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SUMMARY,

" Possible methods of describing the flows in constant area ejectors
in terms of one-dimensional theories are examined and discussed.
Both sonic and supersonic injection are considered, but the analysis
is limited to the mixing of two streams of the same perfect gas. Three
simple one-dimensional theories describing the primary expansion
and a single theory describing the mixing process are presented initially,
These theories allow for choking to occur either at the end of the primary
expansion or at the end of the mixing duct. Some numerical results
comparing the predictions of these theories with each other and experiment
are given. The results from an extensive numerical survey of the total
solution according to the combined Polytropic Two Stream theory and
Straight Mixing theory are also presented,

A generalised theory of choking based on small disturbance
velocities is put foreward. This theory is applicable to non-uniform
flows. It considers choking to be a property of the flow as a whole,
rather than a local phenomenon., A parameter B, pertaining to a cross-
section of flow as a whole, is defined such that it is positive for ""supersonic",
negative for ""subsonic' and zero for choked flow.

A one-dimensional method of describing the mixing process
is proposed which, when combined with the general theory of choking,
may be used to predict choking within the mixing process,

An experimental programme designed to investigate the applicability
of the one-dimensional theory and the general phenomenon of choking
is described and discussed. A plane flow air-air ejector is used.
The full programme is not completed but some initial experimental
results are given. :

’

It is indicated that the Polytropic Two Stream theory may give
reasonably good predictions of the choked flows in ejectors with high
total pressure ratios, low total enthalpy ratios and high primary injection
Mach numbers. Flows in ejectors of the opposite characteristics are
liable to become choked within the mixing process and thus may not
be predicted by any of the simple one-dimensional theories. The Straight
Mixing theory is found only to be of limited use in that flows are not
usually found to be completely mixed by the end of the duct. An alternative
theory is suggested.
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1. INTRODUCTION,

Research into the physical performance of ejectors and the
evolution of theories to describe the phenomena observed have been in
progress for nearly half a century. In general ejectors can be divided
into classes according to the properties of the fluids with which they
operate. The type of fluid flowing through an ejector will not only affect
the sort of physical phenomena to be expected but will also influence
the theoretical approach to predicting its performance, Broadly speak-
ing, there are in this context three main classes of fluid; incompressible
compressible and vapours. Confining the subject to single stage ejectors,
that is those with one driving stream and one driven stream, work has
been published at some time or another on ejectors employing most of
the possible fluid type combinations. A fairly extensive bibliography
‘upon the subject is available, see reference 10. The work to be
reported in this document concerns the performance of ejectors driven
by and entraining streams of compressible fluids, and in the main the
work is further restricted to the case in which both streams consist of
the same gas. That is not to say that some of the general implications
of the work cannot be generalised and applied to other cases.

Most theoretical approaches to the performance of compressible
fluid ejectors are restricted to the consideration of two particular types
of ejector geometry. This is largely because of the simplifications that
these geometries introduce into the theory. The two ejector types
are those in which the mixing takes place at constant pressure and those
in which the mixing takes place at constant cross-sectional area. In
the former case the mixing duct geometry, if it is fixed, is only likely
to be correct for one design condition. Under off-design conditions the
mixing will probably no longer take place at constant pressure. In the
constant area mixing case, however, the theory developed will apply under
a much greater range of conditions. It is probably this prospect that
has prompted workers, who have not been limited to the consideration of
any one particular system, to develop their theories, at least in the
initial stages, for ejectors with constant area mixing ducts.

Two distinct methods of approach to the general problem are avail-
able. These are the development of simple one-dimensional theories
or the use of more exact but more complex two-dimensional methods,
Which approach is chosen in any instance will largely depend on whether
it is required to obtain limited results on a large number of flows or
more exact solutions for a few flows. In the latter case where a detailed
knowledge of a few well defined flows is desired, it may be advantageous
to use a two-dimensional description of the flow may be including the
effects of viscosity. However, it is the purpose of this work to investigate
the simpler one-dimensional approaches through which the likely behaviour
of ejector flows as a whole may be studied.

-~



One-dimensional theories of compressible mixing were not un-
naturally among the first to appear. The simplest of these, the Straight
Mixing Theory, considers only the effects of the mixing. It has appeared
in the literature in may forms. Basically it assumes that the mixed
stream at the exit of the mixing duct may be represented by a single
uniform state which may be expressed in terms of three parameters
which may be determined by applying the laws of conservation of mass,
momentum and energy. The theory is set out in full in Section 2.1. The
Straight Mixing Theory has been shown to have a moderate degree of
success in predicting the effect of back pressure on ejector flows in which
no choking occurs. One of the major problems in compressible flow
ejector theory is predicting the maximum mass flow that may pass through
a system with given stagnation conditions, in other words the prediction
of the choked condition. The Straight Mixing Theory appears to be of
little help here. The only mode of choking that it predicts, a sonic mixed
stream, does not often occur in practice. This is due mainly to two
reasons, firstly the flows usually choke at a smaller mass flow than that
corresponding to this solution and secondly at high mass flows the mixing
tends not to be complete by the end of the duct.

It was realised early on (see reference 5) that the expansion
of the primary stream within the mixing tube, when the injection pressures
are not equal, might well be the cause of the flow choking. But it was
not until the mid nineteen fifties that any theoretical attempts to describe
such a process were published. The first of these was the one-dimensional
theory of Fabri (reference 1) in which it was assumed that the primary
stream became over-expanded and that the secondary stream choked
sonically at the cross-section of maximum primary expansion, Both
streams were assumed to behave isentropically. Good experimental
agreement was claimed for this theory, but subsequently this has been
shown not to have been entirely justified (see reference 3 etal ). A
theory making the same basic assumptions as Fabri but this time describing
the expansion of the primary stream by a two-dimensional method of
analysis was put forward and used by Messrs, Chow and Addi (reference 3)
to describe the flows in supersonic ejectors (those with convergent-
divergent primary injection nozzles). Messrs. Chow and Addi also
included a boundary layer type analysis of the mixing region and this
combined theory gave very good experimental predictions especially in
the Base Pressure Regime (flows with very small secondary mass flows).
It has, however, the disadvantage of being very complex and demanding
considerable computer time to solve even a single solution.

Another approach to the question of choking in ejectors was made
by Messrs. Pearson, Holliday and Smith, reference 2, in which they
introduced, to the subject, the concept of general choking. In consider-
ing ejectors with short mixing ducts they treated the primary expansion
one-dimensionally and assumed that no mixing took place. In contrast
to Fabri, they allowed the primary stream to behave irreversibly and
did not assume it to become over-expanded. The choking was assumed
to occur when, towards the end of the expansion, both streams approached



a common static pressure in a tangential manner, Such cross-sections
of uniform static pressure are found to contain both supersonic and sub-
sonic flow, The common wave velocity was shown to be stationary at
such cross-sections, The theory was found to have reasonable success
in predicting experimental flows in ejectors with short mixing ducts.

The concept of generalised choking has been discussed in a number
of publications since the appearance of Pearson's paper, in particular
in references 4 and 11, However, no satisfactory general theory of
choking seems to have emerged yet, with the possible exception of a
paper by Messrs. Hoge and Segars, reference 4, In this paper a general
theory of choking, based on stationary points in a momentum furnction,
is proposed, It is felt, however, that phenomena such as maxima or
minima in momentum functions are more likely to be the effect of choking
rather than the cause. "

The major objectives of the work to be reported in this thesis are
as follows :~ It is proposed to investigate the possibilities of describing
the flows in constant area mixing ejectors in terms of one-dimensional
theories. Both sonic and supersonic injection are to be considered. An
attempt to produce a generalised theory of choking is to be made, Numerical
surveys are to be made of the solutions predicted by the various one-
dimensional theories. An experimental programme is to be carried out
aimed firstly, at obtaining some experimental results with which to
compare the predictions of the theory, and secondly, at investigating
the modes of choking that are found to occur,.



2. THE ONE-DIMENSIONAL THEORY OF EJECTORS WITH
CONSTANT AREA MIXING,

There are four basic phenomena that may occur in any
ejector flow. Firstly there will occur some degree of mixing between
the two streams. Secondly if the streams do not enter the mixing
duct.at the same static pressure there will occur some process
by which this nressure difference is dissipated. Thirdly there will
be a boundary layer along the walls of the mixing tube, together
with the associated frictional drag. Lastly, if the back pressure
into which the ejector exhausts is low enough, a process will occur
whereby the ejector becomes choked. In general a one-dimensional
theory splits the flow up into specific regions in which each of the
phenomena accounted for in the theory may be assumed to take
place separately. All the theories assume that each stream enters the
mixing duct in a state uniform across the plane of injection. The majority
of one-dimensional theories take into account the pressure equalising
process and the mixing between the two streams and always consider them
to take nlace in that order. Most theories neglect the effect of the boundary
layer on the mixing tube walls. The main differences between the various
theories lie in the ways that they describe the pressure equalising process,
and this. in turn, leads them to predict different modes of choking. To
avoid confusion, an ejector will be defined to have become choked when
the secondary mass flow has become independent of the back pressure
against which the ejector exhausts. The two injected streams need not
necessarily contain the same gases, but it will be assumed that all the
gases have constant specific heats. Most theories can be applied equally
well to both sonic and supersonic injection ejectors, although the solutions
naturally become more complex in the supersonic case.

2. 1, EJECTORS WITH SONIC INJECTION,

Several one-dimensional theories will now be presented in the
context of sonic injection., The type of ejector under consideration is
illustrated in Figure 1. For a fixed set of upstream stagnation conditions
and a fixed ejector geometry, there will exist a continuous set of solutions
dependent on the back pressure against which the ejector exhausts, The
stagnation conditions and the geometry may be expressed by the following
non-dimensional parameters:-

z, the ratio of the primary injection area to the cross-sectional
area of the mixing duct.

h, the ratio of the vrimary total enthalpy to that of the secondary.
5, the ratio of the primary total pressure to that of the secondary.

These three ratios will hereafter be referred to as the control parameters,



For any fixed set of control parameters the corresponding
continuous set of solutions is bounded by two extreme conditions. Firstly
the back pressure may be so high that there is zero mass flow in the
secondary stream. This is termed a Base Pressure solution. Secondly
the back pressure may fall below the value at which the ejector becomes
choked, in which case the solution enters the Supersonic Regime. The
entire solution between these extremes is dependent on the back pressure.
It may usually be divided into two sections, the Subsonic Regime and the
Mixed Regime. In the Subsonic Regime both streams are injected sub-
sonically and the injection pressures are assumed to be equal. In the
Mixed Regime the primary becomes choked at the plane of injection and
its injection pressure is therefore fixed at the critical value. The secondary
injection pressure, however, is still free to fall as the back pressure
is reduced, and will thus be less than that of the primary. The conditions
at the injection plane may be fixed by defining a value for the secondary
injection pressure, irrespective of which regime the solution happens
to be in. Since it is not usually possible to find an explicit solution for
the conditions upstream in terms of those downstream, the problemn has
to be tackled the other way round. Values are assumed for the secondary
injection pressure and the corresponding downstream conditions determined.
Several ways in which this may be done will now be explained.

2. 1. 1. Straight Mixing.

The simplest theory on ejector flows is one that considers only
the mixing between the two streams. It assumes that the mixing is
complete by the end of the duct, so that the state of the mixed stream
is uniform. This state may then be represented by a total pressure,

a total enthalpy and a Mach number which may be determined simply

by equating the mass, momentum and energy fluxes in and out of the duct.
Using the notation in Figure 1, these conditions give rise to the following
equations when considering two streams composed of the same gases:-

Mass.
Prhavy  + p2hzve = paflavs S |
Energy.
P1favaiHh + ppAsvls = pghgvagHs ceal2
Momentum.

Ar(pr + pavi®) + AZ(PE + pevs® = As(ps + pave®) ceed



Using the mass flow and momentum functions, derived in Appendix 1,
together with the following substitutions
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equations 1, 2 and 3 may be rewritten in the non-dimensional form :

7' -3 1 -3

M=) + 1 - 7! ﬁ'ylh = 1T - 2! Tf”.')"BhS .. 1a
7! T!é_ 1 ’ 1

Yo + T - w'yp h® = T o 7' yahg @ ....2a
z! _ 1

fa + L ', = T -2 't fg veeala

Given that all the quantities on the left hand sides of these equations
are known, there remain three equations and three unknowns. The unknowns
are xn''hg and wy the quantities yz andf 5 being the mass flow and
momentum functions of ws . Eliminatingw andhg between equations la
2a and 3a, there emerges a relation which gives a quadratic solution for
for the state of the fully mixed stream.

2 2 z' > -3 z! 2
f 1 ..
3 (f2 + 72— x'f1 )2
Equation 4 will in general yield two roots for ws . If they are real,

one will be a subsonic solution and the other, if it is finite and positive,

will indicate a supersonic solution. If the two roots are equzal, there is only
one solution and that is that the mixed stream is sonic and choked. If the
roots are imaginary then the assumed secondary mass flow is greater than
that at which the mixed stream becomes choked and therefore such a flow
cannot exist, The only modes of choking predictable by this theory are the
choking of the fully mixed stream and the sonic choking of the secondary
injection nozzle, Once the values ofwsare known the corresponding values
for the total pressure and the total enthalpy may be determined by substi-~
tution back into equations la and 2a. An algol procedure to solve equation 4
is set out in Appendix 3.

This simple theory deals fairly well with the Subsonic Regime, but
is found inadequate to describe the phenomena that occur in the Mixed and
Supersonic Regimes of ejector flow. However, it may be combined with
various theories on the initial pressure adjustment to provide some more
satisfactory flow descriptions.



2.1.2. The Two Stream Theories,

These theories deal with the flows in the Mixed and Supersonic
Regimes and they all divide the flow into to two distinct regions. In the
first region both streams accelerate, the primary expanding and the secondary
contracting, in such a way as to reduce the inequality of the injection
pressures without actually mixing. This process is assumed to take
place rapidly and to be over by the time any appreciable mixing could
have taken place. The mixing takes place in the second region and may
be considered to be described by the Straight Mixing theory dealt with in
the last section,

The ways in which it is possible to describe the pressure adjustment
process in terms of one dimensional equations will now be discussed with
reference to figure 2. . Here is depicted a simple constant area mixing
ejector for which the conditions at the injection plane are already known.
The primary stream is choked and the secondary injection pressure is
less than that of the primary. The expansion will be considered to end
at a plane further downstream where both streams will again be considered

.to have reached uniform states, These states may, therefore, be repre-
sented in a one dimensional manner,

The secondary stream being subsonic is generally assumed to behave
isentropically during the expansion. The primary stream may also be
a ssumed to behave isentropically, or in other words it may be assumed
that there is no loss of total pressure, The momentum exchange between
the two streams must be equal and opposite, The static pressures of the
two streams should be equal at the end of the expansion. With all these
conditions in operation the one dimensional solution becomes over specified
by one constraint, Therefore, in order to obtain a solution one of the
conditions must be relaxed. The differences between the various two
stream theories lie in which of these conditions they choose to relax. In
Fabri's solution the static pressure at the end of the expansion are not
assumed to be equal., In the Isentropic Two Stream Theory it is the momentum
balance that is neglected and in the Polytropic Two Stream Theory the
primary stream is assumed to expand irreversibly. The equations describ-
ing this expansion process will now be derived according to these three
different theories. The notation used is explained in Figure 2,

(i) The Primary Expansion According to Fabri's Theory.

The continuity equation for the secondary stream may be written :-
- -5
PorferHz1 2ye1 = PoplesHon “yes
The energy equation may be written :-
Hzoa = Hapo

Since it is isentropic,

P23y = Pae



Hence the contraction of the secondary stream may be described by the
relation :-

Apy Y21 = Azs Y22 vess5

Similarly for the primary stream,

A1 Vi1 = Apyis v b

The duct is of constant cross-sectional area, hence

Az +Ap1 = Ao + Apsse : R

The momentum exchange between the streams is equal and opposite and
thus the momentum fluxes across the two planes are equal.

Ara Pay £33 + Apy Pea fou = A Pio f12 + Ape Pon faoo ....8

These equations may be expressed in the non-dimensional form :-

Z Y11 T 2'YViz .e..52
(L -2)yer = (@-2") ya2 e...b8
oz f13 + (L -2)fer = wz'fis + (1L - z')fes ....Ba

Using 5a to substitute into 6a and 8a for z'we get the following two equations
in functions of the unknowns wp1 and wss -

r fa.
w7 faz + (1 -2z)fer = wz yi1 =282 + (1 - z2)p; 28 eess9
Yiz Y.
and
_ y
1 -z = 1 - z=== e...10
( ) Va1 [ V= ] Y22 1

A method of solution for these equations would be to choose successive
values for ws> in such a way that the two values of w;s derived from the
equations tend to converge.



Another mode of choking becomes feasible when the primary
expansion process is described by this theory. As the secondary mass
flow increases in the Mixed Regime the difference in injection pressures
also increases., Hence the primary expansion becomes greater and so
does the secondary contraction. This causes the secondary Mach number
at the end of the contraction to increase rapidly as the secondary injection
pressure falls. The situation reaches a limit when the secondary stream
chokes in plane 2 (Figure 2 ) and thus causes the ejector to choke as a
whole. The injection pressure at which this happens may be determined
from equations 9 and 10, by putting in the critical value of wsz as a known
quantity and treating ®iz and ®gz1 as the unknowns, Then values for ws;
may be chosen in such a way that the corresponding values of wjsdetermined
from equations 9 and 10 tend to converge, An algol procedure to carry out
this process is given in Appendix 3.

(i1) The Primary Expansion According to the Isentropic Two Stream
Theory.

In this theory both streams are assumed to behave isentropically
and the expansion is assumed to end with the static pressures in each
stream equal. It is the momentum balance that is ignored,

The behaviours of the streams may then again be described by
the equations :- '

Ap1 Y21 = Azayse evedd

A1y Y11 = Aisvas . AN

The equation of static pressures at the end of the proces may be written ;-

Pis T DPz2 -

Again the equations may be put in a non-dimensional form

Zyir = z' ¥Yia ....5a

(1 -2)y21= (1 - 2")yee ....6a
= Loz

Wiz Tt P I )

z' may be eliminated between equations 5a and 6a to give

1-2)ye1 = [l-z m]}’z ee.s12
: Yie



Equatidns 1la and 12 are two equations in the two unknowns wi;s and wes
For solution they should be rewritten in the form :-

[y
Yie = y[-i-%:[ ....11b

- Z Yii
Yie = . R =22
|:1— (ZL-Z)—‘T’.ELJ

Ya 2

For known injection conditions, successive values of wgz should
be chosen in such a way that the two values for ¥yi12 given by equations
12a and 11b tend to converge,

This theory also produces its own special mode of choking. It
is probably best described with reference to a diagram such as that in
Figure 3. Plotted in this diagram is the behaviour of the streams in
the pressure-area field., The parameter chosen to represent the area
is z', the fraction of the cross-sectional area of the mixing tube occupied
by the primary stream, Thus an increase in z' represents an increase in
the primary cross-sectional area but also represents a reduction in that
of the secondary. The vertical scale of the graph is the pressure scale and
it is normalised with respect to the secondary total pressure.

In the following explanation the primary expansion and the secondary
contraction will be assumed to follow distinct isentropic curves., This
assumption is more constricting than is absolutely necessary, and is only
made in order to clarify the explanation of the choked solution. The only
assumption that is in fact necessary in order to obtain the solution is that
the flows towards the end of the expansion may be described by those
portions of the curves in the vicinity of their intersection.

The primary stream is choked at the injection plane and its mass
flow is, therefore, fixed. Thus the primary expansion may be represented
in the pressure-area field by an isentropic curve of the form of AB in
Figure 3,

The line z' = z represents the injection plane, The secondary in-
jection condition will, therefore, be represented by a point on this line
somewhere between the points A and C, C being at the secondary critical
pressure. Choosing a particular value for the secondary injection pressure
such as D, the corresponding isentropic pressure-area relation, DE,
may then be drawn in. The end of the expansion occurs then at the inter-
section of the two curves AB and DE , where the static pressures have
become equal. Now there exists a whole family of such secondary curves
(FG, HI, etc.,) each corresponding to particular secondary injection
pressures, As the secondary injection pressure falls in the Mixed Regime,
it may be seen that these curves move to the left along the z' axis, and
the degree of the primary expansion becomes greater. If the secondary



injection pressure falls far enough there will come a stage when the

two curves will only touch tangentially, and at even lower pressures

there will be no real solution at all. This tangential solution is, there-
fore, the maximum mass flow solution compatible with this theory. It
will be seen from the diagram that the secondary stream is always subsonic
even in this maximum flow case, It is assumed that the tangential
solution provides a mechanism of choking to prevent the secondary
injection pressure from dropping any further. This choked solution

may be determined from equations 12a and 11b above by choosing succes-
sive values for w23 in such a way that the two values of Y12 correspond-
ing to a succession of values for wzz tend to converge in a tangential
manner,

(iii) The Primary Expansion According to the Polytropic Two Stream
Theory.

