were normalised 

against those for ARPP PO and expressed graphically (Figure 5.ID), demonstrating an 

increase in B2 expression in the region of 11-fold for Py3T3 cells relative to the 3T3 

cells and in the region of 4-fold in the case of the Pytsa3T3 cell line. Thus, while the 

large T antigen present in the wild-type transformed cells is clearly responsible for a 

substantial proportion of the pol III deregulation, this result provides strong evidence 

supporting the involvement of additional deregulatory mechanisms.
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Figure 5.1

Partial overexpression of Pol III transcripts pertains in Pytsa3T3

cells

Total RNA (30pg) was extracted from 3T3 (lane 1), Py3T3 (lane 2) and Pytsa3T3 

(lane3) cells and used for northern blot analysis. Panel A shows the blot probed with 

a B2 gene and a shorter exposure of the same blot is displayed in panel B. The blot 

was stripped and subsequently reprobed for the ARPP PO gene (Panel C). The levels 

of B2 and ARPP PO RNA from the northern analysis were quantitated by 

phosphoimaging (Fujix Bas 1000); B2 levels were normalised against levels for 

ARPP PO and expressed as arbitrary units. Values shown represent the mean of three 

experiments ± standard deviation, with the value obtained for the 3T3 cells being 

designated 1, as illustrated in panel D.
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5.2.2 Pol III transcription is partially deregulated in Pytsa3T3 cell 

extracts

The partial deregulation of pol III B2 expression levels observed in the Pytsa3T3 

cells, as shown in figure 5.1, was supported by in vitro transcription assays. Figure

5.2 displays levels of transcription for the pol III VAi template and similarly 

demonstrates the partial activation of pol III transcription of 1.6-fold by the Pytsa3T3 

cells over the 3T3 cells and the more prominent activation of 4.2-fold confeiTed by 

wild-type Polyomavirus.

5.2.3 Py3T3 cell extracts display elevated TFIIIC activity

In addition to the activation of TFIIIB ascribed to the function of the large T antigen, 

previous results established both overexpression of B” in Pytsa3T3 cells and an 

activation of the polymerase itself following transformation. While these aspects 

must likely contribute some degree to the deregulation resulting from Polyomavirus 

transformation, the possibility remained that TFIIIC, as another fundamental 

transcription factor in the pol III machinery, eould also be targeted for deregulation 

and could, therefore, account at some level for the deregulation persisting in the 

Pytsa3T3 cells. Precedent for this contention is given by the finding of elevated 

TFIIIC activity in SV3T3 C138 and SV3T3 C149 cells relative to the untransformed 

parental 3T3 cell line (White et a l, 1990).
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Figure 5.2

Pytsa3T3 cell extracts display partial deregulation of pol III 

transcription

In vitro transcription assay illustrating relative levels of pol III transcription for 3T3 

(lane 1), Py3T3 (lane 2) and Pytsa3T3 (lane 3) cell extracts. Transcription reactions 

contained 250ng of pVAi template and 20pg of cell extract.
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To address the possibility of TFIIIC2 activation, electrophoretic mobility shift assays 

were performed to identify the degree of TFIIIC2 DNA-binding activity in the cell 

lines. Levels of TFIIIC2 observed in the Py3T3 cell extracts were significantly more 

abundant than in extracts from 3T3 cells (Figure 5.3, compare lane 5 with lane 3). 

For both cell lines, the TFIIIC2 band was competed out by an excess of unlabelled B- 

block oligonucleotide (Figure 5.3, lane 2 and 4) but not by an equal amount of a non­

specific control oligonucleotide (Figure 5.3, lanes 3 and 5), indicating that the bands 

were specific. A binding reaction performed in the absence of cell extract produced 

no band for TFIIIC2, as expected (Figure 5.3, lane 1).

5.2.4 TFIIIC activation is independent of the large T antigen

Similar DNA-binding assays were perfonned using Pytsa3T3 cell extracts to establish 

TFIIIC activity in the absence of the large T antigen of Polyomavirus and thus 

determine if activation of TFIIIC2 was attributed to the large T antigen. Py3T3 cells 

again exhibited elevated activity of TFIIIC2 relative to the untransformed parental 

cells; furthermore, Pytsa3T3 cells displayed similar TFIIIC activity (Figure 5.4A, 

compare lanes 3 and 4, respectively, with lane 2). Again, TFIIIC2 was absent in a 

reaction lacking cell extract (Figure 5.4A, lane 1).

The unrelated transcription factor Spl was similarly analysed as a control against a 

general loss of DNA-binding proteins during the preparation of 3T3 cell extracts or a 

general increase in transcription factors following Polyomavirus transformation.
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Figure 5.3

Activation of TFIIIC2 is displayed in extracts from Py3T3 cells

Gel retardation assay for TFIIIC2 DNA-binding activities of parental and 

Polyomavirus-transformed cell lines. Reactions contained 0.5ng of labelled B-block 

oligonucleotide probe, Ipig of poiy(dl.dC), no extract (lane 1), or 23|Lig of 3T3 (lanes 

2 and 3) or Py3T3 (lanes 4 and 5) whole cell extract and lOOng of non-specific (lanes 

1, 3 and 5) or specific B-block (lanes 2 and 4) competitor oligonucleotide.
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Although this control is weakened due to not being in probe excess, Spl levels 

appeared to remain constant (Figure 5.4B).

After quantification, TFIIIC2 values were delineated in the graph shown in figure 

5.4C. It serves to highlight the difference between wild-type Polyomavirus- 

transfoimed Py3T3 cells and untransformed 3T3 cells in TFIIIC2 DNA-binding 

activity and, additionally, the ability of Pytsa3T3 cells to sustain this difference in the 

absence of the large T antigen.

5.2.5 TFIIIC2 transcripts are overexpressed in Polyomavirus- 

transformed cells

Previous studies have demonstrated that the activation of TFIIIC observed in SV40- 

transformed cell lines is accompanied by an overexpression of the transcripts 

encoding two of the principal components of TFIIIC2, TFIIIC220 and TFIIIC 110 

(Larminie et al., 1999). TFIIIC2 additionally comprises another three subunits 

(Kovelman and Boeder, 1992; Yoshinaga et al., 1989); however, at the time of the 

previous study, the cloning of cDNAs encoding these subunits had not been reported 

and, consequently, their expression levels following SV40 transformation were 

undetermined.

In order to establish whether the increased TFIIIC2 activity displayed by

Polyomavirus-transformed cells showed a similar conelation with expression of

TFIIIC2 subunits, semi-quantitative RT-PCR analyses were performed for each

subunit utilising cDNAs prepared from 3T3 and Py3T3 cells. Additionally, given that
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Figure 5.4

Polyomavirus activates TFIIIC2 in the absence of the LT antigen

TFIUC2 DNA-binding assay using the B-block oligonucleotide as probe (panel A), 

Reactions contained 0.5ng of labelled B-block oligonucleotide, Ipg of poly(dl.dC), 

no extract (lane 1), or 23|Lig of 3T3 (lane 2), Py3T3 (lane 3) or Pytsa3T3 (lane 4) 

whole cell extract. Panel B displays DNA-binding activities of the three cell lines 

using Spl oligonucleotide as probe. Reactions contained 0.5ng of labelled Spl 

oligonucleotide, Ijig of poly(dl.dC), no extract (lane 1), or 23pg of 3T3 (lane 2), 

Py3T3 (lane 3) or Pytsa3T3 (lane 4) whole cell extract. Levels of TFIIIC2 DNA- 

binding activity were quantified by phosphoimaging (Fujix Bas 1000) and TFIIIC2 

levels were expressed as arbitrary units, with the value obtained for the 3T3 cells 

being designated 1, as illustrated in panel C. The values displayed represent the mean 

of two experiments ± standard deviation.
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three of the subunits had not been previously analysed in C138 and C149 cells, these 

cell lines were included in analysis of the TFIIIC63, TFIIIC90 and TFIIIC 102 

subunits.

Consistent with the observations for TFIIIC220 and TFIIIC 110 expression in C138 

and C149 cells, Polyomavirus-transformed cells displayed an elevated level of these 

transcripts when compared with levels observed in the 3T3 cells (Figure 5.5, panels A 

and B, respectively, compare lanes 1 and 2). Similarly, Pytsa3T3 cells analysed for 

expression levels of the TFIIC220 and TFIIIC 110 subunits displayed a comparable 

elevation relative to the untransfoimed 3T3 cells (Figure 5.5, panels A and B, 

respectively, compare lane 3 with lane 1). This was shown to be a specific 

phenomenon by analysis of pol II-transcribed ARPP PO, which showed equivalent 

transcript levels in the three cell lines (Figure 5.5C, compare lanes 1, 2 and 3).

Subsequent analyses of the TFIIIC63, TFIIIC90 and TFIIIC 102 subunits provided 

evidence that indeed, transcripts of all five components of TFIIIC2 are overexpressed 

in the Py3T3 cells (Figure 5.5, panels D, E and F, respectively, compare lanes 1 and 

2). Furthermore, this prevailing deregulation was reflected in the observations for 

C138 and C149 cells, which displayed even more striking increases in the mRNAs 

encoding these subunits (Figure 5.5, panels D, E and F, respectively, compare lanes 3 

and 4 with lane 1). mRNAs encoding ARPP PO in C138 and C149 cells are expressed 

at constant levels, demonstrating again, that these increases were specific (Figure 

5.5G). Values obtained for each of the five subunits were normalised against the 

values for ARPP PO in the case of each cell line. These are displayed in graphs H-L, 

which coiTespond to panels A, B and D-F, respectively. Each cell line activates 

subunits to a varying degree; however, with the exception of the TFIIIC 102 transcript
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levels observed in C149 cells, the relative increases for each subunit remain fairly 

constant, suggesting a degree of synchronised activation to ensure an overall increase 

in the level of functional TFIIIC2.

