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AN EMPIRICAL CORRECTION TO LIFTING-SURFACE 
THEORIES FOR USE IN TmNSONIC 

AEROELASTIC ANALYSES 
by

D*B. Mclver, B,Sc,(Eng,),

Summary

In this paper, means are investigated whereby the effects 
on loading of the shock-wave patterns and non-linearities 
associated with transonic flow may be included in an aeroelasti 
analysis. These effects if present on a rigid wing would also 
exist, although in a modified form, for a flexible wing of the 
same planform under the same flight conditions.

Three methods are described for adjusting linearised 
theoretical aerodynamic influence coefficients so that the pre­
dicted aerodynamic load distribution on a rigid wing at inciden 
and at the required Mach number agrees with the measured distri­
bution. Thereafter, it is assumed that these modified influenc 
coefficients, which are possibly dependent on incidence, may be 
applied to the prediction of the load distribution on the same 
wing planform at the same Mach number but with an arbitrary 
spanwise twist variation! It is proposed that the methods be 
applicable throughout the entire speed range but are pursued in 
detail only for transonic speeds for which the linearised theor 
break down.

Two methods are tested by applying them to wind-tunnel da



measured at Mach numbers of 0.80 and 0.94 for a series of flexi 
wings with different geometrical spanwise twist distributions* 
The elastic twist distribution for each wing under aerodynamic 
loading is known or can be calculated. The wings are of aspect 
ratio 4, quarter-chord sweep of 45'* and taper ratio of 0.15. 
Modified influence coefficients are derived from the data for o 
spanv^ise twist distribution and are used to predict the pressur 
distributions for the other twist variations. Good agreement 
with the measured pressures at selected points is obtained.

because of the limitation of lifting-surface theories to 
continuous chordwise and spanwise wing slope distributions, a 
control surface must normally be replaced by an equivalent 
continuous sloj^e distribution. The third method of correction 
is shown to yield an experimental equivalent slope distribution 
which is compared with the theoretical values.

A theoretical investigation is made of the application of 
the aerodynamic corrections to the static aeroelastic analysis < 
a wing with a control, but no numerical solutions are attempted, 
Comments are given on the extension of the procedure to other 
planforms and to the case of oscillatory motion.
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Summary.

Means are investigated whereby the effects on loading 
of the shock wave patterns and non-linearities associated 
with transonic flow may be included in a static aeroelastic 
analysis.

Three methods are described for adjusting linearised 
theoretical aerodynamic influence coefficients to fit rigid 
wing measured pressure distributions. The research consists 
of investigating how well these modified influence coefficients 
can predict the loading on the same wing at the same Mach 
number but with an arbitrary spanwise twist distribution.

Two methods are tested \yy applying them to wind-tunnel 
data measured at Mach numbers of 0.80 and 0.94 for a series 
of twisted wings. The wings are of aspect ratio 4, quarter- 
chord sweep of 45^ and taper ratio of 0.15. Good agreement 
of the modified theory with the measured pressures at selected 
points on the wings is obtained, especially for high incidences.

The third method, although not pursued in detail, is shown 
to provide a control surface equivalent slope distribution 
which is compared with the theoretical values. % i s  mcy be of 
use in flutter calculations.

Further research which is required is mentioned and the
extension of the method to oscillatory aerodynamics is discussed 
briefly.
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Notation.

*^JA/ wing mean camber-line slope at the point
Aôj aerodynamic influence coefficient.

see Equations (2.6) and (2.7).
bt':,,bc3. " " (2.18).

CÛ; " '* (2.26).
iŜ ii correction factor for the load component Rs .
Kjj '* '* " *' wing slope o<j .
Cy^^^fAOf,cL(^) wing section normal-force coefficient.

c
I

" '* pitching moment '* about theo
quarter-chord.

AC^ pressure coefficient.
free-streara dynamic pressure.

M  free-stream I%ch number.
load component at the load point 

R  Reynolds number based on the wing mean chord c
^ wing semispan.
1a/j downwash at the downwash point .

y ̂  rectangular co-ordinate system attached to the
wing, origin at the vertex, 
positive rearwards. 

y *' to starboard.
” downwards •

9ij structural twist influence coefficient.



- 111-  

Notatlon (cont.)

Suffices.
E denotes an experimental or corrected quantity.
T  " a theoretical quantity.
R " a quantity pertaining to the rigid wing.

" " '* " " " flexible wing.
6 " an elastic structural contribution.
c  continuous component.
cL discontinuous component.

Matrix convention.
C J iquare matrix.
[ 2 diagonal matrix.
(̂3 column vector.
J matrix Inverse,

unit matrix.
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Introduction.

§1.1 Purpose of research.
It is well established that the shock wave patterns and 

flow separation associated with transonic speeds can alter 
significantly the load distribution and hence the structural 
deformation of a flexible wing. In many instances these aero­
dynamic effects may be highly non-linear in character©

The aeroelasticlan must be able to calculate the aerody­
namic load distribution over an arbitrarily cambered wing© At 
present, he has at his disposal only linearised theories in 
which, to make the problem more amenable to treatment, Invlscid 
flow is assumed throughout the entire speed range. Ho simple 
general theoretical method yet exists whereby viscous and wing 
thickness effects may be assessed. Consequently, there is much 
to commend a semi-empirical method that is a synthesis of syste­
matic experiment and a reliable theory® Experiment may serve to 
correct for the idealisations of theory, which in turn maŷ  cater 
for the parameters that are restricted in wind-tunnel testing® 

The development of any aircraft usually necessitates exten­
sive wind-tunnel testing early in its design® Often this will 
include the measurement of pressure distributions for various 
Mach numbers and angles of incidence on a nominally rigid wing. 
It is fitting that these data which, in the past, have generally 
only been used by the aeroelastician as a comparison for linear
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theory, be incorporated in the aeroelastic analysis of the 
flexible wing.

This report is a modification to and an extension of such 
a procedure proposed by Gainer (Ref. 1) for v;ings in supersonic 
flow. The method is applicable to the complete speed range but 
is pursued here in detail only for the transonic range for which 
the linearised theories break down.

Of the many subsonic lifting surface theories available, 
Richardson’s theory^ is employed to illustrate the methods of 
correction, A wing (Fig. 1) similar to that dealt with by 
Gainer is treated and onlyr spanwise twist modes are considered 
since chordwise deformation is relatively unimportant in moder­
ate and high aspect ratio wings.

§1.2 Transonic flow patterns.
Before proceding, it will be instructive to consider the 

limitations of the linearising assumptions. They are valid if 
(i) separation effects are absent, although separation effects 

which are confined to small areas of the v/ing can be tol­
erated (e.g., short bubbles on unswept wings ; tip separa­
tion on swept wings).

(ii) angles of incidence, camber and thickness/chord ratios are 
small. At subsonic speeds there is also the restriction 
that the camber surface must be continuous otherwise 
separation will take place. Similar effects occur if the 
wing leading edge is sharp.
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(ill) no regions of mixed subsonic/supersonic flow exist with 
associated local shocks.

