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The Method of Characleristicse is applied to the study of the non~linear
pavtial differential equations which govern the twowdimensional steady mobtion
of a fully ionised gas, which is idealised as a perfecht fluid of infinite
electrical conductivity, in the presence of a magnebic fielde Certain resulis
are derived for the {lov over slender wedges. TFor the steady flow over a
convex corner of infinitesimal angle (of Prandtl - Meyer type in ordinary gas
dynamics) 1t isg shown that no steady stabe solubion existse. The reasons for
the breakdown of this type of flow ave investigated via the propagation of
magnetic disturbances in the non~conducting solid wall and the disturbances
in the gass Reflecbed and transmibled waves are given as solutions of a
gingular integral ecquatione

A solubion is now presenbed to the pon-linear problem of the attached
shoeck~wave configuration which appears when a nonwconducting symmebric wedge
of finite angle bLravels through the gase The applied magnetic field is
oblique to and is in the same plane as the lneident streams  The presence
of the magnetic field non-aligned with the stream renders the shock-wave
pattern on the upper halfw-plane different from thaet in the lower halfe
plange  There ig no symmebtry in the flowe [Irom the jump conditions
appropriate to these plane magnetow-gasdynamic shock waves expressions for
the unknown parameters downstream of the shocks ave given in turms of the
known {in general) quantities upstreame Direct analylic solution is nob
foagibles  Porturbations arc made {vom the known solution for the case
vhen - the mapnebic field is aligned with the stream and depends on the
solubion of 24 equationg in 26 wnknownss To obbailn sufficient equabions
it is required to wabch bthe solution for the {low with that fovnd in the
wedges  The effect of the coupling of the flows above and below the vedge
via the boundary condiblons on the magnetic field is demonsbratede  These
equationg are solved munerically and solutions are present d for angles
of inclination of the magnetic fleld to the stream up to 12%  The come
putations ave executed for the case of a weak magpebic field and some
babulated resullis are glvens

The physical sbabiliby of the shock=wave solutions found is thon invegie
igateds This final analysis includes the dismissal of the upstream facing
thermodynamically stable shock waves which ave predicted by the aligned
fields theoxye
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GENERAL TRTRODUCTION

We consider the equations of two-dimensional steady flow of a
fully lonised gas. 1In particuler we obtain the characterlstics of
these equations btogether with thelr conditlions of compatibility.
Certain results dependent on linearised theory are devived. There
is an application of the theory to the flow over e thin noa~conducting
wedge for certain configuvations of the applied magnetic Tfileld. Also
the flow over a sharp convex corner is consldered. In ordinary gas
dynamles this kind of flow is classified as being of the Prandil-
Meyer type. It is demonstrated that, in general, we caunob have
flowe of this type in magneto-gesdynemlics. The reasons for this are
indlecated, and in the second part of the thesis a more detalled
analysls is glven and the physical mechanism involved is explained.

The third part is devoted to the method of construction of a
solution to the non-linear shock wave problem which arises when o
non-conducting wedge travels through a fully ionised gas. Since
characteristice are weak shocks of vanishing strength we show flrst
that for o thin wedge certain of the results derived in Part I can
be deduvced Trom the equablons holdlng across the shock waves. Also
the anslysis of Part I aids 1n the Lormmlation of a perturbation
technique vhich is applied directly to the full system of shock wave
equations.

The solution {with numerical results given in graphic form) to

the attached shock wave problem when the angle between the magnetic
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field and the incident stream is zero was given by Cabamnes [6]. Ve
allow this angle to increase from its zero value and errange our
expanglons for pn/Pr, Vo/vi, ete., in terms of it. Thus the zero-~order
texrms are those which come dlrect from the Cabanunes theory, The expan-
sions to first order terms ave glven. Ve can show anelytically that
only in the case when the gas speed exceeds the Alfven speed do we
obtain a physically meaningful solution. The perturbation method breeks
down when the gas speed 1s equal to or is less than the Alfveén speed.
Ixbensive computabions have been executed for the case of o wealk
magnetic field, a wedge of semi~vertex angle 20° and for angles of
inclinnbions of magnetic field to incident stream at 2° intervals from
0° to 12°,

In the final part of the thegls the stebillity of these attached
shock wavers 1s investigeted. The numerical results cbtained in the
perturbation analysis ald In resolving some of the difficulties which
are posed when we try to satisfy the conditionsg Ffor stability.

The substance of part IT of the thesis is to appesr in a

fortheconing publicatlion of the Q.J.M.AM. ( gx,c ‘/ ofﬂ Y Vviy J p M/ '

My 1965) 4p 243 - 255 )
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NOTATION AND SYMBOLS

Rationalised MKS units are used throughout.

H magnetic intensity or rield strength

Hx s H - X,y - components of mognetic field

B electric intenslty or fleld strengbth

) current densliéy vector

t wmagnetic permeablllity

G electrical conductivity, assumed independent of time
and position

v fluid veloelty

u,Vv X,y - components of velocity

P fluld density

» Tluvld pressure

a local sound spaed

M Mach nunber (= V/a)

X angle between H and V

e flow direction



PART X

LINEARISED THRORY OF STEADY IWO-DIMENSIONAL

MAGNETO-GASTYNAMIC FLOW



i.1

L NTRODUCELON

Many dualitative resulits can be obtalned firom linear theories. In
magnebo-gasdynamlices the basle partial dlfferential equablions are more
complicated than those of ovdinary gas dynomics because of the presence
of ‘those terms which arise frow the conslderstion of the magnetle [ield.
One method of analysing these equablons is via the theory of cheracteristi
We look at this theory afresh wlth & view to decreasing the actual physice
effort which is involved in the evalumbtion of the determinants of large
order., A method is evolved which is partlcularly suwited to problems
involving two independent veariebles. Since dizbturbances created in the
flow propagabe along the characteristics we can exemlne bhe effect of
introducing a slender bhody into the flow., The Tlow over a wall of some
srbitrary shepe vhich veries slowly may also be exomined. When the body
is no longer thin the nou~llneor effects begin to dominate and the created
disturbance is of finite size. Accordingly in the following sections we
obtain first of all an understanding of the processes involved in a lineox
theory. Knowledge of these resulbts will help in the constructlion of the
solutlion to the non-linear problem.

1.1  BASIC BQUATTONS

We shall concern ourselves with the macroscopic motion of a fully
ionised gos, which we shall assume G0 be aflequately represented as o
perfectly conducbing inviscld non-heab-conducting perfect gas. The tenpe-
rature of the gas is asswned to be sulficlently low and denslity high

enough in order that effects due to Hall currvent may be neglected. AllL
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gas velocitles are assumed to be small in comparison with the speed of
Jight. A consequence of this asgumpltion is that we can neglecet the
charge denslty oend the displacement currvent terms Ifrom the partiol
differentlal. equotions. TFor slmplification we also assume thal the
motion of the gas is not influenced by any external forces. The eguation
of motlon for the gas are then those of magneto-gusdynamics. With the
notation and under the assumpiions outlined above we write thesce equation

in the following formg

DY . equation of motlon (1.1)
(o'])-_/' _—V/3+/“_“_At‘ ) ’
Qf . 0 ctl/;‘,.f V =, equation of contimaity (1.2)
pr T T = T
Np D adiabatic condition .  (1.3)
by = -, )
Dt pe
Ve also have the Moxwell equations:
wnH = o (1.4)
Jr o - OB
Cny Bali (5_{2' ’ (i.5)
cw// H = , (1.6)
= _ asgsumed
ErpV H=zpo | o= ’
ﬂ;",’:‘,\[ £ 0 (1.7)
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These equetions are true for an igotroplc mediunm with B = pll. The

operator DDt is defined as 3fdt + (V.V).

1.2 THEORY OF CHARACTERISTICS

Many setn of conservation laws for physiesl systems involving two

independent variables x, ¥ can be expressed in the form:

= s Q0 j (1.8)

where P, Q are matrices of some particular order and A is & column vector
The gquenbities 3/dx, 8/dy operate on each element of A. If Wwe speclfy th
menbera of A to be on a curve In the x~y plane determined by the paranety
equations x = x(r), y = y(v), then
4 = dy A Ay (1.9)
LN A
In this equation the d.iifferentﬁ.a;hions are ‘btaken with respect to v along
the curve. On premultiplying both sides of equation (1.9) by P and using

(1.8) we obtain

'3'4
(Paéi C\) by r ?ﬁ : (1.10)

We have in this equation a mesans of finding the Tirst ovder partial

derivetives with vespect to ¥y of the elements of A. This solubion ip

wigue unles

Ll 1 Py-ql =0 (1.11)
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From this equation the values of y' (= dy/ax) glve the characteristic
curves of (1.8).° When these velues are reel the system of equations
(1.8) is of hyperbolie type.

If we replace any column of the determinant on the left side of
(1.11) by the quanbity P dp/dx, Pound from (1.10), and equate the
modified deberminant to zero we have the condiition for compatibility.
Wote that the result of the anelysis is the some 1f we premultiply
(1.9) by Q instead of P.

The important feabure of this method lis that the order of the
determinant in {1.11) is cqual to the number of elements of A, Compari-
son with the usupl methods of obtalning cheracterlstics shows thet in
this case the order of the determinant lnvolved hss been halved, and
this consequently results in o large saving in the labour of evaluation.
With this method the choracteristics for ordinary two-dimenslonal
igenbropic steady gas flows cen be writien down immedistely from (1.11).
The methed 1 extremely powerful in the ir{va:sti@;aﬁion of systems con-
taining a large nuwber of partial differential equations. This is

demonstrated in the next section.

1.5 CHARACTERISTICS OF 2-DIMENSIONAL STTADY FLOW

Tor steady two~dimensionel motion of the gos with H In the plane

of the flow the equations (1.1) - (1.7) in component form when ¢ = oo

becone
ou )
R T e =Ll (M ol
X °f o ( — - y) ,

By X
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V4 dnr 9
("(—-v‘ +u J - o M,
N ;5?) '55(1—”9‘;9 ) %x+%za,

) 2
woP 4. _ v (wP , Y\ -

The last equation in this group is an integral of (1.5) ond K is &

m/Jy—»\r/’/z = k. {1.12 a,b)

congtant which is debermined by the initlial coundlbicns or by the
condition at upstream infinity. To shortets the labouvr we can eliminate
the devivatives OH y/é’):{ R éﬂyj&y from this system by using this last

equatlon. We find bthat

0

(o~ Hv-f'+ MM%'L,{ wgﬁ__ w H Y
P ) S e v 79*9’(*/”"‘"1721;/’5-*
+ m N LIV
2 ) S SO
(Pu""/h//u”) Y o 2 +“9/_,, 1
X Dy T 'f/vm/7/ g_g( - M/‘/ng_{i . (1.13)
)
+/w/7§(// %_:f _ Oj
X '()y t'fm’()_y:a, L X’_;( 7"\/‘3_'/3,1 +H, 3.:!-—/1/ Du )
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It 1s readily secen that this system of equatlons ig of the seme general
form as the set glven by equation (1.8). With A chosen as the colunn

vector {w, v, p, », K}, on using (1.11) we soee that the characteristics

of the get (1.13) arve given by

| (ta“"’/uh’f) y'— Y /ur’v";(/{y‘y' 0 uy' /A.\rl‘éy'—;/w Hy
LA (O pl )y~ prt 0 e By oy
Yy’ —P aylens @ o =o{1.14)
M _ wilenr
J H, o 0 /
o o a4 7’«1) @ 7'..,“ O

A strailghtforvoard expansion of this determinent glves for A = uy' =

the resultss

) (1.15)

Ve {a*ling) - )™ § 2plpy ISl By PN Ga6)
The first of these, equation (1.15), is bthe equation Ffor the streamline.
The second, which is of degree four in y'; is of o complicaited neture and
investigation of the roots is Aifficult., Before analysing (1.16) in
detail we derive certmin results which feollow immediately from it.