5.2.6 Py3T3 cells overexpress subunits of TFIIIC2

It is likely that an increase in TFIIIC2 subunits at the transcript level would confer, at 

least in part, an increase in expression at the protein level. Indeed, such a correlation 

has been seen for the TFIIIC220 and TFIIIC 110 subunits in C138 and C149 cells 

(Larminie et ah, 1999). Unfortunately, antibodies against all five subunits were not 

available, but western analysis, blotting for the TFIIIC220 and TFIIIC 110 subunits, 

demonstrated that this relationship pertained in Py3T3 cells (Figure 5.6, panels A and 

B, respectively, compare lanes 1 and 2). The increases observed in both these 

subunits were confirmed in blots probed with alternative antibodies and were shown 

to be specific, as blotting for actin revealed similar expression levels in the two cell 

lines (Figure 5.6C). Although undeteimined, it would seem likely that similar 

increases in abundance of the remaining TFIIIC2 subunits would also exist.
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Figure 5.5

Overexpression of TFIIIC2 transcripts in Polyomavirus-transformed

cells

cDNAs were generated by reverse transcription of 3p,g of RNA from 3T3 (lane 1, 

panels A-G), Py3T3 (lane 2, panels A-G), Pytsa3T3 (lane 3, panels A-C), C138 (lane 

3, panels D-G) and C149 (lanes 4, panels D-G) cells and were PCR amplified using 

primers for TFinC220 (panel A), TFinCllO (panel B), TFniC63 (panel D), 

TFinC90 (panel E), TFmC102 (panel F), and ARPP PO (panels C and G). Levels 

for the transcripts in the case of each cell line were quantitated by phosphoimaging 

(Fujix Bas 1000); values for the TFIIIC2 subunits were normalised against ARPP PO 

and illustrated graphically (panels H-L). Values shown represent the mean of two 

experiments ± standard deviation, with the value obtained for the 3T3 cells being 

designated 1.
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Figure 5.6

Overexpression of TFIIIC2 components in Polyomavirus-

transformed cells

Whole cell extracts prepared from 3T3 (lane 1 in each panel) and Py3T3 (lane 2 in 

each panel) cells were resolved on a SDS-7.8% polyacrylamide gel and analysed by 

western immunoblotting using either the Ab2E antibody raised against TFIIIC220 

(panel A), an anti-TFIIICllO antibody, T4 7220 (panel B) or an anti-actin antibody, 

C-11 (panel C). Panels A, B and C show the same blot, cut and probed with the 

respective antibodies.
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5.3 DISCUSSION

Results discussed previously have established the up-regulation of pol III transcription 

in Py3T3 cells. Analyses utilising Pytsa3T3 cells have demonstrated, through their 

lack of functional large T antigen, that the action of large T plays a pivotal role in the 

activation of the transcription factor TFIIIB. However, northern analysis using the 

Pytsa3T3 cells established that a significant degree of pol III deregulation remained in 

the absence of the large T antigen. Furthermore, this was reflected by in vitro 

transcription assays, similarly comparing levels of transcriptional activation in 

Pytsa3T3 cell extracts relative to 3T3 cells and wild-type Polyomavirus-transfoimed 

cells.

Both the polymerase and TFIIIB have been implicated in the deregulation of pol III 

transcription by Polyomavirus. However, despite the involvement of both these key 

pol n i transcription factors, the potential for targeting of another principal 

transcription factor, TFIIIC, remained probable. The addback experiments shown in 

chapter 4 revealed that in Py3T3 cells, TFIIIC was rate limiting for pol III 

transcription. Consequently, it was of interest to establish whether Polyomavirus 

targeted TFIIIC for activation as an additional mode of deregulation. Moreover, 

TFIIIC2 deregulation has been demonstrated following transforaiation by oncogenic 

viruses such as adenovirus and the close relative of Polyomavirus, S V40.

Through gel retardation assays, it was established that this was also a characteristic of 

Polyomavirus-transformed cells, with Py3T3 cells exhibiting an elevation of TFIIIC2 

DNA-binding activity in the region of 1.8-fold over levels displayed in 3T3 cell
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extracts. Activation of TFIIIC2 in Py3T3 cells may seem contradictory to it being 

rate limiting for transcription. However, TFIIIC as a rate limiting factor is also an 

established feature of C138 and C149 cells, in which elevation of TFIIIC activity has 

already been established (White et al., 1990). Moreover, analyses employing the 

Pytsa3T3 cell line demonstrated that this activation of TFIIIC2 prevailed in the 

absence of the Polyomavirus large T antigen, implying the involvement of a large T- 

independent mechanism of activation.

Since it has been documented that whole cell extracts more accurately mimic in vivo 

regulation than do nuclear extracts (Hoeffler and Roeder, 1985) the binding assays 

utilised whole cell extracts to ensure that all the regulatory components were available 

and provide a more faithful reflection of the situation in the cells. Furthermore, 

control experiments, using alternative DNA-binding proteins to TFIIIC2, 

demonstrated that the differences observed between the cell lines was not 

symptomatic of a general increase in transcription factors following transformation by 

Polyomavirus.

Support for the activation of TFIIIC2 was conferred by RT-PCR analyses of the five 

components of TFIIIC2. In each case, a significant overexpression of transcripts 

encoding the subunits was observed in the Py3T3 cells relative to levels seen in the 

pai'ental cell line. Furthermore, the observation of elevated TFIIIC220 and TFIIIC 110 

in the Pytsa3T3 cells provides additional evidence that activation of TFIIIC2 is not 

attributed to the function of the large T antigen. In addition, the subunits TFIIIC63, 

TFIIIC90 and TFIIIC 102, previously untested in SV40-transformed cells, were shown 

to be up-regulated in C138 and C149 cells, making elevation of all five subunits a 

feature of SV40 transformational deregulation. Interestingly, while each transformed
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cell line up-regulated the expression of subunit transcripts to vai'ying degrees, the 

pattern displayed between the cell lines remained relatively consistent, supporting the 

logical ai'gument that for an overall increase in functional TFIIIC2, subunits would 

likely have to be deregulated in a synchronised manner.

Established data has shown that following SV40 transformation, the TFIIIC220 and 

TFIIIC 110 subunits of TFIIIC2 are overexpressed at the protein level and reflect, at 

least partially, the elevation of the transcripts encoding these components (Larminie et 

al., 1999). Western analysis of protein expression levels of the TFIIIC220 and 

TFIIIC 110 subunits ensuing transformation by Polyomavirus demonstrated a 

congruous effect. Despite a lack of antibodies recognising the remaining TFIIIC2 

subunits, it would appear likely that there is a correlation between transcript and 

protein expression that would be reflected in elevated protein levels of the TFIIIC63, 

TFIIIC90 and TFIIIC 102 subunits in both SV40- and Polyomavirus-transformed cell 

lines.

Taken collectively, these results demonstrate deregulation of the pol III transcription 

factor TFIIIC2. This is seen in regard to both its DNA-binding activity, as established 

through gel retardation assays and, subsequently, in the levels of the five components 

comprising TFIIIC2, which was demonstrated by an increase in expression of 

transcripts through RT-PCR analysis, and at the level of protein expression, revealed 

by western blotting. Clearly these results establish TFIIIC as a target for activation by 

Polyomavirus and strongly implicate it in the general up-regulation of pol III 

transcription levels observed in Py3T3 cells, and moreover, in the deregulation that 

persists in the absence of the large T antigen.
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Chapter 6

Signalling-mediated stimulation of pol III 

transcription

6.1 INTRODUCTION

In SV40, the principal oncoprotein, the large T antigen, is necessai'y and sufficient for 

cellular transfoiTnation (Marshall, 1991). The small t antigen aids the efficient 

transfoiTnation of several cell types (Watanabe et al., 1996), but essentially 

complements large T-mediated transformation in a supporting manner (Bikel et al., 

1987). The small t antigen binds protein phosphatase 2A (PP2A) and is able to 

activate members of the mitogen-activated protein (MAP) kinase family (Sontag et 

al,, 1993) and induce the cyclin D1 promoter (Watanabe et al., 1996).

In contrast, Polyomavirus produces an additional middle T antigen, which appears to 

take on characteristics of both the large and small T antigens of SV40. While, like 

SV40, the large T antigen of Polyomavirus binds and inactivates RB (Dyson et al., 

1990) and the small t antigen associates with PP2A (Pallas et al., 1990), the middle T 

antigen replaces large T as the principal transforming oncoprotein and resembles the 

SV40 small t function through its ability to also target the PP2A cellular protein 

(Pallas et ah, 1990; Treisman et al., 1981).

However, the middle T antigen exhibits a significantly more diverse capacity to

interact with host cell proteins. Interactions have been documented with the Src

tyrosine kinase family (Cheng et al., 1988; Courtneidge and Smith, 1983; Horak et al.,
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1989; Kornbluth et al., 1987), potentiating subsequent interactions with the 85kD 

subunit of phosphatidylinositol-3 kinase (PI-3 kinase) (Courtneidge and Heber, 1987), 

She (Blaikie et al., 1997) and phospholipase C-yl (PLCyl) (Su et al., 1995). 

Furthermore, phosphorylation of the middle T antigen on serine residues confers the 

ability to bind 14-3-3 proteins. 14-3-3 is an abundant, ubiquitously expressed and 

evolutionarily highly conserved protein family that regulates cell cycle checkpoints, 

proliferation, differentiation and apoptosis (Brunet et ah, 1999; Piwnica-Worms, 

1999). However, despite these functions, interactions between middle T and 14-3-3 

proteins have little effect on transformation, but instead influence the type of tumour 

induced by transformation (Glover et al., 1999).

Mapping of interaction sites on the middle T antigen is summarised schematically in 

figure 6.1. These interactions are inextricably connected to the transforming ability of 

the middle T antigen (Annelin and Oliveira, 1996). Moreover, mutations blocldng 

the PI-3 kinase or She interactions abrogate middle T antigen transformation ability 

(Urich et al., 1995).

Association of the middle T antigen with pp60c-src leads to its activation through 

interference with phosphorylation at Tyr 527, a site negatively regulating src kinase. 

The middle T antigen is, thus, able to abrogate mitosis-specific activation of pp60src, 

resulting in constitutive high kinase activity of the enzyme throughout all phases of 

the cell cycle (Kaech et al., 1991). Subsequent studies have suggested that complex 

interplay between Polyomavirus middle T antigen and the cellular regulatory network 

is cell cycle regulated. Indeed, interphase and mitotic cells express forms of the 

middle T antigen that vary in their degree of phosphorylation and are distinguishable 

through their differential migration on SDS/acrylamide gels (Perez et al., 1993). The
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Figure 6.1

Schematic diagram of middle T antigen illustrating the regions 

involved in binding known cellular proteins

A lineal' representation of the Polyomavirus middle T antigen. The shaded area at the 

N terminus represents the 191 amino acids shared with the 195-amino acid small t 

antigen. Above and below, the regions required for binding the respective cellular 

proteins are indicated, together with the type of phosphorylated amino acid involved. 

The hatched box (residues 185-210) indicates the middle T sequences necessary to 

bind src-family kinases.
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middle T antigen is transiently phosphorylated during mitosis and mutation of one of 

two putative cdc2 phosphorylation sites (Thr 160) abolishes middle T antigen- 

mediated oncogenic transfoiTnation of cells in culture (Perez et al., 1993). It is 

suggested that phosphorylation of the middle T antigen by p34'̂ ^̂ ,̂ which is well 

established for transient phosphorylation of the c-src kinase during mitosis (Morgan et 

al., 1989; Shenoy et al., 1989), regulates the interaction of Polyomavirus with cellular 

targets implicated in growth regulation of normal cells (Perez et al., 1993).

