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AN EMPIRICAL CORRECTION TO LIFTING-SURFACE
THEORIRES FOR USE IN TRANSONIC
ARROELASTIC ANALVSES

by
D.B. McIver, B.Sc.(Eng.).

summary

In this paper, means are investigated whereby the effects
on loading of the shock-wave patterns and non-linearities
associated with transonic flow may be included in an aeroelasti
analysis. These effects if present on a rigid wing would also
exist, although in a modified form, for a flexible wing of the
same planform under the same flight conditions.

Three methods are described for adjusting linearised
theoretical aerodynamic influence coefficients so that the pre-
dicted aerodynamic load distribution on a rigid wing at inciden
and at the required Mach number agrees with the measured distri
bution. Thereafter, it is assumed that these modified influenc
coefficients, which are possibly dependent on incidence, magy be
applied to the prediction of the load distribution on the same
wing planform at the same Mach number but with an arbitrary
spanwise twist Variatioﬂ;- It is proposed that the methods be
applicable throughout the entire speed range but are pursued in
detall only for transonic speeds for which the linearised theor

break down.

Two methods are tested by applying them to wind-tunnel da



measured at Mach numbers of 0.80 and 0.94 for a series of flexi
wings with different geometrical spanwise twist distributions.
The elastic twist distribution for each wing under aerodynamic
loading is known or can be calculated. The wings are of aspect
ratio 4, quarter-chord sweép of 45° and taper ratio of 0.15.,
Modified influence coefficients are derived from the data for o
spanwise twist distribution and are used to predict the pressur
distributions for the other twist variations, Good agreement
with the measured pressures at selected points is obtained,

Because of the limitation of lifting-surface theories to
continuous chordwise and spanwise wing slope distributions, a
control surface must normally be replaced by an equivalent
continuous slope distribution., The third method of correction
is shown to yield an experimental equivalent slope distribution
which 1s compared with the theoretical values.

A theorttical investigation 1s made of the application of
the aerodynamic corrections to the static aeroelastic analysis «
a wing with a control, but no numerical solutions are attempted.
Comments are given on the extension of.the procedure to other

planforms and to the case of oscillatory motion.
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Means are investigated whereby the effects on loading
of the shock wave patterns and non-linearities associated
with transonic flow may he included in a static aerocelastic
analysis, |

Three methods are described for adjusting linearised
theoretical aerodynamic influence coefficients to fit rigid
wing measured pressure distributions, The research consists
of investigating how well these modified influence coefficients
can predict the loading on the same wing at the same Mach
number but with an arbitrary spanwise twist distribution,

Two methods are tested by applying them to wind-tunnel
data measured at Mach numbers of 0,80 and 0,94 for a series
of twisted wings. The wings are of aspect ratio 4, quarter-
chord sweep of 45° and taper ratio of 0.15. Good agreement
of the modified theory with the measured pressures at selected
points on the wings is obtained, especially for high incidences.

The third method, although not pursued in detail, is shown
to provide a control surfacé;equivalent slope distribution
which is compared with the theoretical values. This may be of
use in flutter calculations,

Further research which is required is mentioned and the

extension of the method to oscillatory aerodynamics is discussed
briefly.
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Notation.
o = N wing mean camber-line slope at the point C",ﬂ)j.
A aerodynamic influence coefficient,

Qio,0¢,, i, 2 see Fquations (2,6) and (2.7).

b;,)b;,,bgz,. " " (2.,18),

Cii, Ciy,Cis " " (2.26).

Gl correction factor for the load component Fs .
Kj; " " " " wing slope «, .,

C“-f ACpd (%) wing section normal-force coefficient.
(-]

Cw’[ACP&" “’z“')ﬂt&‘) " " pitching moment about the

quarter-chord,

ACp {k‘*‘b“){,‘_f’vl pressure coefficient,

é_sz' free-stream dynamic pressure,

M free~-gtream Mach number,

P load component at the load point (x,4)..

R Reynolds number based on the wing mean chord ¢ .

S wing semispan,

W downwash at the downwash point (x,y);.

x,Y % rectangular co-ordinate system attached to the
wing, origin at the vertex.

x positive rearwards.

) L to starboard.

2 " downwards,

0:; structural twist influence coefficient.



-1ii~-

Notation (cont,)

Suffices.

=3 denotes an experimental or corrected quantity.

T " a theoretical quantity.

R " a quantity pertaining to the rigid wing.
Ef . . " " " flexible wing,
S " an elagstic structural contribution,

c continuous component.

d discontinuous component,

Matrix convention.

C1] gquare matrix,
CJ diagonal matrix.
{} colum vector..
[ 7' matrix inverse.

| unit matrix,



.

Chapter l.

Introduction,

$1.1 Purpose of research.

It is well established that the shock wave patterns and
flow separation associated with trensonic speeds can alter
significantly the load distribution and hence the structural
deformation of a flexible wing. In many instances these aero-
dynamic effects may be highly non-linear in character,

The aeroelastician must be able té calculate the aerody-
namic load distribution over an arbitrarily cambered wing. At
present, he has at his disposal only linearised theories in
which, to make the problem more amenable to treatm@nt$ inviscid
flow is assumed throughout the entire speed range. No simple
general theoretical method yetl exists whereby viscous and wing
thickness effects may be assessed. Consequently, there is much
to commend a semi-empirical method that is a synthesis of syste-
matic experiment and a reliable theory. ISxperiment may serve to
correct for the idealisations of theory, which in turn may cater
for the parameters that are restricted in wind-=tunnel testing.

The development of any aircraft usually necessitates exten-
sive wind-tumnel testing early in its design. Often this will
include the measurement of pressure distributions for various
Mach numbers and angles of incidence on a nominally rigid wing.,
It is fitting that these data which, In the past, have generally

only been used by the aeroelagstician as a comparison for linear
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theory, be incorporated in the aeroelastic analysis of the
“flexible wing,

This report is a modification to and an extension of such
a procedure proposed by Gainer (kef. 1) for wings in supersonie
flow. The method is applicable to the complete speed range but
is pursued here in detail only for the transonic range for which
the linearised theories break down.,

Of the many subsonic iifting surface theories available,
Richardson's theory is employed to illustrate the methods of
correction. A wing (Fig. 1) similar toe that dealt with by
Gainer 1is treated and only spanwise twist modes are considered
since chordwise deformation is relatively unimportant in moder-

ate and high aspect ratio wings,

§1l.2 Transonic flow patterms.

Before proceding, it will be instructive to consider the
limitations of the linearising assumptions. They are valid if
(i) separation effects are absent, although separation effects
which are confined to small areas of the wing can be tol-
erated (e.g., short bubbles on unswept wings; tip separa-
tion on swept wings).

(ii) angles of incidence, camber and thickness/chord ratios are
small. At subsonic speeds there is also the restriction
that the camber surface must be continuous otherwise
separation will take place. Similar effects occur if the

wing leading edge is sharp.
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(1ii) no regions of mixed subsonic/supersonic flow exist with

associated local shocks,

At transonic speeds we are principally concerned with the
inability of theory to predict the existence of the complicated
shock patterns and regions of separated flow over a wing with
their accompanving rapid changes in load distribution,

The phenomena of the formation of the flow about a swept
wing-fuselage near llach 1 is described by Rogers and Eall (stef, 2
and is related, in the account given below, to the flow about the
wing-fuselage considered in this report (Fig. 1). The wing hes
a known spanwise twist distribution (see Chapter 3 and Figs. 3a-
3c) and the flow about it, although not precisely that for the
flat wing, will have the same characteristics. In Figures 4a-4c,
comparison is made of the theoretical and experimental pressure
coefficient distributions, Detailed upper and lower surface
pressure distributions may be found in Ref. 12, The wing section

has a rounded leading edge.

