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Abstract

The human pyruvate dehydrogenase complex (PDC) is a large macromolecular 

assembly involved in the oxidative decarboxylation of pyruvate yielding acetyl CoA 

as the end product of this reaction, which subsequently enters the tricarboxylic acid 

(TCA) cycle. PDC is composed of multiple copies of various enzyme subunits, 

termed E l, E2 and E3. Human PDC also contains an additional component, E3BP, 

which has evolved in order to bind E3 to the core of the complex.

The individual components of human PDC have now been cloned and overexpressed 

in E, coli. A His-tag has been engineered into the N-terminus of each protein to 

facilitate the rapid purification of these subunits using affinity chromatography. With 

the exception of E l, an (%2 p2 heterotetramer, all recombinant proteins aie soluble and 

produced in high yield. By using antibodies specific only for lipoylated E2 and E3BP 

from PDC, and by assaying the catalytically active subunits for activity, it has been 

found that these proteins are correctly folded and have been produced in active form. 

The use of a detergent, N-lauroylsarcosine, was required to produce a soluble E l. 

However, this component is active, as determined by enzymatic assay, under these 

conditions.

Gel filtration studies have shown that E2 and E3BP must be coexpressed in E. coli in 

order for them to assemble into the stable E2/E3BP core complex that is central to the 

structure and organisation of human PDC. When these two proteins are expressed 

individually and then mixed they cannot form a stable core assembly. This suggests 

that the association between E2 and E3BP occurs in a co-translational manner and 

presumably requires their initial association as folding intermediates.
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Circular dichroism and fluorescence studies have been employed to examine the 

stability of the independently expressed E3BP. These studies have shown that each 

domain of E3BP, the N-terminal lipoyl domain, subunit-binding domain and C- 

terminal inner domain, unfolds at discrete concentrations of GdmCl. This indicates 

that while each domain is capable of independent folding, they also unfold 

independently of one another.

In the native complex it is unclear how many E3 dimers are associated with human 

PDC. Isothermal titration calorimetry was utilised in order to assess the stoichiometry 

of binding between the recombinant E3BP and E3. These studies were performed 

using both full-length E3BP and a truncated construct, which consists of the subunit- 

binding domain expressed as a GST-fusion protein. These results suggest that one E3 

dimer binds to two E3BP subunits; thus there would be six E3 dimers present per 

complex. The association constant for these two proteins was in the nanomolar range, 

indicative of very tight binding as expected. The binding affinity of E3 to E2 was also 

assessed using this technique. Truncated constructs of E2, specifically the subunit- 

binding domain expressed as a GST-fusion protein and the E2 didomain, a His-tagged 

protein containing the lipoyl domain and the subunit-binding domain of E2, were 

utilised in these studies. It was found that while E2 preferentially binds E l, it has also 

retained a residual affinity for the E3 subunit. Binding between E2 and E3 is approx. 

100-1000 fold weaker than that between E3 and E3BP. The results described here 

support previous findings from our laboratory, obtained using an alternative 

technique, surface plasmon resonance and provide a molecular basis as to why E3BP- 

deficient patients retain residual PDC activity.
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While pursuing the main aim of this research, to reconstitute a recombinant human 

pyruvate dehydrogenase complex in vitro, a number of findings have produced 

interesting results. The unexpected 2:1 stoichiometry determined for the interaction 

between E3 and E3BP suggests that E3 dimers may form a network of crossbridges 

linking pairs of E3BP monomers across the 12 faces of the core. Production of 

sufficient quantities of active E l is required in order to investigate whether a similar 

2:1 stoichiometry exists between the a 2 p2 E l heterotetramer and the E2 didomain. If 

this is indeed the case, this introduces a new level of structure into the human 

pyruvate dehydrogenase complex, which has not been recognised previously.

VI



Contents

Declaration 1

Acknowledgements 11

Quotation 111

Abstract IV

Contents table Vll

List of figures XIV

List of tables XVlll

Abbreviations XIX

Chapter 1 Introduction 1

1.1 Multienzyme complexes 2

1.2 2-oxoacid dehydrogenase complexes 2

1.3 Complex organisation 5

1.4 Catalytic mechanism 7

1.5 Pyruvate decarboxylase (E l) 9

1.6 Dihydrolipoamide dehydrogenase (E2) 12

1.6.1 The linker regions 12

1.6.2 The lipoyl domain 14

1.6.2.1 The lipoic acid moiety 14

1.6.2.2 Structure of the lipoyl domain 17

1.6.3 The peripheral subunit-binding domain (P-SBD) 19

1.6.4 The C-terminal domain 21

1.7 E3-binding protein (E3BP) 21

1.8 Dihydrolipoamide dehydrogenase (E3) 23

VII



1.9 Regulation of PDC 25

1.10 Genetic defects of PDC 29

1.11 Primary biliary cirrhosis 31

1.12 Protein targeting 32

1.13 Molecular chaperones 34

1.13.1 The Hsp70 family of molecular chaperones 34

1.13.2 The Hsp60 family of molecular chaperones 35

1.13.4 Mechanism of action of GroEL-Gro-ES 36

1.14 Aims of this thesis 36

Chapter 2 Materials and Methods 39

2.1 Molecular biology materials 40

2.1.1 Enzymes and kits 40

2.1.2 Molecular weight markers 40

2.1.3 Oligonucleotides 40

2.1.4 Bacterial media 40

2.1.5 Bacteria and plasmid vectors 40

2.2 Molecular biology methods 41

2.2.1 Polymerase chain reaction (PCR) 41

2.2.1.2 PCR using Tug DNA polymerase 41

2.2.1.3 PCR using P /m DNA polymerase 46

2.2.2 Restriction digestion 46

2.2.3 Dephosphorylation of digested plasmid 47

2.2.4 Production of competent cells 47

2.2.5 Transformation of competent bacteria 47

VIII



2.2.6 Purification of DNA from bacterial cultures 47

2,2.7 Agarose gel electrophoresis 48

2.2.8 Extraction of DNA from an agarose gel 48

2.2.9 Ligations 49

2.2.10.1 Growth of bacterial cultures for protein induction 49

2.2.10.2 Large scale protein induction 50

2.3 Protein Biochemistry Materials 50

2.3.1 Chemicals 50

2.3.2 Molecular weight markers 50

2.3.3 Photographic materials 50

2.4 Protein Biochemistry Methods 51

2.4.1 Dialysis of protein samples 51

2.4.2 Concentration of protein samples 51

2.4.3 Determination of protein concentration 51

2.4.4 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 52

2.4.4.1 Tris/glycine discontinuous buffer system 52

2.4.4.2 Sodium phosphate continuous buffer system 53

2.4.5 Immunoblotting using ECL"^^ chemiluminessence 53

2.4.5.1 Solutions used in immunoblotting 53

2.4.5.2 Immunoblotting protocol 54

2.4.6 Purification of GST-fusion proteins 55

2.4.6.1 Preparation of bacterial extracts 55

2.4.6.2 Column purification 55

2.4.7 Purification of His-tagged proteins 55

2.4.7.1 Preparation of bacterial cell extracts 56

IX



24.7.2 Purification of His-tagged proteins 56

24.8 TCA precipitation of proteins 57

2.4.9 Purification of pyruvate dehydrogenase from bovine heart 57

24.10 Gel filtration 58

2.4.11 Protein crosslinking 58

2.4.12 Solubilisation of inclusion bodies 59

2.4.12.1 Preparation of inclusion bodies 59

24.12.2 Solubilisation of inclusion bodies 59

2.4.13 Isothermal titration calorimetry 60

2.4.14 Circular dichroism 60

2.4.15 Fluorimetry 61

2.4.16 Enzyme assays 61

2.4.16.1 Pyruvate dehydrogenase (E l) activity 61

2.4.16.2 Dihydrolipoamide acetyltransferase (E2) activity 61

2.4.16.3 Dihydrolipoamide dehydrogenase (E3) activity 62

2.4.17 Preparation of dihydrolipoamide 62

2.4.18 Densitometric scanning analysis 62

Chapter 3 Molecular cloning and overexpression of the individual 

components of the human pyruvate dehydrogenase complex

63

3.1 Introduction 64

3.1.1 Aims of this chapter 67

3.1.2 Plasmids 67

3.2 Cloning of the E2, E3 and E3BP components 68

3.2.1 PCR amplification and purification

X

68



3.2.2 Ligation, transformation and identification of clones 71

3.3 Overexpression of heterologous protein 76

3.4 Coexpression of E2 and E3BP 80

3.4.1 Cloning of E2 and E3BP 80

3.4.2 Overexpression of coexpressed E2 and E3BP 81

3.5 Cloning of the E l component 81

3.5.1 PCR amplification and purification 83

3.5.2 Product ligation, transformation and clone identification 83

3.5.3 Cotransformation of Elot and E ip 85

3.6 Discussion 88

Chapter 4 Purification of the recombinant enzymes of human 91

PDC

4.1 Introduction 92

4.1.1 Inclusion bodies 93

4.2 Aims of this chapter 93

4.3 Results 94

4.3.1 Lipoylation states of E2 and E3BP 94

4.4 Purification of recombinant proteins 99

4.4.1 Lysate preparation 99

4.4.2 Purification of crude extracts 99

4.5 Purification of E2 100

4.5.1 Optimisation of purification using ion-exchange 100

chromatography

4.5.2 Specific activity of E2 103

XI



4.6 Purification of E3BP 104

4.7 Purification of E3 104

4.8 Purification of coexpressed E2/E3BP 110

4.9 Purification of E l 113

4.9.1 Solubilisation and purification of E l from inclusion bodies 119

4.9.1.1 Solubilisation of E l using N-lauroylsarcosine 119

4.10 Discussion 120

Chapter 5 Studies on the independent recombinant E3BP component 125 

and the structure and assembly of the recombinant E2/E3BP core

5.1 Assembly of the structural core of human PDC 126

5.2 E3-binding protein (E3BP) 127

5.3 Aims of this chapter 129

5.4 Results 129

5.4.1 Determining the oligomeric nature of E3BP by gel filtration 129

5.4.2 Crosslinking studies on E3BP 130

5.5 Circular dichroism 131

5.5.1 Circular dichroism studies on the independent recombinant 133

E3BP

5.5.2 Secondary structure determination of recombinant E3BP 136

5.6 Protein fluorescence 138

5.6.1 Fluorescence studies on the independent recombinant E3BP 138

5.7 Studies on the E2 and E3BP components of human PDC 142

5.7.1 Gel filtration analysis of the E2 and E3BP components of 143

human PDC

XII



5.7.2 Gel filtration analysis of independently expressed E2 143

5.7.3 Gel filtration analysis of the E2/E3BP recombinant core 143

5.7.4 Gel filtration analysis of individually expressed E2 and 144

E3BP, mixed in equal amounts

5.8 Densitometric scanning analysis of the recombinant 150

E2/E3BP core

5.9 Discussion 153

Chapter 6 Stoichiometry and affinity of E3-E3BP and E3-E2 157

interactions as measured by isothermal titration calorimetry

6.1 Constituents of human PDC 158

6.2 Isothermal titration calorimetry 161

6.3 Aims of this chapter 161

6.4 Results 163

6.4.1 Binding studies using full length mature E3BP 163

6.4.2 Binding studies using truncated constructs of E3BP 167

6.5 Analysis of binding of E3 to E2 171

6.6 Discussion 172

General discussion 182

References 191

XIII



List of figures

1.1 Location of the 2-oxoacid dehydrogenase complexes in 4

cellular metabolism

1.2 Structures of the octahedral and icosahedral E2 inner cores 6

of PDC

1.3 Reaction scheme for the pyruvate dehydrogenase complex 8

1.4 Three-dimensional structure of E l from the human 11

branched-chain 2-oxoacid dehydrogenase complex

1.5 Domain organisation of the E2 and E3BP components from 13

the 2-oxoacid dehydrogenase eomplexes

1.6 Complementary pathways of protein lipoylation in E. coli 16

1.7 Schematic representation of the three-dimensional structure 18

of the lipoyl domain from B. stearothermophilus

1.8 Schematic representation of the peripheral subunit-binding 20

domain of E2 from B. stearothermophilus

1.9 Mechanisms for the metabolic regulation of the pyruvate 28

dehydrogenase complex

1.10 Model for a GroEL-GroES-mediated folding reaction 37

2.1a Map of the expression vector pET-14b 42

2.1b Map of the expression vector pET-28a 43

2.1c Map of the pET-11 a vector 44

2. Id  Map of the glutathione S-transferase fusion vector, pGEX-2T 45

3.1 Primer sequences for the cloning of each component of the 69

human pyruvate dehydrogenase complex

3.2 PCR amplification of E2, E3BP and E3 70

XIV



3.3a Restriction digestion analysis of recombinant E3BP plasmids 73

3.3b Restriction digestion analysis of recombinant E2 plasmids 74

3.3c Restriction digestion analysis of recombinant E3 plasmids 75

3.4a Overexpression of E3BP 77

3.4b Overexpression of E2 78

3.4c Overexpression of E3 79

3.5 Overexpression of cotransformed E2 and E3BP 82

3.6 PCR amplification of E l a  and E ip  84

3.7 Restriction digestion of recombinant E l a  and E ip  plasmids 86

3.8 Coexpression of E l a  and E lP  87

4.1a Western blot of E3BP 96

4.1b Western blot of E2 97

4.1c Western blot analysis of cotransformed E2 and E3BP 98

4.2 Purification profile for E2 101

4.3 SDS-PAGE analysis of purified E2 from a metal chelate 102

column

4.4 Purification profile for E3BP 105

4.5 SDS-PAGE analysis of the purification of E3BP 106

4.6 Purification profile for E3 108

4.7 SDS-PAGE analysis of the purification of E3 109

4.8 Elution profile for coexpressed E2/E3BP 111

4.9 SDS-PAGE analysis of the purification of E2/E3BP 112

4.10 SDS-PAGE analysis of the purification of the individual 114

recombinant enzymes of human PDC

4.11 Solubility studies on the coexpressed E l a  and E ip  subunits 116

XV



4.12 Map of the coexpression plasmid, E l 118

5.1 Crosslinking studies on purified recombinant E3BP 132

5.2 Far-UV CD spectra of mature E3BP 134

5.3 Graph showing the % total change in folded protein as a 135

function of GdmCl concentration

5.4 Fluorescence spectroscopy of the full length E3BP 140

5.5 Unfolding of E3BP (full-length and didomain)as monitored 141

by the change in fluorescence at 350nm

5.6 Gel filtration analysis of recombinant coexpressed E2/E3BP 145

core

5.7 SDS-PAGE analysis of coexpressed E2-PDC and E3BP 146

after Superose 6 gel filtration

5.8 Gel filtration analysis of individually expressed E2 and 148

E3BP mixed in equal amounts

5.9 SDS-PAGE analysis of equal amounts of E2 and E3BP after 149

Superose 6 gel filtration

5.10 Resolved native bovine PDC and recombinant E2/E3BP core 152

6.1 Crystal structure of E3 complexed with E2-SBD from B, 159

stearothermophilus

6.2 Schematic diagram of an ITC instrument 162

6.3 Titration of E3BP into E3 164

6.4 Titration of E3 into E3BP 166

6.5 Titration of E3 into the subunit-binding domain of E3BP 169

6.6 Titration of E3 into the E2 didomain 173

6.7 Titration of E3 into the subunit-binding domain of E2 174

XVI



6.8 Hypothetical model of the proposed binding arrangement 178

between E3 and E3BP, and E l and E2

XVII



List of tables

4.1 Purification table for E2 103

4.2 Purification table for E3 107

4.3 Specific activity of E l solubilised from inclusion bodies 120

4.4 Summary of the yields of individual enzymes cloned and 121

expressed in E. coli

5.1 Secondary structure content of the full length recombinant E3BP 137

5.2 Densitometric scanning analysis of recombinant and native 151

E2/E3BP core

XVIII



ABBREVIATIONS

Amp. ampicillin

approx. approximately

APS ammonium persulphate

BCOADC branched chain 2-oxoacid dehydrogenase complex

CD

Da

DHL

DTT

E l

E2

E3

E3BP

EDTA

ECL

FAD

FPLC

GdmCl

GST

ITC

LB

min

OGDC

PAGE

PBC

circular dichroism

daltons

dihydrolipoamide

dithiothreitol

pyruvate decarboxylase

dihydrolipoamide acetyltransferase

dihydrolipoamide dehydrogenase

dihydrolipoamide dehydrogenase-binding protein

ethylenediaminetetra-acetate

enhanced chemiluminescence

flavin adenine dinucleotide

fast protein liquid chromatography

guanidinium chloride

glutathione S-transferase

isothermal titration calorimetry

Luria broth

minutes

2-oxoglutarate dehydrogenase complex 

polyacrylamide gel electrophoresis 

primary biliaiy cirrhosis

XIX



PBS phosphate buffered saline

PCR polymerase chain reaction

PDC pyruvate dehydrogenase complex

PEG polyethylene glycol

PMSF phenylmethylsulphonyl fluoride

SDS sodium dodecyl sulphate

SPR surface plasmon resonance

TCA cycle tricarboxylic acid cycle

TEMED NNN’N ’-tetramethylethylenediamine

ThDP thiamine diphosphate

Tris 2-amino-2-(hydroxymethyl)-l,3-propandiol

UV ultraviolet

v/v volume to volume

w/v weight to volume

XX



Intl'oduction

Chapter 1 

Introduction



Introduction

1.1 Multienzyme complexes

Multienzyme complexes, of which the pyruvate dehydrogenase complex is the most 

prominent example, are composed of multiple copies of several differing types of 

protein subunits bound tightly, but noncovalently to each other. These complexes are 

involved in the sequential catalysis of multistep chemical reactions and provide a 

unique system for the study of protein-protein interactions in a multifunctional 

enzyme system. It has also been increasingly recognised that post-translational 

modification of these complexes and the concept of the “swinging arm” provides an 

elegant means of channelling substrate between active sites. This idea of the 

“swinging arm”, first postulated for the 2-oxoacid dehydrogenase multienzyme 

complexes (Reed, 1974), has since been proposed for other multifunctional enzyme 

systems including fatty acid synthase and the biotin-dependent enzymes such as 

pyruvate carboxylase. The structural and biochemical study of these complexes is thus 

of great interest, not only in examining the importance of protein-protein interactions 

but also in the study of the mechanisms involved in substrate channelling. The 

importance of the role played by post-translational modification in the catalytic 

mechanism of these complexes is also of interest (for review, see Perham 2000).

1.2 2-oxoacid dehydrogenase multienzyme complexes

The 2-oxoacid dehydrogenase multienzyme complexes are a family of related 

complexes that catalyse the key committed steps in carbohydrate and amino acid 

metabolism. The branched-chain 2-oxoacid dehydrogenase complex (BCOADC) 

oxidatively decarboxylates the branched chain 2-oxoacids derived by transamination 

from valine, leucine and isoleucine. Mammalian BCOADC has also been found to be 

capable of metabolising intermediates involved in the breakdown of the amino acids
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threonine and methionine (Jones & Yeaman, 1986). The 2-oxoglutarate 

dehydrogenase complex (OGDC) acts as an important regulatory enzyme within the 

tricarboxylic acid (TCA) cycle and oxidatively decarboxylates 2-oxoglutarate to 

succinyl CoA. The pyruvate dehydrogenase complex (PDC), the focus of this work, 

oxidatively decarboxylates pyruvate with the concomitant production of acetyl CoA 

for entry into the tricarboxylic acid cycle. As such, PDC controls the rate of carbon 

flux into the TCA cycle and so plays a central role in the control of carbohydrate 

utilisation. Figure 1.1 illustrates diagrammatically the positions of these complexes in 

cellular metabolism.

This family of complexes share a common architectural design. Each complex is 

composed of multiple copies of at least 3 enzyme components and consists of a 

central core, composed of either 24 or 60 E2 subunits, to which are bound multiple E l 

and E3 subunits. These E l and E2 components are distinct for each complex and are 

encoded by separate genes while the E3 component, at least in mammals, is common 

to all three complexes and is encoded by a single gene. Exceptions to this rule have 

been found in Pseudomonas putida where three separate genes for E3 have been 

identified (Palmer et al, 1991). Similarly, in pea (Pisum sativum) two distinct E3s 

have been identified. One appears to be specific for the mitochondrial complex while 

the second is associated with its chloroplastic counterpart (Conner et al, 1996). Three 

distinct mitochondrial isoforms of E3 have also been found in potato (Cook et al, 

1996) where it is believed that these isoforms may represent tissue- and complex- 

specific isoforms of the enzyme. Multiple enzymatic forms of E3 have also been 

reported in E. coli (Richarme, 1989).
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Figure 1.1 Location of the 2-oxoacid dehydrogenase complexes in cellular 

metabolism.
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In mammalian and yeast PDC, an additional subunit was identified which was

originally termed protein X. This component has since been found to be responsible '

for binding E3 to the core of the complex and so has been renamed E3-binding

protein (E3BP). E3BP has not been identified in PDC from any other sources apart

from yeast and mammals and the nematode Ascaris suum, nor has it been found in

any OGDC or BCOADC complexes.

The multi subunit, multicopy structure of these complexes means that they are among 

the largest, macromolecular assemblies known, with molecular masses of approx 4-10 

million Da.

1.3 Complex organisation

The main components of the mammalian pyruvate dehydrogenase complex (PDC) are 

pyruvate decarboxylase (E l, EC 1.2.4.1), dihydrolipoamide acetyltransferase (E2, EC 

2.3.1.12), dihydrolipoamide dehydrogenase (E3, EC 1.8.1.4) and E3-binding protein 

(E3BP). There are also other associated polypeptides that are involved in the 

regulation of the complex, namely a specific PDC-associated kinase and phosphatase.

The key to the macromolecular assembly of these complexes lies with the E2 subunit 

as this enzyme provides the structural core around which the other components 

assemble. Uniquely, E2 can form one of two structural scaffolds depending on the 

source of the enzyme. A pentagonal dodecahedral core structure consisting of 60 

monomers of E2-PDC noncovalently bound to one another with icosahedral (532) 

symmetry is found in PDC complexes from mammalian cells and Gram positive 

bacteria. In Gram negative bacteria and all known OGDCs, and BCOADCs, the E2
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12S K

2XfK

Figure 1.2 Structures of the octahedral and icosahedral E2 inner cores of PDC.

(Taken from Perham, 2000)

The E2 core from A. vinelandii in panel A is shown on its two-, three- and fourfold 

axes of symmetry.

The icosahedral E2 core from B. stearothermophilus is seen in panel B on its two-, 

three- and fivefold axes of symmetry.

The three different subunits of the basic trimeric unit are shown in different colours.
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core exists as a cubic structure with octahedral (432) symmetry. This is formed from 

the noncovalent assembly of 24 E2 subunits. The other components of these 

complexes then assemble around this central structural core. Figure 1.2 demonstrates 

the two types of structural scaffold that can form.

In mammalian PDC up to 30 E l a2p2 heterotetramers bind noncovalently at the 30 

edges of the 60meric E2 core. Evidence from densitometric-scan analyses suggests 

that 1 E3BP molecule binds in each of the 12 faces of the E2 core while 6-12 E3 

homodimers are connected to the complex via E3BP (Sanderson et al, 1996a). In 

OGDC and BCOADC it is believed that 12 E l molecules bind to the edges of the 

24meric cubic structure while an estimated 6 E3 dimers are associated with the 6 

faces of these complexes.

1.4 Catalytic Mechanism

The overall reaction catalysed by PDC results in the decarboxylation of pyruvate with 

the concomitant production of acetyl-CoA, CO2  and NADH. This is a multistep

reaction involving the 3 main components of the complex (Figure 1.3). E l catalyses a 

two step reaction and this is the first, and rate-limiting step in the overall catalytic 

mechanism. E l has an absolute requirement for the cofactor thiamine diphosphate 

(ThDP) and Mg '̂*'. Pyruvate forms an adduct with the thiazole ring of ThDP and this 

then undergoes decarboxylation to produce a 2-(l-hydroxyethylidene)-ThDP 

intermediate. This intermediate undergoes oxidation while the dithiolane ring of the 

lipoyl moiety on E2 becomes reductively acetylated. This produces the acetyl group 

and electrons that are transferred, via E2 and E3 respectively, to CoA and NAD"^.

Both of these partial reactions are catalysed by E l. E2 then mediates the transfer of
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Figure 1.3 Reaction scheme for the pyruvate dehydrogenase complex

(Taken from Perham, 2000)

The reactions catalysed by El are shown in red, the reaction catalysed by E2 is in 

green, and that catalysed by E3 is indicated in yellow.

ThDP, thiamine diphosphate.
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the acetyl group from its lipoyl moiety to free CoA, thus forming acetyl CoA. E3 

reoxidises the reduced lipoyl moiety of E2 thus regenerating the disulphide bridge in

the lipoyl group, with NAD+ acting as the final electron acceptor.

1.5 Pyruvate Decarboxylase (El)

The E l subunit of the 2-oxoacid dehydrogenase complexes is a thiamine diphosphate 

(ThDP)-dependent enzyme which catalyses two successive steps in the overall 

catalytic mechanism of the complex. It catalyses the decarboxylation of pyruvate to 

CO2 to form the intermediate 2-a-hydroxyethylidene-TPP (HE=TPP) and the 

reductive acétylation of the lipoyl groups of E2 as shown below.

C H 3 C O C O O H  +  E l - T h D P  C H 3 C (O H )= T h D P -E l  +  C O 2 

C H 3 C (0 H )= T h D P -E l  +  E 2 - [L ip (S )2 ] -^  E l - T h D P  +  E 2 -[L ip (S H )S C O C H 3 ]

ThDP-dependent enzymes share a number of common features. Comparison of the 3- 

dimensional structures of three ThDP-dependent enzymes (yeast pyruvate 

decarboxylase, yeast transketolase and Lactobacillus plantarum  pyruvate oxidase) 

revealed that the ThDP-binding site is located in a deep cleft formed by hydrophobic 

amino acids at the interface between two subunits (Hawkins et al, 1989). This ThDP- 

binding motif is responsible for the binding of a metal ion that anchors ThDP via its 

phosphate groups. Subsequent x-ray crystallographic analysis of the heterotetrameric 

E l from the BCOADC of P. putida (Ævarsson et al, 1999) and from human 

BCOADC (Ævarsson et al, 2000) placed the cofactor thiamine diphosphate (ThDP) at 

the end of a long hydrophobic channel that is capable of accommodating the E2 

lipoyl-lysine arm. Similarly, the recently reported crystal structure of the U2
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homodomeric E l from E. coli has confirmed that the catalytic ThDP is found at the 

bottom of a deep funnel-shaped hole at the interface between the two subunits 

(Arjunan et al, 2002). The functional dimer contains two such catalytic centres. 

Similarly, mammalian El-PDC, an a 2 ^2  heterotetramer, is also known to contain two 

active centres (Khailova & Korotchkina, 1982).

Relatively little is known about the active sites of mammalian El-PDC. Chemical 

modification has previously identified cysteine-62 of the a  subunit (All et al, 1993) 

and tryptophan-135 of the P subunit (Ali et al, 1995) as being involved in the active 

site of E l. Site-directed mutagenesis of these two residues has now indicated that they 

are involved in coenzyme binding and could also be important for the stability of the 

protein (Korotchkina et al, 1999). However, the lack of a 3-dimensional structure of 

mammalian El-PD C makes it difficult to predict the exact position of residues located 

in or near the active site of the protein.

In the octahedral complexes of OGDC and PDC, E l exists as an a 2 homodimer while 

in the octahedral BCOADC and the icosahedral PDC complexes, E l consists of 2 

nonidentical subunits forming an 0 t2 p2 heterotetramer. Studies on the heterotetrameric 

E l component from B. stearothermophilus showed that binding to the peripheral 

subunit-binding domain of E2 is mediated by the E ip  subunit (Lessard et al, 1995). 

Each E l tetramer is believed to bind only one binding domain, thus the binding site is 

predicted to lie at or close to the 2-fold axis of symmetry on the p subunits (Wynn et 

al, 1992; Lessard et al, 1995).

The structure of human heterotetrameric E l from BCOADC is shown in Figure 1.4.

10
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ThDP
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axis

ThDP

Figure 1.4 Three-dimensional structure of E l from the human branched-chain 2- 

oxoacid dehydrogenase complex

(From Ævarsson et al, 2000)

The crystal structure of heterotetrameric El from human BCOADC is shown along its 

twofold axis of symmetry. Each subunit is shown in a different colour (a subunits 

shown in purple and blue, p subunits in red and yellow).

1.6 Dihydrolipoamide Acetyltransferase (E2)
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1.6 Dihydrolipoamide Acetyltransferase (E2)

E2 plays a key role not only in determining the structure and organisation of PDC but 

also in co-ordinating the sequence of catalytic events within the complex. The E2 

polypeptide has a modular organisation consisting of at least three independently 

folding domains separated by flexible linker regions. Each subunit contains, from the 

N-terminus, 1-3 highly homologous lipoyl-containing domains which are each about 

80 amino acids long followed by a small subunit-binding domain consisting of 

approximately 40-50 amino acids and, at the C-terminus, a large catalytic inner 

domain. This inner domain contains the binding sites for E2 involved in the self- 

assembly of this enzyme into the central core complex as well as the catalytic site for 

acetyl transfer (Radford et al, 1987). In mammals and yeast this central core is formed 

from multiple copies of both E2 and E3BP. E3BP shares a similar domain 

organisation to E2 as indicated in Figure 1.5. The C-terminal domain of this protein 

contains the binding sites for the E2 polypeptide. The number of lipoyl domains 

present on the E2 polypeptide depends on the source of the enzyme. This ranges from 

three in the E. coli PDC to one in PDC from B. stearothermophilus and S. cerevisiae 

and all known OGDCs and BCOADCs. Mammalian PDC contains two lipoyl 

domains on the E2 polypeptide while E3BP contains a single lipoyl domain.