This theory takes into account both the momentum balance between
the streams and the equality of their static pressures at the end of the
expansion process. As before the secondary stream is considered to
behave isentropically., The primary stream, however, is not assumed to
behave isentropically, though both energy and mass are considered to be
conserved within the stream,

The secondary contraction may still be described by equation 5a.

1l ~-2' _ ¥yea
M S P 11
1z Yee 2

For the irreversible expansion of the primary, continuity states that

P11 A11Vii = piz2 Ao Vaz

Which may be combined with the energy equation Hiax = Has
and written in the form

2 Py y11 = z' Piayie ....13

The equality of the static pressures at the end of the expansionﬁny be
expressed

P12 = D22 el 1l

or

Pio w12 = Paoz Wez R P

Since the two streams are contained in a parallel sided duct, the
momentum exchange between them must be equal and opposite, and hence
the momentum fluxes across planes 1 and 2 must also be equal. That is
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..15

Using the momentum function f (®) and the other substitutions mentioned

above, equation 15 may be written in the form

%z P11 fi1 + (1 -2)Pe1fe1 = 2'Pinfin + (L -2")Pon fom

...15a

Since the secondary stream is isentropic it suffers no loss in total pressure.

Further from equation 13,

= 2 2
P = Z
12 z'y12 =t
Substituting this into equation 15a,
z xfia + (L-2)fe; = 23X gpms + (1 - 2')fos
Yaiz
and into 14a,
W12 =
Tz =
yii g Yio WOz
Now from equation 5a,
z' = 1 - (1-3z)3&1
Y22
Substituting into equation 15b for z!,
T % - Tz faz fa2
T 5 f11 + faa Tog Yy, T Yaagsy

and into 14b,
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The degree of irreversibility in the primary expansion may be judged by
the loss of total pressure, which in turn may be found using equation 13a,

Pra - Pip o _ZYia
Pia z'yiz

..16

Equations 14c and 15c are two equations relating functions of the
three variables ®s1, Wiz and wsn. For given injection conditions,
that is when ®@=21  is known, these equations may be solved to find the
conditions in each of the streams at the end of the expansion. Again this



may be done by choosing successive values for wpy in such a way that the
two corresponding values for @1z derived from equations 14c¢c and 15c
tend to converge. An algol procedure designed to find the values of w;p
and ®ez for given values of ws; is given in Appendix 3.

This theory provides a mode of choking very similar to that of
the Isentropic Two Stream Theory, The solution in the choked case is
again a tangential one. The possible contractions of the secondary stream
may again be represented by a family of isentropic pressure-area curves,
The primary expansions may also be represented by a family of curves
each corresponding to a specific secondary injection pressure and each
having a slightly different degree of irreversibility.

As in the last section, the assumption that both streams behave
rigidly according to the given curves during the expansion is, in fact, un-
necessary as long as they approach this condition towards the end of the
expansion,

As the secondary injection pressure falls a tangential solution is
approached at which the flow is assumed to choke. The secondary stream
is again entirely subsonic, even in the choked condition. An algol procedure
to find this choked solution is presented in Appendix 3. :

2.1.3. Complete One-Dimensional Theories.

Given the injection conditions, each of the above two stream
theories may be used to predict the states of the two streams at the end
of the primary expansion, These states may in turn be used as the initial
states for the Straight Mixing Theory in order to determine the state of
the fully mixed stream. Thus using any one of the two stream theories
in conjunction with the Straight Mixing Theory we now have a complete
one-dimensional theory of ejector performance.

To obtain the complete set of solutions corresponding to a particular
set of control parameters a process along the lines of the following should
be carried out, The complete set of solutions will in general contain flows
in the Subsonic, Mixed and Supersonic Regimes, As explained above each
solution in the set corresponds to a particular value of the secondary
injection pressure. The range in which this pressure may lie is restricted
at the high end by the Base pressure solution and at the low end by the fully
choked solution. Starting at the base pressure end, with a value of the
secondary injection pressure just below that of the total pressure, the
solutions should be determined for series of successively smaller injection
pressures until it is found that the ejector has become choked. This may
happen either due to the two stream choking effect or due to the sonic choking
of the mixed stream. Which occurs first will depend on the actual control
parameters in use.

The value of the secondary injection pressure at which the primary
stream becomes choked in the injection plane may be determined from
the equation
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Flows with secondary injection pressures above this value will
be in the Subsonic Regime, The injection pressures will be equal and
their solutions may be found using the Straight Mixing theory by itself.

For values below this, however, the solution will be in the Mixed

. regime and the Straight Mixing theory must be used in conjunction with

one of the two stream theories in order to get a more comprehensive
description of the flow. In cases in which either the Polytropic Two Stream
theory or Fabri's theory is being used for a flow in the Mixed Regime, it
should be noted that if the only object in finding a solution is to determine
the state of the mixed stream, this may be achieved by using the Straight
Mixing theory alone; for in both these two stream theories mass, momentum
and energy are all conserved. In the case of the Isentropic Two Stream
theory, however, such a step would lead to a different answer because in
the latter theory momentum is not necessarily conserved,

2.1.4. The Two Stream Modes of Choking.

Each of the Two Stream theories produces its own special mode
of choking. In Fabri's theory the secondary stream chokes sonically
at the end of the primary expansion and in doing so provides a readily
acceptable mechanism for the choking. The other two theories on the
other hand both choke the secondary while it is still subsonic and are,
therefore, somewhat in need of an explanation. In the case of the Polytropic
Two Stream theory it has been shown by Pearson et, al, (Reference 2)
that the relation between the states at the end of the primary expansion
is the same as that for a stationary wave velocity in a two stream system,
This generalised concept of choking will be discussed further in a following
section,



2.2, ~ONE-DIMENSIONAL THEORY APPLIED TO SUPERSONIC EJECTORS,

The theories discussed above may be extended to cover certain
flow regimes in supersonic ejectors. The set up referred to as a supersonic
ejector in this paper is illustrated in Figure 4, It consists of two nozzles
discharging into a constant area mixing duct. One of the nozzles is
purely convergent and the other is convergent-divergent. The latter is
referred to as the primary injection nozzle and the stream that passes
through it is called the primary stream. To give an idea of the physical
context into which any theory on supersonic injection must fit, a brief
description of the various flow regimes that are found to exist will be given.

2,2, 1. A Qualitative Description of the Flows Found to Occur in
Supersonic Ejectors,

When the flow throughout an entire ejector system is subsonic
the ejector is said to be operating in the Subsonic Regime, Such flows
occur in ejectors operating at low total pressure ratios and exhausting
into relatively high back pressures. The injection pressures are equal
and the total pressures of the two injected streams and the back pressure
are all of the same order. The whole flow is dependent on the back pressure
against which the system exhausts.

In ejectors operating at higher total pressure ratios and lower
back pressures the primary stream will become choked at the throat of
the primary injection nozzle. The primary mass flow will thus become
independent of the back pressure., The secondary stream, however, re-
maining entirely subsonic, will still be back pressure dependent, All
flows in which the primary is choked and the secondary is not are class-
ified in the Mixed Regime., The Mixed Regime may be subdivided according
to the behaviour of the streams on entry to the mixing duct, If the primary
is overexpanded on entry to the duct, that is if the primary injection pressure
is less than that of the secondary, as depicted in Figure 4b, then the flow
is said to be in the Supersaturated Mixed Regime. On the other hand,
when the secondary injection pressure is less than that of the primary
and the primary enters the mixing duct in an underexpanded state, the
flow is said to be in the Supersonic Mixed Regime. Such a flow is
illustrated in Figure 4d. The condition between these two, when the inject-
ion pressures are equal, is known as the Saturated Condition and is shown
in Figure 4c. In all the Mixed Regimes the flows are always back pressure
dependent.

There occurs, for any given ejection configuration, a certain limit
in the back pressure below which the total mass flow becomes independent
of the back pressure, The regimes of the solution in which this occurs
are termed the Supersonic Regimes and they may again be distinguished
from one another by the behaviour of the two unmixed streams on injection.
Flows in which the primary stream is overexpanded on injection are
classified in the Supersaturated Supersonic Regime and those in which
it is underexpanded on injection are classified in either the Supersonic Regime



or the Saturated Supersonic Regime, The boundary between the Super-
saturated Supersonic Regime and the Saturated Supersonic Regime is
independent of the theory used, but different theories for the Supersonic
and Saturated Supersonic Regimes lead to different boundaries between
them, Theories, in which only one solution with equal injection pressures
occur, place all flows in which the primary is under-expanded in the
Supersonic Regime; while theories, in which two solutions with equal
injection pressures occur, place all flows between these two solutions

in the Saturated Supersonic Regime whether the primary is under-expanded
or not, In the latter case it may be seen that the Saturated Supersonic
Regime is a finite regime, whereas in the former case it consists of only
a single flow or solution, These three Supersonic Regimes are illustrated
in Figures 4¢ to h.

2.2,2, The Possible Modes of Choking.

The flows in the Supersonic Regimes have been sub-classified

above according to the behaviour of the two injected streams on injection,
These flows, by definition, all contain some sort of choking, To a certain
extent the way in which any particular flow chokes will depend on the regime
to which it belongs. In the context of supersonic ejectors, the possible
. modes of choking may be divided into four major groups. Firstly if the
total enthalpy ratio between the streams is large enough or the streams

are composed of different gases the flow may become choked across the

end of the mixing duct, The actual mechanism of this choking will naturally
depend on the degree of mixing having taken place within the duct. Going

to the other extreme the ejector will choke if both streams choke in their
respective injection nozzles, In this case the secondary will be sonic

on injection and the primary will be supersonic on injection, Two inter-
mediate modes of choking are possible, In one of these, the flow chokes

at the end of the primary expansion by which stage little or no mixing will
have taken place. In the other the choking takes place at some stage during
the mixing process, This last possibility includes a continuum of possi-
bilities between the case of choking at the end of the primary expansion

and the case of choking at the mixing duct exit, It should be noted that

two out of the four modes of choking are dependent on the mixing process
and two are not. The two modes that are independent of the mixing achieve
their independence by occurring before any mixing has taken place, Given
the right conditions the mixing dependent modes of choking may occur in
flows in any of the Supersonic Regimes, One such condition is a high

total enthalpy ratio between the two injected streams, However, if a

flow does not choke due to one of the mixing dependent processes the

actual mode of choking will depend upon the reaction between the two
injected streams and will, therefore, correspond directly to the regime in
which the flow is classified. For an example, flows in the Supersonic Regime
will choke due to some process at the end of the primary expansion, while
flows in the Supersaturated Supersonic Regime will choke due to the choking
of the secondary injection nozzle, The one-dimensional theories discussed
above may be used to predict and provide descriptions of three of these modes
of choking, Since these theories do not take into account the actual process
of the mixing they cannot predict any event taking place during the mixing.



Hence if ejector flows are to be described by these theories alone, the
predictable modes of choking are :- the choking of the fully mixed stream
at the ejector exit, the choking of the flow at the end of the primary
expansicn, and the choking of the unmixed streams in their injection
nozzles.

2.2.3. The Theories Used in Previous Work.

Of the modes of choking, mentioned at the end of the last section
as being predictable by one-dimensional theory, the choking at the end of
the primary expansion has aroused the most controversy. This is the pre-
mixing mode of choking that occurs in flows in which the primary stream
is injected in an under -expanded state. There are two rival modes that
have been used to explain the mechanism of this choking. In one of these

the primary stream is said to expand until the secondary becomes sonic
~ and choked at the section of maximum primary expansion. In this state
of maximum expansion the primary stream is usually well over-expanded.
That is it has expanded beyond the stage at which the static pressures of
the two streams would have become equal and uniform. In the second
theory, on the other hand, the primary expands until the static pressures
of both streams are equal. The choking in this case is provided by a
two stream choking process taking place in this plane of uniform static
pressure

Two methods of analysis based on the sonic choking theory have
been put forward in previous works. The first of these was a one-dimensional
treatment of supersonic ejection by Fabri (Ref. 1) in which both streams
are assumed to behave isentropically on injection and the expansion is
assumed to continue until the momentum exchange between the two streams
has become equal and opposite. Choking takes place when the secondary
mass flow reaches a value such that the secondary stream chokes at the
cross-section of maximum primary expansion. The analysis corresponding
to this theory was given in the section on sonic ejection. The other method
of analysis based on the sonic choking theory is that of Messrs. Chow and
Addi (Ref. 3). In this method both streams are again assumed to behave
isentropically and the choking is again assumed to be caused by the secondary
stream becoming sonic at the end of the primary expansion. But this
time a one-dimensional treatment of the secondary stream is used as a
boundary condition in the two-dimensional treatment of the primary expansion
by the method of characteristics.

The two stream choking concept was first introduced by Messrs,
Pearson, Holliday and Smith in their paper on sonic ejectors with short
mixing ducts (Ref. 2). They used the method of analysis designated the
Polytropic Two Stream Theory, earlier in this paper, in the section on
sonic injection. The primary stream is assumed to expand polytropically
until its static pressure matches that of the secondary. The choking
process takes place across this plane of uniform pressure, where they
show that the plane wave velocities for small disturbances are stationary.



Messrs, Hoge and Segarg (Ref. 4) in their paper on choked
flow assume that a two stream choking process takes place further
downstream than the end of the primary expansion and that even by this
stage no appreciable mixing has taken place. Both streams are assumed
to behave isentropically when passing through the section at which the
choking occurs, They do not state whether they consider the initial
primary expansion to be isentropic or not,

Messrs, Hoge and Segarg also give a general theory of choking
which could be used to describe modes of choking that occur during the
mixing process, More will be said about this in the section on the theory
of general choking,

These four approaches, in References 1, 2, 3 and 4 represent
the only really successful attempts using one-dimensional or quasi-
one dimensional methods to obtain a better theory than the Straight Mixing
Theory for supersonic ejector performance, Needless to say, there have
been a considerably larger number of papers published dealing with the
various aspects of the Straight Mixing Theory, A few examples are given
in References 5 to 8.

2. 2.4, Supersonic REjector Operation According to One-Dimensional
Theory.

The performance of a typical supersonic ejector will now be
discussed assuming that it may be predicted by one-dimensional theories
similar to those used in case of sonic injection. Consider a supersonic
ejector such as that shown in Figure 4, Let its geometry be fixed and
consider the stagnation conditions in the two injected streams to be constant.
The performance of this ejector will then be a single valued function of
the back pressure into which the ejector exhausts., Let us consider, then,
the performance of the ejector as the back pressure is lowered from a
reasonably high value. It should be noted, at this point, that, although
the ejector performance in terms of mass flows, injection pressures,
etc,, may be dependent upon the back pressure, from the point of view of
performing the necessary calculations the problem has to be tackled
the other way round. Values for the injection pressures or mass flows
have to be assumed and the corresponding values of the back pressure
determined from them.

(1) The Subsonic, Mixed and Supersaturated Supersonic Regimes,

At back pressures somewhat greater than the secondary total
pressure, the ejector will operate in the Subsonic Regime provided that
the total pressure ratio © between the two injected streams is not too
great. Here the flow is subsonic throughout and the injection pressures
of the two streams are equal. If the total pressure ratio n is at all high
the flow may never be subsonic throughout and still maintain a positive
secondary mass flow. That is the Mixed Regime and the Base Pressure
Regime may overlap to the exclusion of the Subsonic Regime. Thus,
in general, at the highest back pressures to give positive secondary mass



flows, ejectors will operate in either the Mixed or the Subsonic Regimes
depending mainly upon the value of the total pressure ratio = ,

For flows in the Subsonic Regime, lowering the back pressure from
this maximum value causes the mass flows in both s{reams to increase
until the primary injection nozzle chokes and the flow enters the Mixed
Regime. Within the Subsonic Regime the performance of the ejector will
be given by applying the Straight Mixing Theory together with the condition
that the injection pressures are equal,

Lowering the injection pressure beyond the value at which the
primary becomes choked results in the formation of a normal shock within
the injection nozzle as in the case of the ordinary Laval nozzle, Assuming
that no separation occurs within the nozzle this shock moves steadily down-
stream as the back pressure falls, Its exact location is determined by
the equality of the injection pressures. Meanwhile the lowering of the
back pressure continually increases the secondary mass flow. The connection
between the ejector performance and the back pressure at this stage may
again be found by a straightforward application of the Straight Mixing
Theory for equal injection pressures, but this time an allowance must be
made for the loss of primary total pressure over the normal shock,
Eventually this normal shock will reach the injection plane and become
oblique, the injection pressures will no longer be equal and the primary
stream will contract upon injection as shown in Figure 4b. The primary
injection pressure now being fixed and there being no loss of primary
total pressure within the nozzle, the ejector performance is given simply
by the Straight Mixing Theory alone, The Mixed Regime flows mentioned
so far are all classified in the Supersaturated Mixed Regime,

Now, at any time during the process just described, the secondary
stream will become choked if the secondary injection pressure falls to
the critical value, This is most likely to occur in systems with low values
of the total pressure ratio =, It is also possible of course that at any
stage the flow may become choked at the end of the mixing process. When
the flow chokes due to either of these causes and the primary stream is
still under-expanded on injection the flow is said to enter the Supersaturated.
Supersonic Regime. An illustration is given in Fig. 4c,

However, considering those flows which have not yet choked, the
oblique shock, originating from the point of initial stream contact, gets
weaker as both the back pressure and the secondary injection pressure
fall, During this process in which the normal shock becomes an oblique
shock and grows gradually weaker, the difference between the injection
pressures, and the degree of the primary contraction rise to a maximum
and then fall back to zero as the weak shock vanishes, This last condition,
where the primary stream is neither over nor under-expanded, is known
as the Saturated condition and it represents the boundary between the
Supersaturated Mixed Regime and the Supersonic Mixed Regime., For
certain flows it happens that either the secondary injection pressure becomes



critical or the flow chokes at the end of mixing simultaneously with the
vanishing of the oblique shock, in which case the flow is said to choke
in the Saturated Supersonic Regime. Such a case is depicted in Figure 4f.

