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Abstract

The principal objective of this thesis is to develop methods for composite indices

measuring environmental quality at small spatial scales. Specifically, it is of interest

to create a composite environmental quality index at data zone resolution in Greater

Glasgow, where data zones are small geographical areas defined by the Scottish

Government and used to report various statistics and indicators. The index will

consist of various indicators measuring different aspects of environmental quality,

being grouped into three ‘domains’: air quality, soil quality and water quality.

Composite indices are multidimensional summaries of data, constructed from a num-

ber of one-dimensional indicators measuring one variable each. This is primarily

achieved through converting the scales of these individual indicators to a common,

unit-less scale and then aggregating the indicators together to form a composite in-

dex. Each indicator can be allocated an equal weighting within the composite index

or weightings can be allowed to vary. Various subjective choices throughout the

construction process can affect a composite index, all of which must be considered

when interpreting the final result.

Chapter 1 provides background information on environmental issues such as air,

soil and water quality in urban areas and the use of composite indices in several

contexts, particularly in environmental situations. A literature review of composite

index construction methodology is also presented with much of the methodology

informing the work of later chapters.
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Chapter 2 introduces the various data sets that will be used to construct a composite

environmental quality index for Greater Glasgow. Exploratory spatial and temporal

analyses of these data will also be detailed prior to any formal statistical modelling.

Chapter 3 discusses the fitting of geostatistical models to the data. These models

will then be used to predict the various environmental processes at a high enough

spatial resolution for there to be estimated values for each data zone in the study

region.

Chapter 4 details how the modelled data from Chapter 3 will be used to construct

separate air, soil and water quality indices and then aggregating these domains

to create a general, multi-dimensional environmental quality index. A variety of

different methods found in the literature will be used and the indices will be reported

at data zone resolution.

Chapter 5 will assess the composite indices constructed in Chapter 4 by investigat-

ing possible methods for determining the robustness and usefulness of the indices.

Firstly, an uncertainty analysis of the various indices will be considered to quan-

tify how much statistical variability would be expected for each data zone. Various

approaches for assessing how the index can effectively capture changes in environ-

mental quality over time will then be investigated. This will be restricted to a period

of five years.

Chapter 6 consists of a final discussion of the results presented in this thesis as well

as providing suggestions for any further work in this area.

ii



Contents

Abstract i

List of Tables vi

List of Figures viii

Acknowledgements xiv

1 Background 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Examples of Past and Current Environmental Indices . . . . . 2

1.2 Aspects of Environmental Quality . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Land . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Construction of Composite Indices . . . . . . . . . . . . . . . . . . . 9

1.4 Overview and Aims of Thesis . . . . . . . . . . . . . . . . . . . . . . 27

2 Data and Exploratory Analysis 29

2.1 Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Air Pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2 Air Quality Monitoring Station Data . . . . . . . . . . . . . . 30

2.1.3 DEFRA Modelled Grids . . . . . . . . . . . . . . . . . . . . . 34

2.1.4 NO2 Diffusion Tube Data . . . . . . . . . . . . . . . . . . . . 39

iii



2.1.5 Exploratory Spatial Analysis of All Air Quality Data . . . . . 41

2.2 Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.1 Water Determinands . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.2 Exploratory Analysis . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Land . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.1 Soil Pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.2 Exploratory Analysis . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 Temporal Frequency of Data . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Geostatistical Modelling of Air, Water and Soil Data 59

3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Flexible Regression . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.2 Geostatistical Modelling . . . . . . . . . . . . . . . . . . . . . 66

3.1.3 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1.4 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Modelling Continuous Environmental Determinands . . . . . . . . . . 73

3.2.1 Soil Quality Models . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.2 Air Quality Models . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.3 Water Quality Models for Chemical Determinands . . . . . . . 79

3.3 Macroinvertebrate Analysis Using Random

Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4 Prediction and Aggregation to Data Zone Level . . . . . . . . . . . . 84

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Development of Composite Indices 87

4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.1 Index Construction Steps . . . . . . . . . . . . . . . . . . . . . 87

4.1.2 Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Domain Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.1 Air Quality Index . . . . . . . . . . . . . . . . . . . . . . . . . 94

iv



4.2.2 Soil Quality Index . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.3 Water Quality Index . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 Environmental Quality Index . . . . . . . . . . . . . . . . . . . . . . 103

4.4 Tabular Summary of Results . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Assessment of Composite Indices 110

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Monte Carlo Sampling . . . . . . . . . . . . . . . . . . . . . . 112

5.2.2 Kappa Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.1 Uncertainty Analysis . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.2 Comparing Indices Over Time . . . . . . . . . . . . . . . . . . 120

5.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Discussion and Conclusions 130

6.1 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Appendices 138

A Additional Material Related to Chapter 2 . . . . . . . . . . . . . . . . 138

B Additional Material Related to Chapter 3 . . . . . . . . . . . . . . . . 160

Bibliography 171

v



List of Tables

1.1 Indicator framework for environmental protection (Eurostat, 2014) . . 4

1.2 Steps for constructing a composite index (OECD, 2008) . . . . . . . . 10

1.3 Structure of the Environmental Performance Index (Hsu et al., 2014) 21

1.4 Selection criteria for data in the Environmental Performance Index

(Hsu et al., 2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Descriptive statistics for selected NO2 air quality monitoring stations

in 2011 (units of measurement = µg/m3) . . . . . . . . . . . . . . . . 32

2.2 Descriptive statistics for DEFRA modelled grids (2011 – units of mea-

surement = µg/m3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Descriptive statistics for NO2 diffusion tube data (units of measure-

ment = µg/m3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Descriptive statistics for water chemistry determinands . . . . . . . . 47

2.5 Status and catchment information for macroinvertebrate data . . . . 51

2.6 Soil determinands and limits of detection (British Geological Survey,

2014) – units of measurement = mg/kg . . . . . . . . . . . . . . . . . 52

2.7 Descriptive statistics of metals in G-BASE data set (units of measure-

ment = mg/kg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.8 Temporal frequency of data . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Results of flexible regression model for lead . . . . . . . . . . . . . . . 74

3.2 Results of flexible regression model for NO2 . . . . . . . . . . . . . . 77

3.3 Results of flexible regression model for phosphorus . . . . . . . . . . . 80

3.4 Results of analysis of variance for flexible regression model . . . . . . 81

vi



3.5 Classification matrix for random forest model . . . . . . . . . . . . . 83

3.6 Variable importance for random forest model . . . . . . . . . . . . . . 83

4.1 Indicator weightings for air quality index (AQI) . . . . . . . . . . . . 94

4.2 Indicator weightings for soil quality index (SQI) . . . . . . . . . . . . 97

4.3 Indicator weightings for water quality index (WQI) . . . . . . . . . . 100

4.4 Domain weightings for environmental quality index (EQI) . . . . . . . 103

4.5 Ranked index values for eleven selected data zones (1 = best environ-

mental quality; 1748 = worst environmental quality) . . . . . . . . . 107

4.6 Z-score index values for eleven selected data zones . . . . . . . . . . . 107

4.7 Re-scaled index values for eleven selected data zones (0 = best envi-

ronmental quality; 1 = worst environmental quality) . . . . . . . . . . 108

5.1 Categories for interpreting Cohen’s kappa statistic (Vierra and Gar-

rett, 2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

vii



List of Figures

1.1 Indicators, aggregation methods and weightings used by the Scottish

Index of Multiple Deprivation (Scottish Government, 2012) . . . . . . 17

1.2 Map of study region with local authority and data zone boundaries

– contains Ordnance Survey data c©lCrown copyright and database

right (2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 Maps of air monitoring stations – contains Ordnance Survey data

c©lCrown copyright and database right (2014) . . . . . . . . . . . . . 31

2.2 (a) histogram of NO2 concentration (µg/m3) values; (b) histogram of

log-transformed NO2 concentration (µg/m3) values . . . . . . . . . . 33

2.3 Time series plots of log-transformed NO2 concentrations (µg/m3) at

selected monitoring stations . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Boxplots of monthly log-transformed NO2 concentrations (µg/m3) at

selected monitoring stations . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Boxplots of day-within-week log-transformedNO2 concentrations (µg/m3)

at selected monitoring stations . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Boxplots of hourly log-transformed NO2 concentrations (µg/m3) at

selected monitoring stations . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Maps with average 2011 NO2 concentrations (µg/m3) for each 1 km

by 1 km grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8 Maps with average 2011 PM10 concentrations (µg/m3) for each 1 km

by 1 km grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

viii



2.9 Map of NO2 diffusion tube locations in Greater Glasgow – contains

Ordnance Survey data c©lCrown copyright and database right (2014) 41

2.10 Boxplots of log-transformed NO2 concentrations (µg/m3) by year . . 42

2.11 (a) scatterplot of easting versus NO2 concentration (µg/m3); (b) scat-

terplot of easting versus log-transformed NO2 concentration (µg/m3);

(c) scatterplot of northing versus NO2 concentration (µg/m3); (d)

scatterplot of northing versus log-transformedNO2 concentration (µg/m3) 42

2.12 Map of data collection points – contains Ordnance Survey data c©lCrown

copyright and database right (2014) . . . . . . . . . . . . . . . . . . . 44

2.13 (a) plot of Easting versus phosphorus concentration (g/L); (b) plot of

Easting versus log-transformed phosphorus concentration (g/L); (c)

plot of phosphorus concentration (g/L) versus Northing; (d) plot of

log-transformed phosphorus concentration (g/L) versus Northing . . . 48

2.14 (a) boxplots of annual log-transformed phosphorus concentration (g/L);

(b) boxplots of monthly log-transformed phosphorus concentration

(g/L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.15 (a) boxplots of annual log-transformed phosphorus concentration (g/L);

(b) boxplots of monthly log-transformed phosphorus concentration

(g/L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.16 Annual proportions of macroinvertebrate classifications (using the av-

erage score per taxon) . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.17 Map of macroinvertebrate sampling locations and classifications (•

= bad, • = poor, • = moderate, • = good, • = high) – contains

Ordnance Survey data c©lCrown copyright and database right (2014) 50

2.18 Map of sites for G-BASE project (Fordyce et al., 2012) – contains

Ordnance Survey data c©lCrown copyright and database right (2014) 52

2.19 (a) scatterplot of easting versus lead concentration (mg/kg); (b) scat-

terplot of easting versus log-transformed lead concentration (mg/kg);

(c) scatterplot of northing versus lead concentration (mg/kg); (d)

scatterplot of northing versus log-transformed lead concentration (mg/kg) 55

ix



2.20 (a) histogram of lead concentration (mg/kg) values; (b) histogram of

log-transformed lead concentration (mg/kg) values . . . . . . . . . . . 56

3.1 Theoretical semi-variogram (University of Edinburgh, 2015) . . . . . 69

3.2 (a) scatterplot of model fitted values versus model residuals; (b) nor-

mal Q-Q plot of model residuals; (c) scatterplot of easting versus

model residuals; (d) scatterplot of northing versus model residuals . . 75

3.3 Variogram for lead flexible regression model residuals . . . . . . . . . 75

3.4 Prediction surface for flexible regression model for log-transformed

lead concentration (mg/kg) with sampling locations . . . . . . . . . . 76

3.5 (a) scatterplot of model fitted values versus model residuals; (b) nor-

mal Q-Q plot of model residuals; (c) scatterplot of easting versus

model residuals; (d) scatterplot of northing versus model residuals . . 78

3.6 Variogram for NO2 additive model residuals . . . . . . . . . . . . . . 78

3.7 Prediction surface for flexible regression model for log-transformed

NO2 concentration (µg/m3) with sampling locations . . . . . . . . . . 79

3.8 (a) scatterplot of model fitted values versus model residuals; (b) nor-

mal Q-Q plot of model residuals; (c) scatterplot of easting versus

model residuals; (d) scatterplot of northing versus model residuals . . 81

3.9 Prediction surface for flexible regression model for phosphorus con-

centration with sampling locations . . . . . . . . . . . . . . . . . . . 82

3.10 Prediction surface for flexible regression model for log-transformed

phosphorus concentration (g/L) with sampling locations . . . . . . . 82

4.1 Flow chart detailing general steps in constructing composite indices . 88

4.2 Air quality index (AQI) for 2011 using ranking method (1 = best air

quality; 1748 = worst air quality) – contains Ordnance Survey data

c©lCrown copyright and database right (2014) . . . . . . . . . . . . . 95

4.3 Air quality index (AQI) for 2011 using z-score method – contains

Ordnance Survey data c©lCrown copyright and database right (2014) 96

x



4.4 Air quality index (AQI) for 2011 using re-scaling method (0 = best

air quality; 1 = worst air quality) – contains Ordnance Survey data

c©lCrown copyright and database right (2014) . . . . . . . . . . . . . 97

4.5 Soil quality index (SQI) using ranking method (1 = best soil quality;

1748 = worst soil quality) – contains Ordnance Survey data c©lCrown

copyright and database right (2014) . . . . . . . . . . . . . . . . . . . 98

4.6 Soil quality index (SQI) using z-score method – contains Ordnance

Survey data c©lCrown copyright and database right (2014) . . . . . . 99

4.7 Soil quality index (SQI) using re-scaling method (0 = best soul qual-

ity; 1 = worst soil quality) – contains Ordnance Survey data c©lCrown

copyright and database right (2014) . . . . . . . . . . . . . . . . . . . 99

4.8 Water quality index (WQI) for 2011 using ranking method (1 = best

water quality; 1748 = worst water quality) – contains Ordnance Sur-

vey data c©lCrown copyright and database right (2014) . . . . . . . . 101

4.9 Water quality index (WQI) for 2011 using z-score method – contains

Ordnance Survey data c©lCrown copyright and database right (2014) 102

4.10 Water quality index (WQI) for 2011 using re-scaling method (0 =

best water quality; 1 = poorest water quality) – contains Ordnance

Survey data c©lCrown copyright and database right (2014) . . . . . . 102

4.11 Environmental quality index (EQI) for 2011 using ranking method (1

= best environmental quality; 1748 = worst environmental quality)

– contains Ordnance Survey data c©lCrown copyright and database

right (2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.12 Environmental quality index (EQI) for 2011 using z-score method

– contains Ordnance Survey data c©lCrown copyright and database

right (2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.13 Environmental quality index (EQI) for 2011 using re-scaling method

(0 = best environmental quality; 1 = worst environmental quality)

– contains Ordnance Survey data c©lCrown copyright and database

right (2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xi



4.14 Location of eleven selected data zones in Greater Glasgow (those in-

cluded are coloured red) . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1 5th and 95th percentile intervals for ranking normalisation method:

(a) factor analysis weights; (b) equal weights (Legend: = EQI rank;

= median) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 5th and 95th percentile intervals for re-scaling normalisation method:

(a) factor analysis weights; (b) equal weights (Legend: = EQI rank;

= median) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 5th and 95th percentile intervals for z-score normalisation method:

(a) factor analysis weights; (b) equal weights (Legend: = EQI rank;

= median) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Time series plots (2008 – 2012) for DZ S01003029: (a) EQI for ranking

method with uncertainty intervals; (b) Ranked EQI change over time

(2008 = 0); (c) EQI for re-scaling method with uncertainty intervals;

(d) Re-scaled EQI change over time (2008 = 0); (e) EQI for z-score

method with uncertainty intervals; (e) EQI for re-scaling method with

uncertainty intervals; (f) Z-score EQI change over time (2008 = 0)

(Legend: = 95th percentile; = 5th percentile) . . . . . . . . . 122

5.5 Time series plots (2008 – 2012) for DZ S01004896: (a) EQI for ranking

method with uncertainty intervals; (b) Ranked EQI change over time

(2008 = 0); (c) EQI for re-scaling method with uncertainty intervals;

(d) Re-scaled EQI change over time (2008 = 0); (e) EQI for z-score

method with uncertainty intervals; (e) EQI for re-scaling method with

uncertainty intervals; (f) Z-score EQI change over time (2008 = 0)

(Legend: = 95th percentile; = 5th percentile) . . . . . . . . . 123

xii



5.6 Time series plots (2008 – 2012) for DZ S01006286: (a) EQI for ranking

method with uncertainty intervals; (b) Ranked EQI change over time

(2008 = 0); (c) EQI for re-scaling method with uncertainty intervals;

(d) Re-scaled EQI change over time (2008 = 0); (e) EQI for z-score

method with uncertainty intervals; (e) EQI for re-scaling method with

uncertainty intervals; (f) Z-score EQI change over time (2008 = 0)

(Legend: = 95th percentile; = 5th percentile) . . . . . . . . . 124

5.7 Plots showing levels of agreement for EQI from year-to-year (2008 –

2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1 Comparing the EQI and the Scottish Index of Multiple Depriva-

tion (Scottish Government, 2012) – contains Ordnance Survey data

c©lCrown copyright and database right (2014) . . . . . . . . . . . . . 137

xiii



Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Marian Scott for her

guidance over the course of this project. I am extremely grateful to the Scottish

Environment Protection Agency for funding this research and to Mark Hallard and

colleagues at the Environmental and Spatial Informatics Unit for providing direction.

I am grateful to Dr. Duncan Lee, Guowen Huang and Francesca Pannullo for pro-

viding some of the data and software used in this project as well as Fiona Fordyce

and colleagues at the British Geological Survey for allowing the use of their data.

I would also like to acknowledge Dr. Claire Miller, Dr. Ruth O’Donnell, Dr. Alastair

Rushworth, Lauren Sim, Kelly Gallacher and Craig Wilkie for providing advice and

help when it was required.

Declaration of Originality

This thesis consists of original work by the author except where clearly stated and

referenced to a previously-published work listed in the bibliography.

xiv



Chapter 1

Background

1.1 Introduction

An environmental indicator expresses information about the state of an ecosystem,

whether urban or rural (Jørgensen et al., 2005), and is a numerical summary of en-

vironmental data. Indicators play an important role in environmental and ecological

risk assessment (Suter, 2001) and can also be used as a measure of distance from an

environmental goal or target set by decision-makers (Manoliadis, 2002).

The use of indicators in environmental monitoring has been prevalent over the past

few decades (Bruno and Cocchi, 2002), with composite indices (sometimes also re-

ferred to as composite indicators), comprising of numerous environmental measures,

providing a multi-dimensional insight into environmental quality within a region of

interest. Nardo et al. (2005) describe a composite index as being the result of a

“mathematical combination of individual indicators that represent different dimen-

sions of a concept”. In an environmental context, a composite index is essentially a

synthesis of several environmental indicators, leading to a wider and more general

picture of the state of an ecosystem.

Composite indices are useful as they are able to communicate the results of statistical

analyses in a simple and understandable way to a lay audience. They are able to

1



summarise complex, multi-dimensional issues, provide information to policymakers

and can assess progress, or lack of progress, in tackling an environmental concern

over time (Nardo et al., 2005).

However, if poorly constructed or misinterpreted, composite indices may mislead the

intended audience or invite overly simplistic policy conclusions (Nardo et al., 2005).

Therefore, a transparent and reasoned method of construction is required. Bruno and

Cocchi (2002) (derived from Ott (1978)) discuss the possibility of ambiguity (when

the global index signals a poor situation when its components suggest otherwise)

and eclipsicity (where the global index signals a good situation whilst an assessment

the individual indicators provides evidence to the contrary). Therefore, a clear

framework for constructing a composite index is essential to avoid the accidental

obscuring of the true meaning of the data.

No single method for the construction of composite environmental indices exists

(Bruno and Cocchi, 2002) and, hence, numerous efforts have been undertaken in the

last few decades to create indices that represent air, water, land and other environ-

mental quality issues, as well as allowing for spatial and temporal comparisons (Hsu

et al., 2013).

1.1.1 Examples of Past and Current Environmental Indices

One of the pioneering environmental indices was the Pollution Standards Index that

was developed by the United States Environmental Protection Agency (Ott and

Hunt, 1976). Ott and Hunt (1976) specified the components of the index, stating

that it “includes up to five pollutants . . . and it reports on the maximum pollutant

concentration.”

This and subsequent indices have sought to combine environmental monitoring in-

formation in order to inform and influence policymakers and the general public (Hsu

et al., 2013). The ability to communicate key statistical and scientific findings to
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these groups in an accessible and meaningful manner is critically important (Hsu et

al., 2013).

An example of a more modern composite index with an environmental component

is the Scottish Index of Multiple Deprivation or SIMD (Scottish Government, 2012),

which is reported at the resolution of a data zone. Data zones are small-scale ge-

ographies used to report many types of official statistics in Scotland. Scotland is

divided into 6,505 data zones, each with a population of approximately 800 resi-

dents. The Scottish Government (2012) states that data zones are typically small,

in a geographical sense, for urban areas and may consist of only a few streets whereas

for sparsely-populated rural areas they may cover many square miles. Data zones

will be used as the geographical unit to express the results of the composite indices

developed in this thesis.

The SIMD allocates a deprivation score to each of Scotland’s 6,505 data zones. The

overall composite index consists of seven separate domains (or sub-indices) that

are widely suspected to contribute to deprivation, namely, employment, income,

crime levels, housing, health, education and access to key public services (Scottish

Government, 2012). The scores for each of the seven domains are calculated from

a number of individual indicators. The domains and the respective indicators that

comprise the domains are weighted in order to create the final index.

Eurostat, the Directorate-General of the European Commission responsible for statis-

tics and promoting the harmonisation of methods in producing official statistics

across European Union member-states, specified a framework for indicators in the

field of environmental protection, in conjunction with the European Environment

Agency. As shown in Table 1.1, Eurostat (2014) has defined five types of environmen-

tal indicators, covering initial causes of environmental degradation, the subsequent

effects of such degradation and eventual responses from policymakers to reverse such

effects.
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Table 1.1: Indicator framework for environmental protection (Eurostat, 2014)

Indicator Description Examples

Driving force
indicator

Describes social, demographic or
economic developments, the
corresponding changes in
lifestyles and the overall levels
of consumption and production
patterns

Population dynamics; GDP

Pressure
indicator

Describes developments in the
release of substances, physical
and biological agents and the uses
of land and resources

CO2 emissions; use of
natural resources; land use

State indicator

Provides a description of the
quantity and quality of biological,
chemical and physical variables in
certain areas

Global mean temperature;
species diversity;
atmospheric CO2

concentrations

Impact indicator

Describes the relevance of
changes in the state of the
environment and implications
for ecosystems, human wellbeing
and the economy

Percentage of population
exposed to noise above
thresholds or drinking water
below quality standards

Response
indicator

Refers to responses by society
and policymakers to attempt to
prevent, compensate or adapt to
changes in the state of the
environment

Environmental expenditure;
recycling rates

1.2 Aspects of Environmental Quality

1.2.1 Air

The composition of ambient air in urban environments has been a topic of con-

siderable concern for scientists, policymakers and much of the general public for

many decades. The presence of harmful pollutants such as nitrogen dioxide (NO2),

carbon monoxide (CO), ozone (O3) and particulate matter (usually measured as

PM10 or PM2.5) in such air is not only detrimental to the environment but also to

human health (Guerreiro et al., 2014). Currently, “particulate matter and ozone

are Europe’s most problematic pollutants in terms of harm to health” (European
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Environment Agency, 2013) and are mostly found in cities, where much of the hu-

man population lives. Chiras (2006) states that “natural events such as volcanic

eruptions, dust storms and forest fires produce huge quantities of air pollution” on

a daily basis, but that “anthropogenic pollutants generally create the most signifi-

cant long-term threat to the biosphere” (Chiras, 2006). The European Environment

Agency (2007) attributes energy consumption, industrial activities, transport de-

mand and agriculture to be the specific anthropogenic forces most directly linked

with air quality concerns.

Air pollution is widely regarded as an exacerbating factor in pulmonary health con-

ditions such as asthma and cardiorespiratory disorders with some more serious pollu-

tants such as toxic aromatic hydrocarbons also acting as carcinogens (Hardy, 2003).

Hardy (2003) also claims that “every year approximately seven hundred thousand

deaths worldwide result from air pollution and the World Health Organisation has

ranked air pollution as one of the top ten causes of disability.”

Due to the fact that the majority of anthropogenic air pollution is emitted from

highly-populated urban environments, this also results in increased numbers of afore-

mentioned illnesses being contracted due to such vast concentrations of people in

these high-risk areas. This could be seen as being something of a ‘vicious cycle’.

Vallero (2014) states that natural “ecosystems can be harmed by numerous human

activities that introduce stressors to the environment.” Similarly to human health

risks, these stressors may be chemical, physical or biological (Vallero, 2014).