The initial tip shock,

At low incidences in the subsonic range, flow velocities
over the wing are highest near the tip and with a sufficient
increase in the free-stream lach number, which will depend on
incidence and wing thickness, a weak tip shock normal to the

free—-stream is formed, Its inboard extent is small but increases

slightly and moves rearwards as the llach number is increased,

The effect of the tip shock on the pressure distribution is small
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and is not evident in Figure 4a, It will not be very important

‘aeroelastically for this wing,

The rear shock,

Tip shock development on the upper surface is arrested by
the presence of the rear shock which is generally formed at
about the same time, Its origin lies in the increase in flow
velocity due to the wing thickness. The chordwise increase is
greater then the spanwise and consequently the resultant velo-
city vector is inclined inboard. FKowever, at the wing root, in
order to preserve the spanwise symmetry, the flow is constrained
to follow the wing or fuselage centre-~line. The compression
svstem required to achieve this propagates across the wing span
and ultimately coalesces at the tip to form a shock wave of
finite strength whose sweep is initially somewhat less than that
of the wing leading edge.

In the early stages, the rear shock may propagate into the
supersonic flow ahead of the initial tip-Shock and since, with
increase in free-stream liach number, the former moves rearward
more rapidly than the latter, the tip shock is overtaken and
disappears., This aft movement of the rear shock is accompanied
by an increase in its inboard extent and an associated steepen-
ing of the chordwise pressure gradient near the trailing edge
farther inboard still. Ultimately, with increase in the free-
stream laclh number, the rear shock reaches the wing treiling

edge and serves to return the local flow to near the free-stream

pressure and direction, Its position changes only slightly with



change in incidence.

The rear shock has a profound effect on the wing load
distribution; the pressure on the upper surface aft of the
shock increases whereas the pressure coefficient, or in other
words the loading experienced by the wing, decreases. Conse-
quently, there is a forward movement of the centre-of-pressure
which will affect the elastic twist, In Figure 4b, for a Mach
number of 0,80, the rear shock is evident for a root incidence,

Koy OF 8°, Previous to its formation the chordwise pressure
coefficient distribution is typically subsonic (Fig. 4a) with
a leading edge peak and falling smoothly to zero at the trail-
ing edge. In this case, unlike when the rear shock is present,
comparison with theory is reasonable, The higher the Mach
number, the lower is the wing incidence at which the rear shock
first occurs and in Figure 4a it exists for M=0,94 at‘N;=4ge

Agreement with theory is seen to be poor.

Plow separation,

lleanwhile, as incidence increases and the rear shock deve-
lopes, the flow velocities along the leading edge rise along
the entire span. The most rapid changes occur near the tip and
the resulting intense pressure gradients lead ultimately to
flow separation which starts at the tip and moves progressively
inboard with increasing incidence (Figs. 4b and 4c¢). Separation
reduces the local section 1ift coefficient and moves the centre-
of-pressure aft, The chordwise pressure coefficient distriovu~-

tion is characteristically trapezoidal in form with a finite



=
loading at the trailing edge.
The preceding account covérs the main details of the flow
for the experimental data used in this report. However, for
completeness, we shall continue to explain very briefly the

subsequent flow development as the llach number increases,

The forward shock,

At a higher Mach numberywhich will depend upon the wing
geometry, separation along the leading edge ceases and the flow
remains attached to the wing surface as far back as a forward
shock which appears to originate close‘to the wing=-fuselage
junction and sweeps back outboard over the wing. Flow separa-
tion may still occur aft of the shock., This transition from
separated to attached leading edge flow is called the transonic
flow attachment; The forward shock is not necessarily connec-
ted with. the attachment process,; but arises from the local
leading edge conditions and can thus appear at incidences well

below that at which leading edge separation takes place,

The outhoard, bow and tip shocks.

It is possible for the rear and forward shocks to intersect
on the wing surface; the shock between this intersection and the
wing tip is called the outboard shock, The pressure rise
through this shock is very large and almost inevitably separation
takes place, When the stream Mach number reaéhes unity the bow
shock wave forms ahead of the wing., At low and moderate super-

sonic speeds this exerts only a small influence on the flow over




o e
the wing surface, A further shock which arises to complicate
the flow is the tip shock - distinct from the initial tip shock
- which is a disturbance within the local supersonic flow,
associated with and originating close to the tip leading edge
and which indicates the inboard limit of the wing surface
influenced by the tip. This shock is comparatively weak but

increases in strength with incidence and lach number,

The above explanation of the transonic flow phenomena is
by no means complete but is given merely as an indication of
the difficulties involved. It is clear that linearised theory
alone falls far short of being able to treat the transonic

regime successfully,

§1.3 Related research.

There are many theories which employ experimental two=dimen-
sional results or apply two=dimensional corrections to lifting
line and vortex lattice theory (Refs. 3 énd 4), but Gainer's
paper (Ref, 1) is the only one known to the author which proposes
a correction to lifting surface theory from available three-
dimensional experimental results, Two-dimensional corrections
are unable to cater for the change in loading produced by the
shock patterns since they are essentially three-dimensional
phenomena,

Gainer derived a meﬁhod to improve the theoretical pressure
distributions for thick wings in supersonic flow. He realised

that a thick wing with a detached leading edge shock wave has
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certain things in common with a wing having a subsonic leading

"edge, The flow behind the shock wave is subsonic for some

distance and the chordwise pressure distribution has the charac-
teristic leading edge peak, He was able to define a hypotheti=-
cal "equivalent' wing with a greater sweep angle. This replaced
the actual wing with the supersonic leading edge by a wing with
a subsonic leading edge and improved the correlation between
theory and experiment. When the leading edge of the wing is
subsonic, as it is at transonic speeds, the equivalent wing is
the same as the actual wing:

Treating this equivalent wing, Gainer then combined the
supersonic linearised theory for a wing with a subsonic lead-
ing edge with empirical adjustments to give accurate estimates
of the steadv-state load distributions on an arbitrarily
twisted wing over a wide range of angles of imcidence; The
experimehtal data used are pressure coefficient distributions
megsured on a flat wing of the desired planform at the desired
Mach number and over the desired range of incidemce; On come
paring the experimentally and theoretically derived perturba-
tion velocity potentials, he found that whether the wing was
flat or twisted, theoretical walues were in error by roughly
the same percentage at small angles of incidence, Consequantly,
the actual potential, ¢%', at a point could be represented by
some constant times the theoretical potential, @%,9 the constant
being mainly dependent on the location of the point and very

little dependent upon the source distribution which caused the
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potential, Thus,
bl =KP (9, ... (Ll1)
where K is a constant.

Gainer defines a square matrix, [:i¢] y of aerodynamic
influence coefficients which yield the theoretical values of
velocity potential in terms of the wing slope distribution,
olfr,4) s at particular points on the wing:

{&d 0} = [Se]fxCa9) . c e (Le2)
dquation (l.2) is adjusted as follows to fit the experimental

data: ,
(£, = [K][Sel{xtx ) e e e (1.3)
= EKJ{%qulx’y)} 3 Do (1.4)

where the elements of the diagonal matrix, ﬂKJ y are defined
by Zquation (1.1). |

Iquation (1.4) is now easily solved for EFQJ to give an
exact fit to one set of experimental conditions of {%&qﬁséw.ai}
and the slope distribution,{déxa5Q}. Alﬁhough there is no proof
that the BEquation (1.3) can be applied to the calculation of a.
potential distribution corresponding to an arbitrary twist
distribution, Gainer found that it did so for small angles of
incidence when [F(J was calculated from flat wing data.