1.6.1 The linker regions

Regions of polypeptide chain approximately 20-30 amino acids in length connect 

each of these domains. These linker regions are rich in alanine and proline residues 

and charged amino acids. [^H] NMR has shown that these linker regions are highly 

flexible, a function which is very important in maintaining the catalytic activity of the 

complex (Perham et al, 1981; Green et al, 1992). These linker regions provide the

12
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Figure 1.5 Domain organisation of the E2 and E3BP components from the 2- 

oxoacid dehydrogenase complexes

(L), lipoyl domain; E3/E1, E3 and/or E l binding domain; CAT, C-terminal 

acetyltransferase domain; E2BD, E2-binding domain; X, E3-binding protein
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lipoyl domains with the flexibility they require in order to rotate between the active 

sites of the 3 catalytically active enzymes. This was demonstrated by making 

progressive deletions in the linker region of a modified E. coli E2 with only one lipoyl 

domain. It was found that this region must be at least 13 amino acids long for full 

active site coupling to be maintained. Shorter segments impaired the overall reaction 

of PDC without unduly affecting the reactions of the individual enzymes (Miles et al, 

1988).

1.6.2 The lipoyl domain

The lipoyl domain plays a central role in the catalytic mechanism of the 2-oxoacid 

dehydrogenase complexes and, as such, undergoes two important recognition 

processes in vivo. Each lipoyl domain can be post-translationally modified on a 

specific lysine residue by the lipoylating enzymes of the cell while recognition of the 

lipoyl domain by its cognate E l is a prerequisite for efficient catalysis.

1.6.2.1 The lipoic acid moiety

Lipoic acid (6,8-thioctic acid or l,2-dithiolane-3-pentanoic acid) is a sulphur- 

containing cofactor, which is utilised by the members of the 2-oxoacid dehydrogenase 

multienzyme complex family. In each lipoyl-containing protein, lipoic acid is attached 

to a specific lysine residue via an N*^-amide linkage between its carboxyl terminal and 

the 8-amino group of the lysine. This amide linkage is flexible, allowing the lipoyl 

group to shuttle intermediates and reducing equivalents between the active sites of the 

three catalytically active enzymes.

14
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In E. coli, there are believed to be two complementary pathways of protein lipoylation 

as shown in Figure 1.6. The first pathway (endogenous pathway) of lipoylation 

requires the product of the lipB gene, (lipoyl- [acyl-carrier-protein] -protein-N- 

lipoyltransferase) which transfers endogenously synthesised lipoate to apoproteins. 

The biosynthetic pathway by which E. coli synthesises lipoate is poorly understood 

but it has been shown that octanoic acid, 8-thiooctanoic acid and 6-thiooctanoic acid 

can act as the precursors for lipoate synthesis (Reed & Cronan, 1993). In this pathway 

the lipoyl group is attached to an acyl carrier protein (AGP) to form lipoyl-ACP 

(Jordan & Cronan, 1997). The product of the lipB gene then transfers the lipoyl 

moiety to the apoprotein (Morris et al, 1995). The second pathway (exogenous 

pathway) utilises free lipoic acid present in the medium and requires the product of 

the IplA gene, a lipoate-protein ligase (LplA) (Morris et al, 1994; Green et al, 1995). 

LplA catalyses the ATP-dependent activation of lipoic acid to lipoyl-AMP and then 

transfers the activated lipoyl group to the apoprotein with the concomitant release of 

AMP (Morris et al, 1995).

In mammalian cells, the covalent attachment of lipoate to apoprotein occurs in two 

successive steps and, in contrast to the situation in E. coli, requires two separate 

enzymes. In the first reaction lipoate-activating enzyme acts by promoting the 

formation of lipoyl-AMP (Tsunoda & Yasunoba, 1967). The second enzyme, lipoyl- 

AMP:N^-lysine lipoyltransferase (Fujiwara et al, 1994; Fujiwara et al, 1999), then 

transfers the lipoyl moiety to the lysine residue of the apoprotein.

15
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Figure 1.6 Complementary pathways of protein lipoylation in E. coli 

(From Miller et al, 2000).

Apo-PDC, unlipoylated protein; Holo-PDC, lipoylated protein
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1.6.2.2 Structure of the lipoyl domain

The 3-dimensional structure of the lipoyl domain has been solved from a number of 

sources by means of NMR spectroscopy. The most recently reported structure is that 

of the inner lipoyl domain of human E2 (Howard et al, 1998). Figure 1.7 shows the 

three-dimensional structure of the lipoyl domain from B. stearothermophilus. The 

overall backbone structure of the lipoyl domain is virtually identical in all species so 

far examined. It was found that the lipoyl domain consists of two 4-stranded 

antiparallel ^-sheets in the fold of a flattened |3-barrel. The lipoylatable lysine residue 

is located on an exposed type-I p-tum in one of the P-sheets, within a conserved DKA 

motif. Site-directed mutagenesis of the amino acid residues of this motif and analysis 

by mass spectrometry have shown that the highly conserved aspartic acid (D) and 

alanine (A) residues do not appear to be necessary for the recognition of the 

lipoylatable lysine residue. When these residues were subjected to mutagenesis, the 

ability of the lysine residue to be lipoylated remained unaffected. The position of the 

lysine residue itself appears to be the key factor affecting lipoylation. Mutants in 

which lysine replaced the aspartic acid residue and the lipoylatable lysine residue was 

mutated to alanine remained unlipoylated, as judged by mass spectrometry. This 

indicates that the lipoylating enzymes require a precise structural cue in order to 

initiate lipoylation (Wallis & Perham, 1994).

An additional surface loop on the second p-sheet has also been identified, which lies 

close in space to the lipoyl-lysine loop, and it is thought that this loop may be 

involved in the recognition of E2 by its cognate E l component. In the B. 

stearothermophilus lipoyl domain, it was found that mutagenesis of the residues 

found in this second surface loop led to virtual complete abolition of the ability of
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Figure 1.7 Schematic representation of the three-dimensional structure of the 

lipoyl domain from B. stearothermophilus

The p-sheet containing the lipoyl-lysine residue is shown in blue. The p-sheet 

coloured green contains the N- and C-terminal residues. The second exposed surface 

loop is shown in red.
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the lipoyl domain to act as a substrate for its cognate E l component (Wallis et al, 

1996).

1.6.3 The peripheral subunit-hinding domain (P-SBD)

The peripheral subunit-binding domain is one of the smallest independently folded 

protein domains described to date. In human E2-PDC, the primary function of this 

domain is to bind the E l component but it has also retained a residual affinity for E3 

(McCartney et al, 1997). In the bacterial complexes the P-SBD binds both E l and E3. 

It has been demonstrated that in the B. stearothermophilus PDC, E l and E3 compete 

for binding and are capable of displacing each other, suggesting that the overall 

assembly of the complex may not be strictly symmetrical (Lessard et al, 1996).

The 3-dimensional structure of the P-SBD from B. stearothermophilus E2-PDC has 

been solved by means of NMR spectroscopy (Kalia et al, 1993) as seen in Figure 1.8. 

This domain consists of 43 amino acids with 33 of these residues comprising a 

structured core composed of two ot-helices connected by a loop that contains a short 

3^  ̂helix. Two highly conserved hydrophilic residues, Asp34 and Thr24 are found 

buried in the structure and these residues are believed to be crucial in conveying 

stability to the domain (Spector et al, 1998). Sequence comparison of E2 from a 

variety of organisms has shown that the subunit-binding domain is one of the most 

conserved parts of the E2 protein. The majority of the conserved residues in this 

domain are hydrophobic or polar, suggesting that all subunit-binding domains have a 

similar structure (Russell & Guest, 1991).
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Figure 1.8 Schematic representation of the peripheral subunit binding domain of 

E2 from B, stearothermophilus
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1.6.4 The C-terminal domain

The C-terminal domain of E2 houses the acetyltransferase activity of this enzyme and 

the binding sites which are involved in the self-assembly of E2 into the structural 

core. Comparison of the amino acid sequences of E2 from E. coli and several 

chloramphenicol acetyltransferases (CATs) revealed 15% sequence homology 

between these two proteins. This led to the proposal that the C-terminal domain of E2 

and CAT were structurally homologous (Guest, 1987). The comparison with CAT 

also predicted two highly conserved residues, a histidine and an aspartic acid, to be 

involved with the catalytic mechanism of E2. This prediction was later confirmed 

when the crystal structure of the cubic core from A. vinelandii was solved to 2.6Â 

resolution (Mattevi et al, 1992; Mattevi et al, 1993). Comparison of this structure with 

that of CAT revealed a striking similarity between structures. Like E2, CAT is formed 

by a tightly associated trimer of identical chains with the catalytic centre, formed by a 

30Â long channel, found at the interface between subunits (Leslie, 1990). This 

structure also confirmed the participation of Elis-610 (in A. vinelandii) in the catalytic 

mechanism (Mattevi et al, 1993b). In E2 the conserved aspartic acid in CAT has been 

replaced by an asparagine (de Kok et al, 1998).

1.7 E3-binding protein (E3BP)

Originally termed protein, or component X this protein is an additional subunit first 

identified in mammals (DeMarcucci et al, 1985; Jilka et al, 1986) and then in yeast 

(Behai et al, 1989) of the pyruvate dehydrogenase complex. Gene disruption and 

mutagenesis studies conducted in Saccharomyces cerevisiae indicated that the
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subunit-binding domain of protein X was responsible for the high-affinity binding of 

E3 to the core of the complex (Lawson et al, 1991) resulting in it being renamed E3- 

binding protein (E3BP).

Amino acid sequence analysis of E3BP indicates that this protein has a similar 

structure to that of E2 as demonstrated previously in Figure 1.5. The E3BP 

polypeptide consists of a single lipoyl-binding domain, a subunit-binding domain and 

a larger C-terminal domain. As with E2, these domains are connected by highly 

flexible linker regions. In all known E2-like proteins with acetyltransferase activity a 

histidine residue has been identified which is believed to be important in the catalytic 

activity of the protein. This residue is found in the conserved sequence DHRXXDG in 

the inner domain. In the corresponding sequence in E3BP (DSRXXDD) the histidine 

residue has been replaced by a serine (Seyda & Robinson, 2000). No acetyltransferase 

activity has been detected in E3BP and a catalytic role has not yet been identified for 

this protein although it has been recognised that the lipoyl domain of E3BP can 

undergo reductive acétylation in a manner similar to E2. Indeed it has been found that 

removal of the lipoyl domains of E2 by collagenase treatment resulted in a complex 

capable of sustaining residual PDC activity at a level of 15-20% compared with wild- 

type complex. This suggests that the lipoyl domain present on E3BP can, in part, 

compensate for defective or missing lipoyl domains on E2 (Sanderson et al, 1996b). 

Primary sequence analysis indicates that human E3BP shares greater homology with 

E2 than with yeast E3BP (Harris et al, 1997). It has also been noted that the lipoyl 

domain of E3BP shares greatest homology with the inner lipoyl domain of E2 (Aral et 

al, 1997).
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Complexes deficient in E3BP have been shown to be able to sustain partial PDC 

activity. Reconstitution studies carried out in this laboratory have shown that 

reconstituted PDC lacking E3BP is able to sustain residual activity in the presence of 

a large molar excess of E3. In the presence of stoichiometric amounts of E3, little or 

no activity was detected (McCartney et al, 1997). This is thought to occur because 

mammalian E2 has retained a residual binding capacity for the E3 component 

allowing E3 to bind specifically and with low affinity. These results provide support 

for the discovery of a group of patients with E3BP deficiencies. These patients have 

no immunologically detectable E3BP but can sustain residual levels of PDC activity 

approx. 10-20% that of a control group (Marsac et al, 1993; Geoffroy et al, 1996).

1.8 Dihydrolipoamide dehydrogenase (E3)

E3 is one of a family of enzymes that require FAD for its activity. This family is 

known as the pyridine nucleotide-disulphide oxidoreductases and includes glutathione 

reductase and thioredoxin reductase (Mande et al, 1996). These enzymes catalyse 

electron transfer between pyridine nucleotides and disulphide compounds. Of these 

enzymes, glutathione reductase has been the most extensively studied. The full amino 

acid sequence and tertiary structure has been elucidated for this protein (Thieme et al, 

1981) while x-ray diffraction analysis has been employed using purified human 

glutathione reductase, to confirm the mode of catalysis which has already been 

postulated from biochemical and spectroscopic studies (Pai & Schulz, 1983). Since 

E3 has significant sequence homology to glutathione reductase (Otulakowski & 

Robinson, 1987) a similar catalytic mechanism has been proposed for this protein 

(Carothers et al, 1989; Jentoft et al, 1992).
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E3 catalyses the reoxidation of the disulphydryl form of the lipoyl moiety attached to 

the E2 polypeptide. In this reaction electrons are first transferred from the 

dihydrolipoyl moiety of E2 to the reactive disulphide, then to the FAD cofactor before 

finally being transferred to NAD^ as indicated below.

E2-[Lip(SH)2] + E3-FAD ^  E2-[LipS2] + E3-[FADH2] 

E3*[FADH2] + NAD"" E3-[FAD] + NADH + H+

E3 exists as a dimer of two identical subunits. Each subunit consists of four domains, 

a FAD-binding domain, the NAD^-binding domain, a central domain and the interface 

domain. Each subunit also contains a noncovalently bound molecule of FAD, a redox- 

active disulphide and an NAD^-binding site. Reconstitution studies using the 

monomeric apoenzymes of E3 from A. vinelandii have indicated that the dimeric form 

of E3 is essential not only for its catalytic activity but also for the interaction with E2 

(Schulze et al, 1991). This indicates that residues from both E3 monomers form the 

binding site for E2.

E3 contains two active sites, each of which is formed by the flavin ring of FAD, two 

cysteine residues from 1 monomer and a histidine residue from the second monomer 

(Toyoda et al, 1998). Site-directed mutagenesis of this histidine residue (His-452 in 

human E3) results in almost complete abolition of E3 activity (Kim & Patel, 1992). 

This residue is believed to be important in stabilising the thiolate-anion involved in 

the charge transfer complex (Liu et al, 1995).
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E3 is thought to be common to all three 2-oxoacid dehydrogenase multienzyme 

complexes in eukaryotes. Reconstitution experiments, immunological crossreactivity 

studies and genetic disorders of E3 which result in simultaneous increases in the 

levels of pyruvate, branched-chain amino acids and 2-oxoglutarate are three lines of 

evidence suggesting that this is indeed the case (Pons et al, 1988).

1.9 Regulation of PDC

Due to its location at an important branch-point in intermediary metabolism, it is of 

the utmost importance that the activity of the pyruvate dehydrogenase complex is 

tightly regulated. To date, two separate types of mechanism have been characterised 

that are involved in the short-term regulation of this complex. The simplest 

mechanism occurs as a result of end-product inhibition of PDC. The second 

mechanism, first demonstrated by Linn and coworkers (1969), showed that PDC can 

be regulated by a phosphorylation/dephosphorylation mechanism which is mediated 

by PDC-associated kinases and phosphatases.
f

Feedback inhibition of PDC occurs under metabolic conditions where the levels of 

NADH and acetyl CoA, the end products of the catalytic mechanism, are elevated. 

High NADHiNAD^ and acetyl CoA:CoA ratios enhance the activity of the PDC- 

associated kinase and hence phosphorylate and inactivate the complex. There is also a 

reciprocal reduction in phosphatase activity (Pettit et al, 1975). Increasing 

concentrations of pyruvate, ADP and Câ "̂  inhibit the activity of PDC-kinase. 

Increased Ca^^ concentrations also enhance the activity of PDC-associated 

phosphatase (Patel et al, 1995).
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PDC-kinase (PDK, EC 2.7.1.99) is a mitochondrial protein kinase composed of two 

subunits, an a  subunit of Mr 48000 and a p subunit of M,- 45000 (Stepp et al, 1983). 

This enzyme is found tightly bound to PDC and is present in very small quantities. It 

catalyses the phosphorylation of three serine residues present on the E l a  subunit. 

These are Ser-264, Ser-271 and Ser-203 in the human complex. Phosphorylation at 

site 1 (Ser-264) was shown to occur in E l independently. However, phosphorylation 

of sites 2 (Ser-271) and 3 (Ser-203) also require the presence of E2 (Yeaman et al, 

1978). In particular it was found that acetyl-CoA-mediated enhancement of kinase 

activity requires the presence of a lipoate source, preferably the inner lipoyl domain of 

E2, the catalytic domain of E2 and a peptide substrate (Ravindran et al, 1996). Major 

inactivation of the complex occurs upon phosphorylation of site 1. Each of these sites 

were found to become phosphorylated at different rates indicating that the rate of 

phosphorylation is site-specific (Korotchkina & Patel, 1995).

Four isoenzymes of PDK have been identified and characterised, most recently PDK4 

(Rowles et al, 1996). Each of these isoenzymes has a tissue-specific expression.

PDKl is found mostly in cardiac muscle while PDK2 is found in most tissues. PDK3 

appears to be most abundant in testis while PDK4 is predominantly expressed in 

skeletal muscle and heart (Gudi et al, 1995; Bowker-Kinley et al, 1998). Each 

isoenzyme appears to act preferentially at different phosphorylation sites adding a 

new level of complexity to the regulation of PDC. For example, site 1 seems to be 

preferentially phosphorylated by PDK2, site 2 by PDK3 while site 3 can only be 

phosphorylated by PDKl (Korotchkina & Patel, 2001). It has been proposed that the 

different PDK isoenzymes may perform specialised roles. PDKl and 2 may be 

specialised for short-term or metabolic control of PDC activity, while it has been
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postulated that PDK4 may be more adapted to the long-term regulation of PDC under 

circumstances such as starvation (Bowker-Kinley et al, 1998).

PDC-phosphatase (PDP, EC 3.1.3.43) is a mitochondrial protein serine/threonine 

phosphatase that catalyses the dephosphorylation, and hence activation, of the E l 

component of PDC. This enzyme consists of two subunits, a Mg^^-dependent and 

Ca^^-stimulated catalytic subunit and an FAD-containing regulatory subunit. PDP is 

found loosely associated with the E2 component of PDC and requires an increase in 

intracellular Câ '*' ion concentration for the activity of the phosphatase to be enhanced. 

Liu and coworkers (1995b) found that association of PDP with the complex occurs at 

the inner lipoyl domain on E2. To date, two isoenzymes of PDC-associated 

phosphatase have been identified. One isoenzyme, PDPl is found predominantly in 

muscle while PDP2 is expressed mainly in liver and adipose tissue (Huang et al,

1998).

Long-term regulation of PDC by either nutritional or hormonal changes has not been 

extensively studied but is believed that regulation probably occurs through a variety 

of mechanisms (Denton et al, 1996). The mechanisms by which PDC is regulated are 

summarised in Figure 1.9.
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1.10 Genetic defects of PDC

Human pyruvate dehydrogenase complex deficiency is a potentially severe inborn 

error of oxidative metabolism. The clinical symptoms of PDC deficiency tend to vary 

quite markedly but commonly patients present with lactic acidosis and some form of 

neurological dysfunction. The nature and severity of this dysfunction can vary 

considerably between patients. PDC deficiency can be caused by mutations in any of 

the subunits of the complex.

The most common cause of PDC deficiency occurs as a result of a defect in the E l a  

subunit (Chun et al, 1993). Nearly 80 different point, insertion or deletion mutations 

have been identified in this component but the nature and severity of the 

abnormalities caused by these mutations show great variation. This is purported to be 

because the gene for E l a  has been localised to the short arm of the X chromosome 

(Brown et al, 1989; Szabo et al, 1990). In females, the pattern of expression of E l a  is 

dictated by X-chromosome inactivation and this can account for some of the variation 

in clinical symptoms. In males only one X chromosome is present so all cells will be 

affected by the mutation in E la . Residual complex activity will, therefore, depend on 

the severity of the mutation (Lissens et al, 2000). A second gene has been identified 

which also codes for the E l a  subunit. This was localised on chromosome 4 and codes 

for a testis-specific E l a  (Dahl et al, 1990). To date, no mutations have been 

characterised in this testis-specific gene (Dahl, 1995) nor have any mutations causing 

PDC deficiency been detected in the E lp  subunit. However, patients with a defect in 

the E l a  component usually also have no detectable, or severely depleted amounts of 

E lp  protein. This is thought to be as a result of an impaired ability of heterotetrameric 

E l protein to form (Saijo et al, 1996) due to the mutation in the E l a  subunit.

29



Introduction

A number of patients with an apparent absence of E3BP as detected by Western 

blotting have been identified (Robinson et at, 1990; Marsac et al, 1993; Geoffroy et 

al, 1996; Ling et al, 1998). Defects in the E2 component (Robinson et al, 1990) and 

the PDC-phosphatase (Ito et al, 1992) have also been detected. The symptoms that 

these patients present with are generally clinically indistinguishable from those caused 

by a defect in the E l a  subunit.

A mutation in the E3 subunit results in impaired activity of all the 2-oxoacid 

dehydrogenase complexes since E3 is an essential component of these complexes. E3 

deficiency leads to elevated levels of the 2-oxoacid substrates in plasma and urine 

(Hong et al, 1997; Shany et al, 1999). To date, defects in the E3 component are the 

only identified mutations found in the OGDC complex. Mutations in the E l and E2 

components have not yet been reported (Sheu & Blass, 1999) although OGDC has 

been implicated in the aetiology of several neurodegenerative diseases (Sheu et al, 

1994; Gibson et al, 1998).

Deficiency in OGDC is associated with a number of neurological disorders. In 

particular, it has been found that in the brains of patients suffering from Alzheimer’s 

disease there is a pronounced reduction in the activity of OGDC (Sheu et al, 1994). 

Since the substrate of OGDC, 2-oxoglutarate, and glutamate are interconverted in the 

brain, a deficiency of OGDC would be expected to impair the removal of glutamate, 

which is a potential neurotoxin. OGDC is also particularly sensitive to the production 

of free radicals caused under conditions of oxidative stress (Gibson et al, 1998) and 

this can lead to its inactivation. However, the mechanisms by which OGDC is
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selectively inactivated by these reactive oxygen species are, as yet, unclear (Gibson et 

al, 2000).

Mammalian BCG ADC is encoded by six genetic loci and mutations at any one of 

these loci can cause a dysfunction in the complex resulting in increased 

concentrations of the branched-chain amino acids in the blood, tissues and urine of 

patients. This results in maple syrup urine disease (MSUD) which causes seizures, 

mental retardation, coma and, in severe cases, death (Chuang et al, 1995). As with 

PDC, most defects in the B CO ADC complex appear to be associated with the E l 

component (Patel & Harris, 1995).

1.11 Primary Biliary Cirrhosis

Primary biliary cirrhosis (PBC) is a chronic cholestatic autoimmune liver disease 

causing inflammatory destruction of the intrahepatic biliary epithelial cells lining the 

intrahepatic bile ducts resulting in cirrhosis and liver failure. It is characterised by a 

high titre of serum anti-mitochondrial autoantibodies (AMA). The primary target for 

these autoantibodies was identified as being the E2 component of PDC (Gershwin et 

al, 1987; Yeaman et al, 1988). It was also found that these autoantibodies inhibit 

enzyme function (Van de Water et al, 1988). Since the identification of the major 

autoantigen in this disease, a further five proteins have been detected that cross-react 

with sera from patients with PBC. PBC sera reacts against the E3-binding protein 

(Yeaman et al, 1988; Surh et al, 1989) and cross-reactivity was demonstrated for the 

E2 components of OGDC and BCOADC (Fussey et al, 1988) in a significant number 

of patients. The 2 subunits of PDC-El have also been identified as autoantigens
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(Fussey et al, 1989). These autoantigens are collectively known as the M2 antigens. 

There are currently no reports of antibodies being present to the E3 subunit.

The main immunogenic region on E2, recognised in 95% of patients, has been 

mapped to the inner lipoyl domain (Fussey et al, 1990) with the dominant epitope 

spanning the lipoic acid binding site. These workers also demonstrated that the lipoyl 

moiety itself appears to play a role in antibody recognition. Subsequently, an antigen 

was identified at the plasma membrane of biliary epithelial cells isolated from the 

livers of patients with PBC, which was postulated to be the E3BP component of PDC 

(Joplin et al, 1997). Further work indicated that both E2-PDC and E3BP are 

aberrantly expressed at the cell surface of biliary epithelial cells in patients with PBC 

(Joplin & Gershwin, 1997). The mechanism by which these autoantigens become 

either up-regulated or aberrantly expressed at the plasma membrane is, as yet, 

unknown.

1.12 Protein targeting

The fully assembled 2-oxoacid dehydrogenase complexes are found loosely 

associated with the mitochondrial inner membrane (Maas & Bisswanger, 1990). Since 

all the components of these complexes are nuclear-encoded, these polypeptides must 

be targeted to the mitochondrion. Each polypeptide is synthesised as a larger Mr 

precursor protein containing an N-terminal leader sequence. These sequences have a 

number of common features. They tend to be between 20 and 40 amino acids in 

length, are rich in positive amino acids and are predicted to form amphipathic a- 

helices (see Neupert, 1997 for review). After synthesis on cytoplasmic ribosomes 

these precursor proteins are transported in a loosely folded state to receptor sites on
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the mitochondrial outer membrane. The presequence then interacts with the 

membrane receptor and directs the polypeptide’s signal sequence into the 

translocation channel. The mechanism by which this process occurs is still unclear but 

in mitochondria, an intact transmembrane electrochemical gradient and ATP is 

thought to be required (Schatz & Dobberstein, 1996).

Members of the Hsp70 family of molecular chaperones (discussed in section 1.13) aie 

believed to be essential in promoting formation of translocation-competent precursors 

by binding to them and thus preventing premature aggregation of the polypeptides. 

This may happen by two means, by binding to the unfolded mature part of the 

precursor protein, but also perhaps by binding to the presequence itself (Endo et al, 

1996). This, essentially, would prevent the presequence from interacting with the 

newly synthesised protein and hence prevent aggregation of the precursor.

The Hsp70 family of proteins has also been implicated in the transport of unfolded 

polypeptides across the mitochondrial membrane. As the polypeptide chain crosses 

the membrane, mitochondrial Hsp70, located on the trans side of the inner membrane, 

interacts with segments of the chain as it enters the matrix of the mitochondrion and, 

by hydrolysis of ATP, pulls the polypeptide across the membrane. Only when the 

complete chain has entered the mitochondrial matrix does protein folding take place 

(Haiti, 1996).

Once the polypeptides have reached their destination in the mitochondrial matrix 

maturation of the polypeptide occurs by cleavage of the presequence. This allows the
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mature protein to begin folding and assembly into its active form. Molecular 

chaperones are also believed to be required for this process.

1.13 Molecular chaperones

The original definition of a molecular chaperone was that of a group of proteins that 

mediate the correct assembly of other proteins but are not themselves components of 

the final functional structures (Ellis et al, 1987). More recently, chaperones have been 

defined as proteins that bind to and stabilise an unfolded conformation of a protein 

and by controlled binding and release aid its folding, oligomeric assembly or targeting 

to the correct cellular location (Hartl, 1996). Molecular chaperones occur ubiquitously 

in both prokaryotes and eukaryotes and are present within organelles as well as in the 

cytosol. Perhaps the most common molecular chaperones are those belonging to the 

Hsp70 and Hsp60 families, the heat shock proteins.

1.13.1 The HspTO family of molecular chaperones

The Hsp70 molecular chaperones are a family of highly conserved ATPases that are 

found in both prokaryotes and in most organelles of eukaryotic cells. Members of this 

family include the bacterial DnaK. Although they are termed heat shock proteins, they 

also have essential functions under normal cellular conditions although their 

expression is up-regulated during times of stress. The basic function of this family of 

proteins is to bind and release hydrophobic segments of an unfolded polypeptide 

chain in an ATP-dependent manner. They achieve this with the help of other 

molecular chaperones such as DnaJ, an Hsp40 member and GrpE, a nucleotide- 

exchange factor.
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1.13.2 The Hsp60 family of molecular chaperones

The Hsp60 family of stress proteins (chaperonins) are constitutively expressed and are 

found mainly in the bacterial cytosol, the stroma of chloroplasts and the mitochondrial 

matrix. These proteins (GroE) are the major heat-shock proteins in E. coli. GroEL is 

perhaps the best studied of this particular group of proteins. Electron microscopy and 

x-ray crystallography have shown that GroEL is a large cylindrical complex 

consisting of 14 subunits arranged in 2 heptameric rings with a central cavity where 

polypeptide binding and folding occurs (Xu et al, 1997).

It is thought that GroEL promotes the productive folding of polypeptides through one 

of two mechanisms. The first involves the binding of non-native polypeptides in the 

central cavity of GroEL. This effectively avoids aggregation of proteins and can also 

allow kinetically trapped intermediates to unfold enabling them to undergo more 

productive folding pathways. The second mechanism is to promote folding of the 

polypeptide in the central cavity formed by GroEL and which is capped at one end by 

GroES (Xu et al, 1997). GroEL and GroES function cooperatively to bind and aid 

unfolded polypeptides to fold into their native conformation. As with the Hsp70 

family of molecular chaperones, this process requires ATP.