There is a wealth of legislation and government directives regarding the enforcement

of measures to reduce air pollution, much of which is decided at a European level (Air

Quality in Scotland, 2014). For instance, the 2008 Ambient Air Quality Directive

set legally-binding limits for ground-level concentrations of air pollutants (European

Environment Agency, 2013), which are only allowed to be exceeded a small number
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of times per year.

The first piece of air quality-related legislation enacted in recent U.K. history was

the Air Quality Standards Regulations 1989, which implemented EU directives re-

garding limit values and guide values for sulphur dioxide, suspended particles, lead

and nitrogen dioxide (Scottish Environment Protection Agency, 2014). The most

important Acts of Parliament in the field of air quality were the Clean Air Act 1993

and the Environment Act 1995, the latter of which established the Environment

Agency (in England and Wales) and the Scottish Environment Protection Agency

(in Scotland), with both organisations tasked with monitoring environmental issues

in their respective territories.

The National Air Quality Strategy (NAQS), published by the then-Department of

the Environment (now the Department for Environment, Food and Rural Affairs

or DEFRA), established a framework of standards and objectives for the air pollu-

tants of most concern, namely sulphur dioxide (SO2), particulate matter (PM10 and

PM2.5), nitrogen dioxide (NO2), carbon monoxide (CO), lead (Pb), benzene (C6H6)

and tropospheric ozone (O3) (Scottish Environment Protection Agency, 2014). The

NAQS was updated to its current version in 2007.

The Scottish Parliament has since passed additional legislation to improve air qual-

ity standards in Scotland, including the implementation of further EU directives.

These directives have set further limits on key ambient air pollutants such as sul-

phur dioxide, nitrogen dioxide, PM10 and lead. Furthermore, the Air Quality Stan-

dards (Scotland) Regulations 2007 introduced detailed requirements for monitoring

PM2.5 and stipulated the minimum geographical coverage for the monitoring and

dissemination of information to the general public (Scottish Environment Protection

Agency, 2014).
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1.2.2 Water

Nesaratnam (2014) states that “to some extent, a river is a self-renewing resource”,

meaning that when pollutant levels are low and intermittent, a river is able to dis-

charge any harmful pollutants (Nesaratnam, 2014). This process is often aided by

organic bacteria present in the water. However, some pollutants, either in low or high

concentrations, can kill off bacteria and prevent the river from “self-purifying” (Ne-

saratnam, 2014). For instance, arsenic contamination of water, which has concerned

public health scientists in many parts of the world (Ahuja, 2013), is a particularly

serious problem.

In many industrial areas, these contamination issues are of particular concern due

to the harmful potential of industrial effluents (Nesaratnam, 2014). In urban areas,

surface water run-off is also an acknowledged threat to water quality, as these river

contaminants often contain chemicals such as lead, from motor vehicles.

As with legislation and regulations relating to air quality, the European Union is

the principal driving force behind the creation and enforcement of water quality

standards. In 2003, the Water Framework Directive or WFD (European Union,

2000) imposed wide-ranging responsibilities on European Union member-states to

monitor water quality and related issues in their respective nations, often requiring

domestic legislative changes (Benedini and Tsakiris, 2013).

In Scotland, the WFD led to the enactment of the Water Environment and Water

Services (Scotland) Act 2003, which gave Scottish Ministers powers to introduce reg-

ulatory controls over wetlands, rivers, lochs, estuaries (termed transitional waters),

coastal waters and groundwater (Scottish Environment Protection Agency, 2014).

Subsequent EU and Scottish legislation has been pursued in this field.

Benedini and Tsakiris (2013) outline how the aims of the WFD are achieved:
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• Preventing further deterioration of water quality

• Promoting sustainable water use

• Conserving aquatic environments through reduction of discharges, emissions

and losses of priority substances

• Reducing the contamination of groundwater by pollutants

• Mitigating the effects of floods and droughts

1.2.3 Land

Garrigues et al. (2012) state that “soils are an essential resource in both managed

and natural systems and maintaining soil quality is critical to sustainable develop-

ment.” Soil quality is the ability of a particular soil to engage in natural environmen-

tal processes such as facilitating animal and plant life and positively contributing to

human health and air and water quality (Karlen et al., 1997; Garrigues et al., 2012).

The Scottish Soil Framework (Scottish Government, 2009) outlines the following

seven key roles that soil plays in the environment:

• Provides the basis for food and biomass production

• Controls and regulates environmental interactions such as water flow and qual-

ity

• Stores carbon and maintains the gaseous balance of ambient air

• Provides animal habitats and sustains biodiversity

• Provides platforms for buildings, roads and other structures

• Provides raw materials

• Preserves cultural and archaeological heritage

Soil quality is at risk from a number of natural processes and anthropogenic threats

such as climate change, land use change and land management practices (Scottish

Environment Protection Agency, 2014). It is incredibly difficult, if not impossible, to
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restore soil quality and, in some cases, the soils themselves may become pollutants,

infecting local watercourses for instance (Scottish Environment Protection Agency,

2014). In cities such as Glasgow, past wide-ranging industrial practices were the

principal driver of land and soil contamination (Scottish Environment Protection

Agency, 2014).

Unlike air and water quality, relatively few European Union member-states have

specific legislation relating to soil quality and protection. In 2006, the European

Commission adopted a ‘Thematic Strategy for Soil Protection’ that identified threats

to soil quality and outlined proposals for a Soil Framework Directive similar to the

Water Framework Directive (Dobbie et al., 2011). However, member-states did not

reach agreement on the legislation and it was withdrawn in May 2014 (European

Commission, 2014). This means that soil quality still lacks the same strict legal

protection as air and water quality, at least at European level.

However, in Scotland the Scottish Government established the Scottish Soil Frame-

work, recognising that soil was a vital part of the economy, environment and heritage

of the nation (Scottish Government, 2009).

1.3 Construction of Composite Indices

Despite the absence of a common approach to developing composite indices, as

mentioned in Section 1.1, a number of methods have been developed in both envi-

ronmental and non-environmental contexts to create such indices.

As also discussed in Section 1.1, composite indices can be somewhat misleading if

poorly constructed and, hence, a degree of scepticism exists amongst some within

the statistical community around the issue of composite indices as a whole (Saisana

et al., 2005). Saisana et al. (2005) attributes this to a feeling that large amounts of

work in data collection and analysis are obscured by its simplification into a single
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number or index.

However, Saisana et al. (2005) acknowledges the view that the simplicity of compos-

ite indices is much more helpful to non-statisticians and the general public, and this

alone justifies their development, provided that a clear, transparent and statistically-

sound methodology is specified and followed. To assist in this process, the Organi-

sation for Economic Co-operation and Development (OECD), in collaboration with

the Joint Research Centre of the European Commission, has published a list of ten

key steps that should be considered when creating a composite index, shown in Table

1.2.

Table 1.2: Steps for constructing a composite index (OECD, 2008)

Step Notes

(1) Theoretical Framework Provides basis for the selection and com-
bination of variables under a fitness-for-
purpose principle

(2) Data Selection Data should be selected on analytical
soundness, measurability and relevance of
the indicators

(3) Imputation of Missing Data Often needed in order to provide a com-
plete data set

(4) Multivariate Analysis Should be used to study overall structure
of the data set and guide methodological
choices (e.g. weighting, aggregation)

(5) Normalisation Should be carried out to render the vari-
ables comparable

(6) Weighting and Aggregation Should be done along the lines of the un-
derlying theoretical framework

(7) Uncertainty and Sensitivity
Analysis

Should be undertaken to assess the ro-
bustness of the composite index

(8) Return to Data Reveals the main drivers for an overall
good or bad index performance

(9) Links to Other Indices Should be made to correlate the composite
index with existing comparable indices

(10) Visualisation of the Results Should be undertaken to enhance inter-
pretability
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This section will discuss literature that contain examples of the development of both

indicators and composite indices.

A typical example of using statistical methods to create an index for air quality is

that of Bruno and Cocchi (2002). The method involves using elementary data Xijh,

where i = 1, . . . , I indexes the air quality monitoring sites, j = 1, . . . , J indexes

the pollutants being measured at each site and h = 1, . . . , H indexes time occur-

rences, with equal spacing between all time points. These data are organised into a

three-dimensional matrix. The units of measurement of the pollutant values are not

necessarily the same as different pollutants may be measured and reported on dif-

ferent scales. This is accounted for as part of this procedure through normalisation

of variables.

Nardo et al. (2005) list the most common methods of normalisation, such as ranking,

standardisation (including z-scores), re-scaling to the [0, 1] range, distance to a

reference point, categorical scales and cyclical indicators, amongst others. They

also note that in analyses involving extreme values, normalisation methods that are

based on the standard deviation are preferable.

Returning to the index construction method employed by Bruno and Cocchi (2002),

what follows is a process of aggregation where a function q is applied to the time

component, h, of the elementary data to create a time synthesis i.e.

Xq{ij} = q(Xijh) (1.1)

The application of the function q to the elementary data generates an I × J matrix,

which contains, for the ith monitoring site, the time synthesis for each pollutant and

each column contains, for the jth pollutant, the time synthesis of each site.

For subsequent aggregation procedures, it is necessary to use a form of standard-

11



isation due to the potentially differing units of measurement used to report the

pollutant concentrations, as aforementioned. Bruno and Cocchi (2002) suggest nor-

malising the various pollutants by utilising a ratio of each pollutant concentration by

a standard concentration value. However, they also observe that when a continuous

scale is used, the segmented line function proposed by Ott and Hunt (1976) for the

Pollution Standards Index (discussed in Section 1.1.1) is preferable:

fR(Y ) =
bc+1 − bc

a(c+1)j − acj
(Y − acj) + bc (1.2)

where acj < Y < a(c+1)j, c = 1, . . . , C ∀ j = 1, . . . , J. Bruno and Cocchi (2002 –

derived from Ott and Hunt (1976)) define the above parameters: Y is the pollutant

concentration value obtained by any previous aggregation steps, the acj’s represent

the thresholds for different air quality classes in terms of health risk and the bc’s are

the standardised thresholds for each pollutant.

The choice of whether to aggregate by site then pollutant or pollutant then site can

result in different values for the final index. Here, the aggregation was performed

by site and then by pollutant so that the standardising of the pollutants could be

delayed.

To eliminate the spatial dimension, under the assumption that the monitoring sites

are homogeneous, a second function g is applied to the index from Equation 1.1

(Bruno and Cocchi, 2002) i.e.

Xg{j} = g(Xq{ij}) ∀ j = 1, . . . , J. (1.3)

This creates a J-dimensional vector, the components of which require standardisa-

tion as aforementioned in order to eliminate the units of measure. A g-type func-

tion, g∗, is applied to the standardised pollutant values to obtain a final single value

(Bruno and Cocchi, 2002):
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Ig∗(g) = g∗f(X{j}) (1.4)

Bruno and Cocchi (2002) proposed using either the median value or maximum value

for each pollutant for the aggregation function g, as both produce good results even

in the presence of missing data and the median is also a robust statistic (i.e. not

unduly influenced by extreme values).

Bruno and Cocchi (2002) observe that “a common critic to the proposal of synthetic

values is in fact that they do not account for any form of variability”. They attempt

to address this by including measures of dispersion, which are obtained by calculating

ratios between the final index where g∗ is the median and the final index where g∗

is the maximum. This can be achieved regardless of whether space or pollutants are

aggregated into the index first.

The method employed by Bruno and Cocchi (2002) was developed by Lee et al.

(2011) who incorporated a pre-aggregation stage involving the geostatistical mod-

elling of available data in order to predict air quality concentrations at unobserved

locations. This was achieved by the use of a Bayesian geostatistical model and then

implementing the spatial and pollutant aggregation methods developed by Bruno

and Cocchi (2002). This procedure allowed for the construction of credible intervals

for the spatial aggregation stage (Lee et al., 2011), meaning that a range of plausible

values for each indicator was available as opposed to one single value.

Lee et al. (2011) also considered the possibility of ‘preferential sampling’, where the

choice of sampling locations is not stochastically-independent (Diggle et al., 2010)

and does not allow for spatial representativeness (Lee et al., 2011). Diggle et al.

(2010) states that preferential sampling can result in bias with regards to parameter

estimation and spatial prediction. Lee et al. (2011) accounted for these possibilities

by first fitting a geostatistical model assuming independence and another allowing
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for preferential sampling, which could also be considered as a form of sensitivity

analysis.

An example of a composite environmental quality index which combines an air qual-

ity indicator with that of another environmental quality determinand was developed

by Silva and Mendes (2012), who sought to quantify the extent to which air and

noise pollution objectives were met in Viana do Castelo, Portugal. The index con-

sisted of a weighted linear combination of two individual, normalised sub-indices or

domains (for air pollution and noise pollution), both of which were allocated equal

weights. The final index was a numerical value ranging from 0 to 1.

The air pollution sub-index was specified as follows (Silva and Mendes, 2012):

Air =
∑
i

wici ×
∏
i

vi (1.5)

where wi is the relative weight of pollutant i, ci is the normalised concentration of

pollutant i and vi is an indicator variable of the legal limit violation Li of pollutant

i, i.e.

 vi = 1 when ci ≤ Li

vi = 0 when ci > Li

(1.6)

The air index consisted of five pollutants, carbon monoxide (CO), nitrogen dioxide

(NO2), particulate matter (measured as PM10), benzene (C6H6) and ozone (O3), all

of which received an equal weighting of 0.2.

However, because the pollutants were measured on different scales, they were stan-

dardised in order to transform the scale to a normalised range (i.e. between 0 and

1). Silva and Mendes (2012) used a sigmoidal function for this step i.e.
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Score =
1

sin2 α
= cos2 α (1.7)

where

α =
(x− xa)
(xb − xa)

× π

2
(1.8)

where x is the concentration value being normalised and xa and xb are control

points in the function, which are specified further in Silva and Mendes (2012). The

formulation of the noise index is also not detailed here as it is not relevant to this

thesis but is defined in Silva and Mendes (2012).

Some composite indices consist of dozens, if not hundreds, of indicators, meaning

that a clearly-specified construction methodology (following, for instance, a frame-

work like that in Table 1.2) is even more critical so that the index is transparent

and open to scrutiny. Developers of composite indices must consider such details

as indicator and domain weightings, which can be complex to define and can have

an impact on the final index. However, sensitivity and uncertainty analyses should

quantify such impacts, if any.

An important composite index in Scotland is the aforementioned Scottish Index of

Multiple Deprivation (SIMD) which, as described in Section 1.1.1, is developed at

a small-scale geographical level (a data zone) and seeks to identify those places in

Scotland suffering from deprivation (Scottish Government, 2012).

The SIMD is comprised of thirty-eight indicators across seven domains or sub-indices

(employment, income, health, education, geographic access to key public services,

crime and housing) and is reported on a ranked scale from 1 (the most deprived data

zone) to 6,505 (the least deprived data zone). The domains (and in some cases, the
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individual indicators) require weighting as some domains may be more important

than others in measuring deprivation.

The criteria for selecting an indicator were as follows (Scottish Government, 2012):

• The indicator should be domain-specific and appropriate for the purpose of

measuring deprivation

• The data should be as recent as possible

• The data set in question should be capable of being updated on a regular basis

• The data should be statistically-robust

• The indicator should measure major features of a given type of deprivation

(not conditions experienced by relatively few individuals or areas)

However, not all data zone ranks are calculated in the same way, with some being

straightforward counts (income, employment, housing and crime) and the remaining

domains (health, education and access to services) being constructed from weighted

indicator scores (Scottish Government, 2012).

Figure 1.1 details the weighting and aggregation methods used to create the final

deprivation index.

However, as is common in the construction of many composite indices, prior to

the weighting and aggregation of individual indicators or domains, they must be

normalised. The domains within the SIMD are normalised by ranking the scores

(Scottish Government, 2012). The ranks are then exponentially-transformed to avoid

high ranks in one domain effectively ‘cancelling out’ low ranks in another.

As aforementioned, the final SIMD results are then ranked from 1 (the most deprived

data zone in Scotland) to 6,505 (the least deprived) in order to create the final index.

It should be noted that the ranks of the data zones can only be compared relative
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Figure 1.1: Indicators, aggregation methods and weightings used by the Scottish

Index of Multiple Deprivation (Scottish Government, 2012)
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to each other. For instance, a data zone which is ranked 50th is not necessarily twice

as deprived as the data zone which is ranked 100th. All that can be inferred from

the overall index is that the data zone which is ranked 50th is more deprived than

the data zone which is ranked 100th.

A similar approach was taken by Richardson et al. (2013), who created a composite

index for multiple deprivation for each data zone in the Scottish local authority of

South Lanarkshire, although with a more health-based focus. The index consisted

of three domains or sub-indices (hazardous environmental indicators, undesirable

environmental indicators and salutogenic environmental indicators).

Richardson et al. (2013) followed a clearly-defined strategy for the creation of the

composite index, consisting of the following steps:

• Selection of indicators

• Selection of geographical unit

• Constructing and testing the domains

• Constructing the index

Selection of indicators

The indicators which comprised each domain were air pollution, noise pollution and

traffic environment for the hazardous environments domain, undesirable land uses

and crime rates in the undesirable environments domain and availability of urban

green space, public transport, paths and access to key services for the salutogenic

environments domain.

Selection of geographical unit

As aforementioned, the geographical unit of analysis was the data zone, like that

used by the SIMD (Scottish Government, 2012).
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Constructing and testing the domains

Richardson et al. (2013) state that the “construction of the domains was informed

by the methodology used in the development of indexes of multiple deprivation in the

United Kingdom”, such as SIMD (Scottish Government, 2012). Each data zone in

South Lanarkshire was allocated a proportional rank for each of the nine indicators,

ranging from 0 for the data zone with the best indicator value to 1 for the data zone

with the worst indicator value.

Like SIMD (Scottish Government, 2012), the indicators were then exponentially-

transformed in order to emphasise the highest values and avoid high values of one

indicator cancelling out the low values of another (Richardson et al., 2013). After-

wards, the transformed indicator scores for each data zone were summed to produce

scores for each of the three domains (Richardson et al., 2013).

However, after testing for valences, the positive or negative direction of the domains

(Messer et al., 2014), it was discovered that the direction of the salutogenic en-

vironment domain was the opposite of what was expected or rational (i.e. better

salutogenic conditions were leading to more environmental deprivation) and, hence,

it was concluded that the domain was not fit for purpose and it and its component

indicators were excluded from the final index (Richardson et al., 2013).

Constructing the index

The five remaining indicators (three from the hazardous environments domain and

two from the undesirable environments domain, respectively) were then combined

to form a single index using factor analysis. Richardson et al. (2013) state that “the

technique is based on the premise that the indicators that are most highly correlated

with the domain will also be highly correlated with each other”.

The indicators were first ranked and transformed to a Gaussian distribution with the

subsequent analysis identifying a single factor that explained the variability better
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than the original indicators themselves (i.e. an eigenvalue greater than 1). The

condition index of the overall factor analysis was 2.2, which led to the conclusion

that there was little evidence of multicollinearity between the indicators present

(Richardson et al., 2013). Finally, the indicators were multiplied by the loadings

(or indicator weights in this context) for the first factor and summed to produce an

index score for each data zone in South Lanarkshire.

Richardson et al. (2013) observe that the final index, termed the South Lanarkshire

Index of Multiple Environmental Deprivation, was normally-distributed, ranged from

-4.0 (least environment deprivation) to +4.2 (greatest environmental deprivation)

and the mean value of the index was zero. As a last act, they also partitioned the

data zones into quintiles to represent increasing environmental deprivation.

In an international context, the Environmental Performance Index (Hsu et al., 2014),

created jointly by the Centre for Environmental Law and Policy at Yale University

and the Centre for International Earth Science Information Network at Columbia

University, is a composite index combining indices relating to nine ‘issues’ (compa-

rable to domains or sub-indices) and nineteen ‘indicators’, shown in Table 1.3.

The Environmental Performance Index (Hsu et al., 2014) states that “each indicator

is weighted within each issue category to create a single issue category score.” Each

indicator is usually considered equal to other indicators within the same issue cate-

gory and is weighted appropriately but this depends on the quality of the underlying

data set and on the relevance or fit of the indicator (Hsu et al., 2014). Hence, in

some cases an indicator will be weighted less heavily. The Environmental Perfor-

mance Index uses the criteria shown in Table 1.4 to decide whether an indicator

should qualify for the maximum possible weighting (Hsu et al., 2014).

Through the nine ‘issues’ and the nineteen ‘indicators’ listed in Table 1.3, the Envi-

ronmental Performance Index allocates each participating country a score based
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Table 1.3: Structure of the Environmental Performance Index (Hsu et al., 2014)

Issue Categories Indicators

Health Impacts Child Morality
Air Quality Household Air Quality; Average Exposure to PM2.5;

PM2.5 Exceedance Level
Water and Sanitation Access to Drinking Water; Access to Sanitation
Water Resources Wastewater Treatment
Agriculture Agricultural Subsidies; Pesticide Regulation
Fisheries Coastal Shelf Fishing Pressure; Fish Stock
Forests Change in Forest Cover
Biodiversity and Habitat Natural Biome Protection; Global Biome Protection;

Marine Protected Areas; Critical Habitat Protection
Climate and Energy Trend in CO2 Emissions per KwH; Change of Trend

in Carbon Intensity; Trend in Carbon Intensity

Table 1.4: Selection criteria for data in the Environmental Performance Index (Hsu
et al., 2014)

Criterion Notes

Relevance Indicator tracks the environmental issue in a manner
that is applicable to countries under a wide range of
circumstances

Performance orientation Indicators provide empirical data on ambient condi-
tions or on-the-ground results for the issue of concern,
or is it a ‘best available data’ proxy for such outcome
measures

Established scientific
methodology

Indicator is based on peer-reviewed scientific data or
data from the United Nations or other institutions
charged with data collection

Data quality Data represent the best measure available; all poten-
tial data sets are reviewed for quality and verifiability;
those that do not meet baseline quality standards are
discarded

Time series availability Data have been consistently measured across time
and there are ongoing efforts to continue consistent
measurement in the future

Completeness Data set needs to have adequate global and temporal
coverage to be considered
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on relevant environmental concerns. The presentation of one final number from

an index should give each country a clear indication as to the state of its environ-

ment. Repeated analyses over time should also allow comparisons with previous

performance and show whether a country’s environmental condition has improved

or deteriorated, in a relative sense.

A composite index that is developed according to a completely different approach

are the indices developed by the Canadian Council of Ministers of the Environment

(CCME), an intergovernmental body that consists of environment ministers from

the federal, provincial and territorial governments in Canada. There are composite

indices measuring both water and soil quality.

The CCME Water Quality Index (CCME, 2001) consists of three factors: scope,

frequency and amplitude. It also requires thresholds or limits for each determinand

to be known, as this composite index is used to quantify if, and by how much,

concentrations of determinands have breached their specified limits.

The scope factor, known as F1, represents water quality guideline non-compliance

over the time series i.e.

F1 =

(
Number of failed variables

Total number of variables

)
× 100 (1.9)

The frequency factor, known as F2, represents the percentage of individual tests that

do not meet the objectives i.e.

F2 =

(
Number of failed tests

Total number of tests

)
× 100 (1.10)

The amplitude factor, F3 (defined shortly), represents the amount by which failed

test values do not meet their objectives. This is a multi-stage calculation.

22



Stage 1

It is necessary to calculate the number of times where individual concentrations are

greater than or less than (depending upon the direction of the limit) the specified

threshold, termed an ‘excursion’. If the test value must not exceed the objective:

Excursioni =

(
Failed Test Valuei

Objectivej

)
− 1 (1.11)

Conversely, if the test value must not fall below the threshold:

Excursioni =

(
Objectivej

Failed Test Valuei

)
− 1 (1.12)

Stage 2

The overall amount by which individual tests are non-compliant is calculated by

summing the excursions of individual tests from their specified thresholds and divid-

ing by the total number of tests. This is known as the normalised sum of excursions:

nse =

∑n
i=1 Excursionsi

Number of tests
(1.13)

Stage 3

Finally, the amplitude factor, F3, is calculated by scaling the normalised sum of the

excursions from their objectives (nse) using an asymptotic function:

F3 =

(
nse

0.01× nse + 0.01

)
(1.14)

The final CCME WQI is then calculated:

CCME WQI = 100−

(√
F 2
1 + F 2

2 + F 2
3

1.732

)
(1.15)
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The scale factor of 1.732 is derived from the fact that the individual index factors

have a maximum of 100 i.e. the vector length can reach a maximum of:

√
1002 + 1002 + 1002 =

√
30000 = 173.2 (1.16)

Dividing by 1.732 constrains the vector to a maximum of 100. This results in the

following ordinal scale:

• Excellent (95 ≥ CCME WQI ≤ 100) – all measurements are within objectives

virtually all of the time

• Good (80 ≥ CCME WQI ≤ 94) – most measurements within objectives

• Fair (65 ≥ CCME WQI ≤ 79) – some departures from objectives

• Marginal (45 ≥ CCME WQI ≤ 64) – frequent departures from objectives

• Poor (0 ≥ CCME WQI ≤ 44) – very frequent departures from objectives or

virtually no meetings of objectives at all

The CCME Soil Quality Index (CCME, 2007) is calculated in a very similar manner

to the WQI.