For higher incidences, a non-linear correction becomes
necessary. The most suitable form for the influence coefficient
equationfor cambered and twisted wings is then:

{ﬁ"i’g_(" :3?} [K][S‘#J{“C"'y)} EKﬂLsdEI“(xaﬂ)Jio{[x,y)} . (1.5)

where the diagonal matrices [KJ and CKJ are calculated
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to give an exact £it to the flat wing data.

Sinnott (Ref. 5) has devised an empirical procedure whereby
he can predict the shock wave position and pressure distribution
on the upper surface of a particular class of aerofoil, His
method might be extended to finite wings as more experimental
data becomes available but it is notoriously difficult to
produce reliable information for transonic speeds. Besides, it
is likely that the method could only be applied to a flexible

wing by lengthy iteration procedures.
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Chapter 2.

Semi-Empirical Corrections to Linear Lifting Surface

" Theories

Many linearised aerodynamic theories (Refs, 7,8 and 9)
have been devised to calculate theload distribution over the
surface of an arbitrarily cambered wing, The choice of any
particular method will depend on the free-stream Mach number
and the aspect ratio of the wing to be considered.

The theories dealt with in this paper are those in which
the relationship between the pressure distribution, Ap(,4),
and the downwash distribution, OK@*:&D, =~ usually in the form
of an integral equation - is satisfied at a finite number of
points on the lifting surface. This results in a system of

simultaneous linear equations which can be expressed in matrix

(Pl = [Alfx} - | ..z

The load vector, {F& y 1s a column matrix, the elements of

form as:

which are the load components,Fz ,Fi_,FE ,....,PL,....,FL y
where P,: y & function of the pressure,Al?(x.:j), may be a discrete
1lifting force or moment at the "load point" (=,y); «» The down-
wash vector, {5<}, consists of the non-dimensional downwash
components, &, 4 Xy y Xzy00eey®j ye00eyXp, where o is the value
at the"downwash point!" (:c,y)J". Physically, & is the local

slope of the wing mean camber surface and is derived from the

boundary condition of tangential air flow to the lifting surface.
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The number of 1ift and downwash points chosen will depend
largely on the geometry of the wing and on the accuracy of the
answer required. A detailed account of their choice can be
found in the original papers., There are equal numbers, l? y OF
1ift and downwash points.

The square matrix,[]q] y 1s composed of load influence
coefficients, the element /\E} being the load at the tth load
point induced by a unit slope at the viUk downwash point.

In expanded form, the Equation (2.1) appears as follows:

(P -A"A,,_...A,j...A,P“ro(,‘

N I N SRR RO L
WP(, ‘5 éit é;z" ..A.i‘.i. e 6':(7 10:('3$ e . (2.2)
b L e e ] [

Calculations for this paper were made using Richardson's
theory (Ref. 8), a brief summary of which is given in the
Appendix. The load components, P y considered are the local

pressure coefficients ACPC’-'.&), at selected points.

§2.1 Derivation of the aerodvhamic corrections.

Since the load influence coefficient matrix, EA:] y could
be considered the source of the discrepancy between theory and
experiment, it seems logical, as Gainer suggested, to attempt
some modification to it to account for real fluid effects.

For a linear system in real flow, the influence coefficient,

independent of the downwash distribution, will be denoted by Aij.

here non-linearities occur, if we can think of a non-linear



=] ==

influence coefficient, the influence coefficient will be
denoted by %f“) o

Let experimental or corrected quantities carry the sub-
seript "EY and theoretical quantities the subscript "IV,
Detailed experimental pressure distributions will be required
for the wing being congidered with a known slope distribution
at the required Mach number. Quantitles pertaining to this
wing - usually rigid - will have the subseript "R",

Theory prediects the following loading for the rigld wing:

(P} =Tl fotl , s o o (203)

where {Pe}; is the theoretical load wsctor, LAl.. is the
theoretical linear influence coefficlent matrix and .{ﬁgi is
the wing slope veector, |

From ths experimental data for the rigid wing we can
emmgtruct a load wvector {ﬁékia Now, in whatever manner the
@ﬁp@rimemtal loading differs féam that glven theoretically,
it must svill satisfy the physical boundary coundition of
tangential £flow to the wing. Consequently, this condition
raquires the definition of a modified influence coefficient
matrix, Eﬂé@‘]& s Which may, or may not, be dependent on the
Local downwash, i;@;9

§Pa), =[A¢] {atad o e o (204)

Boguation (2.4) has now e be solved for the matrix @%@Qﬂ@o
It is impossible to find a uvnlgue solutlon without gome
gimplifying a@&umptiomg being mwade, but it muet be borne in
mind that simpliecity in epplication of the eorrestions is of



major importance,

§2,1.1 Method I (Point Theory).
LEEB@Q]eis a diagonal matrix then the elements are given

by A;_i(,o‘-)E_-'- (Pride./ (R} ) 5‘.5}
‘ - o ok b e o o (2,5)
and will be constant for linear loading. .
Physically, this implies that the loading is a point functio

of the local slope and although by design, the influence
coefficients, A;(*), , of Equation (2.5) give the correct loading
for the rigid wihg, intuitively they might be expected to

become progressively‘moreaand more inaccurate as the slope
distribution increasingly differed from that of the rigid wing,
In fact, this is not so as will be shown in Chapter 3. This
method might give acceptable results for very high supersonic
Mach numbers when only a small portion of the wing can affect
each point. Thie is partly the justification for the use of
Piston Theory (Ref.1l0). However, only investigation of the
available data can determine whether reliable results are
obtainable, |

When the loading 1s non-linear the influence coefficient,

Aiﬁﬂbe » will depend on the local slope and we must then resort
to & curve-fitting technique. In Chapter 3 it is found that for
the rigid wing the load at point(ﬁaybg, with local incidence
Xg; » can be represented quite adequately at low angles of
incidence, where the loading 1s linear, by:



(%LC"‘D&“ Qio e 9 e o o (2.6)

and for high values by:
CPRL@())EE QA+, Xp +a;_30(;‘-‘ 5 ¢« o o (2.7)
where Q;, ,4; ;R4 ,R;3, are constants.

In the former case, the loading is assumed to be antisym-
metric about ﬁhe origin,¥g; =0 , and in the latter case only
large positive angles of incidence are considered. To deal
with 1arge negative incidences all that would be required would
be to rewrite Equation (2.7) as:

(Peil®)), = =@y, + Qe ~ Riadr;  » e o o (2.8)
in which the constants are unchanged; We ignore this case since
usually we are only interested in the behaviour of the aircraft
at large positive, and not negative, incidences;'

In general then, the load vector for the rigid wing is:

{PR}E = [a,] «[aa]{xg} +[as] (&} e o o (2.9)
where the equation appropriate to linear loading, Equation (2.8),
is a particular case of Equation (2,9)..

In Chapter 3 we shall investigate the applicability of
taking the arbitrary mode load vector, {ng y Lo be:

(#, - [ad+[ad{d ofadxd, . . .o
where &{(x,9) is the slope distribution of the arbitrarily
twisted wing at incildence,

This method of obtaining influence coefficients which are
consistent with experimental data, is about the simplest possible

and may be thought of as a surface anhalogy to the two-dimensional
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strip theory used for high aspect ratio wings. It will be
shown in Chapter 3 to give good resulits for a wing of moderate
aspect ratio at high angles of incidence for near-sonic Mach

numbers,

§2.1.2 Method II.

