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Summary of thesis "Statistical Analysis of Congestion in Road Traffic

at an Intersection", by D. H. Reid

The problem considered is that of delays caused to vehicles on a
major two-lane road at its intersection with a minor road. There are no
traffic lights or policemen at the intersection and delays are assumed tc
occur purely as a result of right-turning traffic (where left-hand-drive
is the convention observed). A survey of literature relevant to this
problem is made in Chapter 1.

In Chapters 2, 3, 4 mathematical models of increasing complexity are
proposed as idealisations of the actual situation, These models are
constructed with the aims of simplicity and realism in view, so that a
valid mathematical analysis of the steady-state behaviour of each may be
made. The models are based on such simplifications as the replacement of
vehicles by geometrical points, the generation of vehlcle arrivals by a
Poisson process, and rules for the interaction of vehicles at the inter-
section which, although probably unrealistic in model I, may provide a
reasonable picture of actual behaviour in model III. The distributions o
delay to vehicles is determined under the assumptions of each of models
I - I1T, and programmes were constructed to calculate numerical values
for certain aspects of these distributions.

Chapter 5 1s concerned with the assessment of these models, particula
model III, against observations. The observations are described and thel.
limitations discussed, The parameters defining model III are estimated,

and the goodness-of-fit of model III to the data is considered. A

comparison of model III with model I is attempted. The tentative conclus
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is reached that on the basis of the data available model III may
provide an adequately realistic picture of vehicle behaviour,
In a final chapter some practical applications of the work are

briefly considered, and further related problems are described,
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Chepter 1.

Antiroduction snd Desorintion of Problem,
1.1, Congestion and mathematical models.

Situstiona are often encountered in which some type of
agency provides merwvice for individuals or groups of & populatioa,
and in vhich the demand for service at times sxceeds that which
the agency is adle to supply. Congeation, in a broad sease,
refers to the non-availabiliiy of service to the customer at the
instant at which 1%t is first required. Examples are the demsrds
by drivers of cars for entry to a perking space, or by telephcne
gsubegcribers for the routeing of cells through an exchange. In
aach of these cases it is possible that 1f the service is not
available ee poon as 1t is required, the immediate demand
disappears,

The kind of situation of interest here, by comtrast, has the
property that a customer whose demand for service is not
immediately met will wait until the service becomes available,
in many cases the customers wait im an orderly msanper, forming &
queue or queues, and receiving service in the order of their
positions in the gueune, For customerz delayed im this way, the
interval of veiting for service often representis am economic loss,
and 20 the minimisation of the total cost of the system may be a2
problem of some importance. In gervice- or congeaticn- systenmns

of this kind, it would appear that efficiency might B¢ improved



by the cereful welghing of the cost of providiag better service
facilities against the savings accruing t¢ cuvstomers, as a
raesult of reduced delays. In order to assess various peesible
designe for a typioal congestion-system a detailed anslysis ia
required, which might well initially be concerned with an
existing ayatenm,

The firat steps in the analysis of the system, as of any
other physical system, should be to observe end te describe 1% es
precisely as possible, The extent to which this c¢an Be achicved
wvill vary with different types of system. In some ceagee, for
example, it may be possible to describe the service-mecharnisw in
detail. In others it may be necessary to use imferentiel methods
to discover the nature of the service from observations ez thes
input and output proceases, For many systems 2 puvrely
deterministio description will not he satisfactory anmd the
languege and ideas of the theory of stochastic processes will be
apprecpriate.

The desoription ¢f the system is them used to commiruct a
conceptual, ususlly mathematiocal, model of the real pitumnation., Iin
the first stages of the analysis the model is chogsn 1o be as
simple aps poasible while remaining consistent with the eslient
foatures of the desoription, At 2 later stage it may be posziblse

to modify thoe original model, in the light of tte avalysis, to



correspond more closely with the real situatica. The description
of many models is in terms of certain paremeters, to whieh values
must be allocated at the discretion of the analyst, and in this
way a considerable degree of flexibility may bs buiit into a model
of 2 partioular type.

The inclusion of parameters in a model gives rise to problens
of statistical inference. There are naturally prodlems of
estimation, and an aszsessment of "goodness-of-fit" is desirable in
order to decide whether the model really reflects the festures of
the situatioa which are of interest, or whether a further model
should be comsgidered,

Ideslly a model mey give guidance on espects of a congestion~
system other than the purely econcmic questiors. A patisfactory
zodel may provide information on such problens as the geaeral
behaviour of the system, iis efficiency and capacity, and the

effects of minor modifications on the system.

1,2, Situations in road traffio which generate_conzestiocn.

It 18 apparent that there are many situations in road traffic
which result in congestion. Vehicles may be delayed by other
moving or stationary vehicles. Delays t¢ pedsstrians arec usually

caused by moving vehiocles,



1.2.31. Deleays to vehicles on the open road.

Travel on the open road is often impeded by the presence of
slower-moving vehicles in the same carriegeway. Mathematical
models for this situaticn have been propoeed by Miller (1962),
Tanner (9961), and Newell (1955), among others, and have been
ezanined to determine the ‘istributions of delays caused by
differencea in speeds ¢f vehicles. Theae authors give more
attention to the devoelopment of the models than to the mystematic
agsesgment of their adequacy and realism.

1.2.2., Delays to vehicles at intersections.

Vehicles may be delayed at intersections by other wvehicles,
or by pedestrians, policemen, or traffic lights. Several suthors
have constructed mathematica! models to describe the behaviocur of
vehicles at T-junctions and ¢ther types of interpection. Usually
the effects of pedestrians o:. vehicle flow are ignored, although
consideration has been given to the delay caused to pedestrians
wishing to croes a zoad. ° (Tanner, 1953 and Mayne, 1954). Here
pedestrians will be assumed ‘o have no appreciable effect on the
flow of traffic, and we shall be concerned with intersectione
which are not conirollad by jolicemen or traffic-lights.

Such uncontrolled interstations are often of what we may call
the ‘prierity' type, in which ‘here are °halt’ or ‘etep' signs

requiring vehiclea in certain lanes at the intersection to give
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way to those in other lanes.

It is convenient to distinguish between the terms 'T-junocticn’
and 'intersection’, The former will be used to refer to the
Junction of a minor road wiih one side of a major road, the latter
to the Junction of two minor roads with the opposite sidos of =
major road at a given position along its length.

For brevity we shall scaetimes refer to

‘vehicles on the major rcad’ as °’M-vehicles’,

‘vehicles on the minor road’' as ‘m-vehiclen’,
and for instance, ‘'the driver of a vehicle on the major road’ as

an ‘M-driver®.

T-junction

Puth of
€ —.mm — — € Myehicles

-voh ) Patho of J.rthbound

¥-vehicles
(southbound not shown)



1.2.3. The main problem of the thesis,

The central problem of this thesis is to investigate the delay
caused to M-vehicles at a priority intersection by righte-turning
vehicles™ in the absence of controlling factors, such ss traffioc
lighta or policemen, and interfering factors, such as pedectrinns,
It is assumed that the major road has effectively s single lanec in
each direction, so that it is not possible for vehiocles going
straight on or turning left at the intersection to pase to the left
of a vehicle awaiting an opportunity to complets its right turn.

The form of the thesis is as follows. In chapters 2, 3 end
4, mathematical models of increasing complexity are proposed for
the problem. In chapter 5 the attempt is made to relate these
models to data from an actual intersection, and to make an

agsegsment 0f their realisn,

1.3. Previous releyant work.
Very little appears to have been pudblished on thias problenm,

the relevant papers being summarised in section 1.3,2, There has
besn a fair amount of work on delays in simpler but similer
situvations, and many of the ideas and methods developed in thease
discussions are useful. A brief account of this work fs given

below,

'Left-hand drive is the convention ohaserved.
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1.%.1. Previo g of dela to m.vehigles at g priority

intergection.
Many authors have considered the problem of the delay caused

to vehicles entering a major road from a particular minor road at

& priority intersection. The major road is almost alwayes regrrded
as ocontaining a single traffic stream, and thie assunption is made
throughout this section. Purther sssumptions often made are that
the traffic in the major road is unaffected by the pregemcs of
vehicles in the minor road, so that for instance an M-driver would
not give way to a waiting vehiole, and that the flow of traffic on
the major road is not disrupted by the untimely emergence of
vehicles from the minor road, Stochastic equilibrium of the
system is assumed in most discussions.

Tanner (1962) proposes a model for this situstion for which he
derives a formula for the mean delay to m-vehicles. The time-
intervals between successive arrivals of vehicles in boeth M- and
m-streams follow an exponential distribution, and subject to the
following restrictions, vehicles pass through the intersection
instantaneously. An M- (m-) vehicle may not pass through the
interseotion within a fixed time By (pz) of the previows N- (n-)
vehicle, but must, where appropriate, delay its passage to conform
with this condition. An m-vehicle may not enter the intersection
within a fixed time ¢ (> p,) of the previous M-vehicle. There is



w

no restriction on how closely an M-vehicle may follow anr m-vehicle.

The purpose of the parameter 51 in this model iz to allow
traffic on the major rosd, as viewed by m-drivers, to be nonrandom
in that it would conform to the output of a single-sarver queue
with Poisson arrivals, in which the queue discipline is firci-come-
first-served, and the service time is constant. In this way the
model simulates groups of vehiclaes at minimum separation followed
by larger gaps. The result is that the exit from the mimor road
is 'blocked’ for intervals distributed with the ‘Borel-Tammer’
distribution, and is free for intervals having an exponsatial
distribution. Tanner'’s analysis is, however, valid for a general
distribution of duration of block.

In order to extend Tanner's model and analysis to the situetion
in which m-vehicleas seek to ocross or merge with either of two
streanms of traffic on the major road, the distributiom of dlocke in
the double M-stream must be specified. This problem does not
appear to have been solved, For a two-stream extemsion of the
Borel-Tanner distribution one requires the busy-period distridution
of two queues in parallel, each of the above type, where the system
is understood to be busy if at least one server is occupied.

Weiss and Maradudin (1962) propose a model whioh is wased on
the idea of a ‘gap acceptance function', previously proposed by
Cohen, Dearnsley and Hansel (1955). This functiom is defined an

follows.,
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We suppose that at the instant when an m-vehicle arrives at the
intersection, there is no gqueue in the minor road, and that the
nearest approaching wvehicle on the major road requires am interval
of length t to reach the intersection. The gap acceptance function
a{t) gives the probability that the driver of the me-vehicle amccepts
the gap and joins the M-strean.,

We observe that Tanner’s model uses a gap acceptancs funotion
which has the particular form of a step-funoction, because the model
is essentially unaltered if e bloock is presumed to stiart an
interval a’(< a) ahead of the arrival of the first of a group of
M-vehioles, and to finish an interval a - a’ after the lset vehicle
of the group. Weiss and Maradudin claim greater roaliss in their
model on the grounds that an m-driver cannot infallibly distinguish
between gaps greater than and less than a’,

Weies and Maradudin exploit the gap acceptance fusmoction and
the methods of Renewal Theory to derive solutions of a number of
problems connected with the delay to m-vehicles at a priority
intersection, They assume that the gaps between suoccessive vehicles
in the (single) M-stream are independently and idemtically
distributed, and that M-.vehiocles ocross the intersection instantaneously,
80 that the set of arrival instants forms a renevsl precess. As
they are prinoipally concerned with a single n-vehicle the

distribution of arrival instants in the m-stresm i not apecified.
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They determine the distridbution of delay to a single mevehicle
which arrives at a randonm instant in time to find no other waiting
m-vehicles. The probability that the m-vehicle moves off after
the nth subsequent M-vehicle is evaluated.

Several modifications are now made to the origimal model. By
varying the form of the gap acceptance funoction used by an m-vehicle
for successive delaying M-vehiocles, they construct a model whioh
inocludes an ‘impatient driver' characteristioc, The disgtribution
of delay to & randomly arriving, non-queueing m-vehicle is found
for this modsl. In another version of the model she distribution
of successive time gaps between M-vehicles (in the origimal model)
is made dependent om real time. From this the equations governing
the distribution of delay to an m-vehiocle, which arrived at real
tine To, say, to find no other queueing vehicle, are formmlated in
the nonstationary cese. Theae equations are not gelved.

Two alternative apecifications of M-traffic are alae
considered. In the first of these, an attempt is made to
simulate an n-lane major road by finding the distridutiom of time
to the first arrival in an n-stream major road, when the
distribution of arrivals in each stream is independent of arrivals
in other streams, and forms a renewal process in time, In the
other, the distribution of a gap in a single M-stream depends on

the types of the vehicles which define the gap, each vehicle novw
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being oonsidered as belonging to one of R types,
Weiss and Maradudin them apply the simplest of their models
%0 the case of a strean of m-vehicles delayed by tha Ne.streanm.
They ars unable to analyse the resulting model. They do sucoceed
in generalising their asimple model in a more limited way by
deriving the distridution of delay experienced by each of a pair
of m-vehicles which arrive simultaneously at the interssction.
Contemporary with the paper of Weiss and Maredudim is one by
Cohen and Stam (1963). These authors analysu a model which makes
some use 0f the gap acceptance function and aleo of what may be
called a 'follow-on probability®. The latter is deofined as
follows, Suppose that an m-vehiole arrives at the iantersection
after waiting in a queus for a non-ioro interval., Then, without
reference to vehiocles approaching on the major road, dut en a
purely random basis, the driver of this vehiocle decides
instantaneously whether or not to follow the precediag vehicle
from the minor romd. That is, with probability k, the 'follew-on
probability’, he follows the preceding wvaehicle, and vtth'probability
1 = k he does not follow, but avaits the arrival of the next
vehicle on the major road. Once he has made a decisien to move, a
driver completes his movement through the intersectiom imstantaneously,
and so the next driver in the queue (if any) is immediatsly in a

position to make an indopendent decision in accordance with the
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some follow-on probdability. It is possible in this way for a
queue instantaneously to decresse in sise by seversl wehisless.

Vehicles on the minor road which arrive at the imtersection
without queueing, or which have delayesd to await the paosage of
one or more M-wvehioles, use a gay acceptance fumotiem t all other
n-vehicles use a followv-on prodability. It will de ohserved that
no driver uses the follow-on probadbility more thanm omoe, It is
assumed that the arrival instants of M-vehicles form a Remewal
process, and those of m-vehicles form s Poisson process.

The follow~on probability is intended to reflect to some
extent the dehaviour of drivers in the real situation, fimsofar as
they find it easier to merge with the M-traffic whan they are
moving then when they are starting from rest, Howevar, this rule
has a further advantage. Cohen and Stam regard the total delay to
& partiocunlar mevohiole, whioh joins the end of a quewe of n
m-vehicles, as the aum of the 'completion times®' of these n + 1
vehicles (partial completion time of the first), where ‘cempletion
tine' refers to the interval elapsing from the arrival ef & wvehicle
at the head of the queue until its departure. They shew that, for
the model with follow-on probabilities, the completion times of the
R + 1 queueing vehicles are independent. In this way they reduce
the problem of delay to one involving the sum of indepemdently
distributed random variadles. Although they evaluate omnly the
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mean delsy, it would presumably be possible by this appreosch to
determine higher moments of the delay distributtion,

In a later section of the same paper the model preposed by
VWeiss and Maradudin is considered, in which the eesential change
is that the follow-on probabilities are replaced dy gnp acceptance
functionss 4in this case the probability that of m (> n) queuneing
vehiocles the first m only accept a gap of ¢ is a(t)(1 - a(t))
instead of a(t)(? = k)¥® ', It seoms that the property of
independence of the oompletion times of the vehicles im & queue is
not possessed by this model, The determination of the delay
distribution by the previous method would not be poesible, although
results concerning the moan delay would be unaffected.

Numerical results for both of the models proposed in the paper
by Cohen and Stam are provided in a subsequent paper by Cohen and
de Lange (1965).

Hawkes (1966) comsiders two oongestion situations, the first
of which concerna the delay to vehicles turning left or right from
a ninor road onto a major road which has two-way traffie, consisting
of a single strean im each direoction, Traffic on the najor road
is Poisson in each lane, and the arrivals of m~vehiocles fern a
Poisson process. Vshicles on the minor road turn either left or
right, and do so independently of previous vehioles, The

completion of a left turn requirez an interval of at least T, (a
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constant) betveeon succeasive nearaide vehicles on the major road,
and drivers of right turning vehicles must await a gap of st less?d
A (a constant 7»!1) in the combined flow of noarside and farside
streams, It is assumed that vehicles depart instantamesusly, aend
that there is 2 oonatant "move-up time’ a, which is the minimum
separation with whioh successive m-vehicles may depart, left- and
right-turning vehiclea form a single queue in the mimor roed.

Hawkes uses sn embedded Markov Chain to find the distribution
of delay to m-vehicles under the asssumpiion that o & '1‘1 s Tz = 2a.
These restrioctioms are neocessary to ensure tho validity of the
Markov formuletion employed. If, for imstance, Ta = 2a, then the
gap with vhich an mevehicle arriving at the head of & queue is
confronted may depomnd, not only on the previcus m-wveshicle, but on
asvoral previcus to iz.

Like Tanner, Howkes makes uese of a step-funotion 22 o gap
socapiance funotion. The cost of generalising the amalysis of
Tanner to the two-lame major roasd is, in this case, that the
analysis ie valid only for random arrivels in the H.agtreems, in
contrast to the enalysis of Tanner, Hawkes staten that the bhasic
restriotions en the parsmeters of his model may not be getisfied
in some actual situnticns, where it appears that ?z hes a value of
sbout 2a. Although 4t would appear that this model wonld be most

applicadble at intersections where the bdehaviour of traffic, at least
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insofer as gop accaptance is concerned, is fairly uvriform, as with
the other models comsidered here any final assessmeat of the
validity of the model would require detailed comparisom of ite
caloulated behaviour with ectuesl observationa,

The second model proposed in this paper by Eavkea do {cr delays
to H-vehicles at a priority intersection and is more appropriately
considered in the next section, 1.3.2.

In an eariier paper (1965) Hawkes dicousees & model for 2he
queueing by m-vehicler caused by o serieg of "blocks® amwd ‘gaps’ in
the single stream mgjor road. Blocks have arbitrery kasm
distribution cnd gape are distributed exponsatially. Vehicies in
the minor rosd arrive in dunches at rarndom izgtants cf time, The
nunber of n-vehicles in a bunoch is distributed indepsmdently of the
numabers in previous dunches with known distribution. Revehiclern
msy depart, eingly, omrly during & gap, and after a departure a
fixed time e, the "move-up time'’ nust elapse before another queveing

vehicle may depart, should the exit be urblqQekaed 2t this time,
¥ovements of m-vehicles through the intersection ere completed
instantensously. The distribution of delay to m-vehicles is
deternined.

Oliver and Bisbee (1962) aspume that the dietributien of gaops
is general, that am m-vehicle requires a time interval T to move

out, and that no two m-vehicles may depart in the ssms gap. For
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this model they determimne the distridbution of guene-size at the
inatants when an m-wvehicle departo.
The model proposed by Weiss (1965) for delayes to mevehicles at

an intergection makes use of a mcdification of the gap accepionce
fanctiorn described asbhove, If iz supposed that a driwor et the
head of & gqusue in the minor road requires & time jaterval of length
T to turn inte the msjor road. T is sampled from & diatxidbuition
with denaity £(T). If the gap G prescated to the driver is grsater
than T, the driver ocompletes his turm, dlocking the imtersectiorn for

exactly time T. At the eud of this tine, the moxt driver im the

L5
i
32!

quene (if any) bases his decision in & similar way on the gep
with which he iz prescnted.

In this medel both m- and He.vehicles arrive at random in time,
" ead Weiss evaluates in zhe case of atetionary bebaviswr the
probability generating function for quene lengih &t the inztanis at

which M-vchioles crogs the intersecticn.

1.3.2. Previous discussions of delays to M-vehicles st a priexity

intermsection.

