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SülâglÆJSISâïâ

The Method of Gharacteristics is applied to the studj of the non-linear 
partial differential equations which govern the two-dimensional steady motion 
of a fully ionised gas ̂ which is idealised as a perfect fluid of infinite 
electrical conducbivity^ in the presence of a magnetic field# Certain results 
are derived for the flow over slender wedges* For the steady flow over a 
convex corner of infinitesimal angle (of Prandtl «• Meyer type in ordinary gas 
dynamics ) it is shown that no steady?' state solution exists. The reasons for 
the breakdown of this type of flow are investigated via the propagation of 
magnetic disturbances in the non-conducting solid wall and the disturbances 
in the gas# Reflected and transmitted waves are given as solutions of a 
singular integral equation#

A solution is now presen bed to the non-linear problem of the attached 
shock-wave configuration which appears when a non-conducting symmetric wedge 
of finite angle travels thi*oiigh the gas# The applied magnetic field is 
oblique to and is in the same plane as the incident stream# The presence 
of the magnetic field non-aligned with the stream renders the shock-wave 
pattern on the upper half-plane different from ilaat in the lower half- 
plane* Thei-e is no symmetry in the flow# From the jump conditions 
appropria to to these plane magneto-gasdynamlc shock waves expressions for 
the unknown paraîiieters downstream of the shocks are given in tarms of the 
knowi (in general) quantities upstream# Direct analytic solution is not 
feasible# Perturbations aro made from the known solution for the cas© 
when the magnetic field is aligned with the stream and depends on the 
solution of 24 equations in 26 unknowns# To obtain sufficient equations 
it is required to match the solution for the flow with that fôund in the 
wedge# The effect of the coupling of the flows above and below the wedge 
via 'tiae boundary conditions on the magnetic field is demonstrated^ These 
equations are solved numerically and solutions are presented for angles 
of inclination of the magnetic field to the stream up to 12^# The com­
putations are executed for the case of a weak magnetic field and some 
tabulated results are given#

The physical stability of the shock-wave solutions found is bhon invest­
igated# This final analysis includes the dismissal of the upstream facing 
thermodynamically stable shock waves which are predicted by the aligned 
fields theory#
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GEMAL ITOODUC^OH
We consider the equations of two-dimensional steady flow of a 

fully ionised gas. In particular we obtain the characteristics of 
these equations together wJ.th their conditions of compatibility. 
Certain results dependent on linearised theory are derived. There 
Is an application of the theory to the flow over a thin non-conducting 
wedge for certain configurations of the applied magnetic field. Also 
the flow over a sharp convex corner is considered» In ordinary gas 
dynamics this kind of flow is classified as being of the Prandtl- 
Meyer type. It is demonstrated that, in general, we cannot have 
flows of this type in magneto-gaedynamico. The reasons for this are 
indicated, and in the second part of the thesis a more detailed 
analysis is given and the physical mechanism Involved is explained.

Tiie third part is devoted to the method of construction of a 
solution to the non-linear shock wave problem which arises when a 
non-conducting wedge travels through a fully ionised gas. Since 
characteristics are weak shocks of vanishing strength we show first 
that for 8. thin wedge certain of the results derived in Part I can 
be deduced from the equations holding across the shock waves. Also 
the analysis of Part X aids in the formulation of a perturbation 
technique which is applied directly to the full system of shock wave 
equations.

The solution (with numerical results given In graphic foimi) to 
the attached shock wave pi'oblem when the angle between the magnetic



field and the incident stream is zero was given by Gabannes [6]. We 
allow this angle to increase firom its zero value and asrrange our 
expansions for Vn/Vx* etc., in terms of it. Thus the zero«order
terms are those which come direct from the Cabanues theory. The expan­
sions to first order terms are given. We can show analytically that 
only in the case when the gas speed exceeds the Alfven speed do we 
obtain a phyaicaP-ly meaningful solution. The perturbation method breaks 
down when the gas speed is equal to or is less than the Mfven speed, 
Expensive computations have been executed for the case of a weak 
magnetic field, a wedge of semi-vertex angle and for angles of 
inclinations of ma^etic field to incident stream at 2* intervals from 
0̂  to 12*.

In the final part of the thesis the stability of these attached 
shock waves is investigated. The numerical results obtained to the 
perturbation analysis aid in resolving some of the difficulties which 
are posed when we try to satisfy the conditions for stability.

The substance of port II of the thesis is to appear in a 
forthccsning publication of the Q.J.M.A.M, (  ̂ ^
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ROTATÏOH AM) SYMBOLS 

Rationalised M S  imlts are used throughout.

H mgnetic Intensity or field streng(bh
aomponents of magnetic field 

E electric intensity or field strength
current density vector 

# magnetic permeahil,ity
cf electrical conductivity, assumed independent of time

and position
V fluid velocity
U;V x,y - components of velocity
p fluid density
p fluid pressure
a local sound spaed
M IVfeich number v/a)
X angle between H and ¥
0 flow direction
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IFTHOBÜCTIOR
wjiwmw# kwummi» w — "g  •■<rKiyr>w.«>a.rai

ykmj qualitative results eau be obtained from linear theories. In 
magneto-'gaadyaamiGS the haaie partial différential equations are more 
complicated than those of ordinary gas dynamics because of the presence 
of those teimis which arise from the consideration of the magnetic field. 
One method of analysing these equations is via the theory of cliaracteristi 
We look at this theory afresh with a. view to decreasing the actual phyaica 
efforvj which is involved in the evalmtion of the determinants of large 
order. A. method is evolved which is particulaidy suited to problems 
involving two independent ■variables. î3ince disturbances created in the 
f.l.oi'7 propagate along the character 1stics we can exmnlne the effect of 
introducing a slender body into the flow. The fü.ow over a mil of some 
arbitrary shape which varies slowly may also bo exomined. %en the body 
is no longer thin the non"-linear effects begin to dominate aïid the created 
disturbance is of finite size. Accordingly in the following sections we 
obtain first of all an understanding of the processes involved in a linear 
theory. Knowledge of these results ifill help in the construction of the 
solution to the non-linear problem.
1.1 BASIC EqiJAllORS

We shall concern ourselves with the macroscopic motion of a fully 
ionised gas, which we shall assume to be adequately represented as o, 
perfectly conducting inviscid non-heat-conducting perfect gas. The tempe­
rature of the gas Is assumed to be sul'floiently low and density Mgh 
enougl'i in ordei' tliat effects due to Hall curi'ont may be neglected. All
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gas velocities ai*e assimed to be smll in comparison with the speed of 
liglit. A consequence of this assimiption is that we ca.n neglect the 
charge density and the displacement cui*rent terms from the partial 
differential equations. For almpllfication we also assume tha;b the 
motion of the gas is not influexAced hy any externaJ. forces. The equation 
of motion for the gas are then those of magneto - gaedynatni cb . With the 
notation and under the assumptions outlined above we write these equa,tlon 
in the following forms

Dp o   ̂>0 Ciŷrsf V Q
ot
f)j.
ut

<K. Op

equation of motion, (l.l)

equation of continuity ̂ (1.2)

adialDatic condition , (I.3)

We also have the j&fexwell equations

-

Tt '

I >

- <sO assuraed,

(1.4)

(1.5)

(1.6)

(1.7)
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These equations are true for an iaotropio medium with B |jiH. Tîie
operator D/l>fe is defined as h/ht (¥.V),

1.2 THEORY OF CMMCTmBTICS
Many sets of conservation laws for plqrsical systems involving two 

independent variables x, y can be expressed in the form:

+ Q  ^  . 0, <i-S)

where P, Q are matrices of some particular order and A is a column vector
The quantities à/èx, h/bj operate on each element of A, If we specify th<
members of A to be on a curve in the x*y plane determined by the parametr; 
equations k  ̂  x(t), y *» y(T), then

"!f = ^  /A 2/? ^  (1.9)
7r 'èx ■

In this equation the differentiations are taken with respect to r along 
the curve. On premultiplying both sides of equation (1.9) by P and using
(1.8) we obtain

^ ■ o-'o)

We have in this equation a means of finding the first ordea:* parbial 
derivatives with respect to y of the elements of A. TM.8 solution is 
unique unies

I - q I ' o . (1.11)
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From this equation the values of y’ (* dy/dx) give the clmracterlstlG 
curves of (1.8). When these values are real the system of equations
(1.8) is of hyperbolic type.

If we replace any column of the determinant on the left side of 
(l.ll) by the quantity P dA/cbc, found, from (1.10), and equate the 
modified determinant to zero we have the condition for compatibility. 
Rote that the result of the analysis is the same if we premultiply
(1.9) by Q instead of P.

The important feature of this method is that the order of the 
determinant in (I.II) is equal to the number of elements of A. Compari­
son w:lth the usual methods of obtaining characteristics shows that in 
this csae the order of the determinant involved has been halved, and 
this consequently results in a large saving in the labour of evaluation. 
With this method the characteristics for ordinary two-dimensional 
isentropic steady gas flows can be written down immediately from (1.11). 
The method is extremely powerful to the investigation of systems con­
taining a large number of partial differentia], equations. This is 
demonstrated in the next section.