Considering those cases in which flow is still unchoked in the
Saturated Condition, further lowering of the back pressure will reduce
the secondary injection pressure but not that of the primary, Thus the
primary stream will be injected in an under-expanded state. The streams
will then react so as to reduce the resulting pressure difference; that is
the primary stream will expand and the secondary will contract as shown
in Figure 4d. This region of the solution is called the Supersonic Mixed
Regime. The ejector performance in this regime may be determined by
using one of the two stream theories in conjunction with the Straight Mixing
Theory. '

(ii) The Supersonic and Saturated Supersonic Regimes,

All flows in the Supersonic Mixed Regime will become choked
in one way or another as the back pressure continues to fall. Some will
choke at the end of mixing and others will choke due to some process
connected with the primary expansion, Let us neglect for the moment
the choking at the end of the mixing process and discuss the pre-mixing
modes of choking as though they were the only ones likely to take place.
Now the various theories available to describe the initial primary expansion
lead to distinctly different modes of behaviour in the Saturated Supersonic
and Supersonic Regimes. l

It may be instructive to look at these solutions in the following
way. Consider, as above, a supersonic ' ejector of fixed geometry exhausting
straight into a vacuum and thus operating entirely within the Supersonic
Regimes, Now consider the effect of varying the total pressure ratio «
For low values of n the ejector will be operating in the Supersaturated
Supersonic Regime and the secondary injection nozzle will be choked. As
the total pressure ratio is increased the primary injection pressure gradually
rises eventually becoming equal to that of the choked secondary. At this
stage the flow enters the Saturated Supersonic Regime. Let the particular
value of the total pressure ratio at which this happens be denoted by s,
Now let us tackle the problem from the other end. Starting with a high
total pressure ratio, consider the effect of lowering it. Assuming that
the initial value of the total pressure ratio is not high enough to cause the
ejector to operate in the Base Pressure Regime, the ejector will be operat-
ing in the Supersonic Regime. Now as mentioned above there are a number
of different methods of analysing the primary expansion and each leads
to a different description of the Saturated Supersonic and Supersonic
Regimes, and hence also to a different boundary between the two. The
Two Stream Theories, given in the section on sonic injection, all lead to
similar types of predictions for these two regimes, but the two-dimensional



approach of Messrs. Chow and Addi leads to a definitely different prediction,
This will now be illustrated as these regimes are first discussed with
reference to the two-dimensional theory and then with reference to the one-
dimensional theories, '

As the total pressure ratio is lowered from the high value selected
above, the degree of the primary expansion gradually decreases. Now
if the process is being described by the two-dimensional theory, the
secondary stream will choke sonically at the end of the primary expansion
and, as the injection pressures become equal and the expansion tends to
vanish, the secondary injection nozzle will tend to become choked. Thus .
this theory seems to provide a smooth continuous solution right through
to the Supersaturated Supersonic Regime, This solution is shown as a
continuous curve in Figure 5., On the other hand if the primary expansion
is being described by one of the one-dimensional theories then the Super-
sonic Regime will not be smoothly connected to the Supersaturated
Supersonic Regime., I.et us consider first the predictions of the Poly-
tropic and Isentropic Two Stream Theories, In both these theories the
secondary stream chokes subsonically due to the two stream choking
process. Thus as the total pressure ratio falls and the primary expansion
tends to vanish the secondary injection condition will approach some sub-
sonic condition rather than the sonic condition. The injection pressures
will become equal and the expansion will vanish at wx,a higher value of
the total pressure ratio than =, , that corresponding to the boundary of
the Supersaturated Supersonic Regime, This type of solution is illustrated
- in Figure 5 in the form of a dottled line. This leaves a finite gap in the
solution corresponding to flows with total pressure ratios between x,
and . The Saturated Supersonic Regime then embraces a continuous
set of solutions as opposed to the single point solution predicted by the
two-dimensional theory. In Fabri's theory, on the other hand, the secondary
stream chokes sonically at the end of the primary expansion and so one
might expect the solution to be similar to that due to the two-dimensional
method of Messrs, Chow and Addi, but this is not found to be the case.
As the total pressure falls the two injection pressures become equal while
the secondary injection conditions are still well subsonic, but since the
pressures at the end of the expansion are not considered equal, the primary
expansion is still finite at this stage. This is rather a weak peint in this
particular theory because it requires the static pressures of the two streams
to diverge from a common value at injection in order to choke the secondary
stream sonically at the end of the expansion. Since both streams are
assumed to behave isentropically this is an impossible situation. Thus
it appears that this theory may only be considered for use for flows with
relatively high total pressure ratios where primary injection pressure
is considerably higher than that of the secondary and some degree of
over-expansion might be expected to occur.



Going back to the case of the Polytropic and Isentropic Two
Stream Theories, it should be obvious, on reflection, that the solution
for which the primary expansion vanishes will be common to both theories,
for a zero order primary expansion will be isentropic in both case and
momentum will also be conserved in both cases.,  The boundaries of the
Saturated Supersonic Regime will, therefore, be the same according
to both theories. The Point D on Figure 5 corresponding to the total
pressure ratio =, is thus the same for both theories.

If one-dimensional theories are to be applicable over all the
Supersonic Regimes, it is then necessary to produce some theories
on the flows in the Saturated Supersonic Regimes, as defined by the one-
dimensional methods above,

- (iid) One-Dimensional Theories for the Saturated Supersonic Regime,

Assuming that the one-dimensional theories proposed above for
the Supersaturated Supersonic Regime and the Supersonic Regime are
applicable up to boundaries corresponding to %, and n, respectively,
there remains a need to produce some theory as to the mode of choking
that will occur in the Saturated Supersonic Regime, in between x, and

Lo To get an idea of the context into which any such theory must fit

it is appropriate to consider the effect of back pressure on an ejector
with stagnation conditions corresponding to choking in the Saturated Super-
sonic Regime. It is, therefore, proposed to approach the problem by
considering the behaviour of the flow in such an ejector as the back
pressure is gradually reduced to the value at which the system chokes,

Consider an ejector with stagnation conditions such that, as the

back pressure falls, the flow reaches the Saturated Condition in the
Mixed Regime just before the whole system chokes, In such a system the
total pressure ratio would, by definition, be somewhere between the values

%, and x,. When the back pressure is relatively high and the system is
operating in the Supersaturated Mixed Regime, the secondary injection
pressure is higher than that of the primary, but the primary, being super-
sonic, is able to alleviate the pressure difference instantaneously by
passing through an oblique shock wave., On the other hand, when the flow
has passed through the Saturated Condition the secondary injection pressure
has fallen below that of the primary, there is no mechanism equivalent to
a shock wave through which the subsonic secondary stream may pass in
order to instantaneously increase its static pressure to match that of
the primary. It would appear, in view of the difference in the injection
pressures, that the primary must now expand on injection, However,
when considering the behaviour of both stream according to any one of the
one-dimensional theories it is found that such an expansion would lead to
the divergence of the static pressures of the two streams. This is in
contrast to the convergence found in similar treatments of flows in the
Supersonic Regime. Faced with these facts we are left with the following
choice; either the atiempt to describe these flows in terms of a one-dimensiona
theory must be abandoned - for, as it has already been pointed out, a two-
dimensional method such as that of Messrs. Chow and Addi will provide

-



theoretically acceptable solutions for the flows in question - or, it must
be assumed that both streams in fact decelerate, thus allowing their
respective static pressures to converge, The major objection to this
last suggestion is that it requires the stream with the higher injection
pressure to contract allowing that with the lower injection pressure to
expand (in the sense of occupying a greater cross-sectional area). How-
ever, in the context of one-dimensional theory, this is the only way in

w hich the static pressures of the two streams may converge.

Admitting the fact that the only available one-dimeunsional theory
does have this serious drawback and that eventually one may have to
resort to a two-dimensional approach, it is proposed to follow through
with the one-dimensional theory to discover just what it does predict.
For, in spite of its inherent weakness, it may produce some results of
value. This is borne out to a certain extent by the very limited numerical
results available at the time of writing. (See Section 3),.

Any theory of flows in the Saturated Supersonic Regime must obviously
involve some mode of choking, If the primary stream is going to contract
and the secondary stream is not choked on injection a process involving
the subsonic choking of the secondary must inevitably be assumed, This
eliminates using a theory such as that of Fabri which involves sonic choking
of the secondary. There thus remain the Polytropic Two Stream Theory
and the Isentropic Two Stream Theory which may be used to describe the
primary contraction. It is found, from numerical results, that use of the
Polytropic theory always involves a loss of entropy within the primary stream.
It could, therefore, be considered inadmissable on the grounds of contraven-
ing the second laws of thermodynamics. The isentropic theory, on the
other hand, on acceptance of its inherent assumption of neglecting the
overall momentum balance, does produce some slightly less untennable
solutions. In the choked solutions, the streamwise static pressure gradients
as well as the static pressures themselves tend to converge towards the
end of the contraction whichever theory is used. This is a condition under
which a two stream choking process is liable to take place (see Section 2. 3).
If choking does take place in the manner indicated it will involve a positive
static pressure gradient in both streams during the contraction. This
turns out to be compatable with the mixing processes that follow, in that
they also involve positive streamwise static pressure gradients. For,
reversing the procedure adopted above and considering the effect of raising
the back pressure on a flow that is already choked, the back pressure at
which the ejector would first become unchoked is in most cases substantially
higher than either of the injection pressures and thus a positive static
pressure gradient is indicated.

When numerical examples are undertaken it is found that the two
one-dimensional theories in fact give very similar results. In other words
the degree of irreversibility in the Polytropic theory and the momentum
imbalance in the Isentropic theory are both found to be small. Consider
again the effect of varying the total pressure ratio g in an ejector of fixed
geometiry exhausting into a vacuum. Let us now compare the type of



solution offered by this one-dimensional approach with that of the two-
dimensional approach of Messrs. Chow and Addi, Such solutions may
be represented by curves in the M, ~w_, / = field, where Malis the

secondary injection Mach number and @ / wis the ratio of the secondary

injection pressure to the primary total pressure. The general form of
these solutions is illustrated in Figure 5. The Supersaturated Supersonic
Regime is represented by the line M21 = 1.0 on the right hand side of

the figure and the point A on the intersection of this line with the line

P, =P, represents the boundary with the Saturated Supersonic Regime.
Going to the other extreme the Base Pressure Regime is represented by
a single point in each of the one-dimensional theories and by a curve with
very low values of M, in the two-dimensional case., The Supersonic
Regime according to the two-dimensional theory is represented by a curve

such as BA in Figure 5, It joins smoothly into the Base Pressure solution
at the left hand end and approaches the line- B, =pl£cangentia11y at the

right hand end finally becoming concurrent at the point A, Thus in this
case the Saturated Supersonic Regime is represented by the single point
A. -According to the one-dimensional theory, however, the Supersonic
Regime is represented by a curve CD originating from the Base Pressure
point, C, and tangentially touching the line ., P, atapoint, D,

below A. The point D corresponds to the total pressure ratio. x, defined
in the discussion above. The one-dimensional Saturated Supersonic Regime
consists of two parts. In the first of these the primary contracts on
injection and the system chokes at the end of the contraction. This portion
of the solution results in a curve of the form of DE in Figure 5, The degree
of the primary contraction increases as the total pressure ratio , falls
and the solution point moves along the curve from D to E, The secondary
mass flow increases and eventually the secondary injection nozzle becomes
choked. 5o as the point E the flow is as it were doubly choked. In the
second half of this regime the secondary is choked sonically on injection,
but the primary contraction must still take place in order to equalise the
static pressures. The degree of this contraction decreases as the total
pressure ratio falls further and the solution point traverses the line EA

in Figure 5. The contraction vanishes and the injection pressures become
equal as the solution point approaches the point A.

Thus it may be seen that the main difference between the solutions
supplies by the one and two-dimensional theories lie in their predictions
for the Base Pressure Regime and the Saturated Supersonic Regime,

In the Base Pressure Regime the one-dimensional theory predicts that the
secondary mass flow will become zero at a much lower value of the total
pressure ratio ® than does the two-dimensional approach. The two-
dimensional theory limits the Saturated Supersonic Regime to a single point
considering the secondary stream to choke sonically at the end of the
primary expansion for all higher values of the total pressure ratio x

The one-dimensional theories, on the other hand, predict two solutions in
which the injection pressures have become equal. The regime of flows in
between these solutions are then all considered part of a finite Saturated
Supersonice Regime, It is fairly well established that the two dimensional



theory gives the best results in the Base Pressure Régime, but not
enough experimental work has been done with flows in the Saturated

Supersonic Regime to come to any definite conclusions on the relative
merits of the theories in this regime,



2.3. THE CONCEPT OF GENERALISED CHOKING,

It has been shown by a number of workers during the past decade
that the wave velocity of a small pressure disturbance in a streamtube
surrounded by elastic walls may be other than the normally recognised
speed of sound. This concept has been used to explain the choking of two
gas streams of different velocities flowing side by side in a duct without
mixing. Other criteria such as those of maximum mass flow, minimum
secondary total pressure, minimum momentum flux and maximum momentum
flux density, have all been used as the basis of theories to explain this
type of choking. The last collection of phenomena may occur as the
result of choking in many cases, but they are not thought to be the cause,
It must surely be a more correct approach to base a general theory of
choking on what is likely to be the cause, rather than on an effect, In
this case an exact definition of what is meant by choking must be given.

2.3.1. Definition of Choking.

The state of the flow at any cross-section in a streamtube is
defined to become choked when it and the states immediately upstream
of it first become insensitive to a drop in static pressure at the cross-
section immediately downstream, while still remaining sensitive to a
small rise in static pressure in the cross-section immediately down-
stream.

When choking is defined in this way as the loss of pressure com-
munication through a cross-section, it seems logical to base the theory
of choking on the criteria of small disturbance wave velocities. For it
is well known that a drop in static pressure may only be transmitted up-
stream by an expansion wave; expansion waves must be continuous and
isentropic in order to obey the second law of thermodynamics and, there-
fore, travel at the local small disturbance velocity. A generalised theory
of choking, based on the wave velocity argument, will now be presented.

2.3.2. The Streamwise Disturbance Velocity in a Single Streamtube.

It is well known that the wave velocity in a steady streamtube with
elastic inertialess sides is given by the following expression :-

- paZ dA
q = a |:l -+ TB—PQ

£Xpresses the elasticity of the

where oA
3

streamtube walls,

However, for the sake of completeness this relation will now be derived,



For one-dimensional motion along a streamtube of variable area
the laws of conservation of mass and momentum state that

ax (pVA) 3 s_a{_'_ (DA) = 0 ....18
and
2 (ovE) + 50 (o) = -2 rene19
or more fully
VA % + pAg% + pv?rj:; + Ag% +P§rﬁ = 0 -+ - 18a

Avag-% + 2pAvér;'; + pvag% + Avg% + pv?ri + pA%—E = -Ag—g
+...19a

Now let the elasticity of the walls at the cross-section under con-
sideration be given by

JA
= r
FPi

Also since the flow in the sireamtube is assumed to be adiabatic

op

35_ 2

= a

Hence the partial differentials in equations 18a and 19a may be written

g—% ete.



Equations 18a and 19a may thus be rewritten

(A + pa2r) vg% + pAg-% + (A + paﬁr)éﬁtG = 0 ....18b

(A (v2 + a2 + pv%?r)%%c + QDAV%E + (A + pa2r) vg—p;c-

+ pAg% = 0 ....19

Now in order to consider the propagation of small disturbances
within the streamtube it is necessary to transform these equations to new
axes, (y, T), stationary with respect to the fluid in which the disturbance
is taking place. The timescale remains unchanged but the distance
parameter, x, becomes y which is given by y = x ~ Ut where U is the
stream velocity at the cross-section under consideration. This trans-
formation leaves the equations in the form

oA dv Bp. _

T+ opra2) 5Sx f x T © ....18¢c
d )

—iﬁb— = o+ S§ = © ceaa19

It should be noted that the velocity, v, only appears in these equations
in the form of a derivative which makes the equations independent of the
actual velocity U used in the transformation. Rither p or v may be
eliminated from these equations to give an equation of the form

2 2
32¢ T 529( =0 .e..20

©

where § may represent any of the static flow parameters.

Now considering a small disturbance from the steady state in any
of the variables ) , it may be written in the form

g = g+

where @iis the steady state and@' the disturbance.



Substituting this into equation 20 and neglecting small quantities the
following linear equation in ¢grmay be evolved,

il A 1 ¢

2 1 P1 Ty 2
ot 51-2 + e ay

where aj,r1,A1 etc., are the steady

state conditions.

Hence it is shown that streamwise disturbances travel with a velocity
given by, :

noj=

. -
. - al[l , oaryay’ ] oo
Aj

2.3.3. Stationary Wave Velocities and Choking in a Single Streamtube,

It will now be shown that if the flow at any particular cross-section
along a streamtube has the freedom to react in an isentropic manner to
accommodate a small disturbance then the wave velocity is stationary at
that cross-section,

In the context of a single streamtube, having the freedom to react
isentropically means that r; or oA must possess the value corresponding
to an isentropic departure from tEe state at the cross-section under con-

sideration. This value will now be determined,

For adiabatic flow along a streamtube the equations of motion may be
written :-

Continuity, %° 4 &¥, 44 _ 4
p v A
Momentum, v dv = - 32
e
Entropy, e - e
dpe
These equations may be combined to give :-
1 oA S N I
A 3P|s p—aa[@ra - l} e 23

where M is the Mach number.’



Substituting this expression into equation 22 we find the speeds of the
stream and the disturbance waves are equal

1 -%
q = al:l+— - 1 = v e...2h
M2 )

QA
Thus if the value of —B_P_ll imposed on the streamtube by its enviornment

is the same as the isentropic value o4

oP s

stationary, and the flow may be considered choked,

, the wave velocity is then

2.3,4, The Use of a Parameter Analogous to the Mach Number,

It is useful at this stage to introduce a parameter, similar in
concept to the Mach number, by which we can tell whether the flow at
any particular cross-section is '"supersonic' or not. The word ''super-
sonic' here is meant with reference to the wave velocity, q. We could

choose the parameters v/q, but this involves finding the value of @l

op
at the cross-section in question and then substituting it into equation

to find q. In the context of the theory to follow it is of more use to
define a parameter, b, as the difference between the imposed value of

JA

3 pli and the isentropic value %"‘AP s . With this definition, a positive
value of b indicates ""supersonic' flow and a negative value indicates
"subsonic'" flow. The main use of this parameter comes when the concept
is widened to include flows containing two or more different streamtubes.

i
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2,3.5. The Proposition of a Generalised Theory of Choking,

It is suggested that a general flow will choke at a particular cross-
section if, as a whole, it possesses the freedom to react in an isentropic
manner to any small changes in pressure at that cross-section. As an
example of the application of this theory consider across-section, of
area a', in a general steady shearflow with a non-zero normal pressure
gradient such as that shown in Figure 74, The flow is bounded on one
side by a fixed wall and on the other side by the intertialess flexible
wall which has an elasticity at the cross-section under consideration

given by :-
N
. = 2
By E%i I



In the case of a fixed boundary Bi = 0, Now the pressure distur-
bance over this cross-section may be non-uniform since the normal
static pressure gradient is non-zero. Thus any disturbance must be
defined with respect to a reference pressure, say p, . Let the reference
pressure in this case be the static pressure at the flexible wall, The
disturbance at any point on the cross-section due to a change P1 in P1
is given by

Bpl
5D =
P PilD oPa

Considering a small element of area A, the isentropic area change due to §p;
may be written, '

- OA _ JA B'_p
S5A g—I;SSP a—-}gsyp;DSIM_

Hence the change in a', the total area of the stream caused by p,is

3 A 10A
' SA = vo= =
da af,; { L' da apﬁi' L 5D

Which, using equation 23 and lettinggp, tend to zero may be written

=f3p

We may now define a parameter, B, for the whole cross-section, similar
in concept to "b" defined above for a single streamtube,

1 dp [ 1 :}
. - —— - 1} dat ....28
i L, YpOpy |D M2

op

dp1 |D is a function of both the flow and the type of disturbance being con-
sidered and its value must be derived or assumed with regard to the situation
under consideration.

op
s90p1

da'

D

_ da’'
BS dPl

1 [1 :
D 7D I:F - 1 jl da -...27

As before, when B is positive the flow is "'supersonic' with respect

to the common wave velocity, and conversely when B is negative the flow
is "subsonic",



Equation 28 may be simplified in two ways. For flows in which

1

the normal static pressure gradient is zero the expression yp _
and hence op1 | D
dat 1 I [ 1 ]
B = S li ~ 3% — - 1| da’
Y 1 7p a! M2

and for flows in ducts with fixed walls, though not necessarily with a
constant cross-sectional area,

da' | _ _ 1 1

5o kT ¢ , therefore B = -ﬁl; -1\-4-2- 1] dat

Equation 29 may be used, for an instance, to find the value of B
at any stage during the constant area mixing that takes place in ejectior
flows. ‘

It is assumed that choking will occur at any cross-section for
which the parameter B is found to be zero,

.29



2.4, ALTERNATIVE ONE-DIMENSIONAL THEORIES OF MIXING,

In Section 2,1 above it was shown how the various theories on the
initial pressure adjustment in ejector flows could be combined with the
Straight Mixing Theory to provide complete theories of ejector operation.
The Straight Mixing Theory, with its assumption of uniform conditions
across the exit of the mixing duct, is the weaker link in what could be a
more satisfactory theory. It should, therefore, be worth considering
what improvements can be made without resorting to a two-dimensional
description of the flow. In order to get an idea of what might be worth
trying it is necessary to make a few generalisations based on results
from experimental ejector flows.