In this gection we are concerned with the delay caused to
vehicles on the major road by vehicles on this road which turn into
the minor road. As the delayé to other M-vehicles caused by those

M-vehicles which turn left or go straight on are relatively



inpignificant, we claseify M-vehicles into two groupss type I
vehicles turn left or go straight through the intersection: type
IT vehioles turn right. We are now interested im thae delays to
K-vehicles arising from the movements of type II wehicles,

The sescond problem discussed by Hawkes (1966) is comcernad
with the delay to M-vehiclea caused by type II wehiclea ai =
T-junotion, which we may regard as an interscotiom &t which only
one of the two M-.gstresms containe type II vehioclea. Quenien may
form behind a type 1II vehicle which doez not cross immedistely:
it ig assumed to block ite lane completely. The model used by
Havkes io similer to that of the esarlier section of the paper,
which is disousmed ebeve in section i.3.7.

Another model, originally discusscd by Newell (19%9) amnd
subsequently modified by Haight (1263, 85.3), is as followe. The
nodel is for a priority intersection, but time ie regoarded as
divided into small intervals (°slets?), in each of whioh the
system remeins in a certain state, and transitions from ore siate
to another sre made disaoonitinucusly betwesn one glot amd thse next.
In each lane of the major road at 2 particular slot ome of the
following desoxibes the situation at the intersection.

(a) A vehicle is reedy to go straight through the intoersectien
or to turn left,
(b) A vehicle ies ready to turn right.

(e) No wehicle is present.
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Natural rules are given which between eczoh pair of slota allow
the departure of one vehicle or beith if at least ons vehicle is
present at the intersection, These rules are such that the
departure of & straight or left-bound vshicle from one lane will
prevent the departure of an opposing righi-bound vehicle beéuoccn
eny pair of slotae,

Haight and Newell analyse this system by defining the 'states’
at each siot as follows.

State 17 ¢ no vehiole in delayed,
State 2 ¢ a northbound vehicle i3 delsyed.
State 3 ¢ a southbound wohicle imc delayed.

In ordar to desoribe the errivals of vehicles im the syntem,
it 13 convenient to make use of the positions occupied by vehiasles
immediately prior to their entry to the intersection. Thag o
positions are elther empiy o0r ocoupied. If empty, such & ponition
may be occupied ¢t esch pucceseive plet with coastent »rebability,
sntirely independently of the othor especta of the svstes, Vehiclen
in theee poeitions are of types I or II indeparndentiy of ths
recainder of the systex with probehilities oconestaat for each lamne,

A metrix of tramsiticon probabilities ip defined onrn the ntates
and state probmbilities sre cbtained for the cesse of stoahsstio
aquilibriuvm, These way be used <o find exprassions for mean delays

and to deduce conditiona for stability of flow,



This model seems %0 be only an approximation to the actunl
situation, even if time is supposed to proceed by disocrete sleps,
for the following reaaon, In an actual situation, the probadbility
that the position adjacent to the intersection ie fiiled appears to
depend on the extent to which a previous right-turzing vehicle in
this poaition hes been delayed. It is poasible that a queve would
form during any prolemged arrest of this wehicle, Thus the model
applies exactly to the situation where a vehicle, which arrives in
a given lanc only to find thet lane bdlocked by a deleyed »ight-
turning vehiole, merely disappears, and thus no qusues form and the
only deleys in the system are caused by wvehicles actuslily st the
intersection, rather than waiting in & guous, While i is
cppreciated that all mathematical models are idealigations t0 varying
degrees, it seems that an essentiasl fecture of the actual eituctian,

nemely the possibility of the formation of gueuss, has deer neglected

in thls model,

(1) Digorete time prooesg, Although some suthorm heve ireated the
arrival process as operating in discretc ¢time, it o appareat that
the characteristics of such a process must be based on an exeminaliion

of the aeciual continuous process, with the result thet mest authors



profer to try to comstruoct a contimwous time model.

(11) Pojmeon Arrivsl Proceps in time, As is well known, this
process has several properties leading to mathematical simplificaticn,
and it has often beon used in this context. The fact that the
probability density for the inter-arrival distribdutiocs, he ' °, has
its greatest value at the origin would lead to difficulties if
vehicles of finite sige wore considered. Thus for this arrival
distribution it is ocustomary to replace vohicles by geemetrical
pointa in the model, end to attempt to compemsate thie further
idealisation by the sonstruction of rules for the bebaviour of
vehicles which simulate finiteness of sise.

(1i4) In that it

is more flexible this process would presumadbly be an improvementi on
the Poisson process. However the difficuliies ariging from the
latter are considerable snd there is mot muoh procpset 0f progrecs
with bunched errivals at present,

(iv) BReneval Process. Similer remarks to those of (iii) are

applicabdble,
(b) Mechanism of Comgestion. In this lies the cherasteristic

feature of the prodlem, and in the models which follow the attempt
is made to achieve groeater realise by modification of ¢thip mecharizm.
Some of the devices woned dy previous authors are applicable,

notably those of Weiss (196%).
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(e) Methods of Auslysmis, Except for a small sectfon of the paper
by Weiss and Maradwdin (1962), all of the above werk comocerns the
case Of stochastic equilibrium, and the present analyeis is
confined to this case, The analysis usez the Markov Chain

asgoociated with an embedded sequence of regeneration poimts,

(D. G, Kendall (19%3)).
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Chapter 2
Construction and Analyeis of Model I,
2,1 Derivation of the model.

In attempting to construct a model for the type of intersection

under investigation, we may take advantage of two characteriestics of
actual intersections which may lead to simplifications in any modeles
to be considered.

The first such characteristic i1e that it is uwsually the case
that 1little change in the delay to M-vehicler would result from the
diversion of each left turning vehicle to a straight course. 48 in
section 1.3.2, vehiocles are therefore classified into omly two
types, and we recall that

type I vehicles go straight on or turn left, type II

vehicles turn right.

We would expect that in some sense type I vehicles would have
priority over type II vehicles in the model.

The other simplification is a consequence of the fact that
queues are not simultaneously present in both lanes at the inter-
gsection, At any instant, either vehicles are passing freely
through the intersection without delay, or there is a queue present
in one lane, The simplest method of incorporating this feature in
a model is to stipulate that & vehicle at the intersection can Ye

delayed by an approaching vehicle in the opposing lane only when
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the types of the two confronting vehicles are different, and that
then at most one of the vehicles is delayed. Thus, in the model,
a vehicle ready to cross the intersection (i.e., unimpaded by
vehicles in the same lane) should be delayed only in the following
circumstances, and not necessarily even then, These clrcumstances
are that the vehicle about to cross should be of type II, and that
the next vehicle to arrive in the opposite lane should be of type I.
In such & situation it might be conjectursed that the driver of
the stationary type II vehicle would base his turning decision on
several factors, as well as the type of nearest vekhicle in the
oppogsite lane. The most obvious factor would be gome measurs of
digtance to the opposing type I vehicle, but distances to subaeguent
vehicles in the opposite lane might also be considered. It is =
matter of observation that it is a comparatively infrequent
occurrence for any consideration at all to be given by such a2 driver
to vehicles other than the nearest in the opposing lane, and it is
reasonable to suppose that his measure of the distence of this
vehicle is equivalent to an assessment of the time due to elapse
until its arrival at the intersection. In this first exploratory
model the situation is deliberately simplified by the omission from
the model of this feature of dependence of the decision on the sizs

of the available gap.



2,2, Description of model 1I.

(1) Leyout.

The model consiate of the intersection of a two-lane major
road with a minor road. Vehicles on the minor road have no affect
on traffic on the major road, as there are halt signs on the minor
road and the interseotion is not controlled by traffic lights or
by a policeman. Thus the minor road may be regarded as serving
only as a means ¢f departure of M-vehicles from the asystem.

The lanes of the major road are labelled 1 and 2 respecitively.

(41) Vehicles,

For the purpomes of the following analysis m-vehiclses are
ignored.

Vehicles are represented by geometrical points, The following
restrictions are imposed on the movements of themse points,
2) They may not pass through each other.
b) They may not traverse the geometrical bounds of the medel.

As in section 2.1, vehicles are classified into types I and II.

(iii) Vehicle-arrivals.

L T T T T AR

The arrivals of individual vehicles at the intersection are
specified by the instants at which they arrive either at the inter-
section, or at the tail of a queue of vehicles. Since in the model
vehicles possess zero length, the latter is geometrically equivalent

to arrival at the intersection, The idea of & queue of wehicles,



az a time-ordered group of one or more stationary vehicles in a
rarticular lane, is however preaerved.

In a given lane the set of arrival instants forme a stochastic
process in time, and the intervels between arrivals follow
independent exponential distributions, with parameter A, for lazne

i

i, 1 = 1,2,

With probability p; an arriving vehicle in lane i is of type
I and with probability ay it is of type II, where P, + Q= 1
ia«1,2, The type of this vehicle is independent of the type of

previous arrivals.

(iv)_Vehicle-interactions.

To simulate the movement of individual vehicles through an
actual intersection, it is assumed in the model that as soon ge s
#ehicle is 'ready’' to move it does so and clears the intersection
instantaneously. It is8 ‘ready® to move only when it is the leading
vehicle of a queue (which could consist solely of this wehicle), and
the driver of the vehicle has decided to nove. His decision is
made instantaneously upon his arrival in the lesding position in
accordance with the following rules.

a) A type I vehicle at the head of a queue irn either lane moves
as soon as it attains that position.
b) The driver of a type II vehicle at the head of a queue in

lane i (1 = 1,2) takes into account in making his decision only
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the type of the nearest opposing vehicle. If this is of type
II he moves immediately. If it is of type I, with probability

r, he decides to move immediately, and with probability 1 - r

> 4
he decides to await the passage through the interasection of

i

the opposing type I vehicle. The driver of a wvehiocle which
delays makes a fresh deciasion, following this same rule, as
soon as the opposing type I vehicle has completed its crossing.
Each decision made by the drivexr of a type II vehicle
confronted by several type I vehicles in succession ia
independent of any previous decisions made by him,
These rules suffice to determine completely the bheshaviour of
vehicles in the model. The only delays occurring are those due to
the failure of a type II vehicle to move when faced with an

approaching type I, i.e. those due to right-turning wehicles.

2,3%3. Steady-state behaviour of Model I.
2.3.%, Selection of regeneration points.

Before attempting to select suitable instants of time for
consideration as regeneration points for the model, we observe
certain general aspects of its behaviour which follow immediately
from the description above. it is apparent that, at any instant
of time, either there is a queue in one lane of the model, or thers

is no queue in either lane, A queue is necessarily headed by =&
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type II vehicle, and the nearest opposing vehicle is of type 1.
Queues may deorease in size only at the instants immediately
following the departure of an opposing type I wvehiols, At such
an instant one or several vehicles may depart instantaneously, or
the driver of the leading vehicle may decide not to move, Queues
may increase in size at any instant.

It is convenient to choose as regensration points the instants
at wvhich a vehicle orosses the intersection in either lane. Each
such instant ie described by (i) the lane from which the vehicle
departe, (ii) the number of vehicles (if any) queuneing at that
instant, and (iii) the type of the nearest wvehicle in the other
lane, if there is no gqueue in that lane, To avoid asbiguity in
the cases where several vehicles depart simultaneously, item (i)
will be teken to refer to the lane which conteina the single type I
vehicle whose passage haes released the queue, and it will be the
initial or largest sisze of the queue which is quoted in item (ii).
Item (1ii) is made necessary by the requirement that the descripticn
of the syatem at a regeneration point should be complate in the
sense that no further information about its previous history ie
required to specify prodbabilities relating to its future behaviour,
The ominsion of item (iii) from the desoription of the system would
mean that this requirement was not always met, for example in the
case where a II in lane 1 decided to move when opposed by a I in

lane 2, and bufore the arrival of this I a further II arrived in lane 9.
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It is in fact exaotly those situstions which give rime to the
necessity for item (11i) above which cause difficulty in the attempt
to analyse, by a similar system of regeneration points, a more
complicated model based on the gap acceptance methods of Cohen and
Stam, For certain of thess points to carry an adequate dsscription
of the eystem, it would be necessary for this description to includs
the length of the time interval due to elapse befors the errival of
the nearest opposing vehicle. As the uae of a continuous veriable
for descoriptive purposes at a regeneration point would imply that
the number of such pointe ias not denumerable, the method of the

Embedded Markov Chain cannot be used,

2. 3.2, Notation for steady stzte analysias,

The following notation im used for reference to the set of
regeneration points of H2.3.1.

Ri(n) is the label given to an instant at which a wehiols
departs from lane i, and at which there are n{> 1) vehicles
queueing in the opposing lane. It is understood that the remarks
of §2.3.1. concsrning 1 and n will apply.

Ri('1)' Ri(-2) refer to instants at which & vehiole departs from
lane 1 with no queue in the opposing lane, in which the next arrival
is of type I, II, respectively.

The interval botween successive regeneration points will bs
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called a transition interval, and it may be partly speocified by
reference to the types of regeneration'points at ite extremitiee.
Thus an interval commencing with an Ri(m) and ending with an Rj(n),
(4, = 1,2; mn = «2,-1,1,2,...) will be referred to as of type
{i,j; m,n}. A traneition interval is defined to include the
initial but not the final regeneration point, so that vehicles wmay
leave the intersection only at the initial instant of e transition
interval.

It is assumed that the behaviour of the system i3 stochasticelly
stationary, and that parameter values are consistent with thie
assumption, We define 'state probabilities’ as followa:

ﬁa(n) denotes the probability that a regeneration point seleoted
at random is of type Ri(n), 1 & 1,85 s =2,1,1,:2, .05

It is convenient also to define transition probabilities for
the probability that & transition interval is of a partioular type,
conditional on the type of the initial regeneration point of the
interval.

Additional variables may be used to specify & transition
interval with greater precision, thus we refor to an interval of
type {1,3; m, n}, of duration 7, and having a queue of length k in
lane 1 immediately following the initial instant, as being of type
{i,J; m ng 7',k}. The probability density that en interval ie

of type {?,J; m,n; 7-,k}, conditional on the initial regeneration
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point being of type Ri(m), will be denoted by =(i, j: m, n; 7, k)3
and =x(4, 33 m n) will denote the probability that en interval is

of type {1.31 m, n}, conditional on the iritiel point being of

type Ri(')‘

2, Transjition probabilities,
The transition probabilities are determined by arguments
similar to the following for x(1,1; m,n), m,n > O.
The procedure is to determine separatsly the guantitiocs
x(1,1; m,n; 7, m~x), 1€ T &« m-1}
2(1,13 mmn3 77, m);
x(1,13 m,n3 7, 0);
and to make use of the fact that
m
%(1,13 m,n) -f : x(1,13 mny 77, m-r) a7r.
o r=0
The quantity =(1,1; m,n; 7, m-r), 1< r = m-1, refers to
transitions from an 31(111) to an B,(n). It is the prodability
density for the joimt ocourrence of the events listed below,
conditional on the presence of a queue of m vehicleés in lane 2 and
the departure of a type I vehicle from lane 1 et the initial instan%.
These events are
(1) the next vehicle in lane 1 ie of type I and it arrives at

8 time 7 after the initial instants



(1i) the leading vehicle (of type II) in lane 2 moves priocr
to the arrival of this type I vehicle, as de the following
r-1 vehicles (of assorted type) in the queue - i,e., they
all move at the initial instant;

(1ii) the next vehicle in the queue is of type II and the driver
decides to await the passage through the intersection of
the opposing type 1 vehioles

(iv) the number of arrivals in lane 2 during the subsequeni time
interval 7° is a-m+r,

It follows that

%(1,13 m,n3 7, m-r)
-\ -1 «AoT -
1r'r2(p2“Q222)r .q2(1-r2). 2_2 (M‘V)n nid .g(n-m-o—r),

= A.DP.®
> (n-m+x)!?

where ¢(n) = 1, n> O,
A 0' n < 0'

Similarly x(1,1; m,n3 7-, m) and %(1, 13 m,. n; 7", O) are evaluated.

Writing fi o A Ty A= X1 4+ kz, we have

- AT -
=(1,13 mn; 7, m} = Py, (1-x,)e M (7)™ e(nem) ,

zn-msl
A (t+7) A, t 2,7

1 s

x(1,13 m,m; 7, d} = [ L% N ‘A,a,e . (1x,)e , (x270° :
. (n-1)!
£ i
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and so
A n-m
1(191‘ m'n) - p1k1(1-r2){%(‘r2> e(n‘m)

m-n-1 n
+ rzqzig—— . -x-?—fz e(n-n-1 )
x1+32q2(1-r2) | A

nenst 1 B
("2) To8p ("2" 2) ¢ (n-n)
*1¥. k! o

k1+x2q2(1-r27

r,.q T
242 me-1 2
i f2 (x)}; m, n>0.

The complete set of 36 transition probebilities for medel I is given
in Appendix I, A check on the transition probabdilities &s providsd

by the set of consigtency relations

oo 2

i 2 x(ivd’ mon) -~ 1: 1= 102' o = ""2.‘1l1929"'
n=w2 j=1
nf0

2.3.4. Evaluation of state probabilitiss

The state probabilities satisfy the etationarity equations

Py(n) = m?-Z %_1 %(1,J3 a,n) oy(m), 3 = 1,25 n=-2-1,1%2 ...,
mpg0 (1)
together with the normslising relation
2 0
i P = T o

ngo

These equations are now solved for the state probabilities.
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i’ ®

If we define Ri(x) w :.‘.,oi(n) x°, 441,23 |x] < 1, multiplication
=

of each of the equations of (1) by an appropriate power of x followed

by sunnation reduces the set (1) to the equivalant geot

MPorAp(-2) = Ay + Mgy (1-r, )]0 (<1) « A 2,8(<1)

+ X1p2q1r1‘§1(1) + (L1p;‘p2r2/f2)§1(1'2) + x1p2r1iz(f1) < 0O, (3)

& o TaTiadlnd _ 5] . Rgfead M. pige. g
R‘(x)[ e ¢ 1] e [PrAr(-2)tazep(-1)]

USRI LTSN S ARE

Xy Rk x) \fz-x Y

. (:‘g_f_g x) p1(1~rg)r2q2\).2 . (x=1)

11 X '?;D'-o-xzqz(‘l-rzn' m
+ Bp1) o pyap(temp i, x - 0, (4)

Y (-2 _x)
and
Moy (=2)=h 0o (=2) =N a0 (=1)=h a0 R, (1)-2,q B (1)-21%2P1%2 & (r,) = 0.
‘2 (5)

Equation (2) is
Py (=2)47(=2)4 (=1)4A (-1 )4R (1 4R, (1) = 1, (6)

Corresponding to easch of equations (3), (4), (5) thers is an equation
obteined by interchanging lane suffioces. These equations are

labelled (3*), (4%), (5%) respectively.
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The construction of equations (3), (4), (5) has introduced
certain constants whioh are themselves combinations of the unknown
state probabilities. These are 51(1), B,(1), H,(£,) ena B (1,).
Before proceeding further we evaluate these constants, together
vith the quantities 2,(-2), &,(-2), p,(-1), 2,(~1). Por this
purpose, we have equations (3), (3%), (5), (5%), together with &n

additional pair, found by setting x = 1 in (4), (4%),
2(1-:2) [?1;% (=2) + qub( 1)] p1 2 (\ +\, 2’%,(12)
£,
+ p1q2(1-r2)K232(1) - AR, (1) = 0, (7)
with a corresponding equation (7%).

When the coeffiocients of these six equations are inspected, it
is found that only five are linearly independent, so that, on teking
into account equation (6), we have in all six independent relations
between the eight unknown quantities. A further indepsndent pair
of equations may be derived as follows by an argument based on the
fact that the functions i;(z) are analytic within the unit circle.