1J  eiIARACTERISTICS OP 2-DIMW3I0RM» STEADY PLCS-l
For steady two-dimensional motion of the gas with H in the plane 

of the flow the equations (I.I) - (1.7) in component form when cf « oa 
become

^ X ^ - ̂'4)
“ ‘•i ■
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Il - 'I -/- /15 -
J j èy Jx

, "4̂^^._. ,

Tiie last equation in this group is an integral of (1.3) und K is a 
constant wliioh is determined by the initial conditions or by the 
condition at upstream infinity. Oüo shorbeh the labour we can eliminate 
the derivatives èll^èx, èP^èy froiix this system by using this last 
equation. We find that

^  p  14̂  rr 14 Q/4 ^
7 ‘>K 9y

^  %  y .  -  W ,  ,

. 0 ,

V
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It is readily seen that this system of equations is of the same general 
form as the set given by equation (1.8). With A chosen as the colimn 
vector {u> v, p, p, ly, on using (1,11) we see that the characteristic© 
of the set (1.13) are given by
( fn ) y - y/V tf

<°y'
y

-f

0

o

o

7
'/'V'

u If - v
yL,

-0.(1 * 1̂ )

A strai^itfoiward expansion of this deteiminant gives for A «® uy* « 
the results:

(1.15)

» U V / y ; ' ) " |  _ (1.16)

The first of these, equation (I.I3), is the eqmtion for the streamline, 
The second, which is of degree fotu? in y% io of a complicated nature and 
investigation of the roots is difficalt. Befoi?© analysing (1.16) In 
detail we derive cerbain results which follow immediately from it.

On setting H si 0 in equation (l«l6) we recover immediately the 
equation for the characteristics for ordinary steady two-dimensional 
gas dynamic flows. Rote that two of the chax’aeteristics of (1.16) now 
become streamlines.
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I# f

Consider the special case when H is parallel to V (the al±£pied 
fields case). The condition for parallelism of the vectors at infinity 
gives K ea 0| and

<^/W^'rv//-ly'rV//"/^ y-s.vv+'/v ^
If we write

^ (i\lfven speed/sound s p e e d ( l . l j )  

then equation (I.I6) reduces, for M « V/a, the I4ach number, to

> ' [ r / « ' - =  o

We see î rom equation (I.I8) that two of the characteristics have now 
collapsed onto the streamline. The converse of this result 1b also 
true. Tlmt is, if we start from an aligned fields flow, and allow 
the magnetic field to deviate hy a small amount from its parallel 
direction with V,  then two of the characteristics in the now non-aligned 
fields set-up have sprung from the streamline. This latter result forms 
an important part in the perturbation analysis of Part III, If we 
define cr as the angle between a characteristic and a streamline then 
we have

- /ÿiv I 0-f'  ̂ where u ^
and equation (I,l8) beccmios with this notation

(i c \ I . (1.19)

From equation (1,19) it is possible to determine regions, specified by 
values of and , for which the angle cr is real or imaginary. Tiiis 
has been done by various authors.
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For the ease when H and V have a raadcsra orientation it Is possible 
to choose a moving system of co-ordinates in which H and V ore noir 
aligned. Thus Instead of using (l.l6) directly we could make inter­
pretations on the behaviour of the cîiaracteristics via equation (1.19)* 
Precisely this technique was used by Kogan [ 1 ] ; however he commenced 
his analysis with linearised forms of the equations (l.l) - (1.7) 
not from the non-linear equations. If we replace

in equation (l.l6) we find that the linearised form is

Ik"- |y'* + £ £ . . Y-
(1.21)

+  i nk- K"0-r77)j =- .
In this equation y* denotes the Inclination of a characteristic to the 
velocity vector and

For < Î in Figure 1.1a we see the regimes for whic^ (1.21 ) 
has foux' real character!stica (fully hyperbolic flow), two real 
cîîoracteristics (quasi-hyperbolic flow) and no real characteristics.
This figure was first given by Kogan [1]. For > 1 we have a similar 
figure, Figmre 1.1b.
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FI6URB 1.1a: BBGHCMES OP KMWî I  QUflSI-HSfJREiHBOLIC 

I I  POHiT HÏPEHBOMC f ic,)

FIGURE 1.1b: REGIMES OP PLOf: I  QUASI-HÏPBBBOIIC

I I  FULLY ÎIXPERBOLIC C f  > / j
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22

When is perpendicular to so that is zero we have the 
crossed fields configuration, and for this ease equation (1.21 ) becomes

(̂!S- " [ i
Kogan shô fs that for this situation x V^); hyperbolic flow exists 
for S Î + (see Figure 1.1) and ±"r<m equation (1.22) we see that 
four distinct values of y* exist; the suffix 1 corresponds to the smaller 
root and the sui’flx 2 to the Imrger one.

1.4 QomiTïom OF cc»^PAgiHmm
%r means of the notation introduced in section 1.2 we have

P -PtA ‘Ip 
^  t-t

%

- A ‘H

(KS3:

If we replace the last eolmm of the determinant (1.14) hy the column vectc 
(1.25) and expand the new determinant we obtain the results

7 (1.24:

P K y of-yj- -t ̂  4/// z.  ̂ ^ X (9 .25
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where we have introduced

(1.26)

(1.27)

^-M/L ) J + <^Vm (1-28)

^  = -/lY (129

K  , My'-v = ^
The differentia], relation (1.25) has been obtained from the non-linear 
equations, and the values of y* are those obtained from equation (l.l6),
If we set H *3! 0 in (1.25) we do not recover at once the compatibility 
condition of ordinary gas dynamics. One way of obtaining this limit Is 
the following. Let the fields become aligned so that ^V. VJhen we no(f 
let H be aero the appropriate condition is found.

If we now linearise the differential expression (1.25) via the scheme 
(1.20) we obtain

/-/j (iff-) ' i i W H  4l
^ Po i/K'0

U ' —  = o . (1.30)
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This equation does not agree with the compatibility condition given hy 
ICogan [13. He states that along the characteristics the follorrlng equation 
holds s

-b'V-vr- w; \ 4: _
Vo

- -- o ('.31:
IT It

7/4
6(0

We îmow from the analysis of the theory of equations that no new independer 
result can come from equation (l.ll) hy replacing a different column hy 
PdA/dx as given hy (1.23)* However let us examine the result of placing 
the column vector Pdâ/dx Into the first column of the deteiminant (1.11) 
and expanding the result. Ihis time we find that

+-/0/l(A  ̂t\( X^- Oy--) ^  ̂  ) (X~<T)14^ ~Ka '( If 14̂

] 7 v  -/y j n-Zy -poyifUyt-f-/̂ } ] 4̂ /4 ̂ 0 . ( 1 .32:

If we linearise this expression we obtain (l.gl). Direct transformation 
of (1.30) into (1.31) can be achieved by a manipulation of the differentia] 
expression for the equations of the characteristics and the integral of th< 
eqmtions of motion (l.l2b),
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Kogan [1] uses the linearised results (1.22), (1.51) to investigate
the steady flow over a Blender non-conducting wedge. He demonstrates that
for flows of this type (H -î- V ), since characteristics aie shock waves ofo o
vanishing strength, the pressure increase occurs through two successive 
shocks. It does not seem possible to generalise his analysis to the case 
where is arbitrarily inclined to V̂ . The reason for this is that the 
roots of the quartic (1.21 ) do not separate out and accordingly when we 
integrate (1.51) along each characteristic and solve for each of the 
perturbation quantities there is no simplification of the resulting ratios 
The regime in which there exists four real characteristics is marked on 
Figure 1.1 (area of fully hyperbolic flow).

In part III we undertake an investigation of the shock imve con­
figuration when there is steady flow over a wedge which is not restricted 
to be slender. These shock waves are no longer weak and consequently we 
have a complicated non-linear problem to solve.

Before proceeding to this topic we first of all derive certain 
results from the linear theory.

Consider the two-dimensional steady flow over a non-conducting solid. 
Assume that the interface of the solid with the gas consists of two straig 
edged walls at an infinitesimal angle to each other (see Figure 1.2). We 
use equation (l.l2b), which is
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‘Bfo family system 
of characteristics

FIGURE 1.2: STEADY FLOW OVER A C0WE3C CORNER

an integral of the equations of motion;

«i rsf “ /f ra COnstunt -

If we replace u hy V (l u), H hy H , H hy H 4- H in this equationo y yo X XQ x
we obtain, for v «• « V 0 (since B Is small), the restO-to

f-ixo

Thus if H is zero we require u to he zero. The substitution of ÎÎ « 0 xo xo
into (1.51) gives

- 4 L  - y ' / V /  -ÙP ^ ^

ï h  14

If we integrate this expression along each family of characteristics we 
obtain

and h i o
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We see Immediately that these equations are Incompatible \T±th each other, 
The solution for the magnetic field inside the non-conducting solid does 
not affect this conclusion.