At transonic speeds we are principally concerned with the 
inability of theory^ to predict the existence of the complicated 
shock patterns and regions of separated flow over a wing with 
their accompanying rapid changes in load distribution.

The phenomena of the formation of the flov/ about a swept 
wing-fuselage near I-ach 1 is described by Rogers and Kail (Ref. 2 

and is related,in the account given below,to the flow about the 
wing-fuselage considered in this report (Fig. 1). 'Hie wing has 
a icnown spanwise twist distribution (see Chapter 3 and Figs. 3a- 
3c) and the flow about it, although not precisely that for the 
flat wing, will have the same characteristics. In Figures 4a-4c, 
comparison is made of the theoretical and experimental pressure 
coefficient distributions. Detailed upper and lower surface 
pressure distributions maŷ  be found in Ref. 12. The wing section 
has a rounded leading edge.

The initial tip shock.
At low incidences in the subsonic range, flow velocities 

over the wing are highest near the tip and with a sufficient 
increase in the free-streara Mach number, which will depend on 
incidence and wing thickness, a v/eak tip shock normal to the 
free-streara is formed. Its inboard extent is small but increases 
slightly^ and moves rearwards as the Mach number is increased.
The effect of the tip shock on the pressure distribution is small
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and is not evident in Figure 4a. It vùll not be veryr important 
‘aeroelastically for this wing,

Tlie rear shock.
Tip shock development on the upper surface is arrested by 

the presence of the rear shock which is generally formed at 
about the same time* Its origin lies in the increase in flov; 
velocity due to the wing thickness. The chordv/ise increase is 
greater than the spanwise and consequently the resultant velo­
city vector is inclined inboard. However, at the wing root, in 
order to preserve the spanwise symmetiy, the flow is constrained 
to follow the wing or fuselage centre-line. The compression 
system required to achieve this propagates across the wing span 
and ultimately coalesces at the tip to form a shock wave of 
finite strength whose sweep is initially somewhat less than that 
of the wing leading edge.

In the early stages, the rear shock may propagate into the 
supersonic flow ahead of the initial tip shock and since, with 
increase in free-stream Mach number, the former moves rearward 
more rapidly than the latter, the tip shock is overtaken and 
disappears. This aft movement of the rear shock is accompanied 
by an increase in its inboard extent and an associated steepen­
ing of the chordwise pressure gradient near the trailing edge 
farther inboard still. Ultimately, with increase in the free- 
stream Mach number, the rear shock reaches the wing trailing 
edge and serves to return the local flow to near the free-streara 
pressure and direction. Its position changes only slightly with
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change in incidence.
The rear shock has a profound effect on the wing load 

distribution; the pressure on the upper surface aft of the 
shock increases whereas the pressure coefficient, or in other 
words the loading experienced by the wing, decreases. Conse­
quently, there is a forward movement of the centre-of-pressure 
which will affect the elastic twist. In Figure 4b, for a Mach 
number of 0.80, the rear shock is evident for a root incidence,

, of 8*. Previous to its formation the chordwise pressure 
coefficient distribution is typically subsonic (Fig, 4a) with 
a leading edge peak and falling smoothly to zero at the trail­
ing edge. In this case, unlike when the rear shock is present, 
comparison with theoryr is reasonable. The higher the l-îach 
number, the lower is the wing incidence at which the rear shock 
first occurs and in Figure 4a it exists for M-0,94 at 0(^=4^. 
Agreement with theory^ is seen to be poor.

Flow separation.
Meanwhile, as incidence increases and the rear shock deve- 

lopes, the flow velocities along the leading edge rise along 
the entire span. The most rapid changes occur near the tip and 
the resulting intense pressure gradients lead ultimately^ to 
flow separation which starts at the tip and moves progressively 
inboard with increasing incidence (Figs. 4b and 4c), Separation 
reduces the local section lift coefficient and moves the centre- 
of-pressure aft. The chordwise pressure coefficient distribu­
tion is characteristically^ trapezoidal in form with a finite



loading at the trailing edge.
ITie preceding account covers the main details of the flow 

for the experimental data used in this report. However, for 
completeness5 we shall continue to explain veiy briefly the 
subsequent flow development as the llach number increases.

The fox*ward shock.
At a higher Mach number^which will depend upon the wing 

geometr^^, separation along the leading edge ceases and the flov/ 
remains attached to the wing surface as far back as a forward 
shock which appears to originate close to the wing-fuselage 
junction and sweeps back outboard over the wing. Flow separa­
tion may still occur aft of the shock. This transition from 
separated to attached leading edge flow is called the transonic 
flow attachment. The forward shock is not necessarily connec­
ted with.the attachment process, but arises from the local 
leading edge conditions and can thus appear at incidences well 
below that at which leading edge separation takes place.

Tlie outboard, bow and tip shocks.
It is possible for the rear and foinward shocks to intersect 

on the wing surface; the shock between this intersection and the 
wing tip is called the outboard shock. The pressure rise 
through this shock is very'' large and almost inevitably separation 
takes place© V/hen the stream Mach number reaches unity the bow 
shock wave forms ahead of the wing. At low and moderate super­
sonic speeds this exerts only a small influence on the flow over



the wing surface. A further shock which arises to complicate 
the flow is the tip shock - distinct from the initial tip shock 
- which is a disturbance within the local supersonic flow, 
associated with and originating close to the tip leading edge 
and which indicates the inboard limit of the wing surface 
influenced by the tip. This shock is comparatively weak but 
increases in strength with incidence and Mach number.

The above explanation of the transonic flov/ phenomena is 
by no means complete but is given merely as an indication of 
the difficulties involved. It is clear that linearised theory 
alone falls far short of being able to treat the transonic 
regime successfully.

§1.3 Related research.
There are many theories which employ experimental two-dimen­

sional results or apply two-dimensional corrections to lifting 
line and vortex lattice theory (Refs. 3 and 4), but Gainer^s 
paper (Ref, 1) is the only one known to the author which proposes 
a correction to lifting surface theory^ from available three- 
dimensional experimental results. Two-dimensional corrections 
are unable to cater for the change in loading produced byr the 
shock patterns since they’’ are essentially three-dimensional 
phenomena,

Gainer derived a method to improve the theoretical pressure 
distributions for thick wings in supersonic flow. He realised 
that a thick wing with a detached leading edge shock wave has



as­
certain things in coioraon with a wing having a subsonic leading 
"edge® The flow behind the shock wave is subsonic for some 
distance and the chordwise pressure distribution has the charac­
teristic leading edge peak* He was able to define a hypotheti­
cal "equivalent" wing with a greater sweep angle. This replaced 
the actual wing with the supersonic leading edge by a wing with 
a subsonic leading edge and improved the correlation between 
theory^ and experiment® % e n  the leading edge of the wing is 
subsonic, as it is at transonic speeds, the equivalent wing is 
the same as the actual wing*