On setting H = 0 in equation (1.16) we recover immediately the
equation for the characterlstices for ordinary steady two-dimensionsl
ges dynemic flows. WNote that two of the chexamcteristics of (1.16) now

become streawlines.



Conslder the speclal cage when H is parallel to ¥ (the aligned.
fleldn case). The condition for parallelism of the vectors abt infinity

gives K = 03 and
W >

L s T
“[Hy=~[Hy= VIH, V= w'ea™, H= W
If we wrilte
¢? = (A1fvén speed/sound speed)? = N}fgp”‘/a‘? (1.17)

then equation (1.16) reduces, for M = V/e, the Mach number, to
e Vv “
Y A s LA (R Y A I (1.18)

Ve see from equation (1,18) that two of the characteristice have now
collopsed onto the streamline, The converse of this result in also
true., That iz, 1f we start from an aligned fields flow, and allow
the magnetic fleld to deviate by a amell amount from its parallel
directlon with V, then two of the characteristice in the now non-aligned
fields set-up have sprung from the streamline. This latter result forms
an inportant part in the perturbation amalysis of Part III, If we
define o as the angle between & characteristic and a streamiine then
we hove

V[y/ﬂ/x; Fom | O+ &) | where  [f4n O ,.-_-f«r/u )

and equation (1,18) becomes with this notation

R (710 [ (1= <) lrr-1) (1.19)

From equation (1.19) it is possible to determine regions, specified by
values of €* and M®, for which the sngle ¢ is real or imeginary. This

hasgs been done by various authors.
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For the case when H and ¥V have a random orlentation it is possilble
to choose & moving systen of co-ordinates in which H and V ore now
aligned. Thus instead of using (1.16) directly we could maeke inter-
pretabions on the beheviour of the cheracteristics via equation (1 19),
Precisely this technigue was used by Kogan [1]3 however he commenced
his analyesls with linearised forms of the equations (1.1) - (1.7) and

not from the non-linear equations. If we replace
4 / 7
H Ay (Het ), ¥ gy Cores,n), by fotp bypre  (20)

in equation {(1.16) we find that the linearised form ls

-

O e o
1.21

+ § 1‘70"/“ fovf/"ﬂﬁ")}yr“; 2%, fyo yl _ %‘7: - o

In this eguation y' denotes the inclination of a characteristlc to the

,, ot 2 2 2
velocity vector and €. = H- /p e,

For ei < 1 in Flgure 1.12 we see the regimes for which (i.21)
has four real characteristics (fully hyperbolic flow), two real
choracteristics (quasi~hyperbolic flow) and no real cheracteristies,
This figure was first given by Kogan [1]. For e'§ > 1 we bave & similay

figure, Migure 1.10.
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FIGURE 1.1a: REGIMES OF FLOW: I QUASI-MYPERBOLIC

11 FULLY HYPERBOLIC (£<,)

/L‘\‘\X /T ﬁ Hyo ’:/

H J
1

) o

e
—_. { t
s Jrrer
PIGURE 1.1b¢ REGIMES OF FLOW: I QUASI-~HYPERBOLIC

TT FULLY HYPERBOLIC (s51)
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When _I_I_o 1s perpendiculor to 1{9, 80 that H Lo 1s zero we have the

crogsedl £ields configuration, and for this case eguablon (1.21) becomes

(y;&)"’: =477, f,,"’//-/ya‘)}t/\/ﬂ M, fo'”(/«f‘/o")f;/f g %”{(h%") rs," g]. (1.22'

”3/70‘/ g(/ "’792) '/“‘iavf

Kogan shows thet for this situstion (go 1L go), hyperbolic Flow exloto

for Mﬁ 21+ c—:‘;“; (see Figure 1,1) and from equation (1.22) we see that
four distinct velues of ¥y' exlst; the suffix 1 corresponds to the sualler

root and the suffix 2 to the larger one.

1.4 CONDITIONS OF COMPATIBILITY

By meane of the notation introduced in section 1.2 we hove

- l ) 4
(Pu ‘/"‘I{Y) Ax +/M//1/‘{L/ og -;‘“‘%;_/{é +/vmr/7/y "‘/Z}/z
S el 0(74“;( +((0a‘7m/7[}L‘) i%; ._/,\ar/{x o Hy
PU/‘Q - ,0‘&4 np ”/ﬂ X '
Jx_ ax ax (1.25,
w AHx
/#« /
- a'l elp <l )2
L T e Zé;( -

If we replace the last colum of the determinant (1.14) by the column veclc
(1.23) and expand the new determinant we obtaln the results

)

(4[7’-—/\/ = 0 (1.24

(1.25

{
I\

K, dh + 1, doc v K, ol ki
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where we have introduced

Y [ / oYt -
Ko wi ) (abhently) =a"lyHh=t) | (1.26)

I Y7 VS A ) R AN TE .
4/?_[0)/'{7[ PD ?ﬁ /‘7 X y) j /'/ -{"K/l/l/}"ﬁ ,7;)] +ﬁq’{0(a{/(} (".2?>

—

/g-.-: ~eNH, ["(ﬁ;—\ ;«1'/7’//,,"/{7)“’ )tlimf-m/u ) '“17’)]4- "o u tVy/, (1.28)

R S 029

u«/e/;y—J/J,( = K ayenw =D Vzua, HE H "
The differential. relation (1.25) has been obtained from the non-linear
equations, and the values of y' are those obtained from equation (1.16),
If we Bet H = 0 in (1.25) we do not recover at once the compatibility
condléion of ordinary ges dynamics. One way of obtaining thils Llimit is
the following. Let the flelds become aligned so that E/}L. When we now
let H be zero the appropriate condition is found.

If we now linearise the differential expression (1.25) via the scheme

{1.20) we obtain

v v // v |
(1+y )37, y'-1) &, ﬁyaf}/-f: # 8, 77 ;(/,711) ,%xyﬂz i/vi )
vy v % v | v qa
PPl b 10 5) =2 ) oy | ey
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This equation does not agree with the compatibility condition glven by

Kogan [1]. He states that along the cheracteristics the following equatior

holds: ‘/
_..( f"’_f l‘ig o‘; 4 l? ~_/:’ / v . 5/(4
/T ety 1Y Xofyo)”a +/y 2o Sy0 ¥ Zuy -—?y,,) 2
- /3 W 4 v é/
57 (1,7 %x0") Y ety (/+/70‘)§ l—/"f -
v
_ i v 2~ d /
/7 ixo 7"/70 27(02;10 ylzwy/?xo?jo %{( >~ 0. (1.31,
XNeo

We know from the analysis of the theory of equations that no new independer
resuli can come from equation (1.11) by replacing a different column by
Papfax as given by (1.23). However let us exsmine the result of placing
the column vector PAA/dx into the first column of the determinent (1.11)

and expanding the resulit. This time we find that
w Lok )iy (~1H, - u/a/y) *e) § {)aa«-)_my/} ] Ay 4
+ | g Y- a Ny (1#y~) “Hy DO ar) Dby My rata Hy kg )y H <
o du }M( V=at) —«‘)y’f]»& +6 ) I—/“/"x 5 {)‘*ﬂ‘)h‘y *-u"(lfy“)/vfy

Lty T sV VU e ) L = 2

If we linesrise this expression we obtain (1.31). Direct transformation
of (1.30) into (1.31) can be achieved by a manipulation of the differentlal
expreseion for the equations of the characteristics and the lutegral of ¥l

equetions of motion (1.12b).
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Kogen [1] uses the linearised results (1.22), (1.31) to investigete
the steady flow over a slender non-conducting wedge. He demonstrebtes that
for flows of this type (HB + vo), sinee characteristica sre shock waves of
vanishing strength, the pressure increase occurs through two successlve
shocka. It does not seem posaoible to generalise his anelysis to the case
wheyre Ho is arbitrarily ineclined to VO. The reason Tor this is that the
roots of the quertic (1.21) do not separate out and esccordingly when we
integrate (1.31) along each cheracteristic and solve for each of the
perturbation guantities there is no simplification of the resulting ratios
The reglime in which there exists ifour real characteristles is marked on
Figure 1.1 (area of fully hyperbolic flow).

In part III we undertake an investigation of the shock wave con-
flguration when there is steady flow over & wedge which is not restricted
to be slender. These shock waves are no longer weak and consequently we
have a complicated non-linesr problem to solve,

Before proceeding to this topic we first of all derive certain
results from the linear theory.

Consider the two-dlmensional steady flow over a non-conducting solid.
Assume thet the interface of the solid with the gas consists of two strailg
edged walls at an infinitesimal angle to each other (see Figure 1.2). We

use equation {1.12b), vhich is
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Two femlly systen
of characterigtics

He
1,

Q

FT T T T 7T 7%
FIGURE 1.2: SPREADY FLOW OVER A CONVEX CORNER

an integral of the equations of motion:

h/{y-/\r/yl,( = H = constant .

If we replace u by voca + u), n& by m&o

we obtein, for v = - V. 0 {since 0 is small), the result

» Hx by on + Hx in this equation

“/’Iyo + 6 My, = ©
Thug if on is zero we reguire u to be zero. The substitution of on =
into (1.31) gives
- d, L
.A - y i , ”,{_:_\/
I po Vo

———

If we integrate this expression along each family of characteristics we

obtain

Pty =t b, A XA AY)
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Ve see lmmediabely that these equations are lancompatible with each other,
The solution for the magnetlic field inside the non-conducting sclid doesn
not affect this conclueion.