Because the uniform flow cannot he deviated through an infinitesimal 
amount round a sharp convex corner one consequeiice is that we cannot use 
this linear theory to build up flows similar to those of the Frandtl-Meyea 
type which exist in ordinary gas dynamics. Here, the corner engenders 
disturbances in the gas and also in the solid. For the latter since we 
do not at this stage have sufficient knowledge of their behaviour, we 
suspect that they contribute to the breakdown of the steady flow pattern. 
It is felt that these magnetic disturbances in the solid propagate every­
where and because of the boundary conditions applicable across the inter­
face they make their presence known in the gas. A more thorougli examinât: 
of these effects is set down in the next part of the thesis. Although we 
GomBience this Investigation from a different standpoint the gradual unfol 
ing of formulae similar to the above serves to unify the whole theory of 
such flows.
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W B T m m  INFLUENCE EFFECTS 111 THE Wim OF A

coroucHEa fluib ov̂ ee m  i n s m m m  wall



2.1

s m m m

In conventional gas dynamics there is no great difflenity enconntere^ 
when studying the propagation of a disturbance throu^a the two«dimensiona] 
steady supersonic flow of a perfect gas past a straight-edged wall, A 
two-dimensional, disturbance introduced into the flow travels along the 
appropriate Î4ach line to the wall from which it is then reflected down­
stream, The flow of a uniform stream past a wall convex to the stream 
is achieved by means of the well-known Prandtl-Î4eyer expansion. Flows in 
channels oszd similar problems can be analysed by the techniques of the 
method of characteristics,

¥q have seen at the end of part I, that in magneto-gasdynamics, 
however, the corresponding problems for the flow of an infinitely con­
ducting gas Indicate tiiat situations arise in which disturbances not only
propagate upstream la the gas but can also propagate in all directions in
the solid wall. One Immediate consequence is that the conditions upstream 
can be continually modified. To obtain an understanding of these pro­
cesses a mathematical analysis is presented below.

Afber this wox'k was written up there appeared a paper by Chu [4] 
who considered a similar sort of problem. In his work the flow everywhere 
is uniform and the disturbances are created only at the boundazy between 
the gas and the non-conducting solid. The present analysis includes the
work of Chu [4] as a particular case.
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iwsRQmosim

Ife assume that an Infinitely conducting, non-vis cous perfect gas is 
moving over a stationary non-conducting wall of infinite extent with 
equation y «s* P(x). At infinity upstreasu the gas has a uniform velocity 
U parallel to the x-oxis, A unifona magnetic field of magnitude is
assumed to exist, and for the soke of simplicity we suppose that it is
orientated at right angles to the flow, This disturbance-free configu­
ration is perturbed only slightly so that the linearised magneto- 
gasdynamic equations may be used. Let the velocity vector be V Ü v
in the gas and the magnetic field intensity vectors be H « ̂  -S’ h in the
gas and H «« H + h in the non-conducting solid. Under the conditions 
( V ( «  IUI ̂ I hi, I h I «  I H I the current is also a small quantity.
•  '  «M J e s »  ^  ^

We introduce «» curl H. On combining (1.2) trith (lo) we obtain

ùC - %-L. 0/̂  (2.1

The equation of motion (1.1) is

' i ’t ^ p. /- ^ H (2.2A  —

Take the divergence of this equation and use (2.1) together xfith the 
fact that the floxf is isentropio (dp/^ ^ â ), then

Take the curl of (2.2). We find that



D
or

tAAr{/ r\P (2 .4

The elimination of E Taetween (1.5) and (1.6) gives, since J_ " <̂(E. + MV^H),

r^-- ■= ( 14 ^  -\4o ol{a/ A/- T —  ^  H
6

:.5

If xf0 take the curl of (2.5) we obtain

 ̂ y
' ' (io-

4 0/-
(2.6

We can now eliiiilnate cut*! v between (2.4) and (2.6). If xre operate on 
the re8u3,t xflth  ̂(1/u.̂ )(b/BU)^ end use (2.5) we have an equation for 
alone s

f l.)'s L " .  %  - V r  " f  / =( «?

(8®
li 0 • yi (2.T

For steady two-dimensional flows with in the plane of the flow and
0" «3 c) we have curl h ^ « (0,0,g ) and hence from (2.7) we have the 
following partial differential equation for the cuzTent g :

t] (f i- f -ry %) ̂ ^ cJy %- f (2.8
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xrîiere x-re bave introduced the notation

/ V  -  Ü  / 4  jp 4 " (a.9a,l>)
'  ̂ f i DO oO ■

Equation (2.8) was given by McCfune and Rosier [2], but a different 
notation xma used for the coefflclexits. Tfe now write the lefb-hand 
aide of equation (2.8) as the product of two operators :

where,

(/f /Y")

and has the same form but with a plus sign in front of the radical.
For gas flows with infinite electrical conductivity, when the 

applied magnetic field is perpendicular to the main stream, there exist 
four rea3. characteristics for ^ 1 t and jja particular the tangents 
of the angles of inclination of one family of characterlstico are given 
from (2.11) above by t H. The inclinations of the other family are given 
by i S. These results were derived In part I, section 5; e,f. (1.22) 
xnlth (2.11), and it xfss stated there that Kogan gave (1.22) in [1].

In what follows we shall consider the case when both operators of 
equation (2.10) are hyperbolic. There are then four characteristics 
tiirough any point (x,y).
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Equation (2.10) can be solved in a quite general manner and we 
readily find that

-t- ___ G, -^<2/(ji Z'y)^

xfhere we imve chosen the constants and the functions in a manner which 
x?lXl simplliy the later working.

FULLY IIYPE}ir3QLIC FLOW
2.1 BISTURBANGES IN THE QA8

A small steady disturbance is assumed to originate at soaie point in 
the stream and to propagate along each respective characteristic or I^oh 
line to the wall. At the boundary there is a reflection of the distuib- 
once and the effect is carried away on the two individual characteristics 
which are inclined downstream. The transûiitted part of the disturbance 
passes into the non-conducting solid, where it Immediately propagates in 
all directions and consequently gives rise to further disturbances in the 
mgneto-supersonic region by transmission bade across the wall. We will 
assume that the disturbance has been maintained for some time and will 
attempt to find a solution xiith steady flow. (See Figure 2.1).
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încitîlent Waves

Reflected Waves

FIGUES 2. Is PROFAGATÏOE OF BISÏÜRBMCK THROtKIH TEJù GA8

Since ê - è h can find and from (2.12). From
( l . 6 ) f  when & m qq  ̂B*i ’ V , B « 0  and this gives u H -> h U <« 0. Thus f / ma ™ o y

we can find u and If we substitute into the momentum equation (2.2) we 
con find p. Finally v is obtained from (2,1). In particular, these 
perbuirbation quantItiee may be written in the foms

+ (2.1

y = y) +6, (x <'j) ]? (2.

/V =

'j)-̂ Fih+fi'^) j) j (2.1

- 'O a \ l ( l+H ( y . - d ' ' ~ F̂ xi'X-h fi.'’ +■

+ $ \ G,('x-é‘ y) ~G>xlxi-<;''(̂ )l 1 (2.1
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 ̂ -p [F I i-F̂? +f où 1 Q0 } __
where P = /V ̂  T/ff ̂  - /y J (2.1

The equations (2*12) « (2,17) were given by McCime and Rosier f2] ir 
their own notation,

2.2 DISTURBAÎÏGE3 IN TBS SOLID
For the non«conducting solid we have the Maxwell equations

curl h k3 0, dlv h » 0, (2,1
and the nature of these equations makes possible a perturbation potential 
 ̂ such tîiat

^  giad 4>, V̂(S> E3 0, (2,19a/b
We specify that on the interface (y « 0), b^/hy f(x). The form of f(x)
will be examined later, but for t W  moment we assume that it is Imoim.
The transmitted disturbance pK'Opagatos instantaneously throu#i the solid 
as on electromagnetic wave and to ensure the correct behaviour at inflnit
we need to Impose some form of radiation condition. We have an elliptic
problem and the appropriate form of the radiation condition in this ease 
is that è^/dy 0 as y ***> « w. With this requirement there is no build
up of disturbances in the so3.1d.

Apply the Fourier transfom
OÛ

- <wS»
to (2.19b). Application of the boundary conditions gives
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oa

pO

and inversion yields
oo

'‘'p ^ J-77 J Pi''j V ^ / / ,
cO — I {fO

Since we work in terms of magnetic field we therefore deduce that
Ofi> Opx

F i J j  -- F o  j ; ^  p
cL

vD

:/ ‘FiPn «
-oo y ^ d - > Ÿ

~~ûû ’̂eO
- oé?

//
PiL J4

These integrals may be interpreted by means of the theory of generalised 
functions (bi^ithill [3] )• The main result needed is that

where 5 denotes the Dirac delta-function. It follows at once that on 
y » 0
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"f/n

y  ( / y  -

where P signifies the principe], value, and f(x) must satisfy a Lips chit % 
condition,

2.3 BQtMDARY GQMTXORS■  iili >1 I I  i f f i n i r i  i n p i r i p i i  I  T w i U l ^ T * ^ ^ . * * * * * ^  f  I. . . . . . . . . . . .

When the magnetic and velocity vectors are non-aligned an appropriai 
assumption for an infinitely conducting non-viscous gas in motion over a 
non-conducting body is that the gas cannot tolerate the Lorentg; force on 
its boundary tlmt would be produced by surface cui-rents on the wall-gas 
interface. A consequence of this is that we require continuity of the 
tangexitial (t) and normal (n) components of magnetic field across the 
interface. (This gives the jump conditions

[ = (3  ̂ [ 14̂  ] r c? .

A more detailed discussion of these boundary conditions is presented in 
part III of the thesis; see section 3*!>)

Hence equations (2,15) and (2.24), (2.14) end (2.25) give, 
respectively

c<?

iïr' J .
f-x

(2.

F. \ P, (x) t F,!x) i-6, (x) f-6^ (x) { f  6 c ;  .
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If we aseiMQ that the equation of the Interface between the gas and the 
solid is of the form y F(x), where iF*(x)t« 1 and F*(x) 0 as
X i m then we require v *« F’(x) on y « 0. Hence from equation (2.16)
we have

(2.

where we have introduced, the notation

If we define

y / y  , -'/X (2.29a

then equation (2.28) gives

F; ^ ^ fx) - w f- S j? _JZ F ̂ h()
Substitution for %(x) in (2.26) gives

-- te .

i-x

where we have written

 ̂ ^  I /? .