Unfolded polypeptides interact with GroEL through multiple rounds of ATP 

hydrolysis-mediated GroES binding and release indicating that folding of 

polypeptides to their native state requires multiple rounds of folding and structural 

rearrangement (Mayhew et al, 1996).
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1.13.4 Mechanism of action of GroEL-GroES

GroEL and GroES form an asymmetric complex where 1 GroES ring binds one end of 

the GroEL cylinder. The mechanism of action of GroEL-GroES is shown 

schematically in Figure 1.10 and described in the legend.

1.14 Aims of this thesis

Knowledge and understanding of the effects of mutations on the individual subunits 

of the human pyruvate dehydrogenase complex has been greatly increased in recent 

years by the generation of cDNAs for each enzyme subunit. This has allowed 

mutations to be characterised both at the genetic and biochemical level. However, our 

level of understanding would be greatly enhanced by the generation of a recombinant 

model of the human pyruvate dehydrogenase complex, which could be used to mimic 

naturally occurring mutations found at the genetic level. The construction of a 

recombinant model of human PDC is the central aim of this thesis.

In order to achieve this objective it was first necessary to devise a strategy for the 

successful cloning and overexpression of the individual subunits of PDC in active 

form (Chapter 3). Development of a reproducible purification protocol was also 

required before any studies could be undertaken (Chapter 4).

Studies on the E3-binding protein (E3BP) focus on assessing its stability as an 

independent entity as examined by circular dichroism and protein fluoresence 

analysis. Also of great interest is the nature of the association and stoichiometry of 

binding between E3BP and E2 in order to form the structural core of the complex 

(Chapter 5).
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Figure 1.10 Model for a GroEL-GroES-mediated folding reaction.

(Taken from Bukau & Horwich, 1998)

The asymmetric GroEL-GroES complex (seen in panel 1) binds unfolded 

polypeptides or kinetically trapped intermediates to form a trans ternary complex 

(panel 2). Binding of GroES to the ring containing polypeptide in the presence of 

ATP (panel 4) initiates release of polypeptide from the binding sites within the cavity 

thus allowing folding to begin. ATP hydrolysis in the cis ring (panel 5) weakens the 

interaction between GroEL and GroES so that when ATP binds in the trans ring 

GroES is released from the complex. This allows the polypeptide to leave the 

complex.
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Binding studies, performed using isothermal titration calorimetry, were also carried 

out to assess the affinity and stoichiometry of binding between E3BP and E3, and the 

E2 didomain and E3. A GST construct encoding the subunit-binding domain of E3BP 

was also utilised in these studies (Chapter 6). This was carried out in order to 

determine the stoichiometry of binding between E3BP and E3 and thus the number of 

E3 dimers present in each complex. It was also used to confirm previous work, which 

showed that E2-PDC has retained a residual ability to bind E3 but the affinity of 

binding between these two proteins is very much weaker than that between E3 and 

E3BP (Susan D. Richards, PhD thesis).

This thesis also describes the major difficulty, the purification of soluble E l in the 

absence of detergent, and thus the rate-limiting step, in producing a recombinant 

model of the human pyruvate dehydrogenase complex (Chapter 4).
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Materials and Methods
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2.1 Molecular Biology Materials

2.1.1 Enzymes and kits

All restriction enzymes, T4 DNA ligase, calf intestinal alkaline phosphatase, dNTPs and Taq 

DNA polymerase were obtained from Promega or Roche, Pfu DNA polymerase was 

purchased from Stratagene,

The Wizard S V Minipreps DNA Purification System was supplied by Promega while the 

QIAquick gel extraction kit was purchased from Qiagen.

2.1.2 Molecular weight markers

The Ikb molecular mass DNA markers used in agarose gel electrophoresis were supplied by 

Promega.

2.1.3 Oligonucleotides

Oligonucleotides were designed in the laboratory and synthesised by Genosys 

Biotechnologies Ltd. or Life Technologies, Paisley.

2.1.4 Bacterial Media

Cultures were grown in LB (lOg bacto-tryptone, lOg NaCl, 5g yeast per litre). Media were 

autoclaved before use and supplemented with ampicillin (50|Lig/ml), kanamycin (30|ag/ml) or 

chloramphenicol (34|xg/ml) where necessary. Growth media for bacterial cultures were 

purchased from Oxoid Ltd., Basingstoke.

2.1.5 Bacteria and plasmid vectors

Generally, three strains of E. coli were employed. D H 5a cells were used for the propagation 

of plasmid vectors while BL21 (DE3) pLysS or BL21 (DE3) CodonPlus cells (Stratagene) 

were used for the expression of proteins from plasmids containing the T7 promoter.

The pET vectors were bought from Novagen and pGEX-2T, used for expression of GST- 

fusion proteins in E. coli, was supplied by Pharmacia (see Figures 2.1a-d).
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2.2 Molecular Biology Methods

2.2.1 Polymerase Chain Reaction (PCR)

Polymerase chain reaction (PCR) was performed using either Taq DNA polymerase or Pfu 

DNA polymerase.

2.2.1.2 PCR using Taq DNA polymerase

PCR was performed on a Perkin Elmer Thermal Cycler in 0.5ml thin-walled PCR tubes. A 

typical 50jLtl reaction mix contained Taq buffer, 2mM MgCl2, 250|llM  of each dNTP, 250ng

each of the appropriate primers, approximately lOOng of DNA template and 3 units of Taq 

DNA polymerase. The reaction mix was kept on ice until ready for PCR amplification. A 

typical reaction cycle consisted of:

1 Dénaturation 95 3 min

2 Dénaturation 95 30s

3 Annealing 55 30s

4 Extension 72 1 min
Steps 2-4 repeated for 30 cycles.

5 Extension 72 10 min
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Meoi Hls«Tb9 mi miBrniHI
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rtatClyGB7Strtll*H I *Wl iHuH I tH I tA trlarE  lyLAuValPNAr^lvGerHl iHtiLBuGI uAtpPnAI lAloAthLyt AloAr^
SpullOÎ I tlwombBr ' T7 tenmloator_______
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LytG I uAI bC IuLbuAI bAIhA IbT̂ I bG I uG I fiEnd

rr termlnalQf pr)mar«6a337-â

]ET-14b cloning/expression region

Fig 2.1a Map of the expression vector pET-14b

The pET-14 vectors carry an N-terminal His-tag and a BamHI restriction site in the multiple 

cloning region. The circular map shows the unique sites while the cloning region transcibed 

by the T7 RNA polymerase is shown below. This plasmid is numbered by the pBR322 

convention.
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fipuliûîi
GAAAeGAAGBIBAGTTEGGTBCTGCM CCKIBAIiGAATAACTMEATAACGGCITGGGBGGTCTAAACfiGGTBTPGAGGGGTmiTG

1 r  iKiritnatcr primer #69337-3

pET-283‘C(+) cloning/expression region

Fig 2.1b Map of the expression vector pET-28a

The pET-28a-c vectors carry an N-terminal T7-Tag as well as the N-terminal His-tag and a 

BamHI restriction site in the multiple cloning region. The region transcribed by the T7 RNA 

polymerase is shown below the circular map. pET-28b is the same as pET-28a with the 

following exception: Ibp is subtracted from each site beyond BamHI at position 198. As a 

result pET-28b is a 5368bp plasmid.
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pET-lla-d cloning/oxpression region

Fig 2.1c Map of the pE T -lla  vector

The pET-11 vectors carry an N-terminal T7*Tag and BamHI cloning site. Unique sites are 

shown on the circular map. The cloning/expression region transcribed by T7 RNA 

polymerase is shown below. pET-1 lb  differs from pET-1 la  in that it is a 5676bp plasmid. 

Ibp is substracted from each site beyond BamHI as position 319.
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Throm bin
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Fig 2.1d Map of the glutathione S-transferase fusion vector, pGEX-2T

The map shows the main features of the multiple cloning site. This vector contains a tac 

promoter for chemically inducible expression. A thrombin cleavage site is located upstream 

from the multiple cloning site for cleavage of the target protein from GST.

45



Chapter 2

2.2.1.3 PCR using Pfu DNA Polymerase

PCR using Pfu DNA polymerase was performed as above with the following modifications.

A typical 50pl reaction volume contained lOX reaction buffer (200mM Tris-HCl, 20mM 

M gS04, lOOmM KCl, lOOmM (NH4)2S04, 1% (v/v) Triton X-100, 1 mg/ml nuclease-free

BSA) at a final concentration of IX, 250|iiM of each dNTP, 250ng of the appropriate primers, 

lOOng of DNA template and 2.5 units of Pfu DNA polymerase. Typical cycle parameters 

were as follows:

1 Dénaturation 95 1 min

2 Annealing 55 1 min

3 Extension 72 2 min/kb template DNA

4 Dénaturation 95 1 min
Steps 2-4 repeated for 30 cycles

5 Extension 72 10 min

The quality and quantity of the PCR product obtained was analyzed by agarose gel 

electrophoresis.

2.2.2 Restriction Digestion

Plasmid and PCR products were routinely digested with BamHI before ligation. DNA (15pl) 

was digested in a reaction mix containing 3pi of BamHI, 3pi of the appropriate enzyme 

buffer (5mM MgCl2, lOOmM NaCl, ImM 2-mercaptoethanol in lOmM Tris-HCl, pH 8.0) in

a final volume of 30pl. This was incubated at 37°C for 3h.
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2.2.3 Déphosphorylation of digested plasmid

Digested vector was dephosphorylated by the addition of 1 unit of calf intestinal alkaline 

phosphatase. This was incubated at 37^C for 30 min.

2.2.4 Production of Competent Cells

Competent cells were made using the rubidium chloride method.

The appropriate bacterial E. coli strain was streaked overnight on a minimal LB plate. A 

single colony was used to inoculate a 5ml overnight culture. This was subcultured into 100ml 

LB and grown at 37°C with shaking until the culture reached an optical density of 0.48 at 

550nm, The culture was then chilled for 5 min before centrifugation at 3000rpm for 10 min at 

4^C. The pellet was resuspended in 40ml buffer 1 (lOOmM rubidium chloride, lOmM 

calcium chloride, 50mM manganese chloride, 15% (v/v) glycerol in 30mM potassium 

acetate, pH 5.8). Cells were centrifuged as before and the pellet resuspended in 4ml buffer 2 

(75mM calcium chloride, lOmM rubidium chloride, 15% (v/v) glycerol in lOmM MOPS, pH 

6.5). The cells, now competent, were divided into aliquots and stored at -80^>C.

2.2.5 Transformation of competent bacteria

To 50pl of competent bacteria, 1-lOng of DNA was added. The mixture was chilled for 15 

min before heat shocking at 42°C for 90s and returning to ice. After 2 min LB medium 

(450|l l 1 ) was added and this was incubated at 3 7 %  with shaking for 45 min. This mix was 

plated on an LB plate containing the appropriate antibiotic and incubated overnight at 37% .

2.2.6 Purification of DNA from bacterial cultures

DNA was purified from bacterial cultures using the Wizard SV DNA Minipreps kit supplied 

by Promega. The kit was used as per the manufacturer’s instructions. Briefly, a 5ml overnight 

culture containing the appropriate antibiotic was inoculated with a single colony from an LB- 

antibiotic plate. This was incubated with shaking at 37 %  for not more than 16h. Cells were
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pelleted at 10,000rpm for 5 min and resuspended in 250)Li1 Cell Resuspension Solution 

(50mM Tris-HCl, lOmM EDTA, lOOpg/ml RNase A). Cells were lysed by the addition of 

250pl Cell Lysis Solution (0.2M NaOH, 1% (w/v) SDS) and incubated for 5 min in the 

presence of 250pg alkaline protease to inactivate any endonucleases released during cell 

lysis. 350|xl Cell Neutralisation buffer (4.09M GdmHCl, 0.759M potassium acetate, 2.12M 

glacial acetic acid) was added and the mixture was centrifuged at 10,000rpm for 10 min in a 

benchtop centrifuge to pellet the cell debris. Supernatant was applied to a spin column and 

centrifuged briefly to allow the DNA to bind to the membrane of the spin column. The 

column was washed twice with Column Wash Solution (60mM potassium acetate, lOmM 

Tris-HCl, 60% (v/v) ethanol), before the DNA was eluted in 70pl nuclease-free water.

The quality and quantity of DNA obtained was analysed by agarose gel electrophoresis.

2.2.7 Agarose Gel Electrophoresis

The appropriate amount of agarose was dissolved in IXTAE (40mM Tris, ImM  EDTA 

40mM glacial acetic acid) to give slab agarose gels of the required percentage. Samples for 

analysis were diluted 5 fold by the addition of loading buffer (0.25% (w/v) bromophenol 

blue, 0.25% (w/v) xylene cyanol FF, 15% (w/v) Ficoll) before being loaded on the agarose 

gel. These were run at 100V/250mA for between 40 min to Ih until the dye front was about 

1cm from the bottom of the gel. Gels were then stained with a small volume of ethidium 

bromide before being viewed using a UV transilluminator.

2.2.8 Extraction of DNA from an Agarose Gel

DNA was purified from agarose gels using the QIAquick gel extraction kit (Qiagen) as 

described in the manufacturer’s instruction.

Briefly, DNA was excised from an agarose gel using a sterile scalpel blade. The agarose slice 

was solubilized at 5 0 %  in the appropriate volume of Buffer QG (as supplied) and 1 gel 

volume of isopropanol added. This mixture was applied to a spin column and centrifuged for
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1 min to allow the DNA to bind to the column. The column was washed with 750pl of Buffer 

PE containing 80% (v/v) ethanol. Residual ethanol was removed by centrifuging the column 

for a further 2 min before eluting the DNA in 50|l i 1 of Buffer EB (lOmM Tris-HCl, pH 8.5). 

The quantity and quality of DNA obtained was analyzed by agarose gel electrophoresis.

2.2.9 Ligations

In order to clone the insert of interest into the appropriate vector a series of ligation reactions 

were set up. In each case, 1.5pl of BamHI-digested, dephosphorylated and gel purified vector 

was mixed with different quantities of BamHI-digested insert, lOX T4 DNA ligase buffer 

(lOOmM MgCl2, lOOmM DTT, lOmM ATP, 300mM Tris-HCl pH 7.8) at a final

concentration of IX  and lU  of T4 DNA ligase. These were incubated at room temperature 

overnight before being transformed into E. coli D H 5a competent cells following the standard 

protocol above. The resulting colonies were then screened to check for the presence of the 

insert of interest.

2.2.10.1 Growth of bacterial cultures for protein induction

A single colony was picked from an LB-agar antibiotic plate and grown at 3 7 %  with shaking 

in 5ml growth media plus antibiotic for 16h. An aliquot was subcultured into 50ml growth 

media plus antibiotic and incubated at 3 7 %  with shaking until the Aeoo was between 0.5-1.0. 

IPTG (ImM) was then added and the cultures were induced at 30‘̂ C for 3h. If lipoic acid 

supplementation was required this was added to the growth media at the time of induction. 

Samples were taken at Ih time intervals to check for overexpression. These were pelleted by 

centrifugation and the pellets resuspended in Laemmli sample buffer (lOjil per 0.1 Aeoo 

units). Cells were harvested by centrifugation.
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2.2.10.2 Large scale protein induction

A single colony was picked from an LB-agar antibiotic plate and grown at 3 7 %  with shaking 

in 10ml growth media plus antibiotic for 16h. This was then subcultured into 500ml growth 

media plus antibiotic and grown at 3 7 %  with shaking until the Agoo reached 0.5-1.0. Protein 

expression was induced by the addition of ImM IPTG. Lipoic acid (0.2mM) was added at 

this point if required. Induction typically took place at 30®C for 3h. Samples taken at zero 

time and 3h were kept for analysis on SDS-PAGE to check that expression had occurred as 

before. Cells were harvested by centrifugation.

2.3 Protein Biochemistry Materials

2.3.1 Chemicals

Ultra pure imidazole, zinc chloride and the reagents for SDS-PAGE were purchased from 

BDH Chemicals Ltd., Poole. Ultrapure guanidinium chloride (GdmCl) was supplied by 

Calbiochem, Polyethylene glycol 6000 (PEG 6000) and Triton X-100 were bought from 

Fisons, Loughborough. N A D \ NADH and acetyl CoA were obtained as sodium salts from 

Sigma-Aldrich. All other chemicals were of analytical grade or above. Distilled water was of 

Millipore-Q quality.

2.3.2 Molecular weight markers

Low molecular mass markers for SDS-PAGE were provided by N E^ Biolabs.

2.3.3 Photographic materials

Nitrocellulose was purchased from Novagen while the Hyperfilm was obtained from 

AmershamPharmaciaBiotech, Bucks. The X-Omat-100 processor was supplied by Kodak.
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2.4 Protein Biochemistry Methods

2.4.1 Dialysis of protein samples

Visking tubing was prepared by boiling in lOmM sodium bicarbonate, pH 8.0, ImM EDTA 

for 10 min. This was then rinsed in distilled water before being stored in 100% (v/v) ethanol. 

Tubing was thoroughly rinsed in distilled water before use.

Dialysis of protein took place at 4^C for several hours using multiple changes of dialysis 

buffer.

2.4.2 Concentration of protein samples

Concentration of proteins took place by one of two methods. After dialysis, protein samples 

were either concentrated by covering the visking tubing with solid polyethylene glycol-6000 

(PEG 6000) and leaving until the required volume of sample was achieved or they were 

concentrated by centrifugation in a Centricon concentrator (Amicon) according to the 

manufacturer’s instructions.

2.4.3 Determination of protein concentration

Protein concentration was determined by one of two methods. The method of Bradford 

(1976) using the Micro BCA assay system was routinely employed. A standard curve was 

produced using known concentrations of IgG. The absorbance of the unknown samples were 

then measured at 595nm and their concentration extrapolated from the standard curve.

For a more accurate determination of protein concentration, A2 8 0  measurements were carried 

out together with amino acid analysis of the protein. The number of tryptophan and tyrosine 

residues in the protein was deteiTnined and the expected A2 8 0  of a 1 mg/ml solution of the 

protein calculated by the following equation:

(no. of trp residues x 5690) + (no. of tyr residues x 1280) 

mol. weight of protein
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A wavelength spectrum was measured for the protein solution from 360-220nm and the 

absorbance at 280nm noted. The measured A 2 8 0  was divided by the calculated number to 

obtain the protein concentration.

2.4.4 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

2.4.4.1 Tris/glycine discontinuous buffer system

The solutions required for SDS-PAGE were as follows:

Acrylamide solution

29.2% (w/v) acrylamide/0.8% (w/v) bis-acrylamide

Resolving gel buffer (pH 8.8)

0.75M Tris-HCl, 0.2% (w/v) SDS

Stacking gel buffer (pH 6.8)

0.17M Tris-HCl, 0.14% (w/v) SDS

Running buffer (pH 8.3)

0.25M Tris-HCl, 0.95M glycine, 1% (w/v) SDS

10% Tris/glycine gels were routinely prepared. For a 15ml slab gel, acrylamide solution 

(5ml) and resolving gel buffer (10ml) was mixed with 150pl 10% (w/v) ammonium 

persulphate and 15pl TEMED. This was poured, overlaid with water and allowed to 

polymerise for 30 min. Excess liquid was drained and a 5% stacking gel (0.8ml acrylamide, 

4.2ml stacking buffer, 60pl 10% (w/v) ammonium persulphate, 6|il TEMED) was poured. 

The comb was removed just before use and the wells rinsed with distilled water. Samples for 

analysis on SDS-PAGE were resuspended in Laemmli sample buffer (2% (w/v) SDS, 10% 

(w/v) sucrose, 62.5mM Tris-HCl, pH 6.8, Pyronin Y dye). DTT (ImM ) was added prior to 

boiling for 5 min to ensure that all proteins were denatured. A portion of each sample (lOjil)
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was loaded on the gel along with low molecular mass markers. Gels were run using the Atto 

mini gel kit system at 400V/100mA for Ih or until the dye front was about 1cm from the 

bottom of the gel.

Gels were then stained (0.1% (w/v) Coomassie Brilliant Blue, 10% (v/v) acetic acid, 50% 

(v/v) methanol) for Ih and destained in 10% (v/v) acetic acid, 10% (v/v) methanol overnight.

2.4.4.2 Sodium phosphate continuous buffer system

Solutions required for SDS-PAGE were as above with the following exception:

Sodium phosphate gel buffer (pH 7.0)

17.7mM NaH2P04-2H20 

6.95mM Na2HP04

Sodium phosphate gels (6%) were prepared by mixing the acrylamide (3ml) and sodium 

phosphate buffer (12ml) with 0.2% (w/v) SDS, 150jLil 10% (w/v) ammonium persulphate and 

15pl TEMED. This was poured, the comb inserted and the gel allowed to polymerise. For the 

tank buffer, sodium phosphate buffer and dH 20 were mixed in a 1:1 ratio and 0.2% (w/v)

SDS added. Samples for analysis on the continuous buffer system were resuspended in 

Laemmli buffer as above and DTT (ImM) added before boiling for 5 min. Gels were run at 

400V/50mA before being stained and destained as described above.

2.4.5 Immunoblotting using ECL^^ chemiluminessence

2.4.5.1 Solutions used in immunoblotting

Transfer buffer (lOX) per litre 

30.3g Tris, 144g glycine, 2g SDS

Blocking solution

20mM Tris-HCl, pH 7.2, 15mM NaCl, 5% (w/v) non-fat milk, 5% (v/v) normal donkey 

serum, 0.2% (v/v) Tween 20
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Primary antibody solution

20mM Tris-HCl, pH 7.2, 1% (w/v) non-fat milk, 1% (v/v) normal donkey serum, 0.1% (v/v) 

Tween 20,

1:2500 dilution of primary antibody 

Wash solution

20mM Tris-HCl, pH 7.2, 15mM NaCl, 1% (w/v) non-fat milk, 1% (v/v) normal donkey 

serum

Secondary antibody solution

20mM Tris-HCl, pH 7.2, 150mM NaCl, 1% (w/v) non-fat milk, 1% (v/v) Tween 20,

1 : 1 0 0 0  dilution secondary antibody

2.4.5.2 Immunoblotting protocol

SDS-PAGE analysis was performed as described in section 2.4.4. Proteins were then 

transferred to nitrocellulose overnight using transfer buffer at a concentration of IX  plus 20% 

(v/v) methanol. Transfer took place electrophoretic all y using the BioRAD immunoblotting 

tank at 400V/45mA overnight. The efficiency of protein transfer was checked by staining the 

nitrocellulose with the non-fixative dye Ponceau S. This was then washed off and the non

specific binding sites were blocked by immersing the nitrocellulose in blocking solution for 

Ih at room temperature with shaking. The membrane was incubated in diluted primary 

antibody solution at room temperature for Ih and then washed extensively with 4 changes of 

wash solution before incubation in the secondary antibody solution, a horseradish peroxidase 

(HRP)-labelled antibody, for a further 60 min. The nitrocellulose was washed 4 times and 

excess buffer drained from the membrane before detection.

Equal quantities of ECL solution 1 and ECL solution 2 were added to the membrane.
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incubated for 1 min and then drained. In the dark room autoradiography film was placed over 

the membrane and exposed for 15s before developing the film using a Kodak X-Omat-100 

processor.

2.4.6 Purification of GST-fusion proteins

GST-fusion proteins were purified on a glutathione Sepharose 4B column.

2.4.6.1 Preparation of bacterial extracts

The pellet from a 50ml bacterial cell culture was resuspended in 3.5ml PBS (140mM NaCl, 

2.7mM KCl, lOmM NaHP04, l.SmM KH2 PO4 , pH 7.3) and sonicated in 10s bursts on ice to

disrupt the cells. Triton X-100 (1% v/v) was added and the extract mixed with gentle 

agitation for 30 min to aid solubilisation of the protein. The supernatant was clarified by 

centrifugation at 10,000rpm for 15 min at 4°C.

2 4.6.2 Column purification

Clarified supernatant was applied to a 2x1 cm glutathione Sepharose 4B column and the 

matrix washed extensively with PBS. To elute the target protein, the column was incubated in 

2ml glutathione elution buffer (lOmM reduced glutathione in 50mM Tris-HCl, pH 8 ) for 10 

min. Eluted protein was collected in 1ml fractions. Column elution was repeated 4 times. 

Samples of the sonicate, supernatant, pellet and the collected fractions were analyzed using 

SDS-PAGE as before.

2.4.7 Purification of His-tagged proteins

For purifying His-tagged proteins the BioCAD Perfusion Chromatography System (PE 

BioSystems) was employed.
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2.4.7.1 Preparation of bacterial cell extracts

Bacterial cell extracts were prepared by disrupting the cells under high pressure using a 

French Pressure cell. Pellets from bacterial cell cultures were resuspended in an appropriate 

volume of starting buffer (IM  NaCl, 0.5mM imidazole in 20mM potassium phosphate, pH 8 ). 

Cells were disrupted by passing the extract through the French Press at 950psi. Several passes 

were made and pro tease inhibitors were added to prevent degradation of protein.

The supernatant was clarified by centrifugation at 10,000rpm for 15 min.

2.4.T.2 Purification of His-tagged proteins

His-tagged proteins were purified using a POROS metal chelate column (PE BioSystems). 

The column was prepared by loading the imidoacetate binding sites with zinc ions (O.IM 

ZnCl2 , pH 4.5-5) for 25 column volumes and then washing with distilled water followed by 

0.5M NaCl to remove any excess metal ions. The column was then washed with 5 column 

volumes of elution buffer (IM  NaCl, 500mM imidazole in 20mM potassium phosphate, pH 

6 ). Finally the column was equilibrated with starting buffer (IM  NaCl, 0.5mM imidazole, 

20mM potassium phosphate, pH 8 ) before use.

Clarified supernatant was loaded on to the column in 5ml increments. After extensive 

washing of the column in starting buffer bound his-tagged protein was eluted in a linear 

imidazole gradient and 2ml fractions collected. Elution of the protein was monitored by 

measuring the absorbance at 280nm. After all protein had eluted, the column was regenerated 

by washing it with 15 column volumes of stripping buffer (50mM EDTA, IM  NaCl).

The appropriate fractions were precipitated with TCA (trichloroacetic acid) and analyzed on 

10% SDS polyacrylamide gels.
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2.4.8 TCA precipitation of proteins

Protein fractions were subjected to TCA precipitation before analysis by SDS-PAGE. TCA 

(10% v/v) was added to aliquots of protein fractions and incubated at 4°C for 30 min.

Samples were centrifuged at 10,000rpm for 15 min at 4^C and the pellets washed with 

500pl ice cold acetone. Samples were centrifuged as before and the pellets allowed to air dry 

before resuspending them in 20pl Laemmli sample buffer. These were then subjected to 

SDS-PAGE analysis.

2.4.9 Purification of pyruvate dehydrogenase from bovine heart

Isolation of the complexes from bovine heart were performed at 4°C following the standard 

protocol (Stanley & Perham, 1980) with the modifications described here. To 600g of diced 

heart tissue, two volumes of ice cold extraction buffer (50mM MOPS, pH 7.0, 3% (v/v)

Triton X-100, 2.7mM EDTA, O.lmM DTT, ImM  PMSF, ImM benzamidine, 0.2% (v/v) anti

foam A) was added. After homogenising for 5 min, the volume was made up to 21 with more 

buffer and clarified at 10,000g for 20 min. The pH of the supernatant was adjusted to 6.45 

using 10% (v/v) acetic acid and the first PEG precipitation performed by the addition of 0.12 

volumes of 35% (w/v) PEG. This was stirred on ice for 30 min before being pelleted at 

18,000g for 15 min. The pellets were resuspended by homogenisation in 400ml of 1% (v/v) 

Triton X-100 buffer (as above with the addition of I.SjliM leupeptin) and the pH adjusted to 

6 .8 , before clarification at 25,000g for 40 min.

The resulting supernatant was filtered through layers of muslin before adding 0.013 vol of 

IM  MgClz and 0.05 vol IM  sodium phosphate buffer (pH 6.3). The pH was maintained at 6 . 8  

by the addition of 0.5M NaOH. 10% (v/v) aeetic acid was used to readjust the pH to 6.45 

before adding another 0.12 vol of 35% (w/v) PEG and stirring the supernatant on ice for 30 

min. After clarification at 25,000g for 10 min, the complexes were resuspended by 

homogenisation in 160ml of 1% (v/v) Triton X-100 buffer (pH 6 .8 ) with the addition of fresh
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solutions of ImM  PMSF, ImM  benzamidine, IjaM leupeptin and 0.5% (v/v) rat serum. This 

was stored at 4°C overnight.

The following day, re-homogenisation took place before clarifying the supernatant at 25,000g 

for Ih. The pH of the supernatant was adjusted to 6.45 by the addition of 10% (v/v) acetic 

acid and a third PEG precipitation step performed. 0.04-0.06 vol of 35% (w/v) PEG was 

added and stirred for 30 min on ice. Centrifugation at 25,000g for 10 min allows OGDC, 

insoluble at the PEG concentration used in this step, to be separated from PDC, which 

remains in the supernatant. PDC can then be pelleted by ultracentrifugation at 200,000g for 

2.5h. Both PDC and OGDC were resuspended in 1% (v/v) Triton X-100 buffer and stored at 

4 T .

2.4.10 Gel filtration

Purified proteins were dialysed into 50mM potassium phosphate, pH 7.2 containing 150mM 

NaCl, ImM DTT before being applied to a gel filtration column. Gel filtration was performed 

on a Superose 6  (HR 10/30) column attached to a Pharmacia FPLC system. The column was 

equilibrated in 2 column volumes of 50mM potassium phosphate, pH 7.2, 150mM NaCl, 

ImM DTT at a flow rate of 0.5ml/min. A protein sample, typically 500|xl, was loaded onto 

the column and the absorbance at 280nm monitored. Peak fractions were collected, subjected 

to TCA precipitation and analysed by SDS-PAGE as described above.