Writing k for xzrz/x, so that k < 1, equations (4) and (7)

reduce to

5 o(f,~x)(x-1)
) - ey ¢+ o . )

R
Ny
x

where £(x) = {l-}—z (1-x) 51(1'2) + 5= q,(f,-x) ®,(1),
2 2 2
¢ = p,qzrz(1-r2)x/f2(x1+x2q2(1-r2)),
and kz(x-a)(x-ﬁ) - kax‘-:(x2f2+x-\1p?(1-r2))+hf2-p1pzx1(1-r2),

——

# S(x) say.
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Since S(fa) > 0, S(1) < 0 and the coefficient of x? in S(x) is

positive, it follows that one root of S(x) = O lies between f, and

2
1 and the other is greater than 1, i.e. a < 1, g > 1.
Equation (8) may be further rewritten
R,(x) = n(x)+ &(x) R, (kx),
to which a formal solution, obtained by repeated substitution, is

R (x) = h(x) + g{x)h(kx) + g(x)g(kx)h(k’x) H e

= o" 2(k"x) T'E(f -k x)(xtx-1)

e e LORE -
< ok :ﬂ;(k x-a)(k*x-p)

By definition, §1(z) ie an analytic function of z at z = g,
80 that its numerator must vanish at z = g, i.e.
® nonpen y X i vd is1 1+1
£(a) + £ ke Ak a) | | {(fz-k a)(k*a-1)/(k"" "a~a)(k u-p)} = 0,
n=1 1i=0

which is equivalent to

r -

~ D nan,, .n 2=l T 1+1 141 L
: 31(12) 1-o;f1k c (1-k a) I:]; Kl‘z-k a)(k“e-1)/(k " "a-a)(k a-pzh

P4T2

+a, R, (1)1, -u;f k"o?(f,-k"a) T'l'r(fz-k"a)(k"a-'l)/(k“'a.a)(k“‘a-ajl

- 0. (9)
Equation (9) and the corresponding equation (9*) constitute the

additional pair of linear equations required to evaluate the eight
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constants, R1(1), o /@(-1).
By means of aquation (8) we may now calculate the state

probabilities /ﬁ(n), n *>14, We define

Paha O 4
yq = 1f1 2 ﬁ1(f2) + q1x1f2R1(3),
2

(%
n>
]

PsMTo R (£,) - g MR, (1)
~LLZ BtLy 1MRqLH),
£

p1x1(1-r2) - AL, - A,

]
L {

y = My = Bylgky(texy),

b, = ~(141,),,
b2 - fzbo.
Writing for convenience /%(n) - u, 80 that R1(x) = I ux, (8)
i=1
is equivalent to
u1(a1 + kb2) = Yqe
: % _ .
uz(a1 + k b2) + u1(co + kb1) Yo (10)

n n-1 -2 -
un(a1 + k b2) + un_1(ao + 'k bi) + un_z(x2 + K bo) =~ 0, n 23,

If wa regard the first n equaticna of the set (10) as non-

homogeneous linear equations in the unknowns Rey, Uy eve, U, WS

n.
may write the solution for u, n 2 3 in the determirpental form
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where [&‘n = J.l (31 + k b2).
and An - a, + kb, 0 0 0 0 y
2 W
8y + kb1 a, + k b2 0 0 ¢} Yo
2 3
ka + kbo ao + k b1 a, + k b2 +) 0
2 3
0 kz + k bo ao + k b1 0 0
B~ Ne
0 0 0 === Atk zbo ag+k™ b,

see o.g, Jordan (1950), p.587. In practice, however, the numericael
evaluation on&n for large n seems to be most easily achisvad by
rogardinglkn es the solution of a system of recurrence relations,
and so it is just as satisfactory to attempt the solution of (10)
directly.

It is not possible to solve (10) by calculatiom of u1,u2,u3,...
from successive equations of the set, as it is found that an ultimately
divergent sequence is obtained. This may be understoed wpon
consideration of the asymptotic form of (10). The recurrence
relation becomes almost exactly

B, + agu + A = 0 (11)

n n-1 2%n.2
for moderately large n, and (11) has an auxilisry quadratic with
roots a", 3'1. Thus u_ ~ 23" + Ba"" and since > 1, p'1< %

it is the solution with B exactly zero which is required, This
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solution may not be reasched by the forward solution of (10) from
u,,u,, oving to the sccumulation of round-off error.

The procedure adopted here involves the baockward solution of
the system (10). We assume that, for some number N, the values
of u, (n> K§) are sufficiently small io make & negligible
contribution to the velue of tha expression for whose calculation
the Eﬁ} is required, In the determination of the mean delay it
is found that the guentity most likely to be affected by
inaccuracies in the {un} is the second moment of the distribution
{“n}' Thies second momeat is calculated repeatedly, for a selection
of suitably spaced and incressing values of N, nsing the wvalues of
{“h} approximated by the method to be deacribed. This proceeses is
continued until substantiel increases in the value of N result in
comparatively small changes in the second moment. At this point
wve consider N adequately deternined.

® complete the approximate determination of [ui}, we note thav
for large n, the ratio of un_1 to u, is effectively B. A set of
quantities u', n = 1, ... N, eatiefying (10) and with ug = %, ug .~ B,
are found by backward solution of (10), the first pair of equations
of the set being ignored. The first equation of (10) gives a
value for w,, and the approximation to u is then
u = u‘;xu1/u1‘, n& N,

n
= 0, n> N,



Checks on these approximations are provided by
(i) comparison of the vealue for u, with the value giver by the
the second equation of (10);
N

(ii) comparison of I u with the known value of‘§1(1).
n=1

2.3.5, The mean delay.

By ‘delay’ to a vehicle we understand the interval elapsing
from itz arrival at the tail of a queue, or at the imtersection if
no queue is present, until the instant it crosses the imtersection.
In this section the mean delay to wvehicles in lane 2 is deternmined.
In view of the Poisson arrival process in lane 2, the formule

meen delay = (mean queue length) / (arrival rate),
(Rendell 1951)
may be used for this purpose, where 'mean gueus lsngtith’ refers to
the mean queue length left by & departing vehiocle.

The method used here to determine thies mean queue length is o
average ite value for a particular type of transitiom iaterval over
all transition interwvals. The average formed is weighted for eath
interval by the number of vehicles leaving lane 2 durimng the intervel,
since by ‘mean’ we imply selsction of & vehicle rather them e point
in time. Thus the number of vehicles leaving lame 2 during an
interval must be included in the description of the interval.

In any interval, the only instant at which departures in lane 2



occur is the initial instant, If there are n vohicles gueueing
in lane 2 just prior toc the initial instant, and if ip the initinsl
instant the number of queweing vehicles is reduced to k, the mesn
queue length as seen by a vehicle departing in this Iintexrval ic
2{o+rk-1).

We denote dy =(1, 33 m,n3 k) the probability thet a regemerzticna
point of type R1(m) is followed by a point of type 83(3), and thai
there are k vehioles in lane 2 immediately following the initiasl
instant. If we further define bdy Wy the proportiom of trensition
intervals having as initial point B,(r), n = -2, =1, 1, 2, ... , then
Prob. [§ vehicle selected at random in lane 2 departa during

an interval of type {1,3; m,ng k}]

(m-k) =,(m) (1, 53 =, n3 k)

2 o0 (4 o) . T ¥
W, + I £ z N (m‘-k’)u1(n°)a(1,j% m',n'y k")
J'=1 m'=1 n'==2 k'=d
n 40

R 2 is kﬂo.1, seo M=,
Thus the mean queuse length lefi by a vehicle despartimg from lane 2

is
-
z mS (n+k-1)(n-k)u1(m)g(1,33 mng )\ / 2 @, +
jJ,m,n k«0
n'-1
£ I (m'-k )=, (m*)x(1, 5% n',m'p k')} ;

j'ym’,a’ k°’=0
as no contribution is made to the numerator by those imtervals whioh
comaence with the pensage of sero or one vehicles im lamne 2, From

this expression numericel values for the mean queue lemrgth and henoce



-
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nean delay may be derived.
It has been pointed out that the mean queus length as seen
by a departing vehicle is in fact equal to the mean queue leagth
in time. If we denote the respective means by E(qd) and E(qt)’
then in the equilibrium case, we have for the time interval
(t, t+dt),
expected total delay experienced z expected total delay generated,

i.e. E[qtbt} “ A BLE {v} .

vhere v is the delay of a given vehicle,
| - 1
so that E {qt} kaE(v) E{qu .
2.3,6, Numerical results.
Using a Ferranti Sirius computer equations {10 were solved,
and the mean delays computed for sceveral sets of parsmeter valuas.
In table 2.1, 11 refers to number of wvehicles per unit time, and

the mean delay is mesasured in these time units.



Table 2.1.

Results of gplouletions for mean delay.

% b orory)
5 .4 10 5 .4 18 « 201

.5 .4 26 .5 .4 10 .030

«5 .4 10 5 &l 10 . 207

5 .4 10 = .2 10 .20% .. (a)
5 .4 10 3 .2 5 184

-5 .4 20 «3 .2 10 .092 .. (b) |

2,4, Remarks on model I.

As explained in section 2.1, model I was constructed with
mathematical tractability in mind, and in order to gee whether an
analysie of its steady-state bshaviour might be possible, Although
such an analysis ﬁnu been achieved, it is of interest to assess the
practical value of the model before it is abandoned as merely a astep
tovards more realistioc ones, We ocnsider this from twe points of
view, namely the plausibility of the initial assumpiions and of the

results of calculations of the mean delay.



2,4,1, Validity of the initial essumptions,

In the model, the replacement of wvehicleas by geometrical points
is intended to simplify the mathematicel descriptior of both the
arrival process and the mechanism of cong;ation. In an aotual
intersection, congestion largely results from the faat that the
dimensions of vehicles snd the widths of lanes ere of the sane
order of magnitude. There is no provision in the model, other thean
the rule for delaying type II vehicles, for simulating this sspact
cf the actual situation, In fact, any unrealistic behaviour of the
model resulting from the assumpticn of point-vehiocles weould tand to
be emphasised by the additional assumptiones of zero oroassing-times
and decision-times for vehicles and drivers,

It is Jjust posaidle, of course, that these sssumpiions may be
ressonable approximations in some situations where, cn the average,
delay-times considerably exceed crossing-timesn, Agaip, the ruls
vhich allocates to right-turning vehicles the seme prokability of
moving, no matter hov near an opposing I might be, might be
regarded as reasonable in a situation where ths vieibility of drivers
is restricted, or where vehicles are moving very slowly.

The essumption of random arrivals may not be complotely justified
by the actual traffic flow at a particular intarsection, but 1t ie
nevertheless the case that a fundamental simplification in the

analysis of the model im dependent upon this assoumption, It should



therefore be retained in some form if at all pospibdble. Theve i
a conviderable maas of experimental evidence of varyimg quelity
auggesting that the Poisson model is adegquate for wvehicle erriwals
at points elong roads some distance from any congestiion mechanism.
This form of vehicle distribution may be demonatrated to bes the
asymptotic form espumed by traffic possessing certaim (airiy
plausible initizl veloocity =nd position characteristies. (8ce e.g.
Haight (1963) Chepter 4).

The essumed comsiancy of arrival reates should reasouably
approxinate the sotual aituation, at least over limited pericds of

obesarvetion,

2,4,2, Predictsd behaviour of mods) I.

It ia characteristic of actual intersections ¢kat the total
number of vehicles per unit time which nay cross the interszetion
is limited. This leads t© the idssc of the capacity of an
irtersection, and traffic eongineera are much concerwed with aw
appropriate definition of this quantity. If the wehicnlar flow 4o
the intsrsection exceeds its ocapacity, the behaviour of the aysten
ceases t0 te stationary,

It 18 interesting to determine what restriotions may be
necessary on the values of the parameters in order thai the

behavionr ¢f the model should be stationary. We mee that, witk



probability zero, queues increaease in&efinitely in this model (fox
non=zero pi,qi), @ince any queue may be complstely xelesased,
instantancously, by the arrival of an opposing II, 3tationary
behaviour of the system is therefore possible for any set of
raramneter valuesn, This characteristic of tho model may be
regarded as a serious deficiency, and it would tend %o resirict the
succesasful application of the model to an sctuel imtersection to
those situatiora where traffic is relstively light.

Inspection of table 2.1 suzgests that it may be possikle, for
et least some values of Pis Ty to deorease delay in lazne 2 by
increasing the arrival rate of vehicleas in lane 1, other parsmsters
remaining fixed. (e.f. rows {(a), (b)). Thie apparently
unreslistic behaviour mey bsa understood by obaervimg ihat by
inoreeciog h1 ve merely offer more frequent crossipz Opporturitien
to 8 dslayed II in lams 2, with a oonsegueat reduotion in mosn
zalting-tine in lane 2, In practice an increase in k? sould imply
@ decreage in r, - the existence of a relaticnship betweem r, and A,
and betwaen “a and ki might be comsidered,

The behaviour of model I does not sgaem to ogorrespomd more
closely with aciual traffic than ons would expect from the
conpgiderably idealised initial assumptions., The simpiiocity of the
model would allow of ites anslysis by methode other tham that of the
Embedded Markov Chaim, but it appears that the valuwe of such an

axsrcise would be mainly escedemic.

A description of model I is given in Reid (1947).



Chapter TII

Construction and Analysis of Model 1iX,
3.1, Derivation of the model,

A serious defeot of model I is the asmumption that a driver's
decision to turm right is not affected by the proximity of amn
oprosing vehicle, We have seen in section 2.3.7. tha% modifications
to model I based on the gap accepiance function as veed by, e.g.
Weies end Maradudin (1962), are unlikely to be tractable, parily
because of the manner ir which such a funciion requires drivers %o
make use of the entire available gap in resching their declision,

it scems responable to suppose that the interest of a terning
driver in e gap in the opposing lane ig comecerned solely with i
edequacy for his intended crossing. Wo mey imagine that he hes in
mind en intarval a, whick will be celled his ‘gap-requirement <ime’,
end which io the minimun time he requires for starding mp end wmoving
clear of the opposing stream of wvehiclen, Big deoclsion wkelber %o
croas is mace by comparing the avallabdble gap with a1 4F 4t sxceeds
a, he crosses without hesitation, otherwise posipoming his descision
until the opposing vehiole has cleared the interamection. If =e
rogard the intersection as blecked ir both lanes for the gap-
requirement time o, and make the sssumption of Poisson traffic tha

interval from the end of this blocked period until the passage of



tho original cppoping vehicle will have en exponsential dictribution.
Thue any vehiclee arrivieg at the intersectisn during this interval,
posgidly from a queune, will be confronted with random oppeaing
arrivale, simplifyirg considerably the analyais of & model btased om
such a scheme,

it is a matter of observation, however, thet drivers tend to
overestimate the time they require to complete & ecrossing. Thus
in an actual situation there is s cortein inzerval T fellowing tha
blook caused by a turning vehicle which is the vemainmder of %he
interval estimeted by the driver to be necessary for hip movement,
Al%hough, in & model, T might bo regardsd as part of the gap
requirement time a, this would imply that the drivey of the vehicls
quewveing behind the wvehicle which has crossed and givea xiee to T
would net start o make his deoigion untli the end of the inlteyrval
N This might be reasonabls if he was raquired %o malte & distinct
rmovenent to the head of the queune before making his deeision, and
if the time he required for this movencnt was on the average akbout
equal to T,

Although it wonld be ponsible to discuss methods of interpreting
e in greater detalil, possibly by investigating the relative sigaen
of separabls components of @, a&nd by considering the acourzey of o
driver’s asaessment of the distancsa of an opposing vehicle, it isw

felt that little would be gained bscavse of ithe impraeticabiiity of



measurements of these quantities, We leave further discussinsn of
the suitability of this method of desoribing the gap-accepiencs
mechanism until ohapte~ 5§, Similar types of gape-acceptance
mechaniem have been proposed by CGaver (1965) and Weisz (1965),

In model 1X the driver of a iturning vehicle will be tzlk=n to
make use of a gap requirsment time in the manner dsceribed ancve,
so long ae his pogition at the head of a queue is & coneequencs
aither of his errival at the intersection with no quene in either
lane, or ¢f a previous decisiorn which ke hes made ne? o meve in
the face of an opposing vehiole, Drivers in a givea lame eare
assuned to hnave access to e population of gap-vequirememt tines,
from vhioh & particular driver selects sne for a givea situaiion
uninfluencsd by any previcus ckoices of himaslf oy other drivers.

Thoee drivers in model IX who arrive a¢ the heead of & quoie
when cne or more preceding members of the gueue move off, mehke aun
imnzediate deeision in the same way as drivers im modsl I, apd if
they decids to cross, 40 £o0 instantaneously. This zseumpiion iw
intended to reflect the tendency of asctual drivers to "follow-on’,
Ll.e., to felleow insteantanecusly slmoat without regard %e oncomiug
treffic a vreceding vehicle which is making the cro=sing. One
would expect & model incorporating such an assumption %o be easier
t0 analyse than one in which all turning drivers made use of o gep

requirenent criterion,



3.2, Description of model Ii,

(1) Layout, vehicles. vehicle-arrivals,

Model II differs from model I only in the memmer £m which
vehicles interact at the intersection. The description of the
layout, wvehicles, and arrival process ios =s given im section 2.2,
(1), (31), (131).

(1i) Vehicle-interactions.

We distinguish the vehiocles which arrive at the imtercection
to find one or more preceding vehicles delayed in the same lane,
from those whose arrival at the intersecticn is uninterrupted by
preceding vehicles in their lane : we refer to arrivals "from =&
queue’ in the former case and °‘in free flow® in the lagter,
"Crossing’ and °‘turning’ refer to movenents complete to the extent
that the intersection is left clear.

The rules for the interaction of vehicles at the intersection
are 1
(a) A type I vehicle, which arrives et the intersectiom either

in free flow or from a queue, crosses immediately.

(b) A type II vehicle which arrives at the intersectfon in

free flow or from a queue, or which has already delaysd

its departure from the head of a queue by either of rules

(¢), (@) below, turns immediately when the nearest vehicle

in the opposite lane is also of type II,



(e)

(a)

The driver of a type 1II vehicle ia lane i which azyives a%
the intersection in free flow, or which hes alrealy deleyed
its drosaing by either of the rules to be desoribed here and
in rule (a), acts as follows when the nearest vehiele in the
opposite lane is of type I.

He moasures the time interval due to elapse, of length 7,
from the instant at 'hiqh hig vehicls is in a positican to
move (i.e, either its instant of arrival or the imstent et
which an opposing type I vehicle departs), wumn%il the exrival
of the opposing vehicle. He selects a'gap-requirement time’
o from a distribution with density fi(a)., If ¢ <7, he
delays for an interval a and then instentaneously cempletes
his tuxn, thus blocking lane i for an interval of length c.