Because the unlform flow cenmot be deviated through an infinitesimsl
smount round a sherp convex corner one consequence is that we connot use
this linear theory Lo bulld up flows similar to those of the Prandtl-Meye:
type which exlst in cordlnary ges dynoamies. Here, the corner engenders
disturbances in the ges end also in the solld. TFor the latter since we
do not at this stage have sufficlent knowledge of thelr behaviour, we
sugpect that they contribubte to the breakdown of tue steady flow pattern.
It is felt that these magnetle Alsturbances in the solid propagate every-
vhere and because of the boundary condltions applicable across the inter-
face they make thelr presence known in the gas. A more thorough examinab:
of these effects is set down in the next part of the thesis. Although we
commence this investigation from e different standpolnt the gradual unfols
ing of formulae similar to the above serves to unifiy the whole theory of

guch flows.
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SUMMARY

in conventional gas dynamics thexre Is no great difficully encounterael
vhen studying the propagation of a disturbance through the two-dimensional
steady supersonic flow of a perfect gas past a stralghi-edged wall. A
two~dimensional dlsturbance introduced into the flow travels along the
appropriate Mach line to the well from which it is then reflected down-
abream. The {low of o uniforin stream past a wall convex to the stream
13 achieved by means of the well-known Prandtl-Meyer expsnslon. Flows in
channels and simlilar problems can be analysed by the techniques of the
method of characteristics.

We hove seen ot the end of part I, that in magneto-gaadynamics,
however,; the corresponding problems for the flow of an infinitely con-
ducting gas indicate that situations arise in which disturbances not only
propagate upstrean in the gas bub can also propagate in all directions in
the solid wall, One lmmediate congeguence is that the condltions upstream
can be continuwally modified. To obtalin an understanding of these pro-
cenges o mathematlical analysis 1s presented below.

After this work was written up there appeared a paper by Chu [U]
who censldered a simllar sort of problem. In hls work the flow everywher
is wniform and the disturbances are created only at the boundary between
the gos end the non-conducting solld. The present analysis includes the

work of Chu [#] as o partienler case.



INTRODUCTI.ON

We assune that an infinitely conducting, nom-viaéous perfect gas i8
moving over a stationary non-conducting wall of infinite extent with
equation ¥ = F{x). At infinity upstream the gas has a uniform velocity
U parallel to the x~axls. A uwnlform magnetic fﬁ.elcl' of magnitude I-Io is
assumed to exlst, and for the sake of simplicilty we suppose that it 1gs
orientated at right angles to the flow. This dlsturbance~free configu~
ration is perturbed only slightly so that the linearised magneto-
gasynanlc equations may be used. Let the veloelty vector be ¥V = U + v
in the gas and the magnetic fleld intensiiy vectors be H = _E;O 4+ h in the
gas and H = H 4+ h. in the non-conducting solid. Under the conditions
(¥i<<aUiz thi, 1 h @ <<iH 1 the current is olso a small quantity.

We introduce § = curl H. On cowbining (1.2) with (1.3) we obtain

‘7&‘«? No= gl D/a (2.1
(o % D~
The equation of motion (1.1) is

D~
—~ | !

=~ F = Vo= w f (2.2
L /’9 — /_.. H .

D( 6@ ((070 A -t

Teke the divergence of this equation and use (2.1) togebher with the

foct that the flow 1s isentroplc (dp/dp = a:‘z) , then

/ Do ;
VT b= e s (2.3

o0

Take the curl of (2.2). Ve find that
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DZ‘(W/M> = /é;(’ioy>§(_. (2.4

The eliminetlon of Ji between (1.5) and (1.6) gives, since J = o(E + u¥V, H),

N N
N D M s L T (2.5

(a - —0 - _ — ———

M6
If we bake the curl of (2.5) we obtain

D¢ :
T =(H / /
- _»Q.V)w/f o= (/4 V) PP L V& (2.6
(0 4 e ..,a/\ 0/._ —_—
00 o /e
Ve con novw eliminate curl v between (2.4) and (2.6). If we operate on
the result with V¥ = (1/o2)(D/Dt)* and uwse (2.5) ve have an equation for

£ slones
b

"
( NI VA Dﬁf _Ds
oS () S R RV G
) Mme DE DF™ (0 >
[z ]
=/—’1~(H )l &H'cw/ )/J
- /\ NEY 0 - § 2.
(OAD QM ’ )f . ( T
For steady two-~dinmensionnl flows with -Ijo in the plane of the flow and
¢ = o we have curl h = § « (0,0,4) and hence from (2.7) we have the
following partial dlffercntial equation for the current §:
v 1 A 94 v . oo 4‘ o 4‘
7 [/7‘2 */7) -?7‘?/‘7 //?‘i)f'z”z ci_f( *svi’ﬁ? _ (2.8
’9 = o

X )9]"/97" }74 )



where we have introduced the notation
T 1
/ = 1 'L-_ > 1
7= 0 /a ste ok, Jo oS (2.98,D)

Bountion {2.8) was given by MeCune and Resler [2], bubt a different
notation was used for the coefflicients. We now write the lefi-hand

glde of equation {2.8) as the product of two operators:
~ e
/0 v o L ~N2
(ﬂ');v ~R d;»)( P, . ~€’-’/92V>g£ = o ) (2.1
X /
where,

R T3 _A/[ 7" 0rs) 678 48y it ry) ]
2/‘71/(/745‘2/7*)

(2.1

and S° hes the sawe form but with a plus siga in front of the radical.

Por gas Tlows with infinite electrical conductivity, when the
applied magnetlic field is perpendicular to the main stream, there exist
four real characteristics for M 2 1 + € and in partlcular the tangents
of the angles of inclination of one family of characteristics are given
from (2.11) above by * R. The inclinations of the other family are given
by £ 8. These results were derived in part I, section 3, c.i. {1.22)
with (2.11), and it was stated there that Kogan gave (1.22) in [1].

In whet follows we shall consider the case when both operators of

equation {2.10) are hyperbolic. There are then four characteristics

through any point (x,¥y).
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Equatlon (2.10) can be solved in a quite general manner and we

readily ©ind that

§ 1+R", / -1 /
i (R"’) % F'lx-k7"y) + F, /7(+,4"7)£ +
(1+¢™) / ” / . (2.1
206 (x=sT) G (x v 5T
S"" 3 T )( 7>g )

where we have chosen the constants and the functions in a manner which

will simpldify the later working.

TULLY HYPERBOLIC FLOW

2.1 DISTURBANCES IN THE GAS

A smell slteady disturbance is assumed to origlnate at some point in
the atream snd to propagaie along each respective characteristic or Mach
line to the wall. At the bouwndary there 1s a reflection of the disturbe-
ance and the effect 1s carvied away on the two lundividual characterlsitlcs
which are inclined downstream. The transmitted part of the disturbance
passes Into the non~conducting solid, where it lmmedlately propagates in
2ll directions and consequently gives rlse to further disturbances in the
megneto~supersonic region by transmission back across the wall, We will
agsgume thel the disturbance hos been malntained for some time and will

attempt to find a solution with steady flow. (See Figure 2.1).
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Incident Waves

Reflected VWoves

FIGURE 2.1¢ PROPAGATION OF DISTURBANCE THROUGH THE GAS

Since £ = éhyjax - éﬁhx/by we can find b, and h, from (2.12). From
(1.6), vhen ¢ mw , E+V , B= 0 and this gives u H_ + hU = 0. Thus
we can find u and if we subsitibute into the momentun equation (2.2) we
con £ind p. Pinelly v 1s obtalned from (2.1). In porticular, these

perturbation guantities moy be written in the forms

S A Y PR By = N /

/7,0*,2{0/127 Falrsn y){#-;%é{()( -Sy) - /msj)s (2.1
// - Fly-p" i . - . ) .
y s #ag / X K 7)+/§/f+k’y)+6, {X"‘;j) +6‘?{X+g'y) j/ (,3,.1

= -(/{F (X-7'9)* F (x +a ) #6, (1-<79) + Gyl +§’y)f (2.1

~ :~ULR§/-ﬁ7"+s"’(/+ﬂ”2)ff Fx-2"y) = FlxXrrTy){ +

+ 6 §/*/‘7” rg //fs"')N 6, (A=) ~ Gy (x #57¢){ -_! (2.1
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-

Fofy = o UYL RPHRErRY + (7P ™) 86,46,

o

(s

where P = N lts =rm>) (2.1

The equations {2.12) ~ (2.17) were given by McCune sud Resler [2] in

their own notatlion.

2.2  DISTURBANCES IN THIE SOLLID

For the non-conductlng solid we have the Maxwell equations

curl b =0, divh =0, (2.1
and the nature of these equatlions makes posslible a perturbation poltential
$ such thob

h = grad ¢, VEo = 0, (2.19a,%

We speelfy that on the interface (y = 0), 36/dy o £(x). The form of £(x)
will be examdned later, bub for the moment we assume that 1t 1s koown.
The tranemitted disturbance propogates instantaneously throvgh the solld
o8 ou electromagnetlc wave and (o ensure the correct behaviour at Iinfinit
we need (o impose some form of radiation condltion. We bhave an elliptic
problem and the appropriate form of the radlation condition in this case
1s that M/@y ~» O ags y~>» ~w, With this requlivement there is no build
up of disturbances in the solid.

Apply the Fourier transform

E(O('ff) - [ ¢/jut/)'€/"x}{a/‘x

to (2.190). Application of the bowndery condltlons gives
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- Il i \
'CB[M'f): %‘j [ )C/f)xtdgrc/g’

?&n&l inversion yields

> * !o(l“f io(/g—j()
C,é/?/)y) = 0?177/7[(5)/ £ 4 oI off (2.2
~ 00 —o I | .

gince we work in terms of magnetic field we therefore deduce that

_; oo 0 Il i ({-
//?i‘)%é’ - 2}/;/{)/ {f,’e e X)r/d/f

o9

= 5 [ 0 EE) (e
=00 7"7"/5'1)11 ’

,,,,,,/ f/;)/ ) g

f {/j) d¢ (2.2

oo J /50T

)k

i

These integrals may be Interpreted by means of the theory of generalised
functions (Lighthill {3]). The main result needed is that

’)/{4“’ _____Z__.__ - 77"5‘?,“ 7 ,J\/g(—-x>
Y=o \7“/7‘ 4-x)" ’

(2.2

where & denotes the Dirac delta-function, It follows at once that on

y‘.’:zo
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where P signifies the principal value, and £{x) must satlsfy a Lipschitz

condition.,

2.5  BOUNDARY CONDITIONS

When the magnetic and veloclty vectors are non-aligned an appropriat
assvnption for an infinitely conducting non-viscous gas in motion over a
non~conducting body is that the gas cannot tolerate the Lorentz force on
its boundery that would be produced by surface curvenis on the wall-gas
interface. A consequence of this is that we require continuity of the
tangential (t) and normal (n) components of magnetic field across the
interface. (This gives the Jump conditlons

R Lha ] = o .

A more detalled discussion of these boundary conditions ls presented 1ln

2

part IIT of the thesis; see section 3.5.)
Hence equations (2.13) and (2.24), (2.14) and (2.25) glve,

regpectively

L i
M, [ R Fb - R+ g3 ‘/X)-@/x)ﬂ -

t

roC
10 (s) ,
rl"t/l ) i_.. Wg( ) (2'
o §x

H gf:,(ac) t i) +6 (x) ”GR/Y){ - g{x) | (2.2
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If we assume that the equation of the Interface between the gas and the
solid is of the form y = F(x), where |F'(x)<< 1 and F*(x) = 0 as
x ~>» %+ o then we require v = F'(x) on y = 0. Hence from equation (2.16)

we have

)(2, F, (7()— E/}()% ‘f'\/gcf/?f)“s,z/?()z = =SRF'l) ) (2.

where we have introduced the nobation
K= SR (g r™) #57 Y= R S (ret-m) 457

TP we define

w= Y/ X I (2.292

then equation (2.28) gives
F(x) = Flx) t«C(x) -w6 () +sR FI/D(). (2.