One criticism of the CCME Water Quality Index (CCME, 2001) is that its indica-

tors are all equally-weighted, which may not be desirable or sensible. For instance,

chemicals which are poisonous in high quantities (such as arsenic) should be more

heavily-weighted in the final index construction than a less important indicator. Mo-

hebbi et al. (2013) accounted for this by allowing for unequal indicator weighting,

although the index construction methodology otherwise remained similar.

Finally, a composite environmental index with great relevance to the methodology

used in this thesis, albeit with a public health aim for the United States, is that

created by Messer et al. (2014), which involves the weighted aggregation of several

domains quantifying different aspects of the overall environment. The results were

also presented and visualised for distinct, non-overlapping areas, which is also an
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aim of this thesis. The five domains were air, water, land, socio-demographic issues

and the built environment (the first three of which are used in this thesis; the latter

two are not covered here). The geographic level of analysis was the U.S. county,

which is the third-level administrative tier below federal and state authorities.

Important pre-analysis data issues included variable multicollinearity and variable

missingness. For the former, correlation coefficients were calculated within each of

the five domains and where correlation that exceeded 0.7 was present between two

variables, only one was selected for inclusion in the final index (Messer et al., 2014).

The choice of which variable to exclude was usually based on the proportion of

missing values, where the variable with the lowest proportion was the one that was

selected (Messer et al., 2014).

To tackle variable missingness, a decision was made as to whether missing data were

actually missing or instead represented true zero values. For instance, when crime

data were missing it was considered to be truly missing as crime would naturally

occur in every county, but for beach closure data, true zeros were considered not

to be missing as not all counties are in coastal areas. If data for a variable were

missing for more than fifty percent of counties, then the variable was excluded from

the index (Messer et al., 2014).

Also, domain variables were log-transformed where appropriate to better satisfy nor-

mality assumptions. For variables which contained true zeros, the log-transformation

was achieved by first adding a constant (half of the non-zero minimum value) to all

observations.

For the air domain, daily concentrations for six indicator pollutants were temporally

averaged to ascertain annual mean concentrations for each monitoring station from

2000 to 2005. These annual means were then subject to spatiotemporal kriging in

order to estimate annual concentrations at each geographical county centroid. An
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exponential covariance structure was used for the spatial covariance. The water and

soil domains were created using a similar procedure (Messer et al., 2014).

As with Richardson et al. (2013), a final important step in data preparation was

determining valences for each indicator and domain, checking whether the effect

of each component is positive or negative with regards to environmental quality

(Messer et al., 2014). The higher values of domains or indicators which are known

to negatively affect environmental quality should represent poorer quality; likewise,

higher values of components known to positively contribute to environmental quality

should represent better overall environmental quality (Messer et al., 2014).

The variables from each domain were aggregated to create a domain-specific county-

level data set. Principal components analysis was used to combine the individual

domains using the variable loadings (or domain weights). The respective loadings

for each variable were then multiplied by the mean value for each county and the

weighted means were summed. Only the first principal component was retained

by Messer et al. (2014), as it accounted for the largest proportion of the total

variability. This first principal component was also normalised to have a mean of 0

and a standard deviation of 1, achieved by dividing the index by the square of the

eigenvalue (derived from Kim and Mueller, 1978).

A further analysis undertaken by Messer et al. (2014) was to stratify the final

indices according to the “rural-urban continuum”, meaning that the index would

be more useful in their circumstances if it allowed for additional information on

whether the county was primarily urban or rural. At the stage of calculating principal

components, the analysis was conducted for each of the rural-urban strata.
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1.4 Overview and Aims of Thesis

The overall aim of this thesis is to investigate and develop methods for constructing

composite indices for environmental quality at a small spatial scale, with environ-

mental quality defined as being composed of air, soil and water quality. It is also of

interest to quantify the level of uncertainty within such indices.

In this thesis, a composite environmental quality index will be created for the Greater

Glasgow region at data zone level, incorporating information about air, water and

soil pollution levels. The final index should be comparable with other data zone-level

indices used by the Scottish Government and other public bodies in Scotland. The

composite index will initially be created for the year 2011 only and then compared

with similarly-constructed indices for other years.

Figure 1.2 shows the region of Greater Glasgow for which the composite index will

be constructed, comprising of 1,748 data zones across seven local authorities. The

study region was limited to a spatial domain in which enough air, water and soil data

were available and fit for use. This was most important for the soil data as predicting

outwith the vicinity of the data is unreliable. Consequently, the far north-west of

West Dunbartonshire was not included as was the eastern half of North Lanarkshire

and the rural south of South Lanarkshire. The local authorities of Glasgow City,

East Dunbartonshire, Renfrewshire and East Renfrewshire were included in their

entirety.

Chapter 2 of this thesis will elaborate on the data used in this project and carry out

spatial and temporal exploratory analyses which will inform subsequent processes.

Chapter 3 will concentrate on modelling the data so that pollutant concentration

predictions can be made in every data zone across the study region. These predicted

data can then be used to construct composite environmental indices for Greater

27



Figure 1.2: Map of study region with local authority and data zone boundaries –

contains Ordnance Survey data c©lCrown copyright and database right (2014)

Glasgow.

Chapter 4 will involve the construction of an environmental quality index (EQI) for

Greater Glasgow for the year 2011, drawing on the examples discussed in Section

1.3. It will focus on three different normalisation methods that result in different

index scales but ultimately measure the same phenomenon.

Chapter 5 will assess the EQI created in Chapter 4 by undertaking an uncertainty

analysis of the results and then using the indices to check how environmental quality

varies over a period of five years from 2008 to 2012.

Chapter 6 will discuss the main results shown in this thesis and make final conclusions

with regards to the aims of the project.
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Chapter 2

Data and Exploratory Analysis

This chapter will introduce the data that will be used to construct the composite

indices later in this thesis. An exploratory analysis of the data will also be performed

in order to identify key spatial and temporal patterns.

2.1 Air

The air quality data used in this thesis were collected from three sources. Firstly,

data from local monitoring stations across the study region were downloaded from

the Air Quality in Scotland database (http://www.scottishairquality.co.uk), which is

maintained by the Scottish Government. Secondly, data from automatic NO2 diffu-

sion tubes were provided by local authorities. Lastly, 1 km by 1 km grids consisting

of a pollution estimate from an atmospheric dispersion model were downloaded from

the website of the Department for Environment, Food and Rural Affairs or DEFRA

(http://www.uk-air.defra.co.uk).

2.1.1 Air Pollutants

The air quality component of this thesis focussed on four pollutants that are preva-

lent in ambient urban air and are known to have negative effects on air quality. The

unit of measurement for each pollutant was micrograms per cubic metre (µg/m3).
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Nitric Oxide (NOX) and Nitrogen Dioxide (NO2)

Nitrogen molecules account for approximately 79% of the Earth’s atmosphere (Vallero,

2014). NO2 is the NOX compound that is the greatest concern to human health, as

even short-term exposure can lead to respiratory effects.

Particulate Matter – PM2.5 and PM10

Particulate matter refers to a mixture of both solid and liquid particles suspended in

the air with a wide range of sizes and chemical compositions (European Environment

Agency, 2013). The numerical subscripts 2.5 and 10 refer to the maximum size

of the particles in micrometres. They can be formed from primary sources (e.g.

chimneys) or secondary sources through oxidation and transformation of primary

gaseous emissions (European Environment Agency, 2013). Studies have attributed

the most severe health effects from air pollution to particulate matter, such as in

the respiratory, cardiovascular, immune and neural systems (European Environment

Agency, 2013).

Data were available for other pollutants such as carbon monoxide (CO), ozone (O3)

and sulphur dioxide (SO2) but were monitored at very few spatial locations. Also,

the aforementioned DEFRA local authority modelled grids were only available for

the four selected pollutants. It was decided that only pollutants that had been

monitored at no less than fifty spatial locations would be included, given the large

geographical extent of the study region.

2.1.2 Air Quality Monitoring Station Data

Figure 2.1(a) displays the air monitoring stations that have been active for at least

some time since the year 2000 and before early 2014 and have collected data on at

least one of NO2, NOX , PM10 or PM2.5. The stations cover the local authorities

of Glasgow City, East Dunbartonshire, West Dunbartonshire, Renfrewshire, East

Renfrewshire, North Lanarkshire and South Lanarkshire. Figure 2.1(b) shows the

locations of monitoring stations within the local authority of Glasgow City only.
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(a) xxxGreater Glasgow (b) xxxGlasgow City only

Figure 2.1: Maps of air monitoring stations – contains Ordnance Survey data

c©lCrown copyright and database right (2014)

Each air monitoring station is classified as ‘roadside’, ‘kerbside’, ‘urban background’

or ‘rural’ depending upon its proximity to a road and, providing it is not a rural

station, its location in the street.

Figure 2.1(a) shows that the monitoring stations are largely clustered around the

highly-urbanised area in and around the city of Glasgow with very few locations

in peripheral areas. In Figure 2.1(b), even the monitoring stations within the city

of Glasgow are largely clustered in the most highly-populated areas such as the

city centre and the adjoining ‘West End’. The obvious exception is the monitoring

station situated in the far south-west of the city.

The exploratory analysis for the air monitoring station data for each of the four

pollutants involved largely similar procedures. Only that for nitrogen dioxide (NO2)

is detailed here with the corresponding analyses for remaining three pollutants being

displayed in Appendix A. Also, the exploratory analysis has been restricted here to

six selected monitoring stations, three of which were located in Glasgow City and

three of which were located in other local authorities. The exception is PM2.5, which

was only measured at three monitoring stations and its exploratory analysis consists
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of results from all three stations.

Exploratory Analysis

Table 2.1 shows descriptive statistics for six selected monitoring stations for the year

2011.

Table 2.1: Descriptive statistics for selected NO2 air quality monitoring stations in
2011 (units of measurement = µg/m3)

Monitoring
Station

Mean St.
Dev.

Min Q1 Median Q3 Max

Glasgow
Byres Road

41.54 23.38 2.00 25.00 38.00 55.00 180.00

Glasgow Centre 34.48 20.37 0.00 19.00 31.00 46.00 149.00
Glasgow
Waulkmillglen
Reservoir

10.52 14.69 0.00 1.90 3.80 11.50 118.40

Bearsden 39.47 28.21 0.00 19.00 34.00 52.00 195.00
Clydebank 20.71 20.44 0.00 6.00 13.00 29.00 136.00
East Kilbride 40.66 24.82 0.00 23.00 36.00 55.00 281.00

Since air pollution concentrations should be non-negative, a log-transformation may

be appropriate, as in many environmental settings. The validity of the transforma-

tion of NO2 concentration was investigated using a histogram of the data. Figure

2.2(b) shows that such a log-transformation largely fails to produce a symmetric,

bell-shaped distribution as a heavy tail remains. Such a distribution may help in any

statistical modelling under a normality assumption. However, the log-transformed

data are more bell-shaped than the raw data and, hence, the transformation may

still be useful in any modelling process.

The proportion of zero values in the data was small, since air pollution is almost

certain to be present in cities such as Glasgow and the surrounding area. Also,

zero values may be the result of a limit of detection issue rather than measurements
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being genuinely zero. Hence, they were excluded from the data set prior to any

log-transformation.

Figure 2.2: (a) histogram of NO2 concentration (µg/m3) values; (b) histogram of

log-transformed NO2 concentration (µg/m3) values

Figures 2.3 through 2.6 show how the pollutant concentration varies on annual,

monthly, daily (within week) and hourly scales, respectively. Day-within-month

plots were also constructed but did not show much variability across one month, with

a day-within-week scale being considered more informative (i.e. regarding weekdays

versus weekends).

Figure 2.3 displays time series plots for the log-transformed NO2 concentrations for

the six chosen monitoring stations. It is difficult to infer any long-term trends from

the plots, suggesting that NO2 concentrations may have remained relatively stable

over the length of the time series. However, seasonal patterns are clearly visible at

most locations. At Byres Road, for instance, it appears as if the NO2 concentration

level increases and decreases quite regularly. The occasional periods of missing data

should also be noted, shown by gaps in the time series plots.

Figure 2.4 shows that the log-transformed NO2 concentration level appears to be

at its peak in the winter months and is lower in the warmer months. Most of the
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boxplots also show a smaller degree of variability in these concentrations in the

summer as the size of the boxes is generally smaller. Figure 2.5 shows that there

does appear to be variability in NO2 concentration across one week, with weekdays

registering higher levels. Saturdays and Sundays exhibit lower concentrations.

Figure 2.6 appears to show evidence of hour-to-hour variability in the log-transformed

NO2 concentration. The concentration level increases suddenly at around 6 a.m. in

every boxplot, as this is when the morning rush hour begins. The increase, however,

is much lower for the Waulkmillglen Reservoir boxplot that for any of the others.

This is most probably due to its distance away from any major roads and it being

the only monitoring station in Glasgow City that was classified as ‘rural’.

2.1.3 DEFRA Modelled Grids

Figure 2.7(a) displays the NO2 pollution surface created by the 1 km by 1 km

grids from the DEFRA-specified atmospheric dispersion model across the Greater

Glasgow region. Figure 2.7(b) shows the pollution surface for the Glasgow City local

authority. Figure 2.8 displays similar maps for PM10 concentrations with those for

NOX and PM2.5 being displayed in Appendix A. All maps are an annual average

for the year 2011. The measurement units are micrograms per cubic metre (µg/m3).

Figure 2.7(a) shows that the highest concentrations of NO2 are present in the highly-

urbanised areas of Glasgow City and its immediate surroundings as well as major

roads such as motorways throughout the rest of the region. Figure 2.7(b) provides

more detailed information regarding the spatial distribution of NO2 within Glas-

gow itself, with much higher concentrations being observed in the Central Business

District and lower values being observed in peripheral areas. Similar inference can

be made regarding the distribution of PM10 concentrations. However, as shown in

Figures 2.7(b) and 2.8(b), there is a grid in the north-west of the city with unusually-

high concentrations of NO2 and PM10, respectively, being predicted. This could be

attributed to local factors such as close proximity to a source of high air pollution.
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Figure 2.3: Time series plots of log-transformed NO2 concentrations (µg/m3) at

selected monitoring stations
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Figure 2.4: Boxplots of monthly log-transformed NO2 concentrations (µg/m3) at

selected monitoring stations
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Figure 2.5: Boxplots of day-within-week log-transformed NO2 concentrations

(µg/m3) at selected monitoring stations
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Figure 2.6: Boxplots of hourly log-transformed NO2 concentrations (µg/m3) at

selected monitoring stations
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Table 2.2 displays descriptive statistics for the NO2, NOX , PM10 and PM2.5 grids

for the year 2011.

Table 2.2: Descriptive statistics for DEFRA modelled grids (2011 – units of
measurement = µg/m3)

Pollutant Mean St. Dev. Min Q1 Median Q3 Max

NO2 7.24 4.72 2.99 3.86 5.34 9.13 41.19
NOX 9.68 6.98 3.80 4.91 6.83 12.08 76.88
PM10 10.89 1.51 8.99 9.69 10.55 11.71 19.95
PM2.5 7.31 0.86 6.25 6.69 6.99 7.65 12.34

(a) xxxGreater Glasgow (b) xxxGlasgow City only

Figure 2.7: Maps with average 2011 NO2 concentrations (µg/m3) for each 1 km by

1 km grid

2.1.4 NO2 Diffusion Tube Data

Local authorities throughout the U.K. also measure nitrogen dioxide levels in their

ambient air by using diffusion tubes placed throughout their area. A diffusion tube

is made of plastic and is approximately 7.5 cm long and 1 cm in diameter, with each

end sealed by a cap (Doncaster Metropolitan Borough Council, 2014). Typically,

one cap will be white and the other will be coloured. Inside the coloured cap there

is a metal grid that has been soaked with triethanolamine or TEA, which absorbs

nitrogen dioxide (Doncaster Metropolitan Borough Council, 2014).
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(a) xxxGreater Glasgow (b) xxxGlasgow City only

Figure 2.8: Maps with average 2011 PM10 concentrations (µg/m3) for each 1 km

by 1 km grid

Data are typically collected once per month, by removing the white cap and placing

the diffusion tube near the area of interest, usually next to a busy road, using a

plastic holder and a tie wrap (Doncaster Metropolitan Borough Council, 2014). The

time during which the tube is open is known as the ‘exposure period’.

After the data collection process is completed, the white cap is replaced and the

diffusion tube is then analysed in a laboratory to record the level of nitrogen dioxide

that has been absorbed by the triethanolamine. The result is the average NO2

concentration in the air at that location for one month (Doncaster Metropolitan

Borough Council, 2014).

Like the air monitoring data, the NO2 diffusion tube locations are divided into

various categories, determined by their proximity to a major road and where exactly

it is placed in the street, if applicable. The categories include ‘kerbside’, ‘roadside’,

‘urban centre’ and ‘urban background’, amongst others.

Table 2.3 shows descriptive statistics for the data. The units of measurement are

micrograms per cubic metre (µg/m3).
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Table 2.3: Descriptive statistics for NO2 diffusion tube data (units of measurement
= µg/m3)

n Mean St. Dev. Min Q1 Median Q3 Max

311 32.83 12.81 5.90 24.00 31.00 39.18 99.60

Figure 2.9(a) shows the spatial map of the diffusion tube locations. Figure 2.9(b)

displays the data points within the limits of Glasgow City only.

(a) xxxGreater Glasgow (b) xxxGlasgow City only

Figure 2.9: Map of NO2 diffusion tube locations in Greater Glasgow – contains

Ordnance Survey data c©lCrown copyright and database right (2014)

Figure 2.10 shows that the median log-transformed NO2 concentration from the

diffusion tubes does appear to change from year to year but any long-term increase

or decline is not particularly visible.

2.1.5 Exploratory Spatial Analysis of All Air Quality Data

The three separate air quality data sets (air monitoring stations, modelled grids and

diffusion tubes – the latter for NO2 only) were combined so that an exploratory

spatial analysis could be undertaken, the results of which are displayed in Figure

2.11.
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Figure 2.10: Boxplots of log-transformed NO2 concentrations (µg/m3) by year

Figure 2.11: (a) scatterplot of easting versus NO2 concentration (µg/m3); (b)

scatterplot of easting versus log-transformed NO2 concentration (µg/m3); (c)

scatterplot of northing versus NO2 concentration (µg/m3); (d) scatterplot of

northing versus log-transformed NO2 concentration (µg/m3)

Figures 2.11(a) and 2.11(c) display NO2 concentration plotted against the Easting

and Northing geographical coordinates, respectively. The NO2 concentrations were

then log-transformed to allow for a clearer visual inference from the plots. Figure

2.11(b) shows that the log-transformed NO2 concentration appears to increase until

the geographical midpoint of the study region, approximately, before returning to
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initial levels. This may be evidence of a west-to-east pattern. Likewise, the log-

transformed NO2 concentration plotted against Northing in Figure 2.11(d) shows

an obvious increase in NO2 concentration as one moves in a southerly direction,

again until reaching the centre of the study region.

Similar plots for NOX , PM10 and PM2.5 are displayed in Appendix A.

2.2 Water

The data used in this project were provided by the Scottish Environment Protection

Agency (SEPA).

The data consisted of fifty-five determinands in a number of waterbodies and river

catchments throughout the Greater Glasgow region. A map of these waterbodies is

displayed in Figure 2.12(a) with a focus on Glasgow City in Figure 2.12(b). The

determinands included chemical elements and compounds, biological data (macroin-

vertebrate levels) and general water characteristics such as temperature and pH. The

data locations in Figure 2.12(a) are mostly within the River Clyde catchment but

others are within either the catchments of the River Kelvin or the River Cart.

Each waterbody also received chemical, ecological and overall classifications depen-

dent upon its scores for each of the recorded determinands. The overall water chem-

istry was classified as either pass/fail and the overall water ecology was classified

as bad/poor/moderate/good/high, as mandated by the Water Framework Directive

(European Union, 2000). The overall waterbody was classified according to a larger

ordinal scale.

2.2.1 Water Determinands

The analysis focussed on six particular determinands that are particularly associ-

ated with water quality. The choices were made in consultation with the Scottish
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(a) xxxGreater Glasgow (b) xxxGlasgow City only

Figure 2.12: Map of data collection points – contains Ordnance Survey data

c©lCrown copyright and database right (2014)

Environment Protection Agency although no determinands that had been measured

at less than forty spatial locations were included.

Ammonium (NH+
4 )

The Scottish Environment Protection Agency (2015) describes ammonium as being

both naturally-occurring (usually as a result of decaying natural matter) and present

in water as a result of anthropogenic activities (such as fertiliser production and

petrochemicals). It is colourless, corrosive and highly soluble in water. Although

low concentrations are essential for many natural processes, high concentrations of

ammonium are particularly harmful to waterbodies due to its toxicity with regards

with aquatic wildlife and plants (Scottish Environment Protection Agency, 2015).

Ammonium concentration was measured as milligrams per cubic litre (mg/L).

Copper (Cu)

Copper is an insoluble reddish-brown metal (Health Protection Agency, 2003) and

is found in both soils and waterbodies. It can be released into the environment from

either natural sources such as volcanic eruptions and decaying vegetation or through

anthropological activities such as mining and related industrial processes (Health
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Protection Agency, 2003). Although a very small level of copper is present in all

living organisms, excessive exposure is damaging to both human and environmental

health (Health Protection Agency, 2003). Copper concentration was measured as

grams per litre (g/L).

Dissolved Oxygen (O)

Dissolved oxygen is critical to the survival of many aquatic lifeforms, particularly fish

(Lewis and Evans, 2006). Typically, a lower level of dissolved oxygen is an indicator

of a higher level of pollution in the water (Lewis and Evans, 2006). Oxygen enters the

watercourse either through the atmospheric dissolution of the element at the surface

or through the photosynthesis processes of nearby trees and plants (Lewis and Evans,

2006). The dissolved oxygen concentration was measured as % saturation.

pH

pH is “a measure of the acidity” (Lewis and Evans, 2006) of a liquid and is ranked

on a scale from 0 to 14. Solutions that have a pH value of less than 7 are designated

as acidic and those above 7 are designated as basic or alkaline (Lewis and Evans,

2006). Solutions that have a pH value of 7 (i.e. pure water) are neutral. As

the pH value decreases or increases from 7 in either direction, the more acidic or

alkaline, respectively, it becomes. Water with a pH value of less than 3 is particularly

dangerous to most forms of aquatic life (Lewis and Evans, 2006).

Soluble Reactive Phosphorus (P )

Phosphorus is essential for aquatic plants and animals but is in short supply in most

freshwater systems (United States Environmental Protection Agency, 2012b). How-

ever, modest increases in phosphorus levels can result in negative effects for rivers

and streams such as accelerated plant growth, algae blooms, low dissolved oxygen

(discussed above) and the death of fish, macroinvertebrates and other aquatic wildlife

(United States Environmental Protection Agency, 2012b). In natural systems, ele-

mental phosphorus is rare and mostly exists as part of an organic phosphate (PO4)
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molecule that is soluble (United States Environmental Protection Agency, 2012b).

‘Reactive’ phosphorus refers to what is being measured when testing for the presence

of phosphorus in water (United States Environmental Protection Agency, 2012b).

The phosphorus concentration was measured in grams per litre (g/L).

Macroinvertebrates

An important component of measuring river water quality is biological monitoring.