If a 2 7 he awaits the arrival and crossing of the opposing
type I vehicle, before again asasaesming the silitustion by maaus
of rules (b), (¢). Eech decisicn made by a driver 4in ¢his
vay is independent of any previous decisions made by him or
other drivers,

A type II vehicle in lane i, which arrives at thoe {ntersection
from a quoue and which finde the neesrest opposing wvehicle to
be of type I, turns immediately with prodbability k., or awaits
the crosscing of the type I vehiocle with probability % - L3P

whereupon it uses whichever of rules (b) (c) is eppropriate,



The quantity ki is the 'follow-on probability’, Bach
decision made by & driver in thies way is independent of any
previous decisions made by him or others,

Rules (a) - (d) suffice to determine completely the
interaction of vehicles in the model. As in model I, fthe
only delays to M-vehicles are those due to the preaence of

right-tuning vehicles,

3.5, Steadv-state dshaviour of Model II.
3:3.1. Selection of regeneration points : notatiomn,

It is obvious that, at any instant of time, a gueue mey exist
in at most one lane of the model. Queues may be augmented at any
instant of time. The instants at which queues may decrease in size
or vanish are of two types, A queue in lane i may disappear
immediately after the orossing of an opposing type I wehicls, if
the next opposing wvehicle is of type IIi. Othervise, a delayed
tyre II vehicle may turn after pausing for its gap-requiremant tine,
to be followed immediately by several other vehioles of assorted
type. Thus the complete or partial relesse of a queue in model IX
is not always innodiately preceded by the crossing of a I in the
other lane. Recognition of this aspect of the dehaviour of the

model is of assistance in the construction of an Embedded Markov
Chain,
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It is assumed that the system has attained a state of stochastic
stationarity. As in model Y we identify as regeneration pointis
those inastanta at which a vehicle crosses the intersection in either
lane, In the case where several vehicles depart simulteneously, we
regard the ‘first’ vehicle to cross the interseotion, in the sense
of section 2.2 (111), as defining the regeneration poim¢t., The
description of the system st a regeneration point must imeclude the
following information ¢
(1) the lane from which the first vehicle departs,
(11) if & queue exists, its lane and size,
(141) 1f there is no queus, the type of the nearest vehicle in
the lane other than that from which the vehicle departe.
The notation used to represent regeneration poimnts i@ as follows :
Ri(n) refers to an instant at which a vehicle necessarily of type I,
crosses in lamne i, in the presence of m queue of n wvohiclen
in the other lane (n = 1,2, ...);
Si(n) refers to an instant at which a vehicle necessarily of type II.

crosses in lane i, in the presence of an additiomal n quewsing

vehicles in the same lane . (n « 1,2, ...).
Ri('1) refer to instants at which a vehicle of either typs croases
X
Ri(°2) ir lane i, there being uquueue present, and the next cpposing
vehicle being of type {%I o

Thus for instance 81(n) refers to an instsnt at which & vehicle of
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type II turns from lane 1, after delaying in this lane for its
gap-requirement time @, in the presence of a further gueue of n
vehicles in lane 1, The next arrival in lane 2 is a type I
vehicle.

Because of the properties of the exponential distribution, the
description of the system at each regeneration point is sufficiently
complete to enable all subsequent probabilistic behaviour of the
model to be inferred without knowledge of its previous history.
Vehicles cross the intersection only at the regeneration points :
they may arrive at any instant of time.

We define the state probabilities for the Embedded Markov Chain

as follows :

/oi(n) 1 il Ri(n

Gi(n) is the probability that a randomly g S,(n)

ﬁa(-1) selected regeneration point is of type Ri(-1f
4 . \

SRR T Ty W

3:.3.2. Transition Probabilities.

We now consider in detail the chain of events which determines
the type of regeneration point which follows a regeneration point of
Ziven type, and evaluate corresponding transition probdabilities.
There are 64 types of transition such as R1(n) > R1'(m), but by

symmetry we may rcduce the number for study to 32, The example
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below illustrates the method :

5,(m) 3 R,(n)

At the initial instant a type II vehicle is instantanecously
completing ita turn from lane 1, with a further queue of m vehicles
in this lane; the driver of this type II vehicle has already used
the information that the next arrival in lane 2 will be of type I,

We write for brevity "at ¥ " for "in {r, T+dT)". For the next
regeneration point to be of type Rz(n), one of the following
sequences of events must occur,

Either r{(0 < r = m-1) vehicles depart from lane 1 immediately
following the initial vehicle, after which the driver of the (p+1) %0
vehicle decides to await the arrival of the opposing type I vehicle,
distant time v, and during this time a further n-mtr vehicles arrive
in lane 1.

Or, all the vehicles in lane 1 cross or turn immediately and
the next vehicle in lane 1 (due an interval v, later) is of type ILI,
and arrives prior to the arrival of the type I vehiocle in lane 2
(which occurs after an interval T+ 17, eay). The driver of this
type II vehicle decides to await the arrival of the opposing type T,
and in the remaining interval, of lengthy, a further m-1 vehicles
accumulate in lane 1,

With p,, a4, A, M e, defined as for model I (section 2.2 (iii),

i
r%
2.3.3), if we write PiCr) - % fi(t)dt, 8y = Py + q;k,, the
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probability of this transition is
® n-1 «AT -).11‘ (x1t')°‘“r

2 r
I e (py+a,k, ) q,(1-k, e
JC r=0 e LA L 1 1n-m+r$l

® _oo A, (v+r,) -
2 1 m
+ J; J; Aye (p’+q1k1) e

47 g¢{n-m+r)

AT -A.T n-1
’ 1).1q, E-r, (t'):] o | (MT) dvdy,
n-17?

) x2q1i1-k1) (;l)“" m;; (.11.1)’ S
Pe

Ay, A, "8," o X n-1
% g o171 j [1 - F1 (2’):]0 04 dr .
(o]

It is found that of the 32 basic types of transition, 9 have

probability O. The transition R1(m) > RZ('1) has positive
probability only in the case n =1, The complete set of
transition probabilities for model II is given in Appendix I. The
transition probabilities may be verified by use of the consistency

relations of section 2,3.3.

3.3.3. Determination of State Probabilities.
The state probabilities satisfy the usual set of stationarity

equations together with a normalising condition,

We define
Ri(x) - I x ‘;a(n), x| & 13
n=1
-~y oo n
Si(x) - £ x dl(n), Ix} € 13
n=1

and  £,%(s) = fo'.tfi(t)dt, R, (s) > o.



The stationarity equations then reduce to aquatioms (1) to (4)
below, together with equations (1%*) to (4®) obtained from these by

au interchange of lane suffices. The equetions are

-rgm K, () = A [1-2,%(00p0)] £2 x(p 4 (-2)0a (-1 hp L, (x)

A -4 A o~
2 xR, (1 2 S
MECRLL of )+K' g, % 2(82)}
A Q (1-k )x - g \
1% 2 S ) - s,(x)} , &
’ (32’1) { 2(32 : x} )

(by coneidering transitions into R,(n));
§,(x) » M (£,3(0-2,x)-2.%(2) (=1)+p.0,(-2)+q, PR, (1)
1 = 1 ™ 1 941 ) 94PN
+q1§1(s1)}

+ P2 By (x)e, *(h-nx) - pot, T (M)A, (1)

(trensitions into S,(n)); (2)
My (=1) w0 A (pg+ay £, 5 (M) (o, (=148, (5,) )40, By (p, (=1)4£, 5 (M), (-2)
+8,(my)+a, £, (MR, (1) )erp, £, 5 (M)A, (1), (3)
(tranasitions into R1(-1)); and
ApPy(-2) = x1q2cp2(-1)+/b(-2)+q1§1(1)452(1)+§2(92)).

{transitions into R1(-2)). (4)



Equations (1) and (2%) and (1¥) and (2) may be solved simultaneously
for R (x) ] (x) and these functions are then determined as rational
functions of x and known transforms, but containing es unknown guantitie:
?;‘.cao;teta.nts p1( =2), '°2( -2), /o1( -1), ,<>2( -1), R (1), ® (1) s (s )
82(52), ,01(1) and ,0,‘,(1).

It is convenient to use equations (5), (3') to substitute for
the last pair of this set in terms of the others, leaving eight
unknowns. We proceed to find a nonsingular set of eight equations

linear in these unknowns, which we shall denote by Uy, Uy, cooll

2* 8’

respectively.

Setting x = 1 in the derived expression for'§1(x) gives

together with a corresponding equation (5") derived from 52(x).
The set (4), (4%), (5), (5%) are linearly dependent, since the

coefficients of u, sum to zero (h s 1B e B

Lf in the normalising condition
/%(-2) + /%(-2) » /%(~1) % ﬁb(-1) + §1(1) # ﬁé(1) Y §1(1) 3 52(1) -1,

the last two terms of the L.H.S. are replaced by formulae derived

- 1
from the expressions for Si(x), ve have a further equation in the {uj}.
J
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Yriting
‘1 - h1('2 - 1)(q1 + p1£2‘(k1))v
Py o~ Mlsy - (L5(N) - q 8,5 (0) = 52,5002, 5 (M),
with similar definition of”iz, +é for interchenged lane suffices,

we bave

g = T (6)

2Py { B }
where c, = l + kx1q1(32-1) ¢2 - fz (N)Ii '

1 =
By i Vi XXy, (a,-1) {"2?1‘1**1“192"‘ ‘2[’ - (pyrq,f 13("@}

2. q.P
1 ™1 ¥
g %
e ¥, A {q n2”’2(‘"1)‘1 (x;)
7 lk1q1(92-fj kkzqz(a -1) [*1 2 X,

[p,ﬂx,f,'(q!;, } ;

and Cox ™ ©Op._4 With lane subscripte interchanged, r = 1, ... 4,

The statement 52(0) = 0 is equivalent to
x = a A \
Py AL, (M)u, + p132(x-k1p1+x1p1£2 (x))us - 32[}’91(1-12 (k))(x2 - P

A " B
-x(ka - Pp = G, (h))] U P A8 ,A, (M ugh P o, (A=A B+, b, £,5(1) )y,

A =
,'|_|'x i p1(1"2)f2 (R)"’xszquz (X)*'Bapz(X-A P1+\1P1 2 ()‘)ﬂ ~ 0, (7)
2

There is a corresponding equation (7).
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The expressions for 11(x), 52(1) have a common denominatcr
=
D1(x), where D1(x) - (uznx)(x-k’p1-k21) + k1p1(1-x)f2 (k-xzx),
after removal of irrelevant factors. Sinoce D1(x) i oomtinuoue
and D,(0) > 0, D,(1) < 0, there is at least one zero of D,(x} in
(0,1}, It is shown in section 3.3.6 that D1(x) has exactiy omne

zero in thie interval, at say x = a It follows by the definition

1’
of the functions §1(x), §2(x) that the numerators of the expreesions

for these funotions must also vanish at x = a, . If we vrite

Y= ay - 8y + (1-a, ), 5 (A-25a,)
the condition for 51(x) im
Pyypyy + Pe(1-85)uy + (apy, - (1-82)(;‘; - Py))u,

+ Pydoyyug + Py(1-8,)u, + (apy, - (mz)(%—z- - p)ug = 0. (8)
A similar equation (8") may be derived by comsideration oflﬁz(x)
at x = a,; the equations based on the numerators of §2(a1), §¢(a2}
give no new information, (Thie statement and the next are bamed on
numerical work: complexity has so far defeated analytic investigaticn)

Equations (4), (4%), (5), (6), (7), (1%), (8), (8%) corstitnte
& linearly independent set from which {“i} may be determined. We
have thus determined 'ci('2)°“3('1)'.§i(x) and gi(x)' vhioch are

required for the determination of the distribution of delay.

3:.3.4, The distribution of delay.
The distribution function for the delay experienced by vehiclas
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in lane i is denoted by Bi(x), where it is understoocd as in §2.3.5
that the delay to a vehicle is the total time during which the
vehicle is at rest at the intersection. The delay to vehicles in
lane 2 is considered in this section.
Let us define
vr = prob. [a vehicle departing in lane 2 lesvéa 8 queue of
| length r in lane %,

A S
2(x) = I vx, xi € 1,
r=0

and B,%(s) = ‘[be'nde(t).

"

Since the queue in lane 2 left by & driver departing from thie lane
congists of vehicles which have arrived during his delay time, of
duration v, say, the distribution of the number of queuweing vehicles,
n, conditional on v is
n
(sz) -\, v

n! e » n-0,1,2,...,

and the unconditional distribution of n has probebdility generating

function
o0 n A,V
R /po (szz- . * de(v)
n=0 “o n!
= BN (1-x)) = A(x).
Thus
x x2-x
B, %(x) = A ---—) : x| £ 1, e standard result,
- 2 la

We now conmstruct an expression forJﬁga(x)o



The only regeneration points at which a vehicle depariing
from lane 2 may leave a non-ompty queue in thies lane are of type
R1(n) or Sz(n)° Let k denote the total number of departures from
lane 2 associated with such a point, Fer R1(n), k aspumes ora of
the values 2eroc and n, since at such s regeneration point thz only
vay in which a non-zero number of vehicles maey depart im lare 2 is
by the next arrival in lane 1 being of type II, Por deperturae
in lane 2, if Hz i3 e normaliising constant,

remaining queue is of length r and regemeretiozm point in of]

prob,
1 ng2(n)q, e(n-i-r)
- & W =g -
2
Similarly,
remaining queue is of length r, regeneration point is of
prob,
typs Sz(n), with & total of k departuree, 1% & S e
k—.
1 k%(n)ﬂg l("sz) ,
& = = g(n-r) g{r-n+k-1)
k 32
and
renaining queue is of length r, regeneration point is of
Prodv.

type Sz(n), total of n+1 departures

5 (n+1) d‘.‘,(n)-zn

* Tort) x H,

e(n-r)
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Here

=ﬂ2( 2)-0-/02( -1 )+ 2 pz(n)+ 1‘. 2 ka7, (n)s k- 1(‘i

-
..y el Em 2

@ o0
+ 2 (s+1)oy(n)s,” + a, & np, (n)
ne= 1 nw’

- /02(-2)+/02(-1 )+§2(1 )+~h—1;-2-5~ {32(1 )’52§2(°2)} +q1§1 (1),

where the prime denotes differentiation, (c.f. 'length-biased
sampling® in Cox and Lewis (1966), p. 61). H, is the mean number
of vehicles departing from lane 2 at a randomly chosen regeneration

point, Thus we have after a few linee of algebra

HoA,(x) = i {§ {1)-R (x)} ] {9 S (8,)-x8.( )}

Ay (x (1-x) YTg4\' /"%y *Zeg-xfzz‘z""zx
“!’02{'2)"'F2("1 )"'Rz(%)y

and Bzm(s) ias therefors determined.

It may be deduced from this thet the nean deley te arrivals

in lane 2 is

1 2__ ¥
ZH, {q1 i A & -(——)- [s (52) -S (1} + -(—mz 82"(1)}
and that the second moment about the origin of the delay distribution

is, writing d, = x2(1-52),

2

2\, 8

35 994 i °2 -a
.;;{.3.{.,3 (1) - 5% [§ye)-5p(0)] - 55 5,11

s 8 ()



3.3.5. Numericel Results,

A Ferranti Sirius computer was used to calculate the mean and
variance of the distribution of delay to vehicles in lane 2, for a
eelection of parameter values, under the assumption that the
distribution of gap-requirement times had a translated negstive
exponential form, i.,e.

T

fi((l) = 0, a i

n

-V exp(dm&(a~Ti)), a>7T

T

This cholice of distribution was suggested by Herman and Weigs
(1961), and is diecussed in chapter §.

For each of the sets of parameter values the values of k; is
chosen t0o be equal to the probability that & II at the intersection,
faced with en opposing I sampled from the opposing stream, would
accept the gap with which it is presented if it were to make usze
of the gap-requirement distribution for its lane, Thus k., is

fixed in terms of A\ P,, and, e.g. we set k, = fex(kz).

L] ui! 1'

i
Results are quoted only for the case of lane-symmetric traffic,

and are shown in table 3.1,

Comments on table 3,1.

An example of the effects of changes in the value of A, on the

i
delay distribution is given in rows 2, 5, 19, 13, 20, 21, It

appears that, as ki increases from the value 0,1, the mean delay



Table 3.1.

Results_of calculations.

parsmetér valiues | delay distn, im lame i
row

Py Xi Yy 'I'i ki mesan var:i oo
1 2| L1]1.0}2,5].708 596 10,62
2 »5 .B64 91,37
3 .8 . 005 1214.,.85
4 21 3 . 363 .504 ' 2.50
5 +5 1.2%6 7.82
8 .8 1.372 22,93
7 .9 . 854 70.72
8 +93 .610 142.33

9 097 02'3 puag
10 10| .9 . 056 152 .24
11 .20 0 240 055
12 235 467 f.22
13 .50 172 2.44
14 .65 7.239 5.23
15 .80 2,142 14,56
i6 .95 4,505 84.235
17 .98 3.853 99.90

i8 99 | 2,494 =
19 o5 .6 .139 1.014 4,15
20 1.5 .009 494 .04
21 2.5 . 001 . 300 «39
22 .3 03 0236 1.697 1205‘6
23 .05 087 2,287 22,39
24 «9]1.0] 5 | .C08 . 833 2,94

T Cortain valueo are omitted for clauity - in such cases the
relevent value is the nearest above in the same colunn,
= For this set of parameter values it was not possidle to obtain a

reliable valus for the variance because of round-cf? errcr.



increases, passes through a maximum and then decreases. To explainrm
this, we observe that for those sets of parameter values which

correspond to mean delay decreasing with A the values of A\, are

1! i
such that the mean inter-arrival interval is smaller than Ti' 80

that it is unlikely that type II vehicles are released by either the
gap~-acceptance or follow-on mechaniam, In this situation larger
values cof Xi correspond merely to the meore frequent arrivals of

type II vehicles, with consequent opportunities for the complete
dispersion of any opposing queues, It is therefore plausible that
mean delay should be a decreasing function of hi. For comparatively
small values of A

by contrast (for the same velues of Pyy V T.),

i'

the gap-acceptance and follcw-orn probabilities play am appreclable

g0
-~

part in dispersing queues, and an increase in the value of Ki" while
implying the more frequent arrival of type Il vehliocles, may increasse
congestion, on balance, by sufficiently decressing the probabdbility
that a type II vehicle at the head of a queue accepts the gap to an
opposing I. We would expect this effect to be reduced for smeller
values of Py: and the calculations of rows 1, 4, 11; 3, 6, 15, suppert
this conjecture.

With regard to the effect of the parameter p, onm the flow of
vehicle through the intersection, we intuitively expect the meen deley

to tend to zero as pi tends to zero or unity, since in these linmiting

casea there should be no interference between vehicles each of the



same type. This behaviour is reflected in rows 1, 2, 33 4 - 9;
i0 - 18, In each case, so far as it has been calculated, the
variance is an increasing function of Py Computational difficulties
prevent the determination of the variance for values of pi close to
unity.

Inspection of rows 5, 22, 23 confirme that, as expected.
decreasing vy resultis in an increase in the maan of the delay
distribution, A similar result follows from an inoresse in Ti

(rows 13, 24),

3.3.6. Proof of result used in section 3.3.3,

To show that D (x) has only cne zero in (0,1).
If not, since D1(O) »0, D,(1) < 0 ard D,{x) im comtimuous, ther
are at least three zeros in this interval, so that DTUU(z) muat vanish

&t an interior point,

Now

Dyt (x) = 2h, + Aypy(- 2: £, Rl ox) + (1-x) g:z fz“(x-xzx)},

d2 m(l—)\gx)u )
and T2 f2 \x-x? ) - kzz Jf e uafzéu)du,
o

> 0.

-ku

Alsc since wua 4 ke tor x > 0, w 0, and ‘/gorz(u)du -1,
o

' a(l-lzx)u )
f (X A !) - XZ f@ ‘n;fz(*m)dsu,

£ A (Aax)” @,

n-'n-



67

It follows that, for O 4 x < 1,

. o T
D1°°(x)> 25, - 2x1p1x2(x-x2x) e,

2
- m (Xz(l-kzx)o - k1)\2p1 Js

2 i
" e(Roh,x) (M roa 4n h (0-1) + A %e(1-x)),
> 0.

Hence D1(x) has only one zero in 0 < x < 1,

3.4, Remarks on Model IIX.

The use of the gap-acceptance mechenism in this model should
result in a model which ie both more flexible, in that greater
allowance msy be made for variations among individual drivers, and
moras realistic, tham model I, In model II, the driver of a
stationary right-turning vshicle may take a non-zero interval of
time both to assess the situation with which he is confronted, and
to complete his turm if he so decides,

On the other hand it is apparent that there are eeveral aspects
of the behaviour of vehicles at an actual intersection which are not
represented in the model, For imstance, in rule (1i) of sectiom 3.2.,
when a type II vehiole in lane 1 is about to execute its turn, the
nearest approaching vehicle in lane 2 being also of type 1I, no
account is taken of the proximity of the vehicle immediately following
the type II vehicle in lane 2. Alsc in rule (iv) of the vame

section, one would prefer the number «f vehiocles mimultanecusly



68,

'following-on' to be limited in some way by the sice of the
available gap in the opposite stream. although the rule as it atands
might be credible in those actual situations where drivers of type I
vehicles occasionally give way to drivers of opposing type 1II
vehicles. The seriousness of omissions such as theae will vary
with actual intersections under study.