Subsbitution for T (x) in (2.26) glves

B _ ao
‘]40}‘K§G,/X)~'G‘(/’x>?( +< §L F’/x)_l = 7-1;/0\/‘ g{)o/g‘ ) (2.
Lo 5=

where we have written

I‘/-_'_ )/g -&J/R (2'

Now substitute (2.50) into (2.27) and write
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£y = H, % 200 Hwr1) Gy lx) (1) G ) +$7 7 F//”)f (2.

Eliminating £{x) between {(2.31) and (2.%3) and setting
L = 6\.)-——/) (2.

we readily find that, for << x < @
KGly) + & “ 06, 8) |
0 © bx) p ﬁ%l; o 75 = ¢{/X)/ (2.

where we have written

%/z) = /f@/x) -S K Fix) + 2 p/

Lo

2.,

/ W) / )
f 2 sas p '/“,/;
/ - o0 g.—:)(
Since fp and Go are lneldent waves, and can have a prescribed form,

equation (2.55) is a singular integral equeition, with a Cauchy-type
kernel, for the reflected wave (y. Once §y is determined we can use
{(2.30) to find the other reflected wave Fy. Consequently the appropriat
form of £{x) can be found from (2.33) and the expressions for the trang-
mitted disturbances in the solid are then calewlated from (2.21) and
(z.22).

Back pubstitution enables us to arrive at representatlons for all
the perbturbation quantities.

Perhaps the most direct method for deriving the solution of the
singular integral equation (2.3%5) is by making dlligent use of the

Hilbert trensform palr:s
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e

T

2(x) :i; f : )5/5 G = - f’?—/f-i) (2.37a,

where the relationship is skew-symmetrical, L.e. - 9(X) is conjugate to

-_

o (x).
Define

p6) = L[ Oy ”

77 Lo 1
so that equation (2.35) becomes

WG FLalo = Ah) (2.5

Replace x by § in equation (2.39), multiply through by 1/n(t-X) and
integrate the result with respect to £ from = to « This ylelds the

resuli

/1/7/)() A Q/X) = —/ Of %/f) f/gt (2.4
§—x .

Elimination of g(x) between (2.39) and (2.40) ilmediately gives

()() " )//;() /L 7 p/w/ef@‘)/g (2.4
Tt §x '

K*¥HLY hrrpv

Thet this is the required solution of (2.35) can emslly be verified by
divect swbstitubtlon, and making use of the Poincare~Bertrand formule,

(derived from (2.37)) for the compounding of singular integrals:



I ST ,
7" f fﬂx_j 3.4 4/; = -Hilx) (2. %

Ye can now use (2.30) to dilscover the appropriate representation
forwaves are then found by replaecing x by x - E‘“iy for Gy and x by x -~ R’
vaves are then found by replecing x by x - Eﬂy for Gy and x by x - Ry
for ¥y.

To facilitate evaluation of the reflected wave Gy(x) it is more

convenlent to express (2.41) im the form

//(!’*L“)G‘,(D() =

(U rw™1) Gly) 2L E ) #5352 (La-i) Flx) +

F 2N 0 @_{_éy)fg 3 M/@f %ﬁ)z/g(ngjz/ﬁ*/fﬁ jr/s
2 §-x 7 v, 37X o~

vhere we have substituted (2.36) into {2.41) and used the relation (2.42)
From this expression we can see (lrectly the conbributions to the
reflecbed wave (4 {x) which not only come from the disturbances created
in the ges but also come from the disturbances created at the gas~solid
interface. IT we asgume that all the disturbances are created at this
interface then there are no incident waves and accordingly Ba = Gz = O,

Hence ©firom above we have

(K #2)G ) = ST (Lg—x) F') +S32/1 sy PfMF_/./.{):/g’

-y
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Thus 1f we prescribe ¥F'(x) we caa determine Gy(x) and 7y (x). Conse~
quently ©{x) can be found and the magneblic disturbances in the non-
conducting solld are given by (2.21) and (2.22).

A similar problem was considered by Chm [4#] in detall.

In the remining sections we shall be concerned with the situsbtlons
in which disturbances creabted in the gas propagate to the wall. For
this cese we can assume F(x) = 0 so that the expression for Gy(x) may

now be wrlitten as

(K L) 6 ) = (K rat=1) G %) + 2L F (x) +

‘?/ /J[/—/é{)/g/_’L_.?/( 6:? g)a/gg {2.!

The other expressions which conteined F'(x) ore modified accordingly.

2.4 TOCAL DISTURBANCE EUFE

We now conslder the importont case when the incident dlsburbance it
confined Lo the triengle QAR (see Figure 2.2) and for such a disturbanc
we assume that the incident waves Fefx) and Gu(x) venish for | x1 > o,

1xl > g, respectively, soy.

7 /7 7 7 7 i 7 7

FIGURE 2¢: REGION OF PRESCRIDED INCIDENZ DISTURBANCE QAB



Thus for large x, we have from equation (2.43)

— 1/ X #
Crly) ~ =P % Ryt [ Gmds | .
“f

Xy L) iy
Also, the other reflected wave, F,(x) 1s found from equation (2.30) to

have the asymptotic form

F o) ~ = &) (2.

We cen now determine, for x sufflclently large, on wsing (2.44) and
{(2.45) the asymptotic representation for the perturbation guantities
given in equstions (2.13) - (2.17). In particular we examine the
presgures ln the reflected waves. Thus the pressure on the wall in the

reflected wave Gy{x) is given by equations (2.17) and (2.44) as

(/"’ v 4 A
%-AON ?/l/feo /5 p'/‘i') gj%/g(}‘/f +f G‘?/?;)(/; f ) (.
TX Y FLT) ~o -

vhereas the pressure on the well in the other reflected wave Fp{x) is

glven by

b ) A U R+ U«
) TX () VL)

Tt can be readily seen that in each respective representation for the

- I8
F
_0( -;3
disturbance in the gas, for large x, they behave as 0{1/x).
Thus the effect of each refiected wave is felt upstrean as well as

downstream of the tvo original waves and the importance of "upstream"
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propagation of disturbences in both the gas end the solld is verifled.
Physiecally, the disturbance created in the gas flow propagetes along
the appropriate Mech line or characteristic to the interface. In the
non~conducting solid the transwitted disturbance propagates everywhere
with the speed of light (assumed infinite in the present approximatlons
and accordingly its presence heg congequences everywhere upstream and
dowmstrean of the specified dlsturbance of the gas.

The expressions for the magnetile disturbance 1lu the solid are
found from equations (2.21) and (2.22). For oxample we have, from

(2.21) on vsing (2.%%) and simplifying the result:

('é), 2K (e R
No o T li"sp*) St g™ * ($-3)"

" F
df + 2K ($-3) G, /¢)
rr//,/”w) Ls 9T )

- R/ m/;’—x') ; 1—2/3)
4 {/%
7’" //fy”’é‘)_wy”f/;/-x)” P»f,( ; By ﬁ/)7 +’f ’/;f

If we examine the expression in the braces for large €, and. eva,luate Bl

resulting lumproper integrel we can show that for x sufficlently large

()~ 2R SR [
W/A/L*L‘)/x*fy”)g & +j/; < (4) 45 {

(2.

-

Similarly, we hoave

), ~ 2y %fd AN ory (2

////V fL'V)/}/ ,LV ~o !L
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From (2.49) we see that (hy)s ~>» (0 as y~» = » Hence the regulrement
26 fdy = 0 as y => ~ o which we imposed on the disturbance in the
solid is verifled.

Suppose now that Ip(x) and Go(x) are each small and positive for
Ix) < ¢, | 21 < B, respectlvely. We shall confine our atbentlion to the
pressure dlsturbance. From the definitions of R™ 5 g% (see eguation

(2.11)) ve hove after some algebra
A —¢%) <" vo S (trt-r-s7) -8 <o

Tt Follows, on using these results, that w defined by equation (2.2%)
is always negative for the cases under consideration. Also, from (2.32
ve mey write
N = /ﬁt—éx)//v*"f-f")/S § R -1 -57) =5+ ¢
L
and on sn incoming characteristic thils gquantity is negative. Ve also
have the resultes
R*P 42 <o , S P+e™ > 0
By way of illustrabtlon we now glve several examples which serve
to show the importance of the results of this section. For example,
if we let Fol(x) and Op(x) have the forms

F’ff _ ’ ” — —
D)= AN e N R (x) = /oy

} -

ol
@(X} = o« - ) Ly oL o
2 y //’I X7, 0Z =B, G ly) ;62/*-)())

vhere A, p, ¢ and P ave constants, 1t can be readily verlfied that



l ~ F,{ L
__T_T (‘,)) 2 (§L> 0[3
T~ 2('7(

—

= (/%) % 2)(/,4“ |x) -(o(+x)/%«fo(+>(,f'(0¢"ﬂ) /{“(""ﬂ )Q -

If Fe 1s replaced by Gp we obtaln a corresponding expression. Irom
equation {2.43), on using the above resulis, we see that for large x
«/ }
6ix) ~ = A O huap) [xik“ri)
T

and this result is the same as that obtained on using (2.44).

For convenience leb A = ¢ = 1 in the expression for Fo(x) and let
Uofx) = 0. For a value of Mach muber, M = 2, and a weak maguetic flel
€”? = 0.1 we con calculate the total incident pressure and the total

reflected pressure (for R, 8 > 0). The results are repraesented graphi-

cally in Figure 2.3%.

TOTAL ¢ O INCIDENY
FRESSURE % REFLECTED
FE
pbo
Lot ”
he
° o;.z; 05 07§ ) I'p

FIGURE 2,%: TOPAL INCIDENT AND TQTAL REFLECTED
PRESSURES TOR M = 2 AND € = 0.1
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As o second exemple we exomine the effect of a compression wave,
created at somz point of the loniced gos, which is incildent on the

interface of the sawml-~infinlte solld.