Treating this equivalent wing. Gainer then combined the 
supersonic linearised theory for a wing with a subsonic lead­
ing edge with empirical adjustments to give accurate estimates 
of the steadyr-state load distributions on an arbitrarily 
twisted wing over a wide range of angles of incidence© The 
experimental data used are pressure coefficient distributions 
measured on a flat wing of the desired planform at the desired 
Mach number and over the desired range of incidence© On com­
paring the experimentally and theoretically derived perturba­
tion velocity potentials, he found that whether the wing was 
flat or twisted, theoretical values were in error by roughlyr 
the same percentage at small angles of incidence© Consequantly, 
the actual potential, ^  , at a point could be represented by 
some constant times the theoretical potential, ^  , the constant 
being mainly dependent on the location of the point and very 
little dependent upon the source distribution which caused the
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potential. Thus,
$ . . . ( 1 . 1 )

where K  is a constant.
Gainer defines a square matrix, £»S<^J , of aerodynamic

influence coefficients which yield the theoretical values of 
velocity potential in terms of the wing slope distribution,

, at particular points on the wing:
• . . .  (1.2) 

Equation (1.2) is adjusted as follows to fit the experimental 
data :

. . . (1.3)

"  , . . .  (1.4)

where the elements of the diagonal matrix, (jK^ , are defined
by Equation (1.1).

Equation (1.4) is now easily solved for to give an
exact fit to one set of experimental conditions of 
and the slope distribution, . Although there is no proof
that the Equation (1.3) can be applied to the calculation of a 
potential distribution corresponding to an arbitrary twist 
distribution, Gainej* found that it did so for small angles of 
incidence when [K] was calculated from flat wing data.

For higher incidences, a non-linear correction becomes 
necessary. The most suitable form for the influence coefficient 
equationfor cambered and twisted wings is then :

+ . . . (1.6) 
vfhere the diagonal matrices [ K j  and are calculated
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to give an exact fit to the flat wing data.
Sinnott (Ref. 5) has devised an empirical procedure v;hereby 

he can predict the shock wave position and pressure distribution 
on the upper surface of a particular class of aerofoil. His 
method might be extended to finite wings as more experimental 
data becomes available but it is notoriously difficult to 
produce reliable information for transonic speeds. Besides^ it 
is likely that the method could only be applied to a flexible 
wing by lengthy iteration procedures.
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Chapter 2.

Semi-Empirical Corrections to Linear Lifting Surface
Theories

Many linearised aerodynamic theories (Refs. 7,8 and 9) 
have been devised to calculate theload distribution over the 
surface of an arbitrarily cambered wing. The choice of any 
particular method will depend on the free-stream Mach number 
and the aspect ratio of the wing to be considered.

The theories dealt with in this paper are those in which 
the relationship between the pressure distribution, ,
and the downwash distribution, - usually in the form
of an integral equation - is satisfied at a finite number of 
points on the lifting surface. This results in a system of 
simultaneous linear equations which can be expressed in matrix 
form as: M""MW • . . .  (2.1)
The load vector, , is a column matrix, the elements of
which are the load components, PI , P/? ,
where Pj; , a function of the pressure, may be a discrete
lifting force or moment at the "load point" . The down-
wash vector, , consists of the non-dimensional downwash
components,^, > j ̂ 3 > • • • m v / h e r e  cCj is the value
at the "downwash point" • Physically, (X is the local
slope of the wing mean camber surface and is derived from the 
boundary condition of tangential air flow to the lifting surface.
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The number of lift and downwash points chosen will depend 
largely on the geometry of the wing and on the accuracy of the 
answer required. A detailed account of their choice can be 
found in the original papers. There are equal numbers, ^  , of 
lift and downwash points.

The square matrix, , is composed of load influence
coefficients, the element A y  being the load at the itk load 
point induced by a unit slope at the downwash point.

In expanded form, the Equation (2*1) appears as follows:
f p .  1
Pz

rA„ A (X,

(Xj 

0(,

. (2.2)
P|, I [À,,. A{,^-> ■ A,,j . ..

Calculations for this paper were made using Richardson*s 
theory (Ref. 8), a brief summary of which is given in the 
Appendix. The load components, Pc , considered are the local 
pressure coefficients^ , at selected points.

§2.1 Derivation of the aerodynamic corrections.
Since the load influence coefficient matrix, [A J   ̂ could 

be considered the source of the discrepancy between theory and 
experiment, it seems logical, as Gainer suggested, to attempt 
some modification to it to account for real fluid effects.

For a linear system in real flow, the influence coefficient, 
independent of the downwash distribution, will be denoted by AiJ , 
% e r e  non-linearities occur, if we can think of a non-linear
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Influence coefficient, the Influence coefficient will be 
denoted by @

Let experimental or corrected quantities carry the sub­
script "E** and theoretical quantities the subscript "T" © 
Detailed experimental pressure distributions will be required 
for the wing being considered with a known slope distribution 
at the required % c h  number* Quantities pertaining to this 
wing - usually rigid - will have the subscript "E"®

Theory predicts the following loading for the rigid wing:
» o c o (2*3)

where the theoretical load vector g 0 ^ ^  is the
theoretical linear influence coefficient matrix and is
the wing slope vector©

From the experimental data for the rigid wing we can 
construct a load vector How, in whatever manner the
experimental loading differs from that given theoretically, 
it must still satisfy the physical boundary condition of 
tangential flow to the wing© Consequently, this condition 
requires the definition,, of a modified influence coefficient 
matrix, ? which may, or may not, be dependent on the
local downwash, i © a ©,

f.^^6 5 O . . (2o4)
Equation (2*4) has now to be solved for the matrix 

It is impossible to find a unique solution without some 
simplifying asswi^tion© being made, but it must be b o m e  in 
mind that simplicity in application of the corrections is of

0



I  ̂ . . .  (2.5)
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major importance.

§2.1.1 Method I (Point Theory).
If [A6*)] is a diagonal matrix then the elements are given

ev o
and will be constant for linear loading.

Pl^sioally, this in^lies that the loading is a point function 
of the local slope and although by design, the influence 
coefficients, , of Equation (2.5) give the correct loading
for the rigid wing, intuitivel;̂  they might be expected to 
become progressively more and more inaccurate as the slope 
distribution increasingly differed from that of the rigid wing.
In fact, this is not so as will be shown in Chapter 3. This 
method might give acceptable results for very high supersonic 
Mach numbers when only a small portion of the wing can affect 
each point. This is partly the justification for the use of 
Piston Theorjr (Ref.10). However, only investigation of the 
available data can determine whether reliable results are 
obtainable.