The United States Environmental Protection Agency (2012a) states that the three

most common biological organisms present in rivers and streams are “fish, algae

and macroinvertebrates.” Macroinvertebrates are organisms such as insects, mol-

luscs and worms that are visible to the naked eye (United States Environmental

Protection Agency, 2012a) and are routinely used to monitor the ecological quality

of rivers in Scotland (Scottish Natural Heritage, 2009). Most of these organisms are

found attached to underwater rocks, logs and plants (United States Environmental

Protection Agency, 2012a).

Macroinvertebrates are usually measured by the number of taxa or the average num-

ber per taxon, where taxa are the families or species within the entire community of

macroinvertebrates in the waterbody (Scottish Natural Heritage, 2009). A greater

number of macroinvertebrates in a recorded taxon typically indicates a higher level

of water quality (Scottish Natural Heritage, 2009).

The United States Environmental Protection Agency (2012a) identifies reasons why

macroinvertebrates are good indicators of river water quality:

• They respond to biological, chemical and physical conditions and changes in

the stream

• They are susceptible to pollution events

• They may show impacts from habitat loss not detected by traditional water

quality assessment methods
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• They are a fundamental part of a river’s food chain

• They are relatively easy to sample and identify

In the data set used in this project, macroinvertebrate activity was measured by

calculating the average score per taxon (often abbreviated to ASPT).

2.2.2 Exploratory Analysis

Table 2.4 displays descriptive statistics for each water determinand (excluding macroin-

vertebrates).

Table 2.4: Descriptive statistics for water chemistry determinands

Determinand
(units)

n Mean St.
Dev.

Min Q1 Median Q3 Max

Ammonium
(mg/L)

57 0.19 0.51 0.003 0.02 0.06 0.16 8.61

Copper (g/L) 57 149.68 114.08 6.32 81.10 119.00 181.00 2229.00
Dissolved
Oxygen (%)

57 94.15 9.38 10.50 90.40 95.50 99.60 136.00

pH 57 7.76 0.33 6.12 7.55 7.78 7.99 8.77
Phosphorus
(g/L)

57 0.08 0.11 0.002 0.02 0.05 0.09 1.31

A detailed exploratory analysis is only given here for the soluble reactive phosphorus

determinand as well as the macroinvertebrates. Exploratory plots for the remaining

four determinands are provided in Appendix A of this thesis.

Soluble Reactive Phosphorus

Although there are fewer data points than the corresponding exploratory analysis

for air quality, Figures 2.13(a) and 2.13(c) still show that a pattern in phosphorus

concentration may be present. A log-transformation (shown in Figures 2.13(b) and

2.13(d)) highlights this, with higher concentrations being observed in the centre of

the study region, at least for the Northing variable. A pattern is less evident for the

Easting variable. Figure 2.14 provides more detail on the distribution of the data.
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Figure 2.13: (a) plot of Easting versus phosphorus concentration (g/L); (b) plot of

Easting versus log-transformed phosphorus concentration (g/L); (c) plot of

phosphorus concentration (g/L) versus Northing; (d) plot of log-transformed

phosphorus concentration (g/L) versus Northing

Figure 2.14: (a) boxplots of annual log-transformed phosphorus concentration

(g/L); (b) boxplots of monthly log-transformed phosphorus concentration (g/L)

Figure 2.14(a) shows that the data are highly skewed to the right and that a

transformation might be justified. Figure 2.14(b) displays the corresponding log-

transformation of phosphorus concentration. Although there remains a heavy lower
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tail, the log-transformed data are much more bell-shaped than in Figure 2.14(a). A

temporal exploratory analysis of the data is shown in Figure 2.15.

Figure 2.15: (a) boxplots of annual log-transformed phosphorus concentration

(g/L); (b) boxplots of monthly log-transformed phosphorus concentration (g/L)

As shown in Figure 2.15(a), the log-transformed phosphorus concentration does not

appear to exhibit much of a temporal trend. Figure 2.15(b) does not show much

evidence of a seasonal pattern either albeit with marginally higher concentrations

typically being observed in July and August.

Macroinvertebrates – Average Score per Taxon

The macroinvertebrate data were classified on an ordinal scale as opposed to a

continuous scale with the average score per taxon being given a score of ‘bad’,

‘poor’, ‘moderate’, ‘good’ or ‘high’. Figure 2.16 shows the proportions of the five

classification levels according to the average scores of macroinvertebrate numbers

per taxon. This is shown annually to allow for temporal comparisons.

The majority of the taxa received scores of ‘moderate’, ‘good’ or ‘high’, meaning

that the average macroinvertebrate numbers are at least adequate, if not better in

many locations. There has been year-on-year variations in these proportions with

2012 being a particularly good year for macroinvertebrate numbers, with almost no

locations receiving the worst classification. There was however, a return to previous
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Figure 2.16: Annual proportions of macroinvertebrate classifications (using the

average score per taxon)

numbers in 2013, perhaps showing that there is little to no long-term trend in the

average number of macroinvertebrates per taxon.

Figure 2.17 is a map of the macroinvertebrate sampling locations and the corre-

sponding classification allocated to each data point.

Figure 2.17: Map of macroinvertebrate sampling locations and classifications (• =

bad, • = poor, • = moderate, • = good, • = high) – contains Ordnance Survey

data c©lCrown copyright and database right (2014)
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Table 2.5 provides a summary of river catchment information as well as the number

of cases for each of the five categories.

Table 2.5: Status and catchment information for macroinvertebrate data

Status River
Clyde

River
Kelvin

River
Cart

Total

Bad 1 0 0 1
Poor 8 0 1 9
Moderate 3 1 2 6
Good 13 6 3 22
High 8 2 1 11

Total 33 9 7 49

2.3 Land

The data used in this project were kindly provided under licence from the British

Geological Survey, as part of the Geochemical Baseline Survey of the Environment

(G-BASE) Glasgow Soil data set BGS, c© NERC (Fordyce et al., 2012), which sought

to provide an overview of the urban soil geochemistry of Glasgow and the immediate

suburban areas.

The data set consisted of topsoil concentrations of five metals (arsenic, chromium,

lead, nickel and selenium) at 1,622 study sites across the Greater Glasgow conurba-

tion. All samples were collected between 2001 and 2002 with 1,381 of the samples

being classified as ‘urban’ at a density of 1 per 0.25 km2 and 241 as ‘peri-urban’ at

a density of 1 per 2 km2. All five metals were sampled at each site. The map of

the 1,622 study sites is displayed in Figure 2.18(a) with those within the limits of

Glasgow City being displayed in Figure 2.18(b).

The data that were provided were subject to a lower limit of detection determined

by the British Geological Survey. These limits are displayed in Table 2.6 alongside

the corresponding element.
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(a) xxxGreater Glasgow (b) xxxGlasgow City only

Figure 2.18: Map of sites for G-BASE project (Fordyce et al., 2012) – contains

Ordnance Survey data c©lCrown copyright and database right (2014)

Table 2.6: Soil determinands and limits of detection (British Geological Survey,
2014) – units of measurement = mg/kg

Element Name Limit of Detection

As Arsenic 0.9
Cr Chromium 1.3
Ni Nickel 0.6
Pb Lead 0.5
Se Selenium 0.2

The Scottish Environment Protection Agency (2014) defines these five metals as

‘potentially toxic elements’. They often enter topsoils through natural environmental

processes and are beneficial to the environment in very small quantities (Scottish

Environment Protection Agency, 2014). However, in high concentrations they reduce

crop yield and have adverse health effects in both humans and animals. There is

also the possibility of unsafe concentrations of these and other metals entering the

human food chain if present in agricultural land.

2.3.1 Soil Pollutants

Below is a discussion of all five metals in the G-BASE project:
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Arsenic (As)

Arsenic occurs in trace quantities in all rock, soil, water and air (World Health

Organisation, 2001). Mining, smelting of nonferrous metals and burning of fossil

fuels are the main anthropogenic contributors to arsenic-related contamination of

air, water and soil (Berkowitz et al., 2014). Arsenic concentrations were measured

in milligrams per kilogram (mg/kg).

Chromium (Cr)

Airborne chromium compounds are present mostly as fine dust particles, which settle

over water and often strongly attach themselves to soil (Berkowitz et al., 2014). It is

widely regarded as carcinogenic (Berkowitz et al., 2014). Chromium concentrations

were measured in milligrams per kilogram (mg/kg).

Nickel (Ni)

Nickel is “a silver-white, lustrous, hard, malleable, ductile and ferromagnetic metal

that is resistant to corrosion and a reasonable conductor of electricity and heat”

(Berkowitz et al., 2014), comprising approximately 0.008% of the Earth’s crust

(Berkowitz et al., 2014). Nickel is emitted to the environment from both natural and

anthropogenic sources such as industrial processes and waste disposal (Berkowitz et

al., 2014). Nickel concentrations were measured in milligrams per kilogram (mg/kg).

Lead (Pb)

Lead is “a blue-white lustrous metal that is very soft, malleable, ductile and resistant

to corrosion but tarnishes upon exposure to air” (Berkowitz et al., 2014). A wide

distribution of lead in soils has been reported with an average lead content of 10

mg/kg in topsoil (United States Environmental Protection Agency, 1992). Lead

poisoning is an environmental and public health hazard of global proportions and can

result of one high-level exposure or multiple high or low-level exposures (Berkowitz et

al., 2014). Lead concentrations were measured in milligrams per kilogram (mg/kg).
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Selenium (Se)

Selenium is widely, though unevenly, distributed over the surface of the Earth with

an average 50 to 200 mg/kg (milligrams per kilogram) concentration in soils (Reilly,

2006). Used in lasers, plastics, ceramics, paints and in agriculture and horticulture.

It is an essential component of the human diet, though only in minute amounts.

If these amounts are exceeded, it can have severe adverse effects on human health

(Reilly, 2006). Selenium concentrations were measured in milligrams per kilogram

(mg/kg).

2.3.2 Exploratory Analysis

Table 2.7 displays descriptive statistics in relation to each of the five metals in the

G-BASE data set.

Table 2.7: Descriptive statistics of metals in G-BASE data set (units of
measurement = mg/kg)

Element Mean Sd. Dev. Min Q1 Median Q3 Max

Arsenic 10.79 10.56 1.10 7.30 9.10 11.40 282.80
Chromium 121.56 130.31 28.00 91.00 107.00 126.00 4286.00
Lead 167.91 210.49 13.40 77.63 118.30 187.50 5001.00
Nickel 51.56 43.75 2.30 35.00 45.70 59.08 1038.10
Selenium 1.03 0.68 0.10 0.70 0.90 1.20 14.50

The results of an exploratory analysis for one metal (lead) are displayed below. Such

plots for the remaining four metals are provided in Appendix A.

The plots of lead concentration against Easting and Northing in Figures 2.19(a) and

2.19(c), respectively, offer little inferential value. Figure 2.19(b), the log-transformed

equivalent of Figure 2.19(a), shows that lead concentration does not vary much in

a west-to-east direction. However, a pattern may exist in Figure 2.19(d), the log-

transformed equivalent of Figure 2.19(c), where the lead concentration appears to

increase as the Northing coordinate approaches the centre of the study region, before

declining again towards the far south of Greater Glasgow.
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Figure 2.19: (a) scatterplot of easting versus lead concentration (mg/kg); (b)

scatterplot of easting versus log-transformed lead concentration (mg/kg); (c)

scatterplot of northing versus lead concentration (mg/kg); (d) scatterplot of

northing versus log-transformed lead concentration (mg/kg)

Figure 2.20 shows evidence of why a log-transformed response variable would pro-

vide better inference in the modelling procedures to be subsequently undertaken.

The log-transformed metal concentration shown in Figure 2.20(b) appears to be

more symmetric and bell-shaped, especially when compared to the corresponding

histograms for the air pollutants.

2.4 Temporal Frequency of Data

Table 2.8 summarises the temporal frequency of the available data. It should be

noted that this is a general summary and almost all available data are subject to

periods of missing data. For the water determinands, it is also common in places

for two measurements to be taken monthly (one near the beginning of the month

and one near the end) and then no measurement taken the following month at all.

For simplicity and regularity, the second measurement nearer the end of the month
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Figure 2.20: (a) histogram of lead concentration (mg/kg) values; (b) histogram of

log-transformed lead concentration (mg/kg) values

could be treated as a measurement for the following month where no sample was

taken.

Table 2.8: Temporal frequency of data

Data Annual Monthly Daily Hourly

Air Monitoring Stations X X X X
DEFRA Modelled Grids X
NO2 Diffusion Tubes X X

Water X X
Soil X

All statistical processes using the data in the following chapters will involve an annual

average only as this is the minimum temporal resolution for which air, water and soil

data are available. For the air and water quality data, annual averages should also

eliminate the issue of potential outliers, the effect of which will be greatly reduced

by using an annual mean.

2.5 Chapter Summary

The air quality data used in this project were downloaded from public sources and

included data from monitoring stations and NO2 diffusion tubes in Greater Glasgow
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as well as modelled grids from an atmospheric dispersion model developed by the

Department for Environment, Food and Rural Affairs. When all three sources of

data were considered together, data were available for four air pollutants: nitrogen

dioxide (NO2), nitric oxide (NOX) and particulate matter (PM10 and PM2.5).

For the monitoring stations, an exploratory analysis was undertaken for the year

2011, which consisted of basic summary statistics (such as the mean, standard devi-

ation, median etc.), time series plots to identify if a long-term trend was present and

boxplots of the data plotted against month, day of the week and hour, respectively,

to check if a seasonal pattern existed. The distribution of the data were also assessed

by the use of a histogram.

An exploratory analysis of the NO2 diffusion tubes comprised the use of summary

statistics and boxplots for annual concentrations. Spatial concentration maps were

constructed for the DEFRA modelled grids as well as summary statistics for these

data. All of the air quality data were plotted against geographic coordinates (east-

ing and northing, respectively) to informally assess whether a spatial pattern was

present.

The water quality data were provided by the Scottish Environment Protection

Agency. Five continuous, chemical determinands (ammonium, copper, dissolved

oxygen, soluble reactive phosphorus and pH) and one categorical, biological deter-

minand (macroinvertebrates – measured as the average score per taxon) were selected

in consultation with SEPA. For the former, summary statistics and plots were con-

structed in a manner similar to that for the air pollutants. For the macroinvertebrate

data, the changes in classifications over time were assessed, as was the number of

classifications within each of the three river catchments.

The soil quality data were provided by the British Geological Survey and consisted

of five pollutants: arsenic, chromium, lead, nickel and selenium. An exploratory
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analysis of these data consisted of summary statistics and an informal assessment of

the spatial patterns present. The distributions of the data were also assessed.

All data across the three domains (excluding macroinvertebrates) were log-transformed

in order to satisfy the normality assumptions that would be made in later chapters.

Finally, since the soil data and DEFRA grids were only available at an annual level,

any subsequent analyses would only be able to be undertaken at the same temporal

scale.
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Chapter 3

Geostatistical Modelling of Air,

Water and Soil Data

This chapter involves the modelling of the data introduced in Chapter 2 as a step

towards the construction of a composite index for environmental quality in Greater

Glasgow. This is achieved by finding a suitable model that describes the spatial

patterns exhibited by the data and then drawing predictions from these smooth

spatial surfaces in order to allow for ‘data’ to be ‘observed’ in every data zone in the

study region.

3.1 Methods

3.1.1 Flexible Regression

A normal linear regression model where each covariate is constrained to be a lin-

ear predictor is often insufficient for modelling environmental and other data sets

and alternative models that relax the rather strict assumptions of standard linear

regression need to be considered (Green and Silverman, 1994). Data that show evi-

dence of curvature in the response variable as opposed to linearity can be modelled

in a variety of ways. A key method is the generalised additive model (Hastie and

Tibshirani, 1990) which can model linear or nonparametric relationships between a
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response variable and its predictors and also incorporates the theory of generalised

linear models by allowing the response to be modelled using a distribution which is

part of the exponential family. When the response is assumed to follow a Gaussian

distribution, the generalised additive model reduces to an additive model.

In the normal linear model, all covariates are assumed to have a linear relationship

with the response variable as well as assuming that the error term follows a Gaussian

distribution with mean zero and constant variance (homoscedasticity), i.e.

Y = Xβ + ε (3.1)

where Y is an (n x 1) vector of response variables, X represents an (n x p) matrix

of model coefficients, β is an (p x 1) vector of parameters and ε is an (n x 1) vector

of error terms (ε ∼ N(0, σ2)).

Where the response variable shows evidence of curvature, one way to account for

this is to replace the linear predictors with nonparametric functions, such as splines

(Ruppert et al., 2003). Not all covariates will necessarily require this alteration and

some can be left as linear predictors if they show evidence of a linear relationship

with the response variable. This nonparametric or semiparametric (where linear

predictors remain) model is an additive model (Hastie and Tibshirani, 1990), where

the error terms adhere to the same distributional assumptions as that for a normal

linear model.

An additive model can be expressed mathematically as:

yi = β0 +
m∑
t=1

ft(xti) + εi (3.2)

where t = 1, . . . , m explanatory variables and εi ∼ N(0, σ2). β0 is the intercept
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term, f1(x1), . . . , fm(xm) are smooth functions of the covariates and the identifia-

bility constraint Σn
i=1ft(xti) = 0 (Green and Silverman, 1994).

An additive model can be fitted using the backfitting algorithm, with components

such as smoothing splines, or through a penalised regression splines approach.

Hastie and Tibshirani (1990) define the smoothing spline formulation, for one co-

variate, as:

S(f) =
n∑
i=1

(Yi − f(ti))
2 + λ

∫ b

a

(f ′′(x))2 dx (3.3)

The penalised least squares estimator f̂ is “defined to be the minimiser of the func-

tion S(f) over the class of all twice-differentiable functions f ” (Green and Silverman,

1994). The roughness penalty λ
∫ b
a

(f ′′(x))2 dx is included to account for the cur-

vature in the data and, for an appropriate value of the smoothing parameter λ,

the minimisation of S(f ) should be able to “compromise between smoothness and

goodness-of-fit” (Green and Silverman, 1994).

Higher values for λ will result in a smoother fit for f . Hastie and Tibshirani (1990)

observe that as λ → ∞, the penalty term will dominate the expression leading to

ever-increasing smoothness. This will ultimately result in the least squares solution.

However, as λ→ 0, the penalty term diminishes and the model will interpolate the

data. An appropriate choice can be found either through manual testing of various

values of λ or through automatic methods such as cross-validation, generalised cross-

validation or Akaike’s Information Criterion (AIC), amongst others.

Cross-validation is a very common method for finding an optimal value for λ. Hastie

and Tibshirani (1990) describe its formulation. A cross-validation process moves

through all data points, leaving out the ith data point and then fitting the model

using the remaining n – 1 points. This is expressed mathematically (Hastie and
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Tibshirani, 1990) as:

CV(λ) =
1

n

n∑
i=1

(yi − f̂−iλ (xi))
2 (3.4)

where f̂−iλ is the fit of the model at data point xi with the ith point being omitted.

However, Faraway (2006) notes that cross-validation is “computationally expensive”

and a related method, generalised cross-validation, is often used as an alternative.

The mgcv (Wood, 2006) package in R (R Core Team, 2014), for instance, calculates

optimal smoothing parameters using generalised cross-validation by default.

Generalised cross-validation, for nonparametric regression (effectively an additive

model with only one covariate), is defined by Ruppert et al. (2003) as follows:

GCV(λ) =
RSS(λ)

(1− n−1tr(Sλ))2
(3.5)

where n is the number of data points, RSS is the residual sum of squares, ‘tr’ is the

trace and Sλ is the smoothing matrix. The generalised cross-validation formula for

an additive model, which contains more than one explanatory variable, is:

GCV =
nRSS

(n− tr(P ))2
(3.6)

where n is the number of data points, ‘tr’ is the trace, P is the projection matrix

(representing the fit over all explanatory variables) and RSS is the residual sum of

squares.

As aforementioned, another way to fit an additive model is to use regression splines

(or penalised regression splines), which differ in that the number of knots is used

to control the level of smoothing as opposed to the observed x values themselves
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(Faraway, 2006). This method is used by the mgcv package (Wood, 2006) for

additive models in R (R Core Team, 2014), which was primarily used for statistical

analyses in this thesis.

Regression splines are comprised of basis functions. Ruppert et al. (2003) describe

the adaptation of Equation 3.3 for smoothing splines to the penalised regression

splines method.

S(f) = ||y −Xβ||2 + λ2βTDβ (3.7)

where λ ≥ 0 and λ2βTDβ is the roughness penalty. D is a matrix of basis func-

tions. The level of smoothing in a penalised regression spline is determined by the

basis dimension and the smoothing parameter λ. Typically, a large number of basis

functions are used and λ controls the ‘wiggliness’ of the fit.

The k-index, featured in the mgcv package, can be used to select an appropriate level

of smoothing. The k-index is an estimate of the residual variance in the data after

the fitting of an additive model (Wood, 2006) with values below 1 being evidence of

there being a significant pattern remaining in the data. Wood (2006) recommends

that the k-index should be at least 1 and this can be achieved by increasing the

number of knots used to fit the model.

It is also possible to create flexible regression models that contain smooths of several

variables, known as isotropic smooths (Wood, 2006). In the mgcv package (Wood,

2006) in R (R Core Team, 2014), these models are fitted using thin-plate regression

splines, which are “invariant to rotation of covariate axes” (Wood, 2006). One

drawback is that they are not invariant to covariate rescaling (Wood, 2006). Wood

(2006) recommends that such isotropic smooths are particularly appropriate where

all components of the smooth are measured in the same units (i.e. Easting and

Northing or longitude and latitude).
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Parameter Estimation

Smoothing splines for additive model components are typically fitted using the back-

fitting algorithm, described by Faraway (2006).

Firstly, an initial value is chosen by the intercept term β0 and all fj(x). For the

intercept, a typical choice is the sample mean, ȳ and for the smooth terms, typically

the least squares estimates for j = 1, . . . , p.

Then, for j = 1, . . . , p, 1, . . . , p, . . .,

fj = S(xj, y − β0 −
∑
i 6=j

fi(Xi)) (3.8)

where S(x, y) is the smooth of the data (x, y) and the algorithm is iterated until

convergence. The term y−β0−
∑

i 6=j fi(Xi) is a partial residual. Many computational

smoothing splines algorithms (such as the gam package (Hastie, 2013) in R (R Core

Team, 2014)) require manual specification of S, which could be a nonparametric

function such as splines or loess (locally-weighted scatterplot smoother) or even a

parametric linear or polynomial function (Faraway, 2006).

For regression splines, Wood (2006) observes that to estimate a function, f , “requires

that f be represented such that it is a linear model.” This is achieved by selecting

an appropriate basis, which defines “the space of functions of which f is an element”

(Wood, 2006). Wood (2006) states that if bj(x) is the jth basis function, then

f(x) =

q∑
j=1

bj(x)βj (3.9)

for some values of unknown parameters βj and a total of q basis functions.

When fitting a spatial surface (termed an isotropic or bivariate smooth) in R (R
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Core Team, 2014), the mgcv package (Wood, 2006) fits an additive model using

penalised regression splines with an extension of the model in Equation 3.7.

In spatial contexts, particularly those with small sample sizes, it is common for

restricted maximum likelihood or REML (Patterson and Thompson, 1971) to be

used for parameter estimation as opposed to maximum likelihood. This approach

will usually lead to less bias (Diggle and Ribeiro, 2007), especially for small sample

sizes. Despite this, Diggle and Ribeiro (2007) also observe that REML can be more

sensitive to the choice of a mean model than maximum likelihood.

Model Diagnostics and Residuals

Ruppert et al. (2003) state that diagnostics refer to a “large collection of techniques

used to check the quality of the data and the adequacy of a regression model.” Many

of the traditional diagnostics procedures used for linear models such as consideration

of fitted values and residuals are also useful for flexible regression models.

The ith fitted value is the estimate of E(yi) from the fitted model, i.e. ŷi = xTi β̂

(Ruppert et al., 2003).

The ith residual is defined as ei = yi− ŷi, i.e. the difference between the observed ith

measurement and the corresponding ith prediction from the fitted model (Ruppert

et al., 2003). If the model is a good description of the data in question, then the

residuals should have mean zero and constant variance. This is a consequence of the

systematic component of the model effectively capturing the mean and variability of

the data, leaving only random noise.