2.4.11 Protein crosslinking

Proteins dialysed in 50mM potassium phosphate, pH 7.2 were subjected to crosslinking with 

25% (w/v) glutaraldehyde, a non-specific crosslinker. The protein/glutaraldehyde mixture 

was incubated on ice for 2 min before 2mM NaBH4  was added. This was incubated for 20 

min before the reaction was terminated by the addition of 1 0 % (w/v) sodium deoxycholate. 

Crosslinked proteins were precipitated with 100% (w/v) TCA as described in section 2.3.8,
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dissolved in Laemmli sample buffer and analysed on a 6 % sodium phosphate-buffered SDS- 

polyacrylamide gel.

2.4.12 Solubilization of inclusion bodies

The following method is adapted from the Protein Folding kit (Novagen).

2.4.12.1 Preparation of inclusion bodies

After induction in E. coli and expression of the desired protein, the cells were pelleted as 

normal and resuspended in 0.1 culture volume of IB wash buffer (lOmM EDTA, 1% (v/v) 

Triton X-lOO in 20mM Tris-HCl, pH 7.5). Cells were disrupted by passage through a French 

press and insoluble material pelleted by centrifugation at 10,000rpm for 15 min at 4°C. The 

pellet was then washed a further twice in IB wash buffer.

2.4.12.2 Solubilization of inclusion bodies

Inclusion bodies were resuspended in 50mM potassium phosphate, pH 7.5 at a concentration 

of 10-20 mg/ml and supplemented with an appropriate amount of 30% (v/v) N- 

lauroylsarcosine to give the desired concentration of detergent in the buffer, typically 0 .1 -2 %. 

This was incubated at room temperature for 30 min with agitation before clarifying any 

insoluble material by centrifugation at 10,000rpm for 15 min at 4°C. The supernatant was 

subjected to dialysis into 50mM potassium phosphate, pH 7.5 in order to remove the 

detergent from the protein preparation. Samples of the dialysed material were taken for 

analysis by SDS-PAGE and activity assays.
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2.4.13 Isothermal titration calorimetry (ITC)

Isothermal titration calorimetry experiments were conducted on a VP-ITC microcalorimeter 

(MicroCal Inc., Northampton, MA, USA).

The proteins to be studied were purified as described previously and extensively dialysed into 

lOOmM potassium phosphate pH 7.2 in the same container to minimise any buffer mismatch 

which can affect the subsequent titration.

One protein (approximately 10p.M) was placed in the ITC cell while the second protein, at a 

concentration of at least 150|^M was loaded into the syringe of the microcalorimeter. In a 

typical ITC experiment automatic injection of protein (IO|Lil) from the syringe into the ITC 

cell occurs every 3 minutes and a complete experiment usually requires 26 injections. The 

heat of binding between the 2  proteins is measured directly by the microcalorimeter and the 

data obtained analysed using Origin software (OriginLab Corporation). For a more detailed 

explanation refer to chapter 6 . These experiments were performed by Mrs Margaret Nutley in 

the laboratory of Professor Alan Cooper, Glasgow University. Analyses of the data were 

performed by Professor Alan Cooper.

2.4.14 Circular dichroism

Circular dichroism experiments were performed on a JASCO J-600 spectropolarimeter. 

Purified E3BP (0.4mg/ml in 150mM sodium fluoride, 50mM potassium phosphate, pH 7.2), 

was incubated in varying concentrations of guanidinium chloride (0-6M) either for 15 min or 

overnight before monitoring the change in absorbance in both the near- and far-UV regions of 

the spectrum. All CD spectra were measured by Dr. Sharon M. Kelly in the laboratory of 

Professor Nick Price at Glasgow University.

60



Chapter 2

2.4.15 Fluorimetry

Fluorescence analysis of E3BP was performed on a Perkin Elmer LS 50B fluorimeter. 

Purified E3BP (0.4mg/ml in 150mM sodium fluoride, 50mM potassium phosphate, pH 7.2,) 

was incubated in varying concentration of GdmCl (0-6M) for 15 min at room temperature. 

The sample was excited at 295nm and the emission spectrum recorded from 310-400nm. 

Three spectra were recorded for each sample. The data presented in this thesis represent the 

average of 3 spectra.

2.4.16 Enzyme assays

All enzyme assays were performed on a Shimadzu UV-2101 PC uv-vis scanning 

spectrophotometer. Activities were expressed as U/ml, where one unit (U) of enzyme 

catalyses the conversion of Ijimol of substrate to product per minute under the specified 

conditions.

2.4.16.1 Pyruvate dehydrogenase (El) activity

E l activity was measured by following the reduction of 2,6-dichlorophenolindophenol 

(DCPIP) to its colourless form at 600nm. Purified E l (5-50|ig) was added to a cuvette 

containing 670jil of solution A (3mM NAD^, 2mM MgCH, 0.2mM ThDP in 50mM 

potassium phosphate, pH 7.6) and 14pl of DCPIP, prewarmed to 30°C. The reduction of 

DCPIP was initiated by the addition of 14pl of solution C (lOOmM pyruvate). The molar 

extinction coefficient of DCPIP is 22000 M"^cm'\

2.4.16.2 Dihydrolipoamide acetyltransferase (E2) activity

E2 activity was measured by monitoring the formation of acetyldihydrolipoamide at 232nm 

{Yang et al, 1997}. The assay mixture, containing 30mM Tris-HCl, pH 7.4, ImM  acetyl 

phosphate, ImM  dihydrolipoamide, 20pM Co A and 2 units of phosphotransacetylase were 

added to a quartz cuvette and the absorbance allowed to settle for 10-15s. The E2 source was 

then added and the increase in absorbance monitored for 45s at 30°C.
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E2 activity is expressed as change in absorbance/min since the extinction coefficient of the 

immediate product, 8 -acetyl-dihydrolipoamide has not been determined accurately.

2.4.16.3 Dihydrolipoamide dehydrogenase (E3) activity

E3 activity was measured by the formation of NADH from the oxidation of dihydrolipoamide 

at 30°C. The E3 source was added to a cuvette containing 670p,l solution A (3mM NAD^, 

2mM MgCl2 , 0.2mM ThDP in 50mM potassium phosphate, pH 7.5) and 20pl 

dihydrolipoamide (2mM). E3 activity was determined from the increase in absorbance at 

340nm. The molar extinction coefficient of NADH was taken to be 6220 M"^cm"\

2.4.17 Preparation of dihydrolipoamide

Dihydrolipoamide was prepared in the laboratory from DL-lipoamide. 60mg of DL- 

lipoamide was dissolved in 1.2ml of IM  potassium phosphate, pH 8.0, 50% (v/v) ethanol. 

Addition of 2.4ml of freshly prepared 5% (w/v) sodium borohydride in lOmM NaOH resulted 

in the reduction of DL-lipoamide to dihydrolipoamide. The reaction was terminated after 10 

minutes by the addition of 1.2ml of 3M HCl which neutralises the reaction and destroys any 

excess reducing agent. The dihydrolipoamide was then extracted into toluene (3x3ml) and, 

after solvent evaporation under nitrogen, it was stored at -2 0 °C as a white solid.

2.18 Densitometric scanning analysis

Densitometry was performed on purified recombinant E2/E3BP core and native bovine PDC. 

Purified protein was resolved by electrophoresis on 10% SDS-PAGE. Gels were stained with 

Coomassie Brilliant Blue and subjected to densitometric scanning using an Agfa Duoscan gel 

scanner and ImageQuant version 5.0 software.
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Chapter 3

Molecular cloning and overexpression of the individual 
components of the human pyruvate dehydrogenase complex
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3,1 Introduction

Significant progress has been made in recent years regarding the elucidation of the structure 

and function of the individual components of the 2 -oxoacid dehydrogenase complexes, in 

particular those of the pyruvate dehydrogenase complex. However, most of these structural 

studies have been carried out on the bacterial enzymes and the mammalian PDC, OGDC and 

BCG ADC remain relatively poorly characterised at the atomic level.

Structural information is now available for most of the components of PDC from a number of 

sources. To date, the 3D-structure of the N-terminal lipoyl domain of PDC-E2 from A. 

vinelandii (Berg et al, 1997), B. stearothermophilus (Dardel et al, 1993) and E. coli (Green et 

al, 1995b) has been determined by NMR spectroscopy. More recently, this technique was 

also adopted to determine the 3-dimensional structure of the inner lipoyl domain of PDC-E2 

from the human complex (Howard et al, 1998). The structure of the peripheral subunit- 

binding domain of E2 from B. stearothermophilus (Kalia et al, 1993) has also been 

determined by NMR spectroscopy. The production of truncated constructs encoding the C- 

terminal domain of E2 from A. vinelandii has resulted in the crystal structure of the cubic 

core being solved to 2.6Â resolution (Mattevi et al, 1992; Mattevi et al, 1993). The 3D- 

structure of the 60meric truncated E2 core from S. cerevisiae has been modelled at low 

resolution by means of electron microscopy and image reconstruction (Stoops et al, 1992). A 

similar technique has been adopted to determine the structure of the truncated 60meric core 

complexed with E3BP at low resolution (Stoops et al, 1997). These studies revealed that 

E3BP was located inside the E2 core with the binding site for E3BP predicted to lie near the 

inner tip of the E2 trimer.
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The E3 components from A. vinelandii (Schierbeek et al, 1989; Mattevi et al, 1991) and S. 

cerevisiae (Toyoda et al, 1998) have been successfully crystallised and their structures 

determined to 2.2Â and 2.1 k  resolution respectively. Comparison of this last eukaryotic 

structure with that of prokaryotic E3 shows that both enzymes have the same basic tertiary 

structure despite low amino acid homology. The crystal structure of E3 from B. 

stearothermophilus complexed with the subunit-binding domain of E2 has also been solved 

(Mande et al, 1996). The first E3 crystals from a mammalian source, porcine heart, has 

recently been reported (Toyoda et al, 1998b) but as yet, limited structural information is 

available.

The crystal structure of an heterotetrameric E l from the BCOADC of P. putida 

represented the first published structure of a heterotetrameric E l component (Ævarsson et al, 

1999). A second E l component, that of the human BCOADC, has also been solved by x-ray 

crystallography to 2.1 k  resolution (Ævarsson et al, 2000). In addition, the structure of the « 2  

homodimeric E l from E. coli has been determined (Arjunan et al, 2002). Crystals have 

recently been obtained for human PDC-El (Ciszak et al, 2001) but structural information is 

not yet available.

Some of the problems associated with studying the 2-oxoacid dehydrogenase complexes 

result from difficulties in obtaining well-ordered crystals for structural determination. This is 

thought to be due to the flexibility of the polypeptide chains, in particular the swinging arm 

of these complexes and the linker regions separating the individual domains of the E2 and 

E3BP components. Understanding of the roles that the individual domains play in the 

structure and function of these complexes has been greatly enhanced by the ability to express 

these domains as individual entities. Not only has this allowed functional studies to be
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undertaken, but the three-dimensional structures of a number of domains has now been 

solved from a variety of organisms, as described above, A more specific problem is that in 

the native state, E3BP and E2 form a very tightly associated core assembly and can only be 

separated in the presence of chaotropic agents, such as GdmCl. Reconstitution studies of 

PDC from bovine heart have shown that under these separation conditions reconstitution of 

the E2/E3BP core is problematic. Rapid dilution to remove the dénaturant has been shown to 

be incompatible with reintegration of E3BP into the core complex while removing dénaturant 

by slow dialysis results in an E2/E3BP core which is partially depleted in E3BP. However 

this depleted core can sustain about 30-40% of native PDC activity (McCartney et al, 1997).

The full length cDNA for mammalian E2 was first cloned by Gershwin and coworkers (1987) 

from a rat liver library as an unidentified antigen which is recognised in the autoimmune 

disease primary biliary cirrhosis. Detailed analysis of the predicted protein sequence of this 

unknown antigen subsequently identified it as the E2 component of the mammalian pyruvate 

dehydrogenase complex (Yeaman et al, 1988). The cDNA for the human E2 was then 

sequenced and cloned (Coppel et al, 1988). The individual domains of human E2, specifically 

the inner and outer lipoyl domains, have been successfully overexpressed as GST fusion 

proteins in E. coli (Quinn et al, 1993; Liu et al, 1995). More recent studies on the full length 

mature recombinant human E2 have shown that, in addition to assembling into the 

dodecahedral structure observed in the native complex, it can also bind the E l component 

and support the function of the PDC-associated kinase and phosphatase (Yang et al, 1997). 

However, these investigators were unable to successfully express a recombinant E3BP 

protein in the absence of E2. In yeast, it was found that recombinant E3BP was sensitive to 

proteolysis when expressed independently. However, when E3BP was coexpressed with E3 

to form a stable E3BP/E3 subcomplex it was found that E3 seemed to confer some protection
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against proteolysis on the E3BP component (Maeng et al, 1994). This subcomplex was then 

purified to near-homogeneity before separating the E3BP and E3 components by 

chromatography in the presence of 5M urea. Human E3 has been cloned and overexpressed 

as a His-tagged protein by Liu and coworkers (1995) while, most recently, the molecular 

cloning and overexpression of human E3BP has been reported (Palmer et al, 1999; Lee et al, 

2001).

The E l component of the human pyruvate dehydrogenase complex (Korotchkina et al, 1995) 

and of both the bovine (Davie et al, 1992) and B. stearothermophilus branched chain 2- 

oxoacid dehydrogenase complexes (Lessard & Perham, 1994) have been cloned previously. 

The composition of the E l components from these complexes are similar with both existing 

as a 2?>2 heterotetramers. It was found that the correct assembly of the branched chain 2- 

oxoacid dehydrogenase complex E l in E. coli relies on the presence of additional molecular 

chaperones GroEL and GroES (Chuang et al, 1999). In contrast, successful production of 

PDC-El did not require additional molecular chaperones indicating that the chaperonins 

naturally present in E. coli were sufficient to promote proper folding and assembly of the 

a 2 p 2 heterotetramer (Korotchkina et al, 1995).

3.1.1 Aims of this chapter

• To describe the strategy used to clone the individual components of human PDC.

• To overexpress these recombinant proteins in E. coli in active form.

3.1.2 Plasmids

The plasmids used for the cloning of the individual components of human PDC were 

obtained from a variety of sources. pHUMIT contains the full length sequence for mature E2 

and was kindly provided by Dr M.E. Gershwin, Division of Rheumatology and Clinical
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Immunology, University of California, Davis. Plasmids containing the genes for E3 and E ip  

were a kind gift from Dr Brian Robinson, Department of Pediatrics and Biochemistry, 

University of Toronto, Canada. Dr Garry Brown, Department of Biochemistry, University of 

Oxford, donated the plasmid containing the cDNA for E l a  and the plasmid containing the 

full length sequence for human E3BP (Genbank accession number H58032) was kindly 

provided by Dr Bernard Aral, Department of Medicine, Necker Hospital for Sick Children, 

Paris.

3.2 Cloning of the E2, E3 and E3BP components

3.2.1 PCR amplification and purification

The cDNA sequences for all the enzyme components of human PDC have previously been 

published (Coppel et al, (1988) (E2), Harris et al, (1997) (E3BP), Dahl et al, (1987) (E la), 

Chun et al, (1990) (EIP), Pons et al, (1988) (E3)) and so this allowed the design of specific 

primers to be used in PCR. Primers were designed to the 5’ region upstream of the start of 

each mature protein and to the 3’ region downstream of the STOP codon of the full length 

sequence. All primers were designed with BamHI sites to facilitate cloning into the chosen 

expression vector (see Figure 3.1 for primer sequences).

PCR reactions were generally performed using Pfu DNA polymerase (Stratagene) as this 

enzyme has the lowest error rate of the thermostable DNA polymerases. Pfii DNA 

polymerase has a five-fold lower rate of base misincorporation than Tag DNA polymerase 

due to its 3’-5’ exonuclease proofreading activity. Conditions for PCR were as described in 

Materials and Methods. Samples of each PCR reaction, typically 5pl, were electrophoresed 

on a 1.5% (w/v) TAE agarose gel. Figure 3.2 illustrates the PCR products obtained. The lack 

of DNA in the control lanes where water replaced the DNA template shows that there are no 

contaminants present in the PCR mixture. The presence of minor PCR products in some 

reactions may be due to the occurrence of non-specific priming events in early cycles.
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E3 forward:

5’-TC TGA GGA TCC CGC AGA TCA GCC GAT T-3’

E3 reverse:

5’-TAA TCT GGA TCC TCA AAA GTT GAT TGA TTT GCC-3’

E2 forward:

5’-CGC CGC GGA TCC CAG TCT TCC CCC G-3'

E2 reverse:

5’-TTC TTG GGA TCC TTA CAA CAA CAT AGT GAT AGG-3’

E3BP forward:

5’-CAG TGG GGA TCC GGG TGA TCC CAT TAA G-3’

E3BP reverse:

5’-TAT CTT GGA TCC CTA GGC AAG TCG G-3’

E la  forward:

5’-GCA TCC GGA TCC TTT TGC AAA TGA TGC TAC ATT TG-3’

E la  reverse:

5’-CTT CTC GGA TCC TTA ACT GAG TGA CTT AAA CTT G-3’

Elp forward:

5’-GCG CCG GGA TCC GCT GCA GGT GAC AGT TCG-3’

E ip reverse:

5’-G ATA TTC AAG GGA TCC CTA AAT ATT TAA TG-3’

Figure 3.1 Primer sequences for the cloning of each component of the human pyruvate 

dehydrogenase complex.

The BamHI sites are underlined in each case.
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Figure 3.2 PCR amplification of E2 (panel A), E3BP (panel B) and E3 (panel C)

PCR reactions were run on 1.5% agarose gels and stained with ethidium bromide 

before visualising on a UV transilluminator.

M; 1 kb ladder, 1 : negative control (no template DNA added), 2: PCR product

Panel A: E2 was amplified from pHUMIT, a plasmid which contains the full length, 

mature sequence for E2. A strong PCR product was obtained at an approximate size 

of 1.8kb in lane 2. No PCR product was obtained in lane 3 using diluted template 

DNA.

Panel B: E3BP was amplified from a plasmid donated by Dr B. Aral (Paris). A band 

at the expected size of 1.5kb is seen.

Panel C: Amplification of E3 took place from a plasmid obtained from Dr B. 

Robinson (Canada). A PCR product at the expected size of 1.5kb was obtained.
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In each case, the major product was excised from an agarose gel, under UV light, using a 

sterile scalpel. The DNA was then purified using the QIAquick gel extraction kit (Qiagen) as 

described in Materials and Methods. An aliquot of the purified DNA was electrophoresed on 

a 1.5% (w/v) agarose gel to check the quality and quantity of the DNA obtained (data not 

shown).

3.2.2 Ligation, transformation and identification of clones

The expression plasmid pET-14b (Novagen) was chosen as a suitable vector in which to 

clone E2, E3 and E3BP for a number of reasons. The pET vectors provide a convenient 

strategy for the cloning of DNA as they contain unique restriction sites in their multiple 

cloning region. In addition, pET-14b contains an N-terminal 6  Histidine-tag which provides a 

means of conveniently and economically purifying the protein of interest using a metal 

affinity column. This vector also confers ampicillin resistance on the cloned product.

BamHI was chosen as a suitable restriction site for the cloning of each enzyme since analysis 

of the individual gene sequences, using Gene Jockey software, indicated that there were no 

BamHI restriction sites present in any of the genes.

Both the vector and PCR product were subjected to restriction digestion by BamHI to 

generate cohesive ends for ligation. The vector was also treated with calf intestinal alkaline 

phosphatase (lU /jil) to remove the phosphate groups exposed by digestion and so prevent 

self-ligation of the vector. This step helps reduce the effort required to screen ampicillin- 

resistant colonies obtained after transformation.

After digestion, both vector and PCR product were purified using the QIAquick gel 

extraction kit (Qiagen) and DNA was eluted in 30|4l elution buffer. Samples (5|li1) of each
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were electrophoresed on a 1.5% (w/v) TAE agarose gel to check the quantity of DNA 

obtained. This was also used to assess the vectoriinsert ratio required for the ligation 

reactions. For ligations to be successful a high insert: vector ratio is usually required. A series 

of ligation reactions were set up with varying ratios of insert:vector (usually from 3:1 to 10:1) 

and a control reaction containing no insert.

These were left overnight at room temperature and transformed into competent E. coli DH5a 

cells the following day. The transformations were plated on LB-agar plates supplemented 

with 50|ig/ml ampicillin and incubated at 37°C overnight.

Colonies were selected and cultured overnight in LB media supplemented with ampicillin 

(50pig/ml) at 37°C. Plasmid isolations were performed using the Wizard SV Minipreps kit 

(Promega) and DNA was eluted in 70|U,1 nuclease-free water. Samples, typically 5p,l, were 

electrophoresed on a 1% (w/v) TAE agarose gel, along with wild-type pET-14b in order to 

identify clones containing the insert of interest.

Clones, possibly containing insert, were subjected to restriction digestion with BamHI to 

assess if an insert of the appropriate size was present. Those clones which were shown to 

contain insert were then subjected to digestion with a suitable restriction enzyme, selected for 

its ability to cleave both the vector and also in the actual insert itself. This analysis was 

performed in order to check the orientation of the insert. For E3BP and E3, the enzyme used 

was Bgin, while E2 was digested with Pstl. Figures 3.3a-c show the results of these 

digestions. For E3BP, out of the six clones examined, four were successfully digested with 

BamHI. Of these four clones only one, E3BP/6-14b, contains the insert in the correct 

orientation. In the case of E2, of the six clones digested with BamHI three of these, E2/1, 

E2/7 and E2/8-14b were in the correct orientation. Only one of the three possible E3 clones, 

E3/3-14b, was inserted correctly.
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Figure 3.3a Restriction digestion analysis of recombinant E3BP plasmids

Clones containing insert were subjected to restriction digestion by BamHI (panel A) 

or Bgin (panel B). Samples of each digest were analysed on 1.5% agarose gels which 

were then stained with ethidium bromide and viewed under UV transillumination.

M: Ikb ladder

Panel A: BamHI digestion of the seven clones possibly containing insert show that a 

band of the expected size (1.5kb) is present in lanes 2, 3, 5 and 7.

Panel B: Bglll restriction digestion of the same seven clones show that out of the four 

clones which definitely contain insert, clone number 6  (in lane 5) has E3BP inserted 

in the conect orientation as indicated by the predicted sizes of the fragments. For a 

clone containing insert in the conect orientation a digestion product Ikb in size was 

predicted while a band of approximate size 0 .8 kb was expected for clones containing 

insert in the wrong orientation.
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Figure 3.3b Restriction digestion analysis of recombinant £ 2  plasmids.

Six possible E2 clones were subjected to restriction digestion and analysed on a 1.5% 

agarose gel as before.

M: Ikb ladder, lanes 1-6: BamHI digestion, lanes 7-12: Pstl digestion.

All six clones were digested with BamHI and a band of the expected size (1.8kb) was 

present in each case as seen in lanes 1 -6 .

Pstl digestion resulted in 2 different banding patterns emerging depending on the 

orientation of the insert. For clones containing insert in the correct orientation a band 

of approx 1.5kb in size was predicted. In the wrong orientation, digestion with Pstl 

results in a product of 2.5kb. This digestion shows that the samples in lanes 7,11 and 

12 contain E2 that is inserted in the correct orientation.
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Figure 3.3c Restriction digestion analysis of recombinant E3 plasmids

E3 clones were digested with BamHI or Bglll and analysed on a 1.5% TAE agarose 

gel as before.

M: Ikb ladder, lanes 1-3: BamHI digestion, lanes 4-6: Bglll digestions.

The three possible E3 clones all contain a band of the correct size (1.5kb) which 

digested out with BamHI.

The Bglll digestion was predicted to produce a band of l .lk b  if the insert was 

present in the correct orientation and a band of I.5kb if present in the wrong 

orientation. This digestion shows that, of these three clones, only one contains the 

insert in the correct orientation as seen in lane 6 .
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From these digestions, the clones containing insert in the correct orientation were 

transformed into competent E. coli BL21 CodonPlus cells (Stratagene) for overexpression of 

the proteins of interest.

3.3 Overexpression of heterologous protein

After transforming the relevant clones into E. coli BL21 CodonPlus cells, small-scale protein 

inductions were performed. An aliquot of an overnight culture, supplemented with ampicillin 

(50pg/ml) was subcultured into a fresh 50ml culture and grown, with shaking, at 37°C. Once 

the optical density of the culture at 600nm reached 0.5, expression of protein was induced by 

the addition of IPTG (ImM). Inductions were usually carried out at 30°C. Samples were 

taken at hourly time intervals, pelleted by centrifugation, resuspended in an appropriate 

volume of Laemmli sample buffer and analysed by 10% SDS-PAGE. Figures 3.4a-c show the 

results of each induction. All 3 proteins were successfully overexpressed using this system.

Perhaps the most encouraging result was the successful cloning and overexpression of E3BP 

as an individual protein in the absence of E2, as described previously by Palmer et al (1999). 

Assuming that the recombinant protein is soluble this means that structural studies of this 

protein, independent of E2, are now possible.

All proteins cloned so far have been described as being expressed in BL21(DE3) CodonPlus 

cells. Each recombinant protein was also overexpressed in E. coli BL21(DE3) pLysS cells. 

However, it was found that expression of heterologous protein using the CodonPlus strain of 

E. coli was often more effective than in the more usual pLysS cells (data not shown). This is 

perhaps because CodonPlus cells contain extra copies of several tRNA species which encode 

codons which are rarely used in E. coli but tend to be more abundant in the organisms from 

which the heterologous protein is derived. These are the arginine codons AGA and AGG, the 

isoleucine codon AUA and the leucine codon CUA. The availability of these codons can 

allow high-level expression of heterologous protein that is poorly expressed in conventional
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Figure 3.4a Overexpression of E3BP

Clone 6 , containing E3BP in the correct orientation, and clone 1, which 

contains the insert in the wrong orientation, were transformed into 

competent BL21 (DE3) pLysS CodonPlus cells for protein expression. 

Samples were taken at Ih time intervals after induction of protein with 

ImM IPTG.

M: low molecular mass markers. To: sample taken just before induction 

with IPTG, Ti, T 2 and T 3 represent samples taken 1, 2 and 3h after 

induction of recombinant protein.
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Figure 3.4b Overexpression of E2

The three clones containing E2 inserted in the correct orientation were 

transformed into competent BL21 (DE3) pLysS CodonPlus bacteria. Small scale 

protein inductions were carried out in LB media, at 30°C as described previously.

M: low molecular mass markers, To: sample taken just before addition of ImM 

IPTG, Ti, Tz and T 3 represent samples taken at 1 ,2  and 3h after induction.
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Figure 3.4c Overexpression of E3

Clone 2 and clone 3 containing the cDNA for mature E3 in the incorrect and 

correct orientation were transformed into competent BL21 (DE3) pLysS 

CodonPlus bacteria for protein expression. Small scale protein inductions were 

carried out in LB media at 30°C.

M: low molecular mass markers, To: sample taken just before the addition of 

ImM IPTG, Ti, Tz and T 3 represent samples taken 1, 2 and 3h after induction.
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BL21 strains. The optimisation of expression of these recombinant proteins in CodonPlus 

cells meant that the whole process could be scaled up. Large-scale protein induction was then 

routinely employed in order to produce large quantities of recombinant protein for 

purification and subsequent analysis.

3.4 Coexpression of E2 and E3BP

As noted previously, native E3BP is only found tightly associated with E2 and together, these 

two proteins form the structural core of human PDC. Since native E2 and E3BP can only be 

separated under strongly denaturing conditions this makes E3BP difficult to study 

as an independent protein. Obtaining a plasmid containing the full length sequence for E3BP 

allowed us to attempt to clone a recombinant E3BP as described above. However it was 

unclear if this recombinant protein would be correctly folded. Another important point to take 

into consideration was the association of E3BP with E2. It may be that these two proteins 

form the structural core through association as folding intermediates and it is unclear if they 

can form a stable complex in a post-translational manner. For this reason it was decided to 

coexpress E2 and E3BP in the same E. coli cells in the hope of circumventing this possible 

difficulty. This should hopefully allow E2 and E3BP to form the core complex in a co- 

translational manner.

3.4.1 Cloning of E2 and E3BP

In order to coexpress E2 and E3BP it was necessary to clone them into plasmids containing 

different antibiotic resistance markers. To this end, p E T -llb  was employed as the vector in 

which to clone E2 and pET-28b was used for cloning E3BP. pET-1 lb  is an ampicillin- 

resistant vector and does not contain a His-tag while pET-28b confers kanamycin resistance 

and includes an N-terminal His-tag. Cloning of the individual genes into the relevant 

plasmids was performed as described previously using BamHI as the restriction enzyme for 

each vector. After ligation and transformation, clones containing insert were identified by 

agarose gel electrophoresis. These were then subjected to restriction digestion using BamHI
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and either Bglll (E3BP) or PstI (E2) to check for the presence of insert and Its orientation as 

described previously. Clones containing insert in the correct orientation were then 

transformed, individually, into competent E. coli BL21 CodonPlus cells to check for 

overexpression.