The next modification attempted is to the theoretical
influence coefficient matrix [j{lr, l.e4y
[A)], =[&](A], e o . (2,11
where the matrix [ﬁﬁl is sqﬁare.
| Then,:for the rigid wing, the experimental load vector is:

(P, = [&I[AT{xe] | e o o (2,12

and so,
{9&35‘@](%7' e« o o (2.13
As with Equations (2,4) and (2.5), Equation (2.13) can
only be solved for matrix [&] if it is = diagonal matrix, i.e.,
Gy = (e /(Aeidr “’”‘} . . . . (2014
- O Lok
Although there is obviously no proof that the corrections
can be applied to the calculation of the loading distribution
corresponding tovan arbitrary wing slope distribution, it seems
reasonable , as in the previous section, to assume that where
the slope distribution differs only slightly to that from which
the correction factors, Gii , were derived, that by applying
them to this distribution a close approximation to the experi-

mental loading can be obtained. In Chapter 3 the ratio (&ﬁg/@i)r



-]
is shown to be nearly constant for small angles of incidence.
The modified load vector, {p}E_, for some spanwise twist
mode , fﬁ} s 1s then:
{f1_=[ai[A] {4 e o . (2,18)
=[&]{Fl_ - e o . (2,16)

where {R}r is the theoretical load vector for mode {%}

Squation (2.,18) illustrates the point that although matrix E@J

is a correction to the theoretical influence coefficient matrix,
the corrected loading for an arbitrary mode can be evolved from
knowledge of only the load vectors. Copsequently, theories

which provide loading distributions and not influence coefficients
may be treated by this method,

When expanded, the modified influence coefficient matrix is:
-GnAu Cll L au e Gu A, P 7
Gz.'LAZ‘ G!I.Al]_ P a;’_ RR‘J - ® G zzA;P

. . (2017)
(_A‘]Eg" abl« A“ Gu in® * auAtJ S &;(, A;# .

Lﬁw"p\ ath(u' *@Mm . &H:AH@
and implies that the Lload component at point cx,y); induced by
unit downwashes, & , at the points ﬁx,ylj, jﬂ-LZ,QP..F», must
be factored by &Qii to correct for real fluld and wing thick-
ness effects. That is, the correction depends not on the
inducing point but on the point induced.

In Chapter 3, G.;; is shown to vary with the local slope,
Ap:; » at high incidences and, as in Equation (2.7), a low order

polynomial representation can be used:
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&LL(“)"‘—" b‘;, ¥ b;,_oc; + 19;‘,3"(? 39 e o o (2.18)

where the constant coefficients b“ ,Eaz,kas, are obtained by
a curve-fitting procedure on aaz("(fz) « As in the previous
section, only large positive angles of incidence are consider-
ed, Tt is assumed that the local correction factor is a point
function of the local slope and consequently can, by interpols-
tion, be applied to any slope distribution, 0((‘»’5,34) .

The modified load vector for mode O(x,y) , as a function
of the theoretical load vector, is, from Eguations (2.16) and

(2.18):

{}. = [E0]+EbaJ[%] 45.53315"‘?] Pl . . eas
Pl =[a] {45 . . . (2.20)

Calculations in Chapter 3 show how significant improvements

where,

are obtained over theory using the above corrections,

§20.1.3 Method III,

An alternative modification to the theoretical influence
coefficient matrix might be to post~multiply the influernce
coefficient matrix by a correction matrix:

(A), - (ATE&] -

where the rigid wing experimental load vector is:

P = (AL Erd{oe} o . o . (2.22)

(2.21)

Hencey
(2.23)
(2.24)

®
L

(AT, {7}, - E<]fxe] = foel, » -

5Ky e OrDe /() -
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The downwash vector, fﬂg}E, may be thought of as an equiva-
lent slope matrix and represents the physical wing slope distri-
bution, or more precisely, the slopes at the downwash points
required to produce the same potential flow loading on the rigid
wing as the loading obtained experimentallr. Here, the correctior
mav be applied to the downwash vector rather than directly to
the load vector,
The corrected loéd vector, {Fﬂe y for mode {ﬁ{} becomes:
{P3, - [AD [xI{x} = [A] {«]_ . o . (2.25)
and for non-linear corrections,
(P, - [, [fed BT sfeadlel] (o] L L L s
Unlike in Equation (2.17), this correction depends upon
the inducing point and not on the point induced. It is not
pursued in detail and is introduced here only in connection
with the treatment of control surfaces which are dealt with in

the following section,

§2.2 Control surfaces.

The controls envisaged are of the form of flaps, ailerons,
or elevons. Such controls. represent chordwise and spanwise
discontinuities in the slope distribution of a wing and the
functional representation of the associated pressure distribu-
tions in subsonic flow involves singularities along the discon-
tinvities (Ref. 11l). No such complications generally arise
at supersonic free-stream Mach numbers.

Present dayv subsonic theories strictly can cater onlv for
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continuous downwash distributions since they do not incorporate
the appropriate singular loading functions. lowever, means
exist wherebv this shortcoming can be partly overcome,

Kichardson proposed the use of equivalent slopes (lief, 18)
to replace the true values, These are defined in such a way
that the continuous loading functions give the same integrated
loadings as do the discontinuous functions, at least for the
two~dimensional chordwise and slender wing theories. For
chordwise collocation points the integrated loadings take the
form of total chordwise 1lift, pitching moment, second pitching
moment, up to the C*v-bbk pitching moment: in the spanwise sense.
they are, for a semispan and M collocation stations, the
total 1if't, rolling moment, second rolling moment, and up to the
(wm-1B rolling moment.

The theoretical aerodynamic derivatives produced are not
entirely satisfactory but until the appropriate control loading
functions are included they must suffice. In aerocelastic
calculations, matters might be improved somewhat by the methods
of this paper, but this must still be demonstrated. Although
the modified theoretical pressure distributions cannot agree in
detail with experiment since non-typical loading functions are
used, there is the assurance that the corrections applied give
the correct pressure at the selected load points for the rigid
body mode, The deviations from experiment are thus controlled,

It will be interesting later in Chapter 3 to compare the

experimental equivalent slopes,‘QXgSE, of Bguation (2.23) with
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Richardson's theoretical equivalent slopes.

The practical treatment of controls is discussed further

in Chapter 4 where the correction of liethod II is applied to
the static aeroelastic equations for a flexible wing with a

control surface,
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Chapter 3.

Results.

It is now necessary to establish Jjust how well the sugges-
tions outlined in Chapter 2 can improve the predicted loading
on a flexible wing at incidence.

The present investigation will be confined to near-sonic
Mach numbers for swept wings of moderate aspect ratio. DRather
than become involved in the lengthy calculations required in an
aeroelastic analysis, it was considered a sufficient test of
the method to apply it to rigid wings with varying amounts and
distributions of spanwise twist. The prediction of wing camber
loadings, which are of more importance aeroelastically on low

aspect ratio wings, is left tc a later report.

§3.1 The models.