When the loading is non-linear the influence coefficient,
» will depend on the local slope and we must then resort 

to a curve-fitting technique. In Chapter 3 it is found that for 
the rigid wing the load at point with local incidence

, can be represented quite adequately at low angles of 
incidence, where the loading is linear, by:



—15 ""

^  5 . 0 s (2*6)

and for high values hyi
^  î̂i > . 0 0  (2*7)

where ,^s p^izf^lst constants.
In the former case, the loading is assumed to be antisym­

metric about the o r i g i n , ^  o , and in the latter case only 
large positive angles of incidence are considered® To deal 
with large negative incidences all that would be required would 
be to rewrite Equation (2.7) as:

“*  ̂ . e o (2©8)
in which the constants are unchanged. We ignore this case since 
usually we are onljr interested in the behaviour of the aircraft 
at large positive, and not negative, incidences©

In general then, the load vector for the rigid wing is:
^ » 0 0 ®  (2o9)

where the equation appropriate to linear loading, Equation (2.8), 
is a particular case of Equation (2©9)^

In Chapter 3 we shall investigate the applicability of 
taking the arbitrary mode load vector, , to be:

M g '  . . .(2.10)
where Is the slope distribution of the arbitrarily
twisted wing at incidence®

This method of obtaining influence coefficients which are 
consistent with experimental data, is about the simplest possible 
and may be thought of as a surface analogy to the two-dimensional
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strip theory used for high aspect ratio wings. It will be 
shown in Chapter 3 to give good results for a wing of moderate 
aspect ratio at high angles of incidence for near-sonie lAach 
numbers.

§2.1.2 Method II.
The next modification attempted is to the theoretical 

influence coefficient matrix , i.e.,
» » » ,  (2.11

where the matrix is square.
Then,"for the rigid wing, the experimental load vector is:

» . . .  (2.12
and so,

• . . .  (2,13
As with Equations (2.4) and (2.5), Equation (2.13) can 

only be solved for matrix if it is a diagonal matrix, i.e.,
^ CPk Ù b /CPüÛT j , . . .  (2.14]
«t. o   ̂ j J

Although there is obviously no proof that the corrections
can be applied to the calculation of the loading distribution 
corresponding to an arbitrary wing slope distribution, it seems 
reasonable , as in the previous section, to assume that where 
the slope distribution differs only slightly to that from which
the correction factors, (>£1 , were derived, that by applying
them to this distribution a close approximation to the eaqjeri^ 
mental loading can be obtained. In Chapter 3 the ratio
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is shown to be nearl^r constant for small angles of incidence.
The modified load vector, > for some spanwise twist

mode, , is then:
> • • • (2,15)

^ % • • • (2ol6)
where is the theoretical load vector for mode .
Equation (2.16) illustrates the point that although matrix 
is a correction to the theoretical influence coefficient matrix, 
the corrected, loading for an arbitrary mode can be evolved from 
knowledge of only the load vectors. Consequently, theories 
which provide loading distributions and not influence coefficients 
may be treated hy this method.

V/hen expanded, the modified influence coefficient matrix is :
1̂1AII » • îsA|j • #

w ts.E ^11
. (2.17)

and implies that the load component at point induced by
unit downwashes, o( , at the points 2»,... jk» , must
be factored l)y to correct for real fluid and wing thick­
ness effects.. That is, the correction depends not on the 
inducing point but on the point induced.

In Chapter 3, G,a is shown to vai^r with the local slope,
, at high incidences and, as in Equation (2.7), a low order 

polynomial representation can be used:
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I 0(f  ̂ . (2ol8)
where the constant coefficients b»j are obtained by
a curve-fitting procedure on • As in the previous
section, onl̂ / large positive angles of incidence are consider­
ed® It is assumed that the local correction factor is a point 
function of the local slope and consequentl^r can, by interpola­
tion, be applied to any slope distribution, .

The modified load vector for mode , as a function
of the theoretical load vector, is, from Equations (2.16) and 
(2.18):

{p4  = . ■ • . (2.19)
where,

W t- “ ’ . . .  (2.20)
Calculations in Chapter 3 show how significant improvements 

are obtained over theorj^ using the above corrections.

1,8 Method III,
An alternative modification to the theoretical influence 

coefficient matrix might be to post-raultiply the influence 
coefficient matrix by a correction matrix:

» • • .(2.21)
where the rigid wing experimental load vector is:

W e .  - 1 . . .  (2.22)
Hence,

- NW - w. ' • • •
Kj, -
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The downwavsh vector, ? may be thought of as an equiva­

lent slope matrix and represents the physical wing slope distri­
bution, or more precisely, the slopes at the downwash points 
required to produce the same potential flow loading on the rigid 
wing as the loading obtained experimentally. Here, the correction 
may be applied to the downwash vector rather than directly to 
the load vector.

The corrected load vector, {pjg , for mode becomes:
tP3e-M^WW = W tW ê • • • (̂.25)

and for non-linear corrections,% = "NM . . . (2.2S)
Unlike in Equation (2.17), this correction depends upon 

the inducing point and not on the point induced. It is not 
pursued in detail and is introduced here only in connection 
with the treatment of control surfaces which are dealt v/ith in 
the following section.

§2.2 Control surfaces.
The controls envisaged are of the form of flaps, ailerons, 

or elevens. Such controls represent chordwise and spanwise 
discontinuities in the slope distribution of a wing and the 
functional representation of the associated pressure distribu­
tions in subsonic flow Involves singularities along the discon­
tinuities (Ref® 11). No such complications generally arise 
at supersonic free-stream Mach numbers.

Present day subsonic theories strictly can cater only for
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continuous downwash distributions since they do not incorporate 
the appropriate singular loading functions. However, means 
exist whereby this shortcoming can be partly overcome.

Richardson proposed the use of equivalent slopes (Ref. 18) 
to replace the true values. These are defined in such a way 
that the continuous loading functions give the same integrated 
loadings as do the discontinuous functions, at least for the 
two-dimensional chordwise and slender wing theories. For TL 
chordwise collocation points the integrated loadings take the 
form of total chordwise lift, pitching moment, second pitching 
moment, up to the pitching moment : in the spanwise sense,
they are, for a semispan and ^  collocation stations, the 
total lift, rolling moment, second rolling moment, and up to the 

rolling moment.
The theoretical aerod^rnamic derivatives produced are not 

entirely satisfactory^ but until the appropriate control loading 
functions are included they must suffice. In aeroelastic 
calculations, matters might be improved somewhat by the methods 
of this paper, but this must still be demonstrated. Although 
the modified theoretical pressure distributions cannot agree in 
detail with experiment since non-typical loading functions are 
used, there is the assurance that the corrections applied give 
the correct pressure at the selected load points for the rigid 
body mode. The deviations from experiment are thus controlledo 

It will be interesting later in Chapter 3 to compare the 
experimental equivalent slopes, of Equation (2.23) with
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Richardson’s theoretical equivalent slopes.
ilie practical treatment of controls is discussed further 

in Chapter 4 where the correction of Method II is applied to 
the static aeroelastic equations for a flexible wing with a 
control surface.
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Chapter 3.

Results.

It is now necessary to establish just hov/ well the sugges­
tions outlined in Chapter 2 can improve the predicted loading 
on a flexible wing at incidence.

The present investigation will be confined to near-sonic 
Ivlach numbers for swept wings of moderate aspect ratio. Rather 
than become involved in the lengthy calculations required in an 
aeroelastic analysis, it was considered a sufficient test of 
the method to apply it to rigid wings with vary^ing amounts and 
distributions of spanwise twist. The prediction of wing camber 
loadings, which are of more importance aeroelastically on lov/ 
aspect ratio wings, is left to a later report.