The activation of signalling pathways is complex and it appears that the requirement 

of individual components of the pathways is cell type-dependent. For example, while 

activation of PAK in COST cells is dependent upon PI-3 kinase-dependent activation 

of Rac (King et al., 1998), in Rat-1 cells, PAK activation occurs through a PI-3 

Idnase-mediated activation of another serine/threonine kinase, Akt, and independently 

of Rac (Tang et al., 2000). Consequently, the potential for varying requirements of 

other pathway components exists subject to cell type, or indeed, in response to 

different stimuli.

It has been established that the interactions of the middle T antigen with its target host 

proteins can result in activation of these signalling pathway components and the 

subsequent up-regulation of pathways leading to activation of transcription factors 

involved in cell cycle progression. Figure 6.2 illustrates some of the relationships that 

exist downstream of proteins that are known to interact with the middle and/or small 

T antigens. That all these components are involved in controlling pol III is doubtful 

and the investigation of some of the essential proteins is discussed within this chapter; 

however, the potential routes leading to transcriptional activation are clearly complex 

and numerous. Although middle and/or small T-mediated targeting of transcription
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Figure 6.2

Illustration of middle T and small t antigen interactions with cellular 

signalling proteins and potential pathways activated

A representation of established signal transduction pathways and the interactions of 

middle and/or small T antigens with cellular proteins that could potentially activate 

them. Middle and/or small T antigen associations do not necessarily lead to activation 

of all the cellular proteins presented. A itows between individual proteins indicate 

known signal activations but do not necessarily collectively identify full signal 

cascades.
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factors of the pol III transcriptional machinery have not been documented, this 

capacity for transcriptional stimulation via signalling cascades presented a potential 

mechanism of pol III transcriptional deregulation.

This chapter presents evidence supporting previous studies documenting middle 

and/or small T antigen-mediated activation of proteins involved in signalling 

pathways and establishes an involvement for signal activation in the deregulation of 

pol III transcription. Specifically, the extracellular signal-regulated protein Idnase 

(ERK) MAP kinase pathway has been strongly implicated as the target of converging 

signals mediated through the middle and/or small T antigens of Polyomavirus. 

Furthermore, the BRF component of TFIIIB, which possesses consensus sequences 

for potential ERK docking domains, has been shown to interact with ERK 

endogenously, providing a target of ERK activation that could contribute to the 

elevation of pol III transcription.
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6.2 RESULTS

6.2.1 Middle T antigen stimulates pol III transcription in vivo

Unlike SV40, Polyomavirus encodes a middle T antigen in addition to the large and 

small T antigens. In SV40, the large T antigen is necessary and sufficient for full 

transformation (Marshall, 1991). In contrast, while the large T antigen of 

Polyomavirus is necessary for immortalisation of primary cells (Larose et al., 1991), 

expression of the middle T oncogene is sufficient to transform established fibroblast 

cell lines (Treisman et ah, 1981). Effects of the large T antigen on pol III 

transcription have already been presented, but given that middle T is the principal 

transforming oncoprotein of Polyomavirus, it was consequently of interest to 

investigate whether the middle T antigen played an active role specifically with regard 

to the stimulation of pol HI transcription.

To pursue this, untransformed parental 3T3 cells were transiently transfected with

DNA encoding the middle T antigen. Through primer extension analysis of the levels

of co-transfected VAi, a clear and significant stimulation of pol HI transcription was

observed over levels produced by transfection of the empty vector (Figure 6.3A,

compare lane 2 with lane 1). A comparable difference was also displayed relative to

the functionally dead control NG59-transfected cells (Figure 6.3A, compare lanes 2

and 3). In addition to VAi, CAT was similarly co-transfected and levels assessed by

primer extension to control for transfection efficiency. The stimulation of VA%

expression apparent in panel A is clearly not reflected in the expression levels of CAT

(Figure 6.3B, compare lane 2 with lane 1). After quantification of VAi and CAT

levels through phosphoimaging, VAi expression was normalised against CAT and
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final values displayed graphically (Figure 6.3C), making apparent a pol III 

transcriptional stimulation in the region of 50-fold.

6.2.2 Specific inhibitors of proteins involved in cell signalling 

pathways do not compromise TFIIIC2 DNA-hinding activity

Middle T is able to induce phenotypic changes associated with malignant cell growth 

(Treisman et al., 1981) despite possessing no intrinsic enzymatic activity (Campbell et 

al., 1994). The middle T antigen binds exclusively to intracellular cytoplasmic 

membranes in a perinuclear location and to a lesser extent, at the plasma membrane 

(Dilworth et al., 1986) via a hydrophobic membrane anchor at the C-terminus of the 

protein (Dahl et al., 1992). These associations with cellular membranes are essential 

for oncogenic activity and interactions with target host proteins (Elliott et al., 1998). 

It is able to activate a number of mitogenic signal transduction pathways by 

associating with and modulating the activities of cellular proteins involved in control 

of cell proliferation (Elliott et al., 1998). Interactions with numerous cellular proteins 

have been documented, including pp60c-src (Courtneidge and Smith, 1983), PP2A 

(Walter et al., 1989) and 14-3-3 proteins (Pallas et al., 1994). Furthermore, 

phosphorylation of middle T by pp60c-src generates binding sites on middle T for an 

additional set of signalling proteins, including, PI-3 kinase (Courtneidge and Heber, 

1987), She (Blaikie et al., 1997) and PLC-yl (Su et al., 1995). In addition, although 

the full function of the small t antigen of Polyomavirus remains elusive, like middle 

T, the small t antigen has been shown to bind PP2A (Pallas et al., 1990).
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Figure 6.3

Middle T antigen stimulates pol III transcription in vivo

Transient transfection of the Polyomavirus middle T antigen into 3T3 cells using the 

Supeifect method. 3T3 cells growing in 10% serum were transfected with pVAi 

(0.5jig), pCAT (0.5pg) and the relevant amount of the plasmid of interest made up to 

3j.ig with “empty” pSV expression vector as follows: pSV alone (lane 1), pSV-MT 

(Ipg, lane 2) or pSV-NG59 (Ipg, lane 3). VA] (panel A) and CAT (panel B) RNA 

levels were assayed by primer extension and then quantified by phosphoimaging 

(Fujix Bas 1000). Values shown in panel C are for VAi expression after 

normalisation to the levels of CAT RNA to correct for transfection efficiency; they 

are given relative to the value obtained with pSY vector alone (designated 1) and 

represent the mean of two experiments ± standai'd deviation.
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Since the use of Pytsa3T3 cells has shown that Polyomavirus activates TFIIIC2 in a 

large T antigen-independent manner, initial studies to identify a target of middle T or 

potentially, small t, were performed with regard to TFIIIC. TFIIIC activity is 

modulated by phosphorylation and was a potential target for activation by 

phosphorylation via one of these pathways. Extracts prepared from Py3T3 cells were 

pre-incubated with a range of specific inhibitors of cellular proteins involved in 

signalling pathways: Okadaic acid, which inhibits PP2A, Olomoucine, which inhibits 

cyclin-dependent kinases, U0126, which inhibits MEK, and Wortmannin, which is a 

potent inhibitor of PI-3 kinase. These extracts were subsequently analysed for 

TFIIIC2 DNA-binding activity by electrophoretic mobility shift assay, along with an 

untreated extract and extracts with the addition of an equivalent amount of DMSO as 

present in the inhibitors, to provide a control for a possible DMSO effect. None of 

these inhibitors, however, demonstrated any ability to influence the TFIIIC2 DNA- 

binding capacity in these cell extracts (Figure 6.4, compare lanes 3, 4, 6, 7, 9, 10, 11 

and 12 with control lanes 2, 5 and 8). Lane 1 in figure 6.4 shows a binding reaction in 

the absence of cell extract and, consequently, presents no band for TFIIIC2.

6.2.3 Cell extracts are uncompromised for TFIIIC2 DNA-binding 

activity in tbe presence of tbe general kinase inhibitor DMAP

Although the electrophoretic mobility shift assay presented in figure 6.4 demonstrated

that TFIIIC2 binding ability was uncompromised by the presence of the specific

inhibitors, the possibility remained that a signalling pathway was still involved. To

confirm that TFIIIC2 DNA-binding activity was not being stimulated via a signalling
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Figure 6.4

TFIIIC2 DNA-binding activity is not compromised by specific 

inhibitors of cell signalling pathways

TFI1IC2 DNA-binding assay using the B-block oligonucleotide as probe. Reactions 

contained 0.5ng of labelled B-block oligonucleotide, Ijig of poly(dl.dC), no extract 

(lane 1), 23p,g of Py3T3 whole cell extract (lanes 2-12), a final concentration of 12% 

DMSO (lanes 3-12) and lOnM Okadaic acid (lanes 3 and 4), 200jiM Olomoucine 

(lanes 6 and 7), 250p,M U0126 (lanes 9 and 10) or lOpM Wortmannin (lanes 11 and 

12). Extracts were pre-incubated with the respective inhibitors for 15 minutes at 

30”C, prior to addition of the radiolabelled probe.
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pathway undetected with the previous inhibitors, cell extracts were similarly analysed 

after pre-incubation with the general kinase inhibitor 6-Dimethylaminopurine 

(DMAP). As before, Py3T3 cell extracts displayed no effect upon treatment (Figure 

6.5, compare lanes 4 and 5). Furthermore, TFIIIC2 DNA-binding activity in 3T3 and 

Pytsa3T3 cells equally revealed no response to the DMAP inhibitor (Figure 6.5, 

compare lanes 2 and 3, and lanes 6 and 7, respectively). Again, cell extracts for 

control binding reactions were in the presence of DMSO compaiable to the amount 

present in the inhibitor stock.

6.2.4 Influence of Okadaic acid on pol III transcriptional activity

Despite TFIIIC2 DNA-binding activity remaining unaffected in the presence of the 

PP2A inhibitor Okadaic acid (Figure 6.4), it was of interest to determine whether 

Okadaic acid could exert an effect on overall pol III transcriptional activity.