References 12 to 16 provided the neéessary experimental
pressure distributions. They were obtained from tests in the
Langley 8-foot transonic tunnel for a Mach number range of 0.8
to l.2 on the wing-body planform of Figure l. The wing had 45°
sweepback of the quarter-chord line, an aspect ratio of 4, and
a taper ratio of 0,15, The wing section was an NACA 65A206,
a=0 at the root, varying linearly in thickness to an NACA
65A203, a=0.8 (modified) at the So-percent-semispan station,
then remained constant to the tip. Flush-mounted pressure pick-

ups were located at six semispan stations on both upper and
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lower wing surfaces. These were at the stations y/s=0,12, 0,25,
0.40, 0,60, 0,80, 0,95,

Pressure distributions were available for the geometrically
untwisted wing and for it with linear, quadratic and cubic span-
wise twist distributions. The wings were flexible and conse-~
quently had additional twist distributions due to the distortion
under the aerodvnamic loading., These were provided or could be
calculated., Thus, the actual spanwise twist distributions were
known under all loading conditions.

Despite this additional twist, for convenience the wings
are called respectively:

Planar Wing I ... Ref.l1l2,

Planar " IT.es Ref.13,
Linear " see Ref,l4,
Quadratic veoo Ref,15,
Cubic oo ess Ref,.l6,

Figures 3a-3c¢c show the total twist distributions - geometric
plus elastic - for the Planar Wing I, Linear and Cubic VWings at
several values of root incidence and for M=0.,80 and 0,94, These
are the only cases deal£ with in detail, The test Reynolds
numbers for the two lach numbers are 2.62*106and 2.81X106respec—
tively. The root-chord slope, X, , and the local flexible wing
slope, O(f , are quoted where necessary,

Deviations in Mach number in the tunnel test section do not
exceed +0,010. The accuracy of the pressure measurements in

coefficient form is believed to be less than *0.006 and is well
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within the accuracy of a graphical representation of pressure
distributions, The measured root=chord incidence, o{, , is

124
correct to within iO.l?and the calculated twist, &, , to #0.25.

{3,2 The "rigid" wing theoretical and experimental pressure

distributions.,

The wing from which the corrections are obtained - the
so=—called rigid wing - is the Planar Wing I, The Planar Wing II
is also used for low incidence corrections,

Theoretical pressure distributions, calculated using the
standard Deuce computer programmes for Richardson's theory (sece
the Appendix), are compared with the corresponding éxperimental
values in Figures 4a-4c. Collocation at five chordwise points
and six spanwise stations was chosen, Only chordwise pressure
coefficient distributions (obtained by interpolation) for the
two spanﬁise stations y/s=0.40 and 0,80 and the two Liach numbers
0,80 and 0.94 are considered.

The original wings of Refs, 12 to 16 were cambered and an
attempt was made to remove this effect by subtracting the pressure
coefficients for the Planar Wing I, X,=0, from those of all the
other wings over the complete range of incidence. The twist
distributions of Figures 3a-3c¢c have had the twist due to this
camber loading removed,

In Figures 5a-5d, the modulus of the pressure coefficients,
!ﬂéipl s for the Planar Wings I and II are plotted against the

modulus of the local wing slope, ic&] s for particular points on
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the wing. Only the plots for three chordwise points are
presented although a total of five points is used to predict
the improved loading distributions for the Linear and Cubic Wings
in §3.3. By the method of least squares, straight lines - a,l&|
for low incidences and aq+ﬁ1kﬂ}fkn'high values - are fitted
through the points plotted.s A straight line fit was found to be
adequate in this instance.,

Modull of values are taken since data was available for the
Planar Wing II at negative values of root-chord incidence, The
plots are the basis of the Point Theory outlined in §2.1.1 and
demonstrated in §3,3.

In this exercise, the load components, F} 5 are the pressure
coefficients at selected points on the wing, éx,QDE o Figures

ca=-6d show the correction functions,

Gii =(ACedre/ (ACEDrT 9
defined in §2.1l.2, for the Planar Wings I and II plotted against

the local slope, |°&| « The plots suggest that &3 be a
constant for 15w incidences and for high incidences that it be
of parabolic form with respect to IO&I o

The pressure coefficient, ﬁMSbg, and the correction factor,
Clii s are assumed to be antisymmetric and symmetric resgpectively

with the local slope, &; .

§3.3 Corrected merodvnamic loadings.

The theoretical pressure coefflcient distributions for the

Linear and Cubic Wings over a wide range of root-chord incidence,

o{, , were calculated using Richardson's method, and are presen-
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ted for the two Mach numbers 0.80 and 0.94 in Figures 7a-7c,
8a-8c and 9e-8c, They are compared with the experimentsl
valuea obtained from References l4 and 16, The elastic contri-
butions to the spanwise twist are given in Figures 3b and 3c.

Values predicted by Methods 1 and II of Chapter 2 are
superimposed on Figures 7a to 9c, ThelPoint Theory pressure
coeffiéientsof Method I are obtained by reading from Figures
5a-5d the value of ACp; appropriate to the local wing slope,Xf; .
This gives the pressure coefficient at specific points on the
wing. Method II, as given by Equation (2,16) or (2;19), congists
of multilying the local theoretical pressure coefficient by a
correction factor, G;; , which is obtained from Figures 6a-6¢c
for the appropriate losal wing slope.

The spanwise running normal-force and pitching moment
coefficients about the quarter-chord, CZN and C:nb, are plotted
against the local slope, Xy , in Figures lla and 1llb for all
wings at the stations y/8=0,40 and 0.80., A line is drawn
through the Planar Wing I values, The plots are assumed to be
antisymmetric about the origin. Theoretical and experimental

C. and C,, distributions are shown in Figure 12 for the
Linear Wing at M=0,94 and X, =4  and 12°, The pressure
coefficients at the 1lift polnts can be converted to the local
normal-force and pitching moment with the aid of Equations
(As7)y (A.1l) and (A.12),
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§3.4 Control surface loading distributions.

In §2.1.3 1t was shown how an experimentel equivalent
slope distribution could be obtained for a wing with a control.
we apply this now to the wing-control configuration of ifigure 2
for a Mach number of 0,94,

Reference 19 provides the pressure distributions on the
starboard semispan only, produced by a deflection of 14356 of
the starboard control, Spanwise running normal-force and
pitching moment coefficients are known for both semispans and
so the distortion under loading can be calculated. At the port
and starboard tips the twist was found to be =0.,16 and =1,09°
respectively. The spanwise variation is assumed to vary
linearly from the tip wvalues to zero at the wing root.

The pressure distribution_for this control angle also
included a contribution due to a wing root-chord incidence of

o, =0,2 . This was removed by subtracting 2/3 of the pressure
distribution given in the same report for a wing slope of &,=0,3
and zero control deflection, Due to the relative magnitudes of
the various wing slope contributions, the wing distortion was
assumed for simplicity to be due entirely to the control load-
ings and not on the aeroelastically induced loadings.

We require to calculate the theoreticai aerodynamic influ-
ence coefficients for a wing with an asymmetric slope distribu-~
tion; The computer programme provides those for symmetric and
antigsymmetric conditions. It can be shown that these are respec—

tively the sum and difference of two matrices as follows:



[Alsyn = (o] +[b] o
and, LAJ Mtbﬁ‘%g [_&.J - [:_b_] N

where matrix [a] is the pressures on the starboard wing
produced by unit slopes on the starboard wing and [ﬁﬂ gives
the pressures on the starboard wing produced by unit slopes

on the port wing. By matrix algebra,
[a] = £ [ Asyn + Asnbsyn] 5

=ne, (0] = 4 [Arpms ~ Aamtige] s

Hence, the starboard wing experimental load vector, derived

from the pressure distributions, is:
{Beba] = EQJT,ﬁxsﬁbdjﬁ *’E}iLFQXFW¢}E

= [ad {dsesafes
where we have neglected the twist on the port semispan since

it is wvery small relative to the slopes on the starboard semi-

span, Consequently, 0
{ﬂsébdjﬁ = [EH]T iféibdjﬁ .