§3.1 The models.
References 12 to 16 provided the necessary experimental 

pressure distributions. They were obtained from tests in the 
Langley 8 -foot transonic tunnel for a î'.'Iach number range of 0 . 8  
to 1.2 on the wing-body planform of Figure 1. The wing had 45^ 
sweepback of the quarter-chord line, an aspect ratio of 4, and 
a taper ratio of 0.15. The wing section was an KACA 65A206, 
a=0 at the root, varying linearly in thickness to an KACA 
65A203, a=O.S (modified) at the 5o-percent-semispan station, 
then remained constant to the tip. Flush-mounted pressure pick­
ups were located at six semispan stations on both upper and
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lower wing surfaces. These were at the stations y/s-0 .1 2 , 0.25,
0.40, 0.60, 0.80, 0.95.

Pressure distributions were available for the geometrically 
untwisted wing and for it with linear, quadratic and cubic span- 
wise twist distributions. The wings were flexible and conse­
quently had additional twist distributions due to the distortion 
under the aerodynamic loading. These were provided or could be 
calculated. Tims, the actual spanwise twist distributions were 
known under all loading conditions.

Despite this additional twist, for convenience the wings 
are called respectively:

Planar Vifing I .. He f. 12,
Planar " II ,. Ref.13,
Linear " .. Ref.14,
Quadratic " .. Ref.16,
Cubic ” •• Ref.16*

Figures 3a-3c show the total twist distributions - geometric 
plus elastic - for the Planar Wing I, Linear and Cubic V/ings at 
several values of root incidence and for M=0.80 and 0.94. These 
are the only cases dealt with in detail. The test Reynolds 
numbers for the two llach numbers are 2.62% 10 and 2.81%10 respec­
tively* The root-chord slope, o(̂  , and the local flexible wing 
slope, , are quoted where necessary.

Deviations in Bfe.ch number in the tunnel test section do not 
exceed -0 .0 1 0 . The accuracy of the pressure measurements in 
coefficient form is believed to be less than *0.006 and is well
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within the accuracy of a graphical representation of pressure
distributions. The measured root-chord incidence, o(̂  , is

0 & correct to within +0.1 and the calculated twist, o(^ , to +0.25.

§3.2 The "rigid" wing theoretical and experimental pressure 
distributions.

The wing from which the corrections are obtained - the 
so-called rigid wing - is the Planar Wing I. The Planar Wing II 
is also used for low incidence corrections.

Theoretical pressure distributions, calculated using the 
standard Deuce computer programmes for Richardson's theory^ (see 
the Appendix), are compared with the corresponding experimental 
values in Figures 4a-4c* Collocation at five chordwise points 
and six spanwise stations was chosen. Only chordwise pressure 
coefficient distributions (obtained by interpolation) for the 
two spanv/ise stations y/s=0.40 and 0.80 and the tv/o îvlach numbers 
O 08O and 0.94 are considered®

The original wings of Refs® 12 to 16 were cambered and an 
attempt was made to remove this effect by subtracting the pressure 
coefficients for the Planar Wing I,^C^ssO, from those of all the 
other wings over the complete range of incidence® The twist 
distributions of Figures 3a-3c have had the twist due to this 
camber loading removed®

In Figures 5a-5d, the modulus of the pressure coefficients,
, for the Planar Wings I and II are plotted against the 

modulus of the local wing slope, 1 ^ 1  , for particular points on
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the wing. Only the plots for three chordwise points are 
presented although a total of five points is used to predict 
the improved loading distributions for the Linear and Cubic Wings 
in §3.8, By the method of least squares, straight lines - I
for low incidences and for high values - are fitted
through the points plotted. A straight line fit was found to be 
adequate in this instance.

Moduli of values are taken since data was available for the 
Planar V/ing II at negative values of root-chord incidenceo The 
plots are the basis of the Point Theory outlined in §2,lol and 
demonstrated in §3.3,

In this exercise, the load components, , are the pressure 
coefficients at selected points on the wing, . Figures
6a-6d show the correction functions,

defined in §2.1.2, for the Planar Wings I and II plotted against 
the local slope, . The plots suggest that be a
constant for low incidences and for high incidences that it be 
of parabolic form with respect to ,

The pressure coefficient,  ̂ and the correction factor,
, are assumed to be antisynnmetric and symmetric respectively 

with the local slope, •

§3o3 Corrected aerodynamic loadings.
The theoretical pressure coefficient distributions for the 

Linear and Cubic Wings over a wide range of root-chord incidence, 
(Xg , were calculated using Richardson's method, and are presen­
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ted for the two Mach muribere 0.80 and 0.94 in Figures 7a-7c,
8a-8c and 9a-9c. They are compared with the experimental 
values obtained from References 14 and 16. The elastic contri­
butions to the spanwise twist are given in Figures 3b and 3c.

Values predicted by Methods I and II of Chapter 2 are 
superimposed on Figures 7a to 9c. The Point Theory pressure 
coefficients of Method I are obtained by reading from Figures 
5a-5d the value of &C^i appropriate to the local wing slope, •
This gives the pressure coefficient at specific points on the 
wing. Method II, as given by Equation (2.16) or (2.19), consists 
of mult#ying the local theoretical pressure coefficient by a 
correction factor, , which is obtained from Figures 6a-6c 
for the appropriate local wing slope.

The spanwise running normal-force and pitching moment 
coefficients about the quarter-chord, and , are plotted 
against the local slope, , in Figures 11a and 11b for all
wings at the stations y/s»0.40 and 0.80. A line is drawn 
through the Planar Wing I values. The plots are assumed to be 
antisymmetric about the origin. Theoretical and experimental 

and distributions are shown in Figure 12 for the
. D OLinear Wing at M*0.94 and *4 and 12 . The pressure

coefficients at the lift points can be converted to the local 
normal-force and pitching moment with the aid of Equations 
(A.7), (A.ll) and (A.12).
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§3.4 Control surface loading distributions.

In §2,1.3 it was shown how an experiments1 equivalent 
slope distribution could be obtained for a wing with a control.
V/e apply this now to the wing-control configuration of Figure 2 
for a tech number of 0,94.

Reference 19 provides the i^ressure distributions on the 
starboard semispan ouly^ produced by a deflection of 14.5 of 
the starboard control. Spanwise running normal-force and 
pitching moment coefficients are known for both semispans and 
so the distortion under loading can be calculated. At the port 
aUd starboard tips the twist was found to be -0,16^ and -1,09^ 
respectively. The spanwise variation is assumed to varŷ  
linearly from the tip values to zero at the wing root.

The pressure distribution for this control angle also 
included a contribution due to a wing root-chord incidence of 
o(q -0.2 . This was removed by subtracting 2/3 of the pressure 
distribution given in the same report for a wing slope o f ^0.3 
and zero control deflection. Due to the relative magnitudes of 
the various wing slope contributions, the wing distortion was 
assumed for simplicity to be due entirely to the control load­
ings and not on the aeroelastically induced loadings.