>

P
2 A A Ay Ay Ay AR A AR A A

FICURE 2.4 COMPRESSTION WAVE INCIDENT ON SOLID
(TWO PAMILY SYSTEM OF CHARACTERISTICH THROUGH A POINT }?)
7o silaplify the investigation we consider the case when (b(x) = 0 and

only Fu{x) 45 present. We prescribe Fo(x) to have the form

~t
O) X+ R 7 <o

~!
E \/ X+1 \Y ) =
/ “—3)[’1’ 1 N/ -
Tr fﬁfﬁ) g—/"l](ﬂ‘)"/z :f) g N X4R T > o
gince o 1ls plecewlse coutinuous we must sppeal to the theory of
generalised funcbions, e¢.g. Lighthill [3] in order to interpret the
neaning of the integrals which arise.
Thus we heve from equation (2.43) the result that Gix) =~ O for

x << 0, and
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W A’"\é; K ;:};’ ", Z
Koo )ahy =(5)e " v Uy
e

Since (see, for example, Lighthill [5])
. ML
Lo (3)% = = 3(x)

A = 0O

we obtain, if we lebt n - o in the above expression:

W 1~) Gly) = Slr) - *X

T

This result is to be interpreted ss Tollows. When there is an incldent
compression wave, then the expression for the reflected wave lnvolves a
term which gives rise to a shock-wave (we obtain a delta-function since
we are dealing with a linearised theory) and also to a bterm which indi-
cates that there i1s a finilte, evenbuvelly vanishing upstream influence
effect,

By simllar methods the results from two compresslon waves, created
by o slender wedge fixed in the flow, could he worked oub.

Chu and Lyomn {5] conslder the sveady flow past e non-conducting
alender wedge. Yhey slgo exemine the posslbllity of steady flow oﬁer
o sherp convex corner. For the labtler case they indicate by means of
a counting procedure that the nunber of equations to be satlsiled
exceeds the number of unknowns by one. The implicatlon of this resuli
1s as shown above In sectlon 1.4, thot flows of the Prandtl-Meyer
type connot exist. They attribube this situatlion to the feed-back
of wmagnetlc disburbances in the non~conducting solld. The situation

is very similar to the one congldered in this section and Chu and Iynn's
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result is an Immedlate consequence of the presence of non-uniforn
disturbances induced by the propeagatlion of electromagneble waves in

the golid.

ORTER FLOW REGIMES

When the gpplied magnebtic fleld is orientebed at an arbitrary
angle to the stiream the operator in the partlel differential equation
for the curreat £ can stlll be written as the product of two gquadratlc
operators [2] by a process gimiler to that which gave rilse to equation
(2.10). Values of M and ¢ ocecur which allow these operators to be
both hyperbollc and 1¥ we follow through the analyels of the sbove
pactlons no new feature arises.

When the values of M end € lead to the product of an elliptic and
a hyperbolic operator then the solutlon for £ depends on the sum of the
two parts and we write

$ =« De + e
Detailed expressions for & are given in [2]. Ve assume that the
boundary condition (as y ~» - ®) on the megnebic field in the solld is
the seme as that vsed previously (see section 2). I we also sgsume
that the jump relations of section 5 are also vealid then it is possible
to obtain a singular integrel equatlon for the single reflected wave.
This equation is identlcal in form to that glven by equoation (2.35) but
the quantities K, L, and k(x) are now different. The complete solution
is readily found and we cen show that when the dlsturbance 1ls localised

the upstrecam effect 1s again of order 1/x for large x.



PARYT TIX

MAGIETO-GASDYNAMIC FLOW OVER A WEDGE



5.1 _INTRODUCTION

The baslce problens in fluld mechandes arve the behaviour of a Ffluld
in motion elther with free boundarles or over a solid body. For flow
over a solld body a fundamental problem, ugeful for a general. under-
gtending of the propertles of the Tluld under conslderation, is that of
a uwniform inflnlte stream impinging upon a semi-infinite wedge. The
study of this flow led to important results in conventlonal gas dynamles,
end GChe same mway be expecited from the corresponding study in magneto-
gaadynamics., Some work has already appeared on the subject. Flrset,
Cebannes [6] presented the solution to the problem of the steady Llow
of a perfectly conducting fluld over a symmetrical wedge at zero angle
of atteck vhen there is en applied moguetic fleld aligned with the
onconing sbreom, By a well-known theorem, a magnetic £icld oligned
wvith the streom cveryvhere upstream gt infinity remains in this con-
figuration in an inviscld, perfectly conducting fluwid.* This problem
is the simplest posslble cxtension of gas dynemics. The attached plane

statlonary mognebo-gasdynamic shocks are btwo in mumber and symuetrleally

# The theorem ls easy Lo prove from the baslic equabtlons of continuous
flow. Yor example, from (1.12b), which is an integral of the equetions o
mobion, we can see thet uf Hx = v/ Hy = V/H. Tt is not, however, lmmedi-
otely obvious that 1t remsins true across o shock-wave. An exemination
of the Jump relations across a shock-wave (see poragraph 3.4 below) shows

gquite simply that it ls, In fact, valid.
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placed as in gos dynamices. The flow £ield and the magnetic field inside
the wedge remain uwncoupled Tor a moguetle fleld alilgned with the stireom
that it is not necessary to speclfiy the conductivity of the wedge. In t
abgence of o component of magnetic force normal Lo the surface of the
wedge there is no tengential Lorentz force acting on the inviscid fluld
partlcles In conbact wlith the wedge; hence the presence of a current
sheel i pormlssible and such a surface, in fact, separates the body
of moving fluld from the solld boundary. Ixpressions were derived by
Cobamaes Tor the velocity, density and pressure Jumps in terms of the
shock angle B and the geml-vertex sngle of the wedge, 0. The trigono-
metric equablon for the shock angle wag found to be of ©1fth order in
tan f and required to be solved numerically.

The corresponding problem for an applled maguetlc fleld oblidque
to the gbtream has received considerable atbention from Kogan [1] who
restricted attentlon Lo thin wedges snd thin aerofolls, for which
lineariesation of the equations‘is possible and the exercise becomes one
involving the theory of characteristice. Thils poper regquives coreful
reading becanse of the mumerous errors and mis-prints it contains.
Recently, Chu and Lynn [5] considered the problem of the ﬁwb«dimension&l
steady Tlow of an infinitely conducting fluld past a non-conductlng wedg
with a magnetic field non~alligned with the oncoming stream. By means of
g counting procedure they indicated that to obtain sufficlent equatlions
t0 solve Tor the nmuber of wnknown pavemeters it was regqulred to mateh
the solutlon for the flow with thet found in the wedge. They congldered

the Jump conditions which hold across weak shocks (chearvoacteristics) end
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restricted thelr analysis to thin wedges. Their prime object in this
lineaxr theory was to demonstrate the effect of the coupling of the flows
above and below the wedge via the boundary conditions on the magnetic
field. In a more recent paper, Mimura [8] presented a solution to the
non-lineay problem of the shock-wave configuration on o non~conducting
wvedge of finlte angle in the presence of an incldent perfectly conducting
steady stream. 1In this case, however, the mognetic field was applled
perpendlculaxr to the uniform flow and was assumed to be weak. He
indicated that the flow requlired to pass through four shock waves, two
for the upper surface and two for the lower.

In the following sections, the equations for the problem of the
flow of a fully ionised inviscld gas past an lnfinite non~conducting
wedge are developed in full generality. They are then used to show how
flow with four attached shock waves develops from the solutions of
Cabamnes when the maganetic fleld ahead of the wedge becomes obllque o
the stream. A method of perturbation is found for small obliquity Xa
vhich illustrates how the current sheets, lying along the surfaces of
the wedge, move out into the stream to glve the additional shock waves.
in the wedge o magnetic field, inclined at a finite angle to the wedge
axis is set up. When the parameter ky (= e;/mh)'< 1 expressiong can be
obtained for the perturbation aquantities in the regions between the
pecond shocks and the wedge surfaces. These have heen caleulated up
to the second significant power im ). Perturbation solutions of this

kind could not be found for ky & 13 and 1t is argued in parit IV of the
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thesis that for these values of k, the ghocks found by Cabannes arve
cither unatable or physically unvealisable, and the results obinined

in this part lend support to these views.

5.2  HOTATION AWD SYMBOLS

We now dnbroduce some further nototion and symbols:

v coefficient of fiuld viscosity.

i

apacific entropy.

b angle between I and V.

0 flow direction.

£ inelination of tirst shock to wedge axic.
(3] iaclination of second shock to vedge wxis.
suffix 1 refors to conditions upstresm.,

suffix 2 refers to conditions between the {irst and
second shocks.

suffiz 3 refers to conditions hetween the second shock
and the wedge guantities which are dashed, o.g. H',
raefer to reglons II and IIT below the wedge (sec
Figore 5.1).

-1—;

b Alfven speed, = (ui%/p)é,

¢ non-dimensional parameter (= bfa).

k non-dinensional parameter (= e/14).

guffix n refers to the normal to the vave front.

suffix ¢ refers to the tangential direction along
the wave frond.
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3.5 STATIMEND OF THE PROBIEM

Conaider the two-dimensional steady flow of a fully ionlsed ges
here idenlined as o perfect, inviscld fluild of infinite electrical
conductivity in irrotational motlon over a stationary, semi-infinite,
atraight-walled, non-conducting symmetric wedge abt zero angle of atiack
to the oncoming stream. Without loss of generality the permeabllity of
the body may be assumed to be the same as that of the lncident stream.
Diamegnebic effects are 1gnored and Maxwell's equations are used in
thelr wsual form in conjunction with the baslce approximations and
equations of magneto~gasdynamles. The applied magnetic field, of
magnitude Hy, is orientated at an angle ¥y to the incident wnilform
flow, which has a uniform speed Vy at infinity upstream and is directed
along the axis of the wedge (Figure 5.1). The non~conducting wedge is
assumed to be symnetricel with semi~vertex angle 63. The resitriction
10 & symmetrical wedge is not necessary (the field is, in any case,
wnesymnetrical) but leads to some simplification of very complicated
equations and makes 1t easler to draw comparison with the results of
conventional gas dynomies. The two-dimencional flow is assumed to be
of restricted type, le. the magnetic field is assumed to lie entlrely in
the plane of the flow (the x,y~plsne), which is supposed to be normal
to the leading edge of the wedge. The additlon of a third component
independent of 2z, while making the equations more compllceted, is
straightforvard from a theoretical point of view and will not be

considered here. As pointed out by Chu and Iynn [5] this reumoves from

the flow fleld a pair of Alfvén waves, one above and one below the body.



On the basis of & linearised theory, Kogen {1} has shown that
when the equations of motion are "fully hyperbolie" there are four
renl cheracteristics {other than streamlines) through every point.
A discussion of those ports of Kogan's work which are relevent in
this investigation was presented in part I gsectlon 1.5; see Figure
1.7, In a full non~linear theory the characteristics through the
apex of the wedge, representing weak dlscontinuitles for the thin
vedge, may be expected to be veplaeced by shock waves, two above
and two below the wedge. The fluld flow hes to bhe such that the
magnetic flelds on the surfaces of the wedge are compatible with
the fleld inslde the insuvlating welge, which is governed by an
elliptic differentlal equation. The lack of alignment in the
magnetlc field Induces different shock and flow patterns on the
upper and lower surfaces of the wedge. The solution will be aought,
a8 Indicated in Figure 3.1; by the Juxtoposition of uniform regilons

of perfectly conducting fluld separated by shock waves.