These diagnostics are assessed through a variety of plots, whereupon the distribu-

tional assumptions of the model (particularly its error component) can be checked.
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3.1.2 Geostatistical Modelling

According to Diggle and Ribeiro (2007), a geostatistical process involves a number

of Yi (i = 1, . . . , n) observed at corresponding locations xi within some spatial region

of interest. Also, each observed Yi is a measurement taken at location xi or a value

relating to an underlying stochastic process T (x) at location xi.

Sherman (2011) states that geostatistical modelling has two principal aims, namely

to predict the spatial process at unobserved locations based on the data from ob-

served locations and to understand how the process varies between “neighbouring

locations.”

A geostatistical model for normally-distributed data can be defined as:

Y = µ+ ε (3.10)

where Y is an (n x 1) vector of response variables, µ is an (n x p) matrix of

explanatory variables that comprise the systematic, spatially-varying mean of the

geostatistical process, ε is an (n x 1) vector of error terms (ε ∼ N(0, τ 2)) and p is

the number of parameters that comprise the mean.

At any single location x:

Y (x) = µ+ ε(x) (3.11)

where Y is the value of the process at location x, µ is the mean and ε(x) ∼

N(0, τ 2)).

Diggle and Ribeiro (2007) define a Gaussian spatial process T (x) to have mean µ,

variance σ2 and correlation function ρ(u) = Corr(T (x), T (y)) where u = ||y−x|| for
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any two locations x and y and where ||.|| denotes Euclidean distance.

Two important assumptions often made when fitting models to spatial data are

that the underlying stochastic process is both stationary and isotropic. First-order,

strong or strict stationarity is a largely theoretical concept and difficult to prove in

practice. Sherman (2011) defines first-order stationarity as:

P (Z(x1) ≤ a1, . . . , Z(xk) ≤ ak) = P (Z(x1 + h) ≤ a1, . . . , Z(xk + h) ≤ ak (3.12)

for all shift vectors h. A more practical version of this concept is second-order

or weak stationarity, which Sherman (2011) describes as having the following two

properties:

• E(Z(x)) = µ for all locations

• Cov(Z(x), Z(y)) = Cov(Z(x+ h), Z(y+ h)) for any two locations x and y and

all spatial shifts h

The first property constrains the mean to be constant across space. The second

property constrains the covariance function to depend only upon the spatial lag

between any two locations x and y (i.e. u = y − x) and not on the locations

themselves (Sherman, 2011).

A concept related to second-order stationarity is that of intrinsic stationarity, which

has similar properties:

• E(Z(x)− µ) = 0

• Var(Z(x+ h)− Z(x)) = 2γ(h) for all shifts h

This formulation is identical to that for second-order stationarity (Sherman, 2011)
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with 2γ(h) being called the variogram. γ(h) is known as the semi-variogram but is

often simply referred to as the variogram also.

A stationary process is also isotropic if it is directionally-invariant i.e. γ(y − x) =

γ(||y − x||) where ||.|| denotes Euclidean distance (Diggle and Ribeiro, 2007). This

means that the covariance between any two locations x and y depend only upon the

distance between them and not on direction.

A geostatistical model assuming stationarity and isotropy can be used to make infer-

ence about a spatial process and such inference can be used to predict at unobserved

locations, as aforementioned. Sherman (2011) states that the ‘best’ prediction of an

unobserved location Z(x0), based on the observations Z(x1), . . . , Z(xn), should typ-

ically have the lowest mean squared error i.e. the minimisation of:

MSE(Ẑ(s0) = E((Ẑ(s0)− Z(x0))
2) (3.13)

Variogram

The variogram of a geostatistical process is a widely-used alternative to covariance

functions when assessing the presence of spatial correlation within residuals after a

model has been fit.

Diggle and Ribeiro (2007) define the semi-variogram between two spatial locations

x and y as follows:

γ(x, y) =
1

2
Var(T (x)− T (y)) (3.14)

where the variogram, 2γ(x, y), would be scaled appropriately and where T (x) and

T (y) define the spatial processes at locations x and y.
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Diggle and Ribeiro (2007) also define the expanded version of Equation 3.14 in terms

of variances and covariances:

γ(x, y) =
1

2
Var(T (x)) + Var(T (y))− 2Cov(T (x), T (y)) (3.15)

Figure 3.1 shows the theoretical empirical semi-variogram.

Figure 3.1: Theoretical semi-variogram (University of Edinburgh, 2015)

Diggle and Ribeiro (2007) state that most variograms are increasing, monotonic

functions with four components: the range, the nugget, the sill and the partial sill

(not shown in Figure 3.1).

The range is defined as the distance, t, where the semivariance crosses the sill,

meaning that all subsequent points are effectively spatially-uncorrelated. The nugget

is a “discontinuity at the origin of the variogram” (Diggle and Ribeiro, 2007) and the

value of the semivariance as the distance between any two points x and y approaches

zero (i.e. t = |y − x| → 0). It generally is seen as quantifying measurement error.

The sill is an asymptote and represents the overall variance of the process. The

partial sill is the difference between the sill and the nugget.

Determining whether spatial correlation exists or not is far from an exact science but
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one can be assisted by the use of Monte Carlo envelopes. Analogous to confidence

bands or intervals, Monte Carlo simulation is used to predict the behaviour of the

variogram if the errors were truly independent. If the points in the variogram (espe-

cially the first few) trespass one or both of these envelopes, then it can be inferred

that spatial correlation is most likely present. If the variogram appears to show

evidence of spatial correlation in the model residuals then this has to be accounted

for by fitting a variogram model. This involves modelling the correlation structure

in the residuals as best as can be achieved.

A very general class of correlation models that are widely used in spatial analyses are

the Matérn correlation functions (Matérn, 1960). Diggle and Ribeiro (2007 – derived

from Matérn (1960)) define the general Matérn correlation function as follows:

ρ(u) =

{
2κ−1Γ(κ)−1

(
u

φ

)κ
Kκ

(
u

φ

)}
(3.16)

where u is the distance between two points, Γ is the gamma function, Kκ is a

modified Bessel function of order κ, φ > 0 is a scale parameter with the dimensions

of distance and κ > 0 is a shape parameter (Diggle and Ribeiro, 2007).

When κ = 0.5, the Matérn correlation function reduces to an exponential covariance

structure, one of the most widely-used functions to model spatial correlation i.e.

ρ(u)→ exp

(
−u
φ

)
(3.17)

3.1.3 Model Comparison

Several automatic techniques exist in order to allow competing models to be com-

pared. One of the most common techniques is Akaike’s Information Criterion or

AIC (Akaike, 1974), which is defined by Fahrmeir et al. (2013) as:
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AIC = −2l(θ̂) + 2p (3.18)

where l is the log-likelihood of the p-dimensional parameter vector θ̂ = (θ1, θ2, . . . ,

θp)
T . The second term (2p) penalises complex models. Models with the smallest

AIC are favoured (Fahrmeir et al., 2013).

AICc (second-order or ‘corrected’ Akaike’s Information Criterion) is a variant of AIC

and is less likely to result in overfitting due to extra constraints on parameters. It

was originally proposed by Suguira (1978) for linear models only but was extended

to other types of statistical models by Hurvich and Tsai (1989). Burnham and

Anderson (2002) strongly recommend the use of AICc, as opposed to AIC, when the

sample size is particularly small or if the number of parameters is large. Nevertheless,

AICc will converge to AIC when the sample size is suitably large.

3.1.4 Random Forests

The statistical methods discussed previously are typically only suitable for continu-

ous response variables and applying them to non-continuous data would be difficult.

In cases of binary or ordinal data, such as the macroinvertebrate data introduced in

Chapter 2, alternative approaches should be considered.

Random forests (Breiman, 2001) are an extension of classification and regression

trees. A classification tree gives a predicted classification for a set of categorical

predictors and a random forest of k trees selects the classification which obtains the

most votes over all the trees in the forest. Hence, it will choose the classification

with the most votes in its favour at each prediction location. Like single classification

trees, random forests do not make any distributional assumptions and do not overfit

due to the Law of Large Numbers (Breiman, 2001).
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A methodological pre-requisite is bootstrap aggregation or ‘bagging’ (Breiman, 1996),

a key component of the random forest algorithm. It is described by Cutler (2010)

as follows:

• A bootstrap sample is drawn at random with replacement from the data set

• Some observations will be sampled multiple times, whilst others will not be

included (‘out-of-bag’)

• The process should reduce variance but has limited effect on bias, therefore it

is most appropriate for classification trees where variance is typically high but

bias is low

The random forest algorithm is detailed as follows (Breiman, 2001; Cutler, 2010):

• k classification trees are constructed (large enough k will lead to convergence)

• Each tree is constructed from an independent bootstrap sample using the ‘bag-

ging’ method

• m variables are chosen at random from the M possible covariates in the model

independently for each node in the tree

• The best split on the m variables is selected

• Classification trees are allowed to grow to maximum depth and are not pruned

• The k trees are averaged to obtain predictions for new data

Cases in the training data will be excluded from the bootstrap sample for about one

third of the trees, termed ‘out-of-bag’ cases (Breiman, 2001). The out-of-bag error

rate quantifies the effectiveness of the random forest model at predicting new data

and is usually accompanied in statistical analyses by a classification or ‘confusion’

matrix made from the fitted random forest on the out-of-bag data (Breiman, 2001).

Prediction errors between classes will be highly unbalanced if the number of obser-

vations in each category is unbalanced (Breiman, 2001). More frequently-observed
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classes will typically have lower prediction error whilst less frequently-observed classes

will have higher prediction error. This is a result of the random forest attempting

to minimise the overall error rate (Breiman, 2001).

3.2 Modelling Continuous Environmental Deter-

minands

3.2.1 Soil Quality Models

The modelling process for all five metals was very similar. Hence, only one (lead)

is given in depth here with corresponding results for the other four metals being

displayed in Appendix B. A linear model consisting of three explanatory variables:

the easting coordinate, the respective northing coordinate and an interaction term

between these two main effects was first considered. The lead concentration was also

log-transformed. The model was formulated as follows:

log(yij) = µ+ αsi + βsj + (αβ)sij + εsij, εij ∼ N(0, σ2) (3.19)

where yij refers to the lead concentration at easting i and northing j, µ is an intercept

term, αsi refers to the easting coordinate, βsj refers to the northing coordinate,

(αβ)sij refers to the interaction between the two main effects and εsij refers to the

error associated with the lead concentration at location sij.

However, due to the curvature observed in Figure 2.19, the model was refitted using

an isotropic smooth for easting and northing. The model was formulated as follows:

log(yij) = µ+ s(γij) + εij, εij ∼ N(0, σ2) (3.20)

where yij refers to the lead concentration at easting i and northing j, µ is an inter-

cept term, γij refers to the interaction between the two main effects, s defines the
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variable to be a smooth function and εij refers to the error associated with the lead

concentration at location (i, j). The results of the flexible regression model, fitted

using REML, are displayed in Table 3.1.

Table 3.1: Results of flexible regression model for lead

Parametric
Coefficient

Estimate Standard Error t-value p-value

Intercept 4.821 0.016 300 <l0.05

Smooth
Coefficient

Effective
Degrees of
Freedom

Reference
Degrees of
Freedom

F-value p-value

Easting : Northing 17.05 22.03 17.65 <l0.05

The smooth spatial term was highly statistically-significant (p-value < 0.05). The

linear and flexible regression models were compared using AICc, which confirmed

that the latter was the preferred model. The smoothing parameter (i.e. the basis

or number of knots), chosen using GCV, was chosen to be 110. This ensures that

the k-index, which assesses residual variance, was at least 1. A k-index value lower

than 1 means that a pattern in the residual variance may still remain, especially if

the number of knots is close to the value for the effective degrees of freedom (Wood,

2006).

Figure 3.2(a) shows the assumption that the error term has constant variance may

not be satisfied as the residuals appear to be projecting outwards as the fitted values

increase. However, the assumption that the errors have mean zero does not appear

to be an issue and neither does the assumption of normality, assessed in Figure

3.2(b). Figures 3.2(c) and 3.2(d) appear to show that the variability, if any, in the

Easting and Northing variables has been accounted for by the model, hence, no

evident pattern in either plot.
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Figure 3.2: (a) scatterplot of model fitted values versus model residuals; (b) normal

Q-Q plot of model residuals; (c) scatterplot of easting versus model residuals; (d)

scatterplot of northing versus model residuals

Figure 3.3: Variogram for lead flexible regression model residuals

The variogram in Figure 3.3 does not show evidence of significant spatial correlation

in the model residuals as the variogram appears to be almost entirely within the

bounds of the Monte Carlo envelopes, which test for such correlation. Therefore, it

is not necessary to refit the model to account for any spatial correlation. Figure 3.4

shows how the lead concentration varies according to the fitted model. It appears
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that the highest concentrations of lead appear to be in the highly-populated and

urbanised areas of Glasgow City and that these concentrations gradually decrease

as one moves out to more rural areas.

Figure 3.4: Prediction surface for flexible regression model for log-transformed lead

concentration (mg/kg) with sampling locations

3.2.2 Air Quality Models

The geostatistical modelling procedure for the air pollutants was largely similar to

that for the soil metals but model residuals here exhibited spatial correlation which

had to be accounted for. The models described below were carried out on aggregated

annual mean values for 2011 only. The modelling procedures and results for other

years are similar and are not displayed here. Likewise, due to similarity, only the

results for nitrogen dioxide are displayed here with results for other air pollutants

being provided in Appendix B.

Firstly, a linear model consisting of an easting term, a northing term and an inter-

action term, identical to that defined mathematically in Equation 3.19 was fit. All

three variables were highly-significant (all p-values < 0.05). However, after the con-

sideration of diagnostic plots (which showed that evident patterns remained in the

model residuals) and the fact the curvature was present in the data (Figure 2.11), a

flexible regression model was then fit in a manner identical to that in Equation 3.20

using REML.
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Table 3.2: Results of flexible regression model for NO2

Parametric
Coefficient

Estimate Standard Error t-value p-value

Intercept 1.936 0.0047 416 <l0.05

Smooth
Coefficient

Effective
Degrees of
Freedom

Reference
Degrees of
Freedom

F-value p-value

Easting : Northing 28.67 28.99 620.5 <l0.05

The number of knots was chosen to be 650, the first multiple of 25 which resulted in

a k-index value which exceeded the value 1, meaning that there was unlikely to be

any missed pattern in the residual variance. The number of knots was required to

be much larger than that used for the soil quality models due to the larger amount

of data. Whereas the soil quality models were fitted from approximately 1,600 data

points, the air quality models were typically fitted from approximately 4,000 data

points. A large number of knots was required to satisfy the criterion that the k-index

should be at least 1. A test to compare the fits of the linear and flexible regression

models was conducted using AICc, which again confirmed that the latter model was

a better fit. The model was then further assessed using diagnostic plots.

The residual plots displayed in Figure 3.5 were much more difficult to make inference

from than those for the soil metals. Figure 3.5(a) shows that the assumption that the

errors had mean zero appeared reasonable but that such errors also having constant

variance was difficult to confirm. A very heavy upper tail was present in the normal

Q-Q plot in Figure 3.5(b), likely a result of the failure of the log-transformation

to provide a normally-distributed response variable (see Figure 2.2). Figures 3.5(c)

and 3.5(d) do not show much evidence of obvious patterns remaining the respective

Easting and Northing variables but, again, are more difficult to make inference from

than previous residual plots.
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Figure 3.5: (a) scatterplot of model fitted values versus model residuals; (b) normal

Q-Q plot of model residuals; (c) scatterplot of easting versus model residuals; (d)

scatterplot of northing versus model residuals

Figure 3.6: Variogram for NO2 additive model residuals

Figure 3.6 shows clear evidence of spatial autocorrelation in the residuals, as the

points are not contained within the Monte Carlo envelopes. Hence, the model was

refitted to include an exponential covariance structure to account for this. Finally,

the model fit was visualised in terms of plotting the model surface against Easting

and Northing, shown in Figure 3.7. Figure 3.7 focusses on what will be the region
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of interest for constructing the composite indices in later chapters (i.e. the area

shown in Figure 1.2). The results show largely what one would expect from the

distribution of nitrogen dioxide, namely that very high concentrations would be

observed in highly-populated areas and much lower values in less-populated areas.

Figure 3.7: Prediction surface for flexible regression model for log-transformed

NO2 concentration (µg/m3) with sampling locations

3.2.3 Water Quality Models for Chemical Determinands

For the five water chemistry determinands (ammonium, copper, dissolved oxygen,

pH and soluble reactive phosphorus), the modelling process followed that for the air

and soil quality models. However, a three-level categorical factor was also included

to allow the use of river catchment information. Although the isotropic smooth

remains, the addition of another covariate extends this model to an additive model.

Each data point is located within either the River Clyde, River Kelvin or River

Cart catchments. The modelling process will only be detailed for soluble reactive

phosphorus here with similar results for the other four determinands being given in

Appendix B. The model was formulated as:

log(yij) = µ+ s(γij) + δk + εij, εij ∼ N(0, σ2) (3.21)

where yij refers to the phosphorus concentration at easting i and northing j, µ is an

79



intercept term, γij refers to the interaction between the two main effects, s defines

the variable to be smooth function, δk is a factor where k = 1 (Clyde), 2 (Kelvin),

3 (Cart) and εij refers to the error associated with the phosphorus concentration at

location (i, j). The results of the flexible regression model, again fitted using REML,

are displayed in Table 3.3.

Table 3.3: Results of flexible regression model for phosphorus

Parametric
Coefficient

Estimate Standard Error t-value p-value

Intercept -2.89 0.11 -26.23 <l0.05
Catchment Factor
– River Kelvin

-1.55 0.33 -4.75 <l0.05

Catchment Factor
– River Cart

-0.37 0.37 -0.99 0.33

Smooth
Coefficient

Effective
Degrees of
Freedom

Reference
Degrees of
Freedom

F-value p-value

Easting : Northing 4.03 5.38 12.75 <l0.05

Table 3.3 shows that the isotropic smooth is statistically-significant (p-value <l0.05)

and there is a significant difference between phosphorus concentrations measured in

the River Clyde and the River Kelvin. However, there is no evidence of a difference

between measurements in the River Clyde and the River Cart (p-value >l0.05). The

number of knots was chosen to be 15 for all five water chemistry models, which was

much lower than the number of knots required for the air and soil quality models.

However, this was due to the water data being relatively sparse in a spatial sense

when compared to the air and soil data sets.

Table 3.4 displays the results of an analysis of variance to determine if the river

catchment factor is statistically-significant. Table 3.4 shows that the catchment

variable is highly-significant and should be kept in the model. Model diagnostics

were then considered to assess its suitability.
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Table 3.4: Results of analysis of variance for flexible regression model

Parametric
Term

Degrees of
Freedom

F-value p-value

Catchment Factor 2 11.51 <l0.05

Figure 3.8: (a) scatterplot of model fitted values versus model residuals; (b) normal

Q-Q plot of model residuals; (c) scatterplot of easting versus model residuals; (d)

scatterplot of northing versus model residuals

Figure 3.8(a) shows the model fitted values versus the residuals. It is difficult to

make inference here, since there is significantly fewer data points than for the air

and soil models. However, an obvious pattern does not appear to be present and

the values are clustered around mean zero, albeit with one outlier. Figure 3.8(b)

suggests that the assumption of normality is satisfied, again with one outlier. No

patterns are visible in Figures 3.8(c) and 3.8(d), suggesting that the variability in

the spatial coordinates has been accounted for by the model.

Figure 3.9 does not show evidence of any spatial correlation in the residuals.
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Figure 3.9: Prediction surface for flexible regression model for phosphorus

concentration with sampling locations

Figure 3.10: Prediction surface for flexible regression model for log-transformed

phosphorus concentration (g/L) with sampling locations

Figure 3.10 shows the smooth surface fitted by the model. It appears that higher

concentrations of soluble reactive phosphorus are found in the urban areas in the

north-west of the range of the data (i.e. in and around Glasgow City). Lower

concentrations are observed in rural areas.
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3.3 Macroinvertebrate Analysis Using Random

Forests

To ease the inclusion of macroinvertebrates into the composite index, the five-

category ordinal scale was reduced to a two-category binary scale. The ‘bad’, ‘poor’

and ‘moderate’ categories were merged to create the ‘bad’ category and the ‘good’

and ‘high’ categories were merged to create the ‘good’ category. The data were mod-

elled using a random forest classifier (Breiman, 2001) with three covariates (easting,

northing and the river catchment factor, also used in the chemical determinand

models). The forest consisted of 1,000 trees and one variable was automatically se-

lected at each split in each tree. The resulting classification or ‘confusion’ matrix is

displayed in Table 3.5.

Table 3.5: Classification matrix for random forest model

Bad Good Class Error

Bad 7 9 0.56
Good 6 27 0.18

The overall prediction or ‘out-of-bag’ error rate was 30.61%, meaning that the ran-

dom forest model is quite successful. Table 3.6 shows which variables were most

important in the classification procedure, reported using a variable importance cri-

terion based on Gini impurity (Breiman, 2001; Breiman and Cutler, no date). Higher

Gini importance indicates a more important variable, as determined by the random

forest classification process.

Table 3.6: Variable importance for random forest model

Variable Gini Importance

Northing 7.48
Easting 5.76
Catchment 2.14
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From Table 3.6, it can be inferred that the spatial coordinates are the most important

in classifying the macroinvertebrate data but the river catchment information is

also important. The random forest was then used to predict macroinvertebrate

classifications at each prediction location. The indicator for the macroinvertebrate

data will be expressed as the probability of a data zone being in the ‘good’ category.

3.4 Prediction and Aggregation to Data Zone Level

The purpose of modelling the environmental quality data described in Chapter 2 is

to predict at unobserved locations which can then be used to create environmental

quality indices, an approach used by Lee et al. (2011), amongst others. This is

required as the indices will be reported at data zone level and at least one observation

for each indicator is needed in each data zone for this to be possible.

A uniform grid was created using the statistical software package R (R Core Team,

2014), which consisted of approximately 17,000 data points across the 1,748 data

zones in the study region (see Figure 1.2). Each point is a prediction location.

This was to ensure that there would be at least one prediction location within the

boundaries of every data zone that comprised the study region.

However, some data zones (especially within Glasgow City) were so geographically

small that there were no prediction grid locations that fell within their boundaries.

For each of these data zones, a prediction location was chosen manually and was

selected to be as close to the geographic centroid of the data zone as possible. Ap-

proximately sixty data zones out of 1,748 required this manual process.

After each model had been fitted, the prediction grid was used to determine the

spatial process across the study region, with at least one predicted observation in

each of the 1,748 data zones. Since the data were modelled on the logarithmic scale,

the predicted data were subsequently transformed back by applying an exponential
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transformation before they were aggregated to data zone level.

A simple exponential back-transformation may not necessarily be the most appropri-

ate back-transformation for data that have been modelled on the logarithmic scale,

although this is a common practice (Newman, 1993). Newman (1993) suggests sim-

ple exponential back-transformations may introduce some bias into predictions but

this was not investigated here.

Afterwards, a predicted value for each data zone was computed by calculating the

arithmetic mean of all predicted observations in each data zone (Bruno and Cocchi,

2002; Lee et al., 2011). As described above, some geographically-small data zones

had only one predicted observation. However, the vast majority of data zones had

multiple, if not dozens, of prediction locations within their boundaries. This process

resulted in one predicted value for each variable in each data zone in the study

region, which were then used to create the composite indices in Chapter 4 of this

thesis.

It should be noted that the water data was much more spatially-sparse than the

air and soil data and meant that predictions may suffer from a greater amount of

statistical variability. Also, the data were only available along the watercourses of the

three rivers that comprised the data set. However, it was necessary to predict using

the water quality models across all of the data zones in order for the composite index

to be constructed in a consistent manner. Nevertheless, it was deemed a reasonable

assumption that waterbodies (whether they be rivers, streams, canals etc.) would

be present in almost every data zone and that predicting across the study region

would be satisfactory for the purposes of this thesis. However, access to more data

would undoubtedly be beneficial in a future study.
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3.5 Chapter Summary

This chapter has shown the models applied to the data from Chapter 2 with a view

to using model predictions to create a composite environmental quality index for

Greater Glasgow. This has been achieved in all but one case through a combination

of flexible regression models consisting of isotropic smooths of the spatial coordinates

alongside a geostatistical analysis involving the consideration of spatial correlation

and variograms.

Appropriate smoothing parameters for the four air quality pollutants were chosen

by finding the first multiple of 25 which would result in a k-index of at least 1,

thereafter residual variation should be largely random. Smoothing parameters for

the five water chemical determinands were chosen to be 20. Smoothing parameters

for the soil determinands varied but were still chosen such that the k-index was at

least 1.