We require to calculate the theoretical aerodynamic influ­
ence coefficients for a wing with an asynranetric slope distribu­
tion. The computer programme provides those for symmetric and 
antisymmetric conditions. It can be shown that these are respec­
tively the sum and difference of two matrices as follows:
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where matrix CftJ is the pressures on the starboard wing 
produced by unit slopes on the starboard wing and (IbJ gives 
the pressures on the starboard wing produced by unit slopes 
on the port wing, By matrix algebra,

) m J  a. “* A »
Hence, the starboard v^ing experimental load vector, derived 
from the pressure distributions, is:

(fifctwc} = 1j*Jt D4 t
■*?

where we have neglected the twist on the port semispan since 
it is very small relative to the slopes on the starboard semi­
span® Consequently,

In Figure 13 the theoretical pressure distribution using 
Richardson's equivalent slopes for the control is compared 
with the experimental pressure distribution® Figure 14 shows 
the theoretical and experimental equivalent slopes®

It is stressed here that the above is merely intended as 
a demonstration of the method® Obviously there are gross 
assumption involved but nevertheless it is felt that the results 
give a reasonable indication of what maŷ  be obtained with more 
precise knowledge of control surface pressure distributions®
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Chapter 4 .

The Static Aeroelastic Equations,

So far, little has been said about the application of 
the aerodynamic corrections to an aeroelastic analysis. Obvi­
ously, to prove their applicability we must investigate the 
analysis in some detail. Attention will be confined to the 
method of direct collocation, in which the displacements at a 
finite number of selected points on the structure are considered 
as separate parameters and the lunged forces at these points 
equilibrated. The equations for the continuous wing, are thus 
reduced to a system of simultaneous linear algebraic equations 
which can be solved by matrix algebra.

Before deriving the aeroelastic equations, a few initial 
thoughts are presented on the application of the aerodynamic 
corrections.

V/e have seen in Chapter 3 that for low incidences the 
modified aerodynamic influence coefficients are independent of 
the wing slope distribution. Consequently, the modified matrix 
can be applied in exactly^ the same manner as the theoretical 
influence coefficient matrix, However, problems arise, as we 
shall see subsequently, whenever non-linear corrections are 
necessary.

Usually, elastic displacements are of an order smaller 
in magnitude than the displacements in the applied rigid body 
modes, say, of Incidence, pitch, roll and control deflection.
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Tlius, it might reasonably be assumed that the aerodynamic 
loading induced by the structural deformation is merely a 
linear addition to the possibly non-linear rigid wing loading.
In other words, in the aeroelastic analysis, the experimental 
aerodynamic loadings for the applied rigid-body wing modes 
could be used in conjunction with the theoretically derived 
linear loadings for the distortion modes. However, if distor­
tions were large, a complete non-linear analysis would be 
required.

The deformation of a lifting surface with controls can be 
expressed as a sum of continuous and discontinuous parts. This 
is necessaryr since, by their nature, different corrections must 
be applied to each component. V/e have not yet demonstrated 
that any of the methods of this paper will give satisfactory 
in4>rovements to predicted control loadings ; nevertheless, it is 
felt that improvements could be obtained if not by the present 
methods then by some similar simple procedure. The aerodynamic 
corrections can be obtained from measured pressure distributions 
for the rigid wing at incidence (continuous) and for the same 
wing at zero incidence but with the control deflected (discon­
tinuous ).

Rather than investigate the application of all three types 
of correction to the aeroelastic equations for all possible 
conditions, we will treat a particular case of a wing with a 
control. Method II will be used.
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§4.1 Analysis.

A structural slope influence coefficient matrix is defined 
by the square matrix , where the element is the
elastic slope at the structural node produced by a unit
load element at the point . The matrix contains the effect
of wing, control and control jack flexibilities and consequently, 
contains control slope discontinuities. These can be separated 
in such a way that,

[f] [©J 5 . . .  (4.1)
where matrix [9^ has an entirely continuous slope distribu­
tion and matrix [peQ is essentially discontinuous. In CA(J , 
the slope over the wing is zero and only points appropriate to 
control structural modes will have non-zero elements.

The flexible wing slope vector can be expressed as a sum 
of rigid and elastic structural contributions:

y . . .  (4.2)
and in terms of continuous and discontinuous components:

(o(p] * . . .(4.3)
Assuming that, although by themselves non-linear, when 

taken together the continuous and discontinuous slope loading 
contributions are linearly additive, then,

{fpjg  ̂ • (4.4)
where is of the form:

, . . . (4,5)
as In Equation (2.18).

if distortions are small compared with the rigid body
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c o n t r i b u t i o n s , t h e n ,

^   ̂ e ® « ( 4 ® 6 )
and,

(offc+«y j +Ü<:̂6̂«AJCAXKrf.i-û(5a] 5 . . (4.7)
Now, the elastic distortions in terms of the loadings ares
((Xs«] " W  (fpje, ) . . .  (4.8)

and similarly,
^  ̂ e ® 0 (4@9)

Therefore, substituting these in Equation (4®7),
{fpjg “ [A]^{«Re] + [̂d.é><RtÙ2 W y  (’̂nd]

+ [C«AcÆ«3r»J-"t«-‘«'îi3MrCe-0j(P4* •
from which :
(fpjfe " W  (f&c . (4.11)
where and are the continuous and discontinuous
rigid-body experimental load vectors resectively« The slope 
distributions, ^gc and 0(^ , are known and so can be
calculated.

It was suggested earlier that it mâ r be sufficient to 
treat the induced distortion loading by linear theor^r. Equation 
(4®11) can then be shown to reduce to :

l^V].» [ P 3 “ [ W t Cp^

- C W - W x M J > . ] e  , • • •
which has the advantage that the difficult part of the calcula­
tion, namely the matrix inversion, remains unaltered with differ­
ent applied rigid-bod^^ loading conditions.

At sufficiently low angles of incidence, the correction
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matrix, 5 is constant and so: ,

% -  - w - M )
Unlike with Equation (4,11), the above inversion will remain 
unaltered by the rigid-body loading condition provided that 
it be for a low incidence.

When distortions are relatively large, it may be necessary 
to use the correction matrix:

“ f b j 3 . . . (4.15)
) ' • (4.16)

% % where the term in o(̂  is neglected in comparison to and
Equation (4.4) must now be written as:

(Pplg O^Jt ^ ■*’ r i * * (4.17)
and is best solved bĵ  iteration* T̂ r assuming that:

* . . .  (4.18)
the first approximations are as follows :

[ÿJM. 1
’ ■ ■ ■

On substituting Equations (4.19) into (4.17), the L.K.S. of 
Equation (4® 17) will yield a second approximation, ) t,o the
flexible wing load vector. Then,

[ôejffpjgi

*and so on® ® * * *

(4.20)

The assumption that the continuous and discontinuous slope 
loading contributions are linearly additive may be unrealistic 
at times, but to consider the alternative could lead to a *
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prohibitive amount of work in deriving the corrections® 
Detailed pressure measurements would be required for the wing 
over a range of incidence with the control angle varied for 
each value of wing incidence® However, there is nothing to 
prevent the use of such data, if available, as the rigid-body 
load vector, for example in Equation (4.11), but
treating the loading induced by the distortion in the above 
simplified manner.
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Chapter 6.