How substitute (2.50) into (2,2?) and write
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=  H o  ^ ^ " Î W  -i-ÇilJlP'h) 2 (s.:

E!!.iminating f(x) between (2,51 ) and (2.55) and setting

i_ ^ Co ̂

we readily find that, for -m < x < go

X F M  * ~'Pf"’ H  =  / x w  k -
-oc 1'7̂  '

where we have wit ten

~  H - ÇSI F ̂(%) t 'p f / c
^  é-y

" T  ' V / . p/ te.
'oO ^ If / -p(

Since %  and %  are Incident waves, and can have a, prescribed fom, 
equation (2.55) is a singular integral equation, with a Oauchy-type 
kernel, for the reflected wve Once G% is determined we can use
(2.50) to find the other reflected wave Fi. Consequently the appropria,t 
form of f(x) can be found from (2.55) and the expressions for the trans­
mitted disturbances in the solid are then calculated from (2.21 ) and
(2 .2 2 ) .

Back substitution enables ue to arrive a-t representations for all 
the perturbation quantities.

Perhaps the most direct method for deriving the solution of the 
singui.ar integral equation (2.55) is by maJring diligent use of the 
Hilbert transform j^ir;
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s ( v  - p j  f P d i , ^ , v  - i d  t F '
~<o f  " /f -K> S ' /

where the relationship is sUcew-syimnetrlcal, i.e. - &(x) is conjugate to
®(x).

Define

" ^ i-x
(2.5-‘e>6

SO that equation (2,35) beoomes

K  G Jj) + L cj (x) -
(2.3

Replace x by g in equation (2.39), multiply through by l/ïf(g*"X) and 
integrate the result with respect to g from -g» to <». This yields the 
result

/ d JF f ( x ) - i G / x )  - ^ c/i ̂ ^ L i-x
(2.4

saimlnation of g(x) between (8,59) an& (2.40) immediately gives

) / A )  - / A  )/ p \

That this is the required solution of (2.55) can easily be verified by 
direct substitution, and making use of the Poincare-Bertrand formula, 
(derived from (2.3?)) for the compounding of singular integralss
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oO , €>o

/ [ r I d! F - -H/»> te-'«
of>

We can now use (2.30) to discover the appropriate representation 
forwaves are then found by replacing x by x - y for Qx x by 3c - R
waves are then found by replacing x by x - F"V for Qx and x by 3c - r"^V 
for

To facilitate evaluation of the reflected wave Gj,(x) it is more 
convenient to express (2.41 ) in the form

i") Gyx) =

= f d  ( d ' - 1)  U )  ■) 71 L  h i )  +  ^ S Z ( L F . - i x ' ) F d ' x )  +■

^  f V f > r  GF
" i~X '• A Ft

where we have substituted (2.36) into (2*41) and used the relation (2.42) 
Jî’rom this expression we can see directly the contributions to the 

reflected wave %(x) which not only come from the disturbances created 
in the gas but also come from the disturbances created o.t the gas-solid 
Interface, If we assume that all the disturbances are created at this 
interfa,ce then there are no incident waves and accordingly -% ^ ^ 0.
Hence from above we have

[d fLpcjj) =  SSI Ilh-k ) F'd) -p '^̂ (l+k h) pf  4 2 4 ^
-«> A
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Thus If ire prescribe we con determine Gi(x) and %(%). Ganse-
quantly f(x) can be foimd and the roagnetic disturbances In the non­
conducting solid are given by (2.21) and (2.22).

A similar problem was considered by Chu ( 4] in detail.
In the remaining sections we shall be concerned with the situation!: 

in which disturbances created in the gas propagate to the wall. For
this case we can assume F(x) « 0 so that the expression for Gi(x) may
now be written as

(K f - (l{ y'cS-})Gpy:) '^ZLP'^(x) A

oc;

A  A A V / ,
~o0 3 ~oo i-7c

The other expressions which contained F*(x) are modified accordingly.

2.4 LOCAL PISTURBAMCE! EE-gECTS
We UŒF consider the important case when the incident disturbance if 

confined to the triangle QAB (see Figure 2.2) and for such a diaturbanct 
we assume that the Incident %mves %(%) and Cfe(x) vanish for 1x1 > a,
1x1 > p; respectively, say.

.FIGURE 2î REGIOH OF PHESGRIHSB INGIDEHf .BISTURBAHCE QAB



Thus fo r large x , we have from equation (2.45)

(3
/vl ) r

*Tr V / i/̂u- / ^ ^  ̂̂
Also, the other reflected wave, F̂ (̂x) is found from equation (2,50) to 
have the asŝ mptotie form

)-, h) - F> G  (2.

We can now determine, for x sufficiently 3^rge, on using (2.44) and 
(2,45) the asymptotic representation for the perturbation quantities 
given in equations ( 2 . I 5 )  ” (2.1?). In particular we examine the 
pressures in the reflected waves. Thus the pressxn*e on the wall in the 
reflected wave G%(x) is given by equations (2.1?) and (2.44) as

h F  ~  k'Pri') [ I  I , te-
'XT X ( H""-P ) -Ol ty)

whereas the pressure on the wall in the other reflected wave %(%) is
given by

It can be residily seen that in each respective representation for the 
disturbance in the gas, for large x, they behave as 0(l/x).

Thus the effect of each reflected wave is felt upstream as well ao 
doimstream of the two original waves and the importance of "upstream"
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propagation of dlsturbanoes in both the gas and the solid is verified. 
Piiysieally, the disturbance created in the gas flow propagates along 
the appropriate Mach line or characteristic to the interface. In the 
non-conductIng solid the transmitted disturbance propagates everywhere 
xrlth the speed of light (assumed infinite in the present approximations 
and accordingly its presence has consequences everyvzhere upstream and 
do^mstream of the specified disturbance of the gas.

*fhe expressions for the magnetic disturbance in the solid are 
found from equations (2.21) and (2.22). For example we have, from 
(2.21) on using (2.55) and simplifying the result ;

1

! -f-L ) -ol Tf (i-x) 7T(iS-f-J.'-) / d'̂ d-x)'
C>Q 0̂

If we exaailne the expression in the braces for large g, and evaluate th< 
resulting improper integral we can show tîîat for x sufficiently large

 ̂ f  Pdi)di f
F (i/F  ̂V  Y

Similarly, we have

(2.
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From (2.49) we see tlmt (h ) 0 as y - 09. Hence the requirementy s
4̂>/̂ y 0 as y - <%> which we imposed on the disturbance in the
solid is verified.

Suppose now that %(%) and Gfe(x) are each snmll and positive for 
I X I < a, I X I < p, respectively. We shall, confine our attention to the 
pressure disturbance. From the definitions of (see equation
(2.11)) we have after some algebra

( l ' ' y 0  ̂ (ff"'-/-•id O .

It follows, on using these results, that w defined by equation (g,29a) 
Is always negative for the cases imder consideration. i\lso, from (2.52
we may irrite

K  ' A A ’"/ -F') j i  I V/v*-/ - F )  ^

and on on incoming characteristic this quantity is negative. We also 
have the results:

+ > o .

By way of illustration we now give sevezal examples which serve 
to show the importance of the results of this section. For example,
if we let %(x) and %(x) have the forms

:r U- % )   ̂ y < F  ; Fc(x'l f-x)
)

&dx) =  d(x) ^G,(-x) ̂

where A, |a, o: and p are constants, it can be readily verified that
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(?) '  /

( ■p)  ̂ kl - (''><'+x)X lul-f-xl 1-(d-li.) X  !«<-% 1 (

If Fa is reglaoed by %  we obtain a correapondlng eiqpreeslon. From 
eqmtlon (2.^5), on nslng the above résulta^ we see that for large x

77̂
and th'J.B result is the same as that obtained on using (2.44).

For convenience let A *:=(%«= 1 in the expression for %(x) and let 
%(x) 0. For a value of î̂lach number^ M and a weak magnetic fiel

F3 0,1 we can calculate the total incident pressure and the total 
reflected pressure (for R; S > O). Q?he results are represented graphi­
cally in Figure 2,3*

> 1

FIGURE 2.5; O T M j ÏNGXBM AKD TOUAL HEFhEOlM)
PRESSURES FOR M =* 2 MD  €2 0.1
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As a second example we examine the effect of a compression wave, 
created at some point of the ionised gas, which Is incident on the 
interface of the semi-infinite solid.

FIGURE 2,4; GOM^RESSIOR WAVE IWGIDEhT? OH SOLID 
(TlfO FAMILY SYSTm OF CHAMOeERISTICS THROUGH A POXWS P)

0?o simplify the investigation we consider the ease when Cfe(x) » 0 and 
only %(x) is present. We prescribe Fs(%) to 3mve the form

 ̂rr)'̂ j  ̂  ̂ y > o  .