In Figure 13 the theoretical pressure distribution using
Richardson's equivalent slopes for the control is compared
with the eiperimental pressure distribution. Figure 14 shows
the theoretical and experimental equivalent slopes.

It is stressed here that the above is merely intended as
a demonstration of the method. Obviously there are gross
assumption involved but neverthelcss it is felt that the results
give a reasonable indication of what may be obtained with more

precise knowledge of control surface pressure distributions,
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Chapter 4.

The Static Aeroelastic LEquations.

So far, little has been s2id about the application of
the aerodvnamic corrections to an aeroelastic analysis. Obvi-
ously, to prove their applicability we must investigate the
analysis in some detail. Attention will be confined to the
method of direct collocation, in which the displacements at a
finite number of selected points on the structure are considered
as separate parameters and the lumped forces at these points
equilibrated. The equations for the continuous wing are thus
reduced to a svystem of simultaneous linear algebraic equations
which can be solved by matrix algebra.

Before deriving the aeroelastic equations, a few initial
thoughts are presented on the application of the aerodynamic
corrections.

We have seen in Chapter 3 that for low incidences the
modified aerodynamic influence coefficients are independent of
the wing slope distribution. Consequently, the modified matrix
can be applied in exactly the same manner as the theoretical
influence coefficient matrix., However, problems arise, as we
shall see subsequently, whenever non-linear corrections are
necessary.

Usually, elastic displacements are of an order smaller

in magnitude than the displacements in the applied rigid body

modes, say, of incidence, pitch, roll and control deflection,
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Thus, it might reasonably be assumed that the aerodynamic
loading induced by the structural deformation is merely a
linear addition to the possibly non-linear rigid wing loading.
In other words, in the aeroelastic analysis, the experimental
aerodynamic loadings for the applied rigid-body wing modes
could be used in conjunction with the theoretically derived
linear loadings for the distortion modes. However, if distor-
tions were large, a complete non-linear analysis would be
required,

The deformation of a lifting surface with cbntrols can be
expressed as a sum of continuous and discontinuous parts. This
is necessary since, by their nature, different corrections must
be applied to each component, We have not yet demonstrated
that any of the methods of this paper will give satisfactory
improvements to predicted control loadings; nevertheless, it is
felt that improvements could be obtained if not by the present
methods then by some similar simple procedure. The aerodynamic
corrections can be obtained from measured pressure distributions
for the rigid wing at incidence (continuous) and for the same
wing at zero incidence but with the control deflected (discon-
tinuous).

Rather than investigate the application of all three types
of correction to the aeroelastic equations for all possible
conditions, we will treat a particular case of a wing with a

control. Method II will be used.



$§4.1 Analysis.
A structural slope influence coefficient matrix is defined

by the square matrix [©] , where the element O;; is the
elastic slope at the structural node(ﬁadh produced by a unit
load element at the point (¢, Y); . The matrix contains the effect
of wing, control and control jack flexibilities and consequently,
contains control slope discontinuities., These can be separated
in such a way that, .

(6] = [6.] +[6a] e o o (41)
where matrix [_94 has an entirely continuous slope distribu-
tion and matrix [9@3 is essentially discontinuous, In EedJ,
the slope over the wing is zero and only points appropriate to
control structural modes will have non-zero elements.

The flexible wing slope vector can be expressed as a sum
of rigid and elastic structural contributions:

{e] = {ote} + {5} e o o (442)
and in terms of continuous and discontinuous components:

{}Xp} ={dg¢} -l-{o(gd.} + {O(Sc} "‘{dsd.} ’ e o o (4.3)
Assuming that, although by themselves non-linear, when
taken together the continuous and discontinuous slope loading
contributions are linearly additive, then,
{,pf—‘}; "E&c(‘x&ﬂ[_ﬂlr{d&} "'E&(ﬂp&ﬂ[ﬁ],‘, {O(Fd} N : o (4.4)
where [Q06Q]is of the form:
[66)] = [b] +[b2Jfx] +[ba][x?] s . o . (4.5)
as in Equation (2.18).
1f distortions are small compared with the rigid body
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contributions, then,

feee)] = [REwR)] e o o (4.6)
and,

{Pp};[GJmﬂﬁA]T {o(“wt“} +EG¢C°"M}][AJT {Ofgd,“"“sat,z 9 o o (4e7)
Now, the elastic distortions in terms of the loadings are:
{xse} =[Bel{fec)e *(0){Pra) = (OI{Pef. 5« « . (@e®

and similarly,

{xsa} = [(Bal{Pefe e o o (4.9)

Therefore, substituting these in Equation (4.7),

{Pp}e = (€ (oire)] [AJT{‘X Rc} +[CA (o)) [AJ_r {x gd,}
+ [Facbnal[l (6] + fa cerd)] (AL B d:ﬂ gp,,_;}g s o (4.10)

from whichs: _\
{63, = [[22-Boebed]TAT (o] - Tt e J0AT, 0l | e tFead, . €103
where g?;,; e and f?gd,z& are the continuous and discontinuous
rigid-body experimental load vectors resectively. The slope
distributions, Xge and g4 , are known and so fPE}E can be
calculated.

It was suggested earlier that it may be sufficient to
treat the induced distortion loadihg by linear theory. Zquation

(4,11) can then be shown to reduce to:
-1
{Pe)e = (B2 - (A3, 000] {PectPral, » . (4.12)
gf_ﬁigm[ﬁ‘],r[p]r{?g}& R o o o (4,13)

which has the advantage that the difficult part of the calecula-
tion, namely the matrix inversion, remains unaltered with differ-
ent applied rigid-body loading conditions,.

At sufficiently low angles of incidence, the correction
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matrix, EC?J s 1s constant and so:

(o - (-0 J P3G Bal] Rerbead, - - (o
Unlike with FEguation (4.11), the above inversion will remain
unaltered by the rigid-body loading condition provided +that
it be for a low incidence.

When distortions are relatively large, it may be necessary
to use the correction matrix:

[G.exeY] = [b,] +[ba][ote] [bo]fxe] e e . (4.15)
k (by] +[b, J[werets] +[b, J[ e +2%e0%s] . . (4.16)
where the term in d:' is neglected in comparison to ch' and
Qotedls , Equation (4.4) must now be written as:
{Pf:zg = [Qcbted][A). $ec *0‘5:.3 +[C¢(°‘F¢\_][A_]Tfo(k Aw(s,,-(} . e (4.17)
and is best solved by iteration. By assuming that:
{Fszﬂ = {Pg}e_ ) o s s+ (4,18)

the first approximations are as follows:

€°‘Sc3 : [6.] {Pg}

and, . > e o o (4,19)
(sl = [0alffe],
On substituting Equations (4.12) into (4,17), the L.H.S. of

Equation (4.17) will yield a second approximation,{?%ng y to the

flexible wing load wector. Then,

Yo(ﬁf-} [;B Jfﬂ‘gez
i‘“sd}z = [.96"-]{?“‘} E2

and s0 ONsoos e

. . o e (4.20)

The assumption that the continuous and discontinuous slope
loading contributions are linearly additive may be unrealistic

at times, but to consider the alternative could lead to a -
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prohibitive amount of work in deriving the corrections,
Detailed pressure measurements would be required for the wing
over a range of incidence with the control angle varied for
each value of wing incidence. However, there is nothing to
prevent the use of such data, if available, as the rigid-body
load vector, {ﬁgc, ‘i'ngL}E, for example in Equation (4.11), but
treating the loading induced by the distortion in the above

simplified manner.