The fits of the models were also assessed by using residual plots, including checking

whether the residuals were normally-distributed, as well as verifying if the isotropic

smooth performed better than a corresponding normal linear model using AICc.

The ordinal macroinvertebrate data were modelled in a completely different man-

ner. To ease future work, the five-category ordinal scale was condensed into a two-

category binary scale and the data were modelled by using a random forest. The

probability of a ‘good’ result at each prediction location was then calculated. The

random forest model was assessed by the consideration of its misclassification rate.

Finally, these models were used to predict at a large number of locations in the

study region and these predictions were aggregated using the arithmetic mean. This

resulted in a value for each indicator in all 1,748 data zones. These values will then

be used to construct composite indices at data zone resolution in Chapter 4.
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Chapter 4

Development of Composite Indices

This chapter details the construction of composite environmental quality indices for

Greater Glasgow for the year 2011. ‘Pseudo-data’ predicted from the models shown

in Chapter 3 were used to create these indices, since the original data from Chapter

2 were not available at a spatial resolution high enough for the aims of this project.

4.1 Methods

4.1.1 Index Construction Steps

For the reasons outlined in Chapter 1, it is vitally important that a transparent and

reasoned approach is taken when constructing a composite index. This thesis will

reflect on the appropriate steps recommended by the OECD (2008 – see Table 1.2).

Step 1 (outlining a theoretical framework) is described in Section 1.4. Steps 2 and

3 (data selection and management) are accounted for in Chapter 2. This chapter

will focus on steps 4, 5 and 6, namely multivariate analysis and the normalisation,

weighting and aggregation of indicators.

Figure 4.1 is a flow chart detailing the general steps required to create the final

environmental quality index.
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Data (Chapter 2)

Aggregate data to annual mean (Chapter 3)

Model data and predict at specified locations to create indicators (Chapter 3)

Apply one of three normalisation methods to indicators

Re-scaling to [0, 1]Z-scoresRanking

Create air, water and soil domains using factor analysis weights

Normalise domain indices using same method as above

Aggregate domains to create composite index using domain weights

Normalise final index using same method as above

Create map of composite index

Figure 4.1: Flow chart detailing general steps in constructing composite indices
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The three normalisation methods used in this thesis are described below and will be

used to create three different composite indices, all measuring environmental quality

and consisting of the same domains and indicators.

Ranking

The ‘ranking’ method that will be used to normalise indicators will follow the

methodology of the Scottish Index of Multiple Deprivation (Scottish Government,

2012 – see Figure 1.1). The steps that will be taken are outlined below:

1. Each indicator is ranked from 1 (best environmental quality) to 1,748 (worst

environmental quality)

2. The indicators are weighted according to factor analysis and aggregated to

create a domain score (i.e. an air domain, a water domain and a soil domain)

3. Each domain is normalised again using the same method as Step 1, exponentially-

transformed (according to Equation 4.1) and aggregated together to create an

environmental quality index (EQI) using domain weights from factor analysis

4. The domain scores are ranked again from 1 to 1,748

Step 1 normalises the indicator scores and ensures that all indicators are transformed

onto the same scale prior to aggregation. Step 2 weights each indicator (within its

respective domain) to avoid issues of double-counting and multicollinearity. It is not

appropriate to aggregate indicators that are very highly correlated with each other

without applying a weighting scheme (either arbitrary, through consultation with

experts or through statistical methods such as factor analysis or principal compo-

nents analysis). The indicator scores are summed together using the appropriate

weighting. This creates an air quality index (AQI), a water quality index (WQI)

and a soil quality index (SQI). These domains are again normalised to achieve the

desired index scale.

SIMD (Scottish Government, 2012) recommends that the domain scores are sub-

89



jected to an exponential transformation to avoid high values in one domain being

cancelled out by low values in another. This will occur as the domain ranks will

otherwise be uniformly-distributed. The transformation is shown in Equation 4.1

(Scottish Government, 2012).

−23× log{1−R× [1− exp(−100/23)]} (4.1)

where log is the natural logarithm and R denotes a data zone’s rank within each of

the three domains, scaled to the range [0, 1] i.e. (R = 1/1748 for the data zone with

the best environmental quality in each data zone and R = 1748/1748 for the data

zone with the worst environmental quality in each data zone).

The three transformed domains are now aggregated using pre-determined weights

(drawn from the loadings of the aforementioned factor analysis). Finally, as described

in Step 4, the final index is ranked again from 1 (data zone with best environmental

quality) to 1,748 (data zone with worst environmental quality). This results in a

ranked composite environmental quality index (EQI) consisting of an air, soil and

water domain for the study region shown in Figure 1.2.

This method is advantageous because it is unaffected by outliers (OECD, 2008).

However, it is important to recognise that, like SIMD (Scottish Government, 2012),

data zones can only be compared relative to each other. Hence, it is not appropriate

to conclude that the environmental quality of data zone which is ranked 500th is

twice as good as that of the data zone which is ranked 1000th. The only conclusion

that can be drawn is that data zone 500 has better environmental quality than data

zone 1000.

Z-scores

This second method uses z-scores (often called standardisation) in place of ranks to

create the same composite environmental quality index. The steps taken are shown
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below:

1. The z-scores of each air, soil and water determinand are taken

2. The normalised scores are weighted according to factor analysis and aggregated

to create a domain score

3. The resulting domain scores are normalised using z-scores, weighted according

to the results of the factor analysis and aggregated to create the EQI

4. The EQI is subject to a z-score transformation

A z-score for each data zone is calculated by subtracting the mean data zone con-

centration for the determinand in question and dividing by the standard deviation

of all concentrations i.e.

z =
x− µ
σ

(4.2)

where z is the z-score for each indicator, x, and µ and σ are the mean and standard

deviation, respectively, for the indicator. This results in a mean of zero and a

standard deviation of one (Nardo et al., 2005). However, Nardo et al. (2005) also

observe that indicators with extreme values will have a greater effect on the resulting

composite index. This may be appropriate in some situations where extremes are of

interest but perhaps not in other cases.

An attractive feature of this method in the context of this thesis is that it highlights

the data zones which are of the greatest concern (i.e. z-score > 0) with regards to

air, soil and water quality as well as the general environmental quality shown by the

final EQI.

Re-scaling

This third and final method involves re-scaling all indicators to the interval [0, 1].

This is achieved by subtracting the mean value from each indicator value and then
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dividing by the range (i.e. the minimum value subtracted from the maximum value).

Creating an index from such normalised indicators follows the exact same methodol-

ogy as that for the z-score method described above. An advantage of re-scaling over

standardisation is that the resulting scale of the index is more easily interpretable.

The index will vary between 0 and 1, with data zones closer to 1 having increasingly

poorer environmental quality.

4.1.2 Factor Analysis

As aforementioned, it is unwise to combine indicators which are highly correlated

with each other without addressing the issue. Correlation between indicators leads

to double-counting and multicollinearity problems, which can be solved in a variety

of ways. Nardo et al. (2005) and OECD (2008) provide details on a variety of

possible approaches.

Some developers of composite indices simply allow each indicator to be equally-

weighted, which may be appropriate in some situations. Others apply an arbitrary

weighting system, usually in consultation with experts in the field or in line with an

established precedent. However, a statistical approach allows for easier justification

and a better defence to criticism from statisticians, as described by Saisana et al.

(2005). In this thesis, factor analysis will be applied to the fourteen continuous

variables to find a suitable weighting system for each domain and for the final EQI.

Since the macroinvertebrate data are not continuous, it is not appropriate for them

to be included in a standard factor analysis using Pearson’s correlation. Polychoric

correlation, or a related method, would have to be used in place of the commonly-

used Pearson’s correlation coefficient to account for the presence of both continuous

and categorical variables. Hence, the macroinvertebrate indicator was allocated an

arbitrary weighting in line with its importance as part of the water quality compo-

nent of the index. The indicator was set to receive a weighting of 25% within the
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water quality domain. The factor analysis weights for the remaining five chemical

determinands in the water quality index were scaled down appropriately to account

for this.

Factor analysis is closely related to principal components analysis or PCA (Pearson,

1901). The aim of PCA is to transform a set of correlated variables into a new set

of uncorrelated variables using the covariance or correlation matrix (Nardo et al.,

2005). The resulting variables are linear combinations of the original variables and

typically the first few principal components should account for the vast majority of

the variation in the data, if there is enough intra-variable correlation to begin with.

PCA is commonly used for dimension reduction, which is not its purpose of this

thesis. Factor analysis is based on a particular model (Spearman, 1904) and can be

used to analyse the intra-indicator correlations and identify which indicators explain

the most variability in their respective domain.

Weightings can be obtained from squared factor loadings. These are calculated from

the matrix of factor loadings after rotation, “given that the square of factor loadings

represents the proportion of the total unit variance of the indicator which is explained

by the factor” (OECD, 2008).

Nardo et al. (2005) define the general form of a factor analysis model:

x1 = a11F1 + a12F2 + · · ·+ a1mFm + e1

x2 = a21F1 + a22F2 + · · ·+ a2mFm + e2
...

xQ = aQ1F1 + aQ2F2 + · · ·+ aQmFm + eQ

(4.3)

where xi is a variable with mean zero and unit variance; ai1, ai2, . . ., aim are factor

loadings corresponding to the variable Xi; F1, F2, . . ., Fm are m uncorrelated factors
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and ei are the Q factors which are independently and identically distributed with

mean zero (Nardo et al., 2005).

Nardo et al. (2005) observe that it is common to use PCA to extract the first m

principal components, often with the assistance of a scree plot (Cattell, 1966), and

then use that number of factors in a subsequent factor analysis. The number of

factors that are extracted is often arbitrary and dependent upon the data set in

question. It is common to use a ‘stopping rule’, such as the Kaiser criterion (Kaiser,

1960), in which all factors with eigenvalues less than 1 are dropped (Nardo et al.,

2005).

4.2 Domain Indices

This section will detail the development of an index for each of the three domains

(air, soil and water) prior to creating an environmental quality index involving all

three domains.

4.2.1 Air Quality Index

An air quality index (AQI) for 2011 was created using the three normalisation meth-

ods. The composite index consisted of NO2, NOX , PM10 and PM2.5. Firstly, factor

analysis was used to determine the weights for the index, shown in Table 4.1.

Table 4.1: Indicator weightings for air quality index (AQI)

Indicator Approximate
Weight

NO2 21%
NOX 26%
PM10 26%
PM2.5 26%

The factor analysis has not strayed far from equal weighting with regards to the air
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quality indicators although, as Table 4.1 shows, NO2 has been weighted less heavily

than the other three determinands. These weights will be used for all three AQI

construction methods.

Ranking

The SIMD (Scottish Government, 2012) ranking method outlined in Section 4.1.1

was then followed to create the air quality index, shown in Figure 4.2.

Figure 4.2: Air quality index (AQI) for 2011 using ranking method (1 = best air

quality; 1748 = worst air quality) – contains Ordnance Survey data c©lCrown

copyright and database right (2014)

Figure 4.2 confirms what was often seen in the exploratory analyses of the air quality

determinands, namely that poorer air quality appears to be observed in highly-

urbanised areas with better air quality being observed in rural areas with lower

levels of population and traffic. In Figure 4.2, the areas of most concern appear to

be Glasgow City and the highly-populated areas of North and South Lanarkshire to

the south-east of the city.

Z-scores

The z-score AQI shown in Figure 4.3 exhibits a similar spatial pattern to Figure 4.2

i.e. densely-populated data zones appear to suffer from poorer air quality with rural
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Figure 4.3: Air quality index (AQI) for 2011 using z-score method – contains

Ordnance Survey data c©lCrown copyright and database right (2014)

areas being of less concern. The spatial distributions of air quality are not identical

to Figure 4.2 with the z-score method highlighting specifically Glasgow City centre

as having the poorest air quality. The data zones covering the large towns of North

and South Lanarkshire appear to exhibit better air quality according to this method.

Re-scaling

Finally, the AQI constructed using the re-scaling normalisation approach is displayed

in Figure 4.4

The results shown in Figure 4.4 appear very similar to those suggested in Figures 4.2

and 4.3, namely the worst-affected data zones tend to be in highly-urbanised areas.

4.2.2 Soil Quality Index

An almost identical approach was followed with regards to the soil quality index as

that of the air quality index in Section 4.2.1. It should be reiterated, as mentioned

in Chapter 2, that data were only available for one year (2001 – 2002) and, hence, all

indices constructed in this chapter will assume that soil quality has remained largely

constant since then. Firstly, the results of the domain factor analysis are shown in

96



Figure 4.4: Air quality index (AQI) for 2011 using re-scaling method (0 = best air

quality; 1 = worst air quality) – contains Ordnance Survey data c©lCrown

copyright and database right (2014)

Table 4.2.

Table 4.2: Indicator weightings for soil quality index (SQI)

Indicator Approximate
Weight

Arsenic 29%
Chromium 24%
Lead 12%
Nickel 23%
Selenium 11%

Whilst factor analysis weightings for the air quality domain (Table 4.1) were broadly

equal, there is an obvious departure from this for the soil determinand weightings.

As Table 4.2 shows, arsenic, chromium and nickel receive a heavier weighting than

lead or selenium. This is likely to produce a different SQI than one which more

or less allowed equal weighting. The SQI was then constructed using the three

normalisation methods.
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Ranking

Figure 4.5: Soil quality index (SQI) using ranking method (1 = best soil quality;

1748 = worst soil quality) – contains Ordnance Survey data c©lCrown copyright

and database right (2014)

Figure 4.5 shows the SQI following the SIMD (Scottish Government, 2012) method.

Unlike the AQI, the spatial pattern of the index is not intuitive. As shown in

Figures 4.2, 4.3 and 4.4, it is easy to imagine that poorer air quality would be

present in highly-populated areas. However, this does not necessarily reflect the

spatial distribution of soil quality. Figure 4.5 does highlight Glasgow City and other

urbanised areas as generally having poorer soil quality than most rural areas but the

local authority of Renfrewshire to the west of the study region is also highlighted as

having particularly poor soil quality.

Z-scores

Figure 4.6 exhibits a similar spatial pattern to Figure 4.5, meaning that the SQI is

likely to be a good reflection of soil quality in the study region. Like the z-score AQI

(Figure 4.3), Figure 4.6 again specifically highlights the areas with the poorest soil

quality. Here, this is at the extreme west of the study region in the local authority

of Renfrewshire.
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Figure 4.6: Soil quality index (SQI) using z-score method – contains Ordnance

Survey data c©lCrown copyright and database right (2014)

Re-scaling

Figure 4.7: Soil quality index (SQI) using re-scaling method (0 = best soul quality;

1 = worst soil quality) – contains Ordnance Survey data c©lCrown copyright and

database right (2014)

Figure 4.7 again shows similar results to Figures 4.5 and 4.6, implying that central

Glasgow and the far-west of the study region suffer from the poorest soil quality.
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4.2.3 Water Quality Index

Finally, the three normalisation methods were used to create a water quality index

(WQI). Table 4.3 shows the weightings given to the five chemical determinands as

generated from a factor analysis as well as their respective scaled weightings once

the macroinvertebrate indicator had been taken into account, which was chosen to

be 25%.

Table 4.3: Indicator weightings for water quality index (WQI)

Indicator Approximate
Weight (FA)

Scaled Weight

Ammonium 12% 9%
Copper 14% 11%
Dissolved Oxygen 7% 5%
pH 34% 26%
Soluble Reactive
Phosphorus

32% 24%

Macroinvertebrates – 25%

The factor analysis for the five chemical determinands gives particularly heavy

weighting to pH and soluble reactive phosphorus in the WQI. The low weighting

given to dissolved oxygen is particularly of note, perhaps due to lack of dependence

on the spatial coordinates as shown in Table B10 in Appendix B. The low weight-

ing is likely a reflection of this lack of variability in dissolved oxygen concentrations

across the study region.

Two pre-construction alterations were considered for two of the chemical water qual-

ity indicators. For the arsenic, chromium, lead and soluble reactive phosphorus in-

dicators, higher values means that environmental quality is deteriorating. However,

since higher dissolved oxygen is generally seen as an indication of better water qual-

ity, the indicator was inverted. This meant that the direction of the dissolved oxygen

indicator was consistent with that of the others in the water quality index.
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Also, since the desired pH value of river water should be 7, meaning the water is

neither acidic nor alkaline, it may be desirable to have the value zero be the baseline

for the indicator. This can be achieved by subtracting 7 from all pH data zone values.

However, since no data zone had a predicted pH value less than 7, this calibration

is not necessarily required here.

Ranking

Figure 4.8: Water quality index (WQI) for 2011 using ranking method (1 = best

water quality; 1748 = worst water quality) – contains Ordnance Survey data

c©lCrown copyright and database right (2014)

The WQI shown in Figure 4.8 appears to suggest that the poorest water quality is

observed in the east of the study region in and around the major towns of Lanarkshire

and the eastern borders of Glasgow.

Z-scores

Figure 4.9 shows a very similar spatial pattern to Figure 4.8 in that the index

suggests poorer water quality is observed in the urbanised east of the study region

with improving water quality as one moves in a north-westerly direction.
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Figure 4.9: Water quality index (WQI) for 2011 using z-score method – contains

Ordnance Survey data c©lCrown copyright and database right (2014)

Re-scaled

Figure 4.10: Water quality index (WQI) for 2011 using re-scaling method (0 = best

water quality; 1 = poorest water quality) – contains Ordnance Survey data

c©lCrown copyright and database right (2014)

Figure 4.10, the results of the WQI for the re-scaling normalisation method, suggests

that the spatial pattern of water quality is very similar to Figures 4.8 and 4.9. Again,

the data zones which suffer from the worst water quality appear to be in central

Lanarkshire (the east of the study region).
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4.3 Environmental Quality Index

This section outlines how the final environmental quality index (EQI) is created

using the results of the air, soil and water domain indices in Section 4.2. The EQI

will be developed using the three normalisation methods and will apply domain

weightings from the same factor analysis used to extract the indicator weightings in

Tables 4.1, 4.2 and 4.3. Table 4.4 shows the domain weightings for the EQI.

Table 4.4: Domain weightings for environmental quality index (EQI)

Domain Approximate
Weight

Air 38%
Soil 35%
Water 27%

Ranking

Figure 4.11 shows the EQI created using the ranking method developed by SIMD

(Scottish Government, 2012).

Figure 4.11: Environmental quality index (EQI) for 2011 using ranking method (1

= best environmental quality; 1748 = worst environmental quality) – contains

Ordnance Survey data c©lCrown copyright and database right (2014)

Figure 4.11 suggests that the densely-populated Glasgow City and other highly-
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urbanised areas, especially to the east of the study region, have the poorest envi-

ronmental quality across the domains of air, soil and water. This is likely because

of these areas’ poor performance with regards to all three domains, especially air.

It should also be noted that the rural north of the study region (largely comprising

of the local authorities of East and West Dunbartonshire) appears to have much

better environmental quality than the rural south. This is likely due to the fact that

poorer soil quality was observed in the Renfrewshire area and poorer water quality

in the south-east of the study region which has resulted in these areas having a lower

overall score than more northern areas. The rural north generally performed well

across all three domains, leading to the index suggesting that these data zones have

the best environmental quality in Greater Glasgow.

Z-scores

The EQI created using the z-scores method is shown in Figure 4.12.

Figure 4.12: Environmental quality index (EQI) for 2011 using z-score method –

contains Ordnance Survey data c©lCrown copyright and database right (2014)

A similar spatial pattern in observed in Figure 4.12 with regards to the corresponding

EQI in Figure 4.11. Figure 4.12 again highlights highly-urbanised data zones as

appearing to have the worst overall environmental quality. However, the z-score

method has also shown striking differences in rural areas. The far-west of the study
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region is coloured noticeably brighter when compared to other southern rural areas

to the east, meaning that these data zones are performing worse with this method.

This could be due to the z-score method again focussing on particular areas where

environmental quality is particularly poor or that the soil domain is given greater

weighting in the EQI than the WQI, which caused the south-east of the study region

to perform worse under the ranking method. This disparity between the western and

eastern sections of the rural south is evident when compared to Figure 4.11 where

the southern data zones were generally coloured the same.

Re-scaling

Finally, the EQI created using the re-scaling normalisation method is shown in Figure

4.13.

Figure 4.13: Environmental quality index (EQI) for 2011 using re-scaling method

(0 = best environmental quality; 1 = worst environmental quality) – contains

Ordnance Survey data c©lCrown copyright and database right (2014)

The data zone results displayed in Figure 4.13 largely exhibit the same spatial pattern

to those in Figure 4.12. Central Glasgow and such major towns as Motherwell and

Hamilton in central Lanarkshire typically exhibit the poorest overall environmental

quality. The northern part of the study region, in particular the north-west, are

suggested to have the best environmental quality.
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4.4 Tabular Summary of Results

The results of the indices are displayed for eleven data zones in Tables 4.5, 4.6

and 4.7, for the ranking, z-score and re-scaling normalisation methods, respectively.

The data zones were chosen according to the results of the index constructed using

the ranking method and the factor analysis weights (Figure 4.11). The best and

worst-performing data zones were chosen as well as those which corresponded to the

10th, 20th, . . . , 80th and 90th percentiles of the index. Figure 4.14 shows the spatial

location of the selected data zones, which covers both urban and rural areas of the

study region.

Figure 4.14: Location of eleven selected data zones in Greater Glasgow (those

included are coloured red)

4.5 Chapter Summary

This chapter has used the ‘pseudo-data’, obtained from the models fitted in Chapter

3, to construct composite indices for the study region for the year 2011. It should

again be noted that the soil data were only available for the year 2001 – 2002

and soil pollution levels were assumed to have remained constant since then, for

the purposes of developing methods for this thesis. This was achieved through the

procedure outlined in Figure 4.1, involving the normalisation of indicators and then
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Table 4.5: Ranked index values for eleven selected data zones (1 = best

environmental quality; 1748 = worst environmental quality)

Data Zone AQI SQI WQI EQI

S01003029 314 717 1459 700

S01003375 1559 1055 640 1224

S01003588 1176 918 914 1049

S01004680 1625 715 1694 1573

S01004716 1519 1592 1688 1748

S01004896 916 458 592 525

S01005258 856 1059 633 875

S01005288 1454 1612 390 1399

S01005741 63 54 1274 176

S01005835 241 481 1037 350

S01006286 77 6 24 1

Table 4.6: Z-score index values for eleven selected data zones

Data Zone AQI SQI WQI EQI

S01003029 -0.926 -0.307 1.068 -0.255

S01003375 1.386 0.266 -0.460 0.719

S01003588 0.396 0.071 0.041 0.269

S01004680 -0.309 -1.595 0.053 -0.965

S01004716 1.241 1.218 1.682 1.948

S01004896 -0.006 -0.091 -0.397 -0.616

S01005258 -0.110 0.274 -0.481 -0.105

S01005288 0.982 1.248 -0.808 0.867

S01005741 -1.689 -1.579 0.900 -1.389

S01005835 -1.113 -0.721 0.524 -0.778

S01006286 -1.587 -3.430 -2.214 -3.474
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Table 4.7: Re-scaled index values for eleven selected data zones (0 = best

environmental quality; 1 = worst environmental quality)

Data Zone AQI SQI WQI EQI

S01003029 0.253 0.475 0.790 0.604

S01003375 0.691 0.585 0.415 0.757

S01003588 0.499 0.554 0.519 0.676

S01004680 0.720 0.507 0.927 0.930

S01004716 0.651 0.726 0.916 1.000

S01004896 0.425 0.403 0.408 0.515

S01005258 0.406 0.582 0.414 0.598

S01005288 0.602 0.731 0.335 0.752

S01005741 0.113 0.281 0.726 0.403

S01005835 0.221 0.402 0.647 0.495

S01006286 0.127 0.021 0.004 0.000

aggregating them together using weights from factor analysis. Domain indices were

first created for air quality, soil quality and water quality, individually before the

process was repeated in order to aggregate the domains into a final environmen-

tal quality index. The composite index was created using three different types of

normalisation methods: ranking, z-scores and re-scaling to [0, 1].