PP2A is a serine-threonine phosphatase present in most cell types (Cohen, 1989) that 

has been implicated in the regulation of cell cycle progression, transcription, and 

DNA replication and translation (Mumby, 1995; Mumby and Walter, 1993; 

Shenolikar, 1994). It exists in multiple heterotrimeric forms comprising a common 

core structure of the 36kD catalytic C subunit and the 63kD A subunit, which 

associate with a mixture of regulatory proteins termed B subunits (Kamibayashi et al., 

1991; Ruediger et al., 1992). The B subunit, which is replaced by middle or small T 

antigens, confers substrate specificity (Shenolikar, 1994) and localisation (Strack et 

al., 1998). Consequently, interactions between PP2A and the middle or small T
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Figure 6.5

The general kinase inhibitor DMAP does not affect TFIIIC2 DNA- 

binding in 3T3, Py3T3 or Pytsa3T3 cell extracts

TFIIIC2 DNA-binding assay using the B-block oligonucleotide as probe. Reactions 

contained 0.5ng of labelled B-block oligonucleotide, IfXg of poly(dl.dC), no extract 

(lane 1), 23p.g of 3T3 (lanes 2 and 3), Py3T3 (lanes 4 and 5) or Pytsa3T3 (lanes 6 and 

7) whole cell extract, a final concentration of 12% DMSO (lanes 2-7) and 2.4mM 

DMAP (lanes 3, 5 and 7). Extracts were pre-incubated with the respective inhibitors 

for 15 minutes at 30°C prior to addition of the radiolabelled probe.
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antigens may lead to activation of signalling pathways, which in turn could potentially 

stimulate a pol III transcription factor(s).

Okadaic acid was titrated into 3T3 and Py3T3 cell extracts. These extracts were pre- 

incubated in the presence of the Okadaic acid before being analysed by in vitro 

transcription assay to determine their abilities to transcribe the pol III template VAi. 

Relative to levels of VAi observed for the untreated cell extracts, a final concentration 

of IpM, lOOnM or lOnM Okadaic acid conferred no effect on transcriptional activity 

in either the 3T3 or Py3T3 cells (Figure 6.6, compare lanes 1 and 2 with lanes 3 and 

4, 5 and 6 or 7 and 8, respectively). However, PP2A activity has been shown to 

activate, inactivate or redirect to new targets in a manner dependent on the regulatory 

subunit present (Pallas et al., 1990). Thus, replacement of this subunit by the middle 

and/or small T antigens, may simultaneously lead to both activation and inactivation 

of specific targets. Consequently, effects of inhibiting PP2A could potentially cancel 

out or, alternatively, may be masked by other deregulatory mechanisms. Hence, it is 

not possible to conclude, on the basis of this observation, which concerns only the 

situation in vitro, that PP2A does not influence pol III transcription in Polyomavirus- 

transformed cells.

6.2.5 Pol III transcription in Py3T3 ceils is compromised by tbe 

general kinase inhibitor DMAP

Although specific inhibition of PP2A produced no effect on transcription levels in 

vitro, the general kinase inhibitor DMAP was again used to broaden the range of
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Figure 6.6

Okadaic acid does not reduce pol III transcription

In vitro transcription assay illustrating relative levels of pol III transcription for 3T3 

(lanes 1,3,5 and 7) and Py3T3 (lanes 2, 4, 6 and 8) cell extracts in the absence (lanes 

1 and 2) or presence of IpM (lanes 3 and 4), lOOnM (lanes 5 and 6) or lOnM (lanes 7 

and 8) of Okadaic acid. Transcription reactions contained 250ng of pVAi template 

and 20|Xg of cell extract. Extracts were pre-incubated with the Okadaic acid for 10 

minutes at 30°C prior to addition of the radioactive mix.
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signalling pathways affected and, thus, test for their involvement. In vitro 

transcription assays were performed in duplicate using cell extracts prepared from 

3T3 and Py3T3 cells pre-incubated in the presence of DMAP with a final 

concentration of 2.4mM. Transcriptional activity of Py3T3 cell extracts showed a 

marked reduction of 50%, relative to the untreated Py3T3 cells, when pre-treated with 

the DMAP inhibitor (Figure 6.7, compare lanes 4 and 6 with lane 2). In contrast, the 

3T3 cell extracts failed to exhibit any effect of DMAP on transcriptional activity 

(Figure 6.7, compare lanes 3 and 5 with lane 1). Consequently, these data provide 

evidence for activation of pol III transcription in Py3T3 cells being mediated, in part, 

through phosphorylation.

6.2.6 DMAP compromises transcriptional activity in Pytsa3T3 cells

As DMAP implicated a signalling pathway in activation of transcription by 

Polyomavirus, in vitro transcription analysis was carried out using the large T 

antigen-defective cell line Pytsa3T3. The large T antigen is localised to the nucleus 

by two nuclear localisation signals (NLSs) (Richardson et al., 1986) and is not 

associated with activation of signalling cascades. Consequently, as middle and small 

T antigens remain functional in these cells, loss of the large T antigen would not be 

expected to abrogate the effect conferred by the DMAP inhibitor. Indeed, Pytsa3T3 

cell extracts similarly treated with a final concentration of 2.4mM DMAP 

demonstrated an equivalent reduction in transcriptional activity relative to the 

untreated cell extracts (Figure 6.8, compare lanes 2 and 3 with lane 1). This result
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Figure 6.7

Pol III transcription in Py3T3 cells is compromised by tbe general 

kinase inhibitor DMAP

In vitro transcription assay illustrating relative levels of pol III transcription for 

extracts prepaied from 3T3 (lanes 1, 3 and 5) and Py3T3 (lanes 2, 4 and 6) cells in the 

absence (lanes 1 and 2) or presence of 2.4mM DMAP (lanes 3, 4, 5 and 6). 

Transcription reactions contained 250ng of pVAi template and 20|ag of cell extract. 

Extracts were pre-incubated with the inhibitor for 10 minutes at 30°C prior to addition 

of the radioactive mix.
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confirmed that stimulation of a signalling pathway involved in pol III transcriptional 

activation was not mediated through the action of the large T antigen.

6.2.7 Pol III transcription is compromised by in vivo treatment witb 

tbe PI-3 kinase inhibitor LY294002

In vitro transcription assays demonstrated the ability of the inhibitor DMAP to reduce

pol n i  transcription activity in whole cell extracts of Py3T3 cells. Further studies to

identify the involvement of specific pathways were performed in vivo to ensure that

complete signalling pathways were active. Given that another of the cellular proteins

known to interact with the middle T antigen is PI-3 kinase, a specific inhibitor of this

protein, LY294002, was employed to assess the effect of its inactivation on possible

downstream regulation of pol III transcription. 3T3 and Py3T3 cells were subjected

to treatment with the PI-3 kinase inhibitor LY294002 and hai'vested at 1 ,4  and 8 hour

time points. Extracts prepared from these cells were subsequently analysed by in

vitro transcription assay and in both 3T3 and Py3T3 cells a reduction in pol III

transcription was noted after 4 hours of treatment, relative to the untreated cells

(Figure 6.9, panels A and B, respectively, compare lane 3 with lanes 1 and 5).

Despite transcription activity being partially restored by the 8 hour time point in both

cell lines (Figure 6.9, panels A and B, respectively, compare lane 4 with lane 3),

possibly through degradation of the LY294002 compound, this demonstrated that

signals downstream of PI-3 kinase are involved in regulation of pol III transcription.

However, notably, the relative effect confened upon transcription observed in the 3T3

cells is equal, if not greater, than that displayed in the transfoimed Py3T3 cells,
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Figure 6.8

Pytsa3T3 cell extracts display compromised pol III transcription in 

the presence of DMAP

In vitro transcription assay displaying levels of pol III transcription for Pytsa3T3 cell 

extracts (all lanes) in the absence (lane 1) or presence of 2.4mM DMAP (lanes 2 and 

3). Transcription reactions contained 250ng of pVAi template and 20|ag of cell 

extract. Extracts were pre-incubated with the inhibitor for 10 minutes at 30”C prior to 

addition of the radioactive mix.
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suggesting that the middle and/or small T antigens of Polyomavirus do not principally 

exert their effects through activation of signals downstream of PI-3 kinase.

It should be noted that panel A displays a longer exposure than panel B, and 3T3 

transcription levels should not be compared relative to the Py3T3 experiment shown 

in panel B.

6.2.8 Cells treated in vivo with LY294002 display inhibition of the 

PI-3 kinase signalling pathway

In support of observations noted in figure 6.9, the cell extracts harvested over the 

three time points, following in vivo treatment with LY294002 and used for in vitro 

transcription assays, were subsequently analysed by western blotting. This served to 

confirm that both cell lines were responding to the inhibitor and thus establish that the 

effects observed previously were consistent with an inhibition of signals downstream 

of PI-3 kinase.

p70S6 kinase, which acts downstream of PI-3 kinase, is responsible for the

phosphorylation and activation of the p70S6 ribosomal protein. Western analysis

revealed a shift in mobility of p70S6 kinase in cell extracts prepared from both the

LY294002-treated 3T3 and Py3T3 cell lines, demonstrating a change in

phosphorylation status (Figure 6.10A, compare lanes 2, 3 and 4 with lane 1 and lanes

6, 7 and 8 with lane 5, respectively). Similarly, Phasl, another protein modulated

through signals downstream of PI-3 kinase, also displayed dephosphorylation in the

extracts from 3T3 and Py3T3 cells treated with LY294002, as the lower mobility band
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Figure 6.9

In vivo treatment with the PI-3-kinase inhibitor LY294002 

compromises poi III transcription in 3T3 and Py3T3 cells

In vitro transcription assay demonstrating effect of in vivo treatment with LY294002 

on pol in  transcription, 3T3 (panel A) and Py3T3 (panel B) cells cultured in 10% 

serum were exposed to 0.1% DMSO alone for 1 hour (lanes 1 and 5, in each panel) or 

0.1% DMSO and a final concentration of lOpM LY294002 for 1, 4 or 8 hours (lanes 

2-4, respectively, in each panel). 20|ig of cell extract prepared from each treatment 

was analysed for ability to transcribe 250ng of pVAi template.
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representing the phosphoryiated form was absent after the 4 hour time point (Figure 

6.10B, compare lanes 3 and 4 with lanes 1 and 2, and lanes 7 and 8 relative to lanes 5 

and 6, respectively). Indeed, both p70S6 Idnase and Phasl had been 

dephosphorylated after 4 hours, although this effect was displayed after 1 hour for 

p70S6 kinase, suggesting it was more sensitive to this signal inhibition. The changes 

in phosphorylation of these downstream proteins confirms the response of the two cell 

lines to inhibition by LY294002 and are consistent with the reduced transcriptional 

activity demonstrated in figure 6.9 being a manifestation of PI-3 Idnase inhibition.

6.2.9 In vivo treatment with the PI-3 kinase inhibitor LY294002 

compromises expression of B2 transcripts

Cells treated with LY294002 in parallel with those used for preparation of whole cell 

extracts were harvested at the same 1, 4 and 8 hour time points and were subsequently 

used for preparation of total RNA. Northern analysis was then carried out to ascertain 

levels of B2 expression in these LY294002-treated cells relative to levels in RNA 

extracted from untreated cells. Effects of LY294002 on B2 levels in vivo appeared to 

be slower to manifest than the effects on in vitro transcription of VAi and the most 

significant decreases, in both the cell lines, were observed after 8 hours of treatment 

(Figure 6.11 A, compare lane 4 with lanes 1, 2 and 3, and lane 8 with lanes 5, 6 and 7). 