3.4.2 Overexpression of coexpressed E2 and E3BP

Once it was established that both clones could express protein, they were cotransformed into 

E. coli cells. DNA (1-lOng) from E2-1 lb  and E3BP-28b were added to the same competent 

E, coli BL21 CodonPlus cells and transformed as normal. The mixture was then plated on 

double antibiotic resistance plates and incubated overnight. Any colonies obtained would, 

therefore, be expected to contain both plasmids.

Small-scale protein induction was then carried out as previously described in 50ml LB media. 

After the addition of IPTG (ImM), induction was monitored by removing samples of the 

culture at zero time and 3h after induction. These samples were pelleted by centrifugation, 

resuspended in an appropriate volume of Laemmli sample buffer and analysed by 10% SDS- 

PAGE. Figure 3.5 shows the results of the induction. As can be clearly seen, high levels of 

expression were obtained for both proteins. This process could now be scaled up to produce 

milligram quantities of protein for purification and analysis.

3.5 Cloning of the E l component

The E l component of human PDC contains both an a  subunit and a P subunit, with two 

copies of each present in E l, forming an otzpz heterotetramer. As the two subunits are 

encoded by separate genes it was necessary to coexpress the two subunits in a manner similar 

to the coexpression of E2 and E3BP.
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Figure 3.5 Overexpression of cotransformed E2 and E3BP

Recombinant pE T -llb  and pET-28b plasmids containing the coding 

regions for mature human E2 and E3BP were cotransformed into 

competent BL21 (DE3) pLysS CodonPlus cells and overexpressed in LB 

growth media at 30°C. Expression of protein was induced by the addition 

of ImM IPTG.

M: low molecular mass markers, To: sample taken just before addition of 

IPTG, T 3 : sample taken 3h after induction with IPTG.

Two separate colonies were induced for overexpression.
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3.5.1 PCR amplification and puriBcation

PCR amplifications of E l a  and E ip  were carried out as described previously using the 

primers shown in Figure 3.1. Successful PCR of E ip  proved very difficult to achieve using 

Pfu DNA polymerase. The reasons for this are unclear. The conditions for the PCR reaction, 

such as the annealing temperature, were systematically altered but with no success. Heating 

the primers to 95°C for 5 min before adding them to the PCR mix also had no effect and the 

addition of 1 0 % (v/v) glycerol, known to improve the yield of amplification products, or 1 0 % 

(v/v) DMSO, thought to improve the dénaturation of GC-rich DNA, similarly met with no 

success. Finally, by using the Expand High Fidelity PCR system (Boehringer Mannheim), the 

PCR proved successful and strong bands of the expected size for E lP  were obtained. The 

Expand system consists of both the Taq and Pwo DNA polymerases and has a 3-fold 

increased fidelity of DNA synthesis compared to Taq DNA polymerase alone. This is due to 

the 3’-5’ exonuclease proofreading activity of Pwo DNA polymerase. PCR of the E l a  gene 

proved less problematic and was performed using Pfu DNA polymerase. The PCR products 

obtained can be seen in Figure 3.6.

3.5.2 Product ligation, transformation and clone identification

Both the PCR products and the relevant vectors, pET-28b and pE T -llb , were digested with 

BamHI in preparation for ligation. The plasmids were also treated with calf intestinal alkaline 

phosphatase (1U/|li1) to remove the 5’-phosphate groups generated by restriction digestion. A 

number of ligation reactions were set up with different ratios of insert: vector and these were 

left at room temperature overnight. They were then transformed into competent E, coli 

D H 5a cells and plated on LB agar plates supplemented with the appropriate antibiotic for 

incubation at 37°C overnight. E l a  was ligated into pET-28b while El|3 was cloned into pET- 

1 1 b.

Colonies obtained from the transformation of the ligation reactions were selected and 

incubated in 5ml LB plus antibiotic overnight. Minipreps were performed using the Wizard
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Figure 3.6 PCR amplification of E la  (panel A) and E ip  (panel B).

Samples of each PCR were electrophoresed on 1.5% (w/v) TAE agarose gels, stained 

with ethidium bromide and viewed under UV transillumination.

M: Ikb ladder, 1: negative control (no template DNA added), 2-4: PCR product. 

Panel A: A strong PCR product of E la , at the expected size of about 1.2kb was 

obtained.

Panel B: PCR of E ip  was performed using the Expand High Fidelity system. A low 

yield of PCR product was obtained using the concentrated plasmid for E ip  (lane 2). 

Diluting the template DNA by a factor of 10 resulted in a strong PCR product being 

obtained at the expected size of 1.1 kb (lanes 3 and 4).
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SV Minipreps kit as before and DNA was eluted in 70|xl nuclease-free water. Samples from 

each miniprep were electrophoresed on a 1% (w/v) TAE agarose gel along with wild-type 

pET-28b and pE T -llb  to assess which, if any, colonies were likely to contain insert. Possible 

candidates were subjected to restriction digestion by BamHI, to check that the insert could be 

digested out of the vector, and then with a second enzyme to check the orientation of the 

insert. For E la ,  this enzyme was Bglll while E ip  was digested with Pstl. Figure 3.7 shows 

the results of these digestions.

From these digestions it can be seen that one E l a  clone, E lo/5-28b, and 3 E ip  colonies, 

designated E ip /1 , 2 and 3-1 lb  are inserted in the correct orientation and should produce 

protein after induction with IPTG. These clones were transformed, individually, into BL21 

(DE3) pLysS CodonPlus cells to check for overexpression of protein.

Small scale protein induction for each clone was carried out as normal in 50ml LB media. 

Overexpression of protein was induced by the addition of IPTG (ImM ) and protein induction 

followed by removing samples at zero time and then 3h after addition of IPTG. Both proteins 

overexpressed strongly (data not shown).

3.5.3 Cotransformation of E la  and Eip

Once it was established that both clones were capable of overexpressing protein of the 

expected size, these clones were cotransformed into BL21 (DE3) pLysS CodonPlus 

competent cells in a manner similar to that described for the cotransformation of E2 and 

E3BP (section 3.4.2). The transformations were plated on double antibiotic resistance plates 

so that any colonies obtained would contain both plasmids.

Small scale protein induction was again carried out in LB media containing both ampicillin 

(50|4g/ml) and kanamycin (30|Xg/ml) and induction of protein followed by removing samples 

at zero time and 3h after induction with IPTG (ImM). Induction of protein was monitored at
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Figure 3.7 Restriction digestion of recombinant E la  and E lp  plasmids

Clones containing either E l a  or E lp  were subjected to restriction digestion with 

BamHI to check for the presence of insert and then with a second enzyme to check the 

orientation of the insert. Samples of each digest were electrophoresed on 1.5% (w/v) 

TAE agarose gels, stained with ethidium bromide and visualised using a UV 

transilluminator.

Panel A: BamHI digestion of two possible E l a  clones show that insert is indeed 

present in both clones.

Panel B: Digestion of the two E l a  clones with B g i n  were predicted to result in a 

band of Ikb for a clone with the insert in the correct orientation and 0.6kb for a clone 

containing insert in the wrong orientation. This analysis shows that clone 1 contains 

the insert in the con'ect orientation while the second clone contains the gene in the 

wrong orientation.

Panel C: Digestion of four possible clones containing E ip  with BamHI (lanes 1-4) 

indicates that all four contain the insert while digestion of these clones with Pstl 

(lanes 5-8) show that all but one of these clones contain the gene inserted in the 

coirect orientation. The predicted sizes for an insert in the correct orientation was 

1.8kb while in the wrong orientation, a digestion product at 1.3kb was expected. An 

additional digestion product at 0.6kb was also observed.

M; Ikb ladder
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25“ 30“ 37“

E l a
E ip

M  To T3 To T3 To T 3 

Figure 3.8 Coexpression of E la  and E ip

E l a  and E ip  were coexpressed in E. coli BL21 CodonPlus cells by 

induction with ImM IPTG. Induction of protein was performed at 3 

different temperatures, 25“, 30“ and 37“. Samples were removed at 

time 0 and 3h after induction for analysis on 15% SDS-PAGE. High 

levels of overexpression of both subunits occurred at all three 

temperatures.
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3 different temperatures, 25“C, 30“C and 37“C, since it has been noted that investigators who 

have previously cloned E l from both PDC (Korotchkina et al, 1995) and B CO ADC (Davie 

et al, 1992) have found that the solubility of recombinant E l was increased at lower 

temperatures. Samples were electrophoresed on a 15% SDS-PAGE gel. From Figure 3.8, it 

can be seen that cotransformation of E l a  and E ip  proved successful with both proteins 

overexpressing to a significant degree. Overexpressing these constructs at the different 

temperatures results in similar levels of protein expression although it is possible that protein 

expression is improved slightly at 37“C. However it is possible that the solubility of these 

subunits will be affected at the different temperatures.

3.6 Discussion

In this chapter the cloning strategy has been described that has allowed us to achieve the 

successful and reproducible overexpression of the individual components of the human 

pyruvate dehydrogenase complex in E. coli. However the question remains as to whether 

these proteins have been produced in active form. These proteins have all been cloned and 

overexpressed in E. coli previously by other researchers.

Human E3 has previously been cloned in both its mature and precursor forms (Kim et al, 

1991). Both proteins were shown to be active although the precursor form was less 

catalytically efficient than mature E3. This is perhaps not surprising given the additional 

amino acids present at the N-terminus of the precursor protein. The precursor E3 was also 

less soluble than the mature protein. Optimum expression was found to occur at 30“C. Human 

E3 has also been cloned as a His-tagged fusion protein (Liu et al, 1995). Human E3BP has 

been previously overexpressed both in a subcomplex with E2 (Harris et al, 1997) and on its 

own (Palmer et al, 1999; Lee et al, 2001). While Lee and coworkers (2001) purified a 

recombinant His-tagged E3BP they failed to show that this protein was active. Recombinant 

E3BP cloned into the pET-14b vector in a manner similar to that described here was shown to 

react with the sera of patients suffering from primary biliary cirrhosis, indicating that E3BP
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was correctly folded (Palmer et al, 1999). This protein was induced at 30°C for 3h. The 

E2/E3BP subcomplex described by Harris and coworkers (1997) was shown to be able to 

spontaneously reconstitute the pyruvate dehydrogenase complex in the presence of native E3 

and recombinant E l. In this case cells were cultured at room temperature after the addition of 

0.4mM IPTG for 20-24h before harvesting. Conditions for the expression of a recombinant 

His-tagged E2 were found to be optimum at 30“C for 3h in BL21 (DE3) pLysS (Palmer et al, 

1999). Other investigators found that proteolytic cleavage of recombinant E2 was a problem 

and minimised this by inducing expression at 27°C (Yang et al, 1997).

E l from both PDC and BCG ADC has been cloned and expressed in E. coli previously. In 

general two strategies have been employed in order to produce recombinant active E l. In B. 

stearothermophilus, it was shown that a functional PDC-El could be obtained by disrupting 

mixtures of cells containing the separately expressed E l a  and E ip  subunits (Lessard & 

Perham, 1994). E l produced in this manner was able to assemble into active heterotetramers 

in vitro. In contrast bovine BCOADC-El and human PDC-El were expressed by subcloning 

the genes for both the a  and P subunits into the same expression plasmid. BCOADC-El was 

expressed as a maltose-binding protein (MBP) fusion protein and protein expression was 

induced at 24“C for 24h. It was found that association of active recombinant bovine 

BCOADC-El relied on coexpression of both subunits in E. coli (Davie et al, 1992). A similar 

method was used to express a recombinant human PDC-El. Both subunits were subcloned 

into the same expression vector as a His-tagged fusion protein. Optimal expression took place 

at 25°C overnight (Korotchkina et al, 1995). These investigators also showed that when 

expressed individually neither E l a  nor E ip  had any catalytic activity. In this chapter E l was 

produced by cotransforming the individually cloned subunits into E. coli. This strategy was 

viewed as being the most straightforward, having proved successful for E2/E3BP.

One of the problems faced by investigators when cloning a recombinant protein is the 

possibility that, when expressed in E. coli, or indeed any other foreign host, the protein may
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be insoluble. High level expression of recombinant protein, such as that described in this 

chapter, can often result in aggregation and accumulation of the protein in inclusion bodies. 

Preliminary studies of the constructs described herein have indicated that all recombinant 

proteins, with the exception of the E l component, are soluble. In general, it appears that 30°C 

is the optimal induction temperature for the production of a high yield of soluble protein for 

each construct.

In order to assess whether the recombinant proteins have been produced in active form a 

number of investigative tools are at our disposal. Enzymatic assays have been developed for 

the E l, E2 and E3 components of the complex. Immunoblotting techniques can also be 

utilised employing a monoclonal antibody which is highly specific for lipoylated E2 and 

E3BP of PDC. This antibody does not recognise the unlipoylated forms of these proteins. 

Preliminary studies using Western blot analysis have indicated that both E2 and E3BP have, 

at the very least, correctly folded N-terminal lipoyl domains. This is very encouraging in 

terms of the recombinant proteins being produced in active form. Again, this is discussed in 

more detail in chapter 4.
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Chapter 4

Purification of the recombinant enzymes of hnman PDC
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4.1 Introduction

In order to conduct studies on the structural and functional characteristics of a protein it is 

usually necessary to first purify the target protein. Protein purification from a native source is 

often the most time consuming part of any experiment. Lengthy protocols are employed using 

several types of chromatography in order to achieve purification of the protein to near

homogeneity. Purification of recombinantly expressed protein in bacteria is normally less 

problematic.

The main advantage in using fusion vectors such as glutathione S-transferase (GST) as 

opposed to conventional expression vectors is that the recombinant protein can be purified 

using a highly specific, affinity chromatography step. Glutathione S-transferase is a protein of 

Mr value 26kDa and, in general, is preferentially used as a fusion protein for smaller proteins, 

or individual domains of proteins, which may not be stable as independent entities. It can also 

be used for proteins that are insoluble since, in the majority of cases, proteins expressed as a 

fusion with GST show enhanced solubility and can be purified under non-denaturing 

conditions. GST fusion proteins can be purified very easily by adsorption of the lysate to a 

glutathione Sepharose column. After thoroughly washing the matrix to remove any unbound 

protein the GST-tagged protein can be specifically eluted from the column with glutathione.

In a similar vein, the pET-14 expression vector encodes six histidine residues, which can be 

attached to either the N- or C-terminus of the recombinant protein and acts as a convenient 

means of purifying the target protein. Recombinant proteins containing a Histidine-tag can be 

purified using the same principles as for GST-fusion proteins. However, this is only possible 

provided that the recombinant protein is soluble. It is not uncommon for heterologously 

expressed proteins to form inclusion bodies in the host cell.
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4.1.1 Inclusion bodies

Inclusion bodies consist mainly of recombinant proteins that have accumulated in the cell and 

are densely packed together. There are several reasons which can account for the formation 

of inclusion bodies. Some recombinant proteins depend on post-translational modification for 

full biological activity, for example phosphorylation or glycosylation. This is often carried 

out by specialised enzyme systems that may not be present in the host cell. The folded 

structure of the recombinant protein may not be adapted to the conditions in the host cell or, 

most simply, the polypeptides may be overproduced to such an extent that the physiological 

solubility limit is exceeded. Finally, in vivo there are a number of additional protein factors 

present such as molecular chaperones that assist in protein folding but in the host cell, the 

level and specificity of these factors may differ (Lilie et al, 1998).

Since inclusion bodies consist mainly of recombinant protein a high yield of protein can be 

obtained and this can be isolated with relative ease. However, the problem arises when trying 

to solubilise and refold the recombinant protein. Refolding is the most difficult part of 

isolating protein from inclusion bodies and the yield of correctly folded, active protein is 

usually very low (Misawa & Kumagai, 1999),

4.2 Aims of this chapter

• To examine the lipoylation states of E2 and E3BP

• To describe the use of a BioCAD Sprint Perfusion Chromatography System for the 

purification of His-tagged proteins

• To show that these enzymes have been purified in active form

• To show that, when coexpressed E2/E3BP is purified, the two enzymes coelute 

suggesting that they have formed a stable complex.

• To describe the solubilisation and purification of active E l from inclusion bodies.
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4.3 Results

4.3.1. Lipoylation states of E2 and E3BP

After successfully overexpressing the individual components of human PDC the next step 

was to demonstrate that the recombinant proteins were soluble and biologically active. A 

convenient method for establishing that the N-terminal domains of both E2 and E3BP are 

correctly folded is to utilise the fact that both these proteins contain highly conserved lipoyl 

domains at their N-termini that contain lipoylatable lysine residues.

Lipoylating enzymes in E. coli are capable of recognising a specific motif, aspartic acid, 

lysine, alanine (DKA) which is present on the lipoyl domains of E2 and E3BP. This 

conserved motif is found at the tip of an exposed type-I P-tum in the three-dimensional 

structure of the lipoyl domain. The lipoyl group is attached in an amide linkage to the N^- 

amino group of this lysine residue. This lipoyl attachment can only occur if the apodomain is 

properly folded. Mutation of the conserved residues on either side of the lysine residue does 

not appear to affect the ability of the lipoylating machinery to recognise the lysine residue but 

if the lysine residue itself is moved one position to the left or right it is unable to be 

lipoylated. This suggests that they there may in fact be a precise structural cue that is 

recognised by the lipoylating machinery of the cell as opposed to a conserved sequence motif 

(Wallis & Perham, 1994).

In the bacterial system used here, overexpression of lipoylatable proteins results in both 

lipoylated and unlipoylated forms being produced. The most likely explanation is that 

overexpression of the recombinant protein is so strong that the lipoylating machinery of the 

cell is unable to modify all the expressed protein (Quinn et al, 1993; Green et al, 1995). The 

best estimates suggested that in these studies the ratio between lipoylated and unlipoylated 

proteins under these growth conditions was approx 50:50. Addition of exogenous lipoate to 

the growth media during protein induction allows the recombinant protein to become more 

fully lipoylated.
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The lipoylatable proteins, E2-PDC and E3BP can be detected using a monoclonal antibody, a 

kind donation from Prof. Freda K. Stevenson at Southampton University. Two antibodies, 

designated PD l and PD2, were available which are specific only for the lipoylated 

(holoenzyme) form of these proteins (Potter et al, 2001). Protein inductions, of E2, E3BP and 

cotransformed E2/E3BP were performed as normal in LB growth media. Exogenous lipoate 

was added to the media on induction of protein with ImM IPTG and overexpression of 

protein carried out as described previously. Samples were taken at zero time and at 3h after 

induction for analysis on SDS-PAGE. Cultures grown in the absence, and in the presence, of 

exogenous lipoate were then subjected to Western blotting using the monoclonal antibody 

specific for the lipoylated E2 and E3BP as the primary antibody. Figures 4.1a-c show the 

results of these immunoblots.

In each case, a substantial enhancement of the lipoylation is seen when the cultures are grown 

in the presence of exogenous lipoate. However, the level of enhancement seems to vary quite 

significantly from sample to sample. This is particularly pronounced in the coexpressed 

E2/E3BP cultures where markedly enhanced lipoylation of E2 is observed with little 

difference seen in the lipoylation of E3BP. This is in contrast to the individually expressed 

proteins where E3BP shows a 2-3 fold enhancement in lipoylation while the effect of 

exogenous lipoic acid on E2 is somewhat less pronounced. They also show that the lipoyl 

ligase enzyme in E. coli is capable of at least partially lipoylating these proteins indicating 

that these domains are correctly folded. These results are particularly encouraging in terms of 

the proper folding of the independent E3BP component. When expressed alone, a substantial 

enhancement in lipoylation is observed in the presence of exogenous lipoate compared to the 

control lane. This suggests that, at the very least, the N-terminal domain of E3BP is correctly 

folded. A similar conclusion can be drawn for the individually expressed E2 and also the 

coexpressed E2/E3BP proteins.

95



Chapter 4

67 J

43 -

30 -

To To T 3 T 3

Figure 4.1a W estern blot analysis of E3BP

Cultures grown in the absence (-) or presence (+) of exogenous lipoate 

were subjected to Western blotting using a monoclonal antibody (PD2) 

specific for lipoylated protein at time 0 and 3h after induction.
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Figure 4.1b W estern blot analysis of E2

Cultures grown in the absence (-) and presence (+) of exogenous lipoate were 

subjected to Western blotting using a monoclonal antibody (PD2) specific for 

lipoylated enzyme at 3h after induction.
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Figure 4.1c Western blot analysis of cotransformed E2 and E3BP

Western blot analysis was performed on cotransformed E2/E3BP grown in the 

absence (-) or presence (+) of exogenous lipoate using a monoclonal antibody (PD2) 

specific for lipoylated protein.

Panel A: SDS-PAGE analysis of the cotransformed cultures at To and T 3 grown in the 

absence (lanes 1 and 2) and presence (lanes 3 and 4) of exogenous lipoate.

Panel B: Immunoblot of the cotransformed cultures. A strong enhancement in 

lipoylation is seen where the cultures were grown in the presence of exogenous 

lipoate (lane 8 ) as compared to the culture grown in the absence of lipoic acid (lane 

6 ). This enhancement is much more pronounced for E2.
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4.4 Purification of recombinant proteins

All proteins cloned and expressed so far have been produced with a Histidine-tag attached at 

their N-termini. This tag can be utilised to achieve their rapid purification. In order to do this 

a metal chelate column attached to a BioCAD Sprint Perfusion Chromatography System was 

used for the initial purification step in most cases. The exception to this is the E l component, 

which is discussed later in the chapter.

Recombinant proteins were routinely purified as described below.

4.4.1 Lysate preparation

Large-scale protein induction was carried out as described previously and the cells pelleted 

by centrifugation. The pellets were resuspended in 20ml starting buffer and disrupted under 

high pressure using a French Press cell. Protease inhibitors were added to the cell extract and 

the supernatant clarified by centrifugation in preparation for loading on the metal chelate 

column (see Materials and Methods section 2.4.7 for details).

4.4.2 Purification of crude extracts

The metal chelate column was routinely prepared for purification as described in Materials 

and Methods. Zinc ions were chosen as the most appropriate metal ion with which to saturate 

the chelating groups on the column since initial purifications were carried out using Nî "*" and 

it was found that this particular ion resulted in very strong binding of the His-tagged protein. 

Elution of the protein, therefore, occurred over an extended range with the majority of the 

bound protein eluting at very high imidazole concentrations. Zinc ions have a lower binding 

affinity for His than Ni^^ so allowing the target protein to be eluted earlier in the elution 

gradient.
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After clarification of the supernatant and preparation of the column, the supernatant was 

loaded on to the column in 5ml aliquots. After each injection the column and loop were 

washed with starting buffer to ensure that all the lysate was washed onto the column. After 

the final injection the column was washed further with starting buffer to completely remove 

any unbound protein. The target protein was then eluted in an increasing linear gradient of 

imidazole (20-500mM) and 2ml fractions collected. After elution of the protein the column 

was washed in high imidazole buffer (buffer B) to ensure that all protein had eluted before 

washing the column in stripping solution to remove the metal ions and any residual protein. 

Aliquots of the relevant fractions were TCA precipitated and subjected to analysis by SDS- 

PAGE.

4,5 Purification of E2

Figure 4.2 shows a typical trace representing the purification of E2 obtained from half a litre 

of culture. It is common to see a smaller peak appearing before the major peak during 

purification of E2. Analysing the appropriate fractions on 10% SDS-PAGE usually indicates 

that the first peak consists mainly of loosely-bound contaminants with little or no target 

protein present in this peak. The second larger peak contains the protein of interest as well as 

small amounts of other contaminating bands. Figure 4.3 demonstrates the level of purity that 

can be achieved using this type of affinity chromatography. As this SDS-PAGE gel indicates, 

although E2 has been purified from the vast majority of bacterial proteins there are also a few 

contaminating bands present.

4.5.1 Optimisation of purification using ion-exchange chromatography

For some applications, further purification of the target protein was required using ion 

exchange chromatography. First, it was necessary to optimise the conditions under which ion- 

exchange chromatography would be successful for each enzyme.
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Figure 4.3 SDS-PAGE analysis of purified E2 from a metal chelate column

Peak fractions from the purification of E2 were subjected to 10% SDS-PAGE analysis. 

Protein bands were viewed by staining the gel with Coomassie Blue for Ih before destaining 

overnight.

M, low molecular mass markers; S, load fraction; 10-28, peak fractions from the column.
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Again, these steps were performed using the BioCAD Sprint Perfusion Chromatography 

System. For optimising conditions several different matrices were tested over a pH range of 

6-9. From these studies it was found that optimal conditions for purification occurred using 

the strong anion-exchange media, HQ with a Tris-HCl buffer at pH 7. The starting buffer 

consisted of 20mM NaCl, 50mM Tris-HCl, pH 7 while the protein was eluted in a linear salt 

gradient from 20mM to IM  NaCl. This was found to be the optimal conditions for further 

purification of all target proteins so far cloned (data not shown).

4.5.2 Specific activity of E2

E2 can be assayed for activity as described in Materials and Methods. As already mentioned, 

the activity of E2 cannot be expressed in units since the precise molar extinction coefficient 

of the immediate product of the assay, 8 -acetyl-dihydrolipoamide, cannot be determined; 

therefore E2 activity is recorded as the change in absorbance/min. A purification table can be 

constructed for E2 using AAzsi/min as the units for E2 activity as seen in Table 4.1.

Vol

(ml)

Protein

(mg/ml)

Total

protein

(mg)

E2 activity 

(AA232/min 

/ml)

Total activity 

(AA232/min)

%E2

recovery

Activity

(AA232/min

/mg)

Purifie

ation

factor

Load fraction 

(MC column)

2 0 19.2 384 15.4 308 1 0 0 0 . 8 1 . 0

Pool (after 

MC column)

30 1 . 6 48 14.5 435 141 9.1 11.3

Pool (after 

HQ column)

2 1 0.9 18.9 13.2 276.6 89 14.6 18.2

Table 4.1 Purification table for E2
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According to Table 4.1, in this particular example the percentage recovery of protein was 

very high with little or no loss of recovery after purification on the metal chelate column.

This may be due to the difficulties in assaying E2 for activity. Anion-exchange 

chromatography resulted in a percentage recovery of about 89%, The specific activity 

calculated here is 14.6AAzsz/min/mg. This is in close agreement with that found in the 

literature. Purified recombinant E2 has been described as having a specific activity of 

19.4AA232/min/mg (Yang et al, 1997).

4.6 Purification of E3BP

The purification of E3BP follows a very similar protocol to the one described for E2. Figure

4.4 shows a typical profile for the purification of E3BP obtained from half a litre of culture. 

Again, as with E2, it is common to see a smaller peak eluting first which usually contains 

contaminating proteins while the larger peak, which elutes slightly later in the gradient 

contains the target protein. SDS-PAGE analysis of appropriate fractions from the purification 

of E3BP is seen in Figure 4.5. This gives an indication of the level of purity that can be 

achieved in a single step. Again, anion-exchange chromatography can be employed to 

remove minor contaminants and concentrate the protein,

4.7 Purification of E3

The purification of E3 was performed as above for the E2 and E3BP enzymes with the 

following modifications. E3 is, in itself, a very stable enzyme and it can be assayed for 

activity very efficiently. This enzyme can be heated at 65°C for up to Ih with no concomitant 

loss in activity as assessed by assaying E3 activity at time points throughout the heat 

treatment. This heat treatment acts as an additional purification step as many proteins.
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Figure 4.5 SDS-PAGE analysis of the purification of E3BP

Aliquots of the appropriate fractions were subjected to TCA precipitation and analysed by 

10% SDS-PAGE. Protein bands were visualised after staining for Ih with Coomassie Blue 

before destaining overnight.

M, low molecular mass markers; S, load fraction; 6-26, represents the peak fractions 

analysed.
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which are not heat-stable, are denatured and, when the supernatant is then clarified by 

centrifugation these proteins are pelleted while E3 remains in the soluble fraction. This 

supernatant is then loaded on to the metal chelate column in 5ml aliquots and eluted in an 

increasing gradient of imidazole over 8  column vol. Figure 4.6 shows a typical trace obtained 

from the purification of E3 from half a litre of culture. A symmetrical peak is usually 

obtained and upon analysis of the appropriate fractions on 10% SDS-PAGE it can be seen 

that E3 is purified to near-homogeneity. An example of this can be seen in Figure 4.7.

As well as giving an indication of the level of purity that is achieved through this 2 step 

purification of E3, the SDS-PAGE gel also shows that there is very little difference in the 

levels of E3 in the supernatant before (lane 1) and after (lane 2) heat treatment. Analysing the 

pellet (lane 3) after heat treatment indicated that there is very little E3 lost during heating. 

This can also be monitored by assaying the appropriate fractions for E3 activity. A 

purification table for E3 is shown in Table 4.2.

Vol

(ml)

Protein

(mg/ml)

Total

protein

(mg)

E3 activity 

(U/ml)

Total activity 

(U)

%E3

recovery

Specific

activity

(U/mg)

Purification

factor

Preheat 5 15.6 77.8 132.5 662.5 1 0 0 8.52

Load 4.5 3.3 14.9 151.6 682.1 103 45.8 5.4

Pool 1 2 0 . 2 2 . 1 26.4 316.8 48 150.9 17.7

Table 4.2 Purification table for E3

The results shown in this purification table provides support for the conclusions drawn from 

analysing the SDS-PAGE gel. This confirms that no E3 activity is lost during the heat
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Figure 4.7 SDS-PAGE analysis of the purification of E3

E3 can be purified in 2 stages, by heating the crude extract to 65°C for Ih and then loading 

the clarified supernatant on to the metal chelate column. After extensive washing of the 

column, E3 is eluted in a linear increasing gradient of imidazole.