The fact that the behaviour.of model II is ergodic for all
reasonable sets of parameter wvalues, which is an immediate consequence
of its property that queues of any length may be dissipated
instantaneously, is a more general diffioculty. As in model I this
characteristic would meke the model unsuitable for the simulation of
high-flow situations.

It is interesting that model II, which appears %9 be more
realistic than model I, leads to an analysis which ias littls nore

difficult than that of the earliier model.



Chaptex IV

Construction and Analysis of Model III,

4.1. Derivation of the model.

Perhaps the most important defect of models I snd II is their
inability to reflect the non-stationary behaviour of an actusl
intersection under certain traffic conditions, and medel III is
partiocularly concerned with an attempt to remedy this deficiency.

We recall that the stationary character of the previous models
is a consequence of the immediate dissipation of any queuer present
by the certain arrival of a type II vehicle in the opposing lene. 4
methed ig required which would, at least in aome cases, replsce thig
instentaneous process by s more gradual dissipation of the queue over
a non-zero interval of time. One way of arranging this is to require
at least some of the vehicles in a queue, for prefarence the type Il
venicles, to delay and to use gap-requirement times whem faced with
opposing II's, The stipulation that sll type II wvehicles should make
their decision in this way would lead to unrealistic bshavior. An
exomple would be the situation where the driver of & II im lane 1,
having arrived at the intersection without waiting in a gqueue, selects
a'gap-requiroment time and on the basis of this awaits the passage of

an approaching II in lane 2 before re-assessing the situation.

A type II vehicle will, therefore, be taken to make use of e
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gap-requirement criterion only when it is faced with an opposing I, or
when the type II vehicle arrives at the intersection from a queue, and
it is faced with an opposing II. There will be ne 'follow-on'
behaviour of the kimd occurring in model II, where it is possible for
a turning vehicle to follow immediately the preceding member of a queue
through the intersection. The seleotion of gap-requirement times by
type 1II vehicles faced with an opposing I will also be influenced by
whether these vehioles arrive at the intergection from free flow or

from a queue.

4.2, Description of model III.
(1) The layout is as in models I, II.

(i1) Vehicles., As in the previcus models, these will be regarded
as geometrical pointas of types I, IlI. VYehicleas are further
classified as to whether their arrival at the intersection is
or is not consequent upon delay in a queue - the former are
of type S (stationary) and the latter of type M (moving).

(i1i) Vehicle-arrivals occur as in models I, II,

(iv) Yehicle-interactions, The behavicur of vehicles at the
intersection is described below. We denote by "g. r. t.: ™
the result that the vehicle at the intersection uses a gap-
requirement time (as defined in section 3.2.(ii)(c)), chosen

from a population with demsity £(t).
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Type of vehicle at Type of nearest Result
intersection in lane & yshicle in opposing lane e
I, Mor S I or 1I No delay to veh,

at intersection.

II, N I BoTslts 8 L

;!
II, M II No delay to veh.
at intersection.
II, S I g.Tet. 1 g
II, S II gsTot. 8 hi

This system of rules describees the behaviour of traffic in any
gituation which can arise. It is not possidble for queuwes to axist
simultaneously in both lanes, since any queue requires as its leading
vehicle either a II (M or S) faced with an opposing I or a II (S)
faced with an opposing II. The only delays ococurring in the model

are those caused by right-turning vehicles.

4,3, Steady-state behaviour of model III.

4 1 Selaction of regeneration points : notation.

As in model IX, it is possible for a queue in either lane in
model III to be augmented at any instant. The instants at which
queues decrease in size may be classified once again into those at
which the initial departure (in the sense of section 2.3.1.) occurs
in the lane in which the queue exists and those at which this
departure occurs in the lane opposite the queue. It is of importance

in assessing the future behaviour of the system that the type of the
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opposing vehicle should be known in the former case, since this
vehicle may be of type I or II in model III, and this information
would already have been used dy the driver of the leading vehicle of
the queue in making a decision to cross.

We shall consider the behaviour of the system under the asssumption
of stochastic stationarity, and we identify as regeneration points
those instants at which a vehicle crosses the intersection in either
direction, by noting at each such instant the following information :
(1) the lane from which the 'initial' vehicle departs,

(i1) 1f a queue exists, its lane and size,

(i41) if the queue is in the same lane as (i), the type eof the
neareat oppoeing vehicle,

(iv) if there is no queue, the type of the nearest spposing wvehicle.

The notation used is as follows 3
Ri(n) refers to an instent at which a vehicle which nmey be of aeither

type crospes in lane i, in the presence of a quews of n vehicles
in the other lame, (n = 1, 2, ...);
Si(n)1 refers to an instant at which a vehicle necessarily of type II
}croanes in lane i, in the presence of an additiomal n gueueing

Ti(n) vehicles in lane,i, the nearest vehiclas in tha other lane

2 being of type {I y KlkiwmY B aesdi
II

Ri(-1) refers to instante at which a vehicle crosses ip lsne i, there

> being no queue present, and the nearcst opposing vehicle being

Ri(°2) of type {I i
o II
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The remarks of section 3.3.1 concerning the validity of regeneration
points are relevant here. State probabilities for this enbedded

Markov Chain are defined as follows 3

A () ] R, (n)
Ci(n) io the probability that e randomly 3,(n)
T;(n) > selected regeneration point is of type J Ti(n)

3

£ (=) R (~1)
pi(-2)" &Bi('.z) 5

4,3,2, Transition Probabilities,
There are 100 types of transition such as

R2(m) —;T1(n), 31(-1) »Sz(n). Conasiderations of symmetry reduce
the number for study to 50.

As an example we evaluate the conditional probshility that a
point of type 31(m) is followed by a point of type 31(-1). The
sequences of events which would give rise to this situation ere asns
follows (writing 'at x' for 'in (x, x+dx)').

(a)or the m vehicles queueing in lane 1 immediately follewing the

departure of the initial II from this lane, the first m-1

are of type I and therefore cross immediately. The remaining

vehicle is of type II, its driver measures the interval until

the arrival of the nearest opposing vehicle (of necessity of



type 1) as Z+a, and selects a gap-requirement time of length

a, using the denasity 31(u). It thereupon crosasea after an

interval o, during which there is no arrival in lane 1,
causing an R1(-1).

(v) All m+1 vehicles at the intersection in lane 1 cross immediately,
i.e. they are all of type I except the firat. The next arrival
at the intersection is in lane 1 and is of type I.

(e¢) All m+1 vehicles at the intermection in lane 1 cross inmediately.
The next arrival at the intersection is in lane 1, is of type 11,
and is at time v (measured from the initial 81(m)). Thig 11
selects a gap-requirement time of length o, using the density
f1(a). The next arrival in lane 2, of type I, is at time
T4c+wg. No vehicles arrive in lane 1 during the interval a feor
which the II ie stationary, and it ie the departure of the II
which causes the R,(-1).
The trensition probability associated with 81(m) @31(-1) is

therefore

N et a-1  r® ey a . M ik
= Py + q,P, \j: 31(0)0 @+ Py 9y 3 i f1(a)e da.

The complete set of transition probabilities is listed in
Appendix I, These may be checked by the conasistency relations of
section 2,3, 3. Of the 50 types of transition, it is found that 23
have zero probability. The transitions R1(m) 4.n2(-2), Ra(m) q»Rﬁ(-Z),

R1(m) -QRZ(-‘I), Rz(m) -9R1(-1) are possible only when n = 1,
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4.3.3, Determinatior of state probsbilities.

We define

> oo n -~ S n ot - n
Ri(x) - nfix‘/a(n), Si(x) - E1x Gg(n), Ti(x) « I x ri(n),

n n=1

ix§ & 1

and £,%(s) = S ALY

g, () = [ 7%, t)at, R () > o.

h,*(s) = Q-Sthi(t)dt, J

J;‘% <§;‘% <§“ﬁb

Then after some rearrangement the stationerity eguations reduce to
equatione (1) to (5) below, together with a corresponding set (%1~ )
to (5%) with interchanged lane suffices.

If we write '“%2(::) .- 4w gz“(x - A,x),
Po(x) = 1 - B,"(x - Ayx),

‘#2(1) = 1 - fzr(K - A\,x),

the equations are

Ry () O-nx=n 2,5, (x)200,7,(x)) - B(x) 2% g, (x)

x-p,
- Fylo) 222 g0 - A (x), (1)
x-Pp,
-§1(x)2152“(1-k2x) + §é(x)(1- 92 gzx(l-kzx))l- B1(x), (2)
p 4 4

X-p,
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_§1‘-§1(x);1_h;(k-k2x) + ‘1"2(1) (1-:2__ hz‘(x-xzx)) = C,(x), )

Xe= p2

- P,&, (M)Ay(1) + l: :1 + ‘: 8 (\) + “1:1 £, (xil §,(»,)

& ;3 : P,5,(p,) + :2 £ '(X)Tz(pz) + £ (-1) E (p,+q1 ,'(x)\)
e Mt :1 Pory(- 1)+_1£ar (\)py(-2) = o, "

h* \q, 3 Ay L @ = ¥
T < a0« [0 )] Bnp

x1 12 2(p2)+__g,.2( -1) .._,q( 2) + 1“2 ~132p.(-2) = o, N

|

whmwhere
WENCORRNT 2( ~2y(x) - 3_2%) Sy(py)e22lt 2"1 ¢, (x)¥, (»,)

-2 122(::)'1‘2(;)2)4- 2?2(x)(q2/°2( 1)+p1p1 -2))} A
x-p2

B, (105) = ey (1)8"(0) + By(3)) [2;.2 (fz'(*-kz*)-fz'("))‘;%‘(x-xzz)

-3 32'({‘ + Pit2 (£,5 (=2 x)-£,%(0) )F, (p,)
Py r

+;z_(r;<>.-u2x)-:;(x>)(pz(n Yag+p,(-2)p, ),

A

¢,(x) -—q1/q'(1)h2‘(\) - [:qz h '(x-xzx)»,“z h '(x):l fz(pz) .

x-Pa Py



Equetions (1), (2), (3) may be solved simunltaneously to give

R1(x), §2(x), ﬁz(x) in terms of the constants §1(p1), §2(p2), T1(p1),

T,(p,)s 2y(1), Py(1), A(-1), Py(-1), P(-2), A,(~2), which we denote

by U,y +e. W, respectively. In similar menner iz(x), 51(2),'51(1)

are determined. We proceed to evaluste these constants,

If we write
J1(x) - k-kzx-k1p1§2(x)-k’q172(x),
D,{x) = x-pz-qzsz'( A=A, x),
Ey(x) = x=pymaoh,” (A-A,x),

equations (1) to (3) may be written

r 1 mﬁl 5 Y-
| (I-p2 )J1(X) 'k1Q22;2(X) -).1q21:22(x) n1(x) e~ (x-pz) i:A?
ff
-pT( o - | R
. x-p2)32 (x-xzx) n,(x) 0 s.‘,(x) B,
“(x-p, )b, % (heh,x) 0 E, (x) %,(x) c,
! 4 L 4 (oL

and if ve denote by [l"i J(x)] the matrix of minors of the left hand
matrix,

£.(x) - A, (x)[7,(x) - B, (x)5,(x) + ¢, (2)3,(x) -
| LS (x)

where &‘1“) w (1-x) {().1+k2q2)qzsz‘(x-xzx)hzs(k-lzx)

-(x-p,) [(q,x1+q2x2)hz'(x-xzx)+(p1x1+q2>.2)32'(>.-u2x§]

+12(x-92)’} .
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In order that lim ﬁi(x).g.oo, the numerator of the expreszion
x1
(7) must vanish at x = 1, This leads to
A (1) + A (B, (7) + ¢, (1)) = o,

or equivalently

=
1, (\;_2_ (1-£7(0) - 1 - 22 (")) uy + B2 (1-2,%(0))u,

Q2 P A
1 hz(*) * x
-q, (;;2 + " )n4 - (pygy (V) + q4hy"(M))ug
& %o (1ap X = 0, (
2 (1-£,"(0))(qgug + pyug) 8)

with a corresponding equation (8%). The same aquation (8) erises
from similar comnsideration of §2(1), ﬁé(T). Equations (4), (4%),
(5), (5*), (8), (8%) mre linearly dependent.

The conditicns 51(0) = §é(o) = 62(0) = 0 are all equivalent to

N (?@2(0) + 52(0)) u, + M2p.d,(0)uy + 2132 9,(0)a,
Py A Py

AN AA %
=J.(0)u. + 2172 g, b, (0)u, + 2172 p.§,(0O)u, = © (9)
4100 - 265(0)ug - 142 (0)u ‘

with a coxresponding equation.

By definition, the functions §1(x), 55(1), ié(:) 2r0 bounded for
0€¢ x 1. Sinced,(x) may have one or mors zeros in this interval,
further conditions may have to be met by the numerators of thesz

functiona.
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Let us suppose for the precent thatl&,(x) (Andlﬁz(x)) vanigh
exactly once for 0 € x <. 1 at x = 01,(02). We require the
numerators of each of 51(a1), §2(u1), ﬁz(o’), expressed in the form
of (7), to vanish., This results in a further three linear conditions
on V,, eee, Uype It has been found numerically that the first of
these conditions ylelds no new information about Uy, see By4. The
second does yield a further linearly independent relatiemnship,,h and
the third is linearly dependent on the second and the previous
conditions on Uy soe Uyqe Although an algebraic demomstration of
these remarks is desirable, the complexity of the resulting equations

has been such as to resist all attempts to consitruct one.

Thus wve have, writing Gi(x) = fi'(k-kix) - fin(l),

%, (a »
u2.k1q1q2h;(x~k2u1) 1(u 15(0 2 }+§ (c -3;3'02(01)

% 1, ] 12,
ay-Pp °2  Diegp 1)-—; %2 ()‘)j . p1“‘3"“2"‘8"’1’1"j 520,15 (-hg0,)

9 4
D,(ay)9,(ay+a,8,(a,)0,(a,) 4 [a,-p, ha(A=hya, )0, () N a,7,(ay)

a(A-hye,)  a ()|
+43,(ay)D, (a4 )X, p,0,85 (A=) a 1)z2("1)}{ pzz e §22 ‘[L

%5 "1‘12{2("1)h;(""‘2“1)1’13;(")"'h;("){‘71(“1 Iy (ag)-AyPya,8p (A-2pa,

%ao(a = o, (10)

with a corresponding aquation (10'), obtained from i;(uz).
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The normalising condition is

”1(1)4-32(1)4-'1' (1)+Rz(1)+8 (1)+F (1)+u.,+u FUgtuo o 1. {11)

10

By means of L'Hopital's rule we find that
~ o 9 3
B, (1)48,(1)4%,(1) = E}m 151(A SIS HUWLHL NS

-Bl" +c\"‘i)

where we write Al = A;(‘l), \"?_:l - F‘21(1) otc., for brevity, i.e.
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We may now solve equations (4), (4%), (5), (5%), (9), (3%), (10),

(10%), (8), (1) for {“1}" in the case when &, (x), Aa(x) each bhave a
single zoro in (0,1). From the reosulting values, by means eof
equations (1), (2), (3), (1), (2%), (3%), the funotioms E (x), 3,(x),
Ei(x) may be constructed, and it is found that the soluticons in this
cese satisfy the requirements pertaining to a probability distribution
with regard to positivity and boundedness by unity.

For some parameter values, however, it is found thst[&i(x) has
two zeros in (0,1), for at least one value of i. This may load ¢o
the addition of further equations to (10), (10%), and it is found
that by taking different pairs of these equations, together with the

other eight linearly independent equations, differing selutions for

a see W,  are obtained which do not satiefy the basioc requiremente

1°
on these constants, such as positivity. We conclude that it is not
possidble to find a bounded solution to the stationariiy equations in
such a case. A similar oonclusion would be expected im the case
where more than two seros of either ofA1(x), A.z(x) 1ie in (0, 1).
There is also the possibility that either of A, (x), i = 1,2, does not
have a zero in (0,1). In this case it appears impossidle to derive
& unique stationary distridbution.

¥Yrom this discussion it seems that a necessary and sufficient
condition for ergodic behaviour of the aystom is that eaah of[&,(x),

C&z(x) should have a single zero in (0,1).
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4,3.4. The distribution of delay,

As in section 3.3.4 we consider the distribution of delay to
vehicles in lane 2, which may be deduced from the distridution of
lengths of queues in lane 2 left by vehicles departing frem that
lane. Vehicles depart only at regeneration points, and wvechicles in
lane 2 only at points of the types Rz(n), Sz(n), !z(n), Ba(-2), 32(-1).
Points at which vehicles depart in lane 2, and at whioch = gueue remains
in this lane, are of the types Sz(n), Tz(n). Thus if
v, = prob {a vehiole departing in lane 2 leaves a queuws of longth} 3

r in lane 2

/\ g s
< ho(x) - 80 vx, |[x| =1,
'

and ¥, (x) = §,(x) + T, (x),

then
T Q ? : (6. (n)+T,(n))p k'19(n--1:) (r-n+k-1)
% b LA 2 2 -
® n

+ n_":‘("z(“)*tz(“))’z e(n-r)

+ @2(-2)'&/02(—’ )*52(1))¢("r)} )
20 that e ( ) ~.( )

P,V -xV, (x -

N () -+ -2-?-%;-1—+p2(-z)+¢(-1)+n2(1) ;

where E, = t- (Vo (1)-F,(py)) + Tp(p,)4R, (1)42,(<2)4 R (<1).



83.

The Laplace tranaform of the delay distribution in lene 2 is
A

32‘(3) - 1\-2(-§=1 from which the first and second moments of the delay

2 digtribution may be derived as

i
T Hph,

{"az [7 (92)-172(1)] + —V (1)

€ ]
—— ..:%;2_2 :21 [Fo)-¥,00,)] - 2 v2 (1)+72n(1)j'. ,

(] that cle 1 e 1 layed,

This probability is of some interest in matching the model to
data, chiefly because of its immediste interpretation im the practiocal
situation. It is oonsidored further in saction 5.4.2,

In order that a vehicle in lane 1 ahould not be delayed it must
cross the intersection at a regeneration point of type R1(-1), R1(-2)
or R1(n). If it crosses at a point of type R1(n), then it has not
been delayed. However it is possible that a vehicle of type II
crossing at an R1(-1) or R1(-2) could be either the last vehicle in a
gueue in lane 1 or could (at an R1(-1)) accept & gap but take a finite
time to do so. (All type II vehicles faced with an opposing I are
delayed),

The aituations in which a vehicle experiences no delay are aeg
follows, A vehicle which arrives in lane 1 at a situation other than

these is necessarily delayed.
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Regenerat wh ehicl Pr u eration
crosses. point.
Type of point. Tvpre of vehicle.
R1(n) any any
R1(-1) I any
a,(-a) T any
R, (-2)
R,(-2)
R,(-2) II <

T1(k) with k quoueing type I's

Tz(k) with k queueing type I's

.~

These considerations lead to the following expression for the
probability that a vehicle in lane 1 suffers no delay at the intersection
Prob. {no delay in lane 1}
1 fu Ay A
~Hy {R1(1)*’°1(°2) 6’1*'{' q1) +PyPy (-1)4572,2,15(-2)

Ky -
+§-n,(T1(p1)+q2T2(p2))},

where H, is defined in section 4.3.4.