The first and most important of these is that, except for a small
section of the flow just after the two streams first come into contact, the
static pressure is uniform across every cross-section of the flow. The
word cross-section here is used in the sense of cross-sections normal to
the direction of flow. It is thus quite in order to assume that the static
pressure is uniform across the exit of the mixing duct. The total pressure
on the other hand, virtually never becomes uniform, for if the mixing
duct is long enough for the mixing to approach completion the effect of
the boundary layers on the walls becomes very significant. A similar
statement can be made concerning the total enthalpy. It is noticed that
while parts of either stream remain unmixed they retain their total pressures
and total enthalpies although the static pressure may change, It is also
noticed that the total pressure distribution across the mixing region may
in most cases be reasonably approximated by a linear variation between the
two bounding values, while there remains some unmixed stream on either
side, For flows in which the mixing region fills the duct at its exit it is
also found that the total pressure distribution, outside the boundary layer,
may in many cases be approximated by a linear expression,

A one-dimensional theory may only connect the states of the flow
at cross-sections at arbitrary distances apart; it, therefore cannot, of it-
self, predict any rate of change in any of the flow parameters. The states
at any two cross-sections are connected by the three relations of conservation
of mass, momentum and energy. Hence, assuming that the state is known
at one cross-section, a one-dimensional theory provides three equations to
solve for three unknown parameters at the other cross-section this if the
unknown state is at the duct exit and only a single solution is required, this
state must be expressed in terms of three parameters for which the one-
dimensional theory may provide a solution.

It is also possible to set up a model for the mixing process itself,
this time expressing the state of the flow at any cross-section in terms
of four parameters one of which must indicate in some way the degree
of mixing having taken place. The last parameter may then be varied.



to observe the effects of mixing on the states at a series of cross-sections,
Such an approach may give a better idea of the effect of mixing on ejector

flows, but it cannot predict any rate of mixing. It may be useful, however,
if the rate of mixing is either known or can be assumed with any confidence.

Two theories based on the observations of actual flows given above
will now be presented in the context of plane flow. One provides a method
of predicting the state of the flow at the exit of medium length mixing ducts.
The other provides a method of predicting the effect of mixing within the
duct.

2.4.1, The Linear Mixing Theory.

For given conditions at the end of the primary expansion, this
theory gives a solution for the state of the mixed stream on leaving the
‘mixing duct. It assumes a linear distribution for both the total pressure
and the total enthalpy at the duct exit, Both injected streams are assumed
to consist of the same gases, Without making any further assumptions
five parameters are necessary to specify the state at the duct exit. These
are the static pressure, the two boundary values of the total pressure
and the two boundary values of the fotal enthalpy at the duct walls, Since
there are only three equations, only three unknowns may be determined.
It is, therefore, necessary to make some further assumptiouns appropriate
to the flows being investigated, in order to reduce the number of unknowns
to match the number of available equations. It will be evident that there
are many ways in which this may be done and that different assumptions
will suit different types of flow, An example will now be given.

For flows in which the mixing region fills the duct exit and for
which the total enthalpy ratio between the injected streams is unity, the
energy and continuity equations are no longer independant and, therefore,
only two unknowns may be deterimined, One of these must be the static
pressure and thus there is only one parameter left with which to define
the total pressure distribution., Either one of the boundary values or
the total pressure gradient, must therefore be assumed. It was suggested
that the boundary value, on the side of that stream which occupies the
larger portion of the duct at the end of the primary expansion, should
be assumed to take the value it had on injection. In the case where the
primary stream occupies the greater area after expanding, the total
pressure at the primary wall in the exit plane is assumed to be given
by =mz . A solution of this type is illustrated in figure 31. The state at
the duct exit is expressed in terms of two parameters, p s , the static
pressure, and ng , the total pressure at the secondary wall divided by
the initial primary total pressure P;, . The total pressure distribution
is then given by :- '

d

"=
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3 = 1 - -
.l x' (1 S(l. T3 )) ....30



where s = y/d the fractional distance across the duct from the primary
walls, and n'is the total pressure ratio between the two streams after
the primary expansion, The static pressure, which is uniform and given
by p 5, may be used in the non-dimensional form ws - = pg/P os

Using this distfibution the equations of conservation of mass and
momentum may be written respectively :- '
1

[;:rt'(l-s(l.—srs))ylj D s/P oo ]ds ...31
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'z le | ( z')f 22 fo (1 - s(1 ﬂs))fl:ﬂ,(l Y ds ...32
Equations 31 and 32 are two equations in the two unknowns 4, and g . Neither

wg nor ¥z may be eliminated between the equations with any ease, so
solutions have to be found by numerical methods using the s e equations in the
form that they stand. Since the equations involve the double valued function
"y'", it would be expected that in general there would emerge two alternative
solutions, In analogy to the Straight Mixing Theory it would be expected
that one of these solutions would indicate a '"subsonic'' flow and the other, if
it is finite and positive, would indicate a ""supersonic' flow. It would also
be expected that two coincident solutions would indicate a choked flow

and the value of B, found from equation 29 would be zero for the cross-
section of the flow at the duct exit. Such assertions may only be tested by
doing some numerical examples,

It should be noted that theories such as this need.not be limited to
linear distributions of the stagnation variables. Any suitable distributions
may be used provided that they allow the state at the duct exist to be expressed
uniquely by three parameters in terms of which the one-dimensional equations
may be written.

2.4.2, A One-Dimensional Description of the Mixing Process.

As mentioned above a model of the mixing process may be formu-
lated using one-dimensional theory. In such a model the state at any
cross-section may be defined in terms of four parameters, one of which
must indicate in some way the degree of mixing having taken place, The
other three are then connected by the one-dimensional theory. Thus the
behaviour of the flow may be studied as the mixing progresses. Using
the observations of experimental flows mentioned above, the following
model of the mixing process was formulated. The model is described
with reference to figure 32,

The mixing process is assumed to start at the end of the primary
expansion and the state at this cross-section, being taken as known, is
used as the reference state for the restof the process., The static pressure
is assumed to be uniform over each cross-section during the mixing. The
proportions of the mixing tube occupied by the unmixed streams are deter-
mined by the primary expansion process and are given by,



A
for the primary Kig = 2' and for the secondary %gsg_ = 1~z

..33

The mixing process is shown diagrammatically in figure 32, the
boundaries of the mixing region being shown in the form of dotted lines,
The flows outside this region are assumed to retain their stagnation
properties and thus will only experience changes in state due to changes
in static pressure. (Within the mixing region). The stagnation conditions
are assumed to vary linearly between the boundary conditions. If the
mixing is assumed to be largely turbulent then the rates of mixing with
respect to the total pressure and the total enthalpy will be the same and
hence the mixing region shown in figure 32 will be the same for both
quantities. This assumption reduces the number of equations provided
by the one-dimensional theory because under these conditions the continuity
and energy equations are no longer independent of each other. The
problem is thus reduced to one of three parameters.

As can be seen from figure 32the mixing process can be divided
up into three successive regions. During the initial stages the mixing
region lies between the two unmixed flows and there are as it were three
different components of the flow, the two unmixed streams and the mixing
region. At some stage further downstream the mixing region will
envelope the whole of one of the injected streams and the composition of
the flow will be reduced to two components. Which of the streams is
totally enveloped first will differ from flow to flow., In the case of the
example shown in figure32it is the secondary stream which becomes
totally enveloped first. The theory to follow will be developed for this
case, Eventually the mixing region will fill the whole mixing duct,
toally enveloping both injected streams. This is the third region shown
in figure 32.

Consider the state of the flow at a cross-section, n, at any stage
before the mixing region envelopes the whole of either stream, The
parameter chosen to represent the degree of mixing isX in, the fraction
of the primary mass flow that has entered the mixing region by the plane n.
The two remaining parameters are P, the static pressure at the cross-
section n and x o, the fraction of the secondary mass flow to have entered
the mixing region by the plane n. Thus the state at the cross-section may
be defined by stating the values of p , %y and x 0 Assuming a value for
X1p the corresponding values of p  and xo, may %)e found using the one
dimensional theory. The relevant equations will now be derived,

The condition of conservation of mass may be written :-

Xlnﬁlla +X2nﬁ122 = Mn ....3}-{—

where th,, and th,, are the mass flow rates of the primary and secondary
streams respectively, and rhn is the mass flow within the mixed region at
the cross-section n.

Assuming that both streams are composed of the same gas this



equation may be written :-
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where A, is the area occupied by the mixing region.

If Pn- is the static pressure at the cross-seciion n, then the area

Ay is given by

Ap = A1 + Bge - (1 -Xm)Al%}%na - (- Xm)Ag%:lf

Substituting this into equation 34, the equation may be written in the
non-dimensional form )
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where s is the fractional distance across the mixing region,
In a similar manner the momentum flux equation may be written :-
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Now for a known value of x, equations 34b and 35 may be soclved
to give solutions for x,, and p, . Infact x, may be eliminated fairly
simply between equations 34b and 35 to give a single functional equation
in p, . This equation would obviously have to be solved numerically.

In view of its large size but comparatively simple derivation it will not
be written down here. A description of the mixing process has now been
:provided for the first region of flow in Figure 32.

Consider, now, the region of flow in which there only remains
some of the primary stream outside the mixing region, that is the second
region in Figure 32. This region is bounded by the two cross-sections at
which the parameters x, andgx, become unity. In this particular case it
is x 5, that becomes unity first and has to be replaced by another parameter.
The total pressure, P , on the boundary between the mixing region and
the secondary wall of the duct will now be greater than that of the secondary



on injection. We may define a parameter, g , as P32/P22 . It is this
parameter that now replaces Xgn as the third parameter necessary to
define the state over any cross-section. Hence the necessary parameters

are Xjpn, Pnp and g . The boundary value of the total enthalpy on the
secondary wall will no longer be Hos but since the rates of mixing are
considered equal the parameter hg = Hgp is dependent only on wns and
is given by the expression :- Hop :
-1
h3 = %?"‘“:’*j:(h—l) + 1 ....36

Considering again a specific cross-section n, defined by x1 = X1
the appropriate equations of conservation of mass and momentum may be
derived. The conservation of mass leads to the equation :-

. Z' -—'L _ l Z‘ E
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and the conservation of momentum to :-
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~ Equations 37 and 38 are two equations in the two unknowns py
and 5. Neither of these quantities may be eliminated with any ease, so
the equations must be solved numerically in the form that they stand.

Turning now to the last region of flow, both x;nand xznhave become
unity and thus the boundary values of the total pressure on the duct walls
are both variable. The process of mixing will tend to make these values
become equal. It is convenient to retain 73 as the boundary value on the
secondary wall and to define the total pressure at the primary wall, using
the parameter sz’ "as

Pa; -
Poo

The linear distribution across the mixing region is then given by

g t  wa'

P =
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Making the assumption that the rates of mixing are the same for both the total
pressure and the total enthalpy, the total enthalpy distribution may be
expressed
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Considering a particular cross-section, n, corresponding to a
particular value of 5 the equations of the conservation of mass and
momentum may be written in terms of nz, ng' and Pye Conservation
of mass results in the equation :-
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and the conservation of momentum in :-
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Equations 39 and 40 may again be solved numerically for =g
and P,

In the last region of flow the parameter nd , starts off with a
positive value at the cross-section where the mixing region first fills
the duct and is gradually reduced as the mixing proceeds. The final
state is reached when nd becomes zero and the conditions are uniform
across the duct. '

To sum up, the mixing process as a whole may be described, in
\ PR
terms of the parameters P, xln,xzn,mgand 1z, as follows. The mixing
is assumed to start at the end of the primary expansion where x 1n and Xy
are zero. p. is always considered uniform across the cross-section
to which it corresponds. As the mixing proceeds both Xyp and X9 rise
until one of them reaches unity from whenceforth that one is replaced

by a parameter of the form of rg as the third parameter. When both X1n

and X, nhave become unity the problem is then specified in terms of p,

s and rd , the last of these falling to zero as the mixing reaches completion.

Considering a particular ejector with fixed stagnation conditions
there exists a continuous series of possible secondary mass flows. For
any one particular mass flow a complete study of the flow may be made
using one of the two Stream Theories for the initial pressure adjustment
and the theory above for the mixing process.

The above sets of equations describing the state of the flow at
any cross-section, n, will provide two solutions for each cross section,



These solutions may in general be either real or imaginary. Any flow
resulting in imaginary roots must be assumed to be unable to exist if

the mixing is allowed to proceed any further than the cross-section at
which the roots first become imaginary. When the roots are real, in
analogy to the Strain Mixing Theory, it would be expected that one of
them would represent a ""subsonic' solution and the other, if it is positive
and finite, would represent a ''supersonic' solution. Similarly if the
roots are equal it might be expected that the flow would be choked. These
theories can only be checked by finding the values of B, for equation 29,
corresponding to the solutions in question, To do this, actual numerical
examples will have to be undertaken. It is suggested, however, that

if two such real solutions do exist the flow will only be able to assume

the ""supersonic' solution if it has already passed through a cross-section
that is choked; that is for which the value of B is zero,

Going back to consider the ejector with fixed stagnation conditions
‘it may be found that for different mass flow rates the system becomes
choked at cross-section corresponding to different degrees of mixing.
In the context of a known rate of mixing this would indicate that the mode
of choking of the system might be dependent upon the length of the mixing
tube,

Regarding this theory as a whole, two points arise, firstly, it is
not strictly necessary to limit the theory to linear variations across the
mixing region. Distributions of any suitable shape may be used provided
that they allow the state at any unknown cross-section to be specified uniquely
in terms of three parameters when the mixing rates for both the total
pressure and total enthalpy are assumed equal, and uniquely in terms
of four parameters when these rates are not assumed to be equal, The
second point is that the theory does not include any allowance for the
boundary layer build-up along the mixing duct walls., However, if the
relation between the rates of mixing and the rate of boundary layer growth
is either known or can be assumed with any confidence, there is no reason
why this theory could not be adapted to include this phenomenon.



3. NUMERICAL INVESTIGATIONS OF THE SOLUTIONS
PREDICTED BY SOME OF THE ONE-DIMENSIONAL
THEORIES,

3.1. SONIC INJECTION, THE BACK PRESSURE DEPENDENT
SOLUTIONS,

The majority of the numerical work to be reported in this paper
consists of predictions of the flows in sonic ejectors, that is those with
convergent injection nozzles., Three of the one-dimensional theories
have been used to predict these flows. They are the Straight Mixing
Theory, Fabri's Two Stream Theory and the Polytropic Two Stream Theory.
All three of these theories are based on the conservation of mass, momentum
and energy and, therefore, given a fixed-state at the injection plane, they
will all predict the same state for the fully mixed stream, provided that
the flow is not choked. Thus the behaviour of these flows, in terms
of externally observable quantities such as the mass flow rate and the
overall pressure ratio is independent of which theory is used while the
flow is still back pressure dependent. The only way in which the pre-
dictions of these particular theories differ is in the stage of the solution
at which they predict that the flow will become choked, Thus in order to
study the back pressure dependent solutions in terms of the external
quantities it is only necessary to use one of the theories, As explained
in Section 2. 1.3 when the two stream theories are used to predict flows
they are used in conjunction with the Straight Mixing Theory. It was,
therefore, decided to use the Polytropic Two Stream Theory to investigate
the flows in the Subsonic and Mixed Regimes of flow. The advantages
of using one of the two stream theories instead of the Straight Mixing
Theory by itself is that some information is obtained with regard to the
likely internal behaviour of the flow.

.The results from a fairly extensive investigation of the solutions
for sonic injection predicted by the Polytropic Two Stream Theory are
described and discussed in Section 3 of the paper ""The Performance of
an Air-Air Ejector According to a Quasi-One-Dimensional Theory'.
(Ref. 9) submitted as part of this thesis. The full back pressure
dependent solutions are discussed in Sections 3.1, 3.2 and 3.3.1. In
this last section the results from a fairly complete survey of the back
pressure dependent solutions are presented. The ranges of the control
parameters investigated were as follows :

. Theoretically
Range Investigated Possible Range
z, the geometric ratio from 0.2 to 0.8 0.0 to 1.0
i, the total pressure ratio from 1.7 to 2.0 1.0 to infinity
h, the total enthalpy ratio from 1.0 to 4.0 1.0 to infinity

The ranges of z and h were reasonably comprehénsive, but the
total pressure ratio range was rather restricted. It did, however,



include the critical value = 1,89 which marks the boundary between
those solutions which have a Subsonic Regime and those that do not.
At this critical value the primary injection nozzle becomes unchoked
at the same time as the secondary mass flow vanishes,

Further to these results the performance of a sonic ejector
with the same characteristics as that used in the experimental work
was also evaluated, This ejector configuration consisted of a total
anthalpy ratio of unity and an injection area ratio of unity. The total
pressure ratio was varied from 1.0 to 2.0. The results from the full
back pressure dependent solutions are presented in Fig, 48 in terms of
the relations between the exhaust pressure and the secondary injecticn
pressure for various fixed total pressure ratios. The truncation of
these curves represents the choking of the flows as predicted by the
" Polytropic Two Stream Theory. The lower arms of these curves are
the supersonic solutions and will only be allowed to exist physically if
a choking process other than that here predicted causes the flow to choke.
at a higher secondary injection pressure. Otherwise the only physically
significant parts of these solutions are upper subsonic solution arms
and the vertical truncations representing the choked solutions. The
ringed points on the subsonic solutions represent the stage at which the
primary injection nozzle becomes choked and thus they form the boundary
between the Subsonic and Mixed Regimes,

3.2. CHOKED FLOWS, RESULTS FROM THE POLYTROPIC
TWO STREAM THEORY,

Turning to the consideration of the choked flows in sonic ejectors,
the results from a fairly extensive survey of choked solutions as predicted
by the Polytropic Two Stream Theory are presented in Section 3. 3. 2.
of Reference 9, the A.R.C. paper presented as part of this thesis.

This survey includes a determination of the boundary between those
flows that choke due to the two stream process and those in which the
fully mixed stream becomes choked at the end of the mixing duct. The
resulting boundary is depicted in Figure 22,

The Supersonic Regime solutions were investiaged over the
following ranges in the control parameters :-

z 0.01 to 0.9
7t 1.1 to 6.0
h 1.1 to 5.0

The state of the mixed stream may be represented by the exhaust
pressure, In those solutions in which the mixed stream is choked
definition of the exhaust pressure fixes the state of the flow at the
duct exit in one-dimensional terms, but in flows choking due to the
two stream choking process iwo parameters are required to define the
state of the mixed stream for it is no longer choked, The exhaust
pressures corresponding to these solutions are given in Reference 9,



Figures 23 to 28 as surfaces of constant ejector geometry in the =n-h-pg
field., Complementary to these results are the exhaust Mach numbers,

and the secondary injection pressures corresponding to these flows,

The Mach number resulis provide the second parameter necessary to
define the state of the flow on completion of the mixing, in those flows

that choke due to the two stream effect, These results are given in the
form of constant ejector geometry surfaces in the 7-h-mg field in Figures
68 to 73 in this report.

Irrespective of whether the mixing reaches completion by the
end of the duct the mass flow rates of these flows that choke due to the
two stream effect will remain constant, Going even further the secondary
injection pressure at which the two stream choking takes place is in-
dependent of the total enthalpy ratio, provided that the latter is not
large enough to cause the flow to choke at the end of the mixing process
instead. Thus the surface representing the relation between the secondary
injection pressure, the geometric ratio z and the total pressure ration
may be considered to represent the entire solution for choking according
to the Polytropic Two Stream Theory, This surface is depicted in
Figure 61. :

As mentioned above the secondary injection pressure in independ-
ent of the total enthalpy ratio while the latter is small, but as h increases
it causes the flow to become choked at the end of the mixing process and
thus the secondary injection pressure becomes dependent on the total
enthalpy ratio, If the performance of an ejector with fixed geometry
and fixed total pressure ratio is plotted in terms of the secondary injection
pressure versus the total enthalpy ratio the graph would consist
of a straight line parallel to the h axis for the low values of h, This
represents the two stream choking, At the point where the flow becomes

_choked at the end of the mixing tube there is a discontinuous change in
the gradient and the curve beyond this point is dependent on and rises
with the total enthalpy h. This phenomenon is illustrated in Figures 62
to 67 where the secondary injection pressures corresponding to choked
flows are plotted as lines of constant total pressure ratio in the py,-h
field for various values of the geometric parameter z,

3.3. COMPARISON OF PREDICTIONS FROM OTHER ONE-DIMENSIONAL

THEORIES,

Fabri's Theory and the Polytropic Two Stream Theory were found
to give fairly similar results. The main difference was that Fabri's
Theory predicted that the flows would choke at a slightly lower secondary
mass flow and, therefore, at a slightly higher secondary injection pressure.
According to the Straight Mixing Theory, on the other hand, the flows
do not choke until the secondary mass flows are considerably greater
than those predicted by the other theories. In fact for the cases in which
the fotal enthalpy ratio is unity it may be shown that the secondary in-
jection nozzle becomes sonically choked simultaneously with the sonic
choking of the fully mixed stream.,



Some results illustrating these points are given in Figure 59 where
the experimental performance of an ejector with the confirugation z = 0.5
and h = 1,0 is compared with the predictions of the various theories.