General Discussion and Conclusions.

§5.1 Evaluation of method.
The speed and flexibilité̂  of present-day and future air­

craft require that manjr aerodynamic effects, hitherto ignored, 
must be accounted for in an aeroelastic analysis. However, at 
present,theory alone is incapable of dealing with such effects 
and to be of practical use in aeroelastic calculations, any 
empirical modification to theoretical aerodynamics must be simple 
and must satisfy existing data.

The methods of this paper, explained in Chapter 2 and 
similar to those applied by Gainer (Ref.1), are probably the 
simplest type of correction but even they involve a substantial 
increase in labour.

Chordwise deformation of the wing in Figure 1 was considered
to be negligible and only normal-force and pitching moment twist
influence coefficients are provided in the original papers (Refs.
12 to 16). Consequently, although detailed pressure distributions
are investigated in this research, it would have been sufficient
to have obtained an accurate assessment of chordwise lift and
pitching momenta in order to calculate the distortion of the wing
under loading. However, this is not so for lower aspect ratios
for which chordwise bending is important and for which detailed
pressure distributions are essential. It may be hoped that a 
unified method of correction can be developed which could be
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applied with confidence throughout the complete aspeot ratio 
range# if not, one must know precisely the limitations of the 
method® For this reason, detailed pressure distributions are 
considered herein.

Predicted pressure distributions for the twisted wings.
The measured pressure coefficient distributions for the 

Linear and Cubic V/ings (Figures 7a-7c, 8 a-8 c, 9a-9c) show the 
same essential features as those for the Planar V/ing (Figures 
4a-4c) but modified bjr the differences in spanwise twist® At 
the wing tips this difference in twist is of the order of 5 ^ 
even at low root-chord incidences. The geometric twist accounts 
for the greatest component.

Although Ms0.80 is treated, the Mach number of 0®94 is of 
main interest since the measured loadings differ more markedly 
from those predicted theoretically. The discussion of the 
results will be confined to this case although the remarks made 
will be seen to apply also to M-0.80.

Low wing incidences. Figure 1 0 has been dravm to compare theI.LI-- UJJJ. ju,     m 1'» £>

chordwise pressure distributions for the Planar, Linear, and 
Cubic vVings at oî  -4.0 for M=0o94. It is clear that the rear 
shock occurs at almost the same chordwise position for all 
three wings except near the tip of the Linear Wing where it lies 
slightly farther forward than for the other two® This could arise 
possibly because the Linear Wing elope at this station is negative 
However® the variation is small (within 10% of the local chord).
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Thus we are led to the conclusion that not only is the position 
of the rear shock invariant with wing root incidence (see 
Chapter 1) but also with spanwise twist distribution - a 
convenient property for the aerodynamic corrections.

Other points to note from Figure 10 are that at y/s=0.40, 
where the Planar and Cubic V/ing slopes are nearly equal, the 
pressure coefficients are nearly equal. Conversely, the smaller 
slopes of the Linear Wing give rise to correspondingly lower 
pressures. At the tip, the greater the nose-dov/n twist, the 
greater is the load shed, i.e. the Linear V/ing shows smaller 
pressures than does the Cubic Wing. Comparison of the theoreti­
cal load distributions show that they vary with twist distribu­
tion in approximately the same fashion. All these facts combine 
to suggest that, by trial and error, we may indeed succeed in 
deriving an aerodynamic correction procedure which could be 
applied with some degree of confidence.

Figures 8 a and 9a show that theor^r does not agree with 
experiment but that the corrected values of Method II, although 
not defining the rapid chordwise changes in loading due to the 
rear shock, are an improvement on theory. Certainly, there is 
an improvement in the local lift and pitching moment at the tip 
v/here it will be most important. The Point Theorir results of 
Method I give poor predictions for the loading near the tip 
but at the root the improvement is comparable to that produced 
by Method II. One important disadvantage of Point Theory is 
highlighted by Figure 8 a, and that is that the predicted
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loading takes the sign of the local slope, which in this case 
is negative and so produces negative instead of positive 
pressures. It is clear then from this and also Figure 9a that, 
where a veiy^ large twist exists relative to the applied wing 
incidence, the loadings predicted by Point Theory are unreliable.

The plots of the correction factor, (X , (Figures 6a-6d) 
show a lot of scatter at low incidences, especially for y/s=0.80. 
There is not a sufficient number, nor an adequate distribution, 
of points to tell us whether this scatter implies the omission 
on our part of some important effect. The best that could be 
done - and there was some justification - was to take the mean. 
However, the fact remains that we have "smoothed away" the rapid 
change in loading produced by the rear shock. Obviously, this 
needs further investigation.

There are several ways in which we can be in error. In 
calculating the theoretical pressure distributions we employed 
a 5 chordwise point collocation and subsequently modified the 
pressures at the lift points only. Although increasing the 
number of collocation points would not alter substantially the 
theoretical distributions, it is conceivable that we require to 
modify the pressures at a larger number of points. The theoreti­
cal loading functions presuppose an infinite pressure peak at 
the leading edge and zero pressure at the trailing edge. Thus, 
the modified loadings are unable to yield finite pressure at 
the leading and trailing edges - a loading condition which can 
occur at transonic speeds.
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A more regular pattern of results with less scatter is 

evident for the plots of pressure coefficient against local 
slope (Figures 5a-6d), and since we do not get good predictions 
from Point Theory this implies, not that there are errors or 
inaccuracies, but that the assumptions of this method are just 
not valid within the transonic regime for such wings at low 
incidence. However, the method is not without its uses as we 
shall see.

High wing incidences. As the root incidence, , increases, 
the differences in twist distribution remain approximately 
unchanged (-6^at the tip) but they become relatively less and 
less significant. So, intuitively, we might expect smaller 
differences in the loadings.

Tip separation occurs for all three wings at about =8 ^ 
and progresses inboard as incidence increases. Figures 6a-5d 
indicate that the magnitude of the chordwise pressure .. 
coefficients depend mainly on spanwise position and are almost 
independent of local wing slope and tech number. The chord- 
wise pressure distribution is typically trapezoidal in form.
As might be expected, the Point Theory results improve 
noticeably as 0<^ increases until, for =2 0 ^, the agree­
ment with experiment is remarkable (Figure 9c).

The results of Method II, which proved superior at low
incidences, give good agreement with experiment at these higher
incidences but in most cases are no better than the Point 
Theory values. The letters simplicity could make it of great
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use in aeroelastic analyses.

Spanwise normal-force and pitching moment distributions.
It is not altogether surprising that, with the regularity 

of the pressure plots of Figures 6a-5d, the local spanwise 
normal-force and pitching moment coefficients, and ,
for all the wings can be collapsed as in Figures 11a and 11b.
The least scatter is obtained for values at the spanv;ise station 
y/s=0.40 where the slopes for the wings are all nearly equal.