In general, the three normalisation strategies resulted in a similar spatial process

being suggested for air, soil, water and overall environmental quality. For the air

domain, all three indices suggested that the worst air quality appeared to be observed

in highly-urbanised areas, especially in the centre of the city of Glasgow. For the

soil domain, the indices implied that poorer soil quality was typically observed in

the far-west of the study region. The indices for the water domain suggested that

poorer water quality was found in the urbanised eastern areas of the study region.
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Finally, the overall environmental quality indices suggested that the poorest envi-

ronmental quality was observed in urban areas (such as the city of Glasgow and the

major towns of Lanarkshire to the immediate east of Glasgow) with better results

being found in rural areas, particularly in the data zones to the far north.

The robustness of these composite indices will be assessed in Chapter 5.
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Chapter 5

Assessment of Composite Indices

5.1 Introduction

This chapter will concentrate on assessing the composite environmental quality in-

dices developed in Chapter 4 by investigating:

• How statistical uncertainty within the indices can be quantified?

• How the indices can be used to gain insight into how environmental quality

changes over a period of five years?

Assessing the level of uncertainty with the indices is essential as throughout the de-

velopment of a composite index, several subjective choices have to be made (OECD,

2008) such as:

• Choosing appropriate data to create the index itself

• The choice of normalisation method

• The selection of individual weights for each indicator

• The choice of aggregation model

amongst others. Due to the stochastic nature of environmental systems, a statement

of confidence should be given for each response (Saltelli, 2000). In practical terms
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with regards to this thesis, an interval of uncertainty should be calculated for each

data zone index value. This uncertainty-based assessment of composite indices is still

relatively uncommon in the literature, particularly those constructed on a ranked

scale.

Several statistical techniques have been developed to assess the impact of these sub-

jective judgements and are often grouped into ‘uncertainty and sensitivity analyses’.

Uncertainty and sensitivity analyses are two distinct but very closely related pro-

cesses. Saisana et al. (2005) state that uncertainty analysis typically focusses on

“how uncertainty in the input factors propagates through the structure of the com-

posite index and affects the values of the composite index”, whilst sensitivity analysis

quantifies “how much each individual source of uncertainty contributes to the out-

put variance”. In other words, uncertainty analysis attempts to estimate the level of

uncertainty in inference whilst sensitivity analysis attempts to pinpoint which parts

of the index are largely responsible for this uncertainty (Saltelli and Annoni, 2010).

Saltelli and Annoni (2010) state that uncertainty and sensitivity analyses are com-

plimentary, not alternatives to one another. Saisana et al. (2005) also observe that

examples of uncertainty analysis are more commonly found in the literature and

uncertainty analysis will be the primary focus of this chapter.

The main advantage of undertaking an uncertainty analysis when constructing a

composite index is that it may improve the index’s inferential value and lead to

more defensible results (Dobbie and Clifford, 2015). This is important due to the

scepticism that exists within the statistical community towards composite indices as

a whole (Saisana et al., 2005).

Saisana et al. (2005) observe that propagating uncertainties leads to an index being

a distribution of values, rather than a simple number. In many examples in the

literature, this almost certainly leads to overlap between different partitions of the
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study region, whether they be countries, administrative districts or data zones, as in

this thesis. This could be seen by some as a potential downside to carrying out an

uncertainty analysis on a composite index as in many cases the level of overlapping

be may substantial, particularly when attempting to influence decision-makers. Hall

and Miller (2010) observe that indices based on ranks often exhibit a particularly

high degree of uncertainty, especially in multi-dimensional situations. They note

that the data points (here, data zones) at the extreme top or bottom of an index

usually show evidence of much lower uncertainty than those clustered in the middle

parts of the index. Hall and Miller (2010) claim that this phenomenon is both

natural and very likely to occur in many situations.

The uncertainty of ranked indices is also explored by Leckie and Goldstein (2009),

for instance, with regards to school league tables. Leckie and Goldstein (2009)

discovered that school rankings are typically associated with high levels of statistical

uncertainty as well as there being a significant amount of overlap between schools’

ranks once this uncertainty is accounted for.

Despite this, uncertainty and sensitivity analyses are valuable in that they can allow

for a realistic determination of how much ‘difference’ between index values for various

data zones is a statistically-significant difference.

5.2 Methods

5.2.1 Monte Carlo Sampling

There are many different ways in which to approach an uncertainty analysis for a

composite index but a common method is to employ a Monte Carlo sampling algo-

rithm. Saisana et al. (2005) and OECD (2008) both used a Monte Carlo algorithm to

investigate the effects of selecting different normalisation and weighting techniques

as well as quantifying the effect of removing each indicator using a one-at-a-time
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approach. There are several different sampling schemes which can be implemented

in a Monte Carlo analysis, listed in Helton and Davis (2000), but simple random

sampling will be used in this thesis. This is due to its simplicity and its ability

to produce a purely-random sample from a range of possible values. Other, more

complex schemes such as stratified sampling and those based on Latin hyper-cubes

(Helton and Davis, 2000) provide alternative choices but will not be considered here.

A major part of this thesis was the use of geostatistical modelling to describe the

spatial patterns exhibited by the data, detailed in Chapter 3. Since all statistical

models are intrinsically uncertain, a Monte Carlo sampling algorithm will be used

to assess the effects of varying the modelled concentrations for each environmental

determinand that comprises the EQI. The process, adapted from the methodology

used by Saisana et al. (2005), involves simulating 1000 concentrations for all air,

soil and water determinands for eleven data zones and then constructing 1000 index

values from these simulations. The eleven data zones were the same as those shown

in Figure 4.14. The index construction methodology from Chapter 4 is unchanged

but the data used to create the index varies based on the standard deviations of the

modelled data.

Helton and Davis (2000) observe that correlation control is very important in a sam-

pling algorithm and that any correlation between variables being sampled simulta-

neously must be accounted for. The correlation structure between the individual

indicators in the EQI is accounted for in the covariance matrix.

The methodology, adapted from Saisana et al. (2005), is defined below. For a

random data zone:

1. For the AQI component of the index, draw k = 1000 values from a multivariate

normal distribution with mean µ and covariance matrix Σ for the four air

pollutants X = (X1, X2, X3, X4) i.e. X ∼ N(µ, Σ)
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2. Create 1000 AQI values (x
(k)
1 , x

(k)
2 , x

(k)
3 , x

(k)
4 ) with appropriate normalisation,

weighting and aggregation techniques, detailed in Chapter 4

3. Repeat steps 1 and 2 for SQI and WQI

4. Create EQI for k = 1000 simulated values i.e. EQI(k) from AQI(k), SQI(k) and

WQI(k)

This algorithm is run for all three indices (the EQI created using the ranking, re-

scaling and z-score normalisation methods) as well as equivalent indices constructed

using equal weights for all indicators and domains.

The macroinvertebrate data are not included in this process and all 1000 indices

will contain the modelled macroinvertebrate probability from Chapter 3. This is

due to added complexity in the distribution of its values and possible difficulties in

interpretation.

This method attempts to quantify the effects of varying the concentration for each

determinand in the index for each of the chosen eleven data zones. It also assumes

that the position of all other data zones in the index remains fixed, which may be

an unrealistic assumption in practice, particularly with regards to air quality. It is

likely that if a local area is affected by a sudden change in air quality that the data

zones surrounding it will also be affected.

5.2.2 Kappa Statistics

One way in which environmental quality indices can be compared from year-to-year

is by using Cohen’s kappa (Cohen, 1960), an inter-rater reliability measure that aims

to quantify the level of ‘agreement’ between two ‘observers’, which may be human

observers or, in this case, different index construction methodologies. It is closely

related to intra-class correlation measures. Cohen’s kappa is defined as:
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κ =
po − pe
1− pe

= 1− 1− po
1− pe

(5.1)

where po is the observed agreement amongst the raters and pe is the probability of

chance agreement calculated using the observed data. If the raters agree completely,

then κ = 1; if there is no agreement whatsoever, then κ = 0.

The weighted kappa statistic (Cohen, 1968; Fleiss et al., 1969), which may be inter-

preted as chance-corrected weighted proportional agreement (Steltner et al., 2002),

is more useful when the categories are ordinal (i.e. data zone ranks from 1 to 1,748).

It alters the statistic produced by Equation 5.1 by assigning less weight to agreement

as categories are further and further apart (Vierra and Garrett, 2005). There is no

one weighting scheme used in the literature but the R package psych (Revelle, 2015)

used in this thesis assumes quadratic weights, a common choice. The formula for

the weighted kappa is defined in Equation 5.2.

κ = 1−
∑k

i=1

∑k
j=1wijxij∑k

i=1

∑k
j=1wijmij

(5.2)

where wij, xij and mij are the elements of the weight, observed and expected matri-

ces, respectively. Fleiss et al. (1969) provided a corrected weighted kappa statistic,

which can also be used to construct confidence intervals, and is the result produced

by Equation 5.2.

There is no single way in which to interpret a kappa statistic but several rules of

thumb have been developed with one of the most commonly-used approaches being

summarised by Vierra and Garrett (2005), shown in Table 5.1.
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Table 5.1: Categories for interpreting Cohen’s kappa statistic (Vierra and Garrett,
2005)

Kappa Agreement

<l 0.01 Less than chance agreement
0.01 – 0.20 Slight agreement
0.21 – 0.40 Fair agreement
0.41 – 0.60 Moderate agreement
0.61 – 0.80 Substantial agreement

0.81 – 1 Almost perfect agreement

5.3 Results

5.3.1 Uncertainty Analysis

The Monte Carlo-based uncertainty analysis described in Section 5.2.1 was imple-

mented for all three indices constructed in Chapter 4, i.e. using the

• Ranking normalisation method (Figure 4.11)

• Re-scaling normalisation method (Figure 4.12)

• Z-score normalisation method (Figure 4.13)

An equivalent index was created for all three normalisation methods using equal

weights for all indicator and domains, since the weighting scheme for a composite

index is an important step in its construction.

Figures 5.1, 5.2 and 5.3 show the results of the uncertainty analyses for the eleven

selected data zones, restricted to the 5th and 95th percentiles of the distributions.

Figure 5.1(a) shows the results for the index constructed using the ranking nor-

malisation method with factor analysis weights. As mentioned in Section 5.1, the

data zones at the lower and upper extremities in relation to environmental quality

typically exhibit much lower levels of uncertainty when compared to data zones in
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Figure 5.1: 5th and 95th percentile intervals for ranking normalisation method:

(a) factor analysis weights; (b) equal weights (Legend: = EQI rank; = median)
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Figure 5.2: 5th and 95th percentile intervals for re-scaling normalisation method:

(a) factor analysis weights; (b) equal weights (Legend: = EQI rank; = median)

118



Figure 5.3: 5th and 95th percentile intervals for z-score normalisation method:

(a) factor analysis weights; (b) equal weights (Legend: = EQI rank; = median)
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the middle of the index, for instance data zone S01005258. The uncertainty analysis

also shows that the index values constructed in Chapter 4 are typically situated

close to the median of all calculated ranks from the Monte Carlo analysis. Figure

5.1(b) shows somewhat similar results to Figure 5.1(a), indicating that using either

equal weights or weights drawn from factor analysis for the individual indicators

may not necessarily affect the subsequent index values. However, some data zones

exhibit lower uncertainty when assuming equal weights whilst others show evidence

of higher uncertainty.

The uncertainty analysis for the z-scores normalisation method, shown in Figure

5.2(a), appears to show that the data zone index values exhibit much lower uncer-

tainty using this method, implying that the z-score method may be more trustworthy.

Like the ranking method, the EQI index values are largely similar to the median of

the Monte Carlo samples. Again, Figure 5.2(b) appears to show that assuming equal

weights for all indicators does not cause much change in the final results.

Figure 5.3(a) appears to show evidence of less uncertainty for the re-scaling method,

overall, when compared to the ranking method but is less successful than the z-score

approach. Figure 5.3(b) again implies that equal weighting does not unduly affect

the results of the index.

5.3.2 Comparing Indices Over Time

It is of interest to many, including policymakers, to assess whether environmental

quality is improving or deteriorating over time. Composite indices can be used for

such quantitative assessments. This section will look at how the various environ-

mental quality indices constructed in Chapter 4 vary over a five-year period, from

2008 to 2012. This will comprise time series plots (with an associated estimate of

uncertainty based on the results presented in Section 5.3.1) and Cohen’s weighted

kappa statistics.
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As aforementioned, the soil quality data were only available for one year and were

assumed to be largely constant over time for the purposes of this thesis.

Time Series Plots

The indices constructed in Chapter 4 were for the year 2011 only. The indices were

then re-created for the years 2008, 2009, 2010 and 2012. Time series plots were

constructed for three data zones out of the eleven that Section 5.2 also focussed

on: S01003029, S01004896 and S01006286. Uncertainty estimates for the EQI were

drawn from the Monte Carlo samples constructed in Section 5.3.1.

Figures 5.4(a), 5.4(c) and 5.4(e) show how the EQI varies over the period in question

for all three normalisation methods (ranking, re-scaling and z-scores, respectively)

for the data zone S01003029. A similar pattern can be observed with environmental

quality appearing to worsen very gradually from 2008 to 2011 before improving in

2012. The re-scaling method in particular highlights a sudden decline in environ-

mental quality for the year 2011 when compared with 2010 but this effect is not so

pronounced for the other two methods. The 5th and 95th percentiles (red and blue,

respectively) for each year also highlight the differences in the levels of uncertainty

exhibited by each of the three normalisation methods, discussed in Section 5.2. The

ranking method (Figure 5.4(a)) exhibits, by far, the greatest level of uncertainty,

shown by the very wide intervals. The re-scaling method (Figure 5.4(c)) shows ev-

idence of less uncertainty and the z-score method (Figure 5.4(e)) shows even less

uncertainty.

Figures 5.4(b), 5.4(d) and 5.4(f) are replicates of Figures 5.4(a), 5.4(c) and 5.4(e),

respectively, except with the year 2008 being changed to the value zero. This is to

gain an impression as to how much change there is from year-to-year compared to

a baseline of zero. Again, there is some evidence that environmental quality may

remain at the same level until 2012 when there is a decline, but this is not shown by

the z-score method (Figure 5.4(f)).

121



Figure 5.4: Time series plots (2008 – 2012) for DZ S01003029: (a) EQI for ranking

method with uncertainty intervals; (b) Ranked EQI change over time (2008 = 0);

(c) EQI for re-scaling method with uncertainty intervals; (d) Re-scaled EQI change

over time (2008 = 0); (e) EQI for z-score method with uncertainty intervals; (e)

EQI for re-scaling method with uncertainty intervals; (f) Z-score EQI change over

time (2008 = 0) (Legend: = 95th percentile; = 5th percentile)
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Figure 5.5: Time series plots (2008 – 2012) for DZ S01004896: (a) EQI for ranking

method with uncertainty intervals; (b) Ranked EQI change over time (2008 = 0);

(c) EQI for re-scaling method with uncertainty intervals; (d) Re-scaled EQI change

over time (2008 = 0); (e) EQI for z-score method with uncertainty intervals; (e)

EQI for re-scaling method with uncertainty intervals; (f) Z-score EQI change over

time (2008 = 0) (Legend: = 95th percentile; = 5th percentile)

123



Figure 5.6: Time series plots (2008 – 2012) for DZ S01006286: (a) EQI for ranking

method with uncertainty intervals; (b) Ranked EQI change over time (2008 = 0);

(c) EQI for re-scaling method with uncertainty intervals; (d) Re-scaled EQI change

over time (2008 = 0); (e) EQI for z-score method with uncertainty intervals; (e)

EQI for re-scaling method with uncertainty intervals; (f) Z-score EQI change over

time (2008 = 0) (Legend: = 95th percentile; = 5th percentile)
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Figure 5 shows a similar set of plots for data zone S01004896 although there is con-

flicting views as to how environmental quality changes from 2008 to 2012 based on

which normalisation method is used. The ranking method (Figure 5.5(a)) shows ev-

idence of improvement in environmental quality until 2010 when it begins to worsen

again. However, the re-scaling method (Figure 5.5(c)) suggests that environmental

quality generally worsens until 2011 before improving in 2012. The z-score method

(Figure 5.5(e)) shows little evidence of change. These patterns are broadly confirmed

by the respective plots showing change over time (Figures 5.5(b), 5.5(d) and 5.5(f)).

For data zone S01006286, the three methods generally agree, with Figures 5.6(a),

5.6(c) and 5.6(e) suggesting that environmental quality gradually improves before

declining again in 2012. Since data zone S01006286 is at the lower end of the

three indices, the uncertainty intervals are much narrower than those for data zones

S01003029 and S01004896, as discussed in Section 5.3.1. The uncertainty intervals

are particularly narrow for the index constructed using the ranking method. Again,

the temporal changes shown in Figures 5.6(b), 5.6(d) and 5.6(f) largely agree with

the prior inference that environmental quality gradually improves until 2012.

Kappa Statistics

Cohen’s weighted kappa statistic was also used to observe how environmental quality

varies between 2008 and 2012, using the level of agreement from year to year as an

indication of change. Plots were constructed for all three normalisation techniques.

It should be noted that the results from the re-scaled and z-scores methods were also

ranked from 1 to 1,748 in order for the kappa statistic to be used. How the 1,748

data zones are ordered is of interest here, so this step should be reasonable.

The EQI, shown in Figure 5.7, generally shows evidence of declining agreement

from 2008–2009 to 2011–2012, indicating change in data zone ranks over this period.

However, inspection of the uncertainty intervals (constrained to the 2.5th and 97.5th

percentiles) implies that these changes may not necessarily be statistically-significant
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(a) Ranking

(b) Re-scaling

(c) Z-scores

Figure 5.7: Plots showing levels of agreement for EQI from year-to-year (2008 –

2012)
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with regards to all three normalisation methods. For instance, in Figure 5.7(b), the

uncertainty bands generally overlap each other from year-to-year, suggesting that

changes in the results for the re-scaling method may not be statistically-significant.

The ranking and z-scores methods show evidence of much higher agreement overall

than the re-scaling approach with higher kappa values being observed. This means

that there are perhaps less pronounced changes in environmental quality from year

to year for these two methods when compared to the re-scaling approach. For both

the ranked and z-score indices, there appears to be a statistically-significant change

from 2009–2010 to 2010–2011, as the uncertainty intervals do not overlap. This may

suggest that data zone ranks have moved over this period.

Interpreting these results with regards to the categories shown in Table 5.1, for

Figures 5.7(a) and 5.7(c), there is typically ‘substantial agreement’ from 2008 to 2010

but ‘moderate agreement’ from year-to-year afterwards. This may be an indication

of change in data zone positions within the index over the entire time period. There

is evidence of greater change in Figure 5.7(b) since there is generally only ‘fair’ to

‘moderate’ agreement from one year to the next.

5.4 Chapter Summary

This chapter has employed a variety of methods found in the literature for assessing

composite indices, focussing on quantifying the level of statistical uncertainty within

the indices and observing how each index varies over time. The purpose of this was

to assess the ‘robustness’ of the index and to find ways of checking whether any

year-to-year changes in the index were statistically-significant.

To quantify uncertainty within the index, an approach derived from the family of

‘uncertainty and sensitivity analyses’ has been used. The uncertainty analysis fo-

cussed on eleven data zones, as an illustration. Monte Carlo sampling was utilised to
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construct a distribution of 1000 possible values for each indicator within the index.

This led to 1000 possible index values which was then restricted to the 5th and 95th

percentiles so that an interval of uncertainty was calculated for the index values of

the eleven selected data zones.

As indicated by literature such as Hall and Miller (2010), uncertainty intervals were

typically narrower for data zones at the extreme upper and lower tails of the index.

For the ranking method especially, the intervals were often significantly wide for

data zones in the middle of the index.

For the purposes of checking how the environmental quality indices varied over time,

a combination of time series plots and Cohen’s weighted kappa statistics was used.

The analysis focussed on a five-year period from 2008 to 2012 and, for the time

series plots, three data zones out of the eleven from the uncertainty analysis were

considered.

For the time series plots, the intervals from the uncertainty analysis were also used so

that it could be determined how much change in environmental quality from year-to-

year was statistically-significant. Changes in environmental quality were dependent

on the data zone in question and no common pattern was observed between the

three data zones.

Cohen’s weighted kappa statistics were used to assess the level of statistical ‘agree-

ment’ from year-to-year in terms of the environmental quality indices. The three

different normalisation methods typically showed similar patterns with regards to

annual changes.

The purpose of using time series plots and Cohen’s weighted kappa was ultimately to

detect any change in the indices over time and whether any year-to-year changes were

statistically-significant or due to random variation. In a broader sense, employing
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all of the above methods to critique the indices constructed in Chapter 4 serves

to enhance their practical use and allow for better inference once uncertainty is

accounted for.
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Chapter 6

Discussion and Conclusions

The primary objective of this thesis was to investigate and develop methods for

constructing a multidimensional, composite environmental quality index at a small

spatial scale. Specifically, the index was created for the purposes of measuring

environmental quality in Greater Glasgow at data zone resolution. The index was

constructed at an annual level and incorporated 1,748 data zones across seven local

authorities in the Greater Glasgow region and was created for the year 2011 only, at

first.

The index construction methodology described in this thesis followed a set of guide-

lines issued by the OECD (2008), who provided ten key steps that should be con-

sidered when creating a composite index. Important stages include the selection of

indicators, data quality assessments and choosing appropriate normalisation, weight-

ing and aggregation schemes for constructing the index, as well as attempting to

quantify any uncertainty in the results.

Theoretical Framework

The index was comprised of three individual domains (or sub-indices), each mea-

suring a different aspect of the environment: air, soil and water. Each domain was

constructed from a number of individual indicators for common air, soil and water

determinands. From these indicators and domains, an impression of the general
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environmental quality in a particular area can be gained with the best-performing

areas typically performing well across most, if not all, indicators.

Data Selection and Quality

The air quality component of the index (referred to as the AQI or ‘air quality index’)

consisted of four pollutants: NO2, NOX , PM10 and PM2.5. Data to measure these

four determinands were collected from publicly-available sources, including websites

operated by the Scottish Government and the Department for Environment, Food

and Rural Affairs. NO2 diffusion tube data collected by local authorities were also

used.

The soil quality domain (the SQI) consisted of five determinands: arsenic, chromium,

lead, nickel and selenium. The data were provided by the British Geological Survey

(Fordyce et al., 2012) but were only available for one year.

The water quality domain (the WQI) included information on six variables: ammo-

nium, copper, dissolved oxygen, soluble reactive phosphorus, pH and macroinverte-

brate activity (measured as the average score per taxon). The data were much more

spatially-sparse than those for air and soil quality and then necessitated the use of

statistical modelling, discussed below.

Exploratory Analysis

Firstly, an in-depth spatial and temporal exploratory analysis was conducted on all

data in order to gain an overall impression as to how the environmental processes

varied over space and time. Generally, the poorest environmental quality (across all

three domains) was observed in the highly-urbanised data zones of central Glasgow

and central Lanarkshire (particularly in areas such as Motherwell and Hamilton)

with better environmental quality typically being found in rural areas. However,

rural areas to the west of Glasgow also appeared to suffer from poorer soil quality

when compared to rural areas to the north and south.
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There was not much visual evidence of any significant, long-term changes in any of

the air or water pollutant concentrations in a temporal sense. Again, the soil data

were only available for one year and were assumed to have not seen much year-to-year

change in this or any subsequent temporal analyses.

Modelling of Data

Since the data were not available at a spatial resolution high enough to allow for

an assessment of environmental quality in all 1,748 data zones, the data were then

modelled to create spatial surfaces. All air, soil and water quality determinands

(except for the macroinvertebrate data) were modelled using isotropic smooths with

an appropriately-selected smoothing parameter and restricted maximum likelihood

for parameter estimation. The model fits were assessed using a variety of plots

based on the model residuals, including whether the residuals followed a Gaussian

distribution.

The macroinvertebrate data were modelled using a random forest process since they

were only available on a categorical scale. The data were reduced to a binary classi-

fication (‘good’ or ‘bad’) by merging the five individual categories into two in order

to allow for more balanced categories.

The models were then used to predict data at every point in a specified rectangular

grid which covered the study region so that each data zone would have at least

one ‘observation’. However, some very geographically-small data zones in central

Glasgow required a prediction location to be manually-specified since they were

missed by the prediction grid. A single value for each data zone was then calculated

by taking the arithmetic mean of all predictions.

Normalisation, Weighting and Aggregation of Indicators

The actual construction of composite indices usually involves three stages: normal-

isation (so that all indicators are on the same mathematical scale), weighting (in
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order to avoid multicollinearity issues or if some indicators are more important than

others) and aggregation (how the indicators are combined mathematically).