3.4. RESULTS FOR SUPERSONIC INJECTION, CHOKED FLOWS,

A limited attempt has been made to test the applicability of the
Polytropic Two Stream Theory to flows with supersonic injection In the
absence of any experimental results of our own it was decided to apply
the Polytropic Theory to two ejector configurations for which results
had ealready been published. The configurations chosen were taken from
the work of Messrs. Chow and Addi, Reference 3. This had the additional
advantage of making possible a comparison of the predictions of the
Polytropic Theory with those of the two-dimensional theory of Messrs,
-Chow and Addi, The results of this exercise are given in Figure 49,
where the secondary injection Mach number is plotted against the ratio
of the secondary injection pressure over the primary total pressure,

In these figures the total pressure ratio, =n, decreases as the solutions
are traversed from the bottom left hand ends of the curves towards the
top right hand ends. As explained in Section 2.2, the lower left hand
portions of the curves correspond to the Supersonic Regime and the
extreme right hand portions correspond to the Supersaturated Supersonic
Regime. In the Supersonic Regime both the Polytropic Theory and the
Two-dimensional Theory are found to give predictions that agree fairly
well with the experimental results. Fabri's Theory on the other hand
does not give satisfactory predictions. The predicted mass flows are
again too small. For the case in which z = 0. 1937 the Polytropic Theory
gives slightly closer predictions than the two-dimensional theory for

the flows in the Supersonic Regime, but in the case where z = 0.3025

the two-dimensional theory comes off best.

The results concerning the flows in the Saturated Supersonic
Regime, however, are by no means so simple or conclusive. As the
total pressure ratio falls the experimental points pass through a maximum
in the ratio pzl/pl just below condition of equal injection pressures.
This ratio then appears to fall again until the secondary injection Mach
number becomes unity and the injection nozzle becomes choked. Now
as to whether this phenomenon is due to boundary layer effects within
the injection nozzles as suggested by Messrs. Chow and Addi or to a
form of choking similar to that suggested in Section 2.2, it is not really
possible to decide without further experimental investigations. The
solution according to the Polytropic Theory is shown in Figure 49, It
must be remembered that this theory used in this context predicts a
slight loss of entropy and, therefore, the results should be treated with
caution. They do, however, give a better prediction of the form of the
experimental performance found to occur in this regime,



4. THE EXPERIMENTAL PROGRAMME,

4.1 INTRODUCTION,

The experimental programme connected with this work has two
major objectives. They lie in finding the answers to the following questions;-
Firstly, to what degree can ejector flows be successfully predicted by
one-dimensional theories? And secondly, does some mechanism of
choking occur other than that due to a flow becoming sonic in the normally
accepted sense, and, if so under what conditions does such a phenomenon
take place? Since most one-dimensional theories are more easily applied
to ejectors with constant area mixing it is proposed that the work be limited,
at least in the initial stages, to ejectors with mixing ducts of constant
cross-sectional area, although, as will be seen below, provision is made
in the apparatus used to vary the mixing duct cross-section. It must be
mentioned that, at the time of writing, the experimental programme originally
invisaged is nowhere near completion. This situation is due in the main
to delays in the manufacture, supply and erection of the necessary hardware,
However, it is proposed to describe the complete original programme
in this report as this may be of use to other workers. The limited experi-
menial resulis that were obtained in the short time available after the
experimental ejector was commisioned are presented and discussed.
Although they can only be said to represent a small pilot programme,
they do indicate some definite conclusions,

4.2 THE OBJECTIVES OF THE COMPLETE PROGRANMME,

The first question posed above, concerned as it is by the general
success of the one-dimensional theories, must be considered within the
context of the test facilities available., Two important resirictions arise
immediately. The first is that air is the only gas readily available, thus
in order to run a large number of tests with an ejector of reasonable
dimensions we are restricted to an air-air system. The second restriction
is that there is at present no facility available to vary the total enthalpy
ratio, hence all experiments will have to be restricted to a total enthalpy
ratio of unity., Within these restrictions it is hoped to make as wide a
survey as possible of the performance of the one-dimensional theories
of ejector operation. Considering the parameters in terms of which the
one-dimensional theories are formulated the above restrictions leave
us free to vary the following parameters:-

the injection area ratio between the two streams,

the design injection Mach number of the primary injection nozzle,

the total pressure ratio between the two streams,

the overall pressure ratio {(the back pressure over the primary
total pressure).

In the experimental system proposed the geometrical parameters
defining the are ratio between the two injection nozzles and the design
Mach number of the primary injection nozzle are varied by the insertion



of different nozzles (see Figure 33). Thus these parameters may only

be varied by discrete amounts, whereas the two pressure ratio parameters
are infinitely variable. We are also free to vary such parameters as the
mixing duct length and the injection nozzle geometries which do not appear
specifically in the one-dimensional theories, but again these parameters
may only be varied by discrete amounts.

With regard to the question of the success of any particular theory
a careful distinction must be made between two degrees of success.
Firstly, a theory may provide reasonably accurate predictions of overall
ejector performance in terms of external relations such as those between
the mass flows and overall pressure ratios, even though the flow within
the ejector is not found to be exactly that predicted by the theory. Such
a theory must be said to be ""empirically' successful and may be of use
in that limited sense. A theory with a more complete degree of success
will be found to give correct predictions for the flows within the ejector
as well as for the overall predictions for the performance, In order to
establish, in this sense, the complete success of any theory it is necessary
to verify, as far as is possible, all the assumptions inherent in the theory.
It is, therefore, intended to list all the assumptions relevant to the one
dimensional theories and to find out experimentally to what degree they are
justified, The main assumptions connected with the one-dimensional theories
are concerned with the following points :-

a) the uniformity of each gas stream on injection,

b) the equality of the injection pressures in the Subsonic Regime,

¢) the reversibility of the primary expansion in the Mixed and

Supersonic Regimes,

d) the degree of mixing during the primary expansion,

e) the uniformity of conditions at the end of the expansion,

f) the degree of over-expansion at the end of the expansion,

g) the degree of mixing reached at the end of the mixing duct,

h) the boundary layer effect,

i) the mechanisms of choking.

j) the uniformity of static pressure over each cross-section
downstream of the primary expansion.

Points b) and j) can be verified simply by static pressure
measurements, Points a), g) and h) may be investigated using pitot traverse
techniques connected with static pressure measurements, For points
c), d), &), f) and i) it is necessary to use some form of flow visualisation
technique in conjunction with the pitot and static pressure measurements,
Naturally, even better results would be obtained if an interferometric technique
could be used to find the general density distribution throughout the flow.
For, if it is found thatthe normal static pressure gradient is zero throughout
a majority of the flow and hence the static pressure distribution is known,
this will provide a method of finding the total pressure distribution without
disturbing the flow by the insertion of any probes.



In order to establish which, if any, of the one-dimensional theories
give accurate descriptions of the flows in the various regimes it will be
necessary to make detailed studies of the flows corresponding to several
sets of control variables - at least one set corresponding to each mode
of choking. Such an investigation involves making complete studies of
the flows corresponding to a particular set of stagnation conditions as the
back pressure is allowed to traverse the entire range from the Base Pressure
flows through to the fully choked flows. If this is done, it should be possible
in each case to tell from the resulis exactly where and how the flow becomes
choked., For, as soon as the secondary mass flow becomes independent
of the back pressure, only the flow downstream of the choked cross-section
will be affected by any further drop in the back pressure.

o
Once the boun (i“ies between the regimes found to exist physically
have been determined experimentally and the observed modes of choking
“have been examined and classified, it is intended to make limited studies
of a large number of flows to determine the overall performance of each
theory in each regime to which it applies. To summarise, the objectives
of this experimental programme are to test the applicability of the one-
dimensional theories of ejector operation to the flows in sonic and super-
sonic ejectors with constant area mixing and also to make a thorough
investigation of the various modes of choking. The programme, however,
will be subject to the following limitations:-

it will be limited to air-air systems,
the total enthalpy ratio will be restricted to unity,

only one geometric form will be used (the experimental ejector
will be a plane flow system).

A description of the experimental set-up will now follow.

4.3 THE EXPERIMENTAL EJECTOR,

To carry out the required programme an air-air ejector of a fairly
flexible nature was designed. The main requirments were:-

to be able to vary the two stagnation pressures and the back pressure
independently,

to be able to vary the area ratio of the injection nozzles,

to be able to vary the length of the mixing tube,

to be able to measure the static pressure along both the streams as
they mix,

to be able to observe the flow optically.

The facilities to provide a difference in the total enthalpy between the two
streams were not available so this could not be attempted.

An experimental air-air ejector was designed and built to meet
the above requirments as closely as possible, see Figure 34. It was decided



that a plane flow system would make the best use of the flow visulisation
techniques and also be the simplest from the construction point of view.

The facilities available for running the system consist of a compressor

and 240 cubic feet of compressed air storage tanks with a maximum working
pressure of 250 p. s. 1. The air line from the tanks to the laboratory is

a 2 inch nominal diameter line. The whole system was designed to a maximum
working pressure of 250 p. s.1. The basic size of the ejector is a
compromise between having it large enough to make details of the flow
visible and small enough {o get a reasonable running time with the air
storage facilities available. The experimental system is shown in Figures
33 1o 36. The system consists of two reservoirs maintained at constant
pressure by two Fisher control valves., These reservoirs exhaust via

the injection nozzles into the mixing duct.

The 2 inch pipe from the storage vessel is connected to a 2 inch
hand valve which controls the air supply to the whole system. The pipe
is then gplit into two 1% inch lines which lead to the Fisher control valves.
Just downstream of the hand valve a small }.inch line is lead off to supply
the control system for the Fisher valves. These valves are of the diaphragm
type and are controlled by a double servo system. The system is designed
to keep the total pressures constant in the reservoirs just upstream of the
injection nozzles, Pressure tappings are taken from the reservoirs and
fed into the first part of the control system (the Wizard Controllers) and
also to dial pressure gauges for the information of the operators. The
Wizard Controllers compare these pressures with the desired values and
give appropriate output préssures, proportional to the errors, which are
in turn fed into the Positrol system. These devices give an output signal
dependent on the Wizard Controllers output and the control valve setting,
This output is fed to the diaphragm of the valve. This double system allows
the sensitivity of the systemto be altered and also helps to cure any undesir-
able feed back effects.

After the valves there is a short straight section of 1} inch pipe
to allow each flow to settle, then a six inch long transition section changing
the flow cross-section from round to square. The flows then enter the diffusers
attached to the upstream side of the reservoirs, as shown in Figure 34,
Wire mesh screens are placed between the downstream end of the diffusers
and the begining of the reservoirs or settling chambers., These help to
keep the flow uniform and also control turbulance.

The rest of the system, the reservoirs, the injection nozzles and
the mixing chamber, are incorperated in one assembly as a plane flow
system. This consists of two heavy steel plates with a one inch space
between them, They are held apart by liners forming the walls to the
various chambers, see Figure 35. The reservoirs are both 5 inches wide
at their upstream ends and curve smoothly into the injection nozzles' contours.
Two access holes are provided in each reservoir; one through which to
measure the pressure and the other through which to insert a thermocouple
to measure the total temperature., The two reservoirs are sepg¢rated

/3



from each other by one of a set of needles, which may easily be exchanged
so as to vary the area ratio betweem the injection nozzles and the design
Mach number of the primary injection nozzle. Several such needles are
illustrated in Figure 33.

The contours of the injection nozzles were designed with the object
of producing reasonably uniform flows in the plane of injection. The shapes
of the primary and secondary liners were designed so that the spaces
between them and the dividing needle formed the two injection nozzles.

The needle corresponding to an injection area ratio of unity was used for
the design. In this case the primary surface of the needle is flat - as it
is shown in Figures 34, 41 and 47. The contours of the primary liner
were designed so that the space between the liner and the needle formed
a symmetrical half of a nozzle the shape of which had been determined
using potential flow analysis. The throat.of this nozzle was extended by
a parallel walled section of duct half an inch in length. Since the sharp
end of the needle would not be supported by the side plates it had to be
designed with a finite angle at the apex in order to avoid undue deflection
while under load. The secondary stream therefore had to be injected

at a slight angle to the primary. The contours of the secondary liner
were designed so that the space between it and the secondary surface

of the needle formed a nozzle with approximately the same axial distribution
of cross-sectional area as the primary nozzle.

The mixing duct has a cross-section 13 inches high by 1 inch wide
and has a maximum length of 20 inches. The front and back plates contain
Schlieren windows, 16 inches in length, which run from just upstream
of the duct entrance to within 4 inched from the end of the duct. This
enables optical methods to be used over the major part of the flow. The
bottom wall of the duct is formed by a fixed liner 1 inch in depth with pressure
tappings along its full length., The top wall however consists of a thin
brass tongue attached to the top liner at the upsiream end and supported
on adjustable jackes at regular intervals down the duct. In all experiments
carried out so far the tongue has been kept in a constant position such that
the cross-section of the mixing duct does not vary throughout its whole
length. 'O' rings are used to seal the gaps between the plates and the
liners but the flexible tongue is fitted with an inflateable seal maintained
at a pressure 20 p. s.1. higher than either of the reservoir total pressures.
Illustrations of the mixing duct are given in Figures 34, 35, 36 and 41,

At the end of the mixing duct there is an-adjustable centre body which
may be used to restrict the exit area of the duct and thus simulate changes
in the back pressure upon a system with fixed upstream conditions. A pitot
rake is built into this centre body in order to determine the degree of
mixing that has occured by the end of the duct. This assembly is illustrated
in Figure 36.

At the time of writing the control systems governing the total
pressures in the reservoirs have not been fully perfected in that they do not
hold the flow steady at high pressures. Total pressures of about 60 p.s.i.g.
are found to be the maximum values at which the control systems will hold
the flows reasonably steady. Above these values the flows tend to oscillate,



In the absence of any diffuser at the end of the mixing duct this maximum
value of the primary total pressure also defines a minimum value for the
overall pressure ratio of the order of 0.2. If the back pressure is going
to be allowed to fall far enough to reach the fully supersonic version of the
choked solution a maximum limit in the total pressure ratio between the
two streams is also indicated. This value is of the order of 2,0 if it is
assumed that the back pressure corresponding to the fully supersonic flow
is of the order of 4/5 ths. of the secondary total pressure, Higher total
pressure ratios may of course be used provided it is not required to reach
the fully supersonic solutions., It is hoped that this situation will be improved
by making some simple modifications to the control systems.

4.4, DIAGNOSTIC TECHNIQUES,

4.4,1. Pressure Measurements,

All pressure measurements are made using multitube mercury
manometers. Two manometers were built; one ten foot, twenty tube )
manometer (see Figure 37), and one five foot, one hundred and twenty tube
manometer. The first of these, the tall manometer, is used to measure
the total pressures and is provided with a clamping mechanism to hold the
readings while they are read. The short manometer on the other hand, has
no clamp but is fitted with a transparent graduated screen which is illuminated
from the rear thus allowing the readings to be recorded photographically.

An illustration of this manometer and a specimen recording are given in
Figures 37 and 38,

The air supply pressure and the two stagnation pressures are
displayed on dial pressure gauges in the main control panal (Figure 39).
The stagnation pressures are also measured on the tall mercury manometer,
These pressures are in fact the static pressures within the reservoirs, but
on investigation they are found to be well within one percent of the true
stagnation pressures, Static pressure tappings are situated at regular
intervals down the mixing duct both in the bottom liner and in the flexible
tongue. The surface apertures of these tappings are all twenty thousandths
of an inch in diameter. Their exact locations are shown in Figure 41,

Total pressure surveys are made using small pitot tube rakes
mounted on stings. Twenty two gauge stainless steel tubes are used to
construct these rakes, The internal diameter of these tubes is of the order
of sixteen thousandths of an inch. A hollow sting through which the pitot
tubes may pass out of the ejector is formed by a larger stainless steel tube
one eighth of an inch in diameter, A specimen pitot rake is illustrated in
Figure 42, ' '

4,4,2, Total Temperature Measurements,

The stagnation temperatures of the two streams are measured by
means of thermocouples situated in the reservoirs as shown in Figure 41,
Both thermocouples have been calibrated against a standard supplied by



the National Physical Laboratory. Their outputs are measured and recorded
at half second intervals throughout any experiment by an automatic digital
volimeter., This device gives a printed digital output an continuous paper.
The hot ends of the thermocouples are supported on porcelain rods glued

into brass studs. This is illustrated in Figure 43, The cold ends are
immersed in an ice bath.

At the time of writing this temperature measurement system has
not been fully perfected and therefore was not used in the pilot experimental

programme for which the results are given in this report,

4.4.3. Optical Techniques,

A small experimental programme to investigate and develope some
of the new optical techniques made available by the introduction of laser
“light sources is being run concurrently with this work on ejector flows,

A major objective of this programme is to set up a holographic interferometer
using a Q-switched solid state ruby laser. The laser, at present in use,
provides a twenty nano-second flash which corresponds to a gas partical
movement of less than one thousandth of an inch during exposure, even at

gas velocities in excess of 2, 000 feet per second, (Laser on loan from Barr
and Stroud Litd.) Once developed it is hoped to use this interferometer to
measure the density variations within the ejector flows. In connection with
this work a large, vibration insulated, optical bench has been constructed
upon which the various optical systems may be set up and tested. The

bench is illustrated in Figure 44.

Meanwhile, however, a double pass Schlieren system was set up
on the optical bench mentioned above and was used in the pilot experimental
programme, The Q-switched ruby laser was used as the light source and
the knife edge was used parallel with the direction of flow. This system
is illustrated in Figure 45, and a specimen Schlieren picture is shown in
Figure 46,

4.4,.4, Mass Flow Measurement,

To measure the mass flows in the injected streams it was decided
to make a detailed calibration of the injection nozzles themselves, For
not only would such studies provide a means of measuring the respective
mass flows, but it would also provide a detailed knowledge of the flows
within these nozzles and this would undoubtedly be of value in the under-
standing of the phenomena that take place in the initial stages of the mixing.
Once the nature of the flow within a nozzle is known a calibration between
the mass flow and the pressure ratio across the nozzle may be evolved.

An investigation of an injection nozzle must first of all provide
details of the flow at the injection plane which should ideally include a
full knowledge of the total pressure and static pressure distributions.
These distributions may be obtained from pitot static surveys across the



plane. When the flow is choked or nearly choked in the injection plane,
these results may not be very reliable because the static pressure is

so sensitive to small geometrical changes when the flow is sonic. This
means that the siting of the static pressure tappings that are supposed

to indicate the injection pressures may be rather critical. It is therefore
felt necessary to investigate the flow at an additional cross-section
upstream of the nozzle threat. This would provide a double check on the
mass flow calibrations.

4. 5. THE PILOT EXPERIMENTAL PROGRAMME,

As explained above only a very short time was available between
the commisioning of the experimental ejector and the writing of this
report in which any experimental programme could be carried out.

It was therefore decided to run a very restricted pilot programme

- investigating the flows in a sonic ejector of fixed geometry. The needle
corresponding to an injection area ratio of unity was therefore fixed )
into the ejector, giving equal injection areas to each nozzle., The full
available length (20 inches) of the constant area mixing duct was used.
The total temperature measuring equipment was not ready in time for
this programme, so no total temperatures were measured. But since
both streams originated from the same pressure vessel and the same
supply pipe. it is considered a fairly safe assumption that the total
temperature ratio between the two streams would have been very close
to unity. The holographic interferometer was also not ready in time
for the initial programme. so a Schlieren system had to be used instead.
Within this restricted programme the number of variable control
parameters is reduced to two; the total pressure ratio and the back
pressure against which the ejector exhausts.

Details of approximately one hundred seperate ejector flows were -
recorded throughout the programme. For each ejector flow these details
consisted of the following:-

The injection area ratio,

The setting of the blocking centrebody, (corresponding to back
pressure).