1

4.3.6. Numerical results.
An ICT 1905 computer wae programmed in Algol to calculate (a)

any zeros of the denominators of Ei(x); (b) the set of sudbsidiary
constants Wy, evey Wynd (¢) the mean and varisnce of the delay

distribution and (d) the probability of no delay for each lane.
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These caloulations were performed for the particular case in which
each of the gap requirement time distributiona possessed a density
function of translated negative exponential form,

In the evaluation of (b), the guantities rlj. Fls required for
equation (11) of section 4.3.3 were found by writing the left hand
natrix of equation (6) of that sectiom in the form [A.! J] where
Agy =A@ Ay, Ay, Tyy1), Ts(1) mey then be
determined.

The caloulation of (¢) is simplified by writing

A1 (x)."v'z(x) - [A, (x)(r, 5(:)-r‘12(x))-n1 (x)(%"zs(x)-l"zz(x))M:1 (x)(f“”(x)

- 32(*)§

in the form

-5

vz(x) = [gz(pz){xa' Elzh;(k'kzx)g;(x‘kax)"(x"‘pa)(P132(1'k21)*q1hg()“)‘2ﬂ}]

Aq
#hp(3-Pyma hp(A-hyx)) (x-Py-0,85 (A-hyx) =5 & x-p,) (1-£5 (A-1,2)))}

A 2
.-%-(x-pz)(x-pz-qzh;(x—xzx) )(1-£3(A-2,%) ) (0, &, (P4 )+a, 05 (~1)+

P1P1(-2))

+‘r‘2(p2){-x, [(x-pa)(q,n;<x-x2x)+p,g;(x-x2x))-qzn;(x-xzx)g;(x-xzx )

+(x-92)x2(x-92-q2h;( A=A, x) )-q2k2h;(k-kzx)( x-pa-qze;(l-kzx ))

A,q.2
-2_p§_h'2‘(;)(,-p2)(h;(x-xax)-g;( h-xzz))}

+A(1)a,9,0,h5(0 ) (x-p,) (&5( x-xzx)-h;(x-azx))] (1-x)/A, (=),

and cancelling (1-x) in numerator and denominator.

The results are listed in tahle 4_1._



Table 1
Results of calculations for model III,

translated exponential form,

lane-symmetric.
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The distributions of gap-acceptance times are assumed to have

All parameters are assumed to bdbe

Parameter vnluosT'

Distn. of delay in lene i

row Py ki a, bi 4 d1 o, ki Mean |Variance Pr.{no dola?}
iri

1 St 21 1] 2 1 5 1] 10 .058 137 .684

2 .3 071 .65 . 681

3 9 » 112 .44 .674
4 .9 . 338 1.15 . 647

5 1.5 3.283 42.15 «551

6 3.0 E R i

7 5.0 x = F

8 2 1 . 291 5.54 .673
9 3 . 686 12,10 .661
10 6 1.094 18.37 . 656
11 10 1.43%4 23.89 <654
12 1 20 . 279 5.33 .673
13 2] 5 .11 10 .083 .14 .782
14 8 057 1.26 . 792
15 «1 '3 5.5 -7 3'5 -7 505 '7 i [} o
16 3 a it =
17 5 x . |
18 <7 49.843| 7604,.73 «507
19 .9 3.317 60.40 .679
20 .95 1.633 25.96 .802
21 5| «1!3.5| «6|3.5| .6}3.5] .6 2.641 24,17 .633
22 | 3 9 4.724 80,82 .610
23 " 3 o | 91.225|26021,44 515
24 .05 .05 .05 = = x
25 .5 ‘5 3‘5 .’ 3.5 03 3.5 .5 x B =
26 o 1 a1 x = %
27 .05 .05 .05 x n ]
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1' These parameters are defined in chapter 4. Certain values sare
omitted for oclarity - in such cases the relevant valus is the nearest
above in thoe same column.

x For these sets of parameter wvalues there is not a unique gero of

[31(x) in (0,1).

Comment 1

(1) It appears that mean delay is oritically related te )\ , and
is an increasing function of ki. Por large 11, & unique
zero ot (x)/(1-x) 1n 0 < x < 1 does not exist, and it may
be inferred that the behaviour of the system is net ergodic.
(Rows (1) - (7)).

(14) Rows (13), (3), (14)3 and (15) - (20) 1llustrate poseibdble
effeots of variations of p; on the delay distribution. For
the situations of rows (13), (3), (14), tho gap-aoccaptance
distributions are such that the probability of a type II
vehicle accepting a gap with which it is presented is quite
high. Thus we expect the mean delay to be small for p; near
zero. On the other hand, in the situations of rows (15) - (20),
the arrival rates and gap-requirement distridutions are such
that it is not probable that a turning wvehicle accepts a
randon gap with which it is presented. Since all queuweing

type 1II vehicles make use of a gap-requirement distridution,
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(iv)

(v)
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we might expect congeation to increase in thia case as Py

tends to sero. This supposition is confirmed by the results
of rows (15) - (20): it appears that the increase in
congestion is s0 great that the behaviour of the model is not
ergodic for the smaller values of Py

The effect of changes in the gap-acceptance parameters bi'di'ki
is shown in rows (21) - (24). Decreasing these parameters

has the effect of decreasing the probability that & type II
vehicle accepts a gap with which it is presented. As expected,
the mean delay is found to increase substantially as bi'di'ki
are decreased, to the axtent that for small values of thaese
paramoeters, ergodic behaviour of the system iz mot possible.
The behaviour of the prob.{no delay} for variations in the
parameters is consistent with that of the mean delay.

It would be interesting to investigate the ciroumstances in
which the change from ergodic to non-ergodic behaviour of the
system occurs. Although an analytic investigation of this
does not seem feasible, it is suggested by the data in table
4.1 that broadly speaking the system is not ergedic when it is
overloaded. It seems that, since ergodicity is dependent on
the parameters through the functional&i(x), it 1s not affected
by the form of the functions fi(x). This situation might have

been expected from intuitive considerations.
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4.4. Remarks on Model III.
Model III should deal with some of the criticisms of model II

made in section 3.4, In particular the 'follow-on' behaviour of
vehicles has been made sufficiently realistic to iatroduce non-ergodic
behaviour for certain parameter values.

It is possible to select various aspecte of the model which may
not at times be in agreement with observation. For instance, the
release of a queue consisting entirely of type I vehicles does not
ocour instantaneously in practice and some delay may de caused by
these vehicles to vehicles in the other lane. Some drivers may base
their decisions not merely on the nearest opposing vehicle but also
on the vehicle following it. In some situations ocourteous type 1
drivers may give way to opposing type IIl's. In general, however, the
occurrence of such events is comparatively infrequent, and model III
may well give a rsasonable overall picture of behaviour at the
intersection.

Other aspects of model III which could represent m more serioue
lack of conformity with the actual situation are that the postulated
gap acceptance behaviour may be unrealistic, as discussed in section
3.1, that the arrival proceas may not be Poisson, and that the
classification of vehiolos into types I and II may not de valid.

Some of these points are further discussed in section 5.4 in the light

of the data.
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4 ‘Impatient’ guw type I vehicles 3 el

Observation on actual intersections suggests that model III
could be made more generally applicable by allowing for the tendency
of some type I vehiocles, which in model III would join the end of a
queue, to pass alongside the queue and make a crossing without delay.
: This would lead effectively to consideration of the intersection of a
four lane major road with a minor road.

In an attempt to fit model III to an interseoctien at which the
proportion of these 'impatient' type I's is small, observed queues
could be slightly modified by the inclusion of hypothetical wvehicles
corresponding to these type 1's, provided they did not interfere with
turning traffiec,

Another approach to this problem would be to modify model III to
simulate this type of vehicle behaviour, again under the essumption
that the 'impatient' type I vehicles do not interfero with turning
traffic. (If this assumption is not applicable thore isc a possibility
of two simultaneous queues.) The modification to model III depends
on its characteristic that, as soon as a type I vehicle has joined =
queue, it ceases to exist, at least so far as any further influence
it has on the behaviour of the system is concerned. Its presence is
of course noted by the previous analysis of model III,

Two ways in which model III could be modified are the following:

(1) The analysis of the model is as above up to section 4.3.4. At
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this point we suppose that a type I vehicle may leave a
queue immediately upon its arrival with probability 8, for
lane 1. The analysis of section 4.3.4 is modified to find
the distribution of delay to vehicles which do not leave =
queue upon arrival : from this the distributioa of delay to
all vehicles in a given lane is constructed.

(11) Alternatively, an earlier modification to the meodel would
arrange the input of type I vehicles to queunes at a different
rate to that obtaining in the free flow situation. This

would lead to a modification of the transitien probabilities.
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Chapter 5.
Statistical Analvsis of Observations.

5.1. Introduction.

In any situation in which an attempt is made to analyse
mathematically a practical problem, the success of the analysis
depends on the extent to which its results agree with actual
observations. In the present case we have three models for an
intersection, each of which is a considerable idealisation of the
actual situation. It is considered unlikely that clecse agreement
between observed and predicted values for models I and II would be
obtained, dbut that model III may perhaps be flexible and realistic
enough to justify the effort involved in assessing its results against
observation. It seems highly desirable to asmess the progress of the
work so far, before launching on the construction of further models,

This chapter briefly describes the obsarvations whick were made,
the statistical processes by which the characteristice of model I1II
were compared with them, and any conclusions regarding the value of
the model which seemed to be justified. There is & brief reference

to model I in section 5.4.3, for purposes of comparison.

5:2. The observations.

In Appendix II anm account is given of the method used to obtain

the observations, and of certain difficulties which were encountered



in their interpretation. Here it is enough to note that the
observations, which refer to only one intersection, consist of a
series of pictures of the situation at the intersection, taken at a
constant interval of approximately one second. Prom the lilned
record it ies possible to observe qQqueue-gizes at any inetart and to
measure delaye experienced by wvehicles. These measurenents are
subject to the various kinde of experimental error disoussed in

Appendix II,

5.3, Estimation problems.
5.3.1, Estimation of pi,ki.

The estimation of these parameters is comperativaly simple. Each
refers to a characteristic of the model which has a well defined
counterpart in the actual situation. Under the agsumptions of a
Poisson input of vehicles of randomly assorted type in each lane,
eppropriate estimates consist, respectively, of the sample proportion
of typs I vehicles, and the observed rate of vehicle arrivals, in each
lane.

These astimates could bs modified, by the method to be described
in section 5.3.3% 1in order to mecure a hetter fit of the model to the
data, Unless the modified estimates were found not to differ
significantly from the criginal estimates, their adoptiocn would be

inconsistent with the natural interpretation of the paremeters.
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Consequantly, subjest to the adherence of the observed input processes
to the assumptions of the model (mection 5.4.%1), the intuitive

estimates were accepted as final. Their values are es follows.

Py ki(vuhiclcn/sacond)
Lene 7 . 63855 . 19280
Lane 2 . 96988 . 20441 o

5.3.2, Estimation of other parameters in modsl III.

For the descriptian of model III, details of the funoticons hi'
840 fi ars neceasary., In the model these functisne daseribe both
the driver’'’s estimate of his gap-requirement time and the time
required by him to complaete his crosaing. Ag 1% i very likely thet
these intervals will differ in the actual siiuation, the practical
interpretation ¢f the funciions hj, etc., iec not odvious, 1t is
apparent alils¢ that direct information concerning the estimates formed
by drivers in these circumstances will not be easily available, and
it is therefore likely that ithe interpretation given to the gap-
roquirement distridutiOna will be influenced by the typea of relevant
ebservations possible in practice.

The following are guantities which are reslevant to garp-acceptancs
behaviour and upon which measursmentis nmay be nade.
(n) The sizes of gaps which are accepted or rejected by typs II

venicles,



(b) The intervals actually used by turning vehiocles te conplets

their manoceuvros,

Prom the film it is found that measuroments of the intervals (b)
usually have values of less than three mecs. In view of the practical
diffioulties in making these measurements, and of the frame separation
of about one second, such data ars not considered to comtain useful
information.

Masasurements of (a) are available only for the situations which
in the model would require the uss of gy OT f1. They exre listed in
tadble 5.1. We observe that gap sizes of interest are in the rangs
4.7 seca. for B4s 3-5 secs. for f1, and that{ the frame saeparation of
approximately one second is not small enough to permit any but the
crudest inferences about g, and f1 to be made, even igunoring the
considerable subjective judgement involved in constructing these date.

Table 5.1.
Gaps accepted and rejected by type II vehicles,
(1) Stationary type II in lane 1 with approaching type I in lane 2(g;).
Gap size (soos.) 2 4 4 5 6 7 (S 9
Proportion of gaps aoccepted.0 0 0 .6 .15 1 4 1

Nunber of gaps observed. 24 8 3 5 4 1 4 1

(i1) Moving type II in lane 1 with spproachiug type I in lsne 2 (e, s
Gap size, 1 2 3 4 5 6 7
Propertion of gaps acoepted.O 0 0 3% 1 1 1

Number of gaps observed. 3 9 4 3 1 5 2
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The initial approximations to g‘,f are theraefors based on table

9
5.1., and on the work of others in this field, who have suggested
several possible forms for these functioms. (See e.g. Cohen,
Dearnaley and Hansel (1955) who proposed the function erf (log t-A)/B
for the probability that a driver accepts a gap of size t.) Herman
and Weiss (1961) suggest that, from data obtained im a controlled
experiment, the form of the functions hi'gi'fi may be approximated by
a translated exponential distribution, and in view of the computational
advantages of this distribution, it was decided to adopt it here.
Specifically, it is assumed that
hi(t) - 0, t<a

- biexp(-bi(t-ai)), t > e

81(t) ® 09 t < ci'
- diexp(-di(t-oi)), t >e,0
f1(t) - oo t & .1'

- kiexp(-ki(t-oi)), t>e.
The problem is now reduced to one of estimating the 12 parameters
“1-bi'°1'41"1'k1‘3’ comparing a plot of the logarithm of the
proportion of gaps rejected againast size of gap for the data of table
5.1 with the logarithm of the survivor function of the appropriate
gap-requirement distribution we obtain the following estimates.

Parameter 1 Sy a k

1 ¢ 3

Estimate : - ML .45 3.0 «50
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Although it would be possible to apply more sophisticated methods
to the data of tadble 5.1, such as the maximum likelihood method, it ie
considered that, bdocause of the unreliability of the data, little

would be gained.

parameters.

Since, in the model, the parsmeters considered in the previous

section, togethar with pi,x determine the entire probabilistic

0
character of model III, it is likely that inferences about thece
parameters could be based on espects of the behavieur of an actual
intersection whioh are less immediately concerned with gap-acceptance.
One could, for instance, consider the construction of maximum likelihood
estimates of the gap-acceptance parameters, but it is found that the
antire history of the system is too complex for the congiruotion of a
likelihood function to be practicable.

In the lack of a likelihood function for the complete set of
observations, we might consider basing estimates om a likelihood
function for a limited set of observations, which might nevertheless
contain sufficient information about the parameters to be useful.

Here we make use of observations on the embedded Markov Chain, and

observation of the system is confined to the sequence of regeneration

points defined in §4.3.1. The resulting data oonsist omly of the
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lengths and types of queues at these regeneration points and ere
availeble with reasonable sccuracy. A further advantage of this
procedure is that observations on variabdles in the model, whose
interpretation in the actual situation is uncertain, are not required.
The likelihood function for such observations may be constructed
as follows. Transition intervale are first classified according to
the types of the regeneration points defining the interval. Thus

we have, eo.g.,

Transition classificetion number (6) (8 = 1, ... 54).
R1('2) -» R1(n) 1
112(-2) > Rz(n) 2
R, () -» B, (n) 9

@ L ] e

We denote by ne(i,J) the number of observed transitions of type 0,
vhere i and J may be used to denote relevant queue lengthss for some
transitions one or both are not required. pe(i,J) denotes the
corresponding transition probability, and the logarithm of the
likelihood (conditional on the types of the regeneratien points

beginning the sequences of observations - see Appendix II.) is taken
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as :
554
A I ¢ n,(4,3) log p,(4,3).
0=t 1 3§ © °
hwd

vhere relevant
pa(i.J) must be completely evaluated for the partiecular functions

hi"i'fi agsumeds for the assumptions of sectiom 5.3.2, we have, for

example,
d;c;
po(mm) = A :;:m..-m [((ag+0)o,, nome1)
ngz .l
+ ‘(1:‘ k)n-l-r‘ r‘((b,‘,-c»k)az, n-mﬂ_)J ¢(n-m),
o+

where [‘(x,n) = fo'ttn'1dt/(n-1)la

b 4

A procedure was developed to compute the value of the log-
likelihood for a given set of parameter values and a given vector of
observed transitions. This was incorporated into a standaerd progranm
for maximising a funoction by the steepest-descent method (E,J.Wasscher,
1963).

The results of the caloulations carried out are noted in table
5.2, and detailed comments are made in the socompanying notes. The
following considerations are relevant here.
(1) It vas considered desirable to make some attempt %0 investigate

the multiplicity of maxima of the likelihood funoticn, and to
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run the program from a variety of starting points in the
parameter space. Since very long runs were required to reach
a maximum with respect to the whole aet of gape-acoeptance
parameters, the maximipation was usually carried out with
respect to & smaller number of variable parameters.
It seemed a possibility that the likelihood funotien would
contain comparatively little information abeut seme of the
parameters under investigation. It was to be eoxpected, there-
fore, that its use might lead to spurious estimates of these
parameters. Certain methods wers used to ¢try to prevent this,
More speocifically, it was observed that thore were
relatively few type II vehicles which arrived in lane 2 during
the period of observation; in fact there were 5 from e totzl
of 176 vehicles. It would be reasonable to expect the
informstion available about & parameter such as ©5 specifying
the probabllity that a II in lane 2 sccepts a gap, to be siight,
and that this might be reflected in the 1ikelihood fumction by

the absence of factors which are functions of e However if

20
we consider the total of 255 transitions extraocted from film,
it is found that 42 are of types whose transitiom probabilities
are functions of ®5. A study of the 42 tramsitions reveals
that 37 are of the type R,(-1) = R,(-1) with associated

probability xZ{p2+(q2kze‘*°’/(x»k2))}/x, & decreasing function
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of e, and we aocordingly expect this funotiom to have a
considerable infliuence on the value of the maximum Jikelihood
ostimate of ®,.

It may seon surpriesing that ., should ocour im all 42
times in the interpretation of data for which £t 4s known that
the total number of II's observed in lane 2 &8 5. The
explanation 1s that the transition probabilitios must allow for
the fact that the type of the vehicle in lane 2, which defines
the end of the transition interval, is not specified by the
description of the interval used, and may bde type II. In fact
for the data such a vehicle very rarely is of type II. Thus
it would appear very likely that estimates obizinod from the
maximisation of this likelihood function are fumédamontally
affected by the inadequacy of the way in which the systen is
deacribed at some regemeration points. This disadvantage of
the estimation proocess is of course nmagnified by the partioular
set of data whioh are availadle, and in which se large 2
proportion of transitions are among regenersties points where
no queue is present.

(111) In view of these doubts concerning the validity of the estimation
proceas based on this particular likelihood funotion, 1t was
considered prudent to make some assassnmont of the realiem of

each of the sets of estimated parameter values, This took two
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forms.

(a) The mean and variance of the distribution of delay in each
lane of model III, together with the probability of no delay,
vere computed using the programs of §4.4, The resultiing
values were compared with the correepeading gsample
statistios. (At this stage a visual cemparison was used -
a more detailed comparison is discussed in §5.4.2.)

(b) Although the data of table 5.1 do not provide sufficient
information to estimate the parameters with acoeptable
precision, they do suggest approximate deunds for functions
which might be considered as gap-scoeptance distribution
functions. From inspection of the data wo might
reasonably require such a funotion to satisfy the following
conditions.