Given that B2 expression analysed through northern blotting is indicative of steady 

state levels, the variation in time for the most marked effect to LY294002 treatment 

could be attributed to the time required for RNA turnover after transcription has been 

inhibited.
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Figure 6.10

Cells treated in vivo with LY294002 display inhibition of the PI-3 

kinase signalling pathway

Whole cell extracts prepared from 3T3 (lanes 1-4 in each panel) and Py3T3 (lanes 5-8 

in each panel) cells cultured in 10% serum and subjected to 0.1% DMSO alone for 1 

hour (lanes 1 and 5 in each panel) or 0.1% DMSO and a final LY294002 

concentration of lOjitM for 1, 4 or 8 hours (lanes 2, 3 and 4 or lanes 6, 7 and 8, 

respectively, in each panel) were resolved on a SDS-7.8% polyacrylamide gel and 

analysed by western immunoblotting using either an antibody against p70S6 kinase 

CIS (panel A) or the anit-Phasl antibody R-113 (panel B).

Panels A and B show the same blot, cut and probed with the respective antibodies.
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Stripping and reprobing the blot for ARPP PO demonstrated that while levels of B2 

expression decreased after LY294002 treatment, ARPP PO was unaffected under these 

conditions and the effects of treatment were specific for the pol III B2 transcripts 

(Figure 6,1 IB). Values were obtained by phosphoimaging for both B2 and ARPP PO 

expression levels and the graph presented in panel C shows B2 levels normalised 

against the ARPP PO. Again, in agreement with the observations of in vitro 

transcriptional activity (Figure 6.9), the 3T3 cells display a comparable, if not greater, 

response to LY294002 treatment. This suggests that while signals downstream of PI- 

3 Idnase may be required for activation of pol III transcription, it is not necessarily a 

major pathway contributing to deregulation following Polyomavirus transformation.

6.2.10 Py3T3 cells display a more significant reduction in pol III 

transcription than 3T3 cells following treatment with the 

MEK inhibitor U0126

The set of experiments determining the effect of in vivo treatment with the LY294002 

compound suggested that the PI-3 kinase pathway is not contributing to the up- 

regulation of pol III transcription by Polyomavirus. Hence, similar in vivo treatment 

of 3T3 and Py3T3 cells was also performed with the U0126 compound, which 

specifically inhibits MEKl and MEK2, In this instance, cells were incubated in the 

presence of U0126 for 1 hour before harvesting and whole cell extracts prepared. The 

treated Py3T3 cell extracts display a striking reduction relative to untreated extracts in 

their ability to transcribe the pol III template YAi after this short treatment (Figure
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Figure 6.11

Expression of B2 transcripts is compromised by in vivo treatment 

with the PI-3-kinase inhibitor LY294002

Total RNA (30|ig) was extracted from 3T3 (lanes 1-4 in each panel) and Py3T3 (lanes 

5-8 in each panel) cells cultured in 10% serum and exposed to 0.1% DMSO alone for 

1 hour (lanes 1 and 5 in each panel) or 0.1% DMSO and a final LY294002 

concentration of 10p.M for 1, 4 or 8 hours (lanes 2, 3 and 4 or 6, 7 and 8, respectively, 

in each panel) and used for northern blot analysis. Panel A shows the blot probed 

with a B2 gene. The blot was stripped and subsequently reprobed for the ARPP PO 

gene (Panel B), The levels of B2 and ARPP PO RNA from the northern analysis were 

quantitated by phosphoimaging (Fujix Bas 1000); B2 levels were normalised against 

levels for ARPP PO and expressed as arbitraiy units, with the lowest value obtained 

for the 3T3 cells being designated 1, as illustrated in panel C.
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6.12, compare lanes 3 and 4). The 3T3 cells also display a response to U0126, but it 

is significantly less substantial than that conferred in Py3T3 cells (Figure 6.12, 

compare lanes 1 and 2). The observation of a response in 3T3 cells would suggest 

that signals downstream of MEKl and MEK2 are implicated in pol III transcriptional 

regulation in untransformed cells; however, that the Py3T3 cells display such a 

significant reduction in transcriptional activity following treatment with U0126 

strongly suggests that this pathway is a key target of Polyomavirus for deregulation in 

order to stimulate pol III transcription.

Although a variation in the time required for cellular responses to be manifested 

through treatment with the LY294002 and U0126 inhibitors might be expected, it is 

notable that the effects of U0126 are expressed far more rapidly.

6.2.11 The MAP kinase signalling pathway is inhibited by in 

vivo treatment of cells with U0126

Cell extracts prepared from the U0126-treated Py3T3 cells and used in figure 6.12, 

were subsequently assayed for levels of total ERK and the active phosphorylated 

forms of ERK, in order to confirm that targets downstream of MEKl and MEK2 were 

indeed responding to the U0126 inhibitor.

Western analysis of the total ERK expression levels in Py3T3 cells showed no

response after Ihour treatment with U0126 (Figure 6.13A, compare lane 2 with lane

1). However, the same Py3T3 cell extract analysed for levels of the active forms of

ERK clearly displayed a loss of the active phosphorylated forms following U0126
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Figure 6.12

In vivo treatment with the MEK inhibitor U0126 confers a more 

substantial level of inhibition of pol III transcription in Py3T3 than 

in 3T3 cells

In vitro transcription assay demonstrating effect of in vivo treatment with U0126 on 

pol in  transcription. 3T3 (lanes 1 and 2) and Py3T3 (lanes 3 and 4) cells were 

cultured in 10% serum and subjected to treatment for 1 hour with 0.1% DMSO alone 

(lanes 1 and 3) or 0.1% DMSO and U0126 inhibitor with a final concentration of 

lOfiM (lanes 2 and 4). Transcription reactions contained 20|ig of whole cell extract 

and 250ng of pVAi template.
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treatment (Figure 6.13B, compare lanes 1 and 2). These results provide clear 

evidence that in vivo treatment with U0126 for 1 hour abolishes the phosphorylation 

of targets downstream of MEKl and MEK2, which are responsible for ERK 

activation. These data support the contention that the reduction in transcriptional 

activity following U0126 treatment is a consequence of inhibiting signals downstream 

of MEKl and MEK2.

6.2.12 Active forms of ERK, but not total ERK, are more 

abundant in Py3T3 cells than 3T3 cells

Having established an involvement of the MAP kinase signalling pathway, it was of 

interest to determine the levels of ERK expression in untreated extracts as used in 

previous assays. Western analysis of two sets of 3T3 and Py3T3 whole cell extracts 

demonstrated that 3T3 cells possessed higher levels of total ERK than the 

Polyomavirus-transformed Py3T3 cells (Figure 6.14A, compare lanes 1 and 2 and 

lanes 3 and 4, respectively). Furthermore, it was notable that SV40-transformed C149 

cells expressed ERK at a level equivalent to 3T3 cell extracts (Figure 6.14A, compare 

lanes 6 and 7).

However, more significantly, 3T3 and Py3T3 cell extracts blotted for the active forms 

of ERK showed a striking reversal in expression levels, with Py3T3 cells displaying a 

far more substantial level of the active forms than the untransformed 3T3 cells (Figure 

6.14B, compare lanes 1 and 2 and lanes 3 and 4, respectively). This striking pattern 

of expression suggests that despite 3T3 cells expressing a higher level of total ERK,
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Figure 6.13

Cells treated in vivo with U0126 display inhibition of the MAPK 

signalling pathway

Whole cell extracts prepaied from Py3T3 cells (lanes 1 and 2 in each panel) cultured 

in 10% serum and subjected to 0.1% DMSO alone (lane 1 in each panel) or 0.1% 

DMSO and a final U0126 concentration of 10|iM for 1 hour (lane 2 in each panel) 

were resolved on a SDS-7.8% polyacrylamide gel and analysed by western 

immunoblotting using either an antibody against total ERK, anti-p44/42 MAPK 

(panel A) or a phospho-ERK antibody against active ERK (panel B).
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ERK expressed in Py3T3 cells is predominantly in the active forms and that there is 

more active ERK in Py3T3 than in the 3T3 cells. Taken together, these results 

demonstrate that Polyomavirus targets ERK for activation.

6.2.13 ERK-immunodepleted Py3T3 cell extracts display 

reduced pol III transcription

The observation that levels of phosphorylated ERK were more abundant in the Py3T3

cells (Figure 6.14) is significant and suggests the possibility that activation of ERK

could be involved in deregulation of pol III transcription by Polyomavirus. To

confiim an influence of ERK on pol III transcription, cell extracts prepared from 3T3

and Py3T3 cells were immunodepleted of ERK using an anti-p44/42 antibody. The

transcriptional activities of these extracts were compared to extracts immunodepleted

with antibodies against the E7 oncoprotein of HPV, the T antigens of Polyomavirus or

the essential TFIIIB component TBP. In vitro transcription assays revealed that in

Py3T3 cell extracts depleted of ERK, transcription was substantially reduced relative

to extracts immunodepleted with the irrelevant control antibody against E7 (Figure

6.15B, compare lane 3 with lane 1). TBP-depleted extracts showed an even more

marked reduction in transcription, as would be expected by removal of this essential

transcription factor (Figure 6.15B, compare lane 4 with lanes 1 and 3). In contrast,

immunodepletion of the Polyomavirus T antigens produced no effect on pol III

transcription (Figure 6.15B, compare lanes 1 and 2). Immunodepleting the large T

antigen would not be expected to compromise transcription if it co-depletes the RB to

which it is bound. In the extracts prepared from 3T3 cells, immunodepletion of TBP
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Figure 6.14

Py3T3 cells display lower levels of total ERK but elevated expression 

of the active forms when compared with 3T3 cells

Whole cell extracts prepared from 3T3 (lanes 1, 3 and 6, panel A and lanes 1 and 3, 

panel B), Py3T3 (lane 2 and 4 in each panel) and SV3T3 C149 (lane 7, panel A) cells 

were resolved on a SDS-7.8% polyacrylamide gel and analysed by western 

immunoblotting using either an anti-p44/42 MAPK antibody against total ERK (panel 

A) or a phospho-ERK antibody against only the active forms of ERK (panel B).
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also produced a decrease in transcriptional activity when compared to iiTelevant 

control immunodepletions with E7 and Polyomavirus T antigens (Figure 6.15A, 

compare lane 4 with lanes 1 and 2). However, in contrast to Py3T3 cell extracts, 

depletion of ERK conferred no effect on pol III transcription of the VAi template 

(Figure 6.15A, compare lane 3 with lanes 1 and 2). These data support the contention 

that ERK plays a role in stimulating pol III transcription after Polyomavirus 

transformation that exceeds its normal role in un transformed 3T3 cells.