The totel pressures of the two streams,’

The primary injection pressure. measured at the first pressure
tapping point in the primary wall of the mixing duct, (see Figure 41)
The secondary injection pressure, measured at a pressure tapping
within the secondary injection nozzle,

The static pressure distribution along the primary wall of the
mixing duct (27 tappings),

The static pressure distribution along the secondary was of the
mixing duct (12 tappings),

The total nressure distribution across the end of the mixing

duct in the plane of symmetry (5 equally spaced pitot tubes),



The atmospheric pressure,
And a Schlieren photograph of the initial mixing region,

The pilot programme consisted of six expe.iments; two of these
were calibration experiments and the other four were studies of ejector
flows. Before considering these experiments in detail it is proposed to
give a brief description of the experimental procedure involved in
recording a single ejector flow,

4,5.1, The Experimental Procedure for Recording an Ejector Flow,

The experimental procedure may be split up into three separate
stages, preparation of the experiment, operation of the ejector and
recording of the results. When carrying out a series of tests the pre-
paration of the next experiment may be made while the compressor
is restoring the air storage pressure after the last experiment. This
usually took between ten and fifteen minutes,

Preparations for an experiment included the following., The total
pressures to give the desired flow were calculated and the corresponding
"target' manometer readings were estimated, The mercury levels in
the manometers were adjusted according to the pressure differences
expected. The camera recording the readings on the short manometer
was wound on the reset, The Schlieren windows were cleaned both inside
and outside. (Considerable difficulty was experienced with moisture
and dirt in the air supply system due to a failure in the air drying
apparatus, Hence many of the Schlieren pictures obtained were of a rather
poor quality)., The position of the blocking centre body was set to give
the desired exit area to the mixing tube, The camera used to take the
Schlieren pictures was automatic and, therefore, did not require rewinding
or resetting. When the air storage pressure was fully restored and the
capacitor bank in the laser power supply was charged the ejector was
ready to go. '

As mentioned above the control systems governing the total pressures
in the two reservoirs have not yet been made to work completely satis-
factorily., With the sensitivity of these controls set so as to eliminate
any oscillatory tendencies it was found that the controlled pressures
were not kept constant but gradually fell with the falling air storage
pressure, even, though the settings remained unaltered. In order to
maintain constant total pressures it was found necessary to make continuous
manual adjustments to the control settings. This situation led to the
following running procedure being adopted.

The control settings for both streams were simultaneously adjusted
to give total pressures of about 10 p.s.i.g. in both streams. This was
done in order to avoid developing highly sub-atmospheric pressures
within the ejector and thus being in danger of sucking mercury into the
system from the manometers. The primary total pressure was then
raised to about ten percent in excess of the desired value and allowed
to settle while the secondary total pressure was also raised to a value
just in excess of that required. Minor adjustments were then made so as



to induce a situation such that the total pressures, while gradually falling
without any manual adjustment, both passed through their desired values
at the same instant. At this instant the following actions were taken
simultaneously :~ The tall mercury manometer was clamped, the short
manometer was photographed and the laser was fired to take a Schilieren
picture. The ejector was then closed down and the atmospheric pressure
and the tall manometer readings were recorded, The average run time
per experiment, that is the time that elapses between initial raising

of the secondary total pressure and the instant of recording, was of the
order of 30 seconds. At the instant of recording the rates of fall in

total pressure were of the order of one half percent per second. It is,
therefore, considered that these flows should approximate fairly well

to the true steady state.

The resulis, for each flow recorded, were processed and presented
on single pages as illustrated in Appendix 4. On these sheets the
particulars of a flow are given followed by a Schlieren picture of the
initial mixing region, plots of the static pressure distributions along
the primary and secondary walls of the mixing duct and the total pressure
distribution across the end of the duct. '

4.5,2. The Calibration Experiments,

In view of the limited time available the full calibration of the
injection nozzles as suggested above was not feasible. It was, therefore,
decided to carry out a limited calibration on each injection nozzle, This
calibration consisted of recording flows through the nozzle for various
total pressures and various mass flows. For each flow the following
measurements were made ;

The static pressure in reservoir was measured (tapping
position shown in Figure 41).

The total pressure in the reservoir was measured at three
points in the plane of symmetry (see Figure 41).

The total pressure in the injection plane was measured using

a four tube pilot rake in the plane of symmetry (see Figure 47),
The injection pressure was measured at one of the tappings
indicated in Figure 41,

The results from these experiments will not be given in full here
but the main findings and the conclusions drawn from them will be presented
briefly., These are largely the same for both nozzles. It was found that
total pressure measurements in the reservoir were all within one percent
of each other and also within one percent of the static pressure within
the reservoir, Thus it was concluded that the static pressure measurement
would be sufficient to indicate the reservoir total pressure in subsequent
experiments. It was found that the total pressure measurements in the
plane of injection were also within one percent of each other and within
one percent of the reservoir total pressure, From this it may be concluded



that the flow within the injection nozzles is reasonably isentropic.

Since there was no measurement of the static pressure distribution
across the injection plane there is liftle more that can be said with
regard to the uniformity of the steams on injection. An indication

of the injection pressures may be obtained from the pressures measured
at the nearest tappings. These are indicated in Figure 41 for each
nozzle where it may be seen that neither of them are exactly in the

plane of injection. The tapping indicating the primary injection pressure
is one eighth of an inch inside the mixing duct and that indicating the
secondary injection pressure is within the secondary nozzle. The

ratio of the indicated injection pressure to the reservoir total pressure
was found to be of the order of 2 to 3 percent too high when the nozzle

is fully choked. This is not surprising since, not only were the total
pressure measurements only accurate to one percent, but in transonic
flow the static pressure is very sensitive to small geometric variations,
However, it is throught that the indicated injection pressures will be
much closer to the true values when the nozzles are not choked.

4.5,3. Kjector Flow Experiments.

As mentioned above approximately one hundred ejector flows
~were recorded during this programme, These were grouped in four
major experiments which will be described below. Throughout the

" entire programme the gector geometry was kept constant with an in-
jection area ratio of unity and mixing duct dimensions of 20 inches in
length and one by one and a half inches in cross-section. Thus the
only parameters that remained free to be varied were the two total
pressures and the back pressure, The desire to be able to study the
complete set of flows corresponding to any fixed total pressure ratio
limits the range of possible total pressure ratios to values below 2.0,
The four main experiments undertaken were as follows :-

1, Complete sets of flows corresponding to the five total pressure
ratios, 1.1, 1.3, 1.5, 1.7 and 1.9 were recorded to try and
establish an overall picture of the behaviour of the flows that
occur in the region of investigation.

2. A more detailed study was made of the flows corresponding to
the total pressure ratio of 1.5, The main idea of this experiment
was to find out where and how the flow becomes choked. However,
since it involved repeating several flows already recorded in
the first experiment it also provides a check on the repeatability
of the flows.

3. A study was made of the flows in the Supersonic Regime, that is
those that were fully choked, over the total pressure range 1.0
to 2.0, These were compared with the predictions of the one-
dimensional theory.



4." The results from four flows in the Supersonic Regime with the
same total pressure ratio but different actual total pressures
were compared to investigate any dimensional effects.

4.5.4, The Complete Back Pressure Dependent Flows.

Experiments 1 and 2, outlined above, may be considered together
here, as experiment 2 is just a more detailed repeat of part of experiment
1. In these experiments the flows corresponding to the complete range
of back pressures acting on ejectors with fixed total pressure ratios
were studied. The secondary total pressure was maintained at two
atmospheres throughout the two experiments and the primary total
pressure was adjusted to give the desired total pressure ratics. For
a fixed total pressure ratio the following experimental procedures
was adopted :-

& :

Starting at the Supersonic Regime end of the solution, an ejector
run was made with the blocking c{a/ntre body completely removed from
the exist of the mixing duct. This was the flow corresponding to the
lowest back pressure available with the ejector in that particular con-
figuration. To check whether the flow was trugly supersonic, that is
that it was independent of the back pressure, it was noted whether the
static pressure just before the duct exit was greater or less than atmospheric
If it was greater it was then assurned that the fully supersonic condition
had been reached, and that there would have been no point in trying to
obtain lower back pressures. This was found to be the case with the
m ajority of the flows recorded. Once the supersonic condition had
been established for any particular total pressure ratio, flows were
recorded corresponding to a series of increments in the back pressure
simulated by progressively blocking the mixing duct exit with the movable
centre body. The simulated back pressure rises as the available exit
area is gradually reduced. In this way the total mass flow through the
ejector is also gradually reduced until eventually the secondary injection
pressure becomes equal to the secondary total pressure and the Base
Pressure condition is reached. Since only one flow could be recorded at
one time the ejector had to be shut down while the centre body was adjusted
to simulate the next increment in back pressure and the instrumentation
was reset to record the next flow.

In the first experiment about ten flows were recorded for each
total pressure ratio covering the full back pressure range in each case.
For the purposes of illustration the complete results from the runs in
experiment 1 for a total pressure ratio of 1,5 are given in Appendix 4.

In the second experiment the series of flows corresponding to a
total pressure ratio of 1,5 were re-run only this time with smaller in-
crements between each recording, Thus a more gradual rise in back
pressure was simulated. Twenty flows in all were recorded in this
experiment,



(1) The Results,

There appear from the results of these experiments, when
considered as a whole, two major points which must be appreciated
before entering into any detailed discussion. Firstly the mixing is by
no means complete by the end of the mixing duct. Secondly the ejector
appears to become choked at a much smaller secondary mass flow than
predicted by any of the Two Stream Theories, This second effect is
so marked that, for all flows with total pressure ratios of 1,5 or less,
the system chokes while the primary injection nozzle is still unchoked.
Needless to say, the choking is found to take place in a very different
way to that predicted by the theory. It appears that the choking takes
place during the mixing process itself.

The results will now be described and discussed in more detail.
Three single flows representing the three flow regimes found to occur
will be discussed first. Then the complete series of flows corresponding
to the total pressure ratio of 1.5 will be discussed and lastly the complete
resulis from experiment 1, -

(i1) The Single Flows.

A flow in the Supersonic Regime,

Ejector Test 21, the results of which are given in Appendix 4,
consisted of operating the ejector, at a total pressure ratio of 1.5, with
the centre body completely removed from the mixing duct exit. The
static pressure at the end of the mixing duct was higher than the atmos-
pheric; it was, therefore assumed that the flow was in the fully choked
condition. Consider the results as shown in Appendix 4. The ratio of
the secondary injection pressure to the secondary total pressure, according =
to the predictions of the Two Stream Theories should be of the order of
0. 68 for the fully choked flow. In Test 21 this ratio was 0,80, Since
the injection pressures are felt to be reasonably accurately indicated in
this region, it can only be concluded that the secondary mass flows
was appreciably less than predicted, In fact, in this case, the indicated
value of the secondary injection pressure is greater than the value (0, 793)
at which the primary injection nozzle theoretically becomes choked. It
appears, therefore, that the flow becomes choked straight from the
Subsonic Regime, without even choking the primary injection nozzle,
Looking at the total pressure distribution across the end of the mixing
duct it appears that the mixing region has only just filled the whole duct
and the siream, as a whole, is certainly not completely mixed at this
stage. The mixing region may be seen as a light area in the Schlieren
picture gradually spreading as the streams move downstream. It may
be seen from the static pressure distributions that the indicated injection
pressures are not equal, in fact the primary injection pressure is sub-
stantially higher than that of the secondary. There are two factors that
may contribute to this effect, firstly the positions of the relevant pressure
tappings and secondly the fact that the two streams meet at a slight angle

instead of being injected parallel to one another as theoretically supposed.



There does not appear to be any evidence of a primary expansion of

the type assumed in the Two Stream Theories., This again points to the
conclusion that the primary nozzle is not choked in this case, On looking
at the static pressure distributions down the mixing chamber it is

readily seen that the static pressure is uniform across any cross-section
normal to the duct axis, except maybe those very immediately downstream
of the injection plane, The static pressure seems to fall only very slightly
for the first two thirds of the duct, the major part of the total static
pressure drop taking place in the last third of the duct. This might
suggest that the choking process was taking place at a cross-section

about two thirds of the way down the duct, but that is about all that may

be said on this evidence alone, The Pitot tubes at the end of the mixing
tube, being positioned at the nearest at least a quarter of an inch away
from the nearest mixing duct wall, were not in a position to give any
information on boundary layer effects. '

A flow in the Subsonic Regime,

Ejector Test 25, the details of which are also given in Appendix 4,
represents a typical flow in what 'has been defined as the Subsonic Regime,
Again it has a total pressure ratio of 1.5, Both the injection pressures
and the simulated back pressure are substantially higher than in the
Supersonic flow just described. The exhaust static pressure in this case
has been affected by the intrusion of the blocking centre body and is,
therefore, not representative of the simulated back pressure, The
pressure at the penultimate tapping should, therefore, be used in this
connection. Considering the total pressure distribution across the end
of the mixing duct, the flow appears to be better mixed than in the last
case but is still by no means fully mixed. The mixing region is not
very easily distinguishable in the particular photograph corresponding to
this flow, but it may be seen from pictures of other similar flows that
the mixing region tends to spread more quickly (in other words the
angle between the nearly straight mixing region boundaries is greater)
than in the Supersonic flows. The indicated injection pressures are
again not quite equal. This is thought to be due again to the positions
of the relevant tappings and the angle of injection of the streams. The
static pressure is almost constant throughout the entire ejector, there
being a very slight rise as the mixing progresses.

Other flows in the Subsonic Regime may be seen in Tests 23 {o
26 in Appendix 4. On looking through this series of tests the change in
the angle occupied by the mixing region may be fairly easily observed.
It may also be noticed that a fair degree of turbulence is developed on the
mixing region~secondary boundary as the Base Pressure condition is
approached,

- A Base Pressure Flow.

A typical example of a Base Pressure flow is that recorded in
Test 28 in Appendix 4. Here the simulated back pressure was very high
and the secondary injection pressure was equal to the secondary total
pressure. The total pressure distribution across.the end of the mixing



duct was fairly uniform, as might be expected with the duct being entirely
filled with one stream, The static pressure distributions down the mixing
duct, however, are slightly more interesting. For the initial part of

the duct the static pressure remains constant at the injection value, it
then quite suddenly starts to rise and rises fairly quickly to the value
corresponding to the back pressure. It then remains at this value until
the duct exit, This, together with the evidence of considerable turbulence
in the Schlieren picture, tends to suggest that a bubble type region of
vorticity is formed in the space between the primary stream and the
secondary wall, before the primary stream fills the whole duct.

(ii1) The Complete Set of Flows Corresponding to a Total Pressure
Ratio of 1.5,

A comprehensive picture of the performance of this ejector
operating at a total pressure ratio of 1.5 may be obtained by combining
the relevant results from experiments 1 and 2, In the theoretical cal-
culations made earlier in this paper the performance of an ejector ‘was
described in terms of the relation between the exhaust pressure and the
secondary injection pressure. The theoretical ejector performance
according to the Polytropic Two Stream Theory is shown in this form
in Figure 50. The supersonic solution is included in this graph, for
although it has been stated that these solutions are unlikely to exist
physically if the choking takes place as predicted by the one-dimensional
theory, this supersonic solution will still provide an extreme solution
if the choking is found to take place in some other way.

Also plotted on Figure 50 are two sets of experimental points,

The light ring spots represent plots of the static pressure at the last
pressure tapping in the primary wall of the mixing duct against the
secondary injection pressure. As can be seen from looking at ejector
test results in Appendix 4, this static pressure is not always truely
representative of the actual exhaust pressure, In the flows with low
simulated back pressures there is a strongly negative pressure gradient
towards the end of the mixing duct and, therefore, to obtain the true
pressure at the duct exit it would seem necessary to extrapolate the
static pressure distribution to the end of the duct. Also in the flows with

“high simulated back pressures the centre body interferes with the last
pressure tapping and so the penultimate tapping would give a more correct
indication of the appropriate exhaust pressure. The full dark spots
represent a replot of the exhaust pressure taking into account the two
factors just mentioned.

On looking at the plots in Figure 50 it is fairly obvious that the
ejector is choking at a much higher secondary injection pressure than
predicted by the one-dimensional theory. Now, speaking theoretically,
even if the flow does choke at the secondary injection pressure indicated
by the experiments, the exhaust pressure for a fully mixed stream would
still be given by a curve of the form ABC in Figure 50, But since the
exhaust stream never becomes fully mixed in these experiments the exhaust

pressure is obviously not going to be as predicted for a fully mixed
stream., Since the static pressure gradient during mixing is negative
for flows with low back pressures and positive for flows with high back



pressures it would be expected that the static pressure for a particularly
mixed stream would be higher than that for a fully mixed stream in
flows with low back pressures, and vice versa for flows with high

back pressures., The experimental points in Figure 50 appear to

agree with this prediction.

As mentioned above, the main object in collecting together all
these flows corresponding to the same {otal pressure ratio was to try
to investigate the mechanism of choking. The first question that must
be answered is ""where is the choking taking place' ? Once this is
known we will be in a much better position to investigate the actual
mechanism responsible, According to the definition given earlier in
this report a flow becomes choked when pressure communication in the
upstream direction is no longer possible, Thus it would appear that
the best way to find where the choking is taking place would be to find,
for each point in the ejector, the back pressure at which the static
pressure at this point first becomes influenced by the raising of the
back pressure. Since it was not always possible in these experiments
to determine the correct back pressure corresponding fo a particular
flow, it was decided to use the setting of the blocking centre body in
place of the back pressure in this context. In Figures 51 and 52 the
static pressures at nine points throughout the ejector are plotted against
Aé , the centre body setting. When A, is large the mixing duct exit
is unblocked and when A 5 is small the exit area is restricted., Plotted
at the top of Figure 51 is a small graph showing the scatter in the total
pressure ratios in the flow used to provide the static pressures for
the following graphs. Looking at the behaviour of these pressures
as Ag varies it is seen that at high values of A 5 all the pressures are
independent of As , but as A sdrops they all become dependent on it
at some stage or another, It is not possible, with such a wide scatter
in the total pressure ratios, to obtain an accurate estimate of the value
of A s at which each static pressure becomes back pressure dependent,
but a rough attempt to locate these values may be made by drawing in
curves through the points in the neighbourhood of the suspected values,
Values of Ay obtained in this way are plotted against the positions in
the ejector to which they correspond, in a graph at the bottom of Figure
52. It can be seen that the static pressures in that part of the ejector
up stream of the section x/D = 9.0, including the two injection pressures,
all become dependent on the back pressure at roughly the same value
of As . The three stations downstream of this section, however, become
back pressure dependent at much higher values of A5z . It is, therefore,
suggested that the choking occurs somewhere between the stations
x/D = 9,0 and x/D = 11,0, It is not felt justifiable to try to tie it
down any closer in view of the limited data available,

With regard to finding out how the choking mechanism works
the obvious approach is to try to build up a picture of the flow in the region
in which the choking is thought to take place., It has been established
with a fair degree of certainty that the static pressure distributions
ac ross the cross-sections normal to the duct axis are uniform. The
st“atic pressure distributions along the .duct walls are known and, therefore,



it may be assumed that the complete static pressure distribution
throughout the downstream half of the mixing duct is also known. It

is the total pressure distribution throughout this region that is not

yet known, In view of the limited data at present available all that we
are able to do is to assume an approximate distribution, based on the
available data together with several assumptions. An example of such
a distribution will now be given and from it an approximate form for the
sonic line for this particular case will be derived.