Since %  i8 piecewise continuous we must appeal to the theory of 
generalised functions, e.g. Liglithlll [5] in order to interpret the 
meomlng of the integrals which arise,

1‘hus we have from equation (2.45) the result tliat Gi(x) « 0 for 
X < 0, and



2.20

, n  w  =  r  t) .  ? £  f-j >' f r i : ± -  V / X > (

Eince (see, for ezmanple, Li^thill [5] )

Ayy — 00
we obtain, if we let n oa in the above expressions

(H''"-f-L'') G^lj) ^ G(j) - .
TTX

This resialt is to be interpreted as follows. Waen there is an incident 
compression wave, then the expression for the reflected wave involves a 
term which gives rise to a shock-wave (we obtain a delta-function since 
we 0,re dealing irlth a linearised theory) and also to a term which indi­
cates that there la a finite, eventmlly vanishing upstream influence 
effect•

By similar methods the results from two compression waves, created 
by a slender wedge fixed in the flow, could be worked out.

Chu and Lynn (5] consider the steady flow past a non-conducting 
slender wedge. U?hey also examine the possibility of steady flow over 
a sharp convex comer. For the latter case they indicate by means of 
a counting procedure tliat the number of equations to be satisfied 
exceeds the number of unlmoï-ms by one, l‘he implication of this result 
is as shown above in section Î.4, that flows of the Prandtl-Meyer 
type cannot exist. They attribute this situation to the feed-back 
of magnetic disturbances in the non-conducting solid, The situation 
is very similar to the one considered in this section and Chu and lymi'E
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résiliât Is en Imiiedlate consequence of the presence of non-uniform 
disturbances induced by the propagation of eXectromgnetic waves in 
the solid,

æiim FLOW imims

When the applied magnetic field is orientated at an arbitrary 
angle to the stream the operator in the partial differential equation 
for* the current g can still be written as the product of two quadratic 
operators [2] by a process similar to that which gave rise to equation 
(2.10). Values of M and s occur which a3Jlow these operators to be 
both Iiyperbolic and if we follow through the analysis of the above 
sections no new feature arises,

When the values of M and e lead to the product of an elliptic and 
a liyperbolic operatoi' then the solution for | depends on the sum of the 
two parts and we TOite

f + C .

Detailed expressions for § are given in (2], We assume that the 
boundary condition (as y - 00) on the magnetic field in the solid is 
the seme as that used previously (see section 2). If we also assume 
that the jump relations of section 3 are also valid then It is possible 
to obtain a singu3,ar integral equation for the single reflected wave. 
This equation is identical in form to tlmt given by equation (2.35) but 
the quantities K, L, and k(x) are now different. The complete solution 
is readily found and we can show that when the disturbance is localised 
the upstream effect is again of order 1/x for large x.
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MA.GJSHîSeO-OASDïMAI4IC PLW OVER A WEDGE



5.1 imOPUCTIOE

The baeie problems in fluid mechanicfi ai'o the helmvlour of a fluid 
In motion either with free boundaries or over a solid body. For flow 
over a solid body a fundamental problem, useful for a geneial under­
standing of the properties of the fluid under consideration, is that of 
a uniform infinite stream impinging upon a semi-infinite wedge, The 
study of this flow led to jiaportant results in conventional gas dynamics, 
and the same may be expected from the corresponding study in magneto* 
gasdynamicB. Some work has already appeared on the subject. First, 
Cabannes [6] presented the solution to the problem of the steady flow 
of a perfectly conducting fluid over a symmetrical wedge at zero angle 
of attack when there is an applied magnetic field aligned with the 
oncoming stream. By a. well-îmown theorem, a magnetic field aligned 
with the stream everŷ ĥere upstream at infinity remains in this con­
figuration in an inviscid, perfectly conducting flMd. K- This problem 
is the simp3.est possible extension of gas dynamics, The attached plane 
stationary magneto-gasdynaaidc shocks are two in number and symmetrically

The theorem is easy to prove from the basic equations of continuous
floï’T. For example, from {1,12b), which is an integral of the equations o
motion, wo can see that u/h ^ v/H «* V/H. It is not, however, Imedi-y
ateXy obvious that it reroailns true across a shock-wave. An examination 
of the jump relations across a shock-wave (see paragraph 3*4 below) shmra 
quite simply that it Is, in fact, valid.
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p.laced aa in gas dynamics. The flow field and the magnetic field inside 
the wedge remain imooupled for a imgnetic fie].d aligned with the stream 
that it is not necessary to specify the conductivity of the wedge. In t 
absence of a component of magiiotia force normal to the surface of the 
wedge there is no tangential Lorentz force acting on the Inviscid fluid 
particles in contact with the wedge) hence the presence of a cuiTent 
sheet is permissible smd such a surface, in fact, separates the body 
of moving fluid from the solid boundary. Expressions were derived by 
Cobannes for the velocity, density and pressure jumps in terms of the 
shock angle p and the semi-vei’tex angle of the wedge, 9, The trigono­
metric equation for the shock angle warj found to be of fifth order in 
tan p and required to be solved numerically.

The corresponding problem for an applied magnetic field oblique 
to the stream has received considerable attention from Kogan [1] who 
restricted attention to thin wedges and thin aerofoils, for which 
linearisation of the equations is possible and the exercise becomes one 
involving the theory of characteristics. This paper requj,res careful 
reading because of the numerous errors and mils-prints it contains. 
Recently, Chu and lynn [5Î considered the problem of the two-dimensional 
steady flow of an infinitely conducting fluid past a non-conducting wedge 
TrXth a magnetic field non-aligned %d.th t W  oncoming stream, %r means of 
a counting procedure they indicated that to obtain sufficient equations 
to solve for the numbex’ of unknotm par̂ mieters it was required to match 
the solution for the flow with that fotmd in the wedge. They considered 
the jump conditions which hold across weait shoclm (charactorietics) and
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restricted their analysis to thin wedges. Their prime object in this 
linear theory was to demonstrate the effect of the coupling of the flows 
above and below the wedge via the boundary conditions on the magnetic 
field. In a more recent paper, Mimura [8] presented a solution to the 
non-linear problem of the shock-wave configuration on a non-conducting 
wedge of finite angle in the presence of an incident perfectly conducting 
steady stream. In this case, however, the magnetic field was applied 
perpendicular to the uniform flow and was assumed to be weak. He 
indicated that the flow required to pass throi%h four shock waves, two 
for the upper surface and two for the lower.

In the following sections, the equations for the problem of the 
flow of a fully ionised inviscid gas past an infinite non-conducting 
wedge are developed in full generality, They are then used to show how 
flotr with four attached shock waves develops from the solutions of 
Cabannes when the magnetic field ahead of the wedge becomes oblique to 
the streaai. A method of perturbation is found for small obliquity Xi 
wMch illustrates how the curz’ent sheets, lying along the surfaces of 
the wedge, move out into the stream to give the additional shock waves.
In the wedge a magnetic field, inclined at a finite angle to the wedge 
axis is set up. %en the parameter €%/%) < 1 expressions can be 
obtained for the perturbation quantities in the regions between the 
second shocks and the wedge surfaces. These liav© been calculated up 
to the second significant power in Perturbation solutions of this 
kind could not be found for k̂  ̂^ 1; and it is argued in part IV of the
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thesis tîmt for those values of the shook# fouM by Cabomea are
either unstable or physically unrealisoble, and the résulta obtained
in this part lend support to these views.

3.2 m m m o n i m  sYhmm

We BOW introduce some furthox* notation ami symbol©:
V coefficient of fluid viscosity.
B spécifié entropy.
X aaiigle between H and V,
^  - *Gw, mfi*

0 flow direction.
p inclination of first shock to wedge axis.
5 inoXination of second shock to wedge axis.
suffix Î refers to conditions upstreor%.
aul'fix 2 refers to conditions between the first and
second shock©.

suffix 3 refers to conditions between the second shook 
imà the wedge quantities vhicli are dashed, e.g. 1% 
refer to x̂ egions II and III below the wedge (see 
Figure 5,1),

b Mfveii speed, «
€ non-dlisensional parameter (* b/a).
k non-dimensional parameter («« e/M).
suffix n refera to the normal to the wave front.
suffix t refers to the tangential direction along 
the wave front.
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3.3 OF T m  fhobjjm
Consider the two-dimensional steady flow of a fully Ionised gas 

here idealised as a perfect, inviscid fluid of infinite electrical 
conductivity in irrotational motion over a stationary, semi-infinite, 
straight-walled, non-conducting symmetric wedge at zero angle of attack 
to the oncond.ng stream. Without loss of generality the permeability of 
the body imy he assumed to he the some as that of the incident stream. 
.Diaiuagnetio effects are Ignored and I-iaxwell̂ s equations are used in 
their usual form in conjunction with the basic approximations and 
equations of mgnoto-gasdynamies. DHbie applied magnetic field, of 
magnitude %, is orientated at an angle to the incident uniform 
flow, which has a uniform speed V% at infinity upstream and is directed 
along the axis of the wedge (Figure 5*1 )• The non-conducting wedge is 
assumed to be symmetrical *̂ rlth semi-vertex angle 63. The restriction 
to a synmietrical wedge is not necessary (the field is, in any case, 
unsymmetrieal) but leads to some simplification of very complicated 
equations and makes it easier to draw comparison with the results of 
conventional gas dynamics. The two-dimensional flow is assumed to be 
of restricted type, Jjc. the magnetic field is assumed to lie entirely in 
the plane of the flow (the x,y-plane), which is supposed to be normal 
to the leading edge of the wedge, Tiie addition of a third component 
independent of z, while making the equations more complicated, is 
S trai#itfozward from a theoretical point of view and will not be 
considered here. As pointed out by Chu and lynn [3I this removes from 
the flow field a pair of Mfvén waves, one above and one below the body.
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On the basis of a linearised theory, Kogan [1Î has shown that 
when the equations of motion are "fully hyperbolic" there are four 
real charaoteristics (other tlian streamlines) tiirough every point.
A discussion of those ports of Kogan* s work which are relevant in 
this investigation m s  presented in part I section 1*3; see Flgmre 
1.1. In a full non-linear theory the characteristics through the 
aposc of the wedge, representing weolc die continuities for the thin 
wedge, may be eKjxîCted to be replaced by shook waves, two above 
and two below the wedge. The fluid flovr has to be such that the 
magnetic fields on the surfaces of the wedge are compatible with 
the field inside the insulating wedge, which is governed by an 
elliptic differential equation. The lack of alignment in the 
magnetic field induces different shock and floTr patterns on the 
upper and lower surfaces of the wedge. The solution will be sought, 
as indicated in Figure 3*1, by the Juirtaposition of uniform regions 
of perfect]^ conducting fluid separated by shook waves.
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Itoder •fcha aseimptlona inada Maxwell'a eçiuatlojis take the form:
aiv H m 0, (5.1
owl H « J., (3.2