6.2.14 Pol III transcription is inhibited by an ERK substrate 

competitor peptide

Evidence to provide further credibility to the argument for ERK involvement in pol 

III transcription was attained through titration of an ERK substrate competitor peptide 

into 3T3 and Py3T3 cell extracts and subsequent analysis of transcriptional activity. 

In contrast to the ERK-depletion experiment (Figure 6, 15), 3T3 cells display a 

reduced transcriptional activity at 30pg of ERK peptide, although it was only 

marginal (Figure 6.16A, compare lane 4 with lanes 1, 2 and 3). However, Py3T3 

extracts show a more apparent reduction with increasing amounts of ERK peptide, 

starting from 20p-g (Figure 6.16B, compare lanes 3 and 4 with lanes 1 and 2). 

Notably, a control titration of an irrelevant competitor PKA peptide confen'ed no 

effect on transcriptional activity in either the 3T3 or Py3T3 cell extracts, 

demonstrating that the effect of the ERK peptide was specific (Figure 6.16, panels A 

and B, respectively, compare lanes 5-8). Additionally, it should be noted that analysis
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Figure 6.15

ERK-immunodepleted Py3T3 cell extracts displayed reduced pol III 

transcription

Whole cell extracts (145|LLg) prepared from 3T3 (panel A) and Py3T3 (panel B) cells 

were immunodepleted (ED) using the anti-E7 antibody TVG710Y (lane 1 in each 

panel), an antibody against the T antigens of Polyomavirus F4 (lane 2 in each panel), 

the anti-ERK antibody p44/42 MAPK (lane 3 in each panel) or an anti-TBP antibody 

MTBP-6 (lane 4 in each panel). 20|Ltg of each of the immunodepleted extracts were 

then analysed by in vitro transcription assay for their ability to transcribe 250ng of 

VAi template.
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of the 3T3 cells was not performed in conjunction with the Py3T3 cells and panel A 

displays a longer exposure of the 3T3 experiment; consequently, panels A and B 

should not be compared for overall transcription levels. However, transcription levels 

in response to increasing ERK peptide are presented graphically as a percentage of the 

eontrol lane for each cell type in figure 6.16C.

6.2.15 Endogenous interaction between ERK and the BRF 

component of TFIIIB

For ERK to confer an effect on pol III transcription, a target within the basal pol III 

transcriptional machinery would be required. In view of the fact that signalling 

pathways appeared not to influence TFIIIC2 DNA-binding activity (Figures 6.4 and 

6.5), the possibility existed that the target of ERK was TFIIIB. Data reinforcing this 

theory was provided by co-immunoprecipitation experiments demonstrating an 

endogenous interaction between ERK and the BRF component of TFIIIB, in both 3T3 

and Py3T3 cell extracts (Figure 6.17, lanes 2 and 5, respectively).

Control immunoprécipitation using an in'elevant antibody against Phasl revealed that 

the BRF interaction with ERK was specific (Figure 6.17, lanes 1 and 4). As expected, 

immunoprécipitation of the TBP subunit of TFIIIB co-immunoprecipitated BRF, 

providing a positive eontrol for BRF interactions (Figure 6.17, lane 3). A greater 

amount of BRF is co-immunoprecipitated with ERK from 3T3 cells than Py3T3 cells 

(Figure 6.17, compare lanes 2 and 5). However, assuming that binding of BRF is not
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Figure 6.16

ERK peptide competitor inhibits pol III transcription

Titration of an ERK substrate peptide into in vitro transcription assays displaying 

effects on transcription of the pol III template VAi. Whole cell extracts prepared 

from 3T3 (panel A) and Py3T3 (panel B) cells were pre-incubated for 10 minutes at 

30°C in the absence (lanes 1 and 5 in each panel) or presence of 10, 20 or 30|Lig of 

either the ERK peptide (lanes 2-4, respectively, in each panel) or a control PKA 

peptide (lanes 6-8, respectively, in each panel). Transcription reactions contained 

20p,g of whole cell extract and 250ng of pVAi template. Transcription levels in 

response to increasing ERK peptide are summarised relative to the control (lane 1, 

panels A and B) ± standard deviation for each cell line (panel C).
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dependent on activation of ERK, this would be expected, given that 3T3 cell extracts 

express a greater abundance of total ERK.
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Figure 6.17

Endogenous interaction between ERK and the BRF component of 

TFIIIB

Whole cell extracts (150|U.g) prepared from 3T3 (lanes 1, 2 and 3) and Py3T3 (lanes 4 

and 5) cells immunoprecipitated (IP) using the anti-Phasl antibody R-113 (lanes 1 

and 4), the anti-ERK antibody K-23 (lanes 2 and 5) or an antibody against TBP SL-1 

(lane 3). The precipitated material was resolved on a SDS-7.8% polyacrylamide gel 

and the presence of BRF was determined by western analysis with the anti-BRF 

antibody 128-4.
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6.3 DISCUSSION

Although the large T antigen of Polyomavirus plays an important role in the 

deregulation of pol III transcription, the middle T antigen has been established as the 

principal transforming oncoprotein (Treisman et al., 1981) and the small t antigen has 

been implicated in promoting cell cycle progression in a manner dependent on its 

binding of protein phosphatase 2A (PP2A) (Mullane et al., 1998). Consequently, 

roles for the middle, small or both T antigens in deregulation of pol III transcription 

seemed plausible.

Transient transfection into untransformed 3T3 cells demonstrated that expression of 

the Polyomavirus middle T antigen conferred a substantial elevation in pol III 

transcription, providing a compelling argument in favour of its involvement.

However, in contrast to the nuclear large T antigen, middle T is cytoplasmic and 

associates with intracellular membranes (Dilworth et al., 1986). Consequently, 

middle T antigen functions have been ascribed to its ability to bind and activate 

numerous cytoplasmic cellular proteins (Elliott et al., 1998), leading to activation of a 

variety of signalling pathways that culminate with growth and proliferation, even in 

the absence of growth factors (Armelin et al., 1985). Moreover, it has been shown 

that middle T activates genes encoding various transcription factors (Rameh and 

Armelin, 1991), like Eos (Talmage and Listerud, 1994) and Jun (Schonthal et al., 

1992). These studies presented the possibility that middle T could stimulate pol III 

transcription via a signalling pathway, targeting one of the basal pol III transcription 

factors. Given that the use of Pytsa3T3 cells has shown that Polyomavirus activates
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TFIIIC2 in a large T antigen-independent manner, initial investigation for a middle 

and/or small T antigen target was focussed on this fundamental transcription factor.

The binding of transcription factors to promoter sites can be regulated directly or 

indirectly by protein phosphorylation (Whitmarsh and Davis, 2000). Thus, in order to 

establish whether inhibition of a set of specific cellular proteins involved in signal 

transduction conferred an effect on TFIIIC2 DNA-binding activity, cell extracts 

prepared from Py3T3 cells were pre-incubated with Okadaic acid, Olomoucine, 

U0126 and Wortmannin, specific inhibitors of PP2A, cyclin-dependent kinases, MEK 

and PI-3 kinase, respectively. Results demonstrated no effect on TFIIIC2 DNA- 

binding activity in the presence of these inhibitors and, furthermore, similar analyses 

using the general kinase inhibitor DMAP supported the exemption of TFIIIC2 DNA- 

binding activity from signal transduction inhibition, at least in vitro.

Although the DNA-binding activity of TFIIIC2 proved not to be a target for activated 

signalling pathways, influences on other aspects of pol III transcription remained 

likely. Of particular interest was the effect on overall transcriptional activity of 

inhibiting PP2A. Interactions with PP2A have been documented with not only the 

middle T antigen of Polyomavirus, but also the small t antigens of both Polyomavirus 

and SV40 (Pallas et al., 1990). Since these oncoproteins replace the regulatory B 

subunit of PP2A, which is responsible for substrate specificity (Shenolikar, 1994) and 

localisation (Strack et al., 1998), interactions with these oncoproteins could produce a 

variety of responses in PP2A activity, including activation, inactivation or redirection 

of PP2A to new targets, possibilities that have been shown not to be mutually 

exclusive (Pallas et al., 1990).
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PP2A has been established as active in vitro against a number of enzymes involved in 

metabolic pathways (Cohen, 1989). Consequently, in order to ascertain whether 

oncoprotein-bound PP2A influences pol III transcription and obtain an indication of 

whether it predominantly activates or inactivates any targets, extracts of 3T3 and 

Py3T3 cells were incubated in the presence of the potent PP2A inhibitor Okadaic acid 

and transcriptional activity analysed by in vitro transcription assays. Transcriptional 

activity of both the 3T3 and Py3T3 cell extracts displayed little or no change in the 

presence of the inhibitor, relative to their respective untreated cell extracts.

While inhibiting PP2A may indeed not confer an effect on pol III transcription, it is 

conceivable that activating and inactivating effects were cancelled out. Alternatively, 

slight effects may have been masked by other phosphatases, if any redundancy exists 

between them and PP2A. Moreover, although a response to Okadaic acid treatment 

would have established an involvement of a signalling pathway, it is not possible to 

conclude from these data that PP2A interactions with Polyomavirus middle and/or 

small T antigens do not contribute to pol III transcriptional activation in vivo.

In order to test for an involvement of signalling pathways in stimulation of pol III 

transcription, cell extracts were treated with the general kinase inhibitor DMAP and 

used for in vitro transcription assays. 3T3 extracts remained uncompromised by the 

DMAP treatment, while a 50% inhibition of pol III transcription was observed for the 

treated Py3T3 cell extracts, strongly implicating the recruitment of a signalling 

cascade by Polyomavirus.

Support for this was conferred by an equivalent inhibition of pol III transcription in 

the large T-defective cell line, Pytsa3T3, indicating the recruitment of a signalling 

pathway for pol III transcriptional deregulation, an effect that is large T-independent.
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Although DMAP generated a clear response in vitro, some further studies were 

performed in vivo to ensure activity of full signal pathways. In addition to PP2A, 

another of the cellular proteins bound by middle T is PI-3 kinase. Cells treated for 

four hours with the PI-3 kinase inhibitor LY294002 displayed a significant reduction 

in transcriptional activity. This was observed in the Py3T3 cells but, significantly, to 

a greater degree in the 3T3 cells. This suggests that although PI-3 kinase may be 

involved in pol III transcriptional regulation, Polyomavirus may not significantly up- 

regulate this pathway.