The flow chosen for this exercise was that of ejector Test 21

in Appendix 4. Looking at the total pressure distribution at the mixing
duct exit it may be fairly well approximated by a straight line inter-
section on either side of the two boundary values of 1.0 and 1.5, Such

an idealised end distribution is shown in Figure 57, Now these inter-
section points may be taken to represent the boundaries of the mixing
region, Then if the mixing region is assumed to spread in a linear
fashion the boundaries may be drawn in as in Figure 57, Making a final
assumption that the total pressure within the mixing region always varies
linearly between the two unmixed values across the region, we have

fixed the total pressure distribution throughout the entire mixing duct.
Using this assumed total pressure distribution together with the known
static pressure distribution an approximation for the flow in the suspected
region of choking may be derived., Using this technique the sonic line
shown in Figure 57 was computed, This indicates that the choking
process probably takes place at a cross-section containing both supersonic
and subsonic flow, It is felt that not much more can be deduced from
-these results without the support of further experiments,

(iv) The Complete Sets of Flows Investigated in‘Experiment 1,

Of the four other tests of flow investigated in experiment 1 only
those corresponding to the total pressure ratios 1.3 and 1,7 had a
small enough total pressure ratio scatter to be treated in a similar
manner to that corresponding to the ratio 1.5 above. Graphs of the
static pressure variations against A's etc., are given in Figures 53 to
56. In both cases it is again indicated that the choking takes place
somewhere between the stations x/d = 9.0 and x/D = 11,0, Again the
sonic lines may be computed using assumed total pressure distributions
based on the experimental findings, The assumed distributions and the
resulting sonic lines are shown in Figure 58. The details of the flows
upon which these calculations are based are given in Ejector Tests 11 and
31 in Appendix 4. According to these estimates only a very small part
of the mixing duct contains supersonic flow in the case of the total
pressure ratio of 1.3 and only a small part of this region coincides
with the region within which the choking is suspected of taking place.
It would, therefore, appear that the choking, if it is going to take place
in some generalised manner suggested in Section 2,3, will occur in the
neighbourhood of the cross-section x/D = 11, In the flow with the total
pressure ratio of 1.7, however, the primary stream is injected in a
slightly under-expanded state and a supersonic primary expansion takes

place as assumed in the one-dimensional theory. Part of the flow
remains supersonic throughout the whole length of the mixing duct;



hence the different shape of the corresponding sonic line in Figure 58.
The cross-section of choking in this case must definitely contain both
supersonic and subsonic flow.

With regard to the suspected position of the choking, it should
be noted that in the experimental ejector used there was a joint between
the end of the Schlieren windows and the side plates at a cross-section
corresponding to a value of 10 for x/D. This is within the region in
which the choking is suspected of taking place and it is, therefore,
just possible that this joint could have disturbed the flow in such a way
as to precipitate the choking process. Although this possibility cannot
be ruled out on the strength of the data at present available it is
thought that the effect of this disturbance, if it is occurring at all, is
only very slight. :

4,5,5, Experiment 3, A Survey of the Fully Choked Flows.

In this third experiment the set of fully choked flows corresponding
to the total pressure range 1.1, to 2.0 was investigated. The blocking
centre body was completely withdrawn from the mixing duct exit and
positioned so that the Pitot tubes were just in the exit plane, The
secondary total pressure was again kept at two atmospheres and the
primary total pressure was adjusted to give the desired ratios., Ten
flows in all were recorded and some of the results may be seen in
Figure 59.

The behaviour of these flows is probably most meaningfully
indicated by the behaviour of the secondary injection pressure. For
this pressure gives an indication of both the primary and secondary
mass flows. The experimentally determined secondary injection pressures
are compared in Figure 59 with those predicted by the one-dimensional
theory. Also plotted in this graph is the secondary injection pressure
corresponding to the choking of the primary injection nozzle (double
chain dotted line). It is clearly seen that the ejector chokes at a much
higher secondary injection pressure thanpredicted by any of the one-
dimensional theories, and therefore also at lower mass flow rates,

At low total pressure ratios the experimental secondary injection
pressure is even in excess of that corresponding to the choking of the
primary nozzle. So at total pressure ratios less than about 1.5 the
ejector chokes while it is still, as it were, in the Subsonic Regime,
and the phenomenon referred to as the primary expansion never in fact
takes place, Only when the total pressure ratio becomes greater than
1.9 does the primary nozzle choke and the expansion occur, but even
then the secondary mass flow is still too low for the flow to choke at the
end of the expansion, However, the gap between the theoretical and
experimental results does seem to close slightly as the total pressure
ratio is increased and it is possible that they would agree better at
higher total pressure ratios when the choking process is more likely
to take place further upstream.



Since the total mass flows are lower than predicted it would be
expected that the exhaust pressures corresponding to a fully mixed
stream would also be lower than predicted, the flow having the room to
expand to a faster supersonic speed, This is found to be so for the low
total pressure ratio flows in which the mixing is relatively complete,
But, as can be seen from Figure 60, the degree of mixing reached by
the end of the mixing duct decreases with increasing the total pressure
ratio. Now in all these fully supersonic flows there is always a negative
static pressure gradient during mixing and, therefore, if the mixing
does not proceed to completion the exhaust pressure will be higher than
it ought to be. This would explain the rise in exhaust pressure shown
in Figure 59, At the top of Figure 59 the theoretical static pressure
at the end of the primary expansion is compared with experimental
static pressure measured at the second tapping in the secondary wall
of the mixing duct {(x/D = 1,6). As would be expected in view of the
findings above these results do not compare,

4,5,6, Experiment 4, Investigation of Scale Effect.

In this experiment four fully choked flows were recorded each
with a total pressure ratio of 1,5 but with the actual values of total
pressures different in each case, The primary total pressure was
varied between three and five atmospheres. No perceptable differences
could be found between the normalised results.



5. CONCLUSIONS,

To obtain a betier understanding of the phenomena involved in
ejector flows and to find the best methods of predicting them have been
the major objectives of this work. As mentioned before the four basic
phenomena-occurring in ejector flows are mixing, boundary layer growth,
injection pressure adjustment and choking. Of these all but the choking
are fairly well understood and have well established theories connected
with them. Probably the most worthwhile addition that could be made to
high pressure ejector theory at present is a de e pe r understanding of the
phenomenon of choking, together with the establishment of a satisfactory
theory of choking.

The work has been limited in the main to the constant area mixing
of two streams of the same perfect gas. Both sonic and supersonic -~
injection have been considered and the resulting ejector flows have been

classified into Regimes. This classification is summarised in the following

table,
) Primary Ejector Flow s
e .

Regime Siream 25 & Whole Injection Pressures
Subsonic not choked not choked primary = secondary
Supersaturated Mixed choked " " primary « secondary
Saturated Mixed " " " primary = secondary
Supersonic Mixed " " o primary > secondary
Supersaturated Supersonic " choked primary « secondary

Saturated Supersonice
Supersonic

1

primary »
primary 7

secondary
secondary

The phenomena of mixing, pressure adjustment and boundary layer
formation can very often be said to take place in well defined regions of the
flow. For example, in a short region just downstream of the injection
nozzles it may be that the effects of mixing and boundary layer growth are
negligible. It is in this region that the dissipation of the difference in
injection pressures takes place, through the expansion or contraction of
the primary stream. This process may be considered to end at the cross-
section at which the static pressure first becomes uniform, The normal
static pressure gradient is zero throughout the remainder of the mixing

duct and it is here that the major portion of the mixing takes place.

The

boundary layer build up takes place over the entire surface of the mixing
duct walls but again may only become significant towards the end of
the duct where it will probably become merged with the mixing region.

The two contexts in which theories on ejector flows are likely
to be used must be distinguished as their requirements may be somewhat
different. Firstly, it may be desired to assess the likely behaviour of

a definite ejector system of known geometry.

In this case it may be



worthwhile using some fairly exact but complex theory to obtain a
detailed idea of the flows likely to occur. Such measures might include
two-dimensional analysis of the primary expansion and a Navier-Stokes
solution of the mixing region. Alternatively, it may be desired to obtain
an overall picture of possible ejector performance which would entail
assessing the flows corresponding to many sets of configurations. In
this latter case it is obviously necessary to use as simple a theory as
possible and it is here that the application of one-dimensional theories
becomes particularly attractive. It is on this simple approach that the
emphasis in this paper has been laid, One-dimensional theories, how-
ever, can only supply a limited amount of information., All they are able
to do is to supply certain sets of relations between states at two cross-
sections of the flow at an arbitrary distance apart., The states at such
cross-sections are usually assumed to be uniform. This is not entirely
necessary; the states can be assumed to take any suitable distribution
provided that they can be expressed uniquely in the same number of
parameters as the equivalent uniform state. Thus the rates of growth
of the mixing region and of the boundary layer are also factors that
must be assumed when using any one-dimensional theory. The way in
which this type of theory may be applied to ejector flows by splitting
them up into distinct regions was shown in Section 2.

One of the most important predictions required of any theory on
compressible flow in ejectors is the prediction of the choked condition,
In general it is quite possible for choking to take place in a variety of
different ways and places within any ejector flows. The physical phenomenon
of choking will occur as a result of the interactions of the other three
ejector phenomena, mixing, pressure adjustment and boundary layer
growth, and, therefore, the prediction of choking will be dependent
upon the theories used to describe these other phenomena. Also if it
is accepted that choking may take place in a generalised form, such as
that suggested in Section 2,3, it will be seen that it would be necessary
to monitor every cross-section of any ejector flow as the mass flow is
increased in order to ascertain where and when the choking takes place.
The one-dimensional theories of the simpler kind do not go this far, but
assume that the choking occurs only at the cross-sections in terms of
which they describe the flows. More complex one-dimensional methods
by which a tendency for a flow to choke during the mixing process might
be detected are suggested in Section 2,4,

Before coming to any definite conclusions as {o the relative
merits or limitations of the various one-dimensional theories it is
necessary to discuss in detail this phenomenon of choking. Choking
in this paper has been defined as the loss of streamwise pressure communi-
cation in the upstream direction. The cross-section at which such a
phenomenon first occurs on increasing the mass flow is said to be the
section at which the systems chokes. It has been shown that if a stream
iube has the freedom to react in an isentropic manner to small streamwise



pressure disturbance then the disturbance velocity at the point in question
will be stationary. A general theory of choking has been put forward
based on this concept. It states that a flow will become choked over any
cross-section which as a whole has the freedom to accommodate a small
pressure disturbance without affecting the total mass flow, It has been
shown that any such section must, in general, contain both subsonic and
supersonic flow. The main defect in the theory is that in the derivation
of the wave speeds in a stream tube the inertia effects in the direction
normal to the stream tube have been neglected. However, this is not
thought to be a serious defect as it is small disturbances that are being
considered,

If such a theory of choking is accepted then some of the traditional
modes of choking such as the sonic choking of the secondary stream at
- the end of the primary expansion can no longer be regarded as choked
cross-sections, They in fact become "supersonic” cross-sections,
and the actual choking will occur upstream of them.

Liet us now return to the problem of describing the flow within
an ejector, Starting at the upstream end of the ejector and assuming
. that the injection conditions are reasonably uniform and well behaved
the first phenomenon which has to be dealt with is the primary expansion.
The theories describing the primary expansion have been termed the
Two Stream Theories and in the maih they have two objectives, The
first is simply to describe the expansion and the second is to detect
or predict any tendency for the system to choke at the end of that expansion.
In the context of the one dimensional theories these two aims may not
always be compatible. The cross-section at which the expansion is
assumed to end may not be that at which the choking takes place,
Assumptions also have to be made as to whether the primary becomes
over-expandeéd or not, and as to whether it can really be represented
by a uniform state at the end of the expansion.

Three Two Stream Theories were presented and discussed in
Section 2. 1. Two of these assumed that the primary stream did not
become over-expanded and that the choking took place in the generalised
form. They were the Polytropic and Isentropic Two Stream theories,
Fabri's theory on the other hand assumed that the primary stream did
become over-expanded and also that the system choked by the secondary
stream becoming sonic at the section of maximum primary expansion.

Of these theories the Polytropic Two Stream theory appears to
be the best founded, allowing both for an irreversible primary expansion
and for the generalised mode of choking. With regard to the relative
success of these theories in predicting experimental flows it is not
possible at this stage to come to any definite conclusions without the
support of further experimental results, The experimental work
completed so far seems to indicate that for sonic ejectors with medium to
long mixing ducts the choking takes place within the mixing process
towards the end of the duct. These experiments, however, were all



carried out with total pressure ratios of 2,0 or less and there was some
indication that the gap between the experimental results and the theoretical
results predicted by the Two Stream theories tended to become smaller

as the total pressure ratio rose. It may be possible then that the choking
process moves further upstream towards the end of the primary expansion
as the total pressure ratio is increased, and thus gradually tends towards
the solutions predicted by the Two Stream theories. Such behaviour |
would be compatible with the theory that those flows, for which the

theory predicts a nearly choked fully mixed state, are the most susceptable
to the phenomenon of choking within the mixing process. This concept

is supported by limited results obtained for supersonic injection. Here
the total pressure ratios were within the range 4.0 to 7.0 and the pre-
dicted fully mixed states were well supersonic and well subsonic. The
predictions of the Polytropic Two Stream theory give remarkably good
 results in the Supersonic Regime. The predictions according to Fabri's
theory are relatively poor. However, these results only cover a very
small part of the total set of solutions covered by these theories, and so
one cannot really draw any sweeping conclusions without the support

of further results.

Further experimental work is also needed to investigate the
exact mechanism and location of the choking processes within these
supersonic injection flows. Messrs. Chow and Addi (Ref. 3) in their
two-dimensional treatment of the primary expansion assume that the
choking takes place at the cross-section of maximum primary expansion
with secondary stream becoming sonic, but according to the general
theory of choking such a cross-section is "supersonic' . Messrs Chow
and Addi support their theory with a static pressure distribution along
the mixing duct wall which indicates that the secondary stream does
become sonic. This would also be the case if the choking took place
in the general form and the flow then expanded as it mixed. An experi-
ment that would help to resolve this question would be one in which the
effect of back pressure on a flow is investigated; may be with the help
of some interferometric technique to observe detailed changes in the
flow.

A better unstanding of the flows in the Saturated Supersonic
Regime is also needed before any useful theory can be evolved, Here
again the actual mechanism and situation of the choking is not really
known. '

Returning again to the problem of describing the flow within
an ejector, once a method of describing the primary expansion and
its associated mode of choking has been chosen the problems of the
mixing and the boundary layer effect must be considered. The boundary
layer effect is obviously heavily dependent on the geometry of the ejector
and thus is not easy to include in an all embracing one-dimensional
theory. In fact in most one-dimensional theories the boundary layer
effect is entirely neglected. Very occasionally it is included in some



empirical way. One-dimensional theories of mixing on the whole have
two main objectives. The first is to attempt to predict the state of the
mixed stream when it reaches the end of the mixing duct given fixed
conditions upstream, The second is to detect those flows that are

likely to choke at the end of the mixing process. The simplesttheory,

the Straight Mixing Theory, assumes that the mixing is complete by

the end of the duct and that the state of the exhausting stream is uniform,
This uniform state is simply determined by equating the mass, momentum
and energy fluxes at the end of the primary expansion to those in the
exhaust plane. In general two solutions emerge one indicating a subsonic
flow and the other a supersonic flow, The two solutions are related

to one another through themormal shock relations, They converge into
the sonic condition when the two solutions become coincident indicating

a choked condition in the fully mixed flow. There are several major
weaknesses in this theory. Firstly, in most physical ejector flows the
mixing is no where near complete by the end of the mixing duct and if

the duct is lengthened to allow further mixing the boundary layer effect
becomes quite considerable and may no longer be neglected. No doubt

an ejector could be devised in which the mixing becomes complete without
any boundary layer effects, but this is hardly the point. Another weakness
is that it does not provide any means of telling whether any choking is likely
to occur within the mixing process, The simple theory does, however,
prove useful in that it provides an envelope solution; that is the experi-
mental exhaust static pressure is likely to lie somewhere between the

two extreme solutions theoretically predicted. For in fully supersonic
flows there is usually a negative streamwise pressure gradient during
the mixing and in flows with relatively high back pressures, that is

those with subsonic exhaust conditions, the streamwise pressure gradient
is usually positive during mixing (in the absence of large boundary layer
effects), The Straight Mixing Theory of course suffers from a weakness
common to all one-dimensional theory in that it provides no indication

of the steamwise scale of events. It cannot predict the effect of length
ening or shortening the mixing duct. In order to obtain any information
on these matters it is necessary to resort to a Navier-Stokes form of
analysis.

Several improvements on the simple one-dimensional theory
are possible, however., Some of these were discussed in Section 2.4,
Basically they consist of assuming the likely form the total pressure
distribution at the cross-section under investigation and solving the
one-dimensjional equations to give the static pressure and a parameter
finally fixing the toial pressure distribution. It was shown how such
an approach could be used to follow through the mixing and check whether
the flow would be likely to choke during the mixing, Obviously the same
idea of detecting choking could be used when applying the more complex
but more exact approach of using a Navier-Stokes solution, or even when
going one step further and including a boundary layer effect,



It must also be noted that since the mixing does not usually
reach completion in actual ejector flows those flows which the Straight
Mixing Theory predicts will become choked at the end of the mixing
process will in fact probably choke in some general form at the end of
the duct. It would thus appear that ejector systems in which a primary
expansion occurs will all choke in some generalised mode., This choking
appears to take place well downstream of the end of the primary expansion
in ejectors with low total pressure ratios, high total enthalpy ratios and
relatively long mixing ducts. These are the types of ejector configurations
for which the one-dimensional theory predicts choked or nearly choked
fully mixed conditions. For ejectors with short ducts or ejectors with
low total enthalpy ratios, high total pressure ratios and high primary
injection Mach numbers the choking tends to take place at or near the
end of the primary expansion. These are the flows for which the simple
one-dimensional theories predict well supersonic fully mixed conditions.
They are also the type of flows, therefore, for which the Two Stream
Theories might be expected to give reasonable results as to the maximum
mass flows,

The extent to which the boundary layer build up affected modes
of choking observed in the experimental programme is not really known.
It is expected, however, that even a fairly small boundary layer might
have a significant effect, For, not only are flows near the critical con-
dition very sensitive to small changes in cross-sectional area such as
would be caused by the boundary layer displacement effect, but the plane
flow system used in these experiments, with its rectangular sectioned
mixing duct, would be .fairly susceptable to boundary layer effects. How-
ever, a thorough investigation of the extent of the boundary layer in the
experimental ejector must be undertaken before this question can be
answered, If the boundary layer effects were in fact very significant, it
is quite possible that ejectors with less boundary layer prone geometries
may behave in a manner more like that predicted by the Two Stream Theories

Suggestions for Further Work,

Further investigation is suggested in three particular directions;
these are briefly :-

1. The completion of the experimental programme as set out in
Section 4, including a thorough investigation of the boundary
layer effects.

2. The design and execution of some experiments to test the
validity of the suggested general theory of choking.

3. A numerical investigation using some of the one-dimensional
theories suggested in Section 2.4, In particular an assessment
of the behaviour of the parameter B (a parameter that is positive
in '""supersonic' flow and negative in ""subsonic' flow) as the
mixing proceeds and the mass flow is increased in an ejector
of fixed geometry and stagnation conditions.
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APPENDIX 1,
DERIVATION OF THE MASS FLOW DENSITY AND
MOMENTUM FLOW FUNCTIONS,

The mass flow, r, of a perfect gas flowing steadily past a
certain cross-gsection in a duct, is given one-dimensionally by the
following expression :-

m = Apv where A is the duct cross-section,
p is the density of the gas,
and v the velocity of the gas,
Introducing the perfect gas law,
p = PR T where p is the pressure,
R the gas constant,

and T the temperature,

and using the normal isentropic relations the expression for the mass
flow may be rewritten,

m = Apv

1

AP, a M/(RT)

) Mﬁtfz7 (l_w(v-l)/yf_wl/y
"NRT y - 1

where Mis the Mach number,
T4 the total temperature,
Pt the total pressure
v the ratio of the specific heats,

o the isentropic pressure ratio %—
t

Now if we define the mass flow density function y as the function

4

am
. Lo, y . ¥ (o)
m= ITy R(7-1)

Similarly the energy flow may be written,

. _ 5 / 44
meTt—APtTt . Cp ﬁ_—(—?’-'_—l) . Y(a))

L
[1 A _l 2 o ofw , we see that the mass flow may be written :-

[y



The momentum flow, M, is given by,

L

M = Alp + p¥).

This may also be written in terms of the stagnation conditions and a
single property which in this case we shall call the momentum flow function
f (w). '

M = A(p + pV#),

2
= A(Pio + Py o M),

1]

v+ 1 ol 2 -w(l-‘)’)/)’ ]
APt-y_l [7+1 "1_1

v + 1

AP’E 7 -1

f(w).

where f(w), the momentum function, is defined as :

f(w) :w\i 2 o 7))y - 1}.