For a wing of this aspect ratio and planform, a sufficiently 
good approximation to the deformation can be obtained from the 
loading considered as concentrated at the flexural axis in the 
form of a lift and pitching moment. Figures 11a and 11b 
suggest that they may be predicted by a two-dimensional theori; 
knowing the corresponding values over a range of incidence for 
a wing with knovm twist distribution.

Figure 12 illustrates how the measured and theoretical 
spanwise lift distributions agree at low root-chord incidence.
At higher incidences, they disagree since the leading edge 
vortex causes loss of lift at the tip and a peak further 
inboard. The agreement with the pitching moment is poor.
The modified pressures of Figures 8a and 8 c give much improved 
values of lift and pitching moment.

Control surface loadings.
Tliere is in general verj^ poor agreement between the theore-
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tical and measured pressure distributions, due, principally, 
to the form of the loading functions as explained in 
fhe equivalent slope distributions differ appreciably, 
especially over the control itself. It remains to be demon­
strated that the control loadings can be improved by any of 
the above methods*

§5*2 Extensions.
Other planforms. So far, in this paper and Gainer’s (Kef, 1), 
wings of moderate aspect ratio with high quarter-chord sv/eep 
have been investigated for transonic and supersonic I'ach 
numbers. Subsequent exercises must deal with the low subsonic 
regime and other classes of wings, especially deltas.

It is possible that the corrections for one wing may be 
applied to another wing of slightly different planform* If 
the wings differ substantially in sweep, aspect ratio or 
thickness/chord ratio, then possibly the aerod3̂ namic similarity 
rules (Ref*80) may be utilised in some way to enable the 
corrections for one wing to be applied to another. This 
facility could be useful in the event of there being no available 
measured data for the wing being considered.

Provided the rigid wing measured pressure distributions 
contain the effects of a fuselage (as do those of the present 
report) or any other bodies such as engine nacelles, tip stores, 
etc., then their aeroelastic effects can be assessed by these 
methods•
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Cambered wings* As aspect ratio decreases, the camber and 
camber loadings become more and more important and consequently 
investigation must be concentrated on these* Only Methods II 
and III are likely to give improved results over theor^r since, 
as was noted in §6*1, the Point Theory distribution v;ill take 
the sign of the local slope which is unlikel^r to give reliable 
results*

Oscillator)/ motion* The extension to oscillator^r motion is 
difficult to justify since so ver)/ few oscillator^'' pressure 
distributions have been measured* It is recognised (Ref* 17) 
that usuall]/ the non-linear effects of shock wave and boundax̂ '̂  
layer interaction and flow separation are markedly reduced 
during unsteady motion, although at low frequencies these 
effects are still present but are not so severe*

The matrix equation relating the oscillator)/ loading to 
the downwash distribution is:

(ft i- p«] = |ACf) + eĉoj i
where >? = is the frequency parameter ( 60 - circular
frequency, ^  = tirpical wing length, V = airspeed), (X is 
the in-phase downwash and is the out-of phase downwash.

Provided that suitable oscillatory pressure distributions 
were available, one could "correct*' the oscillator^r influence 
coefficients to fit this data "by modifying the in-phase and 
out-of-phase components separately* However, it is by no means 
certain that the modified influence coefficients could be
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applied to any other mode* This would require very careful 
investigation.

For low frequencies, the above equation reduces to:
{Px + 1p.} - a

where the matrices [j\Ji and [sj are independent of
frequency. Matrix [Aj is the steady aerod^rnamic influence
coefficient matrix which we have been studying throughout this 
paper. The loading can be split into four components:

(i) loading due to in-phase dovmwash,
(ii)-'V'^[^{/r} " " " " out-of-phase downwash,

(iii)^[B3 {ô j out-of-phase loading due to in-phase downv/ash,
(i v ) " " out-of-phase downwash.

Components (i) and (iv) could possibly be corrected bjr employing 
the influence coefficient matrix, \j(}^ , modified from known 
steady pressure measurements, in place of the theoretical 
matrix, [Aj . Method III would yield equivalent slope distri­
butions for and the correction factors might be applied
to the out-of-phase downwash vector, . Thus, the remaining
two components, (ii) and (iii), could be modified.
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Appendlx.

The relationship between the pressure distribution, 
and the downwash distribution, , is:

ff . . . (A.i)
s

where,
> . . .  (A. 2 )

A/>ù>C^y^/'éip^ > . . .  (A.3)
and,

The kemal function, K^X^V) , is such that is
the non-dimensional downwash, atâ^o^y^ induced by an
incremental load cL^cLy at W) •

The basis of Richardson’s method lies in satisfying the
integral equation at a finite number of selected points on
the lifting surface. This allows the replacement of the integral
equation (which contains the lift and downwash as functions) by
a system of simultaneous linear algebraic equations (containing
the values of the lift and downwash at the selected points) which
can be expressed in matrix form. These lift and downwash points
are carefully chosen to ensure the maximum accuracy from an
equation of given matrix order.

The following non-dimensional co-ordinates are defined:
«  =- » - f 6  S  6  +  1

y  /s f - 1 ^  + . (A.5)
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The variation of lift over the wing is expressed as the 

double series:

where the value of the pressure differential,
at the lift point, and and are chord-
wise and spanwise interpolation functions. The chordwise lift 
distribution, defined by 6 ^ 3 , is such that a characteristic 
infinite peak exists at the wing leading edge falling to zero 
at the trailing edge. The spanwise distribution tends to zero 
at the wing tips in the manner •

Richardson goes on to define a set of equivalent discrete 
loads concentrated at the lift points:

%  - » . . .  (A.7)
such that:

where,

(A.8 )

and
X t  . . .  (A.9)

X f • • • . (A.1 0 )
“/

The only restriction on the use of the discrete lift forces, 
pfy , is that the downwash distribution must be a continuous 
function expressible as a polynomial.

Tlie spanwise distributions of lift and pitching moment 
about the local quarter-chord are, in terms of the equivalent
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loads :

where, .IW-I » ^

■ • • • (A.13)

In non-dimensional co-ordinates, Equation (A.I) can be 
written as: ^/

The lift distribution of Equation (A,6) can now be substituted 
in Equation (A,14). This gives:

«««’!»>£,£, -ilrAfe,/î 4 4 /V‘>
forming a set of linear simultaneous equations which can be 
written in matrix form as:

[ H ]  * 1?;:̂ ]%] • • • • (a.16)
The downwash vector, , is a column vector the elements of
which are the streamwise slopes at the downwash points,

• The square matrix is the downwash influence
coefficient matrix, element 3)i7-w being the non-dimensional 
downwash at induced by a unit equivalent load
To solve Equation (A.16) for the load vector we merely invert :

- Ifti ” {“?] . (A,17)

^ \ j . . .  (A. 18)
or more conveniently,

o J * « # * (A. 19)
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Element v is now the equivalent load at Induoed by
a unit downwash at

Standard Deuce programmes exist which calculate the 
elements of matrix C A H  for the symmetric and antisymmetric 
downwash conditions.
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1EKî l̂2:(K6iKiT

14*’

TE

re

£XPa#^lMe.MT/^U /iMX> THBoKSTlCAL E-<3Jl)1 VALe^JT" SL-o Pê S