Confirmation that the LY294002 was inhibiting this pathway was achieved through 

western analysis of substrate proteins downstream of PI-3 kinase, which revealed 

dephosphorylation in the presence of the LY294002 inhibitor. Similarly, northern 

analysis results were consistent with the in vitro transcription assay observations and 

demonstrated an inhibition of B2 transcript levels in both cell lines following 

inactivation of the PI-3 kinase downstream signals.

Studies with SV40 have demonstrated that through binding and inactivating PP2A, 

the small t antigen of SV40 stimulates the MAP kinase pathway by preventing PP2A- 

mediated dephosphorylation of ERKl and MEK in the signal cascade, resulting in 

their constitutive activation (Sontag et al., 1993). Furthermore, middle T antigen of 

Polyomavirus is able to bind and activate She, leading in turn to She binding and 

activating the Ras protein. Consequently, this also leads to activation of the MAP 

Idnase signal pathway (Dilworth et al., 1994; Rozakis-Adckock et al., 1992). Given 

that activated MAP kinases can translocate to the nucleus, where they phosphorylate 

transcription factors that regulate expression of genes pivotal to cell proliferation (Hill
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and Treisman, 1995), such activation might potentially target pol 111 transcription 

factors.

Consequently, in vivo treatment in the presence of the MEK inhibitor U0126 was 

carried out and extracts prepared after a treatment time of 1 hour were used for 

analysis by in vitro transcription assay. Results conveyed an extreme inhibition of pol 

III transcription in the Py3T3 cells after U0126 treatment. Conversely, while the 

untransformed 3T3 cells also display inhibition of transcription by U0126 treatment, 

the effect was limited and significantly less substantial than that observed in the 

Py3T3 cells. Again, inhibition of the pathway via inactivation of MEK was ratified 

by western analyses demonstrating the dephosphorylation of downstream targets 

following treatment. Thus, this provided evidence of activation of pol III 

transcription mediated through signals blocked by MEK inactivation.

With a clearly established involvement in activation of pol III transcription, it was of 

interest to determine the relative abundance of the total and active forms of ERK in 

the untransformed and Polyoma virus-transformed cell lines. A striking pattern of 

expression was observed, with total levels of ERK in 3T3 cells exceeding levels 

displayed in Py3T3 cells, but active forms significantly more abundant in Py3T3 cells 

than the parental cells. These results demonstrate that although less abundant in 

Py3T3 cells, a significantly greater proportion of ERK present is in the active forms. 

This is consistent with ERK activation through up-regulation of the MAP kinase 

signalling pathway.

Subsequent analyses demonstrated reduced transcriptional activity in ERK-depleted 

Py3T3 cell extracts, an observation not pertaining to 3T3 cells. Furthermore, a 

marked inhibition of transcription in Py3T3 cell extracts pre-incubated in the presence
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of an ERK substrate competitor peptide was only weakly reflected in 3T3 cell 

extracts. A potential target for ERK was strongly suggested by the discovery of an 

endogenous interaction between ERK and the BRF component of TFIIIB.

Studies have documented that middle T binding to She results in a binding site for the 

SH2 domain of the adapter molecule Grb2 (Campbell et al., 1994; Dilworth et al., 

1994). This in turn recruits, through its SH3 domains, the guanine nucleotide 

exchange factor mSos into the middle T complex and this re-location of mSos to a 

membrane site can be sufficient to activate the MAP kinase pathway (Aronheim et al., 

1994; Schlessinger, 1993). Furthermore, SV40 small t antigen can promote receptor- 

independent activation of the MAP kinase pathway through its inhibition of PP2A 

(Sontag et al., 1993). However, a study by Urich et al documented the requirement 

for PI-3 kinase-mediated signals in addition to those mediated through Ras for middle 

T-activation of the MAP kinase pathway, stating that inhibition of PI-3 kinase 

blocked relocalisation of ERKl (Urich et al., 1995). They also reported that cells 

expressing middle T antigen mutants unable to bind She or PI-3 kinase showed 

neither activation nor nuclear translocation of MAP kinases and suggested that both 

pathways feed into the MAP kinase cascade (Urich et al., 1995).

Subsequent studies by the same group then established an essential role of the Rho 

family GTPases in cell transformation by middle T, where they demonstrated c-fos 

promoter activation by two Ras-initiated signalling cascades, Raf-dependent and -  

independent, with both pathways requiring functional Rac (Urich et al., 1997). 

Furthermore, the serine/threonine Idnase PAK has emerged as a molecule that can 

link Rac and Ras signalling by converging on the ERK MAP kinase pathway (Bar- 

Sagi and Hall, 2000). It is widely reported that overexpression of a Rho GTPase
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cannot, in itself, lead to ERK activation; however, dominant-negative Rac can block 

Ras-dependent ERK activation in 293 cells (Frost et ak, 1996)

Hence, previous studies identified essential interactions of PI-3 kinase and She with 

middle T, the requirement of Rac and the convergence of activated signals on the 

ERK pathway. Data established in this chapter are in agreement with these previous 

findings. Inhibition of PI-3 kinase in Py3T3 cells showed only a moderate inhibition 

of pol III transcription, while that conferred by inactivation of MEKl and MEK2 was 

significantly more substantial. Furthermore, levels of active ERK were clearly 

elevated in Py3T3 cells. This would be consistent with merging of the PI-3 kinase- 

and Shc-mediated pathways upstream of MEK and the subsequent activation of the 

ERK pathway, which may be augmented by the binding of the middle and/or small T 

antigens to PP2A. Thus, it appears that middle and/or small T antigen(s) of 

Polyomavirus target the ERK MAP kinase signalling pathway for constitutive 

activation, allowing in turn, activation of a pol III transcription factor(s); perhaps 

TFIIIB, via an interaction between ERK and BRF. However, TFIIIB is not 

substantially activated in Pytsa3T3 cells. Binding of ERK to BRF may position it in 

the transcription complex, where it can phosphorylate other targets, such as TFIIIC or 

pol III.
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Chapter 7

Discussion

It has long been recognised that pol III transcription is stimulated in response to DNA 

and RNA tumour viruses, in addition to a host of other carcinogens and environmental 

stimuli. Continuing studies are unravelling the mechanisms involved in viral 

transformation, with substantial progress made in the understanding of transformation 

by SV40, which leads to a marked increase in the expression of pol III transcripts 

(Carey et ak, 1986; Larminie et ak, 1999; Scott et ak, 1983; Singh et ak, 1985; White 

et ak, 1990). Two mechanisms have been identified that contribute to this effect 

(Larminie et ak, 1999). A major restraint on pol III transcription in untransformed 

fibroblasts is provided by RB and its relatives pl07 and pl30, which bind and repress 

TFIIIB (Larminie et ak, 1997; Larminie et ak, 1999; Scott, 2001; Sutcliffe et ak, 

2000; Sutcliffe et ak, 1999). The large T antigen of SV40 is able to bind and 

neutralise RB, pl07 and pl30, thereby releasing TFIIIB from this control and 

allowing a substantial increase in its transcriptional activity (Larminie et ak, 1999). A 

second and apparently unrelated mechanism that accompanies SV40 transformation 

involves the overexpression of TFIIIC2; EMSAs showed elevated TFIIIC2 activity, 

while RT-PCR and western blotting revealed that this correlates with the 

overproduction of TFIIIC220 and TFIIIC 110 mRNA and protein (Larminie et ak, 

1999; White et ak, 1990). This current study has confirmed that the remaining three 

subunits of TFIIIC2 are similarly overexpressed in SV40-transformed cells at the 

mRNA level. Although this might have been anticipated, since the five subunits of
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TFIIIC2 are assumed to function in a stoichiometric complex, one study has reported 

that TFIIIC 110 is induced selectively by adenovirus infection (Sinn et al., 1995). In 

contrast to the increases in TFIIIC2 subunits, there is little or no change in the levels 

of TBP and BRF components of TFIIIB (Larminie et al., 1999). Since TFIIIB is also 

believed to be a stoichiometric complex, it would have been expected that its third 

essential subunit would also remain constant following SV40 transformation. 

However, as first demonstrated in this study, B” is clearly overexpressed at both the 

mRNA and protein levels in SV3T3 cells, providing an additional and unanticipated 

instance of how the pol III transcriptional machinery can be affected by a virus. 

Transformation by SV40 therefore involves at least three distinct changes in the basal 

pol III factors, which combine to allow unusually high expression of class III genes.

The principal focus, however, of this study has been analysing the effects of 

Polyomavirus on pol III transcription and components of the pol III machinery, 

identifying specific effects conferred by the individual oncoproteins that it expresses. 

Polyomavirus, another papovavirus, is closely related to SV40 and yet differs in 

several important ways (Tooze, 1980). It has been demonstrated here that the 

Polyomavirus large T antigen releases TFIIIB from repression by RB and that 

Polyomavirus-transformed fibroblasts overexpress mRNAs encoding all five subunits 

of TFIIIC2, as well as the B” subunit of TFIIIB, but not TBP or BRF. Thus, these 

three mechanisms of deregulation are shared by different members of the papovavirus 

family. Given that other types of DNA tumour virus are also able to activate pol III 

transcription, it will be of interest to determine the extent to which they employ 

similar deregulatory mechanisms.
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RB is a common target for transfoiTning viruses and it has previously been 

demonstrated that both adenovirus and human papillomavirus (HPV) can stimulate 

pol n i activity by expressing oncoproteins that target and neutralise RB (Larminie et 

al., 1999; Sutcliffe et al., 1999; White et al., 1996). Indeed, inactivation of RB may 

be the most common mechanism for inducing pol III transcription in transformed cells 

(Brown et al., 2000). Induction of TFIIIC2 may also prove to be a strategy that is 

commonly exploited by viruses, since early template commitment assays provided 

evidence that the concentration of this factor increases when HeLa cells are infected 

with adenovirus (Yoshinaga et al., 1986). A more recent study, however, found that 

TFIIIC220 is not induced in adenovirus-infected HeLa cells, although TFIIIC 110 

levels increase markedly; the remaining TFIIIC2 subunits and the components of 

TFIIIB were not examined in that study (Sinn et al., 1995) and their expression levels 

following adenovirus transformation remain undetermined. The latter report clearly 

differs from the effects observed following SV40- and Polyomavirus-mediated 

transformation, but TFIIIC220 levels may already be very high in uninfected HeLa 

cells, which are transformed by HPV; furthermore, infection may elicit a different 

TFIIIC2 response to transformation. Establishing the response of the pol III 

transcriptional machinery to malignant transformation by HPV will be of significant 

interest.