7+1




APPENDIX 2.
EXTENSION OF THEORY TO THE CASE OF
MIXING TWO DIFFERENT GASES,

The theory developed above is also applicable when the compo-
sitions of the two streams are not the same, However, the equations
presented with this theory have to be rewritten in a more general form
in order to take into account the differences in properties, Each stream
will have its own values of gas constant, R, and ratio of specific heats,

. The values of these constants for the mixed stream will depend
upon the ratio of the primary and secondary mass flows and thus may only
be determined when these are already known. The mass flow density and
momentum flow functions must be redefined as functions the two variables
w and 7 .

The mass flow past a cross-section now becomes

n = AP (R Tt)'% v, 7).
where v (w, y) = [;g%_l(l_w(?’-l)/')') ]%ﬂ)ﬂ/?’.

Similarly the energy flow,

1
- =]
¢ = AP C(T/R)7 vl 7)

and the momentum flow,

M o= AP‘t f(w, 7)

where f is redefined as

£lw, y) = w[;z—_liw(l-y)h 3 %f_:lL]

If the mass flows of the primary and secondary streams are my -
and mp respectively, the gas constant R g for the mixed stream will be
given by :-

myRq + moRs
my + Me

Rg

The ratio of the specific heats 7 for the mixed stream will be given by

. m4Cpy + mLp,
73 m,Cvy + mLvy




APPENDIX 3.

In the following appendix the outlines of fthree
Algol procedures are given. These procedures may be used to
solve the equatlons set up by The one-~dimensional theory of
gection 2.1. Two of them determine the charecterisgtics of the
primary expansion for the case where the choking takes place
at the end of the expansion and the other determines the state
of the fully mixed stream given known conditions at the start
of the mixing. The procedures are written for the mixing of
two streams of the same gas with a specific heats ratio of 1..4.
Each procedure uses sub-procedures,determining functilons such
as those derilved in appendix 1,and these are given below.

1. The necegsary sub-procedures.

a. real procedure phy(p); value p; real I*H

phy := (1-pT0.286)70.5xpT0.71l;

b. real procedure f(p); value p; real p;

£ 1= px(TxpT(-0.286)-6);

c. real procedure F(p); value p; real p;

begin real ee,ff;

ee := (p10.429-1.2xpT0.714) /(1. kxphy(p));
P := 5xpT(-0.286)-6;

F = (phy(p)xer-f(p)xee)/phy (p)T2;

end;:

Prtulahonsd

d. real procedure P(p); value p; real p;

begin real ee;

ee = (pt0.429-1.2xp70.714) /(1. Uxphy (p));

P = (phy(p)-pXee)/phy(p)T2;



2. The procedure finding the choked solution according to

Fabri s Theory.

Variables. in program,in text.

Known Z Z Primary throat/mixing tube area
pie m Total pressure ratio
pii wil Primary Injection pressure ratio
p22 w22 Secondary critical pressure ratio
To be P21 ) w2l Secondary Injection pressure ratio

determined
pi2 w12  Static/total pressure ratio
' defining the state of the primary
stream at the end of the
expansion.

Non-~local real f11,yi11,z1,2,al,a,pl,ple,p21,y21,y12,
pl12,£12,712,p22;

integer n,m;
PROCEDURE :

~procedure Z2(p); value p; real p;

begin £11:=(p);y11:=phy(p);21:=2X0.2588/y113a1:=1-21;
p1:=(pxpie~0.5283)/2;p21:=0.5283+p1;

a:=al/(zXpiex0.2588);for n:=1 step 1 until 14 do

begin y21:=phy(p21) ;y12:=21X0.2588xy11/(0.2588-a1xy21) ;
p12:=p/2;for mi=1 step 1 until 14 do pi2:=

pl2-sign(phy(p12) ~y12)xp/27 (m+1) 3 £12:=£(pi2);
F12:=y12X(z1xplexXf11+aix (£ (p21) -y21x4.9)) /{z 1x
piexy11); p21:=p2l+sign(f12-F12)Xp1/2™;

end;
p22:=0.5283;

end;

PROCEDURE CALL: - 72(p11)



3. An algol procedure finding the state of the fully mixed

stream according to the Straight Mixing Theory.

Variables.in program,in text. .
Known alpha?2 - Area ratio primary/secondary
at start of mixing.

pie22 un Total pressure ratio at start
of mixing.
pl2 wl2  Static/total pressure ratio of
primary at start of mixing.
p22 w22  Static/total pressure ratio of
secondary at start of mixing.
h2 h Total enthalpy ratio.
To be mew - Mass flow ratio secondary/primary.
determined pile3 " Total pressure ratio mixed/
secondary.
p3 - Mixed static pressure/
, Secondary total pressure.
h3 h3 Total enthalpy ratio,mixed/
secondary.

Non-local real f1,£2,y1,y2,alpha3,alpha2,C,Q,R,V,aa,bb,
dd,k3,k31,k32,13,y3,pile22,p12,p22,p3,mew,
pie3,h2,h3;

PROCEDURE : ~

procedure ZA(p): value t; real p;

begin Ti:=r(pl12); T2i=r(p227); yi:=phy(p12); y2:=phy(p22);

T alpha3:=1+alpha2; C:=pie22xpxylixy2x(h210.5+h27(-0.5));
R:=2+pXpie22xf1; Q:=(pxpiel22xy1)T2; Vi=(y2T2+C+Q)/RT2;
aa:=4gxV-1; bb:=1UxV~-1; dd:=bbT2-LUxaaxV;
if dd<O then begin k31:=(-bb+sqrt(ddg) (2xaa) s

k32:=(-bb-sqrt(dd))/(2xaa);

mew :=y2/ (y 1Xpxpie22xh2T(-0.5));
for k3:=k31,k32 do

begin F3i=(1+7xx3)/(1+k3)13.5;
y3:=k3T0.5/(1+k3)73.0;
pie3:=R/(alpha3xf3);
p3:=ple3/(1+k3)T3.5;

h3:=((y2+pXpie22xy 1xn210,.5)/
(alpha3xpie3xy3))T2;

end;

end;

end;

—————

PROCEDURE CALL:~ ZA(alpha?);




L, An algol procedure finding the choked solution according

to the Polytropic Two Stream Theory.

Variables.in program,in text.

Known v4 z Primary throat area/mixing duct
' area.
pile m Total pressure ratio.
P11 wil Primary injectilon pressure ratio.
To be pal wel Secondary injection pressure ratio.
determined pl2 wi2 Static/total pressure ratios
pe2 wae defining states of streams at the

end of the primary expansion.
Non~-local real Fll,y11,a,al,z,pie,pl1,p21,721,y21,p2,W,p22,
H2,aa,p121,pi12,P12,q;
integer n,l,m;
PROCEDURE 3 -

procedure Z1(p); value p; real p;

begin £11:=f(p);y11:=phy(p);al:=1-2x0.2588/y11;
a:=aﬁ/(ZXpieXO.2588);p1:=(poie~O.5283)/2;

p21:=0.52834p1; for n:=1 step 1 until 14 do
begin £21:=(p21);y21:=phy(p21);p2:=0.23585;Wi=F11/y11+axf21;
p22:=0.76415; for m:=1 step 1 until 14 do

begin F12:=W-axy21Xf (p22)/chy (p22);aa:=p121:=p12:=0.26415;

for Ll:=1 step 1 until 14 do pi2:=pl2+sign(£(p12)/phy(p12)
‘ ~-F12)xaa/271;

P12:=axp22x(1/a1-y21/phy (p22)); for l:=1 step 1 until

14 do pl121:=p121+sign(P12~p121/phy(p121))xas/2T1;
q:=(y21xP(p22)-1/21)/P(p121)-y21xF(p22) /F(p12);
p22$=p22—sign(q)Xp2/2Tm;

end;: v

Putiodlan
p21:=p21+sign(p12-p121)xp1/2™n;

end;

e

end;

e

PROCEDURE CALL:- Z1(p11);




APPENDIX 4,
SPECIMEN EXPERIMENTAI RESULTS

This appendix contains the full normalised results from twelve
experimental ejector flows recorded during the pilot experimental
programme, FEach page represents the results from a different flow.
Below the particulars of each flow a Schlieren picture of the initial
mixing region is given. The positions of the first few pressure tappings
are marked along the edge of the picture to help to establish the relation
between the picture and the pressure distributions, The static pressure
distribution along the primary and secondary walls of the mixing duct
are given in the graph below the picture, The pressures on the primary
wall are marked by solid triangles and those on the secondary by hollow
triangles, At the bottom of each page the total pressure distribution
across the end of the mixing duct is plotted on a small graph,
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Ejnctor Test Number 21
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Total Pressure Ratio ir 1.5008
Primary Injection Pressure Aq 0.5874
Secondary Injection Pressure moq = 0.8003
Exhaust Static Pressure p3 0.5753
Average Exhaust Total Pressure Tn = 1.2183

Schlieron Picture of Initial D'ixinq Regqion

.tn:

J y;r:Y2.T :YVv.T_~Ay_ T

10 11

Total Pressure Distribution across End of Pflixinqg Tuba

y/D

02



Ejector Test Number
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Ejector Test Number 29
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Figure 1,

Ejector with Constant Area Mixing Duct.
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Fiqure 2.

The Mixed Regime in a Sonic Fjector.
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Figure 3

Diasgramatic Representation of the 1sentr0pﬁc Two Stream Theory,

A Choksed primary injection stats.
AB Isentropic primary expanssion,supersonic,
In Choked secondary injectian stats.
D,F&H Secondary injection states.
DE, |
FG
& Hi Isentropic secondary expansion,subsonic.

J,K&L States at end of sxpansion.
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Figure 5

The Supersonic Regimes for a Supersonic Fjector of fixed Cecmetry

A comparison cof ths predictions of the one« and two-dimensional theories,

Secondary injection Mach number versus
the ratio of the secondary injection prassure
over the primary total pressure.

m A
21
3
E : : Supersaturated
v Saturated ; Supersanic
: Supersanic : Regime
1.0 ;  and . Er!A F
! Supersonic \
I Regimes
|
|
i
I
1
0.5 1
1
t
Base
Pressure
Regime
=
P217P11
DODC ‘r’
0.0 ¢ P21/p,

Figure 5 illustrates the forms of the solutions for the
performancz of a supsrsonic ejector exhausting into a vacuumjthat is
operating in the Supersonic Regimes. The continuous curve represents
the form of the solution according to the two-dimensional theory of
flessrs.Chow and Addi (ref 3) and the dotted curve indicates the form
of the one-dimensional solutions provided by the Isentropic and Poly-
tropic theories., The line Af,representing the Supersaturated Supersonic
Regime,may be considered common to both types of solution. The total
* pressure ratio ™ is high at the Base Pressure ends of the curves and
falls as the solution points move along the curves towards the point F,
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Pressure distributions for the linear mixing theory.
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A One~dimensional Description of the Mixing Process.
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Fiqure 39

The Control Panel
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Figure 41.
Diagram Showing Positions of Pressure Tappings and Pitot Tubes.
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Figure 42. Pitot rake mounted in the injection plane

Figure 43. Thermocouple mounting.



The Optical Bencn Assembly

[ beam
’ ]
polystyrene blocks = e
heavy steel stands ;
.-——" adjustable in height q b -

o o

rubber feet
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The optical bench consisted of a sixteen foot box beam of 4 by B inch
cross-section mounted on blocks of expanded polystyrene which were in
turn mounted on heavy stands. These stands were adjustable in height
and were themselves mounted on rubber feet. Entire optical systems can
be mounted on the beam free from vibrations,

Figure 45.

. The Double Pass Schlieren System,

Ejector Schlieren windouws,isclated from rest of systam
(i.e. not touching)

Ruby laser

camera synchronised
with laser

flat
front
surface
mirror

horizontal knife edgse

optical bench beam

All items except the
ejector are mounted on
the optical bench beam.

6 foot focus spherical front

surface mirror =



Figure 45. The Schlieren System.

Figure 46. A Specimen Schlieren Photograph



1e_Pitot Tubes in injection plane.

< Double wedge support wing .

Four 22 gauge stainless steel tubes
transmit pressures down mixing duct
;glf,through one 10 gauge tube.
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Figure 47. Dfawing of Mixing

Duct, secticned down the plane
of symmetry and showing Pitot
rake mounted for calibration of
primary injection nozzle.

Movable tongue.

Ten gauge tube passes through
blocking centrebody.

pressure connection to inflatable
seal.
T~ _Pressure valves for inflatable seal.

Four small tube emerge for connection to
manometers.




The Full Back Pressure Dependent Solutions according to the Polytropic Two
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A S v

faximum Flow Solutions for a Supersonic Ejector

In the following figures results from the two stream choking
theory are compared with those from the two dimensional theary
of Messrs. Chow and Addy and also with those from Fabris one
dimensional theory. The two figures represent two different
ejector systems,both with Mach 2 injection nozzles,but with
different nozzle area ratios. The experimental points shouwn
are due to fessrs. Chow and Addi.
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Figure 5C.

A Comparison oF the full back pressure dependent solution with
Experimental results for an ejector with the configuration;—

Sonic injection, z = 0.5, h = 1.0, = 1.5.

Exhaust pressure v. Secondary injection pressure.



Figure 51.

P02

Oil

888.-8

The Variation of Static Pressure at various points in the ejector
as the end of the mixing tube is gradually blocked.

Ejector Configuration:- =z = 0.5, h = 1.0, = 1.5.

Experimental points
O represents p

O represents p

21
o represents the static pressure at x/D = 2.08
v = 12.6
B

13.3
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Figure 52.

03

Variation oF static pressure v. Exhaust area
Ejector Configuration; z = 0.5, h=1.0, fF =
Experimental points:
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(o}
n ft If
o tl It
Value of at which the static pressure at
ZHZ yHE
A1?2rr~ >
1.2 ifrin"
1.1 .
iirir:::. "nHiT:
S W*M...
1.0
rznzni: k:ricz;
0.9
0 1 2 3 4 5 6 7 8 9 10
Floui is entirely subsonic over cross section
Flow is supersonic over * of cross section

1.5

x/D

x/P becomes

n o

independent

- O 0 W
w o oo

%
A =B
R e OO T ST
11 12 13
x/D 9.
x/D 11.0



Figure 53 .

tr:

Variation of Static Pressure at various points, in the
as the end of the mixing tube is gradually blocked»

onfiguration: z - 0.5; h =1.0, = 1.3

ta1 points:
O represents Pii
represents
0 rep "A21
represents the static pressure at X/D

<EI

ejector



Figure 54.

0.6

riation oF static pressure v. Exhaust area A
Ejector configuration: z = 0.5, h=1.0, 11T = 1.3

Experimental points:

o represents the static pressure at x/D = 3,0
o = 5.0
H tl fl = 9 0
. M “ = 11,3
Value of at which the static pressure at — becomes independent of
10
Flow is entirely subsonic over cross section x/D = 9,0
Flow is entirely subsonic over cross section x/D = 11,0



itrtt

Variation

Ejector
Experimental

(o)
o

[}

oF Static
as the end oT the mixing tube

configuration; z =

rigure 5S5.

irr;

(O]
0s

Pressure at various

0.5, h = 1.0, TT
points;

represents P
represents

11

21

represents the static pressure

peints
is gradually blocked.

1,7

at

the

e.jecto

2.08
12.6
13.3



Figure 56.

iation of static pressure v. Fxhaust area A

Ejector Configuration : z = 0.5, h=1,0, 1T = 1.7
Experimental points:
represents the static pressure at — 3.0
5.0
9.0
ft i 11.3

Value of at which the static pressure atijQ becomes independsnt of



Figure 57.

The Total Pressure Distribution Assumed for the Flow in Ejector Test 21,

The idealised distribution across the end of the mixing duct.

In the Following graph a straight line has been drawn through
the experimental points depicting the total pressure distribution across
the end of the mixing duct. This line intersects with the two lines P/P*
= 1.0 and P/Pg = 1*5 at the points B and C. The idealised total pressure

distribution is then taken to be that given by the line ABCD. The points
B and C are also assumed to represent the boundaries of the mixing region
at the duct exit.

75

The total pressure distribution assumed throughout the mixing duct.

Assuming that the mixing region spreads linearly with distance
down the duct,its boundaries may be drawn as in the graph below. If it is
also assumed that the total pressure varies linearly across the mixing
region at all cross-sections,the position of the sonic line may then be
computed,since the static pressure distribution is already known.The sonic

line is shown in the form of a series of dots connected by a dotted line.

y/D
.75

25



Figure 58.

The Total Pressure Distributions assumed for the Flows in Ejector Tests

11 and 31.
Test 11. Total pressure ratio = 1.3 (nominal)
y/D
y/D
n:
Test 31. Total pressure ratio = 1.7(nominal)
y/D
inti
LO

y/D



FiQure 59.

22

21

.8 00<

1.0 1.2 1.4 1.6 1.8 2.0

Comparison oF theory and experiment for fully choked flows.

Top;- Theoretical static pressure at end of primary expansion compared
against static pressure at x/D = 1.6 on secondary wall.

middle:- Secondary injection pressures.

Bottom:- Experimental exhaust pressure and theoretical exhaust pressures
for fully mixed stream.

Key:- Pclytropic two stream theory Fabri's method
Sonic choking at duct exit— Experimental



Figure 60.

The Degree oF Mixing reached by the End of the fOixing Duel
for the Fully Choked Flows.

For the purpose of this comparison the degree of mixing is
gauged by the difference in the total pressures indicated by the
top and bottom Pitot tubes mounted in the blocking centrebody.
Their positions are given by y/lD = 0.167 and y/D = 0.833. If no
mixing takes place then this difference would take the value *-1.
The chain dotted line in the graph above represents this situation.
The solid squares represent the experimentally measured differences.

The hollow squares represent these differences as fractions of initial

differences,that is TT_i.



Figure 61

The Secondary Injection Pressures For Flows Choking in the Manner
Predicted by the Polytropic Two Stream Theory.

Secondary Injection Pressure v. Total Pressure Ratio
Lines of constant geometric ratio,z.

rer

tr

The Secondary Injection Pressure at which the two stream
choking process takes place is independent of the Total Enthalpy
ratio,h,but if the total enthalpy ratio is too high the flow will

choke at the end of the mixing process instead of due to the two
stream effect.
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Secondary Injection Pressures for the fully choked Flows according to
the Polytropic Two Stream Theory.

Figure 66. z =0.7 f sonic injection.

Secondary Injection Pressure v. Total Enthalpy Ratio.
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Figures 68 to 73 , The Exhaust Nach Numbers.

These Figures depict the Exhaust Hlach Number solution surfaces
as constant total pressure ratio contours in the Hlach Number - Total
Enthalpy ratio field according to the Polytropic Two Stream Theory.
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Figqures 63 to 73 , The Exhaust Mech Numbers.

filach Nunber solution surfaces
the Mach Number - Total
Tiuo Stream Theory.

These figures depict the Exhaust
as constant total pressure ratio contours in
Enthalpy ratio field according to the Polytropic
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Figures 68 to 73 , The Exhaust Plach Numbers.

These Figures depict the Exhaust Tiiach Nu”“iber solution surfaces
as constant total pressure ratio contours in the Ifach Number - Total
Enthalpy ratio field according to the Polytropic Two Stream Theory.
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Figure 74.

The Application of a General Theory of Choking to a General

Shear Flouw.
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NOMENCLATURE,

Cross-sectional Area,
Speed of sound.
Cross-sectional area of flow.

Parameter that is positive for'

'supersonic'' flows.and
negative for ""subsonic" flows. .

Parameter positive for "supersonic' streamtubes and

negative for "subsonic" streamtubes,
Width of mixing duct.

Momentum function (See Appendix 1).
Total enthalpy.

Total enthalpy ratio H /Hp.

Total m.sﬂpm.w@% ratio Hs/Hs.

Mach number,

Mass flow.

Total pressure,

Static pressure,

<<m<m. velocity.

Streamtube elasticity.

Distance normal to flow.

Gas velocity.

Distance streamwise.

Mass fraction of ith stream to have entered the mixing zone
by the jth plane.

Mass flow function (See Appendix 1).
Area ratio, primary throat over mixing duct.

Area ratio, primary injection over mixing duct.

Area ratio, primary over mixing duct after expansion.
Ratio of specific heats Cp/Cv.

Total pressure ratio, primary over secondary.

Total pressure ratio, primary/secondary after expansion.
Total pressure ratio, mixed/ secondary.

Hmmawowwo. pressure ratio, m.dm.ﬂo?oﬁmu,.

Density.

Primary stream.
Secondary stream.
Mixed or exhaust condition.

Refers to the ith stream at the jth plane.