M, low molecular mass markers; 1, supernatant before heat treatment; 2, supernatant after 

heat treatment; 3, pellet after heat treatment; 7-24, represent the peak fractions analysed after 

elution.
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treatment since the total activity of the sample taken before heating (Preheat) and then after 

heating (load fraction) is very similar. However, in this particular example approximately half 

the E3 activity is lost during purification on the metal chelate column. In this case, the 

specific activity of the load fraction is 45.8U/mg while the pool fraction was found to have a 

specific activity of 150.9U/mg. These specific activities are very close to the quoted values 

for native E3 that has been purified from bovine heart (refer to section 4.11)

4.8 Purification of coexpressed E2/E3BP

Purification of coexpressed E2/E3BP is performed in a similar manner to the purification of 

the individual E2 and E3BP components. Figure 4.8 shows a typical example of a purification 

profile for E2/E3BP obtained from half a litre of culture. The red line on the trace follows the 

elution of the protein at 280nm.

Analysis of the appropriate fractions from the purification of E2/E3BP on 10% SDS-PAGE 

reveals that, although only E3BP has been cloned with a His-tag, the 2 proteins have coeluted 

in each fraction. This suggests that E2 and E3BP have bound to each other since E2 would 

not have bound to the column. Even under the high salt conditions (IM  NaCl) of the 

purification protocol the E2/E3BP complex does not dissociate indicating that this complex is 

very stable, a situation similar to the native complex. Figure 4.9 illustrates this point showing 

that each eluted fraction contains both E2 and E3BP. In this case, the first larger peak 

contains most of the E2/E3BP, particularly in the first 4 fractions. This E2/E3BP subcomplex 

can be purified further and concentrated by performing anion-exchange chromatography as 

for the individual E2 and E3BP subunits (data not shown).
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Mr (XIO-̂ ) 
9 4
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4 3
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Figure 4.9 SDS-PAGE analysis of the purification of E2/E3BP

Fractions obtained from the elution of E2/E3BP were subjected to 10% SDS-PAGE 

analysis. Protein bands were visualised after staining in Coomassie Blue for Ih before 

destaining the gels overnight.

M, low molecular mass markers; S, load fraction; 6-26, represent peak fractions 6-26.
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After purification the relevant fractions are pooled, dialysed into the appropriate 

buffer and concentrated for further study. Figure 4.10 shows a SDS-PAGE gel of all 

purified proteins after pooling and concentrating the relevant fractions. This provides 

an indication of the level of purity routinely achieved by following the protocol 

above.

4.9 Purification of E l

As mentioned in a previous chapter, E l was cloned by expressing the a  and p 

subunits on separate plasmids before coexpressing them in E. coli to produce an (X2 P2 

E l component. While this technique posed no problems for the coexpression of E2 

and E3BP, E l has proved problematic. It was always possible that difficulties would 

arise when cloning PDC-El. Other investigators who have cloned this component 

both from PDC and BCG ADC have reported difficulty in producing a soluble protein. 

In some cases, simply reducing the induction temperature to 25‘̂ C and increasing the 

time of induction from 3 to 16h (Korotchkina et al, 1995) seemed sufficient to 

produce appreciable levels of soluble E l. In other cases, it was found that the 

coexpression of the molecular chaperones GroEL and GroES were also required 

(Wynn et al, 1992) in order to produce soluble, active enzyme. This seems to be 

especially true in the case of the mammalian BCOADC-El.

In our hands, when E l a  and E ip  were expressed individually and assessed for 

solubility it was found that both subunits were essentially completely insoluble (data 

not shown). These recombinant plasmids were then cotransformed into E. coli and
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Mr (XIO'^) 
94

67

43

30

M

Figure 4.10 SDS-PAGE analysis of the purification of the individual 

recombinant enzymes of human PDC

Relevant fractions for each purification were pooled and concentrated before analysis 

by 10% SDS-PAGE.

M, low molecular mass markers; 1, E2; 2, E3BP; 3, coexpressed E2/E3BP; 4, E3;
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induced as described for E2/E3BP. Examination of the cotransformed cultures, as 

shown in Figure 4.11, demonstrates that at all the temperatures studied, 25°C, 30“C 

and 37°C, both subunits again were insoluble. It is possible that there is a small 

amount of soluble material present in the supernatant, which may be more 

pronounced for the E lP  subunit, but when the supernatants were assayed for 

enzymatic activity no significant E l activity was detected. There is no clear difference 

in the levels of solubility at the lower temperatures when compared to the solubility 

levels at 37°C. These studies were initially performed using E. coli BL21 (DE3) 

pLysS cells. Induction of the cotransformed subunits was also performed in other E. 

coli strains, mainly BL21 (DE3), BL21 (DE3) CodonPlus, HMS174, AD494 and M15 

cells. These studies were again conducted at 3 temperatures, 25°C for 16h and 30°C 

and 37°C for 3h. As was found previously, at all temperatures and with all strains 

used both subunits were found in the pellet with none present in the supernatant. This 

finding has obvious implications for obtaining sufficient amounts of active, purified 

E l protein.

In order to produce soluble recombinant E l it may be necessary to coexpress the 

subunits with molecular chaperones, in particular GroEL and GroES as described for 

the mammalian branched-chain 2-oxoacid dehydrogenase E l component (Wynn & 

Davies, 1992; Chuang et al, 1999). However this in itself poses some difficulties as 

the molecular chaperones in question are contained on a separate plasmid. A number 

of plasmids containing the genes for GroEL and GroES are at our disposal thanks to a 

generous gift from Dr Peter Lund, University of Birmingham (plasmids pSUBH and 

pBADcmESL) and Dr Anthony Gattenby, Dupont (pGroESL). With Eloc and E lp  

also present on individual plasmids, the successful cotransformation of three separate
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25”C 30”C 37*CMr X 10

3

M T3 T3 S T3

Figure 4.11 Solubility studies on the coexpressed E la  and E ip  subunits

The solubility of coexpressed E la  and E ip  was assessed at 3 different 

temperatures, 25°C, 30°C and 37°C. Samples of the supernatant and pellet 

fractions were TCA precipitated before electrophoretic separation by 15% 

SDS-PAGE.

M, low molecular mass markers; T 3 , sample taken 3h after IPTG induction; 

S, supernatant; P, pellet.
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plasmids into E. coli is difficult to achieve due to the three different antibiotic 

resistance markers required. One way of overcoming this difficulty is to construct a 

plasmid that contains the genes for both E l a  and E lp . Each subunit would have its 

own promoter, there would be a His-tag to allow for purification on a metal affinity 

column and the plasmid would contain the gene for ampicillin resistance. Since all the 

plasmids containing the molecular chaperones are chloramphenicol-resistant this 

would allow cotransformation and selection of colonies containing both plasmids to 

take place on double-antibiotic resistance plates. In this way, it would be hoped that 

sufficient levels of soluble and active E l could then be produced. This coexpression 

plasmid was constructed by modifying pET-14b into which E l a  had been cloned with 

a digested fragment of p E T -llb  into which E ip  had been cloned. Figure 4.12 shows a 

map of the coexpression plasmid.

This coexpression plasmid was originally transformed into BL21 (DE3) pLysS cells 

for overexpression of protein and examined for solubility as described previously. As 

found for the individually expressed subunits, the coexpressed proteins proved to be 

insoluble at all temperatures studied, 25°C for 16h, 30°C and 31°C (data not shown). 

Overexpression in other E. coli strains, such as AD494, HMS174, BL21 (DE3) and 

BL21 (DE3) CodonPlus had no effect on the solubility of the E l component. 

However, this construct can now be used in conjunction with molecular chaperones in 

the hope that this strategy will produce soluble, active E l. Unfortunately preliminary 

studies using this coexpression plasmid with the molecular chaperones GroEL/GroES 

have not been encouraging. When transformed individually into E. coli,

GroEL/GroES and E lo /E ip  express well but when cotransformed into the same cells
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E la

SspI

T7 Promoter 6 His-tag

T7 Promoter

Hpal

Eip
or:

ramp

Fig 4.12 Map of the coexpression plasmid, E l.

The E l coexpression plasmid was constructed by digesting a Scal-SspI fragment 

from the pET-14b plasmid previously cloned with the E l a  subunit. This was 

ligated with the E ip  subunit, which was digested from a p E T -llb  vector. The 

gene for ampicillin resistance also came from the p E T -llb  plasmid.
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one or other of the plasmids will express but not both. It is unclear at present why this 

is the case. This approach requires further investigation.

4.9.1 Solubilisation and purification of E l from inclusion bodies

While work on constructing a coexpression plasmid was ongoing, attempts were made 

to solubilise the cotransformed a  and P subunits of E l. The technique adopted was 

based on the methodology of the protein folding kit from Novagen. This protocol 

requires extensive washing of the pellet obtained from an overexpressed culture, thus 

resulting in an almost homogeneous inclusion body preparation. The washed pellet 

can then be subjected to treatment with detergents to solubilise the protein of interest.

4.9.1.1 Solubilisation of E l using N-lauroylsarcosine

Insoluble protein can be solubilised by the use of detergents such as N- 

lauroylsarcosine. In this case, after extensively washing the pelleted extract, as 

described in Materials and Methods section 2.4.11, the pellet was resuspended in an 

appropriate buffer, usually 50mM potassium phosphate, pH 7.2, supplemented with 

0.5% N-lauroylsarcosine. After incubating this mixture for 30 min, with agitation, the 

protein was centrifuged at 10,000 rpm for 15 min to pellet any insoluble material 

before dialysis. Dialysis typically took place at 4°C with multiple changes of dialysis 

buffer. After concentrating the protein, samples were analysed by 15% SDS-PAGE 

and by assaying for E l activity.

E l was assayed for activity by monitoring the decrease in absorbance at 600nm as the 

dye DCPIP becomes reduced in the presence of the substrate pyruvate. Some 

examples of the specific activity of solubilised E l are noted in table 4.3. Both
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examples are taken from different preparations of solubilised E l and indicate that the 

method used is reproducible since the specific activity of each preparation is similar.

Sample Vol

(ml)

Protein

(mg/ml)

Total

protein

(mg)

E l activity 

(U/ml)

Total

activity

(U)

Specific

activity

(U/mg)

1 1 0 4.8 48 2.52 25.2 0.53

2 1 0 0.32 3.2 0.419 1.34 0.42

Table 4,3 Specific activity of E l solubilised from inclusion bodies

According to the examples given in table 4.3 above the specific activities obtained for 

E l from different preparations seem fairly consistent although the protein 

concentrations from each sample differ markedly. These activities correlate well with

those quoted for recombinant E l in the literature (refer to section 4.11).

Vv
4.10 Discussion

In this chapter, a protocol has been developed which has allowed the reproducible 

purification of the individual components of human PDC. These enzymes have been 

purified in active form by means of affinity chromatography. Table 4.4 indicates the 

typical yields obtained for each recombinant protein.
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E lot/E lp  (coexpression) pET-28b/pET-llb 2-5mg/l

E l (coexpression) modified pET-14b 2-5mg/l

E2 pET-14b 1 0 -2 0 mg/l

E3BP pET-14b 1 0 -2 0 mg/l

E2/E3BP (coexpression) pET-llb/pET-28b 1 0 -2 0 mg/l

E3 pET-14b 20-30mg/l

Table 4.4 Summary of the yields of individual enzymes cloned and expressed in 

E. coli

Measurement of the activity of the E2 and E3 enzyme components have indicated that 

these enzymes have been purified in active form and, in general, the specific activities 

described here correlate well with those quoted in the literature for the recombinant 

protein. For E3, the specific activity of 150.9U/mg compares well with that quoted for 

native bovine E3, cited at 174.33U/mg (R.G, McCartney, PhD thesis). For 

recombinant, purified E3 the specific activity has been found previously to be 

776U/mg (Liu et al, 1995c) and 540U/mg (Liu et al, 1999) for two different 

preparations. These values are much higher than that obtained here but it should be 

noted that these investigators performed enzyme assays at 37°C, as opposed to 30°C. 

This higher temperature can result in a 2-3 fold increase in specific activity. For E2, 

the recombinant protein has previously been found to have a specific activity of 

19.4AA2 3 2/min/mg (Yang et al, 1997) which is slightly higher than that described here 

(14.6AA232/min/mg) but these values do con'elate well. Any differences in the assay
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conditions used such as performing the assay at a slightly higher temperature or 

changing the pH can affect the measured activity of the enzyme.

Purification of the E l component has proved to be more problematic. While sufficient 

overexpression of both subunits that comprise the human heterotetrameric E l 

component has been consistently obtained, this may be part of the problem regarding 

the insolubility of these proteins. The production of recombinant protein often results 

in accumulation of these proteins in inclusion bodies, regardless of the host system 

used. Often, it is simply the case that the high level of expression of the recombinant 

protein exceeds the solubility limit of the host cell resulting in aggregation and 

subsequent sequestration in inclusion bodies. There are a number of factors which, 

when altered, may improve the solubility of the recombinant protein. Lowering the 

induction temperature or reducing the concentration of inducer (in this case IPTG) can 

often be effective in increasing the solubility of the target protein by limiting the 

induction of gene expression (Schein, 1989). In this case these steps proved 

ineffective in improving the solubility of E l.

There are also concerns over the use of detergents in obtaining soluble preparations of 

E l. While E l solubilised in the presence of N-lauroylsarcosine appears to be active, 

this detergent seemed to have an adverse effect on the activity of purified native PDC 

from bovine heart (data not shown). This has obvious implications in performing any 

studies with E l solubilised in this manner. N-lauroylsarcosine is a mild anionic 

detergent and is believed to be effective in refolding proteins by coating hydrophobic 

surfaces that may be exposed in an incorrectly folded protein thus minimising 

aggregation (Burgess, 1996). E l purified in this manner has been found to be active as
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shown in Table 4.3. However, when the specific activities quoted here are compared 

with that for purified native E l from bovine heart which was determined to be 5.68 

U/mg (R.G. McCartney, PhD thesis) it is obvious that there is a significant difference 

in the values obtained.

In this context, one unit of enzyme activity has been defined as l|Limol of substrate 

used or product formed per min at 30^C. According to Korotchkina and coworkers 

(1995) who cloned both subunits of human E l using a coexpression plasmid, the 

specific activity of their recombinant, purified E l has been quoted as 130.1 mU/mg 

where Im U is defined as Inmol of substrate used or product formed per min at 37°C. 

Converting this specific activity to U/mg results in an activity of 0.13 U/mg, which is 

a good correlation with the specific activities shown in Table 4.3 (0.53 and 

0.42U/mg). It should be noted that E l activity in this paper was measured by the 

formation of "̂̂ COz in the presence of potassium ferricyanide and not by the DCPIP 

assay. Likewise, Fang and coworkers (1998) have determined the specific activity of 

recombinant human E l to be 31.7mU/mg and this was measured using the DCPIP 

assay. More recently, Korotchkina and coworkers (1999) have measured E l activity 

by both the DCPIP assay and by measuring the formation of CO2  and have published 

values of 149 and 64.3 mU/mg respectively. Recombinant E. coli E l has been quoted 

as having a specific activity of 0.0106 U/mg (Yi et al, 1996). Taking these activities 

into account it would appear that the specific activities determined for the E l clone 

described here are adequate. However, there are obvious discrepancies between these 

values and the value quoted for native bovine E l. It is worth noting at this point that 

the values for the native PDC quoted above are for the bovine complex. Other 

investigators who have examined the activity of both the native bovine and human
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complexes found that the activity of human PDC was consistently measured at rates at 

least 3-5 fold lower than that of bovine PDC (Dr J.M. Palmer, personal 

communication). Since E l is believed to catalyse the rate-limiting step in the catalytic 

mechanism it is entirely possible that this lower rate of enzyme activity is a 

consequence of the E l component.

Other problems associated with this solubilisation method have arisen as a result of 

difficulties in removing detergent from the protein preparation. Substantial residual 

detergent has still been present after extensive dialysis of the sample. This has been a 

problem for other investigators using this approach (Burgess, 1996). Additionally, 

extensive dialysis has also frequently been found to result in precipitation of the 

protein.

Although E l has been found to be active it is clear that an improved method of 

producing soluble E l is required before studies using this component can progress. 

Coexpression of E l with the molecular chaperones GroEL/GroES has not proved to 

be as straightforward as initially anticipated and this approach requires further 

investigation.
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Chapter 5

Studies on the independent recombinant E3BP component 

and the structure and assembly of the recombinant E2/E3BP

core
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5.1 Assembly of the structural core of human PDC

The 2-oxoacid dehydrogenase complexes are amongst the largest and most complex 

multienzyme structures known. Central to these complexes is the structural core 

formed by noncovalent interactions between multiple subunits of E2. In mammals, 

Gram positive bacteria, yeast and fungi 60 copies of the E2 polypeptide are organised 

into a pentagonal dodecahedral core structure with icosahedral symmetry. In PDCs 

from Gram negative bacteria and all known OGDCs and BCOADCs a cubic core with 

octahedral symmetry is formed from 24 copies of E2, This ability of E2 to form either 

a dodecahedron or a cube, depending on the species, makes the 2 -oxoacid 

dehydrogenase complexes unique among macromolecular assemblies.

The atomic structure of the truncated C-terminal cubic core of A. vinelandii has been 

solved by x-ray crystallography (Mattevi et al, 1992; Mattevi et al, 1993). Crystal 

structures for the equivalent truncated dodecahedral cores of the B. 

stearothermophilus and E. faecalis complexes have also been reported (Izard et al, 

1999) while the structure of the 60meric core from 5. cerevisiae has been determined 

to low resolution by negative stain and cryoelectron microscopy (Stoops et al, 1992). 

A 3D reconstruction of bovine kidney PDC has recently been attempted using 

cryoelectron microscopy (Zhou et al, 2001). These studies have indicated that the 

basic building block for the structural core of both the cube and dodecahedron is a 

trimer of E2 subunits. Each E2 monomer is tightly associated with 2 identical subunits 

through extensive intermolecular connections to form a cone-shaped trimer. These 

trimers are then arranged along the 8  or 2 0  vertices of the cubic or dodecahedral 

structures, respectively. Trimers are thought to be interconnected by ‘ball-and-socket’ 

connections between a C-terminal anchor residue of one trimer and a hydrophobic
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pocket formed by 2 adjacent monomers in a second trimeric unit. Two such 

connections on the 2 -fold axis of symmetry appear sufficient to maintain the stable 

interactions between adjacent trimers (Mattevi et al, 1993). These trimers form a 

hollow cage-like structure with a maximum diameter for the dodecahedral structure of 

237Â. The hollow cavity has a diameter of about 188Â while the faces of the core are 

approximately 52Â across. In the bacterial complexes these faces appear to allow the 

passage of substrate and product between the inner cavity and the outside of the 

complex. Evidence for this theory comes from the observation that in A. vinelandii 

PDC, access to the substrate-binding site is only possible from inside the cubic core 

(Mattevi et aï, 1993b). However, in yeast and mammals, these faces have a role in 

binding an additional subunit, E3-binding protein (E3BP).

5.2 E3-binding protein (E3BP)

E3BP has been identified as an additional subunit in the pyruvate dehydrogenase 

complexes of mammals, yeast and in the parasitic nematode Ascaris suum, although 

in the latter example E3BP lacks an N-terminal lipoyl domain (Kfingbeil et at, 1996). 

As yet, an equivalent to the E3BP has not been identified in PDC of any other 

organisms, nor has it been found in any OGDC or B CO ADC complexes. It appears to 

have been derived from E2 by gene duplication and subsequently evolved to take on a 

specialised role in anchoring the E3 component to the core of the complex. Although 

the domain organisation of E3BP and E2 is very similar, both containing at least one 

lipoyl domain, a subunit-binding domain and a longer C-terminal domain, a catalytic 

function for E3BP has not yet been identified.
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Densitometric scanning analysis of purified bovine E2/E3BP core and measurement 

of the acetyl groups incorporated from [2 -̂ "̂ C] pyruvate revealed that there are 1 2  

molecules of E3BP present in each mammalian PDC complex (Sanderson et al,

1996b) binding to the 12 faces of the dodecahedron. This suggests that the 

stoichiometry and organisation of E3BP is determined by the geometric constraints of 

the E2 scaffold and not by the number of potential binding sites. Maeng et al (1996) 

suggested that it was in fact E3BP itself which prevented full stoichiometric binding 

of E3BP to E2. This was proposed on the basis of their findings that E2 could bind 

approx. 20 copies of full length E3BP, 24 copies of E3BP lacking the lipoyl domain 

and approx. 31 copies of E3BP containing only the C-terminal domain. These studies 

were believed to show that segments of E3BP were causing steric hindrance and thus 

preventing full stoichiometric binding to the E2 core.

The interactions between E2 and E3BP are very tight making their separation in the 

native state very difficult to achieve. Indeed, it has been noted that while E l and E3 

can dissociate from the native PDC complex in relatively low levels of GdmCl of 0- 

0.2M (West et al, 1995) or in 1-2M NaCl, separation of E2 and E3BP can only occur 

under highly denaturing conditions such as 6 M GdmCl. As a result of this tight 

association between these 2 components, independent studies on the isolated E3BP 

component have proved impossible. The production of an independent, soluble 

recombinant E3BP, first described by Palmer and coworkers (1999) and described 

here in chapter 3, can now allow this protein to be studied as an individual entity.
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5.3 Aims of this chapter

• Determination of the oligomeric nature of E3BP using gel filtration 

chromatography and crosslinking studies.

• Determination of the folding and stability of the independent E3BP by means of 

circular dichroism and fluorescence spectroscopy.

• Studies on the recombinant E2/E3BP core using gel filtration and densitometric 

scanning analysis.

5.4 Results

5.4.1 Determining the oligomeric nature of E3BP by gel filtration

In order to determine the oligomeric nature of the independent E3BP component, gel 

filtration chromatography using a size-exclusion column was utilised. A Superose 6  

column was equilibrated in 50mM potassium phosphate, 150mM NaCl, ImM  DTT, 

pH 7.2. It was then calibrated with a series of proteins of known Mr value to construct 

a calibration curve of relative molecular mass against Ve/Vo, where Ve represents the 

elution volume of the protein under investigation and Vo is the void volume of the 

column.

Purified, concentrated E3BP was loaded on to the column and the elution profile of 

the protein monitored at 280nm. These experiments, using E3BP, have been repeated 

with different protein preparations in an attempt to generate reproducible results.

Despite optimising the conditions used, the elution profile for E3BP proved difficult 

to reproduce. A small peak often eluted at the void volume of the column while a 

second, generally larger peak, eluted later. The volume of elution of this second peak
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varied, sometimes being representative of a monomeric species for E3BP, while at 

other times it eluted earlier in the column resulting in an estimated molecular mass of 

about 100 000 which is indicative of a dimer of E3BP. Elution at the void volume 

suggests that aggregation of protein was occurring on occasion. The interaction 

between E2 and E3BP is likely to be hydrophobic in nature and it may be that 

hydrophobic patches on E3BP, normally involved in the association with E2 are now 

exposed and cause E3BP to self-aggregate. This tendency of E3BP to aggregate is 

also discussed in section 6.4.

Given the variability in gel filtration profiles it was concluded that the native 

molecular mass of E3BP was unable to be accurately determined by this method.

Thus crosslinking studies of E3BP, at specific protein concentrations, were 

undertaken in order to solve this problem.

5.4.2 Crosslinking studies on E3BP

Crosslinking experiments are a fast and relatively simple method for determining the 

oligomeric state of a protein and can be conducted at low protein concentrations. In 

this particular crosslinking experiment, glutaraldehyde was used as the crosslinker. 

Glutaraldehyde is a non-specific reagent that targets the amino side chains of lysine 

residues.

The crosslinking reaction was performed on purified E3BP that had been dialysed into 

50mM potassium phosphate pH 7.2. A number of samples were subjected to 

crosslinking over a range of protein concentrations, from 0 to 1 mg/ml. As a control.
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purified E3 was also subjected to crosslinking as this enzyme is known to run as a 

dimer on SDS-PAGE after it has been subjected to the crosslinking reaction.

Figure 5.1 indicates that over this range of protein concentrations (0-1 mg/ml) E3BP 

exists as a monomer. There is no indication of dimers forming at the low 

concentrations used in this study. The crosslinked proteins have a higher mobility 

compared to the control lanes since intra-subunuit crosslinking results in a more 

compact protein after SDS treatment. This is illustrated very clearly by E3, where the 

crosslinked dimer (lane 2) runs at a molecular mass very much lower (approx. 80kDa) 

than the expected llOkDa of the native protein.

5.5 Circular dichroism

Circular dichroism (CD) is a very useful technique for studying various aspects of 

protein structure. Used in conjunction with other techniques such as chemical 

crosslinking and gel permeation analysis it can provide useful information about the 

relationship between secondary, tertiary and the quaternary structures of a protein.

At present, CD is commonly employed to probe changes in the conformation of a 

macromolecule and to examine its interaction with small molecules. It is also used to 

determine empirically the secondary structure content of a protein. The stability of a 

protein can also be conveniently assessed by CD on addition of chemical dénaturants 

such as GdmCl or urea, and to assess the effect of other parameters, mainly 

temperature or pH, on the native state of the protein.

The far-UV CD spectra (typically 240nm to 180 or 190nm) can be used to assess the 

overall secondary structure content of a protein. In this range, the principal absorbing

131



Chapter 5
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Fig 5.1 Crosslinking studies on purified recombinant E3BP

E3BP, at concentrations ranging from 0-1 mg/ml, was subjected to crosslinking 

using glutaraldehyde. The crosslinked reactions were electrophoretically 

separated on 6% sodium phosphate SDS-PAGE gels before visualising by 

staining with Coomassie blue. E3 was treated in the same manner as a positive 

control.

M: low molecular mass markers, 1: uncrosslinked E3, 2: crosslinked E3 

(positive control), 3: uncrosslinked E3BP, 4-10: crosslinked E3BP at 

concentrations of 0, 0.1, 0.2, 0.3, 0.5, 0.75 and 1 mg/ml respectively.
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group is the peptide bond. Given that the different types of regular secondary structure 

found in peptides and proteins exhibit distinct spectra in this range, it is possible to 

assess quantitatively the overall secondary structure content of the protein.

In the near-UV CD spectra (250 to 340nm), signals are obtained from the 

environments of the aromatic amino acid side chains, tryptophan, tyrosine, 

phenylalanine and to a lesser extent, cysteine. In a folded protein, the side chains of 

these amino acids are likely to be placed in a chiral environment thus giving rise to 

CD spectra that can provide information on the tertiary structure of the protein (for 

reviews see Kelly & Price, 2000; Rodger & Ismail, 2000; Kelly & Price, 1997).

5.5.1 Circular dichroism studies on the independent recombinant E3BP

Circular dichroism was used to monitor the stability of the recombinant full-length 

and didomain E3BP proteins. Figure 5.2 shows the far-UV CD spectra obtained when 

0.5mg/ml full-length E3BP was incubated in varying concentrations of GdmCl for 15 

min before measuring the CD signal. This data shows that, even in 6 M GdmCl, this 

protein has not fully unfolded (for a fully unfolded protein elipticity at 2 2 2 nm would 

be expected to be close to zero).
A

,V ' ■

Figure 5.3 shows the % total change in folded protein as a function of GdmCl )
V '

concentration. The CD spectra of both the full-length E3BP and the didomain, which 

consists of the lipoyl domain and subunit-binding domain cloned as a His-tagged 

protein, have been plotted on the same graph for ease of comparison. They have been 

plotted as % total change of native protein since, in both cases, neither protein has 

fully unfolded under these experimental conditions.
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Figure 5.2 Far-UV CD spectra of mature E3BP

CD spectra for full-length E3BP were obtained after incubating 0.5mg/ml E3BP in 

increasing concentrations o f GdmCl (0-6. IM) as noted in the legend above. The CD 

signal was measured as ellipticity (Y axis) as a function of wavelength (X axis). 

(Prot X, E3BP; GDN, guanidinium chloride)
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Figure 5.3 Graph showing the % total change in folded protein as a function of 

GdmCl concentration.

Samples were incubated for 15 min in increasing concentrations of GdmCl before 

measuring their CD spectra. The % total change in folded protein was then plotted 

with respect to GdmCl concentration.

FL, full-length E3BP
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Looking at the graph for the full-length protein it can be seen that there appears to be 

a biphasic, and possibly a triphasic, unfolding event occurring. An initial unfolding 

event takes place in concentrations of about 0.8M to 1.8M GdmCl, a second event 

occurs at concentrations of 2-4M GdmCl while a third possibly occurs at the higher 

concentration of 4.5-6M. However, this last unfolding event does not reach an end

point, this protein being approx. 70% unfolded. Given that E3BP consists of 3 

domains that are known to be capable of independent folding, it is highly likely that 

they also unfold independently of each other. This may be the most probable 

explanation for what can be observed in the CD spectra. The least stable domain will 

unfold first in the lower GdmCl concentrations while the other 2 domains only start to 

unfold in concentrations over 2M.