=35

Chapter 5,

General Discussion and Conclusions.

§5.1 Evaluation of method.

The speed and flexibility of present-day and future air-
eraft require that many aerodynamic effects, hitherto ignored,
must be accounted for in an aeroelastic analysis. FHowever, at
present,theory alone is incapable of dealing with such effects
and to be of practical use in aeroelastic calculations, any
empirical modification to theoretical aerodynamics must be simple
and must satisfy existing data.

The methods of this paper, explained in Chapter 2 and
similar to those applied by Galner (Ref.l), are probably the
simplest type of correction but even they involve a substantial
increase. in labour,

Chordwise deformation of the wing in Figure 1 was considered
to be negligible and only normal-force and pitching moment twist
influence coefficients are provided in the original papers (Refs.
12 tb 1l6). Consequently, although detailed pressure distributions
are investigated in this research, it would have been sufficient
to have obtained an accurate assessment of chordwise 1lift and
pitching moments in order to calculate the distortion.of the wing
under loading. However, this 1s not so for lower aspect ratios
for which chordwige bending is important and for which detailed

preassure distributions are essential. It may be hoped that a
unified method of correction can be developed which could be
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applied with confidence throughout the complete aspect ratio
ranges i1f not, one must know precisely the limitations of the
method, For this reason, detailed pressure distributions are

considered herein,

Predicted pressure distributions for the twisted wings.

The measured pressure ccoefficient distributions for the
Linear and Cubic Wings (F'igures 7a-7c, 8a-8c, 9a-=9¢) show the
same essentlal features as those for the Planar Wing (Figures
4a=4c) but modified by the differences in spanwise twist; At
the wing tips this difference in twist is of the order of 5°
even at low root-chord incidences, The geometric twist accounts
for the greatest component.

Although M=0,80 is treated, the Mach number of 0,24 is of
main interest since the measured loadings differ more markedly
from those predicted theoretically. The discussion of the
results will be confined to this case although the remarks made

will be seen to apply also to M=0,80,

Low wing incidences. Figure 10 has been drawn to compare the

chordwise pressure distributions for the Planar, Linear, and

Cubic Wings at G&934@59for M=0,94, It is clear that the rear
shock occurs at almost the same chordwise position for all

three wings except near the tip of the Linear Wing where it lies
slightly farther forward than for the other two. This could arise
possibly because the Linear Wing slope at this station is negative

However, the varliation is small (within 10% of the local chord),
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Thus we are led to the conclusion that not only is the position
of the rear shock invariant with wing root incidence (see
Chapter 1) but also with spanwise twist distribution - a
convenient property for the aerodynamic corrections,

Other points to note from Figure 10 are that at y/s=0,40,
where the Planar and Cubic Wing slopes are nearly equal, the
pressure coefficients are nearly equal. Conversely, the smaller
slopes of the Linear Wing give rise to correspondingly lower
pressures, At the tip, the greater the nose-down twist, the
greater is the load shed, i.e. the Linear Wing shows smaller
pressures than does the Cubic Wing, Comparison of the theoreti-
cal load distributions show that they vary with twist distribu-
tion in approximately the same fashion. All these facts combine
to suggest that, by trial and error, we may indeed succeed in
deriving an aerodynamic correction procedure which could be
applied with some degree of éonfidence.

Figures 8a and éa show that theory does not agree with
experiment but that the corrected values of Method II, although
not defining the rapid chordwise éhanges in loading due to the
rear shock, are an impfovement on theory. Certainly, there is
an improvement in the local 1ift and pitching moment at the tip
where it will be most important; The Point Theory results of
Method I give poor predictions for the loading near the tip
but at the root the improvement is comparable to that produced
by Method IX., One important disadvantage of Point Theory is
highlighted by Figure 8a, and that is that the predicted
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loading takes the sign of the local slope,which in this case
is negative and so produces negative instead of positive
pressures. It is clear then from this and also Figure %a that,
where a verv large twist exists relative to the applied wing
incidence, the loadings predicted by Point Theory are unreliable,

The plots of the correction factor, & , (Figures 6a-6d)
show a lot of scatter at low incidences, especisally for y/s=0.20.
There is not a sufficient number, nor an adequate distribution,
of points to tell us whether this scatter implies the omission
on our part of some important effect, .The best that could be
done -~ and there was some Justification - was to take the mean.,
However, the fact remains that we have "smoothed away" the rapid
change in loading produced by the rear shock. Obviously, this
needs further investigation,

There are several ways in which we can be in error. In
calculating the theoretical pressure distributions we employed
a 5 chordwise point collocation and subsequently modified the
pressures at the 1lift points only. Although increasing the
number of collocation points would not alter substantially the
theoretical distributions, it is conceivable that we require to
modify the pressures at a larger number of points. The theoreti-
cal loading functions presuppose an infinite pressure pesk at
the leading edge and zero pressure at the trailing edge. Thus,
the modified loadings are unable to yield finite pressure at
the leading and trailing edges - a loading condition which can

occur at transonic speeds.
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A more regular pattern of results with less scatter is
evident for the plots of pressure coefficlent against local
slope (Figures 5a-5d), and since we do not get good predictions
from Point Theory this implies, not that there are errors or
inaccuracies, but that the assumptions of this method are Jjust
not valid within the transonic regime for such wings at low
incidence., Iowever, the method is not without its uses as we

shall see,

High wing incidences. As the root incidence, &, , increases,
the differences in twist distribution remain approximately
unchanged (-5 at the tip) but they become relatively less and
less significant. 5So, intuitively, we might expect smaller
differences in the loadings.

Tip separation occurs for all three wings at about Xy =8°
and progresses inboard as incidence increases., Figures 5a-5d
indicate that the magnitude of the chordwise pressure
coefficients depend mainly on spanwise pdsition and are almcst
independent of local wing slope and Mach number, The chord-
wise pressure distribution is typically trapezoidal in form,
As might be expected, the Point Theory results improve
noticeably as o, increases until, for ©¢, =20°, the agree-
ment with experiment is remarkable (Figure 9c).

The results of Method II, which proved superior at low
incidences, give good agreement with experiment at these higher

incidences but in most cases are no better than the Point

Theory values., The latters simplicity could make it of great
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use in aeroelastic analyses,

Spanwise normal-force and pitching moment distributions.

It is not altogether surprising that, with the regularity
of the pressure plots of Figures 5a-5d, the local spanwise
normal-force and pitching moment coefficients, C,, and C, ,
for all the wings can be collapsed as in Figures lla and 1llb.
The least scatter is obtained for values at the spanwise station
y/8=0440 where the slopes for the wings are all nearly equal,

For a wing of this aspect ratio and planform, a sufficiently
good approximation to the deformation can be obtained from the
loading considered as concentrated at the flexural axis in the
form of a 1lift and pitching moment, Figures lla and 11lb
suggest that theyv may be predicted by a two-dimensional theory
knowing the corresponding values over a range of incidence for
a wing with known twist distribution;

Filgure 12 illustrates how the measured and theoretical
spanwise 1lif't distributions agree at low root-chord incidence.
At higher incidences, they disagree since the leading edge
vortex causes loss of 1lift at the tip and a peak further
inboard. The agreement with the pitching moment is poor,

The modified pressures of Figures 8a and 8c give much improved

values of 1lift and pitching moment,

Control surface loadings.

There is in general very poor agreement between the theore-
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tical and measured pressure distributions, due, principally,
to the form of the leading functions as explained in §2.2.
The equivalent slope distributions differ appreciably,
especially over the control itself., It remains to be demon-
strated that the control loadings can be improved by any of

the above methods.,

§5.2 Extensions.