1 “ ff(l + M ) .  (5.3
equatlone hoMlng across a jxltane stationary sho(̂ *-vave in an 

lnflnlte].y conducting gas are (see, for example, Ba%er and k̂'lcson [9] )
[%y - 0, (3.4
[pvj » 0, (3.5

lfVv.V tf}+ H 1  -  ̂̂ (3,6

[piL y f'i.y)] = o,

If Vv. H - 1-1̂ V ’j Cl o

(3.7

(3.£

(3.S

Here the suffix n indicates a component normal to the shock-wave. 
square hra-ckets are used to indicate the change, across the shock-wave, 
in the enclosed quantity,

A count of unknown quantities shows that in region II downstream 
of the first shock there are the seven unknowns %, Vq, pa, ife, )(a, 0̂  
and p, and in region III downstream of the second shock the six unltnowno
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Va, Pa, Pa, !Xa and d. 2?hue there are thirteen xxxiknmnB tor the 
solution on the upper surface^ there are also thirteen from the two 
regions below, giving a combined total of twenty-six unlmawns. An 
exommtion of the jump relations (3.4) - (5.6) shows that across 
any single shook there are but six independent basic scalar equations^ 
there are therefore twenty-foxir equations altogether and twenty-six

Accordingly we are led to the conclusion that for non-aligned 
fields the solution in the fluid depends on the solution of the boimdary- 
va].ue problem within the non-conducting wedge. It is easy to shoxr 
(Sîian [10], Chu and Lynn [3]) that the magnetic field inside the semi- 
infinite non-conducting wedge must be constant. In consequence, the 
magnitude and d̂ ,raction of the magnetic field in the wedge are the 
same on the upper and lower surfaces of the wedge. %is result supplies 
two further relations once the connection between the values of the 
magnetic fields in the fluid and the wedge at the interface have been 
established. 3?his matter is investigated in the next section.

3 ^  GomiTio m  AT Tm; mEP-WFPGis i m w A C B
At the interface between the two media kho norml component of the 

magnetic induction is required to be continuous. Because there is no 
change in the permeability this implies continuity of (the suffix n 
always indicates the normal component across the Interface between two 
adjoining regions ). Ühe tangential component of H may or may not be 
continuous. If it is not, then a current sheet lies on the interface.
It can be verified that in the upper 3.ayer the flow of current is equal
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and opposite to that in the lower layer so tljat the net contribution 
at the apax la aero. In the event tlmt f 0, the current sheet and 
mgnetio field together pi'Oduce a Lorenta force acting on the layer of 
particles in contact irith and moving along the wedge. It îms been 
customary to rule this possibility out on the grounds tlmt en inviscid 
fluid cannot support a surface traction. If this is accepted, then 
for gA 0, no current sheet is peimiisslble; in consequence, the 
tangential component of H, and hence H itself, must be continuouo 
across the interface, For the problem under consideration this implies 
that the vector H has the some value in the fluid on both the uppei* and 
lowex’ surfaces of the wedge. l*hia result supplies the two additional 
conditions required to bring the nuinber of equations up to the number 
of unknown quantities and thus to make the problem theoretically soluble.

Befox*e proceeding it is useful to point out that the correct 
tangential boundary condition to be satisfied e.t the interface is not 
quite so straightforward as has sometimes been supposed. ake%mrtson (Î1Î 
has discussed at some length the nature of the limiting condition at an 
interface between solid and fluid as the viscosity in the fluid tends 
to zero and the electrical conductivity tends to infinity. The jump 
condition to be satisfied by the magnetic and velocity vectors across 
the interface is

In general the values of <s and v are such, that the limit of vw may be 
taken to be zero, Tims 0 and consequently [H] % 0 as assumed



5.11

above. However, in some astrophyoioaX applloatlons the .limit may well be 
finite,^ Then a discontinW.ty in H o.t the interface is necessary and the 
surface force inevitable, The usual concept of an inviscid fluid must 
therefore be modified in this case in order to allow a correct repre­
sentation of the boundary conditions to be made. This state of affairs 
does not materially affect the solution of the prob3.em under discussion, 
the result being mere3.y a modification of the two additional conditions 
on |g (involving also ̂  and J )̂.

l#@n 53 0 no difficulties of the above kind arise, the fields in 
the fluid and wedge being Qomplete3.y uncoupled. Gabaanes* problem was 
therefore capable of solution without any reference to the nature of the 
wedge or the field inside it.

In what folloim it irill be assumed, for the sake of definiteness
and simplicity that ^1^^ v# ^ 0 and that the contlnuj.ty of H across

V
the interface between the f3.uid and the wedge has to be assured.

3.6 EQUATIONS HOLDim ACROSS SHOCKS 
Ttie first shook on the upper surface0 m #*1,1*1# I hi hhm i ik .iî     11 u  pi

From (5.4), Hj,a ■ Ifea ox-
(3.

The author is indebted to Professor K. SteiJurtBon for this 
observation
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From (3 3), p^Vin ** statement of the continuity of the mass
flmt across the shock, and this may he written as

/f, - V, p / K  ■ (3.

By m e  of the tangential component of (5*6) and the equation (5.10) it 
follcrtfs that

-'Xg)

The quantity e/M is seen to he the ratio of the Alfven to the flow speed* 
Equations (5.11) and (5.12) may he ccmahined to give

Ç 0̂ ) , (5,1
*5>V̂/3

The normal component of (5.6) combined with (5*12) leads after some little 
algebra to the result 
kjp Jr -

Equation (5*T) gives

%

fi
M



I-Jiien the flow direction and the inclination of the magnetic field 
are îmown this equation gives an expression for the shock angle (3, When 
the fields are aligned it reduces to a quintic equation in tan p, the 
equation found hy Gahannes and solved by M m  via numerical methods to 
give the complete solution.

The component of (5.8) tangential to the shock gives

^  - 'i' S.V 7 , ■ (5.1

Substitution of (3-12) and (3.10) in (3-16) leads after some little efforl
to an equation of the fourth degree in tan p with coefficients involving 
given quantities and ton tan dg. It may ho arranged in the form

Q  4/k - P ^  (3.1
where

P  - Up'll I ( -h

-j

/-?'}.  ̂ I / ’ . > .1

^ . (3.V

The six equations (3*10), (3*12), (3-13); (3*l4), (3*13) and (3*16) 
Mil form the basis of the analysis in subsequent sections. The remaining
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î8 shock equations may he derived very simply from these hy the trans< 
formations indicated below.

The angle between the ma^etic field and the direction of flow 
upstream of the second shock on the upper surface is Xa - dg. By 
referring all angles to the flow direction in this region, the equations 
appropriate to this shock follow from those obtained above by means of 
the substitutions:

5 - 0s for p, 0s - 0a for 0a; Xa " %  for Xs and Xa - 0s for Xi- 

The shocks on the lower surface
The equations for the shocks on the lower surface may be obtained 

directly from those established for the upper surface. The simplest 
form results if we measure directions downwards f‘rom the wedge axis in 
Figure 3 01 und add a dash to the variables p, d, , .... to mark
quÊintitieo in the Immr half-plane. The equality of the magnetic field 
vector for both half-planes ahead of the leading shocks, and also behind 
the second shocks, is then provided for by writing -XI for Xa. (^d -Xs 
for .

3.7 CEBJMM IJMITS FOB Xi » 0 AMD X, - hs.
Before proceeding to the investigation of the perturbation analysis 

we first of all utilise the equations (3.10) - (3.17) to obtain certain 
limiting forms. These limits provide useful checks.
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induction to  Gabannes

When we put Xi ®* 0 In (3*17) we have the result that « 0a *«0; 
say, the semi-vertical angle of the wedge. However, see the later 
onalyais which surrounclo (3-26), Hote that 0 s« 0q hut for convenience 
in this section we drop the subscript. Equation (31 0 ) now becomes

% / %  "* nin p/sin (p - 0), 4
Equations (3.12), (3-13) nnd (314) become respectively:

Yi = IfkA.
% n,a

- k'I'f’/Y + ::/̂  f/A >̂î5//î + i9) (5.;

Substitution of these ratios into the energy equation (3 13) and simplify 
ing the result gives

(5-

where
p  ~ \ i('Ypj'-tt) J 0 ~ \  I ( ^

^  ̂ ^ Y(lYz !kP " t- i Y /̂ H/g A p  Ô

^ (Uŷ ji, -U\ û) I j h  A m $)
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~ - y k-K é 1 f >

 ̂// / yL- /̂'K ê}//̂/i,yS ' A,% é)
The results (3-19) " (3*22) were given in this form by Gahannes [6].