Comparison of the CD spectra of the full-length protein with that of the didomain 

provides information as to which domain is the least stable. The CD spectra indicates 

that the didomain is more stable than the mature protein with approx. 50% of the 

didomain unfolding in 6 M GdmCl. An interesting point to note is that, on addition of 

GdmCl to the didomain there is an initial increase in the stability of the didomain 

which was not observed in the full-length protein. It is unclear why this should occur 

but it is possible that GdmCl has a salt stabilisation effect. The didomain appears to 

start to unfold in concentrations over 1.6M GdmCl to approx. 2.5M after which the 

CD signal begins to level off in a manner similar to that of the full-length E3BP.

5.5.2 Secondary structure determination of recombinant E3BP

The far-UV CD spectrum allows the secondary structure content of a protein to be 

estimated. Several programs have been developed to facilitate this analysis. In this

136



Chapter 5

case, the analysis, by Dr Sharon M. Kelly, was performed using the CONTESf 

procedure (Sreerama & Woody, 1993). The results of this analysis are shown in Table

5.1 below. These results indicate that the majority of the recombinant full-length 

E3BP (74%) consists of (3-sheet while only 8 % of the total protein is composed of (%- 

helix leaving the remainder of the protein (18%) as random coil.

a-helix 8

p-sheet 43
P-tum 31

Random coil 18

Table 5.1 Secondary structure content of the full length recombinant E3BP

The secondary structure content of recombinant E3BP was determined from the far- 

UV CD spectra. Analysis was performed using the CONTIN procedure.

However, the question is, how well does this correlate with what is known about the 

native protein? The 3D structure of the lipoyl domain from bacterial sources has 

shown it to have a predominantly p-sheet content (Dardel et al, 1993) while the 

peripheral subunit-binding domain is known to be formed from 2  short parallel a- 

helices (Kalia et al, 1993). Taking this information into account, the data presented 

above indicates that the small amount of a-helix noted here is likely to be found in the 

subunit-binding domain while the C-terminal domain would possess mainly P-sheet 

structure and random coil. The linker regions separating each domain are also likely 

to consist of random coil.
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5.6 Protein fluorescence

Used in conjunction with circular dichroism, protein fluorescence can be used as a 

means to investigate conformational changes in proteins. The fluorogenic 

chromophores in proteins are the aromatic amino acids, tryptophan (trp), tyrosine (tyr) 

and phenylalanine (phe). Each of these amino acids has a distinct fluorescence spectra 

but in proteins which contain all 3 amino acids, the fluorescence signal is dominated 

by tryptophan.

Fluorescence emission occurs when an excited electron returns from the first excited 

state back to the ground state. Non-fluorogenic chromophores lose this energy as heat 

but for the aromatic amino acids some of this energy is emitted as light. Due to the 

loss of some energy as heat fluorescence emission is shifted to longer wavelengths 

compared with the absorption of the chromophore.

The fluorescent signal depends on the environment of the fluorophore and so it 

provides information on the tertiary structure of the protein. By investigating the 

fluorescence signal as the protein is unfolded in the presence of denaturing agents, 

this allows the conformational stability of the protein to be investigated.

5.6.1 Fluorescence studies on the independent recombinant E3BP

Fluorescence spectroscopy was performed on the full-length E3BP component as well 

as the didomain. Tryptophan fluorescence was selectively investigated by exciting the 

sample at 295nm. The emission spectrum was then recorded from 310-400nm. Figure

5.4 shows the complete fluorescence spectrum obtained for full-length E3BP after 

incubating the purified protein in varying concentrations of GdmCl (0-6M) for 15
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min. The fluorescence spectrum for the didomain followed a similar pattern and, 

therefore, has not been shown. As is often the case in fluorescence experiments, there 

is an increase in the fluorescent signal when the concentration of dénaturant is 

increased. This is often observed when the fluorogenic chromophore becomes more 

exposed to the solvent on dénaturation of the protein. There is also a wavelength shift 

from 340nm in the native state to approx. 355nm in the fully unfolded protein. This is 

also indicative of the tryptophan residues becoming exposed to the solvent. The 

overall trend in the fluorescent signal at 350nm has been plotted in Figure 5.5. As 

with the CD data this has been plotted as % change in native protein since the protein 

has not fully unfolded in 6 M GdmCl. The didomain has been plotted on the same 

graph, again for ease of comparison.

Full length E3BP contains three tryptophan residues, two of which are found in the 

lipoyl domain region. One of these is present on the boundary between the edge of the 

domain and the hinge region while the third tryptophan residue is found in the C- 

terminal domain. Therefore, this study demonstrates the unfolding of these two 

domains. There is a steady increase in dénaturation of protein between 0-2M GdmCl 

after which the fluorescent signal levels off. However, even in 6 M GdmCl this protein 

is only approx. 70% unfolded.

Since the didomain was constructed lacking the C-terminal domain, analysis of the 

fluorescent signal for the didomain gives an indication of the unfolding of the lipoyl 

domain alone. There is an initial unfolding event taking place between 1-2M GdmCl 

and this may reflect exposure of the tryptophan residue located at the boundary of the
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Fig 5.4 Fluorescence spectroscopy of the full-length E3BP

Fluorescence data for E3BP was collated by incubating the protein in varying 

concentrations of GdmCl (as noted above) for 15 min. The samples were then 

analysed for fluorescence. Excitation occurred at 295nm and fluorescence was 

recorded over the range 310-400nm. Relative fluorescence is shown on the Y axis 

while wavelength is plotted on the X axis.
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Fig 5.5 Unfolding of E3BP (full-length and didomain) as monitored by the 

change in fluorescence at 350nm

Relative fluorescence at 350nm, expressed as the % change in native protein, was 

plotted against GdmCl concentration to assess the overall trend in fluorescent signal.
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lipoyl domain and linker region to solvent. The signal then levels off in a manner 

similar to that of the full-length protein.

On the basis of these results it seems highly probable that the lipoyl domain is the 

most stable of the three domain found in E3BP. This domain is probably responsible 

for the fact that neither the full-length E3BP nor its didomain have fully unfolded in 

6 M GdmCl. Given the increased stability of the didomain compared with the full- 

length protein, it would also appear that the C-terminal domain is the least stable of 

the three domains and therefore unfolds in the lower concentration of dénaturant. This 

could provide a means of studying the association between E2 and E3BP in vitro 

(refer to Discussion section 5.9).

5.7 Studies on the E2 and E3BP components of human PDC

Production of independent E2 and E3BP components as well as the coexpression of 

an E2/E3BP core provides a unique opportunity to examine the assembly of the 

structural core of human PDC. A major aspect to be studied is the nature of the 

association between these two proteins. Can E2 and E3BP form a stable association in 

a post-translational manner or is co-translation of the two proteins a prerequisite for 

the formation of the E2/E3BP core complex?

Gel filtration chromatography provides a convenient means of determining the Mr 

value of a native protein as described for E3BP. However, it is also a technique well- 

suited for analysing protein-protein interactions. Proteins that form a tightly bound 

complex can be investigated using simple gel filtration as in the case here.
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5.7.1 Gel filtration analysis of the E2 and E3BP components of human PDC

Several samples were analysed using this technique. Independently expressed E2, 

coexpressed E2/E3BP and a sample of independently expressed E2 and E3BP which 

had been mixed in equal amounts were loaded on to the Superose 6  gel filtration 

column and their elution profile monitored at 280nm.

5.7.2 Gel filtration analysis of independently expressed E2

Purified E2, dialysed into elution buffer, was analysed on a Superose 6  gel filtration 

column. Elution of protein was monitored at 280nm and peak fractions collected for 

analysis by 10% SDS-PAGE. For each sample of E2 that was loaded on the column, a 

similar elution profile was observed. A peak was obtained at the void volume of the 

column with another, much smaller, peak eluting later in the column volume. The 

volume of elution of this second peak was determined to be representative of a 

molecular weight of between 50 and lOOkDa. This is a very good approximation of 

the molecular weight of a monomer of E2 (molecular weight of recombinant E2 is 

70kDa). The first peak, obtained at the void volume is likely to represent an 

oligomeric E2. The most likely explanation of this result is that E2 is forming the 

oligomeric core complex and this is what is detected at the void volume while 

unassociated monomers of E2 are eluted later. There was no evidence of trimer 

formation although the apparent monomeric nature of this species was not 

demonstrated conclusively.

5.7.3 Gel filtration analysis of the E2/E3BP recombinant core

In order to determine if coexpressed E2/E3BP had formed a stable subcomplex, gel 

filtration analysis of these samples was performed.
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Purified coexpressed E2/E3BP was loaded on to a gel filtration column and its elution 

profile at 280nm monitored as before. Two elution peaks were observed (Fig 5.6) and 

these peak fractions were collected for analysis by 10% SDS-PAGE. The first peak 

eluted at the void volume of the column while the second peak eluted at a volume 

consistent with the Mr value for monomeric E3BP. In this case, if E2 and E3BP had 

formed a stable complex it would be expected that both proteins would be present in 

the fractions corresponding to the first peak. The second peak might contain excess 

E3BP with respect to E2. SDS-PAGE analysis of the appropriate fractions confirmed 

these predictions (Figure 5.7),

From Fig 5.7 it can be seen that fractions 8  and 9, representing the peak obtained at 

the void volume of the column, contains both E2 and E3BP proteins. Analysis of the 

fractions from the second peak (fractions 16-20) shows that this peak contains E3BP 

alone. This result suggests that coexpressed E2/E3BP does indeed form a stable core 

assembly. Under these conditions, E3BP is overexpressed with respect to E2 and so 

excess E3BP remains unbound and is eluted later in the column volume.

5.7.4 Gel filtration analysis of individually expressed E2 and E3BP, mixed in 

equal amounts

While the result described above appears to confirm that E2 and E3BP, when 

coexpressed in the same bacterial cells, form a stable core complex it was still unclear 

whether, when expressed individually and then mixed in equal amounts, these 2  

proteins could interact with each other in a stable manner. In order to answer this 

question individually expressed E2 and E3BP were purified and dialysed separately 

into the column elution buffer. After determining the concentrations of each purified
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Figure 5.6 Gel filtration analysis of recombinant coexpressed E2/E3BP core

E2-PDC and E3BP were co-expressed in E. coli and analysed on a Pharmacia (10/30) 

Superose 6  gel filtration column equilibrated in 150mM NaCl, ImM  DTT, 50mM 

potassium phosphate, pH 7.2. Elution of protein was monitored at 280nm and the 

appropriate fractions kept for analysis by SDS-PAGE.
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Figure 5.7 SDS-PAGE analysis of co-expressed E2-PDC and E3BP after Superose 6 

gel filtration

Eluted fractions from the gel filtration analysis of coexpressed E2/E3BP were TCA 

precipitated and analysed on SDS-PAGE before staining with Coomassie blue.

M: low Mr markers, Load: sample of loaded fraction, 6-20: represent peak fraction 

numbers
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component, the 2  proteins were mixed in equal amounts so that there was a vast 

excess of E3BP present and incubated at 4“C before loading a sample on the gel 

filtration column. Again, the elution profile at 280nm was monitored and peak 

fractions collected.

As seen before, 2 peaks were observed on the chromatogram (Fig 5.8). The first peak 

eluted at the void volume while the second appeared further down the column. These 

fractions were subjected to TCA precipitation and then analysed by 10% SDS-PAGE 

(Figure 5.9).

From Fig 5.9 it can be seen that fractions 8  and 9, representing the void volume of the 

column contain only E2 while the fractions collected for the second peak (15-20) 

contain E3BP. It can also be clearly seen that there are other bands present which 

appear to run at the size expected of E2. Given that E2 alone produces 2 peaks 

representing oligomeric E2 and excess monomers it is possible that the same situation 

is occurring here and that excess E2 elutes at about the same column volume as E3BP.

When comparing the results of these 2 experiments it is clear that the coexpressed 

E2/E3BP proteins have formed a stable complex and coelute at the void volume. This 

experiment also shows that E3BP is overexpressed with respect to E2 and excess 

monomers elute later in the column volume. However when E2 and E3BP are 

expressed individually and then mixed together, they do not stably associate with one 

another as is the case with the coexpressed proteins. There is no clear evidence to 

suggest that the individual proteins have formed a stable complex. This result
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Figure 5.8 Gel filtration analysis of indivdually expressed E2 and E3BP mixed in 

equal amounts

E2-PDC and E3BP were expressed individually in E. coli and mixed in equal amounts 

before being analysed on a Pharmacia Superose 6  gel filtration column equilibrated in 

150mM NaCl, ImM  DTT, 50mM potassium phosphate, pH 7.2. Elution of protein 

was monitored at 280nm.
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Fig 5.9 SDS-PAGE analysis of equal amounts of E2 and E3BP after Superose 6 gel 

filtration.

Eluted fractions from the gel filtration analysis of individually expressed E2 and E3BP were 

TCA precipitated and analysed by SDS-PAGE before staining with Coomassie blue.

M: molecular weight markers, Load: sample of loaded fraction, 6-20: represent peak 

fractions 6 -2 0 .
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indicates that the formation of the E2/E3BP core complex occurs in a co-translational 

manner and may involve association via folding intermediates.

5.8 Densitometric scanning analysis of the recombinant E2/E3BP core

Having shown that coexpression of recombinant E2 and E3BP in E. coli is required in 

order for the E2/E3BP core to assemble, it is of great interest to determine whether 

these two proteins assemble with the correct stoichiometry. To this end densitometric 

scanning analysis was employed in order to address this question.

Purified recombinant E2/E3BP core was subjected to gel filtration in order to separate 

any excess E3BP from the core complex. The relevant fractions were pooled and 

resolved by electrophoresis on 10% SDS-PAGE. Purified native (bovine) PDC was 

also resolved by electrophoresis. Different concentrations of both the recombinant and 

native proteins (from 2.5-20pg) were loaded (Fig 5.10). After staining with 

Coomassie blue the gels were subjected to densitometric scanning (in duplicate) and 

the relative intensities of the protein bands corresponding to E2 and E3BP were 

measured. The ratio of E3BP:E2 was then calculated for each lane and the ratios 

obtained for the recombinant and native proteins compared. The results are shown in 

Table 5.2.
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5 2.13 2.31 ±0.21 5 1.35 1.4 ±0.143

1 0 2.13 1 0 1.29

2 0 2.48 15 1.61

2 0 1.35

Table 5.2 Densitometric scanning analysis of recombinant and native E2/E3BP 

core

From the preliminary data presented in this table and Fig 5.10 it can be seen that there 

appears to be more E3BP present in the recombinant core than in the native complex. 

This could be due to a number of factors. The resolving power of the gel filtration 

column used may not have been sufficient to completely separate the two peaks 

obtained on the chromatogram. As observed in Fig 5.6 the two peaks are separated by 

only a couple of fractions and there was a constant absorbance at 280nm between 

peaks. Fractions taken at the end of the first peak may contain excess E3BP if the two 

peaks were not sufficiently resolved. There may also be aggregation of E3BP, which 

would not be detected in the presence of E2. This study should also be performed 

using a higher salt concentration, possibly IM  NaCl, in order to ensure that any 

loosely bound E3BP has been removed. At this salt concentration it is known that 

native E2 and E3BP do not dissociate from one another.
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Figure 5.10 Resolved native bovine PDC and recombinant E2/E3BP core

Native PDC purified from bovine heart and recombinant E2/E3BP core analysed by 

gel filtration were electrophoresed on 10% SDS-PAGE. After staining with 

Coomassie blue this was subjected to densitometric scanning analysis.

M: molecular weight markers, lanes 1-4: native PDC at 2.5, 5, 10 and 20pg 

respectively, 5-9: recombinant E2/E3BP core after gel filtration at 2.5, 5, 10, 15 and 

2 0 |xg respectively.
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5.9 Discussion

In this chapter studies on the recombinant E3BP have focussed on assessing its 

oligomeric state, the stability of the protein and in examining its interaction with E2. 

Extensive studies have not previously been performed on E3BP. Attempts have been 

made to elucidate the role it plays in the pathogenesis of the autoimmune disease 

primary biliary cirrhosis (Palmer et al, 1999), while studies conducted to determine 

whether E3BP has any catalytic activity showed that E3BP has a purely structural role 

in the functioning of the pyruvate dehydrogenase complex (Seyda & Robinson, 2000).

Studies on the recombinant E3BP described here have shown that this protein exists 

as a monomer, at least at low concentrations. It also appears to be prone to 

aggregation as evidenced by the initial gel filtration trials. This tendency of E3BP to 

aggregate is also described in chapter 6 . Dénaturation of E3BP and analysis by 

circular dichroism and fluorescence has indicated that the unfolding of this protein is 

of a biphasic, and possibly even triphasic, nature. This suggests that each 

independently folding domain of E3BP displays a particular sensitivity to GdmCl.

In order to confirm which domain is the least stable and therefore unfolds in the lower 

concentration of dénaturant, the E3BP didomain was subjected to CD and fluoresence 

under the same experimental conditions as the full-length protein. This didomain does 

not contain the C-terminal domain of the protein. The lipoyl domain is known to be a 

stable entity while the subunit-binding domain is the smallest known protein or 

domain which can fold independently in the absence of any stabilising disulphide 

bridges or metal ions (Spector et al, 1998). Comparison of the data obtained for the 

full-length and didomain proteins does indeed indicate that the lipoyl domain is the
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most stable of the three domains. This stability is reflected in the fact that neither of 

these proteins were fully unfolded in 6 M GdmCl. The increased stability of the 

didomain compared with the full-length protein also indicates that the C-terminal 

domain is the least stable of the three domains and therefore unfolds first. The 

unfolding of the C-terminal domain of E3BP in low concentrations of dénaturant 

could provide an elegant means of examining the assembly of the E2/E3BP core. By 

selectively denaturing the inner domain of E3BP, its integration into the E2 core 

complex could be studied more extensively in vitro.

It has previously been shown for the native complex that E2/E3BP has a high intrinsic 

capacity to self-assemble (McCartney et al, 1997). The studies described in this 

chapter have shown that coexpression of the recombinant E2 and E3BP is required in 

order for a stable E2/E3BP subcomplex to assemble. This is in good agreement with 

the findings of Harris et al, (1997) who showed that combining extracts containing 

coexpressed recombinant human E2/E3BP with E l resulted in assembly of a 

macromolecular complex as seen by elution of the complex at the void volume of a 

gel filtration column. However, this study did not examine the possibility of a post- 

translational association between E2 and E3BP, Li et al (1992) showed that free 

E3BP, functional in binding E3, did not bind to resolved native E2 oligomer depleted 

in E3BP. In contrast, it has been suggested that yeast E2 and E3BP, when expressed 

independently and then mixed can form a stable subcomplex. This would indicate that 

yeast E3BP can associate with E2 in a post-translational manner (Maeng et al, 1996).

There are a number of differences between yeast and mammalian PDC that may 

account for this apparent disparity in the assembly of human and yeast E2/E3BP core.
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Human E3BP has a longer linker region between the C-terminal domain and the 

subunit-binding domain than does the yeast E3BP (Harris et al, 1997). This is in 

keeping with the observation that, from cryoelectron micrographs the yeast E3BP 

appears to reside inside the E2 core with E3 extending into the central cavity. From 

these low resolution studies it has been suggested that the binding site for E3BP may 

be formed by the inner tip of the E2 trimer (Stoops et al, 1997). This may mean that 

the yeast E2 core must first be assembled in order for the binding sites for E3BP to 

become available. In comparison, in mammalian PDC, E3 (and E l)  appears to be 

tethered to the complex, with a clear gap between E3 and the core domain 

(Wagenknecht et al, 1991; Roche et al, 1993). Thus, in the mammalian complex it 

would seem that E3 (and E3BP) and E l extend outwards from the core complex.

Analysing the stoichiometry of the association of the coexpressed E2/E3BP would 

provide further support for the proposal that the assembly of the E2/E3BP core occurs 

through a defined series of folding intermediates. This question was addressed using 

densitometric scanning analysis. This technique, although perhaps not ideal, suggests 

that there is excess E3BP present in the recombinant core than in the native complex. 

This can also be observed on the SDS-PAGE gel. It may simply be the case that 

separation of E2/E3BP core from loosely associated E3BP or any aggregates of E3BP 

was not sufficient. The use of a larger gel filtration column to provide higher 

resolving power and performing this study in a higher salt (IM  NaCl) concentration to 

remove any non-specifically bound protein should be able to provide more definitive 

answers to the question of the stoichiometry of the recombinant E2/E3BP core 

complex.
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Another technique which can be used to address this question is radiolabelling of 

these proteins with the sulphydryl reagent [2,3-^"^C] N-ethylmaleimide (NEM) as has 

been described previously (Hodgson et al, 1986; Sanderson et al, 1996b). In the 

presence of NADH, NEM would label the reduced sulphydryls on the lipoyl domains. 

After resolving the labelled proteins electrophoretically, the radioactivity incorporated 

into each protein could be counted and this would allow the stoichiometry of these 

two proteins to be analysed. This technique is likely to prove a more accurate method 

for determining the stoichiometry of binding of the recombinant E2/E3BP core than 

densitometry.
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Chapter 6

Stoichiometry and affinity of E3-E3BP and E3-E2 

interactions as measured by isothermal titration calorimetry
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6.1 Constituents of human PDC

The pyruvate dehydrogenase complex has been extensively studied from a wide 

variety of prokaryotic and eukaryotic organisms and is known to consist of multiple 

copies of three individual enzymes bound in a non-covalent manner, as described 

previously.

The structure of E3 has been solved from a number of sources mainly of bacterial 

origin. To date only one eukaryotic E3 structure has been solved, from yeast at 2.1 k  

resolution (Toyoda et al, 1998). However, the crystallisation and preliminary X-ray 

analysis of pig heart E3 has recently been reported (Toyoda et al, 1998b). Comparison 

of these known structures shows that the same basic tertiary structure is present in 

both eukaryotic and prokaryotic complexes.

In the human and yeast PDC complexes, E3BP was identified as an additional subunit 

that has been shown to play a pivotal role in binding E3 to the E2 core. However, 

there is some debate as to the stoichiometry of binding of E3 to E3BP and thus to the 

number of E3 dimers present per complex. In the B. stearothermophilus complex it 

was demonstrated that 1 E3 dimer binds to 1 peripheral subunit-binding domain of E2 

(Hipps et al, 1994). This apparent inability of E3 to interact with two subunit-binding 

domains, despite its dimeric structure, was attributed to steric hindrance or a 

conformational change in E3 on binding of the subunit-binding domain. More 

recently, the crystal structure of the B. stearothermophilus E3 component complexed 

with the peripheral subunit-binding domain has been solved to 2 .6 Â resolution 

(Figure 6.1). This structure confirmed the 1:1 binding ratio and showed that the
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Figure 6.1 Crystal structure of E3 complexed with E2-SBD from B. 

stearothermophilus

The four domains of each subunit of E3 are shown in different colours; yellow, FAD- 

binding domain; green, NAD-binding domain; red, central domain; magenta, interface 

domain. The E2-SBD (blue) is shown bound to one E3 dimer (panel A). The FAD 

cofactor bound to each E3 subunit is represented as a ball-and-stick.

Panel B shows a hypothetical model of two E2-binding domains bound to the E3 

dimer.
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binding site for the E2~binding domain is situated close to the twofold axis of 

symmetry on E3 (Mande et al, 1996). These authors also discovered that comparison 

of the complexed E3 with the uncomplexed enzyme showed that there was no 

significant conformational change in E3 on binding to the subunit-binding domain. 

This favours the argument that steric hindrance prevents simultaneous binding of two 

SBDs to the E3 dimer. In the hypothetical model shown in panel B of Fig 6.1, where a 

second SBD was modelled, there is a steric clash between the loops of the symmetry- 

related binding domains and this accounts for the binding of a single E2-SBD per E3 

dimer. This means that in the B. stearothermophilus PDC, 6  E3 dimers are present in 

each complex.

In the mammalian complex, the stoichiometry of binding of E3 has been examined 

using equilibrium binding experiments (Wu & Reed, 1984). These studies indicated 

that E2 from bovine kidney and heart contained 6  identical, noninteracting sites which 

each bind 1 E3 dimer and suggested that the optimum binding ratio for the 

mammalian complex was 60 E2 subunits, 12 E l components and 6  E3 dimers. 

However, the validity of these results was cast into doubt on the discovery of the 

E3BP component in the mammalian complex. It is now generally accepted that at 

maximal occupancy, 30 E l heterotetramers bind to 60 E2 subunits and that 12 E3BP 

molecules are bound to the E2 core (Sanderson et al, 1996a). However the 

stoichiometry of binding of E3BP to E3 remains in doubt. Does 1 E3 dimer bind to 1 

E3BP monomer implying that there are 12 E3 subunits present per complex or can 1 

E3 bind to 2 E3BP molecules resulting in 6  E3 dimers being present in a functional 

complex?
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6.2 Isothermal titration calorimetry

A number of techniques have been developed in recent years that allow the 

stoichiometry and affinity of binding of two proteins to be determined with great 

accuracy. One such technique is isothermal titration calorimetry (ITC). This technique 

utilises the fact that formation of a protein-protein complex is either an exothermic or 

endothermie event, and that the heat exchange is proportional to the fraction of 

protein bound. By measuring this heat of binding, the stoichiometry of the protein- 

protein interaction can be determined, as can the binding constant and the enthalpy of 

binding for the particular interaction under investigation.

Figure 6.2 shows a schematic representation of an ITC instrument. It consists of two 

lollipop-shaped cells, one of which is the reference cell containing water or buffer and 

the other containing the protein solution. On injection of ligand into the protein 

solution heat is either absorbed or evolved depending on the nature of the interaction 

between the two proteins. Thermopile and thermocouple detectors present on the cells 

detect any change in temperature between the two cells and activate the feedback 

heater in order to maintain equal temperature between the reference and sample cells. 

The power supplied to the sample cell is the observable signal in an ITC experiment 

and is a direct measure of the heat change on binding of a ligand to a macromolecule.

6.3 Aims of this chapter

• To determine the stoichiometry and affinity of binding of E3BP to E3 using both 

full-length and truncated constructs of E3BP.

161



Chapter 6

reference
heater

cell ieedback 
heater

calibration 
healer

Reference Cell Sample Cell

Adiabatic Jacket

Figure 6.2 Schematic diagram of an ITC instrument

(Taken from Pierce et al, 1999)

This diagram shows the inside of an ITC instrument containing two lollipop-shaped 

cells within an adiabatic jacket. The reference heater sustains a small continuous 

power to the reference cell. Depending on the nature of the interaction between ligand 

and maeromolecule, the feedback heater will either increase or decrease power to the 

sample cell in order to maintain equal temperature with the reference cell.
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6.4 Results

6.4.1 Binding studies using full length mature E3BP

Before performing an isothermal titration calorimetry experiment, the heats of 

dilution of the ligand must be determined. A complete automated titration of 26 cycles 

is therefore performed in which ligand is injected into buffer. In all figures in this 

chapter, the data presented have been corrected for the heats of dilution.

Initially, ITC was performed using the full-length mature E3BP subunit. Figure 6.3 

shows the results of E3BP (154pM) titrated into E3 (7.4|U,M). The upper panel 

demonstrates that each lOp.1 injection of E3BP into E3 results in an exothermic heat 

pulse. At the start of the titration each injection results in a large response as all or 

most of the protein injected binds E3. The response gradually decreases in size as 

more protein is bound to E3 before saturation is reached after about 15 injections. The 

response then levels off as no more protein can bind. However, when the integrated 

heat data (lower panel) are analysed, an unusual and unexpected effect is observed. 

There appears to be two distinct binding events occurring suggesting that a standard 

single-site binding model is not appropriate in this case. The best fit for this set of 

data was seen with a two-site binding model. One possible explanation for this effect 

is that, at the high concentrations of protein required for these experiments E3BP has 

aggregated and is forming oligomers. On dilution, these aggregates may dissociate 

and so binding sites, which were previously masked by aggregation, are now available 

to bind E3. In chapter 5 crosslinking studies showed that at lower protein 

concentrations (up to 1 mg/ml) E3BP exists as a monomer. However, the gel filtration 

experiments described in chapter 5 indicated that E3BP may be forming aggregates
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Figure 6.3 Titration of E3BP into E3.

E3BP (154jütM) was titrated into E3 (7.4jLiM). Analysis o f the data indicated that there 

is more than one binding event taking place. Using a two-site binding model the 

combined stoichiometry (N1 + N2) is 1.9:1. The association constants (Ki and K 2) are 

very tight, being in the nanomolar range.
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and that this was concentration-dependent. It is possible that the higher concentrations 

required for this study (lOmg/ml or greater) may promote aggregation of E3BP. An 

unusual event was also observed when the heats of dilution of E3BP were determined 

(data not shown). The first 10 injections of protein into buffer resulted in an 

exothermic heat pulse after which the response became endotheiTnic. This 

phenomenon is not normally seen on determining the heats of dilution and is further 

evidence to suggest that aggregation of E3BP is occuning.

Also of interest in this study is the association constant (K) which is in the nanomolar 

range. This indicates that the affinity of binding of these two proteins is very tight. 

Analysis of N, defined as the average number of binding sites per mole of protein in 

solution, reveals an unexpected stoichiometry of binding. These data suggest that 2 

moles of E3BP bind to 1 mole of E3, that is, 2 E3BP monomers bind to 1 dimer of 

E3. This would indicate that homodimeric human E3 contains 2 binding sites for 

E3BP. This is inconsistent with what has been found for E3 from other organisms, 

most notably from B. stearothermophilus. According to Mande and coworkers (1996), 

who crystallised E3 complexed with the peripheral subunit-binding domain (P-SBD) 

of E2, one E2 molecule can bind to E3. Steric hindrance precludes the possibility of a 

second P-SBD being bound in this case.