The modelled data were used to construct an environmental quality index for each

data zone by first creating the three individual sub-indices for air, soil and water.

Three different normalisation methods were considered: z-scores, re-scaling to [0, 1]

and ranking, the latter following the approach used by the Scottish Index of Multiple

Deprivation (Scottish Government, 2012).

Weights for each indicator and domain were then calculated using factor analysis

although the macroinvertebrate indicator was given an arbitrary weighting. Finally,

an arithmetic aggregation method was employed to create a final value for each data

zone for air, soil and water. This process was repeated in order to amalgamate the

three domains into the final environmental quality index (EQI).

Main Results

The results for the air quality index (AQI) appeared to show, as one would expect,

that the poorest air quality was found in highly-urbanised areas such as the centre

of Glasgow and in other major towns. The soil quality index (SQI) suggested that

the data zones with the highest level of pollution were typically found, again, in

central Glasgow but also in the far-west of the study region in the local authority

of Renfrewshire. Finally, the water quality (WQI) implied that the poorest water

quality was observed in the River Clyde watercourse, especially in the major towns

to the east of Glasgow and within the city itself.

Visualising the results of the EQI appeared to confirm that poorer environmental

quality was typically found in urban areas with better environmental quality being

observed in rural areas. This was a consistent phenomenon across all three scales

(ranks, z-scores and the [0, 1] scale).
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Uncertainty Analysis

The indices were then subject to an uncertainty analysis in order to quantify any

uncertainty in the index results. This was achieved using a Monte Carlo sampling

algorithm on eleven selected data zones by using the model standard errors to gen-

erate a plausible range of possible values for each determinand. Intra-determinand

correlation was also considered during the simulations. It was discovered, as is typi-

cally found in the literature, that the index based on ranks suffered from quite high

levels of uncertainty, particularly in the data zones towards the middle of the index.

Data zones at the lower and upper tails of the distribution, however, appeared to

exhibit lower uncertainty, as is also frequently found in the literature. The z-score

and re-scaling methods showed good evidence of much lower uncertainty but again

those data zones in the middle of the indices were the most uncertain.

Comparing Environmental Quality Over Time

Finally, the index was reconstructed for the years 2008, 2009, 2010 and 2012 in

order to quantify how environmental quality changes over a period of five years,

acknowledging that the soil quality data were only available for one year. This was

achieved through time series plots (including uncertainty intervals drawn from the

results of the Monte Carlo simulations described above) and using Cohen’s weighted

kappa statistics. Very little change was observed in the environmental quality index

results of the eleven selected data zones since all index values fell within the previous

and next year’s uncertainty intervals, meaning there was little evidence of significant

change from year-to-year.

6.1 Further Work

There remains scope for significant further work in this area, particularly as the field

of composite indices has become an increasingly popular area of research in recent

years. Also, there remain a few technical details in this thesis which would benefit

from further attention.
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In Section 3.5.1, Euclidean distance was used to assess the presence, or absence, of

significant spatial correlation in the model residuals. However, several papers have

argued that Euclidean distance is not the most effective way to assess correlation in

river networks. O’Donnell et al. (2014), for instance, propose alternative methods

but were not considered here due to time constraints.

Another possible extension would be to consider other normalisation methods when

constructing the index. Nardo et al. (2005) and OECD (2008) list several other

possibilities, including measuring each determinand in relation to an acceptability

threshold set by policymakers. This would allow one to see which pollutants are in

violation of air, soil or water quality guidelines and in which data zones. Key exam-

ples of this sort of index scale are the water and soil indices created by the Canadian

Council of Ministers of the Environment (CCME, 2001; CCME, 2007), which were

discussed in Chapter 1. Also, weighting schemes other than factor analysis, includ-

ing those determined by consultation with experts, could also be considered and are

listed in OECD (2008).

In Chapter 3 of this thesis, after the data were modelled and predictions were made,

the arithmetic mean was used to calculate a predicted value for each data zone.

However, other choices such as the median or the maximum may be appropriate in

other situations. The median may provide a more statistically-robust value for each

data zone if there are significant outliers in the predicted data. The maximum may

be appropriate if one wished to report on a ‘worst-case-scenario’ in each data zone.

For spatial data analysis, there is a need for data of high spatial resolution across

all determinands, which the water quality component of the indices developed in

this thesis somewhat lacked, especially when compared to the air and soil data

sets. Having such data would mean that predictions are more likely to accurately

reflect the observed spatial processes across the study region and be subject to less

statistical error. Similarly, the soil quality data used for the analyses presented
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in this thesis were only available for one year, which may have had an impact on

some results and inference when the indices were being compared from year to year.

Ascertaining regularly-measured soil data is difficult but having such data would

obviously be an important step forward for a project such as this.

The time series plots for environmental quality displayed in Section 5.3.1 could also

be an avenue for further development, particularly in relation to the intervals of

uncertainty for each data zone in each year. The intervals shown in this thesis were

drawn from the Monte Carlo-based uncertainty analysis in Chapter 5, which may not

necessarily be the most effective approach. Including a formal sensitivity analysis

alongside the uncertainty analysis shown in Chapter 5, detailed in literature such as

Saltelli et al. (2000), is a very obvious field for further work. Also, as mentioned in

Section 5.2.1, the uncertainty analysis assumed that the position of all data zones

in the index would be fixed apart from the one being considered, whose pollutant

concentrations were allowed to vary. This assumption is probably unrealistic as

environmental conditions in one area may affect other surrounding areas. Including

this possibility as a factor in the uncertainty analysis may be an opportunity for

further development.

Finally, the index construction framework outlined in Table 1.2 included a step

which involved comparing an index to another similar example. A major component

of Chapter 4 of this thesis was the construction of an environmental quality index

based on the SIMD (Scottish Government, 2012) method. It may be possible to

informally compare the results of these two indices, focussing on the 1,748 data

zones that this thesis concentrated on. It is important to note that the Scottish

Index of Multiple Deprivation (2012) is not an environment-focussed index and,

hence, comparing it with the EQI is simply for informative purposes only. The

results for the EQI (for the year 2012 and based on the SIMD method) and the

SIMD results for 2012 are displayed below in Figure 6.1. It should be noted that the

SIMD ranks have been inverted in Figure 6.1(b), since rank 1 in SIMD indicates the

136



(a) EQI (2012) (b) SIMD (2012)

Figure 6.1: Comparing the EQI and the Scottish Index of Multiple Deprivation

(Scottish Government, 2012) – contains Ordnance Survey data c©lCrown copyright

and database right (2014)

worst-performing data zone, whilst in the EQI rank 1 indicates the best-performing

data zone.

From the informal comparison of the indices in Figure 6.1, it can be observed that the

patterns are largely different with the areas of worst deprivation in Figure 6.1(b) not

necessarily exhibiting the poorest environmental quality in Figure 6.1(a). Neverthe-

less, investigating any possible links between environmental quality and deprivation

would be an interesting avenue to explore, perhaps using methods for testing spatial

homogeneity between two spatial patterns.

All of the potential improvements or alternative choices for index construction dis-

cussed above would be appropriate to consider. As aforementioned, the field of

composite indices is a very active area of study and other possibilities to improve

or change the indices presented in this thesis can be found in the ever-expanding

literature.
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Appendices

A. Additional Material Related to Chapter 2

Table A1: Descriptive statistics for selected NOX air quality monitoring stations in
2011 (units of measurement = µg/m3)

Monitoring
Station

Mean St.
Dev.

Min Q1 Median Q3 Max

Glasgow
Byres Road

43.55 45.19 0.00 18.00 33.00 54.00 190.00

Glasgow Centre 16.42 30.99 0.00 3.00 6.00 16.00 466.00
Glasgow
Waulkmillglen
Reservoir

3.95 12.29 0.00 1.30 1.30 2.50 225.00

Bearsden 42.61 49.96 0.00 11.00 29.00 55.00 531.00
Clydebank 16.13 29.41 0.00 1.00 4.00 18.00 365.00
East Kilbride 35.75 45.18 0.00 10.00 23.00 43.00 670.00

Table A2: Descriptive statistics for all PM2.5 air quality monitoring stations in
2011 (units of measurement = µg/m3)

Monitoring
Station

Mean St.
Dev.

Min Q1 Median Q3 Max

Glasgow Centre 10.17 10.94 0.00 5.00 8.00 12.00 288.00
Glasgow
Kerbside

22.39 14.12 0.00 13.00 19.00 28.00 286.00

Table A3: Descriptive statistics for selected PM10 air quality monitoring stations
in 2011 (units of measurement = µg/m3)

Monitoring
Station

Mean St.
Dev.

Min Q1 Median Q3 Max

Glasgow
Byres Road

23.46 18.60 0.00 13.00 19.00 29.00 249.00

Glasgow Centre 16.60 12.24 0.00 10.00 14.00 19.00 316.00
Glasgow
Waulkmillglen
Reservoir

12.11 7.62 0.00 7.30 10.00 15.00 62.00

Bearsden 19.90 18.50 0.00 8.00 16.00 27.00 352.00
Clydebank 16.92 11.53 0.00 9.00 14.00 21.00 115.00
East Kilbride 15.53 11.96 0.00 8.00 13.00 20.00 183.00
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Figure A1: Time series plots of log-transformed NOX concentrations (µg/m3) at

selected monitoring stations
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Figure A2: Boxplots of monthly log-transformed NOX concentrations (µg/m3) at

selected monitoring stations
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Figure A3: Boxplots of day-within-week log-transformed NOX concentrations

(µg/m3) at selected monitoring stations
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Figure A4: Boxplots of hourly log-transformed NOX concentrations (µg/m3) at

selected monitoring stations
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Figure A5: Time series plots of log-transformed PM2.5 concentrations (µg/m3) at

all monitoring stations

Figure A6: Boxplots of monthly log-transformed PM2.5 concentrations (µg/m3)

across all monitoring stations
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Figure A7: Boxplots of day-within-week log-transformed PM2.5 concentrations

(µg/m3) across all monitoring stations

Figure A8: Boxplots of hourly log-transformed PM2.5 concentrations (µg/m3)

across all monitoring stations
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Figure A9: Time series plots of log-transformed PM10 concentrations (µg/m3) at

selected monitoring stations
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Figure A10: Boxplots of monthly log-transformed PM10 concentrations (µg/m3) at

selected monitoring stations

146



Figure A11: Boxplots of day-within-week log-transformed PM10 concentrations

(µg/m3) at selected monitoring stations
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Figure A12: Boxplots of hourly log-transformed PM10 concentrations (µg/m3) at

selected monitoring stations
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(a) xxxGreater Glasgow (b) xxxGlasgow City only

Figure A13: Maps with average 2011 NOX concentrations (µg/m3) for each 1km

by 1km grid

(a) xxxGreater Glasgow (b) xxxGlasgow City only

Figure A14: Maps with average 2011 PM2.5 concentrations (µg/m3) for each 1km

by 1km grid
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Figure A15: (a) histogram of NOX concentration (µg/m3) values; (b) histogram of

log-transformed NOX concentration (µg/m3) values; (c) histogram of PM10

concentration (µg/m3) values; (d) histogram of log-transformed PM10

concentration (µg/m3) values (all histograms show monitoring station data only;

PM2.5 is not included since there were very few active monitoring stations in 2011)

Figure A16: (a) scatterplot of easting versus NOX concentration (µg/m3); (b)

scatterplot of easting versus log-transformed NOX concentration (µg/m3); (c)

scatterplot of northing versus NOX concentration (µg/m3); (d) scatterplot of

northing versus log-transformed NOX concentration (µg/m3)
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Figure A17: (a) scatterplot of easting versus PM2.5 concentration (µg/m3); (b)

scatterplot of easting versus log-transformed PM2.5 concentration (µg/m3); (c)

scatterplot of northing versus PM2.5 concentration (µg/m3); (d) scatterplot of

northing versus log-transformed PM2.5 concentration (µg/m3)

Figure A18: (a) scatterplot of easting versus PM10 concentration (µg/m3); (b)

scatterplot of easting versus log-transformed PM10 concentration (µg/m3); (c)

scatterplot of northing versus PM10 concentration (µg/m3); (d) scatterplot of

northing versus log-transformed PM10 concentration (µg/m3)
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Figure A19: (a) scatterplot of easting versus arsenic concentration (mg/kg); (b)

scatterplot of easting versus log-transformed arsenic concentration (mg/kg); (c)

scatterplot of northing versus arsenic concentration (mg/kg); (d) scatterplot of

northing versus log-transformed arsenic concentration (mg/kg)

Figure A20: (a) histogram of arsenic concentration (mg/kg) values; (b) histogram

of log-transformed arsenic concentration (mg/kg) values
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Figure A21: (a) scatterplot of easting versus chromium concentration (mg/kg); (b)

scatterplot of easting versus log-transformed chromium concentration (mg/kg); (c)

scatterplot of northing versus chromium concentration (mg/kg); (d) scatterplot of

northing versus log-transformed chromium concentration (mg/kg)

Figure A22: (a) histogram of chromium concentration values (mg/kg); (b)

histogram of log-transformed chromium concentration values (mg/kg)
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Figure A23: (a) scatterplot of easting versus nickel concentration (mg/kg); (b)

scatterplot of easting versus log-transformed nickel concentration (mg/kg); (c)

scatterplot of northing versus nickel concentration (mg/kg); (d) scatterplot of

northing versus log-transformed nickel concentration (mg/kg)

Figure A24: (a) histogram of nickel concentration (mg/kg) values; (b) histogram of

log-transformed nickel concentration (mg/kg) values
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Figure A25: (a) scatterplot of easting versus selenium concentration (mg/kg); (b)

scatterplot of easting versus log-transformed selenium concentration (mg/kg); (c)

scatterplot of northing versus selenium concentration (mg/kg); (d) scatterplot of

northing versus log-transformed selenium concentration (mg/kg)

Figure A26: (a) histogram of selenium concentration (mg/kg) values; (b)

histogram of log-transformed selenium concentration (mg/kg) values
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Figure A27: (a) plot of Easting versus ammonium concentration (mg/L); (b) plot

of Easting versus log-transformed ammonium concentration (mg/L); (c) plot of

ammonium concentration (mg/L) versus Northing; (d) plot of log-transformed

ammonium concentration (mg/L) versus Northing

Figure A28: (a) boxplots of annual log-transformed ammonium concentration

(mg/L); (b) boxplots of monthly log-transformed ammonium concentration (mg/L)

Figure A29: (a) boxplots of annual log-transformed ammonium concentration

(mg/L); (b) boxplots of monthly log-transformed ammonium concentration (mg/L)

156



Figure A30: (a) plot of Easting versus copper concentration (g/L); (b) plot of

Easting versus log-transformed copper concentration (g/L); (c) plot of copper

concentration (g/L) versus Northing; (d) plot of log-transformed copper

concentration (g/L) versus Northing

Figure A31: (a) boxplots of annual log-transformed copper concentration (g/L);

(b) boxplots of monthly log-transformed copper concentration (g/L)

Figure A32: (a) boxplots of annual log-transformed copper concentration (g/L);

(b) boxplots of monthly log-transformed copper concentration (g/L)
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Figure A33: (a) plot of Easting versus dissolved oxygen concentration (%); (b) plot

of Easting versus log-transformed dissolved oxygen concentration (%); (c) plot of

dissolved oxygen concentration (%) versus Northing; (d) plot of log-transformed

dissolved oxygen concentration (%) versus Northing

Figure A34: (a) boxplots of annual log-transformed dissolved oxygen concentration

(%); (b) boxplots of monthly log-transformed dissolved oxygen concentration (%)

Figure A35: (a) boxplots of annual log-transformed dissolved oxygen concentration

(%); (b) boxplots of monthly log-transformed dissolved oxygen concentration (%)

158



Figure A36: (a) plot of Easting versus pH concentration; (b) plot of Easting versus

log-transformed pH concentration; (c) plot of pH concentration versus Northing;

(d) plot of log-transformed pH concentration versus Northing

Figure A37: (a) boxplots of annual log-transformed pH concentration; (b) boxplots

of monthly log-transformed pH concentration

Figure A38: (a) boxplots of annual log-transformed pH concentration; (b) boxplots

of monthly log-transformed pH concentration
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B. Additional Material Related to Chapter 3

Table B1: Results of flexible regression model for NOX (k = 575)

Parametric
Coefficient

Estimate Standard Error t-value p-value

Intercept 2.07 0.0034 610.7 <l0.05

Smooth
Coefficient

Effective
Degrees of
Freedom

Reference
Degrees of
Freedom

F-value p-value

Easting : Northing 28.72 28.99 901.8 <l0.05

Figure B1: (a) scatterplot of model fitted values versus model residuals; (b) normal

Q-Q plot of model residuals; (c) scatterplot of easting versus model residuals; (d)

scatterplot of northing versus model residuals

Figure B2: (a) variogram of residuals; (b) model prediction surface with

exponential correlation structure (log-transformed NOX concentration – µg/m3)
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Table B2: Results of flexible regression model for PM2.5 (k = 525)

Parametric
Coefficient

Estimate Standard Error t-value p-value

Intercept 1.98 0.00084 2351 <l0.05

Smooth
Coefficient

Effective
Degrees of
Freedom

Reference
Degrees of
Freedom

F-value p-value

Easting : Northing 28.7 28.99 477.2 <l0.05

Figure B3: (a) scatterplot of model fitted values versus model residuals; (b) normal

Q-Q plot of model residuals; (c) scatterplot of easting versus model residuals; (d)

scatterplot of northing versus model residuals

Figure B4: (a) variogram of residuals; (b) model prediction surface with

exponential correlation structure (log-transformed PM2.5 concentration – µg/m3)
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Table B3: Results of flexible regression model for PM10 (k = 575)

Parametric
Coefficient

Estimate Standard Error t-value p-value

Intercept 2.38 0.0012 2069 <l0.05

Smooth
Coefficient

Effective
Degrees of
Freedom

Reference
Degrees of
Freedom

F-value p-value

Easting : Northing 28.62 28.99 364.4 <l0.05

Figure B5: (a) scatterplot of model fitted values versus model residuals; (b) normal

Q-Q plot of model residuals; (c) scatterplot of easting versus model residuals; (d)

scatterplot of northing versus model residuals

Figure B6: (a) variogram of residuals; (b) model prediction surface with

exponential correlation structure (log-transformed PM10 concentration – µg/m3)
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Table B4: Results of flexible regression model for arsenic (k = 70)

Parametric
Coefficient

Estimate Standard Error t-value p-value

Intercept 2.247 0.01 224.9 <l0.05

Smooth
Coefficient

Effective
Degrees of
Freedom

Reference
Degrees of
Freedom

F-value p-value

Easting : Northing 25.62 28.32 11.14 <l0.05

Figure B7: (a) scatterplot of model fitted values versus model residuals; (b) normal

Q-Q plot of model residuals; (c) scatterplot of easting versus model residuals; (d)

scatterplot of northing versus model residuals

Figure B8: (a) variogram of residuals; (b) model prediction surface

(log-transformed arsenic concentration – mg/kg)
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Table B5: Results of flexible regression model for chromium (k = 110)

Parametric
Coefficient

Estimate Standard Error t-value p-value

Intercept 4.705 0.008 616.5 <l0.05

Smooth
Coefficient

Effective
Degrees of
Freedom

Reference
Degrees of
Freedom

F-value p-value

Easting : Northing 25.09 28.11 19.23 <l0.05

Figure B9: (a) scatterplot of model fitted values versus model residuals; (b) normal

Q-Q plot of model residuals; (c) scatterplot of easting versus model residuals; (d)

scatterplot of northing versus model residuals

Figure B10: (a) variogram of residuals; (b) model prediction surface

(log-transformed chromium concentration – mg/kg)
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Table B6: Results of flexible regression model for nickel (k = 130)

Parametric
Coefficient

Estimate Standard Error t-value p-value

Intercept 3.836 0.01 370.1 <l0.05

Smooth
Coefficient

Effective
Degrees of
Freedom

Reference
Degrees of
Freedom

F-value p-value

Easting : Northing 25.4 28.24 17.95 <l0.05

Figure B11: (a) scatterplot of model fitted values versus model residuals; (b)

normal Q-Q plot of model residuals; (c) scatterplot of easting versus model

residuals; (d) scatterplot of northing versus model residuals

Figure B12: (a) variogram of residuals; (b) model prediction surface

(log-transformed nickel concentration – mg/kg)
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Table B7: Results of flexible regression model for selenium (k = 160)

Parametric
Coefficient

Estimate Standard Error t-value p-value

Intercept -0.095 0.012 -8.17 <l0.05

Smooth
Coefficient

Effective
Degrees of
Freedom

Reference
Degrees of
Freedom

F-value p-value

Easting : Northing 20.8 25.44 9.33 <l0.05

Figure B13: (a) scatterplot of model fitted values versus model residuals; (b)

normal Q-Q plot of model residuals; (c) scatterplot of easting versus model

residuals; (d) scatterplot of northing versus model residuals

Figure B14: (a) variogram of residuals; (b) model prediction surface

(log-transformed selenium concentration – mg/kg)
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Table B8: Results of flexible regression model for ammonium (k = 15)

Parametric
Coefficient

Estimate Standard Error t-value p-value

Intercept -2.06 0.15 -13.66 <l0.05
Catchment (Kelvin) -1.08 0.36 -3.04 <l0.05
Catchment (Cart) -1.00 0.53 -1.88 0.06

Smooth
Coefficient

Effective
Degrees of
Freedom

Reference
Degrees of
Freedom

F-value p-value

Easting : Northing 2.00 2.00 10.59 <l0.05

Figure B15: (a) scatterplot of model fitted values versus model residuals; (b)

normal Q-Q plot of model residuals; (c) scatterplot of easting versus model

residuals; (d) scatterplot of northing versus model residuals

Figure B16: (a) variogram of residuals; (b) model prediction surface

(log-transformed ammonium concentration – mg/L)
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Table B9: Results of flexible regression model for copper (k = 15)

Parametric
Coefficient

Estimate Standard Error t-value p-value

Intercept 4.72 0.13 35.16 <l0.05
Catchment (Kelvin) 0.06 0.43 0.13 0.90
Catchment (Cart) -0.06 0.48 -0.12 0.90

Smooth
Coefficient

Effective
Degrees of
Freedom

Reference
Degrees of
Freedom

F-value p-value

Easting : Northing 8.24 10.58 2.54 <l0.05

Figure B17: (a) scatterplot of model fitted values versus model residuals; (b)

normal Q-Q plot of model residuals; (c) scatterplot of easting versus model

residuals; (d) scatterplot of northing versus model residuals

Figure B18: (a) variogram of residuals; (b) model prediction surface

(log-transformed copper concentration – g/L)
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Table B10: Results of flexible regression model for dissolved oxygen (k = 15)

Parametric
Coefficient

Estimate Standard Error t-value p-value

Intercept 4.54 0.01 444.39 <l0.05
Catchment (Kelvin) 0.03 0.04 0.65 0.52
Catchment (Cart) -0.01 0.04 -0.30 0.77

Smooth
Coefficient

Effective
Degrees of
Freedom

Reference
Degrees of
Freedom

F-value p-value

Easting : Northing 4.57 6.12 0.84 0.55

Figure B19: (a) scatterplot of model fitted values versus model residuals; (b)

normal Q-Q plot of model residuals; (c) scatterplot of easting versus model

residuals; (d) scatterplot of northing versus model residuals

Figure B20: (a) variogram of residuals; (b) model prediction surface

(log-transformed dissolved oxygen concentration – % saturation)
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Table B11: Results of flexible regression model for pH (k = 15)

Parametric
Coefficient

Estimate Standard Error t-value p-value

Intercept 2.05 0.006 321.17 <l0.05
Catchment (Kelvin) 0.002 0.02 0.1 0.92
Catchment (Cart) 0.01 0.02 0.34 0.73

Smooth
Coefficient

Effective
Degrees of
Freedom

Reference
Degrees of
Freedom

F-value p-value

Easting : Northing 6.96 9.20 3.14 <l0.05

Figure B21: (a) scatterplot of model fitted values versus model residuals; (b)

normal Q-Q plot of model residuals; (c) scatterplot of easting versus model

residuals; (d) scatterplot of northing versus model residuals

Figure B22: (a) variogram of residuals; (b) model prediction surface

(log-transformed pH concentration)
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