REGION X

RiEGION X

FIGURE 3.1¢: FLOW OVER A WEDGE - SHOCK~WAVE CONFIGURATION
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3,4 RBASIC EQUATIONS

Under the assumpbions mede Mexwell's equetlons tekoe the form:

@iv = 0, (3.1
curl 1 = J, (5.2
d = o(E o ulH). (3.5

The cquations holding across a plane statlonary shock-wave in an

infinitely conducting gas are (see, for cxemple, Bazer and Lriceson [9])

[ﬁn] w O . ('3'!}

[Pvn] = 0, : (5.5

LoVl rlprbp i) —pH W] 2o (5.€

LoV GGV ¥bjps pHfe) <p b (B V)] = o (5.1
CVul - H V=,

' (3.€

| (3.5

Here the suffix n indlicates a component normel to the shock-wave. The
square brackets are uvsed to indicete the change, scross the shock-wave,
in the enclosed quanitity.

A count of unknown quantities shows that in reglon II downsbream
of the first shock there ave the seven unknowns Ha, Va, Poy Pos Xz O2

and B, and in regilon IITI downstreem of the second shock the six unknowns
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Yo, Va, Pa, Pas Xa ond &, Thus thore are thirteen wnknowns for the
solutlon on the upper surface; bthere are also thirteen from the two
reglong below, giving a combined total. of twenty-slx uwaknowns., An
exaninotion of the Junp velations (5.4) « (3.8) shows that across

eny eingle shock there are but six independent basic scalor equabtions;
there ave therefore twenty-~four equations albogether and twenby-slx
mknovwne., Accordingly we are led Lo the concluslion that for non-aligned
fields the solublon in the fluld depends on the solution of the boundayy-
value problem within the non-conducting wedge. It ls easy to show

(swan [10], Cha and Lyman [5]) thet the magnebic Tield inside the seml-
infinite noawconducting wedge must be constent. In conseguence, the
mognltude and direction of the magnetlic fleld in the wedge are the

game on the wpper and lower surfaces of bthe wedge. This result supplies
twa further reletlons once the connection between the velues of the
magnetbic fields in the fluld and the wedge at the Interface have been

established. This natter is investlgated in the next sectbion.

3.5 CONDITIONS AR THR FLULD-WEDGE TNTEREFACE

At the interfaoce between the Hwo medis the normal. component of the
magnetic induction s requived to be conbinmwus. Because there is no
change in the permesbility this implies conbtinuity of Hn (the suffix n
alwveys indicates the normal component across the interface botween two
adjoining regions). The tangentlal component of H mey ox mey not be
continuoug. If it is not, then o current sheet lies on the interface.

It can be verified that in the upper layer the flow of current is aqual
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and opposite to that in the lower loyer so that the net conbribubion
at the apex is zZero. In the event that Hn %: Q, the current sheel and
magnetlio fleld together produce a Lorentz force acting on the layer of
parbicles in contact with and moving along the wedge. It has been
cusbonary to rule this possibility out on the grounds that en inviscid
fivid cannot support a surface traction. If this is accepted, then
for H # 0, no current sheet is permissible; in consequence, the
tengential component of H, and hence H itself, muet be continuouc
acrosg the interface. IFor the problem under conslderation this implies
that the vector I has the some value In the fluid on both the vpper and
lower suwrffaces of the wedge. This result supplies the two additional
conditions reguired to dbring the number of equations up to the nuaber
of uwnknown quantities and thus to make bthe problem theoretleally soluble,

Before proceedidng 1t is useful to point oui thal the corvect
tangentisl boundary condition Lo be satlslicd ot the interfece is not
quite so stralghbtforward as hes sometimes been supposed. Stewartson [11]
hoe discussed at some length the nature of the limiting conditlon at an
interface bebtween s0lld snd fluld as the viscosliy in the fluild tends
to zero and the electrical conductlivity tends to infinity. The Jump
condition to be satlafled by the magnetic and veloclity vectors across
the interface is )

CH = (ens )™ [Ve ]

In general the valuves of ¢ and v are such, that the limit of vo may be

token to be zero. Thus [H,.] = O and consequently [H] = O as cssumed
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shove., However, in soue astrophysilcel applications the limit moy well be

finlte.* Then a dlscontinulty in I ob the interfoce 18 necessary osnd the

surface force inevitable. The usvel concept of an inviscid fluwid must
therefore be modified in this case in orxder Lo allow a correct repre-

sentation of the boundary conditlions to be made. This state of affeirs

does not materially affect the solution of the problem under discussion,

the result belung merely o modlfieatlon of the two additional conditions
on Ha, B3 (involving also Vs and V4).
When Hn = 0 no difficultles of the above kind arlse, the ficlds in

the fluld and wedge being completely umcoupled. Cabannes' problem was

therefore capable of solubion without any reference to the nobure of the

vedge or the fleld inside 1t.

In what follows it willl be assumed, for the sake of definitchness

ond simplicliy that Gl}éﬂw vo = 0 and that the continuity of H ocross
v 0
the interface betweeon the fluld and the wedge has 4o be sgsured.

5.6 TQUATIONS HOLDING ACROSS SHOCKS

The firet shock on the upper surface

From (3.4), ¥an = Hon or

4, /H, = Sim /[3 "’x,)/gt‘/"\ //@ ~X2)

* The suthor is indebted 1o Professor K. Stewarteson for this

observabtlon



From (3.5), paVin = peVen, @ statement of the continuity of the mass

flux across the shock, and this may be written as
‘I - N \ .
/02 '/(Cr = \/I Sim ﬁ/\é SV //?-61‘) . (3.

By use of the tangential component of (3.6) and the equation (35.10) it

follows that

g“m//_ ¥ [ /X, - % z)
S o) el (- %2)

I AN e

'the quantity €/l is seen to be the ratio of the Alfven to the flow speed.

Tquations (3.11) end (3.12) mey be combined to glve
(R Lf."*_ (B-62) ~5* ShufsX) s (KX Sin(B- B7) (3.1

& /'““4/3‘ 7,7 SR esr(f2-8y) S (- K2)
The normal component of (3.6) combined with (3.12) leads after some little

algebre to the result

/92//0‘ thy e "(He /M) ~1 =

= 3/,7\/5_":&%\“52, ihre” ;Hfsn\u/p—ﬁ&,)m'ru(}\’l—]z)s‘tM//’S—@Q) )
o3ty ) S (B%,) o3 /p-64) ( (3.1

Eyuation (3.7) glves

=) 2 (e g ) o o (1= a4 )
"5 S, - (b VM a1, | Sl K0

"l o (3.1



When the flow dlirection 8» and the inclination Yo of the magnetic field

are known this equation gives an expression for the shock angle p. When
the fields arve aligned 1% reduces to a quintic equation in tan g, the
equatlon found by Cabannes and solved by hiwm via numerical methods to
gilve the complete solution.

The component of (3.8) tangential to the shock gives

N S T (5.
H,

Substitution of (3.12) and (3.10) in (3.16) lends after some little effor
to an equation of the fourth degree in tan § with coefficlents involving

given quantities and tan Yp, tan Oz. It mey be arrvenged in the form

) ,’Zcm«(éq - P} (3.

where

Pz (hncy,- fan Y VS it se™X, (famp fini Xy ) +

n s (o)’

aud

Q = g//—A“X/ /%"7(1 >/14"‘1ﬁ 1’//4:«1'/4 —//’ /%X,/m a }Se(‘-/(, //'&M/gz//iq‘xz ) ~

-L /AM/% A‘.K/) /ﬁw\)( /ﬁu?(/ //*’541#)

/e (5.7

The six eqguations (3.10), (3.12), (3.13), (3.14), (3.15) and (3.16)

will form the basls of the analysle in subsequent sectlons. The remaining
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18 shock equations may be derived very simply from these by the trens-
formatlions indicated below.

The second shock on the upper surface

The angle between the magnetic field and the direction of flow
upstream of the second shock on the upper surface is Yo ~ 62. By
referring all angles to the flow direction in this region, the equations
appropriate to thie shock follow from those obtalned above by means of

the substltutions:

B -0z for B, 6 ~ O for Oz, Ya =~ Oz for Xe and Yo - Oz for Xi.

The shocks on the lower surface

The equations for the shocks on the lower surisce may be obtained
directly from those established for the upper surface. The simplest
form results if we measure directions downwards from the wedge axis in
Figure 5.1 and add a dash to the variables B, B, Xo5 ¢».. to mark
quantities in the lower half-plane. The equallty of the magnetic field
vector for both half-plenes ahead of the leading shocks, end also behind
the second shocks, is then provided for by writing =Xy for ¥y and -Xg

for Yg.

3.7 _CERTAIN LIMITS FOR )3 = O AND Yy = &xt

Before procecding to the investlgatlion of the perturbation analysis
we first of sll utilise the equations (3.10) - (3.17) to obtein certein

limiting forms. These limits provide useful. checks,



(z) Reduectlion to Cabannes

When we put ¥y = O in (3.17) we have the result thot Yo = 65 = 0,
g2y, the semi-vertical angle of the wedge. However, see the later
anolysis which surrounds (3.26). Nobte thet 0 = 05 but for convenience
in this section we drop the subscript. Nguation (3.10) now becomes

Ha/Hy = oin Bfsin (B ~ 8). (.
Equations (3.12), (5.13) and (3.18) become respectively:
b @ et snd
Voo Swpo) Rt sy o [5-6)

((;r _ /U(M//S‘é) - 31« ;/H Ak//"&){
1 /'fw/% /‘7{ v /““—f' ) (5.
YA A (5.

Cﬂ(/zwe)

Substitution of these ratios into the energy equation (3.15) and simplify

ing the result glves
ﬂ/‘//’-/— //‘%?,L'-/)M/v*’?,?'(c‘f,tf-f) o (5.
where i
= 951../’5053//3 L /‘anq/’s— gé(}”!)/ém\"’/s +£/}+r} E/M‘& ]/(/‘/*/Tw/l/cm ﬂ) )

[ WM/S ”Y//M/RM”!{,) foa £+ (V#2) /rm/g, fant 0
2(/““/"'/%41 (9)//’1'&««/’5/[41“9)

2
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3.16
“//“/T\Ml/f)A\Méj % {)’h)/zmﬁ "}//ﬁk&'/“/“:t/@ /3“«16%
b //?‘/ém/&/‘hu. ﬂ)/Amﬁ'/ﬁM 5)1
The results (3.19) - (5.22) were given in this form by Csbannes [6].

C =

After some furbher effort (5.22) can be written in the form

Vi “

Q= (17" g )L lr ) s A0 =1 a6 f 6% fun®6

b = (s o) + [(FM%= 4 [sp42) £-2)rr 4 (re*a)e ™ | hin6

c=[Hrasimt e Y ) 1130 T b - (e ) A
+ Al m%+ gg [Yt7) s~ fﬂv-fl/ft*f) ] fant 8 ,

Tz =il ) et + S () ¥ (21 s e ) i gy 22-1) { anc0,

o= [Y4Ire e a U™ = s =S4 (1r)2 sy f | s +

Flr=™) §-L (yh)m st g Y

7

f < —(rr-sv) (L yers)) Aato .