The overexpression of TFIIIC2 is a clinically important phenomenon, since it has

been found to occur in human cancers. Thus, a study of nine ovarian epithelial

carcinomas revealed abnormally high TFIIIC2 activity in each of the tumours when

compared with untransformed ovarian tissue from the same individuals (Winter et al.,

2000). This effect correlated with a specific increase in the levels of all five mRNAs

encoding the subunits of TFIIIC2 (Winter et al., 2000). Since ovarian cancer is not
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believed to be associated with tumour viruses (Gallion et al., 1995), it seems that 

TFIIIC2 expression can respond to distinct types of oncogenic signal. The use of 

papovavirus-transformed cell lines first uncovered this feature of pol III regulation 

(Larminie et al., 1999; White et al., 1990), hence, it is of notable significance that 

these model systems have proved again to be directly relevant to the situation in 

human disease. Consequently, their employment in investigating further the 

mechanisms responsible for inducing TFIIIC2 during carcinogenesis will be 

important.

In the three types of tumour cell analysed, namely SV3T3, Py3T3 and ovarian

carcinomas, the five transcripts encoding the components of TFIIIC2 are all induced

together. This co-ordinate induction under distinct circumstances suggests that the

genes encoding these subunits might have common promoter or enhancer sequences

that allow their co-regulation. This would seem logical, since the five subunits are

believed to function stoichiometrically. With regard to this contention, analysis of

sequences of the TFIIIC2 subunit promoters has revealed, in each case, that a number

of potential AP I sites are present, as illustrated in figure 7.1. Hence, the possibility

exists that through activation of these sites, expression of these subunits could

potentially be co-ordinated. Furthermore, that oncoproteins of Polyomavirus have

been shown to activate the c-fos and c-jun proto-oncogenes, members of the AP-1

family, strengthens the appeal of this hypothesis. Thus, future studies of the effects of

AP-1 activation on the co-ordinate expression of TFIIIC2 subunits could provide

significant insight to the mechanisms surrounding TFIIIC2 activation following

transformation. Indeed, unpublished observations demonstrate that AP-1 DNA-

binding activity is elevated in Py3T3 cells when compared to the untransformed

parental 3T3 cell line. However, studies with HeLa extracts have suggested the
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Figure 7.1

Schematic diagram of the relative positions of potential AP-1 binding 

sites within TFIIIC2 promoter regions

Linear representation of each of the TFIIIC2 subunit promoters. The boxes represent 

the potential AP-1 binding sites located in each promoter region, with their respective 

positions relative to the transcription start site (+1) indicated below.
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existence of an inactive TFIIIC2 complex that specifically lacks the TFIIIC 110 

subunit (Hoeffler et al., 1988; Kovelman and Roeder, 1992; Sinn et al., 1995). This 

lead to an alternative model, in which the selective induction of the TFIIIC 110 

subunit might convert pre-existing inactive complexes into functionally competent 

TF111C2 (Hoeffler et al., 1988; Kovelman and Roeder, 1992; Sinn et al., 1995). In 

regard to this model, it is notable that TFIIIC 110 is more strongly induced by 

papovavirus transformation than the other components of the complex, especially in 

the SV3T3 cells (Larminie et al., 1999). This, however, was not the case in ovarian 

cancers (Winter et al., 2000), suggesting that both these models may contribute to the 

deregulation of TF111C2, but to varying extents depending on the cell type in question.

The induction of B” reported here has not been observed previously, principally on

account of the fact that mammalian B” has only recently been identified (Schramm et

al., 2000). This observation, however, is somewhat surprising given that the TBP and

BRF components of TFIIIB are not overexpressed in SV3T3 or Py3T3 cells.

Nevertheless, the level of B” mRNA and protein is clearly elevated in all three

papovavirus-transformed cell lines analysed in this study. As in yeast, mammalian B”

has a relatively low affinity for the TBP/BRF subcomplex (Schramm et al., 2000).

Thus, increasing the level of B” may serve to promote its assembly into functional

TFIIIB complexes by mass action. Indeed, direct assays of TFIIIB activity have

demonstrated that activity remains partially elevated in Pytsa3T3 cells. While this

cell line is defective for expression of the large T antigen of Polyomavirus, and thus

unable to relieve RB-mediated repression of TFIIIB activity, it does continue to

overexpress B” at a comparable level to the wild-type Py3T3 cells. This indicates not

only that overexpression of B” is large T-independent, but moreover, that the

remaining elevation of TFIIIB activity observed in the absence of the large T antigen
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may be explained by the overexpression of B”. Consequently, it appears that two 

independent mechanisms may be involved in the activation of TFIIIB that contribute 

to the deregulation of pol III transcription that accompanies Polyomavirus 

transformation of fibroblasts. However, the relative importance of the different 

pathways utilised by Polyomavirus to act on pol III may vary according to cell type 

and induction of B” might contribute to a greater or lesser extent in, for example, the 

endotheliomas that Polyomavirus induces in transgenic mice. Similarly, its impact on 

the stimulation of TFIIIB activity may also be subject to the particular class III gene 

being expressed.

Another finding from this study was the strong activation of a pol III reporter induced

by the Polyomavirus middle T antigen in vivo. The middle T antigen is generated by

alternative splicing of the viral early transcript and has no equivalent in SV40 (Tooze,

1980). Nevertheless, it is the principal transforming oncoprotein of Polyomavirus,

being necessary and sufficient to induce morphological transformation and alterations

in the growth properties of established cell lines (Raptis et al., 1985). It is able to

achieve this through association with signal transducers, such as members of the Src

family, phosphatidylinositol-3 kinase and the She protein that activates the Ras

pathway (Messerschmitt et al., 1997; Urich et al., 1995). The middle T antigen is

located outside the nucleus and its stimulatory effect on pol III transcription appears

to be conferred through its activation of signalling cascades. In this regard, the action

of the middle T antigen is reminiscent of the situation with the X oncoprotein of

hepatitis B virus (HBV), which stimulates pol III transcription through activation of

the Ras/Raf-1 signal transduction cascade (Wang et al., 1997). Indeed, not only can

the activation of pol III transcription in Py3T3 cells be partially blocked by the

general kinase inhibitor DMAP in vitro, but in vivo studies utilising the specific
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MEKl and MEK2 inhibitor U0126 conferred a significant reduction in the 

overexpression of pol III transcripts observed in response to Polyomavirus 

transformation. This suggested that targets downstream, such as ERK, could be 

involved in the stimulation of pol III transcription. Analysis of the abundance of ERK 

in Polyomavirus-transformed cells relative to levels expressed in the untransformed 

parental cell line demonstrated a striking pattern of expression; despite total levels of 

ERK being more abundant in the 3T3 cells, the levels of the active forms of ERK 

were substantially higher following transformation by Polyomavirus. Moreover, 

specifically immunodepleting ERK from Py3T3 extracts revealed a reduction in 

transcriptional activation, an observation supported by the ability of a competitor 

ERK peptide to similarly diminish transcription levels in Py3T3 cells in proportion to 

increasing concentration. This study provided further insight to the potential mode of 

action of ERK on pol III transcription with the finding that endogenous ERK 

specifically co-immunoprecipitates with the BRF component of TFIIIB. Thus, it may 

be the case that the binding of ERK to BRF positions it in the transcription complex 

where it could potentially phosphorylate TFIIIC or pol III.

The region of the Polyomavirus genome that encodes the middle T antigen is poorly

conserved with SV40 (Tooze, 1980). The equivalent SV40 sequence codes for a large

T epitope that binds and inactivates p53, a function not performed by any

Polyomavirus product (Lane and Crawford, 1979; Vousden, 1995; Zhu et al., 1992).

Since p53 has been shown to bind and inactivate TFIIIB (Cairns and White, 1998;

Chesnokov et al., 1996), release from p53 repression may provide yet another

mechanism that facilitates the deregulation of pol III transcription in some types of

SV40-transformed cells. A physical interaction between TFIIIB and the SV40 large T

antigen has also been reported (Damania et al., 1998), although the contribution of
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this towards pol III activation has yet to be established. Nevertheless, it seems clear 

now that papovavirus transformation can confer an impact on the pol III machinery 

through a diverse range of mechanisms. The targeting of both TFIIIB and TFIIIC2 

may be important to maximise pol HI transcription. Experiments with synchronised 

cell populations have revealed that alternative pol III transcription factors can be 

limiting during different phases of the cell cycle (White, 1995). Whereas TFIIIC 

activity limits the rate of VAi expression in extracts of S or G2 phase cells, TFIIIB is 

the limiting factor in extracts of cells harvested during Go or early Gi (Scott, 2001; 

White, 1995). Hence, stimulation of TFIIIB or TFIIIC alone may only influence the 

transcriptional output during a restricted interval of the cell cycle. Activating both 

TFIIIB and TFIIIC2 might therefore allow papovavirus-transformed cells to sustain 

elevated rates of pol III transcription throughout interphase, which may be a 

prerequisite for rapid growth.

While the activation of two essential transcription factors, TFIIIB and TFIIIC, by 

papovaviruses clearly constitute vital mechanisms of deregulation, this study has 

demonstrated that Polyomavirus adopts an additional and apparently unique 

deregulatory approach. The polymerase itself is similarly targeted for activation, with 

pol n i activity being substantially higher in Py3T3 cells relative to the untransformed 

3T3 parental cell line. Furthermore, this corresponds to an increase in the abundance 

of pol III subunits that accompanies transformation by Polyomavirus. This appears to 

be the first instance documented of stimulation of pol III itself following viral 

transformation. The particular oncoprotein(s) responsible for the activation of pol III 

remains to be determined and it will be of interest to establish if this function is 

ascribed to an oncoprotein which is related to any expressed by similar tumour 

viruses.
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Taken together, the results from this study clearly demonstrate the diversity of 

approaches utilised by both Polyomavirus (summarised in figure 7.2) and SV40 in 

their goal to deregulate pol III transcription. The employment of such a variety of 

mechanisms suggests that stimulating pol III transcription may be an important part of 

the viral transformation process.
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Figure 7.2

Illustration summarising the mechanisms involved in the 

deregulation of pol III transcription following transformation by 

Polyomavirus

The situation reflecting pol III transcriptional output in untransformed 3T3 cells and 

the subsequent situation following Polyomavirus transformation. In 3T3 cells TFIIIB 

activity is limiting due to it being bound and repressed by RB. In Py3T3 cells, the 

large T antigen of Polyomavirus binds and neutralises RB, releasing TFIIIB from its 

repressive effects. Additionally, the B” subunit of TFIIIB is selectively increased and 

both pol HI and TFIIIC2 activities increase in conjunction with raised levels of their 

subunit components. Consequently, the abundance of the essential transcription 

factors are elevated, allowing the increased formation of transcription complexes and 

an ensuing elevation in pol III transcriptional output.
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