Other planforms. So far, in this paper and Gainer's (Ref', 1),

wings of moderate aspect ratio with high quarter-chord sweep
have been investigated for transonic and supersonic l'ach
numbers., Bubsequent exercises must deal with the low subsonic
regime and other classes of wings, especially deltas.

It is possible that the corrections for one wing may be
applied to another wing of slightly different planform, If
the wings differ substantially in sweep, aspect ratio or
thickness/chord ratio, then possibly the aerodynamic similarity
rules (Ref.,20) mav be utilised in some way to enable the
corrections for one wing to be applied to another. This
facility could be useful in the event of there being no available
measured dataAfor the wing being considered.,

Provided the rigid wing measured pressure distributions
contain the effects of a fuselage (as do those of the present
report) or any other bodies such as engine nacelles, tip stores,
etc., then their aeroelastic effects can be assessed by these

methods.
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Cambered wings. As aspect ratio decreases, the camber and

camber loadings hecome more and more important and consequently
investigation must be concentrated on these, Cnly llethods IT
and IIT are likely to give improved results over theory since,
as was noted in §5,1, the Point Theory distribution will take
the sign of the local slope which is unlikely to give reliable

results.,

Oscillatory motion. The extension to oscillatory motion is

difficult to justify since so very few oscillatory pressure
distributions have been measured, It is recognised (Ref, 17)
that usually the non-linear effects of shock wave and boundary
layer interaction and flow separation'are markedly reduced
during unsteady motion, although at low frequencies these
effects are still present but are not so severe,

The matrix equation relating the oscillatory loading to
the downwash dlstrlbution is:

{’P + LP} [_A(V)+ RV B(?)_] {(x-r u?fv} )

where V =£-3£/V is the frequency parameter (C-J = circular
frequancy, £ = typical wing length, V = airspeed), X is
the in~phase downwash and ¥H 1is the out-of phase downwash,

Provided that suitable oscillatory pressure distributions
were avallable, one could "correct" the oscillatory influence
coefficients to fit this data by modifying the in-phase and
out-of-phase components separately. However, it is by no means

certain that the modified influence coefficients could be
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applied to any other mode. This would require very careful
investigation.

For low frequencies, the above equation reduces to:
{PI+LFL}-[A+E'VBJ{_°(*LVA} )
where the matrices LA:_I and r_BJ are independent of
frequency. Matrix [_A_] is the steadff aerodynamic influence
coefficient matrix which we have been studying throughout this
paper. The loading can be split into four components:

(i) [_Aj(ot} in-phase loading due to in~phase downwash,

(ii) -'VT_GJ {L} a H " " out-of-phase downwash,
(iii)V[ﬁﬂ{@] out-of-phase loading due to in-phase downwash,
(iv) VI:HJ {K} L " " " out=-of-phase downwzsh,

Components (i) and (iv) could possibly be corrected by emploving
the influence coefficient matrix, [_RJE y modified from known
steadv pressure measurements, in place of the theoretical
matrix, [A] . Method IIT would yield equivalent slope distri-
butions for {o(} and the correction factors might be applied
to the out-of-phase downwash vector, {A} « Thus, the remaining

two components, (ii) and (iii), could be modified.
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Appendix.

The relationship between the pressure distribution, Af?@'—, y),
and the downwash distribution, WsYy) , is:

L9
K(*o0y4) =~ 2% sf f e ;)z Ko %'ﬂdxo(y .

. . (A1)
where,
K (Xods) = W, 9D/ V . )
L, D= Aple, 9 /5pV7 v e . (A3)
and,
o=
Kéeorx,4-9)= KX, Y)= | + . . (A.4)

S [ee-28 + g%y, y>*]
The kernal function, K(X,Y) , is such that —KOGY)/8RYY  is
the non-dimensional downwash, K (o, :'I.D, at (*,Y,) induced by an
incremental load d=xdy at (x,4) .,
The basis of Richardson's method lies in satisfying the
integral equation at a finite number of selected points on
the lifting surface, This allows the replacement of the integral
equation (which contains the 1lift and downwash as functions) by
a system of simultaneous linear algebraic equations (containing
the values of the 1lift and downwash at the selected points) which
can be expressed in matrix form., These 1lift and downwash points
are carefully chosen to ensure the maximum accuracy from an
equation of given matrix order,
The following non-dimensional co-ordinates are defined:
8= (e-Xyem/iclnd 5, -1 S 5*-1}
n=d/s, NPT ’ e o+ o (A5)
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The variation of 1lift over the wing is expressed as the

double series: -t

we g P
l(f, "L) = E:-'(_')“é .:J(‘Zw)jn(?) % LC""‘Z")Aﬂ, C%) e o (AsB)
2

where —e(g,,"lﬁ)is the value of the pressure differential,Alb/‘:‘z'“PVz:
at the 1lift point, (5,3"240, and 4165) and 9,“_("),) are chord-
wise and spanwise interpolation functions. The chordwise 1lift
distribution, defined by A.)Ci) s is such that a characteristic
infinite peak existe at the wing leading edge falling to zero
at the trailing edge. The.spanwise distribution tends to zero
at the wing tips in the manner A /"”1,‘) .

Richardson goes on to define a set of equivalent discrete

loads concentrated at the 1ift points:

p"%"‘“‘v&w cé"}.&lc;‘pﬁﬂj R .« . ..(A.'7)

such that: -t
.E_ 5 é P Fa(8) In0D

L(5 ) o) é;‘ *3 THy G 2 s (®)

o+
) .

where, o - -;_[A.,Cs)acs ., o (A9
and r

SRR E S PROLENE s o

The only restriction on the use of the discrete 1ift forces,
Pw y is that the downwash distribution must be a continuous

function expressible as a polynomial,
The spanwise distributions of 1lift and pitching moment

about the local quarter-chord are, in terms of the equivalent
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loads: - mt b 9 (11)
Ce("z)"z@.‘z)%épq g 5 e o o (A1)
3 vy
_ wmp P
Conlp) = %cq,) Z Fq dg 3n () s o o o (A2)
where, U v
da = (xpc=2d/cl) - oo e (A413)

In non-dimensional co-ordinates, Equation (A.l) can be

written as: +1

(50700 = 4-::5 (c("z;) [g(gﬂk{( xD,ZH,'Hfifd*z. (A.14)

The 1lift distribution of Equation (A.6) can now be substituted
in Equation (A.14). This gives:

“Csn"lv\“za "EL_A[_ ? l; 3 {zy‘} flv,li) K ‘7‘)(.‘&'3);‘5]‘2}(‘\ 15)

forming a set of linear simultaneous equations which can be
written in matrix form as:

{“g} = [.'_Dg:]{'P?} . e o o (A.l8B)
The downwash vector, {dg} s 18 a columm vector the elements of
which are the streamwise slopes at the PX"M) downwash points,
($+,,) + The square matrix [Dv ] is the downwash influence
coefficient matrix, element :Dg_-;: being the non-dimensional
downwash at (5,,"1,-,) induced by a unit equivalent load at (f,,"l.).

To solve Equation (A.16) for the load vector we merely invert:
-
{P:i'} ’[Pi'ii] {“3} ’ e o o (A.17)

or more conveniently,

iP]‘”[.A]{“} . e o o (A19)
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Element A@; )4 is now the equivalent load at (ﬁ%{‘zg;) induced by
a unit downwash at (gm,"’l,g;).
Standard Deuce programmes exist which calculate the
elements of matrix (Al for the symmetric and antisymmetric

downwash conditions.,
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