After some further effort (3*22) can he wit ten in the form

^ U p jy r A A P i —c Up i P  yS f' ^ a (3*23

where (we dx̂ op the subscript 1 on M and e )

c Ytivyyx)  ̂\\h^] è - é +-

4- + m y n ) i ' - - \ ] h " ' J  ,

■̂  - r  ^ i -^xl^n —  g ^ f ? J  A k  f

A comparison of the above coefficients with those given by Gahannes in 
a later paper (T] indicates that there ore two errors in the value of c 
given by him. A quick cheek to verify that this claim is correct is to
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proceed thus? since the coefficients of ef, ef agree in all the compoil- 
sons we can examine the effect as G a. 0* Thus from (5-23) we have, whci
e X = 0,

i k ^ k J ^ é - T  [ \ f^fhnY) ^ " 7

+ I ( tyi)y7/̂ -/-x f x ' \ ^ o

Since p ^ 0 we can dismiss the repeated first factor. The remaining cubic 
equation is the familiar equation which one has to solve for the shock 
angle p in conventional gas dynamics. The solution to the Cabaixnes 
problem is straightforward. We specify the semi-vertex angle of the wedge 
0, the Incident îÆach number %  and the strength of the magnetic field, €%, 
The quintic for p, (3,2)) can then he solved numerically. Since Gahannea 
did not give tabulated values of p it was necessary to calculate some of 
them for comparison with his graphs, in order to establish the validity 
of these. His analysis is the starting point of the perturbation method 
which M13« be presented in detail in later sections, 
ibl_Ktogan limita for week ahocks, &

From (3*IT) when x% •• we have the result:

\ " I f 4̂̂ )̂A p i >̂ /^ys ({'3.jh) ^

■t k-y'ji-i]-4y(ifU'^'-ih) j =-<?
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Wlien the o end-vert ex angle of the wedge, 03 «  1 the flow deviation in 
region XX, 0^ 1. Since charaeteristice are shoclt wavea of vanishing
strength we may write p « o -f- A0a, Miere o is the angle hettreen a 
characteristio and a streamline and A is some constant. We oen write 
(3.24) to terms of order 0g, thus

4A;V Ij f

/9-v j ̂  ̂  A h ’-/) ? — o

The root of this quadratic in tan which oo as 0g 0 is

7^, “  \ ft- + ̂  y o(9-p') j y  (T 6^  (5 .2;

where,
ft-- (i'iy)Uy.̂ iy , C - /Ĉ '̂ tT ̂

S -  - (T -/-«AkV + z')i(i-4,Y ^ ^

Subotitublon of (3.25) into (3.10) » (3.14) gives, respectivelys
- jft)$^ A / K  = I - (k J ’6'jft) Ô^-y 0 (ép̂ )

j  - 6  = \yynpk^^.ô^y o(ê-)
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These valxies substituted Into (3*13) give eventually,

] Yhn, V  k ^ ‘̂6 y \h, Ymy) +o(&,) = o .

This quartia equation gives the characteristic angle a when Xt ** 
oAxl was discussed in detail in part I (c,f, (1.22))*

As already explained there are 26 dependent variables for which there 
are 24- equations derived above and 2 boundary conditions. The trans- 
oendental nature of the equations involved renders a direct analytic 
approach virtually impossible. The equations could be tackled on a 
fairly 3ay/go electronic oomputea:*, but again the number of parameters 
sugfgests that a considerable amoxmt of complicated interpolation would 
be necessary in order to obtain resiilts. All solutions must of coiu'se 
be subjected finally to the thermodyiwiiG test of non-diminlohing entropy 
laid doim by (g.g), and the ohoioe of branches where two possible shock 
directions exist has also to be made. In view of this it seemed worth­
while to try to narrow the problem to that of finding hotr the general 
configuration begins to develop from a known solution by making o, sml3, 
altération in some parameter and attempting an analytic approo>ch.

The starting point chosen was Gabannes* solution for a magnetic 
field alibied with the stream. The variation introduced was in the 
direction of the magnetic field upstream of the wedge. The non-alignment 
of the field provides interesting insight into the adjustment of the field; 
in the wedge and in the fluid. As the inclination Xi of the magnetic 
field to the stream tends to aero the configuration lias to pass from one
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In which there is continuity of magpaetlo field at the interface to ono 
in which a current sheet lies on the surface.

3,8 PBRTÜÜBATXOH OF GAEAÎTOS» SOLimOM
Since the field inside the non-conducting wedge is constant, the 

condition of zero normal component on both upper and lower surfaces of 
the wedge for aligned fields in the fluid requires that there shal], be 
no magnetic field inside the wedge. Corresponding to the collapse of 
the second family of characteristics it Is to be expected that the second 
shock wave Mil fall on to the wedge surface and that this will provide 
the source of the current sheet appearing in Cabannes* solution, (See 
part I, section 3 for a similar approach). Another way of looking at 
this is to consider that the magnetic field in legion II M U  orient 
itself so that ̂  is parallel to the second shock in the limit as 
X3, 0 while there will be no magnetic field in region XII in this
limit. IMder these circumstances on putting Ô « in the equation 
corresponding to (3.17) for the second shock on the upper surface the 
condition

is obtained, and if shock angles greater than are ignored this has the 
roots

%  , 7 ^  = "Xi , (5.2
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The first of these Is consistent with the Cobannes limits when this ia 
preserved the analysis outlined below shows that 3fe ^ the limit
as Xa. 0 and the angle is therefore not restricted to approach

as Xi 0.
As win be seen below the values of quantities in regions III and 

III* may not all be found to order %i unless the perturbations frcea the
Gabannes limits are calculated to order The following perturbations
are therefore introduced, the subscript c representing the (known)
Cabannes values :

y k l

kh, - K k X  y I

^  (f/ +- "X, 1  (

K  jy, ~ (K / k X   ̂  ̂X

X  ~ X A 1̂, y X  \ /

~ ^y y ‘3X1', y Y, ,

Here bg, %, (%, Ĉ , 1®, are constants to be determined, A set
of six linear equations is obtained by equating terras of first order in 
Xa after substitution of (3 .27) In  (3. 10), (3. 12), (3 .11), (3 .14 ), (3.15) 

and (3.16):

L (o  ̂ (5.2
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f (if 4X crZ X ’̂'''6 \i^y&CfS.Ci) ^  f-

29'

(3.50:,̂Y*-V“ '. -«*r< *lKlnx̂ iL -tv,!i/x œcos.Y <{«,
n-i//7,)^ cffs to s.'hto 4^ ^ ^ —

caŝ o ^r^c^fiPé)

- S.V to ^ f<rsto S.VKCO

L  t { -pdi/iki ] 4-

+ S'^pPi-iz/iX^y(K/k,)c jnply-i) IhpLy-ù  ̂•̂-w ~

= '̂ X\I' Fk/u,)̂ ̂c&(-p> ̂ (3.32

(3.31

% A — i '̂[ d, ! î X "> c> (3.33

(n e c e s s a rily  p o s it iv e  s in c e  V and H a re  s c a la r re s u lta n ts ) . Fo r convenleni 

we have s e t w «  p -  6 and have o m itte d  th e  s u b s c rip t c on p and 5 on 0 .

TOie same procedure In  re g io n  I I *  w ith  (3.27) m o d ifie d  to  read

»>'!». -- f'iinX -k'l,

leads to the result 

/ //%  X  ~- I  ^ o .  (3.34



The flŒf near the wedg©
For the transition to region III the assumptions consistent with the 

previous analysis are

^ h  Y, \  'j

dli- ^ f 3^1, f g'3 Y :  , j
where a is the, as yet unknown, orientation of the magnetic field in 
region III and is 0(1 ). (The particular form chosen for Ô, Mth the 
perturbation measured from }(3 instead of 03, aids in simpliiyî iS the 
0,lgebra, ) We have

I f ^ P z ) f

= , (3.5Ê

Yj K  ■= % iS-éy) - /''//j hj -7;) /■/ -̂ J_) 5

^ /%, = ^‘V (^ y 1̂ “Siv (P6^)

= È f Î L  i  , -  k C<
' (5.3E

- ; + / Ç * '

i , (3.3s



where iTgg = (V%)q-
Mfferent cases now arise according as < , *s, or > 1.

(i) kgQ < 1

The two values of %  given by (5.40) are negative, A necessary and 
sufficient condition for the flow in region II to intersect the second 
shock wave, aS it must do in a physically real situation, is that d > 
or %  4- ^  - Iq > 0, Accordingly, since f̂  < 0, the upper aigti in (5.40) 
has to he dismissed and thus

%  £3 ™ (^ - la )/( 1 t ̂ ĉ)* (5*41
On substitution of the ratios (5-36) - (3-39) into the energy equation one
finds that

< I . (5.42

This equation yields the va3.ue of and when it is used in conjunction 
Mth equations (5-28) - (5.33) we can solve for the seven parameters

It follows easily that, to a first approximation (independent of %%),
Vq/Vs c3 1 -Î* kgc,

Xlc^- (  ̂ t f  K  ^

and



Tims % / % ,  Pa/pfî; are all greater than unity. The last two of
these results are required for a shock wave. The first shows that the 
flow is actually accelerated through the second shock and it is interest in 
to recall that Kogan [1] showed that an acceleration could occur across a 
niagneto-^Bdynamie shock when he applied linearised theory to the flovr 
past a thin wedge with ^  (he found such accelerations through the 
second shocks both above and below the wedge). The requirement of increas 
of entropy across the shock means that the inequality

(5.43

must be satisfied for the shock to be thermodynamically stable. Noif

I ?.. r
> if r >

i.e.

and hence the above inequality (3.43) is satisfied.
Before discussing the cases l^c ̂  1 it is convenient at this stage 

to give the analysis for the flow near the lower surface of the wedge.
In region III* (in the lower half-plane) the equations corresponding 

to (3*33) are
k y / -  /j 7, y-F/iX , ^

 ̂ (5.4'



where we have used the result that H is constant tlironghout the non- 
conducting wedge.