A compariscn of the above coefficlents with those given by Cabannes in
a later paper {T] indlcates that there are two errors in the value of ¢

glven by him. A quick check to verify that this claim is correct is to
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proceed thus: since the coefficlients of e%, e‘§j agree in all the compori-
pons we can examine the effect as ¢y ~» 0. Thus from (3.23) we have, wher

(‘53_ = Op

/’["“‘/5‘/7"’\ 6)" I_% =17, l+‘2i i ) fan 3 +2/1-17,%) Pt +
+ % (}/+l)/\7,L+X %/amﬁ/é(d«/b 2 -z - o

Since B # 0 we can dismiss the repeabed first factor. The remazining cubic
equation 1s the famillar equation which one hag to solve for the shock
angle B in conventional gas dynomles. The solution Lo the Csbannes
problem is straightforward. We speclfy the semi-vertex angle of the wedge
0, the incident Mach nunber My and the strength of the magnetic Ifield, 5.
The quintic for B, (3.23) can then be solved numerlcally. Since Cabannes
did not glve tebulated values of B it was necessoxry to calculate msome of
thern for comparison with his graphs, in order to establish the valldity
of these, His analysls is the starting point of the perturbation method
which will be presented in detall in later sections.

(b) Kogen limits Ffor wesk shocks, Yy = =i

From (3.17) when Xy = %4n we have the result:

o 6, fompp Y, # ;«{,V—//—{L)/%M*ﬁ #Fon B Fomps //”z/a';%) § 7o Y, *
t f“;"ﬂ-}ﬁ 7’//;4\19«,3//“4«1/-’/)/%44% ”%/L//f/mﬂ/g) f =0 (5.2
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When the semil-vertex angle of bthe wedge, O << 1 the flow deviation in

region 1L, O < 1. Glace characteristlces are sghock waves of vanlshing

gtrengbh we may wrlte f « ¢ + Na, where ¢ is the angle bebween a

characberistic and a streamlive end A lg some constont. We cen write

(3.24) to terms of order On, thus
ez/ﬂh"o’/zt,{‘“xp + [g’/,’t//"%m)/zm?’{?//@ g ﬁ,‘”{ _,;(/;1“5{ -
-2 //-4/,’”“) fan g <26 §j fany, *hwts +

r 0, $3) fGaecy #lbnts - Fats) 4 sevs ¢

sy "S

The root of this quadratic in ten Yo which = w as 05 ~> 0 is
iy = Spe86 +o0(8,") }/592 |

vhoere,

4= //'%,t};;tbo/ -"/'{;1’ - /;hto/,

C
B= - lang +a/ls t2W1-4*) hn6 sas - ;;/’5«’1{

Substitution of (3.25) into (3.10) ~ (3.14) gives, respectively:

i, = (ha's[p)d, +0(8) Wi, =1 = (hts/p) b + 0(8)

Cr 2 1*4“16’//4“”6 "/1
(o'\r

t)
6“7(_0 o /"’z_ I+ b/ﬁu 1
1 fan 5 ’ /4/)’.;,“ FH g byt 014),



These values substltuted into (3.15) glve evenbually,

f
Q

0 1y D Dt + 5 hre) -4 ) o -5+ 018)

This quartic equation gives the characteristlc angle o when Xz = 47,
ond was discussed in detall ia part T (c.f. (1.22)).

As alreody explained there are 20 dependent varilables for which thexe
are 24 eqations derived sbove and 2 boundary conditions. The trans-
cendental nature of the equations involved renders o direct analytic
approoch virtually impossible. The equatione ecould be tackled on a
fairly large electronic computer, but again the nuwnber of parsmeters
suggests thal a considerable amount of complicated interpolation would
be necessary in order to obtain resulis. AlLL solutlons must of coursc
be subjected finally to the thermodynenmic test of non~diminishing entropy
ladd doun by (3.9), and the cholee of branches where two possible ghock
directlons exist has also to be made. In view of this 1t secemed worth~
whlle to try to warrow the problem to that of finding how the genexal
configuration beging to develop from a2 kuown sgolution by making a small
alterobion in some perameter and attempbing an enalybic approsach. |

The starting point chosen wes Cebsnnes' solution for a magneblc
field aligned with the stream., The variastion inbroduced was in the
direction of the magnetic fleld upptream of the wedge. The non-alignment;
of the field provides interesting lnsight into the adjustment of the field
in the wedge end in the fluld. As the inclination X of the magnetic

field o the stream tends to zZexo the configuration has to poess from one
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in which there is continuity of mognetic field at the interface to one

in wvhich & cuvrrent shect lies on the surface.

3,8  PRERTURBATION OF CABANNES' SOLUTTON

Since the fleld inside the non~-conducting wedge is constant, the
condition of zero normal. component on both upper and lower surfaces of
the wedge for aligned flelds in the fluld requires that there shall be
no megnetic field inside the wedge. Corresponding to the collapse of
the second family of characteristlcs it i1s to be expected that the second
shock weve will fall on to the wedge surface and that this will provide
the source of the current sheet appeoring in Cabannes' solution. (See
part I, section 3 for a similar approach). Another way of looking ot
this is to consider that the magnetic field in reglon II will orient
itself so that L, is parallel to the second shock in the Limlt as
%2 > O while there will be no magnetlc fileld in region II1 in this
Jimit. Under these circumstances on putting & = X» in the equation
corresponding to (5.17) for the second shock on the upper surface the

condition
1

- 0) § 1 a6 o (0,600 13 i (0,6.) = Fon (7, -01) { =o
15 obtained, end 1f shock anglee greater than $n are ignored this hes the

rocts

/YZ.:’QL, ’7‘1/ :7(‘5 ) (5'2
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The first of these 1s consistent with the Cabannes 1limit; when this io
preserved the analysls outlined below shows that Yo £ X3 1n the Limit

ag Y ~> 0 and the angle Ys 18 therefore not restricted to approach

Oy as Yq > 0.

As will be seen below the values of quantities in regions IIT and
IIT' may not all be found to order ¥y unless the perturbations from the
Cabannes limits are calculated to order }5. The following perturbations
are therefore introduced, the subscript ¢ representing the (known)

Cabames values?

My [, = )+ boX, FBOLT,
Gl =G M)+ e X HC LY
Colo. = (o /0) +daX,+ D X7,
Pofb, = (bafk) ¥ o X F X
Po= Pord Y, rRY
b, = 93'*'4( X, + b )S‘,

(3.2

\t

Yi = 9?,+71/Xr+ 63 Y;'b,

Here be, Bay €y Coy seser lps Io ore constants to be determined., A setb
of six linear equations is obtained by equating terms of first order in
X2 after substitution of (3.27) in (3.10), (3.12), (3.11), (3.14), (3.15)
and (3.16):

S 0o L;; H‘}yb(ﬂ)& «c;eM{&caz,w gq/ = T84 St @ , (3.2
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Cos'co Sintin <, + (H’ %’1'(;5,2(4)) 6-‘4-5’6;_‘/ -—-%’ 'L‘;f’h/‘b SO f] +

+ (psie +%: *sin 8 )it o /{ = —//, Yesse Ve S /516)

gl
ey b seo (3,29

9""4/“5“““" 5 "9“""7;% ”‘é/%)c Stu é][«/ "/fé/l/,)‘ (533 Sf«/‘ / =0

(3.0
TR ), cos'io sines b 5% ) st bes3 0 Sin, 0 f —
Thetsndp essw 9 4y (A Vi BB St o 7500 3 5 m ;) /{L,ﬂ
TG s £ = "V €S (810) w3 stm , (3.31
A 00b)e b+ § Cafud, A M) <. s
+§%%ﬂﬂMi+M¢hLﬁ#HﬂH%+§MM%/WVPO§KV:
= A1 ORI ), Y st (3.32
L4 = (LM IGH)Y > (5.33

(necessarily positive since V and H are scaler resultants). For conveniei
we have set v = B ~ 6 and have omitted the subscript confl and 5 on o.

The seme procedure in reglon II' with (3.27) modified to read

He' 14, = (HI14,), - b! Y, +B/ 7(,1/,

etcc s

leads to the result

A g A v .34



The flow near the wedge

For the transition to reglon III the assumptions consistent with the

previous analyols are

$=7, +jf33(,+ = )
1 (3-35
Vo= &+ BY, + 6 N f

where o is the, asg yet unknown, orientation of the magnetlce field in
reglon IIT and 1s 0(1). (The porticular form chosen for &, with the
perturbation measured from )} Instead of Oy, olds in sinplifying the

algebro. ) We have

Hs [, —,;“M/&?(Z)/se« [5~%3)
= 957‘,/9(‘/\«(93“0()1 (5.5¢

o)

Y /VI— = (86, [es3 (5-6,) ~/{”/7‘36«‘« ¥, =% //ﬂ, & (& ~83) son. (5~¢

T 7[3/{%;//7%*%‘4) ,

(3.7
Ity = Vs (§-6) |1, sin (5-6.)
= féfjl; 3 | — §; 4i:‘ %

firg A, ($,r9,-4,) | (3.3

l'?*/;’v = ,"i,y?@V(H-s/H‘,)v‘f' FM‘,V‘.;"A\ {J"é‘,)"m'u /193"(9.\_) /bc)'; /J-*&.S) +

+?,L be™ S{ + 2 HBSFM/Y,F-X;) Siaq (J“&?») /Hz"ﬁ(‘j"é%> z

1

[+ V¢

J
2 e (5.3
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Va1 80 (X -03) = [ Ha /M) sen (Y- 82)
NY - = o (b

vhere ky , = (sg/ﬂb)c.

Different cases now arise according as kope < ; =, or > 1,

(5.40

ox

(.3.) k;gc < 1

The two values of fs glven by (3.40) are negative. A necessary and
suffTicient condition for the flow in region IL to intersect the second
shock wave, a8 1t must do in a physlcally veal situation, is that & > Os
or fa + gz = la > 0. Accordingly, since fg < 0, the upper sign in (3.40)
has to be dismissed and thus

fa = = (g = 12)/(1 + Ige). (5.1
On substitutlon of the ratios (5.36) - (3.39) into the energy equaticn one

finds that

(§rg.)(1+4 3/(%}35:%‘” r-1)¢ m)/(l*«')fiu < |

. (5.4

This equation ylelds the value of g, and when 1t is used in conjunction
with equations (%.28) « {3.33) we con solve for the seven parameters
Bay Cas -e-5 I

it followe easily that, to a Ffirst approximetion (independent of Xy ),

Va/Vz = 1 + Iinc,

(01,,/(0,L = ((H”rz,vf)/iw’;(rf:)cc; %

and

10'5‘/}"1: “1113/%21;



Thus Vo/Va, pofpz, Pa/pe tre all greater than ualty. The last two of
these resulits are required for a shock wave. The first shows that the
flowv is acbually accelerated through the second shock and 1t is interestin
to recall that Kogan [1] showed that an acceleration could occur across o
magneto~gasdynamic shock when he spplied linearised theory to the flow
past o thin wedge with ¥y = $x (he found such accelerations through the
second shocks both above and below the wedge). The requirement of increas
of enbropy across the shock means that the inequality

Ay (B @)r% 7 (3.4

Pat ™ Co

mugt be satislflied for the shock to be thermodynamlceally stable. Now

Lq,“;'tt _..[/y"tb
(! - -> >y | e T A

1L *
‘\/YC&“’

= /ﬁ+g}g:) )

—

) _ r
Lo (I4hre,) ]_ it () e, f/(wl,_w,f)] >

and hence the sbove inequality (3.43) 1s satisfied.