(1) Prob.{a driver socepts a gap of 2 zocondn}vv 0

|
(2) Prob.{adrivor accepts a gap of 9 seoends| ~ 1

(3) fh,(t)dt <fxf1(t)dt, 2<¢x¢9,
o L+ ]
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Notes on table 5.2,
Maximisation (g!, The parameters varied for these firast runs were
Bqy b1, Cyy d1, e, k1, as it was expected that there would be little
information relevant to the others in the likelihood functiom for the
data, Several sets of starting values were chosen, a typical set
being, respectively, 4, 5, 4, 5, 3, 10, lane symmetry being assumed.
The results for these values are shown. It is necessary to impose
arbitrary positive lower limits on the range of variation of the
parameters (to avoid log 0), and it will be observed that several of
the estimates listed have values at boundary points of the range of
parameter variation. As it was expected that any realiastic estimatesn
of these parameters would possess a degree of lane-symmetry,
determination of moments of the delay distributions for these values
was not considered worthwhile.

Maximipation (b). The lower bounds for the parameters used in (a)
were decreFeed. In view of consideration (1i) above, values of the
parameters a5, Cq0 (the translation parameters), were fixed, and
the maximisation was carried out with respect to b1, d1, k1, from
starting values given by the graphical method of section 5.3.2, it
being assumed initially that gap-acceptance parameter values are
independent of lane, and that a8, = o, b - d1.
Maximisation (c). In this all twelve parameters 8, oo k

varied. Starting values were chosen as for (b).

i were
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Maximisation (d)., Consideration (ii) above suggests it is unlikely

that useful estimates of the parameters for gap-acceptance by lane 2
vehicles would be obtained from the likelihood function. The physical
characteristice of the intersection were such that one would expect

the gap-acceptance parameters to be nearly lane-symmetric, The

program was arranged to maximise with respect to the variables &, b,

c, d, e, k, where a = a, = 8, etc.
Maximisation (e). The scarcity of information in the likelihood

function about ay, bi' suggests that as a first approximation we
consider the behaviour of a II, stationary at the intersection, to be
independent of the type of the approaching vehicle. Thus we maximise
ae in (d), subject to the further restriction that a, =c,, b, =4,

g - R

If a provisional assessment of the results quoted in table 5.2
is made along the lines indicated in (iii) (b) abdove, it is found that
none of the estimates of rows (a) to (e) may be regarded as acceptable.
The question of the acceptability of these estimates according to
other criteria is discussed in section 5.4,

In view of the known deficiencies of the likelihood function, it
was decided to make ad hoc modifications to the maximum likelihood
estimates, in order to bring them into conformity with requirements

(141) (b). Several sets of parameter valueso were produced in this
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way, and the corresponding moments of the delay distribution were

celculated 1 the results are shown in table 5.3.

Table 5.3,

Modified M.L, estimates of parameters

(Valuee of Py A

4 88 beforo)

=

Eatimate of parameter' Lane % Lene 2
Set
8y bi ey d1 e, ki mean| var pr{uo delay} meanf var pr{no delay}
¥ 1.0 .20 0.0 .20 .5 .05 6.52| 70.9 .30 .24 119,9 .96
2 2.5 .30 2.5 .30 1.5 .40 [13.10]278.9 22 .187] 2.4 « 97
3 1.5 .30 1.5 .30 1.5 .40} 5.55(64.89 «38 .15 11.44 .96
4 O .30 0 .30 0 .40} 1.80} 11.5 N0 .07 .48 «97
5 10 .20 0 .20 0 .30 3.60} 40.2 41 .12 j1.18 .96
x 5.051 44.9 .42 .432 .94

. Correspoading sample statistics,

¥ Lane symmetry assumed.
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4, The assessment of goodness-of-fit.

In any attempt to assess the adequacy of model III as a model
for the behaviour of actual traffic, certain basic questions must be
considered. The model is based on a number cf assumptione concerning
the behaviour of individual vehicles - how realistic are theae
assumptions and do they reflect sufficiently those aspects of this
behaviour which are most relevant to a study of congestion? From
these basic assumptions certain deductions are made about the
behaviour of traffic. To what extent are these deductions consistent
with the behaviour of actual traffic?

Perfect agreement between model and reality is not expected.
One of the purposes of building models, such as those of this thesis,
is to provide a simple explanation of complex situations which is
nevertheless sufficliently realistic to provide approximate agreement
with observations orn the actual system. We are now trying to assess
whether model III gives a sufficiently realistic picture of an actual
intersection to make further development of the model unnecessary.

The plausibility of some aspects of model III has boen discussed
in §4.5 and we now reconsider the predictions of the model in the

light of the data,

4.1, The tr on of arrivals.

With the purpose of comparing observed arrivals of vehicles in
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each lane with the postulated Poisson process, frequency distributions
for the inter-arrival intervals (shown in Appendix III) were constructed.
In this context, an arrival ia defined as the passage of a vehicle past
a fized point ohosen as far distant from the intersection es possible,

80 as t0 reduce to a minimum the effects of congestion on the arrival
distribution. Intervals between arrivals are listed in Appendix III.
The separation of these intervals into groups, corresponding to
continuous periods of observation, is ignored, and the segquence of
inter-arrival instants resulting for each lane is examined in order

to assess its conformity with a Polsson arrival proocess.

The log survivor function for the inter-arrival intervals is
plotted (fig.5.1) for arrivals in each lane. It will be observed
that this is roughly linear as would be expected for a Peisson input.
In order to assess the significance of the deviations from linearity
the modified mean teat of Lewis (1965) based on tho statistic S’ is
applied to the intervals of each lane. In each ocane the value of
S' is far from significant. (In lane 1, S' = 83.30, and the
distribution of S' under the null hypothesis is normal with mesn 82,5,
variance 13.75: in lane 2, S’ = 73.70 (mean 72.5, variance 12)).
Although as Lewis points out the S' test should detect serially
oorrelated alternatives, it was thought useful to deteormine the
correlation coefficient of lag one for the intervals of lanes 1 and 2.

These were respectively .00645 and .00436, and are far from significant
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if assessed by the criterion of Cox and Lewis (1966), p.165.

It appears that on the data available the arrival process in
each lane conforms with a Poisson process. A more detailled
assegsment of the adequacy of the Poisson model for arrivals seeoms
inappropriate here partly because of the weskness of the ¢tachniques
available for assessing goodness-of-fit of predictions resulting from
the model, and the inaccuracies of the data, but also becaunse it 1is
to be hoped that the applicability of model III would net be too
fundamentally affected by slight deviations of the input processes

from complete randomness.

2, Realism of dictions from model III,

We consider next the comparison of derived aspacts of model III
with the data, in particular the comparison with sample values of
certain predicted parameters of the delay distridutions,

Means and variances of the delay distributions, both theoretical
and empirical, are shown in tables 5.2, 5.3. The remarks of
Appendix II concerning difficultins in measuring delay times are
relevant here, and we note that an average bdias of, asasy, 2 seconds in
lane 1, arising from misinterpretation of ‘delay’, is not improbable.
We would expect that biases for lane 1 and 2 would differ because of
greater difficulty in assessing the positions of vehicles in lane 2.

Differences in the values of the sample and prodioted means
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might therefore be accounted for as due to a combinatiorn of four
faotorss lack of realism in the medel, biased interpretation of 'deley’,
imprecision of parameter estimates in the fitted model, amné sampling
fluoctuations of mean delay about its expected value. If the bias

in observations of delay for a given lane is roughly conetant, the
variance of the delay distribution should be almost unaffected by it,
and might provide a better statistic than the sample mean upon which

to base & comparison of data with the model.

It is known that the estimate of the variance of the delay
distribution calculated by regarding the observed seguence of delays
as a random sample will be influenced to sn unknown extent by the
autocorrelations of the observations. Jowett (1955) has proposed a
method of cbtaining approximately unbiased estimates of the population
variance and of tho:eampling varience of the mean from a section of a
stationary time series, and it seems that this techmique might be
useful here. We denote the observed sequence of delays, in order,

th

by Xy i=1 ... 0, The s serial variation parameter, bﬁ, may be

defined by
2
5, = E {s(xn . xm)} - 21 - B),
vwhere o is the variance of the marginal delay distridbution end o
the serial correlation coefficient of lag & of the joint delay

distribution in lane 1, Jowett suggests that it should often he

possible to find an L such that, for some suitadble small ¢, lba-6‘|<.s.



in which case w2 may write E {&(Xi - xJ)“} = % + 0g whera |ei < 1,
provided that Ii - Jl a-ao. His estimate of ¢® is the average of

all semi-squared differences which are provided by the pample, 1i.e.

[ 1
‘3 s = 4 z b(xi . xd)z I 13;
) 1,31 4-jl2 8 ,Jtli-j\)ao |
S J
i - s°~1
o L «T)t « I - - $)
<n1.1(xi ) L (n = 98,)(n-a, +1)
N
- ] &
where D, - 121 (x1 - xi+.) .

Ss ?* has a bins of at moat e.

He suggests that, in precticas, as 8, is unknown, a walue for 5,
may be selscied by inspection of usample estimatea »f 50 given by
d = 3D/(rn-a).

For the data under discussion a delicate essessnznt of the most
appropriate value for s, is not nocessary, eince, for purposes of

0

comperison with the theoretical model, «g"‘ is effectively constant,

o
save for sampling fluctuations, for 8, % 6.
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Table 5.4,
Analysis of Semi-squared differences of Delave,

°, d.o 8’30"
0 0.0 43,70
1 15.79 43,97
2 27.65 44,32
3 33.79 44.53
4 36.99 44,67
5 37.24 44,76
6 40,70 44,86
7 45.12 44.91
8 47.03 44,59
9 45.53 44,88

10 42.45 44,88

From Table 5.4, the estimate of 6¢* for lane 1 has a valuec of
about 44.9,

Observations of delay experienced by vehicles in lane 2 are too
few to permit & sample estimate of the variance of the delays in that
lane to be made. /

A comparicon of the variance for lane 1 derived in this way with

the predicted variances of Tables 5.2 and 5.3 reveals that the entries



of rows (c), 1, 3, 5 appear consistent with the sample value.
Jowett shows in addition that an approximately unbiased estimate
of the sampling variance of the mean of a series of correlated

a
observations iz given by a;’*- v, where v = 5%: : (=

L x‘i)z’
o i, =1 g

i

Thue for lene 1 the eatimated standard deviation of the mean cbserved

delay is w44.9 - 43,7 = .10, This assists in the comparicon of
the sampls mean with the predicted meanst those of rowe (1), (3),
(5), (Table 5.3) are within about 1.5 estimated standard deviations

of the sample mean, whereae the mean of row (c) (Table §.2) is diastant
almost two standard deviations.

Inspection of the segquence of observed delays to wehikles in
lane 1 suggestz the likelihood of considerable correlatien between
delays of successive wvehicles. It would be interesting, therefore,
to match the serial correlation coefficients of the model agaianst
those of the data, possibly by means of a suitable kind of harmonic
analysis, Unfortunately when the atteapt is made to evaluste the
serial correlation coefficient of lag one in the medel, difficulties
are encountered which are of such a subatantial neture that it would
appear that the ovaluation of seriasl correlation coefficients of lags
greater than one, by similar methods at least, is net foasibla.

We are thus reduced to consideration of the single lag 1
correlation coefficient, and the derivation of this ia dimcussed in

some deteil in section 5.4.4. This coefficient was not evaluated
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nunerically for the following reasons.

(1) Quantities suoh as §2'(1), §é"(1) are required. 1In the
evaluation of the mean and variance of the delay distribution
only §2°(1) + Qz'(1) and 35"(1) + Tz"(t) were required and
the algebra and computation were arranged in order to take
advantage of any simplifications which might ansue from
oconsidering the sum ﬁé(x) - §2(x) + ié(x). fhe evalustion
of §é(x),thon¢h certainly possible, would necessitate repetition
of much of this work.

(i1) The comparison of an observed with a predicted correlation
coefficient would, it appears, be merely on an imspection
besie in the lack of & guitable test of significance.

Despite these difficulties, it is the casc that, as with
the sampling variance of the delay distribution, the pample serial
correlation coefficient of lag one should not be unduly imfluenced by
the existence of an approximately constant bias ia the observation on
delay. It would appear to be possible to expand Jowett's work
slightly to obtain an approximately unbiased estimate of the lag 1

serial correlation coefficient by a suitable averaging of the quantity
T Bz -3z, - xy,)

i, 5
l1-3 |» 8,

sinoe Yo - E{Hxi B x14—3)(x:l¢1 o xi+a+1)} ""a(ﬁ - ’_ola‘._;..f!tl) .

8, would be chosen so that |¥e - a*/o’l < e forss .



The previous paragraphs have been concerned with attempts to asses
how well the model predicts fairly general aspects of the distribution
of delays in a given lane. However the question of preportionally
how many vehicles pass through the intersection without deolay is of
considerable practical interest, and is another aspect of the data
which might be compared with the model, Since only the firat two
moments of the marginal delay distributions have been conpldared,
information derived from this comparison may be largely indepeundent of
previous results, The theoretical probabilities of no delay under
the assumption of model III are determined in section 4.3.5, and
calculated values listed in Tables 5.2 and 5.3.

In order to construct a sample value for the probability of no
delay in lane 1, we associate with the nth succeasive vehicls crossing
the intersection after the commencement of the period of obeservation au

dummy random variable z, defined by

i

zy = 1 4if thie vehicle is not delayed,

= 0 if it is delayed.

The probability of no delay is estimated by % for a large sanmple, and
once again we may invoke the work of Jowett to provide an estimated
standard error for this mean, since the zy form a correlated sequence
of observetions. Table 5.5 gives for the estimated atandard error of
this probability a value of about .06 (with s = 10).

From tables 5.2 and 5.3, we may therefore regeard the antries for



*probability of no delay’ in each of rows (c), (3) amd (5), which are
each within one estimated standard deviation of the sample value, as

indicating consistency of the model with the data.

Table 5.5.

Analysis of Semi-squared differences of Zyf o

a2 %

%0 dao 4 s,
0 0.0000 0.2490Q
1 0.1080 0.2424
2 0.1615 0.2441
3 C.2063 0,2451
4 0. 2201 0.2456
5 0.2405 0.2460
6 0.2293 0.2460
7 0, 2468 0.2462
8 0.2645 0,2462
9 C.2792 0,2460
10 0.2810 0,2458
14 . 0.2632 0.2451

12 0.2450 0.2449



In the preceding paragraphs we have attempted t¢ compare certain
significant aspecta of the observations with the model. In apite of
difficulties in finding suitable sastimates of the parameters specifying
the model, and although the interpretation given to certain acpects
of the model in the actusal situation iz probvadbly net the mezt suitable,
it has been poszible to demonstrate a considerable dagree of conformity
of predicted with observed behaviour. There is every likelihood that
a more direct method of ectimation of parameters im the model, possibly
based on & minimisation of a measure of distance of observed deluy
frequency distributions from their theoretical counterperts, might

lead to an even closer fit of the model to ths data.

5:4,3. A comparison of model IIY with model I,

A likelihood function similar to that construoted for model III
was programmed for model I, and s sequence of regeneration points of
the type defined in model 1 was extrected from the film, In order
to make this sequence of points compatible with the agssumptionsof
model I a slight adjustment of the data was required. The likelihood
function was maximiped withrgspect to the parameters Tye i =12,

The maximised log-likelihood for model I was found teo be -312.7,
The comparable figure for model III is -174.8,
If these values were regarded as caloulated for the entire record

of the system vhioh is available, then (Bartlett 1967) they might be



18.

considered to indicate the superiority of modal III to model I.
However the likelihoods refer to observed sets of regemeratiorn pointes,
whioch are not identical for both models, and thus the likelihoods are
not directly comparabdle.

We may obviate this difficuliy by observing that the zat of
regeneration points for model I (set I) is inocluded im the set for
model III (set 3), and thua if we comsider set 1 under the assumptions
of model III the value of the likelihood obtained im this way will be
greater than or equal to that calculated for set 3 under model IIX,

It would appear that model III represents s substantial inprovement

on modsl I,

5s4.4. The ocorrglation coafficiert of succegsive deleys to vohicles

in e 20 d .

Let A and B refer to conseocutive vehicles im lane 2, salected
at random. The vehicles are delayed for intervals of length t, t°,
and leave queuwes of lengths q, q°, respectively. The joint
dietribution function of t, t° is Bz(t,t"): gz(q,q‘) ia tho
probability of a particular pair of wvalues q, q'.

Suppoze first that q is non-sero, i.e. B arrives before A departs,
say an interval T after the arrival of A, Then in the interval t-7
immediately following the arrival of A, q-1 vehioclss arzive in lane 2

eand in the succeeding interval t'-t+7 a further q'«q¢+? vehiclsa arrivs



in lane 2.

Thus
,.o;ao (t- ’]“'1 -xz(t-r)!xz(t'-wr_)glq" ok
8(qu ) (‘1_1 e q -q+1 '
_xz(t°-t+T)
@ dr aB,(t,t'), a'> q-1,qf0.
Similarly

0
@ -At -A,t' (A,t7)% |
g(o,q") o f Q@ 2 - ] B -?-W—-“z(t.t') 2
‘-L 0 q

c oo
Let us define G, (x,x°) = & : &,(q,q")x L] IR 3 g.(0,0")x%,
2 2 2
q=1 q°'=q-1 ¢ =0
L 0
end 3%(s,8") = /-m/_ a'('f'ﬂ’ tv)dB (¢, t").
2 4.,‘0 uo 2

It follovas thet

o @ & =h,(t'+7) xzn“(t-w) A, x'(t'-ta7), svaz,(t, 1)
Gz(x,x") - AoX { I‘L ® . @ .
“o Yo
“A,(t+t-t'x?)
+;‘ J:no . de(tOt")
0

grresmy [};(\2!‘(1-!).X2(1-x'))-B:(xz,x2(1.;-)§] + By (Ag hp(1-x7]

This expression reduces immediately to the expressiom of B4.3.4 for

the generating funmction of the marginal distributiems eof ¢,q’.



Iif we writa y = 12x°{1-x), y' = 12(1-1'), and éofine uriher

Kz(Yoyo) o (\2*1)(12-37")02(1 - I;{:;T » i - %‘2" ) ’

we have, when y = y' « O,

g% :% a D .8 3
Ey I KZ - k; t.y. [] Bz(Yry') = X:z sy Bz(yp ya) o l2 a,.u Bg‘yl. }
=
® i d Bz(x2.30> L]
From this relation E{tt'1 may b; vecovered in torms of’-‘%}wfy;(y y')
J ay } ‘: » P

and known quantities. (Since o.;.
-'53;': By(y, y') |’ “ E(t')) .
[ymy =0

Re proceed to describe how Gg(x,x"} may be determineds. Vehicle
A departs either at or immediately following a reguneraticr pesint
shich is called the ‘preceding regeuneration point’, Caly the
component of 02 vhioh arisss from & preceding regeneration point of
type Sa(n) is evaluated: aimilar mathods may be wned fer the othar
components of Gzo It is oconvenlent to denots by k the tetal nunber
of vehiclez which leave at the 82( n) preceding the departura of A.

H, is the normalising constant defined in 34.3.4.