Analysis carried out Just as for the upper half-pl^e gives 
f| 'î* ^ % c  aud again we need to laveoti^te whether

, S3, or > 1. For the moment we restrict to he less than unity. 
The choice of sign is found from the requirement of the flow in region 
II* to Intersect the second shock. This yields

t& - - - -7a)/(l " kso) < 0, {5.4̂
The Bii’bstl'fcufclon of the ratios %/l% etc. into the energy equation gives

\ ' ^ U F i) X \ X ' ^ [ Y X c  ) ^  I , (5.1M

and from the equality we can find As before the quantities 
1̂ , c|, . li can be found. Also

n/n - 1 - fee/ (3*4'
Tfhile pà/pêi and pî/ié have the same values as the corresponding quantities
in region III, Equation (5.4t ) shows that the flow is decelerated thi'ougl
the second shock in contrast with what occurs on the upper side of the 
wedge. The shock is thermodynamioolly stable.

The value of a, to order x5 follows from the equality %  « %  by 
OTiting

(Ha/Hs )(Efe/HjJ « (%/%)(%/%)
which gives

k  j- /  f X  ) =  c. . (3.4
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When %  and fâ are replaced by their respective values from (5*41) and 
(5*45) it follows at once that

tan a (î/feg) tan 0̂ . (5*4g
This implies that o: > 0a (and InoldentalHy verifies that % / %  > 0 as 
required).

We now continue with the Investigation of the reamining values of
fee*

(ii) fee 1
Wlien fee 1 we have fa *5* ^  - fe ** i fa* We dismiss the upper sign 

because of the result (5.55). By inspection the lower 0%^ is found to be 
admissible. However we also require f| “t* *• ^ f| and we can dlemis
the upper sign for the same reason as before (5.54). Tiie lower sign gives 
fg < 0. But for the flow in region II* to intersect the shock we require 

- 3^ to be negative; there ia thus a contradiction. We cannot 
therefore with this value of fee find a shock-wave solution of the type 
8ou#t, It will be demonstrated in part IV that this value of fee is 
associated with shock waves which are physically unstable in the Gabannes 
problem.

(ill) Ifec > 1
Mhthenatical consistency now demands that %  « (^"fe)/(fee » 1) and 

fâ ^ *" (^ - fe)/(fec 1). This implies that f| *»• gâ * is > with 
the consequence that the flow behind the first (lower) shock wave cannot 
meet the postulated second shock, There cannot therefore be two shock
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waves oil the lower smrfaee of the wedge. We slmll show also in part IV 
that this value of kgc gives rise to shock waves which, if they exist, 
az'e not physically stable.

3.9 w m m o n  w  o(x, ) a m
In tho last section we expressed Pa/pa and Vs/^ to first orde:

terms only. To ensure consistency in our analysis we must develop the
perturbation of these quantities to 0(xa.) terms. In general we have

Ç - ‘̂ "(h/k)(i-i^/HX, - ^ V a > ,  )lv,/i/X(p,/f, ) ,

and hence

where for conciseness we have witten

 ̂l^i(>hliOc ~-^x(k/hx), (3.5c

'^‘/v ^K/Ki)c  ̂ (2'5(

Equation (5.16) may be used again (o.f. derivation of (3.35)) anâ. tills tin
we equate coefficients of Xl“

*' ( It/Hj. ] . (3*51

To ohtaln a3.1 mipanslons to 0(x% ) tenus we have to express % / %  to 0(){̂  )
and

V



I"̂3 'A, + /s'% ,

where we have introduced so that

\  ~  ̂3 ' ^ 3 ) C")Z ^  . (3"'

The result (3,40) was obtained from the constant terms in the expansion. 
If we now equate the coefficients of Xi ve obtain

We can use (3*40) to simplify the ratioi Va/Vs and we write

Va/Vs « 1 * ksG + G3X1,
where

k  S  j - h R + C - L ■ (3

Also,

) + f/) 7 , ,

where
V

and



For the lower siirfaee we have

hX' ~ ~ k "  ^ 5  Z(5j+oi)
where

(3-5(f /  V  =  '■?' •

The result, analogous to (3*55) is

V f , ' ' ^ c / j ' V

Ifs'" -Jj) ^ „ (3.3'

We now have
V^/Vg *=̂1  ̂ksc * QoXx;»

where

f . V  '  i r F , v 6 / - i ' j . ‘ 5-5

Also
X'IK'- (i~/̂ J'̂ i) ■

If we now apply %  w 1%, the constant terms give (3,49) hut the
coefficients of Xi yield

^  °  • (5.5

The values of %  and f̂  are known from (3.41) and (3*43) and from these 
we can detennlne ^  and g*̂ frcmi (5*42) and (3*46), respectively. It 
folloxrs that the quantities hg, cg, . 1 ^ ,  1̂ , ĉ , ...,,1̂  can now he
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found from the two sets of linear equations. The value of a is found 
from (5.49) and the value of %  %  may he obtained from (3.31)- (The
va3.ue of is obtained from the corresponding equation for the
Imrer surface.) Also from (3.3 0) we know and Thus if we éliminai
Xq and X3 from (3*3 9) hy means of (3*3 3) and (3-3T) we obtain an express^
for gg and its value is known:

4 _  - \ Z4  y Z / )  \ (3 .f1/3 "  — --------------------- ,
\ ca/ i-céhfŜ  XU ) ̂

where

_ _  J - ^ U h f P / U  2 - U') +

Î5ack substitution enables us to find Tvg and Xâ in terms of known 
quantities. Hence from (3.32) and (3.36) we can find F3 and 
respectively, and when this is done we utilise the results to obtain 
expressions for %  and cg in terms of Imown quantities. By inspection 
it is clear that we have now obtained expansions to 0(Xi) for all the 
ratios, etc., save for pa/pa and pâ/ps* From (3*33) we see that on the 
right-hand side the quantity %  appears. To find %  (and also (%) it 
is necessary to substitute for all the ratios in the energy equation 
and equate coefficients of Xi* It is felt that there is nothing really 
to be gained in reproducing this analysis here. The algebra was in 
fact executed in the hope that some simplification would occur (c.f. the 
results (3.4s) and (5,46))but no simple grouping of parameters appeared.



3.32

At the beginning of section 3*8 it was stated that we required to 
take the perturbations laid dotm by (3.2T)* The results (3*33) and 
(5.39); for example, serve to illwtrate that terms to 0{}^) are 
required,

3.10 W H O B  OF COMPUTATION
For any computation we require to specify %, e%, %% and O3. Across 

each of the leading shock waves we have six equations in seven unlmowDs, 
Accordingly at this stage it would appear that if we specified one of 
these unknowns for each of the regions II and IX* we could theoretically 
then determine the solution, Some kind of iteration procedure would then 
need to be introduced to obtain re-estlmtes of the two postulated 
quantities, However a close inspection of the equations which hold 
across the leading shocks reveals that, because of the transcendental 
ns-ture of the equations and the way in which the groupings of the unlmcmm 
parameters occur, we need to speciiy two unknowns for each of regions II 
and II *, For example, if we give values for p and we can obtain %  

from (3.IT) and hence we can find %/hi^ is obtained the same way* 
Because of the ntmtber of parametez'S it is not feasible to pursue this 
line of approach.

By means of the lesults of the perturbation of Oabannes* solution 
we noxr present certain numerical results which reveal the consistency 
of the analytic approach.

Cabaimes [6] gave numerical results of the solution of (3,23) for 
O3 « 20  ̂when «f » 0.1 (wealc magnetic field), # 1, and cf m 10 (strong



mgaetiQ field). He presented curves of p versus %  for each of the 
values of €x in turn. Ve chose the case ef *» 0.1, Gq ^ 20®, a value of 
y " 1.4 was selected and the coefficients in (5-S5) were computed. !fhe 
values of %  chosen were 1.8$, 1.9, 2.0, 2.2$, 2.5, 2.75 and $.0; see 
Figure 3.2. Following the procedure in ordinary gas dynam3,cs where one 
looks for the shock angle which is appropriate to the weak attached shod 
wave the values of p in (3.23) which gave rise to the weak shock branch 
were computed. It is possible to obtain an approximoiie value of p from 
[6]; iteration via the Hewton method secured convergence to the root. 
With the values of now found we obtained numerical values for ( % / %  )̂ 
(%/Vi )̂  etc, Whose values were checked against values which were 
represented graphically by Oabannes.

FIGURE 3,2s MGÎiE OF SHOCK ( m m  SHOOK BEAMî)

/V

5?he coefficients bg, Cg, Ig were computed now from the set
of linear equations. The solution of these equations was effected by th 
method of successive elimination; checks were executed via hand computa» 
tion on a desk machine. From (3.27) all the ratios and angles were foun