Due to the biphasic binding event observed in the first titration, the study was 

repeated by reversing the titration in that E3 (56.5pM) was injected into E3BP 

(5.8pM). Fig 6.4 shows the result of this study. In this case, the endpoint of the 

reaction was reached very quickly, after 4 injections. This is probably as a result of
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Figure 6.4 Titration of E3 into E3BP

E3 (56.5|liM) was titrated into E3BP (5.4|T,M). The heats of dilution (dilution control) 

are large possibly obscuring the binding heats. In this study N has been determined at 

0.3 while the association constant, K, is in the micromolar range.
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the low concentrations of protein used in this experiment. As such, a proper saturation 

curve has not been obtained therefore it is highly likely that the data obtained in this 

study is inaccurate. The upper panel also presents the dilution control for this study, 

which shows that the heats of dilution of E3 are quite large. Binding of E3 to E3BP is 

an exothermic event but once saturation is reached the endothermie effects of the 

heats of dilution of E3 is observed. The stoichiometry of binding, N, has been 

measured at 0.3 while the association constant, K, is in the micromolar range. This 

smaller association constant is unexpected for the interaction between E3 and E3BP 

and it is likely that the large heats of dilution observed in this study have partially 

obscured the heats of binding. This would also account for the lower than expected 

stoichiometry observed in this particular titration. However, there is no indication of a 

biphasic response in this titration, providing further support for the aggregation of 

E3BP in the initial study. It should be emphasised that this study is likely to be 

inaccurate thus it is important that this titration is repeated. Due to time constraints, 

this was not possible at this time.

6.4.2 Binding studies using truncated constructs of E3BP

In order to clarify the data obtained with the full-length E3BP ITC was performed 

using truncated constructs of E3BP, specifically the peripheral subunit-binding 

domain (SBD) itself, which was cloned as a GST fusion protein. It had also been 

hoped to conduct these experiments with the didomain of E3BP, containing the lipoyl 

domain and the subunit-binding domain. However, at the time that these experiments 

were performed this clone was unavailable. The E3BP didomain has since been 

cloned as a His-tagged protein and at time of writing ITC studies using this protein 

are underway.
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Before performing the study using the SBD the heats of dilution were determined as 

before. Figure 6.5 shows the titration of E3 (0.2mM) into the subunit-binding domain 

of E3BP (10.4pM). This titration resulted in a very tight binding curve. The upper 

panel of Figure 6.5 shows that the first 7 or 8  injections of E3 into the protein solution 

results in an endothermie heat pulse. However this signal was smaller than that 

obtained for the dilution of E3 into buffer which was also endothermie (data not 

shown). This suggests that the binding of E3 to the SBD is exothermic since the 

endothermie effect of the dilution of E3 has to be overcome before the heat of binding 

can be observed. As the titration progresses, the heat pulses become exothermic as 

more protein is bound until saturation point is reached after 15 injections. At this 

point the endothermie effects of the heats of dilution of E3 are once again observed.

The integrated heat data (lower panel) show that the binding of E3 to E3BP-SBD is 

extremely tight and under these particular conditions, the association constant, K, 

cannot be accurately determined. In this instance K was fixed in order to give a better 

0 ^f^f|)/fit of the data. At first glance, the stoichiometry of binding of these 2  proteins 

seems unusual based on the results obtained previously. The stoichiometry of binding, 

N, has been measured at 2, that is, 2 moles of E3 bind to 1 mole of E3BP-SBD. This 

is apparently in direct contrast to the stoichiometry measured using the full-length 

E3BP protein. However it must be remembered that the subunit-binding domain has 

been cloned as a GST fusion protein, which exists as a dimer. It might, therefore, be 

expected that there are 2 subunit-binding domains present in the GST fusion protein.
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Figure 6.5 Titration of E3 into the subunit-binding domain of E3BP

This data shows that the association constant, K, is very high and is, in fact, too tight 

to measure accurately. The stoichiometry of binding, N, has been measured to be 2.
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The molar concentration of the GST protein has been expressed in its monomeric 

form while the concentration of E3 has been expressed as a dimer. Adjusting the 

concentration of the GST-SBD fusion to take into account its dimeric form results in 

an actual stoichiometry of 1:1 for this interaction. There are a number of possible 

explanations for this result. If there are two binding sites on E3 as the data using full- 

length E3BP suggests it may be that one E3 dimer may bind to both subunit-binding 

domains of the GST fusion protein. Alternatively, it is possible that the GST fusion 

protein is folded in such a way that only one subunit-binding domain is accessible to 

E3 while access to the binding site on the second domain is prevented. Thus one P- 

SBD would bind only one E3 dimer. A simple model demonstrating these two 

possibilities is shown below. Panel A shows one E3 binding to both subunit binding 

domains of the GST fusion, while in panel B, E3 binds only one subunit binding 

domain, steric hindrance preventing the second domain from being occupied. 

Occupancy of both binding sites on E3 is dependent on the spatial organisation of the 

subunit binding domains on the GST.

a ) b)

E3

SBD-GST

E3

SBD-GST
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6.5 Analysis of binding of E3 to E2

Evidence from a variety of sources has indicated that while E3 principally binds to 

E3BP in PDC, it is also capable of binding rather more weakly to the subunit-binding 

domain of E2. This has been found to be the case in vivo where patients who lack any 

immunologically detectable E3BP can still maintain PDC activity at 10-20% of the 

levels of normal individuals (Marsac et al, 1993; Geoffroy et al, 1996). It is believed 

that this basal level of activity is due to the presence of low affinity binding sites 

specific for E3 on the E2 polypeptide. Reconstituted bovine PDC, lacking the E3BP 

component, can sustain overall complex activity in the presence of a large molar 

excess of E3 (McCartney et al, 1997). This is in contrast to the situation in yeast PDC 

where the E2 component, devoid of E3BP, was found to be unable to support any 

PDC activity in the presence of high levels of E3 (Yang et al, 1997).

Preliminary biochemical studies to examine this phenomenon were performed by a 

previous researcher in the laboratory. By utilising a truncated construct of E2 

consisting of the inner lipoyl domain and the subunit-binding domain, termed the 

didomain, surface plasmon resonance (SPR) experiments were carried out to measure 

the binding affinity of E3 to the E2 didomain. It was found that these 2 proteins had 

an association constant in the pM range. This was in direct comparison with the 

measurement of E3BP complexed with E3, which resulted in an association constant 

in the nanomolar range (S.D. Richards, PhD thesis) thus providing definitive evidence 

that E3 can bind specifically to E2 but that the binding is very much weaker than to 

E3BP. This last result with E3BP is also in good agreement with the results obtained 

using ITC (Figure 6.3).
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In order to confirm this weak interaction between E3 and the E2 di domain, the 

binding of these constructs was examined by ITC. The association of E3 to the 

subunit-binding domain alone was also studied. Figure 6 . 6  demonstrates the titration 

of E3 (200pM) into the didomain of E2 (0.995pM). This study supports the data 

collected using surface plasmon resonance in that the interaction between these 2  

proteins is very weak, K being in the low pM range (2 x 10^). This binding is more 

than a thousand-fold weaker than that measured for E3 and E3BP which was 6.3 x 

10 .̂ This provides good evidence that E3 and E2 can associate with each other in the 

absence of E3BP but that the interaction is very much weaker.

As a confirmation of these results the same experiment was conducted using the 

subunit-binding domain of E2 alone. Like the subunit-binding domain of E3BP, this 

was cloned as a GST fusion. The results of this experiment can be seen in Figure 6.7.

Again, very weak binding is observed with K being measured at 2 x 10^. This is in 

good agreement with that measured for the di domain. However, at this level of 

binding the stoichiometry cannot be determined with any accuracy and so, in this 

particular case, N was fixed at 0.5 in order to give a better fit of the data. Nevertheless 

this study supports the previous experiment using the didomain and the results 

obtained with surface plasmon resonance, confirming that E3 can indeed bind to E2 

with low affinity.

6 . 6  Discussion

Isothermal titration calorimetry (ITC) is one of a number of techniques that can 

directly measure the affinity of binding between two proteins. One other technique 

that has already been mentioned in this chapter is surface plasmon resonance (SPR).
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Figure 6.6 Titration of E3 into the E2 didomain

The binding o f E3 to E2 is very weak as indicated by an association constant, K, o f 2 

X 10 .̂ At this level o f binding the stoichiometry cannot be determined with any 

accuracy but is indicated at approximately 0 .6 .
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Figure 6.7 Titration of E3 into the subunit-binding domain of E2

The association constant, K, has been measured at 2 x 10  ̂while the stoichiometry, N, 

was fixed at 0.5 to allow for a better fit of the data.
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These methods both have advantages and disadvantages. A major disadvantage of 

SPR is that it assumes a 1:1 binding model, which can limit the interpretation of the 

data. ITC makes no such assumption and has the additional benefit of being able to 

measure the stoichiometry of binding between the proteins of interest with great 

accuracy. The high concentrations of protein required for these studies can prove 

problematic however. In this instance the consistently high levels of overexpression 

obtained for each recombinant protein, as demonstrated in an earlier chapter, has 

meant that studies using ITC were feasible. The main limitation of these studies is that 

the perceived results may not necessarily reflect the situation in the native complex. 

The fully assembled native complex will be subject to structural limitations such as 

the spatial geometry and steric constraints, which cannot be accounted for in these 

studies.

The first part of this chapter was concerned with investigating the stoichiometry and 

association constant for the interaction between E3 and E3BP. These studies have 

produced an interesting result, which could have important implications for the 

structural organisation of this complex. The titration of E3BP into E3 suggested that 

one E3 dimer contains 2 binding sites for E3BP and that both sites are accessible to 

the binding domain while the titration of E3 into the E3BP-SBD showed an actual 

stoichiometry of 1:1. This could be as a result of both binding domains of the GST 

fusion protein binding to one E3 dimer but this is by no means clearcut. An alternative 

explanation is that one subunit-binding domain binds to E3 while the second is 

prevented from binding due to steric hindrance. However, this would theoretically 

leave the second binding site on E3 available and it might be expected that a second 

GST-tagged subunit-binding domain would bind to E3 resulting in a 2:1
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Stoichiometry, Given the 1:1 stoichiometry observed this may favour the first scenario 

as the appropriate explanation. In both these studies association constants were 

obtained in the nanomolar range or higher (6.3 x 10  ̂and 1 x 10  ̂for the titration of 

full-length E3BP into E3, and 1 x 10^  ̂for the subunit-binding domain although this 

was fixed as the binding was very tight). This is in agreement with the association 

constants obtained using surface plasmon resonance (SPR). The full-length E3BP was 

found to bind to E3 with an association constant of 1.1 x 10 ,̂ while the didomain 

(cloned without a His-tag) had an affinity constant of 1.9 x 10  ̂ (S.D. Richards, PhD 

thesis).

The data obtained in these studies opens up an exciting theory relating to the level of 

structural organisation in the human pyruvate dehydrogenase complex, which has not 

previously been recognised.

Given that this data suggests that one E3 dimer binds two E3BP monomers this would 

mean that six E3 dimers are present in each complex. Spatially, this suggests the 

possibility that each E3 dimer extends across two of the 12 faces of the E2 pentagonal 

dodecahedron. This spatial arrangement has been proposed previously (Wu & Reed, 

1984) when the stoichiometry of these complexes was first discussed. However, if it 

is indeed the case that there are 6  E3 dimers present per complex, it is known that 

there are 12 E3BP molecules and 60 E2 subunits also present. Given that there are 

believed to be 30 E l ŒiPi heterotetramers it is an attractive proposition to speculate 

that while 2 E3BP monomers bind to one E3 subunit, one E l heterotetramer may bind 

to two E2 subunits. Therefore, the E l subunits may extend along the edges of the E2 

core structure while E3 extends across the faces. This in effect would provide a series
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of crossbridges around the human pyruvate dehydrogenase complex. A schematic 

model of the proposed mode of binding between E3 and E3BP, and E l and E2, is 

shown in Figure 6 .8 .

The presence of crossbridges in the complex may be beneficial for a number of 

reasons. The discovery of the E3BP component in mammalian PDC and its function 

in attaching E3 to the core of the complex suggests that the human complex is much 

more structured than, for example, the bacterial complexes where E3 and E l have 

been shown to compete for the same binding site on E2 (Lessard et al, 1996). An 

important part of the catalytic efficiency of human PDC may be based on a precise 

subunit stoichiometry. E3BP may have evolved in order to allow this to happen as it 

contains a binding site specific for E3. The presence of crossbridges may provide yet 

another level of structure for this complex. These crossbridges would effectively bring 

E l in close proximity to E2 and likewise, E3BP in close proximity to E3. In this way 

E l may interact preferentially with E2, acetyl groups or electrons may then be passed 

directly from E2 to E3BP with E3 interacting preferentially with E3BP. This may 

suggest that there is a defined route of acetyl and electron migration around the 

human pyruvate dehydrogenase complex. These crossbridges may also allow the 

lipoyl domains to be more directed in targeting the active sites, which may, in turn, 

increase the efficiency of the catalytic mechanism.

As well as allowing the lipoyl domains to be directed to the active sites, the presence 

of crossbridges may aid the regulation of this complex. It is known that the PDC- 

associated kinase is present on the complex in very small amounts. The best estimates
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a)

SBDSBD

E3

E3BPE3BP

b)

SBD

E2E2

Figure 6.8 Hypothetical model of the proposed binding arrangement between E3 

and E3BP, and E l and E2.

Panel A: Proposed model of binding between E3 and E3BP showing one E3 dimer, 

with a binding site on each monomer, binding to two E3BP subunits.

Panel B: Proposed model of binding between E l and E2 suggesting that human PDC- 

E1 contains two binding sites for E2. Binding is known to be mediated via the P 

subunits.

L I, inner lipoyl domain; L2, outer lipoyl domain; SBD, subunit-binding domain
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suggest that there is a maximum of three kinase molecules present per complex 

(Brandt & Roche, 1983). Given the physical size of these complexes it is difficult to 

envisage how the kinase can function effectively in the regulation of PDC. It has been 

proposed previously that the kinase moves around the complex by a “hand over hand” 

mechanism, by a process of partial dissociation followed by interchange to another 

lipoyl domain (Liu et al, 1995b). The presence of crossbridges may facilitate the 

movement of the kinase around the complex thus allowing it to function more 

effectively in phosphorylating the relevant serine residues on the E l a  subunit.

This chapter also examined the binding between E3 and E2. Using truncated 

constructs of E2, specifically the didomain and the subunit-binding domain, the 

association constants were measured in the micromolar range ( 2  x 1 0  ̂ for the 

didomain and 2 x 10  ̂for the subunit-binding domain). These results are in agreement 

with that obtained using SPR. The E2 didomain had an association constant of 2.52 x 

10  ̂while the full-length E2 bound to E3 with an association constant of 8.38 x 10  ̂

(S.D. Richards, PhD thesis). The stoichiometry of binding measured in these studies 

should be viewed with caution since, at this level of weak binding, measurement of 

the stoichiometry of binding becomes less accurate. Tentatively however, the 

stoichiometry of binding between E3 and the E2 didomain has been measured to be 

0.6, indicating that 0.5 mole of E3 binds to one E2 didomain. This could confirm the 

presence of two binding sites on the E3 dimer. The data obtained for the subunit- 

binding domain, which was cloned as a GST-tagged protein is more difficult to 

inteipret. As with the subunit-binding domain of E3BP, it would be expected that 

there would be two binding domains present in the expressed protein, thus resulting in 

a 1:1 stoichiometry. However, this was fixed at 0.5 in order to find the best fit for this
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set of data. There is a greater variation in the data obtained for the subunit-binding 

domain than for the didomain, which resulted in difficulties in performing the 

analysis. The stoichiometry of binding was also fixed at 1.0 (data not shown) and the 

best fit for the data assessed. On comparing the two models it was observed that a 

fixed stoichiometry of 0.5 resulted in a better fit for the data and so this is the analysis 

shown in Figure 6.7.

Perhaps most importantly the results obtained here again confirm that there is an 

interaction, albeit a weak one, between E3 and E2. The affinity of binding between 

these two proteins is significantly less than that between E3 and E3BP, as expected.

In order to clarify the results described above, further studies are required. As 

mentioned earlier ITC studies using a His-tagged E3BP didomain are underway at 

time of writing. This didomain is a monomer and should make clear the stoichiometry 

of the interaction between E3 and E3BP. The study using the full-length E3BP, where 

E3 is titrated into E3BP should also be repeated. The lower association constant 

obtained in this study ( 8  x 1 0 )̂ compared to that obtained for the other studies using 

E3BP constructs and the results obtained using SPR is a good indication that this 

study is not representative of the actual binding between these two proteins. This is 

likely to be due to the low concentrations of protein used in this particular study and 

also because of the large heats of dilution observed, which can mask the heats of 

binding. This could also account for the lower than expected stoichiometry seen in 

this case.

In order to validate the theory postulated above it is necessary to conduct ITC studies 

to examine the stoichiometry of binding between E l and E2. To date, this has not
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been possible due to the great difficulty in obtaining soluble recombinant E l. The 

solubility problem of E l has proved to be the major stumbling block in achieving the 

original aim of this thesis. Efforts to improve the solubility of E l are ongoing in our 

laboratory and once sufficient quantities of active protein have been obtained ITC 

studies will be performed using E l with the E2 didomain and the subunit-binding 

domain. Ideally the interaction between full length E2 and E l would also be studied 

but since recombinant E2 assembles into a 60meric structure this would make any 

meaningful analysis of the data difficult to achieve and limit the interpretation. 

Therefore it is preferable to use the truncated E2 clones.

Importantly, the data presented in this chapter has hinted at a new and novel level of 

structural organisation within the human pyruvate dehydrogenase complex, which has 

not previously been recognised. Further studies, such as those described above, are 

required in order to validate the hypothesis stated here and these studies are a top 

priority in our laboratory. However, it is also important to consider that the 

observations found under these experimental conditions may not necessarily be 

representative of the situation in the native complex and this must also be taken into 

account.
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The 2-oxoacid dehydrogenase multienzyme complexes are a source of great interest 

in terms of studying protein-protein interactions, cooperativity in multistep enzymatic 

processes and in the importance of post-translational modification. Our knowledge of 

these complexes has increased greatly in recent years but it has also become apparent 

that there is still much to be learned from the study of these vast macromolecular 

assemblies.

There is a great deal to be gained from extending our understanding and knowledge of 

the human pyruvate dehydrogenase complex. Mutations in this complex are 

associated with potentially severe inborn errors of metabolism. Over 200 mutations 

have so far been identified with most being found in the E l a  subunit of this complex. 

However, knowledge of the effects that these mutations have on complex activity and 

assembly remains limited. A model complex, whereby natural mutations could be 

introduced in vitro could be extremely advantageous in increasing our understanding 

of the consequences of these mutations on the complex as a whole. The reconstitution 

of a recombinant complex in vitro will also allow the assembly of the complex to be 

studied more fully in terms of the dynamics of binding and interactions between 

enzymes, which may only be observed on assembly of an intact complex. Another 

interesting aspect of producing a recombinant model is that it will eventually allow 

the association of PDC-associated kinase and phosphatase to be examined. Both of 

these regulatory enzymes are believed to bind to the inner lipoyl domain of E2.

Reconstitution of B. stearothermophilus PDC, using the recombinant enzymes, has 

been described previously (Domingo et al, 1999). In this complex, it has been found 

that E l and E3 can compete for binding and are capable of displacing one another
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from the subunit-binding domain of E2 (Lessard et al, 1996). It was also shown that 

in the presence of either E l or E3, E2 had the capacity to bind a maximum of 60 

subunits. However, in the assembled complex, when both E l and E3 are present only 

approx. 60% of the potential binding sites become occupied (Domingo et al, 1999). 

These investigators suggested that this may be because E l and E3 have different 

preferred binding sites on the surface of the E2 core and that this only becomes clear 

when both subunits are present and competing for binding. Thus it would appear that, 

at least for the B. stearothermophilus complex, assembly is not only dependent on 

spatial and geometric constraints but also by previously unrecognised interactions by 

all subunits involved.

The main aim of this thesis was in producing a recombinant model of the human 

pyruvate dehydrogenase complex. To this end, the cloning strategy has been 

described which has been used in order to overexpress the individual components of 

human PDC. His-tags have been incorporated into the N-termini of these recombinant 

proteins in order to facilitate their rapid purification using affinity chromatography. It 

has been shown here, and elsewhere, that the addition of an N-terminal His-tag has no 

significant effect on either the folding of these proteins or on their catalytic activity.

In all cases, with the exception of the E l component, induction of heterologous 

protein at 30°C was sufficient to produce soluble protein. Importantly, these proteins 

are also active, as evidenced by enzymatic assay and comparing their specific 

activities with those quoted in the literature. Immunoblotting with a specific 

monoclonal antibody showed that the N-terminal lipoyl domains of E2 and E3BP 

were folded coiTectly.
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Solubility of E l

As mentioned above, this has not been the case for E l. Although the recombinant 

protein appears to be active, it has not been produced in soluble form. The method of 

solubilisation described in this thesis, the use of N-lauroylsarcosine, has not proved to 

be a satisfactory means of producing E l in a form that can be used in subsequent 

studies. N-lauroylsarcosine appears to have a detrimental effect on PDC activity as a 

whole (data not shown) and, while substantial amounts of detergent can be removed 

by dialysis, residual levels remaining in the protein preparation can affect any 

subsequent studies. Clearly an improved method of producing soluble E l is required 

before further studies can be undertaken and this is a top priority in our laboratory. 

Other investigators have also reported difficulties in producing a soluble recombinant 

E l component. Mammalian E l from the branched chain 2-oxoacid dehydrogenase 

complex was shown to require the presence of additional molecular chaperones 

GroEL and GroES in order for an active OC2 P2 heterotetramer to assemble (Wynn et al, 

1992). While human El-PDC does not appear to require the presence of additional 

molecular chaperones, factors which do seem important in producing soluble, active 

recombinant E l include using a low concentration of inducer (O.lmM IPTG in some 

cases), a lower induction temperature (often 22°C) and coexpression of the two E l 

subunits in E. coli (Korotchkina et al, 1995). These conditions have been repeated in 

our laboratory and, unfortunately have not proved successful in producing soluble E l.

The lack of a soluble E l component has proved to be the main rate-limiting factor in 

preventing the reconstitution of a recombinant human PDC in vitro. However, while 

work to produce a soluble E l component was ongoing a number of interesting 

findings were obtained for the other components of PDC.
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Unfolding studies on recombinant E3BP

Unfolding studies on the independently expressed E3BP component has revealed that 

each of the three domains unfolds in discrete concentrations of GdmCl. This is 

consistent with the view that each domain can fold independently of one another and 

hence, also unfold independently of each other. It also indicates that some domains 

are more stable than others. The lipoyl domain in particular is very stable and it is this 

domain which is likely to be the last to unfold. It is this stability which probably 

results in neither the full-length E3BP nor the didomain being fully denatured in 6 M 

GdmCl. Performing the same study using the didomain of E3BP has shown that the 

didomain is more stable than the full-length protein. The didomain consists of the 

lipoyl domain and subunit-binding domain of E3BP cloned as a His-tagged protein. 

This would suggest that the C-terminal domain is the least stable of the three domains 

of E3BP. This information can now be utilised to provide an elegant means of 

examining the assembly and integration of E3BP into the E2 core in vitro. By 

selectively denaturing the C-terminal domain of E3BP in the appropriate 

concentration of GdmCl, it could then be observed if the denatured C-terminal 

domain could stably interact with a fully assembled E2 core. Reversible dissociation 

of E2 to trimers using intermediate levels (1.8-2.8M) of GdmCl (McCartney et al, 

1997) together with selective dénaturation of the C-terminal domain of E3BP could 

also be employed to examine the nature of the association between these two proteins.

Assembly of the E2/E3BP structural core

Studies using coexpressed E2/E3BP and individually expressed E2 and E3BP has 

revealed that coexpression of these two subunits is necessary in order for the two 

components to assemble into the core structure. Mixing the individually expressed
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subunits in equal amounts so that there was a vast excess of E3BP did not produce a 

stable integrated E2/E3BP core. Preliminary analysis of the stoichiometry in the 

coexpressed E2/E3BP core has suggested that there is an excess of E3BP present in 

the recombinant core when compared with the native complex. However, it should be 

emphasised that this is preliminary data and this study will be repeated in the presence 

of 1-2M NaCl in order to remove any E3BP, which may be non-specifically bound to 

the core and also any aggregates. While these original experiments to examine the 

stoichiometry of binding were peformed using densitometric scanning analysis, it is 

hoped that radiolabelling of these subunits with [2,3- '̂^C] NEM will provide another, 

more accurate means, of determining the stoichiometry of the recombinant core. If the 

stoichiometry proves to be as expected this provides further evidence that the 

assembly of the E2/E3BP core is likely to follow a defined pathway of folding 

intermediates.

Stoichiometry of binding of E3-E2 and E3-E3BP

Isothermal titration calorimetry (ITC) has been employed in this thesis to measure the 

stoichiometry and affinity of binding between E3 and E2, and E3 and E3BP. The 

interaction between E3 and E2 has been studied previously using surface plasmon 

resonance. The studies described here, where E3 was shown to interact with E2 with a 

weak affinity, has confirmed the interaction described previously (S.D. Richards, PhD 

thesis). Here, the affinity of binding between E3 and the truncated constructs of E2 

used in these studies has been shown to lie in the micromolai* range. This is very 

much weaker than that described for the interaction between E3 and E3BP and 

provides support for the observation that E2 preferentially binds to E l but has also 

retained a residual binding affinity for E3. It also shows that this binding between E2
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and E3 is specific in nature, and not just the result of random collision. This provides 

a molecular basis as to why E3BP-deficient patients retain residual PDC activity. 

Binding studies, again using isothermal titration calorimetry, of recombinant E3 and 

E3BP proteins have revealed an unexpected stoichiometry of binding. It has been 

shown that two E3BP monomers can bind to one E3 dimer. This would indicate that 

there are six E3 dimers present per complex and these would be likely to extend 

across the twelve faces of the E2 core. These studies have been performed using both 

the full-length E3BP and subunit-binding domain (SBD) of E3BP, cloned as a GST- 

fusion protein. In order to fully clarify the results obtained, repeating the experiment 

using the E3BP didomain will be required. However, the presence of six E3 dimers 

per complex could indicate that E3 forms a network of crossbridges around the 

complex, linking pairs of E3BP monomers. It will be of great interest to deteimine the 

stoichiometry of binding between E l and E2. Given that there are 60 E2 subunits 

present in each complex and that, at maximal occupancy there are believed to be 30 

E l heterotetramers it is feasible that two E l subunits may bind to one E2. If this is 

indeed the case it is possible that E l may also form a network of crossbridges. 

Cryoelectron microscopy of PDC from bovine kidney has recently suggested that the 

flexibility of E l and its linker is largely constrained (Zhou et al, 2001b). This lack of 

flexibility may be a direct consequence of the arrangement of E l about the complex 

as a series of crossbridges.

There are a number of possible reasons and benefits as to why this may be the case. 

The presence of crossbridges linking pairs of E2 subunits and pairs of E3BP 

monomers would suggest that while E3BP preferentially interacts with E3, E l may 

interact preferentially with E2. This indicates that there is a defined route of electron
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transport and transfer of acetyl groups and reducing equivalents around the human 

pyruvate dehydrogenase complex. This may result in the lipoyl domains being more 

directed to the active sites of the enzymes, which may in turn increase the efficiency 

of the catalytic mechanism.

The presence of crossbridges may also have a role in the regulation of the complex. 

There are estimated to be a maximum of three kinase molecules present in the intact 

PDC complex and these kinases are believed to bind to the inner lipoyl domain of E2. 

It has been proposed that the kinase moves around the complex in a “hand-over-hand” 

mechanism involving a steady process of partial dissociation of one kinase subunit 

followed by interchange to another lipoyl domain on the E2 core (Liu et al, 1995b). 

The presence of crossbridges on this complex may help facilitate the movement of the 

kinase around the complex enabling it to phosphorylate 20-30 E l a  subunits in a rapid 

and efficient manner.

It is important to remember that these studies have not been performed on an intact 

complex. In the native state these subunits are subjected to spatial and geometric 

constraints which cannot be accounted for under these experimental conditions. As 

was noted when the B. stearothermophilus PDC was reconstituted in vitro, there may 

be interactions between subunits which only manifest themselves during the assembly 

process (Domingo et al, 1999).

The data presented in this thesis has hinted at a new level of structural organisation 

within the PDC complex. Previously, it was thought that E2 and E3BP provided the 

structural framework of the complex while E l and E3 were purely mechanistic in
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purpose. The evidence presented here suggests that E l and E3 also have a structural 

function. They may modulate the movement of the lipoyl domain and are potentially 

involved in supporting the function of the kinase and phosphatase.

Future work will be aimed at improving the solubility of the E l component. This will 

allow binding studies to be performed using isothermal titration calorimetry in order 

to determine the stoichiometry and affinity of binding between E l and E2. This will 

hopefully provide further evidence for the presence of crossbridges in human PDC. 

Reconstitution of a model complex will also be attempted which should provide 

further insight into the ordered folding events involved in the assembly of these vast 

macromolecular machines.
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