Case {1)s A and B both have as preceding regeneration point the
same Sz(n), with a total of k departures,

Pr {c;ne (1) and q,q° with q° = q-1}

RGN oy, 4
L B ke (n-q) ¢ (a-m+k-2), 2 ¢ k ¢ )

S,(n)
- —2-2--P2°¢ (a-q) ¢ (a-1), k=n+ 1



Case (i1): A ia the last vehiocle to leave at its procediny rogeneration
point, and the next vehicle to depart in either lame ig¢ B,

B may now have as preceding regeneration poimt, with non-
sero probadility, either 32(“) (for certaim m), ex 12(-1). Ve
have, eo.g.,

Pr.{caae (11), 2P regeneration point ie of type sz(n),
q=n+ 1k q'e n}»
S,(n)

k oM m-n+k
a Hz T“mfl.- 1 / (xya) g,(a)da, 16 k & ny
1
&,(n) W oo
4 n 2 f -AC B
- KZ Py 9 \m! .JO fz(C)O a da, kens+ 1,

For the remaining casos((iii) - (v)) it is coavenient to make use of
prodbability gencorating functions from the outaet, The fellowing
P.8.f's are useful and refer to the distribuiion of the mumbai of
arrivals in lare 2 in an interval defined by the initial and final
conditions detailed. (I.C. amd F.C,). In each situation I.C. refers
to a regemeration point, with the exceptions of (3), (e), (%¥).
Situstion (a),
1Cs 8 82(“) at which at leant one vehicle does net depart, Gap

to I in 1 rejeocted,.
¥.,C. ¢+ Departure of this I in 1,

Pru{r arrivals in lane 2 during intervel of leagth t}

r
- J/:nx»e M t(1.0 (¢)) 932— © kztdt,

L

e Bo2) = A (1-g5(A-2y2))/ (A 3).



Situction (B),

I.C. ¢ Queue exists in lane 2. Next vehicle in 1 (of umopecified
type) has gap rejected.
P.C. ¢ Departure of this vshicle in 1,
p(s) = A (1 = pygy(A-Ay3) - ayhp(A-2ye))/(h=hy3).
Situatiop (¥),
I.C. ¢+ Queoue in 2, Gap to next vehicle in lane 1 ie aecepted.
F,C. 3 Departure of leading vehicle in lane 2,
px(z) - p1g;(l-kzz) + q1h;(x-xzz).
S1 ion
I.C. ¢+ No queuen: arrival in lare 2, Kearest vehicie in 1 i3 a I,
and gap %“o thisc wehicle ie rejected.
¥.C., 1 Departure of this I 4in 1,
(Omit possibvility that first lene 2 arrival is & I: already
covered in Case (i11i) above.)
P (8) = Ah q,8(1 - f;(l-kzs))/k(kphzz).
Situation (
I.C., ¢+ Ko queuest arrival in lane 2 of typs II. Cep to next
arrival in 1 (of type I) is rejected.
F.C., t Departure of this I in 1.,

Pe(z) - A,s(1 - r;(x-xzu))/(x-xzu).



ation (%
I.C.  No queuest srrivel in lane 2 of type II. Gzp te noxt
arrival in 1 (of types I) is mccepted.
¥.C, ¢+ Departure of this II in 2.

gg(s) = zfg(x-xzs).

Situation (1),
I.C., * No queuea 4im lane 2t arrival in lene 2 of type I.
F,.C. ¢ Departure of this I in 2.
p@(z) a B,
31 tuat o)
I.C, 3 Ne queuest maxrrivel in lanc 2 of type IX. Hoxt in 9 is of
type II.

F.C. ¢ Departurs of this II 4in 2.

pelz) = =

Ve now return to oongiderstion of pospible developmento of the

systen from an S,(n).

Case (iii)s A is last vehiole to leave at an Sz(n), st which not all
cusueing vehioles depart. The next vehiocle to cress the
intersaction is in lene 1,

This corresponds to situation (a) folleweé by pessibly

several situations (§), terminating viih & sitewation ().



i’é"‘ «

If we define
r, = no. of arrivals in lane 2 during situation (a)

r, = no. of arrivals in lane 2 during 1*® situatien ()

Py
ry = no. of arrivals in lane 2 during situstion ),

we have
? p 1
Q' o 4 l=-ker +r,+ L -
a ¥ i=1 pi

whore » » 0,1, ... i# the number of situations () which occur.

Since T o Ty are inderendent,

rﬂ{
p.g-£4y7lg,8Xx') = g0(3=1) A,(1-g§(x-x2x-)) A hgz(u.ﬁg')*qgk-iﬂ e

(oagx) I C1-mt g O Doy
and so the contribution to Gz(x,x') is |

*19gf

3,(p,

(1-85 (-5 {py g5 (\hyx g g 001 )
[z o (o5 (hh iz Yoq B Oeh =)

s otr)550e0)

Case (iv): A is the last vehicle to leave at an S,(n) at which all
quoveing vehicles depart. The next vehicle to arrive in either
lane is B, vwhich is delayed for a non-zero intorval ef time.

This corresyonds to situation (b) followed by pessibdly

several situations (p) and situmation (Y).

Cese (v): A ia the last wvehiole to leave at an sz(n) at which all
quoneing vehiocles depart. The naxt wehicle to arrive iz in

lane 7 (and of type 1). There may be several further arrivale
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in lane 1 prior to the next arrival in lane 2 (the errival of B).
Immediately following the arrival B one of situatiens (g), (2), (q)
or (6) obtaina, Situation (g) would be followed by possibly several
situations (3) and a situation (Y).

The contributions to Gz(x,x’) arising from cases (iv) and (v)
total to
Ay 8p(pp) Jap(1-£3(A-Ax ")) (Ap4h 0, ) (P85 (A-Apx " J4q p(A-h ')
A H, lj}2(1-x')+l1(p1¢;(k-x21')+q1h;(k-k21')ﬂ

=
+P40,0 5 (A=A x " )+ pora n, & &

The total contridbution to Gz(x,x') arising from a preceding regenerstion
point of type Sz(n) consists of the sum of the contributiors arising
from cases (i1i) to (v) (1isted above) and the contributions from

cases (1) and (ii), which are 1

1 | P . i xq, \[2282(11“ )=xx'S,(p,) . |
ﬁ- P -xx! (82(p2)"82(n'))+ P gz(x'xzx') no_p <"32(:[)2 )
2 | P2 2 L 2

+3,(p,) ;—2- (@ f5(A-2x* )+p,)| .«

The components of Gz(x,x') arieing from preceding regeneration
points of types Tz(n), Rz(n), Rz(‘1)' 32(-2) may be disoussed in a
similar way. For the reasons given in §5.4.2, this caloulation is
not completed here,

As a check on this complicated analysis, one might use the well-

known properties of a bivariate probability generating fuaction. On
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inspection of the component of 02 above, after multiplication by Bz,
it ie found that

a) with X = x* =« 1 this reduces exactly to those torms in H, which

2
may be regerded as arising from S,(n).
b) with x° » 1, this quantity reduces to the correspsamdirg part of
the marginel p.g.f. of q, evaluated in §4.3.4.
Thus two partial checks on the calculations are available.
When the attempt is meds to obtain the relevent part of the merginal
P.g-f. of x' <the expresaion obtained iec not immediately identifiable
as in cases (a), (b). It seoms likely, hovever, that, with epproprints
use of the basic equations of the system, the entire function Gz(x,x')

would satiefy this further condition.
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Chapter 6.
Conclusion
6.1. Disoussion of chapters 2~5: problems outataendi d conclusions,

Chapters 2-5 appear to demonstrate that it is at least possible
t0 construct plausidle mathematical modelas for the problem of dalay
due to right-turning vehicles, and to make goms progreas with their
analysis.

Further analysis of these models and in particular of model IIIX
might be directed towards answering the questions:

(1) what is the distribution of delay caused to vehicles arviving
in the minor road?

(4i1) 48 a time-dependent analysis of these models possiblse?

(111) oould model IIXI be supplemented by a model for pedestrien
behaviour at the intersection?

It might for instance be possible to utilise the formulae of
Tanner (1962) for the mean dalay to vehicles in & miner roed caused
by mejor road treffic, if 1% were possible to derive the firat two
momente of the distridution of the °*busy pericds’ of the interssction.

With regard to the results of fitting model III to an actu=l
intersection, a claim could be made that the mecdsl raeflects in a
meaningful way those sspects of the real situation arising from right-
turning vehicles, Given sufficient resources, one could envisage a

much more comprehensive gtatistical analysie of the medel, Data
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from several intersections might be available, possibly consisting

of sequences of observations at different times of day reflecting a
range of parameter values in the model, end in particular for
situations in which the proportion of type II vehicles in each lane

is substantial, These data would be obtained on film with & frame
speed sufficiently high to give the detail required for en empirical
study of the gap-acceptance mechanisms in use, It would bve
interesting to select firstly intersections to which the aszumptions
of the model (particularly concerning randomness of arrivals) might
provide a good approximation, and secondly, a group of intersections
to which these assumptions would apply to a progressively lesser extent.
In this way information as tc the range of validity of the modal might
be obtained.

At the same time & variety of distributional forms for gap-
requirement times ocould be considered, and the most suitable determined.
It seems that the likelihood function used in chapter 5 is not
adequate and that modifications to this based on & more complete
description of the system should be made. For instance, either the
number of vehicles departing at a regeneration point, eor the duration

of the transition interval might be used to augment the description

used above.
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6,2, Practical applications of Model III,
It is possible to envisage certain applications of model III,

although the construction and the analysis of the models of thisas

paper is intended to be not so much a discussion of practical problems
as a demonstration of the feasibility of this type of approach to
problems arising from actual road layouts.

An obvious application is to the desigr of a road system, The
model could be used to give an indication of how much traffic =
particular intersection could be expected to deal with, assumptions
about gap-acceptance being based on experience with similar
intersections elsevhere. The gquestion of the optimal loading of an
intersection would become important if some form of traffic routeing
through a network were available, and the mcdel might give information
on this.

We note that it is frequently the case that the intersection of
a four lane major road with a minor road may be regarded as the
intersection of a two lane major rosd with a minor road, because of
the reduction in useful width of the major road caused by parked
vehicles. Model III or III(a) might be applicable to such situations.

At a particular intersection for which suitable data are to hand,
model III could give information concerning (i) the cheice of gap-
requirement times dy drivers, (i1i) the capacity(corresponding to

extreme values of parameters) of the intersection. If such data



were available for a large number of intersectione for whieh, in
addition, accident statistics were available, it might be poseible

to relate either some aspect of the vector of parameters describing
traffic at a particular intersection, or some messure of the loading

of the intersection relative tc its capacity, to sspecte of tha

accident record of the intersection. Possibly 2 multivariste technicue

such as canonical correlations might be useful in this respect,

6.3. Further Problems.

A problem related to that considered in this theeis concerns the
delays caused by right turning vehicles at the priority iatersaction
of a four lene major road with a minor road.
It 1is possible to propose a set of rules of vahioular btehaviour
in a model of this situation wkich appear to make itz enalysise
compsratively straightforward, by reducing the system te two independent
subaystems. ‘This may be achieved by the fellowimg assumptions (with
the usual notation):
(1) Type I vehicles are confined to the outer lanes, and tyve II
to the inner lanes, at the intersection.
(i1) Type II vehicles base their decision to cross on a gup-requirement
time applied only to the etream of opposing type I's, i.e. to
the opposing outer lanas.
(111) Vehicles arriving at the intersection ara of randonly assorted

type.



With this =zet of rulees, each of the two subsystens consisting of
type I vehicles together with the opposing type II vehicles, is
independent of the other, at least so far as delays are conceraed.

The four lane intersection may be regarded s a cembinatiosn of two
independent 'T-junctiond, models for which ers discussed in Chapter 1.
The model might be plausible for somo situsiions, in particula: when
lane markings are present.

It 1is however a matter of common expsrience thet turaing raffic
may be delayed by opposing queveing type I vehicles. It 4 not
difficult to construct 2 model along similar linses which would
incorporate this feature. It i not cbvious in what wey & syntenm
of regenerstion points may be constructed %o asmist in its ansz yaia,
The difficulties are twofold: a) the poasitility of quenas
simultaneously present ia tve lanes would presumably inecrease {he
number of types of regenerstion point, with a corssspordlng increase
in the number of iransitions to be considered; and b) it wouli appear
necessary to incorporate into the description of the system at any
instant when two queues existed a neasure of the time du: to alapae
before the arrival of the next vehicle in a psrticular l=ne. Thus
it appears that the analysis of such a system might be more aprropriatel;

based on that of Cohen and Stam (1963).
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Transition probabilities for model III.
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Appendix II. Practical Difficulties.
1. The Intersection.

Great difficulty was encountered in finding an interzection at
vhich conditions were approximately those sesumed imn the model. The
reasone for this were (i) there are not many intersectiom in the
Glasgow area at which the major road contains only twe lame’, with
literally no opportunity for vehicles to pess to the left of a queue,
(i1) almost all intersections of interest were contrelled, or were
subject to interfering factors such as pedestrian crossings, (iii)
the traffic intensity or the proportion of turning wvehicles in at
least one lane was usually far too small, In the evenrt, ouly one
suitable intersection waes found, and even it was not satirely
satisfactory - some wvehicles did by-pass the queae, and the proportica
of type II vehicles in one lane was unexpectedly small,

2. The obgervations,

Piotures were taken with a time-lapse cine oesmersa at a constant
interval of about one second for esbout 75 minutes at & pesak period,
resulting in epproximately 4500 frames.

Upon inaspection, it was observed that for intervals of
considerable length the intersection was gquite free of conguetion.
This was found to be a result of the occasional bBlocking ef each of
lanes 1,2 some miles upstream of the intersection. It was decided,

therefore, to ignore theae parts of the record, and consideradle care
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vas exercised in seleoting for oconsiderstion intervals (beginning and
ending with free flow) during which the flow of traffic to the
intersection in both lanes appeared to be unobstructed. It van
hoped, by this means, to bring the arrival processes inte rcazsonable

conformity with the postulated Poisson procass, and thia wa: in faot

achieved.
3. Interpretation of the recoxrd,
(1) Queues.

The interpretation of a 'queuae' in the model is not guite mo well
defined in the actual situation as might be suppesed. Iriver= tend
to avoid periode of stationary queueing by slowing their apurcoach to
an intersection if congestion is observed ahead, The film shows
clearly the brake-lights of wvehicles in lgne 1, and this information
may be used when necessary to estimate the queune length at = given
instant. Moving vehlicles may be considered to be gueuweing -~ the
criterion is not one of speed, but whether & wehicle weuld or would
not have joined the end of a stationary queus had it coniinued to move
with the speed at which it initially approached the imtersection.

Some difficulty was oxperienced in distinguishing inmdividual
vehicles at the intersection during periods of heavy congestion, but

it was usually possidle to deduce queue lengths to within reascnabdble

accuracy.
(i1) Delays.

Several interpretations of delay in the actual gituation are
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available. The one considered most meaningful and adoptad here ia
as followa.

The delay experienced by a given wvehiocle is the diffe¢rence
between the times taken by this vehicle and by e wvehicle ef ninilar
type, unimpeded by congestion and travelling initielly at the same
speed, to complete a journey through the intargection. This journey
is from a point sufficiently far upstream to ba clear ¢f any congestion,
to a point clear of the interscection in the exit laneo.

The practical difficulties in estimeting the delay of & weshicle
from the film are considerable. The number of frzmes taken dy the
vehicle to complete its journey was counted, and the nearest unobstructed
vehicle was used to provide a comparison. It was feund that the
speeds of unobstructed vehicles through the internectien wvaried
considerably.

Thus observations on delay are subjeoct to seversl socurces of
error. Likelihood of bias arising from an improper interpretation
of delay in the actual situation, the limitations impesed by frame
speed, and the conaiderable subjective element in moaswuring delsys,
are some of the components contributing to discrepencies of obaerved

delays from their predicted values.
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Appendix III. Observetions.
(1) Inter-arrivsl imtervels.

Measurements made to the nearest frame-separation (approrimately
1 pecond). Commes define continuous periods of obsevrvaiion.

(Data to be read horizontelly.)

N~ =
Ch
N
.N
w
W
N~
W
W
n
-l
W
=l
N
&

12 1 1 8 2 1 1 4

6 25 1 1 1 4 1 19 2 4 3 2 3



o
o
o
o

g

w
"

N
r
N

>

¥

N & A
& W 0N

3

o

=

>

o

Wi

e

and

o

(L8]

AN

(i1) Delays to_wehiglea,

Lane 1.

10 8 6 2 1 O o © 0 0 o Q 0
11 10 10 9 8 7 6 5 4 3 18 17 16

14 10 8 10 9 2 1 0, ©0 0 0 a

[+ o o o o
o] o (o] o (@] P=

-l
O
-
-3
5
o
-

o
-
A8 |
-
-
-y
n
-
N
-3
A ]

Lane 2. (omitting zero delays).

5 2, 11 7 8 8 2, 11 9 8 5§



Appendix IV, References.

BARTLETT, M.S. (1967), Inference and stochastic processaes,
J.R.Statist.So0c.A, 130, 457-474,

COHEN, J.,, DEARNALEY, E.J., HANSEL, C.E.M,, (1955),
The risk taken in crossing a reoad,
Operational Research Quarterly, §, 120-128.

COHEN, J.W., DE LANGE, S.J., (1965), Numerical results for
"Queueing for gaps in a traffic strean”,
Mathematical Institute, Technolegical
University, Delft.

COHEN, J.W., STAM, A.J., (1963), Queueing for gape im a traffic
stream, Mathematical Institute, Technologiosal
University, Delft.

COX, D.R,, LEWIS, P,A.W., (1966), The Statistical Analysis of
Series of Events, Methuen, lLonden.

GAVER, D.P., Jr., (1965), Methods for describing tims-dependent
waits at traffic merges, Third International
Symposium on the Theory of Traffic Flow,
New York.

BEAIGHT, P.A., (1963), Mathematical Theories of Traffic Plow,
Academic Press, New York,

EAWKES, A.G., (1965), Queueing for gaps in traffic, Biometrika,
52, 79-85.

HAWKES, A.G., (1966), Delay at traffic intersections, J.R,Statist.
Soc.B, 28, 202-212,

HERMAN, R., WEISS, G.H., (1961), Comments on the highway crossing
problem, Operations Research, 9, 828-840,

JORDAN, C., (1950), Calculus of Finite Differences, Chelsea
Publishing Co., New York,

JOWETT, G.H., (1955), The comparison of means of mete of observations
from sections of independent stochastic series,
J.R,Statist.Soc.B, 17, 208-227,



(id)

KENDALL, D.G., (1951), Some prodlems in the theory of gqueuss, J.AH.
Statist.Soc.B, 13, 151-173.

KENDALL, D.G., (1953), Stochastic processes ocourriag in the thaory
of queues and their analysis by the method of
the imbedded Markov Chain, Ann.Msth,Stat. 24,
538-354.

LEWIS, P.A.W., (1965), Some results on tests for Peoissen proceswad,
Biometrikas, 52, 67-78.

MAYNE, A.J., (1954), Some further results in the theory of pedestrians
and road traffic, Biometriks, 49, 375-389.

MILLER, A.J., (1962), Road traffic flow considered as a stochastic
process, Proc.Camb.Phil.Soc., 88, 312-325.

NEWELL, G.P., (1955), Mathematiocal models for freely-flowing highway
traffic, Operations Research, 3, 176-186.

NEVELL, G.F., (1959), The effect of left turns on the cspacity of a
traffic intersection, Quart,Appl.Math., 17, 67-76.

OLIVER, R.M., BISBEE, E,F., Queueing for geps im high flow trafZio
streams, Operations Researsh, 10, 705-115.

REID, D.H., (1967), A mathematical model for delays censed by right-
turning vehicles at an uncontrolled interasascticr,
Journal of Applied Probability, 4, 780-191.

TANNER, J.C., (1953), A problem of interference between two gueuas,
Biometrika, 40, 58-69.

TANNER, J.C., (1981), Delsys on & iwo-lane road, J.R,Statist.Soc., B,
23, 38-63.

TANNER, J.C., (1962), A theoretical analysis of delays at an
uncontrolled intersection, Biomatrike, 49, 163-170,

WASSCHER, E.J., (1963), Algorithm 203: Steep 1, Commumications of the
Association for Computing Nachinery, 6, 517-519.

WEISS, G.H., (1965), A survey of some recent romsarch in road traffio,
Proc.of Symp.on Congestion Theery, University
of North Carolina Press, 253-280.

WEISS, G.H., MARADUDIN, A.A., (1962), Some prodlams im traffio dalay,
Operations Research, 10, 74-104,