Before discusaing the cases koe & 1 1t is convenilent at this stage
to glve the analysis for the flow near the lower surface of the wedge.

in reglon III' (in the lower half-plane) the equations corresponding

o (3.35) are

/ / / a
é - .XR _A’Xl *Fz/yf ’

r N (5.8
Hy= ,-(0[71,‘73% *6, ), ’



vhere we have used the result that H is constant throughout the non-
conduchlng wedgae.

Analysis carried oub Just as for the upper halif-plane gives
A 4+ gd el mt kae £4 and again ve need to investigabe whether
Iipe < » =, or > 1., Tor the moment we restrict kpe to be less than unity.
The cholce of sign 1s found from the requirement of the flow in reglon
I3 to inbersect the second shock., Thie yields

£ o (ga = 22)/(1 =~ kae) < O, (3.4

' The substltution of the vatios HY/HY etc. into the energy equation gives

(fz.,"‘%/)//'*{‘)/’{‘,ﬂ/: gl#’ r-ie, /(!HY? ) < , (3.

and from the equality we can find gl. As before the guantities
B, edy oeesy 13 can be found. Also
VA/VE = 1 = Yac, (3.

while pAd/pd and pi/pd bave the same velues as the corresponding quantitie:
in region IIL, Equation (5.47) shows that the flow is decelerated throug!
the second shock in contrast with what occurs on the upper side of the
wedge. The shock is thermodynsmically stable.

The value of @, to order X3 Ffollows from the equality Hz = H} by
writing

(¥p/He )(¥p/H ) = (VA/HA)(HE/M)

whilch gives

g's /9““ (53'0() + %I/ Siav (B4 +X) = o (3.4



3.27

When fp and 4 are replaced by thelr respective values from (5.41) and
(3.45) it follows at once that
tan ¢ = (1/kpe) tan 6. (3.49
This implies that o > 05 (and incidentelly verifies thet Ug/H > O as
required).
We now conbluue with the investlgation of the remaining values of

1§'2cn

(li) kac =

When ¥po = 1 we have fg + g =~ 1p = & 5. Ve disulss the upper sign
because of the result (3.33). By inspection the lower sign is found to be
admlssible. However we also require £ + gd - 14 = £ £3 and we can dismis
the upper slgn for the same reason as before (5.34). The lower sign gives
3 < 0. Bubt for the flow in reglon II' to intersect the shock we require
4 + gl - 13 to be negative; there is thus a contradiction. We cannot
therefore with this value of kne £ind a shock-~wove solution of the type
sought, It will be demonstrated In port IV that this value of kpe is
assoclabed wlbh shock waves which are vhysically unsgtable in the Cabannes

probilem.

(i11) Zope > 1

Mothematical consistency now demands that fz = (ge=1n)/(kne - 1) and
£ = ~ (g = 12)/(kac + 1). This implies that £§ + gb ~ 1} > O, with
the consequence thei the flow behind the first (lower) shock wave cannob

meet the postulated second shock, There cannot therefore be two shock
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waves on the lower surface of the wedge. We shall show also in part IV
that this value of kpe glves rise to shock waves which, if they exist,

are not physically stable.

5.9 EXTENSION TO 0(Xa ) TERMS

In the last section we expresced Vo/Vn, pafpe ond pafpe to firvet orde:
texme only. To ensure consistency in our apalysis we musth develop the

perturbstion of these guantities to O(Ya) terms. In general we have
T+ 1+
£ = SR HY M7 = 10 O o e Jy) (02 )6,

and hence

Ezt: t {/"/“;fo) , Mz-‘/: Mz: (-5%,), /é t’%tj( [+ 7‘;’,
where for conciseness we have vrltten
M= b (), =€ (h[]p) (3.5¢
To= Ak ) wd (0 f0), -2 (V7). ' (3.5¢
>2. = M+ T (5.5¢

Bguation (%.16) may be used agein (c.f. derivation of (3.33)) end this tir

we equate ceoefficlents of Yy
Pl B Al f») PR YA P 2 .z/‘c : 3.

To obtain all expensions to 0{)y ) terms we have to express Ha/He to O()F)

and



e

By Ty = 5% (14, [sin 8y -) |

where we have introduced Az so that
—}('3 )3 - F—;-ﬂ;'s (§1m$’7%)665/53“0z) . | (3.

The result (3.40) was obtained from the constant terms in the expansion.

If we now equate the coefflclents of Yy we obtaln

Rk, )0 hy *
*%u ,53)1 +2(6,-L,) +§7€2+(2 73,-(71/)[%-/5)205[/&3—&) =0 .

AW+

We can use (3.40) to simplify the ratio: Va/Ve and we write

Va/Vo = 1 + Iipg + caXas

where

Jcs ¢y = 5’3 {;c S )i +)’3 +(7J73)65/—/&’;d) §+ [::7. +Gz ~ L (5.

Also,

‘o"/(’s _ 3(4'{/(?*/)?2:%/('*{1"9:) "“/37(1,

where

£l KA, v, (fra )4, L +

+(/f'/’éi(,) { (stci]/égﬁ +(7(%r7$)(;:3.,_61_ L, ) f = o

and

Pyl = H"/X}’ﬂ_:[l-f‘/«m')(') _



For the lower surface we have
/ / /
4, = = 5N -0 [ (84e)

where

%/ )5/ = F;l ‘yal(fsl"‘?@{"js)“f/%ﬂd ' .5

The result, enalogous to (5.53) is

Z//..%;b) )}/ﬂl “%L¢f;l>zl " Z/QI'AI/) .
+ }%”’,‘. /2'73_— jwl)(fﬂf”//«,/) z c,{f/és-}-o() e (3.5

We now have
VA/VE = 1 - Jpe + CdXas

where

e § )/ ] =/ / / (3.5
3 <y T & { g 2 +)5 +/5$f-73)q/‘/&3+0z)5— (E/+6,~L,") |
Also
P = 1tk v el (540X
If we now apply Ha = HY, the constent terms give (3.49) but the

coelficients of Yy yield
/
O, ), Fhorb =o. s

PThe values of fa and £4 are known from (3.M4) and (5.45) and from these
we cen determine go and g'sfrom (3.42) and (3.46), respectively. I

follows thaelt the quantities Lo, Cas «n-ep los bh, b, ....,13 con now be
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found from the two sets of linear equatlons. The value of ¢ is found
from (5.49) and the value of Gy ~ Ly moy be obtained from (3.51). (The
value of G} ~ LY is obtained from the corresponding equatlon for the
lover surface.) Also from (5.50) we know As and Ad. Thus 1f we eliminat
Na and Ay from (5.59) by means of (5.53) and (35.57) we obtain an express

for g and its value is known?

- - o, +2/H,/H;)¢(‘71»//j) (b, 14) f (5.¢
.
2{71'%)jca//&?,-x)ﬂa/‘/&;w){

where

Ny = /AC (%S)L‘J[a/b,{/) + 2 [62‘/‘:. * 62"1-‘,/) +
’ 3)21__ yz/ig"//j) ,%L‘/’/és"’&) *’g?(;”—fm//iv/”//if){ 95/934-,{)

Back substitution enables us to £ind Ay and A} in terms of known
quentities. Hence from (3.52) and (3.56) we can find Ty and F3,
respectively, and vhen this is done we utllise the results Lo obtain
expresglons for cs and cd in terms of known quantities. By inspection
it 18 clear that we have now obtained expansions to 0()y) for all the
ratios, ete., sove for pafpe and pdfpd. From (3.55) we see that on the
right~hand side the quantity G appears. To £ind Gy (and also GY) it
1s necessary to substltubte for all the ratlos In the energy equation
and equote coefflclents of Xy. It is felt thal there is nothing really
t0 be gained in reproducing this analysis here. The algebra wes in
fact executed in the hope that some simplification would occur (c.f. the

results (5.42) and (3.46)) but no simple grouping of paramebers oppesred.
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At the beginning ol section 3.8 1t was steted that we requirved bo
take the perburbations laid down by (3.27). The results (5.53) and
(3.59), for exemple, serve to illustrate that texms to O()XF) ave

required.

5,10 METHOD OF COMPUTATION

For any computation we require to specifly My, €3, Xy and 0. Across
each of the leading shock waves we have slx equatlions in seven unknowns,
Accordingly ot this stage 1t would appear that 1If we speclfied one of
these unknovns for each of the regilons ITI and II' we could theorctically
then determine the solution. Some kind of iteration procedure would then
nead to be introduced 1o obtalu re-estimates of the two postulabed
quantities. However a close inspection of the equations which hold
acroas the leading shocks yeveals thab, becouse of the transcendental
mature off the equations and the way in vhich the groupings of the unknown
parameters occur, we need to specifly two unknowng for each of regions IIT
end IT', For exemple, 1f we glve values for B and Yo we can oblain 0
from {3.17) and hence we can Pfind I‘Ig/ﬂg_ 3 04 is obtained the same way.
Becawge of the nuwber of paramelers it is nol feasible to pursue this
line of approach,

By means of the resulbs of the perburbaition of Cabamnes' solubion
vie now presend; cerbain munerdcal resulis 'whiéh reveal the consglstency
of the analytic approach.

Cabannes [6] gave numerical. results of the solubtion of (5.23) for

0z = 20* when 65 = 0.1 (weak mognetic field), €5 = 1, and €§ = 10 (strong



magnetic field). He presented curves of f versus My for each of the
valuen of €y in tuwrn. We chose the case €§ = 0.1, 03 = 20°, a value of
¥y = 1.4 wae selected and the coefficlents in (5.23) were computed., The
values of My chogen were 1.85, 1.9, 2.0, 2.25, 2.5, 2.75 and 3.0; see
Figure 3.2. Following the procedure in ordinary ges dynamics where one
looks for the shock angle which 1s appropriate to the weak attached shoc
wave the values of 8 in (5.2%) which pave rise to the weak shock branch
were computed. It is posaible to obtain an approxlmate velus of p from
[6]; iteration via the Newton method secured convergence to the root.
With the values of B, now found we obtained mumerical values for (Ho/Hy )‘
(Ve /¥y )C cte., These values were checked against values which were

represented graphbically by Cabames.

E A

. —»
15§ 30 7

FIGURE 3.2: ANGLE OF SHOCK (WEAK SHOCK BRANCH)

The coefficlents bz, Cus ....,; lp were computed now from the set
of linear equations. The solutlon of these equations was effected by th

method of successive elimineiion; checks were executed vis hand compuba~

tilon on o desk machine., Trom {%.27) ell the ratios and angles were foun



